

Minerals yearbook: Metals and minerals 1987. Year 1987, Volume 1 1987

Bureau of Mines

Washington, D. C.: Bureau of Mines : United States Government Printing Office, 1987

https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L

http://rightsstatements.org/vocab/NoC-US/1.0/

As a work of the United States government, this material is in the public domain.

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

Minerals Yearbook

1987

METALS AND MINERALS

Volume I

Prepared by staff of the BUREAU OF MINES

UNITED STATES DEPARTMENT OF THE INTERIOR • Manuel J. Lujan, Jr., Secretary

BUREAU OF MINES • T S Ary, Director

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. administration.

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1989

Foreword

This edition of the Minerals Yearbook discusses the performance of the worldwide minerals industry during 1987 and provides background information to assist in interpreting that performance. Contents of the individual

vearbook volumes follow:

Volume I, Metals and Minerals, contains chapters on virtually all metallic and industrial mineral commodities important to the U.S. economy. In addition, it includes a statistical summary chapter, a chapter on mining and quarrying trends, and a chapter discussing the statistical surveying methods used by the Bureau of Mines.

Volume II, Area Reports: Domestic, contains chapters on the minerals industry of each of the 50 States, the U.S. island possessions in the Pacific Ocean and the Caribbean Sea, and the Commonwealth of Puerto Rico. This

volume also has a statistical summary.

Volume III, Area Reports: International, contains the latest available mineral data on more than 150 foreign countries and discusses the importance of minerals to the economies of these nations. A separate chapter reviews the international minerals industry in general and its relationship to the world economy.

The Bureau of Mines continually strives to improve the value of its publications to users. Therefore, constructive comments and suggestions by

readers of the Yearbook will be welcomed.

TS Ary, Director

Acknowledgments

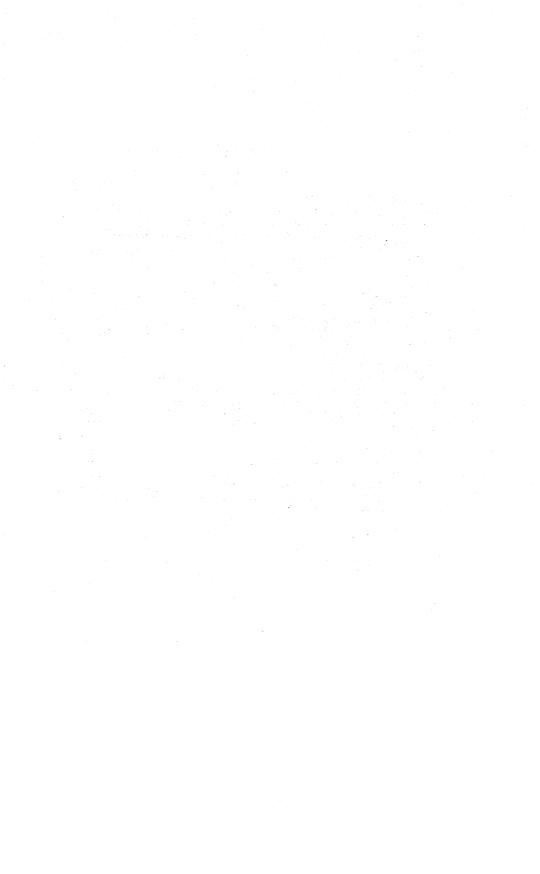
Volume I, Metals and Minerals, of the Minerals Yearbook, presents data on about 90 mineral commodities that were obtained as a result of the mineral

information gathering activities of the Bureau of Mines.

The collection, compilation, and analysis of domestic minerals industries data were performed by the staffs of the Branches of Ferrous Metals, Nonferrous Metals, and Industrial Minerals of the Division of Mineral Commodities. Statistical data were compiled from information supplied by mineral producers and consumers in response to canvasses, and their voluntary response is gratefully appreciated. Information obtained from individual firms by means of Bureau of Mines canvasses has been grouped to provide statistical aggregates. Data on individual firms are presented only if available from published or other nonproprietary sources or when permission of the respondent has been granted.

The chapter "Nonfuel Minerals Survey Methods" discusses in somewhat greater detail procedures for canvassing the minerals industry and the

processing and evaluation of these data.


Other material appearing in this volume was obtained from the trade and technical press, industry contacts, and other sources; and this cooperation is

gratefully acknowledged.

Statistics on world production were compiled in the Branch of Geographic Data, Division of International Minerals, from numerous sources including reports from the U.S. Department of State. U.S. foreign trade data were obtained from reports of the Bureau of the Census, U.S. Department of Commerce.

The Bureau of Mines has been assisted in collecting mine production data and other supporting information by numerous cooperating State agencies. These organizations are listed in the acknowledgments to Volume II.

V. Anthony Cammarota, Jr., Chief, Division of Mineral Commodities

Contents

. The first of the contract of the contract $m{I}$	Page
Foreword, by T S Ary	iii
Acknowledgments, by V. Anthony Cammarota, Jr	v
Nonfuel minerals survey methods, by William R. Vogel	1
Mining and quarrying trends in the metals and industrial minerals industries, by Arnold O. Tanner	. 5
Statistical summary, by Stephen D. Smith	41
Abrasive materials, by Gordon T. Austin	71
Aluminum, by Patricia A. Plunkert	85
Antimony, by Thomas O. Llewellyn	105
Asbestos, by Robert L. Virta	113
Barite, by Sarkis G. Ampian	12
Bauxite and alumina, by Luke H. Baumgardner and Ruth A. Hough	133
Beryllium, by Deborah A. Kramer	145
Bismuth, by James F. Carlin, Jr	15
Boron, by Phyllis A. Lyday	155
Bromine, by Phyllis A. Lyday	16
Cadmium, by Thomas O. Llewellyn	175
Calcium and calcium compounds, by David E. Morse	18
Cement, by Wilton Johnson.	187
Chromium, by John F. Papp	21
Clays, by Sarkis G. Ampian	23
Cobalt, by William S. Kirk	27
Columbium and tantalum, by Larry D. Cunningham	279
Copper, by Janice L. W. Jolly and Daniel Edelstein	28
Diatomite, by Arthur C. Meisinger	34
Feldspar, nepheline syenite, and aplite, by Michael J. Potter	34
Ferroalloys, by Clark R. Neuharth	35
Fluorspar, by David E. Morse	37
Gallium, by Deborah A. Kramer	38
Gem stones, by Gordon T. Austin	38
Gold, by John M. Lucas	39
Graphite, by Harold A. Taylor, Jr	43
Gypsum, by Lawrence L. Davis	44
Helium, by William D. Leachman	45
Iodine, by Phyllis Lyday	46
Iron ore, by Peter H. Kuck	47
Iron orie, by Peter H. Ruck Iron oxide pigments, by Donald P. Mickelsen	49
Iron and steel, by Frederick J. Schottman	50
Iron and steel scrap, by Raymond E. Brown	51
Vicanita and related materials by Michael J. Potter	53

Lead, by William D. Woodbury
Lime, by Joyce A. Ober
Lithium, by Joyce A. Ober
Magnesium, by Deborah A. Kramer
Magnesium compounds, by Deborah A. Kramer
Manganese, by Thomas S. Jones
Mercury, by Linda C. Carrico
Mica, by Lawrence L. Davis
Molybdenum, by John W. Blossom
Nickel, by William S. Kirk
Nitrogen, by William F. Stowasser
Peat, by James P. Searls
Perlite, by Arthur C. Meisinger
Phosphate rock, by William F. Stowasser
Platinum-group metals, by J. Roger Loebenstein
Potash, by James P. Searls
Pumice and pumicite, by Arthur C. Meisinger
Rare-earth minerals and metals, by James B. Hedrick
Salt, by Dennis S. Kostick
Sand and gravel, by Valentin V. Tepordei
Silicon, by Clark R. Neuharth
Silver, by Robert G. Reese, Jr
Slag—iron and steel, by Judith F. Owens
Sodium compounds, by Dennis S. Kostick
Stone, crushed, by Valentin V. Tepordei
Stone, dimension, by Harold A. Taylor, Jr
Sulfur, by David E. Morse
Talc and pyrophyllite, by Robert L. Virta
Thorium, by James B. Hedrick
Tin, by James F. Carlin, Jr
Titanium, by Langtry E. Lynd and Ruth A. Hough
Tungsten, by Gerald R. Smith
Vanadium, by Henry E. Hilliard
Vermiculite, by Arthur C. Meisinger
Zinc, by James H. Jolly
Zirconium and hafnium, by James B. Hedrick
Other industrial minerals quartz crystal, strontium, wollastonite,
zeolites), by Staff, Branch of Industrial Minerals
Other metals (arsenic, cesium and rubidium, germanium, indium,
rhenium, scandium, selenium, tellurium, thallium), by Staff,
Branches of Nonferrous and Ferrous Metals

Nonfuel Minerals Survey Methods

By William R. Vogel¹

The Bureau of Mines Information and Analysis organization collects worldwide data on virtually every commercially important nonfuel mineral commodity. These data form the base for tracking and assessing the health of the minerals sector of the U.S. economy.

This data collection activity was instituted by the 47th Congress in an appropriations act of August 7, 1882 (22 Stat. 329), to place the collection of mineral statistics on

an annual basis. The most recent authority for the Bureau of Mines Information and Analysis activity is the National Materials and Minerals Policy, Research and Development Act of 1980 (Public Law 96-479, 96th Congress), which strengthens protection for proprietary data provided to the U.S. Department of the Interior by persons or firms engaged in any phase of mineral or mineralmaterial production or consumption.

DATA COLLECTION SURVEYS

The Bureau of Mines initiates the collection of domestic nonfuel minerals statistics with an appraisal of the information requirements of Government and private organizations of the United States. Information needs that can be satisfied by data from the minerals industries are formulated as questions on Bureau of Mines survey forms. Figure 1 shows a typical survey form, "Alumina" (6-1013-A). Specific questions pertaining to the production, consumption, shipments, etc., of mineral commodities by industrial establishments are structured to provide data that will be aggregated into meaningful totals. The entire mineral economic cycle from production to trade and consumption is covered by 168 monthly, quarterly, semiannual, and annual surveys.

Once the survey form has been designed, a list of producers or consumers is developed. Many sources are utilized to determine the companies, mines, plants, and other operations that should be included in the survey to produce meaningful national and State totals. Bureau of Mines State Mineral Officers, State geologists, Federal

organizations (e.g., Mine Safety and Health Administration), trade associations, and industry publications and directories are some of the sources that are explored to develop and update survey listings. With few exceptions, an attempt is made to canvass the entire population of appropriate establishments. The iron and steel scrap industry is an example of one of the exceptions where a sampling plan is employed rather than a complete canvass of the entire industry.

Prior to mailing, the survey form must be approved by the Office of Management and Budget (OMB). Under the Paperwork Reduction Act of 1980, OMB approves the need or requirement for collecting the data and protects industry from unwarranted Government paperwork.

The Bureau publishes a "Survey Forms Catalog," which describes the content of each survey. Copies of the catalog may be obtained by contacting the Office of Statistical Standards, U.S. Bureau of Mines, 2401 E Street NW., Washington, DC 20241.

orm
urvev f
tvoical s
1. A
igure

Form 6-1013-A		UNITED STATES	LTES		Form Appro	200		4. Consumption of Aleminian Baseine Materials in the Manufacture of Aleminian	faciale in the				
Nenfer, (9-86)	DEPAR	DEPARTMENT OF THE INTERIOR	E INTERIOR		CM.B. No.	O.M.B. No. 1032-0004.		Matorial			Quentity (Metric tone)		Value at Plans
THE PARTY OF THE P	¥	WASHINGTON, D.C. 20241	C. 20241		PA	DATA-PROPRIETARY		8	9	9	5		5
E CO			ı		Uniess ave	Unless authorization is granted in the		Bauxite, Domestic		401			
		41444			furnished II	furnished in this report will be treated in confidence by the Descention	the date be treated	Bauxite, Foreign:		Ş			
			S		the interior	, except that the	may be			200			
					or to the	ongress upon off	Craf request						
				:						*0		-	
						,				405		1	
								Gryana		406			
							_	Dominican Republic		407			
								Other Countries (specify)					
								14.000					
]													
								Total foreign		419			
factory and seemble to easy it thereon easy.	2000	-					-	Other materials (specify)					
		, , ,											
Please reply to the following questions and return this form as promptly as possible in the enclosed envelope. If exact data are not evalishle, enter your best estimates and mark "estimated". Submit a separate report for each plant	ns and return this your best estimats	form as pron	optly as possit	ble in the encl	osed envelope report for ex	ich plant		5. Consumption and Stocks of Beautite. The quantity in Section 5, Column 3, Line 505, should equal the quantity reported in Section 4, Column 2, Line 401.	ine 505, shou	id equal the quantify	y reported in Sec	tion 4, Column	2. Line 401.
*Collection of non-fuel minerals information is authorized by Public Law 96-479 and the Defense Production Act. This information	rmation is authori	zed by Public	Lew 96-479	and the Defer	nse Production	Act This info	metron	The quentity in Section 5, Column 3,	ine 515, shou	id equal the quantity	y reported in Sec	tion 4, Column	2, Line 419.
is used to support executive policy decisions pertaining to emergency preparedness and defense and analyses for minerals legislation and industrial trends. The Bureau relies on your voluntary and timely response to assure that its information is complete and accurate.	decisions pertainir s on your volunts	ig to emergen. iry and timely i	ty preparedners	asure that its	and analyses	for minerals le complete and	gislation coursts."	Kind of ore		Stocks beginning of year		Consumption during year	Stocks and of year
1. Location of plant Nearest ci	Nearest city or town		County			State		8	000	(2)	4	(C) (C)	(4)
2 Benduction Comments of Street	1							Domestic					
Report gross weights of each product in Columns 3-7.	product in Colum	of Alumina a. The 3-7.	nd Primary A.	lumina Produc	ts During the	, se		Undried	201		1		
	Average	Stocks	Production	Consumption	Shipments during year	r	Stocks	Dried	205				
Product	Content	of year	e a	g in	Quentry	Г	yes of	Activated	203				
10	Code (2)	(Metric tons)	Metric tons	(Metric tons) IMetric tons)	(d)	3000	offic tons)	Calcined or sintered	204				
Calcined aiumina	201					-		Total domestic	205				
Commercial alumina trihydrate	202							Foreign: Undried or partially dried	2				
Litho or light hydrate	203							Peid	502				
Activated alumina	204			_				Other (specify)					
Tabular alumina	205							Total foreign	1				
Obser								Remarks					
3. Shipments of Alumina During Year by Consuming Industries	y by Consuming	Industrias											
The total quantity of shipments reported should equal the total of the shipments reported in Section 2, Column (6).	* reported shoul	d equal the to	atal of the sk	upments repo	rted in Sectio	n 2, Column (
			ð	Quantity (Metric tons	1906								
13)	Code (2:		Trihydrate	Activated	Tabular		Other						
Abrasive	301		-										
Alvminum	302					-		PUBLICATIONS. Annual statistical information is published for aluminum and bauxite. If you desire a copy of one or both of these	is published	or aluminum and ba	wxite. If you desi	re a copy of o	he or both of these
Chemical	303				L	-		commodity reports, please o	heck the appro	priate box.	(1) Aluminum	(2) Baux	(3) Both
Refractory	200	-				-		Name of person to be contacted regarding this re	Į,	ř.,	al. area code	ĝ	ž
Brick and shapes	305	-						Address No. Street		City		State	Zip
Monolithic	306		-				-			4			-
Calcium aluminate cement	307							May tabulations be published which could indirectly reveal the data reported above? Value data	directly reveal	the data reported above? Other (including quantity) data	bove?		5
Other (specify)		,			-	-				T10.		j	9110
		OVER					<u>.</u>						

SURVEY PROCESSING

The 168 surveys yield more than 57,000 responses from approximately 26,000 establishments annually. Each of the completed survey forms returned to the Bureau undergoes extensive scrutiny to ensure the highest level of accuracy possible in recording mineral data. Bureau specialists ensure that no error is introduced owing to reporting in units other than those specified on the survey form. Relationships between related measures such as crude ore produced and marketable product are analyzed for consistency. Internal numerical relationships such as column and row totals are checked. The data reported in the current reporting period are checked against prior reports to detect possible errors or omissions.

For automated surveys, the specialist reviews the form for correctness and completeness before the data are entered into the computer. The computer is programmed to conduct a series of automated edit checks to ensure mathematical consistency and to identify any discrepancies between the data reported and logically acceptable responses.

The Bureau of Mines is modernizing and automating all of its survey processing and data dissemination methods. Automation of the commodity data subsystems supports the processing of individual surveys and the preparation of statistical tables for publication. A central data base includes the minerals data gathered through surveys as well as pertinent data from other sources. The data base enables Bureau personnel to retrieve the data required for analysis of minerals problems and for answering specific user questions.

Survey Responses.—To enable the reader to better understand the basis on which the statistics were calculated, each commodity chapter of the "Minerals Yearbook" includes a section entitled "Domestic Data Coverage." This section briefly describes the data sources, the number of establishments surveyed, the response percentage, and the method of estimating the production (or consumption) that is accounted for by non-respondents.

Although the response to Bureau surveys is generally very good, the Bureau must employ an efficient procedure for handling instances of nonresponse to produce reliable aggregated data. Second mailings of the survey form may be made. Followup by telephone is employed extensively to pro-

vide complete data entries on the survey forms, to verify questionable entries, and also to encourage those not reporting to either complete and return survey forms or provide the information orally. Periodic visits to important minerals establishments are also made by Bureau commodity specialists or State Mineral Officers. These visits are made to gather missing data and also to point out the importance of the companies' reporting to the production of accurate national as well as State and county statistics. By showing the use of these statistics and the impact of nonresponse, the Bureau hopes to encourage as complete and accurate a canvass as possible.

The OMB "Guidelines for Reducing Reporting Burden" stipulates that the minimum acceptable response rate shall be 75% of the panel surveyed. In addition, the Bureau strives for a minimum reporting level of 75% of the quantity produced or consumed (depending on the survey) for certain key statistics. Response rates are periodically reviewed, and for those surveys not meeting the minimum reporting level, plans are developed and implemented to improve response rates.

Estimation for Nonresponse.—When efforts to obtain response to a Bureau survey fail, it is necessary to employ estimation or imputation techniques to account for the missing data. These techniques are most effective when the response rate is relatively high. The Bureau is continually striving to develop and make use of the most effective techniques. Some of the imputation methods depend only on knowledge of the prior reporting of the establishment while others rely on external information to estimate the missing data. Survey forms received after publication cutoff dates are edited and necessary imputations are made for missing data. The data base is updated and these revisions will be reflected in subsequent publications.

Protection of Proprietary Data.—The Bureau of Mines relies on the cooperation of the U.S. minerals industry to provide the minerals data that are presented in this and other Bureau publications. Without substantial response to survey requests, the Bureau would not be able to present reliable statistics. The Bureau in turn respects the proprietary nature of the data received from the individual companies and estab-

lishments. To ensure that proprietary rights will not be violated, the Bureau analyzes each of the aggregated statistics to ascertain if the statistics of an individual company or establishment can be deduced from the aggregated statistics. For example, if there are only two significant producers of a commodity in a given State, the Bureau will not publish the total for the State since

either large producer could readily estimate the production of the other. It is this obligation to protect proprietary information that results in the "Withheld" or "W" entries in "Minerals Yearbook" tables. When the company gives permission in writing, the Bureau may release data otherwise withheld because of proprietary considerations.

INTERNATIONAL DATA

Volume I of the "Minerals Yearbook" contains a "World Review" section in each commodity chapter that usually includes a world production table. These tables are prepared in the Bureau's Division of International Minerals. These data are gathered from various sources including published reports of foreign government mineral and

statistical agencies, the U.S. Department of State, and international organizations such as the United Nations and the Organization of Petroleum Exporting Countries. Missing data are estimated by the country specialist based upon information gathered from a variety of sources.

PUBLICATIONS AND DATA SERVICES

In addition to the "Minerals Yearbook," the statistical data collected are published in other reports, the principal series being the "Mineral Industry Surveys." "Mineral Industry Surveys" are concise monthly, quarterly, or annual reports that contain timely statistical and economic data on nonfuel mineral commodities. The surveys are designed to keep Government agencies, the minerals industries, and the business community regularly informed of trends in production, distribution, inventories, and consumption of nonfuel minerals.

One of the earliest publications containing information on mineral production, resources, reserves, imports, exports, uses, recycling, substitution, environmental considerations, and related subjects is "Mineral Commodity Summaries." Published in January, it covers approximately 90 mineral commodities for the previous calendar year.

"Mineral Facts and Problems" is a one-volume reference book containing world-wide production information and demand forecasts for all nonfuel minerals. It is published every 5 years. In the 1985 edition, each commodity chapter covers the structure of the industry, uses of the commodity, reserves and resources, technology, supply-demand relationships, byproducts and co-products, strategic considerations, economic and operating factors, and forecasts to 1990 and 2000. Each chapter also compares U.S. and world reserves with cumulative demand to appraise the adequacy of world

mineral supplies.

The "Mineral Perspectives" series reports on the mineral resources, industries, and related infrastructure of foreign countries or regions of the world that assume major importance to our Nation's mineral needs.

"Minerals and Materials/A Bimonthly Survey" provides timely information on selected commodities. Data and analyses are presented that are germane to policy issues of current interest. Brief narratives are supplemented by statistical graphs and tables. Data are provided for the current month and the previous 17 months.

The "Minerals Yearbook" and "Mineral Facts and Problems" are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. For additional information on the other Bureau publications, contact the Office of Public Information, U.S. Bureau of Mines, 2401 E Street NW., Washington, DC 20241.

Copies of Bureau survey mailing lists are available in printed form. These lists include the company and plant names and the addresses to which the survey forms are mailed. Information on purchasing copies of mailing lists can be obtained from the Office of Statistical Standards, U.S. Bureau of Mines, 2401 E Street NW., Washington, DC 20241.

 $^{^{1}\}mathrm{Operations}$ research analyst, Office of Statistical Standards.

Mining and Quarrying Trends in the Metals and Industrial Minerals Industries

By Arnold O. Tanner¹

The recession that took hold of the domestic mining industry in 1981-82 finally abated somewhat in 1987, resulting from increases in many commodity prices, especially in the metals sector, and from continuing success in lowering operating costs. By no means was the work finished; the mining industry was in a sense entering a new era. The struggle for survival was still very evident for many companies and various commodities, but increasing productivity and profits were accompanied by indications that these trends were more long term than short term.

Raw nonfuel minerals produced in the United States during 1987 had an estimated value of \$26.3 billion, an increase of \$2.9 billion over the 1986 value. This is the fifth consecutive year that the value has increased. Except for a decrease in 1982, the value each year has increased since 1971, or 15 of 16 years. The value of raw metals production increased by an estimated 28%, an impressive improvement since the drastic fall in 1982. Industrial minerals growth was comparatively flat, with an estimated increase in value of 0.1%, continuing a trend of the previous 2 years. Metal mine production dropped considerably in 1982 and maintained its resultant lower level until 1987, when production significantly recov-

A decrease in imports, low domestic inventories, a decline in the exchange value of the U.S. dollar, and a consistent demand for U.S. goods improved the output and profit picture of mineral and mineral material producers during 1987. Openings and expansions of mines and processing plants

well exceeded closings. Real spending for new plant and equipment for primary metal manufacturing increased 21.0%. Total employment in mining fell by 5.2%, but employment at metal mines increased by 5.3%. Prices and output for most mineral commodities in the United States increased in 1987, and the value of raw nonfuel minerals production in the United States increased by 12.3%.

Domestic mine production increased substantially for gold, titanium, copper, iron ore, silver, and bauxite, in descending order. Molybdenum production decreased significantly; lead production was down moderately, and magnesium output fell slightly. Industrial minerals with significantly increased production were boron, lime, phosphate, and potash. Clays, gypsum, soda ash, and crushed stone held fairly even with 1986 production. Small declines occurred for salt and sulfur.

Gold remained the strongest contender among metals in both domestic and international metal mining, as had been the case for a number of years. Gold production continued to be spurred on by the increasing use of heap leaching. This technology made profitable mining ventures out of lower grade ore deposits and even abandoned mine tailings. Gold output in the United States increased from about 3.7 million troy ounces in 1986 to almost 5.0 million ounces in 1987, an impressive 33% rise. This followed the 45-year record increase of 54% in 1986, when the United States overtook Canada as the third largest primary gold producer in the world, behind the Republic of South Africa and the Soviet Union. During 1987, gold bullion imports fell 82% to 2.4 million ounces and exports fell 28% to 2.3 million ounces. The trade deficiency in all precious metals was cut in half, from 137.2 million ounces in 1986 to 67.9 million ounces in 1987. Gold and silver mining, in particular, had a very definite, positive effect on the Nation's economy.²

The production of gold bullion and commemorative coins increased worldwide by mining companies, the U.S. Mint, individual States, and a growing number of foreign countries. Demand for gold and silver coins from the U.S. Mint accelerated, with a continuing high demand for American Eagle bullion coins as well as coins commemorating the 200th anniversary of the U.S. Constitution. Additionally, a number of foreign countries, including China and France, produced palladium and platinum coins; Mexico was developing a platinum bullion coin.

Although many metal stocks initially dropped in value by varying amounts following the disruption of the stock market in October, they were not seriously hurt and were identified by some experts as among the bigger winners in the broad market slide.³ Another positive sign for the year came from a lower 1987 trade deficit for minerals and metals. The deficit for these commodities stood at \$23.5 billion, a decrease from the 1986 deficit of \$27.6 billion. Total exports increased by 15% to \$15.6 billion in 1987, while imports declined 5% to \$39.1 billion.

The industry's massive restructurings, imaginative and often bold cost-cutting measures, trend toward teamwork-oriented labor-management relations, use of moreefficient technologies, and application of innovative ideas throughout mining and mineral processing operations appeared to be paying off. Increasing the industry's competitiveness in the world market was the theme of the mining industry and numerous mining conferences throughout the year. Issues that most concerned the industry were regulatory costs and possible tax increases for mining. The regulatory concerns included acid rain, ground water, and mine waste legislation.

Legislation and Government Programs.—Although the mining industry was not ignored by Congress, 1987 was a quiet year for the mining community in terms of legislation that went to the President for his signature.

The National Defense Authorization Act,

1987 (Public Law 100-180), was signed into law by the President in December. The act affirmed the previously authorized stockpile goals, but it also authorized the President to make changes of less than 10% following the submission of the justification to Congress. The change would be made at the beginning of the fiscal year that follows the submission of the justification. Changes greater than 10% would require statutory authorization. The Secretary of Defense was required to send to Congress annually recommendations for stockpile planning, based on mobilization of the United States economy for a global war of not less than 3 years. Additionally, the President, with the consent of the Senate, was to appoint a manager for the National Defense Stockpile.

In the spring, the President signed a bill (Public Law 100-34) that repealed the 2-acre reclamation exemption in the 1977 Surface Mining Control and Reclamation Act (SMCRA). The exemption was intended to protect small privately owned mines but was being technically circumvented. Some mine operators, particularly in the Appalachian Mountains, had divided large mining sites into several small parcels, each one exempt. The bill also revised the rules for the abandoned mine land fund so that States could set aside Federal funds for future reclamation. A State would be able to place into a special trust up to 10% of its annual allocation from the mine land fund. It could use the reserve for future reclamation after the SMCRA payments stopped in 1992.5

The Michigan Wilderness Heritage Act, 1987 (Public Law 100-184), became law in December and designated 92,000 acres in Michigan as a Federal wilderness area. The measure shielded 11 areas in 3 national forests from development, which included mineral extraction and logging. At the same time, the bill released for mutiple uses 21,000 additional acres that had been under consideration for designation as wilderness areas.

The U.S. Supreme Court, in California Coastal Commission v. Granite Rock Co., upheld a State's right to control mining on Federal lands within its borders. The Court ruled that companies with federally approved mining operations may be required to procure State permits as well. The Court stressed that it was not saying that a State could determine basic uses of Federal land, but that the State could regulate a given

mining use so that it would be carried out in an environmentally sensitive and resourceprotective fashion. Dissenting Justices noted that the ruling effectively gave the State the power to veto a Federal project. The ruling had broad implications because 6 other States at the time claimed regulatory power over Federal land within their borders, and 13 additional States supported the position of the coastal commission. Also, 700 million acres of land, or about one-third of the United States, was federally owned. The ruling specifically endorsed the commission's right to require that Granite Rock obtain a State permit to mine, by open pit method, chemical-grade limestone in Los Padres National Forest, a scenic and environmentally sensitive area.

In another States rights decision, the Supreme Court upheld an individual State's authority to restrict underground mining in order to protect the land and surface structures. The Court ruled that Pennsylvania could require that 50% of the coal underlying existing housing, public buildings, and cemeteries remain in place to prevent subsidence. In Keystone Bituminous Coal Association et al. v. Duncan, a group of mine operators had challenged the 1966 Pennsylvania Subsidence and Land Conservation Act, stating that their fifth amendment rights had been violated when they were barred from extracting coal in specified areas. The Court held that Pennsylvania's action did not constitute taking of property without just compensation. The mine operators, it said, had not been denied economically viable use of their lands because only a small percentage of their total coal supplies was affected. The Court said that the protection of the public health and the environment were legitimate State concerns, even though much of the land at issue had been sold at the turn of the century with stipulations releasing mine owners from liability for damage to the surface property. The law mainly affected coal operations, as subsidence was much less common in other types of mining.

In an October ruling, the Supreme Court left intact a lower court ruling that the Federal Government could not be sued by a group of uranium miners who had not been informed of a Federal study on the risks of radiation poisoning in a mine where they worked. The 1980 lawsuit contended that the Federal Government had contributed to the deaths and illnesses of uranium miners who had worked in a privately owned Utah uranium mine since 1950. Those bringing suit said that the Government was aware that radiation was 1,000 times greater than allowable levels and that the Government knew such levels would cause a lung cancer epidemic among the miners.

Exploration.—Mineral exploration in the United States continued to decline in 1987. except in the pursuit of gold and other precious metals. This downtrend had started in 1981. The pace of the decline lessened slightly, probably owing to a midyear rebound in a number of commodity prices, particularly those of copper, lead, and zinc. An estimated 80% of the exploration activities was for gold alone, as was the case in 1986.

Sophisticated remote-sensing instrumentation was fast becoming a valuable tool for mineral exploration, due to new developments in both data processing and sensory technology. Mapping satellites could detect promising mineral classes on the earth's surface. Remote-sensing efforts in the United States mainly relied on two Landsat satellites that had been launched by the Government in 1982 and 1984. Complex scanners aboard the vehicles recorded electronic images of the earth's surface below at seven electromagnetic lengths, two of which were sensitive to characteristic reflection "signatures" mineral classes often found near valuable ores. The recorded data were examined by exploration companies with the help of high-powered computers and specialized software. As they sharpened their dataprocessing and analytic skills, some companies took second and third looks at prospecting areas they previously had rejected.6

Scientists at Homestake Mining Co. (HMC) in California were using the satellite images to find likely areas of gold deposits. They followed up by investigating areas of interest with conventional field techniques. Although many were starting to revive by midvear, the depressed metals prices helped to limit the use of these imaging techniques mostly to gold and petroleum exploration. New satellite construction was planned for the next several years, but governmental budget cutting raised conflicts over apportioning the costs between the Government and the companies licensed to build the satellites.

At the National Aeronautics and Space Administration's Jet Propulsion Laboratory in California, scientists developed an airborne sensor that measured 224 very narrow electromagnetic wavelengths in a continuous range. The Avaris, or Airborne Visible and Infrared Imaging Spectrometer, would provide a precision that was lacking with active satellites' relatively wide-scanning wavelengths. Avaris was successfully tested from a standard, high-altitude U-2 aircraft, where it probably would be initially used, primarily by the scientific community rather than by commercial users. Installation of a similar spectrometer on a space platform was being considered for the mid-1990's.7

In a joint venture with three mining companies, the exploration company Earth Search Science Inc. (ESSI) of Salt Lake City. UT, made the data base that it constructed with its Airborne Thematic Mapper (ATM)⁸ a key ingredient in the company's recently stepped-up gold prospecting activity in Nevada and Oregon. ESSI used an ATM system that was basically an airborne version of a Landsat scanner. The system was manufactured by Daedalus Enterprises, Ann Arbor, MI. ESSI compiled multispectral scanner imagery of more than 5.5 million acres of Nevada and Oregon terrain, and the company claimed that this was the largest ATM data base produced for exploration in the United States. Two types of multispectral imagery were used. The first was an 11-channel (visible, mid, and thermal infrared) imagery acquired during the daytime to identify mineralized outcrops in mountain ranges. The second type of imagery involved acquiring thermal images before dawn to delineate geological structure and possibly silicification along range front and valley areas. ESSI processed and interpretated all the ATM data. In addition to its own equipment, ESSI used imageprocessing facilities at the University of Utah.9

Exploration core drilling received some assistance from the continued development of polycrystalline diamond (PCD) cutting elements for impregnated-core drill bits. A PCD is formed by the sintering of micrometer-size synthetic diamonds with a catalyzing and binding agent under high pressures. This causes the diamonds to cohere into a composite that doesn't have the natural planes of weakness that natural diamonds have. Under low pressures graphite is formed. The latest impregnated-core bits were made with perfectly formed synthetic diamonds, which were more thermally stable than earlier versions.

One advance included the use of silicon instead of cobalt as a binder in the PCD formation process, because silicon and the silicon carbide resulting from the process are much more compatible with a diamond's thermal properties. The use of cobalt appeared to limit PCD bit drilling to less than 700° C. De Beers Industrial Diamonds Div. of the Republic of South Africa used silicon to produce a high-strength bit that was thermally stable up to 1,200° C. De Beers claimed that the new PCD bits penetrated three or four times as fast as other impregnated bits and lasted as long. The company also reported penetration rates up to 600 millimeters per minute over a 16meter thickness of hard South African gabbro rock with compressive strengths of about 35,000 pounds per square inch.10 The improvements in synthetic diamond compounds were increasing total bit life and allowing much faster penetration rates. Some of the new thermally stable bits were made from lower temperature powder matrix alloys sintered in atmospherically controlled furnaces to prevent diamond degradation. When used by a competent driller on high-speed machines, the new bits would often drill more than 100 meters at an average penetration rate of 100 to 150 millimeters per minute in the hardest of Scandinavian rocks. Scandinavia was a likely proving ground for cost-cutting innovations because the region has high labor costs and a broad spectrum of hard and difficult rocks.11

The U.S. Geological Survey and the Illinois State Geological Survey made a pilot study on geochemical analyses of insoluble residues from carbonate rocks. The procedure might be useful as a prospecting tool for detecting very small amounts of metals and other minerals, which could indicate the location of such mineral deposits as fluorspar, lead, and zinc. The analyses were done on cores and cuttings from churn- and rotary-drilled wells to assess the resource potential of subsurface carbonate rocks in and on the flanks of the Illinois Basin.12 The geophysical method of using seismic (sound wave) reflections off subsurface geological structures can help delineate stream channels when exploring for placer gold as well as indicate the direction and extent of gravel, sand, and clay beds. However, reflection surveys very often are too costly for mining operations. Such surveys usually are conducted by the petroleum industry, and these tend to be much deeper than

those necessary for a mineral search. The Canadian Geological Survey developed techniques for shallow reflection surveys using small crews, low-priced equipment, and data processing on Apple II personal computers. Where the technique worked, the Canadian geologists reported, their data improved remarkably. Their work progressed as they sought out and identified a number of pertinent formation types, including gold-bearing alluvium.¹³

Development.—Like the slow pace of exploration, the rate of development of new mining properties, especially those involving metals, reflected the low though more stable prices and the competition within the mining community. Expanded operations and modernization of existing properties, reopening of mines closed during the last several years, and redevelopment of previously mined properties took precedence over development of new mines. Gold again was the exception: About 35 new gold mines opened in the United States in 1987. Most mines were in California, Montana, and Nevada, but several came on-line in North Carolina and South Carolina.

In April, Cyprus Minerals Co. commenced construction of its Copperstone gold mine in western Arizona. The mine poured its first gold in November. Copperstone was the largest open pit gold mining and milling operation and the largest producer in the State. It had known open pit reserves of 510,000 ounces of gold. Six million tons of ore grading an average of 0.085 ounce of gold per ton were to be mined over an estimated 6-year mine life. Continued exploration indicated additional surface reserves as well as potentially higher grade reserves that would require future underground mining. The ore was processed by a tank agitation leaching method that incorporated the standard carbon-in-pulp goldseparation technique. This method was more expensive than heap leaching, but it was faster and would yield about 20% higher recoveries.

The Montana Tunnels Mine near Helena, MT, commenced operations in March following its development by Pegasus Gold Inc., Spokane, WA. Montana Tunnels was one of the latest acquisitions of known ore reserves by Pegasus. The company was fairly new in the mining business and growing very quickly by such purchases. Although Montana Tunnels was primarily a gold mine, there were significant quantities of silver, zinc, and lead in the ore. When

operated at full capacity, at a rate of 12,500 tons per day, or 4.3 million tons of ore per year, the mine was expected to yield 106,000 ounces of gold, 1.7 million ounces of silver, 26,000 tons of zinc, and 5,700 tons of lead annually.

Owners of new and continuing minedevelopment projects looked for more ways to cut their costs, following the trend of the rest of the mining industry. Seismic reflection and refraction provided substantial benefits at moderately reasonable costs when used for mine development. With these techniques, drill-hole locations in the ore body could be optimized, and the lateral extent of deposits could be determined. along with information about formation structures between drill holes. For strip mining, seismic surveys helped to estimate costs of removing overburden. For mine safety, seismics could be used to map faults, determine rock quality, locate alluvial intrusions, and estimate pillar diameters. Measurements of seismic velocity could be used to design blasting programs and to measure their effectiveness, reducing the cost of blasting. A possible low-cost alternative to available, state-of-the-art geophysical technologies was the methodology developed by the Canadian Geological Survey, previously cited in the "Exploration" section of this chapter.

Drilling technology for underground development had progressed much in the past 10 years, as evidenced by the latest in powerful and reliable hydraulic drill jumbos. Computer technology took drilling one step further by enhancing drill-cycle performance and reducing excavation costs. Computerized drilling was able to achieve excavation accuracies as close as 5 to 10 centimeters on a tunnel profile. This precision could reduce overbreak by as much as 20% on a theoretical tunnel profile. These advancements decreased machine wear, speeded development, increased safety, and reduced costs. Tamrock of Finland developed its Datamatic 500-series computerized drill jumbo, which incorporated microprocessors to control, among other functions, machine alignment, boom movement, and drilling. The Norwegian Geological Institute tested the machine by developing a 6.0by 5.5-meter tunnel. The 84-hole round cut, with hole dimensions of 4.3 meters by 45 millimeters, was drilled in less than 2 hours. Using software for three-dimensional drilling, an onboard computer directed the jumbo with a reference laser beam. The unit accurately excavated curves, inclines, and declines. The computer not only controlled drilling sequences and patterns and various other paramaters, but it also monitored drilling functions for efficiency and potential equipment failure. When limit values were exceeded, the computer shut down the machine and revealed the source of the problem. Tamrock said that a correctly trained operator could analyze machine progress and performance and add to the overall cost savings already achieved.¹⁴

The automatic recording of metal contents and ore grades from a borehole can give the mine planner-developer considerably more flexibility and control of a mining operation. Preussag Aktiengesellschaft of the Federal Republic of Germany reported successful field trials of its automatic borehole logging device, the Slimhole Analyzer, at its Bad Grund lead-zinc mine. Preussag developed the mobile, vehicle-mounted, computerized unit for mine exploration. development, and ore body definition. It was designed for 40-millimeter-diameter holes that are usually produced by standard blasthole drilling equipment, and it was said to supply instant, direct readings of thickness and grade of mineralization. After the system's radiation-inducing probe was hydraulically positioned in front of the borehole, a single keystroke activated the Slimhole's onboard computer for automatic operation. The analyzer inserted the probe and instantly and continuously plotted the metal concentrations detected by X-ray fluorescence. Results were shown on printouts momentarily after the measurements were complete. Cable lengths of 60 meters were used and metallic element detection limits were a function of the speed at which the measurements were made, the slower the better. The Slimhole's modular design allowed different types of ore and elements to be analyzed by adjusting the radiation to fluoresce properties of the materials of interest. The Slimhole was particularly useful at the Bad Grund Mine, where very selective mining was necessary, owing to both irregular mineralization and weak rock conditions.15

Underground Mining.—One of many computer-related contributions to operations underground was the Computer Analysis Rock Excavation (CARE) software package. The program simulated rock drilling and blasting and could be used with a personal computer. It produced a considerable amount of useful data within an hour, according to its developer, Atlas Copco MCT AB of Sweden. CARE compared possible excavation systems and their costs, pre-

dicted their performance, and identified the best choice. It assessed the fitness of the drilling equipment for specific assignments of different scales ranging from that of an individual face, to a formation, to an entire mine. The program then suggested the best drilling patterns and types and quantities of Drilling and blasting, two explosives. branches of the CARE program, could be used separately or together, but CARE was most effective when both subpackages were used interactively. The system offered mining companies and their suppliers the possibility of eliminating costly full-scale trials of new mining methods and equipment, especially with complex rock formations. CARE was developed by Atlas Copco over 20 years. It was not available for purchase, but Atlas Copco was offering it on a complimentary basis through its local sales organizations.16

A good communications system links a mine's functions in a timely manner and improves the productivity, safety, and control of underground transport in a mining operation. A system that combines speech and data radio transmission can provide current information about actual mine traffic, give routing instructions, and make it possible to react immediately to breakdowns or accidents. Obstacles to wide-scale underground radio communication include prohibitive capital costs, inefficient and inadequate performance, and impracticality of installation. These difficulties can be reduced to an acceptable level with medium-wave radio. Without amplification, 300to 3,000-kilohertz waves can be transmitted on existing cables, pipes, and wires for long distances, thereby avoiding a separately laid-out system. Most currently available systems used AM transmissions that often were severely affected by interference from high-tension cables, electric motors, or rectifiers. FM systems received some increased attention during the year because they were not as badly affected by interference. Montan-Forschung of the Federal Republic of Germany had developed such FM systems for a number of years. One of the company's applications was a combined speech-and-data-transmission network that connected 81 load-haul-dump (LHD), 12 other vehicles, 6 drill rigs, and 30 handsets. Under development were telediagnostic applications, so that controlroom personnel could monitor conditions simultaneously below ground, including equipment oil pressure and temperatures, power currents, and pressures throughout the mine.17

Bureau of Mines researchers continued

their efforts with both conventional mining processes and innovative mining systems, but innovation was emphasized in the Bureau's work on mining technology. Research was done with the recognition that mining companies often cannot adopt innovative technology overnight. The Bureau worked with conventional methods in an effort to help companies until they would be able to adopt more radical advancements. Impressive reductions in drilling costs were seen as very possible. Bureau scientists demonstrated that maintaining an electrical balance between the rock and certain drilling fluids could double the drilling rate and drill-bit life over that obtained using plain water. These additives eliminated the need for expensive instruments that are sometimes used to maintain the electrical balance.

Bureau researchers worked on new mine filling technologies to safely and economically support mined-out openings and allow increased extraction of ore, such as from ore bodies previously used as support pillars. They developed a system that uses a special cement pump to push dense pastelike material through pipes to openings underground. There the substance was mixed with large amounts of fine waste rock and forced into voided areas; this mixture provided better support than the loose fill usually used.

At its North River No. 1 Mine, Pittsburgh & Midway Coal Mining Co. continued successful testing of a deep-cut system using continuous miners. The mine's overall productivity increased, and an independent study concluded that deep-cut sections in mines were consistently more productive than regular sections. Three obstacles were overcome. First, with cut depths increased from the standard 6 meters to 12 meters, personnel would be working under unsupported roof. This was solved by using recent advances in remote operation, especially in radio remote controls. The second obstacle, increased methane concentrations, was overcome by using a blowing ventilation system. A blowing system can be more effective than an exhaust system can at greater distances from the face. The system used made it possible to maintain an airdirecting face brattice (curtain) at a distance from the working coal face that was sufficient for proper ventilation and yet would not require workers to extend the curtain under unsupported roof as mining advanced. A blowing system, additionally, can be significantly improved by increasing the velocity without increasing air volume.

The third difficulty was the quantity of respirable dust that was raised by the blowing system. This problem was overcome by using scrubber systems on the continuous miner. Although scrubbers are approved only for dust control, they also aid the ventilation process during coal extraction.¹⁸

Technological advancements have spurred significant increases in longwall production figures and efficiency, but often the potential gains are diminished by deficiencies in other aspects of the mine's operation, such as too slow a rate of cutting and panel preparation. CRA Ltd. of Australia found that, because of slow roadway development, conventional continuous miners capable of producing 600 tons of coal per hour (about 10 tons per minute) were mining only 200 to 500 tons for a 7-hour shift. Stop-start actions related to roof support activities were a major factor. CRA's subsidiary, Kembla Coal and Coke Pty. Ltd., after several years of development work, reported successful tests of a prototype "continuous roadway heading machine." The Mark I Kemcol was an adaptation of a continuous miner, which enabled roof-support activities to be completed simultaneously with coal cutting. The prototype, claimed by the company to be the only belt-tracked continuous roadheading machine in the world, was manufactured by another subsidiary, Vale Engineering Pty. Ltd. After some major modifications to the prototype, Vale developed its production model, the refined and more efficient Mark II. The company obtained an Australian patent and sought international patent approval. High sales for the Mark II were anticipated, owing to the successes of the Mark I, but marketing of the revised machine would depend on its actual performance. Field testing was to take place in 1988.19

The first self-propelled conveyor was commissioned at a colliery in Australia. The conveyor had been under development over the last decade by Klöckner-Becorit GmbH of the Federal Republic of Germany. It fed coal from a continuous miner working in a room-and-pillar system to the main surface conveyor. A second system was to be installed in a sodium carbonate mine in the United States. The Snake, as it was often called, had the potential for a variety of applications. It generated much lower ground pressure than did trucks, LHD's, or other material-transport systems, making it especially attractive for working on soft

ground. The bottom section of the conveyor chain served as the track during tramming. It was steered by hydraulic cylinders between the end pan and the first three line pans. These not only guided the conveyor but also changed the direction of discharge for conveying. Other pneumatic cylinders elevated the belt 100 millimeters off the ground for conveying mined materials. The conveyor was designed so that once it was put on course, following pans proceeded exactly in the same line, enabling the convevor to safely negotiate the tight corners and confined spaces of a room-and-pillar mine. The initial model had a 600-millimeter-wide conveyor, which ran at a speed of 0.84 meter per second and had a maximum capacity of 800 tons per hour. A sidedischarge end unit was optional. The unit could be connected with a low-profile roll crusher, moving parallel to the main belt conveyor.20

Although no full-blown system had been developed, the concepts of remote-controlled or automatic LHD vehicles were studied at Lulea University of Technology in Sweden. Researchers there said that the technology was available to automate LHD's using wire-guidance systems. Some Swedish underground mines were evaluating the performance of television systems, which may be necessary for the control of such LHD's underground, but further research in vision systems and position-reference techniques was needed to produce more "intelligent" and automatic vehicles. The major question was whether the expected advantages would justify the costs. The two factors expected to weigh heavily were improving personnel safety and the possible development of new ore bodies where existing mining transport systems would be considered uneconomical and unproductive.21

An example of innovative design was the development of "cassette" or "modular" utility equipment systems. These are carrier vehicles that can hold a variety of different front- or back-end attachments, increasing a machine's versatility and overall efficiency. Under this concept, a single machine can fulfill many roles, thus allowing higher vehicle utilization. Overall capital, running, and production costs could be reduced. Units that might otherwise be operating as briefly as 1 or 2 hours each day could be kept at work almost constantly, reducing the overall number of vehicles needed without compromising the mine's level of mechanization.

Orion Corp. of Finland, under its Normet trademark, introduced the NT series, "total utility system" (TUS) carriers to replace its PK line. The Normet system included standard 3- to 12-ton payload chassis with modules that could fulfill a substantial range of underground requirements: personnel or material lifts; explosives handling and charging trucks; and extensively outfitted maintenance trucks. Other cassette units were available for roof consolidation, shotcreting, and various other transportation needs. Normet claimed that the versatility of the cassette system was best shown by the conversion of the basic chassis from personnel carrier to ammonium nitrate-fuel oil charger within minutes. Normet designed the cassettes, but system components, such as shotcrete pumps, came from other suppliers selected in consultation with the customer. Design and marketing efforts were concentrated on hard-rock metal mines and tunneling. Adaptation to soft rock and coal mines was planned; the company recognized that flame-proofed models that conform with more stringent safety regulations would be necessary for these applications.22

In the last several decades, the mining industry substantially increased hourly tonnage production through new mining methods, technological advancements, and refinements in excavation, loading, and transportation equipment. This increase was swifter than the increase in overall efficiency. In a study conducted by the Swedish Mining Association, 50% of the work force in Swedish underground mines in the early 1970's was found to be employed in direct mining activities. This proportion had fallen to about 40% by the mid-1980's, while that of the associated service and maintenance workers showed a corresponding increase from 40% to 50%. The proportion involved in supervision, planning, administration, and related functions remained relatively constant at about 10%. NIMICO AB, a Swedish consulting company, called for more research on mining support activities to increase the productivity of employees working in maintenance and other types of indirect tasks. A company that could be more productive in this sense would also increase its own competitiveness, a well-recognized major theme of survival and growth in the mid- to late-1980's for the mining industry as a whole.23

Surface Mining.—In recent years, mining companies have returned to previously

mined lands. Often these were abandoned mining properties containing relatively lowgrade ores, and sometimes the ore was from mine waste piles or tailings of similarly low grades. Hard times made new full-scale exploration too costly for some operators. and the added expenses of mining for increasingly deeper deposits found some looking for less risky ways to bring in needed capital while they worked through difficult or even marginal times at their main properties. Advances in certain processing technologies, especially those of heap leaching. made lower grade properties practicable and often very profitable. The tailings of yesterday's mines were sometimes becoming the valuable land of today.

HMC returned to the mining of its original 1876 gold discovery property, now called the Open Cut, at the Homestake gold mine, Lead, SD. In meeting basic production and profitability requirements, its underground operation faced several obstacles: greater depth of production centers, increased ventilation and cooling requirements, longer lead times for exploration and development, and increased costs of waste handling from newly developed ore trends. Redevelopment of the Open Cut began with a drilling program in 1981, which indicated an ore body made up of broken and caved ground, with solid blocks of pillars and crowns. Several years later the successful Terraville test pit in the northernmost section of the Open Cut yielded more ore than expected. Overall, HMC estimated that the Open Cut contained 7.5 million short tons of gold ore out of 66 million tons of total minable material. The ore graded at about 0.116 troy ounce of gold per ton. Mine plans included both open pit and underground mining methods. Project life was estimated to be 15 years, and work was in the early stages of a 5-year prestripping process. Preproduction waste-to-ore stripping ratios ran about 30:1, and estimated reserve stripping was about 11:1. A 6,700-foot conveyor system replaced road haulage of the crushed ore to HMC's expanded South Mill processing plant. Once loaded, the single-piece belt conveyor was rolled into a pipe shape, which allowed it to make substantial vertical and horizontal curves and climb steep angles without spilling the ore. HMC claimed it was the first such installation in the United States.24

One of Pegasus' new projects was the Florida Canyon Mine, an open pit heapleaching operation of unique design in northwestern Nevada. Florida Canyon pro-

duced doré of 65-35 gold to silver, and was significant for its circular heap leach pad and extensive conveyor system. From onsite crushing plants a specially designed conveyor system transported the crushed ore combined with lime, cement, and cyanide solution and deposited it over the leach pad, where a spray leaching system was used. From the "hot" or pivot point at the circle's center extended a 1,500-foot conveyor system made of separate, 150-foot sections. Extension of the perimeter to the full 1,800-foot radius was planned for 1988. Ore was to be deposited over the pad in 90° segments, and by the end of 1987, the pad was in use to one-half of its full design. Completion of the pad foundation was expected to take place in the next couple of years. The first quarter-pad was heaped 40 feet high and the second more than 28 feet high; the entire pad was to be built up to a maximum of 60 feet. The ore was spread out evenly over the pad with a mobile tripper designed by R. A. Hanson Co. Inc., Spokane, WA. Pegasus representatives reported that the Rahco mobile conveyor system was chosen over a standard truck-and-dozer operation because of lower operating costs, reduced compaction of the leach pile, and faster gold recovery. The completed pad was expected to process 24 million tons of ore over the pad's operating life.

d'Alene Mines Corp.'s Coeur-Coeur Rochester Mine in northwestern Nevada was nearing completion of the first of three phases of construction of the largest silver heap-leaching pad in the United States. An additional fourth phase was possible. One of the ore sources of this open pit mine was an adjacent mountain top riddled with old mine shafts from the early 1900's. Initially the peak stood at 7,238 feet; it had been mined in stages down to 7,050 feet by yearend. The most important aspect of this operation was the unique drip-leaching system that management was pioneering. Coeur-Rochester officials claimed that it was easier and less cumbersome than spray systems, which the company used until January 1987. The drip system consisted of an extensive, spaced network of tubing that resembled a grid of large automobile fuel lines. Through this system, cyanide solution was dripped into the crushed ore at specifically spaced intervals. The drip system froze less often and less severely than a spray system, and it lost considerably less water by evaporation. With some help from a wellplanned reservoir, officials claimed, the company only used 10% of its budget for water compared with 20% that spray systems customarily demand. The first year was successful, with year-round operation made possible by burying the system in the winter. During the last half of the year, the drip system drew interest not only from U.S. gold and silver producers but also from interested parties from other countries, such as Australia and China. These companies looked into adapting use of the system to their own leaching operations.

Kennecott's open pit copper mine at Bingham Canyon, UT, is the largest copper producer in history. In 1987, it was in the midst of a major modernization project. Three main features of the project were inpit crushing facilities, a conveyor system including mobile conveyors and a 5-mile ore conveyor, and three pipelines (40 miles of pipe) between the Copperton concentrator plant and the smelter, tailings pond, and water supply. The pipeline and conveyor replaced a complex, combined rail-truck system. Depressed copper prices and rising costs caused the mine to be closed down in early 1985. When copper prices recovered a year and a half later, Bingham Canvon was reopened and its modernization plan set in place. Upon completion in 1988, the new semimobile crusher was to be the largest unit yet constructed. It was part of the transport system being installed by PHB Weserhutte AG of the Federal Republic of Germany. The belt transport system comprised seven conveyors: Six of these spanned a total length of 5.3 miles and the seventh was a single 3.75-mile tunnel conveyor. The in-pit crushing unit and conveyor link replaced a massive 3-tunnel, 150kilometer rail network, which had 1,000 ore cars loaded by electric shovel. The new crusher, fed by 170-ton dump trucks, was designed to handle about 70,000 tons of ore per day.25

For many years surface-mining equipment was made larger and larger in efforts to reduce costs and increase efficiency and production. Many of these machines, however, were beginning to reach the size where the law of diminishing returns took effect. Further improvements would have to involve incorporating new technologies into existing equipment. The purpose of these developments was to improve reliability, availability, and serviceability. Mining experts predicted that the mechanical equipment would change little over the next decade. Microprocessors and onboard

computers would be used to control the equipment and reduce operating costs. Some experts believed that surface mines would be sufficiently computerized in the 1990's to substantially reduce the labor force, possibly to one-third of 1987 levels. Microprocessor-based equipment-performance systems were available, such as suspended-load measurement modules for electric cable shovels and draglines. These modules measured and quantified cycle times. On draglines, line-tension control systems protected booms from structural damage. Some monitoring systems provided current. detailed information, ing immediate warnings of impending systems failure. The monitors would record performance data, operating time, and machine utilization, and the information would be available for later use by maintenance and operating management. Minewide data-management systems reported equipment performance and condition via VHF radio signals to operations managers. A data console enabled them to oversee all mining operations, including production figures and trends.26

Modern pit and quarry operations are much more complex than those of the past. Managers could receive assistance from properly programmed computers when making important equipment-purchase decisions. Fortunately, producers didn't need to be computer-smart to take advantage of such information processing. Many dealers and manufacturers offered these computer software services and could be consulted before any hasty decisions were made. The trend among equipment suppliers was to work closer with individual operators and tailor their products more to the customer's needs.²⁷

Innovative thinking rather than technology sometimes assisted companies in becoming more competitive. Battle Mountain Gold Co. of Nevada took a novel approach in cutting its transportation costs. At its Fortitude deposit, truck drivers drove on the left side of their mountainside roads between the mine and the mill. The driver thus could drive more safely and closer to the side of the road without brushing against it. This cut down on tire wear and related maintenance costs. Safety was improved because of the driver's better view of the roadside. Also, more precise driving was possible; what would usually be a road 90 to 100 feet wide was reduced to one 60 feet in width.

Remote Mining.-In situ leach mining was the object of continued interest and research efforts by Federal and State Governments and private mining interests. This method made possible the recovery of a variety of minerals from deposits not susceptible or convenient to mining by conventional means. Other major advantages included lower mining costs, safer and healthier working conditions, and fewer risks to the environment. Bureau of Mines researchers estimated that in situ operations would use 50% less energy than conventional mines and would reduce labor costs by as much as 75%. Also, the new method would require only one-fourth the capital investment required in opening a conventional mine. Much of the Bureau's research centered around developing technology to allow production from remaining large, deep, and low-grade copper oxide deposits in the United States.

At the Bureau of Mines, scientists explored ways to efficiently direct the flow of the leach solution through ore deposits and to contain the solution within the boundaries of the intended mining zone, thereby maximizing mineral recovery and protecting the surrounding geologic environment, especially aquifers. Other work showed that such mining efforts should be concentrated on deposits where copper occurs in highly fractured zones. The Bureau developed a geophysical technique of using sound waves to monitor the solution movement through an ore body and its surrounding rock. With this technique, mining companies could remotely track mining solution movement and modify operating parameters to stop the escape of solution from the mining zone. Such monitoring could ease environmental concerns over lost solution, making it easier for operators to get permits for in situ mines. The method worked best for ore bodies located above the water table. The sound wave data analysis was accomplished with a personal computer. The Bureau assembled a generic manual that provides the technical information needed to develop a commercial in situ leaching operation for any specific copper oxide deposit. A computer program accompanied the manual to help develop design specifications and evaluate the economics of mine design varia-

Leaching Technology Inc. (LTI) was expanding its in situ copper-leaching operation at the old Nacimiento open pit in northern New Mexico. LTI claimed that the

mine was a "true" in situ copper-leaching operation, and that no other operation of its kind had yet been successfully conducted by the copper industry. "True" meant that there was an in-place ore body that had not been broken by prior mining activity and was not mechanically or explosively fractured. LTI's first field test well was successful, but the solution moved too fast for good copper recoveries, and some resistance was encountered in the injection wells. The company made adjustments with the help of technology previously used successfully in true in situ uranium-leaching projects, along with some technology from the oil industry. A mine well consisted of a "fivespot pattern" or "cell," which comprised four solution injection wells at the corners of a square and a production or extraction well in the center. Seven new cells were being added, using a smaller square pattern (70 to 80 feet per side) than the initial test cell to attain better copper recoveries; the last cell was expected to be operational by the spring of 1988. A weak solution of sulfuric acid and ferric iron was used to leach the copper. The copper recovery plant on-site was the same solvent-extraction electrowinning facility originally used as the pilot plant at the Bagdad Mine, also in Arizona. Initial production was projected to be 7,000 to 8,000 pounds of copper per day when at full operation, and the project's life was estimated to be 8 to 10 years.28

The State of Colorado committed financial support to help establish an advanced mining technology program for small, underground, precious metals deposits. The program included in situ leaching and was a result of discussions between several mining associations, the Governor's office, the Colorado Department of Natural Resources and Local Affairs, and the Bureau of Mines Denver Research Center. Research efforts were to be a cooperative effort between the latter two organizations as part of the Denver Research Center's metal mine productivity program.

Bureau of Mines researchers successfully demonstrated that coal, oil sands, uranium ore, and phosphates could be remotely extracted as a slurry through a borehole. A tool incorporating a water-jet cutting system with a downhole slurry pumping system mined the rock through a single borehole drilled from the surface. The water jets eroded the ore and formed a slurry that flowed into the pump at the base of the tool and was transported to the surface in suit-

able form for pipeline transfer to a nearby mill or processing plant. Development work for such a project is minimal, so production is almost immediate compared with that of a conventional mining operation. The single machine was remotely operated from the surface, and environmental disturbance was minimal. Crushing and grinding costs were minimized because the ore was already reduced to grain size.

Although interest in seabed mining from governments and mining interests throughout the world was on the rise, several limiting factors were of concern to all. Claims and mining rights received increasing attention. The United Nations Preparatory Committee for International Seabed Authority and for the International Tribunal for the Law of the Sea met twice during the year. In Jamaica, the Committee continued efforts to establish and fine-tune the framework for an international law of the sea administering organization. National representatives worked on such issues as competitive concerns of land-based mineral producers and the rules and regulations that would ultimately constitute the organization's formal mining code. In New York, the Committee registered India as the first "pioneer investor" after the country filed claims to uncontested areas in the Indian Ocean totaling approximately 150,000 square miles. Any country or mining consortium that could fulfill all necessary requirements could be designated as a pioneer investor. Other applicants on the verge of being registered with pioneering status were France, Japan, and the Soviet Union.29

The practical accessibility to seabed minerals was of concern, especially in the United States, where the congressional Office of Technology Assessment (OTA) completed a major study of the matter. OTA concluded that prospects for producing commercial quantities of critical minerals within the 200-mile-wide Exclusive Economic Zone off the United States coasts were with some exceptions remote for the foreseeable future. OTA stated that in the current minerals markets most of the country's offshore mineral sources were not economic to mine without active Federal support of ocean exploration and a statutory framework that encouraged private development. A lack of proper processing facilities in the United States for many of the available minerals was also cited as a problem. Two possible exceptions to the downbeat seabed mining forecast were the precious metals, especially gold, and sand and gravel. One landbased mining company was dredging gold off the Alaskan coast, and sand was being mined at the entrance to New York Harbor. Areas that OTA listed as promising for future near-shore mining included Alaska for gold and other precious metals; the east coast between New Jersey and Florida for titanium, and between Georgia and North Carolina for phosphorite, and southern Oregon for chromite sands.

In New Zealand, where gold dredging has been common for more than 100 years, a new technological development was introduced by a joint venture between R. A. Hanson Co. Inc. of the United States and the Australian-based Giant Resources. The venture, Grey River Gold Mining Ltd., will use a continuous bucketline dredge to mine low-grade deposits in the Grey River Valley area of South Island. Conventional technology could not be used to mine the deposit at a profit. Two dredgers would be operated at the same time, one for overburden removal and the other for retrieving the gold ore. All functions of the mining operation would be done by the "dual-dredge" plant, including complete processing of the gold and thorough reclamation of the mined area. The entire "organism," as the company sometimes called the machine, was controlled by a computer and a programmable logic controller system. Sensors were placed in an extensive network over all parts of the operation. Precious metals were the company's first goal, but applications to tin and some other alluvial were anticipated in the near future.30

Beneficiation.—The Polycom comminution process was a new approach to ore crushing that was based on the application of high pressures within specially designed grinding-roll circuits. Operation of a successful pilot plant in 1986 led to more than 25 commercial installations by late 1987 in the processing of cement clinker, limestone, coal, copper ore, diamandiferous South African kimberlite, etc.

Krupp Polysius AG of the Federal Republic of Germany produced and marketed the process. The company claimed the Polycom grinding achieved significant reductions in capital costs because of a simple plant structure and a smaller overall system; lower operating costs that included energy savings of about 20%, reduced parts wear, and acceptance of larger material, which eliminated a stage in crushing; capacity increases of up to 100% in existing facili-

ties; and better disintegration results because of the advantages of comminution on a material bed. The basic procedure was to expose a batch or bed of material to pressure that was high enough to break the material. In this batch process, material was loaded into a cylinder and compressed by a piston. Under pressure, the particles were compressed and shifted into the voids before breaking and being further compressed. Under sufficient pressure, the material caked inside the cylinder. The process became continuous when the bed of material was passed between two grinding rollers. The cake or flake discharged from the highpressure grinding roller was then broken up to release the fines. A larger quantity of fines was produced than is typical from a mechanically similar roll crusher. At a copper ore installation, a Polycom system eliminated the plant's tertiary crushing stage and screens, increased plant capacity from 55,000 to 70,000 tons of ore per day, reduced energy consumption by about 15%, reduced parts wear, and increased the leaching rates.31

Advances in biotechnology had been making an impact on the minerals industry for a number of years. Microbial metal recovery was a \$450 million business in the United States and was growing at about 12% to 15% annually. One recent study reported that roughly one-fifth of the world's copper production came from microbial methods, with nearly all major copper producers utilizing microbial techniques. Some methods were proving to be more economical, demand less energy, and cause less pollution than the conventional leaching methods. Research centered on finding out which organisms would best carry out the different mineral-recovery processes, and how industry could manipulate the various environmental conditions such as light, oxygen, moisture, and temperature, which were required by the organisms to do their work.

Scientists at the National Bureau of Standards (NBS) studied a number of measurement tools and techniques for biotechnology. They were in the process of establishing certified samples of ores that could standardize tests for identifying preferred strains of organisms and bioprocessing conditions. In cooperation with the American Iron and Steel Institute, NBS investigated types of organisms for the removal of copper from steel scrap and insoluble phosphorous from domestic iron ore. Sulfur removal

from coal was another NBS focus of research in work done with the Electric Power Research Institute. The Bureau of Mines emphasized work on the biological dissolution of strategic and critical minerals from low-grade ores and mine wastes that could not be effectively and economically exploited. The Bureau's work on biologically assisted extractive metallurgy focused on enhancing microorganisms' often slow dissolution or leaching rates.³²

Giant Bay Resources Ltd. of Canada produced what it claimed was the world's first doré gold bar to be produced by biotechnological leaching. The company's bioleachtank demonstration plant, installed at Giant Yellowknife Mines Ltd.'s Salmita Div. in Canada's Northwest Territories, was used to increase gold recoveries from hardto-treat refractory ores. The bioleaching was tried as an alternative to roasting or pressure oxidizing the refractory gold prior to cyanidation. In a cost comparison by the company, bioleaching had the lowest capital and operating costs per ton of the three methods. A gold recovery rate of 95.6% achieved during a demonstration run was significantly higher than recovery rates for the company's more conventionally processed refractory ores.33

BP Minerals International Ltd. (BP) completed development of a new, patented gold recovery process called Coal Gold Agglomeration (CGA). In a joint venture with two Australian companies, BP successfully used CGA in a pilot plant situated near extensive gold tailings around the historic Australian mining areas of Ballarat and Bendigo. CGA was best suited for the recovery of fine liberated gold in concentrations of less than 10 parts per million. The process could be used on placers, deep leads, tailings, and hard-rock deposits where the gold was liberated by milling. Where deposits contained significant quantities of sulfide materials, gold recoveries were lower.

CGA was based on the capacity of clusters of "oil-bridged" coal particles—coal-oil agglomerates—for carrying fine gold particles. Gold particles are oleophilic, or attracted to oil. Reagents called collectors were added to intensify this attraction, and depressant agents were added to reduce the gangue that also is picked up by the agglomerates. Agglomerates were recycled through the process until they had accumulated the maximum amount of gold, after which they were floated off using conventional flotation. The gold-laden agglomerates, which

could carry more than 1,000 grams of gold per ton, were then combusted to burn off the coal and oil. The ashes were smelted to extract the gold. It was a simple, cost-effective process that did not require the use of cyanide and thus reduced waste-disposal problems. Intensive mixing of prepared coal-oil agglomerates with a suitable slurry of gold-base material was necessary. Gold recovery was improved by maximizing free gold through milling the ore and by improving the gold's oleophilic nature through attrition scrubbing to remove any surface films on gold particles.³⁴

Another new alternative to cyanide was used by Haber Inc. when it commenced gold production at the company's mill in Tombstone, AZ. The company's new Haber gold process involved only the leaching operation and revolved around the use of a mixture of 21 chemicals that were said to be nontoxic. The company claimed recovery rates were greater and up to four times faster than those of traditional cyanide leaching. Capital costs were calculated as slightly less than those of a cyanide leach plant, and operating costs were similar.³⁵

High-Tech Processing Corp. of Pennsylvania completed development of an electrothermal impermeable membrane composition that the company contended could extend refractory brick life up to 15 times longer than was traditionally achieved in metal-producing furnaces and ladles. The membrane prevented contamination of the molten metal and at the same time prevented molten metal from penetrating the refractory brick. It could be used on various porous and nonporous surfaces of heataffected zones subject to high temperatures and corrosive action. Also, the membrane was resistant to particle bombardment resulting from arc flair. In an electric furnace that produced ferrotitanium, the membrane reportedly had a refractory life more than four times the expected life with no signs of deterioration.36

Flotation was still the most widely used procedure for separating desired minerals out of crushed ore grains. Research at the Bureau of Mines focused on two aspects of the procedure: electrochemical control of the crushed ore slurry to reduce reagent consumption and more efficient ways to create the proper size bubbles in column flotation systems. In the flotation process, the desired mineral adsorbs chemicals on its surface, making it water repellant. When bubbles are simultaneously generated, the

mineral is stuck at the air-water interface; thus, the mineral floats. In recent years, the adsorption process, particularly with sulfide mineral surfaces, had been recognized to be an electrochemical process. Electrochemical potential (EP), or redox potential, refers to the property of a solution in which a current can flow between an inert electrode and a normal hydrogen electrode in the solution. Bureau research showed that by controlling the degree of EP in a slurry, the desired mineral could be made to float or sink in the presence of the proper collector chemical. The Bureau conducted research aimed at developing reliable electrodes for monitoring and controlling the EP and extending the proper electrochemical conditions to the grinding and conditioning of the ore for greater overall efficiency.

essary bubbles were generated by pumping air through a porous pipe rather than by traditional mechanical means. The pores clogged periodically, and the column system had to be shut down for cleaning. Bureau researchers designed a bubble generator, an improved gas sparger system that worked

In conventional column flotation the nec-

improved gas sparger system that worked outside the column and rarely got clogged, yet also allowed control of the bubble size by adjusting air pressure and water flow rates. Bubble size was poorly controlled in conventional column flotation. The new system could be cleaned without shutting down operations on the rare times that clogging did occur, and it could be retrofitted to existing columns. Seven commercial mills using the system credited it with providing improved recoveries and/or reduced operating costs.³⁷

Health and Safety.—Preliminary injury statistics compiled by the Mine Safety and Health Administration showed that mine fatalities in 1987 were about 36% higher than in 1986, with 67 personnel killed in metal and industrial mineral mining operations. This was up from the recent recordlow years of 1983 and 1985, each with 56 deaths, and 1986 with a final fatality count of 49. Although employment in mining decreased, employee-hours increased by about 1.5%, reversing a downtrend of recent years. The injury rate in the industry in 1987 was 5.90 per 200,000 employee-hours. increased from a final figure of 4.89 in 1986. All 1987 figures included independent contractors.

A fire protection system for use with any type of diesel-powered equipment was developed by the Mining Div. of Victor Products PLC of the United Kingdom. It could be set to function automatically when the ignition was switched off and personnel were absent, as well as when the equipment was in operation. The system had a continuouspressure loop that withstood normal operating temperatures yet would trigger the system upon contact with flame. Then an aqueous, film-forming foam was discharged through high-pressure jet nozzles surrounding the protected area. The company claimed excellent, proven, extinguishing properties, with the ability to seal any flammable materials from the atmosphere. The system also had a cooling effect, which helped prevent re-ignition once the fire was out. The system continued to discharge nitrogen for a period of time after the foam tank was emptied, thereby providing secondary cooling and displacement of oxygen in the affected area. The system was designed to discharge fluid for no less than 2.5 minutes and could easily be adapted to discharge for extended periods.38

The Bureau of Mines designed and developed an ultralow-frequency, through-theearth, electromagnetic, fire-warning alarm system for underground mines. Existing warning systems were usually slow, somewhat unreliable, and often did not achieve total mine coverage. Bureau researchers said the new system was a rapid, reliable means of warning miners underground of a fire or other emergency. The system consisted of a transmitter and a receiver. When triggered by a fire detector, the transmitter established a very large electromagnetic field throughout the mineworkings. The receiving antenna captured and concentrated the magnetic flux to generate a tiny current that would activate a relay, triggering an audible warning. The receiver components easily fit into a modified cap-lamp battery case. When attached to the lamp, the receiver could make the miner's lamp blink in the event of an emergency. The basic components of the system were relatively inexpensive, "low tech," and readily available from commercial manufacturers.

Evaporite formations, such as domal salt and potash, frequently contain methane concentrations that can be encountered unexpectedly and released instantaneously. In an underground setting, the quantities of gas can overwhelm a ventilation system before the danger is spotted. The Bureau of Mines developed two laboratory techniques for detecting the methane. One was a more traditional sample analysis, and the other an unusual, speedy, and inexpensive technique that involved measuring the noise

level of gas escaping a sample under one condition. Researchers particular observed that salt samples containing large amounts of methane emitted a popping sound when immersed in water. A definite correlation existed between the magnitude of these pops and the gas content of the sample. With the help of a small personal computer, readings were possible within 2 to 4 minutes by means of a small, wellinsulated, fairly easily transportable sound chamber outfitted with a sound level sensor. The technique was being used in advance of mining to determine gas contents at two domal salt mines in Louisiana, and it proved to be very reliable.

Video systems were playing larger roles in mining operations. ARC Group, a quarry operator in the United Kingdom, reported successful trials of the Backeye reversing video systems on some of its off-highway trucks at the Whatley Quarry in Somersetshire, England. The system consisted of an all-weather camera with a wide-angle lens, a monitor with a 225-millimeter screen, a control box, and camera cable. The driver had a complete view over the blind area from his own rear bumper to a point 15 to 25 meters behind the vehicle. The camera, on standby, would transmit automatically when the reverse gear was engaged, and it could be used effectively at night as well as during the day. The monitor had both a bright-light shield—to ensure a good, readable picture in full daylight-and distance lines that provided a reference to aid precision maneuvering.39

Southwest Research Institute (SwRI) engineers developed a large-diameter wire rope fatigue-test machine for the Bureau of Mines Bruceton Research Center in Pittsburgh, PA. The Wire Rope Operating Procedures Evaluation System was installed at the Center for a 10-year program to determine better criteria for removing largediameter mine hoists from service for both safety and economic considerations. The system was used to evaluate the performance characteristics of wire ropes of diameters of 1 to 2.5 inches. According to SwRI, most wire rope fatigue data available worldwide was for ropes less than 1 inch in diameter. The machine was designed to accommodate 1,000-foot rope specimens on its 10-foot drum and 75-foot structural steel frame. A 1,000-horsepower electric drive was expected to develop the needed testing force of up to 600,000 pounds. Other tests, such as wire-by-wire examinations and metallographic analysis, were to be included in the ongoing studies.40

¹Physical scientist, Branch of Ferrous Metals. Statistical data compiled by Stephen D. Smith, mineral data assist-ant, Branch of Ferrous Metals. Tables are based on 1986 data that were not available when the 1986 Minerals Yearbook was published; corresponding data for 1987 were not available at publication time.

²American Metal Market (New York). US Trade Deficit in Metals, Minerals Shrinks. V. 96, No. 93, May 12, 1988, p. 3.

3——. Metals Sector Walks an Economic Tightrope. V.
 96, No. 20, Japan. V. 29, 1988, p. 4.
 4Work cited in footnote 2.

*Work cited in footnote z.

5American Mining Congress Journal. President Signs
Bill Repealing Two-Acre Exemption. V. 73, No. 5, May
1987, p. 4.

6Miller, J. P. Satellites Are Growing Sharper at Spotting
Mineral Deposits. The Wall St. J., Apr. 3, 1987, p. 33.

Work cited in footnote 6.

Reference to specific products does not imply endorsement by the Bureau of Mines.

*Reference to specific products does not imply endorsement by the Bureau of Mines.

*Mining Engineering. Airborne Mapper Used in Gold Search. V. 40, No. 4, 1988, p. 235.

10 World Mining Equipment. Polycrystalline Diamond Bits Set To Revolutionize Coring. V. 10, No. 3, 1986, pp. 20-21.

11 Morris, R. O. Exploration Drilling: The Latest Trends. World Min. Equip., v. 11, No. 12, 1987, p. 19.

12 Journal of Metals. USGS Uses Geochemical Prospecting Tool. V. 39, No. 11, 1987, p. 4.

13 Engineering and Mining Journal. Proper Use Can Make Seismic Surveys a Valuable Mining Exploration Tool. V. 183, No. 9, 1987, p. 13.

14 Mining Magazine (London). Computerized Development Drilling. V. 156, No. 6, 1987, p. 155.

15 World Mining Equipment. Preussag's Slimhole Experience. V. 11, No. 12, 1987, pp. 71-72.

16 Hamrin, H. Computer Simulation Assists Evaluation of Methods and Equipment. Paper in Proceedings of The Third International Conference on Innovative Mining Systems, ed. by J. M. White, Univ. Missouri, Rolla, MO, 1988, pp. 16.

17 World Mining Equipment. FM Radio Transmits Data and Speech Underground. V. 11, No. 10, 1987, pp. 42-43.

18 Green, S. O. Scrubbers and Remote Control Allow North River No. 1 Mine To Extend Cutting Depth of Continuous Miners. World Min. Equip., v. 39, No. 8, 1987, pp. 781-784.

Continuous Miners. World Min. Equip., v. 39, No. 8, 1361, pp. 781-784

19World Mining Equipment. The Beaver: Truly A Continuous Miner. V. 11, No. 12, 1987, pp. 74-75.

20——— Mobile Conveyor Offers New Transport Potential. V. 11, No. 7, 1987, pp. 30-31.

21Vagenas, N., J. M. Morris, and S. Granholm. Remote

Controlled/Automatic Load-Haul-Dump (LHD) System. Controlled Automatic Load-Haul-Dump (LHD) System. Paper in Proceedings of The Third International Conference on Innovative Mining Systems, ed. by J. M. White, Univ. Missouri, Rolla, Mo, 1988, pp. 95-104.

2*World Mining Equipment. Utility Equipment Systems: Promising More for Less. V. 11, No. 10, 1987, p. 52.

tems: Promising More for Less. V. 11, No. 10, 1987, p. 52.

²³Nilsson, D. S. Underground Mining Productivity—
Some Facts and Problems. Min. Mag. (London), v. 156,
No. 6, 1987, pp. 539-547.

²⁴Loving, G., D. G. McDowall, and J. D. Pfarr. Reserve
Calculations, Mining, and Milling of Homestake Mining's
Open Cut Project Described. Min. Eng., v. 39, No. 10, 1987,
pp. 927-932.

²⁵World Mining Equipment. Bingham Bounces Back
With Mobile Conveyors. V. 11, No. 11, 1987, pp. 37-40.

²⁶Singhal, R. K. New Technology for Large Surface
Mines. Eng. and Min. J., v. 188, No. 9, pp. 68-69.

²⁷Drake, B. Producer's Forum. Pit and Quarry Mag.,

²⁷Drake, B. Producer's Forum. Pit and Quarry Mag., v. 79, No. 11, p. 24.

v. 79, No. 11, p. 24.

28 Walenga, K. New Mexico In Situ Copper Leaching Project Making Progress. Southwestern Pay Dirt Monthly, No. 583, 1988, p. 7a.

29 Cruickshank, M. J. U. N. Activities, OTA Report Are Latest Ocean Mining Influences. Sea Technol., v. 28, No. 10, 1987, p. 70.

30 Col, M. H., and W. F. Crockett. Innovative Gold Dual Dredge Allows Simultaneous Overburden Removal and Mineral Recovery. Paper in Proceedings of The Third International Conference on Innovative Mining Systems, ed. by J. M. White, Univ. Missouri, Rolla, MO, 1988, pp. 78-86.

pp. 78-86.

31 Patzelt, N. High Pressure Grinding Savages Process Costs. World Min. Equip., v. 11, No. 10, 1987, pp. 34-37.

32 World Mining Equipment. Bioprocessing: The Bug Bites. V. 12, No. 3, 1988, p. 62.

33 Section Engineering Biotechnology Focuses on Gold

Bites. V. 12, No. 3, 1988, p. 62.

33Mining Engineering. Biotechnology Focuses on Gold Leaching, Coal Efficiency. V. 39, No. 11, 1987, p. 285.

34World Mining Equipment. Out of the Ashes Comes Gold. V. 12, No. 3, 1988, pp. 58-59.

35American Metal Market (New York). Haber Starts Non-Toxic Extraction. V. 95, No. 203, Oct. 19, 1987, p. 24.

36 _____ Way Developed To Extend Life of Refractories. V. 95, No. 70, Apr. 13, 1987, p. 27.
37Hyde, G. R., and A. Stojsic. Electrochemical and Column Flotation Technologies Can Mean Higher Recovery at Lower Operating Costs. Min. Eng., v. 39, No. 7, 1987, pp. 481-484.

pp. 481-484.

38Mining Magazine (London). Fire Protection for Diesel
Vehicles. V. 156, No. 3, 1987, pp. 243-244.

39World Mining Equipment. Videos Improve Quarry
Safety. V. 11, No. 7, 1987, p. 16.

404 Wilson Mining Congress Journal. Bureau Project

Safety. V. 11, 190, 4, 1901, p. 10.

40 American Mining Congress Journal. Bureau Project Tests Hoist Rope Fatigue. V. 73, No. 2, 1987, p. 15.

Table 1.—Material handled at surface and underground mines in the United States, by type

(Million short tons)

		Surface		τ	Jndergrou	nd	A	all mines1	
Type and year	Crude ore	Waste	Total ¹	Crude ore	Waste	Total ¹	Crude '	Waste	Total
Metals:									
1982	371	677	1,050	60	12	72	431	689	1,120
1983	380	557	938	47	6	53	427	564	991
1984	420	614	1,030	57	10	67	476	624	1,100
1985	411	499	911	48	9	57	459	508	968
1986	418	615	1,030	52	7	59	470	622	1,090
Industrial minerals:			-,						-,
19822	837	366	1,200	61	2	63	899	368	1,270
19833	1,070	155	1,230	62	- ī	62	1,130	155	1,290
19842	1,060	286	1,340	40	1	41	1,100	287	1,390
19853	1,260		1,710	54	. 2	56	1,320		
		450			- 4			452	1,770
19862	1,130	380	1,510	34	. 1	35	1,160	380	1,540
Total metals and									
industrial min-									
erals:1									
1982	1,210	1,040	2,250	121	14	135	1,330	1,060	2,390
1983	1,450	712	2,160	109	7	116	1,560	719	2,280
1984	1,480	901	2,380	97	11	108	1,570	912	2,490
1985	1,670	950	2,620	102	11	113	1,770	961	2,740
1986	1,550	995	2,540	86	7	93	1,630	1,000	2,630

¹Data may not add to totals shown because of independent rounding.

²Crushed and broken and dimension stone data were not available for 1982, 1984, and 1986 because of biennial canvassing.

³Includes industrial sand and gravel. Construction sand and gravel data were not available for 1983 and 1985 because of biennial canvassing.

Table 2.—Material handled at surface and underground mines; in the United States in 1986, by commodity

(Thousand short tons)

		Surface			Underground			All mines ²	
Commodity	Crude ore	Waste	Total ²	Crude ore	Waste	Total ²	Crude ore	Waste	Total
METALS									
Bauxite	576 167,000	W 325,000	576 492,000	23,200	541	23,800	576 190,000	W 325,000	576 516,000
Gold: Lode	74,000	139,000	213,000	3,280	651	3,930	77,200	139,000	216,000
Placer Iron ore	8,030 133,000	64,400	16,200 197,000	1,320	125	1,440	8,030 134,000	64,800 64,600	199,000
Lead	$5,\overline{220}$	25,500	30,700	6,000 4,080	2,860 391	8,860 4,470	6,000 9,310	25,900 25,900	35,200
ZincOther ³	29,900	54,000	83,900	4,400 9,630	201	$^{4,610}_{11,400}$	4,400 39,500	201 55,800	4,610 95,300
Total metals ²	418,000	615,000	1,030,000	51,900	6,590	58,500	470,000	622,000	1,090,000
INDUSTRIAL MINERALS									
Abrasives ⁴	85	M	92	M	1	M	92	M	92
	232	:	532 232	1	I I	1	232	1	33.5
Clays	44,200	e38,400	82,700	W	M	M	44,200	•38,400	82,700
Diatomite	1,380	6,150 796	7,530 1.970	1			1,380	6,150 796	1,530
Gypsum	12,700	5,250	18,000	3,010		$3,0\overline{10}$	15,700	5,250	21,000
Mica (scrap)	730 730	904	1,640	129	1 1	120	735	907	1,640

301,000 450,000 W 9,830	10 320 1,430 30 W 13,700 30 910,000	$8,9\overline{20}$ $18,200$	380,000 1,540,000	00 1,000,000 2,630,000
. 0	1,110 00 13,700 910,000		00,091,1	00 1,630,000
W W	13,300	$\frac{7,360}{166}$	33 34,700	93,200
		00 75 00 507	0 583	0 7,180
M 0	080	7,360 10 90 10 500	94,100	00 86,100
0 450,000	0 1,430 V 342 - 910,000	0 10,100 $0 22,400$	0 1,510,000	0 2,540,000
301,000	328	8,850 17,700	380,000	000'266
149,000	1,110 342 910,000	1,270	1,130,000	1,550,000
Phosphate rock Potassium salts	Pumice ^s Salt Sand and gravel	Sodium carbonate (natural)	Total industrial minerals ²	Grand total ²

100 Ŧ, 1 W Withheld to avoid disclosing company proprietary data; included with "Other."

Excludes material from wells, ponds, or pumping operations.

"Data may not add to totals shown because of independent rounding.

"Includes antimony, beryllium, magnesium, manganiferous ore, mercury, molybdenum, platinum-group metals, rare-earth metals, titanium (ilmenite), tungsten, uranium, and metal items indicated by symbol W.

"Includes antimony, beryllium, magnesium, manganiferous ore, mercury, molybdenum, group metals, granet, millstones, and tripoli.

"Excludes volcanic cinder and coria.

"Excludes volcanic cinder and soria.

"Includes aplite, boron minerals, fluorspar, iron oxide pigments (crude), kyanite, magnesite, olivine, vermiculite, and industrial mineral data indicated by symbol W.

Table 3.—Material handled at surface and underground mines¹ (including sand and gravel and stone) in the United States in 1986, by State

(Thousand short tons)

State		Surface			Underground			All mines ²	
Amo	Crude ore	Waste	Total ²	Crude ore	Waste	Total ²	Crude ore	Waste	Total ²
Alabama	13.500	1.920	15.400				19 500	1 090	12,400
Alaska	30,500	8,200	38,700	1	M	M	30,500	8 200	38,400
Arizona	170,000	126,000	296,000	×	304	304	170,000	126,000	996,000
Arkansas	11,100	4,870	16,000	: 1			11,100	4 870	16,000
California	152,000	42,500	194,000	61	35	96	152,000	42,500	194 000
Colorado	29,000	12,400	41,400	8,930	180	9.110	37.900	12,500	50.500
Connecticut	7,650	145	7,800	1	1	1 1	7,650	145	7,800
Delaware	1,550	1	1,550	1	1	ì	1,550		1.550
Florida	167,000	255,000	422,000	1	1		167,000	255.000	422,000
Ceorgia	18,300	8,250	26,500	6	1	6	18,300	8,250	26,500
Hawaii	617	1	617	i			617		617
Idaho	15,700	44,600	60,300	548	1.700	2.250	16.300	46.300	69.500
Tilinois	32,400	410	32,800	M	M	M	32,400	410	89.800
Indiana	20,500	646	21,100	×		8	20,500	979	91,000
Iowa	16,300	423	16,700	A	i	B	16,300	493	16,700
Kansas	17,100	982	17,900	1.210	l	1 910	18,800	2022	10,100
Kentucky	8,060	749	8,800	ì	1	7111	8,060	200	0000
Louisiana	15,000	288	15,200	4.810	1	4 810	10,000	000	90,000
Maine	8.620	M	8,620		1	0106	0,000	7007	0,100
Maryland	15,600	316	18,900	1	1	1	0,000	¥ 5	0,000
Massachusetts	19.400	M	19,000	1	l I	i F	10,000	976	18,900
Michigan	87,000	31.200	118,000	4.660	M	4 660	01,400	31 904	139,400
Minnesota	131,000	39,100	170,000		•	2004	131,000	39,100	170,000
Mississippi	16,400	1,120	17,500	1	1	1	16,400	1190	17,000
Missouri	11,800	1,300	13,100	7.090	2.950	10 00	18,900	4 950	93,100
Montana	27,600	23,500	51,100	3,560	61	3,620	31,200	23,500	54 700
Nebraska	9,910	192	10,100		1	2010	0166	199	10,100
Nevada	68,100	96,900	165,000	106	62	168	68.200	97.000	165,000
New Hampshire	8,430	≱	8,430	1	. !	.	8.430	Μ	8 430
New Jersey	16,500	M S	16,500	A	A	M	16,500	M	16,500
THE TREATED THE	44,500	197,000	242,000	10,300	069	11,000	54,800	198,000	253,000

New York	32,000	650	32,600	4.530	M	4.530	36,500	650	37.200
North Carolina	24.200	42.100	66.300				94,900	49 100	66,300
North Debote	5,910	W	5910	111	1	1	100	11,1	0,000
ivolul Danota	0,210		0,210	1	1-1	1	0,210	\$	0,210
Ohio	41,000	2,410	43,400	3,690	×	3,690	44,700	2,410	47.100
Oklahoma	14.300	878	15.200	.			14.300	878	15,200
Oregon	12 000	170	14 100	 ဗိ	 	-	19 000	130	001.1
	10,000	0 1	14,100	2	-	-	19,300	110	14,100
Pennsylvania	17,300	1,090	18,400	- 1		1	17,300	1.090	18,400
Rhode Island	2,290	1	2.290				2.290		2,290
South Carolina	10.800	1.740	12,600				10,800	1 740	19,600
South Dakota	11,500	17,600	90,100	M	M	B	11,500	17,600	90,00
E CONTRACTOR DE LA CONT	000,11	2,000	001,62		= ;	>	11,000	000,11	29,100
Tennessee	11,700	5,670	17,300	5,760	194	5,950	17,400	5,870	23,300
Texas	66.100	2.590	68.700	291		291	66.400	2,590	000 69
Utah	20,400	16,900	37,300	686	203	1 186	91 400	17,100	38,500
Vermont	5,070	9,990	7,300	M	B	M	200	0666	7 300
Vincinio	19,00	i -	000,1	: E		: B	2000	0110	000,
A Inguing	19,100	1,050	14,800	\$	11	≥	13,700	00,1	14,800
Washington	27,000	219	27,200	527	*	527	27.500	219	27.700
West Virginia	2,330	×	2,330	;			2.330	M	2.330
Wisconsin	26,100	1	26,100				26,100		26,100
Wyoming	5,800	1.530	7,330	7 360		7 360	13,500	1530	14 700
Undistributed	142	636	778	21,700	793	22,500	21,23	1,430	93,500
				22.1	200	2000	20041	70E47	001,01
Total ² 4	1,550,000	995,000	2,540,000	86,100	7,180	93,200	1,630,000	1,000,000	2,630,000

12.5

W Withheld to avoid disclosing company proprietary data; included with "Undistributed," ¹Excludes material from wells, ponds, or pumping operations.

²Less man yn ot and to totals shown because of independent rounding.

²Less than 1/2 unit.

⁴Includes estimated data in table 2.

Table 4.—Value of principal mineral products and byproducts of surface and underground ores mined in the United States in 1986

(Value per ton)

		Surface			Underground			All mines	
Ore	Principal mineral product	By- product	Total	Principal mineral product	By- product	Total	Principal mineral product	By- product	Total
METALS									
Bauxite Copper	\$10.01 9.22	W \$0.75	\$10.01 9.98	\$2.36	W	\$2.36	\$10.01 8.22	W \$0.75	$$10.01 \\ 8.97$
Odde	17.76	1.65	19.41	23.86	\$4.22	28.08	18.09	1.79	19.88
Iron ore	10.44		10.44	21.18	14	21.32	10.55		10.55
Silver Zinc	3.79	1.27	5.06	24.47 21.84 27.81	8.68 W	27.8 30.52 27.81	24.47 12.38 27.81	17.71 4.80 W	42.18 17.17 27.81
Average ¹	10.54	.74	11.28	11.15	2.84	13.99	10.62	66.	11.61
- INDUSTRIAL MINERALS									
Abbrasives ²	7.24	1.	7.24	10.00		10.00	7.83	1	7.83
Barite	37.80 23.87	¦ & @	37.80 24.07	M	1 1	¦B	37.80 23.87	¦ ≥ 6	37.80 94.07
Diatomite Feldspar	76.63	58.59	76.63	:	 - - - - - - - - - - - - - - - - - -	:-	76.63 19.53	5. 85 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	76.63
Gypsum	6.51		6.51	6.25		6.25	6.46	1	6.46
PerlitePhosphate rock	16.69		3.36	24.45 W		24.45 W	16.73	1 1 	16.73
Potassium salts	09'0		0.50	14.51	1	14.51	14.51		14.51
Salt	M.	M	. M	13.94	2.82	16.76	13.94	2.82	16.76

3.41 63.56 22.31	5.35	7.01	10.22	11.00
W 3.12	.10	.34	.35	.71
3.41 63.56 19.18	5.25	89.9	9.87	10.29
63.56 30.64	25.99	18.47	25.99	18.47
	1.2	2.23	1.22	2.23
63.56 30.64	24.78	16.24	24.78	16.24
$\frac{3.41}{21.73}$	4.79	6:39	8.60	10.08
8.34	70.	.23	.26	.52
3.41 18.39	4.72	6.15	8.34	9.56
Sand and gravelSodium carbonate (natural)Talc, soapstone, pyrophyllite	Average ¹ ,	Average, metals and industrial minerals 1Average, industrial minerals (excluding sand	and gravel and stone) ¹ Average, metals and industrial minerals (excluding	sand and grave])1

W Withheld to avoid disclosing company proprietary data. Includes unpublished data. Includes abrasive stone, emery, garnet, millstones, and tripoli. Excludes volcanic cinder and scoria.

Table 5.—Crude ore and total material handled at surface and underground mines in the United States in 1986, by commodity

(Percent)

	Crud	e ore	Total m	aterial
Commodity	Surface	Under- ground	Surface	Under- ground
2000010			•	
METALS				
Bauxite	_ 100.0		100.0	7.3
Copper	_ 87.8	12.2	95.4	4.6
Gold:	78			
Lode		4.2	98.2	1.8
Placer	_ 100.0	- 1 - 1 - 1	100.0	<u>-</u>
Iron ore	_ 99.0	1.0	99.3	
Lead		¹ 100.0	W	¹ 100.0
Silver	_ 56.1	43.9	87.3	12.7
Zinc	- ".""	100.0		100.0
Average ²	_ 88.9	11.1	94.6	5.4
INDUSTRIAL MINERALS Abrasives ² Asbestos Barite Clays Diatomite Feldspar Gypsum Mica (scrap) Perlite Phosphate rock Potassium salts Pumice ⁵ Salt Sand and gravel Sodium carbonate (natural)	- 100.0 - 100.0 - 100.0 - 100.0 - 100.0 - 80.9 - 100.0 - 99.3 - 100.0 	W	4100.0 100.0 100.0 4100.0 100.0 100.0 100.0 85.7 100.0 99.7 4100.0 2.5 100.0	W 14.8 W 100.0 97.8 100.0
Talc, soapstone, pyrophyllite		6.7	98.4	1.0
Average ²	_ 97.1	2.9	97.7	2.5
Average, metals and industrial minerals ²	_ 94.7	5.3	96.5	3.

W Withheld to avoid disclosing company proprietary data; included with "Surface" or "Underground."

¹Includes surface; the Bureau of Mines is not at liberty to publish separately.

²Includes unpublished data.

Includes unpunisneu uaua.

Includes abrasive stone, emery, garnet, millstones, and tripoli.

Includes underground; the Bureau of Mines is not at liberty to publish separately.

⁵Excludes volcanic cinder and scoria.

Table 6.—Crude ore and total material handled at surface and underground mines in the United States in 1986, by State

(Percent)

		 Crud	le ore	Total n	naterial
	State	Surface	Under- ground	Surface	Under- ground
Alabama		 100.0		100.0	
Alaska		 100.0	22	100.0	
Arizona		 ¹ 100.0	W	¹ 100.0	w
Arkansas		100.0	- 44 <u>- 21</u> -	100.0	
California		100.0	· · · · · · · · · · · · · · · · · · ·	100.0	
Colorado		76.5	23.5	82.0	18.0
Connecticut		100.0		100.0	
Delaware		100.0		100.0	-
Florida		100.0	- I	100.0	
Georgia		100.0		100.0	
Hawaii		100.0	7 - F	100.0	
Idaho		96.6	3.4	96.4	$\bar{3}.\bar{6}$
Illinois		1100.0	w	1100.0	W
Indiana		¹ 100.0	w	1100.0	w
Iowa		100.0 1100.0	w	100.0 1100.0	w
····		 93.4	6.6	93.7	6.3
Kansas			0.0	100.0	0.0
Kentucky		100.0	$2\overline{4}.\overline{3}$		$9\overline{2}.\overline{4}$
Louisiana		75.7	24.5	7.6	92.4
Maine		100.0		100.0	
Maryland			· ·	100.0	· · · · · · · · ·
Massachusetts		100.0	==	100.0	00.7
Michigan		94.9	5.1	9.6	90.4
Minnesota		100.0		100.0	
Mississippi		100.0	.==	100.0	
Missouri		62.4	37.6	56.6	43.4
Montana		88.6	11.4	93.4	6.6
Nebraska		100.0	- =	100.0	
Nevada		99.8	.2	99.9	.1
New Hampshire		100.0		100.0	
New Jersey		¹ 100.0	W	¹100.0	W
New Mexico		 81.2	18.8	95.7	4.3
		 87.6	12.4	87.8	12.2
North Carolina		 100.0		100.0	
North Dakota		 100.0		100.0	
Ohio		 91.8	$\overline{8.2}$	92.2	7.8
Oklahoma		 100.0		100.0	
Oregon		 100.0		100.0	
Pennsylvania		 100.0		100.0	
Rhode Island		100.0		100.0	
South Carolina		 100.0		100.0	7 L
South Dakota		 ¹ 100.0	W	¹ 100.0	W
Tennessee		67.0	33.0	74.5	25.5
Гехаs		99.6	.4	99.6	.4
Utah		95.4	4.6	96.9	3.1
Vermont		 ¹ 100.0	W	1100.0	W
Virginia		¹ 100.0	w	¹100.0	w
Washington		98.1	1.9	97.7	2.3
West Virginia		100.0	1.0	100.0	2.0
Wisconsin		100.0		100.0	
Wyoming		44.1	$5\overline{5}.\overline{9}$	49.9	50.1
11 J VIIIIII		 44.1	00.0	20.0	50.1
•					

W Withheld to avoid disclosing company proprietary data; included with "Surface." ¹Includes underground; the Bureau of Mines is not at liberty to publish separately. ²Includes unpublished data.

Table 7.—Number of domestic metal and industrial mineral mines¹ in the United States in 1986, by commodity

Commodity	Total numbe of mines	1,000	to 0 10,000	10,000 to 100,000 tons	100,000 to 1,000,000 tons	1,000,000 to 10,000,000 tons	More than 10,000,000 tons
METALS							
Bauxite Copper	 ,	4 18		3 1	$\frac{1}{2}$	$-\overline{7}$	$-\frac{1}{8}$
Gold: Lode		81 9	9 9	14	31	17	. 1
Placer			8 8	11	6	2	i e
ron ore		16		4		5	- 7
.ead		10	$\frac{2}{5}$ $-\frac{7}{4}$	<u> </u>	5	3	
Silver				6	4	3	
Zinc			! :	1		1	
Other ²		45 1	4 5	13	7	5	
Total	2	41 39	9 26	53	63	43	1′
INDUSTRIAL MINERALS	1 1,5						
Abrasives ³			1	4		12.0	
Asbestos		3	- 1	2			
Barite		12 60 3'	7 187	501	1 134	-ī	
Clays Diatomite		12	_ 5	3	104	1	
Feldspar			īĭ	10	ŝ		
Gypsum			1 2	19	40	1	· · · · · · · · · · · · · · · · · · ·
Mica (scrap)			2 3	6	1		
Perlite		11	1 2	5	3 10		-
Phosphate rock Potassium salts		37 6		3	10	18	
Pumice4			3 10	6	. 3	J	- -
Salt		15	10	4	4	$-\tilde{6}$	
Sand and gravel			$\bar{7}$ 872	2,848	1,976	119	
Sodium carbonate (natural)	`	5		in a fiele	1	4	·
Talc, soapstone, pyrophyllite			7 7	16	- 6		
Other ⁵	<u>'</u>	23	1 4	11	6	1	
Total		42 14	1 1,102	3,442	2,197	153	

Sincludes aplite, boron minerals, fluorspar, greensand marl, iron oxide pigments (crude), kyanite, magnesite, olivine, and vermiculite.

¹Excludes wells, ponds, or pumping operations.

²Includes antimony, beryllium, manganiferous ore, mercury, molybdenum, nickel, platinum-group metals, rare-earth metals, titanium (ilmenite), tungsten, and uranium.

³Includes abrasive stone, emery, garnet, millstones, and tripoli.

⁴Excludes volcanic cinder and scoria.

Table 8.—Twenty-five leading metal and industrial mineral mines in the United States in 1986, in order of output of crude ore

Mine	State	Operator	Commodity	Mining method
		METALS		· ·
Morenci San Manuel	Arizona	Phelps Dodge Corp Magma Copper Co	Copper	Open pit. Caving and open pit.
Round Mountain Empire	Nevada Michigan	Round Mountain Gold Corp_ Empire Iron Mining Co	Lode gold	Open pit.
Pinto Valley	Arizona	Newmont Mining Corp	do	Do. Do.
Bagdad	do	Cyprus Bagdad Copper Co	Copper	Do. Do.
Sierrita	do	Duval Sierrita Corp	do	Do.
Minntac	Minnesota	USX Corp	Iron ore	Do.
[vrone	New Mexico	USX Corp Phelps Dodge Corp	Copper	Do.
Hibbing Taconite	Minnesota	Pickands Mather & Co	Iron ore	Do.
Chino	New Mexico	Chino Mines Co	Copper	Do.
Hoyt Lakes	Minnesota	LTV Steel Co. Inc	Iron ore	Do.
Ray Pit Thunderbird	Arizona	Kennecott	Iron ore do	Do.
hunderbird	do	Oglebay Norton Co	do	Do.
lilden National Pellet	Michigan	Tilden Mining Co	do	Do.
Project-St. Louis.	Minnesota	The Hanna Mining Co	do	Do.
Freen Cove	Florida	Associated Minerals Corp	Titanium	Dredging.
Ienderson	Colorado	Climax Molybdenum Co., a division of AMAX Inc.	Molybdenum	Caving and open pit.
ortman-Landusky	Montana	Pegasus Gold Inc	Lode gold	Open pit.
Minorca	do	Inland Steel Mining Co	Iron ore	Do.
Continental	Montana	Montana Resources Inc	Copper	Do.
isa	California	Yuba Placer Gold Co	Copper Placer gold _	Mechanical ex cavation.
Peter Mitchell Vational Pellet Project-Itasca.	Minnesota	Reserve Mining Co The Hanna Mining Co	Iron ore	Open pit. Do.
Vhite Pine	Michigan	Copper Range Co	Copper	Stopes.
-, -	INI	OUSTRIAL MINERALS ²		
Suwanee	Florida	Occidental Petroleum Corp_	Phosphate rock.	Open pit.
Tt. Green	do	Agrico Chemical Co Occidental Petroleum Corp _	do	Do.
Noralyn	do	International Minerals &	do do	Do. Do.
Singsford		Chemical Corp.		
ee Creek	do North Carolina	Texasgulf Inc	do	Do.
lavnsworth	Florida	American Cyanamid Co	do	Do.
Iaynsworth onesome	do	do		Do. Do.
Vingate Creek	do	Beker Industries Corp	do	Do. Do.
t. Meade	do	Mobil Oil Corn	do	Do.
ockland	do	Mobil Oil Corp USS Agri-Chemicals	do	Do.
lookers	do	W. R. Grace & Co	do	Do.
lear Spring	do	International Minerals & Chemical Corp.	do	Do.
adum	California	Koppers Co., Kaiser Sand and Gravel.	Sand and gravel.	Dredging.
windale	do	Koppers Co., Blue Diamond Materials.	do	Do.
nternational	New Mexico	International Minerals & Chemical Corp.	Potassium salts.	Stopes.
un Valley	California	CalMat Co. of California.	Sand and gravel.	Dredging.
erkins	do	A. Teichert & Son Inc., Tei- chert Aggregates.	do	Do.
Vatson	Florida	Estech Inc	Phosphate rock.	Open pit.
lardee teilacoom	do Washington	C. F. Mining Corp Northwest Aggregates Co	do Sand and	Do. Dredging.
t. Lucie	Florida	General Development Corp_	gravel.	Do
		Owl Rock Products Co	do do	Do. Do.
71199				
zusa windale	California	Symons Corp., Livingston-	do	Do.

¹Excludes brines and materials from wells. ²Crushed and broken and dimension stone were not available in 1986 because of biennial canvassing.

Table 9.—Twenty-five leading metal and industrial mineral¹ mines in the United States in 1986, in order of output of total materials handled

Mine	State	Operator	Commodity	Mining method
		METALS		
[yrone	New Mexico	Phelps Dodge Corp	Copper	Open pit. Do.
Ĭorenci an Manuel	Arizona do	do Magma Copper Co	do	Caving and open pit.
9	New Mexico	Phelps Dodge Corp	do	Open pit.
Chino Cinto Valley	Arizona	Pinto Valley Copper Corp	do	Do.
mpire	Michigan	Empire Iron Mining Co	Iron ore	Do.
ay Pit	Arizona	Kennecott	Copper	Do.
loyt Lakes	Minnesota	LTV Steel Co. Inc	Iron ore	Do.
ound Mountain	Nevada	Round Mountain Gold Co	Lode gold	Do.
ierrita	Arizona	Duval Sierrita Corp	Copper	Do.
hompson Creek	Idaho	Cyprus Mines Corp	Molybdenum	Do. Do.
libbing Taconite	Minnesota	Pickands Mather & Co	Iron ore	Do. Do.
agdad	Arizona	Cyprus Bagdad Copper Co	Copper Iron ore	Do.
linntac	Minnesota	USX Corp Battle Mountain Gold Co	Lode gold	Do.
Sattle Mountain	Nevada Michigan	Tilden Mining Co	Iron ore	Do.
ilen Iomestake	South Dakota	Homestake Mining Co	Lode gold	Do.
andelaria	Nevada	Nerco Minerals Co	Silver	Do.
hunderbird	Minnesota	Oglebay Norton Co	Iron ore	Do.
erritt Canyon	Nevada	Freeport Gold Co	Lode gold	Do.
IcLaughlin	California	Homestake Mining Co	do	Do.
lational Pellet Projct-Itasca.	Minnesota	The Hanna Mining Co	Iron ore	Do.
IcCoy	Nevada	CanAm Gold Corp	Lode gold	Do.
fercur	Utah	Barrick Mercur Gold Mines	do	Do.
limax	Colorado	Climax Molybdenum Co., a division of AMAX Inc.	Molybdenum	Do.
Climax		Climax Molybdenum Co., a division of AMAX Inc.	Phosphate	Do. Open pit.
ee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc	Phosphate rock.	Open pit.
ee Creek	INI	Climax Molybdenum Co., a division of AMAX Inc.	Phosphate rock.	Open pit. Do. Do.
ee Creek uwannee foralyn	INI North Carolina _ Florida	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp_ International Minerals & Chemical Corpdo	Phosphate rockdo	Open pit. Do. Do. Do.
ee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp do Agrico Chemical Co	Phosphate rockdodo	Open pit. Do. Do. Do. Do.
ee Creek Suwannee Noralyn Kingsford 't. Green	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp International Minerals & Chemical Corp do Agrico Chemical Co American Cvanamid Co	Phosphate rockdododo	Open pit. Do. Do. Do. Do. Do. Do.
ee Creek Suwannee Noralyn Kingsford rt. Green	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp Agrico Chemical Co American Cyanamid Co International Minerals & Chemical Corp.	Phosphate rockdodododododo	Open pit. Do. Do. Do. Do. Do. Do. Do.
ee Creek	INI North Carolina Florida	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp Agrico Chemical Co American Cyanamid Co International Minerals & Chemical Corp. American Cyanamid Co American Cyanamid Co American Cyanamid Co American Cyanamid Co	Phosphate rockdodododododo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do.
ee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp Agrico Chemical Co American Cyanamid Co International Minerals & Chemical Corp. American Cyanamid Co Beker Industries Corp	Phosphate rockdododododododododo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do.
ee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp International Minerals & Chemical Corp do American Cyanamid Co International Minerals & Chemical Corp. American Cyanamid Co American Cyanamid Co J. R. Simplot Co J. R. Simplot Co J. R. Simplot Co	Phosphate rockdodododododododododo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
ee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp do Agrico Chemical Co American Cyanamid Co International Minerals & Chemical Corp. American Cyanamid Co Beker Industries Corp J. R. Simplot Co W. R. Grace & Co W. R. Grace & Co	Phosphate rock do	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
ee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc	Phosphate rockdo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina Florida	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp Agrico Chemical Co American Cyanamid Co International Minerals & Chemical Corp. American Cyanamid Co J. R. Simplot Co W. R. Grace & Co Mobil Oil Corp Cocidental Petroleum Corp	Phosphate rockdodododododododododododododododo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp Agrico Chemical Co Agrico Chemical Co American Cyanamid Co Enternational Minerals & Chemical Corp American Cyanamid Co Beker Industries Corp J. R. Simplot Co W. Grace & Co Mobil Oil Corp Occidental Petroleum Corp C. F. Mining Corp C. F. Mining Corp	Phosphate rockdo do	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina Floridadodododododo Floridado Floridadododododo	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc	Phosphate rockdo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
ee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp Agrico Chemical Co Agrico Chemical Co American Cyanamid Co International Minerals & Chemical Corp American Cyanamid Co Beker Industries Corp J. R. Simplot Co W. R. Grace & Co Mobil Oil Corp Occidental Petroleum Corp C. F. Mining Corp Estech Inc Gardinier Inc	Phosphate rock	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc	Phosphate rockdo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc	Phosphate rockdo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp _ International Minerals & Chemical Corp	Phosphate rockdo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc Occidental Petroleum Corp International Minerals & Chemical Corp Agrico Chemical Co American Cyanamid Co International Minerals & Chemical Corp American Cyanamid Co Beker Industries Corp J. R. Simplot Co W. R. Grace & Co Mobil Oil Corp Occidental Petroleum Corp C. F. Mining Corp Cardinier Inc Gardinier Inc W. R. Grace & Co Mobil Oil Corp U.S. Borax and Chemical Co USS Agri-Chemicals	Phosphate rockdoPhosphate rock.	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc	Phosphate rockdo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
	INI North Carolina Florida	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc	Phosphate rockdo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D
Lee Creek	INI North Carolina Florida	Climax Molybdenum Co., a division of AMAX Inc. DUSTRIAL MINERALS ² Texasgulf Inc	Phosphate rockdo	Open pit. Do. Do. Do. Do. Do. Do. Do. Do. Do. D

¹Excludes brines and materials from wells. ²Crushed and broken and dimension stone were not available in 1986 because of biennial canvassing.

Table 10.—Ore treated or sold per unit of marketable product at surface and underground mines¹ in the United States in 1986, by commodity

		Surface			Underground			Total ²	
Commodity	Ore treated (thousand short tons)	Market- able product (units)	Ratio of units of ore to units of units of marketable product	Ore treated (thousand short tons)	Market- able product (units)	Ratio of units of ore to units of marketable product	Ore treated (thousand short tons)	Market- able product (units)	Ratio of units of ore to units of market- able product
METALS				·.			i	3	
Bauxitethousand long tons Copperthousand short tons	W 168,000	502 1,170	W 143.3:1	M	M	M	W 168,000	902 1,170	w 143.3:1
Gold: Lode thousand troy ounces	64,500	3,110	20.7:1	3,670	238	15.4:1	68,200 8,030	3,350	20.4:1
Iron orethousand long tons	134,000	40,500	3.3:1	1,320	803 324	1.6:1	135,000 5,840	41,300 324	3.3:1 18.0:1
Silver thousand troy ources Zinc thousand short tons	M	M	M -	4,040 W	16,100	.3:1 W	4,040 W	16,100 159	.3:1 W
INDUSTRIAL MINERALS									
Abrasives ³ do	92	35	1.0:1	M	M	M	92	95	1.0:1
Asbestosdo Baritedo	317	262 262	1.2.1	l 13		1 1	317	262	
Claysdo	1,200	43,800	2.7:1	X	X	>	1,680	43,800 628	2.7:1
Feldspar	1,220	12.800	1.8:1	M	M	M	1,220 $12,800$	684 12,800	1.8:1
	277	85	3.1:1	1 ¹	l I	10.	277	90 715	3.1:1
Phosphate rock	260,000	42,500	6.1:1	8	M	M	260,000	42,500	6.1:1
salts	108	554		9,450 W	1,220 W	7.7:1 W	9,450	1,220	1.1:1
Fumice	M	M	M.	13,300	12,400	1111	13,300	12,400	1.1:1
Sand and graveldo	910,000	910,000	-	7.360	7,360	1.0:1	7,360	7,360	1.0:1
Talc, soapstone, pyrophyllite	1,810	804	1.3:1	W	W	W	1,310	994	1.3:1
	A PLANTAGE OF THE PROPERTY OF THE PARTY OF T	The second secon			The second secon				

W Withheld to avoid disclosing company proprietary data.

¹Excludes wells, ponds, and pumping operations.

²Data may not add to totals shown because of independent rounding.

³Includes abrasive stone, emery, garnet, milstones, and tripoli.

⁴Excludes volcanic cinder and scoria.

Table 11.—Material handled per unit of marketable product at surface and underground mines in the United States in 1986, by commodity

			Surface			Underground			Total ²	
	Commodity	Total material handleds (thousand short tons)	Market- able product (units)	Ratio of units of material handled to units of marketable product*	Total material handled ³ (thousand short tons)	Market- able product (units)	Ratio of units of material handled to units of marketable broduct*	Total material handled ³ (thousand short tons)	Market- able product (units)	Ratio of units of material handled to units of marketable product of marketable mroduct and units of mroduct and units of the
Bauxite	METALS thousand long tonsthousand short tons	2,240 385,000	502 1,170	4.5:1 329.0:1	23,500	51	461.6.1	2,240 408,000	502	4.5:1
Lode Place Iron ore Lead Silver		202,000 16,200 191,000 21,300	$\begin{array}{c} 3,110\\ 70\\ 40,500\\ 3,080\\\\ \end{array}$	64.8:1 230.5:1 4.7:1 6.9:1	3,320 1,320 6,080 4,240 4,430	$\begin{array}{c} 238 \\ \hline -5 \\ 803 \\ 324 \\ 16,100 \\ 159 \end{array}$	14.0:1 1.6:1 18:8:1 .3:1 27.8:1	205,000 16,200 192,000 6,080 25,500 4,430	3,350 70 41,300 324 19,200 159	61.2.1 230.5.1 4.6.1 1.3.1 27.8.1
Abrasives Asbestos Barite Clays Diatomite Feldsnar	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	137 57 232 232 82,700 7,530	92 57 262 43,800 628	1.51 1.01 1.91 12.01	M M	W W	A A	137 57 232 82,700 7,530	92 57 262 43,800 628	12.0.1 1.0.1 1.0.1 1.0.1 1.0.1 1.0.1
Gypsum Mica (scrap) Perlite Phosphate rock Potassium salts Pumice Salt Sand and gravel	-	15,700 349 1,640 450,000 1,130 W 910,000	12,800 90 710 42,500 554 W	2.0:1 2.0:1 10.6:1 2.0:1 W	3,0 <u>10</u> - - - - - - - - - - - - -	3,010 - 5 - 5 - 7 - 1,220 - 12,400	1.0:1 1.0:1 W 8.2:1 1.1:1	1,370 349 349 1,640 450,000 10,100 13,300 113,300 910,000	15,800 15,800 715 42,500 1,220 554 12,400 910,000	10.23 10.23 10.23 10.11 10.11
Talc, soapstone, pyrophylli	rophyllite	6,030	994	6.1:1	152	7,360	1.7:1	7,360 6,180	1,090	5.7:1

W Withheld to avoid disclosing company proprietary data. Excludes wells, ponds, and pumping operations. Estimated.

²Data may not add to totals shown because of independent rounding.

³Includes material from exploration and development activities.

⁴Material from development and exploration activities is excluded from the ratio calculation.

⁴Material from development and exploration activities is excluded from the ratio calculation.

⁶Excludes abrasis stone, enercy garnet, millstones, and tripoli.

SPOCES OF YEST OF OPEN

MINING AND QUARRYING TRENDS

Table 12.—Mining methods used in open pit mining in the United States in 1986, by commodity

(Percent)

	Total mate	rial handled
Commodity	Preceded by drilling and blasting	Not preceded by drilling and blasting ¹
METALS		
· · · · · · · · · · · · · · · · · · ·	98	
auxite	•	10
eryllium	99	
pper		4.4
old:	98	
Placer		10
	99	
on ore	100	
anganiferous ore		10
	1	9
olybdenum	100	· · · · -
are-earth metals	100	garaga ka i
lver	100	10
tanium (ilmenite)		10
INDUSTRIAL MINERALS		
	66	:
brasives ²	15	ì
plite	100	·
sbestos sbestos	98	- 1 1 1 × -
arite		10
pron		10
aysays		1
	100	
eldsparuorspar	100	
	97	
ypsumon oxide	91	
vanite	100	
agnesite	100	
ica (scrap)	25	
livine	100	
erlite	5 <u>7</u>	
hosphate rock	5	
iming ³	24	
alt	. 4	
and and groval		1
alc, soapstone, pyrophyllite	100	
Vermiculite	98	
	00	
Average	36	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

¹Includes drilling or cutting without blasting, dredging, or mechanical excavation and nonfloat washing, and other surface mining methods.

²Includes abrasive stone, emery, garnet, millstones, and tripoli.

³Excludes volcanic cinder and scoria.

Table 13.—Exploration and development activity in the United States in 1986, by method

	Me	tals	Industrial	minerals	Tot	al ¹
Method	Feet	Percent of total ²	Feet	Percent of total ²	Feet	Percent of total ²
EXPLORATION						
Churn drilling Diamond drilling Percussion drilling Rotary drilling Other drilling Trenching	9,690 422,000 977,000 1,540,000 319,000 64,500	0.3 12.7 29.3 46.2 9.6 1.9	99,500 54,100 50,800	48.7 26.5 24.8	9,690 522,000 977,000 1,590,000 370,000 64,500	0.3 14.8 27.7 45.0 10.5 1.8
Total ¹	3,330,000	100.0	204,000	100.0	3,540,000	100.0
DEVELOPMENT	1.		1.0			
Drifting, crosscutting, or tunneling _ Raising Shaft and winze sinking Solution mining	496,000 51,900 3,360 (³)	90.0 9.4 .6	17,000 652 1,000	91.1 3.5 5.4	513,000 52,600 4,360	90.0 9.2 .8
Total ¹	551,000	100.0	18,600	100.0	570,000	100.0
Grand total ¹	3,880,000	XX	223,000	XX	4,104,617	XX

XX Not applicable.

1Data may not add to totals shown because of independent rounding.

2Based on unrounded footage.

3Included with "Drifting, crosscutting, or tunneling" to avoid disclosing company proprietary data.

Table 14.—Exploration and development in the United States in 1986, by commodity

				Exploration						Development	nt	
Commodity	Churn drill- ing	Diamond drilling	Percussion drilling	Rotary drilling	Other drilling	Trench- ing	Total ¹	Drifting, cross- cutting, or tunneling	Rais- ing	Shaft and winze sinking	Solution mining	Total ¹
METALS					1 J. 18				,			
Antimony Copal Copal	1 1 1	3,140	245 W	$145 \\ 14,600$	1 1 1	1 1 1	$\frac{390}{17,800}$	450 	28,000	m	 	450 $28,\overline{000}$
Gold: Lode Placer	¦M	220,000	692,000	449,000 W	148,000 60,000	60,700	1,570,000 62,900	74,000 W	10,800	2,860	Ä	87,700
Iron ore	Ä	M	30	_ M2	W	W 1,650	$1,\overline{680}$	4,630 59,500	M	120	1 1	4,630 59,500
n metola	M	W 87 300	2 400	21,500	2.900	-	21,500 2,900 59,700	MM	MM	1 1 1 1		1 1
Silver Tungsten Tungsten	:	55,000 W	25	14,000	 	200 200 20	69,200 45	18,400 W	3,060 W	15 W	- - - - -	21,500
ZincOther ²	9,690	W 84,500	272,000	1,040,000	108,000	1,050	272,000 1,250,000	21,600 317,000	W 10,000	465	¦(g)	327,000
Total ¹	9,690	422,000	977,000	1,540,000	319,000	64,500	3,330,000	496,000	51,900	3,360		551,000
INDUSTRIAL MINERALS										:	-	
Phosphate rockOther	1 1	W 99,500	1 1	52,300 $1,840$	W 50,800	1 1	52,300 $152,000$	W 17,000	652	1,000	1 1	18,600
Total ¹		99,500	7	54,100	50,800	1 - 1 1 - 1	204,000	17,000	652	1,000	1	18,600
Grand total ¹	069'6	522,000	977,000	1,590,000	370,000	64,500	3,540,000	513,000	52,600	4,360		570,000

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Data may not add to totals shown because of independent rounding.

²Includes bauxite, beryllium, uranium, and metal ifems indicated by symbol W.

³Includes with "Drifting, crosscutting, or tunneling" to avoid disclosing company proprietary data.

⁴Includes fluorspar, lime, potassium salts, pumice, talc, soapstone, and pyrophyllite; and mineral items indicated by symbol W.

Table 15.—Exploration and development in the United States in 1986, by State

				Exploration						Developmen	nt	
State	Churn drill- ing	Diamond drilling	Percussion drilling	Rotary drilling	Other drilling	Trench- ing	Total ¹	Drifting, cross- cutting, or tunneling	Rais- ing	Shaft and winze sinking	Solution mining	Total ¹
Alaska Arizona California Colorado Idaho Missouri Montana Newada Newada Newada Tennessee Utah Utah Utah Utah Utah	M	10,200 4,129 12,300 48,400 110,000 82,500 10,500 4,000 4,000 87,500 10,500 10,500 10,500 182,000	24,106 22,500 22,600 502,000 88,700 4,000 872,000	5,000 57,100 28,100 40,000 279,000 66,500 10,800 \$2,400 W 1,030,000	15,000 45,000 12,600 44,200 44,200 79,100 41,100 100,000	127 W 1,560 1 W W 6,040 26,200 3,000 8,000 8,000 200 3,000 19,300	25,300 9,110 140,000 117,000 172,000 965,000 16,000 16,000 16,000 16,000 16,000 17,10,000	W 8,630 80,700 8,830 8,830 6,830 8,830 8,830 8,400 8,600 8,630 8,630	3,210 4,550 3,020 1,720 1,720 W 3,770 W W 36,302	357 W 465 83 83 12 20 20 W W 83,470	★ ★ ★ ★ ★ ★ ★ ★ ★ ★	857 857 85,850 35,700 11,900 57,400 1,730 8,530 8,530 90 20,900 8,630 8,630
Total ¹	9,690	522,000	977,000	1,590,000	370,000	64,500	3,540,000	513,000	52,600	4,360		570,000

W Withheld to avoid disclosing company proprietary data; included with "Undistributed."

"Data may not add to totals shown because of independent rounding.

"Includee Alabama, Arkansas, Florida, Georgia, Illinois, Michigan, Minnesota, New York, North Carolina, Oklahoma, South Dakota, Texas, and items indicated by symbol W.

"Includee Alabama, Arkansas, Florida, Georgia, Illinois, Michigan ompany proprietary data.

"Included with "Drifting, crosscutting, or tunneling" to avoid disclosing company proprietary data.

Table 16.—Total material (ore and waste) produced by mine development in the United States in 1986, by commodity and State

(Thousand short tons)

	Drifting, crosscut- ting, or tunneling	Raising	Shaft and winze sinking	Stripping	Total ¹
	COMMOI	DITY			
METALS					
Antimony			1,520		1,520
Copper	(2)	51	W	107,000	107,000
Gold:				10.000	11 500
Lode	24	38	545	10,900	11,500
Placer	(2)	(2)	W	65 6.830	65 6,960
Iron ore			125		2,780
Lead	(²)	W	2,780	9,420	9,650
Silver	W	54	180 W	3,420	9,000
Tungsten	(*)	w	w 113		118
<u>Uranium</u>		w	173	3 55	173
Zinc		26	393	2,780	3.200
Other ³		20			
Total ¹	24	168	5,820	137,000	143,000
INDUSTRIAL MINERALS				7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				2,250	2,250
GypsumTalc, soapstone, pyrophyllite	w	w	W	133	133
Other 4	7	4	256	315	581
-					0.000
Total ¹	. 7	4	256	2,700	3,000
Grand total ¹	31	172	6,080	140,000	146,000
	STAT	E			
Arizona	5	w	w	w	
California	w	9	10	3,170	3,190
Colorado	1	9	117	W	126
Idaho	(2)	54	1,580	?	1,640
Michigan	Ŵ		W	10	10
Missouri			2,860	i	2,860
Montana	(2)	5	W	4,200	4,200
Nevada	(2)	1	60	9,890	9,950
New Mexico	(2)	12	412	W	424
Oregon		(2)	(2)	. W]
Tennessee		w	166		166
Utah	·		111	W	111
Undistributed ⁵	25	82	755	123,000	123,000
Total ¹		172	6,080	140,000	146,000

W Withheld to avoid disclosing company proprietary data; included with "Other" or "Undistributed."

¹Data may not add to totals shown because of independent rounding.

²Less than 1/2 unit.

³Includes beryllium, molybdenum, platinum-group metals, and metal items indicated by symbol W.

⁴Includes abrasives, fluorspar, phosphate rock, potassium salts, pumice, and mineral items indicated by symbol W.

⁵Includes Alaska, Arkansas, Illinois, Minnesota, New York, North Carolina, Oklahoma, South Dakota, Texas, Washington, and data indicated by symbol W.

MINERALS YEARBOOK, 1987

Table 17.—U.S. industrial consumption of explosives

(Thousand pounds)

Year	Coal mining ¹	Metal mining ¹	Quarrying and industrial mineral mining ¹	Total mineral industry	Construction work and other uses ²	Total industrial
1982	2,269,565	530,384	423,353	3,223,302	687,189	3,910,491
	2,126,263	481,129	467,710	3,075,102	655,150	3,730,252
	2,758,659	437,217	479,873	3,675,749	681,109	4,356,858
	2,289,600	382,410	510,500	3,182,510	666,141	r3,848,651
	2,566,337	319,844	585,220	3,471,401	451,435	3,922,836

Table 18.—U.S. consumption of explosives in the minerals industry

(Thousand pounds)

Year	Coal mining	Metal mining	Quarrying and industrial mineral mining	Total
PERMISSIBLE EXP	LOSIVES			
1982	43,401 35,181 37,721 34,563 34,971	287 311 195 117 7	1,317 657 345 481 155	45,005 36,149 38,261 35,161 35,133
OTHER HIGH EXP	LOSIVES			
1982 1983 1984 1985 1986	19,360 17,964 20,357 21,705 18,004	13,108 8,861 7,771 9,466 7,027	29,322 31,833 29,658 55,470 63,249	61,790 58,658 57,786 86,641 88,280
WATER GELS AND S	LURRIES			
1982 1983 1984 1985 ¹ 1986 ¹	104,364 94,578 99,340 133,858 180,201	90,738 49,699 78,959 66,653 57,153	80,503 94,261 102,849 80,283 128,854	275,605 238,538 281,148 280,794 366,208
AMMONIUM NITRATE: FUEL—MIX	ED AND UNPF	COCESSED		
1982 1983 1984 1985 ¹ 1986 ¹	2,102,440 1,978,540 2,601,241 12,099,474 2,333,161	426,251 422,258 350,292 306,174 255,657	312,211 340,959 347,021 374,266 392,962	2,840,902 2,741,757 3,298,554 r2,779,914 2,981,780
TOTAL				
1982 1983 1984 1985	2,269,565 2,126,263 2,758,659 r2,289,600 2,566,337	530,384 481,129 437,217 382,410 319,844	423,353 467,710 479,873 510,500 585,220	3,223,302 3,075,102 3,675,749 3,182,510 3,471,401

rRevised.

Revised.

Some quantities of this use are included with "Construction work and other uses" to avoid disclosing company Proprietary data.

Includes some quantities from "Coal mining," "Metal mining," and "Quarrying and industrial mineral mining."

Data for 1985-86 are not comparable to data for prior years. The higher strength blasting agents classification was discontinued. Blasting agents formerly in that classification are now included with "Water gels and slurries."

Statistical Summary

By Stephen D. Smith1

This chapter summarizes data on crude nonfuel mineral production for the United States, its island possessions, and the Commonwealth of Puerto Rico. Also included are tables that show the principal nonfuel mineral commodities exported from and imported into the United States and that compare world and U.S. mineral production. The detailed data from which these tables were derived are contained in the individual commodity chapters of Volume I and in the State chapters of Volume II of this edition of the Minerals Yearbook.

Although crude mineral production may be measured at any of several stages of extraction and processing, the stage of measurement used in this chapter is what is normally termed "mine output." It usually refers to minerals or ores in the form in which they are first extracted from the ground, but customarily includes the output from auxiliary processing at or near the mines.

Because of inadequacies in the statistics

available, some series deviate from the foregoing definition. For copper, gold, lead, silver, tin, and zinc, the quantities are recorded on a mine basis (as the recoverable content of ore sold or treated). However, the values assigned to these quantities are based on the average selling price of refined metal, not the mine value. Mercury is measured as recovered metal and valued at the average New York price for the metal.

The weight or volume units shown are those customarily used in the particular industries producing the commodities. Values shown are in current dollars, with no adjustments made to compensate for changes in the purchasing power of the dollar.

¹Mineral data assistant, Section of Ferrous Metals Data. The author was assisted in the preparation of this chapter by Barbara M. Carrico, Chief, Section of Nonferrous Metals Data; Sarah P. Guerrino, Chief, Section of Ferrous Metals Data; Barbara E. Gunn, Chief, Section of Industrial Minerals Data; William L. Zajac, Chief, Branch of Geographic Data.

Table 1.—Nonfuel mineral production in the United States

	1	985	1	1986	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands	
METALS							
Bauxitethousand metric tons, dried equivalent	674	\$12,855	510	r\$10,361	576	\$10,871	
Copper (recoverable content of ores, etc.) metric tons	1,105,758	1,632,483	1,147,277	1,670,660	1,255,914	2,284,156	
Gold (recoverable content of ores, etc.) troy ounces	2,427,232	771,032	r3,739,015	r _{1,376,855}	4,966,382	2,224,691	
ron oxide pigments, crude short tons	46,585	2,826	40,987	2,908	42,773	3,598	
Lead (recoverable content of ores, etc.) metric tons	413,955	174,008	339,793	165,150	311.298	246,654	
Magnesium metal ² short tons Manganiferous ore (5% to 35% Mn)			138,493	423,788	137,123	381,914	
short tons, gross weight Mercury 76-pound flasks	19,882	W W	14,320	w	19,087	w	
Molybdenum (content of ore and	16,530		W	W	W	w	
concentrate) thousand pounds Nickel (content of ore and concentrate)	111,936	347,812	95,006	240,484	69,868	179,286	
short tons Silver (recoverable content of ores, etc.)	6,127	W	1,175	W	A		
thousand troy ounces fungsten (content of ore and con-	39,433	242,205	r34,524	r _{188,846}	39,790	278,930	
centrate) metric tons Zinc (recoverable content of ores, etc.)	983	9,143	817	5,774	w	w	
metric tons Combined value of antimony (1985-86),	226,545	201,607	202,983	170,050	216,981	200,529	
bervllium concentrates, iron ore (us-							
able), magnesium chloride for magnesium metal (1985), platinum-group metals (1987), rare-earth metal con-					•		
centrates, tin, titanium concentrates							
(ilmenite and rutile), vanadium, zir- con concentrates, and values indi-							
cated by symbol W	XX	2,234,916	XX	r _{1,562,566}	XX	1,636,688	
Total ⁴	XX	5,629,000	XX	r _{5,817,000}	XX	7,447,000	
INDUSTRIAL MINERALS (EXCEPT FUELS)					• 4		
Abrasives ⁵ short tons Asbestosmetric tons	1,157 57,457	515 20,485	W 51,437	W 17,367	12,773 50,600	957 17,198	
Sarite thousand short tons	739	21.501	297	12,326	448	15,810	
Boron mineralsdo Bromine ^e thousand pounds Cement:	1,269 320,000	404,775 80,000	1,251 310,000	426,086 93,000	1,385 335,000	475,092 107,000	
Masonry thousand short tons	3,187	213,096	3,525	231,551	3,680	259,926	
Portlanddodo	74,250 44,974	3,817,335 1,011,377	75,181 44,620	3,759,942 1,095,179	74,868 47,657	3,646,561 1,202,284	
lays	635	127,030	628	128,362	658	134,239	
eldspardo	700,000	22,800	2,878 735,000	26,100	1,945 $720,000$	26,100	
luorspardodo	66,000	W	^e 78,000	W	68,839	11,725	
larnet (abrasive)	36,727	2,973	32,296	2,603	42,277	4,350	
Sypsum thousand short tons	NA ^r 14,414	^e 7,425 ^r 111,785	NA r _{15,403}	9,247 ^r 99,570	NA 15,612	21,389 106,977	
Ielium: Crude million cubic feet	W	w	432	9,504	730	16,068	
Grade-A do do do do	1,865 15,690	69,938 809,000	1,941 14,474	72,788 757,867	2,230 15,733	82,540	
Mica (scrap)do	138	6,330	148	7,108	161	786,125 8,201	
Mica (scrap)dodo	882	21,892	r _{1,038}	^r 23,988	958	26,170	
Perlite do do do do	507	17,160	507	15,646	533	16,494	
thousand metric tons Potassium salts (K ₂ O equivalent)	50,835	r _{1,235,800}	^r 40,320	r897,131	40,954	793,280	
do Pumice thousand short tons	1,266 508	178,400 4,553	1,147 554	152,000 5,756	1,485 392	195,700 4,493	
altdodo	40,067	739,609	36,663	665,400	36,493	684,170	
Constructiondo Industrialdo	e800,100 29,430	e2,438,000 374,070	883,000 27,420	2,747,200	896,200	3,002,500	
Sodium carbonate (natural) do	29,430 W	374,070 W	27,420 W	359,300 W	28,010 8,891	364,100 593,685	
Sodium sulfate (natural)do Stone: ⁶	389	35,860	396	34,102	382	33,086	
Crushed do do Dimension do	1,000,800	4,053,000	e1,023,200	e4,255,000	1,200,100	5,248,600	
Sulfur, Frasch process	1,104	172,435	e1,163	e173,269	1,184	190,153	
thousand metric tons	4,678	573,570	4,180	508,512	3,610	386,834	
See footnotes at end of table.							

STATISTICAL SUMMARY

Table 1.—Nonfuel mineral production¹ in the United States —Continued

	1	985	1	986	1	987
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
INDUSTRIAL MINERALS (EXCEPT FUELS) —Continued						
Talc and pyrophyllite thousand short tons. Tripolishort tons. Vermiculite. thousand short tons. Combined value of aplite, asphalt (na-	1,269 W 314	\$29,188 W 32,400	1,302 117,174 317	\$31,227 918 34,400	1,349 114,926 303	\$28,785 975 33,105
tive, 1985-86), calcium chloride (natu- ral), iodine, kyanite, lithium miner- als, magnesite, magnesium com- pounds, ⁷ marl (greensand), olivine,						
pyrites, staurolite, wollastonite, and values indicated by symbol W	XX	1,046,003	XX	r994,446	XX	374,118
Total ⁴	XX	r _{17,678,000}	XX	r _{17,647,000}	xx	18,899,000
Grand total ⁴	XX	r23,307,000	XX	r23,464,000	XX	26,346,000

eEstimated. 'Revised. NA Not available. W Withheld to avoid disclosing company proprietary data; include with "Combined value" figure. XX Not applicable.

1Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

2Magnesium metal (refinery production) not reported in 1985.

3Magnesium chloride for magnesium metal reporting discontinued in 1986.

4Data may not add to totals shown because of independent rounding.

5Grindstones, pulpstones, and sharpening stones; excludes mill liners and grinding pebbles.

6Excludes abrasive stone and bituminous limestone and sandstone; all included elsewhere in table.

7Excludes values that must be concealed to avoid disclosing company proprietary data. W Withheld to avoid disclosing company proprietary data; included

Table 2.—Nonfuel minerals produced in the United States and principal producing States in 1987

Mineral	Principal producing States, in order of quantity	Other producing States
Abrasives ¹	OH, AR, IN, WI.	
Antimony (content of ore, etc.)	(²)	
Aplite	Ϋ́A.	
Asbestos	CA and VT.	
Asphalt (native)	(³)	
Barite	NV, GA, MO, CA	MT, TN.
Bauxite	AR, AL, GA.	
Beryllium concentrate	UT and SD.	
Boron minerals	CA. AR and MI.	
BromineCalcium chloride (natural)	MI, CA, WA.	
Cement:	MI, CII, WII.	
Masonry	IN, PA, FL, AL	All other States except AK, CT, DE, MA, MN,
		NC, ND, NH, NJ, NV, RI, VT.
Portland	CA, TX, PA, MO	All other States expect CT, DE, MA, MN, NC, ND, NH, NJ, RI, VT.
Clays	GA, TX, NC, OH	All other States except AK, DE, HI, RI, VT,
лаув	un, 11, 110, 011	WI.
Copper (content of ores, etc.)	AZ, NM, MI, MT	CO, ID, IL, MO, TN, WA.
Diatomite	CA, NV, WA, OR.	
Emery	NY.	
Emery Feldspar Fluorspar Garnet (abrasive)	NC, CT, CA, GA	OK, SD.
luorspar	IL and NV.	
larnet (abrasive)	ID, NY, ME.	AT AN OO ID MI AM ANA OD OO ""
iold (content of ores, etc.)	NV, CA, SD, UT	AK, AZ, CO, ID, MI, MT, NM, OR, SC, WA.
Gypsum	MI, IA, TX, OK	AR, AZ, CA, CO, IN, KS, LA, MT, NM, NV, NY, OH, SD, UT, VA, WA, WY.
T-1:	TO MIN MY NIM	NY, OH, SD, UT, VA, WA, WY.
Ielium odine	KS, WY, TX, NM. OK.	
ron ore (usable)	MN, MI, MO, UT	CA, MT, NM, TX.
ron oxide pigments (crude)	MI, GA, MO, VA.	014, 1121, 1114, 1221
Cyanite	VA.	
Lead (content of ores, etc.)	MO, CO, ID, MT	IL, NM, NY, TN.
ime	OH, MO, PA, KY	All other States except AK, CT, DE, FL, GA,
		KS, ME, MS, NH, NJ, NM, NC, NY, RI, SC,
		VT.
ithium minerals	NC and NV.	
Magnesite	NV. MI, CA, UT, DE	TX.
Magnesium compounds	TX, WA, UT.	1A.
Magnesium metal Manganiferous ore	SC.	
Marl (greensand)	DE and NJ.	
Vercury	NV. UT. CA.	
Mica (scrap)	NV, UT, CA. NC, SD, NM, SC CO, ID, AZ, MT	CT, GA, PA.
Molybdenum	CO, ID, AZ, MT	CA, NM, UT.
Nickei	(2)	
Olivine	NC and WA.	
Peat	FL, MI, IL, CA	CO, GA, IA, IN, MA, MD, MN, MT, NC, NJ,
	NR 48 C4 ID	NY, ND, OH, PA, SC, WA, WI, WV.
PerlitePhosphate rock	NM, AZ, CA, ID FL, NC, ID, TN	CO, NV. MT, UT.
nospnate rock	MT	WII, UI.
Platinun-group metals Potassium salts	MT. NM, UT, CA.	
Pumice	OR, NM, CA, ID	AZ, HI, KS.
Pyrites (ore and concentrate)	TN, AZ, CO, NM.	112, 111, 110.
Rare-earth metal concentrate	CA and FL.	
Salt	LA, TX, NY, OH	AL, AZ, CA, KS, MI, ND, NM, NV, OK, UT,
		WV.
Sand and gravel:	CA MIN NET A 7	AN 11 Ct 1
Construction	CA, TX, MI, AZ	All other States.
Industrial	IL, MI, CA, NJ, AL	All other States except AK, DE, HI, IA, ME,
Silver (content of ores, etc.)	NV, ID, MT, UT	NH, NM, OR, SD, VT, WY. AK, AZ, CA, CO, IL, MI, MO, NM, NY, OR, SC, SD, TN, WA.
Sodium carbonate (natural)	WY and CA.	DE, 111, 1111.
Sodium sulfate (natural)	CA and TX.	
staurolite	FL.	
Stone:		
Crushed	PA, TX, FL, GA	All other States except DE.
Dimension	IN, GA, VT, MA	All other States except AK, DE, FL, HI, KY,
ulfum (Emosoh)	TV and I A	LA, MS, ND, NE, NJ, NV, OR, RÍ, WV, WY.
Sulfur (Frasch) Calc and pyrophyllite	TX and LA. MT VT TX NV	AR, CA, GA, NC, OR, VA.
in	MT, VT, TX, NYAK.	AIS, OA, UA, INO, OIS, VA.
lin	FL.	
Tripoli	IL, OK, AR, PA.	
Cungsten (content of ore, etc.)	CA.	
	ID, CO, UT.	
/anadium (content of ore, etc.)		
	SC, MT, VA.	
Vermiculite (crude)	SC, MT, VA. NY and CA	
Vanadium (content of ore, etc.)_ Vermiculite (crude) Wollastonite Zinc (content of ores, etc.)	SC, MT, VA. NY and CA. TN, NY, MO, CO FL and NJ.	ID, IL, KY, MT.

 $^{^1\}mathrm{Grindstones},$ pulpstones, and sharpening stones; excludes mill liners and grinding pebbles. $^2\mathrm{No}$ production reported. $^3\mathrm{Data}$ no longer available.

Table 3.—Value of nonfuel mineral production in the United States and principal nonfuel minerals produced in 1987

State	Value (thousands)	Rank	Percent of U.S. total	Principal minerals, in order of value
Alabama	\$446,643	20	1.70	Cement (portland), stone (crushed), lime, sand and
laska	125,280	40	.48	gravel (construction). Sand and gravel (construction), gold, stone (crushed),
rizona	1,791,043	2	6.80	cement (portland). Copper, sand and gravel (construction), cement (port-
rkansas	264,162	32	1.00	land), gold, stone (crushed). Bromine, stone (crushed), cement (portland), sand and
California	2,551,285	1	9.68	gravel (construction). Cement (portland), sand and gravel (construction), bor
		23	1.42	minerals, gold. Sand and gravel (construction), gold, molybdenum, ce
Colorado	372,990			ment (portland).
onnecticut	122,275	41	.46	Stone (crushed), sand and gravel (construction), feld- spar, sand and gravel (industrial).
Delaware ¹	6,401	50	.02	Sand and gravel (contruction), magnesium compound marl (greensand), gem stones.
'lorida	1,346,237	6	5.11	Phosphate rock, stone (crushed), cement (portland), sa and gravel (construction).
eorgia	1,212,370	7	4.60	Clays, stone (crushed), cement (portland), sand and gravel (construction).
Iawaii	73,479	44	.28	Stone (crushed), cement (portland), sand and gravel
daho	269,373	31	1.02	(construction), cement (masonry). Silver, phosphate rock, gold, molybdenum.
llinois	517,206	17	1.96	Stone (crushed), sand and gravel (construction), cemer (portland), sand and gravel (industrial).
ndiana	363,865	25	1.38	Stone (crushed), cement (portland), sand and gravel (construction), cement (masonry).
owa	305,077	29	1.16	Stone (crushed), cement (portland), sand and gravel (construction), gypsum (crude).
ansas	319,604	28	1.21	Cement (portland), salt, stone (crushed), sand and gra
Centucky	290,335	30	1.10	(construction). Stone (crushed), lime, cement (portland), sand and
ouisiana	424,221	22	1.61	gravel (construction). Sulfur (Frasch), salt, sand and gravel (construction),
laine	65,457	46	.25	stone (crushed). Cement (portland), sand and gravel (construction), sto
faryland	345,134	26	1.31	(crushed), stone (dimension). Stone (crushed), sand and gravel (construction), ceme
		37	.67	(portland), cement (masonry). Stone (crushed), sand and gravel (construction), stone
Iassachusetts	176,522			(dimension), lime.
Iichigan	1,365,610	5	5.18	Iron ore (usable), cement (portland), stone (crushed), sand and gravel (construction).
Innesota	1,142,749	8	4.34	Iron ore (usable), sand and gravel (construction), ston (crushed), stone (dimension).
Iississippi	110,079	42	.42	Sand and gravel (construction), clays, cement (portlar stone (crushed).
Iissouri Iontana	863,041 368,466	10 24	3.28 1.40	Lead, cement (portland), stone (crushed), lime. Gold, copper, silver, platinum-group metals.
lebraska	89,748	43	.34	Cement (portland), sand and gravel (construction), sto
levada	1,446,814	3	5.49	(crushed), lime. Gold, silver, cement (portland), sand and gravel (con-
lew Hampshire ¹	54,680	47	.21	struction). Sand and gravel (construction), stone (dimension), sto
New Jersey	214,224	35	.81	(crushed), gem stones. Stone (crushed), sand and gravel (construction), sand
New Mexico	737,675	12	2.80	and gravel (industrial), clays. Copper, potassium salts, sand and gravel (construction
			2.47	cement (portland).
New York	650,380	14		Stone (crushed), cement (portland), salt, sand and gra (construction).
Iorth Carolina	476,917	18	1.81	Stone (crushed), phosphate rock, lithium minerals, sa and gravel (construction).
Iorth Dakota	26,311	48	.10	Lime, sand and gravel (construction), salt, stone (crus ed).
Ohio	768,781	11	2.92	Stone (crushed), sand and gravel (construction), salt, lime.
klahoma	223,219	34	.85	Stone (crushed), cement (portland), sand and gravel
regon	160,996	38	.61	(construction), sand and gravel (industrial). Stone (crushed), sand and gravel (construction), ceme
ennsylvania	1,016,496	9	3.86	(portland), lime. Stone (crushed), cement (portland), lime, sand and
thode Island ¹	18,698	49	.07	gravel (construction). Sand and gravel (construction), stone (crushed), sand
outh Carolina	341,325	27	1.30	and gravel (industrial), gem stones. Cement (portland), stone (crushed), clays, sand and
				gravel (construction). Gold, cement (portland), sand and gravel (construction)
outh Dakota	262,892	33	1.00	stone (crushed).
ennessee	527,812	16	2.00	Stone (crushed), zinc, cement (portland), sand and gra (construction).
Cexas	1,430,730	4	5.43	Cement (portland), stone (crushed), magnesium metal sulfur (Frasch).

Table 3.—Value of nonfuel mineral production in the United States and principal nonfuel minerals produced in 1987 —Continued

State Value (thousands)				Principal minerals, in order of value
	The state of the s			
Utah	\$699,964	13	2.66	Copper, gold, magnesium metal, sand and gravel (construction).
Vermont	72,444	45	.27	Stone (dimension), stone (crushed), sand and gravel (construction), talc.
Virginia	461,442	19	1.75	Stone (crushed), sand and gravel (construction), cement (portland), lime.
Washington	438,362	21	1.66	Magnesium metal, gold, sand and gravel (construction), cement (portland).
West Virginia	144,021	39	.55	Stone (crushed), cement (portland), salt, sand and grave (construction).
Wisconsin	191,622	36	.73	Stone (crushed), sand and gravel (construction), lime, cement (portland).
Wyoming	645,055	15	2.45	Sodium carbonate (natural), clays, helium (Grade-A), stone (crushed).
Undistributed	6,553		.02	
Total ²	26,346,000	XX	100.00	

Table 4.—Value of nonfuel mineral production per capita and per square mile in 1987, by State

				Value of mineral production				
State	Area (square miles)	Population (thousands)	Total	Per square	mile	Per ca	pita	
	(04-0-0-11100)	(1110 11011111)	(thousands)	Dollars	Rank	Dollars	Rank	
Alabama	51,705	4.053	\$446.643	8.638	25	109	19	
Alaska	591,004	525	125,280	212	50	239	10	
Arizona	114,000	3,386	1.791.043	15.711	11	529	3	
Arkansas	53,187	2,388	264.162	4,967	36	111	18	
California	158,706	27,663	2,551,285	16,076	10	92	25	
Colorado	104,091	3,296	372,990	3,583	38	113	16	
Connecticut	5,018	3,211	122,275	24,367	3	38	45	
Delaware	2.044	644	¹ 6.401	3,132	43	10	50	
Florida	58,664	12.023	1.346,237	22,948	5	112	17	
Georgia	58,910	6,222	1.212.370	20,580	8	195	īi	
Hawaii	6,471	1.083	73,479	11,355	18	68	35	
Idaho	83,564	998	269,373	3,226	41	270	6	
Illinois	56.345	11.582	517,206	9,179	22	45	41	
Indiana	36,185	5.531	363,865	10,056	21	66	36	
Iowa	56,275	2.834	305,077	5.421	34	108	21	
Kansas	82,277	2,476	319,604	3,884	37	129	15	
Kentucky	40,409	3,727	290.335	7,185	28	78	29	
Louisiana	47.751	4.461	424.221	8,884	26 24	95	29	
Maine						55 55		
Mamle	33,265	1,184	65,457	1,968	46		39	
Maryland	10,460	4,535	345,134	32,996	1	76	30	
Massachusetts	8,284	5,855	176,522	21,309	7	30	47	
Michigan	58,527	9,200	1,365,610	23,333	4	148	13	
Minnesota	84,402	4,246	1,142,749	13,539	13	269	9	
Mississippi	47,689	2,625	110,079	2,308	45	42	42	
Missouri	69,697	5,103	863,041	12,383	17	169	12	
Montana	147,046	809	368,466	2,506	44	455	5	
Nebraska	77,355	1,594	89,748	1,160	48	56	38	
Nevada	110,561	1,007	1,446,814	13,086	15	1,437	1	
New Hampshire	9,279	1,057	¹ 54,680	5,893	33	52	40	
New Jersey	7,787	7,672	214,224	27,510	2	28	48	
New Mexico	121,593	1,500	737,675	6.067	31	492	4	
New York	49,107	17.825	650,380	13,244	14	36	46	
North Carolina	52,669	6.413	476,917	9,055	23	74	32	
North Dakota	70,703	672	26,311	372	49	39	44	
Ohio	41,330	10.784	768,781	18,601	9	71	33	
Oklahoma	69,956	3,272	223,219	3,191	42	68	34	
Oregon	97,073	2,724	160,996	1,659	47	59	37	
Pennsylvania	45,308	11.936	1.016.496	22,435	6	85	26	
Rhode Island	1.212	986	118.698	15.427	12	16	49	
South Carolina	31,113	3,425	341,325	10,970	20	100	22	
South Dakota	77.116	709	262.892	3,409	40	371	7	
Tennessee	42,144	4.855	527.812	12,524	16	109	20	
Texas	266.807	16,789	1.430.730	5,359	35			
Utah	84.899	1,680		5,359 8,243	35 26	85	27	
Vermont	9,614	1,680 548	699,964			417	.6	
A 61 111011f	5,014	948	72,444	7,535	27	132	14	

XX Not applicable.

¹Partial total; excludes values that must be concealed to avoid disclosing company proprietary data.

²Data may not add to totals shown because of independent rounding.

Table 4.—Value of nonfuel mineral production per capita and personal square mile in 1987, by State —Continued

			Value of mineral production						
State	Area (square miles)	Population (the sugar da)	Population (thousands) Total	Total	Per square	Per ca	Per capita		
(Square inites)	(tilousalius)	(thousands)	Dollars	Rank	Rank				
	at war and a second	1	* .	150 2.30					
Virginia Washington West Virginia Wisconsin Wyoming Undistributed	40,767 68,138 24,231 56,153 97,809 XX	5,904 4,538 1,897 4,807 490 XX	\$461,442 438,362 144,021 191,622 645,055 6,553	11,319 6,433 5,944 3,412 6,595 XX	19 30 32 39 29 XX	78 97 76 40 1,316 XX	28 23 31 43 2 XX		
Total ² or average	3,618,700	242,744	³ 26,346,000	7,280	xx	109	xx		

Table 5.—Nonfuel mineral production in the United States, by State

		1985	. 1	986	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands	
	AL	АВАМА	a ski ji m	The second second	a lawy way a	* · · · · ·	
Cement:	. 4		1 4	r i la vinde"	97.	•	
Masonry thousand short tons	268	\$18,113	267	\$18,165	291	\$17,626	
Portlanddo	3,721	165,972	3,477	153,629	-3,600	160,878	
Clays ² do	1,873	13,139	2,077	14,828	2,239	16,217	
Gem stones	NA	e 1	NA	1	NA	7	
Lime thousand short tons	1,216	52,295	1,180	50,377	1,232	52,200	
Sand and gravel:	5 9	1.0		13			
Constructiondodo	e11,000	e32,000	10,781	30,807	e10,300	e35,600	
Industrialdodo	524	4,533	433	3,388	580	5,025	
Stone:							
Crusheddo	25,853	109,176	e24,000	e120,500	30,018	146,247	
Dimensiondodo	10	2,661	e 8	e968	w	W	
Combined value of bauxite, clays (bentonite),		0.740	****	10.550	WW	10.049	
salt, and value indicated by symbol W	XX	8,719	XX	12,553	XX	12,843	
Total	XX	406,609	XX	405,216	XX	446,643	
	AI	ASKA		*			
	314	eaco.	NTA.	\$25	NA	\$86	
Gem stones	NA.	e\$60	NA	\$2 0	IVA	φου	
Gold (recoverable content of ores, etc.)	44 7799	14,210	48,271	17,775	86,548	38,769	
troy ounces	44,733	14,210	40,211	11,110	00,040	00,100	
Sand and gravel (construction) thousand short tons	e29,000	e63,000	27,762	61,954	e27,200	e73,400	
Silver (recoverable content of ores, etc.)	23,000	00,000	21,102	01,001	21,200	,200	
thousand troy ounces	w	w	w	w	10	70	
Stone (crushed) thousand short tons	1.907	8,535	e2,000	e _{8,500}	2,033	8,945	
Combined value of cement (portland), tin, and	1,001	0,000	2,000	0,000	-,		
values indicated by symbol W	XX	4,164	XX	3,226	XX	4,010	
						107.000	
Total	XX	89,969	XX	91,480	XX	125,280	
	AR	IZONA					
Clays thousand short tons Copper (recoverable content of ores, etc.)	186	\$1,503	201	\$1,366	- 218	\$1,905	
metric tons	796.556	1.175.995	789,175	1,149,193	764.148	1,389,771	
Gem stones	NA	e2,700	NA NA	2,533	NA	3,000	
Gold (recoverable content of ores, etc.)		_,		2,000		- 1	
troy ounces	52,053	16,535	w	w	95,240	42,663	
Gypsum thousand short tons	251	1,926	260	1,820	W	w	
Lead (recoverable content of ores, etc.)		_					
metric tons	581	244	w	W		01.000	
Lime thousand short tons	476	21,226	505	21,016	546	21,932	
Molybdenum thousand pounds	24,125	63,389	29,382	75,607	W	. W	
Perliteshort tons	W	W	W	W	49	1,361	
Pumice thousand short tons	W COO	2	40.400	30	eoo 100	e141 000	
Sand and gravel (construction) do	e37,000	^e 118,000	40,468	140,004	e38,100	^e 141,300	
See footnotes at end of table.							

XX Not applicable.

¹Partial total, excludes values that must be concealed to avoid disclosing company proprietary data. Concealed values included with "Undistributed" figure.

²Excludes Washington, DC (which has no mineral production), with an area of 69 square miles and a population of 626,000.

³Data do not add to total shown because of independent rounding.

Table 5.—Nonfuel mineral production in the United States, by State —Continued

				.986	1987	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousand
	ARIZONA	A—Continued				
Silver (recoverable content of ores, etc.)						
thousand troy ounces Stone (crushed) thousand short tons Combined value of cement, pyrites (1985, 1987), salt (1986-87), sand and gravel (indus-	4,885 5,929	\$30,007 23,111	^r 4,506 ^e 5,600	*\$24,649 *25,100	3,667 7,712	\$25,706 33,999
trial), stone (dimension), and values indicated by symbol W $___$	XX	95,447	XX	r _{118,505}	XX	129,399
Total	xx	1,550,085	XX	r _{1,559,823}	xx	1,791,043
	ARK	ANSAS				
Clays thousand short tons Gem stones Sand and gravel:	1,052 NA	\$10,769 e200	² 974 NA	2\$8,998 522	908 NA	\$8,651 1,800
Construction thousand short tons Industrial do Stone:	^e 8,500 412	^e 24,400 5,414	8,571 400	26,999 3,975	^e 7,200 505	^e 23,900 5,147
Crusheddodo	14,815 5	60,874 305	e15,500 e5	e58,500 e305	15,234 11	63,847 629
Combined value of abrasives, ³ bauxite, bro- mine, cement, clays (fire clay, 1986), gyp- sum, lime, talc, tripoli (1986-87), and vana-		000				
dium (1985)	XX	168,290	XX	r163,703	XX	160,188
Total	XX	270,252	XX	r263,002	XX	264,162
	CALI	FORNIA				
Boron minerals thousand short tons Cement (portland)do Claysdo	1,269 9,462 ² 2,203	\$404,775 601,506 226,600	1,251 9,490 ² 2,449	\$426,086 578,502 233,289	1,385 9,937 2,296	\$475,092 593,859 33,045
Jem stones	NA	^é 550	NA	418	ΝA	3,367
Gold (recoverable content of ores, etc.) troy ounces_ Gypsum	187,813 1,332 367	59,660 12,201 24,733	425,617 1,378 371	156,729 10,777 24,187	602,605 1,468 465	269,937 11,719 25,745
Mercury 76-pound flasks Pumice thousand short tons Sand and gravel:	78	$1,\overline{491}$	46	1,263	(4) 42	1,539
Constructiondo Industrialdo Silver (recoverable content of ores, etc.)	e112,800 2,255	^e 430,000 37,434	128,407 2,364	498,456 44,813	e141,600 2,241	^e 561,300 41,472
thousand troy ounces	115	709	155	849	122	854
Crushed thousand short tons Dimensiondo	$41,199 \\ 23$	174,395 2,449	e38,500 e23	e159,300 e2,582	44,315 33	186,504 4,554
Talc and pyrophyllite	100	2,493	64	1,528	w	W
tungsten ore and concentrate, wollastonite (1986-87), and value indicated by symbol W	xx	333,014	XX	330,638	xx	342,298
(1300-01), and value indicated by symbol w						

STATISTICAL SUMMARY

Table 5.—Nonfuel mineral production¹ in the United States, by State —Continued

	1	985]	1986	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands	
	COL	ORADO					
	303	Ø1 749	242	\$1,523	292	\$1,763	
Clays thousand short tons	'NA	\$1,743 e ₈₀	NA	100	NA	100	
Gold (recoverable content of ores, etc.)							
troy ounces	43,301	13,755	120,347	44,317	178,795 W	80,091 W	
Gypsum thousand short tons	233	1,800	00 000	70,095	e _{22,800}	e84,300	
Sand and gravel (construction) do Silver (recoverable content of ores, etc.)	^e 27,500	e88,000	23,233	10,095	22,000	04,500	
thousand troy ounces	549	3,370	645	3,526	861	6,033	
Stone:						20.445	
Crushed thousand short tons	7,037	25,930	e8,000	e30,700	8,045 3	33,465 133	
Dimensiondo	2	204	•4	^é 255	3	190	
Combined value of cement, copper, iron ore							
(usable, 1985), lead, lime, molybdenum, peat, perlite, pyrites (1985, 1987), sand and							
gravel (industrial), tin (1985), tungsten ore and concentrate (1985-86), vanadium, zinc,							
and concentrate (1985-86), vanadium, zinc,	ww	079 611	XX	219,492	XX	167,104	
and values indicated by symbol $W_{}$	XX	273,611		213,432	AA	101,104	
Total	XX	408,493	XX	370,008	XX	372,989	
	CONN	ECTICUT		:			
Clays thousand short tons	106	\$632	157	\$975	w	w	
Gem stones	NA	w	NA	2	NA	\$2	
Sand and gravel (construction)	•	80000		05.004	60 400	eog 000	
thousand short tons	e6,000	^e 21,000	7,254	25,984	e8,400	e37,000	
Stone:	7.277	43,937	e7,700	e45,800	11,412	76,668	
Crushed do Dimension do	20	1,285	',e24	e1,653	18	1,646	
Combined value of feldspar, mica (scrap).		1,200					
sand and gravel (industrial), and values indicated by symbol W			****	0.040	vv	6.050	
	XX	5,532	XX	6,040	XX	6,959	
Total	XX	72,386	XX	80,454	XX	122,275	
	DEL	AWARE					
Gem stones			NA	\$1	NA W	\$1 W	
Gem stones Marl (greensand) thousand short tons Sand and gravel (construction) do	- 2 61 000	\$29 e 4,000	$\frac{1}{1,547}$	12 4,156	e _{2,300}	e _{6,400}	
	e1,300						
Total ⁵	XX	4,029	XX	4,169	XX	6,401	
	FL	ORIDA				,,	
Cement:			0.50	801.000	000	#04.000	
Masonry thousand short tons Portland do Clays do do	316	\$17,137 148,908	352 3,189	\$21,269 147,643	390 3,565	\$24,069 165,944	
Portlanddodo	3,282 672	33,074	726	43,261	598	39,496	
Gem stones	NA	• e6	NA NA	W	NA	w	
Gem stones thousand short tons_	243	5,333	365	5,743	363	6,068	
Sand and gravel:	_					0	
Construction do	e22,500	e49,500	28,233	67,898	e30,000	^e 74,900 19,713	
Industrialdo	2,123	12,642	1,467 e69,000	14,930 e _{288,200}	1,884 678,992	6350,537	
Industrialdo Stone (crushed)do Combined value of lime (1985-86), phosphate	69,266	287,237	69,000	200,200	10,332	330,301	
rock, rare-earth metal concentrates, stau-							
rolite, stone (crushed marl, 1987), titanium							
concentrates (ilmenite and rutile), zircon							
concentrates, and values indicated by sym-	vv	1 007 900	XX	r700,919	XX	665,510	
bol W	XX	1,007,899		100,319	АА	000,010	
Total	XX	1,561,736	XX	r _{1,289,863}	XX	1,346,237	
	GE	ORGIA					
Clays thousand short tons	8,671	\$575,097	9,827	\$669,200	10,455	\$756,093	
Clavs thousand short tons						20	

Table 5.—Nonfuel mineral production¹ in the United States, by State —Continued

7.65		1985		1986	1987	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	GEORGIA	A—Continued		·		
Sand and gravel:		*			,	
Construction thousand short tons Industrialdo Stone:	^e 5,000 571	e\$13,400 6,675	8,126 W	\$23,222 W	^e 9,000 W	^e \$26,900 W
Crusheddodo Dimensiondo	52,062 183	256,588 19,466	e56,700 e199	^e 293,100 ^e 20,678	60,834 179	318,903 21,683
Talcdodo Combined value of barite, bauxite (1987), cement, feldspar, iron oxide pigments	16	111	9	61	20	286
(crude), kyanite (1985-86), mica (scrap), peat, and values indicated by symbol W	XX	74,718	XX	85,174	XX	88,48
	XX	946,075	XX	1,091,455	XX	1,212,370
	H/	AWAII	7.3			1.00
Cement:						
Masonry thousand short tons	7 215	\$588 16,050	287	\$1,078 24,253	$\frac{10}{324}$	\$1,559 26,550
Portlanddo Gem stones	NA	10,050 e ₂₅	NA	24,235	NA	20,00
Lime thousand short tons	w	w	3	W	3	V
Sand and gravel (construction) do Stone (crushed) do Combined value of other industrial minerals	^e 500 5,627	^e 2,100 34,183	e _{7,100}	2,666 e _{42,100}	^e 700 5,732	^e 3,500 41,548
and values indicated by symbol W	XX	326	XX	290	XX	29'
Total	xx	53,272	XX	70,412	XX	73,47
	II	ОАНО				14
Clays ² thousand short tons	2	w	2	w	22	\$23
Copper (recoverable content of ores, etc.) metric tons	3,551	\$5,242	w	w	w	. v
Gold (recoverable content of ores, etc.)	NA	^e 175	NA 50.440	\$305	NA oz zzo	50′
troy ounces Lead (recoverable content of ores, etc.) metric tons	44,306 33,707	14,074 14,169	70,440 9.951	25,938 4,836	97,773 W	43,79' V
Lime thousand short tons	93	5,803	89	4,729	97	5,14
Phosphaterock thousand metric tons	3,784	104,000	r _{4,235}	r _{82,332}	3,411	47,072
Sand and gravel (construction) thousand short tons Silver (recoverable content of ores, etc.)	e4,000	^e 11,400	5,708	14,830	^e 7,200	e28,00
thousand troy ounces Stone (crushed) thousand short tons	18,828 2,019	115,645 6,977	11,207 e3,700	61,301 e _{12,700}	3,852	V 15,34
Zinc (recoverable content of ores, etc.) metric tons	2,013 W	. W	351	294	0,002 W	10,04 W
Combined value of antimony (1985-86), ce- ment, clays (bentonite, common clay, fire						great .
clay, and kaolin (1985-86)), garnet (abrasive), molybdenum, perlite, pumice, sand and gravel (industrial), stone (dimension),			4			
vanadium, and values indicated by symbol W	XX	81,181	XX	66,783	XX	129,27
Total	xx	358,666	XX	r274,048	XX	269,37
	ILI	LINOIS				
Cement (portland) _ thousand short tons	2,101	\$86,211	2,118	\$83,783	2,119	\$86,21
Clays ² dodo Gem stones	265 NA	876 e ₁₅	283 NA	1,092 15	233 NA	97'
Sand and gravel: Construction thousand short tons Industrial	e26,600	e77,000	27,867	82,523 52,133	e28,300	e93,300
Stone: Crusheddodo	4,056 41,044	56,915 164,117	4,039 e44,200	e179,600	4,346 52,102	45,54° 216,21
Dimensiondo Combined value of barite (1985), cement (ma- sonry), clays (fuller's earth), copper, fluorspar, lead, lime, peat, silver, tripoli,	2	107	11, <u>2</u> e ₂	e ₁₀₇	W	V
zinc, and value indicated by symbol W	XX	74,679	XX	70,272	XX	74,94
· · ·						

Table 5.—Nonfuel mineral production¹ in the United States, by State —Continued

	1	.985	1986		1987	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousand
	INI	DIANA				
						
Cement: Masonry thousand short tons	w	w	395	\$22,936	422	\$32,299
Portlanddo	ÿ	w	2,136	92,327	2,320	103,177
Portlanddo	740	\$2,776	744	3,044	21,037	24,056
Gem stones thousand short tons	NA	Ψ2,1 e0	NA	1	NA	10
Peat thousand short tons	54	w	79	w	44	W W
Sand and gravel:	•				_	
Constructiondo Industrialdo	e18,600	e55,800	19,642	61,232	e18,900	e65,200
Stone:	182	1,209	193	1,490	230	1,357
Crusheddo	623,384	€81,119	e 622,600	e 676,500	91 007	100 770
Dimensiondo	169	20,186	e191	e20,252	31,067	106,770
Combined value of abrasives, clays (fire clay,	109	20,100	191	20,252	184	23,115
1987), gypsum, lime, stone (crushed marl,						
1985-86), and values indicated by symbol W	XX	141,863	XX	27,566	XX	27,881
in the contract of the contrac	XX					
Total		302,954	XX	305,348	XX	363,865
	IC)WA				
lement:				12.111		
Masonry thousand short tons Portlanddo	39	\$3,372	48	\$3,199	W	W
Toruanddo	1,618	77,890	1,819	86,984	2,139	\$104,457
Claysdo	503	2,450 e1	486	1,421	473	1,495
eatdo	NA 1,639	13,682	NA 1,826	20 12,602	NA 1,874	12,887
Peat do	11	415	1,020	381	24	12,007 W
and and gravel (construction) do tone (crushed) do	e _{12,000}	e30,500	14,511	40,418	e19,000	e63,800
stone (crushed)do	23,657	94,496	e23,400	e98,000	25,991	110,106
combined values of other industrial minerals	_0,00.	0 2, 200	20,100	00,000	20,001	110,100
and values indicated by symbol W	XX	5,211	XX	5,707	XX	12,332
Total	XX	228,017	XX	248,732	XX	305,077
	KA	NSAS				
Cement:						
Masonry thousand short tons	w	w	51	\$3,264	52	\$3,150
Portlanddodo	w	W	1,763	91,110	1,697	81,045
laysdo	878	\$5,326	903	5,295	² 604	² 2,576
em stones	NA	e ₁	NA	3	NA	3
alt3 thousand short tons and and gravel:	1,790	71,970	1,656	68,887	1,689	70,148
and and gravel:					•	
Constructiondo	e13,200	e31,800	15,609	33,721	e15,600	e37,800
Industrialdodo tone:	134	1,124	132	1,155	127	1,400
	15,653	E77 1 E E	e 1 <i>c c</i> 00	600 000	10.010	an ann
Crusheddodo	15,655 W	57,155 W	^e 16,600 W	e60,300 W	19,319 11	69,628
ombined value of clavs (bentonite 1987)	**	**	**	VV	11	445
gypsum, helium (crude and Grade-A), pum- ice, salt (brine), and values indicated by						
ice, salt (brine), and values indicated by						
symbol W	XX	154,793	XX	53,910	XX	53,409
Total	XX	322,169	XX	317,645	XX	319,604
	KENT	UCKY				
lays thousand short tons	775	\$6,487	2 721	² \$3,450	1,031	\$8,821
em stones	NA	Ψο, ±οι 1	NA	фо,450 З	NA	90,021
and and gravel (construction)		-		Ü		_
thousand short tons	e7,600	e19,000	7,194	16,986	^e 7,100	^e 15,200
rone (omiebod) de	638,022	6134,978 °	^e 638,400	e 6137,000	43,330	173,222
tone (crushed)	W	w	w	W	10	9
inc metric tons						
inc metric tons ombined value of cement, clays (ball clay						
ombined value of cement, clays (ball clay and fire clay, 1986), lime, sand and						
inc metric tons ombined value of cement, clays (ball clay and fire clay, 1986), lime, sand and gravel (industrial), stone (crushed sand-						
incmetric tons ombined value of cement, clays (ball clay and fire clay, 1986), lime, sand and gravel (industrial), stone (crushed sand- stone, 1985-86), and values indicated by	xx	107 092	YY	109 826	vv	03 Uo u
inc metric tons ombined value of cement, clays (ball clay and fire clay, 1986), lime, sand and gravel (industrial), stone (crushed sand-	xx	107,092	xx	109,826	xx	93,080

Table 5.—Nonfuel mineral production¹ in the United States, by State —Continued

	1	1985	1	1986	1987	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	LOU	ISIANA				
Clays thousand short tons	334	\$7,017	332	\$7,670	357	\$9,192
Gem stones	NA 10.071	• ₁	NA 11.608	1	NA 10 400	108,999
Salt thousand short tons Sand and gravel:	12,271	137,273	11,008	103,611	12,498	100,999
Constructiondodo	e15,000	e48,000	$14,\!292$ 256	46,134 4,225	e _{12,200} 289	e43,600 3,997
Industrialdodo	$\frac{267}{4,820}$	3,838 25,956	e _{5,400}	e25,300	4,390	36,514
Stone (crushed) ⁶ do Sulfur (Frasch) thousand metric tons	1,698	w	1,602	w	1,458	W
Combined value of cement (masonry (1985, 1987), and portland), gypsum (1985, 1987),						
lime, stone (crushed miscellaneous), and	vv	900 501	vv	950 957	VV	001 010
values indicated by symbol W	XX	298,501	XX	259,857	XX	221,918
Total	XX	520,586	XX	446,798	XX	424,221
	M	AINE	· ·		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Clays thousand short tons	50	\$100	46	\$90	W	W
Gem stones Sand and gravel (construction)	NA	e ₄₀₀	NA	200	NA	\$1,172
thousand short tons	e7,200	e _{18,000}	8,572	22,843	e8,600	e22,100
Stone: Crusheddodo	1,459	5,114	e _{1,600}	e4,400	2,010	7,532
Dimensiondodo	W	w	w	w	8	5,924
Combined value of cement, garnet (abrasive), peat (1986), and values indicated by sym-						
bol W	XX	17,494	XX	25,326	XX	28,729
Total	XX	41,108	XX	52,859	XX	65,457
	MAF	RYLAND				
Cement (portland) _ thousand short tons	W	W	1,785	\$89,799	1,829	\$90,020
Claysdo	² 336	² \$1,647 ^e 2	² 362	21,757	383	1,940
Gem stones thousand short tons	NA 10	608	NA 10	5 546	NA 9	486
Sand and gravel (construction) do	e _{17,000}	e58,000	18,173	86,925	^e 19,600	e92,900
Stone: Crusheddodo	24,406	98,584	e26,400	e126,000	30,136	151,579
Dimensiondede	18	1,218	e ₂₁	e _{1,286}	23	1,516
Combined value of cement (masonry), clays (ball clay, 1985-86), peat, sand and gravel						
(industrial), and value indicated by sym-			****	5 00 5	3737	0.000
bol W	XX	98,215	XX	7,027	XX	6,688
Total	XX	258,274	XX	313,345	XX	345,134
	MASSA	CHUSETTS				
Clays thousand short tons	265	\$1,388	140	\$871	W	W
Gem stonesdodo	NA 159	W 10,935	NA W	W W	NA W	\$1 W
Clays thousand short tons Gem stonesdo Sand and gravel:	P+ + 000		10.000	60 464	ea1 000	enr 000
Constructiondo Industrialdo	^e 14,900 W	^e 47,500 W	$19,200 \\ 45$	60,464 739	^e 21,800 56	^e 75,300 922
Stone:					* 4 005	#0.000
Crusheddo Dimensiondo	9,354 73	42,881 13,724	e _{10,000} e ₇₉	^e 50,000 ^e 14,928	14,907 77	78,969 12,747
Combined value of peat and values indicated				•	xx	
by symbol W	XX	777	XX	7,395		8,583
Total	XX	117,205	XX	134,397	XX	176,522
	MIC	HIGAN				
Cement: Masonry thousand short tons	w	w	257	\$17,026	263	\$23,004
Portlanddodo	w	w	4,713	216,120	4,755	207,332
Claysdodo	1,477 NA	\$5,514 e ₁₅	1,402 NA	5,684 25	1,333 NA	5,338 25
Gypsum thousand short tons	1,772	11,883	1,979	11,052	1,977	12,190
Iron ore (usable) thousand long tons, gross weight	12,629	w	10,957	w	12,312	W
	14,040	**	10,001	**	12,012	**
See footnotes at end of table.						

STATISTICAL SUMMARY

Table 5.—Nonfuel mineral production in the United States, by State —Continued

		1985		1986	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands	
	MICHIGA	N—Continued	l .				
Lime thousand short tons Peat do	535 282	\$24,790 5,414	556 r ₃₂₄	\$27,257 r6,599	569 281	\$30,320 5,290	
Saltdo Sand and gravel: Constructiondo	927 e _{38,000}	71,224 e _{93,000}	W 42,514	W 91,886	w e42,800	e _{105,300}	
Industrialdo Stone:	3,345	25,469	3,343	29,493	2,792	22,451	
Crusheddo Dimensiondo Combined value of bromine, calcium chloride (natural), copper, gold, iodine (1985), iron oxide pigments (crude), magnesium com- pounds, silver, and values indicated by	30,685 4	95,953 113	^e 27,800 ^e 6	^e 83,900 ^e 148	37,909 W	109,514 W	
symbol W	XX	1,053,672	XX	r750,393	XX	844,846	
Total	XX	1,387,047	XX	r _{1,239,583}	XX	1,365,610	
	MINI	NESOTA					
Gem stones Iron ore (usable)	NA	^e \$5	NA	\$5	NA	\$40	
thousand long tons, gross weight_ Peat thousand short tons_ Sand and gravel:	34,977 34	1,430,353 1,720	28,779 W	1,017,261 W	33,654 30	1,012,788 W	
Sand and gravel: Constructiondo Industrialdo Stone:	^e 25,000 884	e55,500 16,910	24,055 W	53,116 W	^e 25,200 W	^e 67,400 W	
Crusheddodo Dimensiondo	7,756 37	22,601 13,598	e _{8,300} e ₂₈	^e 26,300 ^e 10,507	8,995 41	29,246 12,967	
Combined value of clays, lime, and values indicated by symbol W	xx	r _{7,272}	XX	20,438	XX	20,308	
Total	XX	r _{1,547,959}	XX	1,127,627	XX .	1,142,749	
	MISS	SISSIPPI		-			
Clays thousand short tons Gem stones	1,558	\$34,864 	² 928 NA	² \$13,538 1	1,123 NA	\$26,933 1	
Sand and gravel (construction) thousand short tons Stone (crushed)do Combined value of cement, clays (ball clay	e _{13,400} 1,582	^e 42,000 4,282	15,080 e1,600	42,809 e4,400	^e 14,700 1,492	e47,000 9,621	
and fuller's earth, 1986), and sand and gravel (industrial)	XX	21,647	XX	40,347	xx	26,524	
Total	XX	102,793	XX	101,095	XX	110,079	
	MIS	SOURI					
Barite thousand short tons Cement:	47	\$2,791	W	w	27	\$2,030	
Masonrydo Portlanddo Clays ² do	139 3,669 1,545	6,630 159,757 10,271	167 4,642 1,321	\$7,816 179,184 6,650	167 5,110 1,476	10,027 185,317 10,415	
Copper (recoverable content of ores, etc.) metric tons Gem stones	13,410 NA	19,797 e ₁₀	W NA	w W	W NA	w w	
Iron ore (usable) thousand long tons, gross weight Lead (recoverable content of ores, etc.)	1,110	w	803	w	744	w	
metric tons	371,008	155,955	319,900	155,481	w	w	
Construction thousand short tons Industrial do Silver (recoverable content of ores, etc.)	⁶ 7,500 535	^e 20,000 7,330	9,746 517	24,065 6,230	^e 10,900 622	^e 30,400 7,786	
thousand troy ounces Stone:	1,635	10,044	1,459	7,982	1,181	8,276	
Crushed thousand short tons Dimensiondo	50,646 W	162,097 W	^e 51,200 W	^e 170,500 W	54,910 3	184,824 454	
Zinc (recoverable content of ores, etc.) metric tons Combined value of clays (fuller's earth), iron oxide pigments (crude), lime, and values	49,340	43,908	37,919	31,767	34,956	32,306	
indicated by symbol W	XX	136,370	XX	158,910	XX	391,206	
Total	XX	734,960	XX	748,585	XX	863,041	

Table 5.—Nonfuel mineral production¹ in the United States, by State —Continued

3.00		985		1986	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands	
	MOI	NTANA		T#			
Clays thousand short tons Copper (recoverable content of ores, etc.)	279	\$8,296	222	\$5,882	2 29	2 \$98	
metric tons	15,092 NA	22,281 400	W NA	W 480	W NA	W 1,302	
Gold (recoverable content of ores, etc.) troy ounces	160,262	50,909	W	W	234,365	104,984	
Gypsum thousand short tons Lead (recoverable content of ores, etc.) metric tons	W 846	W 356	w	w W	24 W	w	
Sand and gravel (construction) thousand short tons	e9,000	e26,000	8,066	19,391	e _{6,800}	e _{18,800}	
Silver (recoverable content of ores, etc.) thousand troy ounces	4,010	24,630	4,773	26,110	5,837	40,920	
Stone (crushed) thousand short tons falc do do	61,730 ₩	⁶ 5,044 W	e 62,200 W	e 6,200 W	1,463 386	3,585 12,321	
Combined value of barite (1985, 1987), cement, clays (fire clay, 1987), iron ore (usable), lime, molybdenum (1986-87), peat, phosphate rock, platinum-group metals (1987), sand and gravel (industrial), stone (crushed traprock, 1985-86, and, dimen-							
sion), vermiculite, zinc (1987), and values indicated by symbol W	XX	r _{62,366}	XX	r _{179,870}	XX	186,456	
Total	XX	r200,282	XX	r237,933	XX	368,466	
	NEB	RASKA					
Clays thousand short tons	244 NA	\$718 e10	221 NA	\$668 10	224 NA	\$721 10	
Sand and gravel (construction) thousand short tons Stone (crushed)do	e11,600 4,175	e _{28,800} 19,134	9,675 e4,000	23,912 e17,900	e _{10,300} 4,316	e _{26,300} 19,461	
Combined value of cement, lime, and sand and gravel (industrial)	XX	51,308	XX	51,598	XX	43,256	
Total	XX	99,970	XX	94,088	XX	89,748	
	NE	VADA					
Barite thousand short tons Claysdo Gem stones	590 ² 80 NA	\$10,904 23,776 e1,300	184 ² 10 NA	\$3,005 ² 584 213	308 65 NA	\$4,778 2,468 280	
Gold (recoverable content of ores, etc.) troy ounces Gypsum thousand short tons Lead (recoverable content of ores, etc.)	1,276,114 1,207		r _{2,098,980} 1,236	^r 772,909 8,221	2,679,470 W	1,200,269 W	
metric tons Mercury 76-pound flasks Perliteshort tons	16,530 W	(4) W W		W 122	w W	W	
Sand and gravel: Construction thousand short tons Industrialdo Silver (recoverable content of ores, etc.)	^e 9,500 479	^e 24,880 W	12,197 518	35,692 W	e10,600 578	^e 30,700 W	
thousand troy ounces Stone (crushed) thousand short tons Combined value of cement (portland), clays (fuller's earth and kaolin, 1985-86), copper (1985-86), diatomite, fluorspar, iron ore (us- able, 1985-86), lime, lithium minerals, magnesite, molybdenum (1985), salt, stone	4,947 1,334	30,383 6,218	6,409 e1,500	35,056 ^e 7,000	12,190 ⁶ 1,264	85,451 65,700	
(crushed dolomite, 1987), and values indicated by symbol W	xx	139,201	XX	114,529	XX	117,168	
Total	XX	630,973	XX	r977,350	XX	1,446,814	
	NEW H	AMPSHIRE					
Gem stones Sand and gravel (construction)	NA	w	NA	w	NA	\$310	
thousand short tons	e _{6,300}	e\$19,800	8,418	\$26,089	e9,100	e33,300	
Crushed do Dimension do	1,612 80	6,434 6,625	e _{1,800}	^e 5,900 ^e 6,451	2,479 67	10,386 10,684	
Combined value of other industrial minerals and values indicated by symbol W	XX	134	XX	137	XX	(7)	
Total	XX	32,993	XX	38,577	XX	⁵ 54,680	

Table 5.—Nonfuel mineral production in the United States, by State —Continued

	1	1985		1986	1987	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
	NEW	JERSEY				
Clays thousand short tons_	130	\$2,050	133	\$2,066	² 6	² \$140
Gem stones	NA	Ψ2,000 1	NA	3	NA	. 3
Peat thousand short tons	W	311	W	542	32	614
Sand and gravel: Constructiondodo	e10,600	e36,700	13,999	53,746	e15,200	e _{61,200}
Industrialdo	2,820	31,119	2,341	29,878	2,112	27,872
Stone (crushed)dodo	15,692	94,339	^e 15,300	e95,400	617,576	6111,951
Combined value of other industrial minerals	XX	13,056	XX	4,613	XX	12,444
Total	xx	177,576	XX	186,248	XX	214,224
	NEW	MEXICO				
Clays thousand short tons	60	\$161	60	\$170	51	\$141
Gem stones.	NA	^è 200	NA	200	NA	200
Gold (recoverable content of ores, etc.)	45.045	14 900	90 956	14.000	w	w
troy ounces Gypsum thousand short tons	45,045 350	14,309 1,570	39,856 W	14,677 W	w	w
Lead (recoverable content of ores, etc.)	330	1,010	. **		**	• •
metric tons	w	W	10	5	w	W
Perlite thousand short tons	430	14,896	433	13,727	437	13,611
Potassium salts thousand metric tons	$1,120 \\ 152$	156,000 1,114	987 255	r _{132,900} 2,370	1,323 87	174,200 991
Pumice thousand short tons Sand and gravel (construction) do	e8,400	e22,800	8,471	25,862	e _{8,600}	e31,000
Stone:	0,400	22,000	0,411		0,000	01,000
Crusheddodo	3,641	15,232	e3,900	^e 15,300 ^e 378	4,503	15,919
Dimensiondodo	20	277	^{'e} 22	€ 378	22	626
Combined value of cement, copper, helium			₹			
(Grade-A), iron ore (usable, 1986-87), mica (scrap), molybdenum, pyrites (1987), salt,						
silver, and values indicated by symbol W	XX	430,705	XX	406,586	XX	500,987
	XX	657,264	XX	r _{612,175}	XX	737,675
		V YORK				
	700	00 100	619	#0.07F	673	\$3,562
Clays thousand short tons Emeryshort tons	. 700 W	\$3,129 W	2,878	\$3,075 W	1,945	\$5,962 W
Gem stones	NA	e30	NA	100	NA	135
Peat thousand short tons	w	w	w	W.	1	34
Saltdodo	7,044	142,318	5,071	122,601	4,918	119,962
Sand and gravel: Constructiondo	e ₂₈ ,000	e88,500	31,172	103,748	e31,400	e112,900
Industrialdo	20,000 W	00,500 W	51,172	1,164	51,400	651
Stone:						
Crusheddo	35,139	165,136	e40,600	e196,600	38,103	188,694
Dimensiondo	16	3,666	^e 16	e3,002	39	5,822
Combined value of cement, garnet (abrasive), gypsum, lead, lime (1985), silver, talc,						
wollastonite, zinc, and values indicated by						
symbol W	XX	254,529	XX	247,272	XX	218,620
Total	XX	657,308	XX	677,562	XX	650,380
	NORTH	CAROLINA				
Clays thousand short tons	2,688	\$10,477	2,658	\$10,970	3,229	\$15,282
Feldspar short tons	490,993	13.351	526,672	15,568	512,386	15,562
Gem stones	NA	13,351 e ₅₀	NA	551	NΑ	550
Gold (recoverable content of ores, etc.)						
troy ounces	80	2 726	12	4 641	$\bar{100}$	5,607
Mica (scrap) thousand short tons Peatdo	W W	3,726 W	89 15	4,641 W	W	5,007 W
Sand and gravel:	**	***	10	**	• • • • • • • • • • • • • • • • • • • •	**
Constructiondo	e6,100	^e 19,500	7,543	23,127	e8,600	e30,100
Industrialdodo	1,294	13,086	1,464	16,656	1,184	15,329
Stone:	41,771	104 010	e43,500	e206,500	48,847	237,181
Crusheddodo Dimensiondo	41,771 35	194,818 6,132	e ₄₁	e6,633	45,547	5,128
See footnotes at end of table.						

Table 5.—Nonfuel mineral production1 in the United States, by State —Continued

	1	1985		1986	-	1987
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousands
NO	RTH CARC	LINA—Conti	nued			
Calc and pyrophyllite thousand short tons Combined value of lithium minerals, olivine,	885	\$1,604	83	\$1,552	w	w
phosphate rock, and values indicated by symbol W	XX	r203,442	XX	r180,528	XX	\$152,178
Total	XX	^r 466,186	XX	r466,730	XX	476,917
	NORTI	H DAKOTA				
Clays thousand short tons	W	w e _{\$2}	W	W \$2	50 NA	\$100 2
Gem stones thousand short tons	NA 56	5,562	NA 74	7,359	127	11,912
Sand and gravel (construction)do Combined value of peat, salt, sand and gravel (industrial, 1986-87), stone (crushed miscel-	e _{6,900}	e13,800	5,135	10,741	e _{4,900}	e10,200
laneous), and values indicated by symbol W	XX	4,820	XX	2,700	XX	4,097
Total	XX	24,184	XX	20,802	XX	26,311
	(ОНЮ				
Cement: Masonry thousand short tons	110	\$10,412	138	\$11,540	139	\$11,964
Portlanddodo	1,769	84,929	1,706	79,383	1,748	83,661 12,714
Claysdo Gem stones	2,114 NA	10,581 e ₁₀	2,833 NA	11,515 10	3,187 NA	12,714
Lime thousand short tons	1,730	84,142	1,648	81,103	1,926	93,108
Peat do Salt do	16 4,329	413 130,964	6 4,115	W 126,757	3,276	104,099
Sand and gravel: Constructiondo Industrialdo	e33,000 1,312	e109,000 21,945	36,806 1,221	$^{126,747}_{21,183}$	e36,400 1,249	e136,900 21,292
Stone: Crusheddodo Dimensiondo	38,310 53	136,544 3,661	e39,300 e36	^e 147,300 ^e 2,708	51,590 48	300,096 2,427
Combined value of abrasives, gypsum, and values indicated by symbol W	XX	1,541	XX	1,738	XX	2,510
Total	xx	594,142	XX	609,984	XX	768,78
	окі	LAHOMA				
Cement: Masonry thousand short tons	43	\$2,854	50	\$3,198	41	\$2,436
Portlanddo	1,589	72,583	1,579	69,075	1,415	54,870
Claysdodo	997	2,338 e ₂	993	2,329 2	797 NA	1,78
Gem stones thousand short tons	NA 1,595	12,548	NA 1,683	9,855	1,828	13,33
Gem stonesthousand short tons Sand and gravel: Constructiondo Industrialdo	e _{12,600} W	e32,300 W	10,366 1,203	24,585 16,454	e _{10,500} 1,243	e24,200 17,078
Stone: Crusheddo	31,173	98,811	e30,900	e _{102,100}	625,155	⁶ 83,73
Dimensiondo Combined value of feldspar, iodine, lime,	11	836	•19	e ₉₁₃	8	86:
pumice (1985-86), salt, stone (crushed dolo- mite, 1987), tripoli, and value indicated by symbol W	xx	29,335	xx	18,504	XX	24,91
Total	XX	251,607	XX	247,015	XX	223,21
	0	REGON				
Clays thousand short tons		\$285	204 NA	\$289 250	268 NA	\$986 35
Gem stones Nickel (content of ore and concentrate)	NA 6 197	^e 350 W	NA 1 175	350 W		
short tons	6,127		1,175	42,597	e _{13,000}	e _{42,20}
thousand short tons Stone (crushed)	15,336	^e 36,800 54,244 30	13,441 e _{15,100} (4)	e53,400 41	20,663 (⁴)	73,90 1
lime, pumice, silver (1987), stone (dimension, 1985-86), and values indicated by	**	00.505	vv	29.755	vv	49 54
symbol W		38,587	XX		XX	43,54 160,99
Total	XX	130,296	XX	126,432	XX	100,99
See feetpeter at and of table						

Table 5.—Nonfuel mineral production¹ in the United States, by State —Continued

Minaral		1985		1986	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousand	
	PENNS	YLVANIA					
Cement:	***************************************			· .,			
Masonry thousand short tons	303	\$20,970	391	\$26,683	397	\$30,464	
Portlanddo	5,535	288,036	6,290	324,187	6,325	334,709	
Clays ² dodo Gem stones	1,142	5,293	1,234	5,061	1,206	4,751	
Lime thousand short tons	NA 1,492	e ₅ 85,269	NA 1,417	5 81,234	NA 1,574	93,430	
Peatdo Sand and gravel:	21	602	19	532	1,374	513	
Sand and gravel: Constructiondodo							
Industrialdo	^e 17,000 693	^e 74,000 9,846	15,373	68,880	e14,800	e72,900	
Stone:	030	3,040	688	10,091	W	W	
Crusheddo	64,765	310,859	e63,700	e317,100	97,213	458,676	
Dimensiondodo	51	8,214	^e 72	^e 8,100	60	10,177	
Combined value of clays (kaolin), mica (scrap), tripoli (1986-87), and value indi-							
cated by symbol W	XX	1,380	XX	1,185	XX	10,871	
Total	XX		XX				
		804,474		843,058	XX	1,016,496	
		EISLAND					
Gem stones Sand and gravel:	NA	W	NA	W	NA	\$1	
Construction thousand short tons	e1,200	e\$4,600	2,269	\$8,252	e _{2,700}	e _{10,900}	
Industrialdo	W	W	22	143	w	W	
Stone (crushed)dodo Combined value of other industrial minerals	⁶ 1,135	⁶ 7,016	e 61,000	e 65,700	1,228	7,797	
and values indicated by symbol W	XX	576	XX	101	XX	(7)	
Total	XX	12,192	XX	14,196	XX	⁵ 18,698	
	SOUTH C	CAROLINA					
Cement (portland) _ thousand short tons			2 222				
Clays ² dodo	2,207 1,896	\$104,705	2,306	\$109,529	2,567	\$117,878	
Gem stones	NA	37,695 e ₁₀	1,986 NA	37,980 10	2,193	38,244	
Manganiferous ore short tone	19,882	w	14,320	w	NA 19,087	10 W	
Peat thousand short tons	w	173	w	w	W	ŵ	
Sand and gravel: Constructiondodo	e _{4,900}	e14 000	7 000	10 500	Pm =00		
Industrialdo	794	^e 14,000 14,092	7,200 800	19,783 14,081	^e 7,500 844	e19,500	
Stone:		14,002	500	14,001	044	15,188	
Crusheddo	17,079	72,520	^e 18,200	e76,700	624,278	6105,387	
Dimensiondo	8	541	e 8	^é 533	2	312	
Combined value of cement (masonry), clays (fuller's earth), gold, mica (scrap), silver,							
stone (crushed shell, 1987), vermiculite, and							
values indicated by symbol W	XX	32,193	XX	37,273	XX	44,806	
Total	XX	275,929	XX	295,889	XX		
		DAKOTA	71.71	230,003		341,325	
Tomout.	. 5001111	DANOTA					
Cement: Masonry thousand short tons	4	w	4	w	4	w	
Portlanddo	655	ŵ	635	ŵ	519	w	
Clays ² do Celdsparshort tons	117	\$309	119	\$375	w	w	
em stonesshort tons	13,721 NA	e ₇₀	W	w	w	w	
old (recoverable content of ores, etc.)	NA	-70	NA	100	NA	\$100	
+man a	356,103	113,119	w	w	w	w	
ypsum thousand short tons_ and and gravel (construction) do	34	269	31	268	ŵ	ŵ	
ilver (recoverable content of ores, etc.)	e _{6,400}	e16,000	9,713	19,853	^e 9,600	^e 19,100	
thousand troy ounces	63	388	w	w	w	117	
tone:		300	**	**	**	w	
Crushed thousand short tons	4,071	14,412	e3,600	^e 12,600	5,070	18,515	
Dimensiondo	51	18,336	e 55	^e 18,399	51	18,209	
ombined value of beryllium concentrates, clays (bentonite, 1985-86; common, 1987),							
lime, mica (scrap), and values indicated by							
mic, mica (scrap), and values mulcated by		44.000	vv	101 001	****	000000	
symbol W	XX	44,800	XX	181,291	XX	206,968	
symbol W	XX	207,703	XX	232,886	XX	262,892	

Table 5.—Nonfuel mineral production1 in the United States, by State —Continued

		1985		1986		1987
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousand
	mrs.	MOCOPE				
	TEN	NESSEE				
llays ² thousand short tons	1,244	\$25,913	1,164	\$25,228	1,261	\$25,480
em stones	NA 1 000	e ₅	NA r _{1,231}	w r _{21,191}	NA W	W W
hosphate rock thousand metric tons and and gravel:	1,233	27,000	1,201	21,131	•	
Construction thousand short tons	e7,200	e22,000	7,360	24,592	^e 7,900	e _{28,90}
Industrialdodo	569	6,156	488	5,523	W	V
tone: Crusheddodo	637,939	6155,760	e 640,700	e 6175,600	51,406	227,26
Dimension do	6	1,856	e 6	e1,553	3	57
Cinc (recoverable content of ores, etc.) metric tons	104,471	92,971	102,118	85,550	115,699	106,92
Combined value of barite, cement, clays	101,111					
(fuller's earth), copper, lead (1985, 1987),						e *
lime, pyrites, silver, stone (crushed granite, 1985-86), and values indicated by symbol W	XX	141,109	XX	136,610	XX	138,67
and the same of th	VV	r479 970	XX	r475,847	XX	527,81
Total	XX	r473,270		410,041		021,01
	T	EXAS				
Cement:	263	\$22,114	209	\$15,790	172	\$11,28
Masonry thousand short tons Portlanddo	10.242	532,494	8,883	412,697	7,318	319,99
Claysdo	4,107	28,059	² 2,515	² 11,724	3,475	25,95
Gem stones	NA 1.981	^é 175 17,299	NA 2,131	297 14,982	NA 1,874	34 14,2
Sypsum thousand short tons	1,192	65,927	1,173	62,670	1,140	59,02
iypsum thousand short tons ime tons do	8,390	84,249	8,520	62,996	7,810	60,8
Sand and gravel: Constructiondodo	e _{57.800}	e _{198,000}	59,562	209,855	e48,200	e178,60
Industrialdo	1,968	29,095	1,302	18,274	1,509	22,84
Stone:	05.504	206 221	e84,200	e301,500	84,347	276,4
Crusheddodo Dimensiondo	85,764 36	306,821 11,209	e ₄₉	e15,407	75	10,0
Sulfur (Frasch) thousand metric tons	2,979	w	2,506	W	2,152	
Talc thousand short tons	261	5,245	283	6,456	255	4,38
Combined value of asphalt (native, 1985-86), clays (ball clay, fuller's earth, and kaolin,						
1986), fluorspar (1985-86), helium (crude						
and Grade-A), iron ore (usable), magnesium						
chloride (1985), magnesium compounds, magnesium metal (1986-87), mica (scrap,						
1985), sodium sulfate (natural), and values	vv	495 096	XX	579,340	XX	446,6
indicated by symbol W	XX	435,936				
Total	XX	1,736,623	XX	1,711,988	XX	1,430,78
	- 1	UTAH				<u> </u>
Beryllium concentratesshort tons	5,738	\$6	6,533	\$7	6,062	-0-
Cement (nortland) thousand short tons	W	W 500	1,014 305	58,431 2,048	935 315	50,5 1,9
Claysdo	332 NA	2,509 e ₈₀		2,048	NA	1
Gold (recoverable content of ores, etc.)					***	
troy ounces	135,489 274	43,039 ^r 2,942	W ^r 284	W ^r 2,478	W W	
Gypsum thousand short tons	225	11,912		13,079	562	17,8
Limedo Saltdo	1,057	30,013		31,830	1,108	34,2
Sand and gravel: Construction do	e14,000	e36,400	16,452	39,763	e21,000	e56,7
Industrialdodo	W	30,400 W	6	123	6	00,
Stone: Crusheddodo	4.657	14.180	e4.500	e14,100	7,989	23,6
Dimensiondo	w	W	w	W	2	
Vermiculite do			W	153		
Combined value of asphalt (native, 1985-86), cement (masonry), copper, iron ore (usable,						
1986-87), magnesium compounds, magnesium metal (1986-87), mercury (1986-87),						
sium metal (1986-87), mercury (1986-87),						
molybdenum (1985, 1987), phosphate rock, potassium salts, silver, sodium sulfate (nat-						
ural, 1985-86), vanadium (1986-87), and val-		181 800	****	r _{212,330}	xx	514,6
urai, 1965-86), vanadium (1960-61), and vai-						
ues indicated by symbol W	XX	171,792	XX	212,000		022,0

Table 5.—Nonfuel mineral production¹ in the United States, by State —Continued

en e		1985]	.986	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	Quantity	Value (thousand	
	VEI	RMONT					
Gem stones Sand and gravel (construction)	NA	W	NA	w	NA	\$10	
thousand short tons	e _{2,700}	e\$7,000	4,834	\$11,226	e _{4,700}	e10,800	
Stone: Crusheddodo	1,689	7,468	e _{1,600}	e _{7,600}	62,159	620,400	
Dimensiondodo Combined value of asbestos, stone (crushed	116	26,346	^e 105	e27,075	104	30,074	
granite, 1987), talc, and values indicated by symbol W	XX	9,040	XX	9,310	xx	11,160	
Total	XX	49,854	XX	55,211	XX	72,444	
	VIR	GINIA					
Clays thousand short tons	814	\$6,977	890	\$7,700	² 1,171	2\$6,291	
Gem stones Iron oxide pigments (crude) short tons	NA 2,280	^e 20 W	NA W	20 W	NA W	20 W	
Lime thousand short tons	633	28,103	624	27,362	699	29,43	
Sand and gravel (construction) do Stone:	^e 10,200	e42,000	11,670	46,488	e12,100	e43,400	
Crusheddodo	51,686	221,900	e52,000	e224,700	60,376	295,903	
Dimensiondodo	10	3,136	e 10	e3,128	9	2,720	
(fuller's earth, 1987), gypsum, kyanite, sand							
1985, 1987), vermiculite, and values indi-							
cated by symbol W	XX	79,140	XX	83,639	XX	83,673	
Total	XX	381,276	XX	393,037	XX	461,442	
	WASH	INGTON					
Cement: Masonry thousand short tons	·w	w	6	\$530	w	w	
Portlanddo	W	w	1,212	59,091	1,282	\$63,600	
Claysdodo	243	\$1,402	252	1,560	416	2,356	
Gem stones	NA	é200	NA	200	NA	200	
Peat thousand short tons Sand and gravel:	12	292	W	W	7	191	
Constructiondodo	e22,700	e62,300	26,342	76,387	e _{25,300}	e78,900	
Industrialdodo	322	5,589	W	W	294	5,186	
Crusheddodo	9,543	31,052	e9,000	e34,100	14,754	49,618	
Dimensiondo	1	53	e 1	e ₆₉	(4)	42	
Combined value of barite (1985), calcium chloride (natural), copper (1987), diatomite,							
gold, gypsum, lime, magnesium metal							
(1986-87), olivine, silver, and values indicated by symbol W	XX	120,719	XX	204,688	XX	238,269	
Total	XX	221,607	XX	376,625	XX	438,362	
	WEST V	/IRGINIA					
Clays thousand short tons	331	\$3,342	215	\$470	266	\$565	
dem stones thousand short tons	895	w	NA W	$\overset{1}{\mathbf{w}}$	NA W	w W	
and and gravel (construction) do	e900	e3,000	1.501	5,3 6 5	e1,000	e3,200	
tone (crushed)dodo	9,393	38,348	e9,800	e37,500	12,458	50,947	
Combined value of cement, lime (1985, 1987), peat, sand and gravel (industrial), and val-							
ues indicated by symbol W	XX	60,719	XX	86,473	XX	89,308	
Total	XX	105,409	XX	129,809	XX	144,021	
	WISC	ONSIN					
Gem stones			NA	\$15	NA	\$15	
ime thousand short tons	341	\$19,001	350	19,715	393	21,733	
	10	W	9	W	9	W	
Peatdodo							
eatdo and and gravel: Constructiondo Industrialdo	e16,000 1,197	e36,000 14,624	24,913 1,194	59,325 12,399	e23,900 1,314	^e 57,000 15,168	

Table 5.—Nonfuel mineral production in the United States, by State —Continued

	1985		1	1986	1987		
Mineral	Quantity (thousands)		Quantity	Value (thousands)	Quantity	Value (thousands)	
	WISCONS	IN—Continue	d		¥		
Stone: Crushed thousand short tons Dimension do Combined value of abrasives, cement, stone		\$42,380 2,733	e18,700 e23	e\$57,600 e2,878	⁶ 22,757 37	⁶ \$71,776 3,697	
(crushed traprock, 1987), and values indicated by symbol W	XX	10,372	xx	12,600	XX	22,233	
- Total	XX	125,110	XX	164,532	xx	191,622	
	WY	OMING		***			
Clays thousand short tons	2,302 NA r404 W e3,500 e2,030	\$64,146 225 r3,135 W e11,000 e7,329	1,762 NA W 25 3,377 e 61,700	\$51,823 225 W 1,689 10,977 e 65,900	² 2,128 NA W 29 ^e 2,600 3,171	2\$62,031 150 W 1,560 e9,000 15,049	
(1986), cement (masonry, 1986-87, and port- land), clays (common, 1987), helium (Grade- A, 1986-87), sodium carbonate (natural), stone (crushed granite, 1985-86), and values indicated by symbol W	xx	465,275	xx	^r 484,196	XX	557,265	
Total	xx	^r 551,110	XX	^r 554,810	XX	645,055	

^eEstimated. ^rRevised. NA Not available. W Withheld to avoid disclosing company proprietary data, va included with "Combined value" figure. XX Not applicable.

¹Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

²Excludes certain clays, kind and value included with "Combined value" figure. W Withheld to avoid disclosing company proprietary data, value

Table 6.—Mineral production1 in the islands administered by the United States

(Thousand short tons and thousand dollars)

	198	35	198	36 e	1987	
Area and mineral	Quantity	Value	Quantity	Value	Quantity	Value
American Samoa: Stone Guam: Stone Virgin Islands: Stone	(²) 548 214	$3,731 \\ 2,405$	(2) 700 200	400 3,300 1,500	W 354 345	W 2,289 2,741

W Withheld to avoid disclosing company proprietary data. ^eEstimated.

Table 7.—Mineral production1 in the Commonwealth of Puerto Rico

(Thousand short tons and thousand dollars)

Mineral	1985		1986		1987	
	Quantity	Value	Quantity	Value	Quantity	Value
Cement (portland)	962	\$72,602	w	w	1,296	\$106,185
Clays	118	264	111	\$223	148	318
Lime	23	3,249	24	3,291	25	3,558
Salt	35	735	40	880	40	900
Sand and gravel (industrial)			31	624	67	w
Stone:				_		
Crushed	5,493	25,799	^e 5,400	^e 26,000	8,480	41,299
Dimension	· W	W				
Total ²	XX	102,649	XX	r _{31,018}	xx	152,260

 $[\]mathbf{x}\mathbf{x}$ W Withheld to avoid disclosing company proprietary data; not included in "Total." eEstimated. rRevised. Not applicable.

³Grindstones, pulpstones, and sharpening stones; excludes mill liners and grinding pebbles.

⁴Less than 1/2 unit.

^{*}Partial total; excludes values that must be concealed to avoid disclosing company proprietary data.

*Excludes certain stones; value included with "Combined value" figure.

⁷Value excluded to avoid disclosing company proprietary data.

¹Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

²Less than 1/2 unit.

¹Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

²Total does not include value of items not available or withheld.

Table 8.—U.S. exports of principal minerals and products, excluding mineral fuels

	1	986	1987	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands
METALS				
Aluminum: Ingots, slabs, crude metric_tons	000 704	#000 0F0	001 160	0417.000
Rigids, states, erdee metric tons. Scrap - do. Plates, sheets, bars, etc. do. Castings and forgings do.	209,794 350,858	\$282,958 333,187	281,163 368,492	\$415,003 409,686
Plates, sheets, bars, etcdo	180,057	442,681	251,572	647,890
Castings and forgingsdododododo	6,902	59,979	6,902	65,504
Other aluminum compounds	2,749 29,486	1,180 28,847	1,857 46,419	1,535 40,587
Other aluminum compoundsdodontimony, metals and alloys, crudeshort_tons	595	1,210	876	2,817
auxite including bauxite concentrate	co	10.046	001	17.000
thousand metric tons_ erylliumpounds_ ismuth, metals and alloysdo admium metal metric tons_	$\frac{69}{79,556}$	12,946 7,394	$\frac{201}{170,408}$	15,232 5,013
ismuth, metals and alloysdodo	92,906	415	83,685	641
admium metal metric tons	38	188	241	660
hromium: Ore and concentrate:				
Ore and concentrate: Exports	92	4,143	1	707
Reexportsdo	1	511	5	352
Ferrochromiumdo	6	5,693	5	5,730
opper: thousand pounds	631	4,726	806	7,007
Ore, concentrate, composition metal, unrefined (copper				
content) metric tons	194,137	215,931	149,082 108,535	195,785
Refined conner and comimonufactures	136,422 86,645	123,138 427,359	108,535	104,920
Scrap do	9,583	20,799	$114,721 \\ 3,723$	427,843 9,511
erroallovs not elsewhere listed:	•			
Ferrophosphorousshort tons_ Ferroalloys, n.e.cdo	38,377	4,393	34,699	4,334
rerroalloys, n.e.cdo	10,029	11,561	19,073	14,938
Ore and base bullion troy ounces	1,440,680	512,065	1,557,794	674,658
Bullion, refineddodo ron orethousand long tons	r3,554,411	r _{1,306,958}	2,288,404	1,304,186
ron orethousand long tons	4,482	204,738	5,013	198,254
ron and steel: Pig ironshort tons_	r _{47,051}	r _{5,271}	E0 070	4 007
Iron and steel products (major):	41,001	5,211	50,072	4,897
Steel mill productsdodo	r926,521	r _{858,386}	1,093,982	949,597
Other steel productsdo	r168,444	r444,053	225,587	482,464
Iron and steel scrap: Ferrous scrap including rerolling				
materials, ships, boats, other vessels for scrapping thousand short tons	11,994	1,081,626	10,670	996,145
ead:	iv f	1,001,020	10,010	000,140
Ore and concentrates metric tons	4,380	1,491	8,764	3,333
Figs, pars, catnodes, sneets, etcdo	12,601 58,998	13,997 14,921	10,116	11,945
Ore and concentratesmetric tons Pigs, bars, cathodes, sheets, etcdo Scrapdodo lagnesium, metal and alloys, scrap, semimanufactured	90,990	14,521	52,823	15,670
forms, n.e.cshort tons	43,992	122,378	48,677	130,672
langanese:	41.000	0.050	40.000	4.00
Ore and concentratesdo Ferromanganesedo	41,966 4,323	3,278 2,650	63,270 2,851	4,225 2,144
Silicomanganesedo	2.004	687	697	493
Metaldo	5,146	7,892	5,775	9,748
lolybdenum:				
Ore and concentrate (molybdenum content) thousand pounds	49,153	136,006	40,514	98,381
Metal and alloys, crude and scrap	1,000	3,111	513	3,504
Wiredo	494	7,671	573	9,043
Semimanufactured forms, n.e.cdo Powderdo	486	9,119	282	8,167
Ferromolybdenumdo	854 332	2,821 929	2,145 161	8,866 605
Compoundsdodo	17,063	24,997	2,696	11,146
ickel:1	,	,	_,,,,,,	,
Primary (unwrought commercially pure, cathodes, anodes,	0.000	40.440		
ferronickel, powder and flakes)short tons Wrought (bars, rods, angles, shapes, sections; plates, sheets,	3,083	19,416	2,507	19,165
strip; tubes, pipes, blanks, fittings, hollow bar, wire)				
do	7,443	69,836	9,887	87,595
Compound catalysis and waste and scrapdo	12,743	25,643	15,525	34,213
atinum-group metals: Ore and scraptroy ounces	368,748	103,332	276,727	04 570
Palladium, rhodium, iridium, osmiridium, ruthenium,	000,140	100,002	210,121	84,578
osmium (metal and alloys including scrap)do	277,772	56,753	341,362	93,626
Platinum (metal and alloys)do	104,155	41,722	90,208	46,765
are earth metals: Ferrocerium and alloys metric tons	$\frac{29}{161,007}$	319	82 160 917	653
	101,007	1,452	162,217	1,686
licon:				
ilicon: Ferrosiliconshort tons	11,331	8,306	15,049	11.647
elenium kilograms lilicon: Ferrosiliconshort tons Silicon carbide, crude and in grains (including reexports)			15,049	11,647
ilicon: Ferrosiliconshort tons	11,331 4,254	8,306 7,197	15,049 5,254	11,647 7,825

Table 8.—U.S. exports of principal minerals and products, excluding mineral fuels —Continued

in with the control of the control o	19	986	1987	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands
METALS —Continued				
lver: Ore, concentrates, waste, sweepings				
thousand troy ounces	15,002	\$85,795	15,853	\$113,182
Bullion, refineddo	10,109	56,785	11,240	79,123
antalum: Ore, metal, other forms thousand pounds	463	15,792	416	18,665
Powderdo	160	14,172	193	16,129
in: Ingots pigs bars etc.: Exports metric tons	1,547	9,742	1,318	9,456
Ingots, pigs, bars, etc.: Exports metric tons Tinplate and terneplate do	219,074	91,793	209,526	106,156
tanium: Ore and concentrateshort tons	5,314	1,414	4,435	1,395
Unwrought and scrap metaldo Intermediate mill shapes and mill products, n.e.cdo	6,679	12,870	5,922	12,721 84,737
Intermediate mill shapes and mill products, n.e.cdo	3,251 115,447	70,167 156,335	4,704 133,057	210,185
Pigments and oxidesdodododo				
Ingsten (tungsten content): Ore and concentrate metric tons Carbide powder do Alloy powder do	34	242	2	31
Carbide powderdo	349	9,268 19,779	383 669	9,063 13,319
Alloy powderdo	951	19,779	609	13,318
Ore and concentrate (vanadium content)				
thousand pounds	177	772	2,922	5,566
Pentoxide, etcdo Ferrovanadiumdo	3,088 1,025	6,810 4,647	2,922 872	4,081
nne: Slabs, pigs, or blocks	1,938	3,533	1,082	2,114
Sheets, plates, strips, other forms, n.e.c do	721 70,211	1,513 34,907	1,732 90,204	2,337 49,482
Semifabricated forms nec	r3,141	3,356	7,096	12,534
Ore and concentratesdo	3,269	1,590	16,921	8,304
	15 050	4,567	20,054	6,802
Ore and concentratedo Oxidedo Metals, alloys, other formsdo	15,852 1,647	4,010	1,206	3.948
Metals, alloys, other forms	1,079	63,134	1,225	3,948 62,892
INDUSTRIAL MINERALS				
brasives (includes reexports):	1			
Industrial diamond, natural or synthetic:	F1 100	00.010	56,792	92,858
Powder or dust thousand carats	51,163 3,564	89,812 30,313	2,542	27,592
Diamond grinding wheelsdo	464	5,597	493	5,964
Otherdo Diamond grinding wheelsdo Other natural and artificial metallic abrasives and		T 2101 007	XX	² 124,984
productssbestos:	XX	r 2101,207	AA	-124,564
Evnorte:				
Unmanufacturedmetric tons Products	46,897	14,401	59,136	15,818
ProductsReexports:	XX	162,851	XX	178,953
Unmanufactured metric tons	384	119	948	331
Productsarite: Natural barium sulfateshort_tons_	XX	1,045	XX	1,649 716
arite: Natural barium sulfateshort tons	6,969	1,021	9,083	716
oron: Boric aciddodo	42,178	23,562	66,614	34,180
Sodium borates, refineddo	624,057	161,000	608,893	243,600
Boric aciddo Sodium borates, refineddo romine compounds thousand pounds	28,000	23,900	48,300	18,000
alcium: Other calcium compounds including precipitated calcium				
carbonateshort tons	26,833	15,000	49,978	40,70
Chloridedo	18,168	3,962	34,718 83,362	6,657
carbonate short tons. Chloride do Dicalcium phosphate do ement: Hydraulic and clinker do	51,113 58,556	42,000 9,024	52,009	53,456 9,568
lays:	50,550	0,024		0,000
Kaolin or china clay thousand short tons	1,583	213,373	2,026	340,47
Bentonitedo	581 749	44,607 93,182	539 761	40,59 131,89
Otherdo	131	32,180	139	33,07
'eldspar, leucite, nepheline syenite short tons	12,000	1,024	9,634	69
Kaolin or china clay thousand short tons. Bentonite do	16,215	1,801	2,860	340,31
em stones (including reexports): Diamond thousand carete	2,527	787,700	2,530	968,100
Pearls	XX	2,600	XX	1,86
Othershort tons_	XX	111,700	XX	140,300
raphite, naturalshort tons	7,754	3,416	12,897	6,218
lypsum: Crude, crushed or calcined thousand short tons	155	15,481	127	15,629
3	XX	13,324	XX	16,43
Manufactured, wallboard and plaster articles Helium million cubic feet	432	16,200	494	18,278

Table 8.—U.S. exports of principal minerals and products, excluding mineral fuels —Continued

	1	986	1987	
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands
INDUSTRIAL MINERALS —Continued		and the second of	1	
T	10 449		10.644	èn 071
Limeshort tons	16,448	\$4,500	12,644	\$2,971
Lithium compounds:	11 770	15.000	10770	10.771
Lithium carbonate thousand pounds	11,579	15,978	12,750	16,751
Lithium hydroxidedo	6,388	11,141	6,930	11,033
Other lithium compoundsdodo	3,092	8,060	2,688	7,062
Magnesium compounds: Magnesite, dead-burnedshort tons	00.746	F 400	14101	0.040
Magnesite, dead-burnedsnort tons	23,746	5,488	14,131	3,240
Magnesite, crude, caustic-calcined, lump or grounddo	22,801	13,295	22,396	14,167
Mica:	*	0.000		
Waste, scrap, ground thousand pounds	14,892	2,230	11,154	1,534
Block, film, splittings do Manufactured, cut or stamped, built-updo	98	196	170	145
Manufactured, cut or stamped, built-updod Mineral-earth pigments, iron oxide, natural and synthetic	NA	4,502	NA	4,748
short tons	28.841	30,830	22.249	31.689
Nitrogen compounds (major) thousand short tons	7.754	NA NA	10,901	NA
Phosphate rock thousand metric tons		211,701		
Phosphatic fertilizers:	7,848	211,701	8,454	194,691
Phosphoric aciddodo	700	110.010	500	85.912
Superphosphatesdo	r _{1.233}	r _{155,774}	1.160	192,308
Diammonium phosphatesdo	4.120	641,385	5,647	890,801
Elemental phosphorus metric tons_	20,266	33,310	20,302	30,796
Pigments and compounds: Zinc oxide (metal content)do	20,266 791		20,302	531
rigments and compounds: Zinc oxide (metal content)do	191	1,124	200	991
Potassium chloridedodo	708,357	NA	511.590	NA
Potassium sulfatedo	155,608	NA	230,899	NA
No. a	100,000	1171	200,000	
Cultured thousand pounds	324	5,686	448	6,954
Naturaldo	74	411	139	708
Naturaldo	. 14	411	199	100
Crude and refined thousand short tons	1.165	16,928	541	8,217
Shipments to noncontiguous territoriesdo	24	6.725	NA	NA.
and and gravel:		-,		
Construction:				
Sanddodo	674	5,446	593	7.610
Graveldo	492	2.392	544	2.923
Industrial sanddo	849	20,363	758	21,253
odium compounds:	. 010	20,000	100	21,200
Sodium carbonatedodo	2.049	241.238	2.224	253,200
Sodium sulfatedo	111	10.183	122	10.554
tone:	TIL	10,100	122	10,004
crusheddo	2.921	36,957	3.320	26.063
Dimensiondo				
Dimensiondo	NA 1 00 F	14,623	NA 1 040	20,470
Sulfur, crude thousand metric tons	1,895	251,664	1,242	139,431
Talc, crude and ground thousand short tons	234	16,302	318	21,040
Total	XX	11,661,097	. XX	13,439,507

^TRevised. NA Not available. XX Not applicable.

¹Not comparable to prior years owing to regrouping of nickel forms.

²Silicon carbide (crude or in gains) has been deducted and is shown separately elsewhere in this table.

Table 9.—U.S. imports for consumption of principal minerals and products, excluding mineral fuels

en e	19		1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousane	
METALS					
luminum:	1 240 016	#1 COO 007	1,245,510	\$1,852,1	
Metal metric tons	1,348,816 162,317	\$1,682,907	188,612	91,002,1	
Scrapdo	455,531	141,702 914,305	415,211	202,2 840,4	
Metal	3,603	574,210	4,068	581,8	
ntimony:	0,000	014,210	1,000	552,	
Ore and concentrate (antimony content)	5,855	5,892	5,634	5,	
Sulfide including needle or liquateddo	576	596	102		
Metal	7,940	15,242	9,701	18,	
Metal	13,521	21,529	13,645	20,	
senic:					
White (As ₂ O ₃ content) metric tons	25,728	16,347	26,843	16,	
Metallicdo	395	2,649	631	3,	
uxite, crude thousand metric tons	6,456	NA 1 204	9,156 2,302	1.	
ryllium oreshort tons	1,510	1,324 6,895	3,484,713	8,	
White (AssO ₃ content)	2,489,634	6,208	2,701	7,	
dmium metal metric tons	3,174 566,170	1,310	776,225	i	
lcium metalpounds_	37,487	1,161	73,892	4	
romium:	31,401	1,101	10,032	. =:	
Ore and concentrate (Cr ₂ O ₃ content)	214	21,657	229	23,	
Ferrochromium (gross weight)do	388	172,694	326	150	
Ferrocaromium (gross weight) do	9	5,743	8	4,	
Ferrochromium-silicondo Metaldo	4	21,647	. 4	24	
		,_,	_		
Metal thousand pounds	11,669	83,295	18,612	122 5 2	
Oxide (gross weight)do	511	4,202	795	5,	
Salts and compounds (gross weight)do	805	2,669	903	2	
balt: Metal thousand pounds Oxide (gross weight) do Salts and compounds (gross weight) do Jumbium ore do pper (copper content):	2,854	4,541	4,581	. 6	
pper (copper content):	4.000	0.500	0.990	2	
	4,232 702	2,593 573	2,339 6,869	9	
Mattedo	34,545	60,236	24,084	41	
Blisterdo	501,984	677,010	469,181	734	
Refined in ingots, etc do	27,216	31,646	33,123	45	
Matte Blister do do Refined in ingots, etc do do Scrap do Scrap do Scrap to do Scrap do Scra	,	,			
short tons	3,896	18,588	3,940	22	
allium kilograms	17,202 12,911	6,954	12,490	4	
short tons	12,911	7,526	17,498	10	
old:	1,948,996	677,337	1,420,200	580	
Ore and base bulliontroy ounces	13,800,451	5,016,558	2,423,053	1,052	
Bullion, refined do	(1)	76	2,420,000	1,002	
Ore and base bullion	1,380	4,633	$1,52\overline{2}$	9	
on ore (useble) thousand long tons	16,743	460,643	16,583	408	
	10,110	100,010	20,000		
Pig ironshort tons Iron and steel products (major): Steel mill products	294,967	42,482	354,712	52	
Iron and steel products (major):					
Steel mill products do	r20,676,642	r8,019,473	20,350,816	8,567	
Other productsdodo	r _{1,257,473}	r _{1,308,091}	1,020,073	1,143	
Iron and steel products (major): Steel mill productsdo Other productsdo Scrap including tinplate thousand short tons	724	49,073	843	82	
ead: Ore, flue dust, matte (lead content) metric tons	4,604	1.344	873		
Pers bullion (load content)	142	114	10,827	7	
Base bullion (lead content)	140,221	59,172	185,673	123	
Reclaimed scrap etc (lead content) do	3,290	1,471	6,587	3	
Sheets, pipes, shotdo	1,344	1,825	2,793	5	
agnesium:	_		2.000		
Metal and scrapshort tons_ Alloys(magnesium content)do	r _{5,192}	r _{12,010}	6,832	16	
Alloys(magnesium content) do	1,808	7,008	2,921	8	
Sheets, tubing, ribbons, wire, other forms (magnesium	9 910	5,556	2,208	6	
content)do	2,210	9,990	4,408	•	
(anganese: Ore (35% or more contained manganese)do	463,242	23,122	340,539	15	
Ferromanganese do	395,650	120,482	367,675	113	
Ferromanganesedo Ferrosilicon-manganese (manganese content) do	131,425	58,839	124,315	58	
Metaldo	9,668	9,800	8,925	9	
fercury:	,			_	
Compoundspounds _ Metal76-pound flasks _	316,224	1,395	475,015	2 3	
	20,187	4,176	18,451	•	

Table 9.—U.S. imports for consumption of principal minerals and products, excluding mineral fuels —Continued

			1986		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousand	
METALS —Continued					
olybdenum:					
Ore and concentrate (molybdenum content)		40.055	1 004	00.1	
thousand pounds Waste and scrap (gross weight)do	1,120 NA	\$3,057 2,870	1,264 NA	\$3,: 2,	
Metal:				-	
Unwrought (molybdenum content)do	191	2,510	174 158	2, 2,	
Wrought (gross weight)do Ferromolybdenum (gross weight)do	102 1,599	2,701 3,626	3,815	8,	
Material in chief value molybdenum (molybdenum		•			
content)do Compounds (gross weight)do	1,102	3,284 9,091	5,248 6,711	15, 13,	
ckel:	4,650	5,051	0,111	10,	
Pigs, ingots, shot, cathodesshort tons	99,017	407,210	113,249	455,	
Plates, bars, etcdo Slurrydo	6,590	53,894	5,444	54,	
Slurrydo	9,170 6,795	19,281 19,581	5,241 7,567	24, 25,	
Pointer and flakes	10,342	51,051	11.977	60,	
Ferronickel do	37,901	53,672	45,389	57,	
Strap	2,868	4,372	2,278	4,	
atinum-group metals:					
Unwrought: Grains and nuggets (platinum) troy ounces	10,465	4,758	821		
Sponge (platinum)	1.713.971	780,382	1,124,018	621,	
Sponge (platinum)do Sweepings, waste, scrapdo	737,813	95,466	624,916	106,	
Fridium do do Palladium do Rhodium do	30,368	13,517	11,814	4,	
Palladiumdodo	1,387,131	174,856	1,529,161 211,466	210, 249,	
Rhodium	179,068 176,580	195,666 13,649	84,399	6,	
Rutheniumdo Other platinum-group metalsdo	32,010	9,217	17,620	6,	
Semimanufactured:					
Platinumdodo Palladiumdodo	94,655	44,766	45,804 151,499	24, 22,	
Palladium do	114,596	14,376 3	829	22,	
Rhodium do Other platinum-group metals do	519	59	4,200		
are-earth metals:	To 1 000	T. 151	0.7.000	1.	
Ferrocerium and other cerium alloys kilograms	r94,370 2,960	^r 1,151 1,106	94,829 1,121		
Monazite metric tons_ Metals including scandium and yttrium kilograms	19,558	1,837	13,490	1,	
nenium:					
Metal including scrappounds	5,495	2,617	7,436	2,	
Ammonium perrhenate (rhenium content)do	^r 12,189	r _{2,199}	7,225	2,	
kilograms	462,646	9,550	495,862	10.	
licon:					
Metal (over 96% silicon content)short tons	r40,851	65,180	36,930	74, 108,	
Ferrosilicondodo lver:	223,031	100,578	230,658	108,	
Ore and base bullion thousand troy ounces	5,516	30,926	2,681	18,	
Sweepings, waste, doré do nutalum ore thousand pounds ellurium (gross weight) kilograms	125,365	688,296	67,959	460	
Sweepings, waste, dorédodo	14,008	78,962	11,186	76	
antalum ore thousand pounds	905 30,721	7,713 911	697 26,700	5,	
nallium pounds	r _{2,902}	r ₉₁	3,138		
n:	2,002				
Concentrate (tin content) metric tons Dross, skimmings, scrap, residue, tin alloys, n.s.p.f.	3,936	13,693	2,953	9,	
Dross, skimmings, scrap, residue, tin alloys, n.s.p.f.	1 101	1,899	2,270	9.	
Tinfoil newdor flitters etc	1,121 XX	1,280	XX	1,	
Tinfoil, powder, flitters, etc metric tons	860	5,165	838	5	
tanium:					
Ilmenite ² short tons Rutiledo	827,489	81,563	789,585	94,	
Rutiledo	174,820	52,214 F24,202	218,188	72, 29,	
Metaldo Ferrotitanium and ferrosilicon-titaniumdo	^r 5,194 681	r _{34,203} 1,421	4,521 1,425	29, 2.	
Pigmentsdodo	202,674	240,058	192,043	236,	
ungsten ore and concentrate (tungsten content)	•	·	•		
metric tons	2,522	13,840	4,414	23,	
anadium (vanadium content): Ferrovanadium thousand pounds	1,189	6,423	685	3,	
Pentoxidedo Vanadium-bearing materialsdo	824	3,564	457	2,	
57. S. C. S. C.	4,027	5,720	4.528	5,	

Table 9.—U.S. imports for consumption of principal minerals and products, excluding mineral fuels —Continued

entropy of the second of the s	19	86	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands	
METALS —Continued					
Sinc:					
Ore and concentrates (zinc content) metric tons	75,786	\$19,096 487,030	46,464	\$12,322	
Blocks, pigs, slabsdo	665,126	487,030	705,985	581,22	
Fume (zinc content)	3,811 11	3,048	960 16	1,384 18	
Waste and scrapdodo	4.521	1,937	4,025	1,92	
Dross and skimmingsdo	6,087	3,098	6,711	3,44 7,94	
Mocks, pigs, siabs	7,446	8,260	7,001	7,940	
	XX	1,206	XX	1,570	
Ore including zirconium sanddodo	68,764	7,836	67,917	10,248	
Metal, scrap, compounds do	3,280	18,974	4,233	25,592	
INDUSTRIAL MINERALS				1.00	
brasives:					
Diamond(industrial) thousand carats	45,991 XX	110,648 294,125	48,877	95,555	
Other metric tons_	108,352	26,537	XX 93.763	329,105 22,022	
arite:				22,022	
Crude and ground thousand short tons	767	28,858	837	29,519	
Witheriteshort tons Chemicalsdo	$\frac{147}{31,603}$	$\frac{78}{21,733}$	436 42,537	144	
oron:	51,005	21,155	42,551	22,072	
Boric acid (contained boron oxide)do Colemanite (contained boron oxide)	3,000	3,824	2,240	2,899	
Colemanite (contained boron oxide)	1.000	0.550			
thousand short tons Ulexitedo	16,000 42	8,770 17,766	8 52	2,763 20,597	
romine (contained in compounds) thousand nounds	18,815	9,734	25,326	19,237	
alcium chloride: Crudeshort tons do ement: Hydraulic and clinker _ thousand short tons lave					
Crudeshort tons_	143,328	14,403	229,964	20,917	
ement: Hydraulic and clinker thousand short tons	2,098 16,319	1,264 468,993	1,282 17,726	706 488,532	
laysshort tons_	38,398	7,501	37,679	9,392	
laysshort tons ryolitedo	11,344	6,959	13,605	7,693	
eldspar:	7 00	457.4		5.	
Ground and crushed	568 683	474 68	344 4,489	472	
Crudedo Ground and crusheddo luorspardo	552,785	45,675	585,901	48,429	
em stones					
Emeralds do	9,192	3,459,931	9,121	3,423,094	
Other	2,757 XX	152,396 566,325	2,075 XX	141,575 524,851	
Diamond thousand carats Emeralds do do Cher raphite, natural short tons	42,790	15,758	47,768	17,654	
ypsum:	0.500			•	
Crude, ground, calcined thousand short tons	9,562 XX	65,432 115,735	9,719	59,555	
Manufactureddo dine, crude thousand pounds	3,028	17,199	XX 2,542	104,026 17,595	
ime:					
Hydratedshort tons Otherdo	57,842	4,108	39,734	3,021	
ithium:	142,865	8,129	138,171	7,558	
Ore do Compounds do	13,327	3,616	18,174	3.987	
Compoundsdodo	2,095	9,166	2,309	6,485	
lagnesium compounds:	37	15	0.010	700	
Crude magnesitedodo	78,742	$15 \\ 11,493$	3,318 $42,011$	733 4,575	
Refractory magnesia, dead-burned, fused magnesite,	10,142	11,400	42,011	4,010	
Lump or ground caustic-calcined magnesiado Refractory magnesia, dead-burned, fused magnesite, dead-burned dolomitedo Compoundsdo	213,135	38,906	223,555	43,539	
ica:	39,807	11,038	70,746	20,593	
Waste, scrap, ground thousand pounds	21,962	3,549	21,142	3,928	
Waste, scrap, ground thousand pounds Block, film, splittingsdo	r _{1.866}	r ₆₅₃	2,460	1,230	
Manufactured, cut or stamped, built-up do	r _{2,105}	4,859	1,645	5,125	
ineral-earth pigments, iron oxide:		5 0			
Siennas, crude and refinedshort_tons Siennas, crude and refineddo Umber, crude and refineddo Vandyke browndo Other natural and refineddo	604 144	78 73	59 289	99	
Umber, crude and refineddo	5,855	1.071	6,123	177 1,058	
Vandyke browndo	572	293	1,576	342	
Other natural and refineddo	845	619	1,598	769	
Syntheticdodo epheline syenite:	28,754	19,382	32,679	18,235	
cpiletine sjeme.	2.970	205	3,720	142	
Crude do					
Crudedo Ground, crushed, etcdo			304.965	11 259	
Ground, crushed, etcdo itrogen compounds (major) including urea thousand short tons	295,836 7,903	11,075 777,906	304,965 7,065	11,259 582,553	

Table 9.—U.S. imports for consumption of principal minerals and products, excluding mineral fuels —Continued

	19	86	1987		
Mineral	Quantity	Value (thousands)	Quantity	Value (thousands)	
INDUSTRIAL MINERALS —Continued		1. 1.			
Peat:	540,729	\$68,054	500,142	\$69,076	
Fertilizer-gradeshort tons Poultry- and stable-gradedo	12.367	1,452	14,373	1,890	
Poultry- and stable-grade do	528	22,265	464	18,816	
Phosphates, crude and apatite_ thousand metric tons Phosphatic fertilizers:	928	22,200			
Fertilizer and fertilizer materialsdo	69	8,351	55	7,820	
Elemental phosphorus	2	3,548	4	6,609	
Otherdo	2	473	53	8,514	
Pigments and salts:					
Lead pigments and compounds metric tons	r _{17.133}	12.932	21,213	21.145	
Zinc pigments and compoundsdo	57,317	47,006	68,672	60,078	
Potashdo	6,933,800	385,100	6,706,200	432,700	
Pumice:	0,000,000	000,100	0,.00,200	,	
rumice: Crude or unmanufacturedshort tons	3,488	297	17,353	2,414	
	509	204	1.201	380	
Wholly or partly manufactureddo	XX	512	XX	899	
Manufactured, n.s.p.f thousand pounds	52	51	146	157	
Quartz crystal (Brazilian lascas) thousand pounds	6.665	79,709	5,716	66,936	
Salt thousand short tons	0,000	15,105	3,110	00,000	
Sand and gravel: Industrial sanddodo	88	1.014	104	1.071	
Industrial sanddodo		1,014	283	2,367	
Other sand and graveldo	205	1,412	200	2,001	
Sodium compounds:	100	17 000	150	18.334	
Sodium carbonatedo	106	15,023	138	10,363	
Sodium sulfatedodo	188	13,829	199	10,000	
Stone:	0.004	10.000	0.505	12,500	
Stone: Crusheddodo	2,864	10,902	3,595		
Dimension	XX	379,724	XX		
Calcium carbonate fines thousand short tons	351	1,548	263	1,524	
Strontium:				0.050	
Mineralsshort tons	33,236	3,396	42,469	3,670	
Compounds do	8,495	5,871	10,004	7,307	
Compoundsdosulfur ore and other forms,					
nes thousand metric tons	1,347	142,220	1,599	152,096	
Talc, unmanufactured thousand short tons	52	8,715	53	10,348	
Total ³	XX	31,964,000	XX	28,416,000	

Table 10.—Comparison of world and U.S. production of selected nonfuel mineral commodities

(Thousand short tons unless otherwise specified)

		1986			1987 ^p	
Mineral	World produc- tion ¹	U.S. produc- tion	U.S. percent of world production	World produc- tion ¹	U.S. produc- tion	U.S. percent of world produc- tion
METALS, MINE BASIS						
Antimony (content of ore and concentrate)						
short tons	64,146	W	NA	61,875		·
Arsenic trioxide ² metric tons	56,513			54,840		
Bauxite ³ thousand metric tons	86,093	510	1	90,302	576	1
Berylshort tons	9,897	6,533	66	9,480	6,062	64
Bismuth thousand pounds	8,711	w	NA	8,956	W	NA
Chromite	12,327			12,222		
Cobalt (content of ore and concentrate)	,					
thousand pounds	107,812			103,246		
Columbium-tantalum concentrate (gross	,			•		
weight)dodo	76,666			70,442		
Copper (content of ore and concentrate)	. 3,000			,		
thousand metric tons	8,125	1.147	14	8,475	1,256	15

^{*}Revised. NA Not available. XX Not applicable.

*Less than 1/2 unit.

*Includes titanium slag averaging about 70% TiO₂. For details, see "Titanium" chapter.

*Data may not add to totals shown because of independent rounding.

 $\begin{array}{c} \textbf{Table 10.--Comparison of world and U.S. production of selected nonfuel mineral commodities ---Continued} \\ \end{array}$

(Thousand short tons unless otherwise specified)

	<u> </u>	1986			1987 ^p	
Mineral	World produc- tion ¹	U.S. produc- tion	U.S. percent of world produc- tion	World produc- tion ¹	U.S. produc- tion	U.S. percent of world production
METALS, MINE BASIS —Continued						
Gold (content of ore and concentrate) thousand troy ounces	51,620	3,739	7	52,481	4,966	9
Iron ore (gross weight) thousand long tons	NA	38,862	NA	NA	46,817	NA
Lead (content of ore and concentrate) thousand metric tons	3,376	353	10	3,454	319	9
Manganese ore (gross weight) Mercury thousand 76-pound flasks Molybdenum (content of ore and concen-	26,158 179	$\bar{\mathbf{w}}$	\bar{NA}	25,101 179	w	\bar{NA}
trate) thousand pounds _ Nickel (content of ore and concentrate) Platinum-group metals ³	203,466 836	93,976 1	46 (⁴)	186,405 867	75,117 	40
thousand troy ounces Silver (content of ore and concentrate)	8,314	w	NA	8,671	· w	NA
do Tin (content of ore and concentrate)	415,929	34,524	8	429,091	39,790	9
metric tons Titanium concentrates (gross weight):	179,377	W	NA	179,713	w	NA
Ilmenite Rutile	3,735 433	W	NA NA	4,061 496	W W	NA NA
Tungsten (content of ore and concentrate) metric tons	42,656	780	2	40,232	34	(4)
Vanadium (content of ore and concentrate) short tons Zinc (content of ore and concentrate)	32,530	w	NA	34,300	w	NA
thousand metric tons METALS, SMELTER BASIS	6,829	216	3	7,144	233	3
Aluminum (primary only) do	15,341	3,037	20	16,016	3,343	21
Cadmium metric tons Cobaltshort tons	18,525 67,622	1,486	8	18,566 59,391	1,515	8
Copper smelter (primary and secondary) ⁵			· · · · · ·	00,001		
thousand metric tons	8,715 553,369	$^{1,196}_{44,287}$	14 8	8,865 564,918	1,249 48,308	14 9
Lead (primary and secondary) ⁶ thousand metric tons	5,541	995	18	5,647	1,084	19
Magnesium (primary)	362	138	38	355	137	39
Nickel'	862	_2	(4)	892		
Steel row	1,193,744	W Sol and	NA	1,245,059	W	NA
Nickel ⁷ kilograms Steel, raw kilograms Tellurium ⁸ kilograms Tellurium ⁸ kilograms	783,347 85,436	⁹ 81,606 W	10 N.A	804,164	88,472	. 11
Fin metric tons_	191,403	103,213	NA 2	90,305 $189,556$	103,927	NA 2
Zinc (primary and secondary)	•	0,210		100,000	0,521	2
thousand metric tons INDUSTRIAL MINERALS	6,761	316	5	7,030	343	5
Asbestosdo	4,050	51	1	4,054	51	1
Barite	5,204	11297	6	5,137	¹¹ 448	9
Boron minerals	2,687 824,380	1,251 11310,000	47	2,898 846,530	1,385 11335,000	48
Bromine thousand pounds Cement, hydraulic Clays:	1,100,814	¹² 79,916	38 7	1,138,673	1279,501	40 7
Bentonite ²	9,703	¹¹ 2.813	29	9,579	2,806	29
Fuller's earth ⁸	2,438	¹¹ 1,910	78	2,642	112,057	78
Bentonite ² Fuller's earth ⁸ Kaolin ² Diatomite thousand carats Diatomite	26,152	118,549	33	26,491	¹¹ 8,827	33
Jiamond thousand carats	91,756			93,029	450	
Feldspar	2,042 4,610	628 735	31 16	2,008 4,531	$\frac{658}{720}$	33 16
luorspar	5,232	78	10	5,244	80	2
Graphiteshort tons	736,513	==		694,167		
odine crude thousand nounds	95,360	15,403 W	16	98,897	15,612	16
namond thousand carats Diatomite Platomite	28,484 $120,964$	¹¹ ¹² 14,498	NA 12	27,913 122,715	W 11 1215,758	NA 12
Mica (including scrap and ground)	16,313	W	NA	16,454	10,108 W	13 NA
thousand pounds	636,207 99,275	296,300 11,499	47 12	654,531 102,653	321,100	49
Nitrogen: N content of ammonia					13,284	13

Table 10.—Comparison of world and U.S. production of selected nonfuel mineral commodities —Continued

(Thousand short tons unless otherwise specified)

		1986			1987 ^p	
Mineral	World produc- tion ¹	U.S. produc- tion	U.S. percent of world produc- tion	World produc- tion ¹	U.S. produc- tion	U.S. percent of world produc- tion
INDUSTRIAL MINERALS —Continued						
INDODITION AND ADDRESS OF THE PROPERTY OF THE					11533	29
Perlite	1,804	11507	28	1,829	555	23
Phosphate rock (gross weight)	100.740	38,710	28	145,148	40,954	28
thousand metric tons	138,740	1,202	4	29,812	1,202	4
Potash (K ₂ O equivalent)do	28,758	11554	5	11,753	11392	3
Pumice ⁸	11,458 194,720	11 12 _{36,703}	19	195,594	11 1236,532	19
Salt	194,720	30,103		200,002	,	
Sodium compounds, natural and manu-						
factured: Carbonate	31,179	8,438	27	32,395	8,891	27
	4,974	812	16	5,007	805	16
Sulfateshort tons_	164,809			202,342		
Sulfur, all forms	202,000				40 500	10
thousand metric tons	54,074	11,087	21	54,221	10,538	19 16
Talc and pyrophyllite	8,256	1,302	16	8,310	$^{1,349}_{^{11}303}$	50
Vermiculite ⁸	579	11317	55	601	303	- 50

Less than 0.5%

ingot.

10 Includes tin content of alloys made directly from ore.

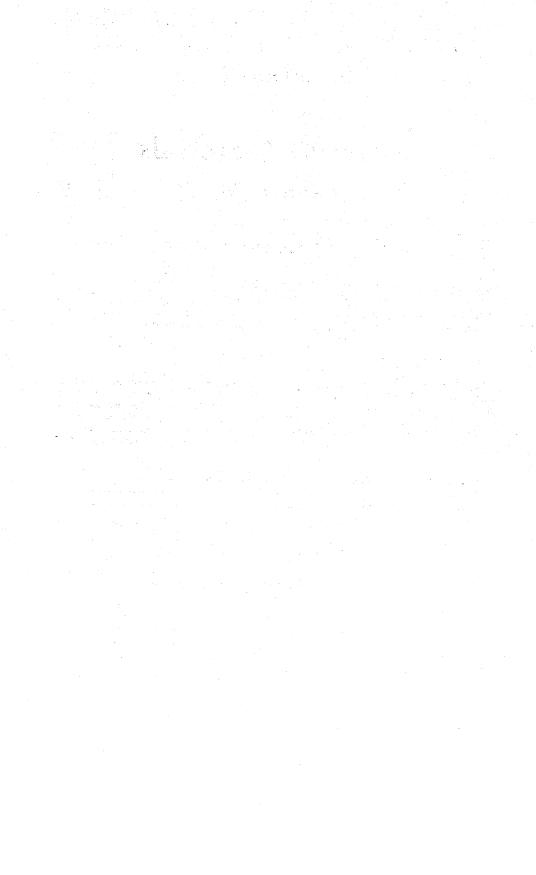
PPreliminary. NA Not available. W Withheld to avoid disclosing company proprietary data.

1The reporting of world production of natural corundum was dropped from the 1987 edition of the Minerals Yearbook, therefore, corundum no longer appears in this table. For those commodities for which U.S. data are withheld to avoid disclosing company proprietary data, the world total excludes U.S. output and the U.S. percentage of world production cannot be reported.

2World total does not include an estimate for output in China.

⁻world total does not include an estimate for output in clinia.

3U.S. figures represent dried bauxite equivalent of crude ore; to the extent possible, individual country figures that are included in the world total are also on the dried bauxite equivalent basis, but for some countries, available data are insufficient to permit this adjustment.


⁵Primary and secondary blister and anode copper, including electrowon refined copper that is not included as blister or anode.

6Includes bullion.

⁷Refined nickel plus nickel content of ferronickel and nickel oxide.

⁸World total does not include estimates for output in the U.S.S.R. or China. Data from American Iron and Steel Institute. Excludes production of castings by companies that do not report steel

¹¹Quantity sold or used by producers.
¹²Includes Puerto Rico.

Abrasive Materials

By Gordon T. Austin¹

CONTENTS

	Page		Page
Foreign Trade	_ 72	Emery	77
Tripoli	_ 74	Staurolite	77
Special Silica Stone Products		Industrial Diamond	78
Garnet	_ 76	Manufactured Abrasives	

The combined production value of natural abrasives, which consist of tripoli, special silica stone, garnet, staurolite, and emery, increased in 1987. The increase was, in certain cases, because the materials were used in nonabrasive applications, such as the increased use of tripoli as a filler and special silica stone material as a specialpurpose crushed stone. The increased use of garnet as a blasting media accounts for most of its growth. Production and sales of garnet were at a record-high level in 1987.

Table 1.—Salient U.S. abrasives statistics

		1983	1984	1985	1986	1987
Natural abrasives production by p	roducers:					*
Tripoli (crude)		111,020	124,482	w	117,174	114,926
Value	thousands	\$649	\$699	W	\$91 8	\$975
Special silica stone ¹	short tons	1,101	1,290	1,157	1,073	12,773
Value		\$482	\$602	\$ 515	\$ 501	\$957
Garnet ²	short tons	29,767	29,647	36,727	32,296	42,277
Value		\$2,533	\$2,487	\$2,973	\$2,603	\$4,350
Emery		W	· W	w	2,878	1,945
Value		W	W	w	· w	W
Staurolite		W	w	w	w ·	w
	thousands	w	w	w	W	w
Manufactured abrasives 3 4		418,153	531.264	478,897	482,860	486,442
Value ⁴		\$167,430	\$203,231	\$171,974	\$173,858	\$182,039
Foreign trade (natural and artifici	al abrasives):	4,	,,	,	• •	
Exports (value) ⁵		\$192,794	\$191,003	\$191,272	\$207.624	\$238,522
Reexports (value) ⁵	do	\$24,111	\$27,248	\$23,845	r\$27,011	\$21,192
Imports for consumption (value	do	\$289,865	\$381,694	\$382.877	r\$406,572	\$424,640
imports for consumption (value	e)au	\$ 203,000	\$001,00 4	\$302,011	φ 1 00,012	φ 1 21,010

W Withheld to avoid disclosing company proprietary data

¹Includes grindstones, oilstones, whetstones, and deburring media. Excludes grinding pebbles and tube-mill liners.

²Primary garnet; denotes first marketable product.

³Includes Canadian production of crude silicon carbide and fused aluminum oxide and shipments of metallic abrasives by producers.

*Excludes United States and Canadian production and value of aluminum-zirconium oxide.

^{5:} Bureau of the Census.

Sales of special silica stone finished products, grinding stones, oilstones, whetstones, and deburring media, suffered from declining domestic and foreign markets. Manufactured abrasive products are displacing the natural abrasive in many of the traditional sharpening and grinding areas. The significant increase in production of crude silica stone indicated in table 1 is the result of a change in the method of reporting production of crude, not a change in actual production.

The nonmetallic manufactured abrasives industry, which includes only silicon carbide and fused aluminum oxide in the reported statistics, continued to decline in quantity of material produced for the second year. However, the value of production increased because of an increase in the average unit value of the materials produced. Production trends for the last 3 years showed an increase in the amount of silicon carbide produced and a decrease in the amount of fused aluminum oxide produced.

The metallic abrasives industry, which includes the primary producers of steel shot and grit, chilled and annealed iron shot and grit, cut wire shot, and shot and grit, reclaimed by primary manufacturers, experienced the third year of sales recovery in both quantity and value. Sales are still approximately 18% below the 10-year high of 264,135 short tons in 1979.

The United States continued as the world's largest single manufacturer, exporter, and consumer of synthetic industrial diamond. The estimated apparent U.S. consumption of industrial diamond was 72.8 million carats of all types and classes.

Domestic Data Coverage.—Domestic production data for abrasive materials are developed by the Bureau of Mines from six separate, voluntary surveys. Of the 61 operations canvassed, producing natural and manufactured abrasives, all responded, representing 100% of the total production shown in tables 1, 5, 6, 8, 15, 16, and 17.

FOREIGN TRADE

Exports plus reexports of industrial diamonds continued at record-high levels. Exports plus reexports have increased every year for the past 10 years, with the exception of the essentially constant levels of 1985 and 1986. The total exports of industrial diamonds have grown approximately 175% in the past 10 years or at a compounded average rate of approximately 11% per year.

The total value of abrasive materials, exports plus reexports, was \$251.9 million in 1987. The average total value for the last 10 years was \$222.2 million per year with the high in 1979 of \$278.4 million and the low in 1977 of \$156.9 million. The last 2 years have shown significant increases in total value compared with the essentially level years 1983-85. The United States was a net exporter of industrial diamonds in 1987.

Industrial diamond imports were at a record high 48.9 million carats of loose

material. This was an increase of 6% after 2 years of essentially level imports. However, the growth is significant in view of the approximately 76% increase in imports from 1983 to 1984.

Imports of industrial diamond stones were at the lowest level since 1939. The Republic of South Africa supplied 42% of the industrial stones imported into the United States in 1986, but furnished only about 4% of the 1987 imports. The Republic of South Africa's share of total U.S. imports of industrial diamonds dropped to about 0.3% in 1987 from 9% in 1986. The major sources of imports, in order of rank, were Ireland, Japan, Zaire, Belgium-Luxembourg, and the U.S.S.R. Total imports continued to increase for the fifth consecutive year and established a record value of \$418.4 million. This resulted in an abrasive materials trade deficit of \$166.5 million.

ABRASIVE MATERIALS

Table 2.—U.S. exports of abrasive materials, by kind

(Thousands)

	198	6	1987		
Kind	Quan- tity	Value	Quantity 55,003 1,004 3,092 28,017 10,505 426 31,435 489 1,020 5,640 16,508 15,967	Value	
NATURAL					
Industrial diamond, natural or synthetic, powder or dust _ carats Industrial diamond, natural or synthetic, other do Emery, natural corundum, pumice in blocks pounds _ MANUFACTURED	46,839 1,669 2,374	\$83,853 10,444 1,061	1,004	\$88,710 12,164 1,069	
Artificial corundum (fused aluminum oxide) do	21,836 8,386 327 23,896	18,963 7,110 509 14,287	$10,505 \\ 426$	22,298 7,819 491 19,417	
Grinding and polishing wheels and stones: Diamond Polishing stones, whetstones, oilstones, hones, similar stone	451	5,358	489	5,793	
Number	1,086 4,459	$2,416 \\ 21,295$		2,009 25,876	
Abrasive paper and cloth, coated with natural of artificial abrasive materialsdo Grit and shot including wire pelletsdodo	11,455 13,964	36,365 5,963		46,007 6,869	
Total	XX	207,624	XX	238,522	

XX Not applicable.

Source: Bureau of the Census.

Table 3.—U.S. reexports of abrasive materials, by kind

(Thousands)

		1986	3	1987	
Kind		Quan- tity	Value	Quan- tity	Value
NATURAL					
Industrial diamond, natural or synthetic, powder o Industrial diamond, natural or synthetic, other Emery, natural corundum, pumice in blocks	do	4,324 1,895 145	\$5,959 19,869 264	1,789 1,538 258	\$4,148 15,428 156
MANUFACTURED					
Artificial corundum (fused aluminum oxide)	do	23 122	17 87	181	135 6
Grinding and polishing wheels and stones: DiamondPolishing stones, whetstones, oilstones, hones, s	carats	13	239	4	171
stone	number	4 111	2 453	$\begin{array}{c} 3 \\ 214 \end{array}$	10 847
Abrasive paper and cloth, coated with natural or a	rtificial abrasive do	90	121	133	291
Total		XX	^r 27,011	XX	21,192

^rRevised. XX Not applicable.

Source: Bureau of the Census.

Table 4.—U.S. imports for consumption of abrasive materials (natural and artificial), by kind

(Thousands)

			198	36	1987	
Kind		Quan- tity	Value	Quan- tity	Value	
Emery, flint, r	ottenstone, tripoli, crude or crush	edshort tons	3	\$2,187	8	\$451
Silicon carbide	e, crude	do	76	30,046	84	35,603
Aluminum oxi	e, crudede, crude	do	142	55,884	142	58,541
Other crude a	rtificial abrasives	do	7	719	3	704
Abrasives, gro	und grains, pulverized or refined:			110	J	104
Silicon carl	oide	do	7	10.558	9	11 500
Aluminum	ovido	a	15	13,805	17	11,566
Emery, cor	undum flint garnet other includ	ling artificial	11	10,000	17	16,103
abrasives	undum, flint, garnet, other, includes	ing ai thiciai	2	7 000		
Paners cloths	other materials wholly or northy	encted with meture		7,330	4	9,471
or artificial	shracives	coated with natural	41	100 504		
Jones whetet	ones, oilstones, polishing stones		. (1)	106,704	(¹)	117,208
hracivo who	ls and millstones:	number	3,147	1,745	1,483	1,362
D	and ministones:	***				
Dullandina	manufactured or bound up into mal stone wheels	illistones			4 8 7 1 13	2 to 12
Calid matur	al atamll-	short tons	(2)	20	1	129
Diamond	ai stone wheels	number	816		773	489
Diamond _		do	807	10,553		12.685
Abrasivew	heels bonded with resins			19,642	11,147	21,711
Other	**************************************		(¹)	18,829	(1)	20,777
Articles not sp	ecifically provided for:			,		20,1,1
Limery or g	arnet		(¹)	327	(¹)	708
Natural cor	undum or artificial abrasive mate	rials	(1)	10.251	(1)	
Othernen	f		346			12,319
rit and shot	ncluding wire pellets ral and synthetic: es ort		C ECE	4,275	(1)	5,275
liamond natu	rel and synthetic	pounds	6,767	1,799	5,950	2,236
Diamonddi	ar and symmetric.		10	=00		
Cruchingh		number	13	700	53	1,767
Notural ind	ustrial diamond stones	carats	252	338	327	408
Minora' dia	ustriai diamond stones	do	8,436	61,808	3,322	34,771
Daniers dia	mond	do	472	2,645	³ 551	3,166
rowder and	dust, synthetic	do	29,570	38,018	432,000	43.901
Powder and	dust, natural	do	7,261	7,839	12,677	13,289
m					,	
lotal_			XX	r406,572	XX	424.640

Revised. XX Not applicable.

Source: Bureau of the Census.

TRIPOLI

Fine-grained, porous silica materials are grouped together under the category tripoli because they have similar properties and end uses. Processed tripoli, sold or used, decreased slightly in quantity but increased 6% in value. The value increased 15% for filler material, but for the third consecutive year, decreased slightly for abrasive material.

Because tripoli grains lack distinct edges and corners, they were used as mild abrasives in toothpaste and toothpolishing compounds, industrial soaps, metal and jewelry polishing compounds, and as buffing and polishing compounds in lacquer finishing in the automobile industry. The mineral also was used as a filler and extender in paint, plastic, rubber, and enamels.

The six firms producing tripoli were Malvern Minerals Co., Garland County, AR, which produced crude and finished material; American Tripoli Co., which produced crude material in Ottawa County, OK, and finished material in Newton County, MO; Illinois Minerals Co. and Tammsco Inc., both in Alexander County, IL, which produced crude and finished amorphous (microcrystalline) silica; and Keystone Filler and Manufacturing Co. in Northumberland County, PA, which processed rottenstone, a decomposed fine-grained siliceous shale produced by B. J. Ulrich & Sons, also in Northumberland County, PA.

¹Quantity not reported. ²Less than 1/2 unit.

³Includes 74,077 carats of synthetic miners' diamond.

⁴Includes 403,977 carats of other synthetic diamonds.

Tripoli, paper bags, carload in cents per pound:	
White, Elco, IL:	
Air floated through 200 mesh	3.55
Rose and cream, f.o.b. Seneca, MO.	0.00
and Rogers, AR:	0.00
Once ground	2.90
Double ground	2.90
Air float	3.15
Amorphous silica, 50-pound, bags, f.o.b. El-	
co, IL, in dollars per short ton:	
Through 200 mesh:	
90% to 95%	\$71.00
96% to 99%	72.00
98% to 99.4%	78.00
99.5%	95.00
99.9% passing 400 mesh	128.00
99% below 15 micrometers	137.00
	164.00
99% below 10 micrometers	196.00

Table 5.—Processed tripoli1 sold or used by producers in the United States, by use2

Use	1983	1984	1985	1986	1987
Abrasives short tons Value thousands Filler short tons Value thousands Other short tons Value thousands thousands thousands	38,073 \$3,203 65,138 \$6,077	40,812 \$3,738 65,941 \$6,989	40,022 \$3,670 68,800 \$6,452	36,584 \$3,590 73,908 \$8,588 W	29,362 \$3,089 78,440 \$9,855 W
Totalshort tonsshort tonsthousands	103,211 \$9,280	106,753 \$10,727	108,822 \$10,122	110,492 \$12,178	107,802 \$12,944

W Withheld to avoid disclosing company proprietary data. ¹Includes amorphous silica and Pennsylvania rottenstone.

SPECIAL SILICA STONE PRODUCTS

Production of special silica stone products included oilstones, hones, and whetstones from Arkansas and Indiana, grindstones from Ohio, and deburring media from Arkansas and Wisconsin. Production of special silica stone products dropped, due in large part to displacement in the traditional whetstone, hone, and grindstone markets by manufactured abrasives, industrial diamond, and ceramics.

Four main grades of whetstone were produced, ranging from the high-quality Black Hard Arkansas Stone, with porosity of 0.07% and characterized by a waxy luster, down to the Washita Stone, with a porosity of 16% and resembling unglazed porcelain. The four main types were as follows:

Trade name	Use
Black Hard Arkansas Stone _	Polishing the most per- fect edge possible.
Hard Arkansas Stone	fect edge possible. Polishing blades to a very fine edge.
Soft Arkansas Stone Washita Stone	General purpose. Rapid sharpening.

Table 6.—Special silica stone finished products sold or used in the United States1

Year	Quantity (short tons)	Value (thou- sands)
1983	602	\$3,814
1984	683	3,975
1985	443	1.452
1986	437	4,771
1987	220	2,159

¹Includes grindstones, oilstones, and whetstones. Excludes grinding pebbles and tube-mill liners, and deburring media.

²Partly estimated.

Table 7.—Producers of special silica stone products in 1987

Company and location	Type of operation	Product
Arkansas Oilstone Co.: Hot Springs, AR. (inactive)	Stone cutting and finishing	Whetstones and oilstones.
Arkansas Whetstone Co. Inc.:		
Hot Springs, AR	do	Do.
Do	Quarry	Crude novaculite.
Baraboo Quartzite Co. Inc.:		
Baraboo, WI	Crushing and sizing	Deburring media.
Do	Quarry	Crude silica stone.
Buffalo Stone Corp.: Hot Springs, AR	Tumbling and sizing novaculite.	Metal finishing media and deburring media.
Cleveland Quarries Co.:		
Amherst, OH	Stone cutting and finishing	Grindstones.
Do	Quarry	Crude silica stone.
Dans Whetstone Cutting Co. Inc.:		
Royal, AR	Stone cutting and finishing	Whetstones and oilstones.
Do	Quarry	Crude novaculite.
Halls Arkansas Oilstones Inc.: Pearcy, AR Hindostan Whetstone Co.:	Stone cutting and finishing	Whetstones and oilstones.
Bedford, IN	do	Cuticle stones.
Do	Quarry	Crude silica stone.
Iiram A. Smith Whetstone Co. Inc.:	4	or and billion broile.
Hot Springs, AR	Stone cutting and finishing	Whetstones and oilstones.
Do	Quarry	Crude novaculite.
Vorton Co. Oilstones, Norton Pike Div.:	A(01440110140411001
Hot Springs, AR	do	. Do.
Littleton, NH	Stone cutting and finishing	Whetstones and oilstones.
Pioneer Whetstone Co.: Hot Springs, AR	do	Do.
Poor Boy Whetstones: Hot Springs, AR (inactive)	do	Do.
tobert Lowery: Hot Springs, AR 'aylor Made Crafts Inc.: Lake Hamilton, AR	do	Do.
avlor Made Crafts Inc.: Lake Hamilton, AR	do	Do.
Vallis Whetstone Inc.:		
Malvern, AR	do	Do.
Do	Quarry	Crude novaculite.
Washita Mountain Whetstone Co.: Lake Hamilton, AR	Stone cutting and finishing	Whetstones and oilstones.

Arkansas accounted for 76% of the value and 88% of the total quantity of special

silica stone products sold or used by U.S. producers.

GARNET

The United States continued to be the largest garnet producer and consumer, accounting for about 63% of the world's production; the remainder was produced primarily, in order of size, by India, Australia, China, and the U.S.S.R. A major garnet processing complex was under construction at yearend in Norway. Four domestic producers were active in 1987, two in New York and one each in Idaho and Maine. Barton Mines Corp., Warren County, NY, produced garnet for use in coated abrasives, glass grinding and polishing, and metal lapping. The NYCO Div. of Processed Minerals Inc., Essex County, NY, reported that crude garnet concentrate was recovered as a byproduct at its Wollastonite operation and was sold to a U.S. garnet producer for refinement and sales. Emerald Creek Garnet Milling Co. continued to operate two mines and a single mill in Benewah County, ID, and reported that its garnet was used chiefly in sandblasting and water filtration. Industrial Garnet Extractives Inc., near Rangeley in Oxford County, ME, produced a range of garnet products, which were used mostly in sandblasting and water filtration. At yearend, International Garnet Abrasives had completed construction and began startup procedures for a 10,000-ton-per-year facility to reclaim garnet near Harvey, LA. Commercial operation is planned for 1988.

Production of crude garnet concentrates increased 31% in quantity and 67% in value. The quantity of refined garnet sold or used increased 24% and the value increased about 15% compared with that of 1986. The quantities and values in both crude and refined garnets were record highs.

Table 8.—Garnet sold or used by producers in the United States

Year	Quantity (short tons)	Value (thou- sands)
1983	30,300	\$5,970
1984	27.672	5,677
1985	30,634	6,102
1986	31,856	6,748
1987	39,476	7,744

EMERY

One company, John Leardi Emery Mine, continued to produce emery from a mine near Peekskill in Westchester County, NY. The crude material, an impure corundum containing magnesium-aluminum silicates, was processed by Washington Mills Abrasives Co., North Grafton, MA, and Emeri-Crete Inc., New Castle, NH. Domestic emery was used as an abrasive aggregate for nonskid, wear-resistant floors, pavements, and stair treads. Minor uses of domestic

emery were as coated abrasives and tumbling or deburring media.

World production of emery was primarily from Turkey and Greece. In 1987, production of emery in Turkey was reported as 10,991 short tons, and production in 1986 in Greece was reported to be 8,267 short tons. General Abrasives Co. imported emery from Turkey and Greece, processed it at its Westfield, MA, facility, and distributed the product.

STAUROLITE

Staurolite is a naturally occurring, complex, hydrated aluminosilicate of iron having a variable composition. The mineral most commonly occurs as opaque reddishbrown to black crystals with specific gravity ranging from 3.74 to 3.83 and Mohs' hardness between 7 and 8.

A limited rock-shop trade in cruciform twinned staurolite crystals ("fairy crosses") exists, notably from deposits in Georgia, North Carolina, and Virginia. Staurolite was produced commercially in 1987 by E. I. du Pont de Nemours & Co. Inc.

Staurolite is a byproduct of heavymineral concentrates recovered from a glacial-age beach sand in Clay County, north-central Florida. The staurolite is removed by electrical and magnetic separation after the concentrates have been scrubbed and chemically washed with caustic, rinsed, and dried. The resulting material is comprised of about 77% clean, rounded, and uniformly sized grains of staurolite, with minor proportions of tourmaline, ilmenite and other titanium minerals, kyanite, zircon, and quartz. A nominal composition of this staurolite sand is 45% aluminum oxide (minimum), 18% ferric oxide (maximum), 5% silica (maximum), and 3% zirconium dioxide (maximum).

Although originally marketed only as an ingredient in some portland cement formulations, staurolite is now marketed as a specialty sand under the trade name Biasill

for use as molding material in nonferrous foundries, owing to its low thermal expansion, high thermal conductivity, and high melting point. Its low softening point tends to restrict it to nonferrous casting. Its major use is as an abrasive for impact finishing of metals and sandblasting of buildings under the trade names Starblast (80 mesh) and Biasill (90 mesh). A coarse grade (55 mesh) is also used as an abrasive.

Quantitative production data are withheld from publication to avoid disclosing company proprietary data, but the 1987 production of staurolite decreased 25% from that of 1986; shipments increased 14% in tonnage and 24% in value. Domestic production capacity was slightly under 100,000 tons per year because only one of two producers operated in 1987, and because that producer made a higher purity product, which increased processing losses. The purified product was created in response to the need to lower the free silica content of staurolite used for sandblasting to reduce the risk of silicosis caused by free silica dust.

Staurolite continued to be produced in India in small quantities and sometimes by other nations as well. A significant deposit of staurolite was discovered 125 miles north of Toronto, Canada. The deposit is in a pelite schist and is about 1.5 miles long and 130 feet wide. The material graded 10% magnetite, 25% staurolite, and 5% garnet.

INDUSTRIAL DIAMOND

The four domestic firms that produced synthetic industrial diamond in 1987 were DuPont Industrial Diamond Div., Gibbstown, NJ; General Electric Co. (GE), Specialty Materials Department, Worthington, OH; Megadiamond Industries Inc., a subsidiary of Smith International Inc., Provo, UT; and Valdiamant International, a division of Valeron Corp., Ann Arbor, MI. During 1987, GE purchased Valdiamant's manufacturing facilities and closed and disassembled them. Secondary production of industrial diamond, as reclaimed from used drill bits, diamond tools, and wet and dry diamondcontaining waste, was estimated to be 3.3 million carats.

The National Defense Stockpile of industrial diamonds, as of December 31, 1987, was 22 million carats of crushing bort; however, the 8.5 million carats of stones exceeded the proposed goal of 7.7 million carats. Available for disposal, from enabling legislation effective October 1, 1984, was 0.8 million carats of stone. The inventory of small diamond dies was 25,473 pieces, compared with a goal of 60,000 pieces; however, no purchase authorization was issued. Certain industrial diamond stones in excess of stockpile goals were sold during 1987 to support the program to upgrade ferroalloys.

Exports plus reexports of industrial diamond dust and powder, natural and synthetic, were a record high 56.8 million carats, and the value was a record high \$92.9 million. Exports plus reexports of stone totaled 2.5 million carats valued at \$27.6 million.

The United States remained the largest consumer of industrial diamond. Apparent consumption of natural and synthetic grit, dust, and powder was estimated to be 70.9 million carats, and apparent consumption of natural stones was estimated to be 1.3 million carats. This was the lowest apparent consumption of industrial stones in 48 years.

WORLD REVIEW

De Beers Consolidated Mines Ltd.'s sales of uncut diamonds through the Central Selling Organization in 1987 were reported to be a record high \$3.07 billion compared with \$2.56 billion in 1986, an increase of approximately 20%.

Angola.—Sociedade Portuguesa de Empreendimentas and Endeama (SPE), a Portuguese company, signed a 2-year agreement with the Angolan state mining company to mine and appraise diamonds. SPE will also assist in diamond exploration and

training Angolan personnel.² Angolan diamond production continues to suffer because of the civil war.

Australia.—Argyle Diamond Mines Joint Venture completed the second year of production from the AK-1 lamproite pipe. Production of 30.3 million carats exceeded the planned production of 25 million carats. Additionally, Argyle formed a direct relationship with the Indian diamond cutting trade to upgrade its diamond cutting technology to reduce the amount of Argyle near gem material that is reclassified as industrial because of cutting difficulties.³

Freeport Bow River Properties Inc., the operating company of the Freeport-McMo-Ran Australia Ltd. and Gem Exploration and Minerals Ltd. joint venture, started construction of the Bow River alluvial diamond project. The project will process 4,000 metric tons per day of gravel. Diamond output is expected to exceed 600,000 carats per year. The diamond production is expected to be 18% to 25% gem quality, 65% to 72% near gem quality, and 8% to 10% bort.

Botswana.—Debswana, the Botswana diamond mining company that is a 50-50 joint venture between De Beers and the Government of Botswana, sold its significant diamond stockpile to De Beers for cash and newly issued De Beers shares. The stockpile was estimated to contain a high proportion of large, high-quality gem material. The Government of Botswana now owns 2.6% of De Beers and has the right to appoint two members to the board of directors of De Beers and the De Beers Diamond Trading Co.4

Brazil.—Mining and production started on a diamond-rich kimberlite pipe in the State of Mato Grosso, approximately 20 kilometers from Julina. This is the first production from a kimberlite pipe in Brazil. All production to date was from secondary alluvial sources.

Canada.—Dia Met Minerals of Vancouver continued to negotiate financing for drilling the Jack Kimberlite Pipe in British Columbia. The pipe, 55 kilometers north of Golden, British Columbia, contains minute gem-quality diamonds. The company sampled additional pipes in the area during the summer months. Information from the summer program is not available at this time.

Central African Republic.—African Star Mining Co., a subsidiary of the U.S. firm O'Hara Mining and Drilling Co., established the first large-scale mechanized diamond mining operation in the Central African Republic. Two mines and associated washing plants, with an initial production rate of 2,500 cubic meters per day, were under construction with production to begin in early 1988. Annual production is expected to be approximately 670,000 carats per year, 200% of the current total production of the Central African Republic.

China.—Boarara Mining Ltd. of Australia entered into an agreement with Southolme Ltd. of Hong Kong to explore and develop diamond projects in Hunan Province in China. Diamonds are found along the 1,000-kilometer length of the Yuan Jiang River terraces and channels, which are often 20 to 30 meters deep and up to 300 to 400 meters wide. The terraces have been mined for years by local farmers. A source pipe for the diamonds has not been found.

The Yuan Jiang River Alluvial Project, a joint venture between City Resources (Asia) Ltd. (a subsidiary of the Australian company, City Resource Ltd.), China Hunan International Development Corp. and China Geology Import and Export Group, was formed to explore for and produce diamonds and gold on the lower reaches of the Yuan Jiang River. City Resources will supervise and control the work, and the Chinese partners will furnish the labor force. The project area is approximately 120 square kilometers.

Indonesia.—Acorn Securities Ltd. continued negotiations with the Government of Indonesia for a long-term production agreement for the Southeast Kalimantan diamond project. The first parcel of diamonds from the project, 1,032 carats, was evaluated at an average value of \$170 per carat. The parcel of 6,342 stones was 97% gem quality. Acorn has a reserve base of 16 million cubic meters with an average grade of 0.2 carats of diamond, 80 milligrams of gold, and 20 milligrams of platinum per cubic meter.

Sierra Leone.—Diamond Corp. a subsidiary of De Beers, negotiated with the Government of Sierra Leone regarding a \$3 million loan to rehabilitate the mining equipment for the National Diamond Mining Co.'s operations at Yengema.⁵ Oliver Resources PLC, through its Sierra Leone subsidiary, was granted exclusive gold and diamond licenses on about 78 square kilometers of alluvial deposits along tributaries of the Pampana River.

South Africa, Republic of.—Thirteen additional marine diamond concessions were allocated off the South African west coast. Fourteen companies or individuals are

working the concessions that were issued in 1983-84. The 1987 marine diamond production was estimated at 55,000 carats. De Beers began procedures to reactivate the Koffiefontein Mine in the Orange Free State. The mine, idle since 1982, is expected to be back in production in early 1988.

TECHNOLOGY

A British firm developed a polycrystalline diamond (PCD) tipped sawblade for cutting melamine PVC and Formica-faced chipboard used in the manufacture of furniture. The PCD tipped blades replaced carbide tipped blades, which had to be sharpened every 3 to 4 hours. The PCD was used continuously for 6 months before a regrind was necessary.

A British manufacturer of ironing boards made from chipboard was using a tungsten-carbide tooled profiling router. The tungsten-carbide cutter had a life between regrinds of 150 boards. The tungsten-carbide tools were replaced by Syndite PCD tooling resulting in a 98% savings in manufacturing cost per board by increasing the regrind intervals from 150 boards to 30,000 boards.

Pennsylvania State University developed a method for depositing diamond-type coatings on silicon and other materials. The diamond coatings' electric- and heat-conducting properties are suitable for coating computer chips. The diamond coatings, created by passing methane and hydrogen through a microwave plasma, were chemically and structurally identical to natural diamond.⁵

A U.S. firm developed a thermally stable, continuously self-sharpening PCD compact for implanting into drill bits. Comparison tests between drill bits using the PCD compacts and natural diamonds demonstrated that the PCD compacts averaged 57% higher penetration rates, 277% longer bit life, and reduced bit costs to \$6.35 per foot as opposed to \$11.00 per foot.

Table 9.—U.S. imports for consumption of industrial diamond (excluding diamond dies)

(Thousand carats and thousand dollars)

Year	Quantity	Value
1983 1984 1985 1986	24,877 43,710 46,222 45,991 48,877	88,617 113,632 127,191 110,648 95,559

Table 10.—U.S. imports for consumption of industrial diamond, by country.

(Thousand carats and thousand dollars)2

Country	Natura (i eng	Natural industrial diamond stones (including glazers' and engravers' diamond, unset) (520,2900) ³	ustrial diamon ding glazers' ar rs' diamond, ur (520.2900)³	d stones nd nset)	, N	Miners' ortural and 0.1900 and	Miners' diamond Natural and synthetic* (520.1900 and 520.2340) ³	c.* 0)3	(520.	Diamond powder and dust, synthetic 2000, 520,2020, 520,2040, 520,2060, 520,2100) ³	1 powder synthetic 2020, 520. 520.2100)	2040,	Dian	nond pow	Diamond powder and dust, natural (520,2800) ³	ust,
	11	1986	19	1987	19	1986	19.	1987	16	1986	19	1987	1986	99	1987	87
	Quantity	Value	Quantity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan-	Value	Quan- tity	Value
Australia. Belgium-Luxembourg Canada China. Congo Frinland France Germany, Federal Republic of	72 970 71 71 8 8 2 71	154 8,132 121 121 22 22 85 40 232	553 22 2 2 2 2 42 156	4,653 166 13 58 58 16 490 1,826	20	281 18 102	333 331 118 113 113	423 4 4 57 180	330 380 38 38 181	10 853 36 36 112 251	459 70 23 23 30 1,044	763 59 42 42 9 379	1,084 1,118 174	801	703 208 208 6 43 108 794	833 326 326 260 260 889
Hong Kong Hong Kong Iran Iran Israel Israel Israel Janan	247 330 138 90 46	142 165 1,199 190 1462	20 201 201 6	66 69 924 303	113	727 11 11 15	86 154 	313 1,011	857 82 21,205 148 337	446 -173 173 32,351 56 108	525 (*) (*) 22,751 45 361	240 11 37,925 84 84 226	982	1,369	4,038 (5) (5) 25	3,253 24 51
Mexico Netherlands South Africa, Republic of Viscarland U.S.S.R. United Kingdom	$\begin{array}{c} 10 \\ 151 \\ 3,556 \\ 20 \\ \hline 1,975 \\ \end{array}$	$\begin{array}{c} 84 \\ 1,191 \\ 37,622 \\ 793 \\ 6,4\overline{18} \end{array}$	60 131 4 1 806	642 $1,539$ 326 68 $14,594$	1 1 1 8	378	1 1 1 1 1 1 1 1	18 18 135	4,261 1 64 426 62 1,136	2,113 5 194 379 17 609	299 299 391	3,000 12 148 102 308	1,316 19 611 461	$^{419}_{139}$ $^{382}_{581}$ $^{581}_{1,0\overline{16}}$	1,405 -7 210 1,206 844	$\begin{array}{ccc} 620 \\ \\ 112 \\ 175 \\ 372 \\ 1,884 \end{array}$
Venezuela Zaire Other Africa, n.e.c ⁶	8 571 38 51	978 1,672 319 753	1,203 6 104	7,581 177 532	198	1,070	134 106	6 702 <u>257</u>	(5) 13 43 314	32 20 88 33 35 35 35 35 35 35 35 35 35 35 35 35	(2) 3 3 888	$\begin{array}{c}\\ 7\\ 1\\ 585 \end{array}$	381	728	2,664 6 405	3,828 63 382
Total ⁶	8,436	61,808	3,322	34,771	472	2,645	587	3,166	29,570	38,018	32,000	43,901	7,261	7,839	12,677	13,289

¹Excludes 390,400 carats of crushing bort from Belgium-Luxembourg, Canada, Japan, the Republic of South Africa, and the United Kingdom in 1986, and 251,600 carats from Belgium-Luxembourg, Japan, and the Netherlands in 1987.

²Customs value.

³TSUS No. Hocludes 111,000 carats of synthetic miners' diamonds in 1986. Sess than 11.2 unit. ⁶Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 11.—Diamond (natural): World production, by country and type1

(Thousand carats)

1		1983			1984			1985			1986P			1987e	
Country	Gem²	Indus- trial	Total	Gem	Indus- trial	Total	Gem	Indus- trial	Total	Gem ²	Indus- trial	Total	Gem²	Indus- trial	Total
Angola	775	259	1,034	652	250	905	464	250	714	240	2	e250	180	101	190
Australia	3,720	2,480	6,200	3,415	2,277	5,692	4,242	2.828	7.070	13.145	16.066	29.211	313.650	316.683	330.333
Botswana	4,829	5,905	10,731	5,810	7,104	12,914	6,318	6,317	12,635	9,610	3,500	13,110	39,367	33.840	313.207
Brazil	08	450	230	200	220	750	233	217	450	r310	1315	625	320	325	645
Central African Republic	230	65	295	236	101	337	190	82	277	259	66	358	245	102	350
China	200	800	1,000	200	800	1,000	200	800	1,000	200	800	1,000	200	008	1,000
Ghana	34	306	340	32	311	346	. 60	r572	632	. 20	$^{\mathbf{r}}$	260	09	540	009
Guinea	23	17	e40	44	က	47	123	6	132	6	14	204	3163	312	3175
Guyana	2	2	10	9	∞	14	4	2	11	က	9	6°	4	7	11
India	12	23	14	13	27	15	14	2	16	$^{r}13$	7	15	13	81	15
Indonesia	2	22	22	2	22	27	2	22	27	ū	55	27	ro	25	30
Ivory Coast ⁴	NA	ΝĄ	NA	r20	r5	¹ 25	¹ 15	r.	r 20	r 10	14	r14	15	100	20
Liberia	132	198	330	108	132	240	99	72	138	63	189	252	9	190	250
Namibia	915	84 9	963	884	46	930	865	45	910	r970	r 40	1,010	980	40	$^{3}1,020$
Sierra Leone	242	103	345	240	105	345	243	106	349	215.	100	315	200	100	300
1 · · · · · · · · · · · · · · · · · · ·															
South Africa, Republic of: Finsch Mine	1.765	3 278	5 043	1 714	3 184	4 898	1 770	3 184	1 954	F1 291	F9 900	000	1 455	9 701	34.156
Premier Mine	800	1.844	2.644	765	1.785	2.550	820	1,864	2,684	1,021	r, 977	9,850	775	1,101	39.485
Other De Beers properties ⁵	1,400	569	1,969	1,452	593	2,045	1.500	569	2,069	r1.428	1529	1.957	1 497	546	31 973
Other	589	99	655	282	65	650	460	32	495	r342	r41	383	409	30	439
Total	4,554	5,757	10,311	4,516	5,627	10,143	4,550	5,652	10,202	r4.473	r5,755	10.228	4.063	4.990	39.053
	15	1	1	7	10	17	6	12	21	17	83	e40	17	83	40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	183	18	261	193	84	277	165	1 2	236	r133	r57	190	133	22	190
U.S.S.R.	3,700	7,000	10,700	4,300	6,400	10,700	4,400	6,400	10,800	4,400	6,400	10,800	4,900	7,100	12,000
venezuela	45	234	279	40	232	272	32	180	215	r45	$^{-189}$	234	20	200	250
Zaire	3,355	8,627	11,982	5,169	13,290	18,459	4,032	16,127	20,159	4,661	18,643	23,304	4,670	18,680	23,350
Total	23,039	32,353	55,392	^r 26,093	r37,359	· r63,452	26,233	39,781	66,014	39,012	52,744	91,756	39,295	53,734	93,029

^eEstimated. ^PPreliminary. ^rRevised. NA Not available.

¹Table includes data available through June 3, 1988. Total diamond output (gem plus industrial) for each country is actually reported except where indicated by a footnote to be estimated. In contrast, the detailed separate production data for gene diamond and industrial diamond are Bureaue of Mines estimates in the case of every country except Australia (1983-87), Botswana (1987-87), and Liberia (1984-86), for which source publications give details on grade as well as totals. The estimated distribution of total output between gem and industrial diamond is conjectural and, for most countries, is based on the best available data at time of publication.

²Includes near gem and cheap gem qualities. ³Reported figure.

frigures are estimated based on reported exports and do not include smuggled diamonds.

*Other De Beers Group output from the Republic of South Africa includes Kimberley Pool, Koffiefontein Mine, and the Namaqualand Mines.

MANUFACTURED ABRASIVES

Manufactured abrasives production experienced a mixed year. For silicon carbide, the quantity and value increased; for fused aluminum oxide, the quantity decreased and value increased; and for metallic abrasives, the quantity and the value increased. In the aggregate, production was essentially unchanged in quantity, but the value increased 5%.

At yearend, four firms were producing fused aluminum oxide at eight plants in the United States and Canada. Production was at 61% of furnace capacity. Reported production of high-purity material increased 31% in quantity and 25% in value compared with that of 1986. Production of regular material decreased 8% in quantity but increased 9% in value to 124,174 tons and \$47.4 million. Almost all of the combined output of high purity and regular material was for abrasive applications. One firm reported shipping a quantity of regular material for refractory manufacture. Reported yearend stocks totaled 5,822 tons, a decrease of 72% compared with that of 1986.

One firm produced fused alumina-zirconia in two plants, one each in the United States and Canada. All production was used for abrasive applications. Output increased in both tonnage and value compared with that of 1986.

At yearend, four firms were producing silicon carbide in six plants in the United States and Canada. The companies produced crude material for abrasives, refractories, metallurgical uses, and other applications. Total production was 87% of furnace capacity. Output and value during the year increased slightly to 125,000 tons and \$48.8 million. Abrasive use accounted for about 44% of the output, metallurgical use accounted for 55% of output, and refractory and other uses were 1%. Yearend stocks totaled 13,644 tons, a decrease of 25% compared with that of 1986. Cold Spring Granite Co., Cold Spring, MN, and Northern Recovery Systems Inc., Barre, VT, both recovered silicon carbide from the stone cutting industry. The recovered silicon carbide was sold for metallurgical and refractory uses.

The National Defense Stockpile, as of December 31, 1987, contained 249,867 tons of crude fused aluminum oxide and 50,786 tons of abrasive grain-fused aluminum oxide. The crude and grain-fused aluminum

oxide was being held as an offset against 379,253 tons of bauxite abrasive grain objective. Silicon carbide stocks were 72,950 tons, and the goal was 29,000 tons.

Metallic abrasives were produced by 11 firms in 12 plants in the United States. Steel shot and grit comprised 92% of the total quantity and 90% of the total value of metallic abrasives sold or used; the balance included chilled iron shot and grit, annealed iron shot and grit, cut wire shot, and steel shot and grit reclaimed by a primary producer. The following six States, in decreasing order of quantity, supplied 100% of the total sold or used steel shot and grit: Michigan, Ohio, Pennsylvania, Virginia, Maryland, and Indiana.

Chilled and annealed iron shot and grit was produced by two companies, one each in Indiana and Ohio. Cut wire shot production was reported by two firms, one in Michigan and one in New York.

WORLD REVIEW

India.—Norton closed one of its two silicon carbide manufacturing facilities and reduced production to 3,000 tons per year at the other plant. Apparently, a power cost escalation of 40% was the reason for the decrease in production. It was more cost effective to import silicon carbide than to manufacture it.¹⁰

Japan.—Silicon carbide production has been reduced from 115,000 tons per year to an effective capacity of about 50,000 tons per year. Domestic production in 1986 and 1987 was approximately 30,000 tons. It was more economical in 1987 to import silicon carbide, 80% of which was from China, than to manufacture the material domestically.

Norway.—Norton Co. purchased Arendal Smeltewerk A/S of Wydehavn, a major producer of high-quality silicon carbide. The acquisition was made through the purchase of 95% of the foreign-owned shares of Arendal. The Government of Norway, which must approve the sale of Norway-based companies to overseas interests, did not object.¹²

TECHNOLOGY

Silicon carbide ceramic armor, similar to compositions used in kiln furniture, is being used in place of the more expensive boron carbide for armor plating in certain military applications. This includes helicopter armor plating, nose cones of rockets, and other classified applications.13

A British firm began manufacturing large complex silicon carbide shapes for lining equipment subject to highly corrosive and erosive conditions, such as cyclones, micronizer mills, classification equipment, slurry pumps components, and venturis and nozzles.14

239, Aug. 1987, p. 9. ⁵Mining Journal (London). Development. V. 309, No. 7931, Aug. 21, 1987, p. 141.

⁶Industrial Diamond Review. News. V. 47, No. 523, June

⁷Indiaqua. Woodworking With PCD tools. No. 48, 3d quarter-1987, p. 106.

*Research & Development. Coatings. V. 29, No. 7, July

1987, p. 44.

¹⁸⁰Industrial Minerals (London). Processing/Equipment.
 No. 241, Oct. 1987, p. 78.
 ¹⁰Dickson, T. Silicon Carbide-Potential in Maturity. Ind.

Miner. (London), No. 234, pp. 63-77.

11 Page 64 of work cited in footnote 10.

¹²Industrial Minerals (London). Filler/Extender. No.

236, p. 42.

13 Mining Magazine (London). MINPREP 87. Apr. 1987, p. 323.

14Work cited in footnote 13.

Table 12.—Crude artificial abrasives manufacturers in 1987

Company	Location	Product
Electro Minerals (Canada) Ltd	Niagara Falls, Ontario, Canada	Fused aluminum oxide (regular).
Electro Minerals (U.S.) Inc	Niagara Falls, NY	Fused aluminum oxide (high-purity).
The Exolon-ESK Co	Hennepin, IL	Silicon carbide.
Do	Thorold, Ontario, Canada	Fused aluminum oxide (regular) and silicon carbide.
General Abrasives, a division of Dresser Industries Inc.	Niagara Falls, NY	Fused aluminum oxide (regular and high- purity).
Do	Niagara Falls, Ontario, Canada	Fused aluminum oxide (regular) and silicon carbide.
Norton Co	Huntsville, AL	Fused aluminum oxide (high-purity) and aluminum-zirconium oxide.
Do	Worcester, MA	General abrasive process- ing.
Do	Cap-de-la-Madeleine, Quebec, Canada	Silicon carbide.
Do	Chippewa, Ontario, Ćanada	Fused aluminum oxide (regular and high- purity) and aluminum- zirconium oxide.
Do	Shawinigan, Quebec, Canada	Silicon carbide.
Superior Graphite Co	Hopkinsville, KY	Do.
Washington Mills Abrasives Co	Niagara Falls, Ontario, Canada	Fused aluminum oxide (regular).

Table 13.—Producers1 of metallic abrasives in 1987

Company	Location	Product (shot and/or grit)
Abrasive Materials Inc	Hillsdale, MI	Cut wire, steel.
Chesapeake Specialty Products		Steel.
Durasteel Co	Pittsburgh, PA	Do.
Ervin Industries Inc	Adrian, MI	Do.
Do		Do.
Globe Steel Abrasives Co	Mansfield, OH	Do.
Metaltec Steel Abrasives Co	Canton, MI	Do.
National Metal Abrasive Co	Wadsworth, OH	Do.
The Pangborn Co		Do.
Pellets Inc	Tonawanda, NY	Cut wire.
Steel Abrasives Inc	Fairfield, OH	Chilled iron.
J.S. Abrasives Inc.	Tippecanoe, IN	Chilled and annes
Wheelabrator-Frye Inc	Bedford, VA	Steel.

¹Excludes secondary (salvage) producers.

¹Physical scientist, Branch of Industrial Minerals. ²Industrial Minerals (London). Co. News. No. 240, Sept.

^{1987,} p. 101. ³Jewelers' Circular-Keystone. V. 157, No. 5, May 1987,

p. G.

Industrial Minerals (London). World of Minerals. No.

Table 14.—Crude manufactured abrasives produced in the United States and Canada, by kind

(Thousand short tons and thousand dollars)

Kind	 1983	1984	1985	1986	1987
Silicon carbide ¹	109	137	. 113	124	125
Value	\$52,016	\$57,125	\$42,563	\$48,064	\$48,790
	137	177	169	151	144
Value	\$50,565	\$63,818	\$54,061	\$50,584	\$56,393
Aluminum-zirconium oxide	W	W	W	W	W
Value	W	w	w	W	W
Metallic abrasives ²	172	217	197	208	217
Value	 \$64,849	\$82,288	\$75,349	\$75,210	\$76,856
Total ³	 418	531	479	483	486
Total value ³	 167,430	203,231	4171,974	173,858	182,039

W Withheld to avoid disclosing company proprietary data.

⁴Data do not add to total shown because of independent rounding.

Table 15.—End uses of crude silicon carbide and aluminum oxide (abrasive grade) in the United States and Canada, as reported by producers

		1986		1987			
Use	Quantity (short tons)	Value (thousands)	Yearend stocks (short tons)	Quantity (short tons)	Value (thousands)	Yearend stocks (short tons)	
SILICON CARBIDE		1 1 1 1 1 1					
Abrasives Metallurgical Refractories and other	47,248 63,293 13,407	\$19,973 22,719 5,372	9,858 5,545 2,743	54,599 69,109 1,302	\$23,128 25,049 613	9,127 4,298 219	
Total	123,948	48,064	18,146	125,010	48,790	13,644	
ALUMINUM OXIDE							
Regular: Abrasives plus refractories ¹ High purity	135,301 15,251	43,347 7,237	18,961 2,058	124,174 19,946	47,354 9,039	5,560 262	
Total	150,552	50,584	21,019	144,120	56,393	5,822	

¹Abrasives combined with refractories to avoid disclosing company proprietary data.

Table 16.—Production, shipments, and annual capacities of metallic abrasives in the United States, by product1

	Produc	tion	Shipn	nents	Annual	
Product	Quantity	Value	Quantity	Value	capacity ²	
	(short	(thou-	(short	(thou-	(short	
	tons)	sands)	tons)	sands)	tons)	
1986: Chilled iron shot and grit Annealed iron shot and grit Steel shot and grit Other ³	W	W	W	W	W	
	W	W	W	W	W	
	184,416	\$59,654	192,457	\$67,505	277,600	
	14,718	6,023	15,903	7,705	18,100	
Total	199,134	65,677	208,360	75,210	XX	
1987: Chilled iron shot and grit Annealed iron shot and grit Steel shot and grit Other ³	W	W	W	W	W	
	W	W	W	W	W	
	200,255	56,371	198,743	68,885	253,800	
	18,470	62,410	18,569	7,971	XX	
	218,725	118,781	217,312	76,856	XX	

W Withheld to avoid disclosing company proprietary data; included with "Other." XX Not applicable.

¹Excludes secondary (recycle) producers.

Figures include material used for refractories and other nonabrasive purposes.

Shipments for U.S. plants only.

Excludes U.S. and Canadian production and value of aluminum-zirconium oxide.

^{*}Total quantity of the various types of metallic abrasives that a plant could have produced during the year, working three 8-hour shifts per day, 7 days per week, allowing for usual interruptions, and assuming adequate fuel, labor, and transportation.

3Includes cut wire, aluminum, stainless steel shot, and data indicated by symbol W.

Aluminum

By Patricia A. Plunkert¹

The domestic aluminum industry improved markedly in 1987. A strong increase in demand and declining inventories prompted the restart of idled primary aluminum metal capacity and by yearend smelters were operating at close to their full capability. The tight supply contributed to a rapid rise in aluminum ingot prices both domestically and overseas. The increase in world demand and lower value of the dollar overseas prompted a significant increase in U.S. exports. The buying price for used beverage can (UBC) scrap increased significantly and

just over one-half of all aluminum cans shipped during the year were recycled.

Domestic Data Coverage.—Domestic production data for aluminum are developed by the Bureau of Mines from two separate, voluntary surveys of U.S. operations. Typical of these surveys is the "Aluminum's survey. Of the 12 companies to which monthly survey requests were sent, all responded, representing 100% of the total domestic primary aluminum production shown in tables 1, 6, and 14.

Table 1.—Salient aluminum statistics

(Thousand metric tons and thousand dollars unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Primary production	3,353	4,099	3,500	3,037	3,343
Value	\$5,754,298	\$7,319,844	\$6,249,614	\$5,422,993	\$5,328,300
Price: Average cents per pound:					
Producer list	77.8	81.0	81.0	¹ 81.0	NA
Market (spot)	68.3	61.1	48.8	55.9	72.3
Secondary recovery ²	1,564	1,760	1,762	1.773	1.986
Exports (crude and semicrude)	776	734	908	1,773 753	1,986 916
Imports for consumption (crude and semicrude)	1,091	1,477	1,420	1,967	1,849
Aluminum industry shipments ³	5,857	6,552	6,382	6,545	P6,813
Consumption, apparent	5,035	5,279	5,174	5,143	5,469
World: Production	r _{13,904}	r _{15,714}	15,367	P15,341	e16,016

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

industry coverage.

To domestic industry.

Legislation and Government Programs.—In July, the Southwire Co. filed a petition with the U.S. Department of Commerce on behalf of the U.S. redraw rod industry alleging that manufacturers, producers, or exporters of redraw rod in Venezuela received subsidies and that such imports caused or threatened injury to the U.S. industry. In October, Commerce issued

a preliminary determination that electrical conductor aluminum redraw rod from Venezuela was subsidized and imposed an immediate 12.99% ad valorem duty deposit on these imports. Commerce expected to make a preliminary determination on the dumping charges and a final determination on the subsidy allegations in 1988.

¹Based on 7 months in 1986.

²Beginning with 1984, metallic recovery from purchased, tolled, or imported new and old aluminum scrap expanded for full industry coverage. Prior to 1984, aluminum recovered from all types of purchased scrap not expanded for full industry coverage.

DOMESTIC PRODUCTION

Primary.-Increased demand and declining inventories encouraged the restart of smelting capacity that had been temporarily shut down and in the case of the Aluminum Co. of America (Alcoa) permanently closed the year before. By yearend 1987, the operating capacity of U.S. primary smelters was about 94% with 233,000 tons3 of the 3.9 million tons of annual capacity shut down, compared with 71.8% of the 4 million tons operational at yearend 1986. The status of the primary industry at yearend 1987 was 1 smelter temporarily closed, 7 operating at reduced capacity, 14 operating at full capacity, and 2 operating above full-capacity levels.

Alcoa announced the temporary restart of 145,000 tons of annual capacity that had been permanently closed in 1986. The company attributed the temporary restart of 40,000 tons per year of primary metal capacity at the Alcoa, TN, smelter to strong demand and the loss of metal output from its Suriname smelter, which had been idle since January 1987. The revival of 105,000 tons of annual capacity at its Rockdale, TX, plant was attributed to high metal prices and the inability to sell unused power dedicated to the Rockdale smelter.

In the second quarter of 1987, Kaiser Aluminum & Chemical Corp. wrote off the remaining 105,000 tons per year of capacity at its idle Chalmette, LA, smelter. A 38,000-ton-per-year potline at the Ravenswood, WV, smelter, which had been idled following a power outage in 1981, was also written off.

Commonwealth Aluminum Corp. announced the sale of its Goldendale, WA, primary aluminum smelter to Columbia Aluminum Corp. of Hermiston, OR. The smelter was expected to be operated on a tolling basis, using alumina input from Norsk Hydro A/S of Norway. By yearend, two of the smelter's three potlines were operational.

Alcoa reported the sale of its Vancouver, WA, smelter to Vanalco Inc., a private group of investors. The Vancouver smelter was the fourth smelter in the Pacific Northwest to shift to independent operation since 1985. However, unlike the other three smelters—Columbia Falls, MT, Goldendale, WA, and The Dalles, OR—which were designed as tolling operations, Vanalco expected to produce metal for its own account.

By yearend, three of the smelter's five potlines were operating.

In December, Clarendon Ltd. reported the purchase of a 27% equity interest in Alumax Inc.'s Mount Holly, SC, primary smelter. One-half on Mount Holly's capacity was previously covered by a 10-year tolling agreement between the two companies.

Workers at Alumax's Ferndale, WA, smelter ratified a new 3-year agreement reached between representatives of the company and the Bellingham Metal Trades Council. According to company officials, the new contract, which maintained the basic wage rate of \$13 per hour but cut extended vacations and vacation bonuses, was expected to improve the cost effectiveness of the plant. The contract was scheduled to run through September 26, 1990.

Power rates to two primary aluminum smelters-Alcan Aluminum Corp.'s Sebree, KY, plant and National Southwire Aluminum Co.'s Hawesville, KY, smelter, serviced by the Big Rivers Electric Corp.—were raised in September after months of court battles. The Kentucky Public Service Commission (PSC) approved a demand charge increase and a variable power-rate plan that linked energy charges to aluminum ingot prices. The demand charge to the two aluminum smelters rose from \$6.25 per kilowatt to \$7.50 per kilowatt. The flexible power rate provided for a 32 mills per kilowatt hour (mills/kW•h) power charge when the monthly average of the Metals Week U.S. transaction price for aluminum ingot was at 62 cents per pound for the month billed. The energy charge would rise 0.7 mill/kW•h for each 1-cent-per-pound increase in ingot prices above the pivot price of 62 cents per pound, until the power ceiling rate of 44 mills/kW•h was reached. Power rates would fall 0.8 mill/kW•h for each penny decrease in ingot prices below the pivot price to a floor rate of 18.1 mills/ kW•h. Both the smelters and Big Rivers have filed suits in an attempt to overturn the PSC-approved rate increases. At yearend, the suits were still pending in the State circuit court.

The Kentucky smelters, which comprised about 9% of the total U.S. primary metal capacity and consumed about 70% of the power generated by Big Rivers, claimed that these increased power costs threatened their viability. A comparison of Kentucky

power costs and the power costs at the Pacific Northwest aluminum smelters serviced by the Bonneville Power Administration (BPA), another variable power-rate source, shows that with aluminum ingot prices in and above the 80-cent-per-pound range, power charges at both the Kentucky and Pacific Northwest smelters were at the ceiling rate. However, the Kentucky power chain rate of 44 mills/kW•h was more than 50% above the BPA ceiling rate for 1987 of 28.6 mills/kW•h.

Alcan Aluminum and Toyo Aluminium K.K. (Toyal) reportedly agreed to form a joint venture, Alcan-Toyo America Inc., to produce and market aluminum powder and paste in the United States. Toyal would own 80% and Alcan Aluminum 20% of the joint venture. Alcan Aluminium Ltd., the parent company of Alcan Aluminium, owned 50% of Toyal. Under the agreement, Alcan Aluminium's existing Joliet, IL, powder plant would be sold to Alcan-Toyo. Pending arrangement of appropriate financing, Alcan-Toyo reportedly planned to expand the Joliet plant by adding a production line for automotive finish aluminum paste.

Alcan Rolled Products Co. announced plans to eliminate specialty and general sheet production at its Terre Haute, IN, plant and to concentrate on producing aluminum foil for the containers and packaging markets. The company cited the age and limitations of equipment at the plant as the reason for the decision.

Alcoa dedicated its \$150 million continuous cold mill in Alcoa, TN, which company officials predicted would eventually produce all of the company's drawn and ironed beverage can body stock. The sister plant in Warrick, IN, reportedly would focus its production on can end stock. When fully operational, the Tennessee cold mill was expected to produce more than 700 million pounds of can stock annually.

Alcoa also announced the addition of a new wide cold-rolling mill as part of its announced modernization program for the Davenport, IA, works. Davenport, unlike Alcoa's can stock-dedicated mills in Warrick, IN, and Alcoa, TN, was a multipurpose unit, reportedly manufacturing products in 2,400 different shapes and sizes fabricated from 83 different alloys. The cold mill was expected to come on-stream in 1989.

Alumax announced plans to close its extrusion plant in Rockwall, TX, at yearend. The extrusions produced were reportedly for the housing industry. The company cited the area's depressed business conditions

and unsatisfactory losses as reasons for its decision.

As part of its restructuring and reorganization plan, Kaiser announced the sale and closure of several fabricating plants during 1987. Kaiser confirmed the closure of two of the company's three electrical conductor plants, San Leandro, CA, and Portsmouth, RI. The third plant, in Bay Minette, AL. reportedly was being run at a reduced rate. Kaiser also announced the sale of most of its food-service aluminum foil and foil container business to Packaging Corp. of America. The operations reportedly included a plant in Wanatah, IN; a small manufacturing facility in Bensenville, IL; food service production equipment at Permanente, CA: and product inventories.

In a move designed to increase its share of the aluminum beverage can stock market, Kaiser announced plans to install a highspeed, wide-coil coating line at its Trentwood, WA, rolling mill. The new line reportedly would be able to make coated aluminum coils up to 60 inches wide for beverage can ends.

National Aluminum Corp. officially opened a new extrusion plant in Anniston, AL, which reportedly could produce in excess of 60 million pounds of extrusions per year for use in the construction industry. The company stated that 70% of its extrusion market was in the Southeastern United States and that the company would concentrate its extrusion business in this area. As a result, the company reported the sale of its extrusion plant in Indianapolis, IN, along with a foil-rolling facility in Danbury, CT, to Worldmark Materials Corp., and the closure of its Murrysville, PA, extrusion plant.

Large overseas-based casting companies announced plans to produce aluminum castings for the U.S. automotive industry. Teksid Aluminum Foundry, a partnership of the Fiat Group and Wabash Alloys Inc., reportedly opened a plant in Dickson, TN, to produce aluminum cylinder head castings under contract for General Motors Corp. (GM) and Chrysler Corp. When fully operational, the Dickson plant would have the capacity to produce 800,000 cylinder heads per year. Founderies Montupet of France announced plans to construct a plant in the United States to produce medium to large automotive castings. The plant reportedly would produce aluminum intake manifolds initially and then gradually would move to large components, such as cylinder heads. Montupet exported aluminum intake manifolds to several Ford Motor Co. plants in the United States and Mexico. Ryobi Ltd., the largest aluminum castings producer in Japan, joined with Sheller Globe Corp. and reportedly produced aluminum transmission cases for Ford and GM at a plant in Shelbyville, IN. These and several smaller foundries reportedly have edged into the North American market to take advantage of a pronounced trend toward lightweight aluminum castings in the automotive industry.

Table 2.—Primary aluminum production capacity in the United States, by company

Company	Yearend capacity (thousand metric tons)		1987 ownership (percent)
	1986	1987	
Alcan Aluminum Corp.:			
Sebree, KY	163	163	Alcan Aluminium Ltd., 100%.
Alumax Inc.:1			
Ferndale, WA (Intalco)	254	254	AMAX Inc., 100%.
Frederick, MD (Eastalco)	160	160	Do.
Mount Holly, SC	181	181	Amax, 73%; Clarendon Ltd., 27%.
Total	595	595	
Aluminum Co. of America:	,		
Alcoa, TN	160	160	Aluminum Co. of America, 100%.
Badin, NC	115	115	Do.
Badin, NC Evansville, IN (Warrick)	270	270	Do.
Massena NY	127	127	Do.
Rockdole TX	205	205	Do.
Massena, NY Rockdale, TX Wenatchee, WA	205	205	Do.
taran da antara da a	1.082	1,082	
TotalColumbia Aluminum Corp.:2	-,		
Goldendale, WA	168	168	Columbia Aluminum Corp., 70%; employees, 30%.
Columbia Falls Aluminum Co.: Columbia Falls, MT	163	163	Montana Aluminum Investors
Columbia Pans, W1	100	100	Corp., 100%.
Kaiser Aluminum & Chemical Corp.:			
Chalmette, LA ³	105		Kaiser Aluminum & Chemical Corp., 100%.
Mead, WA (Spokane)	200	200	Do.
Ravenswood, WV	148	110	Do.
Tacoma, WA	73	73	Do.
Total	526	383	
National-Southwire Aluminum Co.: Hawesville, KY	172	172	National Steel Comp. 50%
•	112	172	National Steel Corp., 50%; Southwire Co., 50%.
Voranda Aluminum Inc.: New Madrid, MO	204	204	Noranda Mines Ltd., 100%.
New Madrid, MO Northwest Aluminum Corp.: ⁴	22		35 11 35 111 0 0000
The Dalles, OR	82	82	Martin Marietta Corp., 87.2%; private interests, 12.8%.
Ormet Corp.: Hannibal, OH	245	245	Ohio River Associates Inc., 100%.
Revere Copper and Brass Inc.:5			•
Scottsboro, AL	105	105	Revere Copper and Brass Inc., 100%.
Reynolds Metals Co.:	101	101	P. 11 M. 1 G. 1000
Longview, WA	191	191	Reynolds Metals Co., 100%.
Massena, NY Troutdale, OR	114 118	114 118	Do. Do.
-			100.
Total Vanalco Inc.: ⁶	423	423	
Vancouver, WA	110	110	Vanalco Inc., 100%.
Grand total	4.038	3,895	

¹AMAX Inc. purchased 45% from Mitsui & Co. and 5% from Nippon Steel Corp. in Nov. 1986.

²Purchased from Comalco Pty. Ltd. in Aug. 1987.

³Kaiser Aluminum & Chemical Corp. wrote off 131,000 tons of annual capacity in Nov. 1986 and the remaining 105,000

tons in July 1987.

4Northwest Aluminum Corp. signed a lease-purchase agreement for The Dalles smelter with Martin Marietta Corp. in 1986.

⁵Revere Copper and Brass Inc. filed for bankruptcy in 1982. ⁶Purchased from Aluminum Co. of America in June 1987.

Secondary.—Metal recovered from purchased new and old aluminum scrap increased to about 2 million tons in 1987. Recycled UBC continued to be a major source of old scrap. According to the Institute of Scrap Recycling Industries, 36.5 billion aluminum cans were recycled in 1987, representing 50.5% of aluminum cans shipped.

Alcan Aluminum announced plans to construct a \$50 million aluminum can recycling plant in Berea, KY, capable of processing 120,000 tons of UBC per year. Construction was expected to begin in the first quarter of 1988 and to be completed within 2 years.

Wabash Alloys reportedly began pouring metal at its newly constructed secondary aluminum smelter in Dickson, TN, having a rated capacity of 6 million pounds of ingot and liquid metal per month.

Timco Corp. announced plans to add a third furnace at its secondary aluminum smelter in Fontana, CA. The furnace reportedly would increase production capacity by 36 million pounds per year.

Advanced Aluminum Products Inc. an-

nounced plans to triple the capacity of its Hammond, IN, plant to 120 million pounds per year of sheet products. The minimill was designed to process aluminum alloy scrap into alloy sheet.

Vulcan Materials Co. announced that the company was divesting its metal operations to devote full attention to its construction materials and chemical divisions. Wabash Alloys purchased two of Vulcan's secondary aluminum smelters situated in Benton, AR, and Milwaukee, WI, with a combined capacity of 12 million pounds of production per month. By yearend, Vulcan reportedly sold its two remaining secondary aluminum smelters, a UBC recovery plant in Corona, CA, and an extrusion scrap recovery plant in Sandusky, OH, to Thakar Aluminum Corp.

An investment group, Rochester Aluminum Smelting Corp., reportedly purchased the physical assets of Rochester Smelting & Refining Co. Inc.'s secondary aluminum plant in Rochester, NY, which had been idle since November 1986. The 3-million-pound-per-month plant was expected to process scrap on a tolling basis.

CONSUMPTION

Apparent consumption of aluminum metal increased 6% in 1987, reversing the downward trend in consumption that began in 1985. Shipments of aluminum to all enduse markets increased in 1987, led by a 6.5% increase in the container and packaging industry, which remained the largest consumer of aluminum products.

During the year, several companies announced plans to construct aluminum can-manufacturing facilities, which were scheduled to come on-stream in 1988. Ball Corp. reported the selection of Conroe, TX, as the site for a new plant having the capacity to produce 1 billion aluminum cans for the soft drink market. Metal Container Corp., a subsidiary of Anheuser-Busch Inc., reportedly began work on two can-manufacturing facilities, one in Windsor, CO, and the other in Orange County, NY, to service the parent company's breweries. In addition, Metal Container announced plans to construct a plant in Fort Atkinson, WI, to supply, on an exclusive basis, 1 billion aluminum cans annually to a group of PepsiCo Inc. bottlers. American National Can Co. reportedly planned to construct an aluminum beverage can plant in Olive Branch, MS.

The battle for the food can market continued in 1987. Aluminum, which dominated the beverage can market, accounted for only about 5% of the food can market. In an attempt to increase aluminum's share of the market, Alcoa reported that it had provided its high-speed electrophoretic can coating technology to Central States Can Co. for use in Central States planned aluminum food can facility. Reynolds Metals Co. announced that it would provide 10- and 12-ounce aluminum containers to two unnamed food processors. However, the steel industry, which dominated the food can market, continued its own product development work. Weirton Steel Corp. reported the development of a easy-opening top for steel cans that the company hoped would help steel to maintain its preeminence in the food packaging industry.

Alcan Aluminum and Sumitomo Electric Industries Ltd. announced plans to open a plant in Durham, NC, to make aluminumclad steel cable that surrounds optical fibers for use in overhead power transmission lines.

Western Wheel Corp., a subsidiary of Kelsey-Hayes Co., reportedly agreed to establish a joint venture with Nippon Light Metals Co. to market aluminum wheels manufactured by Western in Japan. The initial sales target for the imported aluminum wheels was 20,000 units per month. Hitachi Metals Ltd. reported the establishment of a wholly owned subsidiary in Saint Marys, OH, to manufacture aluminum wheels. Construction reportedly began on the plant, which was to have an initial production capacity of 500,000 units per year.

The Bureau of Mines released a study that examined the displacement of conven-

tional nonfuel mineral materials by certain new materials, specifically advanced plastics and ceramics. Analyses of substitution by plastics were conducted for five major U.S. industrial sectors: motor vehicle manufacturing, aerospace applications, building and construction, packaging, and heavy machinery production. Forecasts of substitution by plastics during the 1990's were made for aluminum, steel, and glass. In addition, study findings identified key factors that would influence the emergence of advanced materials in the next decade.⁵

Table 3.—U.S. consumption of and recovery from purchased new and old aluminum scrap,¹ by class

(Metric tons)

	~	G	Calculated recovery			
	Class	Consumption -	Aluminum	Metallic		
	1986			*.		
Secondary smelters Primary producers = Fabricators = Foundries = Chemical producers =		 808,869 780,582 191,509 84,846 16,749	659,828 656,934 166,496 70,399 11,394	711,696 703,767 178,138 75,852 11,542		
TotalEstimated full industry c	overage	1,882,555 1,986,000	1,565,051 1,651,000	1,680,995 1,773,000		
Secondary smelters Primary producers Fabricators Foundries Chemical producers		 803,188 964,072 221,878 79,067 27,866	663,180 815,805 193,510 65,927 22,572	714,451 873,637 207,017 70,930 22,720		
TotalEstimated full industry of	overage	2,096,071 2,204,000	1,760,994 1,851,000	1,888,755 1,986,000		

¹Excludes recovery from other than aluminum-base scrap.

Table 4.—U.S. stocks, receipts, and consumption of purchased new and old aluminum scrap¹ and sweated pig in 1987

(Metric tons)

Stocks, Jan. 1 ^r	Net receipts ²	Consump- tion	Stocks, Dec. 31
		202.202	0.405
			8,495
			4,284
6,422	34,865		3,361
3,558	62,775	60,968	5,365
30,256	468,014	476,765	21,505
7 245	187 250	180 671	13,924
			918
			819
-/:			
435	15,659	15,009	1,085
10 972	273.331	267.557	16,746
7,065	54,369	58,866	2,568
48,293	795,714	803,188	40,819
	Jan. 1 ^r 14,359 5,917 6,422 3,558 30,256 7,345 1,083 2,109 435 10,972 7,065	Jan. 1 ^r receipts ² 14,359 230,165 5,917 140,209 6,422 34,865 3,558 62,775 30,256 468,014 7,845 187,250 1,083 12,925 2,109 457,497 435 15,659 10,972 273,331 7,065 54,369	Jan. 1 ^r receipts ² tion 14,359 230,165 236,029 5,917 140,209 141,842 6,422 34,865 37,926 3,558 62,775 60,968 30,256 468,014 476,765 7,345 187,250 180,671 1,083 12,925 13,090 2,109 457,497 458,787 435 15,659 15,009 10,972 273,331 267,557 7,065 54,369 58,866

Table 4.—U.S. stocks, receipts, and consumption of purchased new and old aluminum scrap¹ and sweated pig in 1987 —Continued

(Metric tons)

Class of consumer and type of scrap	Stocks, Jan. 1 ^r	Net receipts ²	Consump- tion	Stocks, Dec. 31
Primary producers, foundries, fabricators, chemical plants:				
New scrap:				
Solids	14,379	555,178	555,123	14,43
Borings and turnings	_ 143	23,885	23,908	120
Dross and skimmings	451	10,662	10,689	42
Other ³	2,610	99,821	99,243	3,18
Total	_ 17,583	689,546	688,963	18,16
Old scrap:	-			
Castings, sheet, clippings	2,317	91.712	92,549	1.480
Aluminum-copper radiators	49	1.173	1,189	3,40
Aluminum cans	16,131	465,930	471,887	10.174
Other ⁵	1,474	15,480	15,480	1,474
Total	19,971	574,295	F01 10F	10.10
Sweated pig	1,588	22,707	581,105	13,16
oncored big		22,101	22,815	1,480
Total primary producers, etc	_ 39,142	1,286,548	1,292,883	32,807
all scrap consumed:				
New scrap:				
Solids	_ 28,738	785,343	791.152	22,929
Borings and turnings	_ 6.060	164,094	165,750	4,404
Dross and skimmings	6,873	45,527	48,615	3,785
Other	_ 6,168	162,596	160,211	8,558
Total new scrap	47,839	1,157,560	1,165,728	39,671
Old scrap:			-	
Castings, sheet, clippings	9.662	278,962	273,220	15,404
Aluminum-copper radiators	_ 3,002	14,098	14,279	951
Aluminum cans	_ 18,240	523,427	530,674	10.993
Other	_ 1,909	31,139	30,489	2,559
Total old scrap	_ 30.943	847,626	848.662	29,907
Sweated pig	_ 8,653	77,076	81,681	4,048
Total of all scrap consumed		2,082,262	2.096.071	73,626

Table 5.—Production and shipments of secondary aluminum alloys by independent smelters in the United States

(Metric tons)

	19	986	1987		
	Production	Net shipments ¹	Production	Net shipments ¹	
Die-cast alloys:					
13% Si, 360, etc. (0.6% Cu, maximum)	104,153	104,419	108,807	108.864	
380 and variations	278.692	279,004	255,405	257.546	
Sand and permanent mold:	210,002	210,004	200,400	251,540	
95/5 Al-Si, 356, etc. (0.6% Cu, maximum)	26,706	26,548	27,768	27,839	
No. 12 and variations	20,100 W	20,548 W	21,108 W	21,009 W	
No. 319 and variations	48.391	48,263	54.350	54.994	
F-132 alloy and variations	8,237	8,326	9,661		
Al-Mg alloys	84	86	216	9,471 235	
Al-Zn alloys	5.087	4.913			
Al-Si alloys (0.6% to 2.0% Cu)	5,213	5,390	3,835	4,599	
Al-Cu alloys (1.5% Si, maximum)	1,450		5,986	6,012	
Al-Si-Cu-Ni alloys		1,465	1,198	1,216	
	1,064	1,048	1,016	1,011	
Wrought alloys: Extrusion billets	833	838	3,272	3,288	
W tought anoys. Exclusion billets	106,297	103,949	147,253	146,644	

^{*}Revised.

¹Includes imported scrap. According to reporting companies, 6.11% of total receipts of aluminum-base scrap, or 127,187 metric tons, was received on toll arrangements.

²Includes inventory adjustment.

³Includes data on foil, can stock clippings, and other miscellaneous.

⁴Used beverage cans toll treated for primary producers are included in secondary smelter tabulation.

⁵Includes municipal wastes (includes litter) and fragmentized scrap (auto shredder).

Table 5.—Production and shipments of secondary aluminum alloys by independent smelters in the United States -Continued

(Metric tons)

	19	986	1987		
	Production	Net shipments ¹	Production	Net shipments	
Miscellaneous: Steel deoxidation Pure (97.0% Al) Aluminum-base hardeners Other ²	27,146 823 745 20,694	27,716 667 730 20,179	22,311 140 1,727 20,853	23,101 156 1,638 19,434	
Total	635,615	633,541	663,798	666,048	
Less consumption of materials other than scrap: Primary aluminum Primary silicon Other	47,808 26,223 3,091	 	42,740 31,122 3,263		
Net metallic recovery from aluminum scrap and sweated pig consumed in production of secondary aluminum ingot ³	558,493	xx	586,673	xx	

W Withheld to avoid disclosing company proprietary data; included with "Sand and permanent mold: Other."
Not applicable.

Includes inventory adjustment.

Includes other die-cast alloys and other miscellaneous.

No allowance made for melt-loss of primary aluminum and alloying ingredients. XX

Table 6.—U.S. apparent aluminum supply and consumption

(Thousand metric tons)

	1983	1984	1985	1986	1987
Primary production Change in stocks: Aluminum industry	3,353 +547 1,091	4,099 -388 1,477	3,500 +312 1,420	3,037 +108 1,967	3,343 +341 1,849
Secondary recovery: ² New scrap Old scrap	953	935	912	989	1,134
	820	825	850	784	852
Total supplyLess total exports	6,764	6,948	6,994	6,885	7,519
	776	734	908	753	916
Apparent aluminum supply available for domestic manufacturing	5,988	6,214	6,086	6,132	6,603
	5,035	5,279	5,174	5,143	5,469

Table 7.—Distribution of end-use shipments of aluminum products in the United States, by industry

	198	1985		1986		1987 ^p	
Industry	Quantity (thousand metric tons)	Percent of grand total	Quantity (thousand metric tons)	Percent of grand total	Quantity (thousand metric tons)	Percent of grand total	
Containers and packaging	1,862 1,375 1,383 642 484 377 264 -5	26.9 19.8 20.0 9.3 7.0 5.4 3.8 1	$\begin{array}{c} 1,926 \\ 1,432 \\ 1,372 \\ 626 \\ 540 \\ 383 \\ 252 \\ +14 \end{array}$	27.7 20.6 19.7 9.0 7.8 5.5 3.6 +.2	2,052 1,434 1,410 629 573 400 262 +53	27.8 19.4 19.1 8.5 7.8 5.4 3.6 +.7	
Total to domestic users Exports	6,382 546	92.1 7.9	6,545 413	94.1 5.9	6,813 569	92.3 7.7	
Grand total	6,928	100.0	6,958	100.0	7,382	100.0	

Preliminary.

Source: The Aluminum Association Inc.

¹Positive figure indicates a decrease in stocks; negative figure indicates an increase in stocks.

²Metallic recovery from purchased, tolled, or imported new and old aluminum scrap expanded for full industry

coverage.

^aApparent aluminum supply available for domestic manufacturing less recovery from purchased new scrap (a measure of consumption in manufactured end products).

Table 8.—U.S. net shipments¹ of aluminum wrought and cast products, by producers

(Metric tons)

	4	.:	1986	1987 ^p
Wrought products: Sheet, plate, foil		 	3,397,401	3,739,86
Rod, wire, cable Forgings (including impacts)	 	 	1,334,450 337,327 65,566	1,350,61 346,04 70,88
Powder, flake, paste	 	 	43,646	41,79
Total	 	 =	5,178,390	5,549,19
			77,218	N.
Permanent mold Die Other	 	 	154,725 748,842 51,419	N N N
Total	 	 	1,032,204	949,10
Grand total	 	 	6,210,594	6,498,30

^pPreliminary. NA Not available.

Source: U.S. Department of Commerce.

Table 9.—Distribution of wrought products in the United States

(Percent)

				. 1	1986	1987
		 V 1		The Art Total		
Sheet, plate, foil: Nonheat-treatable			4 (2.27)		54.4	56.7
Heat-treatable		 			3.7	3.6
					7.5	7.0
Foil Rod, bar, pipe, tube, shapes:		 				
Rod and bar (rolled and ext	ruded)	 			_ 1.7	1.8
Pipe and tube (extruded an	d drawn)	 			2.4	2.2
Extruded shapes		 			_ 21.5	20.2
Rod, wire, cable:						
Rod and bare wire					_ 1.0	1.1
Cable and insulated wire						5.1
Forgings (including impacts) _ Powder, flake, paste		 			_ 1.3	1.5
Powder, flake, paste		 			_ 1.0	1.0
Total					100.0	100.0

Source: U.S. Department of Commerce.

STOCKS

Inventories of aluminum ingot, mill products, and scrap at reduction and other processing plants, as reported by the U.S. Department of Commerce, decreased from about 2.24 million tons at yearend 1986 to about 1.89 million tons at yearend 1987.

PRICES

The monthly average U.S. market price for primary aluminum ingot had an upward trend during the year. The monthly average price reached a high for the year of 84.4 cents per pound in October. The price softened in November but made a strong recovery at yearend. Increased demand, tight supply, and decreasing inventories, in the domestic and world markets, contributed to the rise in aluminum ingot prices.

The London Metal Exchange (LME) and New York Commodity Exchange (COMEX) prices for aluminum futures followed the same general trend as the U.S. market price. Early in the year, aluminum supply and demand were in relative balance, and the COMEX prices for future deliveries were slightly higher than short-term delivery prices, a normal market situation referred to as contango. In March, the futures

¹Net shipments derived by subtracting the sum of producers' domestic receipts of each mill shape from the domestic industry's gross shipments of that shape.

market became inverted and was said to be in backwardation, a term used to describe situations where near-term delivery prices were at a premium over distant contracts. This backwardation of COMEX prices reflected the tightness of aluminum supply prevalent during most of 1987.

The following table summarizes the average monthly and annual aluminum prices during the year, in cents per pound:

	COMEX 11	COMEX 21	COMEX 31	LME (cash)	U.S. market	U.S. trans action
986: Annual average	52.93	53.28	54.71	52.18	55.87	56.52
987:						
January	52.37	52.64	53.33	53.13	54.60	55.15
February		56.77	56.49	58.22	59.45	60.63
March		59.68	57.12	62.02	62.55	63.66
April	- 11121	62.32	58.65	63.55	64.97	65.59
May		67.20	65.08	64.03	68.90	70.17
June		70.23	68.92	66.78	72.55	73.10
Tules	74.03	73.17	68.32	74.98	74.24	75.48
July		77.70	70.36	82.12	81.67	82.30
August September		78.97	68.72	79.21	80.69	82.31
	82.47	82.03			84.39	85.10
October			70.00	89.03		
November	_ 79.41	76.79	70.64	76.25	80.16	81.10
December	83.13	81.24	76.01	82.73	83.39	84.59
Annual average	71.24	69.89	65.30	70.84	72.30	73.26

¹COMEX delivery positions: 1—within 1 month; 2—within 3 months; and 3—within 12 months.

Source: Metals Week.

Purchase prices for aluminum scrap and secondary aluminum ingot, as quoted by American Metal Market, followed the upward trend of primary aluminum ingot prices. Purchase prices of old sheet and cast aluminum scrap rose from 34 cents per pound in January to a high of 54 cents per pound at yearend. UBC scrap, processed and delivered to producers, was bought at a range of 34 to 37 cents per pound at the

beginning of 1987. By yearend, the UBC purchase price range was 60 to 63 cents per pound. Secondary aluminum alloy 360 prices increased from a range of about 59 to 61 cents per pound in January to close the year at 88 to 90 cents per pound. Alloy 413 and alloy 380 prices were within a penny or two of the alloy 360 prices throughout the year.

FOREIGN TRADE

Exports of all forms of aluminum from the United States increased substantially from the 1986 level. The increase in world demand for aluminum and the declining value of the dollar resulted in a better competitive position for U.S. exports. Exports of semifabricated products showed the most dramatic increase. Japan, which remained the major recipient of U.S. aluminum materials, nearly doubled its imports of crude metal and alloys from the United States in 1987 compared with those of 1986.

Imports for consumption of aluminum decreased slightly compared with those of 1986. Canada remained the major shipping

country to the United States, supplying just over 60% of the total U.S. imports in 1987.

U.S. tariff rates in effect in 1987 for aluminum products from countries with most-favored-nation status were as follows:

Item	TSUS No.	Import duty
Unwrought metal (in coils)	618.01	2.6% ad valorem.
Unwrought (other than		
Si-Al alloys)	618.02	Free.
Wrought (bars, plates,		
sheets, strip)	618.25	3% ad va- lorem.
Waste and scrap	618.10	2% ad valorem.

Table 10.—U.S. exports of aluminum, by class

	1	986	19	987
Class	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands
Crude and semicrude: Metals and alloys, crude	209,794 350,858 180,057 6,902 5,584	\$282,958 333,187 442,681 59,979 32,632	281,163 368,492 251,572 6,902 7,874	\$415,003 409,686 647,890 65,504 41,405
Total	753,195	1,151,437	916,003	1,579,488
Manufactures: Foil and leaf Powders and flakes Wire and cable	27,548 2,125 2,912	29,717 7,553 11,088	55,834 2,420 4,449	59,917 9,694 15,856
Total	32,585	48,358	62,703	85,467
Grand total	785,780	1,199,795	978,706	1,664,955

Source: Bureau of the Census.

Table 11.—U.S. exports of aluminum, by country

_	Metals ar			sheets, , etc.¹	Sci	rap	T	otal
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
1986:	*					4	4.	
Belgium-Luxem-				41242	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.621		a Autori
bourg	100	\$144	1,031	\$6,529	3,894	\$3,675	5,025	\$10,34
Brazil	541	676	492	2,634	3,596	3,350	4,629	6,66
Canada	30,300	51,992	127,950	305,079	14,706	15,110	172,956	372,18
France	166	261	803	4,913	465	377	1,434	5,55
Germany, Federal	1 550	0.007	1.005	11 700	F 400		0.000	00.55
Republic of Hong Kong	1,570	2,967	1,965	11,709	5,403	5,899	8,938	20,57
nong Kong	. 883 49	1,113	761	2,294	454	471	2,098	3,87
Italy		179	2,990	15,024	7,270	6,567	10,309	21,77
Japan	131,608	162,156	7,531	25,548	243,329	228,979	382,468	416,68
Korea, Republic of _	10,939	13,830	3,936	11,066	1,930	1,608	16,805	26,50
Mexico Netherlands	7,772 473	11,259	21,130 1,609	55,634	25,643	28,578	54,545	95,47
	473 958	845 1,670		8,718 255	5,099	4,688	7,181	14,25
Panama	998 389	496	81		64	101	1,103	2,02
Peru	738		64	231	6	78	459	808
Singapore		885	257	1,552	219	156	1,214	2,59
Spain	110	81	780	3,933	1,060	892	1,950	4,900
Taiwan United Kingdom	13,821	16,314	619	2,922	35,827	30,512	50,267	49,748
United Kingdom	2,247	4,173	5,015	22,648	680	818	7,942	27,639
Other	7,130	13,917	15,529	54,603	1,213	1,328	23,872	69,848
Total	209,794	282,958	192,543	535,292	350,858	333,187	753,195	1,151,43
1987:						-		
Belgium-Luxem-								
bourg	11	18	883	4,366	1,253	2,861	2,147	7,24
Brazil	102	359	1,093	5,699	1,974	1,794	3,169	7.852
Canada	25,815	52,319	163,379	417,008	20,995	22,272	210,189	491,599
France	24	192	1,028	9,986	2,227	2,391	3,279	12,569
Germany, Federal					,	,		
Republic of	89	1,601	2,240	11,372	3,097	3,395	5,426	16,368
Hong Kong	3,437	4,796	6,843	14,609	759	707	11,039	20,112
Italy	256	518	3,493	20,395	3,362	2,807	7,111	23,720
Japan	226,884	310,618	13,936	45,451	263,296	300,858	504,116	656,927
Korea, Republic of _	3,145	4,704	9,318	24,364	6,312	7,886	18,775	36,954
Mexico	6,799	11,500	26,806	68,233	21,672	23,314	55,277	103,047
Netherlands	561	892	1,955	10,965	4,869	5,381	7.385	17,238
Panama	667	1,163	171	474	210	229	1,048	1,866
Peru	129	167	218	843	12	24	359	1,034
Singapore	3,283	5,896	387	3,396	155	165	3,825	9,457
Spain	5	21	918	3,219	642	434	1,565	3,674
Taiwan	4,869	7,048	3,538	9,589	34,258	30,698	42,665	47,335
United Kingdom	548	2,001	5,489	25,380	946	1,053	6,983	28,434
Other	4,539	11,190	24,653	79,450	2,453	3,417	31,645	94,057
Total	281,163	415,003	266,348	754,799	368,492	409,686	916,003	1,579,488

Source: Bureau of the Census.

^rRevised.
¹Includes castings, forgings, and unclassified semifabricated forms.

Table 12.—U.S. imports for consumption of aluminum, by class

ř		1:	1986 1		1987	
	Class	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands	
Crude and semicrude: Metals and alloys, crude. Circles and disks Plates, sheets, etc., n.e.c. Rods and bars Pipes, tubes, etc Scrap		_ 14,541 _ 373,056 _ 61,833 _ 6,101	\$1,682,907 31,230 755,070 90,474 37,531 141,702	1,245,510 16,068 339,547 54,937 4,659 188,612	\$1,852,152 34,293 695,451 92,372 18,293 202,292	
Total		 _ 1,966,664	2,738,914	1,849,333	2,894,853	
Manufactures: Foil Leaf Flakes and powders Wire		 _ (1)	96,241 163 6,211 9,893	29,145 (¹) 3,678 3,512	63,098 220 5,885 10,493	
Total		 _ 34,067	112,508	36,335	79,696	
Grand total		 2,000,731	2,851,422	1,885,668	2,974,549	

¹1986—aluminum leaf not over 30.25 square inches in area, 3,653,187 leaves, and aluminum leaf over 30.25 square inches in area, 403,820,038 square inches; and 1987—aluminum leaf not over 30.25 square inches in area, 3,618,270 leaves, and aluminum leaf over 30.25 square inches in area, 834,506,782 square inches.

Source: Bureau of the Census.

Table 13.—U.S. imports for consumption of aluminum, by country

		nd alloys, ude	Plates, she		Scrap		Total		
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	
1986:									
Argentina	32,055	\$29,832	6,278	\$9,753			38,333	\$39,585	
Australia	31,906	38,695	8,415	16,087	2,391	\$3,804	42,712	58,586	
Belgium-Luxem-							•		
bourg	103	228	30,873	51,101	402	399	31.378	51,728	
Brazil	116,498	148,524	7,418	29,964			123,916	178,488	
Canada	868,722	1,092,129	57,999	109,704	115,714	100,971	1,042,435	1,302,804	
France	3,240	4,060	29,063	63,700	375	335	32,678	68,095	
Germany, Federal		.,		,			,	00,000	
Republic of	695	4.637	19,751	50,054	714	728	21,160	55,419	
Israel	320	260	2,710	10,009			3,030	10,269	
Italy	11	37	7,026	13,801	68	58	7,105	13,896	
Japan	637	2,413	144,129	311,506	42	23	144,808	313,942	
Mexico	2,887	2,874	1,566	1.547	12,260	7,619	16,713	12,040	
Netherlands	1,765	2,097	7.013	23,286			8,778	25,383	
Norway	184	274	4,404	81.165			4,588	81,439	
Romania	15,926	23,551	6,342	9,002			22,268	32,553	
South Africa, Repub-	10,020	20,001	0,042	3,002			22,200	02,000	
lic of	32,372	37,021	4,404	6,499	184	158	36,960	43,678	
United Kingdom	1.745	3,105	11,476	35,607	927	930	14,148	39,642	
U.S.S.R	5,530	5,017	11,410	33,001	19,906	18,571	25,436	23,588	
Venezuela	69,182	75,215	54,145	71,031	6,532	6,079	129,859	152,325	
Other	165,038	212,938							
Other	100,000	212,950	52,519	20,489	2,802	2,027	220,359	235,454	
Total	1,348,816	1,682,907	455,531	914,305	162,317	141,702	1,966,664	2,738,914	
1987:									
Argentina	16,201	23.331	4.545	8,624	204	328	20,950	32,283	
Australia	12,429	17,480	7,296	13,861	1,404	1,282	21,129	32,623	
Belgium-Luxem-	12,120	11,100	1,200	10,001	1,404	1,202	21,123	02,020	
bourg	271	475	28,472	53,452	15	95	28,758	E 4 000	
Brazil	67,596	101,029	6,314	11,033	215	295	74.125	54,022	
Canada	918,884	1,351,269	91,537	167,888	125,369	140,657	1,135,790	112,357	
France	859	1,418	23,382		125,569 589	376		1,659,814	
Germany, Federal	000	1,410	40,004	55,024	969	910	24,830	56,818	
Republic of	7.379	14,199	10,624	30,727	346	703	10 940	45 600	
Israel	71	89			339	434	18,349	45,629	
Italy	197	234	1,943	6,712	51		2,353	7,235	
Japan	541	2.061	3,288	6,934	8	52	3,536	7,220	
oahan	041	4,001	99,852	221,200	ð	32	100,401	223,293	

Table 13.—U.S. imports for consumption of aluminum, by country —Continued

				Scrap		To	Total	
Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	
1,473 1,872 2,492 17,325	\$2,111 2,283 4,585 24,834	3,658 7,717 3,222 9,217	\$6,660 30,967 5,894 14,380	15,295 1,116 	\$12,415 1,444 	20,426 10,705 5,714 26,542	\$21,186 34,694 10,479 39,214	
5,526 544 2,016 42,909 146,925	6,957 1,091 2,322 61,645 234,739	4,119 6,921 43,012 60,092	$7,000$ $24,867$ $64,\overline{374}$ $110,812$	1,393 24,399 11,543 6,326	1,755 24,364 11,596 6,464	9,645 8,858 26,415 97,464 213,343	13,957 27,718 26,686 137,618 352,018	
1,245,510	1,852,152	415,211	840,409	188,612	202,292	1,849,393	2,894,853	
	Quantity (metric tons) 1,473 1,872 2,492 17,325 5,526 544 2,016 42,909 146,925	(metric tons) (thou-sands) 1,473 \$2,111 1,872 2,283 2,492 4,585 17,325 24,834 5,526 6,957 544 1,091 2,016 2,322 42,909 61,645 146,925 234,739	crude etc Quantity (metric tons) Value (thou sands) Quantity (metric tons) 1,473 \$2,111 3,658 1,872 2,283 7,717 2,492 4,585 3,222 17,325 24,834 9,217 5,526 6,957 4,119 544 1,091 6,921 2,016 2,322 42,909 42,909 61,645 43,012 146,925 234,739 60,092	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	crude etc.¹ Ser Quantity (metric tons) Value (thou-tons) Quantity (metric tons) Value (thou-tons) Quantity (metric tons) 1,473 \$2,111 3,658 \$6,660 15,295 1,872 2,283 7,717 30,967 1,116 2,492 4,585 3,222 5,894 — 17,325 24,884 9,217 14,380 — 5,526 6,957 4,119 7,000 — 544 1,091 6,921 24,867 1,393 2,016 2,322 — 24,399 42,999 61,645 43,012 64,874 11,543 146,925 234,739 60,092 110,812 6,326	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Revised.

Source: Bureau of the Census.

WORLD REVIEW

World primary aluminum production capacity was essentially unchanged from that of 1986. However, the shifting of capacity from countries with high energy and labor costs to areas of the world with lower cost labor and energy, principally hydroelectric power, continued. Reductions in capacity were made in Japan and the United States, whereas Canada, China, and India expanded smelter capacity.

Despite an increase in world production of primary aluminum, supply was apparently inadequate to meet the rise in demand reported in 1987. Depressed aluminum prices in 1985 and 1986 led to a temporary idling of smelter capacity, especially in the United States. When the increase in demand appeared in 1987, these temporarily reduced production levels were not able to meet demand and resulted in sharp price increases and reductions in inventories. Japan, with its recent closures of primary aluminum capacity, was forced to compete for supplies in what was already a tight international market. Additionally, several countries, namely Brazil, Cameroon, Indonesia, and Suriname, were forced to reduce production during 1987 because of drought conditions that curtailed the supply of available hydroelectric power. By yearend, smelter operating capacity had increased significantly, but inventory levels remained depressed.

Primary aluminum inventories held by members of the International Primary Aluminium Institute (IPAI), which represent the bulk of stocks held outside the centrally planned economy countries, decreased from 1.853 million tons at yearend 1986 to 1.390 million tons at yearend 1987. IPAI reported that total metal inventories, including secondary aluminum, decreased by over one-half million tons to 3.050 million tons at yearend 1987.

Brazil.—Two primary aluminum smelters, Alumínio do Brazil Nordeste S.A. and Alcoa Alumínio S.A. (Alumar), were forced to cut back on aluminum metal production during most of the year, owing to the shortage of available hydroelectric power caused by severe drought conditions in the northeastern section of the country. Power ra-

tioning, which went into effect on March 1, reportedly forced the two plants to operate at 15% below capacity.

The shortage of power also forced an indefinite postponement of expansion plans at the Alumar smelter. Brazil's Interministerial Council for the Greater Carajas project reportedly denied the company permission to proceed with a scheduled 135,000-ton-per-year capacity expansion at the 245,000-ton-per-year smelter in São Luís.

In October, Consorcio de Alumínio Albrás e Alunorte S.A. reportedly began construction work on phase 2 of the Albras aluminum project. The \$625 million expansion was expected to increase the smelter's annual capacity from 160,000 tons to 320,000

¹Includes circles, disks, rods, pipes, tubes, etc.

tons by 1991.

Reynolds announced plans to construct Brazil's first aluminum beverage can plant, which would be capable of producing about 700 million cans per year. Bardella, a large machinery manufacturer in Brazil, was expected to contribute one-half of the funds needed to construct the \$55 million plant. The plant, to be built in the town of Pouso Alegre in Minas Gerais, reportedly would take 2 years to complete.

Canada.—The second 115,000-ton-peryear potline of the 230,000-ton-per-year Aluminiere de Bécancour Inc. aluminum smelter began operations in February. In July, Reynolds announced the purchase of one-half of Pechiney's interest in the Bécancour smelter. After the purchase, Reynolds and Pechiney each held a 25.05% interest, and Alumax and Société Générale de Financement du Quebec owned 24.95% each. The four owners commissioned a feasibility study on the addition of a third 115,000-ton-per-year potline at the smelter.

Alcan Aluminium announced that it had decided to proceed with the construction of the first phase of the Laterriere aluminum smelter in Chicoutimi, Quebec, which had been put on hold since September 1985. Construction of the first phase, which would consist of about 50,000 tons per year of capacity, was scheduled to begin in mid-1988. Alcan Aluminium confirmed that the smelter would use Alcoa's P155 reduction cell technology, a technology already in use at Alcan Aluminium's Grand Baie, Quebec, and Sebree, KY, smelters. The Laterriere smelter, which reportedly would have a total annual smelting capacity of 200,000 tons, was expected to be completed over a period of 5 to 7 years at an estimated cost of \$450 million.

Labor contracts at Alcan Aluminium's four Quebec primary aluminum smelters expired on August 31. Workers at the Arvida, Beauharnois, and Isle Maligne smelters continued to work under the old labor contract through yearend while negotiations continued between the company and the Federation des Syndicats du Secteur Aluminium. However, operations at Alcan's fourth Quebec smelter, the 84,000-ton-per-year Shawinigan smelter, were halted on October 31. Talks between the Confederation of National Trade Unions, which represented the workers at Shawinigan, and Alcan Aluminium continued at yearend.

China.—The first phase of the Qinghai primary aluminum smelter, with a pro-

jected annual capacity of 100,000 tons, reportedly began operations on October 1. Construction began in early 1984 with an investment of \$135 million. The second phase, which was reportedly scheduled for completion by 1989, would add an additional 100,000 tons of annual capacity.

In June, the China International Trust and Investment Corp. (CITIC) and Aluvic, a Victoria, Australia, government-owned company, reportedly signed an agreement to build an aluminum rolling mill and extrusion plant in Qinhuangdao in northern China. A joint-venture company, Bohai Aluminium Industries, would be set up to run the plant and would be owned by CITIC, 75%; and by Aluvic, 25%. The 100,000-ton-per-year plant reportedly would take 3 years to build.

Germany, Federal Republic of.—In March, Alcan Aluminium announced the closure of its 44,000-ton-per-year primary aluminum smelter in Ludwigshafen, reportedly owing to uneconomic energy costs.

Iceland.—The Government of Iceland conducted a prefeasibility study for a 200,000-ton-per-year primary aluminum smelter. The new smelter reportedly would be owned by a new independent company and be run separately from the existing Isal smelter, although making use of Isal's infrastructure.

India.—In May, the National Aluminium Co. Ltd. (Nalco) energized the first 109,000-ton-per-year potline at its 218,000-ton-per-year primary aluminum smelter at Orissa. Nalco expected the initial potline to be at full production by 1989 and construction of the smelter's second phase to be completed by 1991.

Indonesia.—The Governments of Indonesia and Japan reportedly reached an agreement to restructure Indonesia's Asahan aluminum smelter. As a result of the agreement, the Japanese consortium, Nippon Asahan Aluminium Co. Ltd., reportedly would decrease its share of ownership from 75% to 59%, and the Indonesian Government would increase its stake to 41%. The restructuring plan reportedly included the infusion of capital and the renegotiation of current loan interest rates and repayment schedules.

Japan.—During the year, aluminum companies continued to shut down primary aluminum smelters, a trend that began in 1985. In March, Mitsui Aluminum Co. Ltd. announced the closure of its 144,000-ton-per-year Omuta smelter, and Ryoka Light

Metal Industries Ltd. reported the closure of its 76,000-ton-per-year Sakaide smelter. With these announced closures, Nippon Light Metal Co. Ltd.'s 64,000-ton-per-year Kambara plant was the only primary aluminum smelter still operating in Japan.

The Ministry of International Trade and Industry (MITI) and the Japanese Aluminum Federation (JAF) studied the possibility of establishing an aluminum futures exchange in Japan. Two proposals were explored: locating an LME warehouse in Japan and/or establishing a Japan Metal Exchange (JME) for aluminum, copper, lead, and zinc. The JAF requested MITI to repeal the import duty on primary aluminum ingot, which was reduced to 1% on January 1, 1988. The JAF stated that an import duty would be a barrier to the smooth management of a futures warehouse in Japan. A decision on these proposals was expected in 1988.

Mexico.—Primary metal production capacity at Mexico's only aluminum smelter Aluminio S.A., in Vera Cruz, increased from 44,000 tons per year to 66,000 tons per year. In addition, a recycling facility reportedly was opened, with a secondary ingot production capacity of 28,000 tons per year.

Netherlands.—Kaiser reported the sale of its subsidiary, Kaiser Aluminium Europe (KAE) to the Dutch steel and aluminum company, Hoogovens Group BV. The sale included KAE's 72,000-ton-per-year primary aluminum smelter in Voerde, Federal Republic of Germany, and fabrication facilities in Belgium, the Federal Republic of Germany, and Switzerland.

Norway.—Hydro Aluminium A/S reported the completion of a feasibility study on the conversion of the Norsk Jernverk steel plant at Mo i Rana into a 200,000-ton-peryear aluminum smelter. The project's viability reportedly hinged on the availability and price of power.

Spain.—Inespal reported that a 3-day strike in mid-December damaged the potlines of the San Ciprian smelter, forcing it to close for 6 months for repairs.

Suriname.—In January, Suriname Aluminium Co. (Suralco), a subsidiary of Alcoa, reported the closure of its 60,000-ton-peryear smelter at Paranam for an indefinite period because of a power outage that resulted from activities of anti-Government insurgents. In midyear, Alcoa announced the permanent shutdown of one 30,000-ton-per-year potline at the Suralco smelter.

Thailand.—Japan's largest manufacturer

of aluminum building materials, Toyo Sash, announced the investment of about \$10 million to build a factory in Thailand to produce aluminum doors and other extrusion products. The plant, Tostem Thai Co. Ltd., was expected to be finished next year with an initial production level of 1,000 tons per month.

U.S.S.R.—The Soviet Union and Comalco Pty. Ltd. of Australia reportedly were studying the possibility of a joint-venture aluminum complex to be built on the Pacific Coast of the U.S.S.R. in the early 1990's. The complex, consisting of a 1-million-ton-per-year alumina refinery and a 500,000-ton-per-year primary metal smelter, would make use of the Soviet Union's hydroelectric power supplies and Australia's large bauxite reserves.

United Arab Emirates.—The Dubai Aluminium Co. Ltd. reported plans to expand its extrusion billet production capacity from 90,000 tons per year to 125,000 tons per year by January 1989 in response to strong billet demand.

United Kingdom.—American National Can Co., a subsidiary of Chicago-based Triangle Industries Inc., announced plans to build an eighth aluminum beverage can plant in the United Kingdom to meet growing demand in the European market. The new unit was expected to come on-stream in 1988.

Star Aluminium Co. Ltd., a subsidiary of Swiss Aluminium Ltd. (Alusuisse) reportedly invested \$54 million to modernize and expand its aluminum foil plant in Bridgnorth, England. The expansion, including a new thin strip mill and fully automated thin foil facilities to be completed by 1991, was expected to increase the company's consumption of aluminum from 25,000 tons per year to 40,000 tons per year.

Venezuela.—Austria Metall AG reported the company's withdrawal from the Aluminio del Sur (Alusur) smelter project. Alcoa announced the signing of a letter of intent to become a partner in the 120,000-ton-per-year Alusur smelter scheduled to come on-stream by yearend 1990. The joint venture company reportedly was composed of Suramericana de Aleaciones Laminados, 40%; Alcoa, 40%; and Corporación Venezolana de Guayana, 20%.

Aluminio del Caroní S.A. (ALCASA) and Industria Venezolana de Aluminio C.A. (VENALUM) have both announced expansions to their existing smelters planned for the early 1990's.

Table 14.—Aluminum, primary: World production,1 by country

(Thousand metric tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Argentina	133	r ₁₃₈	140	e ₁₅₀	155
Australia		758	851	882	² 1,004
AustriaAustria	94	96	94	93	93
Bahrain	172	177	175	e ₁₇₈	194
Brazil	401	455	549	758	840
Cameroon	77	73	90	84	80
Canada	1.091	1,227	1.282	1.364	1,530
Chinae	400	400	410	410	410
Czechoslovakia		32	e32	33	33
	140	170	209	175	175
EgyptFrance	361	342	293	322	300
German Democratic Republice	57	. 58	60	60	60
German Democratic Republic	743	777	745	765	730
Germany, Federal Republic of			49	125	150
Greece ³	136	136	125	126	130
				74	74
Hungary		74	74		² 85
Iceland	76	80	73	76	
India ³	204	269	260	257	250
Indonesia ³	115	199	217	219	210
Iran	39	42	43	40	40
Italy	196	230	221	243	240
Japan ⁴	256	287	227	140	² 41
Korea, North ^e	10	10	10	10	10
Korea, Republic of	13	. 18	18	19	19
Mexico ³	40	44	43	37	43
Netherlands	235	249	251	266	280
New Zealand	219	243	241	173	230
Norway	713	765	712	712	2725
Poland ⁵	44	46	47	48	48
Romania ⁶	223	244	247	269	240
		167	165	172	170
		381	370	350	350
		29	r e29	30	5
Suriname ⁷	82	83	84	77	76
Sweden	76	79	73	80	80
Switzerland	10	38	54	e ₅₀	50
Turkey					
U.S.S.R. ^e	2,000	2,100	2,200	2,300	2,400
United Arab Emirates: Dubai		155	153	155	² 155
United Kingdom		288	275	276	² 297
United States	3,353	4,099	3,500	3,037	² 3,343
Venezuela	335	386	396	e ₄₂₄	427
Yugoslavia ^{e 3}	2 58	r270	r ₂₈₀	r ₂₈₂	244
Total	^r 13,904	^r 15,714	15,367	15,341	16,016

Preliminary. eEstimated. rRevised.

*Estimated. *Preliminary. 'Revised. 'Iributant' Preliminary. 'Iributant' Prelimin

³Primary ingot.

^{*}Excludes high-purity aluminum containing 99.995% or more as follows, in metric tons: 1983—2,679; 1984—4,348; 1985—4,783; 1986—8,140; and 1987—12,099.

*Primary unalloyed ingot plus secondary unalloyed ingot.

⁶Primary unalloyed metal plus primary alloyed metal, thus including weight of alloying material.

Data represent exports of ingot aluminum, presumably all primary.

ALUMINUM

Table 15.—Aluminum: World capacity, by continent and country¹

(Thousand metric tons)

forth America: Canada Mexico United States outh America: Argentina Brazil Brazil Suriname Venezuela Urope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Gereace Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia Frica: Cameroon	1,347 45 4,706 146 629 60 400 92 60 7304 85 777 145 266 276 266 770 110 250	1,462 45 4,038 150 869 60 430 92 60 394 85 777 145 76 86 276 266 7770 110 250	1,577 6 3,899 15 888 33 433 96 344 8. 873: 14. 73: 266 83. 111: 256
Canada Mexico United States outh America: Argentina Brazil Suriname Venezuela urope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia Frica: Cameroon	45 4,706 146 629 60 400 92 96 90 7304 85 77 745 76 266 276 276 270 110 250	45 4,038 150 869 60 430 92 60 394 85 777 145 76 86 276 266 770 110	6 3,89 15 88 88 43 43 9 6 34 8 73 14 7 8 827 26 83 11 12 12
Mexico United States outh America: Argentina Brazil Suriname Venezuela durope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia	45 4,706 146 629 60 400 92 96 90 7304 85 77 745 76 266 276 276 270 110 250	45 4,038 150 869 60 430 92 60 394 85 777 145 76 86 276 266 770 110	6 3,89 15 88 88 43 43 9 6 34 8 73 14 7 8 827 26 83 11 12 12
United States outh America: Argentina Brazil Suriname Venezuela durope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Greene	4,706 146 629 60 400 92 60 *304 85 777 145 76 86 276 266 770 110 250	4,038 150 869 60 430 92 60 394 85 777 145 76 86 276 266 770 110 250	3,89 15 88 3 3 43 9 6 34 8 73 14 7 7 8 27 26 83 11 25
outh America: Argentina Brazil Suriname Venezuela urope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia	146 629 60 400 92 60 *304 85 777 145 76 86 276 266 770 110	150 869 60 430 92 60 394 85 777 145 76 86 276 266 770 110 250	15 88 3 43 43 9 6 6 34 48 73 14 7 8 27 26 83 11 11 21
Argentina Brazil Suriname Venezuela Juriope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia Frica: Cameroon	629 60 400 92 60 *304 85 777 145 76 86 276 266 770 110	869 60 430 92 60 394 85 777 145 76 86 276 266 770 110 250	88 33 43 9 6 34 8 73 14 7 8 27 26 83 111 25
Brazil Suriname Venezuela Jurope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of. Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	629 60 400 92 60 *304 85 777 145 76 86 276 266 770 110	869 60 430 92 60 394 85 777 145 76 86 276 266 770 110 250	88 33 43 9 6 34 8 73 14 7 8 27 26 83 111 25
Suriname Venezuela urope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Grece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	60 400 92 60 *304 85 777 145 76 86 276 266 770 110 250	92 92 60 394 85 777 145 76 86 276 266 770 110	3 43 9 6 34 8 73 14 7 26 83 11 25
Venezuela burope: Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Greece Hungary Iceland Italy Iceland Ic	400 92 60 *304 85 777 145 76 86 276 266 770 110 250	430 92 60 394 85 777 145 76 86 276 266 770 110 250	43 9 6 34 8 73 14 7 8 27 26 83 11 25
Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Gzechoslovakia Austria Austri	92 60 *304 85 777 145 76 86 276 266 770 110 250	92 60 394 85 777 145 76 86 276 266 770 110 250	9 64 34 8 73 14 7 27 26 83 11 25
Austria Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Greece Hungary Iceland Italy Netherlands Italy Netherlands Italy It	700 r304 85 777 145 76 86 276 266 770 110 250	60 394 85 777 145 76 86 276 266 770 110 250	6 34 8 73 14 7 8 27 26 83 11 25
Czechoslovakia France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Germany, Federal Republic Greece Hungary Iceland Italy Netherlands Italy Netherlands Volume Volu	700 r304 85 777 145 76 86 276 266 770 110 250	60 394 85 777 145 76 86 276 266 770 110 250	6 34 8 73 14 7 8 27 26 83 11 25
France German Democratic Republic Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Germany, Federal Republic German Democratic Republic Germany, Federal Re	*304 85 777 145 76 86 276 266 770 110 250	394 85 777 145 76 86 276 266 770 110 250	34 8 73 14 7 8 27 26 83 11 25
German Democratic Republic Germany, Federal Republic of Greece Hungary Cleand Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon Greece Hungary Health St. S.R Common Switzerland U.S.S.R Common Switzerland Custom Common	85 777 145 76 86 276 266 770 110 250	85 777 145 76 86 276 266 770 110 250	8 73 14 7 8 27 26 83 11
Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.R United Kingdom Yugoslavia frica:	777 145 76 86 276 266 770 110 250	777 145 76 86 276 266 770 110 250	73 14 7 8 27 26 83 11 25
Germany, Federal Republic of Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.R United Kingdom Yugoslavia frica:	777 145 76 86 276 266 770 110 250	777 145 76 86 276 266 770 110 250	73 14 7 8 27 26 83 11 25
Greece Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	145 76 86 276 266 770 110 250	145 76 86 276 266 770 110 250	14 7 8 27 26 83 11 25
Hungary Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	76 86 276 266 770 110 250	76 86 276 266 770 110 250	7 8 27 26 83 11 25
Iceland Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	86 276 266 770 110 250	86 276 266 770 110 250	8 27 26 83 11 25
Italy Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	276 266 770 110 250	276 266 770 110 250	27 26 83 11 25
Netherlands Norway Poland Romania Spain Sweden Switzerland U.S.R United Kingdom Yugoslavia frica: Cameroon	266 770 110 250	266 770 110 250	26 83 11 25
Norway Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	770 110 250	770 110 250	83 11 25
Poland Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	110 250	110 250	11 25
Romania Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	250	250	25
Spain Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	250 379		
Sweden Switzerland U.S.S.R United Kingdom Yugoslavia frica: Cameroon	379	344	
Switzerland U.S.R United Kingdom Yugoslavia frica: Cameroon			. 34
U.S.S.R United Kingdom Yugoslavia frica: Cameroon	82	82	9
United Kingdom Yugoslavia ———————————————————————————————————	86	72	7
Yugoslavia frica: Cameroon	^r 2,500	2.540	2.59
Yugoslavia frica: Cameroon	287	287	28
frica: Cameroon	357	357	35
Cameroon		001	- 00
	80	80	8
Egypt	170	170	17
	200	200	20
			173
	172	172	177
sia:			
Bahrain	_170	180	18
China	^r 431	471	61
India	363	363	47
Indonesia	225	225	22
Iran	50	50	5
Japan	425	284	6
Korea, North	20	20	ž
Korea, Republic of	18	18	ī
Taiwan	50	50	5
Tunkon	60	60	6
Turkey United Arab Emirates: Dubai			
	149	149	14
ceania:	0.00		
Australia	862	1,012	1,01
New Zealand	244	244	244
Total		17,871	17,91

^pPreliminary. ^rRevised.

¹Detailed information on the individual aluminum reduction plants is available in a 2-part report that can be purchased from Chief, Division of Finance, Bureau of Mines, Bldg. 20, Federal Center, Denver, CO 80225. Part 1 of "Primary Aluminum Plants, Worldwide" details location, ownership, and production capacity for 1985-92 and sources of energy and aluminum raw materials for foreign and domestic primary aluminum plants, including those in centrally planned economy countries. Part 2 summarizes production capacities for 1985-92 by smelter and country.

TECHNOLOGY

Several aluminum companies announced the commercialization of aluminum-lithium alloy products. Commercial applications for these alloys centered around aerospace industry products such as passenger aircraft fuselage skin, floor beams in the MD-11 transport, and wing surfaces. The advantages cited for the aluminum-lithium alloys were lower density and increased strength-to-weight performance with no sacrifice in ease of fabrication on existing aircraft-manufacturing equipment.

The Boeing Co. reported the development of a patented scrap-processing method for aluminum-lithium alloys. A maximum 50% mix of 2090 aluminum-lithium alloy with aluminum was processed together, and the bulk of the lithium was removed as a powder with salts in the dross. Reynolds also reported that recycling capability for aluminum-lithium alloys would be included in its aluminum-lithium casting facility under construction in McCook, IL. A Reynolds spokesperson stated that the recycling capability would help to make the facility commercially viable.⁶

Titanium tetrachloride, aluminum chloride, and vanadium tetrachloride were coreduced simultaneously via a Kroll-type magnesium reduction process to form an alloy sponge, as part of a research effort by the Bureau of Mines to produce titanium alloy powder. The important possible advantage in the coreduction approach, as related to powder production, was the elimination of the master alloy addition step and subsequent vacuum arc melts. Analysis of the individual sponge particles indicated that grinding the alloy sponge prepared by the coreduction process did not produce a powder product of acceptable chemical homogeneity. However, melting the alloy sponge in a consumable-electrode, annular-anode furnace did produce a material with acceptable homogeneity.7

Alcoa announced that its new metal matrix composite made from aluminum sheet and aramid epoxy fibers (Arall) had entered the commercial marketing stage. Highstrength aramid fibers were embedded in resins between thin sheets of high-strength aluminum alloys. The laminates reportedly

could be machined in a manner similar to that used to produce monolithic aluminum sheet. The primary benefits of the laminated material were a decrease in fatigue crack growth rate compared with that of monolithic aluminum structures and a greater resistance to impact damage compared with that of carbon fiber composites. The material reportedly would be a candidate for use in fatigue-critical structures requiring relatively light-gauge sheet such as lower wing skins and fuselage and tail skin sections of commercial aircraft. Several domestic military and commercial aircraft manufacturers were considering the new composite.

Showa Denko K.K. and Taiyo Fishery Co. of Japan reportedly developed a plastic-aluminum composite can. The can, developed for use as a food container, was a four-layer composite. The surface layer was polypropylene plastic, reinforced by a polypropylene film second layer. The third layer consisted of aluminum foil, with polypropylene film used again for the fourth or innermost layer. Initially, the companies planned to produce about 960,000 composite cans for testing and evaluation.9

Reynolds reported the development of a resealable aluminum can to compete with glass and plastic containers, which held about 60% of the soft drink market and about 38% of the beer market. Reynolds stressed the light weight and recyclability of the new container. According to the company, a one-liter version of the resealable can weighed 20% less than a comparable plastic container. PepsiCo reportedly was considering test-marketing the can. 10

A process reportedly was developed that converted spent aluminum potliners, which contained fluorides and cyanides, into a product suitable for disposal in landfills. Ground potlining particles were hydrolyzed to remove the contained cyanides and subsequently encapsulated with gypsum to prevent leaching of water-soluble fluorides. The proposed process reportedly was economically attractive compared to the cost of preparing and maintaining an environmentally sealed disposal site for spent potliners.¹¹

¹Physical scientist, Branch of Nonferrous Metals.

²Federal Register. Preliminary Affirmative Countervailing Duty Determination; Certain Electrical Conductor Aluminum Redraw Rod From Venezuela. V. 52, No. 198, Oct. 14, 1987, pp. 38113-38117.

³All quantities in this chapter are given in metric tons where the content of th

unless otherwise specified.

*American Metal Market. UBC Recycling Rate Moves
Back Above 50% Level During '87. V. 96, No. 90, May 9,

1988, p. 9.

**Selected Forecasts For 1990-2000. Bulmines IC 9150, 1987,

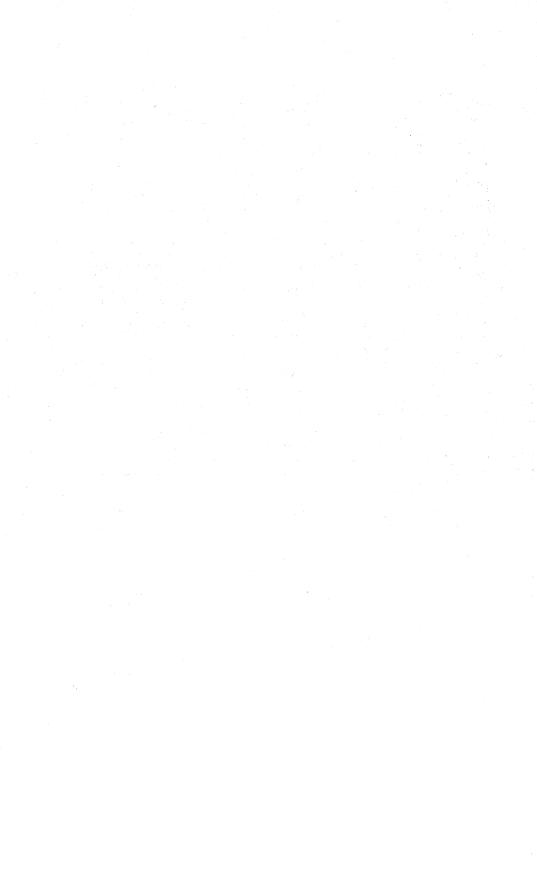
18 pp.

**Jones, S. L. Aluminum-Lithium Use Hurdle Bridged By
Boeing Process. Am. Met. Mark., v. 95, No. 178, Sept. 14,

1987, pp. 12, 14.

1987, pp. 12, 14.

Traut, D. E., G. J. Slavens, and D. A. Hansen. Coreduction of TiCl₄, AlCl₅, and VCl₄ To Produce Titanium Alloy Sponge. BuMines RI 9133, 1987, 17 pp.


Froes, F. H. Metals and Metals Processing. J. Met., v. 39, No. 11, Nov. 1987, pp. 28-29.

Furukwa, T. Showa Denko and Taiyo Develop Plastic-Aluminum Composite Can. Am. Met. Mark., v. 95, No. 202, Oct. 16, 1987, p. 5.

Wartzman, R. Aluminum Maker's Big Coup: The Resealable Beverage Can. Wall St. J., v. 210, No. 87, Oct. 30, 1987, p. 25.

Resealable Beverage Can. Wall St. J., v. 210, No. 87, Oct. 30, 1987, p. 25.

1 Deutschman, J. E., J. S. Lobos, D. O. Johnson, and A. S. Reid. A Process To Produce From Potlining An Inert Residue Suitable For Landfill Sites. Paper in Light Metals 1987, ed. by R. D. Zabreznik. Metall. Soc. AIME, Warrendale, PA, pp. 669-675.

Antimony

By Thomas O. Llewellyn¹

The production of primary antimony products increased compared with that of 1986 as a result of increasing demand. Exports and imports of antimony materials were also up from those of the previous year. In November, the General Services Administration (GSA) completed the sale of antimony metal from the National Defense Stockpile (NDS) that was in excess of the goal. As the result of continued research, a new technique was developed to produce antimony trichloride and antimony trioxide using sulfide ores containing a high per-

centage of impurities.

Domestic Data Coverage.—Domestic production data for antimony are developed by the Bureau of Mines from two voluntary surveys of U.S. operations. Typical of these surveys is the "Primary Antimony" survey. Of the nine operations to which a survey request was sent, all responded, representing 100% of the primary smelter production shown in table 1 and 100% of the total antimony content of primary antimony production by class shown in table 3.

Table 1.—Salient antimony statistics
(Short tons of antimony content unless otherwise specified)

	1983	1984	1985	1986	1987
United States:				•	
Production:					
Primary:	000		****	****	
Mine (recoverable antimony)	838	557	W	17.070	00.707
Smelter	14,557	17,639	16,449	17,978	20,704
Secondary	14,204	14,823	15,030	^r 15,522	16,647
Exports of metal, alloys, waste and scrap	304	511	362	595	876
Exports of antimony oxide	365	480	885	580	777
Imports for consumption	12,885	23,089	20,694	25,401	26,729
Reported industrial consumption, primary antimony	10,418	12,465	11,697	r _{10,952}	11,086
Stocks: Primary antimony, all classes, Dec. 31	3,935	6,895	6,040	r _{6.131}	6,835
Price: Average, cents per pound ¹	91.3	151.2	131.1	121.9	110.6
World: Mine production	55,881	60,309	62,367	P64,146	e61,875

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data. ¹New York dealer price for 99.5% to 99.6% metal, c.i.f. U.S. ports.

Legislation and Government Programs.—On January 7, 1987, pursuant to section 303(a)(2) of the Comprehensive Anti-Apartheid Act of 1986, as amended (Public Law 99-440), antimony was certified by the U.S. Department of State as a strategic mineral essential for the economy or defense of the United States that was unavailable in adequate quantities from reliable and secure suppliers.²

The Department of Defense Authorization Act, 1987 (Public Law 99-661), signed by the President on November 14, 1986, authorized the disposal of 1,500 short tons of antimony metal from the NDS. As a result of this authorization, the GSA continued the offering of excess antimony metal from the NDS as tender for its program to upgrade stockpile ferroalloys. The total sale of excess antimony metal under this program during calendar year 1987 was 1,381 tons. In November, GSA completed its latest sale of excess antimony metal from the NDS. Further sales of antimony from the stockpile will require new legislative authority.

GSA reported that Government stock of antimony metal in the NDS totaled 35,998 tons of stockpile-grade material at yearend. The national stockpile goal of 36,000 tons remained unchanged through 1987.

DOMESTIC PRODUCTION

Primary.—In 1987, antimony oxide production reached its highest level in over 30 years, owing to an increased demand for flame-retardant applications.

In December, Anzon America Inc., a U.S. subsidiary of the London-based Cookson Group, signed an agreement to purchase McGean-Rohco Inc.'s antimony oxide plant in Cleveland, OH, and McGean's interest in an antimony smelter in the Republic of South Africa.

The producers of primary antimony metal and oxide products were ASARCO Incorporated, Omaha, NE; Amspec Chemical Corp., Gloucester City, NJ; Anzon America, Laredo, TX; Chemet Co., Moscow, TN; Laurel Industries Inc., La Porte, TX; McGean

Chemical Co. Inc., Cleveland, OH; M&T Chemicals Inc., Baltimore, MD; Sunshine Mining Co., Kellogg, ID; and U.S. Antimony Corp., Thompson Falls, MT.

Table 2.—Antimony mine production and shipments in the United States

(Short tons of recoverable antimony)

Year	Produced	Shipped
1983	838 557	878 711
1985	w	w
1986	w .	W

 \boldsymbol{W} Withheld to avoid disclosing company proprietary data.

Table 3.—Primary antimony produced in the United States

(Short tons of antimony content)

			Class of material produced or generated					
	Year	Metal	Oxide	Residues	Byproduct antimonial lead	Total		
1983 1984			1,121 1,113	13,153 16.379	283 147	W	14,557 17,639	
1985			943	15,398	108	w	16,449	
1986 1987			378 W	17,525 20,677	75 27	W	17,978 20,704	

W Withheld to avoid disclosing company proprietary data; not included in "Total."

Secondary.—Production of antimony from purchased scrap increased compared with that of 1986. Old scrap, predominantly lead battery plates containing antimony, was the source of most of the secondary material. New scrap, mostly drosses and residues from various sources, supplied the

remainder. The antimony content of scrap was chiefly recovered and consumed as antimonial lead with removal or addition of antimony metal as required in the refining procedure to meet specifications for antimonial lead alloys.

Table 4.—Secondary antimony produced in the United States, by kind of scrap and form of recovery

(Short tons of antimony content unless otherwise specified)

	1986 ^r	1987
KIND OF SCRAP		
New scrap: Lead- and tin-baseOld scrap: Lead- and tin-base	1,366 14,156	1,435 15,212
Total	15,522	16,647
FORM OF RECOVERY		
In antimonial lead	14,776 746	15,943 704
Total Value (millions)	15,522 \$41	16,647 \$44

CONSUMPTION AND USES

Antimony compounds were used in plastics both as stabilizers and as flame retardants. Antimony trioxide in an organic solvent was used to make textiles, plastics, and other combustible flame retardants. Antimony was used as a decolorizing and refining agent in some forms of glass, such as special optical glass. The largest end use for antimony compounds was in flame retardants.

Lead-antimony alloys were used in starting-lighting-ignition (SLI) batteries, ammunition, corrosion resistant pumps and pipes, tank linings, roofing sheets, solder, cable sheaths, and antifriction bearings. In 1987, the Battery Council International reported that the total domestic shipments of replacement and original equipment of SLI batteries for automotives remained at the same level as that of 1986.

Table 5.—Reported industrial consumption of primary antimony in the United States
(Short tons of antimony content)

	Class of material consumed						
Year	Metal	Oxide	Sulfide	Residues	Byproduct antimonial lead	Total	
1983 1984 1985 1986 1987		1,245 1,543 1,503 ^r 2,437 2,194	8,867 10,747 10,053 8,410 8,799	23 28 33 30 66	283 147 108 75 27	W W W W	10,418 12,465 11,697 10,952 11,086

^rRevised. W Withheld to avoid disclosing company proprietary data; not included in "Total."

Table 6.—Reported industrial consumption of primary antimony in the United States, by product

(Short tons of antimony content)

Product	1983	1984	1985	1986 ^r	1987
Metal products:					
Ammunition	175	w	410	w	w
Antimonial lead	926	845	568	607	732
Bearing metal and bearings	143	182	177	153	206
Cable covering	31	w	w	68	w
Castings	9	ii	ii	12	9
Collapsible tubes and foil	w	ŵ	· w	w	w
Sheet and pipe	43	80	ŵ	40	84
Solder	154	232	336	278	383
Type metal	10	31	31	- 9	9
Other	$\bar{7}$ 1	337	105	418	827
Total	1,562	1,718	1,638	1,585	2,250
Nonmetal products:				7	-
Ammunition primers	16	21	27	23	58
Ceramics and glass	1,252	1.292	1.187	1.027	1,237
Fireworks	1,202	1,232	1,101	1,021	3
Pigments	198	178	147	250	307
Plastics	993	1.108	998	975	827
Rubber products	70	21	25	41	W
Other	119	161	141	162	220
Outer	119	101	141	102	220
Total	2,652	2,788	2,529	2,482	2,652
Flame-retardant:					
Adhesives	184	343	310	170	347
Paper	133	159	111	110	W
Pigments	14	8	118	14	33
Plastics	4.441	5,858	5,529	4.979	4,490
Rubber	220	342	315	439	426
Textiles	1,212	1,249	1.257	1,282	882
Other			1,201		6
Total	6,204	7,959	7,530	6,885	6,184
Grand total	10,418	12,465	11,697	10,952	11,086

Revised. W Withheld to avoid disclosing company proprietary data; included with "Other."

Table 7.—Industry stocks of primary antimony in the United States, December 31

(Short tons of antimony content)

	Stocks	 1983	1984	1985	1986	1987
Antimonial lead ¹		 w	W.	w	. w	w
Metal		 805	582	807	r ₉₅₇	954
Ore and concentrate		 446	1,304	1,164	1,030	1,265
Oxide		2,614	4,926	3,954	4,019	4,499
		51	69	99	106	92
Sulfide		19	14	16	19	25
Total		 3,935	6,895	6,040	r _{6,131}	6,835

^rRevised. W Withheld to avoid disclosing company proprietary data; not included in "Total." ¹Inventories from primary sources at primary lead refineries only.

PRICES

The New York dealer price range for antimony metal, published by Metals Week, began 1987 at \$1.05 to \$1.10 per pound. The price range showed minor fluctuations throughout the year, and by yearend was \$1.12 to \$1.16 per pound.

Asarco's published price for high-tint antimony trioxide in lots of 40,000 pounds was \$1.25 per pound at the beginning of the year. This price was increased to \$1.30 at the end of April, held steady until November 5, when it was raised to \$1.35 per pound, and remained constant for the rest of 1987.

European price quotations for antimony ore and concentrates, published by the Metal Bulletin (London), held steady during the first 4 months of the year, and followed an upward trend for the rest of 1987. At yearend, the published price range quotations were as follows: clean sulfide concentrates, 60% antimony content, \$21.50 to \$23.00 per metric ton unit (equivalent to \$19.50 to \$20.85 per short ton unit); and lump sulfide ore, 60% antimony content, \$23.00 to \$25.00 per metric ton unit (equivalent to \$21.30 to \$22.70 per short ton unit).

Table 8.—Antimony price ranges in 1987, by type

Туре		Price per pound
Domestic metal ¹ Foreign metal ² Antimony trioxide	e ³	\$2.00 \$1.05- 1.16 1.25- 1.35

¹Based on antimony in alloy

FOREIGN TRADE

The United States also exported 1,479 tons (gross weight) of other antimony compounds with a value of 4.6 million. The Federal Republic of Germany, the Republic of Korea, Mexico, and the United Kingdom were the recipients of approximately 70% of these exports, and the remainder was distributed among 24 other countries.

China, Hong Kong, Mexico, and the Re-

public of South Africa, supplied over 72% of the materials imported into the United States during 1987. China was the principal supplying country of antimony to the United States for the last 4 years and was expected to continue in that position because it has displaced the other two principal antimony suppliers, Bolivia and the Republic of South Africa.

Table 9.—U.S. exports of antimony metal, alloys, waste and scrap, by country

	19	86	1987		
Country	Gross weight (short tons)	Value (thousands)	Gross weight (short tons)	Value (thousands)	
Belgium-Luxembourg	7.7		45	\$390	
Canada	28	\$83	199	863 39	
Dominican Republic		-,-	16		
Germany, Federal Republic of	26	41	46	117	
Italy	1	30	1	6	
Japan	130	278	43	68	

²Duty-paid delivery, New York.

³Producer price, published by ASARCO Incorporated, for high-tint antimony trioxide.

Table 9.—U.S. exports of antimony metal, alloys, waste and scrap, by country —Continued

		19	86	1987		
Cc	ountry	Gross weight (short tons)	Value (thousands)	Gross weight (short tons)	Value (thousands	
Korea, Republic of		10	\$15	4	\$6	
Mexico		29	49	61	109	
Netherlands		14	24	52	390	
Saudi Arabia		191	147	52	000	
Spain		44	103	110	90	
Taiwan		1	3	(1)	9	
Trinidad		13	49	• •		
United Kingdom		31	84	81	154	
Venezuela		30	68	124	224	
		46	237	94	352	
Total ²		595	1,210	876	2,817	

Source: Bureau of the Census.

Table 10.—U.S. exports of antimony oxide, by country

		1986			1987	
Country	Gross weight (short tons)	Antimony content ¹ (short tons)	Value (thou- sands)	Gross weight (short tons)	Antimony content ¹ (short tons)	Value (thou- sands)
Australia	2	2	\$9			
Belgium-Luxembourg Brazil	14	$1\overline{2}$	53	$\begin{array}{c} \overline{22} \\ 16 \end{array}$	18	\$76 62
CanadaCosta Rica	$3\overline{19}$	$\overline{265}$	$9\overline{16}$	395 23	328 19	1,141 34
Germany, Federal Republic of	48	40	$\overline{146}$	52	43	165
IndiaIsrael	13	11	56	15 11	12 9	50 21
Italy Japan	111 10	92 8	423 25	99 53	82 44	360 167
Korea, Republic of Mexico	43 42	36 35	95 117	31 48	26 40	90 82
Singapore	12	10	41	28	23	79
Taiwan	18 23	15 19	65 74	23 55	19 46	63 169
United Kingdom Uruguay	10 12	8 10	29 38	35	29	83
VenezuelaOther	- 3 17	2 15	15 79	- - 8 22	- - 7	39 71
Total ²	699	580	2,182	936	777	2,752

Estimated by the Bureau of Mines.

Source: Bureau of the Census.

Table 11.—U.S. imports for consumption of antimony, by class and country

		1986			1987	
Class and country	Gross weight (short tons)	Antimony content ¹ (short tons)	Value (thousands)	Gross weight (short tons)	Antimony content ¹ (short tons)	Value (thousands)
Antimony ore and concentrate:						
Bangladesh				66	43	\$61
Bolivia	741	470	\$661	1.329	825	1,182
Canada	1	(²)	1	-,		2,20=
Chile	65	39	40	66	43	60
China	1.450	886	1.088	2,167	1.269	1,558
Guatemala	1.094	616	726	2,436	1,379	718
Guyana	54	33	32	2,400	1,010	110
Honduras	66	26	19	100	45	34
Hong Kong	850	387	484	513	302	362
Korea, Republic of	19	11	40			502

See footnotes at end of table.

 $^{^1\}mathrm{Less}$ than 1/2 unit. $^2\mathrm{Data}$ may not add to totals shown because of independent rounding.

²Data may not add to totals shown because of independent rounding.

Table 11.—U.S. imports for consumption of antimony, by class and country —Continued

		1986			1987	100
Class and country	Gross weight (short tons)	Antimony content ¹ (short tons)	Value (thousands)	Gross weight (short tons)	Antimony content ¹ (short tons)	Value (thousands
antimony ore and concentrate — Continued						
Mexico	5,541	2,913	\$2,255	3,772	1,308	\$1,312
Peru	70.	40	56	120	69	75
South Africa, Republic of	19	16	7			
Thailand	779	366	386	745	307	343
Trindad				22	12	12
United Kingdom	83	53	96	53	32	18
Total ³	10,833	5,855	5,892	11,389	5,634	5,732
ntimony oxide:	· · · · · · · · · · · · · · · · · · ·					
Belgium-Luxembourg	472	392	1,243	807	670	1,853
Bolivia	833	691	1,315	546	453	918
Chile	221	183	333			
China	3,410	2,830	7,818	3,404	2,825	6,65
France	881	731	2,463	883	733	2,200
Germany, Federal Republic of	101	84	703	96	80	73
Guatemala				75	62	70
Hong Kong	1,155	959	2,566	1.103	915	2,32
Japan	1,100	1	14	3	2	3'
Mexico	27	22	28	460	382	40
Netherlands	38	32	92			
South Africa, Republic of	5,889	4,888	3,884	4.332	3,596	2.98
Spain	56	46	138	-,	-,	´_'
Taiwan	195	162	365	187	155	37
United Kingdom	241	200	567	159	132	41
Yugoslavia	241	200		1,590	1,320	1,05
Total ³	13,521	11,221	21,529	13,645	11,325	20,024
antimony sulfidor						
Antimony sulfide:4 Austria	4	3	15	7	5	2
Belgium-Luxembourg	*			9	6	1
China	538	360	565	86	58	7
Hong Kong	20	13	8	00		
Mexico	13	9	9			
Total ³	576	385	596	102	69	115

¹Antimony ore and concentrate content reported by Bureau of the Census. Antimony oxide and antimony sulfide content estimated by the Bureau of Mines.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

⁴Includes needle or liquated.

Source: Bureau of the Census.

Table 12.—U.S. imports for consumption of antimony metal, by country

	19	86	19	187
Country	Gross weight (short tons)	Value (thousands)	Gross weight (short tons)	Value (thousands
Belgium-Luxembourg			5	\$4
Bolivia	$1\overline{27}$	\$229	43	83
Canada	(¹)	109	1	171
Chile	65	117	106	202
China	4.634	9,828	6,883	13,416
Germany, Federal Republic of	20	107	3	88
Hong Kong	1,232	2,810	1.184	2,268
Indonesia	1,202	_,	66	409
Japan	(1)	1		
Korea, Republic of	154	403	168	356
Mexico	1,359	896	990	669
Netherlands	20	51	(¹)	9
Peru	11	24	` '	
	11		19	30
Taiwan Thailand	58	$\bar{117}$	20	
U.S.R	236	502	189	383
United Kingdom	230	47	44	83
-	7.940	15,242	9,701	18,171
Total ²	7,940	10,242	5,101	10,111

¹Less than 1/2 unit.

Source: Bureau of the Census.

²Data may not add to totals shown because of independent rounding.

WORLD REVIEW

Argentina.—An antimony deposit with possible reserves of about 0.5 million tons of ore was discovered in the Province of La Rioja. The provincial authorities were in the process of financing the exploration and development of the deposit, which could meet future domestic demand of antimony metal.

Mexico.—Anzon America and Cía. Minera y Refinadora Mexicana S.A. completed the installation and construction of a new concentration plant for low-grade ore at their mine in Wadley. The company expected to have the plant operating by early 1988, which would increase capacity by 1,100 tons per year.

South Africa, Řepublic of.—Consolidated Murchison Ltd., the Republic of South Africa's only antimony producer, raised funds to finance projects to explore areas where both gold and antimony mineralization had been known to exist and to deepen the Monarch East shaft to gain access to additional anti-

mony reserves. Shaft sinking at the Monarch East area was completed, and the antimony ore mined contained a higher gold content.

United Kingdom.—Sassoon Metals and Chemicals AG formed a joint venture with China's Guangdong Metals and Minerals to market mineral commodities. The new trading company, China Industrial Resources (CIR), would buy and sell antimony, bismuth, copper, zinc, and other minerals worldwide. It was reported that CIR would be staffed by Chinese and Europeans with headquarters in London.³

U.S.S.R.—The Anzob antimony-mercury mining and beneficiation operation, in the Soviet Central Asian Republic of Tadzhikistan, was planning to increase production. The 5-year plan (1986-90) called for a plant-capacity expansion, which when completed would result in an antimony production increase of about 11% and a mercury production increase of 15%.

Table 13.—Antimony: World mine production (content of ore unless otherwise specified), by country¹

(Short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Australia ²	593	1,267	2,317	991	1,100
Austria	726	577	526	566	580
Bolivia	10,969	10,231	9,838	11,291	9,000
Canada ³		610	1,185	4.194	3,900
China ^e	16,500	16,500	16,500	16,500	16,500
Czechoslovakia	990	1,100	e _{1,100}	e1,000	1,100
France	122	2,200	2,200	_,,	-,
Guatemala		e ₁₀₀	1,165	2,092	2,100
Honduras ^e		120	100	110	110
Italy		269	546	336	330
Malaysia (Sarawak)	148	19	13	(⁴)	
Mexico ⁵	2,777	3,377	4.702	3,678	3,300
Morocco (content of concentrates)	500	1.071	e830	680	720
Pakistan		1,011	4	. 000	11
Peru (recoverable)	786	741	655	e740	720
South Africa, Republic of (content of con-	100	141	000	140	120
centrates)	6.947	8,201	8,150	7.513	7,500
Spain	539	643	273	^e 220	220
Thailand	1,315	2,172	1.367	1.123	1,400
Turkey	926	1,121	1,082	1,039	61,104
U.S.S.R. ^e	10,000	10,300	10,400	10,500	10,600
United States ⁷	838	557	W	10,500 W	10,000
Yugoslavia ^e	1.047	1.050		r _{1.380}	1.390
Zimbabwe (content of concentrates)	1,047	1,050 282	$1,400 \\ 214$	1,380	1,390
Zimbabwe (content of concentrates)	198	202	214	193	190
Total	55,881	60,309	62,367	64,146	61,875

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

*Revised to zero.

*Antimony content of ores for export plus antimony content of antimonial lead and other smelter products produced.

*Reported figure.

¹Table includes data available through May 27, 1988.

⁴Revised to zero.

²Antimony content of antimony ore and concentrates, lead concentrates, and lead-zinc concentrates.

³Partly estimated on the basis of reported value of total production.

Production from antimony mines; excludes amount produced as a byproduct of domestic lead ores.

TECHNOLOGY

Preussag AG, Erdol und Chemie, Federal Republic of Germany, announced the development of a new process for producing antimony trichloride and antimony trioxide from sulfide ores that previously were not treated because of their high percentage of impurities. In the new technique, the finely ground ore was reacted with gaseous hydrogen chloride in a salt melt to remove the sulfur in the form of hydrogen sulfide. Antimony trichloride was recovered from the reaction mixture by distillation. The antimony trichloride was hydrolyzed to pro-

duce antimony trioxide. Preussag claimed to have successfully tested the new technique on a pilot plant scale, and that its main advantages were cost effectiveness, limited environmental impact, and a highpurity final product.4

¹Physical scientist, Branch of Nonferrous Metals.

¹Physical scientist, Branch of Nonterrous Metals.

²Federal Register. Strategic Minerals Listing. V. 52, No. 28, Feb. 11, 1987, p. 4454.

³Metals Week. Chinese, Sassoon Set Up Trading Unit. V. 58, No. 52, Dec. 28, 1987, p. 6.

⁴Engineering and Mining Journal. Preussag Process Produces Antimony Trioxide From Multi-Metal Sulphides. V. 188, No. 2, Feb. 1987, p. 55.

Asbestos

By Robert L. Virta¹

U.S. apparent consumption of asbestos declined in 1987. Shipments from domestic mines decreased slightly, and imports for consumption decreased 13% from those of 1986. Adverse publicity on asbestos-related health risks and a proposed Environmental Protection Agency (EPA) ban of certain asbestos products contributed to the poor market conditions in the United States.

Domestic Data Coverage.—Domestic production data for asbestos are developed by the Bureau of Mines by means of a volun-Of the three tarv industry survey. canvassed operations to which a survey request was sent, all responded, representing 100% of the total production data shown in table 1.

Table 1.—Salient asbestos statistics

	1983	1984	1985	1986	1987
II. '4. J C4-4					· ·
United States:					
Production (sales):	69.906	57,422	57,457	51,437	50,600
Quantity metric tons					\$17,198
Value ¹ thousands	\$27,866	\$24,238	\$20,485	\$17,367	ф11,130
Exports and reexports (unmanufactured):					
Quantitymetric tons	54,634	39,919	45,656	47,281	60,084
Value thousands	\$19,683	\$18,346	\$16,489	\$14,520	\$16,149
	φ10,000	Ψ10,010	Ψ=0,	*- /	
Exports and reexports of asbestos products:	#100 F00	\$163,347	\$193,765	\$163,896	\$180,602
Valuedo	\$129,582	\$100,041	φ130,100	φ100,000	φ100,002
Imports for consumption (unmanufactured):			* 10 101	100 000	93,763
Quantity metric tons	196,387	209,963	142,431	108,352	
Valuethousands	\$57,956	\$64,749	\$44,093	\$26,537	\$22,022
	217,000	226,000	162,000	119.627	84,279
		r _{4.309,179}	4,272,327	P4,050,261	e4,054,088
World: Productiondo	r _{4,428,867}	4,509,179	4,212,021	4,000,201	1,001,000

Revised. Preliminary. eEstimated.

Legislation and Government grams.-The EPA continued a regulatory impact analysis of its proposed ban and/or phaseout of asbestos and asbestos-containing products. The proposed ruling would immediately ban the manufacture, importation, and processing of certain asbestos construction materials. In addition, the mining of asbestos and the importation of asbestos and asbestos products not immediately banned would be placed under a permit system and would be phased out within 10 years.

On February 25, 1987, the EPA modified its 1986 regulation covering State and local government employees on asbestos abatement projects. The permissible exposure limit was reduced from 2 fibers per cubic centimeter to 0.2 fiber per cubic centimeter, and new requirements for engineering and work practice controls and worker training were instituted.2

On October 30, 1987, the EPA issued a final ruling that requires local educational districts to identify asbestos-containing materials in public and private school buildings, and to submit a management plan that describes the appropriate action to take regarding the materials to the State Governor by October 12, 1988. The ruling

¹F.o.b. mine

²Production, plus imports, minus exports, plus adjustments in Government and industry stocks.

requires the local education districts to begin implementing the management plan by July 9, 1989.³

The National Bureau of Standards established an accreditation program, effective October 1, 1988, for laboratories that determine the asbestos content of insulation and building materials using polarized light microscopy and that determine airborne asbestos concentrations following asbestos abatement programs using transmission electron microscopy. An interim EPA quality assurance program, established September 3, 1987, for the analysis of asbestos-containing

materials using polarized light microscopy remains in effect until October 1, 1988.5

The Occupational Safety and Health Administration (OSHA) extended through July 21, 1988, an administrative stay on its 1986 regulation governing worker exposure to the nonasbestiform varieties of tremolite, actinolite, and anthophyllite. During the stay, OSHA continued to analyze the impact of using the asbestos standard to regulate the nonasbestiform varieties of the minerals.⁶

Stockpile goals for asbestos were unchanged from those of 1986.

Table 2.—Stockpile goals and Government inventories for asbestos as of December 31
(Metric tons)

			Stock- pile —	To	tal inventori	es
	 		goals	1985	1986	1987
Amosite Chrysotile Crocidolite	 	 	15,422 2,722	30,855 9,772 33	30,853 9,711 33	30,849 9,709 33
Total	 	 	18,144	40,660	40,597	40,591

Source: General Services Administration, Federal Property Service.

DOMESTIC PRODUCTION

The producers of asbestos were Calaveras Asbestos Ltd., Calaveras County, CA; KCAC Inc., San Benito County, CA; and Vermont Asbestos Group Inc., Orleans County, VT. Calaveras Asbestos permanently closed its mine in Copperopolis, CA, on December 31, 1987. The company, which was the largest

of the three domestic asbestos producers, cited depleted ore reserves and decreased market demand as the reason for closing. Plans were made to open the mine in 1988 as a disposal site for asbestos-containing materials under a new company name, CalSafe.7

CONSUMPTION AND USES

Total U.S. asbestos consumption decreased 30%. Approximately 94% of the asbestos consumed was chrysotile, 1% was crocidolite, and 5% was an unspecified fiber type.

Chrysotile grade 7 was most commonly used, followed by grades 4, 6, and 5. Spinning grades 1, 2, and 3 represented approximately 1% of the total consumption.

Table 3.—U.S. asbestos consumption, by end use, grade, and type

(Thousand metric tons)

			C	hrysotile	,1				Cro-	001	Total
End use	Grades 1 and 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Total	Amo- site	cido- lite	Oth- er ²	asbes- tos ³
1986 total		1.1	14.2	9.3	10.3	78.6	113.7		2.0	3.9	115.7
1987: Asbestos-cement pipe Asbestos-cement sheet Coatings and compounds Friction products Insulation: Electrical Packing and gaskets Paper	 	 (4) .1	6.8 (4) .2 (4) .5	1.1 2.7 .1 2.5	2.3 2.2 (⁴) 2.8 (⁴) .1	1.7 2.6 15.6 6.9 4.8	10.2 3.9 2.7 21.3 .1 10.2 4.8		1.1		11.3 3.9 2.7 21.3 .1 10.2 4.8

See footnotes at end of table.

Table 3.-U.S. asbestos consumption, by end use, grade, and type -Continued

(Thousand metric tons)

				Chrysotile ¹						Amo-	Cro-	Oth-	Total
End use		Grades 1 and 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Total	site	cido- lite	1do- 2	asbes- tos ³	
1987 —Co	ntinued												
Plastic Roofing	s g products _						- (4)	$\frac{1.3}{22.6}$	$\frac{1.3}{22.6}$				1.3 22.6
Textile Other				0.5 .3	$\bar{0}.\bar{2}$	$\overline{0}.\overline{1}$		$\bar{1}.\bar{2}$.5 1.8				.5 1.8
То	tal ⁵		-	1.0	7.8	6.5	7.3	56.8	79.3	- -	1.1	3.8	80.4

¹Estimated distribution based upon data provided by the Asbestos Institute, Montreal, Canada, and the Bureau of Mines asbestos producer survey.

²Bureau of the Census.

PRICES

The average unit value of domestically metric ton. The average unit value of exported asbestos was \$269 per ton. produced asbestos in 1987 was \$340 per

Table 4.—Customs unit values of imported asbestos

(Dollars per metric ton)

	1983	1984	1985	1986	1987
Canada:					
Chrysotile:					
Cement	257	284			
Crude	 199	1,084	576	547	610
	 932	699	731	507	598
	 384	431	283	229	218
	 304	401	200	220	210
South Africa, Republic of:	040	900	830		
Amosite	 840	869		F00	572
Crocidolite	 629	705	569	582	512

Source: Bureau of the Census.

FOREIGN TRADE

There was a 10% increase in the total value of asbestos fibers and asbestos products exported from the United States. The asbestos fiber portion was 8% of total value. Exports and reexports of brake linings and disc pads accounted for 74% of the value of all asbestos products exported. Canada remained the largest importer of U.S. asbestos fibers and products, followed by Mexico, Japan, Brazil, and Thailand.

Canada provided 96% of the asbestos imported into the United States, and the Republic of South Africa provided 3%. Sevcountries provided minor other amounts. Approximately 95% of asbestos fiber imports were chrysotile.

³Does not include "Other" category in total. "Other" contains unspecified fiber type and end use.

Less than 1/10 unit.

⁵Data may not add to totals shown because of independent rounding.

Table 5.—Countries importing U.S. asbestos fibers and products

(Thousand dollars)

		1986			1987	
Country	Unmanu- factured fibers	Manu- factured products	Total ¹	Unmanu- factured fibers	Manu- factured products	Total ¹
Australia	17	1,341	1,358	24	1,513	1,537
Brazil	467	2,555	3,022	401	4,642	5,048
Canada	605	123,819	124,424	673	136,828	137,501
Germany, Federal Republic of_	300	2,746	3,047	673	1,975	2,648
Japan	2,981	7,867	10,848	3,604	5,931	9,535
Korea, Republic of	624	825	1,449	1,579	991	2,569
Kuwait		221	221	71	132	132
Mexico	2,667	5,593	8,260	2,893	6,720	9.613
Saudi Arabia	1122	1,062	1,062		1,329	1,329
Thailand	2,490	354	2,844	3,028	397	3,425
Turkey		361	361	-,	279	279
United Kingdom	166	1.313	1,479	359	1,949	2,307
Venezuela	218	2,688	2,906	257	2.314	2,571
Other	3,864	12,108	15,972	2,659	15,602	18,261
Total ¹	14,401	162,851	177,252	16,149	180,602	196,751

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 6.—U.S. exports and reexports of asbestos and asbestos products

		19	85	1	986	1	987
Products		Quan- tity	Value (thou- sands)	Quan- tity	Value (thou- sands)	Quan- tity	Value (thou- sands)
EXPORTS							
Unmanufactured:							
Crudes, fibers, stucco	_ metric tons	29,382	\$12,705	30,252	\$9,728	39,720	\$11,151
Sand and refuse	do	15,693	3,661	16,645	4,673	19,416	4,666
Total ¹	do	45,075	16,366	46,897	14,401	59,136	15,818
Manufactured:	-						
Asbestos fibers	do	607	3,793	723	3.902	1.078	4,761
Brake linings and disk brake pads	do	NA	144.262	NA	123,515	NA	133,733
Clutch facings and linings	number	NA	20.718	NA.	16.187	NA	19,982
Gaskets	metric tone	78	900	266	1.285	471	1.857
Insulation	do	NA	4.566	NA	1.889	NA	3,700
Packing and seals	do	1.192	6,716	820	6.373	659	5,710
Shingles and clapboard	do	984	893	880	805	1.225	605
Other articles of asbestos	do	1,521	2,437	1.614	1,553	1,632	2,132
Other articles of aspestos	do	1,521 NA	9,191	1,614 NA	7.342	1,032 NA	6,473
Total		XX	193,476	XX	162,851	XX	178,953
REEXPORTS	-						
Unmanufactured:							
Crudes and fibers	metric tons	369	71	329	98	904	316
Sand and refuse	do do		52	54	20	44	15
				04		44	10
Total ¹	do	581	123	384	119	948	331
Manufactured:	-						
Asbestos fibers	do	(2)	3			27	65
Brake linings and disk brake pads	do	NA	103	NA	$\bar{222}$	NA	333
Clutch facings and linings	uo	NA NA	73	NA NA	604	NA NA	845
Gaskets	metric tone	1	18	1NA 6	65		849
Insulation	_ men ic tons	NA	2	NA	65 23		
Packing and seals	do	NA 4	63	(2)	23 50		
Other articles of asbestos			20			(2)	3
Other articles of aspestos Other articles, n.s.p.f	aoa	NA NA	20 1	NA NA	$^{3}_{78}$	NA NA	143 260
Total	-	XX	283	XX	1,045	XX	1,649

Source: Bureau of the Census.

NA Not available. XX Not applicable.
¹Data may not add to totals shown because of independent rounding.
²Less than 1/2 unit.

Table 7.—U.S. imports for consumption of asbest	tos fibers, by type, origin, and value	;
---	--	---

	Can	ada	South Repub		Oth	ner	Tot	al ¹
Туре	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
1985	131,119	\$38,547	10,985	\$5,224	327	\$322	142,431	\$44,093
1986:								~
Chrysotile:								
Crude	20	12	192	104			212	116
Spinning fibers	598	304					598	304
All other	101,273	23,065	227	139	107	94	101,607	23,291
Crocidolite (blue)	, , , , , , , , , , , , , , , , , , ,		1,968	1,154	20	4	1,988	1,158
Other (unspecified			•	•				
asbestos type)	1,626	434	2,068	1,109	253	119	3,947	1,662
Total ¹	103,517	23,814	4,455	2,506	380	217	108,352	26,537
1987:								
Chrysotile:								
Crude	19	12	10	11	15	17	44	40
Spinning fibers	589	352			15	45 5	604	397
All other	88,107	19,207	44	57	22	5	88,173	19,269
Crocidolite (blue)	,		1,113	637	4_12		1,113	637
Other (unspecified			-,					
asbestos type)	1,509	526	2,079	1,083	241	70	3,829	1,679
Total ¹	90,224	20,096	3,246	1,788	293	137	93,763	22,022

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Imports of asbestos-containing pipes, tubes, and fittings increased from 960 tons in 1986 to 2,150 tons in 1987 according to the Bureau of the Census. Imports of spinnable asbestos fiber decreased from 750

tons in 1986 to 520 tons in 1987, and imports of other asbestos-containing products decreased from 7,530 tons in 1986 to 4,580 tons in 1987.

WORLD REVIEW

Canada.—The labor ministers for the Quebec Provincial and Federal Governments agreed to endorse the International Labor Organization convention on the controlled use of asbestos if approval is obtained from the respective Cabinets.8

The Canadian and Quebec Governments initiated an \$8.8 million research and development program to investigate ways of improving asbestos mining techniques and reducing production costs. The Federal and Provincial Governments will provide \$3.2 million each, the asbestos industry will provide \$1.6 million, and the Asbestos Institute will provide \$800,000 for the program.

Hydrogen Energy Corp. and its subsidiary, Ulhycarb Chemicals of Canada Inc., initiated a technical and economic study of a process to produce hydrogen gas and byproducts from asbestos mine tailings. The study was supported by the Quebec government and the Hydrogen Industry Council and will focus on utilizing asbestos mine tailings from Thetford, Quebec.¹⁰

South Africa, Republic of.—The South African Department of Manpower issued regulations reducing worker exposure to asbestos. The new regulation limited occupational exposure to asbestos to 1 fiber per milliliter. When concentrations exceed this limit, workers are required to wear protective devices. In addition, the spray application of asbestos-containing materials was prohibited, and guidelines for labeling asbestos-containing materials, for disposal of asbestos-containing materials, and for demolition of buildings containing asbestos were established.¹¹

U.S.S.R.—Production of asbestos-cement was predicted to increase 15% and 17% in 1989 and 1990, respectively. The U.S.S.R. produced over 40 asbestos-cement products including corrugated sheet, flat sheet, and pressure pipe. An extrusion process was introduced for manufacturing asbestos-cement products. The U.S.S.R. continued to upgrade equipment to reduce fuel costs and increase productivity.¹²

Table 8.—Asbestos: World production, by country¹

(Metric tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Argentina	1.240	1,093	1,244	e1,100	1.000
Australia	3,909	-,	-,	7,	-,
Brazil (fiber)	158,885	134,788	165,446	204,460	210,000
Bulgaria	700	500	400	é500	500
Canada (shipments)	858,000	837,000	750,000	662,000	660,000
China ^e	160,000	135,000	150,000	150,000	150,000
Colombia	e _{5,400}	9,982	12,435	e _{13.000}	13,000
Cyprus	17,288	7,429	16,360	13,011	13,000
Egypt	245	389	229	476	450
Greece	31,811	45,376	46.811	e48,000	48.000
India	24,873	25,450	30,183	25,236	23,000
Indonesia ^e	25,000	25,000	25,000	25,000	25,000
Italy	139,054	147,272	136,006	115,208	120,000
Japan ^e	4,000	4,000	4,000	4,000	4,000
Korea, Republic of	12,506	8,062	4,703	2,983	3,000
Mozambique	e ₆₀₀	e400	55	1 1 1	
South Africa, Republic of	221.111	167,389	164,247	138,862	3135.074
Swaziland	26,287	25,832	25,130	20,908	21,000
Taiwan	2,819	1,355	625		
Turkey	1,510	1,499	e _{1,500}	e _{1.500}	1,500
U.S.S.R. ^e	r2,500,000	r2,500,000	r _{2,500,000}	r _{2,400,000}	2,400,000
United States (sold or used by producers)	69,906	57,422	57,457	51,437	350,600
Yugoslavia	10,502	8,556	6,916	8,596	³ 10,964
Zimbabwe	153,221	165,385	173,580	163,984	164,000
Total	r4,428,867	r4,309,179	4,272,327	4,050,261	4,054,088

^pPreliminary

TECHNOLOGY

Contact filtration of chrysotile and amphibole asbestos suspensions was studied using magnesium oxide, sand, magnesium carbonate, acidic and basic alumina, calcite, diatomaceous earth, microcrystalline cellulose, and activated carbon as the filter media. Approximately 99% of the amphibole asbestos was removed using magnesium oxide and acidic alumina. Magnesium oxide and basic alumina were most effective for removing chrysotile from suspension by contact filtration.13

A study on the use of asbestos-reinforced plastics in fire and high heat environments concluded that asbestos-reinforced plastics may solve many of the problems created by burning and smoldering plastics in buildings and mass transit vehicles. Several factors considered were the dependence of flame retardancy and heat resistance on the asbestos content of the plastic, the increased use of competing reinforcement and filler materials, and the rapid change in plastic compositions as technological developments were made.14

In studies of asbestos, regression analysis commonly is used to correlate the number

of particles in a specific size category with the incidence of cancer. An evaluation of the regression technique suggested that the strength of the correlation between particle size and carcinogenicity may not be as strong as originally theorized.15

Air-monitoring samples collected in occupational and mining environments were examined using the phase contrast microscope (PCM) and the scanning transmission electron microscope. The study concluded that by applying a multiplication factor to routine PCM counts, the regulatory assessment of the particle content on personal airmonitoring filters would be more accurate.16

The Société Nationale de l'Amiante continued investigating the use of phosphorusrich coatings to reduce the harmful effects of asbestos. For a surface modification to be effective, the coating must penetrate the fiber bundle and coat individual fibrils, the coating must be durable enough to undergo processing and remain intact through the product life, the coating could not alter the fiber grade or processing characteristics, and the cost must be low enough to ensure that modified chrysotile would be cost com-

¹Table includes data available through Apr. 29, 1988.

²In addition to the countries listed, Afghanistan, Czechoslovakia, North Korea, and Romania also produce asbestos, but output is not officially reported, and available general information is inadequate for the formulation of reliable estimates of output levels.

Reported figure.

petitive with asbestos substitutes.17

A process was developed to convert asbestos-containing waste into a harmless glass. The asbestos-containing waste was fed into a modified glassmaking furnace. where it was incorporated into the molten glass at a temperature of 1,400° C. The glass was reported to be nontoxic and safe even if broken or melted. Disposal using this technique was cost competitive with landfill disposal.18 A second method for rendering asbestos harmless was developed at the Risoe Research Center in Copenhagen, Denmark. Ammonium sulfate at 260° C was used to decompose the asbestos.19

¹Physical scientist, Branch of Industrial Minerals.

Federal Register. Environmental Protection Agency. Asbestos Abatement Projects; Worker Protection, Final Rule. V. 52, Nos. 36-37, Feb. 25, 1987, pp. 5618-5650.

^{3—}Environmental Protection Agency. Asbestos-Containing Materials in Schools; Final Rule and Notice. V. 52, No. 210, Oct. 30, 1987, pp. 41826-41905.

[.] National Bureau of Standards. National Voluntary Laboratory Accreditation Program; Bulk Asbestos Analysis, Etc. V. 52, No. 206, Oct. 26, 1987, pp. 39977-39978. 5—. Environmental Protection Agency. Asbestos-Containing Materials in Schools; Announcement of Interim Laboratory Quality Assurance Program. V. 52, No. 171, Sept. 3, 1987, pp. 33470-33471.

⁶⁻⁻⁻⁻⁻ Occupational Safety and Health Administration. Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite. V. 52, No. 83, Apr. 30, 1987, rhophymie, and Actinomie. v. 52, 140. 55, Apr. 56, 1261, pp. 15722-15723.

Stockton Record. Asbestos Mine To Shut Down. Dec. 9,

⁸Industrial Minerals (London). Quebec Government To

Pay for Asbestos Corp. No. 232, Jan. 1987, pp. 9-10.

⁹Mining Journal (London). Canada Launches Asbestos R&D. V. 308, No. 7921, June 12, 1987, p. 450.

Hydrogen From Asbestos. V. 309, No. 7928,

July 31, 1987, p. 81.

July 31, 1987, p. 81.

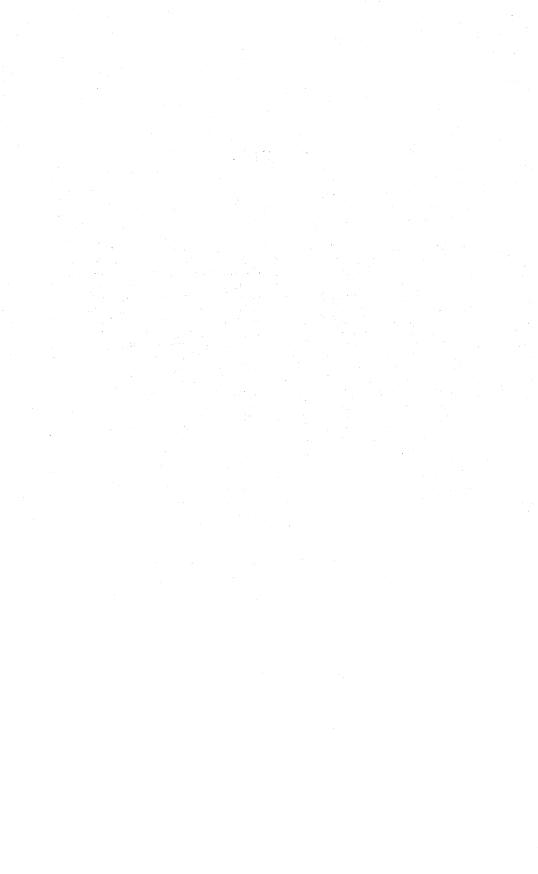
Luss Embassy, Johannesburg, Republic of South Africa. South African Minerals Highlights: The Month in Review (April). State Dep. Airgram 881, May 1987, 3 pp.

¹²Industrial Minerals (London). Asbestos-Cement Pro-

duction Increases. No. 239, Aug. 1987, p. 17.

13 Tallman, D. N., and J. E. Pahlman. MgO Filtration
Research. BuMines IC 9138, 1987, 32 pp.

¹⁴Asbestos. Using Asbestos Reinforced Plastics May Reduce Loss of Life. V. 2, No. 2, 1st quarter 1987, pp. 4-5. 15Wylie, A. G., R. L. Virta, and J. M. Segreti. Characterization of Mineral Population by Index Particle: Implica-tion for the Stanton Hypothesis. Environ. Res., v. 43, 1987,


tion for the contract of the phase Contract Microscopy Method for the Detection of the Phase Contract Microscopy Method for the Detection of Fibrous and Other Elongated Mineral Particulates by Comparison With a STEM Technique. Am. Ind. Hyg. Assoc. J., v. 48, No. 5, pp. 471-477.

17 Griffith, J. Surface Modified Minerals. Ind. Miner. Candon No. 241. Oct. 1987, pp. 23-43.

⁽London), No. 241, Oct. 1987, pp. 23-43.

 ¹⁸Ceramic Industry. Scrap Glass Helps Handle Waste
 Asbestos Hazard. V. 129, No. 2/A, Aug. 1987, p. 9.
 ¹⁹European Chemical News. ECN Technology. V. 49, No.

^{1304,} Dec. 14, 1987, p. 26.

Barite

By Sarkis G. Ampian¹

Domestic production of barite increased more than 50%, reversing the downtrend that started in 1982, and, with the exception of 1984, has persisted ever since. Production from Nevada, the leading producer, increased about 13%. Imports for consumption of crude barite increased 11%, while ground barite imports decreased nearly 50%. Imports of barite exceeded domestic production for the sixth straight year; the import figure of 825,000 short tons for 1987 was nearly 1.6 million tons below the recordhigh tonnage imported during 1982. Ground barite imports, except for the drilling boom years of the late 1970's and early 1980's, were negligible. The principal use for barite, as a weighting agent in oil- and gas-welldrilling fluids (muds), accounted for 90% of U.S. consumption. Chemicals, glass, and filler and/or extender uses accounted for the remaining 10%.

Demand for barite by the oil- and gaswell-drilling industry, rebounded at midyear, owing to the firming of oil prices and improvements in the overall economy. The upturn also has been in large part due to the increase in offshore drilling, which tends to have deeper wells that consume more barite than the shallower wells, and to optimism in the oil-producing States. U.S. mine production continued, although still depressed, encouraged by regional sales and declining rail rates, which increased the competitiveness of domestic ores in the gulf coast and midcontinent areas. Barite grinding capacity, despite numerous closures, mergers, and acquisitions, continued to be in a position to meet present and future requirements.

Domestic Data Coverage.—Domestic production data for barite are developed by the Bureau of Mines from one voluntary survey of U.S. operations. Of the 64 operations to which a survey request was sent, all responded, representing 100% of the total crushed and ground production sold or used shown in table 1.

Table 1.—Salient barite and barium chemical statistics

(Thousand short tons and thousand dollars)

	1983	1984	1985	1986	1987
United States:					
Barite, primary:					
Sold or used by producers	754	775	739	297	448
Value	\$29,203	\$25,445	\$21,501	\$12,326	\$15,810
Exports	23	1	6	7	9
Value	\$3,514	\$574	\$692	\$1,021	\$716
Imports for consumption (crude)	1,396	1.731	2,056	745	825
Consumption, apparent ¹	2.127	2,505	2,789	1,035	1,264
Crushed and ground (sold or used by processors)2	2,745	2,883	2.184	1,216	1.434
Value	\$194,380	\$220,806	\$154.463	\$75,965	\$108,759
Barium chemicals (sold or used by processors)	22	26	24	25	28
Value	\$16,860	\$17,105	\$16.036	\$16,871	\$16,466
World: Production	5,924	r _{6,404}	6,649	P5,204	e5,137

^eEstimated. ^pPreliminary. ^rRevised.

¹Sold or used plus imports minus exports.

²Includes imports.

DOMESTIC PRODUCTION

The term "primary barite" denotes the first marketable product and includes crude run-of-mine barite, flotation concentrates, and material concentrated by other beneficiated processing such as washing, jigging, or magnetic separation. Run-of-mine barite, the lowest cost primary barite sold or used by producers, represented 54% of total production compared with 36% in 1986; the other 46% was flotation concentrate and other beneficiated material. The lower cost crude barite was used chiefly in drilling muds; the higher valued floated and other beneficiated material was used mostly in chemical and glass manufacturing and in filler applications.

Reported primary production increased more than 50%. Nevada and Georgia remained the two leading barite-producing States. Other producing States, in descending order, were Missouri, California, and Montana. All domestic barite production is a primary product. Barite was formerly produced as a coproduct of fluorspar mining and milling in Illinois.

The leading domestic barite producers were M-I Drilling Fluids Co., a Dresser Halliburton Co.; FMC Corp.; Milpark Drilling Fluids, a Baker Hughes Inc. company, with mines in Nevada; and NL Baroid, a

division of NL Petroleum Services Inc., with mines in Missouri and Nevada.

The domestic barite industry recovered at midyear, primarily owing to an increase in both oil- and gas-well-drilling activity and the overall economy. The rebound in oil prices, which firmed and even tended to move upwards, was largely responsible for the increase in barite demand. This upturn reversed the trend of declining barite production rates that has been prevalent since 1981, the record-high production year (2.8) million tons). Production data also revealed that a number of factors enabled modest increases in domestic mining campaigns. Those factors included an upturn in drilling activity, competitive rail rates to the gulf coast and midcontinent areas based on unittrains, and guaranteed-tonnage contracts. coupled with optimism in the oil-producing States.

Nevertheless, the persistent oil glut and lower energy rates, exacerbated primarily by Mideast overproduction, continued to temper or limit any major upturn in oil-and gas-well-drilling activity. Another factor, other than oil prices, depressing the domestic marketplace is the overcapacity in the drilling fluids business. In addition, rising ocean freight rates, in part due to

Table 2.—U.S. primary barite sold or used by producers, by State

	<u>.</u>	Run	of mine		ation ntrates		ficiated erial ¹	To	tal ²	
State	State	Number of opera- tions	Quantity (thousand short tons)	Value (thou- sands)	Quantity (thousand short tons)	Value (thou- sands)	Quantity (thousand short tons)	Value (thou- sands)	Quantity (thousand short tons)	Value (thou- sands)
1986: Georgia Missouri Nevada Tennessee	2 3 7 1	3107 4W	3\$1,865 4W	W W	W W 	W W 82	W W \$1,522	W W ³ 189 ⁴ W	W W ³\$3,386 ⁴W	
Total	13	107	1,865	w	W	⁵ 190	⁵ 10,462	⁵ 297	⁵ 12,326	
1987: California Georgia Missouri Montana Nevada Tennessee	1 2 3 1 7	W W 214 W	W W 3,249 W			w w	w w	W W W 214 W	W W W W 3,249 W	
 Total	15	⁵ 244	5 7,515	5 61	5\$5,238	⁵ 142	⁵ 6,300	5 ₄₄₈	⁵ 15,810	

W Withheld to avoid disclosing company proprietary data.

¹Includes some flotation concentrates (1986).

²Data may not add to totals shown because of independent rounding.

³Includes Tennessee.

⁴Included with Nevada.

⁵Includes data indicated by symbol W.

higher bunker fuel costs and limited availability of bottoms, helped make domestic ores more competitive with foreign ores. The firming domestic market, still the world's largest, has turned relatively soft markets into a mild seller's market for both producers and grinders alike. The domestic industry, however, continued to be threatened by imports of crude and ground barite, furthering the risk of a volatile market-place. Such a scenario could further impact the slowly recovering domestic industry.

Most mining and grinding operations continued to be either suspended or on minimal production schedules to address the industry's overcapacity. Many of the additions to mining, milling, and grinding capacity were largely to reduce operations costs to remain competitive in a firming but volatile market situation. Many ongoing and planned projects, including exploration programs, for the most part have been indefinitely deferred.

Table 3.—Producers of barium materials in 1987

Company	Plant location	Material		
BARITE MATERIALS				
American Minerals Inc	Camden, NJ	Well drilling and fille		
Do		Do.		
Do	Rosiclare, IL	Do.		
Circle A Construction Co. Inc	Wells, NV	Primary and filler.		
Clark Minerals Inc	South Plainfield N.I	Filler.		
Custom Milling & Supply Co	Salt Lake City, UT	Well drilling.		
Cyprus Industrial Minerals Co	_ Cartersville, GA	Primary and ground.		
De Soto Mining Co Inc	Richwoods, MO	Primary.		
Dyna Material Inc	Pecos, TX	Well drilling.		
Extender Products Ltd	Mineral Point, MO	Filler.		
General Barite Co	Washington, MO	Primary.		
GEO International Inc	Nevada City, CA	Do.		
ndustrial Chemicals Div., FMC Corp	Battle Mountain, NV	Do.		
ndustrial Minerals Co	Florin, CA	Filler.		
nternational Drilling Fluids	Amelia, TX	Well drilling.		
M-I Drilling Fluids Co	Battle Mountain, NV	Do.		
Do	Brownsville, TX	Well drilling and fille		
Do	Galveston, TX	Well drilling.		
Do		Do.		
Do	Houston, TX	Do.		
Do		Primary and ground.		
Do	New Orleans, LA	Well drilling.		
Do	West Lake Charles, LA	Well drilling and fille		
Ilpark Drilling Fluids		Primary and ground.		
Do	Clinton, OK	Well drilling.		
Do	Corpus Christi, TX	Do.		
Do		Do.		
Do	New Orleans, LA	Do.		
he Milwhite Co. Inc	Brownsville, TX	Well drilling and fille		
Do	_ Bryant, AK	Do.		
Do		Ground.		
Do		Well drilling and fille		
Do	Morgan City, LA	Well drilling.		
Minerals, Pigments & Metals Div., Pfizer Inc	East St. Louis, IL	Filler.		
dountain Minerals Co. Ltd	Missoula MT	Primary and ground.		
Vew Riverside Ochre Co	_ Cartersville, GA	Primary.		
NL_Baroid	Battle Mountain, NV _	Do.		
Do		Well drilling.		
Do		Do.		
Do		Do.		
Do		Do.		
Do	Potosi, MO	Primary.		
old Soldiers Minerals Ltd		Well drilling.		
Do	Elk County, OK	Do.		
zark-Mahoning Co	_ Rosiclare, IL	Primary.		
. J. Smith Co. Inc	_ Sweetwater, TN	Primary and ground.		
tandard Industrial Minerals	Laws, CA	Filler.		
tandard Slag Co	_ Churchill, NV	Primary.		
Do	_ Nye, NV	Do.		
BARIUM COMPOUNDS				
. T. Baker Chemical Co	Phillipsburg, NJ	Chemicals.		
hemical Products Corp	Cartersville, GA	Do.		
Mallinckrodt Inc., a subsidiary of IMC Corp	St. Louis, MO	Do.		
		D 0.		

Baker Hughes Inc., formed from Baker International Corp. and Hughes Tool Co., purchased the remaining interest Hughes Drilling Fluids, held by W. R. Grace Co. These operations have been further combined with Milchem Inc., a former unit of Baker International, to form one of the largest drilling fluids companies in the world. NL Industries Inc. adopted a tentative plan to spinoff its oilfield services business, NL Petroleum, to shareholders. NL Baroid barite and clay-producing and grinding facilities will be operated as part of a separate division. In a reorganization, Cyprus Minerals Co. Inc. announced plans to merge four groups of its industrial minerals division into a single unit. Presently, Cyprus Industrial Minerals Co. has three operating companies, one of which mines and produces filler- and extender-grade barite. In a barium chemical action, International Minerals & Chemical Corp. announced that its Mallinckrodt Inc. unit was planning to divest its chemical line for barium gastrointestinal imaging products manufactured in St. Louis, MO.

The U.S. Department of Commerce and the U.S. International Trade Commission responded to a request by a petitioner, Chemical Products Corp., Cartersville, GA, for an antidumping duty administrative review of barium chemicals from China² and the Federal Republic of Germany.³

The final results of one of the Chinese antidumping reviews covered China National Chemicals Import and Export Corp. (Sinochem), a manufacturer and exporter of barium chloride to the United States, for the period October 1, 1984 through September 30, 1985. The review determined a margin of 7.82% existed for Sinochem for the above period. The Department of Commerce instructed the Customs Service to assess antidumping duties of 7.82% on all appropriate entries. For any future entries of this chemical for a new exporter not covered in this final review, whose shipments occurred after September 30, 1985, a cash deposit of 7.82% was required. The deposit requirement was effective for all shipments of Chinese barium chloride entered or withdrawn from warehouse, and for consumption on or after the date of publication of these final results. Initiation of antidumping countervailing duty administrative reviews were also planned for Sinochem barium chloride imported between October 1, 1986, and September 30, 1987.4 A similar preliminary study on an antidumping duty administrative review of precipitated barium carbonate from the Federal Republic of Germany indicated the existence of no dumping margins for the firm Kali-Chemie AG, for the period July 1, 1985, through June 30, 1986. For any shipments from the one remaining Chinese manufacturer and/or exporter not covered by this review, the cash deposit will continue to be the rate published in the final result of the last administrative review for that firm (April 2, 1985).

CONSUMPTION AND USES

Consumption of crushed and ground barite increased nearly 18% from 1.2 million tons in 1986 to 1.4 million tons in 1987. This upturn, except for small increase in 1984, reversed the decline in total barite consumption prevalent since 1981, when the record high of 4.7 million tons of crushed and ground barite was set. This increase not only reflects an upturn in barite requirements for oil well drilling, which still accounts for more than 90% of total sales, but also in the overall economy. The oil- and gas-well-drilling industry completed more than 26,000 wells and drilled nearly 125 million feet of hole;5 both figures were approximately 15% lower than in 1986.

Total well footage drilled exceeded 8 million feet in four States: Texas, 47.5; Oklahoma, 15.6; Louisiana, 13.4; and Kansas, 8.3. Generally, the deeper a hole is drilled, the

more barite is used per foot of drilling. Among the four leading States, Louisiana had the greatest average well depth, nearly 6,800 feet, and Kansas, the shallowest, about 3,300 feet. Wyoming, absent from the top States this year in well footage drilled, again had the greatest average well depth of nearly 7,000 feet. The U.S. average increased to nearly 4,800 feet. The main reason that barite consumption increased, despite the 15% reduction in the number of wells drilled, was the upturn in operating offshore rigs in the Gulf of Mexico and in California at the expense of the shallower drilling, onshore varieties. These offshore wells, the Overthrust Belt in Wyoming, and the Anadarko Basin in Oklahoma are all deep-drilling areas. This increase was accompanied by an increase in the amount of barite used per foot of drilling to 20.7

BARITE

pounds from 15.0 pounds in 1986.

Another barometer of drilling activity, the Baker Hughes rig count, showed the average number of operating domestic rigs decreased 3% to 936 rigs.6 This slight decrease in rigs continued a downward trend that, except for 1984, has seen the number of rigs fall from the 1981 record high of 3,974. The 1987 average rig count of 936 is

the second time since 1971 (976 rigs) that the count was under 1,000. The estimated rig count during the year ranged from 744 to 1,181. The low rig count of 744, recorded the week of May 16, 1987, was the second lowest since World War II. The high, 1,181 rigs, was registered the week of December 12, 1987.

Table 4.—Crushed and ground barite1 sold or used by processors in the United States, by State

		1986		1987			
State	Number of plants	Quantity (thousand short tons)	Value (thousands)	Number of plants	Quantity (thousand short tons)	Value (thousands)	
Louisiana Missouri Nevada Oklahoma Texas Other ²	9 3 4 3 11 12	585 18 101 38 361 111	\$38,215 752 2,523 2,140 19,703 12,632	8 2 3 2 8 16	721 W 236 W 301 179	\$47,133 W 14,939 W 22,230 24,457	
Total ³	42	1,216	75,965	39	1,434	108,759	

W Withheld to avoid disclosing company proprietary data.

Includes imports.

Table 5.—Crushed and ground barite1 sold or used by processors in the United States, by use

(Thousand short tons and thousand dollars)

Use	198	36	1987		
	Quantity	Value	Quantity	Value	
Barium chemicals, filler and/or extender, glass Well drilling	119 1,097	13,707 62,258	141 1,294	22,419 86,340	
Total	1,216	75,965	² 1,434	108,759	

¹Includes imports.

Includes Arkansas, California, Georgia, Illinois, Missouri (1987), New Jersey, New York, Oklahoma (1987), Tennessee, and Utah.

³Data may not add to totals shown because of independent rounding.

²Data do not add to total shown because of independent rounding.

Table 6.—U.S. barium chemicals1 produced and sold or used by processors

		198	36		1987				
Barium chemical		Pro-	Sold or proce			Pro- duction	Sold or proce		
	Plants ²	duction (short tons)	Quantity (short tons)	Value (thou- sands)	Plants ²	(short tons)	Quantity (short tons)	Value (thou- sands)	
Barium acetate Barium carbonate Barium chloride Barium nitrate Barium sulfide, gray Black ash Blanc fixe	1 2 2 1 1 1	W W W W W	W W W W W	W W W W W	1 2 2 1 1 1 1	W W W W W	W W W W W	W W W W W W	
Total	3	26,075	25,446	\$16,871	3	28,447	28,008	\$16,466	

W Withheld to avoid disclosing company proprietary data.

Table 7.—U.S. hydrocarbon well drilling and barite consumption

	Barite used for well	W	ells drilled	(thousands)1	L	Suc- cessful	Average depth	Average barite
(thou	drilling (thousand short tons)	Oil	Gas	Dry holes	Total	wells (percent)	per well (feet)	per well (short tons)
967	965	15.33	3.66	13.23	32.22	58.9	4,385	29.9
968	1.006	14.33	3.46	12.81	30.60	58.1	4,738	32.88
969	1,235	14.37	4.08	13.74	32.19	57.3	4,881	38.37
970	1,119	13.02	3.84	11.26	28.12	60.0	4,952	39.79
971	1.044	11.86	3.83	10.16	25.85	60.7	4,806	40.3
972	1,183	11.31	4.93	11.06	27.30	59.5	4,932	43.3
973	1,326	9.90	6.39	10.31	26.60	61.2	5,129	49.8
974	1,440	12.78	7.24	11.67	31.69	63.2	4,750	45.4
975	1,638	16.41	7.58	13.25	37.24	64.4	4,685	43.9
976	1,986	17.06	9.09	13.62	39.77	65.7	4,571	49.9
977	2,372	18.91	11.38	14.69	44.98	67.3	4,687	52.7
978	2,632	17.76	12.93	16.25	46.94	65.4	4,829	56.0
979	2,967	19.38	14.68	15.75	49.81	68.4	4,791	59.5
980	3,385	26.99	15.74	18.09	60.82	70.3	4.675	55.6
981	4.526	37.67	17.89	22.97	78.53	70.8	4,602	57.6
982	4.048	40.30	18.95	26.55	85.80	69.1	4,616	47.1
983	2.648	37.21	15.63	23.49	76.33	69.2	4.268	34.6
984	2,695	41.10	15.71	25.23	82.04	69.5	4,246	32.8
985	2,042	26.24	10.15	15.97	52.36	69.5	4.658	39.0
986	1.097	15.27	5.53	10.28	31.08	66.9	4,716	35.3
987	1.294	12.13	4.97	9.04	26.14	65.4	4,779	49.5

¹Includes exploratory and development wells; excludes service wells, stratigraphic tests, and core tests.

Source: American Petroleum Institute.

PRICES

Price quotations in trade publications for barite remained unchanged. These prices may serve as a general guide but do not reflect actual transactions.

The reported average value per ton of domestic barite, based on reported value or direct-ship, beneficiated, and floated material, decreased slightly, f.o.b. plant, from \$41.50 per ton in 1986 to \$35.29. This decline in value for domestic concentrate was attributed to a greater percentage of lower valued drilling-mud-grade material in the total. The average reported value per ton of ground drilling-mud-grade barite from

Louisiana and Texas was \$67.90; the average value of that from California, Nevada, and Utah was \$62.76. The value of the Louisiana and Texas ground material, in direct response to steadily improving market conditions, rose about 11%. Material from the other major grinding States, supplied largely by domestic mines, declined slightly. The average customs value of barite exported to Canada and Mexico was about \$325 per ton; the customs value of material exported to Latin America was about \$100 per ton.

¹Data reported by plants that consume either barite or precusors are included.

²A plant producing more than 1 product is counted only once.

Table 8.—Barite price quotations

Item	Price per	short ton1
icem	1986	1987
Barite: ²		
Chemical, filler, glass grades, f.o.b. shipping point, carlots:		
Handpicked, 95% BaSO ₄ , not over 1% Fe	\$90.00	\$90.00
Magnetic or flotation, 96% to 98% BaSO ₄ , not over 0.5% Fe	106.00	116.00
Water-ground, 95% BaSO ₄ , 325 mesh, 50-pound bags	\$70.00-165.00	\$70.00-165.00
Drilling-mud-grade:	φ10.00-100.00	ψ10.00-100.00
Dry-ground, 83% to 93% BaSO ₄ , 3% to 12% Fe, specific gravity 4.20 to 4.30,		
f.o.b. shipping point, carlots	60.00- 90.00	60.00- 90.00
Crude, imported, specific gravity 4.20 to 4.30, f.o.b. shipping point	40.00- 55.00	40.00- 55.00
Barium chemicals: ³	40.00- 55.00	40.00- 55.00
Barium carbonate:		
Precipitated, bulk, carlots, freight equalized (per pound)	.25	.25
Electronics-grade, bags	510.00	510.00
Barium chloride:	310.00	310.00
Technical crystals, bags, carlots, works	470.00	470.00
Anhydrous, bags, carlots, same basis	590.00	590.00
Barium hydrate: Mono, 55-pound bags, carlots, delivered (100 pounds)	46.00	46.00
Barium sulfate:	40.00	40.00
Blanc fixe, technical-grade, bags, carlots	400.00	400.00
U.S.P., X-ray diagnosis-grade, powder, 25-kilogram bags, 10,000-kilogram	400.00	400.00
lots (per pound)	.59	.59
Barium sulfide (black ash), drums, carlots, works	460.00	460.00

¹Unless otherwise specified.

²Engineering and Mining Journal. V. 187, No. 12, Dec. 1986, p. 19; and v. 188, No. 12, Dec. 1987, p. 27.

³Chemical Marketing Reporter. V. 230, No. 26, Dec. 29, 1986, pp. 24-25; and v. 232, No. 26, Dec. 28, 1987, pp. 28-29.

FOREIGN TRADE

Exports of natural barium sulfate or barite increased about 30% from nearly 7,000 tons to more than 9,000 tons. This represented a third year increases in exports after 6 consecutive years of decline from the record high of 1979 when 109,000 tons was exported. Export and import data provided by the Bureau of the Census did not indicate the grades of barite traded; however, based on the value of individual shipments, an estimated 97% was ground drilling-mud grade, and the remaining 3% was chemical-, filler-, or glass-grade. Minor amounts of witherite (natural barium carbonate), precipitated barium carbonate, and sulfate were also exported. Crude barite was not exported. Canada and Mexico, traditionally either first or second among export recipients, were buyers of U.S. ground barite. Those two countries consumed about 89% of the total exports. Canada and Mexico received only about 2% of the total. Exports to Mexico, a major oil-producing country, declined to only 13 tons from a high of 18,000 tons in 1983. Both Canada and Mexico continued to rely more on domestic production. During the year, the weakening

U.S. dollar had little effect on trade because of continuing Canadian and Mexican financial or economic problems.

Imports for consumption of crude barite increased 11% from 745,000 tons in 1986 to more than 825,000 tons. The 1987 barite import figure was nearly 65% below the record high of 2.32 million tons set in 1982. The c.i.f. value of this material dropped 9% to \$32.91 per ton, indicating that prices of foreign ores continued to decline in response to oversupply and lower ocean shipping rates. At yearend, an earlier cutback in foreign production, notably in China and India, due to an absence of forward commitments, saw a firming of both crude barite prices and shipping rates. Shipping rates were influenced, in part, because the abrogated charters for barite were unavailable at previous rates during the yearend upturn because of more profitable competing foodstuff cargoes such as wheat. Domestic producers and consumers, faced with relatively high rail rates to ship from domestic drilling-quality barite mines in Nevada to gulf coast-area grinding plants, continued to take advantage of the lower priced foreign ores to meet their demands in this highly competitive gulf coast area. Based on an average value per ton of material shipped, the principal source countries, in descending order, were Mexico, India, Morocco, and China.

The high-priced Mexican material was chiefly crude filler- and extender-quality barite. The costlier high-quality barite, generally material with a specific gravity greater than 4.2, is usually blended with lower grade ore, foreign or domestic, during grinding to meet American Petroleum Institute specifications for 4.2-drilling-mud-grade barite. Crude barite, for the most part, entered through customs districts near most drilling-mud markets along the gulf coast for delivery to grinding plants in the area. The import distribution by customs districts in 1987 (1986) was New Orleans, LA, 68% (58%); Houston, TX, 21% (34%); and Laredo, TX (Port of Brownsville, TX), 11% (8%). Small amounts were also received, in decreasing amounts, in Great Falls, MT, and Detroit, MI.

Imports for consumption of ground barite decreased about 50% to more than 11,000 tons from nearly 22,000 tons in 1986; of this, Canada and Mexico supplied about 80%. Prior to 1984, ground barite imports had been limited to premium-quality pharmaceutical grades, which were unavailable

domestically. In recent years, this market has been dwindling because certain medical X-ray diagnostic procedures employing barium compounds have been largely replaced with computer-assisted tomography (CAT) scanners or imaging techniques. Sources of medical-grade barite were Belgium-Luxembourg, Canada, France, the Federal Republic of Germany, and the Netherlands. Prices averaged \$1,500 per ton. The average c.i.f. value of Moroccan imports, \$115 per ton, suggested that this barite was probably drilling-mud-grade material. The increase in imports of mud-grade ground barite noted during the last 4 years appears to be ending because of increasing competition from domestic grinders in both price and quality. The continued imports of ground drilling-mud-grade barite, in a slowly recovering market situation, will probably hamper the recovery at the grinding plants and domestic mines that still can supply ore for blending. The value of imports from other countries, about \$300 per ton, indicated that this ground material was probably destined for the domestic filler and/or extender markets that usually are supplied by U.S. producers.

Imports for consumpton of barium chemicals and unwrought and/or waste and scrap barium metal, for the most part, increased in quantity and value.

Table 9.—U.S. exports of natural barium sulfate, by country

	198	86	198	37
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Argentina	. 80	\$42	85	\$37
Canada	878	284	196	194
Chile	1.950	178		
Ecuador	.,		508	46
Mexico	53	27	13	6
Nigeria	90		1,655	147
Paraguay			150	14
Philipping	$-\frac{1}{23}$	12	100	14
PhilippinesVenezuela	3,787	192	6.386	249
	9,101	192	0,560 85	249
	100	905	00	
Other	199	285	1	11
Total ¹	6,969	1,021	9,083	716

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 10.—U.S. imports for consumption of barite, by country

	198	36	1987		
Country	Quantity (short tons)	Value ¹ (thou- sands)	Quantity (short tons)	Value ¹ (thou- sands)	
Crude barite:			100	\$1	
Canada		0077	100	Ф	
Chile	_ 29,248	\$877	coc 22c	20,48	
China	_ 429,196	15,019	636,336	1,86	
India	_ 114,685	4,419	56,520	1,00	
Ireland	_ 12,731	224	$75,\overline{405}$	2,81	
Mexico	_ 34,045	1,314		1.99	
Morocco	_ 81,963	2,862	56,890	1,99	
Thailand	_ 39,956	1,430		-	
Other		225	<u> </u>		
Total ²	744,986	26,369	825,251	27,16	
Ground barite:					
Belgium-Luxembourg		5.7	22		
Canada	_ 5,019	860	8,480	1,75	
China	273	32	7.7		
France	_ 102	30	456	12	
Germany, Federal Republic of	_ 436	186	206	8	
Mexico	_ 237	4			
Morocco	_ 12,457	947	1,598	18	
Netherlands	_ 194	70	526	19	
Thailand	_ 3,126	358		-	
Other	1	2	44	1	
Total ²	_ 21,845	2,489	11,333	2,35	

Source: Bureau of the Census.

Table 11.—U.S. imports for consumption of barium chemicals

	Lithop	oone	(prec	Blanc fixe (precipitated barium sulfate)		Barium chloride		Barium hydroxide		
Year	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)		
1983 1984 1985 1986	NA NA NA	NA NA NA NA NA	9,087 9,302 8,971 10,449 11,469	\$5,911 6,381 6,295 8,530 8,586	3,402 3,680 2,839 1,919 1,979	\$1,016 1,576 1,125 733 775	4,799 5,452 5,708 4,925 5,247	\$3,751 3,973 3,959 3,960 4,147		
	Bariu	Barium nitrate			Barium carbonate, precipitated			Other barium compounds		
	Quantity (short tons)	(t	alue hou- ands)	Quantity (short tons)	Value (thou- sands)		Quantity (short tons)	Value (thou- sands)		
1983	1,2 1,3 1,1	39 43	\$275 478 643 504 579	8,821 14,476 12,457 11,365 12,851	7,2 5,4 4,8	869 800	946 1,020 1,593 1,802 9,442	\$1,256 847 2,556 3,197 2,500		

NA Not available.

Source: Bureau of the Census.

 $^{^1\}mathrm{C.i.f.}$ value. $^2\mathrm{Data}$ may not add to totals shown because of independent rounding.

Table 12.—U.S. imports for consumption of crude, unground, and crushed or ground witherite¹

* * * * *	The Reserve of the Section of the Se		<i>x</i>	Crude, u	Crude, unground		Crushed or ground		
-	**	Yea	r	****	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands	
1983					1	\$4	49	\$12	
1984 1985					41	41 1	24 6	185 141	129 68
1986 1987					2 364	8 97	145 72	70 47	

¹Barium carbonate.

Source: Bureau of the Census.

WORLD REVIEW

Australia.—The main barite workings were centered around the underground mines of Commercial Minerals Ltd. at Oraparinna, approximately 300 miles north of Adelaide in the Flinders Ranges of South Australia. The ore lies within steeply dipping veins up to 5 meters in width, hosted by purple slates and shales. The Oraparinna ore is high grade and marketed chiefly for paint and other industrial uses. Drillingmud grades were from open pit mines at nearby Dunbar.

India.—The floor prices of specialty whiter grades of barite powders were lowered by Krishnappar Asbestos and Barytes Pvt. Ltd. following consultation with the Government. The new floor prices per metric ton bagged, fo.b. Madras, were super snow white, \$110; snow white, \$100; and white, \$88. The old floor prices were \$165, \$155, and \$138, respectively. Shipments also incurred a Government fixed price of \$8 per metric ton for palletizing.

Korea, Republic of.-Korfran Chemical Co., an equal joint venture between France's Rhône-Poulenc S.A. and Oriental Chemical Industry Ltd., received governmental approval to construct a \$20 million barium and strontium carbonate plant at Inchon, about 50 miles from Seoul.9 The plant would have a 22,000-ton-per-year capacity of both carbonates. The strongest markets for these salts were in the manufacture of black and white and color TV tubes and/or envelopes. In another similar project Kali-Chemie, a West German subsidiary of the Solvay Group, and Samsung Corning Co. Ltd., Republic of Korea, agreed to a 50-50 joint venture for additional production of barium and strontium chemicals.10

The joint venture company, Daehan Specialty Chemicals Co. Ltd., will build a 45,000-ton-per-year production facility on the southeast coast for completion by early 1989. Kali-Chemie is the world's largest producer of barium and strontium compounds while Samsung Corning is a leading television glassmaker.

Mexico.—The decline of national barite production was caused largely by the cutback in oil- and gas-drilling exploration programs by its main customer, Petróleos Mexicanos (PEMEX), in response to depressed worldwide oil prices.¹¹

Pakistan.—The Baluchistan Development Authority (BDA) began supplying barite to its new chemical plant at Hub Chanki from its Lasbela District deposits. The plant was to run as a joint venture, Minchem, by BDA (51%) and a private party (49%) with the latter managing and controlling chemical production and BDA supplying the raw materials. Barium chemical production, by the black-ash process, was targeted for about 20,000 tons per year including 3,000 tons per year of lithopone and 3,500 tons per year of barium carbonate, barium nitrate, nonbarium chemicals. A second chemical plant, to be run by the private sector, was to be assembled near Islamabad by midyear. The venture, known as Sihala Chemical Complex, was to consist essentially of an imported Chinese barium chemicals plant and Bolan Mining Enterprises Ltd. (BME). BME was to supplying about 5,000 tons per year of barite to manufacture barium chemicals, some of which were to be exported back to China. Both the process and barium chemicals to be manufactured were unspecified.12

Table 13.—Barite: World production, by country

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
	2	2	2	2	2
Afghanistan ^{e 3}	e ₁₂₀	97	66	66	66
Algeria	67	49	57	65	64
Argentina	13	22	25	6	17
Australia	44	43	44	44	44
Belgium ^e	1	ĩ	1	(4)	2
Bolivia	140	158	157	r e ₁₆₅	165
Brazil	11	11	9	9	9
Burma ⁵	50	52	78	r e44	45
Canada	126	24	60	59	55
Chile		1.100	1,100	1.100	1,100
China ^e	1,100	1,100	6	5	65
Colombia	4	•	66	66	66
Zechoslovakia =	67	66	5	e ₅	E
Egypt	4	6		8	612
Finland	4	10	10		155
France	168	163	e165	e160	35
German Democratic Republice	39	39	37	37	
Germany, Federal Republic of	181	184	189	222	200
Greece7	33	3	4	_3	
Guatemala ^e	(4)	(4)	6 3	r 2	
Juatemala	356	492	639	379	300
[ndia	94	100	100	100	100
Iran ^e	220	243	236	141	16
Ireland	153	118	141	124	12
Italy	77	73	85	58	3
Japan	(4)	(4)	(⁴)	(⁴)	
Kenya	í	á	· ` ` 3	4	
Korea, Republic of	24	26	26	19	4
Malaysia	394	470	516	354	644
Mexico	318	619	551	209	⁶ 15
Morocco	29	30	33	43	1
Pakistan	122	51	24	33	3
Peru	122	î			_
Philippines	89	89	100	108	6
Poland	61	. (4)	(4)	(4)	. (4
Portugal ^e		80	80	80	8
Romania ^e	86	5	5	10	6
South Africa, Republic of	7		74	e74	7
Spain	58	76		157	63
Thailand	207	193	255	e ₂₂	2
Tunisia	22	13	e ₂₂		19
Turkey	87	218	183	e193	
U.S.S.R.	570	580	595	595	59
United Kingdom	40	69	118	96	69
United States ⁸	754	775	739	297	644
United States	39	45	€40	€40	. 4
Yugoslavia	1	ĩ	(⁴)	(4)	(
Zimbabwe	5,924	r _{6,404}	6,649	5,204	5,18

Revised. ^pPreliminary.

¹Table includes data available through June 17, 1988.

²In addition to the countries listed, Bulgaria also produces barite, but available information was inadequate to make reliable estimates of output levels.

³Data are for fiscal year beginning Mar. 21 of that stated.

Less than 1/2 unit.

⁵Data are for fiscal year beginning Apr. 1 of that stated.

⁶Reported figure.

Barite concentrates. ⁸Sold or used by producers.

Turkey .- The Paleozoic formations in Konya, Maras, Antalya, Kutahya, and Mus Provinces contained the country's major barite deposits.13 The total mine production capacity was reported to be over 650,000

tons per year with proven reserves at 6 million tons, probable reserves at nearly 9 million tons, and total reserves assumed to be over 25 million tons.

TECHNOLOGY

A remarkable new perovskite-structure yttrium-barium-copper material, (YBa₂Cu₃O₇), was synthesized and found to be fully superconductive at about 90 K.14 This new material, made from relatively inexpensive raw materials, is capable of conducting electricity with virtually no resistance at readily attainable nitrogen tem-

peratures. The crystallography,15 physical and chemical properties,16 and the Raman spectroscopy of phases17 for this superconducting phase and its analogs were discussed. The discovery, long sought by scientists and engineers, should eventually lead to less costly electrical transmission over great distances, miniature computers more powerful than any now in existence, and certainly many other uses not yet conceived. The high-purity requirements for these electroceramics by the electronic and optical glass industries are largely responsible for the worldwide resurgence in barium chemicals manufacturing in general and high-purity salts in particular.

Comprehensive reviews published on the industrial minerals of Australia18 and Pakistan¹⁹ included detailed sections on barite, local geology, mineralogy, mining and milling flowsheets, and indigenous mining methods. The review of Pakistan included a separate section on the major barite mining and milling companies and their capacities, along with a map pinpointing their locations. The growing Pakistani barium chemicals industry, offsetting the depressed drilling-mud industry, was singled out for special attention.

The mining and geology of the barite deposits of the Alwar District, Rajasthan, India,20 and the Yugoslav barite industry21 also were published. The Rajasthan report highlights not only the barite mining and geology of the area but also a case study of a typical underground mine in the district. The mines are in a region where electric power is available only from portable generators. The Yugoslav paper presents a concise review of its domestic barite deposit. methods for barite ore dressing, and the technology for its consumption patterns. A section emphasizing the type of depositsvein, sedimentary (bedded), or residualalong with geology and mining techniques, and processing, washing, and flotation flowsheets for the Lokve Mine and mill complex were most informative.

Two articles reviewed the uses of mineral fillers and extenders in the growing domestic plastics markets, both resins and thermosets. One paper examined the selected market sectors technically, relating their consumption of mineral fillers in reinforcements and pigments for interior and exterior applications.22 The role of barite in plastisols for carpet-backing, where it imparts sound-deadening characteristics, in fillers

for non-asbestos brake lining as a heat sink, and in polyurethane foam used in furniture manufacture for recoil and density properties was highlighted in a feature section dealing with special applications. The other paper stressed the technical challenge of product modifications by employing selected minerals and surface-modified minerals.23 The unique chemical inertness of barite in combination with its high density should play a major role in the future design of advanced plastic products.

¹Physical scientist, Branch of Industrial Minerals.

4——. Initiation of Antidumping and Countervailing Duty Administrative Reviews. Fed. Regist., v. 52, No. 222,

Nov. 18, 1987, p. 44161.

SAmerican Petroleum Institute. Quarterly Review of Drilling Statistics for the United States. 4th Quarter, 1987, and Annual Summary, 1987. V. 2, No. 4, Feb. 1987, 98 pp.

Baker Hughes Inc. 1987 Annual Report. 48 pp.

⁷Cost, insurance, and freight.

*Clarke, G. Australia's Industrial Minerals: Dynamic and Diverse. Ind. Miner. (London), No. 243, Dec. 1987, pp. 19-45.

Minerals (London), Mineral Notes: "Ones of the control of the

*Industrial Minerals (London). Mineral Notes: BaCO₃/SrCO₃ for Far East. No. 235, Apr. 1987, p. 82.

10 Chemical Marketing Reporter. Kali-Chemie Slates Venture in Korea. V. 232, No. 25, Dec. 12, 1987, p. 4.

11 U.S. Embassy, Mexico City, Mexico. State Dep. Airgram A-032, Sept. 8, 1987, 41 pp.

12 Griffiths, J. Pakistan's Mineral Potential: Prince or Pages 194 Miner (London) No. 238, July 1987, pp. 20-48.

Torritiths, J. Fakistan's Mineral Forential: Frince or Pauper. Ind. Miner. (London), No. 238, July 1987, pp. 20-43.

13 Karayazici, F. Industry Structure, Past, Present, and Future. Pres. at Ind. Miner. Conf., Istanbul, Turkey, Sept. 20-22, 1987, 4 pp.; available upon request from Metal Bulletin Journal Ltd., London, United Kingdom.

14 Carnegie Institution of Washington, Yearbook 87.

Bulletin Journal Land, London, Washington, Yearbook 87.

14 Carnegie Institution of Washington, Yearbook 87.

Pp. 108-114.

15 Wong-Ng, W. K., K. L. Davis, and R. S. Roth. X-Ray Powder Study of 2BaO CuO. Am. Ceram. Soc. Bull, v. 71, No. 2, Feb. 1988, pp. C64-C67.

Hazen, R. M., L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, H. K. Mao, C. G. Hadidiacos, P. H. Hor, R. L. Meng, and C. W. Chu. Crystallographic Description of Phases in the Y-Ba-Cu-O Superconductor. Am. Phys. Soc., Bull, Phys. Rev., v. 35, No. 13, May 1, 1987, pp. 7238-7241.

16 Trolier, S. E., S. D. Atkinson, P. A. Fuierer, J. H. Adair, and R. E. Newnham. Dissolution of YBa₂Cu₃O(7-x) in Various Solvents. Am. Ceram. Soc. Bull., v. 67, No. 4, Apr. 1988, pp. 759-762.

17 Hemley R. J., and H. K. Mao. Single-Crystal Micro-Raman Spectroscopy of Phases in the Y-Ba-Cu-O Superconductor. Am. Phys. Soc., Bull., Phys. Rev. Lett., v. 58, No. 22, June 1, 1987, pp. 2340-2342.

18 Work cited in footnote 8.

19 Work cited in footnote 13.

¹⁹Work cited in footnote 13.
 ²⁰Jain, V. K. Mining and Geology of Barytes Deposit of District Alwar, Rajasthan. Mines, Met. and Fuels (India), v. 35, No. 7, July 1987, pp. 328-330.
 ²¹Salatic, D., and M. Jelic. Barytes in Yugoslavia—Deposits, Processing and Consumption. Ed. by G. M. Carke. Pres. at Sixth Ind. Miner. Int. Conf. Toronto, Canada, May 21-24, 1984, pp. DS1-DS8; available upon request from Metal Bulletin, London, United Kingdom.
 ²²Dickson, T. U.S. Plastics: A Growing Mineral Market. Ind. Miner. (London), No. 233, Feb. 1987, pp. 50-57.
 ²³Haskins, R. W. and C. E. Cheat. Minerals in Plastics: Meeting the Challenge of the Future. Ind. Miner. (London),

Meeting the Challenge of the Future. Ind. Miner. (London), No. 234, Mar. 1987, pp. 54-59.

Bauxite and Alumina

By Luke H. Baumgardner¹ and Ruth A. Hough²

World bauxite production increased significantly in 1987 and exceeded 90 million tons³ for the first time. Mine production was reported from 27 countries. Bauxite production in the United States increased only slightly, although domestic alumina production from imported bauxite rose nearly 34% above 1986 output in response to increased primary aluminum demand. A moderate decrease in the unit value of crude and dried bauxite imports from 1986 to 1987

was reflected in the Bureau of the Census trade data.

Domestic Data Coverage.—Domestic production and consumption data for bauxite and alumina are developed by the Bureau of Mines from five separate voluntary surveys of U.S. operations. Typical of these quarterly and annual surveys is the "Consumption of Alumina" survey. Of the 24 operations canvassed, 23 responded, representing a 96% response rate.

Table 1.—Salient bauxite statistics

(Thousand metric tons and thousand dollars)

	1983	1984	1985	1986	1987
United States: Production: Crude ore (dry equivalent) Value Exports (as shipped) Imports for consumption ¹ Consumption (dry equivalent) World: Production	679	856	674	510	576
	\$11,309	\$15,643	\$12,855	*\$10,361	\$10,871
	74	82	56	69	201
	7,601	9,435	7,158	6,456	9,156
	9,100	10,519	8,206	6,901	9,548
	r78,687	87,799	84,496	**P86,093	*e90,302

Estimated. Preliminary. Revised.
 Excludes calcined bauxite. Includes bauxite imported to the U.S. Virgin Islands.

Legislation and Government Programs.—At yearend, the General Services Administration reported the following deficits in bauxite stockpile goals: 631,000 tons, calcined abrasive grade; 8.679 million tons,

Jamaica-type metallurgical grade; 813,000 tons, Suriname-type metallurgical grade; and 1.144 million tons, calcined refractory grade.

DOMESTIC PRODUCTION

Bauxite was produced from surface mining operations in Alabama, Arkansas, and Georgia. Three companies in central Arkansas processed bauxite for diverse end-use markets, a limited amount of which went to primary metal production. At Benton, AR, the Aluminum Co. of America (Alcoa) calcined bauxite for the abrasive and proppant industries and processed crude ore at the company's local Bayer refinery to produce

specialty aluminum oxides and hydroxides. Bauxite mined and calcined by the American Cyanamid Co. at Bryant, AR, was shipped to out-of-State plants for production of aluminum sulfate and proppants. Bauxite purchased from a local supplier was used by Porocel Corp. at Berger, AR, to produce activated bauxite chiefly for use in the refining of petroleum. Bauxite from Alabama and Georgia mines, because of its

very low iron oxide content, was used solely for the manufacture of high-alumina refractory products.

Demand for domestic refractory grade ore remained weak during 1987 and mine output was intermittent. In the mining district west of Eufaula, AL, the Harbison-Walker Refractories Div. of Dresser Industries Inc., produced bauxite for the company's local calcining plant and also supplied bauxitic clay to the Carbo Ceramic Co.'s (formerly Standard Oil Proppants Co.) proppant plant at Eufaula. Mullite Co. of America (Mulcoa), an operating unit of C-E Minerals Inc., produced bauxite in Henry County, AL, and Sumter County, GA, for calcining at Mulcoa's plant near Andersonville, GA. The

mines and calcining plant of A. P. Green Refractories Co. in the Baker Hill, AL, area were inactive during the year, and the plant and bauxite reserves were sold to C-E Minerals late in the year.

Domestic capacity to produce alumina remained unchanged at 4.57 million tons per year, although Alcoa announced at yearend the planned permanent closing of its Bauxite, AR, mine and 340,000-ton-peryear Bayer alumina plant in October 1988. U.S. alumina production increased substantially compared with 1986 output as it moved in consort with the rise in demand for primary metal. Apparent refinery capacity utilization was about 91%.

Table 2.—Mine production of bauxite and shipments from mines and processing plants to consumers in the United States

(Thousand metric tons and thousand dollars)

Year		Mine production	1	Shipments from mines and processing plants to consumers ¹		
	Crude	Dry equivalent	Value ²	As shipped	Dry equivalent	Value ²
1985 1986 1987	787 617 689	674 510 576	\$12,855 *10,361 10,871	993 *776 756	989 ^r 740 680	\$34,506 *36,276 22,173

Revised.

¹May exclude some bauxite mixed in clay products.

Table 3.—Recovery of dried, calcined, and activated bauxite in the United States

(Thousand metric tons)

Year	Crude ore	Total processed bauxite recovered ¹			
1 Gal	treated	As recovered	Dry equivalent		
1986	250 131	128 62	196 102		

¹Dried, calcined, and activated bauxite. May exclude some bauxite mixed in clay products.

Table 4.—Percent of domestic bauxite shipments, by silica content

SiO ₂ (percent)	1983	1984	1985	1986	1987
Less than 8 From 8 to 15 More than 15	75 25	11 55 34	74 14 12	77 23	70 7 23

²Computed from values assigned by producers and from estimates of the Bureau of Mines.

Table 5.—Production and shipments of alumina in the United States

(Thousand metric tons)

					· · · ·	Out.	Total ¹		
	Year	Year			Calcined alumina	Other alumina ²	As produced or shipped ³	Calcined equivalent	
- <u> </u>									
Production:e						3,540	680 560	4,220	4,000
1984						4,160 2,860	860	4,720 3,725	4,545 3,465
1986						2,570 3,555	750 830	3,320 4,385	3,105 4,150
Shipments: ^e 1983						3,480	670	4,150 4,800	3,945 4,620
1984 1985						4,230 2,890	570 760	3,650 3,330	3,425 3,120
1986 1987		<u> </u>	; :			2,590 3,530	740 845	4,375	4,135

eEstimated.

¹Data may not add to totals shown because of independent rounding.

²Trihydrate, activated, tabular, and other aluminas. Excludes calcium and sodium aluminates.

Table 6.—Capacities of domestic alumina plants, December 31

(Thousand metric tons per year)

Company and plant	1985	1986	1987
Aluminum Co. of America: Bauxite, AR	340 1,600	340 1,735	340 1,735
Total	1,940	2,075	2,075
Kaiser Aluminum & Chemical Corp.: Gramercy, LAReynolds Metals Co.: Corpus Christi, TX	770 1,700	795 1,700	795 1,700
Grand total	4,410	4,570	4,570

¹Capacity may vary depending upon the bauxite used.

CONSUMPTION AND USES

Bauxite consumption rose in 1987 compared with that of 1986, with significant gains in calcined refractory grades and crude and dried metallurgical grades. Domestic producers benefited little as the increase was supplied largely from imports. Consumption by the chemical industries was unchanged, while calcined abrasive grade bauxite, including feedstocks to the proppants industries, continued a declining trend begun in 1985. Low world oil prices removed the incentives for petroleum producers to use proppants. About 90% of the

bauxite consumed in the United States was refined to alumina and an estimated average of 2.07 tons of dried bauxite was required to produce 1 ton of calcined alumina. Twenty-one primary aluminum smelters consumed 7.5 million tons of calcined alumina. An estimated 84% of alumina shipped by U.S. refineries went to domestic primary smelters. Consumption by abrasives, chemicals, refractories, and other industries accounted for the balance of the alumina in calcined, hydroxide, activated, tabular, and other forms.

³Includes only the end product if one type of alumina was produced and used to make another type of alumina.

Table 7.-U.S. consumption of bauxite, by industry

(Thousand metric tons, dry equivalent)

	Industry		Domestic	Foreign	Total
1986:				-	
Alumina			¹ 460	¹ 5,779	5,980
			W	, W	259
Ct : 1			337	³ 253	231
D.C.			80	292	372
041			w	W	59
Total ^{1 3}			577	6,324	6,901
1987:		= = = = = = = = = = = = = = = = = = = =			
Alumina			¹ 490	¹ 8,335	8,601
Abrasive ²			w	W	224
Chemical			334	3267	243
Refractory			68	354	422
Other			w	w	58
Total ^{1 3}			592	8,956	9,548

W Withheld to avoid disclosing company proprietary data; included with "Other" or "Total." Includes "Abrasive."

Table 8.—U.S. consumption of crude and processed bauxite

(Thousand metric tons, dry equivalent)

* - *:	N.	Туре	Domestic origin	Foreign origin	Total
1986: Crude and dr Calcined and			 W W	W W	6,305 597
Total _	-,	_======================================	 577	6,324	¹ 6,901
1987: Crude and dr Calcined and			 W W	W	8,924 624
Total _			 592	8,956	9,548

W Withheld to avoid disclosing company proprietary data; included in "Total." $^1\mathrm{Data}$ do not add to total shown because of independent rounding.

Table 9.—Production and shipments of selected aluminum salts in the United States in 1986

	Number	of (thousand	Total shipments including interplant transfers		
Item	producing		Quantity (thou- sand metric tons)	Value (thou- sands)	
Aluminum sulfate:					
Commercial and municipal (17% Al ₂ O ₃)	82	1,109	1,060	\$129,361	
Iron-free (17% Al ₂ O ₃)	26	109	103	13.872	
Aluminum chloride:				10,012	
Liquid and crystal	3	5	W	W	
Anhydrous (100% AlCl ₃)	4	W	W	W	
Aluminum fluoride, technical	3	W	W	w	
Aluminum hydroxide, trihydrate (100% Al ₂ O ₃ •3H ₂ O)	7	479	540	126.639	
Other aluminum compounds ¹	NA	NA	NA	61,013	

 $NA\ Not\ available.\qquad W\ Withheld\ to\ avoid\ disclosing\ company\ proprietary\ da^{1}Includes\ sodium\ aluminate,\ light\ aluminum\ hydroxide,\ cryolite,\ and\ alums.$ W Withheld to avoid disclosing company proprietary data.

Includes Abrasive.

Includes consumption by Canadian abrasive industry.

Includes "Other."

Source: Data are based upon Bureau of the Census 1986 Current Industrial Reports, Series MA-28A, "Inorganic Chemicals."

Table 10.—Stocks of bauxite in the United States,¹ December 31

(Thousand metric tons, dry equivalent)

Sector	1986 ^r	1987
Producers and processors Consumers Government	186 3,133 18,472	212 2,824 18,472
Total	21,791	21,508

^rRevised

Table 11.—Stocks of alumina in the United States, December 31

(Thousand metric tons, calcined equivalent)

Sector	1986 ^r	1987
Producers ^e Primary aluminum plants	148 1,888	141 2,685
Total ^e	2,036	2,826

Estimated. Revised.

PRICES

Contract terms for the purchase of metal grade bauxite and cell grade alumina in world markets are not normally made public, and consequently, prices for these commodities are not published by trade journals. Price quotes are generally limited to certain specialty forms of bauxite and alumina for nonmetallurgical uses.

In 1987, the Bureau of Mines estimated the average value of domestic crude bauxite shipments, f.o.b. mine or plant, to be \$15.79 per ton. The average value of calcined domestic bauxite was estimated to be \$128 per ton. Quoted base prices for imported calcined refractory grade bauxite were: Chi-

nese, typical 85% Al₂O₃, f.o.b. barge, Burnside, LA, \$95 to \$120 per ton; Guyanese, minimum 86% Al₂O₂, f.o.b. railcar, Baltimore, MD, or f.o.b. barge, Burnside, LA, or Mobile, AL, \$164.76 per ton. These base prices were subject to adjustment for grainsize specifications, size of order, and fuel cost factors.

The average value of domestic calcined alumina shipments was estimated to be \$143 per ton. The average value of imported calcined alumina indicated by trade data of the Bureau of the Census was \$141 per ton, f.a.s. port of shipment, and \$152 per ton, c.i.f. U.S. ports.

Table 12.—Average value of U.S. imports of crude and dried bauxite¹

(Per metric ton)

		1986	1987	
Country	Port of shipment (f.a.s.)	Delivered to U.S. ports (c.i.f.)	Port of shipment (f.a.s.)	Delivered to U.S. ports (c.i.f.)
To U.S. mainland:	Ø15 49	\$23.43	\$13.96	\$22.45
Australia Brazil	\$15.43 24.58	φ25.45 27.53	24.14	29.24
Brazil Guinea	25.98	32.73	19.66	26.88
Guyana	34.02	45.45	31.89	44.20
Jamaica	30.93	34.99	30.54	34.24
Suriname	37.36	47.35	23.77	32.22
Weighted average	27.54	33.66	23.32	29.48

¹Computed from quantity and value data reported to U.S. Customs Service and compiled by the Bureau of the Census, U.S. Department of Commerce. Not adjusted for moisture content of bauxite or differences in methods used by importers to determine value of individual shipments.

¹Domestic and foreign bauxite; crude, dried, calcined, activated; all grades.

¹Excludes consumers' stocks other than those at primary aluminum plants.

Table 13.—Market quotations on alumina and aluminum compounds

(Per metric ton, in bags, carlots, freight equalized)

Compound	Dec. 30, 1986	Dec. 31, 1987
Alumina, calcined	\$418.88	\$418.88
Alumina, hydrated, bulk	209.44	209.44
Alumina, activated, granular, works	905.00	905.00
Aluminum sulfate, commercial, ground (17% Al ₂ O ₃)	225.97	225.97
Aluminum sulfate, iron-free, dry (17% Al ₂ O ₃)	330.69	330.69

Source: Chemical Marketing Reporter.

FOREIGN TRADE

Exports of dried bauxite totaled 146,000 tons in 1987, nearly quadruple the quantity exported in 1986. Venezuela received 101,000 tons, Canada, 38,000 tons, and Suriname, 7,000 tons. Of the total 55,000 tons of calcined bauxite exported, Mexico received 52,000 tons and Canada, 3,000 tons.

Ghana became a major destination of U.S. alumina exports because of the closure of the Alpart refinery in Jamaica, its usual source. Alumina exports to Canada, Ghana, and Mexico were more than double the quantities shipped in 1986 and accounted for 88% of the 1987 exports.

Imports for consumption of crude and dried bauxite increased significantly over

1986 receipts, and the three traditional principal suppliers, Australia, Guinea, and Jamaica provided 90% of the total.

Ghana became a new supplier of metal grade bauxite to the United States. Imports from all source countries increased compared with those of 1986, with the exception of those from Suriname, where guerrilla action by insurgents shut down that country's largest bauxite mine for most of the year.

Australia continued to be the dominant source of U.S. alumina imports for consumption (83% of the total), and imports from all sources except Jamaica increased with respect to 1986 receipts.

Table 14.—U.S. exports of alumina,1 by country

(Thousand metric tons, calcined equivalent, and thousand dollars)

Country	198	35	1986		1987	
	Quantity	Value	Quantity	Value	Quantity	Value
Argentina	(²)	\$178	1	\$624	1	\$629
Belgium-Luxembourg	`ź	2,209	2	3,485	2	3029 2,543
Brazil	ī	770	. 4	593	75	10,789
Canada	$12\overline{6}$	30,561	$\overline{263}$	47,491	575	89,890
France	(2)	747	200	1,259	919	
Germany, Federal Republic of	`á	4,958	3		i i	2,005
Ghana	J	4,900	77	4,379	070	2,989
GhanaJapan		9 449		12,540	270	38,942
Mexico	104	2,443	21	6,426	24	8,162
Netherlands	104	28,451	91	23,627	150	32,431
Norway	1	^r 2,476	1	2,365	2	2,274
	45	7,417	11	645	(²)	13
Sweden	22	2,546		456	(²)	106
United Kingdom	3	4,803	2	2,441	2	2,134
Venezuela	1	1,138	1	1.573	$\bar{2}$	1,512
Other	6	11,133	14	17,416	22	13,617
Total ³	316	99,829	487	125,322	1,127	208,037

rRevised.

Source: Bureau of the Census

¹Includes exports of aluminum hydroxide (calcined equivalent) as follows: 1985—16,700 tons; 1986—12,199 tons; and 1987—18,727 tons.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

Table 15.—U.S. imports for consumption of bauxite, crude and dried, by country

(Thousand metric tons)

Country	1985	1986	1987
Australia	829	579	1,167
Brazil	560	100	451
China	9	21	5
Dominican Republic ²	6	1	70
Ghana		-	36
Guinea	3,752	3,356	4,256
Guyana	225	169	244
Jamaica ²	1,540	2,119	2,799
Sierra Leone	56	2,110	2,100
	176	$1\overline{1}\overline{2}$	104
Other	175	(3)	24
Onici	9	(-)	24
Total ⁴	7.158	6.456	9.156

Revised.

Note.—Total U.S. imports of crude and dried bauxite (including the U.S. Virgin Islands) as reported by the Bureau of the Census were as follows: 1985—7,257,840 tons; 1986—6,854,083 tons; and 1987—9,827,818 tons.

Source: Bureau of the Census and the Jamaican Bauxite Institute.

Table 16.—U.S. imports for consumption of calcined bauxite, by country

(Thousand metric tons and thousand dollars)

	1986				1987			
Country	Refractory grade		Other grade		Refractory grade		Other grade	
	Quantity	Value ¹						
Australia		:	14	\$1,110			6	\$416
China	112	\$8,958	48	3,881	163	\$10,708	10	714
Guyana	109	14,232	9	935	107	14,995	22	1,230
Suriname			11	558			. 4	160
Other			(²)	41		· · ·	(²)	26
Total ³	221	23,190	83	6,526	270	25,703	43	2,545

¹Value at foreign port of shipment as reported to U.S. Customs Service.

Source: Bureau of the Census.

Table 17.—U.S. imports for consumption of alumina, by country

(Thousand metric tons, calcined equivalent, and thousand dollars)

Country	198	35	1986		1987	
Country	Quantity	Value ²	Quantity	Value ²	Quantity	Value ²
Australia	3,014	\$564,212	3,051	\$458,965	3,361	\$431,041
Brazil	48	9,280	20	4,720	25	4,977
Canada	42	16,958	42	16,109	59	25,078
France	5	11,046	5	12,019	7	13,825
Germany, Federal Republic of	11	13,896	13	14,924	14	20,922
Jamaica	372	66,171	140	20,370	90	13,107
Japan	4	4,112	3	3,371	6	6,688
Suriname	326	42,949	r268	r30,465	324	40,568
Venezuela		,	55	9,712	111	13,936
Other	5	6,614	55 *6	r _{3,555}	71	11,719
Total	3,827	735,238	3,603	574,210	4,068	3581,864

Revised.

Source: Bureau of the Census

Includes bauxite imported to the U.S. Virgin Islands from foreign countries.

Dry equivalent of shipments to the United States.

³Revised to zero.

⁴Data may not add to totals shown because of independent rounding.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

¹Includes imports of aluminum hydroxide.

³Value at foreign port of shipment as reported to U.S. Customs Service.

³Data do not add to total shown because of independent rounding.

WORLD REVIEW

Bauxite mines and alumina plants raised production levels during the last quarter of 1987 to meet the rising demand for alumina to make primary aluminum metal. Venezuela joined the ranks of world bauxite producers with the opening of mining operations in the State of Bolívar, and the Republic reopened bauxite Dominican mines that had been shut down in 1982. China reported the discovery of a large bauxite deposit. The Governments of Guinea, Jamaica, and Suriname were reported to have reached tentative agreements with the bauxite-producing companies to revise or rescind bauxite production levies.

Australia.—The world's largest bauxiteand alumina-producing country set new production records for the fifth consecutive year. Comalco Ltd. reported bauxite production and shipments of 8.02 and 7.81 million tons, respectively, from its mining complex at Weipa, Queensland. In addition to the production of metal grade bauxite, in other operations at Weipa the company calcined bauxite for use in abrasives and proppants and mined and processed kaolin clay from deposits underlying the bauxite ore. Queensland Alumina Ltd., at Gladstone, Queensland, owned by Comalco (30.3%), Kaiser Aluminum and Chemical Corp. (28.3%), Alcan Australia Ltd. (21.4%), and Pechiney Corp. (20%) produced about 2.77 million tons of alumina.

At Gove, in the Northern Territory, the alumina plant owned by Swiss Aluminium Australia Ltd. (Austraswiss) (70%) and Gove Alumina Ltd. (30%), also operated at full capacity with production close to 1.4 million tons. Bauxite exports declined as Japan continued to shut down alumina plants. In July, Austraswiss announced that it had successfully resolved the 1986 dispute in which the Australian Government claimed that the company was underpricing its alumina sales to gain tax benefits.

In Western Australia, Alcoa of Australia Ltd. operated the Kwinana, Pinjarra, and Wagerup alumina plants at capacity, as did the Worsley Alumina Pty. Ltd., owned jointly by Reynolds Alumina Australia Ltd. (40%), Shell Co. of Australia Ltd. (30%), The Broken Hill Pty. Co. Ltd. (BHP) (20%), and Kobe Alumina Associates (Australia) Pty. Ltd. (10%). Western Australia's bauxite and alumina operations were overshadowed by news reports on the development of gold

deposits associated with the bauxite in the Boddington area. The Worsley group poured the first commercial gold at its Boddington mine and plant in August, and Alcoa of Australia sought mining rights to the gold reserves on its bauxite lands adjoining the Boddington deposits. BHP announced that it intended to sell its share of Worsley Alumina to Hydro Aluminium A/S, a subsidiary of Norsk Hydro A/S, Norway.

Brazil.—Sales of bauxite by Mineração Rio do Norte S.A. (MRN) from its mining operations at Trombetas reached a record high of 5.3 million tons. Participants in the consortium included state-owned Companhia Vale do Rio Doce (CVRD) holding a 46% interest, Alcan Alumínio do Brasil S.A. (24%), Companhia Brasiliera de Aluminio (10%), Billiton Metais S.A. (10%), Norsk Hydro (5%), and Reynolds Aluminio S.A. (5%). The bauxite sales-price dispute that began in 1986 continued through 1987 as the private commercial partner-customers argued against CVRD's move to increase the price. The \$25.68 per ton price at the beginning of the year was raised to \$28.50 on April 1, and then reduced to provisional prices of \$26.97 in August and \$26.68 in October. Most of the bauxite exported by MRN was shipped to Canada, the United States, and Venezuela.

The proposed Aluminio do Norte do Brasil S.A. alumina plant to be built on the Amazon River near Belém by CVRD (60%), and the Japanese consortium, Nippon Amazon Aluminium Co. (NAAC), was stalled in the early construction stages by NAAC's decision at yearend 1986 not to provide additional capital to cover its 40% interest in the 800,000-ton-per-year plant. The refinery was sited next to the newly completed ALBRAS aluminum smelter, owned jointly by CVRD and NAAC, and was designed to supply the smelter's alumina requirements. A drought-related electrical power shortage during 1987 forced cutbacks in smelter production at Alcan's Aratu plant and at the Alumínio do Maranhão plant owned by Alcoa Alumínio S.A. (60%) and Billiton Metais (40%), thus reducing bauxite and alumina consumption at these facilities.

China.—The discovery of a 500-millionton bauxite deposit in Shanxi Province was reported by the Ministry of Geology and Mineral Resources. The verified ore reserves were stated to be of high grade and to be near the surface, and the deposit was estimated to contain more than 40% of the known bauxite reserves in China. A primary aluminum complex is planned at Yumenkou, on the Yellow River in the southwest region of Shanxi Province. The first stage, a 200,000-ton-per-year alumina plant. was nearing completion after more than 3 years of construction and was expected to be in production late in 1987. A coal-fired powerplant and a limestone mine were also to be completed in the first stage, the latter to supply lime for the combination Bayer/lime-soda-sinter process. Second and third stages were expected to increase progressively annual alumina capacity to 2 million tons and complete a 300,000-ton-peryear aluminum smelter by the year 2000. China has been a net importer of aluminum, but development of the aluminum industry has been given high priority in anticipation of rapid growth in domestic consumption.

India.—The largest bauxite mine in Asia was opened by the National Aluminium Co. Ltd. (NALCO) in February at Panchpatmali in Orissa State. Bauxite reserves were reported to be 317 million tons and the annual capacity of the mining operation was about 2.4 million tons. The mine was part of a complex that included a 600-megawatt power facility, a 218,000-ton-per-year primary aluminum smelter, and an 800,000-ton-peryear alumina plant at Damanjodi. Pechiney of France provided the design technology. Contracts were signed by NALCO to sell 50,000 tons of alumina to Poland and 100,000 tons of alumina to Norsk Hydro ASV. Initial shipments to each were to commence in 1987.

Jamaica.—In 1987, Jamaica was the second largest supplier of metal grade bauxite and fourth largest supplier of alumina to the United States. Although four of the world's largest aluminum companies have bauxite mining and refining operations on the island, fuel costs, bauxite production levies, and a depressed aluminum market from 1984 through early 1987 combined to hold production levels down and reduce revenue to the Government. Increased bauxite exports to the United States and the U.S.S.R. were insufficient to offset the continued low exports of alumina. The Jamaican Government continued production at Alcoa's Clarendon alumina plant under a 2-year lease signed in mid-1985 and sold the alumina through Clarendon Ltd., a Swiss trading company. Jamaica's efforts to purchase the plant were unsuccessful and in October, Alcoa announced that it would resume full control of the plant when the lease contract expired in February 1988. Alcan was urged by the Government to restart idled capacity at the Ewarton refinery, and Kaiser and Reynolds were pressured to reopen the Alpart refinery. Negotiations between Jamaica and the companies were in progress at yearend, and they had reached a tentative agreement that bauxite levies would be adjusted downward in exchange for increased alumina production.

Suriname.—Bauxite and alumina production problems continued throughout the year for the Suriname Aluminum Co. (Suralco), the wholly owned Alcoa subsidiary. The Moengo bauxite mine was closed by insurgent rebel action in November 1986, and remained shut down for most of 1987. Emergency arrangements were made to import bauxite ore to supply the 1.4-millionton-per-year Paranam alumina plant owned by Suralco (55%) and Billiton International Metals BV (45%), but the plant was forced to close in February 1987 when equipment was damaged by idled workers. Suralco's aluminum smelter was closed in January after antigovernment rebels blew up the powerlines to the plant. Although the power supply was repaired, the smelter could not be restarted in 1987 owing to low water levels at the hydroelectric plant.

Venezuela.—After 20 years of importing raw materials for the production of primary aluminum, Venezuela became a fully integrated metal producer with the opening in June 1987 of Los Pijiguaos bauxite mine on the Orinoco River. Beginning in September, 134,000 tons of ore was barged 650 kilometers down the Orinoco to the Interamericana de Alúmina C.A. (INTERALUMINA) plant at Puerto Ordaz, where the bauxite was refined to alumina to supply the two adjacent primary metal smelters. C.V.G. Bauxita Venezolana C.A., the state-controlled operating company in which Alusuisse holds a 3.5% interest, planned to raise the mine capacity to 3 million tons per year in 1988. Capacity increases for INTER-ALUMINA and both smelters were also scheduled for 1988-89. The Government was seeking joint-venture participation with the world's major aluminum producers and fabricators. The availability of low-cost hydroelectric power should prove a strong incentive to new industry.

Table 18.—Bauxite: World production, by country¹

(Thousand metric tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Australia	24,372	31,537	31.839	32,384	34,000
Brazil	7,199	6,433	5,846	6,544	7,250
China ^e	1,600	1,600	1,650	1,650	2,400
Dominican Republic ²				-,	3211
France		1,607	1.530	1.379	31,271
Germany, Federal Republic of	(4)	(⁴)	(4)	(4)	(4)
Ghana	7Ó	r ₄₄	17Ó	226	3230
Greece	2,455	2,296	2,453	2,230	2,400
Guinea ⁵	12,421	13,160	13,100	12,130	13,400
Guyana ²	1.087	1,333	e1.675	1,466	2.200
Hungary		2,994	2.815	3.022	33,101
India	r _{1.976}	r2.093	2.281	2.322	³ 2,685
Indonesia		1,003	830	650	3 ₆₃₅
Italy					000
Jamaica ^{2 6}	7,683	8,937	5.975	6,944	37.775
Malaysia		680	492	559	³482
Mozambique			5	4	5
Pakistan		3	2	. 3	4
Romania ^e	650	620	600	600	600
Sierra Leone	785	1,040	1.184	1.242	31,390
Spain	5	7	2	-,-e ₇	1,000
Suriname	3.400	3,454	e3.000	3.847	1.200
Turkey		132	214	291	3247
U.S.S.R. ^{e 7}	4.600	4.600	4,600	4,600	4,600
United States ²		856	674	510	3576
Venezuela ⁸		000		010	3217
Yugoslavia		3.347	3,538	3,459	33.394
Zimbabwe		23	21	24	25
Total	^r 78,687	r87,799	84,496	86,093	90,302

^pPreliminary. rRevised. eEstimated.

Table 19.—Alumina: World production,1 by country2

(Thousand metric tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Australia	7.231	8,781	8,792	9,423	³ 10,105
Brazil		891	1.096	1.258	1,200
Canada	1.116	1.126	1,019	e1,100	3953
China ^e	800	800	825	825	1,200
Czechoslovakia	80	85	e ₈₅	e85	85
France	853	898	734	740	3711
German Democratic Republic		43	47	46	46
Germany, Federal Republic of	^r 1,346	r _{1,417}	1.368	1.250	31.017
Greece		482	380	470	480
Guinea	^r 573	r ₅₃₈	572	556	543
Hungary	836	811	798	856	3858
India	e450	588	587	e600	700
Ireland		653	555	686	3784
Italy	466	607	555	618	585
Jamaica	1.851	1.749	1,513	1.575	1.610
Japan	1.065	1.172	978	607	3358
Romania	512	552	548	555	550
Spain	737	742	725	e725	812
Suriname	1.129	1.208	e _{1,000}	1.471	31.370
Turkey		75	113	144	395

See footnotes at end of table.

¹Table includes data available through July 8, 1988.

²Dry bauxite equivalent of crude ore.

³Reported figure. Less than 1/2 unit.

⁴Less than 1/2 unit.
⁵Dry bauxite equivalent of ore processed by drying plant.
⁶Bauxite processed for conversion to alumina in Jamaica plus kiln-dried ore prepared for export.

⁷In addition to the bauxite reported in the body of the table, the U.S.S.R. produces nepheline syenite concentrates and alumite ore as sources of aluminum. Estimated nepheline syenite concentrate production was as follows, in thousand metric tons: 1983—2,500; 1984—2,500; 1986—2,500; and 1987—2,500. Estimated alumite ore production was as follows, in thousand metric tons: 1983—615; 1984—615; 1985—615; 1986—620; and 1987—625. Nepheline syenite concentrate grades 25% to 30% alumina, and alunite ore grades 16% to 18% alumina; these commodities may be converted to their bauxite equivalent by using factors of 1 ton of nepheline syenite concentrate equals 0.55 ton of bauxite and 1 ton of alumite equals 0.34 ton of bauxite.

⁸The new Los Pijiguaos Mine came on-stream in mid-1987.

Table 19.—Alumina: World production, by country 2—Continued

(Thousand metric tons)

They be	Country	54.	1983	1984	1985	1986 ^p	1987 ^e
U.S.S.R. ^e United Kingdom United States ^e Venezuela Yugoslavia			3,200 93 4,000 560 1,010	3,300 105 4,545 1,139 1,135	3,500 110 3,465 e1,085 1,138	3,700 e110 r3,105, r e1,300 1,130	3,700 110 4,150 ³ 1,381 1,135
Total			r _{29,270}	r33,442	31,588	⁵ 32,936	⁵ 34,539

Preliminary. rRevised. ^eEstimated.

Reported figure.

⁵Data do not add to total shown because of independent rounding.

Table 20.—World annual alumina capacity, by country

(Thousand metric tons, yearend)

	Country		1985	1986	1987
Australia			9,750	9,750	10,000
			1,150	1,150	1.150
			1,225	1,225	1.225
			850	850	1,300
			100	100	100
			1,040	1.040	1.040
rance			65	65	1,040
			1,745	1:745	1.745
			500	500	500
			700	700	700
			355	355	355
			895	920	920
			675	675	1,000
			800	800	800
			920	920	720
			2.825	2.825	3,100
				975	
apan			1,060		540
Romania			540	540	
			800	800	800
Suriname			1,350	1,350	1,350
Curkey			200	200	200
			4,500	4,600	4,600
United Kingdom			140	120	120
Jnited States	:		4,410	4,570	4,570
Venezuela			1,000	1,000	1,300
Yugoslavia			1,635	1,635	1,635
Total	triple of the grade	<u> 18 f. j. n. n. n. n. Altani, j. j. fy</u>	39,230	39,410	40,380

TECHNOLOGY

The Bureau of Mines described research on the recovery of alumina from domestic alunite (KAl₃(SO₄)₂(OH)₆) deposits.⁴ In the initial step of the process, the alunite was sulfated by treating it with hot, concentrated sulfuric acid. Hot water was used to leach out the acid-insoluble aluminum sulfate that was precipitated out as crystals, as the solution cooled. By calcining the aluminum sulfate crystals, cell-grade alumina could be produced. The potassium compounds that accumulated in the sulfuric acid were retained for subsequent recovery.

A number of advanced ceramics, includ-

ing aluminum oxide (alumina), have recently been developed for surgical implants. These new "bioceramics" were reviewed in January 1987.5 Alumina powder, with a purity ranging from 99.5% to 99.9%, is compressed isostatically and fired at 1,500° C to 1,700° C to produce a hard, inert ceramic of high density. The monocrystalline form is similar to single-crystal sapphire with a hardness of nine on Mohs scale. A polycrystalline form of alumina ceramic, though not as dense or as hard as the single crystal form, is better suited to some implant applications. For tooth im-

 ¹Figures presented generally represent calcined alumina; exceptions are noted individually.
 ²Table includes data available through July 8, 1988.

⁴Series revised to reflect calcined alumina; previously shown as hydrate output.

plants, the transparent monocrystalline alumina is preferred for the root section inserted into the jaw bones. The softer white polycrystalline alumina, which can be more readily shaped and contoured to match the natural teeth, works well as the exposed crown section. The extreme hardness, resistance to wear and chemical attack, and low coefficient of friction make monocrystalline alumina an excellent material for the ball and socket of artificial hip and knee joints.

Awareness of the limited domestic bauxite resources has led to extensive research programs for more than 40 years by industry and the Bureau of Mines to develop alternate sources of aluminum oxide for the production of primary aluminum. The presence of extensive clay resources has made these aluminum silicates a prime target of research, and the more recent work has centered on various processes for recovering the aluminum as a trichloride compound. The Toth Aluminum Corp. has reported commercial production of high purity AlCl₃ from Georgia kaolin at its Vacherie, LA, plant. The details of the carbochlorination process employed in the 5,000-ton-per-year plant were described.6 The company was initially selling an aluminum chloride product rather than the proposed aluminum oxide. However, discussions have been reported between Toth and Alcoa regarding the possible sale to Toth of Alcoa's nowclosed experimental smelter at Palestine. TX, designed to produce primary aluminum by direct reduction of aluminum chloride feed using the Alcoa Smelting Process.

Among the relatively low-cost mineral fillers used in plastics, rubber, wire insulation, and synthetic marble and onyx, alumina trihydrate (ATH) is unique in that it is compatible with most polymers, has a bright white color, and acts as a flame retardant and smoke suppressant. In the specialty alumina markets, growth in de-

mand for ATH as a filler was second only to that of alumina in ceramics.7 For the production of polyester-based synthetic onyx, Na₂O content, color, particle size, and particle size distribution of the ATH are all critical elements. The quality of the synthetic onyx can be improved in brightness, translucency, and color if the ratio of ground to unground ATH crystals and the specific surface area of the particles are closely controlled.

At the MRN-operated Trombetas bauxite mine on the Amazon River, Brazil, washing operations generate an annual tailings volume of about 18 million cubic meters with a solids content of 7% to 9%.8 Mine capacity is 5 million tons per year of beneficiated bauxite after approximately 1.7 million tons of -400 mesh solids are removed in the washing plant. The handling and disposal of such a large volume of material required careful testing and planning. The plan selected used an intermediate settling pond where the tailings were allowed to thicken before being recovered by a dredge and pumped to the final impoundment cells in the mined-out areas. The cells were to be filled in two stages and after settling for 2 years, topsoil was to be spread and new vegetation started.

¹Physical scientist, Branch of Nonferrous Metals

²Supervisory mineral data assistant, Branch of Nonferrous Metals.

³All quantities in this chapter are given in metric tons unless otherwise specified.

Wouden, M. L., L. J. Froisland, and M. B. Shirts. Recovery of Alumina From Alunite by Acid Sulfation. Metall. Soc. AIME Tech. Paper A87-22, 1987, 10 pp.

^{*}Boretos, J. W. Advances in Bioceramics. Adv. Ceram. Mater., v. 2, No. 1, Jan. 1987, pp. 15-22. *McCallion, J. Carbo-chlorination of Georgia Clay Yields

High Purity AlCl₃. Chem. Process., v. 50, No. 2, Feb. 1987,

pp. 53-54.

7Sato, C., S. Kazama, and Y. Oda. New Developments in
Retardant Filler. Paper in 'Sato, C., S. Kazama, and Y. Oda. New Developments in Alumina Trihydrate for Flame Retardant Filler. Paper in Light Metals 1987, ed. by R. D. Zabrezrik. Metall. Soc. AIME, Denver, CO, 1987, pp. 99-104. *Lapa, R. P., and W. Cardoso. Tailings Disposal at the Trombetas Bauxite Mine. Paper in Light Metals 1988, ed. by L. G. Boxall. Metall. Soc. AIME, Phoenix, AZ, 1988, pp. 65-76.

Beryllium

By Deborah A. Kramer¹

Domestic production of beryllium ore decreased slightly in 1987, but consumption of beryllium materials increased, particularly beryllium-copper alloys. Growth in the automotive electronics, computer electronics, and telecommunications markets was partially responsible for increased beryllium demand. Developmental work and feasibility studies were conducted on three beryllium ore properties in the United States and Canada, which, if successful, could increase the North American supply of beryllium raw materials. Exports of beryllium metal and imports of beryl ore increased significantly from those of 1986. Over 75% of the metal exports was shipped to Taiwan.

Beryllium materials continued to be used in advanced technology applications such as defense electronics, computers, microwave radar devices, and lasers. However, other materials were substituted for beryllium in aircraft brakes, one of its traditional applications.

Domestic Data Coverage.—Domestic production data for beryllium are developed by the Bureau of Mines from two separate, voluntary surveys of U.S. operations. Typical of these surveys is the "Beryllium Mineral Concentrate and Beryllium Ore" survey. Of the 11 operations to which a survey request was sent, all responded, representing 100% of the total mine shipments shown in tables 1 and 5.

Table 1.—Salient beryllium mineral statistics
(Short tons of beryllium metal equivalent unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Beryllium-containing ores:					
Mine shipments	267	241	230	261	242
Imports for consumption, beryl ¹	88	53	66	60	92
Imports for consumption, peryl	280	360	316	318	356
Consumption, reported	200	300	910	910	990
Price, approximate, per short ton unit BeO, imported	#10C	e 00	#07	000	PO 4
cobbed beryl at port of exportation	\$126	\$88	\$87	\$88	\$84
Stocks, Dec. 31	281	226	199	195	181
World: Production ¹	^r 403	394	359	P396	e 379

^eEstimated. ^pPreliminary. ^rRevised. ¹Based on a beryllium metal equivalent of 4% in beryl.

Legislation and Government Programs.—In June, the General Services Administration (GSA) solicited bids to supply 60,000 pounds of beryllium metal to the National Defense Stockpile (NDS). GSA reportedly received bids from two companies, Brush Wellman Inc. and Advanced Metallurgy and Testing Corp. (AMT), to supply all or part of the 11,150 pounds of grade-A structural beryllium and 48,850 pounds of instrument-grade metal. At yearend, no contract to supply the metal had been

awarded. Government stocks of beryllium materials in the NDS at yearend were beryl, 17,987 short tons; beryllium-copper master alloy, 7,387 tons; and beryllium metal, 290 tons. Stockpile goals for these materials were beryl, 18,000 tons; beryllium-copper master alloy, 7,900 tons; and beryllium metal, 400 tons.

The 100 most hazardous substances found in Superfund sites reportedly were ranked in 4 priority groups, based on chemical toxicity, frequency of occurrence at Superfund sites, and potential for human exposure. Beryllium was included in the first group of substances. Under section 110 of the Superfund Amendments and Reauthorization Act, 1986 (Public Law 99-499), the Environmental Protection Agency and the Department of Health and Human Services were required to develop toxicological pro-

files for the substances on the priority lists. A draft toxicological profile for beryllium was issued in October 1987. The profile was intended to characterize the toxicological and health effects information for beryllium and to identify and review pertinent literature.²

DOMESTIC PRODUCTION

Beryllium ore shipments declined from those of 1986. Production of beryllium metal and beryllium-copper master alloy increased significantly, but beryllium oxide ceramic production declined slightly.

The only major domestic producer of beryllium ores was Brush Wellman. The company mined bertrandite from its open pit in Spor Mountain, UT, and processed bertrandite, imported beryl, and domestic beryl into beryllium hydroxide at its mill in Delta, UT. Small quantities of beryl were recovered in the United States, principally as a byproduct during the mining of pegmatite minerals.

Drilling began early in the year at the Sierra Blanca Prospect near El Paso, TX, which was a joint venture operation between Cabot Corp. and Cyprus Minerals Co. Cominco American Incorporated announced that it would spend up to \$600,000 over the next 2 years to study the feasibility of its joint venture property in Juab County, UT. Cominco American's partner in the joint venture was Beryllium International Corp. Cominco American estimated that it would cost about \$15 to \$16 million to bring the property into production.

Cyprus and Cabot reportedly formed a new company, AMT, to produce beryllium metal. AMT would lease facilities from NGK Metals Corp. at Temple, PA, to produce beryllium metal for a small market segment. AMT also planned to develop new near-net-shape production technology and provide testing services for beryllium metal consumers. Plant startup was scheduled for yearend 1987.

CONSUMPTION AND USES

Consumption of beryllium in 1987 increased from that of 1986 because of strong demand in the electronics industry. Increased growth of the automotive electronics, telecommunications, and computer markets, which use beryllium components, were important in boosting domestic beryllium consumption.

Three principal products accounted for most of the beryllium consumed in the United States—beryllium-copper alloys, beryllium metal, and beryllium oxide. Beryllium-copper alloys, containing from 0.5% to 2.0% beryllium, represented the most widely used beryllium product, and they were used in applications such as aerospace, computer, defense, electrical machinery,

oil and gas exploration, automotive electronics, and telecommunications. The principal use of beryllium metal was in aerospace and defense systems. Specific uses of beryllium include rocket motors, aircraft brakes, military targeting systems, inertial guidance systems, and infrared satellite surveillance. High-power electronic circuits, microwave radar devices, and lasers were some of the uses for beryllium oxide ceramics. All of these applications utilize the high-strength, lightweight, and high-thermal-conductivity properties of the metal and the oxide. Small quantities of beryllium were consumed in the form of aluminum- and nickel-base alloys.3

PRICES AND SPECIFICATIONS

Throughout the year, the price range for beryl ore quoted in Metals Week was \$78 to \$85 per short ton unit (20 pounds) of con-

tained beryllium oxide. At yearend, the following prices for beryllium materials were quoted in American Metal Market, in dollars per pound, except for berylliumcopper master alloy, which was given in dollars per pound of contained beryllium:

Vacuum cast ingot, 97% pure	\$225
Metal powder, in 5,000-pound lots and 97% pure	196
Beryllium-copper master alloy	\$5.52- 6.30
Beryllium-copper casting alloy Beryllium-copper in rod, bar, wire	\$5.52- 6.50 8.90
Beryllium-copper in strip	8.00
Beryllium-aluminum alloy, in 100,000- pound lots	260
Beryllium oxide powder	55.70

Brush Wellman reportedly increased prices on beryllium oxide powder twice since January 1985, when the \$55.70 price was effective, but it did not announce them

in the press. Effective January 1, 1986, the price for beryllium oxide powder was \$59.30 per pound; effective January 1, 1987, this price increased to \$61.35 per pound.

FOREIGN TRADE

Exports of beryllium metal more than doubled from those of 1986. Exports of beryllium-copper alloys were combined with data for other copper alloy exports by the Bureau of the Census and could not be separately identified. Some beryllium-copper alloy exports were identified through the Journal of Commerce Trade

Information Service-PIERS. This computer data base service reports materials transported by ship and may not reflect the total quantity of beryllium-copper alloys exported. According to PIERS, 261,788 pounds (gross weight) of beryllium-copper alloys was exported, principally to France and Taiwan.

Table 2.—U.S. exports of beryllium alloys, wrought or unwrought, and waste and scrap,¹ by country

	198	86	1987		
Country	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thous sands	
elgium-Luxembourg	560	\$56	105	\$6	
		•	183	1	
	$6,\overline{471}$	$2\overline{24}$	10,799	46	
anada	0,411	221	110	-	
hina	53	$-\frac{1}{5}$	110		
inland	7,817	1,264	5,590	1.24	
rance	8,527	2,066	4,699	5.5	
ermany, Federal Republic of	8,921	2,000	6,000	9	
long Kong	17.5	$-\frac{1}{3}$	0,000		
reland	113		1 000	1	
rael	53	28	1,323	14	
amaica	164	2		~	
apan	3,530	477	3,551	8	
Orea, Republic of	2,253	22	1,063		
fexico	126	4	164	_	
letherlands	2,540	320	2,672	2	
akistan	182	2		_	
outh Africa, Republic of			493		
	30,038	90			
	753	105	470		
witzerland	4,400	21	128,777	3	
aiwan	11,363	2.697	4.371	ĕ	
nited Kingdom	587	2,001	2,011		
enezuela	r ₂₆	r ₄	38	-	
ther	-26	-4	- 36		
Total	79,556	7,394	170,408	5,0	

^rRevised.

¹Consisting of beryllium lumps, single crystals, powder; beryllium-base alloy powder; and beryllium rods, sheets, and

Source: Bureau of the Census.

Table 3.—U.S. imports for consumption of beryl, by country

	19	86	1987		
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
Argentina	20	\$18	35	\$33	
Brazil	759	646	883	748	
China	502	497	509	490	
France	153	112	721	552	
Hong Kong			50	49	
Macao	6	4			
Madagascar	13	8			
Mozambique	18	12			
South Africa, Republic of	39	- 27			
United Kingdom			23	- 8	
Zimbabwe			81	64	
Total	1,510	1,324	2,302	1,944	

Source: Bureau of the Census.

Table 4.—U.S. imports for consumption of beryllium metal and compounds

Year	Beryllium master		Beryll wrou		Beryll unwro and was scra	ught te and	Beryllium and carl		Beryll compo n.s.r	unds
1	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)	Qunatity (pounds)	Value (thou- sands)
1985 1986 1987	15,930 24,160 53,802	\$67 114 246	769 20,467 92,422	\$176 50 290	110,689 22,487 18,294	\$89 55 159	2,532 248 6,669	\$123 3 99	7,332 2,010 29,424	\$135 42 90

Source: Bureau of the Census.

WORLD REVIEW

Brazil.—Brazil's Institute of Nuclear Energy (IEN) planned to begin small-scale production of beryllium metal by yearend. The proposed plant was expected to produce beryllium for use as a neutron moderator in a reactor that the IEN planned to construct to produce radioisotopes. Raw material for the beryllium plant reportedly will be provided by the Farquhar Foundation in the State of Minas Gerais. After an initial pilotscale plant is completed and the operating parameters determined, the IEN planned to double the plant's capacity to 264 pounds per year. When in operation, it will be the only beryllium metal plant in market economy countries outside the United States.

Canada.—Hecla Mining of Canada Ltd. reportedly completed a market analysis and

process development to recover beryllium from ore at the Thor Lake property in the Northwest Territories, which Hecla planned to develop in a joint venture with Highwood Resources Ltd. of Canada. Hecla approved the expenditure of \$2.5 million in 1988 to construct a pilot plant to generate detailed engineering data for commercial plant development. The Thor Lake property contains approximately 1.8 million tons of ore reserves with an average grade of 0.76% beryllium oxide.

Zimbabwe.—CRM (Pvt.) Ltd. reportedly took over the activities of Mitmar (Pvt.) Ltd., the sole producer of beryl and mica. CRM planned to expand its beryl production and continue its exploration program for beryl.⁴

Table 5.—Beryl: World production, by country¹

(Short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Argentina	26 1,039 133 7 3 35 23 2,100 6,665 52	28 1,551 51 8 11 49 1 2,100 6,030 21	e17 967 e55 e7 2 30 6 2,100 5,738 42	e35 e1,050 e55 e7 (3) (3) 3 2,100 6,553 114	33 1,100 55 7 -3 2,100 56,062 120
	r _{10,083}	9,850	8,964	9,897	9,480

rRevised. Preliminary. eEstimated.

²Includes ornamental and industrial products.

³Revised to zero.

⁵Reported figure.

TECHNOLOGY

Research personnel at Los Alamos National Laboratory reportedly constructed a prototype laser-spark-source spectrometer that can detect as low as 10 billionths of a gram of beryllium in a small sample in less than 3 minutes. Conventional filter analyses may take up to 8 hours. A patent for the laser-spark-analysis method used in the instrument was issued to the U.S. Department of Energy. Los Alamos reportedly is seeking companies to commercially manufacture and market the new detectors.

Brush Wellman announced that it began a \$4.3 million expansion of its facility for forming near-net-shape beryllium parts directly from powder. The expansion was intended to make the metal more cost competitive with competing materials. When the expanded facility becomes operational in early 1988, Brush Wellman will be capable of producing near-net-shape parts by combinations of cold die pressing, cold isostatic pressing, vacuum sintering, and/or hot isostatic pressing.

The National Aeronautics and Space Administration planned to replace the beryllium heat sink component in the brakes of the space shuttle with carbon. Carbon materials reportedly can withstand braking temperatures up to 3,000° F compared with beryllium, which can withstand temperatures up to 1,000° F. A carbon heat sink also was claimed to be lighter, less costly, and longer lasting than a beryllium heat sink. Substitution of carbon for beryllium in the space shuttle followed the changing specifications in braking systems for heavier aircraft; the C-5B cargo aircraft, F-14 fighter aircraft, and 757 passenger aircraft were equipped with carbon brakes.

¹Physical scientist, Branch of Nonferrous Metals.

In addition to the countries listed, China produced beryl, and Bolivia and Namibia may also have produced beryl, but available information is inadequate to formulate reliable estimates of production. Nepal reports producing small amounts. Table includes data available through Apr. 29, 1988.

⁴Includes bertrandite ore, calculated as equivalent to beryl containing 11% BeO.

^{*}Toxicological Profile for Beryllium (U.S. EPA contract 68-03-3228, Syracuse Res. Corp.). Oak Ridge Natl. Lab., Oct. 1987, 94 pp.

*Taylor, B. A. Review of Beryllium—The Metal, Its Oxide and Alloys. Ind. Miner. (London), No. 235, Apr. 1987,

⁴Industrial Minerals (London). Beryl and Mica Take-over. No. 234, Mar. 1987, p. 15.

Bismuth

By James F. Carlin, Jr.1

Domestic production of bismuth was derived by processing bismuth-rich residues extracted during the processing of intermediate smelter products, such as lead bullion, which contain bismuth as a minor constituent. One company accounted for all primary refinery production in the United States. The aluminum, chemical, cosmetic, pharmaceutical, and steel industries were major users. As world demand for bismuth increased, bismuth-rich feedstocks for the single U.S. refinery became scarcer, causing a decline in production. Domestic consumption rose substantially to the highest level recorded, reflecting the general economic improvement, especially in capital goods markets. Prices rose through most of the year owing to increasing world consumption.

The potential for the use of bismuth in advanced-materials applications was increased through research on medical applications and free-machining stainless steels.

Domestic Data Coverage.—Domestic production data for bismuth are developed by the Bureau of Mines from a voluntary survey of the only U.S. bismuth refinery. To avoid disclosing company proprietary information, production data are not published.

Legislation and Government Programs.—Government stocks remained at 2,081,298 pounds. The National Defense Stockpile goal remained at 2,200,000 pounds.

Federal laws provided a depletion allowance of 22% for domestic operations and 14% for U.S. companies producing in other countries.

Table 1.—Salient bismuth statistics

(Thousand pounds unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Consumption	2,285	2,648	2,644	2,919	3,521
Exports ^f	306	312	269	93	84
Imports, general	1.972	1,948	1,999	2,490	3,485
Price, average, domestic dealer, per pound	\$1.72	\$4.27	\$5.18	\$3.25	\$3.65
Stocks, Dec. 31: Consumer	577	480	507	763	648
World: Mine production ²	8,777	8,256	10,452	P8,711	e8,956

^eEstimated. ^pPreliminary.

¹Includes bismuth, bismuth alloys, and waste and scrap.

²Excludes the United States.

DOMESTIC PRODUCTION

One primary refinery operated by ASAR-CO Incorporated at Omaha, NE, accounted for all primary production. Production de-

clined in 1987. Small quantities of secondary bismuth were produced by several firms from bismuth scrap materials.

CONSUMPTION AND USES

Domestic consumption rose more than 21% to 3.5 million pounds, a new record high, reflecting a continuation of the general economic improvement and favorable demand in specific end-use markets. The

category of bismuth metallurgical additives, especially free-machining stainless steels, experienced particularly strong demand growth.

Table 2.—Bismuth metal consumed in the United States, by use

(Thousand pounds)

Use	1983	1984	1985	1986	1987
Chemicals ¹ Fusible alloys Metallurgical additives Other alloys Other ²	1,104 623 523 20 15	1,573 609 424 20 22	1,325 610 668 21 20	1,462 639 772 28 18	1,650 736 1,088 24 23
Total	2,285	2,648	2,644	2,919	3,521

Includes industrial and laboratory chemicals, comestics, and pharmaceuticals.

²Includes experimental.

PRICES

Prices for bismuth quoted by Metals Week at the beginning of the year ranged from \$2.65 to \$2.80 per pound, and rose generally throughout the year. By yearend,

price quotes increased to a range of \$4.70 to \$4.80 per pound. The price increase was attributed to increased demand for bismuth in the industrialized countries.

FOREIGN TRADE

Exports of bismuth remained in the lower range that prevailed in the early 1980's. Imports rose significantly, in line with the increased usage, and continued to be the major source of supply for domestic consumption. Peru emerged as the leading U.S. supplier, as the result of a substantial increase over 1986 shipments. Belgium-Luxembourg and Mexico ranked close behind as import suppliers.

Starting January 1, 1987, the U.S. import duties for bismuth were unwrought metal (TSUS 632.10), free for most favored nations (MFN) and 7.5% ad valorem for non-MFN; alloys (TSUS 632.66), 5.5% ad valorem for MFN and 45% ad valorem for non-MFN; and compounds (TSUS 418.00 and 423.80), 7% ad valorem for MFN and 35% ad valorem for non-MFN.

Table 3.—U.S. exports of bismuth, bismuth alloys, and waste and scrap, by country

	198	36	1987	
Country	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)
Australia			22	\$2
Belgium-Luxembourg	$2\overline{16}$	\$1		**
Brazil	3,613	26		
Canada	33,719	252	37,509	337
Egypt	2,211	15	01,000	00.
France	2,211	10	256	25
rrance B. L. Danublia of	730	7	6,468	29
Germany, Federal Republic of	190		25	2
Greece	37	3	2,223	18
Hong Kong	37	3		
India			132	
Ireland	98	1		- 2
Israel			63	2
Italy			12	2
Japan	4,804	29	189	7
Korea, Republic of			1,381	18
Malaysia			1,049	104
Mexico	100	7	1,070	7
Netherlands	1,602	15		
Peril	104	1		
Singapore	2,600	11	$1.7\overline{29}$	11
Switzerland	_,000		68	- 6
Taiwan	3,206	16	6,100	19
Thailand	509	3	5,100	
United Arab Emirates	303	J	440	- 2
	39,357	28	24,949	58
United Kingdom	05,001	20	44,343	36
Total	92,906	415	83,685	641

Source: Bureau of the Census.

Table 4.—U.S. general imports1 of metallic bismuth, by country

	198	36	198	37
Country	Quantity (pounds)	Value (thou- sands)	Quantity (pounds)	Value (thou- sands)
Belgium-Luxembourg	847,465	\$2,526	959,030	\$2,866
Canada	73,138	381	114,996	288
China	54,249	150	16,529	52
France	4,409	31		
Germany, Federal Republic of	4,739	29	20,307	22
Hong Kong	11,229	34	4,741	14
taly			7,176	20
Japan	219,634	581	35,840	69
Korea, Republic of	48,490	141	119,550	281
Mexico	800,049	1,955	862,597	2,359
Netherlands		39	55,453	230
Peru	235,849	387	971,003	1,559
United Kingdom	178,257	641	317,491	1,003
Total	2,489,634	6,895	3,484,713	8,769

 $^{^{1}\}mbox{General imports}$ and imports for consumption were the same in 1986 and 1987.

Source: Bureau of the Census.

WORLD REVIEW

World mine production of bismuth contained in lead and other metal ores increased slightly. Bismuth was produced primarily as a byproduct of other metals, mostly lead, and only in Bolivia was bismuth actually mined for itself. All bismuth-rich minesource materials in Australia have been stockpiled there in recent years. Mexico experienced a significant increase in out-

put, as production problems of the prior year were reportedly solved.

Major world refiners of bismuth included Dowa Mining Co. Ltd., Mitsui Mining & Smelting Co. Ltd., and Nippon Mining Co. Ltd. in Japan; Empresa Minera del Centro del Péru in Peru; Industria Minera México S.A. and Industrias Peñoles S.A. de C.V. in Mexico; Korea Tungsten Mining Co. Ltd. in the Republic of Korea; Mining and Chemical Products Ltd. in the United Kingdom; and Métallurgie Hoboken-Overpelt S.A. and

Société Industrielle d'Etudes et d'Exploitations Chimique in Belgium.

Table 5.—Bismuth: World mine production, by country¹

(Thousand pounds)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
A . 1. /	0.110	0.000	2.000	0.000	0.400
Australia (in concentrates) ^{e 3}	3,110	2,980	3,090 351	2,200	2,400
Bolivia (in concentrates)	13			95	
Canada4	445	366	443	573	490
China (in ore) ^e	570	570	570	570	570
Japan (metal)	1,263	1.241	1,415	1.411	1,200
Korea, Republic of (metal)	220	278	298	300	220
Mexico ⁵	1,202	955	2,039	1,651	2,150
	1,495	1,433	1,731	e _{1,500}	1,400
Romania (in ore)	180	180	180	180	170
U.S.S.R. (metal) ^e	180	180	185	185	190
United States (metal)	W	W	W	W	w
United States (metal)Yugoslavia (metal)	99	66	150	46	⁶ 161
Total	8,777	8,256	10,452	8,711	8,956

^pPreliminary. W Withheld to avoid disclosing company proprietary data; not included in "Total." ^eEstimated.

Table includes data available through Apr. 8, 1988. Bismuth is produced primarily as a byproduct of other metals, mostly lead, and only in Bolivia is it mined for itself.

⁴Refined metal and bullion plus recoverable bismuth content of exported concentrate.

⁶Reported figure.

TECHNOLOGY

Research at the University of Virginia identified a bacterium, campylobacter pyloridis, that appears to cause gastric inflammations leading to ulcers. The research indicated that ulcer patients given bismuthcontaining drugs show a markedly better recovery rate than those given other traditional ulcer medications.2

A major producer of stainless steels in Japan developed a new stainless steel

grade, Super Starcut, with a small amount of bismuth added, that reportedly imparts excellent free-machining properties as well as improved mechanical properties, corrosion resistance, and hot and cold workability.3

²In addition to the countries listed, Brazil, Bulgaria, France, the German Democratic Republic, the Federal Republic of Germany, Mozambique, and Namibia are believed to have produced bismuth, but available information is inadequate for formulation of reliable estimates of output levels.

3In recent years all bismuth-rich residues have reportedly been stockpiled owing to relatively low prices. Data are for

fiscal years ending June 30 of that stated.

⁵Bismuth content of refined metal, bullion, and alloys produced indigenously plus recoverable bismuth content of ores and concentrates exported for processing.

¹Physical scientist, Branch of Nonferrous Metals.

²Business Week. Aug. 3, 1987, p. 46. ³The Bulletin of the Bismuth Institute. No. 50, 1986, pp. 1-5.

Boron

By Phyllis A. Lyday¹

U.S. production and sales of boron minerals and chemicals increased during the year. Glass fiber insulation was the largest use for borates, followed by sales to distributors, textile-grade glass fibers, and borosilicate glasses.

California was the only domestic source of boron minerals. The United States continued to provide essentially all of its own supply while maintaining a strong position as an exporter of sodium borate products and boric acid to foreign markets.

Supplementary U.S. imports of Turkish calcium borate and calcium-sodium borate

ores and boric acid, primarily for various glass uses, continued.

Domestic Data Coverage.—Domestic data for boron are developed by the Bureau of Mines from two separate, voluntary surveys of U.S. operations. Of the three operations to which a production survey request was sent, all responded, representing 100% of the total boron sold or used shown in tables 1 and 7. A Bureau canvass of the three U.S. companies also collected data on domestic sales of boron minerals and compounds shown in tables 2 and 3.

Table 1.—Salient statistics of boron minerals and compounds

(Thousand short tons and thousand dollars)

	1983	1984	1985	1986	1987
United States:					
Sold or used by producers: Quantity:					
Gross weight ¹	1.303	1,367	1,269	1.251	1,385
Boron oxide (B ₂ O ₃) content	637	667	636	629	689
Value	\$439,181	\$456,687	\$404,775	\$426,086	\$475,092
Exports:	4100,101	Ψ100,001	φ±0±,110	φ420,000	φ410,032
Boric acid:					
Quantity2	38	45	49	42	67
Value	\$20,688	\$24,402	\$21,598	\$23,562	\$34,180
Sodium borates:	Ψ20,000	φ24,402	φ 21,0 30	\$40,004	\$34,180
Quantity ³	4225	576	623	624	609
Value ^e	\$51,000	\$134,000			
Imports for consumption:5	φυ1,000	\$134,000	\$151,000	\$161,000	\$243,600
Boric acid:					
Quantity	4		10		
Value	\$3,456	en 440	10	40.004	2
Colemanite:	Ф 5,400	\$3,449	\$ 5,121	\$3,824	\$2,900
Quantity	16	00	00		_
Value		20	33	16	8
Ulexite:	\$8,309	\$ 12,123	\$24,620	\$8,77 0	\$2,763
Quantity					
Value	11	47	31	42	52
Congumentian Paramarila (P. O.)	\$3,116	\$10,202	\$11,120	\$17,7 66	\$20,597
Consumption: Boron oxide (B ₂ O ₃) content World: Production	341	375	360	338	369
world: Production	2,464	2,776	2,727	^p 2,687	^e 2,898

^eEstimated. Preliminary.

¹ Minerals and compounds sold or used by producers, including both actual mine production and marketable products.

²Includes orthoboric and anhydrous boric acid.

³1982-83, U.S. Exporters; 1984-87, The Journal of Commerce Port Import/Export Reporting Service.

⁵Boron oxide (B₂O₃) content. Data for 1983-84 revised to indicate conversion to B₂O₃ content. A small amount of borax was also imported.

Legislation and Government Programs.—Boric acid is a component of cosmetics and pharmaceuticals and is also used in numerous industrial processes. A 2-year study by the U.S. Department of Health and Human Services revealed that there was no evidence of carcinogenicity in mice fed 99.7%-pure boric acid at doses of 2,500 or 5,000 parts per million.²

The U.S. Department of Transportation published final rules entitled "Hazardous Substances." A list of materials and their reportable quantities that would be regulated as hazardous materials included zinc borate. Because the role of the Research and Special Programs Administration of Transportation in regulating hazardous substances is directly tied to the Environmental Protection Agency's ongoing hazardous substances responsibility, amendments would be made in Hazardous Materials Regulations as necessary to satisfy the intent of Congress expressed in the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499). Because the amendments adopted were mandated by SARA, Transportation determined that notice and public procedure were contrary to the public interest.3

On January 1, 1985, the California Assembly bill No. 3497 transferred jurisdiction over the Insulation Program from the California Energy Commission to the Bureau of Home Furnishings and Thermal Insulation. This law stated that no material shall be sold or installed in the State that is not certified by the manufacturer to have been tested and passed in accordance with the

Bureau of Home Furnishings and Thermal Insulation standards. The State set up its National Voluntary Laboratory Accreditation Program, National Bureau of Standards, to perform fire-related tests on 13 generic types of insulation products, including cellulose. Two important types of fire-related tests for cellulose insulation included the critical radiant flux test and the smoldering resistance test. Chemicals used most often by cellulose insulation manufacturers in California are boric acid and borax.⁴

Insulation must meet standards for thermal resistance, fire safety, corrosion, and fungi resistance; for dimensional stability, odor, pliability, settling, bond strength, and deflection; and for air erosion, as appropriate. The Bureau of Home Furnishings and Thermal Insulation periodically publishes a Directory of Insulation Materials that have been certified by the Bureau, on the basis of approved laboratory tests, to be in compliance with the State law. The May 1987 directory listed numbers of certified companies in the following areas: 10 companies in cellulose insulation, 6 in mineral fiber, and 9 in mineral fiber blanket.⁵

The National Strategic Materials and Minerals Program Advisory Committee, consisting of 26 advisors, recommended to the Secretary of the U.S. Department of the Interior that the California Desert Protection Act withdraw excessive desert land from mining. The committee stated that the unique geologic terrain has tremendous potential for the discovery of additional boron, gold, and rare-earth deposits.⁶

DOMESTIC PRODUCTION

The majority of the boron production continued to be from Kern County, CA, with the balance from San Bernardino County.

American Borate Co., a wholly owned subsidiary of Owens-Corning Fiberglas Corp., continued sales of colemanite and probertite-ulexite.

Kerr-McGee Chemical Corp. operated the Trona and Westend plants at Searles Lake, San Bernardino County, to produce refined sodium borate compounds and boric acid from the mineral-rich lake brines. At the Trona plant, a differential evaporative process was used to produce boric acid, pentahydrate borax, and anhydrous borax. Byproducts included potassium compounds. The Westend plant continued production of sodium borates by a carbonation process

that also produced lime, soda ash, and sodium sulfate. Kerr-McGee produced boron specialty chemicals at other locations in the form of boron trichloride, boron tribromide, and elemental boron. Boron trichloride is the raw material required to manufacture boron filaments that strengthen aerospace products and sporting goods.

United States Borax & Chemical Corp., a subsidiary of RTZ Corp. PLC, United Kingdom, continued to be the primary world supplier of sodium borates. U.S. Borax mined and processed refined hydrated sodium borates, its anhydrous derivatives, and anhydrous boric acid at Boron, in Kern County, CA.

A second plant at Boron used a proprietary process to produce technical-grade and BORON 157

textile-fiberglass-grade (TFG) boric acid from U.S. Borax's extensive kernite ore reserves. Kernite required less energy than borax because it was processed from an ore, rather than a processed sodium borate. The TFG boric acid was produced to compete with imported colemanite used in textile fiberglass manufacture.

The majority of material was shipped to U.S. Borax's storage, Wilmington, CA, which also produced some boron specialty chemicals and borated soap products.

U.S. Borax announced that Ottawa Silica Co., acquired by RTZ Borax Ltd. in 1986, was to merge with Pennsylvania Glass Sand Corp., acquired in 1985, to form a subsidiary, US Silica, the largest silica sand producer in the United States.

Development of the Fort Cady colemanite deposit in the Mojave Desert near Barstow, CA, continued. Mountain States Mineral Enterprises Inc., Tucson, AZ, which acquired the project from Duval Corp., concluded

process confirmation work in 1987, which was started earlier by Duval. The process involves using in situ leach of the colemanite deposit to recover boric acid. Mountain States Mineral Enterprises with Blackbird Resources Inc., Toronto, Canada, began a pilot commercial plant and a multiwell test program in 1987. Following completion of the test program in early 1988, a feasibility study containing a comprehensive marketing study will be accomplished prior to proceeding to commercial production. In excess of \$50 million is expected to be expended in bringing the property into production at an approximate rate of 100,000 short tons of boric acid per annum. Blackbird Resources has an agreement with Mountain States Mineral Enterprises to acquire rights to the project after completion of the feasibility study. Blackbird Resources merged with Galveston Resources Ltd., Vancouver, Canada, in 1987.

CONSUMPTION AND USES

U.S. consumption of borates increased. Glass fiber insulation and glass fiber primarily used as reinforcement for plastics continued to be the largest consuming industries.

The use of borates in glass fiber thermal insulation, primarily used in new construction, was the largest area of demand for borates. Cellulosic insulation, the seventh largest area of demand, decreased in demand.

The second major market for borates, manufacturing high-tensile-strength glass fiber materials for use in a range of products, showed an apparent decrease in demand possibly because of lower colemanite imports and usage of domestic stocks. Fiberglass accounts for approximately 90% of the reinforced plastic market. The two most common reinforcement grades of glass fiber are "E," electrical, and "S," high strength, grades. E-glass provides a high strength-toweight ratio, good fatigue resistance, outstanding dielectric properties, retention of 50% tensile strength to 650° C, and excellent chemical, corrosion, and environmental resistance. The properties are made even more attractive by the price, which is often less than \$1 per pound. S-glass offers some strength advantages, but at up to four times the price of E-glass.7

Omni Fiberglas Corp., Chino, CA, a Koppers Co. Inc. subsidiary, began supplying

fiberglass during 1987. Established makers of the glass reinforcing agents were Certain-Teed Corp., Manville Corp., Owens-Corning, and PPG Industries Inc. Thermoset unsaturated polyester and epoxy resins reinforced with glass in the form of chop, filament, or flake were used as high-performance composite materials. High-volume composite applications are replacing traditional metals in automobiles.

New fabricating processes have made expensive boron containing reinforced resin systems competitive. Carbon and glassfiber-reinforced high-temperature thermoplastics have replaced steel and specialty alloys in four components of the Ferrari Formula I engine: the oil pump, turbo inlet, turbo impeller, and the water-pump impeller. The composites were selected because of their inherent high-temperature resistance, high mechanical strength, wear resistance, and resistance to oil, grease, and corrosion. Additional factors were the design flexibility allowed by the use of plastics and the high-speed production of complex parts via injection molding.8

Shortages of glass fiber supplies affected fabricators in the marine and construction markets during 1987. Suppliers' plans for additional capacity include greater manufacturing efficiencies, conversion of furnaces to produce the reinforcements for which demand is greatest, and diverting

capacity from overseas plants to the United States. Owens-Corning planned an expansion of capacity at the Anderson, SC, and Amarillo, TX, plants. The expansion, to be achieved by improving manufacturing efficiency, will increase capacity by an estimated 6%. If demand warrants, Owens-Corning could restart the Jackson, TN, plant that was closed in February, which could supply 11% of the industry's capacity. PPG announced plans to rebuild furnaces at Shelby, NC, to gain incremental capacity.9

One study predicted that advanced polymer composites will increase at an annual rate of 10%, rising to \$3.4 billion in 1996. Matrix materials for the advanced polymer composites included a variety of thermoplastic and thermosetting resins. The matrix is reinforced with fibers of carbon or graphite, high-performance glass, aramid, boron, quartz, ceramic, or metal.¹⁰

The Ceramic Industry magazine canvassed 260 companies that participated in a survey to provide actual and estimated figures for the "5th Annual Giants in Ceramics/USA" survey. Sales in 1986 in glass were \$17,462 million. Fiberglass was estimated to be 23% of the value of sales. PPG and Owens-Corning were estimated as having the highest sales value.

Consumption of borates in borosilicate glasses remained the third major end use and demand decreased. Boron added to glass reduced the viscosity of the melt and assisted with fiber formation. In 1989, the Defense Waste Processing Facility will begin testing, and by 1990, it planned to be mixing 33 million gallons of radioactive liquid and sludge with borosilicate glass and pouring the material into stainless steel canisters. The canisters will be stored in racks cooled by air circulation, until a permanent site can be approved.¹²

The fourth major end use of boron compounds was cleaning and bleaching. Boron compounds continued to find application in the manufacture of biological growth control chemicals for use in water treatment, algicides, fertilizers, herbicides, and insecticides. Boron can be applied as a spray and incorporated in herbicides, fertilizers, and irrigation water.

Boron compounds were also used in metallurgical processes as fluxes, as shielding slag in the nonferrous metallurgical industry, and as components in electroplating baths. Small amounts of boron and ferroboron were constituents of certain nonferrous alloys and specialty steels, respectively.

During 1987, two companies produced neodymium-iron-boron magnets, have one-half the size and weight, but with equivalent induction and magnetic field, of samarium-cobalt magnets. Sumitomo Special Metals of Japan first began commercial production of their Neomax magnets in 1983. Neomax is produced by a powder metallurgy route similar to the technique used to produce the samarium-cobalt magnets. General Motors Corp. produces the Magnaquench magnets by a spin-melting method, which was expected to prove more cost effective and efficient, although initial development capitalization cost was high. The melt spin route has the advantage of being a continuous operating process providing a greater flexibility in alloy formulations. The resulting alloys tend to have an improved coercive force, fewer effects from corrosion, and better yields. General Motors installed the smaller starter motors without sacrificing power. General Motors invested \$60 million in production of the magnets and uses about 20% of production.13

Major producers of fluoboric acid and its tin and lead salts were General Chemical Corp., Chemtech Industries Inc.'s Harstan Div., CP Chemicals, Harshaw/Filtrol Partnership, and Fidelity Chemical Products Corp. Primary usage was in printed circuit boards where fluoborate is used in solder plating applications.¹⁴

Miscellaneous uses of boron included high-quality filament, such as that produced by Avco Specialty Materials Div. that reported its Lowell, MA, facility can produce 35,000 pounds per year of boron filament and over 50,000 pounds per year of boron-epoxy tape. A tungsten substrate wire undergoes vapor-deposition from boron richloride and hydrogen to produce boron filaments. These filaments are used in a variety of products, primarily aircraft structures, which include the F-15 horizontal and

vertical stabilizers, the F-14 horizontal stabilizer, the B-1B Longeron, Hawk series and Sea Stallion helicopters, the Mirage 2000 and 4000, and the space shuttle. The relatively high cost and large diameter of boron fibers limited the application of this material. ¹⁵

S. B. Chemicals Ltd. began production of elemental amorphous boron at a new plant in Franklin Park, IL. Two grades of material will be produced, a 90% to 92% purity and a 95% purity, using a proprietary technology. 16

Covan Ltd. announced construction of a 3-million-pound-per-year sodium borohydride facility at its plantsite and corporate headquarters in Conshohocken, PA. Covan is a limited partnership recently formed by members of the bleaching and specialty chemicals industries to provide a second source of sodium borohydride in North America. The Ventron Div. of Morton Thiokol Inc. is also a producer. Sodium borohydride is a strong reducing agent whose special formulations are used for producing bleaching solutions at pulp and textile mills, for cleaning metal surfaces, and for purifying and manufacturing chemicals in specialty chemical processes. Another significant application is in the cleaning of process waste streams. Sodium borohydride is also used to produce diborane, which is used to produce high-energy fuels.17

U.S. Borax marketed disodium octaborate tetrahydrate as a specially formulated wood preservative (EPA Reg. No. 1624-39), which protects wood from fungal and insect attack in above-ground uses. The material can be handled without special precautions. The

wood can be treated with the borate by natural diffusion or through pressure treat-

Table 2.—U.S. consumption of boron minerals and compounds, by end use

(Short tons of boron oxide content)1

End use	1986	1987
Agriculture	14.821	14.821
Borosilicate glasses	30,761	30,818
Enamels, frits, glazes	11,755	12,365
Fire retardants:	,	12,000
Cellulosic insulation	18.917	12,971
Other	417	1,065
Glass fiber insulation	118,162	123,165
Metallurgy	3,089	4,223
Miscellaneous uses	27,601	20,735
Nuclear applications	1,079	590
Soaps and detergents	24,498	24,251
Sold to distributors, end use unknown _		
Textile-grade glass fibers	49,632	38,445
Total	338,000	368,516

¹Includes imports of borax, boric acid, colemanite, and ulexite.

Table 3.—U.S. consumption of orthoboric acid, by end use

(Short tons of boron oxide content)1

End use	1986	1987
Agriculture	251	74
Borosilicate glasses	8,564	4.432
Enamels, frits, glazes	1,199	1,959
Fire retardants:	_,	2,000
Cellulosic insulation	3.882	1.220
Other	402	1.065
Insulation-grade glass fibers	134	125
Metallurgy	138	400
Miscellaneous uses	10,405	9.598
Nuclear applications	897	590
Soaps and detergents	539	333
Sold to distributors, end use unknown	16,358	29.090
Textile-grade glass fibers	25,242	26,764
Total	68,011	75,650

¹Includes imports.

PRICES

Prices for borax pentahydrate and decahydrate borax decreased. Other prices re-

mained at 1986 levels.

Table 4.—Borate prices per short ton1

	Product		Prio Dec. 31 (roun dolla	, 1987 ded
Borax, technical, anhydrous, 99%, bulk, ca Borax, technical, anhydrous, 99%, bags, ca Borax, technical, granular, decahydrate, 95 Borax, technical, granular, decahydrate, 95 Borax, technical, granular, pentahydrate, 55 Boric acid, technical, granular, 99, 9%, bags Boric acid, technical, granular, 99, 9%, bulk Boric acid, United States Borax & Chemica bags, carlots, Boron, CA	riots, works" 9.5%, bags, carlots, works2 9.5%, bulk, carlots, works2 99.5%, bulk, carlots, works2 99.5%, bulk, carlots, works2 s, carlots, works2 k, carlots, works2 l Corp., high-purity anhydrous, 99% l, minus 70-mesh, 45% B ₂ O ₃ , bulk, f.o. rate (uncalcined), minus 70-mesh, 38	B ₂ O ₃ , 100-pound b.b. railcars, % B ₂ O ₃ f.o.b.,		602 647 243 198 271 226 614 569 2,300 502

¹U.S. f.o.b. plant or port prices per short ton of product. Other conditions of final preparation, transportation, quantities, and qualities not stated are subject to negotiation and/or somewhat different price quotations.

²Chemical Marketing Reporter. Current Prices of Chemicals and Related Materials. V. 226, No. 27, Dec. 28, 1987, p. 29.

FOREIGN TRADE

Industry sources estimate that over 100,000 tons of borax decahydrate, pentahydrate, and boric acid was shipped to China in 1987. Owing to the lack of adequate bulk handling facilities in China, the product was bagged for shipment by the borate producers and by independent distributors. The reasons for the unprecedented demand remain obscure.

The decrease in value of the U.S. dollar on the world market is expected to have a positive effect on the export of borates to Europe. The major competitor, Turkey, has a currency linked with the European currencies, and has less of a competitive position with exports because of currency differences; thereby giving U.S. exports an advantage.

Table 5.—U.S. exports of boric acid and refined sodium borate compounds, by country

		1986			1987	
	Boric	Boric acid ¹ Sodium		Boric acid ¹		Sodium
Country	Quantity (short tons)	Value (thou- sands)	borates ² (short tons)	Quantity (short tons)	Value (thou- sands)	borates ² (short tons)
			20			
Argentina	$1.\bar{230}$	\$575	7,406	1,877	\$899	8,762
Australia	1,200	φυιυ	1,400	30	18	39
Bangladish			148	63	42	175
Belgium-Luxembourg	12	$\overline{10}$	2.545	72	49	5,184
Brazil		2,892	355,205	5,736	2,889	336,600
Canada	5,426	2,892		3,130	2,003	18
Chile			111	2,703	$1.36\overline{5}$	52,422
China			4 101	185	1,303	2,625
Colombia	118	59	4,121	12	124	303
Costa Rica	1	3	375	12	1	909
Denmark			3	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{5}$
Dominican Republic			109	2	Z	
Ecuador			719			906
El Salvador			460	12	4	_6
France	2,794	1,767		622	373	57
Germany, Federal Republic of			661			
Guatemala			65	7	3	80
Haiti	13	5	133			134
Honduras			140			70
Hong Kong	277	161	2,974	15,446	7,009	49,203
India			17,423	·		5,424
Indonesia	179	97	4,051	214	123	5,271
Israel	60	34	413	57	50	262
israei	00	01		•		

See footnotes at end of table.

Table 5.—U.S. exports of boric acid and refined sodium borate compounds, by country —Continued

	,	1986	74 (1)	1987		
	Boric	acid1	Sodium	Boric acid ¹		Sodium
Country	Quantity (short tons)	Value (thou- sands)	borates ² (short tons)	Quantity (short tons)	Value (thou- sands)	borates ² (short tons)
				•		
Jamaica	22,266	\$12,611	$55,\overline{242}$	\$9 25,265	3 13,903	\$54.891
Japan		1.326	18,662	3,662	1.710	21,591
Korea, Republic of	_ 2,294	1,326	5,004	130	75	4,602
Malaysia	<u></u>	1,322	317.076	3,734	1.707	373.97
Mexico		287	355,003	335	188	225,93
Netherlands	_ 494	403	2,132	918	454	3.16
New Zealand	_ 797	405	471	6	2	27
Pakistan	3	5	54	18	ន៍	-4
Panama		60	253	110	51	51
Papua New Guinea	_ 131	10	255 61	39	18	10
Peru	- 11 92	80	1,310	114	. 87	2.05
Philippines			1,510	371	224	2,00
România		$-\bar{5}$	$2\overline{68}$	4	5	48
Saudi Arabia		12	1,607	278	172	3.80
Singapore	_ 24	98	4,389	146	101	1.87
South Africa, Republic of	_ 111	. 90	46,190	140		28,44
Spain		- 6	20	21	$\overline{12}$	20,12
Sri Lanka	- ::	12	20	2,1	10	-
Sweden		1.241	14,977	2,690	$1,\overline{215}$	15.72
Taiwan		129		158	108	1.24
Thailand		129	3	100	100	
Trinidad and Tobago		124	1,731			8
United Kingdom		4	39	- 7	- 4	2
Uruguay	-	185	1,283	1.528	1.154	1,99
Venezuela		3	33	1,020	-,101	1,00
Zimbabwe	- 07	16	30	21	ğ	49
Other		10	30			
Total4	_ 42,178	23,562	624,057	66,614	34,180	608,89

Table 6.—U.S. imports for consumption of boric acid, by country

	19	986	1987	
Country	Quantity (short tons)	Value ¹ (thousands)	Quantity (short tons)	Value ¹ (thousands
Brazil		\$13 29	18	\$13
Canada		- 1	18 23	11
ChinaFrance	218	261 109	40	39 10
Germany, Federal Republic of Italy	2,342	1,371	$2,09\overline{4}$ 25	1,460 29
JapanTurkey	3,461	1,480 558	- 39	1,338
Total	30141	3,824	2,241	2,900

Source: Bureau of the Census.

¹Bureau of the Census.

²The Journal of Commerce Port Import/Export Reporting Service data.

³U.S. exporters of sodium borates.

⁴Data may not add to totals shown because of independent rounding.

¹U.S. Customs declared values. ²Less than 1/2 unit. ³Data do not add to total shown because of independent rounding.

WORLD REVIEW

Owens-Corning, based in Toledo, OH, is the world's largest producer of glass fibers, with more than 80 plants worldwide that use boron in glass manufacture. Glass wool insulation products are manufactured in Vice, Belgium, through a wholly owned subsidiary, Deutsche Owens-Corning Glasswool, with headquarters at Taunusstein, Federal Republic of Germany, European Owens-Corning has six European subsidiaries manufacturing glass fiber, NV Owens-Corning SA at Battice, Belgium; Owens-Corning Fiberglas S.A. at L'Ardoise Laudun, France; Norsk Glassfiber A/S at Birkeland, Norway; Owens-Corning Fibreglas España S.A. at San Vicente, Spain; Owens-Corning Fiberglas Netherlands BV at Apeldoorn, Netherlands; and Scandinavian Fiberglas A/B, Sweden. 18

China.—About 2,000 tons per year of ulexite is produced at Da Qaidam Lake, primarily for export to Japan. Brine in the Xiao Qaidam Lake was reported to contain 3 to 4 grams per liter of boron oxide over a 13.5-square-mile area. In addition, ulexite deposits containing between 1% and 30% boron oxide are found at the lake. The source of the borates is hot springs and mud volcanoes that drain into the Tatalin River. Concentrations of spring waters in the area contain between 55 and 470 milligrams per liter of boron oxide.¹⁹

Europe.—Boron oxide used in glass in Europe was reported to be used in glass wool, 34%; reinforced glass fibers, 33%; borosilicate glass, 32%; and other, 1%. Consumption of boron oxide in borosilicate glass has risen between 1981 and 1986, while consumption for glass wool decreased in the same period. About 80% of reinforcement glass fibers is consumed in plastics.²⁰

France.—The second largest glass producer in the world, the Saint-Gobain Group, headquartered in Paris, has five glass fiber operations (using boron in glass production) at various locations in Europe in addition to Pilkington Insulation Ltd. in the United Kingdom. Glass wool was produced by Isover Saint-Gobain of France, Balzaretti Modigliani S.p.A. in Italy, Isover-Glaceries de Saint-Roch of the Netherlands, Grunzweig und Hartmann Glasfaser AG of the Federal Republic of Germany, and Cristaleria Espanola S.A. of Spain. Three other operating subsidiaries also produce glass fibers: Vetrotex Italia S.p.A. near Milan, Italy; Gevetex

Textilglas GmbH at Herzogenrath, the Federal Republic of Germany, and Vetrotex Saint-Gobain, based at Chambery, France.²¹

Italy.—Società Chimica Larderello S.p.A. (SCL), part of the EniChem Group through EniChem Anic, was a producer of boric acid and borates at two plants in Larderello, Tuscany. EniChem coordinates the chemical activities of Ente Nazionale Idrocarburi. Larderello exported about 50% of production to more than 30 countries worldwide, primarily for use in ceramics, borosilicate glasses, fluoborates, and other boron compounds. The company was founded in 1818 and extracted boric acid from the geothermal sources. These fumaroles now supply electrical energy and chemicals, such as carbon dioxide and ammonia, to the plant. The first chemical plant in Italy to produce boric acid from colemanite ores was built in 1963 and has a capacity of 11,000 tons per year. A newer plant was built in 1981 with a capacity of more than 66,000 tons per year of refined boric acid and approximately 16,500 tons per year of high-purity sodium borate pentahydrate, decahydrate, and other boron specialties. The Larderello plant was the first to introduce 99.9%-pure granular technical boric acid of extremely low sulfate and chloride impurities to the market. In 1984, SCL developed Boric Acid NS 99.99% (nuclear grade), which has been marketed to the nuclear power companies because of its unique purity characteristics. This boric acid exceeds PD Specification 52205 AP Revision F. No. 79500 for use in powerplant applications.

Turkey.—Proven reserves of borax were reported at 519 million tons. In 1986, production of boron products was reported to be 98,400 tons and 1,113,100 tons of concentrates.

The most recent boron mineral reserve distribution in Turkey is summarized below:

Area of reserves	Quantity (thousand tons)	Boron oxide (thousand tons)	Boron oxide (percent)
Balikesir-Bigadic Bursa-Kestelek Eskisehir-Kirka Kutahya-Emet	724 9 573 683	217 3 143 205	30-34 30-35 25-26 30-40
Total	1,989	568	

Deposits found north of the town of Bigadic in Balikesir Province produce colemanite and ulexite, whereas, deposits in Kutahya Province, produce mainly colemanite. The Kirka Mine, between Afyon and Eskisehir Provinces, contains the only commercial sodium borate deposit in Turkey.22

At yearend 1986, Etibank's boron operations had the following annual salable production capacities and manpower:

Mine	Capacity (thousand tons)	Employ- ees
Bigadic Mining Co	200	1,950
Emet Colemanite Co		1,950 550
Kestelek Mining Co Kirka Boraks Co	_ 100 _ 500	900
Total	1,300	5,350

Production capacities of compounds at Eskisehir in thousand tons was as follows: pentahydrate borax, 176; anhydrous borax, 66; and decahydrate borax, 19. Capacities at the Bandirma borax and boric acid plants were reported in thousand tons as follows: decahydrate borax, 61; boric acid, 36; and sodium perborate, 22. In 1986, production was reported in thousand tons as follows: decahydrate borax, 55.7; boric acid, 24; and sodium perborate, 19.23

In 1987, Etibank commissioned a hydrogen peroxide plant at its Bandirma boron processing complex. At full capacity, the plant was to produce 15,000 tons of hydrogen peroxide per year. It is planned that the hydrogen peroxide will be combined with a metaborate produced from a sodium tetraborate to produce a perborate. Sodium perborate was used in Europe as the primary type of washing powder.

Private companies, which had earlier been forced to sell or trade their stockpiles of boron because of the changes in Turkish mining regulations, were allowed to reprocess their old tailings, although they were required to sell the output to Etibank.24

Table 7.—Boron minerals: World production, by country

(Thousand short tons)
----------------------	---

Country	1983	1984	1985	1986 ^p	1987 ^e
Argentina Chile China e Peru e	125 1 30 11 774 220 1,303	157 4 30 11 987 220 1,367	140 5 30 11 1,052 220 1,269	e145 7 30 11 1,023 220 1,251	145 7 30 11 1,100 220 31,385
Total	2,464	2,776	2,727	2,687	2,898

^pPreliminary

¹Table includes data available through May 27, 1988.

³Reported figure.

TECHNOLOGY

Zinc borate is an effective and economic fire retardant synergist of organic halogens in polymers. It has been used extensively as a flame retardant, smoke suppressant, and afterglow suppressant. A study on the use of alumina trihydrate (ATH) and zinc borate as halogen-free fire retardants concluded the following: promotion of a strong char that suppresses smoke; formation of a porous and hard residue that can insulate the unburned polymer substrate; and effective flame retardant and smoke suppressant in a variety of polymers with ATH or in some silicone rubbers when only zinc borate was used.25

Scientists at the National Institute for Research in Inorganic Materials in Tsukuba Science City, Japan, reported fabrication of a boron-nitride diode that operates at temperatures as high as 530° C. Cubic boron nitride can be made into semiconductors when suitable impurities are added. These semiconductors could be used in high-temperature devices that could monitor performance inside engines where silicon-based electronic circuits would fail.26

A study by the U.S. Department of Agriculture indicates that boron can prevent

²Minerals and compounds sold or used by producers, including both actual mine production and marketable products.

osteoporosis. Boron had the effect of conserving calcium, that is, preventing bone demineralization. Hormone levels, thought to be important for maintaining bone and calcium levels, doubled. Additional studies were planned on the subtlety of boron's function in the body.27

A residential development outside Orlando, FL, became the first fiber optic wiring in new residential application. Fiber optics use borosilicate glass consisting of a core within cladding that has a lower index of refraction. Boron lowers the index, but compounds of aluminum, germanium, phosphorus, or titanium raise the index. Although the use of these materials in fiber optics is small, fiber optics represent a high value use of boron.28

Impregnating graphite intercalated with aluminum oxide with boric acid and heating to 1,250° C yielded a fiber with a continuous hollow core. The material has possible application in filtration or catalyst supports.29

The majority of ceramics are good insulators, however, a large class of ceramic materials offers properties of low to high conductivity such as titanium diboride. Although these materials pose little competition for metals in conventional applications, they excel where other material would be satisfactory, such as in reversal of the electrical current so that scale can be dissolved by electrolysis.30

Production of glass reinforced plastic composite engines was planned to begin by Polimotor Research Inc. at a plant in Canton, OH, in 1988 and would increase demand for reinforcers using fiberglass, and thus increase demand for boron. The initial capacity will be 2,500 engines per year, with expansion possible to 50,000 units. The advantages include savings of 175 pounds for an equivalent metal engine.31

Nippon Kokan K.K., Tokyo, Japan, has developed a titanium diboride composition that is less brittle yet stronger than conventionally produced material. Titanium diboride combines a high melting point, 2,871° C, with hardness and resistance to corrosion and erosion. The new material can be conventionally sintered or hotisostatically pressed.32 The new material could replace some electrodes used in aluminum production.

During 1985, at the request of manufacturers of cellulose insulation, using borax and boric acid as a flame retardant, the California Bureau of Home Furnishing and Thermal Insulation set up an interlaboratory roundrobin testing program for loose-fill cellulosic insulation material.33 A second round during 1987, verified that the electric radiant panel test procedure was reliable in 75% of the tests as a screening test for inhouse laboratories to predict the results of the full gas radiant panel apparatus.34 The approval of a method to test the permanency of cellulosic insulation could potentially increase the demand for borax and boric acid as flame retardants in cellulose insulation worldwide.

A range of borates exhibit nonlinear optical properties and could be utilized for integrated optic components. The theory predicts that an ionic boron oxide group is responsible for properties in these materials.35 Although the use of boron material in optic components is a small portion of demand, this use would represent a high value product.

¹Physical scientist, Branch of Industrial Minerals.

²U.S. Public Health Service, National Institutes of Health (Dep. Health Hum. Serv.). Toxicology and Carcinogenesis Studies of Boric Acid in B₆C₃F₁ Mice. NIH Publ. No. 88-2580, Oct. 1987, 126 pp.

³Federal Register. Research and Special Programs Administration (Dep. Transportation). Hazardous Substances, Corrections. V. 52, No. 31, Feb. 17, 1987, pp. 4824-

⁴Siddiqui, S. A. Effect of Fire Retardant Formulations on the Fire Properties of Cellulose Insulation. Paper in Fire Safety Progress in Regulations, Technology, and New Products. Fire Retard. Chem. Assoc., Monterey, CA, Oct. 18-21, 1987, pp. 15-24.

*Bureau of Home Furnishing and Thermal Insulation.

Consumer Guide and Directory of Certified Insulation Material Calif. Dep. Consum. Affairs, May 1987, 185 pp.

Schmitt, B. Advisory Panel Urges Hodel To Oppose California Desert Bill. Am. Met. Mark., Oct. 9, 1987, p. 6.

⁷English, L. K. Part II: Reinforcements. Mater. Eng., v. 104, No. 1, 1987, pp. 37-41. ⁸Materials Engineering. Reinforced Thermoplastics Re-place Metal in Engine Components. V. 103, No. 10, 1986,

Modern Plastics. Glass-Fiber Markets Face Prolonged Supply Tightness. V. 64, No. 9, 1987, pp. 14, 16.
 Ceramic Industry. Advanced Polymer Composites: \$3.4
 Billion Business by 1996. V. 129, No. 3, 1987, p. 12.

11——5th Annual Giants in Ceramics/USA. V. 129, No. 2/A, 1987, pp. 25-57.

12Science. Savannah River's \$1-Billion Glassmaker. V. 235, No. 4794, 1987, pp. 1314-1317.

¹³Robbins, J. Permanent Magnets—The Impact of New

Materials. Mater Edge, No. 1, Sept.-Oct. 1987, pp. 17-31.

14(hemical Marketing Reporter. Fluoborate Producers Enjoy Demand and Price Turnaround. V. 232, No. 4, 1987, p. 23.

15 Work cited in footnote 4.

16(Chemical Marketing Reporter Producers Producers

18 Ormical Marketing Reporter. Boron Plant Opens. V. 231, No. 1, 1987, p. 9.

17 Chemical Marketing Reporter. Boronhydride Unit Is Slated in Pennsylvania. V. 231, No. 22, 1987, p. 5.

18 O'Driscoll, M. Glass Markets—Added Value Impetus. Lad Mings (London), No. 230, 1987, p. 56.

Ind. Miner. (London), No. 239, 1987, p. 56. ¹⁹Smith, G. I. U.S. Geol. Surv. (Menlo Park, CA).

Written communication; available upon request from P. A. Lyday.

20 Patrick, M. C. Borates in the European Glass Industry.

No. 249, 1988, pp. 57-61.

Ind. Min. Mag. (London), No. 249, 1988, pp. 57-61. ²¹Work cited in footnote 9.

²²Anac, S. Etibank's Place in the Production of Industri-

"Anac, S. Etbank's Place in the Production of Industrial Minerals in Turkey. (Pres. at Ind. Miner. Conf., Istanbul, Turkey, Sept. 20-22, 1987, 23 pp.); available from Ind. Miner. Mag., London, UK.

23Karayazici, F. Industry Structure Past, Present and Future. (Pres. at Ind. Miner. Conf. Istanul, Turkey, Sept. 20-22, 1987, 24 pp.); available from Ind. Miner. Mag., London, UK.

165

²⁴U.S. Embassy, Ankara, Turkey. Industrial Outlook: Minerals Narrative. State Dep. Telegram 02887, Mar. 11,

1988, 11 pp.

1988, 11 pp.

285hen, K. K. The Use of Zinc Borate as a Fire Retardant in Halogen-Free Polymer Systems. Paper in Fire Safety Progress in Regulations, Technology, and New Products. Fire Retard. Chem. Assoc., Monterey, CA, Oct. 18-21, 1987, pp. 15-24.

285cience. Putting the Heat on New Semiconductors. V. 132, No. 16, 1987, p. 247.

27Chemical Marketing Reporter. Boron Found To Have Role in Hardening Bones. V. 232, No. 19, 1987, pp. 7, 13.

28Business Week. Jeno Paulucci's Dream: Bring Fiber Optics Home. No. 3017, 1987, pp. 34-35.

29Lewis, C. F. Researchers Tackle Reliability of Ceramics. Mater. Eng., v. 104, No. 7, 1987, pp. 24-28.

Conductive Ceramics. Mater. Eng., v. 104,

Conductive Ceramics. Mater. Eng., v. 104, No. 6, 1987, pp. 27-30.
 Modern Plastics. Phenolic Engine Goes Into Production. V. 65, No. 3, 1988, p. 24.
 Ceramic Industry. International Scene—Japanese Debut Toughened TiB₂. V. 128, No. 4, 1987, p. 30.
 Siddiqui, S. A. Round Robin Fire Safety Tests on Cellulose Insulation. J. Therm. Insul., v. 10, 1986, pp. 11-19.
 ——. Cellulose Insulation Surface Flammability and Smoldering Combustion Proficiency Testing Programs. Round 2. Paper presented in Proceedings of the International Conference on Fire Safety. V. 12, Millbrae, CA, Jan. 12-16, 1987, pp. 103-123.
 Fisher, G. Integrated Optics Take Lightwave Processing to Microscopic Levels. Ceram. Bull., v. 66, No. 11, 1987, pp. 1580-1582.

Bromine

By Phyllis A. Lyday¹

Of the 847 million pounds of bromine produced worldwide in 1987, the United States produced 40%, followed by Israel, 27%; the U.S.S.R., 17%; the United Kingdom, 6%; and other countries, 10%. The

U.S. portion of world production has decreased steadily since 1973, when the United States produced 71% of the world supply. The decrease in world share has been a result of environmental constraints

Table 1.—Salient bromine and bromine compound statistics

(Thousand pounds and thousand dollars)

Value \$91 Exports: Elemental bromine: Quantity 24 Value 251 Bromine compounds: 4 61 Gross weight 61 Contained bromine 52 Value \$21 Imports: 2 Elemental bromine: Quantity Value Compounds: Ammonium bromide: Gross weight 1 Contained bromine 1 Value 1 Calcium bromide: 1 Gross weight 1 Contained bromine 1 Value 1 Potassium bromate: 1 Gross weight 1 Contained bromine 1	000 000 500 000 300 600 (5) \$5	385,000 \$95,000 *95,000 *15,200 *53,200 45,100 \$16,200 *17	320,000 \$80,000 \$6,252 e\$1,400 61,000 51,900 \$23,400	310,000 \$93,000 217,900 2\$8,170 28,000 23,000 \$23,900 342 \$87	e335,000 e\$107,000 27,380 2\$3,526 48,300 41,100 \$18,000
Bromine sold or used: 1	500 000 300 600 (5) \$5	\$95,000 \$68,200 \$15,200 53,200 45,100 \$16,200 9 \$17	\$80,000 36,252 \$1,400 61,000 51,900 \$23,400 11 \$9	\$93,000 217,900 2\$8,170 28,000 23,000 \$23,900 342 \$87	27,380 2\$3,526 48,300 41,100 \$18,000
Quantity_ 370	500 000 300 600 (5) \$5	\$95,000 \$68,200 \$15,200 53,200 45,100 \$16,200 9 \$17	\$80,000 36,252 \$1,400 61,000 51,900 \$23,400 11 \$9	\$93,000 217,900 2\$8,170 28,000 23,000 \$23,900 342 \$87	27,380 2\$3,526 48,300 41,100 \$18,000
Value	500 000 300 600 (5) \$5	\$95,000 \$68,200 \$15,200 53,200 45,100 \$16,200 9 \$17	\$80,000 36,252 \$1,400 61,000 51,900 \$23,400 11 \$9	217,900 2\$8,170 28,000 23,000 \$23,900 342 \$87	27,380 2\$3,526 48,300 41,100 \$18,000
Exports: Elemental bromine: Quantity _	300 000 300 600 (⁵)	³ 68,200 ² \$15,200 ⁵ 3,200 45,100 \$16,200	36,252 e\$1,400 61,000 51,900 \$23,400	217,900 2\$8,170 28,000 23,000 \$23,900 342 \$87	27,380 2\$3,526 48,300 41,100 \$18,000
Elemental bromine:	300 300 600 (5) \$5	*\$15,200 53,200 45,100 \$16,200	e\$1,400 61,000 51,900 \$23,400	2\$8,170 28,000 23,000 \$23,900 342 \$87	2\$3,526 48,300 41,100 \$18,000 547 \$166
Quantity 24 Value 2\$1 Bromine compounds: 4 6 Gross weight 61 Contained bromine 52 Value \$21 Imports: 2 Elemental bromine: Quantity Value Compounds: Ammonium bromide: Gross weight 1 Contained bromine 1 Value 1 Contained bromine 1 Value 1 Potassium bromate: Gross weight Contained bromine Value Potassium bromide: 0 Gross weight 0 Contained bromine 0 Value 0 Potassium bromide: 0 Gross weight 0 Gross weight 0	300 300 600 (5) \$5	*\$15,200 53,200 45,100 \$16,200	e\$1,400 61,000 51,900 \$23,400	2\$8,170 28,000 23,000 \$23,900 342 \$87	2\$3,526 48,300 41,100 \$18,000 547 \$166
Value	300 300 600 (5) \$5	*\$15,200 53,200 45,100 \$16,200	e\$1,400 61,000 51,900 \$23,400	2\$8,170 28,000 23,000 \$23,900 342 \$87	2\$3,526 48,300 41,100 \$18,000 547 \$166
Bromine compounds: 4 61 Gross weight 61 Contained bromine 52 Value \$21	300 000 600 (5) \$5	53,200 45,100 \$16,200	61,000 51,900 \$23,400	28,000 23,000 \$23,900 342 \$87	48,300 41,100 \$18,000 547 \$166
Gross weight	(5) \$5	45,100 \$16,200 9 \$17	51,900 \$23,400 11 \$9	23,000 \$23,900 342 \$87	41,100 \$18,000 547 \$166
Gross weight	(5) \$5	45,100 \$16,200 9 \$17	51,900 \$23,400 11 \$9	23,000 \$23,900 342 \$87	41,100 \$18,000 547 \$166
Value \$21 Imports: Elemental bromine: Quantity	(⁵) \$5	\$16,200 9 \$17	\$23,400 11 \$9	\$23,900 342 \$87	\$18,000 547 \$166
Imports: Elemental bromine: Quantity	(⁵) \$5	9 \$17	11 \$ 9	342 \$87	547 \$166
Elemental bromine:	\$5	\$17	\$9	\$87	\$166
Elemental bromine:	\$5	\$17	\$9	\$87	\$166
Value	\$5	\$17	\$9	\$87	\$166
Value	*-	•	*-		
Compounds:	COA	1.450	2.786	5.721	4.946
Ammonium bromide: 1 Gross weight 1 Contained bromine 1 Value 1 Costs weight 1 Contained bromine 1 Value 1 Potassium bromate: 1 Gross weight 1 Contained bromine 1 Value 1 Potassium bromide: 1 Gross weight 1	CO 4	1.450	2.786	5.721	4.946
Gross weight	CO 4	1 450	2.786	5.721	4.946
Contained bromine	n.34				
Value Calcium bromide: Gross weight 1 Contained bromine 1 Value	333	1.183	2,729	4.667	3,778
Calcium bromide: 1 Gross weight 1 Contained bromine 1 Value 1 Potassium bromate: 1 Gross weight 1 Contained bromine 1 Value 1 Potassium bromide: 1 Gross weight 1	962	\$854	\$1,593	\$2,994	\$2,257
Gross weight		4004	Ψ1,000	ψ=,001	4-,
Contained bromine	722	1,598	5.093	6.218	8,075
Value Potassium bromate: Gross weight Contained bromine Value Value Potassium bromide: Gross weight	377	1,278	4.072	4,972	6,456
Potassium bromate: Gross weight Contained bromine Value Potassium bromide: Gross weight	900	\$203	\$917	\$741	\$833
Gross weight Contained bromine Value Potassium bromide: Gross weight	900	\$200	фэті	4141	4000
Contained bromine Value Potassium bromide: Gross weight	679	661	1.069	641	3,063
Value Potassium bromide: Gross weight		350		340	1,466
Potassium bromide: Gross weight	325		512	\$669	\$849
Gross weight	572	\$610	\$899	\$009	\$648
	400	0.05	0.00	C07	1 010
Contained bromine	436	367	968	697	1,910
	293	246	650	468	1,282
Value	303	\$26 8	\$6 85	\$4 86	\$1,122
Sodium bromide:					
	,534	1,916	2,901	467	1,448
Contained bromine 1	927	1,488	2,253	364	1,124
Value	971	\$851	\$1,108	\$217	\$507
Other:					
Gross weight 12		15,150	10,087	10,112	18,286
Contained bromine 10	,070	11,535	6,863	8,004	11,220
Value \$8	,070 ,241		\$ 5,863	\$4,627	\$13,669
World: Production 801		\$8,210		P824,380	e846,530

^eEstimated. ^pPreliminary.

¹Elemental bromine sold as such to nonproducers, including exports, or used in the preparation of bromine compounds by primary U.S. producers.

*Bureau of the Census.

The Journal Commerce Port Import/Export Reporting Service.

⁴Bureau of the Census. Includes methyl bromide and ethylene dibromide.

⁵Less than 1/2 unit.

and the emergence of Israel as a major producer. The quantity of bromine sold or used in the United States was about 335 million pounds valued at \$107 million. Exports of bromine compounds amounted to 41.1 million pounds. The price of elemental bromine in bulk was 35 cents per pound. Primary uses of bromine compounds were as a scavenger for lead in gasoline, oil and gas well fluids, and flame retardants.

Domestic Data Coverage.—Domestic production data for bromine are developed by the Bureau of Mines from a voluntary survey of U.S. operations. Of the eight operations to which a survey request was sent, all responded, representing 100% of total elemental bromine sold or used.

Legislation and Government Programs.—The Environmental Protection Agency (EPA) undertook a special review of the ethylene dibromide fungicides: Mancozeb, Maneb, Metiram, Nabam and Zineb.²

An amendment to the New York State Fire Prevention and Building Code went into effect at yearend. New York was the first State to require all plastic products marketed in the State, regardless of where manufactured, to be tested for toxicity before being sold. Major products being tested were electrical conduit wire, pipe, and duct insulation, which can use brominated flame retardants to meet building codes.³

Great Lakes Chemical Corp. and the Arkansas State Pollution Control and Ecology Department agreed to a number of environmental improvements at the El Dorado plant over a 3-1/2-year period. The agreement was a result of an October 1985 notice of violation. Improvements included repairing or closing some waste collection ponds, treating waste water in a new facility, cleaning up ground water contamination, and increasing ground water monitoring. Great Lakes constructed a new facility for treating waste water. Additional recovery wells will pump contaminated water from the ground to be treated in the new waste water facility. Additional monitoring wells will also be installed. If any parts of the plan are not completed on time, Great Lakes will pay penalties from \$500 to \$2,500 per day.4

EPA approved the registration of bromine chloride, EPA Reg. No. 5785-68, and bromine chloride technical, EPA Reg. No. 337-20. Both products are classified for general use as a algicide, bactericide, disinfectant, and slimicide in waste water, commercial, and industrial recirculation cooling water systems.⁵

A final test rule was issued by EPA that required manufacturers and processors of tetrabromobisphenol-A, a major brominated flame retardant, to perform testing for chemical and environmental effects. The testing requirements included biodegradation studies in sediment/water and soil, an acute toxicity study in a freshwater alga, acute and early life state toxicity study in a benthic invertebrate, a chronic toxicity study in an aquatic invertebrate, and bioconcentration studies in fish and invertebrate.

The incineration of 328,000 gallons of ethylene dibromide (EDB) was being considered by EPA as a method to dispose of the chemical. A test was planned in December of the incineration process. EDB was banned as a fumigant in September 1983, and manufacturers and distributors quickly surrendered all stocks of the chemical for disposal.

Ten brominated chemicals were controlled for national security reasons under Export Control Commodity No. 5799D. The U.S. Department of Commerce undertook a review of the rationale for the controls and decided to terminate the control of these chemicals on the grounds that the availability of these chemicals would no longer make a significant contribution to the military potential. The decision was made in consultation with the U.S. Departments of Defense, Energy, and State. The chemicals remain subject to export controls to Country Groups S and Z for foreign policy reasons.⁸

In California, 1,2 dibromo-3-chloropropane was listed as 1 of 29 toxic substances under proposition 65, the Safe Drinking Water & Toxic Enforcement Act (Superfund) of 1986. Under the provisions of the law, businesses are prohibited from discharging listed chemicals into drinking water unless the discharged amounts can be shown to be safe. Businesses are also prohibited from exposing individuals to listed chemicals at unsafe levels without first warning them of the risk.9

The U.S. Department of Health and Human Services and the EPA published a priority list for toxicological profiles of 100 hazardous substances found at Superfund sites. The list included four brominated compounds in priority groups 2, 3, and 4. The list was prepared from 717 hazardous substances currently identified at Superfund sites. 10

The Arkansas State Plant Board, the

Mississippi Department of Agriculture and Commerce, and the Louisiana Agriculture Department granted a section 18 exemption for bromoxynil for control of hemp sesbania, morning glory, and cocklebur in rice. The exemption expired August 1, 1987.11

The Office of the Governor, Territory of Guam, granted a section 18 quarantine exemption for the use of methyl bromide to control western flower thrips and cabbage aphids on several vegetables. The exemption expires January 12, 1991. 12

DOMESTIC PRODUCTION

Three companies representing the U.S. Bromine Alliance accounted for about 95% of U.S. elemental bromine capacity. Plant capacity did not reflect production capacity, which was dependent upon brine supplies, concentration of the bromine in the brine, and individual plant extraction processes. Arkansas brines contained about 6,000 parts per million and Michigan brines about 2,600 parts per million of bromine.

Ethyl Corp. concluded an agreement with The Dow Chemical Co. to purchase Dow's facility in Magnolia, AR, and other bromine assets. Included was the brine field leases in the Magnolia area, distribution equipment, facilities, and inventories worldwide, as well as certain patents pertaining to Dow's bromine chemical technology. Under a consent decree reached with the U.S. Department of Justice, Dow and Ethyl agreed to exclude Dow's brominated clear brine fluids business from the transaction. As part of the consent decree, Dow will attempt to sell its brominated clear brine fluids business to a qualified purchaser. Dow will continue to operate a plastic foam plant on the Magnolia site until the plant can be relocated.

Ethyl assumed sales activities for Dow's elemental bromine, flame retardants, organic bromides, and sodium hydrosulfide. Ethyl will integrate operations for the former Dow bromine chemical facility with its existing operations in Magnolia and will construct new facilities at both sites to

manufacture products Dow produced in Midland, MI. New facilities are also under construction at Magnolia to produce flame retardants formerly produced in Sayreville, NJ.

Morton Thiokol Inc. produced small quantities for captive use in inorganic bromides. Rhône-Poulenc S.A. through its subsidiary, the France-based inorganic bromide producer Potasse et Produits Chimiques (PPC), bought Morton's current inventory and technology for inorganic bromides, which are primarily used in photography. Rhône-Poulenc Inc. (USA) will function as PPC's U.S. sales agent.¹³

Great Lakes, which operated three bromine plants in Union County, announced a 50% expansion of a plant in Adrian, MI, that produces bromochlorodimethylhydantoin, a bromine-containing biocide used in a variety of applications, including swimming pools, spas, cooling towers, and waste water treatment.¹⁴

Great Lakes purchased QO Chemical Inc., a wholly owned subsidiary of Pentech Corp. QO produced furfural from agricultural waste and then manufactured furyl alcohol and other specialty products used in building materials, chemical intermediates, flame retardants, foundry resins, oil refining, plastics, and urethane systems. The new company will use many of the brominated flame retardants that Great Lakes produce.

Table 2.—Bromine-producing plants in the United States in 1987

State and company	County	Plant	Production source	Elemental bromine plant capacity ¹ (million pounds)
Arkansas: Arkansas Chemicals Inc The Dow Chemical Co Ethyl Corp Great Lakes Chemical Corp Do Do Michigan:	Union Columbia do Union do	El Dorado Magnolia do El Dorado Marysville _ El Dorado	Well brinesdo do do do do	50 110 160 105 80 50
The Dow Chemical Co Morton Thiokol Inc	Mason Manistee	Ludington Manistee	do	20 5
Total				580

¹Chemical Marketing Reporter. Chemical Profile. V. 228, No. 4, July 22, 1985, pp. 53-54.

CONSUMPTION AND USES

The U.S. International Trade Commission publication, "Synthetic Organic Chemicals, 1986" reported that the Dyes & Pigments Div. of Mobay Chemical Corp. produced Pigment Red No. 168, dibromoanthranthrone orange. Red No. 168 was used in automotive metallic applications because of its transparency.

Demand for EDB, primarily as a gasoline additive, reached a low of about 10% of total consumption. Fire retardants were estimated to be about 30% of consumption, primarily as tetrabromobisphenol-A and decabromodiphenyl oxide. Agriculture uses were about 10% of consumption, principally as methyl bromide used as a soil fumigant. Bromine is used in water treatment as a slime and biocidal control product. Sodium bromide was estimated at about 5% of consumption. About 30% of bromine consumption was as calcium bromide in workover and completion fluids. Other uses were estimated at approximately 15% of consumption.15

According to data from the Bureau of the Census, 1 billion pounds of bisphenol-A was produced in 1987, up 21% from production in 1986. The demand was strong in the polycarbonate resin sector, which amounts to approximately one-half of the market. Epoxy resins, which account for about one-third of the market, were also strong. Tetrabromobisphenol-A is a major flame retardant produced from bisphenol-A, used

in epoxy, polyester, and other polymers where low color and high clarity are mandatory. ¹⁷ A study of flame retardants consumption by polymers estimated 36 million pounds of bromine additives was used in 1986. The majority was in polyacrylonitrile-butadiene-styrene and polystyrene products. ¹⁸

Bromine was used in biocides in recirculatory cooling systems. Formulated alone or with other active ingredients, bromine compounds are regarded by the water treatment industry as cost-effective biocides. Some compounds have both bacteriostatic and fungistatic properties at low concentrations.¹⁹

Bromine added as a bromide salt with chlorine or hypochlorine leaches gold as well as platinum in acid, neutral, or alkaline water. A product marketed under the name "Bio-D Leachant", being distributed in North America, has been reported as a better reagent than bromocide, a disinfectant, because it is readily recycled for reuse. About 20 small operators were reported to be using bromine. Three larger companies were testing bromine on 5,000-short-ton heap-leaching operations. The advantages of bromine are rapid extraction, nontoxicity, and adaptability to a wide range of conditions. Disadvantages are high reagent consumption and interferences in standard assay techniques.20

PRICES

Bromine was sold under contracts negotiated between buyer and seller. Price quotations do not necessarily represent prices at which transactions actually occurred, nor do they represent bid and asked prices. They were quoted here to serve only as a guide to yearend price levels.

Table 3.—Yearend 1987 prices for elemental bromine and selected compounds

Product	Value per pound (cents)
Ammonium bromide, National Formulary (N.F.), granular, drums, carlots, truckloads, freight equalized, f.o.b. works	131 77 87 35 112
Calcium bromide, bulk, 14.2 pounds per gallon at 60° F, f.o.b. works² Ethyl bromide, technical, 98%, drums, carlots, freight allowed, East Ethylene dibromide, drums, carlots, freight equalized Hydrobromic acid, 48%, drums, carlots, truckloads, f.o.b Hydrogen bromide, anhydrous, cylinders, extra 30,000 pounds, f.o.b. works Methyl bromide, distilled, tanks, 140,000-pound minimum, freight allowed Potassium bromate, granular, powdered, 200-pound drums, carlots, f.o.b. works	90- 4U
Potassium bromide, N.F., granular, drums, carlots, f.o.b. works Sodium bromide, 99% granular, drums, carlots, f.o.b. works Sodium bromide, 99% granular, 400-pound drums, freight, f.o.b. works	112 104

¹Delivered prices for drums and bulk shipped west of the Rocky Mountains, 1 cent per pound higher. Bulk truck prices 1 to 2.5 cents per pound higher for 30,000-pound minimum and 4 to 5.5 cents per pound higher for 15,000-pound minimum.

²Reported to the Bureau of Mines by primary producers.

FOREIGN TRADE

AmeriBrom Inc., a member of the Israeli Dead Sea Bromine Co. Ltd., a part of Israel Chemicals Ltd., began to ship larger quantities of elemental bromine to the United States because of an increase in demand. Previous market commitments to Europe and Japan limited the amount of bromine that could be shipped to the United States. Imports from Israel and from Broomchemie BV in the Netherlands had been primarily in the form of derivatives in previous years. Morre-Tec Industries Inc. of Union, NJ, was appointed distributor of calcium bromide for AmeriBrom.

WORLD REVIEW

Canada.—In Alberta, formation waters with bromide contents greater than 1,000 milligrams per liter are confined to small areas in the Upper Devonian Winterburn and Woodbend Groups of central Alberta; the Upper Devonian Beaverhill Lake Formation of southern Alberta; the Middle Devonian Elk Point Group of north-central Alberta; and the Granite Wash, northern Alberta. Formation water from the Beaverhill Lake Formation of southern Alberta contained nearly 2,790 milligrams per liter of bromide, which corresponds to the concentration of brines at Midland, MI, but less than the 5,000 parts per million for Arkansas brines and the 12,000 parts per million for bitterns from potash production from the Dead Sea.21

China.—An underground deposit near Laizhou Bay, Shandon, reported reserves at 600 million cubic meters of brine.22

Europe.—An expert panel was studying ways to curb salt spills into the Rhine from French sources. France (30%), the Federal Republic of Germany (30%), the Netherlands (34%), and Switzerland (6%) will split the budget of the panel. One plan suggested doubling existing storage facilities to cope with the 16 million tons of salt coming from the Mines de Potasse d'Alsace S.A., at Amelie. Bromine is produced as a byproduct of potash production in France and the Federal Republic of Germany.23

France.-Mines de Potasse d'Alsace was in the process of building an additional bromine column to bring the total columns to 10. The glass columns are about 4 feet wide and produce a combined total of 13 tons per day of elemental bromine.

Germany, Federal Republic of.—Kali

und Salz AG reported that the only potash mine in production was the Salzdetfurth Mine with an annual bromine capacity of 5.5 million pounds. The mine is north of Kassel between the Leine and Oker Rivers.

Because of concern by the Green Party, Verband Der Chemische Industrie announced in 1985 a voluntary, precautionary action to reduce and possibly eliminate the use of brominated flame retardants in plastics. A group of world producers formed the Brominated Flame Retardant Industry

Source: Chemical Marketing Reporter. Current Prices of Chemicals and Related Materials. V. 232, No. 26, Dec. 28, 1987,

Panel (BFRIP) to investigate reports that researchers in the Federal Republic of Germany, Switzerland, and the United States had reported finding significant quantities of brominated dioxins and furans in brominated diphenyl oxide flame retardants. To address the issues, BFRIP developed a program to test the animal toxicity of the solid decomposition products of polymers containing brominated flame retardants under combustion conditions.²⁴

Other studies released during 1987 complement the work being funded by the BFRIP. Dow, a member of the BFRIP, released a study that indicates humans exposed to dioxins generally experienced death rates at or below those of a corresponding United States population. Scientists report no evidence of an increase in birth defects following a 1976 accident in Seveso, Italy, that exposed the surrounding population to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Several small animals were found dead at the time of the TCDD expo-

sure but, other than choracne, a severe form of acne, no other effects were observed in exposed humans. The study concluded that the rates of both major and minor malformations are the same in TCDD-exposed areas as in nonexposed areas.²⁶

Israel.—Dead Sea Bromine Co. Ltd., Sdom, announced a proposed expansion of 265 million pounds costing \$150 million.27 Israel Chemicals, the parent of Dead Sea Bromine, was developing a new calcium bromide process to extract calcium bromide directly from brines. In addition, a process for organic solvent extraction of calcium bromide from potash bitterns was being developed to delete an intermediate energy consuming step. Conventional methods react hydrogen bromide with calcium hydroxide. The Israelis have operated a pilot plant of 2 to 4 million pounds per year since 1984. It was reported that a demonstration facility was being built to test the new calcium bromide process.28

Table 4.—World bromine plant capacities and sources

Country and company	Location	Capacity (million pounds)	Source
China: Laizhou Bromine WorksFrance:	Shandong	1	Underground brines.
Atochem	Port-de-Bouc Mulhouse	30 19	Seawater. Bitterns of mined potash production.
German Democratic Republic: Government Germany, Federal Republic of:	Bleicherode Sondershausen	NA NA	Do. Do.
Kali und Salz AG: Salzdetfurth Mine	Bad Salzdet- furth.	5.5	Do.
Hindustan Salts Ltd Mettur Chemicals	Jaipur Mettur Dam } Mithapur }	1.6	Seawater bitterns from salt production.
Israel: Dead Sea Bromine Co. Ltd	Sdom	220	Bitterns of potash produc- tion from surface brines.
(taly: Šocietà Azionaria Industrial Bromo Italiana Japan:	Margherita di Savoia.	2	Seawater bitterns from salt production.
Asahi Glass Co. Ltd Toyo Soda Manufacturing Co. Ltd Spain:	Kitakyushu Tokuyama	9 44	Seawater bitterns. Do.
Derivados del Etilo S.AU.S.S.R.:	Villaricos	2	Seawater.
Government United Kingdom:	NA	150	Well brines.
Associated Octel Co. Ltd	Amlwch	66	Do.

NA Not available.

Table 5.—Bromine: World production, by country¹

(Thousand pounds)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
France ^e	35,000	38,600	44,000	42,000	41,000
Germany, Federal Republic of	6,914	7,288	6,784	e _{5,500}	5,500
India ^e	770	770	770	770	770
Israele	154,000	198,400	220,000	231,500	231,500
Italye	1,100	1.100	1,320	990	1,100
Japan ^e	26,500	26,500	26,500	r _{33,000}	33,000
Spaine	700	660	800	620	660
U.S.S.R. ^e	150,000	154,000	154,000	143,000	143,000
United Kingdom	56,879	62,832	65,808	r e ₅₇ ,000	55,000
United States ³	370,000	385,000	320,000	310,000	4335,000
	801,863	875,150	839,982	824,380	846,530

rRevised. eEstimated. ^pPreliminary.

¹Table includes data available through May 6, 1988.

In addition to the countries listed, several other nations produce bromine, but output data are not reported, and available general information is inadequate for formulation of reliable estimates of output levels.

3Sold or used by producers.

⁴Reported figure.

TECHNOLOGY

Greater solubilities for some metals occur in the metal bromide-hydrogen, bromidewater system. Stricter control of effluents and declining ore grades have caused an increase in interest in hydrometallurgical processing. Bromide reagents are more costly than chloride reagents, but recycling the reagents would minimize the difference and increase demand for bromine compounds for use in metallurgical processing. Solubility studies of various metal bromides reported crystallization was almost total at hydrogen bromide saturation for aluminum bromide, potassium bromide, and sodium bromide.29

The bromine number is defined as the number of grams of bromine that reacts with 100 grams of a substance under certain conditions. The ASTM D 1159-77 method for determining the bromine number of petroleum products with boiling points to 327° C was modified to make it suitable for products up to 550° C.30

A radioactive bromine had been used to treat ovarian and estrogen-dependent cancers. The treatment employs an estrogenlike drug to which the radioactive bromine is attached. The drug binds to a cell that locates bromine close to the genetic material. As the bromine decays, it destroys the cell's structure. The drug will undergo animal tests before human trials.31

Interest has intensified in annual shrinkage of the stratospheric ozone layer over the Antarctic. Bromine and bromine monoxide are two of the halogen species being studied by scientists around the world for their part in the reactions that destroy ozone. If bromine is determined to be a major factor, the demand for bromine could be affected by world bans, such as those placed on chlorofluorocarbons (CFC).32 A draft treaty was reached by 28 countries during negotiations sponsored by the United Nations Environmental Program. Halons 1211 and 1301, both containing bromine, are not covered by the proposal.33 The U.S. Congress was considering legislation to curb further use of CFC, including Halons 1211 and 1301, thus decreasing demand for bromine.

A method for classificiation and identification of air pollutants, including brominated hydrocarbons, was developed. The compounds are identified by comparing their data with the three nearest neighbors in the set. The classification accuracy was 85%.34 This method could increase the accuracy of identification of brominated compounds for making policy decisions on polluting compounds.

¹Physical scientist, Branch of Industrial Minerals.

²European Chemical News. ECN Special Report. More Tough Years To Come for Agrochemical Producers. V. 50, No. 1314, 1988, pp. 7, 34.

³Ballman, B., and L. J. Wilson. New York Calls for a Plastics Toxicity Test. Chem. Week, v. 141, No. 18, 1987, pp. 10-12. Brown,

⁴Brown, C. Great Lakes Chemical Agrees to Improvements. El Dorado Times, May 1, 1987, p. 2.

⁵Federal Register. Environmental Protection Agency. Certain Companies, Approval of Pesticide Product Registrations; Great Lakes Chemical Corp., et. al. V. 52, No. 218, Nov. 12, 1987, p. 43392.

^{6—} Environmental Protection Agency. Tetrabromobisphenol-A; Final Test Rule. V. 52, No. 128, July 6, 1987, pp. 25219-25226.

The Washington Post (Washington, DC). No. 304, Oct. 5, 1987, pp. A1, A8.

⁸Federal Register. U.S. Department of Commerce. Bromine Chemical; Reduction in Export Control. V. 51, No. 207, Oct. 27, 1986, pp. 37907-37908.

⁹Chemical & Engineering News. Environmentalists Ired by California Decision. V. 65, No. 11, 1987, p. 22. ¹⁰Federal Register. U.S. Department of Health and

¹⁰Federal Register. U.S. Department of Health and Human Services and the Environmental Protection Agency. Notice of the First Priority List of Hazardous Substances That Will be the Subject of Toxicological Profiles. V. 52, No. 74, Apr. 17, 1987, pp. 12866-12974.
 ¹¹Pesticide & Toxic Chemical News. Section 18 Exemptions Granted for Bromoxynil on Rice in Three States. V. 15, No. 28, 1987, pp. 27-28.
 ¹²—... Methyl Bromide Section 18 Quarantine Exemptions Granted to Guam. V. 16, No. 11, 1988, p. 15.
 ¹³Chemical Marketing Reporter. Bromine Market Revival Seen After Loss of EDB. V. 233, No. 13, 1988, pp. 5, 40.

 Great Lakes Adds to BCDMH Facility. V. 232, No. 8, 1987, p. 4.

15Work cited in footnote 13.

Work then Hoteline to the Work of the Hoteline Reporter. Bisphenol-A Demand Prompts Price Rise. V. 233, No. 10, 1988, pp. 5, 15.

17 Plastic Additives—An Industrial Guide, ed. by E. W. Flick. Noyes Publ., Park Ridge, NJ, 1986, 745 pp.

FIICK. NOYES FUDI., FAIR MURGE, IVO, 1200, 140 pp.

18 Rather, L. O., and R. C. Kiddler. The Market for Flame
Retardants in the U.S. A Current Analysis. Paper in
International Progress in Fire Safety. Fire Retard. Chem.
Assoc. Meet, New Orleans, LA, Mar. 22-25, 1987, pp. Assoc. 213-232

213-232.
 19Performance Chemicals. Biocide Remedies for Microbial Contamination. V. 2, No. 4, 1987, pp. 11, 14, 16.
 20Von Michaelis, H. The Prospects for Alternative Leach Reagents. Eng. and Min. J., v. 188, No. 6, 1987, pp. 1244.47

42-44, 47.

²¹Hitchon, B., "Formation Waters as a Source of Industrial Minerals in Alberta," in The Geology of Industrial Minerals in Canada, Can. Inst. of Min. and Metall., Spec. v. 29, 1984, pp. 247-249.

²²Industrial Minerals (London). Mineral Notes. No. 243,

1987, p. 94.

²³European Chemical News. France Mulls Proposed Rhine Salt Solutions. V. 50, No. 1314, 1988, p. 28.

Arinine Salt Solutions. V. 50, No. 1314, 1988, p. 28.
²⁴Hughes, K. A. Results of the BFRIP Combustion Toxicity Testing Program on Decabromodiphenyl Oxide/Antimony Oxide/HIPS Formulation. Paper in Fire Safety Progress in Regulations, Technology, and New Products. Fire Retard. Chem. Assoc., Monterey, CA, Oct. 18-21, 1987, pp. 197-206.

18-21, 1987, pp. 191-200.
 25Chemical Marketing Reporter. Dow Completes Dioxin Study at Midland Site. V. 230, No. 12, 1986, p. 86.
 26Chemical & Engineering News. No Rise in Birth Defects After Italy's Dioxin Leak. V. 66, No. 13, 1988, pp.

28 Mannsville Chemical News Chemscope. International Project Review. Mar. 1988, p. 9.
28 Mannsville Chemical Products Corp. Chemical Products Synopsis. Calcium Bromide. Apr. 1987, 2 pp.
28 Mahal F. G. and D. E. Shanks. Hydrogen Chloride and

ucts Synopsis. Calcium Bromide. Apr. 1861, 2 pp.

28 Nobel, E. G., and D. E. Shanks. Hydrogen Chloride and
Hydrogen Bromide Sparging Crystallization of Chloride
and Bromide Metal Salts. Paper in Crystallization and
Precipitation, ed. by G. L. Strathdee, M. O. Klein, and L. A.
Melis (Proc. Int. Symp., Saskatoon, Saskatchewan, Canada, Oct. 5-7, 1987). Pergamon, Elmsford, NY, 1987, pp.
soa og

89-98.

30 Ruzick, D. J., and K. Vadum. Modified Method Measures Bromine Number of Heavy Fuel Oils. Oil & Gas J., v. 85, No. 31, 1987, pp. 48-50.

31 Science News. Drug "Nukes" Ovarian Cancer. V. 131, No. 25, 1987, p. 389.

32 Zurer, P. S. Complex Mission Set To Probe Origins of Antarctic Ozone Hole. Chem. & Eng. News, v. 65, No. 33, 1987, np. 7-13

1987, pp. 7-13.

33Science. Ozone Plan Splits Administration. V. 236, No.

 Science. Ozone Figure Franchisch
 4805, 1987, pp. 1052-1053.
 ³⁴Scott, D. R., W. J. Dunn, III, and S. L. Emery.
 Classification and Identification of Hazardous Organic
 Compounds in Ambient Air by Pattern Recognition of
 Mass Spectral Data. Environ. Sci. Technol., v. 21, No. 9,
 1927, pp. 801,897 1987, pp. 891-897.

Cadmium

By Thomas O. Llewellyn1

U.S. imports for consumption of cadmium metal decreased considerably, but exports increased dramatically over those of 1986 and reached their highest level in the last 7 years. The producer-price range of cadmium metal, at \$1.20 to \$1.50 per pound at the beginning of the year, more than doubled by yearend. The flourishing Japanese nickel-cadmium battery industry, labor disputes, and the excess of world demand over production contributed to both the increase in U.S. exports and the rise in metal prices.

A low-temperature chemical vapor deposition process for producing thin-filmed cadmium was developed. Potential applications for these fabricated thin films included

photodetectors and transparent conductors.

Domestic Data Coverage.—Domestic production data for cadmium metal and compounds are developed by the Bureau of Mines from a voluntary survey of U.S. operations. Of the four metal-producing plants to which a survey request was sent, all responded, representing 100% of the total cadmium metal production shown in tables 1 and 3. Of the 11 operations that produced cadmium compounds to which a survey request was sent, all responded, representing 100% of the cadmium content of production of cadmium compounds shown in table 2.

Table 1.—Salient cadmium statistics

		1983	1984	1985	1986	1987
United States:						
Production ¹	_ metric tons	1,052	1.686	1,603	1,486	1,515
Shipments by producers ²		1,495	1,811	1,791	2,030	1,916
Value		\$1,786	\$2,581	\$2,436	\$1,883	\$1,861
Exports	_ metric tons	170	106	86	38	241
Imports for consumption, metal	do	2,196	1,889	1,988	3,174	2,701
Consumption, apparent		3,763	3,300	3,720	4,385	4,178
		\$1.13	\$1.69	\$1.21	\$1.25	\$1.99
World: Refinery production	_ metric tons	r _{17,636}	r _{19,463}	18,723	^p 18,525	^e 18,566

^eEstimated. ^pPreliminary. ^rRevised.

Legislation and Government Programs.—The Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) extended and amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). Certain requirements were established for the Environmental Protection Agency (EPA) and the Agency for Toxic Substances and Disease

Register (ATSDR) with regard to the hazardous substances most commonly found at facilities on the CERCLA National Priorities List (NPL) and pose the most significant potential threat to human health. Section 110 of SARA amends section 104(i) of CERCLA by establishing requirements for the preparation of (1) a list of hazardous substances found at NPL sites (in order of priority), (2) toxicological profiles of those

¹Primary and secondary cadmium metal. Includes equivalent metal content of cadmium sponge used directly in production of compounds.

²Includes metal consumed at producer plants.

³Average quoted price for cadmium sticks and balls in lots of 1 to 5 tons.

substances, and (3) a research program to improve or expand the information available on these substances. The EPA and ATSDR published the first priority list of 100 hazardous substances, in compliance with the law, on April 17, 1987. The list is divided into 4 priority groups of 25 substances each. In this list, cadmium was among the hazardous substances of the first priority group.²

On August 19, 1987, the EPA issued notice of final determination and intent to cancel registration and to deny applications for all pesticide products that contain cadmium compounds (salts of chloride, sebacate, succinate, carbonate, and anilino cad-

mium dilactate) as active ingredients that were used on turf of golf courses and home lawns. The cancellation and denial were based on the EPA's findings that the use of cadmium fungicides would result in unreasonable adverse effects to applicators of the products for these uses. This notice announced the EPA's final determination to (1) cancel registrations and to deny applications of all pesticide products containing any of the five cadmium compounds as active ingredients that are registered for use on golf course fairways and home lawns. and (2) to modify the terms and conditions of registration of cadmium products for use on golf course greens and tee areas.3

DOMESTIC PRODUCTION

St. Joe Resources Co., a subsidiary of Fluor Corp., was bought by Horsehead Industries Inc. The St. Joe operations were combined with those of Horsehead's New Jersey Zinc Co. Inc. to form a new company called Zinc Corp. of America. The sale was part of Fluor's continuing program to sell

its assets of St. Joe Minerals Corp.

Cadmium metal was produced by AMAX Inc., Sauget, IL; ASARCO Incorporated, Denver, CO; Jersey Minière Zinc Co., Clarksville, TN; and Zinc Corp. of America, Bartlesville, OK.

Table 2.—U.S. production of cadmium compounds

(Metric tons, cadmium content)

Year	Cadmium sulfide ¹	Other cadmium compounds ²
1983	670	1,024
1984	771	1,510
1985	477	1,021
1986	645	1,459
1987	540	1,511

¹Includes cadmium lithopone and cadmium sulfosele-

CONSUMPTION AND USES

Consumption in 1987 was estimated as follows: batteries, 32%; coating and plating, 29%; pigments, 15%; plastic stabilizers, 15%; and alloys and other uses, 9%.

SAFT America Inc. announced the introduction of a newly designed Polytemp Plus NiCad battery. The company claimed that the new battery was capable of long-lasting high performance for applications at temperatures up to 70° C on continuous charge. This reportedly would make the batteries ideal for computers, medical electronics, and other standby uses.⁴

²Includes plating salts and oxide.

Table 3.—Supply and apparent consumption of cadmium

(Metric tons)

	1985	1986	1987
Stocks, Jan. 1 Production Imports for consumption, metal _	901	686	923
	1,603	1,486	1,515
	1,988	3,174	2,701
Total supply	4,492	5,346	5,139
Exports	86	38	241
Stocks, Dec. 31	686	923	720
Consumption, apparent ¹	3,720	4,385	4,178

¹Total supply minus exports and yearend stocks.

STOCKS

The decrease in stocks held by both metal producers and distributors reflected the ex-

cess worldwide demand over world production.

Table 4.—Industry stocks, December 31

(Metric tons)

	19	986	19	987
	Cadmium metal	Cadmium in com- pounds	Cadmium metal	Cadmium in com- pounds
Metal producers Compound manufacturers Distributors	303 73 65	W 481 1	126 98 37	W 457 2
Total	441	482	261	459

W Withheld to avoid disclosing company proprietary data; included with "Compound manufacturers."

PRICES

At the beginning of 1987, AMAX published a domestic producer price of \$1.20 per pound for cadmium metal, and St. Joe Resources' National Zinc Div.'s published price was \$1.50 per pound. In March, AMAX lowered its price to \$1.00 per pound, but by April again quoted a price of \$1.20 per pound. Cadmium metal prices during the remainder of 1987 followed a steep upward trend. AMAX raised its price from the \$2.25-per-pound level of September to \$2.75 for October, and by November it was \$3.00 per pound where it remained at yearend. National Zinc increased its price from \$2.30 per pound in September to \$2.90 in early October, and finally boosted it to \$3.50 per pound late the same month; this price prevailed through yearend. The steep price

increase of cadmium metal was attributed, in part, to the flourishing Japanese nickel-cadmium battery industry, labor disputes such as the 4-month strike at Cominco Ltd.'s lead-zinc operation in Canada, and the excess of world demand over production.

The New York dealer price for cadmium metal in January ranged from \$0.97 to \$1.05 per pound. The published New York dealer price range increased steadily throughout the first 4 months of 1987, and by the end of April was \$1.20 to \$1.30 per pound. The dealer price range for cadmium metal fluctuated slightly during the last 8 months of 1987, but followed the same upward trend as the producers' price quotations, and closed the year in the range of \$3.00 to \$3.20 per pound.

FOREIGN TRADE

Exports of cadmium increased dramatically in 1987 compared with those of 1986 and reached their highest level in the last 7 years. Japan, the United Kingdom, Taiwan, and Mexico, in descending order of receipts, received approximately 95% of the total exports. Cadmium metal imports for consumption decreased considerably in 1987 compared with those of 1986.

The Bureau of the Census reported that the United States exported nearly 11.6 million nickel-cadmium batteries in 1987, most of which went to Hong Kong. Imports of nickel-cadmium batteries, including those incorporated into other products, totaled about 89 million batteries. Japan and Mexico supplied approximately 84% of the total battery imports.

Table 5.—U.S. exports of cadmium metal and cadmium in alloys, dross, flue dust, residues, and scrap

Year	Quantity (metric tons)	Value (thou- sands)
1985	86	\$342
1986	38	188
1987	241	660

Source: Bureau of the Census.

Table 6.—U.S. imports for consumption of cadmium metal, by country

	1	986	19	87
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
Australia	² 589	2\$1,143	427	\$1,20
Belgium-Luxembourg	29	84	18	36
Canada ²	1,221	2,571	1.164	3,508
China		² 143	117	289
Finland		83	25	62
rance	221	2 ₄₃	6	19
Germany, Federal Republic of	227	390	272	764
Hong Kong	² 22	² 34	2.2	• 0-
apan		. 01	3	8
Korea, Republic of	59	$\overline{121}$	10	44
Mexico	441	782	496	1,524
Namibia			5	22
Netherlands	54	106	5	18
Norway	40	79	27	54
'eru	² 141	² 255	70	188
pain	40	69		
Sweden	15	30		
'aiwan			² 37	257
Inited Kingdom ²	144	257	20	40
Yugoslavia		17		
Total ³	3,174	6,208	2,701	7.818

General imports and imports for consumption were the same in 1986 and 1987.

²Includes waste and scrap (gross weight).

Source: Bureau of the Census.

WORLD REVIEW

The European Economic Community proposed better control of emissions from industrial processes, waste, incineration, and coal burning; reduction of cadmium use in manufactured products; and the establishment of stricter limits for cadmium in fertilizers to reduce cadmium pollution. The proposals for control of cadmium emissions were expected to be completed by 1989.

Société d' Accumulateurs Fixés et de Traction (SAFT) of France and Licencintorg, the Soviet Central Purchasing Organization for Technology Acquisitions, announced the signing of an agreement in Moscow by which SAFT will provide the Soviet Union with a nickel-cadmium battery manufacturing facility. Under the agreement, SAFT will supply all required processing, production, and laboratory testing equipment. In the past, SAFT operated through subsidiaries in foreign countries. It is anticipated that this new factory will produce batteries to be used as power supply for telecommunications, electronics, and instrumentation.⁵

The British battery company, ALCAD,

³Data may not add to totals shown because of independent rounding.

previously owned by Marathon Manufacturing Companies Inc., a subsidiary of Penn Central Corp., was bought by SAFT. ALCAD produced pocket-plate nickelcadmium storage batteries for industrial and railroad uses, and its share of the world market was 15%. SAFT's world market for this line of batteries was also 15%.6

Table 7.—Cadmium: World refinery production,1 by country

(Metric tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Algeria	(2)	80	128	124	125
Argentina	21	46	46	47	45
Australia	r _{1.121}	1.082	910	e1.000	1.000
Austria	46	49	52	52	53
Belgium	1.260	1.472	1.252	1.374	1,300
Brazil	189	225	124	136	140
Bulgariae	200	200	200	200	180
Canada	1,456	1,605	1.717	1.421	1,500
Chinae	300	300	300	300	300
Finland	616	614	565	522	650
France	513	568	337	431	300
German Democratic Republic ^e	15	15	15	r ₁₈	18
Germany, Federal Republic of	1,094	1,111	1.095	1.218	1,200
India	131	148	194	r e160	180
Italy	385	452	526	411	325
Japan	2.214	2,423	2,535	2,489	2,440
Korea, North ^e	100	100	100	100	100
Korea, Republic of	320	320		(²)	
Mexico	r847	r838	905	1.016	1,000
Namibia	51	40	58	61	50
Netherlands	513	636	594	557	560
Norway	117	150	159	154	150
Peru	451	390	e420	387	400
Polande	570	570	600	600	600
Romania ^e	80	75	75	75	75
	278	290	268	247	300
Spain	3.000	3,000	3.000	3.000	3,000
U.S.S.R. ^e	340	390	370	380	500
United Kingdom United States ³	1.052	1.686	1.603	1.486	41,515
United States* Yugoslavia	1,052	270	279	259	260
YugoslaviaZaire	308	318	296	e300	300
Lanc	900	910	470	500	300
Total	r _{17,636}	r19,463	18,723	18,525	18,566

Revised. eEstimated. ^pPreliminary.

^{*}Estimated. *Preliminary. 'Revised. 'Irbit stable gives unwrought production from ores, concentrates, flue dusts, and other materials of both domestic and imported origin. Sources generally do not indicate if secondary metal (recovered from scrap) is included or not; where known, this has been indicated by footnote. Data derived in part from World Metal Statistics (published by World Bureau Main). Cadmium is found in ores, concentrates, and/or flue dusts in several other countries, but these materials are exported for treatment elsewhere to recover cadmium metal; therefore, such output is not reported in this table to avoid double counting. Table includes data available through Apr. 8, 1988.

*Revised to zero.

*Includes eccondary.

³Includes secondary. ⁴Reported figure.

TECHNOLOGY

It was reported that chemists at the University of Kyoto, Japan, developed a fully rechargeable, all-plastic battery with electrodes made of plastic, instead of metal, and with a lifespan of about 80 minutes. The doped polymers used for the electrodes are usually unstable and, due to the solvent action of the battery electrolyte, their conductivity deteriorates rapidly. An improved battery performance was achieved using polymeric dopants such as polypyrrolepolyvinyl sulfate for anodes and oxidized polypyrrole doped with chloride for cathodes. The electrolyte consisted of a potassium chloride solution. It was also reported that the University of Kyoto researchers planned to make better plastic anodes using other conducting polymers to obtain a longer lasting battery. Reportedly, these batteries with electrodes made of cheap and lightweight plastic might someday replace lead and nickel-cadmium batteries.7

Spray pyrolysis processing (SPP), also called low-temperature chemical vapor deposition, of cadmium sulfide and other optoelectronic materials was discussed in a review article that examined the major processing variables, equipment requirements, and chemical solutions utilized. Likely applications for the SPP-fabricated thin films included photodetectors, transparent conductors, and bandpass windows. The relative simplicity and low cost of the SPP technique reportedly made it quite promising because SPP thin films had properties equivalent to those of thin films fabricated by conventional techniques. The process was expected to be a good candidate for large-scale industrial utilization.8

Developments in cadmium technology during the year were abstracted in Cadscam, a quarterly publication available through the Cadmium Association, 34 Berkeley Square, London, W1X 6AJ, Eng-

¹Physical scientist, Branch of Nonferrous Metals.

²Federal Register. Notice of the First Priority List of Hazardous Substances That Will Be the Subject of Toxicological Profiles. V. 52, No. 74, Apr. 17, 1987, pp. 12866-12874.

Cadmium: Intent To Cancel Registration of Pesticide Products Containing Cadmium; Denial of Applications of Registration of Pesticide Products Containing Cadmium; Conclusion of Special Review. V. 52, No. 160, Aug. 19, 1987, pp. 31076-31083.

Advanced Battery Technology. V. 23, No. 12, Dec. 1987,

p. 8. –. V. 23, No. 6, June 1987, pp. 1-2. –. V. 23, No. 5, May 1987, p. 1.

⁷New Scientist. A Step Closer to Plastic Batteries. V. 113, No. 1553, Mar. 26, 1987, p. 34. *Albin, S. A., and S. H. Risbud. Spray Pyrolysis Processing Optoelectronic Materials. Advanced Ceramic Mater. ing Optoelectronic waterials v. 2, No. 3A, 1987, pp. 243-251.

Calcium and Calcium Compounds

By David E. Morse¹

Calcium, the fifth most abundant element in the earth's crust, is chemically very active and is found in nature in a host of minerals that occur in nearly every geologic environment. The Bureau of Mines publishes reports for a variety of calciumcontaining minerals and compounds because of their commercial significance and contribution to the quality of human life. The commercial name for calcium fluoride is fluorspar; calcium carbonate is sold as either limestone, marble, calcareous marl or shell; calcium sulfate is gypsum or anhydrite; calcium oxide and hydroxide are called lime; and calcium phosphate (apatite) is known as phosphate rock. Information on these products can be obtained in the chapters of the Bureau of Mines Minerals Yearbook entitled "Fluorspar," "Gypsum," Rock," "Crushed "Lime," "Phosphate Stone," and "Dimension Stone." Other calcium compounds are discussed in the chapter concerning the element with which calcium is combined; for example, calcium bromide is covered in the "Bromine" chapter. This chapter includes calcium metal, calcium chloride, and various other calcium compounds not covered elsewhere.

Calcium metal was manufactured by one company in Connecticut. Natural calcium chloride was produced by three companies in California, two companies in Michigan, and one company in Washington. Synthetic calcium chloride was manufactured by two companies in Louisiana and one company in Washington.

Domestic Data Coverage.—Domestic production data for calcium chloride are developed by the Bureau of Mines from a voluntary survey of U.S. operations entitled "Calcium Chloride and Calcium-Magnesium Chloride." Of the 10 operations to which a survey request was sent, 9 responded, representing less than one-half of the total production shown in table 1. Production for the single nonrespondent, Dow Chemical Co. at Ludington, MI, was estimated using published plant capacity and information reported in trade journals and research reports.

DOMESTIC PRODUCTION

Pfizer Inc. produced calcium metal at Canaan, CT, by the Pidgeon process, an aluminothermic process in which highpurity calcium oxide (produced by calcining limestone) and aluminum powder are briquetted and heated in vacuum retorts. The vaporized calcium metal product is collected as a crown in a water-cooled condenser.

Pfizer produced commercial-grade calcium containing 98.5% calcium in seven shapes, high-purity redistilled metal containing 99.2% calcium in four shapes,

and an 80% calcium-20% magnesium alloy. Pfizer also produced an alloy consisting of 75% calcium and 25% aluminum for use in maintenance-free batteries, and a pure calcium wire used in the steel industry to modify inclusions. Elkem Metals Co., a Norwegian-owned company with headquarters at Pittsburgh, PA, produced calcium alloys at its plant in Alloy, WV, including a calcium-silicon alloy containing about 30% calcium, 65% silicon, and 5% iron, and two proprietary alloys that contain barium, and

barium and aluminum. The Foote Mineral Co., ASARCO Incorporated, and The Pesses Co. also produced calcium alloys.

National Chloride Co. of America, Cargill Inc.'s Leslie Salt Co., and Hill Bros. Chemical Co. produced calcium chloride from drylake brine wells in San Bernardino County, CA. Hill Bros. Chemical also produced from a second operation near Cadiz Lake. Natural calcium chloride production in California was much less than the quantity produced in Michigan. Dow and Wilkinson Chemical Corp. recovered calcium chloride from brines in Lapeer and Mason Counties, MI. Dow's Ludington plant produced calcium chloride pellets and flake; Wilkinson marketed calcium chloride solutions only. Tahoma Chemical Co. Inc. produced natural calcium chloride in Washington.

Allied Signal Inc. recovered synthetic calcium chloride as a byproduct at its Baton Rouge, LA, plant using hydrochloric acid and limestone; Texas United Chemical Corp. produced calcium chloride from purchased hydrochloric acid and limestone at its plant near Lake Charles, LA; and Occidental Chemical Corp. manufactured calcium chloride at Tacoma, WA, using limestone and hydrochloric acid.

Texas United Chemical produced granular calcium chloride at Lake Charles, LA. Total capacity was reported to be 40,000 short tons per year of liquid and dry calcium chloride, 100% basis.

Calcium hypochlorite was produced by Olin Corp. and PPG Industries Inc. Total domestic calcium hypochlorite capacity was 165,000 tons per year.

Table 1.—U.S. production of calcium chloride (75% CaCl₂ equivalent)

	Nat	ural	Synt	hetic	То	tal
Year	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)
1983	663,949	\$71,330	192,688	\$29,727	856,637	\$101.057
1984 ^e	838,000	93,000	198,000	31,500	1,036,000	124,500
1985	W	W .	W	W	940,000	135,200
1986	W	W	W	. W	780,000	r109,294
1987 ^e	W	W	W	W	772,776	87,353

^eEstimated. ^rRevised. W Withheld to avoid disclosing company proprietary data.

CONSUMPTION AND USES

Calcium metal was used in the manufacture of batteries, as an aid in removing bismuth in lead refining, as a desulfurizer and deoxidizer in steel refining, and as a reducing agent to recover refractory metals such as chromium, rare earths, and thorium from their oxides. Some minor uses were in the preparation of vitamin B and chelated calcium supplements and as a cathode coating in some types of photoelectric tubes. The nuclear applications of calcium metal give it strategic significance; foreign sales must be approved by the U.S. Department of State. State Department approval had been denied to countries that were not signatory to the United Nations Nuclear Nonproliferation Treaty. Calcium metal is used to reduce uranium dioxide, a fuel element utilized in some types of fission reactors.

Calcium chloride was used for road and pavement deicing, dust control and road base stabilization, coal and other bulk material thawing, oil and gas drilling, concreteset acceleration, tire ballasting, and miscellaneous uses.

The principal use of calcium chloride was

to melt snow and ice from roads. Calcium chloride is more effective at lower temperatures than rock salt and has been used mainly in the Northern and Eastern States. Because of its considerably higher price, it was used in conjunction with rock salt for maximum effectiveness and economy.

Calcium hypochlorite was used to disinfect swimming pools, which accounted for 85% of domestic demand, and in other municipal and industrial bleaching and sanitation processes. It was used as an algicide, bactericide, deodorant, water purifier, disinfectant, fungicide, and bleaching agent.

Calcium nitrate was used as a concrete additive to inhibit corrosion of steel reinforcement bars, accelerate setting time, and enhance strength.

Calcium carbide and calcium-silicon alloy were used to remove sulfur from molten pig iron as it was carried in transfer ladles from the blast furnace to the steelmaking furnace.

Precipitated calcium carbonate was used as a pigment for brightness and opaqueness in premium-quality coated and uncoated papers.

PRICES AND SPECIFICATIONS

The published price of calcium metal crowns in quantities greater than 20,000 pounds was unchanged from that established November 1, 1985. The published price of calcium-silicon alloy remained unchanged. Yearend published prices and specifications were as follows:

	Value pe	r pound
	1986	1987
Calcium metal, 1-ton lots, 50-pound full crowns, 10 by 18 inches, Ca + Mg 99.5%, Mg 0.7%	\$3.92	\$3.92
Calcium-silicon alloy, 32% calcium, carload lots, f.o.b. shipping point	.72	.72

Source: Metals Week. V. 57, No. 52, 1986, p. 5; v. 58, No. 52, 1987, p. 5.

Calcium metal was usually sold in the form of crowns, broken crown pieces or nodules, or billets, which are produced by melting crowns in an argon atmosphere. The metal purity in these forms was at least 98%. Higher purity metal was obtained by

redistillation.

Calcium metal was usually shipped in polyethylene bags under argon in airtight 55-gallon steel drums.

Calcium chloride was sold as flake or pellet averaging about 75% CaCl₂, or as a liquid concentrate averaging 40% CaCl₂. Yearend 1987 published prices and specifications were as follows:

	Value per ton
Calcium chloride concentrate, regular	
grade, 77% to 80%, flake, bulk,	
grade, 11% w 60%, Hake, bulk,	\$153.00
carload, works	196.00
100-pound bags, carload, same basis	150.00
Anhydrous, 94% to 97%, flake or pellet,	
bulk, carload, same basis	217.00
80-pound bags, carload, same basis	279.00
50-pound bags, car load, same basis = = = =	285.00
Brining grade, 80-pound bags	200.00
Calcium chloride liquid, 100% basis,	99.75
tank car, tank truck, barge	
45% come hegis	118.00
Calcium chloride, United States Phar-	
Calcium cinoriue, Cinteu buates i noi	
macopeia, granular, 225-pound	1,800.00
drums, truckload, freight equalized	1,000.00

Source: Chemical Marketing Reporter. Dec. 28, 1987, p. 29.

FOREIGN TRADE

U.S. exports of calcium chloride increased significantly in quantity; exports to Canada were more than double those of 1986. Calcium hypochlorite was exported in small quantities to 76 countries worldwide for an export value of \$28 million, or an increase of \$5 million compared with that of 1986. Exports of calcium phosphates, which is used as a feed additive for livestock, were valued at \$53.5 million and went to over 50 countries, primarily in the Western Hemisphere. The combined customs value for exported calcium borate, calcium carbide, calcium chloride, and other calcium compounds totaled \$19.3 million.

Imports for consumption of calcium metal

were from four countries—Canada, China, France, and the U.S.S.R. China supplied more than one-half of the quantity imported; France, about 23%; Canada, 15%; and the U.S.S.R., about 9%. Imports of crude calcium chloride showed a marked increase compared with those of 1986. Imports from Canada were responsible for most of the increase; Canada supplied over three quarters of U.S. imports. Allied increased operating rates at its Amherstburg, Ontario, Canada, facility after the shutdown of its synthetic, Solvay soda ash plant near Syracuse, NY, in 1986. Imports of a variety of calcium compounds are listed in tabular form in this report for the first time.

Table 2.—U.S. exports of calcium chloride, by country

	Country	19	86	19	87
		Short tons	Value ¹	Short tons	Value ¹
Netherlands Sweden Switzerland United Arab Emirates Venezuela		13,341 448 595 907 277 840 249	\$2,308,561 132,904 132,530 412,852 141,178 230,666 118,386 485,170	28,718 704 471 524 857 330 1,159 1,955	\$4,007,252 231,133 686,332 216,624 179,986 50,226 400,180 885,566
Total		 18,168	3,962,247	34,718	6,657,299

Source: Bureau of the Census.

Table 3.—U.S. imports for consumption of calcium and calcium chloride

	Year	Cal	cium	Crude calc	ium chloride	Other calcin	ım chloride
		Pounds	Value ¹	Short tons	Value ¹	Short tons	Value ¹
1983 1984 1985 1986 1987		332,834 248,973 492,244 566,170 776,225	\$866,409 669,586 1,395,198 1,310,084 1,918,099	13,580 21,803 75,381 143,328 229,964	\$654,490 1,341,166 9,059,352 14,403,393 20,916,867	204 275 2,355 2,098 1,282	\$662,526 475,749 1,907,976 1,263,552 706,370

¹U.S. Customs, insurance, freight.

Source: Bureau of the Census.

Table 4.—U.S. imports for consumption of calcium chloride, by country

Country	19	986	1:	987
	Short tons	Value ¹	Short tons	Value ¹
Crude: Canada Germany, Federal Republic of Mexico Sweden Other	111,991 5,175 516 4,734 20,912	\$9,317,161 861,372 12,614 806,112 3,406.134	180,786 18,957 5,422 11,219 13,580	\$13,533,501 2,234,665 952,860 1,479,925
Total	143,328	14,403,393	229,964	2,715,916
Other: Canada Germany, Federal Republic of Sweden Other	363 1,286 22 427	418,256 460,180 22,006 363,110	489 54 2 737	433,831 83,699 2,927
Total	2,098	1,263,552	1,282	185,913 706,370

¹U.S. Customs, insurance, freight.

Source: Bureau of the Census.

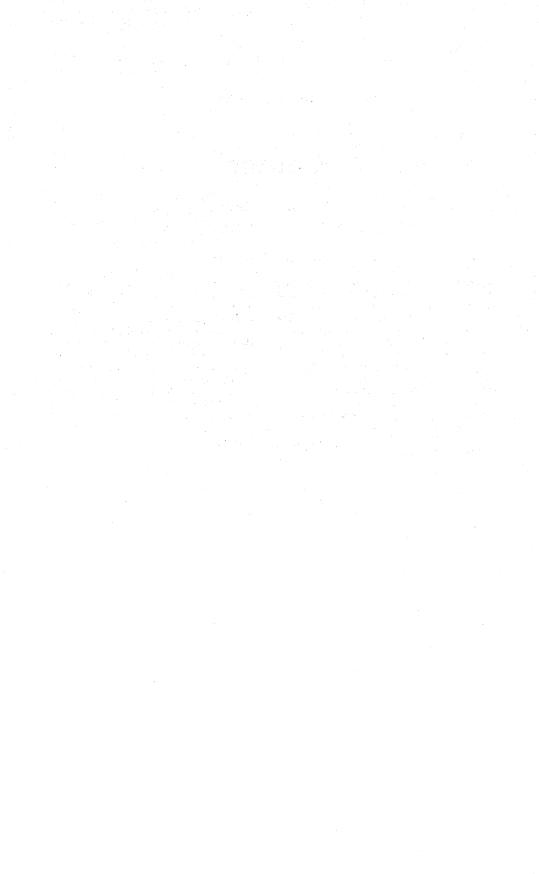
^rRevised. ¹U.S. Customs declared value.

Table 5.-U.S. imports of other calcium chloride

	19	186	19	87
	Short tons	Value ¹	Short tons	Value ¹
Calcium borate (crude)	39,158	\$8,783,616	19,149	\$3,326,187
Calcium bromide Calcium bromide Calcium carbide	3,109 17,616	965,988 5,645,762	4,038 15,881	1,016,511 5,502,804
Calcium carbide Calcium carbonate, precipitated	18,706	7.832.341	16,001	7,883,693
Calcium carbonate chalk whiting	5,457	1,160,048	5,319	1,174,752
Calcium carbonate (crude), natural chalk	154	2,085,850	114	1,596,521
Calcium cyanamide	3,397 7,034	922,703 10,167,859	2,422 8,192	1,172,710 11.811.590
Calcium hypochloriteCalcium nitrate	73	16,959,888	76	16,505,195
Dicalcium phosphate	1,566	1,347,409	2,161	2,301,958
Limestone for fertilizer manufacture	165	2,891,835	211	3,605,978
Total	XX	58,763,299	XX	55,897,899

Source: Bureau of the Census.

WORLD REVIEW


Calcium metal was produced in Canada, France, Japan, and the U.S.S.R., in addition to the United States. Market economy country production was estimated to be about 1,500 tons. Total world production was an estimated 2,000 tons. Calcium chloride is a byproduct of synthetic soda ash production, especially in Eastern and Western Europe, and in many cases it is treated as a waste product. The calcium chloride brine from

many facilities is dumped into rivers and estuaries. This practice, because of increased pressure from government agencies and environmental interest groups, may be severely curtailed in the future, which could result in a significant increase in the quantity of calcium chloride available in the world marketplace.

XX Not applicable.

1U.S. Customs declared value.

¹Physical scientist, Branch of Industrial Minerals.

Cement

By Wilton Johnson¹

U.S. demand for cement increased slightly, reaching a record high for the fifth consecutive year. The value of new construction followed a similar upward trend, driven by small increases in residential and public works activity. All regions of the country experienced gains in cement consumption except the South and West, which remained essentially unchanged.

Domestic production declined for the second year in a row as producers continued to shut down less efficient plants, thereby increasing their dependence on lower cost imports to fill the supply-demand gap. The average reported per-ton value of portland cement sold declined to its lowest level since 1979, while the value of masonry cement sold increased for the sixth consecutive year.

Acquisition of U.S. cement plants continued. By yearend, approximately 55% of U.S. cement production capacity had been acquired by foreign owners, and the sales of other plants were being negotiated.

Domestic Data Coverage.—Domestic production and consumption data for cement are developed by means of the portland and masonry cement voluntary survey. Of the 135 cement manufacturing plants to which an annual survey collection request was made, all responded, representing 100% of the cement production and consumption data shown in table 1.

Table 1.—Salient cement statistics
(Thousand short tons unless otherwise specified)

	1983	1984	1985	1986	1987
United States:1					
Production ²	70,420	77,700	77,895	78,786	78,198
Shipments from mills ² 3	70,933	80,166	83,032	87,592	89,131
Value ^{2 3 4} thousands	\$3,534,324	\$4,152,258	\$4,286,399	\$4,407,722	\$4,393,684
Average value per ton ^{2 3 4}	\$49.95	\$51.80	\$51.61	\$50.32	\$49.29
Stocks at mills, Dec. 31	6,711	6,866	7,232	6,725	6,159
Exports	118	80	98	59	52
Imports for consumption	4,221	8,689	14,120	16,128	17,536
Consumption, apparent ⁵ 6	73,435	84,313	87,456	91,501	93,886
World: Production	r _{1,010,051}	r _{1,036,392}	r _{1,056,660}	p _{1,100,814}	e1,138,673

^eEstimated. ^pPreliminary. ^rRevised.

¹Excludes Puerto Rico and the Virgin Islands.

²Portland and masonry cement only.

³Includes imported cement shipped by domestic producers. ⁴Value received, f.o.b. mill, excluding cost of containers.

Quantity shipped plus imports minus exports.

⁶Adjusted to eliminate duplication of imported clinker and cement shipped by domestic cement manufacturers.

DOMESTIC PRODUCTION

One State agency and 48 companies operated 135 plants in 40 States. In addition, two hydraulic cement manufacturing companies operated two plants in Puerto Rico.

Some of the data are arranged by State or by groups of States that form cement districts. A cement district may represent a group of States or a portion of a State. The States of California, Illinois, New York, Pennsylvania, and Texas are divided to provide more definitive marketing information within those States. Divisions for these States are as follows:

California, Northern.—Points north and west of the northern borders of Kern and San Luis Obispo Counties and the western borders of Inyo and Mono Counties.

California, Southern.—All other counties in California.

Chicago, Metropolitan.—The seven Illinois counties of Cook, Du Page, Kane, Kendall, Lake, McHenry, and Will.

Illinois.—All other counties in Illinois.

New York, Western.—All counties west of a dividing line following the eastern boundaries of Broome, Chenango, Lewis, Madison, Oneida, and St. Lawrence Counties.

New York, Eastern.—All counties east of the above dividing line, except Metropolitan New York.

New York, Metropolitan.—The five counties of New York City (Bronx, Kings, New York, Richmond, and Queens) plus Nassau, Rockland, Suffolk, and Westchester Counties.

Pennsylvania, Eastern.—All counties east of the eastern boundaries of Centre, Clinton, Franklin, Huntingdon, and Potter Counties.

Pennsylvania, Western.—All other counties in Pennsylvania.

Texas, Northern.—All counties north of a dividing line following the northern borders of Burnet, Crockett, Jasper, Jeff Davis, Llano, Madison, Mason, Menard, Milam, Newton, Pecos, Polk, Robertson, San Jacinto, Schleicher, Tyler, Walker, and Williamson Counties.

Texas, Southern.—All counties south of the above dividing line.

PORTLAND CEMENT

Clinker production in the United States,

including Puerto Rico, remained essentially unchanged. Clinker imported for grinding into finished cement declined slightly as producers focused more on importation of finished cement to meet customers' needs. Additions to capacity resulting from plant construction in Florida and Texas were more than offset by plant closings in Nebraska, Pennsylvania, Texas, Washington, and Wisconsin.

Production Capacity.—By yearend, multiplant operations were being run by 25 companies. The size of individual companies, as a percentage of total U.S. clinker production capacity, ranged from 0.3% to 9%. The 5 largest producers provided 29% of total clinker production: the 10 largest producers provided a combined 50%. The 10 largest companies, in decreasing order of size of clinker production, were Lone Star Industries Inc., Lehigh Portland Cement Co., Lafarge Corp., Gifford Hill & Co. Inc., Dundee Cement Co., Blue Circle Inc., Southwestern Portland Cement Co., Ideal Basic Industries Inc., Moore McCormack Resources Inc., and CalMat Co.

At yearend, 247 kilns at 121 plants were being operated by 44 companies and 1 State agency in the United States, excluding Puerto Rico. Annual yearend production capacity and capacity utilization remained largely unchanged. The average annual maintenance downtime declined by 18% to 45 days. The average annual capacity of U.S. kilns and plants increased slightly to 350,000 tons and 718,000 tons, respectively, whereas company capacity declined 10% to 1.8 million tons as ownership patterns continued to change. Three plants produced white cement. In addition, 11 plants operated grinding mills using only imported, purchased, or interplant transfers of clink-

Capacity Added.—Box-Crow Cement Co. began operating its 1-million-ton-per-year, state-of-the-art, dry-process, preheater-precalciner plant at Midlothian, TX. The plant also features a 1,200-ton-per-hour mobile crushing system.

Florida Crushed Stone Co. brought its 600,000-ton-per-year plant on-line in Brooksville, FL. For raw materials, the plant uses waste fines generated from production of limestone aggregate. The plant also features a 125-megawatt power genera-

CEMENT 189

tion facility and has the capacity to produce 350,000 tons of lime annually.

Closings.—Ash Grove Cement West Inc. closed its Seattle, WA, plant in December and began using it as a distribution terminal. Coplay Cement Co., a subsidiary of the French firm Société des Ciments Français, closed its Nazareth, PA, No. 2 plant and turned it into a distribution facility. Ideal Basic Industries, a subsidiary of Holderbank Financiere Glaris S.A. of Holdererbank, Switzerland, discontinued production at its Superior, NE, plant and used it as a distribution terminal. River Cement Co., owned by RC Cement Co. Inc. of St. Louis, MO, ceased operation at its Orange, TX, plant and began using it as a distribution facility. Southwestern Portland Cement Co., a subsidiary of Southdown Inc. of Houston, TX, closed its Amarillo, TX, plant, and St. Marys Wisconsin Cement Inc. closed its Milwaukee, WI, cement plant and began using it as a distribution terminal.

Corporate Changes.—Ash Grove Cement West, Portland, OR, purchased Kaiser Cement Corp.'s plant at Montana City, MN. The 300,000-ton-per-year plant serves markets in Idaho, Montana, North Dakota, and Oregon, and Washington. Hanson Trust PLC, a large British construction firm, purchased Kaiser Cement Corp. of Oakland, CA. The sale included plants in northern and southern California and San Anto-

nio, TX. National Cement Co., a subsidiary of Société Anonyme des Ciments Vicat of France, purchased the Lebec, CA, plant of General Portland Inc., a subsidiary of Lafarge Corp., also of France. The Pima Maricopa Indian Community bought Phoenix Cement Co. of Clarkdale, AZ, from Gifford-Hill and Co., a subsidiary of C. H. Beazer Holdings PLC of the United Kingdom. In addition to the 600,000-ton-per-year plant, the purchase also included a distribution terminal in Phoenix, AZ, and a nearby limestone deposit.

Presa S.p.A. Cementeria di Robilante, an Italian cement producer, purchased Kaiser Cement Corp.'s San Antonio, TX, plant and continued to operate it as a distribution terminal under the new name of Longhorn Cement Co. Lafarge Corp. relocated its corporate offices from Dallas, TX, to Reston, VA, and exercised its option to acquire National Gypsum Cement Co.'s Alpena, MI, cement plant.

Lone Star Industries Inc. and Centex Cement Corp. formed a joint venture called Mountain Cement Co. to manufacture and market cement in the Rocky Mountain area. Scancem Ans, a Norwegian-based partnership between Norcem Cement A/S of Norway and Industri AB Euroc of Sweden, purchased Allentown Portland Cement Co.'s 830,000-ton-per-year-capacity plant at Evansville, PA.

Table 2.-Portland cement production, capacity, and stocks in the United States, by district1

			1986					1987		
		Droduo	Capacity ³	ity ³	Stocks*		Deadus	Capacity ³	ty3	Stocks*
District	Plants active during year	tion ² (thousand short tons)	Finish grinding (thousand short tons)	Percent utilized	at mills, Dec. 31 (thou- sand short tons)	Plants active during year	tion ² tion ² (thousand short tons)	Finish grinding (thousand short tons)	Percent	at mills, Dec. 31 (thousand short tons)
New York and Maine Pennsylvania, eastern Maryland Mohio Ohio Indiana I	© \$\dagga \dagga \dagg	4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	899 81118 825 825 825 825 825 825 825 825 825 82	276 344 468 468 468 468 468 468 468 468 468 4	roanroa4440000-040140000-04014000-4	3,720 1,588 1,1717 1,1717 1,1717 1,1717 1,1717 1,1717 1,1717 1,1718 1,1718 1,1718 1,1718 1,1718 1,1718 1,1718 1,1718 1,1718 1,288 1,288	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	86.88 86.88	25.4 28.2 28.3 28.3 28.3 28.3 28.3 28.3 28.3
Total or average	139	75,217 1,130	$102,288 \\ 2,209$	73.7 51.1	6,276 34	$\begin{array}{c} 130 \\ 2 \end{array}$	74,557 1,303	$\frac{101,351}{2,176}$	73.6 59.8	5,708 34

W Withheld to avoid disclosing company proprietary data; included in "Total."

Includes Puerto Rico, Includes data for three white cement facilities as follows: California (1), Pennsylvania (1), and Texas (1), Includes data for grinding plants (13 in 1986 and 11 in 1987)

st follows: Alaska (1), Florida (2) in 1987, Iowa (1) in 1987, Michigan (1), New York (1) in 1986, Pennsylvania (2) in 1986, and (1) in 1987, Pexas (3) in 1986 and (1) in 1987, and Wisconsin (2) in 1987, and Wisconsin (3) in 1987, and Wisconsin (4) in 1987, and

³Grinding capacity based on fineness necessary to grind Types I and II cement, making allowance for downtime required for maintenance.

*Includes imported cement. Source of imports withheld to avoid disclosing company proprietary data. 2 Includes cement produced from imported clinker (1986—1,727,000 tons and 1987—3,242,000 tons).

Table 3.—Clinker capacity and production in the United States,¹ by district, as of December 31, 1987

		Active	Active plants		Mumbon	Daily	Average number	Apparent	Produc	
District	Pr	Process used	-	-	Jo .	capacity	of days	capacity ²	tion ³	Percent
	Wet	Dry	Both	lotai	kilns	short tons)	mainte- nance	(thousand short tons)	short tons)	nemized
Nour Vout and Mains	,	-			,	00		1000	1 0	- 0
Pennsylvania, eastern	4 67	- 14	1.	o [-	91	16.0	98	3,995 5,091	3,351	200 20 200 20 200 20
Pennsylvania, western	၊က	,	 	4	00	7.0	43	2,088	1.730	82.8
Maryland		87	1	e0 1	2	0.9	53	1,870	1,793	95.8
Michigan	N 6.	20.00	-	G 4	∞ <u>ε</u>	7.0	747	2,306	1,663	72.1
Indiana	181	101]]	7	6	10.0	28	2,997	2,520	84.0
Coords and Tonnassos	1 -	4 c	-	4.	∞ t	8.0	35	2,785	1,616	58.0
South Carolina	16	7 -	1	4 00	- t	0.0	40	2,335	2,174	93.1
Kentucky, Virginia, West Virginia	ı —	- 27	l I	ာက	- o	0.8	888	2.765	2,356	9.45.0 2.75.0
Florida	2	2	1	₹,	∞	10.0	29	3,453	2,587	74.9
Nebraska and Wisconsin	1	1 h	i i		210	``	66	M	×	X
Arkansas, Louisiana, Mississippi		n i	1 -	o 4	× ×	14.0	888	4,669 9,569	3,023	54.7
Utah	67	-	1 1	· က	9	4.0	200	1303	086	71.4
South Dakota	1.1	1	-	-	4	3.0	32	973	999	58.5
Missonni	1	ကင	1.	w,	91	8.0	45	2,340	1,958	83.6
Kansas	v) 000	0 62	i i	o rc	- 12	14.0	99	4,336 9,076	4,310	999.3
Oklahoma	1	121		့ က	7	2.0	25	1,713	1,474	86.0
Texas, northern	ω,	oo -	1.	00 (17	13.0	8	4,365	3,125	71.6
I exas, southern ————————————————————————————————————	⊸ ∝	4	_	ဆင္		16.0	272	5,514	3,670	66.5
Colorado and Wyoming	87	2		9 4	110	2.0	388	1,744	1,177	67.4
Alaska and Oregon	1		1		٦;	ĕ°	36	M	M	97.3
W TATE	1 1	4 00	1	4 03	1 65	0.00	940	2,443	1,992 9,788	81.5 99.9
California, southern	1	2		∞	24	28.0	32	8,950	7,580	84.6
Washington	 		- - - 	- 63	2 - 2	3.0 3.0	2 , 23	262 914	240 572	91.7 62.6
- T-7-E	9									
Total or average	48	g 87	4 -	121 2	247 9	272.0 7.0	45 53	486,963 2,198	68,719 1,143	79.0 52.0

W Withheld to avoid disclosing company proprietary data; included in "Total."

*Includes Puerto Rico and white cement producing facilities.

*Calculated on individual company data; 856 days, minus average number of days for maintenance, times the reported 24-hour capacity.

*Includes production reported for plants that added or shu down kiins during the year.

*Data may not add to totals shown because of independent rounding.

Table 4.—Daily clinker capacity in the United States,1 December 31

	Short tons per	1	Nu	mber	Total	Percent
	24-hour period	2	Plants	Kilns ²	capacity (short tons)	of total capacity
1986:						
Less than 1,150			20	. 35	16.926	6.5
1,151 to 1,700			32	58	46.585	17.9
1,701 to 2,300			28	52	54,376	20.9
2,301 to 2,800			17	37	42,628	16.3
2,801 and over			27	66	100,205	38.4
Total			124	248	260,720	100.0
1987:						
Less than 1,150			17	27	13,460	4.8
1,151 to 1,700			31	57	45,978	16.5
1,701 to 2,300			21	36	40,622	14.5
2,301 to 2,800			20	40	49,598	17.8
2,801 and over			34	96	129,723	46.4
Total	· ====================================		123	256	279,381	100.0

¹Includes Puerto Rico and white cement producing facilities.

²Total number in operation at plants.

Table 5.—Raw materials used in producing portland cement in the United States1

(Thousand short tons)

Raw materials	1985	1986	1987
Calcareous:			
Limestone (includes aragonite, marble, chalk)	77,627	78,995	81.143
Cement rock (includes marl)	24.255	23,495	
Coral	1.277		17,959
Other		1,040	935
OtherArgillaceous:	243	428	
Clay	5,635	5,734	4,766
Snale	3,182	3,282	4,906
Other (includes staurolite, bauxite, aluminum dross,			
alumina, volcanic material, other)	123	261	263
Siliceous:			
Sand and calcium silicate	1.930	1.934	1,873
Sandstone, quartzite, other	608	709	758
Ferrous: Iron ore, pyrites, millscale, other iron-bearing material	1.307	1.081	
Other:	1,507	1,001	1,079
Gypsum and anhydrite	2.050	4 100	4.000
Blast furnace slag	3,959	4,103	4,939
Diast furnace stag	_97	74	109
Fly ash	796	689	803
Other, n.e.c	311	346	386
Total ²	121,350	122,169	119.920

¹Includes Puerto Rico.

MASONRY CEMENT

Production of masonry cement remained essentially unchanged. At yearend, 94 plants were manufacturing masonry cement in the United States. Two plants producing masonry exclusively were Chaney Lime & Cement Co., Allgood, AL, and Riverton Corp., Riverton, VA.

²Data may not add to totals shown because of independent rounding.

CEMENT 193

Table 6.-Masonry cement production and stocks in the United States, by district

		1986			1987	
District	Plants active during year	Production (thousand short tons)	Stocks ¹ at mills, Dec. 31 (thou- sand short tons)	Plants active during year	Production (thousand short tons)	Stocks ¹ at mills Dec. 31 (thou- sand short tons)
New York and MainePennsylvania, eastern	4 7	97 281	13 29	4	114 288	12 32
Pennsylvania, western		93	15	4	86	13
Maryland	2	w	w	2	w	W
Ohio	7	130	18	7	142	22
Michigan	4	271	62	.	259	50
Indiana	- 1	392	64	4	416	54
Illinois	1	W	W	2	W	W
Georgia and Tennessee	1	214	28		230	29
South Carolina	2	w	w	4 2	w	w
Kentucky, Virginia, West Virginia	7	294	15	4	335	21
Florida	1	415	7	. 4	435	18
Nebraska and Wisconsin	3	12	. 7	1	w	w
Alahama	7	249	24	ź	278	30
Arkansas, Louisiana, Mississippi	2	69	6	2	ĨW	w
Utah	ĩ	w	w	ī	w	ŵ
South Dakota	î	" <u>2</u>	ï	î	6	3
Iowa	3	47	$1\overline{5}$	2	w	w
Missouri	ă	160	18	4	186	19
Kansas	ŝ.	50	20	5	46	15
Oklahoma	š	52	13	š -	40	13
Texas, northern	ž	164	20	· 6	89	14
Texas, southern	Ė	52	8	4	68	- 8
Idaho and Montana	š	w	· w	â.	Ŵ	· w
Colorado and Wyoming	2	w	w	2	Ŵ	w
Arizona, Nevada, New Mexico	3	90	6	3	82	7
California, northern	ĭ	w	w	ĭ	w	w
California, southern	î	ŵ	w	î	ŵ	ŵ
Hawaii	ī	7	· (2)	1	10	1
Washington	3	5		2	ŵ	w
Total or average ³	99	3,569	449	94	3,641	451

W Withheld to avoid disclosing company proprietary data; included in "Total."

ALUMINOUS CEMENT

Aluminous cement, also known as calcium aluminate cement, high-alumina cement, and Cement Fondu, is a nonportland hydraulic cement. It continued to be produced at the following three plants in the United States: Lehigh, Buffington, IN; Lone Star Lafarge Inc., Chesapeake, VA; and Aluminum Co. of America, Bauxite, AR.

ENERGY

Approximately 76% of the energy consumed in cement production was in the form of fuel for kiln firing to produce clinker. Average energy consumption per ton of clinker produced was 4.1 million British thermal units (Btu).

The average consumption of electrical energy decreased slightly to 135 kilowatthours per ton. Assuming a 40% energy efficiency in conversion of fuel to electrical energy, this represents a fuel equivalent of 1.2 million Btu per ton. Thus, average fuel consumption for kiln firing plus electrical

energy, primarily for finish grinding, was approximately 5.4 million Btu per ton, essentially unchanged from that of 1986.

Average fuel consumption for kiln firing in wet-process plants, 4.8 million Btu per ton, was 26% higher than average fuel consumption in dry-process plants, 3.8 million Btu per ton. Approximately 63% of clinker was produced by the dry-process method.

The industry reported 63 suspension and 13 grate preheaters in use during the year. Kilns without preheaters averaged 5.2 mil-

¹Includes imported cement. ²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

lion Btu per ton of clinker produced; those with suspension preheaters averaged 3.3 million Btu per ton and those with grate-type preheaters averaged 4.9 million Btu per ton.

Coal accounted for 93% of kiln fuel consumption, natural gas accounted for 4%, and oil and waste fuel accounted for the remainder.

Table 7.—Clinker produced in the United States,1 by fuel

		Clinker produce	ed		Fuel consum	ied ,
Fuel	Plants active during year	Quantity (thousand short tons)	Percent of total	Coal ² (thousand short tons)	Oil (thousand 42-gallon barrels)	Natural gas (thousand cubic feet)
1986:					4.5	: #
Coal	23	12.644	18.0	2,332		
Coal and oil	30	17,571	26.0	3,086	385	
Coal and natural gas	58	30,887	44.0	4,571		10,641,711
Oil and natural gas						
Coal, oil, natural gas	13	8,501	12.0	1,237	313	1,456,573
Total	124	69,603	100.0	11,226	698	12,098,284
1987:						
Coal	21	9,533	14.0	1,771	100	1000
Coal and oil	30	20,212	29.0	3,673	708	
Coal and natural gas	56	29,549	42.0	4,026		10,244,178
Oil and natural gas						
Coal, oil, natural gas	16	10,568	15.0	1,843	347	1,749,183
	123	69,862	100.0	11,313	1,055	11,993,361

¹Includes Puerto Rico.

Table 8.—Clinker produced and fuel consumed by the portland cement industry in the United States,¹ by process

		Clinker produce	ed		Fuel consum	ed
Process	Plants active during year	Quantity (thousand short tons)	Percent of total	Coal ² (thousand short tons)	Oil (thousand 42-gallon barrels)	Natural gas (thousand cubic feet)
1986: Wet Dry Both	52 69 3	25,105 40,951 3,547	36.1 58.8 5.1	4,833 5,856 537	313 350 35	4,074,804 7,660,645 362,835
Total	124	69,603	100.0	11,226	698	12,098,284
1987: Wet Dry Both	48 71 4	23,919 43,702 2,241	34.2 62.6 3.2	4,525 6,459 329	545 507 3	4,084,751 7,783,432 125,178
Total	123	69,862	100.0	11,313	1,055	11,993,36

¹Includes Puerto Rico.

Includes 1% anthracite, 94% bituminous, and 5% petroleum coke in 1986; 1% anthracite, 95% bituminous, and 4% petroleum coke in 1987.

Includes 1% anthracite, 94% bituminous, and 5% petroleum coke in 1986; 1% anthracite, 95% bituminous, and 4% petroleum coke in 1987.

Table 9.—Electric energy used at portland cement plants in the United States, by process

Active Purchased Purchas				Electric energy used	ergy used				Average
Active (million plants kilowatt plants hours) Active (million plants kilowatt plants hours) Active (million plants hours) Active (million plants hours) Active (million plants kilowatt kilowatt plants hours) Active (million plants kilowatt plants hours) Active (million plants kilowatt plants hours) Active (million plants) Active (million	Propes	Gener portland pla	ated at I cement ints	Purch	ased	To	tal	Finished cement produced	electric energy used per fon
or average 5 3905		Active plants	Quantity (million kilowatt hours)	Active plants	Quantity (million kilowatt hours)	Quantity (million kilowatt hours)	Percent	(thousand short tons)	of cement produced (kilowatt hours)
or average — — — — — — — — — — — — — — — — — — —	1986: Wet. Dry ² Both	9	795	53 73 5	3,905 5,223 514	3,905 6,018 514	37.4 57.7 4.9	27,968 44,551 3,828	139.6 135.1 134.3
10. September 10	Total or average	9	795 7.1	181	9,642 92.4	10,437	100.0	76,347	136.7
5 582 - 9,620 10,202		2	582	46 76 4	3,028 6,248 344	3,028 6,830 344	29.7 66.9 3.4	25,851 47,652 2,357	117.1 143.3 145.9
770	Total or average	2 -	582 5.7	126	9,620	10,202	100.0	75,860	134.5

 $^{\rm I}{\rm Includes}$ Puerto Rico. Includes grinding plants and white cement facilities. $^{\rm 2}{\rm Includes}$ data for grinding plants.

TRANSPORTATION

The pattern of cement transport did not differ significantly from that of recent years. U.S. shipments of portland cement to consumers were primarily in bulk, 94%; by truck, 93%; and made directly from cement manufacturing plants, 67%, rather than distribution terminals.

With respect to shipments of cement from plants to terminals, the preferred modes of transportation were railroads and waterways, 41% each. Transportation by truck accounted for 15%. Cement used at producing plants accounted for the remaining 3%.

Table 10.—Shipments of portland cement from mills in the United States,1 in bulk and in containers, by type of carrier

Thoman	short tons)

	Ch:		,	Shipmen	ts to ultimat	e consumer	
Type of carrier		nts from – terminal	From to			plant sumer	Total ship-
	In bulk	In con- tainers	In bulk	In con- tainers	In bulk	In con- tainers	ments
1986: Railroad Truck Barge and boat Unspecified ²	9,308 2,808 9,121 742	84 176 97	1,254 24,819 717 279	12 524 17	3,639 49,304 385 202	343 3,614 7 11	5,248 78,261 1,109 509
Total	21,979	357	27,069	553	53,530	3,975	³ 85,127
1987: Railroad Truck Barge and boat Unspecified ²	9,050 3,231 8,917 539	86 195 12	768 25,536 75 879	202 682 68	3,755 47,381 229 296	$\begin{array}{c} 207 \\ 3,656 \\ \hline -19 \end{array}$	4,932 77,255 304 1,262
Total ⁴	21,738	294	27,257	953	51,661	3,882	⁵ 83,753

¹Includes Puerto Rico.

CONSUMPTION AND USES

Consumer demand for cement in the United States, excluding Puerto Rico, reached a record high 93.9 million tons, the fifth consecutive year of growth following a 20-year low experienced at the depth of the recession in 1982. The amount of construction followed a similar upward pattern. According to the U.S. Department of Commerce, the current dollar value of new construction reached a record \$399 billion. slightly higher than that recorded in 1986. Although housing starts declined in all but the north-central region of the country, according to Commerce data the value of residential construction was enhanced because of marked gains in the average house size and increased spending on home improvement.2

Shipments of domestically produced cement declined slightly. The gap between production and consumption was filled with imports shipped by producers and independent importers. The level of imports required to meet consumer demands continued to increase, reaching a record high 19% of apparent consumption, with about 70% of imports shipped by domestic producers.

All regions of the country, except the South and the West, registered slight gains in cement consumption. The South, because of its oil-based economy, continued to experience slow economic recovery. A decline of construction activity in the Mountain States resulted in a 9% decrease in cement consumption. However, States in the Pacific region, particularly southern California, continued to enjoy unprecedented growth in cement consumption. The north-central and northeast regions of the country registered the largest increases. The growth in these areas was caused by sharp increases in construction activity during the past few years.

²Includes cement used at plant. ³Bulk shipments were 94.5%, and container (bag) shipments were 5.5%.

⁴Data may not add to totals shown because of independent rounding.

⁵Bulk shipments were 94.2% and container (bag) shipments were 5.8%.

The end-use distribution pattern for portland cement was essentially the same as that of recent years. Ready-mixed concrete producers were the primary consumers, accounting for about 74% of the total, followed by concrete product manufacturers.

Smaller amounts were consumed by highway and other contractors; building material dealers; Federal, State, and other government agencies; and a variety of other miscellaneous users.

Table 11.—Portland cement shipped by producers in the United States, by district1

		1986			1987	
District	Quantity (thousand short tons)	Value (thou- sands)	Average per ton	Quantity (thousand short tons)	Value (thou- sands)	Average per ton
New York and Maine	3,812	\$207,905	\$54.55	3,511	\$180,281	\$51.35
Pennsylvania, eastern		265,800	54.66	4,852	266,963	55.02
Pennsylvania, western		58,387	40.88	1,473	67,746	45.99
Maryland		89,799	50.30	1,829	90,020	49.22
Dhio		79,383	46.53	1,748	83,661	47.86
Michigan		216,120	45.86	4,755	207,332	43.60
Indiana		92,327	43.22	2,320	103,177	44.47
Illinois		83,783	39.55	2,119	86,210	40.68
Georgia and Tennessee		108,194	48.00	2,262	108,729	48.07
reorgia and Tennessee		109,529	47.49	2,567	117,878	45.92
South Carolina Kentucky, Virginia, West Virginia	2,300	117,980	48.61	2,357	109,101	46.29
<u>Xentucky, virginia, west virginia</u>	3,189	147,643	46.29	3,565	165,944	46.55
Florida Nebraska and Wisconsin	. 3,109 W	141,045 W	40.23 W	0,505 W	W	W
	3,477	153,629	44.18	3.600	160.878	44.69
Alabama			49.83	1,759	74,667	42.45
Arkansas, Louisiana, Mississippi		83,130		935	50,565	54.08
Jtah		58,431	57.62	935 W	50,565 W	04.0c
South Dakota		W	W			48.85
owa		86,984	47.81	2,139	104,457	36.27
Missouri		179,184	38.60	5,110	185,317	
Kansas	1,763	91,110	51.67	1,697	81,045	47.76
Oklahoma	1,579	69,075	43.74	1,415	54,870	38.78
Cexas, northern	3,707	198,397	53.51	3,206	158,944	49.58
Texas, southern	5,176	214,300	41.40	4,112	161,052	39.17
daho and Montana	. 707	35,599	50.35	607	34,121	56.21
Colorado and Wyoming	1,458	90,391	61.99	1,265	70,194	55.49
Alaska and Oregon	_ W	w	w	W	W	W
Arizona, Nevada, New Mexico	2,289	149.312	65.23	2,136	132,623	62.09
California, northern	2,406	142,018	59.02	2,838	167,658	59.08
California, southern		436,484	61.62	7,099	426,201	60.04
Hawaii		24,253	84.50	324	26,550	81.94
Washington		59,091	48.75	1,282	63,600	49.61
Total ^{2 3} or average	75,181	3,759,942	50.01	74,868	3,646,561	48.71
Foreign imports ⁴		411,614	46.70	10,480	480,212	45.82
Puerto Rico		93,288	82.40	1,296	106,185	81.93
Grand total ³ or average	85,127	4,264,844	50.10	⁵ 86,644	54,232,959	48.85

W Withheld to avoid disclosing company proprietary data; included in "Total."

W Withheld to avoid disclosing company proprietary data; included in Total.

*Includes Puerto Rico. Includes data for three white cement facilities as follows: California (1), Pennsylvania (1), and Texas (1). Includes data for grinding plants (13 in 1986 and 11 in 1987) as follows: Alaska (1), Florida (3) in 1986 and (2) in 1987, Iowa (1) in 1987, Michigan (1), New York (1) in 1986, Pennsylvania (2) in 1986 and (1) in 1987, Texas (3) in 1986 and (1) are represented to total shown because of independent rounding.

³Data may not add to totals shown because of independent rounding.

^{*}Cement imported and distributed by domestic producers only.

⁵Does not include cement consumed at plant.

Table 12.—Masonry cement shipped by producers in the United States,1 by district

		1986			1987	
District	Quantity (thousand short tons)	Value (thou- sands)	Average per ton	Quantity (thousand short tons)	Value (thou- sands)	Average per ton
New York and Maine	_ 102	\$6,996	\$68.59	131	\$8,155	\$62.25
Pennsylvania, eastern	_ 297	19.337	65.10	306	22,973	75.08
Pennsylvania, western	_ 94	7,345	78.13	92	7,491	81.42
Maryland	_ W	W	W	w	w	W
Ohio	_ 138	11,540	83.62	139	11.964	86.07
Michigan	_ 257	17,026	66.24	263	23,004	87.45
Indiana	395	22,936	58.06	422	32,299	76.53
Illinois	_ · W	W	W	w	W	w
Georgia and Tennessee	_ 209	15,031	71.91	230	16,809	73.08
South Carolina	_ W	W	W	w	W	w
Kentucky, Virginia, West Virginia	_ 292	17,126	58.65	328	21,886	66.73
riorida	259	21,269	60.42	390	24,069	61.72
Nebraska and Wisconsin	_ W	w	w	w	24,005 W	W
Alabama	_ 267	18,165	68.03	291	17.626	60.55
Arkansas, Louisiana, Mississippi	70	4.599	65.70	80	4,651	58.14
Utah	* 337	w	W	w	¥,001	W
South Dakota	_ 4	ŵ	ŵ	4	w	w
lowa	48	3,199	66.64	w	w	w
Missouri	167	7.816	46.80	167	10.027	60.04
Kansas	51	3,264	64.00	52	3,150	60.58
Oklahoma	_ 50	3,198	63.96	41	2,436	59.41
Texas, northern	146	11,155	76.40	103	7,589	73.68
Texas, southern	_ 64	4.636	72.43	69	3,694	
Idaho and Montana	. 3	187	62.33	w	3,034 W	53.54
Colorado and Wyoming	_ w	w	W	w	. W	W
Alaska and Oregon	137	w	w	w	W	W
Arizona, Nevada, New Mexico	- 89	6.739	75.71	82	6.365	W
California, northern	w	0,133 W	13.11 W	w	0,303 W	77.62
California, southern	- w	w	w	w	W	w
Hawaii	- '7	1.078	154.00	10		155.90
Washington	6	530	88.33	W	1,559 W	155.90 W
Total ² or average	3,525	231,551	65.69	3,680	259.926	70.63
Foreign imports ³	72	4,616	64.11	103	6,985	67.82
Grand total ² or average	3,596	236,167	65.68	3,783	266,911	70.55

Table 13.—Cement shipments, by destination and origin¹

(Thousand short tons)

Destination and origin	Por	tland cem	ent ²	Mas	sonry cen	ent
Doormation and origin	1985	1986	1987	1985	1986	198'
stination:						
Alabama	1,306	1,302	1,405	100	112	13
Alaska ³	156	121	94	W	W	. 10
Arizona	2.318	2,400	2,299	w	ẅ	ī
Arkansas	773	803	766	45	48	4
California, northern	3,439	3,438	3,598	w	w	Ĭ
California, southern	6,691	7,844	8,121	w	w	ť
Colorado	1,574	1,450	1,110	23	22	ĭ
Connecticut ³	870	1.037	1.029	17	21	2
Delaware ³	194	224	254	10	12	1
District of Columbia ³	116	142	146	10	12	1
Florida	6.140	6.360	6.819	468	499	
Georgia//-	2.875	3,224	3,321	228	242	53
Hawaii	214	287	329	440	242	24
Idaho	236	291	251	- 1	-	1
Illinois	1.391	1.511	1,498	28	30	(
Chicago, metropolitan ³	1.333	1.803	2.037	45		3
Indiana	1,353	1.580	1.704		59	6
Iowa	1,078	1.046	1,704	76	97	10
Kansas	1,293	1,218	1.351	11 20	13 21	1

W Withheld to avoid disclosing company proprietary data; included in "Total."

1 Does not include quantities produced on the job by masons.

2 Data may not add to totals shown because of independent rounding.

3 Cement imported and distributed by domestic producers only. Source of imports withheld to avoid disclosing company proprietary data.

Table 13.—Cement shipments, by destination and origin¹ —Continued

(Thousand short tons)

	Por	tland cen	nent ²	Masonry cement			
Destination and origin	1985	1986	1987	1985	1986	1987	
Pestination —Continued							
. 17 L 1	1.014	1,115	1,201	78	85	92	
Kentucky	2,420	1,964	1.761	65	48	49	
Louisiana	283	336	361	10	12	12	
Maine				139	144	156	
Maryland	1,503	1,666	1,645				
Massachusetts ³	1,395	1,686	1,589	45	53	.51	
Michigan	2,103	2,478	2,740	104	127	140	
Minnesota ³	1,419	1,464	1,582	40	47	5	
Mississippi	758	827	787	57	55	5	
Missouri	1,735	2,221	2,091	39	47	5	
Montana	190	241	175	1	1		
Nebraska	783	764	720	11	11	10	
Nevada	637	670	754	(4)	(4)	(4	
N II	374	387	345	15	16	1. 1	
New Hampshire ³						8	
New Jersey ³	1,743	1,972	1,932	78	87		
New Mexico	620	572	517	10	. 9	100	
New York, eastern	621	670	746	36	42	4	
New York, western	812	986	989	43	53	- 5	
New York, metropolitan ³	1,722	1,932	1,851	50	54	5	
North Carolina ³	1,796	1,980	2,145	238	264	. 28	
North Dakota ³	286	277	278	5	4		
	2,646	3,028	3.314	135	174	18	
Ohio			1.076	40	34	3	
Oklahoma	1,329	1,107					
Oregon	709	626	728	(4)	(4)	(
Pennsylvania, eastern	1,774	1,994	2,132	63		8	
Pennsylvania, western	1,118	1,222	1,350	70	77	- 8	
Rhode Island ³	165	199	244	4	6		
South Carolina	1,019	1,052	1.138	119	136	15	
South Dakota	292	332	272	4	4	1.1	
Tennessee	1,480	1,655	1,863	154	184	20	
	5,474	4,705	3,799	171	140	- 9	
Texas, northern	5,433	4.531	4,267	101	74	6	
Texas, southern	1,059	940	804	2	2	- N. , J	
Utah				_			
Vermont ³	212	172	173	4	5		
Virginia	2,116	2,410	2,557	177	219	22	
Washington	1,208	1,251	1,361	6	7		
West Virginia	387	426	455	29	28	3	
Wisconsin	1,240	1,475	1,587	39	47	4	
Wyoming	413	342	317	2	1		
U.S. total ⁵	83,638	87,756	88,977	3,264	3,556	3.72	
D.D. Wai	177	145	185	108	105	11	
Foreign countries ⁶			1,296		3 4 7 5		
Puerto Rico	962	1,132	1,290				
Total shipments ⁵	84,778	89,033	90,458	3,373	3,659	3,84	
rigin:			7 :				
United States7	74,250	75,181	74,868	3,187	3,525	3,71	
Puerto Rico	962	1,132	1,296				
Foreign: ⁸		-,	_,				
Powerstie and decomp	5,532	8,814	10,480	62	72	. 6	
Domestic producers					62	6	
Others	4,034	3,909	3,814	124	02		
-				3,373			

W Withheld to avoid disclosing company proprietary data; included with "Foreign countries."

1Includes cement produced from imported clinker and imported cement shipped by domestic producers, Canadian cement manufacturers, and other importers. Includes Puerto Rico.

2Excludes cement (1986—327,000 tons and 1987—305,000 tons) used in the manufacture of prepared masonry cement.

³Has no cement-producing plants.

^{*}Has no cement-producing plants.

*Less than 1/2 unit.

*Data may not add to totals shown because of independent rounding.

*Direct shipments by producers to foreign countries and U.S. possessions and territories; includes States indicated by symbol W.

*Includes cement produced from imported clinker by domestic producers.

*Company of the company o

⁸Imported cement distributed by domestic producers, Canadian cement manufacturers, and other importers. Origin of imports withheld to avoid disclosing company proprietary data.

Table 14.—Cement shipments,1 by region and subregion

			Portlan	d cement			Masonry	y cement	
Region and subr	region ²		usand t tons		ent of d total		isand t tons		ent of d total
	*	1986	1987	1986	1987	1986	1987	1986	1987
Northeast: New England Middle Atlantic		3,817 8,774	3,742 9,001	4.3 10.0	4.2 10.1	112 387	114 416	3.2 10.8	3.1 11.2
Total ³	·	12,591	12,742	14.3	14.3	499	530	14.0	14.3
South: Atlantic East Central West Central		17,508 4,900 13,110	18,480 5,255 11,674	20.0 5.6 14.9	20.8 5.9 13.1	1,546 435 344	1,641 485 285	43.5 12.2 9.7	44.0 13.0 7.6
Total ³		35,518	35,409	40.5	39.8	2,325	2,412	65.4	64.6
North Central: East West		7,321	12,881 7,494	13.5 8.3	14.5 8.4	528 147	580 160	14.9 4.1	15.6 4.3
Total ³		19,172	20,374	21.8	22.9	675	740	19.0	19.9
West: Mountain Pacific		6,906 13,567	6,228 14,231	7.9 15.5	7.0 16.0	36 21	28 18	1.0 .6	.7 .5
Total ⁴		20,473	20,459	23.4	23.0	57	46	1.6	1.2
Grand total ³		87,756	88,985	100.0	100.0	3,556	3,727	100.0	100.0

¹Includes imported cement shipped by domestic and Canadian cement manufacturers and other importers.

²Geographic regions as designated by the U.S. Department of Commerce, Bureau of the Census.

³Data may not add to totals shown because of independent rounding.

⁴Does not include proprietary data from table 13.

201

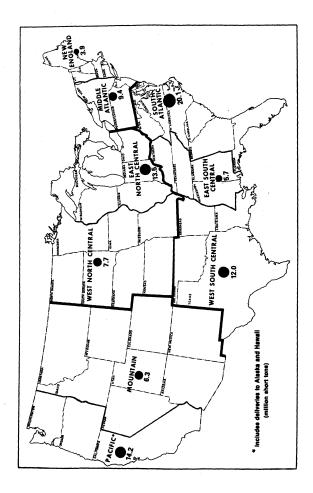


Figure 1.—Shipments of cement by geographic region of destination in 1987.

Table 15.—Portland cement shipments in 1987, by district of origin and type of customer

Total	(thou- sand short tons)	8,517 4,852 1,473 1,473 1,750 2,289 2,286 2,268 2,268 3,578 1,759 8,604 1,759 8,504 1,759 8,504 1,759 8,504 1,769 1,697 1,697
cel- ous ding	Per-	8.1.1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Miscel- laneous including	Quantity (thousand sand tons)	000 (8) 88 88 81 82 82 82 82 82 82 82 82 82 82 82 82 82
State, ther ment cies	Per-	1.1. 1.
Federal, State, and other government agencies	Quantity (thousand sand short tons)	18 © 9 88 16 21 22
ler	Per-	27. 11.1 27. 12.1 27. 12.1 28.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 3
Other	Quantity (thousand short tons)	149 34 61 86 13 17 101 101 101 101 102 45 1129 90 1124 90 1142 1142 1142 1142 1142 1142 1142 114
Highway	Per-	8 2 2 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
High	Quantity (thousand sand short tons)	104 119 27 27 28 351 224 198 108 108 108 108 1181 1181 1181 128
Ready-mixed concrete	Per-	71.0 61.5 68.2 68.2 68.2 68.2 77.3 77.4 70.0 W W W W W T1.8 65.4 67.0 67.0 67.0
Ready	Quantity (thousand sand short tons)	2,496 2,983 873 873 1,251 1,247 1,686 1,749 1,749 1,749 2,504 W 2,359 1,779 1,
rete luct cturers	Per-	23.2 23.2 16.7 10.9 10.9 10.0 10.0 10.0 10.0 10.0 10.0
Concrete product manufacturers	Quantity (thousand sand short tons)	601 1,126 365 365 378 228 578 407 429 429 478 478 478 532 154 49 78 82 82 82
Building material dealers	Per-	6.6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
Build mate deal	Quantity (thousand short tons)	157 453 174 185 185 185 185 185 187 187 187 187 187 187 187 187 187 187
	District of origin	New York and Maine Pennsylvania, eastern Pennsylvania, western Ohio Michigan Michigan Illindia Illinois Georgia and Tennessee South Carolina Kentucky, Virginia Kentucky, Virginia Kentucky, Virginia Kentucks, Lousiana, Mississippi Utah Arkansas, Louisiana, Mississippi Utah Oouth Dakota Missouri Missouri Missouri

W W W W W W W W W W W W W W W W W W W
Puerto Rico

W Withheld to avoid disclosing company proprietary data; included in "Total."
Includes Puerto Rico.
The state of the control shown because of independent rounding.
These than 1/2 unit.
Cement imported and distributed by domestic producers only. Source of imports withheld to avoid disclosing company proprietary data.

Table 16.—Portland cement shipped from plants in the United States,1 by type

		1986			1987	
Туре	Quantity (thousand short tons)	Value ² (thou sands)	Average per ton	Quantity (thousand short tons)	Value ² (thou sands)	Average per ton
General use and moderate heat (Types I and II)	78,440 3,031 433 1,021 317 757 42 1,085	\$3,862,869 159,592 26,295 54,667 55,111 39,903 3,743 62,663	\$49.25 52.65 60.72 53.54 173.85 52.71 89.11 57.75	79,499 3,318 716 899 345 773 50 1,045	\$3,808,456 175,160 39,389 45,054 59,873 39,827 4,641 60,558	\$47.91 52.80 55.01 50.12 173.54 51.51 92.82 57.95
Total ⁴ or average	85,127	4,264,844	50.10	⁵ 86,644	54,232,959	48.85

Includes Puerto Rico.

⁵Does not includes cement consumed at plant.

PRICES

The average mill value of portland cement declined slightly for the third consecutive year reaching its lowest point since 1979, despite record-high shipments to meet consumer demand. The decline can be attributed in part to consumption of recordhigh levels of imports, which show a corresponding decrease in value, and to extreme competition among producers for a greater share of the domestic market. The average mill value of masonry cement, which was not influenced to any great extent by imports, increased for the sixth consecutive year.

The average price of cement, as reported by Engineering News-Record (ENR), declined slightly to about \$63.70 per ton. The ENR prices were based on an average per ton value of cement delivered to 20 cities. The prices range from a low of \$46 per ton in Dallas, TX, to a high of \$79 in New York City.3

Table 17.—Average mill value, in bulk, of cement in the United States1

(Per short ton)

Year	Portland cement	Prepared masonry cement ²	All classes of cement
1983	\$49.89	\$63.74	\$50.45
1984	51.62	67.02	52.24
1985	51.30	66.64	51.87
1986	50.10	65.68	50.73
1987	48.85	70.55	49.76

Includes Puerto Rico. Mill value is the actual value of sales to customers, f.o.b. plant, less all discounts and allowances, less all freight charges from producing plant to distribution terminal if any, less total cost of operating terminal if any, less cost of paper bags and pallets.

²Masonry cement made at cement plants only.

FOREIGN TRADE

According to trade data reported by the U.S. Department of Commerce, Bureau of the Census, the United States and its and territories experienced the third consecutive year of record-high imports. Combined imports of hydraulic cement and clinker increased 9% to 17.7 million tons, accounting for approximately 19% of apparent consumption. In decreasing order, Mexico, Canada, and Spain were the principal import sources, providing for more than 69% of the total. The increases were due primarily to gray cement imports. Clinker imports declined slightly, while white cement experienced a moderate increase.

In other foreign trade developments, Allied Cement Co. opened a 600,000-tonannual-throughput-capacity terminal in the Port of Los Angeles, CA. Allied imports cement from Japan and Taiwan. CalMat Co. was expected to purchase 50% interest in the operation.

Coastal Cement Corp. opened a 400,000ton-capacity import terminal in Boston, MA, to import cement from Spain.

Exports of hydraulic cement and clinker as reported by the Bureau of the Census declined slightly to 53,000 tons. Cement was shipped to more than 40 countries with Canada receiving 87% of the total.

²Mill value is the actual value of sales to customers, f.o.b. plant, less all discounts and allowances, less all freight charges to customer, less all freight charges from producing plant to distribution terminal if any, less total cost of operating terminal if any, less cost of paper bags and pallets.

³Includes waterproof, low-heat (Type IV), and regulated fast-setting cement.

⁴Data may not add to totals shown because of independent rounding.

Table 18.—U.S. exports of hydraulic cement and cement clinker, by country

	1985		1986		1987	
Country	Quantity	Value	Quantity	Value	Quantity	Value
	(short	(thou-	(short	(thou-	(short	(thou-
	tons)	sands)	tons)	sands)	tons)	sands)
Bahamas Canada Mexico Venezuela Other	479	\$46	1,780	\$152	706	\$58
	88,626	18,735	54,390	7,688	45,301	7,025
	3,903	1,477	1,121	445	3,307	1,355
	114	128	56	20	631	331
	r _{4,775}	r _{1,092}	r _{1,209}	r719	2,064	794
Total ² rRevised.	97,897	21,478	58,556	9,024	52,009	9,563

Source: Bureau of the Census, U.S. Department of Commerce.

Table 19.—U.S. imports for consumption of hydraulic cement and clinker, by country (Thousand short tons and thousand dollars)

Country Quantity	1985			1986			1987		
	Quantity Value		lue	0	Value			Value	
		Customs	C.i.f.1	Quantity -	Customs	C.i.f.1	Quantity -	Customs	C.i.f. ¹
Canada Colombia France Greece Japan Korea, Republic of Mexico Spain Venezuela Other	3,393 662 552 511 1,134 484 2,502 3,383 1,569 298	131,117 16,430 13,866 9,760 28,786 26,194 75,755 80,448 38,282 16,791	145,005 20,244 18,319 12,202 37,105 29,738 87,339 103,353 50,320 20,148	3,272 913 669 1,275 750 456 4,242 3,176 1,290 276	123,220 22,566 18,355 26,710 20,325 11,814 110,390 90,479 31,739 13,395	133,907 28,070 24,016 33,507 24,833 15,202 133,403 110,230 41,673 17,586	4,154 612 772 1,641 723 616 4,960 3,044 766 438	146,693 14,914 15,152 36,559 18,351 14,241 125,666 80,745 17,534 18,677	157,606 22,090 24,373 49,141 25,108 18,095 156,585 106,996 24,498 22,096
Total ²	14,487	437,429	523,773	16,319	468,993	562,427	17,726	488,532	606,588

¹Cost, insurance, and freight.

Source: Bureau of the Census, U.S. Department of Commerce.

Table 20.—U.S. imports for consumption of clinker, by country

(Thousand short tons and thousand dollars)

			·				\		
Country Quantity	1985			1986			1987		
	Quantity Value		0	Value			Value		
	quantity	Customs	C.i.f. ¹	Quantity -	Customs	C.i.f. ¹	Quantity -	Customs	C.i.f. ¹
Canada Colombia France Greece Japan Mexico Spain Other	746 193 414 407 291 581 1,656 r345	22,156 3,938 9,434 7,900 6,397 14,671 31,877 r6,694	25,763 5,012 11,789 9,390 7,840 16,387 39,917 r8,315	358 280 529 507 234 1,095 711	10,534 5,814 11,328 9,598 4,897 19,199 13,726 r4,603	12,768 7,031 14,324 13,159 4,839 23,823 17,653 *6,970	846 58 342 343 37 1,215 734 93	25,056 1,265 7,839 6,330 883 21,114 14,121 2,765	28,150 1,515 9,818 8,272 1,222 26,241 17,543
Total ²	4,633	103,067	124,413	3,972	79,699	100,567	3,668	79,373	2,941 95,702

Revised.

Source: Bureau of the Census, U.S. Department of Commerce.

Includes 40 countries in 1985, 42 in 1986, and 39 in 1987.

Data may not add to totals shown because of independent rounding.

²Data may not add to totals shown because of independent rounding.

¹Cost, insurance, and freight.

²Data may not add to totals shown because of independent rounding.

Table 21.—U.S. imports for consumption of hydraulic cement and clinker, by customs district and country

(Thousand short tons and thousand dollars)

		1986			1987	
Customs district and country	Quan- Value			Quan-	Value	
	tity	Customs	C.i.f. ¹	tity	Customs	C.i.f. ¹
		•		۰	431	766
Anchorage: Canada	16	1,566	1,978	8 30	1,263	1,514
Jonen	29	1,079	1,176	10	322	516
JapanKorea, Republic of	(2)	7	8			2,796
Total	45	2,652	3,162	48	2,016	2,130
D-14i-nous				13	327	414
Baltimore: Bahamas	· ·		70			
Belgium	(2)	64	79 2		77	
Brazil	(2)	368	451	19	492	693
Colombia	13 (2)	13	15	(2)	. 8	9
Germany, Federal Republic of	50	1.133	1,256	189	4,431	4,808
Greece	(²)	50	69			501
Japan	14	313	495	13	373	29
Mexico Netherlands	67	1,760	1,879	(²)	28	23
Netnerianus	(²)	35	40		2,144	2,587
Spain Venezuela	62	1,709	2,196	84	2,144	2,001
Yugoslavia	(²)	52	98			
	208	5,498	6,580	318	7,803	9,041
Total3			1,			
Boston:	138	4,878	5,165	147	4,048	4,224
Canada	92	2,277	2,358	123	2,885	3,090
Greece	28	768	799	7	158	178 1,988
Mexico	10	213	223	. 26	1,891	
Spain Venezuela	23	540	655			
	292	8,676	9,201	303	8,982	9,474
Total ³						
Buffalo:	950	30,809	36,431	964	37,582	37,868
Canada	550		,	.(2)	12	1:
Japan			00.401	964	37,594	37,88
Total	950	30,809	36,431	904	01,004	
Charleston:				(2)·	5	
Conoda				(²)	6	
Germany Federal Republic of	60	$1.\bar{204}$	1,500			· -
Crosse	(2)	17	21			-
Netherlands				31	681	85
Panama				30	780	98
Spain			1 501	61	1,472	1,84
Total ³	60	1,221	1,521	01	1,112	
Chicago:	.0.	110	152	(2)	225	25
Germany, Federal Republic of	(2)			(2)	7	
Japan	(²)		152	(²)	232	20
Total		110				
Cleveland:	37	1,450	1,721	176	5,781	7,5
Canada	1	′000			-=	-
Netherlands			<u> -</u> -	. (2)		
Spain United Kingdom		27	27	(2)		
Total ³	39	1,875	2,529	176	5,807	7,5
Detroit: Belgium-Luxembourg	_ (2	28			33,120	35,3
Canada	34		3 18,36	5 938 98		
Spain					, 1,040	
-	34	9 17,75	5 18,39	3 1,03	1 35,063	37,
Total ³						
Duluth:	_ 20	8 6,52	6 8,29	3 7	7 2,294	2,
Canada Republic of	_ 20			5		1,
Greece	-			3	6 887	
Total ³	20	8 6,53	1 8,29	8 11	3 3,181	4,

See footnotes at end of table.

Table 21.—U.S. imports for consumption of hydraulic cement and clinker, by customs district and country —Continued

(Thousand short tons and thousand dollars)

0.		1987					
Customs district and country	Quan-	V.	alue	2 111 12	to the control of the control of		
A second	tity	Customs	C.i.f. ¹	Quan- tity	Customs	alue C	
					Customs	C.i.f.	
El Paso:							
Malaysia Mexico	(²)	3	5				
	504	18,960	18,960	595	20,950	20,	
Total	504	18,963	18,965	595			
Great Falls:			10,000	. 595	20,950	20,9	
Canada	(²)	65					
Germany, Federal Republic of	(2)	21	65 23	(²)	13	7000	
Yugoslavia			20	$\overline{(^2)}$	10	1.4	
Total	1	86			10	2.455	
		86	. 88	(²)	23		
Honolulu: Australia							
Japan	85	1,882	1.55	2 25	155	1	
Korea, Republic of	10	1,882 368	2,552 495	25	540	7	
Total	05			21	1,063	1,1	
	95	2,250	3,047	48	1,758	2,0	
Iouston: Colombia	-						
Germany, Federal Republic of	152	3,345	3,822	33	789	89	
Norea, Kenijhlic of	(2) (2)	207	256	(²)	54	8	
Mexico	105	50 1,888	50 2,683			<u>-</u>	
Spain Venezuela	577	15,586	17,896	74 642	1,453 12,644	2,18	
er grande in the contract of t	(2)	7	12		12,044	17,50	
Total ³ aredo:	835	21,083	24,719	740			
Mexico	100			749	14,940	20,63	
	182	5,804	5,804	301	8,978	8,97	
os Angeles: Bahamas	4.00						
Canada	20			91	3,006	9.40	
	20 11	347 764	464			3,49	
France Germany, Federal Republic of	(2 ₎	59	1,130 66	13	451	1,11	
Japan	(2)	93	109	202 (²)	4,569 40	6,10	
JapanKorea, Republic of	375 343	10,622 8,700	12,619	435	10,347	15,50	
Spain	182	4,980	11,069 6,598	454 (2)	10,283	13,138	
United Kingdom	(2)	15	19	23	72 525	130	
Yugoslavia	(2) (2)	1	. 1		525	714	
The same of the sa		235	424	(²)	47	88	
Total ³	933	25,816	32,499	1,218	29,340	40.040	
ami:				-,-10	40,04U	40,340	
Bahamas	58	1,652	1,880	(Fh.			
Belgium-LuxembourgCosta Rica	3 .	179	332	50	1,434 128	1,618	
Denmark	(²)	10	11		120	242	
Germany Foderal D.			:	4	349	400	
Greece	·			$^{10}_2$	320 6	407	
Greece	$\overline{(^2)}$	39		53	1,161	1,677	
Mexico	319	9,170	51 11,481	$\bar{323}$			
Venezuela	464 445	14,108	17,024	323 447	6,561 12,664	15,242	
	440	10,194	13,905	428	9,949	17,357 13,255	
Total ³	1,289	35,352	44,684	1,318	20 570		
waukee:			3,001	1,010	32,572	50,203	
Germany, Federal Republic of					4		
ile:				(²)	14	16	
rance		,					
reece	23 283	809 5,234	914	31	1,213	1,228	
fexico	245	3,234 3,881	7,137 4,695	166	2,820	3,631	
		,	21000	339	5,001	6,835	

Table 21.—U.S. imports for consumption of hydraulic cement and clinker, by customs district and country —Continued

(Thousand short tons and thousand dollars)

The state of the s		1986			1987		
-		Value		Quan-	Value		
Customs district and country	Quan- tity	Customs	C.i.f. ¹	tity	Customs	C.i.f. ¹	
Mobile —Continued					682	915	
	232	4,127	5,414	40 29	496	659	
Spain United Kingdom						13,268	
Total	783	14,051	18,160	605	10,212	13,208	
				31	650	905	
New Orleans: Belgium-Luxembourg	$\bar{101}$	6,553	8,088	61	3,860	4,665	
Canada	46	900	1,134	$\bar{179}$	1,217	6,719	
Colombia France	434	12,834	15,709 1,498	222	5,135	6,528	
Greece	58	$^{1,460}_{9,520}$	13,559	657	15,176	20,723	
Marica	444 (2)	181	197		10.00	15,806	
Netherlands	382	11,497	12,940	463	12,385	19,800	
Spain	7	146	212				
Venezuela		40.001	53,337	1,613	38,423	55,346	
Total	1,472	43,091	30,001				
New York City:	7	222	294				
Bahamas Belgium	(2)	4	$\begin{array}{c} 5 \\ 1.965 \end{array}$	32	$ar{716}$	868	
Canada	65	1,311 833	1,118	2	49	77	
Colombia	29	000		58	1,590	1,594 45	
_	(2)	10	13	(2)	$\frac{43}{15,432}$	21,969	
Germany, Federal Republic of	648	13,562	17,485	638	15,452	1.77	
Greece	1	779	784	$\overline{162}$	$3,\overline{645}$	5,464	
Japan Mexico	26	425	588 17,385	434	15,382	22,273	
Spain	405	13,809 1,683	2,061	22	503	618	
Venezuela	72			1.046	37,360	52,90	
Total ³	1,253	32,638	41,698	1,346	13,039	13,03	
Nogales: Mexico	404	14,518	14,520	381	13,039	10,00	
NT C-11-			1,019	10	248	38	
Norfolk: Bahamas	25	650	7			_	
Canada	(²) 17	474	582			3,11	
Colombia	25	2,357	2,591	70	2,468	3,11	
D	(²)	3	3	(2)	11 386	62	
Germany, Federal Republic of				16 323	8,560	11,81	
Greece	211	2,558	$5,\overline{379}$	523	0,000	_	
Spain United Kingdom	(2)	$^{2}_{2,251}$	3,099	31	$\bar{820}$	1,27	
Venezuela	90	2,251			12,493	17,2	
Total ³	368	8,302	12,683	451	12,493		
Ogdensburg:		10 000	13,839	514	15,801	15,8	
Canada	405	13,839		(²)	244	2	
Netherlands	405		13,839	514	16,045	16,1	
Total			2,025	103	4,645	4,6	
Pembina: Canada	48	2,020	2,030				
Philadelphia: Germany, Federal Republic of _	(2		6	(² 62		1,4	
Greece	_ 28	503	568 25	02		•	
Mexico			25 221				
Netherlands	- (2 - 94	,	8.039	13		4,8	
Spain	- 94 - (2		5				
Turkey	_ (-	,		1	7 404		
Venezuela	11	0.050	8,864	21	4 6,427	7,	
Total ³		0,000					
Port Arthur:	2	6 662				-	
Mexico	_ 15						
			4,418				

See footnotes at end of table.

CEMENT

Table 21.—U.S. imports for consumption of hydraulic cement and clinker, by customs district and country —Continued

(Thousand short tons and thousand dollars)

	·	1986		-	1987	
Customs district and country	Quan-	Va	lue	Quan-	Va	lue
	tity	Customs	C.i.f. ¹	tity	Customs	C.i.f.1
Portland, ME:						
Canada	11	599	599	12	504	
Spain	13	269	333		584 17	58 2
Total ³	24	868	932	12	601	60-
Portland, OR:						
Japan Korea, Republic of	47 37	1,095 1,382	1,618 1,749	104 31	1,029 1,939	1,195 2,470
Total ³	84	2,477	3,367	135	2,968	3,66
Providence:						3,00
Canada	39	1,651	1,970	40	1,278	1,613
Colombia	74 5	2,191 135	3,028 203	105	2,585	5,128
Mexico	78	1,839	203 2.947		1 0 4 0	
Spain	67	2.364	2,947	45	1,046	1,67
Venezuela	13	370	552	$-\overline{6}$	$1\overline{62}$	258
Total ³	276	8,550	11,671	196	5,071	8,673
t. Albans: Canada	399	13,018	13,018	406	12,650	12,650
an Diego:						,000
Canada	8	258	304			
Japan		1212		52	1,533	1,870
Mexico Mozambique	694	22,373	25,015	631 10	21,507 259	22,347 273
Total ³	702	22,631	25,319	693	23,299	24,489
an Francisco:	,					
Canada China	138	4,556	6,188	121	3,196	6,485
Japan	(²) 57	$^{6}_{1,022}$	12			
Japan Korea, Republic of	65	935	1,283 1,830	25	a	
Mexico	108	3,086	3,480	233	$634 \\ 6,027$	835 6,371
Total ³	368	9,605	12,793	380	9,857	13,691
an Juan, PR:						
Barbados	42	1,472	2.015			
Belgium-Luxembourg	8	585	1,009	$-\overline{7}$	$49\bar{5}$	$\overline{862}$
Brazii	1	92	138	i	51	70
Colombia	66	1,220	1,618	25	528	694
Denmark Dominican Republic	4 1	326 16	542 21	9	786	1,004
Germany, Federal Republic of	î	55	63			
Honduras	$2\overline{4}$	717	1,053	56	1,577	$2,\bar{312}$
Japan	-=			(²)	13	14
Mexico Netherlands	5	134	241	34	773	919
Spain	1 3	49 238	71 598	7.0		
Venezuela	34	1,329	1,847	16	711	746
Total ³	191	6,233	9,216	149	4,934	6,621
vannah:						
Germany, Federal Republic of	(²)	15	19	(²)	19	00
Japan	(2)	2	2	()	13	23
Spain Venezuela	111 11	2,608 250	2,802	72	2,181	2,284
Total ³	123	2,875	276	10	239	329
attle:	120	4,010	3,099	82	2,439	2,636
Canada	995	10 000	10.400			_
Japan	335 156	12,392	13,423	556	20,592	21,641
Yugoslavia	(²)	3,757 10	4,679 43	151	3,619	4,285
Total ³						

See footnotes at end of table.

Table 21.—U.S. imports for consumption of hydraulic cement and clinker, by customs district and country —Continued

(Thousand short tons and thousand dollars)

		1986	2.75	4.4	1987	e produkti
Customs district and country	Quan- Value		ie.	Quan-	Value	
Customs district and country	tity	Customs	C.i.f.1	tity	Customs	C.i.f.1
					-	
Tampa:		***	117		* .	
Bahamas	4	$\frac{102}{8,277}$	10,505	$\bar{286}$	6,819	9,329
Colombia	363 41	8,211 W	10,505 W	51	w	W
Denmark	187	w	w	220	W	W
France	42	932	1,169	137	3,100	3,960
Greece	1.066	18,879	27,083	1,167	20,979	31,637
Mexico	1,000	344	345			<u></u>
Panama Spain	369	8,307	10,858	321	6,346	8,441
Venezuela	366	10,025	12,982	136	3,313	4,714
Total ³	2.453	58,151	72,262	2,318	48,671	68,494
10tal						
Virgin Islands of the United States:		1.050	1 945	7	225	238
Colombia	25	1,272	1,345	(2)	14	15
Dominican Republic	1	21	$\frac{23}{173}$	1.45	15	29
Leeward and Windward Islands	4	109 325	364	33	794	838
Venezuela	. 7	325	304	- 00	101	
Total ³	37	1,727	1,905	41	1,048	1,119
=						
Wilmington, NC:	127	3,687	4.468	139	3,414	5,041
Colombia	10	250	389		22	4.1 - 4.2
Mexico Spain	6	186	226			
Total	143	4,123	5,083	139	3,414	5,041
10tar						
Grand total ³	16,319	468,993	562,427	17,726	488,532	606,588

W Withheld to avoid disclosing company proprietary data; included in "Total."

Source: Bureau of the Census, U.S. Department of Commerce.

Table 22.—U.S. imports for consumption of cement and clinker

(Thousand short tons and thousand dollars)

	Roman, pother hy	draulic	Hydra cem clin	ent	Wh nonsta portland	ining	Tot	al ¹
Year	Quantity	Value (cus- toms)	Quantity	Value (cus- toms)	Quantity	Value (cus- toms)	Quantity	Value (cus- toms)
1983	3,104 6,379 9,581 12,086 13,782	109,791 204,899 306,472 361,149 384,989	1,005 2,215 4,633 3,972 3,668	33,633 59,801 103,067 79,699 79,373	160 252 274 261 276	18,014 29,507 27,890 28,145 24,170	4,268 8,846 14,487 16,319 17,726	161,439 294,207 437,429 468,993 488,532

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census, U.S. Department of Commerce.

WORLD REVIEW

World cement production increased only slightly. China continued to lead all nations in cement production, followed by the U.S.S.R., the United States, and Japan. Worldwide, the industry operated at an estimated 80% of capacity. Countries with excess capacity continued to seek new markets for their product. Although the United States continued to be a principal recipient

of imports, the number of countries that exported cement to the United States continued to decline. Twenty-four countries exported cement to the United States in 1987, six fewer than in 1986; however, the volume of cement imported in 1987 was 1 million tons more than in 1986.

Foreign buyers continued to show interest in the U.S. cement industry. By yearend,

¹Cost, insurance, and freight.

²Less than 1/2 unit.
³Data may not add to totals shown because of independent rounding.

CEMENT 211

approximately 55% of U.S. cement production capacity had been acquired by foreign firms from eight countries. Seven of the top ten producing companies in the United States were owned by Western European parent companies, and several Japanese firms were negotiating the purchase of U.S. capacity.

The international issue of Rock Products magazine described individual plant construction, modernization, or expansion activities of the cement-producing nations. Although there were no major additions to capacity reported, there continued to be considerable activity aimed at expanding existing capacity either through new construction or by upgrading existing facilities. The industry reported the introduction of new technology, primarily the installation of high-pressure grinding rollers and high-efficiency separators.

Egypt.—Consumer demand for cement continued to grow. Egyptian cement producers had several construction and modernization projects planned or in various stages of development. The addition of new capacity was aimed at reducing the country's dependence on imports. Alexandria Portland Cement Co. completed work on the No. 1 kiln at its Ameriyah plant. The No. 2 kiln was expected to go on line in early 1988. Both kilns have a capacity of 3,600 tons per day. Hewland Portland Cement Co. put its 220,000-ton-per-year, white cement plant on line at El-Minya.

Germany, Federal Republic of.—Demand for cement continued to decline and the industry continued to adjust capacity to meet long-term needs by closing older plants and outfitting others with state-ofthe-art, high-efficiency separators.

Italy.—Italcementi-Fabriche Riunite Cemento S.p.A. installed a new 2,200-ton-perday preheater kiln at its Sicily plant. Cola-

cem S.p.A. installed a 2,000-ton-per-day preheater kiln at its Gubbio plant. Presa S.p.A.-Cementeriadi outfitted its 4,400-tonper-day Robilante plant No. 3 kiln with a precalciner system.

Norway.—Norcem Cement A/S, Norway's only cement producer, was modernizing one of the two lines at its Dalen plant to increase the capacity to 3,600 tons per day. Norcem was also in the process of installing a high-pressure grinding mill at its Brevik plant.

Saudi Arabia.—Qassim Cement Co. commissioned the 2,400-ton-per-day-capacity addition to its Buraydah plant, and Yamama Saudi Cement Co. Ltd. completed a 3,300-ton-per-day production line at its Riyadh plant.

Spain.—Cementos Portland Morata De Jalon SA put its new 130-ton-per-hour mill on-line. Other producers sought to reduce operating costs and improve operating efficiency through application of automated centralized control systems and installation of grinding rollers and high-efficiency separators.

Turkey.—The Turkish cement industry continued its fourth consecutive year of production increases. To keep pace with rising demand, several new plants and modernization projects occurred during the year: Citosan (General Directorate) put its 660,000-ton-per-year plant on line; Bati Anadolu Cimento Sanayii AS was upgrading its No. 2 line at its Izmir plant from 1,400 to 1,900 tons per day; and Eskisehilr Cemento Fabrikasi TAS was converting its kiln to a preheater system to increase production from 770 tons per day to 1,500 tons per day. Other plants were in various stages of modernization including the installation of high-efficiency separators and raw material conveyance, grinding, and storage systems.

Table 23.—Hydraulic cement: World production, by country¹
(Thousand short tons)

	,				
Country	1983	1984	1985	1986 ^p	1987 ^e
Afghanistan ²	14	123	85	r e ₉₅	
Albaniae					110
A1	925	³ 948	940	940	945
	5,300	6,100	6,720	^r 7,120	7,170
	240	390	390	390	390
Argentina	6.198	r _{5,644}	5,121	r e6.100	
Australia	5,331	6,022			7,000
Austria	5,409	5,400	6,489	6,471	6,600
Bahamas		5,400	5,027	5,036	5,000
	^r 28			(⁴)	
D 10 1	338	301	265	322	3342
		^e 165	e240	219	220
Belgium	6.304	6,300	6,103	5.928	
Benin ^e	331	331			6,400
Bolivia	361		331	331	331
		315	418	326	330
Brazii	23,005	21,761	22,721	27.885	328.076

See footnotes at end of table.

Table 23.—Hydraulic cement: World production, by country¹—Continued

(Thousand short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
	0.001	c 202	5,838	6,285	6,28
ılgaria	6,221	6,302 343	526	478	342
1rma	369 672	NA	NA	NA	N/
ameroon	8,676	9,489	11,235	11,687	13,90
mile	1,383	1,532	1,571	1,583	1,65
hina	119,325	133,468	^e 157,100	^e 178,000	198,00
	5,204	5,816	6,294	7,121	36,57
ongo	17	NA	64	e ₆₄	6
osta Rica	425	r ₅₁₇	524	573	57
1ba	3,562	3,689	3,508	r e3,640	3,90
mmie	1,039	940	727	952	95 11.20
zechoslovakia	11,572	11,607	e11,300	e _{11,200} 2,237	2,20
enmark	1,827	1,839	1,917 $1,110$	1,175	1,20
ominican Republic	1,217	1,260 r _{1,910}	2,167	r e2.300	2,20
euador	r _{1,565} 6,063	7.165	6,337	8,391	11,00
rvnt	r479	r ₄₄₀	496	488	366
Salvador	190	265	275	275	2'
thiopia ^e	121	108	103	102	10
iji	2,102	1,814	e _{1,760}	e _{1,760}	1,7
nland	27,011	25,049	25,955	e _{25,900}	325,9°
rance	132	229	270	232	³ 1
abon	12.987	12,737	12.795	13,126	12,7
erman Democratic Republic	33,583	31,867	28,393	29,299	27,9
ermany, Federal Republic of	e320	252	400	241	33
hana	15,648	14,904	15,067	14,706	14,8
reece uadeloupe	^e 176	188	190	199	2
uadeloupe	498	r ₄₆₂	580	710	³ 1,4
uatemala	3238	240	240	200	. 2
aiti ^e	535	589	383	386	4
onduras long Kong	1,892	2,037	2,023	2,465	2,4
ungary	4,677	4,569	4,054	4,239	³ 4,5
eland	127	130	126	122	340.5
ndia	27,950	32,000	36,409	40,124	340,7
ndonesia	9,025	9,765	11,112	12,060	13,0
ran ^e	11,000	r _{13,000}	r _{13,700}	r _{13,530}	13,6 11,0
aqe	6,170	8,800	8,800	8,800	1,5
eland	1,638	1,518	$\frac{1,606}{2,227}$	1,541 2,270	2,3
srael	2,269	2,275	40,429	38,956	39.9
tolv	43,229	41,648 591	748	855	3
vory Coast	702 305	288	264	266	
amaica	89,167	86,928	80.311	78,535	77,0
apan	1,401	2,192	2,230	1,978	2,
ordan	1,411	1,283	934	1,446	³ 1,
Kenya	8,800	8,800	8,800	8,800	. 8,
Korea, Northe	23,459	22,501	22,514	25,797	³ 28,
Korea, Republic of	1,239	1,305	1,315	1,118	1,
Kuwait ebanone	1,653	1,378	e _{1,100}	e _{1,000}	1,
ebanoniberia	94	93	105	107	
in e	5,500	6,600	7,200	³ 2,289	³ 2,
.ibya ^e .uxembourg	389	375	325	e330	
Madagascar	39	39	39	39	
Malawi	78	77	e70	. 76	
Malaysia	3,562	3,824	3,448	3,501	3
Mali	^e 22	28	21	e ₂₂	
Martinique ^e	r ₂₂₈	r ₂₁₀	220	220	- 00
Mexico	18,814	r _{20,322}	22,796	21,772	22,
Mongolia	ř182	^r 155	166	r é ₂₂₀	
Morocco	4,242	3,955	4,072	$4{,}125$ 496	4
Morambique	3463	496	496	102	
Nonal	50	43	35	3,417	3
Vetherlands	3,425	3,501	3,209 66	66	·
New Caledonia	66	66	951	e960	:
Now Zealand	838	907	110	110	
Nicaragua ^e	110	110	42	42	
Niger ^e	42	42	3,680	3,860	3
Niger ^e Nigeria ^e	3,970	3,300	1,764	1,929	1
Norway	1,837	1,705 5,178	e _{5,765}	e5,760	7
Dokietan	5,443 360	335	336	370	•
Donama	360 169	120	51	197	
Paraguay	r _{2,166}	2,060	1,937	2,346	2
Peru		4,025	3,395	3,811	3
Philippines ⁶ Poland	4,831	18,409	16,535	17,416	³ 17
D-1d	17,857	6,106	5,913	6,001	- 6
Poland					
D	6,683			340	
Polano Portugal Qatar Romania Saudi Arabia	6,683 413 15,397	527 15,450	350 13,490	$ \begin{array}{r} 340 \\ 15,670 \end{array} $	15 10

See footnotes at end of table.

CEMENT 213

Table 23.—Hydraulic cement: World production, by country¹ —Continued

(Thousand short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Senegal	435	424	449	397	³ 410
Singapore	3,476	3.110	2.195	1.989	31,684
South Africa, Republic of	8,705	9,025	7,754	6,885	6,830
Spain (including Canary Islands) ⁷	33,771	28,038	26,673	e _{26,500}	25,800
Sri Lanka ^e	3 ₅₅₈	551	660	660	660
Sudan	e220	194	213	e220	220
Suriname ^e	382	55	55	55	55
Sweden	2,469	2,638	2,425	2,336	2,425
Switzerland	4,516	4,609	4,689	4.842	4,400
Syria	3,996	4,720	4,736	4,630	4,630
Taiwan	16,325	15,690	15,893	16,321	317,266
Tanzania ^e	460	³ 408	330	330	330
Thailand	8,006	9,083	8,726	8,723	9,400
Togo	256	268	313	384	³ 407
Trinidad and Tobago	r ₄₃₃	447	362	372	350
Tunisia	3,142	3,061	3,372	3,289	3,750
Turkey	14,986	17,348	19,380	22,050	324,228
Uganda ^e	22	22	22	22	22
U.S.S.R	141,268	143,453	144,096	148,943	150,000
United Arab Emirates	2,280	4,415	e4,400	2,745	2,745
United Kingdom	14,767	14,860	14,704	e _{14,770}	14,770
United States (including Puerto Rico)	71,347	78,699	78,859	79,916	379,501
Uruguay	442	368	346	375	3 ₄₄₂
Venezuela	4,899	5,272	5.836	6,113	5,950
Vietnam ^e	31,023	1,210	1,430	1,700	31,667
Yemen (Sanaa)	^r 937	r _{1,532}	1,543	1,279	≥ ³ 838
Yugoslavia	10.573	10,268	9,952	10.061	39,880
Zaire	565	r ₅₈₉	485	r e ₄₄₀	440
Zambia	171	266	349	368	3413
Zimbabwe	639	NA	NA	NA	NA
Total	r _{1,010,051}	r _{1,036,392}	1,056,660	1,100,814	1,138,673

^eEstimated. ^pPreliminary. ^rRevised. NA Not available.

TECHNOLOGY

The industry continued to introduce and experiment with various types of technology aimed at conserving energy and improving plant operating efficiency. Among the more notable developments were industry efforts to expand the use of waste materials in cement kilns as an alternative to fuel oils, natural gas, and/or coal. In a paper presented at the 23d International Cement Seminar in December 1987, industry representatives described progress, challenges, and opportunities in using solvent-derived fuels (SDF) in cement kilns.5 The paper concluded that while the use of SDF can lead to significant fuel cost savings, there are public acceptance, regulatory, and other institutional barriers that must be overcome.

Results of a 2-year operational test also showed that increases in both operating capacities and energy savings can be obtained using different grinding procedures. Heidelberger Zement AG tested new grinding procedures at its plant in Leimen, Federal Republic of Germany. The pilot test

was designed to determine the energy savings and capacity increases of a ball mill when combined with a high-pressure grinding roller. Tests concluded that by combining the grinding roller with the ball mill, capacity increases of up to 40% and energy savings of 20% were achieved. In the case of finish grinding, energy savings of up to 40% were achieved.

The Bureau of Mines published the results of a 1-year study to test and evaluate the resistance of sulfur concrete to corrosion and to examine its permeation characteristics and performance in various industrial environments. The study is part of a Bureau program to find new uses for the Nation's plentiful supply of sulfur in construction materials. Results indicate that sulfur concrete is a corrosion-resistant material that demonstrates superior performance in environments where conventional materials fail. It has improved resistance to chloride and sulfate permeability when compared with portland cement concrete.

¹Table includes data available through July 8, 1988. ²Data are for the year beginning Mar. 21 of that stated.

³Reported figure.

Less than 1/2 unit.

⁵Data are for the year ending June 30 of that stated.

⁶Converted from officially reported data provided in terms of 94-pound cement bags.

⁷Excludes natural cement.

¹Mineral industry specialist, Branch of Industrial Min-

*Mineral industry operations, ——erals.

*2U.S. Department of Commerce, International Trade
Administration. Construction Review. V. 33, No. 6, Nov.Dec. 1987, pp. 2-24.

*Engineering News-Record. ENR Materials Prices.
V. 220, No. 1, Jan. 1988, pp. 42-46.

⁴Rock Products. Cement International. V. 91, No. 4, Apr. 1988, pp. 63-88.

⁵Rock Products Magazine Proceedings, Rock Products 23d International Cement Seminar. 1987, pp. 45-77.

⁶Work cited in footnote 4.

⁷Wrzesinski, W. R., and W. C. McBee. Permeability and Corrosion Resistance of Reinforced Sulfur Concrete. Bu-Mines RI 9157, 1988, pp. 1-13.

${f Chromium}$

By John F. Papp¹

In 1987, reported chromium consumption was 409,964 tons.² The reported consumption of chromite by the chemical and metallurgical industry and by the refractory industry increased. Metallurgical industry production includes ferrochromium produced as part of the National Defense Stockpile (NDS) conversion program. Imports of chromite increased and imports of chromium ferroalloys decreased compared with those of 1986.

Domestic Data Coverage.—Domestic data coverage by the primary consuming industries—metallurgical, refractory, and

chemical—are developed by the Bureau of Mines by means of the voluntary monthly "Chromite Ores and Chromium Products" survey. The companies listed in table 3 by industry accounted for 100% of the chromite consumption data by industry in table 5. Of those companies that consumed chromite in 1987, 67% of the metallurgical companies, 83% of the refractory companies, and 100% of the chemical companies reported chromite consumption. Consumption was estimated for the remaining 33% of the metallurgical industry.

Table 1.—Salient chromium statistics

(Thousand short tons, gross weight)

	, 0	0,			
	1983	1984	1985	1986	1987
	CHROMITE				
United States: Exports Reexports Imports for consumption Consumption Stocks, Dec. 31: Consumer World: Production	11 5 190 320 456 ^r 9,050	55 4 305 512 327 r 10,777	101 4 414 560 300 11,590	92 1 488 427 314 P12,227	1 5 540 556 364 ^e 12,115
CHROMI	UM FERROAI	LLOYS1			
United States: Production ² Exports Reexports Imports for consumption Consumption Stocks, Dec. 31: Consumer World: Production	36 4 2 282 388 26 r _{2,697}	95 15 1 434 395 25 r _{3,220}	110 10 1 335 369 31 3,325	105 6 1 398 365 30 P3,251	118 5 2 334 437 24 e3,113

^eEstimated. ^pPreliminary. ^rRevised.

¹High- and low-carbon ferrochromium plus ferrochromium-silicon.

²Includes chromium metal, exothermic chromium additives, and other miscellaneous chromium alloys.

Domestic production data for chromium ferroalloys and metal are developed by the Bureau of Mines by means of two separate voluntary surveys. These two surveys are the monthly "Chromium Ores and Chromium Products" and the annual "Ferroalloys." Production by the metallurgical companies listed in table 3 represented 100% of domestic production shown in table 4. Sixtyseven percent of those companies responded to both surveys. Production for the remaining 33% was estimated.

Legislation and Government Programs.-The U.S. Air Force continued to study critical materials, one of which was chromium, for the purpose of identifying Air Force material needs. The Office of Industrial Base, U.S. Department of Defense, studied the possibility of funding a chromium recycling project under title III of the Defense Production Act. The project would recover superalloy-grade chromium metal from superalloy scrap, thereby reducing dependence on foreign sources for materials critical to the national defense.

The U.S. Department of State, pursuant to section 303(a)(2) of the Comprehensive Anti-Apartheid Act of 1986, as amended (Public Law 99-440), certified to Congress that chromium (including ferrochromium) is a strategic mineral essential for the economy or defense of the United States that is unavailable from reliable and secure suppliers.

The U.S. Department of Transportation made final rule corrections for the transportation of hazardous chromium materials. The materials identified as hazardous and

their reportable quantities include ammonium bichromate, 1,000 pounds; calcium chromate, 1,000 pounds; chromic acid, 1,000 pounds; chromic sulfate, 1,000 pounds; chromium metal (of diameter less than 1,000 micrometers or 0.004 inch), 1 pound; chromous chloride, 1,000 pounds; potassium bichromate, 1,000 pounds; potassium chromate, 1,000 pounds; sodium bichromate, 1,000 pounds; sodium chromate, 1,000 pounds.

The Office of the U.S. Trade Representative (USTR) negotiated a new tariff nomenclature for the United States with U.S. trading partners that are part of the General Agreement on Tariffs and Trade (GATT). The new nomenclature harmonizes U.S. nomenclature with that of its GATT trading partners, so it is called the Harmonized System. In addition to changing nomenclature, the Harmonized System uses metric units. Implementation of the Harmonized System was expected upon congressional passage of implementing legislation.

The United States negotiated a trade agreement with Canada. The agreement was to become effective in 1989, if Congress and Canada ratify it. Under the agreement the 1.9% import duty on ferrochromium containing more than 4% carbon is to be lifted on January 1, 1989.

In accordance with the President's November 1982 directive, the General Services Administration (GSA) continued to upgrade NDS chromium ore to high-carbon ferrochromium. The GSA reported conversion of ferrochromium on a calendar year contract basis as follows:

Year	Ore converted (short tons)	High-ca ferrochro (short t	mium	Value (millions)
		Gross	Content	
1984 1985 1986 1987	125,628 137,015 94,028 138,604	50,254 49,463 35,212 57,776	33,268 32,662 23,036 44,157	\$22.3 22.5 17.6 33.6

The Minerals Marketing Corp. of Zimbabwe petitioned the USTR to designate low-carbon ferrochromium and ferrochromium-silicon eligible for duty-free status under the Generalized System of Preferences. The petition was made under sections 503(a) and 131(b) of the Trade Act of 1974 (19 U.S.C. 2463(a)). USTR anticipated deciding on the request in April 1988.

Table 2.—U.S. Government stockpile goals and yearend inventories for chromium in 1987 (Thousand short tons, gross weight)

Material	Stockpile	PI	nysical inventor	у
Material	goals	Stockpile- grade	Nonstock- pile-grade	Total
Chromite, metallurgical Chromite, chemical Chromite, refractory High-carbon ferrochromium Low-carbon ferrochromium Ferrochromium Ferrochromium silicon Chromium metal	3,200 675 850 185 75 90 20	1,729 242 391 537 300 57 4	253 -1 19 1	1,98 24 39 53 31 58

Source: Federal Emergency Management Agency.

The U.S. Public Health Service, Agency for Toxic Substances and Disease Registry, issued a draft toxicological profile.3 The

draft profile was published for public comment.

DOMESTIC PRODUCTION

The major marketplace chromium materials are chromite ore and chromium metal, ferroalloys, and chemicals. In 1987, the United States produced chromium metal, ferroalloys, and chemicals. No chromite ore was mined domestically.

The potential for building a ferrochromium smelter at Coos Bay, OR, was studied. Oregon Power and Light Co., the potential

power supplier, P.S.M. Technologies Inc., the potential chromite ore supplier, and the Governor of Oregon supported development of the project. Furnace technology was to have been supplied by Wooding Inc. of New Jersey. A closed nickel smelter at Riddle, OR, was studied for its potential to be converted into a ferrochromium smelter.

Table 3.—Principal producers of chromium products in 1987, by industry

Industry and company	Plant
Metallurgical:	
Elkem AS, Elkem Metals Co	
Elkem AS, Elkem Metals Co	Marietta, OH, and Alloy.
Macallov Inc	WV.
Metallurg Inc., Shieldalloy Corp. Moore McCormack Resources Inc. Clabs Metall.	
Moore McCormack Resources Inc., Globe Metallurgical Inc	Newfield, NJ.
	Beverly, OH.
SKW Alloys Inc	Steubenville, OH.
	Calvert City, KY, and
Refractory:	Niagara Falls, NY.
Basic IncCorhart Refractories Co. Inc	37 3 6
Corhart Refractories Co. Inc.	
General Refractories Co	Pascagoula, MS.2
Harbison-Walker Refractories, a division of Dresser Industries Inc	Lehi, ŪT.
National Refractories & Minerals Corp	Hammond, IN.
	Moss Landing, CA, and
North American Refractories Co. Ltdhemical:	Columbiana, OH.
hemical:	Womelsdorf, PA.
American Chrome & Chemicals Inc	Communa Classical: MIST
Occidental Chemicals Corp	Corpus Christi, TX. Castle Hayne, NC.

¹Name changed to Shieldalloy Metallurgical Corp. effective 1988. ²Plant closed in 1987.

Table 4.—Production, shipments, and stocks of chromium ferroalloys and chromium metal in the United States

				Net pro	duction	Net	Producer
Material	rial	i selit sele Selet		Gross weight	Chromium content	shipments	stocks, Dec. 31
And the second second		100	- 4		The second		
986:					es a si ligit i	The second second	
Low-carbon ferrochromium				95,813	59,479	105,972	8,950
High-carbon ferrochromium Chromium concentrate				00,010	,		
Ferrochromium-silicon							
Chromium metal				9,594	5,461	9,687	5,14
Other ¹				A 4. 1			
Other					04.040	115,659	14,10
Total				105,407	64,940	110,000	14,100
·			- 1 - -				
987:							
Low-carbon ferrochromium			1	115.541	73,558	120,324	4,27
High-carbon ferrochromium			}	110,011	,	,	
Chromium concentrate							
Ferrochromium-silicon			i de la	2,093	2,076	6,149	1,36
Other ¹							
Otner						100 150	F (9)
Total	100			117,634	75,634	126,473	5,63

¹Includes exothermic chromium additives and other miscellaneous chromium alloys.

Elkem Metals Co. signed an agreement in principal to sell 70% of its Marietta, OH, power-generating plant to American Municipal Power-Ohio. The plant capacity was 250 megawatts of electricity and process steam. Elkem used power from its coal-fired plant to produce chromium metal and lowcarbon ferrochromium at its Marietta plant. At yearend the terms of sale were being negotiated. Elkem signed an agreement to market specialty chromium products in Japan through Showa Denko K.K. The Elkem products to be sold by Showa Denko included regular- and vacuum-grade electrolytic chromium metal, 9% carbon chromium metal, and chromium carbide. Elkem planned to install a furnace for the production of higher quality chromium metal than it currently produces, and to restart a high-carbon ferrochromium furnace.

Corhart Refractories Co. Inc. closed its Pascagoula, MS, plant where it manufactured chromium-containing refractories for the glass and steel industries. Corhart attributed the closing to poor market conditions for steelmaking refractories, resulting from changing steelmaking technology and declining domestic steel production. As a result of this rationalization, about 160 jobs were lost, 92 at Pascagoula and 68 at other locations. Corhart continued refractory material production at Louisville, KY, and Buckhannon, WV. Corhart was owned by the company's management and two investment companies, Thomas H. Lee Co. and Prudential Insurance Co. The investment companies sold their share in Corhart to Société Europeene Des Produits Refractaires (SEPR). SEPR, part of the Saint Gobain Group, is a French-based company that is a large producer of fusion-cast refractory blocks and shapes for the glass industry.

Metallurg Inc. planned to merge its U.S. trading subsidiary with its U.S. production company, Shieldalloy Corp., to form Shieldalloy Metallurgical Corp. The merger is to occur in 1988.

CONSUMPTION AND USES

Domestic consumption of chromite ore and concentrate was 555,865 tons in 1987. Of the total chromite consumed, the chemical and metallurgical industry used 505,449 tons; and the refractory industry, 50,416. Much of the chromite consumed and ferrochromium produced by the metallurgical industry were part of the NDS conversion program. (See "Legislation and Government Programs" section of this chapter.)

Chromium has a wide range of uses in the three primary consumer groups. In the metallurgical industry, its principal use in 1987 was in stainless steel. Of the 443,779 tons of chromium ferroalloys, metal, and other chromium-containing materials re-

ported consumed, stainless steel accounted for 82%; full-alloy steel, 7%; superalloys, 3%; and other end uses, 8%.

The primary use of chromium in the refractory industry was in the form of chromite to make refractory bricks to line metallurgical furnaces. Chromite consumption by the refractory industry increased to

50,416 tons.

The chemical industry consumed chromite for manufacturing sodium bichromate, chromic acid, and pigments. Sodium and potassium chromate and bichromate are the materials from which a wide range of chromium chemicals are made.

Table 5.—Consumption of chromite and tenor of ore used by primary consumer groups in the United States

Year	Chemic metalli indu	cal and urgical stry	Refra indu	ctory stry	То	tal
	Gross	Average	Gross	Average	Gross	Average
	weight	Cr ₂ O ₃	weight	Cr ₂ O ₃	weight	Cr ₂ O ₃
	(short tons)	(percent)	(short tons)	(percent)	(short tons)	(percent)
1983	247,921	43.3	72,050	36.9	319,971	42.0
1984	- 414,687	44.0	97,469	37.4	512,156	42.8
1985	- 495,176	41.5	65,245	38.1	560,421	41.2
1986	- 377,300	40.3	49,938	37.1	427,238	40.2
1987	- 505,449	41.0	50,416	39.0	555,865	41.0

Table 6.—U.S. consumption of chromium ferroalloys and metal in 1987, by end use (Short tons, gross weight)

End use	Ferroch	romium	Ferrochromium-		
	Low-carbon	High-carbon	silicon	Other	Total
Steel:					
Carbon Stainless and heat-resisting Full-alloy High-strength, low-alloy, and	2,936 11,845 4,266	3,665 341,839 27,562	182 9,390 1,184	W 579 W	6,78 363,65 33,01
electric	1,786 1,023 868 4,349 491 590 343	2,087 3,077 5,984 5,459 W 345 850	W W 27 W W 7,181	W -W 2,900 161 2,120 740	3,873 4,100 6,829 12,708 652 3,055 9,114
Total ³ Chromium content itocks, Dec. 31	28,497 19,210 3,490	390,818 223,895 19,877	17,964 6,575 557	46,500 4,942 5976	443,779 254,622 24,900

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified." Includes structural and hard-facing welding material.

STOCKS

Reported consumer stocks of chromite increased from 313,795 tons in 1986 to 363,938 tons in 1987. Chemical and metallurgical industry stocks increased, whereas refractory industry stocks declined. Producer stocks of chromium ferroalloys, metal, and other materials declined from 14,105

tons in 1986 to 5,637 tons in 1987. Consumer stocks decreased from 31,790 tons in 1986 to 24,900 tons in 1987. At the 1987 annual rate of chromium ferroalloy and metal consumption, producer plus consumer stocks represented about a 3-week supply.

²Includes magnetic and nonferrous alloys.

³Includes estimates.

Includes 4,179 tons of chromium metal.

⁵Includes 775 tons of chromium metal.

Table 7.—U.S. consumer stocks of chromite, December 31, by industry

(Short tons, gross weight)

	1983	1984	1985	1986	1987
Industry Chemical and metallurgical	379,744 75,832	257,702 69,619	251,552 48,635	274,796 38,999	340,471 23,467
Total	455,576	327,321	300,187	313,795	363,938

Table 8.—U.S. consumer stocks of chromium ferroalloys and metal, December 31, by product

(Short tons, gross weight)

Product	1983	1984	1985	1986 ^r	1987
Low-carbon ferrochromium	3,474 20,948 1,294 954	3,375 19,946 1,422 1,559	5,482 24,115 1,289 1,280	5,495 22,972 1,460 1,771	3,493 19,867 557 911
Other ¹	26,670	26,302	32,166	31,698	24,828

PRICES

The price of South African chromite ore increased, while that of Turkish chromite ore decreased. The published price of South African Transvaal chromite, 44% Cr₂O₃ (no specific chromium-to-iron ratio), increased from a range of \$40 to \$42 per metric ton, f.o.b. South African ports, to a range of \$40 to \$46 in April, where it remained through December. The published price of Turkish chromite ore declined from \$125 per metric ton, f.o.b. Turkish ports, to \$100 in April, where it remained until December, when it increased to \$115.

Table 9.—Price quotations for chromium materials at beginning and end of 1987

Material	January	December
Marchon	Cents per por	and of chromium
High-carbon ferrochromium: Domestic: 50% to 55% chromium	(1) 54 38.25 - 38.75 41.5 - 42.5 100 95 100 83 - 84	50.25 52 58 - 60 60 - 65 100 95 110 100 -106
Simplex Imported: 0.05% carbon	Cents per po	ound of product
Electrolytic chromium metalFerrochromium-silicon	315 -375 38.6	315 -37 38.6

 $^{^{1}}$ Price listing suspended in 1984 until Sept. 1987, when it was reinstated at 50.25 cents per pound of chromium.

Source: Metals Week.

¹Includes chromium briquets, chromium metal, exothermic chromium additives, and other miscellaneous chromium alloys.

The price of domestic high-carbon ferrochromium containing 50% to 55% chromium, suspended since August 1984, was reinstated in September at 50.25 cents per pound of contained chromium, where it remained through December. The published price of domestic high-carbon ferrochromium containing 60% to 70% chromium declined from 54 cents per pound of contained chromium in October to 52 cents, where it remained through December. The prices of domestic low-carbon ferrochromium containing 0.025% carbon and of that containing 0.05% carbon remained unchanged. The published price of Simplex low-carbon ferrochromium increased from \$1.00 per

pound of contained chromium in September to \$1.10, where it remained through December. The price of ferrochromium-silicon remained unchanged. The price of chromium metal remained unchanged.

The price of imported ferrochromium increased. The published price of imported high-carbon ferrochromium containing 50% to 55% chromium increased in March from a range of 38.25 to 38.75 cents per pound of contained chromium to a range of 40 to 42 cents, in May to a range of 41.5 to 43 cents, in June to a range of 42.5 to 43.25 cents, in August to a range of 43.5 to 44.5 cents, in October to a range of 50 to 52 cents, and in December to a range of 58 to 60 cents.

FOREIGN TRADE

Exports of chromium materials from the United States included chromite ore and chromium metal, ferroalloys, chemicals, and pigments.

Imports for consumption of chromium materials included chromite ore and con-

centrate made from ore; chromium ferroalloys, including low-carbon ferrochromium, high-carbon ferrochromium, and ferrochromium-silicon; metal; and chromium chemicals and pigments.

Table 10.—U.S. exports and reexports of chromite ores and concentrates

Year	Exp	orts	Reex	ports
	Quantity	Value	Quantity	Value
	(short tons)	(thousands)	(short tons)	(thousands)
1983	11,032	\$1,874	4,561	\$1,350
1984	54,928	2,957	3,855	864
1985	100,810	4,600	3,676	670
1986	22,108	4,143	1,457	511
1987	1,262	707	5,332	352

Source: Bureau of the Census.

Table 11.—U.S. exports of chromium materials, by type

	1985	1986	19	87	, c, c, pc
Туре	Quantity (short tons)	Quantity (short tons)	Quantity (short tons)	Value (thou- sands)	Principal destinations, 1987
Chromite ore and concentrate	100,810	92,108	1,262	\$707	Canada (62%); Mexico (13%); Chile
Metal and alloys: Chromium metal ¹	222	321	415	4,670	(12%); Italy (6%). Japan (44%); United Kingdom
Chromium ferroalloys Chemicals:	2 10,262	³ 6,035	4 4,568	5,730	(35%); Ghana (20%). Canada (61%); Mexico (18%); Venezuela (8%).
Chromic acid Potassium chromate and dichro-	3,881	5,596	4,504	8,361	Republic of Korea (20%); Japan (16%); Canada (14%); China (14%).
mate	71	21	10	9	Philippines (40%): Republic of
Sodium chromate and dichromate	9,726	15,837	16,556	12,063	Korea (30%); Panama (30%). China (33%); Italy (18%); Colombia
Pigments	1,928	2,491	3,545	9,530	(13%); Thailand (13%). Canada (14%); Federal Republic of Germany (14%); Mexico (13%); Philippines (13%).

¹Wrought and unwrought and waste and scrap.

Source: Bureau of the Census.

²Contained 6,277 tons of chromium. ³Contained 3,496 tons of chromium.

Contained 2,743 tons of chromium.

Table 12.-U.S. imports for consumption of chromite, by country

						+		i	,		11-4-11	
	Not mor	Not more than 40% Cr2Os	Cr203	More	More than 40% but less than 46% Cr ₂ O ₃	ont.	46%	46% or more Cr2O3	ပီ		Total	
Country	Gross weight (short	Cr ₂ O ₃ content (short	Value (thou-	Gross weight (short	Cr ₂ O ₃ content (short	Value (thou-sands)	Gross weight (short tons)	Cr ₂ O ₃ content (short tons)	Value (thou- sands)	Gross weight (short tons)	Cr ₂ O ₃ content (short tons)	Value (thou- sands)
	tons)	tons)		COLLES	(SIII)							i d
1986:	12,833	4,748	\$745	1	}	, I -	426	228	\$55	12,833 18,801	6,674	1,680
Philippines South Africa, Republic of	18,375 498 91,474	6,446 187 33,111	38 3,827	$122,\overline{618} \\ 2,295$	55,073 1,007	\$4,968 62	217,776	104,427	9,439	340,892 93,769 21,908	34,118 8,325	3,889 897
Turkey	21,908	8,325	88.1			-				000 001	019 559	91 657
	145 088	52.817	7,132	124,912	26,080	5,030	218,203	104,655	9,495	488,203	200,012	100,12
Total ¹	CONTRACT											8
1987:	191	47	23	1	-	1	13	100	740	131	9.680	749
Canada	101	; ! • !	1	10	100	100	5,245	2,080		16.409	6,015	1,439
New Caledonia	13,729	4,807	1,172	2,668	1,201	6.532	114,088	57,150	4,913	276,421	130,226	11,445
South Africa, Republic of	189,814	68,593	7,278	26,715	11,141	1,686	3,920	1,809	275	220,449	8,120	879
TI & & P	21,367	8,120	818							000	000 000	300 000
·	995 049.	81.567	9,352	191,716	85,417	8,483	123,265	61,646	5,940	540,023	228,030	611,67
Total	2000											

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 13.—U.S. imports for consumption of ferrochromium, by country

_	Low-ca (les	arbon ferrochi s than 3% car	omium bon)	High-c	arbon ferroch % or more carl	romium
Country	Gross weight (short tons)	Chromium content (short tons)	Value (thousands)	Gross weight (short tons)	Chromium content (short tons)	Value (thousands
1986:						
Brazil				0.045		
China				8,047	4,380	\$2,975
Finland			j. — —	1,102	750	458
Germany, Federal Republic of	$7,\bar{157}$	$5,\overline{062}$	\$8,029	14,387	7,757	6,535
Greece				4.409	2,676	$1,\overline{796}$
Italy	454	331	580	1,100	2,010	1,790
Japan	38	24	47	296	$20\overline{1}$	$\bar{316}$
Norway	57	43	27	200	201	316
South Africa, Republic of	16,471	9.243	8,234	214.084	114070	
Sweden	4.799	3,420	5,433	214,004	114,070	75,140
Turkey	4,960	3,369	5,036	$44.1\overline{34}$	00.005	4
Yugoslavia	2,000	0,000	0,000		28,225	21,714
Zimbabwe	6.033	$4.09\bar{2}$	5,320	24,645	15,744	11,833
	0,000	4,032	5,520	37,340	24,365	19,220
Total ¹	39,969	25,582	32,707	348,443	198,168	139,987
1987:						100,001
Brazil				5,022	2,693	1.914
Canada	1	(2)	2	14	2,038	
China			-	6	9	6
Finland				3,309	1.714	4
Germany, Federal Republic of	7.846	5,550	11,432	2,795		1,141
Greece		0,000	11,402	7,385	1,983	1,303
Italy	464	338	690	1,000	4,536	3,050
Japan	356	238	477	394		<u>-</u> -
South Africa, Republic of	20,719	12.091	12,945		262	461
Sweden	1.911	1.321	2.419	195,655	102,778	71,651
Turkey	3,891	2,621		853	581	611
United Kingdom	20	2,621	3,769	11,905	7,657	5,445
I ugoslavia	20	- 15	33			
Zimbabwe	$7.0\overline{39}$	4,768	5 050	17,151	11,067	7,558
	1,000	4,708	5,956	38,794	25,222	19,404
Total ¹	42,246	26,940	37,723	283,282	158,505	112,546

 $^{^1\}mathrm{Data}$ may not add to totals shown because of independent rounding. $^2\mathrm{Less}$ than 1/2 unit.

Source: Bureau of the Census.

Table 14.—U.S. imports of selected chromium materials, by type

					occinate, by type
	1985	1986	19	87	
Туре	Quantity (short tons)	Quantity (short tons)	Quantity (short tons)	Value (thou- sands)	Principal sources, 1987
Metal and alloys: Chromium metal ¹	3,954	4,485	4,356	\$24,096	United Kingdom (38%); China (20%); Japan (18%); France
Ferrochromium-silicon	² 3,940	³ 9,221	48,356	4,920	(16%). Zimbabwe (66%); Republic of South Africa (34%).
Chromic acid	4,905	4,626	2,820	4,039	Netherlands (28%); Mexico (19%) United Kingdom (16%); China
Chromium carbide	123	101	173	1,524	(13%). Federal Republic of Germany (61%); Japan (25%); United Kingdom (14%).
Potassium chromate and dichromate	639	827	1,109	1,387	United Kingdom (52%); U.S.S.R. (22%); Federal Republic of Ger-
Sodium chromate and dichromate	10,836	7,657	5,241	3,173	many (13%); Canada (11%). United Kingdom (25%); Turkey (24%); Republic of South Africa (18%); Argentina (16%).

See footnotes at end of table.

Table 14.—U.S. imports of selected chromium materials, by type —Continued

	1985	1986	198	87	
Туре	Quantity (short tons)	Quantity (short tons)	Quantity (short tons)	Value (thou- sands)	Principal sources, 1987
Pigments: Chrome green	202	26	104	97	Canada (66%); United Kingdom (33%).
Chrome yellow	3,181	2,131	3,698	5,573	Canada (77%); Federal Republic of Germany (7%); Hungary (6%); Netherlands (4%).
Chrome oxide green	1,511	2,828	2,658	5,540	Federal Republic of Germany (35%); United Kingdom (34%); Romania (17%); Japan (12%).
Hydrated chromium oxide green Molybdenum orange	$\substack{13\\1,077}$	$8\overline{26}$	17 1,219	2,461	All to France. Canada (78%); Federal Republic o Germany (16%); Japan (6%).
Strontium chromate	431	131	131	. 308	France (61%); Federal Republic of Germany (15%); Canada (11%).
Zinc yellow	1,731	1,420	1,331	1,787	Norway (40%); Hungary (39%); Canada (11%).

Wrought and unwrought and waste and scrap.

Source: Bureau of the Census.

Table 15.—U.S. import duties for chromium-containing materials in 1987

Item	TSUS No.	Most favored nation (MFN)	Non-MFN
Ore: Chrome ore and concentrate	601.15	Free	Free.
Metal and alloys:	606.22	3.1% ad valorem	30% ad valorem.
Low-carbon ferrochromium	606.24	1.9% ad valorem	7.5% ad valorem
High-carbon ferrochromium		1.9% ad valorem	25% ad valorem
Ferrosilicon chromium	606.42		30% ad valorem
Chromium metal ¹	632.18	3.7% ad valorem $____$	50% au vaiorein
Chemicals:	400.00	1.5% ad valorem	3.5% ad valorem
Potassium chromate and dichromate	420.08		8.5% ad valoren
Sodium chromate and dichromate	420.98	2.4% ad valorem	25% ad valorem
Chromium carbide	422.92	4.2% ad valorem	
Chromic acid	423.0092	3.7% ad valorem $____$	Do.
Pigments:	1.1	-	n-
Chrome green	473.10	do	Do.
Chrome yellow	473.12	do	<u>D</u> o.
Chromium oxide green	473.14	do	Do.
Hydrated chromium oxide green	473.16	do	Do.
Hydrated chromium oxide green	473.18	do	Do.
Molybdenum orange	473.19	do	Do.
Strontium chromate	473.20	do	Do.
Zinc yellow	413.20	u	

¹Includes wrought and unwrought and waste and scrap chromium metal.

WORLD REVIEW

Albania.—Albania planned to increase chromite production by 36% and ferrochromium production by 100% as part of its 1986-90 5-year plan. A third 9-megavoltampere furnace was constructed and commissioned. The new furnace was expected to

reach full production capacity in 1989.

Australia.—Callina NL began a bulk sampling program at its Wilson River lease in Tasmania. Callina estimated that it could produce about 112,000 tons per year of chromite concentrate from three alluvial

²Contained 1.493 tons of chromium.

³Contained 3,532 tons of chromium. ⁴Contained 3,116 tons of chromium.

NOTE.—The special tariff treatment programs—Generalized System of Preferences, Caribbean Basin Economic Recovery Act, and United States-Israel Free Trade Area Implementation Act of 1985—apply to many of these items. Eligible for full tariff reductions are the least developed developing countries in accordance with section 503(a)(2)(A) of the Trade Agreements Act of 1979 (93 STAT. 251).

deposits estimated to contain about 45 million tons of ore.

Australmin Holdings Ltd. was formed as a result of Australia Oil and Gas Minerals Ltd.'s acquisition of Australmin Pacific NL. Australmin Holdings has a 100% interest in an alluvial chromite deposit off the southwestern shore of New Caledonia that it was developing. Exploration indicated a resource of 80 million cubic meters containing about 3.5% chromic oxide (Cr₂O₃). Australmin Holdings planned to conduct drilling and beneficiation studies.

The Broken Hill Pty. Co. Ltd. (BHP), Australia's only stainless steel producer, decided to cease stainless steel production. BHP operated a 39,000-ton-per-year stainless steel-producing plant at Port Kembla. BHP planned to continue rolling stainless steel from imported stainless steel coils and slabs.

Brazil.—Electrical power cost and availability were problems to Brazilian ferroalloy producers. Cia. de Ferro-Ligas Bahia S.A. (FERBASA), Brazil's ferrochromium producer, experienced power rationing for part of the year because of a prolonged drought. FERBASA also sought a price increase for domestically sold ferrochromium from the Interministerial Prices Council because prices had been frozen since March 1986. The Ministry of Finance authorized a 10% increase in ferrochromium prices. About 70% of FERBASA's production was consumed in Brazil.

Brazilian ferroalloy producers obtained Government approval to build private hydropower plants. The plants were planned to be financed privately, and electricity was to be transported by the national power grid. It was anticipated that private hydropower for the ferroalloy producers would result in lower ferroalloy production cost.

Associação Brasileira dos Produtores de Ferroligas reported 1987 production of 102,940 tons of high-carbon ferrochromium, 13,237 tons of low-carbon ferrochromium, 8,906 tons of ferrochromium-silicon, and 136 tons of chromium metal. Internal sales were reported to have been 81,930 tons of high-carbon ferrochromium, 12,817 tons of low-carbon ferrochromium, 662 tons of ferrochromium-silicon, and 123 tons of chromium metal. Export sales were reported to have been 18,721 tons of high-carbon ferrochromium and 28 tons of low-carbon ferrochromium.

Cuba.—A chromite ore processing plant was under construction in the Moa region.

The plant was expected to have a production capacity of about 55,000 tons per year. Its cost was estimated to be about \$11 million. Cuban refractory chromite production for 1986 was reported to have been about 118,500 tons, of which about 50,000 tons was expected. Production for 1987 was expected to surpass that of 1986 as Minera Holguin's processing plant, constructed in 1986, came into full production.

225

European Economic Community.—The European Economic Community (EEC) raised its 1986 duty-free import quota for 6% to 8% carbon ferrochromium from 132,000 to 243,000 tons in March and from 243,000 to 441,000 tons in November. EEC set 1988 quotas at 2,927 tons of not more than 0.10% carbon ferrochromium and 231,000 tons of more than 6% carbon ferrochromium. The quota for more than 4% carbon ferrochromium was not set at yearend.

EEC high-carbon ferrochromium producers filed a complaint with the EEC Commission alleging that Finland was dumping high-carbon ferrochromium in the EEC. EEC low-carbon ferrochromium producers requested the EEC Commission to reopen its antidumping complaint of 1983 against the Republic of South Africa, Turkey, and Zimbabwe. Although the EEC consumption of low-carbon ferrochromium fell from 58,000 tons in 1984 to 43,000 tons in 1987, EEC production fell from 46,000 tons in 1984 to 39,000 tons in 1987, and imports from the Republic of South Africa, Turkey, and Zimbabwe increased from 34,000 tons in 1983 to 37,000 tons in 1987.

France.—Construction of a ferrochromium plant at Dunkirk was begun with completion expected in 1988. The new plant was to produce 4% to 6% carbon ferrochromium initially, with a capacity of 16,000 tons per year. The new plant was being constructed by Ferroaleaciones Españolas S.A. (Fesa) of Spain and other investors known as Chromeurope S.A.

Germany, Federal Republic of.—Part of the Metallurg Group, Gesellschaft für Electrometallurgie mbH (GfE), resumed low-carbon ferrochromium production at GfE's Weisweiller plant. GfE closed its plant for furnace repairs and because of low market demand. GfE sought West German Government protection from lower priced imports. The West German specialty steel industry argued that 85% of ferrochromium currently consumed in the Federal Republic of Germany is high-carbon ferrochromium, a product GfE produced until 1986, when it

put its high-carbon ferrochromium furnaces on care and maintenance, and that an increase in low-carbon ferrochromium prices would make those steels that use it increase in price to above market prices.

Greece.—Hellenic Ferroalloys S.A. started construction of an ore-dressing plant to increase chromite concentrate production capacity from 60,000 to 120,000 tons per year. Hellenic also planned to increase its mine production to feed the new plant. The new production facilities were expected to become operational in 1988.

India.—Metals and Minerals Trade Corp. reported chromite ore exports for 1985-86 to have been 246,000 tons; 1986-87, 86,000 tons; and 1987-88 (estimated), 276,000 tons. Ferrochromium production was reported for fiscal year 1986-87 to have been 92,490 tons. The Geological Survey of India continued systematic drilling to identify chromite resources in the Sukinda Valley area. An additional 16 million tons of chromite may be added to reserves in the Damsal Nala area as a result of resource identification drilling.

OMC Alloys Ltd., a subsidiary of Orissa Mining Corp. Ltd., put its pellet roasting kilns into operation in April. OMC planned the construction of India's third chromite beneficiation plant and the second such plant in Orissa. OMC planned the construction of a briquetting plant along with the beneficiation plant. The beneficiation plant was to take low-grade ore (less than 50% Cr₂O₃), and the briquetting plant was to take high-grade ore (greater than 50% Cr₂O₃). The beneficiation plant was to produce at an annual rate of 93,000 tons. The briquetting plant was to produce 55,000 tons per year and was to feed local ferrochromium producers, including Indian Charge Chrome Ltd. (a subsidiary of Indian Metals & Ferro Alloys Corp. Ltd. (IMFA)), Indian Development Corp., and Ferro Alloys Corp. Ltd. (FACOR). The beneficiation plant and briquetting plant were expected to be completed in 1989. The development was part of an Indian trend toward production of the higher valued ferrochromium material, rather than lower valued ore, for export.

Tata Iron and Steel Co. Ltd. started expansion of its Sukinda chromite mine with installation of an ore beneficiation plant to treat low-grade ore, old lumps, and some overburden. Feed grade was expected to average about 20% Cr₂O₃; the product was to be about 50% Cr₂O₃. Plant equipment was to be supplied by Sala International AB

of Sweden and Mineral Deposits Ltd. of Australia.

IMFA continued construction of Indian Charge Chrome Ltd. (ICC). ICC includes a 50,000-metric-ton-per-year ferrochromium plant and a 108-megawatt coal-fired electric powerplant. IMFA has ferrochromium production facilities at Therubali and Choudhar. ICC expected construction to be completed in 1988. The Therubali plant produced for domestic consumption; the Choudhar plant was closed pending completion of its power supply.

FACOR operated ferrochromium plants at Randia, Orissa State, and Shreeramnagar, Andra Pradesh State. The Shreeramnagar smelter produced for domestic consumption. FACOR's Shreeramnagar smelter experienced a 40% cutback in electrical power owing to drought in that region. FACOR temporarily reduced exports while it repaired an electric furnace at the Randia smelter. FACOR had been producing about 45,000 tons of ferrochromium per year.

Indonesia.—A chromite mine was being developed by Acorn Diamond Indonesia. The mine, on the east coast of Central Sulawesi, had reserves containing about 1 million tons of ore. About 0.6 million cubic yards per year was to be processed to recover about 40,000 tons per year of 43% Cr₂O₃ concentrate containing less than 1% silica. The mine was owned and to be operated by two Indonesian companies, PT Palmabin and PT Bituminusa.

Iran.—Iran concluded a trade agreement with the German Democratic Republic in which Iran was to supply chromite in exchange for chemicals, metals, plastics, and other materials.

Japan.-The Ministry of International Trade and Industry budgeted about \$15.7 million for fiscal year 1987 (April 1, 1987, through March 31, 1988) to purchase stockpile materials. The Japanese Government planned to buy the equivalent of 42 days of domestic consumption for the Government stockpile and 18 days of consumption for the private stockpile by 1991. By the end of fiscal year 1987, Japan planned to have stockpiled about 32 days' supply of ferrochromium, of which 22 days' supply would be in the Government stockpile and about days in the private stockpile. The amount of ferrochromium in the stockpile at the end of fiscal year 1987 was estimated to be about 48,980 tons.

Awamura Metal Industry Co. Ltd. closed its ferrochromium smelter in Uji, Kyoto

Prefecture. The plant had a production capacity of 40,000 tons per year from a 25-

megavolt-ampere furnace.

Japan Metals & Chemicals Co. Ltd. (JMC) stopped ordering chromium ore for its Sakata ferrochromium smelter in Yamagata Prefecture. The Sakata plant was one of three operated by JMC. The plant had a production capacity of 47,000 tons, but produced only 21,000 tons in 1986. JMC proposed to close the Sakata plant and increase production at its Oguni, Yamagata Prefecture, and Kita Kyushu, Fukuoka Prefecture, plants. Oguni had an annual capacity of 20,000 tons of low-carbon ferrochromium and 18,000 tons of high-carbon ferrochromium; capacity at Kyushu was 75,000 tons of high-carbon ferrochromium. Sumitomo Metal Co. negotiated sale of the Sakata plant to China.

Kurimoto Iron Works Ltd., a member of the Kawasaki Steel Corp. group, ended ferrochromium production in April.

Japan reported 1987 calendar year imports of 743,776 tons of chromite ore from which it produced 305,511 tons of highcarbon ferrochromium, 36,264 tons of lowcarbon ferrochromium, and 13,946 tons of ferrochromium-silicon. Japan imported an additional 471,470 tons of ferrochromium and 7,899 tons of ferrochromium-silicon. Japan exported 1,024 tons of greater than 0.1% carbon ferrochromium and 4,359 tons of other ferrochromium. Stainless steel production in Japan was 2,613,585 tons, exceeding that of each of the preceding 5 years.

Korea, Republic of .- Pohang Iron and Steel Co. Ltd. (Posco) planned to start hotstrip coil stainless steel production in 1988. Annual hot-rolled startup production capacity of 260,000 tons was planned, with a plant design that permits expansion to 420,000 tons. Posco has been working with West German companies to construct an electric melting furnace and an argon-oxygen decarburization refining furnace for the production of stainless steel since March 1987. Sammi Steel Co. Ltd. and Samyang Metal Co. produced cold-rolled stainless steel strip from Japanese produced hot-rolled strip.

New Caledonia.—The Mining and Energy Bureau of Statistics of New Caledonia reported 1986 chromite concentrate production to have been 79,594 tons. Production in 1987 was estimated at 72,000 tons. The decreased production resulted from decreased demand from China.

Oman.—Oman Mining Co. was reportedly producing about 7,000 tons of chromite per year for export from a capacity of about 20,000 tons per year. French companies were expected to start mining chromite deposits.

Pakistan.-Pakistan Chrome Mines had been producing about 3,000 to 4,000 tons of metallurgical-grade chromite per year from an underground mine at Muslim Bagh in Zhob District of Baluchistan Province. The mine had a capacity of about 30,000 tons per year. Mineral Grinding Mills mined chromite near Baranlak in Khuzdav District with a capacity of about 10,000 to 20,000 tons per year. Paracha Brothers (Pty.) Ltd. was operating on a trial basis beneficiating chromite in Karachi that came from a mine North-West Frontier Province near Peshawar and four mines in Baluchistan near Dalbandin, Nokkundi, Kharan, and Khuzdar. Paracha anticipated developing a 20,000-ton-per-year production capacity.

The Sudan Development Authority located 0.410 million ton of chromite reserves in the North-West Frontier Province. Mining International Ltd. sought a joint venture with the Sudan Development Authority to

develop a deposit near Kohistan.

South Africa, Republic of.—The Minerals Bureau reported South African production of chromite in 1986 to have been 3,805,770 tons, and that of chromium ferroalloys, 964,722 tons. Chromite production in 1987 was estimated at 3,680,000 tons.

Chromore Ltd., 51% owned by S. A. Manganese Amcor Ltd. (Samancor), operated five mines: Groothoek, Montrose, Mooinooi, Tweefontein, and Waterkloof. Shallow mining was started at Grasvally and Ruighoek, which had been closed down. Chromore reactivated the Jagdlust Mine. Rand Mines operated the Winterveld and Henry Gould Mines.

Chromecorp Technology (Pty.) Ltd., a newly organized chromium producer, purchased Chroombronne Mine from Erts Handel (Pty.) Ltd. Chromecorp Technology was producing with a capacity range of 130,000 to 170,000 tons per year at its Chroombroone Mine near Kroondal, Transvaal. Mine expansion to a production capacity of 250,000 tons per year was planned to meet anticipated chromium ore demand by Chromecorp Technology's planned ferrochromium smelter.

Western Platinum Ltd. (Wesplat), a primary platinum-group metals (PGM) producer, announced plans to double production over a 5-year period from the UG2 chromitite seam. The chromite byproduct of UG2 chromitite seam PGM mining has been stockpiled, and increased production from the seam was expected to increase the quantity of stockpiled material. The technologic feasibility of ferrochromium production from Wesplat's byproduct chromite was demonstrated by the Council for Mineral Technology.

Batlhako Ferrochrome (Pty.) Ltd., a new ferrochromium producer in Bophuthatswana, started production. The plant's production capacity was 25,000 metric tons per year, and the plant was being supplied chromite by Batlhako Mining Ltd. from the Ruighoek Mine. The smelter was at the minesite. Marketing for Batlhako was being handled by Samancor.

Tubatse Ferrochrome (Pty.) Ltd. planned to increase its ferrochromium production capacity by increasing furnace size to permit greater power consumption and by beneficiating slag. The capacity increases would be about 20,000 tons per year by increasing furnace production and about 8,000 tons per year by slag processing. Tubatse was operating with a capacity of about 150,000 tons per year before furnace modifications. One furnace was relined and modified, and other plant modifications to increase production capacity were expected to be completed in 1988.

Ferrometals Ltd. operated five ferrochromium-producing furnaces with total production capacity of about 332,000 tons per year and two refining furnaces with a total capacity of about 50,000 tons per year of intermediate carbon (carbon between 0.1% and 4%). Ferrometals was studying a direct-reduction process to increase production capacity.

Middelburg Steel & Alloys Holdings (Ptv.) Ltd. (MSA) modernized its low-carbon ferrochromium production facilities at Middelburg, Transvaal. These renovations permitted MSA to produce special grades of lowcarbon ferrochromium. MSA worked with Showa Denko (Japan) to develop lownitrogen (0.02% maximum) and ultralowcarbon (0.015% maximum) grades. Modernization included the installation of air pollution control equipment; a ferrochromiumsilicon holding furnace for decarburization: and crushing, sizing, computer process control, and electronic weighing equipment. MSA developed a smelt processing that permits production of low-carbon ferrochromium containing 57% to 67% chromium from chromite mined in Transvaal. Lowcarbon ferrochromium was produced in low-

chromium (less than 60% chromium), medium-chromium (60% to 65% chromium), and high-chromium (greater than 65% chromium) grades. As a result of modernization, MSA has increased its low-carbon ferrochromium production capacity at Middelburg from about 40,000 to about 50,000 tons per year. MSA decided to increase its charge-grade high-carbon ferrochromium production capacity by increasing production capacity of its direct-current plasma arc furnace at Krugersdrop, Transvaal. Furnace modification from a 16-megavoltampere to a 40-megavolt-ampere electrical power capacity was started. Modification was expected to be completed in 1988. Production capacity as a result of the furnace modification was to increase from 20,000 to 40,000 tons per year of charge-grade high-carbon ferrochromium. MSA considered adding a prereduction step to its charge-grade high-carbon ferrochromium production process at Middelburg to increase production capacity. A decision on whether to add prereduction and in what way to add it was expected in 1988.

A new charge-grade high-carbon ferrochromium plant with a 130,000-ton-per-year capacity was planned by Chromecorp Technology. The plant was to be near Rustenburg, Transvaal. The plant was expected to cost about \$26 million and be composed of two 30-megavolt-ampere electric arc furnaces. The plant was to be constructed about 18 kilometers from its ore supplier, Chroombronne Mine.

Spain.—Fesa was constructing a ferrochromium plant at Dunkirk, France. Fesa's plant at Medina Del Campo, Valladolid Province, had a production capacity of 37,000 tons per year of 65% chromium high-carbon ferrochromium. Production was only about 20,000 tons per year owing to electrical power limitations. Fesa was negotiating an interruptible electrical power supply contract with Spanish power authorities. (See "France" in this section.)

Swaziland.—A new 60,000-ton-per-year high-carbon ferrochromium plant was planned by Swazi Chrome. The company negotiated with the Swaziland Government for installation of power lines and for power rates. Plant construction was expected to start upon favorable outcome of power rate negotiations.

Sweden.—SwedeChrome AB at Malmö started high-carbon ferrochromium production. SwedeChrome expected to reach full production capacity of 86,000 tons per year in 1988. At capacity production, Swede-Chrome also would produce 380 gigawatthours of recovered thermal energy converted to electrical energy annually that was to be sold to the local power authority, and 94,000 tons of slag that was to be used for landfill upon receipt of an environmental permit to do so. At full-capacity production. the plant was expected to consume annually about 190,000 tons of chromite, 39,000 tons of coal, 20,000 tons of sand, 17,000 tons of limestone, 12,000 tons of coke, and 345 gigawatt-hours of electrical energy.

Vargon Alloys AB, Sweden's only established ferrochromium producer, was purchased by Vargon management and Mellanfonden, a Swedish wage earner fund, from Fides Treuhand GmbH (a Swiss holding officials Four management company). purchased 65%; Mellanfonden, 35%. Vargon operated two ferrochromium-producing furnaces: a 24-megavolt-ampere furnace that could produce 27,000 to 33,000 tons of high-carbon ferrochromium per year (operated at about 16 megawatts), and a 105megavolt-ampere furnace that could produce about 83,000 to 88,000 tons of chargegrade high-carbon ferrochromium per year (operated at about 51 megawatts). Vargon obtained chromium ore primarily from Finland and sold its ferrochromium in Sweden, the Federal Republic of Germany, and the United Kingdom.

Turkey.-Etibank's Antalya low-carbon ferrochromium smelter had a production capacity of about 10,000 tons per year, but production has never exceeded about 8,000 tons per year. Etibank continued construction of additional high-carbon ferrochromium production capacity at its Elâzig plant, located about 380 miles by rail from the Port of Iskenderun at Elâzig, Guleman. The original plant contained two 17-megavolt-ampere furnaces that, together, gave the plant about 50,000 tons per year of highcarbon ferrochromium production capacity. The two new furnaces, together, representing an additional 100,000 tons per year of capacity, were built by Elkem (Norway). Plant process equipment was supplied by Outokumpu Oy (Finland), and construction was by Voest-Alpine AG (Austria). The new furnaces were to be fed sintered and rotarykiln-prereduced ore. Production from the new furnaces was expected to start in 1988. Production from the new furnaces at Elâzig was expected to consume most of Turkev's currently excess metallurgical chromite production.

Yugoslavia.—Hek Jugohrom converted a 24-megavolt-ampere furnace from highcarbon ferrochromium to ferrosilicon production and planned also to convert a 14megavolt-ampere furnace. Jugohrom continued production of low-carbon ferrochromium from three 8-megavolt-ampere furnaces that had an annual production capacity of about 13,000 tons. Dalmacija Carbide and Ferro Alloy Works converted a ferrosilicon furnace to high-carbon ferrochromium, adding 30,000 to 39,000 tons per year of production capacity.

Zimbabwe.—Zimbabwe reported chromite production of 609,694 tons, up from 1985 production of 580,350 tons. Twenty-three chromite mining cooperatives have been developed in Zimbabwe, aided by Zimbabwe Mining Development Corp. and the Department of Mining Engineering in the Ministry of Mines. The cooperative mines accounted for about 35,000 tons of production in 1986, supplying Zimbabwe Alloys Ltd. (Zimalloys) with about 27% of its needs and Zimbabwe Mining and Smelting Co. (ZIMASCO) with about 12% of its needs. The Ministry of Mines, Zimalloys, and Union Carbide Zimbabwe (Pvt.) Ltd. entered a joint venture to test specialized mining equipment designed for the narrow north section of the Great Dyke seam.

ZIMASCO started construction of an induction remelting furnace that was to add about 17,000 tons of production capacity to its current 180,000 tons per year of highcarbon ferrochromium production capacity. The new induction remelting furnace was expected to be completed and in operation in 1989. ZIMASCO planned to restart a 12.5megavolt-ampere furnace in 1988. That furnace has a 17,000-ton-per-year high-carbon ferrochromium production capacity and was typically held in reserve for use when other furnaces were under repair.

Zimalloys converted its S1 furnace from ferrochromium-silicon to high-carbon ferromanganese production.

Table 16.—Chromite: World production, by country¹

(Thousand short tons, gross weight)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Albania ^e	755	794	909	940	915
Brazil ³	r ₁₇₈	r ₂₈₇	209	r e ₂₂₀	250
Cuba ⁴	37	41	e ₄₀	r e ₁₂₀	135
Finland ⁴	271	492	558	747	785
Greece ⁵	30	68	65	e 68	70
India	397	466	617	679	575
Iran	53	65	62	r e ₆₂	62
Japan	9	8	13	12	13
Madagascar	50	66	140	91	110
New Caledonia	101	93	87	80	68
Oman	e26	8	, 	7	7
Pakistan	7	3	6	9	9
Philippines	294	288	300	e202	190
South Africa, Republic of 6	r _{2,718}	3,756	4,077	4,307	4,175
Sudan ^e	22 381	22 537	⁷ 10	500	660
Turkey U.S.S.R. ^{e.s}			649	599	660
	3,240 18	3,240 18	3,240	r _{3,470}	3,470
m. 1 1	463	525	17	17	17
Zimbabwe	400	929	591	588	595
Total	r9,050	r _{10,777}	11,590	12,227	12,115

Preliminary. ^eEstimated. rRevised.

¹Table includes data available through May 6, 1988.

Exports of direct-shipping ore plus production of concentrates.

*Includes production by Bophuthatswana, which was as follows, in thousand short tons: 1983—258 (revised); 1984—442; 85—395; 1986—500; and 1987—496 (estimated).

⁷Reported figure.

TECHNOLOGY

The Bureau of Mines reviewed, evaluated, and compiled thermodynamic data on chromium monosulfide and dichromium trisulfide.4 The Bureau investigated the carbonyl process in techniques for the recovery of chromium from domestic primary and secondary sources. Chromium metal was subjected to a carbonylization test, and carbonylization metal extraction was applied to stainless steel, stainless steel slag, and superalloy scrap and grinding waste.5

The LG-6 chromitite layer of the Bushveld Complex was studied. It was found that spiral separation of chromite from host rock concentrated the PGM content of the tailings. For those operations that mine the LG-6 seam and spiral-concentrate the ore, there may be sufficient concentration of PGM in chromite mine tailings to support PGM recovery.6 Chromite mining technology developed at the Kokkinorotsos deposit of the Hellenic Mining Co. in Cyprus was reported. Cemented hydraulic fill was adopted at the Kokkinorotsos Mine to

compensate for unstable and potentially dangerous host rock. The technique provided greater flexibility in mine design and greater ore recovery.7

The thermodynamics of chromite ore smelting were studied. Reaction mechanism and rates were proposed, and carbon contents of up to 60% chromium were calculated.8 A smelting reduction process was being developed. Chromite smelting was achieved in an experimental blast furnace, and a pilot plant was built.9 Development of the ferrochromium industry was studied. High-carbon ferrochromium producers were found to have been driven by quality and cost requirements to operate at high efficiency and to develop new processess that are energy efficient and use inexpensive raw materials.10 Steel industry trends were studied as they affected ferrochromium production. Process control resulted in the use of high-carbon ferrochromium as charge material and low-carbon ferrochromium as a trimming material. That trend, with the

²In addition to the countries listed, Bulgaria, China, and North Korea may also produce chromite, but output is not reported quantitatively and available general information is inadequate for formulation of reliable estimates of output

levels. Figures for all countries represent marketable output unless otherwise noted.

3Figures are sum of (1) crude ore sold directly for use and (2) concentrate output, both as reported in Brazilian sources. Total run-of-mine crude ore production (not comparable to data for other countries) was as follows, in thousand short tons: 1983—517; 1984—782; 1985—802; 1986—810 (revised, estimated); and 1987—830 (estimated).

*Direct-shipping lump ore plus concentrates and foundry sand.

Estimates for 1985 and 1987 are based in part on crude chromium ore output reported in Soviet sources as 3,704 and 3,968 thousand short tons, respectively.

associated decline in use of medium-carbon ferrochromium, was expected to continue.11

Plasma smelting technology applied to chromium ferroalloy production was reviewed, and the MSA and PlasmaChrome processess were discussed. Advantages claimed for the plasma smelting process included decreased electrode consumption, less critical selection of feed, wide selection of carbon reductants, wide range of slag composition, improved process control, continuous-feeding operation. and noise.12 Ferrochromium production started at SwedeChrome using a plasma-torchheated shaft furnace. Successful operation of the MSA direct current electric arc plasma furnace at 16 megavolt-amperes resulted in Middelburg's decision to increase furnace capacity to about 40 megavoltamperes.

The Bureau of Mines studied the use of chromium-free steel to substitute for hightonnage heat-treatable alloy steels used to manufacture gears, shafts, and other machine parts. Manganese and molybdenum were used in place of chromium to achieve hardenability and transformation characteristics comparable to those of chromium steels used for the same purpose. The chromium-free steel could be produced without changing manufacturing procedures or equipment.13 The Bureau studied crack propagation and spalling of white cast iron balls. The mechanism of spalling in 3 high-chromium white cast irons subject to 10 different heat treatments was determined.14 The substitution of manganese for chromium in high-speed tool steels was studied; only 1% manganese could be tolerated before performance was compromised.15

The National Aeronautics and Space Administration studied the importance of chromium to superalloys. Chromium content was increased from about 20% to about 25% to achieve greater grain oxidation resistance. However, the higher chromium content was perceived to have a deleterious effect on strength. As a result chromium was reduced to about 10% in favor of aluminum for oxidation resistance. The reduced chromium content led to the onset of hot corrosion-enhanced oxidation from sodi-

um and sulfur.16

The position of the Western European ferrochromium industry was studied. The character of chromium ore supply and the transportation cost advantage of chromiteproducing countries were identified. To ensure long-term supply competitiveness, ferrochromium producers in nonchromiteproducing countries had to offset their transportation cost disadvantage through lower cost electrical energy supply, greater energy recovery, greater chromium yield, and/or transportation advantage to the end user market.¹⁷

¹Physical scientist, Branch of Ferrous Metals.

Chromium. Oct. 1987, 130 pp.

*Pankratz, L. B., A. D. Mah, and S. W. Watson. Thermodynamic Properties of Sulfides. BuMines Bull. 689, 1987,

pp. 85-88.

SVisnapuu, L., and L. C. George. Recovery of Critical Metals by Carbonyl Processing. BuMines RI 9087, 1987,

Wisnapuu, L., and L. C. George. Recovery of Carbonyl Processing. BuMines RI 9087, 1987, 18 pp.

"Yon Gruenewaldt, G., and C. J. Hatton. Platinum-Group Metals—A Resource in the Tailings of Chromium Mines in South Africa. J. S. Afr. Inst. Min. and Metall., v. 87, No. 9, Sept. 1987, pp. 265-268.

"Terezopoulos, N. G. Ground Control With Use of Cemented Hydraulic Fill at Kokkinorotsos Chrome Mine, Cyprus. Trans. Inst. Min. and Metall. (Sec. A: Min. Ind.), v. 96, Apr. 1987, pp. A41-A46.

"Healy, G. W. The Thermodynamics of Chromite Ore Smelting. Iron and Steel Maker, Dec. 1987, pp. 51-59.

"Hamada, T., S. Takeuchi, K. Igawa, H. Katayama, H. Itaya, and K. Nakanishi. Development of Kawasaki Smelting Reduction Process for the Production of Iron and Ferroalloys. Paper in Proceedings, Iron & Steel Conference, Process Technology, 1986, pp. 435-439.

American Metal Market. V. 95, Apr. 9, 1987, p. 3.

10 Sciarone, M. The Production of Ferrochrome for the Stainless Steel Industry: Past, Present and Future. Iron and Steel Maker, Apr. 1987, pp. 28-29.

11 Aukrust, E. Trends in Steel Developments and Their Impact on Ferroalloy Production. Iron and Steel Maker, Apr. 1987, pp. 22-27.

12 MacPac D. R. Application of Plasma Technology to

11 Aukrust, E. Trends in Steel Developments and Their Impact on Ferroalloy Production. Iron and Steel Maker, Apr. 1987, pp. 22-27.
 12 MacRae, D. R. Application of Plasma Technology to Ferroalloy Processing. Ch. 12 in Plasma Technology in Metallurgical Processing. Iron and Steel Society, Warrendale, PA, 1987, pp. 149-161.
 13 Cameron, T. B. Production and Testing of a Chromium-Free Heat-Treatable Alloy Steel. BuMines OFR 31-87, May 1987, 66 pp.
 14 Laird, G., W. K. Collins, and R. Blickensderfer. Crack Propagation and Spalling of White Cast Iron Balls Subjected To Repeated Impacts. Paper in Proceedings of the International Conference on Wear of Materials, Houston, TX, Apr. 5-9, 1987. Am. Soc. Mech. Eng., New York, v. 2, 1987, pp. 797-806.
 16 Haberling, E., and I. Schruff. Substitution of Chromium in High Speed Tool Steels. Thyssen Edelstahl Technische Berichte, v. 13, No. 1, Feb. 1987, pp. 57-63.
 16 Stephens, J. R. Superalloy Resources—Supply and Availability. NASA Tech. Memo. 89866, Apr. 1987, 46 pp.
 17 Wahlberg, G. The Future of the West European Ferrochrome Industry and Strategies for Ensuring Long-Term Supplies. Paper in Proceedings, 6th International Ferroalloys Conference, Monte Carlo, Nov. 11-13, 1987. Met. Bull. (London).

²All tonnages are in short tons unless otherwise specified. ³U.S. Public Health Service. Toxicological Profile for

Clays

By Sarkis G. Ampian¹

Total quantity of clays sold or used by domestic producers increased 7% in tonnage and 10% in value to a new record high \$1.20 billion. This increase in production continues the upward trend in clay output for 5 of the last 6 years. Clays in one or more of six classification categories-ball clay, bentonite, common clay and shale, fire clay, fuller's earth, or kaolin-were produced in 44 States and Puerto Rico. Clay production was not reported in Alaska, Delaware, the District of Columbia, Hawaii, Rhode Island, Vermont, or Wisconsin. The leading producing States, in descending order, were Georgia, Texas, North Carolina. Ohio, Alabama, California, and Wyoming. Unpredictable differences in the costs of fuels such as coal, gas, and oil, were still a major concern to clay producers and manufacturers trying to reduce operating costs. Industrywide efforts to economize and obtain alternative competitive fuels, as well as to modernize, were commonplace during 1987. Environmental restrictions and accompanying costs, combined with rising capital costs at yearend, began to slow production.

Production of common clay and shale increased because of an upturn in construc-

tion. This upturn was due to low prevailing interest rates and to an improving business climate for most of the year, both of which increased demand for clay building materials. Construction activity, traditionally slow during the last quarter, was further slowed by increases in the prime lending rate. An exception to the Nation's overall buoyant construction industry was noted in the oilproducing States of the Southwest. There, declining revenues depressed overall residential, business, and Government activity. However, steady oil prices and an increased number of operating oil and gas rigs increased optimism in the area during the last quarter, apparently ending the area's malaise.

Increases in production of specialty clays resulted from an improvement in the overall economy and a strong export demand attributed to the weakening U.S. dollar. The declining steel, oil and gas exploration, and foundry industries, all major consumers of specialty clays, had adjusted to their lowest levels of production and prepared to take advantage of both the strong export demand and improved domestic economy.

Table 1.—Salient U.S. clays and clay products statistics1

(Thousand short tons and thousand dollars)

	1983	1984	1985	1986	1987
Domestic clays sold or used by producers:					
Quantity	40,858 \$931,092	43,702 \$1,032,127	44,974 \$1,011,377	44,620 \$1,095,179	47,657 \$1,202,284
Quantity Value Value Imports for consumption:	2,484 \$254,237	2,699 \$295,733	2,780 \$309,871	2,913 \$351,161	3,332 \$512,964
Quantity Value Clay refractories shipments: Value Clay refractories products shipments: Value Clay construction products shipments: Value	21 \$3,488 \$595,299 \$1,160,543	32 \$4,868 \$782,308 \$1,342,196	\$5,981 \$629,738 \$1,427,851	38 \$7,501 \$529,268 \$1,601,640	38 \$9,392 \$617,493 \$1,782,023

¹Excludes Puerto Rico.

Kaolin accounted for 18% of clay production but 64% of clay value. Kaolin production of 8.8 million short tons and exports of 2.0 million tons were record highs. Ball clay and fuller's earth production matched past record-high years.

Domestic Data Coverage.—Domestic pro-

duction data for clays are developed by the Bureau of Mines from one voluntary survey of U.S. operations. Of the 1,131 operations covered by the survey, 1,116 responded, representing 99% of the total clay and shale production sold or used and shown in table 1

Table 2.—Clays sold or used by producers in the United States in 1987, by State¹
(Short tons unless otherwise specified)

State	Ball clay	Ben- tonite	Common clay and shale	Fire clay	Fuller's earth	Kaolin	Total	Total value
Alabama	24 - 1	w	2,071,690	126,840		40,441	² 2,238,971	2\$16,216,547
Arizona		28,530	189,621				218,151	1,905,317
Arkansas	. ==	20,000	706,185		22	202,209	908,394	8,651,462
California		116,293	2,092,234			87,805	2,296,332	33,045,543
Colorado	'	100	289,002			2,948	292,050	1,763,455
Connecticut			W				W	W
Florida			127.518		431.147	38,522	597,187	39,496,244
Georgia	==	===	2,439,686		591,234	7,423,820	10,454,740	756,093,514
Idaho		w	W			8,944	21,781	229,835
Illinois			232,949		w	· ' ·	³ 232,949	3977,048
Indiana			1.036,669	w			41.036,669	44,055,534
Iowa			472,788				472,788	1,494,770
Kansas		w	603,680				² 603,680	² 2,575,572
	337		883,267	w			3 41,030,518	3 48,820,874
Kentucky	W						356,904	9,191,774
Louisiana			356,904 W				W	W
Maine			383,054				383.054	1,939,968
Maryland			365,034 W			-	W	T,000,000
Massachusetts_			1,333,498				1,333,498	5,338,433
Michigan			1,555,456 W			$\bar{\mathbf{w}}$	1,000,400	0,000,100 W
Minnesota	$\bar{\mathbf{w}}$	$278, \overline{871}$	559,955		w		1,123,325	26,932,947
Mississippi	vv			336.088	w		31,475,837	310,414,581
Missouri			1,139,749		VV		⁴ 28,879	⁴ 98,270
Montana			28,879	W		·	223,728	721.059
Nebraska			223,728		w	w	65.424	2,468,190
Nevada		11,799	777		w	**.	W	2,400,130 W
New Hampshire			w				55.985	⁵ 139.768
New Jersey			W	5,985				141,110
New Mexico			50,350	898			51,248	3,562,468
New York			672,635			$55,\overline{516}$	672,635	15,282,025
North Carolina	500		3,173,037			99,910	3,229,053	99,701
North Dakota _			50,101	201 200			$50,101 \\ 3,187,270$	12,713,992
Ohio			2,895,970	291,300				1,782,741
Oklahoma		10.55	797,301				797,301	985,880
Oregon		18,147	249,677	~~~~			267,824	64,750,71
Pennsylvania _			1,182,748	23,373		W	61,206,121	317,75
Puerto Rico			148,029				148,029	
South Carolina			1,244,886		139,194	809,460	2,193,540	³ 38,243,426 W
South Dakota _			· W		· · · · · · · · · · · · · · · · · · ·		. W	
Tennessee	691,570		569,303		W		31,260,873	325,480,282
Texas	w	27,547	3,283,652	4,225	w	W	3,474,976	25,959,470
Utah		29,000	286,154				315,154	1,958,94
Virginia			1,171,442		w		31,171,442	36,291,100
Washington			412,031	3,562			415,593	2,355,95
West Virginia _			266,037				_ 266,037	564,57
Wyoming		2,127,645	W				⁵ 2,127,645	562,031,12
Undistributed _	291,735	168,301	703,316	11,280	895,216	157,545	7 1,569,629	⁷ 67,509,91
Total	983,805	2,806,233	32,327,725	803,551	2,056,791	8,827,210	47,805,315	1,202,601,873

W Withheld to avoid disclosing company proprietary data; included with "Total" and/or "Undistributed."

¹Includes Puerto Rico.

²Excludes bentonite.

³Excludes fuller's earth. ⁴Excludes fire clay.

⁵Excludes common clay.

⁶Excludes kaolin.

⁷Incomplete total; difference included with individual State totals.

235

Table 3.—Number of mines¹ from which producers sold or used clays in the United States in 1987, by State

CLAYS

State	Ball clay	Bentonite	Common clay and shale	Fire clay	Fuller's earth	Kaolin	Total
Alabama		1	22	5		. 9	37
Arizona		5	5				10
Arkansas			17			6	23
California	1	$-\frac{1}{5}$	68			5	79
Colorado		1	32	8			41
Connecticut			2				2
Florida			3		4	1	8
Georgia			16		8	86	110
Idaho		1	2	1		2	. 5
[llinois			10		2		12
Indiana			16			2	18
lowa			10				10
Kansas		1	18				19
Kentucky	6		11	2			19
Louisiana		1	- 8				9 3 8 3 5
Maine			3				3
Maryland	1		7				8
Massachusetts			3				3
Michigan			. 5				5
Minnesota			. 1			2	3
Mississippi	1	6	20		1		28
Missouri			12	42	2	1	57
Montana		9	5	1			15
Nebraska			5				5
Nevada		6				$-\overline{2}$	8
New Hampshire			1				1
New Jersey			1	1			2
New Mexico			4	2			6
New York	1		10				11
North Carolina			54			2	56
North Dakota			3				3
Ohio			58	15			73
Oklahoma			18				18
Oregon		12	8				20
Pennsylvania			36	11		1	48
South Carolina			30		$-\frac{1}{3}$	18	51
South Dakota		1	1				2
Tennessee	17		7		3		27
Texas	1	11	64	2	1	1	80
Utah		3	18		1		22
Virginia			15		1		16
Washington			10	3			13
West Virginia			3	1			4
Wyoming		137	2				139
Total	28	200	646	93	26	138	1,131

¹Includes both active and idle operations.

DOMESTIC PRODUCTION, PRICES, AND FOREIGN TRADE, BY TYPE OF CLAY

KAOLIN

Domestic production of kaolin increased 3% to 8.8 million tons, while its reported value increased more than 11% to \$775.3 million. Both the reported output and value, for the second consecutive year, reached record highs. Kaolin, in general, and filler grades, in particular, have enjoyed steady increases in demand for the past 15 years, with output rising from 6.0 million tons in 1973 to this year's record-high tonnage of 8.8 million. The average unit value for all grades of kaolin rose about 8% to \$87.83 per

ton. Kaolin was produced in 13 States, with Georgia and South Carolina accounting for 93% of total production. Arkansas, California, and North Carolina were the other three major producing States. Both Arkansas and California produce refractory- and chemical-grade kaolins. Kaolin producers reported major domestic end uses for their clay as follows: paper coating, 35%; paper filling, 19%; refractories, 8%; fiberglass and insulation, 6%; face brick, 5%; rubber, 4%; and chemicals, 3%.

Kaolin is a white, claylike material approximating the mineral kaolinite. It has a

specific gravity of 2.6 and a fusion point of 1,785° C. The other kaolin-group minerals, such as halloysite and dickite, are encompassed.

Kaolin production was spurred by the continuing growth of the overall economy, particularly increased paper production. Strong demands for paper-, catalyst-, plastic-, and paint-calcined grades, combined with a strong export demand due to the weakening U.S. dollar, led the way. Capacity increases in both washed and calcined grades of the early 1980's were insufficient, at times, to meet demand. Further capacity expansions were either under way or planned by many producers to meet the anticipated demands of the catalyst, paint, paper, and plastic manufacturers. Kaolin sales for refractories appeared to have rebounded slightly at yearend. Increased demand for high-alumina, kaolin-base refractory bricks and specialties by the cement, foundry, and steel industries was mostly responsible. The refractory industry had fully adjusted to new lower levels of production brought about by changes in steelmaking and refractories technology and imports. Production of the three paper-grade kaolins increased in 1987 nearly 11% from 5.3 to 5.9 million tons. Delaminated, water-washed, and lowtemperature calcined production increased 16%, 11%, and 6%, respectively.

All Georgia and South Carolina kaolin filler-extender-pigment producers, both airfloated and water-washed, continued to modernize to reduce operating costs and to produce higher valued products. Emphasis continued to be on energy-related costs and on expanding the production capabilities for calcined pigment lines used chiefly by the growing catalyst, paint, paper, plastics, and rubber industries. In this regard, kaolin expansions in Georgia were announced by Engelhard Corp.'s Specialty Chemicals Div. and Anglo-American Clays Corp. (a subsidiary of English China Clays (ECC) America Inc.). At yearend, Thiele Kaolin Co. Inc., Engelhard, broke ground for an \$80 million expansion of its calcined kaolin products manufacturing facilities in McIntyre and Gordon. Expected to be completed in late 1988, the enlargement will provide 300,000 tons per year (tpy) of additional calcined and ancillary support equipment. Anglo-American Clays completed its fourth calciner at its Sandersville complex, which will enable it to increase calcined kaolin output by more than 65%. Thiele Kaolin, also in Sandersville, started a \$50 million expan-

sion to begin production of calcined kaolin grades. Plans also called for extra mining and processing capabilities to support the new calcining operation. In noncalcined kaolin developments, a newly installed ozone bleaching facility owned by Nord Kaolin Co., a subsidiary of Nord Resources Corp., became fully operational during the year in Jeffersonville. Ozone bleaching is designed primarily to increase reserves by treating otherwise unusable crude gray kaolin clays. Georgia Kaolin Co., a subsidiary of Combustion Engineering Inc., requested permits to use gas-turbine exhausts from cogeneration projects in its spray-dryers at the American Industrial Clay Co. plant in Deepstep. If the permits are granted and the trials are successful on currently installed sprayer baghouses, it will signal a approach to reducing a major industrywide operating cost. Katalistiks International, a subsidiary of Union Carbide Corp., acquired land in Savannah to set up a new operation for manufacturing a secondgeneration line of fluid cracking catalysts (FCC) to complement its existing mix of catalysts, supports, and molecular sieves. In a reorganization, Cyprus Minerals Co. Inc. merged four groups of its industrial minerals division into a single unit. Presently, Cyprus Industrial Minerals has three operating companies, one of which produces a full line of soft and hard kaolins in Sandersville and Aiken, SC, respectively.

In development work, Georgia Kaolin undertook a drilling-feasibility study to determine if the quality and quantity of the reserves warranted a kaolin processing facility in Redwood Falls, MN. Nova Natural Resources Inc., also in Minnesota, canceled its request for a permit to operate a kaolin mine in Honner Township. Nova, although still interested in the kaolin project, planned to work jointly with the Northwestern Portland Cement Co.'s kaolin pit. Northwestern presently uses about 50,000 tpy of kaolin in cement production.

Aided by a weakening U.S. dollar and despite strong foreign competition, exports of kaolin, reported as clays by the U.S. Department of Commerce, increased nearly 28% to 2.03 million tons valued at \$340 million. The unit value of the exported clay increased to \$168.05, or nearly 25% more than that of 1986, indicating that a higher percentage of premium-quality grades was shipped. Kaolin, including calcined material was exported to 56 countries, 17 less than in 1986. The 17 countries were mostly small

importers. The major recipients, in descending order, were Japan, Canada, Italy, the Netherlands, and Mexico. Exports from Finland and Italy increased more than 300% and 50%, respectively. Imports to Finland in the past have been largely from the United Kingdom. Kaolin producers reported end uses for their exports as follows: paper coating, 71%; paper-filling, 18%; rubber, 5%; paint, 2%; and other, including ceramics, plastics, and refractories, the remainder.

Kaolin imports for consumption increased slightly to 10,524 tons valued at \$1.4 million. The unit price of kaolin imported from the United Kingdom, the leading source country, rose more than 14% to \$129.22 per ton, reflecting the strong worldwide demand for kaolins. China shipped kaolin to domestic consumers for the first time since these statistics were published.

Neither the quality nor the grade of the clay was discernible.

Kaolin prices quoted in trade journals generally advanced during the year. Chemical Marketing Reporter, December 28, 1987, quoted prices as follows:

Water-washed, fully calcined, bags, carload lots, f.o.b. Georgia, per ton _	¹\$260.00
Calcined, paper-grade, same basis,	
per ton	350,00
Paper-grade, uncalcined, bulk, car-	
load lots, f.o.b. Georgia, per ton:	
No. 1 coating	98.00
No. 2 coating	76.00
No. 3 coating	73.00
No. 4 coating	¹ 73.00
Filler, general purpose, same basis	, , , , , , , ,
per ton	¹ 59.00
Delaminated, water-washed, uncal-	00.00
cined, paint-grade, 1-micrometer	
average, same basis, per ton	¹ 250.00
Dry-ground, air-floated, soft, same	250.00
basis, per ton	38.00
National Formulary, powder, colloi-	00.00
dal, bacteria controlled, 50-pound	
bags, 5,000-pound lots, per pound	.25
bags, 6,000 pound lots, per pound	.20

¹Average of quoted prices.

Table 4.—Kaolin sold or used by producers in the United States, by State

State	1	986	19	987
State	Short tons	Value	Short tons	Value
Alabama	80,371	\$2,396,169	40,441	\$1,617,084
Arkansas	190,785	7,152,537	202,209	7,011,203
California	95,048	2,371,925	87.805	3,082,079
Colorado	,	-,,	2.948	149,586
Florida	35,414	$2.771.1\overline{46}$	38.522	3,089,946
Georgia	6,778,492	635,219,813	7,423,820	713,524,435
Idaho	1,644	W	8,944	W
Missouri	4,676	47.134	0,044	• •
North Carolina	51,000	1.442.490	55,516	1,516,127
South Carolina	1,063,088	35,588,061	809,460	35,516,618
Other ¹	248,964	8.859.945	157.545	
<u> </u>	240,304	0,009,940	157,545	9,784,815
Total	8,549,482	695,849,220	8,827,210	775,291,893

W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Includes Minnesota, Nevada, Pennsylvania, Texas, and data indicated by symbol W.

Table 5.—Kaolin sold or used by producers in the United States, by kind

Kind	19	986	19	987
- TAINU	Short tons	Value	Short tons	Value
Air-floatCalcined¹ DelaminatedUnprocessed Water-washed	1,454,675 1,185,088 915,641 1,121,499 3,872,579	\$78,092,960 166,701,281 56,809,167 14,712,850 379,532,962	1,571,742 1,204,459 1,057,857 713,415 4,279,737	\$74,028,189 202,977,802 103,533,884 14,695,875 380,056,143
Total	8,549,482	695,849,220	8,827,210	775,291,893

¹Includes both low-temperature filler and high-temperature refractory grades.

Table 6.—Calcined kaolin sold or used by producers in the United States, by State

		High-ter	nperature	Low-ten	nperature
	State	Short tons	Value	Short tons	Value
Alabama and Georgia _	1986	478,144 ² 184,244	\$33,273,985 ² 8,485,118	¹ 470,149 ³ 52,551	¹\$119,288,257 ³5,653,921
Total	: : 	662,388	41,759,103	522,700	124,942,178
Alabama and Georgia _	1987 	468,809 ² 180,669	33,765,315 ² 8,124,229	¹495,749 ³59,232	¹ 154,237,336 ³ 6,850,922
Total	·	649,478	41,889,544	554,981	161,088,258

Table 7.—Georgia kaolin sold or used by producers, by kind

	19	986	19	87
Kind	Short tons	Value	Short tons	Value
Air-float Calcined¹ Delaminated Unprocessed	913,849 915,581 915,641 210,336 2,823,085	\$35,111,526 159,331,295 56,809,167 7,297,076 376,670,749	976,909 924,117 1,057,857 235,591 4,229,346	\$38,330,548 186,385,567 103,533,884 8,176,477 377,097,959
Total	6,778,492	635,219,813	7,423,820	713,524,435

 $^{^{1}}$ Includes both low-temperature filler and high-temperature refractory grades.

 ¹Excludes Alabama.
 ²Includes Arkansas, California (1987), Colorado (1987), Idaho, Missouri (1986).
 ³Includes Pennsylvania and Texas.

Table 8.—Georgia kaolin sold or used by producers, by use

(Short tons)

			1986			19	1987	
Use	Air- float	Unproc- essed ¹	Water- washed ²	Total	Air- float	Unproc- essed ¹	Water- washed ²	Total
Domestic: Atherices	867 96		93 078	50.416	96.819		19 087	944 740
A Limitum sulfate and other chemicals	00 010	110,000	0.000	110,000	410,044	150,947	10,00	150,947
Annual red Asphalt tile and linoleum	30,012 13,512	1 1	43	30,012	33,950 15,558	1 1	1 1	33,950 15,558
Catalysts (oil refining) Pace brick	46,016	!	17,153	63,169	20,492	18 139	45,393	65,885
mineral wool	168,994		61,045	230,039	214,444	101101	59,253	273,697
Fine china and dinnerware; crockery and earthenware	20,510 62,565	1,377	95	21,887 65,383	22,732 59,277	8.368	1	22,732 67,645
Grogs and calcines, refractory	1	252,709	464	253,173	20,225	420,000	469	440,694
Medical, pnarmaceutical, cosmetic	12.787	1	207.203	1,291 219,990	406 15.572	1	237.768	1,469 253.340
Paper coating	1	1 1	2,313,664	2,313,664	1 1	1 1	2,485,279	2,485,279
Paper filling	178,920 3,600	1	1,153,431	1,332,351	212,544	1	1,114,071	1,326,615
Pottery	31,497	689	100,10	32.186	61.186	1 1	751,15	61.186
Refractories	39,091	31,699	8,151	78,941	1,555	28,848	5,014	35,417
Kooting granules	26,249 31,011	1	90 656	51,667	7,313 28,062	!	31 320	7,335
Sanitary ware	128,918	11,705	6,442	147,065	56,511	 	2010	56,511
Antiscentations, air-most. Common brick, fertilizers, evosum products, pesticides and related products, roofing and								
nse	48,212	t I	1	48,212	112,176	1	I	112,176
Miscellaneous, unprocessed: Pertilizers, pesticides and related products, other uses not specified	٠	54.866		54.866		37.664		37.664
Miscellaneous, water-washed:			1				l	
Gypsum products, ink, pesticides and related products, waterproofing and sealing, fertilizers, other uses not specified		1	170,388	170,388	ì	1	197,958	197,958
Total	868,332	465,768	4,040,331	5,374,431	909,240	663,959	4,245,321	5,818,520
11								
See footnotes at end of table.								

Table 8.—Georgia kaolin sold or used by producers, by use —Continued

			1986			19	1987	
Use	Air- float	Unprocessed ¹	Water- washed ²	Total	Air- float	Unproc- essed ¹	Water- washed ²	Total
Exports:								
Paint	124	1	112,446	112,570	127	1	31,985	32,112
Paper coating	27,386	- 1	776,962	804,348	28,492	1	1.154.774	1.183.266
Paper filling	5,065		222,479	227,544	22,390		284 347	306,737
	40	1		40	41	1	1	A1
Refractories	2	190 000	i	190 000	7	1	i	7
	1	222,024	1	200,000	12	i l	99 669	94 174
Undistributed	19.902	I L	56 657	69 559	16 108	1	49.869	58,414
		1	20,00	200,00	20161	:	100/12	0,000
Total	45.517	190.000	1.168.544	1.404.061	67.669		1 537 631	1 605 300
				1			2001,001	anotonot-
Grand total	913,849	655,768	5,208,875 6,778,492	6,778,492	606,976	663,959	5,782,952	7,423,820

Includes high-temperature calcined. Ancludes low-temperature calcined and delaminated. Includes electrical porcelain; floor and wall tile (ceramic); flue linings, high-alumina brick and specialties; glazes, glass, enamels; kiln furniture; and refractory mortar and cement.

Table 9.—South Carolina kaolin sold or used by producers, by kind

77:_1	1	986	1	987
Kind	Short tons	Value	Short tons	Value
Air-floatUnprocessed	506,705 556,383	\$31,298,499 4,289,562	537,116 272,344	\$32,017,582 3,499,036
Total	1,063,088	35,588,061	809,460	35,516,618

Table 10.—South Carolina kaolin sold or used by producers, by kind and use

Kind and use	1986	1987
Air-float:		
Adhesives	17,483	18,208
Animal feed and pet waste absorbent	3,603	3,459
Ceramics ¹	3.637	2.89
Fertilizers and pesticides and related products	6,732	20,308
Fiberglass		143,498
Paint		33
Paper coating and filling	8.644	18,54
Plastics	9,581	9,14
Rubber		194,28
Refractories ²		6.07
Other uses ³		63,97
Exports ⁴		56,400
Exports	33,414	30,400
Total	506.705	537.116
TotalUnprocessed: Face brick and other uses		272,344
Onprocessed. Pace office and other uses		212,04
Grand total	1,063,088	809,460

¹Includes floor and wall tile, pottery, and roofing granules.

²Includes refractory calcines and grogs; refractory mortar and cement; high-alumina refractories; and firebrick, blocks and shapes.

**Includes animal oil; catalysts (oil refining); chemical manufacturing; ink, medical; sewer pipe; and unknown uses.

**Includes ceramics, adhesives, paper filling, pesticides and related products, and rubber.

Table 11.—Kaolin sold or used by producers in the United States, by use

**		15	9861			19	1987	
Use	Air-float	Unprocessed ¹	Water- washed ²	Total	Air-float	Unproc- essed ¹	Water- washed ²	Total
Domestic:								
Adhesives	43.921		95 978	000 09	45,090		100	100
Aluminum sulfate and other chemicals		155,352	10,01	155,352	40,020	210.609	72,967	910,987
Prick common and face	33,615	1	3,259	36,874	37,409		4.000	41,409
Catalysts (oil and gas refining)	6,655	645,289	236	652,180	1	353,239	23	353,241
Cement, portland	101,020	904 330	14,193	124,681	64,261	100	47,911	112,172
China and dinnerware	20.209	1.377	3 000	94 596	91 097	81,288	1	81,288
Crockery and other earthenware	M	M	00000	000,#2 W	9 164	1	ì	728,12
Electrical porcelain	16,773	:	4,043	20,816	6,460	1 1	2.393	9,164 8,53
Fiboralon winers and all all all all all all all all all al	11	1	4,846	4,846	83		2,863	2,886
Firehrick blocks and shanes	268,387	100	98,990	367,377	358,276	1 1	100,253	458,529
Flow and woll #10, consent all and a series are a series and a series	66,031	2,723	95	68,849	84.743	33.846		118,580
	20,331	5,194	5,719	31,244	12,597	2,723	3.646	18 966
Foundry sand	661	87,903	400	88,964	694	68,800	24.06	69,494
(rogs and calcines refractions)	412	1000	13	412	1	1	. !	
Gypsim products and wellhoard	7,034	388,562	464	391,820	22,786	574,956	469	598.211
Ink	14,983	3,257	908	19,046	7,746	2,026	4,000	13,772
Kiln furniture, refractory mortar and cement	90 003	260 26	A 60 F	≯	88	I	2,243	2,328
Linoleum and asphalt tile	13,519	99,390	1,389	58,228	2,619	1	1,368	3,987
Medical, pharmaceutical, cosmetic	1,690	1	1 901	17,000	16,133	I	5,089	21,222
Paint	13,367	9 780	1,531	950 590	2,178	i t	1,063	3,241
Paper coating	000	6,16	9 915 664	0 015 664	10,904	3,573	267,768	287,245
Paper filling	187.564	!	1 159 491	1 240 005	1001 000	1	2,487,279	2,487,279
Pesticides and related products	7.004	11.509	2,700,401	90,778	160,162	17 000	1,114,071	1,345,162
Plastics	13,181	2006-	37,397	50,10	0,022	700'11	2,300	40,804
Pottery.	35,041	689	465	36.195	65,990	1	41,142	57,309
Rooting granules	26.868			97,269	7 919	1	18	99,238
Roofing and structural tile	348	;	2001	348	906	1	77	
Kubber	266.153	1	21 794	740 796	200 000	1	1000	282
Sanitary ware.	130,689	11.705	6,601	148 995	52,040	1	32,320	254,665
Waterproofing and sealing		2011-	M	W	00,401	4 050	1,000	59,437
Miscellaneous	53,017	12,481	191,833	257,331	120,275	7.334	195.971	823 580
Total		1 1 1 1						
	1,371,576	1,570,105	4,135,535	7,077,216	1,443,205	1,361,226	4,350,464	7,154,895
1								-

Exports: Ceramics	13,337 1,700 124	212,000	5,804	19,141 213,700 118,211	9,760 1,849 127	1 1 1	35,985	9,760 1,849 36,112
Paper filing	27,386 5,120	1 1	776,962 222,479	227,599	22,441 22,441		284,347	306,788
Plastics Rubber Miscoll species	$^{40}_{3,989}$	1,782	19,863 32,190	51,266 37,961	55,359 10,468	1,667	23,663 43,342	79,022 55,477
Total	83,099	213,782	1,175,385	1,472,266	128,537	1,667	1,542,111	1,672,315
It is a second total	1,454,675	1,783,887	5,310,920	8,549,482	1,571,742	1,362,893	5,892,575	8,827,210

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous."

*Includes high-temperature calcined.

*Includes low-temperature calcined and delaminated.

*Includes soil conditioners and mulches.

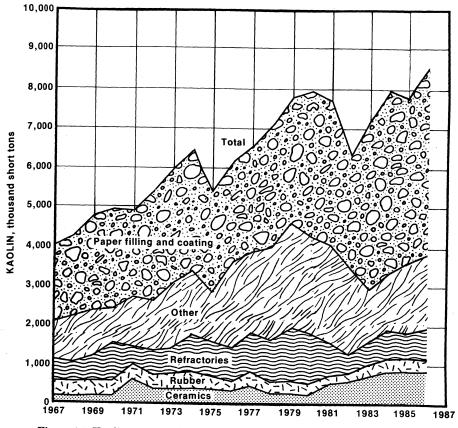


Figure 1.—Kaolin sold or used by domestic producers for specified uses.

BALL CLAY

Production of domestic ball clay increased nearly 11% to approximately 984,000 tons valued at about \$36 million. The 1987 production figure is only 3,000 tons under the record-high output of 987,000 tons reported in 1979. Tennessee provided about 70% of the Nation's output, followed, in descending order of production, by Kentucky, Mississippi, Texas, and North Carolina. Production increased in all the major producing States. The growth of the water-slurried Tennessee ball clay demand, combined with the number of producers, now permits publication of selected production statistics. The principal ball clay markets were ceramics, mostly dinnerware, pottery, sanitary ware, and wall tile. Domestic producers continued to enjoy a strong export market usually about 20% of total production, spurred by a weakening U.S. dollar. Continued recovery of the domestic industry, encouraged by competitive interest rates, mortgages, and the improved overall economy during the first three-quarters of the

year, increased the demand for ball clays.

Ball clay is a plastic, white-firing clay used principally for bonding in ceramic ware. The clay is of sedimentary origin and consists mainly of the clay mineral kaolinite and sericite mica.

Increased production capacities, modernizations, and/or new plant construction continued cautiously during the year. Ball clay producers either were slowly increasing their capabilities to produce, blend, store, and ship (mostly by slurry-tank rail car) water-slurried clay for ceramic markets or were switching to this capability. In this context, Kentucky-Tennessee Clay Co., Mayfield, KY, created a new slurry by blending and combining the properties of Kentucky clays with those of the existing Tennessee clay slurries. These clays were specifically designed to meet the demands of increasing automation in the ceramic tile industry. H. C. Spinks Clay Co. Inc., Gleason, TN, announced a one-third expansion of storage facilities for its ball clay slurry plant in Gleason to meet increasing demand. In addition, Spinks introduced a

statistical process control (SPC) procedure designed to enhance the consistency and quality of its products. The SPC system involves the use of an extensive computer network to monitor key processes and mineral quality parameters.

The average unit value for ball clay reported by domestic producers decreased 7% to \$36.09. Chemical Marketing Reporter, December 28, 1987, listed ball clay prices, unchanged from those of 1986, as follows:

Domestic, air-floated, bags, carload lots,	
Tennessee, per ton Domestic, crushed, moisture-repellent, bulk	\$49.00
carload lots, Tennessee, per ton	24.00

Ball clay exports increased more than 11% to 179,000 tons valued at \$6.3 million. Unit value decreased nearly 8% to \$35.05 from \$38.18 per ton, reflecting a larger

percentage of lower valued clays. Shipments were made to 27 countries, 1 more than in 1986. The major recipients, in descending order, were Mexico, Canada, and the Philippines. The expanding Mexican ceramic markets continued to be supplied by domestic clay because of international financial difficulties. Mexican ceramic exports, predominantly to the United States, are fabricated largely with U.S. and domestic clays.

Ball clay imports for consumption, beneficiated and not beneficiated, almost entirely from the United Kingdom, decreased about 41% to 1,759 tons valued at \$239,000. The unit value of these clays increased more than 30% to \$135.87 per ton, indicating an increasing percentage of the higher valued beneficiated varieties than in previous years.

Table 12.—Ball clay sold or used by producers in the United States, by State

Ct. /	A	ir-float	Wate	r-slurried	Unpr	ocessed	Т	otal
State	Short tons	Value	Short tons	Value	Short tons	Value	Short tons	
1986		1,1						
Tennessee Other	¹ 426,150 ² 266,380	¹ \$18,896,723 ² 10,521,659	W	W W	189,499 35,143	\$5,025,280 3144,271	615,649 271,523	\$23,922,003 10,665,930
Total	692,530	29,418,382	w	W	194,642	5,169,551	887,172	34,587,933
1987			4.					
Tennessee Other ⁴	374,405 229,632	15,230,434 9,528,799	108,473 W	\$3,749,623 W	208,692 W	5,047,865 W	691,570 5292,235	24,027,922 511,474,807
Total	604,037	24,759,233	108,473	3,749,623	208,692	5,047,865		⁵ 35,502,729

W Withheld to avoid disclosing company proprietary data.

Table 13.—Ball clay sold or used by producers in the United States, by use

(Short tons)

		1986			19	987	
Use	Air- float ¹	Unproc- essed	Total	Air- float ¹	Water- slurried	Unproc- essed	Total
Ceramics ² _Fillers, extenders, binders ³ _Floor and wall tile_Pottery ⁴ _Refractories ⁵ _Sanitary ware Miscellaneous Exports	43,943 68,817 98,605 17,508 21,340 94,933 85,856 100,528	5,767 29,700 65,841 13,703 54,543 11,680 13,408	43,943 74,584 128,305 244,349 35,043 149,476 97,536 113,936	38,790 125,070 77,950 148,354 40,493 16,082 26,021 131,277	10,590 234 95,451 2,432	3,924 55,893 76,612 18,350 66,918 41,159 8,205	38,790 128,994 144,433 225,200 58,843 178,451 67,180 141,914
Total	692,530	194,642	887,172	604,037	108,707	271,061	983,805

¹Includes water-slurried.

¹Includes water-slurried.

²Includes Kentucky, Maryland, Mississippi, and Texas.

³Includes California, Kentucky, and Mississippi.

Includes Kentucky, Mississippi, North Carolina, and Texas. ⁵Includes data indicated by symbol W.

Includes catalyst (oil refining); fiberglass; glazes, glass, and enamels.

Includes adhesives (1986); animal feed; asphalt emulsions (1987); asphalt tile; paper coating and filling (1986); pesticides and related products; rubber; wallboard (1987); and other uses not specified. ⁴Includes crockery and other earthenware; and fine china and dinnerware.

⁵Includes electrical porcelain; firebrick, blocks and shapes; grogs and calcines (1986); high alumina brick and specialties; and kiln furniture (1986).

FIRE CLAY

Fire clay sold or used by domestic producers increased about 35% in production and value over that of 1986 (which had the lowest reported figures in more than 10 years) to nearly 804,000 tons and \$16.8 million, respectively. This increase marked the first major upturn in production in nearly 5 years and was attributed largely to the upswing in the overall economy, exports, and the recovering smokestack industries, which consumed the bulk of manufactured fire clay refractories and clays. Fire clay production declined from the record high of the early 1970's of approximately 4 million tons, to about 2 million tons in the early 1980's, and eventually to the low 1986 amount. Fire clay is detrital material, either plastic or rocklike, containing low percentages of alkalies, iron oxide, lime, and magnesia to enable the material to withstand temperatures of 1,500° C or higher. It is basically kaolinite but usually contains other materials such as ball clay, bauxite clay, diaspore, and shale. Fire clays commonly occur as underclay below coal seams and are generally used for refractories.

Industrywide expansions and modernizations were slowed during the year while acquisitions and/or mergers were prevalent. Manufacturing plants continued to experience phasedowns by either operating intermittently or being put on minimal production schedules. The clay refractory industry had been in a period of low production because of decreased demand brought about by both technological changes and lower consumption levels by its major users, those being steel, nonferrous metals, ceramics, glass, and minerals processing. The technological changes in steelmaking, away from integrated pig iron systems and to-

ward electric furnaces and/or minimills, further compounded the problem by employing shapes and specialty refractories requiring less fire clay. This industry retrenchment prompted USG Corp., at yearend, to spinoff its wholly owned subsidiary, A. P. Green Refractories Co., to its shareholders. Earlier in the year, USG's attempt to sell A. P. Green to Adience Equities Inc., Pittsburgh, PA, failed because of obstacles in financing. The new company, A. P. Green Refractories Inc., was to be operated separately and was to include transferred sections of USG's lime business. Adience, in another fire clay action, agreed to merge with J. H. France Refractories Co. Inc., Snow Shoe, PA, pending approval of both management boards. J. H. France was to be operated as a subsidiary of Adience.

Fire clay production was from mines in 11 States, 1 less than in 1986. Missouri, Ohio, and Alabama, in descending order of volume, accounted for 94% of the total domestic production. Output generally increased significantly in the major producing States, declined in the smaller producing States, and ceased in Colorado.

Exports of fire clay decreased about 8% to 174,000 tons valued at \$12.7 million. The unit value of exported clay decreased about 8% to \$72.76, indicating that, despite a decrease in exports, the trend of shipping a higher percentage of premium quality calcined material continued. Fire clay was again exported to 26 countries. The major recipients, in descending order, were Japan, Belgium-Luxembourg, Canada, Australia, and Mexico. No imports for consumption were reported for fire clay.

The unit value of fire clay, reported by producers, ranged from about \$5.00 to \$35.00 per ton, indicating a higher valued fire clay was being recovered and processed.

Table 14.—Fire clay¹ sold or used by producers in the United States, by State

	19	86	198	37
State	Short tons	Value	Short tons	Value
Alabama	110,482	\$3,113,913	126,840	\$3,574,802
Colorado	6,051 185,758	80,395 3,333,844	336,088	7,666,489
Missouri New Jersey	12,524	265,919	5,985	139,768 5,168
New Mexico	2,103 $173,110$	$13,458 \\ 3,720,655$	898 291,300	4,588,54
OhioPennsylvania	44,670	781,657	23,373	600,200 55,89
Texas	$19,670 \\ 2.676$	139,400 $27,854$	$\frac{4,225}{3,562}$	36,004
Washington	34,783	738,474	11,280	118,232
Total	591,827	12,215,569	803,551	16,785,100

¹Refractory uses only

²Includes Arkansas (1986), Idaho (1986), Indiana (1987), Kentucky, and Montana (1987).

CLAYS 247

BENTONITE

Bentonite production and value decreased slightly to about 2.8 million tons and \$90.8 million, respectively. The production was the lowest reported figure in the last 15 years. During that time, production rose steadily to the 1981 record-high 4.9 million tons followed by a steady decline to the 2.8million-ton 1987 figure. Wyoming, the largest producing State, increased production by more than 22% largely to take up the shortfall brought about by the idling of the nearby Montana operations. Wyoming and Montana had traditionally been the firstand-second-largest swelling bentonite producing States, respectively. Domestic consumption for two major end uses, drilling mud and foundry sand, increased modestly in response to improvements in the overall domestic economy.

Bentonite was produced in 12 States, 1 less than in 1986. The high-swelling or sodium bentonite continued to be produced chiefly in Wyoming. The low-swelling or calcium bentonite continued to be produced in the other States, mostly east of the Mississippi River. Calcium bentonite production in Mississippi is suitable for the production of both absorbent and acid-activated products.

The major western and southern bentonite producers continued flowsheet and other modernizations to reduce plant operating costs and/or overhead. Most plants continued operating sporadically at new lower production levels until about midyear when demand started to increase across the board. The oil industry, spurred on by the increase in the number of operating domestic rigs and favorable long-term oil and gas prices, combined with improvements in the demand for steel and foundry products, brought about an upturn in bentonite demand. The yearend increase in bentonite demand essentially erased poor industry performance in the first half of the year. The foundry, oil and gas, and steel industries traditionally consume about 90% of the domestic output.

The major and captive producers of bentonite either were continuing efforts to expand their product lines in other marketing areas or were restructuring to minimize detrimental aspects of overcapacity. In this regard, American Colloid Co. (ACC), Arlington Heights, IL, purchased additional mining and processing facilities and mineral reserves in the eastern Wyoming sodium bentonite belt from Federal Ore and Chemical Inc., a wholly owned subsidiary of M/I Drilling Fluids Co., Houston, TX, a 60-40

joint venture between Dresser Industries Inc. and the IMCO Services Div. of the Halliburton Co. The purchase also included Federal's taconite-dedicated milling facility in Burnett, MN. ACC also bought the Colony, WY, bentonite operation and some related assets from Applied Industrial Materials Corp. (AIMCOR). The purchase included a processing plant, inventories of mined bentonite, mineral rights, and the assumption of certain liabilities. The purchase excluded AIMCOR's Mississippi-based calcium bentonite and absorbent assets. ACC acquired the clay desiccant product line from Culligan International Inc. and planned to reopen the Dewey County, OK, calcium bentonite mine. The Oklahoma bentonite was targeted for use in the manufacturing of carbonless paper and as a desiccant after processing in ACC's plants in either Belle Fourche, SD, or Upton, WY. American Bentonite Corp., a newly formed company in Billings, MT, was seeking permits to mine sodium bentonite in Johnson and Montana Counties, WY.

In a Government action, the Senate approved \$200,000 to study design alternatives for the underground disposal of low-level nuclear wastes in conjunction with an impervious bentonite clay buffer and/or liner. Reclamation projects under the Surface Mining Law, funded by a \$3.8 million construction program approved by the U.S. Department of the Interior, were to involve 20 abandoned bentonite mines in Campbell Johnson, Natrona, and Sheridan Counties, WY. The Wyoming Department of Environmental Quality, Land Quality Div., requested permission from the Army Corps of Engineers to reclaim bentonite pits in isolated wetlands in Crook and Weston Counties.

In calcium bentonite action, Kaisertech Ltd., bought out its partner in the Harshaw/Filtrol Partnership and agreed to sell Harshaw/Filtrol to Engelhard. Harshaw/Filtrol has both a calcium bentonite derived desiccant and acid-activated product line manufactured in Jackson, MS, from local and Arizona clays.

On December 28, 1987, Chemical Marketing Reporter quoted domestic sodium bentonite, 200 mesh, bags, carload lots, f.o.b. mines, as unchanged at \$43.50 per ton. The average unit value reported by domestic producers decreased slightly to \$32.36 per ton. Per ton values reported in the various producing States ranged from \$16 to more than \$86, but the average value reported by the larger producers was near the Wyoming average of about \$29.15.

Bentonite exports decreased about 7% to

Table 15.—Bentonite sold or used by producers in the United States, by State

· · · · · · · · · · · · · · · · · · ·	Nonsw	elling	Swell	ing	То	tal
State	Short tons	Value	Short tons	Value	Short tons	Value
1986						
	474 400	\$15,822,614			454,433	\$15,822,614
Alabama and Mississippi	454,433	394,248	25	\$788	16,191	395,036
Arizona	16,166		20.686	1,681,950	125,217	8.522,982
California	104,531	6,841,032	20,000	456	500	6,000
Colorado	462	5,544	24.090	897.990	24,090	897,990
Kansas				5,779,980	182,607	5,779,980
Montana	·		182,607		10,313	583,519
Nevada		57	10,313	583,519	32,824	974,821
Texas	11,969	547,908	20,855	426,913	7,680	296,294
Utah			7,680	296,294		51,506,278
Wyoming			1,738,412	51,506,278	1,738,412	
Other			¹ 220,776	¹ 6,584,910	220,776	6,584,910
-	FOR F01	23.611.346	2,225,482	67,759,078	2,813,043	91,370,424
Total	587,561	25,011,540	2,220,402	01,100,010		
1987						
	423,335	15,609,936			423,335	15,609,936
Alabama and Mississippi	28,507	904,272	23	805	28,530	905,077
Arizona	95,737	6,867,803	20,556	1,762,662	116,293	8,630,46
California	100	1,600	20,000	-,,	100	1,600
Colorado	3,013	310,580	8,786	499.914	11,799	810,49
Nevada	3,013	310,300	18,147	639,515	18,147	639,51
Oregon	10.049	$523,\overline{267}$	15,204	212,324	27,547	735,59
Texas	12,343		27,000	612,960	29,000	632,96
Utah	2,000	20,000	2,127,645	62.031.122	2.127.645	62,031,12
Wyoming				1816,740	23,837	816,74
Other			123,837	610,740	20,001	
Total	565,035	24,237,458	2,241,198	66,576,042	2,806,233	90,813,500

¹Includes Idaho, Kansas (1987), and South Dakota (1986).

Table 16.—Bentonite sold or used by producers in the United States, by use

(Short tons) 1987 1986 Use Non-Swelling Total Swelling Total swelling swelling Domestic: 134,371 7,578 12,594 188 134,559 75,701 11,302 112,426 75,701 Absorbents Adhesives_ 15,160 111,756 11,302 99,162 $43,\bar{262}$ 69,164 147 Animal feed ______Catalysts (oil refining) ______ 5,379 16,901 5,232 5,193 946,083 950,592 4,509 1,031,555 1,036,748 Drilling mud _____Filtering, clarifying, decolorizing:

Animal oils, mineral oils and 76,221 2.277 154,859 73,944 152,749 2,110 greases, vegetable oils _____ Desiccants_____ 16,343 16,343 12,930 12,930 401,784 418,984 650,755 7,108 616,788 7,321 231,771 215,004 Foundry sand ___ 7,108 7,897 Medical, pharmaceutical, cosmetic___ 7,321 8,446 7,897 8,446 _____ Paint. 337,837 337,837 Pelletizing (iron ore)
Pesticides and related products
Water treatment and filtering 262,419 262,419 5,377 13,680 10,4033,277 972 4,214 935 1,163 5,610 4,638 1,648 5,359 4,424 4,901 87,991 89,639 53,062 57,963 Waterproofing and sealing_____ Miscellaneous¹______ r_{129,544} 43,547 54,814 r72,141 r57,403 11,267 2,488,872 1,962,905 525,967 2,435,418 1,909,862 525,556 Total _____ Exports: Drilling mud 100,962 99.646 183,934 183,934 1.316 178,203 169,149 52,760 104,972 157,732 9.054 Foundry sand 38,196 9,245 26,714 35,959 28,698 317,361 39,068 278,293 315,620 377,625 62.005 Total _____ 2,806,233 565,035 2,241,198 2,225,482 2,813,043 587,561 Grand total _____

rRevised.

¹Includes data for asphalt emulsions; asphalt tile; cement, portland; floor and wall tile, ceramic; chemical manufacturing (1986); face brick; fertilizers; firebrick, blocks and shapes; gypsum products; ink; kiln furniture; mineral wool and insulation; oil well sealing (1987); paper coating and filling; plastics; pottery (1987); roofing tile; rubber; and uses not specified.

²Includes absorbents (1987); animal feed; asphalt emulsions; cement (1987); filtering, clarifying, decolorizing (1987); paint; plastics; waterproofing and sealing; and uses not specified.

CLAYS

539,000 tons valued at \$40.6 million. The unit value of exported bentonite decreased 2% to \$75.32 per ton; this was attributed to higher percentages of the lower cost iron ore pelletizing grades, mainly to Canada, over the costlier drilling mud and foundry grades shipped. Domestic bentonite producers, although benefiting from a softening U.S. dollar, continued to face increased competition in foreign markets, particularly the Canadian iron ore markets where Mediterranean bentonites continued to make inroads into an area traditionally served by domestic producers.

Bentonite was exported to 58 countries, 8 less than in 1986. The major recipients were Canada, Japan, Taiwan, Singapore, and the Republic of South Africa. Domestic bentonite producers reported their exports were foundry sand, 56%; drilling mud, 32%; and

other, 12%.

Bentonite imports for consumption consisted mostly of both untreated clay and chemically or artificially activated materials. The total bentonite imports increased 18% to nearly 19,000 tons. The chemically activated category, which slowly increased in quantity for most of the past several years, increased 12% to nearly 15,000 tons valued \$5.4 million. Imports from the Federal Republic of Germany and Mexico increased nearly 100% and 9%, respectively. Mexican imports usually make up more than 75% of total activated clay imports. The chemically activated bentonite was imported, as last year, from 11 countries, with Mexico supplying 87%; the Republic of South Africa and the Federal Republic of Germany, 11%; and the remaining countries, 2%.

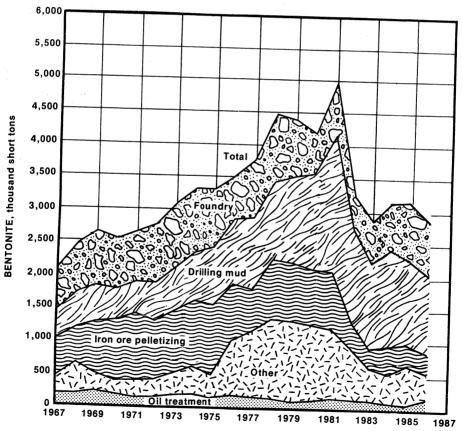


Figure 2.—Bentonite sold or used by domestic producers for specified uses.

FULLER'S EARTH

Production of fuller's earth increased 8% to nearly 2.1 million tons valued at \$137 million, essentially equaling the record high of 1985. This increase in production, which followed the first reported decline in 1984 and again in 1986, continued the upward trend in production that the industry has enjoyed for more than 10 years. A general increase in absorbent-grade clay output was sufficient to offset a 7% decline in Florida attapulgite clay production. The average unit value increased slightly to \$66.72 per ton, indicating a larger percentage of higher

valued gelling grades in the total. Production was reported in 10 States. The two top producing States, Florida and Georgia, accounted for about one-half of domestic production. All States, except Florida and Mississippi, showed gains in production. Increases in consumption occurred across the entire product line of adsorbents, with pet waste absorbents leading the way.

Fuller's earth is a nonplastic clay or claylike material, usually high in magnesia, which has adequate absorbing, decolorizing, and purifying properties. Sepiolite-type clays are also included for statistical convenience.

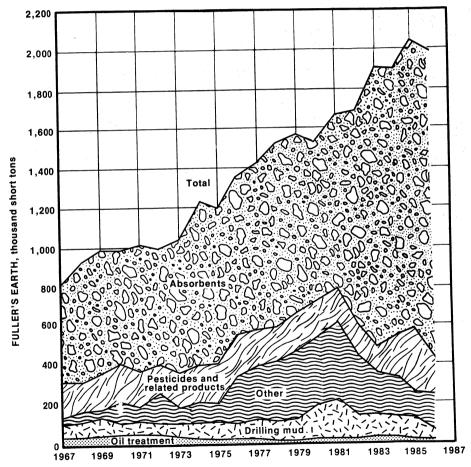


Figure 3.—Fuller's earth sold or used by domestic producers for specified uses.

CLAYS

Table 17.—Fuller's earth sold or used by producers in the United States, by State

					. •	
State	Atta	pulgite	Montn	norillonite	Т	otal
	Short tons	Value	Short tons	Value	Short tons	Value
1986						
Florida Georgia Other	463,246 317,972 ¹ 139,554	\$38,793,558 15,656,794 ¹ 8,172,908	213,876 r 2775,330	\$10,665,217 r 252,187,912	463,246 531,848 ^r 914,884	\$38,793,558 26,322,011 *60,360,820
Total	920,772	62,623,260	989,206	62,853,129	1,909,978	125,476,389
1987						
Florida Georgia Mississippi, South Carolina,	431,147 372,411	35,164,373 22,770,533	218,823	12,442,578	431,147 591,234	35,164,373 35,213,111
Tennessee, Virginia Illinois, Missouri, Nevada, Tex-			577,558	31,155,549	577,558	31,155
as	16,125	1,199,378	440,727	34,499,946	456,852	35,699,324
Total	819,683	59,134,284	1,237,108	78,098,073	2,056,791	137,232,357
rn. · ·						

Table 18.—Fuller's earth sold or used by producers in the United States, by use (Short tons)

TT		1986			1987	
Use	Atta- pulgite	Montmoril- lonite	Total	Atta- pulgite	Montmoril- lonite	Total
Domestic:						
Adhesives	6,874		6,874	2,723		
Cement, portland and other	0,011		0,014	2,123	22.55	2,72
Drilling mud	34,720		94 700	01 0 0	36,618	36,618
rertilizers	36,247	$7.\overline{379}$	34,720	31,949		31,949
Filtering, clarifying, decolorizing	50,241	1,519	43,626	35,540	6,493	42,033
mineral oils and greases	13,579		13,579	13,795		10 501
Medical, pharmaceutical, cosmetic	379		379	959		13,795
Oil and grease absorbents	264,673	200,694	465,367		104 500	959
Paint	19,885	200,004	19,885	163,796	194,738	358,534
Pesticides and related products	71,314	$92,\overline{675}$	169,000	20,303		20,303
Pet waste absorbents	348,710	610.457	163,989	17,009	104,208	175,217
Other ¹	13,132	010,407	959,167	308,320	738,114	1,046,434
Miscellaneous ²			13,132			
Milliochianeous	47,387	61,462	108,849	90,767	139,194	229,961
Total	856,900	972,667	1,829,567	739,161	1 010 005	1.050.500
, =		0.12,001	1,020,001	109,101	1,219,365	1,958,526
exports:						
Drilling mud	106		106	122		
Oil and grease absorbents	23,917	3,031	26,948			122
Pesticides and related products	4,937	2,589		43,309	5,908	49,217
Pet waste absorbents	29,505	9,571	7,526	5,463	2,270	7,733
Miscellaneous ³	5,407		39,076	22,461	9,565	32,026
	5,407	1,348	6,755	9,167		9,167
Total	63,872	16,539	80,411	80,522	17,743	98,265
Grand total	920,772	989,206	1,909,978	819,683	1,237,108	2,056,791

¹Includes roofing tile (1986); roofing granules (1986); tamping dummies (1986); and vegetable oils (1986).

Production from the region that includes Attapulgus, Decatur County, GA, and Quincy, Gadsden County, FL, is composed predominantly of the lath-shaped amphibolelike clay mineral attapulgite. Most of the fuller's earth produced in other areas of the United States contains varieties of montmorillonite and/or other clays.

Throughout the industry, enlargements,

modernizations, acquisitions, and/or mergers that had been either canceled or deferred until overall economic conditions improved were starting to be acted upon again cautiously. Generally the absorbentproducing companies enjoyed a good year while the gell-grade producers experienced a mixed year.

Attapulgite, a fuller's earth-type clay,

ⁱIncludes Illinois, Nevada, and Texas.

²Includes Illinois, Mississippi, Missouri, South Carolina, Tennessee, and Virginia.

Includes rooting tile (1980); rooting granules (1980); tamping dummies (1980); and vegetable onls (1980).

Includes animal feed (1987); animal oils (1987); gypsum products; miscellaneous absorbents; miscellaneous fillers, extenders, and binders; miscellaneous filtering, clarifying, and decolorizing (1987); mortar and cement refractories; plastics; roofing tiles (1987); vegetable oils (1987); wallboard (1987); water treatment and filtering (1987); waterproofing and sealing (1987); and other uses not specified.

Includes paint and uses not specified.

finds wide application in both absorbent and gelling and/or thickening areas. The thixotropic properties of attapulgite clays provide the important thickening and viscosity controls necessary for suspending solids. Mineral thickeners are used in such diverse markets as paint, joint compound cement, and saltwater drilling muds.

Prices for attapulgite reported by producers ranged from about \$80 to \$120 per ton; montmorillonite prices ranged from about \$20 to \$90.

Exports of fuller's earth went to 28 countries, 4 less than in 1986, but the quantity decreased nearly 12% to 107,000 tons valued at \$8.7 million. The unit value of exported fuller's earth increased slightly over that of 1986 to \$81.03, which was attributed to a larger percentage of the high-cost gelling and drilling-mud grades exported in 1987 compared with the percentage of absorbent grades shipped. The major recipients were Canada and the Netherlands. A minor amount of beneficiated and unbeneficiated fuller's earth was imported, mostly from France.

COMMON CLAY AND SHALE

Domestic sales or use of common clay and shale increased about 8% in both tonnage and value to 32.3 million tons and \$147 million. Output of the 10 major producing States rose in Alabama, North Carolina, Ohio, South Carolina, Texas, and Virginia, and declined in California, Georgia, Michigan, and Pennsylvania. Common clay and shale represented about 70% of the quantity but only 12% of the value of total domestic clay production. Domestic clay and shale are generally mined and used captively to fabricate or manufacture products. Less than 10% of the total output is usually sold. The average unit value for all common clay and shale produced in the United States and Puerto Rico increased slightly to \$4.56 per ton. The unit value ranged from \$13 to nearly \$30 per ton.

Common clay is a clay or claylike material that is sufficiently plastic to permit ready molding and that vitrifies below 1,100° C. Shale is a sedimentary rock composed chiefly of clay minerals that has been both laminated and indurated while buried under other sediments. Clay and shale are used in the manufacture of structural clay products such as brick, drain tile, portland cement clinker, and expanded lightweight aggregates.

Increased production capacities, new plants, and modernizations, previously deferred, were beginning to be acted on again. Mergers and/or acquisitions of domestic

heavy clay producers were quite active. The construction industry, the biggest user of heavy clay products such as brick, lightweight aggregate, portland cement, sewer pipe, and tiles, was moving along at a brisk pace. The large inventories traditionally accumulated during the winter months were worked off by the first quarter, and at midyear, the industry was experiencing heavy production. Output during the last quarter was somewhat tempered by increasing interest rates. A notable exception to these boom times was the declining construction rates in the depressed oil-producing States of the Southwest.

In building brick acquisitions, Steetley PLC, through its subsidiary, Steetley Brick and Tile Ltd., purchased K-F Brick Co. Inc. and Victor Cushwa and Sons Inc., Williamsport, MD. K-F Brick, the leading New England supplier of face bricks, has plants in Connecticut and Massachusetts with a combined capacity of 80 million bricks per year (bpy). Cushwa produces about 40 million bpy of quality face bricks, mostly machine-molded with some hand-thrown brick targeted for the higher priced end of the market. Both K-F Brick and Cushwa, the latter strategically situated in the Baltimore, MD-Washington, DC, area, serve market areas that have favorable long-term growth prospects. Marley PLC, through its U.S. subsidiary, General Shale Products Corp., a major U.S. brick producer, acquired Corbin Brick Co. Inc., Corbin, KY. Corbin has a maximum production capacity of 100 million bpy of high-quality face bricks with the recent addition of its new kiln. General Shale's total capacity in the United States is now reported to be in excess of 800 million bpy. Jannock Ltd. a Toronto, Canada, brick producer, bought Payne Brick Co. of Elgin, TX, for an undisclosed amount. The Payne Brick operation has a capacity of 24 million bpy and clay reserves for at least 50 years. Tarmac-Lonestar Inc., a joint venture between Tarmac America and Lonestar Inc., purchased the assets of Old Virginia Brick Co. Inc., Salem, VA. Old Virginia is currently expanding its molded capacity to more than 40 million bpy. The enlargement includes a newly automated second kiln and other ancillary equipment. Tarmac PLC is a major producer of building raw materials and products in the United Kingdom.

In a nonbrick common clay and shale acquisition, Cement Roadstone Holdings PLC (CRH) based in Dublin, Ireland, bought Big River Industries Inc. of Baton Rouge, LA. Big River is a major U.S. producer of expanded clay and/or shale lightweight aggregate, with manufacturing plants in Ala-

bama, Georgia, and Louisiana. Big River successfully barges expanded aggregates along the Mississippi and its tributaries. CRH already owns concrete block, pipe, and aggregate operations in the United States. In another buyout, Mission Clay Products Corp., a clay and building products manufacturer in Los Angeles, CA, acquired W. S. Dickey Clay Manufacturing Co.'s Pittsburgh, KS, and San Antonio, TX, clay sewer pipe manufacturing plants from Hepworth Ceramic Holdings Ltd. of Sheffield, United Kingdom.

Exceptions to the industrywide slowdown in expansions and modernizations were announced by Acme Brick Co., a subsidiary of Justin Industries Inc., and several other companies. Acme Brick's two new brick plants became operational in Tulsa, OK, and near Houston, TX. Hanley Brick Co., a unit of the Glen-Gery Corp., Reading, PA, began production at its new brickworks in Marion County, OH. The new plant was also producing a line of molded bricks to augment its present extruded products. A

second kiln was scheduled to come onstream by yearend 1988. L. C. Holdings Inc., a Boulder, CO, operation, announced plans to reactivate the former Idealite expanded shale lightweight aggregate plant near Golden, CO. The refurbished plant was to be capable of producing about 500,000 cubic yards of lightweight material for the Denver market area, which includes the newly planned Denver airport. Increases in production capacity were announced by Robinson Brick Co. Inc. during the year. Robinson Brick fired up its idle second kiln and scheduled a second shift to handle the increased production. Watsontown Brick Corp., Watsontown, PA, opened its new grinding plant complete with a single roller crusher, screens, assorted belt conveyors, and a hammermill to feed the pugmill. In new products, Higgins Brick Co. Inc., Redondo Beach, CA, introduced a novel hollow standard-size brick with full strength and load-bearing capabilities. Previously, hollow bricks were available in larger dimensions only.

Table 19.—Common clay and shale sold or used by producers in the United States,¹
by State

	19	986	19	987
State	Short tons	Value	Short tons	Value
Alabama	1,886,574	\$9,318,166	2,071,690	\$11.024,661
Arizona	184,919	971,190	189,621	1,000,240
Arkansas	783,588	1.845,190	706.185	1.640,259
California	2,228,871	22,393,865	2.092.234	21,332,999
Colorado	235,782	1,436,684	289,002	1,612,269
Connecticut and New Jersey	276,680	2,775,207	248,437	2,599,27
Florida	227,243	1,695,847	127,518	1,241,92
	2,516,322	7,657,913	2,439,686	7,355,968
Georgia	282,993	1,091,609	232,949	977,048
Illinois			1.036.669	4,055,534
Indiana	743,859	3,043,873		
Iowa	486,309	1,420,979	472,788	1,494,77
Kansas	879,358	4,397,191	603,680	2,575,57
Kentucky	661,176	2,305,585	721,111	3,450,418
Louisiana	331,982	7,669,853	356,904	9,191,774
Maine and Massachusetts	185,995	961,199	189,562	942,329
Marvland	361,729	1,757,132	283,054	1,939,968
Michigan	1,402,446	5,684,283	1,333,498	5,338,43
Mississippi	616,672	2,747,815	559,955	2,706,996
Missouri	1,130,333	3,269,320	1.139,749	2,748,092
Montana	39,212	101,724	28,879	98,270
Nebraska	221,153	668,380	223,728	721,059
New Mexico	58.081	156,663	50,350	135.94
New York	618,968	3.074.611	672,635	3,562,468
North Carolina	2.606.679	9,527,534	3,173,037	13,765,148
01.1	2,659,675	7,794,754	2,895,970	8,125,45
		2,328,697	797,301	1,782,741
Oklahoma	992,702			
Oregon	203,596	288,920	249,677	346,36
Pennsylvania	1,189,121	4,278,881	1,182,748	4,150,51
Puerto Rico	110,997	222,845	148,029	317,75
South Carolina	923,165	2,392,204	1,244,886	2,726,808
South Dakota and Wyoming	141,941	691,641	194,700	1,756,372
rennessee	548,641	1,305,695	569,303	1,452,360
Texas	2,423,685	10,609,847	3,283,652	14,032,898
Utah	296,867	1,751,735	286,154	1,325,981
Virginia	855,977	4,699,648	1,171,442	6,291,100
Washington	249,469	1,531,913	412,031	2,319,950
West Virginia	214,980	469,708	266,037	564,574
Other ²	141,401	419,360	120,718	329,849
Total	29,979,076	135,902,494	32,327,725	146,976,294

¹Includes Puerto Rico.

²Includes Idaho, New Hampshire, and North Dakota

CONSUMPTION AND USES

The manufacture of heavy clay products including building brick; sewer pipe; and drain, roofing, structural, terra cotta, and other tile; portland cement clinker; and lightweight aggregate accounted for 38%, 18%, and 10%, respectively, of total domestic consumption. In summary, 70% of all clay produced was consumed in the manufacture of these clay- and shale-based construction materials.

Heavy Clay Products.—The value reported by the Bureau of the Census for shipments of heavy clay products increased 11% \$1.8 about billion. The million standard brick count for building or common face brick increased slightly. Shipments of vitrified clay and sewer pipe fittings increased 9%, while clay floor and wall tile increased 4%. Increases in common clay and shale used in building brick manufacturing occurred in most States with total domestic production increasing 6%. Increases were less than 13% with an average State upturn of less than 20%.

Lightweight Aggregates.—Consumption of clay and shale in the manufacture of lightweight aggregate increased about 24% to nearly 4.6 million tons. The upturn in overall construction of commercial buildings and highway resurfacing was largely responsible for the increase in demand. Concrete block, the largest category (61% of total production), rose 15% while the second biggest consuming area, highway surfacing (19% of total production), increased markedly. The third largest segment, structural concrete (18% of production), declined 20% and the other category, the smallest segment consisting essentially of new market areas such as recreational and horticultural uses, also rose 94%.

Refractories.—All types of clay were used in manufacturing refractories. Kaolin, bentonite, and fire clay accounted for 32%, 27%, and 26%, respectively, of total clay used for this purpose. The remainder, ball clay, common clay and shale, and fuller's earth, was used chiefly as bonding agents. Bentonite, both swelling and nonswelling, was used as a bonding agent in proprietary foundry formulations imparting both greenand hot-strength to the sand.

The tonnage of clays used for refractories increased 12% and constituted 5% of total clay produced. The continued use of refrac-

tories, mostly calcined kaolin grogs, in monoliths, and the upturn in demand for the more conventional refractory bricks and shapes was largely responsible. The major refractory-consuming industries—cement, foundry, glass, and ferrous and nonferrous metals—continued to undergo major changes in technology and production levels for their products.

Filler.—Bentonite, fuller's earth, and kaolin, are the principal filler clays. Kaolin, either air-floated, water-washed, low-temperature calcined, and/or delaminated, was used in the manufacture of adhesives, paint, paper, plastics, and rubber. Fuller's earth was used primarily in pesticides and fertilizers. Clays are in pesticides and fertilizers as either thickeners, carriers, diluents, or prilling agents. Bentonites were used mainly in animal feeds.

Of the total clay produced, 11% was used in filler applications; of this, kaolin accounted for 88%; fuller's earth, 5%; bentonite, 3%; and ball clay, common clay and shale, and fire clay, the remaining 4%. Kaolin consumed as fillers increased to 4.8 million tons. An approximate 15% increase in paint and a slight increase in paper filling, which together constitute 30% of the total filler and extender category, were largely responsible. The paper-coating grade kaolin, animal feed, and gypsum products and wallboard, together made up a 7% increase. The total quantity of fuller's earth used in pesticides and related products such as fungicides, increased nearly 7% from that of 1986.

Absorbent Uses.—Absorbent uses for clays accounted for nearly 1.7 million tons, or 4% of total clay consumption. Demand for absorbents increased slightly. Fuller's earth was the principal clay used for absorbent purposes, and this application accounted for 69% of the entire output. Demand for clays in pet waste absorbents, representing 61% of absorbent uses, increased 9%. Use in floor absorbents, chiefly to absorb hazardous oily substances, accounted for another 21% of the absorbent demand, which decreased from that of 1986. An increase in the use of pet waste absorbents offset the decline in the industrial sector, which consumes large quantities of floor absorbents.

Table 20.—Clays sold or used by producers in the United States1 in 1987, by use

(Short tons)

Use	Ball clay	Bentonite	Common clay and shale	Fire clay (refractory only)	Fuller's earth	Kaolin	Total
Absorbents: Dil and grease Pet waste Others		W W 142.396	W W 155.198	1 1	358,534 1,046,434 11.850	1 1	358,534 1,046,434 309,444
Ceramics and glass: Ceramics and glass: Cockeys and other earthenware Diectrical proteilain Fine china and dinnerware	27,462	16,901	W 35	7,080		9,164 8,853 21,827	129,073 16,244 36,350 35,031
Glazes, glass, enamels Mineral wool and insulation, fiberglass Pottery Roofing granules Sanitary ware Other	W 211,996 178,451 73,943	W 10 10 2,541	19,748 48,530 3,731	4,000 4,033 300 4,232		638 458,529 65,238 7,335 59,437 61,149	638 458,529 300,992 59,898 238,188 145,596
Chemical manufacturing. Civil engineering and sealing. Drilling mud. Pilling mud.		99,026 950,592	183,115	530	139,364 31,949	212,752 16,052 632	212,752 438,087 983,173
Adhesives Adhesives Adhesives Adhesives Animal feed Fertilizers. Gypsum products and wallboard Ink	M	15,160 111,756 W	<u> </u>		2,723 W 42,033 24,783	67,987 41,409 2,886 13,772	85,870 153,165 44,919 39,555 2,328
Medical, pharmaceutical, cosmetic Paint Paper coating Paper filling Pesticides and related products	*	7,108 7,897 W W 13,680	1,750 W 3,368		20,303 20,303 175,217	2,441 287,245 2,487,279 1,345,162 40,804	11,308 317,195 2,487,279 1,345,162 233,069
Rubatos Rubaber Other ² Filtering, clarifying, decolorizing:	W 128,994	W W 19,655	1,411	_w 5,400	W 16,534	254,665 188,302	57,309 256,076 442,767
Animal oils, mineral oils and gresses, vegetable oils Desicoants Floor and wall tile: Ceramic Quarry title	144,433	76,221 16,343	203,147 154,704	805 135	34,538	909	111,365 16,343 348,385 154,839
Other See footnotes at end of table.		21	196,000	} .		38,019	234,031

Table 20.—Clays sold or used by producers in the United States1 in 1987, by use —Continued (Short tons)

Use	Ball clay	Bentonite	Common clay and shale	Fire clay (refractory only)	Fuller's earth	Kaolin	Total
Heavy clay products: Brick, extruded Brick, other Cement, portland and other Cement, portland and other Flower pots Flower pits Roofing tile Sweer pits, vitrified Sweet pits, vitrified Structural tile Terra cotta Other cotta	24,785	8,958 1,171,1 136 136	12,592,804 4,088,510 8,410,247 34,004 39,907 36,907 388,398 55,805 719,491	19,333 14,574 1,625 310 65,179 	36,6 <u>18</u>	269,031 84,210 81,286 82,800 28,800 6,885 392 19,387	12,909,971 4,187,294 8,4,094 8,4,004 10,277 10,886 56,197 56,197 56,197 738,878
Concrete block Highway surfacing Structural concrete Other Pelletizing iron ore Refractories:		387,837	2,792,779 802,364 845,557 122,287		1 1 1 1 1	125	2,792,904 802,364 845,557 122,287 337,837
Furburick, blocks and shapes. Foundry sand calcines Grogs and calcines High alumina brick and specialities Kigh furniture Mortar and cement, refractory Other² Exports	W 22,219 9,162 7,242 141,914	W 650,755 538 13,360 1,819 317,361	92,136 2,943 235,099 2,000 11,592	417,334 42,657 138,355 43,154 26,506 7,426	22 22 15,474 98,365	118,589 598,211 40,694 W 32,250 10,241 1,672,315	628,059 693,412 736,566 106,067 235,121 54,772 63,282 2,248,873
Total	983,805	2,806,233	32,327,725	803,551	2,056,791	8,827,210	47,805,315

W Withheld to avoid disclosing company proprietary data; included with "Total" and/or "Other."

*Includes User Rico.

*Includes uses indicated by symbol W.

*Uses not specified.

Table 21.—Shipments of principal structural clay products in the United States

Product	1983	1984	1985	1986	1987
Unglazed common and face brick:					
Quantity million standard brick	5,792	6,510	6,605	7,204	7,313
Value million_	\$704	\$836	\$887	\$972	\$1,060
Unglazed structural tile					
Quantity thousand short tons	30	32	55	72	193
Value million_	\$5	\$7	\$12	\$28	1\$50
Vitrified clay and sewer pipe fittings:	, 40	**	Y	4- 5	400
Quantity thousand short tons	375	397	368	298	325
Value million_	\$64	\$79	\$78	\$66	\$74
Unglazed, salt-glazed, ceramic-glazed structural facing tile including glazed brick;	•		•		
Quantity million standard brick	w	w	w	w	32
Value million_	w	w	w	· w	\$11
Clay floor and wall tile including quarry tile:					•
Quantity million square feet	333	340	370	444	462
Value million	\$388	\$421	\$450	\$ 536	\$587
Tetal value ² dodo	\$1,161	\$1,342	\$1,428	\$1,602	\$1,782

Source: Bureau of the Census Report Form M32-D(87), Current Industrial Reports—Clay Construction Products.

Table 22.—Common clay and shale used in building brick production in the United States, by State

State	19	86	19	87 ¹
State	Short tons	Value	Short tons	Value
Alabama	865,906	\$4,034,526	973,878	\$4,392,725
Arizona ² and New Mexico ²	137,740	407,962	141,992	483,466
Arkansas	486,068	1,421,375	192,388	447,054
California	485,354	8,095,174	456.618	8,036,489
Colorado	234,462	1,423,154	289,002	1,551,504
Connecticut, New Jersey, New York	422,071	2,921,398	403,161	2,759,099
	2,003,505	5,597,706	2,104,724	5,919,878
Georgia Idaho, Washington, Wyoming ²	172.540	963,046	318,543	1,274,167
Illinois	118,675	561,858	131,787	614,170
Indiana and Iowa	391,850	1,010,698	432,908	1.364,579
Kansas	229,216	601,563	191,783	554,907
Kentucky ²	307,918	1,409,109	384,692	2.100.514
Louisiana	98,982	253,463	73,672	176,499
Maine, Massachusetts, ² New Hampshire ²	199,995	1.093,499	207.062	1,035,799
Maryland and West Virginia ³	388,472	1,781,917	422,113	1,976,791
Michigan ² and Minnesota ²	148,206	538,794	208.872	586,815
Mississippi	515,854	2.415.116	479,955	2,429,796
Missouri	98,471	423,519	105.823	469,798
Nebraska and North Dakota ²	217,351	559.753	187,619	493,162
North Carolina	2.290,572	8,671,986	2,806,044	10,844,565
Ohio	1.617.522	4,492,329	1,252,827	3,872,507
Oklahoma	462,895	1,374,819	374.343	973,542
Oregon	19,840	51.446	21.297	58,521
Pennsylvania	885,694	2,621,105	967.313	3,212,185
South Carolina	608,616	1,606,223	922,223	2,310,141
Tennessee ²	430,668	951,776	442.786	1,053,831
Texas	1,114,128	4,581,541	1,185,246	4,925,894
Utah ²	126,357	920.910	141,625	723,399
Virginia	729,196	2,188,494	870,018	2,681,587
Total	15,808,124	62,974,259	416,681,314	467,323,384

W Withheld to avoid disclosing company proprietary data.

Includes first 9 months only.

Data may not add to totals shown because of independent rounding.

¹Includes extruded and other brick.

²Extruded brick only (1987).

³Other brick only (1987).

⁴Includes 1.5 million tons used in other brick production.

rotary-drilling muds decreased 8% to about 983,000 tons and accounted for 2% of total clay production. This decrease reflected the downward trend, except for the increase noted in 1984, begun in 1982 when a combination of excess oil production and economic uncertainties resulted in lower oil- and gas-well-drilling activities, which depressed bentonite demand. Oil- and gas-welldrilling activity picked up at yearend because of price stability and a favorable longterm outlook. Swelling-type bentonite remained the principal clay used in drilling mud mixes, although fuller's earth, used mostly in saltwater drilling techniques, and nonswelling sodium-activated bentonites, were also used to a limited extent. Bentonite and fuller's earth accounted for nearly 100% of the total amount of clay used in this category. Small amounts of kaolin were used in specialized formulations.

Floor and Wall Tile.—Common clay and shale, ball clay, kaolin, fire clay, and bentonite, in order of volume, were used in manufacturing floor, wall, and quarry tile. This end-use category accounted for 2% of

Drilling Mud.—Demand for clays in total clay production. The competitive tary-drilling muds decreased 8% to about and/or declining interest for most of the 3,000 tons and accounted for 2% of total year spurred the demand for more atary production. This decrease reflected the tractively appointed tiled homes.

Pelletizing Iron Ore.—Bentonite continued to be used as a binder in forming indurated iron ore pellets. Demand increased nearly 29% to about 338,000 tons. Inroads of inexpensive foreign bentonites into the Great Lakes markets traditionally served by exclusively U.S. bentonite producers, lower production levels, metal imports, and changing technology have all combined to reduce the long-term demand for domestic bentonite in this category.

Ceramics and Glass.—Total demand for clay in the manufacture of pottery, sanitary ware, china and dinnerware, and related products (excluding clay flower pots) accounted for 3% of the total clay output. This demand, principally ball and kaolin clays, increased slightly to 1.42 million tons. The strong upturn in residential housing, large consumers of whiteware and sanitary ware, was partially offset by the soft demand for these products at yearend owing to rising interest rates.

Table 23.—Common clay and shale used in lightweight aggregate production in the United States, by State

-					Short tons			Total
Barrier Arch	State		crete ck	Structural concrete	Highway surfacing	Other	Total	value
	7 TH 24							
	1986							
Alabama and Ark	ansas	489	707,	228,638	12,491	8,487	739,323	\$4,455,545
California		5	2.180	219,322			271,502	2,331,579
Florida and India	na	23	5,923	38,550			275,473	3,714,804
Kansas, Kentucky	, Louisiana	46	3,170	139,350	12,320	5,400	623,240	13,175,358
Mississippi and M	issouri	18	2,431	7,057	10,082		199,570	1,229,367
Montana and Nev	v York	18	1,766	172,550			354,316	5,602,754
North Carolina		23	1,300	77,100			308,400	6,797,136
Ohio, Oklahoma,	Pennsylvania	21	5,643	35,580	2,199		254,422	637,623
Texas		18	1,969	32,301	142,965	48,002	405,237	1,686,181
Utah and Virginia	a	18'	7,112	51,820	14,809	1,040	254,781	3,025,714
Total		2,42	6,201	1,002,268	194,866	62,929	3,686,264	42,656,061
	1987							
Alabama and Ark	ansas	74	3.549	91,433	16,674	25,348	877,004	6,015,176
			7,000	57,000		, T1 11	114,000	592,572
Florida and India	na	20	2,832	28,750			231,582	1,508,486
Kansas, Kentucky	y, Louisiana	38	563	132,349		4,019	543,605	10,359,005
Mississippi		5	0,000	10,000	20,000		80,000	277,200
	v York		3,610	163,717			407,327	2,992,566
North Carolina _		27	0,000	90,000			260,000	2,836,800
	Pennsylvania		5,678	14,759	2,016		312,453	754,220
Texas		22	3,194	134,547	771,568	91,880		5,154,821
Utah and Virginia	a	32	1,353	79,809	8,625	1,040	410,827	4,071,305
			2,779	802,364	845,557	122,287	4,562,987	34,562,151

Table 24.—Shipments of refractories in the United States, by product

	Unit of	1	986	1	987
Product	quantity	Quantity	Value (thousands)	Quantity	Value (thousands
CLAY REFRACTORIES					
Superduty fire clay brick and shapes	1,000 9-inch equivalent.	21,968	\$26,697	27,070	\$27,914
Other fire clay including semisilica brick and shapes, glasshouse pots, tank blocks, feeder parts, upper structure parts used only for glass tanks.	do	56,685	40,603	62,006	46,126
High-alumina (50% to 60% Al ₂ O ₃) brick and shapes made of calcined diaspore or bauxite. ¹	do	65,716	118,042	76,004	128,404
Insulating firebrick and shapes	do			21,158	20,344
Ladle brick	do	30,330	9,985	10,302	3,272
Sleeves, nozzles, runner brick, tuyeres	do	25,279	29,327	9,679	28,315
Hot-top refractories	Short tons	W	W	w	W
Kiln furniture, radiant heater elements, pot- ter's supplies, other miscellaneous-shaped refractory items.	do	27,185	21,965	42,432	33,246
Refractory bonding mortars	do	79,042	37,156	56,619	29,296
Plastic refractories and ramming mixes, con- taining up to 87.5% Al ₂ O _{5.} 2	do	75,893	36,669	64,051	32,816
Castable refractories	do	207,150	78.075	251,808	110,578
Gunning mixes	do	144,882	37,497	144,940	50,475
Other clay refractory materials sold in lump or ground form. ³	do	502,625	93,252	885,558	106,707
Total clay refractories		XX	529,268	XX	617,493
NONCLAY REFRACTORIES	-	·····			
	1 000 0 1 1	4 500	11 005	0.001	10.000
Silica brick and shapes	1,000 9-inch equivalent.	4,582	11,825	6,861	19,028
Magnesite and magnesite-chrome brick and shapes.	equivalent.	19,467	94,933	21,745	107,987
Chrome and chrome-magnesite brick and shapes.	do	22,914	82,347	27,640	101,124
Shaped refractories containing natural graphite.	Short tons	11,548	32,728	17,251	40,117
Zircon and zirconia brick and shapes; other carbon refractories: Forsterite, pyrophyllite, dolomite, dolomite-magnesite molten-cast, ⁵ other brick and shapes.	1,000 9-inch equivalent.	1,557	31,669	1,716	21,924
Other mullite, kyanite, sillimanite, or andalu- site brick and shapes.	do	2,825	15,980	2,702	19,108
Other extra-high (over 60%) alumina brick and fused bauxite, fused alumina, dense- sintered alumina shapes. ⁶	do	4,141	63,508	3,287	58,119
Silicon carbide brick, shapes, kiln furniture	do	979	28,880	1,105	33,936
Refractory honding mortars	Short tons	21,094	11,539	29.843	16,944
Refractory bonding mortarsHydraulic-setting nonclay refractory castables	do	19,023	18,227	28,837	21,999
Plastic refractories and ramming mixes	do	120,306	75,922	136,738	89,385
Gunning mixes	do	364,806	150,950	323,330	111,939
Dead-burned magnesia or magnesite ³	do	250,990	64,347	141,967	34,374
Gunning mixes Dead-burned magnesia or magnesite ^{3 7} Dead-burned dolomite	do	324,691	46,393	331,982	19,682
Other nonclay refractory material sold in lump or ground form.	do	280,886	74,655	202,486	42,137
Total nonclay refractories		XX	803,903	XX	737,803
Grand total refractories		XX	1,333,171	XX	1,355,296

Source: Bureau of the Census Report Form MQ32C(\$7), Current Industrial Reports-Refractory.

W Withheld to avoid disclosing company proprietary data. XX Not applicable.

1 Heat short of fusion; volatile materials are thus driven off in the presence of chemical changes, giving more stable material for refractory use.

2 More or less plastic brick and materials that, after the addition of any water needed, are rammed into place.

3 Materials for domestic use as finished refractories and all exported material.

4 Includes calcined clay, ground brick, and siliceous and other gunning mixes.

5 Molten cast refractories are made by fusing refractory oxides and pouring the molten material into molds to form finished shapes.

finished shapes.

^{*}Completely melted and cooled, then crushed and graded for use in a refractory.

7Includes shipments to refractory producers for reprocessing in the manufacture of other refractories.

Table 25.—U.S. exports of clays in 1987, by country

(Thousand short tons and thousand dollars)

	Ball clay	ay	Bentonite	nite	Fire clay	clay	Fuller's earth	earth	Kaolin	lin	Clays, n.e.c.	n.e.c.	Total1	alı
Country	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Argentine			6	69			6	c	71	0 717	(2)	901	2.5	0200
Australia	Ę	-)	3	-16	1 200		1	91	9,117	D°	130	100	0,312
The state of the s		۲	1	13	1 6	1,000	ļé	1	2 ;	1,001	3	0,040	7	10,100
Deigium-Luxembourg	10	1:	G	264	3,	1,753	Đ	S.	72	8,440	21	2,338	98	12,804
Brazil	(10	∞	1,767	•	9	©	45	တ	1,352	13	15,034	25	18,211
Canada	56	1,043	244	9,985	24	1,874	85	5,862	413	104,140	8	13,271	698	136,175
Chile	1	63	4	459	©	4	1	İ	9	1,739	-	554	12	2,785
Colombia	!	1	(2)	235	(2)	18		ļ	00	1,772	9	4.109	15	6,134
Ecuador	-	91	-	104	(2)	13	1		5	474	-	562	œ	1.244
Finland	1	- 1	1		1	1		1 1	95	11,646	7	1,002	96	12,648
France	1	1	4	272	-	183	8 0	45	13	2,784	÷	843	19	4.127
Germany, Federal Republic of_	(S)	9	က	196	()	33	%	42	24	4,151	11	5,127	33	9,555
Hong Kong	@	4	1	238	1	1		. 1	_	149	€	54	က	445
Italy	1	12	4	330	5	433	(2)	82	201	22,131	-	241	212	23,232
Japan	,	204	114	9,904	38	2,970	-	227	561	83,958	57	12,709	772	109,972
Korea, Republic of	①	36	က	1,737	-	41	®	7	84	15,584	2	320	91	17,755
Mexico	143	4,194	7	418	19	885	⊕	61	96	10,074	29	13,401	324	29,030
Netherlands	©	တ	4	624	©	49	18	1,152	192	17,697	18	7,873	233	27,398
Peru	Ð	13	-	103	1	1	ļ.	1	2	456	1	491	₹	1,063
Philippines	က	254	4	668	1	1	®	7	4	1,188	1	265	12	2,613
Saudi Arabia	1	1	1	I.	1	1	•	26	©	22	1	473	2	551
Singapore	ŀ	ŀ	15	1,332	1	1	<u>N</u>	13	1	213	-	469	17	2,027
South Africa, Kepublic of	(•)	4	14	744	©	64	_	176	20	4,013		407	37	5,346
Spain	i e	1	•	141	1	1 }	ļ	1	16	2,511	©	160	17	2,812
Sweden	(•)	9	€.	16	တ	278	()	83	49	8,190	o,	1,277	62	9,787
Switzerland	ļ	1	©	œ	17	1,346	1	1	1	227	Đ	41	19	1,622
Taiwan	9 °	9	200	2,276		162	1	1	64	11,503	2	420	œ	14,367
Thailand	•	4	က	443	1	1	1	ŀ	7	1,856	7	140	11	2,443
United Kingdom	€	16	6	1,411	15	946	-	171	10	1,994	16	10,843	51	15,381
Venezuela	©	112	19	1,913	©	228	 ,	422	23	4,802	4	1,885	48	9,362
Other	2	225	20	4,715	1	25	©	265	40	8,792	10	5,921	103	19,973
Total ¹	179	6,274	539	40,596	174	12,661	107	8,670	2,026	340,475	301	104,292	3,332	512,964
													The second second	

 $^{1}\mathrm{Data}$ may not add to totals shown because of independent rounding. $^{2}\mathrm{Less}$ than 1/2 unit.

Source: U.S. Department of Commerce.

CLAYS 261

Table 26.—U.S. imports for consumption of clays in 1987, by kind

Kind	Quantity (short tons)	Value (thou- sands)
China clay or kaolin:		
Canada	20	\$8
ChinaGermany, Federal Republic of	3 .	
Netherlands	226 52	56 14
United Kingdom	10,223	1,321
Total ¹	10,524	1,397
Fuller's earth, not beneficiated:		
France	119	15
India	48	. 6
Total ¹	167	22
Fuller's earth, beneficiated:	. 04	
CanadaUnited Kingdom	34 63	6 12
Total	97	18
Bentonite:		
Brazil	1	4
Canada	1,677	420
France	10	1
Germany, Federal Republic of Hong Kong	454	285
India	$\begin{array}{c} 20 \\ 24 \end{array}$	3
Japan	249	13
Mexico	1,341	54
Philippines	76	10
Switzerland United Kingdom	65 122	111 39
Total ¹	4,039	945
Common blue and other ball clay, not beneficiated: Canada United Kingdom	44 513	8
Total	557	47
Canada	2	4
Japan United Kingdom	231 969	34 154
Total	1,202	192
Other clay, not beneficiated:		
Canada	272	16
Germany, Federal Republic of	2,500	20
Italy Korea, Republic of	196	34
Mexico	118 50	21 15
Netnerlands	265	24
Switzerland	9	7
TaiwanUnited Kingdom	$\begin{array}{c}2\\737\end{array}$	2 104
Total ¹	4,149	242
Clay, n.e.c., beneficiated:		
Brazil	27	22
Canada	198	97
DenmarkFrance	15	3
Germany, Federal Republic of	128 66	74 63
Italy	22	42
Japan	38	85
Monores	7 44	2 44
Morocco		665
Morocco	1,828	
Morocco Netherlands		1,098
Morocco Netherlands United Kingdom Total ¹ Artificially activated clay:	1,828 2,373	1,098
Morocco Netherlands United Kingdom Total ¹ — Artificially activated clay: Belgium	1,828 2,373	33
Morocco Netherlands United Kingdom Total ¹ — Artificially activated clay: Belgium Brazil	1,828 2,373 20 6	33
Morocco Netherlands United Kingdom Total ¹ Artificially activated clay: Belgium Brazil Brazil Canada	1,828 2,373 20 6 23	33
Morocco Netherlands United Kingdom Total ¹ Artificially activated clay: Belgium Brazil Canada Chile	1,828 2,373 20 6	33 8 7 3
Morocco Netherlands United Kingdom Total ¹ Artificially activated clay: Belgium Brazil Canada Chile	20 6 23 1	33

Table 26.—U.S. imports for consumption of clays in 1987, by kind —Continued

Kind	Quantity (short tons)	Value (thou- sands)
Artificially activated clay —Continued		
Korea, Republic of Mexico South Africa, Republic of Sweden United Kingdom		\$14 2,767 1,006 4 108
Total ¹	14,571	5,431
Grand total ¹	37,679	9,392

¹Data may not add to totals shown because of independent rounding.

Source: U.S. Department of Commerce.

WORLD REVIEW

Australia.—Comalco Kaolin's kaolin clay mining and processing operation at its Weipa bauxite mine in northern Queensland, with an initial capacity of 100,000 tpy, was officially inaugurated. Indicated reserves, just below the bauxite layer, totaled 25 million tons, but further exploration suggests that the total reserves could easily be twice this tonnage.

Comalco aims to be a major supplier to the paper coating industries of Western Europe, Japan, and the entire Pacific Basin. Exports, valued at \$16 million, were expected to rapidly consume the plant's initial capacity.

In another kaolin event, ECC-Pacific completed an expansion at its Pittong plant with further expansion to be completed by 1988, bringing capacity up to 75,000 tpy.³ Further increases were planned within the next 2 years to eventually raise production up to 120,000 tpy. Increases in capacity at Pittong have been matched by improvements in the wet- and dry-distribution facilities at the port of Fowey. With these strategically aimed expansions, ECC International planned not only to hold on to its present position in the world marketplace, but also to increase its market share internationally.

Belgium.—The Belgian chemical group, Solvay & Cie. S.A., purchased a further 1.17 million common shares in Laporte Industries (Holdings) PLC, raising its total share in the company to 22%.4 (See "United Kingdom" and "Fuller's Earth" sections of this chapter.)

Brazil.—The Azevedo Antunes Group continued investing in its kaolin mines in the northern part of Amapá Territory.⁵ The expansion program, scheduled for completion by yearend, was to nearly double production to 400,000 tpy. In another kaolin action, ECC's existing operation at Maji das Cruzes was extended to greater than 100,000-tpy capacity after a series of newly completed expansions. ECC was the largest supplier of pigments to the Brazilian paper industry.

Canada.-A drilling and coring program was successfully concluded at the Wood Mountain kaolin project in Saskatchewan by Ekaton Industries Inc.7 The drilling program was designed for both reserve evaluations and pilot plant testing. Earlier testing revealed a 200-million-ton ore body with a low 80's GE brightness, good optical characteristics, and a marketable calcined variety. The calcined clay is being targeted for eastern Canada, the Pacific Basin, and European markets. The pilot plant cost \$1.5 million, and the entire project was estimated at \$25 million for a 150,000-tpy facility. In midyear, Ekaton also signed a letter of intent with Esso Minerals Canada Ltd. whereby Esso acquired an option to accumulate up to 65% of the property due for completion by yearend 1988. In another action, Ekaton started construction of a \$3 million absorbent plant in Kamploops, British Columbia.8 Ekaton will become the only Canadian producer of clay-base pet waste and industrial absorbents. The project was approved only after an extensive market study showed that market share for claybase absorbents had increased dramatically in western Canada.

In a common clay action, Brampton Brick Ltd. signed a contract with Agemac Ltd. to build a 120-million-bpy turnkey plant in Brampton, Ontario, by the spring of 1988.9 The fully automated plant, requiring only CLAYS 263

eight people for overall operation, will feature a primary grinding installation, two tunnel dryers each with a 32-kiln-car capacity, and two 415-foot top- and side-fired tunnel kilns with a firing capacity of 178,000 bpy. Another common clay event saw Canada Brick Co. select Frame Engineering Inc., Anniston, AL, to provide a turnkey facility for the first dry fluoride scrubber system in a North American brick plant.¹⁰

Chile.—A newly completed feasibility and requirements study, in terms of investment, by Corporación de Fomento de la Producción's Servicio de Cooperación Téchnica (SERCOTEC) revealed the viability of several new medium- and small-scale mineral-related businesses.11 One venture of interest was a brick manufacturing requirement for the midsouthern market area of the country. The brick facility would have an annual capacity of 3.2 million bricks requiring an initial investment of less than \$1 million.

Finland.—The Government's Geological Research Institute was mounting a major exploration program designed to make the country self-sufficient in kaolin clays. The Finnish paper industry's demand for kaolin paper grade clays was estimated to be 1.5 million tons by 1990. In other kaolin developments, Kemira Oy was examining a promising deposit at Virtasalmi. Kemira planned to build a 100,000-tpy plant if the deposit contains more than 10 million tons of reserves. Partek Oy signed a cooperative agreement with a Swedish research organization to prepare a feasibility study on developing the Swedish Rostanga kaolin deposit.12

Germany, Federal Republic of.—Watts Blake Bearne Co. plc, United Kingdom, purchased a West German prepared-ceramic-body producer, Kannenbaeckerland, for about \$6 million through its wholly owned subsidiary, Fuchs'she Tongruben (FT). FT, a major clay and prepared-ceramic-body producer, is one of the largest suppliers to the European stoneware and earthenware industry.13 The European Darex Div. of W. R. Grace & Co. began construction to double capacity of its FCC plant in Worms. 14 The \$20 million expansion, scheduled for completion by midyear 1989, was in response to increasing demand for these kaolin-derived FCC in Europe and the Middle East. W. R. Grace mines kaolin in the United States and manufactures its catalyst line in Aiken, SC, Cincinnati, OH; and

Chattanooga, TN.

Indonesia.—The Government's Mining and Mineral Research Center predicted that by 1990 Indonesia will become one of the world's preeminent kaolin producers. The Center further stated that in 1987 there were 27 kaolin producers (all domestic companies because of Government regulations) in Indonesia. There were 7 mines on Bangka Island, 17 on Belitung, 2 in West Java, and 1 in North Sulawesi. P.T. Tambang Timah, a major producer, completed a new kaolin mining and processing complex at Tanjung Pandan on Belitung Island, South Sumatra, with an installed capacity of 22,000 tpy. The new plant's total production was to be equally divided between domestic and overseas Japanese consumers. Domestic kaolin production was consumed mostly by ceramic roof tile, cosmetic, paint, paper, and rubber manufacturers.15

Malaysia.—A kaolin deposit at Telagus, western Sarawak, was being evaluated by the recently formed Sarawak China Clay Trust. The deposit lies 65 miles southwest of the proposed shipping terminal at Kuching on the South China Sea. Preliminary studies indicated a reserve of approximately 20 million tons and low viscosity characteristics combined with a brightness in the 70% to 86% range. A wet-processing facility with a capacity of 150,000 tpy is planned, with consideration given to an additional 150,000 tons at some later date.

Netherlands.—Redland PLC, under its right of first refusal, acquired the other half of its Dutch subsidiary, Redland-Brass-Bredero Europa BV, from Venenigde Bedrijven Bredero (VBB).¹⁷ VBB is a major Dutch producer of bricks, ceramic tiles, concrete roofing tiles, and other building products.

Pakistan.—Residual buried kaolin deposits, formed as alteration products from granitic feldspars, are found near Nagar Parker in the Thar Parker District of southeast Sind, about 400 miles from Karachi. The Pakistan Mineral Development Corp. Ltd. (PMDC) identified more than 35 of these kaolin pockets overlain either by alluvium and/or laterite beds. Proven reserves were estimated at more than 4 million tons. PMDC plans to install a 50,000-tpy capacity raw kaolin elutriation plant for producing paper-, filler-, and ceramic-grade clays. Thar Mineral Processing Enterprise Ltd., in the same area, and Sind Minerals Ltd. in Mirpurkhas were reportedly also interested in establishing washing plants in the Nagar

Parker. In a fuller's earth development, the Punjab Mineral Development Corp. (Punjmin) started mining a montmorillonite clay at Dalona for use as an acid-activated bleaching earth. Presently, activated clays are largely imported for processing ghee and other edible oils. Expansions were also planned to eventually replace imported bleaching earths.¹⁸

Spain.—English China Clays PLC, through its subsidiary ECC Overseas Investments Ltd., increased its involvement in Spanish kaolin by acquiring 75% of the stock in Caosil S.A. for an undisclosed sum.¹⁹

ECC also had a 81.6% controlling interest in Ciá. Española de Caolines S.A. (Cedecsa). The Caosil and Cedecsa kaolinitic sand deposits will be operated separately. Caosil's quarries were at Peñalen in Guadalajara and wet-processed at Villaneuva. Kaolin from this complex, roughly 30,000 tpy, was mainly for the ceramics and paper industries. Cedecsa produced paper-grade kaolins, both coater and filler, from an operation at Poveda de la Sierra, also in Guadalajara. Coproduct bottle glass and ceramic grit sands were also produced at these locations.

U.S.S.R.—A large fully automated ceramic wall tile factory capable of producing about 75 million tiles per year was to be constructed in Novosibirsk.²⁰

United Kingdom.—In view of a steady increase in demand worldwide for white pigments for the paper industry, ECC International Ltd. reported a number of developments to enable more marketplace efficiencies. In Cornwall and Devon, a major drive was authorized to boost production from the company's existing plants. Additional flotation and new comminution equipment had been added to permit both recovery of the valuable large particle-size kaolin and to increase output from the flotation units. Two new pits also were scheduled to come on-stream along with the newly recommissioned Lower Longstones clayworks, idle since the mid-1970's. A new greenfield site also was said to be near development in the St. Austell clay-bearing area and was expected to be completed by yearend 1988. In addition to seeking extra sources of clay and improved recovery, ECC was also contemplating further expansions at its Par Clay Slurry plant and Blackpool works. Improved filtration systems at the clay-drying plants were added to increase efficiency and throughput and reduce overhead. In total, the package of improvements reportedly represented an increase of more than 20% in production.²¹

The major increased production in Cornwall and Devon, largely targeted for export, required the upgrading of ECC's marshalling and discharge facilities in the port of Fowey.22 Railfreight, in addition, also announced plans to build specialized hopper cars to transport china clay from ECC's clayworks to the port and to modernize British Rail's depot at St. Blazev. The Goonwean and Rostowrack China Clay Co. Ltd., the long- established independent producer with three Cornish pits, installed a new powder blend plant in St. Austell, Cornwall.23 The new materials handling equipment included storage and handling systems with both mechanical and pneumatic conveyors.

Steetlev Berk Ltd., a subsidiary of Steetley PLC, commissioned a new fully automated absorbent products mineral packing and distribution plant at Flixborough near Scunthorpe in South Humberside. The plant, to be opened at midyear, was to provide a full line of pet waste and industrial absorbent products. In addition, the plant was also designed with the ability to pack Spanish sepiolite clays from the producing Provinces of Madrid and Toledo. The Flixborough location was chosen solely because of its proximity to nearby Trent ports and important domestic freight routes for market distribution.24 The international chemicals group of Laporte Industries disclosed plans to begin recovering fuller's earth from new deposits in Surrey, pending results of a scheduled public inquiry.25 Hepworth Ceramic Holdings PLC bid for Thomas Marshall (Loxley) PLC, a fire clay refractory manufacturer.26 Hepworth had three main areas of interest: the manufacture of clay pipes and plastic products for the building industry, the processing of silica sands mainly for the glass and foundry industries, and the manufacture of clay and basic refractory products. The Marshall acquisition will enable Hepworth to merge its other refractory subsidiary, G. R. Stein, and to exploit Marshall's presence in North America and Stein's extensive export base.

Table 27.—Kaolin: World production, by country¹

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Algeria	e ₁₉	9	14	16	15
Argentina	160	100	81	129	110
Australia ³	127	4 241	4 183	^e 140	165
Austria (marketable)	92	110	110	51	50
Bangladesh ⁵	3	3	5	3	614
Belgium	66	76	41	e ₄₄	642
Brazil (beneficiated)	463	536	578	588	710
Bulgaria	267	282	283	292	290
Burundi	4	2	_5 .	6	
Chile	45	54	54	46	648
Colombia	1,114	1,034	1,148	1,714	⁶ 1,346
Costa Rica ^e	1	1		0.7.7	c
Czechoslovakia	730	736	e720	^e 720	⁶ 768
Denmark ^e	11	15	14	611	12
Ecuador	1	r ₃	3	e ₂	. 2
Egypt	110	159	119	141	145
EgyptEthiopia (including Eritrea) ^e	10	10	10	10	6
	319	338	1,664	1,488	1,540
German Democratic Republic (marketable) ^e	220	190	190	180	165
Germany, Federal Republic of (marketable)	448	397	452	564	550
Greece	67	101	97	156	160
Hong Kong	- 1	(⁸)	11	1	
Hungary	41	43	32	33	6 37
India:					
Salable, crude	610	555	645	808	⁶ 870
Processed	e110	128	121	e110	165
Indonesia	66	92	118	138	140
Iran ^e	110	110	110	110	110
Israel ^e	e30	30	30	30	30
Italy:					
Crude	58	58	66	39	6134
Kaolinitic earth	28	28	29	21	⁶ 26
Japan	254	248	245	225	6175
Kenya	1	(8)	(8)	2	_ 2
Korea, Republic of	754	795	726	937	6695
Madagascar ^e	3	3	67	r 7	62
Malaysia	63	80	91	94	104
Mexico	179	144	311	e220	220
Mozambique	(⁸)	(⁸)	(8)	e(8)	(⁸)
New Zealand	26	28	e30	e 30	30
Nigeria ^e	1	(6 8)	(⁸)	(⁸)	(8)
Pakistan	14	13	7	41	- 35
Paraguay	50	55	66	e66	66
Peru	1	1	(⁸)	7	6
Poland	54	50	53	54	54
Portugal	114	115	88	60	€63
Romania ^e	450	450	450	^r 450	440
South Africa, Republic of	143	150	142	139	6167
Spain (marketable)9	281	352	456	413	420
Sri Lanka	9	12	6	7	68
Sweden	(⁸)	(⁸)	e(8)	e(8)	(⁸)
Taiwan	113	88	84	70	674
Tanzania	1	2	2	e ₂	2
Thailand	40	65	118	$714\overline{6}$	6 7228
Turkey	e60	61	76	86	6148
	2.900	3.100	3,200	3,300	3,300
U.S.S.R. United Kingdom	3,000	3,296	3,472	e3,400	3,500
			7,793	8,549	68,827
United States ¹⁰	7,203	7,953	7,793 e25		32
Venezuela	12	24	25	24	
Vietname	1	1	r eoor	r e ₂₃₀	1
Yugoslavia	230	222	r e ₂₂₅		235
Zimbabwe	1	1	1	1	1
Total	21,289	r _{22,750}	24,608	26,152	26,491

^eEstimated. ^pPreliminary. ^rRevised.

¹Table includes data available through July 15, 1988.

²In addition to the countries listed, China, Lebanon, and Suriname also produced kaolin, but information is inadequate to make reliable estimates of output levels. Guatemala and Morocco each produced less than 500 tons in each of the years covered by this table.

3May include ball clay and other clays grouped for statistical purposes as kaolin.

4Excludes Western Australia.

Excludes Western Australia.
 Data are for year ending June 30 of that stated.
 Reported figure.
 Includes kaolinitic clay.
 Less than 1/2 unit.
 Includes crude and washed kaolin and refractory clays not further described.
 Kaolin sold or used by producers.

Table 28.—Bentonite: World production, by country¹

(Short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Algeria ³	e38,100	r _{27,007}	36,376	33,069	33,000
Argentina	149,439	r _{138,564}	162,111	161,148	159,800
Australia	33,098	43,180	32,044	27,494	27,500
Brazil	141,857	221,592	260,168	227,099	231,500
Burma	783	799	783	938	900
Cyprus ⁴	r35,274	35,715	57,320	60,627	62,800
Egypt ^e	2,800	4,200	3,300	r _{5,650}	5,700
France	3,407	3,831	16,424	e11,000	9,000
Greece	759,427	858,400	977,718	1,452,652	1,322,800
Guatemala ^e	8,800	9,400	53,006	r _{2,800}	2,900
Hungary	87,972	70,722	65,966	88,061	5108,391
Iran	15,432	38,581	29,762	r e30,000	30,000
Israel (metabentonite)	7.538	6,501	e6,600	e6,600	6,600
Italy	327,183	335,102	327,239	336,890	5364,149
Japan	486.034	452,034	508,749	527,184	5458,347
Kenya ^e	220	220	220	220	220
Mexico	249,276	294,700	295,083	160,937	165,300
Morocco	4.515	2.012	3,171	4,226	53,250
Mozambique	276	446	398	1,226	1,200
New Zealand (processed)		7.075	e6,600	e6,600	6,600
Pakistan Pakistan	735	1,918	1,776	1,501	2,600
Peru	16,656	14,298	2,223	36,464	33,100
Philippines	739	42,162	27,526	e22,000	22,000
Poland ^e	77.000	77,000	83,000	83,000	83,000
		198,000	198,000	204,000	198,000
Romania ^e South Africa, Republic of		46,131	47,910	53,203	⁵ 53,961
Spain		80,008	99,471	e88,000	89,000
Tanzania ^e	83	83	83	83	83
	•	30.967	51,649	61.032	594.631
Turkey	3,163,600	3,174,700	3.185,700	3,196,700	3,196,700
United States	2,886,870	3,437,940	3,195,280	2.813,043	52,806,233
Zimbabwe	69,552	e77,000	3,133,260	2,010,040	2,000,200
Total		r9,730,288	9,685,656	9,703,447	9,579,265

^eEstimated. Preliminary. rRevised.

Table 29.—Fuller's earth: World production, by country¹

(Short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Algeria ^e	5,500	33,858	3,900	3,900	3,900
Argentina	7,431	3,980	1,921	r e _{2,200}	2,200
Australia (attapulgite) ^e	16,500	16,500	16,500	16,500	16,500
Italy	e22,000	e33,000	33,500	34,127	342,449
Mexico	45,827	50,372	63,934	e49,600	49,600
Morocco (smectite)	30,187	36,824	26,924	38,691	351,005
Pakistan	23,298	21,097	11,736	16,785	18,700
Senegal (attapulgite)	110,644	127,315	105,774	90,232	3122,409
South Africa, Republic of	344				·
Spain (attapulgite)	49,223	48,399	65,805	e56,000	58,400
United Kingdom	211.644	222,666	e220,000	e220,000	220,000
United States ⁴	1,911,634	1,899,145	2,059,281	1,909,978	32,056,791
	2,434,232	2,463,156	2,609,295	2,438,013	2,641,954

eEstimated. Preliminary. ^rRevised.

¹Table includes data available through July 22, 1988.

In addition to the countries listed, Canada, China, the Federal Republic of Germany, and Yugoslavia are believed to produce bentonite, but output is not reported, and available information is inadequate to make reliable estimates of output levels.

Sincludes bentonitic clays.

Includes bleaching earths.

Reported figure.

^{*}Estimated. *Preliminary. *Nevised.

1Excludes centrally planned economy countries, some of which presumably produce fuller's earth, but for which no information is available. Table includes data available through July 22, 1988.

2In addition to the market economy countries listed, France, Iran, Japan, and Turkey have reportedly produced fuller's earth in the past and may continue to do so, but output is not reported, and available information is inadequate to make reliable estimates of output levels.

3Reported figure.

4Sold or used by producers.

CLAYS 267

A \$2 million contract was awarded to a Cardiff-based engineering group by ARC Powell Duffryn Brick Ltd., Risca, Gwent, for the reported construction of Europe's most modern brick factory to meet the demand for the company's bricks.27 The new 35-million-bpy plant at Cirencester, Gloucestershire, to be commissioned at midyear, was to be fully automated and to incorporate the latest computeraided technology. The factory, ARC Powell Duffryn Brick's sixth, is to be built adjacent to the quarry on a 4-acre site. Baggeridge Brick PLC announced a \$15 million enlargement at its Kingsbury brickworks.28 Contracts were signed with several brickmaking equipment companies and included a

Clay Fawcett clay preparation plant and Lingl setting equipment and tunnel kiln, jointly designed by the latter and Baggeridge. Steetley acquired Lumley Brickwork Ltd., a well-established manufacturer of face brick in the northeast.29 Steetlev was planning to invest substantially in the Lumley business as part of its expansion north of England. Steetlev's present brick holdings in 1987, Steetley Brick and Tile, headquartered in Newcastle-under-Lyme already was a leading supplier of facing brick and clay roof tiles in central England. Steetley was also actively increasing production capacity through major expansions at Parkhouse (bricks), Keele, and Knutton (tile).

TECHNOLOGY

The high-temperature properties of two clay fluids, formulated from commercially available domestic sodium bentonite and bentonite-saponite mixtures, were evaluated in the temperature range 300° to 600° F under appropriate confining pressures up to 16,000 pounds per square inch.30 The study was designed to evaluate the effects of common drilling mud additives (such as sodium polyacrylates, lignite, and lignosulfonates) and formation contaminates (such as potassium, sodium, and calcium salts) in a geothermal well environment. The addition of saponitic clays to the bentonitic fluids exhibited a balanced viscosity at all temperatures and conditions tested. A constant viscosity is mandatory for optimizing drilling systems. The catalytic properties of layered aluminosilicate smectite-type clays were reviewed.31 These catalysts have long been used for cracking hydrocarbons. More recent applications of intercalated clay catalysts and/or supports along with new clayrelated chemistry, have burgeoned in recent years. There was further information about specific uses of clays in carbocatonic reactions and condensations of clay surfaces to cycloadditions and rearrangements and to redox reactions. The role of clay in biogenesis and/or prebiotic synthesis of the first biomolecules also was explored. The selective sorption of water-soluble oligomers, ethylene glycol, and ethylenimine, were observed on synthetic sediments containing predetermined amounts of kaolinite, illite, and montmorillonite clays.32 This type of research should aid the design of inexpensive clay-base systems that preferentially strip unwanted contaminates and/or toxins

from environmentally sensitive air and water systems. The tremendous diversity of modifying reagents in the rapidly advancing surface modification of minerals area, including kaolin and complex organic coupling agents to improve a particular mineral's mechanical, decorative, and thermal properties, are detailed.33 The article cited specific examples of surface treatment describing the coating chemistry evaluated, the mode of application, and principal market outlets. A similar work focused on surface treatment of kaolins to improve the performance of filled nylon products.34 Listed were improvements in flexural modulus heat deflection temperature and impact strength. Surface-treated calcined kaolin reinforcement is used in engineered hightech compounds. Silane loading levels were also identified and compared for both medium- and fine-particle kaolins. Articles reviewed the growing mineral markets in plastics and paper. One article on plastics examined selected market sectors technically, specifically resins and thermosets, and related their consumption of mineral fillers in reinforcements and pigments for interior and exterior applications.35 Another article outlined the technical means whereby plastics producers and fabricators can improve market position and/or penetration through innovation.36 The area of greatest potential appeared to be product modification and/or redesign. The sales of unaltered minerals and surface-modified minerals also were examined. An article on paper reviewed the world sources of kaolin and its major markets.37 The individual companies in each country, their products, capacities,

locations, plans, and other pertinent data were highlighted. The other paper stressed the current and future technical trends in Western European graphic paper production. The impact of mineral usage in graphic paper also was discussed. One section of the work presented a discussion on the industry structure, on a countrywide basis, stressing features such as mill capacities and output, paper grades, and new investment programs.

Statistical process control (SPC) in the mining and processing of air-floated kaolin was detailed.39 SPC in this context is basically a cooperative agreement between a raw material supplier and a manufacturer that provides for quality assurance. The costly and time-consuming aspects of SPC are apparently being overridden by an evergrowing customer base of clay purchasers demanding improved and reliable product quality. Thermally activated kaolin and montmorillonites in a fixed-bed reactor were shown to have excellent pozzolanic activity when mixed with lime and water.40 The material, readily available as an inexpensive raw clay, apparently possesses sufficient strength to permit use as a low-cost binder in developing countries. It is of interest to evaluate swelling-type clays for use as a pozzolana because they are conventionally excluded from consideration for building construction.

A comprehensive treatise looked at kaolin and associated clay minerals, such as ball, fire, and flint clays, from a geological viewpoint and described the classifications, origins, and mineralogy of worldwide kaolin deposits.41 The paper, highlighting the deposits in the United States and the United Kingdom, also reviewed the main sources of kaolin and its major markets. A noteworthy aspect of the report was the exhaustive tables of typical kaolin filler, coating, and ceramic grade clays containing both physical and chemical properties. Similar tables are also shown for ball clays, flint clays, fire clays, and chamotte. An article focusing on the clay mineral potential of Turkey was published.42 The article looks at the geology and formation of the Turkish clay deposits followed by the classification and outlook of the clay minerals encountered. Reserves, production, quality, and markets for kaolin, ball clays, refractory clays, bentonite (both white and sodium bentonite), sepiolites, and saponites are given in detail. A concise study on the industrial minerals of Pakistan included sections on kaolin, fuller's

earth, bentonite, and fire clays in the four Provinces.⁴² Geology, mining, production flowsheets, and operating companies were presented. A number of clay-testing techniques that must be applied in the proper technical evaluation of clays for use in ceramics was summarized.⁴⁴ The author exhorted those in the extractive industry to employ testwork programs specifically designed to assess the manufacturing potential of the clay raw materials to eliminate the ubiquitious downstream problems.

A series of papers described the technical aspects of mullite in the binary system Al₂O₃-SiO₂. One paper investigated the alumina-silica phase relations of samples annealed in oxygen, quenched, and studied optical microscopy, image analysis, X-ray diffraction, and by the transmission electron microscope (TEM).45 Careful analyses of data revealed that the solid solution boundaries of mullite changed with increasing temperature up to its peritectic melting at 1.890° C. A similar investigative technique, including differential thermal analysis (DTA), showed that the spinel phase form during the 980° C exothermic reaction in the kaolinite-mullite reaction series was nearly a pure Al₂O₃ composition.⁴⁶ Detailed TEM characterization indicated that the spinel formation is preceded by a phase separation in the amorphous dehydroxylated kaolinite matrix. The remaining two papers characterized mullites formed by solgel methods classified as either colloidal or polymeric.47 The specimens formed from mullitic compositions from colloidal powders had mullite grains of prismatic shape and a liquid phase. With polymeric powders, mullite grains were equigranular with no liquid phase. The colloidal mullites were considered to be metastable, resulting from the nature of the starting material and processing conditions employed. The other research showed that mullite derived from slow-hydrolysis methods from silanes and hydrous aluminum nitrates gradually approached the stoichiometry of the bulk composition as the firing temperature increased and slightly departed again on further heating.48 The mullites, which are end products of solid-state reactions involving kaolin, are widely used in refractory bricks and specialty products. The results of this basic research should allow refractory manufacturers to better control the physical properties of the mullite component to optimize the density of the resulting highperformance refractories.

¹Physical scientist, Branch of Industrial Minerals.

**Tindustrial Minerals (London). World of Minerals: Canada—Kaolin Test Mining. No. 243, Dec. 1987, p. 9.

8——. Fillers and Extender: Canadian Cats Prefer Clay. No. 238, July 1987, p. 97.

Brick, Agemac Sign for Turkey Plant. V. 190, No. 5, Apr.

1987, p. 7. 10 ______ Update: News—Brampton Brick Picks Frame Engineers To Install Scrubber. V. 190, No. 2, Feb. 1987,

p. 8.

11 Industrial Minerals (London). Mineral Notes. Chilean
Brick and Fertilizer Potential. No. 235, Apr. 1987. p. 82.

12 U.S. Embassy, Helsinki, Finland. State Dep. Airgram
A-02, Feb. 24, 1988, 12 pp.

13 Ceramic Bulletin. News Notes. Watts Blake Bearne
Acquires Fuchs'sche Tongruben. V. 66, No. 3, Mar. 1987,

p. 403. ¹⁴Chemical Marketing Reporter. V. 231, No. 14, Apr. 6,

14 Chemical Marketing Reporter. V. 231, No. 14, Apr. 6, 1987, p.4.

15 U.S. Embassy, Jakarta, Indonesia. State Dep. Airgram A-006, Feb. 4, 1988, p. 28.

16 Industrial Minerals (London). Fillers and Extenders: Malaysian Kaolin Study. No. 238, July 1987, p. 97.

17 —— Company News: Redland Takes Control of Bredero. No. 232, Jan. 1987, p. 58.

18 Griffiths, J. Pakistan's Mineral Potential: Prince or Pauper. Ind. Miner. (London). No. 238, July 1987, pp. 20-43.

19 Industrial Minerals (London). World of Minerals Spain-ECC Expands Spanish Kaolin Interest. No. 240, Sept. 1987, p. 13.

20 —— Mineral Notes. New Ceramic Wall Tile Factory. No. 237, June 1987, p. 73.

21 Work cited in footnote 3.

22 Industrial Minerals (London). World of Minerals:

Work titled in Robinson

2 Industrial Minerals (London). World of Minerals:
United Kingdom—Railfreight Secures Kaolin Traffic. No.
232, Jan. 1987, p. 13.

232, Jan. 1987, p. 13.

23Quarry Management (London). New SAP China Clay Handling and Storage System. V. 14, No. 9, Sept. 1987,

p. 29.

24Industrial Minerals (London). World of Minerals:
United Kingdom—New Steetley Berk Plant. No. 236, May 1987, p. 15.

Annual Report Highlights: Continued Growth for LaPorte. No. 237, June 1987, p. 20.
 — World of Minerals: United Kingdom—Hepworth Bid for Fireclays Manufacturer. No. 239, Aug. 1987, 1987, 1987.

pp. 12-13.

²⁷Quarry Management (London). Plant: Brick Factory Contract Awarded. V. 15, No. 2, Feb. 1988, p. 45.

²⁸Industrial Minerals (London). Company News: New

Ceramic Baggeridge's Kingbury Investment. No. 241, Oct. 1987, pp. 22, 73-76.

29———. World of Minerals: United Kingdom—Steet-

ley's New Overseas Acquisitions-While at Home. No. 237,

ley's New Overseas Acquisitions—while at Holle. 105, 231, June 1987, pp. 11-12.

30 Giiven, N. L., L. L. Carney, and B. E. Ridpath. Evaluation of Geothermal Drilling Fluids Using a Commercial Bentonite and a Bentonite/Saponite Mixture. (U.S. DOE Contract DE-AC04-76DP00789). Sandia Nat. Laboratories Contractor Rep. SAND 86-7180, Feb. 1987,

126 pp.

3 Laszlo, P. Chemical Reactions on Clays. Sci., v. 235,
No. 4795, Mar. 20, 1987, p. 1473.

3 2 Podall, R. T., K. C. Irwin, and S. Brendlinger. Sorption

Childs Oligomers on Sediments. Environ. Sci. or Water Soluble Oligomers on Sediments. Environ. Sci. Technol., v. 21, No. 6, June 1987, pp. 562-568.

3a Griffiths, J. Surface Modified Minerals: More Than Just a Cover Up. Ind. Miner. (London), No. 241, Oct. 1987,

Just a Cover Up. Ind. Miner. (London), No. 241, Oct. 1987, pp. 23-45.

34Washabaugh, F. J. Surface-Treated Kaolins Bolster Performance of Filled Nylon. Mod. Plastics, v. 65, No. 2, Feb. 1988, pp. 103-104.

35Dickson, T. US Plastics: A Growing Mineral Market. Ind. Miner. (London), No. 233, Feb. 1987, pp. 50-57.

36Haskin, R. W., and C. Eckert. Minerals In Plastics: Meeting the Challenge of the Future. Ind. Miner. (London), No. 234, Mar. 1987, pp. 54-59.

37Industrial Minerals (London). Kaolin: Paper Underpins Current Demand. No. 238, July 1987, pp. 62-87.

38Benbow, J. European Paper: Coated Graphics Provide Market Gloss. Ind. Miner. (London), No. 243, Dec. 1987, pp. 73-89.

Market Gloss. Ind. Miner. (London), No. 243, Dec. 1987, pp. 73-89.

39Schrader, E. L. Statistical Process Control in the Mining and Processing of Airfloated Kaolin. Soc. Min. Eng. AIME preprint 87-70, 1987, 2 pp.

40Ambroise, J., J. Gniewek, J. Dejean, and J. Pera. Hydration of Synthetic Pozzolanic Binders Obtained by Thermal Activation of Montmorillonite. Am. Ceram. Soc. Bull., v. 66, No. 12, 1987, pp. 731-1733.

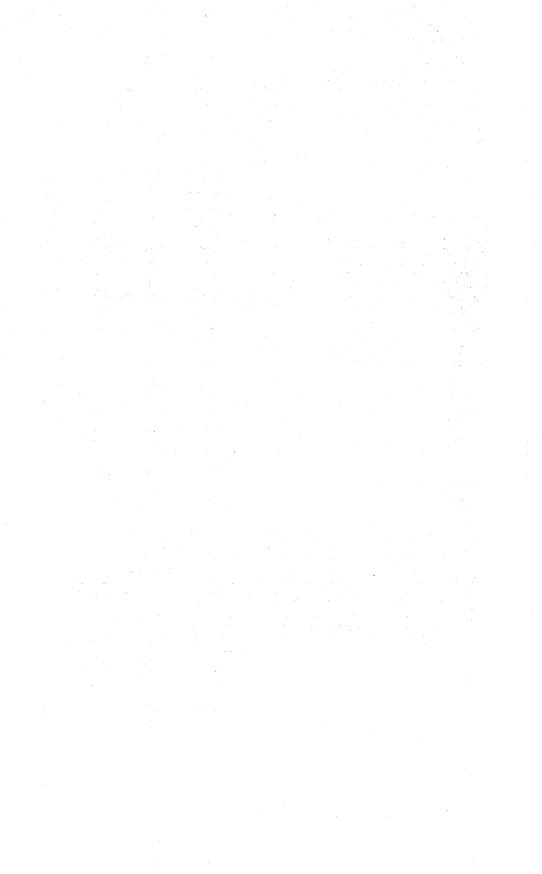
41Bristow, C. M. World Kaolin: Genesis, Exploration and Application. Ind. Miner. (London), No. 238, July 1987, pp. 45-59.

Application. Ind. Miner. (London), No. 238, July 1987, pp. 45-59.

*2°Ozdemir, H., and I. Sezer. Clay Potential of Turkey. Ind. Miner. (London), No. 241, Oct. 1987, pp. 47-53.

*3°Pages 20-43 of work cited in footnote 18.

*4°Hamilton, N. J. Clay Deposit Account: Money in the Bank. Ind. Miner. (London), No. 235, Apr. 1987, pp. 74-75.


*5°Klug, F. J., S. Prochazka, and R. H. Doremus. Alumina—Silica Phase Diagram in the Mullite Region. J. Am. Ceram. Soc., v. 70, No. 10, Oct. 1987, pp. 750-759.

*6°Sonuparlak, B., M. Sarikaya, and I. A. Aksay. Spinel Phase Formation During the 980° C Exothermic Reaction in the Kaolinite-to-Mullite Reaction Series. J. Am. Ceram. Soc., v. 70, No. 10, Oct. 1987, pp. 837-842.

in the Kaolinite-to-Mullite Reaction Series. J. Am. Ceram. Soc., v. 70, No. 10, Oct. 1987, pp. 837-842.

⁴TPask, J. A., X. W. Zhang, and A. P. Tomsia. Effect of Sol-Gel Mixing on Mullite Microstructure and Phase Equilibria in the Al₂O₃-SiO₂ System. J. Am. Ceram. Soc., v. 70, No. 10, Oct. 1987, pp. 704-707.

⁴⁸Okada, K., and N. Otsuka. Change in Chemical Composition of Mullite Formed From 2SiO₂-3A1₂O₃ Xerogel During the Formation Process. J. Am. Ceram. Soc., v. 70, No. 10, Oct. 1987, pp. C245-C247.

Cobalt

By William S. Kirk¹

The cobalt market was characterized by stable prices and an increase in consumption. The major markets for cobalt, representing diverse sectors of the economyaircraft, magnetic materials, and driers used in paint-were not particularly strong.

Domestic Data Coverage.—The Bureau

of Mines surveyed superalloy recyclers to determine the quantity of cobalt recycled in superalloy scrap. Thirteen recyclers processed the vast majority of superalloy scrap. Eight of the recyclers responded to requests concerning the quantity of cobalt contained in scrap sold to superalloy producers.

Table 1.—Salient cobalt statistics (Thousand pounds of contained cobalt unless otherwise specified)

	1983	1984	1985	1986	1987
United States:	*				
Consumption:					
Reported Apparent	11,319 15,712	12,944 17,895	13,541	14,442	15,099
Imports for consumptionStocks, Dec. 31:	17,221	25,310	15,692 17,708	17,373 12,288	17,820 19,472
ConsumerProcessor	1,441 1,366	1,368 1.781	1,131	1,479	2,056
Price: Metal, per pound ¹	\$5.76	\$10.40	1,557 \$11.43	1,441 \$7.49	2,632
World: Production: ²	*	410.10	ψ11. 1 0	φ1.49	\$6.56
MineRefinery	^r 83,499 ^r 39,869	^r 90,555 ^r 52,089	106,504 59,317	P107,812 P67,622	e103,246 e59,391

^eEstimated. Preliminary. Revised.

Legislation and Government grams.-The Institute of Scrap Iron and Steel (ISIS) urged the Environmental Protection Agency (EPA) to remove cobalt from EPA's extremely hazardous substances interim final test. ISIS pointed out that cobalt did not meet EPA's original listing criterion of toxicity. If cobalt were allowed to stay on the list, many scrap processors and scrap consumers would become subject to emergency planning requirements because of the presence of cobalt in the scrap metal that they routinely handle.

The administration presented Congress with a National Defense Stockpile plan that foresaw the total sale of as much as \$775 million worth of material by 1990. Cobalt was included in the list of materials.

Based on weighted average of Metals Week prices.
In 1986, the units for "World: Production" were were changed from short tons to thousand pounds. Some differences between these and previously published data might be encountered owing to differences in conversion methods.

Table 2.—U.S. cobalt products1 produced and shipped by refiners and processors

(Thousand pounds of contained cobalt)

	- 19	986	19	87
	Pro- duc- tion	Ship- ments	Pro- duc- tion	Ship- ments
Driers (organic compounds) Hydrate (hydroxide)	1,563 109	1,423 962	1,838 1,386	1,751 1,014
Salts ² (inorganic compounds)	748	810	745	797
Total	2,420	3,195	3,969	3,562

¹Figures on oxide withheld to avoid disclosing company

proprietary data.

²Various salts combined to avoid disclosing company proprietary data.

CONSUMPTION AND USES

Reported consumption was 15.1 million pounds compared with 14.4 million pounds in 1986. Apparent consumption, calculated from net imports, secondary (scrap) consumption, and changes in industry and Government stocks, increased to 17.8 million pounds. Of the 6.3 million pounds of cobalt reported to have been used in the

production of superalloys during the year, approximately 500,000 pounds was used in the production of prosthetic devices (surgical implants), according to industry sources. In general, alloys used in prosthetic devices and superalloys were produced in the same facilities.

Table 3.-U.S. consumption of cobalt, by end use

(Thousand pounds of contained cobalt)

End use	1986	1987
Steel:	***	w
Full allow	W	w
Uigh attempth low-alloy		57
Stainless and heat-resisting	76	383
Tool	256	
Superalloys ¹	6,446	6,273
Alloys (excludes alloy steels and superalloys):		
Cutting and wear-resistant materials ²	726	1,174
Cutting and wear-resistant materials	1.791	1,719
Magnetic alloys	W	W
Nonferrous alloys	w	W
Welding materials (structural and hard-facing)	118	94
Other alloys	w	W
Mill products made from metal powder	**	
Chemical and ceramic uses:	1.445	1.096
Catalysts	1.593	1,968
Drier in paint or related usage	46	59
Feed or nutritive additive	40	37
Glass decolorizer	771	794
Ground coat frit		
Pigments	462	570
Miscellaneous and unspecified	672	88
•	14.440	315.099
Total	14,442	- 15,09

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified." Data not comparable to those prior to 1986 because of the addition of statistical canvass coverage of the superalloy recycling industry.

2Cemented and sintered carbides and cast carbide dies or parts.

³Data do not add to total shown because of independent rounding.

Table 4.—U.S. consumption of cobalt, by form

(Thousand pounds of contained cobalt)

Form	1983	1984	1985	1986	1987
Chemical compounds (organic and inorganic) other than oxide Metal Oxide Purchased scrap Other	2,297 7,165 938 723 196	2,226 8,746 915 879 178	1,850 9,463 1,201 897 130	1,738 8,594 1,233 2,638 239	2,167 9,212 1,129 2,509 82
Total	11,319	12,944	13,541	14,442	15,099

PRICES

The year was marked by price stability as Zaire and Zambia were moderately successful in their efforts to maintain the producer price of \$7.00 per pound. Representatives from the two countries met in November to hold discussions on prices and reaffirmed the price of \$7.00 per pound set in 1986. They further agreed that Zaire would concentrate on high-quality cobalt while Zambia would focus on the lower grade markets.

Although the two producers considered \$7.00 to be a ceiling price, they naturally wanted to sell their cobalt as close to that level as possible. To this end, they withheld cobalt from merchants and took steps to see that consumers did not sell excess cobalt on the open market. The price of electrolytic cobalt began the year at a range of \$6.25 to \$6.50 per pound, ending at \$6.50 to \$6.85 per pound, while averaging \$6.56 per pound.

Table 5.—Yearend published prices of cobalt materials1

(Dollars per pound)

Material	1983	1984	1985	1986	1987²
Cobalt:3					
Fine powderPowder	10.11 6.91	16.63 13.24	19.05 14.87	15.30 14.47	16.75
Cobalt oxide: Ceramic-grade (70% cobalt)					13.84
Ceramic-grade (72% cohalt)	4.90 5.04	9.40 9.66	$9.98 \\ 10.26$	6.08 6.24	8.80 9.04
Metallurgical-grade (76% cobalt)	5.21	9.86	10.61	6.51	9.41

¹Metals Week.

³See table 1 for cathode price.

FOREIGN TRADE

Exports of unwrought cobalt metal and waste and scrap totaled 806,000 pounds, gross weight, valued at \$7.0 million. These exports were shipped to 34 countries, with Japan, Belgium, and Canada, in descending order, receiving the largest quantities.

Exports of wrought metal totaled 567,000 pounds, gross weight, valued at \$11 million. Of the 21 countries to which cobalt was shipped, the major recipients, in descending order, were Canada, Japan, and France.

Imports for consumption of cobalt metal originating in south-central Africa, that is, imports from Belgium (Zairian origin), Zaire, and Zambia, represented 66% of total cobalt imports compared with 40% from that area in 1986.

Represents prices as of Jan. 21, 1988, yearend 1987 prices were not available.

MINERALS YEARBOOK, 1987

Table 6.—U.S. imports for consumption of cobalt, by class

(Thousand pounds and thousand dollars)

	· · · · · · · · · · · · · · · · · · ·				
	Class		1985	1986	1987
Metal:1			16,613	11,669	18,61
Gross weight			16,613	11,669	18,61
Value			\$181,379	\$83,295	\$122,79
Oxide:			246	511	79
Gross weight			182	378	58 \$5,29
Value			\$2,258	\$4,202	\$0,29
Salts and compounds:			1,413	805	90
Gross weight		2	424	241	27 \$2,00
			\$4,413 489	\$2,669 NA	\$2,00 N
Other forms: ²			\$3,356	NA	N
Value				10.000	³ 19,47
Total content			17,708	12,288	-19,41

Source: Bureau of the Census.

^eEstimated. NA Not available.

¹Includes unwrought metal and waste and scrap.

²Contained cobalt in nickel-copper and nickel matte.

³Data do not add to total shown because of independent rounding.

Table 7.-U.S. imports for consumption of cobalt, by country

(Thousand pounds and thousand dollars)

		Metal ¹	tal ¹			Oxide ²	le ²			Other	Other forms		Tot	l e
Country	19	986	1987	87	1986	36	1987	2:	1986	9:	1987	1,1	content3	ıt3 4
	Gross weight	Value	Gross weight	Value	Gross weight	Value	Gross weight	Value	Cobalt content	Value	Cobalt content	Value	1986	1987
Australia	9	22	င	П	NA	NA	1;	1:	13 1°	13	1'	1:	9	80
Belgium	3.324	2,535	3317	20.774	55 12 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2,602 161	233	2,414	15	136	9 6	£	3.355	235 3350 3360
Finland	583	6,494	363	4,160	2	16	21	349	9	172	6	93	290	410
France	84	299	8 2	458	9	184	က	8	1	1	()	10	88	81
Germany, Federal Kepublic	227	1,507	146	1,726	35	433	45	8.4	13	139	2	66	566	181
Japan	620	4,392	-	75	ľ	10	©	က	34	385	13	373	654	14
Netherlands	8	10 01	262	1,636	34	147	178	1,142	1	1	!-	10	885	394
Courth Africa Republic of	1,001	179	1,661	7,000	Į Į	!	i i	ł	186	120	161	799	1,001	199
United Kingdom	138	626	151	546	90	629	44	566	116	1,535	27	409	321	211
Zaire	694	3,931	9,361	63,835	1	1	49	337	6	69		18	203	9,398
Zambia	3,501	19,834 325	2,919 171	618	t t 1- t	1 1	21	$\bar{1}\bar{1}\bar{5}$	6	20		1	9,501 127	187
Total ⁴	11,669	83,295	18,612	122,791	511	4,202	795	5,293	241	2,662	271	2,004	12,288	19,472

NA Not available.

*Includes unwrought metal and waste and scrap.

*Gross weight figures for cobalt oxide do not indicate cobalt content.

*Batimated contained cobalt.

*That may not add to totals shown because of independent rounding.

*Less than 1/2 unit.

Source: Bureau of the Census.

Item	TSUS No.	Most favored nation (MFN)	Non-MFN
	140.	Jan. 1, 1987	Jan. 1, 1987
Alloys, unwrought ¹ Chemical compounds:	632.88	5.5% ad valorem $_{-}$	45% ad valorem.
Oxide	418.60	1.2 cents per pound.	20 cents per pound.
SulfateOtherOre and concentrate		1.4% ad valorem _ 4.2% ad valorem _ Free	6.5% ad valorem. 30% ad valorem.

Table 8.—U.S. import duties for cobalt

632 20

WORLD REVIEW

Australia.—Freeport-McMoRan Inc., New Orleans, LA, sold its 50% share of the Greenvale nickel-cobalt facilities Queensland to Dallhold Investments Pty. Ltd., an Australian investment company. Later in the year, Dallhold purchased the other 50% of the Greenvale project from another Australian company, Metals Exploration Ltd.

Unwrought metal, waste and scrap

Brazil.—Companhia Niquel Tocantins, a Brazilian nickel producer, was planning to start production of electrolytic cobalt at its new São Miguel Paulista plant in São Paulo State by January 1988. The company had been producing a cobalt concentrate, which was sent to Falconbridge Ltd.'s refinery in Norway for processing. Initial production capacity for the plant was to be 330 short tons per year, rising to 660 tons by 1990. Although these quantities were minuscule on a global scale, they were expected to make Brazil self-sufficient in cobalt. The country had been dependent on imports from Canada, Norway, Zaire, and Zambia. Brazilian cobalt consumption had been growing by more than 10% annually.

Canada.-Inco Ltd. reached an agreement in September on a new 3-year contract with mining and production workers at its Thompson plant in Manitoba. Under the terms of the contract, which received approval from 58% of union members, workers were to receive a 50-cent-per-hour salary increase the first year and a 25-cent increase each of the next 2 years plus a costof-living increase over the life of the agreement.

Finland.-Outokumpu Oy, the stateowned cobalt and nickel producer, restructured its cobalt operations by suspending production of standard-grade cobalt powder and briquets. Sherritt Gordon

Mines Ltd., Canada, was left as the only major source of standard-grade cobalt powder. Outokumpu decided to focus instead on producing extra fine powder and cobalt chemicals. The cobalt content of the materials produced was to stay at the same level.

__do ____

Ďο.

Free

Outokumpu was granted a Government subsidy to maintain processing operations at its Keretti copper-cobalt mine until the end of June 1988. The mine was then slated to close because its cobalt production had become unprofitable.

India.-Hindustan Zinc Ltd. (HZL), a metals producer, announced plans to establish India's first cobalt recovery plant. Cobalt was to be extracted from lead-zinc ores at HZL's facility in Udaipur, using a process similar to the one that was being used to recover silver from zinc concentrates.

Japan.-Metal Mining Agency of Japan and National Nonferrous Metals Industry Corp. of China signed an agreement in August 1986 to explore for cobalt and other metals in China. The agreement took effect in October 1987, with surveying in Heilongjiang Province, northern China. Exploration, which was also to be done in Guangdong Province in southern China, was scheduled to end in 1991.

Philippines.-According to reports, the U.S.S.R. made a proposal to provide financial and technical assistance to Nonoc Mining and Industrial Corp. Nonoc, a Philippine cobalt and nickel mining company, shut down its operations in 1986 owing to a lack of funds.

South Africa, Republic of.—The Lonrho Corp., United Kingdom, gained almost full ownership of Western Platinum Ltd. (Wesplat) by purchasing a 49% share from Falconbridge, a Canadian nickel and cobalt producer. Wesplat produced cobalt as a

¹Duty on unwrought alloys of cobalt, containing by weight 76% or more but less than 99% cobalt, temporarily suspended (on or before Dec. 31, 1987).

byproduct of its platinum mining operations in the Republic of South Africa. Lonrho had the right of first refusal over the Falconbridge shares owing to an agreement entered into 17 years ago when the mine was first developed.

Zaire.-Angola, Zaire, and Zambia announced plans to reopen the Benguela Railway, which had been closed for 12 years. The 800-mile line, which once carried most of Zaire's and Zambia's copper exports to the Angolan Port of Lobito, was seen as an alternative to trade routes through the Republic of South Africa, and if rehabilitated, could be used to transport cobalt. The railway ran from Zambia's northern Port of Lobito. The three countries were planning to set up a new company to repair and operate the line.

Similarly, representatives of the ninemember Southern African Development Corporation Conference were seeking support for their efforts to upgrade the Tanzania-Zambia Railway, a main shipping route from Zambia that ends in Dar es Salaam, Tanzania. The route allows shipping of Zambian copper and cobalt without going through South African ports.

Table 9.—Cobalt: World production, by country¹

(Thousand pounds)

		Mine ou	tput, meta	content2				Metal ³		
Country	1983	1984	1985	1986 ^p	1987 ^e	1983	1984	1985	1986 ^p	1987 ^e
Albaniae	1,000	1,300	1,300	1,300	1,300	: <u></u>				100
Australia ⁴	^e 2,540	e _{2,380}	6,693	5,357	5,500					
Botswana	491	570	489	357	⁵ 401					
Brazil ^e	5260	220	220	330	330					
Canada ⁶	3,492	5,125	4,556	5,481	5,700	2,918	4,680	4,460	4,387	4,850
Cuba	3,573	3,079	r e _{3,280}	r e _{3,300}	3,500					
Finland	2,281	r _{1,896}	1,587	1,382	600	3,417	3,203	3,146	2,972	⁷ 2,721
France		1				288	255	^e 240	e220	240
Japan						3,022	1,995	2,813	2,949	⁵ 273
New Caledonia ^e 8	880	1,100	1,490	1,540	1,650	- 1				
Norway		-,	-,			1,937	2,625	3,608	3,483	53,527
Philippines	363	141	2.008	200						
South Africa, Repub-										
lic ofe	1,500	1,500	1,500	1,500	1,600	1,100	1,100	1,100	1,100	1,150
U.S.S.R. ^e	5,300	5,700	6,000	6,200	6,200	9,700	10,400	10,600	10,800	10,800
United States						205				
Zaire	54,602	57,194	64,375	r e68,000	64,000	11,816	20,006	23,539	31,967	26,400
Zambia	7,052	10,185	12,786	e12,700	12,300	5,306	7,654	9,609	9,576	9,260
Zimbabwe	^é 165	^é 165	^é 220	r é165	165	160	171	202	168	170
Total	r _{83,499}	r90,555	106,504	107,812	103,246	r39,869	r _{52,089}	59,317	67,622	59,391

eEstimated. ^pPreliminary rRevised.

ontaining cobalt as a byproduct component, but recovery is small or nil.

3Figures represent elemental cobalt recovered unless otherwise specified. In addition to the countries listed, Czechoslovakia presumably recovers cobalt from Cuban nickel-cobalt oxide and oxide sinter; Belgium has imported small quantities of partly processed materials containing cobalt, but available information is inadequate to form reliable estimates of cobalt recovery from these materials.

Australia does not refine cobalt. Figures represent quantities of cobalt contained in intermediate metallurgical products (cobalt oxide and nickel-cobalt sulfide). Actual quantities of cobalt mined were as follows, in thousand pounds: 1983—5,041; 1984—4,700 (estimated); 1985—4,000 (estimated); 1986—3,600 (estimated); and 1987—3,600 (estimated).

5Reported figure.

7 Includes salts.

Table includes data available through May 13, 1988. In 1986, the units in this table were changed from short tons to thousand pounds. Some differences between these and previously published data might be encountered owing to differences in conversion methods.

²Figures represent recoverable cobalt content. In addition to the countries listed, Bulgaria, the German Democratic Republic, Greece, Indonesia, Poland, Spain, and Uganda are known to produce ores that contain cobalt. Information is inadequate for reliable estimates of output levels. Other copper- and/or nickel-producing nations may also produce ores

Actual output is not reported. Data for mine output are total cobalt content of all products derived from ores of Canadian origin, including cobalt oxide shipped to the United Kingdom for further processing, and nickel-copper-cobalt matte shipped to Norway for further processing. Data presented for metal output represent the output within Canada of metallic cobalt from ores of both Canadian and non-Canadian origin.

^{*}Series reflects recovery from ores and intermediate metallurgical products exported from New Caledonia to France, Japan, and the United States. The estimated content of total ores mined is as follows, in thousand pounds: 1983—6,929; 1984—9,025; 1985—11,433; 1986—11,000; and 1987—12,787.

TECHNOLOGY

Cobalt-rich manganese crusts in the Exclusive Economic Zone (EEZ) represented a resource of cobalt and other metals. The EEZ is the area within 200 nautical miles of the coastline of the United States, Puerto Rico, the Northern Mariana Islands, and the U.S. overseas territories and possessions. Three promising chemical processes for extracting metals from the crusts were investigated: sulfuric acid oxidation pressure leaching, aqueous sulfur dioxide leaching, and acid sulfation. Each resulted in metal extractions exceeding 95%. The advantages of each were described.²

The International Strategic Minerals Inventory (ISMI) Summary Report on cobalt was published by the U.S. Geological Survey.³ ISMI was a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada,

the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States. Part I of the two-part report presented an overview of the resources and potential supply of cobalt on the basis of inventory information that covered only discovered deposits. Part II contained tables of some of the geologic information and mineral-resource and production data that were collected by ISMI participants.

¹Physical scientist, Branch of Ferrous Metals (nickel specialist). The author was assisted in the preparation of this chapter by Kim B. Shedd, Branch of Ferrous Metals (cobalt specialist).

⁽CODAIT SPECIAIRS).

2Allen, J. P., L. J. Froisland, and M. B. Shirts. Chemical Processing of Cobalt-Manganese Crusts. Paper No. A87-15, Metall. Soc. AIME, Warrendale, PA, 1987, 18 pp.

3Crockett, R. N., G. R. Chapman, and M. D. Forrest. International Strategic Minerals Inventory Summary Report—Cobalt. U.S. Geol. Surv. Circ. 930-F, 1987, 54 pp.

Columbium and Tantalum

By Larry D. Cunningham¹

The United States remained dependent on imports of columbium and tantalum materials, and there continued to be no domestic mine production of either mineral. Imports for consumption of columbium concentrates increased substantially to the highest level since 1980, with Canada continuing as the leading supplier. However, imports for consumption of tantalum concentrates fell to the lowest level since 1983 as processors continued to draw from inhouse inventories.

Overall reported consumption of columbium in the form of ferrocolumbium and nickel columbium was up slightly, most improvement occurring in the carbon and stainless steel end-use categories. The tantalum market showed some signs of recovery, evidenced by modest increases in the reported shipments of tantalum products and the sales of tantalum capacitors. Columbium and tantalum corporate restructuring continued.

Columbium price quotations were little changed, whereas tantalum concentrate

prices reached the highest level since midyear 1985. Net U.S. trade for both columbium and tantalum continued at a deficit. Overall trade volume and value increased modestly for both exports and imports.

The President approved plans for construction of the proposed Superconducting Super Collider (SSC), pending appropriation of funds by Congress. The SSC's superconducting magnets will require about 1 million pounds of a columbium-titanium alloy. Also, the President announced an 11-point superconductivity initiative intended to promote the rapid commercialization of superconductor technology.

Domestic Data Coverage.—Domestic production data for ferrocolumbium are developed by the Bureau of Mines from the annual voluntary domestic survey for ferroalloys. Of the four operations to which a survey request was sent, all responded, representing 100% of total production. Ferrocolumbium production data are withheld for 1987 to avoid disclosing company proprietary data.

Table 1.—Salient columbium statistics
(Thousand pounds of columbium content unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Mine production of columbium-tantalum concentrates					
receases from Grovernment excesses			~-		
Consumption of raw materialse					
	1,900	2,600	2,000	w	w
Consumption of primary products: Forrocolumbium	W	w	W	w	w
nickel columbiume					**
Exports: Columbium metal, compounds, alloys	4,318	5,399	5,968	r _{4,995}	5.179
			•	-,	0,110
Imports for consumption:	100	100	120	120	130
Mineral concentrates ^e					150
Columbium metal and columbium-bearing alloyse	730	1,790	1,290	1,320	2,010
Ferrocolumbiume	2	10	1	5	42
Tin slags ^{e 1}	2,539	4,343	4,699	r _{3,432}	
Vorld: Droduction of 1	W	W	w	W	4,016
Vorld: Production of columbium-tantalum concentrates	18,911	r30,690	r _{32,729}	r _{32,122}	29,370

^eEstimated. ^rRevised. W Withheld to avoid disclosing company proprietary data.

¹Receipts reported by consumers; includes synthetic concentrates and other miscellaneous materials, after deduction of reshipments.

Table 2.—Salient tantalum statistics

(Thousand pounds of tantalum content unless otherwise specified)

1983	1984	1985	1986	1987
$\bar{900}$	1,300	1,100	w	w
121 211 123	156 352 151	122 369 143	71 392 160	103 413 193
180 27 W 690	680 47 W 710	230 32 W ^r 732	280 46 W r ₄₃₀	220 60 W 523
	900 121 211 123 180 27 W	 900 1,300 121 156 211 352 123 151 180 680 27 47 W W	900 1,300 1,100 121 156 122 211 352 369 123 151 143 180 680 230 27 47 32 W W T	1985 1964 1065

W Withheld to avoid disclosing company proprietary data. rRevised. eEstimated.

¹Includes reexports.

Table 3.—Columbium and tantalum materials in Government inventories as of December 31, 1987

(Thousand pounds of columbium or tantalum content)

		Stockpile	National Defense Stockpile inventory			
	Material	goals	Stockpile- grade	Nonstockpile- grade	Total	
Carbide powder			1,150 21 598 45	869 333 	¹ 2,019 21 ¹ 931 ¹ 45	
		(2)	1,814	1,202	3,016	
Tantalum: Minerals			1,686 29 201	1,152	³ 2,838 ³ 20 ³ 201	
		(2)	1,916	1,152	3,068	

¹All surplus ferrocolumbium and columbium metal were used to offset the columbium concentrates shortfall. Total

Sources: Federal Emergency Management Agency and General Services Administration.

Government Legislation and grams.-At yearend, Government stocks of columbium and tantalum in the National Defense Stockpile were the same as those of 1986. Under the offset concept, 57% of the goal for columbium concentrates and 37% of the goal for tantalum minerals were met (table 3).

In January, the President approved construction of a \$4 billion SSC, particle accelerator. The SSC is targeted for completion in 1996 if funding is approved by Congress. The United States intends to seek costsharing commitments from other nations as well as from private industry and State and local governments wherever the SSC is to be located. More than 40 States expressed interest in the project. It is estimated that more than 10,000 superconducting magnets using about 1 million pounds of a 50% columbium-50% titanium alloy will be needed for the project.

In July, the President also announced an 11-point superconductivity initiative intended to promote the rapid commercialization of superconductor technology. The initiative

³Receipts reported by consumers; includes synthetic concentrates and other miscellaneous materials, after deduction of reshipments.

 $^{^{2}}$ Overall goals, on a recoverable basis, total 4,850,000 pounds for the columbium metal group and 7,160,000 pounds for offset was 1,148,000 pounds.

the tantalum metal group.

3All surplus tantalum carbide powder and tantalum metal were used to offset the tantalum minerals shortfall. Total offset was 271,000 pounds.

⁴¹⁰⁰ pounds.

includes amending antitrust and patent laws and freedom-of-information policies; establishing an Advisory Group on Superconductivity under the White House Science Council; establishing new offices, programs, and research funds for the U.S.

Departments of Commerce, Defense, Energy, and the National Science Foundation; and seeking reciprocal opportunities for Japan and the United States to participate in each other's research and development programs.

DOMESTIC PRODUCTION

No domestic mineral production of either columbium or tantalum was reported in 1987.

Domestic production of ferrocolumbium, expressed as contained columbium, increased 20% more than that of 1986. The value of ferrocolumbium production increased to an estimated \$11 million. The regular grade continued to be favored over the high-purity grade of ferrocolumbium in the production mix.

Tantalum content of raw materials consumed by processors in the production of tantalum compounds and metals was virtually unchanged from that of 1986. Consumption of purchased metal scrap was estimated to be about 130,000 pounds.

Bayer AG, Federal Republic of Germany, acquired the remaining 50% interest of NRC Inc., Newton, MA, from Samincorp Inc. Bayer already held a 50% share in NRC, a major U.S. producer of tantalum products, through its 90% subsidiary

Hermann C. Starck Berlin KG, which was acquired in 1986.

Metallurg Inc. announced that the two companies representing it in the United States, Metallurg Alloy Corp. and Shieldalloy Corp., were to be merged into a single company to improve efficiency. The merger was to take effect on January 1, 1988, with the new company adopting the name Shieldalloy Metallurgical Corp. Metallurg Alloy is a supplier of bulk and specialty ferroalloys, and Shieldalloy is a supplier of specialty ferroalloys, aluminum master alloys, and a variety of metal powders, carbides, and vanadium chemicals.

Fansteel Inc. reportedly planned to install a 1.2-megawatt electron-beam furnace at its plant in Muskogee, OK. The furnace, to be operational by early 1989, was to meet company needs foreseen for high-purity columbium and tantalum metals in products ranging from weapon systems to superconductors.

Table 4.—Major domestic columbium and tantalum processing and producing companies in 1987

					Produc	ts¹		
Company	Plant location	Ме	tal ²	Car	bide		and/or lts	FeCb and/or
		Сь	Ta	Сь	Ta	Cb	Ta	NiCb
Cabot Corp Do. Fansteel Inc Do. Kennametal Inc Metallurg Inc.: Shieldalloy Corp NRC Inc. Reading Alloys Inc. Teledyne Inc.: Teledyne Wah Chang Albany Div.	Boyertown, PA Revere, PA Muskogee, OK North Chicago, IL Latrobe, PA Newfield, NJ Newton, MA Robesonia, PA Albany, OR	x -x -x x -x	X -X X -X X	 X X	X X	X - x x	x	 X X X

X Indicates processor and/or producer. ¹Cb, columbium; Ta, tantalum; FeCb, ferrocolumbium; NiCb, nickel columbium. ²Includes miscellaneous alloys.

³Jointly owned by Bayer U.S.A. and Hermann C. Starck Berlin KG.

CONSUMPTION, USES, AND STOCKS

Overall reported consumption of columbium as ferrocolumbium and nickel columbium was up by about 4% compared with that of 1986. Consumption of columbium by the steelmaking industry increased by 6%, affected by a modest increase in raw steel production, with a slight decrease in the percent of columbium usage per ton of steel produced. Columbium consumption in carbon steel and stainless and heat-resisting steel increased by about 15% each, influenced by production increases in the respective steel end-use categories.

Demand for columbium in superalloys continued to be depressed. This was the first year since 1983 that consumption in this category was less than 1 million pounds. That portion used in the form of nickel columbium continued to decline by 30% to about 300,000 pounds. However, columbium usage in superalloys reportedly was on the rise at yearend, owing to increased demand for Alloy 718 and the apparent reduced availability of Alloy 718 scrap feed material. Alloy 718, a columbium-containing nickel-base alloy, is widely used in aircraft

turbine engines.

The Tantalum Producers Association reported an increase of almost 10% in overall tantalum shipments, indicating the tantalum market was recovering somewhat from the downturn that started in 1985. The alloy additive segment had the most significant gain, more than 50%. The growth of tantalum as an alloying element in superalloys, having application in heat-resisting turbine engine components, continued on the upswing. However, tantalum for cemented carbide was down substantially after increasing significantly in 1986. The use of tantalum in cemented carbides was af-

fected by the growing use of coated cutting tools and improved tool life.

Factory sales of tantalum capacitors were up by 16% to the highest level since 1984, as reported by the Electronic Industries Association. Industry sources reported that tantalum capacitor sales should continue to increase for the short term, owing to the introduction of new computer models, a major market. The Penn Central Corp. (PCC) completed the spin-off of its Sprague Technologies Inc. (STI) subsidiary. STI was the holding company that owned the stock of Sprague Electric Co., a major manufacturer of tantalum capacitors, and Solid Scientific Inc., which comprised PCC's electronic operations. Approximately 94% of STI common stock was distributed to holders of PCC common stock, with the remaining shares being retained by PCC for corporate purposes. Union Carbide Corp. transferred its electronic capacitor business to newly formed KEMET Electronics Corp. KEMET, 50% owned by Union Carbide and 50% by senior management of KEMET, was to manufacture tantalum, ceramic, and film capacitors under the KEMET trademark. General Electric Credit Corp., which provided financing for the venture, reportedly had future rights to acquire a 35% interest in KEMET, to be drawn from the remaining 50% interest held by senior management of KEMET.

Data on aggregate stocks of columbium and tantalum raw materials reported by processors for 1987 were incomplete at the time this chapter was prepared. Aggregate stocks for yearend 1986 were down from those of yearend 1985 by about 10% for columbium and more than 20% for tantalum.

Table 5.—Reported shipments of columbium and tantalum materials

(Pounds of metal content)

Material	1986	1987
Columbium products: Compounds including alloys Metal including worked products Other	846,900 375,000	914,90 399,80 60
Total	1,221,900	1,315,30
Cantalum products: Oxides and salts Alloy additive Carbide Powder and anodes Ingot (unworked consolidated metal). Mill products Scrap Other	19,910 111,700 127,000 482,900 8,600 261,200 7,600	20,12 174,20 69,500 556,300 100 282,500
Total	1,018,910	1,116,120

Table 6.—Consumption, by end use, and industry stocks of ferrocolumbium and nickel columbium in the United States

(Pounds of contained columbium)1

	1986	1987
Steel:		
Carbon Stainless and heat-resisting Full alloy High-strength low alloy	1,395,792 801,370	1,613,71 919,80
Electric	1,715,846	1,653,85
Unspecified	48,607	12,808
Total Superalloys Superalloys Alloys (excluding alloy steels and superalloys) Miscellaneous and unspecified	3,961,615 1,008,364 18,813 6,000	4,200,173 883,149 90,974 4,500
Total consumption	4,994,792	5,178,796
Dec. 31:		
ConsumerProducer ⁴	w w	w
Total stocks ^e	780,000	710,000

Estimated. W Withheld to avoid disclosing company proprietary data; included in "Total stocks."

Includes columbium and tantalum in ferrotantalum-columbium, if any.

Small; included with "Steel: High-strength, low-alloy."

Included with "Steel: Unspecified."

Ferrocolumbium only.

PRICES

Prices continued to be stable for pyrochlore concentrates and for columbium products based on them. The published price for pyrochlore concentrates produced in Canada was quoted throughout 1987 at \$2.60 per pound of contained columbium pentoxide (Cb₂O₅), f.o.b. Canada, for concentrates with a nominal content of 57% to 62% Cb₂O₅. A published list price for Brazilian-produced pyrochlore concentrates was not available. The quoted spot price of regular-grade ferrocolumbium containing 63% to 68% columbium remained unchanged at \$5.66 per pound of contained columbium, f.o.b. shipping point.

The quoted price for high-purity ferrocolumbium containing 62% to 68% columbium remained at \$17.00 to \$17.50 per pound of contained columbium, f.o.b. shipping point. The spot price for columbite concentrates was unchanged at \$2.00 to \$2.50 per pound of combined Cb₂O₅ and tantalum pentoxide (Ta₂O₅), c.i.f. U.S. ports.

At yearend, nickel columbium was reported to be selling for about \$15 per pound of contained columbium, and columbium oxide was reported to be selling for less than \$7 per pound of oxide.

The published spot-market price for tantalite, on the basis of 60% combined Cb₂O₅ and Ta₂O₅, c.i.f. U.S. ports, which began the year at \$18.50 to \$23.00, was being quoted at \$24.00 to \$28.00 by yearend, the highest level since midvear 1985. The contract price for tantalite from both the Canadian tantalum producer, Tantalum Mining Corp. of Canada Ltd. (TANCO), and from Greenbushes Ltd. of Australia remained suspended. Published price quotations for tantalum mill products and powders, quoted in the range of \$100 to \$160 per pound throughout the first quarter, were suspended in mid-April. At the same time, the published price for tantalum carbide was suspended at \$52 to \$54 per pound.

FOREIGN TRADE

Net trade continued at a deficit for both columbium and tantalum. Overall trade volume and value were up by more than 10% for both exports and imports. Exports and reexports of tantalum ore and concentrates increased by 45% to 103,000 pounds valued at \$812,000. The Netherlands was the principal recipient with about 80% of total shipments.

The value of imports of raw materials and intermediates, such as ferrocolumbium and columbium oxide, again exceeded the value of reported columbium and tantalum exports by more than 50%. Imports for consumption from Brazil included about 6.2 million pounds of ferrocolumbium with a value of \$20.4 million, compared with 5.3 million pounds valued at \$16.4 million in 1986. Imports for consumption of columbium oxide from Brazil increased to 1.6 million pounds valued at \$9.5 million, compared with 1.3 million pounds valued at \$7.6 million in 1986. Contained in the columbium oxide imports were an estimated 37,000 pounds of tantalum oxide valued at more than \$900,000, compared with an estimated 28,000 pounds valued at more than \$800,000 in 1986. Estimated data for the ferrocolumbium and the columbium and tantalum oxides were based on entries in nonspecific classes.

Imports for consumption of columbium mineral concentrates increased by 60% to

the highest level since 1980. As in 1986, Canada was the leading supplier and again provided almost all of both total quantity and total value. Imports were estimated to contain 1.88 million pounds of columbium and 10,000 pounds of tantalum at an average grade of approximately 59% Cb₂O₅ and less than 1% Ta₂O₅.

Imports for consumption of tantalum mineral concentrates declined by more than 20% to the lowest level since 1983, with the average unit value for overall imports decreasing by more than 10%. Tantalum ore demand and prices remained depressed. Imports from the Federal Republic of Germany and the Netherlands, both of which are nonproducing countries, together provided 70% of total quantity and more than 60% of total value. Imports were estimated to contain 210,000 pounds of tantalum and 130,000 pounds of columbium at an average grade of approximately 37% Ta₂O₅ and 27% Cb₂O₅.

Data on receipts of raw materials other than mineral concentrates were incomplete.

Imports for consumption of columbiumtantalum synthetic concentrates continued to decline: 457,000 pounds valued at \$2.6 million, compared with 927,000 pounds valued at \$3.5 million in 1986. These figures are not included in the salient statistics data.

Table 7.—U.S. foreign trade in columbium and tantalum metal and alloys, by class (Thousand pounds, gross weight, and thousand dollars)

Class	1	986	19	987	Point and 1 1 at 1 at
Class	Quantity	Value	Quantity	Value	Principal destinations and sources, 1987
EXPORTS1					
Tantalum:					
Powder	160	14,172	193	16,129	Japan 48, \$4,526; France 49, \$4,075; West Germany 41,
Unwrought and waste and scrap_	318	5,041	322	5,012	\$3,167; Spain 18, \$1,885. West Germany 192, \$3,029; Can- ada 42, \$1,107; Austria 78, \$303
Wrought	. 74	10,391	91	12,842	Japan 5, \$246. Japan 41, \$5,546; United Kingdo 16, \$2,218; West Germany 11
Total	XX	00.004			\$1,908; France 11, \$1,627.
		29,604	XX	33,983	Japan \$10,300; West Germany \$8,100; France \$5,800; United Kingdom \$3,900. ²
IMPORTS FOR CONSUMPTION					
Columbium:					
Ferrocolumbium ^e Unwrought metal and waste and	5,280	16,443	6,179	20,434	All from Brazil.
scrap	8	56	28	399	Brazil 11, \$277; West Germany 9, \$68; United Kingdom 5, \$27;
Unwrought alloys	4	87	19	186	Austria (3), \$11. Brazil 15, \$121; West Germany 4, \$65.
Wroughtantalum:	1	31	2	102	Belgium-Luxembourg 2, \$98; Wes Germany (3), \$4.
Waste and scrap	r ₁₀₁	r _{3,414}	176	4,891	Japan 91, \$2,872; West Germany
Unwrought metal	45	3,225	57	3,236	28, \$1,013. West Germany 25, \$1,858;
Unwrought alloys			1		Belgium-Luxembourg 20, \$874; China 7, \$239.
•	(³)	2	. (3)	29	Canada (3), \$24; West Germany (3) \$5.
Wrought	. 1	7	2	214	Japan 2, \$197; Austria (3), \$14; United Kingdom (3), \$3.
Total	XX	r _{23,265}	XX	29,491	Brazil \$20,800; Japan \$3,100; West Germany \$3,000; Belgium- Luxembourg \$970. ²

^eEstimated. rRevised. XX Not applicable.

Table 8.—U.S. imports for consumption of columbium mineral concentrates, by country (Thousand pounds and thousand dollars)

• • •	Country	19	86	19	87
·.	Country	Gross weight	Value	Gross weight	Value
Brazil					
Canada		0.075		4	16
Netherlands ¹		2,850	4,534	4,488	6,480
Nigeria		2	4		
		2	2	89	116
Total		2,854	² 4,541	4,581	6,612

¹Presumably country of transshipment rather than original source. ²Data do not add to total shown because of independent rounding.

is not seen and the applicance.

1For columbium, data on exports of metal and alloys in unwrought and wrought form, including waste and scrap, are available; included in basket category.

2Sounded.

³Less than 1/2 unit.

Sources: Bureau of the Census and Bureau of Mines.

Sources: Bureau of the Census and Bureau of Mines.

Table 9.—U.S. imports for consumption of tantalum mineral concentrates, by country

(Thousand pounds and thousand dollars)

	·					86	1987	
	Country				Gross weight	Value	Gross weight	Value
							45	298
Australia					2	37		
Selgium-Luxembourg ¹					146	994	54	33'
Brazil Canada					186	2,119	01	
anada					190	12		
Nameh Cuionol					1	12	050	0.05
ermany, Federal Republic of							378	2,250
Vetherlands 1					256	1,846	113	1,099
vetherlands							27	25
South Africa, Republic of					(2)	1		
Taiwan ¹					202	1,330		
United Kingdom ¹						1,374	81	95
Zaire					111	1,514	61	300
Total ³					905	7,713	697	5,18

¹Presumably country of transshipment rather than original source.

Sources: Bureau of the Census and Bureau of Mines.

WORLD REVIEW

World production data on columbium and tantalum minerals exclude columbium or tantalum recovered from contemporary and old tin slags and from struverite. Tantalum contained in tin slags produced in 1983, 1984, 1985, 1986, and 1987 was, in thousand pounds, 1,049, 828, 877, 622, and 543, respectively, according to data from the Tantalum-Niobium International Study Center.

Regarding the shipment of old tin slags, data were only available from Thailand. Shipments of old tin slags from Thailand were unchanged at 55 short tons. Data were not available as to the disposition of the shipments.

Australia.-For its fiscal year, Greenbushes reported that the company's mine facilities operated at approximately 40% of installed capacity for both tantalum and tin products, with emphasis on the continued mining of high-grade tin alluvial deposits. Ore treated decreased by about 17% to 1.4 million tons compared with that of 1986, and tantalum oxide produced in concentrates was down by 15% to 75,600 pounds. Greenbushes' chemical plant produced 16,400 pounds of Ta₂O₅ and 12,700 pounds of Cb₂O₅. Tantalum oxide contained in tantalum glass (slag) production decreased by more than 10% to 56,000 pounds, with the two-stage electric arc, tin-smelting facility operating on 5-day-per-month smelting campaigns. The solvent extraction plant was restarted and was undergoing expan-

sion to increase annual production capacity of Ta₂O₅ and Cb₂O₅ to about 55 tons and 33 tons, respectively.

Greenbushes and its joint-venture partner, Kokan Mining Co. Ltd. of Japan, reportedly were to mine tin and tantalum ore in the Pilbara mining district of Western Australia, about 125 miles south of Port Hedland, starting in the spring of 1988. Western Australia Rare Metals Co., a subsidiary of Kokan Mining, conducted feasibility studies on the property between mid-1986 and mid-1987 with financial backing from the Metal Mining Agency of Japan (MMAJ). The expected annual production of more than 2,000 tons of tin metal and about 550 tons of tantalum oxide were to be shared equally by the partners, with Kokan Mining's share to be marketed in Japan.

West Coast Holdings Ltd. reportedly gave the go-ahead for a pilot plant to be built to confirm the proposed flow sheet for its Brockman rare-earths project near Halls Creek in Western Australia. The plant was expected to be operational in early 1988 and was to treat 2.2 tons of ore per day over an 8-month period. Samples of anticipated products were to be produced for distribution to potential customers. The ore contains recoverable quantities of columbium, tantalum, and yttrium.

Brazil.—Paranapanema S.A. Mineração Indústria e Construção, Brazil's largest tin producer, announced plans to construct a columbium oxide plant at its Pitinga tin

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

property in the Amazonas State. The plant, with a planned annual capacity of about 2 million pounds of columbium oxide, would process Pitinga's byproduct columbite material. Also, about 200,000 pounds of tantalum oxide would be produced as a byproduct of the columbium oxide production.

Brazil's total production and exports of all columbium products were 12,000 and 12,800 tons, respectively, compared with 19,200 and 13,500 tons, respectively, in 1986.

Canada.—As reported by Teck Corp. for its fiscal year, plant operations at the Niobec Mine at St. Honoré, Quebec, were shut down for 2 months to reduce inventories. Mine inventories reportedly had built up, owing to weak columbium consumption, particularly in Europe and Japan. Columbium oxide production was down about 15% to 6.4 million pounds. Ore milled declined about 10% to 754,000 tons, as the mill operated on the average of 2,251 tons of ore per day. Recovery was 64.1%, with Cb₂O₅ grade of ore decreasing to 0.66%. Ore reserves decreased to 12.1 million tons assaying 0.66% Cb₂O₅.

The Hudson Bay Mining and Smelting Co. Ltd. reported that tantalum mining and milling activity at the Bernic Lake, Manitoba, operation of TANCO remained suspended. However, late in the year, it was announced that TANCO planned to resume tantalum mining operations by mid-1988, ending a shutdown of more than 5 years. Production capacity, when resumed, is expected to be about 200,000 pounds of contained tantalum annually. The decision to reopen the tantalum mine and mill was made after the company reportedly secured several multiyear contracts.

Gabon.—The Gabonese Government, following a mineral survey, reported the discovery of a large columbium deposit about 50 miles east of the city of Lambarene. The survey was part of a state mineral inventory program conducted by the French Government's Bureau de Recherches Géologiques et Minières, with financing from the Government of Gabon and the European Economic Community. The report compared the deposit, estimated at 40 million tons of ore grading 1.5% columbium, to that of the Brazilian columbium producer, Cia. Brasileira de Metalúrgia e Mineração (CBMM). CBMM is the world's largest columbium producer and supplier of upgraded columbium products. In addition to columbium, the Gabonese deposit contains as-yetundefined quantities of rare earths as well

as cadmium- and titanium-bearing minerals. Gabon was seeking interested parties regarding investment opportunities in future survey-exploration activities.

Japan.—Production of ferrocolumbium fell to 787 tons from the 950 tons produced in 1986. Ferrocolumbium imports totaled 1,961 tons compared with 2,122 tons in 1986. The bulk of imports came from Brazil.

To secure and diversify its supply sources for rare metals and rare-earth minerals, Japan reportedly signed a 3-year joint minerals exploration agreement with Kenya. Under the agreement, the MMAJ will provide technical assistance to the Department of Natural Resources of Kenya to explore for tantalum and rare earths in a 6,000-square-mile area of Homabay in Kenya. Under a separate 5-year joint minerals exploration agreement with China, the MMAJ sent a team to China to explore for tantalum, columbium, ilmenite, zinc, and rare earths in southwestern Guangdong Province.

Thailand.—The Thailand Tantalum Industry Corp. Ltd. (TTIC) decided to rebuild its columbium and tantalum processing plant, which was destroyed by fire in June 1986. TTIC reportedly made the decision to proceed with the new plant after the Thai Government agreed to take a 20% stake in the \$35 million project, supply soft loans, and provide an 8-year tax exemption. The facility, which is planned for completion by mid-1990, will be reconstructed at the Mab Ta Pud Industrial Estate in Rayond Province. However, the timetable for startup of the new plant could be delayed pending the outcome of an arbitration hearing in the Federal Republic of Germany. The hearing will decide if Hermann C. Starck will be required to supply technology to TTIC for the project. The validity of the technology transfer agreement between the two companies is being contested, owing to the change in plant location from Phuket Island to Mab Ta Pud. The plant will have an initial annual production capacity of about 300 tons each of columbium and tantalum oxide.

Zimbabwe.—Kamativi Tin Mines Ltd. reportedly planned to double its production of tantalite concentrates to about 10 tons per month. The company was to install an additional high-intensity magnetic separator and a secondary drying facility for operation by early 1989.

¹Physical scientist, Branch of Ferrous Metals.

Table 10.—Columbium and tantalum: World production of mineral concentrates, by country.

(Thousand pounds)

2		G	Gross weight ³				Colum	Columbium contente	ente 4			Tanta	Tantalum contente	nte 4	
Country	1983	1984	1985	1986P	1987 ^e	1983	1984	1985	1986	1987	1983	1984	1985	1986	1987
Australia: Columbite-tantalite	258	e340	e350	e195	351	45	10	10	40	09	06	120	120	70	115
Columbite-tantalite	582	375	589	604	661	134	98	135	139	152	170	110	170	175	190
Canada: Pyrochlore	6,700 6,700	9,700	10,900	63,354 11,500	9,490 1,490	15,582 2,770	25,719 4,380	2,22,2 4,900,8	26,610 5,160	24,692 4,270				1 18	8
Mozambique:	ğ I	6 8	917	# G	400	3	e ;	8	7 ;	7	2 8	- (2] [3 r	۲ <u>و</u> ا
Tantalite	31	12 53	9 6			V Z	K Z	K Z	X X	Y Z	ន្ទ	oo rc	~ 65	~ es	~ oc
Namibia: Tantalite		15	10	e 11	=	83	4	က	က	က	2	4	က	က	က
Nigeria: Columbite		e 265	e220	e30	8	82	120	06	12	12	11	16	13	8	2
Tantalite	01 t	27 2	۵7 -	;	l	೯	೯	€	1	1	c		-4.	1	1
Rwanda: Columbite tantalite		115	1 9			188	34.	18		(. 	7 Z	22.7	13	 	1 1 1
South Africa, Republic of: Columbite-tantalite	1	-	•	ļ	(5.6)	6)	(•		•	•	•	•		•
Spain: Tantalite		25	9	.5e	8	NA	NA	NA	NA	NA		621	6 10	-	9
Thailand: Columbite-tantaliteZaire: Columbite-tantalite	1,210	1,052	357 397	r e110	397	502	081 98 98	162	9 6	67	278	784	257	e :	107
Zimbabwe: Columbite-tantalite		130	88	73	77	1	⁶ 20	13	8 = 1	12 8	2 67	645	31	78 o	78 78 78
Total	46,619	r73,661	78,555	76,666	70,442	18,911	30,690	32,729	32,122	29,370	069	710	732	430	523
										1					-

NA Not available. rRevised. Preliminary. Estimated.

Excludes columbium and tantalum bearing tin ores and slags. Table includes data available through July 1, 1988.

In addition to the countries listed, China, the U.S.S.R., and Zambia also produce, or are believed to produce, columbium and tantalum mineral concentrates, but available information is inadequate to make reliable estimates of output levels.

Data on gross weight generally have been presented as reported in official sources of the respective countries, divided into concentrates of columbite, tantalite, and pyrochlore where information is available to do so, and reported in groups such as columbite and tantalite where it is not.

**Unions of the content of the presented for metal content are Bureau of Mines estimates based, in most part, on reported gross weight. Metal content estimates are revised as necessary for reflect changes in gross weight data.

**Less than 1/2 unit.

⁶Reported in official country sources.

Copper

By Janice L. W. Jolly and Daniel Edelstein¹

As a result of escalating prices in the second half, 1987 proved to be a profitable year for almost all copper producers. Refined copper inventories reached the lowest levels since World War II as world copper consumption reached record-high levels.

The shortage of spot copper was not ameliorated even though some new capacity from U.S. mines started operation by yearend. As a result, the domestic producer price of refined copper reached a record high \$1.51 per pound at the end of December.

Table 1.—Salient copper statistics

(Metric tons unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Ore produced thousand metric tons	177,930	171,814	162,210	169,238	202,632
Average yield of copperpercent	0.51	0.58	0.62	0.62	0.58
Primary (new) copper produced:					
From domestic ores, as reported by:					
Mines thousands	1,038,098	1,102,613	1,105,758	1,147,277	1,255,914
Smeltersthousands	\$1,751,476	\$1,625,116	\$1,632,483	\$1,670,660	\$2,284,156
Percent of world total	888,130	989,924	939,257	1908,087	¹ 972,141
rercent of world total	11	12	11	10	11
Refineries	1,028,423	1,089,584	1,003,636	r 21,073,975	21,146,107
From foreign ores, matte, etc., as reported	1,020,120	1,000,004	1,000,000	1,010,010	1,140,101
by refineries	153,667	75,016	53,529	w	W
Total new refined, domestic and					
foreign	1,182,090	1,164,600	1,057,165	r _{1,073,975}	1,146,107
Refined copper from scrap (new and old)	401,668	324,949	377,457	405,944	414.738
Secondary copper recovered from old	,	,-	,	,-	,
scrap only	449,478	460,695	503,407	r477,469	499,362
Exports:					
Refined	81,397	91,414	37,937	12,452	9,197
Unmanufactured ³	239,190	317,167	435,069	442,441	387,245
Imports for consumption:	450 500	444.000	000 505	F01 004	100 150
RefinedUnmanufactured ³	459,568	444,699	377,725	501,984	469,159
	675,343	551,802	443,932	597,523	568,470
Stocks, Dec. 31: Total industry and COMEX:	692,000	564,000	320,000	005 000	119.000
Blister and materials in solution	174,000	245,000	146,000	225,000 135,000	113,000 150,000
Consumption:	114,000	245,000	140,000	135,000	150,000
Refined copper (reported)	1.803.931	2,122,732	1,976,038	r _{2,102,625}	2,151,829
Apparent consumption, primary and old	1,000,001	2,122,102	1,510,000	2,102,020	2,101,020
copper (old scrap only)	2.012.739	2,106,580	2,144,360	r _{2,135,976}	2,217,431
Price: Weighted average, cathode, cents per	-,,	_,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,,_,	2,200,010	2,21,101
pound, producers	76.53	66.85	66.97	66.05	82.50
World:					
Production:	•			_	_
Mine thousand metric tons	^r 7,659	r _{7,999}	8,080	P8,125	e8,475
Smelterdodo	r _{8,120}	^r 8,391	8,664	P8,715	^e 8,865
Refineriesdo	r _{9,202}	^r 9,116	9,375	P9,503	e9,647
Price: London, high-grade, average cents per					
pound	72.13	62.45	64.27	62.28	80.88

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data. Includes production from foreign ores and concentrates.

³Includes copper content of alloy scrap.

²Includes primary copper produced from foreign ores, matte, etc. to avoid disclosing company proprietary data.

U.S. apparent consumption of copper remained high, as did import reliance, which was estimated to be 26% in 1987. Refined copper imports continued to be high, but the ratio of domestic copper production to demand was increasing at yearend. U.S. mine production was recovering, and plans were being implemented to increase domestic production further. U.S. copper producers became increasingly competitive as they benefited from cost-reduction efforts of the past several years and from the weakened U.S. dollar. Restructuring of the industry continued with copper properties changing owners. Implementation of new technology leading to lower production costs also continued as one of the Nation's largest producers restarted its mine and processing plants, and another was well under way with construction of a new larger smelter.

Domestic Data Coverage.—Domestic production data for copper were developed by the Bureau of Mines from seven separate surveys of U.S. operations. Typical of these surveys is the mine production survey. Of 112 operations to which a survey request was sent in 1987, 90% responded, representing an estimated 99.9% of the recoverable copper content in the total mine production shown in tables 6, 8, 9, and 31. Production for the remaining 11 copper companies was estimated using data from other surveys.

Legislation and Government Programs.—Although current copper goals remained at 907,000 tons² of refined copper, only 20,000 tons was in the National Defense Stockpile. By yearend, Congress passed a measure contained in the fiscal year 1988 Defense Authorization Bill that would transfer management responsibilities for the stockpile to the U.S. Department of Defense.

Brass and bronze foundries were reportedly threatened by more stringent Occupational Safety and Health Administration (OSHA) standards for airborne transmission of lead. If forced to meet the 50-microgram-per-cubic-meter lead standard, many foundries reportedly would be forced

to close.3 An additional burden for the small foundry was the annual community right-to-know report that was required under Public Law 99-499, the Superfund Amendments and Reauthorization Act, 1986 (SARA). The requirement called for any facility that prepared a Material Safety Data Sheet under OSHA's Hazard Communication Standard to submit that sheet or a list of chemicals to the local emergency planning committee, to the State emergency response commission, and to the local fire department.

The Generalized System of Preferences (GSP) of the Trade Act of 1974 was amended through Presidential Proclamation 5758 of December 24, 1987, to suspend GSP treatment for Chilean imports, which included copper scrap. The suspension was the result of a determination that Chile had not taken steps to afford internationally recognized worker rights as defined under section 502 of the Trade Act.

In April, the Interstate Commerce Commission ruled that U.S. railroads had not complied until January 1981 with its 1979 order to reduce rail rates on nonferrous metals. The Commission ordered the railroads to reimburse shippers, with interest, for excessive charges levied between September 24, 1979, and December 31, 1980. Refunds for shippers of copper matte will amount to about 3% of the original charges, and shippers of copper or alloy copper scrap will receive refunds amounting to about 4.3%. An investigation was to continue to determine if other discriminations in rate structure existed.*

Two meetings were held in Geneva, Switzerland, under the auspices of the United Nations Conference on Trade and Development on the formation of an international producer-consumer forum for copper. A consensus developed among participating countries that there was sufficient basis to proceed toward the formation of such a forum and that a negotiating session would be convened in 1988 to develop functions and rules of procedure.

DOMESTIC PRODUCTION

Mine and Plant Labor.—Productivity, in terms of metric tons of copper produced and average hours worked at copper mines and mills, was 18.2 hours per ton of copper in 1987, down slightly from 17.7 hours per ton in 1986. The average number of U.S. copper mine and mill workers, including office

workers, for 1987 was 11,924; 23,197,110 hours were worked. Although these statistics do not include mines producing byproduct copper, they do include staffing at mines that were closed or on care and maintenance status. U.S. Department of Labor statistics indicated that the average

number of employees at primary copper smelters and refineries was 5,600 workers in 1987, and 12,409,600 hours were worked. A total of 29.3 hours was spent per ton of primary copper processed through mine, mill, smelter, and refinery. This compared with 72.2 hours per ton in 1975.

Productivity continued to be an item of high interest among copper companies as a cost factor. In the first full year of operation, BP Minerals America expected its renovated Bingham Canyon operation to achieve a much higher level of labor productivity than that achieved previously. The work force, required to produce 185,000 tons of refined copper per year, was expected to be 1,800 people, or about one-fourth the size it was in 1980.

Copper Range Co. employed about 940 workers at the White Pine Mine; peak employment at the mine was 3,000 workers in 1978. Although technical and mandatory safety training played a vital role in the startup of the White Pine Mine, the need for extensive labor-management training, employee-ownership training, and crosstraining for more than one job were equally important. More than \$3 million in Federal and State funds helped provide the necessary training. Roughly two-thirds came from State-funded programs. The remainder came from the Federal Job Training Partnership Act, including title III, and the U.S. Reserve Fund for Dislocated Copper Workers. As a result of a better trained and involved work force, productivity increased sharply above that of 5 years prior when the mine was shut down.

Workers throughout the industry were paid various bonuses, reflecting the much improved copper market. The rise in Commodity Exchange Inc. (COMEX) copper prices triggered bonus payments, as negotiated in the 1986 labor contracts, and allowed most hourly copper workers to recoup some wages lost by salary and benefit-package concessions. About 4,100 copper workers in Arizona contract-mandated bonuses totaling more than \$10.4 million. The Magma Copper Co. workers reportedly recouped about one-half of the wage concessions made for 1987. The higher COMEX prices triggered Magma bonus payments during the third quarter that averaged \$312 per employee and for the final quarter of the year that averaged about \$2,600 per worker, or the equivalent of \$5 per hour for each hour of paid time in the quarter. Magma employed 2,973 unioncontract workers at its mine and smelter in San Manuel and 420 at its Pinto Valley Mine and concentrator at Miami. Magma was offering a starting wage of \$10.50 per hour for new miners at the underground copper mine at San Manuel.

Inspiration Consolidated Copper Co. (ICC) issued bonuses to about 700 workers, averaging \$2,346 per worker, or \$4.50 per hour for each hour worked during the fourth quarter. Despite a lack of contractual obligation to do so, Phelps Dodge Corp. and BP Minerals America's Utah Copper Div. announced at yearend that all hourly employees would receive \$1,000 each as a bonus.

Copper Range distributed \$5,500 each to 800 union workers at the White Pine copper mine in the first payout under employee ownership. The distribution came under an employee stock ownership plan that allowed the enterprise to reopen in 1985 after a 3-year shutdown. The money and stock went to union workers who worked at least 870 hours in 1986. Copper Range stock, which was not traded publicly, was valued at \$24.40 per share. According to the company, an average of 175 shares per worker were distributed, with a similar distribution to be made in each of the next 4 years. Copper Range also released about \$1 million in incentive pay to the workers at the rate of 50 cents for each hour worked since January 1, 1986.

A total of 325 employees had been laid off at Tennessee Chemical Co. by yearend as a result of the company's decision to cease mining in Tennessee. The mining operation was completely shut down, as was the mill. Most of the employees at the iron roasters and on the maintenance staff were to remain until their work was completed. The mining company began its layoff procedures in late July for permanent closure of the mines.

Cost of Production.—The weighted-average, cash cost (including byproduct credits and taxes, but excluding depreciation) of producing refined copper in the United States was estimated to have decreased to about 53 cents per pound in 1987. When recovery of capital was included, the average production cost was 58 cents per pound.

ASARCO Incorporated estimated the cost to process 1 ton of material through crushing and concentrating at the Ray Mine to be \$2.20 per ton. The recovery rate was 83.7% from heads of 0.88% copper and the concen-

trate grade was 26.7%. The cost to process Ray silicate ore through heap leaching, solvent extraction, and electrowinning (SX-EW) was estimated at \$1.67 per ton.⁵

BP Minerals America claimed that its renovated Bingham Canyon, UT, property will easily be the lowest cost major copper producer in North America and one of the lowest cost producers in the world in terms of cash costs. Inefficiencies and low productivity were addressed through better management and attention to operational improvement. Labor costs were reduced by about 35%, including the effects of work rule and practice changes, as a result of the 1986 labor contract settlement. Ore crushing, transportation, milling, and concentration systems were streamlined through the \$400 million modernization project.

The modernization at Bingham Canyon used large-scale production to cut costs through less maintenance, fewer employees, and improved metal recoveries. Multiple haulage units were being replaced by large continuous transport systems, and many crushing, grinding, and flotation units were being replaced by fewer but larger pieces of equipment. About one-third of the project was directed at ore transport improvement through elimination of rail transport. In the pit, a large, single, mobile crusher replaced three fixed crushers, and a conveyor system was installed that extended 5 miles through a railway tunnel to a new concentrator. Three grinding lines, each consisting of one semiautogenous grinding mill and two ball mills, replaced more than 100 secondary crushing and grinding mills in the existing plants. A flotation circuit of fewer than 100 flotation cells, which included thirty-three 3,000-cubic-foot cells, replaced over 2,000 smaller cells in the existing plants. The final part of the system was a 13-mile slurry pipeline to carry tailings to the disposal pond. A second pipeline will return process water to the grinding plant, and a third will carry concentrates to the smelter.

Copper Range reported production costs at its White Pine, MI, mine to be about 60 cents per pound. High productivity was related more to the new employee-management relationship and cross-training than to implementation of new technology. Other than the modern refining plant, most equipment, mining methods, and smelting dated to the 1950's and 1960's. A conveyor-belt system was used for ore transport to the surface.

Solvent extraction and leaching played a

significant part in reducing production costs for ICC. ICC, which built its SX-EW plant in the late 1960's and enlarged it in 1980, obtained its entire mine production from SX-EW in 1987. The company's 1987 costs were reported to be about 50 cents per pound. A new \$15 million expansion of SX-EW plant capacity was expected to be completed in 1988.

Magma announced in late 1987 that its copper-production cost goal was to reduce costs from 50 to 55 cents per pound to 45 cents per pound. Underground mining costs had been cut by about 9 cents per pound of copper through a reduction in the number of employees and a 20% reduction in wages and benefits. The implementation of a new underground mining plan was expected to further reduce costs by about 4 cents per pound. The company increased the cutoff grade of sulfide ore from 0.40% copper to 0.50% copper in its underground mine. The company planned to return to mining the 0.40% ore on an incremental basis. Mining the lower grade ore would add about 2 to 3 cents per pound to the average production costs. The 1986 cost had been unusually high owing to development work being done to expand future production. Costs for 1987 also were higher than what was anticipated in the future, since Magma's underground mine operated at reduced levels and was expected to do so until the availability of the new smelter in late 1988.

Magma was installing the flash furnace, which was expected to reduce smelting costs by 39% to about 7 cents per pound of copper. Since 1984, the addition of lower cost copper produced by the Pinto Valley Div. had reduced the weighted-average cost of production for the company. In addition, Magma anticipated electrowon copper could be produced at a cost of about 30 cents per pound from its new project at Pinto Valley with the addition of only 21 new employees. The cost of sulfuric acid used in copperleaching processes at Magma's San Manuel SX-EW plant reportedly was reduced from \$20 per ton to \$9 per ton.8 An annual cost savings of \$498,000 was also realized through conversion of 20-inch cyclones to 26-inch cyclones; savings were derived from reducing the amount of power used and from the amount of scoop and cyclone maintenance that would be needed at the mill. In addition, the conversion paved the way for entry of a 6,000-ton-per-day, smelter-slag, grinding campaign. The cyclone modification allowed for easier transport of

slag in the grinding circuit from the rod mill to the ball mill. Magma's \$267 million capital expansion program, aimed at an annual production goal in 1991 of about 272,000 tons of copper, was about 20% complete at yearend.

Since 1984, Phelps Dodge had invested about \$275 million to reduce production costs. The investment included the acquisition of a two-thirds interest in Chino Mines Co. from Kennecott, which enabled Phelps Dodge to coordinate and rationalize costs for processing.9 To date, costs had been reduced to about 55 cents per pound of copper from a high of more than 80 cents in 1981. Substantial capital programs had been completed or were planned, including various SX-EW programs and an in-pit crushing and conveying project at the Morenci Mine. Another \$275 million was to be invested between 1988 and 1991 to further reduce costs. It was anticipated that as much as 40% of the company's production eventually would come from SX-EW production at its mines. Mining of the Tyrone ore body would be finished in the early 1990's, but SX-EW production from ore previously mined would continue for about 15 additional years. At this point, the corporation's costs, in 1987 dollars, were expected to be less than 50 cents per pound of copper.

Company Earnings and Ownership Changes.—Most major U.S. copper mining companies were profitable during the year, even though some had sold copper forward at prices lower than the escalating yearend COMEX spot prices. All companies had strengthened their financial positions by yearend and were producing copper at a profit for the first time in many years. Phelps Dodge announced a record-high income in 1987 of \$207 million, almost double that of 1986.10 Asarco reported a thirtyfold increase in earnings despite a significant loss from equity in foreign companies that were adversely affected by the devaluation of the U.S. dollar against the major foreign currencies in which the debts were denominated.11

Asarco's earnings improved as a result of lower operating costs in the United States, combined with higher metal prices. Costs for products and services were higher because of higher metal prices for raw materials. Asarco acquired the Ray Mine and associated smelter and SX-EW refinery from Kennecott in 1986 and the Eisenhower property from Anamax Mining Co. in 1987.

In a major restructuring during 1987, the British Petroleum Co., Plc transferred its

55% majority interest in the Standard Oil Co. to BP America (formerly BP North America Inc.), a wholly owned subsidiary.12 On May 13, 1987, BP America gained control of the 45% minority interest of Standard Oil through a tender offer. The aggregate purchase price for the minority interest was about \$7.8 billion. BP America then announced the formation of BP Minerals America, a new minerals company that combined the assets of Kennecott with those of Amselco Minerals Inc. From headquarters in Salt Lake City, UT, BP Minerals America was to manage British Petroleum's mining and mineral processing interests in the United States and select international locations. Higher copper prices, coupled with resumption of the copper operations at BP Minerals America's Bingham Canyon Mine near Salt Lake City, UT, were responsible for BP Minerals America's income improvement.

Cyprus Minerals Co. acquired two copperproducing properties during the year, the Pinos Altos, NM, underground mine and the in situ leach copper oxide mine at Casa Grande, AZ. According to the company's 1987 annual report, Cyprus also planned to complete acquisition of the Twin Buttes, AZ, mine in early 1988.¹³

The Bagdad copper mine operated at full capacity, and Sierrita's production was increased to take advantage of strong copper prices. Cyprus' participation in the higher copper prices was limited by forward sales of a large portion of second-half production.

Inspiration Resources Corp.'s (IRC) U.S. subsidiary, ICC, also was profitable, realizing for the full year an average COMEX-based price of 71 cents per pound." Every one-cent-per-pound increase in the price of copper translated into between \$1.5 and \$2.0 million in annual pretax income for IRC, depending upon factors such as the continued impact of price participation bonuses that were paid to mine employees under the current labor contracts.

Magma's losses in the final quarter of 1987 included a \$25 million reserve to close out forward-sales contracts covering about 47 million pounds of copper for the first quarter of 1988.15 Instead of delivering copper, Magma paid the difference between the contract and market prices. The company bought out the forward contract in order to sell more copper at full market price and to make earnings more predictable.

On March 10, 1987, Newmont Mining Corp. declared as a dividend to its shareholders 80% of its equity in Magma, then a wholly owned subsidiary. Newmont retained 15% of Magma's common stock and 5%was placed in an incentive plan for Magma management. A services agreement between Magma and Newmont allowed Newmont to provide Magma with certain exploration, marketing, electronic data processing, and other administrative services until December 31, 1989. As part of the spinoff arrangement, a \$225 million financing agreement was organized with several banks, which set tight operating and spending targets for Magma's capital expenditure program. Newmont guaranteed the first \$75 million in term loans. The capital expenditure program was subject to certain spending covenants and a completion deadline of yearend 1989.

Montana Resources Inc. (MRI) made its last payment to the Montana State Board of Investments at yearend. The board arranged for a \$12 million line of credit for MRI, which borrowed a total of \$7.1 million from the fund. The total economic impact of the mine in the first year of operation upon the Butte, MT, community was reportedly more than \$34 million, including \$16.1 million in salaries and other worker compensations, \$4 million in property and severance taxes, and \$14.5 million in direct purchases throughout the State. MRI based its operational budget for the Continental Mine,

Montana, on copper selling at 65 cents per pound and molybdenum at \$2 per pound; both of these prices were exceeded during the year.¹⁷

Mine Production and Reserves.—Copper was mined in 11 States during 1987, with Arizona yielding 61% of the total, followed by New Mexico and Utah. There were 52 copper-producing mines, down from a total of 87 mines in 1986. Of these, 23 were producing copper mines and 29 were mines from which copper was produced as a byproduct or coproduct of gold, lead, silver, or zinc. Total U.S. operating mine capacity, in terms of recoverable copper per year, was estimated to be 1.52 million tons. The Bingham Canyon open pit was reactivated in late 1987, and increased leaching and SX-EW capacity was added at the Morenci, Tyrone, and San Manuel Mines. Tennessee Chemical's copper operations at Copperhill, TN, closed at midyear. Capacity utilization at operating mines was 83%.

Asarco acquired the balance of the Eisenhower general partnership interest of the Anamax Mining Co. in April 1987 for \$1 million. Asarco's combined Mission Complex comprised the Mission, Eisenhower, Pima, and San Xavier Mines, the ores from which were processed through the Mission mill. Average mill recovery rates for 1987 were as follows:

Mine	Quantity milled (metric tons)	Recovery rate (percent)	Copper (metric tons)	Silver (thousand troy ounces)
Coeur	141,000 182,000 9,004,718 8,807,859 2,852,190	97.90 97.00 88.60 84.20	998 907 53,161 97,704 5,806 16,783	2,449 3,288 810 378 4,287

Source: ASARCO Incorporated 1987 Annual Report.

The reserve base for the Ray Mine, which consisted of 630 million tons of ore averaging 0.71% copper, was defined by a 0.35% cutoff and included 65 million tons of silicate ore averaging 0.89% copper. However, the current 13-year mine plan was based on a 0.52% copper cutoff. Metal production for 1987 shown above for Ray included electrowon recovery of 29,000 tons and precipitate production of 2,360 tons. Only copper precipitates were produced at Silver Bell.

Leaching at the Ray Mine was carried out

on four active, run-of-mine, sulfide, waste dumps and several silicate ore heaps. Ore was precrushed for the silicate leach system and then treated with dilute sulfuric acid solutions. Cost of processing material through heap leaching was estimated to be \$1.67 per ton of ore. Silicate ore grade for the silicate ore heap-leaching process was 1.14% copper, with 0.87% of the ore readily soluble. About 122 pounds of acid was consumed per ton of ore leached. Primary crushing was done at the mine, followed by

secondary and tertiary crushing at nearby Hayden. Concentrate grade from milled ore at Ray was 26.7% copper. About 25 tons was milled per worker-hour. Tailings deposits

covered 1,405 acres.18

The following is a summary of Asarco's properties, ore reserves, and percentage ownership:

Mine	ASARCO (percent	Ore reserves (thousand -	Per	cent of reserve	es	Silver (troy ounce
	owned)	metric tons)	Copper	Lead	Zinc	per ton of ore re- serves)
CoeurGalena	50.00	450	0.77			16.64
Mission Complex	37.50 100.00	1,087 333,360	.59 .64	10.04	0.11	16.09
Quiruvilca	80.00	5,332	.99	$1.\overline{26}$	3.57	.12 5.96
RaySilver Bell	100.00 100.00	$\begin{array}{c} 614,373 \\ 19,011 \end{array}$.70			
Troy	75.00	34,451	.68 .75			0.07 1.52
West Fork	100.00	9,796	.04	7.07	1.94^{-}	.30

Source: ASARCO Incorporated 1987 Annual Report.

BP Minerals America was building its competitive position in copper and other precious metals and minerals markets. The \$400 million modernization of the Bingham Canyon Mine was nearing completion, with production costs reportedly lower than expected. Operating improvements at all plants had raised labor productivity to twice that of 1980. According to the company, when byproduct credits for gold, silver and molybdenum were translated into equivalent copper grade, the equivalent "grade" at the Utah mine exceeded the average grade of the seven largest mines in the United States other than Bingham, and the stripping ratio was as low as that of any of these mines. In addition to the high equivalent "grade" and low-stripping ratio, the Utah mine had large ore reserves that could support an operating life of about 30 years under current mine plans. If metal prices improve, additional years could be added. The cutoff grade was raised to 0.45%copper, which lowered the reserves, but raised the average mill-head grade and lowered unit costs. Revised mining plans also reduced the stripping ratio. Production expectations for the Bingham Canyon Pit were 173,000 tons of copper, 300,000 troy ounces of gold, 2.3 million troy ounces of silver, and 12 million pounds of molybdenum per year. Phase-in of the new facilities was scheduled to begin in the second quarter of 1988, with full operation to follow by October.

BP Minerals America listed Bingham Canyon copper reserves as 7.3 million tons of copper in 1986 and 7.1 million tons of copper in 1987, including proven and probable, contained in 891 million tons of ore in

1986 and in 899 million tons of ore in 1987. As a result of the divestiture of the Ray and Chino Mines in 1986, all of the company's remaining reserves were at Bingham Canyon.

At midyear, BP Minerals America announced its intention to reapply for a permit to mine its Ladysmith, WI, coppergold ore deposit, a relatively small deposit near the Flambeau River. Kennecott had withdrawn its 1975 environmental impact report and request to open the mine owing to the depressed metals market. The tabular-shaped, nearly vertical, quartz-sulfide vein averaged about 50 feet in width and was about 2,400 feet long. The upper 200 feet of the vein, which had been secondarily enriched, was to be mined in an open pit operation. The overburden, consisting of sandstone and glacial gravels, could be removed easily using bulldozers and used for road construction, plantsite preparation, and dressing of the slopes of the waste storage areas. The mine, which would employ about 35 people, would produce about 13,600 tons of ore per day and would cost between \$15 and \$20 million to develop.

The Ladysmith deposit contained 4 to 5 million tons of ore with 4% copper and traces of gold and silver. Mining by open pit methods was to last about 5 years; however, underground mining could follow if it proves economically viable for recovery of material from the lower 600 feet of the ore body.

Butte's old underground mines were purchased by Montana Mining Properties (MMP) from Washington Corp. of Missoula in April. In August, MMP, a group of Australian and European investors, incorporated several new mining companies with claims on Butte Hill. They included Butte Precious Metals, the Central Butte Mining Co., Mountain Con Mining Co., North Butte Mining Co., West Butte Metals Inc., the Tzarina and Travona Mining Co., and the Blue Bird Mining Co., according to county court records.²⁰ A new firm, Butte Mining Plc, with stock listed on the London Stock Exchange, was announced in October.

Butte Mining announced intentions of investing up to \$100 million for the purpose of resuming surface and underground mining on a portion of the Butte Hill and construction of a new mill in the city. The mouth of the mile-long Alice-Lexington Tunnel was rehabilitated so that easy access could be made to Butte's underground mines. The tunnel, which ended under the Alice Pit, was a key underground access connecting the Lexington Mine (at the 400foot level), the Missoula Mine, and the Syndicate Pit. Butte Mining was to develop only 2 of the 14 different blocks of claims that had been purchased by MMP, the Tazarena and Rainbow blocks, which were near the Lexington and Travona Mines. The minesites were last active in the 1950's. After positive recommendations from international mining consultants who did research on Anaconda Minerals Co.'s old records, Butte Mining decided not only to resume mining in Rainbow and Tazarena, but to conduct further exploration for more reserves. The Kellev Mine offices were serving as headquarters for both MMP, which will serve as a property management company engaged in trying to bring the Butte Hill mines back into production, and Butte Mining, which will also have offices in London, United Kingdom.

Cyprus continued to diversify into new markets and to acquire new copper-producing mines. In 1987, Cyprus acquired two more copper properties in Arizona and New Mexico. In late 1987, Cyprus began operations at Pinos Altos, an underground copper mine in New Mexico, which was acquired from Boliden Minerals Inc. The mine was situated on a combination of unpatented mining claims and fee properties and was held by Cyprus under a long-term lease. Cyprus expected to produce 3 to 5 million pounds of low-cost copper and some silver at Pinos Altos in 1988 and was evaluating the gold potential of the mine. The company also formed a joint venture with St. Cloud Mining Co. to mine silica flux in New Mexico for sale to a local smelter.

Cyprus acquired the Casa Grande (formerly Lakeshore) underground copper mine in western Arizona from Noranda Inc. in June. The mine was on Indian reservation lands leased from the Tohono O'odham Nation. Cyprus mined the oxide ore by in situ leaching and produced copper cathode from an SX-EW plant at the mine. During 1988, Cyprus planned to produce about 45,000 tons of leached copper at Casa Grande, some of which would be derived from its other mines. Cyprus planned to roast some of the copper concentrates from its Sierrita Mine at an on-site roaster at Casa Grande. The roaster could process 136,000 tons of concentrates per year. By using the low-cost, roast-leach operations, expected to reduce Sierrita's Cyprus concentrate-treatment costs. Work also was to continue on the development of in situ recovery of additional leachable copper from large deposits on the Casa Grande property.21

At yearend, Cyprus was negotiating to acquire the Twin Buttes, AZ, open pit copper mine near Sierrita. Sulfide ore from this mine was to be shipped to Sierrita for processing. The Twin Buttes SX-EW plant was to be refurbished and reactivated in 1988. Cyprus expected to produce about 11,000 tons of copper from the Twin Buttes Mine in 1988.

Cyprus mined copper sulfides, molybdenite, and a small amount of oxide ore for leaching at the Bagdad Mine, Arizona. The operation consisted of an open pit, a 50,000-ton-per-day sulfide concentrator, and an oxide heap leach system with an SX-EW plant. The mine, mill, and plant operated at full capacity in 1987, producing about 83,000 tons of copper, according to the company annual report.²²

Cyprus also owned and operated the Sierrita copper and molybdenum mine, which consisted of an open pit, an 84,000-ton-perday sulfide ore concentrator, a molybdenum plant and roaster, and related mining equipment. Copper concentrates were shipped to domestic smelters for processing. Sierrita also used an oxide ore heapleaching system with a SX-EW plant to produce copper cathode. Sierrita operated at near capacity during the year.

At yearend, Cyprus' proven reserves at the Sierrita Mine totaled 295.5 million tons of ore, containing an average grade of 0.30% copper and 0.037% molybdenum. The company's proven reserves at Bagdad totaled 387 million tons of ore, averaging

0.45% copper at yearend 1987. Cyprus' newly acquired Pinos Altos Mine had proven reserves of 830,000 tons of ore, containing an average of 4.91% copper. The Casa Grande (Lakeshore) Mine had proven reserves totaling 14 million tons of ore, containing an average of 0.80% copper, and the Twin Buttes Mine had proven reserves of 34 million tons of sulfide ore, containing an average of 0.92% copper and 9.6 million tons of oxide ore, containing an average of 0.73% copper.²³

ICC reported mining 30 million tons of ore, containing 0.589% copper. During 1987, ICC increased its proven reserves of copper through successful drilling. Reserves at active surface mines and properties at ICC were given as 151 million tons containing 0.60% copper. This compared with 111.3 million tons with 0.57% copper reported in 1986. Reserves (reserve base) at inactive mines totaled 99.6 million tons of 0.51% copper and included sulfide reserves at the open pit. ICC's inactive underground mine was given as 18.2 million tons of 1.84% copper.²⁴

Magma and Cyprus agreed in principle to form a joint venture under which Cyprus would explore for gold on Magma's San Manuel, AZ, property. Cyprus would have the right to earn a 50% stake in the gold property by carrying out exploration activities. Cyprus also would become operator of the gold property when developed.

Magma's San Manuel concentrator had a rated capacity of 56,000 tons of ore per day. The mill feed was reportedly averaging 0.65% copper and 0.026% molybdenum. Concentrates containing 29.5% copper and 1.00% molybdenum were produced. Magma started test production from its mechanized load-haul-dump system during the last week of June. However, technical problems encountered in the test runs made it unlikely that the system would be cost-effective. Therefore, it would not be used to replace the existing manual system in the mine as planned.

A formal test program began for recovering copper using in situ leaching in an area overlying the mined-out portion of the mine. In addition, Magma was actively mining in an open pit that was developed in the oxide ore contained within an active subsidence zone over the underground

mined-out area. Magma used a prepared, 86-acre, dump-leach site with an impermeable liner for leaching the mined oxide ore.

Construction of a \$19.6 million SX-EW project at Pinto Valley started during the year; the project was to be fully operational in 1988. About 7,000 tons of low-cost copper cathode per year was to be recovered from the 220-acre No. 2 tailings pile at the Pinto Valley Mine, which contained 32 million tons of material grading 0.33% copper. Pinto Valley will reclaim the copper by hydraulic mining, followed by processing through the expanded Miami SX-EW Unit.

Early drilling campaigns by Magma identified an oxide ore reserve in the open pit, dump-leach area of about 51 million tons of 0.47% copper ore and, in the in situ area, an oxide reserve of about 97 million tons containing 0.36% copper.25 In 1987, however, the company reported that exploration drilling had resulted in an increase of oxide reserves by more than 64 million tons. Previous reports had put San Manuel sulfide reserves at 270 million tons of 0.69%copper, which included 94 million tons contained in the shaft pillar.26 A reevaluation of the mine plan at Pinto Valley caused the company to increase minable sulfide reserves by 174 million tons.27 Previous reports had put Pinto Valley sulfide reserves at 323 million tons of 0.40% copper ore. Favorable drilling results were also obtained in an area known as Cactus Claims.28

MRI marked its first full year of operation in July 1987. Silver production was reported as just about covering the company's monthly diesel fuel costs for the trucks that haul ore from the pit to the concentrator. MRI was shipping copper concentrates to Japan and molybdenum concentrates to the United Kingdom.²⁹

Phelps Dodge was the largest domestic producer. According to the company's 1987 annual report, its mines and electrowinning facilities produced a record high 498,680 tons of copper in 1987, including a share belonging to Japanese partners Sumitomo Metal Mining Corp. and Mitsubishi Corp., which owned parts of Chino and Morenci production. Of the total, about 42,000 tons was electrowon cathode from the Morenci and Tyrone Mines. A substantial tonnage of concentrates, which was in excess of the company's smelting capacity, was either

sold or toll refined. In addition to the electrowon copper, the following was recovered at each mine:

Mine	Ore mined (thousand metric tons)	Grade (percent of copper)	Precipitates recovered (metric tons)
Bisbee Chino Morenci Tyrone	$\begin{array}{c} 9, \bar{437} \\ 30, 647 \\ 15, 564 \end{array}$	0.81 .82 .88	9,900 15,694 11,430 7,600

Source: Phelps Dodge Corp. 1987 Annual Report.

Ore reserves and reserve base in the United States were reported by Phelps Dodge as follows, including partner shares:

Mine	Ore reserves (thousand metric tons)	Average grade (percent)
Ajo	189,800 318,000 159,000 210,100 100,000 670,000 97,200 219,000	0.51 .71 .55 .89 .41 .76 .79

Source: Phelps Dodge Corp. 1987 Annual Report.

Sumitomo owned 15% of Morenci and adjacent Western Copper reserves. Mitsubishi owned 33-1/3% of the Chino Mine reserves. Ajo, Dos Pobres, and Western Copper were yet to be developed, hence, were considered as reserve-base copper rather than reserves. The Lone Star property near Safford, AZ, which was acquired from Kennecott in 1986, was also in this category. A potentially significant copper deposit was delineated by diamond drilling near Bisbee, AZ. At yearend, preliminary estimates had indicated about 154 million tons averaging 0.50% copper. Secondary chalcocite occurred near the surface and was thought to be amenable to heapleaching and SX-EW recovery. Phelps Dodge was to continue sampling and feasibility studies through 1988.

In April, Sharon Steel Corp. filed for bankruptcy under chapter 11 of the Federal Bankruptcy Act seeking protection from its creditors. Although Sharon Steel's Continental Mine in New Mexico was shut in 1982, Texas-New Mexico Power Co. alleged in a lawsuit that Sharon Steel's termination of an electric service contract was not effective until June 30, 1985. The mine has been kept on care and maintenance by a crew of

10 where about 500 mining and milling personnel were once employed. Substantial reserves reportedly remain.³⁰

The State of Tennessee purchased the 16.4-acre Burra Burra Mine site, the oldest in the Copper Basin, to help preserve the historic industrial complex. This was to be Tennessee's first State-owned historical industrial site, which includes the sealed entrance to the copper mine and 13 buildings that date from 1900 to 1922. Mining was discontinued here in 1958. The site was placed on the National Register of Historic Places in 1983.

After 144 years of commercial copper mining in Copper Basin, TN, Tennessee Chemical's mines were closed in early August. About 250 employees had already left through attrition and early retirement programs following the closing announcement 30 months prior to shutdown. The company will continue to manufacture sulfuric acid and copper chemicals, retaining 325 jobs. Eventually, a total of 650 workers will have been laid off.

Mine Environmental Issues.-The Environmental Protection Agency (EPA) reportedly spent more than \$20 million since 1983, when it began negotiating with the Atlantic Richfield Co. for testing and remedial action of land and water damages that resulted from decades of mining, smelting, and other industrial processes in Montana. Of the total, about \$17.1 million was spent for various public and private contracts at five sites. Most of that, \$9.2 million, was spent on the Silver Bow Creek-Butte site for testing and removal of contaminated soils in Walkerville and for monitoring flooding in the Berkeley Pit and underground workings. The agency also spent \$4.1 million at Anaconda, which includes Mill Creek, Smelter Hill, the old reduction works, the Arbiter plant, and the tailings ponds north of Smelter Hill. An additional \$2.7 million was spent at Milltown Reservoir, which was contaminated with arsenic and other heavy metals carried downstream from the Butte mining district and the Anaconda smelter. An additional \$1.3 million was spent on studies along the Clark Fork River. EPA and Montana agencies identified 77 potential contamination problems within the Clark Fork Basin, which reportedly was the largest Superfund site in the country.31

Projects involving concrete capping of old mine shafts and hauling away tailings were also completed or under way during the year. Three shafts, east of North Main in the Mountain Consolidated complex of Montana, were capped, and tons of tailings were hauled away. Similar capping and hauling at the West Grey Rock (at the end of Center Street) and the Belle of Butte (east of the Alice Pit and the Steward Mine) were being carried out as part of a reclamation and mine-shaft capping project on Butte Hill.³²

Smelter Production.—Even though several smelters closed during the year, primary and scrap smelter production increased in 1987 compared with that of 1986. Nine primary smelters with a combined capacity of 1.2 million tons operated most of the year. In addition, five secondary smelters with a combined capacity of 282,000 tons operated. Two primary smelters with a combined capacity of 148,000 tons per year closed permanently during the year; one was a reverberatory smelter in Arizona and the other was an electric smelter in Tennessee. One new flash smelter was under construction in Arizona, and one large smelter reopened in Utah.

U.S. smelter capacity, by process category, was as follows:

Process	Smelter capacity (metric tons, copper in blister)			
	1975	1987		
Outokumpu flash	336,000 1,444,500 208,400	160,000 288,000 210,000 112,000 386,000 281,000		
Total	1,988,900	1,437,600		

The significant shift in type and amount of smelter capacity was indicative of the rapid change since 1975 toward energy-efficient capacity with greater sulfur dioxide capture. The White Pine smelter was the only U.S. smelter operating without a sulfuric acid plant, which was not practical owing to the low sulfur content of its ores.

Asarco produced blister copper from two domestic smelters, one at El Paso, TX, and another in Hayden, AZ. The company's Hayden-Ray smelter, with a 100,000-ton-per-year capacity, was acquired from Kennecott late in 1986 but remained closed during 1987. Asarco's smelter production was down slightly from that of 1986. The annual capacities for the Hayden flash smelter and for El Paso were estimated to be 168,000 tons and 104,000 tons, respective-lv.

Pyrite from the Ropes Gold Mine at

Ishpeming, MI, was tested for use at Copper Range's smelter at White Pine, MI. The pyrite was to be used along with that imported from Canada, which was received by barge across Lake Superior. The pyritic ore, used as a smelter flux, was shipped by truck from the Ropes Mine and was less expensive. Copper Range also received coal for its company-owned electric plant through the Ontonagon pier on Lake Superior.

Cyprus planned to process a small portion of its concentrate production at its newly 136,000-ton-per-year purchased. plant at Casa Grande, AZ. In addition, Cyprus had toll smelting and refining and concentrates sales agreements with Magma and three other domestic and foreign custom smelters. These contracts were expected to cover about 75% of estimated 1989production and 45% of estimated production between 1990 and 1997. A 1986 agreement with Magma, which covered a minimum of 300,000 tons or about 50% of Cyprus concentrates production, was to commence in 1988. The agreement was to terminate in 1997 and was contingent upon the availability of Magma's new smelter capacity in the second quarter of 1988.

ICC continued to operate its smelter at full capacity, treating purchased and tolled concentrates. ICC had arranged for enough concentrates (345,000 tons of concentrates per year) to operate at capacity through 1989. ICC's smelter and acid plant produced 92% of the sulfuric acid required by the leaching operations. ICC completed several smelter improvements, including the installation of a new anode-casting facility and two gas coolers that permitted it to reduce costs and increase smelter efficiency.

According to its annual report, Phelps Dodge produced only 238,400 tons of blister copper at its U.S. smelters in 1987, down considerably from 325,200 tons reported in 1984. Phelps Dodge had smelted and refined most of its own mine production, but owing to smelter capacity cutbacks of recent years was selling the excess concentrates, or having them toll smelted both domestically and abroad. The company's Douglas smelter in Arizona was closed permanently in January 1987, as a result of environmental noncompliance.

An Outokumpu flash-smelting furnace was under construction at Magma's San Manuel smelter in Arizona. The design capacity was to be 2,722 tons of concentrates per day, capable of producing about 272,000

tons of copper per year, based on predicted feed grade.33 It will be the world's largest furnace of its type. Startup was planned for August 1988. Outokumpu Engineering Inc. was awarded the contract for the smelter modernization program, which included concentrate drying, a flash furnace, furnace feeding systems, flue-dust handling, and gas cleaning and handling systems. Davy McKee Corp. of California was the general contractor for the project. Other major contracts were awarded to Lurgi Inc. for converter gas handling, Monsanto Chemical Corp. for the acid plant, and Liquid Air Corp. for the oxygen plant. The gases from the new flash furnace were expected to run about 31% sulfur dioxide. Only four converters were required to process the matte, which would average 63% copper. Four new jet scrubbers were to replace the current gas-handling system from the converter. Both the slurry produced by the scrubbers and the dust captured by the electrostatic precipitators contain copper and were to be recycled. Slag cleaning for the furnace was to be done by flotation.

Smelter Environmental Issues.-Minproc Ltd. of Australia, which was a substantial shareholder of Artech Recovery Systems Inc., was preparing the final feasibility study for the recovery of metals from flue dust at the Anaconda Copper Reduction Works in Anaconda, MT. The site contained an estimated 327,000 tons of flue dust. Artech Recovery and CSS Management Corp. formed a joint venture, called Artech Ventures, to recover bismuth, copper, gold, lead, mercury, silver, and zinc from the arsenic-bearing flue dust. A hydrometallurgical process for economic recovery of the metals was being tested. Earlier testing indicated that arsenic in the treated flue dust would be chemically bound in insoluble precipitate and would not be hazardous. The processing method, called the Cashman process, was developed following 5 years of joint research and development with the Bureau of Mines. Processing operations were planned to begin in 1988 with 97 tons of flue dust per day, expanding to 363 tons per day. About 20 to 35 people would be employed during construction and operation of the plant.34

However, at yearend, Artech was waiting for EPA to determine if the encapsulated arsenic could be stored on Smelter Hill and whether the now closed Arbiter SX-EW plant could be used for processing the material. U.S. Department of Transportation

regulations also would apply to the project if moving the hazardous dust across Highway 1 to the Arbiter plant was determined to constitute public transportation. A Montana Water Quality Bureau discharge permit would also be required.

EPA ordered the eight remaining families of Mill Creek, MT, to leave the 160-acre community owing to health problems that ostensibly were related to heavy-metals contamination from the now closed Anaconda smelter. Permanent relocation was ordered to address the imminent health risks from high levels of arsenic, cadmium, and lead in the area. The residents filed a lawsuit against Anaconda seeking damages for health problems associated with living near the smelter. Under a proposed EPA-Anaconda consent agreement, Anaconda had 1 year to buy the remaining eight homes. EPA began investigating Mill Creek after urine samples taken in 1985 revealed elevated arsenic levels in several young children. Anaconda had since purchased 24 lots and had moved 19 families.35

Asarco received notices from EPA concerning releases or threatened releases of hazardous substances, pollutants, or other contaminants under the 1980 Superfund law regarding the former Houston plantsite of Federated Metals Corp., a wholly owned subsidiary. Federated Houston's scrapprocessing plant in Texas was closed permanently in 1984. In January 1987, this plant was listed on the Texas State Superfund Registry.

A settlement reached with the Arizona Department of Health Services and the EPA allowed Magma to continue operating its San Manuel reverberatory smelter until the new flash furnace was completed. The consent decree, completed February 23, established a November 1, 1988 deadline for completion of its smelter project, which will fully comply with Federal and State air-quality standards. Interim air-quality standards that the reverberatory smelter must meet were established, along with penalties, if these standards are violated. A past air-quality violation penalty of \$600,000 was to be paid by Magma, in addition to posting a \$20 million letter of credit guaranteeing compliance with the November 1988 deadline. The Federal Clean Air Act had set January 1, 1988, as the deadline for full compliance with air-quality standards.

Refinery Production.—Refinery production was considerably higher than that of

1986 owing to the reactivation of some capacity, as well as to the startup of expanded or new electrowinning capacity. During 1987, 26 refineries operated, including 10 electrowinning plants, 9 primary and secondary electrolytic plants, and 7 secondary fire-refining facilities; no primary fire refining was reported during the year. Annual U.S. refinery capacity was estimated to be 1,980,000 tons of primary and secondary refined copper. Primary refinery capacity consisted of 1,425,000 tons of electrolytic cathode and 182,000 tons of electrowon cathode.

Asarco reported capacity at its Amarillo, TX, refinery as 414,000 tons and at its recently acquired Ray SX-EW plant in Arizona as 36,000 tons. Asarco's refined copper production was 53% from purchased material, 13% from tolled material for others, and only 34% from the company's own mines. Copper cathodes were produced at the rate of 82 tons per day from the company's Ray SX-EW plant; about 21 tons per day was from sulfide dump leaching, and 61 tons per day was from silicate leaching.

BP Minerals America restarted its refinery in Utah at the end of July. However, full capacity was not expected to be reached until mid-1988, following completion of the mining and milling renovations.

Copper Range had two anode furnaces, one of which was completely rebuilt. From a holding furnace, fire-refined copper was fed through a Hazellett Inc. continuous-casting anode machine. The anode was cut into shape for the refinery from the hot metal sheet, providing a very smooth, uniform anode. Cathode produced by the electrolytic refinery was very pure and was used mainly for magnet wire, according to company officials. Cathode was shipped by truck to Ontonagan from where it went by rail to market. Copper Range was leasing the modern refinery from Echo Bay Mining Ltd. Although there was a specialty casting shop on the premises for making custom cake, rod, and other forms, including high silvercopper alloy, this part of the plant was not being used. It was anticipated that a nickel sulfate line would be put back into operation in the near future. The refinery, which used the Australian Isa process with stainless steel starter sheets, was constructed by Copper Range (Louisiana Land and Exploration Co.) during 1982 and was used for processing scrap during the mine closure from 1982 to 1986.

Near the end of August, Cox Creek Refin-

ing Co. of Baltimore, MD, started limited production of copper rod for customer testing and qualification, but full production was not scheduled to begin until 1988. The associated refinery remained idle. Production at the rod mill was from toll cathode and copper scrap, both alloyed and unalloved. Mitsubishi Metal America joined the venture, providing a supply of raw material for refining and rod production. Halstead Industries Inc. of Zelienople, PA, also joined Mitsubishi and Southwire Co., Georgia, as investors in Cox Creek. Each of these companies owned 20% of Cox Creek, which was purchased from Kennecott. Securing copper supplies in the tight yearend market was a major hurdle for the company before it could begin large-scale production. The Baltimore refinery's capacity was put at about 180,000 tons per year. Kennecott dismantled some tankhouse capacity prior to closing. The original annual capacity had been 254.000 tons.

In 1987, ICC increased proven reserves of low-cost leachable ore at its Arizona-based operations by more than 40% from 1986 levels. It also expected to reduce cash costs of production by about 5 cents per pound after additional SX-EW production of about 11,500 tons starts in the fourth quarter of 1988. Exploratory drilling had proven the availability of sufficient reserves to continue all-leach production at ICC for more than 12 years at current operating rates. In addition, a modernization of ICC's tankhouse was under way and scheduled for completion in 1988. In 1987, the company produced 48,000 tons of copper from leach extraction methods. In 1987, ICC's tankhouse and rod mill produced a record high 78,000 tons of cathode and 120,000 tons of copper rod, respectively.36

As part of the tailings reprocessing project at Magma's Pinto Valley Div., capacity at the Miami Unit SX-EW operation was to be doubled from about 15 tons of copper per day to 30 tons per day. In addition, copper starter sheets were to be eliminated at the Pinto Valley tankhouse; instead, a conversion to stainless steel blanks was being made, as was already the case at the company's San Manuel SX-EW plant.

The 100% expansion program of Magma's San Manuel SX-EW plant was about 65% complete at yearend. The new plant was to recover copper from solutions generated by the new in situ, oxide-ore-leaching project and was being built adjacent to the first SX-EW plant, brought on-line last year. The

first plant was recovering copper from heap-leaching oxide ore that was being mined by open pit methods from the oxide ore body over a mined-out portion of the sulfide ore zone. Owing to delays occasioned by the need to complete underground mining of the underlying sulfide ore, the scheduled startup for production by the in situ plant may be as late as 1989; eventually, the new plant will double electrowon copper production to 45,500 tons per year. Magma found that the Australian Isa process was a complete success and enabled production of high-quality copper. In its first year of operation, the existing 25,000-ton-per-year plant was producing a little more than its rated capacity. Although production costs for heap leaching were listed by Magma as less than 50 cents per pound, in situ production costs were expected to be substantially lower. The in situ site was at the eastern edge of San Manuel's open pit oxide mine, in the north central portion of the subsidence zone. Injected fluids were to percolate down through 1,000 feet of ore before reaching the collection point at the 2,375foot level underground. The ore block contained about 161 million tons of recoverable copper and was expected to have a 10-year life.

A third expansion at the Tyrone, NM, SX-EW plant, which was operated by Burro Chief Co., was to increase the plant's annual capacity to 50,000 tons and was nearing completion. A new 41,000-ton-per-year facility was under construction at Chino Mines, with initial production scheduled for the fall of 1988. The 45,000-ton-per-year Morenci electrowinning plant began production in October, and plans were being considered for further expansion.

Phelps Dodge's refinery at El Paso, TX, had a capacity of about 410,000 tons of electrolytic copper per year. Most of Phelps Dodge's refined copper, and additional copper purchased by the company, was cast into rod. Phelps Dodge was the largest domestic producer of copper rod with continuous cast rod facilities in El Paso, TX, and Norwich, CT, that were capable of producing about 386,000 tons of rod per year. Rod sales to outside wire and cable manufacturers constituted about 50% of the company's primary metals sales in 1987.

Copper Powder.—Copper powder production at U.S. manufacturers reached 17.4 million kilograms in 1979 but has declined by about one-half since that time. At the same time, copper powder imports have

increased sevenfold. Nonetheless, exports, which were also lower by one-third in 1987 and were lowest in 1983 and 1984 compared with 1979, have continued to be relatively high. U.S. apparent consumption of copper powder decreased from 15.9 million kilograms in 1979 to about 7.3 million kilograms in 1986. Powder metal sales, including copper powder, in North America are heavily dependent upon the automotive industry, which decreased the number of vehicles shipped over the same period. However, U.S. copper powder consumption improved by about 30% in 1987, as U.S. manufacturing of products using powder increased owing to higher demand arising from the decreased value of the dollar. Copper powder consumption was reported from 35 companies in 1987, down from 42 companies reporting copper powder production in 1986. Among those companies reporting to the Bureau of Mines, the largest consumers were General Electric Co., St. Marys Carbon Co., Allied Automotive Co., Chrysler Corp., Stack Pole Corp. and Sintered Metals Inc.

According to Metal Powder Industries Federation shipments data, copper powder usage, including bearings, comprised about 51% of major copper and copper-base powder markets, the total for which amounted to about 16 million kilograms in 1986 and which comprised about 6% of total North American metal powder shipments. Probably the best known use for copper powder was the self-lubricating bearing that was the first major application and still accounted for about 70% of the granular copper powder used. Pure copper powder was also used in the electrical and electronic industries. Copper powder in flake form was used for antifouling paints, decorative and protective coatings, and printing inks. Nonstructural applications included brazing, cold soldering, mechanical plating, metals and medallions, metal-plastic decorative products such as floor tile and epoxy resins, and various chemical and medical applications.

The top three copper and copper alloy powder producers in 1987 were Alcan Metal Powders, Greenback Industries Inc. and SCM Metal Products. The value of U.S. copper powder production comprised only about 2% of the total metal powder sales in the United States, which amounted to nearly \$1 billion. Copper powder prices steadily increased in 1987, with commercial-grade copper metal powder reaching \$1.55 per

pound on December 21, reflecting adjustments for the escalating cost of copper.

Granular copper powder can be produced by a number of methods, including atomization, electrolysis, hydrometallurgy, and solid state reduction. Each method yields a

powder having certain inherent characteristics. Atomization was the preferred commercial production technique used because the powder chemistry, cleanliness, size, and shape can be better controlled than with other methods

Table 2.—Apparent consumption of copper powder in the United States

Year	Production	Production .	Imports		Exports ¹		Apparent
	(kilograms)	Quantity (kilograms)	Value (thousands)	Quantity (kilograms)	Value (thousands)	consump- tion ² (kilograms	
1978 1979 1980 1981 1982 1982 1983 1984 1985 1986 1987 Includes copper flakes.	16,991,985 17,410,984 13,202,988 13,593,988 9,685,991 11,454,990 12,782,989 9,775,991 7,897,993 8,708,992	220,827 241,030 185,111 292,054 374,255 629,988 2,102,952 830,176 735,325 1,742,450	\$963 1,048 1,144 1,309 1,198 1,996 2,224 1,942 1,736 1,827	1,712,838 1,777,112 1,765,621 1,128,977 959,098 785,902 881,211 1,111,675 1,367,276 1,012,382	\$4,597 6,432 6,397 4,441 3,830 2,799 3,379 4,020 5,353 11,191	15,499,974 15,874,902 11,622,478 12,757,664 9,101,148 11,299,076 14,004,730 9,494,492 7,266,042 9,439,060	

Source: Bureau of Mines and Bureau of the Census.

Copper Sulfate.—Copper sulfate was produced from copper scrap, blister copper, copper precipitates, electrolytic refinery solutions, and spent electroplating solutions. Imports of copper sulfate, which doubled compared with those of 1986, accounted for an increased share of U.S. consumption. Export data were not available. Tennessee Chemical ceased copper mining and smelting in mid-1987 and by yearend had shifted to using scrap as a basic material in the production of copper sulfate. Kocide Chem-

ical Corp. continued with development of its in situ copper recovery program from the Van Dyke Mine in Miami, AZ. Kocide planned to produce copper precipitate from the leach solutions as a feed material for production of copper sulfate at its Casa Grande, AZ, plant. Data supplied by domestic producers for 1987 indicate that 65% of their shipments were for agricultural end 30% for industrial uses including wood preservatives, and 5% for water treatment

Table 3.—Copper sulfate producers in the United States in 1987

Company Plant location CP Chemicals Inc Sewaren, NJ, and Sumter, SC. Kocide Chemical Corp Casa Grande, AZ. Madison Industries Inc Old Bridge, NJ. Phelps Dodge Corp El Paso, TX. Southern California Chemical Co Santa Fe Springs, CA, Union, IL, Garland, TX. Tennessee Chemical Co Copperhill, TN.		111 100,
CP Chemicals Inc		Plant location
	Madison Industries Inc. Phelps Dodge Corp Southern California Chamical Ca	Sewaren, NJ, and Sumter, SC. Casa Grande, AZ. Old Bridge, NJ. El Paso, TX. Santa Fe Springs, CA Union, H. Corlord, W.

Sulfuric Acid Production.—Sulfuric acid was produced as a byproduct of copper smelting. Three copper smelters in Arizona produced a total of 1.1 million tons, and five smelters in New Mexico, Tennessee, Texas, and Utah produced the remainder of 1.5 million tons in terms of 100% sulfuric acid. Although the Tennessee smelter closed at

midyear, increased sulfuric acid production occurred as a result of the reopening of the BP Minerals America plant in Utah and better sulfur capture at all plants. Total byproduct sulfuric acid from copper, lead, and zinc smelting amounted to 3.4 million tons in 1987.

²Production plus imports minus exports.

CONSUMPTION

U.S. apparent consumption of primary copper and old copper scrap increased by about 4% from that of 1986 to the highest level since the 1982 recession yet remained almost 7% below the peak consumption year of 1979. Domestic production, primary refined copper plus copper recovered from old scrap, rose by about 6% from that of 1986 and accounted for 75% of apparent consumption; domestic inventories, which declined by 50%, accounted for 5%; and net imports of refined copper, which declined by about 6% from the 1986 peak level, accounted for 20% of apparent consumption. According to Bureau of Mines estimates, the end-use distribution for copper was 70%in electrical applications, 15% in construction, 6% in machinery, 4% in transportation, 2% in ordnance, and 3% in other applications. Electrical and electronic uses in all the end uses, except ordnance, were included under electrical applications. The demand for copper in electrical applications, which increased by about 6%, was reflective of the 5% increase in gross private domestic investment, with which there has been a high degree of historical correla-

Refined copper and copper-base scrap were consumed directly in the manufacture of semifabricated or fabricated shapes and chemicals at approximately 20 wire-rod mills; 40 brass mills; and more than 1,000 foundries, chemical plants, and miscellaneous manufacturers. Reported consumption of refined copper at wire-rod mills, increased by about 6% and accounted for almost 73% of reported consumption of refined copper. Although refined copper consumption at brass mills declined slightly, overall consumption of copper materials increased owing to increased consumption of purchased scrap.

Based on estimates by the Copper Development Association (CDA) from the gross weight of domestic mill shipments and from net imports of mill products, the end-use distribution of copper and copper-alloy mill products consumed in the domestic market in 1987 was construction, 43%; electrical and electronic products, 22%; industrial machinery and equipment, 14%; transportation equipment, 12%; and consumer and general products, including ordnance, 9%. Total brass mill shipments to the U.S. market increased by almost 7%. The largest increase in demand was in the construction

sector where shipments increased by about 12%.37 The increase in construction demand was reflective of an increased intensity of use as housing starts in 1987 declined and the constant dollar value of new construction, according to the U.S. Department of Commerce, increased only by about 1%. In construction, copper and copper-alloy products are used as building wire (electrical), plumbing and heating tube and fixtures, air conditioning and commercial refrigeration, hardware, and miscellaneous uses including roofing, flashing, and various architectural design uses. Demand in all of these uses increased during 1987. Though only a small percentage of the construction market, the use of copper for roofing and architectural purposes, in both new construction and renovations, continued to gain in popularity, resulting in a 20% increase in the miscellaneous sector.

The increased domestic demand for brass mill products was met by domestic production, with mills operating at or near capacity for much of the year. Net imports of brass mill products, according to the Copper and Brass Fabricators Council Inc., declined by 6% to the lowest level since 1984. The low valuation of the U.S. dollar, plus antidumping and countervailing duties imposed on imports of certain sheet and strip products, served to discourage imports and stimulate exports.

Consumption of copper and copper-base scrap increased by about 6% in 1987 as a result of strong demand by the brass mill industry. Increased consumption of scrap at ingot makers and miscellaneous manufacturers was also attributable in part to the strength of the brass mill industry, which reported a 65% increase in the consumption of purchased brass ingot. The tight supply and resulting price increase for refined copper encouraged the use of lower priced copper scrap. Old scrap accounted for about 43% of the copper recovered from scrap.

Over the past 20 years, there has been a marked decline in the domestic ingot-making industry. In the late 1960's, annual domestic production averaged about 300,000 tons compared with an average in the 1980's of about 190,000 tons. The decline in the ingot-making industry paralleled the decline in the domestic foundry industry: Consumption of brass ingot by foundries declined by about 50% over the same time

period. CDA market data indicated that the total foundry product supply to the U.S. market had declined by more than one-third over the past 20 years, principally as a result of substitution by plastics and other materials in the plumbing market. In addition to a fall in demand for their products, domestic ingot makers also have been af-

fected by the transfer of domestic foundry casting capacity overseas, a result of domestic environmental regulations, higher U.S. labor rates, and high material costs. Many of the major domestic suppliers of plumbing fixtures were securing all, or part of, their product line from foreign fabricators.

STOCKS

As a result of a continued world mine production shortfall, stocks of refined copper held by domestic producers and consumers and in COMEX warehouses declined for the fourth consecutive year. By yearend, industry stocks had declined by more than 50% and, at the prevailing rate of consumption, represented less than a 2-week supply. Industry stocks were at the lowest level since the end of the Korean war: At that point, however, the Government stockpile contained about 500,000 tons of copper, compared with 1987 Government stocks of only 20,000 tons.

Most of the decline in domestic stocks was accounted for by a third-quarter drawdown from COMEX warehouses; COMEX stocks by yearend had declined by 80%. During the first 2 months of the year, stocks held in COMEX warehouses actually rose as the new premium for high-grade cathode of 1.5 cents per pound, double the previous premium, attracted more copper into Texas warehouses. At the prevailing producer premiums over COMEX prices, refiners in Texas reportedly found it cheaper to deliver copper to nearby COMEX warehouses than to pay the freight costs to distant consumers. Consequently, a regional disparity developed, with surplus copper available for midwestern consumers and shortages for east coast consumers.

As the copper shortage intensified and merchant and producer premiums increased, copper held at COMEX warehouses declined. COMEX stocks rose only briefly in September as new domestic refinery capaci-

ty came on-stream. As competition for spot copper intensified during the fourth quarter, however, exchange stocks plummeted to the lowest level since 1973 and the end of the Vietnam conflict. Similarly, by yearend, consumer stocks, principally at wire-rod mills, had fallen to their lowest level in at least 30 years.

In October, the Commodity Futures Trading Commission intensified its surveillance of the copper commodity market. The small quantity of copper available and the surge in copper price raised concerns of copper price manipulation and insufficient inventories to cover deliveries on expiring contracts. At yearend, no impropriety had been revealed and there was an orderly liquidation of December contracts.

On the London Metal Exchange (LME), there was mounting pressure to eliminate the standard-grade contract owing to its low volume of trade and low liquidity. In April 1986, the LME instituted two new contracts: standard-grade and grade-A. The standard-grade contract appeared to be out of line with the market that was dominated by high-grade copper suitable for wire-rod production.

Interest in the new Mid-America Commodity Exchange copper contract, which had been introduced in June 1986, failed to materialize; by the end of the first quarter, when stocks had been liquidated, the contract became dormant. The new contract, which was comparable to the LME grade-A contract, was intended to be more in line with the physical metal market.

PRICES

The domestic producer price for copper, which had an annual average between 66 and 67 cents per pound over the previous 3 years, and averaged only 65 cents per pound during January 1987, rose throughout the year, peaking at yearend at a record 150.8 cents per pound. The price runup was a result of an increasingly short supply of copper available for purchase on the spot market. The copper shortage was the result

of a world mine production shortfall that had persisted over the previous 3 years. Domestic industry stocks of refined copper, which had accumulated to a peak of almost 700,000 tons during the 1982 recession, were drawn down to just over 100,000 tons by yearend. Meanwhile, domestic consumption of copper grew, from a 1983 base, at an annual rate of 1.9%.

At yearend 1986, copper producers and

analysts were still pessimistic about the price of copper, with domestic producers adopting aggressive pricing schemes in an attempt to regain market share. Producer strategies included freight discounts to some delivery points and monthly and quarterly price caps of about 3 cents per pound over the COMEX price. In an effort to remain competitive, foreign producers lowered their premiums; Corporación Nacional del Cobre de Chile (CODELCO-Chile) halved its first quarter COMEX-based premium to 0.75 cents per pound.

Tightness in the copper spot market began to appear early in the year. Producers had secured long-term supply contracts and the new 1.5-cent-per-pound premiums on high-grade copper cathode drew more copper into COMEX warehouses. By May, tightness in the market was clearly evident, with most producers reportedly sold out of spot copper for the remainder of the year; the producer price rose to 80 cents per pound by the second week in July. Factors contributing to the tightness of supply included strong demand during the first quarter, with consumption in March at the highest reported monthly level in almost 8 years; an increase in consumer inventories at wire-rod mills in anticipation of strong demand in the second half of the year; and supply disruptions from Canada and Africa. The price rise was fueled by both a renewed speculative interest in copper markets and a concern that COMEX warehouses could not deliver all the copper held on contract if too many contract holders took delivery rather than liquidate their positions. By May, prices on COMEX had gone into backwardation, with forward sales contracts selling at a slight discount to spot purchases. Prices continued to rise during the second half of the year as domestic invento-

ries declined and demand remained strong.

In November, with industry stocks at a level representing only about a 2-week supply, prices began a dramatic increase as consumers sought to secure copper for the first quarter of 1988. Backwardation of prices on COMEX jumped from 12 cents per pound on 3-month-forward contracts to 24 cents at monthend and to about 50 cents at yearend. Tightness in the domestic market was exacerbated by foreign producers taking advantage of the large spread between the LME price and the COMEX price to ship copper to Europe preferentially and by a declaration of a force majeure for January 1988 shipments by Noranda Copper Co. The LME premium over COMEX, which had averaged only 2.4 cents per pound during the first 10 months of 1987, averaged 10.4 cents in November.

During the first half of the year, domestic dealer buying prices for unalloyed copper scrap generally followed the fortunes of refined copper, with the price spread, or margin, between refined copper and No. 1 scrap remaining constant at about 18 cents per pound. Strong demand by brass mills during the second quarter, as supplies of refined copper became tight, resulted in consumers paying prices for No. 1 scrap at or slightly above the COMEX price for refined copper. As the price of refined copper began its rapid rise at midyear, the margin between scrap and refined copper increased, and by yearend was above 50 cents per pound. The increase in price brought more scrap copper to the market and tended to moderate price increases. The dealer buying prices for alloyed scrap were much slower to respond to the effects of refined price increases and by yearend had only risen by a maximum of about 30%.

WORLD REVIEW

More than one-half of the increase in world mine production of copper was accounted for by North American producers as the United States, Canada, and Mexico added new capacity and/or increased capacity utilization, following rationalization and restructuring of their copper industries. China, Papua New Guinea, and the Republic of South Africa also increased production. In Papua New Guinea, Ok Tedi Mining Co. Ltd. (OTML) started the copper circuit at its gold-copper project. In China, a major concentrator expansion was completed at the Dexing Mine, Jiangxi Province. New world mine capacity added during the year was estimated to be 176,000 tons of copper,

to which market economy countries contributed 72%. World mine capacity was estimated to be 9.3 million tons of copper in 1987; market economy countries constituted 83% of the total. Significant production declines were reported by Japan, which resulted mainly from the streamlining of Dowa Mining Co.'s operations that was completed during 1986 and by Spain, which resulted from the closure of Rio Tinto Minera S.A.'s three copper mines. A decision on whether to close permanently the Rio Tinto Mines, which had a combined capacity of about 47,000 tons of copper per year, was not expected until the end of 1988. Rio Tinto's flash smelter and electrolytic refin-

ery continued to operate with imported concentrates.

Development work on several major copper deposits continued. In Australia, the Olympic Dam project was scheduled for a mid-1988 startup. In Chile, negotiations were proceeding to finalize both project financing and concentrate sales contracts for the Escondida project, with final approval of the \$1.2 billion project expected in 1988. In Brazil, pilot plant tests on ore from the Salobo deposit reportedly exceeded expectations, and project engineering was under way for development of this deposit by 1992. In Portugal, underground development and construction of the concentrator at the Neves-Corvo project were on schedule and production was scheduled to begin by late 1988 at an annual rate of 1 million tons of ore containing 10% copper.

World smelter production rose by about 2% compared with that of 1986, principally as a result of production from new or expanded smelter capacity in Brazil, China, and Mexico, and from a major smelter in the United States that reopened. Increased concentrate imports allowed production to be increased at Caraiba Metais S.A.'s 150,000-ton-per-year flash smelter in Brazil, which had operated with insufficient feed since being commissioned in 1983. Increased production from the 90,000-ton-of-anodeper-year Guixi smelter in China, which was completed in 1985, was possible owing to increased production at the Dexing Mine. In Japan, although total production from its seven smelters remained at about the same level as that of 1986, production from primary materials rose by about 5%, and stocks of copper concentrates were depleted. Japanese smelters underwent further rationalization during the year as Mitsui Mining and Smelting Co. Ltd. closed its blast furnace as a result of a tolling arrangement made with Nippon Mining Co. Ltd. and Furukawa Co. Ltd. Furukawa halved its production at its Ashio smelter. Belgian smelter production, which was principally from secondary materials, declined by more than 40% owing to tight scrap supplies.

European and Japanese smelters continued to compete for concentrates and to invest in new mining projects in exchange for long-term concentrate supply contracts. In Finland, the state-owned Outokumpu Oy sought to secure concentrates for its Harjavalata smelter. Finland's chronic shortage of copper concentrates was exacerbated by the closure of several Scandinavian mines. In addition, Outokumpu planned to provide loan guarantees for the Escondida proj-

ect in Chile in exchange for a long-term supply contract (50,000 tons of copper per year in concentrate) and at yearend was negotiating for a large share of Neves-Corvo's concentrates. In Sweden, Boliden AB, whose Ronnskar smelter was threatened with closure owing to environmental constraints and monetary losses, announced plans to invest about \$450 million to ensure adequate smelter feed through extending existing mining operations and opening new mines. Boliden operated 17 mines in Sweden, including its Aitik Mine, a 40,000ton-of-copper-per-year mine that was slated for extension under Boliden's investment plan. Environmental issues remained unresolved because of pending law suits.

307

Despite the affirmative actions by custom smelters to secure long-term supply contracts, the spot market for custom concentrates was stable throughout the year. Spot Japanese tolling and refining charges averaged about 16 cents per pound of copper. Despite tight supplies, major increases in world smelter consumption of concentrates were generally balanced by increased production at mines.

Even though production from primary materials grew by 3%, world production of refined copper grew by less than 2% as a result of tight scrap supplies. In the United States, primary refined production exceeded the increase in smelter production owing to increased production of electrowon refined copper, which bypassed the smelting process.

Demand for refined copper by market economy countries rose about 3% to a record-high level, according to preliminary data from the World Bureau of Metal Statistics. Consumption increases by North American countries, particularly Mexico and the United States, accounted for about 50% of the world increase in refined copper demand. In South America, refined copper demand in Brazil was reported to have risen by more than 25%. Demand in Western Europe was at about the same level as in 1986, with only small gains or losses reported by most countries. Spain, in particular, showed strong copper demand growth, rising by about 13%. In Asia, significant increases in refined copper consumption were reported in Japan, the Republic of Korea, and Taiwan. In Japan, demand was buoyed by a strong domestic housing market. In the Republic of Korea and Taiwan, demand followed a strong growth trend reflective of the growth in their gross national products.

Table 4.—Estimated production costs at producing copper mines1

(January 1987 U.S. dollars per pound of refined copper)

Australia Austra	Country	Number of mines	Mine operating cost	Mill operating cost ²	Smelter- refinery cost ³	(Less) byproduct credit	Net operating cost ⁴	Taxes ⁵	Total cash costs4	Recovery of capital	produc- tion cost ⁴ 5
107 20 22 18 13 47 03 49 08		14 14 15 15 8	\$0.19 128 128 129 135 135 138 148 158 178 178 178 178 178 178 178 178 178 17		\$0 33 33 43 43 43 43 14 12 12 12 10		86 87 88 73 88 73 86 86 86 86 86 87 76	\$0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.04	\$0.54 5.55 1.01 1.01 1.75 1.74 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53		\$0.60 .655 .110 .110 .288 .288 .27.
	Total or average	107	.20	.22	.18	.13	74.	.03	.49	SO.	6c.

¹Based on life-of-mine production rates and ore grades. Does not necessarily reflect 1987 operating grade and production.

²Includes copper recovery by leaching.

³Includes cost of transportation.

⁴Data may not add to totals shown because of independent rounding.

⁵Taxes and production cost are at a zero percent rate of return.

Source: Bureau of Mines, Minerals Availability System (MAS) cost analysis. Prepared by Kenneth Porter.

By yearend, the gap between world demand and refined production increased. Demand for refined copper exceeded production for the fourth consecutive year. As a result, world stocks of refined copper were estimated to have fallen by about 400,000 tons and at yearend, represented only about a 4-week supply at the prevailing rate of consumption. Stocks held in COMEX and LME warehouses alone declined during the year by almost 200,000 tons to a yearend level of only 70,000 tons. The shortfall in production was exacerbated by shipping delays from some of the major copper exporting countries. Rail and port delays were encountered in Africa, as Central African copper exports were shifted from ports in the Republic of South Africa to ports in Mozambique and Tanzania. In Canada, a railroad strike disrupted supply. Consequently, by yearend, the LME price of copper had more than doubled.

The average production cost at the world's producing copper mines, including smelter and refinery charges and recovery of capital, was estimated to be 58 cents per pound, down considerably from the 65 cents estimated for 1986. Net operating costs were estimated to be 47 cents per pound. Some of the lowest costs estimated at the mine and mill level, such as those for Zambia, reflect severe adjustments in exchange rates that effectively lowered the cost. Zambia also had a preponderance of lower cost leach and SX-EW production, which helped to keep its average cost down. The lowest cost producer was Chile, followed by Zambia, the United States, Australia, Zaire, and Canada.

Australia.—Mine production declined for second consecutive year owing to decreased output from Australia's two largest mines, the Mount Isa Mine (Mount Isa Mines Ltd.) and the Lyell Mine (Renison Goldfields Consolidated Ltd.), as well as to the closure of several mines. The Mount Gunson Mine (EMAC Gunson Partnership) closed in mid-1986, and the small Warego Mine (Peko-Wallsend Ltd.) closed in early 1987. Even so, smelter production increased as Mount Isa increased smelter capacity through incorporation of the Isamelt process. Refinery production increased owing to expanded production at the Townsville refinery.

The joint venture between Cyprus Minerals Australia Co. (37.5%), Arimco NL (37.5%), and Elders Resources Ltd. (25%),

announced its intention to develop the Starra copper-gold deposit, which was about 145 kilometers southeast of Mount Isa. The Starra project was slated to begin production in early 1988 and to produce 10,000 tons of copper in concentrate per year. To date, 4.6 million tons of ore, with an average grade of 2.05% copper and 5.2 grams of gold per ton, had been identified.

Barrack Mines Ltd. announced its intention to develop the deeper, polymetallic ore at its Horseshoe gold mine in Western Australia. A plant to produce about 17,000 tons of copper in concentrate was under construction and was scheduled to begin production in early 1988. Ore reserves of at least 930,000 tons, with a grade of 8.4% copper, 22 grams of silver per ton, and 1.4 grams of gold per ton, had been delineated.

Construction of the Olympic Dam coppergold-silver-uranium project at Roxby Downs Station, South Australia, was progressing toward a mid-1988 startup date. The initial annual production rate was to be 30,000 tons of copper; the smelter and refinery were to begin operation during the fourth quarter of 1988.

Exploration of a number of base metal projects continued during the year, including the Thalanga deposit in Queensland, which reportedly had estimated ore reserves of more than 7 million tons containing 2.2% copper, 11.4% combined lead and zinc, 71 grams of silver per ton, and 0.47 gram of gold per ton. Preliminary studies for a 600,000-ton-of-ore-per-year plant reportedly were completed.

Canada.—Mine production of copper rose by 10% to a record-high level, while smelter and refinery production remained at about the same level as that of 1986. Smelter and refinery production were negatively affected by a strike at Noranda's Horne smelter, which began in November 1986 and continued through the first quarter of 1987, and by a railroad strike that occurred during the fourth quarter of the year and impeded the flow of smelter and refinery feed materials. Consequently, exports of ores and concentrates rose by almost 8% to record levels, while exports of refined copper declined. Domestic demand for refined copper rose by more than 10%, buoyed by strong brass mill demand and exports of brass mill products.

Mine production was regionally divided, principally between the western Province of British Columbia, which accounted for 45%

of Canadian production, and the central and eastern Provinces of Ontario, Manitoba, and Quebec, which accounted for 37%, 9%, and 7% of production, respectively. In British Columbia, Highland Valley Copper Co. (HVC), Canada's largest copper mine producer, which was formed last year through the merger of Cominco Ltd.'s Highland Valley area assets with those of Lornex Mining Corp. Ltd., completed installation of two semimobile, in-pit crushers and an associated 5-kilometer belt conveyor system. The new system, which was completed at yearend at an estimated cost of \$44 million, linked Cominco's high-grade Valley Pit with the modern Lornex Concentrator and was expected to substantially reduce costs. HVC reportedly became the most competitive copper operation in Canada. In 1987, HVC processed 42 million tons of ore with an average grade of 0.43% copper to yield 86,000 tons of copper in concentrate; 90% of the ore was processed at the Lornex mill, and the remainder was processed at the Valley mill. Under the new production plan, the Lornex Pit will supply the Lornex Concentrator with only about 15% of its ore, while about 30,000 tons of ore per day from the Valley Mine will be trucked from the conveyor transfer point to Cominco's Bethlehem concentrator. In September, Teck Corp. reached an agreement with the HVC partners to merge its Highmont Mining Corp.'s mill facilities into HVC. Cominco will reportedly relinquish 5% of its 55% share to Teck in exchange for a cash payment from HVC. The acquisition would reportedly allow for the eventual closing of the Bethlehem mill in favor of the Teck mill. Afton Mining Corp. depleted the ore reserves in its main pit, but continued operations from stockpiled ore and from its Pothook Pit, which was to be depleted in 1989.

In Ontario, Falconbridge Ltd. completed the expansion of smelting and refining operations at Kidd Creek to 92,000 tons of copper per year. The smelter was closed for 5 weeks during the fourth quarter for maintenance and modifications related to the expansion.

In Manitoba, Sherritt Gordon Mines Ltd.'s Ruttan Mine was sold to Hudson Bay Mining and Smelting Co. Ltd., effective July 30. Sherritt Gordon, which had reported losses in 1986, had considered closing the mine, which supplied almost 80% of purchased concentrates and 30% of total feed to Hudson Bay's Flin Flon smelter.

In Quebec, Noranda reached an agreement with the Provincial Government to build an acid plant at its Horne smelter to cut sulfur dioxide emissions in half, to 300,000 tons per year. The Federal and Provincial Governments were expected to pay one-third each of the estimated \$95 million cost for building the acid plant. which was expected to come on-stream by 1990. In April, a fire at Noranda's underground Gaspé Mine closed the mine indefinitely. The associated smelter, which had an annual capacity of about 65,000 tons of copper, continued operating using stockpiled and tolled concentrates. Minnova Inc., formerly Corporation Falconbridge Copper, was proceeding with its development of the Ansil and Winston Lake properties. Ansil, which had indicated ore reserves of 2 million tons with an average grade of 7.1% copper, 0.5% zinc, and 0.8 ounce of silver per ton, was expected to start production in 1989 at a rate of about 500,000 tons of ore per year. The Winston Lake zinc-copper mine, which had an average ore grade of 16% zinc and 1% copper, was expected onstream in 1988. It was designed to process 350,000 tons of ore per year. Les Mines Selbaie announced its intention of developing the third ore body at Selbie, Quebec. The development of its A-2 underground zone, which had an average grade of 2.24% copper, 1.04% zinc, 1.23 grams of gold per ton, and 19.4 grams of silver per ton, will extend the mine life by about 4 years.

production Chile.—Copper increased slightly despite a decline in production by state-owned CODELCO-Chile, the world's largest copper-producing company. CODEL-CO-Chile reported producing 1.09 million tons of copper, 11,500 tons less than its 1986 record-high production. However, even though production of copper declined, production of byproduct molybdenum increased slightly. Copper production at CODEL-CO-Chile's four producing divisions fell short of projections because of extenuating circumstances relating to severe winter weather conditions, and to the high arsenic content and declining grade encountered in the Chuquicamata ore. Because of the high arsenic content, CODELCO-Chile reportedly exported some of Chuquicamata's concentrates for processing. CODELCO-Chile's sales program had called only for sales of some Andina concentrates. CODELCO-Chile reported record-high pretax revenues of about \$730 million, an increase of about 80% over that of 1986. Copper sales in-

creased by about 2% to 1.16 million tons, 40% of which went to Western Europe, 23% to South America, 22% to Asia, 13% to North America, and 2% to other destinations. Electrolytic grade cathode, or wirebar, accounted for 55% of their sales; fire-refined copper, 14%; and unrefined copper, 31%.38

In 1987, CODELCO-Chile reported investing \$323 million in plant improvements and equipment, in part to expand capacity and in part to compensate for declining ore grades and higher operating costs. At its Tocopilla powerplant, which was spun off from the Chuquicamata Div. to form a fifth operating division, a major investment in a pier and in coal-handling facilities was completed. The new unloading installation can handle up to 1,500 tons of coal per hour. A new power generator, intended to meet the additional power requirements of expansion projects at Chuquicamata, was commissioned in July. At Chuquicamata, milling capacity was being increased by 50% to 153,000 tons of ore per day, work was progressing on a 51,000-wet-ton-per-day concentrator expansion, a new anode casting facility was completed, and a new flash furnace and acid plant were under construction. An expansion of materials-handling facilities, including a waste crushing and conveying system at the mine, was nearly complete, as was a 275,000-ton-per-year expansion electrolytic refinery. The expansion plans were geared at not only expanding annual output to about 750,000 tons of copper per year, but also at compensating for a declining ore grade, which was expected to fall from 1.6% copper to 1.0% copper by 2000. The new flash smelter and acid plant, the refinery expansion, and a waste-dump leaching project were all planned for operation in 1988. Excess acid production was expected to be sold at up to a 70% discount from the prevailing market rates as a Government stimulus to the small- and medium-size mining sectors for exploitation of oxide reserves through leaching.

At the El Teniente Div., work on expanding the underground mine into the Mina Sur and Mina Norte sectors progressed for the purpose of increasing ore production by 20% to 110,000 tons per year by 1991. The expansion was necessary to maintain production levels because the more friable, secondary-enriched ore was nearing depletion and ore grades had fallen from 1.8% in 1980 to 1.4% copper. The mine was also shifting to more mechanized block-caving

methods in order to cope with the harder ore. The new dam at Caren began receiving tailings through a gravity-fed, 85-kilometer, concrete flume. At the Calcetones smelter, the first of several new and enlarged, El Teniente-type, modified converters was installed as part of an expansion plan that was aimed at keeping pace with increased mine production and lower concentrate grades. At the Andina Div., the tailings dam was augmented to increase disposal capacity as mine capacity was increased. At the El Salvador Div., a new mechanized loading facility was commissioned at the Port of Chanaral, and an oxygen plant was installed at the Porterillos smelter to boost capacity.

Empresa Nacional de Minería (ENAMI), the state-owned custom mineral processor, which served the small- and medium-size private mining sector, operated four concentrators, two smelters, and a refinery. As a custom processor, it was able to handle a wide variety of ores and concentrates. In 1987, it reported a record-high revenue of \$662 million and profits of \$30.1 million. The rise in copper prices in 1987 allowed for suspension of the price-support system early in the year and for mining companies to begin repayment of debt accrued to ENAMI since 1983. Production of refined copper by ENAMI rose by more than 15% to about 200,000 tons, following completion of an expansion project in 1986 at its Ventanas refinery. At midyear, ENAMI announced approval for the construction of a 290,000ton-per-year sulfuric acid plant and an oxygen plant at its Ventanas smelter. These plants, expected to be completed in 1989, reportedly will increase smelter capacity by an estimated 180,000 tons of concentrates per year and will allow ENAMI to become an exporter of sulfuric acid. The expansion will eliminate the imbalance between ENAMI's smelting and refining capacity. Previously, excess refinery capacity had allowed ENAMI to toll refine blister copper from CODELCO-Chile and others. Financing for the project, estimated to cost \$72 million, was to come from the Federal Republic of Germany.

At yearend, development plans for the Escondida copper project were well under way. Interdependent negotiations were taking place to secure both financing for the project and guaranteed markets for the production. Escondida, which was owned 60% by The Broken Hill Pty. Co. Ltd. of Australia, 30% by the Rio Tinto Zinc Corp.

Ltd., and 10%, by a Japanese consortium headed by Mitsubishi, was expected to produce up to 300,000 tons of copper in concentrates per year and to cost \$1.2 billion for development. In addition to the sulfide ore body, feasibility studies were being conducted on the potential for exploitation of the oxide reserves.

Cía. Minera Disputada de las Condes S.A., a subsidiary of Exxon Minerals Corp., completed its \$68 million expansion of its mine, mill, and concentrator, which since 1985 had raised production from 5,500 tons of ore per day to more than 11,500 tons per day. Exxon planned to increase total annual production from its El Soldado and Disputada Mines by about an additional 50% to 140,000 tons of contained copper by 1990.

In November, Dallhold Resources Inc., a subsidiary of the Alan Bond group of companies in Australia, purchased Cía. Minera San José Ltda., which was operator of the El Indio and adjacent El Tambo gold-silver-copper mines. Proven reserves at the two mines included 6.7 million tons of ore containing 4.5% copper, 7 grams of gold per ton, and 90 grams of silver per ton. Copper production from the two mines was about 15,000 tons in 1987.

Mexico.—The two major copper mines, La Caridad, owned by Mexicana de Cobre S.A., and Cananea, owned by Cía. Minera de Cananea S.A., accounted for more than 97% of Mexico's copper mine production. Cananea increased production, having completed a major mine expansion program in 1986. Smelter production was also about 35% higher, owing to startup of a new flash smelter at La Caridad in 1986. However, the smelter, which was built to handle all of La Caridad's 1,800 tons of concentrates per day, was experiencing significant startup problems and operated at less than 50% of capacity. A sulfuric acid plant, with a projected capacity of 2,500 tons per day of 93% sulfuric acid, was under construction with commissioning planned for 1988. On January 29, the Governments of Mexico and the United States signed an agreement to limit copper smelter emissions along their common border. The agreement limited sulfur dioxide emissions from the La Caridad smelter to a maximum of 0.065% by volume, as averaged over any 6-hour period, beginning June 1, 1988. A similar limit would apply to the Cananea smelter should it be expanded.

At the Cananea Mine, capacity was being expanded through the new SX-EW plant,

which will have a capacity of 20,000 tons of cathode per year and will supplement its existing construction of a 10,000-ton-per-year facility. The mill-head grade at Cananea was improved by segregating the low-grade ore, which contained 0.15% to 0.45% copper, for leaching. To balance mine and smelter production, Cananea purchased the 15,000-ton-per-year Santa Rosalia smelter at Baja. Some of Cananea's concentrates were to be processed at the Santa Rosalia smelter once renovations were complete.

As a result of strong domestic demand for refined copper, which increased by more than 30% in 1987, and a shortfall in domestic smelter production, Mexico was a net importer of refined copper. Mexico's only electrolytic copper refinery, which was owned by Mexicana de Cobre, operated at less than two-thirds of its rated 150,000-ton-of-copper-per-year capacity owing to a shortage of anode copper from its smelters.

Papua New Guinea.-Mine production increased by more than 20% as a result of the commissioning of the copper circuit in June at OTML's gold-copper project. However, startup problems caused copper production to be short of the planned 1,000 tons of concentrates per day, which averaged about 28% copper. OTML had planned to produce 180,000 tons of concentrate in 1987, 400,000 tons in 1988, and following completion of the concentrator expansion, up to 700,000 tons per year in 1992 and 1993. By midyear, Metallgesellschaft AG of the Federal Republic of Germany, which was OTML's sales agent, had negotiated supply contracts for most of the concentrate production. A Japanese consortium was to receive 60,000 tons of concentrate in 1987 followed by 230,000 tons per year over the next 6 years; the Korean Mining and Smelting Co. was to receive 30,000 tons per year over the next 5 years; and West Germany's Norddeutsche Affinerie AG was to receive 25,000 tons in 1987, increasing to 150,000 tons per year in 1988. OTML was reportedly experiencing cash-flow problems during the year and dropped its in-house feasibility study for construction of its own copper smelter.

Because of the mining of a section of lower grade ore, production at Bougainville Copper Ltd. declined slightly to 178,000 tons of copper in concentrates. Ore grade for the year reportedly averaged 0.42% copper. Bougainville completed construction of a preconcentration screening plant during the third quarter, which helped to boost

production. Since its Panguna deposit was expected to be exhausted by the year 2000, Bougainville was seeking to have a Government moratorium on exploration rescinded. By yearend, a detailed engineering study for constructing a gravity-flow slurry pipeline, reportedly planned to be the world's largest and longest, had been completed. If constructed, the pipeline, estimated to cost \$50 million, would transport tailings 32 kilometers from the concentrator to the Solomon Sea and would replace the existing river transport system.

Peru.—A 23-day strike in November at the Cuajone and Toquapala Mines of Southern Peru Copper Corp. (SPCC) cut production. In addition to SPCC's mines, owned 52% by Asarco, the strike also affected the Government-owned Ilo refinery, which refined all of SPCC's copper. Strikes at Empresa Minera del Perú's (Minero Perú) Cerro Verde Mine and Empresa Minera Especial Tintaya S.A.'s Tintaya Mine also reduced production.

Tintaya was considering several moves to expand its production including the possible treatment of 7.5 million tons of stockpiled oxide ore through the sulfide concentrator. The Government Institute of Geology and Metallurgy reportedly was testing the material for concentrator treatment. Tintaya also installed particle-size monitors and other equipment to enhance recovery and improve concentrate grade. Tintaya was negotiating with Minero Perú for the underground development of the Coroccohuayco deposit, which was near the Tintaya Mine and reportedly had proven ore reserves of at least 15 million tons with a grade of 3% copper. Production from the Coroccohuayco deposit was to start by mid-1990 at a rate of 61,000 tons of concentrate per year.

Minero Perú conducted a feasibility study for a combined leach process using concentration- and bacterial-leaching technologies to solve permeability problems that were encountered in sulfide ore leaching at Cerro Verde. The current leach process had been used to process oxide ores that were nearing depletion. The combined process would require a \$35 million investment in new milling and flotation equipment and would involve finer grinding of the ore with segregation of the fines for concentration.

SPCC was increasing efforts to reduce costs, having barely broken even in 1987 despite the improved copper and silver prices, owing to declining ore grades at its Cuajone Mine, high tolling charges by the state-run refinery, and high fuel import

tariffs. Improvement plans called for at Cuajone were the installation of column flotation cells for the treatment of about 80 to 100 million tons of sulfide ore dumps with bacterial leaching and SX-EW recovery. Plans also called for reorganization of SPCC management.

Philippines.-Mine production in the Philippines declined slightly in 1987. A 16% increase in production by the Philippine's largest producer, Atlas Consolidated Mining Development Corp., was offset by production declines at the six other copperproducing companies. Despite the rise in copper prices, most Philippine copper producers continued to lose money. Marcopper Mining Corp., with production of 24,000 tons of copper, was threatened with closure unless it could restructure its debt and secure financing for development work. Bond Corp. Holdings Ltd. negotiated throughout the year with Atlas in an effort to obtain a 40% equity in Atlas through assumption of existing loans and for additional loans to be used for exploration and development of the Masbate gold mine. At yearend, loan repayment terms with Atlas's creditors were still unresolved. Lepanto Consolidated Mining Co. Inc. and Galactic Resources Ltd. of Canada announced a joint venture to develop the Far South East deposit, a major copper-gold deposit at Mankayan, Benquet Province. Drilling had thus far delineated more than 290 million tons of ore at the Far South East deposit reportedly containing more than 2 million tons of copper. A feasibility study was scheduled for completion in early 1988.

Philippine Associated Smelting and Refining Corp.'s smelter and refinery at Isabel, South Leyte, which were 40% stateowned through the National Development Corp., announced plans to increase its 138,000-ton-per-year copper capacity by 25%. The cost of the expansion program was estimated at \$51 million and was not expected to be completed until at least 1989. In June, the company received Government approval to import, for the first time, 40,000 tons of copper concentrates from Papua New Guinea. The smelter was shut temporarily in March and again in April, first due to power problems and later to allow for repairs.

Zaire.—Copper production in Zaire was from the state-owned company, La Générale des Carrières et des Mines du Zaire (Gécamines), which operated about a dozen mines grouped in three geographic regions along the copperbelt of Central Africa: Kolwesi (western), Likasi (central), and Lumbubashi (southern). At the end of April, the state-owned Société de Développement Industriel et Minière du Zaire (Sodimiza), which operated two underground mines, was incorporated into Gécamines. Sodimiza had been owned by a Japanese consortium until 1983. Gécamines was proceeding with its 5-year, \$870 million investment program, which was started in 1985 to rehabilitate its copper industry. Equipment tenders had been submitted for a new 100,000-tonper-year refinery at Kolwezi. The refinery, which was planned for completion in 1990, was expected to save \$20 million per year in foreign exchange from elimination of tolling costs. Rehabilitation of the Kolwezi concentrator was expected to be completed by 1989, and a mobile in-pit crushing and belt-conveying system for the Kolwezi open pits was expected to be completed by 1990.

Zambia.—The 5-year reorganization plan announced in 1986 by Zambia Consolidated Copper Mines Ltd. (ZCCM), the statecontrolled company responsible for all of Zambia's output, began to show a positive impact with mine production rising slightly. In August, ZCCM closed its unprofitable Chambishi underground mine and concentrator; open pit mining began at Chambishi in 1965. Output from the Nchanga Div. was not affected as output from the higher grade Konkola Mine was increased to compensate for lower output at Chambishi. Meanwhile, work was progressing on three underground projects at Mufulira, ZCCM's largest underground mine, which had a capacity of about 80,000 tons of recoverable copper per year. The Mufulira projects were

geared toward accessing additional ore reserves and included deepening of the access shaft, extension of conveyor and service shaft inclines, and installation of an underground crusher. Ore reserves at Mufulira were estimated to be 81 million tons with an

average grade of 3% copper. In March, in an attempt to restructure its economy, which was largely dependent on copper exports, Zambia announced its intention to break with the austerity measures that had been imposed by the International Monetary Fund, and its intention to cut foreign debt service repayment. Under the new payment plan, the foreign exchange requirements of ZCCM and other state-run industries would be deducted from earnings prior to calculating its debt repayment, which was based on a percentage of earnings. This and other measures, which included cessation of the mineral export tax beginning in 1988, were geared toward ensuring the necessary capital to revitalize Zambia's mineral industry. Zambia also was seeking to halt its dependence on the Republic of South Africa's railroad system. Early in the year it halted all copper shipments through the Republic of South Africa, rerouting all copper shipments through the ports of Dar Es Salaam, Tanzania, and Beira, Mozambique. In April, Angola, Zaire, and Zambia signed a letter of intent to reopen the crippled Benguela Railway leading to the Angolan Port of Lobito. The estimated cost of rehabilitating the Benguela Railroad, which had been shut for 12 years because of destruction during the Angolan civil war, was estimated to be \$280 million.

TECHNOLOGY

The first in a planned series of international conferences devoted to technical and economic developments in the copper industry took place in Viña del Mar, Chile, from November 30 to December 3, 1987. The "Copper 87" conference provided a forum for discussing both the outlook for the industry and recent advances in various technical aspects of copper processing. Papers given at the conference were published in four volumes, dealing with subjects in hydrometallurgy, pyrometallurgy, mineral economics, and mineral processing and control.39 Several authors thought that the copper industry was not spending nearly enough on research and market develop-

A comprehensive review of flash smelting was published. The authors found the flash furnace particularly interesting because it oxidizes its raw material (Cu-Fe-S concentrate) to provide part of its energy requirement; it can be operated in many ways (e.g., autogenously with oxygen blast or fossilfuel assisted with air blast) depending upon the goals of the operator. The book described flash smelting in general, the Outokumpu and Inco flash smelting processes in particular, and included a section in which the flash smelting process was described mathematically. The mathematical section described a set of mass- and heat-balance

315

equations that can be used to describe steady-state smelting under autogenous or near-autogenous smelting conditions. These equations can be used to determine the amounts of blast, flux, and fuel inputs to be employed for achieving a smelting goal and for optimizing and controlling the flash smelting process.⁴⁰

The Bureau of Mines signed a Memorandum of Agreement with the Casa Grande Copper Co. for a cooperative project to help the copper company determine whether in situ mining techniques can be used at its Casa Grande West project and Santa Cruz sites in Arizona. The company was to share hydrological and geological data with the Bureau, and Bureau scientists were to evaluate the information in terms of in situ mining requirements. The Bureau was also working with two other copper companies in the Casa Grande area, evaluating potential sites for future in situ mining projects.

Significant progress has been made in recent years in copper SX-EW plant design. Continuing pressure to reduce costs and increase productivity has promoted the need for a new generation of plants. The Dremco process for electrowinning reportedly was producing a high-quality copper from a solvent extraction electrolyte.41 The process utilized high-current-density technology, resulting in increased productivity, lower costs, and a high-purity product. Fullscale testing of the Dremco process at a copper producer's plant proved the viability of the process, demonstrating that more copper could be produced for lower cost than through conventional plants. A plant using the Dremco technology would be onethird the size of a conventional plant. The use of rigid permanent cathode blanks, precise electrode alignment, and air agitation resulted in very dense, smooth, and pure cathodes with high tensile strength.

Progress was made in the development of the new ceramic, high-temperature, copper-oxide-base, superconducting materials. In 1986, IBM Corp. researchers in Switzerland made a breakthrough in superconductivity research with copper-oxide-base materials mixed with barium and lanthanum. Prior to their discovery, superconductivity, a state in which electrical current can pass through a solid without resistance, had only been achieved at temperatures approaching absolute zero (-272° C). The highest critical

temperature of record was only -250° C, or 23 K. The extreme temperature, which required cooling with expensive liquid helium, limited the application of superconductive materials. Despite the growing use of conventional superconductors in highly specialized applications, there were still many technical barriers to the practical use of superconducting materials.⁴²

In 1987, researchers at the University of Houston and University of Alabama discovered that a different ceramic copper oxide, mixed with barium and yttrium, would superconduct at up to 94 K, allowing it to be cooled with significantly less expensive liquid nitrogen. Westinghouse Electric Corp. announced development of a process for producing superconducting powders that could simplify fabrication. The process produced very fine, pure powders, largely composed of single crystals that could be magnetically aligned to give them the orientation necessary to boost current density. The new process was used to make yttriumbarium-copper oxide compounds that superconduct when cooled to about 95 K, or -178° C.43 In addition, a bismuth-strontiumcopper oxide compound was produced with transition temperatures about 95 K. By late 1987, researchers in Arkansas had announced their discovery of a thalliumbarium-copper oxide material that achieved zero resistance to electrical current at 81 K, and later, by adding calcium, a new material was produced that retained zero resistance at temperatures up to 106 K.44

Most potential applications of superconductors can be divided into two broad categories. The first are those used for large technological systems, either in the form of wire for the transmission of electricity, or in magnets. Examples of these include magnetically levitated trains, high-energy accelerators, energy-storage systems, and nuclear magnetic resonance imaging machines. The second category involves use as "thin films" in small-scale electronic devices similar to semiconductor chips. It was expected that the new ceramic superconductors should have more immediate impact in this application. However, until there is a breakthrough allowing superconductors to operate at room temperature, the transformation of these technologies by superconductor materials was expected to happen slowly.

¹Physical scientists, Division of Nonferrous Metals.

²All quantities in this chapter are given in metric tons unless otherwise specified.

³Foundry Magazine. Washington Update. 1987, p. 12.

⁴American Metal Market. ICC Rules Railroads Delayed Nonferrous Metal Rate Cuts. V. 95, No. 95, May 18, 1987,

Nonferrous Metal Rate Cuts. V. 95, No. 95, May 18, 1987, pp. 1, 8.

*ASARCO Incorporated. Operations Data Sheets. Pres. at Sulfur Inst. Annu. Meet., Washington, DC, Jan. 1988; available upon request from J. L. W. Jolly, BuMines, Washington, DC.

*Joklik, G. F. Cost Reduction at Bingham Canyon. Pres. at Capital Met. Forum, Washington DC, Nov. 18, 1987; available upon request from J. L. W. Jolly, BuMines, Washington DC.

*American Metal Market. Inspiration Unit Plans To Boost Copper Capacity. V. 95, No. 223, Nov. 16, 1987, p. 1.

*American Metal Market. Magma Goal: Cut Production Costs. V. 95, No. 182, Sept. 18, 1987, pp. 1, 8.

*Phelps Dodge Corp. 1987 Annual Report. P. 4.

10 Page 2 of work cited in footnote 9.

¹¹ASARCO Incorporated. 1987 Annual Report. P. 14. ¹²BP Minerals America, 1987 Annual Report, P. 22.

¹³Cyprus Minerals Co. 1987 Annual Report. P. 1. ¹⁴Inspiration Resources Corp. 1987 Annual Report.

P. 2-9.

15 Metals Week. Elsewhere in Copper. Feb. 15, 1988, p. 2

"Metals Week. Eisewiner in Copper. Feb. 19, 1900, p. 2. 16 Tribune (Great Falls, MT). Butte Mines May Turn \$1.4 Million Profit in '87. May 30, 1987, p. 4. 17 Montana (Butte) Standard. MRI on \$100 Million Profit Report: "We Wish." May 6, 1988, p. 2. 18 Work cited in footnote 5.

¹⁹Page 59 of work cited in footnote 12.

²⁰Montana (Butte) Standard. The Hill Being Divvied up Again. Feb. 8, 1988, p. 3. ²¹Cyprus Minerals Co. 1987 10K Annual Report. P. 4.

²²Page 3 of work cited in footnote 21. ²³Page 4 of work cited in footnote 21.

²⁴Page 28 of work cited in footnote 14. ²⁵Vancas, M. F. Development of the San Manuel Oxide Ore Reserve, Present and Future. Magma Copper Co., SME Annu. Meet., Denver, CO., Feb. 24-27, 1987.

²⁶Newmont Corp. 1985 Annual Report. P. 22.

²⁷Magma Copper Co. 1987 Annual Report. P. 1.

28 Work cited in footnote 27.

²⁹Montana (Butte) Standard. Montana Resources Marks

First Year of Operation. July 15, 1987, p. 2.

³⁰Pay Dirt. Sharon Steel's Continental Copper Mine
Awaits a Better Day. Nov. 1987, p. 10A.

³¹Montana (Butte) Standard. Superfund Bill: \$20 Million
or So and Rising. May 14, 1988, p. 2.

Mine Shaft Capping Near Done, More Planned. Aug. 22, 1987, p. 3.

33Pay Dirt. Magma's San Manuel Smelting Furnace To

Be World's Largest. June 1987, p. 6B.

34Mining Magazine. Flue Dust Processing at Anaconda.

Aug. 1987, p. 107.

35Montana (Butte) Standard. Mill Creek Questions Remain. Oct. 8, 1987, p. 4.

Pages 8 and 9 of work cited in footnote 14.

³⁷Copper Development Association. Annual Data 1988.
 Copper Supply & Consumption, 1967-1987. Greenwich, CT, June 1988, 20 pp.

38 Corporación National del Cobre de Chile. 12th Annual

Report. 1987. 50 pp.

8 (Santiago, Chile). Economics, Metallurgy and Process Control. Int. Conf. Organized by Metallurgical Society of the Canadian Institute of Mining and Metallurgical Society of the Canadian Institute of Mining and Metallurgical Society. Society of the canadian institute of mining and metalurgy, Chilean Institute of Mining Engineers, and the University of Chile. Nov. 30-Dec. 3, 1987.

40 Davenport, W. G., and E. H. Partelpoeg. Flash Smelting, Analysis, Control and Optimization. Pergamon Press,

1987, 324 pp.

1987, 324 pp.
 41 Engineering and Mining Journal. Product Development. Mar. 1987, p. 81.
 42 Technology Review. Superconductors: The Long Road Ahead. Feb. Mar. 1988, pp. 36-47.
 43 American Metal Market. Superconductivity Advance Reported by Westinghouse. V. 96, No. 22, Apr. 27, 1988,

p. 4. ⁴⁴Research News: Thallium Superconductor Reaches 125K. V. 239, No. 4845, Mar 2, 1988, p. 1243.

Table 5.—Percentage of copper ore and recoverable copper extracted from open pit and underground mines in the United States

V	Op	en pit	Unde	rground
Year -	Ore	Copper ¹	Ore	Copper ²
1983	89	85	11	15
1984	92	87	8	13
1985	88	89	12	11
1986	87	86	13	14
1987	88	84	12	16

¹Includes copper from dump leaching.

²Includes copper from in-place leaching and copper recovered from tailings and as a byproduct from other sources.

COPPER

317

Table 6.—Mine production of recoverable copper in the United States, by month and by State

	1983	1984	1985	1986	1987
Month:					
January	90,025	92,971	92,699	99,029	102,20
February	77,664	87,863	87,089	87,365	93.04
March	89,274	96,124	100,170	96,386	107,13
April	84,646	91,250	93,641	93,838	99,28
May	92,170	95,045	96,834	97,116	105.08
June	89,717	98,000	90,225	96,561	102,48
July	76,323	88,235	90,711	95,151	105.02
August	79,211	89,032	87,446	94,596	108,28
September	86,704	88.074	81,898	97,572	106,26
October	89,608	94.382	94.222	100,185	105,88
November	93,706	92.507	91,870	92,452	109,67
December	89,050	89,130	98,953	97,026	111.44
December	03,030	03,130	30,300	51,020	111,44
Total	1,038,098	1,102,613	1,105,758	1,147,277	1,255,91
State:					
Alaska	w				
Arizona	678,216	746,453	796,556	789,175	764.14
California	W	W	W	W	
Colorado	W	Ŵ	w	w	ī
Idaho	3,556	3.701	3,551	w	Ý
Illinois_		-,	w	w	Ý
Michigan			w	w	Ť.
Missouri	7.725	5.818	13.410	· ŵ	· v
Montana	33.337	w	15,092	ŵ	v
Nevada	W	· w	W	ŵ	
New Mexico	ŵ	w	· ẅ	w	v
Oregon	ŵ	**	**.		•
Tennessee	w	w	w	w	v
Utah	169.751	w	w	w	v
Washington	100,101	. **	. **	. **	v
" woming out					
Total	1,038,098	1,102,613	1,105,758	1,147,277	1,255,914

W Withheld to avoid disclosing company proprietary data; included in "Total."

Table 7.—Twenty-five leading copper-producing mines in the United States in 1987, in order of output

Rank	Mine	County and State	Operator	Source of copper
1	Morenci	Greenlee, AZ	Phelps Dodge Corp	Copper-molybde- num ore, concen- trated and leached.
2	Tyrone	Grant, NM	Phelps Dodge Corp. and Burro Chief Copper Co.	Copper ore, concen- trated and leached.
3	Bingham Canyon	Salt Lake, UT	Kennecott, Utah Copper Div	Copper-molybde- num ore, concen- trated and leached.
4	San Manuel	Pinal, AZ	Magma Copper Co	Copper-molybde- num ore and re- treated slag, con- centrated and leached.
5	Chino	Grant, NM	Chino Mines Co	Copper-molybde- num ore, concen- trated and leached.
6	Ray	Gila, AZ	ASARCO Incorporated	Copper ore, concen- trated and leached.
7	Bagdad	Yavapai, AZ	Cyprus Bagdad Copper Co	Copper-molybde- num ore, concen- trated and leached
8 9 10	Sierrita Pinto Valley White Pine	Pima, AZ Gila, AZ Ontonagon, MI	Cyprus Sierrita Corp Pinto Valley Copper Corp Copper Range Co	Do. Do. Copper ore, concen- trated.
11	Inspiration	Gila, AZ	Inspiration Consolidated Copper Co.	Copper-molybde- num ore, concen- trated and leached.
12	Mission	Pima, AZ	ASARCO Incorporated	Copper ore, concentrated.
13	Complex ¹ Continental	Silver Bow, MT	Montana Resources Inc	Copper-molybde- num ore, concen- trated.
14	Troy	Lincoln, MT	ASARCO Incorporated	Silver-copper ore, concentrated.
15	Casteel	Iron, MO	The Doe Run Co	Lead-copper ore, concentrated.
16	Ox-Hide	Gila, AZ	Inspiration Consolidated Copper Co.	Copper ore, leached
17 18	Silver Bell Copperhill (1 mine).	Pima, AZ Polk, TN	ASARCO Incorporated Tennessee Chemical Co	Do. Copper-zinc-iron- sulfide ore, con- centrated.
19	San Xavier	Pima, AZ	ASARCO Incorporated	Copper ore, concen- trated.
20	Miami	Gila, AZ	Pinto Valley Copper Corp	Copper ore, leached.
21	Viburnum No.	Washington, MO	The Doe Run Co	Lead ore, concen- trated.
22	Mineral Park	Mohave, AZ	Cyprus Minerals Co	Copper ore, leached.
23	Magmont	Iron, MO	Cominco American Incorporated $_$	Lead-zinc ore, con- centrated.
24	Buick	do	The Doe Run Co	Lead ore, concen- trated.
25	Copper Queen _	Cochise, AZ	Phelps Dodge Corp	Copper ore, leached.

¹Includes Eisenhower, Mission, and Pima.

Table 8.—Mine production of copper-bearing ores and recoverable copper content of ores produced in the United States, by source and treatment process

(Metric tons)

	19	1983	19	1984	1985	85	19	1986	19	1987
Source and treatment process	Gross weight	Recover- able copper	Gross	Recover- able copper						
Mined copper ore: Concentrated ¹	171,776,000 6,154,000	810,090 104,991	168,226,000 3,588,000	883,338 106,597	160,258,000 1,952,000	906,438 98,453	166,891,000 2,347,000	909,136 135,448	201,434,000 1,198,000	1,005,706
Total	177,930,000	915,081	171,814,000	989,935	162,210,000	1,004,891	169,238,000	1,044,584	202,632,000	1,167,297
opper precipitates simpled, reached from tailings, dump, and in-place material —	130,857	89,274	120,437	80,845	118,096	85,948	111,050	79,031	109,520	69,376
Silver ore	4,483,000 7,303,000	19,384	4,487,000	22,334	1,041,000 $6.433.000$	3,745	560,000	2,599	275,000 W	1,155
Other copper-bearing ores ³	9,970,000	6,634	22,821,000	3,681	8,898,000	764	2,447,000	13,658	7,980,000	13,623
Grand total	XX	1,038,098	XX	1,102,613	XX	1,105,758	XX	1,147,277	XX	1,255,914

XX Not applicable. W Withheld to avoid disclosing company proprietary data.

Includes the following methods of concentration: dual process (concentration followed by leaching) and froth flotation.

Includes the following methods of concentration: dual process (concentration followed by leaching) and froth flotation.

22 Includes the following methods of concentration: dual process (concentration follows: 1983—101,386; 1984—100,180; 1985—90,439; 1986—125,352; and 1987—157,986 tons of electrowon caper (see table 11).

Includes copper-lead ore, gold ore, gold-silver ore, lead-zinc ore, molybdenum ore, tungsten ore, fluorspar, flux ores, cleanup, and tailings.

Table 9.—Recoverable copper, gold, and silver content of concentrated copper ore in 1987

	Ore concen-		Recoverable r	netal content		Value of
State	trated (thousand	Cop	per	Gold	Silver	gold and silver per
metric tons)	metric	Metric tons	Percent	(troy ounces)	(troy ounces)	metric ton of ore
ArizonaOther ¹	131,756 69,678	607,238 398,468	0.46 .57	48,430 212,798	3,529,883 11,800,837	\$0.35 2.56
Total or average	201,434	1,005,706	.50	261,228	15,330,720	1.11

¹Includes Idaho, Michigan, Montana, New Mexico, Tennessee, and Utah.

Table 10.—Blister and anode copper produced in the United States, by source of material

(Metric tons)

Source	1983	1984	1985	1986	1987
Ores and concentrates: Domestic Foreign Secondary materials ²	888,130 39,609 59,276	989,924 24,200 169,296	939,257 1,424 250,138	¹ 908,087 W 287,841	¹ 972,141 W 276,640
Total	987,015	1,183,420	1,190,819	1,195,928	1,248,781

W Withheld to avoid disclosing company proprietary data; included with "Domestic."

Table 11.—Primary and secondary copper produced by refineries and electrowinning plants in the United States

	1983	1984	1985	1986°	1987
PRIMARY					
Electrolytic Electrowon Fire refined	^r 984,524 ^r 101,936 95,630	r _{1,006,105} r _{100,180} 58,315	^r ¹ 966,726 ^r 90,439 W	¹ 948,623 125,352 W	¹ 988,121 157,986 W
Total	1,182,090	1,164,600	1,057,165	1,073,975	1,146,107
SECONDARY					
Electrolytic Fire refined	² 224,761 ³ 176,907	186,712 138,237	264,835 112,622	292,686 113,258	311,312 103,426
	401,668	324,949	377,457	405,944	414,738
Grand total	1,583,758	1,489,549	1,434,622	1,479,919	1,560,845
Primary domestic materials ⁴ Primary foreign materials ⁴ Secondary materials	1,028,423 153,667 401,668	1,089,584 75,016 324,949	1,003,636 53,529 377,457	⁵ 1,073,975 W 405,944	⁵ 1,146,107 W 414,738
Total	1,583,758	1,489,549	1,434,622	1,479,919	1,560,845

W Withheld to avoid disclosing company proprietary data.

¹Includes production from foreign ores and concentrates

²Production from secondary sources prior to 1984 excludes data for those plants that were not associated with refineries processing primary materials.

¹Includes fire-refined copper.

²Includes some copper fire refined at plants processing primary materials.

Includes some copper electrolytically refined at plants processing secondary materials only.

The separation of refined copper into metal of domestic and foreign origins can only be approximated at this stage of

⁵Includes primary foreign materials.

Table 12.—Copper production by refinery shape at refineries in the United States

	1986	1987
Billets	93	w
Cathodes	r _{1.334}	1,431
Ingots and ingot bars	r ₂₇	w
Wirebars	16	W
Other forms	10	130
Total	r _{1,480}	1,561

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other forms."

Table 13.—Production, shipments, stocks, and imports of copper sulfate in the United States

(Metric tons)

	Produ	ction		Stocks,	
Year	Quantity	Copper content	Shipments ¹	Dec. 31	Imports
1983	37,500	9,789	36.614	5,029	2,403
1984	34,859	8,862	37,006	3,564	1,884
1985	32,740	8,265	31,952	4,353	2,958
1986 ^r	34,154	8,616	33,540	4,967	2,683
1987	33,340	8,418	35,338	2,969	4,765

Table 14.—Byproduct sulfuric acid (100% basis) produced in the United States1

2. 12 mg 22 mg 24 mg 25 mg 26 mg	and the second second		1738 44 10 1 144 2711	and make their classic properties and increasing	
Plant type	1983	1984	1985	1986	1987
Copper ²	1,837,827 319,137 384,529	2,251,312 248,474 442,517	2,230,257 267,159 430,946	2,308,804 122,228 379,803	2,542,602 116,311 410,460
Total	2,541,493	2,942,303	2,928,362	2,810,835	3,069,373

[†]Revised. [‡]Includes consumption by producing companies.

¹Includes acid from foreign materials.

²Excludes acid made from pyrite concentrates.

³Includes acid processed at molybdenum plants to avoid disclosing company proprietary data.

⁴Excludes acid made from native sulfur.

Table 15.—Copper recovered from scrap processed in the United States, by kind of scrap and form of recovery

(Metric tons)

Section 1995	1983	1984	1985	1986 ^r	1987
KIND OF SCRAP					
New scrap:					a constant
Copper-base		637,201	621,984	635,495	686,708
Aluminum-base		21,919	13,330	22,891	25,87
Nickel-base	_ 254	68	328	221	18'
Zinc-base	_ 31	31	35	27	12
Total	634,101	659,219	635,677	658,634	712,773
N. i			-		
Old scrap: Copper-base	_ 431.243	443,585	407 100	461 400	100.000
Aluminum-base		443,585 16,929	487,199 15,459	461,490 15.859	482,890 16,401
Nickel-base		10,929	15,459	15,859	16,40
Zinc-base	_ 156	79	60	36	0
Dinc-base		10	00	90	
Total	449,478	460,695	503,407	477,469	499,362
Grand total	1,083,579	1,119,914	1,139,084	1,136,103	1,212,13
FORM OF RECOVERY				er i ge	4,3,
As unalloyed copper:					
At electrolytic plants	224,761	186,712	264,835	292,686	311,312
At other plants		151.477	122.834	121,760	112,712
F		101,111	122,004	121,100	112,112
Total	418,854	338,189	387,669	414,446	424,024
In brass and bronze	625,349	735,154	716,833	671.184	732,440
In alloy iron and steel	1.434	1.705	2,498	1.366	1.254
In aluminum alloys	_ 36,704	43.511	29,423	45,781	50,094
In other alloys	_ 162	307	1,803	359	157
In chemical compounds ¹	1,076	1,048	858	2,967	4,166
Total	664,725	781,725	751,415	721,657	788,111
Grand total	1,083,579	1,119,914	1,139,084	1,136,103	1,212,135

Table 16.—Copper recovered as refined copper and in alloys and other forms from copper-base scrap processed in the United States, by type of operation

The same of the sa	From ne	w scrap	From o	ld scrap	T	otal
Type of operation	1986 ^r	1987	1986 ^r	1987	1986 ^r	1987
Ingot makers and secondary smelters Refineries¹ Brass and wirerod mills Foundries and manufacturers Chemical plants	17,124 122,795 476,654 18,611 311	24,013 131,881 512,161 18,271 377	109,467 283,149 33,940 32,278 2,656	122,313 282,857 34,853 39,078 3,789	126,591 405,944 510,594 50,889 2,967	146,326 414,738 547,014 57,349 4,166
Total	635,495	686,703	461,490	482,890	1,096,985	1,169,593

^rRevised. ¹Data do not include copper sulfate prior to 1986.

^TRevised.

¹Electrolytically refined and fire-refined scrap based on source of material at smelter level.

Table 17.—Production of secondary copper and copper-alloy products in the United States, by item produced from scrap

Item produced from scrap	1986 ^r	1987
UNALLOYED COPPER PRODUCTS		
Electrolytically refined copper Fire-refined copper Copper powder Copper castings	292,686 113,258 7,898 604	311,312 103,426 8,709 577
Total	414,446	424,024
ALLOYED COPPER PRODUCTS		
Brass and bronze ingots: Tin bronzes Leaded red brass and semired brass High-leaded tin bronze Yellow brass Manganese bronze Aluminum bronze Nickel silver Silicon bronze and brass Copper-base hardeners and master alloys Miscellaneous	23,670 99,151 7,223 7,641 8,563 6,818 3,215 4,467 7,067 4,052	24,22 96,61 7,42 12,24 7,75 7,13 3,49 4,95 6,63 9,53
Total Brass mill and wire-rod mill products Brass and bronze castings Brass powder Copper in chemical products	171,867 628,231 34,028 393 2,967	180,008 672,987 43,957 283 4,166
Grand total	1,251,932	1,325,428

Revised.

Table 18.—Composition of secondary copper-alloy production in the United States (Metric tons)

	Copper	Tin	Lead	Zinc	Nickel	Alumi num	- Total
Brass and bronze ingot production:1							
1986 ^r	137,761	5,525	9,729	18,532	292	28	171.867
1987	143,984	5,804	10,033	19,508	647	32	180,008
Secondary metal content of brass mill products:							
1986 ^r	² 512,222	225	2.687	111.562	1.535	(³)	2628,231
1987	2545,895	595	2,500	122,722	1,275		² 672,987
Secondary metal content of brass and bronze cast-			_,,,,,,	,			
ings: 1986	r29.032	872	1,511	r _{2.527}	25	61	r34,028
1987	38,223	1.092	1,857	2,712	18	55	43,957

^{**}Revised.

1About 94% from scrap and 6% from other than scrap in 1986, and about 96% from scrap and 4% from other than scrap in 1987.

2Includes copper recovered from scrap at wire mills to avoid disclosing company proprietary data.

3Revised to zero.

Table 19.—Stocks and consumption of purchased copper scrap in the United States in 1987, by class of consumer and type of scrap

(Metric tons, gross weight)

	Stocks,	Net re-		Consumption		Stocks,
Class of consumer and type of scrap	Jan. 1 ¹	ceipts	New scrap	Old scrap	Total	Dec. 31
SECONDARY SMELTERS- REFINERS						
No. 1 wire and heavy No. 2 wire, mixed heavy and light Composition or soft red brass Railroad-car boxes	4,783 15,642 2,733 221 2,717	133,584 329,817 41,848 1,037	74,356 33,490 6,771	58,510 289,367 35,615 1,116	132,866 322,857 42,386 1,116	5,501 22,602 2,195 142
Yellow brass Cartridge cases Automobile radiators (unsweated)	31 3,587	35,130 214 56,828	6,909	28,439 245 56,823	35,348 245 56,823	2,499 3,592
Bronze Nickel silver and cupronickel Low brass	1,696 355 100	15,909 3,317 2,593	2,647 824 1,943	13,442 2,567 571	16,089 3,391 2,514	1,516 281 179
Aluminum bronze Refinery brass Low-grade scrap and residues	77 3,168 12,506	211 116,313 92,049	$\begin{array}{c} 85 \\ 45,391 \\ 62,236 \end{array}$	$\begin{array}{c} 124 \\ 68,559 \\ 33,002 \end{array}$	209 113,950 95,238	79 5,531 9,317
Total	47,616	828,850	234,652	588,380	823,032	53,434
BRASS AND WIRE-ROD MILLS ²						
No. 1 wire and heavy No. 2 wire, mixed heavy and light Yellow brass Cartridge cases and brass	12,402 2,549 6,579 11,395	246,300 56,247 279,721 78,140	225,879 45,940 273,977 77,438	20,421 10,307 5,744 702	246,300 56,247 279,721 78,140	18,045 1,737 11,211 14,527
Bronze Nickel silver and cupronickel Low brass	1,594 3,305 1,335	4,304 6,177 12,542	4,304 5,980 12,291	197 251	4,304 6,177 12,542	1,227 2,009 1,721
Total	39,159	683,431	645,809	37,622	683,431	50,477
FOUNDRIES, CHEMICAL PLANTS, AND OTHER MANUFACTURERS						
No. 1 wire and heavy No. 2 wire, mixed heavy and light Composition or soft red brass Railroad-car boxes Yellow brass	2,133 261 3,533 317 838	31,677 4,748 15,248 3,634 8,711	6,577 1,076 7,466 6,591	24,893 3,682 6,514 3,740 2,309	0,000	2,340 251 4,801 211 649
Cartridge cases Automobile radiators (unsweated) Bronze Nickel silver and cupronickel	76 468 818 17	5,484 671 33	27 18 26	76 5,410 639 23	76 5,437 657 49	515 832 1
Low brass Aluminum bronze Low-grade scrap and residues	80 84 	2,336 724 28	1,212 66 28	1,110 690 	2,322 756 28	94 52
Total ³	8,625	73,294	23,087	49,086	72,173	9,746
GRAND TOTAL						
No. 1 wire and heavy No. 2 wire, mixed heavy and light Composition or soft red brass Railroad-car boxes	19,318 18,452 6,266 538	411,561 390,812 57,096 4,671	306,812 80,506 14,237	103,824 303,356 42,129 4,856	410,636 383,862 56,366 4,856	25,886 24,590 6,996 353
Yellow brass Cartridge cases Automobile radiators (unsweated) Bronze	10,134 11,502 4,055 4,108	323,562 78,354 62,312 20,884	287,477 77,438 27 6,969	36,492 321 62,233 14,783	323,969 78,461 62,260 21,050	14,359 14,527 4,107 2,348
Bronze Nickel silver and cupronickel Low brass Aluminum bronze Low-grade scrap and residues ⁴	3,677 1,515 161 15,674	9,527 17,471 935 208,390	6,830 15,446 151 107,655	2,787 1,932 814 101,561	9,617 17,378 965 209,216	1,509 2,282 1,852 14,848
Total	95,400	1,585,575	903,548	675,088	1,578,636	113,657

¹Revised from 1986 closing stocks.

^{*}Revised from 1996 closing stocks.

*Brass and wire-rod mill stocks include home scrap; purchased scrap consumption is assumed equal to receipts, so lines in "BRASS AND WIRE-ROD MILLS" and "GRAND TOTAL" sections do not balance.

*Of the totals shown, chemical plants reported the following: unalloyed copper scrap, 392 tons new and 3,971 tons old.

*Includes refinery brass.

Table 20.—Consumption of copper and brass materials in the United States, by item

(Metric tons)

Item	Brass mills	Wire- rod mills	Foundries, chemical plants, miscella- neous users	Secondary smelters- refiners	Total
1986: ^{r}					
Copper scrap	¹ 635,896	w	63,778	800,019	1,499,698
Refined copper ²	564,875	1,491,945	44,427	1,378	2,102,625
Brass ingot	15,330		141,251	2,0.0	156.581
Slab zinc	64,883		5,434	3,280	73,597
Miscellaneous				1,532	1,532
987:					
Copper scrap	¹ 683,431	W	72.173	823.032	1,578,636
Refined copper ²	514,528	1,595,598	40,267	1.436	2,151,829
Brass ingot	28,980		136,444		165,424
Siab zinc	76,454		5,158	2,718	84,330
Miscellaneous				710	710

Table 21.—Apparent consumption of copper in the United States

Period	Refined copper production	Total old scrap	Net refined imports	Stock change during period	Apparent consump- tion
1983 1984 1985 1986	1,182,090 1,164,600 1,057,165 1,073,975	449,478 460,695 503,407 r477,469	378,171 353,285 339,788 489,532	-3,000 -128,000 -244,000 -95,000	2,012,739 2,106,580 2,144,360 r2,135,976
1987: January February March April May June July August September October November December	93,000 86,847 86,618 79,915 85,110 93,968 90,473 90,167 102,801 109,799 111,764 115,645	37,281 39,544 46,918 51,603 40,845 41,794 36,292 40,584 41,198 42,568 38,134 42,601	30,500 34,739 51,528 33,664 56,181 66,487 33,954 42,491 24,690 30,811 28,895 26,022	-10,000 -11,000 -19,000 -2,000 -5,000 -6,000 -28,000 -9,000 -30,000 -33,000 -2,000	170,781 172,130 204,064 167,182 187,136 208,249 132,719 186,242 177,689 213,178 211,793 186,268
Total	1,146,107	499,362	459,962	-112,000	2,217,431

Revised.

^rRevised. W Withheld to avoid disclosing company proprietary data.

¹Includes consumption of copper scrap at wire-rod mills to avoid disclosing company proprietary data.

²Detailed information on consumption of refined copper can be found in table 23.

Table 22.—Foundries and miscellaneous manufacturers consumption of brass ingot and refined copper and copper scrap in the United States, by geographic division and State

Geographic division and State	Tin	Leaded red brass and semi- red brass	Yellow brass	Man- ganese bronze	Hardeners and master alloys	Nickel silver	Alumi- num bronze	Total brass ingot	Refined copper con- sumed	Copper scrap con- sumed
1983 1884 1985 1986	24,448 24,660 22,322 29,894	80,741 89,341 94,239 87,990	11,155 6,143 5,833 6,756	5,423 4,907 6,216 5,743	2,511 2,430 3,923 3,024	1,612 1,457 1,788 2,346	5,675 6,426 7,052 5,496	131,565 135,364 141,371 141,251	30,050 34,424 54,390 43,492	60,366 68,386 65,767 60,687
1987:					71					
New England: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont.	1,618	2,125	404	273	21	438	423	5,301	1,378	483
Middle Atlantic: New Jersey, New York, Pennsylvania	6,626	9,562	825	698	11	168	874	19,000	4,481	10,970
East North Central: Illinois, Indiana, Michigan, Ohio, Wisconsin	8,061	40,548	1,997	2,858	2,442	837	1,718	58,464	14,191	31,547
West North Central: Iowa, Kansas, Minnesota, Missouri, Nebraska, South Dakota	663	4,324	212	1,074	88	9	252	6,619	2,362	1,883
South Astantos Delaware, District of Columbia, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, West Virginia	2,095	10,568	386	308	6	315	216	13,895	7,247	4,598
Alabama, Arkansas, Kentucky, Louisiana, Mississippi, Oklahoma, Tennessee, Texas	3,192	12,783	228	1,043	96	26	684	18,084	8,480	4,293
Montain and Facine. Arizona, California, Colorado, Idaho, Montana, Newada, New Mexico, Oregon, Utah, Washington	1,987	9,824	1,145	785	35	283	1,023	15,081	965	14,036
TotalTotal	24,242	89,734	5,197	7,210	2,768	2,103	5,190	136,444	39,104	67,810

Revised.

Table 23.—Refined copper consumed in the United States, by class of consumer (Metric tons)

Class of consumer	Cathodes	Wirebars	Ingots and ingot bars	Cakes and slabs	Billets	Other	Total
1986:				-			
Wire-rod mills	r _{1.449,758}	34.249	w	w	1.00	r7,938	r1,491,945
Brass mills	⁺ 254,928	17,737	r85,707	80,033	126,452	18	r564,875
Chemical plants	W					935	935
Ingot makers	r _{1,066}		w	W		r ₃₁₂	r _{1,378}
Foundries	2,855	533	15,209	W	1,495	r ₅₃₀	^r 20,622
Miscellaneous ¹	9,124	. W	4,984	1,616	w	^r 7,146	^r 22,870
Total ^r	1,717,731	52,519	105,900	81,649	127,947	16,879	2,102,625
1987:							
Wire-rod mills	1,584,883	W	W	w		10,715	1,595,598
Brass mills	250,157	13,845	96,948	66,920	86,526	132	514,528
Chemical plants	W	· · · · · · · · · · · · · · · · · · ·				1,163	1,163
Ingot makers	W	. At	W	w	w	1,436	1,436
Foundries	2,822	590	11,355	w	w	1,845	16,612
Miscellaneous ¹	11,296	w	4,988	1,493	W	4,715	22,492
Total	1,849,158	14,435	113,291	68,413	86,526	20,006	2,151,829

Table 24,-Stocks of copper in the United States, December 31

	Blister and			Refined	copper	1 3 x 1 f	
Period	materials in process of refining ¹	Electrolytic refiners	Wire rod mills	Brass mills	Other ²	New York Commodity Exchange	Total
1983 1984 1985 1986 1987:	174 245 146 135	154 125 66 36	116 134 100 66	26 27 20 14	25 27 25 25	371 251 109 84	692 564 320 225
January February March	121 114 118 95	38 28 24 32	43 32 32 31	17 21 15 16	24 24 24 24 24	93 99 90 80	215 204 185 183
May June July	123 114 127	38 37 50	30 33 44	21 19 19	24 24 24	65 59 63	178 172 200
August September October November December	123 130 133 129 150	40 36 31 27 29	36 21 17 17 28	20 16 16 16 15	24 24 24 24 24	67 81 60 31 17	187 178 148 115 113

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes iron and steel plants, primary smelters producing alloys other than copper, consumers of copper powder and copper shot, and other manufacturers.

¹Includes copper in transit from smelters in the United States to refineries therein.

²Includes secondary smelters, chemical plants, foundries, and miscellaneous plants; includes 20,000 tons in the National Defense Stockpile.

Table 25.—Dealers' monthly average buying price for copper scrap and consumers' alloy-ingot prices at New York, by type

(Cents per pound)

		\$	Scrap	Ing	ot
Ye	ear and month	No. 2 heavy copper	No. 1 composition (red brass)	No. 115 brass (85-5-5-5)	Yellow bras
1986:					., 1
January		r _{38.23}	39.50	81.50	70.75
February		39.50	39.50	81.50	70.7
March		39.50	39.50	81.50	70.7
April		39.50	39.50	81.50	70.75
		39.50	39.50	81.50	70.75
June		39.50	39.50	81.50	70.75
		39.50	39.50	81.50	70.75
		r _{37.79}	36.98		
Sentember		37.50	36.50	81.50	70.78
October				81.50	70.7
November		37.50	36.50	81.50	70.78
December		37.50	36.50	81.50	70.78
December		r _{35.50}	36.50	81.50	70.75
Average		r _{38.42}	38.29	81.50	70.75
1987:	-				
January		37.50	46.50	81.50	70.75
February		37.50	46.50	81.50	70.75
March		37.89	47.08	81.50	70.7
April		39.50	49.50	81.50	70.73
		41.18	50.34	81.50	70.73
June		42.50	51.50	81.50 81.50	
July		44.56	53.56		70.75
August		49.02		85.00	73.25
September		49.02 49.50	58.02	85.00	73.25
October			58.50	85.00	73.25
November		55.40	58.82	88.00	76.25
December		56.50	66.50	93.00	79.25
receimet		65.15	75.15	100.50	84.25
Average		46.35	55.16	85.46	73.67

 $^{^{\}mathbf{r}}$ Revised.

Source: American Metal Market.

Table 26.—Average monthly prices for refined copper in the United States and on the London Metal Exchange

(Cents per pound)

Month	U.S. producers	oducers delivered price	COMEX	LME cas	ME cash price1	U.S. producers delivered pric	delivered price	COMEX	LME ca	JME cash price ¹
	Cathode ²	Wirebar ³	position	Cathode	High grade ⁴	Cathode ²	Wirebar ³	position	Cathode	High grade ⁴
January	88.69	88.69	65.29	63.28	64.31	64.99	64.99	92.09	59.27	61.04
February	68.25	68.25	63.86	62.96	63.73	65.53	65.53	61.73	60.46	62.57
March	70.14	70.14	66.02	65.26	65.52	68.07	68.07	63.57	62.36	66.45
April	08.80	98.89	63.80	64.93	65.05	67.13	67.13	62.37	63.86	68.29
May	62.09	62.09	62.72	63.29	64.24	70.99	40.99	66.47	66.27	68.94
June	67.47	67.47	62.57	63.20	64.07	74.35	74.35	68.69	69.85	71.27
July	63.82	63.82	58.94	58.44	96.09	80.42	80.42	76.19	76.68	76.83
August	62.37	62.37	57.59	57.52	59.08	82.18	82.18	77.63	79.51	79.63
September	64.84	64.84	60.71	59.43	61.08	85.61	85.61	80.99	81.86	82.11
October	63.46	63.46	69.19	58.27	59.71	88.85	88.85	83.04	84.63	89.16
November	62.86	62.86	58.93	57.71	59.10	108.53	108.53	103.92	109.67	114.35
December	63.64	63.64	60.17	58.68	99.09	133.32	133.32	127.49	123.41	129.96
Average	66.05	66.05	61.65	61.08	62.28	82.50	82.50	77.84	78.40	88.88

¹Based on average monthly rates of exchange.

**I_isted as ''U.S. producer cathode."

**Justed as ''U.S. producer delivered."

**Includes both cathode and wirebar.

Source: Metals Week.

Table 27.—U.S. exports of copper, by country

Country	Ore and concentrate (copper content)	and ntrate content)	Ashes and residues ¹ (copper content)	residues¹ ontent)	Refined	peu	Unalloye scr	Unalloyed copper scrap	Blister and precipitates	r and itates
	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)
1986	174,348	\$187,826	3,826	\$10,671	12,452	\$18,444	136,422	\$123,138	15,963	\$17,434
1000										
1967:							149	00	276	104
	1	1 .	9 907	4 699	i	1	1 055	9 057	340	407
Pergium-Luxennoung	1	1	7,031	4,000	189	18	2,900	2,00	ļ	1
Canada	1.826	5.244	1.898	3.314	1.670	2.399	11.134	17.288	836	963
China	2,470	2,094	1		1	1	191	79	; ;	1
Dominican Republic	1	1	1		22	41	1	1	10	∞
Finland	7,228	7,755	ľ	1	1	1	88	18	-	27
France	1)	11	34	61	440	905	.1	:1	16	35
Germany, Federal Republic of	988	461	604	3,872	433	826	4,331	4,242	1	1:
Hong Kong	13	10	13	1	405	871	3,317	1,919	711	1,484
India	101	68	312	184	1	1	494	375	82	81
Israel	1	1	1	1	19	167	15	1000	25.5	43
Tenen	00 550	100 1001	157	144	134	491	0,141	20,00	4 960	0 20 0
Koree Beniblic of	5,55	122,124	101	0##	1,413	0,099	0,000	19 970	4,609	1,109
Knwait	0,101	¥70,0		- 5	1,101	4,661	200,6	12,213	4,04	0,440
Mexico	100	i cc	-	5	510	100	12.277	17.961	275	434
Netherlands				1	20	42	369	348	·	•
Philippines	1	1	-	2	1		948	252	68	91
Saudi Arabia	1	I	1	1	1	I	1	1	€	, œ
Singapore	1	1	1:1	1	2	က	1,145	1,059	102	201
Spain	4	_	1	1	1	1	8,053	3,473	4	12
Sweden	!	1	10	10	10	19	27	21	1	1
Switzerland	100	1000	7 6	71 0	88	200	1 100	17	10	16
Talwan	3,776	5,033	980	887	25.		28,713	12,208	473	991
Trited Auch Eminates	87	81	100	100	7	97	44	o .	i .	1
United Kingdom	1	1	40	250	806	1 987	746	1 245	14	-5
Venezuela	1 1	1 1	2			10011	196	238	59	188
Yugoslavia	3,731	4,858		 -	l I i I	- -	(*) (*)	- 1	; ;	; ;
Other	1	1	1.1		12	18	19	3	434	509
Total	124.749	157,010	5.999	13,154	9.197	18.928	108,535	104.901	12.339	12.463
	. 4	114.11								·

	;				Wire and cable	deshle	Wine on	d onblo	Othor gorner	-
Country	Pipes an	Pipes and tubing	Plates ar	Plates and sheets	bare	re re	insul	insulated	manufactures ³	ctures ³
Crampo	Quantity (metric tons)	Value (thousands)								
	5,343	\$15,605	641	\$2,151	7,393	\$32,482	60,816	\$358,677	9,583	\$20,799
1987:										
Australia	-,	ī	(2)	4	31	239	1,044	8,883	H	4
Balmim I wambana	e:	o 5	lé	10	55	61	279	1,000	1	1
Brazil	18 295	922	· "	17	142	20 %	135	3,550	କ୍	10
Canada	1,631	4,349	216	944	1,352	6,199	35,091	90,231	1,560	4,706
ChinaDominican Remiblic	203	373	୍ ଶ୍	11 6	397	3,149	684	4,739		1
Ecuador	36	96) (N 66	Z60	129'6	1153	1,862	4	cl .
Egypt	92	204		1	100	15	5,437	17,310	110	15
Germany Federal Remiblic of	16	57		15	10	76	1,400	37,933		9
١.	20	155	7 67	21		517	3,030 492	27,785	or	7.5
India	①	23	1	i ¦	31	232	95	1.660	ာတ	2 22
Israel	02.	211	ro.	27	8	210	212	2,914) I	3 ¦
Jamaica	97 87	41	-	4		724	332	5,642	1	1
Japan Japan	3 &	278	61	- 8 - 8	1.88	189	169	17 330	7=	4.0
Korea, Republic of	ļ!	9	-	x	8	269	1,273	10,226	18	46
Mexico	147	378	150	1000	2000	10 503	58	228	100	1000
Netherlands	319	854	001	000	9,200	19,092	470	6.659	1,040	2,083
Philippines	22	09	40	$6\overline{41}$	41	136	303	1,369	100	10
Singanore	515 81	1,336	1	101	355	132	1,395	5,052	1	10
Spain	254	643		2 2	14	28 82 83	171	4.503	- e	95
Sweden	32	87	44	22	က	8	113	4,213		16
Daiwan	701	221	166	- 20	13	227	281	2,668	67 5	ဂ ်
Trinidad and Tobago	5	13	77	7	9 68	100	293	266.0 728	97	×.
United Arab Emirates	184	444	: 1 ¹	1	-	26	179	1,934	1 1	
United Kingdom	354 4.02	891	ဗင္	E 5	100	836	3,705	48,113	67.6	9
Yugoslavia	2	2002	3	191	Qe .	101	617	1,4(0	N 6	×
Other	1,029	2,781	12	55	455	$2,\overline{102}$	6,087	31,818	1,033	1,698
Total	6,551	18,250	539	2,827	10,194	42,869	88,240	490,556	3,723	9,511
1 Includes motte										

Includes matte.
7-less than 1/2 unit.
3Excludes copper wire cloth.

Source: Bureau of the Census.

Table 28.—U.S. exports of copper scrap, by country

	U	nalloyed	copper scra	p		Copper-a	lloy scrap	
	19	86	19	87	19	86	19	87
Country	Quantity (metric (thou (thou (metric (thou (the) (thou (total) (thou (total) (thou (total) (thou (total) (thou (thetic (thou (the) (thou (total) (thou (the) (thou (thou (the) (thou (the) (thou (thou (the) (thou (Value (thou- sands						
Belgium-Luxembourg	3,221	\$4,027	1,955	\$2,057	5,645	\$4,453	7,276	\$6,674
Brazil	3,967	3,855	3,017	3.621	3,994	4.053	6.384	7.055
Canada	13,746	21,664	11,134	17,288		33,410	21,156	37,095
China	336	179	191					404
France	175	199			114	153	96	403
Germany, Federal Republic of	8,514	10,560	4.331	4.242	5.050	5.722	7.723	10,127
Hong Kong								363
India								9,364
Italy	12.326	12,421	6.141					5,287
Japan								34,346
Japan Korea, Republic of								31,786
Mexico								8,179
Netherlands								896
Philippines			948	252				39
Singapore		466	1.145	1.059	305	221		174
Spain		3.781			7.799			2,780
Sweden				2				2,585
Switzerland			1	. 17				110
Taiwan			28.713					34,097
Frinidad and Tobago	20,000	_0,000			,	10,000		702
United Kingdom	1.485	1.675			4 221	3 503		3,544
Venezuela	2,100	2,010			-,	5,500		611
Other	95	101	249	110	571	1,336	346	317
Total ¹	136,422	123,138	108,535	104,901	152,971	160,921	185,279	196,938

 $^{^{1}\}mbox{Data}$ may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 29.—U.S. imports for consumption of unmanufactured copper (copper content), by country

	Ore and concentrate	centrate	Matte	e e	Blister and anode	d anode	Ref	Refined	Unalloyed scrap	ed scrap	T	Total
Country	Quantity (metric tons)	Value (thou-	Quantity (metric tons)	Value (thou-	Quantity (metric tons)	Value (thou-	Quantity (metric tons)	Value (thou-	Quantity (metric tons)	Value (thou-	Quantity (metric tons)	Value (thou- sands)
1986	4,232	\$2,593	702	\$573	34,545	\$60,236	501,984	\$677,010	27,216	\$31,646	568,679	\$772,058
1987:												
Belgium-Luxembourg	2000	000	00.1	070	12	100	637	240	05 675	00.00	637	240
Chile	2,558	2,009	100	212	14 7 290	0700	195 017	106 251	619,62	59,804	122,830	570,555 906,838
China	i I	1	1	1	600,1	0,00	150,21	261	ŀ	1	150	261
Costa Rica					! !	1 1	1		194	247	194	247
	1	1	ı	I	1	į	1	1	537	722	537	722
Germany, Federal Republic of	1	ı	I	1	87	225	23,961	42,434	13	10	24,048	42,659
Guatemala	1		1	Į,	1 000	9 091	500	010	cs S	98	9 202	88
Vapall	1	1	!	1	1,300	177,0	660	619	10	100	2,000	4,040
Norea, nepublic of	-	14	$6.1\overline{27}$	8.759	6.762	$16.1\overline{03}$	553	541	5.344	6.541	18.787	31.948
Netherlands	1	1		1		!	6,390	12,104		1	6,390	12,104
Netherlands Antilles	1	}	1	1	1	I	100	10	98	94	98	94
Norway	1	i	1	1	1	1.	186	343	18	10	186	343
Pamama	1	i	16	806	9.650	4 919	24 987	14 875	391 50	980 63	391	50.064
El Salvador		1 1	1	2	1,000	3,010	02,500	74,0	158	161	151	161
South Africa, Republic of	1 1	1	 1		5,246	7,496	4,580	6,220			9,826	13,716
Sweden	1	1	1	1	1	1	15,230	21,460	10	10	15,230	21,460
Talwan	1	1	1	1	1	1	272	344	23	20	235	394
Trinidad and Tobago	l I	1	1	1	1	1	100	15	84	66	865	66 /
Tugoslavia	!	1	1	1	1	1	9,199	9,990	1	1	4,199	9,990
Zambio	1	1	1	1	1	1	10,005	55,579	I	1	26,332	55,579
Other	l F	l l	1	1	1	1	13,605	90,410	301	505	13,000	90,410
[OF.	707	100	100	100	7.0
Total	2,339	2,013	698'9	9,339	24,084	41,976	469,159	734,647	33,123	45,121	535,574	833,096

Source: Bureau of the Census.

Table 30.—U.S. imports for consumption of copper scrap, by country

	Unalloyed	copper scrap	Co	pper-alloy sc	rap
Country	Quantity (metric tons)	Value (thousands)	Gross weight (metric tons)	Copper content (metric tons)	Value (thousands
986	27,216	\$31,646	39,017	28,844	\$40,250
987:					11976
Bahamas	21	28	34	24	24
Barbados		71	37	28	25
Belgium-Luxembourg		••	39	21	64
		35,804	29.630	23,059	35.946
Canada	20,010	00,004	105	20,000	11
Chile		o i i		26	2
Costa Rica	194	247	36		40
Dominican Republic	537	722	421	333	
France	. 22	121	22	23	6
Germany, Federal Republic of			275	176	43
Guatemala		80	74	55	6
Honduras		30	2	2	1. J. M. S. J. S. J. S.
Italy		83	148	131	9.
		56	123	111	12
Jamaica			52	51	8
Japan	112	138	139	136	30
Korea, Republic of		33	49	48	11
Malaysia	·				10.76
Mexico	5,844	6,541	10,496	6,791	
Netherlands			37	21	4
Netherlands Antilles	_ 86	94	233	175	16
Panama	391	530	711	410	49
Peru	50	63	571	459	-76
El Salvador	151	161			
		76	103	81	
Singapore			71	51	10
Sweden			46	45	ž
Switzerland	23	50	33	46	9
Taiwan			141	109	10
Trinidad and Tobago	_ 84	99			57
United Kingdom	_ 22	. 78	291	183	
Venezuela			189	131	39
Other	16	16	75	63	11
Total	33,123	45,121	44,183	32,874	51,69

Source: Bureau of the Census; figures adjusted by Bureau of Mines.

Table 31.—Copper: World mine production, by country
(Thousand metric tons)

1987e Country 1983 1984 1985 1986^p 16.2 17.6 17.8 16.1 Albania^e_ 14.3 .3 Argentina ______Australia _____ .3 223.0 261.5 r_{235.7} 259.8 245.4 Bolivia__ 1.6 1.7 r20.3 419.Ó Botswana³ 21.7 19.0 37.8 35.2 32.1 41.0 36.2 Bulgaria = ______ 80.0 80.0 80.0 80.0 16.7 80.0 4.2 653.0 11.4 15.0 Burma _ Canada⁵ 12.0 r721.8 738.6 698.5 767.3 r_{1,255.4} Chinae ___ r_{1.307.5} 1.359.8 1.399.4 1,417.8 175.0 300.0 180.0 185.0 185.0 Colombia Congo (Brazzaville) ΝÄ ΝĀ 2.7 2.1 e3.3 Cuba ______Cyprus⁷ _____Czechoslovakia ______ 3.1 3.0 1.2 1.0 e_{10.3} e_{10.0} 10.0 10.0 Ecuador ______ 420.4 4.3 39.3 31.3 28.0 25.9 Finland ______ France_ 9.0 German Democratic Republice 12.0 12.0 12.0 10.0 Germany, Federal Republic of ______Gustemala .8 4.2 41.5 1.2 1.0 .9 4.5 4.2 .8 $\bar{e}.\bar{6}$ €5.0 Honduras __ 5.1 5.0 54.8 India _ 37.8 44.1 45.9 48.1 95.8 78 6 82.5 887 102.0 50.0 48.0 48.0 57.6 43.3 Iran⁸______

See footnotes at end of table.

Table 31.—Copper: World mine production, by country —Continued

Country	1983	1984	1985	1986 ^p	1987 ^e
Employee Committee Committ					
Israel	3.5	e2.9			1
Italy	1.5	.9	-1		
Japan	46.0	43.3	43.2	34.9	422.0
Korea, North ^e	15.0	15.0	15.0	15.0	15.0
Korea, Republic of	.4	.3	.3	e 2	4.2
Malaysia	29.0	28.9	30.5	28.3	430.1
Mexico	196.0	303.5	276.1	e285.0	300.0
	104.0	118.0	128.0	r _{136.0}	136.0
Mongolia ^e		22.1	22.0	20.2	416.6
Morocco	25.4	.3	.1	20.2	-10.0
Mozambique	50.4	.5 47.4	48.0	49.6	50.0
Namibia	00.4 (2)	41.4 (2)	46.0 (²)	(2)	(2
Nepal	22.6	25.0	19.0	21.9	22.0
Norway	22.6 11.3	25.0 16.2	17.7	18.0	18.0
Oman		r _{164.4}	175.0	178.2	4217.7
Papua New Guinea	201.9				392.8
Peru ⁶	318.8	353.9	391.3	397.4	
Philippines	271.4	233.4	222.2	222.6	4215.0
Poland	402.3	431.0	431.3	434.0	437.0
Portugal ⁶	.3	.4	.3	.2	4.1
Romania ^{e 5}	27.0	25.0	26.0	27.0	26.0
South Africa, Republic of	205.0	198.2	195.4	184.2	⁴ 213.0
Spain	50.0	63.1	55.5	46.9	415.0
Sweden	74.6	87.0	91.8	87.4	490.8
Turkey ⁹	24.9	27.1	33.0	e33.0	35.0
U.S.S.R. e 5	570.0	590.0	r600.0	620.0	630.0
United Kingdom	.7	.7	.6	.6	4.8
United States:5	* . **				
By concentration or leaching	r936.1	r _{1.002.4}	1.015.4	1.021.9	41,097.9
Leaching (electrowon)	r _{102.0}	100.2	90.4	125.4	4158.0
Yugoslavia9	r _{129.5}	137.6	r e _{141.3}	r e144.9	144.8
Zaire	536.5	562.0	557.9	e563.0	564.0
	550.5	302.0	001.5	000.0	304.0
Zambia:10	406.6	406.8	354.7	322.6	330.0
By concentration or leaching	134.4	125.9	103.9	139.3	140.0
Leaching (electrowon)	21.6	24.0	21.6	21.4	21.0
Zimbabwe	21.0	24.0	21.0	21.4	21.0
Total	r7,659.1	r _{7,999.1}	8,079.9	8,125.2	8,474.8

^eEstimated. $^{\mathbf{p}} Preliminary.$ ^rRevised. NA Not available.

^{*}Estimated. *Preliminary. *Nevised. NA Not available.

*Data represent copper content by analysis of concentrates produced except where otherwise specified. Table includes data available through July 8, 1988.

*Less than 50 tons.

*Copper content of matte produced.

*Previous of forms.

^{*}Reported figure.

*Recoverable content.

^{*}Recoverable copper content by analysis of concentrates for export plus nonduplicative total of copper content of all metal and metal products produced indigenously from domestic ores and concentrates. Includes leach production for metal and metal products products and electrowinning.

7Includes copper content of cupriferous pyrite.

8 Data are for fiscal year beginning Mar. 21 of that stated.

9Copper content by analysis of ore mined.

10Data are for fiscal year beginning Apr. 1 of that stated.

Table 32.—Copper: World smelter production,1 by country

Country ² and metal origin	1983	1984	1985	1986 ^p	1987 ^e
Albania, primary	11.0	12.6	^e 12.6	e _{13.7}	14.0
Australia: Primary Secondary	173.6	179.8	167.7	169.6	177.0
	8.2	*8.1	e8.0	e8.0	8.5
TotalAustria, secondary	181.8	r _{187.9}	^e 175.7	r e _{177.6}	185.5
	^r 24.3	r _{24.6}	25.9	25.5	26.0
	2.8	.5	.9	2.0	1.5
	70.5	75.5	114.2	106.0	60.7
Total	73.3	76.0	115.1	108.0	62.2
Brazil, primary	63.1	61.3	93.9	116.0	139.9
Bulgaria: e Primary Secondary	57.0	57.0	87.0	87.0	87.0
	3.0	3.0	3.0	3.0	4.0
Total	60.0	60.0	90.0	90.0	91.0
Canada: Primary Secondary ^e	499.7 11.0	504.3 11.0	493.3 17.0	472.7 12.0	474.0 14.0
Total ^e Chile, primary ³ China, primary ⁶	510.7	515.3	510.3	r _{484.7}	488.0
	1,058.9	1,098.3	1,088.5	1,124.1	1,103.7
	195.0	210.0	225.0	225.0	300.0
Czechoslovakia: Primary Secondary Secondary	10.0	10.0	10.2	^e 10.0	10.0
	2.4	2.4	e _{2.4}	^e 2.4	2.4
Total ^e	12.4	12.4	12.6	12.4	12.4
Finland: Primary Secondary	74.5	71.2	^e 71.0	^e 70.0	68.9
	12.6	12.1	^e 12.0	^e 12.0	12.0
TotalFrance, secondary German Democratic Republic, primary ^e	87.1 7.2 17.0	83.3 6.8 14.0	e83.0 7.0 14.0	^e 82.0 6.1 12.0	80.9 6.0 12.0
Germany, Federal Republic of: Primary Secondary	159.1	148.8	152.4	161.9	161.0
	94.5	76.7	94.6	76.7	76.5
Total Hungary, secondary ^e	253.6 .1	225.5 .1	247.0 .1	238.6	237.5 .1 37.1
India, primary	35.5	40.5	32.5	39.1	60.0
Iran, primary	*8.5	r47.9	r _{60.0}	60.0	
Japan: PrimarySecondary	944.6	821.1	802.3	827.7	4871.0
	117.3	107.9	130.3	134.4	497.7
Total	1,061.9	929.0	932.6	962.1	4968.7
Korea, North: ^e Primary Secondary	15.0	15.0	15.0	15.0	15.0
	3.0	3.0	3.0	3.0	3.0
Total Korea, Republic of, primary and secondary Mexico, primary	18.0	18.0	18.0	18.0	18.0
	124.0	100.2	106.9	165.0	4157.9
	¹ 59.5	170.3	68.2	74.7	4101.4
Namibia, primary Norway, primary Oman, primary Peru, primary	54.2	46.4	43.3	45.7	45.7
	25.7	36.8	38.2	35.2	429.7
	7.6	21.3	18.8	19.6	19.6
	258.3	298.8	326.6	286.2	4286.6
Philippines, primary =	57.6	109.2	133.8	124.3	4124.7
Poland: PrimarySecondary	349.0	360.0	370.0	375.0	375.0
	13.0	15.0	20.0	25.0	25.0
Total	362.0	375.0	390.0	400.0	400.0

See footnotes at end of table.

Table 32.—Copper: World smelter production, by country —Continued

Country ² and metal origin	1983	1984	1985	1986 ^p	1987 ^e
Portugal: ^e					
PrimarySecondary	- 3.2 - 3.0	2.5 1.0	2.6 2.0	3.0 3.0	2.0 2.0
Total	_ 6.2	3.5	4.6	6.0	4.0
Romania: ^e Primary Secondary	34.0	32.0 6.0	32.0 6.0	32.0 7.0	30.0 8.0
Total South Africa, Republic of, primary	40.0 192.3	38.0 178.7	38.0 191.7	r e _{192.0}	38.0 192.0
Spain: Primary Secondary	100.0	97.0 30.0	88.0 40.0	r e _{95.0} e _{40.0}	96.7 42.0
Total	118.0	127.0	128.0	r e135.0	138.7
Sweden: Primary Secondary	78.8 23.1	79.8 22.9	74.7 26.0	r e _{82.5} e _{20.0}	84.0 21.6
Total Taiwan, primary	101.9 r _{38.0}	102.7 48.4	100.7 46.7	r e _{102.5} 50.4	105.6 47.0
Furkey: Primary Secondary	18.8	31.8	33.5 .4	35.2 .3	34.8
Total	19.1	32.0	33.9	35.5	35.0
J.S.S.R.: ^e Primary Secondary	700.0 139.0	735.0 141.0	750.0 143.0	770.0 145.0	780.0 147.0
Total	839.0	876.0	893.0	915.0	927.0
Jnited States: Primary ⁵ Secondary	927.7 59.3	1,014.1 169.3	940.7 250.1	908.1 287.8	⁴ 972.1 ⁴ 276.6
Total Yugoslavia, primary	987.0 86.8	1,183.4 84.7	1,190.8 r e _{137.1}	1,195.9 r e127.2	41,248.7 126.0
Zaire, primary: Electrowon Other	304.1 175.0	309.1 171.5	313.9 172.9	319.2 178.9	320.0 180.0
Total ambia, primary imbabwe, primary	479.1 562.7 21.6	480.6 531.8 22.7	486.8 522.6 20.4	498.1 452.0 20.4	500.0 474.0 20.4
Grand total Of which: Primary:	r _{8,120.0}	r8,391.0	8,663.9	8,714.7	8,865.0
Electrowon Other Secondary Undifferentiated	304.1 ^r 7,076.1 ^r 615.8 124.0	309.1 ^r 7,265.1 ^r 716.6 100.0	313.9 7,338.1 905.0 106.9	319.2 7,313.2 917.3 165.0	320.0 7,553.8 833.3 157.9

^pPreliminary. rRevised.

^{*}Estimated. *Preliminary. *Revised.

1This table includes total production of copper metal at the unrefined stage, including low-grade cathode produced by electrowinning methods. The smelter feed may be derived from ore, concentrates, copper precipitate or matte (primary), and/or scrap (secondary). To the extent possible, primary and secondary output of each country is shown separately. In some cases, total smelter production is officially reported, but the distribution between primary and secondary has been estimated. Table includes data available through July 8, 1988.

2Argentina presumably produces some smelter copper utilizing its own small mine output together with domestically produced cement copper and possibly using other raw materials including scrap, but the levels of such output cannot be reliably estimated.

³Data include electrowon production; estimated to be 35,000 to 45,000 tons per year that is fire refined and cast into wirebars; detailed data are not available.

Reported figure.

^{*}Reported figure.

Figures for U.S. primary smelter production may include a small amount of copper derived from precipitates shipped directly to the smelter for further processing; production derived from electrowinning and fire refining is not included. Copper content of precipitates shipped directly to smelter are as follows, in metric tons: 1983—89,274; 1984—80,845; 1986—79,031; and 1987—69,376. Production from scrap prior to 1984 excludes data from secondary smelters

Table 33.—Copper: World refinery production, by country

Country Albania, primary ^e	10.5	11.5	11 5	11.5	
Australia:		11.0	11.5	11.7	12.0
lustrana.			100.0	164.0	185.0
PrimarySecondary	168.5 34.1	171.2 26.0	163.8 30.5	20.4	25.8
Total ²	202.6	197.2	194.3	184.3	210.8
Austria:		0.0	8.2	7.1	7.0
Primary Secondary	8.8 33.1	9.6 34.3	35.0	32.6	42.0
Total ²	41.9	43.9	43.2	39.6	49.0
Belgium: Primary	360.3	351.7	340.5	r e311.7	307.5
PrimarySecondary	71.0	76.0	115.0	r e _{100.9}	100.0
Total	431.3	427.7	455.5	r e _{412.6}	407.5
Brazil:	63.1	61.3	93.9	116.0	139.9
Primary Secondary	39.3	36.0	49.0	50.0	50.0
m-4-1	102.4 62.0	97.3 62.0	142.9 93.0	166.0 95.0	189.9 95.0
Bulgaria, primary and secondary ^e	02.0	02.0			
Canada: PrimarySecondary	464.3 33.0	504.3 35.0	499.6 34.0	493.4 33.0	491.2 34.0
	497.3	539.3	533.6	r _{526.4}	525.2
Total ^e		879.7	884.3	942.5	945.0
Chile, primaryChina, primary and secondary	310.0	310.0	400.0 e26.5	400.0 e26.5	400.0 26.5
Czechoslovakia, primary and secondary Egypt, secondary	25.7 2.4	26.1 2.6	e _{2.6}	e _{2.7}	3.0
Finland:	45.4	47.3	e46.5	r e52.2	47.5
PrimarySecondary e	45.4 10.0	10.0	12.0	12.0	12.0
Total	55.4	57.3	e _{58.5}	r e _{64.2}	59.
France:	7.0	15.0	13.7	r _{15.1}	13.
Primary ^e Secondary	7.8 37.3	25.9	30.0	26.8	26.0
Total	_ 45.1	40.9	43.7	r e _{41.9}	39.
German Democratic Republic, primary and secondary ^e	68.0	65.0	63.0	63.0	58.
Germany, Federal Republic of:	r _{212.5}	r207.1	210.1	238.0	³232.
PrimarySecondary	_ r212.5	r _{171.7}	204.3	183.9	³ 167.
Total ² Hungary, primary and secondary ^e	- r420.3	r378.8	414.4 12.8	421.9 12.8	³ 399. 12.
	12.5	12.8	12.8		
India, primary: Electrolytic Fire refined ^e	_ 28.4	32.6	28.0	37.9 1.0	32. 1
		1.0	1.0	r _{38.9}	33
Total ^e	- 29.4 10.0	33.6 5.0	29.0 12.0	12.0	12
Iran, primary ⁴ Italy, secondary	31.2	50.3	64.3	65.4	65
Japan:	944.6	821.1	802.3	827.7	³ 871
PrimarySecondary		114.1	133.6	115.4	³109
	1,091.9	935.2	936.0	943.0	3980

See footnotes at end of table.

Table 33.—Copper: World refinery production, by country —Continued

Country	1983	1984	1985	1986 ^p	1987 ^e
Korea, North, primary and secondary ^e	22.0	22.0	22.0	22.0	22.0
Korea, Republic of:	100.0	100.1	140.1	157.8	³ 156.3
Primary Secondary ^e	123.3 11.5	129.1 7.9	140.1 11.5	157.8 r 7.2	-156.a 8.7
Total ^e	134.8	137.0	151.6	r165.0	165.0
Mexico:					
Primary: Electrowon	7.5	9.3	8.0	8.0	10.0
Other Secondary ^e	$61.0 \\ 15.0$	r 3 _{13.9}	101.5 14.0	66.5 15.0	95.4 15.0
Total ^{e 2}	r83.5	r _{92.2}	r _{123.6}	r _{89.5}	120.4
Sorway, primary ⁵	22.7	30.3	31.1	30.5	29.4
Oman, primary	3.8	r _{15.2}	14.3	18.0	18.0
Peru, primary:	33.0	31.5	27.4	27.5	27.5
ElectrowonOther	161.4	188.6	203.0	197.7	190.9
Total ²	194.4	220.0	230.5	225.3	218.4
Philippines, primary Poland, primary ⁵	38.8 360.0	99.2 372.3	130.2 387.0	134.5 388.0	³ 132.1 ³ 390.0
Portugal, primary	e4.6	5.3	4.5	5.3	4.8
Romania: ^e			20.0	00.0	90.0
PrimarySecondary	35.0 12.0	33.0 12.0	33.0 12.0	32.0 11.0	30.0 12.0
	47.0	45.0	45.0	43.0	42.0
South Africa, Republic of, primary ⁶	157.7	155.7	164.3	158.6	155.0
Spain: Primary	137.6	117.4	101.7	e113.2	100.8
Secondary	21.0	39.0	50.0	e _{45.0}	50.0
Total	158.6	156.4	151.7	e158.2	150.8
Sweden:			A=0.0	800.0	
PrimarySecondary	50.1 13.2	53.5 10.4	e _{52.0} 12.7	e _{60.0} e _{20.0}	55.0 15.0
Total ²	63.4	63.9	64.7	e80.0	70.0
Taiwan:					
Primary ^e	30.0 8.0	40.4 8.0	46.7 8.0	^r 50.4 8.0	³ 47.0 10.0
Total	38.0	48.4	54.7	58.4	57.0
Turkey, primary	31.8	39.0	e30.0	e35.0	35.0
U.S.S.R.:e					
PrimarySecondary	776.0 139.0	^r 790.0 141.0	810.0 143.0	^r 830.0 145.0	840.0 147.0
Total	915.0	r931.0	953.0	r975.0	987.0
United Kingdom:					
PrimarySecondary	67.5 76.8	$69.5 \\ 67.4$	$63.9 \\ 61.6$	62.4 63.2	62.0 63.0
Total ²	144.4	136.8	125.4	125.6	125.0
10rat	177.7	100.0	140.4	120.0	

See footnotes at end of table.

Table 33.—Copper: World refinery production, by country —Continued

Country	1983	1984	1985	1986 ^p	1987 ^e
United States: Primary:					
Electrowon	r _{101.9}	r100.2	90.4	125.4	3158.0
Other	r _{1,080.2}	r _{1,064.4}	966.7	948.6	³ 988.1
Secondary	401.7	324.9	377.5	405.9	³ 414.7
Total	r _{1,583.8}	r _{1,489.5}	1,434.6	1,479.9	31,560.8
Yugoslavia: Primary Secondary	82.9 40.8	80.3 r47.4	r e _{80.0} r e _{55.4}	r e _{81.0} r e _{59.4}	80.5 58.4
Total ²	123.7 227.2	127.6 224.8	135.4 221.4	140.4 218.0	³ 138.9 220.0
Zambia, primary: ⁷ Electrowon Other	r _{134.4} r _{406.6}	r _{125.9} r _{406.8}	103.9 354.7	139.3 322.6	³ 140.0 ³ 323.0
TotalZimbabwe, primary	^r 541.0 21.6	r _{532.7} 22.7	458.6 20.4	461.9 20.4	³ 463.0 20.0
Grand total ²	r9,201.7	r9,116.1	9,375.1	9,503.1	9,647.1
Primary ²	r _{7,315.9}	r _{7,364.5}	7,302.0	7,461.0	7,605.2
Secondary ²	r _{1,385.6}	r _{1,253.8}	1,455.9	1,422.8	1,427.9
Primary and secondary, undifferentiated	500.2	497.9	617.3	619.3	614.0

^eEstimated. ^pPreliminary. ^rRevised.

¹This table includes total production of refined copper, whether produced by pyrometallurgical or electrolytic refining methods and whether derived from primary unrefined copper or from scrap. Copper cathode derived from electrowinning processing is also included. To the extent possible, primary and secondary output of each country is shown separately. In most cases, total refinery production is officially reported, and in some, the distribution between primary and secondary has been estimated. Table includes data available through July 8, 1988.

²Data may not add to totals shown because of independent rounding.

³Reported figure.

⁴Data are for fiscal year beginning.

^{**}Net a ree for fiscal year beginning Mar. 21 of that stated.

**May include small quantities of secondary.

**Although only primary production is reported, an unknown but small additional output of secondary refined copper may have been produced.

**Total are for fiscal year beginning Apr. 1 of that stated.

Diatomite

By Arthur C. Meisinger¹

U.S. sales of processed diatomite increased compared with that of 1986 by 30,000 short tons to 658,000 tons valued at \$134 million. Domestic consumption increased slightly, spurred by an 8% increase in filtergrade sales. Diatomite exports increased for the second straight year and continued to account for 21% of domestic production. California continued to be the leading producing State.

The United States accounted for about

32% of estimated world production of 2 million tons.

Domestic Data Coverage.—Domestic production data for diatomite are developed by the Bureau of Mines from one voluntary survey of U.S. plant operations. Of the 11 operations to which a survey request was sent, all responded, representing 100% of the total production shown in tables 1 and 5.

DOMESTIC PRODUCTION

Domestic production (sales) of diatomite, compared with that of 1986, increased nearly 5% to 658,000 tons valued at \$134 million. Diatomite was processed by 6 companies in 10 plants in 4 States. California continued to be the leading producing State, followed by Nevada, Washington, and Oregon.

As in previous years, the major domestic producers were Manville Products Corp., with operations at Lompoc, CA; Grefco Inc., Dicalite Div., at Lompoc and Burney, CA, and Mina, NV; Eagle-Picher Minerals Inc., a subsidiary of Eagle-Picher Industries Inc.,

at Sparks and Lovelock, NV, and Vale, OR; and Witco Corp., Inorganic Specialties Div., at Quincy, WA. Other producers were Oil-Dri Production Co., a subsidiary of Oil-Dri Corp. of America, Christmas Valley, OR, and CR Minerals Corp., Fernley, NV.

CR Minerals, a subsidiary of Canyon Resources Corp., Golden, CO, purchased the Nevada diatomite operation of Cyprus Minerals Co. in November 1987. Lassenite Industries Inc., Yuba City, CA, closed its California diatomite operation at yearend 1986.

Table 1.—Diatomite sold or used by producers in the United States

(Thousand short tons and thousand dollars)

	1983	1984	1985	1986	1987
Domestic production (sales)	619	627	635	628	658
	\$114,279	\$120,926	\$127,030	\$128,362	\$134,239

CONSUMPTION AND USES

Apparent domestic consumption of processed diatomite increased 6% to 526,000 tons compared with that of 1986. Domestic and export sales of filter-grade diatomite increased 8% from 422,000 tons in 1986 to 454,000 tons. Sales of filler-grade diatomite

decreased slightly from 109,000 tons in 1986 to 105,000 tons in 1987. Sales of diatomite used for absorbents, additives, and insulation totaled 99,000 tons, a slight increase over that of 1986.

Table 2.—Diatomite sold or used,1 by major use

(Percent of U.S. production)

	Use	1983	1984	1985	1986	1987
Fillers Filtration Insulation Other ²		 21 66 3 10	22 67 1 10	21 66 1 12	17 67 3 13	16 69 2 13

¹Includes exports.

PRICES

The average unit value of sales for processed diatomite was \$204 per ton—unchang-

ed from that of 1986.

Table 3.—Average annual value per ton1 of diatomite, by major use

Use	1985	1986	1987
Fillers	\$184.49	\$220.53	\$226.54
FiltrationInsulation	220.80 110.95	219.69 129.96	217.60 109.72
Other ²	118.39	116.72	120.54
Weighted average	199.93	204.28	204.17

¹Based on unrounded data.

FOREIGN TRADE

U.S. exports of processed diatomite increased 8,000 tons from 131,000 tons in 1986. Average unit value decreased from \$245 per ton to \$238 per ton. Diatomite was exported to 70 countries, and the quantity represented 21% of domestic production. The following five countries received 49% of the total: Canada, 24,100 tons; Japan, 14,950 tons; Australia, 11,200 tons; the Federal Republic of Germany, 10,600 tons; and the United Kingdom, 7,500 tons.

Imports of diatomite totaled 6,646 tons, of

which 95% was supplied by the Federal Republic of Germany.

Table 4.—U.S. exports of diatomite

(Thousand short tons and thousand dollars)

Year	Quantity	Value ¹
1984	127	29,461
1985	120	28,519
1986	131	32,180
1987	139	33,075

¹U.S. Customs.

²Includes absorbents, additives, and silicate admixtures.

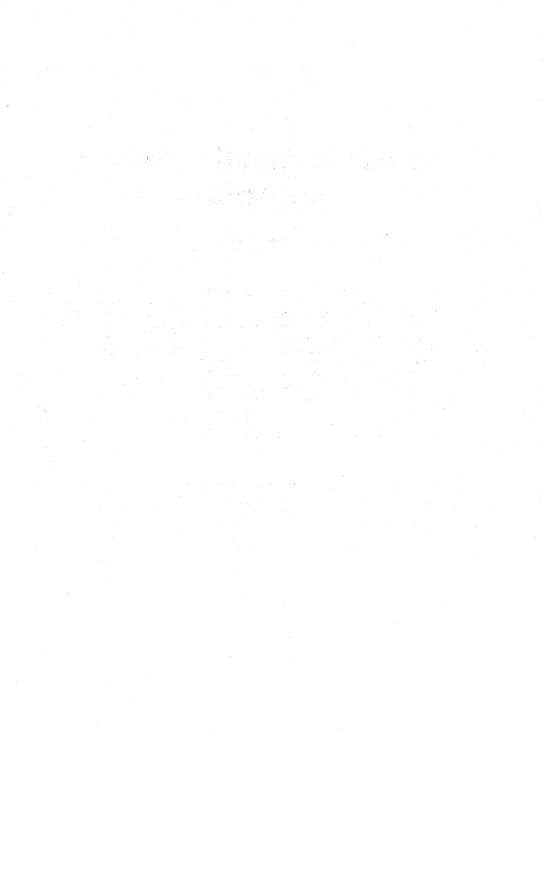
²Includes absorbents, additives, and silicate admixtures.

WORLD REVIEW

World production of diatomite was estimated to be 2 million tons. The United States, Romania, the U.S.S.R., and France continued to account for 1.5 million tons or 75% of that total.

¹Industry economist, Branch of Industrial Minerals.

Table 5.—Diatomite: World production, by country¹


(Thousand short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Algeria	e ₅	2	3	4	4
Argentina	12	<u>-</u>	9	e ₁₁	. 9
Australia	9	ž	8	9	9
Brazil (marketable)	16	18	14	r e16	20
Canadae	2	r ₄	\bar{r}_4	r ₅	5
Chile	ī	Ž	. 3	3	. 3
Colombiae	ī	1	ī	ī	1
Costa Rica	e ₁	e ₁	-	-	
Denmark: ²		•			
Diatomite ^e	7	11	7	r ₇	7
Moler	e ₇₂	70	79	80	73
Egypt	(3)	(4)	(4)	(4)	
France	244	273	298	r e ₂₈₇	276
Germany, Federal Republic of	49	. 54	53	54	54
Iceland	28	30	32	25	28
Italy ^e	28	31	33	30	31
Kenva	2	2	2	2	2
Korea, Republic of	$6\overline{2}$	53	59	60	55
Mexico	48	49	50	48	50
Peru	15	8	16	e ₁₇	16
Portugal	2	2	2	2	2
	320	331	331	331	309
Romania ^e South Africa, Republic of	1	(3)	1	2	. 2
Spain	61	80	106	141	110
Thailand	(3)	1	(³)	(³)	(3)
Turkey	11	3	eg	e ₃	3
U.S.S.R.e	260	265	270	276	281
United Kingdom ^e	(3)	(3)	(3)	(3)	(3)
United States	619	627	635	628	5658
Total	1,876	r _{1,931}	2,020	2,042	2,008

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through Apr. 22, 1988.

²Data represent sales. ³Less than 1/2 unit.

⁴Revised to zero. ⁵Reported figure.

Feldspar, Nepheline Syenite, and Aplite

By Michael J. Potter¹

Total U.S. feldspar production in 1987. including soda, potash, mixed feldspar, and feldspar-silica mixtures, was 720,000 short tons with a value of \$26.1 million. A lower level of housing construction, compared with that of 1986, resulted in a reduced demand for the related markets of plumbing fixtures, tile, and glass fiber insulation in which feldspar is used. Imports for consumption of crude and ground nepheline syenite were about 309,000 tons with a total value of \$11.4 million.

Domestic Data Coverage.—Domestic production data for feldspar are developed by the Bureau of Mines by means of a voluntary survey. Of the 13 active operations, 10. or 77%, responded, representing an estimated 79% of the total production data for feldspar shown in table 1. The remaining 21% was estimated from prior years' data adjusted to current industry levels.

Government Legislation and grams.-According to provisions of the Tax Reform Act of 1969, which continued in force throughout 1987, the depletion rate allowed on domestic and foreign feldspar production was 14%.

Table 1.—Salient feldspar and nepheline syenite statistics

983	1984	1985	1986	1987
0.000	710.000	700,000	735,000	720,000
				\$26,100
				9,634
				\$691
				4,833
				\$477
401	410	Ψ1,100	40.15	Ψ
7 351	377 945	332 604	298 806	308,685
				\$11,401
0,001	ψ14,210	ф11,400	φ11,200	ψ11,401
1 100	1.070	1.004	1 009	1.024
3,954	4,238	4,453	4,610	e _{4,531}
	983 0,000 2,500 9,360 \$856 64 \$31 7,351 3,997 1,108 3,954	0,000 710,000 2,500 \$23,500 9,360 10,080 \$856 \$920 64 \$25 \$31 \$15 7,351 377,945 3,997 \$14,218	0,000 710,000 700,000 2,500 \$23,500 \$22,800 9,360 10,080 9,280 \$856 \$920 \$680 64 25 \$952 \$31 \$15 \$1,150 7,351 377,945 332,604 3,997 \$14,218 \$11,435 1,108 1,078 1,024	0,000 710,000 700,000 735,000 2,500 \$23,500 \$22,800 \$26,100 9,360 10,080 9,280 12,000 \$856 \$920 \$680 \$1,024 64 25 952 1,251 \$31 \$15 \$1,150 \$542 7,351 377,945 332,604 298,806 3,997 \$14,218 \$11,435 \$11,280 1,108 1,078 1,024 1,023

^eEstimated. ^pPreliminary. rRevised.

FELDSPAR

DOMESTIC PRODUCTION

Soda feldspar is defined commercially as containing 7% soda (Na₂O) or higher; potash feldspar contains 10% potash (K2O) or higher. However, to publish information on potash feldspar without revealing company proprietary data in this report, feldspars containing 8% K₂O or more are defined as potash feldspars. Hand-cobbed or handsorted feldspar is usually obtained from pegmatites and is relatively high in K2O

¹Includes hand-cobbed feldspar, flotation-concentrate feldspar, and feldspar in feldspar-silica mixtures; includes potash feldspar (8% K₂O or higher).

²Production plus imports minus exports.

compared with Na₂O. Hand cobbing continued to be a minor fraction of total production in 1987. Feldspar flotation concentrates, most of the U.S. output, are classified as either soda, potash, or mixed feldspar, depending on the relative amounts of Na₂O and K₂O present. Feldspar-silica mixtures, feldspathic sand, can either be naturally occurring or a flotation product. Total feldspar content of this mixture was 30% of total feldspar output during 1987.

Feldspar was mined in six States, led by North Carolina and followed in descending order by Connecticut, California (estimated), Georgia, Oklahoma, and South Dakota. North Carolina accounted for 71% of the total. Twelve U.S. companies operating thirteen beneficiating plants and one plant produced feldspar-silica mixtures for shipment to more than 31 States and foreign countries, including Canada and Mexico. Of the 12 companies, 3 produced potash feldspar, and produced soda or mixed feldspar or feldspathic sand mixtures. North Carolina had six plants, California had three, and Connecticut, Georgia, Oklahoma, and South Dakota each had one. The grinding plant was in South Carolina.

The data for potash feldspar were collected from the three U.S. producers of this material; some of this feldspar contained less than 10% K₂O (8% to 10% K₂O).

Table 2.—Feldspar¹ produced in the United States

(Thousand short tons and thousand dollars)

Year	Hand-c	obbed	Flota		Feldspar mixtu		Tot	al ³
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
1983	7 7 14 13 10	107 124 W W W	525 502 487 522 492	17,128 17,874 16,781 19,855 17,800	178 201 197 200 219	5,265 5,503 W W	710 710 700 735 720	22,500 23,500 22,800 26,100 26,100

W Withheld to avoid disclosing company proprietary data; included in "Total." Includes potash feldspar (8% K₂O or higher).

Table 3.—Producers of feldspar and feldspathic materials in 1987

Company	Plant location	Product
APAC Arkansas Inc	Muskogee, OK	Feldspar-silica mix- ture.
California Silica Products Co	San Juan Capistrano,	Do.
Calspar Div. of Steelhead Resources Inc The Feldspar Corp		Soda feldspar. Do.
Do Do	Monticello, GA	Potash feldspar. Soda feldspar.
Do	Montpelier, VA	Aplite.
Foote Mineral Co	Kings Mountain, NC	Feldspar-silica mix- ture.
Indusmin Ltd	Spruce Pine, NC	Soda feldspar.
KMG Minerals Inc		Potash feldspar.
Lithium Corp. of America	Bessemer City, NC	Feldspar-silica mix- ture.
Pacer Corp	Custer, SD	Potash feldspar.
Spartan Minerals Corp	Pacolet, SC	Feldspar-silica mix- ture.
Unimin Corp		Soda feldspar.
U.S. Silica Co	Oceanside, CA	Feldspar-silica mix- ture.

CONSUMPTION AND USES

Of the total feldspar consumed in the United States, 55% was used in glassmaking, including container glass and glass fiber, and 44% was used in pottery.

Fewer housing starts, compared with

those of 1986, resulted in reduced feldspar usage in plumbing fixtures, tile, and glass fiber for insulation.

The value of potash feldspar sold or used in 1987 was \$5.3 million. Tonnage data are withheld to avoid disclosing company proprietary data.

²Feldspar content.

³Data may not add to totals shown because of independent rounding.

Table 4.—Feldspar' sold or used by producers in the United States, by use

(Thousand short tons and thousand dollars)

	Use				19	986	19	987
- Cae	100		Qu	antity	Value	Quantity	Value	
Hand-cobbed:			-			Tar Maria	1 2 2 3	
					11 1	w	4 3	W W
Total			125		12	w	7	W
Flotation concentrate: Glass Pottery					221 300	7,304 14,892	218 277	7,845 14,460
Total				1	521	22,196	495	22,30
Feldspar-silica mixtures Glass Pottery	.2				176 25	8,866 W	179 34	8,417
								W
10001			· <u>=</u>		201	W	213	W
Fotal: ³ Glass ⁴ Pottery Other ⁵				 S	394 339 2	16,170 W W	398 316 3	16,262 W W
					735	32,900	720	32,900

W Withheld to avoid disclosing company proprietary data; included in "Total." Includes potash feldspar (8% $\rm K_2O$ or higher).

Table 5.—Destination of shipments of feldspar¹ sold or used by producers in the United States, by State

(Short tons)

State	1983	1984	1985	1986	1987
Alabama	14.600	15,100	w	20,100	w
California ^{e 2}	45,000	45.000	50.000	50,000	50.000
Florida	22,700	20,300	16,900	20,000	
Georgia	96,900	96,000	95,300	91,600	14,200 86,500
Illinois	46,600	38,000	37,000	27,900	
Indiana	37,200	35,700	51,000 W	21,900 W	28,700
Kentucky	11,400	13,300	16,200		W
Louisiana	17,400	21,300	12,200	16,900	
Maryland	4,500	7,400		14,100	14,900
Massachusetts	1,200	10.800	7,400 W	7,000	6,400
Mississippi	15,900	12,000	w	w	W
Missouri	5,000			w	W
New Jersey	56,600	4,400	4,700	6,100	5,200
Vew York.		53,200	w	w	w
North Carolina	18,300	10,800	w	W	W
	20,100	16,400	17,000	20,700	40,500
Onio Pennsylvania	53,600	64,900	65,800	68,200	64,400
South Carolina	33,200	37,200	31,100	33,600	36,400
	18,400	17,400	w	W	w
	41,900	41,400	42,000	45,000	44,000
Vest Virginia	38,100	28,500	27,000	24,400	19,800
Visconsin	9,400	11,100	W	w	w
Other ³	102,000	99,800	277,400	289,400	306,000
Total	710,000	700,000	700,000	735,000	4720.000

Estimated. W Withheld to avoid disclosing company proprietary data; included with "Other destinations." 1 Includes potash feldspar (8% K_{2} O or higher).

²Feldspar content.

^{**}Pieuspar content.

**3 Data may not add to totals shown because of independent rounding.

**Includes container glass and glass fiber.

**Includes enamel, filler, etc., and unknown.

Includes potasn teidspar (3% n₃U or nigner).

²Data are incomplete, and estimates are very rough.

³Includes Arkansas, Colorado, Connecticut, Kansas, Michigan, Minnesota, Oklahoma, Rhode Island, Tennessee, Virginia, States indicated by symbol W, and other unspecified States. Tennessee, Virginia, States indicated by symbol W, and other unspecified States. Also includes exports to Canada, Mexico, and other foreign countries.

⁴Data do not add to total shown because of independent rounding.

Table 6.—Destination of shipments of potash feldspar' sold or used by producers in the **United States**

(Short tons)

Destination	1983	1984	1985	1986	1987
Illinois, Indiana, Wisconsin	6,000 25,300 8,100 7,100 300 4,300 14,100	5,800 21,800 9,000 13,500 200 4,600 16,400	5,800 28,000 8,200 8,200 200 5,200 21,400	5,500 25,600 (2) (2) 300 3,500 39,200	W W W W W
Total	65,200	71,300	77,000	74,100	W

W Withheld to avoid disclosing company proprietary data.

PRICES

Published feldspar prices were the same as those of 1986. Engineering and Mining Journal, December 1987, listed the following prices for feldspar, per short ton, f.o.b. mine or mill, carload lots, bulk, depending on grade:

Producing States	1986	1987
Connecticut:		
Connecticut.	\$43.00	\$43.00
20 mesh, granular		
200 mesh	58.75	58.75
Georgia:		
40 mesh, granular	57.25	57.25
		76.50
200 mesh	76.50	10.00
North Carolina:		
	29.25	29.25
20 mesh, flotation $_{-}$ $_{-}$ $_{-}$		
40 mesh , flotation $_$ $_$ $_$	57.25	57.25
200 mesh, flotation	77.80	77.80
200 mesn, notation	11.00	11.00

Source: Engineering and Mining Journal, v. 188, No. 12, Dec. 1987, p. 27.

FOREIGN TRADE

U.S. exports classified as feldspar, leucite, and nepheline syenite decreased 20%. Feldspar imports for consumption increased 286%.

In addition to feldspar and nepheline syenite, the United States imported 44,386 tons of "Other crude natural mineral fluxes" with a value of \$466,285. This represented a 37% decrease in tonnage compared with that of 1986. Also, 8,517 tons of "Other mineral fluxes, crushed" was imported with a value of \$1,860,000. This was a 416% increase in tonnage compared with that of 1986.

The tariff schedule in force throughout 1987 for most favored nations provided for a 2.9% ad valorem duty on ground feldspar; imports of unground feldspar were admitted duty free.

Table 7.—U.S. exports of feldspar, by country

	198	36	1987		
Country	Short tons	Value	Short tons	Value	
Canada Dominican Republic Italy Mexico Panama Taiwan Venezuela	3,850 1,100 600 1,090 3,200 1,100 500	\$227,600 85,900 26,000 80,400 262,000 202,900 32,000	1,864 1,661 623 1,309 1,002 2,272 903	\$100,403 91,147 32,960 122,760 101,291 143,717 99,010	
Other	12,000	1,024,200	9,634	691,288	

Source: Bureau of the Census.

¹K₂O content of 8% or higher. ²Included with "Other.

anciudeu with Carler.

Includes Alabama, Arkansas, California, Colorado, Connecticut, Florida, Georgia, Kansas, Kentucky, Massachusetts, Michigan, Minnesota, Missouri, New Jersey, North Carolina, South Carolina, Tennessee, Virginia, States indicated by symbol W, and other unspecified States.

Table 8.—U.S. imports for consumption of feldspar, by type and country

m	19	986	1987	
Type and country	Short tons	Value ¹	Short tons	Value ¹
Crude: Canada	22 256 290	\$8,000 29,017 436,584	194 150	\$1,982 2,341
Korea, Republic of Mexico Switzerland United Kingdom	683 	68,440 	39 4,377 30 43	6,577 418,170 30,834 16,916
Total	1,251	542,041	4,833	476,820

¹Customs value.

Source: Bureau of the Census.

WORLD REVIEW

Australia.—Production of feldspar increased from 5,000 tons in 1983 to an estimated 12,000 tons in 1987. ACI Resources Ltd.'s Industrial Minerals Div. was investigating the extraction of feldspar by flotation from granite.²

Pakistan.—Several companies produced an estimated total of 13,000 tons of soda and potash feldspar per year for domestic glass and ceramics production.³ Spain.—A new company, Rio Piron, was established to develop a feldspathic sand deposit.⁴

Turkey.—Known feldspar deposits occur in the western and northeastern parts of the country. A plant to treat 4,000 tons of ground feldspar per year and 19,000 tons of flotation feldspar per year was under construction in southwestern Turkey by Esan Eczacibasi Industrial Minerals Co. The company planned to export one-half of the production.⁵

Table 9.—Feldspar: World production, by country¹

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Argentina	22	20	0	r e ₁₁	
Australia	5	4	9		11
Austria	1	3	1,2	12	12
Brazil ³	136	116	15	3	3
Burma	3	110	e ₁₃₂	e ₁₃₂	138
Chile	3	7	3	3	3
Colombia	35	3 36		.3	- 2
Egypt	33 7		38	39	39
Finland	57	8	21	21	22
France	193	62	58	52	55
Germany, Federal Republic of		230	190	238	231
Guatemalae	364	328	355	336	. 330
Hong Kong	7	6	46	7	7
India	62	127	120	39	28
Iran	46	44	51	51	46
Italy	26	36	35	r e ₃₅	35
Japan ⁵	911	1,086	1,230	1.364	1,320
***	34	39	34	35	36
	1	1	1	(6)	1
Korea, Republic of	121	140	160	144	143
Mexico	130	93	e110	e110	110
MOTOCCO	1	1	110	110	110
Mozambique	î	e i	(7)	<u>, 1</u>	1
Nigeria"	Ġ	(⁶)	ro	(7)	(⁷)
Norway	64			- ⁴ 3	3
Pakistan	6	75	88	r e ₈₈	88
Peru	0	6	6	13	3
Philippines Poland ^e	3	4			
Polande	7	13	6	e ₇	7
Portugal	88	88	88	88	88
Romaniae	39	32	32	37	35
South Africa Danublic of	94	94	95	95	90
South Africa, Republic of	50	43	36	58	473
Spain	128	151	150	149	151
Sri Lanka Sweden	3	6	11	8	151
oweden	58	55	46	r e ₄₄	
Taiwan	13	17	12	29	44
See feet at 1 Co. 11		11	14	29	28

See footnotes at end of table.

Table 9.—Feldspar: World production, by country¹ —Continued

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Thailand	53 410 360 6 710 1 41 446 (7) 2	82 11 360 7 710 2 43 46 (7) 2	115 22 370 7 700 1 34 50 (') 3	127 22 370 8 735 e1 38 r52 (7) 2	127 22 37(472(33 50 (7
Total	r _{3,954}	r _{4,238}	4,453	4,610	4,53

Preliminary. rRevised. eEstimated.

¹Table includes data available through May 6, 1988. In addition to the countries listed, Czechoslovakia, Madagascar, and Namibia produce feldspar, but output is not officially reported, and available general information is inadequate for the formulation of reliable estimates of output

³Series excludes production of leucite and sodalite; data consist only of that material reported by Brazil under the heading of "Feldspar." Data represent the sum of (1) run-of-mine production for direct sale and (2) salable beneficiated product; total run-of-mine feldspar production was as follows, in thousand short tons: 1983—71; 1984—93; 1985—91; 1986—91 (revised, estimated); and 1987—93 (estimated).

⁴Reported figure.

⁶Revised to zero.

⁹Includes pegmatite.

NEPHELINE SYENITE

Output from the two operations of Indusmin Ltd., a division of Falconbridge Ltd., at Blue Mountain, Ontario, Canada, was 534,600 tons in 1986, the latest year data were available. Of this total, an estimated 75% was glass grade and 25% was finegrind grades for ceramic, paint, and other applications. In Norway, nepheline syenite was produced at the Norsk Nefelin underground mining operation on the Arctic island of Stjernoy. Sales were mostly to markets in Western Europe.

Prices for nepheline syenite have been depressed since 1981, especially for glass grades.6 This was due to closing of a number of glass container plants in recent years and competition from other feldspathic materials.

Prices for Canadian nepheline syenite listed in Industrial Minerals (London), December 1987, were \$21.50 to \$30.50 per ton for glass grade, 30 mesh, bulk, carlotstrucklots, depending on iron content; \$64 to \$66 per ton for ceramic grade, 200 mesh, bagged 10-ton lots; and \$85 to \$99 per ton for filler-extender grade, bagged.

Alkane Exploration NL was evaluating a deposit of nepheline syenite and rare-earth elements near Dubbo in west-central New South Wales, Australia.7

In Pakistan, deposits of nepheline syenite occur in the Province of Swat. Some sample material has been used in glass and ceramics. Larger scale laboratory test work was anticipated.8

Table 10.—U.S. imports for consumption of nepheline syenite

Year	Crude		Ground	
	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
1985 1986 1987	920 2,970 3,720	\$62 205 142	331,684 295,836 304,965	\$11,373 11,075 11,259

Source: Bureau of the Census.

⁵In addition, the following quantities of aplite were produced, in thousand short tons: 1983—442; 1984—486; 1985—517; -493; and 1987-474 (estimated).

⁷Less than 1/2 unit.

⁸Excludes nepheline syenite.

APLITE

Aplite is a feldspar mineral that has more than one geological definition. However, aplite from the only active U.S. operation contains primarily lime-soda feldspar. Aplite, usually unsuitable for use in ceramics, has been used in the manufacture of glass, when it is sufficiently low in iron. Japan, with an annual production of approximately 490,000 tons, has been the world's largest producer of aplite.

Aplite of glassmaking quality was produced in the United States by The Feldspar Corp. near Montpelier, Hanover County, VA.

Domestic output decreased compared with that of 1986. The data are company proprietary and cannot be released for publication. Aplite traditionally has a somewhat lower price than feldspar. Industrial Minerals (London), December 1987, gave a value of \$25.75 per ton for glass grade, bulk, 100% plus 200 mesh, f.o.b. Montpelier, VA.

¹Physical scientist, Branch of Industrial Minerals. ²Clark, G. Australia's Industrial Minerals. Ind. Miner. (London), No. 243, Dec. 1987, p. 35.

Condon, NO. 240, Dec. 1301, p. 30.

Griffiths, J. Pakistan's Mineral Potential—Prince or Pauper? Ind. Miner. (London), No. 238, July 1987, p. 36.

Industrial Minerals (London). Company News. No. 236,

Industrial Minerals (London). Company News. No. 236, May 1987, p. 74.
 Karayazici, F. Industry Structure Past, Present, and Future. Paper from Turkey's Ind. Miner. Conf., Istanbul, Turkey, Sept. 20-22, 1987.
 Midgette, W. B. Nepheline Syenite. Am. Ceram. Soc. Bull., v. 66, No. 5, May 1987, p. 771.
 Industrial Minerals (London). Mineral Notes. No. 238, 181, 181, 1827.

July 1987, p. 93.

*Pages 36 and 39 of work cited in footnote 3.

Ferroalloys

By Clark R. Neuharth¹

Demand for ferroalloys increased in many countries compared with that of 1986, owing to increased consumption by the iron and steel and aluminum industries. Prices for ferroalloys rose steadily as supplies tightened, and a continuing production shift from traditional suppliers to developing countries was observed as plant closings occurred in some industrialized countries. Overall world production was little changed.

Domestic Data Coverage.—Domestic production data for ferroalloys are developed by the Bureau of Mines by means of monthly and annual voluntary domestic surveys. Typical of these surveys are the three separate monthly surveys for chromium alloys and metal, manganese alloys and metal, and silicon alloys and metal, and the annual survey for ferroalloys. Of the 41 operations to which a survey was sent, 31 responded, representing an estimated 76% of the total production and/or shipments shown in table 2. Production and shipments for the remaining 10 nonrespondents were estimated using reported prior year production and shipment levels adjusted by trends in employment and other guidelines.

Legislation and Government Programs.-House bill (H.R.) 3, entitled "The Omnibus Trade Act of 1987" in the House of Representatives and its companion Senate version, Senate bill (S.) 490, were introduced early in the year. The purpose of S. 490, which was subsequently passed by the Senate and incorporated into H.R. 3, was to revise trade remedy statutes, such as dumping and subsidy laws. H.R. 3 would create sweeping changes in existing trade laws covering import relief and other aspects of international competitiveness.

S. 556 and its counterpart, H.R. 1580, were subsequently introduced for the purpose of prohibiting U.S. investment in and

trade with the Republic of South Africa. However, both bills included clauses exempting any minerals or materials considered by the President and Congress to be strategic to defense needs. This exemption probably would include ferroalloys and related ores. As required by section 303(a)(2) of the Comprehensive Anti-Apartheid Act of 1986, the U.S. Department of State certified 10 strategic minerals as essential for the economy or defense of the United States and unavailable in adequate quantities from reliable and secure suppliers. The list included chromium, manganese, vanadium, and their respective ferroalloys. Section 501 of the act required the Department of State to submit a report to the President assessing the yearlong effects of selected sanctions on the Republic of South Africa and what effect they had on dismantling apartheid. Also, section 504 required that the Administration study alternative sources for ferroalloys to cut the Country's dependency on the Republic of South Africa for ferroalloys and other metals.

The General Services Administration awarded 2-year contracts to Macalloy Corp. and Elkem Metals Co. for upgrading National Defense Stockpile chromite ore and manganese ore, respectively, into highcarbon ferrochromium (H-C-FeCr) and highcarbon ferromanganese (H-C-FeMn). Continuance of the upgrading program, which began in 1984, was authorized for fiscal years 1987-93 under Title II-National Defense Stockpile of the Defense Authorization Act of 1987. The defense authorization legislation also transferred the power to set National Defense Stockpile goals from the President to the Congress and shifted management of the stockpile from the Federal Emergency Management Agency to the Secretary of Defense. The Senate rejected an amendment to the authorization legislation that would have allowed the President to reduce stockpile reserves to \$7.2 billion and the level of each material by 15%.

As a result of a general review of the Generalized System of Preferences (GSP) program, mandated by the Trade and Tariff Act of 1984, the United States removed imports of Brazilian silicon metal from the GSP's exemption list, placing a 5.3% duty on imports of silicon metal in the 99.0% to 99.7% purity category, effective July 1, 1987.

West Virginia gave a tax break to power companies that supply ferroalloy producers in that State. Under the new law, power companies were not subject to gross sales tax on power distributed to produce ferroalloys. The power companies were required to pass along the savings to the ferroalloy producers through rate reductions.

The Environmental Protection Agency (EPA) published revised particulate-emissions controls. The particulate-matter rules superseded earlier standards and required that smaller particles be captured by emission control equipment. EPA also published land disposal restrictions on a second group of chemicals mentioned in the 1984 amendments to the Resource Conservation and

Recovery Act (RCRA). The group included eight metals, among which were chromium and nickel. RCRA requires that liquid wastes, including free liquids associated with any solid or sludge, be restricted from land disposal if they contain certain concentrations of the listed metals or their compounds. The EPA also set limits for hazardous materials in electric arc furnace dust that would be disposed of in landfills.

Table 1.—Government inventory of ferroalloys, December 31, 1987

(Thousand short tons)

Alloy	Stock- pile grade	Non- stock- pile grade	Total
Ferrochromium:			
High-carbon	537	1 1	538
Low-carbon	300	19	319
Ferrochromium-silicon	57	1	58
Ferrocolumbium	٥.		90
(contained columbium)	.3	.2	.5
		.2	.0
Ferromanganese:	705		705
High-carbon			
Medium-carbon	29		29
Ferrotungsten			
(contained tungsten)	.4	.6	1
Silicomanganese	24		24

DOMESTIC PRODUCTION

Production and shipments of bulk ferroalloys (i.e., those containing chromium, manganese, and silicon) and metals overall increased 7% and 8%, respectively, compared with those of 1986. Producer stocks of most ferroalloy materials were down at yearend, owing to high demand from consuming industries.

Applied Industrial Minerals Corp. shut down its Kimball, TN, ferrosilicon plant early in the year, owing to competition from low-priced imports. SKW Alloys Inc. started silicon metal production in January, after completing the conversion of one of its ferrosilicon furnaces in Niagara Falls, NY. Universal Consolidated Co. purchased M. A. Hanna Co.'s previously closed ferronickel smelter in Riddle, OR, and announced plans to reactivate the facility to produce ferrosilicon in 1988.

Moore McCormack Resources Inc. completed the sale of Globe Metallurgical Inc., a silicon and ferrosilicon producer, to a management group backed by Lee Capital Corp., an investment banking firm based in Boston, MA. Globe planned to continue producing silicon metal, magnesium ferrosilicon,

and 50% ferrosilicon at its facilities in Beverly, OH, and Selma, AL.

Foote Mineral Co. sold both of its ferrosilicon production facilities at the end of the year. The Graham, WV, plant, which had been closed since 1985, was purchased by an employee group under the name American Alloys Inc. The new company planned to start production of 50% ferrosilicon by March 1988 and possibly convert some of its capacity to silicon metal production later in the year. Keokuk Ferro-Sil Inc., a group formed by former Foote employees, purchased the Keokuk, IA, facility and planned to continue production of silvery pig iron and 50% ferrosilicon. Foote had sold its ferrovanadium production facility in Cambridge, OH, to Shieldalloy Corp. earlier in the year.

Estimated ferrous scrap consumption by the domestic ferroalloys industry was 280,000 tons in 1987 compared with 250,000 tons in 1986.

The Ferroalloys Association reported that its member companies consumed 4.5 billion kilowatt hours of electricity in 1987 compared with 4.2 billion kilowatt hours in 1986.

Table 2.—Ferroalloys1 produced and shipped from furnaces in the United States

			986			19	87	., :
	Net pr	oduction	Net shi	pments	Net pr	oduction	Net sh	ipments
and Alberta (1995) The Alberta Hays Mills	Gross weight (short tons)	Alloy element con- tained (average percent)	Gross weight (short tons)	Value (thou- sands)	Gross weight (short tons)	Alloy element con- tained (average percent)	Gross weight (short tons)	Value (thou- sands)
Chromium alloys ² Chromium metal Manganese alloys ⁴ Manganese metal Silicon alloys ⁶ Silicon metal	105,407 (³) 117,368 (⁵) 339,441 123,893	62 100 81 100 53 99	115,659 (3) 111,592 (5) 371,310 126,077	\$87,624 (3) 90,941 (5) 218,382 148,797	117,634 (3) 112,945 (5) 357,255 149,428	61 100 78 100 52 99	126,423 (3) 128,638 (5) 374,865 149,713	\$107,078 (3) 101,768 (5) 193,227 186,713
Total ⁷	686,109	XX	724,638	545,744	737,262	XX	779,639	588,651
Ferrocolumbium Ferrophosphorus Other ⁹	W 58,147 72,109	65 24 XX	W 53,758 76,231	W 7,161 111,848	(8) 40,188 34,676	65 23 XX	(8) 40,642 51,686	(⁸) 6,171 123,669
Total ⁷	130,256	XX	129,989	119,009	75,864	XX	92,328	129,840
Grand Total ⁷	816,365	XX	854,627	664,753	813,126	XX	871,967	718,491

W Withheld to avoid disclosing company proprietary data; included with "Other." XX Not applicable. Does not include alloys consumed in the making of other ferroalloys.

6 Included with ferrosilicon and other miscellaneous silicon alloys.

Table 3.—Producers of ferroalloys in the United States in 1987

Producer	Plant location	Products ¹	Type of furnace
FERROALLOYS (EXCEPT FERROPHOSPHORUS)		-	#1.4 ·
Affiliated Metals and Minerals Inc Aluminum Co. of America, Northwest Alloys Inc.	New Castle, PA Addy, WA	FeMo, FeV FeSi, Si	Metallothermic. Electric.
AMAX Inc., Climax Molybdenum Co. Div Applied Industrial Minerals Corp. (AIMCOR)	Langeloth, PA Bridgeport, AL	FeSi	Metallothermic. Electric.
Do Ashland Chemical Co	Kimball, TN Columbus, OH	FeSi, other ² FeB, FeCb, FeMo, FeTi, FeW, NiCb.	Do. Electric and me- tallothermic.
abot Corp. Syprus Minerals Co., Duval Corp Sow Corning Corp Elkem A/S, Elkem Metals Co	Revere, PA Sahuarita, AZ Springfield, OR Alloy, WV Ashtabula, OH Marietta, OH	FeCb	Metallothermic. Do. Electric. Electric and electrolytic.
oote Mineral Co., Ferroalloys Div	Niagara Falls, NY _ Graham, WV ³ Keokuk, IA ⁴	FeSi, silvery pig iron, other. ²	Electric.
Ianna Mining Co., Silicon Div	Wenatchee, WA Hamilton (Aberdeen), MS.	FeSi, Si	Do. Electrolytic.
facalloy Corp fetallurg Inc., Shieldalloy Corp	Charleston, SC Cambridge, OH Newfield, NJ	FeCr Cr, FeAl, FeB, FeCb,	Electric. Electric and
foore McCormack Resources Inc., Globe Metallurgical Inc.	Beverly, OH Selma, AL	FeTi, FeV, other. ² FeCr, FeSi, Si	Metallothermi Electric.
phio Ferro-Alloys Corp eactive Metals and Alloys Corp eading Alloys Inc	Montgomery, AL West Pittsburg, PA Robesonia, PA	FeSi, Si FeAl, FeB, FeTi, other ² FeCb, FeV	Do. Do. Metallothermic.

See footnotes at end of table.

^{*}Does not include alloys consumed in the making of other rerroalloys.

Includes ferrochromium, ferrochromium-silicon, chromium briquets, exothermic additives, and miscellaneous chromium alloys.

Included with chromium alloys.

Includes ferromanganese, fused-salt electrolytic low- and medium-carbon ferromanganese (massive manganese), and

silicomanganese.

5Included with manganese alloys.

Data may not add to totals shown because of independent rounding.

Sincluded with "Other."

Includes ferroaluminum, ferroboron and other complex boron additive alloys, ferromolybdenum, ferronickel, ferrotitanium, ferrotungsten, ferrovanadium, ferrozirconium, silvery pig iron, and other miscellaneous alloys.

Table 3.—Producers of ferroalloys in the United States in 1987 —Continued

Producer	Plant location	Products ¹	Type of furnace
FERROALLOYS (EXCEPT FERROPHOSPHORUS) — Continued			
Reynolds Metals Co SEDEMA S.A., Chemetals Inc	Sheffield, AL Baltimore, MD	SiFeMn	Electric. Electric and electrolytic.
SKW Alloys Inc	Calvert City, KY Niagara Falls, NY _	FeCr, FeCrSi FeSi	Electric. Do.
Strategic Minerals Corp. (STRATCOR): U.S. Vanadium Corp	do	FeV, FeW	Do.
U.S. Tungsten Corp Teledyne Inc., Teledyne Wah Chang,	Albany, OR	FeCb	${\bf Metallothermic.}$
Albany Div. Union Oil Co. of California, Molycorp Inc	Washington, PA	FeB, FeMo	Electric and metallothermic.
Universal Consolidated Co., Nickel Mountain Resources. FERROPHOSPHORUS	Riddle, OR	FeNi, FeSi	Electric.
	Pocatello, ID	FeP	Do.
FMC Corp., Industrial Chemical Div Monsanto Co., Monsanto Industrial Chemicals Co.	Soda Springs, ID	do	Do.
Occidental Petroleum Corp., Hooker Chemi- cal Co., Industrial Chemicals Group.	Columbia, TN	do	Do.
Stauffer Chemical Co., Industrial Chemical Div.	Mount Pleasant, TN	do	Do.
Illiabiliai Cilcinicai Div.	Silver Bow, MT		

¹Cr, chromium metal; FeAl, ferroaluminum; FeB, ferroboron; FeCb, ferrocolumbium; FeCr, ferrochromium; FeCrsi, ferrochromium-silicon; FeMn, ferromanganese; FeMo, ferromlybdenum; FeNi, ferronickel; FeP, ferrophosphorus; FeSi, ferrosilicon; FeTi, ferrotitanium; FeV, ferrovanadium; FeW, ferrotungsten; FeZr, ferrozirconium; Mn, manganese metal; Si, silicon metal; SiMn, siliconanganese.

²Includes specialty silicon alloys, zirconium alloys, and miscellaneous ferroalloys.

³Sold to American Alloys Lee at vectoral.

CONSUMPTION AND USES

Overall demand for ferroalloys as additives and alloying elements increased in 1987, owing partly to an 8% increase in raw steel production. Other major consuming markets, such as the stainless steel and ferrous castings industries, also demanded

more ferroalloys than in 1986.

USX Corp., a major consumer of ferroalloys, reopened steelmaking operations that had been shut down for about half of 1986 because of a labor dispute.

Table 4.—Reported U.S. consumption of ferroalloys as additives in 1987, by end use¹ (Short tons of alloys unless otherwise specified)

End use	FeMn	SiMn	FeSi	FeTi	FeP	FeB
Steel: Carbon	313,009 ² 17,784 ² 69,541 ² 369 1,610	81,812 3,770 222,815 (3) 416	² 57,750 ² 74,769 ² 52,522 2,001 10,753	784 2,457 358 (³) 5	8,401 W 960	319 32 323
Total Cast irons Superalloys Alloys (excluding alloy steels and superalloys)	402,313 48,839 154 18,373 5,269	108,813 2,555 W W 3,177	197,795 202,914 ⁴ 271 ⁴ 47,063 73,792	3,604 W 689 320 40	9,361 $2,207$ 109 7	674 W W 71 88
Total consumption = Percent of 1986	434,948 109	114,545 111	521,835 104	4,653 109	11,684 107	833 111

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

³Sold to American Alloys Inc. at yearend. ⁴Sold to Keokuk Ferro-Sil Inc. at yearend.

w withheld to avoid disclosing company proprietary data; included with Miscerianeous and dispectified. FeMn, ferromanganese including spiegeleisen and manganese metal; SiMn, silicomanganese; FeSi, ferrosilicon including silicon metal, silvery pig iron, and inoculant alloys; FeTi, ferrotitanium; FeP, ferrophosphorus; FeB, ferroboron including other boron materials.

²Part included with "Steel: Unspecified." ³Included with "Steel: Unspecified."

⁴Part included with "Miscellaneous and unspecified."

Table 5.—Reported U.S. consumption of ferroalloys as alloying elements in 1987, by end use1

(Short tons of contained elements unless otherwise specified)

End use	FeCr	FeMo	FeW	FeV	FeCb	FeNi
Steel:						
Carbon	24.333	132		1,197	807	
Stainless and heat-resisting	205,278	252	$\overline{71}$	65	460	16,677
Other alloy	² 23,778	980	31	2.152	827	346
Tool	² 2,406	w	168	465	(2)	
Unspecified	(³)	(³)			` 6	
Total ⁴	235,795	1,364	270	3,880	2,100	17,023
Cast irons	⁵ 3,578	637	(3)	25	2,100	314
Superalloys	59,362	50	w	10	442	014
Alloys (excluding alloy steels and superalloys)	51,892	168	ŵ	5691	8	61
Miscellaneous and unspecified	3,995	310	10	48	40	20
Total consumption ⁴	254,622	2,530	279	4,653	0.500	17 410
Percent of 1986	254,622 121	2,530 124	135	108	2,589 104	17,418 131

Table 6.—Reported stocks of ferroalloys held by producers and consumers in the United States, December 31

(Short tons)

1	Proc	lucer	Cons	umer	To	otal
	1986 (gross weight)	1987 (gross weight)	1986 (gross weight)	1987 (gross weight)	1986 (gross weight)	1987 (gross weight)
Chromium alloys¹ Manganese alloys² Silicon alloys³ Ferroboron⁴ Ferrophosphorus Ferrotitanium	14,105 W 140,788 137 63,530 W	5,687 W 81,400 127 25,326 W	31,790 W 21,264 217 1,380 609	24,900 W 20,375 252 1,307 773	45,895 r109,032 162,052 354 64,910 609	30,587 64,803 101,775 379 26,663 773
Total	218,560 1986 (con- tained element)	112,540 1987 (con- tained element)	55,260 1986 (con- tained element)	47,607 1987 (con- tained element)	382,852 1986 (con- tained element)	224,980 1987 (con- tained element)
Ferrocolumbium ⁵ Ferromolybdenum ⁶ Ferronickel Ferrotungsten Ferrovanadium ⁷	W 909 W W	W 742 - W W	W 309 1,028 29 314	W 277 NA 68 372	W 1,218 1,028 29 314	W 1,019 NA 68 372
Total	909	742	1,680	717	2,589	1,459

NA Not available. W Withheld to avoid disclosing company proprietary data.

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

¹FeCr, ferrochromium including other chromium ferroalloys and chromium metal; FeMo, ferromolybdenum including calcium molybdate; FeW, ferrotungsten; FeV, ferrovanadium including other vanadium-carbon-iron ferroalloys; FeCb, ferrocolumbium including nickel columbium; FeNi, ferronickel.

²Included with "Steel: Unspecified."

³Included with "Miscellaneous and unspecified."

¹Pote server to delete the beauth and the server to the

^{*}Data may not add to totals shown because of independent rounding.

Part included with "Miscellaneous and unspecified."

Includes ferrochromium, ferrochromium-silicon, other chromium alloys, and chromium metal.

²Includes ferromanganese, silicomanganese, and manganese metal. ³Includes ferrosilicon, miscellaneous silicon alloys, and silicon metal.

⁴Consumer totals include other boron materials

⁵Consumer totals include nickel columbium.

⁶Consumer totals include calcium molybdate ⁷Includes other vanadium-iron-carbon ferroalloys.

PRICES

Published prices for most ferroalloys rose in 1987 owing to increasing demand by major consuming industries and tightening supplies. The average posted price for most imported bulk ferroalloys was higher in 1987 compared with that of 1986; for example, by 10% to 43.5 cents per pound of chromium for charge chrome containing 50% to 55% chromium, by 4% to 85.92 cents per pound of chromium for low-carbon ferrochromium (L-C-FeCr), by 7% to \$336.95 per long ton of alloy for standard 78% ferromanganese, by 7% to 33.76 cents per pound of manganese for medium-carbon ferromanganese, by 8% to 18.7 cents per pound of alloy for silicomanganese, by 9% to 37.76 cents per pound of silicon for 50% ferrosilicon, and by 10% to 36.15 cents per pound of silicon for 75% ferrosilicon. The average annual price for imported charge chrome containing 60% to 65% chromium fell slightly to 42.38 cents per pound of chromium. Posted average annual prices for

comparable domestically produced alloys in 1987 were mixed compared with those of 1986. The average prices for 50% and 75% ferrosilicon rose 3% and 1%, respectively, while those for medium-carbon ferromanganese and charge chrome containing 66% to 70% chromium fell slightly. Most other average prices remained unchanged.

ce1
987
52
10
00
93
47
47
•

¹Per pound contained, except as noted otherwise. If range of prices was quoted, the lowest price is shown.

²Prices for imported material. List price for domestic material suspended on June 28, 1984.

Source: Metals Week.

FOREIGN TRADE

The trade deficit for ferroalloys decreased from \$505 million in 1986 to \$490 million in 1987. A trade surplus of \$13 million was recorded for ferroalloy metals in 1987 compared with a deficit of \$21 million in 1986.

Imports for consumption of ferroalloys and ferroalloy metals were supplied by 37 countries and decreased nearly 7% compared with those of 1986. Geographic sources. and their respective share of total U.S. imports of ferroalloy materials were Africa, 40%; Europe, 31%; the Western Hemisphere, 25%; Asia, 2%; and Oceania, 2%. The Republic of South Africa continued to be the United States main source of ferroalloy materials overall, accounting for 37% of total imported ferroalloys and metals. Of the total imported chromium and manganese alloys, the Republic of South Africa supplied 66% and 38%, respectively. The second leading suppliers of these materials were Turkey (15%) for chromium alloys and France (22%) for manganese alloys. The Republic of South Africa accounted for 100% of the unwrought manganese metal imports, while the United Kingdom supplied 34% of the imported chromium metal to the United States. Colombia and the Dominican Republic were the leading suppliers of ferronickel, accounting for 56% and 19% of U.S. ferronickel imports, respectively. Imports of ferrosilicon overall increased to a record-high amount, while those of 75% ferrosilicon, typically the largest share, decreased by 7%. The principal sources of ferrosilicon were Brazil, 33%; Norway, 15%; the U.S.S.R., 13%; Canada, 11%; and Venezuela, 11%. Imports of silicon metal overall decreased by 10%, owing mostly to a significant decrease in shipments from Brazil. The principal sources of silicon metal were Canada, 32%; Argentina, 17%; and Yugoslavia, 16%.

The United States exported ferrosilicon to 24 countries in 1987. Over one-half of that material was shipped to Canada. Nearly 70% of U.S. silicon metal exports went to Japan, with the remainder distributed among 33 other countries. Manganese metal was exported to 27 countries, with Japan and Canada receiving the largest shares.

FERROALLOYS

Table 7.—U.S. exports of ferroalloys and ferroalloy metals

	198	35	198	36	198	37
Alloy	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
E11						
Ferroalloys: Ferrocerium and alloys	28	\$314	37	\$319	90	\$653
Ferrochromium and ferrochromium-						
silicon	10,262	7,688	6,035	5,693	4,568	5,730
Ferromanganese	6,927	4,762	4,323	2,650	2,851	2,144
Silicomanganese	3,089	136	2,004	687	697	493
Ferromolybdenum	631	2,698	166	928	81	605
Ferrophosphorus	49,674	5,776	38,377	4,393	34,699	4,334
Ferrosilicon	12,970	12,671	11,331	8,306	15,049	11,647
Ferrovanadium	454	4,791	513	4,647	436	4,081
Ferroalloys, n.e.c	14,498	24,581	10,029	11,561	19,073	14,938
Total ferroalloys ¹	98,533	63,417	72,814	39,184	77,543	44,626
Metals:	222	2,964	321	2,972	415	4,670
Chromium	5,162	7,242	5.146	7,892	5,775	9,748
Manganese	2,120	61,647	5,378	65,157	9,247	106,213
Silicon						100 001
Total ferroalloy metals ¹	7,504	71,854	10,845	76,020	15,437	120,631
Grand total ¹	106,037	135,271	83,660	115,204	92,980	165,257
				7.5		

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 8.—U.S. imports for consumption of ferroalloys and ferroalloy metals

		1986			1987	
Alloy	Gross weight (short tons)	Content (short tons)	Value (thousands)	Gross weight (short tons)	Content (short tons)	Value (thousands)
Chromium alloys:						
Ferrochromium containing 3% or	348,443	198,168	\$139,983	283,613	158,505	\$112,546
Ferrochromium containing less than 3% carbon Ferrochromium-silicon	39,969 9,221	25,582 3,532	32,707 5,743	42,246 8,356	26,940 3,117	37,723 4,920
Total chromium alloys ¹	397,633	227,282	178,432	334,215	188,562	155,189
Manganese alloys: Ferromanganese containing 1% or less carbon	18,130	16,179	16,782	20,132	17,852	17,203
Ferromanganese containing more than 1% to 4% carbon	66,225	54,068	28,483	50,442	41,359	22,951
Ferromanganese containing more than 4% carbon Silicomanganese Spiegeleisen	311,296 198,646 213	240,800 ² 131,425 (³)	75,216 58,839 113	297,104 191,418 209	230,166 ² 124,315 (³)	73,476 58,461 168
Total manganese alloys ¹	594,510	442,472	179,434	559,305	413,692	172,260
Silicon alloys (ferrosilicon): 8% to 30% silicon	103	19	103	3,675	607	1,132
30% to 60% silicon, over 2% magnesium	3,797 49,690	1,741 24,644	2,781 16,717	6,965 58,747	3,252 29,076	5,286 22,456
60% to 80% silicon, over 3% calcium 60% to 80% silicon, n.e.c	11,227 156,322	6,971 117,620	9,846 70,221	15,191 145,855	10,019 109,531	11,267 68,410
80% to 90% silicon Over 90% silicon	1,892	1,800	$\bar{910}$	$\bar{226}$	214	200
Total silicon alloys ¹	223,031	152,795	100,578	230,658	152,698	108,749

See footnotes at end of table.

Table 8.—U.S. imports for consumption of ferroalloys and ferroalloy metals —Continued

		1986		7	1987	
Alloy	Gross weight (short tons)	Content (short tons)	Value (thousands)	Gross weight (short tons)	Content (short tons)	Value (thousands
Other ferroalloys:						
Ferrocerium and other cerium						
alloys	104	(³)	\$1.151	105	(3)	\$1,294
Ferromolybdenum	800	538	3,626	1.908	1.142	8,042
Ferronickel	37,902	13,056	53,672	45,391	21,136	57,481
Ferrophosphorus	(4)	(3)	2.	10,001	21,100	. 01,401
Ferrotitanium and ferrosilicon-						
titanium	681	(3)	1,421	1.425	(³)	2.521
Ferrotungsten and ferrosilicon-			-,,	1,420	()	2,021
tungsten	122	92	1,418	429	. 331	1,776
Ferrovanadium	736	594	6,423	422	342	3,777
Ferrozirconium	503	(3)	573	617	342 (³)	
Ferroalloys, n.e.c.5	3,180	(3)	17.902			765
	0,100		17,902	3,940	(3)	22,722
Total other ferroalloys1	44,028	xx	86,187	54.236	XX	98,379
				01,200	21.71	30,013
Total ferroalloys ¹	1,259,202	XX	544,632	1,178,414	XX	534,577
Metals:						
Chromium	4,485	(3)	01.045			
Manganese		(³)	21,647	4,356	(<mark>3</mark>)	24,096
Silicon (96% to 99% silicon)	9,674	(³)	9,803	8,991	(³)	9,614
Silicon (90% to 99% silicon)	8,856	(³)	8,397	2,662	(³)	2,584
Silicon (99% to 99.7% silicon)	31,263	31,006	31,507	33,448	33,144	32,960
Silicon (over 99.7% silicon)	732	(³)	25,276	820	(3)	38,754
Total ferroalloy metals ¹	55,010	XX	96,631	50,277	XX	108,008
Grand total ¹	1,314,212	XX	641,263	1,228,690	XX	642,585

XX Not applicable.
¹Data may not add to totals shown because of independent rounding.

²Manganese content only.

³Not recorded. 4Less than 1/2 unit.

⁵Principally ferrocolumbium.

Source: Bureau of the Census.

WORLD REVIEW

Demand for ferroalloys increased in many countries compared with that of 1986. Prices for ferroalloys rose steadily as supplies tightened, and a continuing production shift from traditional suppliers to developing countries was observed as plant closings occurred in some industrialized countries. Overall production was little changed.

The European Economic Community (EEC) imposed a 6.2% import duty on Yugoslav ferrosilicon and announced that it would make permanent a provisional antidumping duty of \$58 per ton against 75% ferrosilicon coming into Europe from Brazil. The EEC also imposed a \$58 per ton antidumping duty against ferrosilicon from the U.S.S.R. after imports were found to be entering Western Europe at significantly reduced prices.2 H-C-FeCr producers inside the EEC asked the European Commission to investigate possible dumping of that material by Finland.

The United States threatened to impose additional import duties on silicon-containing materials from Brazil in retaliation to Brazil's strict import regulations on U.S. computer software.3

Albania.—Albania planned to double ferrochromium production capacity as part of its 1986-90 5-year plan.

Argentina.—Silarsa S.A., a new company formed by Stein Ferroalloys S.A. and two units of the A. Johnson & Co. Group of the United States, planned a new joint venture to produce 16,000 tons per year of silicon metal, primarily for sale in the United States. Startup was scheduled for 1988.4 Electrometalúrgica Andina S.A. increased silicon metal production capacity to 11,000 tons per year by activating a new 12megavolt-ampere (MV•A) furnace at its San Juan facility.5

Australia.—The country's first silicon metal smelter, a joint venture between Pioneer Concrete Ltd. and French metals

producer Pechiney, started production in Tasmania. The plant's single 14-megawatt furnace is capable of producing 12,000 tons per year.6 Agnew Clough and the Australian Industry Development Corp. established a trust to build a 25,000-ton-per-year silicon metal production facility in the Wundowie area. Total cost of the project was projected to be A\$70 million with construction beginning in 1988.7 Tasmanian Electro Metallurgical Co. Pty. Ltd. raised the ratings of two electric furnaces to 29 MV.A and that of a third to 36 MV.A. upgrading their total capacity to about 200,000 tons per year for H-C-FeMn or 120,000 tons per year for silicomanganese.

Brazil.—Cia. de Ferro-Ligas da Bahia S.A., Brazil's only ferrochromium producer, experienced power rationing, which held back production. Production of some other ferroalloys, such as H-C-FeMn, 50% ferrosilicon, and a number of specialty alloys, also decreased owing to electric power problems from a prolonged drought. However, production of ferrosilicon overall (300,000 tons) and silicon metal (44,000 tons) both increased 8% compared with that of 1986.

Currently the world's fifth largest ferroalloy producer overall, Brazil continued to capture more of the world market for silicon products as exports of ferrosilicon and silicon metal increased nearly 25%.

Comargo Correa Metals S.A. neared completion on the construction of its new silicon metal production facility. The plant consisted of four 18-MV•A furnaces with a combined capacity of 35,000 tons per year. Startup of the facility was scheduled for April 1988. The company also planned for a second phase of the project with an equal amount of capacity to be brought on-line in 1990.8 Bozel Mineração e Ferroligas S.A. started a new 15-MV•A silicon metal furnace in Minas Gerais with the capacity to produce 9,000 tons annually.9 Several Brazilian companies planned ferrosilicon capacity expansions, including Cia. de Cimento Portland Maringa, which completed construction of a 15-MV•A furnace at its ferroalloy plant in São Paulo.10

Cia. Vale do Rio Doce (CVRD) signed an agreement with Prometal Produtos Metalúrgicos S.A. to produce ferromanganese at Paraupebas near the Azul manganese mine. CVRD would retain 40% of the ownership, with Prometal holding the remaining 60% and the U.S.S.R. supplying 50% of the \$100 million investment in equipment. The U.S.S.R. was to be repaid over a

period of 12 years with one-half of the plant's output, approximately 80,000 tons per year.

Canada.—Timminco Ltd.'s Chromasco Div. shut down two of three furnaces at its facility in Beauharnois. The company had been producing ferromanganese and ferrosilicon, but future plans include only ferrosilicon production.

China.—Silicon metal producers in China, after more than doubling their production capacity over the past several years, continued to increase exports and captured nearly one-half of the Japanese market. Exports of silicon metal to Japan were 61,704 tons, a 68% increase over those of 1986. China also significantly increased its exports of silicon metal to the United States and Western Europe. China increased production of ferrosilicon to meet increasing demand from its domestic steel industry while further expanding into world markets. Ferrosilicon shipments to Japan were nearly five times the amount reported in 1986. In January, the Chinese Government lifted a 30% export duty on ferrosilicon However, during the course of the year, strict export controls were being considered as a means of ensuring material for domestic needs.11

China Metallurgical Import and Export Corp. and Australia's Broken Hill Pty. Co. Ltd. agreed to study the feasibility of establishing a 66,000-ton-per-year manganese ferroalloy plant at Yichang. 12

Dominican Republic.—The ferronickel producer, Falconbridge Dominicana C. por A., suspended shipments in December owing to a prohibitive duty on mineral exports imposed by the Dominican Government.

France.—Pechiney Electrométallurgie considered a plan to switch production at its Dunkirk plant from ferrosilicon to either silicomanganese or charge chrome. The company decided to close its St. Beron facility owing to high energy costs, labor costs, and the availability of low-cost imports from Brazil and China. Pechiney also halted production of ferrovanadium at its Chedde plant. A decision on future production at its Laudon ferrosilicon plant was pending.13 Ferroaleaciones Españolas S.A. of Spain started construction of a new 16,500-ton-per-year ferrochromium plant at Dunkirk. Completion was expected in 1988.14

Germany, Federal Republic of.—Elektrowerk Weisweiler GmbH resumed production of L-C-FeCr, after a temporary stoppage owing to low market demand.

Greece.—Société Minière et Métallur-

gique de Larymna S.A. continued production of ferronickel despite earlier plans to restucture and start ferrochromium production.¹⁵

India.-Bulk ferroalloy (i.e., ferrochromium, ferromanganese, and ferrosilicon) production increased 10% during fiscal year 1986-87, despite electric power shortages caused by the country's worst drought in nearly 100 years. Increased demand from the stainless steel industry fueled a 40%increase in H-C-FeCr output and resulted in one company's (Ferro Alloys Corp. Ltd.) temporary suspension of exports. Indian Metals and Ferro Alloys Ltd. continued construction of a 50,000-ton-per-year ferrochromium plant and expected completion sometime in 1988. One of the country's major ferrosilicon producers, VBC Alloy Co., announced plans to diversify into specialty ferroalloy products.16

Japan.-Awamura Metal Industry Co. Ltd. and Kurimoto Iron Works Ltd. both halted ferrochromium production, which resulted in lower overall production for the year. However, increased ferrochromium imports replaced lost production. Stainless steel production exceeded that of each of the preceding 5 years and created an increased demand for ferrochromium. Consuming industries (i.e., iron and steel, chemical, and aluminum) also demanded more ferrosilicon and silicon metal than in 1986. The Japanese Ferroalloy Association reported that overall production of ferrosilicon dropped more than 25% in 1987 to 87,900 tons. However, a significant increase in imports again helped close the demand gap. Japanese silicon metal imports also increased nearly 10% compared with those of 1986. Overall production of manganese ferroalloys decreased nearly 20% to about about 467,000 tons. Nippon Mining Co. annouced that it would close its 10,000-tonper-year ferronickel smelter owing to excessive supply.17

Norway.—Elkem A/S, the world's largest silicon metal producer, announced that it would temporarily cut production at its Meraker plant from 35,000 to 19,000 tons per year owing to market conditions. Despite the cut, Elkem's share of world silicon metal production was expected to remain above 20%. Tinfos Jernverk A/S announced the permanent closure of its ferrosilicon and silicon metal plant at Notodden. Production at the Notodden plant, which had a combined ferrosilicon-silicon capacity of over 90,000 tons per year, was stopped at

the end of 1986.19

Portugal.—Cia. Portuguesa de Fornos Eléctricos S.A.R.L.'s Nelas ferrosilicon production facility, which was shut down in late 1986, remained closed pending a court decision on the company's future viability. High electrical power costs and totally depleted stocks were stated as Fornos' major obstacles to reactivating the plant.²⁰

South Africa, Republic of.—Batlhako Ferrochrome (Pty.) Ltd. started production at its new 27,500-ton-per-year ferrochromium plant in Bophuthatswana near the Ruighoek Mine. Marketing is to be handled by South African Manganese Amcor Ltd.

Middleburg Steel and Alloys Ltd. (MSA) modernized its L-C-FeCr ferrochromium production facilities at Middleburg, Transvaal. As a result of the modernization, MSA increased L-C-FeCr production at Middleburg from about 36,000 to about 50,000 tons per year. MSA also planned to increase the H-C-FeCr production capacity of its direct-current plasma arc furnace at Krugersdrop, Transvaal, from 18,000 to 40,000 tons per year.

Chromcorp Technology (Pty.) Ltd. planned to build a 120,000-ton-per-year H-C-FeCr plant near Rustenburg, Transvaal. The plant will consist of two 30-MV•A furnaces and is expected to cost \$26 million.

Rand Carbide Ltd. decided to cut ferrosilicon production by 20%, owing to an appreciation of the rand on exchange markets. The company said it would concentrate on selling its remaining production locally.²¹

Spain.—Facing high labor and power costs, ferroalloy producers entered rationalization talks with the Government. Industry sources expected the talks to result in production cutbacks and possible plant closures.²²

Swaziland.—Swazi Chrome planned a new 55,000-ton-per-year ferrochromium production facility. Construction was expected to begin once a plan for power rates could be negotiated with the Swazi Government.

Sweden.—SwedeChrome AB started production of H-C-FeCr at its Malmö facility. The company expected to reach full production, 86,000 tons per year, sometime in 1988. Ferroalloy producer, Vargön Alloys AB, was bought from Fides of Switzerland by a group of Vargön's management and Mellanfondon, a Swedish Wage Earner Fund. Company officials did not expect any significant changes in output.²³

Turkey.-Etibank neared completion of

additional H-C-FeCr capacity at its Elazig plant. The additional 55,000 tons per year will double capacity at Elazig and was all slated for export.24

U.S.S.R.—Owing to increased demand from its domestic steel industry, the Soviet Union was believed to be planning a 20% cut in ferrosilicon exports. Exports of Soviet ferrosilicon to the United States and Japan had significantly increased over the past several years.25

Venezuela.—C.V.G. Ferrosilicon de Venezuela C.A. (FESILVEN) planned to increase its ferrosilicon production capacity from 65,000 to 95,000 tons by 1988. FESIL-VEN also began the initial planning of a silicon metal project.26

Yugoslavia.—Hek Jugohrom completed the conversion of a 24-MV•A furnace from H-C-FeCr to ferrosilicon production and planned a similar conversion for a 14-MV•A furnace. On the other hand, Dalmacija Carbide and Ferro Alloy Works switched production of one furnace from ferrosilicon to H-C-FeCr, adding about 35,000 tons of capacity.

Zimbabwe.—Zimbabwe Mining Smelting Co. (Zimasco) started construction of a new induction remelting furnace that was expected to increase its H-C-FeCr capacity about 10% to 175,000 tons per year. Zimasco also planned to restart a 15,000ton-per-year H-C-FeCr furnace, which had been held in reserve for use when other furnaces were under repair. Zimbabwe Alloys Ltd. converted a furnace from ferrochromium-silicon to H-C-FeMn production.

¹Physical scientist, Branch of Ferrous Metals. ²Metal Bulletin (London). No. 7243, Dec. 10, 1987, p. 19. ³American Metal Market. V. 95, No. 232, Dec. 1, 1987,

p. 1.

Metal Bulletin (London). No. 7159, Feb. 10, 1987, p. 9.

American Metal Market. V. 95, No. 155, Aug. 11, 1987,

⁶Metal Bulletin (London). No. 7242, Dec. 7, 1987, p. 17.

^{-.} No. 7155, Jan. 27, 1987, p. 11 -. No. 7236, Nov. 16, 1987, p. 13.

⁹The Tex Report. V. 19, No. 4457, June 12, 1987, p. 7.

¹⁰______ V. 19, No. 4563, Nov. 13, 1987, p. 11.
11_____ V. 19, No. 4582, Dec. 11, 1987, p. 10.
12 Skillings' Mining Review. V. 76, No. 10, Mar. 7, 1987,

p. 6.

13 Page 19 of work cited in footnote 6.

13 Page 19 of work cited in footnote 7.

14 and 15 a ¹⁴Metal Bulletin (London). No. 7157, Feb. 3, 1987, p. 15. ¹⁵Metals Week. V. 58, No. 50, Dec. 14, 1987, p. 1. ¹⁶Metal Bulletin Monthly (London). No. 203, Nov. 1987,

p. 11. 17 American Metal Market. V. 95, No. 140, July 21, 1987,

Metal Bulletin (London). No. 7224, Oct. 5, 1987, p. 9.
 The Tex Report. V. 19, No. 4392, Mar. 10, 1987, p. 4.
 Metal Bulletin (London). No. 7247, Dec. 24, 1987, p. 11 Metal Bulletin (London). No. 124; 1902. 24, 1905. p. 11
 The Tex Report. V. 19, No. 4411. Apr. 6, 1987, p. 2.
 Metal Bulletin (London). No. 7227, Oct. 15, 1987, p. 17.
 No. 7216, Sept. 7, 1987, p. 15.
 No. 7224, Sept. 24, 1987, p. 17.
 No. 7224, Dec. 14, 1987, p. 18.

²⁶Page 11 of work cited in footnote 4.

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type¹

(Thousand short tons) 1986^p 1987e Country, furnace type,² and alloy type³ Albania: Electric furnace, ferrochromiume _ Argentina: Electric furnace: 15 17 (4) Ferromanganese___ 24 $\overline{25}$ Ferrosilicon_______ Other _____ Australia: Electric furnace:5 r₇₈ Ferromanganese_____ r₃₅ e₂₅ Silicomanganese _ _ _ _ _ _ _ _ _ e17 r20 Ferrosilicon r₁₃₃ Total7 Austria: Electric furnace, undistributed Belgium: Electric furnace, ferromanganese Brazil: Electric furnace: Ferromanganese____ r₁₆₇ r₁₅₃ Ferrosilicon______ Silicon metal 69 Ferrochromium Ferrochromium-silicon r₃₇ r_{33} Ferronickel _ _ _ _ _ _ _ _ _ r₆₀ Other __ r₆₅₈ r762 Bulgaria: Electric furnace: 17 Ferromanganese^e Ferrosilicon^e Othere Total7______ Canada: Electric furnace:e Ferromanganese8____ Silicon metal _ _ _ _ Total7_____ Chile: Electric furnace:e Ferromanganese____ ΝĄ NA Silicomanganese _ _ _ _ _ _ _ 2 Ferrosilicon______ $\dot{2}$ $\tilde{2}$ China: Furnace type unspecified: ^{e 9}
Ferromanganese⁸ r660 r220 Ferrosilicon__ r₃₀ Silicon metal Ferrochromium¹⁰ r_{1,120} 1,270 Total7______ Colombia: Electric furnace: e 12 Ferrosilicon______ Ferronickel

r31

 \tilde{r}_{33}

e₁₇₆

148

See footnotes at end of table.

Czechoslovakia: Electric furnace:

Ferrosilicon^e

Silicon metale

Ferrochromium^e Other^e 11

Ferromanganese^{e 8}

Egypt: Electric furnace, ferrosilicon _

Dominican Republic: Electric furnace, ferronickel_

Finland: Electric furnace, ferrochromium_ _ _

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type 1 —Continued

France: Blast furnace: Spiegeleisene 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Blast furnace: Spiegeleisene	300 24 216 777 1 85 705 75 29 4 24 17 149
Spiegeleisen	300 24 216 777 1 85 705 75 29 4 24 17 149
Ferromaganese	244 216 777 1 85 705 705 29 4 24 177 149
Selicon Seli	216 77 1 85 705 75 29 4 24 17 149
Ferrosilicon	216 77 1 85 705 75 29 4 24 17 149
Silicon metal 72 78 677 677 Ferrochromium 10 11 11 11 13 10 10 10	77 1 85 705 75 29 4 24 17 149 199 77
Ferrochromium ¹⁰ 22 21 1 61	1 85 705 755 29 4 24 17 149 199 77 33 44
Other ¹⁴ 117 134 107 85 Total ⁷ 757 860 797 707 German Democratic Republic: Electric furnace:	705 705 75 29 4 24 17 149 199 77
German Democratic Republic: Electric furnace: Ferromanganese	75 29 4 24 17 149 199 77
Ferromanganese	29 4 24 17 149 199 77 33 44
Ferromanganese	29 4 24 17 149 199 77 33 44
Ferrosilicon	199 77 33
Total	24 17 149 199 77 33
Total	177 149 199 77 33 44
Total	149 199 77 33 44
Blast furnace:	199 77 33 44
Blast furnace: Ferromanganese ^e 148 263 179 *206 Ferrosilicon ^e 44 77 47 *76 Electric furnace: Ferromanganese ⁸ 19 *24 *72 *72 *72 Ferrosilicon ^e 34 *39 *74 *75 Ferrochromium ^e 42 *50 *55 *76 Other ⁶¹¹ 36 *60 *762 *767	77 33 44
Ferromanganese ^e 148 263 179 *206 Ferrosilicon ^e 44 77 47 *76 Electric furnace: Ferromanganese ⁸ 19 *24 *72	77 33 44
Ferrosilicone	77 33 44
Electric furnace: 19 r24 r28 r39 Ferromanganese8 34 r39 r44 r55 Ferrosilicon6 42 r50 r55 r66 Other611 36 r60 r62 r67	44
Ferromanganese ⁸ 19 rg4 rg8 rg9 Ferrosilicon ^e 34 r39 r44 r55 Ferrochromium ^e 42 r50 r55 r66 Other ^{e11} 36 r60 r62 r67	44
Ferrosilicon* 34 39 '44 '56 Ferrochromium* 42 r50 r55 r66 Other* 36 r60 r62 r67	
Other ^{e11}	
	61
Total ⁷	66
	480
Greece: Electric furnace:	
Ferrochromium 20 36 39 42	⁶ 46
Ferronickel ^e 55 58 66 ⁶ 11	6
Total ⁷ 75 94 105 54	52
Hungary: Electric furnace: ^e	
Ferrosilicon 11 10 10 10	10
Silicon metal 2 2 2 2	2
Other 2 2 2 2	2
Total 15 14 14 14 14	14
Iceland: Electric furnace, ferrosilicon 55 67 67 74	77
India: Electric furnace: Ferromanganese 166 134 180 197	190
Ferromanganese 166 134 180 197 Silicomanganese 3 35 e1 e1	130
Ferrosilicon 54 56 44 55	55
Ferrosilicon 54 56 44 55 Silicon metal ^e 4 73 3 3	4
Ferrochromium 39 61 73 93	95
Ferrochromium-silicon 2 4 14 e11	13
Other (4) (4) e ₁ e ₁	1
Total ⁷ 269 295 316 362	358
Indonesia: Electric furnace, ferronickel 23 25 26 25	17
Italy: Electric furance:	
Ferromanganese 69 56 19 e28	28
Silicomanganese 41 80 71 e66	66
Ferrosilicon 57 78 83 e55	55
Silicon metale 15 15 15 13 Ferrochromium 13 14 64 e22	13 22
Ferrochromium 13 14 64 ^{e22} Other ¹⁵ 47 56 17 ^{e33}	33
Total ⁷ 15 242 299 270 ^e 217	217

See footnotes at end of table.

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type $^{\scriptscriptstyle 1}$ —Continued

Korea, North: Furnace type unspecified.* Perromanganese* 77	Country, furnace type, ² and alloy type ³	1983	1984	1985	1986 ^p	1987 ^e
Ferromaganese	Janes, Floatria furnacci					
Silicomanganese		499	535	487	306	6266
Ferrosilicon	Silicomanganese					
Ferronicke	Forreilien					
Ferronicke	F10					6001
Total	Formaniakal					6004
Total		199	239			*224
Korea, North: Furnace type unspecified.* Perromanganese* 77	Other	-12	-14	14	11	
Ferromanganese* 777 77 77 77 77 77 77 77 77 77 77 77 7	Total ⁷ =	1,387	1,564	1,531	1,218	⁶ 1,073
Ferrosilicon 33 33 33 33 33 33 33 33 33 33 33 33 33	Korea, North: Furnace type unspecified: 9					
Other	Ferromanganese					77
Total	Ferrosilicon					
Korea, Republic of Electric furnace: Ferromanganese	Other	22	22	22	22	22
Ferromanganese	Total	132	132	132	132	132
Ferrosilicon		* * * * * * * * * * * * * * * * * * * *		1 1 1		
Other 48 55 60 73 *10 Total ⁷ 142 159 167 167 *617 Mexico: Electric furnace: Ferromanganese 155 177 169 172 *617 Ferrosilicon 27 25 30 19 *92 Ferrosilicon 27 25 30 19 *92 Perrochromium 3 8 7 3 *6 Other 2 22 3 2 *6 Total ⁷ 232 258 253 263 *29 New Caledonia: Electric furnace, ferronickel* 193 125 155 *144 12 Norway: Electric furnace: Ferromanganese 312 314 237 226 20 Silicomanganese 215 310 267 271 28 39 39 Ferrosilicon 407 482 425 389 39 39 1,00		58	65	68	59	664
Total	Ferrosilicon	36	39	38	34	⁶ 14
Mexico: Electric furnace: Ferromanganese	Other	48	55	60	73	⁶ 100
Ferromanganese	Total ⁷	142	159	167	167	⁶ 178
Ferromanganese	Mexico: Electric furnace:					
Silicomanganese		155	177	169	179	6178
Ferrosilicon						
Ferrochromium						
Other 2 2 3 2 6 Total ⁷ 232 258 253 263 629 New Caledonia: Electric furnace: 193 125 155 *144 12 Norway: Electric furnace: Ferromanganese 312 314 237 226 20 Silicom anganese 215 310 267 271 28 Ferroslicon 407 482 425 389 39 Silicon metal ⁶ 485 100 112 110 11 Ferrochromium-silicon ⁶ (4) -						67
New Caledonia: Electric furnace, ferronickel 193 125 155 144 12						6
New Caledonia: Electric furnace, ferronickel 193 125 155 144 12			250			600.
Norway: Electric furnace:	New Caledonia: Electric furnace, ferronickel ^e					127
Ferromanganese						
Silicomanganese		219	21/	997	996	200
Ferrosilicon	Silicomanganese					
Silicon metale	Ferrosilican					
Perrochromium-slicon	Silicon motole					
Perrochromium-silicon	Formochumium e	00		112	110	110
Other 7 4 3 3 Total ⁷ 1,028 1,215 1,045 998 1,000 Peru: Electric furnace: Ferromanganese (*) - (*) </td <td>Former miner silican e</td> <td>(4)</td> <td></td> <td></td> <td></td> <td></td>	Former miner silican e	(4)				
Total Tota	CAL e 14					3
Peru: Electric furnace: (4)	Other	7	4	3	3	3
Ferromanganese	Total ⁷	1,028	1,215	1,045	998	1,006
Ferrosilicon	Peru: Electric furnace:					
Total Tota						(*)
Philippines: Electric furnace: Ferrosilicone	Ferrosilicon	(4)		·	(4)	(4)
Ferrosilicone	Total ⁷	(4)			1	1
Ferrosilicone	Philippines: Electric furnace:	· · · · · · · · · · · · · · · · · · ·				
Ferrochromium	Ferrosilicon ^e	22	20	22	22	
Poland: Blast furnace: Spiegeleisen	Ferrochromium					
Blast furnace: Spiegeleisen	Total	52	73	78	e ₈₃	
Blast furnace: Spiegeleisen	Deland.					
Spiegeleisen 4 4 3 e3 Ferromanganese 93 99 88 94 9. Electric furnace: 8 8 94 9. Ferromanganese se serromical for ferrosilicon ferromical ferrom						
Ferromanganese 93 99 88 94 9. Electric furnace: Ferromanganese 8 53 53 54 54 55 Ferromanganese 9 57 56 57 56 55 Ferrosilicon 6 11 11 12 12 12 Silicon metale 11 11 12 12 12 Ferrochromium 6 53 53 54 54 56 Other 8 11 19 19 18 18 11		1	1	Q	e ₂	4
Electric furnace: Ferromanganese e 8 53 53 54 54 55 Ferrosilicon e 10 57 56 57 56 56 56 Silicon metal e 11 11 11 12 12 11 Ferrochromium 5 3 53 53 54 54 55 Other 11 19 19 19 18 18 18		03	og .			
Ferromanganese 8 53 58 54 54 55 Ferrosilicon 6 57 56 57 56 56 51 Silicon metal 6 11 11 12 12 12 11 Ferrochromium 6 53 53 54 54 54 Other 6 11 19 19 18 18 18	Floatria furmaca:	50	00	00	74	
Other 12 19 19 18 18 18	Ferromanganese ^e 8	53	59	54	54	5.4
Other 19 19 18 18 19	Ferrosilicon e					٠.
Other 19 19 18 18 19	Silicon motole					
Other 19 19 18 18 19	Sincon metal					
	rerrochromium					53
Total ⁷ 290 295 287 ^e 291 28:	Other ''	19	19	18	18	18
	Total ⁷	290	295	287	e ₂₉₁	289

See footnotes at end of table.

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type $^{\scriptscriptstyle 1}$ —Continued

Country, furnace type, ² and alloy type ³	1983	1984	1985	1986 ^p	1987 ^e
Portugal: Electric furnace:			. •		
Ferromanganese 17	44	51	46	22	28
Ferromanganese 17 Silicomanganese 17	20	26	28	11	17
Ferrosilicon	69	10	10	6	- 5
Silicon metal ^e Other	⁶ 11 (⁴)	$\frac{12}{\binom{4}{1}}$	12 (4)		6 (4)
-					
Total ⁷	85	99	96	46	55
Romania: Electric furnace: ^e					
Ferromanganese	.88	96	88	90	. 89
Silicomanganese	42	45	43	44	43
FerrosiliconSilicon metal	53 4	57 5	55 5	56 5	55 5
Ferrochromium	46	50	49	49	46
Total ⁷	234	253	240	244	239
	204				
South Africa, Republic of: Furnace type unspecified: ⁹				and the second of the second o	
Ferromanganese	184	261	365	372	380
Silicomanganese Ferrosilicon	144	199 99	287 83	334 92	303 94
Silicon metal	55 30	99 38	83	92 39	39 39
Ferrochromium	744	956	939	959	1,024
Ferrochromium-silicon	20	30	- 6	6	6
Other ¹⁸	1	(4)	(4)	1	1
Total ^{e 7}	r _{1,178}	r _{1,583}	r _{1,720}	1,802	1,846
Spain: Electric furnace:					
Ferromanganese Silicomanganese Silicomanganese	94	94	95	95	99
Silicomanganese	77	77	77	77	77
rerrosincon	68	66	67	67	66
Silicon metal	19	66	68	68	77
Ferrochromium ^e	15	15	19	19	22
Other ^e	6	1	4	4	6
Total ⁷ 11	279	321	331	e331	347
Sweden: Electric furnace:				. Description	
Ferrosilicon	21	26	31	e 28	33
Silicon metal	22	22	e ₂₂	e ₂₂	22
Ferrochromium	132	148	149	r ₁₄₃	143
Ferrochromium-silicon	20	34	29	e28	28
Other	1	1	(4)	(4)	(4)
Total ¹¹	197	230	232	e221	226
Switzerland: Electric furnace: ^e				, , , , ,	
Ferrosilicon	2	3	3	3	3
Silicon metal	2	2	2	2	. 2
Total	4	5	5	5	5
=					
Taiwan: Electric furnace:					⁶ 19
Taiwan: Electric furnace: Ferromanganese	24	22	20	22	
Ferromanganese	24 20	22 25	20 25	22 23	⁶ 21
					⁶ 21 ⁶ 8
FerromanganeseSilicomanganese	20	25	25	23	
Ferromanganese Silicomanganese Ferrosilicon Total ⁷	20 20	25 26	25 19	23 . 15	68
Ferromanganese	20 20 65	25 26 73	25 19 64	23 15 61	6 ₈
Ferromanganese Silicomanganese Ferrosilicon Total ⁷	20 20	25 26	25 19	23 15 61	68 647 64
Ferromanganese Silicomanganese Ferrosilicon Total ⁷ Turkey: Electric furnace: Ferrosilicon Ferrosilicon Ferrosilicon	20 20 65 5 33	25 26 73 78 53	25 19 64 8 e ₅₃	23 15 61 8 e ₅₅	⁶ 8 ⁶ 47 ⁶ 4 ⁶ 10
Ferromanganese Silicomanganese Ferrosilicon Total ⁷ Turkey: Electric furnace: Ferrosilicon ^e Ferrochromium Total	20 20 65	25 26 73	25 19 64	23 15 61	⁶ 8 ⁶ 47 ⁶ 4 ⁶ 10
Ferromanganese Silicomanganese Perrosilicon Total ⁷ Turkey: Electric furnace: Ferrosilicon ⁶ Ferrochromium Total Total Total Total	20 20 65 5 33	25 26 73 78 53	25 19 64 8 e ₅₃	23 15 61 8 e ₅₅	⁶ 8 ⁶ 47 ⁶ 4 ⁶ 10
Ferromanganese Silicomanganese Silicomanganese Ferrosilicon Total ⁷ Turkey: Electric furnace: Ferrosilicon ⁶ Ferrochromium Total U.S.S.R.: Blast furnace:	5 33 38	25 26 73 78 53 61	e ₅₃ e ₆₁	23 15 61 8 e55	647 647 64 610 614
Ferromanganese Silicomanganese Perrosilicon Total ⁷ Turkey: Electric furnace: Ferrosilicon ⁶ Ferrochromium Total Total Total Total	20 20 65 5 33	25 26 73 78 53	25 19 64 8 e ₅₃	23 15 61 8 e ₅₅	68 647 64 610

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type $^{\scriptscriptstyle 1}$ —Continued

Country, furnace type, ² and alloy type ³	1983	1984	1985	1986 ^p	1987 ^e
U.S.S.R. —Continued					
Electric furnace: 19			1.0		
Ferromanganese ^e	551	661	744	772	772
Silicomanganese ^e	187	198	209	220	220
Ferrosilicon ^e Silicon metal ^e	794 70	827 70	827 66	882 72	937 72
	457	463	463	468	474
Ferrochromium ^e Ferrochromium-silicon ^e	13	13	13	14	15
Other 14	250	250	254	265	265
Total ⁷	2,984	3,144	3,237	3,354	3,415
United Kingdom:					
Blast furnace, ferromanganese	91	83	85	e ₈₃	88
Electric furnace, undistributed	' 14	14	11	11	11
Total ⁷	106	97	96	^e 94	99
United States: Electric furnace: ²⁰		, 			
Ferromanganese	86	²¹ 171	²¹ 154	²¹ 117	6 21113
Silicomanganese	W	(²²)	(²²)	(22)	(²²)
Ferrosilicon	314	490	442	339	⁶ 356
Silicon metal	122	141	121	124	⁶ 147
Ferrochromium	20	2395	²³ 110	²³ 105	6 23118
Ferrochromium-silicon ²⁴	16 198	(²⁵) 190	(²⁵) 151	(²⁵) 130	(²⁵) 150
Other	130	190		130	
Total ⁷ Uruguay: Electric furnace, ferrosilicon	757 (4)	1,088 (4)	977 (4)	816 (4)	884 (4)
Venezuela: Electric furnace:					
Ferromanganese	2	2	e ₂		
Silicomanganese	10	10	24	32	31
Ferrosilicon	51	49	67	56	55
Total ⁷	63	61	94	88	86
Yugoslavia: Electric furnace:					
Ferromanganese	44	49	r e ₄₂	r e ₄₄	44
Silicomanganese	29	41	r e74	r e ₇₂	72
Ferrosilicon	86	104	e ₁₀₃	99	105
Silicon metal	29	31	r e31	r e39	-39
Ferrochromium	70	69	r e ₅₂	r e ₅₀	- 50
Ferrochromium-silicon	7	12	r e ₁₀	r e11	11
Other	12	12	e ₁₂	17	17
Total ⁷	^r 276	^r 318	325	331	336
Zimbabwe: Electric furnace:				_	
Ferromanganese	2	2	2	• ₂	2
Ferrosilicon	30	47	59	e ₅₅	55
Ferrochromium	174	196	172	e ₁₇₁	171
Total ⁷	207	245	233	e228	228
Grand total ⁷	r _{14,339}	^r 16,477	16,432	16,221	16,364
Of which:					
Blast furnace:					
Spiegeleisen ²⁷	60	60	59	59	59
Ferronalise 17	1,235	1,413	1,325	1,291	1,288
Ferrosilicon	44	77	47	76	77
Total blast furnace	1,339	1,550	1,431	1,426	1,424
Electric furnace:9					
Ferromanganese ²⁸	r _{2,823}	r3,154	3,129	3,058	2,992
Silicomanganese ²⁸ ²⁹ Ferrosilicon	r _{1.349}	r _{1.642}	1,650	1,643	1,620
Ferrosilicon	r _{3,278}	r _{3,713}	3,647	3,533	3,574
Silicon metal	^r 582	^r 686	680	706	763
Ferrochromium ³⁰ Ferrochromium-silicon ²⁴ ³⁰	r _{2,629}	r _{3,119}	3,243	3,171	3,141
Ferrochromium-silicon ²⁴ 30	r ₆₈	101	82	80	82
Ferronickel	r497	r ₆₀₂	643	554	566
Other ³¹ Undistributed	^r 940 29	^r 995 28	$\frac{912}{24}$	917 24	991 24
_					
Total electric furnace	^r 12,195	^r 14,040	14,010	13,686	13,753

See footnotes at end of table.

Table 9.—Ferroalloys: World production, by country, furnace type, and alloy type¹ -Continued

(Thousand short tons)

Country, furnace type, ² and alloy type ³	1983	1984	1985	$1986^{\mathbf{p}}$	1987 ^e
Furnace type unspecified: Ferromanganese ⁹	^r 801	^r 878	982	1,109	1,1

^rRevised. NA Not available. W Withheld to avoid disclosing company proprietary ^eEstimated. Preliminary. data; included with "Other

¹Table includes data available through July 15, 1988.

²To the extent possible, ferroalloy production of each country has been separated according to the furnace type from which production is obtained; production derived from metallothermic operations is included with electric-furnace

which production is obtained; production derived from metallothermic operations is included with electric-furnace production.

To the extent possible, ferroalloy production of each country has been separated so as to show individually the following major types of ferroalloys: spiegeleisen, ferromanganese, silicomanganese, ferrosilicon, silicon metal, ferrochronium, ferrorchronium, silicon, and ferronickel. Ferroalloys other than those listed that have been identified specifically in sources, as well as those ferroalloys not identified specifically but which definitely exclude those listed previously in this footnote, have been reported as "Other." For countries for which one or more of the individual ferroalloys listed separately in this footnote have been inseparable from some other ferroalloys owing to the nation's reporting system, such deviations are indicated by individual footnotes. In instances where ferroalloy production has not been subdivided in sources, and where no basis is available for estimation of individual component ferroalloys, the entry has been reported as "Undistributed."

Hoss than 1/2 unit as "Undistributed.

Less than 1/2 unit.

Data for year ending Nov. 30 of that stated.

⁶Reported figure.

⁷Data may not add to totals shown because of independent rounding.

⁸Includes silicomanganese

Although furnace type has not been specified for any ferroalloy production for China, North Korea, and the Republic of South Africa, all output of these countries has been included under "Electric furnace" (and metallothermic) output except for their production of ferromanganese, which is reported separately.

10 Includes ferrochromium-silicon, if any was produced.

¹¹Includes ferrochromium-silicon and ferronickel, if any was produced. ¹²Colombia is reported to produce ferromanganese also, but output is not reported quantitatively and no basis is available for estimation.

¹³Includes silicospiegeleisen.

14Includes ferronickel, if any was produced.

¹⁵Series excludes calcium silicide

¹⁶Includes calcium-silicon, ferrotungsten, ferromolybdenum, ferrovanadium, ferrocolumbium, and other ferroalloys.

¹⁷Estimated figures based on reported exports and an allowance for domestic use.

18 Ferrovanadium only; other minor ferroalloys may be produced, but no basis is available for estimation.

¹⁹Soviet production of electric furnace fermalloys is not reported; estimates provided are based on crude source material production and availability for consumption (including estimates) and upon reported ferroalloy trade, including data from trading partner countries.

U.S. production of ferronickel cannot be reported separately in order to conceal corporate proprietary information.

21U.S. output of ferromanganese for 1984-87 includes silicomanganese and manganese metal 22U.S. output of silicomanganese for 1984-87 included with "Ferromanganese."

23U.S. output of ferrochromium for 1984-87 includes ferrochromium-silicon, chromium briquets, exothermic chromium additives, other miscellaneous chromium alloys, and chromium metal.

²⁴U.S. output of ferrochromium-silicon includes chromium briquets, exothermic chromium additives, other miscellaneous chromium alloys, and chromium metal.

25U.S. output of ferrochromium-silicon for 1984-87 included with "Ferrochromium."

²⁶Includes ferronickel.

²⁷Spiegeleisen for the Federal Republic of Germany is included with "Blast furnace ferromanganese."

²⁸Ferromanganese includes silicomanganese (if any was produced) for countries carrying footnote 8 on "Ferromanganese" data line.

²⁹Includes silicospiegeleisen for France.

³⁰Ferrochromium includes ferrochromium-silicon (if any was produced) for countries carrying footnote 10 on "Ferrochromium" data line.

³¹Other includes ferronickel production for France, Norway, the U.S.S.R., and the United States.

Fluorspar

By David E. Morse¹

In the United States, fluorspar was shipped by one major producer and two smaller producers that supplied less than 10% of the Nation's requirements. Supplementing fluorspar as a domestic source of fluorine was byproduct fluosilicic acid production from some phosphoric acid and hydrofluoric acid (HF) producers. Imports of fluorspar continued to supply most of the United States requirements; domestic consumption and imports both increased slightly in 1987.

Domestic Data Coverage.—Domestic production and consumption data for fluorspar are developed by the Bureau of Mines from four separate, voluntary surveys of U.S. operations. Surveys are conducted to obtain fluorspar mine production and shipments, fluosilicic acid production, and fluorspar

briquet consumption. Of the five fluorspar mining operations to which a survey request was sent, 100% responded. Production statistics in table 1 are withheld to protect company proprietary data. Of the 13 fluosilicic acid producers, 100% responded, representing 100% of the quantity reported. Of the five briquet producers, 80% responded, representing 89% of the quantity reported. The consumption survey was sent to approximately 70 operations quarterly and to 40 additional operations annually. Of the operations surveyed quarterly, 88% responded. Of the operations surveyed on an annual basis, 70% responded. Together, quarterly and annual responses represented 83% of the apparent consumption data shown in table 1.

Table 1.—Salient fluorspar statistics1

	•						
	1983	1984	1985	1986	1987		
United States: Production: Finished (shipments)eshort tons Value, f.o.b. minethousands Exportsshort tons Valuethousands Imports for consumptionshort tons Value2thousands Consumption, reportedshort tons Consumption, apparent3do Stocks, Dec. 31: Domestic mines: Finisheddo Consumerdo World: Productiondo	61,000 \$10,000 9,236 \$962 453,314 \$47,032 564,187 613,705 W 99,253 r4,667,843	72,000 W 12,266 \$1,292 703,711 \$65,241 752,581 742,431 W 120,267 r5,287,206	66,000 W 9,671 \$1,063 552,959 \$49,639 567,623 682,965 W 46,590 5,426,275	78,000 W 16,215 \$1,801 552,785 \$45,675 578,837 571,288 W 89,872 P5,231,914	70,000		

Estimated. Preliminary. Revised. W Withheld to avoid disclosing company proprietary data.

Does not include fluosilicic acid (H₂SiF₆) or imports of hydrofluoric acid (HF) and cryolite. ²C.i.f. U.S. port.

S. primary and secondary production plus imports, minus exports, plus adjustments for Government and industry

Legislation and Government Programs.—At yearend, the National Defense Stockpile fluorspar inventory was unchanged from yearend 1986 and remained well below the stockpile goals of 1.4 million short tons for acid grade and 1.7 million tons for metallurgical grade. Depletion allowances against Federal taxes of 22% and 14%, respectively, remained in effect for domestic

and foreign production by U.S. companies.

In September, the United States joined 22 other nations in the signing of a protocol in Montreal, Canada, that would freeze and later reduce world production and consumption of chlorofluorocarbons. U.S. Senate debate discussions concerning the Montreal protocol were scheduled for early 1988.

DOMESTIC PRODUCTION

Illinois remained the leading producing State, accounting for over 90% of all U.S. shipments. Data on shipments of fluorspar by State and grade are withheld to avoid disclosing company proprietary data.

Ozark-Mahoning Co., the Nation's largest fluorspar producer and a subsidiary of Pennwalt Corp., operated two mines and a flotation plant in Pope and Hardin Counties, IL. Ozark-Mahoning also dried imported fluorspar to supplement its production. Hastie Trucking and Mining Co. operated near Cave-In-Rock, IL. Inverness Mining Co., a former producer, dried imported fluorspar at its facilities at Cave-In-Rock, IL, and East Liverpool, OH, for sale primarily to consumers in the ceramic industry. J. Irving Crowell, Jr. & Son produced and shipped metallurgical-grade fluorspar from

its Crowell-Daisy Mine in Nye County, NV.

Reported shipments of fluorspar briquets for use in steel furnaces increased slightly to approximately 90,000 tons valued at \$12.7 million. Fluorspar briquets were produced by two plants owned by Cameto Inc., one plant owned by Mercier Corp., one plant owned by National Briquetting Co., and one plant owned by Oglebay Norton Co. Oglebay Norton also dried, packaged, and shipped imported ceramic- and acid-grade fluorspar.

Nine plants processing phosphate rock for the production of phosphoric acid and one plant producing HF sold or used 50,000 tons of byproduct fluosilicic acid, which was the equivalent to 88,600 tons of fluorspar. Three fluosilicic acid producer plants were idle in 1987.

CONSUMPTION AND USES

Acid-grade fluorspar, containing greater than 97% calcium fluoride (CaF₂), was used primarily as a feedstock in the manufacture of HF. Ceramic-grade fluorspar, containing 85% to 95% CaF₂, was used for the production of glass and enamel, to make welding rod coatings, and as a flux in the steel industry. Metallurgical-grade fluorspar, containing 60% to 85% or more CaF₂, was used primarily as a fluxing agent by the steel industry.

Reported domestic consumption of both acid- and subacid-grades increased compared with that of 1986. The HF and steel industries accounted for 73% and 22%, respectively, of reported consumption. According to the American Iron and Steel Institute (AISI), domestic production of raw steel increased from the revised quantity of 81.6 million tons in 1986 to 89.2 million tons in 1987. A comparison of the AISI data with fluorspar consumption data collected by the Bureau of Mines from the U.S. steel industry shows, on the average, a decreasing rate of fluorspar consumption per ton of

raw steel produced during 1985-87. In 1987, AISI combined raw steel output from open hearth and basic oxygen furnaces; a calculation of the rate of fluorspar consumption from these types of furnaces is no longer possible.

Type of furnace	Fluors	par consu	mption
	(pound	ls per sho	rt ton)
Type of furnace	1985	1986 ^r	1987
Open hearth	10.78	13.51	NA
Basic oxygen	2.68	2.95	NA
Electric	2.08	2.03	1.91
Industry average	3.08	3.03	2.96

^rRevised. NA Not available.

In the ceramic industry, fluorspar was used as a flux and as an opacifier in the production of flint glass, white or opal glass, and enamels. Fluorspar was used in the manufacture of glass fibers, aluminum, cement, and brick, and was also used in the melt shop by the foundry industry.

Five companies reported fluorspar con-

sumption for the production of HF. The U.S. Department of Commerce, Bureau of the Census, reported that anhydrous, technical, and aqueous HF, 100% basis, "produced and withdrawn from the system," was nearly 212,900 short tons, compared with the revised 1986 quantity of 252,809 tons.

HF was used to produce synthetic cryolite and aluminum fluoride for the aluminum industry, in petroleum alkylation, in uranium and rare metals processing, for glass etching, and to manufacture herbicides and fluoride salts. The largest use of HF was for the production of a wide range of fluorocarbon chemicals including fluoropolymers and chlorofluorocarbons. Chlorofluorcarbons were produced by five companies. According to data from the U.S. International Trade Commission, production of trichlorofluoromethane (F-11) increased 12% to 112,700 short tons; dichlorodifluoromethane (F-12) increased 14% to 184,200 tons; and chlorodifluoromethane (F-22) increased 5% to 142,000 tons, compared with revised 1986 figures.

The manufacture of synthetic cryolite and aluminum fluoride for use in aluminum

reduction cells was a major use of HF. An estimated 40 to 60 pounds of fluorine was consumed for each ton of aluminum produced. Aluminum fluoride was used by the ceramic industry for some body and glaze mixtures and in the production of specialty refractory products. It was used in the manufacture of aluminum silicates and in the glass industry as a filler.

HF was consumed in the manufacture of uranium tetrafluoride that was used in the process of concentrating uranium isotope 235 for use as nuclear fuel and in fission explosives. It was also used in stainless steel pickling, petroleum alkylation, glass etching, oil and gas well treatment, as a cleaner and etcher in the electronics industry, and in the manufacture of a host of fluorine chemicals used in dielectrics, metallurgy, wood preservatives, pesticides, mouthwashes, decay-preventing dentifrices, plastics, and water fluoridation.

Fluosilicic acid was used primarily in water fluoridation, either directly or after processing to sodium silicofluoride, and to make aluminum fluoride for the aluminum industry.

Table 2.—U.S. consumption (reported) of fluorspar, by end use (Short tons)

End use or product	thai calcium	ning more n 97% n fluoride aF ₂)	more t calciun	ning not han 97% n fluoride aF ₂)	Т	otal
	1986	1987	1986	1987	1986	1987
Hydrofluoric acid (HF) Glass and fiberglass. Enamel and pottery Welding rod coatings Primary aluminum and magnesium Iron and steel castings Open-hearth furnaces Basic oxygen furnaces Electric furnaces Other	420,180 1,230 W 9,100 W 	438,803 2,219 W 6,883 W W 391 W 1,468 1,516	897 2,298 2,178 5,827 22,528 70,904 29,121 711	9,597 1,168 918 W 4,548 21,966 77,203 30,937 751	420,180 2,127 2,298 11,278 W 5,827 22,528 70,904 30,377 13,318	438,803 11,816 1,168 7,801 W 4,548 22,357 77,203 32,405 2,267
Total Stocks, Dec. 31	444,373 70,304	451,280 23,976	134,464 19,568	147,088 9,435	578,837 89,872	598,368 33,411

W Withheld to avoid disclosing company proprietary data; included with "Other."

Table 3.—U.S. consumption (reported) of subacid grades of fluorspar in 1987, by end use (Short tons)

			Containing not more than 97% calcium fluoride (CaF ₂)			
	End use or product		Flotation concentrates	Lump or gravel	Briquets or pellets	
Chemicals and allied pro	ducts: Welding fluxes		178	740		
Glass, ceramic, brick: Glass Other glass and clay j	 products		9,563 1,168	34		
Primary metals Iron and steel (found)	ries)		122	21,844		
Steel mills: Basic oxygen fur Electric furnaces	naces		5,458 7,730 	23,915 18,415 4,235 751	47,830 4,792 313	
Total			24,219	69,934	52,935	

STOCKS

Fluorspar consumer stocks decreased significantly. Producer stock data are withheld

to avoid disclosing company proprietary information.

PRICES

Domestic producer prices for all grades of fluorspar and fluorspar briquets reported in the Engineering and Mining Journal remained at 1986 levels. These price quotations serve as a general guide but do not necessarily reflect actual transactions.

Yearend price quotations from the Chemical Marketing Reporter (CMR) were

\$0.6875 per pound for anhydrous HF and \$43.00 per 100 pounds for aqueous HF, 70%, in tanks; both prices were unchanged from yearend 1986. The CMR yearend price quotation for cryolite was \$510 per ton and for fluosilicic acid, 100% basis, in tanks, was \$250 per ton.

Table 4.—Prices of domestic and imported fluorspar

(Dollars per short ton)

	1986	1987
Domestic, f.o.b. Illinois-Kentucky:		
Metallurgical: 70% effective CaF ₂ briquets	125	125
Ceramic, variable calcite and silica:		100
88% to 90% CaF ₂	100	100
95% to 96% CaF2	170	170
97% CaF ₂	165-175	165 -175
Acid, dry basis, 97% CaF ₂ :		
Carloads	173	173
88% effective CaF ₂ briquets	180	180
European and South African: Acid, term contracts	r ₁₂₇₋₁₆₃	92.45- 95.25
Mexican: ²		
Metallurgical:		
70% effective CaF ₂ , f.o.b. vessel, Tampico	80.0	
70% effective CaF ₂ , f.o.b. cars. Mexican border	75.	
Acid, bulk: 97 + %, Mexican border	108.	33 108.33

rRevised.

Source: Engineering and Mining Journal, Dec. 1986 and 1987.

¹C.i.f. east coast, Great Lakes, and gulf ports.

²U.S. import duty, insurance, and freight not included.

FOREIGN TRADE

According to the Bureau of the Census, U.S. exports of fluorspar decreased by over two-thirds and had an average value of \$119 per ton. Synthetic cryolite exports, with 80% going to Canada, decreased to 9,200 tons, representing 11,100 tons of equivalent fluorspar, valued at \$2.2 million. According to the reported data, the average export value for synthetic cryolite was \$237 per ton.

Imports for consumption of fluorspar increased slightly with Mexico remaining the most important supplier. Both acid and metallurgical grade were imported from China, which did not supply any fluorspar to the United States in 1986. Italy, a traditional supplier of acid-grade material, was absent from the U.S. market. Substantial quantities of acid-grade material from Canada appeared for the first time. The average unit value, in dollars per ton, of acid- and

subacid-grade fluorspar, was \$89.52 and \$50.55, respectively.

U.S. import duties remained in effect for all grades of fluorspar. The duty was \$1.875 per ton for acid grade and 13.5% ad valorem for ceramic- and metallurgical-grade material.

Imports for consumption of HF decreased slightly to a quantity equivalent to approximately 170,000 tons of fluorspar with an average value of \$837 per ton. Imports of synthetic and natural cryolite had an average c.i.f. value of \$565 per ton and represented 16,700 tons of equivalent fluorspar.

The United States also imported many fluorochemicals, including ammonium bifluoride, chlorodifluoromethane, dichlorodifluoromethane, fluorocarbon polymers, hexafluoropropylene, polytetrafluoroethylene, and trichlorofluoromethane.

Table 5.—U.S. exports of fluorspar, by country

			 19	86	198	37
	Country		 Quantity (short tons)	Value	Quantity (short tons)	Value
Australia Canada Dominican Republic Ghana Venezuela			 19 14,969 1,186 21 20	\$1,914 1,546,600 245,361 3,990 3,177	2,036 458 211 155	\$216,373 65,412 31,636 26,894
Total		 	 16,215	1,801,042	2,860	340,315

Source: Bureau of the Census.

Table 6.—U.S. imports for consumption of fluorspar, by country and customs district

	19	86	1987		
Country and customs district	Quantity (short tons)	Value ¹ (thousands)	Quantity (short tons)	Value ¹ (thousands	
CONTAINING MORE THAN 97% CA	LCIUM FLUO	RIDE (CaF ₂)			
ustria: San Francisco	1 1		1	\$1	
anada:	4	\$2	9 991	298	
TT			3,821 2,312	295	
New Orleans	4	2	6,134	594	
Total	- 4				
hina: Houston		122	29,686	2,436	
New Orleans	<u> </u>	<u> </u>	5,716	459	
Total	100	·	35,402 157	2,895 57	
rance: Houstonermany, Federal Republic of: Milwaukee	138 3	55 2	10		
ermany, redemi republic of Milwaukee					
Kenya: Houston	6,468	878	827	714	
New Orleans	1,456	135	1,764	100	
Total	7,924	1,013	2,591	820	
fexico:					
Roltimore	455 92,982	8,625	92,229	7,19	
El Paso			14,446 49,360	1,14 4,70	
Laredo	84,324 16,284	7,384 1,469	21,290	1,75	
New Orleans	10,201	-,-:-	56 709	5	
Philadelphia					
Total	194,045 16,132	17,505 1,405	178,090 29,838	14,85 2,68	
Morocco: New Orleans	10,132	1,400	20,000		
South Africa, Republic of:	90 909	2,422	16,625	1,33	
Houston New Orleans	28,292 138,554	12,173	163,037	14,96	
Philadelphia	14,732	1,432			
Total	181,578	16,027	179,662	16,29	
Spain:		000			
Cleveland	6,562 22,957	880 2,021	19,912	2,24	
New Orleans			19,912	2,24	
Total	29,519	2,901			
Grand total	429,343	38,910	451,796	40,44	
CONTAINING NOT MORE THAN 97%	CALCIUM F	LUORIDE (Cal	F ₂)		
Brazil: New York	9	8			
Canada: Detroit	242	15		_	
Detroit Seattle			. 34		
Total	. 242	15	34		
China: New Orleans			6,901	4	
T. 1		3 9	71		
Italy:	_ 28	·	23		
Italy: New York			94		
New York Miami	289	3			
New York	283	3 9			
New York Miami Total Malaysia: Laredo	283		7		
New York Miami Total Malaysia: Laredo Mexico: Baltimore	14'		_ 6,644	. 4	
New York Miami Total Malaysia: Laredo Baltimore Detroit Pl Pool	2,21	7 139 1 510	6,644 9 0 4,631	. 4	
New York Miami Total Malaysia: Laredo Mexico: Baltimore Detroit El Paso	2,21 8,41 22,24	7 139 1 510 1 1,00°	6,644 9 0 4,631 7 15,395	. 4	
New York Miami Total Malaysia: Laredo Mexico: Baltimore Detroit El Paso Laredo New Orleans	2,21' - 8,41 - 22,24 - 78,80	7 139 1 510 1 1,000 8 4,433	6,644 9 0 4,631 7 15,395 3 92,124 7 8,255	2 5 6 5,6	
New York Miami Total Malaysia: Laredo Mexico: Baltimore Detroit El Paso	2,21' - 8,41 - 22,24 - 78,80	7 139 1 510 1 1,000 8 4,433	6,644 9 6,31 7 15,395 3 92,124	2 5 6 5,6	

Table 6.—U.S. imports for consumption of fluorspar, by country and customs district—Continued

	19	986	1987		
	Country and customs district	Quantity (short tons)	Value ¹ (thousands)	Quantity (short tons)	Value ¹ (thousands
	CONTAINING NOT MORE THAN 97% CA	LCIUM FLUORII	E (CaF ₂)—Co	ntinued	
United Kingdom: Boston Houston		1,346 1	\$ 7	-3	
Total		1,347	10	3	7
Grand tota	d	123,442	6,765	134,115	7,987

¹Customs, insurance, and freight (c.i.f.) value at U.S. port.

Source: Bureau of the Census.

Table 7.—U.S. imports for consumption of hydrofluoric acid (HF), by country

Country	19	36	1987		
	Quantity (short tons)	Value ¹ (thousands)	Quantity (short tons)	Value ¹ (thousands)	
CanadaColombia	35,433	\$33,448	37,833 20	\$34,989 22	
France Germany, Federal Republic of Israel	$\bar{362}$	380	22 124	14 141	
Japan Mexico United Kingdom	5,214 73,086 701	6,303 58,539 893	3,061 72,340 281	16 2,458 57,262 309	
Total	114,796	² 99,561	113,698	95,211	

Source: Bureau of the Census.

Table 8.—U.S. imports for consumption of cryolite, by country

Country	199	36	1987		
	Quantity (short tons)	Value ¹ (thousands)	Quantity (short tons)	Value ¹ (thousands)	
Canada China Denmark Germany, Federal Republic of Italy Japan Netherlands United Kingdom Other	3,929 50 4,032 144 2,826 137 40 186	\$2,025 23 2,270 99 2,308 97 21 116	2,372 1,163 4,666 163 1,406 3,029 210	\$1,215 550 2,176 110 857 2,324 129	
Total	11,344	6,959	13,605	7,693	

¹Customs, insurance, and freight (c.i.f.) value at U.S. port.

Source: Bureau of the Census.

¹Customs, insurance, and freight (c.i.f.) value at U.S. port. ²Data do not add to total shown because of independent rounding.

WORLD REVIEW

World fluorspar production and consumption were relatively unchanged from those of 1986. China, Mexico, Mongolia, and the U.S.S.R. were the major producers. Most of Mongolian output was exported to the U.S.S.R.; a major share of Mexican sales was to the United States.

Twenty-three nations, including the United States, the countries of the European Economic Community and others, signed a protocol in Montreal, Canada, that would, if ratified by two-thirds of the countries producing chlorofluorocarbons, freeze and later reduce world consumption. Chlorofluorocarbons were believed to be contributing to the destruction of stratospheric ozone. The protocol was historic because it was the first time that a significant number of countries had agreed to regulate a group of sub-

stances prior to firm evidence of environmental degradation. The effect of the protocol on future world consumption of fluorspar was not certain because many of the substitutes under development contained fluorine in their formulation, while others did not. Adequate substitutes, with proper testing, were expected to be available within the period 1992-95.

In Canada, the St. Lawrence Fluorspar Ltd. began commercial production of acid-grade fluorspar at St. Lawrence on the Burin Peninsula in Newfoundland. Fluorspar from the Blue Beach and Terefare vein systems was mined both underground and from shallow surface pits. The annual capacity of the treatment plant was 75,000

metric tons.

Table 9.—Sales of Mexican fluorspar, by grade

(Short tons)

Grade	1983	1984	1985	1986	1987
AcidCeramicMetallurgical	400,579 49,285 117,190 93,563	508,235 54,562 230,375 117,113	409,800 51,982 309,490 57,779	427,181 51,541 246,226 73,242	430,478 52,509 245,332 105,158
	660,617	910,285	829,051	798,190	833,477

Source: Instituto Mexicano de la Fluorita A.C.

Table 10.—Fluorspar: World production, by country¹

(Short tons)

Country ² and grade ³	1983	1984	1985	1986 ^p	1987 ^e
Argentina	31,950	25,526	35,100	26,500	26,500
Brazil (marketable): Acid grade Metallurgical grade	48,439 29,415	48,878 34,578	47,048 32,754	59,040 34,188	64,000 35,500
Total Canada: Acidgrade	77,854 	83,456	79,802	93,228	99,500 11,000
China: e Acid grade Metallurgical grade	110,000 440,000	110,000 606,000	110,000 606,000	110,000 606,000	110,000 606,000
TotalCzechoslovakia ⁶ Egypt	550,000 106,000 13	716,000 106,000 893	716,000 105,000 94	716,000 105,000 88	716,000 105,000 88
France: Acid and ceramic grades Metallurgical grade	155,957 60,488	175,378 80,469	176,370 70,548	163,142 55,000	165,000 55,000
Total	216,445	255,847	246,918	218,142	220,000

See footnotes at end of table.

¹Physical scientist, Branch of Industrial Minerals.

Table 10.—Fluorspar: World production, by country¹—Continued

(Short tons)

Country ² and grade ³	1983	1984	1985	1986 ^p	1987 ^e
0					
German Democratic Republice	110,000	110,000	110,000	110,000	99,000
Germany, Federal Republic of (marketable)	88,964	91,787	91,644	97,912	97,600
Greece	330	330	e330	e330	330
India: ^e					
Acid grade	12,000	13,000	412,243	r _{12.000}	14.300
Metallurgical grade	5,000	6,000	45,511	5,500	7,700
Total	17,000	19,000	417,754	r _{17,500}	22,000
Italy:					
Acid grade	113,439	121,618	105,215	100,200	101,000
Metallurgical grade	82,409	85,904	62,569	60,116	60,600
Total	195.848	207,522	167,784	160.316	161,600
Kenya: Acid grade	65,129	51,343	64,126	56,054	60,000
Kenya: Acid grade Korea, North: Metallurgical grade ^e	44,000	44,000	44,000	44,000	44.000
Korea, Republic of: Metallurgical grade	7,012	5,150	777	268	275
Mexico:					
Acid grade	448,640	379,725	417,469	466,954	4451,777
Ceramic grade	50,706	40,307	30,011	14,984	431,777 413,244
Metallurgical grade	80,469	235,079	297,897	290,076	4338,005
Metallurgical grade Submetallurgical grade ⁵	87,082	115,878	57,779	73,263	4105,158
Total	666,897	770,989	803,156	045 077	4000 104
Mongolia: Metallurgical grade	r780,400	r823,400	867,500	845,277 870,800	⁴ 908,184
Morocco: Acid grade	66,469	72.642	81.956	91,500	880,000
Pakistan	00,200	3,002	3,499	4,798	94,000 4,400
Romania: Metallurgical grade ^e	22,000	22,000	22,000	22,000	20,000
South Africa, Republic of:					
Acid grade	256,563	318.892	341.949	323,382	307,500
Acid gradeCeramic grade	7,061	4,963	6,310	8,491	7,700
Metallurgical grade	31,356	28,010	36,676	36,171	33,800
Total	294,980	351,865	384,935	368,044	4349,000
Spain:					
Acid grade	210,265	279,128	294,068	000 410	050 500
Acid grade Metallurgical grade	45,840	46,788	42,808	283,413 27,946	253,500 27,600
Total	256,105	325,916	336,876	311,359	001 100
Sweden	2,231	3,807	3,493	3,307	281,100 3,300
Shailand:					
	51,466	62,998	39.506	12.677	e 000
Acid grade Metallurgical grade	176,324	253,783	289,972	172,411	6,200 137,800
Total	227,790	316,781	329,478	185.088	144,000
unisia: Acid grade	37,493	49.064	44.767	40,596	44,000
urkey: Metallurgical grade	2,200	2,200	2,200	2,200	2,200
LS.S.R.e	595,000	606,000	617,000	617,000	617,000
nited Kingdom	144,733	150,686	184,086	146,607	154,000
Jnited States (shipments) ^e	61,000	72,000	66,000	78,000	70,000
Grand total	r4,667,843				

^eEstimated. ^pPreliminary. ^rRevised.

¹Table includes data available through May 13, 1988.

²In addition to the countries listed, Bulgaria is believed to have produced fluorspar in the past, but production is not officially reported, and available information is inadequate for the formulation of reliable estimates of output levels.

³An effort has been made to subdivide production of all countries by grade (acid, ceramic, and/or metallurgical). Where this information is not available in official reports of the subject country, the data have been entered without qualifying notes. onotes.

*Reported figure.

*Same grade range as metallurgical but primarily contains greater quantities of silica impurities.

Gallium

By Deborah A. Kramer¹

A small quantity of gallium was recovered domestically at one mine in 1987, but imported material continued to supply most of the U.S. demand. Although consumption declined from the record-high level of 1986, it was still higher than that in the past years. Research and development resulted in the manufacture of new optoelectronic devices and integrated circuits from gallium arsenide (GaAs). Much of the developmental work was funded through U.S. Department of Defense contracts to manufacture devices for military use. GaAs components were used commercially in light-emitting

diodes (LED) and laser diodes for telecommunications systems and consumer electronic equipment. GaAs integrated circuits were used principally in defense applications.

Domestic Data Coverage.—Domestic consumption data for gallium are developed by the Bureau of Mines from a voluntary survey of U.S. operations. Of the 40 operations to which a survey request was sent, all responded, representing 66% of the consumption shown in tables 1, 2, and 3. Consumption data were adjusted to reflect full industry coverage.

Table 1.—Salient U.S. gallium statistics

(Kilograms unless otherwise specified)

	1983	1984	1985	1986	1987
Production ^e Imports for consumption Consumption Price per kilogram	7,294 6,425 \$525	9,669 7,060 \$525	7,961 7,396 \$525	¹ 750 17,202 16,043 \$525	W 12,490 10,729 \$525

^eEstimated. W Withheld to avoid disclosing company proprietary data.

DOMESTIC PRODUCTION

Primary gallium was recovered by St. George Mining Corp., a subsidiary of Musto Explorations Ltd., from its mine in St. George, UT. Because sales of gallium and the germanium dioxide coproduct reportedly were not generating enough working capital for the plant, Musto Explorations negotiated private placement of some of its stock to raise capital. The company also issued a convertible subordinated debenture to Eagle-Picher Industries Inc. in exchange for \$1.5 million. Despite the additional in-

vestment, Musto Explorations announced that it was temporarily closing the plant in September for at least 4 months because of technical problems and lower than expected prices for gallium.

Eagle-Picher recovered and refined gallium from primary and secondary materials at its plant in Quapaw, OK. Recapture Metals Inc. recovered gallium from GaAs scrap at its facility in Blanding, UT.

Sulzer Bros. Inc. announced that it would construct a gallium extraction plant at

¹Reported figure.

Kaiser Aluminum & Chemical Corp.'s alumina refinery in Gramercy, LA. The first 2 years' output from the 15,000-kilogram-per-year facility was earmarked for shipment

to Europe in the form of a gallium chloride solution to be used in a solar neutrino detection experiment. Plant startup was scheduled for 1988.²

CONSUMPTION

Consumption of gallium, principally in the form of GaAs, declined from the recordhigh level of 1986, but was still higher than past levels. Almost all the gallium consumed was in the manufacture of optoelectronic devices and integrated circuits.

Varo Inc., Garland, TX, announced the formation of an Advanced Electronics Materials Group to develop military markets for GaAs-based materials and products, as well as related testing equipment. For the past 3 years, the company has been processing GaAs for use in night-vision equipment as part of a contract it received from the U.S. Army through a joint venture with ITT Corp. Epitronics Corp., a subsidiary of Alcan Aluminum Corp., reportedly began an expansion program that includes the addition of three metal organic chemical vapor deposition (MOCVD) reactors and additional product-testing equipment. The expansion, to be completed by yearend 1987, would increase the total number of MOCVD reactors to five, in addition to the company's liquid phase epitaxy system.

Under an agreement between Spire Corp., Bedford, MA, and Sumitomo Electric Industries Ltd., Japan, Spire would grow highly specialized GaAs and gallium aluminum arsenide (GaAlAs) epitaxial layers on GaAs wafers supplied by Sumitomo Electric. These wafers would be sold to Sumitomo Electric's customers in Japan for use in lasers.

Hewlett-Packard Corp. reportedly developed improved GaAlAs LED that either shine four to five times brighter than conventional LED or require only 3% to 5% of the conventional LED's current to shine as brightly. These new LED were used in the

rear window brake lights for some Nissan 300ZX automobiles.

Product development and increases in automation of production technology for GaAs-based integrated circuits continued during 1987. Texas Instruments Inc. reportedly began automated large-scale production of GaAs monolithic microwave integrated circuits (MMIC) at its facility in Dallas, TX, to increase product yield and decrease production costs. The principal market for the GaAs components was in advanced military electronic warfare systems, and the MMIC would replace hybrid components in some applications with a decrease in circuit complexity.3 Large-scale integration for producing GaAs-based digital integrated circuits was established at several domestic companies, including Vitesse Semiconductor Corp., Camarillo, CA; TriQuint Semiconductor Inc., Beaverton, OR; and Ford Microelectronics Inc., Colorado Springs, CO. Gate arrays and static random access memory components for computer applications were produced in commercial quantities.4

Table 2.—U.S. consumption of gallium, by end use

(Kilograms)

End use	1985	1986	1987
Electronics¹ Light-emitting diodes Research and development _ Specialty alloys	r _{4,959} 2,112 260 65	r _{13,065} 1,855 1,048 75	8,981 1,416 268 64
Total	7,396	16,043	10,729

rRevised.

¹Lasers, semiconductors, and other electronic devices.

Table 3.—Stocks, receipts, and consumption of gallium¹

(Kilograms)

Purity	Beginning stocks	Receipts	Consump- tion	Ending stocks
986: 97.0% to 99.9% 99.99% to 99.9999% 99.9999% to 99.9999%	105 135 966	75 ^r 1,266 ^r 14,309	75 1,399 14,569	108 r ₂ r ₇ 06
Total	1,206	15,650	16,043	818
97.0% to 99.99% 99.99% to 99.999% 99.9999% to 99.99999%	105 2 706	68 58 10,522	64 58 10,607	109 2 621
Total	813	10,648	10,729	732

¹Consumers only.

PRICES

Prices quoted in the American Metal Market (AMM) for gallium materials in 1987 remained the same as those at yearend 1986. At yearend 1987, prices for gallium materials published in AMM were as follows, in dollars per kilogram: gallium metal, 99.99999% pure, in 100-kilogram lots,

\$525; gallium metal, 99.99% pure, in 100kilogram lots. \$435; gallium metal, 99.9999% pure, imported, \$460 to \$490; gallium oxide, 99.99% pure, imported, \$400 to \$420; and gallium oxide, 99.999% pure, **\$**435.

FOREIGN TRADE

Data on exports of gallium metal and compounds were combined with data for other metal exports by the Bureau of the Census and could not be separately identified. Some exports of gallium were identified through the Journal of Commerce Trade Information Service-PIERS; however, this source contains information only on materials that are transported by ship and

may not reflect the total quantity of gallium exported. According to PIERS, 408 kilograms of gallium was exported, mainly as scrap metal. The principal destinations were the Federal Republic of Germany and Japan. Substantial quantities of trimethylgallium and triethylgallium were exported, primarily to the Federal Republic of Germany.

Table 4.—U.S. imports for consumption of gallium (unwrought and waste and scrap), by country

Country	1986		1987	
	Kilograms	Value	Kilograms	Value
Canada				
	98	\$52,095	107	\$51,807
acimany, recersi Reminiscos	8,231	3,114,144	6.364	2,497,584
	2,740	1,176,562	1,215	
lungary talyapan	17	2,580	1,210	517,809
apan		=,000	13	
apan	$1\bar{2}\bar{3}$	45.328		5,680
Singapore	120	40,020	451	202,409
L 1			21	11,576
witzerland	- <u>5</u>		96	48,960
		4,390		,
Inited Kingdom	5,640	2,490,483	4,081	1,496,466
	348	68,769	142	41,757
Total				41,101
	17,202	6,954,351	12,490	4,874,048

Source: Bureau of the Census.

WORLD REVIEW

World production data for gallium were unavailable, but production of primary gallium was estimated to be about 40,000 kilograms.

Czechoslovakia.—Annual production capacity at the Ziar nad Hronom gallium extraction plant was expected to increase from 3,000 to 4,000 kilograms by 1990.

France.—Société Minière et Métallurgique de Peñarroya announced that it planned to increase its annual capacity for recovering gallium from GaAs scrap to 10,000 kilograms by 1989. Peñarroya operated a secondary gallium recovery plant

with an estimated capacity of less than 1,000 kilograms per year.

Spain.—Rhône-Poulenc S.A. of France reportedly signed an agreement with the Spanish Government to purchase the entire output of gallium-containing residues from the Alúminia Española S.A. alumina refinery in San Ciprian. Rhône-Poulenc planned to construct a plant near San Ciprian to recover gallium from the residues, estimated to contain up to 30,000 kilograms of gallium annually. No date was set for plant startup.

TECHNOLOGY

Several companies in the United States and Japan continued developmental work to produce GaAs epitaxial layers on silicon substrate wafers, and Kopin Corp. reportedly began shipments of 4-inch-diameter GaAs-on-silicon wafers in December. Two types of GaAs-on-silicon wafers were developed. In one type, the entire silicon wafer was coated with a thin layer of GaAs, called blanket epitaxy, and in the other type, islands of GaAs are deposited on specific areas of the wafer, called selective epitaxy. Both of these types of wafers were intended to combine the superior structural and thermal properties of silicon with GaAs' abilities to emit light and withstand high temperatures and high doses of radiation. Devices fabricated from blanket epitaxial wafers could replace bulk GaAs wafers for integrated circuit applications, while wafers produced by selective epitaxy would combine silicon integrated circuits with GaAs optoelectronic devices or GaAs integrated circuits.5

Through contracts awarded by the Decompanies Department, several planned to develop production facilities for advanced GaAs-based devices. American Telephone & Telegraph Co. (AT&T) was awarded a 4-year, \$19.8 million contract to develop an advanced production facility at Reading, PA, for high-performance GaAs integrated circuits. High-speed logic and memory chips for sophisticated computers and communications systems were to be constructed by two new technologies. The team of Lockheed Corp., Motorola Inc., and Varian Inc. reportedly received a \$1 million contract as a part of the Government's

Microwave/Millimeter Wave Monolithic Integrated Circuits program, aimed at developing a new generation of GaAs integrated circuits for military weapons and communications equipment. A \$4.4 million contract reportedly was awarded to General Electric Corp. to develop an advanced computerized control system for more rapid production of high-quality GaAs crystals. The resulting new technology was expected to be transferable to the production of other hard-to-grow crystals.6 Under a \$1.3 million contract, an industry team headed by Westinghouse Electric Co. planned to develop technology aimed at increasing the production rates for GaAs wafers by 20 times and reducing the cost. Spire reportedly received a \$53,000 contract to investigate highly temperaturestable, low-shadow-loss metallization for GaAs space solar cells. Successful completion of the first phase would lead to research on prototype solar cells, then commercialization of the production techniques.

Texas Instruments reportedly completed the advanced development phase of its program to produce expendable decoys for protection of military aircraft against radar-directed antiaircraft missiles. The expendable decoys were only 6 inches long and 1 inch in diameter; their small size was made possible by the use of GaAs MMIC components. Additionally, Texas Instruments developed high-probability-of-intercept radar receivers and solid-state phased-array jammers using GaAs MMIC technology. The radar receivers would provide a high probability of intercepting advanced radar signals and radar site deter-

GALLIUM 385

mination in dense electromagnetic radiation environments, and the jammers would be mounted on aircraft to receive and jam enemy radar signals.7

ITT reportedly developed a GaAs MMIC transmit-receive module, which was considered to be a key element in the development of active-aperture phased-array radar systems. Several thousand of these small modules integrated into a large electronic antenna array would replace a large transmitter and reduce power requirements by 40% or more, while providing high rates of target data transmission.

Epitaxx Inc., Princeton, NJ, reportedly was awarded a contract by the Small Business Innovation Research to develop a new indium gallium arsenide (InGaAs) photodetector. The new photodetector was expected to respond between a 0.5 to 1.7 micrometer spectral range and represented a technological breakthrough, because no other single photodetector could cover this range. Projected applications for the InGaAs photodetector included satellite imaging, optical power meters, range finding, and other military and communications applications.

Spire announced that it produced the highest efficiency one-sun GaAs solar cell, which can convert 23.7% of the available light to usable electricity. GaAs solar cells also were used in General Motors Corp.'s Sunraycer solar-powered vehicle, which won the first transcontinental race for solar-powered automobiles, held in Australia, and set a new world speed record for a land vehicle powered solely by sunlight. The Sunraycer's power source was a 7,200solar-cell array consisting of 80% GaAs solar cells, provided by Applied Solar Energy Corp. and Mitsubishi Corp., and 20% silicon solar cells, which convert 16.5% of the sunlight into usable electricity. The car can reach speeds of up to 45 miles per hour on solar power.

Researchers at the National Aeronautics and Space Administration's Jet Propulsion Laboratory proposed two uses of zinc selenide (ZnSe) films to increase the performance and reduce the cost of GaAs solar cells. ZnSe can serve as a surface passivation layer and a sacrificial layer that would enable the repeated use of a GaAs substrate. The substitution of ZnSe films for GaAlAs films, which are normally used for solar cells, would lead to increased stability of the film under moisture and oxygen. Additionally, using a ZnSe film on a GaAs substrate would allow deposition of doped GaAs epitaxial layers on top of the ZnSe film, because of the close lattice match of

the two materials. By dipping the entire cell into a nitric acid solution, the ZnSe film would dissolve, separating the doped GaAs epitaxial layers, which form an ultrathin, ultralight solar cell, from the GaAs substrate, which could be reused.

Personnel at IBM Corp. reportedly demonstrated an experimental integrated optic chip made from GaAs that can read data more than twice as fast as any similar chip. The experimental chip was aimed at shortdistance communications applications, such as linking computers by fiber-optic communications systems. By altering the design and fabrication of the photodetector component of the chip, IBM was able to combine the photodetector component with the logic circuits on the same chip. Earlier attempts to combine these two types of components had failed because the high temperature used in processing the logic circuits caused problems with the photodetector.

In a review article on semiconductors, properties and uses of GaAs in optoelectronic devices and integrated circuits were highlighted. New markets for GaAs devices and emerging technology also were discussed.8

The Bureau of Mines investigated pressure leaching and carbochlorination as methods for recovering gallium and germanium from a geothite ore, zinc processing residues, and a manganese ore. In pressure leaching, at 200° C, with a total sulfur dioxide content in the reactor of less than 1,500 pounds per short ton of ore, 96% of the germanium was extracted with less than 2% of the gallium. With greater than 2,200 pounds of sulfur dioxide, gallium and germanium extractions were up to 97% and 96%, respectively. Carbochlorination between 300° C and 900° C extracted greater than 80% of the gallium and germanium as volatilized products that were recovered from the offgases.9

¹Physical scientist, Branch of Nonferrous Metals.

²King, A. Sulzer Will Build Plant for Gallium. Am. Met.

Mark., v. 95, No. 50, Mar. 16, 1987, pp. 1, 16.

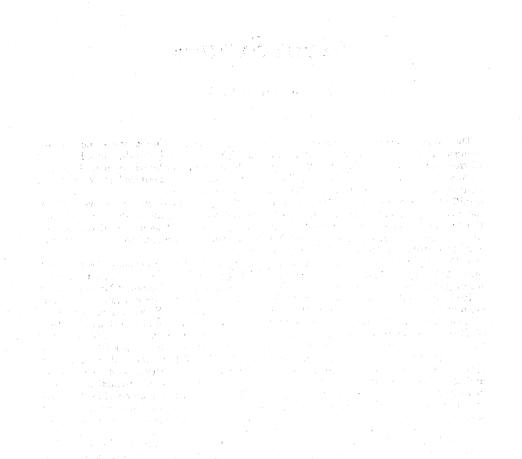
³Electronics. Monolithic Microwave ICs. Move Into Production at TI. V. 60, No. 16, Aug. 6, 1987, pp. 89-91.

⁴Waller, L. Commercial Quantities of LSI GaAs Are Finally Here. Electronics, v. 60, No. 19, Sept. 17, 1987, pp. 48-49.

⁵Posa, J. G. Uniting Silicon and Gallium Arsenide. High Technol., v. 7, No. 3, Mar. 1987, pp. 38-41.

⁶Photonics Spectra. Faster Crystal Growth. V. 21, No. 2, Feb. 1987, pp. 44-46.

Feb. 1987, pp. 44-6.


Aviation Week & Space Technology. TI Uses Broad Technology Base To Expand Role in EW Programs. V. 126, No. 33, Feb. 16, 1987, pp. 53-59.

Mack, J. Semiconductor Materials. Mater. Edge, No. 2,

Nov. 1987, pp. 43-50.

⁹Judd, J. C., M. P. Wardell, and C. F. Davidson. Extraction of Gallium and Germanium From Domestic Resources. Ch. in Light Metals 1988, ed. by L. G. Boxall. Metall. Soc. AIME, pp. 857-862.

¹Physical scientist, Branch of Nonferrous Metals.

Gem Stones

By Gordon T. Austin¹

The value of natural gem materials, gem mineral specimens, and natural and cultured freshwater pearls produced in the United States was estimated to be \$21.4 million, an increase of 130% over that of 1986. The significant increase reflects both a true increase in production and an increase in the number of producers surveyed. Small mine owners and professional and amateur collectors accounted for most of the production. Small mines produced tourmaline, jade, opal, sapphire, turquoise, agate, lapis lazuli, garnet, beryl, and quartz.

The combined value of synthetic and simulant gem stones was reported to be \$15.3 million, an increase of 49% over that of 1986. The increase reflects an actual increase in production. Synthetic gem stones are manmade and have the same optical, physical, and chemical properties and the same appearance as the natural gem stone. Synthetic gem materials produced in the United States include ruby, sapphire, garnet, spinel, alexandrite, quartz, emerald, turquoise, lapis lazuli, coral, and diamond. Simulants are manmade gem materials that have an appearance similar to that of a natural gem material but have different optical, physical, and chemical properties. The gem simulants

produced in the United States include turquoise, coral, lapis lazuli, malachite, and cubic zirconia. Cubic zirconia is the major simulant and is produced in colored and colorless varieties.

The gem stone materials are sold to wholesale and retail outlets, in gem and mineral shops, at gem and mineral shows, to cutting factories, and to jewelry manufacturers.

Domestic Data Coverage.—Domestic production statistics for gem materials were developed by the Bureau of Mines from the "Gems and Gem Stones Survey," a voluntary survey of U.S. operations, and from Bureau estimates of unreported production. Of the 267 operations to which a survey request was sent, 91% responded, accounting for 95% of the total production, 92% of the natural production, and 100% of the synthetic and simulant production.

The 267 operations surveyed in 1987 were an increase of about 154% compared with the number of operations surveyed in 1986. The response rate was essentially unchanged. Production by nonresponding operations and by professional and amateur collectors was based on information from published data, gem and mineral dealers, gem and mineral shows, and collectors.

DOMESTIC PRODUCTION

Production of natural gem materials in all 50 states exceeded a value of \$1,000. Ten States supplied 82% of the total value of natural gem material produced. The States, in order of declining value of production, were Tennessee, California, Arizona, Montana, Maine, North Carolina, Idaho, Oregon, and New Hampshire. Production of synthetic and simulant gem materials was

valued at \$15.3 million. Twelve firms, five in California, four in Arizona, and one each in Massachusetts, Michigan, and New Jersey, produced synthetic and simulant gem material. The States, in order of declining value of production, were Massachusetts, California, New Jersey, Michigan, and Arizona.

Dia Em Resources Ltd. and LKA Interna-

tional Inc. continued to evaluate the emerald occurrences on their Rist and Ellis Mines at Hiddenite, NC. LKA designed and built a beryllometer to assist in sorting emeralds from waste materials. The beryllometer contains a nuclear source material that allows the emerald to be located by induced radiation. The emerald is not permanently affected by the radiation.

The largest diamond ever reported from California was recovered in northern California during 1987. The 14.33 carat alluvial diamond was recovered while panning for gold in Trinity County. The diamond is a knotted grayish-green semitranslucent industrial-grade stone with adamantine luster.

The Dow Chemical Co.; Amselco Exploration Inc., a subsidiary of British Petroleum Co. of Canada; and Exmin Corp., a subsidiary of the Belgian company Sibeka (Société d'Entreprises et d'Investissements S.A.), continued exploration for diamonds on leased lands in Michigan and Wisconsin. Exmin continued diamond exploration efforts in Minnesota.

Ashton Mining Co., a subsidiary of the Australian company Ashton Mining Inc., conducted exploration for diamond in the Crooked Creek and Goodnews Bay areas of Alaska during 1987. The work in the Goodnews Bay area resulted in the recovery of some microindustrial diamonds.

Diamond Co. NL, a wholly owned subsidiary of the Australian company Carr Boyd Minerals Ltd., negotiated mining leases and commenced diamond exploration work in northern Colorado. The joint venture between Lac Minerals Ltd. and Mobil Oil Co. continued its diamond exploration project in the State Line District on the Colorado-Wyoming border.

The Diamond Mining Task Force, appointed in 1986 by the Arkansas Governor to assist the State Parks, Recreation, and

Travel Commission in determining if commercial diamond mining would be allowed at the Crater of Diamonds State Park, continued to collect data and undertake studies. The engineering firm of Howard, Needless, Tammer, and Bergendorf was hired to prepare an engineering and economic feasibility study of the proposed diamond mining project. At yearend, studies were under way and no decisions had been made concerning the mining project.

A major discovery of some of the finest topaz crystals ever found in the United States was made at a small pegmatite situated in Coos County, NH. The crystals were sharp, lustrous, blue to blue-green or bicolored blue and golden brown; many were flawless. The same deposit also yielded 30 kilograms of high-quality gem smoky quartz rough.

American Pearl Farms of Tennessee completed its first significant harvest of cultured freshwater pearls. American currently has five pearl farms under operation and acquired additional water acreage for a sixth farm to be established during 1988. The new farm is planned to be nine times larger than the existing farms.

The Zales Diamond, a 535-carat nontraditional-shaped stone, cut in the United States in 1986, was recut into a traditional shape. The loss in carat weight resulted in the stone's no longer being the world's largest polished diamond. A 3,500-carat blue sapphire was found in North Carolina, and a 5,500-carat North Carolina star sapphire was cut into a 3,000-carat stone. No value was established for either of the sapphires. The world's largest gem topaz, a 22,892-carat light golden topaz, was cut from a 26-pound waterworn crystal. The cushion-cut stone was purchased by the rockhound hobbyists of America for \$40,000 and will be donated to the Smithsonian Museum of Natural History.

CONSUMPTION

Domestic gem materials production was consumed in commercial and amateur manufacture of jewelry, in gem and mineral collections, and in the production of objects of art. The value of U.S. apparent consumption was estimated to be \$3,459 million, an increase of about 4%.

U.S. imports for consumption of colored gem stones, led by emerald, ruby, and sapphire, decreased slightly. The value of annual imports of emerald continued as the largest of any colored gem stone. The combined value of imported ruby and sapphire in 1987 was exceeded by the value of emer-

ald by 6%. In 1986, the combined values of ruby and sapphire exceeded emerald by 17%.

The value of imports of other colored stones increased 21% compared with those of 1986, and the value of imported synthetic and imitation gem materials increased 28%. The value of pearls imported into the United States continued to decline for the third consecutive year, decreasing approximately 20% compared with that of 1986. The fluctuation in the value of imports is a direct reflection of purchasing trends in the marketplace.

PRICES

The U.S. price of a 1-carat, D-colored, diamond fluctuated between \$14,000 and \$16,000, and was \$14,000 at yearend. However, only a few hundred of these high-quality, 1-carat stones have been available each year, and their value has accounted for an insignificant percentage of the total value in the U.S. market. Prices of ruby, blue sapphire, and emerald rose 39%, 35%, and 45%, respectively, when their

June 1987 prices were compared with their June 1986 prices. The price increases appear to be the result of a combination of things: the lower American dollar, the increased demand in the United States for quality stones, and a decrease in the supply of stones from the traditional producing areas. The price of American freshwater pearls increased slightly over that of 1986, and the demand remained firm.

Table 1.—Prices of U.S. cut diamonds, by size and quality

Carat weight	arat weight Description,		Price range per carat.3	Average price per carat	
· ·	color ¹			June 1986	June 1987
0.04-0.07	H-I	vs	\$440- \$440	\$420	\$400
.0407	H-I	Sl_1	420- 420	380	420
08- 14	H-I	VŠ	470- 470	460	470
08- 14	H-I	Sl_1	440- 440	420	440
1822 1822	H-I	VŠ	680- 680	750	680
	H-I	Sl_1	600- 600	700	600
2329	H-I	VŠ	900- 900	11,750	900
30- 37	H-I	Sl_1	750- 750	900	750
8037	H-I	VŠ	1,175- 1,225	1,475	1.17
4649	H-I	Sl_1	950- 950	1,250	950
1649	H-I	VS	1,425- 1,525		1,478
7089	H-I	Sl_1	1,300- 1,300		1,300
7089	H-I	VS	2,175- 2,175	2,175	2,175
1.005	H-I	Sl_1	1,900- 1,900	1,800	1,900
1.00 ⁵	\mathbf{D}	IF	14,750-14,000	612,000	614,500
1.00	E	VVS_1	6,200- 5,875	65,000	66.000
1.00	G	VS_1	3,350- 3,475	63,150	63,250
2.00	H	VS_2	2,650- 2,950	62,525	⁶ 2,550

¹Gemological Institute of America (GIA) color grades: D—colorless; E—rare white; and H-I—traces of color.

²Clarity: IF—no blemishes; VVS₁—very, very slightly included; VS—very slightly included; VS₂—very slightly included; VS₂—very slightly included.

included, but more visible; and 511—signity included.

Rapaport Diamond Report. V. 10, No. 1, Jan. 2, 1987; and v. 10, No. 45, Dec. 25, 1987. These figures represent Rapaport Diamond Report opinion of New York wholesale asking price.

Rapaport Diamond Report. V. 9, No. 22, July 11, 1986; and v. 10, No. 23, June 26, 1987.

The Diamond Registry Bulletin. V. 18, No. 1, Dec. 1986, p. 8; and v. 18, No. 1, Dec. 1987, p. 8. The Diamond Registry Bulletin. V. 17, No. 7, July 1986, p. 8; and v. 17, No. 6, July 1987, p. 8.

Table 2.—Prices of U.S. cut colored gem stones, by size1

Gem stone	Carat weight	Price range	Average price per carat ³	
		per carat, 1987 ²	June 1986	June 1987
Amethyst Aquamarine Emerald Garnet, tsavorite Ruby Sapphire Tanzanite Topaz Topaz Tourmaline, red	1 1 1 1 1 1 1 1	\$6- \$10 100- 250 1,800-3,000 500-1,200 2,300-3,500 550-1,500 275- 450 6- 9 60- 125	\$8 175 1,775 950 2,150 725 354 7.50	\$8 175 2,400 950 3,000 1,050 354 7.56

¹Fine quality.

²Jewelers' Circular-Keystone. V. 159, No. 2, Feb. 1988, p. 400. These figures represent a sampling of net prices that wholesale colored stone dealers in various U.S. cities charged their cash customers during the month. ³Jewelers' Circular-Keystone. V. 159, No. 8, Aug. 1987, p. 442.

FOREIGN TRADE

Export value of all gem materials was \$740.8 million. Export value of all gem materials other than diamond increased 36% to \$80.4 million. Of this total, other precious and semiprecious stones, cut but unset, were valued at \$45.4 million; other precious and semiprecious stones, not set or cut, \$21.0 million; synthetic gem stones and materials for jewelry, cut, \$5.8 million; pearls, natural, cultured, and imitation, not strung or set, \$1.8 million; and other, \$369.4million. Reexports of all gem materials other than diamond increased 12% to \$61.7 million. Reexport categories were synthetic gem stones and materials for jewelry, cut, \$0.6 million; precious and semiprecious stones, cut but not set, \$40.1 million; and other precious and semiprecious stones, natural, not cut or set, \$1.31 million.

The customs value of U.S. imports of rough and polished natural diamond, excluding industrial diamond, was down slightly to about \$3.4 billion. Total imports of polished diamond came principally from Israel, 32%; Belgium, 28%; and India, 21%.

They were valued at \$3.0 billion, essentially unchanged from those of 1986. Imports of diamond greater than 0.5 carat came mostly from Israel, 38%; Belgium, 36%; and Switzerland, 8%. They decreased 15% in value to \$1.1 billion. Imports in the less-than-0.5carat category came mostly from India, 35%; Israel, 32%; and Belgium, 24%. The value increased 6% to \$1.9 billion. The imports of rough diamonds increased 5% in caratage and decreased slightly in value. The Republic of South Africa accounted for only $7\overline{\%}$ of the value of the imports, down from 52% in 1986. However, the average carat value of imports from the Republic of South Africa increased from \$499 to \$758.

The total customs value of imported emerald decreased 8% to \$141.6 million. The total value of ruby imports decreased 29% to \$59.4 million, and sapphire imports decreased 22% to \$74.0 million. Average carat values increased 24% for emerald to \$68, 14% for ruby to \$25, and 27% for sapphire to \$28.

Table 3.—U.S. exports and reexports of diamond (exclusive of industrial diamond), by country

	198	6	1987		
Country	Quantity (carat weight)	Value ¹ (millions)	Quantity (carat weight)	Value ¹ (millions)	
Exports:	205,565	\$108.9	162,009	\$122.	
*Poleium-Luvembourg		13.7	24,943	17.	
Conodo		6.9	1,943	4.	
		3.1	3,842	4.	
Commony Federal Republic of		97.1	100,365	148.	
		87.2	172,634	110	
Igrael		93.6	62,404	144.	
Innon		7.5	5,686	7.	
Cingapara		85.4	30,161	76	
Switzerland	10000	6.4	14,028	9	
Theiland	C'40E	7.8	4,151	8	
United Kingdom		8.0	5,221	7	
Other		- 0.0			
	561 050	525.6	587,387	660	
Total	301,033				
Reexports:2	222215	89.5	1.184,952	101	
Belgium-Luxembourg	806,945		5.424		
Canada	0,010	.5	2,062		
Ob in a		.6 2.7	24.840	2	
Germany, Federal Republic of		20.3	82,491	2	
Hong Kong		20.3 3.3	84.893		
India			199,579	7	
Israel		59.2 8.8	95,919	• ;	
Japan			47.313	:	
Netherlands		5.1	39,765	5	
Switzerland		35.1	101,300	ĭ	
United Kingdom		27.6	74,333	i	
Other	102,348	9.4	14,000		
Otner	1,965,950	262.1	1,942,871	30	

¹Customs value.

²Artificially inflated in 1986 by auction of approximately 1 million carats of U.S. Government stockpile industrial diamond stones with subsequent reexports as gem stones to Belgium-Luxembourg and India.

Source: Bureau of the Census.

Table 4.—U.S. imports for consumption of diamond, by kind, weight, and country

	19	86	1987		
Kind, range, and country of origin	Quantity (carat weight)	Value ¹ (millions)	Quantity (carat weight)	Value ¹ (millions)	
Rough or uncut, natural: ²	`				
Belgium-Luxembourg	418.782	\$73.8	323,742	\$82.0	
Brazil	29,444	3.4	44,287	5.4	
Cape Verde	940	1.0	11,201	0.9	
Guvana	2,122	.3			
Israel	45,240	12.2	28.029	7.8	
Netherlands	7,318	3.7	2,930	2.9	
South Africa, Republic of	452,973	225.9	2,550 37,870	28.7	
	22,629	8.1	5,185	12.6	
Switzerland United Kingdom	135,099	66.0	797,759	208.3	
Venezuela	37,096	1.0	7,901	.7	
Other	155,618	39.7	121,657	72.1	
Total	1,307,261	435.1	1,369,360	420.0	
Cut but unset, not over 0.5 carat:					
Belgium-Luxembourg	1,540,601	471.9	1,307,990	468.2	
Brazil	23,013	7.5	33,352	8.7	
Canada	30,485	4.0	21,750	8.8	
Hong Kong	131,717	25.0	241,251	41.8	
India	2,886,722	629.0	3,198,504	670.8	
Israel	1,555,742	542.7	1,511,724	629.8	
Malaysia	2.151	.7	1,011,124	020.0	
Netherlands	28,296	11.0	51,959	13.6	
South Africa, Republic of	139,692	19.1	14,461	11.8	
Switzerland	75,629	28.7	73,268	40.3	
United Kingdom	36,714	17.9	18,321	40.5 15.8	
		21.9			
Other	172,873	21.9	144,708	33.3	
Total	6,623,635	1,779.4	6,617,288	1,942.9	
Cut but unset, over 0.5 carat:					
Belgium-Luxembourg	412.645	371.1	384,789	380.1	
Hong Kong	34,236	45.4	12.361	21.3	
India	50,098	13.2	110.019	28.0	
Israel	529,226	429.0	468,132	406.1	
Netherlands	24,673	23.8	8,403	11.6	
South Africa, Republic of	65,180	73.7	27.654	41.3	
Switzerland	48.898	169.6	37,583	81.7	
United Kingdom	35,303	63.8	29,155	42.6	
Other	60,871	55.9	56,345	47.5	
Total	1,261,130	1,245.5	1,134,441	1,060.2	

	19	86	1987		
Kind and country	Quantity (carats)	Value ¹ (millions)	Quantity (carats)	Value ¹ (millions)	
Emerald:					
Argentina	437	(2)			
Belgium-Luxembourg	16,262	\$3.1	30.190	\$3.9	
Brazil	144,899	6.4	112,194	7.0	
Colombia	199,935	52.3	195,403	44.6	
France	10,674	3.0	8,401	1.9	
Germany, Federal Republic of	60,471	3.2	38,034	3.9	
Hong Kong	187,525	12.0	170.853	15.2	
India	1,267,481	14.5	1,231,033	17.0	
Israel	59,724	14.1	60,942	19.4	
Japan	3,816	.8	5,637	.6	
South Africa, Republic of	37,795	1.8	5	(²)	
Switzerland	448,580	27.4	58,789	18.3	
Taiwan	5,056	.3	3,697	(2)	
Thailand	138,284	2.6	104,058	3.0	
United Kingdom	20,461	6.1	7,652	2.2	
Other	155,735	4.8	48,032	4.6	
- Total	2,757,135	152.4	2,074,920	141.6	

See footnotes at end of table.

¹Customs value. ²Includes some natural advanced diamond.

	198	36	1987		
Kind and country	Quantity (carats)	Value ¹ (millions)	Quantity (carats)	Value ¹ (millions	
iby:	16,528	\$4.3	12,078	\$0	
Belgium-Luxembourg Belgium-Luxembourg	579	(2)	3,102	. (
Colombia	1,558	í	3.198	Ò	
Emana	4,563	1.9	6,219	1	
Germany, Federal Republic of	14,412	.9	18,267		
Hong Kong	85,954	3.4	42,687	3	
India	247,687	2.1	302,323		
Israel	35,433	1.3	7,043 $335,381$		
Japan	82,786 256,921	$\begin{array}{c} .4 \\ 16.5 \end{array}$	41,492	14	
Switzerland	3,020,440	44.4	1,536,723	31	
Thailand	19,496	5.8	11,523	2	
United KingdomOther	82,677	2.4	37,781	2	
Total	3,869,034	83.5	2,357,817	59	
apphire:					
AustraliaAustria	2,219	.2	1,000	1	
AustriaBelgium-Luxembourg	$19.1\overline{52}$	$\bar{3}.\bar{0}$	21,356	. 1	
Brazil	28,604	(2) .7	2,580		
Canada	4,643	`.7	6,905		
Colombia	1,769	(²)	2,234		
France	26,764	1.9	7,048		
Germany, Federal Republic of	20,699	1.2	12,067		
Hong Kong	132,201	4.9	63,684		
India	127,121	$\frac{1.0}{1.2}$	84,973 14,254		
Israel	40,322 29,157	.5	48,460		
Japan Korea, Republic of	7.527	.1	9,793		
Korea, Republic of	946	(2)	7		
SingaporeSri Lanka	22,149	2.2	55,241		
Switzerland	370,520	21.0	46,786	1	
Thailand	3,394,602	50.3	2,121,376	4	
United Kingdom	60,736	5.5	110,112 37,847		
Other	71,587	1.4	31,841		
Total	4,360,718	95.1	2,645,723	74	
ther:					
Rough, uncut:		.6	V		
Australia	l	15.9		2	
Brazil		7.5	1.0	1	
Colombia Hong Kong		1.1		. 1	
Nigeria	1	.3	l	,	
Delristan	> NA	6.	NA	{	
South Africa, Republic of	£	.7		1	
Switzerland		.4			
United Kingdom	i i	.4			
Zambia	,	\ _{3.0} /			
Other	NA	31.2	NA	3	
Cut, set and unset:					
Australia		4.6		/1	
Brazil	1	11.0	Y	1	
Canada	ł	.8 5.1		1	
China Germany, Federal Republic of	1	11.4		1	
Hong Kong	t	29.3	1	2	
India	> NA	4.8	> NA	₹.,	
Janan	4	161.9	ł	12	
Suritzerland	I	$\begin{array}{c} 2.9 \\ 12.1 \end{array}$	ł	1	
Taiwan	1	6.1		1	
		2.5	7	1	
Thailand	,			1	
United Kingdom	,	$\binom{2.3}{19.3}$,	1,	
Thailand United Kingdom Other) NA		NA	25	

Source: Bureau of the Census.

NA Not available.

Customs value.

Less than 1/10 unit.

Table 6.-Value of U.S. imports of synthetic and imitation gem stones, including pearls, by country

(Million dollars1)

Country	1986	1987
Synthetic, cut but unset:		
Austria	0.5	1.3
France	.9	.8
Germany, Federal Republic of	6.4	9.2
Japan	9.0	1.8
Korea, Republic of	2.8	11.6
Switzerland	1.5	4.6
Other	1.0	5.0
Total	22.1	34.3
Imitation:		
Austria	34.4	50.7
Czechoslovakia	2.0	2.1
Germany, Federal Republic of	12.0	7.1
Japan	7.2	3.7
Other	7.0	8.0
Total	62.6	71.6

¹Customs value.

Source: Bureau of the Census.

Table 7.—U.S. imports for consumption of precious and semiprecious gem stones (Thousand carats and thousand dollars)

1986 1987 Stones Quantity Value¹ Quantity Value¹ Diamonds: Rough or uncut² _ Cut but unset___ 1,307 \$435,029 $\frac{1,369}{7,752}$ \$420,004 7,885 3,024,902 3,003,090 Cut but unset _____Emeralds: Cut but unset _____ 2,757 152,396 2,291 2,075 141,575 3,060 ŇΑ Coral: Cut but unset, and cameos suitable for use in jewelry____ NA 8,230 178,655 Rubies and sapphires: Cut but unset ______ 5,004 ΝA Marcasites ... Pearls: 3,406 190,497 3,879 Natural Cultured _____ 9,655 Imitation Other precious and semiprecious stones: 30,589 65,392 34,079 78,215 Rough, uncut______ NA NA Cut, set and unset 8,102 Other Synthetic: 63,532 22,074 82,697 30.958 Cut but unset³ NA NA 2,586 52,939 3,358 65,311

Imitation gem stones

Source: Bureau of the Census.

WORLD REVIEW

De Beers Consolidated Mines Ltd.'s sales of uncut diamonds through the Central Selling Organization in 1987 were reported to be a record \$3.07 billion compared with \$2.56 billion in 1986, an increase of approximately 20%. Sales of colored gem stones also remained very strong.

Emerald was mined in Australia, Brazil, Colombia, Mozambique, Pakistan, the Republic of South Africa, the U.S.S.R., Zambia, and Zimbabwe. Sapphire was produced in Australia, Colombia, Kenya, Malawi, Nigeria, Sri Lanka, Tanzania, Thailand, and the United States. Aquamarine was

4,178,652

XX

4,089,520

XX

NA Not available. XX Not applicable.

¹Customs value.

²Includes 19,243 carats valued at \$675,326 in 1986.

³Quantity in thousands of stones.

produced in Afghanistan, Brazil, China, India, Nigeria, Pakistan, the Republic of South Africa, Tanzania, the United States, and Zambia. Ruby was produced in Afghanistan, Burma, India, Kenya, Sri Lanka, Tanzania, Thailand, and the United States.

Angola.—Sociedade Portugesa de Empreendimentas and Endeama (SPE), a Portuguese company, signed a 2-year agreement with the Angolan state mining company to mine and appraise diamonds. SPE will also assist in diamond exploration and training Angolan personnel.² Visitors to Angola reported that Cuban soldiers stationed there were becoming good sources for Angolan rough diamonds. Angolan diamond production continued to suffer because of the civil war.

Australia.—Argyle Diamond Mines Joint Venture completed the second year of production from the AK-1 lamproite pipe. Production of 30.3 million carats exceeded the planned production of 25 million carats. Argyle Diamond Sales Ltd. launched a major sales campaign in October 1987 directed at significantly increasing the international market for "cognac" or "champagne" colored diamonds. The terms are used to help market the brown-colored gem diamonds Argyle produces each year.3 Additionally, Argyle formed a direct relationship with the India diamond-cutting trade to upgrade its diamond cutting technology to reduce the amount of Argyle near-gem material that is reclassified as industrial because of cutting difficulties.4

Freeport Bow River Properties Inc., the operating company of the Freeport-McMo-Ran Australia Ltd. and Gem Exploration and Minerals Ltd. joint venture, started construction of the Bow River alluvial diamond project. The project will process 4,000 metric tons per day of gravel. Diamond output is expected to exceed 600,000 carats per year. The diamond production is forecast to be 18% to 25% gem quality, 65% to 72% near-gem quality, and 8% to 10% bort. Also, Freeport-McMoRan Australia made an encouraging diamond discovery while drilling its project at Orraroo in South Australia. Work continued on the joint venture diamond project between Freeport-McMoRan Australia and Swan Resources at Springfield Basin in New South Wales.

Carr Boyd Minerals Ltd., in partnership with the De Beers subsidiary Stockdale Prospecting Ltd., and Afro-West Mining and Gem Exploration and Minerals Ltd. are continuing separate diamond exploration projects in various Australian locations.

Capricorn Resources Australian NL initiated offshore diamond prospecting 150 kilometers northwest of Wyndham on the northern coast of Western Australia. Ashton Mining Ltd. continued the management of two ongoing diamond exploration ventures. Gem Exploration completed a bulksampling program on a diamond prospect near the Kununurra District of East Kimberley and investigated magnetic anomalies in West Kimberley. The results were not announced. Auridian Consolidated NL continued its diamond exploration activities in North Shaw, Halls Creek, Pilbara, Mount Behn, Van Emmereck, Mount Barnett, and Pentagon areas.

Production of sapphire in 1987 was estimated to be \$18 million and represented about 75% of the rough sapphire imported into Thailand, the world's leading sapphire processing and marketing country. The opal production in 1987 was estimated to be \$58 million and represented about 85% of the world production of natural opal. The South Sea cultured pearl production was estimated at \$20 million. Australia produces about 25% of all South Sea pearls; however, the production represents approximately 80% of the high-quality goods.

Botswana.—Debswana, the Botswana diamond mining company that is a 50-50 joint venture between De Beers and the Government of Botswana, sold its significant diamond stockpile to De Beers. The stockpile was estimated to contain a high proportion of large, high-quality gem material. The purchase was paid for with a combination of cash and newly issued De Beers company shares. The Government of Botswana now owns 2.6% of De Beers and the right to appoint two members to the Board of Directors of De Beers and De Beers' Diamond Trading Co.7 Botswana produced a record high 13.2 million carats in 1987; approximately 71% were gem quality.

Brazil.—Mining and production started on a diamond-rich kimberlite pipe in the State of Mato Grosso, approximately 20 kilometers from Julina. This is the first production from a kimberlite pipe in Brazil. All production to date was from secondary alluvial sources.

The new alexandrite deposit mine discovered in early 1987 near Italira in Gerau Mines was temporarily closed late in the year by the Government. The location produced a large quantity of fine gem-quality alexandrite and promises to be prolific for the next several years.*

Table 8.—Diamond (natural): World production, by country1

(Thousand carats)

	Total	190 190,333 13,207 13,207 10,000 600 115 11 15 20 20 20 20 31,020 30 30	34,156 32,485 31,973 439	39,053 40 12,000 250 23,350	93,029
1987e	Indus- trial	10 3,86,683 3,840 825 800 800 800 540 7 7 7 7 7 7 7 7 800 910 910 910 910 910 910 910 910 910 9	2,701 1,713 546 30	4,990 23 57 7,100 200 18,680	53,734
	Gem ²	313,650 39,387 39,387 245 246 60 13 13 15 15 60 60 980 980	1,455 772 1,427	4,063 17 133 4,900 50 4,670	39,295
	Total	250 29,211 13,110 625 625 358 1,000 560 204 39 15 17 17 11 12 27 11 25 21 21 27 11 11 21 21 31 11 21 31 31 31 31 31 31 31 31 31 31 31 31 31	5,029 2,859 1,957 383	10,228 e40 190 10,800 234 23,304	91,756
1986P	Indus- trial	16,066 3,506 3,506 315 315 315 315 315 22 22 22 22 22 40 189 40 189	3,208 1,977 529 41	5,755 23 57 6,400 189 18,643	52,744
	Gem ²	240 13,145 9,610 259 200 200 190 190 13 13 13 13 13 13 21 50 190 200 200 200 200 200 200 200 200 200 2	1,821 882 1,428 342	4,473 17 133 4,400 4,661	39,012
	Total	714 7,070 12,635 450 277 1,000 632 132 11 16 720 720 138 910 349	4,954 2,684 2,069 495	10,202 21 236 10,800 215 20,159	66,014
1985	Indus- trial	250 2,828 6,317 217 800 572 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3,184 1,864 569 35	5,652 12 71 6,400 180 16,127	39,781
	Gem ²	464 4,242 6,318 199 199 200 123 123 124 4 4 14 15 15 66 66 66 66 67 68 65 86 71 86 86 86 86 86 86 86 86 86 86 86 86 86	1,770 820 1,500 460	4,550 9 165 4,400 35 4,032	26,233
	Total	5,692 12,914 750 337 1,000 346 47 14 15 27 27 27 27 27 28 280 930 930	4,898 2,550 2,045 650	10,143 17 277 10,700 272 18,459	r63,452
1984	Indus- trial	250 2,277 7,104 7,104 7,104 101 880 811 8 8 8 2 2 2 2 2 2 135 135 135 146 146 165 165 165 165 165 165 165 165 165 16	3,184 1,785 593 65	5,627 10 84 6,400 232 13,290	r37,359
	Gem ²	652 3,415 200 200 230 230 200 35 4 4 4 4 4 4 1 13 5 7 7 7 8 1 10 8 10 8 888 8 888 8 888	1,714 765 1,452 585	4,516 7 193 4,300 40 5,169	r26,093
	Total	1,034 6,200 10,731 226 1,000 1,000 10 10 14 27 830 830 846	5,043 2,644 1,969 655	$\begin{array}{c} 10,311 \\ \underline{z61} \\ 10,700 \\ 279 \\ 11,982 \end{array}$	55,392
1983	Indus- trial	259 2,480 5,902 450 800 800 306 17 17 17 18 198 198 198 103	3,278 1,844 569 66	5,757 78 7,000 234 8,627	32,353
	Gem ²	775 8,726 4,829 230 230 230 230 23 12 12 132 132 242 242 242	1,765 800 1,400 589	$4,554 \\ 183 \\ 3,700 \\ 45 \\ 3,355$	23,039
	Country	Angola Australia Botswana Brazil Central African Republic China Chana Guinea Guyana Indonesia Ivory Coast Indonesia Ivory Coast Ivory Coast Armibia Sierra Leone	South Africa, Republic of: Finsch Mine Premier Mine Other De Beers' properties Other	Swaziland Swaziland Swaziland Sarania US.S.R. Voncauela Zaire Zaire	TotalTotal

NA Not available. Revised. Preliminary. Estimated.

¹Table includes data available through June 3, 1988. Total diamond output (gem plus industrial) for each country is actually reported except where indicated by a footnote to be estimated. In contrast, the detailed separate production data for gem and industrial diamond are Bureau of Mines estimates in the case of every country except Australia (1984-87), Botswana (1987), Central Arican Republic (1988-86), Guinea (1984-87), and Liberia (1984-86), for which source publications give details on grade as well as totals. The estimated distribution of total output between gem and industrial diamond is conjectural, and for most countries, is based on the best available data at time of publication.

Includes near-gem and cheap-gem qualities.

³Reported figure. ⁴Estimates based on reported exports; excludes smuggled diamonds. ⁵Other De Beers Group output from the Republic of South Africa includes Kimberley Pool, Koffiefontein Mine, and the Namaqualand Mines.

Canada.—Dia Met Minerals of Vancouver continued to negotiate the financing for drilling the Jack kimberlite pipe in British Columbia. The pipe, located 55 kilometers north of Golden, British Columbia, contains minute gem-quality diamonds. Additional pipes in the area were sampled during the summer months. Information from the summer program is not available at this time.

Central African Republic.—African Star Mining Co., a subsidiary of the U.S. firm O'Hair Mining and Drilling Co., established the first large-scale mechanized diamond mining operation in the Central African Republic. Two mines and associated washing plants with an initial production rate of 2,500 cubic meters per day were under construction with production scheduled to begin in early 1988. The firm planned to increase production to 5,000 cubic meters per day in 60 to 90 days after startup. The estimated average grade of the project reserves is 0.4 carat per cubic meter that grade 95% gem quality. Annual production is forecast to be approximately 670,000 carats per year. The planned production of the two operations is 200% of the current total production of the Central African Republic.

China.—Boarara Mining Ltd. of Australia entered into an agreement with Southolme Ltd. of Hong Kong to explore and develop diamond projects in Hunan Province in China. Diamonds are found along the 1,000-kilometer length of the Yuan Jiang River terraces and channels, which are often 20 to 30 meters deep and up to 300 to 400 meters wide. The terraces have been mined for years by local farmers. A source pipe for the diamonds has not been found.

The Yuan Jiang River Alluvial Project, a joint venture between City Resources (Asia) Ltd. (a subsidiary of the Australian company City Resource Ltd.), China Hunan International Development Corp., and China Geology Import and Export Group, was formed to explore for and produce diamonds and gold on the lower reaches of the Yuan Jiang River. City Resources will supervise and control the work and the Chinese partners will furnish the labor force. The project area is approximately 120 square kilometers.

China produced diamonds, aquamarine, quartz crystal, citrine, turquoise, peridot, sapphire, jet, pearls, and jade.

Guinea.—Diamond production at Badge Oil's Aredor project decreased. The diamonds from Aredor are noted for their size and quality with an average price of \$284 per carat in 1987. The stones average 0.82 carat; however, an average of 55 gems over 10 carats and 10 stones over 15 carats was recovered each month. During 1987, a 100.2-carat stone was sold for \$1.6 million, and a 143-carat stone was sold for \$3.9 million. Production costs have been lowered from \$260 per carat in 1984 to about \$90 per carat in 1987.9

India.—Orissa Mining Corp. discovered a large deposit of high-quality ruby in Orissa State. The deposit in the Jilligdhar area of the Kalahandi District has made the company one of the largest producers of gem stones in the country. The smaller fine-quality stones sell wholesale at about \$1,000 per carat. The lower quality stones suitable for cabochons sell for a few hundred dollars per carat once they are cut. The Government-owned Mineral Development Corp. announced the discovery of a major new diamond deposit in Chittaurgarh Province. Early reports indicate that the deposit may be more productive than any area currently being mined.

Indonesia.—Acorn Securities Ltd. continued negotiations with the Government of Indonesia for a long-term production agreement for the South East Kalimantan diamond project. The first parcel of diamonds from the project, 1,032 carats, was evaluated at an average value of \$170 per carat. The parcel of 6,342 stones was 97% gem quality. Acorn has a reserve base of 16 million cubic meters with an average grade of 0.2 carat of diamond, 80 milligrams of gold, and 20 milligrams of platinum per cubic meter.

Pakistan.—Production from a new emerald deposit in Gujjar Kallay in the Swat District resulted in an increase in the average monthly production from 350 carats to 4,000 carats. The stones are of very good quality. Pakistan continued to produce high-quality pink topaz, other gem topaz, and tourmaline.

Sierra Leone.—Diamond Corp., a subsidiary of De Beers, negotiated with the Government of Sierra Leone regarding a \$3 million loan to rehabilitate the mining equipment for the National Diamond Mining Co.'s operations at Yengema.¹⁰ Oliver Resources PLC, through its Sierra Leone subsidiary, was granted exclusive gold and diamond licenses on about 78 square kilometers of alluvial deposits along tributaries of the Pampana River.

South Africa, Republic of.—Thirteen ad-

ditional marine diamond concessions were allocated off of the South African west coast. Fourteen companies or individuals are working the concessions that were issued in 1983 and 1984. The 1987 marine diamond production was estimated at

55,000 carats. De Beers began reactivation of the Koffiefontein Mine in the Orange Free State. The Mine, idle since 1982, is expected to be back in production in early 1988.

TECHNOLOGY

Shalev Computerized Systems Ltd. in Ramat Hasharon, Israel spent \$2 million developing Robo Gem, a robot that automatically calculates the best possible shape and optimum yield of virtually all rough gems except diamond. The robot is more exact than human cutters, increases yields from rough stones an average of 10%, and reduces the cost of cutting by up to 70%.11

Zui Yehuda of Israel developed a method for treating diamonds that reportedly improves the clarity of fractured diamonds dramatically. In most diamonds the treatment can easily be identified with a 10X loupe. Many of the treated stones showed a yellow concentration of color along fractures. All of the treated stones displayed a distinct rainbow of color when viewed along the thin side of the fracture.12

Enhancement of all types of gem materials through chemical and physical means has become much more commonplace and has included a wider variety of gem materials in the past few years. Irradiation by the electromagnetic spectrum (X-rays, gamma rays, etc.) and by energetic particles (neutrons, electrons, alphas, etc.) is being used to enhance or change the color of diamonds, topaz, tourmaline, quartz, beryl, sapphire, zircon, scapolite, and pearls. Blue topaz is normally irradiated, but this does not imply that all of these gem materials are regularly irradiated.13

A number of gem materials can be enhanced by chemical treatment or impregnations. The treatment may alter the bulk of the gem material or only penetrate the surface. This includes bleaching, oiling, waxing, plastic impregnations, color impregnations, and dying. The treatments that alter only the surface of the gem material include surface coatings of various types, interference filters, foil backings, surface decoration, and inscribing. Chemical

treatment is more widespread than the common dying of quartz, treatment of turquoise, and oiling of emeralds. Chemical treatment and impregnations have been used to enhance chalcedony, coral, ivory, pearl, tiger's eye, emerald, lapis lazuli, opal, ruby, sapphire, turquoise, beryl, quartz. jade, diamond, and amber.14

The oldest and most common method of gem material enhancement is heat treating. Heat treatment of gem materials was used in Greece and Rome well before the Christian Era. Heat treatment can cause color change, structural change, and improve clarity. In the past, heat treatment was common for quartz and gem corundum. Today, materials that are heat treated to enhance their appearance include sapphire. topaz, beryl, tourmaline, quartz, zircon, amber, diamond, and zoisite.15

Testing can determine if certain types of gem materials have been treated. However, not all types of treatments for all types of gem materials can be detected.

¹Physical scientist, Branch of Industrial Minerals.

²Industrial Minerals (London). Company News. No. 240,

Sept. 1987, p. 101.

Jewelers' Circular-Keystone. Brown is Beautiful and Saleable. V. 158, No. 7, July 1987, p. 303.

Leave Company of the Co

Australian Bureau of Mineral Resources. Australian Mineral Industry Annual Review. Preliminary Summary 1987. Gemstones, Feb. 1988.

⁶Jewelers' Circular-Keystone. South Sea Pearls. V. 158,

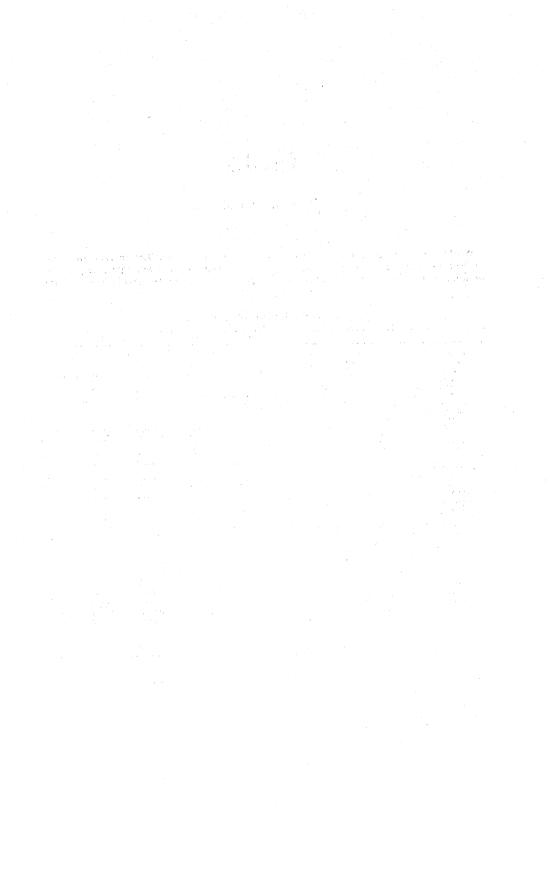
No. 7, July 1987, p. 308.

Tindustrial Minerals (London). World of Minerals. No.

^{239,} Aug. 1987, p. 9.

**Gems and Gemology. Gem News. V. 23, No. 4, winter

⁹Ellis, R. Aredor Makes the Grade. Min. Mag., Sept. 1987, pp. 206-213.


¹⁰Mining Journal (London). Development. V. 309, No. 7931, Aug. 21, 1987, p. 141.

 ^{(1931),} Aug. 21, 1301, p. 141.
 11 Business Week. Developments To Watch. No. 2998, May 1987, p. 141.
 12 Rapaport Diamond Report. Diamond Treatment Alert. No. 220, Dec. 4, 1987, p. 8.
 13 Nassau, K. Gemstone Enhancement. Buttersworth, 1004 pp. 46, 202.

^{1984,} pp. 46-60.

¹⁴Pages 61-78 of work cited in footnote 12.

¹⁵Pages 25-44 of work cited in footnote 12.

Gold

By John M. Lucas¹

World gold mine production reached its highest recorded level in 1987. U.S. mine production also reached its highest level, registering a strong 33% increase over 1986 production. Nevada was again the principal gold-producing State, having increased pro-

Table 1.—Salient gold statistics

	1983	1984	1985	1986	1987
United States:					
Mine production thousand troy ounces	2,003	2,085	2,427	r _{3,739}	4,966
Valuethousands	\$849,071	\$751,833	\$771,032	r\$1,376,855	\$2,224,691
Percentage derived from:	40.0,0.2	*,	*********	·-/	
Precious metals ores	83	87	92	96	91
Base-metal ores	14	ĨÌ	5	2	6
Placers	3	2	3	2	8
Refinery production:	•				
Domestic and foreign ores					
thousand troy ounces	1.972	2.101	2.076	r _{2,396}	3,613
Secondary (old scrap)	r _{1.784}	r _{1.769}	r _{1.602}	r _{1,345}	2,034
Exports:	-,	-,	-,	-,	-,
Refineddodo	1.881	3,482	2.888	r _{3,554}	2,288
Otherdo	1.258	1,499	1.078	1,441	1,558
Imports for consumption:	2,200	-,	-,	-,	-,
Refineddodo	3,599	6.032	6.361	13,800	2,423
Other do	994	1,837	1,865	1,949	1,420
Gold contained in imported coinsdo	1.948	2,769	2,064	1,101	1,084
Net deliveries from foreign stocks in Federal	1,010	2,100	=,001	-,	-,000
Reserve Bank	-220	381	484	4.692	3,059
Stocks, Dec. 31:		001		2,00=	0,000
Industry ² dodo	r611	r ₇₅₂	r ₅₉₆	r ₉₂₅	732
Futures exchangedo	2,530	2,359	32,110	32,809	32,625
Department of the Treasury:	2,000	2,000	2,110	2,000	2,020
American Eagle gold coin salesdo				r 42,212	1,481
Bicentennial of the U.S. Constitution coin				2,212	1,401
sales					⁵ 203
	634	419	48	$\overline{(7)}$	200
Gold medallion sales ⁶	034	8156	24	(9)	
Olympic gold coin sales do		196			
Statue of Liberty gold coin salesdo	To	Fo	9121	(10)	0.000
Consumption in industry and the artsdo	r _{3,078}	r3,140	r3,097	r _{3,126}	3,228
Price: 11 Average per troy ounce	\$424.00	\$ 360.66	\$317.66	\$368.24	\$447.95
Employment ¹²	6,500	6,900	6,900	r _{8,300}	11,100
World:	·				_
Mine production thousand troy ounces	r45,163	^r 46,827	49,184	P51,620	e52,481
Official reserves 13 million troy ounces	r _{1.143.5}	r _{1,142.5}	r _{1,145.2}	1.145.5	1,143.9

rRevised. eEstimated. ^pPreliminary.

Calculated by the Gold Institute from reports by the Bureau of the Census.

^{**}Unfabricated refined gold held by refiners, fabricators, dealers, and U.S. Department of Defense.

**Commodity Exchange Inc. only. Stocks held by other exchanges estimated to be less than 2% of totals shown.

⁴Sales program began Oct. 20, 1986.

⁵Sales program began July 1, 1987.

⁶Sales program began July 15, 1980. No sales. No action was taken on the reauthorization bill by the 99th Congress. Includes coins sold in 1982 and 1983 for delivery in 1984.

Authorization sales program fulfilled in 1985.

Osales completed by yearend 1985 for delivery in early 1986.

The pelhard Industries quotation.

¹²Mine Safety and Health Administration.

¹³Held by market economy country central banks and governments and international monetary organizations. Source: International Monetary Fund.

duction more than tenfold since 1979. The overall demand for gold for use in fabricated products in the market economy countries declined from the level of 1986 partly because of a drop in coinage in Japan. Gold continued to be used in high-technology applications, especially in the aerospace

and electronics industries.

Despite an apparent excess of supply over identifiable demand, the firmness of the price during the year suggested that the surplus had been easily absorbed by investors, especially in Europe and North America.

Table 2.—Volume of U.S. gold futures trading

(Million troy ounces)

Exchange	Location	1983	1984	1985	1986	1987
Chicago Board of Trade Commodity Exchange Inc International Monetary Market ¹ MidAmerica Commodity Exchange	Chicago New York Chicago do	10.15 1,038.28 99.40 11.59	9.73 911.55 .88 2.02	5.42 788.40 (²) 1.04	4.00 842.96 (²) .70	8.074 1,029.31 26.16 .65
Total		1,159.42	924.18	794.86	847.66	1,064.19

¹A division of the Chicago Mercantile Exchange

Data Coverage.—Domestic Domestic mine production data for gold are developed by the Bureau of Mines from two separate. voluntary surveys of U.S. operations. Typical of these surveys is the lode-mine production survey of copper, gold, lead, silver, and zinc mines. Of the 555 lode gold operations to which a survey request was sent, 69% responded, representing 95% of the total lode-mine production of gold shown in tables 6 and 7. Production for the nonrespondents was estimated using reported prior year production levels, adjusted by trends in employment and other guidelines such as company annual reports, the news media, and State agency reports.

Legislation and Government Programs.—As required by legislation enacted in 1986, up to 1 million \$5 gold coins, each

containing 0.24 ounce² of gold, were to be minted to commemorate the Bicentennial of the U.S. Constitution. The first of these coins was struck on July 1.

Legislation to mint 1 million gold coins, each containing 0.24 ounce of gold, and 10 million silver coins, each containing 0.77 ounce of silver, commemorating the 1988 Olympic games, was approved as Public Law 100-141. Both coins were to be legal tender. The coin prices were to be established by the U.S. Department of the Treasury. They were to include a surcharge of \$35 on each gold coin and \$7 on each silver coin, to be used to support the training of present and future U.S. athletes in the 1988 Olympic games. A sunset provision was to terminate minting activity on June 30, 1989.

DOMESTIC PRODUCTION

Numerous properties were brought into production and decisions to expand production capacity were implemented at a number of existing mines. A large percentage of the new mines beginning or planned were to employ heap-leaching and recovery techniques pioneered by the Bureau of Mines.

Of the 4.9 million ounces of gold produced in the Nation, 76% was attributable to the 25 leading producers. The average recoverable gold content of precious metals ores processed from lode mines was 0.05 ounce per short ton, while placer gravels yielded an average of 0.03 ounce per cubic yard washed.

The revisions in domestic refinery production data for 1983-87 shown in table 10 reflect the inclusion of newly reported data and account more accurately for the contribution of several existing refineries, plus the addition of some previously unreported metal of both primary and secondary origin.

²Less than 1,000 ounces traded. Trading ceased July 10, 1985, and resumed June 16, 1987.

Table 3.—Mine production of gold in the United States, by State

(Troy ounces)

State	1983	1984	1985	1986	1987
Alaska¹ Arizona California Colorado Idaho Michigan Montana Nevada New Mexico North Carolina	39,523 61,991 38,443 63,063 W 161,436 960,657 W	19,433 54,897 85,858 60,010 W 181,190 1,020,546 W	44,733 52,053 187,813 43,301 44,306 W 160,262 1,276,114 45,045	48,271 W 425,617 120,347 70,440 W W **2,098,980 39,856	86,548 95,240 602,605 178,795 97,773 W 234,365 2,679,470
Oregon South Carolina South Dakota Utah Washington	322 309,784 238,459 W	310,527 W W	W W 356,103 135,489 W	12 W W W W	W W W W
Total	2,002,526	2,084,615	2,427,232	r3,739,015	4,966,382

¹Revised. W Withheld to avoid disclosing company proprietary data; included in "Total."

¹These figures, reported to the Bureau of Mines, probably understate production. Data collected by the State indicate roduction to have been as follows, in troy ounces: 1983—169,000; 1984—175,000; 1985—190,000; 1986—160,000; and

Alaska.—Despite continuing conflict between environmentalists and Alaska's small- and medium-size placer miners during 1987, placer mine production, which accounted for 97% of the State's gold production, increased for the fourth consecutive year. The quantity of gold produced in Alaska and reported to the Bureau of Mines increased by nearly 80% over that reported in 1986. However, an informal annual survey of Alaska's gold producers, begun several years ago by the Alaska State Division of Geological and Geophysical Surveys (DGGS), again suggested that a much larger quantity, nearly 230,000 ounces, had actually been produced. This figure compares with similarly derived figures for 1982-86 of 174,900, 169,000, 175,000, 190,000, and 160,000 ounces, respectively. The value of 1987 production was estimated by the State at nearly \$105 million, up 71% over the 1986 estimate. The DGGS, in its annual review of mining activity in the State, cosponsored by the Alaska Division of Business Development, noted that the production increase was the result of increased production from a few major operations, offsetting a reduction in the number of small placer operations.3 Expenditures for exploration, development, and production, a large portion of which was for precious metals, together increased 37%. Direct employment increased by 349 jobs to nearly 3,000. There were 202 mechanized placer mines and 3 lode mines reportedly in operation in Alaska during 1987. There was a significant decrease in the number of small placer mines from 1985 through 1987.

Many small family-operated mines were squeezed out of business, reportedly because of regulatory and legal problems.

According to the State review, the number of small placer mines in Alaska declined by 27% during 1987. The most severe constraint on small miners in 1987 was a court injunction that prohibited the Bureau of Land Management (BLM) from allowing placer mines to disturb more than 5 acres of land on four major State drainages until BLM completes cumulative environmental impact statements and other assessments on the land in question. The injunction was a result of a lawsuit brought by the Sierra Club against BLM. It was expected to halt some placer mining in key interior Alaska mining districts for 1 to 3 years. Also during the year, the Corps of Engineers was directed to begin developing a permit process for Alaskan placer mines starting in 1988. The Corps of Engineers is responsible for permitting activities on all wetlands, regardless of ownership.

Other difficulties facing Alaskan miners were continuing water-quality problems and a legal challenge by a coalition of environmentalists and native groups challenging the mining claim location and leasing system of Alaska. The Governor directed State agencies to develop an acceptable plan regarding water quality before the 1988 mining season to protect the rights of both placer miners and other water users.

The Valdez Creek Mine, a placer gold mine owned by Valdez Creek Mining Co. Inc., a consortium of Canadian firms, was the State's largest gold producer for the fourth consecutive year. According to published data, the mine, off the Denali Highway near Anchorage, produced more than 32,000 ounces of gold. By modifying its open pit mining technique, and by using a winter-protected screening plant and sluice box recovery system, the company determined in 1987 that it could reliably operate throughout the winter at temperatures as low as -25° to -35° F. Near Nome, the Alaska Gold Co., 85%-owned by Sharon Steel Corp., operated its No. 5 and No. 6 floating bucketline dredges during the season, processing about 1.4 million cubic yards of gravel. This amount is nearly double the quantity processed in 1986, when only one dredge was being used. In Norton Sound, offshore Nome, Western Gold Exploration and Mining Co. Ltd. Partnership (WestGold), 50% held by Inspiration Gold Inc., completed a successful first season of offshore mining with its mining vessel, the BIMA, recovering 36,600 ounces of gold. Also near Nome, the Windfall Gold Mining Co. again operated its Copper Gulch open pit, stripping 270,000 cubic yards of overburden and sluicing an estimated 630,000 cubic yards of gravel.

Callahan Mining Corp., owner of 79.5% of Livengood Placers Inc., which mines properties 60 miles north of Fairbanks, reported that its contract operator recovered nearly 2,800 ounces of gold in 1987 from previously worked areas. Work during the 1987 season concentrated on higher grade ore pockets encountered in the bottom of the pit. The contractor stripped 585,000 cubic yards of overburden to prepare another area for sluicing during the 1988 season, from which 3,000 ounces of recovery was expected.

At Ester Dome near Fairbanks, the Grant gold mine of Silverado Mines Ltd. was reopened in December, following a nearly 2-year redevelopment period during which operations were converted from underground to open pit mining. Gold recovery at the mine's 250-ton-per-day mill and carbonin-pulp recovery plant reportedly was running at about 94% by yearend. Contiguous to the Grant pit is the Ryan Lode property owned by Citigold Alaska Inc., a subsidiary of La Teko Resources Ltd. of Canada, where the owners completed their first full year of a full-scale heap-leaching test. The operation reportedly reversed the conventional heap-leaching procedures customarily used in the lower 48 States, such as Nevada, by using heap leaching to process small tonnages of high-grade ore rather than a large tonnage of low-grade ore. About 6,100 ounces of doré reportedly was recovered by La Teko in 1987, making it the State's

largest lode gold producer.

The \$82 million Greens Creek Mine on Admiralty Island was scheduled to begin production at the rate of 84,000 tons per year of silver-gold-lead-zinc-bearing concentrates in September 1988. In addition to 6.4 million ounces of silver, the mine was expected to yield 36,000 ounces of gold per year and employ a workforce of about 250. The mine was being developed by Amselco Minerals Inc. and its partners Hecla Mining Corp., CSX Oil and Gas Corp., and Exalas Resources Corp.

Exploration for gold continued in many areas of the State. On Chichagof Island, Golden Sitka Resources Inc. continued exploration at the Hirst-Chichagof underground mine. At the old Alaska-Juneau Mine at Juneau, once the largest gold mine in the Nation, Echo Bay Mines Ltd. continued underground exploration, reserve development, and evaluation with the possibility of beginning production in mid-1991. Echo Bay and Coeur d'Alene Mines Corp. also acquired the Kensington Mine near Berner's Bay, 50 miles north of Juneau. Plans called for an evaluation and feasibility period lasting into early 1989.

A report prepared by the Bureau of Mines described the history, characteristics, and mineral development potential of 21 lode gold deposits in or near the Chugach National Forest of Alaska. It includes findings from a recent 4-year mineral evaluation of the forest conducted by the Bureau and the U.S. Geological Survey. Of the 21 lode deposits described, 14 contain a combined identified resource of 117,750 tons averaging 0.55 ounce of gold per ton and 0.2 ounce of silver per ton.4 In another report the Bureau estimated the remaining lode gold endowment of eight Alaskan mining districts using historic production data. To assess the remaining endowment, a computerized production data base was compiled from Bureau records. Based on a conservative extrapolation of grade-tonnage curves generated by the study, a substantial total endowment of 8.4 million ounces remained in the eight districts. The Chichagof, Fairbanks, Juneau, and Willow Creek Districts have the greatest remaining endowment.5

Arizona.—Higher prices for gold, especially during the last three-quarters of the year, reportedly led to a significant increase in exploration activity in the State, with gold or gold and silver listed as the objective of 29 out of 33 projects undergoing exploration during the year.

In La Paz County, Cyprus Copperstone Gold Corp. produced the first gold from its new \$13.9 million Copperstone Mine in

November. Copperstone produced about 6,000 ounces of gold in 1987 and more than 60,000 ounces was expected in 1988. Surface mine life, based on currently known open pit reserves of 510,000 total contained ounces, was estimated at 6 years. Gold ore reserves were 6 million tons containing an average of 0.085 ounce of gold per ton. Drilling around and under the current open pit area revealed higher grade ore that may be obtained through underground mining.

Three properties in advanced stages of exploration and development were Ivy Mineral Inc.'s Gold Bug Mine, 30 miles northwest of Chloride in Mohave County, and Echo Bay's Congress Mine and Stan West Mining Corp.'s McCabe Mine, both in Yavapai County, southeast of Prescott. All three were expected to reach production in 1988.

California.—Gold production in California increased by 41%, reaching its highest level since 1942. Several new mines commenced production in 1987, capacity increases were under way at several operating properties, and several properties were in various preproduction phases ranging from ore reserve confirmation and permit-

ting to final plant construction.

In Imperial County, east of Brawley, the Mesquite Mine of Gold Fields Mining Corp., a wholly owned subsidiary of Consolidated Gold Fields PLC of the United Kingdom, completed its first full year of production. According to Consolidated's annual report, Mesquite's production during the fiscal year, all from heap leaching, amounted to over 180,000 ounces. The necessary permits were being sought to increase ore production from 3.3 million tons per year to nearly 5 million tons annually by mining the nearby Cherokee, Rainbow, and Vista de-

At the McLaughlin Mine near Clearlake in northern California, one of the State's largest gold mines, production increased nearly 10% to almost 190,000 ounces at an average cash cost per ounce of \$229 compared with \$240 in 1986. Homestake Mining Co., one of the Nation's top gold producers, announced that design engineering studies were begun in September on a \$25 million expansion program aimed at increasing the annual production rate at McLaughlin by 50,000 ounces by 1989.

On the outskirts of the town of Jamestown in Tuolumne County, Sonora Gold Corp.'s new Jamestown Mine completed its first full year of production. The new open pit, opened on the site of the old Harvard Mine, was designed to yield about 130,000 ounces of gold and 59,000 ounces of silver

per year. The mine reportedly contains sufficient reserves to last 14 years at a gold price threshold of \$300 per ounce. The mine's new \$85 million flotation mill was officially opened in March. To the south in Mariposa County, Goldenbell Resources Inc. continued work on its Pine Tree gold property, a planned 130,000-ounce-per-year open pit scheduled to begin production in late 1988 or early 1989. Sonora and Goldenbell are members of the ABM Mining Group Inc. of Vancouver, British Columbia, Canada.

Other gold mines beginning or resuming production in California during 1987 includthe Kramer Hills, Standard Hill, Sixteen-to-One, Goldstripe, Mount Gains, Yellow Aster, and Morning Star. At the Kramer Hills property on the edge of Edwards Air Force Base in San Bernardino County, Beaver Resources Inc. reportedly began full-scale open pit mining in early 1987. Heap leaching was being used for recovery, and plans were formulated to expand the capacity of the property from about 12,000 ounces to 48,000 ounces per year. The company reportedly concluded an agreement with Noranda Exploration Inc. and Hemlo Gold Mines Inc. to explore and

develop an adjoining property.

Near the town of Mojave in Kern County, Billiton Minerals USA Inc., a wholly owned subsidiary of Shell Mining Co., began mining at the Standard Hill gold mine in August. Royal Gold Inc. of Denver, CO, began production at two mines in 1987. In July, Royal and its partner, Lucky Chance Mining Co., poured the first gold from the old Sixteen-to-One Mine near Alleghany in Sierra County. This underground mine has been a prolific gold producer periodically since 1896 with estimated total production exceeding 1 million ounces. The partners expected to recover about 14,000 ounces of gold annually from high- and low-grade milling ores as well as small quantities of hand-sorted specimen gold and "jewelry rock" containing visible gold. Royal's second mine to resume work was its recently acquired Goldstripe property in Plumas County near Lake Almanor. Seasonal mining, begun in September at a rate of 1,600 tons per day, was by open pit. Gold was recovered using agglomeration heap leaching. At full capacity, annual production of Goldstripe was expected to be about 20,000 ounces. In early 1987, Royal sold its interest in the Colosseum Mine in San Bernardino County to Colosseum California Inc. and Dallhold Investments Pty. Ltd. of Perth, Western Australia. In Mariposa County, Mount Gains Resources Inc., using heap leaching, reportedly produced about

3,000 ounces of gold from tailings and ore mined from the underground workings at the old Mount Gains Mine. Near yearend, Terramar Resources Corp. of Vancouver, Canada, was negotiating with the owners to gain control of the property. Glamis Gold Inc. reported that the first gold was poured at its Yellow Aster Mine near Randsburg in Kern County from production on the Lamont zone. Production on the Descarga dumps was ready to begin at yearend. The Lamont and Descarga were to feed the system for about 2 years, during which time the main Yellow Aster ore body was to be permitted and phased into production. Glamis' other California Mine, the Picacho in eastern Imperial County, yielded 24,000 ounces during the fiscal year ending October 31. In San Bernardino County, Vanderbilt Gold Corp. completed its first year of mining at its Morning Star open pit and heap-leaching facility.

Properties under development and nearing production during the year included the Snow Caps open pit and heap-leaching operation in Inyo County, belonging to Sunshine Mining Co. and First Sierra Assets Inc.; and the Bagdad-Chase Mine of Bentley Resources Ltd. in San Bernardino County. In the same county, Viceroy Resources Corp. moved toward an early 1988 startup at its Castle Mountain property in the Hart Mountains; Alpine County's Zaca Mine, owned by Pegasus Gold Inc. and California Gold Mines Ltd., was expected to begin

production within 2 years.

Colorado.-In Rio Grande County, the Summitville Mine, an open pit heap-leaching operation, completed its first full year of production. Galactic Resources Ltd. of Vancouver, Canada, reported that gold produced through the third quarter of 1987 amounted to nearly 60,000 ounces. At a recovery rate of greater than 10,000 ounces per month toward yearend, gold produced by the end of the leaching season in November amounted to over 88,000 ounces, thus making Summitville by far the State's

largest gold producer.

The State's second largest mine, the Sunnyside gold mine in San Juan County, also completed its first full year of production under its new owner, Echo Bay, which had extensively refurbished the mine. Sunnyside, at Silverton, operated by Echo Bay's wholly owned subsidiary, Sunnyside Gold Corp., produced over 47,000 ounces of gold and over 446,000 ounces of silver in 1987. In an effort to reduce production costs, the owners reportedly devoted 1987 to modernizing equipment, increasing productivity, and developing more underground areas.

Golden Cycle Gold Corp. of Colorado

Springs reported that, with its partner, Texasgulf Minerals and Metals Inc., working together under a joint venture named Cripple Creek and Victor Gold Mining Co., more than 28,000 ounces of gold was recovered from a continuing dump-leaching operation known as the Mine Dump Project. Heap leaching has been employed in the project since 1984 to recover gold from mine dumps in the Cripple Creek area of Teller County. Texasgulf, a subsidiary of Société National Elf Aquitaine, a French corporation, was manager of the partnership. The company continued exploration of its Minerex area in Teller County, and a decision was made to move ahead with the construction of a new open pit and heap-leaching project, also in Teller County, known as the Portland area. By yearend 1987, work on the Portland area included the partial construction of a leach pad and the mining and stockpiling of 120,000 tons of ore bearing an average grade of 0.8 ounce of gold per ton. An estimated 16,100 ounces was to be recovered from the Portland area in 1988. The partners also constructed a new 150-ton-perday mill designed to incorporate portions of their existing Carlton mill while providing capacity to handle a wider range of ore grades. Work was also under way to develop another Teller County property named the Proper Stopes. Included on the property were the old Chicago Tunnel and Poverty Gulch areas. Underground mining was expected to yield nearly 4,000 ounces during 1988. Another old gold-producing mine, the Camp Bird Mine, was being reopened near yearend by Chipeta Mining Corp., and several partners collectively known as the Camp Bird Venture. Chipeta, wholly owned by Western Mining Corp. Holdings Ltd. of Australia, owns 76% of the venture. The partners expect to recover about 10,000 ounces of gold during the 1987-88 fiscal year.

In Gilpin County near Idaho Springs, Franklin Consolidated Mining Co. Inc. in a joint venture with Consolidated Knobby Lake Mines Ltd. of Vancouver, Canada, reportedly reopened the old underground Franklin Mine. Toward yearend, mining and milling were reportedly progressing at a rate of nearly 100 tons of ore per day. In Gunnison County, Great West Gold and Silver Inc. reportedly began heap leaching at its Vulcan (Good Hope) property.

The Leadville Corp. began construction of a production facility at the Diamond shaft site on its Resurrection Mine near Leadville in Lake County. When completed in mid-1988, the property was expected to produce about 30,000 ounces of gold per year. In the COLD 405

Alma mining district of Park County, Cobb Resources Corp. negotiated a joint venture agreement with Boulder Gold Inc. of Australia for the purpose of returning the old London gold mine to productive status. At yearend, surface and underground development and engineering studies were under wav and the construction of a new 500-tonper-day mill was being considered. Battle Mountain Gold Co. (BMG) acquired the San Luis project in Costilla County. Subsequent drilling and examination of the property confirmed estimated proven and probable minable reserves of about 390,000 ounces of gold. BMG planned to bring the property into production in 1989 at an annual rate of 40,000 ounces of gold. Exploration and preproduction development continued on a number of other properties throughout Colorado.

Idaho.—Data contained in a review prepared by the Idaho Geological Survey indicated that the value of gold production in that State rose by nearly 74% over that of 1986 and the number of exploration projects, mostly for gold, increased to 61 in 1987 from 38 in 1986, with epithermal-type disseminated gold deposits reported to be the principal targets.

During the year, a task force composed of industry, government, and conservation groups drafted the first modern regulations in the United States governing the use of cyanide in mining. The rules were designed to safeguard against accidents involving the use of cyanide, especially in heap leaching. State approval of the proposed regulations

was pending at yearend.

The State's largest gold mine, the Pioneer Metals Corp.-TRV Minerals Corp.-Mining Finance Corp.'s Stibnite-West End Mine, a seasonal open pit and heap-leaching operation south of Yellow Pine in Valley County, produced over 30,000 ounces of gold during the year. Hecla signed an agreement with Pioneer for the latter to process oxidized gold-bearing tailings material from the old Yellow Pine tungsten and antimony mine near Stibnite. Pioneer was to begin processing the material in 1988. During the term of the agreement, 1988-91, about 25,000 ounces of gold was expected to be credited to Hecla's account.

Coeur d'Alene Mines completed its first full year of production at its new Thunder Mountain Mine in eastern Valley County. This open pit heap-leaching facility, which operated from May through October, yielded more than 27,000 ounces of gold during 1987. The mine was selected by the Pacific Northwest Pollution Control Association as the Idaho recipient of the association's 1987

State Industrial Pollution Control Award.

Nerco Inc.'s Delamar silver and gold mine in Owyhee County produced 30,200 ounces of gold and 1.7 million ounces of silver in 1987. A new heap-leaching facility to be used in tandem with the existing agitationleach recovery system was added in 1987. The addition was designed to recover an additional 65,000 ounces of gold and 1.4 million ounces of silver from lower grade ore over the next 7 years.

In the Yankee Fork mining district, U.S. Antimony Corp. (USAC) continued to operate its 300-ton-per-day flotation and cyanide leach mill at Preacher's Cove near Yankee Fork on the Salmon River. Feed for the mill is derived from USAC's properties on Estes Mountain and near Custer, plus shipments of ore from small miners delivered for custom milling. Exploration and geological studies by USAC at its Custer pit reportedly suggested the presence of a substantial ore body. Open pit mining on the company's Yellow Jacket property southwest of Salmon began in July. Detailed drilling at the Valley Creek property near Stanley was under way to test the possibility of an open pit mine. Also near Stanley, Sunbeam Mining Co., a subsidiary of Geodome Resources Ltd., was in the permitting stage toward opening its open pit Sunbeam (Jordan Creek) Mine and vat-leaching mill. Sunbeam anticipated recovery of 40,000 to 50,000 ounces per year when production begins in 1988.

Near the town of Bridge in Cassia County, Noranda Inc. submitted a mine development proposal to the U.S. Forest Service outlining its plan to develop a small heapleaching operation in the Black Pine Mountains. If approved, the Black Pine Mine would begin production in 1988, mining from three small open pits. Other properties under development by other companies include the Robinson Dyke and Buffalo Gulch Mines, both near Elk City, and the Atlanta gold mine at Atlanta Hill. A dozen or so placer mines were also operated during the year. The largest, situated near Lucille, was by A & T Mining.

Montana.—At least three gold mines commenced production in 1987 while several others had been proposed or neared a projected 1988 startup. Fewer new applications for exploration were filed in 1987. according to a State report summarizing mining and mineral developments in Montana during 1987,7 but applications for renewals increased while drilling activity and performance also increased. Exploration apparently shifted during the year from basic prospecting to work aimed at proving the

worth of earlier discoveries.

Pegasus acquired a 100% working interest in the developing Montana Tunnels property in Jefferson County from its partner in the venture, U.S. Minerals Exploration Co. Pegasus reported that 1987 production at the open pit gold-silver-zinc-lead mine amounted to 31,000 ounces of gold. 529,000 ounces of silver, 8.6 million pounds of lead, and 14.4 million pounds of zinc. The company forecast 1988 gold production at 85 000 ounces. Expansions at Pegasus' other Montana gold mine, the Zortman-Landusky open pit heap-leaching facility in Phillips County, reportedly led to the production of 106,900 ounces of gold and nearly 203,000 ounces of silver from over 9.6 million tons of ore mined and loaded for leaching. Gold production during 1986 was about 86.000 ounces. The 1987 expansion included the addition of a new carbon adsorption plant and improvements that extended the leaching season to 11 months. Following 4 years of exploration and engineering studies at its Beal project near Fairmont Springs, Silver Bow County, Pegasus announced that development was initiated toward a 1988 startup. The new open pit heap-leaching operation was expected to produce 35,000 ounces of gold annually.

The State's second largest gold mine, Placer Dome U.S. Inc.'s Golden Sunlight Mine at Whitehall, reportedly produced nearly 90,000 ounces of gold and 300,000 ounces of silver in 1987. A new \$4.5 million sand tailings treatment plant contributed 6,700 ounces to the overall recovery at the Jefferson County facility. A slight decline in production from that of 1986 reportedly related to lower grade ore encountered when systematic mining was shifted to

another area of the ore body.

In Fergus County, the Appaloosa Joint Venture, consisting of Chelsea Resources Ltd. and Cimarron Exploration Inc., poured its first gold at the Spotted Horse Mine during August. Head grades entering the 50-ton-per-day cyanide mill were reportedly expected to average over 1.0 ounce of gold per ton.

At the Jardine Joint Venture in Southern Park County, equal partners Homestake and American Copper and Nickel Co. Inc. completed an underground exploration and engineering studies program and moved toward construction of an underground mine capable of producing 42,000 ounces per year when production begins in mid-1989.

The State reported that placer mining activity was widespread during 1987, but that many small operations were forced to

shut down early owing to a lack of water. Nevertheless, placer operations were reportedly conducted along the following drainages: Grasshopper Creek near Bannack, Quartz Creek east of Superior, Sauerkraut Creek near Lincoln, Washington Gulch southeast of Avon, and Brown's Gulch west of Nevada City. Indian Creek west of Townsend was the site of the largest concentration of placer operations.

In addition to the developed and developing mines outlined above, exploration and/or preproduction development was conducted on numerous properties including the Hog Heaven project in Flathead County; Chartam Mine in Broadwater County; Lincoln project (Big Blackfoot), Cruse-Belmont; Pauper's Dream Mines in Lewis and Clark County; Tzarena and Rainbow projects in Silver Bow County; Bagdad Mine in Granite County; Elkhorn Mine in Jefferson County; and the Gold Coin Mine in Deer Lodge County.

Nevada.—In 1987, 13 of the 25 leading domestic gold mines were in Nevada. That State has registered a tenfold increase in gold production since 1979. The increased precious metals mining and exploration activity, combined with the associated growth of the parallel service industry has, for some communities, reportedly begun to strain the capacity of existing community services in some areas. According to State data, employment in the precious metals sector had increased from about 4,100 in 1983 to more than 5,900 by late 1987.

Some of the gold mines reported to have begun or resumed production in 1987 include the Chimney Creek Mine of Goldfields Mining Corp., the Gold Bar Mine of Atlas Gold Mining Inc., the Lewis Mine owned by Hycroft Resources & Development Corp., the Illipah Mine of Echo Bay, the Tuscarora (formerly Dexter) Mine of Horizon Gold Shares Inc. and Fischer-Watt Gold Co., the Big Springs Mine belonging to Freeport-McMoRan Gold Co. and FMC Gold Corp., the Kingston (Victorine) Mine of Nevada Goldfields Corp., the Silver Sun project of the Federal Claim Staking Agency Inc., and the Surprise Mine owned by BMG.

The Chimney Creek Mine in Humboldt County began production in December at an annual rate of 150,000 ounces per year. Open pit mining with milling, heapleaching, and carbon-in-pulp recovery is employed. The Atlas Gold open pit Gold Bar Mine began mining in January 1987 and poured its first gold in January 1988. Gold recovery was by milling and heap leaching followed by agitated carbon-in-leach recovery. Production at this Eureka County mine

was expected to be 45,000 to 50,000 ounces per year. Atlas Gold reported that exploration and drilling on its Gold Bar block several miles northeast of the mine revealed several areas containing gold mineralization. Vancouver, British Columbia-based Granges Exploration Ltd.'s Lewis Mine and the adjoining Crofoot Mine (also controlled by Granges Ltd.) in Humboldt County were expected to yield a combined 80,000 ounces per year. The Lewis began production in June and the Crofoot, under construction at yearend, poured its first gold bar in early 1988. The open pit Illipah Mine, Echo Bay's seventh gold mine in North America, began production in October and was expected to yield 30,000 ounces per year. The mine, in White Pine County, recovers gold using heap-leaching and carbon-in-pulp methods. The Tuscarora Mine at the town of Tuscarora in Elko County is an open pit and heapleaching operation with an estimated annual production rate of 5,000 to 14,000 ounces. It began production in November.

In Elko County, Freeport-McMoRan's Big Spring Mine, consisting of two open pits with heap leaching, produced its first gold in October. At the company's Jerritt Canyon Mine nearby, mill throughput was increased by 13%. Combined with improved recovery, this increase resulted in a 17% increase in 1987 gold production to 316,000 ounces. The Jerritt Canyon operation consisted of two open pits. A third pit was due to be opened in 1988. In addition to milling, heap leaching is also employed to effect recovery from lower grade ore. Nevada Goldfields, a wholly owned subsidiary of Golconda Minerals NL of Western Australia, completed construction of its 600-tonper-day mill at the Kingston project in Lander County. It poured its first gold in April. The newly reopened underground operation was expected to yield 49,000 ounces in 1988. At the company's Aurora Mine in Mineral County, construction of a new 300-ton-per-day mill was completed in December. Open pit and underground mining were used to effect an expected yield of 81,000 ounces of gold and 193,000 ounces of silver over the next 5 years. In August, BMG placed its new Surprise Mine into production. Surprise was the first of a number of satellite ore bodies to be developed at the company's Fortitude Mine in Lander County. The combined 1987 output from the Fortitude and Surprise was about 257,000 ounces. Cash costs at the BMG operation amounted to \$121 per equivalent ounce (with byproduct silver converted to equivalent ounces of gold) in 1987. This compares with \$144 per equivalent ounce in

1986 and \$177 in 1985. The Silver Sun project near Silver Peak in Esmeralda County reportedly began heap leaching in late May.

Favorable gold prices and continued successes with exploration aimed at expanding ore reserves encouraged a number of companies to expand their production capacity. In its 5-year business plans Newmont Gold Co. (NGC), the Nation's largest gold producer in 1987, began a new \$400 million capital investment program to substantially increase production at its Carlin gold properties in Eureka County. A planned 50% increase in production to 930,000 ounces of gold in 1988, reaching 1.6 million ounces in 1991, will be sustained from open pit ore deposits now under development. The planned gain in gold production will result from expansions of the two existing mills at NGC's property, completion of a third mill and a leach facility now under construction at the Rain ore body, and construction in 1988-89 of a fourth mill in the northern area of the 400-square-mile property in northeastern Nevada in 1988-89. Leaching of lowgrade ore will also be expanded from the current 8 million tons per year to more than 20 million tons per year. During 1987, NGC, processing newly mined and stockpiled ore, produced 589,000 ounces of gold from its Carlin area mines. Near yearend, NGC announced a significant increase in its gold reserves to 15 million ounces from 12.3 million ounces reported at yearend 1986. Exploration drilling in the Deep Post ore body in the northern area of its property and below the shallow ore body at Post encountered mineralization that assayed 0.93 ounce per ton over an interval of 470 feet. This hole, one of several 2,000-foot-deep holes drilled at Deep Post, reportedly provided the richest drill-hole assay over so long an interval in the history of exploration in NGC's vast Nevada holdings.

At the Round Mountain Mine in Nye County, the mine's owners, Echo Bay, Homestake, and Case Pomeroy & Co., announced plans to double the mine's output to 300,000 ounces per year by 1989 at a cost of \$140 million. Round Mountain, reportedly the world's largest heap-leaching operation, produced nearly 191,000 ounces in 1987. In White Pine County, Amselco Minerals and Nerco Minerals Co. disclosed plans to construct a new 1,000-ton-per-day mill to process the carboniferous ore fraction segregated during operation at the ongoing 60,000 to 100,000-ounce-per-year Alligator Ridge Mine.

In Humboldt County, AMAX Inc. initiated a \$14 million expansion program at its

Sleeper Mine. The expansion, when completed in 1988, was expected to boost annual gold production by about 40% to almost 200,000 ounces. Components of the expansion include the addition of a second open pit and a large increase in heap-leaching capacity. Near yearend, Silver State Mining Corp. announced plans to triple gold production at its Nevada mines. In addition to a new 16,000-ounce-per-year mine scheduled to begin in White Pine County in 1988, the company plans to expand the existing operations at its Tonkin Springs Mine in Eureka County to produce 50,000 ounces per year. Part of the expansion was to include the construction of the Nation's first commercial bioleaching facility. The new facility, under construction at yearend, was designed to exploit the mine's substantial reserves of gold contained in sulfide mineralization. Silver State also holds a 29.3% interest in the Dee Mine, a 50,000-ounce-per-year producer in Elko County.

As geologists learn more about the characteristics and occurrence of gold deposits in Nevada, their discovery rate continues to grow. Exploration along the so-called Carlin trend or gold belt, a highly mineralized zone extending northwest through and beyond NGC's Elko County deposits, led in 1987 to several significant discoveries, including NGC's Deep Post ore body mentioned above. Exploration and deep drilling on the adjoining Goldstrike property owned by American Barrick Resources Corp. led to the discovery of a major deep-seated, highgrade, gold-bearing sulfide deposit. The result was to increase Barrick's Goldstrike reserves from 625,000 ounces to 10 million ounces or possibly more. The deep deposit underlying the Goldstrike operations, where over 40,000 ounces was produced by heap leaching of low-grade surface deposits during 1987, has been designated as the Betze-Post deposit. Because this deposit extends to the southeast onto NGC land, the two companies have concluded a mutual layback agreement. Negotiations were under way at yearend for the joint mining of the new discovery. Forty miles to the southwest, another apparent gold belt paralleling the Carlin trend extends through the area hosting the Gold Bar and Tonkin Springs Mines northwestward through numerous other properties including Battle Mountain's Fortitude deposits. As if to lend additional support for the existence of a second gold belt, reportedly called the Battle Mountain trend, Echo Bay announced in early 1987 that exploration on its McCoy property near Battle Mountain had located a large deposit of precious metals. Incom-

plete exploration of the find, known as the Cove discovery, had by yearend demonstrated ore reserves bearing 2.1 million ounces of gold and 97.7 million ounces of silver. Before the end of 1987, Echo Bay had opened a surface mine on the lower grade open portion of the Cove deposit and heap leaching of the ore was under way at yearend. Cove reportedly will eventually consist of both an open pit and an underground mine. Construction of a new mill to process ore from both the McCoy and the Cove was also under way at yearend.

New Nevada gold mines completing their first full year of production included the Hog Ranch, Weepah, Austin Gold Venture, Paradise Peak, Florida Canyon, Relief Can-

von, Sleeper, and McCoy.

Oregon.—Gold mining and exploration in Oregon during 1987 increased over that of 1986, according to a summary report prepared by the Oregon Department of Geology and Mineral Industries.⁸

There were 20, mostly small, lode and placer mines producing gold during 1987. Active lode mines included the following: the Virtue, Lower Grandview, Golden Eagle, Iron Dyke, and Gold Ridge in Baker County; the Greenback and the Gold Blanket in Josephine County; the Maid of the Mist in Jackson County; the Oregon King (a heap-leaching operation) in Jefferson County; the Pyx in Grant County; and the Ruth in Marion County. The largest of these mines, the Iron Dyke of Silver King Mines Inc., reportedly produced 15,000 tons of copper-gold-silver ore that was trucked to the Silver King mill at Cuprum, ID.

Active placer mines included the Bonanza Creek Co. placer on Pine Creek in Baker County, the State's largest placer operation. Goldwater Inc.'s placer, also on Pine Creek, reportedly has been active for about 6 months per year for several years. The Broken Pick placer has also been recovering gold for several years in Baker County. Small placer operations were also active along Josephine Creek, Sucker Creek, Coyote Creek, Lower Grave Creek, and Galice Creek, all in Josephine County; and along Coffee Creek in Douglas County.

An epithermal deposit undergoing extensive exploration and drilling was the Quartz Mountain gold property in Lake County near the California border, where Quartz Mountain Gold Corp. and Galactic Resources had reportedly drilled 460 holes by yearend. Five high-grade areas were reportedly delineated within two separate deposits: the Crone Hill deposit and the Quartz Butte deposit. Drill-proven and probable reserves on the property were reported

to be in excess of 2.0 million ounces at yearend. The company also had several other nearby deposits under investigation at yearend.

South Carolina.—In Chesterfield County near Jefferson, Westmont Mining Inc., a Denver, CO-based subsidiary of the Costain Group PLC of the United Kingdom, reportedly poured its first gold in August following earlier heap-leaching tests at its recently reopened Brewer Mine. The open pit Brewer is one of several permitted gold mines in the State. Westmont began heap leaching in late November and expected to recover 150,000 ounces of gold during the planned 6-year life of the mine. Plant and equipment costs reportedly totaled about \$8 million.

At the Haile Mine in Lancaster County, opened in 1985, Piedmont Mining Corp. reported producing 7,836 ounces of gold and 5,708 ounces of silver from nearly 250,000 tons of ore mined and still being leached at yearend. Exploration at the new open pit heap-leaching mine during the year resulted in a 56% increase in proven and probable ore reserves to about 1.6 million tons averaging 0.056 ounce per ton.

Piedmont also controls the nearby Blackmon Mine and a number of former gold-producing properties in southern North Carolina. In 1987, Piedmont introduced its Piedmont Gold Piece, a one-half ounce, 9999-fine commemorative piece celebrating the rebirth of gold mining in the southeast. Gold for the new medallion was recovered from the Haile Mine.

In August, Ridgeway Mining Co., controlled by BP Minerals America Inc. and Galactic Resources, received the final permits to proceed with construction of its Ridgeway gold mine, 4 miles east of Ridgeway in Fairfield County. An environmental group immediately filed suit challenging the decision by State authorities to issue the permits. At yearend, the case was nearing a resolution that would allow the mine to proceed. In the meantime, construction of the facility began in September and was continuing at yearend. Beginning in late 1988 or early 1989, the 1,800-acre facility was expected to produce 133,000 ounces per year for 10 or more years. Open pit mining with conventional carbon-in-pulp milling and heap leaching will be employed. At a capital cost of about \$94 million, the new mine is expected to employ close to 200 people.

Other companies exploring, mostly for gold, in the State included Amselco Miner-

als, Billiton Exploration, Newmont Minerals Co., St. Joe Gold Inc., Texasgulf, American Copper, Boise Cascade Co., and FMC.

South Dakota.—A task force appointed by the Governor convened to draft new mining rules aimed at enforcing the reclamation of surfaced-mined areas and to supplement laws passed earlier by the State legislature. The State Board of Minerals and Environment passed the draft regulations.

On January 14, the Governor unveiled that State's new gold South Dakota Centennial Medallion. In April, the State entered the gold bullion market with its new 999-fine gold "Bison" medallion. The gold for both pieces was mined at the Homestake Mine at Lead.

At the Homestake Mine in Lawrence County, the Nation's largest underground gold mine, Homestake reported milling 2.3 million tons of ore yielding 326,000 ounces of gold. Owing to the installation of a new gravity-separation circuit in midyear, the overall gold recovery percentage was increased slightly from that 1986. Homestake's average cash costs increased to \$328 per ounce from \$285 in 1986, chiefly because of a decline in underground ore grade and expenses related to prestripping costs at the mine's Open Cut operation. The Open Cut became fully operational during the year with the startup of crushing and conveying facilities. Underground and surface exploration added 2.9 million tons of ore to reserves, more than replacing ore mined during 1987.

St. Joe Gold announced its intentions to proceed with development of its Richmond Hill gold mine, 5 miles northwest of Lead in Lawrence County. The proposed open pit heap-leaching operation, expected to begin in early 1988, would be mined at a rate of up to 2 million tons per year over a 10-year period.

In midyear, Brohm Resources Inc. began construction of a heap-leaching facility, to be followed by construction of an oxide heap-leaching facility and a conventional milling plant to process sulfide ores at its Gilt Edge Mine near Galena in Lawrence County. Production was expected to begin in July 1988 at a rate of about 42,000 ounces per year.

Also in Lawrence County, Wharf Resources (USA) Inc. reportedly recovered 46,000 ounces of gold at its open pit heap-leaching operation near Terry Peak. In the fall, Wharf added a third heap-leaching pad and was expecting metal recovery to re-

sume in 1988 from the Annie Creek portion of the open pit. Near yearend, the company proposed adding a fourth heap-leach pad, subject to approval of permitting agencies. To the south near Deer Mountain, Golden Reward Mining Co. continued plans to open a \$20 million open pit mine at its Golden Reward Property, also scheduled to begin production in 1988.

Goldstake Explorations (SD) Inc. announced its intentions to process about 5 million tons of old gold-bearing tailings along an 18-mile stretch of Whitewood Creek in Mead County south of Whitewood. The operation, using gravity-concentration and leaching-recovery techniques, will be conducted by Goldstake and its partner, Strawberry Hill Mining Co. of Deadwood, SD. Production at an expected rate of about 42,000 ounces per year was scheduled to begin in 1988.

Utah.—Following several years of an ongoing \$400 million modernization project due for completion in mid-1988, the giant Bingham Canyon Mine, near Salt Lake City, completed its first full year of copper and byproduct gold and silver production. The mine was the Nation's sixth largest gold producer in 1987. The mine's owner, BP Minerals, expects, upon completion of the modernization-program, to produce annually 300,000 ounces of gold, 2.3 million ounces of silver, 190,000 tons of copper, and 12 million pounds of molybdenum.

Gold production from the Mercur Mine, near Tooele, was over 108,000 ounces in 1987. Dump leaching contributed nearly 11,500 ounces of production to the total. Mercur's average cash cost in 1987 was \$216 per ounce, compared with \$199 per ounce in 1986. The higher 1987 costs were attributed to treatment of marginally lower grades during the year. In 1987, the mine's owner, Barrick, spent over \$17 million on the construction of a 750-ton-per-day autoclave circuit, to treat refractory ore, plus other improvements to the overall operations. Gold recovery from the mine's refractory ore fraction using the new autoclave reportedly will be increased to over 85%. During the year Barrick acquired a 50% interest in the Barney's Canyon area, 20 miles to the north. Favorable exploration there in 1987 by Barrick and its partner Royal Minerals Inc. was to be followed by drilling in 1988.

Tenneco Minerals Co. reportedly planned to reenter the precious metals mining business by developing its Goldstrike project in the Bull Valley mining district of Washington County. Tenneco sold its Nevada

gold properties: Borealis, Manhattan, and McCoy in 1986 to Echo Bay.

Washington.—Gold production at 210,000 ounces surpassed record-high level of 154,000 ounces in 1986, according to a review published by the State.9

Revisions to Washington's laws governing the leasing of State-owned land were adopted on October 9, 1987, and became effective November 10, 1987. The major changes applied to the annual rental, advance minimum royalty payments, term length for prospecting leases, and the ability of the State Department of Natural Resources to use public auction procedures to issue placer gold mining contracts and to designate areas for recreational prospecting. A plan outlining proposed operations, a new requirement, was added and must be approved prior to beginning prospecting.

Production at the State's largest gold mine, the Cannon Mine in Chelan County, owned by Asamera Minerals (U.S.) Inc. and Breakwater Resources Ltd., amounted to a record high 136,913 ounces of gold and 184,000 ounces of silver during the fiscal year ending September 30. The large underground mine at Wenatchee employing nearly 200 people, milled 487,006 tons bearing an average grade of 0.308 ounce of gold per ton. Modifications to the mill in 1986 resulted in an increase in gold recovery from 86% to 91%. The mill product is shipped to Japan and Montana for smelting and gold recovery.

The State's second largest mine, Hecla's Republic Unit (Knob Hill) at Republic in Ferry County, reported producing 70,095 ounces of gold and 341,272 ounces of silver. Average ore grades increased significantly during 1987 as mining moved into the recently discovered higher grade Golden Promise area of the mine. The recovered grade was up 43% to 0.97 ounce of gold per ton compared with 0.68 ounce per ton in 1986. Republic's silver output more than doubled in 1987. Proven and probable ore reserve tonnage increased 38% during the same period. Also in Ferry County, the Valley Mine, operated by High Country Mining and Exploration, completed its first full year of underground mining in September. Other Ferry County mines included the South Penn and the Gold Dike Mines. At the South Penn, Chemgold Inc., a subsidiary of Glamis Gold Ltd., and its partner Crown Resources Corp. reported mining 33,000 tons of ore grading 0.03 ounce per ton. The partners expected to recover about 900 ounces of gold during the 2-year life of the project. At the Gold Dike Mine east of

Danville, Vulcan Mountain Co. resumed mining and heap-leach recovery. Toward the end of the year, Vulcan and Sundance Mining Development Inc. signed an exploration agreement with U.S. Borax and Chemical Corp. covering the Gold Dike property and the adjoining Gold Hill property.

According to the State review, a minimum of 55 companies and individuals explored for metals in Washington State during 1987. Nearly all of these reportedly

explored for gold and silver.

Other States.—In Wyoming, placer operations were reportedly recovering gold from various drainages in the Atlantic City-South Pass area. To Consolidated McKinney Resources Inc. of Vancouver, Canada, reportedly began drilling near the Old Carissa Mine in the South Pass area south of Lander, WY. Northeast of the Carissa Mine and also in Freemont County, the Gyorvary Mining Co. reportedly began construction on an addition to its mill at the Mary Ellen Mine. In southeastern Wyoming, exploration work was also reportedly under way around old workings in the Medicine Bow Mountains.

In Minnesota, the State's mining tax laws were revised during 1987 and were expected to stimulate mining and encourage increased exploration activity. Over 900,000 acres of land was leased from the State during

1987, and reportedly there were 27 companies conducting exploration and drilling, principally for gold.

Mineralco Inc. of Ottawa, IL, had been exploring for gold in the vicinity of Hixon Lake in Oneida County south of Rhinelander, WI, for several years. Mineralco's request for a permit to drill test holes beneath the lake was denied by State authorities at yearend. Toward yearend, Kennecott announced that it planned to seek State and local permits to develop a coppergold-silver deposit at its Flambeau property in Rusk County near Ladysmith. CoCa Mines Inc. retained its 65% interest in the Raspberry Gold Prospect in northern Minnesota. Further exploration was planned for 1988.

At Callahan Mining Corp.'s Ropes gold mine near Ishpeming, MI, gold mining proceeded into the second full year of operation. Callahan reported milling nearly 670,000 tons of ore averaging 0.079 ounce of gold per ton and 0.199 ounce of silver per ton during 1987. Metal sales during the year amounted to 43,453 ounces of gold and 58,814 ounces of silver.

In Maine, Scintilore Explorations Ltd. of Ontario, Canada, reportedly continued work at its Big Hill silver-zinc-gold deposit at Pembroke, Washington County, east of Portland.

Table 4.—Mine production of gold in the United States, by month
(Troy ounces)

Month	1983	1984	1985	1986°	1987
January February March April May June July August September October	134,435 131,636 153,808 162,224 179,950 178,929 179,521 192,095 189,237 183,524	140,586 144,945 174,242 166,908 183,068 195,337 186,620 183,123 178,483 186,413	174,916 175,486 204,492 182,938 193,338 191,202 199,189 200,682 235,618 220,586	286,427 288,372 295,941 315,556 310,003 325,925 317,392 327,663 327,664 328,703	382,389 385,088 385,701 412,902 416,780 420,181 420,219 423,006 430,158
November December Total	165,903 151,264	174,313 170,577	226,005 222,780	310,089 310,280	428,511 420,276 441,171

rRevised.

Table 5.—Twenty-five leading gold-producing mines in the United States in 1987, in order of output

Source of gold	Goldoge Goldoge Goldoge Dog Dog Dog Dog Goldoge Dog Dog Dog Dog Dog Goldoge Dog Dog Dog Dog Dog Dog Goldoge Dog Dog Dog Dog Dog Dog Dog Dog Dog Dog
Operator	Newmont Gold Co Freeport-McMoRan Gold Co Battle Mountain Gold Co Goldfields Mining Co Kennecott, Utah Copper Div. Round Mountain Gold Corp. Homestake Mining Co FMC Gold Co Barrick Mercur Gold Mines Inc Barrick Mercur Gold Mines Inc Pegasus Gold Inc Barrick Mercur Gold Mines Inc Barrick Mercur Gold Mines Inc Pegasus Gold Inc Barrick Mining Co Golden Sumitht Mines Inc Echo Bay Mining Co Echo Bay Mining Co Be Gold Mining Co Wharf Resources (U.S.A) Inc De Gold Mining Co Ortez Gold Mines Inc Cortez Gold Mines Inc Pinson Mining Co Sonora Mining Co Cortez Gold Mines Florida Canyon Mining Co Silver King Mines Inc Placer Dome (U.S.) Inc
County and State	Eureka, NV Lawrence, SD Lawrence, SD Lawrence, SD Lawrence, SD Lander, NV Lander, NV Salt Lake, UT Noga, CA Ladar, NV Lander, NV Eureka, NV Eureka, NV Pershing, NV White Pine, NV White Pine, NV Bureka, NV Relawa, NV
Mine	Carlin Mines Complex Homestake — Carlid Bell) Fortitude and Surprise Mesquite — Surprise Bingham Canyon Round Mountain Round Mountain Paradise Peak Sleeper Cannon Mercur
Rank	

Table 6.--Gold produced in the United States, by State, type of mine, and class of ore

				I	Lode		
Year and State	Placer (troy ounces	Gold	Gold ore	Gold-s	Gold-silver ore	Silve	Silver ore
	of gold)	Short tons	Troy ounces of gold	Short tons	Troy ounces of gold	Short tons	Troy ounces of gold
1983 1984 1986 1986	53,887 37,597 73,299 r 73,331	24,141,617 30,497,262 35,908,918 r60,682,634	1,593,406 1,736,998 2,170,920 3,543,557	1,124,556 1,587,850 1,043,854 869,099	43,445 55,382 41,801 28,399	7,512,261 4,380,945 3,836,130 5,532,818	35,057 25,785 31,288 22,207
Alaska Arizona Arizona Arizona California Colorado Idaho Morthigan Morthigan New Mexico Oregon South Carolina South Dakota Utah Wathington Total Total Total Total	23,463 W W 22,463 V 20,133 V V V V V V V V V V V V V V V V V V V	W 10,842,155 5 4,126,225 1 1 1 2,625 1 1 2,64,105,541 2,64,045,045,541 2,64,04	79,1 62,3 32,8 19,8 50,0	WW	W W W W W W W W W W W W W W W W W W W	8,150,597 8,150,597 W W 8,150,297	37,496 37,496 39,415 39,415 1 Troy ounces
1983 1984 1985 1986	137,668,016 132,899,873 149,464,862 - 116,775,362	1 11		858,749 472,359 4,476,684 334,932	1 1	171,305,199 169,838,289 194,730,448 184,194,845	2,002,526 2,084,615 2,427,232 73,739,015

See footnotes at end of table.

Table 6.—Gold produced in the United States, by State, type of mine, and class of ore —Continued

		Lode	9		E	11
	Copper ore	ır ore	Oth	Other ²	01	lotal-
•	Short tons	Troy ounces of gold	Short tons	Troy ounces of gold	Short tons	Troy ounces of gold
1987:						:
Alaska	189 967 187	18 480	TAN .		W 287 991	86,548
Colifornia	104,100,201	10,10	•		10.200,004	209,608
Control in the control of the control	!	1	910 929	16 400	4 245 457	170,705
Volotato	M	A	707,017	10,400	2.536.037	97.773
	:		1	1	M	M
Montana	3,144,140	257	M	M	17,433,284	
Nevada		1	63	2,032	53,246,201	
New Mexico	M	M	1	1	M	
Oregon	1	1	1	1	≱ i	
South Carolina	1	1	1	1	≯ }	
South Dakota	in.	The state of the s	1	1	≯ i	
Workington	*	\$	1	I I	M	
M SSIMISSION STATE OF THE STATE	-	1				
Total ¹	221,702,975	261,228	W	W	314,905,178	4,966,382
Percent of total gold	X	100 m	X	`	X	100

⁷Revised. W Withheld to avoid disclosing company proprietary data; included in "Total." XX Not applicable. ¹Data may not add to totals shown because of items withheld to avoid disclosing company proprietary data. ²Includes lead, zinc, copper-lead, lead-zinc, copper-lead-zinc ores, and old tailings, etc.

Table 7.—Lode gold produced in the United States, by State

	Total ore Total gold processed recovered (short tons) (troy ounces)	171,305,199 21,972,902 169,838,289 2,047,218 194,730,448 22,358,441 184,194,845 23,660,112	W 295,240 10,842,152 4,505,268 178,793 1,505,000 17,438,284 17,438,284 17,438,284 17,438,284 17,438,284 18,294,365 18,246,201 18,000 18	314,905,178 4,802,997
g of ore	Gold To recovered pro (troy (shounces)	29,996 17 214,214 16 234,179 19 26,455 ^r 18	16 16 16 16 16 16 16 16 16 16 16 16 16 1	W 31
Smelting of ore	Ore smelted (short tons)	205,291 75,958 221,315 148,572	[M [M] M [M] M]	M
ates	Gold recovered (troy ounces)	306,609 257,238 231,706 2 262,703	49,155 W W W W W W W W W W W M W M W M W M	562,447
Smelting of concentrates	Concentrates smelted (short tons)	3,044,307 3,605,791 3,220,471 2,838,702	2,374,888 W W W W W W W W W W W W W W W W W W	4,060,599
Smelti	Ore concentrated (short tons)	142,546,432 134,735,157 154,886,138 118,529,487	162,367,487 W W W W W W W W W W W W W W W W W W W	216,889,426
ation	Gold recovered (troy ounces)	1,631,608 1,752,492 2,088,815 3,357,244	W W W W W W W W W M M M M M M M M M M M	4,194,564
Cyanidation	Ore treated (short tons)	28,415,818 34,902,191 39,602,183 64,666,550	W W W W W W S-419,527 Z-120,911 Z-121,923 S-2,921,138 W W W W W W W W W W W W W W W W W W W	88,430,702
Amalgamation	Gold recovered (troy ounces)	24,689 23,274 3,741 33,710		W
Amal	Ore treated (short tons)	137,658 124,983 20,812 850,236	 	W
	Year and State	1983	Alaka ———————————————————————————————————	Total

Revised. W Withheld to avoid disclosing company proprietary data; included in "Total."

Includes old tailings and some non-gold-bearing ores not separable, in amounts ranging from 0.15% to 0.25% of the totals for the year stated.

Includes some placer production to avoid disclosing company proprietary data.

Table 8.—Gold produced in the United States by cyanidation1

	Extraction in v		Leaching in open	heaps or dumps ³
Year	Ore treated (short tons)	Gold recovered ⁴ (troy ounces)	Ore treated (short tons)	Gold recovered (troy ounces)
1983	11,317,285 13,503,143 20,542,717 *27,106,861 22,754,932	1,086,205 1,165,983 1,555,835 2,358,641 2,404,403	17,098,533 21,399,048 19,059,466 37,559,689 65,675,770	545,403 586,509 532,980 998,603 1,790,161

rRevised.

¹May include small quantities recovered by leaching with thiourea, by bioextraction, and by proprietary processes.

²Includes autoclaves.

³May include tailings and waste ore dumps.

⁴May include small quantities recovered by gravity methods.

Table 9.—Gold produced at placer mines in the United States, by method of recovery1

			Material	(Gold recovers	able
Method of recovery	Mines produc- ing	Washing plants	washed (thousand cubic yards)	Quantity (thou- sand troy ounces)	Value (thou- sands)	Average value per cubic yard
Bucketline dredging:						
1983	3	4	4,785	30	\$12,512	\$2.615
1984	2	3	4,840	29	10,387	2.147
1985	3	4	3,958	32	10,185	2.573
	3	4	4.081	30	11,227	2.751
	ž	5	9,333	112	49,989	5.356
1987	4	อ	5,000	112	40,000	0.000
Dragline dredging:		• • •	2440	30	1 000	0.401
1983	2	13	² 110	3 3	1,333	3.481
1984	4	13	² 126	34	1,593	42.908
1985	3	14	² 156	34	1,348	42.224
1986	3	14	² 14	34	1.342	412.862
1987	3	3	293	32	971	46.262
	J	o o	,00		0,1	0.202
Hydraulicking:			3	(5)	117	43.342
1983	1	1				
1984	1	1	28	(5)	90	3.220
1985						
1986	1	1	100	(⁵)	17	.166
1987						~ -
Nonfloating washing plants:						
1983	6	6	961	18	7,450	7.750
1984	8	š	310	. 3	1.036	3.343
7772	6	6	959	31	9,690	10.102
	3	4	276	25	9,244	33.528
1986	6	6	832	15	6.698	8.048
1987	ь	0	834	15	0,090	0.040
Underground placer, small-scale mechanical						
and hand methods, suction dredge:			_	_		
1983	23	24	² 167	3 3	^r 1,310	7.831
1984	10	11	197	1	454	2.304
1985	19	19	621	6	2,061	3.320
1986	24	24	r ₈₈₇	14	r _{5,175}	r _{5.83}
1987	15	15	480	35	15,530	32.356
Total placers: ⁶	10	10	100	00	10,001	
	0.5	48	² 6,026	³ 54	r _{22,722}	r 43.707
	35					42.242
1984	25	36	² 5,501	³ 38	13,560	
1985	31	43	² 5,694	3 ₇₃	23,284	43.913
1986	35	47	r 25,358	3 ₇₃	r _{27,003}	r 44.828
1987	28	29	210,738	3163	73,188	46.816
	20	20	10,.00	200	.0,200	5.01

Data are only for those mines that report annually on the Bureau of Mines voluntary survey; there are many more, usually smaller and less well-established operations, mainly in Alaska, that do not report.

2Excludes tonnage of material treated at commercial sand and gravel operations recovering byproduct gold.

**Sincludes gold recovered at commercial sand and gravel operations.

**Gold recovered as a byproduct at sand and gravel operations is not used in calculating average value per cubic yard. 5Less than 1/2 unit.

⁶Data may not add to totals shown because of independent rounding.

Table 10.—U.S. refinery production of gold¹

(Thousand troy ounces)

Raw material	1983	1984	1985	1986 ^r	1987
Concentrates and ores: Domestic and foreign Old scrap New scrap	1,972 r _{1,784} 1,357	2,101 r _{1,769} 1,543	2,076 r1,602 1,510	2,396 1,345 1,618	3,613 2,034 1,273
Total ²	^r 5,114	r _{5,413}	r _{5,188}	5,359	6,920

rRevised.

CONSUMPTION AND USES

The use of karat gold in jewelry manufacturing increased 12%, while the industrial use of fine gold for electroplating, principally for electronic applications, increased about 7%. Gold-filled composites used in the industrial sector showed a substantial decline during the year, as did the use of gold in dentistry. The increased demand for karat gold in the jewelry and arts category may reflect increased purchases of domestically fabricated karat gold jewelry in place of imported items, such as gold chain, which became relatively expensive as the U.S. dollar weakened.

The volume of contracts traded on the Nation's futures exchanges increased substantially during the year, with volume on the Commodity Exchange Inc. (COMEX) in New York up by nearly 20% over that of 1986.

On June 16, the Chicago Mercantile Exchange (CME), through its International Monetary Market division, resumed trading gold futures contracts following a nearly 2-year hiatus. The CME's decision to resume trading gold futures (100-ounce contracts) reportedly was prompted in part by growing investor interest in gold as well as by the recent exchange volume overload problems experienced by the New Yorkbased COMEX.

The popularity of the new American Eagle gold coin program was confirmed when the U.S. Mint announced in April that it had exceeded its original 12-month sales projection of 2.2 million coins by 100,000 coins.

Table 11.—U.S. consumption of gold,1 by end-use sector2

(Thousand troy ounces)

End use	1983°	1984 ^r	1985°	1986°	1987
Jewelry and the arts: Karat gold Fine gold for electroplating Gold-filled and other	1,414	1,420	1,398	1,412	1,589
	21	23	24	86	89
	230	216	216	218	216
Total ³	1,665	1,658	1,638	1,716	1,894
Dental	325	305	299	255	223
Industrial: Karat gold Fine gold for electroplating Gold-filled and other	42	39	39	39	40
	370	453	381	369	394
	673	675	731	741	673
Total ³ Small items for investment ⁴	1,085 3	1,167 8	1,151 7	1,149	1,108
Grand total ³	3,078	3,140	3,097	3,126	3,228

^rRevised.

¹Data may include estimates.

²Data may not add to totals shown because of independent rounding.

¹Gold consumed in fabricated products only; does not include monetary bullion.

²Data may include estimates

^{*}Data may not add to totals shown because of independent rounding.

Fabricated bars, medallions, coins, etc.

STOCKS

Commercial.—Stocks of refined bullion held by industrial users at yearend were 21% lower than at yearend 1986. The decline may reflect increased fabrication as well as a reluctance on the part of fabricators to finance inventories in excess of their requirements during a period of relatively strong gold prices. Stocks of gold certified for delivery by COMEX, the Nation's largest futures exchange, declined by about 7% from gold on deposit at yearend 1986. Gold stocks held by other domestic exchanges are small compared with those held by COMEX.

Table 12.—Yearend stocks of gold in the United States

(Thousand troy ounces)

	1983	1984	1985	1986	1987
Industry	r ₆₁₁	r ₇₅₂	r596	¹ 925	732
	2,530	2,359	r2,110	¹ 2,809	12,625
	263,406	262,814	262,672	262,032	262,388
	341,402	337,328	337,399	332,733	329,678

rRevised.

PRICES

The annual average U.S. price of gold rose 22% in 1987. The rising prices were generally accompanied by increased trading

in gold futures on the Nation's commodity exchanges.

Table 13.—U.S. gold prices1

(Dollars per troy ounce)

	L	ow	H	igh	Average
Period	Price	Date	Price	Date	Average
	374.65	Nov. 21	509.25	Feb. 15	424.00
083	307.90	Dec. 20	408.85	Mar. 5	360.66
84		Feb. 25	341.30	Aug. 19	317.60
85	284.64	reb. 25	341.00	and 28	
	326.70	Jan. 2	438.50	0ct. 8	368.2
86=					
987:	100.10		423.83	Jan. 19	409.8
January	400.48	Jan. 5	408.29	Feb. 2	402.8
February	391.51	Feb. 18		Mar. 30	410.4
March	405.34	Mar. 3	425.58		440.3
April	420.07	Apr. 7	476.44	Apr. 27	461.7
May	452.64	May 29	476.95	May 20	451.2
June	439.61	June 22	458.66	June 11	451.2
July	446.13	July 7	464.17	July 31	
August	454.95	Aug. 17	475.09	Aug. 4	462.5
September	455.40	Sept. 1	466.42	Sept. 4	461.7
	455,77	Oct. 2	482.47	Oct. 19	466.8
October	458.98	Nov. 5	493.99	Nov. 30	467.9
November	478.96	Dec. 17	501.25	Dec. 14	487.6
Year	391.51	Feb. 18	501.25	Dec. 14	447.9

¹Engelhard Industries daily quotation.

¹Commodity Exchange Inc. only. Stocks held by other exchanges estimated to be less than 2% of totals shown. ²Includes gold in Exchange Stabilization Fund.

³Gold held for foreign and international official accounts at New York Federal Reserve Bank.

FOREIGN TRADE

Owing to a precipitous drop in imports, the United States was a net exporter of gold, albeit by the slimmest of margins, for the first time since 1981. As in other recent years, the Nation was a net importer of refined gold and of all gold-containing materials except waste and scrap. The emergence of substantial buying interest on the part of private Taiwanese as well as the Central Bank of Taiwan, combined with the

continuing weakening of the U.S. dollar against the Taiwanese dollar, led to a large percentage of refined bullion exports to Taiwan, especially toward yearend.

The quantity of gold contained in imported coins declined for the third consecutive year, reflecting continuing domestic investor interest in domestically minted bullion coins as well as the increasingly effective promotional campaigns by the U.S. Mint.

Table 14.—U.S. exports of gold, by country¹

	Ore and cor	Ore and concentrates ²	Waste a	Waste and scrap	Doré and p	Doré and precipitates	Refined bullion	bullion	Total ³	al3
Year and country	Quantity (troy ounces)	Value (thousands)	Quantity (troy ounces)	Value (thousands)	Quantity (troy ounces)	Value (thousands)	Quantity (troy ounces)	Value (thousands)	Quantity (troy ounces)	Value (thousands)
1983 1984 1985 1986	12,757 3,298 2,448 5,344	\$5,190 545 771 1,589	1,175,830 1,422,849 980,147 979,069	\$469,789 503,237 303,413 352,471	69,213 72,470 95,774 456,267	\$26,037 24,502 30,147 158,005	1,881,233 3,482,473 2,888,309 73,554,411	\$825,418 1,284,718 919,433 1,306,958	3,139,033 4,981,090 3,966,678 74,995,091	\$1,326,434 1,813,002 1,253,764 1,819,023
1987: Belgium-Laxembourg Brazal Canada France Germany, Federal Republic of Hong Kong Japan Mexico Peru Switzerland Taiwan United Kingdom Other	13,759 877 877 878 83 83 80,596	6,012 13 13 14 15 15 16 18 18 18 18 18	40,922 265,179 367,556 7,506 1,370 1,370 1,57 1,63 163 175,860 175,860	19,157 111,432 163,320 921 866 16,064 16,064 74,944 1,197	412,854 9,102 89,485 4,001 1,130 1,620 1,620 1,620 1,732 7,732 7,732 7,732 7,732 8,504	177,305 4,066 8,093 1,058 489 480 739 86,172 88 8,331 1,273	850 6,658 34,879 1,855 1,855 1,855 5,640 5,641 1,181,877 1,181,877 1,781 1,781	121 888 886 886 886 16,089 13,009 13,009 13,009 13,009 13,009 13,009 13,009 11,109 11,	41,272 1,465,970 1,465,970 411,624 98,670 11,575 7,828 7,828 2,841 39,272 2,88,272 2,88,272 1,182,105 2,88,573 1,182,105 1,182	19,278 627,670 183,489 42,984 13,017 3,289 3,001 16,156 100,156 562,064 1,929 7,929
Total ³	44,525	19,818	903,182	390,832	610,087	264,008	2,288,404	1,034,186	3,846,198	1,708,844

^rRevised.

¹Bullion also moves in both directions between U.S. markets and foreign stocks on deposit in the Federal Reserve Bank. Excludes monetary gold.

²Includes gold content of base metal ores, concentrates, and matte destined for refining.

³Data may not add to totals shown because of independent roundings.

Source: Bureau of the Census.

Table 15.—U.S. imports for consumption of gold, by country1

)		•			
	Ore and co	Ore and concentrates ²	Wastea	Waste and scrap	Doré and precipitates	recipitates	Refined bullion	hillion	Toto13	-13
rear and country	Quantity (troy ounces)	Value (thousands)	Quantity (troy ounces)	Value (thousands)	Quantity (troy ounces)	Value	Quantity	Value	Quantity	Value
1983 1984 11885 1986	239,146 202,787 37,067 37,618	\$94,919 69,061 11,628 13,094	146,164 357,119 366,887 520,317	\$51,516 122,483 107,147 159,786	608,458 1,277,146 1,461,068 1,391,061	\$255,113 461,763 468,227 504,457	3,599,188 6,031,550 6,360,977 13,800,451	\$1,575,570 2,293,606 2,109,475 5,016,552	4,592,956 7,868,602 8,225,999	\$1,977,118 2,946,914 2,696,478
Australia Australia Bolivia Brazil Canada Costa Rica Chile Colombia Dominican Republic	51 3,622 72 72 72	22 1,499 31 31	183,537 257 84,875 18,655 3,465 4,935 37,778	71,163 74,26,819 7,648 1,592 1,992 1,905	$\begin{array}{c} 35 \\ -\frac{3}{3} \\ 649,072 \\ 6.077 \\ 235,331 \end{array}$	$ \begin{array}{c} 11 \\ -\frac{1}{284,842} \\ 3.\overline{195} \\ 99.515 \end{array} $	14,460 1,085 5,012 1,235,308 250,009 23,750	6,358 413 2,187 554,246 109,513 9 501	14,546 184,622 5,272 1,972,877 1,8555 259,623 4,971	6,391 71,576 2,262 867,405 7,648 114,331 11,919
Finland Germany, Federal Republic of Guyana Honduras	138 8,784 2,179	3,512 3,512	$^{9,807}_{238}$ $^{3.260}_{2,418}$	$^{3,193}_{-1}$ $^{-5}_{1,282}$ $^{1,282}_{988}$	2,208 $4,389$ 223 7	$\frac{567}{1,999}$	874 11,931 5,737 8,234	2,904 2,372 2,631	12,889 11,931 10,602 20,501	4,107 4,107 4,465 7,521
Javor Coast Japon Mexico Panama Switzerland Togo.	1,433 $3,859$ $11,109$ 1 1 1 2 2 1 2 2 2	1,695 4,208 4,208	270 11,749 5,866 8,593	62 3,346 2,363 3,753	441 984 330 120	182 163 85 70	2,980 964 20,042 2,107 50,835	1,389 384 8,787 974 23,572	4,604 4,854 6,077 43,230 7,973	1,707 2,144 2,303 16,426 3,336 2,444
United Kingdom Unged Vingdom Venezuela Yugoslavia Other	1,758	01/2 570	297 5,874 52,926 13,757	129 2,740 18,062 5,244	$\begin{array}{c} 21,7\overline{98} \\ 3\overline{93} \\ 3,230 \\ 958 \end{array}$	$9,48\overline{2}$ 167 $1,306$ 334	398 403,279 319,303 1,167 56,857 8,698	160,781 187,305 137,305 405 24,900 3,795	13,197 425,374 325,177 54,486 60,087 25,171	5,171 170,392 140,045 18,634 26,206 9,944
Total ³	45,931	17,926	448,657	160,073	925,612	402,026	2,423,053	1,052,941	3,843,253	1,632,966

¹Bullion also moves in both directions between U.S. markets and foreign stocks on deposit in the Federal Reserve Bank. Excludes monetary gold a facilities gold content of base metal ores, concentrates, and matte imported for refining.

³Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

WORLD REVIEW

World demand for gold, including scrap gold for use in fabricated products, declined by 5%, reflecting in part the absence from the market of the Japanese Hirohito coin

program of 1986.

According to Consolidated Gold Field's 22d annual review and summary,11 the total supply of gold to the world's market economy countries remained steady at 64.6 million ounces. Increased mine production in the market economy countries was more than offset by lower sales from the centrally planned economy countries, principally the U.S.S.R., at 9.7 million ounces in 1987 compared with 12.9 million in 1986. Net purchases from the market by the official sector's central banks totaled about 2.2 million ounces, down from 4.6 million ounces in 1986. Karat jewelry manufacture absorbed about 36.6 million ounces, up from about 35.5 million ounces in 1986. Gold used in the minting of official coins fell from the record-high level of about 10.2 million ounces minted in 1986 to about 6.6 million ounces in 1987. The total gold used in industrial applications, including electronics, dentistry, and other uses, remained nearly unchanged at 7.8 million ounces. Identified hoarding of gold bars for investment or asset-fixing, outside of Europe and North America, increased by 25% from nearly 7.1 million ounces in 1986 to over 8.8 million ounces. Generally the volume of gold trading on the major futures and options exchanges around the world rose substantially. Finally, the supply of new gold and gold contained in scrap, exceeded the demand for use in fabricated products by 4.6 million ounces compared with a surplus of about 4.1 million ounces during 1986. However, the firmness of the price throughout 1987 suggests that this surplus of supply over identifiable demand was easily absorbed by investors in Europe and North America.

In April, the South Korean Government began minting gold and silver coins to commemorate the 1988 Olympics to be held in Seoul. Four series of six coins each were

to be produced.

In October, the Royal Mint of the United Kingdom announced the issue of its new Britannia gold coin, thereby entering the competitive world gold bullion coin market, currently dominated by the recently issued American Eagle and the Canadian Maple

Leaf, as well as by several other gold bullion coins. The new legal tender Britannia, 91.66%-pure gold, was being struck in four weights ranging from 1.0 ounce down to 0.10 ounce.

The year also witnessed the formation of the World Gold Council, an organization funded by world gold producers to promote investment in gold and to encourage gold

jewelry sales.

A comprehensive review of gold's monetary and industrial roles and an analysis of the world gold mining industry with an outlook for production to the year 2000 was published in 1987.¹²

Australia.—Australia's gold production rose for the seventh successive year. In 1987, 26 new gold mines were commissioned with planned capacity ranging from less than 3,000 ounces per year at many small placer mines to large, mostly open pit, lode mines capable of producing up to nearly 300,000 ounces per year. The State of Western Australia was again the country's largest gold producer. As a consequence of continuing expansion in gold exploration activity, Australia's minable gold resources reportedly increased nearly 25% over 1986 levels. Australia's Bureau of Mineral Resources, Geology, and Geophysics forecast that production would reach nearly 4.2 million ounces in 1988, peak at nearly 4.5 million ounces by 1991, and decline to about 3.9 million ounces by 1992. An increase in the capacity of the country's domestic precious metals refining industry was expected.

Global sales of the new Standard (non-proof) Australian Gold Nugget coin series began in April. Goldcorp Australia, the Government's sales corporation, reportedly initiated sales through distributors in seven countries. The 99%-pure coins, Australia's first bullion coins minted as legal tender, range in weight from 0.10 to 1.0 ounce. During the first 2 months of trading, nearly 250,000 ounces of coins were sold—nearly twice the original sales target of 130,000 ounces. Goldcorp reportedly sold over 350,000 ounces during the year. Its original 3-year global sales target reportedly was about 400,000 ounces.

At the new open pit Kidston Mine, Queensland's largest and Australia's second largest gold mine, opened in 1985, Placer Pacific Ltd. reported recovering nearly

230,000 ounces at a cash cost of \$142 per ounce. Placer continued exploration at its Mount Rawdon gold property in Queensland, a potential open pit operation, and at prospects in the Cooper Range area of the State. BMG of Houston, TX, dedicated its new 60,000-ounce-per-year open pit gold mine, which was south of Charters Towers in northern Queensland. The new mine, known as the Pajingo Mine, also was expected to produce about 200,000 ounces of silver per year. Cash production costs over the life of the mine were expected to average \$141 per equivalent gold ounce (with byproduct silver converted to equivalent ounces of gold). In April, Pan Australian Mining Ltd. officially opened its new Mount Leyshon gold mine also near Charters Towers. The new open pit heap-leaching operation began leaching in late 1986. It was designed to produce about 45,000 ounces per year during its first 3 years of operation.

Sedimentary Holdings Ltd. and its partners poured their first gold at the Cracow Mining Venture in March. The new mine was expected to produce about 40,000 ounces during the 1987 financial year. Additions to the mill, commissioned in midyear, were expected to raise the milling capacity by nearly 80% to about 250,000 tons per year. Sixty miles south of Townsville, Carpentaria Gold Pty. Ltd., a subsidiary of MIM Holdings Ltd., poured its first gold in December at its new Ravenswood Mine. The new open pit and heap-leaching operation was expected to produce at a rate of about 15,000 ounces per year. In November, Central Coast Exploration NL began mining its Croyden deposit in the Croyden Goldfield of northern Queensland. Annual production was expected to be about 37,000 ounces per year. In southeastern Queensland, Astrik Resources NL started mining at its open pit Agricola deposit. The new mine, using carbon-in-pulp recovery, was expected to yield about 30,000 ounces per year.

Some other Queensland properties moving toward production in 1988 included the 100,000-ounce-per-year Selwyn (Starra) Mine owned by Cyprus Minerals Australia Co. and its partners; Diversified Mineral Resources Ltd. NL's 30,000-ounce-per-year Clocurry property; and Australian Consolidated Minerals Ltd.'s Wirralee Mine in northern Queensland, due on-stream at the rate of 50,000 ounces per year by mid-1988.

Preliminary mining was begun near yearend at the Sheahan-Grants Mine, 20 miles south of Orange in the State of New South Wales, by Cyprus and its partner Climax Mining Ltd. Metal production began in January and should amount to nearly 30,000 ounces per year during the expected 4-year life of the mine. Paragon Resources NL's wholly owned Temora Mine at Wagga Wagga was commissioned in May to begin production at an annual rate of 35,000 ounces. At BHP Gold Mines Ltd.'s wholly owned Brown's Creek open pit property at Blaney, the existing treatment plant was undergoing modification to raise the annual production rate to about 20,000 ounces. Plans called for increasing later production to about 27,000 ounces per year.

In the State of Victoria, the Sandhurst Gold Joint Venture completed a pilot plant run to test a new gold recovery process. The new coal-oil agglomeration process, developed and patented by one of the partners, BP Australia Gold Pty. Ltd., uses a noncyanide technology that is reportedly economical and harmless to the environment. Bendigo Gold Associates Pty. Ltd., Victoria's second largest gold producer, also was recovering gold from Bendigo-area tailings dumps. Also at Bendigo, Western Mining Corp. Holdings Ltd. (WMCH) began preparation for further underground exploration and bulk sampling at the Old Williams United shaft, and Bendigo Mining NL began dewatering at the old Deborah Mine prior to beginning underground exploration. Near Heathcote in central Victoria, Australian Gold Development NL reportedly was planning to rehabilitate the Costerfield gold mine and had begun rehabilitation and dewatering at the old Brunswick Mine.

In Tasmania, Aberfoyle Ltd. and its partners started mining at their Hellyer polymetallic deposit, made viable primarily by its gold content. In eastern Tasmania, Australian Consolidated and its partner Allstate Exploration NL reportedly began clearing the shaft and dewatering the old Beaconsfield gold mine.

In South Australia, the Olympic Dam project at Roxby Downs moved toward a mid-1988 startup. The owners of the huge copper-uranium-gold project, WMCH and BP Australia Ltd., expect to recover more than 90,000 ounces of gold per year in addition to considerable values of copper and uranium.

In July, Dominion Mining Ltd. officially opened its new Cosmo Howley gold mine in the Darwin region of the Northern Territory. Mining at the 40,000-ounce-per-year open pit heap-leaching operation had begun

in late 1986, and the first gold was poured in January. In the south Alligator River area, BHP Gold and its partners, Noranda Australia Ltd. and NBHC Ltd., continued exploration at the Coronation Hill property, where high-grade gold discoveries also reportedly contained associated platinum and palladium values. Cyprus continued development of its Moline Mine, due to begin production in late 1988 at a rate of about 12,000 ounces per year. Producing at a rate of over 60,000 ounces per year, the Granites Mine of North Flinders Mines Ltd. became the Territories' largest producer during the year.

In Western Australia in response to increasing output of Australian gold mines, the State government's Perth Mint announced that it would expand its goldrefining capacity by building two new refineries: One in Perth with a planned capacity of about 3.5 million ounces per year and one at Kalgoorlie capable of refining nearly 1.0 million ounces per year. Both refineries were to replace the existing Perth facility, which has an annual capacity of about 240,000 ounces. Australia's largest goldproducing mine, the Telfer open pit east of Nullagine, commissioned its mill expansion project designed to provide flotation facilities for the treatment of gold-copper sulfide ores. The mine was owned by Newmont Australia Ltd. (70%) and BHP Gold (30%). To the south, between Kalgoorie and Boulder, Newmont began metal production in December at its jointly held New Celebration Mine. Mining begun the previous year was from three open pits, where 500,000 tons of ore per year are now selectively mined and carefully blended to achieve maximum recovery at an expected annual rate of about 40,000 ounces of gold per year. The New Celebration mill was being expanded to handle 1.5 million tons of ore per year.

In December, Gold Mines of Kalgoorlie Ltd. (GMK), announced a proposal, subject to regulatory approval, to acquire all of Kalgoorlie Lake View Pty. Ltd.'s holdings in the Golden Mile area of Kalgoorlie. This acquisition would result in the consolidation of most of the gold mining operations at Kalgoorlie. Control of the Kalgoorlie mines under a single ownership would reportedly result in the formation of the largest gold mining operation in the world outside of the Republic of South Africa.

During its financial year ending in June, Western Mining Corp. and its affiliates'

gold mines produced nearly 654,623 ounces, compared with 556,000 ounces during the comparable 1986 period. The Western Mining Group, the dominant gold producer, conducts gold mining operations in the area around Norseman, Kambalda, Kalgoorlie-Boulder, and to the north near Agnew.

Production began in July at an initial rate of 225,000 ounces per year at the Boddington Mine, 70 miles southeast of Perth. Boddington is a joint venture managed by Worsley Alumina Pty. Ltd. on behalf of Reynolds Australia Alumina Ltd. (40%), the Shell Co. of Australia Ltd. (30%), BHP Minerals Ltd. (20%), and Kobe Alumina Associates (Australia) Ltd. (10%). The gold at Boddington occurs in an unusual association with bauxite. Following up on the characteristics of this unusual occurrence, Alcoa of Australia discovered gold in a similar geological environment on its bauxite leases near the Boddington Mine. Reportedly it planned to begin recovering gold in 1988.

Other Western Australia gold mines reportedly beginning production during 1987 included Julia Mines NL's Goongarrie Mine at about 12,000 ounces per year. Nord Resources (Pacific) Pty. Ltd.'s 38,000-ounceper-year Kurara Mine, formerly known as Reedy's North, began in June. Aberfoyle Exploration Pty. Ltd.'s Bardoc property, expected to produce 38,000 ounces per year, began production in January. The Gabanintha Mine near Meekatharra began production in October at an expected initial rate of about 25,000 ounces per year. Gabanintha was owned by Dominion Mining Ltd., Black Swan Gold Mines Ltd., and Southern Ventures NL. Near Leonora, Hunter Resources and its partners commissioned their 40,000-ounce-per-year Mertondale Mine in February. East Murchison Mining Pty. Ltd. and partners reopened the Gidgee deposit in July. Eastmet Ltd.'s open pit Youanmi Mine poured its first gold in January and was expected to produce at a rate of about 35,000 ounces per year when fully operational.

Kalgoorlie Resources NL commissioned its Premier Mine in August. Queen Margaret Gold Mines NL and Spargo Exploration commissioned their Bellevue Mine in October. Production was expected to reach about 55,000 ounces per year when fully operational. The Mount Fisher Mine, 60 miles east of Wiluna, also began production in October. The owners, Sundowner Minerals NL, expect to produce about 35,000

GOLD 425

ounces per year. Freeport-McMoRan Australia Ltd. continued construction on its open pit Karonie project 65 miles east of Kalgoorlie, where initial gold production began in November.

Brazil.—To encourage Brazil's mining industry, the Government of Brazil reportedly adopted a number of fiscal and financial incentives including low-interest loans for equipment and a 10-year corporate tax holiday for projects in the Amazon Basin. To discourage smuggling of gold to other countries, the Brazilian Central Bank reportedly continued its practice of paying a premium for gold. Smuggling, however, remained a problem as production from numerous unregulated, independent miners or "garimpeiros" continued to elude detection as it moved to markets outside of the country.

In the State of Minas Gerais, gold production was begun at yearend at General Mining Union Corp. Ltd.'s (Gencor) 58,000ounce-per-year underground São Bento Mine. At Nova Lima, in Minas Gerais, Mineração Morro Velho S.A. (MMV), a 70%-owned subsidiary of Anglo-American Corp., operated Brazil's largest gold mine, the Morro Velho Mine, a deep underground operation dating back to the early 1800's. MMV's annual production from its mines in the State of Minas Gerais, the Morro Velho and the Raposos-Cuiaba, and its Jacobina Mine in the State of Bahía was reportedly about 354,000 ounces. Near Paracatu, Rio Paracatu Mineração S.A. poured the first bar of gold at its new 100,000-ounce-per-year Morro do Ouro Mine. The company is a joint venture between Rio Tinto Zinc do Brazil and Autram Mineração e Participações S.A., a consortium of U.S. and Canadian companies.

In the State of Goiás, MMV and its partner Inco Gold Co. continued with the development of their 120,000-ounce-per-year Crixas property, scheduled for production in late 1989. BP Mineração and its partners began production at a rate of about 60,000 ounces per year at the Cabacal Mine in the State of Mato Grosso. At the Fazenda Brasileiro gold mine in the State of Bahía, Brazil's first open pit and heap-leaching mine, the Cia. Vale do Rio Doce (CVRD) continued development of its underground mine and associated milling facilities. A mid-1988 startup was planned. Another CVRD project in Bahía, the open pit Antas Mine, reportedly moved toward a 1989 startup.

Garimpeiros continued to pursue surface

and placer deposits mainly in the States of Amazonas, Mato Grosso, and Pará. In the latter State, garimpeiros continued to work the large gold deposit at Serra Pelada. However, production from this huge handdug pit continued to decline as physical factors and a lack of planning further limited the amount of ore available to the miners' primitive methods.

Canada.—The intense gold exploration activity that began several years ago continued in 1987. Much of the heightened activity, especially by junior exploration firms, has been attributed to the Flow-Through Share Program, instituted by the Government in 1983. It enabled companies to issue shares for specific projects and pass the allowable exploration expenses on the project through to the investor, who can in turn deduct the expenses from taxable income earned from other sources. A survey of junior mining companies conducted by the Prospectors and Developers Association reportedly demonstrated that 75% of those firms participating in the survey had used the flow-through program. In June 1987, in an effort to slow down the rapid growth of the program, the Government, as part of the sweeping changes made to the Canadian tax system, introduced changes that affected the Canadian mining industry. Included in the tax reforms scheduled to take effect with the 1988 tax year were changes in the mechanism governing the flow-through program as well as modifications to other tax benefits previously enjoyed by the industry. For example, the earned depletion allowance will be gradually phased out and disappear entirely on July 1, 1989, and the tax writeoff allowable for flow-through share investments will decline from the current level of 133% on selected exploration costs to 100% during the same period.

With the exception of Prince Edward Island, there was at least one gold mine operation in every Canadian Province. Five Provinces lacked gold operations in 1986. Details of developments in Canadian gold mining were summarized in a report prepared by the Canadian Department of Energy, Mines, and Resources. 13

The amalgamation of several large Canadian gold mining companies during 1987 resulted in the formation of Placer Dome, the largest gold mining company outside of the Republic of South Africa. The companies involved were Placer Development Ltd., Dome Mines Ltd., and Campbell Red Lake Mines Ltd. Formation of another large

company, Hemlo, resulted from the merger of Noranda Inc., Hemlo Inc., Goliath Gold Mines Ltd., and Golden Sceptre Resources Ltd. Inco Ltd., primarily a nickel producer, spunoff its gold assets into a new company concerned solely with gold, Inco Gold.

With 1987 production at about 1,740,000 ounces, Ontario was again Canada's largest gold-producing Province. Increased production at some mines reflected better ore grades and improved recovery. Several new mines began production during the year, including the Golden Rose of Emerald Lake Resources Inc. at Sturgeon Falls and the Bell Creek Mine of Canamax Resources Inc. at Timmons. The estimated annual production expected from these new mines was about 39,000 ounces and 26,000 ounces, respectively. Placer Dome and Amoco Canada Petroleum Co. Ltd. switched from open pit mining to underground at their Detour Lake property, and production in 1988 was expected to exceed 96,000 ounces. At about \$96 per ounce, the Golden Giant's production costs were reportedly the lowest in Canada in 1987. The legal dispute that arose during 1986 between Lac Minerals Ltd., owners of the Page-Williams Mine, and International Corona Resources Ltd., joint partners in the David Bell Mine, continued during 1987. In 1986 an Ontario Supreme Court ruled in favor of International Corona, but in late 1987, the Supreme Court of Canada granted Lac Minerals the right to appeal the lower court decision, which had awarded the Page-Williams Mine to International Corona.

Gold mines under development in Ontario during the year included Cameron Lake, Duport (Shoal Lake), Dona Lake, Golden Patricia, Mishibishu Lake, Kremzer, Davidson Tisdale, Diepdaume, Clavos Project, St. Andrews, and Holt-McDermitt. Lac Minerals' Lake Shore gold mine reportedly was closed owing to exhaustion of its ore body.

The Province of Quebec produced 940,000 ounces of gold in 1987, a slight increase over 1986 production. The increased exploration and development activity of 1986 in the Casa Berardi area of northwestern Quebec continued during 1987. The Golden Pond property, a joint venture between Inco Gold and Golden Knight Resources Inc., continued under development toward its scheduled opening in August 1988. The Golden Pond East deposit, scheduled to produce about 60,000 ounces per year, was to be the first of three ore bodies to be developed. Eighteen miles to the east, evaluation con-

tinued on the Estrades deposit of Teck Corp. and Golden Hope Resources Inc. In the Rouyn-Val d'Or area, the Province's principal gold-producing area with nine operating mines, Lac Minerals announced a \$45 million development plan for its Bousquet No. 2 Mine deposit discovered in 1986. The mine was expected to start at 1,000 tons of ore per day and go to full commercial production at the rate of 2,000 tons per day by 1990, producing 140,000 ounces of gold per year. Agnico-Eagle Mines Ltd. was expected to have its Dumagami Mine and mill, which lies beside Bosquet No. 2, operating by June 1988, producing at a rate of about 64,000 ounces per year. Construction of the Sleeping Giant Mine of Perron Gold Mines Ltd. was completed. The mine was due to begin producing in early 1988 at a rate of about 61,000 ounces per year. An affiliated company, D'Or Val Mines, began production at its Beacon Mine in early 1987.

During the year, the Murray Brook property in New Brunswick and the Tangiers and Cochrane Hills properties in Nova Scotia reached the development stage. In August, Hope Brook Gold Inc., a subsidiary of BP Resources Canada Ltd., began heap leaching at its Hope Brook gold mine on the southwest coast of Newfoundland. The first 17-month mining phase will treat ore mined from an open pit for a recovery of about 17,000 ounces. Phase 2 calls for construction of a 3,000-ton-per-day plant and underground mine to be completed in late 1988. Mining during phase 2 will produce 126,000 ounces per year.

In Nova Scotia, Seabright Resources Inc. modified the old Gays River lead and zinc mill to treat gold ore from its nearby Forest Hill Mine, due to begin operating in 1988. Seabright's nearby Beaver Dam deposit was being developed underground, although two other deposits, the Caribou and Moose River, were less advanced. In the Province of New Brunswick at the Cape Spencer Mine, Gordex Minerals Ltd. planned to convert its heap-leaching recovery system to vat leaching to permit gold recovery year-round. Gordex estimated 1987 production to be about 7,500 ounces.

Granger Exploration Ltd. and the Abermin Corp. began production in May at their Tartan Lake Mine near Flin Flon, Manitoba. Production during 1987 was expected to be 40,000 to 45,000 ounces, rising to 100,000 ounces in 1988. Also in Manitoba, Pioneer expected to begin production at its New Puffy Lake Mine at an annual rate of about

GOLD 427

40,000 ounces.

Gold production resumed in the Province of Saskatchewan following a 50-year hiatus. The Star Lake Mine owned by Saskatchewan Mining and Development Corp., Uranertz Exploration and Mining Ltd., and Starrex Mining Corp. began production in early 1987. Several other properties reportedly were also under investigation in the La Ronge region of the Province.

In the Yukon Territory, Canamax Resources and Pacific Trans-Ocean Resources Ltd. began construction at their Ketza River project due to start up in 1988. Borealis Exploration Ltd. reportedly poured its first gold at its underground Fat Lake deposit in the Keewatin District of the Northwest Territories in October. Also in the Northwest Territories, the old Ptarmagan Mine reportedly was nearing an early 1988 startup under new ownership by Treminco Resources Ltd. Also in the Northwest Territories, Getty Resources Ltd. and Noranda Exploration reportedly were developing their Courageous Lake property.

With 38,000 ounces, the Province of British Columbia was Canada's third largest gold producer, with production from three mines: the Cassiar, Blackdome, and Nickel Plate. The open pit Nickel Plate Mine at Hedley, owned by Mascot Gold Mines Ltd., was reopened in midyear and was expected to produce nearly 120,000 ounces per year. Properties under development during the year included the Cinola, Golden Bear, Lawyers, and Reg.

Caribbean Basin.—Because of worldwide interest in exploring high-tonnage, lowgrade epithermal gold deposits along crustal plate boundaries, several companies began to focus their attention on the Caribbean crustal plate. The theoretical boundaries of this plate extend from mid-Guatemala south to Panama, east through Guyana, north along the east side of the Lesser Antilles, then westward between Haiti and Cuba, and back to Guatemala. Many geological and mineralogical characteristics associated with the recent significant gold discoveries around the Pacific Rim and in particular in Papua New Guinea have been recognized at some gold deposits around the Caribbean Plate. Countries in the region where gold has been produced include the Dominican Republic, where Rosario Dominicana S.A. has been mining gold at its Pueblo Viejo gold mine for many years. Pueblo Viejo is the largest open pit primary gold mine in the Western Hemisphere. Other producers include Costa Rica, Guyana, Honduras, and Nicaragua, where numerous small mines were producing gold in 1987. They also include El Salvador, Panama, and Puerto Rico, where gold has been produced for years on an intermittent basis.

In addition to the ongoing United Nations Department of Technical Cooperation's exploration work at several gold deposits in Haiti, companies known to be exploring for gold in the Caribbean include Canyon Resources Corp., Antilles Resources Ltd., Cyprus Gold Co., Homestake, Chevron Resources, and Freeport Minerals Co. These companies and others from Australia, Japan, and Panama reportedly have been especially attracted to the Dominican Republic following a 1987 decree that opened heretofore unexplored areas of the island previously ruled to be off limits to commercial development.

The Nicaraguan Ministry of Mines reported that the La India Mine, 25 miles northeast of León, was scheduled for rehabilitation through a joint U.S.S.R.-Nicaragua effort. At one time, the mine produced about 30,000 ounces of gold and 40,000 ounces of silver per year. Several other mines, including the La Liberdad, Siuna, and the El Limón Mines were reported to have been producing gold in 1987. Several others reportedly were being reactivated. Despite efforts by the Government to encourage increased production, widespread smuggling of gold to other countries occurred in response to the Government's policy of paying only \$50 per ounce for domestic gold. Reportedly, this smuggling resulted in a loss of up to 75% of the estimated total production. Attacks by anti-Government forces on mining towns reportedly have also interrupted production.

Ecuador.—The large changes to earlier published estimates of Ecuadorean gold production shown in table 16 reflect recent data reported by the Government of Ecuador. Minera Nambija, a joint Governmentand cooperative-owned gold mining company, reportedly was considering applications from nine companies to operate a new automated plant at the Nambija Mine in southern Ecuador. In addition to Nambija, the country's major lode gold mining areas include Portovelo, Ponce Enriquez, and Zaruma. Other areas known to be rich in gold include Paccha and Piñas. Many of Ecuador's river systems reportedly contain rich deposits of placer gold.

Government mining officials in Ecuador

were predicting that large increases in future gold production would accrue from ongoing Government efforts to encourage more domestic mining. This activity would reportedly help to offset foreign exchange losses incurred as a result of declining world oil prices. New mining laws decreed in 1985 and 1988 set forth a number of incentives for foreign investment, including various tax breaks and exemptions from import duties, streamlined permitting and speedier resolution of judicial disputes, and reduced royalty and prospecting fees.

Europe.—Limassol S.A. of Greece reportedly began experimental mining of a gold property on the island of Cyprus. The Hellenic Industrial & Mining Investment Co. of Greece contracted for a basic engineering study aimed at recovering gold from an arseniferous pyrite concentrate produced at the Olympias Mine in northern Greece.

In the Huelva Province of southwestern Spain, Thorco Resources Inc. of Toronto, Canada, reportedly was preparing for a 1988 startup of its developing Tharsis gold and silver heap-leaching project. The project will reportedly be the only heap-leaching operation in Europe. Spain's Instituto Nacional de Industria reportedly was also planning to restart a gold mining operation at Rodalguilar in Almería Province.

Reports of gold exploration and/or work directed toward reopening long-closed gold mines came from the Federal Republic of

Germany and Yugoslavia.

On March 12, Belgium became the first European Economic Community (EEC) country to mint European Currency Unit (ECU) coins as legal tender. The gold and silver coins were minted to mark the 30th anniversary of the Treaty of Rome. The ECU, an artificial currency created in 1979, is based on the combined value of 10 of the 12 EEC currencies. The number of coins to be minted under the program has not been decided. Near yearend more than 500,000 gold ECU's reportedly had been sold.

The U.S.S.R. was estimated to be the world's second largest gold producer, behind the Republic of South Africa. However, since 1933, gold production data have been a

state secret.

At least one new Soviet gold mine, the new open pit Kirgiz gold mining complex in Kirgizia in southern Russia reportedly was scheduled for completion during the 1986-90 5-year planning period.

Ireland and Scotland.—Ennex International PLC reported that permission was

received to proceed with its plan to go underground at its Curraghinalt property in County Tyrone, Northern Ireland. If the results of this work are positive, Ennex will seek approval to commission a mining operation at a rate of about 30,000 ounces per year starting in 1989. Ennex also reported that exploration nearby, as well as in the Dooros area of Connemara, had uncovered gold mineralization. The company was also exploring and planning the development of a gold-silver prospect at Cononish, Scotland, reportedly the first substantial discovery of gold or silver in that country.

Ennex's success in Ireland has stimulated a number of other companies to explore there for gold. Nearly 800 mineral exploration licenses reportedly were either in effect, approved, or pending approval by Gov-

ernment authorities.

Oceania.-Indonesia lies in an area believed to be influenced geologically by the convergence of four major crustal plates: the Eurasian, Indo-Australian, Pacific, and Philippine Plates. In recent years, discoveries of epithermal gold deposits have been largely along the southern rim of the Pacific Plate from Indonesia east and south to New Zealand. Exploration companies, recognizing the potential for further discoveries in Indonesia, have intensified their work in that country. According to news media reports released near yearend, foreign firms intent on gold exploration had signed 32 contracts with the Government during the first 10 months of 1987 and a further 28 were expected before yearend. About 600 companies reportedly were waiting for their contract applications to be processed. Most of the companies so far have been Australian. However, a growing number was from nations in the Northern Hemisphere. As was the case earlier in Brazil and later in the Philippines, the growing wave of officially sanctioned exploration has increasingly brought the mining companies into potential conflict with timbering companies and illegal miners operating in remote areas of the vast island archipelago. A number of mines, including Freeport Indonesia Inc.'s Ertzberg coppergold-silver mine in West Irian, have been in operation for years. The major areas of active gold mining include the southern Provinces of Kalimantan, Maluku, Sulawesi, Sumatra, West and East Nusa Tenggara, and West Irian.

The mining industry in Papua New Guinea is the single most important element of

GOLD 429

the nation's economy. Five new mines, reportedly representing a potential investment of \$1.35 billion, will soon begin production in that nation. They are Lihir, Misima, Porgera, Uramit, and Wapulu.

The nation's largest existing gold mine, the giant Ok Tedi Mine in the Star Mountains, reportedly produced nearly 600,000 ounces of gold in 1987. Ownership of the mine, in addition to the Government's 20% stake, was vested in a consortium of international mining companies. With a midyear shipment of copper concentrates to Japan, Ok Tedi officially entered its planned copper-producing phase, during which both gold and copper will be principal products. Papua New Guinea's second largest gold producer was Bougainville Copper Ltd.'s mine on Bougainville Island. Gold production, a byproduct of copper mining, amounted to nearly 500,000 ounces during 1987.

CRA Ltd. of Australia reported that drilling at its Hidden Valley project in the Wau-Bulolo region of Morobe Province of Papua New Guinea had returned promising results. At Wau, New Guinea Goldfields Ltd., controlled by Renison Goldfields Consolidated Ltd., reported producing nearly 21,000 ounces of gold from its Wau mines. The large increase over the previous year's production of 5,700 ounces largely reflected the efficiency of its new mill and carbon-inpulp plant. Renison reportedly entered into an agreement with City Resources Ltd. to explore the placer gold potential of Renison's holdings in the Bulolo goldfield. Dredging in the area from 1931 to 1967 reportedly did not fully exploit the potential of the field.

In late 1987, Niugini Mining Ltd. announced that production had begun at its 100%-owned Mount Victor Mine near Kainantu in Papua New Guinea's Eastern Highlands Province. Annual gold production from the open pit operation was estimated to be 12,000 to 15,000 ounces. A unique feature of the mine's plant including housing, workshops, and powerplant, was that it is fully self-contained and portable. When mining is completed in 2 or 3 years, the entire plant can be moved intact to the next minesite. Niugini also holds a 25% interest in the recently discovered Lihir gold deposit, one of the largest outside of the Republic of South Africa. Ore reserve data compiled during 1987 indicated a minable reserve in excess of 18 million ounces of gold. The company's partner in the project, situated on Lihir Island east of the island of

New Ireland, is Kennecott Explorations (Australia) Ltd. Niugini announced at yearend that a third area of gold mineralization, the Kapit Ore Zone, had been discovered near the two known principal ore bodies. The company was also exploring recent discoveries in the Tabar Islands group northwest of Lihir. Drilling and sampling were proceeding at 12 prospects scattered between the islands of Simberi, Tabar, and Tatu. Other companies, too numerous to mention here, were exploring gold prospects on other Papuan islands including New Britain, Fergusson, Woodlark, and the Tanga and Feni Islands. Toward the southeast, other companies were exploring in Vanuatu, the Solomon Islands, Fiji, and New Zealand.

In the Solomon Islands, the placer mine of Zanex Ltd. and Mavu Gold Development at Mavu on Guadalcanal Island, resumed production after having been closed in late 1986 owing to the destruction of its recovery plant during a typhoon. Annual gold capacity at the site, the Solomon's only large gold mine, was 13,000 ounces. If two nearby deposits prove to be economic, the capacity may be expanded to 50,000 ounces per year. Cyprus Minerals Co.'s Gold Ridge property on Guadalcanal reportedly was in an advanced stage of exploration.

At the Emperor gold mine on the island of Viti Levu in Fiji, the Vatukoula Joint Venture, 80%-owned by Emperor Gold Mining Co. Ltd. and 20% by Western Mining Corp. Holdings (Fiji) Pty. Ltd. produced nearly 102,000 ounces during the fiscal year, compared with 76,297 in the previous year. Production was derived from both open pit and underground sources. Production was begun at the nearby Tavua Basin Joint Venture in which Western Mining holds a 50% interest. During the year, exploration on the island of Vanu Levu by United Resources (Fiji) Ltd., a subsidiary of City Resources, reportedly resulted in the discovery of gold values associated with an identified epithermal system.

New Zealand has been a small gold producer for many years. Combined with the recognition of the epithermal origin of some known deposits, this fact has spurred an interest in more exploration. Some of the companies currently exploring for or developing gold deposits in New Zealand include Homestake, BP Minerals, AMAX Exploration (New Zealand) Inc., Australian Consolidated, and BHP Gold. Some of the properties undergoing examination or develop-

ment on North Island include Karangahke, Golden Cross, Martha Hill, and Waihi. Properties on South Island include Sam Creek, Macraes Flat, and various placer goldfields such as those at Otago.

The search for gold in the South Pacific spilled over in 1987 into heretofore relatively unexplored regions. The rediscovery of gold at Rois Malk in the State of Airai in Palau and the recognition of the epithermal origins of the prospect by the U.S Geological Survey in 1985 apparently served as a catalyst for at least one company to explore the potential there and to expand the scope of its search to other targets in the South Pacific region. Micronesian Mineral Resource Co. Ltd. of Vancouver, Canada, in partnership with Nord Australia conducted a detailed study of the Rois Malk area in 1986. In 1987, the partners reportedly expanded their search toward the east and northeast for other areas where epithermal systems may occur. Their exploration reportedly was conducted in the Caroline Islands group of Micronesia, then in the Northern Mariana Islands. The islands of Kosrae (Kusaie), Ponape, and Yap (Pohnpei), and later the island of Saipan were the principal points of investigation. Work was planned for the islands of Guam and Truk

Responding to the widespread interest in gold exploration in the Pacific Rim, the Queensland, Australia, State government, and four major corporate sponsors hosted an international congress in Queensland on the geology, structure, mineralization, and economics of the Pacific Rim. The conference was convened from August 26 to 29 under the auspices of the Australasian Institute of Mining and Metallurgy.

Peru.-In an effort to stimulate greater domestic gold production, the Government of Peru reopened the San Antonio de Poto Goldfield in Puno in the high Andes Mountains of southeastern Peru near the Bolivian border. The remote and isolated area was considered by the Government to be Peru's most important gold mining area. Empresa Minero Perú S.A. (Minero Perú) the Government company that operates several small placer mines in the Ananea section of the goldfield, invited local and foreign companies to participate in financing or in joint ventures with Minero Perú to establish mining in the Ananea area. Nearly 36 international companies reportedly purchased bidding instruction packages.

In early 1987, Peru announced the discov-

ery of important gold placer deposits near the Cordillera del Condor, close to the Ecuadorean border. Gold reserves were estimated at over 3.2 million ounces. Plans for the project, called CHINCORCO, include more exploration and the installation of a small pilot plant. Operations in the region were expected to be complex and to pose difficulties because of the rugged terrain. The announcement aroused a long-standing conflict between Ecuador and Peru because the discovery area lies in territory of disputed national ownership.

Philippines.—The gold rush that began several years earlier on the island of Mindanao continued to mature. Centered around the Gulf of Davao from Compostela eastward to Pantukan and Mount Dewalwal, an estimated 200,000 people were engaged in mining, processing, and refining gold as well as providing services to the largely artisan industry. Most of the processing reportedly was centered around the village of Tagum, where up to 1,600 ounces of gold or more were produced in the area per day.

In the Camarines Norte Province of southern Luzon, Benguet Corp. reportedly began production at its Paracale gold project. Production at the new facility was expected to amount to about 22,000 ounces of gold and 49,000 ounces of silver per year. Benguet also continued to rehabilitate the La Suerte Mine, a former gold producer. Benguet was the largest gold producer in the Philippines, with overall gold production in 1987 amounting to nearly 250,000 ounces. Benguet Exploration Inc.'s King King gold mine in Davao del Norte Province reportedly came into production during the year following the completion of three heapleaching pads and an associated recovery plant. Construction of an additional recovery plant and nine new pads was also reportedly nearing completion.

Gold production at Atlas Consolidated Mining & Development Corp.'s heapleaching operation on Masbate Island amounted to about 63,000 ounces in 1987. Five 75,000-square-foot asphalt leaching pads were employed. Gold production from Atlas Consolidated's gold-copper operations on Cebu Island reportedly totaled 78,500 ounces. Development continued on new underground gold mines, the Bin Star and the Dabu-Pinigue, with startup scheduled for early 1988. Two others, the Colorado Mine and IXL Mine, were due to begin underground production later that year.

GOLD

City Resources (Asia) Ltd. a Hong Kongbased firm, reportedly purchased a controlling interest in Manhattan Mining Corp. of the Philippines for the purpose of exploring leases held by Manhattan.

Paragon of Australia reportedly was exploring claims held by its partner, Philippine Eagle Mines. Paragon's interest was apparently focused on reserves remaining at the old Philippine Eagle Mine at Longos in southern Luzon. Kenmare Resources, based in Dublin, Ireland, reportedly initiated an agreement with the Philippine National Oil Co. to explore for epithermal gold on concessions held by the oil company on southern Luzon and the islands of Leyte and Negros. On the island of Lahuy, 200 miles southeast of Manila, Genoa Resources and Investment Ltd. reportedly was searching for evidence of epithermal systems at the old underground Treasure Island Mine. Finally, Galactic Resources of Vancouver, Canada, reportedly signed a joint-venture agreement with Lepanto Consolidated Mining Co. Inc., to develop a major gold-copperporphyry discovery at Mankayan in Benguet Province. The deposit, known as the Far South East Porphyry Project, reportedly was thought to contain 12 million ounces of gold and 4.5 billion pounds of copper.

South Africa, Republic of.—Despite continuing labor strikes and unrest, continuing currency inflation, and declining ore grades, the Republic of South Africa remained the world's largest gold-producing nation, with 37% of world mine production in 1987.

Of the 19.2 million ounces of gold produced in the Republic of South Africa during the year, 18.4 million ounces was produced by the 30 mines that together represent the membership of the Chamber of Mines of South Africa. The remainder was recovered by small independent gold producers or as a byproduct of other mining sectors. Overall, 46 gold mines and 16 retreatment plants were producing gold in 1987. The total ore milled by Chamber members, including ore milled by producers of byproduct and coproduct uranium, amounted to 118.6 million tons, averaging 0.17 ounce of gold per ton. In 1986, $\overline{118.7}$ million tons, averaging 0.18 ounce per ton was milled. Working costs for South African gold mines in $198\overline{7}$ averaged \$276.05 per ounce and ranged from \$139.69 per ounce at the Kloof Mine to \$585.30 per ounce at East Rand Proprietary.14 Production by the six major mining groups was as follows, in

millions of ounces: Anglo American Corp. of South Africa Ltd. (AAC), 7.1; Gold Fields of South Africa Ltd., 4.1; Gencor, 2.9; Rand Mines Ltd., 1.8; Anglovaal Ltd. (AVL) 1.3; and Johannesburg Consolidated Investment Co. Ltd. (JCI), 1.2.

In terms of individual mine output, the largest South African gold mines, in millions of ounces of production, were AAC's new Freegold Mine with 3.2, Vaal Reefs North and South lease areas with 2.3, Driefontein Consolidated with 2.1, Western Deeps with 1.1, Hartebeestfontein with 1.0, and Kloof with just under 1.0.

The National Union of Mineworkers (NUM) represent primarily black miners and have an estimated paidup membership of 200,000 workers out of a total mine work force of about 800,000. In August, NUM went on strike at operations held by the major mining groups. AAC and Gencor operations witnessed the most strike activity. The primary issue was NUM's negotiation of a 30% increase in basic wages plus certain fringe benefits. Stockpiling of runof-mine ore prior to the strike and immediate transfer of office personnel to production lines served to lessen the impact of the strike on gold production. The strike ended after 3 weeks.

In late 1987, Gencor announced plans to develop its new Oryx Mine alongside its existing Beisa property south of the town of Welkom in the Orange Free State. The Beisa, a gold and uranium producer, had been closed since 1985. Initial production from the Oryx will begin in mid-1988 and will employ some of the surface and underground facilities of Beisa, while building by 1994 to an annual capacity of about 2.9 million tons of ore per year, containing 480,000 ounces of gold. Following a 10-year research program, Gencor's new bacterial oxidation demonstration plant completed its first full year of operation in October; it is the world's first full-scale integrated gold recovery plant designed and built specifically to incorporate a proprietary biological preleaching circuit. The plant, at the company's Fairview gold mine in the eastern Transvaal was used to pretreat the mine's refractory ores. Owing to the presence of certain mineral constituents, these ores are difficult and expensive to treat using conventional techniques. Gencor claimed that a 95% gold recovery had been achieved with the aid of the new process.

The consistently high gold prices in terms of rands over the past several years has

encouraged the formation of an increasing number of small gold mining establishments. Consequently, plans to construct several small gold mining operations have been announced that are scheduled to begin production before 1990 and be at full capacity by 1995. These include the Osprey and Southgo Mines due in late 1987, the Eersteling and Sub-Nigel Mines due in 1988, and several others including the old Roodepoort underground mine west of Johannesburg that was reopened in August 1987. Owned by Roodepoort Gold Holdings (Pty.) Ltd., the mine was expected to produce about 4.2 million ounces during an anticipated mine life of 14 years. Gold recovery was to be through a new 20,000-ton-permonth carbon-in-pulp plant.

Rand Mines and AAC decided to develop a new gold mine in the Barberton area of the eastern Transvaal. The new mine will be developed by Barbrook Mining and Exploration Co. with each of the two mining groups holding an equal interest. Commissioning was expected during the third quarter of 1989 with full production of about 33,000 ounces per year expected by early

1990.

The Drylands Mine, the nation's first heap-leaching operation to treat only primary gold ore, reportedly was started up during the year. Production was expected to amount to about 64,000 ounces over a 4-year period. In October, East Rand Gold and Uranium Co.'s (Ergo) new Daggafontein recovery plant was commissioned. The new plant, Ergo's third such plant, will process old gold mine tailings for an annual recovery of about 96,000 ounces of gold. It has been estimated that tailings accumulated in the various Witwatersrand goldfields may contain as much as 42 million ounces of gold. Ergo, owned by AAC, is the largest of the companies formed to process goldbearing tailings. Other such producers include the Joint Metallurgical Scheme, the Rand Mines Milling and Mining Co., on the Central Rand, and Gencor's Chemwes plant, in the Klerksdorp area.

Potchefstroom Gold Areas, an independent mining firm, confirmed the presence of a gold-bearing reef in the Potchefstroom Gap area in the western Transvaal. The reef, known as the Bird Reef, was believed by some geologists to correlate with the extremely rich Vaal Reef. The drill intersection, at a depth of 12,600 feet, indicated grades of 0.5 ounce per ton over a width of nearly 2.5 feet. Two other intersections nearby, however, indicated much lower val-

ues. The discovery was considered by some to be the most significant since the establishment of the Evander Field almost 30 years ago. Although the country may be on the brink of establishing a new gold mining area, some less confident observers pointed out that the cost of establishing new gold mines in the area would be extremely high as a result of the depth of the reef and the small width of the gold-bearing seam.

Rhombus Mining and Exploration Co. Ltd., also an independent company, announced that drilling had intersected rocks of the lower Witwatersrand system at a depth of 7,200 feet at a site about 60 miles south of Beatrix in the Orange Free State. The discovery was significant in that some geologists have theorized for years about the possibility of the Witwatersrand Basin extending into the southern Orange Free State. It was believed that additional carefully placed drill holes will intersect the overlying gold-bearing upper Witwatersrand system. In addition to the two areas above, exploration by the major mining groups and an increasing number of independent mining and exploration companies was being concentrated north of Evander on the East Rand, south of the Western Areas gold mine in the Western Transvaal, south of Klerksdorp in the far western Transvaal, the Bothaville Gap area, and south of the Free State Mine in the Orange Free State. Oil rigs capable of drilling to great depth were being used by some firms in their exploration work.

Mining research was conducted by the South African Chamber of Mines and the individual mining groups. New mining methods, including improved mine support systems, more rapid and efficient ore removal systems, improvements in underground safety and working environments, and the greater use of computers to streamline various operational tests were some of the benefits developed and operational.

Plans were announced by Rand Refinery Ltd. during the year to construct a new gold-refining facility. The existing refinery, where all of South Africa's gold is refined, processes about 50% of the gold produced in the market economy countries. The new refinery was to have an annual input capacity of about 26 million ounces of raw gold, generally containing 84% gold, 11% silver, and 5% base metals. Construction was scheduled to begin in early 1988 and the refinery was expected to be in operation in about 2 years. The new plant was to be at the same site as the existing refinery.

Table 16.—Gold: World mine production, by country¹

(Troy ounces)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Argentina	24,660	22,120	28,357	30,350	30,000
ArgentinaAustraliaAustralia	983,522	31,295,963	41,881,491	2,413,842	3,472,000
Bolivia	49,217	40,827	e30,000	24,531	39,000
Brazil ^{e 5} Burkina Faso ^e	r _{1,850,000}	r _{1,900,000}	r2,200,000	r2,300,000	2,300,000
Burkina Faso ^e		500	50,000	80,000	80,000
Surundi	272	1,115	829	980	1,000
ameroon	261	e250	215	248	250
anada	2,363,411	2,682,786	2,815,118	e3,364,700	3,788,000 6,000
Central African Republic	2,492 ¹ 570,964	6,953 ^r 541,064	6,033 554,278	576,719	530,000
Chile China ^e	1,850,000	1,900,000	1,950,000	2,100,000	2,300,000
Colombia	r426,517	730,670	1,142,385	1,285,878	⁶ 850,71
ongo	267	101	515	e ₅₀₀	500
Congo Costa Rica ^e Costa Rica e Costa Rica e Costa Republic _	30,000	35,000	615,997	11,600	13,000
Ominican Republic	354,023	338,272	328.046	e282,990	246,000
Cuador	r67,800	280,000	300,000	317,327	320,000
Cl Salvador	650	285			
Ethiopia ^e	14,000	15,000	15,000	15,000	15,000
Ethiopia ^e Fiji	40,124	48,515	60,707	94,902	85,000
inland	25,206	28,067	19,130	37,680	60,000
rance	71,659	70,279	90,021	75,618	64,000 11,000
rench Guiana	8,038	10,127	8,005 1,608	10,481 2,000	2,000
Fabon Fermany, Federal Republic of	e550 1,900	1,325 1,500	1,808	1,200	2,000
dermany, Federal Republic of	276.000	287,000	299,363	287,127	6328,000
GhanaGuyana	4,607	11,131	10,323	14.035	15,000
Honduras	2,151	2,784	5,023	2,018	2,500
Hungary	30,000	20,000	20,000	18,000	18,000
ndia ⁷	70,158	65,234	58,771	60,250	58,000
ndia ⁷ ndonesia ⁸	76,888	78,677	83,688	102,942	114,500
lanan	100,921	103,519	170,525	330,515	6276,432
Kenya	100	600	442	2,339	2,500
Kenya Korea, North ^e Sorea, Republic of ⁷ Sorea, Republic of Sorea Malayssar Malaysia	160,000	160,000	160,000	160,000	160,000
Korea, Republic of	72,083	79,156	77,258	149,436	150,000
Liberia ^{e 9}	15,400	10,500	4,900	r _{20,100}	15,000
Madagascar ^e	110	130	130	130	130
Malaysia	84,496	89,527	90,304	88,385	109,000
viaii	e13,000	16,075 $270,998$	16,075	r e _{19,500}	22,500 250,000
Mexico	198,177		265,693 6,237	250,615 r e6,400	6,400
Namibia	7,459 9,667	6,302 21,605	45,011	e _{46,000}	45,000
New Zealand	46.428	25,316	24,491	28,664	631.628
NicaraguaPapua New Guinea	579,407	e835,000	1,186,618	1,127,686	61.069.011
Peru	168,534	187,406	212,870	215,862	215,000
Philippines	816,536	827,149	1,062,997	1,296,400	1,071,300
PhilippinesPortugal	r _{16,398}	6,205	9,259	6,173	5,000
Romania ^e	65,000	65,000	65,000	60,000	60,000
Rwanda	623	240	238	208	200
Rwanda Sierra Leone ¹⁰	12,000	r _{18,223}	19,004	12,000	15,000
Solomon Islands	e _{1,100}	2,572	2,100	3,150	4,000
South Africa, Republic of	21,847,310	21,860,933	21,565,230	20,513,665	619,227,887
Spain	162,296	123,330	185,524	167,184	148,000
Sudan ^e	500	1,500	1,500	1,600	1,600
Suriname	482	322	é500	e600	700
Sweden	r _{108,300}	r141,600	148,900	r e130,000	150,000
Taiwan ⁷	52,361	37,794	30,633	29,270	27,000
Canzania	e800	2,680	1,776	2,735	3,000
J.S.S.R. ^e	8,600,000	8,650,000	8,700,000	8,850,000	8,850,000
United States	2,002,526	2,084,615	2,427,232	3,739,015 e82,800	64,966,382 86,000
Venezuela	e33,200 r136,250	e50,885	74,180 r e _{110,000}	r e _{115,000}	115,000
Yugoslavia	192,930	125,130 117,115	63,022	167,827	160,000
Zaire Zambia	10,160	12,115	7,909	1,865	1,800
Zimbabwe	453,373	r478,307	472,327	477,535	485,000
	300,010	310,001	310,021	*11,000	100,000
Total	r45,163,264	r46,827,464	49,183,988	51,619,577	52,480,781
	,,	,	,,_	-,,	, ,

^rRevised. ^eEstimated. Preliminary.

Table includes data available through June 10, 1988.

2Gold is also produced in Bulgaria, Burma, Cuba, Czechoslovakia, the German Democratic Republic, Guinea, Norway, Poland, Senegal, Thailand, and several other countries. However, available data are insufficient to make reliable output estimates.

³Excludes gold in bismuth concentrate.

^{*}Excludes gold in gold ore and concentrate.

*Excludes gold in gold ore and concentrate from South Australia.

*Officially reported figures are as follows, in troy ounces: Major mines: 1983—199,206; 1984—213,963; 1985—244,249; 1986—300,545; and 1987—300,000 (estimated). Small mines (garimpos): 1983—1,526,775; 1984—982,623; 1985—709,760; 1986—475,059; and 1987—500,000 (estimated).

⁶Reported figure.

^{*}Reported figure.

'Refinery output.

*Excludes production from so-called people's mines, estimated at 482,000 troy ounces per year during 1986 and 1987, but includes gold recovered as byproduct of copper mining.

*These figures are based on gold taxed for export and include gold entering Liberia undocumented from Guinea and

¹⁰Data are based on official exports and do not reflect gold moved through undocumented channels.

TECHNOLOGY

The Bureau published a report to aid the Minerals Management Service in designating specific offshore areas for consideration of near-term lease offerings. Three selected placer areas, one each for chromium, gold, and titanium, were investigated and evaluated using engineering cost models. The gold placer area was offshore Nome, AK. Sensitivity analyses were then performed on major physical and engineering parameters affecting the economic viability of mineral resources from these three locations.15 The Bureau examined aggregate trends in foreign direct investment in the U.S. mining and mineral industries between 1977 and 1984. It provided an analysis of foreign investment in several major mineral commodity industries including the gold industry. In 1985, the proportion of the U.S. gold mining capacity held by foreign investors amounted to 44%. The motivation behind the growth in foreign investment and an examination of U.S. policies toward this investment and the issues raised were addressed.16 A method of estimating capital and operating costs associated with the exploration, mining, and processing of placer deposits was published by the Bureau. Operational parameters for placering equipment and basic principles of placer mining techniques were detailed in a manner to ensure representative cost estimates.17 The Bureau published an inventory of potential mineral supplies in the United States, including gold. Availability curves depicting how much gold can be recovered as a function of the cost of production were prepared. The chapter on gold identified the mines and processing plants evaluated and provided information on the engineering aspects of these operations. Geology and resources, historic production and current capacities, and mining and processing technologies were presented.18

The current and future uses of gold in combating cancer, lessening the pain of arthritis, and other current and future applications of gold were presented at the first International Conference of Gold and Silver in Medicine held in Bethesda, MD, May 13-15, 1988. The conference was sponsored by the Gold and the Silver Institutes, both in Washington, DC.¹⁹

The Governor of South Dakota awarded \$71,800 to the South Dakota School of Mines and Technology to study chlorination extraction for processing metallic ores. The process may prove to be an economic alter-

native to cyanide extraction. The money was part of a recently established employer's Investment in South Dakota's Future Fund, which uses residual funds from the State's Unemployment Insurance Funds. The study was to include acquisition of ore samples from the Black Hills and other western gold-producing localities. The samples then were to be tested for their amenability to the process. Economic feasibility of the concept was to be assessed on selected gold and silver ores, and a commercial reactor for chlorination processing was to be designed.²⁰

A new gold alloy, called 990 Gold, composed of 99% gold and 1% titanium, was developed and patented by the World Gold Council's Gold Information Center. The new alloy allows for the manufacture of almost pure gold articles with improved hardness and good wear properties. The alloy is manufactured by melting the constituents in a vacuum or in an argon atmosphere, followed by casting. By heat treatment at about 800° C and 500° C, the alloy can be obtained in its soft and hardened forms, respectively. The 990 Gold reportedly is easy to work in sheet, strip, or wire form but cannot be cast. Handy & Harman (New York) was licensed to manufacture and distribute 990 Gold stock.21 A cupric chloride process that would retrieve gold from electronic devices, scrap metal, or discarded jewelry was developed by researchers at the University of Wisconsin.22 A system, which recovers precious metals including gold from scrapped automobile catalytic converters, was being marketed by Mitsui & Co. (USA). The metals are dissolved in hydrochloric acid and then deposited electrolytically onto carbon particles. After redissolving in acid, the pure metals, including gold and silver, are selectively precipitated.23 Pulse-plated gold deposits for aerospace components were reported superior to those produced using DC electrolytic plating processes. Pulse-plating yielded deposits with higher infrared reflectivity, decreased porosity and thermal emissivity, smoother and brighter surfaces, and greater density.24

A collection of papers addressing various aspects of heap-leach pad construction, monitoring and analysis of solution flow through the heap and its collection, and the design of construction pads was published as a reference for the development, design, and operation of heap-leaching projects.²⁵

¹Physical scientist, Branch of Nonferrous Metals.

²Ounce refers to troy ounce.

³Green, C. B., T. K. Bundtzen, and R. B. Forbes.

Summary of Alaska's Mineral Industry 1987. (Paper pres. at 93d Annu. Northwest Assoc. Conv., Spokane, WA. Dec. 4, 1987), Northwest Min. Assoc., NMA preprint No. 24, 1987, 14 pp.

Hoekzema, R. B., S. A. Fechner, and J. M. Kurtak. Evaluation of Selected Lode Gold Deposits in the Chugach National Forest, Alaska. BuMines IC 9113, 1987, 62 pp.

National Forest, Alaska. BuMines IC 9113, 1987, 62 pp.

*Sherman, G. E. Estimation of Remaining Lode Gold Endowment in Selected Mining Districts of Alaska. BuMines IC 9133, 1987, 26 pp.

*Bennett, E. H., and V. E. Mitchell. A Review of the Mining Industry of Idaho in 1987. Calif. Min. J., v. 57, No. 8, Apr. 1988, pp. 3-6.

*Lawson, D. C., R. B. Berg, and M. A. Sholes. Mining and Mineral Developments in Montana—1987. Mont. Bur. Mines and Geol., MBMG 196, 1987, 16 pp.

*Ramp. I. Exploration and Mining Activity in Oregon.

Ramp, L. Exploration and Mining Activity in Oregon,

**Ramp, L. Exploration and Mining Activity in Oregon, 1987. Oregon Geol., v. 50, No. 4, Apr. 1988, pp. 38-44.

**Joseph, N. L. Washington Geology Newsleter. The Mineral Industry in Washington, 1987. Wash. Div. Geol. and Earth Resour., v. 16, No. 2, Apr. 1988, pp. 3-16.

19 Hansel, D. W. Metals and Precious Stones in Wyoming, Calif. Min. J., v. 57, No. 4, Dec. 1987, pp. 5-8.

11 Milling-Stanley, G. T., J. Jacks, T. Green, C. Michalopoulos, I. Podleska, D. Madhusudan, and Brook Hunt and Associates Ltd. Gold 1988. Consolidated Gold Fields PLC (London), May 1988, 64 pp.

12 Green, T. The Prospect for Gold—the View to the Year 2000. Walker and Co., 1987, 204 pp.

13 Law-West, D. C. Precious Metals—Gold. Can. Min. J., v. 109, No. 3, Mar. 1988, pp. 31-35.

 $^{14}Values$ have been converted from South African rands (R) to U.S. dollars at the rate R1.00=US\$0.5132 for 1987, as shown in Int. Financial Stat., v. 41, No. 5, May 1988,

p. 463.

15U.S. Bureau of Mines (Dep. Interior). An Economic Reconnaissance of Selected Heavy Mineral Placer Deposits in the Exclusive Economic Zone. OFR 4-87, 1987, 112 pp.

¹⁶Sousa, L. J., E. H. Yaremchuk, and A. P. Graham. Foreign Direct Investment in the U.S. Minerals Industry. Foreign Direct Investment in the U.S. Millerais industry. BuMines IC 9131, 1987, 23 pp.

17Stebbins, S. A. Cost Estimation Handbook for Small Placer Mines. BuMines IC 9170, 1987, 94 pp.

Placer Mines. Bumines 10 5110, 1501, 52 pp. 18U.S. Bureau of Mines (Dep. Interior). An Appraisal of Minerals Availability for 34 Commodities. B 662, 1987,

Minerais Availability for or commodities. 2 co., 30 pp. 19Silver Institute (Washington, DC). International Conference Reveals New Benefits of Silver. Silver Inst. Lett., v. 17, No. 3, June 1987, p. 3.

v. 17, No. 3, June 1987, p. 3.

20 U.S. Bureau of Mines. South Dakota School of Mines
To Study Chlorination Extraction Process. Minerals and
Materials. A Bimonthly Survey. Oct. Nov. 1987, 58 pp.

21 Metals Week. V. 58, No. 51, Dec. 21, 1987, p. 2.

 Metals Week. V. 30, IVO. 31, Dec. 21, 1301, p. 2.
 22Gold Institute (Washington, DC). Gold News. Upscale Market Waits for 99% Gold Jewelry. V. 12, No. 5, Sept. 1987, p. 3.

²³European Chemical News. ECN Technology. V. 49, No. 1284, July 20, 1987, p. 18.

²⁴Krishnamoorthy, R., R. Sunderarajan, and N. Gunasenkaran. Pulse-Plating of Gold for Aerospace Applications. Plating and Surface Finish., v. 74, No. 5, May 5, 1987,

pp. 122-125.

²⁵Van Zyl, D. (ed.). Geotechnical Aspects of Heap Leach Design. Soc. Min. Eng., AIME, 1987, 86 pp.

Graphite

By Harold A. Taylor, Jr. 1

Amorphous graphite was not mined domestically in 1987. All natural graphite supplies, particularly of fine crystalline flake, had a difficult time keeping abreast of industrial demand, which increased substantially over that of 1986. Prices of the major imported graphites generally increased over those of 1986, except for the price of Sri Lankan lump and chip graphite, which dropped significantly.

Production of synthetic graphite and

graphite fibers increased 7% and 19%, respectively.

Domestic Data Coverage.—Domestic production data for synthetic graphite are developed by the Bureau of Mines from a voluntary survey of domestic producers, titled "Synthetic Graphite." Of the 36 operations to which a survey request was sent, 97% responded, representing 100% of the total production data shown in table 4.

Table 1.—Salient natural graphite statistics

	0	-P-1100 DUGUI	stics		
	1983	1984	1985	1986	1987
United States: Production	W 9,435 \$3,455 43,586 \$11,921 r666,247	W 7,096 \$2,807 58,246 \$14,579 r691,988	44,380 8,357 \$3,125 52,737 \$16,186 687,640	35,036 7,754 \$3,416 42,790 \$15,758 P736,513	34,871 12,897 \$6,218 47,768 \$17,654 e694,167

Preliminary. rRevised. W Withheld to avoid disclosing company proprietary data.

Legislation and Government Programs.-There were no acquisitions or dis-

posals of graphite from the strategic and critical materials stockpile in 1987.

Table 2.—U.S. Government stockpile goals and yearend stocks of natural graphite in 1987, by type

(Short tons)

Туре	Goal	National stockpile inventory
Madagascar crystalline flake Sri Lanka amorphous lump Crystalline, other than Madagascar and Sri Lanka Nonstockpile-grade, all types	20,000 6,300 2,800	17,826 5,444 1,933 932
Source: General Services Administration, Inventory of Secolaria		932

Source: General Services Administration. Inventory of Stockpile Materials as of Dec. 31, 1987.

DOMESTIC PRODUCTION

United Minerals Co. did not operate its Townsend, MT, mine in 1987. Output of synthetic graphite increased 7% to about 225,000 short tons, at 33 plants, with a likelihood of some unreported production for in-house use. Production of all kinds of graphite fiber and cloth increased 19% to 2,000 tons.

Union Carbide Corp. closed its Puerto Rican graphite electrode plant in October after an earlier partial layoff in April. The company consolidated operations by transferring production to its plant in Clarks-

ville, TN. The demand for graphite electrodes has been dropping in many countries, including Japan, for several years because of declines in the electrode-consuming steel industry and because of more efficient use made of the electrodes.

Akzo-Enka America Inc. bought the Fortafil Fiber Div. graphite fiber plant in Tennessee from Great Lakes Carbon Corp. It also owns a West German graphite fiber plant. Courtaulds Ltd. of the United Kingdom increased its share of ownership of Hysol Grafil Co. from 50% to 80%.

Table 3.—Principal producers of synthetic graphite in 1987

Company	Plant location	on Product ¹		
	- 11 3777	Anodes, electrodes, crucibles, motor		
irco Carbon, a division of Airco Inc	Niagara Falls, NY	brushes, refractories, unmachined		
arco Carbon, a division of fine	St. Marys, PA}	shapes, powder.		
Do Do Fortafil Fiber	Ridgeville SC	High-modulus fibers.		
Do Inc. Fortafil Fiber	Rockwood, TN	High-modulus libers.		
Akzo-Enka America Inc., Fortafil Fiber		on at 11 inh modulus fibers		
Div.	Greenville, SC	Cloth and high-modulus fibers.		
Amoco Performance Products	Achland KY	High-modulus fibers.		
Ashland Petroleum Co., Carbon Fibers Div	Rock Hill, SC	Do.		
ASE Structural Materials Inc	Biddeford, ME	High-modulus fibers and cloth.		
Show Materials Inc	Provo, UT			
nu mkalamiCorn	Santa Fe Springs, CA	Other.		
F Goodrich Co., Engineered Systems Div.,	Santa re Springs, CA			
		Anodes, electrodes, motor brushes,		
Great Lakes Carbon Corp	Morganton, NC	unmachined shapes, other, powder.		
Do	Niagara Falls, NY	diffilactiffica crisp/		
Do	Ozork AR	High-modulus fibers.		
Hercules Inc	Salt Lake City, UT	Cloth and high-modulus fibers.		
Hercules Inc	Gardena, CA	Cloth and nigh-modulus meers.		
HITCO Materials Group, British		1 1 Cl		
Petroleum Co. Ltd. Hysol Grafil Co	Sacramento, CA	High-modulus fibers.		
Hysol Grafil Co	Punxsutawney, PA	Other.		
	Fostoria, OH	Motor brushes, unmachined shapes,		
North American Carbon Inc National Electrical Carbon Co	Postoria, Orizzzzzzzzzzz	cloth.		
	Cleveland, OH	Unmachined shapes.		
Ohio Carbon Co	Easton, PA	Other.		
Diggr Minerals, Pigments & Metals Div _	Easton, PA CA	Cloth.		
Polycorbon Inc	North Hollywood, CA	Electrodes.		
Circui Corbon Corp	Hickman, KY	III.ah modulus fibers		
	Lowell, MA	Motor brushes, unmachined shapes,		
The Stackpole Corp., Carbon Div	St. Marys, PA	Wiotor bi usites, unintermine		
The Stackpole Corp., Carbon Div ====		powder. Motor brushes, unmachined shapes,		
a 100 C. Cassielty Graphite	Sanborn, NY	Motor brusnes, unmachined shapes,		
Standard Oil Co., Specialty Graphite		cloth.		
Metallics Div. Superior Graphite Co	Russellville, AR)		
Superior Graphite Co		Anodes, electrodes, other.		
	Hopkinsville, KY	1		
Do	Lowell, MA	High-modulus fibers.		
Textron Corp., Avco Specialty Materials	Lowen, MA	•		
	n ou Mi	Powder and other.		
The Contract	Bay City, MI			
Union Carbide Corp., Carbon Products Div	Clarksburg, WV Clarksville, TN	Anodes, electrodes, unmachined shape		
	Clarksville, TN	powder, other.		
Do	Columbia, TN			
Do	Yabucoa, PR	.)		

¹Cloth includes low-modulus fibers; electric motor brushes include machined shapes; crucibles include vessels.

Table 4.—U.S. production of synthetic graphite, by use

	19	86	1987		
Use	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
Products:				- Julius/	
Anodes Cloth and fibers (low-modulus) Crucibles, vessels, refractories Electric motor brushes and machined shapes	_ 164	\$14,463 17,895 W	3,388 255 W	\$9,431 23,706 W	
Graphite articles	_ 139,926	302,160 32,351	W 153,847	312,907	
High-modulus fibers Unmachined graphite shapes Other		76,622 49,545 36,190	1,745 8,421 35,545	30,084 84,559 45,699 58,012	
Total Powder and scrap	r185,409 25,076	529,226 9,870	203,201 21,727	564,398 10,290	
Grand total	r210,485	539,096	224,928	574,688	

^RRevised. W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Includes all items for which no quantity data is available.

Table 5.—U.S. production of graphite fibers

Year	Cloth and low-modulus fibers		High-mo	dulus fibers	Total		
	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands	
1977 1978 1979 1980 1981 1981 1982 1983 1984 1984 1986	136 141 169 169 216 212 188 223 316 164 255	\$8,800 8,720 10,089 11,254 15,293 17,706 14,217 17,979 27,235 17,895 23,706	49 149 194 306 409 605 739 1,160 1,586 1,513 1,745	\$4,330 11,804 13,031 17,379 21,759 30,091 33,854 56,436 84,743 76,622 84,559	185 290 363 475 625 817 927 1,383 1,902 1,677 2,000	\$13,130 20,524 23,120 28,633 37,052 47,797 48,071 74,415 111,978 94,517 108,265	

CONSUMPTION AND USES

Reported consumption of natural graphite increased slightly to about 32,200 tons. The three major uses of natural graphite

were refractories, foundries, and lubricants, which accounted for 54% of reported consumption.

Table 6.—U.S. consumption of natural graphite, by use

IIaa	Use Crystalline		Amor	phous¹	Total ²	
——————————————————————————————————————	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
1986: Batteries	W 1,453 406 1,516 553 832 1,740 459 W 221 131 94 *6,499	\$1,294 1,025 1,333 356 970 2,334 802 W 258 70 212 74,962	W 2,632 211 14 3,916 3,824 286 111 W 155 1,546 2,049 2,823	\$2,112 249 15 1,279 3,177 213 165 W 86 607 2,298 652	*1,302 4,085 617 1,530 4,469 4,656 2,026 570 8,020 376 1,677 2,143	**\$1,824 3,406 1,274 1,348 1,635 4,147 2,547 967 3,790 344 677 2,510
Total ²	^r 13,904	^r 13,616	17,568	10,853	r31,472	r _{24,469}

Table 6.—U.S. consumption of natural graphite, by use —Continued

10000		11			Crystalline Amorphous Total				
Use	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)			
987: Batteries	W 1,627 361 W 436 805 1,857 461 W 130 167 73 6,559	W \$1,408 868 W 281 789 2,047 848 W 152 111 163 5,828	W 2,643 219 W 4,345 3,606 271 121 W 279 1,369 2,487 4,348	W \$2,745 270 W 1,321 2,296 164 190 W 141 538 2,750 967	1,102 4,270 580 1,506 4,781 4,411 2,129 582 8,300 409 1,536 2,560	\$1,70 4,15 1,13 1,41 1,60 3,00 2,21 1,00 3,66 2,2 6 6 2,9			
Total ²	12,475	12,494	19,690	11,383	32,100	20,0			

W Withheld to avoid disclosing company proprietary data; included with "Withheld uses." rRevised.

³Includes bearings and carbon brushes.

⁴Includes foundry facings.

PRICES

Graphite prices are often negotiated between the buyer and seller and are based on purity and other criteria. Therefore, published price quotations are given as a range of prices. Another source of information for graphite prices is the average customs value per ton of the different imported classes. However, it should be noted that these mainly represent shipments of unprocessed graphite.

The prices of crystalline flake increased by 10% to \$712 per ton: Mexican amorphous graphite rose by 6% to \$52 per ton, all types of Sri Lankan lump graphite dropped by 13% to \$811 per ton, and other natural graphite (mostly fine crystalline flake and dust) rose slightly to \$547 per ton.

The price for crystalline graphite at the point of consumption (mostly crystalline flake, some crystalline dust, and a little lump graphite) was up slightly to \$1,002 per ton, from \$979 (revised) in 1986. The price for amorphous graphite (including small amounts of amorphous-synthetic graphite mixtures) dropped by 6% to \$578 per ton.

Table 7.—Representative yearend graphite prices1

(Per short ton)

	1986	1987
Flake and crystalline graphite, bags: China Madagascar	\$54-\$1,542 290- 998 272- 1,361	\$54-\$1,542 290- 998 272- 1,361
Madagascar Sri Lanka Amorphous, nonflake, cryptocrystalline graphite (80% to 85% carbon): Korea, Republic of (bags) Mexico (bulk)	82- 113 82- 109	82- 113 82- 109

¹F.o.b. foreign port or border.

¹Includes mixtures of natural and manufactured graphite. ²Data may not add to totals shown because of independent rounding.

^{*}Includes paint and polishes, antiknock and other compounds, soldering and/or welding, electrical and electronic products, mechanical products, magnetic tape, small packages, industrial diamonds, and drilling mud.

Source: Engineering and Mining Journal. V. 187, No. 12, Dec. 1986, p. 19; and v. 188, No. 12, Dec. 1987, p. 11.

FOREIGN TRADE

Total exports of natural and artificial graphite increased by 7%. Exports of graphite electrodes totaled 65,987 tons valued at \$119.7 million, of which 15,210 tons (\$22.8 million) went to Japan, 7,610 tons (\$23.1 million) to Canada, 6,655 tons (\$10.4 million) to Venezuela, 4,161 tons (\$7.8 million) to the U.S.S.R., 3,851 tons (\$8.5 million) to the Federal Republic of Germany, 3,800 tons (\$6.8 million) to Brazil, and the balance to other destinations.

Imports for consumption of natural graphite increased 12% from those of 1986.

Imports of natural graphite from Canada, Madagascar, and Mexico rose substantially, in contrast to those of Sri Lanka, which dropped by about 33%.

Imports of all kinds of graphite fiber, including tows, yarns, textiles, preox fiber, and carbon fiber, but not precursor, were estimated to be 880 tons, worth about \$45 million in 1987, compared with 730 tons, worth \$39 million (revised) in 1986. Almost all of this was from Japan, but the United Kingdom, Israel, and the Netherlands (transshipments) supplied minor amounts.

Table 8.—U.S. exports of natural and artificial graphite, by country

			Na	tural¹	Art	ificial	Total		
Country		Quantity (short tons)	Value	Quantity (short tons)	Value	Quantity (short tons)	Value		
1986:							- TOTAL		
Germany, Federa	Republic		56 3,678 57	\$23,760 1,427,685 21,574	266 6,808 7,633	\$352,975 546,429	322 10,486	\$376,73 1,974,11	
Japan Mexico			804 495 722	101,859 534,388 230,059	174 2,530	2,344,940 81,071 1,376,583	7,690 978 3,025	2,366,514 182,930 1,910,971	
United Kingdom Venezuela Other			391 116 1,435	146,876 92,571 837,463	267 915 31 2,585	214,649 522,532 46,712	989 1,306 147	444,708 669,408 139,283	
Total			7,754	3,416,235	21,209	1,260,806 6,746,697	4,020 28,963	2,098,269	
987:								10,102,002	
Brazil Canada Germany, Federal	Republic		7,672	83,880 2,384,595	67 8,693 1,211	55,762 523,209	79 16,365	139,642 2,907,804	
Italy Japan Mexico United Visual			166 1,677 399	72,201 1,875,353 185,097	256 2,795	560,386 109,363 1,580,820	1,211 422 4,472	560,386 181,564 3,456,173	
United Kingdom _ Venezuela Other			1,289 194 1,488	621,874 123,492	168 554 1	97,456 455,489 1,605	567 1,843 195	282,553 1,077,363	
		_		871,453	4,377	2,276,049	5,865	125,097 3,147,502	
Total			12,897	6,217,945	18,122	5,660,139	31,019	11,878,084	

 $^{^{1}\!\}mathrm{Amorphous}$, crystalline flake, lump or chip, and natural, not elsewhere classified.

Source: Bureau of the Census.

Table 9.—U.S. imports for consumption of natural graphite, by country

	Crysta flal	lline ke	Lum		Other n crude refi	and	Amor	phous	Tot	al¹
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
85	5,899	\$3,161	1,654	\$1,307	18,743	\$9,767	26,441	\$1,952	² 52,737 ²	\$16,186
·				-	10	27			46	27
86: Austria					46 39	64			39	64
Belgium-Luxembourg	1 170	887			3,246	1,784			4,698	2,671 173
	1,452 124	96			89	77	2.2	15	$\frac{213}{11,055}$	4,481
Conada	1,612	646			9,231	3,820	212		33	42
China	1,012				33	42			405	287
Colombia	181	123			224	164				
France Germany, Federal Re-		12.5			854	1,392			927	1,486
nublic of	73	94			(3)	4			(3)	-4
public of					. ()		531	75	531	75
Hong Kong	22	10			$\bar{318}$	248			340	25
IndiaIreland					1	5			483	4
Ireland					483	44			265	71
Ivory Coast	170	447			95	266			2,841	1,59
Japan	1.043	702			1,798	890 427	17,057	836	17,910	1,28
Madagascar Mexico	20	17			833 60	44	11,001		60	4
Montserrat					00	**			61	- 5
Morocco	61	52		ı — —	54	$\overline{2}$			54	
Mozambique					10	3			71	4
Netherlands	61	44			19	9			19	. 4
Nowway					81	43			81 2.054	1,91
South Africa, Republic of			2.054	1,914					2,034	1,01
Sri Lanka	$-\frac{1}{2}$	$-\overline{1}$							264	
Sweden Switzerland					264	105			(3)	
Taiwan	(3)	4			26	29			26	
United Kingdom					314	307		-	314	30
Venezuela					914				9.0.=00	215 77
Total ¹	4,821	3,122	2,054	1,914	18,115	9,796	17,800	925	² 42,790	² 15,75
								2 37	82	,
1987:							. 82	-	21	
Austria Belgium-Luxembourg					37				E 799	
Brazil	1,019	622							2,12	9 1,1
Canada	977						74	1 80) 11,66	4 4,2
China	1,827				100				_ 10	8 1
France Germany, Federal Re-						•			00	1 8
Germany, Federal Re-	22	99			. 269	761	ـ ا	9 - 8	$\frac{29}{5}$	
public of							5	-	90	
Hong Kong		$\overline{15}$			_ 348				_ 40	6 1,0
India Japan	. 83	295			199				3,84	4 3,0
Madagascar	2,519				1 90			1 99	8 20,71	3 1,6
Mexico			-						_ 2	20
Netherlands					ົ				_ 2	20
Souchalles					_ 17				- 17	
South Africa, Republic of			1 10	$\bar{2}$ 1, $\bar{13}$	7 _				_ 1,40)2 1,
Sri Lanka					_ (- ;	3 ₎ 20
Sweden				_	_ 2					20 52
Switerland		8 - 9			_ 24					14
United Kingdom										72
Venezuela Zimbabwe										82
Other	_ 8	2 39	9		(³)	1			
Onior								03 1,12	23 47,7	68 17.
Total ¹	_ 6,57	4 4,68	3 1,40	1,13	19.58	39 10,7	10 20,2	00 1,14	20 21,1	20

¹Data may not add to totals shown because of independent rounding. ²Data do not include artificial graphite. ³Less than 1/2 unit.

Source: Bureau of the Census.

Table 10.—U.S. imports for consumption of artificial graphite and graphite electrodes, by country

*	Artificia	l graphite	Graphite electrodes		
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	
986:		٠.			
Australia	2	\$33			
Austria		400	(1)	\$11	
Belgium	35	105	1.753	3.076	
Canada	1.312	488	4,626	5.389	
China	15	28	60	79	
Denmark			(1)	5	
France	504	$1.0\overline{7}\overline{5}$	4.723	6.869	
Germany, Federal Republic of	1,055	3,642	8,560	12,268	
Hong Kong	2,000	0,015	7	8	
India	979	138	•	,	
Italy	14	44	5,785	7.648	
Japan	1.436	6,494	30,241	53.091	
Korea, Republic of	1,100	0,101	71	214	
Netherlands			6.184	7.890	
Norway			199	64	
Singapore			528	865	
Spain			1.609	2,441	
Sri Lanka			20	12	
Sweden	20	$\overline{26}$	(1)	20	
Switzerland	4,210	6.222	11.789	4,353	
Taiwan	4,210	0,222	37	4,000	
United Kingdom	10	45	1,517	2,381	
Officed Kingdom	. 10	45	1,817	2,361	
Total ²	9,594	18,339	77,710	106,719	
987:					
Australia	4	47			
Austria	-		(1)	-6	
Belgium	(1)	2	1,192	1.862	
Brazil			130	35	
Canada	$1.\overline{492}$	767	5,828	7,161	
China	75	18	48	71	
Denmark		10	1	26	
Finland			(1)	20	
France	$7\overline{59}$	2,523	4.124	4.990	
Germany, Federal Republic of	967	2,325	$\frac{4,124}{2,176}$	4,990 4.296	
Italy	239	308			
	1.017	6,175	5,557	7,214	
Japan Korea, Republic of	1,017	0,175	$26,574 \\ 139$	38,623	
Netherlands	$-\bar{6}$	47		551	
	. 0	41	1,459	1,269	
Norway			(*)	65	
Spain			2,005	2,922	
South Africa, Republic of			(1)	2	
Sweden	(¹)	3	(1) a	135	
Switzerland	4,547	9,603	102	159	
Taiwan			213	213	
	4	_8	986	1,020	
United Kingdom					
Other	61	56	1	3	

Less than 1/2 unit.

Source: Bureau of the Census.

WORLD REVIEW

World demand was steady, but world supply dropped slightly, tightening markets and drawing down stocks.

Canada.—Cal Graphite Corp. became the second firm to schedule a crystalline flake graphite deposit in Ontario for mining in late 1988. The firm estimated that proven reserves total 29.5 million tons of ore averaging 4% graphite at its Graphite Lake,

Butt Township, property. Construction was scheduled to begin in the spring of 1988 on the mine, which will run 25 years with presently known reserves, and on a mill designed to produce 22,000 tons of medium flake product containing 97.5% carbon per year.

Japan.—A shrinking Japanese steel industry resulted in reduced domestic de-

²Data may not add to totals shown because of independent rounding.

mand for graphite electrodes. Exports of electrodes also declined because of the strong yen, compounding the problem. Officials of the Ministry of International Trade and Industry expect to see some plant closings and purchases of some smaller firms. For example, Kiowa Carbon Co. Ltd. was bought out by Toyo Carbon Co. Ltd. The firms are likely to convert some of the excess electrode capacity to produce other graphite shapes, particularly specialty products such as electrodes for spark discharge machines and graphite hot zone heaters for production of single crystal silicon and optical fiber.

The Japanese graphite fiber industry also reached overcapacity. As of late 1987, there were 23 companies producing or seeking to begin production of graphite fiber, most of them petroleum or energy-related firms. These potential producers, most with small pilot plants in operation, were sending out samples for evaluation and otherwise developing markets. The overcapacity is likely to be short term, unlike that for electrodes. The firms were planning to look at a variety of uses, but of most interest are those in construction. New types of graphite fibers with the same physical properties as presently available fibers, but at much lower prices, were being introduced. In addition, other fibers priced at current levels with much better properties, often tailored to customer requirements, were being scheduled for introduction in a short time. Production of carbon-carbon composites has been greatly expanded.

Many of the firms planned to market their graphite fiber to reinforce concrete, potentially a very high-volume market in Lightweight graphite-fiber-reinforced concrete building panels have been used to make all the concrete parts of a Tokyo highrise. The applications of lightweight concrete panels are expected to be concentrated in interior floors and walls and not in other parts of the building in the near term. Graphite fiber also has been placed in concrete road slabs on the surface to conduct away the galvanic electric currents that cause the steel reinforcing rods to corrode. A graphite fiber composite rod was proposed to reinforce concrete bridge deck slabs and graphite fiber to reinforce concrete in contact with acid waters.

In Japan, graphite fiber has been proposed for use in the structural components of X-ray machines, in robots and machine tools, and in electromagnetic shielding in buildings. Intercalated graphite fiber was proposed for use as a conductor and a hightemperature lubricant. High-performance fiber could be used in leaf springs and in automobile frames. High-modulus ultrahigh-modulus fibers are being investigated for use in engine parts, such as pistons, valves, and connecting rods. The extent of graphite fiber applications will depend on lowering manufacturing costs, and on improving some physical properties.

The Japanese Government began to publish statistics on graphite fiber in 1987 when production was 3,490 tons. Production for the producing firm's own use was 315 tons and exports were 2,020 tons. Stocks usually average about 540 tons at the end of each month.

Korea, Republic of.—Korea Steel Chemical Co. brought on-stream a 132-ton-capacity polyacrylonitrile precursor-based graphite fiber plant at Pohang. The plant also makes chopped fiber and preoxidized fiber. Most of the sales will be to the domestic fishing rod industry.

The United Nations Industrial Development Organization signed an agreement with the Korean Government to develop a production process for pitch-based graphite fiber.

Han Kuk Fiber Glass Co. Ltd. planned to rapidly increase the size of its graphite fiber prepreg plant to consume 200 tons of fiber annually. The company's major market was sports equipment, particularly tennis rackets, but it also began to sell fiber prepreg to the Korean aircraft industry.

Le Carbone-Lorraine S.A., a subsidiary of Pechiney, constructed a graphite fiber composite plant for electrical, mechanical, and refractory applications in a suburb of Seoul.

Mexico.—The Sonoran amorphous graphite district had about 10 mining operations in 1987. Many new deposits of various sizes have recently been found near the Mar de Cortes (the southern Sonoran seacoast). The major producer, Grafitos Mexicanos S.A., operated eight mines, including new ones near Navojoa and Alamos, and produced about 32,600 tons in 1986. The firm was planning to begin making graphite briquets.

GRAPHITE

Table 11.—Graphite: World production, by country¹

(Short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Argentina	22	16	e20	e ₁₇	17
Austria	44,553	48,269	33,911	39,867	38,600
Brazil (marketable) ³	30,463	36,023	48,131	e40,800	44,000
Burma ⁴	220	258	258	796	550
China	204,000	204,000	204,000	204,000	204,000
Czechoslovakia	55,000	55,000	65,000	65,000	61,000
Germany, Federal Republic of	r _{13,241}	r _{13,620}	14,107	14,587	13,000
India (mine) ⁵	43,615	42,975	30,134	42,342	22,000
Italy	2,534	12,010		,	
Korea, North	28,000	28,000	28,000	28,000	28,000
Korea, Republic of:	20,000	20,000	20,000		
Amorphous	35,903	62,014	77.026	106,458	88,000
Crystalline flake	766	2,541	1,766	707	1,100
Madagascar	14.944	15,403	15,400	17,843	18,000
Mexico:	,				
Amorphous	47,034	43,923	36,892	39,619	39,000
Crystalline flake	1,828	1,855	2,105	2,026	2,000
Norway	8,888	11,097	e _{2,500}		
Romaniae	13,900	13,700	13,200	13,200	13,200
Sri Lanka	6,094	6,198	8,171	8,216	7,700
Thailand	95	122			
Turkeye	65,297	5,500	5,500	5,500	5,500
U.S.S.R.e	88,000	88,000	90,000	91,000	92,000
United States	W	· w			
Zimbabwe	21,850	13,596	11,519	16,535	16,500
Total	r666,247	r691,988	687,640	736,513	694,167

W Withheld to avoid disclosing company proprietary data. rRevised. eEstimated. Preliminary.

TECHNOLOGY

The Bureau of Mines investigated possible substitutes for imported crystalline flake graphite used in dolomite-carbon refractories. Fundamental engineering properties, such as the oxidation resistance, hot strength, and deformation under load, were determined for different kinds and mixes of crystalline flake graphite with dolomite. Results indicated that an 85%-carboncontent graphite was just as good as a 95%carbon-content graphite in a 10% by weight graphite-dolomite mix when tested for oxidation rate, hot strength, or deformation under load. Dolomite-carbon brick made with the 10% graphite-dolomite mix gave the optimum hot strength and deformation under load. Use of a boron-treated graphite gave significantly higher strength and lower deformation under load at high temperatures than the untreated material.2

The Bureau of Mines initiated a research project to establish the feasibility of producing flake graphite from the steelmaking waste called kish. Kish is graphitic material that separates from the carbon-containing molten steel and ultimately is associated with the slag or is collected in the baghouse. The Bureau researchers estimated that domestic availability of kish was quite large, probably large enough to supply the entire U.S. demand for flake graphite, freeing the United States from its 100% import dependency.

A new technique for carefully controlled precision stirring a molten mixture of metal and graphite fiber kept the fiber evenly dispersed. The new technique produced a cast metal-matrix composite item with good properties. This could bring metal-matrix composites into large commercial production and greatly cut composite production costs by improving ease of handling, allowing production of composite ingots for later use, and by allowing the equivalent of dilution of the composite ingot when remelted for the casting.3

¹Table includes data available through May 20, 1988.

²In addition to the countries listed, Namibia may have produced graphite during the period covered by this table, but output is unreported, and available general information is inadequate for formulation of reliable estimates of output

Poses not include the following quantities sold directly without beneficiation, in short tons: 1983—12,278; 1984—2,902; 1985—3,800 (estimated); 1986—4,400 (estimated); and 1987—not available.

⁴Data are for fiscal year beginning Apr. 1 of that stated.

Indian marketable production is 10%-20% of mine production.

⁶Reported figure.

¹Physical scientist, Branch of Industrial Minerals. ²Bennett, J. P. The Effect of Different Natural Flake Graphite Additions on the High-Temperature Properties of a Dolomite-Carbon Refractory. BuMines RI 9111, 1987,

¹² pp.
³Bittence, J. C. Advanced Metal Composites on the Move. Adv. Mater. & Processes, v. 132, No. 1, July 1987, pp. 45-49.

Gypsum

By Lawrence L. Davis¹

Demand for gypsum products remained strong in 1987. New public and private housing unit starts, a major indicator of gypsum product demand, decreased 10% to 1.6 million units. The decrease was sharpest in the fourth quarter, but did not significantly affect the overall 1987 gypsum product demand. The gypsum industry set new record-high levels for crude gypsum mined, calcined gypsum production, and shipments of prefabricated wallboard products.

Sales of gypsum products increased 6% to 27 million tons, but value decreased 9% to \$2.3 billion. This was a result of increased

competition and cost reduction measures put into effect by most companies.

Imports for consumption of crude gypsum increased slightly to 9.7 million tons. Total value of gypsum product exports increased 11% to \$32 million.

Domestic Data Coverage.—Domestic production data for gypsum are developed by the Bureau of Mines from a survey of U.S. gypsum operations. Of the 129 operations to which the annual survey request was sent, 127 responded, representing 99% of the total production shown in tables 1 and 2.

Table 1.—Salient gypsum statistics

(Thousand short tons and thousand dollars)

1984 113 14,319 \$113,671 8,904	r14,414 r\$111.785	r _{15.403}	15,612 \$106,977
14,319 \$113,671 8,904	r14,414 r\$111,785	113 r _{15,403} r _{\$99,570}	109 15,612 \$106,977
14,319 \$113,671 8,904	r14,414 r\$111,785	^r 15,403 ^r \$99,570	15,612 \$106,977
14,319 \$113,671 8,904	r14,414 r\$111,785	^r 15,403 ^r \$99,570	15,612 \$106,977
\$113,671 8,904	r14,414 r\$111,785	^r 15,403 ^r \$99,570	15,612 \$106,977
\$113,671 8,904	r\$111,785	r\$99,570	\$106,977
\$113,671 8,904	r\$111,785	r\$99,570	\$106,977
8,904	9,922		
780	779	653	9,717
		099	688
15,450	15 982	17.061	15 500
\$320,518		\$310.259	17,592
\$2,274,261		\$2 514 422	\$321,645
\$29,852			\$2,282,845 \$32,061
			\$163,581
r _{93,751}		P95 360	e98,897
_	\$320,518 \$2,274,261	\$320,518 \$2,274,261 \$29,852 \$169,667 \$155,422	$\begin{array}{c ccccc} 15,450 & 15,982 & 17,061 \\ \$320,518 & \$366,581 & \$310,353 \\ \$2,274,261 & \$2,418,296 & \$2,514,432 \\ \$29,852 & \$26,419 & \$28,805 \\ \$169,667 & \$155,422 & \$181,168 \\ \end{array}$

^eEstimated. ${}^{\mathbf{p}}$ Preliminary. rRevised.

DOMESTIC PRODUCTION

The United States remained the world's leading producer of gypsum, accounting for 16% of the total world output.

Crude gypsum was mined by 34 companies at 61 mines in 21 States. Production increased slightly. Leading producing States, in descending order, were Michigan,

Iowa, Texas, Oklahoma, California, Nevada, and Indiana. These seven States produced more than 1 million tons each and together accounted for 74% of total domestic production. Stocks of crude ore at mines and plants at yearend were 3.0 million tons.

Leading companies were USG Corp., 11

Each mine, calcining plant, or combination mine and plant is counted as one establishment; includes plants that sold byproduct gypsum.

mines; National Gypsum Co., 7 mines; Georgia-Pacific Corp., 6 mines; Celotex Corp. (a subsidiary of Jim Walter Corp.) and Domtar Inc., 3 mines each; and Weyerhaeuser Co., 1 mine. These 6 companies, operating 31 mines, produced 75% of the

total crude gypsum.

Leading individual mines, in descending order of production, were USG's Plaster City Mine, Imperial County, CA; USG's Alabaster Mine, Iosco County, MI; USG's Shoals Mine, Martin County, IN; National Gypsum's Tawas Mine, Iosco County, MI; USG's Sweetwater Mine, Nolan County, TX; Temple-Eastex Inc.'s, Fletcher Mine, Comanche County, OK; Weyerhaeuser's Briar Mine, Howard County, AR; National Gypsum's Sun City Mine, Barber County, KS; National Gypsum's Shoals Mine, Martin County, IN; and USG's Sperry Mine, Des Moines County, IA. These 10 mines accounted for 41% of the national total. Average output for the 61 mines increased slightly to 256,000 tons.

Gypsum was calcined by 14 companies at 72 plants in 29 States, principally for the manufacture of gypsum wallboard and plaster. Calcined output increased 3% in tonnage and 4% in value. Leading States, in descending order, were California, Texas, Florida, Iowa, and Nevada. These 5 States, with 24 plants, accounted for 40% of the

national output.

Leading companies were USG, 21 plants; National Gypsum, 18 plants; Georgia-Pacific, 9 plants; Domtar, 8 plants; and Celotex, 4 plants. These 5 companies, operating 60 plants, accounted for 84% of the

national output.

Leading individual plants were, in descending order of production, USG's Plaster City plant, Imperial County, CA; USG's Jacksonville plant, Duval County, FL; Weyerhaeuser's Briar plant, Howard County, AR; USG's Sweetwater plant, Nolan County, TX; USG's Baltimore plant, Baltimore County, MD; National Gypsum's Tampa plant, Hillsborough County, FL; Temple-Eastex's West Memphis plant, Crittenden County, AR; USG's Shoals plant, Martin County, IN; USG's Stony Point plant, Rockland County, NY; and Republic Gypsum Co.'s Duke plant, Jackson County, OK. These 10 plants accounted for 28% of the national production. Average calcine production for the 72 U.S. plants was 244,300 tons, a 3% increase.

The following companies sold a total of 688,000 tons of byproduct gypsum, valued at

\$8.5 million, principally for agricultural use, but some for gypsum wallboard manufacturing: General Chemical Corp. and J. R. Simplot Co., both in California; Occidental Petroleum Corp. in Florida; Kemira Inc. in Georgia; SCM Pigments Div. of SCM Corp. in Maryland; Texasgulf Inc. in North Carolina; and Texas Utilities Co. in Texas. Approximately 55% was of nonphosphogypsum origin, compared with 39% in 1986. Some byproduct gypsum obtained from SCM Corp.'s SCM Pigments Div.'s plant in Baltimore, MD, was mixed with natural gypsum and commercially used in the manufacture of wallboard at USG's Baltimore plant. Byproduct gypsum from the Texas Utilities powerplant at Tatum, TX, was used exclusively as feed to Windsor Gypsum Co.'s new plant.

Gypsum wallboard plant capacity increased 7% to 25.11 billion square feet. Total wallboard shipments were 20.6 billion square feet, 82% of capacity. Both shipments and capacity were at record-high

USG closed its wallboard plant at Heath, MT, and its gypsum mine at Shoemaker, MT, in January, citing high cost of operation and long distances to major markets as the reasons. Western Gypsum Co. ceased operations at its Rosario Mine and wallboard plant near Santa Fe, NM, in August.

USG completed expansions to its wallboard plants at Stony Point, NY, and Fort Dodge, IA, and began expansion to double the capacity of its wallboard plant at Sperry, IA. The \$30 million expansion at Sperry was scheduled for completion in 1989.

Georgia-Pacific was preparing to begin operation of a new gypsum mine and wallboard plant at Las Vegas, NV. The company also announced plans for a 270-millionsquare-foot wallboard plant at Paradise, KY. The \$20 million plant, using feed from a nearby Tennessee Valley Authority (TVA) powerplant, was scheduled for completion in late 1989.

Domtar completed acquisition of the mines and wallboard plants formerly owned by Genstar Gypsum Products Co. Objections by the U.S. Department of Justice to the acquisition were overcome when Domtar agreed to sell a mine and wallboard plant at Las Vegas, NV, within 6 months. Domtar also announced plans to build a \$30 million wallboard plant in Newington, NH, using crude gypsum from Nova Scotia.

James Hardie Gypsum Co., a new subsidiary of James Hardie Industries Ltd. of

Australia, entered the domestic gypsum industry by purchasing the Las Vegas, NV, facilities that Domtar was required to sell and by purchasing Norwest Gypsum Co. of Seattle, WA, a wallboard manufacturer. Another new company, Standard Gypsum Co., entered the market by purchasing a wallboard plant at McQueeney, TX, from Windsor Gypsum. Standard announced plans to increase the plant's annual capacity to 300 million square feet. They also purchased a mine at Fredericksburg, TX. Windsor Gypsum began operations at its new plant at Tatum, TX, using synthetic gypsum from nearby Texas Utilities powerplants. Construction of Atlantic Gypsum Co.'s new wallboard plant at Port

Newark, NJ, continued. The \$34 million facility was expected to begin operating in June 1988.

Colorado Lien Co. reactivated its Munroe Mine in Larimer County, CO. Several mines were idle throughout the year: Quad-Honstein Joint Venture's Woodham Mine in Larimer County, CO; Southwestern Portland Cement Co.'s Finlay Mine in Hudspeth County, TX; and Thomas J. Peck & Sons Inc.'s Nephi Mine in Juab County, UT. Cox Enterprises Inc.'s Levan Mine in Sanpete County, UT, was inactive, but crude gypsum was shipped from stocks. Winn Rock Inc.'s Winnfield Mine in Winn Parish, LA, the only anhydrite mine in the United States, produced rock mainly for road construction.

Table 2.—Crude gypsum mined in the United States, by State

	1986			1987	
Active mines	Quantity (thousand short tons)	Value (thousands)	Active mines	Quantity (thousand short tons)	Value (thousands
7	615	00 04C	_		
;			7	582	\$3,001
4			5	1.655	9,462
7	1,378	10,777	7	1,468	11,719
10	rooc	T 4 7711			
10			. 9		5,095
9			5	2.241	14,750
6		12,602	6		12,887
5	1,979	11.052	Š.		
8	1.520		Č		12,190
5			ō		10,285
č			ð		13,336
. 0	2,131	14,982	6	1,874	14,254
63	r _{15,403}	r99,570	61	15,612	106,977
	7 4 7 10 5 6 5 8 8 5 6 6	Active mines Quantity (thousand short tons) 7 615 4 1,474 7 1,378 10 836 5 1,960 6 1,826 5 1,979 8 1,520 5 1,683 6 2,131	Active mines Quantity (thousand short tons) Value (thousands) 7 615 \$3,246 4 1,474 8,166 7 1,378 10,777 10 *836 *4,711 5 1,960 12,479 6 1,826 12,602 5 1,979 11,052 8 1,520 10,699 5 1,683 9,855 6 2,131 14,982	Active mines Quantity (thousand short tons) Value (thousands) Active mines 7 615 \$3,246 7 4 1,474 8,166 5 7 1,378 10,777 7 10 r836 r4,711 9 5 1,960 12,479 5 6 1,826 12,602 6 5 1,979 11,052 5 8 1,520 10,699 6 5 1,683 9,855 5 6 2,131 14,982 6	Active mines

Revised.

Table 3.—Calcined gypsum produced in the United States, by State

				a states,	~, ~uuc	
		1986			1987	
State	Active plants	Quantity (thousand short tons)	Value (thousands)	Active plants	Quantity (thousand short tons)	Value (thousands
Arizona and New Mexico	3	426	\$5,786	3	050	
Arkansas, Louisiana, Oklahoma	7	1,831	29,209	2	376	\$4,796
California	6	1,695		\overline{q}	1,896	32,465
Colorado and Utah	9		33,495	6	1,924	39,364
Delaware, Maryland, North Caro-	o	388	7,027	3	409	7,334
Itna. Virginia	6	1,543	28,980	c		
riorida	š	1,309		6	1,690	31,269
Georgia	. 3	768	25,158	3	1,308	27,362
Illinois, Indiana, Kansas	e e		17,001	3	753	15,606
lowa_	. 0	1,533	25,664	6	1,529	25,573
Massachusetts, New Hampshire	ъ	1,220	21,963	5	1,247	20,925
New Jersey, Pennsylvania	5	885	10			•
Michigan	3		18,577	5	911	17,959
Montana, Washington, Wyoming_	4	618	10,923	4	673	11,438
Nevada Washington, Wyoming	5	778	16,451	4	723	14,977
Nevada	3	950	16,198	3	1,071	
New York	4	1,047	18,940	, i		18,045
Ohio	3	479	9,659	3	1,057	18,946
Texas	6	1,590	25,323	3 7	$\frac{460}{1.562}$	10,868
Total ²	72	17,061	310,353	72	17,592	24,718 321,645

Utah includes revisions in 1986.

²Data may not add to totals shown because of independent rounding.

²Data may not add to totals shown because of independent rounding.

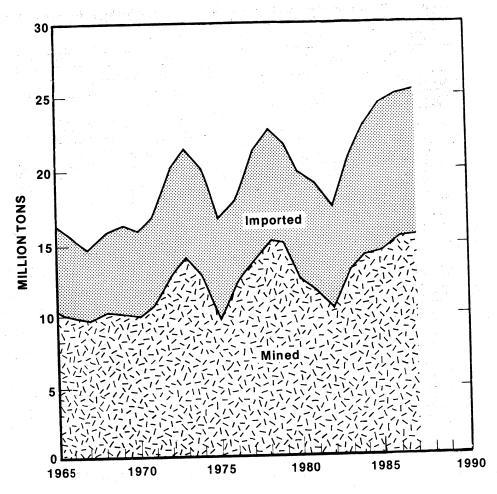


Figure 1.—Supply of crude gypsum in the United States.

CONSUMPTION AND USES

Apparent consumption, defined as production plus net imports plus industry stock changes, of crude gypsum, including byproduct gypsum, increased slightly to 26.4 million tons. Net imports provided 37% of the crude gypsum consumed. Apparent consumption of calcined gypsum increased slightly to 17.6 million tons.

Yearend stocks of crude gypsum at mines and calcining plants were 3.0 million tons. Of this, 53% was at calcining plants in coastal States.

Of the total gypsum products sold or used, 6.3 million tons or 24% was uncalcined. Of the total uncalcined gypsum, 79% was used for portland cement manufacture, and 16% was used in agriculture. Of the total calcin-

ed gypsum, 96% was used for prefabricated products and 4% for industrial and building plasters. Of the prefabricated products, based on surface square feet, 68% was regular wallboard, 22% was fire-resistant type X wallboard, 3% was water- and/or moisture-resistant board, and 3% was 5/16-inch mobile home board. Lath, veneer base, sheathing, predecorated, and other types made up the balance. Of the regular wallboard, 82% was 1/2 inch and 11% was 5/8 inch. In descending order, the leading sales regions for prefabricated products were the South Atlantic, Pacific, and East North-Central; together, they accounted for 54% of the total.

Table 4.—Gypsum products (made from domestic, imported, and byproduct gypsum) sold or used in the United States, by use

(Thousand short tons and thousand dollars)

TT	19	86	1987		
Use	Quantity	Value	Quantity	Value	
Uncalcined: Portland cement Agriculture¹ Fillers and miscellaneous	4,296 943 93	40,328 13,517 7,868	4,994 1,028 301	53,024 17,145 10,798	
Total ²	5,331	61,712	6,324	80,967	
Calcined: Building plaster: Regular base coat Poured gypsum cement and concrete Veneer plaster Gauging plaster and Keene's cement	133 2 107 29 7	14,888 139 16,412 3,705 1,224	136 3 114 27	15,261 248 17,882 3,473	
Total ² Industrial plaster Prefabricated products ³	278 476 19,048	36,367 54,126 2,362,225	280 496 19,441	36,865 58,627 2,106,386	
Total calcined ²	19,802	2,452,719	20,218	2,201,878	
Grand total ²	25,133	2,514,432	26,541	2,282,845	

 $^{^1}$ Includes most of 652,562 tons of byproduct gypsum in 1986 and most of 688,246 tons in 1987. 2 Data may not add to totals shown because of independent rounding. 3 Includes weight of paper, metal, or other materials, and some byproduct gypsum.

Table 5.—Prefabricated gypsum products sold or used in the United States

		1986			1987	
Product	Thousand square feet	Thousand short tons ¹	Value (thou- sands)	Thousand square feet	Thousand short tons ¹	Value (thou- sands)
Lath: 3/8 inch	23,460 1,000	17 1 	\$3,980 159	20,500 700 2,000	16 1 1	\$3,484 121 328
Total ² Veneer base Sheathing	24,460 453,770 337,890	18 456 316	4,139 61,793 54,531	23,200 479,310 312,690	18 484 300	3,933 53,893 46,513
Regular gypsumboard: 3/8 inch 1/2 inch 5/8 inch 1 inch Other ³	433,450 11,493,000 1,578,700 84,500 227,620	324 10,136 1,442 148 143	51,724 1,188,138 195,767 20,646 25,230	612,980 11,455,627 1,523,720 85,050 242,730	462 10,265 1,456 149 154	63,361 1,024,974 164,776 20,074 17,824
Total ² Type X gypsumboard Predecorated wallboard 5/16-inch mobile home board Water/moisture-resistant board Other	13,817,270 4,357,990 132,200 570,770 521,980 84,800	12,193 4,935 124 433 485 87	1,481,506 563,985 42,833 54,932 79,485 19,020	13,920,107 4,488,857 127,760 597,780 556,930 97,280	12,486 4,945 122 466 523 98	1,291,009 505,042 42,489 56,463 85,310 21,734
Grand total ²	20,301,130	19,048	2,362,225	20,603,914	19,441	2,106,386

¹Includes weight of paper, metal, or other material.

²Data may not add to totals shown because of independent rounding.

³Includes 1/4-, 7/16-, and 3/4-inch gypsumboard.

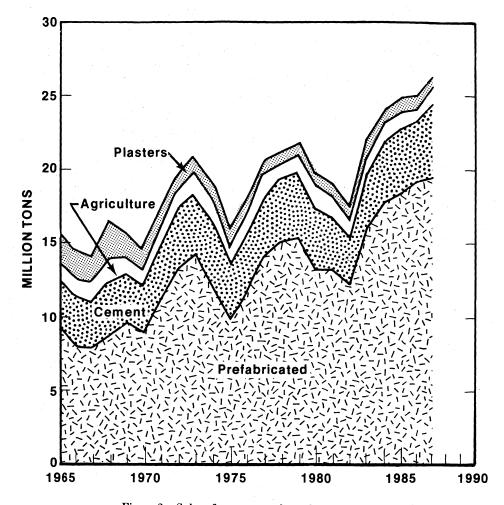


Figure 2.—Sales of gypsum products, by use.

PRICES

On an average value-per-ton basis, crude gypsum increased 6% to \$6.85, calcined gypsum increased slightly to \$18.28, and byproduct gypsum increased 73% to \$12.32.

The average value of gypsum products sold or used decreased 14% to \$86.01 per ton. Prefabricated products were valued at \$108.35 per ton, industrial plasters at \$118.20 per ton, building plasters at \$131.66 per ton, and uncalcined products at \$12.80 per ton.

Quoted prices for gypsum products were

published monthly in Engineering News-Record. Prices in December, based on truck lots delivered to the job, showed a wide range. Regular 1/2-inch wallboard prices ranged from \$76 per thousand square feet at Dallas to \$240 at New York. The average price in December for 20 cities was \$162 per thousand square feet, with some minor discounts for prompt payment. This represented a 8% decrease compared with that of December 1986.

FOREIGN TRADE

Imports for consumption of crude gypsum, which increased slightly to 9.7 million tons, represented 37% of apparent consumption. Crude gypsum from Canada and Mexico was used mainly to feed wallboard plants in coastal cities. Imports from Spain,

the other major source of imported gypsum, were used mostly for portland cement manufacture. Gypsum wallboard imports, principally from Canada, 99%, were 762 million square feet, a 9% decrease.

Table 6.—U.S. exports of gypsum and gypsum products

(Thousand short tons and thousand dollars)

Year		Crude, crushed, or calcined				Total
	Quantity	Value	n.e.c. ¹ (value)	value		
1985 1986 1987	83 155 127	13,021 15,481 15,629	13,398 13,324 16,432	26,419 28,805 32,061		

¹Includes gypsum or plaster building boards and lath (TSUS 245.7000) and articles, n.s.p.f., of plaster of paris (TSUS

Source: Bureau of the Census.

Table 7.—U.S. imports for consumption of gypsum and gypsum products

(Thousand short tons and thousand dollars)

Year	Crude		Ground or calcined		Alabaster manufac-	Plaster-	Other manu-	Total
	Quantity	Value	Quantity	Value	tures ¹ (value)	board ² (value)	factures, n.s.p.f. ³ (value)	value
1985 1986 1987	9,922 9,559 9,717	64,089 64,996 59,171	2 3 2	242 436 384	5,173 6,817 6,080	80,119 99,089 82,220	5,799 9,829 15,726	155,422 4181,168 163,581

¹Includes imports of jet manufactures, which are believed to be negligible.

⁴Data do not add to total shown because of independent rounding.

Source: Bureau of the Census.

Table 8.—U.S. imports for consumption of crude gypsum, by country

(Thousand short tons and thousand dollars)

Country	19	86	1987	
	Quantity	Value	Quantity	Value
Australia				
Bahamas Canada ¹	18	$\overline{75}$	58	370
China	6,252	44,511	6,166	38,486
Greece			233 67	1,234
Iomeice	20	$1\overline{29}$		1,254
Mexico	23 2.040	135	23	117
Oh	1,200	9,455 $10,502$	2,022 1,135	10,931 6,662
Other	6	189	12	118
Total ²	9,559	64,996	9,717	59,171

Source: Bureau of the Census.

Includes imports of jet manufactures, which are believed to be negligible.

Includes gypsum or plaster building boards and lath (TSUS 245.7000).

Includes statues and articles, n.s.p.f., of plaster of paris (TSUS 512.4100 and 512.4400) and gypsum cement (TSUS 512.0100 and 512.4400). 512.3100 and 512.3500).

¹Includes anhydrite. ²Data may not add to totals shown because of independent rounding.

WORLD REVIEW

Estimated world production of crude gypsum increased 4% to 9.9 million tons. Total world production figures are probably somewhat low because, in some countries, significant production was consumed captively and not reported. Also, production from small deposits in developing countries was intermittent and often unreported.

Australia.—The gypsum industry in Australia is dominated by two companies: Boral Ltd. and CSR Ltd. The two companies compete with one another in the manufacture and marketing of gypsum products, but share mining and transportation of crude gypsum through a joint venture company, Gypsum Resources Australia Pty. Ltd. CSR commissioned a new plaster mill and wall-board plant at Sydney and a new plaster mill at Perth.²

Canada.—Canada remained the world's second largest producer of crude gypsum, accounting for 10% of the world total. Production remained about the same at 9.7 million tons, 68% of which came from Nova Scotia. Ontario accounted for 16% of total production, and the remaining production came from British Columbia, Manitoba, and Newfoundland.

Domtar completed its acquisition of the Genstar Gypsum Ltd. wallboard plants in Edmonton, Alberta, and Saskatoon, Saskatchewan, and a gypsum quarry at Flat Bay, Newfoundland. The Flat Bay quarry was closed in December. Domtar was developing a new underground mine at Caledonia, Ontario, to supply its nearby wallboard plant. The mine was expected to be operational in 1990 and to tap reserves expected

to last 75 years at present demand levels.3

The Gypsum Association in the United States, of which all Canadian gypsum wall-board manufacturers were members, announced that yearend Canadian wallboard capacity was 3.87 billion square feet, a 4% increase.

China.—A contract for the construction of a gypsum plaster plant was awarded to a French firm. The plant was to be built in Shandong Province and to have a capacity of 33,000 tons per year.⁴

U.S.S.R.—An open pit mine was commissioned in eastern Siberia, near Noril'sk. Production was expected to be 55,000 to 65,000 tons annually, and reserves were estimated to last for 50 years at that rate of production.⁵

United Kingdom.—Redland PLC of the United Kingdom and CSR Ltd. of Australia announced the formation of a joint venture called Redland Plasterboard Ltd., which planned to enter the United Kingdom wallboard market beginning in 1988 by importing wallboard from a Norwegian firm. Plans also included the construction of two plants. The first would be in operation by 1991, near Bristol, using imported gypsum from Spain.⁶

Eternit TAC of Belgium announced plans to begin importing wallboard into the United Kingdom from Belgium and to open a domestic plant sometime in the future.

Knauf GmbH of the Federal Republic of Germany announced that it was planning a wallboard plant at Sittingbourne, Kent. Until the plant is built, Knauf planned to enter the market with imported wallboard.

Table 9.—Gypsum: World production, by country¹

(Thousand short tons)						
Country	1983	1984	1985	1986 ^p	1987 ^e	
Country				3	3	
Afghanistan ^e Algeria ^e	3 275	$\begin{array}{c} 3 \\ 275 \\ 22 \end{array}$	3 275 22	303 22	303 22	
Angola Argentina	22 637 1,664	625 r _{2,129}	508 1,923	$5\overline{09}$ $1,730$	507 1,760	
Australia	828 1	816 1	765 1	773	770 1	
Bolivia Brazil Bulgaria Bulgaria	613 425	544 433	617 428	777 435 43	960 435 44	
Burma ³ Canada (shipments) ²	38 8,275	30 8,550	$\begin{array}{c} 43 \\ 9{,}311 \\ 216 \end{array}$	9,704 213	49,712 4258	
Chile	73 4,700 262	185 5,300 287	6,300 276	7,200 325	7,900 330	
Cuba ^e	145 35	145 24	145 18	145 33	145 33	
Cyprus Czechoslovakia	935	928	r e ₉₄₀	e940	940	

See footnotes at end of table.

Table 9.—Gypsum: World production, by country¹—Continued

(Thousand short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
er e					
Dominican Republic	e230	e ₂₃₀	342	146	465
Ecuador ^e	2	2	2	2	2
Egypt	795	e800	927	e1,000	990
El Salvador ^e	5	5	4	4	: 4
Ethiopia ^e	5	5	5	5	41
France ²	6,111	5,954	e6,000	4,833	44,969
German Democratic Republice	397	397	397	375	375
Germany, Federal Republic of (marketable)	2,739	2,493	2,609	2,090	2,100
Greece	4711	720	720	720	720
Guatemala	43	. 28	19	31	426
Honduras ^e	25	25	25	25	25
lungary ^{e 2}	31	33	33	33	40.051
ndia	1,145	1,519	1,389	1,707	42,051
ran	9,521	10,655	9,242	r e9,300	9,300
raq ^e	190	330	330	330	390
reland	388	358	335 e ₅₀	318 e ₅₀	330
srael	46 1 520	51			1,360
taly	1,530 119	1,393 199	1,390 197	1,373 129	1,360
amaica apan ^{e 5}	46,443	6,700	6,900	7,000	7,200
ordan	45	123	101	77	77
Kenya ²	1	120 e ₉	•e ₂	12	12
Korea, Republic of ⁵	586	558	873	(6)	. 12
Laos ^e ^	80	490	120	140	155
ebanon	46	6	3	3	3
Libyae	r ₂₀₀	r ₂₀₀	r200	r ₂₀₀	200
Luxembourg ^e	(7)	(4 7)	(7)	(7)	(7)
uxembourg ^e Mauritania ^e	4	1	6	6	6
Mexico	3,261	r3,247	2,608	2,894	42,708
Mongolia ^e	35	35	35	35	35
Morocco ^e	485	500	500	500	500
Nicaragua	13	e10	9	eg	9
Viger ^e	3	3	š	3	
Pakistan	351	413	451	411	500
Paraguay	4	7	3	3	3
Pern	85	74	32	190	165
Philippines ⁵	122	124	e124	e124	124
Poland ^{e z}	r _{1,020}	r _{1,300}	r _{1,070}	r _{1,100}	1,200
Portugal	275	251	^e 275	^e 250	265
Romania ^e	1,800	r _{1,820}	r _{1,790}	r _{1,760}	1,750
Saudi Arabia	342	r406	451	411	411
Sierra Leone	4	4	• ^e 4	e ₄	
South Africa, Republic of	571	590	505	446	4 385
Spain	6,195	5,914	6,090	e6,060	6,100
Sudan ^{e 2} Switzerland ^e	9	49	47	8	8
Switzerland ^e	200	240	240	220	230
Syria	r87	*88	177	r e176	176
Taiwan ⁵	3	2	2	2	42
Tanzania ^e	13	13	416	^r 16	16
hailand	838	1,224	1,404	1,836	43,340
[unisia ^e	. 88	95	100	110	110
Turkey	83	64	86	141	4333
J.S.S.R. ^{e 5}	5,400	5,400	5,400	5,500	5,500
Jnited Kingdom ²	3,271	3,459	3,515	e3,530	3,530
Jnited States ⁸	12,884	14,319	14,414	15,403	415,612
Jruguay	167	82	e110	e110	110
/enezuela	226	158	147	€275	275
Vietnam ^e	30	30	30	30	30
Yemen Arab Republic	26	27	e ₂₇	58	58
Yugoslavia	687	669	r e670	r e ₆₈₀	680
Total	r88.907	r93,751	94,307	95,360	98,897
Total	00,301	99,191	94,507	90,000	30,091

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through July 8, 1988.

¹Table includes data available through July 8, 1988.

²Includes anhydrite.

³Data are for year beginning Apr. 1 of that stated.

⁴Reported figure.

⁵Includes byproduct gypsum. (In the case of Japan, byproduct gypsum was virtually all the gypsum consumed during 1983-87.)

⁶Revised to zero.

⁷Less than 1/2 unit.

⁸Excludes byproduct gypsum.

TECHNOLOGY

Use of synthetic gypsum produced during flue gas desulfurization continued to attract interest. Windsor Gypsum's wallboard plant in Tatum, TX, became fully operational using synthetic gypsum from the Texas Utilities powerplants as the sole source of gypsum. Georgia-Pacific announced plans to construct a 270-million-square-foot-peryear wallboard plant in Kentucky using synthetic gypsum from the TVA's Paradise powerplant.9 C-E Raymond Combustion Engineering Inc. announced that it had developed a process for using synthetic gypsum to manufacture high-quality wallboard.10

The Oak Ridge National Laboratory reported the results of tests to determine formaldehyde sorption and desorption characteristics of gypsum wallboard. Gypsum board was of interest as an indoor sink for pollutants, such as formaldehyde, because of its typically large surface area and water content. Gypsum wallboard was found to have substantial storage capacity for formaldehyde, which provides a time-dependent buffer to changes in formaldehyde concentration surrounding the board, but does not provide a permanent loss mechanism.11

The Bureau of Mines conducted pull tests on resin-grouted roof bolts in a number of underground evaporite mines. Pull-test data were shown to be helpful in establishing resin column-length criteria for roof bolts in evaporite mines.12

³Vagt, O. Gypsum and Anhydrite. Can. Miner. Yearbook 1987, pp. 33.1-33.8.

¹Physical scientist, Branch of Industrial Minerals. ²Adamson, C. L. The Gypsum Industry in Australia. Ind. Miner. (London), No. 247, Apr. 1988, pp. 83-97.

⁴Industrial Minerals (London). No. 245, Feb. 1988, p. 9. ⁵Levine, R. M. Eastern Europe. Min. Annu. Rev., June 1987, pp. 463-464

⁶Benbow, J. World Gypsum—A Review. Ind. Miner. (London), No. 247, Apr. 1988, pp. 57-79.

⁷Industrial Minerals (London). No. 243, Dec. 1987, p. 16. . No. 244, Jan. 1988, p. 11.

⁹Page 12 of work cited in footnote 7

⁸Page 12 of work cited in roomous 1.

¹⁰Pit & Quarry. May 1987, pp. 16-17.

¹¹Matthews, T. G., A. R. Hawthorne, and C. V. Thompson. Formaldehyde Sorption and Desorption Characteristics of Gypsum Wallboard. Environ. Sci. Technol., v. 21, No. 7, 1987, pp. 629-634.

¹²Smith, W. C., and R. M. Stateham. Column Length Cattorie for Resin Bolting in Evaporities. Bullines RI 9121,

Criteria for Resin Bolting in Evaporites. BuMines RI 9121, 1987, 20 pp.

Helium

By William D. Leachman¹

Grade-A helium (99.995% or better) sales volume in the United States by private industry and the Bureau of Mines was 1,736 million cubic feet (MMcf) in 1987.2 Grade-A helium exports by private producers were 494 MMcf, for total sales of 2,230 MMcf of U.S. helium. The price of Grade-A helium, f.o.b. plant, was about \$37.50 per thousand cubic feet (Mcf) for both the Bureau and private industry. The Bureau's price for bulk liquid helium was \$45.00 per Mcf with additional costs for container services and rent. Private industry's liquid helium price was also about \$45 per Mcf with some producers posting surcharges to this price.

Domestic Data Coverage.—Domestic production data for helium are developed by the Bureau of Mines from records of its own operations as well as the "High-Purity Helium" survey, a single, voluntary canvass of private U.S. operations. Of the seven operations to which a survey request was sent, all responded. Those data plus data from the Bureau's operations represent 100% of the total production shown in table 2.

Legislation and Government Programs.—The Government's program for storage of private crude helium in the Government's helium storage facilities at the Cliffside Field near Amarillo, TX, once again was vital in supplying helium for the private helium market. During the winter months, private industry produces crude helium from natural gas supplying the fuel market. The volume of crude helium produced is usually greater than needed to supply the helium market. The Government stores this privately owned excess crude helium production under contract in its Cliffside helium storage reservoir. During periods of insufficient crude helium production (usually the summer months), the stored private helium is returned to provide that part of private demand that cannot be supplied from current production. Privatization of all the Government's helium program, except the conservation storage operation, is currently under consideration.

DOMESTIC PRODUCTION

In 1987, 12 privately owned domestic helium plants were operated by 9 companies. Eight privately owned plants and one Bureau of Mines plant extracted helium from natural gas. Both private and Bureau plants use cryogenic extraction processes. Pressure-swing adsorption is used for helium purification at three of the newer private helium plants and at the Bureau's plant. Cryogenic purification is used by other producers. The Bureau and all seven private plants that produce Grade-A helium also liquefy helium. They are Air Products and Chemicals Inc., Hansford County, TX; Navajo Refined Helium Co., Shiprock, NM; Kansas Refined Helium Co., Otis, KS; Ex-

xon Co. U.S.A., Shute Creek, WY; and Union Carbide Corp., Linde Div., Bushton, Elkhart, and Ulysses, KS.

The volume of helium recovered from natural gas increased considerably in 1987. Even though one of private industry's larger crude helium purification plants was shut down for modification in April 1987, all crude helium extraction plants remained in operation. All of the natural gas processed for helium extraction came from gasfields in Kansas, New Mexico, Oklahoma, Texas, and Wyoming. After the initial shakedown operations, Exxon was able to maintain operations near capacity for all of 1987. The facility is composed of two parallel plants,

each of which has the capacity to process 240 million cubic feet per day (MMcf/d) of Riley Ridge gas, purify 1.5 MMcf/d of helium, and liquefy about 2,500 liters per hour of liquid helium.

Table 1.—Ownership and location of helium extraction plants in the United States in 1987

Category and owner or operator	Location	Product purity
Government-owned: Bureau of Mines	Masterson, TX	Crude and Grade-A helium.
Private industry: Air Products and Chemicals Inc Exxon Co. U.S.A Kansas Refined Helium Co Navajo Refined Helium Co Northern Helex Co OXY Cities Service Cryogenics Inc OXY Cities Service Helex Inc Phillips Petroleum Co Do Union Carbide Corp., Linde Div Do Do Do	Otis, KS Shiprock, NM Bushton, KS Scott City, KS Ulysses, KS Dumas, TX Hansford County, TX Bushton, KS Elkhart, KS	Grade-A helium. ¹ Do. ¹ Do. ¹ Do. Crude helium. Do. ³ Crude helium. Do. Do. Grade-A helium. ¹ Do. Do.

¹Including liquefaction.

Table 2.—Helium recovery in the United States1

(Thousand cubic feet)

\ -						
	1983	1984	1985	1986	1987	
Crude helium:						
Bureau of Mines: Total storage	-275,714	-314,969	-411,681	-379,827	-289,085	
Private industry: Stored by Bureau of Mines Withdrawn	282,018 -729,134	506,092 -605,935	487,576 -956,462	431,917 -980,209	730,360 -219,594	
Total private industry storage Total crude helium Stored private crude helium withdrawn from	-447,116 -722,830	-99,843 -414,812	-468,886 -880,567	-548,292 -928,119	$+510,766 \\ +221,681$	
stored private crude neithin withdrawn from storage and purified by the Bureau of Mines for redelivery to industry	-65,015	-49,057	-5,339	-18,658	-6,765	
Grade-A helium: Bureau of Mines sold Private industry sold	241,733 1,120,955	294,460 1,342,961	397,446 1,485,662	333,447 1,607,963	266,594 1,963,750	
Total sold Total stored	1,362,688 -787,845	1,637,421 -463,869	1,883,108 -885,906	1,941,410 -946,777	2,230,344 +214,916	
Grand total recovery	574,843	1,173,552	997,202	994,633	2,445,260	
			11.1	town facility	, a partially	

¹Negative numbers denote net withdrawal from the Government's underground helium storage facility, a partially depleted natural gas reservoir in Cliffside Field near Amarillo, TX.

Table 3.—Summary of Bureau of Mines helium plant operations

(Thousand cubic feet)

(Thousand Caste 1997)			
	1985	1986	1987
Grade-A supply: Inventory at beginning of period Helium recovered: Exell plant Lack transfer of the supplementary to the supplementar	18,163 387,795	3,173 366,716	17,784 294,474
Total	405,958	369,889	312,258
Grade-A disposal: Sales	397,446 5,339 3,173	333,447 18,658 17,784	266,594 6,765 38,899
Total	405,958	369,889	312,258

¹At Amarillo and Exell helium plants.

²Initial production began Oct. 1986. ³Output is piped to Ulysses, KS, for purification.

²Includes 5,339 Mcf purified for private industry in 1985, 18,658 Mcf in 1986, and 6,765 in 1987.

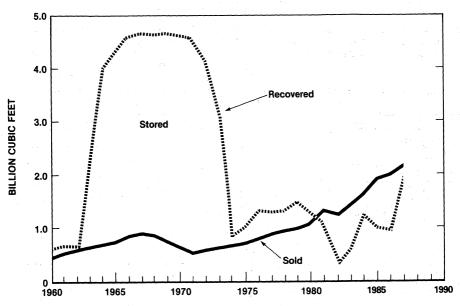


Figure 1.—Helium recovery in the United States, 1960-87.

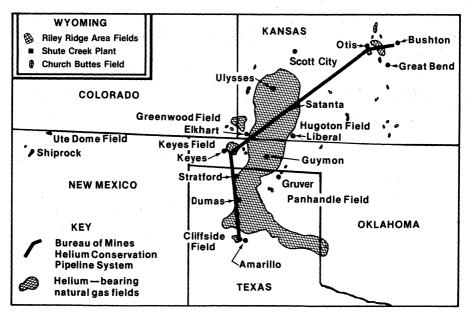


Figure 2.—Major U.S. helium-bearing natural gas fields.

CONSUMPTION AND USES

The major domestic end uses of helium were cryogenics, welding, and pressurizing and purging. Minor uses included synthetic breathing mixtures, chromatography, leak detection, lifting gas, heat transfer, and controlled atmospheres. The Pacific and Gulf Coast States were the principal areas of helium consumption.

Bureau of Mines sales to Federal agencies and their contractors totaled 267 MMcf in 1987, which is a decrease of about 20% compared with 1986 sales. This decrease was due primarily to slowdowns and changes being made in programs that require helium by the National Aeronautics and Space Administration (NASA), the U.S. Department of Energy (DOE), and the U.S. Department of Defense.

The Federal agencies purchase their major helium requirements from the Bureau of Mines. Direct helium purchases by DOE, the Department of Defense, NASA, and the National Weather Service constituted most of the Bureau's Grade-A helium sales.

All of the remaining helium sales to Federal agencies were through Bureau contract distributors, who purchased equivalent volumes of Bureau helium under contracts described in the Code of Federal Regulations (30 CFR 602). Some of the contract distributors also have General Services Administration helium supply contracts. These contracts make relatively small volumes of helium readily available to Federal installations at lower freight charges by using the contractors' existing distribution systems.

Table 4.—Total sales of Grade-A helium in the United States

(Million cubic feet)

	Year		
1983 1984 1985 1986 1987		995 1,245 1,444 1,509 1,736	

Table 5.—Bureau of Mines sales of Grade-A helium, by purchaser¹

(Thousand cubic feet)

	1985	1986	1987
Federal agencies:			
Department of Defense	120,225	95,444	95,386
	37,731	41,275	27,497
Department of Energy National Aeronautics and Space Administration	103,144	45,684	17,504
National Weather Service	909	729	766
Other	7,604	4,827	7,223
Total	269,613	187,959	148,376
Federal agency sales supplied by private contract helium distributors ²	124,299	140,071	117,052
Commercial sales	3,534	5,417	1,166
Grand total	397,446	333,447	266,594

¹Table identifies Federal purchaser, who may redistribute the helium to another Federal helium user.

²Purchased from the Bureau of Mines by commercial firms and redistributed to Federal installations under contract authority of 30 CFR 602.

461

1,736 MILLION CU. FT.

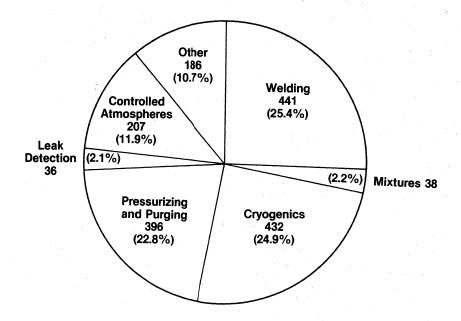


Figure 3.—Estimated helium consumption in the United States in 1987, by end use (million cubic feet).

STOCKS

The volume of helium stored for future use in the Bureau of Mines helium conservation storage system, which includes the conservation pipeline network and the Cliffside Field near Amarillo, TX, totaled 35.9 billion cubic feet (Bcf) at yearend. The conservation storage system contains crude helium purchased by the Bureau under

contract, Bureau helium extracted in excess of sales, and privately owned helium stored under contract. During 1987, 730 MMcf of private helium was delivered to the Bureau's helium conservation storage system, and 704 MMcf was withdrawn, for a net increase of 26 MMcf of private helium in storage.

Table 6.—Summary of Bureau of Mines helium conservation storage system1 operations

(Thousand cubic feet)

	1985	1986	1987
Helium in conservation storage system at beginning of period: Stored under Bureau of Mines conservation program Stored for private producers under contract	35,196,6 2,814,6		34,405,169 1,773,445
Total	38,011,2	297 37,125,391	36,178,614
Input to system: Net deliveries from Bureau of Mines plants ² Stored for private producers under contract			-289,085 730,360
Total Redelivery of helium stored for private producers under contract ² _	75,8 961,8		441,275 -704,031
Net addition to system ²		906 -946,777	-262,756
Helium in conservation storage system at end of period: Stored under Bureau of Mines conservation program Stored for private producers under contract	34,784, 2,340,		34,116,084 1,799,774
Total	37,125,	36,178,614	35,915,858

¹Crude helium is injected into or withdrawn (-) from the Government's underground helium storage facility, a partially depleted natural gas reservoir in Cliffside Field near Amarillo, TX.

²Negative numbers denote net withdrawal from storage.

RESOURCES

Domestic measured and indicated helium resources as of January 1, 1987 (the latest figures available), were estimated to be 496 Bcf. The total identified helium resources was about 43 Bcf less than reported in 1986. The decrease was due primarily to changes in the estimate of probable natural gas resources made by the Potential Gas Committee reevaluation of the average helium contents and helium loss due to natural gas production. The resources included measured reserves and indicated resources estimated at 229 and 29 Bcf, respectively, in natural gas with a minimum helium content of 0.3%. The measured reserves included 36 Bcf stored by the Bureau of Mines in the helium conservation storage system. Measured helium resources in natural gas with a helium content of less than 0.3% are estimated to be 38 Bcf. Indicated helium resources in natural gas with a helium content of less than 0.3% are estimated to be 200 Bcf. Approximately 139 Bcf, or 91%, of the domestic helium resources under Federal ownership are in the Riley Ridge area and the Church Buttes Field in Wyoming, and in the Cliffside Field in Texas.

Most of the domestic helium resources are in the midcontinent and Rocky Mountain regions of the United States. The measured helium reserves are in approximately 97 gasfields in 12 States. About 90% of these reserves are contained in the Hugoton Field in Kansas, Oklahoma, and Texas; the Keyes Field in Oklahoma; Cliffside and Panhandle Fields in Texas; and the Riley Ridge area in Wyoming. The Bureau of Mines analyzed a total of 224 natural gas samples from 22 States and one foreign country during 1987 in conjunction with a program to survey and identify possible new sources of helium.

TRANSPORTATION

All Grade-A gaseous helium sold by the Bureau of Mines was shipped in cylinders, special railway tank cars, or highway tube semitrailers. Liquid helium was shipped in dewars and semitrailers from the Exell helium plant. Private industrial gas distributors shipped helium as gas or liquid. Much of the private helium was transported in liquid form by semitrailers to distribution centers, where most of it was gasified and compressed into trailers and small cylinders for delivery to the end user.

PRICES

The Bureau of Mines price, f.o.b. plant, for Grade-A helium has been maintained at \$37.50 per Mcf since October 1, 1982, when it was raised from the \$35 per Mcf price established in 1961. The price for Grade-A helium from private producers is about \$37 per Mcf, which is approximately the same

as the Government price. The Bureau's trailer-load liquid helium price was \$45 per Mcf during all of 1987 with additional charges for container services and rent. The typical private industry price for liquid helium was also \$45 per Mcf gaseous equivalent plus surcharges.

Billion Holley or and

FOREIGN TRADE

Exports of Grade-A helium, all by private industry, increased by 14% in 1987 to 494 MMcf (table 7). Over 53% of the exported helium was shipped to Europe. Belgium-Luxembourg, France, and the United Kingdom, collectively, received more than 96% of the European helium imports. About 33% of the U.S. helium exports went to Asia; almost 4% each to North and South America; 3% to Australia and New Zealand; 1% each to Africa, Central America, and the Middle East; and less than 0.5% to the Caribbean. The shipments of large volumes of helium to Western Europe were attributed to the use of helium in cryogenic research and superconducting equipment. Significant volumes are also being used

in breathing mixtures for diving, welding, and as a lifting gas. Although no helium was imported in 1987, import tariffs on helium decreased 0.2% on January 1, 1987, to 3.7%. No further decreases in import tariffs are currently scheduled.

Table 7.—U.S. exports of Grade-A helium (Million cubic feet)

1983 1984 1985 1986	lume
1987	368 392 439 432 494

Source: Bureau of the Census.

WORLD REVIEW

World production of helium, excluding the United States, was estimated to be 125 MMcf, most of which was extracted in Poland. The remainder was attributed to

centrally planned economy countries, China, and India, which began producing helium in a small plant during 1986.

TECHNOLOGY:

Until recently, all superconductors required liquid helium (-452° F) to reach superconducting temperatures. Current research on superconductors has resulted in the discovery of superconducting materials that operate above liquid nitrogen temperatures (-320° F). These new superconductors have physical limitations such as brittleness and poor current-carrying capacity, which has limited their use in various superconducting applications. When these problems are solved, the new materials could replace liquid-helium-cooled superconductors and adversely affect the liquid helium market. Most helium suppliers estimate it will be 5 to 10 years before the new materials affect liquid helium demand.

Meanwhile, technology that utilizes liquid helium to produce superconducting tem-

peratures continues to be developed and operated. Liquid helium continues to be used at Fermi National Accelerator Laboratory for Tevatron/Tevatron 1, which is the world's first superconducting particle accelerator. The liquid-helium-cooled superconducting magnets used in this accelerator provide an intense and extremely steady magnetic field with only a fraction of the energy required by conventional electromagnets. The Tevatron is the highest energy particle accelerator in the world (1.6 trillion electron volts). In addition, DOE has already selected the magnets they propose to use in the superconducting supercollider (SSC). These magnets will be similar to those used at Fermi, which are liquid helium cooled, because they have been proven and tested in operation. When completed,

the SSC will have about 10 times the power of the Tevatron (20 trillion electron volts).

After a year of preliminary testing, researchers working at Oak Ridge National Laboratory attained full-current simultaneous operation of the six liquid-helium-cooled electromagnets supplied for the Large Coil Task. These six magnets each incorporate a slightly different design, which is being tested to determine the best configuration for the confinement of fusion systems for the production of clean nuclear energy. Although these magnets are the largest ever tested (8 tesla, or 160,000 times as strong as the Earth's magnetic field), they are only one-third to one-half the size of those needed for proposed fusion reactors.

The use of liquid helium in magnetic resonance imaging (MRI) continues to increase as the medical profession accepts and develops new uses for the equipment. This equipment is providing accurate diagnosis of problems where exploratory surgery has previously been required to determine problems. Another medical application being developed uses MRI to determine by blood analysis if a patient has any form of cancer.

Lifting gas applications are increasing. Many companies, in addition to Goodyear, are now using "blimps" for advertising. The Navy and Air Force are investigating the use of airships to provide early warning systems to detect low-flying cruise missiles. The Drug Enforcement Agency is using radar-equipped blimps to detect drug smugglers along the southern border of the United States. In addition, NASA is currently using helium-filled balloons to sample the atmosphere in Antarctica to determine what is depleting the ozone layer, which protects Earth from harmful ultraviolet radiation.

Helium is used in several Strategic Defense Initiative applications such as the antisatellite (ASAT) rocket, chemical laser,

and rail gun. The ASAT rocket uses liquidhelium-cooled infrared sensors for target location and guidance. Gaseous helium is used in the lasing gas mixture of the chemical laser, and liquid helium is used to provide cooling for the tracking telescope used by this weapon. The telescope is used to locate the target and thus focus the laser beam on the objective. High-pressure gaseous helium is used to provide the initial push that starts the projectile moving into the bore of the rail gun at a velocity of about 1,100 miles per hour. Electromagnetic energy applied along the bore of the rail gun accelerates the projectile to a final velocity of about 9,000 miles per hour. Superconducting magnetic energy storage (SMES) is also being investigated to provide power for laser systems. SMES allows the accumulation and storage of electrical energy over the long term (hours) and discharges it in minutes.

Other technologies that are evolving and require helium's unique properties are (1) metastable helium, which involves raising helium electrons to an excited state where energy is stored and then stabilizing the molecule in that state, (2) fiber-optic production, (3) helium-filled pillows used to simulate a precursor wave from a nuclear blast, (4) helium ions for tumor treatment, (5) liquid-helium-cooled microswitches called Josephson junctions, which are much faster than conventional semiconductors and use less power, (6) "aneutronic" nuclear fusion, where nuclear energy is produced from the reaction of deuterium with helium-3, producing few or no neutrons, is being investigated, and (7) new helium-breathing mixtures are being developed that enable deepsea divers to reach depths below 1,700 feet.

square inch absolute and 70° F.

¹Chemical engineer, Helium Field Operations, Amarillo, TX. ²All helium volumes herein reported at 14.7 pounds per

Iodine

By Phyllis Lyday¹

Three producers of crude iodine supplied less than one-half of domestic demand: the remainder was imported.

Domestic Data Coverage.—Domestic production data for iodine are developed by the Bureau of Mines from a voluntary survey of U.S. operations. Of the three operations to which a survey request was sent, two responded, representing an estimated 97% of the total production. Production data are withheld to avoid disclosing company proprietary data. Reported consumption of iodine decreased, and the number of plants reporting decreased from 24 to 22 plants.

Legislation and Government grams.-The National Defense Stockpile (NDS) contained 6.6 million pounds of crude iodine valued at \$53 million in inventory at yearend. The stockpile goal remained at 5.8 million pounds.

The National Defense Authorization Act. 1987 (Public Law 99-661), which included policy changes affecting the NDS, was

signed into law by the President in November 1986. Among the law's mandates was the requirement that a new position of NDS Stockpile Manager he

created in early 1987. NDS disposals were to be contingent on purchases, requiring incoming and outgoing transactions to balance. The law authorized disposal of 800,000 pounds of iodine, which was completed by April 30, 1987, at a value of \$4.9 million. A report describing total mobilization of the U.S. economy for a conventional global war of 3 years' duration was to be prepared by the Secretary of Defense no later than January 31, 1987.

The Food and Drug Administration continued to list Red No. 3 dye, erythrosine, on the provisional list of color additives. Red No. 3 contains 58% iodine by weight and has a grapelike color used in carbonated soft drinks, powdered drinks, gelatin desserts, icings, and pet foods.

DOMESTIC PRODUCTION

IoChem Corp. announced in June the purchase of 4,000 acres of leases in Dewey County, OK. About 2,800 acres of the leases were purchased from Ethyl Corp. of Richmond, VA. On October 1, 1987, IoChem opened an iodine plant with nameplate capacity of 1 million pounds per year 2 miles east of Vici, OK, and began production by the blowing-out process. The source of iodine was underground brines of the Morrowan Formation of Pennsylvanian Age, 10,000 feet beneath the surface. The plant employed 25 people, 20 of whom were hired locally. IoChem markets the iodine to Schering AG, Federal Republic of Germany, for use in radiopaque media.

North American Brine Resources operated two miniplants at Dover and Hennessev in Kingfisher County, OK. The plants were at oilfield reinjection disposal sites where iodine concentrations ranged up to 1,200 parts per million (ppm). Iodine of 95% purity was produced. North American was a joint venture among Beard Oil Co., 40%; Godoe USA Inc., a wholly owned subsidiary of United Resources Industry Co., 50%; and Inorgchem Development Inc., a wholly owned subsidiary of Mitsui & Co. Ltd. (United States), 10%.

Woodward Iodine Corp., a subsidiary of Asahi Glass Co. of Japan, produced iodine from brines using the blowing-out process.

Production of iodine was from underground brines at Woodard, OK, from the Morrowan Formation, 7,500 feet beneath the surface. The iodine concentration averaged 300 ppm. Plant capacity was reported at 2 million pounds per year of iodine of greater than 99.8% purity.

CONSUMPTION AND USES

Uses of iodine were in animal feed supplements, catalysts, inks and colorants, pharmaceuticals, photographic equipment, sanitary and industrial disinfectants, stabilizers, and other uses. Other uses included production of high-purity metals, motor fuels, iodized salt, smog inhibitors, and lubricants. Iodine also had application in cloud seeding and radiopaque diagnosis in medicine.

The Food and Drug Administration Compliance Policy Guides, chapter 25, on animal drugs, recommended limits for iodine. Ethylenediamine dihydroiodide incorporated into animal feeds was limited to 10 milligrams per head per day.

The U.S. International Trade Commission (ITC) publication, "Synthetic Organic Chemicals, 1986" reported that roentgenographic contrast media, sodium diatrizoate and meglumine iothalamate, were produced and contained between 47% and 60% iodine

by weight.

The ITC reported in "Synthetic Organic Chemicals, 1986" that 304,000 pounds of Red No. 3 dye was sold at a value of \$4.5 million. The four companies reporting production were H. Kohnstamm & Co. Inc., McCormick & Co. Inc., Sterling Drug Inc., and Warner-Jenkinson Co.

Domestic demand for hydriodic acid was about 400,000 pounds per year, of which approximately 70% was used in sanitizers and disinfectants. Between 10% and 15% of consumption was used in pharmaceuticals.

Ethyl Corp. was the first domestic producer of synthetic alcohols for detergents using the modified Ziegler process, which uses an iodine catalyst. This process allows Ethyl to produce those alcohols where market demand is greatest. The alcohols are useful for solid and liquid detergents for household and industrial applications.²

Table 1.-U.S. consumption of crude iodine, by product

	1	986	1	.987
Product	Number of plants	Consump- tion (thousand pounds)	Number of plants	Consumption (thousand pounds)
Conumption, reported:				
Resublimed iodine	6	154	5	104
Potassium iodide	7	1,046	6	573
Sodium iodide	7	136	6	342
Other inorganic compounds	17	1,245	9	927
Ethylenediamine dihydroiodide	4	1,016	3	472
Other organic compounds	15	1,538	13	1,590
Total	¹ 24	² 5,136	122	4,008
Consumption, apparent	xx	W	XX	W

W Withheld to avoid disclosing company proprietary data. XX Not applicable.

PRICES

The average declared c.i.f. value for imported crude iodine was \$6.92 per pound. The average declared c.i.f. value for imported crude iodine from Japan averaged \$7.08 per pound. The average declared c.i.f. value for iodine imported from Chile was \$6.80

per pound. General Services Administration releases of iodine during the year had an average value of \$6.14 per pound.

Quoted yearend U.S. prices for iodine and its primary compounds were as follows:

¹Nonadditive total because some plants produce more than one product.

²Data do not add to total shown because of independent rounding.

Table 2.—Yearend 1987 published prices of elemental iodine and selected compounds

	Per p	ound
Calcium iodate, FCC drums, f.o.b. works Calcium iodide, 50-kilogram drums, f.o.b.		\$5.50
works	\$10.73-	
Iodine, crude, drums Iodoform, N.F., 300-pound drums, f.o.b.	7.94-	8.16
worksPotassium iodide, U.S.P., drums, 5,000-		24.00
pound lots, delivered Resublimed iodine, U.S.P., granular, 100-		9.15
pound drums, works	14.21-	14.59
Sodium iodide, U.S.P., crystals, 5,000 pound lots, drums, freight equalized		10.15

¹Conditions of final preparation, transportation, quantities, and qualities not stated are subject to negotiations and/or somewhat different price quotations.

Source: Chemical Marketing Reporter. V. 232, No. 26, Dec. 25, 1987, pp. 29-35.

FOREIGN TRADE

The U.S. Department of the Treasury continued charging duty on iodine of 99.9% or greater purity, which included resublimed iodine and some iodine classified as crude before 1984. The duty for resublimed iodine was 6 cents per pound. The U.S. Government anticipated adoption of the Harmonized Commodity Description and Coding System (Harmonized System) as the

basis for its export and import tariff and statistical classification systems. The system is intended for multinational use as a basis for classifying commodities in international trade for tariff, statistical, and transportation purposes. The Harmonized System as proposed includes resublimed and crude iodine under the same code, and the duty rate is free.

Table 3.—U.S. imports for consumption of crude iodine, by type and country

(Thousand pounds and thousand dollars)

Type and country	19	86	19	87
Type and country	Quantity	Value ¹	Quantity	Value
lodine, crude:				
Canada			· (2)	
Chile	1,383	7,622	1,423	9,669
Japan	1,645	9,576	1,119	7,921
Total ³	3,028	17,199	2,542	17,595
lodine, potassium:				
Belgium	(2)	3	5	16
Brazil	ź	10	J	10
Canada	<u>-</u>	37		
Germany, Federal Republic of	(2)	3	50	29
India	Š Ó	279	76	496
italy	4	5		100
Japan	17	111	$-\overline{2}$	18
Switzerland	(²)	1	_	
United Kingdom	`ź	42	$-\overline{2}$	56
Total ³	82	492	135	615
odine, resublimed:				
Finland			(2)	1
Germany, Federal Republic of	(2)	8		
Japan	2,654	15,530	4.388	30,992
Sweden	2	24	(2)	1
Total	2,656	15,562	4,388	30,994
			-,,,,,,	
Grand total	5,766	33,253	7,065	49,204

¹Declared c.i.f. valuation.

Source: Bureau of the Census.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

WORLD REVIEW

Chile.—Sociedad Química y Minera de Chile (SOQUIMICH), the only producer of iodine in Chile, was created in 1968; 62.5% of its capital came from the Anglo Lautara Nitrate Co., with the remaining 37.5% share belonging to Corporación de Fomento de la Producción (CORFO), a Governmentowned corporation. In 1971, CORFO became the sole owner of SOQUIMICH. In 1983, CORFO began selling SOQUIMICH shares to the private sector; by September 30, 1987, CORFO had reduced its ownership to 18% of the company.

The Maria Elena and Pedro de Valdivia plants produced sodium nitrate, potassium nitrate, sodium sulfate, and iodine. From each 2,000 pounds of caliche ore mined, 75 pounds of crude iodine was produced. The company anticipated increasing exports of iodine by 33% over the next year. Chile produces more than 6.6 million pounds of crude iodine each year with a minimum purity of 99.5% iodine.³

Indonesia.—State enterprises, Indonesian private enterprises, and cooperatives, as well as private Indonesian citizens, can mine vital minerals, which include iodine. Foreign firms may only participate in mining these minerals as a contractor to the Government or as a minority participant in a domestic company. Foreign companies can engage in exploration activities through private Indonesian permit holders.⁴ The only producer of crude iodine was the state-owned pharmaceutical firm, P. T. Kimia Farma at Watudakon near Mojokerto, East Java. Iodine occurs with trace amounts of bromine in brines associated with oil.

Japan.—Production of iodine was from subterranean brines from various strata buried with natural gas. Japan led the world in the production of iodine in 1987. Production was 76% of capacity during 1986.

Nihon Tennen Gas Kogyo Co. Ltd. produced iodine from underground brine on the Boso Peninsula, Chiba. Iodine occurs in concentrations of approximately 100 ppm at depths between 2,300 and 6,600 feet in the Kuzusa Group. Nihon was the pioneer in 1963 of the ion-exchange resin process for extracting iodine. Current recovery is more than 90% of contained iodine using sulfurous acid as the eluant. Iodine is produced at three locations by the sloping-fluidizedbed method. There are two sets of beds at the Koji factory, three sets of beds at the Kokoshiba factory, and one set of beds at the Narashino factory. Ten sets of fixed-bed absorbers are at the Chiba factory with the elusion and refining equipment. The fixedbed reactor requires filtration before absorption, high pumping rates, and more workers to operate it. The sloping fluidized bed does not require filtration before adsorption, is easily scaled up, and requires less employees and electric power consumption. The ion-exchange process can maintain good economics at rates of 1 million gallons per day. The blowing-out process is economical at rates of 5 million gallons or higher per day.

U.S.S.R.—At the Neftechala iodine-bromine plant in Azerbaidzhan, construction was reported completed of the first stage of renovation. At the Nebit-Dag iodine-bromine plant in Turkmens S.S.R. (Turkmenistan), an experimental facility was planned from 1986 through 1990 to study the extraction of coproducts of boron, calcium, magnesium, and sodium from the brines. It was reported that the brines contain 250 ppm of these various elements.

Table 4.—Crude iodine: World production, by country¹

(Thousand pounds)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Chile	6,158 1,000 55 16,034 4,400 W	5,866 1,000 55 16,098 4,400 W	6,658 1,000 29 15,986 4,400 W	6,781 1,000 13 16,290 4,400 W	6,600 1,000 13 15,900 4,400 W
 Total ³	27,647	27,419	28,073	28,484	27,913

eEstimated. Preliminary. W Withheld to avoid disclosing company proprietary data.

¹Table includes data available through June 17, 1988.

In addition to the countries listed, New Zealand also produces elemental iodine, but production data are not available, and available information is inadequate to make reliable estimates of output levels.

³Excludes U.S. production.

469 IODINE

TECHNOLOGY

Iodine at low concentrations leaches gold. Although an expensive element, iodine can be regenerated by a simple ion-exchange technique after leaching gold. Iodine penetrates rock particles, does not complex iron, and attacks sulfides weakly. Used for gold dissolution, iodine forms the most stable gold complexes of all the halogens.5

Polyacetylene with iodine has conductivities approaching those of metals. After modification of the catalyst, conductivities better than copper or silver were obtained on a weight basis. Electrically conductive polymers in rechargeable polymer batteries were first demonstrated in 1986 by Badische Anilin & Soda-Fabrik AG (BASF), Federal Republic of Germany. Conductive polymers could be used as magnetic screening to protect from radiation. The polypyrrole electrodes have an advantage in that they can be formed in a variety of shapes, making possible the development of novel types of batteries for electronics. The capacities of these systems are equivalent to nickelcadmium batteries. Advantages of these new iodine-containing materials over conventional materials are that they are not

affected by superficial mechanical damage, offer resistance in corrosive and abrasive environments, and can be miniaturized.6

Chlorine and iodine were investigated as useful pathfinders for mineralization. The results of published case studies indicate that these halogens form broad dispersion patterns in rocks and soils around many types of mineral deposits. Cold water extraction of chlorine and iodine concentrations were used to detect anomalies associated with mineralization.7

¹Physical scientist, Branch of Industrial Minerals.

²Weismantel, G. The Soap and Detergent Industry is the Universal Chemical. Market Place for Both Organic and Inorganic Compounds. Chem. Week, Spec. Adver. Sec., v. 138, No. 4, 1986, 14 pp.

³Chemical Marketing Reporter. Chilean Nitrate Foresees Easing in Tight Iodine Mart. V. 233, No. 16, 1988,

pp. 5, 28. ⁴U.S. Embassy, Jakarta, Indonesia. Indonesia's Non-Oil Mineral Sector. State Dep. Airgram A-006, Feb. 4, 1988,

Nineral Sector: State Dep. Arigiam Avov, 1et. 4, 1804, 52 pp.

52 pp.

5von Michaelis, H. The Prospects for Alternative Leach Reagents—Can Precious Metals Producers Get Along Without Cyanide? Min. Eng., v. 188, No. 6, 1987, p. 47.

6European Chemical News Specialty Chemical Supplement. Electrically Conductive Polymers Poised for Market

Debut. Jan. 1988, pp. 32, 35-36.

⁷Fuge, R., M. J. Andrews, and C. C. Johnson. Chlorine and Iodine, Potential Pathfinder Elements in Exploration Geochemistry. Appl. Geochem., v. 1, 1986, pp. 111-116.

Iron Ore

By Peter H. Kuck¹

The fortunes of the domestic iron ore industry made a turn for the better in 1987. First, USX Corp. and the United Steelworkers of America (USWA) settled their 184day labor dispute in February. Second, there was a growth in overall demand for steel products during the fall. Mine shipments of agglomerates and ore rose to 47 million tons2 from a depressed level of 39 million tons in 1986. Yearend stocks of ore and agglomerates at U.S. furnace yards were at their lowest levels in more than three decades. The restructuring and recapitalization of the iron ore industry in the United States and Canada, begun in 1986, continued. For the first time in 9 years, the U.S. industry did not close or indefinitely idle any of its pelletizing operations. Installed pelletizing capacity was 75 million tons, down from 90 million tons in 1980a pivotal year for the industry.

Significant strides were made in lowering operating costs and improving productivity. New labor contracts were signed at most of the mining complexes in the Lake Superior district. The USWA agreed to wage freezes or cuts in exchange for increased job security and participation in future profit sharing. Improved demand led to increased utilization of effective pelletizing capacity, which also helped to lower unit costs. Several pelletizing plants began producing fluxed pellets in addition to the traditional acid pellets. Although more expensive to produce, the fluxed pellets help to reduce operating costs at the blast furnace by lowering coke consumption, increasing the rate of the smelting reaction, increasing the life of the refractory lining of the furnace, and improving the reliability and stability

Table 1.—Salient iron ore statistics
(Thousand long tons and thousand dollars unless otherwise specified)

	1983	1984	1985	1986	1987
United States:	-				
Iron ore (usable, less than 5% manganese):			,		
Production	37,562	51,269	48,751	r38,862	46.817
Shipments	44,596	50,883	49,411	41,327	47,140
Value	\$1,944,988	\$2,247,686	\$2,076,730	\$1,472,511	\$1,503,087
Average value at mines					
dollars per ton	\$43.61	\$44.17	\$42.03	\$35.63	\$31.88
Exports	3.781	4.993	5,033	4,482	5.013
Value	\$182,744	\$239,257	\$240,557	\$204,738	\$198,254
Imports for consumption	13.246	17.187	15,771	16.743	16,58
Value	\$445,731				
		\$529,065	\$452,267	\$460,643	\$408,783
Consumption (iron ore and agglomerates) _ Stocks, Dec. 31:	70,629	72,514	70,575	61,116	66,698
	4 100	F 00F			
At mines ²	4,122	5,265	5,951	3,255	2,261
At consuming plants	25,494	24,017	21,290	17,163	16,304
At U.S. docks	3,174	2,942	2,404	1.987	2.024
Manganiferous iron ore (5% to 35%	•		•	,	,
manganese): Shipments	30	79	18	13	W
World: Production	^r 728,247	r _{822,824}	844,738	P854,726	e869,127

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

¹Direct-shipping ore, concentrates, agglomerates, and byproduct ore.

²Excludes byproduct ore. These stocks are not comparable to those of previous years owing to the reclassification of some stocks from the usable to the byproduct category.

Figure 1.—U.S. iron ore production and imports for consumption.

of the furnace operation. The weakening of the U.S. dollar against the Japanese yen and several European currencies helped to improve pellet demand by slowing imports of finished steel into the United States and encouraged domestic hot metal production. The improvements in domestic mining and pelletizing productivity made it more difficult for foreign producers to sell pellets in the Great Lakes and Ohio River Valley regions. Because of reduced production costs, the U.S. Lower Lakes list price had dropped dramatically since 1984 and was much closer to the prevailing Rotterdam spot pellet price.

Consumption and trade of iron ore improved slightly in the rest of the world. Nonetheless, excess capacity to produce lump ore and sinter fines continued to overhang the international market. World prices for lump and fines continued their downward trend from 1982. Demand for pellets, in contrast, tightened somewhat. Cutbacks in demand for ore from Japan were offset by the expansion of hot-metal operations in Indonesia, the Republic of Korea, and other newly industrialized countries. Imports into the 12-member European

Communities (EC) had been relatively constant since 1984 and totaled about 119 million tons in 1987. Ocean freight rates rose from the depressed levels of 1986, giving exporters like Brazil, with ports closer to Western Europe, an advantage over more distant exporters like Australia.

Domestic Data Coverage.—U.S. production data for iron ore are developed by the Bureau of Mines from three separate voluntary surveys of domestic operations. The annual "Iron Ore" survey (1066-A) provides the basic data used in this report. Of 33 addressees to whom the 1066-A form was sent, 32 responded, representing 99.98% of the total production shown in tables 1 through 4. Production for nonrespondents to the annual survey can be estimated from monthly surveys (1066-M), from railroad reports, or from reported production levels in prior years. This information may be supplemented by employment data, mineinspection reports, and information from consumers. Consumption data were mostly provided by the annual "Blast Furnace and Steel Furnace" survey (1067-A). Data coverage for this survey is reported in the "Iron and Steel" chapter.

EMPLOYMENT

Statistics on employment and productivity in the U.S. iron ore industry in 1987, shown in table 2, were derived from quarterly employment data supplied by the Mine Safety and Health Administration (MSHA) of the U.S. Department of Labor and from production data derived from Bureau of Mines surveys. Both sets of data were obtained from producers' reports.

The statistics include production workers employed at mines, concentrators, and pelletizing plants, and in repair and maintenance shops, but do not include 693 persons engaged in management, research, or office work at mines and plants. Employees engaged in ore preparation, such as sintering,

at blast furnace sites are not included. An additional 234 individuals were engaged in the secondary beneficiation of iron ore for heavy media and other nonsteel uses.

Because employment data reported to MSHA are primarily for safety analysis, hours spent by salaried employees in mines or plants may be included by operators in the total number of hours worked at individual mines or plants. This has resulted in understatement of calculated productivity by 10% to 25% for some operations, but its effect on others is not known. If company reporting practice is consistent, however, comparison of productivity from one year to the next should be reasonably valid.

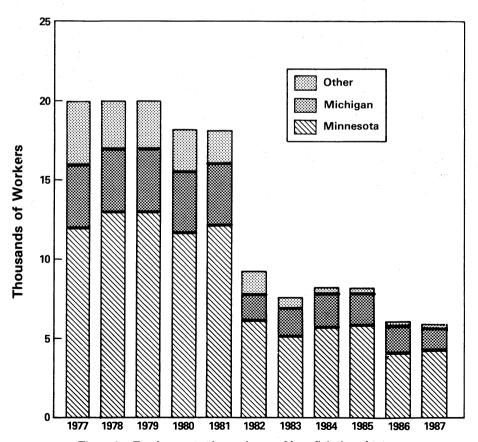


Figure 2.—Employment at iron mines and beneficiating plants.

Average quarterly employment was 4% lower than that of 1986, but total hours worked were slightly higher. At the same time, the output of usable ore jumped by 20% to meet increased pellet demand from domestic steel producers. The increase in demand enabled the iron ore industry to more fully utilize its effective pelletizing capacity and achieve economies of scale. The increase also came during a period when significant improvements were being made in productivity and cost reduction. In the Lake Superior district, which accounts for the bulk of U.S. output, average productivity for usable ore was 21% higher than that of 1986 and 86% higher than that of 1981. The significant gain since 1981 is primarily the result of drastic reductions in employment in 1982 and 1986 made by the principal producers, who were being battered by plummeting demand for domestic steel and a high level of steel imports. The two contractions have reduced installed pelletizing capacity by 19%. In 1987, pellet supply was more closely balanced with demand. For the first time in 9 years, the U.S. iron ore industry escaped permanently closing or indefinitely idling a pelletizing plant. As a result, U.S. production was concentrated in just eight large-scale taconite operations in the Lake Superior district.

The contraction of the iron mining and steel industries also led to an older work force, since younger workers traditionally have been laid off first. In the steel industry, the average age has edged up to about 44 from 40.6 in 1979.3 In comparison, the average age of the employees at the revitalized Divrigi operations in Turkey is only

DOMESTIC PRODUCTION

USX labor settlement and strengthening of demand from the iron and steel industry were largely responsible for the 20% increase in iron ore production from the 1986 level of 38.86 million tons. The increase neutralized the downturn suffered by the domestic iron ore industry in 1986. Shipments of ore and agglomerates had dropped 16% between 1985 and 1986, putting several already financially troubled mine owners in a difficult position. Fortunately, the iron ore industry was able to turn around the situation in 1987 by reducing costs, recapitalizing, and improving pellet quality. A 12% increase in demand from Canada also helped. Total output of usable ore was equivalent to about 55% of installed production capacity on January 1.

An upturn in U.S. blast furnace activity during the fall offset a disappointing first quarter for the mine owners. Production of usable ore in the first half of the year was 10% lower than that in the comparable period of 1986. Similar declines occurred for mine shipments (14%) and pig iron production (10%). However, the monthly output of pig iron jumped from 2.74 to 3.47 million tons between February and March and kept growing for the rest of the year. In the end, 1987 pig iron production was 10% greater than that of 1986. The increase in pig iron output and the accompanying increase in demand for ore and agglomerates resulted from the resumption of iron and steelmaking by USX and the strengthening of overall demand for steel products in the fourth quarter. Secondary factors contributing to

the turnaround were rising scrap prices; weakening of the U.S. dollar against the Japanese yen and major European currencies, which made the importation of some steels less attractive; rebuilding of inventories of finished steel that were depleted during the USX dispute; and increased exports of machinery and other goods fabricated from steel.

Iron ore was produced by 18 open pits and 1 underground mine. Twelve mines produced ore for the iron and steel industry, but only seven mines operated for the full 12 months. One taconite mine and its associated pelletizing plant remained idle throughout the year and another was being liquidated. Installed production capacity for usable ore at yearend was estimated at 84 million tons per year, including 75 million tons of capacity for pellets. Effective production capacity for pellets was at least 17 million tons less than installed capacity. Only four of the nine active pelletizing plants utilized more than 85% of their installed capacities.

An average of 3.1 tons of crude ore was mined in 1987 for each ton of usable ore produced. This ratio does not take into account the tonnage of waste rock or overburden removed. The ratio of total materials mined to usable ore produced was probably greater than 5 to 1. Low-grade ores of the taconite type mined in Michigan and Minnesota accounted for 99% of total crude ore production. U.S. production of pellets totaled 45.11 million tons, 96% of usable ore output. The average iron content of usable

ore produced was 64.2%.

The iron ore industry of the United States and Canada underwent a major restructuring in 1986 aimed at lowering operating costs and improving competitiveness. Many of the organizational changes were still being implemented in 1987. A few companies, like Cleveland Cliffs Inc. (CCI), even initiated new restructuring and recapitalization programs. However, the bankruptcy filings of LTV Steel Co. Inc. and the Wheeling-Pittsburgh Steel Corp. made it difficult for their venture partners to refinance and modernize jointly owned operations.

CCI acquired its long-time competitor, Pickands Mather & Co., from Moore McCormack Resources Inc. on December 30, 1986. As a result of this acquisition, CCI is now responsible for more than 40% of pellet production capacity in North America. A new subsidiary, Cliffs Mining Co., was established to manage both Cleveland-Cliffs Iron Co. and Pickands Mather. At the beginning of 1987, CCI had equity in six iron mining operations, one of which was idle. The active operations included the Tilden Mining Co. (39%) and the Empire Iron Mining Partnership (5%), both of Michigan; the Hibbing Taconite Co. of Minnesota (15%); Wabush Mines of Labrador and Quebec (5.2%); and the Savage River Mines of Tasmania (36%). Pickands Mather also continued to manage the Erie Mining Co. of Minnesota for LTV Steel. The integration of Pickands Mather and the refocusing of CCI on its core iron ore business triggered a string of events that led to a restructuring and recapitalization of the amalgamated company. The management of CCI abandoned its earlier diversification strategy and began selling or spinning off its peripheral operations.

On April 17, Sharon Steel Corp. filed for protection under chapter 11 of the Federal Bankruptcy Code, adding to the complexity of the financial problems faced by CCI. Sharon Steel's filing put Tilden, which was operated and partly owned by Cleveland-Cliffs Iron, in a precarious situation. At the time of the filing, two of the four other partners in the Upper Peninsula venture-LTV Steel and Wheeling-Pittsburgh-were already involved in bankruptcy proceedings. Ownership in the mining complex was shared between Cleveland-Cliffs Iron, 39% equity; The Algoma Steel Corp. Ltd., 30%; LTV Steel, 12%; Stelco Inc., 10%; Sharon Steel. 5%; and Wheeling-Pittsburgh, 4%. However, Cleveland-Cliffs Iron had been absorbing the carrying cost of LTV Steel's interest since July 1986 when LTV Steel filed under chapter 11. Wheeling-Pittsburgh had been in technical default since April 1985.

On September 30, CCI bought back \$126.4 million of Tilden long-term debt obligations from eight institutional lenders. The company purchased the notes for \$106.0 million, a discount of \$20.4 million, using \$62.4 million obtained from the sale of 4 million shares of common stock and \$43.6 million in cash. The transaction eliminated principal and interest payments of nearly \$30 million per year for Cleveland-Cliffs Iron, and removed the threat of debt acceleration that was overhanging the Tilden partnership. As a result of the debt restructuring, CCI held a total of \$52.6 million of Tilden notes backed by LTV Steel, Sharon Steel, and Wheeling-Pittsburgh.

The three solvent partners also began exploring ways of making Tilden more competitive. One proposal recommended that the beneficiation equipment at Tilden be converted to handle magnetite feed instead of hematite. The more easily processed magnetite ore would come from reserves at Schoolhouse Lake, just north of the existing pit. Magnetic separation techniques would drastically reduce the operation's concentrating costs, but the development of the new pit and conversion of the equipment would cost \$25 million. A second proposal called for a 50% reduction in pellet production capacity from the existing 8.0 million tons per year. The partnership was still evaluating the two proposals at yearend, but was expected to approve both in early 1988.

On August 14, Cleveland-Cliffs Iron signed a letter of intent to sell its Presque Isle powerplant and related coal-handling facilities at Marquette, MI, to Wisconsin Electric Power Co. for \$247.5 million. The 592megawatt coal-fired plant supplied all of the electrical power required by both Empire and Tilden. At the time of the announcement, Cliffs had a 93% interest in the Upper Peninsula Generating Co., which in turn owned the plant. The remaining 7% was held by the Upper Peninsula Power Co. of Houghton, which operated the plant for the iron ore company. The sale of the Presque Isle plant to Wisconsin Electric was completed on December 30. The Milwaukeebased utility continued to serve the two taconite mines from Presque Isle under new

long-term contracts, but could send any excess power through the existing grid to other customers. The transaction significantly reduced energy costs for the two mines.

On January 31, 46 of 47 locals of the USWA overwhelmingly ratified a new 4vear contract with USX. The vote ended a labor dispute that had shut down the company's entire USS Div. for 184 days. This was the longest work stoppage in the history of the domestic steel industry. Local 1938, made up of 1.300 workers at USX's Minntac Mine and pelletizing plant in Mountain Iron, MN, was the only bargaining unit to reject the agreement. The record-breaking labor dispute began August 1, 1986, when the previous contract expired and negotiators were unable to reach an agreement on either wages or the use of nonunion contractors. Analysts estimate that the work stoppage cost USX \$3 billion in orders. The new contract permitted USX to eliminate 1,346 jobs through craft combinations and work-rule changes. The union also agreed to wage and benefit concessions that equated to at least a 7% savings for USX over the life of the contract.

Ratification enabled USX, the Nation's largest steelmaker, to proceed with its corporate restructuring program and to reduce its annual steelmaking capacity by about 27% to 19 million short tons. Management warned the USWA prior to the stoppage that USX was considering closing several facilities to increase its competitiveness. The restructuring led to the closure and eventual sale of the Geneva Works near Provo, UT. Two other steelmaking facilities were idled indefinitely, together with the sinter plant at Saxonburg, PA. The restructuring trimmed about 3,700 employees from the steel group's 22,000-plus payroll.

Operations were resumed at Minntac on May 17. However, USX management cut back the production rate to 9.2 million tons of pellets per year from the previous level of 12.5 million tons. The production cutback was dictated in part by the shutdown of Geneva. Geneva had been a major user of Minntac pellets since 1983 when the company closed its last western mine at Atlantic City, WY. Although the labor dispute was settled in January, USX management decided to keep the mining complex closed for an additional 3-1/2 months until excess pellet stocks at the remaining reopened blast furnaces were drawn down to satisfactory levels. Only four of the grate-kiln lines

at the Minntac pelletizing plant were restarted. The facility has a total of 7 grate-kiln lines with an aggregate design capacity of 18.5 million tons. The Minnesota division recalled about 200 salaried and 950 hourly employees, less than two-thirds of its 1985 staff, to meet the reduced production target. Minntac remained the largest taconite operation on the Mesabi Range, despite the cutbacks.

On September 1, Basic Manufacturing and Technologies of Utah Inc. purchased Geneva, the only integrated steel plant operation west of the Mississippi, from USX for an undisclosed sum. It was renamed Geneva Steel of Utah and initially employed 872 steelworkers and about 200 managerial and clerical people, down from a combined total of more than 2,100 in 1986. The plant's principal products were plate, hotrolled coil, and welded pipe. Minntac was continuing to provide acid pellets for the two blast furnaces at Geneva as part of the purchase agreement.

Mining was resumed in the Iron Springs mining district of Iron County to provide feed for the sinter plant.5 Plus 3/8-inch coarse ore and minus 3/8-inch fines averaging 56% iron (Fe) were being transported 230 miles on the Union Pacific Railroad to Geneva. The actual mining was contracted out to the Gilbert Development Corp. Runof-mine ore was being crushed and screened at the Comstock Mine, a property leased by Geneva from CF&I Steel Corp. of Pueblo, CO. Gilbert Development was also producing its own magnetically cobbed material from stockpiled ore at the Mountain Iron Mine, 4 miles to the southwest. The Mountain Iron property was leased directly by Gilbert Development from CF&I. The district, 15 miles west of Cedar City, has provided magnetite and hematite ores for blast furnaces in the Rocky Mountain region on an intermittent basis since 1923.

Initial efforts by Armco Inc. and the State of Minnesota to reopen the bankrupt Reserve Mining Co. were unsuccessful. On January 9, the court-appointed trustee for Reserve announced that the company's Peter Mitchell Mine at Babbitt and the E. W. Davis pelletizing plant at the nearby port of Silver Bay would be permanently closed. The two operations had been on standby for more than 6 months as a result of the chapter 11 bankruptcy filing of LTV Corp. Armco, LTV's partner in the joint venture, could not carry the entire cost of operating Reserve by itself and suspended production

on July 21, 1986, 4 days after LTV's filing. Armco was unable to attract a new partner and was forced to place Reserve in chapter 11 bankruptcy on August 7, 1986.

Under the closure agreement, most of Reserve's 800 laid-off employees became eligible for pension and limited health insurance benefits. A new pension fund was to be established with \$650,000 from the sale of stockpiled pellets, 10% of the profits from selling part of Reserve's assets, and 15% of the \$16 million owed Reserve by the State of Minnesota for an occupation tax overcharge. The Pension Benefit Guaranty Corp., an agency of the Federal Government, would guarantee the basic benefits in Reserve's existing plans if it found them underfunded. Parts of the pelletizing plant and equipment were being maintained in a standby mode in the hope of eventually finding a buyer. The USWA locals also ended their blockade of the plant entrances as part of the agreement. Union officials set up the blockade September 1, 1986, in order to prevent the trustees from selling any of Reserve's equipment or stockpiled pellets until health benefits were restored to the employees. The entire agreement was being reviewed by a Federal bankruptcy judge in New York City. On January 22, the Governor of Minnesota approved a \$25,000 study to determine whether reopening Reserve under new management would be economically possible.

In a related action on January 27, the Minnesota Pollution Control Agency Board approved Reserve's request to reduce the number of its environmental monitoring sites at the Milepost 7 tailings basin northwest of Silver Bay. The concentration of airborne, asbestos-like, silicate fibers had dropped dramatically since the company shut down its pelletizing plant and halted the flow of taconite tailings into the basin. The monitoring program would be reevaluated periodically by the State to ensure that the air and water quality of the basin area did not deteriorate. If Reserve remained closed, an estimated \$57 million would have to be spent to decommission the sprawling tailings basin.

In September, the trustee for Reserve decided to release all of the pellets left in the Silver Bay stockpile. A total of 164,991 tons had been sitting at the port since the 1986 shutdown. All of this material was taken by LTV Steel in early October. An additional 17,762 tons of pellets was recovered during cleanup operations and shipped

out in November. Since then, the State of Minnesota established an interagency task force to explore the possibility of reopening both the mine and the pelletizing plant. Armco expressed a willingness to buy up to 900,000 tons of pellets annually from a successfully restructured operation, but many roadblocks to reopening remained. The recent sale of one-half of the flotation cells and other equipment considered excess by the trustee reduced the effective annual production capacity of the pelletizing plant from 6 million tons to 4 million tons. When Reserve went into production in August 1955, it had a design capacity of 3.75 million tons. However, improvements made between 1957 and 1966 raised the design capacity in steps to about 9.8 million tons.

Minnesota produced 72% of the national output of usable ore in 1987. Production of pellets totaled 32.15 million tons, equivalent to about 62% of installed production capacity of the State's six active taconite plants. The remainder of the output consisted of hematite concentrates produced from natural ores by LTV Steel and Rhude & Fryberger Inc.

A total of seven taconite plants were operable in 1987, but one—the E. W. Davis Works at Silver Bay—was left idle throughout the year by the bankruptcy filings of LTV and Reserve. An eighth, the Butler Taconite facility near Nashwauk, was being dismantled by Investment Recovery Systems Inc. Butler's former operator, M. A. Hanna Co., shipped the last 125,000 tons of pellets left in the defunct operation's stockpiles at the port of Superior.

All of LTV's natural ore production came from its McKinley Extension Mine north of Aurora. In July, Rhude & Fryberger stopped processing ore at its Rana Mine on the outskirts of Kinney and suspended all shipments indefinitely on October 31. The company had already halted operations at its Plummer-Diamond property in 1986. The Pittsburgh Pacific Co. shipped only 90 tons of concentrates recovered from natural ores stockpiled at the Connie Mine and permanently closed the last of its eight beneficiating operations on the Mesabi Range. The two closures left LTV the only active supplier of beneficiated natural ore in the Lake Superior district.

National Steel Pellet Co. (NSPC) was operated from January 1 to June 7 and from August 2 to December 31, producing 4.31 million tons of pellets. As the result of improvements in productivity, the Keewa-

tin Mine and pelletizing plant now has an effective annual pellet production capacity of 4.7 million tons.

On November 14, rank-and-file employees at the complex ratified a new 21-month contract, narrowly averting a strike. The new contract, which expires August 1, 1989, froze wages and reduced Sunday premium pay from time-and-one-half to time-and-onequarter. Vacation pay was also cut. In exchange for the concessions, hourly workers became eligible for a profit-sharing plan tied to the profits of the parent company, National Steel Corp. In addition, pension benefits were improved and new limits were placed on outside contracting. The 370 employees, represented by USWA Local 2660, had been without a contract since July 31, 1986, when contracts for all six taconite operations on the Mesabi Range expired. Four of the six mines had negotiated new contracts that reduced or froze wages and benefits prior to the NSPC settlement. At yearend, LTV Steel Mining Co. was the only operation left on the Mesabi Range that was operating without a contract.

At the time of the labor settlement, both NSPC and Eveleth Mines were negotiating with the Minnesota Power and Development Co. for a reduction in long-term electric power rates. In recent years, power has accounted for about 27% of NSPC's production costs. Under its existing 10-year contract, NSPC was obligated to pay the cost of having a minimum amount of electrical capacity on hand, regardless of usage. All of the taconite companies on the Mesabi Range signed such long-term take-or-pay contracts in the 1970's to avoid building their own generating plants. However, these contracts worked against NSPC and the others when they were forced to shut down for extended periods during the recent recession.

The Erie Mining Co. was renamed LTV Steel Mining Co. in February. The name change eliminated some of the confusion generated by a complex exchange of equity interests in May 1986. At that time, LTV Steel, Bethlehem Steel Corp., Stelco, and Acme Steel Co. (then Interlake Inc.) traded holdings in Erie and two other iron mines. As part of the agreement, LTV Steel relinquished its interests in both the Hibbing Taconite Co. and the Iron Ore Co. of Canada (IOC) in exchange for full ownership of Erie.

Pickands Mather continued to manage Erie for LTV Steel. The 11-million-ton-peryear complex at Hoyt Lakes operated continuously throughout the year, except for a 5-week vacation period beginning in late June. On a normal day, at least 22 of the 27 shaft furnaces would be running in the pelletizing plant. The Hoyt Lakes plant produced 6.66 million tons of pellets and 114,000 tons of chips in 1987 and shipped 6.98 million tons of pellets and chips through the port of Taconite Harbor. The production included sizable amounts of fluxed pellets shipped to LTV Steel's Cleveland Works for blast furnace trials. The fluxstone was being shipped from Michigan to Taconite Harbor, where it was loaded into rail cars returning to Hoyt Lakes.

During the first half of 1987, low-silica taconite was mined at the Dunka Pit, 22 miles northeast of Hoyt Lakes, and blended with Hoyt Lakes ores to reduce the silica content of the pellets. In August, the company installed a flotation circuit at the concentrator to help lower the silica content of the final concentrate from 4.65% to about 3.70%. The four-line flotation circuit was acquired from the closed Carr Fork copper mine in Utah and was scheduled to start up in mid-1988. Carbinder and several other organic binders were being evaluated to

further lower pellet silica. Hibbing Taconite operated from January 10 to yearend and produced a record high 7.82 million tons of acid pellets, averaging 64.66% Fe and 4.74% SiO₂ on a wet basis. In mid-April, the company began increasing pellet production from an annual rate of 5.5 million tons to full capacity-9 million tons-to meet additional orders from Bethlehem Steel. All nine lines in the concentrator and all three furnaces in the pelletizing plant were operating by yearend. The Hibtac plant had a design capacity of only 8.1 million tons and had never operated above the 6.8-million-ton level. Recent improvements in the milling part of the operation have enabled the company to exceed the design limit set in 1979 when the processing facilities were expanded by 2.7 million tons. About 40 employees were added to the existing work force of 550. The mine and pelletizing plant were managed by the Pickands Mather subsidiary of CCI, which has a 15% equity in Hibtac. The Hibtac production increase helped offset losses at mines in Labrador and Quebec that were paralyzed by labor strikes during March and April. Bethlehem, which held a 70.3% equity in Hibtac, was also the largest partner in IOC. Stelco, the third Hibtac partner holding the remaining 14.7% equity, permanently closed its wholly owned Griffith Mine near Ear Falls, Ontario, Canada, in March 1986 and began relying heavily on shipments from its Wabush Mines joint venture in Labrador and Quebec.

The Minntac facility of USX was idle for

IRON ORE

a total of 136 days, producing only 7.64 million tons of acid pellets or 41% of installed capacity. Although the pelletizing plant at Mountain Iron was designed to produce 18.5 million tons per year, its effective capacity is more like 12.5 million tons. Operations were resumed on May 17 after production had stabilized at the company's reopened steel mills. By mid-June, the mining complex had returned to its normal pellet production rate of 34,000 tons per day.

On October 9, management announced that it would spend \$8 million to convert Minntac's four active grate-kiln systems to fluxed pellet production. A small percentage of nonfluxed, or acid, pellets would continue to be produced for steel customers whose blast furnaces could not use the new pellets. Minntac was also successfully using 1/16- to 1/4-inch-diameter particles of pulverized waste wood to fire two of the rotary kilns. Waste wood was supplying more than 40% of the energy used on both pelletizing lines and recently had been more cost-effective than natural gas.

Eveleth Mines halted operations in early December after meeting its production goal of 3.50 million tons of pellets. Eveleth had a design capacity of 6.1 million tons per year; however, the No. 1 grate-kiln system at the Fairlane plant had been down for some time, limiting production to 3.8 million tons.

Oglebay Norton Co., the facility manager and the only partner not making steel, was put in a difficult position in 1986 by the LTV bankruptcy filing. The bankruptcy court authorized LTV to reject Oglebay's long-term pellet sales contract and one of two vessel transportation contracts. LTV did not purchase any pellets from Oglebay in 1986 or 1987 under the existing long-term agreement and chose instead to raise the output of its wholly owned mine at Hoyt Lakes. Eveleth's other owners-Armco, the Rouge Steel Co., and Stelco-lessened Oglebay's predicament by agreeing to take the production share previously contracted to LTV. Oglebay continued to do business with LTV on either a cargo-by-cargo or seasonal basis.

For the first time, the entire run at Fairlane was dedicated to the production of partially fluxed pellets. The pellets contained a 1% limestone additive and were made using the organic binder, Peridur, in place of bentonite. The final product averaged 64.64% Fe, 5.00% SiO₂, and 0.017% P on a wet basis, with the lime (CaO) and magnesia (MgO) running 0.81% and 0.39%, respectively. The new Peridur-plus-limestone (PL) pellet was designed to improve the reducibility of the blast furnace burden and had

been under full-scale development at Fairlane since 1984.

479

In mid-June, union workers at Eveleth ratified a new 34-month contract that cut their wages by 99 cents per hour and benefits by 63 cents per hour. The cut lowered the average union wage to about \$12 per hour. At the same time, the 483 workers became eligible for incentive pay and regained some jobs lost to outside contractors. The new contract, which took effect July 1, also improved job security and streamlined grievance procedures. The workers, members of USWA Local 6860. had been negotiating with Oglebay for almost a year. The Eveleth agreement was similar to one worked out in January between the union and USX's Minntac operation. Rouge, which has a 31.7% equity in Eveleth, had threatened to cancel a 400,000ton order for pellets unless labor costs were reduced.

Oglebay filed an environmental assessment plan with the Minnesota Department of Natural Resources in November, seeking approval to expand the north pit of the Thunderbird Mine toward the city of Virginia. Under the long-term plan, Eveleth would expand the pit by 400 acres and create three new stockpiles. One of these stockpiles would be located in the old Rouchleau Pit on the southeastern edge of the city.

On November 1, 1986, Inland Steel Mining Co. began converting its Minorca Mine near the city of Virginia to 100% fluxed pellet production. At the same time, the company's Chicago-based parent, Inland Steel Co., directed CCI to begin converting part of the Empire mining complex at Palmer, MI, to fluxed production. Inland continued to have a 40% equity in the Upper Peninsula joint venture. The blended fluxstone for both operations was being supplied by another Inland division, Inland Lime & Stone Co. A total of \$17 million was budgeted to pay for the Minorca and Empire changeovers, improvements at the dolomite and limestone quarries in Michigan, and the installation of new equipment at various points to crush, transfer, and grind the fluxstone. The bulk of the fluxed pellets was to be used in the No. 7 blast furnace at Inland's Indiana Harbor Works in East Chicago, IN. (See "Consumption and Uses.")

Pelletizing operations were halted at Minorca from July 31 to August 30 so that the last phase of the conversion could be completed. A cone crusher and a flux grinding circuit were incorporated into the operation, and more burners were added to the furnace.⁸ A variety of organic binders,

including Alcotac and Peridur, were being evaluated. The modified facility had an annual design capacity of 2.5 million tons of fluxed pellets and had begun making a product that assayed 61.50% Fe and 3.9% SiO₂ on a wet basis. Minorca produced 1.39 million tons of acid pellets and 832,000 tons of fluxed pellets in 1987.

Michigan produced 26% of the national output of usable ore in 1987. Production consisted entirely of pellets produced from ores mined at the Empire and Tilden Mines in Marquette County. Both mining ventures were managed and partially owned by Cleveland-Cliffs Iron. The company's wholly owned Republic Mine remained idle throughout the year. Production of pellets totaled 12.29 million tons, of which 7.63 million tons was produced at the Empire plant and 4.66 million tons was produced at Tilden. The Empire facility was operated throughout the year and produced at 95% capacity. In contrast, the effective utilization of Tilden for the year was only 58%.

In the last few years, Tilden was used as a swing operation because it produced pellet feed from hematite-rich taconite instead of magnetite-rich taconite. It is technically easier and considerably cheaper to beneficiate magnetite-rich taconite. Relatively simple magnetic separators can recover the magnetite, while the hematite must be selectively flocculated and passed through a series of flotation cells to remove accompanying silicates. Until now, the operation of this flocculation-flotation circuitry and the accompanying consumption of expensive flotation reagents made Tilden a higher cost producer than the adjacent Empire Mine, which recovers only magnetite. The development of the magnetite ores under Schoolhouse Lake was expected to change the economics of the entire operation. A breakthrough was achieved in early December when hourly workers at both Upper Peninsula mines ratified a new 3-year contract that called for wage deferrals to finance the \$25 million project. At yearend, CCI still needed approval of its steelmaking partners and environmental regulators to proceed with the changeover.

Empire produced a record-high number of pellets in 1987 and began limited mining of its Cliffs Drive I ore body so that the beneficiating and pelletizing facilities could operate at full capacity in 1988. Empire and Tilden had begun producing significant tonnages of fluxed pellets for their steelmaking partners. Most of Empire's fluxed pellets,

about 13% of the pelletizing plant's total output, went to Inland Steel. Two grades of fluxed pellets were produced at Tilden, accounting for more than one-half of its output for the year. Empire was using a 47-53 blend of dolomite and limestone made by Inland Lime & Stone Co. at its Gulliver, MI, quarry, while Tilden opted for a 70-30 blend from the Calcite and Cedarville quarries of the Michigan Limestone Operations Limited Partnership. The two fluxstone mixes were being shipped in self-unloaders to the docks at Presque Isle, where they could be stockpiled and later hauled to the pelletizing plants by truck.

In Missouri, Pea Ridge Iron Ore Co. produced about 700,000 tons of iron ore products at its underground mine near Sullivan. The bulk of the production consisted of 633,000 tons of olivine-enriched pellets made from magnetite concentrate. The mine and plant, wholly owned by Fluor Corp., were operated throughout 1987.

The addition of 5% olivine increases the reducibility of the pellet, while improving its high-temperature properties in the blast furnace and increasing its resistance to lowtemperature breakdown. The olivine was being imported from Norway and ground on-site. Only two of five shaft furnaces were operating in the 1.65-million-ton-per-year pelletizing plant because of the shutdown of Lone Star Steel Co.'s blast furnace near Daingerfield, TX, in the first quarter of 1986. Lone Star had been a major customer of Pea Ridge together with the National Steel Corp. Pea Ridge continued to ship pellets on the Union Pacific Railroad for a distance of 100 miles to National Steel's City steelworks, across Granite Mississippi River from St. Louis.

Pea Ridge also produced heavy-medium magnetite for coal cleaning, a variety of iron oxides for pigments and use in ceramic magnets, as well as hematite for use in well-drilling fluids. The company was one of the few sources of byproduct pyrite concentrate still operating in the United States.

Fluor completed a restructuring of its natural resource investments in 1987 that resulted in the reconfiguring of its coal and lead subsidiaries and the sale of its gold and domestic zinc operations. In August, Fluor also took steps to divest itself of Pea Ridge and make the iron ore operation a quasi-independent subsidiary. The Missouri mine became part of Fluor when the California-based engineering and construction agglomerate acquired St. Joe Minerals Corp. in 1981.

CONSUMPTION AND USES

Consumption of iron ore was about 9% more than that of 1986, owing to increased demand from the iron and steel industry. Consumption for ironmaking and steelmaking totaled about 60.4 million tons, including 53.8 million tons in blast furnaces, 6.2 million tons in sintering plants, 0.3 million tons for production of direct-reduced iron (DRI), and 0.1 million tons in steelmaking furnaces. An additional 23,000 tons was used by the industry for miscellaneous and unspecified purposes. Consumption of iron ore for manufacture of cement, heavymedium materials, pigments, ballast, and miscellaneous products was approximately 1.0 million tons.

In the iron and steel industry, monthly consumption of ore averaged 5.01 million tons, compared with 4.61 million tons in 1986. Consumption jumped 24% between February and March after USX settled with the USWA and resumed hot-metal production at its blast furnaces in Indiana, Ohio, and Pennsylvania. However, even after this jump, demand for ore was extremely weak in comparison with 1984 monthly data and still remained below the depressed levels of early 1986. Total consumption for the first 6 months was only 28.46 million tons, down 10% from the same period in 1986. On June 30, 47 blast furnaces were in operation, up from 32 at the beginning of the year.

A turnaround occurred in the second half of the year. Consumption began to pick up in August and continued rising until it peaked at 5.77 million tons in December. The increase in consumption resulted from the strengthening of overall demand for steel products, with shipments to industrial construction companies and machinery manufacturers showing the greatest growth. At yearend, 49 of the 87 blast furnaces available were on line.

Consumption of iron ore and agglomerates reported by integrated producers of iron and steel totaled 65.32 million tons, including 47.87 million tons of pellets, 16.53 million tons of sinter, and 0.92 million tons of natural coarse ore. Of the primary ore

consumed, an estimated 73% was of domestic origin, 14% came from Canada, and 13% came from other countries.

Estimated consumption of other materials in sintering plants included 2.30 million tons of mill scale, 0.79 million tons of flue dust, 3.86 million tons of limestone and dolomite, 1.34 million tons of slag and slag scrap, and 0.69 million tons of coke breeze. Other iron-bearing materials charged directly to blast furnaces included about 34,000 tons of manganiferous iron ore, 1.27 million tons of steel-furnace slag, 0.17 million tons of mill scale, and 0.88 million tons of slag scrap.

The No. 7 blast furnace at Inland's Indiana Harbor Works was taken out of production for 96 days so that it could be relined with a newly developed refractory brick and modernized at a cost of \$30 million. The unit, which has a working volume of 123,897 cubic feet, is Inland's most efficient ironmaking furnace and the largest in the Western Hemisphere. The furnace was being fed the new fluxed pellets produced at Minorca and Empire. The improvements were expected to increase the hot metal output of the furnace by 15% to 9,000 short tons per day.

On June 13, Wheeling-Pittsburgh halted all agglomerating operations at its Follansbee, WV, byproduct coke and sinter plant. The U.S. District Court for western Pennsylvania ordered the sintering part of the complex closed indefinitely because it failed to meet air pollution standards established under the Federal Clean Air Act. The ruling was an outgrowth of a suit brought against Wheeling-Pittsburgh by the U.S. Environmental Protection Agency. The company had been operating under the protection of Federal bankruptcy laws since April 1985 and was unable to provide the \$3 million needed for additional emission control equipment. The closure forced the layoff of 100 workers and complicated pig iron production at the company's five blast furnaces across the Ohio River in Steubenville.

STOCKS

Stocks of iron ore and agglomerates reported at U.S. mines, docks, and consuming plants had been gradually dropping for more than 30 years. This trend slowed somewhat in 1987. At yearend, total industry stocks were only 20.59 million tons,

down 8% from 1986. The decline was due primarily to a reduction of domestic ore stocks at furnace yards. Furnace yard stocks stood at 16.30 million tons, a 61% drop from the 42.27 million tons reported at the end of 1977. Combined stocks at furnace

yards and receiving docks included 12.77 million tons of domestic ores, 2.40 million tons of Canadian ores, and 3.16 million tons of other foreign ores. Mine stocks at yearend were 12% less than those of 1986, with the exhaustion of pellets from Reserve and Butler.

End-of-month stocks reported at mines peaked at 10.49 million tons in March and declined to 2.62 million tons at yearend, while stocks of ore at consuming plants ranged from a low of 9.03 million tons in May to a high of 16.30 million tons in December. As in previous years, these variations were principally caused by the sea-

sonal nature of ore shipping on the Great Lakes.

Stocks of unagglomerated concentrates reported at pelletizing plants totaled 523,000 tons at yearend. This material is not included in mine stocks of usable ore reported in the accompanying tables because it is considered an intermediate product. Also, mine stock data after 1983 do not include byproduct ore, owing to the change in classification reported in this publication in 1983; data for previous years remain unchanged to avoid disclosing company proprietary information.

TRANSPORTATION

Vessel shipments of iron ore from U.S. ports on the upper Great Lakes totaled 47.08 million tons, about 24% more than those of 1986. Nearly 90% was destined for U.S. consumers, with the rest going to Canada. Shipments of iron ore through the St. Lawrence Seaway to U.S. ports on the Great Lakes totaled 4.07 million tons and accounted for about 25% of U.S. imports. The balance of imports, 12.51 million tons, was shipped primarily through ports on the east and gulf coasts.

Ore shipments from five of the seven U.S. ports on the upper Great Lakes increased from the levels of 1986, with the largest increase at Marquette, MI. Tonnage shipped from each port in 1987 was as follows:

Port	Date of first shipment	Date of last shipment	Total tonnage (thou- sand long tons)
Duluth, MN	Mar. 28	Dec. 25	7,595
Two Harbors, MN	Apr. 2	Jan. 14	7.122
Silver Bay, MN ¹	Apr. 2		183
Taconite Harbor,	Mar. 31	Jan. 6	7,899
Superior, WI	Mar. 24	Jan. 7	11,313
Marquette, MI	Mar. 26	Jan. 12	7,062
Escanaba, MI	Mar. 6	Jan. 23	5,907
Total ²			47,081

¹Operations ceased after LTV Steel Co., the co-owner of Reserve Mining Co., filed for bankruptcy on July 17, 1986. All of the stockpiled pellets that remained at Silver Bay were shipped out Oct. Nov. 1987.

²Covers the 1987 navigation season, which extended from Mar. 6, 1987, to Jan. 23, 1988.

Source: Lake Carriers' Association, 1987 Annual Report.

The number of vessel shipments from all seven ports totaled 1,313, indicating an average cargo of 35,858 tons. Individual cargoes of 60,000 tons or more were loaded at six of the ports during the year, although the average shipment from individual ports ranged from 23,004 tons at Marquette to 45,138 tons at Taconite Harbor, MN.

Between November 1986 and June 1987, precipitation over the Great Lakes basin was 25% below normal. As a result, the abnormally high water levels of 1985-86 on the Great Lakes receded during the year, reducing iron ore loadings of the larger carriers to normal tonnages. To meet the strong demand for iron ore during the fourth quarter, the U.S. Army Corps of Engineers agreed to keep the Soo Locks open until January 15, 1988, instead of the traditional closing date of December 15. The shipping season formerly ended in mid-December because natural ores, once the predominant cargo, would freeze in the hold and could not be unloaded. However, the lower moisture content of present-day taconite pellets and the advent of vessels with hulls strengthened against ice enable the industry to operate until early January.

Lake freight rates for iron ore on January 1, 1987, were those that had been in effect since April 1984. On November 10, the published rates for self-unloaders were dramatically lowered and discounts were created to encourage the use of Class X vessels (i.e., vessels with hulls greater than 1,000 feet in length). The rates were as follows:

			Dollars per long		
	.	To -	Anr	Nov. 10, 1987 ¹	
	From		Apr. 1984	Class X	Other
Head of the Lake Marquette Escanaba Do	98	Lower lake ports	7.41 6.11 5.64 4.45	4.50 3.40 2.70	5.25 4.40 3.95 3.00

¹Excludes winter surcharges for shipments after Dec. 15 and before Apr. 15.

Sources: Cliffs Mining Co., Skillings' Mining Review, and Interlake Steamship Co.

Published bulk vessel freight rates from the Gulf of St. Lawrence to Lake Erie and Lake Michigan were \$5.00 and \$7.00 per ton, respectively. Freight rates for selfunloading vessels were \$1.50 per ton higher. These rates may include toll charges on the St. Lawrence Seaway, which amount to about \$1.24 per ton.

The two principal issues concerning U.S. lake shipping in 1987 continued to be the proposed construction of a second Poe-class lock at Sault Ste. Marie and the question of sharing domestic lake and coastal trade with Canadian vessels. The latter issue was rejuvenated during the Free Trade Area Agreement negotiations with Canada, and caused the Reagan Administration to review the justifications for existing cabotage laws.

At the present time, the Poe Lock is the only one at Sault Ste. Marie that can handle vessels with a length greater than 680 feet. Of the 59 dry-bulk cargo vessels registered in the U.S. Great Lakes fleet, 29 must use the Poe Lock to transit the St. Mary's Fall Canal. These 29 vessels account for more than 72% of active carrying capacity. A lengthy shutdown of the Poe Lock could seriously disrupt lake shipping and sharply increase haulage costs in the region for iron ore and at least five other bulk commodities.

On November 17, 1986, the President signed the Water Resources Development Act (Public Law 99-662). Section 1149 of this law authorized construction of a second Poesize lock. However, funding continued to be a problem. The new law required that a local sponsor pay 35% of the estimated \$240 million construction costs. The States bordering the Great Lakes argue that foreign

shipping would also use the proposed lock and, therefore, the Federal Government should bear the entire cost of the project. About 30% of the cargoes currently transiting the locks go to Canada or overseas. The Great Lakes States further argue that interior States like Montana, the Dakotas, and West Virginia likewise benefit from the locks. The position taken by the Lake Carriers' Association (LCA) is that the national defense role of the Soo Locks alone justifies full Federal funding. If Congress were to appropriate all of the necessary funds in 1989, groundbreaking could not take place until 1992, and the project could not be completed before 2001.

The cabotage issue is a complex one with serious long-term implications for the U.S. Great Lakes fleet. The United States has had cabotage laws since 1789 to ensure a reliable domestic shipping service and to be able to rapidly expand the Nation's maritime capabilities in the event of a national emergency. One of the key cabotage laws is section 27 of title I of the Merchant Marine Act of 1936. This section, known as the Jones Act, mandates that all domestic waterborne commerce be conducted in vessels that are U.S.-built, -owned, and -crewed.

The Government of Canada wanted these cabotage restrictions waived as part of the Free Trade Area Agreement. In exchange, U.S. vessels would have been allowed to carry cargo between Canadian ports. If approved, Canadian ore carriers would have been able to haul pellets from Duluth to Cleveland. United States and Canadian iron ore shipments on the Great Lakes for 1983 through 1987 are compared in the following tabulation:

Loading district	United States and Canadian iron ore shipments on th Great Lakes (thousand long tons)					
	1983	1984	1985	1986	1987	
Lake Superior Lake Michigan Lake Huron Eastern Canada	35,056 7,416 172	38,152 8,619 217	37,363 7,385	31,177 7,378	41,174 5,907	
Eastern Canada	9,440	10,276	7,423	6,996	7,981	
Total ¹	52,085	57,265	52,171	45,551	55,063	
U.S. flag fleet shipments ² Percent carried by U.S. fleet	NA NA	NA NA	43,332 83	38,834 85	48,155 87	

NA Not available.

Includes transshipments. Data may not add to totals shown because of independent rounding.

²Includes mill scale, scarfer ore, and slag, in addition to iron ore.

Source: Lake Carriers' Association Annual Reports.

The hard-pressed members of the LCA and other groups opposed the Canadian proposal because the Federal Government in Ottawa continued to contribute to the pension and health programs of the Canadian merchant marine and heavily subsidized its shipbuilding industry in the 1970's. Because of these and related arguments, the United States and Canadian negotiators decided to remove the maritime provisions from the final agreement. At yearend, the Free Trade Area Agreement was awaiting ratification by Congress and the Canadian Parliament.

The State of Wisconsin, the city of Superior, and the Burlington Northern Dock Corporation were still locked in litigation over a taconite tax passed by the State legislature in 1977. During the last 10 years, the railroad subsidiary had been required to pay a 5-cent-per-ton tax on pellets railed from the western half of the Mesabi Range to the company's Allouez terminal. Burlington Northern had protested the tax since its inception and had brought several suits against the city of Superior, which collects the dock tax and retains 70% of the monies. The remaining 30% is sent to the State treasury.

In June 1986, the Wisconsin Supreme Court ruled that the taconite tax was unconstitutional and violated the commerce clause of the U.S. Constitution by discriminating against ore mined outside of Wisconsin. The Wisconsin attorney general then appealed the ruling of the State court to the U.S. Supreme Court. On January 12, 1987, the Court upheld the State court's

ruling, forcing the city of Superior and Wisconsin to refund the \$5.4 million paid under protest by Burlington Northern between 1977 and 1985, plus interest.

In 1985, the State legislature changed the tax law and removed the part that the State supreme court had found objectionable. In May 1987, Burlington Northern sued the city again, claiming that the redrafted tax was also unconstitutional. At yearend 1987, negotiations were still in progress between city, State, and company officials.

Published railway freight rates for pellets from mines to upper lake shipping ports were unchanged in Minnesota in 1987. The volume rate for pellets from the western Mesabi Range to the Allouez docks at Superior remained at \$5.01 per ton. For pellets from the Marquette Range of Michigan, the rate to Escanaba remained at \$2.68 per ton. However, on January 18, the rate to Presque Isle was lowered from \$2.40 to \$2.15 per ton. Dock-handling charges at Duluth, Superior, and Escanaba ranged from 69 to 94 cents per ton.

Rail rates from lower lake ports to a number of consuming points were rolled back to 1985 levels in November 1986, but most of these rollbacks were erased at the end of 1987. Several other key rates were raised substantially at this time. Most ore transfer charges were also increased slightly at yearend. At Lake Erie ports, charges for transfering ore from rail-of-vessel or dock-receiving areas directly into railway cars ranged from \$0.97 to \$1.52 per ton. Key rail rates for 1986 through 1987 are compared in the following tabulation:

			Doll	ars per long	ton
From	То	Type of rate ¹	Jan. 1, 1986	Nov. 17, 1986	Jan. 1, 1988
	1 TITL . ling	Multiple car	10.74	10.62	11.45
Lake Erie ports	Pittsburgh and Wheeling districts.	_do	11.68	11.49	NA 16.26
Baltimore, MD	Pittsburgh district	Single car	$15.77 \\ 16.48$	15.77 NA	17.57
DoPhiladelphia, PA	Granite City, IL	Multiple car	$19.07 \\ 6.41$	$23.35 \\ 6.41$	$24.33 \\ 6.41$
Mesabi Range Pea Ridge, MO	do	do			

¹As a result of the Staggers Rail Act of 1980, which partially deregulated the railroads, it has become difficult to obtain accurate freight rate data. Published tariff rates are only suggested rates and may be significantly higher than the actual contract rates.

Sources: Cliffs Mining Co., Skillings' Mining Review, and Minnesota Mining Directory.

All-rail shipments of pellets from Minnesota by the Duluth, Missabe and Iron Range Railway Co. and connecting lines amounted to only 431,000 tons, down from 1.5 million tons in 1985, because of the USX labor dispute and the subsequent idling of the Geneva Works near Provo, UT. Shipments to Geneva from the Minntac plant were resumed in the fourth quarter of 1987 after the steelworks were sold to Basic Manufacturing and Technologies of Utah. Some pellets were also hauled all-rail to National Steel's two blast furnaces at Granite City, IL. Shipments of pellets and small

quantities of natural ore to the ports of Duluth and Two Harbors totaled 14.72 million tons for a total ore movement on the railway of 15.15 million tons during the 1987-88 shipping season.

Published nominal ocean freight rates for iron ore from eastern Canada to U.S. mid-Atlantic ports were \$3.50 to \$3.75 per ton, but spot rates quoted for cargoes of 60,000 to 95,000 tons ranged from \$2.75 to \$3.75 per ton. A few shipments reported from Brazil to east coast ports indicated freight rates of \$4.50 to \$4.95 per ton.

PRICES

In 1985, three Lake Superior producers adopted new price bases for their pellets in response to increasing competition between domestic and foreign producers in the U.S. market. Pickands Mather and Inland Steel Mining both began quoting a price of 59.4 cents per long ton unit (ltu) of iron, natural, delivered to hold-of-vessel at upper lake ports. For more than two decades, Lake Superior pellet prices had been quoted for delivery to rail-of-vessel at lower lake ports. USX made price comparisons even more difficult by quoting 72.5 cents per dry ltu of iron for Minntac pellets, delivered rail-ofvessel at lower lake ports. In 1987, domestic pricing was further complicated by the emergence of a significant spot market for pellets.10 Spot sales of pellets first appeared in North America in 1982 when demand for steel collapsed because of the recession. Several steelmakers were starved for cash at the time, but had large, unneeded inventories of raw materials that could be resold. The subsequent bankruptcy filings Wheeling-Pittsburgh and LTV helped the spot market to grow by nullifying a number of long-term purchase contracts.

In mid-January, Cleveland-Cliffs Iron reduced the price of its Lake Superior iron ore pellets from 86.90 cents per ltu of iron, natural, to 72.45 cents per ltu. The new price, which was retroactive to December 30, 1986, applied to pellets delivered rail-ofvessel at lower lake ports. The previous price of 86.90 cents had been in effect since February 26, 1982. In February, Oglebay announced an identical 16.5% reduction for its standard grade pellets, effective March 1. Oglebay's new Eveleth special grade was listed at 74.00 cents per ltu. Mineral Services Inc. continued to quote its August 1985 price of 58.0 cents per ltu. USX adopted a different strategy and switched its pricing, effective May 20, to an f.o.b. mine basis. The new price for Minntac acid pellets was 37.344 cents per dry ltu of iron, delivered into rail cars at the Minnesota mine. This price equated to about \$23.87 per long ton of undried pellets containing 63.92% Fe and 2.29% moisture. Inland Steel then countered everyone by dropping the price of its Minorca pellets from 59.40 cents per ltu to 46.84 cents per ltu. The range of all of the above prices was approximately equivalent to \$34.50 to \$55.62 per long ton of pellets containing 64% iron, delivered rail-of-vessel at lower lake ports.

Published prices for Lake Superior ores, per ton, basis 51.5% iron, natural, delivered rail-of-vessel at lower lake ports, remained as follows: Mesabi non-Bessemer ore, \$30.03 for coarse ore and \$31.53 for fines; and manganiferous ore, \$32.78. These prices were not very significant in 1987 because most Mesabi non-Bessemer ore was produced and consumed by LTV Steel, and none of the manganiferous ore was mined. Pellets made up more than 96% of ore shipped from the Lake Superior district.

Prices for most Canadian and other foreign ores marketed in the United States were not available. The published price of Wabush pellets, f.o.b. Pointe Noire, Quebec, remained at 63.5 cents per ltu. The average f.o.b. value of all Canadian ores imported by the United States, as determined from data compiled by the Bureau of Census, was \$31.34 per long ton. Data from this source indicated average f.o.b. values of \$14.01 per ton for Liberian ores and \$17.81 per ton for Brazilian ores. Other sources indicate that most imported Canadian ore consisted of pellets, Liberian ores consisted of fines and washed lumpy ore, and about two-thirds of the ore imported from Brazil consisted of pellets. F.o.b. value data for Venezuelan ores were not determinable because much of the ore was apparently valued on a c.i.f. basis.

Published f.o.b. prices for DRI were also unchanged from those quoted in 1986, and were as follows, per metric ton: at Georgetown, SC, \$125 to \$135; at Contrecoeur, Quebec, \$115; and at Point Lisas, Trinidad and Tobago, \$120. The apparent f.o.b. value of some shipments of DRI imported from Venezuela since 1985 ranged from about \$79 to \$110 per long ton.

FOREIGN TRADE

U.S. exports of iron ore were 12% higher than those of 1986 because of increased demand from the Canadian steel industry. Virtually all exports consisted of pellets shipped via the Great Lakes to Canadian steel companies that are partners in U.S. taconite projects in Minnesota and Michigan. Consumption of iron ore at Canadian blast furnaces totaled 13.08 million tons, about 5% more than that of 1986. This improvement in Canadian blast furnace activity was largely the result of a 9% increase in downstream shipments of rolled steel products.

U.S. imports for consumption of iron ore decreased slightly to 16.58 million tons. A 57% decline of imports into the Mobile customs district offset small increases for Baltimore, Chicago, and Philadelphia. Total tonnage for 1987 was still 7% greater than the mean of the previous 5 years, 15.49 million tons. For the first time in more than

a decade, Canadian ores accounted for less than one-half of the total U.S. imports. In the last few years, Canada had struggled to maintain its traditional 13% to 23% share of the increasingly competitive U.S. market, which has shrunk 48% since 1979. Brazil, the next largest supplier after Canada, gradually increased its share from a 10-year low of 1.8% in 1982 to 6.1% in 1987.

In June, shipload quantities of Australian ore began arriving at east coast ports after a hiatus of 7 years. Considerably larger tonnages were scheduled for delivery from the Pilbara region of Western Australia in 1988. The Broken Hill Pty. Co. Ltd. (BHP) announced that Bethlehem had agreed to buy 108,000 tons of pellets from BHP's Whyalla works in South Australia. This sale would be BHP's first to Bethlehem since the Australian Government's iron ore embargo of 1938.

WORLD REVIEW

At least 46 countries mined iron ore during the year, producing a total of 869 million tons. The U.S.S.R. was the largest producer, with an output of 191.4 million tons of concentrate and 65.6 million tons of pellets. Soviet production accounted for about 27% of the world's marketable output in terms of metal content. World production of pig iron, which directly reflects ore consumption, increased slightly to 504 million

long tons.

The world ore trade was estimated at 365 million tons, of which about 85% was ocean-borne. Brazil, the leading exporter, shipped 96 million tons to world markets in 1987, an amount 5% greater than that of 1986. Shipments from Australia, the second largest exporter, dropped from 81 to 79 million tons because of reduced imports by Japanese steelmakers, who cut back on pig iron

production by 2%. The recently expanded EC received 119 million tons of ore and agglomerates, edging out Japan as the world's principal importer. Japanese imports decreased 3% from 113 million tons to 110 million tons.

World production of pellets was estimated at 203 million tons, about 81% of installed capacity. Most pelletizing plants in Brazil, Canada, Sweden, and the U.S.S.R. operated close to rated capacity, contrasting sharply with the situation in the United States. The merchant plant in Bahrain was forced to suspend operations in early 1986 and had no production in 1987. The plant, which was inaugurated in late 1984, had difficulty operating in the midst of the Iran-Iraq war.

World output of DRI was estimated by Midrex Corp. at 13.4 million tons, about 61% of installed capacity, as low prices for ferrous scrap continued to limit production.11 Negotiations were under way to relocate the two-module plant of Norddeutsche Ferrowerke (Nord Ferro) at Emden, Federal Republic of Germany, to India. The permanent closure of the 0.87-million-ton-per-year West German plant, along with that of a plant in New Zealand, offset the startup of additional capacity at Kursk in the U.S.S.R. These changes reduced global DRI capacity from 23.2 million tons to 22.0 million tons. The improved utilization of existing gasbased facilities in Egypt, Mexico, the U.S.S.R., and Venezuela were largely responsible for the 9% increase in world DRI production between 1986 and 1987. About 47% of the total output for 1987 was produced in Mexico, Venezuela, and other countries in Latin America.

In the past, iron ore exporters normally completed their annual price negotiations in Europe before fixing prices in Japan. The tradition arose because European contracts are based on the calendar year, while Japanese contracts are on an April-to-March fiscal year. This year, in a break from tradition. BHP settled its Mount Newman contract with Japanese steelmakers on February 20, triggering a worldwide reappraisal of iron ore prices. Japanese ore buyers were able to complete most of their fiscal vear 1987 price negotiations with foreign producers by September. In almost every case, irrespective of ore type, the new price was lower than that for fiscal year 1986. Price cuts for fines and lump ore ranged from 3.8% to 6.8%. European steelmakers, who were dissatisfied with their 1986 contracts, also succeeded in winning price cuts of 6% to 11% for fines, but were forced to pay 1% to 5% more for pellets.

On an f.o.b. (shipping port) basis, most 1987 prices apparently ranged from about \$10.80 to \$16.50 per long dry ton (ldt) for fines, \$15.20 to \$18.70 per ldt for lump, and \$18.10 to \$27.20 per ldt for pellets. Delivered prices (at receiving port) were about \$2 to \$10 higher, depending on ocean freight costs. The Japanese contract prices are listed in the following tabulation, f.o.b., in U.S. cents per dry ltu of iron unless otherwise specified:

Country and producer	Ore type		ices Mar. 31)
Country and produce.		FY 1986	FY 1987
Australia:			
Hamersley Iron Pty. Ltd. and Mount Newman Mining Co. Pty. Ltd	Lump ore	30.29	28.78
Do	Fines	25.97	24.67
Robe River Iron Associates	do	22.97	21.50
Savage River Mines Ltd	Pellets	36.02	34.72
Brazil:			
Cia. Nipo-Brasileira de Pelotização (Nibrasco)	do	35.29	35.29
Cia Vala do Rio Doca (Carajás)	Fines	23.66	22.24
Cia. Vale do Rio Doce and Minerações Brasileiras Reunidas S.A	Lump ore	23.66	22.24
Minerações Brasileiras Reunidas S.A	Fines	24.21	22.76
Samarco Mineração S.A	Pellet feed	19.46	18.29
Canada: Iron Ore Co. of Canada (Carol Lake)	Concentrates	22.44	21.26
Chile: Cía. Minera del Pacífico S.A. (El Algarrobo)	Pellets	36.10	34.72
India:	Teneus	00.10	04.12
	I uman ara	29.21	27.75
Minerals and Metals Trading Corp. (Bailadila)	Lump ore Fines	24.95	23.70
Do	do	22.40	20.47
Liberia: LAMCO Joint Venture Operating Co		27.59	27.59
Peru: Empresa Minera del Hierro del Perú S.A	Pellets	21.59	21.39
South Africa, Republic of:		100.01	100.04
South African Iron and Steel Industrial Corp. Ltd	Lump ore	¹ 23.91	122.34
Do	Fines	¹ 20.55	¹19.15

¹Price per dry metric ton unit.

Source: The TEX Report (Tokyo), v. 20, No. 4664, Apr. 20, 1988, pp. 12-13.

Ocean freight rates for iron ore reversed their long-term decline in January and began rising. Published rates for spot charterings to the EC from Western Australia ranged from \$5.80 to \$8.30 per dwt for

cargoes of 120,000 to 140,000 dwt, compared with \$5.30 to \$7.30 in 1986. The 1987 rate ranges for other shipments to the EC are shown in the following tabulation:

Country	Loading port	Cargo size (thousand dead- weight tons)	Rate (dollars per deadweight ton)
Brazil Do	South Atlantic ports do Sept-Iles or Port Cartier Buchanan or Monrovia Nouadhibou Narvik (Norway) Puerto Ordáz	100-140 220-250 100-140 60-80 80-100 80-100 40-60	3.00- 8.00 2.80- 3.65 2.95- 5.20 3.50- 6.85 2.20- 4.30 2.25- 3.50 6.80-10.15

Sources: Drewry Shipping Consultants Ltd. (London), Maritime Data Network Ltd. (London), and The TEX Report

Rates for cargoes of 120,000 to 140,000 dwt to Japan from Western Australia ranged from \$4.40 to \$4.90. Higher rates applied to Port Latta in Tasmania because it cannot accommodate vessels greater than 95,000 dwt and is farther from Japan. Rates to Japan from the Brazilian port of Tubarão for somewhat smaller cargoes were \$5.30 to \$9.50.

⁵Skillings, D. N., Jr. North American Iron Ore Industry in Major Recovery in 1988 To Reach Seven-Year Produc-tion Peak of 97.6 Million Gross Tons. Skillings' Min. Rev.,

tion Peak of 97.6 Million Gross Tons. Skillings' Min. Rev., v. 77, No. 31, Jul. 30, 1988, pp. 14-26.

There was an error in the "Domestic Production" section of the 1986 chapter. Minnesota pellet production was 25.88 million tons in 1986, not 36.44 million tons as published. The 36.44-million-ton number was the 1986 production total for the Lake Superior district. As a result, the capacity utilization should have been 43%, not 61%.

'Skillings, D. N., Jr. U.S. Iron Ore Industry To Recover Moderately in 1987 to Level of 45 Million Gross Tons of Pellets and Ore. Skillings' Min. Rev., v. 76, No. 30, Jul. 25, 1987, no. 14-23.

1987, pp. 14-23.

*Work cited in footnote 5.

*Lake Carriers' Association (Cleveland, OH). 1987 Annual Report. 98 pp.

al Report. 28 pp.

"OKirsis, K. M., and P. J. Kakela. U.S. Spot Iron Ore
Market: Prices, Buyers & Sellers. Skillings' Min. Rev.,
v. 76, No. 46, Nov. 14, 1987, pp. 4-9.

"Midrex Corp. Direct From Midrex. MIDREX Plants
Produce 61% of World's DRI in 1987. V. 13, No. 3, 2d quarter, 1988, p. 10.

¹Physical scientist, Branch of Ferrous Metals.

²Unless otherwise specified, the unit of weight used in this chapter is the long ton of 2,240 pounds.

this chapter is the long ton of 2,249 pounds.

3Wall Street Journal. An Older Work Force Burdens Big
Producers in the Basic Industries. Mar. 5, 1987, pp. 1, 21.

4Skillings, D. N., Jr. TDCI Now Operating World's
Latest Iron Ore Pellet Plant at Divrigi in Anatollia
Region. Skillings' Min. Rev., v. 76, No. 2, Jan. 10, 1987,

14-21 pp. 14-21.

Table 2.—Employment at iron ore mines and beneficiating plants, quantity and tenor of ore produced, and average output per worker hour in the United States in 1987, by district and State

Averag District and State number		!	Productic	Production (thousand long tons)	ong tons)		Average pe	Average per worker hour (long tons)	(long tons)
Continu	Average Words of the complex of the	Worker hours thousands)	Crude ore	Usable ore	Iron contained (in usable ore)	content (natural) (percent)	Crude ore	Usable ore	Iron
Lake Superior: Michigan	1,834 3,737	3,527 7,777	35,925 108,632	12,294 33,645	7,830	63.7	10.19	3.49	2.22
Total or average 5,5% Other States² 2.2.	5,571 210	11,304 363	1144,556 1,209	45,939 878	29,487	64.2	12.79	4.06	2.61
Grand total or average 5,77	5,781	11,667	145,765	46,817	30,044	64.2	12.49	4.01	2.58

¹Data do not add to total shown because of independent rounding. $^2 {\rm Includes}$ California, Missouri, Montana, New Mexico, Texus, and Utah.

Table 3.—Crude iron ore1 mined in the United States in 1987, by district, State, and mining method

(Thousand long tons, unless otherwise specified, and exclusive of ore containing 5% or more manganese)

	District and State	Number of mines	Open pit	Under- ground	Total quantity ²
Lake Superior: Michigan Minnesota		 2 9	35,925 108,632		35,925 108,632
Total ²		 11	144,556		144,556
Other States: Missouri Other ³		 1 7	207	1,001	1,001 207
Total ²		 8	207	1,001	1,209
Grand total ² _		 19	144,764	1,001	145,765

¹Excludes byproduct ore.

Table 4.—Usable iron ore produced in the United States in 1987, by district, State, and type of product

(Thousand long tons and exclusive of ore containing 5% or more manganese)

***	District and State	Direct- shipping ore	Concen- trates	Agglomer- ates	Total quantity
11210111Barr = = =		-88	$1,\overline{404}$	12,294 32,153	12,294 33,645
Total		 88	1,404	44,447	45,939
Other States: Missouri Other ¹		 178	40 W	660 	700 178
Total		 178	40	660	878
Grand total _		 266	1,444	45,107	46,817

 $[\]vec{W}$ Withheld to avoid disclosing company proprietary data; included with "Direct-shipping ore." 1 Includes California, Montana, New Mexico, Texas, and Utah.

Table 5.—Shipments of usable iron ore1 from mines in the United States in 1987

(Exclusive of ore containing 5% or more manganese)

	Gross weig	ght of ore ship	ped (thousand	long tons)	Average iron	
District and State	Direct- shipping ore	Concen- trates	Agglom- erates	Total ²	content (natural) (percent)	Value (thousands
Lake Superior: Michigan Minnesota	88	$1,\overline{549}$	12,312 32,016	12,312 33,654	63.7 64.3	W \$1,012,788
Total reportable ² or average_	88	1,549	44,328	45,965	64.2	1,012,788
Other States: Missouri Other ³	437	40 (⁴)	705 	744 437	65.9 59.3	W 8,678
Total reportable ² or average Total withheld	437	40 	705 	1,181	63.5	8,678 481,621
Grand total ² or average	525	1,589	45,033	47,146	64.2	1,503,087

W Withheld to avoid disclosing company proprietary data; included in "Total withheld." Includes byproduct ore.

Data may not add to totals shown because of independent rounding.

Includes California, Montana, New Mexico, Texas, and Utah.

Data may not add to totals shown because of independent rounding.

Includes California, Montana, New Mexico, New York, Texas, and Utah.

Included with "Direct-shipping ore" to avoid disclosing company proprietary data.

491

Table 6.—Usable iron ore produced in the U.S. Lake Superior district, by range

(Thousand long tons and exclusive after 1905 of ore containing 5% or more manganese)

Year	Mar- quette	Menom- inee	Gogebic	Ver- milion	Mesabi	Cuyuna	Spring Valley	Black River Falls	Total ¹
1854-1980	507,608	329,269	320,334	103,528	3,286,994	70,336	8,149	8,618	4,634,836
1981	15,508	75			51,025			854	67,462
1982	6,874				23,898			241	31,013
1983	9,339				26,255				35,594
1984	12,982				36,697				49,679
1985	12,479				34,910	_ = =:			47,388
1986	10,558				r _{27,042}				r37,600
1987	12,294				33,645				45,939
Total ¹	587,642	329,344	320,334	103,528	3,520,466	70,336	8,149	9,713	4,949,512

PRevised.

Table 7.—Average analyses of total tonnage1 of all grades of iron ore shipped from the U.S. Lake Superior district

37.	Quantity			Content	(percent) ²		
Year	(thousand — long tons)	Iron	Phosphorus	Silica	Manganese	Alumina	Moisture
1982	32.173	63.50	0.018	5.40	0.13	0.31	2.60
1983	42,418	63.32	.018	5.35	.12	.29	2.64
1984	48,613	63.48	.018	5.28	.14	.32	2.66
1985	46,916	63.64	.016	5.17	.11	.29	2.63
1986	40,674	63.61	.015	5.21	.11	.29	2.66
1987	46,723	63.46	.014	5.12	.10	.24	2.31

¹Railroad weight—gross tons.

Source: American Iron Ore Association, 1982-86. This series is no longer published. The 1987 data are based on information reported to the Bureau of Mines.

Table 8.—U.S. consumption of iron ore and agglomerates in 1987, by region

(Thousand long tons and exclusive of ore containing 5% or more manganese)

D		ore and ntrates ¹	Agglome	rates ²	Miscella-	Total
Region	Blast furnaces	Steel furnaces	Blast furnaces	Steel furnaces	neous ³	reportable
Great Lakes ⁴ Northeastern, Southern, Western ⁵ Undistributed	W W 836	W W 80	46,101 18,245	W W 404	W W 1,032	46,101 18,245 2,352
Total	836	80	64,346	⁶ 404	1,032	66,698

W Withheld to avoid disclosing company proprietary data; included with "Undistributed."

¹Excludes pellets or other agglomerated products.

¹Data may not add to totals shown because of independent rounding.

²Iron and moisture on natural basis; phosphorus, silica, manganese, and alumina on dried basis.

²Includes approximately 39,471 units of pellets produced at U.S. mines and 8,420 units of foreign pellets and other

agglomerates.

*Includes iron ore consumed in production of cement and iron ore shipped for use in manufacturing paint, ferrites, heavy media, cattle feed, refractory and weighting materials, and for use in lead smelting.

*Includes Illinois, Indiana, Michigan, and Ohio.

Fincludes Alabama, Kentucky, Maryland, Pennsylvania, Utah, and West Virginia.

Fincludes an estimated 320 units of ore and agglomerates used for production of direct-reduced iron for steelmaking.

Table 9.—U.S. exports of iron ore, by country

(Thousand long tons and thousand dollars)

		198	35	198	36	198	7
	Country	Quantity	Value	Quantity	Value	Quantity	Value
Canada India		5,033	240,435	4,479	204,600 17	5,011	198,108
Mexico		(1)	10	1 .	45	1	42
Netherlands Venezuela	·	(1)	22	(1)	17 39	$-\overline{1}$	95
Other		(1)	87	(1)	. 20	(1)	9
Total ²		5,033	240,557	4,482	204,738	5,013	198,254

¹Less than 1/2 unit.

Table 10.-U.S. imports for consumption of iron ore, by country

(Thousand long tons and thousand dollars)

	198	35	198	36	198	37
Country	Quantity	Value	Quantity	Value	Quantity	Value
Australia		71 12	10	86	191	5,141
Brazil	2,540	49,322	3,693	71.045	3,640	64,820
Canada	8,557	325,248	8,696	311,757	7,854	246,181
Chile	164	2,320	93	2,126	626	12,601
Liberia	2,206	31,014	1,487	21.855	979	13,707
Mauritania			65	1.158	406	6,403
Peru	121	2,722	91	2,429	83	1,691
Philippines		7'	56	1.504	58	1,575
Spain					1	27
Sweden	65	1.503	104	2,473	137	3,334
Venezuela	¹ 2,068	139,369	² 2,309	² 42,126	³ 2,580	352,889
Other	_ 50	769	r ₁₃₈	r _{4,083}	29	413
Total ⁴	15,771	452,267	16,743	460,643	16,583	408,783

rRevised.

Table 11.—U.S. imports for consumption of iron ore, by customs district

(Thousand long tons and thousand dollars)

0	198	35	198	36	198	37
Customs district	Quantity	Value	Quantity	Value	Quantity	Value
Baltimore	3,673	71,363	5,567	144,725	5,881	125,887
Buffalo	(¹)	5	(¹)	25	(1)	30
Chicago	2,594	58,712	1.537	37.958	1,976	40,224
Cleveland	1,646	59,853	1,707	67,123	1,466	54,551
Detroit	542	19,107	382	17,798	627	27,196
Houston	165	2,541	42	745	9	177
Mobile	2,600	111,772	2,434	64.317	1,046	22,645
New Orleans	878	16,266	1,569	31,052	1,506	27,230
Philadelphia	3,408	107,029	3,237	90,592	3,749	103,101
Other	266	5,620	268	6,308	323	7,743
Total ²	15,771	452,267	16,743	460,643	16,583	408,783

Less than 1/2 unit.

²Data may not add to totals shown because of independent rounding.

¹Excludes approximately 214,000 long tons of sponge iron valued at \$15,635,828, originally reported as iron ore.

²Excludes approximately 83,000 long tons of sponge iron valued at \$8,340,609, originally reported as iron ore.

³Excludes approximately 18,000 long tons of sponge iron valued at \$1,849,584, originally reported as iron ore

⁴Data may not add to totals shown because of independent rounding.

²Data may not add to totals shown because of independent rounding.

See footnotes at end of table.

Table 12.—Iron ore, iron ore concentrates, and iron ore agglomerates: World production, by country¹

(Thousand long tons)

2		9	Gross weight ³				×	Metal content		
Country	1983	1984	1985	1986P	1987 ^e	1983	1984	1985	1986P	1987e
Albania ^{e 5} Alperia	840	61,063	1,100	1,130	1,180	280	350	370	r375	395
Argentina	r581	- 1563 - 1563	629	797	750	332	1,053 r341	383	1,650 506	470
Australia	69,916	92,900	91,392	92,648	98,400	44,583	57,400	e57,600	59,170	62,000
Austria Bolivia	3,484	3,543	3,218	3,071	3,000	1,090	1,120	1,003	961	930
Brazil	87,315	r110,361	126,225	130,199	129,500	57,064	r71,739	r e85,830	r e88,540	88,100
Bulgaria	1,775	2,030	1,954	2,145	2,170	545	612	597	651	655
Canada'	32,699 Fr 717	40,416	38,878	35,596	37,000	20,964	25,664	24,733	22,639	23,500
China	70,000	74,000	79 000	88,600	6,580 98,400	35,434	37,928	3904	4,131	3,940
Colombia	449	434	440	643	6605	202	195	198	r e230	270
Czechoslovakia – – – – – – – – – – – – – – – – – – –	1,873	1,839	e1,870	e1,870	1,570	482	473	e480	6490	330
Egypt	2,188	1,871	1,919	2,101	2,170	1,094	935	096	e1,048	1,080
Finland	1,257	1,212	e 1,180	e290	1	608	922	e740	e380	1
France	15,678	14,605	14,219	12,240	610,739	4,981	4,606	4,464	3,800	63,221
German Democratic Republic	33	r35	30	(10)	1	20	20	30	(10)	1
Germany, Federal Republic of	961	362	1,018	902	6243	275	288	304	500	L9 ₉
Greece	1,322	1,899	2,210	1,178	61,065	563	797	928	482	436
Hungary	434	377	306	13	1	104	91	74	I	1
Indonosio	38,187	40,378	41,873	47,045	•51,179	23,905	25,276	26,212	29,450	32,100
Intollesia	131 F1 630	82 ro 669	129 ro 755	151 r 9 760	191	1001	1. 590	11 500		1 500
Japan	293	319	333	286	6261 6261	185	199	906	179	6163
Korea, Northe	7,900	7,900	7,900	7.900	7.900	r3.150	r3.150	r3.150	r3.150	3.150
Korea, Republic of	645	615	533	573	460	^r 361	344	299	321	260
Liberia	14,701	14,862	15,076	15,053	613,525	9,114	9,212	9,271	9,330	8,400
Malaysia.	112	191	179	205	6158	69	117	109	125	969
Mauritania ¹²	7,268	9,377	9,186	8,788	68,858	4,724	5,663	r e5,970	r e5,710	5,760
Mexico ¹³	7,913	8,186	7,696	7,183	7,400	5,222	5,402	5,080	4,741	64,887
Morocco	170	160	188	193	e207	104	66	116	121	6126
New Zealand	2,168	2,376	2,480	r e2,540	62,254	1,236	1,354	1,402	e1,400	1,280
Norway	3,489	3,776	3,413	3,601	•3,091	2,271	2,462	2,218	2,340	•2,010
Dhilimino	4,219	3,916	4,815	4,956	4,770	2,847	.2,621	3,238	3,303	3,200
r minppines samplining	2	1	1	1	I I	7	-	1	i	1

Table 12.—Iron ore, iron ore concentrates, and iron ore agglomerates: World production, by country1 -Continued

(Thousand long tons)

Countral 2)	3ross weight3	-				Metal content4		
Connect	1983	1984	1985	₽986I	1987e	1983	1984	1985	1986P	1987€
	-							1		
Poland	10	11	11	6	00	63	000	00	8	6
Portugal 15	35	35	72	20	30	15	12	=	0	1 12
Romania	1,956	1,886	2,251	2,393	2.360	209	512	231	561	220
Sierra Leone	413	349	69 _e	. 1		260	219	630		
South Africa, Republic of 6	16,343	24,258	24,028	24,096	21,650	10,459	15.500	14.838	15.180	13.330
Spain ¹⁷	7,331	7,146	6,361	5,993	3,740	3,457	3,502	3,139	2.734	1.870
Sweden	14,040	17,837	20,131	20,165	619,317	9,124	11,003	13.287	e13,306	612,073
Thailand	33	09	93	36	695	22	35	51	21	653
Tunisia	311	303	304	306	295	166	163	163	r e164	160
Turkey	4,085	3,973	3,931	5,166	63,313	2,213	2.157	2.129	2.798	61 794
U.S.S.R	241,328	243,201	243,728	246,011	247,000	131,454	132,680	133,852	134.836	136,000
United Kingdom	378	397	210	284	295	8	84	29	, 663	59
United States 17	37,562	51,269	48,751	38,862	646,817	24,167	33,110	31.296	24.895	630.044
Venezuela	9,562	12,848	15,972	18,823	17,500	5.924	7,965	9,905	e11.650	10.800
Yugoslavia	4,939	5,237	5,391	6,513	2,900	1,505	1,808	e1,770	e1.970	1.770
Zambia		-	-	-	e 1	(18)	(18)	-	(18)	9
Zimbabwe	911	912	1,083	1,092	1,090	r565	r 566	671	677	677
Total	r728,247	r822,824	844,738	854,726	869,127	r417,858	r474,966	493,947	500,276	508,645

^rRevised. Preliminary. ^eEstimated

Table includes data available through July 22, 1988.

Insofar as availability of sources permits, gross weight data in this table represent the nonduplicative sum of marketable direct-shipping iron ores iron ore concentrates, and iron ore agglomerates produced by each of the listed countries. Concentrates and agglomerates produced from imported iron ores have been excluded, under the assumption that the ore from In addition to the countries listed, Cuba and Vietnam may produce iron ore, but definitive information on output levels, if any, is not available. which such materials are produced has been credited as marketable ore in the country where it was mined.

*Data represent actual reported weight of contained metal or are calculated from reported metal content. Estimated figures are based on latest available iron ore content reported, except for the following countries for which grades are Bureau of Mines estimates: Albania, China, Hungary, and North Korea.

Nickeliferous iron ore.

Series represent gross weight and metal content of usable iron ore (including byproduct ore) actually produced, natural weight. Reported figure.

Includes magnetite concentrate, pelletized iron oxide (from roasted pyrite), and roasted pyrite (purple ore). Includes "roasted ore," presumably from pyrite, not separable from available sources.

¹¹Data are for year beginning Mar. 21 of that stated. ¹⁰Revised to zero.

¹³Gross weight calculated from reported iron content based on grade of 66% Fe. ¹²Gross weight is exported iron ore (Mauritania exports all of its iron ore).

14Concentrates from titaniferous magnetite beach sands. ¹⁵Includes manganiferous iron ore.

¹⁶Includes magnetite ore as follows, in thousand long tons: 1983—3,414; 1984—3,780; 1985—3,550; 1986—3,940 (estimated); and 1987—4,900.

¹⁸Less than 1/2 unit.

¹⁷Includes byproduct ore.

Iron Oxide Pigments

By Donald P. Mickelsen¹

U.S. mine production, shipments, and value of crude iron oxide pigments, and total domestic shipments and value of natural and synthetic finished iron oxides increased in 1987. Unit values for most categories of finished iron oxides increased. Synthetic iron oxides comprised 64% of all shipments. BASF Corp., Chemicals Div., a producer of small amounts of synthetic iron oxide pigments, ceased domestic production.

Construction materials was the largest end use for iron oxide pigments, followed, in order of rank, by paints and coatings colorants for ceramics, glass, paper, plastics, rubber, and textiles; foundry sands; industrial chemicals; ferrites; and other.

Domestic list prices for iron oxides remained stable for the year, with list prices for natural iron oxides being unchanged from those in 1986, and synthetic iron oxides increasing only moderately. Price increases for synthetics reflected increased costs in materials and production.

The United States imported 90% more iron oxide pigments than it exported, the result of greatly increased imports and decreased exports. This was attributed to the decrease of the value of the U.S. dollar against foreign currencies and the strength of the domestic market. U.S. imports for consumption of both natural and synthetic iron oxide pigments increased significantly

compared with those of 1986, with the synthetic black and red categories increasing dramatically. World mine production of natural iron oxide pigments for reporting countries increased compared with that of 1986

Domestic Data Coverage.—Mine production and sales data for crude iron oxide pigments and sales data for finished iron oxide pigments and iron oxides from steel plant wastes were compiled from voluntary responses received from an annual survey of U.S. producers conducted by the Bureau of Mines. Responses for crude iron oxide mine production and sales data were received from five companies representing 100% of all iron oxide pigment producers known to mine or ship crude iron oxide pigments in the United States as shown in table 1. Of the 16 operations canvassed for finished iron oxide pigment sales data in 1987, all responded, representing 100% of the total production shown in table 2. Of the six companies canvassed for sales data for iron oxide recovered from steel plant wastes, including steel plant dust and regenerator oxide, 83% responded, representing 37% of the estimated production shown in the text discussion under "Domestic Production." Remaining data were estimated through analysis of industry trends and practices.

Table 1.—Salient U.S. iron oxide pigments statistics

		1983	1984	1985	1986	1987
Mine production	short tons	26,499	29,307	32,234	33,889	35.071
Crude pigments sold or used	do	41.875	53,017	46,585	40,987	42,773
Value	thousands	\$2,427	\$2,819	\$2,826	\$2,908	\$3,598
Finished pigments sold	short tons	122.861	129,492	126,822	r _{128,357}	137,010
Value	thousands	\$110,662	\$122,620	\$122,716	r\$126,388	\$136,427
Exports	short tons	12,661	32,428	29,720	28,841	22.249
Value		\$20,692	\$31,832	\$27,574	\$30,830	\$31,689
Imports for consumption		30,747	38,239	39,799	36,773	42,322
Value		\$16,684	\$21,523	\$22,565	\$21,517	\$20,680

Revised.

DOMESTIC PRODUCTION

Mine production of crude iron oxide pigments increased slightly over 1986 levels, while shipments increased 4% in quantity and 24% in value. Four companies mined and shipped various grades of iron oxide pigments. One company in Georgia mined and shipped ocher; magnetite was mined and shipped by a company in Missouri; and of two companies in Virginia, one mined and shipped sienna and umber, and the other shipped umber. In addition, Cleveland-Cliffs Iron Co., which permanently closed its Mather Mine in northern Michigan in 1979, continued to ship hematite from stockpiles.

Total domestic shipments of finished iron oxide pigments, excluding regenerator oxide, steel plant waste, and magnetic iron oxide, increased 7% in quantity and 8% in value compared with that of 1986. Synthetic iron oxides comprised the majority of total shipments, increasing significantly in quantity and value, while natural iron oxide pigments increased overall only slightly when compared with 1986 levels. Shipments of natural iron oxides were affected mainly by an increase in the red iron oxide category, by far the largest category, accounting for almost one-half of the natural oxides shipped in 1987. Total values for natural finished iron oxides in general increased, including red iron oxide, which increased 10% in 1987, recovering somewhat from a

sharp drop, which occurred in 1986.

Iron oxide for use in magnetic applications was produced domestically but is not shown in table 2. Production and shipment data are unavailable because of their proprietary nature.

An estimated 37,000 short tons² of steel plant byproduct iron oxides, in the form of regenerator oxide and steel plant wastes and dust, was shipped in 1987. Of the six plants canvassed, representing 45% of estimated shipments with a value of \$1.5 million, one-half showed increases. Data on the remaining steel plant wastes, while unavailable, are estimated to be used in the manufacture of ferrites, according to officials in the industry.

In 1987, Hoover Color Corp. added a new line of micaceous primer pigments to its natural iron oxide production. Micaceous iron oxide is a specular hematite whose particle has an elongated flaky shape. This plate-like structure, according to the company, improves corrosion resistance. In the past, natural micaceous iron oxides were produced mainly in Europe, but the Hoover product is produced domestically, has a reddish-brown color, and an iron content of 90%.3 Iron oxide pigment data, as shown in this publication, are becoming more generalized in various categories to protect company confidential information as fewer companies remain in the iron oxide business.

Table 2.—Finished iron oxide pigments sold by processors in the United States, by kind

	19	86	1987		
Kind	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands	
Natural:			•		
Black: MagnetiteBrown:	6,401	\$1,095	6,332	\$1,142	
Iron oxideUmbers	W	W	W	w	
Bumt Raw	¹ 3,311	¹ 2,989	w	W W	
Red:	()	()	**	**	
Iron oxide ³ Sienna, burnt Yellow:	22,878 ⁴ 334	3,294 ⁴ 311	24,259 W	3,612 W	
Ocher Sienna, raw	W (5)	W (⁵)	w w	w w	
Undistributed	14,335	4,525	18,517	7,852	
Total ⁶	47,259	12,213	49,108	12,606	

See footnotes at end of table.

Table 2.—Finished iron oxide pigments sold by processors in the United States, by kind —Continued

	19	986	19	87
Kind	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Synthetic: Brown: Iron oxide ⁷ Red: Iron oxide Yellow: Iron oxide ⁸ Other: Specialty oxides Mixtures of natural and synthetic iron oxides	^r 20,213 36,182 24,703 (⁹) (⁹)	*\$28,102 49,780 36,293 (*) (*)	24,287 36,816 26,799 (⁹) (⁹)	\$34,340 52,901 36,579 (°)
Total ⁶	r81,098	^r 114,175	87,902	123,821
Grand total ⁶	r _{128,357}	r _{126,388}	137,010	136,427

rRevised. W Withheld to avoid disclosing company proprietary data; included with "Undistributed."

⁷Includes synthetic black iron oxide.

Table 3.—Producers of iron oxide pigments in the United States in 1987

Producer	Mailing address	Plant location
Finished pigments:		
American Minerals Inc	Box 677 Camden, NJ 08101	Camden, NJ.
Blue Ridge Talc Co. Inc	Box 39 Henry, VA 24102	Henry, VA.
Chemalloy Co. Inc	Box 350 Bryn Mawr, PA 19010	Bryn Mawr, PA.
Columbian Chemicals Co	1600 Parkwood Circle Suite 400 Atlanta, GA 30339	St. Louis, MO, and Monmouth Junction, NJ.
DCS Color & Supply Co. Inc	2011 South Allis St. Milwaukee, WI 53207	Milwaukee, WI.
Foote Mineral Co	Route 100 Exton, PA 19341	Exton, PA.
Hilton-Davis Co	2235 Langdon Farm Rd. Cincinnati, OH 45237	Cincinnati, OH.
Hoover Color Corp	Box 218 Hiwassee, VA 24347	Hiwassee, VA.
Mobay Corp., Inorganic Chemicals Div $_$	Mobay Rd. Pittsburgh, PA 15205	New Martinsville, WV.
New Riverside Ochre Co	Box 387 Cartersville, GA 30120	Cartersville, GA.
Pea Ridge Iron Ore Co	Route 4 Sullivan, MO 63080	Sullivan, MO.
Pfizer Pigment Inc	640 North 13th St. Easton, PA 18041	Emeryville, CA; East St. Louis, IL; Easton, PA.
Prince Manufacturing Co	700 Lehigh St. Bowmanstown, PA 18030	Quincy, IL, and Bowmanstown, PA.
Pea Ridge Iron Ore Co	Route 4 Sullivan, MO 63080	Sullivan, MO.
Solomon Grind-Chem Services Inc	Box 8288 Springfield, IL 62791	Springfield, IL.
Crude pigments:	opringricia, in on or	
Cleveland-Cliffs Iron Co., Mather Mine and Pioneer plant (closed July 31, 1979; shipping from stockpile).	1100 Superior Ave. Cleveland, OH 44114	Negaunee, MI.
Hoover Color Corp	Box 218 Hiwassee, VA 24347	Hiwassee, VA.
New Riverside Ochre Co	Box 387 Cartersville, GA 30120	Cartersville, GA.
Virginia Earth Pigments Co	Box 1866 Pulaski, VA 24301	Hillsville, VA.

Includes raw umber.

Includes raw umber.

Included with burnt umber to avoid disclosing company proprietary data.

Includes your bound to the state of the stat

⁶Data may not add to totals shown because of independent rounding.

⁸Includes other specialty oxides and mixtures of natural and synthetic iron oxides.

Included with synthetic yellow iron oxide to avoid disclosing company proprietary data.

CONSUMPTION AND USES

Iron oxide pigments were consumed mainly as an ingredient in construction materials; in coatings; and as colorants for ceramics, glass, paper, plastics, rubber, and textiles. In some cases, end-use data reported by producers may be estimated, because some producers keep less detailed end-use records than others.

Iron oxide pigment consumption in construction materials increased to become the largest end use for iron oxide pigments in 1987, surpassing use for coatings, which has been traditionally the largest consuming sector. Construction materials accounted for nearly one-third of iron oxide usage in 1987 and totaled 43,214 tons, increasing significantly over the 1986 level of 37,697 tons. According to F. W. Dodge, the Information Systems Div. of McGraw-Hill Co., newly started construction in 1987 reached a record-high value of \$254.7 billion. Nonbuilding construction, including public works and utilities, represented the largest growth area, increasing 8% to a value of \$45.3 billion. Nonresidential building rose 7% to a record-high \$89.4 billion, which was strengthened by a 15% gain in institutional structures. Residential housing declined slightly to \$119.9 billion.4

Coatings accounted for slightly less than one-third of the iron oxide pigment consumption, decreasing moderately in 1987 to 39,270 tons compared with 41,900 tons in 1986. Shipments of lacquer, paint, and varnish, reported by the U.S. Department of Commerce, totaled about 1 billion gallons of coatings valued at \$9.5 billion, up only slightly in volume but 7% in value over that

of 1986. Architectural coatings comprised 51% of all shipments and totaled 510 million gallons; product coatings—original equipment manufacture was 36% of shipments, or 360 million gallons; and special-purpose coatings was 13%, or 133 million gallons.

Of all iron oxides, 12%, or 16,683 tons, was consumed as colorants for plastics, glass and ceramics, rubber, and paper and textiles, in order of rank, remaining unchanged from the levels of consumption in 1986. Iron oxides, which are the second largest type of inorganic pigments consumed, are popular because of their low cost, coloring effectiveness in thermoplastics and thermosets, and Food and Drug Administration acceptance for food contact and medical applications.

The remaining 27% of reported iron oxide pigment consumption, in order of rank, was for use in foundry sands, industrial chemicals, the manufacture of animal feed and fertilizers, ferrites, cosmetics, and other end

Regenerator oxide and steel plant dust, not accounted for in table 4, were used mainly in the manufacture of ferrites, with lesser amounts used in coatings, as colorants for construction materials, and in fertilizers and foundry sands. An estimated 37,000 tons was shipped for consumption in 1987. Magnetic iron oxides, also not included in the table, were mainly used in the manufacture of magnetic media such as magnetic tapes and floppy disks, magnetic toners, and other electronic applications.

Table 4.—Estimated iron oxide pigment consumption, by end use, as a percentage of reported shipments

End use		All iron oxides		Natural iron oxides		Synthetic iron oxides	
2.10 450	1986	1987	1986	1987	1986	1987	
Coatings (industrial finishes, trade sales: lacquers, paints, varnishes	r ₃₃	29	19	19	r ₄₁	34	
Construction materials (cement, mortar, preformed concrete, roofing granules)	29	32	30	24	r ₂₉	36	
Colorants for ceramics, glass, paper, plastics, rubber, textiles	12	12	12	13	r_{12}	12	
Foundry sands	$^{\mathbf{r}}5$	6	14	17	(2)		
Industrial chemicals (such as catalysts)	6	5	w	w	w	W	
Animal feed and fertilizers	r ₅	4	11	9	W	W	
Other (including cosmetics and ferrites)	10	12	³ 14	³ 18	r 418	4 18	
Total	100	100	100	100	100	100	

^rRevised. W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Data do not include magnetic iron oxide usage.

²Revised to zero

³Includes industrial chemicals iron oxide usage.

Includes animal feed and fertilizers and industrial chemicals iron oxide usage.

PRICES

List prices for natural grades of iron oxide pigments and black synthetic iron oxide pigments sold in 1987 by major producers remained unchanged from those of 1986. Prices for brown, red, and yellow synthetic iron oxide pigments increased several percent, reflecting higher materials

and production costs. A strong domestic market, the decline in the value of the U.S. dollar, and close competition among producers and distributors of natural and synthetic iron oxide pigments led to a stable domestic market in 1987.

Table 5.—Prices quoted on finished iron oxide pigments, per pound, bulk shipments, December 31, 1987

Pig	ment	Low	High
Black:			
Natural		 	\$0.2700
Synthetic		\$0.6900	.7150
Micaceous			.6878
Brown:			
Ground iron ore		 .1300	.1450
Metallic		 .1650	.2950
Pure, synthetic		 	.7350
Sienna, domestic, burnt		 	.4500
Sienna, domestic, raw		 .3600	.4400
Sienna, Italian, burnt		 .4500	.7300
Umber, Turkish, burnt		 .4350	.5200
Vandyke brown		 	.4450
Red:			
Domestic primers, natural, micronized			.2378
Pure, synthetic		 	.6900
Spanish		 	.2950
Yellow:			
Synthetic		 	.7100
Ocher, domestic		 	.2200

¹Prices shown represent the best information available but are not to be considered definite according to the source.

Source: American Paint and Coatings Journal.

FOREIGN TRADE

The United States imported 90% more iron oxide pigments than it exported in 1987 according to the U.S. Department of Commerce. This trade imbalance represented an increase of 62% over that of 1986 and was the result of increased domestic demand and the decline in the value of the U.S. dollar against foreign currencies. Total value of U.S. exports of iron oxide pigments was \$31.7 million, or \$11 million greater than that of U.S. imports, resulting in a trade surplus for this commodity.

U.S. exports of pigment-grade iron oxides and hydroxides decreased 23% in quantity but increased slightly in value compared with those of 1986. These exports were received by 45 countries, principally in Europe, other North American countries, and Asia. Chief destinations for pigment-grade iron oxide pigments, in order of rank, were the Federal Republic of Germany, Canada, Japan, and the United Kingdom. Exports to the Federal Republic of Germany decreased 49% in quantity and 38%

in value from those of 1986. Exports of other grades of iron oxides and hydroxides increased 11% in quantity and 7% in value compared with those of 1986. Main destinations were, in order of rank, the Republic of Korea, Mexico, Belgium-Luxembourg, Australia, Brazil, and Japan.

U.S. imports for consumption of iron oxide pigments increased significantly in quantity but decreased slightly in value compared with those of 1986, and were received from 30 countries. Imports of synthetic iron oxides increased 14% in quantity but decreased 6% in value. Synthetic iron oxides comprised over three-quarters of all imports received, a slight decrease from that of 1986. Synthetic black and red grades of iron oxides increased in quantity, while synthetic yellow and other synthetic grades decreased. Synthetic iron oxides were received chiefly from Canada, the Federal Republic of Germany, Mexico, Japan, and the United Kingdom, comprising 42%, 29%, 10%, 8%, and 3%, respectively, of total

imports, with 8% received from other countries.

U.S. imports of natural iron oxides increased 20% in quantity and 15% in value compared with 1986 levels. The most sizable increases, which were mainly responsible for overall increases in natural imports, occurred in crude umbers and in Vandyke brown, which rose significantly over 1986 levels. Cyprus, the Federal Republic of Germany, Canada, and Spain, in order of rank, supplied 92% of all imports of natural iron oxides. Finished umber was primarily re-

ceived from Cyprus and the United Kingdom; sienna, from Austria and Italy; and Vandyke brown, from the Federal Republic of Germany. Minor amounts of natural crude and synthetic iron oxides were received and stored in bonded warehouses for future consumption.

Periodically, iron oxide pigments also enter the United States under the combined classification "Iron compounds, other." In 1987, iron oxides, including regenerator oxides, were received from Canada and several Western European countries.

Table 6.—U.S. exports of iron oxides and hydroxides, by country

Algeria Argentina Argentina Australia Belgium-Luxembourg Brazil Bulgaria Canada China Colombia Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Japan Japan Japan Japan Japan Japan Japan Mexico Netherlands New Zealand Panama Peru	Pigmen Quantity short tons) - 2 168 35 383 148 2,868 39 59 - 38 223 - 3 - 3 415 19,875 767 2 31 40 3 355 7	Value (thousands) \$\frac{3}{2}\$ \$\frac{2}{2}\$ \$\frac{1}{2}\$ \$\frac{2}{3}\$ \$\frac{1}{2}\$ \$\frac{1}{2	Other Quantity (short tons) 58 10 263 680 188 6 322 20 3 5 53 (1) 20 161 180 463 403 3 3 3 12	Value (thou-sands) \$50 34 630 945 736 19 817 230 24	Pigmer Quantity (short tons)	Value (thou-sands) \$\frac{\$\sigma \cdot 2}{\$\sigma \cdot 2}\$ \$\frac{{\sigma \cdot 2}{\$\sigma \cdot 2}\$ \$\sigma \c	Other Quantity (short tons) 169 20 393 403 384 24 304 15 146 122 135 - 1 2 2 40 106 90 - 153 133 40 5	grade Value (thou-sands) \$156 71 783 647 1,177 81 493 600 156 156 159 155 274 184 184 623 662 662 500 12
Algeria	- 2 168 83 83 12,868 39 59 59 59 59 59 59 767 21 31 40 31 40 31 40 31 40 31 40 40 40 40 40 40 40 40 40 40 40 40 40	(thou-sands) \$31 250 71 178 43 3,748 551	tity (short tons) 58 10 263 6300 188 6 6 6 6 6 6 6 6 6	(thou-sands) \$50 34 630 945 736 19 817 230 24 6 9 35 1 43 289 79 4	tity (short tons)	\$28 468 12 81 81 6,186 291 38 277 147 35 -4 1,415 6,705 2,972 2,972 20	tity (short tons) 169 20 393 403 384 24 304 15 146 12 135 - 1 2 40 10 126 90	(thou-sands) \$156 71 783 647 1,177 81 81 81 493 600 156 18 473 2 19 59 15 274 184 623 662 500
Argentina Argentina Belgium-Luxembourg Brazil Bulgaria Canada China Colombia Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru Peru	168 35 38 314 2,868 39 59 38 32 23 3 411 5,875 767 2 31 40 3 355	250 711 178 43 3,748 75 51 153 58 - 4 1,447 10,799 2,151 95 87 87 81,749	10 263 680 188 6 6 6 322 52 20 3 3 5 53 (1) (2) 20 161 180 10 223 3	34 630 945 736 19 817 230 24 - - 6 9 35 1 43 289 353 2,023 29 79 4	173 9 28 3,920 82 42 	468 12 18 6,186 291 38 277 147 35 -4 1,415 6,705 2,972 9	20 393 403 384 24 24 304 15 146 12 135 2 40 10 126 90 - - - - - - - - - - - - - - - - - -	71 783 647 1,177 81 493 60 156 18 473 - 2 19 59 15 274 184 - 623 662 50
Australia Belgium-Luxembourg Brazil Bulgaria Canada China Colombia Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Frinland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Israel Istaly Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	168 35 38 314 2,868 39 59 38 32 23 3 411 5,875 767 2 31 40 3 355	250 711 178 43 3,748 75 51 153 58 - 4 1,447 10,799 2,151 95 87 87 81,749	263 630 188 6 822 52 20 	630 945 736 19 817 230 24 6 9 35 1 43 289 353 2,023 29 79	173 9 28 3,920 82 42 	468 12 18 6,186 291 38 277 147 35 -4 1,415 6,705 2,972 9	393 403 384 24 304 15 146 12 135 -1 2 40 10 126 90 -153 133 40	783 647 1,177 81 493 600 156 18 473 - 2 19 59 15 274 184 - 623 623 662
Belgium-Luxembourg Brazil Bulgaria Canada China Colombia Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	35 83 14 2,868 39 59 59 38 32 23 -1 3 40 40 3 355	712 1748 3,748 3,748 75 51 	680 1888 6 322 52 20 3 5 5 53 (1) 180 161 180 223 3 3	945 736 19 817 230 24 6 9 35 1 43 289 353 2,023 29 79 4	9 28 3,920 82 42 -24 135 17 -(1) -386 10,205 19 1,032 1	12 81 6,186 291 38 277 147 35 -4 1,415 6,705 2,972 9	403 384 24 304 15 146 12 135 1 2 40 10 126 90 - 153 133 40	647 1,177 81 11 493 60 156 6 18 473 - 2 19 59 59 15 274 184 - - - - - - - - - - - - - - - - -
Brazil Brazil Bulgaria Canada China Colombia Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Israel Istaly Jamaica Japan Jamaica Japan Mexico Netherlands Antilles New Zealand Panama Peru	83 2,868 39 59 38 32 23 3 3 415 19,875 767 2 31 40 3 355	178 3,748 3,748 75 51 153 43 58 - 4 1,447 10,799 2,151 95 87 87 1,749	188 6 822 552 20 3 5 53 (1) 20 161 180 223 3 3 3	736 19 817 230 24 -6 9 35 1 43 289 353 2,023 29 79	28 3,920 82 42 -24 135 17 -(1) -386 10,205 19 1,032 1 12	81 6,186 291 38 277 147 35 4 1,415 6,705 2,972 9	384 24 304 15 146 12 135 -1 2 40 126 90 -153 133 40	1,177 81 493 600 1566 18 473 - 2 199 15 274 184 - 623 662 500
Bulgaria Canada China Colombia Colombia Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	14 2,868 39 59 38 32 23 3 19,875 767 2 31 40 355	43 3,748 75 51 -153 43 58 -4 1,447 10,799 2,151 95 87 87 1,749	6 322 52 20 3 5 5 53 (1) 20 161 180 3 10 223 3 3	19 817 230 24 -6 9 35 1 43 289 353 2,023 29 79	3,920 82 42 	$\begin{array}{c} 6,\overline{186} \\ 291 \\ 281 \\ 38 \\ \hline 277 \\ 147 \\ 35 \\ \hline -4 \\ \hline 1,\overline{415} \\ 6,705 \\ 6,705 \\ 2,972 \\ 9 \\ 20 \\ \end{array}$	24 304 15 146 12 135 -1 2 40 10 126 90 -153 133 40	81 493 60 156 18 473 19 59 15 274 184 - - - - - - - - - - - - - - - - -
Canada China Colombia Colombia Costa Rica Demmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	2,868 39 59 38 32 23 -3 -415 19,875 767 2 31 40 3 355	3,748 75 51 153 43 58 - 4 1,447 10,799 2,151 9 95 87 87 1,749	322 52 20 -3 5 53 (1) 20 161 180 463 10 223 3 3	817 230 24 6 9 35 1 43 289 353 2,023 29 79	82 42 	291 38 -77 147 35 -4 1,415 6,705 36 2,972 9 20	304 15 146 12 135 1 2 40 10 126 90 153 133 40	493 600 1566 188 473 2 19 59 15 274 184 2 623 662 50
China Colombia Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	39 59 38 32 23 3 415 19,875 767 2 31 40 3 355	75 51 153 43 43 58 -4 1,447 10,799 2,151 95 87 1,749	52 200 3 5 5 53 (1) 20 161 180 10 223 3 3	230 24 -6 9 35 1 43 289 353 2,023 29 79 4	82 42 	291 38 -77 147 35 -4 1,415 6,705 36 2,972 9 20	15 146 12 135 - 1 2 40 10 126 90 - 153 133 40	60 156 18 473 - 2 19 59 15 274 184 - 623 662 50
Colombia Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	59 -38 32 23 -3 415 19,875 -767 2 31 40 3 355	51 153 43 58 -4 1,447 10,799 2,151 9 95 87 87 1,749	20 -3 5 53 (¹) 20 161 180 3 5 53 (¹) 20 20 20 20 3 3 3 3 3 3 3 3 3 3 3 3 3	24 6 9 35 1 43 289 353 2,023 29 79 4	42 	38 277 147 35 -4 1,415 6,705 36 2,972 9 20	146 12 135 1 2 40 10 126 90 153 133 40	156 18 473 2 19 59 15 274 184 623 662 50
Costa Rica Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	38 32 23 -3 415 19,875 -767 2 31 40 3 355	153 43 58 -4 1,447 10,799 2,151 9 95 87 1,749	3 5 5 53 (1) 20 161 180 -463 10 223 3	 6 9 35 1 43 289 353 2,023 29 79	24 135 17 (1) 386 10,205 19 1,032 1	277 147 35 -4 1,415 6,705 36 2,972 9	12 135 -1 2 40 10 126 90 -153 133 40	18 473 - 2 19 59 15 274 184 - 623 662 50
Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	32 23 3 3 415 19,875 67 2 31 40 3 355	43 58 -4 1,447 10,799 2,151 9 95 87 8 1,749	5 53 (1) 20 161 180 	9 35 1 43 289 353 2,023 29 79 4	135 17 (1) 386 10,205 19 1,032 1	147 35 -4 1,415 6,705 36 2,972 9	135 - 1 2 40 10 126 90 - 153 133 40	473 2 19 59 15 274 184
Dominican Republic Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Zealand Panama Peru	32 23 3 3 415 19,875 67 2 31 40 3 355	43 58 -4 1,447 10,799 2,151 9 95 87 8 1,749	5 53 (1) 20 161 180 	9 35 1 43 289 353 2,023 29 79 4	135 17 (1) 386 10,205 19 1,032 1	147 35 -4 1,415 6,705 36 2,972 9	1 2 40 10 126 90 153 133 40	19 59 15 274 184 -623 662 50
Ecuador Egypt El Salvador Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands Antilles New Zealand Panama Peru	23 	58	5 53 (1) 20 161 180 	9 35 1 43 289 353 2,023 29 79 4	17 (1) 386 10,205 19 1,032 1	1,415 6,705 36 2,972 9	2 40 10 126 90 153 133 40	19 59 15 274 184 623 662 50
Egypt El Salvador Finland France Germany, Federal Republic of 1 Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands Netwe Zealand Panama Pare Peru		$-\frac{1}{4}$ $1,\overline{447}$ $10,799$ $2,\overline{151}$ 9 95 87 8 $1,749$	53 (1) 20 161 180 	35 1 43 289 353 2,023 29 79 4	386 10,205 19 1,032 1	$ \begin{array}{r} -\frac{7}{4} \\ 1,415 \\ 6,705 \\ 36 \\ 2,972 \\ 9 \\ 20 \end{array} $	2 40 10 126 90 153 133 40	19 59 15 274 184 623 662 50
El Salvador Frinland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Israel Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Izeland New Zealand Panama Peru	415 19,875 767 2 31 40 3 355	1,447 10,799 2,151 9 95 87 8 1,749	(1) 20 161 180 463 10 223 3	1 43 289 353 2,023 29 79 4	386 10,205 19 1,032 1	$ \begin{array}{r} 1,415 \\ 6,705 \\ 36 \\ 2,972 \\ 9 \\ 20 \end{array} $	40 10 126 90 153 133 40	59 15 274 184 623 662 50
Finland France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands Netherlands Antilles New Zealand Panama Peru	415 19,875 767 2 31 40 3 355	1,447 10,799 2,151 9 95 87 8 1,749	20 161 180 463 10 223 3	43 289 353 2,023 29 79 4	386 10,205 19 1,032 1	$ \begin{array}{r} 1,415 \\ 6,705 \\ 36 \\ 2,972 \\ 9 \\ 20 \end{array} $	10 126 90 153 133 40	15 274 184 623 662 50
France Germany, Federal Republic of Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands Netherlands Antilles New Zealand Panama Peru	767 2 31 40 3 355	10,799 2,151 9 95 87 8 1,749	161 180 463 10 223 3	289 353 2,023 29 79 4	10,205 19 1,032 1 12	6,705 36 2,972 9 20	126 90 153 133 40	274 184 623 662 50
Germany, Federal Republic of Honduras Honduras India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands Antilles New Zealand Panama Peru	767 2 31 40 3 355	10,799 2,151 9 95 87 8 1,749	180 463 10 223 3 3	353 2,023 29 79 4	10,205 19 1,032 1 12	6,705 36 2,972 9 20	90 153 133 40	184 623 662 50
Honduras Hong Kong India Indonesia Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands Netherlands Antilles New Zealand Panama Peru	767 2 31 40 3 355	2,151 9 95 87 8 1,749	463 10 223 3	2,023 29 79 4	$\begin{array}{c} 19 \\ 1,032 \\ 1 \\ 12 \end{array}$	36 2,972 9 20	$1\overline{53} \\ 133 \\ 40$	623 662 50
Hong Kong India	2 31 40 3 355	9 95 87 8 1,749	10 223 3 3	29 79 4	$1,0\overline{32}$ 1 12	2,972 9 20	133 40	662 50
India	2 31 40 3 355	9 95 87 8 1,749	10 223 3 3	29 79 4	$\frac{1}{12}$	9 20	133 40	662 50
Indonesia Ireland Israel Isay Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands New Eaaland Panama Peru	31 40 3 355	87 8 1,749	223 3 3	79 4	12	20	40	50
Ireland Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands Netherlands Antilles New Zealand Panama Peru	3 355	87 8 1,749	3	4				
Israel Italy Jamaica Japan Korea, Republic of Malaysia Mexico Netherlands Netherlands Netherlands New Zealand Panama Peru	355	1,749		31			•	
Italy			19					
Jamaica Japan Japan Korea, Republic of Malaysia Mexico Netherlands Netherlands Antilles New Zealand Panama Peru	7		12	19	508	2,173	1	2
Korea, Republic of Malaysia Mexico Netherlands Netherlands Antilles New Zealand Panama Peru		9					1	2
Malaysia Mexico Netherlands Netherlands Antilles New Zealand Panama Peru	1,795	2,565	756	1,883	2,697	2,721	369	757
Mexico Netherlands Netherlands Antilles New Zealand Panama Peru	74	107	2,584	9,318	379	560	3,407	12,105
Netherlands	23	23			2	3	57	103
Netherlands Antilles New Zealand Panama Peru	376	426	1,073	1,811	456	531	1,594	2,433
New Zealand Panama Peru	46	172	88	211	121	260	118	188
PanamaPeru	$-\bar{7}$			=.=			11	49
Peru		16	21	47	2	3	4	. 9
Peru	(¹)	1	2	4	3	6		
	8	123		5.5	5	. 7	7.7	
Philippines	117	139	3	10	107	146	22	21
Singapore	61	86	181	625	10	20	91	225
South Africa, Republic of	5 5	11	6	13	39	120		5.7
Spain	Э	22	19	12	40	106	72	246
Sweden	22		11	16	16	236	4	9
Switzerland		66	(1)	1	1	3		
Taiwan Thailand	286 52	625 48	95	224	244	590	51	83
Trinidad	92	40			236 13	194	26	27
Turkey	5	34			13 7	3	14	28
United Kingdom	1.049	5,188	$\bar{237}$	$\bar{532}$	1.059	13 4.799	$\bar{219}$	$\bar{340}$
Uruguay	5	3,100	201	302	1,059	4,799	219	340 2
Venezuela	38	87	45	39	114	227	20	86
Other	8	23	1	2	7	30	3	10
						00	<u>_</u>	10
Total ² 2								

¹Less than 1/2 unit.

Source: Bureau of the Census.

²Data may not adds to totals shown because of independent rounding.

Table 7.—U.S. imports for consumption of selected iron oxide pigments, by type

	19	986	19	987	Major sources, 1987 ¹
Туре	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	(short tons)
Natural:					
Crude: Ocher	603	\$72	53	\$91	France 45; West Germany 5 Japan 3.
Sienna Umber	46 5,119	13 838	19 5,667	915	Cyprus 19. Cyprus 5,640; West Ger- many 26; United King-
Other	207	377	753	557	dom 1. Canada 686; Japan 62; Peru 4; West Germany 1.
Total ¹	5,974	1,301	6,491	1,566	
Finished: Ocher Sienna	98	660	6 270	8 173	Canada 6. Italy 146; Austria 79; Cy- prus 35; West Germany 6; Canada 3; United King-
Umber	736	233	456	143	dom 1. Cyprus 352; United King-
Vandyke brown	572	293	1,576	342	dom 84; Spain 20. West Germany 1,463; Bel-
Other	638	242	845	212	gium 113. Spain 602; Mexico 220; Can- ada 19; West Germany 3; Japan 1.
Total ¹	2,045	834	3,152	878	
ynthetic: Black	1,041	605	4,726	718	Canada 4,502; West Ger- many 143; Netherlands 40; Japan 24; Mexico 15;
Red	6,987	2,960	10,916	3,575	China 2; Hong Kong 1. Canada 6,273; West Ger- many 2,055; Japan 1,094; Mexico 992; Spain 168; United Kingdom 97; Bra- zil 76; Belgium 69; China 60; Republic of Korea 22;
Yellow	13,102	5,524	11,225	6,843	Netherlands 11. West Germany 6,201; Mex- ico 2,194; United King- dom 976; Canada 969; Brazil 600; Japan 91; Netherlands 60; China 59
Other ²	7,624	10,293	5,811	7,100	Belgium 40; Spain 20; Por tugal 9; Denmark 4. Canada 2,026; Japan 1,515; West Germany 1,151; Netherlands 851; Belgium 88; United Kingdom 69; Austria 40; Mexico 28;
. ·			· .		Norway 20; Portugal 20; Sweden 4.
Total ¹	28,754	19,382	32,679	18,235	
Grand total ¹	36,773	21,517	42,322	20,680	

Source: Bureau of the Census.

¹Data may not add to totals shown because of independent rounding. ²Includes synthetic brown oxides, transparent oxides, and magnetic and precursor oxides.

Table 8.—U.S. imports for consumption of iron oxide and iron hydroxide pigments, by country

• • • • • • • • • • • • • • • • • • •		Nati	ıral			Synt	hetic	
	1986 1987		1986		1987			
Country	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Austria			79	\$66	79	\$54	40	\$35
Belgium-Luxembourg	20	\$ 6	113	14	145 545	142 363	196 676	98 411
Canada China	22	31	$7\overline{13}$	$\overline{135}$	6,807 14	1,612	$13,770 \\ 121$	2,559 64
Cyprus Denmark	5,379	947	6,045	$1,\overline{027}$	- 1	- - 4		- 7
France Germany, Federal Republic of _	$\frac{-39}{613}$	$\frac{104}{340}$	$\frac{45}{1,504}$	$\begin{array}{c} 21 \\ 460 \end{array}$	$18 \\ 14,017$	52 7,806	9,549	6,934
Ireland	 86	 48	1,304	78	22	14		0,934
Italy Japan Korea, Republic of	110	320	66	335	$2,\overline{175}$	6,229	$2,\overline{724}$	4,505
Mexico			$\bar{220}$	$\bar{1}\bar{2}$	$2,\overline{604}$	$1,\overline{613}$	$\frac{22}{3,230}$	16 1,938
Netherlands Norway	21	10			146	79 	961 20	439 52
Peru Portugal			4	112	20	6	29	233
Spain Sweden	926	225	622	136	213 7	40 165	188	80 26
Switzerland	1 184	 9 83	(1) 87	2 47	(¹)	2	(1)	9
United Kingdom Other	184	83 12	(1)	(1)	1,922 ^r 20	1,126 ^r 67	1,142 1	825 4
Total ²	8,019	2,135	9,643	2,445	28,754	19,382	32,679	18,235

rRevised.

Source: Bureau of the Census.

WORLD REVIEW

World mine production of natural iron oxide pigments for reporting countries increased 6% compared with that of 1986, totaling 253,000 tons. In addition to the countries listed in table 9, other countries, including the centrally planned economy countries, produced natural iron oxide pigments in 1987. Production data, however, are not available.

Synthetic iron oxides comprise the largest percentage of colored inorganic pigment production in the world. Their popularity is attributed to a performance-price relationship. Iron oxides exhibit high tinctorial strength and hiding power, chemical resistance, lightfastness, and weatherfastness at low pigmentation costs. Synthetic iron oxides have made continuous gains in total market share over natural iron oxides because of product consistency, higher tinting strengths, and more saturated color shades compared to natural grades. Principal world producers of synthetic iron oxides include, in decreasing order, the Federal Republic of Germany, the United States, Japan, Mexico, and Brazil. One published article has placed worldwide demand for both natural and synthetic iron oxide pigments at 570,000 tons.⁷

In 1987, sales of iron oxides in Japan were expected to decrease slightly to 168,200 tons. This follows a surprising 13% jump in sales from 1985 to 1986. Magnetic material end uses were expected to continue to dominate iron oxide sales, comprising over 70% of the total, or 120,000 tons. Other major end uses for Japanese-produced iron oxides were, in order of rank, paints, roads, printing inks, building materials, synthetic resins, ceramics, paper, and other.

In the United Kingdom, Deanshanger Oxides Ltd. announced plans to expand its synthetic iron oxides plant at Deanshanger, Milton Keynes, England. The company plans to invest \$15 million to increase production capacity and improve technology, and to make major environmental improvements over the next 2 years. Deanshanger Oxides, the only manufacturer of synthetic iron oxide pigments in the United Kingdom, produces a product labeled "Deanox." Deanox is used domestically in

¹Less than 1/2 unit.

²Data may not add to totals shown because of independent rounding.

concrete, paint, paper, plastics, roof tiles, and rubber. It is also exported to a range of overseas markets.9

Feb. 1, 1988, p. 15.

*Bureau of the Census (Dep. Commerce). Paint, Varnish, and Lacquer. Rep. M28F(87)-12, 1987.

*American Paint and Coatings Journal. The Markets: 1987—The Year Raw Material Prices Turned Around. V. 72, No. 29, Dec. 28, 1987, p. 22.

*Seymour, R. B. Coatings Progress in the Mid 1980's. J. Coatings Technol., v. 59, No. 745, Feb. 1987, pp. 49-55.

*Roskill Information Services Ltd. (London). Roskill's Letter From Japan. Ferric Oxide: 1987 Demand Expected To Fall 2% as Domestic Market Weakens. RLJ No. 138, Oct. 1987, pp. 11-12.

*Polymers Paint Colour Journal (London). Deanshanger Oxides To Invest 10M. V. 177, No. 4185, Feb. 18, 1987, p. 82.

Table 9.—Natural iron oxide pigments: World mine production, by country1

(Short tons)

1983	1984	1985	1986 ^p	1987 ^e
940	r ₈₃₄	3,307	2,205	2,800
12.935	e _{12,700}	12,768	12,930	12,800
4.211	4.689	e _{5.000}	e ₅ ,200	5,500
3.100	3,100	2,200	2,200	2,200
7,442	17,762	9,065	4,854	5,500
17,637	14,440	13,448	11,023	11,000
17,600	16,500	16,000	16,500	17,100
21.921	17.833	17.377	12,528	12,600
		119,655	94,040	104,700
	10.031	4.740	r e ₄ .700	4.700
			960	950
			670	2.100
				275
				1,640
1,001	1,000		2,000	-,
10.890	11 371	11 346	e _{11.600}	11,600
				22,000
				⁵ 35.071
				220
	940 12,935 4,211 3,100 7,442 17,637	940 r834 12,935 e12,700 4,211 4,689 3,100 3,100 7,442 17,762 17,637 14,440 17,600 16,500 21,921 17,833 97,701 118,886 3,858 10,031 1,000 900 r1,187 r1,153 200 275 1,861 1,092 10,890 11,371 22,000 22,000 26,499 29,307	940	940

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through Apr. 15, 1988.

provide a world total.

3Includes Vandyke brown.

⁵Reported figure.

¹Mineral industry specialist, Branch of Ferrous Metals.

²Unless otherwise specified, the unit of weight in this chapter is the short ton.

³American Paint and Coatings Journal. New Products: ³American Paint and Coatings Journal. New Products: PT Micaceous Primer Pigment. V. 71, No. 47, May 4, 1987,

^{4——.} December Contracts Gain—Dodge Construction up Percent for Month, 2 Percent for Year. V. 72, No. 34,

In addition to the countries listed, a considerable number of others undoubtedly produce iron oxide pigments, but output is not reported, and no basis is available for formulating estimates of output levels. Such countries include (but are not limited to) China and the U.S.S.R. Because unreported output is probably substantial, this table is not added to

⁴Iranian calendar year (Mar. 21 to Mar. 20), beginning in the year stated.

Iron and Steel

By Frederick J. Schottman¹

Production and shipments of domestic steel increased because of stronger demand. Imports of steel from most major steelproducing countries remained restricted by trade agreements, and the lower value of the U.S. dollar made the United States a less attractive market for foreign producers. On the other hand, the lower dollar value helped domestic producers to increase exports.

The domestic industry continued restructuring. Several companies were in bankruptcy and numerous companies

changed ownership. The minimill sector was consolidated as leading companies bought independent mills. The financial performance of most companies improved as higher prices and shipments led to improved profitability.

Total world production increased, and the balance between supply and demand improved after a long period of excess capacity. The steel industries in most industrialized countries continued to close older capacity while new capacity was being installed or planned in less developed countries.

Table 1.—Salient iron and steel statistics

(Thousand short tons unless otherwise specified)

	1983	1984	1985	1986	1987		
United States:							
Pig iron:							
Production	48,770	51,961	49,963	44,287	40.000		
Snipments	49,081	52,164	50,010	44,287	48,308		
Average value, per ton	\$205.19	\$195.43	\$202.46	\$187.52	48,370 \$189.75		
Exports ¹ Imports for consumption ¹	6	57	32	47			
Imports for consumption 1	242	702	338	295	50 355		
Steel: ²							
Production of raw steel:							
Carbon	73,783	79,918	70.000				
Stainless	1,750	1,772	76,699 1,683	71,413	77,976		
All other alloy	9.082	10,838	9,877	1,689	2,028		
· · · · · · · · · · · · · · · · · · ·	- 0,002	10,000	3,011	8,505	9,147		
Total	84,615	92,528	88,259	381,606	00 151		
Capability utilization4percent	56.2	68.4	66.1	63.8	89,151 79.5		
Net shipments of steel mill products	67,584	73,740	73,043	70,263	76,654		
Producer price index for steel mill prod-	•		10,010	10,200	10,004		
ucts ⁵	100.9	104.7	104.7	99.8	102.3		
Exports of major iron and steel products ¹	1,589	1,413	1,266	r _{1,201}	1,419		
Imports for consumption of major iron and	-		-,00	1,201	1,415		
steel products ¹ World: Production:	17,964	27,488	25,707	r22,145	21,534		
	_	• • • •	,	22,140	21,004		
Pig iron	r509,706	^r 546,234	556,301	P553,369	e564,918		
Raw steel (ingots and castings)	r730,750	^r 782,918	789,980	P783.347	e804,843		

eEstimated. Preliminary. Revised.

¹Bureau of the Census.

²American Iron and Steel Institute (AISI).

SData do not add to total shown because of independent rounding.

^{*}Raw steel production capability is defined by AISI as the tonnage capability to produce raw steel for a sustained full order book.

⁵Bureau of Labor Statistics

Domestic Data Coverage.—Domestic data for the iron and steel industry are developed by the Bureau of Mines from the annual "Blast Furnace and Steel Furnace Report." Of the 28 iron and steel operations to which a survey request was sent, 73%

responded, representing 77% of the total pig iron production shown in table 1. Production for nonrespondents was estimated using data from prior year reports and from published and privately communicated information.

DOMESTIC PRODUCTION

Production of raw steel and shipments of finished steel products recovered from the low levels in 1986, which had been depressed by major strikes. Shipments were the highest since 1981. Capability utilization was low early in the year because of a continuing strike, but rose to more than 80% during most of the last 9 months of the year. The American Iron and Steel Institute (AISI) estimated that the raw steel production capability of the industry declined to 112.2 million short tons in 1987, down from 127.9 in 1986 and 160.0 million in 1977. The industry continued to shift to more modern processes for production and casting of raw steel. The fraction of steel produced in electric furnaces again increased while that produced in open-hearth furnaces decreased. Basic oxygen furnaces (BOF), electric furnaces, and open-hearth furnaces produced 58.9%, 38.1%, and 3.0%, respectively, of raw steel. New continuous casters helped boost the portion of steel that was continuously cast to 59.8%, up from 55.2% in 1986.

Shipments for almost all steel products increased, with particularly large increases for products used by the construction and machinery industries. Shipments of structural shapes, plates, and reinforcing bar were each up 14% compared with those in 1986. Shipments of products used in the automotive industry and in consumer goods such as appliances increased by smaller amounts. Shipments of most types of sheet increased 5% to 7%. Shipments of electrolytic galvanized sheet increased 59% as new galvanizing lines came up to normal operations. Shipments to the oil and gas industry recovered from low levels in 1986 but remained below the levels of earlier years. Shipments to the can industry rose about 7%, reversing a long-term downtrend.

Total shipments of iron and steel castings, as reported by the Bureau of the Census, were little changed. Shipments of gray iron, ductile iron, and malleable iron castings in 1987 were 5.687, 2.919, and 0.318 million tons, respectively, compared with 5.829, 0.975, and 0.320 million tons, respectively, in 1986. Shipments of steel castings were 0.830 million tons in 1987 compared

with 0.826 in 1986.

Employment in the iron and steel industry, as reported by AISI, was again lower. Average employment for the year was down to 163,000 from 175,000 in 1986. The industry employed 121,000 workers on wages and 42,000 on salary. Employment rose during the year as production increased, and reported employment in December was 172,000. Unions representing workers in the steel industry continued to make concessions in new labor contracts. New contracts at Rouge Steel Co. and Allegheny Ludlum Corp. essentially froze base wages and provided for a reduction of 300 jobs through attrition at Rouge. A contract at Latrobe Steel Co. included wage reductions. The contract, settling a 6-month strike at USX Corp., reduced labor costs about 10% by reducing hourly costs by about \$2 per hour and approved changes designed to improve productivity. In return, the union won concessions for profit sharing and a company commitment to modernization projects.

Despite new concessionary contracts, average employment costs for hourly employees, as reported by AISI, increased slightly to \$23.707, up from \$23.242 in 1986.

For the first time since 1981, the companies reporting financial data to AISI had positive total net income. These companies had a total net income of \$1.017 billion, equal to 3.8% of sales.

Following the settlement of its strike, USX announced cutbacks that would reduce its raw steel capacity from 26.2 to 19 million tons per year. During the year, USX permanently closed its Baytown, TX, plate mill and Saxonburg, PA, sinter plant. After USX announced that there were no plans to reopen the Geneva integrated steel mill at Provo, UT, the plant was bought by a newly formed company, Basic Manufacturing & Technologies of Utah Inc., and reopened as Geneva Steel Co. To make the investment attractive, workers at the plant agreed to a contract cutting labor costs by about 30% in return for profit sharing.

Employees at McLouth Steel Products Corp. bought majority ownership in the company through an Employee Stock Ownership Plan (ESOP). McLouth had been sold while in bankruptcy in 1982 but had not been able to recover financially. ESOP's provide companies with certain tax benefits. Weirton Steel Co., with the Nation's largest ESOP-assisted financial plan, has operated profitably since it was sold to its workers in 1983.

Sharon Steel Corp. filed for bankruptcy under chapter 11 of the Federal Bankruptcy Code. Two other integrated steel companies, Wheeling-Pittsburgh Steel Co. and LTV Steel Co., had filed for bankruptcy in earlier years. The three companies continued to operate while trying to restructure financially.

Several other facilities were closed during the year. Phoenix Steel Corp. closed its Claymont, DE, plate plant and its Phoenixville, PA, pipe mill. The company had emerged from bankruptcy in 1985 under a new owner and was again seeking to sell the plants. Armco Inc. shut down a meltshop and bar mill at its Kansas City, MO, plant, but more modern parts of the plant continued to operate. In specialty steel, Braeburn Alloy Steel Div. of CCX Inc. stopped melting operations for tool steel at Lower Burrell, PA, and Carpenter Technology Corp. began to phase out production of stainless steel at Bridgeport, CT. The minimill industry was consolidated by the purchase of independent mills by multiplant companies. Florida Steel Corp. bought Knoxville Iron Co., a minimill in Knoxville, TN, and North Star Steel Co. agreed to buy Milton Manufacturing Co., a relatively small and old minimill in Milton, PA.

Kentucky Electric Steel Corp. reopened its steel mill in Ashland, KY, which had been closed in 1985. The steelmaking division of Copperweld Corp. was spunoff as CSC Industries Inc.

Inland Steel Industries Inc. and Nippon Steel Corp. formed a joint venture to build a \$400 million, 2.5-million-ton-per-year cold-rolling mill to process steel from Inland's Indiana Harbor, IN, integrated steel mill. When completed in 1990, the mill was to replace older mills at Indiana Harbor and to improve quality while reducing production costs through improved productivity.

Nucor Corp. was building two new major

electric-furnace steel mills. The Nucor-Yamato Steel Co., a joint venture with Yamato Kogyo of Japan, planned to produce 650,000 tons per year of large structural shapes at Blytheville, AR. The \$175 million mill was to use new rolling technology developed by Yamato and was to employ 600 workers.

Nucor was also building an 800,000-tonper-year minimill in Crawfordsville, IN, to produce hot- and cold-rolled sheet. The plant was designed with new thin-slab continuous casting technology that was to produce a 2-inch-thick slab compared with a 6inch slab in conventional casting. The thinner slab was expected to significantly reduce rolling costs.

Materials Used in Ironmaking.—Domestic pellets charged to blast furnaces totaled 44.18 million tons, and sinter charged amounted to 18.45 million tons. Pellets and other agglomerates from foreign sources amounted to 9.44 million tons. A total of 11.21 million tons of iron ore was consumed by agglomerating plants at or near blast furnaces, producing 18.48 million tons of agglomerates. Other materials consumed by agglomerating plants were 2.57 million tons of mill scale, 0.88 million tons of flue dust, 0.69 million tons of coke breeze, and 4.32 million tons of fluxes.

According to AISI, blast furnaces consumed 32.0 billion cubic feet of oxygen. AISI also reported that blast furnaces consumed, in addition to coke, 37.6 billion cubic feet of natural gas; 16.8 billion cubic feet of coke oven gas; 142.6 million gallons of oil; and 4.4 million gallons of tar and pitch.

Materials Used in Steelmaking.—According to AISI, steelmaking furnaces consumed 4.40 million tons of lime, 0.88 million tons of limestone, 0.13 million tons of fluorspar, 0.82 million tons of other fluxes, and 135.3 billion cubic feet of oxygen. Metalliferous materials consumed in domestic steel furnaces, per ton of raw steel produced, averaged 1,085 pounds of pig iron, 1,096 pounds of scrap, 25 pounds of ferroalloys, and 4 pounds of ore and agglomerates. The comparable figures for 1986 were 1,076 pounds of pig iron, 1,164 pounds of scrap, 24 pounds of ferroalloys, and 5 pounds of ore and agglomerates.

PRICES

The producer price index for steel mill products, as reported by the Bureau of Labor Statistics, was relatively stable during most of 1987 but began to rise late in the

year. The index was within the range of 100.7 to 102.3 during the first three quarters, but rose steadily from 102.2 in September to 106.3 at yearend. Prices strengthened

late in the year because of relatively tight supplies for some products and because of

rising raw material costs.

Products produced primarily by minimills had relatively steep price increases because of higher scrap prices in the second half of 1987. Between December 1986 and December 1987, the price indexes for merchant quality bars and light structurals both increased 13%. The index for wire rod increased 7%.

Although prices for flat-rolled products had been expected to weaken when USX restarted production after its strike settlement, these prices generally held steady through the summer and then began to rise as demand picked up. The price index for carbon steel plate rose 18% from December 1986 to December 1987. A rebound in capital equipment demand combined with the shutdown of plate capacity had tightened the supply situation. However, the price recovery was from low levels, and at yearend, prices were still below those in 1982. Other flat-rolled products were increased by smaller amounts.

FOREIGN TRADE

Exports of iron and steel products increased significantly for the second year because of the lower value of the U.S. dollar in international trade.

Imports for consumption of iron and steel products declined for the second year. Imports of most steel products from most major exporting countries remained controlled by export restraint agreements. Stronger international markets and the lower value of the dollar made the U.S. market less attractive to exporters. The same factors also helped boost the average value of imported steel mill products 9% from \$388 per ton in 1986 to \$421 per ton in

1987.

The European Economic Community (EEC) remained the largest supplier of imported steel with 28% of the total, while Japan supplied 21%, and Canada, 18%. Canada remained the most important exporting country without an export-restraint agreement.

In July, a program of special tariffs and quotas on specialty steel, which was set to expire, was extended to September 1989. The new expiration date coincided with the expiration date of export restraint agreements covering most other steel products.

WORLD REVIEW

World production of pig iron and steel increased. With declining capacity in the industrialized countries, the supply and demand of steel was moving into better balance. However, there remained significant local imbalances because of currency fluctuations and long-term trends in the world economy.

Europe and Japan faced problems of excess capacity. The steel industries in Europe continued to shrink as obsolete capacity was closed. The EEC had made significant progress in restructuring its steel industry. The EEC ended production quotas on some products and indicated its intention to end all quotas. The Japanese steel industry had suffered a loss in international competitiveness when the yen appreciated in value, and

almost all major steel companies announced plans for cuts in capacity and major reductions in employment.

On the other hand, developing countries with low labor costs, and in some cases with low raw materials costs, planned capacity increases. Pohang Iron & Steel Co. Ltd. in the Republic of Korea started production at its second plant and announced further expansion plans. Brazil, although limited by foreign debt problems, planned further expansions. China continued a steady growth in capacity. Vigorous expansion of electric-furnace steel mills in Turkey was making it a major steel exporter.

¹Physical scientist, Branch of Ferrous Metals.

Table 2.—Pig iron produced and shipped in the United States in 1987, by State

		Production	Shipped fro		
	State	(thousand short tons)	Quantity (thousand short tons)	Value (thousands)	Average value per ton at furnace
Ohio Pennsylvania _		8,965 23,975 10,299 5,070	8,912 24,108 10,297 5,053	\$1,630,957 4,328,844 2,155,359 1,063,041	\$183.01 179.56 209.32 210.38
Total or avera	age	¹ 48,308	48,370	9,178,201	189.75

¹Data do not add to total shown because of independent rounding.

Table 3.—Foreign iron ore and manganiferous iron ore (excluding agglomerates) consumed in manufacturing pig iron in the United States, by source

Source	1986¹	1987²
Brazil Canada Venezuela Other	62 111 690 27	33 112 W 809
Total	³ 889	954

W Withheld to avoid diclosing proprietary data; included with "Other."

1Excludes 8,392,815 tons used in making agglomerates.

2Excludes 10,064,740 tons used in making agglomerates.

3Data do not add to total shown because of independent rounding.

Table 4.—Iron ore and other metalliferous materials, coke, and fluxes consumed in blast furnaces, and pig iron produced in the United States, by State

(Thousand short tons unless otherwise specified)

Coke and fluxes consumed per ton of pig iron (short tons)	Net Fluxes coke		0.518 0.085 .491 .027 .542 .079 .552 .090	.479 .045	.517 .038	.510 .051		.543 .081	.479 .023	.497 .044
	Net total ⁴		1.585 1.587 1.578 1.553	1.560	1.629	1.581	1 069	1.582	1.574	1.609
rials cons iron made ons)	Mis- cel- lane-	eno s	0.026 .024 .058 .034	.038	.020	.034	160	.031 .031	.028	.035
Metalliferous materials consumed per ton of pig iron made (short tons)	Net scrap ²		0.161 .051 .045 .061	900.	990.	.047	900	.050 .076 .052	.031	070.
Metallife per	Net ores and ag-	giom- erates ¹	1.399 1.512 1.475 1.503	1.515	1.543	1.500	902	1.502 1.501 1.499	1.515	1.504
Pig	iron pro- duced		2,382 18,656 9,457 4,423	6,230	3,141	44,287	1	23,975 10,299 5,070	8,965	48,308
	Fluxes		203 504 743 397	580	120	52,247		533 984 413	202	62,131
	Net coke		1,233 9,167 5,123 2,440	2,985	1.625	22,573		11,430 5,556 2,751	4,294	24,031
	Net	TOTAL	3,776 29,601 14,927 6.868	9.717	5.116	70,004		38,569 17,027 8,020	14,112	77,728
furnaces	Mis-	iane- ous³	61 552 150	888	69	1.502		509 784 159	251	1,703
d in blast	Net	scrap	383 951 428	3 68	206	620.6		2,060 787 262	280	3,389
Metalliferous materials consumed in blast furnaces	Net ores	glomer- ates	3,332 28,211 13,946	0.490	4 047	4,041 66 429		$\begin{array}{c} 36,000 \\ 15,456 \\ 7,600 \end{array}$	13.581	72,637
s material	Ag-	erates	3,337 28,421 13,989	0,011	9,490	4,550 65,006	00,000	36,221 15,462 7,697	13 536	72,917
talliferou	nd ous ores	For- eign	982	160	747	1 000	800	WW W	109	954
Me	Iron and manganiferous ores	Do- mestic	¦ → ∞ {	Ĉ.	3	98 3	104	WW.	ĸ	
	State	•	1986: Illinois Indiana and Michigan Ohio	PennsylvaniaAlabama, Kentucky,	MarylandTexas, Utah, West	Virginia	Total* or average ==	1987: Illinois, Indiana, Michigan Ohio ————————— Pennsylvania	Alabama, Kentucky, Maryland, Utah, West	Virginia

W Withheld to avoid disclosing company proprietary data; included with "Agglomerates." Net ores and agglomerates equal ore plus flue dust used minus flue dust recovered.

Excludes home scrap produced at blast furnaces.

³Does not include recycled material.

Fluxes consisted of the following: 1,320,000 tons of limestone, 1,000 tons of burnt lime, 757,000 tons of dolomite, and 170,000 tons of other fluxes, excluding 2,385,000 tons of limestone, 20,000 tons of other fluxes used in agglomerating production at ore near steel plants and an unknown quantity used in making agglomerates at mines. Fluxes consisted of the following: 1,388,000 tons of limestone, 500 tons of burnt lime, 644,000 tons of dolomite, and 99,000 tons of other fluxes, excluding 3,125,000 tons of limestone, 1,863,000 tons of burnt lime, 644,000 tons of dolomite, and 25,000 tons of other fluxes used in agglomerating production at or near steel plants and an unknown quantity used in making agglomerates at mines.

Table 5.—Pig iron shipped from blast furnaces in the United States, by grade1

			1986			1987			
Grade	Quantity	Val	ue	Quantity	Value				
	(thousand short tons)	Total (thousands)	Average per ton	(thousand	Total (thousands)	Average per ton			
	ot ferroalloys)	43,223 W 1,149	\$8,135,905 W 184,780	\$188.23 W 160.86	46,853 W 1,517	\$8,951,667 W 226,534	\$191.06 W 149.33		
Total or	average	44,372	² 8,320,686	187.52	48,370	9,178,201	189.75		

W Withheld to avoid disclosing company proprietary data; included with "All other." Includes molten iron transferred directly to steel furnaces.

Table 6.—Number of blast furnaces in the United States, by State

State -		1986			1987	
	In blast ¹	Out of blast	Total	In blast ¹	Out of blast	Total
Alabama Illinois ndiana Centucky Aaryland dichigan Nhio	3 3 11 2 1 6 10 5 	1 2 7 3 3 8 10 1 1 1	4 5 18 2 4 9 18 15 1	1 3 11 2 1 5 10 7 -3	3 2 6 -3 3 7 7 -3 1	4 5 17 2 4 8 17 14 - - 3
Total	45	38	83	43	35	78

¹In blast for 180 days or more during the year.

Table 7.—U.S. steel production, by type of furnace

Year	Open- hearth	Basic oxygen converter	Electric	Total ¹
1983	5,951	52,050	26,615	84,615
	8,336	52,822	31,370	92,528
	6,428	51,885	29,946	88,259
	3,330	47,885	30,390	81,606
	2,666	52,496	33,989	89,151

¹Data may not add to totals shown because of independent rounding.

Source: American Iron and Steel Institute.

Table 8.—Metalliferous materials consumed in steel furnaces1 in the United States

Year	Iron	Iron ore ² Agglomerates ²		Agglomerates ²		P	
	Domestic	Foreign	Domestic	Foreign	Pig iron	Ferro- alloys ³	Iron and steel scrap
1983 1984 1985 1986 1987	9 43 54 24 89	96 98 91 70 W	75 78 79 87 98	33 43 29 3 W	48,300 51,291 49,257 43,910 48,347	1,063 1,166 1,088 979 1,122	45,280 48,415 50,002 47,475 48,873

²Data do not add to total shown because of independent rounding.

W Withheld to avoid disclosing company proprietary data; included with "Domestic."

¹Basic oxygen converter, open-hearth, and electric.

²Consumed in integrated steel plants only.

³Includes manganese metal, ferrochromium, ferromanganese, ferromolybdenum, ferrosilicon, silicomanganese, and spiegeleisen. Includes ferroalloys added to steel outside the furnace.

⁴Internal evaluation indicates that scrap consumption is understated by approximately 4.0 million short tons.

Table 9.—U.S. consumption of pig iron, by type of furnace or other use

.,	1985		198	36	1987	
Type of furnace or other use	Thousand short tons	Percent of total	Thousand short tons	Percent of total	Thousand short tons	Percent of total
Basic oxygen converter Open-hearth Electric Cupola Air and other furnaces ¹ Direct castings ²	44,515 4,737 503 501 56 1,100	86.6 9.2 1.0 1.0 .1 2.1	41,582 2,325 313 428 58 899	91.2 5.1 .7 .9 .1 2.0	46,741 W 1,880 370 56 982	93.4 W 3.8 .1 2.0
Total ³	51,411	100.0	45,604	100.0	50,030	100.

W Withheld to avoid disclosing company proprietary data; included with "Electric."
¹Includes vacuum melting furnaces and miscellaneous melting processes.
²Castings made directly from blast furnace hot metal. Includes ingot molds and stools.
³Data may not add to totals shown because of independent rounding.

Table 10.—U.S. consumption of pig iron,1 by State

(Thousand short tons)

State	1986	1987
Alabama	w	931
Connecticut	w	3
	2,372	2,577
Illinois	14.044	16,708
Indiana	43	38
Iowa	6	8
Kansas	16	10
Massachusetts	4.929	4,934
Michigan	4,929	15
Minnesota	12	11
New York		11,658
Ohio	9,973	5.195
Pennsylvania	4,702	
Tennessee	w	. 8
Texas	62	12
Virginia	W	18
West Virginia	w	2,584
Wisconsin	45	42
Undistributed ²	9,385	5,277
Total ³	45,604	50,030

W Withheld to avoid disclosing company proprietary data; included with "Undistributed." ¹Includes molten pig iron used for ingot molds and direct

¹Includes molten pig iron used for ingot molds and direct castings.
²Includes California, Florida, Kentucky, Louisiana (1987), Maine, Maryland, Missouri, New Hampshire, New Jersey, North Carolina, Oklahoma (1987), Oregon, South Carolina, Utah, Washington, and data indicated by symbol W

³Data may not add to totals shown because of independent rounding.

Table 11.—U.S. exports of major iron and steel products

	19	985	19	986	19	87
Product	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Steel mill products:						
Ingots, blooms, billets, slabs, sheet						
bars	89.708	\$28,000	58,885	\$18,812	73,543	\$34,285
Wire rods	4.922	8,047	6,206	9,195	8,850	15,200
Structural shapes, 3 inches and	1,022	0,011	0,200	0,100	0,000	10,200
over	41,633	40,461	31,698	21,275	63,159	28,283
Structural shapes, under 3 inches	7,139	7,897	6,995	7,463	11,563	10.196
Sheet piling	628	466	5,729	6,136	2,552	1,637
Plates	82,988	57,784	69,565	55,709	96,538	67.655
Rails and track accessories	10.937	10.844	9,447	11,057	11,988	13,228
Wheels and axles	2.493	14,875	3,685	18,796		
Concrete reinforcing bars	7,409	3,553	14.197		3,766	17,767
				4,907	20,550	8,213
Bars, carbon, hot-rolled	27,577	11,842	19,561	9,572	40,675	18,272
Bars, alloy, hot-rolled	34,871	37,298	25,862	33,900	24,845	41,408
Bars, cold-finished	20,854	28,182	13,491	22,291	21,925	29,831
Hollow drill steel	1,062	1,891	790	1,730	1,677	2,850
Pipe and tubing	199,258	285,182	121,050	188,212	149,941	220,513
Wire	18,758	31,215	26,081	37,574	26,146	44,178
Nails, brads, spikes, staples	5.445	21,670	5,862	31,659	7.905	34.285
Blackplate	32,754	7,704	70,488	22,178	73,967	27,731
Tinplate and terneplate	141,729	64,463	214,122	71,312	172,842	71,794
Sheets, hot-rolled	56,696	35,429	75,906	46,204	80,001	67,933
Sheets, cold-rolled	46,465	47,968	37,672	130,547	46,685	45,866
Strip, hot-rolled	12.482	13,742	13,683	17,386	28,321	
Strip, cold-rolled						21,448
Distrib, cold-rolled	23,827	41,073	20,863	32,574	15,838	45,802
Plates, sheets, strip, galvanized,	00.010	FF 400	Ter a com	Tro coo	***	04.000
coated or clad	60,319	55,493	^r 74,685	r _{59,896}	110,705	81,222
Total ¹	929,954	855,078	r926,521	r _{858,386}	1,093,982	949,597
ther steel products:						····
Plates and sheets, fabricated	13,677	27.214	11.133	18.023	10,708	20,806
Structural shapes, fabricated	46,770	93,396	34,098	67,121	35,662	70,791
Architectural and ornamental	20,110	20,020	04,000	01,121	00,002	10,131
work	1,765	8,174	2,552	7.171	1 479	5,532
Sashes and frames	6,815	20,339	4,242		1,472	
Diag and traines				16,765	5,462	20,639
Pipe and tube fittings	16,362	126,336	18,645	155,183	25,189	182,307
	5,472	8,010	r _{2,883}	r4,930	5,631	6,376
Bolts and nuts	58,944	106,094	44,186	100,502	55,608	88,229
Forgings	46,269	68,444	46,649	67,505	78,202	83,824
Cast-steel rolls	1,471	2,389	1,243	2,582	1,880	2,700
Railway track material	2,843	5,276	2,812	4,272	5,774	1,259
Total ¹	200,387	465,672	^r 168,444	r444,053	225,587	482,464
on products:						
Cast-iron pipes, tubes, fittings	41.523	64.236	65,307	69,253	91 000	E0 F00
Iron castings	94.419			94,495	31,898	52,586
_	34,419	90,994	40,473	34,909	67,197	55,134
Total ¹	135,942	155,230	105,780	104,161	99,095	107,719
Grand total ¹	1,266,283	1,475,980	r _{1,200,744}	r _{1,406,601}	1,418,665	1,539,781

Source: Bureau of the Census.

Table 12.—U.S. imports for consumption of pig iron, by country

	1985		19	86	1987	
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Australia	17	\$ 15			21,158	\$1,577
Brazil	130,762	13,772	143,154	\$15,472	118,736	12,235
Canada	166,291	29,920	112,607	20,324	209,898	37,985
China	1,968	330	6,041	1,129	200,000	0.,000
France	7,241	1,219		_,		
Norway		·			4,561	543
South Africa, Republic of	30,504	4,936	32,944	5,434	-,	
Other	^r 1,475	⁴ 427	221	124	359	160
Total	338,258	50,619	294,967	¹42,482	354,712	52,500

Source: Bureau of the Census.

Revised.
 Data may not add to totals shown because of independent rounding.

^rRevised. ¹Data do not add to total shown because of independent rounding.

Table 13.—U.S. imports for consumption of major iron and steel products

	19	85	19	86	19	87
Product	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Steel mill products:						1000
Ingots, blooms, billets, slabs, sheet						Commence
bars	1,878,953	\$385,462	1,907,274	\$391,269	2,101,145	\$468,889
Wire rods	1,479,749	501,994	1,367,221	472,387	1,471,949	501,989
Structural shapes, 3 inches and			_,		-,	30
over	2,019,245	580,305	1,748,604	515,737	1,778,314	537,598
Structural shapes, under 3 inches	140,317	53,507	166,369	61,515	140,469	56,708
Sheet piling	102,790	37,837	107,013	40,047	109,705	42,712
Plates	2,303,682	628,335	r _{1,593,056}	r457,362	1.676,588	857,523
Rails and track accessories	358,442	127,906	266,084	79,999	227,869	66,454
Wheels and axles	23,604	19,638	9,626	9,614	18,120	13,433
Concrete reinforcing bars	409,612	88,353	454,735	102,718	351,632	87.143
Bars, carbon, hot-rolled	445,001	152,544	419,699	135,123		148,977
Bars, alloy, hot-rolled	207,427	112,279	r171.546	r96,615	176,968	100,350
Bars, cold-finished	326,395	213,153	r236,149	r _{169,188}	222,639	182,735
Hollow drill steel	1,260	1,383	1,378	1,530	2,050	2,383
Welded pipe and tubing	2,529,895	1,028,470	1,939,948	786,443	1,758,349	729,688
Other sine and tubing	1.942.051	1,173,810	1,939,948	592.187		
Other pipe and tubing					969,191	559,035
Wire	629,086	428,856	583,072	396,936	607,185	393,244
Wire nails Wire fencing, galvanized	403,522	199,126	393,673	219,223	440,746	257,209
Wire fencing, galvanized	25,311	16,915	24,475	18,038	21,358	17,688
Blackplate	241,375	99,928	205,937	r84,835	159,779	72,050
Tinplate and terneplate	419,242	222,114	380,268	199,484	363,524	193,110
Sheets, hot-rolled	2,433,705	708,727	2,101,876	594,816	2,134,221	666,220
Sheets, cold-rolled	2,803,532	1,208,379	^r 2,764,195	r _{1,175,118}	2,329,020	1,102,208
Sheets, coated (including						
galvanized) Strip, carbon, hot-rolled	2,621,340	1,226,192	2,489,419	1,158,634	2,577,799	1,297,140
Strip, carbon, hot-rolled	62,154	19,353	43,557	15.486	18.130	9.341
Strip, carbon, cold-rolled	216,458	127,200	123,380	94,380	102,028	82,980
Strip, alloy, hot- or cold-rolled	•	•				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
(including stainless)	67.849	105,585	49,846	81,192	28.083	50,821
Plates, sheets, strip, electro-		•	•			and the straight of
lytically coated (other than						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
with tin, lead, or zinc)	186,485	98,291	131,379	69,596	122,097	69,538
Total ¹	24,278,482	9,565,642	r20,676,642	r8,019,473	20,350,816	8,567,164

Other steel products:						100
Plates, sheets, strip, fabricated	36,157	16,578	47,822	22,459	84,076	40,705
Structural shapes, fabricated	285,169	271,542	r352,500	r278,020	214,208	162,846
Pipe fittings	118.328	176,135	r92,218	r142,322	67.948	133,544
Rigid conduit	17,650	11,955	r _{19,491}	r _{11,376}	4,910	3,399
Bale ties made from strip	812	634	752	616	437	384
Nails, brads, spikes, staples,				010	101	901
tacks, not of wire	45,801	60,298	50,823	70,083	53,861	95,393
Bolts, nuts, rivets, washers, etc	638,314	724,509	647,002	748,820	565,651	682,007
Forgings	68,915	47,270	46,864	34,395	28,983	25,720
Total ¹	1,211,146	1,308,921	r _{1,257,473}	r _{1,308,091}	1,020,073	1,143,999
*						
Iron products:						
Cast-iron pipes, tubes, fittings	78,395	59,455	57,799	59,808	60,220	59,606
Iron castings	139,313	85,088	152,632	92,222	103,173	102,062
Total ¹	217,708	144,543	210,432	152,030	163,393	161,668
Grand total	25,707,336	11,019,106	r22,144,546	r _{9,479,595}	21,534,282	9,872,830

Source: Bureau of the Census.

^rRevised. ¹Data may not add to totals shown because of independent rounding.

IRON AND STEEL

Table 14.—Pig iron: World production, by country¹

Country ²	1983	1984	1985	1986 ^p	1987 ^e
lgeria ^e	³ 1.213	1,210	1,210	1,210	1,210
rgentina ⁴	2,052	1,983	3,306	2,866	33,070
ustralia	5,561	5.874	6,181	6,492	36,151
ustria	3,660	4,128	4,083	3,692	3,580
elgium	8,849	9.886	9,611	8,863	8,800
razil ⁴	14,269	18,960	20,911	22,432	22,390
ulgaria	1,789	1,739	1,876	1,760	1,760
urma	17	10.000	10 077	10.195	10.50
anada	9,443	10,629	10,654	651	68
hile	595	655	639		59.40
hina	41,204	44,070	e48,100 258	^e 55,300 352	35
olombia	266	278		e10,500	11.00
zechoslovakia	10,434	10,539	e10,500	e220	220
gypt	216	248	175		
inland	2,092	2,242	e2,000	e2,100	2,10
rance	15,274	16,578	17,004	e15,500	14,70
erman Democratic Republic ⁵	2,433	2,598	2,842	3,018	2,87
ermany, Federal Republic of	29,319	33,293	34 <u>,</u> 757	31,987	331,43
reece ^e	152	152	^r 154	^r 180	18
ungary	2,256	r _{2,312}	2,309	2,264	³ 2,32
ndia	10,016	10,342	10,841	11,584	12,10
an	265	276	276	276	27
aly	11,399	12,818	12,851	13,122	11,50
apan	80,398	88,629	88,812	82,289	380,87
orea. North ^e	6.100	6,300	6,400	6,400	6,40
orea, Republic of	8.845	9,660	9,737	9,940	312,18
uxembourg ⁵	2,553	3,051	3,037	2,923	32,54
	5.549	5,924	5,616	5,566	5,72
lexico ⁴	17	17	17	17	1
forocco ^e	4.130	5,430	5.312	5,101	36.03
etherlands	170	190	190	220	22
[ew Zealand ^{e 4}	623	602	670	e690	66
orway	520	624	885	983	1.00
akistan	520	024	000	900	3
araguay	154	r ₇₃	228	300	327
eru4		11.002	10.810	11,626	11.60
oland	10,710		457	463	348
ortugal	391	411	10.154	10.283	10.25
omania	9,028	10,535		e7,500	7.40
outh Africa, Republic of	5,746	6,013	7,247 6,037	5,291	5,30
pain	5,950	5,884		e2.900	2,80
weden ⁴	2,328	2,561	2,811	2,900	2,00
witzerland	11	60	73		
aiwan	3,764	3,704	3,780	e4,100	4,19
hailand rinidad and Tobago (sponge iron)	(⁶) 313	263	226	$\overline{371}$	57
rinidad and Tobago (sponge iron)	162	165	e165	e165	16
	2.997	3,199	3,520	4.041	34.89
'urkey	121,000	121,600	120,600	r _{124.800}	125.00
J.S.S.Re		10.458	11.443	10,676	\$13,24
Inited Kingdom	10,447			44.287	348.30
Inited States	48,770	51,961	49,963	e3.700	
	2,476	3,511	3,391 3,439	3,700	4,05 3,30
enezuela ⁴					
Venezuela ⁴ Yugoslavia	3,136	3,147			
/enezuela ⁴ /ugoslavia imbabwe	3,136 644	3,147 441	743	^e 710	71

^eEstimated. ^pPreliminary. ^rRevised. ¹Table excludes ferroalloy production except where otherwise noted. Table includes data available through July 1,

¹Table excludes ferroality production except where contented and all 1988.

²In addition to the countries listed, Vietnam and Zaire have facilities to produce pig iron and may have produced limited quantities during 1983-87; however, output is not reported, and available information is inadequate to make reliable estimates of output levels.

³Reported figure.

⁴Includes sponge iron output.

⁵Includes blast furnace ferralloys.

⁶Less than 1/2 unit.

Table 15.—Raw steel:¹ World production, by country²

(Thousand short tons)

Country ³	1983	1984	1985	1986 ^p	1987 ^e
Algeria ^e	660	770	830	830	000
Angola ^e	11	11	830 11	830 11	830
Argentina	3,244	2.918	3,243	3,566	44,005
Australia	6,236	6.948	7.251	7,389	6,660
Austria	4,862	5,368	5,137	4,731	4,750
Bangladesh ⁵ Belgium	52	80	111	106	490
Belgium	11,196	12,459	11,776	10,741	10,600
Brazil	16,160	20,267	22,549	23,406	⁴ 24,505
Bulgaria Canada	3,121	3,172	3,245	3,268	3,200
	14,140	16,220	15,983	15,543	416,204
ChileChina	681	763	759	778	800
Colombia	44,040 531	47,800	e51,500	e57,400	61,700
Cuba	388	550	584	e669	4356
Czechoslovakia	16,561	358	442	459	4419
Denmark	16,561 543	16,348 604	16,574	r16,500	17,100
Ecuador	25	20	582 20	697 19	610
Egypt	216	638	588	e610	28
El Salvador	17	12	13	e12	610
Finland	2,663	2.901	2,776	e3,150	13
France	19.426	20.944	20,759	e _{19,800}	2,870
German Democratic Republic	7,958	8,348	8,656	8,782	419,540 9,040
Germany, Federal Republic of	39,384	43,419	44,640	40.933	
Greece	946	987	1,086	e1,050	439,957
Hong Kong ^e	130	130	130	130	1,050 130
Hungary	3,986	4,134	4.019	4,095	4,080
India [®]	11,359	11.402	12.185	12,596	13,343
Indonesia	882	1,100	1,323	e1,650	1,760
Iran ^e	1.300	1,300	1990	¹ 990	990
ireianu	155	183	224	229	220
[sraele	⁴ 165	220	170	170	170
taly	23,891	26,484	26,173	25,212	25,200
Japan	107,121	116,389	116,050	108,330	4108,592
Jordan ^e	150	150	150	150	150
Kenva	11	11	11	11	- 11
Korea, North	6,700	7,200	7,200	7,200	7,200
Korea, Republic of	13,134	14,366	14,924	16,043	418,499
Luxembourg	3,631	4,395	4,349	4,084	43,639
Malaysia ^e	390	390	² 610	830	880
MexicoMorocco ^e	7,692	8,333	8,121	7,904	8,280
Moroccoe	7	7	7	7	7
Netherlands	4,935	6,326	6,081	5,824	⁴ 5,602
New Zealand	257	302	250	^e 316	330
Vigeria Vorway	201	206	280	220	220
Onlyinton e	987	1,014	e1,000	922	940
Pakistan ^e Paraguay	600	670	770	880	910
Peru		Fo=-	5.7		44
Philippines	330	r371	438	536	550
Poland	220 17,897	r ₂₈₈	276	^e 276	280
Portugal	743	18,224 761	17,776	18,898	19,000
latar	526	527	733 588	780 559	580 550
lomania	13,881	15,914	15,206	e _{15,400}	
audi Arabia	441	928	1.219	e1,200	15,400 1,200
lingapore ^e	386	390	390	390	390
outh Africa, Republic of	7.926	8,628	9,460	e9,700	9,590
pain	14,034	14,864	15,691	13,201	13,100
weden	4,537	5,186	5,305	5,192	5,070
witzerland	920	1,078	1,088	1,185	1,210
yrıa	90	76	e76	^{2,20} 6	76
aiwan	5,530	5,758	5,871	e6,300	6,390
hailand	[‡] 375	420	493	510	530
rinidad and Tobago	231	219	192	360	410
unisia	180	186	187	200	200
urkey	4,226	4,773	5,456	5,926	47,765
	100 110	170,018	170,492		
J.S.S.R	168,118			176,976	178,600
Inited Kingdom	16,519	16,668	17,331		419,208
J.S.S.R Juited Kingdom Juited States Jruguay				16,326 81,606	

See footnotes at end of table.

IRON AND STEEL

Table 15.—Raw steel:¹ World production, by country² —Continued

(Thousand short tons)

Country ³	1983	1984	1985	1986 ^p	1987 ^e
Venezuela ⁶ Vietnam ^e Yugoslavia Zimbabwe	2,820 110 4,558 741	3,241 110 4,669 431	3,710 120 4,938 ^e 510	3,822 120 4,981 ^e 540	4,080 120 44,814 440
Total	r730,750	r782,918	789,980	783,347	804,843

rRevised. ^eEstimated. Preliminary.

^{*}Estimated. *Preliminary. 'Revised.

¹Steel formed in first solid state after melting, suitable for further processing or sale; for some countries, includes material reported as "liquid steel," presumably measured in the molten state prior to cooling in any specific form.

²Table includes data available through July 1, 1988.
³In addition to the countries listed, Ghana, Libya, and Mozambique are known to have steelmaking plants; however, available information is inadequate to make reliable estimates of output levels. Burma reportedly has a remelt capacity of 40,000 tons; however, plant output, if any, is not known.

¹Reported figure.

¹Data are for year anding June 30 of that stated.

^{*}Reported figure.

Data are for year ending June 30 of that stated.

Includes steel castings.

Iron and Steel Scrap

By Raymond E. Brown¹

Brokers, dealers, and other outside sources supplied domestic consumers in 1987 with 42.1 million short tons² of all types of ferrous scrap at a delivered value of approximately \$3.55 billion, while exporting 10.4 million tons (excluding rerolling material and ships, boats, and other vessels for scrapping) valued at \$967 million. In 1986, domestic consumers received 37.1 million tons at a delivered value of approximately \$2.69 billion; exports totaled 11.7 million tons valued at \$1.05 billion.

Domestic Data Coverage.—Domestic production data for ferrous scrap are developed by the Bureau of Mines from voluntary monthly or annual surveys of U.S. operations. Of the operations to which a survey request was sent, 66% responded, repre-

senting an estimated 72% of the total consumption shown in table 2 for three types of scrap consumers. Consumption for the nonrespondents was estimated using prior reports adjusted by industry trends. An estimation error is also contained in the difference between the reported total consumption of purchased and home scrap and the sum of scrap receipts plus home scrap production, less scrap shipments, and adjustments for stock changes. For scrap consumption data shown in table 2, this difference amounted to 2% for manufacturers of pig iron and raw steel and castings, 0.1% for manufacturers of steel castings, 0.5% for iron foundries and miscellaneous users, and 1% average for all types of manufacturers combined.

Table 1.—Salient U.S. iron and steel scrap and pig iron statistics

(Thousand short tons and thousand dollars)

	1983	1984	1985	1986	1987
Stocks, Dec. 31: Scrap at consumer plants	5,807	5,261	5,104	4,344	4,844
Pig iron at consumer and supplier plants	345	304	266	188	281
TotalConsumption:	6,152	5,565	5,370	4,532	5,125
Scrap	61,782	65,702	70,493	65.856	68,303
Pig iron	50,070	53,202	51,411	45,604	50,030
Exports:			*.		
Scrap (excludes rerolling material and ships,					
boats, and other vessels for scrapping)	7,520	9,498	9,950	11,704	10,367
Value	\$636,723	\$917,981	\$918,186	\$1,053,849	\$967,018
Imports for consumption:					
Scrap (includes tinplate and terneplate)	641	577	611	724	843
Value	\$48,219	\$47,427	\$46,480	\$49,073	\$82,016

Legislation and Government Programs.—Attorneys for the Ferrous Scrap Consumers Coalition asked the Office of the U.S. Trade Representative for information under section 305 of the Trade Act of 1974, as amended, about various countries' restrictions on exports of ferrous scrap. The U.S. Department of Commerce released a

report in June that analyzed trends in the U.S. ferrous scrap industry. The study noted that decreased recycling and increased disposal have come about as a result of enactment and stronger enforcement of environmental statutes and regulations.³

The Environmental Protection Agency (EPA) published revised particulate emis-

sion controls on July 1. Under the new regulations, smaller particles would have to be captured by emission control equipment. Subsequently, the American Iron and Steel Institute filed a petition in the U.S. Court of Appeals seeking a review of those revised controls. In October, the U.S. Court of Appeals upheld a challenge to EPA's authority to regulate certain materials ausifolid waste" under the Federal hazardous

waste regulations.

The U.S. Department of Transportation proposed tightening regulations governing hazardous materials on November 6. The proposed regulations would apply to shipments of spontaneously combustible materials such as ferrous metal borings, shavings, and turnings or cuttings in a form subject to self-heating.⁵

AVAILABLE SUPPLY, CONSUMPTION, AND STOCKS

Overall domestic demand for ferrous scrap by the iron and steel and the ferrous castings industries, the major consumers of this raw material, increased by about 10% in 1987 compared with that of 1986. Domestic demand for ferrous scrap by producers of pig iron and raw steel was up by a larger quantity than that for the ferrous castings industry. Since spring, prices for most premium grades of ferrous scrap rose significantly because of higher steel and ferrous castings production, a larger share of steel production in electric furnaces, lower generation of home scrap because of increased continuous casting, and a weakening dollar, which helped to fend off both ferrous scrap and steel imports. In October, certain steel mills began adding scrap surcharges to the base price of some of their steel products. Also, some minimills, which are scrap-based electric arc furnace (EAF) operations, stopped accepting orders from new customers and placed old customers on allocation.

USX Corp., a major scrap consumer, and the United Steelworkers of America reached a labor agreement in January that ended an unprecedented 6-month-long strike. In February, USX announced that it would close four steelmaking facilities indefinitely. The plants to be closed were in Provo, UT; Baytown, TX; and McKeesport and Saxonburg, PA. Subsequently, on August 31, USX sold its Geneva works near Provo, UT, to Basic Manufacturing & Technologies of Utah Inc., a group of private investors. The operation would be renamed Geneva Steel of Utah. The Geneva plant has coke ovens, blast furnaces, and an openhearth shop with about 2 million tons per year of raw steelmaking capacity. USX also agreed to pay a \$375,000 fine as a result of emissions generated at its Clairton, PA, cokemaking facility.

Sharon Steel Corp., Sharon, PA, filed for protection under chapter 11 of the Federal Bankruptcy Act on April 17. This was the third major U.S. steel producer attempting to reorganize under chapter 11 in recent years.

Weirton Steel Corp., Weirton, WV, after more than a year of negotiations with Korf Engineering GmbH, Federal Republic of Germany, canceled the joint construction of a new ironmaking demonstration plant utilizing Korf's Corex (previously known as KR for Kohle Reduktion) process. The Corex technology involves direct use of coal instead of coke to produce hot metal.

On November 19, the National Steel Producers Association and the American Metal Market, a Fairchild publication, cosponsored a 1-day conference in Washington, DC, on the problem of disposal of electric-furnace dust. Unless EPA grants an extension, the landfilling of hazardous EAF dust would be banned on August 8, 1988.

The domestic steel industry continued its efforts to make changes to improve competitiveness and increase earnings. Several scrap-based minimill producers have used or plan to use state-of-the-art technologies to sharply reduce overall operating costs and improve mill efficiency to provide higher quality steels and to expand product lines. For example, Nucor Corp. is testing a direct-current arc furnace and a CON-STEEL continuous steelmaking system at its Darlington, SC, plant. The CONSTEEL process was developed by J. A. Vallomy, Intersteel Technology Inc., Matthews, NC. Nucor is also installing a thin slab caster at its facility in Crawfordsville, IN, which would produce material with thicknesses as low as 2 inches and widths as great as 53 inches at a speed of up to 20 feet per minute. This system is being supplied by SMS Schloemann-Siemag AG, Dusseldorf, Federal Republic of Germany, and two of its affiliates, SMS Engineering Inc., Pittsburgh, PA, and SMS Concast Inc., Montvale, NJ. Additionally, Nucor is installing a 650,000-ton-per-year structural mill at its Blytheville, AR, plant that would make wide-flange (10 to 25 inches) beams. Nucor and Yamato Kogyo Co. Ltd. of Japan signed a contract to construct and operate the system, which is patterned after a Yamato facility in Japan.

The Institute of Scrap Iron and Steel Inc., Washington, DC, and the National Association of Recycling Industries Inc., New York, NY, voted to merge their organizations into a single scrap industry trade association. The new association would be known as the Institute of Scrap Recycling Industries (IS-RI), with its headquarters in Washington, DC. ISRI also submitted a written request to the Occupational Safety and Health Administration (OSHA) seeking limited relief for scrap processors, especially to keep scrap processors classified as distributors but not as suppliers. According to ISRI, suppliers of scrap, but not distributors, should be responsible for preparing material safety data sheets. Additionally, ISRI contended that certain OSHA workplace requirements hindered effective recycling. ISRI disagreed with the OSHA regulation that considers chromium and nickel contained in stainless steel tableware potentially hazardous in a scrap plant but not in a restaurant or home.

There was a number of books and papers published in 1987 that would be of interest to collectors, dealers, brokers, exporters, processors, and consumers of ferrous scrap. A report by the Center for Metals Production assessed existing and potential EAF capacity including research and development recommendations for minimizing energy consumption and optimizing output. A book by William T. Hogan, director of the Industrial Economics Research Institute of Fordham University, entitled "Minimills and Integrated Mills," subtitled "A Comparison of Steelmaking in the United States," chronicled the massive changes in the U.S. steel industry since annual production capacity reached a peak in the mid-1970's.7 A publication of the International Iron and Steel Institute entitled "Scrap and the Steel Industry" presented information on recent developments in the field of solid metallics for ironmaking and steelmaking. Ferrous scrap topics included classification systems. sources, impact of technology changes on supply and demand, among others.8

Raw steel production was 88.5 million tons in 1987 compared with 81.6 million tons in 1986. The EAF share of raw steel production was 38% in 1987 and 37% in 1986. Continuous cast steel production represented 59% of total raw steel produc-

tion in 1987 compared with 55% in 1986. Raw steel capacity utilization was 79% in 1987 and 64% in 1986. Net shipments of all grades of steel mill products were 76.5 million tons in 1987 and 70.3 million tons in 1986. Imports of steel mill products decreased from 20.7 million tons in 1986 to 20.4 million tons in 1987. Exports of steel mill products increased from 929,000 tons in 1986 to 1.13 million tons in 1987.

Iron castings shipments totaled 10.0 million tons in 1987 compared with 8.65 million tons (revised) in 1986. Steel castings shipments totaled 874,000 tons in 1987 compared with 829,000 tons (revised) in 1986.

Steel mills accounted for 74.8% of all scrap received from brokers, dealers, and other outside sources; steel foundries received 3.3%; and iron castings producers and miscellaneous users received 21.9%. The apparent total domestic consumption of ferrous scrap in 1987, in million tons, was composed of 44.8 net receipts (total receipts minus shipments), 24.7 home scrap, and a buildup of 0.5 stocks. The 1987 total was 69.0 million tons. This figure compared with an apparent total domestic consumption of 65.2 in 1986. The total market for U.S. scrap (net receipts plus exports minus imports) was 54.6 million tons in 1987 compared with 49.3 million tons in 1986. Stocks of ferrous scrap held by each of the three major consumers increased in 1987. Stocks held by steel mills increased by the largest quantity and by the largest percentage.

Since 1970, the ratio of total home scrap production, expressed as a percentage of total domestic apparent consumption of ferrous scrap declined significantly owing to changes in steelmaking technology. For example, the ratio declined steadily from about 60% in 1970 to about 40% in 1986. Adoption of steelmaking technology that resulted in this decline and a corresponding increase in the ratio of purchased scrap to raw steel production included conversion to electric arc furnace production, adoption of continuous casting which produced higher yields, and a number of other technical advances that increased scrap consumption in the basic oxygen furnace.

Public awareness of the solid waste problem has been driving mandatory recycling legislation by States, counties, and municipalities, which has the potential to reduce the solid waste stream. Mandatory recycling involves source separation, which means that materials are separated by home owners instead of municipal or private employees. Source separation would increase the availability of municipal ferrous scrap, a material that is currently not being recycled effectively. However, the total supply of ferrous scrap has never been a major problem in this country. In fact, ISRI has recorded a surplus of ferrous scrap for each of the last 31 years since 1956. ISRI estimated that more than 800 million tons of ferrous scrap has been placed in involuntary inventory for lack of markets. A city or county organizing a recycling program must establish markets for materials removed from the solid waste stream. To be marketable, material recovered from mu-

nicipal solid waste, such as steel cans, must meet certain specifications. However, the quality of municipal ferrous scrap limits its use as a raw material for new products. This type of purchased scrap would be a major source of residual and unspecified elements if used to produce steel and ferrous castings. For a successful recycling program, municipalities would have to develop strong working relationships with brokers, processors, or manufacturers that use secondary materials. Scrap processors have developed expertise over the years in upgrading secondary materials into marketable products.

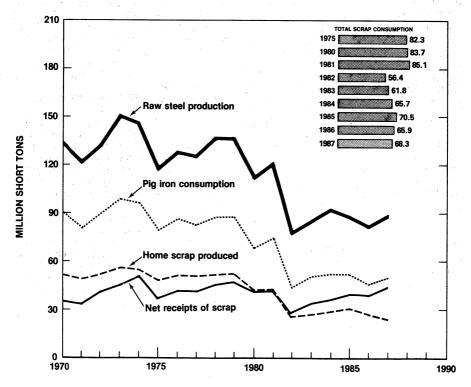


Figure 1.—Raw steel production (AISI), total iron and steel scrap consumption, pig iron consumption, home scrap production, and net scrap receipts.

PRICES

Based on average composite delivered prices per long ton quoted weekly and monthly by the American Metal Market (AMM), No. 1 heavy melting steel scrap cost \$85.76 in 1987, ranging from a low of \$73.72 in April to a high of \$109.90 in October. Based on Iron Age data, No. 1 heavy melting steel scrap cost \$85.64 in 1987, ranging from \$73.17 in April to \$108.92 in October. The average composite price for No. 1 heavy

melting steel scrap in 1987 was higher compared with that of 1986, by 16% based on AMM data and by 17% based on Iron Age data.

In 1987, the average price for total ferrous scrap exports increased by 4% compared with that of 1986 to \$93.36 per ton, while that of total imports increased by 43% to \$97.29 per ton.

FOREIGN TRADE

The trade surplus in 1987 for all classes of ferrous scrap (including rerolling material and ships, boats, and other vessels for scrapping) was \$914 million in value and 9.83 million tons in quantity. This is a decrease of 11% and 13% in value and quantity, respectively, compared with the 1986 record-high surplus of \$1.03 billion and 11.3 million tons, respectively. The balance of trade for all U.S. merchandise consisted of a record deficit of \$171 billion in 1987, up from a previous record deficit of \$156 billion in 1986.

Total U.S. exports of ferrous scrap (excluding rerolling material; ships, boats, and other vessels for scrapping; stainless steel; and alloy steel) in 1987 went to 43 countries and totaled 9,945,420 tons valued at \$844,445,417, which averaged \$84.91 per ton. Six countries received 75.8% of the total quantity. The largest tonnages went to the Republic of Korea, 2,622,738 tons; Turkey, 2,252,637 tons; Japan, 902,462 tons; India, 874,362 tons; Mexico, 487,778 tons; and Taiwan, 400,207 tons. The value of scrap exports to these six countries was \$653,296,661; 77.4% of the total.

Total U.S. exports of stainless steel scrap in 1987 went to 27 countries and consisted of 172,273 tons valued at \$94,024,655 that averaged \$545.79 per ton. Six countries received 85.0% of the total quantity, of which the largest tonnages went to Japan, 57,776 tons; Spain, 39,840 tons; Netherlands, 17,843 tons; Canada, 12,853 tons; Belgium, 11,850 tons; and Brazil, 6,233 tons. The value of stainless steel scrap exports to these six countries was \$79,107,893; 84.1% of the total.

U.S. exports of alloy steel scrap (excluding stainless steel) in 1987 were shipped to 45 countries. The total comprised 248,974 tons valued at \$28,548,281 which averaged \$114.66 per ton. Six countries received 78.5% of the total quantity, of which the largest tonnages went to Singapore, 99,249 tons; Japan, 25,451 tons; Taiwan, 22,018 tons; Sweden, 21,657 tons; Canada, 14,103 tons; and Mexico, 13,013 tons. The value of alloy steel scrap to these six countries was \$18,122,213; 63.5% of the total.

Total imports for consumption of iron and steel scrap in 1987 contained 2,803 tons of tinplate waste or scrap valued at \$380,478. The balance of imports consisted of 826,762 tons of iron and steel scrap without dutiable alloys valued at \$76,563,597 and 13,412 tons of iron or steel waste and scrap valued at \$5,071,597.

WORLD REVIEW

Total world demand for iron and steel scrap in 1987 increased over that of 1986. Overall demand for ferrous scrap was higher in market economy countries than in countries with centrally planned economies. Most of the increase in demand, on a quantity basis, came from the United States. Countries with the sharpest increases in demand, on a percentage basis, were Argentina, China, the Republic of Korea, Turkey, the United Kingdom, the United States, and Venezuela.

The United States continued to be the leading exporting country of iron and steel scrap. The U.S.S.R. and the United Kingdom were also major exporters of ferrous scrap.

Work has begun on the infrastructure for a new Navipe maritime recycling center at Astakos on the west coast of Greece. Activities planned at Navipe would include the startup of a shipbreaking operation at yearend 1988 with an anticipated total annual scrap capacity of about 340,000 tons.

TECHNOLOGY

Results from testing of the CONSTEEL continuous steelmaking process at Nucor's minimill facility in Darlington, SC, established the feasibility of the system. One benefit of the continuous process was that it was more effective than a batch process and was controllable at any point in time. Also, in melting scrap, preheating up to about 800° C with primary fuel was more economical than introducing the same heat with electric energy in the furnace.9

There have been several reported incidents at U.S. mills in the last few years where radioactive materials have been accidently processed with metal scrap. The cleanup cost after such an incident can range into the millions of dollars. Workers. and ultimately the public, could be exposed to radioactive material. Incidents typifying the potential impact that a melted radioactive material could have can be documented by accidents that occurred at a California steel plant, a New York steel mill, and a rebar mill in Juarez, Mexico. State-of-theart radiation-monitoring devices have been purchased and installed at strategic locations at some U.S. minimills to detect radioactive contaminated scrap so that it can be removed from incoming material.10

¹Physical scientist, Branch of Ferrous Metals. ²All quantities are in short tons unless otherwise specified.

a Raymond, J. P. Trends in the U.S. Ferrous Scrap Industry. U.S. Department of Commerce-International Trade Administration. U.S. GPO: 1987-181-076-60099, June

Federal Register. Environmental Protection Agency. Ambient Air Quality Standards for Particulate Matter; Final Rules. V. 52, No. 126, July 1, 1987, pp. 24634-24750.

L.S. Department of Transportation. Performance-Oriented Packaging Standards; Proposed Rulemaking. V. 52, No. 215, Nov. 6, 1987, pp. 42772-43000.
 Generator Metals Production. Technoeconomic Assessments.

*Center for Metals Production. Technoeconomic Assessment of Electric Steelmaking Through the Year 2000. Prepared for U.S. Department of Energy and Electric Power Research Institute (EPRI). EPRI EM-5445, Res. Proj. 2787-2, Final Rep., Oct. 1987, 229 pp.

Thogan, W. T. Minimills and Integrated Mills—A Comparison of Steelmaking in the United States. Lexington Books, No. 0-669-14020-1, 1987, 148 pp.

*Integrational Iron and Stock Lexitive Second 1.1.

⁸International Iron and Steel Institute. Scrap and the Steel Industry—Trends and Prospects for Solid Metallics. IISI, Committee on Raw Mater., Brussels, Belgium, 1987,

384 pp. Spivey, P. Set pp.

*Spivey, P. B., and J. A. Vallomy. Operation and Experience of the CONSTEEL Continuous Steelmaking Process at Nucor Steel. Proc. 45th Electric Furnace Conf., ISS-AIME, Chicago, II., Dec. 8-11, 1987. AIME, Warrendale, P.A., 1987, pp. 75-80.

*PRostik, L. F.; and C. W. Avent. Environmental Controls at Work—Chaparral Experience. Proc. 45th Electric Furnace Conf., ISS-AIME, Chicago, II., Dec. 8-11, 1987. AIME, Warrendale, P.A., 1987, p. 159.

 ${\bf Table~2.-U.S.~consumer~receipts, production, consumption, shipments, and stocks~of~iron~and~steel~scrap~and~pig~iron~in~1987,~by~grade} \\$

Grade		Receipts o	fscrap	Production of	of home scrap			
Carbon steel: Low-phosphorus plate and punchings	Grade	brokers, dealers, other outside	other own- com- pany	lating scrap resulting from current op-	scrap (in- cludes in- got molds, stools, scrap from old equip- ment, build-	tion of both purchased and home scrap (in- cludes re- circulating	ments of	Ending stocks, Dec. 31
Low-phosphorus plate and punchings	MANUFA	CTURERS O	FPIG IRC	N AND RAW	STEEL AND	CASTINGS		
Low-phosphorus plate and punchings	Carbon steel							
Cut structural and plate	Low-phosphorus plate and			_				_:
No. 1 heavy melting steel	punchings				(1)	326		2
No. 1 and electric-furnace 2,909 167 844 2 3,839 16 38	Cut structural and plate				417			
No. 1 and electric-furnace 6,099 192 1,111 2 6,589 607 44 No. 2 and all other bundles 808 54 74 902 45 60 No. 2 and all other bundles 808 54 74 902 45 60 No. 2 and all other bundles 808 54 74 902 45 60 No. 2 and all other bundles 97 97 19 (¹) 208 2 2 Railroad rails 353 11 24 414 Turnings and borings 700 56 213 984 12 Turnings and borings 700 56 213 4,842 3 Slag scrap (Fe content 70%) 679 189 1,961 1 2,430 207 17 Shredded or fragmentized 3,135 1,602 121 4,842 3 No. 1 bushleing 1,834 220 115 (¹) 2,031 77 10 All other carbon steel scrap 2,043 1,129 5,589 35 8,517 606 33 Stainless steel scrap 617 23 460 (¹) 1,098 18 4 Alloy steel (except stainless) 101 137 745 (¹) 965 45 11 Ingot mold and stool scrap 376 153 400 353 1,026 275 22 Machinery and cupola cast iron 7 13 3 - 19 9 Cast-iron borings 141 1 1 (¹) 129 10 Motor blocks 408 147 338 1 806 147 14 Other rins erap 408 147 338 1 806 147 14 Other mixed scrap 272 126 78 1 459 12 12 Total 31,490 4,889 18,276 813 851,665 2,496 3,81 MANUFACTURERS OF STEEL CASTINGS	No. 1 neavy melting steel							
Doubles	No. 1 and electric furnace	2,505	101	044	4	9,000	10	. 00
No. 2 and all other bundles Ses 54		6 099	199	1 111	9	6 589	607	46
Electric furnace, 1 foot and under (not bundles)					2			6
Unider (not bundles)		200	0.1				-10	·
Railroad rails		97	97	19	· (1)	208	2	2
Turnings and borings 700 56 213 — 984 12 12	Railroad rails	353	11	24		414	11	1
Shredded or fragmentized	Turnings and borings	700	56	213			12	7
No. 1 busheling	Slag scrap (Fe content 70%)_		189		1		207	179
All other carbon steel scrap. 2,043 1,129 5,989 35 8,517 606 83			1,602		·			34
Stainless steel scrap — 617 23 460 (¹) 1,098 18 Alloy steel (except stainless) — 101 137 745 (¹) 965 45 11 Ingot mold and stool scrap — 376 153 400 353 1,026 275 21 Machinery and cupola cast iron 7 13 3 3 — 19 9 Cast-iron borings — 141 1 1 1 (¹) 129 10 Motor blocks — 148 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					(1)			14'
Alloy steel (except stainless)	All other carbon steel scrap_							33
Ingot mold and stool scrap					(1)			48
Machinery and cupola cast iron Cast-iron borings 141 1 1 129 10 Motor blocks 141 1 1 129 10 Other iron scrap 408 147 338 1 806 147 14 Other mixed scrap 272 126 78 1 459 12 2 Total² 31,490 4,889 18,276 813 *351,665 2,496 3,83 MANUFACTURERS OF STEEL CASTINGS Carbon steel: Low-phosphorus plate and punchings =					(1)			15
Cast-iron borings	Ingot mold and stool scrap				353			219
Motor blocks	Machinery and cupola cast iron				745			2
Other iron scrap 408 147 338 1 806 147 14 Other mixed scrap 272 126 78 1 459 12 2 Total² 31,490 4,889 18,276 813 351,665 2,496 3,83 MANUFACTURERS OF STEEL CASTINGS Carbon steel: Low-phosphorus plate and punchings — 374 19 98 (¹) 509 21 1 Cut structural and plate 149 24 16 — 179 — 1 No. 1 heavy melting steel 92 2 81 (¹) 175 — 1 No. 2 and all other bundles — 1 — 164 — 1 — 164 — 1 — 6 — <td< td=""><td></td><td>141</td><td>1</td><td>1</td><td>(*)</td><td>129</td><td>10</td><td>. (</td></td<>		141	1	1	(*)	129	10	. (
Total Street St		100	1.47	990		000	147	1.46
Carbon steel:	Other mixed scrap							25
Carbon steel:	Total ²	31,490	4,889	18,276	813	³ 51,665	2,496	3,835
Low-phosphorus plate and punchings		MANUFA	CTURER	S OF STEEL	CASTINGS			
Low-phosphorus plate and punchings	Carbon steel							
Description								
Cut structural and plate	punchings	374	19	98	(¹)	509	21	18
No. 2 heavy melting steel	Cut structural and plate	149	24	16				19
No. 1 and electric-furnace bundles	No. 1 heavy melting steel	92	2	81	(¹)	175		
Sundles	No. 2 heavy melting steel	169		1		164		12
No. 2 and all other bundles Electric furnace, 1 foot and under (not bundles) 35								
Electric furnace, I foot and under (not bundles)		5				6		
under (not bundles) 35 10 46 1 Railroad rails 4 (¹) 3 - Turnings and borings 20 9 27 2 Slag scrap (Fe content 70%) - - - - Shredded or fragmentized 43 - - 36 - No. 1 busheling 48 5 - 49 (¹) All other carbon steel scrap 268 8 98 - 292 82 Stainless steel scrap 12 2 31 (²) 43 1 Alloy steel (except stainless) 61 131 - 190 3 4 Ingot mold and stool scrap - - - - - - Machinery and cupola cast iron 37 3 39 - - Cast-iron borings 52 12 50 - Motor blocks (²) - (¹) - Other iron scrap 20 67 86 4 1 Other mixed scrap - 6 6 - 6 Total² 1,390 58 564 (¹) 1,899 114 15 <	No. 2 and all other bundles $_$							
Railroad rails 4							_	
Turnings and borings 20							1	2
Slag scrap (Fe content 70%)								1
Shredded or fragmentized	Slog coren (Fo content 70%)	20		9	,	21	_	1
No. 1 busheling	Shraddad or fragmentized	42				96		- 5
All other carbon steel scrap 268 8 98 - 292 82 Stainless steel scrap 12 2 31 (¹) 43 1 Alloy steel (except stainless) 61 131 - 190 3 4 Ingot mold and stool scrap	No. 1 husheling						45	
Stainless steel scrap	All other carbon steel screp			98				8
Alloy steel (except stainless) 61	Stainless steel scrap				(1)			- 5
Ingot mold and stool scrap			_		()			46
Machinery and cupola cast iron 37 3 39 39 Jast-iron borings 52 12 50 50 Motor blocks (1) - (1) - Other iron scrap 20 67 86 4 1 Other mixed scrap - 6 6 6 - (1) Total ² 1,890 58 564 (1) 1,899 114 15	ingot mold and stool scrap						_	
Motor blocks (1)	Machinery and cupola cast iron					39		- 5
Motor blocks (1)	Cast-iron borings			12		50		2
Other mixed scrap	Motor blocks							
Total ² 1,390 58 564 (¹) 1,899 114 15	Other iron scrap	20					4	14
	Other mixed scrap			6		6		(1)
See Section to the Section of the Se	Total ²	1,390	58	564	(¹)	1,899	114	150
	See footnotes at end of table.							

Table 2.—U.S. consumer receipts, production, consumption, shipments, and stocks of iron and steel scrap and pig iron in 1987, by grade —Continued

	Receipts o	f scrap	Production of	f home scrap			
Grade	From brokers, dealers, other outside sources	From other own-company plants	Recircu- lating scrap resulting from current op- erations	Obsolete scrap (in- cludes in- got molds, stools, scrap from old equip- ment, build- ings, etc.)	Consumption of both purchased and home scrap (includes recirculating scrap)	Ship- ments of scrap	Ending stocks, Dec. 31
II	ON FOUND	RIES AN	D MISCELLA	NEOUS USEF	k S		
Carbon steel:							
Low-phosphorus plate and						_ :	
punchings	1,019	92	236	1	1,357	(1)	4
Cut structural and plate	1,089	60	164	(¹)	1,321	1	9
No. 1 heavy melting steel	131	29	351		217	288	1
No. 2 heavy melting steel	330		52		380	10	1
No. 1 and electric-furnace							
bundles	186	167	51		400		1
No. 2 and all other bundles	177			· · · · · · · · · · · · · · · · · · ·	179		2
Electric furnace, 1 foot and							
under (not bundles)	34	3	1		35		
Railroad rails	191	(¹)	3		166	3	3 2
Turnings and borings	282	- 2	5		290	. 3	
Slag scrap (Fe content 70%)_	21		· (1)		18	(¹)	
Shredded or fragmentized	1,350	89	(¹)		1,487	2	8
No. 1 busheling	492	34	35		558	(¹)	1
All other carbon steel scrap_	543	7	16	(¹)	549	4	4
Stainless steel scrap	13		6		14	3	
Alloy steel (except stainless)	32		7	1	44	1	. 1
Ingot mold and stool scrap	152	(¹)	183		352	3	2
Machinery and cupola cast iron	992	`6	241	30	1,229	7	7
Cast-iron borings	610	195	75	5	867	28	6
Motor blocks	463	46	922		1,413	17	Š
Other iron scrap	544	46	2,237	(¹)	2,854	27	11
Other mixed scrap	568	13	464	(1)	1,008	23	8
Total ²	9,221	789	5,050	38	14,739	420	85
	TOTAL—A	L TYPES	OF MANUE	ACTURERS ²			
Carbon steel:							
Low-phosphorus plate and punchings	1.726	112	336	1	0.100		0
Cut structural and plate		112			2,192	22	8
No. 1 heavy melting steel	2,321	192 494	465 5 006	(1)	2,830	11	25
No. 2 heavy melting steel	9,718 3,409	494 167	5,926 897	417 2	15,143	687 25	1,09
No. 1 and electric-furnace	0,409	101	091	Z	4,383	20	38
bundles	6,290	359	1.162	2	6,994	607	48
No. 2 and all other bundles	985	54	74		1,081	45	40 8
Electric furnace, 1 foot and	000	01	12		1,001	40	
		100	30	(¹)	289	2	2
under (not bundles)	166						
under (not bundles)	166 548						4
under (not bundles) Railroad rails	548	11 58	27		583	3	
under (not bundles)		11	27 227		583 1,301	3 17	10
under (not bundles) Railroad rails ————————————————————————————————————	548 1,002 700 4,528	11 58 189 1,691	27	- <u>-</u> - <u>1</u>	583	3	10: 18
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%)_ Shredded or fragmentized _ No. 1 busheling	548 1,002 700 4,528	11 58 189	27 227 1,961	 - <u>1</u> - <u>(i)</u>	583 1,301 2,448	3 17 208	10 18 43
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%) Shredded or fragmentized No. 1 busheling All other carbon steel scrap	548 1,002 700	11 58 189 1,691	27 227 1,961 121	- <u>-</u> - <u>1</u>	583 1,301 2,448 6,365	3 17 208 2	10 18 43 16
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%) Shredded or fragmentized No. 1 busheling All other carbon steel scrap Stainless steel scrap	548 1,002 700 4,528 2,375	11 58 189 1,691 259	27 227 1,961 121 150	 -1 (1) 35	583 1,301 2,448 6,365 2,639 9,358	3 17 208 2 77 691	10 18 43 16 38
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%) Shredded or fragmentized No. 1 busheling All other carbon steel scrap	548 1,002 700 4,528 2,375 2,854	11 58 189 1,691 259 1,144 24	27 227 1,961 121 150 6,103	 -1 (1) 35 (1)	583 1,301 2,448 6,365 2,639 9,358 1,155	3 17 208 2 77 691 22	10 18 43 16 38 5
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%) Shredded or fragmentized No. 1 busheing All other carbon steel scrap Stainless steel scrap Alloy steel (except stainless)	548 1,002 700 4,528 2,375 2,854 642 195 528	11 58 189 1,691 259 1,144 24 137	27 227 1,961 121 150 6,103 497 884	 -1 (1) 35	583 1,301 2,448 6,365 2,639 9,358 1,155 1,199	3 17 208 2 77 691 22 49	10 18 43 16 38 5
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%) Shredded or fragmentized No. 1 busheling All other carbon steel scrap Stainless steel scrap Alloy steel (except stainless) Ingot mold and stool scrap Machinery and cupola cast iron	548 1,002 700 4,528 2,375 2,854 642 195 528 1,036	11 58 189 1,691 259 1,144 24 137 153 19	27 227 1,961 121 150 6,103 497 884 582 248	 -1 (1) 35 (2) 1	583 1,301 2,448 6,365 2,639 9,358 1,155	3 17 208 2 77 691 22 49 278	10 18 43 16 38 5 21 24
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%). Shredded or fragmentized No. 1 busheling All other carbon steel scrap Stainless steel scrap Alloy steel (except stainless) Ingot mold and stool scrap Machinery and cupola cast iron Cast-iron borings	548 1,002 700 4,528 2,375 2,854 642 195 528	11 58 189 1,691 259 1,144 24 137 153	27 227 1,961 121 150 6,103 497 884 582 248 88	 -1 (1) 35 (1) 1 353	588 1,301 2,448 6,365 2,639 9,358 1,155 1,199 1,378	3 17 208 2 77 691 22 49 278	10 18 43 16 38 5 21 24
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%). Shredded or fragmentized No. 1 busheling All other carbon steel scrap Stainless steel scrap Alloy steel (except stainless) Ingot mold and stool scrap Machinery and cupola cast iron Cast-iron borings Motor blocks	548 1,002 700 4,528 2,375 2,854 642 195 528 1,036 802 463	11 58 189 1,691 259 1,144 24 137 153 19 196 46	27 227 1,961 121 150 6,103 497 884 582 248 88 922	 -1 -(1) 35 (1) 1 353 30 5	588 1,301 2,448 6,365 2,639 9,358 1,155 1,199 1,378 1,287	3 17 208 2 77 691 22 49 278	10 18 43 16 38 5 21 24 8
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%) Shredded or fragmentized No. 1 busheling All other carbon steel scrap Stainless steel scrap Alloy steel (except stainless) Ingot mold and stool scrap Machinery and cupola cast iron Cast-iron borings Motor blocks Other iron scrap	548 1,002 700 4,528 2,375 2,854 642 195 528 1,036 802 463 972	11 58 189 1,691 259 1,144 137 153 19 196 46 193	27 227 1,961 121 150 6,103 497 884 582 248 88 922 2,642	 -1 (1) 35 (1) 1 353 30 5	588 1,301 2,448 6,365 2,639 9,358 1,155 1,199 1,378 1,287 1,046	3 17 208 2 77 691 22 49 278 16 38	43 10 18 43 16 38 5 21 24 8 6 5 27
under (not bundles) Railroad rails Turnings and borings Slag scrap (Fe content 70%). Shredded or fragmentized No. 1 busheling All other carbon steel scrap Stainless steel scrap Alloy steel (except stainless) Ingot mold and stool scrap Machinery and cupola cast iron Cast-iron borings Motor blocks	548 1,002 700 4,528 2,375 2,854 642 195 528 1,036 802 463	11 58 189 1,691 259 1,144 24 137 153 19 196 46	27 227 1,961 121 150 6,103 497 884 582 248 88 922	 -1 -(1) 35 (1) 1 353 30 5	583 1,301 2,448 6,365 2,639 9,358 1,155 1,199 1,378 1,287 1,046 1,413	3 17 208 2 77 691 22 49 278 16 38	10: 18: 43: 16: 38: 5: 21: 24: 8: 6: 5:

¹Less than 1/2 unit.

²Data may not add to totals shown because of independent rounding.

³Internal evaluation indicates that scrap consumption in electric furnaces operated by manufacturers of pig iron and raw steel and castings is understated by approximately 4.0 million short tons.

Table 3.-U.S. consumer receipts, production, consumption, shipments, and stocks of pig iron and direct-reduced iron in 1987

	Rec	eipts	Produc- tion	Consump- tion	Ship- ments	Stocks, Dec. 31
MANUFACTURERS OF PIG IRON AND RAW STEEL AND CASTINGS						
Pig iron MANUFACTURERS OF STEEL CASTINGS		2,304	48,308	48,965	1,542	223
Pig iron IRON FOUNDRIES AND MISCELLANEOUS USERS		13		12	(1)	2
Pig iron		1,072		1,053	29	56
TOTAL—ALL TYPES OF MANUFACTURERS Pig iron Direct-reduced or prereduced iron		3,390 449	48,308	50,030 280	1,572 W	281 107

W Withheld to avoid disclosing company proprietary data.

¹Less than 1/2 unit.

Table 4.—Consumption of iron and steel scrap and pig iron in the United States in 1987, by type of furnace or other use

(Thousand short tons)

Type of furnace or other use	pig iro raw ste	ron and of steel foundries and steel and eastings miscellaneous year		pig iron and of steel foundries and			pig iron and raw steel and			otal, types ¹
	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron		
Blast furnace ² Basic oxygen process ³ Open-hearth furnace Electric furnace	2,345 15,692 1,137 432,044	46,741 W 1,606	 W 1,782	 W 12	4,752	262	2,345 15,692 1,137 38,578	46,741 W 1,880		
Cupola furnace Other (including air furnace) ⁵ _ Direct castings ⁶	16 432 	118 40 460	115 3	==	9,764 223 	252 16 522	9,894 658	370 56 982		
Total ¹	51,665	48,965	1,899	12	14,739	1,053	68,303	50,030		

W Withheld to avoid disclosing company proprietary data; included with "Electric furnace."

Table 5.—Proportion of iron and steel scrap and pig iron used in furnaces in the United States in 1987

Type of furnace	Scrap	Pig iron
Basic oxygen process	25.1	74.9
Basic oxygen process	41.8	58.2
Electric furnace	99.2	.8
Cupola furnace	96.4	3.6
Other (including air furnace)	92.2	7.8

¹Data may not add to totals shown because of independent rounding.

¹Data may not add to totals shown because of independent rounding.

²Includes consumption in blast furnaces producing pig iron.

³Includes scrap and pig iron processed in metallurgical blast cupolas and used in oxygen converters.

⁴Internal evaluation indicates that scrap consumption in electric furnaces operated by manufacturers of pig iron and raw steel and castings is understated by approximately 4.0 million short tons.

⁵Includes vacuum melting furnaces and miscellaneous uses.

⁶Includes ingot molds and stools.

Table 6.—Iron and steel scrap supply¹ available for consumption in 1987, by region and State

	Receipt	s of scrap	Production of	of home scrap			
Region and State	From brokers, dealers, other outside sources	From other own- company plants	Recircu- lating scrap resulting from current operations	Obsolete scrap (in- cludes in- got molds, stools, scrap from old equip- ment, buildings, etc.)	Total new supply ²	Shipments of scrap ³	New supply avail- able for con- sump- tion ²
New England and Middle Atlantic: Connecticut, Massachusetts, New Hampshire, New Jersey, New							
York, Rhode Island	1,193	79	312	6	1,590	31	1.559
Pennsylvania	5,665	511	3,761	97	10,033	666	9,367
Total ²	6,858	590	4,073	102	11,623	697	10,926
North Central:							
Illinois	3,999	818	2,013	25	6,855	56	6,799
Indiana Iowa, Kansas, Minnesota, Missouri,	4,364	907	4,648	6	9,925	823	9,102
Nebraska, Wisconsin	3,830	236	1.384	(4)	5,450	81	5,369
Michigan	4,121	525	2,188	39	6.873	200	6,674
Ohio	6,239	934	4,304	559	12,036	766	11,270
Total ² South Atlantic:	22,553	3,420	14,537	629	41,139	1,926	39,214
Delaware, Florida, Georgia, Maryland, North Carolina,		•					
South Carolina, Virginia, West Virginia South Central:	4,607	712	2,471	61	7,850	163	7,687
Alabama, Arkansas, Kentucky, Louisiana, Mississippi, Okla- homa, Tennessee, Texas	5.506	973	2,290	56	8,824	230	8,593
Mountain and Pacific: Arizona, California, Colorado, Hawaii, Oregon, Utah, Washing-	0,000	J13	2,200		0,024	200	0,000
ton	2,581	41	520	3	3,143	15	3,127
Grand total ²	42,101	5,736	23,890	850	72,577	3,029	69,548

¹New supply available for consumption is a net figure computed by adding production to receipts and deducting scrap shipped during the year. The plus or minus difference in stock levels at the beginning and end of the year is not taken into consideration.

²Data may not add to totals shown because of independent rounding.

³Includes scrap shipped, transferred, or otherwise disposed of during the year.

⁴Less than 1/2 unit.

See footnotes at end of table.

Table 7.—U.S. consumption of iron and steel scrap and pig iron $^{\rm i}$ in 1987, by region and State

Region and State	Pig iron and steel ingots and castings		Steel castings		Iron foundries and miscella- neous users		Total ²	
	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron
New England and Middle Atlantic: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island	1,007 8,248	2 4,913	27 101	2 2	542 995	21 281	1,576 9,345	25 5,195
Total ²	9,255	4,915	128	3	1,537	302	10,921	5,220
North Central: Illinois Indiana Iowa, Kansas, Minnesota, Missouri, Nebraska, Wisconsin	5,513 7,332 2,388	2,520 16,659	148 159 396	$-\frac{1}{2}$	1,088 805 2,571	57 47 105	6,749 8,295 5,357	2,577 16,708 107

Table 7.—U.S. consumption of iron and steel scrap and pig iron in 1987, by region and State -Continued

Region and State	Pig iron and steel ingots and castings		Steel castings		Iron foundries and miscella- neous users		Total ²	
	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron	Scrap	Pig iron
North Central —Continued		•						
MichiganOhio	4,066 8,266	4,568 11,551	3 298	(³) 5	2,571 2,600	365 103	6,640 11,163	4,934 11,658
Total ² South Atlantic: Delaware, Florida, Georgia, Maryland, North Carolina,	27,565	35,298	1,004	9	9,635	677	38,204	35,984
South Carolina, Virginia, West Virginia South Central: Alabama, Arkansas, Kentucky, Louisiana, Mississippi, Okla-	5,944	5,703	12	. 	1,398	35	7,354	5,738
homa, Tennessee, Texas Mountain and Pacific: Arizona, California, Colorado, Hawaii, Oregon, Utah, Washing-	6,733	2,929	275	1	1,820	25	8,830	2,954
ton	2,169	120	480	. (³)	347	13	2,994	134
Grand total ²	51,665	48,965	1,899	12	14,739	1,053	68,303	50,030

Table 8.—U.S. consumer stocks of iron and steel scrap and pig iron, December 31, 1987, by region and State

Region and State	Carbon steel (ex- cludes re- rolling rails)	Stain- less steel	Alloy steel (excludes stainless)	Cast iron (includes borings)	Other grades of scrap	Total scrap stocks ¹	Pig iron stocks
New England and Middle Atlantic: Connecticut, Massachusetts, New Hampshire, New Jersey, New							
York, Rhode Island	117	6	28	25	3	179	
Pennsylvania	420	33	79	124	27	682	3 69
· -	120	- 00	10	124	- 41	002	69
Total ¹	537	- 38	107	149	30	861	71
North Central:							
Illinois	438	(2)	11	37	,	405	10
Indiana	411	(2) W	10	37 144	1 6	487 571	10 54
Iowa, Kansas, Minnesota, Mis-	411	**	10	144	0	911	54
souri, Nebraska	313	2	5	11	14	345	13
Michigan	246	ĩ	5	37	5	294	10
Ohio	432	7	41	97	7	584	26
Wisconsin	11	ż		11		24	3
Total ¹	1,852	11	71	338	32	2,306	115
South Atlantic: Delaware, Florida, Georgia,							
Maryland, North Carolina,							
South Carolina, Virginia,							
West Virginia	429	4	2	71	9	515	40
South Central:					•	010	10
Alabama, Arkansas, Kentucky,							
Louisiana, Mississippi, Oklaho-							
ma, Tennessee, Texas	708	2	15	108	37	873	53
Mountain and Pacific:							-
Arizona, California, Colorado,							
Hawaii, Oregon, Utah, Wash-							
ington	212	(2)	15	61	1	290	3
Grand total ¹	3,740	55	210	727	110	4,844	281

¹Includes molten pig iron used for ingot molds and direct castings.

²Data may not add to totals shown because of independent rounding.

³Less than 1/2 unit.

W Withheld to avoid disclosing company proprietary data.

¹Data may not add to totals shown because of independent rounding.

²Less than 1/2 unit.

Table 9.—U.S. average monthly price and composite price for No. 1 heavy melting steel scrap in 1987

(Per long ton)

	Month	÷, .	 Chicago	Pittsburgh	Philadel- phia	Composite price ¹
January February March April May June July August September October November			\$78.00 78.00 73.00 72.08 74.15 77.00 78.73 84.00 96.52 116.00 115.47 103.73	\$80.63 82.84 79.91 77.50 80.30 83.00 83.27 89.48 94.95 115.64 113.61 105.82	\$74.85 72.00 72.00 71.64 70.38 70.00 72.86 74.71 82.57 98.05 100.00 94.55	\$77.83 77.62 74.97 73.72 74.94 76.67 78.29 82.73 91.35 109.90 109.69
Average 1987 Average 1986			87.22 73.49	90.58 74.87	79.47 74.17	85.76 74.17

¹American Metal Market, composite price, Chicago, Pittsburgh, and Philadelphia.

Table 10.-U.S. exports1 of iron and steel scrap, by country

(Thousand short tons and thousand dollars)

	1983		1984		1985		1986		1987	
Country	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Canada	539	39,717	779	59,521	446	38,445	365	31,436	331	30,516
China	1	177	227	21,190	387	32,793	340	28,506	249	23,423
Italy	65	4.395	306	27,038	307	30,250	286	26,177	175	15,675
Japan	2,600	218,337	2,680	264,857	2,110	199,135	1,725	170,015	986	123,051
Korea, Re-		,								
public of	1,476	111.051	1,833	160.892	1,978	160,674	2,989	247,055	2,630	213,550
Mexico	419	36,017	484	47,663	597	57.535	318	29,981	501	48,278
Spain	356	22,734	608	55,228	910	72,312	673	51,771	417	42,503
anc ∙	499	75,638	405	54,515	414	45,163	667	74.387	426	46,629
	700	50,851	807	69,579	955	80,133	1.417	115,334	2,254	195,971
Turkey	20	1,197	392	33,346	471	36,384	483	36,673	150	10,273
Venezuela	845	76,608	977	124.151	1.373	165,360	2.441	242,514	2,247	217,149
Other	849	10,008	. 911	124,101	1,010	100,000		212,011		,
Total ²	7,520	636,723	9,498	917,981	9,950	918,186	11,704	1,053,849	10,367	967,018

 $^{^1\}mathrm{Excludes}$ rerolling material and ships, boats, and other vessels for scrapping. $^2\mathrm{Data}$ may not add to totals shown because of independent rounding.

Table 11.-U.S. exports and imports for consumption of iron and steel scrap, by class

(Thousand short tons and thousand dollars)

	1983	33	1984	4	19	1985	19	1986	1987	1.1
CIASS	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Exports:										
No. 1 heavy melting scrap	1,895	139,935	2,512	215,482	2,766	218,593	2,922	230,519	2,446	200,980
No. 2 heavy melting scrap	720	50,081	819	70,906	167	58,537	797	58,879	579	45,994
No. 1 bundles	506	16,486	1.1	8,258	185	17,172	155	13,876	167	14,890
No. 2 bundles	220	13,727	586	18,836	306	21,160	301	21,095	366	23,623
Stainless steel scrap	08	44,671	164	96,426	180	104,898	165	990,06	172	94,025
Shredded steel scrap.	2,029	154,753	2,775	251,976	2,559	220,320	3,495	293,040	3,314	298,259
Borings, shovelings, turnings	532	28,277	800	49,664	875	56,314	731	43,955	528	28,835
Other steel scrap ¹	1,532	164,101	1,416	155,685	1,646	162,484	2,048	209,094	2,033	195,197
Iron scrap	306	24,692	290	50,748	999	58,707	1,091	93,325	762	65,217
704012	7 590	696 799	0 408	017 001	0.050	910 196	11 704	1 059 840	10 367	967 019
Ships, boats, other vessels (for scrapping)	198	9,623	283	9,503	131	6,627	212	1,000,010	246	20,264
Rerolling material	34	4,194	58	10,918	110	15,604	78	11,302	57	8,863
•										
Total exports	7,752	650,540	9,840	938,402	10,191	940,416	11,994	1,081,626	10,670	996,145
Imports for consumption: Iron and steel scrap	641	48,219	21.1	47,427	611	46,480	724	49,073	843	82,016
			-		-					

¹Includes terneplate and tinplate.
²Data may not add to totals shown because of independent rounding.

Table 12.—U.S. exports of rerolling material (scrap), by country

(Thousand short tons and thousand dollars)

1983	3	1984		1985		1986		1987		
Country	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Canada	(¹)	101	(¹)	2,550	(1)	41	(¹)	44	1	170
China Korea, Republic of	5	462		· · · ·	19	2,497			(1)	1 - -
Mexico	28	3,579	57	8,248	90	12,511	77	$11,\overline{186}$	45	7,346
Turkey Other	$\bar{r_{(1)}}$	\bar{r}_{53}	$\bar{\mathbf{r}_{(1)}}$	r ₁₂₀		596	(1)	r72	10 1	1,111 228
Total ²	34	4,194	58	10,918	110	15,604	78	11,302	57	8,863

rRevised.

Table 13.—U.S. imports for consumption of iron and steel scrap,1 by country

	19	986	1987	
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)
Austria	58	\$125	169	\$350
Belgium-Luxembourg	128	236	2	5
Canada	562,603	38,151	725,622	68,558
Germany, Federal Republic of	2,365	850	863	205
Japan	12,984	1,059	16,754	1,227
Mexico	69,929	6,158	18,757	3,783
Netherlands	816	247	10,997	964
Sweden	12	35	624	153
United Kingdom	22,462	311	50.157	5,961
Other	52,201	1,899	19,032	810
Total ²	723,558	49,073	842,971	82,016

Table 14.—Iron and steel scrap consumption in selected countries¹

(Thousand short tons)

Continent, country group, and country	1982	1983	1984	1985	1986
North America:					
Canada ^{2 3 4 5}	6,261	6,965	e7.000	7.905	7,804
United States ^{2 5 6}	56,386	61,782	65,702	70,493	65,856
Latin America:7	00,000	01,102	00,102	10,200	00,000
Argentina	1,569	1.570	1.281	1,264	1.253
Brazil	5,625	6,137	6.971	7,714	7,934
Chile	146	209	237	241	152
Colombia	324	369	378	433	491
Ecuador	33	26	21	21	20
Mexico	3,332	2,383	3,181	$3.4\overline{13}$	3,253
Peru	120	186	343	^ŕ 257	292
Uruguay	34	56	53	51	41
Venezuela	1,027	457	1,292	1,195	996
Central America, not further detailed	82	74	126	192	456
Europe:					
European Economic Community:8					
Belgium ²	4,566	3.563	3,880	3,430	e _{2,900}
Denmark ⁹	690	644	718	656	776
France ^{3 4 5}	7,076	7,197	7,135	7,109	7.128
Germany, Federal Republic of	19.339	19.692	20,510	20.517	18,795
Greece ^e	300	275	300	300	400
Ireland ¹⁰	76	174	208	254	256
Italy	16.944	15.861	17.380	17,133	16.144
Luxembourg	1,450	1.508	1,857	1,761	1,644
Netherlands	1.594	1,607	1,797	1,658	31,436
Portugal	522	617	e600	e600	e600
Spain	10.042	10.795	10.911	11.152	109.641
United Kingdom	11,535	10,569	10,511	7.712	e7,300
European Free Trade Association:	11,000	10,000	10,010	1,112	1,500
Austria	1.807	31,797	³ 1,851	31,681	31,615
Finland ³	758	786	831	838	837
1 MIMMU	190	100	991	838	831

¹Less than 1/2 unit.

²Data may not add to totals shown because of independent rounding.

¹Includes tinplate and terneplate. ²Data may not add to totals shown because of independent rounding.

Table 14.—Iron and steel scrap consumption in selected countries1 —Continued

(Thousand short tons)

Continent, country group, and country	1982	1983	1984	1985	1986
continions, country group, and country					
Europe —Continued European Free Trade Association —Continued					
Norway ^{3 4}	537	577	638	597	e600
Sweden ^{2 3 5}	3.145	e _{3.395}	e3,500	e3,500	e3,500
Switzerland	10915	é915	^é 915	é915	e1,100
Council for Mutual Economic Assistance:					,
Bulgaria ^e	830	820	850	850	850
Czechoslovakia ^{2 4 5}	8,186	8.665	8,354	8.471	8,422
German Democratic Republic ^{2 3 4 5}	5,649	5.682	5,779	5,593	5,516
Hungary	2,446	2,445	2,705	2,754	2,912
Poland ³	8,983	9,796	9,630	9,490	10.070
Romaniae	4,260	4,270	4,300	4,280	4,300
U.S.S.R.e	60,300	63,400	64,500	64,500	65,000
Other:	,	,		,	
Yugoslavia ^{3 4 5}	2.245	2,434	e2,500	e _{2.500}	2,730
Africa: South Africa, Republic of 2	3,060	2,600	3,000	3,300	3,500
Asia:	-,	_,			•
China ^e	9,400	10,100	10,900	11,700	12,500
India ^e	4,200	4.050	4,060	4,300	4,400
Japan ⁵	42,832	44,269	47,934	48,685	44,378
Korea, Republic of ^e	3,300	3,350	3,600	3,700	3,800
Taiwan ^e 11	1,400	1,700	1,700	1,700	1,800
Turkey ¹⁰	e1,900	1.736	1,863	2.127	e2,200
Oceania:	2,000	_,,	_,,,-		. 7
Australiae	2,070	1.820	2,050	2,100	2,000
New Zealand ^e	160	150	180	150	150
Total	317,456	327,473	344,099	r349,192	337,748

^eEstimated. Revised.

^{**}Itemated. ***Itemated. **Tevised.**

1Unless otherwise specified, figures represent actual reported consumption of iron and steel scrap utilized in the production of pig iron, ferroalloys, crude steel, foundry products, and rerolled steel, as well as other unspecified uses in the steel industry and by other unspecified industries as reported by the United Nations Economic Commission for Europe in its Annual Bulletin of Steel Statistics for Europe 1986, v. 14, New York, 1987, 28 pp., which is the source of all reported data unless otherwise specified. All estimates are by the Bureau of Mines.

Excludes scrap consumed by steel rerollers.

³Excludes scrap consumed in iron foundries.

^{*}Excludes scrap consumed within the steel industry for purposes other than the manufacture of pig iron, ferroalloys, crude steel, foundry products, and rerolled steel (details on use not available).

*Traductor scrap consumed outside the steel industry.

Excludes scrap consumed outside the steel industry.

⁶Bureau of Mines.

Data are from Instituto Latino Americano del Fierro y el Acero. Statistical Yearbook of Steel Making and Iron Ore Mining in Latin America, 1987. Santiago, 1988, 220 pp. Source does not provide details on what is included; presumably figures include total steel industry ferrous scrap onsumption but exclude scrap used outside the steel industry.

*Portugal and Spain became members of the European Economic Community on Jan. 1, 1986.

Includes scrap used in production of steel casting in shipyards, but excludes scrap, if any, used in production of pig iron

and that used in iron foundries.

10 Organization for Economic Cooperation and Development. The Iron and Steel Industry in 1982, Paris, 1984, 40 pp.;
The Iron and Steel Industry in 1983, Paris, 1985, 52 pp.; The Iron and Steel Industry in 1984, Paris, 1986, 52 pp.; The Iron and Steel Industry in 1985, Paris, 1986, 52 pp.; The Iron and Steel Industry in 1986, Paris, 1987, 52 pp.

11 Excludes a substantial tonnage derived from shipbreaking (possibly of the order of several million tons annually) for electric framework.

electric-furnace-equipped steel mills.

Table 15.—Iron and steel scrap exports, by selected countries1

(Thousand short tons)

Continent, country group, and country	1982	1983	1984	1985	1986
orth America					
Canada	627	965	876	968	299
United States ^{2 3}	6,857	7,554	9,556	10,060	11,78
atin America:					
Cuba ⁴	^e 45	50	159	129	12
Mexico ²	22	4	17	18	e
rope:					
European Economic Community:5					
Belgium-Luxembourg		752	853	811	7
Denmark	130 3,397	193	258 4.525	298	2
France Germany, Federal Republic of	3,160	3,557 3,282	3,602	4,366 3,756	$\frac{3,4}{3,7}$
Greece	3,100	3,202	3,002	3,750	0,1
Ireland		23	47	55	
Italy		20	21	11	
Netherlands		1,678	1,851	2,023	2,1
Portugal	10	11	10	18	-
Spain	. 1	1	4	1	
United Kingdom	3,387	4,182	4,758	4,982	4,2
European Free Trade Association:			-		
Austria	10	14	23	35	
Finland	(⁶)	(⁶)	11	11	
Iceland	4		12 23	17	
NorwaySweden	35 20	40 23	23 24	10 24	
Switzerland		164	118	110	· 21
Council for Mutual Economic Assistance:	110	104	110	110	
Bulgaria	63	42	53	42	
Czechoslovakia4		137	205	155	1
German Democratic Republic ⁴	22	23	40	29	
Hungary		55	87	r44	
Polandi		161	194	88	
U.S.S.R ²	2,859	3,715	3,756	3,655	4.5
Other: Yugoslavia	70	78	157	191	ĭ
rica:					
Algeria ²	62	61	91	93	. e ₁
Morocco ²	57	75	101	89	
South Africa, Republic of	4	51	51	57	1
ia:					
Bahrain ²	3	7	e10	^e 10	е
Brunei	5	10	12	9	·
China ⁴	108	40	15	^e 25	. •
Cyprus	8	9	15	16	
Hong Kong ²	327	363	331	332	2
India ^e	20	20	20	20	
Indonesia ²	(6)	1	1	1	
Japan	193	128	161	183	5
Korea, North4	15	7	e 10	e ₁₀	
Korea, Republic of ²		314	149	82	
Kuwait		77	136	^e 100	e ₁
Malaysia ²	7	14	22	24	•
Mongolia*	26	24	^e 25	^e 25	•
Philippines ²		_ 1	2	1	
Saudi Arabia		e 35	^e 35	e 35	•
Singapore ²		132	120	184	1
Taiwan ²	443	308	223	428	9
Thailand ²	. 9	2	4	4	
Turkey	(6)	(⁶)	3	² 4	_
United Arab Emirates		e 10	e10	e10	•
Vietnam ⁴	^e 10	13	2	61	1
eania:					
Australia ²	1,249	574	409	555	6
New Zealand ²	3	3	4	r e ₂	
Total	r _{25,993}	r29,011	r33,203	r34,258	37,2

eEstimated. ^rRevised. ¹Unless otherwise specified, source is United Nations Economic Commission for Europe. Annual Bulletin of Steel Statistics for Europe 1986, v. 14, New York, 1987, 38 pp. ²Official trade returns of subject country. ³Includes rerolling material. ⁴Partial figure; compiled from import statistics of trading partner countries. ⁵Portugal and Spain became members of the European Economic Community on Jan. 1, 1986. ⁶Less than 1/2 unit.

IRON AND STEEL SCRAP

Table 16.—Iron and steel scrap imports, by selected countries1

(Thousand short tons)

Continent, country group, and country	1982	1983	1984	1985	1986
North America:					
Canada	505	737	1,253	974	² 827
United States ²	46 8	641	577	611	724
Latin America:					
Argentina ²	2	_8	2	1	1
Brazil ²	8	(³)	_34	_35	541
Chile	e 10	² 6	e ₁₀	e 10	² 19
Colombia ²	30	51	48	e ₅₀	e 50
Cuba ⁴	e100	107	106	109	98
Mexico ²	464	390	696	^r 1,016	e1,000
Peru ^e	² 18	20	20	20	20
Venezuela ²	23	20	400	547	^e 550
Europe:					
European Economic Community:5		e per			
Belgium-Luxembourg	978	1,152	1,843	1,642	1,347
Denmark	97	74	146	53	133
France	304	338	449	508	389
Germany, Federal Republic of	1,421	1,424	1,935	1,776	1,517
Greece	478	573	362	345	502
Ireland	3	77	97	150	134
Italy	6,141	4,901	6,047	6,368	5,232
Netherlands	244	401	527	646	936
Portugal	138	119	132	116	114
Spain	5,249	5,227	5,531	6,776	27,292
United Kingdom	41	12	37	55	52
European Free Trade Association:		0.44	100		105
Austria	420	241	400	263	127
Finland	56	41	36	125	71 7
Norway	4	17	14	12	769
Sweden	583	496	925	976	
Switzerland	118	162	301	265	² 356
Council for Mutual Economic Assistance:		150	170	40	40
Czechoslovakia4	81	173	172	48	48
German Democratic Republic	502	741	1,141	977	1,087 9
Hungary Poland	15	31 6	22 8	15 6	6
Poland	6	24	49	28	49
U.S.S.R.6	27 560	812	861	804	718
Other: Yugoslavia	900	014	001	004	110
Africa:	1.4	2	1	2	2
Egypt ²	14	3		2	e2
Morocco ² South Africa, Republic of ²	3		1	8	e ₅₀
South Africa, Republic of	31	. 8	61	٥	- 50
Asia:	-		e ₃	e ₃	e ₃
Bahrain ²	5	3			
China4	_3	2	74	547	376
Hong Kong ²	71	30	31	22	37
India ^e	500	500	500	800	800
Indonesia ²	250	284	268	210	^e 200
Japan	2,232	4,306	4,429	3,587	3,554
Korea, Republic of 2	1,994	2,090	2,294	2,640	3,434
Malaysia ²	28	55	53	^e 55	e 50
Pakistan ²	173	132	134	169	162
Philippines ²	28	(³)	1	1	94
Pakistan ² Philippines ² Singapore ²	103	104	87	72	230
Svriaz	27	7	2	e15	e ₁₅
Taiwan ²	718	811	637	766	1,351
Thailand ²	430	707	545	725	612
Turkey	825	1,184	1,144	21.323	21,988
Oceania:	020	1,104	4,477	1,020	2,000
Oceana: Australia	e ₁		13	1	1
New Zealand ²	6	- <u>-</u>	3	3	6
New Zearand	0		<u> </u>	J	
Total	26,536	r _{29,253}	r34,462	r36,278	37,692
101911	20,000	43,400	04,402	00,210	01,002

Revised.

^{*}Estimated. 'Revised, source is United Nations Economic Commission for Europe. Annual Bulletin of Steel Statistics for Europe 1986, v. 14, New York, 1987, 38 pp.

*Official trade returns of subject country.

*Less than 1/2 unit.

*Partial figures; compiled from export statistics of trading partner countries.

*Portugal and Spain became members of the European Economic Community on Jan. 1, 1986.

*Partial figure; compiled from incomplete returns of subject country and export statistics of trading partner countries.

Kyanite and Related Materials

By Michael J. Potter¹

Kyanite, and alusite, and sillimanite are anhydrous aluminum silicate minerals that have the same chemical formula, Al₂O₃• SiO₂. Related materials include synthetic mullite, dumortierite, and topaz, also classified as aluminum silicates, although the last two additionally contain substantial proportions of boron and fluorine, respectively. All of these kyanite-group substances can serve as raw materials for manufacturing high-performance, high-alumina refractories.

Published statistics were incomplete; however, France, India, the Republic of South Africa, and the United States appeared to be the leading world producers of kyanite-group minerals. The U.S.S.R. and perhaps a few other industrialized nations also were presumed to produce significant quantities of these materials.

U.S. kyanite output in 1987 was estimated to have decreased compared with that of 1986. Reasons for the decrease include competition from a new kyanite producer in

Sweden and closing of the only other U.S. kyanite producer, Pasco Mining Inc., in Washington, GA, in late 1986.

Domestic Data Coverage.—Domestic production data for kyanite and synthetic mullite are developed by the Bureau of Mines by means of two separate, voluntary, domestic surveys. In the kyanite survey, there is one producer with two active mines who did not respond. An estimate of total production was made by the Bureau of Mines using the last reported production levels adjusted by the trend of the minerals economy.

In the synthetic mullite survey, all three of the canvassed operations responded and accounted for 100% of the total production tonnage data represented in table 1.

Legislation and Government Programs.—The allowable depletion rates for kyanite, established by the Tax Reform Act of 1969 and unchanged through 1987, were 22% for domestic production and 14% for foreign operations.

DOMESTIC PRODUCTION

Kyanite was produced at two open pit mines by Kyanite Mining Corp., which operated the Willis Mountain and East Ridge Mines in Buckingham County, VA.

There are three types of synthetic mullite. Fused synthetic mullite is made by melting Bayer process alumina and silica, or bauxite and kaolin in an electric furnace at about 3,450° F. High-temperature sintered synthetic mullite is prepared by sintering mixtures of alumina and kaolin, bauxite and kaolin, or alumina, kaolin, and kyanite

above 3,180° F. Low-temperature sintered synthetic mullite is made by sintering siliceous bauxite or mixtures of bauxite and kaolin above 2,820° F.

Output of synthetic mullite in 1987 was largely of the high-temperature sintered variety, and the two producers of this material were C-E Minerals Inc. at Americus, GA, and Didier Taylor Refractories Corp. at Greenup, KY. Electric-furnace-fused mullite was produced by Electro Minerals U.S. Inc. at Niagara Falls, NY.

Table 1.—U.S. product	tion of
synthetic mullit	e

	Year ^e	Quantity (short tons)	Value (thou- sands)
1983 1984 1985 1986 1987		23,000 27,000 27,000 W W	\$4,700 5,300 5,450 W W

^eEstimated. W Withheld to avoid disclosing company proprietary data.

CONSUMPTION AND USES

Kyanite and related materials were consumed mostly in the manufacture of high-alumina or mullite-class refractories and in lesser quantities as ingredients in ceramic compositions. U.S. kyanite, already ground to minus 35 mesh as required by the flotation process used in its separation and recovery, was marketed either in this raw form, or after heat treatment, as mullite, which was sometimes further reduced in particle size before use. In the 35- to 48-mesh range, kyanite was used mostly in

monolithic refractory applications such as high-temperature mortars or cements, ramming mixes, and castable refractories, or with clays and other ingredients in refractory compositions for making kiln furniture, insulating brick, firebrick, and a wide variety of other articles. More finely ground material, minus 200 mesh, was used in body mixes for sanitary porcelains, wall tile, investment-casting molds, and miscellaneous special-purpose ceramics.

PRICES

Prices in 1987, in British pounds, from Industrial Minerals (London) were the same as those of 1986. The 20% price increases in

U.S. dollars in table 2 reflect a corresponding increase in the value of the British pound against the U.S. dollar.²

Table 2.—Prices of kyanite and related materials

(Dollars per short ton)

	1986	1987
Andalusite, Transvaal, 52% to 54% Al ₂ O ₃ , bulk, c.i.f. main European port	95	114
Andalusite, Transvaal, 60% Al ₂ O ₃ , c.i.f. main European port	122	147
Sillimanite, South African, 70% Al ₂ O ₃ , bags, c.i.f. main European port	259	310
U.S. kyanite, 59% to 62% Al ₂ O ₃ , 35-325 Tyler mesh, raw and/or calcined, 18-ton lots, c.i.f.	122-211	147-253
U.S. kyanite, f.o.b. plant, carlots:		100 150
Calcined Raw	123-172 70-137	123-172 70-137

Source: Industrial Minerals (London). No. 243, Dec. 1987, p. 103.

FOREIGN TRADE

Shipments of U.S. kyanite- and mullitecontaining materials were believed to have been made to destinations in Asia and Europe. Based on data from non-Government sources, imports of andalusite in 1987 were estimated to be 14,000 short tons.

WORLD REVIEW

Brazil.—Kyanite deposits occur in Goias and Minas Gerais States, with established reserves of 4 million tons. The only producer, Cianita Serra das Araras Ltda., was mining a deposit near Brasilia containing often-pure boulders of kyanite. Export markets had not yet reached earlier expectations.3

India.—Bharat Refractories Ltd. mined a large, high-grade deposit in the Khasi Hills in the State of Assam. The ore occurs as boulders consisting mainly of massive sillimanite. Some boulders were being sawn into bricks for direct application as refractories. Others were processed into lump material of 0.5 to 4 inches. Annual sillimanite output from the deposit was estimated to be approximately 6,000 tons.

In the Bhandara District in the State of Maharashtra, boulders of massive sillimanite-quartz-muscovite schist were mined by the Maharashtra State Mining Corp. This has become the country's largest sillimanite mining operation in recent years. Estimated annual production was approximately 8,000 tons.

In Kerala State, approximately 2.000 tons per year of sillimanite is extracted from beach sands. In the State of Orissa, a project known as the Orissa Sands Complex was being brought on-stream at one of the world's largest identified deposits of beach sands. Sillimanite content of the sands was 3%; initial production rate of sillimanite was to be approximately 30,000 tons per vear.⁴

Japan.—Although there has been no mining of kyanite-group minerals, the country consumed an estimated 50,000 to 60,000 tons per year of mullite. Part of this demand was met by domestic production of synthetic mullite. The two producers were Toshiba Refractories Co. Ltd. and Asahi Glass Co. Ltd. Japan produced approximately 40,000 tons per year of synthetic mullite.5

Spain.—The sole producer of kyanitegroup minerals has been reporting its production as kyanite, although official statistics refer to it as andalusite. Alluvium containing approximately 20% kyanite was mined by mechanical dredging, with production of kyanite being 3,000 to 4,000 tons per year. The operation was being upgraded to produce a higher alumina content product with reduced impurities for export markets.6

United Kingdom.—Sintered and electrofused synthetic mullite were produced by Cawoods Refractories Ltd. at several locations. The sintered mullite contained 86% mullite, with approximately 73% alumina and 0.7% iron oxide. The electrofused mullite consisted of 95% mullite, with 76.4%alumina and very little iron. The company reported its total mullite capacity as approximately 11,000 tons per year.7

Imports of kyanite-group minerals totaled 49,171 tons in 1986; principal countries of origin and percentages supplied were the Republic of South Africa, 50%; France, 22%; and the United States, 20%.8

Physical scientist, Branch of Industrial Minerals.

²Where necessary, values have been converted from pounds sterling (£) per metric ton to U.S. dollars per short ton at the rate of £1.00 = U.S. \$1.80 for 1987.

³Roskill Information Services Ltd. The Economics of Kyanite Group Minerals 1987. London, 5th ed., pp. 14-15.

⁴Pages 21-23 of work cited in footnote 3.

⁵Pages 24 founds that is featured 2.

⁵Page 24 of work cited in footnote 3. ⁶Page 33 of work cited in footnote 3.

⁷Page 36 of work cited in footnote 3.

SIndustrial Minerals (London). United Kingdom Industrial Mineral Statistics 1986. No. 236, May 1987, p. 67.

MINERALS YEARBOOK, 1987

Table 3.—Kyanite: World production, by country¹

(Short tons)

Country ² and commodity	1983	1984	1985	1986 ^p	1987 ^e
Australia:			100		
Kyanite ³	491	1,383	^e 1,650	^e 1,650	1,650
Sillimanite4		559	717	147	550
Brazil: Kyanite	473	1,422	e _{1,540}	^e 1,650	1,650
China: Unspecified ^e		2,800	2,800	2,800	2,800
France: Andalusite		57,300	62,391	56,108	56,200
India:					
Andalusite	2.836	e3,000	556	^e 550	550
Kyanite	42,226	40,812	33,590	30,278	33,100
Sillimanite	8,739	14,746	18,844	16,430	16,500
Kenva: Kvanite	6	1	1	•1	- 1
Korea, Republic of: Andalusite		230	46	(⁵)	
South Africa, Republic of:					
Andalusite	128,503	157,967	214,612	203,339	198,400
Sillimanite		1,445	1,474	1,466	1,430
Spain: Andalusite		3,307	3,087	2,696	2,760
Sweden: Kyanite			2,425	e _{5,500}	11,000
United States					
Kvanite	W	· W	W	W	W
Mullite, synthetice	23,000	27,000	27,000	W	W
Zimbabwe: Kvanite		·		2,040	2,040

^eEstimated. ^PPreliminary. W Withheld to avoid disclosing company proprietary data.

¹Owing to incomplete reporting, this table has not been totaled. Table includes data available through Apr. 8, 1988.

²In addition to the countries listed, a number of other nations produce kyanite and related materials, but output is not reported quantitatively, and no reliable basis is available for estimation of output levels.

³Production of kyanite began in 1982 (88 short tons) as a byproduct of mineral sands mining at Eneabba, Western Australia.

Australia. In Addition, about 8,000 short tons of sillimanite clay (also called kaolinized sillimanite) is produced annually containing 40% to 48% Al₂O₃.

SRevised to zero.

Lead

By William D. Woodbury¹

Despite the highest domestic average annual lead price in 6 years, mine production of recoverable lead declined to the lowest level since 1967 owing to technical problems. Domestic recovery of lead from recycled scrap was more than 700,000 metric tons for the first time in 8 years, as U.S. secondary plants produced at a record capacity utilization rate. Only in the years 1977-79 had that level of secondary production been exceeded. Significant restructuring and capacity increases also occurred

in the secondary sector, but one of the Nation's four remaining primary lead smelters did not operate at all during the year owing to the low domestic mine production. The Occupational Safety and Health Administration (OSHA) did not renew any expired temporary variances to its 1983 medical removal protection standard for secondary plants. OSHA estimated that 15% of the secondary industry was not in compliance at yearend.

Table 1.—Salient lead statistics

(Metric tons unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Production:					
Domestic ores, recoverable lead content	449,295	322,677	413,955	339,793	311,298
Value thousands	\$214,745	\$181,745	\$174,008	\$165,150	\$246,654
Primary lead (refined):					
From domestic ores and base bullion	r463,940	r323,989	r422,650	r348,217	336,471
From foreign ores and base bullion	55,227	65,409	71,353	22,071	37,139
Secondary lead (lead content)	503,501	633,374	615,695	r624,769	710,217
Exports (lead content):	,	,		,	
Lead ore and concentrates	20,119	11,858	9,987	4,380	8,764
Lead materials excluding scrap	24,351	16,563	37,322	19,778	13,586
Imports for consumption:	,	•	•	•	
Lead in ore and concentrates	19,753	29,888	2,649	4,604	873
Lead in base bullion	53	43	760	142	10,827
Lead in pigs, bars, reclaimed scrap	¹ 180,569	166,515	134,521	143,511	192,260
Stocks, Dec. 31:		•		•	
Primary lead ²	r _{53,405}	r45,126	r84,502	r20,400	21,608
At consumers and secondary smelters	100,771	97,077	93,130	83,824	88,586
Consumption of metal, primary and secondary	1.148,487	1,207,033	1,148,298	r _{1,125,521}	1,230,387
Price: Common lead, average, cents per pound ³	21.68	25.55	19.07	22.05	35.94
World:					
Production:					
Mine thousand metric tons	r3,357.0	r3,261.9	3,427.9	P3.375.7	e3,453.8
Refinery4 do	r3,264.6	r3,161.1	3,369.6	P3,229.0	e3,176.6
Secondary refinerydo	r2,024.0	r _{2,295.1}	2,291.8	P2,354.2	e2,453.2
Price: London Metal Exchange, pure lead, cash	2,021.0	2,200.1	2,201.0	2,001.2	2,100.2
average, cents per pound	19.27	20.12	17.84	18.43	26.99

^eEstimated. ^pPreliminary. ^rRevised.

¹Includes Bureau of Mines estimate of 42,000 metric tons of pigs and bars (lead content) of U.S. brands returned from the London Metal Exchange.

²American Bureau of Metal Statistics Inc. (ABMS).

³Metals Week. Transactions on a delivered basis.

⁴Primary metal production only. Includes secondary metal production where inseparably included in country total.

Domestic consumption of lead increased to the highest level in 8 years owing to the record-high level reported by all lead-acid storage battery manufacturers. That sector exceeded 900,000 tons for the first time, which represented a record-high share of total consumption. However, demand by industrial and traction battery manufacturers decreased slightly after 4 consecutive years of significant growth. Total automotive battery shipments, including exports, were about the same as those of 1986, resulting in a large inventory buildup of starting-lighting-ignition (SLI) batteries at yearend. All other specific uses fluctuated only slightly compared with those of 1986.

After declining slightly in the first quarter of 1987, the North American producers' mean U.S. price rose steadily, reaching 42.0 cents per pound on July 7, 1987, which held through the remainder of the year. The monthly average spread against the London Metal Exchange (LME) price declined for the first 4 months, but increased spectacularly through October, reaching a recordhigh 14.8 cents per pound for that month. The result for the year was a significant increase in net imports of refined metal and total net imports of contained lead in all forms, including scrap, compared with 1986 imports. The U.S. average price of 42 cents per pound for the second half of 1987 was the highest sustained level since 1980. The LME average cash price for 1987 of 27 cents per pound was the highest since 1981.

Recoverable world mine production was estimated to have increased considerably, but secondary sources provided more than 40% of the estimated demand for the fourth consecutive year. World refinery production, including secondary lead, was estimated to have increased slightly from that of 1986 but was still less than world demand. World demand increased for the 5th consecutive year and equaled the record set in 1979.

Domestic Data Coverage.—Domestic da-

ta for lead are developed by the Bureau of Mines from five voluntary surveys of U.S. operations. Typical of these are the combined secondary producer and consumer monthly and annual surveys. Of the 274 consuming plants to which a survey request was sent, 256 responded, representing 97% of the total U.S. lead consumption shown in tables 1, 11, 12, 13, and 14. Of the 58 smelter-refineries to which a survey request was sent, 53 responded, representing 95% of the total refinery production of secondary lead recovered from scrap shown in tables 1, 8, 9, and 10. Production and consumption for the nonrespondents were estimated using reported prior year levels adjusted for general industry trends.

Legislation and Government grams.—The Environmental Protection Agency (EPA) prohibited landfill or surface impoundments for any free liquid, solid, or sludge of any lead waste or its compounds containing 500 milligrams per liter or more of lead and required special hazardous waste disposal under the Resources Conservation and Recovery Act (RCRA). The requirement was taken directly from California State regulations, and EPA reserved the right to establish more stringent requirements. Many secondary smelters were already in compliance to avoid future liability. At yearend, the EPA was in the final process of determining the regulatory framework and standards for primary lead smelting and refining wastes under RCRA and was also considering modifying its leaching test for slag materials. The EPA was also considering a lowering of the drinking water standard for lead by up to 90%. The process effluent standards are also tied to this standard under the Clean Water Act. The U.S. Department of Transportation proposed a comprehensive overhaul of the regulations governing the transport of hazardous materials that reportedly would require shippers of lead concentrates to utilize leak-proof, sift-proof containment.

DOMESTIC PRODUCTION

MINE PRODUCTION

Domestic mine production of recoverable lead declined from that of 1986, and was the lowest since 1967, 2 years before the Viburnum Trend operations in Missouri fully came on-stream. The low output was attributed to technical problems, including lower average grades at some Missouri mines,

and only a partial year's production from some lead-producing silver mines that had shut down in 1986 and did not come back on-stream until midyear in 1987. Eight Missouri mines, of which only seven were in operation all year, together with nine lead-producing precious metals and/or zinc and copper mines in Colorado, Idaho, and Montana, accounted for nearly all of the U.S.

LEAD 543

mined lead output in 1987. Byproduct lead was recovered from mining in four other States during the year, accounting for less than 1,000 tons of recoverable metal. Domestic lead-producing mines operated at only 47% of capacity during the year, and the top 11 mines shown in table 6 produced more than 99% of the total.

The Doe Run Co. of St. Louis, MO, operated two mine and mill complexes involving five mines in southeastern Missouri on the Viburnum Trend. The Buick Mine, the Nation's largest producer, which had been closed since May 1986, was opened early in the year. The Brushy Creek unit did not operate in 1987. According to Homestake Mining Co.'s annual report, Doe Run milled 3.68 million tons of ore averaging 5.8% lead, which resulted in 256,000 tons of lead concentrates for Doe Run's integrated Herculaneum, MO, smelter-refinery. Homestake's share of Doe Run production was 42.5% with the balance accruing to Fluor Corp., whose St. Joe Minerals Div. was the operator. At yearend, Doe Run had 68.1 million tons of ore reserves grading 5.1% lead, according to Homestake. Approximately 65% of Doe Run's holdings are under Federal lease for which the Bureau of Land Management is paid a minimum royalty of 5% of the gross value of concentrates produced.

The Magmont Mine, equally owned by Cominco American Incorporated as operator and Dresser Industries Inc., was the second largest lead-producing mine in 1987, and its output also represented the second largest company output of mined lead. Cominco's share of Magmont's concentrates was sold to ASARCO Incorporated, and Dresser's share was tolled by Asarco at Glover, MO. According to Cominco Ltd. of Canada's annual report, Magmont milled slightly more than 1 million tons of ore averaging 7.1% lead, which produced 89,000 tons of lead concentrate grading 77.0% lead contained. This was a significant decline from 1986 owing to a 1.5% decrease in the average ore grade hoisted. At yearend, Magmont had 4.26 million tons of ore reserves grading 6.4% lead, according to Cominco. Cominco announced that shipments from its Red Dog Mine in Alaska would commence in 1990. The 54-mile road from the mine to the port on the Chukchi Sea was scheduled for completion in February 1988. At full production, the zinc-lead-silver open pit mine would be the world's largest base metal operation, producing 64,000 tons of lead and 314,000 tons of zinc per year.

Red Dog's published ore reserves, including inferred, were 85 million tons grading 5.0% lead and 17.1% zinc.

Asarco operated two mine and mill complexes in the Viburnum Trend, but the refurbished Sweetwater Mine did not come on-stream until late in December. The Sweetwater Mine was the Nation's highest rated capacity lead mine at 91,000 tons per year. According to Asarco's annual report, the West Fork Mine produced at only 55% of its 50,000 tons per year of lead in concentrates capacity in 1987 owing to technical problems. As the Sweetwater and West Fork Mines work up to planned capacities, Asarco's Glover, MO, smelter-refinery will be able to operate solely with integrated, high-grade clean concentrates. Any excess resulting from Glover's supply contract with Cominco and Dresser will fulfill some of the needs of Asarco's East Helena, MT, plant. Therefore, Asarco reduced its interest in MIM Holdings Ltd. of Australia, a major lead and zinc producer, from 34.9% to 19% in the third quarter of 1987. At yearend, Asarco had lead ore reserves in Missouri of 23.1 million tons grading 4.84% at Sweetwater and 9.8 million tons grading 7.07% at West Fork.

Hecla Mining Co. reopened the Lucky Friday Mine in Idaho, normally a large lead producer, in midyear after being shut down for over a year owing to unfavorable silver prices. Production of lead was curtailed owing to startup of a new mining system in a recently developed area with reportedly lower average in situ lead grades. Pegasus Gold Inc. opened a new open pit gold-silver-zinc-lead mine in June. Known as Montana Tunnels, its anticipated capacity for lead is 5,000 tons per year.

SMELTER AND REFINERY PRODUCTION

Primary.—According to Homestake's annual report, the Doe Run smelter-refinery at Herculaneum, MO, the Nation's largest, produced just under one-half of the total domestic reported primary metal output in 1987. The plant produced about 18,000 tons more than in 1986, and operated at about 88% of its rated capacity. The Doe Run smelter-refinery at Boss, MO, did not operate during 1987, but was kept on care and maintenance. The sinter machine, however, was used while the one at the Herculaneum smelter was being rebuilt.

Asarco operated a smelter-refinery at Glover, MO, a smelter at East Helena, MT, and a refinery at Omaha, NE, that also processed secondary materials as well as the bullion from East Helena. The Glover facility contributed 33% of the Nation's 1987 primary lead production, according to Asarco's annual report, and operated well above its rated capacity for the third consecutive year owing to higher grades of raw materials feed and minimal downtime. The three U.S. primary refineries operated at only 63% of capacity in 1987, the same as in 1986, whereas the smelters were at 73% of capacity.

Secondary.—The U.S. secondary industry at yearend consisted of 20 companies, which operated 27 plants with refined metal capacities ranging from 5,000 to 80,000 tons per year and were responsible for 95% of the reported secondary production. There were also 28 small producers who operated 29 plants with annual capacities averaging 1,200 tons, which produced mainly specialty alloys for such uses as solders, brass or bronze ingots, and bearing metals. Early in the year, two plants in California and Florida with a combined annual capacity of 16,000 tons were closed. At yearend, industry installed capacity was 855,000 tons, a

55,000-ton increase from yearend 1986. Secondary capacity utilization for 1987 was a record high 83%.

Two significant mergers occurred during the year, which represented a major restructuring of integrated battery manufacturers and lead producers. Pacific Dunlop of Australia, owner of Pacific Chloride Inc., a producer-manufacturer, integrated acquired ownership of GNB Inc., also integrated, to further enhance GNB's position as the No. 2 U.S. secondary lead producer. Exide Corp., a large battery manufacturer, acquired General Battery Corp., a large integrated producer-manufacturer, thereby becoming the Nation's largest integrated battery manufacturer. Pacific Dunlop-GNB Inc. and RSR Corp., the Nation's largest secondary lead producer, each operated three smelter-refineries at yearend. Exide-General Corp., Refined Metals Corp., and Schuylkill Metals Corp. each operated two plants. These 12 plants, together with the Sanders Lead Co. smelter-refinery at Troy, AL, the world's largest secondary lead plant, accounted for nearly three-quarters of U.S. secondary lead production in 1987.

CONSUMPTION AND USES

Total domestic consumption of lead increased by 105,000 tons in 1987 compared with that of 1986, of which 100,000 tons was in the lead-acid storage battery sector, exceeding the previous record by 74,300 tons in 1978 for battery manufacturers. The battery share of total consumption also achieved a record high 78%. Most other uses increased or decreased only slightly compared with 1986 uses. Lead in all casting metals exhibited a strong comeback owing to a generally strong economy in 1987 reflected by the transportation industry, which included trucks, buses, and automobiles, as well as heavy equipment and lighter in-plant equipment. Lead for type metal, cans, tubes, and other shipping containers continued a 10-year decline as did leaded gasoline additives. Lead in power and communication cables increased for the fourth consecutive year, doubling its use in 1983 owing to the recently developed lead foilsupplanting plastic laminates plastics.

According to statistics from the Battery Council International and Bureau of the Census, total 1987 shipments of replacement and original equipment automotive batteries, including exports, were 50,000 units greater than those shipped in 1986, less than a 0.1% increase. Export shipments increased by 667,800 units to 2,747,300 units, but domestic shipments decreased by 618,300 units, just under 1%. Total shipments of automotive batteries were 75.71 million units in 1987 compared with 75.66 million units in 1986, representing less than 500 tons of increased lead usage. There was a slight decline in lead use for industrial and traction batteries in 1987, and therefore a huge surplus of lead in the form of SLI battery inventories and materials in process (battery grids and oxides) was on hand at yearend from the excessive metal consumed. Lead demand by the industrial and traction battery sector in 1987 was estimated to be 158,700 tons.

STOCKS

Metal stocks at domestic primary refineries increased marginally, but raw material feedstocks decreased significantly, which reflected the low U.S. mine output and negligible imports for consumption of lead concentrates during 1987. Refined pig lead stocks held by secondary producers and consumers at yearend increased nominally after 3 consecutive years of decreasing owing to the high level of imports. Total yearend stocks of contained lead in all forms, excluding scrap, held by all domestic producers and consumers, was about the

same as those at yearend 1986.

Stocks of lead and antimonial lead metal in the market economy countries reporting to the International Lead and Zinc Study Group (ILZSG) were approximately 412,000 tons at yearend, slightly more than 7% of 1987 total world demand, and 12,000 tons higher than stocks at yearend 1986.2 Stocks in LME warehouses were only 16,000 tons at yearend, a decrease of 22,000 tons from those at yearend 1986, and the lowest level since 1978, when they were also at 16,000 tons.

PRICES

According to Metals Week, the North American producers U.S. price range, which had been listed at 28 to 29 cents per pound in mid-December 1986, was lowered uniformly to 27 cents in mid-January 1987 and then to 26 cents on February 3, the low level of the year. The price rose gradually from early April to 42 cents per pound on July 7, which was sustained for the remainder of the year. The spread against the LME, which was 6.9 cents per pound in January, declined during February, March. and April to a low of 2.7 cents per pound for that month. The spread then rose in each month through October, reaching a recordhigh 15.1 cents for the last week of that month. This resulted in almost 40% of the pig lead imports for the whole year entering in September through November. The sustained mean and quoted price of 42 cents per pound was the highest level in the U.S. since 1980 except for August of 1981 (43.9 cents). The year average for 1980 was 42.5 cents per pound on a reported transactions value-weighted basis, which is no longer available.

On the LME, the monthly average cash price fluctuated about 1 cent per pound during the first quarter of the year after dropping 2.5 cents per pound in January compared with December 1986. It rose gradually from mid-April through the third week of May, achieving the highest

monthly average of the year at 31.4 cents per pound. May's average price was the highest since October 1981 (32.5 cents). This resulted in the LME physical stock level's dropping to its lowest level (10,300 tons on May 8) since February 1980, when it was 8,900 tons at monthend. Weekly average prices fluctuated between 31.4 cents per pound for the week ending July 10 and 26.8 cents per pound for the week ending October 2, 1987. The monthly average prices for the 7-month period ranged from 27.3 cents for October to 30.1 cents for July. The yearend price on December 25 was 30.3 cents per pound compared with the average of June through December of about 29 cents. The average price for the year was 27 cents per pound.

The domestic prices for lead oxides were based on the selling price plus conversion charges for pig lead in a given period. Premium adjustments were also made by individual producers to reflect differences in manufacturing techniques, freight considerations, quality and packaging requirements, or other factors. According to American Metal Market, the quoted premiums for litharge ranged from about 4.25 to 6.5 cents per pound for bags or drums in truckload lots and 10.5 to 11 cents per pound for 97% red lead. The premium for Bulk Battery (leady litharge) was about 2 cents per pound.

FOREIGN TRADE

Owing to the low domestic mine and primary metal production in the face of healthy domestic demand and prices, exports of contained lead in all forms were down from 1986 and represented the second lowest total since 1976. Raw material and metal exports were negligible, and scrap exports were down slightly. Canada, Brazil, and Taiwan received about one-half of the scrap exported, almost all of which was thought to be spent lead-acid batteries. The lead content of exported scrap was estimated to be 60%. The United States had 159,000 tons of net imports for consumption of lead in all forms, excluding chemicals, pigments, and oxides, a 69,000-ton net increase from 1986. Almost 90% of the contained lead imported was refined pig lead, three-quarters of which came from Canada and Mexico, the traditional suppliers.

Imports of chrome yellow used for highway markings and litharge, which together represented more than 80% of the lead chemicals and compounds imported for consumption, increased significantly in 1987. Total imports of all these categories remain-

ed about the same as those in 1986. Mexico accounted for almost all of the U.S. imports of litharge and red lead, and Canada supplied more than one-half of the remaining total of chemicals and compounds, including three-quarters of the chrome yellow. The Federal Republic of Germany, Hungary, and the Netherlands accounted for most of the balance of chrome yellow. The Federal Republic of Germany, Japan, and Mexico supplied virtually all of the lead acetate; the United Kingdom supplied all of the lead arsenate; China, Hong Kong and Belgium supplied 90% of the lead nitrate; and the Federal Republic of Germany and the Netherlands supplied almost 80% of the basic white lead carbonate imports. Canada, the Federal Republic of Germany, the Netherlands, and the United Kingdom accounted for 90% of the imports of all other salts, pigments, and compounds. Canada and Mexico accounted for 86% of the total U.S. imports of all lead chemicals and compounds, including oxides on a tonnage basis.

Table 2.—U.S. import duties for lead materials, January 1, 1987

(Lead content)

the second of th				
Item	TSUS No.	Most favored nation (MFN)	Least developed developing countries	Non-MFN
Ore	602.10	0.75 cent per pound	Free ¹ or current MFN rate.	1.5 cents per pound.
Lead bullion Other unwrought Waste and scrap	624.02 624.03 624.04	3.5% ad valorem 3.5% ad valorem ² 2.3% ad valorem	Current MFN rate only Free ¹ or current MFN rate.	10.5% ad valorem. 10.0% ad valorem. 11.5% ad valorem.

¹Free if eligible under General System of Preferences.

Fres if eligible under General System of Preferences.

1983) but not to be less than 1.0625 cents per pound, on Oct. 30, 1984, by the Omnibus Trade Act.

WORLD REVIEW

According to the ILZSG statistics, consumption of soft lead and antimonial lead in the market economy countries was 4.24 million tons, compared with 4.11 million tons in 1986, 4.03 million tons in 1985, and 3.97 million tons in 1984. Estimated world consumption of lead in all forms during 1987 was 5.73 million tons, compared with 5.65 million tons in 1986 (revised) and equaling the previous alltime high established in 1979. The comparable figures for 1985 and 1984 were 5.56 and 5.45 million tons, respectively (revised). Estimated world total refinery production, including that from re-

cycled scrap, increased by nearly 50,000 tons compared with that of 1986, reflecting the increased performance of the U.S. secondary industry during 1987. The significant decrease in primary metal production in Canada because of labor-management difficulties was more than offset by the return of primary metal output in Australia to 1984 and 1985 levels. The result was the nominal increase in the total reported ILZSG metal stocks level.

Seven new lead-producing mines came onstream in 1987, which together with a major reopening in the United States and several LEAD 547

expansions elsewhere in capacities, including China, resulted in a net capacity increase of 45,000 tons after accounting for closures and permanent reductions in output at some mines owing to declining grades or other technical reasons. The estimated yearend world capacity of 4.24 million tons per year represented a gain of 200,000 tons since 1984, the low point in world mine capacity of the decade. With the addition of a major new lead smelter in Italy and the closure of Tunisia's only smelter-refinery, estimated world lead-smelting capacity rose by 60,000 tons to 4.40 million tons per year, compared with 4.55 million tons of refinery capacity at yearend.

Australia.—The significant increase in 1987 lead mine production was primarily attributed to the return to a full year's production at Broken Hill, New South Wales, of Australia Mining & Smelting Ltd. (AM&S), and North Broken Hill Holdings Ltd. (NBHH). These mines had work stoppages due to lengthy midyear managementlabor difficulties in 1986. The new Hellyer Mine in Tasmania of Aberfoyle Ltd., 46% owned by Cominco Ltd. of Canada, came onstream in midyear, treating its ore at a converted tin mill about 40 kilometers from the site. BHP Minerals Ltd. (58%)-Billiton Australia's (42%) new joint-venture mine at West Kimberly, Western Australia, began operations, and ore was stockpiled for the commissioning of the new mill scheduled for 1988. The new ore body is the first "Mississippi Valley Type" deposit to be developed in Australia, and the planned ore throughput was 320,000 tons per year. The combined capacities estimated for the two new mines was 19,500 tons per year of lead in concentrates and 68,700 tons of zinc.

Production increased slightly at Nicron Resources Ltd.'s open pit mine near Darwin in the Northern Territory, which had opened in late 1985. Accelerated underground development begun late in 1986 continued through the first half of 1987. Reserves were estimated at about 1 million tons, averaging 7.5% lead and 12.9% zinc. Production at Mount Isa Mines, Queensland, and the NBHH mines on the west coast of Tasmania and at Elura, New South Wales, remained level with those of 1986. Production declined slightly at the Woodlawn and CSA (AM&S) Mines in New South Wales. The open pit portion of the Woodlawn Mine, which was completed in May, was purchased by Denehurst Ltd. from AM&S in July. Mining continued toward an eventual

target of 500,000 tons per year of ore from reserves of 2.5 million tons grading 4.8% lead and 11.8% zinc. Production at Broken Hill Associated Smelters Pty. Ltd. plant at Port Pirie, South Australia, the country's only producer of primary refined lead, increased significantly with return to normal operation following the midyear 1986 labormanagement disputes. Australian lead mining capacity at yearend was estimated to be 556,000 tons per year, about 20,000 tons greater than for all of Asia, including China, but about 100,000 tons less than for the United States. Australia produced more than 150,000 tons more than the United States in 1987.

Underground development continued at Mount Isa Mines Ltd.'s Hilton silver-leadzinc deposit 20 kilometers north of Mount Isa, Queensland. Trial stoping began in June at the rate of 2,000 tons per week. It was anticipated that a commercial mining operation based on the integration of Hilton ore into the Mount Isa Mine's declining output will start in the late 1980's, keeping MIM's output level. Proven reserves at Hilton were 11 million tons of ore grading 6.7% lead and 9.1% zinc. Probable reserves were estimated to be an additional 38 million tons of 6.4% lead and 9.3% zinc with considerable further potential in the immediate area. The Pancontinental Mining Ltd. (51%)-Outokumpu Oy of Finland (49%) joint venture completed exploratory shaft sinking at their Lady Loretta, Queensland, project begun in 1986 and continued with exploratory development, test mining, drilling, and bulk sampling. The Pancontinental-Outokumpu joint venture agreed to purchase BHP Minerals Ltd.'s interest in the Thalanga base-and-precious-metals deposit near Charters Towers in northern Queensland. It also obtained an option to buy the remaining 11% interest held by Electrolytic Zinc Co. of Australia, which would give it full ownership. The joint venture had acquired its initial 50% interest in June from Peñarroya (Australia) Pty. Ltd. The prospect has ore reserves of 7.8 million tons grading 2.7% lead, 8.7% zinc, 2.2% copper, 71 grams of silver, and 0.47 gram of gold per ton. Mining leases have been secured, and an operating pilot plant is on-site. A feasibility study was to extend through 1988 for consideration of a possible open pit and underground operation.

Austria.—The nation's only primary smelter-refinery at Gailitz, owned by Bleiberger Bergwerks-Union AG, expanded capacity by 7,000 tons per year to 24,000 tons and replaced the conventional refinery with a matching 24,000-ton-per-year electrolytic

plant.

Brazil.-Cia. Paulista de Metais acquired the lead-producing Boquira Mine and Plumbum Mine in Bahia and Paraná, respectively, from Peñarroya at a cost of \$18 million and was expected to raise its total lead production by 8,000 tons in 1988 to 40.000 tons per year. The new group will be called Sociedad Paulisto de Metais. The Morro Agudo Mine owned by Mineração Morro Agudo S.A., a joint venture of Cia. Mineira Metais and Paraibuna de Metais of Paracatu, Minas Gerais, opened in December with a capacity of 6,500 tons per year of lead. Cia. Paulista de Metais was expanding its primary smelter in Panelas to match the capacity of the mines acquired from Peñarrova.

Canada.-Mine production of lead increased significantly in 1987 owing to accelerated ore production at Pine Point Mines Ltd.'s (50% owned by Cominco Ltd.) mine in the Northwest Territories prior to its midyear closing. Milling was to continue through mid-1988 from the stockpiled ore with concentrate shipments to continue through 1990 to Cominco's smelter at Trail, British Columbia. Construction of the modern QSL bath-type autogeneous replacement plant continued on schedule during the year at Trail, and production was expected to start in mid-1989. The metallurgical complex at Trail was shut down for 17 weeks because of a strike. Cominco's Sullivan Mine at Kimberly, British Columbia, the other feeder for Trail, was also shut down. As a result, Canadian production of refined metal declined by more than 30,000 tons compared with 1986 production.

Curragh Resources Corp.'s large open pit Faro Mine in the Yukon Territory reached planned capacity in 1987, and development work was started at the nearby Grum and Vangorda deposits, which were planned to be gradually phased in as production from Faro declines. Giant Resources Ltd., the natural resource subsidiary of Ariadne Australia Ltd., purchased a 46% interest in the Faro Mine, equal to Curragh's share. Boliden AB of Sweden owns the remaining 8% share. East-West Minerals NL of Australia acquired the Caribou property of Anaconda Minerals Co. in New Brunswick and continued development work toward a summer 1988 startup. The open pit mine will reportedly produce about 120,000 tons per year of a bulk lead-zinc concentrate containing 15,000 tons of lead in 1989. Metallgesell-

schaft AG of the Federal Republic of Germany incorporated its foreign mining interests in Canada during the year as Metall Mining Corp. Ltd. Some of its assets included interests in Cominco, MIM, and Teck Corp., which are major lead and zinc producers. Canadian lead mining capacity at yearend was estimated to be about 360,000 tons per year.

Honduras.—American Pacific Holdings purchased the El Mochito Mine from AMAX Inc. in October and resumed production in November after being shut down

since the end of April.

Italy.—Nuova Samim (SAMIM) brought its new primary bath smelter, a Soviet technology Kivcet design, on-stream at Porto Vesme, Sardinia, with a lead capacity of 84,000 tons per year. The plant replaced an older ISF plant that had 14,000 tons per year less capacity. Société Italiana Minière (SIM) expanded an existing mine and brought on a new mine and mill at Monteponi, Sardinia, with a combined additional lead capacity of 13,000 tons per year. SIM was split from SAMIM to primarily control mining activity in the lead-zinc sector.

Japan.—Three lead-zinc mines representing 12,000 tons of lead per year, or about 30% of the nation's primary lead capacity, were shut down during the year in Miyagi, Fukui, and Akita.

Spain.—Boliden AB of Sweden acquired Andaluza de Piritas S.A. (APIRSA) from the Banco Central. APIRSA was the operator of the Aznacollar open pit mine in Sevilla, which has a capacity of 25,000 tons of lead per year, plus 40,000 tons of zinc, 12,000 tons of copper, and 60,000 tons of silver. Reportedly, it had become unprofitable in recent years. Two new lead-zinc-silver deposits in Cuidad Real and León were under study by Minas de Almaden y Arrayanes S.A. and Peñarroya S.A. with Empresa Nacional Adaro de Investigación Mineras S.A. (Enadimsa), respectively, reportedly to come on-stream in 1990 with an additional 28,000 tons of lead capacity.

Tunisia.—At Megrine, the only primary lead smelter-refinery, with a capacity of 30,000 tons per year, was closed in January.

Yugoslavia.—A new underground mine at Toranica operated by SOUR Zletovo-Sasa came on-stream with an initial lead capacity of 10,000 tons per year. Full capacity of 17,000 tons per year was scheduled to be reached in 1992. The Suplja Stijena Mine at Gradac, Montenegro, with an estimated lead capacity of 6,000 tons per year and one of 13 mines operated by SOUR Trepca, was closed.

TECHNOLOGY

A prototype, customer-side-of-the-meter, load-leveling system utilizing lead-acid batteries was established at Johnson Controls Inc.'s Milwaukee, WI, battery manufacturing plant. The new system, the first operating commercial-scale project of the concept in the United States, was to undergo extensive testing and modifications during 1988. including trials with zinc bromine and hydrogen-nickel oxide batteries. The "Advanced Load Management System" operates at 600 volts and has a capacity of 600 kilowatt hours, estimated to be sufficient to operate a typical home for 30 days or 300 homes for 2 hours taking advantage of timeof-use electricity rates. The prototype system was installed with 300 lead-acid, deepdischarge, stationary batteries modified for load management requirements and integrated with advanced digital controls and computerized analysis equipment. The system uses load profile simulations and energy management concepts as a means to develop the technology to anticipate and respond to peak demands for electricity.⁴

A comprehensive coverage of lead-related investigations and an extensive review of current world literature on the extraction and uses of lead and its products, including batteries, were published in quarterly issues of Leadscan, Lead Development Association, London, United Kingdom.

Table 3.—Mine production of recoverable lead in the United States, by State
(Metric tons)

State	1983	1984	1985	1986	1987
Alaska	· w				
Arizona	234	w	$\bar{581}$	w	
California		W			
Colorado	W	W	w	W	w
Idaho		W	33,707	9,951	w
Illinois	W	w	W	W	w
Missouri	409,280	278.329	371,008	319,900	w
Montana	1,163	W	846	W	w
Nevada		W	(¹)		
New Mexico	258	••	w	10	w
New York		· w	w ·	W	ŵ
Oregon			•••	• • • • • • • • • • • • • • • • • • • •	
Tennessee		w	$\bar{\mathbf{w}}$		w
Utah		w			
Washington					
Total	449,295	322,677	413,955	339,793	311,298

W Withheld to avoid disclosing company proprietary data; included in "Total." $^{1}\mathrm{Less}$ than 1/2 unit.

Table 4.—Mine production of recoverable lead in the United States, by month (Metric tons)

Month	1986	1987
January	40,392	24,194
rebruary	36,277	23,910
March	38,216	27,859
April	33,984	23,628
May	25,038	26,957
June	23,763	26,302
July	25,168	29,022
August	23,420	24,114
September	24,186	28.178
October	24,180	28,447
November	20,800	23,195
December	24,248	25,492
	24,240	20,432
Total	339,793	311,298

¹Physical scientist, Branch of Nonferrous Metals. ²International Lead and Zinc Study Group (London). Lead and Zinc Studiscs. ILZSG Mon. Bull., v. 28, No. 10, Oct. 1988, pp. 17-18; v. 29, No. 11, Nov. 1988, pp. 17-18.

³Work cited in footnote 2. ⁴Advanced Battery Technology. V. 24, No. 1, Jan. 1988, op. 4.5

Table 5.—Production of lead and zinc, in terms of recoverable metal, in the United States in 1987, by State

		Lead ore			Zinc ore		Lead-zinc ore			
State	Gross weight (dry basis)	Lead	Zinc	Gross weight (dry basis)	Lead	Zinc	Gross weight (dry basis)	Lead	Zinc	
Colorado	==		==			- 13	W	w	w	
Illinois Kentucky Missouri Montana	w	 	$\bar{\mathbf{w}}$	109		10 				
New Mexico New York Tennessee				W W	w	w w		==		
Total	w	w	w	4,702,226	w	153,384	1,405,635	. w	, w	
Percent of total lead or zinc	XX	w	w	XX	w	71	XX	w	w	
	Copper-lead, copper-zinc, copper-lead-zinc ores			All other sources 2			Total			
	Gross weight (dry basis)	Lead	Zinc	Gross weight (dry basis)	Lead	Zinc	Gross weight (dry basis)	Lead	Zinc	
Colorado Idaho Illinois				W W W	W W W	W W W	W W W	W W W	W W W	
Kentucky Missouri Montana	1,020,071	32,404	$6\overline{0}\overline{4}$	 W W	w W	$\bar{\mathbf{w}}$	109 W W W	W W W	34,956 W	
New Mexico New York Tennessee	w	 	w	 			5,291,664	w W	W 115,699	
Total Percent of total	w	32,404	w	w	13,911	15,984	13,225,706	311,298	216,981	
lead or zinc	XX	10	w	XX	. 4	7	XX	100	100	

Table 6.—Twenty-five leading lead-producing mines in the United States in 1987, in order of output

Rank	Mine	County and State	Operator	Source of lead
1	Buick	Iron, MO	The Doe Run Co	Lead-zinc ore.
$\bar{2}$	Magmont	do	Cominco American Incorporated _	Lead ore.
3	Viburnum No. 29	Washington, MO	The Doe Run Co	Do.
4	Casteel	Iron, MÖ	do	Copper-lead ore.
5	West Fork	Reynolds, MO	ASARCO Incorporated	Lead ore.
6	Fletcher	do	The Doe Run Co	Do.
7	Viburnum No. 28	Iron, MO	do	Do.
8	Leadville Unit	Lake, CO	ASARCO Incorporated	Lead-zinc ore.
9	Sunnyside	San Juan, CO	Sunnyside Gold Corp	Gold ore.
10	Lucky Friday	Shoshone, ID	Hecla Mining Co	Silver ore.
11	Montana Tunnels	Jefferson, MT	Montana Tunnels Mining Inc	Gold ore.
12	Balmat	St. Lawrence, NY	Zinc Corporation of America	Zinc ore.
13	Sweetwater	Reynolds, MO	ASARCÓ Incorparated	Lead ore.
14	Black Pine	Granite, MT	Black Pine Mining Co	Silver ore.
15	Rosiclare	Hardin and Pope, IL	Ozark-Mahoning Co	Fluorspar.
16	Pierrepont	St. Lawrence, NY	Zinc Corporation of America	Zinc ore.
17	St. Cloud	Sierra, NM	St. Cloud Mining Co	Gold-silver
				ore.
18	Clayton	Custer, ID	Clayton Silver Mines	Silver ore.
19	New Market	Jefferson, TN	ASARCO Incorported	Zinc ore.
20	Young Mill	do	do	Do.
21	Immel	Knox, TN	do	Do.
22	Coy	Jefferson, TN	do	Do.
23	Silver King	Granite, MT	Stryker's Gold	Gold ore.
24	Pinos Altos	Grant, NM	Cyprus Minerals Co	Copper ore.
25	Cross	Boulder, CO	Hendricks Mining Co. Inc	Gold ore.

W Withheld to avoid disclosing company proprietary data; included in "Total." XX Not applicable.

Includes lead and zinc recovered from copper, gold, gold-silver, and silver ores, from fluorspar and from mill tailings.

Excludes tonnages of fluorspar in Illinois from which lead and zinc were recovered as byproducts.

Table 7.—Refined lead produced at primary refineries in the United States, by source material1

(Metric tons unless otherwise specified)

Source material	1983 ^r	1984 ^r	1985 ^r	1986 ^r	1987
Refined lead: From primary sources:					
Domestic ores and base bullion Foreign ores and base bullion	463,940	323,989	422,650	348,217	336,471
	55,227	65,409	71,353	22,071	37,139
TotalCalculated value of primary refined leadthousands_	519,167	389,398	494,003	370,288	373,610
	\$248,142	\$219,340	\$207,689	\$180,004	\$296,026

Table 8.—Stocks and consumption of new and old lead scrap in the United States, by type of scrap

(Metric tons, gross weight)

	Charles		. (Consumption		Charles
Type of scrap	Stocks, Jan. 1	Receipts	New scrap	Old scrap	Total	Stocks, Dec. 31
1986		:				
Smelters, refiners, others:						
Soft lead ¹	1,476	27,729		28,017	28.017	1,188
Hard lead		8,572		9,052	9.052	214
Cable lead		2,243		2,398	2,398	468
Battery-lead plates		r689,723		r _{695,032}	r695,032	21,502
Mixed common babbitt		1.241		1,406	1,406	133
Solder and tinny lead		22,718		23,179	23,179	2,395
Type metals		2,305	- 73	2,634	2,634	181
Drosses and residues	9,026	62,370	66,024	-,	66,024	5,372
Total	42,291	r816,901	66,024	^r 761,718	r827,742	31,450
1987					and the second	
Smelters, refiners, others:						
Soft lead ¹	1.188	31,910		31,243	31,243	1,855
Hard lead		5,249		4,896	4,896	567
Cable lead		2,054		1,665	1,665	854
Battery-lead plates		799,442		792,360	792,360	28,584
Mixed common babbitt	133	1,593		1,631	1,631	95
Solder and tinny lead		21,908		22,527	22,527	1,776
Type metals		1,902		1,911	1,911	172
Drosses and residues		68,407	68,586		68,586	5,193
Total	31,450	932,465	68,586	856,233	924,819	39,096

Table 9.—Secondary metal recovered from lead and tin scrap in the United States (Metric tons)

	Lead	Tin	Antimony	Other	Total
1986					
Refined pig lead	^r 269,526 20,020			= =* = = .	^r 269,526 20,020
Total Refined pig tin ²	^r 289,546	r _{1,140}			^r 289,546 ^r 1,140
Lead and tin alloys: Antimonial lead Lead-base babbitt Solder Type metals Other alloys including cable lead	r291,943 1,091 24,059 1,369 2,796	891 66 3,676 197 17	9,950 108 181 210 2	621 3 15 2	r _{303,405} 1,268 27,931 1,778 2,815
Total	r321,258	4,847	10,451	641	r337,197

¹Total refined lead: American Bureau of Metal Statistics Inc. (ABMS). Domestic and foreign ores: Bureau of Mines calculations.

²Value based on average quoted price.

¹Includes remelt lead from cable sheathing plus other soft lead scrap processing.

 $\begin{array}{c} \textbf{Table 9.--Secondary metal recovered}^1 \ \textbf{from lead and tin scrap in the United States} \\ \textbf{---Continued} \end{array}$

(Metric tons)

	Lead	Tin	Antimony	Other	Total
1986 —Continued					
Tin content of chemical products		w			w
Grand total	^r 610,804	r _{5,987}	10,451	641	r _{627,883}
1987					
Refined pig leadRemelt lead	334,844 14,065	==			334,844 14,065
TotalRefined pig tin ²	348,909	1,159			348,909 1,159
Lead and tin alloys: Antimonial lead Lead-base babbitt Solder Type metals Other alloys including cable lead	319,474 1,132 23,152 919 2,229	623 77 3,765 66 30	11,205 129 171 130 19	756 2 (³) 4	332,058 1,340 27,088 1,119 2,278
Total Tin content of chemical products	346,906	4,561 W	11,654	762 	363,883 W
Grand total	695,815	5,720	11,654	762	713,951

Table 10.—Lead recovered from scrap processed in the United States, by kind of scrap and form of recovery

		1986 ^r	1987
	KIND OF SCRAP		
Copper-base		45,854 3,639 5	49,035 3,478 38
Total		49,498	52,551
All other lead-base Copper-base		504,629 60,284 10,358	588,705 57,947 11,014
Total		575,271	657,666
Grand total		624,769	710,217
	FORM OF RECOVERY		
In antimonial lead In other lead alloys In copper-base alloys		289,546 291,943 29,278 13,997 5	348,909 319,474 27,304 14,492 38
	thousands_	624,769 \$303,712	710,217 \$562,734

¹Revised. W Withheld to avoid disclosing company proprietary data.

¹Most of the figures herein represent actual reported recovery of metal from scrap.

Finding semelt tin.

3Included with "Antimony" to avoid disclosing company proprietary data.

^rRevised. ¹Value based on average quoted price of common lead.

Table 11.—U.S. consumption of lead, by product

SIC code	Product	1986	1987
3482	Metal products: Ammunition: Shot and bullets	44,382	46,83
	Bearing metals:		
5	Machinery except electrical	581	398
6	Electrical and electronic equipment	268	178
71	Motor vehicles and equipment	3,787	4,362
7	Other transportation equipment	889	334
	Total	5,525	5,262
3351	Brass and bronze: Billets and ingots	r _{9,057}	9,868
6 5	Cable covering: Power and communication Calking lead: Building construction	17,061 1,833	20,140 1,893
	Calking lead. Building constituction	1,000	1,830
	Casting metals:	1 100	970
36 371	Electrical machinery and equipment Motor vehicles and equipment	1,198 1,357	970
37	Other transportation and equipment	6,790	14,299
3443	Nuclear radiation shielding	923	1,285
	Total	10,268	16,554
	Pipes, traps, other extruded products:		
15	Building construction	11,900	11,532
3443	Storage tanks, process vessels, etc	642	(2)
	Total	12,542	11,532
	Sheet lead:		
15	Building construction	12,572	13.746
3443	Storage tanks, process vessels, etc	2,038	(³)
3693	Medical radiation shielding	2,665	3,654
	Total	17,275	17,400
	Solder:		
15	Building construction	4,513	3,946
341	Metal cans and shipping containers	2,048	1,027
367 36	Electronic components and accessories Other electrical machinery and equipment	4,333 2,196	4,654 2,658
371	Motor vehicles and equipment	8,212	7,473
•	Total	21,302	19,758
	10001	21,002	10,100
0004	Storage batteries:	400.000	500.000
3691 3691	Storage battery grids, post, etc Storage battery oxides	488,932 364,878	529,362 424,236
			
	Total	853,810	953,598
371	Terne metal: Motor vehicles and equipment	3,497	2,286
27	Terne metal: Motor vehicles and equipment Type metal: Printing and allied industries	3,497 306	2,286 (4)
371 27 34	Terne metal: Motor vehicles and equipment Type metal: Printing and allied industries Other metal products ⁵	3,497 306 3,678	2,286 (⁴) 4,844
27	Terne metal: Motor vehicles and equipment Type metal: Printing and allied industries	3,497 306	2,286 (⁴) 4,844
27 34	Terne metal: Motor vehicles and equipment Type metal: Printing and allied industries Other metal products Total Other oxides:	3,497 306 3,678 r1,000,536	2,286 (4) 4,844 1,109,970
27 34 285	Terne metal: Motor vehicles and equipment Type metal: Printing and allied industries Other metal products Total Other oxides: Paints	3,497 306 3,678 *1,000,536	2,286 (4) 4,844 1,109,970
27 34 285 32	Terne metal: Motor vehicles and equipment Type metal: Printing and allied industries Other metal products Total Other oxides:	3,497 306 3,678 r1,000,536	2,286 (4) 4,844 1,109,970
27 34	Terne metal: Motor vehicles and equipment. Type metal: Printing and allied industries Other metal products Total Other oxides: Paints Glass and ceramic products Other pigments and chemicals	3,497 306 3,678 *1,000,536 *14,400 40,781 14,346	2,286 (4) 4,844 1,109,970 W W
27 34 285 32 28	Terne metal: Motor vehicles and equipment Type metal: Printing and allied industries Other metal products* Total Other oxides: Paints. Glass and ceramic products Other pigments and chemicals Total	3,497 306 3,678 *1,000,536 *14,400 40,781 14,346 69,527	2,286 (4) 4,844 1,109,970 W W W
27 34 285 32	Terne metal: Motor vehicles and equipment. Type metal: Printing and allied industries Other metal products Total Other oxides: Paints Glass and ceramic products Other pigments and chemicals	3,497 306 3,678 *1,000,536 *14,400 40,781 14,346	2,286 (4) 4,844 1,109,970 W W

Revised. W Withheld to avoid disclosing company proprietary data; included with "Other oxides: Total."

Included with "Other transportation and equipment" to avoid disclosing company proprietary data.

Included with "Building construction" to avoid disclosing company proprietary data.

Included with "Building construction" to avoid disclosing company proprietary data.

Included with "Other metal products" to avoid disclosing company proprietary data.

Included with "Other metal products" to avoid disclosing company proprietary data.

Included with "Miscellaneous uses" to avoid disclosing company proprietary data.

Table 12.—U.S. consumption of lead, by month¹

(Metric tons)

1	• 4		4.1	Mont	th	: .	1986 ^r	1987
January	100	- 11 - 1	V-10-1				 100,805	96,519
ebruary							 89,000	91.06
March							 82,969	103.01
April							 94,685	100,96
Íay							 89,785	101,36
une							 87,715	103,46
uly							 73,831	97,36
lugust							 98,875	103,16
eptember							 105,902	108,51
October	'						 110,464	119,08
lovember							 94,860	105,799
December							 96,630	100,061
Total ² _							 1,125,521	1,230,387

rRevised.

Table 13.—U.S. consumption of lead in 1987, by State¹

(Metric tons)

State	Refined soft lead	Lead in antimonial lead	Lead in alloys	Lead in copper- base scrap	Total
California	53,675	39,110	9,641		102,426
Connecticut	3,767	3,237	. 0,011	16	7.020
Florida	10.291	7,852	1.070		19,213
Georgia	23.841	8,767	2.516		35.124
Illinois	27,330	41.054	2,722	866	71.972
Indiana	221.045	33,720	11.921	606	267,292
Kansas	14.912	6,895	8.423	000	30,230
Kentucky	10.112	13,137	1.280		24,529
Massachusetts	785	133	46	54	1,018
Michigan	14.110	12,733	494	01	27.337
Michigan	10,599	19,798	202	, 	30,397
New Jersey	45,883	203	1.669	$\bar{236}$	47,991
New York	16,716	5.918	11,399	200	34,033
Ohio	15,027	15,104	4.110	$\bar{209}$	34,450
Pennsylvania	105,999	33,079	30.922	1.451	171,451
Tennessee	1.365	10.140	2,306	1,401	13.811
Alabama and Mississippi	12,749	4.212	2,895	2.513	22,369
Arkansas and Oklahoma	1.365	359	74	2,010	1.798
Colorado and Nebraska	293	32	187	543	1,055
District of Columbia and Maryland	92	. 02	101	040	92
Hawaii and Oregon	4.039	8.595	938		13.572
Idaho, Montana, and Washington	12.114	970	300		13,084
Iowa and Minnesota	20.118	23.084	$7.9\overline{22}$		51,124
Louisiana and Texas	77,239	19,323	5,422		101,984
New Hampshire, Maine, Vermont, Delaware	13,370	14,917	0,422	19	28.306
North Carolina and South Carolina	37,332	24,209	7.809	19	69,350
Rhode Island and Wisconsin	3,650	296	32	43	4,021
Utah, Nevada, Arizona	1,370	153	1.333	40	2,856
Virginia and West Virginia	43	382	2,057		2,482
Total	759,231	347,412	117,188	6,556	1,230,387

¹Includes lead that went directly from scrap to fabricated products and lead contained in leaded zinc oxide.

Table 14.—U.S. consumption of lead in 1987, by class of product¹

Product	Soft lead	Lead in antimonial lead	Lead in alloys	Lead in copper- base scrap	Total
Metal productsStorage batteries	64,108	59,375	26,333	6,556	156,372
Other oxides	581,376 68,079 W	287,024 15	85,198 		953,598 68,094
Miscellaneous	45,668	998	5,657		52,323
Total	759,231	347,412	117,188	6,556	1,230,387

^{*}Monthly totals include monthly reported consumption plus the prorated monthly distribution for companies that report on an annual basis only.

*Includes lead that went directly from scrap to fabricated products and lead contained in leaded zinc oxide.

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous."

¹Includes lead that went directly from scrap to fabricated products and lead contained in leaded zinc oxide.

LEAD

555

Table 15.—Production and shipments of lead pigments and oxides in the United States
(Metric tons unless otherwise specified)

		19	986		1987				
Product	Production		Shipments		Production		Shipments		
	Gross weight	Lead content	Quantity	Value ²	Gross weight	Lead content	Quantity	Value ²	
White lead, dry Litharge and red lead Leady oxide	470 72,810 376,382	376 67,507 357,564	587 70,836 NA	\$794,640 55,556,500 NA	W 79,252 436,688	W 73,414 414,855	80,568 NA	W \$72,292,620 NA	
Total	449,662	425,447	NA	NA	515,940	488,269	NA	NA	

NA Not available. W Withheld to avoid disclosing company proprietary data. Excludes basic lead sulfate; withheld to avoid disclosing company proprietary data.

Table 16.—U.S. imports for consumption of lead pigments and compounds, by kind

	198	36	1987			
Kind	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)		
Litharge	540 534 11,270 1,934 674 2,181	\$598 257 4,810 3,061 1,551 2,655	644 703 14,263 3,354 445 1,804	\$939 626 10,290 5,573 1,286 2,431		
Total	 r _{17,133}	12,932	21,213	21,145		

r Revised.

Source: Bureau of the Census.

Table 17.—Stocks of lead at consumers and secondary smelters in the United States,
December 31

(Metric tons, lead content)

Year	Refined soft lead	Lead in antimonial lead	Lead in alloys	Lead in copper-base scrap	Total
1983	57,881	37,159	5,085	646	100,771
1984	53,802	37,015	5,326	934	97,077
1985	50,475	36,374	5,770	511	93,130
1986	47,589	30,442	5,524	269	83,824
1987	55,278	27,959	5,185	164	88,586

²At plant, exclusive of container.

Table 18.—Average monthly and annual quoted prices of lead¹

(Cents per pound)

	19	86	1987			
Month	U.S. producer	London Metal Exchange	North American primary producer mean	London Metal Exchange		
January	18.35	16.69	27.88	21.02		
ebruary	17.79	16.64	26.04	20.86		
Aarch	18.20	16.64	26.00	22.07		
April	18.73	16.74	27.84	25.17		
	19.38	17.06	34.95	31.40		
May	22.07	18.96	36.93	28.5		
	21.94	17.21	41.67	30.00		
uly	22.42	17.77	42.00	29.88		
	23.43	18.45	42.00	29.31		
September	² 25.55	19.69	42.00	27.2		
November	² 28.01	21.45	42.00	29.10		
November	² 28.68	23.48	42.00	29.80		
Jecember	20.00	20.40	42.00	25.00		
Average	22.05	18.43	35.94	26.99		

Table 19.—U.S. exports of lead, by country

			1987		
Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)		
	V				
			\$100		
			$\frac{16}{240}$		
		793	240		
		- - -	$-\frac{1}{5}$		
14	14		958		
2 146	942		1.597		
5,140	342	90	83		
24	12	466	291		
		18	10		
$\overline{r_8}$	r ₅	40	33		
4,380	1,491	8,764	3,333		
	:	40	46		
218	1,504	54	620		
6,088	1,794	2,642	874		
31	9				
49	296		200		
55			18		
			54		
			773		
101	1,200				
7,177	4,872	3,470	2,589		
97		79	78		
			207		
			20.		
		$\overline{526}$	706		
164	173	76	98		
84	94				
148	90	111	122		
		- =			
		2	4		
			19		
		20	18		
		17	17		
			12		
		7	18		
14	51	69	80		
466	407	1,267	1,166		
			16		
	(metric tons) 182 5 693 308 14 3,146 -24 -r ₈ 4,380 218 6,088 31 49 -11 73 707 7,177 37 415 1,993 3,225 164 148 33 3,225 164 148 33 842 243 1 51 222 14	Test	The trick of trick		

¹Metals Week. Quotations for the United States on a nationwide, delivered basis. LME cash average. ²U.S. producer price through Sept. 1986. North American Mean (NAM) quotation (weighted) from October.

Table 19.—U.S. exports of lead, by country —Continued

Court	19		1987 Quantity Value		
Country	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousand	
nwrought lead and lead alloys (lead content) —					
Continued					
Malaysia	35	\$234 560	$\bar{347}$	\$6	
Mexico Netherlands	1,194 19	$\frac{569}{264}$	341	φυ -	
Panama			17	•	
Philippines			25		
Saudi Arabia	5	12		1	
Singapore	$\frac{1}{3}$	3 15	83 16		
South Africa, Republic ofSudan	79	54	10		
Taiwan	1,917	862	959	7	
Trinidad			451		
United Kingdom	80 2	84	146 4	. 1	
VenezuelaOther	r ₅₇	r ₂₀₁	47	:	
Other		201			
Total	11,190	9,582	4,351	4,9	
rought lead and lead alloys (lead content):			11		
Argentina	$-\frac{1}{3}$	28	11 18		
AustraliaBarbados	8	58	10		
Belgium-Luxembourg	$\check{\mathbf{z}}$	75	$\overline{1}$		
Brazil	$1\overline{6}$	24	2	_	
Canada	211	163	4,374	3,	
Dominican Republic	9 20	$\frac{8}{29}$	34 62		
Germany, Federal Republic of	8	23	4		
Honduras	7	18	6		
Hong Kong	. 5	14	1		
Ireland	18	25 49	6 16		
Israel Italy	9	2	6		
Jamaica	27	39	77		
	111	286	48		
Japan Korea, Republic of	15	75	2		
Mexico	834	3,065	1,005 18	2,0	
Netherlands	1 11	14 23	8		
PanamaPhilippines	2	4	(¹)		
Saudi Arabia	(1)	5	1		
Singapore	20	35	3		
Spain	22	34			
Taiwan	6 8	36 17	8		
United Kingdom Venezuela	15	68	13		
Other	r ₂₃	^r 198	33		
Total	1,411	4,415	5,765	7,0	
Grand total	24,158	20,360	22,350	17,	
crap (gross weight):					
Austria			183		
Belgium-Luxembourg	29	99 4,008	659 7,289	2.	
Brazil Canada	16,137 2,640	762	9,337	2,	
Colombia	2,040		451	_,	
Germany, Federal Republic of	$7\overline{70}$	333	1,469		
India	1,423	813	617		
Ireland	644 20	193	41		
Japan	625	17 409	82		
Korea, Republic of	5,570	1,521	4,507	1,	
Mexico	2,529	430	5,667	1,	
Netherlands	485	314	125		
Pakistan	99	28	263		
PortugalSouth Africa, Republic of	99	48	204		
Spain	$\overline{14}$	$-\bar{2}$	1,268		
Taiwan	21,688	$2,91\overline{4}$	8,953	1,	
Thailand	179	51			
United Arab Emirates	3,025	9.075	800 5.618	3,	
	ა,025	2,075	5,618 5,260	1,	
United Kingdom	2 051				
VenezuelaOther	3,051 *70	918 ^r 34	30		

Source: Bureau of the Census.

^rRevised. ¹Less than 1/2 unit.

Table 20.—U.S. exports of lead¹

	В	locks, pigs	s, anodes,	etc.			t lead and alloys		Scrap		Scrap	
Year	Unw	rought ²		ought oys	rods,	, plates, other ms	Foil, p	owder, kes	(g	ross ight)	Dross	es, etc.
	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
1985 1986 1987	23,468 8,869 3,367	\$14,050 6,036 3,181	1,912 2,321 984	\$2,150 3,546 1,741	1,870 1,200 5,686	\$4,635 4,183 6,910	94 211 79	142 232 113	59,949 58,998 52,823	\$12,963 14,921 15,670	9,978 7,177 3,470	\$5,732 4,872 2,589

¹Lead content, unless otherwise specified. ²Includes bullion.

Source: Bureau of the Census.

Table 21.—U.S. imports1 of lead, by country

(Lead content)

	19	85	19	86 -	1987		
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	
Ore and concentrates:2							
Australia Canada Chile China	12,260 5,195 765	\$2,407 1,246 106	11,497 62,900 3,106	\$2,246 7,325 914	1,724 201,165 3,231 3,568	\$456 50,688 988 2,208	
Honduras Mexico Peru South Africa, Republic of	1,568 4,321 15,176 3,381	757 1,356 4,017 1,316	$\begin{array}{c} \bar{827} \\ 8,417 \end{array}$	$\frac{287}{1,174}$	$1,\overline{070}$ $19,098$	628 10,309	
Total	³42,665	11,205	86,747	11,946	229,856	65,264	
		,		11,010	220,000	00,204	
Base bullion: Belgium-Luxembourg Canada	$ar{713}$	375	121	- 67	1,414	955	
Germany, Federal Republic of	==				$1,\overline{699} \\ 350$	1,136	
Italy Japan					1,250 1,800	904 1,165	
Mexico Netherlands	48	23	21	47	881 1,749	278 1,276	
Spain United Kingdom				==	1,200 401	886 284	
Other Total	3760				83	97	
,	-760	398	142	114	10,827	7,239	
igs and bars:							
Australia Belgium-Luxembourg	3,627	1,758	r (4)	-r ₁	63	37	
Canada	90,056	$\frac{13}{33,783}$	105,281	44,080	$4,950 \\ 92,643$	3,299	
China		00,100	77	31	52,643 574	61,384 357	
France	20	- 9			3,193	2.102	
Germany, Federal Republic of	542	3,080	496	658	8,824	5,758	
Italy Japan				$-\frac{1}{2}$	1,800	1,232	
Macao			1	2	906	704	
Mexico	$33.77\overline{1}$	$13.\bar{271}$	29.532	$11.\overline{617}$	403 42,635	298 28,457	
Morocco		10,211		11,011	1,500	1,001	
Mozambique					87	66	
Netherlands	10	23	=		6,317	3,939	
Panama Peru	$5.1\overline{50}$	1 770	47	19			
Poland	5,150	1,770	1,053	449	350	189	
Spain					2,500 5,999	1,535 3,887	
Sweden			$2.7\overline{73}$	1.055	9,086	5,887	
Switzerland			20	11	201	141	
U.S.S.R			262	96			
United KingdomYugoslavia	337	807	679	1,153	4,039	3,180	
Zambia					1,020	634	
Other			$r_{(5)}$	$r_{(5)}$	903	612	
Total	³133,529	54,514	140,221		83	146	
				59,172	188,076	124,842	

Table 21.—U.S. imports1 of lead, by country —Continued

(Lead content)

	19	85	1	986	1987	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
Reclaimed scrap, including drosses:6						
Canada	1,118	\$454	1,444	\$383	3.062	\$1,600
Hong Kong					48	31
Japan				·	323	185
Malaysia Mexico	$2.0\overline{35}$	$7\overline{20}$	1 001	1 000	38	23
Panama	2,000	120	1,831	1,060	3,034 44	1,230 23
Philippines					17	10
Other	15	34	15	28	21	26
Total	3,168	1,208	3,290	1,471	6,587	3,128
Grand total	180,122	67,325	230,400	72,703	435,346	200,473

Source: Bureau of the Census.

Table 22.—U.S. imports for consumption of lead, by country

	19	85	19	86	1987	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
Ore and concentrates (lead content):1						
Australia			1,725	\$380		
CanadaChile	$\overline{765}$	@10C	0.070		696	\$23
Honduras	1,568	\$106 757	2,052	677		
Mexico	317	116	$8\overline{27}$	287	177	77
Total ²	2,649	979	4,604	1,344	873	308
Base bullion (lead content):					-	
Belgium-Luxembourg					1,414	955
Canada	713	375	121	67		
France Germany, Federal Republic of					1,699	1,136
Italy					350	258
Japan					1,250 1,800	904 1,165
Mexico	48	23	21	47	881	278
Netherlands					1,749	1,276
Spain					1,200	886
United Kingdom Other					401	284
					83	97
Total ²	760	398	142	114	10,827	7,239
Pigs and bars (lead content):						
Australia	91	443			63	37
Beigium-Luxembourg	15	14			4,950	3,299
Canada	90,056	33,783	105,281	44,080	92,643	61,384
ChinaFrance	20		77	31	574	357
Germany, Federal Republic of	542	3.080	$\overline{496}$	658	3,193	2,102
India	1,361	664			7,325	4,682
Italy					1.800	1,232
Japan			- 1	$-\overline{2}$	906	704
					403	298
Macao						
Macao Mexico	$33,\overline{771}$	13,271	29,532	11,617	42,635	28,457
Macao	33,771 	13,271	29,532	11,617	42,635 1,500 87	28,457 1,001 66

^{*}Revised.

*General imports include lead imported for immediate consumption plus material entering the country under bond.

*Also includes other lead-bearing materials containing greater than 5 troy ounces of gold per short ton or greater than 100 troy ounces of total precious metals per short ton.

*Data do not add to total shown because of independent rounding.

*Less than 1/2 unit.

Thess than 172 and.

Revised to zero.

Revised to zero.

Also includes other lead-bearing materials containing greater than 10% by weight of copper, lead, or zinc (any one).

Table 22.—U.S. imports for consumption of lead, by country —Continued

	198	35	198	36	1987	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
Pigs and bars (lead content) —Continued						
Peru	5,150	\$1,770	1,053	\$449	350 2.500	\$189 1.535
Poland					5,999	3,887
Spain			2,773	1,055	9,086	5,88
SwedenSwitzerland			21	11	201	14
United Kingdom	337	807	679	1,153	4,039	3,18
U.S.S.R			262	96	1.000	co.
Yugoslavia	· . · · ·		F	\bar{r}_{20}	1,020 82	63 14
Other			^r 46	-20	84	14
Total	131,353	53,864	140,221	59,172	185,673	123,15
=						
Reclaimed scrap, etc. (lead content):3	1,118	454	1,444	383	3.062	1,60
Canada	1,110		-,		48	
Hong Kong Japan					323	18
Malaysia	<u> </u>				38	2
Mexico	2,035	720	1,831	1,060	3,034	1,23
Panama			:		44 17	1
Philippines	$\overline{15}$	38	$\overline{15}$	28	21	2
Other	15	. 30	10	20		
Total	3,168	1,212	3,290	1,471	6,587	3,12
Grandtotal	137,930	56,453	148,257	62,101	203,960	133,83
Sheets, pipe, shot, other forms (gross weight):					-	
Belgium-Luxembourg	44	57	454	418	18	
Canada	419	627	299	293	352	4:
Germany, Federal Republic of	149	576	132	422	256	8
Italy	1	13	18	$\frac{40}{241}$	55 128	2,3
Japan	18	197 147	20 43	241	180	2,3
Mexico	164 121	61	100	45	622	3
Peru	36	11	13	11	118	1
SpainUnited Kingdom	1.027	809	228	255	1,047	8
Other	1,021	r ₁₉	r ₃₇	^r 78	17	
Total	1,981	2,517	1.344	1,825	2,793	5,30

rRevised.

Source: Bureau of the Census.

Table 23.—U.S. imports for consumption of lead¹

	Bl	ocks, pigs	, anodes, e	tc.	lea	Wrought d alloys (lead and gross weig	ht)	Scrap		Drosses, etc.	
Year	Unwr	ought ²	Unwr			plates, other ms	Foil, po					
	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)
1985 1986 1987	119,633 124,061 182,852	\$44,952 50,279 119,444	12,480 16,302 13,648	\$9,310 9,007 10,952	1,684 1,165 2,483	\$2,211 1,526 2,768	297 179 310	\$306 299 2,533	2,550 2,269 6,088	\$1,068 1,306 2,805	618 1,021 499	\$144 165 323

¹Lead content, unless otherwise specified. ²Includes bullion.

Source: Bureau of the Census.

^{*}Revised.

¹Also includes other lead-bearing materials containing greater than 5 troy ounces of gold per short ton or greater than 100 troy ounces of total precious metals per short ton.

²Data may not add to totals shown because of independent rounding.

³Also includes other lead-bearing materials containing greater than 10% by weight of copper, lead, or zinc (any one).

Table 24.—U.S. imports for consumption of miscellaneous products containing lead¹

Year	Gross weight (metric tons)	Lead content (metric tons)	Value (thou- sands)		
1984	2,671	1,363	\$17,299		
1985	3,377	1,453	22,124		
1986	1,016	517	3,810		
1987	970	515	4,185		

¹Babbitt metal, solder, white metal, and other leadcontaining combinations.

Source: Bureau of the Census.

Table 25.—Lead: World mine production of lead in concentrates, by country¹

(Thousand metric tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Algeria ^e	3.0	4.0	3.8	3.6	3
Argentina	31.7	28.5	28.6	28.9	28
Australia	480.6	440.6	498.0	447.7	476
Austria	4.3	4.2	7.5	5.9	4
Bolivia	11.8	7.4	6.2	3.1	8
Brazil	18.8	16.7	19.2	e _{19.5}	14
Bulgaria ^e	95.0	95.0	95.0	95.0	97
Burma	23.1	21.9	21.9	18.2	³ 27
Canada	251.5	264.3	268.3	349.3	413
Chile	1.7	4.3	2.5	1.5	
China	e160.0	e _{180.0}	e200.0	227.0	3252
	.2	.1	1	.2	3
olombia ongo (Brazzaville)	e4.0	1.7	1.5	e _{1.4}	1
	3.2	3.1	e3.2	e3.2	18
zechoslovakia		.2	e.2	e.2	•
cuador	.2		2.4	2.0	2
inland	2.1	2.5			. 3
rance	1.5	2.3	2.5	2.5	318
ermany, Federal Republic of	23.5	21.0	20.5	16.7	
reece ^e	20.0	22.0	19.4	20.0	20
reenland	21.6	17.7	17.8	16.2	³ 20
Ionduras	19.3	20.5	21.2	12.6	20
lungary ^e	.7	.7	.7	.4	
ndia	e _{25.7}	24.8	27.1	37.6	39
ran	r _{18.5}	19.9	21.6	20.0	2
reland	33.6	37.2	34.6	36.4	339
taly	23.6	20.8	15.6	11.1	20
apan	46.9	48.7	50.0	40.3	328
apan	75.0	110.0	110.0	110.0	110
Korea, Northe	12.2	10.8	9.7	11.9	1
Korea, Republic of	184.3	202.6	197.5	207.0	20
fexico	97.9	100.7	106.8	76.2	37
forocco	38.5	33.3	34.6	37.5	3
lamibia		°.3	.3	.1	
ligeria ^e	.3			r e _{3.5}	:
lorway	r4.3	4.0	3.6		20
eru	207.4	193.7	201.5	194.4	20 5
oland	47.0	52.8	51.3	50.3	
omania ^e	30.0	30.0	28.0	28.0	2
lomania ^e outh Africa, Republic of	87.5	94.8	98.4	97.8	39
pain	82.0	96.6	85.6	82.1	8
weden	^r 85.8	r _{82.8}	80.6	r e _{90.0}	_9
hailand	21.0	16.7	19.7	26.3	³ 2
unisia	4.6	4.1	2.5	1.9	
hirkeye	r _{9.0}	r _{10.0}	r _{10.0}	r _{10.0}	1
J.S.S.R.e	435.0	440.0	440.0	440.0	44
Inited Kingdom	3.8	2.4	4.0	3.6	
Inited Kingdom	465.6	334.5	424.4	353.1	31
Jugoslavia	114.0	113.6	115.1	116.9	9
rugosiavia Zambia	25.9	18.1	15.0	14.9	1
Total ⁴	r3.357.0	r _{3.261.9}	3,427.9	3,375.7	3,45

^eEstimated. ^pPreliminary. ^rRevised.

¹Table includes data available through June 24, 1988.

²In addition to the countries listed, Uganda may produce lead, but available information is inadequate to make reliable estimates of output levels.

³Reported figure.

⁴Data may not add to totals shown because of independent rounding.

Table 26.—Lead: World smelter production, by country¹

Country	1983	1984	1985	1986 ^p	1987€
Argentina:	150				
Primary (refined)Secondary (refined)	_ 15.2 _ 16.0	$16.3 \\ 15.0$	15.1 13.6	24.3 15.0	20.0 15.0
Total		31.3	28.7	39.3	
Australia:		01.0	20.1	00.0	35.0
Primary:					
Bullion for exportRefined		179.5	183.2	188.4	² 197.2
Secondary (refined) ^e	- 196.3 - 27.0	$\frac{198.8}{21.5}$	200.1 15.6	156.2 14.8	² 201.3
Total ^e	405.9	399.8	398.9	r _{359.4}	414.1
Austria:		000.0	000.0	200.4	414
Primary		1.7	1.9	1.5	1.8
Secondary	12.9	16.5	15.6	15.0	14.5
Total	17.1	18.2	17.5	16.5	16.0
Belgium:	1				
Primary ^{e 3} Secondary ⁴	54.4	71.5	² 67.0	70.0	70.0
		30.0	8.3	^e 10.0	10.0
Total	84.4	101.5	75.3	e80.0	80.0
Brazil: Primary (refined)					1
Secondary (refined)	- 20.6 - 28.9	26.0 r _{45.7}	29.8 51.8	32.7 38.9	² 28.8 ² 45.4
Total		r71.7			
	45.0	11.1	81.6	71.6	² 74.2
Bulgaria: ^e Primary	112.0	112.0	112.0	110.0	110.0
Secondary ⁴	4.0	4.0	4.0	5.0	5.0
Total		116.0	116.0	115.0	115.0
Burma: Primary (refined)	7.6	7.0	9.6	5.4	24.0
Canada: Primary (refined)	r				
Secondary (refined)	178.0 63.9	$\frac{173.0}{79.0}$	$173.2 \\ 68.4$	169.9 87.7	² 139.5 ² 86.3
Total	r _{241.9}	252.0			-
	241.3	202.0	241.6	257.6	² 225.8
China: ^e Primary (refined)	165.0	165.0	r _{170.0}	r _{200.0}	200.0
Secondary (refined)	30.0	30.0	^r 40.0	r _{40.0}	40.0
Total	195.0	195.0	r _{210.0}	² 240.0	240.0
colombia: Secondary (refined) ^e		3.0	3.0	4.0	4.0
zechoslovakia: Secondary (refined)	21.0	$\frac{2.5}{21.1}$	$\frac{2.0}{21.4}$	$\frac{2.0}{23.6}$	$\frac{2.0}{20.0}$
Denmark: Secondary (refined) Sinland: Secondary (refined)	10.0	13.0	4.5	.6	
	6.0	4.5	4.4	1.2	1.2
rance: Primary (refined)	r _{115.0}	117.9	133.6	132.0	² 115.6
Secondary	13.6	13.5	12.2	e12.5	12.3
Total	r _{128.6}	131.4	145.8	r e _{144.5}	127.9
erman Democratic Republic: Secondary ^e	20.0	22.0	20.0	20.0	18.0
ermany, Federal Republic of:					
PrimarySecondary	$\frac{116.2}{236.3}$	$102.3 \\ 254.9$	$109.7 \\ 246.6$	111.1	² 113.6
Total				255.5	² 229.4
	352.5	357.2	356.3	366.6	² 343.0
reece: Primary (refined) uatemala: Secondary (refined)			15.0	16.0	16.0
(ungary: Secondary (refined)	.1 .1	.1 .1	.1 .1	.1 .1	2.1 .1
ndia:					
Primary (refined)	15.0	15.2	15.6	19.9	² 20.4
Secondary (refined)	6.6	^e 10.0	e _{10.0}	11.3	² 12.0
Total	21.6	e _{25.2}	^e 25.6	31.2	² 32.4

Table 26.—Lead: World smelter production, by country¹ —Continued

Country	1983	1984	1985	1986 ^p	1987 ^e
reland: Secondary (refined)		9.1	9.0	10.2	10.4
taly: Primary (refined) Secondary (refined)		37.6 102.9	29.5 96.7	29.3 101.7	66.0 94.0
Total Jamaica: Secondary (refined) ^e	126.4	140.5 1.0	126.2 1.0	131.0 1.0	160.0 1.0
Japan: Primary	198.9	207.9 129.2	218.3 133.3	220.4 128.7	² 227.2 ² 119.5
Secondary (refined) Total Korea, North: Primary (refined) e	118.3 317.2 60.0	337.1 95.0	351.6 95.0	349.1 95.0	² 346.7 95.0
Korea, Republic of: ^e Primary (refined)	r _{7.6}	r _{11.4}	r _{11.0}	r32.1	32.4
Secondary (refined) Total	17.8	20.3	r _{20.2}	r _{27.5}	60.0
Malaysia: Secondary (refined) Mexico:	5.3	174.8	203.0	13.8	200.0
PrimarySecondary (refined) ^e	31.0	204.8	31.0	r _{33.0}	233.0
Total ^e Morocco:	131.0	204.0	204.0	200.0	200.0
Primary (refined) Secondary (refined) ^e	55.2	46.1 2.0	59.5 2.0	e60.0 2.0	62.8 2.0
Total ^e Namibia: Primary (refined)	57.2 35.4	48.1 28.9	61.5 38.5	62.0 40.0	64.5 40.0
Netherlands: Primary Secondary (refined) ^e	2.0 223.6	(⁵) 25.0	(⁵) 25.0	(⁵) 25.0	30.0
Total ^e New Zealand: Secondary (refined) ^e Nigeria: Secondary	225.6 6.0 .4	^r 25.0 6.0 .6	r _{25.0} 6.0 .8	°25.0 6.0 e1.0	30.0 6.0 1.0
Peru: Primary (refined) Secondary (refined) ^e		70.2 5.0	81.8 5.0	66.4 5.0	66.4 5.0
Total ^e Philippines: Secondary (refined)Philippines: Secondary (refined)	72.7	75.2 4.0	86.8 7.0	^r 71.4 7.0	71.4 7.0
Poland: ^e Primary (refined) Secondary (refined) ⁴	56.5 24.5	58.4 25.0	61.1 26.2	^r 63.3 25.0	60.0 25.0
Total Portugal: Secondary (refined)	81.0	83.4 6.0	87.3 7.0	88.3 e6.5	85.0 6.1
Romania: ^e Primary (refined) Secondary (refined)	40.0	35.9 10.0	38.6 10.0	36.0 r _{15.5}	35.0 10.0
TotalSouth Africa, Republic of: Secondary (refined)	49.3 23.6	45.9 30.8	48.6 32.8	51.5 40.5	45.0 41.0
Spain: Primary (refined) ³ Secondary (refined)	107.8 36.0	110.1 49.9	112.8 43.3	88.0 42.0	77.9 40.9
Total	143.8	160.0	156.1	130.0	117.0
Sweden: Primary Secondary	60.8 15.2	65.6 27.7	58.8 25.9	e65.0 29.8	65. 30.
Total	76.0	93.3	84.7	r e94.8	95.0

Table 26.—Lead: World smelter production, by country¹ —Continued

				1987 ^e
	•			
2.0	2.0	2.0	_ 2.5	2.4
				54.0
	6.2	7.5	9.1	10.0
2.0	2.0	2.0	2.0	1.8
10.4	8.4	2.0	2.2	2.2
.5	.5	.5	.5	3
10.9	8.9	2.5	r _{2.7}	2.7
2.0				
5.5	$\overline{9.0}$	$1\overline{0}.\overline{0}$	$1\overline{0}.\overline{0}$	10.0
7.5	9.0	10.0	10.0	10.0
400.0	105.0		500.0	505.0
				505.0
⇒∠55.0	200.0	265.0	270.0	275.0
745.0	755.0	765.0	770.0	780.0
40.7	36.1	36.0	37.8	² 34.4
185.3	191.3	179.1	172.5	² 200.7
226.0	997.4	915 1	010.9	² 235.1
220.0	221.4	210.1	210.5	-235.1
				_
			370.3	² 373.6
503.5	633.4	615.7	624.8	² 710.2
r _{1.022.7}	r _{1.022.8}	1.109.7	995.1	² 1,083.8
15.0	17.0	18.0	16.0	17.0
09.1	100.9	1167	190.0	125.0
				20.0
34.0	11.0	10.0	20.0	20.0
127.1	121.3	131.7	154.9	145.0
14.6	8.8	8.9	6.6	6.6
r _{5 244 5}	r _{5.499.6}	5 587 0	5 541 4	5,646.7
0,244.0	0,422.0	0,001.3	0,041.4	5,040.7
r _{3.247.8}	r3 175 6	3 401 3	3 277 0	3,311.2
r _{1.996.7}	r2.247.0	2.186.6	2,264.4	2,335.5
	38.0 3.2 2.0 10.4 .5 10.9 2.0 5.5 7.5 490.0 ,255.0 745.0 40.7 185.3 226.0 ***Tigory************************************	38.0 44.3 3.2 6.2 2.0 2.0 10.4 8.4 5.5 .5 10.9 8.9 2.0 5.5 9.0 7.5 9.0 490.0 495.0 255.0 260.0 745.0 755.0 40.7 36.1 185.3 191.3 226.0 227.4 27.1 21.3 14.6 8.8 127.1 121.3 14.6 8.8 15,247.8 13,175.6	38.0 44.3 44.4 3.2 6.2 7.5 2.0 2.0 2.0 10.4 8.4 2.0 .5 .5 .5 .5 10.9 8.9 2.5 2.0 7.5 9.0 10.0 2.0 7.5 9.0 10.0 490.0 495.0 265.0 745.0 755.0 765.0 40.7 36.1 36.0 185.3 191.3 179.1 226.0 227.4 215.1 25.0 260.0 265.0 745.0 755.0 765.0 10.0 27.1 10.0 27.1 10.0 18.0 28.0 10.0 10.0 29.1 10.0 10.0 29.1 10.0 10.0 29.1 10.0 10.0 29.1 10.0 10.0 20.0 10.0 10.0 20.0 10.0 10.0 20.0 10.0 10.0 20.0 10.0 10.0 20.0 10.0 10.0 20.0 10.0 10.0 20.0 10.0 10.0 20.0 10.0 10.0 10.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	38.0 44.3 44.4 r58.5 3.2 6.2 7.5 9.1 2.0 2.0 2.0 2.0 10.4 8.4 2.0 2.2 .5 .5 .5 .5 10.9 8.9 2.5 r2.7 2.0 5.5 9.0 10.0 10.0 7.5 9.0 10.0 10.0 10.0 490.0 495.0 500.0 500.0 250.0 270.0 745.0 755.0 765.0 770.0 770.0 40.7 36.1 36.0 37.8 185.3 191.3 179.1 172.5 226.0 227.4 215.1 210.3 20.3 20.3 20.3 r519.2 r389.4 494.0 370.3 503.5 633.4 615.7 624.8 r1,022.7 r1,022.8 1,109.7 995.1 15.0 16.0 93.1 109.8 116.7 129.9 34.0

^eEstimated. Preliminary. rRevised.

"Estimated. "Preliminary. 'Revised.

'Table includes data available through June 24, 1988. Figures presented represent, to the extent possible, production of unrefined lead, including bullion and impure lead derived from new and old scrap. The figures for secondary lead for a number of countries are undoubtedly high, but sufficient information is not available to separate reprocessed scrap lead from lead merely remelted. Countries for which this is the case have been footnote (see footnote 4). For those countries from which unrefined lead production is not reported, but where available information suggests that there is little if any import or export of bullion for refining and refined lead output has been reported, it is so noted parenthetically because it is believed that the difference between smelter output and refined output is negligible.

'Reported figure.

'Blots and reported derived from reported primary refined lead output minus imports of lead bullion plus exports of

*Data not reported, derived from reported primary refined lead output minus imports of lead bullion plus exports of lead bullion and checked against use of lead content of domestically produced ores plus lead content of imported ores

(estimated) minus lead content of exported ores (estimated).

*Some part of the total entered may be merely remelt, and as such probably should not be included here, but substantial part of the total presumably was reprocessed to qualify as a secondary smelter product. Available information is inadequate to permit differentiation, and the total has been included, although it is recognized that this produces a slightly inflated figure.
5 Revised to zero.

6Includes a small amount of primary lead from domestic concentrate.

Table 27.—Lead: World refinery production, by country¹

Country	1983	1984	1985	1986 ^p	1987 ^e
Argentina:					
PrimarySecondary	15.2 16.0	$\frac{16.3}{15.0}$	$15.1 \\ 13.6$	$\frac{24.3}{15.0}$	20.0 15.0
Total	31.2	31.3	28.7	39.3	35.0
Australia:					
PrimarySecondary ^e	196.3 27.0	198.8 21.5	$200.1 \\ 15.6$	156.2 r14.8	² 201.3 15.6
Total ^e	223.3	220.3	215.7	r _{171.0}	216.9
Austria:					
PrimarySecondary	12.0 11.5	$10.0 \\ 16.2$	$\frac{10.0}{15.5}$	$\begin{array}{c} 6.0 \\ 19.0 \end{array}$	5.0 15.0
Total	23.5	26.2	25.5	25.0	20.0
Belgium: Primary	96.3	89.6	84.3	64.0	63.0
Secondary	37.8	38.1	30.0	26.0	26.0
Total	134.1	127.7	114.3	90.0	89.0
Brazil: Primary	r _{20.6}	26.0	29.8	32.7	² 28.8
Secondary		r _{45.7}	51.8	38.9	² 45.4
Total	^r 49.5	^r 71.7	81.6	71.6	74.2
Bulgaria: ^e	00.0	00.0	00.0	07.0	00.0
PrimarySecondary	98.6 17.4	98.6 17.4	98.0 18.0	97.0 17.0	98.0 17.0
TotalBurma: Primary	116.0 7.6	.116.0 7.0	116.0 9.6	114.0 5.4	115.0 24.0
Canada:					
Primary	^r 178.0	$173.0 \\ 79.0$	173.2 68.4	169.9 87.7	² 139.5 ² 86.3
Secondary Total	63.9 ^r 241.9	252.0	241.6	257.6	² 225.8
		252.0	241.0	251.0	220.0
China: ^e Primary		165.0	r _{170.0}	r _{200.0} r _{40.0}	200.0
Secondary	. ———	30.0	r _{40.0}		40.0
Total Colombia: Secondary ^e	3.0	$195.0 \\ 3.0$	^r 210.0 3.0	^r 240.0 4.0	240.0 4.0
Cyprus: Secondary ^{e*} Czechoslovakia: Secondary	$\begin{array}{ccc} - & & 2.5 \\ - & & 21.0 \end{array}$	$\frac{2.5}{21.1}$	$\frac{2.0}{21.4}$	$\frac{2.0}{23.6}$	$\frac{2.0}{20.0}$
Denmark: Secondary	10.0	13.0	4.5	.6	
Finland: Secondary	6.0	4.5	4.4	1.2	1.2
France: Primary	115.0	117.9	133.6	132.0	² 115.6
Secondary		88.8	90.0	98.4	² 97.2
Total German Democratic Republic: Secondary ^e	214.4 36.0	206.7 35.0	223.6 55.0	230.4 r46.0	212.8 45.0
Germany, Federal Republic of:				-0.0	
Primary	217.0 135.5	191.9	181.0 175.3	182.1 184.5	160.7 182.3
Secondary		165.3			
Total	352.5	357.2	356.3	366.6	343.0

Table 27.—Lead: World refinery production, by country¹ —Continued

Country	1983	1984	1985	1986 ^p	1987 ^e
	er fele Geografie		150		
Greece: PrimaryGuatemala: Secondary		· .ī	15.0	16.0	16.0
Hungary: Secondary	1 1	.1	.1 .1	.1 .1	2.] .]
ndia:					
Primary	15.0	15.2	15.6	19.9	² 20.4
Secondary	6.6	e10.0	e10.0	11.3	212.0
		A			
Total	21.6 8.0	^e 25.2 9.1	25.6 9.0	$\frac{31.2}{10.2}$	² 32.4 10.4
taly:					
Primary	37.0	37.6	29.5	29.3	66.0
Secondary	89.4	102.9	96.7	101.7	94.0
Total	126.4	140.5	126.2	131.0	160.0
Total Jamaica: Secondary ^e	1.0	1.0	1.0	1.0	1.0
Japan:					-
Primary	203.3	233.8	233.7	232.7	² 218.8
Secondary	118.3	129.2	133.3	128.7	² 119.5
Total	321.6	363.0	367.0	361.4	² 338.3
Korea, North: Primary ^e	60.0	95.0	95.0	95.0	95.0
Korea, Republic of: e	-				
Primary	r 7.6	^r 11.4	r _{11.0}	r32.1	32.4
Secondary	r10.2	⁴ 8.9	r _{9.2}	r27.5	27.6
Total	17.8	20.3	r _{20.2}	r _{59.6}	60.0
Malaysia: Secondary	5.3	10.3	14.6	13.8	14.0
Mexico:					
D	162.5	163.2	193.5	178.9	175.8
Secondary ^e	31.0	30.0	31.0	r33.0	33.0
Total ^e	193.5	193.2	224.5	^r 211.9	208.8
Morocco:					
Primary	55.2	46.1	59.5	60.0	62.5
Secondary ^e		2.0	2.0	2.0	2.0
Total ^e	57.2	48.1	61.5	62.0	64.5
Namibia: Primary	35.4	28.9	38.5	40.0	40.0
Netherlands:			-		
Destruction	2.0				
Secondary ^e	223.6	^r 25.0	25.0	25.0	30.0
Total ^e	2 25.6	r _{25.0}	25.0	25.0	30.0
New Zealand: Secondary ^e	6.0	6.0	6.0	6.0	6.0
Nigeria: Secondary		2.0	3.0	3.5	3.5
Pakistan: Secondary ^e		1.0	1.0	1.0	1.0
Peru:					
Primary	67.7	70.2	81.8	66.4	66.4
Secondary ^e		5.0	5.0	5.0	5.0
Total ^e	72.7	75.2	86.8	r71.4	71.4
Philippines: Secondary	6.0	4.0	7.0	7.0	7.0
Poland:			61.1	^r 63.3	60.0
Poland: Primary ^e	r _{56.5}	58.4			25.0
Poland:	r _{56.5} r _{24.5}	58.4 25.0	26.2	r _{25.0}	20.0
Poland: Primary ^e Secondary ^e Total	^r 24.5	25.0 83.4	26.2 87.3	r _{25.0}	85.0
Poland: Primary ^e Secondary ^e Total	<u>r</u> 24.5	25.0	26.2	r25.0	
Poland: Primary ^e Secondary ^e Total Portugal: Secondary	^r 24.5	25.0 83.4	26.2 87.3	r _{25.0}	85.0
Poland: Primary ^e Secondary ^e Total Portugal: Secondary Romania: Primary ^e		25.0 83.4 6.0 35.9	26.2 87.3	r _{25.0} r _{88.3} e _{6.5} 36.0	85.0
Poland: Primary ^e Secondary ^e Total Portugal: Secondary	r24.5 81.0 6.0	25.0 83.4 6.0	26.2 87.3 7.0	r _{25.0} r _{88.3} e _{6.5}	85.0 6.5
Poland: Primary ^e Secondary ^e Secondary Portugal: Secondary Romania: Primary ^e Secondary Total	-	25.0 83.4 6.0 35.9 10.0 45.9	26.2 87.3 7.0 38.6 10.0 48.6	*25.0 *88.3 *6.5 36.0 *15.5 51.5	85.0 6.5 35.0
Poland: Primary ^e Secondary ^e Total Portugal: Secondary Romania: Primary ^e Secondary ^e	-	25.0 83.4 6.0 35.9 10.0	26.2 87.3 7.0 38.6 10.0	*88.3 *6.5 *36.0 *15.5	85.0 6.5 35.0 10.0

Table 27.—Lead: World refinery production, by country¹—Continued

LEAD

(Thousand metric tons)

	and the second of the second					
Country	<i>\$</i>	1983	1984	1985	1986 ^p	1987 ^e
Construction						
Spain: Primary		107.8	110.1	112.8	88.0	77.0
Secondary		36.0	49.9	43.3	42.0	40.0
Total		143.8	160.0	156.1	130.0	117.0
Sweden:	. ·					
Primary		34.8	49.8	43.2	50.0	50.0
Secondary		15.2	27.7	25.9	29.8	30.0
Total		50.0	77.5	69.1	79.8	80.0
Switzerland: Secondary		2.0	2.0	2.0	2.5	2.4
Taiwan: Secondary		$\frac{38.0}{3.2}$	44.3 6.2	44.4 7.5	^r 53.5 9.1	54.0 10.0
Thailand: SecondaryTrinidad and Tobago: Secondary		2.0	2.0	2.0	2.0	1.8
Timuau and Tobago. Secondary						
Tunisia: Primary		10.4	8.4	2.0	2.2	2.2
Secondary ^e		.5	.5	.5	.5	.5
	. •	10.9	8.9	2.5	r _{2.7}	2.7
Total ^e		10.5	0.0	2.0		- 2.1
Turkey: ^e						
PrimarySecondary		2.0 5.5	$\bar{9}.\bar{0}$	10.0	$1\overline{0}.\overline{0}$	10.0
	-	7.5	9.0	10.0	10.0	10.0
Total		. 1.0	3.0	10.0	10.0	10.0
U.S.S.R.:e						
Primary		490.0 255.0	495.0 260.0	500.0 265.0	$500.0 \\ 270.0$	505.0 275.0
Secondary		299.0	200.0	200.0	210.0	210.0
Total		745.0	755.0	765.0	770.0	780.0
United Kingdom:	•					
Primary		136.9	147.1	148.1	156.1	² 137.5
Secondary		185.3	191.3	179.1	172.5	² 200.7
Total		322.2	338.4	327.2	328.6	338.2
United States:	•					
Primary		r _{519.2}	r389.4	494.0	370.3	373.6
Secondary		503.5	633.4	615.7	624.8	710.2
Total		r _{1,022.7}	r _{1,022.8}	1,109.7	995.1	1,083.8
Venezuela: Secondary ^e		15.0	17.0	18.0	16.0	17.0
**	:					
Yugoslavia: Primary		r _{85.0}	r62.6	83.0	116.5	101.0
Secondary		r _{38.0}	37.4	40.0	38.5	41.0
•		······································				140.0
TotalZambia: Primary		r _{123.0} 14.6	r _{100.0} 8.8	123.0 8.9	155.0 6.6	142.0 6.0
Zamoia: Frimary	:		0.0	0.0	0.0	0.0
Grand total		r _{5,288.6}	r _{5,456.2}	5,661.4	5,583.2	5,629.8
Of which: Primary		r _{3.264.6}	r3,161.1	3,369.6	3,229.0	3,176.6
Secondary		r _{2,024.0}	² ,295.1	2,291.8	2,354.2	2,453.2
Decondary		۵,004.0	2,200.1	_,_01.0	_,001.2	_,

^eEstimated. ^pPreliminary. ^rRevised.

¹Table includes data available through June 24, 1988. Data included represent the total output of refined lead by each country, whether derived from ores and concentrates (primary) or scrap (secondary), and include the lead content of antimonial lead, but exclude, to the extent possible, simple remelting of scrap.

²Reported figure.

Lime

By Joyce A. Ober¹

Total lime sold or used by domestic producers, including that from Puerto Rico, increased from 14.5 million short tons in 1986 to 15.8 million tons in 1987. These products, valued at nearly \$790 million, include quicklime and hydrated lime for commercial or captive consumption.

Lime is consumed primarily in chemical and industrial applications. The iron and steel industry was the largest consumer of lime. The resolution of a labor dispute at a major U.S. steel company and the increased production by other domestic steel producers were reflected in an increased demand for lime.

Consumption of lime increased in chemical, industrial, and agricultural industries. Consumption in the manufacture of refractory dolomite and for construction lime declined.

Domestic Data Coverage.—Domestic production data for lime are developed by the Bureau of Mines from two separate, voluntary surveys of U.S. operations. Typical of these surveys is the annual "Lime" survey. Of the 116 operations to which the annual survey request was sent, all responded, representing 100% of the total sold or used by producers shown in tables 1 and 2.

Table 1.—Salient lime statistics

(Thousand short tons unless otherwise specified)

	1983	1984	1985	1986	1987
United States: Number of plants	139	129	115	116	116
Sold or used by producers: Quicklime	12,383 2,066 418	13,134 2,302 487	12,997 2,314 378	11,850 2,199 424	12,979 2,468 285
Total ²	14,867 \$757,611 \$50.96 12,083 2,784 28 283 15,122 121,365	15,922 \$811,183 \$50.95 13,064 2,858 25 247 16,144 *125,191	15,690 \$809,000 \$51.56 13,409 2,281 19 194 *15,865 123,236	14,474 \$757,867 \$52.36 12,097 2,377 16 201 14,658 P120,964	15,733 \$786,125 \$49.96 13,105 2,628 13 178 15,898 e122,715

rRevised. Preliminary.

¹Excludes regenerated lime. Excludes Puerto Rico.

²Data may not add to totals shown because of independent rounding.

³Selling value, f.o.b. plant, excluding cost of containers

⁴Bureau of the Census.

⁵Calculated by sold or used plus imports minus exports.

DOMESTIC PRODUCTION

The term "lime," as used throughout this chapter, refers primarily to six chemicals produced by the calcination of high-purity calcitic or dolomitic limestone followed by hydration where necessary. They are (1) quicklime, calcium oxide (CaO), (2) hydrated lime, calcium hydroxide (Ca(OH)2), (3) dolomitic quicklime (CaO•MgO), (4) two types of dolomitic hydrate, type N (Ca(OH)₂•MgO) and type S (Ca(OH)2 • Mg(OH)2), and (5) deadburned dolomite. Nondolomitic quicklime and hydrated lime are also called highcalcium lime. Lime can also be produced from a variety of calcareous materials such as aragonite, chalk, coral, marble, and shell. Lime was regenerated, i.e., produced as a byproduct, by paper mills, carbide plants, and water treatment plants; however, regenerated lime is beyond the scope of this report.

Total U.S. lime production from limestone, including that of Puerto Rico, increased 9%. Commercial lime, sold by producers, increased 8%, and captive lime, used by producers, increased 11%.

Seventy-two companies produced lime. Leading producing companies, in descending order, were Dravo Lime Co. with two plants in Kentucky and one plant each in Alabama, Louisiana, and Texas; Mississippi Lime Co. in Missouri; Marblehead Lime Co.

with two plants in Illinois and one each in Indiana, Michigan, and Pennsylvania; Martin Marietta Corp. in Ohio; USG Corp. with one plant each in Louisiana, Ohio, Texas, and Virginia; Chemstar Inc. with two plants each in California and Nevada and one each in Arizona and Utah; Broyhill and Associates Inc. with two plants in Pennsylvania; Allied Products Co. with two plants in Alabama; LTV Steel Co. in Ohio; and Continental Lime Inc. with one plant each in Montana, Utah, and Washington. These 10 companies operated 30 plants and accounted for nearly 55% of total lime production.

A number of industry changes took place during the year. Bethlehem Steel sold its lime facilities in central Pennsylvania to Broyhill and Associates of Arlington, VA.² Marblehead Lime of Chicago, IL, sold its Utah plant to United States Pollution Controls Inc. of Oklahoma City, OK.³

USG announced plans to transfer its lime operations to a newly formed subsidiary of the company. The company intended to spin off A. P. Green Refractories and, in so doing, reassign the USG lime facilities in New Braumfels, TX, and Kimballton, VA, to APG Lime Co., a division of A. P. Green Refractories. The reorganization was expected to be completed early in 1988.4

Table 2.—Lime sold or used by producers in the United States, by State

			1986					1987		
State	Plants	Hydrated (thousand short tons)	Quicklime (thousand short tons)	Total ² (thousand short tons)	Value (thou- sands)	Plants	Hydrated (thousand short tons)	Quicklime (thousand short tons)	Total ² (thousand short tons)	Value (thou- sands)
Alabama	20	96	1,084	1,180	50,377	2	100	1,132	1,232	52,200
Arkanas, Louisiana, Oklahoma	.o. 44. ⁵	22.	110	33.5	21,016 21,962	4	108	240	348 348	21,932 22,989
Colorado, Nevada, Wyoming.	I*•	BB¦	≱≱	371 211	24,187 16,648	11,	88	≱≱	465 227	25,745 15,999
Hawaii, Oregon, Washington	110	≥≽	≯ ≱8	371 371	24,629	l ro	A	M	389	25,650
Justinos, Indiana, Missouri Iowa, Nebraska, South Dakota	20 co	402 W	89 2,514 W	2,916 W	4,729 142,133	m ∞ ≂	392 W	2,826	3,218	5,149 150,136
Kentucky, Tennessee, West Virginia ³ Maryland	4-	×≈	: ≱ °	:≥≘	: ≯ 2	* ro +	124 24	1,500	1,622	76,306
Massachusetts Michigan	18100	16 W	°≱≱	22e	27.257	- 81 00	°91⊗	°≽∌	.¥.569	30.320
Minnesota and Montana	E− 000	91	261 74	271	15,494	t- 00	M	≱∌	№	13,142
Ohio	6 OI	₩ 319	W 1,098	1,648	81,103 81,234	60	325	W 1.249	1,926	93,108
Puerto Kico		₹ 119	563	1,173	3,291 62,670	<u>-</u>	52 52 53 53	613	1.140	3,558
Utan	ლ 4	≥ 89	22€ 256	232 624	13,079 27,362	4 rc	82	W 576	262	17,894
Wisconsin Other Other		117 330	233 5,686	350 2,139	116,369		116 635	277 4,748	26.33	21,733 19,535
Total ²	117	2,223	12,274	14,498	761,158	117	2,493	13,264	15,758	789,683
W Withhelp 14 to 15 15 15 15 15 15 15 15 15 15 15 15 15										

W Withheld to avoid disclosing company proprietary data; included with "Other."
Excludes regenerated lime. Includes Puerto Rico.

*Data may not add to totals shown because of independent rounding.

*Ji987 only.

*Includes data indicated by the symbol W.

*Includes data indicated by the symbol W.

*Included with data for each individual State.

Table 3.—Lime sold or used by producers in the United States,1 by size of plant

			1986			1987	
	Size of plant	Plants	Quantity (thousand short tons)	Percent of total	Plants	Quantity (thousand short tons)	Percent of total
Less than 10,000 to	ns	 14	92	1	9	49	(2)
10.000 to 25.000 tor		23	340	\mathbf{z}	22	372	`ź
25,000 to 50,000 tor		13	477	3	16	576	4
50,000 to 100,000 to		 22	1,671	11	24	1,761	11
100.000 to 200.000 t		 25	3,561	25	18	2,639	17
200,000 to 400,000 to		 16	4,612	32	22	5,797	37
More than 400,000		 4	3,745	26	6	4,564	29
Total		 117	14,498	100	117	15,758	100

¹Excludes regenerated lime. Includes Puerto Rico.

CONSUMPTION AND USES

Lime was consumed in every State. Lime sold or used by producers was for chemical and industrial uses, 89%; construction, 8%; refractories, 2%; and a small amount for agriculture. Captive lime was used mainly in the production of steel in basic oxygen furnaces, and 24% of all captive lime was used in sugar refining.

In steel refining, quicklime was used as a flux to remove impurities such as phosphorus, silica, and sulfur. Dolomitic lime was often substituted for a fraction of the high-calcium lime to extend refractory life. Dead-burned dolomite, also called refractory lime, was used to line the bottom of openhearth steel furnaces to extend the life of the brick lining. Dead-burned dolomite was a component in tar-bonded refractory bricks used in basic oxygen furnaces. Lime consumption for raw steel production increased 6% to 5.0 million tons and accounted for 32% of all lime consumed in the United States.

In nonferrous metallurgy, lime was used in the beneficiation of copper ores to neutralize the acidic effects of pyrite and other iron sulfides and maintain the proper pH in the flotation process. It was used to process alumina and magnesia, to extract uranium from gold slimes, to control pH and reduce cyanide loss in gold and silver leaching operations, and in the recovery of nickel by precipitation.

Lime was used in the softening and clarification of municipal potable water. In sewage treatment, lime was used to control pH in the sludge digester, which removes dissolved and suspended solids that contain phosphates and nitrogen compounds. It also aided clarification and the killing of bacte-

ria in sewage treatment. Lime was used to neutralize acid mine and industrial discharges. In flue gas desulfurization systems serving utility and industrial plants, lime was used to react with sulfur oxides in the flue gas. Lime was used to stabilize sludges from sewage and desulfurization plants before disposal.

The paper industry used lime as a causticizing agent and for bleaching paper pulp to the desired degree of whiteness. Lime was also used in the clarification and color removal of paper mill wastes and to make precipitated calcium carbonate, a specialty pigment used in premium-quality coated and uncoated papers.

The chemical industry used lime in the manufacture of soda ash and bicarbonate of soda to recover and recycle ammonia. Quicklime was combined with coke to produce calcium carbide, which is used to make acetylene and calcium cyanamide. Lime was used to make calcium hypochlorite, citric acid, petrochemicals, and other chemicals.

In sugar refining, milk of lime, a suspension of hydrated lime in water, was used to raise the pH of the product stream, precipitating colloidal impurities. The lime itself is then removed by reaction with carbon dioxide to precipitate calcium carbonate. The carbon dioxide is often a byproduct of the lime production process.

Dolomitic quicklime was used as a flux in the manufacture of glass. Quicklime was used to make calcium silicate building products, i.e., sand-lime brick, and hydrated lime was used to produce silica refractory brick

In construction, lime was used for soil stabilization to upgrade clay soils into satis-

²Less than 1/2 unit.

factory base and subbase materials. Common applications included the construction of roads, airfields, building foundations, earthen dams, and parking areas. Hydrated lime was used with fly ash to make base material, in asphalt mixes to act as an

antistripping agent and to improve durability in plaster, stucco, and mortar. Other applications of lime included agricultural uses, leather tanning, plastics manufacture, and pigments.

Table 4.—Destination of shipments of lime sold or used by producers in the United States, by State¹

(Thousand short tons)

		1986		4	1987	
State	Quicklime	Hydrated lime	Total ²	Quicklime	Hydrated lime	Total ²
Alabama	426	45	472	460	49	508
Alaska	(3)	1	1	(³)	1	1
Arizona	234	64	298	227	87	313
Arkansas	87	24	111	202	19	220
California	406	96	501	476	107	583
Colorado	72	9	82	65	11	76
Connecticut	15	10	25	5	9	14
Delaware	32	6	37	12	5	17
District of Columbia	22	26	48	23	14	38
Florida	361	34	395	307	30	337
Georgia	228	47	275	240	52	292
Hawaii	2	4	6	(³)	3	3
Idaho	97	3	100	103	2	105
Illinois	491	133	624	507	99	606
Indiana	1,322	33	1,356	1,562	31	1,593
Iowa	78	15	93	87	16	104
Kansas	62	17	79	60	23	83
Kentucky	489	18	508	448	22	470
Louisiana	245	96	341	235	104	339
Maine	13	1	13	·(3)	. 1	1
Maryland	284	15	299	279	15	294
Massachusetts	39	15	54	2	15	17
Michigan	940	35	976	954	29	984
Minnesota	229	. 18	247	236	18	254
Mississippi	110	12	123	144	8	152
Missouri	125	49	174	140	51	191
Montana	42	· 8	50	44	10	54
Nebraska	51	6	57	57	5	61
Nevada	100	18	118	44	14	59
New Hampshire	2	(3)	2	1	(3)	1
	107	54	160	100	48	148
New Jersey	156	38	174	177	35	212
New Mexico New York	65	39	104	25	29	54
North Carolina	248	41	289	237	43	281
North Dakota	155	7	162	135	47	181
	1.287	118	1.404	1.372	154	1.526
Ohio	78	13	91	96	16	112
Oklahoma	77	12	90	117	20	136
Oregon	1.416	203	1,619	1.620	239	1,859
Pennsylvania		203	5	(3)	1	2
Rhode Island	3	21	130	125	21	146
South Carolina	109			15	21	16
South Dakota	14	67	15	197	64	262
Tennessee	194		261			1,150
Texas	560	589	1,149	644	506	
Utah	178	10	189	405	183	588
Vermont	(³)	1	_1	(³)	1	1
Virginia	159	14	173	133	84	217
Washington	265	13	277	244	12	257
West Virginia	437	22	459	471	39	510
Wisconsin	97	47	144	137	43	180
Wyoming	39	22	62	55	17	72
Total ²	12,250	2,191	14,441	13,225	2,454	15,680
Exports:						
Canada	19	8	28	26	8	34
Other countries	5	24	29	13	28	41
Onici continies						
Total ²	24	33	57	39	36	75
Grand total ²	12,274	2,223	14,498	13,264	2,490	15,758

¹Excludes regenerated lime. Includes Puerto Rico.

²Data may not add to totals shown because of independent rounding.

³Less than 1/2 unit.

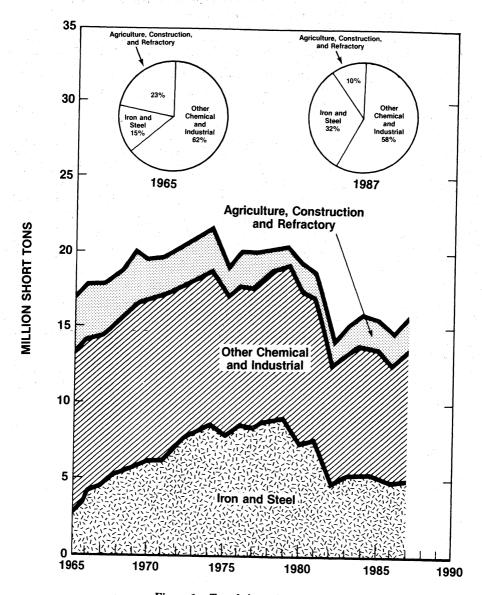


Figure 1.—Trends in major uses of lime.

Table 5.—Lime sold or used by producers in the United States, by use1

(Thousand short tons and thousand dollars)

Use	· · · · · · · · · · · · · · · · · · ·	- 19	986	i		19	87	
Use	Sold	Used	Total ²	Value	Sold	Used	Total ²	Value
Agriculture	51	(³)	51	3,169	89		89	6,877
Chemical and industrial:								
Acid water, mine or plant _	W	w	286	14,715	w	w	342	16,294
Alkalies	w	w	118	7,015	ẅ	· ẅ	118	7.790
Aluminum and bauxite			174	7,752	ŵ		W	1,190 W
Brick, sand-lime, and slag	w		w	w	6		6	368
Copper ore concentration _		w	335	13.978	w	w	677	20.340
Fertilizer	5	**	5	351	6	•••	6	418
Food products, animal or			o o	991	·		0	416
human	17		17	878	17		17	914
Glass	142		142	7.020	129		129	6,221
Magnesia from sea water or	172		142	1,020	129		129	6,221
brine	w	w	398	19,574	w	w	w	00.000
Metallurgy	w	w	10			w		20,083
Oil well drilling	11	vv	10	467	5		_5	208
Ore concentration, other	130			902	w		w	W
Paint	150		130	6,155	141		141	6,906
Paper and pulp			2	179	3		3	185
Paper and purp	W	W	1,198	58,331	1,071		1,071	49,385
Petroleum refining	10		_10	587	W		w	w
Sewage treatment	w	W	540	29,567	w	w	496	25,501
Steel, BOF	2,817	863	3,680	175,332	w	w	4,084	189,733
Steel, electric	w	<u>W</u>	883	41,527	w	w	760	35,242
Steel, open-hearth	W	w	122	5,939	w	w	145	6,733
Sugar refining	68	621	689	42,667	25	639	664	41,399
Sulfur removal from stack			- C - 4	46				
_ glasses	1,341		1,341	69,947	w	w	1,441	68,052
Tanning	22		22	1,377	20	<u> 29 c.</u>	20	1,218
Water purification	W	w	1,610	83,003	W	w	1.190	59,583
Wire drawing	W		W	w	17		17	863
Other4	5,643	762	906	50,490	10,161	1,861	2,769	125,009
Total ²	10,383	2,246	12,629	637,753	11,599	2,501	14,101	682,442
Construction:	-							
Road stabilization	481		401	00.045	004			
Soil stabilization			481	28,345	394		394	21,981
Finishing line	417	:	417	24,154	355		355	15,584
Finishing lime	221		221	20,899	203		203	20,121
Mason's lime	w	W	214	15,610	w	w	194	13,874
Other ⁵	61		61	3,440	136		136	7,037
Total ²	w	w	1,394	92,448	w	w	1,282	78,598
Refractory dolomite	w	w .	424	27,788	w	w	285	21,766
Grand total ²	12,121	2,377	14,498	761,158	13,129	2,628	15,758	789,683

W Withheld to avoid disclosing company proprietary data.

Includes asphalt antistripping.

PRICES

The average value of lime sold or used by producers, as reported to the Bureau of Mines f.o.b. plant, excluding Puerto Rico, decreased 5% to \$49.96 per short ton. Average values were \$48.40 per ton for chemical and industrial lime, \$76.35 for refractory dolomite, \$61.31 for construction lime, and \$76.97 for lime used in agriculture.

The average value of quicklime sold remained about the same at \$47.63 per ton. Average values per ton were \$47.47 for chemical lime, \$45.50 for lime used in agriculture, \$44.39 for construction lime, and \$76.35 for refractory dead-burned dolomite.

The average value of hydrated lime sold decreased 16% to \$63.20 per ton. Average values were \$59.43 for chemical lime, \$89.87 for lime used in agriculture, and \$67.83 for construction lime.

¹Excludes regenerated lime. Includes Puerto Rico.

²Data may not add to totals shown because of independent rounding.

³Less than 1/2 unit.

Includes briquetting, brokers, calcium carbide, chrome, citric acid (1987), commercial hydrators, desiccants, explosives, ferroalloys, fiberglass, glue, insecticides, ladle desulfurizing, magnesium metal, manganese, oil and grease, pelletizing, petrochemicals, pharmaceuticals, precipitated calcium carbonate, rubber, silica brick, soap, unspecified uses, and uses indicated by symbol W in "Chemical and industrial" lime only.

FOREIGN TRADE

Exports and imports for consumption of lime decreased to 12,644 tons and 177,905 tons, respectively, insignificant quantities

when compared with total domestic consumption of 15.9 million tons.

Table 6.—U.S. exports of lime

	Quantity (short tons)	Value ¹ (thousands)
1984	24.714	\$6,805
1985	19,383	5,155
1986	16,448	4,500
1987	12,644	2,971

¹Customs value.

Source: Bureau of the Census.

Table 7.—U.S. imports for consumption of lime

	Hydrat	ed lime	Othe	r lime	To	tal
	Quantity	Value ¹	Quantity	Value ¹	Quantity	Value ¹
	(short tons)	(thousands)	(short tons)	(thousands)	(short tons)	(thousands)
1984	59,906	\$3,669	187,579	\$9,722	² 247,484	\$13,391
1985	48,827	3,407	145,230	8,810	194,057	12,217
1986	57,842	4,108	142,865	8,129	200,707	12,237
1987	39,734	3,021	138,171	7,558	177,905	10,579

¹Customs value.

Source: Bureau of the Census.

WORLD REVIEWS

The fortunes of international lime producers were similar to those in the United States in traditional end uses. Steel producers are the largest consumers of lime in most industrialized countries. World lime consumption declined proportionately along with the decline in steel production in recent years. Increased lime production in 1987 was driven by a modest recovery in the steel industry and development of new enduse technologies. The future growth of international and domestic markets for the lime industry depends on developing new markets, such as industrial air and water treatment, soil stabilization, and reinforcement of asphalt pavements.

Belgium.—The largest consumers of lime in Belgium were water treatment, construction, and chemical production. The majority of Belgian lime was exported to Luxembourg and the Netherlands for steel production.

Brazil.—Lime demand expanded with its growing steel, construction, and agricultural industries in 1986. Mineraçõ Lapa Vermelha expanded production capacity,

Gramane-Cigar installed a new kiln, and Fabrica de Cal Votorantim began construction of two vertical kilns.

Canada.—The majority of Canadian lime producers operated for internal consumption. In 1987, 10 of 19 producers were captive producers that included 4 sugar companies, 4 steelmakers, 1 carbide producer, and 1 chemical manufacturer.

France.—Official French lime statistics listed 1986 consumption by end use as follows: steel industry, 55%; agriculture, 9%; roads, 7%; chemicals, 6%; water treatment, 6%; nonferrous metals, 5%; gas purification, 3%; building products, 3%; paper, 2%; calcium carbide, 2%; and the remaining 2%, other unspecified end uses.

Germany, Federal Republic of.—Lime sales have decreased steadily since 1980, responding to the decline in both the iron and steel industry and the construction industry.

Japan.—The decline in raw steel production was blamed for the 7.2% decrease in lime consumption in 1986.

²Data do not add to total shown because of independent rounding.

South Africa, Republic of.—Because of the remoteness of high-grade limestone deposits to markets and the coal used to calcine limestone, transportation cost may represent 40% of the lime cost. Much of the lime produced in the Republic of South Africa had been used to remove uranium from gold processing slimes. As the demand

for uranium has declined since 1982, lime production has remained depressed.

United Kingdom.—Although the steel industry was the largest consumer of lime at 33% in 1986, 26% was consumed in agriculture to increase the pH of farmland, streams, and lakes in order to offset the effects of acid rain.

Table 8.—Quicklime and hydrated lime, including dead-burned dolomite: World production, by country $^{\scriptscriptstyle 1}$

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Algeria ^e	45	45	45	45	45
Australia ^{e 3}	41,120	r _{1,210}	r _{1,210}	r _{1,210}	1,210
Austria	1,257	1,391	1,434	1,405	1,380
Belgium	1,951	2,392	1,997	1,944	2,090
Brazil	e _{5,500}	5,053	5,255	5,411	5,510
Bulgaria	1,801	1,682	1,467	e _{1,500}	1,500
Burundi	(5)	(5)	1	r ₍₅₎	. 1
Canada	2,460	2,498	2.438	2.472	2,500
Chile	797	858	882	é880	830
Colombia	1.430	1,430	1,430	1,430	1,430
Costa Rica ^e	11	11	11	11	11
Cuba	169	166	187	e200	180
Cyprus	9	. 8	9	8	8
Czechoslovakia	3,417	3,436	3,557	3,670	43,569
Denmark (sales)	119	141	142	147	4132
Dominican Republic ^e	44	44	37	37	40
	4103	107	107	105	105
Egypt ^e	-103 e3	· e3	4	103	2
Fiji Islands					
Finland	r ₂₅₅	266	278	288	287
France	3,247	3,450	3,417	3,200	3,300
German Democratic Republic	3,812	3,965	3,932	3,908	3,910
Germany, Federal Republic of	7,574	7,651	7,545	7,139	6,610
Guatemala	30	56	68	41	488
Hungary	906	907	883	916	915
India ^e	440	550	550	r660	770
Iran ^e	700	700	700	700	700
Ireland	^e 65	75	93	97	4 85
Israel ^e	445	55	55	55	55
Italy	2,228	2,648	2,509	2,310	2,540
Jamaica	134	127	95	e100	100
Japan (quicklime only)	8,197	8,547	8,217	7,404	7,700
Jordan	294	247	r e ₂₅₀	r é250	250
Kenya Korea, Republic of ^e	38	23	31	14	17
Korea, Republic of e	220	220	220	220	220
Kuwait	^e 15	17	58	63	63
Lebanon ^e	22	11	11	11	11
Libya ^e	4287	290	290	290	290
Malawi	2	2	e ₂	3	3
Maltae	46	6	<u>-</u>	6	6
Martinique	ő	6	6	Ğ	
Mauritius ^e	. š	. 8	š	Ř	8
	4.000	4.400	4.400	r _{4.350}	4,400
	103	¹ 105	r ₁₀₅	¹ 105	105
Mongolia ^e Mozambique ^e	11	11	11	11	11
Mozambique		11	11	11	11
Namibia	e_{11}^{1}	8	68	- <u>-</u>	1
Nepal					
New Zealand ^e	180	165	175	175 r e ₄	175
Nicaragua	. 5	e 3	4		4
Norway ^e	145	145	110	110	110
Paraguay	81	94	88	97	95
Peru ^e	40	40	40	_40	40
Philippines	56	56	52	e ₅₀	50
Poland	4,543	4,686	4,546	^e 4,500	4,500
Portugal ^e	250	230	220	220	220
Romania	3,994	4,242	4,097	e4,100	4,000
Saudi Arabia ^e	10	413	13	13	13
South Africa, Republic of (sales)	2.085	2,325	2.220	2.143	2.040
Spain ^e	1,100	41,199	1,200	1,300	1,300
Sweden	672	714	715	r e720	720
Switzerland	47	45	41	e ₄₅	45
				e120	
Taiwan	145	130	116		115
Tanzania	3	e ₃	3	e ₃	3

See footnotes at end of table.

Table 8.—Quicklime and hydrated lime, including dead-burned dolomite: World production, by country -- Continued

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Tunisia ^e Turkey ^e Uganda ^e US.S.R United Arab Emirates ^e United Kingdom ^e United States including Puerto Rico (sold or used by producers) – Uruguay Venezuela ^e Yugoslavia ^e Zaire Zambia Total	41,100 (4 5) 32,520 50 2,750 14,902 11 2 42,810 118 213	660 1,100 1 32,520 50 2,750 15,956 9 2 2,850 121 256	660 1,100 1 32,190 50 2,750 15,713 10 2 2,750 127 282	720 1,200 1 e32,190 50 2,750 14,498 e11 2 r2,850 150 268	720 1,200 32,190 50 3,100 415,758 11 2 2,850 150 268
Total	r _{121,365}	^r 125,191	123,236	120,964	122,715

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through June 24, 1988.

Thine is produced in many other countries in addition to those listed. Argentina, China, Iraq, Pakistan, and Syria are among the more important countries for which official data are not available.

Data are for year ending June 30 of that stated.

⁴Reported figure. 5Less than 1/2 unit.

⁶Data for year ending mid-July of that stated.

TECHNOLOGY

Lime has been used successfully to stabilize medium, moderate, and fine-grained soils. Improved stability of these clay-type soils increases their load-bearing characteristics for new construction. The addition of lime to the soil creates a stable water layer, changes the texture, and strengthens the soil. A report was published by the National Lime Association describing the effect of lime additions for soil improvement.6

U.S. Environmental Agency developed a process to reduce the sulfur emissions from old coal-burning plants by as much as 50%. Limestone injection multistage burning (LIMB), tested at a powerplant in Ohio, involved injection of hydrated lime above the flame zone in boilers to convert sulfur dioxide to calcium sulfate. LIMB will represent a significant

cost savings if large-scale tests prove that emissions are sufficiently reduced and more costly flue gas scrubbers are unnecessary. If new clean air legislation is enacted requiring reduced sulfur dioxide emissions from older powerplants, which are not controlled under existing laws, LIMB technology could be adopted and could open up a new market for the lime industry.7

¹Physical scientist, Branch of Industrial Minerals

¹Physical scientist, Branch of Industrial Minerals.

²Rook Products. Bethlehem Selling Pennsylvania Limestone Operations. V. 90, No. 2, 1987, p. 9.

³——. Marblehead Lime Sells Utah Plant to Hazardous Waste Company. V. 90, No. 4, 1987, p. 9.

⁴Pit & Quarry. A. P. Green To Diversify. V. 80, No. 3, 1987, p. 15.

⁵O'Driscoll, M. Burnt Lime/Dolime, Seeking Markets Green. Ind. Miner. (London), No. 248, 1988, pp. 25-51.

⁶Tittle D N Fundamentals of the Stabilization of Soil

**Correction of Soil With Lime National Lime Assoc. Bull. 332, 1987, 20 pp.

Tarantino, T. Lime Injection May Be Alternative to Scrubbers. Pit & Quarry, v. 89, No. 12, 1987, p. 34.

Lithium

By Joyce A. Ober¹

The United States remained the world's largest producer and consumer of lithium minerals and chemicals, although domestic production decreased. Imports of lithium mineral concentrates and lithium chemicals increased, essentially replacing most of the lost domestic production and causing a slight increase in estimated consumption over the level of 1986. The budding recovery of the domestic aluminum industry from its recent slump had the effect of increasing demand for lithium carbonate near yearend. Exports remained the same based on contained lithium and producers' stocks decreased slightly. World production experienced little change.

Domestic Data Coverage.—Domestic production data for lithium are developed by the Bureau of Mines from a voluntary

survey of U.S. operations. Of the two operations to which a survey request was sent, both responded, representing 100% of total production. However, production and stock data were withheld from publication to avoid disclosing company proprietary data.

Legislation and Government grams.—The General Services Administration reported sales of 52,000 pounds of lithium hydroxide monohydrate, valued at \$43,000 from excess stocks of the U.S. Department of Energy (DOE). The stockpile originally contained 46,000 short tons of material, about 75% of which was depleted of lithium 6 and possibly contained 8 to 9 parts per million of mercury. The remainder of the material in the DOE account. 79,865,549 pounds, is designated for dispos-

Table 1.—Salient lithium statistics

(Short tons of contained lithium)

	1983	1984	1985	1986	1987
United States:					
Production ¹	W	W	w	w	w
Producers' stock changes ¹		w	W	w	ŵ
Imports ²	0.4	90	410	700	900
Shipments of Government stockpile surplus ³		. 1	1	.00	1
Supply ^{1 4}	6,000	6,600	5,500	4,100	4,000
Supply ^{e 5}		6,100	5,000	3,500	3,200
Exports ^{e 6}		2,900	2,500	2,000	2,000
Consumption:		2,000	2,000	2,000	2,000
Apparent	W	w	w	w	w
Estimated	0.000	3.200	2,500	2.600	2,700
Rest of world: Production ^e 1		r2,500	r3,300	r3.400	3,500
		_,000	-,500	0,100	5,000

^eEstimated. Revised. W Withheld to avoid disclosing company proprietary data.

¹Mineral concentrate and carbonate.

²Compounds, concentrate, ores, and metal. ³Lithium hydroxide monohydrate.

⁴Production minus inventory increase

⁵Based primarily on monitoring at the carbonate stage and assuming a 15% lithium loss during conversion of concentrate to chemicals.

*Compounds.

DOMESTIC PRODUCTION

Two companies continued to produce lithium products in the United States. Lithium Corp. of America, (Lithco), a subsidiary of FMC Corp., mined spodumene, a lithium ore, from pegmatite dikes near Bessemer City, NC. The company produced lithium carbonate and downstream lithium compounds, including some organic lithium compounds, at a chemical plant near the mine. Foote Mineral Co., 87.5% owned by Newmont Mining Corp., recovered lithium carbonate from a subsurface brine deposit in Silver Peak, NV. Foote's lithium carbon-

ate operation at Kings Mountain, NC, remained inactive throughout 1987, but some production of marketable ore concentrates continued. At yearend, Foote announced an agreement with Cyprus Minerals Co. to enter a cash merger with a new Cyprus subsidiary. The merger will be completed early in 1988.²

Foote operated processing facilities for downstream lithium products and metal in Frazer, PA; Sunbright, VA; and New Johnsonville, TN.

CONSUMPTION AND USES

The aluminum, ceramics and glass, lubricating grease, and synthetic rubber industries were the major consumers of lithium minerals and chemicals. These markets were primarily related to transportation, i.e., the aircraft and automotive industries. Ceramics and glass were also used in industrial and consumer applications. Estimated domestic consumption increased slightly, but U.S. production decreased. Imported lithium ores continued to replace lithium carbonate in some ceramics and glass applications.

The aluminum industry, which began to recover from its slump, maintained its edge as the leading end use for lithium in the United States. Lithium carbonate is added to the cryolite bath in aluminum pollines where it is converted to lithium fluoride. The lithium fluoride lowers the melting point of the bath, allowing a lower operating temperature for the potline and increasing the electrical conductivity of the bath. Operators use these factors to increase production, reduce power consumption, or increase current efficiency.

The second largest end use, the addition of lithium chemicals and ore concentrates to ceramics and glass manufacturing processes, is approaching that of the aluminum industry in volume of lithium consumption. Lithium additions, in the form of carbonate and mineral concentrates, lower process melting points, reduce the coefficient of thermal expansion and the viscosity, and eliminate the use of more toxic chemicals. The manufacture of thermal-shock-resistant cookware consumed the majority of lithium used in the ceramics and glass industry. Use of low-iron petalite and spod-

umene, two lithium ores, increased as a source of the lithium used to improve the physical properties of container and bottle glass, as well as a source of alumina (Al₂O₃), another important component of the glass. Lithium is being used increasingly in container and bottle glass, enabling glass manufacturers to produce lighter weight, thinner walled products.

The third largest end use for lithium was in the multipurpose grease industry. Lithium-based greases are favored because they retain their lubricating properties over a wide temperature range; have good resistance to water, oxidation, and hardening; and if liquefied, form a stable grease on cooling. These greases continued to be utilized in military, industrial, automotive, aircraft, and marine applications.

Lithium batteries represent an end use with the potential for dramatic growth. The 9-volt lithium-manganese dioxide battery announced by Eastman Kodak Co. in 1986, appeared on the consumer market in late 1987, indicating that lithium batteries had moved from specialty applications into everyday use. Although they represent a small percentage of total lithium consumption, sales of these batteries are expected to grow 13% per year until at least 1996.3 Lithium batteries offer improved performance over the more traditional alkaline batteries, at a slightly higher cost. Lithium batteries have been used in cameras, microcomputers, and watches, and more recently in small appliances, electronic games, and toys. Large lithium batteries have been used in military applications.

Aircraft manufacturers in several countries have experimented with aluminum-

LITHIUM 581

lithium alloys as the material for wing and fuselage skin. Several U.S. companies have announced that they will use these alloys in their new airline models.4 Use of aluminumlithium alloys can reduce the weight of the aircraft by more than 10%, allowing significant fuel savings over the life of the aircraft. The alloys, which are 2% to 3% lithium by weight, are of interest to the aircraft and aerospace industry because of their reduced density and superior corrosion resistance compared with that of conventional aluminum alloys. These alloys face direct competition, however, from composite materials consisting of boron, graphite, or aramid fibers imbedded in plastic.

Small quantities of other lithium compounds were important to many industries.

Butyllithium was used as a catalyst in synthetic rubber production. Lithium chloride and lithium bromide were used in industrial air-conditioning systems, commercial dehumidification systems, and in the production of sophisticated textiles. Sanitizers for swimming pools, commercial glassware, and public restrooms contained lithium hypochlorite, as did dry bleach for commercial laundries. Patients diagnosed as suffering from manic-depressive mental disorders were prescribed medication containing a pharmaceutical grade of lithium carbonate. Lithium metal was used as a scavenger to remove impurities from copper and bronze, and anhydrous lithium chloride was used in fluxes for hard-to-weld metals such as steel alloys and aluminum.

STOCKS

Yearend producers' stocks of lithium carbonate and marketable ore decreased slightly.

PRICES

Both domestic lithium-producing companies announced price increases for their large-volume products, lithium carbonate and lithium hydroxide monohydrate, for the first time since 1984. These increases were prompted by the fact that world production capacity for lithium reflected demand more closely than it had in recent years. This situation was due to the contin-

ued shutdown of operations at Kings Mountain, NC. In addition, the North American aluminum industry began to recover from its slump, promising an increase in demand for lithium carbonate from that sector. Additional price increases, averaging about 5%, were announced for most other lithium compounds.

Table 2.—Domestic yearend producers' average prices of lithium and lithium compounds

(Dollars per pound)

	1986	1987
Lithium bromide, 54% brine: 2,268-pound lots, delivered in drums	4.24	4.33
Lithium carbonate, technical: Truckload lots, delivered	1.50	1.55
Lithium chloride, anhydrous, technical: Truckload lots, delivered	3.49	3.66
Lithium fluoride	5.12	5.38
Lithium hydroxide monohydrate: Truckload lots, delivered	1.93	1.97
Lithium metal ingot, battery-grade: 1,000-pound lots, f.o.b	35.10	37.68
Lithium metal ingot, battery-grade: 1,000-pound lots, f.o.b Lithium metal ingot, standard-grade: 1,000-pound lots, f.o.b	24.20	25.45
Lithium sulfate, anhydrous	3.21	3.51
N-butyllithium in n-hexane (15%): 3,000-pound lots, delivered	15.88	15.88

Source: U.S. lithium producers.

FOREIGN TRADE

In 1987, U.S. exports of lithium carbonate increased 10%, exports of lithium hydroxide remained about the same, and exports of other lithium compounds decreased 13%. U.S. imports for consumption of lithium ores increased 36% over the figures report-

ed in 1986, and imports of lithium compounds increased 10%. Ninety-four percent of these imports were from Foote's joint venture with the Government of Chile at the Salar de Atacama. Lithium metal imports increased over 500%, which reflected

growing demand for lithium batteries and alloys. Imports of lithium salts were also up significantly, but the 194% increase repre-

sents less than 1% of total lithium imports in terms of contained lithium.

Table 3.—U.S. exports of lithium chemicals, by compound and country

	19	986	19	987
Compound and country	Gross weight (pounds)	Value	Gross weight (pounds)	Value
thium carbonate:				4.45%
Australia	72,220	\$88,784	144,000	\$201,24
Brazil	440	3,498	6,600	10,41
Canada	1,470,149	2,391,197	908,506	1,264,92
France	118,646	170,441		<u> </u>
Germany, Federal Republic of	5,367,455 38,801	6,766,826	5,239,635	6,377,71
Hong Kong	38,801	51.764	1,067	1.60
India Japan Korea, Republic of	25.877	72,943	1,067 14,722	23,58
Janan	2,180,837	3,129,384	2,703,248	3,644,63
Korea, Republic of	141,680	212,927	196,433	281.50
Mexico	371,011	547,580	186,114	283,31
Netherlands	455,875	657,101	476,551	653,76
New Zealand	1,100	5,071	4,409	8,78
Singapore	-,	0,012	23,491	35,23
SingaporeSouth Africa, Republic of	46,300	69.210	39,600	64,74
Taiwan	361,518	484,501	431,403	615,57
United Kingdom	918,601	1,314,335	2,344,063	3,237,20
Venezuela	8,800	12,341	20,009	30,81
Zimbabwe	0,000	12,041	9,700	15.83
- The state of the				
Total	11,579,310	15,977,903	12,749,551	16,750,88
hium hydroxide:				
Argentina	386,916	668,863	262,732	436,55
Australia	204,883	350,940	167,000	278,23
Austria	950	1,030		_
Belgium	791	3,713	-,-	_
Brazil	953,925	1,626,832	649,345	1,125,28
BrazilCanada	19,481	31,630	136,000	257,98
Chile	39,457	75,396	34,394	65,20
Colombia	12,400	24,012	47,550	82,78
Ecuador	17,623	32,160	39,688	72,46
France	44,000	77,400	44,000	66,00
Germany, Federal Republic of	923,425	1,609,230	1,079,765	1,755,83
Greece	, , , , , , , , , , , , , , , , , , , ,	1,000,200	3,307	7,38
Greece Honduras	6,600	13,530	4,400	8.39
India	503,498	842,238	420,336	762,87
Indonesia	92,000	187,264	76,000	152,06
Israel	40,344	70,373	48,492	87,02
Italy	6,614	12,831	40,402	01,02
Tanan	1,459,124	2,600,737	1,135,087	2,043,07
Vanua	59,774	110,147	44,000	81,44
Italy Japan Kenya Korea, Republic of	99,114	110,147	44,000	200 50
Norea, Republic of	203,987	338,728	240,393	389,53
Malaysia	F0 FF0	100 501	8,818	15,43
Mexico	56,753	190,591	104,781	209,40
Netherlands	145,200 13,219	240,457	315,429	510,56
New Zealand	13,219	25,029	6,614	12,86
Pakistan	46,026	83,840	58,367	103,59
Peru	15,465	28,557	25,543	42,60
PhilippinesSaudi Arabia	45,000	74,360	50,325	91,46
Saudi Arabia		57	68,343	121,57
Singapore	88,148 139,360	$160,\overline{264} \\ 246,716 \\ 79,200$	70,437	121,66
South Africa. Republic of	139,360	246,716	206,271	352,09
Spain	44,000	79,200		_
Sweden			44,000	64,62
Taiwan	79,421	125,798	41,002	141.99
Thailand	17,931	32,573	36,000	63,66
Turkey	85,800	149,292		,
United Arab Emirates	5.292	9,633	37,239	65,31
United Kingdom	5,292 569,277	909,676	795,825	1,196,24
Uruguay	882	1.800	,	1,100,2
Venezuela	44.092	79,360	$87.\overline{291}$	168,01
Yugoslavia	16,000	26,651	15,000	32,32
Zimbabwe			26,400	47,36
	6,387,658	11,140,851	6,430,174	11,032,90
<u>'</u>	.,,	,,	.,,	,,,,
her: Argentina	124	2,632	12,202	587,60
Australia	27,480	66,771	64,956	155,29
Belgium	39,379	34,353	12,720	12,46
Bermuda	9,813	40,856	12,120	12,40
Bolivia	2,200	2,073		-
DUIIVIA	2,200	2,013		-

Table 3.—U.S. exports of lithium chemicals, by compound and country —Continued

	19	986	1987		
Compound and country	Gross weight (pounds)	Value	Gross weight (pounds)	Value	
ther —Continued			and the second		
Brazil	40,610	\$122,174	34,259	\$144,54	
Canada	472,303	912,150	840,024	1,336,83	
China	1.200	1,428	11,000	20,62	
Colombia	4.792	14.825	1,615	12.84	
Costa Rica	1,000	1,520	-,	12,0	
Denmark	1,000	1,020	14	1.59	
Finland	9.211	16,120		1,00	
	122,773	291,491	48,624	128,21	
France	338,142		175,230		
Germany, Federal Republic of		1,466,270	175,230	240,10	
Hong Kong	140	9,600			
India	3,388	17,035	40	1,60	
Israel	2,432	49,095	1,548	8,45	
Italy	1,512	1,036	10,062	24,52	
Jamaica	14,890	36,422	1,22		
Japan	114.892	888,108	159,759	746.50	
Jordan	,	,	1,704	1,87	
Korea, Republic of	172,728	223,734	157,164	209,61	
Mexico	181.155	420,718	534,796	1.463.04	
Netherlands	321,200	488.612	66,000	97,66	
Nemerlands	321,200	400,014	73	4,44	
Nigeria	20.041	41,157			
Pakistan	20,041	41,157	12,042	31,83	
Philippines	==		21,580	258,23	
Saudi Arabia	75	12,588			
Singapore	27,829	56,470	3,309	19,96	
South Africa, Republic of	21,287	50,962	298	3,98	
Sweden			1,561	155,36	
Switzerland	156	3,588		_	
Taiwan	8.927	43,404	31,487	97,66	
United Arab Emirates	-,	,,-	6,613	11,90	
United Kingdom	1.126.018	2.657.074	474,780	1.157,17	
Venezuela	5,978	11.861	4,758	23.03	
Yugoslavia	551	75,742	486	105.08	
1 ugustavia	301	10,142	400	100,00	
Total	3,092,226	8,059,869	2.688,074	7,062,07	

Source: Bureau of the Census.

 $\begin{array}{c} \textbf{Table 4.--U.S. imports for consumption of lithium-bearing materials,} \\ \textbf{by commodity and country} \end{array}$

		1986		1987			
Commodity and country	Gross weight	Value (thousands)		Gross weight	Value (thousands)		
	(pounds)	Customs	C.i.f.	(pounds)	Customs	C.i.f.	
Lithium ores:							
Australia ¹ Brazil	2,273,967	\$247	\$325	4,977,337	\$491 1	\$687	
Canada ¹ Japan	2,892,257	306	306	13,958,632 22	1,414	1,414	
United Kingdom Zimbabwe	21,488,181	2,639	2,985	496,000 16,914,565	57 1,627	57 1,825	
Total	26,654,405	3,192	3,616	36,346,586	3,592	3,987	
ithium compounds:							
Belgium				132	4	4	
CanadaChile	4,125,042	5.239	5.525	4,347,930	4.845	5 101	
China	4,120,042	0,205	3,323 2	4,541,550	4,848 6	5,121 8	
France	12,200	3.161	3.178	6.013	593	598	
Germany, Federal Republic of	51,787	330	342	34,014	249	257	
Hong Kong				37,478	53	56	
Japan	228	66	69	455	67	70	
Switzerland Taiwan				144,002	173 53	183 56	
United Kingdom	381	49	50	37,478 6,129	130	131	
- Total	4,189,643	8,847	9,166	4,618,095	6,174	6,485	

See footnote at end of table.

Con

Lithium salts:
France _ _
Germany,
Japan _ _
United Kin

Lithium metal:

France

by co	ommodity	and country	y —Conti	nuea			
		1986			1987		
mmodity and country	Gross weight	Valu (thousa		Gross weight	Valu (thousa		
	(pounds)			(pounds)	Customs	C.i.f.	
lts:	220	\$8	\$9	10,723	\$ 9	\$10	
ny, Federal Republic of Kingdom	4,409 50 90	24 2 4	28 2 4	3,288	- <u>-</u> -	29	

38

24

24

43

 $\overline{25}$

25

Table 4.—U.S. imports for consumption of lithium-bearing materials, by commodity and country —Continued

United Kingdom ____

Germany, Federal Republic of _ _

Source: Bureau of the Census as adjusted by the Bureau of Mines.

WORLD REVIEW

4,769

4,333

4,333

Argentina.—Construction of a chemical plant to recover lithium, magnesium, and potassium salts from the Salar del Rincón was scheduled to begin before yearend. This brine deposit is near Campo Quijano in the Salta Province.⁵

Bolivia.—Brine-harvesting and mining concessions have been requested from Complejo Industrial de Recursos Evaporiticos del Salar de Uyuni, as well as permission to build a pilot plant for treatment of the brines of the Salar de Uyuni. Industria Minera Tierra Ltda. requested these concessions and planned to produce borax, boric acid, lithium, and magnesium salts and derivatives from the deposit, which reportedly contains higher concentrations of lithium than similar deposits in Chile. The company has also identified another deposit with high lithium concentrations as an alternative concession to the Salar de Uyuni request.6

Brazil.—Cia. Brasileira de Litio neared completion of its 1,700-ton-per-year lithium carbonate plant near Aracuai in Minas Gerais. The new facility was intended to make Brazil self-sufficient in lithium production; exports of lithium carbonate are also planned. The plant was designed to produce lithium carbonate from spodumene. Minas Gerais has proven reserves of lithium ores of 810,000 tons, including lepidolite, petalite, and spodumene. This is the second lithium operation to be built in Brazil. Nuclebras Monzanita e Associados

Ltda. owns a lithium chemical plant, but the operation has been closed due to ore supply problems.⁷

14,011

3,340

10,482

13,935

27,807

39

8

23 3

204

238

21 2

201

231

Canada.—Tantalum Mining Corp. of Canada Ltd. (TANCO) announced plans to increase its spodumene concentrate capacity to 15,000 tons per year in 1988. The company also considered marketing a new product at its lithium operation in Bernic Lake, Manitoba. An amblygonite-spodumene concentrate containing about 6.5% lithium oxide and 8% to 10% phosphorous pentoxide would be produced as a byproduct of the company's spodumene concentrate. The amblygonite-spodumene concentrate would be targeted for specialty ceramics applications. TANCO also announced plans to resume tantalum production at the same location in 1988.5

Chile.—Sociedad Chilena de Litio Ltda., a joint venture between Foote and Corporación de Fomento de la Producción (CORFO), increased production to about 12 million pounds of lithium carbonate. This increase of more than 20% over that of 1986 approached the plant's design capacity of 16 million pounds. Investigations of the feasibility of a second operation at the Salar continued. AMAX Exploration Inc. (United States), CORFO, and Molibdenos y Metales S.A. (Chile) formed a consortium, Minera Salar de Atacama Ltda., to conduct a 3-year evaluation program, which began in 1986.9

Yugoslavia.—A lithium battery factory

¹Spodumene concentrate.

LITHIUM 585

was built by the Trepca Enterprise in Gnjilane, Vojvodina. The factory, a joint venture with Battery Engineering Inc. of the United States, was planned to produce \$3 million worth of batteries per year. Button, cylindrical, and spiral cells will be produced.10

Zimbabwe.--A new heavy-medium sepa-

ration plant was built to recover petalite from a huge stockpile that had previously been considered waste material because it was impossible to separate by means of handpicking.11 The ore concentrates recovered from the stockpile are expected to be produced with no additional mining expenses.

Table 5.—Lithium minerals and brine: World production, by country1

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Argentina (minerals not specified)	168	24	e ₂₂	e ₂₂	22
Australia, spodumene	1,100	7.200	12,300	e _{12,100}	13,000
Brazil:	-,	.,	12,000	12,100	10,000
Amblygonite	125	54	130	^e 165	165
Lepidolite	i	••	100	100	100
Petalite	2,086	526	1,458	r e _{1,270}	1,380
Spodumene	128	317	118	r e220	220
Canada, spodumene		e90	e330	688	820
Chile, carbonate from subsurface brine		2,326	4,969	4.914	4.960
China (minerals not specified) ^{e 3}	16,500	16,500	16,500	16,500	16,500
Namibia:	10,000	10,000	10,000	10,000	10,500
Amblygonite	56	67	55	57	55
Lepidolite	34	23	121	57	55
Petalite	770	880	1.984	1.230	1,200
Portugal, lepidolite	601	1.086	143	(4)	1,200
U.S.S.R. (minerals not specified) ^{e 3}	60,600	60,600	60,600	60,600	60,600
United States, spodumene and subsurface brine.	W	w	W	w	00,000 W
Zimbabwe (minerals not specified)	21.157	r _{24.855}	30,765	36,117	37.500

Preliminary. eEstimated. rRevised. W Withheld to avoid disclosing company proprietary data. ¹Table includes data available through Apr. 22, 1988.

⁴Revised to zero.

TECHNOLOGY

The Bureau of Mines conducted research into the recovery of lithium from clays. The McDermitt caldera on the Nevada-Oregon border is estimated to contain more than 3 million tons of lithium. Lithium recovery of over 80% was achieved by limestone-gypsum roasting and selective chlorination techniques. Although the tests were successful, the costs of both processes were considered to be prohibitive. The limestonegypsum process cost an estimated \$2.02 to produce 1 pound of lithium carbonate, and the selective chlorination process costs were estimated at \$3.85 per pound of lithium carbonate.12

A lithium-iron-sulfide battery developed by Argonne National Laboratories to power street vehicles delivered the equivalent of 200 miles of city driving in a bench-scale test. The test was conducted at a laboratory operated for DOE by the University of Chicago. Researchers have been working since the 1973 energy crisis to develop a

battery-powered vehicle that would not require gasoline for its operation. The battery will be road tested in 1988 by the Tennessee Valley Authority in a cargo van adapted for its use.13

Research continued to determine the optimum concentration of lithium in aluminum-lithium alloys to minimize density without adversely affecting strength and stability. Scientists at Lawrence Berkeley Laboratory's Center for Advanced Materials were searching for the best materials to use in a proposed "space plane." The space plane is intended to take off from conventional runways and reach orbital speed. The laboratory is operated for DOE by the University of California.14

Foote has developed a lithium ceramic consisting of a mixture of lithium aluminate and lithium silicate solutions that hardens at room temperature to form a heat-resistant, ceramic-like material. The material shows compressive strengths of

In addition to the countries listed, other nations may produce small quantities of lithium minerals, but output is not reported and no valid basis is available for estimating production levels.

These estimates denote only an approximate order of magnitude; no basis for more exact estimates is available. Output by China and the U.S.S.R. has never been reported.

6,000 (pounds per square inch) when hardened at room temperature. When fired, the strength of the material increases.15

Lithium carbonate has been used for decades to treat manic-depressive mental disorders. A study conducted at Ben Gurion University of the Negev, Beersheba, Israel, found that lithium blocks the activity of two types of protein that trigger many types of cell response to outside stimuli.16

⁵Industrial Minerals (London). Lithium—No Shortage in

*Industrial Minerals (London). Lithium—No Shortage in Supply. No. 237, 1987, p. 30.

**Crozier, R. D. Bolivia's Industrial Minerals An Update.
Ind. Miner. (London), No. 241, 1987, p. 67.

**Industrial Minerals (London). Lithium Plant Nears
Completion. No. 244, 1987, p. 8.

**Blue 24 of great sized in fortents 6.

⁸Page 24 of work cited in footnote 6.

Page 24 of work cited in toothote 6.
 Work cited in foothote 6.
 Industrial Minerals (London). Gnjilane Li Battery Factory. No. 234, 1987, p. 75.
 Page 29 of work cited in foothote 6.
 Crocker, L., and R. H. Lien. Lithium and Its Recovery From Low-Grade Nevada Clays. BuMines B691, 1988, 37

pp.
13Bishop, J. New Kind of Storage Battery Boosts
Electric-Car Prospects. Wall St. J., v. 209, No. 85, 1987, p.

Yarris, L. LBL Studies Hypersonic Plane Material.
 Lawrence Berkeley Laboratory, Berkeley, CA, 1987, 2 pp.
 Chemical & Engineering News. Room-Temperature
 Lithium Ceramic Invented. V. 65, No. 20, 1987, p. 21.
 Lithium Lops. May Inhibit C.Protein Activity.

- Lithium Ions May Inhibit G-Protein Activity. V. 66, No. 6, 1988, p. 16.

¹Physical scientist, Branch of Industrial Minerals. ²Metals Week. Cyprus Dives Into Lithium. V. 58, No. 51,

[&]quot;Netaus Week, V.P. - 1987, p. 3.

Chemical Marketing Reporter. Lithium Sparks Batteries. V. 231, No. 26, 1987, p. 9.

Haflich, F. Scrap Output Is Taking Off. Am. Met. Mark., v. 95, No. 151, 1987, p. 10.

Magnesium

By Deborah A. Kramer¹

Domestic primary magnesium production decreased slightly, but apparent consumption increased as producers drew down their stocks to meet demand. The largest U.S. producer increased its operating capacity near the end of 1987 to reduce its stock depletion. The United States remained a net exporter of magnesium, while both exports and imports increased.

New primary magnesium plant construction continued, principally in Canada, and expansion plans for a magnesium plant in Brazil were postponed. If announced capacity increases outside the United States occur as scheduled, a world oversupply of magnesium could occur by the end of the decade.

Development of new alloys and new cast-

ing and foundry techniques had the potential for increasing magnesium usage in large-volume applications, including automobiles and aircraft. Magnesium's high strength-to-weight ratio and its light weight were utilized in these and other applications.

Domestic Data Coverage.—Domestic consumption data for magnesium metal are developed by the Bureau of Mines from a voluntary survey of U.S. operations. Of the 114 operations to which a survey request was sent, 83% responded, representing 48% of the primary magnesium consumption shown in tables 1 and 3. Consumption for the 19 nonrespondents was estimated using reported prior year consumption levels.

Table 1.—Salient magnesium statistics

(Short tons unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Production:					
Primary magnesium	115,431	159.207	149,614	138,493	137,123
Secondary magnesium	46,329	48,357	45,523	46,084	49,786
Exports	46,690	48,337	40,322	43,992	48,677
Imports for consumption	6,350	9,381	9,271	r9,210	11,961
Consumption, primary	81.976	89,887	83,502	77,119	93,000
Price per pound	\$1.38	\$1.43-\$1.48	\$1.48-\$1.53		
World: Primary production				\$1.53	\$1.53
world. I filliary production	286,755	360,459	362,381	p 362,191	e354,740

^eEstimated. ^pPreliminary. ^rRevised.

DOMESTIC PRODUCTION

Production of primary magnesium was about 81% of domestic capacity of 169,000 short tons. Three companies produced magnesium in 1987: AMAX Magnesium Corp., Rowley, UT; The Dow Chemical Co., Freeport, TX; and Northwest Alloys Inc., a subsidiary of Aluminum Co. of America (Alcoa), Addy, WA. AMAX recovered mag-

nesium from purchased brines and Dow recovered magnesium from seawater; both companies used an electrolytic process for metal production. Northwest Alloys recovered magnesium from dolomite by a silicothermic process.

AMAX continued to purchase brine from two domestic companies, Kaiser Aluminum & Chemical Corp. and Leslie Salt Div. of Cargill Inc., to replace brine from AMAX's solar ponds, which were destroyed in a June 1986 flooding of the Great Salt Lake. In June 1987, AMAX announced that it was constructing a new solar pond system in Knolls, UT, which would use highly concentrated brines from the State's west desert pumping station as feedstock. Construction of the ponds was expected to begin in the summer of 1988, and initial plant feedstock would be available by yearend 1988. AMAX planned to continue purchasing brine until the ponding operation is running at full capacity in late 1989.

Dow reportedly brought additional electrolytic cells on-line at its primary magnesium plant in November 1987. The addition-

al cells increased Dow's operating capacity to 83,000 tons per year, or 86% of its 96,000ton-per-year plant capacity. Increased production rates were because of a sharp decline in Dow's inventories, in response to increased magnesium demand from the U.S. aluminum industry, and increased use in Europe for iron and steel desulfurization. Dow also announced that, through an ongoing modernization program begun after the energy crisis of the 1970's, the company reduced the energy required to produce magnesium by 39%. Productivity and quality improvements were the result of the extensive modernization program, the introduction of statistical quality controls, computerized materials processing, and robotic materials handling.2

Table 2.—Magnesium recovered from scrap processed in the United States, by kind of scrap and form of recovery

hor	

	1983	1984	1985	1986	1987
KIND OF SCRAP					
New scrap: Magnesium-base Aluminum-base	2,873 18,718	3,192 18,402	1,664 17,915	1,092 19,645	932 23,002
Total	21,591	21,594	19,579	20,737	23,934
Old scrap: Magnesium-base Aluminum-base	5,311 19,427	5,232 21,531	5,104 20,840	4,363 20,984	4,252 21,600
Total	24,738	26,763	25,944	25,347	25,852
Grand total	46,329	48,357	45,523	46,084	49,786
FORM OF RECOVERY Magnesium alloy ingot ¹ Magnesium alloy castings (gross weight)	4,232 952	4,229 980	4,231 483	4,327 r607 34	4,410 493
Magnesium alloy shapes Aluminum alloys	$ \begin{array}{r} 39,451 \\ 20 \\ 4 \\ 1,670 \end{array} $	$41,072 \\ 12 \\ 9 \\ 2,055$	$39,\overline{459}$ 9 3 $1,338$	r _{41,108} W W	44,876 W W
	46,329	48,357	45,523	46,084	49,786

⁷Revised. W Withheld to avoid disclosing company proprietary data; included in "FORM OF RECOVERY: Total."

¹Includes secondary magnesium content of both secondary and primary alloy ingot.

CONSUMPTION AND USES

Primary magnesium consumption increased from that of 1986 in most end uses, particularly aluminum alloying. Magnesium consumption for iron and steel desulfurization was estimated to be about 10,000 tons.

Introduction of magnesium components into the automotive market continued as Dow and Pontiac Motorsports Div. of Gener-

al Motors Co. developed a sand-cast magnesium racing car engine block. The magnesium engine, with all components installed, weighed 226 pounds, a 96-pound weight savings when compared with cast-iron racing engines. After road tests were completed, Pontiac planned to market the engine in five standard displacements.

A complex magnesium extrusion produc-

ed by Dow was used in the agricultural industry as part of a laser system that prepares land for installation of irrigation systems. The magnesium extrusion, used in the Laserplane Analog system developed by Spectra-Physics Inc., supports a mast mounted on earth-moving equipment. A 360° laser beam in the field sends data on the terrain to a receiver mounted on the mast. The terrain data are used to guide the earth-moving equipment so that high, dry areas that do not get enough water are leveled off, and low areas that get too much water are filled in. Magnesium, 37% lighter than aluminum for this application, was used for the mast supports because the masts were designed to be moved by hand from one machine to another.³

Hughes Aircraft Co. used magnesium as a structural component in the antennas of airborne radar systems designed for use in military aircraft. Antennas fluctuate rapidly while sending and receiving data; therefore, they must be lightweight and strong, and the material used to fabricate the antennas must be easily machined. Magnesium's high strength-to-weight ratio and its ease of machinability were the reasons the metal was selected for the antennas. Special high-speed machining techniques were developed by Hughes to fabricate the AZ31B magnesium alloy plate into the antenna.

Table 3.-U.S. consumption of primary magnesium, by use

(Short tons)

Use	1983	1984	1985	1986	1987
For the street and street					-
For structural products: Castings:					
Die	1,937	595	2,457	4,019	4,090
Permanent mold	16	1,666	909	825	957
Sand	1,388	1,932	1,634	1,513	1,603
Wrought products:		972.2			= =0/
Extrusions	7,093	5,828	7,756	6,928	7,500
Other ¹	4,342	4,418	4,193	4,341	4,281
Total	14,776	14,439	16,949	17,626	18,431
For distributive or sacrificial purposes:					
Alloys:	46,026	48,673	40,850	40,569	54,878
Aluminum	40,020	40,015	40,000	40,005	04,010
OtherCathodic protection (anodes)	5,686	4,777	4,748	6.991	6,104
Chemicals	5,664	5,501	3,824	1,597	1,154
Nodular iron	2,200	2,408	1,698	1,788	1,996
Reducing agent for titanium, zirconium, hafnium, uranium,	2,200	_,100	2,000	-,	_,
beryllium	4,711	6,689	8,126	5,771	5,82
Other ²	2,906	7,392	7,299	2,771	4,60
Omer					
Total	67,200	75,448	66,553	59,493	74,569
Grand total	81,976	89,887	83,502	77,119	93,000

¹Includes sheet and plate and forgings.

STOCKS

Yearend consumer stocks of primary magnesium ingot increased to 6,185 tons in 1987 from 5,473 tons in 1986. Magnesium alloy ingot stocks declined to 676 tons at yearend 1987 from 759 tons at yearend 1986.

Producers' stocks of primary magnesium ingot decreased substantially to 24,516 tons at yearend 1987 from 37,078 tons at yearend 1986.

²Includes scavenger, deoxidizer, and powder.

Table 4.—Stocks and consumption of new and old magnesium scrap¹ in the United States

(Short tons)

		Gt. J	Stoolea		Consumption			
			Stocks, Jan. 1		New scrap	Old scrap	Total	Stocks, Dec. 31
1986 1987		 	1,215 1,092	4,264 4,452	24 234	4,363 4,252	4,387 4,486	1,092 1,058

¹Cast scrap, solid wrought scrap, borings, turnings, and drosses.

PRICES

Throughout 1987, AMAX and Dow maintained the same price quotes for primary magnesium ingot and diecasting alloy as were quoted in 1986. The producers' pri-

mary magnesium ingot price was \$1.53 per pound, AMAX's price for diecasting alloy was \$1.29 per pound, and Dow's diecasting alloy price was \$1.33 per pound.

FOREIGN TRADE

Imports and exports of magnesium increased in quantity from those of 1986. The United States remained a net exporter of magnesium, and Japan and the Netherlands were the destination of 55% of the

U.S. magnesium exports. Imports increased by 30% from those in 1986. Canada and Norway were the principal import sources, accounting for 75% of domestic imports.

Table 5.—U.S. exports and imports for consumption of magnesium

				EXF	PORTS			1 1 1 1 1
Year	Was	te and scr	ар		and alloys de form		Semifabric forms, n.e	
		(t	alue hou- ands)	Quantity (short tons)	Value (thou- sands)	(s	antity hort ons)	Value (thou- sands)
	79 85 1,41	2	\$2,071 1,990 3,623	37,484 41,012 44,315	\$100,12 106,89 110,89	96	2,043 2,128 2,945	\$11,401 13,492 16,151
·			IMP	ORTS FOR	CONSUMP	TION		
	Waste and scrap		M	[etal	All (magn cont	esium	tubing, wire, oth (magn	, sheets, ribbons, er forms esium ent)
	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
	2,874 2,099 2,873	\$4,778 3,895 5,391	1,992 r _{3,093} 3,959	\$5,525 *8,115 10,832	3,651 1,808 2,921	\$12,774 7,008 8,624	754 2,210 2,208	\$2,010 5,556 6,117

Revised.

Source: Bureau of the Census.

Table 6.—U.S. exports of magnesium, by country

Country	Waste a	nd scrap		y metals, oys	n.e.c., ii	cated forms, ncluding vder
Country .	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
986:						
Argentina	10	\$26	362	\$905	.115	\$476
Australia	6	25	2,644	6,129	146	598
Austria			208	616	5	71
Bahrain			88	221		
Belgium-Luxembourg	10	20	5.7		4	61
Brazil	0.55		961	2,358	4	24
Canada	355	833	3,348	8,046	497	2,458
China			3,228 34	8,351 87	2 18	212
Colombia France			. 54	21	27	426
Germany, Federal Republic of	255	663	587	1.717	49	449
Ghana	200	000	969	2,359		
Ghana Hong Kong India			299	766	1. 44224	
India			166	423	22	156
Italy			26	77	149	1,308
Japan	27	48	9,926	25,812	233	1,309
Korea, Republic of			570	1,927	33	406
Mexico	171	353	1,192	3,109	202	1,005
Netherlands	1		14,109	37,702	7	81
New Zealand			36	89	2	29
Norway			28 44	53 88	34	36 329
SingaporeSouth Africa, Republic of	, t		590	1,690	17	102
Spain		:	789	2,004	15	231
Sweden			78	210	21	219
Taiwan	15	$\overline{13}$	209	599	19	61
Turkey			9	26	7 .	<u></u>
United Kingdom	1	- <u>2</u>	420	1,236	289	2,304
Venezuela			14	60	43	141
Other	2	7	^r 76	^r 215	^r 172	r ₉₉₂
	852	1,990	41,012	106,896	2,128	13,492
87:						
Argentina			540	1,262	71	379
Australia			1,918	4,470	150	679
Austria			1,010	9	ő	91
Bahrain			459	1,160		
Belgium-Luxembourg	4	- 8	69	145	479	1,729
Brazil	11	27	764	1,902	2	10
Canada	505	1,170	5,170	12,076	185	1,549
China			2,275	5,368	289	722
Colombia			31	75	18	74
France Germany, Federal Republic of	633	1 005	1 515	4 400	38	450
Germany, rederal Republic of	688	1,895	1,717 930	4,606	260	988
Ghana Hong Kong			930 22	2,315		
India		15	314	54 904	12	93
Italy	U	10	23	51	139	1,214
Janan	163	299	9.671	23,620	176	1,314
Japan Korea, Republic of	3	236	637	2,188	77	243
Mexico	64	132	656	1,495	193	667
Netherlands	6	12	16,214	41,737	307	1,221
New Zealand			36	78	4	57
Norway			55	163	2	32
Singapore			45	89	15	137
South Africa, Republic of			20	_ 55	69	356
Spain			2,103	5,360	30	487
Sweden			42	97	15	249
Taiwan	21	51	255	670	44	187
Turkey			118	298		1 505
United Kingdom	$-\bar{\mathbf{z}}$	- 8	14	44	151	1,781
Venezuela	Z	8	0.15	605	41 172	157
Other						
Other			215	600	112	1,285

Revised.

Source: Bureau of the Census.

WORLD REVIEW

Brazil.—Because of power supply problems, Brazileira do Magnesio S.A. (Brasmag) announced that some of its expansion plans would be delayed. Brasmag completed a 2,200-ton-per-year-capacity expansion in 1986, but an 11,000-ton-per-year expansion, originally scheduled for completion in July 1987, was postponed until mid-1988. The final phase of Brasmag's expansion of an additional 22,000 tons per year of capacity was awaiting Governmental approval at yearend. Although furnaces for the 11,000ton-per-year expansion were completed, company officials cited problems with imports and delivery delays in equipment purchased in Brazil, coupled with the lack of power transmission lines, as reasons for the postponement of Brasmag's plant expansion.

Canada.—Norsk Hydro A/S reportedly began construction of its 66,000-ton-per-year primary magnesium facility in Becancour, Quebec. The plant was scheduled to come on-stream in 1989, and Norsk Hydro report-

edly will phase in production slowly to keep pace with market development.

MPLC Holdings S.A. and Alberta Natural Gas Co. Ltd. announced the formation of a new company, Magnesium Co. of Canada Ltd. (MagCan), to construct a 69,000-tonper-year primary magnesium plant near Aldersyde, Alberta. The joint venture was similar to the joint venture between MPLC and Alcoa, which Alcoa pulled out of in 1986. Construction was expected to begin in 1988 of one unit, with a production capacity of 13,800 tons per year, which was scheduled to be completed by August 1989. Two additional units of 27,600 tons per year each were to come on-stream by 1993. The plant was expected to use MPLC's direct-reduction technology to recover magnesium from magnesite, and MagCan also was expected to negotiate a contract with Baymag, Canada's sole magnesite producer, to provide the plant's feed material. MagCan planned to market its magnesium in North America.

Table 7.—Magnesium: World primary production, by country¹

(Short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Brazil	551	1,323	2,866	4,960	6,400
Canada ^e	6,600	8,800	7,700	7,700	7,700
China ^e	7,700	7,700	7,700	7,700	7,700
France	12.208	14,299	15,212	e15,400	15,400
Italy	8,473	8,257	8,667	13,687	12,100
Japan	6,643	7,830	9.321	8,946	² 9,017
Norway	32,897	54,343	60,301	62,305	55,100
U.S.S.R.e	91,000	94,000	96,000	98,000	99,200
United States	115,431	159,207	149,614	138,493	² 137,123
Yugoslavia ^e	² 5,252	4,700	5,000	5,000	5,000
Total	286,755	360,459	362,381	362,191	354,740

^eEstimated. ^pPreliminary.

Table 8.—Magnesium: World secondary production, by country¹

(Short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Japan U.S.S.R. ^e United Kingdom United States	14,343 9,000 1,900 46,329	17,258 9,000 1,102 48,357	23,032 9,000 992 45,523	15,890 9,000 e1,100 46,084	² 11,336 9,000 1,000 ² 49,786
Total	71,572	75,717	78,547	72,074	71,122

Estimated. Preliminary.

¹Table includes data available through July 1, 1988.

²Reported figure.

¹Table includes data available through July 1, 1988.

²Reported figure.

TECHNOLOGY

Scientists at Dow developed a patented process and equipment to produce magnesium alloy parts by a technique similar to the injection-molding process used in the plastics industry. Room-temperature magnesium particles were fed to an atmospherecontrolled screw injection system, where the magnesium was turned into a soft mass. The mass can be injected into a die to form a die-cast metal part. The new process could eliminate the melting operation used in traditional diecasting operations. In addition, advantages of the injection-molding process were improved cycle rates, die and casting efficiency, and product quality, compared to hot-chamber or cold-chamber diecasting.4

In a review of magnesium alloys used in the aerospace industry, alloys with improved elevated temperature applications are described; high-strength alloys with useful properties up to 299° C were available. Adoption of resin-bonded sands for both molds and cores in the foundry industry, coupled with development of techniques for producing longer and narrower cored passageways, has enabled foundries to produce longer, more complex magnesium alloy castings. The production of castings with thinner sections was also possible, with the benefit of weight savings.5

Two new alloys for magnesium castings

and wrought products were developed by Magnesium Elektron Ltd., using zinc and copper as the principal alloying elements. ZC63 combined moderate ambient temperature strength with useful elevated temperature properties up to at least 150° C. This alloy could be used in high-temperature automotive applications such as engine components and impellers. ZC71 had a range of room-temperature strengths depending on the heat treatment used after extrusion. This alloy should be useful for vehicle subframes, suspension arms, and body members. Optimum alloy compositions were defined for alloys for sand castings, permanent mold castings, and wrought products, but further development was required for the diecasting alloy.6

¹Physical scientist, Branch of Nonferrous Metals.

Wilson, C. B. Dow Magnesium—A 10 Year Success Story. Paper in Magnesium in the Auto Industry. Prosectings of 44th Annual World Magnesium Conference. Int. Magnesium Assoc., 1987,


pp. 64-66.

Modern Metals. Magnesium Extrusion Helps Laser
System Level Farm Land. V. 43, No. 6, July 1987, pp. 46-48. System Level Farm Land. V. 43, No. 6, July 1987, pp. 46.48.

⁴Erickson, S. C. A Process for the Injection Molding of Thixotropic Magnesium Alloy Parts. Paper in Magnesium in the Auto Industry: Prospects for the Future. Proceedings of 44th Annual World Magnesium Conference. Int. Magnesium Assoc., 1987, pp. 39-45.

⁵Stevenson, A. Mg Casting Alloys for the Aerospace Challenge. J. Met., v. 39, No. 5, May 1987, pp. 16-19.

^{*}Unsworth, W. A New Magnesium Alloy for Automobile Applications. Paper in Magnesium in the Auto Industry: Prospects for the Future. Proceedings of 44th Annual World Magnesium Conference. Int. Magnesium Assoc., 1987, pp. 22-27.

Magnesium Compounds

By Deborah A. Kramer¹

Domestic shipments of caustic-calcined magnesia and refractory magnesia increased in 1987 following a 4-year decline to a record-low level in 1986. Upturns in the iron and steel and nonferrous metals industries were primarily responsible for an increase in demand. Increased imports helped in meeting the greater demand, while exports of magnesia declined. Technical developments in recovering magnesia from magnesite, seawater, or brines coupled with increasing product purity requirements have changed the magnesia market over the past several years.

Seawater and well and lake brines were the principal source of domestically produced magnesium compounds. One company mined magnesite in Nevada, and several olivine mines were operated in North Carolina and Washington.

Domestic Data Coverage.—Domestic data for magnesium compounds shipped and used are developed by the Bureau of Mines from a voluntary survey of U.S. operations entitled "Magnesium Compounds." Of the 21 operations to which a survey request was sent, 86% responded, representing 80% of the magnesium compounds shipped and used shown in table 3. Data for the three nonrespondents were estimated using prior year production levels and other factors.

Table 1.—Salient magnesium compound statistics

(Thousand short tons and thousand dollars)

	1983	1984	1985	1986	1987
United States:					
Caustic-calcined and specified magnesias:1					
Shipped by producers:2					
Quantity	143	142	100	95	113
Value	\$57,416	\$42,257	\$33,772	\$33,969	\$27,565
Exports: Value ³	\$8,426	\$14,026	\$9,773	\$13,295	\$14,167
Imports for consumption: Value ³	\$5,476	\$9,594	\$10,407	\$11,493	\$4,575
Refractory magnesia:	φο, είσ	40,00 =	420,200	4,	¥-,
Shipped by producers: ²					
Quantity	456	374	290	274	326
Value	\$98,473	\$87,945	\$81,149	\$73,172	\$80,760
Exports: Value	\$1,955	\$3,641	\$5,529	\$5,488	\$3,240
Imports for consumption: Value	\$11,495	\$23,715	\$29,767	\$36,718	\$41,333
Dead-burned dolomite:	·	,,	·/	, ,	, ,
Sold and used by producers:					
Quantity	418	487	376	424	P285
Value	\$24,454	\$29,391	\$24,454	\$27,789	P\$21,766
World: Production (magnesite)	F13,412	14.130	16,109	P16,313	e16,454

eEstimated. Preliminary. rRevised.

¹Excludes caustic-calcined magnesia used in the production of refractory magnesia.

²Includes magnesia used by producers.

³Caustic-calcined magnesia only.

DOMESTIC PRODUCTION

After a 4-year decline in domestic magnesium compound shipments, both caustic-calcined and refractory magnesia shipments increased by 19% from those of 1986. Seawater and well and lake brines were the dominant source of magnesium compounds with some magnesia recovered from magnesite and dolomite. Olivine shipments from mines in North Carolina and Washington declined 7% from those of 1986, but the average value increased by 37%.

The Dow Chemical Co. reportedly sold its epsom salt assets and technology to PQ Corp. Under terms of the sale agreement, Dow would continue to produce epsom salt at its Midland, MI, facility through yearend 1988, while PQ would bring on additional capacity at its plants in California and

Illinois. After this phaseout period, Dow's epsom salt plant would be dismantled.

Genentech Inc. reportedly purchased Merck & Co. Inc.'s south San Francisco, CA, magnesium compound facility. Although this plant was expected to be closed, Merck planned to produce magnesium compounds through most of 1988. As part of its restructuring, Kaiser Aluminum & Chemical Corp. announced the sale of its Wendover, UT, brine facility to Reilly Tar & Chemicals Corp.

Basic Magnesia Inc. reportedly completed improvements at its Port St. Joe, FL, magnesia plant. By adding enclosed burners to its multiple hearth furnace, fuel efficiency and product consistency were improved.

Table 2.—Magnesium compound producers, by raw material source, location, and production capacity in 1987

Raw material source and producing company	Location	Capacity (short tons of MgO equivalent)
Magnesite: Basic Inc	_ Gabbs, NV	110,000
Lake brines:		,
Great Salt Lake Minerals & Chemicals Corp	_ Ogden, UT	100,000
Kaiser Aluminum & Chemical Corp		50,000
Well brines:		4,7,4 ***
The Dow Chemical Co	_ Ludington, MI	220,000
Do		75,000
Martin Marietta Chemicals	Manistee, MI	330,000
Morton Chemical Co	do	10,000
Seawater:		
Barcroft Co	_ Lewes, DE	5,000
Basic Magnesia Inc	Port St. Joe, FL	55,000
The Dow Chemical Co	Freeport, TX	75,000
Merck & Co. Inc		15,000
National Refractories & Minerals Corp	Moss Landing, CA	150,000
Total	-	1,195,000

CONSUMPTION AND USES

Refractory products for use in the iron and steel and nonferrous metals industries were the principal applications for magnesia. Animal feed, accounting for 31% of domestic shipments, remained the dominant use of caustic-calcined and specified magnesias. Chemicals and pulp and paper represented the market for 27% of domestic shipments; and fuel additives, rubber, stack gas scrubbing, and refractories, in declining order, accounted for 23% of U.S. shipments. The following uses, in declining order, represented the remaining 19% of caustic-calcined magnesia shipments: sugar and candy, oxychloride and oxysulfate cements,

medicine and pharmaceuticals, water treatment, ceramics, fertilizer, insulation and wallboard, electrical, uranium processing, and rayon.

Magnesium hydroxide was principally used in the pulp and paper and refractories industries; magnesium sulfate was used for chemicals, medicine and pharmaceuticals, and animal feed; and precipitated magnesium carbonate was used mainly in chemicals, medicine and pharmaceuticals, and fertilizer. Fifty-six percent of olivine shipments was used as foundry sands, 28% for refractories, and the remainder for slag control and soil conditioners.

Table 3.—U.S. magnesium compounds shipped and used

	198	36	1987		
	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
Caustic-calcined and specified (USP and technical) magnesias	95,366	\$33,969	113,460	\$27,565	
Magnesium hydroxide (100% Mg(OH) ₂) ¹	228,917	56,305	263,187	52,578	
Magnesium sulfate (anhydrous and hydrous)	51,295	15,388	61,294	19,447	
Precipitated magnesium carbonate ¹	4,870	765	2,828	000	
	274,429	73,172	325,634	660	

¹Excludes material produced as an intermediate step in the manufacture of other magnesium compounds.

PRICES

Magnesium compound prices at yearend Reporter as follows: were published in the Chemical Marketing

Magnesia, natural, technical, heavy, 85%, f.o.b. Nevadaper short ton	\$232	
Magnesia, natural, technical, heavy, 90%, f.o.b. Nevadado	265	
Magnesium chloride, hydrous, 99%, flake do	290	
Magnesium carbonate, light, technical (freight equalized)per pound	\$0.73-	.83
Magnesium hydroxide, National Formulary, powder (freight equalized)		.78
Magnesium sulfate, technicaldo		.14

FOREIGN TRADE

Imports for consumption of magnesia continued to increase in quantity as they have each year since 1982. Data in table 5 show that imports of caustic-calcined magnesia declined significantly in 1987, particularly from Canada. However, much of the magnesia classified as caustic-calcined magnesia imported from Canada prior to 1987 was reclassified as magnesium oxide in 1987. It accounted for the large increase in imports

of magnesium oxide shown in table 6.

Imports of olivine were not separately identified by the Bureau of the Census, but through the Journal of Commerce Trade Information Service-PIERS, some olivine imports were identified. According to PIERS, which contains data on materials transported by ship, 163,241 tons of olivine were imported from Norway in 1987.

Table 4.—U.S. exports of magnesite and magnesia, by country

	D		nd magnesia, burned		Magnesite, n.e.c., including crude caustic-calcined, lump or ground				
Country	198	36	1987		198	36	1987		
	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
Argentina				 	$\substack{13\\1,250}$	\$18 410	72 191	\$74 214	
Austria Belgium-Luxembourg _ Brazil	3,308 - - 7	\$897 - -			$3\overline{39} \\ 175$	$\begin{array}{c} \bar{376} \\ 400 \end{array}$	$\frac{\bar{403}}{397}$	$\begin{array}{c} 3\overline{7}\overline{7} \\ 624 \end{array}$	
Canada Chile Colombia	$16,593$ $-\bar{822}$	$3,747$ $1\overline{18}$	4,337 3,967 1,774	\$972 992 290	14,788 677 91	7,744 225 138	$16,354 \\ 3 \\ 72$	9,238 3 105	
Czechoslovakia Dominican Republic			514	96	42	108	122	161	
FranceGermany, Federal					113 725	99 578	175 808	134 629	
Republic of Guatemala Italy					725 2 306	578 3 202	555 420	208 415	
Japan	175	40	$\overline{136}$	31	31	8	98	61	

Table 4.—U.S. exports of magnesite and magnesia, by country —Continued

	N		and magnesia, burned		Magnesite, n.e.c., including crude caustic-calcined, lump or ground					
Country	198	36	198	37	19	86	1987			
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)		
				-						
Korea, Republic of Mexico Netherlands New Zealand	$\begin{array}{c} \bar{620} \\ \bar{150} \end{array}$	$$1\overline{45}$$ $\overline{67}$	50 508	\$11 105 	98 1,587 605 44	\$58 1,026 417 74	37 412 390 65	\$22 305 299 71		
Peru Saudi Arabia	1,102 824	294 152	2,755	730	9	15	13 11	14 12		
Spain Sweden		- 1			175 297	109 228	229 318	202 216		
Taiwan United Kingdom Venezuela	78 $\overline{19}$	$-\frac{11}{2}$	90	13 	206 226 853	84 369 387	51 157 741	31 214 237		
Yugoslavia Other	$\bar{r_{48}}$	-r ₉	<u> </u>		27 r ₁₂₂	64 r ₁₅₅	149 153	73 228		
Total	23,746	5,488	14,131	3,240	22,801	13,295	22,396	14,167		

rRevised.

Source: Bureau of the Census.

Table 5.—U.S. imports for consumption of crude and processed magnesite, by country

	. 19	986	1987		
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands	
ump or ground caustic-calcined magnesia.1					
Canada	44,230	\$7,990	10.366	\$1,547	
China	796	84	9,677	685	
Czechoslovakia	8,105	574	8,777	658	
Greece	13,710	1.364	9.758	1.04	
	1.037	154	502	1,04	
Mexico		836	432	104	
Spain	7,431				
Turkey	3,366	468	2,401	46-	
Other	67	23	98	1′	
Total	78,742	11,493	42,011	4,575	
Dead-burned and grain magnesia and periclase: Not containing lime or not over 4% lime:					
Brazil	1.654	225	55	10	
Canada	1,481	566	2.328	903	
China	42,708	5,141	47,651	6,41	
		262	41,001	0,41	
Czechoslovakia	3,858		FO 100	7.78	
Greece	84,317	11,933	50,190		
Iceland	4.1.7.7		3,378	. 958	
Ireland	24,088	6,959	24,431	6,730	
Israel	20	4	9,211	3,63	
Italy		· · · · · · · · · · · · · · · · · · ·	591	139	
Japan	9,255	3,878	25,081	5,20	
Mexico	11,395	2,980	16,367	4,339	
Netherlands	10,575	3,149	8,864	2,33	
South Africa, Republic of	·	,	1,102	490	
Turkey	1,689	$24\bar{3}$	-,		
United Kingdom	3,511	1.314	15,669	2,33	
Other	, r ₆₃	r ₆₄	149	2,00	
Oner			140		
Total	194,614	36,718	205,067	41,333	
Containing over 4% lime:					
Austria	863	302	1,078	39	
Canada	15,025	1,565	15,600	1,68	
France			9	_,,	
Germany, Federal Republic of	132	49	•		
Greece	1.372	188			
Mexico	1,109	80	1.801	12	
United Kingdom	20	4	1,001	124	
Officed Kingdom					
Total	18,521	2,188	18,488	2,206	
Total dead-burned and grain magnesia and periclase	213,135	38,906	223,555	43,539	

Revised.

Source: Bureau of the Census.

¹In addition, crude magnesite was imported as follows, in short tons and thousand dollars: 1986—Canada, 37 (\$15). 1987—Canada, 29 (\$6); Italy, 3,176 (\$695); Japan, 4 (\$2); and the Netherlands, 109 (\$30).

Table 6.—U.S. imports for consumption of magnesium compounds

Year	calc	de or cined nesia	carbo	esium onate ¹ oitated)	chlo	esium oride drous)	chlo	esium oride her)	sul (epsor	esium fate n salts eserite)	and con	esium llts npounds, p.f. ²
Tear	Quantity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)	Quan- tity (short tons)	Value (thou- sands)
1985 1986 1987	4,891 5,702 34,875	\$5,638 5,804 13,768	247 217 554	\$351 346 713	125 15 475	\$21 5 102	2,975 3,633 7,125	\$368 381 935	25,691 27,174 24,408	\$1,902 1,711 1,581	2,822 3,066 3,309	\$1,805 2,791 3,494

¹In addition, magnesium carbonate, not precipitated, was imported as follows, in short tons and thousand dollars: 1985—110 (\$125); 1986—23 (\$48); and 1987—71 (\$105).

²Includes magnesium silicofluoride or fluosilicate and calcined magnesia.

Source: Bureau of the Census.

WORLD REVIEW

Australia.—Queensland Metal Corp. NL, along with its partners Pancontinental Mining Ltd. and Radex Heraclith Group of Austria, reportedly installed a pilot beneficiation facility near its magnesite deposit in Kunwarara, central Queensland. The 3-tonper-day facility was intended to provide dead-burned magnesite for customer testing before construction of a 110,000-ton-per-year plant. In addition, Queensland Metal drilled two deposits in the same area. The Oldman deposit contained an estimated 64 million tons of magnesite, and the Triple Four deposit contained 39 million tons of magnesite.²

Austria.—Veitscher Magnesitwerke AG reportedly planned to increase its annual production capacity of high-purity, caustic-calcined magnesia to 7,700 tons at its Brietenau facility. The expansion program was expected to provide material for the manufacture of 99.9%-pure magnesium hydroxide for use in the chemical industry.

General Refractories Co. of the United States reportedly agreed to sell its European operations to an Austrian investment group headed by Girozentrale Bank for about \$62 million. Included in the sale were two magnesite mines in Austria and one in Greece.

France.—Pechiney S.A. reportedly planned to expand the annual capacity at its fused magnesia plant to 31,000 tons from 14,000 tons. Already the largest producer of fused magnesia in market economy countries, through this expansion, Pechiney planned to enter the magnesia-carbon refractories market. Fused magnesia's traditional market was electrical heating elements in home appliances.

Israel.—Dead Sea Periclase Ltd. (DSP) announced that it completed construction of a 5,500-ton-per-year plant for the production of specialty magnesia products. These included pharmaceutical and technical grades of magnesia and magnesium hydroxide, active magnesia for the plastics and rubber industries, and magnesia for electrical applications. Reportedly, DSP was also expanding its plant capacity for dead-burned magnesia from 55,000 tons per year to 77,000 tons.

Spain.—Empresa Auxiliar de la Industria planned to study the potential for extracting magnesia from dolomite. Dolomite, mined at 10 sites in Granada, was sold at a low price, and the company's study was aimed at producing a material of higher value.

Table 7.—Magnesite: World production, by country¹

(Short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Australia	22.640	73,900	63,421	42,986	55,100
Austria		1,304,484	1,383,446	1,195,301	1,157,400
Brazil ²	254,634	259,043	299,576	r e308,600	308,600
Canada ^{e 3}	74,000	76,000	150,000	160,000	165,000
China ^e	2,200,000	2,200,000	2,200,000	2,200,000	2,200,000
Colombiae	1,800	1,800	1,800	416,464	16,500
Czechoslovakia	729,729	r727,525	e739,000	r e750,000	770,000
Greece	981,618	1,173,111	932,431	r e990,000	990,000
India	478,482	456,388	460,117	465,175	510,000
India Iran ⁵	936,964	914,917	2,469,174	r e _{2,470,000}	2,470,000
Kenya ^e	330,000	4343,098	330,000	330,000	330,000
Korea, Northe	2,095,000	2,095,000	2,095,000	2,095,000	2,095,000
Mexico	25,559	33,537	21,274	e22,000	22,000
Nepal	16,552	16,097	21,882	69,655	66,100
Pakistan		^r 4,578	2,329	1,937	4,400
Philippines	683	689	745	e715	715
Poland ^e	417,747	18,000	18,000	18,000	18,000
South Africa, Republic of	24,868	36,441	31,855	67,446	67,200
Spain		762,294	763,015	e770,000	780,000
Turkey	resp.,667	r _{849,415}	1,244,465	1,448,174	1,540,000
U.S.S.R. ^e	2,400,000	2,400,000	2,400,000	2,400,000	2,400,000
United States		W	w	W	W
Yugoslavia		r e360,000	r e460,000	466,277	463,000
Zimbabwe	26,534	23,856	21,368	24,966	25,400
Total	r _{13,411,641}	r _{14,130,173}	16,108,898	16,312,696	16,454,415

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data; not included in "Total."

²Series reflects output of marketable concentrates. Production of crude ore was as follows, in short tons: 1983—536,135 (revised); 1984—798,381 (revised); 1985—687,103; 1986—720,000 (revised, estimated); and 1987—720,000 (estimated).

³Magnesitic dolomite and brucite. Figures are estimated on the basis of reported tonnage dollar value.

⁴Reported figure.

⁵Year beginning Mar. 21 of that stated.

TECHNOLOGY

In a review of the magnesia industry from 1970 to 1986, technical and commercial developments in production were presented, as well as changes in the markets for refractory and caustic-calcined magnesias.3 The most significant process improvements were aimed at cutting costs by improving fuel efficiency. New calcining and sintering techniques and improvements in filtration steps have increased energy efficiency in recovering magnesia from seawater and brines. Improvements in beneficiation techniques and introduction of chemical processing methods have improved magnesia purity and recovery from natural magnesite, particularly in centrally planned economies.

Improvements in mining and beneficiation methods at A/S Olivin in Norway coupled with development of new markets

are highlighted in a review of the Norwegian olivine industry. Olivin was the largest producer of olivine in market economy countries, with an estimated production of 3 million tons in 1986. Most of the growth in olivine demand over the past decade was for use as a slag conditioner in iron and steelmaking to lower the viscosity of the slag, substituting for dolomite when low-silica ores were treated. Other new uses for olivine were as ballast for North Sea oil platforms and covering for undersea pipelines

¹Figures represent crude salable magnesite. In addition to the countries listed, Bulgaria produced magnesite, but output is not reported quantitatively, and available general information is inadequate for formulation of reliable estimates of output levels. Table includes data available through May 13, 1988.

¹Physical scientist, Branch of Nonferrous Metals. ²Industrial Minerals (London). Queensland Magnesite Interest Intensified. No. 234, Mar. 1987, p. 8.

³Coope, B. The World Magnesia Industry—Smaller but Fitter...and Purer! Ind. Miner. (London), No. 233, Feb. 1987, pp. 21-48.

⁴Suttill, K. Norwegian Olivine. Eng. and Min. J., v. 188, No. 9, Sept. 1987, pp. 34-39.

Manganese

By Thomas S. Jones¹

World production of manganese ore declined slightly to the lowest total since 1983, according to preliminary data. Several countries among major market economy country producers had lower outputs, most notably the Republic of South Africa. The United States again produced only a small quantity of manganiferous material for brick coloring.

Price trends in manganese were negative for ores and positive for ferroalloys. Ore delivered to the United States and Japanese consumers was priced about 3% less, so that the U.S. price in 1987 succeeded that in 1986 as the lowest in constant dollars since 1974. In contrast, prices in the United States for imports of key manganese ferroalloys were up significantly to levels last reached in 1982. For U.S. imports, the price rose in 1987 by over one-fifth for high-carbon ferro-

manganese and about one-third for silicomanganese. One factor cited for higher ferroalloy prices was change in foreign currency exchange rates.

Greater than expected steel production also was considered a factor behind advances in ferroalloy prices. U.S. raw steel production increased 8%, bringing with it an increased consumption of manganese ferroalloys and metal. Unit consumption of these materials in steelmaking was about the same as that of 1986.

U.S. imports declined for all principal forms of manganese, resulting in a decrease of over 12% in overall quantity of manganese imported to nearly the same amounts as in 1984-85. For manganese dioxide the quantity imported was the least since 1981, but that for low-carbon ferromanganese was a record high.

Table 1.—Salient manganese statistics

(Thousand short tons, gross weight)

	1983	1984	1985	1986	1987
United States:					
Manganese ore (35% or more Mn):					
Imports for consumption	368	338	387	463	340
Consumption	531	615	e545	e500	e521
Manganiferous ore (5% to 35% Mn):	001	010	040	500	921
Production (shipments)	34	88	20	14	w
Ferromanganese:	01	00	20	14	w
Production	86	· w	w	w	w
Exports	Ř	7	'7	***	W
Imports for consumption	342	409	367	396	368
Consumption	446	492	466	376	409
World: Production of manganese ore	24,147	r _{26,100}	26,742	P26.158	e25,101

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

Manganese was certified by the U.S. Department of State as a strategic mineral essential for the economy or defense of the United States and unavailable in adequate quantities from reliable and secure suppliers. It was therefore unrestricted for importation into the United States from the Republic of South Africa under terms of the Comprehensive Anti-Apartheid Act of 1986. The Government's program of upgrading ore in the National Defense Stockpile into high-carbon ferromanganese was continued through awarding of further contracts for such domestic conversion. Accordingly, the Government inventory of high-carbon ferromanganese was to be increased by 117,000 tons² by the end of 1988.

Domestic Data Coverage.—Domestic production data for manganese are developed by the Bureau of Mines from three separate, voluntary surveys of U.S. operations. Typical of these surveys is the "Manganese and Manganiferous Ores" survey. All four operations to which a survey request was sent responded, representing 100% of production.

Legislation and Government Programs.—The General Services Administration contracted further with Elkem Metals Co. to upgrade stockpiled metallurgical

manganese ore into high-carbon ferromanganese. This latest award was valued at about \$56 million and, in approximate quantities, called for converting 215,000 tons of ore into 117,000 tons of high-carbon ferromanganese, of which 59,000 tons was to have been produced in 1987 and 57,600 tons in 1988. The contract contained an option for additionally converting 103,000 tons of ore into 58,600 tons of high-carbon ferromanganese in 1989.

The only sale of excess stockpile manganese material was in support of the ferroalloys upgrading project, consisting of 2,500 tons of stockpile-grade natural battery ore. Changes in stockpile inventories of manganese materials in 1987 are shown in the following table.

	Short tons, gross weight						
	Sa	les	<u> </u>				
Material	Stock- pile grade	Non- stock- pile grade	Change in year- end in- ventory				
Natural battery ore	2,500	,	-4,539				
Chemical ore Metallurgical ore			-232 -223,109				

Table 2.—U.S. Government stockpile goals and yearend inventories for manganese materials in 1987

(Short tons, gross weight)

	Stockpile	Physical inventory, Dec. 31						
Material			Uncommitted	Sold,	Grand			
Macia	goals	Stockpile grade	Nonstock- pile grade Total pending total					
Natural battery ore Synthetic manganese dioxide Chemical ore	62,000 25,000 170,000	169,093 3,011 171,717	33,561 	202,654 3,011 171,806	$3,009$ $4\overline{17}$	205,663 3,011 172,223		
Metallurgical ore High-carbon ferromanganese	2,700,000 439,000	2,078,606 704,952 29,057	919,204	2,997,810 704,952 29,057	21,803	3,019,613 704,952 29,057		
Medium-carbon ferromanganese Silicomanganese Electrolytic metal	 	23,574 14,172	 	23,574 14,172		23,574 14,172		

On January 7, pursuant to section 303(a)(2) of the Comprehensive Anti-Apartheid Act of 1986, the U.S. Department of State certified manganese to be 1 of 10 strategic minerals essential for the economy or defense of the United States that were unavailable in adequate quantities from reliable and secure suppliers. Manganese was defined in this context to include ferromanganese and silicomanganese. The certification, published on page 4454 of the February 11, 1987, issue of the Federal

Register, had the effect of allowing manganese to be imported into the United States from parastatal organizations in the Republic of South Africa.

The U.S. Department of Defense included manganese among 22 high-technology metals and metal groups considered required in future defense systems and having uncertainties as to supply and/or applications. These materials were candidates for increased research and attention. The form of manganese under consideration was high-

purity manganese as electrolytic manganese metal, some of which is used in making superalloys.

The possible benefits of seabed mining in the U.S. Exclusive Economic Zone (EEZ) were studied by the U.S. Congress, Office of Technology Assessment, which concluded that considerably more exploration is required before a definitive assessment can be made. Because of its strategic importance,

manganese was regarded as one of several minerals for which national security concerns might override economic considerations in a future decision on whether to engage in extraction from such marine deposits. Otherwise, commercialization of marine minerals within the EEZ was viewed as remote for the foreseeable future except possibly for sand and gravel and precious metals.³

DOMESTIC PRODUCTION

Ore and Concentrate.—The only production and shipment of material containing 5% or more manganese was that mined in Cherokee County, SC, by brick manufacturers or contractors for use in coloring brick. This consisted of manganiferous material associated with the Battleground Schist of the Kings Mountain area. This material has a natural manganese content ranging from 5% to 15%. Shipments in 1987 approached the 20,000-ton level that has been generally typical of the 1980's. Consolidation of ownership of the few companies involved precluded publication of proprietary shipments data.

Ferroalloys and Metal.—Publication of statistics continued to be precluded to avoid disclosing proprietary data. There were only two producers each of manganese ferroalloys and metal: Elkem Metals and SKW Alloys Inc. for ferroalloys and Elkem Metals and Kerr-McGee Chemical Corp. for metal.

Chemetals Inc. started a new facility at

its Baltimore, MD, plant for producing nitrided ferromanganese and manganese powders. This expansion resulted from relocation and rebuilding of equipment from the Kingwood, WV, plant that Chemetals operated until that plant was disabled by a flood in 1985. Product lines of the new facility included nitrided medium-carbon ferromanganese, nitrided "Massive Manganese," and weld-grade powders of ferromanganese and manganese oxide. These products were in addition to continuing production of various manganese chemicals and ground and reduced manganese ore at the Baltimore plant.

Globe Metallurgical Inc., which had been a producer of silicomanganese in a plant at Beverly, OH, was sold by Moore McCormack Resources Inc. on June 24 to private interests that included members of Globe Metallurgical's management. Moore McCormack had acquired Globe Metallurgical in 1984 through Pickands Mather & Co., then a subsidiary of Moore McCormack.

Table 3.—Domestic producers of manganese products in 1987

Company	Plant location	Products ¹					
		FeMn	SiMn	Mn	MnO ₂	Type of process	
Chemetals Inc	Baltimore, MD				х	Chemical	
Do	New Johnsonville, TN.				X	Electrolytic.	
Elkem Metals Co	Marietta, OH	X	X	X		Electric furnace and electrolytic.	
Kerr-McGee Chemical Corp	Hamilton, MS			X		Electrolytic.	
Do	Henderson, NV				X	Do.	
Ralston Purina Co.: Eveready Battery Co.	Marietta, OH		:		X	Do.	
RAYOVAČ Corp.: Materi- als Div.	Covington, TN				X	Do.	
SKW Alloys Inc	Calvert City, KY		x			Electric furnace.	

 $^{^1}$ FeMn, ferromanganese; SiMn, silicomanganese; Mn, electrolytic manganese metal; MnO₂, synthetic manganese dioxide.

CONSUMPTION, USES, AND STOCKS

Ironmaking and Steelmaking.—The average rate at which manganese was consumed as manganese ore in making pig iron or equivalent hot metal increased to 1.0 pound per ton of raw steel. This rate was calculated from an estimated consumption of 102,000 tons of manganese-bearing ore, all of which contained more than 35% manganese and was of foreign origin. According to preliminary data, production of raw steel as ingots, continuous- or pressurecast blooms, billets, slabs, etc., was 88.5 million tons. No manganese ore containing 35% or more manganese was reported to have been used directly in steelmaking.

Unit manganese consumption in steelmaking as ferroalloys and metal changed insignificantly. For reported consumption in the production of 89.3 million tons of raw steel and steel castings in 1987, the pounds of manganese consumed per ton of raw steel was 7.0 as ferromanganese, 1.6 as silicomanganese, and 0.1 as metal, for a total of 8.7. In 1986, the corresponding unit consumption in production of 82.5 million tons of raw steel and steel castings totaled 8.6, of which ferromanganese accounted for 6.9; silicomanganese, 1.6; and metal, 0.1. The results for both years included less than a full year of steelmaking by USX Corp., which resumed steel production late in the first quarter of 1987. With the nation's largest steelmaking capacity, USX correspondingly had a significant effect on consumption of manganese ferroalloys.

The pattern of manganese ferroalloy consumption by the U.S. steel industry showed a preference for ferromanganese or silicomanganese that depended on type of facilities being used. According to an industry source, integrated producers were obtaining manganese units almost entirely from ferromanganese, particularly the high-carbon grade, whereas the quantity of silicomanganese being used by minimills was over twice that of ferromanganese. To some extent, steelmakers were evaluating use of high-carbon ferromanganese containing 76% manganese, a content less than the

traditional 78%, in terms of nominal percentage. A continuing increase in the number of ladle refining units being installed augured for lower unit consumption of manganese ferroalloys in the future because of the high and predictable ferroalloy recoveries associated with use of such equipment. For example, one steel company reported a typical ferromanganese recovery of 98% when practicing ladle metallurgy.

Battery and Miscellaneous Industries.—Dioxide in natural ore and that synthetically produced were being used in dry-cell batteries. Natural material continued to be the basis of carbon-zinc cells and synthetic, the basis of the alkaline-manganese dioxide type. Historical aspects of manganese-containing batteries, particularly those in which synthetic dioxide is used, were reviewed in a publication of The Electrochemical Society.⁴

On June 1, Chemetals acquired the manganese facilities and businesses operated by Foote Mineral Co. in New Johnsonville, TN, thus ending Foote Mineral's role for over 60 years as a domestic supplier of manganese materials. Included in the transaction were a 10,200-ton-per-year electrolytic manganese dioxide (EMD) plant, roasting and grinding facilities for manganese ore, and a marketing arrangement for distributing in the United States electrolytic manganese metal produced in the Republic of South Africa. The purchase price stated when Chemetals and Foote Mineral signed the sales agreement was \$12.7 million plus assumption of certain liabilities.

RAYOVAC Corp. realigned its EMD production and ore-grinding plant at Covington, TN, to Materials Div. of the corporation. The plant had formerly been a subsidiary operating as ESB Materials Co.

The ore-grinding activities of N. K. Industries Inc. in Phenix City, AL, were acquired by Prince Manufacturing Co., already a processor of manganese ore in plants at Bowmanstown in eastern Pennsylvania and at Quincy in western Illinois.

Table 4.—U.S. consumption and industry stocks of manganese ore,1 by use

(Short tons, gross weight)

	Use _	Consun	nption	Stocks, 1	Dec. 31
	- CSC	1986	1987	1986	1987
Pig iron and steel ^e	l metal miscellaneous ²	74,000 W	102,000 W	197,639 64,300 193,544	189,444 83,600 196,548
Total ^e		500,000	520,000	455,483	469,592

W Withheld to avoid disclosing company proprietary data; included in "Total."

¹Containing 35% or more manganese (natural).

Table 5.—U.S. consumption, by end use, and industry stocks of manganese ferroalloys and metal in 1987

(Short tons, gross weight)

	F	'erromangan	ese	G:11	
End use	High carbon	Medium and low carbon	Total	Silico- manga- nese	Man- ganese metal
Steel: Carbon Stainless and heat-resisting Full alloy High-strength, low-alloy Electric Tool Unspecified	238,522	71,435	309,957	81,812	3,052
	16,279	(¹)	16,279	3,770	1,505
	26,468	9,177	35,645	17,505	975
	27,025	5,102	32,127	5,310	794
	(1)	(¹)	(1)	(1)	(1)
	303	(¹)	303	(1)	66
	694	802	1,496	416	114
Total steel ²	309,291	86,516	395,807	108,813	6,506
	8,204	635	8,839	2,555	W
	W	W	W	W	154
	W	W	W	W	18,373
	4,658	75	4,733	3,177	536
Total consumption Total manganese content ⁴ Stocks, Dec. 31: Consumers and producers	322,153	87,226	409,379	³ 114,545	25,569
	251,000	70,000	321,000	76,000	25,600
	37,634	10,429	48,063	13,757	2,983

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified" where applicable.

Withheld to avoid disclosing company proprietary data; included with "Steel: Unspecified."

²Includes estimates.

⁴Estimated based on typical percent manganese content (rounded).

PRICES

Manganese Ore.—Prices depend primarily on manganese content but are also influenced by other factors including other chemical constituents, physical character, quantity, delivery terms, ocean freight rates, insurance, inclusion or exclusion of duties if applicable, buyers' needs, and availability of ores having the specifications desired. Trade journal quotations reflect the editors' evaluation of the market.

Metallurgical manganese ore underwent a price decline on international markets, as did iron ore. Manganese ore contracts negotiated between Japanese ferroalloy producers and Australian and South African sup-

pliers about the April 1 start of the Japanese fiscal year called for a 5.8% price reduction f.o.b. basis. The cost of ocean freight was rising. Thus, reductions on a c.i.f. basis were in the 3% to 4% range. These terms were negotiated for an overall contract volume about one-third less than in fiscal year 1986. In early February, Metal Bulletin of London lowered by 7% its figure for the price of ore delivered to Western European ports. It made no further change but noted in June sluggish demand and delay in settling annual contracts. The price for ore delivered to U.S. customers decreased about 3%, with customers paying some-

²Natural ore, including that consumed in making synthetic manganese dioxide.

³Internal evaluation indicates that silicomanganese consumption is considerably understated.

what above or below the average depending on volume purchased. The average price, c.i.f. U.S. ports, for metallurgical ore containing 48% manganese was \$1.29 per long ton unit, compared with \$1.34 in 1986; per metric ton unit, these prices were \$1.27 and \$1.31, respectively. These prices convert to 5.8 cents and 6.0 cents per pound of manganese in ore, respectively.

Manganese Ferroalloys.-Upward price trends were apparent in the price developments of imported material. The price of imported high-carbon ferromanganese containing 78% manganese, f.o.b. Pittsburgh or Chicago warehouse, began rising in late March from a low reached in the latter part of 1986, ranging from \$305 to \$320 per long ton of alloy. Frequent incremental increases thereafter led, as of mid-December, to a final price of \$380 to \$390, the highest range reached since mid-1982. This equated to a price rise of over one-fifth in 1987 and a price average about 7% greater than in 1986. For imported silicomanganese containing 2% carbon, the corresponding increases were relatively greater, a price rise of about one-third in 1987 and a price average over 8% greater than in 1986. Per pound of alloy, f.o.b. Pittsburgh or Chicago warehouse, the price of imported silicomanganese started the year at 17 to 18.25 cents, decreased early in January to 17 to 18 cents, and then in mid-February began a succession of changes. All but one were increases, bringing the final price as of mid-December to 22.5 to 24 cents. This final level had not been attained since briefly in January 1982.

Factors cited by trade journals as possibly being behind price rises in manganese ferroalloys were changes in foreign currency exchange rates, greater than expected steel production, uncertainty of supply from the Republic of South Africa, and a desire by producers and marketers to recoup from comparatively low prices in recent years. The extent of increase in the price of imported silicomanganese nearly matched that in the price of imported ferrosilicon. Current list prices of domestic producers for the most widely used manganese ferroalloys were not available in trade publications.

Manganese Metal.—During the first part of the year the list price of domestic suppliers was 80 cents per pound for bulk shipments, f.o.b. shipping point, although a trade journal spoke of transaction prices nearer 78 cents per pound. List prices subsequently were raised twice by 3 cents per pound, first as of August 1 and then as of December 1, to give a yearend price of 86 cents per pound. Timing of the increases was the same for the two domestic producers as well as for Chemetals, a supplier of material imported from the Republic of South Africa.

FOREIGN TRADE

Most of the reported ore exports and all ore reexports were presumed to have been metallurgical ore, and apparently consisted of both stocks from industry and material obtained from excess Government stocks. Of 13,237 tons of reexports, 11,675 tons went to Mexico and 1,562 tons went to Canada. About 1,000 tons of exports apparently was imported manganese dioxide ore, possibly ground, blended, or otherwise classified in the United States, of which about 600 tons went to Canada and the balance to destinations other than Canada and Mexico. Relatively small exports of ferromanganese and silicomanganese were even less than in 1986, by about one-third and two-thirds, respectively. Rising exports of manganese metal were about two-thirds as large as

The overall quantity of manganese contained in the principal forms imported decreased more than 12%, as imports of all major categories declined. Ore imports were down to the range for 1983-85, whereas the

average grade for imported ore of 50.1% was the highest yet of the 1980's. Only 5 tons of manganiferous ore was imported, all from Mexico, with an average manganese content of 31%.

The total of ferromanganese imports was slightly less than the average for 1983-86, although imports of low-carbon ferromanganese increased to a record high. The average manganese content of all ferromanganese imports advanced slightly to 78.7%. High-carbon ferromanganese from Japan, in the amount of 5,511 tons, was an unusual receipt for the 1980's. Reported imports of spiegeleisen were 209 tons, all from the Federal Republic of Germany, at a relatively high unit value.

Imports of manganese dioxide decreased for the second consecutive year to the lowest level since 1981. All but 139 tons were apparently synthetic dioxide for battery or chemical applications.

Tariffs.—As of April 1 at U.S. ports open to public navigation, the U.S. Customs Ser-

vice commenced collecting a harbor maintenance fee of 0.04% ad valorem on cargo loaded or unloaded from water-borne vessels. This fee was assessed on import, export, and domestic movements of cargo at all ports at which Federal funds have been used since 1977 for construction, maintenance, or operation, other than inland wa-

terway harbors or channels. The Water Resources Development Act of 1986 (Public Law 99-662) mandated collection of this fee for deposit into the Harbor Maintenance Trust Fund in the U.S. Treasury. Collection of the fee proceeded according to interim regulations (52 FR 10198).

Table 6.—U.S. exports of manganese ore, ferroalloys, and metal, by country (Gross weight)

Country	19	986	19	987
Country	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Ore and concentrates containing 5% or more manganese:				
Canada	7.669	\$613	7.496	\$630
	3,616	295	65	#030 15
	29,307	2.085	54,884	3,353
Other	1,374	285	825	3,333 227
Total ¹	41,966	3,278	63,270	4,225
Ferromanganese:		0,2.0	00,210	4,220
Canada				
Germany, Federal Republic of	2,433	1,676	1,877	1.351
Other	1,274	554	428	347
	² 616	² 420	546	447
Total ¹	4,323	2,650	2,851	2,144
Silicomanganese:			-,001	2,144
Canada				
Germany, Federal Republic of	277	190	249	160
	1,169	199		100
Mexico Trinidad and Tobago	42	54	309	160
Other	496	214	4	2
	² 20	² 30	135	170
Total ¹	2,004	687	697	493
Metal including alloys and waste and scrap:				100
Belgium-Luxembourg				
Canada	702	1,061	701	1,053
Japan	580	1,055	1,208	2,028
Netherlands	1,705	2,330	1,492	2,606
Other	371	519	706	1,320
	² 1,788	² 2,927	1,668	2,742
Total ¹	5,146	7,892	5,775	9,748

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census; adjusted by the Bureau of Mines.

²Unspecified group of countries differs from the 1986 Minerals Yearbook.

Table 7.—U.S. imports for consumption of manganese ore, ferroalloys, metal, and selected chemicals, by country

		1986			1987	
Country	Gross weight (short tons)	Man- ganese content (short tons)	Value (thou- sands)	Gross weight (short tons)	Manganese content (short tons)	Valu (thou sand
ORE AND CONCENTRATES						
% or more manganese:						**
Rustralia Belgium-Luxembourg ¹ Brazil	68,131	35,539	\$3,305	93,205	48,747	\$3, 8
Belgium-Luxembourg ¹	252	² 151	27	62,903	$29.\overline{673}$	2.1
Brazil	82,702	38,728	3,221 11,435	175,695	88,413	8,2
Gabon	239,132 5	119,068 22	11,400	110,000	00,110	-,-
Gabon	34,717	214,771	3,603	8.678	3.712	7
Mexico	316	² 186	36	58	2 30	
Morocco	6,612	3,174	275			
PanamaSouth Africa, Republic of	31,376	13,988	1,219			
South Airica, Republic of			23,122	340,539	170,576	15,0
Total ³	463,242	225,608	25,122	340,000	110,010	10,0
Of which, more than 35% but less than 47%						
manganese: Brazil	17.492	7,532	541	10,758	4,626	
Morioo	33,443	² 14,156	3,391	5,911	2,395	:
South Africa, Republic of	12,044	4,577	430			
	62,979	26,265	4.362	16,669	7,021	-
Total ³ =	02,313	20,200	1,002			
FERROMANGANESE						
l grades:	40.400	10 401	2.816	8,185	6,072	1.
Australia	13,423	10,401 4,465	4,864	2,474	2,150	ī,
Belgium-Luxembourg	4,952 20,392	15,418	4,945	5,512	4,189	1,
Brazil Canada	52,049	39,907	12,733	24,022	18,861	6,
Canada	86,728	68,573	27,546	121,817	95,629	38,
France Germany, Federal Republic of	25,775	21,043	11,181	12,775	10,674	5,
Italy		0.000	$1.\overline{334}$	412 8.331	367 6,607	2.
Japan	2,803 28,152	$2,277 \\ 22,540$	10,836	17,910	14,562	$\bar{7}$
Mexico	6,663	5,603	4,439	21,830	18,167	12,
Norway	145,549	113,043	35,944	144,407	112,101	35
Mexico Norway Africa, Republic of Spain Spain	9,164	7,775	3,845			
Total ³	395,650	311,045	120,482	367,675	289,379	113
Of which, 1% or less carbon:			4.004	823	746	
Belgium-Luxembourg	4,952	4,465	4,864 8,180	9,553	8,677	8
France Germany, Federal Republic of	8,950 8	8,034 6	8	3,000	0,011	·
Germany, Federal Republic of	0	. 0		$\bar{412}$	367	
Italy Japan	37	34	34	20	18	_
Norway	4,128	3,588	3,633	9,323	8,044	7
NorwaySouth Africa, Republic of	54	51	64			
Total ³	18,129	16,178	16,782	20,132	17,852	17
More than 1% to 4% or less carbon:				1.051	1 404	
Belgium-Luxembourg	5.7	.5.5		1,651	1,404	
Canada	410	315	$\frac{76}{1,363}$	6,151	4.997	2
France	2,800 25,767	2,226 $21,037$	11,173	12,775	10,674	5
Germany, Federal Republic of	25,767	2,243	1,300	2,800	2,240	1
Japan	20,477	16,572	8,689	15,761	12,864	6
	882	709	404	10,743	8,729	5
Norway			1 699	559	452	
NorwaySouth Africa, Republic of	3,960	3,191	1,633	909		
Norway South Africa, Republic of Spain		3,191 7,775	3,845			

See footnotes at end of table.

Table 7.—U.S. imports for consumption of manganese ore, ferroalloys, metal, and selected chemicals, by country —Continued

		1986			1987	
Country	Gross weight (short tons)	Manganese content (short tons)	Value (thou- sands)	Gross weight (short tons)	Man- ganese content (short tons)	Value (thou- sands)
SILICOMANGANESE						
Australia		11,525	5,310	17,142	11,180	4,527
Brazil	19,563 1.822	12,850 1,067	5,675 320	7,334 6,446	4,676 4,171	2,541 1,969
Canada Chile		1,067	47	0,440	4,111	1,50
Italy		473	469	1,105	696	68
Marina	19.339	12,930	5,649	39,704	24,866	11,072
Netherlands ¹			=	413	250	25
Norway	16,602 9,125	10,917 5,925	5,596 2,755	26,136	17,159	8,87
PortugalSouth Africa, Republic of		59,114	24,931	66.105	43.736	19.62
Spain		1,730	1,595	1,663	1,056	1,031
Yugoslavia		14,777	6,491	25,369	16,525	7,884
Total ³	198,645	131,425	58,839	191,418	124,315	58,461
METAL						
Unwrought: South Africa, Republic of Other	9,641 27	XX XX	9,760 40	8,925 	XX XX	9,600
Total	9,668	XX	9,800	8,925	XX	9,600
Waste and scrap: Canada United Kingdom	6 	XX XX	3	60 6	XX XX	·
MANGANESE DIOXIDE				1.7		
Belgium-Luxembourg	1.375	XX	1,329	1,252	ХX	1,50
BrazilBrazil		XX	845	884	XX	97
Greece	575	XX	645	62	XX	7
Ireland		XX	3,133	358	XX	40
JapanSouth Africa, Republic of	10,335 3,230	XX	12,440 3,243	13,279 830	XX XX	14,719 889
Other	347	XX	390	180	XX	13
Total ³	19,374	XX	22,025	16,845	xx	18,69
MANGANESE SULFATE						
Australia	529	XX	123	1,565	XX	28
Belgium-Luxembourg		XX		127	XX	32
China		XX		555	XX	99
Germany, Federal Republic of	68 46	XX XX	113 105	30 27	XX XX	129 76
Japan Other		XX	34	12	XX	• 7
Total ³	659	XX	375	2,317	XX	629
POTASSIUM PERMANGANATE		,				
China	318	XX	312	803	XX	79:
German Democratic Republic		XX	290	176	XX	200
Spain Other		XX XX	2,153 124	918 101	XX	1,587 290
Total ³	1,870	XX	2,879	1,998	XX	2,874

Source: Bureau of the Census; adjusted by the Bureau of Mines.

XX Not applicable.

¹Country of transshipment rather than original source.

²Includes Bureau of Mines conversion of part of reported data (from apparent MnO₂ content to Mn content).

³Data may not add to totals shown because of independent rounding.

Table 8.—U.S. import duties on manganese materials¹

	TSUS	Rate of duty effec	tive Jan. 1, 1987
Item	No.	Most favored nation (MFN)	Non-MFN
Manganese dioxideOre and concentrateFerromanganese:	419.4420 601.27	4.7% ad valorem ² Free	25% ad valorem. 1 cent per pound Mn.
Low-carbon Medium-carbon High-carbon Silicomanganese Metal	606.26 606.28 606.30 606.44 632.30	2.3% ad valorem ²	22% ad valorem. 6.5% ad valorem. 10.5% ad valorem. 23% ad valorem. 20% ad valorem.

¹All subject to ad valorem user fee of 0.22% through Sept. 30, 1987, and 0.17% thereafter, except for products from beneficiary countries under the Carribean Basin Economic Recovery Act (CBERA) and least developed developing countries.

²Free from certain countries under Generalized System of Preferences, including Israel.

WORLD REVIEW

Argentina.—A gravity concentration plant for manganese ore was inaugurated in the latter part of the year at Pozo Nuevo. Cordoba Province, in the north-central part of the country. The plant was to be capable of processing about 275 tons per day of lowgrade ore containing 12% to 15% manganese from mines in Cordoba and the neighboring Province of Santiago del Estero. This material was to be upgraded into concentrates containing at least 34.5% manganese at a mill recovery of 75%. The product was intended for domestic consumption by the steel industry and others, and would reduce Argentina's dependence on imported ore.

Australia.—Manganese ore production by Groote Eylandt Mining Co. Ptv. Ltd. (GEM-CO) increased nearly one-eighth to about the same level as in 1984 while GEMCO's exports gained by a slightly greater percentage, according to preliminary data of the Australian Bureau of Mineral Resources. Exports of about 1,440,000 tons plus decreased domestic shipments of about 410,000 tons produced a small advance in total shipments to about 1,850,000 tons.5

Programs to increase capacities were completed by this mining subsidiary of The Broken Hill Pty. Co. Ltd. (BHP) and by BHP's manganese smelting subsidiary, Tasmanian Electro Metallurgical Co. Ptv. Ltd. (TEMCO). Capacity of GEMCO's ore concentration plant was brought to 2,650,000 tons per year. At TEMCO's plant in Tasmania, rating of two of the three manganese ferroalloy furnaces was raised to 29 megavolt

amperes (MVA) and the third to 36 MVA. Because all three furnaces were capable of producing either ferromanganese or silicomanganese, capacity of the plant was upgraded to about 200,000 tons per year for high-carbon ferromanganese or 120,000 tons per year for silicomanganese, or to an intermediate level for a mix of ferromanganese and silicomanganese. TEMCO's ore-sintering capacity was about 275,000 tons per year.

BHP announced through its BHP-Utah Minerals International subsidiary that it planned to build an EMD plant in Australia to be fed with ore from GEMCO. Plant capacity was to be 16,500 tons per year, and production was to begin in 1990. Newcastle, New South Wales, on the southeastern coast north of Sydney subsequently was chosen as the plant site.

Brazil.—Overall shipments of manganese ore from the Serra do Navio, Amapá Territory, operations of Indústria e Comércio de Minérios S.A., all via Porto de Santana on the Amazon River, rose marginally to 807,000 tons. Shipments to Europe rebounded 40% to 430,000 tons. Shipments to other markets decreased, respective quantities being, in tons, to export destinations in North America, 124,000; South America, 39,000; and in coastal vessels to Brazilian consumers, 214,000.6

Cia. Vale do Rio Doce (CVRD) shipped a total of 315,000 tons of manganese ore from the Azul Mine in the Carajás region. Shipments were via the Ponta da Madeira iron ore terminal and the commercial dock at

³Not duty free for Mexico.

⁴Free for products of Israel. ⁵Free from beneficiary countries under the CBERA.

⁸Not duty free for Brazil. 75.6% ad valorem for products of Israel.

Itaqui, both near São Luís. Exports of 163,000 tons in 11 shipments exceeded somewhat the 152,000 tons making up 14 cargoes sent in coastal vessels to the Brazilian market.7 Total shipments increased over those of 1986, because exports were nearly one-half greater, whereas domestic shipments declined slightly.

Production of manganese ferroalloys advanced slightly to a new record total of nearly 380,000 tons, according to preliminary data. A drop in production of highcarbon ferromanganese was more than compensated for by increased production of silicomanganese and refined ferromanganese. Problems in such areas as energy cost and supply, labor cost, and Government price control reportedly affected producers at various times during the year.

Diverse proposals for producing manganese ferroalloys in the Carajás region from ore from that region appeared to have culminated in the so-called Provale project. This was a \$110 million joint venture in which Brazilian financing was split 60:40 between Prometal Prodútos Metalurgicos S.A. and CVRD. The Soviet Union was the third participant in the project through extension of a \$60 million credit line to be used for equipment. The Soviet Union was to receive one-half of the projected annual shipments of 165,000 tons of manganese ferroalloys for 12 years beginning with the start of production in 1990.

Gabon.—Compagnie Minière de l'Ogooué S.A. took steps to further manganese ore shipping via the Trans-Gabon Railroad. This included letting contracts for constructing a manganese ore port at Owendo, targeted for completion by the end of 1988, and for installing ore-handling systems to transfer shipments at Moanda from the mine to the railway and at the port from

the railway to the ore terminal.

The contribution of manganese ore to Gabon's total export earnings more than doubled in 1986 to over 13% because of a large drop that year in the value of oil exports. In 1984 and 1985, the corresponding contribution had been nearly 6%.

Ghana.—Exports of 269,000 tons of ore from the Nsuta Mine of Ghana National Manganese Corp. were shipped through the Port of Takoradi to the Far East and Europe, western and eastern sectors.8 This second year of declining shipments brought the annual export total about 8% below that for 1985, the peak year so far in the 1980's.

India.-Hand sorting and picking remained the most common method of beneficiating crushed manganese ore, especially for small mines in remote areas. Orewashing practices included manual washing in a basket to remove mud as well as mechanical washing at some mines in Madhya Pradesh and Orissa States. Hand or mechanical jigging was the technique most extensively used for gravity concentrating ore. Sandur Manganese and Iron Ores Ltd. practiced jigging plus tabling and lowintensity magnetic separation to treat its ferruginous ore at Sandur in Karnataka State. Manganese Ore India Ltd. remained the only Indian manganese producer having a heavy-medium separation plant. However, this plant, installed over 30 years ago at Dongri-Buzurg Mine in Maharastra State to process ore in dumps, has not been in service for a number of years.9

Japan.-Production of manganese ferroalloys decreased about one-sixth to only about 40% of yearend 1986 capacity. Silicomanganese production declined nearly 40% to 101,000 tons. A drop in ferromanganese production to 366,000 tons was not as se-

vere.

Ferromanganese exports of over 21,000 tons were nearly three times as great as in 1986; over 40% of 1987 exports were to the United States. No exports of silicomanganese were reported. Imports of ferromanganese almost quadrupled to 30,200 tons whereas those of silicomanganese declined about 15% to 166,000 tons. The most pronounced changes among sources for silicomanganese imports were increases in quantities from China and the Soviet Union and decreases in those from Brazil and the Republic of South Africa.

The variety of manganese materials being employed in some degree by Japanese steelmakers extended to ferromanganese fines. The effect was to lower consumption of more costly lump ferromanganese, which is also the case with such other recent innovations such as the use of manganese ore in hot-metal pretreatment technology.

In electrolytic materials, production of synthetic manganese dioxide was a nearcapacity 73,600 tons and exports rebounded to 48,600 tons. Production and exports of the dioxide were at record highs. Production of 4,050 tons of electrolytic manganese metal was a further decrease from the reduced 1986 output of 4,200 tons.

Mexico.—Cía. Minera Autlán S.A. de C.V. (Autlán) announced in December that an affiliate, Industrias Sulfamex S.A. de C.V., had completed a plant at Tamos, Veracruz State, with a capacity of 22,000 tons per year for manganese sulfate. Autlán further stated that an EMD plant would be built adjacent to the sulfate plant and would obtain its raw materials from that plant. The EMD plant was projected to have an annual capacity of 13,200 tons and to begin producing in the first half of 1990, largely for export markets.

Norway.—Importing of manganese ore was excluded from economic sanctions against the Republic of South Africa that became effective in July. Under a sanctions program that had been considered for some time, Norwegian ferroalloy producers were allowed to continue importing South African manganese ore for at least 2 more years. In the 1980's, such imports have been the major item in imports by Norway from the Republic of South Africa and were the source of approximately 40% of Norway's manganese feed material in 1986.

South Africa, Republic of.—Following 3 years of progressive increases, ore production decreased over one-fifth to approximately the 1983 level. Production of the various categories of ore was as follows:

	Quantity (thousand short tons, gross weight)
METALLURGICAL ORE	
30% to 40% Mn	504
Over 48% Mn	
Total	13,050
CHEMICAL ORE	
35% MnO ₂ and less	
Over 35% to 65% MnO ₂	- 6
Over 65% to 75% MnO ₂	129
10 /0 10 /0 MINU2	3
Total	
	138

¹Data do not add to total shown because of independent counding.

Reduced demand in Europe for ore used in making ferromanganese lowered ore sales of The Associated Manganese Mines of South Africa Ltd. nearly 30%, to 968,000 tons compared with about 1,370,000 tons in 1986.

Equipment being installed or tested by Samancor Ltd. to improve its ore production operations included, at the Mamatwan Mine, an ore sintering plant and a heavymedium separation plant and, at the Wessels Mine, a mechanized ore-sorting plant based on the use of X-ray fluorescence. Construction of the commercial-scale sintering plant progressed, whereas the separation and sorting plants were run at pilot scale. Throughout the year, Samancor found it expedient to respond to ferroalloy market changes by shifting production mix back and forth between ferromanganese and silicomanganese at its Metalloys Works at Meyerton in Transvaal Province. The company reacted to a labor protest at the Meyerton plant by discharging over 1,000

U.S.S.R.—Total concentrate production was unchanged. A slight increase in output from the Nikopol' Basin in the Ukraine compensated for a further decline to 2.3 million tons from the Chiatura Basin in Georgia. This reduced the Chiatura Basin's production to only three-fourths of that region's 1980's peak production of 3.1 million tons in 1984. Considering that the Soviet Union's high-grade concentrates come mainly from the Chiatura Basin, declining production from that region appeared connected both with the Soviet Union's importing of high-grade ore in recent years and its participation in a ferromanganese project in Brazil. A new plant there was to provide the Soviet Union with over 80,000 tons of ferromanganese per year beginning in 1990, according to arrangements previously discusseed. (See "Brazil" section of this chapter.)

Ore exports of 1,214,000 tons in 1986 made that the fifth consecutive year in which such exports totaled about 1.2 million tons. Principal destinations for 1986 exports, accounting for 91% of the total, were, in tons, Poland, 637,000; Czechoslovakia, 303,000; German Democratic Republic, 93,000; and Bulgaria, 69,000.

Table 9.—Manganese ore: World production, by country¹

(Thousand short tons unless otherwise specified)

	Range		٣	Gross weight				M	Metal content		
Country"	Mne 3	1983	1984	1985	1986P	1987 ^e	1983	1984	1985	1986P	1987 ^e
Australia4	37-53	1.510	2.038	2.208	1.818	52.043	754	696	1,056	865	974
	30-20	2,306	2,969	2,781	r e2,866	2,650	922	1,187	997	1,032	920
	29	26	. 20	42	e44	44	14	14	12	e13	13
China ^e 8	30	1,760	1,760	1,760	1,760	1,760	230	530	530	530	230
Gabon ⁶ 9	50-53	2,047	2,336	2,579	2,767	2,650	945	1,078	1,191	1,277	1,220
	30-20	191	296	348	375	325	92	118	139	150	130
	30-33	92	74	69	69	11	8	22	21	21	23
India 6 9 11	10-54	1,412	1,246	1,367	1,337	51,436	230	464	209	505	539
	26-27	88	89	83	_	. !	22	18	9	67	ì
Mexico	27-50	e386	e525	e437	e206	425	147	199	166	192	\$161
Morocco ⁶	50-53	81	65	48	44	47	43	35	5 8	24	82
Romania ⁶ 10	30	98	73	73	e72	72	58	53	22	21	21
South Africa, Republic of 9	30-48+	3,181	3,361	3,969	4,100	53,188	1,225	1,341	1,587	1,663	1,310
Thailand ⁶	46-50	7	10	ច	20	9	4	ī	83	က	က
Turkey ⁶	27-46	4	47	12	∞	∞	.	17	4	က	က
U.S.S.R	29-30	10,890	11,100	10,900	10,300	10,300	3,280	3,300	3,200	3,100	3,100
Yugoslavia	25-45	32	ន	6 28	6 28	82	12	2	6 10	∞ ∞	∞
Othere 12	XX	54	r 61	92	r53	51	20	23	r38	r ₁₉	18
Total ¹³	XX	24,147	r26,100	26,742	26,158	25,101	8,571	19,350	9,516	9,424	9,027

XX Not applicable. Revised. Preliminary. ^eEstimated

¹Table includes data available through June 10, 1988.

In addition to the countries listed, Colombia, Cuba, Panama, and Peru may have produced manganese ore and/or manganiferous ore, but available information is inadequate to make reliable estimates of output levels. Low-grade ore not included in this table has been reported as follows, in thousand short tons, gross weight: Argentina (19% to 30% Mn), 1983—8, 1986—11, and 1987—11 (estimated); and Czechoslovakia (about 17% Mn), an estimated I in each year.

May be for average content of each year's production rather than for content of typical products.

*Metallurgical ore. Reported figure.

⁶Gross weight reported; metal content estimated. Estimated metal content figures have been revised as necessary

Reported gross-weight figures are the sum of (1) sales of direct-shipping manganese ore and (2) production of beneficiated ore, both as reported in Anuário Mineral Brasiliero. ⁸Includes manganiferous ore.

⁹Calculated metal content includes allowance for assumed moisture content. ¹⁰Concentrate.

¹¹Much of India's production grades below 35% Mn; average content was reported as 38.3% Mn in 1983.

¹²Category represents the combined totals of Bolivia (exports), Chile, Greece, Indonesia, Italy (from wastes), the Republic of Korea, Pakistan, the Philippines, and Sudan. ³Data may not add to totals shown because of independent rounding.

TECHNOLOGY

The Bureau of Mines performed a laboratory evaluation of a dual leaching method for recovering silver and manganese from refractory domestic manganiferous silver ores. Samples large enough to simulate in situ and/or heap leaching were columnleached in succession. The leaching sequence was relatively dilute aqueous sulfur dioxide (SO2), an intervening neutralization rinse with sodium hydroxide solution, and finally, caustic cyanide solution. The SO2 leaching step extracted 65% to 96% of the manganese and 2% to 43% of the silver. Subsequent cyanide leaching brought total silver extraction up to 25% to 82%. Silver extraction was only 0.7% to 8.5% when an SO₂ preleach was not used. The tests were conducted on samples of a hydrothermal vein origin from Arizona, Colorado, and Nevada, in which the manganese content ranged from 2% to 28% and silver content from 1.8 to 7.0 troy ounces per ton. 10

The Bureau screened sulfuric acid oxidation pressure leaching, aqueous sulfur dioxide leaching, and acid sulfation processes for extracting cobalt, nickel, and manganese from cobalt-manganese crust ores and concentrates derived from the seabed. All three methods gave extractions of 95% or better for all three metals. Sulfuric acid pressure leaching was regarded the most likely process for this application. Test materials originated mostly from the Necker Ridge and Cross Seamount areas of the Central Pacific Basin in the EEZ.11 South of Necker Ridge in the EEZ, the Bureau identified a manganese resource potential in crusts in the vicinity of Horizon Guyot and S. P. Lee Guyot of about 20 million and 8 million tons, respectively. 12

Manganese was one of several strategic and critical metals whose potential recovery from domestic sources by carbonyl processing was investigated in the laboratory by the Bureau. Hydrogen reduction followed by carbonylation at 140° C and 1,500 pounds per square inch carbon monoxide pressure removed most of the iron from a sample of manganiferous ore from Aroostook County, ME, and upgraded the content of such material from 11% Mn, 35% Fe to 20% Mn, 3% Fe.¹³

Calorimetric methods were used by the Bureau in determining thermodynamic properties for pyroxmangite, a Mn-Ca silicate, and fowlerite, a Mn-Zn-Ca silicate.¹⁴

The Bureau investigated composition and generation rate of fume from shielded metal arc welding with electrode materials typical of those used in mines, with emphasis on the more highly alloyed filler metals. As expected, the data showed manganese in the electrodes to have a relatively high fume propensity. Exposure indices were developed to guide users in selecting electrode materials and avoiding excessive exposure to metals in fume from them.¹⁵

The Bureau analyzed the role of manganese in the economy of the U.S.S.R., beginning with the origins of the Soviet manganese industry and concluding with the outlook that this industry is likely to experience increased difficulties. Details were presented on reserves, mining, ferroalloy production, technology, trade, and consumption.¹⁶

Manganese was one of a number of mineral commodities for which the Bureau updated its previous assessment of availability from market economy countries. The indication for manganese continued to be that mine producers active as of 1987 could meet market economy countries' requirements throughout the remainder of the 20th century without expanding capacity, assuming no significant demand increase in the same period.¹⁷

A classification of the world's principal manganese deposits was put forth from the perspective of a field geologist. The classification was based on the geological environments that gave rise to manganese sediments, the minerals and rock formations associated with them, and secondary deposits formed from the original accumulations.¹⁸

A computer control system for electric furnaces used to smelt manganese ferroalloys was described. The system was developed by Elkem Metals and commissioned for use at the Bell Bay, Tasmania, plant of TEMCO in 1986 and at the Beauharnois, Canada, plant of Elkem Metals Canada Inc. in 1987. At the latter plant, operation of the system was observed to produce improvements in power level requirements and quality control and cost reductions in electrical energy and labor. 19

Inclusion of manganese sulfide (MnS) in iron powder metallurgy (PM) mixes improved machinability of PM parts without producing detrimental effects. Tests with a 0.5% MnS addition showed reduced tool friction and wear, thereby leading to longer tool life.²⁰

Values were recommended for such thermodynamic properties of manganese metal as heat capacity and enthalpy for the temperature range of 0.5 to 2,400 K and for its vapor pressure from room temperature to 2,400 K, based on a review of data available through March 1985.21

Concerns about deleterious environmental effects from mercury in dry-cell batteries have led to efforts to develop schemes for recycling such batteries to recover their manganese, mercury, and zinc contents. Tests of battery recycling and the attendant difficulties were discussed for various hvdrometallurgical and/or pyrometallurgical methods. These tests were conducted in Japan, where two plants have begun recovering manganese and zinc from batteries in municipal waste.22

¹Physical scientist, Branch of Ferrous Metals.

nese From Domestic Manganiferous Silver Deposits. Bu-Mines RI 9126, 1987, 8 pp. ¹¹Allen, J. P., L. J. Froisland, and M. B. Shirts. Chemical Processing of Cobalt-Manganese Crusts. Metall. Soc. AIME tech. paper A87-15, 1987, 18 pp.

12Ritchey, J. L. Assessment of Cobalt-Rich Manganese Crust Resources on Horizon and S. P. Lee Guyots, U.S. Exclusive Economic Zone. Mar. Min., v. 67, No. 3, 1987,

pp. 231-243.

13Visnapuu, A., and L. C. George. Recovery of Critical Metals by Carbonyl Processing. BuMines RI 9087, 1987, 18

pp.

14Bennington, K. O., R. R. Brown, H. E. Bell, and R. P.
Beyer. Thermodynamic Properties of Two Manganese
Silicates, Pyroxmangite and Fowlerite. BuMines RI 9064, 1987, 22 pp.

15McIlwain, J. F., and L. A. Neumeier. Fumes From Shielded Metal Arc Welding Electrodes. BuMines RI 9105,

¹⁶Strishkov, V. V., and R. M. Levine. The Manganese Industry of the U.S.S.R. BuMines Mineral Issues, 1987,

33 pp. 17U.S. Bureau of Mines. Manganese. Ch. in An Appraisal of Minerals Availability for 34 Commodities. B 692, 1987, pp. 177-184.

¹⁶Machamer, J. A. Working Classification of Manganese Deposits. Min. Mag., v. 157, No. 4, Oct. 1987, pp. 348-351.
¹⁹Ray, C. T., and A. H. Olsen. Computer Control of Four

Furnaces in Tasmania. Paper in Proceedings of the 45th Electric Furnace Conference (Chicago, IL, Dec. 8-11, 1987). AIME, Warrendale, PA, 1988, pp. 217-223.

Alvin, warrengale, FA, 1988, pp. 217-225.

20Chopra, K. S. Improvement of Machinability in PM Parts Using Manganese Sulfide. Prog. Powder Metall., v. 43, Sept. 1987, pp. 501-510.

21Desai, P. D. Thermodynamic Properties of Manganese and Molybdenum. J. Phys. Chem. Ref. Data, v. 16, No. 1, 1987, pp. 91-108 (Note: Only pages 91-97 pertain to mangarese)

nese).

²²Nanjo, M. Alkali-Manganese Batteries as New Zinc and Manganese Resources. Paper in Third Battery Material Symposium, ed. by M. Nagayama and A. Kozawa (Honolulu, HI, Oct. 13-16, 1987). International Battery Material Association, Cleveland, OH, 1987, pp. 169-178.

¹Physical scientist, Branch of Ferrous Metals.

²Unless otherwise specified, the unit of weight in this chapter is the short ton (2,000 pounds).

³U. S. Congress. Office of Technology Assessment. Marine Minerals: Exploring Our New Ocean Frontier. OTA-O-342, July 1987, 347 pp.

⁴Salkind, A. J. (ed.). Proceedings of the Symposium on History of Battery Technology. Electrochem. Soc., Pennington, NJ (Proc. v. 87-14), 1987, pp. 1-20, 39-105.

⁵Skillings' Mining Review. V. 77, No. 23, June 4, 1988, n. 21.

p. 21.

^{—.} V. 77, No. 20, May 14, 1988, p. 17. —. V. 77, No. 21, May 21, 1988, p. 10. —. V. 77, No. 19, May 7, 1988, p. 17.

^{*}Bhattacharya, S., and S. Mookherjee. Manganese Beneficiation in India. J. Mines, Metals & Fuels (India), v. 35, No. 4, Apr. 1987, pp. 140-148.

*Pahlman, J. E., C. A. Rhoades, and P. G. Chamberlain. Dual Leaching Method for Recovering Silver and Manga-

Mercury

By Linda C. Carrico¹

With the McDermitt Mine closed most of 1987, mercury recovered as a byproduct from gold-mining operations played a significant role in domestic primary production. The Paradise Peak gold deposit in Nevada was the largest producer of byproduct mercury. With primary production decreasing, mercury produced from scrap (industry and Government) rose substantially.

Although U.S. imports for consumpton of mercury and mercury-bearing waste and scrap decreased, they continued to be a major domestic source of supply. China became the leading U.S. import source of mercury.

Although total reported U.S. consumption decreased for the third consecutive year, the chlorine and caustic soda manufacturers increased their mercury consumption dramatically. The battery industry continued to be the dominant consumer of mercury, even though the amount of mercury in each dry-cell battery was reduced.

New York and London prices started the year at relatively low levels and slowly increased throughout most of the year but remained low by historical standards. The averages for the year were about \$60 per flask² above that of 1986. Foreign mine producers continued to meet intermittently during the year to review the weak market conditions, and in response, they withdrew spot sales in an attempt to bolster prices.

Table 1.—Salient mercury statistics

,	1983	1984	1985	1986	1987
United States:					
Producing mines	r ₅	r ₅	r ₆		9
Mine productionflasks	25,070	19.048	16.530	w	w
Value thousands_	w	w	W	ŵ	ŵ
Secondary production:			••	•	
Industrialflasks	13,751	5.673	5,358	6,362	7.692
Government ¹ dodo			585	3,078	3,404
Industry stocks, yearend ² dodo	31,018	27,255	27.985	w	w
Shipments from the National Defense Stockpile ³	,	,	-1,000	• • •	•••
do	6,000	4.092	4,534	463	3,700
Imports for consumptiondodo	12,786	25,327	18,890	20.187	18.451
Consumptiondodo	49.138	54,669	49,846	r46,060	41.939
Price: New York, average per flask	\$322.44	\$314.38	\$310.96	\$232.79	\$295.50
Employment, mine and mill, average	45	41	35	22	9
World:					·
Mine productionflasks	180,835	r _{195.031}	197.688	P179,263	e178,800
Price: London, average per flask	\$313.33	\$306.40	\$288.56	\$193.80	\$250.56

^eEstimated. ^pPreliminary. ^rRevised. WWithheld to avoid disc ¹Secondary mercury released from U.S. Department of Energy stocks. W Withheld to avoid disclosing company proprietary data.

²Stocks at mines, consumers, and dealers.

³Primary mercury.

Domestic Data Coverage.—Domestic data for mercury are developed by the Bureau of Mines from three separate, voluntary surveys of U.S. operations. Typical of these surveys is "Mercury," a survey of mercury consumption. Of the 339 firms to which this survey report was sent, 95% responded, representing an estimated 99.95% of the reported U.S. consumption shown in tables 1 and 3. Consumption for the nonrespondents was estimated using prior years consumption levels.

Legislation and Government grams.-Under Public Law 99-661, Department of Defense Authorization Act. 1986. the General Services Administration (GSA) was authorized to dispose of 3,700 flasks of primary mercury from the National Defense Stockpile (NDS). GSA auctioned a maximum of 750 flasks of primary mercury per month, commencing January 1987; the mercury was offered instead of cash to pay contractors for services performed on the ferroalloy upgrading program. During the first half of 1987, GSA sold and shipped the total quantity of primary mercury authorized for disposal (3,700 flasks). Total inventory at yearend was 165,526 flasks, and the goal remained at 10.500 flasks.

GSA continued its monthly auctions of surplus secondary mercury stocks, which were managed by the U.S. Department of Energy (DOE) in Oak Ridge, TN. On the third Tuesday of each month, GSA offered a maximum of 750 flasks per month during January through July, and 1,500 flasks per month through the remainder of the year on an "as-is" basis. On July 17, GSA announced the elimination of a deposit with each bid and changed the removal periods as follows: 1 to 500 flasks, 90 days; 501 to 900 flasks, 150 days; and 901 to 1,500 flasks, 180 days. GSA sold 3,402 flasks and shipped 3,404 flasks during 1987, leaving 28,238 flasks available for disposal at yearend.

Under section 307 of the Clean Air Act, the Environmental Protection Agency (EPA) reviewed the national emission standards for mercury, which limit emissions from mercury ore-processing facilities, sludge incineration and drying plants, and mercury-cell chloralkali plants. The review by EPA determined that revisions to the monitoring, record keeping, and reporting requirements on the amount of mercury emitted by each plant was warranted and became effective on March 19.3

EPA, under the Resource Conservation and Recovery Act, restricted land disposal of some hazardous liquid wastes, including free liquids associated with any solid or sludge, of which mercury and/or mercury compounds were included. The liquid waste cannot contain mercury equal to or greater than 20 milligrams per liter, effective July 8.4 A liquid waste was defined as any item containing a free liquid. For example, when the liquid waste is placed in a paint filter, any portion of the material passing through the filter within 5 minutes is considered a liquid waste.

Under the Comprehensive Environmental Response, Compensation, and Liability Act (Superfund), as amended, EPA and the Agency for Toxic Substance and Disease Registry (ATSDR) of the U.S. Department of Health and Human Services prepared a list of 100 hazardous substances commonly found at facilities on the Superfund list that pose a significant potential threat to human health as a result of known or suspected toxicity. The list was broken down into 4 groups, each consisting of 25 substances, in order of priority, of which mercury was No. 23 in the second group. ATSDR will prepare toxicological profiles on each listed hazardous substance in order of its priority. The profiles will be developed in detail to meet the obligations of health officials for current toxicological information.5

The Safe Drinking Water Act Amendments of 1986 require EPA to review and promulgate the maximum permissible levels for 83 contaminants by 1989, 1 of which is mercury. At yearend, the maximum permissible level of mercury in drinking water remained at 0.002 milligram per liter.

DOMESTIC PRODUCTION

Nevada remained the principal mercuryproducing State in 1987. The figure for 1987 mine production, reported by nine mines seven in Nevada and one each in California and Utah—and including byproduct mercury from gold operations, was withheld by the Bureau of Mines to avoid disclosing company proprietary data. An average of 8 pounds of mercury was produced per ton of ore treated over the last 5 years. Mine production decreased compared with that in the previous year, owing to the availability

of low-cost foreign material, sales of mercury from Government stockpiles, and the closing of the McDermitt Mine.

Placer Dome U.S. Inc. (formerly Placer U.S. Inc.), operator of the McDermitt Mine in Nevada, closed its mine in early 1987 after 11 consecutive years of operation, stating that the depressed domestic price of mercury made it difficult for the company to compete against low-cost imports and sales of Government stocks. Placer met its sales obligations from its stockpile.

According to the Alaska Division of Geological and Geophysical Surveys,⁶ the Mountain Top mercury mine produced about 12 flasks of mercury in 1986 and was active in 1987. The mine and retort are in a remote area southwest of Sleetmute, AK.

Mercury produced as a byproduct from eight gold-mining operations in 1987 accounted for more than 60% of the total reported production. The mines, operators, and locations were as follows: Alligator Ridge, Amselco Minerals Inc., Ely, NV; Borealis, Echo Bay Minerals Co. (formerly CanAm Minerals Co.), Hawthorne, NV; Carlin, Newmont Gold Co., Carlin, NV; Jerritt Canyon, Freeport-McMoRan Gold Co., Elko, NV; McLaughlin, Homestake Mining Co., Lower Lake, CA; Mercur, Barrick Mercur Gold Mines Inc., Tooele, UT; Paradise Peak, FMC Paradise Peak Corp., Gabbs, NV; and

Pinson, Pinson Mining Co., Winnemucca, NV

The following five companies redistilled purchased primary and/or processed purchased scrap mercury: Adrow Chemical Co., Wanaque, NJ; Bethlehem Apparatus Co. Inc., Hellertown, PA; D. F. Goldsmith Chemical and Metal Corp., Evanston, IL; Mercury Refining Co. Inc., Albany, NY; and Troy Chemical Corp., Newark, NJ.

Total secondary production from industry and Government materials was equivalent to 26% of the reported mercury consumption. Secondary mercury was salvaged from obsolete items and waste products such as amalgams, batteries, and industrial and control instruments. It was also retrieved from operating chlorine and caustic soda plants and from DOE shipments of mercury.

Table 2.—Production of secondary mercury in the United States

(Flasks)

Year	Industrial production	GSA releases	Total
1983	13,751		13,751
1984	5,673		5,673
1985	5,358	585	5,943
1986	6,362	3.078	9,440
1987	7,692	3,404	11,096

CONSUMPTION AND USES

Consumption of mercury was reported by about 200 plants. Prime virgin mercury accounted for 75% of the total reported consumption, followed by secondary mercury, 16%, and redistilled mercury, 79%.

Total reported domestic mercury consumption decreased 9% compared with that of 1986. The battery industry reported a 29% decline in mercury consumption but continued to be the dominant consumer, followed by industries producing chlorine and caustic soda, paint, wiring devices and switches, and measuring and control instruments.

Mercury consumed by the battery industry decreased for the third consecutive year owing to a reduction in the amount of mercury used in each dry cell. Also, the producers of mercury-cell batteries have turned to foreign producers for their mercuric oxide instead of producing it themselves.

Consumption of mercury by the chlorine and caustic soda manufacturing industry increased dramatically in 1987 owing to a steady demand and resulting in a decrease in caustic soda stocks. During 1987, 20 mercury-cell plants operated in the United States; 16 were east of the Mississippi River.

Table 3.—Mercury consumed in the United States, by use

(Flasks)

SIC code	Use	1983	1984	1985	1986 ^r	1987
28	Chemical and allied products:					
2812	Chlorine and caustic soda manufacture	_ 8,054	7,347	6,804	7,499	9,014
2816			W	W	. W	w
2819	PigmentsCatalysts, miscellaneous	484	359	488	515	402
2821	Catalysts for plastics	W	W	w	W	w
2819	Laboratory uses		269	413	571	589
283	Pharmaceuticals		200		w	W
2851	Paints		4.651	4,892	5,179	5.755
2001	Other chemicals and allied products		w	478	w	w
96		_ **	**	410	•	• • • • • • • • • • • • • • • • • • • •
36		_ 1,273	1,487	1.147	1,197	1,299
3641	Electric lighting Wiring devices and switches	2.316	2,730	2.762	2.981	3,811
3643		_ 2,310				
3692	Batteries		29,700	27,622	21,764	15,462
'	Other electrical and electronic uses	_ W	W	W	215	W
38	Instruments and related products:					4 2
382	Measuring and control instruments	_ 2,465	2,856	2,300	1,820	1,717
3843	Dental equipment and supplies	_ 1,597	1,432	1,444	1,507	1,613
	Other instruments and related products	_ W	W	W	W	W
	Other		1,404	267	349	420
	Total	_ 49,138	54,669	49,846	46,060	41,939

^rRevised. W Withheld to avoid disclosing company proprietary data; included in "Total."

STOCKS

Reported stocks of mercury held by mine producers were withheld to avoid disclosing company proprietary data. Consumer and dealer-broker stocks increased dramatically owing to declining consumer demand. The NDS and DOE stockpile data are reported under the "Legislation and Government Programs" section in this chapter.

Table 4.—Stocks of mercury in the United States, December 31

(Flasks)

Year	Producer (mine)	Con- sumer and dealer	Total
1983	18,323	12,695	31,018
1984	19,964	7,291	27,255
1985	19,398	8,587	27,985
1986	W	$^{r}6,792$	w
1987	W	9,287	w

^rRevised. W Withheld to avoid disclosing company proprietary data.

PRICES

The domestic price of primary mercury increased gradually during most of the year owing to the setting of floor prices by foreign mine producers and the suspension of spot sales, which caused tight supplies. As reported in Metals Week, the New York dealer price for primary mercury was \$220 to \$230 per flask at the beginning of the year, reached a low of \$201 to \$211 per flask on February 20; thereafter, the price started a steady increase that continued through-

out most of the year. The reported high range of \$355 to \$375 per flask for the year was set on October 23.

According to Metal Bulletin (London), the price range of mercury (minimum 99.99% pure) reached a low for the year on January 1 of \$158 to \$170 per flask. Thereafter, it gradually increased throughout most of the year, reaching a high for the year of \$305 to \$312 per flask on September 17.

Table 5.—Average prices of mercury at New York and London

(Per flask)

Period	New York	London
1983 1984 1985 1986	\$322.44 314.38 310.96 232.79	\$313.33 306.40 288.56 193.80
1987: January February March April May June July August September October November December	313.00 307.27 295.65 313.33 342.14 355.00 349.74	165.56 179.00 204.50 230.00 272.17 257.78 238.89 266.56 302.38 306.44 295.50 287.94
Average	295.50	250.56

Sources: Metals Week (New York) and Metal Bulletin (London).

FOREIGN TRADE

Imports for consumption of mercury and mercury-bearing waste and scrap, which include imports for immediate consumption plus material withdrawn from bonded warehouses, decreased 9% owing to cutbacks in shipments by several foreign mine producers. In 1987, China became the leading U.S. supplier for the first time, followed by Spain.

The U.S. rate of duty on imported mercury, TSUS 632.3440, and mercury-bearing waste and scrap, TSUS 632.3420, as of January 1, 1987, from countries with most-favored-nation status was 6.4 cents per pound (\$4.86 per flask).* A duty of 25 cents per pound (\$19.00 per flask) applied to other countries. During 1987, mercury and mercury-bearing waste and scrap imported from Brazil, Hong Kong, and Turkey were eligible for duty-free status under the Gen-

eralized System of Preferences.

Philipp Bros. Inc., once quoted as the largest domestic trader of mercury, has ceased its mercury trading business at its New York office. Mercury transactions will be handled through its London office.

In a move to increase trade, China National Nonferrous Metals Imports and Exports Corp. (CNIEC), Beijing, established a permanent New York office, Nonferrous Metals (U.S.A.) Inc., 70 Pine Street, Suite 5016, New York, NY 10270. With a New York office, CNIEC officials stressed that this should improve the consistency of its mineral and metal exports and improve shipment timing. In 1987, China exported 11,771 flasks of mercury and mercurybearing waste and scrap to the United States, an increase of 150% over the 1986 level.

Table 6.—U.S. imports for consumption of mercury and mercury-bearing waste and scrap, by country

	19	1985		1986		87
Country	Flasks	Value (thou- sands)	Flasks	Value (thou- sands)	Flasks	Value (thou- sands)
AlgeriaAustralia	1,938	\$580	1,251 39	\$208 7		
Canada	- 5	26	10	53	156	\$59
China	2,382	662	4,741	863	11,771	2,235
France Germany, Federal Republic of	500	148	1,003	255	2	29 1

Table 6.—U.S. imports for consumption of mercury and mercury-bearing waste and scrap, by country —Continued

	الله و الله الله الله الله الله الله الل			19	85	19	86	19	87
		Country		Flasks	Value (thou- sands)	Flasks	Value (thou- sands)	Flasks	Value (thou- sands)
44									100
Hong Kong _ Japan Malaysia				$2,\overline{502} \\ 380$	\$630 81	2,202	$3\bar{1}\bar{8}$	500 1,000	\$62 238
Mexico Netherlands_				214	38	655	$ar{150}$	10	$\bar{3}$
Spain Turkey				$\begin{array}{c} 7,9\overline{55} \\ 3,012 \end{array}$	2,322 842	5,824 4,328	$\substack{1,3\overline{10}\\975}$	5,002	1,230
United Kingd Venezuela	om			(¹)	1	2 132	2 35		
Total ²				18,890	5,337	20,187	4,176	18,451	3,860

¹Less than 1/2 unit.

Source: Bureau of the Census.

WORLD REVIEW

Mine producers in Algeria, Spain, and Turkey continued to meet during 1987 to review the mercury market situation and to try to stabilize the international price. The producers agreed to suspend spot sales throughout most of the year and set a floor price for contractual sales in an attempt to bolster prices to \$400 per flask. Reportedly, these producers adopted a passive role in the past allowing the published free-market quotations to influence their selling prices. They agreed to refrain from making sales based on a formula linked to free-market prices.

The Council of the European Communities (EC) continued its investigation into the antidumping claim filed by Spain in 1986 against the U.S.S.R. Spain claimed that the U.S.S.R. exported about 15,000 flasks of mercury to European countries at "dumping prices." The EC Council imposed a duty of 70 European Currency Units (\$90 per flask), effective December 11, on U.S.S.R. mercury entering the European Communities.

Japan.—The All-Japan Cleaning Council operated a plant for the disposal and recycling of mercury-containing waste, especially dry cell batteries. The plant was in Itomuka, Hokkaido Prefecture. Reports indicated that the plant could recover as much as 1,450 flasks of mercury per year.

Kenya.—The Kenya Bureau of Standards banned the use of mercury as an active ingredient in shampoos, nail polish, and skin lightening creams. The ban was in response to a study conducted at the University of Nairobi that determined mercury caused poisoning, and even death, among users of cosmetics in Kenya.

Spain.—Minas de Almadén y Arrayanes S.A. (MAYASA), a mining company owned by the Spanish Government, and the largest mercury producer in the market economy countries, operated the Almadén, El Entredicho, and Las Cuevas Mines. MAYASA announced the discovery of a major mercury deposit near its 2,000-year-old Almadén Mine in southern Spain. Reportedly, the open pit deposit has an average ore grade of 20.5% mercury and exploitable reserves of over 135,000 flasks. Because of the extremely high grade of ore, mine operating costs for this deposit were estimated at \$87 per flask, a significant difference from the \$190 per flask for the El Entredicho open pit mine and over \$300 per flask for the Almadén Mine. The new open pit was planned to begin in 1990, although production at the Almadén Mine will be phased out by 1989. Development work on Las Cuevas underground mine continued and was to be brought on-stream after the closure of the Almadén Mine.

MAYASA built a mercury-bearing recovery facility and ran it on a pilot basis during 1987. The plant had a production capacity of 15,000 flasks per year and employed about 30 workers. It consisted of four furnaces, each of which could treat about 6 tons of waste per day. In late 1987, only one furnace was operating. The material treated contained between 16% to 18% mercury with a recovery of 75% to 80%. The plant was to process large quantities of residues obtained from zinc-processing plants, battery scrap, and mercury recovered from mercury-cell chloralkali plants.

²Data may not add to totals shown because of independent rounding.

Table 7.—Mercury: World mine production, by country¹

(Flasks)

Country	1983	1984	1985	1986 ^p	1987 ^e
Algeria ^e	10,000	² 23,000	23,000	r _{22,000}	22,000
China ^e	20,000	20,000	20,000	20.000	20,000
Czechoslovakia	4,177	4,409	4,583	4,873	4,700
Dominican Republice	60	80	² 121	120	100
Finland	1,857	2,292	3,630	4,235	4,000
Germany, Federal Republic of	2,005		,	7	
Mexico	6,411	11,140	11,430	10.008	10,000
Spain	41.075	44,090	45,042	42,653	43,000
Turkey	4,680	5.272	6,552	7,574	6,000
U.S.S.R. ^e	64,000	64,000	65,000	66,000	67,000
United States	25,070	19,048	16,530	W	W
Yugoslavia ^e	1,500	r _{1,700}	r _{1,800}	r _{1,800}	2,000
Total	180,835	r _{195,031}	197,688	179,263	178,800

^eEstimated. Preliminary. rRevised. W Withheld to avoid disclosing company proprietary data; not included in Total.

²Reported figure.

TECHNOLOGY

The Luys Association's Yerevan electric bulb plant in the U.S.S.R. tested a new production process that reportedly reduces emission of mercury vapors into the atmosphere. Under the current process, an average of 100 milligrams of mercury was introduced into each bulb. The high output and extensive use of mercury-laden luminescent bulbs in the U.S.S.R. have consistently required that designers and developers find ways to reduce the level of environmental pollution. Scientists at the plant investigated the potential for replacement of liquid mercury by mercury compounds in the bulb. The use of compounds containing mercury, such as a titanium-mercury compound, was introduced. At normal temperatures, this compound released virtually no mercury. The weight amount of mercury product introduced into a bulb is several times less than that in the standard process. Experiments on test samples of luminescent bulbs using titanium-mercury showed that mercury evaporation reportedly declined,

and bulb quality improved.10

¹Mineral specialist, Branch of Nonferrous Metals.

²Flask, as used throughout this chapter, refers to the

76-pound flask.

Federal Register. Environmental Protection Agency.

National Emission Standards for Hazardous Air Pollutants; Review and Revision of the Standards for Mercury.

V. 52, No. 53, Mar. 19, 1987, pp. 8724-8728.

V. 52, No. 53, Mar. 19, 1987, pp. 8724-8728.

4—— Land Disposal Restrictions for Certain "California List" Hazardous Wastes and Modifications to the Framework. V. 52, No. 130, July 8, 1987, pp. 25760-25792.

5—— Notice of the First Priority List of Hazardous Substances That Will Be the Subject of Toxicological Profiles. V. 52, No. 74, Apr. 17, 1987, pp. 12866-12874.

6Bundtzen, T. K., C. B. Green, J. Deagen, and C. L. Daniels. Alaska's Mineral Industry, 1986. Spec. Rep. No. 40, Fairbanks, AK, 1987, pp. 29, 66.

7Redistilled mercury is primary mercury further processed or refined to a higher grade and is sometimes referred to as triple distilled mercury.

8Federal Register. Proclamation of Trade Agreement

⁸Federal Register. Proclamation of Trade Agreement With Japan and Spain Providing Compensatory Concession. V. 48, No. 247, Dec. 22, 1983, pp. 56553-56559.

avalue has been converted from European Currency Units (ECU's) to U.S. dollars at the rate of ECU1.2857=

US\$1.00 as of Dec. 11, 1987.

¹⁹Foreign Broadcast Information Service. Science & Technology USSR: Materials Science. New Technology Reduces Mercury Pollution. Joint Publication Research Service, Washington, DC, JPRS-UMS-88-001, Jan. 8, 1988, pp. 37-38.

¹Table includes data available through May 6, 1988.

Mica

By Lawrence L. Davis¹

In 1987, about 161,000 short tons of scrap and flake mica was produced in the United States, an increase of 9% from 1986 production.

Nearly all sheet mica supply continued to be imported. Consumption of muscovite mica block increased 15% to 57,900 pounds. Consumption of mica splittings decreased 5% to 2.1 million pounds. The value of sheet mica exports increased 4% to \$4.9 million. Imports for consumption of sheet mica increased slightly to 4.1 million pounds.

Domestic Data Coverage.—Domestic production and consumption data for mica are developed by the Bureau of Mines by means of three separate, voluntary surveys and one mandatory survey. Of the 17 operations to which the crude scrap and flake mica

production form was sent, 16 operations, or 94%, responded, representing 93% of the production shown in table 1. Of the 15 operations to which the ground mica form was sent, all responded, representing 100% of the production in table 1. Of the eight canvassed operations to which the mica block and film consumption form was sent, seven operations, or 88%, responded, representing 98% of the consumption shown in table 1. Of the 11 canvassed operations to which the mica splittings consumption form was sent, 9 operations, or 82%, responded, representing 94% of the splittings consumption shown in table 1. Consumption for the nonrespondents was estimated using prior year production data.

Table 1.—Salient mica statistics

	1983	1984	1985	1986	1987
United States:					
Production (sold or used by producers):					
Scrap and flake mica thousand short tons	140	161	138	148	161
Value thousands	\$6,479	\$7,139	\$6,330	\$7,108	\$8,201
Ground mica thousand short tons	130	146	136	123	124
Value thousands	\$18,702	\$21,334	\$21,256	r\$21,872	\$22,376
Consumption:	Ψ10,.02	Ψ21,001	Ψ21,200	φ21,012	φ22,510
Block, muscovite thousand pounds	74	62	51	50	- 58
Value thousands	\$961	\$842	\$751	\$755	\$982
Film thousand pounds	w	w	w	w w	W
Value thousands	w	. W	ŵ	ŵ	ŵ
Splittings thousand pounds	2,120	2.366	2.361	2,226	2.116
Value thousands	\$1,394	\$1,679	\$1,610	\$1,252	\$1,417
Exports thousand short tons	11	9	10	8	6
Imports for consumptiondodo	8	13	11	13	13
World: Production thousand pounds	535,231	r609.595	560,701	P636,207	e654,531

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

Legislation and Government Programs.—With the resumption of sales of natural sheet mica in 1987, the Government inventory of stockpile-grade mica was re-

duced slightly to 22.2 million pounds. The General Services Adminstration sold 141,000 pounds of muscovite splittings and 3,000 pounds of muscovite film.

Table 2.—Stockpile goals and Government inventories for mica, December 31, 1987

(Thousand pounds)

Material		Goal	Stockpile grade	Non- stock- pile grade	Available for disposal	1987 sales
Block:						
Muscovite, Stained and better		6,200 210	5,008	207 114		
PhlogopiteFilm: Muscovite, 1st and 2d qualities		90	1,176	1	$1,03\bar{2}$	- 3
Splittings:	A Caracter Malace	12,630	14,513		121	141
MuscovitePhlogopite		930	1.519	==	121	141

DOMESTIC PRODUCTION

Scrap and Flake Mica.—North Carolina remained the major producing State with 62% of the total production. The remainder was produced in Connecticut, Georgia, New Mexico, Pennsylvania, South Carolina, and South Dakota. Most mica was recovered from mica schist, high-quality sericite schist, and as a byproduct of kaolin, feldspar, and lithium beneficiation.2 The five largest producers were, in alphabetical order, The Feldspar Corp., Spruce Pine, NC; KMG Minerals Inc., Kings Mountain, NC; Lithium Corp. of America, Gastonia, NC; Pacer Corp., Custer, SD; and Unimin Corp., New Canaan, CT. These companies produced 68% of the national total.

Ground Mica.—Twelve companies operated fifteen grinding plants. Eleven plants produced dry-ground and four produced wet-ground mica. The five largest producers accounted for 76% of the total. They were, in alphabetical order, KMG Minerals, Kings Mountain, NC; Mineral Industrial Commodities of America Inc., Santa Fe, NM; Pacer, Custer, SD; Unimin, New Canaan, CT; and USG Corp., Chicago, IL.

Cyprus Minerals Co. agreed to purchase Foote Mineral Co. from Newmont Mining Corp. The agreement, reached late in the year, includes Foote's byproduct mica production facilities at Kings Mountain, NC. In May, J. M. Huber Corp. broke ground for a new muscovite mica plant at Kings Mountain, NC. The plant, scheduled to open in 1988, will produce dry-ground products from mica ore mined at a nearby site.

Production of low-quality sericite, used primarily in brick manufacturing, was 34,000 tons valued at \$129,000. Approximately 32,000 tons of ground sericite valued at \$281,000 was sold or used. Low-quality sericite is excluded from tabulated data contained in this report.

Table 3.—Scrap and flake mica sold or used by producers in the United States, by State

(Thousand short tons and thousand dollars)

State	Quantity	Value
1983 1984 1985 1986	140 161 138 148	6,479 7,139 6,330 7,108
1987: North Carolina Other States ²	100 61	5,607 2,594
Total	161	8,201

¹Includes finely divided mica recovered from mica schist and high-quality sericite schist, and mica that is a byproduct of feldspar, kaolin, and lithium beneficiation.

²Includes Connecticut, Georgia, New Mexico, Pennsylvania, South Carolina, and South Dakota.

Table 4.—Ground mica sold or used by producers in the United States, by method of grinding¹

(Thousand short tons and thousand dollars)

	Year	Dry-gr	Dry-ground		Wet-ground		Total	
	1 ear	Quantity	Value	Quantity	Value	Quantity	Value	
1983		118	13,907	12	4,795	130	18,702	
1984		133	16,269	13	5,065	146	21,334	
		123	15,993	13	5,263	136	21,256	
1986 ^r		109	14,682	14	7.190	123	21,872	
1987		111	15,140	13	7,237	124	² 22,376	

Revised.

¹Domestic and some imported scrap. Low-quality sericite is not included.

²Data do not add to total shown because of independent rounding.

CONSUMPTION AND USES

Sheet Mica.—Consumption of muscovite block (ruby and nonruby) totaled 57,900 pounds, a 15% increase over that of 1986. Of the total muscovite block fabricated, 58% went into electronic uses; of this, the majority was used in vacuum tubes. Consumption of Stained quality decreased 5%, although it remained in greatest demand, accounting for 57% of consumption. Consumption of grades No. 5 and smaller increased 24%, while consumption of grades No. 4 and larger decreased 9%.

Eight companies continued to consume muscovite block and film in eight plants in seven States: two in North Carolina and one each in Massachusetts, New Jersey, New York, Ohio, Pennsylvania, and Virginia. The New York, Pennsylvania, and Virginia companies consumed 61% of the total.

Consumption of mica splittings decreased 5% to 2.1 million pounds. The decrease was caused by lower demand for built-up mica products. Muscovite splittings from India accounted for 97% of the consumption. The remainder was phlogopite splittings from Madagascar. The splittings were fabricated into various built-up mica products by 10 companies operating 10 plants in 8 States.

Built-Up Mica.—The primary use of this mica-base product, made by mechanical or

handsetting of overlapping splittings and alternate layers of binders and splittings, was as electrical insulation material. Total production, sold or used, of built-up mica decreased 6% from that of 1986. The decrease continued the long-term decline caused by substitute materials and imported built-up mica products. Molding plates and segment plates were the major end products, accounting for 33% and 28% of the total, respectively. Other end products included flexible plates, heater plates, and tapes.

Reconstituted Mica (Mica Paper).—Four companies consumed 3.7 million pounds of scrap mica to produce 2.4 million pounds of mica paper. The principal source of this scrap mica was India. Primary end uses for mica paper were the same as those for built-up mica. Manufacturing companies were Corona Films Inc., West Townsend, MA; General Electric Co., Schenectady, NY; Kirkwood-Acim Corp., Hempstead, NY; and US Samica Corp., Rutland, VT.

Ground Mica.—The major end uses were joint cement, 57%; paint, 12%; and well-drilling muds, 6%. Other end uses included agricultural products, molded electical insulation, plastics, roofing, rubber, and welding rods.

Table 5.—Fabrication of muscovite block mica in the United States in 1987, by quality and end product use

(Pounds)

Quality	Elec- tronic uses	Nonelec- tronic uses	Total
Good Stained or better Stained Lower than Stained ¹	1,400 W W	2,700 W W	4,100 33,300 20,500
Total	33,600	24,300	57,900

W Withheld to avoid disclosing company proprietary data; included in "Total."

¹Includes punch mica.

Table 6.—Fabrication of muscovite block mica in the United States in 1987, by quality

(Pounds)

Quality	No. 4 and larger	No. 5 and smaller	Total
Good Stained or better Stained Lower than Stained_	3,700 6,500 1,900	400 26,800 18,600	4,100 33,300 20,500
Total ¹	12,000	45,900	57,900

¹Data may not add to totals shown because of independent rounding.

Table 7.—Consumption and stocks of mica splittings in the United States, by source

(Thousand pounds and thousand dollars)

	Ind	India		Madaga	scar	Total ¹	
	Quantity	Value	Qua	antity	Value	Quantity	Value
0	24						
Consumption:	2,079	1,257		41	137	2.120	1,394
1984	2,323	1,537		42	141	2,366	1,679
1985	2,327	1,485	*	34	125	2,361	1,610
1986	2,197	1,136		29	116	2,226	1,252
1987	2,050	1,231		67	185	2,116	1,417
Stocks on Dec. 31:							
1983	1,187	NA		148	NA	1,335	NA
1984	877	NA		.77	NA	954	NA.
1985	1,085	NA		41	NA	1,126	NA
1986	1,249	NA		95	NA	1,344	NA
1987	899	NA		9	NA	908	NA

Table 8.—Built-up mica1 sold or used in the United States, by product

(Thousand pounds and thousand dollars)

	198	36	1987		
Product	Quantity	Value	Quantity	Value	
Flexible (cold) Heater plate Molding plate Segment plate Tape Other	190 63 624 686 253 392	803 132 2,326 2,940 1,559 1,741	177 51 680 571 161 429	626 88 2,397 2,211 1,197 1,758	
Total ²	2,209	9,501	2,069	8,277	

¹Consists of alternate layers of binder and irregularly arranged and partly overlapped splittings. ²Data may not add to totals shown because of independent rounding.

NA Not available.

¹Data may not add to totals shown because of independent rounding.

Table 9.—Ground mica sold or used by producers in the United States, by end use

(Thousand short tons and thousand dollars)

	End use	19	86	198	87
	Mark and the second sec	Quantity	Value	Quantity	Value
Joint cement		63	10,499	71	11,352
Paint		22	3,676	15	
Plastics		- 22		10	3,012
Well-drilling mud		· 1	252	. 2	338
			576	7	797
Julei		r ₃₂	r _{6,868}	28	6,877
Total ²		_ r ₁₂₃	r _{21,872}	124	22,376

rRevised.

¹Includes mica used for agricultural products, molded electrical insulation, plastics, rubber, textile and decorative coatings, and welding rods.

²Data may not add to totals shown because of independent rounding.

STOCKS

Reported yearend consumer stocks of sheet mica decreased 31% to 1.0 million

pounds; of this, mica splittings represented 87% and mica block represented 13%.

PRICES

Average reported values of consumed muscovite sheet mica changed as follows: Block decreased 43% to \$11.19 per pound; film increased 178% to \$13.66 per pound; and splittings increased 15% to \$0.60 per pound. The average value of phlogopite block increased 30% to \$6.08 per pound, while the value of phlogopite splittings decreased 31% to \$2.78 per pound. The large changes in average value are more a reflection of the quality of mica consumed during the year than actual changes in price. For example, much more lower quality, lower valued muscovite block mica was consumed in 1987 than in 1986.

The average value of crude scrap (flake) mica, including high-quality sericite, was \$51 per ton. The average value per ton for

North Carolina scrap (flake) mica, predominantly a flotation product, was \$56.

Table 10.—Average reported price for dryand wet-ground mica sold or used by U.S. producers in 1987

(Dollars per short ton)

Kind	Price
Wet-ground	544
Dry-ground	136
End uses:	
Joint cement	159
Paint	200
Plastics	153
Well-drilling mud	107
Other ¹	243

¹Includes mica used for agricultural products, molded electrical insulation, roofing, rubber, textile and decorative coatings, welding rods, and miscellaneous.

FOREIGN TRADE

The United States continued to rely on imports, mostly from India, for nearly all of its unmanufactured sheet mica and paper-quality scrap mica. Imports for consumption of unmanufactured block, film, and splittings increased 32% to 2.5 million pounds. The increase was a reflection of lower than average sales of mica from the

Government stockpile. About 6,000 tons of ground mica was imported, mostly from Canada, while about 5,000 tons was exported to 27 countries. The combined value of all mica imports increased 13% to \$10.3 million, while the combined value of all mica exports decreased 7% to 6.4 million.

Table 11.—U.S. exports of mica and manufactures of mica in 1987, by country

(Thousand pounds and thousand dollars)

and the state of t		Scrap and	flake mica	Sheet mica			
Country	Ground or Waste and pulverized scrap ¹			Unmanu block, splitt	Manufac- tured, cut or stamped, built-up		
	Quantity	Value	Quantity	Value	Quantity	Value	Value
	42	4					93
ArgentinaAustralia	16	ź					261
	10	_					612
Brazil	2,502	289	32	- 5			1,663
anada	2,302	- 8				:	89
cuador	176	13	34	5			19
rance	396	44	84	12			37
ermany, Federal Republic of	390		04				45
ndia		39					2
taly	302		50	7	$\overline{142}$	124	158
apan	850	143	. 50	•	26	17	49
Korea, Republic of	464	124	1 000	199	20	11	709
Mexico	1,204	122	1,398	199			65
Vetherlands	378	82		, -=			2001
Philippines	122	- 33	30	5			55
South Africa, Republic of			·				96
Spain	1,216	163		- '			54
Sweden	· ·	7					
Taiwan	184	19					98
Jnited Kingdom	378	44	176	25	<u>-</u>	·	
Venezuela	250	34			· · · · ·		59
Other ²	836	114	12	2	2	4	84
Total ³	9,338	1,275	1,816	259	170	145	4,748

Source: Bureau of the Census.

Table 12.—U.S. imports for consumption of scrap and flake mica, by country

(Thousand pounds and thousand dollars)

Country	Waste and	scrap	Ground pulveri	l or zed
Country	Quantity	Value	Quantity	Value
1985	7,960 9,945	718 1,225	12,097 12,017	2,202 2,324
1987: Canada	57 7,900 441 220 18	6 1,159 47 29 1	12,250 44 	2,322 2 - 13 348
Total ²	8,635	1,243	12,507	2,685

¹Includes Austria, Brazil, the Federal Republic of Germany, Japan, and Switzerland.
²Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

¹Some shipments of ground mica are included in this category.

²Includes Bahamas, Barbados, Belgium, Chile, Colombia, the Dominican Republic, Guatemala, Hong Kong, Indonesia, Ireland, Israel, Kuwait, the Leeward and Windward Islands, Malaysia, the Netherlands Antilles, Panama, Peru, Saudi Arabia, Suriname, and Switzerland.

³Data may not add to totals shown because of independent rounding.

MICA

Table 13.—U.S. imports for consumption of unmanufactured sheet mica, by country (Thousand pounds and thousand dollars)

Country	Block		Splitt	ings	Not cut or stamped, not over 0.006 inch in thickness ¹		
	Quantity	Value	Quantity	Value	Quantity	Value	
1985	55 11	112 61	1,624 1,824	957 580	5 32	11 13	
1987: Belgium France India Indonesia Mexico	70 14	159 32	1 (²) 2,323 40	33 3 940 15			
United Kingdom	(2) 11	1 43			- ₁	$-\frac{1}{4}$	
Total	95	235	2,364	991	1	4	

Source: Bureau of the Census.

Table 14.—U.S. imports for consumption of manufactured sheet mica, by country

(Thousand pounds and thousand dollars)

		Cut or	stamped			-	Autial	
Country	Not over 0.006 inch in thickness		Over 0.006 inch in thickness		Plates and built-up		Articles not especially provided for	
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
1985 1986	60 32	510 348	120 66	560 291	729 1,677	1,540 3,329	69 331	544 891
1987: Belgium France Germany, Federal Republic	==	== :	. <u></u>		1,077 74	2,633 143	278 9	665 23
India Japan Other ¹	42 	40 7	54 7 1	$\begin{array}{r} \bar{327} \\ 42 \\ 23 \end{array}$	$-\frac{1}{5}$ $^{(2)}$	12 15 4	11 53 15 15	61 504 110 157
Total ³	42	407	62	392	1,159	2,807	382	1,519

¹Includes Brazil, Canada, China, Italy, Mexico, Spain, Switzerland, Taiwan, and the United Kingdom. ²Less than 1/2 unit. ³Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 15.—Summation of U.S. mica trade data

(Thousand pounds and thousand dollars)

		Scrap and	flake mica			Shee	et mica	
	Ground or pulverized		Waste and scrap ¹		Unmanufactured block, film, splittings		Manufactured, cut or stamped, built-up	
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Exports:								
1983	16,430	2,112	3,986	545	70	109	NA	4,001
1984	11,500	1.506	3,806	532	348	549	NA NA	4,519
1985	14,460	1.962	2,918	408	82	159	NA NA	
1986	11,686	1.758	3,206	472	98	196	NA NA	5,103
1987	9,338	1.275	1.816	259	170	145		4,502
Imports for consumption:	-,	_,	1,010	200	110	140	NA	4,748
1983	10.304	1.873	3,787	316	1.899	000	707	0 =00
1984	12.814	2,266	10.384	985		986	735	2,583
1985	12,097	2,202	7.960		1,480	644	856	2,836
1986	12,017	2,324		718	1,683	1,080	978	3,154
1987	12,507		9,945	1,225	1,866	653	2,105	4,859
200	12,301	2,685	8,635	1,243	2,460	1,230	1,645	5,125

Source: Bureau of the Census.

¹Including film. ²Less than 1/2 unit.

NA Not available.

Some shipments of ground mica are included in this category.

WORLD REVIEW

World production of mica increased slightly to 655 million pounds. India continued to lead the world in production of sheet mica. The United States continued to lead in the production of scrap (flake) mica.

Canada.—Lacana Mining Corp., Canada's only mica producer, announced plans to further expand its processing facilities at Boucherville, Quebec. The expansion, scheduled for completion in late 1988, will increase annual capacity to 20,000 tons. Major markets for Lacana's mica were the United States, 50%, and Canada, 25%. The remainder was exported to Australia, Japan, and Western Europe.3

Another company, Industrial Mica Ltd., was studying the feasibility of developing two phlogopite deposits in the St. Maurice River area of northern Quebec.4

Finland.-Kemira Oy began full production of ground mica from its new plant near Siilinjarvi. The mica, separated during beneficiation of apatite ore, is wet-ground to various sizes in the 16,000-ton-per-year plant.5

Spain.—Caolines de Vimianzo S.A. constructed a plant to recover mica from the underflow of cyclones being used to process kaolin. The plant, at Vimianzo, La Coruna, will use flotation methods to separate the muscovite mica from quartz. Annual capacity was expected to be about 12,000 tons per vear.6

¹Physical scientist, Branch of Industrial Minerals.

²Production of high-quality sericite is included in the totals; however, figures for low-quality sericite, used principally for brick manufacturing, are not included.

³Industrial Minerals (London). Lacana to Expand Mica

Production. No. 242, Nov. 1987, p. 9.

⁴Benbow, J. Mica—Markets Built on Dry Ground. Ind. Miner. (London), No. 245, Feb. 1988, p. 26.

⁵Work cited in footnote 4. ⁶Industrial Minerals (London). Mica Plant for Cavisa. No. 237, June 1987, p. 11.

Table 16.—Mica: World production, by country

(Thousand pounds)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Argentina:	62	26	701	551	440
Sheet	628	613	611	e600	550
Waste, scrap, etc		r _{8.834}	6.352	4.850	5,500
Brazil	7,926			26,000	26,000
Canada ^e	23,000	23,000	25,000	23,885	24,000
France	20,472	23,929	22,231	23,889	24,000
India:e					
Exports:					
Block	2,400	2,400	2,600	2,600	2,600
Film and disk	440	440	550	550	550
Splittings	7,000	7,000	8,800	8,800	8,800
Scrap	15,500	15,500	24,200	24,200	24,200
Powder	9,000	9,000	10,400	10,400	10,400
Manufactured	1,100	1.100	2,200	2,200	2,200
Domestic consumption, all forms	6,600	6,600	7,700	7,700	8,800
Total	42.040	42.040	56.450	56,450	57,550
Korea, Republic of (all grades)	31,751	53,872	44,189	92.587	88,000
Madagascar (phlogopite)	1,585	1,587	1,299	3,514	3,300
Mexico (all grades)	3,439	3,695	3,188	e3,100	3,100
	e1,100	2,646	3,175	e3,300	3,300
Morocco	³681	660	660	300	300
Mozambique ^e	220	198	000	300	900
Namibia			1.200	$r_{1,200}$	1,200
Peru ^e	1,200	1,200	1,200	1,200	1,200
South Africa, Republic of:			170		
Sheet			179		30.055
Scrap	5,891	9,872	4,568	5,531	32,877
Spain	2,866	2,183	1,603	717	550
Sri Lanka (scrap) ^e	³ 377	440	440	440	440
Sudan	22	22	e ₂₂	22	2:
Taiwan	686	670	^e 250	1,706	1,10
Tanzania (sheet)	(4)	(4)	(4)	(4)	(4
U.S.S.R. (all grades) ^e	108,000	108,000	110,000	110,000	110,000
U.S.S.R. (all grades)	280,000	322,000	275,100	296,300	3321,100
United States (scrap and flake)5	³ 2.086	2.100	2,200	2,200	2,200
Yugoslavia ^e		2,100	1,283	2,200	3,000
Zimbabwe	1,199	2,008	1,200	2,304	0,000
Grand total	535,231	r609,595	560,701	636,207	654,531

rRevised. Preliminary. ^eEstimated.

¹Table includes data available through May 13, 1988. ²In addition to the countries listed, China, Norway, Pakistan, Romania, and Sweden are known to produce mica, but available information is inadequate to make reliable estimates of output levels.

3Reported figure.

⁴Less than 1/2 unit

⁵Excludes U.S. production of low-quality sericite.

Molybdenum

By John W. Blossom¹

Domestic and foreign molybdenum markets increased in 1987 and demand in market economy countries exceeded mine production. Domestic producer and consumer stocks increased in 1987. U.S. mine output of molybdenum decreased compared with that of 1986 and represented 40% of the world production. Reported end-use consumption of molybdenum in raw materials and apparent domestic demand increased compared with that of 1986. Exports of all forms of molybdenum from the United States decreased during 1987. Domestic producers' stocks of molybdenum increased, but confronted with stock inventories equiv-

alent to about 1-1/3 years' consumption, domestic producers' prices were weak. World market prices were below those of U.S. producer quoted price listings for 1987.

Domestic Data Coverage.—Domestic production data for molybdenum are developed by the Bureau of Mines by means of three separate, voluntary surveys. These surveys are "Molybdenum Ore and Concentrate," "Molybdenum Concentrate and Molybdenum Products," and "Molybdenum Concentrates." Out of 18 operations to which surveys were sent, all responded, representing 100% of the total production shown in table 1.

Table 1.—Salient molybdenum statistics

(Thousand pounds of contained molybdenum and thousand dollars)

	1983	1984	1985	1986	1987
United States:					
Concentrate:					
Production	33,593	100 004			
Shipments		103,664	108,409	93,976	75,117
Value	48,805	102,405	111,936	95,006	69,868
Ponorted consumeting	\$166,612	\$326,780	\$347,812	\$240,484	\$179,286
Reported consumption	27,014	54,843	W	53,061	37.442
Imports for consumption	1.673	28	112	1,120	1.264
Stocks, Dec. 31: Mine and plant	11,637	12,450	9.322	8,715	
Primary products:	,	12,100	0,022	0,110	15,082
Production	37,533	79,689	87.436	41 400	
Shipments	50,562	65.527		41,490	34,659
Reported consumption	27,225		73,861	57,855	40,668
Stocks, Dec. 31: Producers'		34,792	33,451	31,898	32,629
World: Mine production	28,352	22,155	21,014	20,699	22,168
Production	r _{140,616}	r _{214,275}	216,364	P203,466	e186,405

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

DOMESTIC PRODUCTION

Domestic mine production of molybdenum decreased to a total of 75 million pounds of contained molybdenum, compared with 94 million pounds in 1986. The

country's two largest producers were AM-AX Inc. and Cyprus Minerals Co. Domestic producers attempted to correct oversupply by reducing production.

Table 2.—Production, shipments, and stocks of molybdenum products in the United States

(Thousand pounds of contained molybdenum)

	1986	1987	1986	1987	1986	1987
	Moly oxid		Me pow		Ammo molyk	
Received from other producers Gross production during year Used to make other products listed here Net production Shipments Producer stocks, Dec. 31	37,224 25,445 19,298 6,147 43,347 16,459	22,801 W 18,706 W W W	5,382 1,126 4,256 4,208 W	W 5,925 1,744 4,181 4,333 457	W W 1,749 W W	1,621 W 1,771 W W W
	Sod moly	ium bdate	Otl	ier²	Tot	tal
Received from other producers Gross production during year Used to make other products listed here Net production Shipments Producer stocks, Dec. 31	W W W W W	W W W W W	2,378 10,663 1,363 7,550 10,300 4,240	218 28,734 1,181 7,076 36,335 21,711	39,602 41,490 23,536 17,953 57,855 20,699	24,640 34,659 23,402 11,257 40,668 22,168

W Withheld to avoid disclosing company proprietary data; included with "Other." Includes technical and purified molybdic oxide and briquets.

CONSUMPTION AND USES

The quantity of molybdenum in concentrate roasted domestically to produce technical-grade molybdic oxide decreased from that of 1986. The remainder of the mine production of concentrate was either exported for conversion, purified to lubrication-grade molybdenum disulfide, or added to the stocks at mines and plants. The oxide, or roasted concentrate, is the chief form of molybdenum utilized by industry, particularly steel, cast iron, and superalloy producers. However, some of the material is also converted to other molybdenum products, such as ferromolybdenum, high-purity oxide, ammonium and sodium molybdate, and metal powder.

Apparent consumption (defined as U.S. primary plus secondary production plus imports minus exports plus adjustments for

Government and industry stock changes) decreased to 33 million pounds of molybdenum. The total reported end-use consumption of molybdenum in raw materials increased about 2% from that of 1986. Molybdenum consumed in oxide form (technical grade, purified, and briquets) accounted for about 58% of total reported consumption; in ferromolybdenum, 16%; and in other forms, 26%.

Molybdenum reported as consumed in the production of steel accounted for 56% of total consumption. Approximately 15% of consumption was attributed to other metallurgical uses, such as cast irons, superalloys, and as a refractory metal. Catalyst, lubricant, pigment, and other nonmetallurgical applications composed the final 29% of total consumption.

²Includes ferromolybdenum, calcium molybdate, phosphomolybdic acid, molybdenum disulfide, molybdenum metal, pellets, molybdenum pentachloride, molybdenum hexacarbonyl, and data indicated by symbol W.

Table 3.—U.S. reported consumption of molybdenum, by end use

(Thousand pounds of contained molybdenum)

End use	Molybdic oxides	Ferromo- lybdenum ¹	Ammonium and sodium molybdate	Other mo- lybdenum materials ²	Total ³
1986	er er er er sak				
Steel:					
Carbon	792	70			
Stainless and heat resisting	4,300	79 531			871
Full alloy	6.532		1	121	4,95
High-strength, low-alloy	633	813 720		69	7,414
Tool	1.688			W	1,38
Cast irons		w		W	1,688
Superalloys	998	909		W	909
Alloys (excludes steels and superalloys):	998	109		1,572	2,679
Welding and alloy hard-facing rods and materials					
Other allows and materials		202		7	209
Other alloys4Mill products made from metal powder	229	114		133	476
Chemicals and ceramics:	·			4,296	4,296
Chemicals and ceramics:					
Pigments	W		w		W
Catalysts	2,882		W	w	2.882
Other	9	2		766	777
Miscellaneous and unspecified	453	615	1,761	533	3,362
Total	18,546	4,094	1,761	7,497	31,898
1987					
Steel:					
0					
Carbon	926	263		(⁵)	1.189
Stainless and heat resisting	5,604	504		148	6,257
ruii alloy	6,454	1,198		59	7.712
High-strength, low-alloy	726	762		4	1,492
Tool	1,568	W	: <u>1</u>	49	1,617
Cast irons	W	1,275		20	1,295
Superalloys	1,113	99		1.664	2,876
Alloys (excludes steels and superalloys):		A STATE OF THE STA	. ==	-,00-	2,010
Welding and alloy hard-facing rods and materials		216		12	228
Other alloys ⁴	217	120		120	456
Other alloys ⁴			·	3,752	3,752
Chemicals and ceramics:		· · · · · 	· '.'	0,102	0,102
Pigments	w	100	w	Section 1	w
Catalysts	1.794		w	365	2,159
Other	3,.04		, , , , , , , , , , , , , , , , , , , 	729	737
Miscellaneous and unspecified	536	621	1,621	81	2,859
Total ³					

W Withheld to avoid disclosing company proprietary data.

STOCKS

Total industry stocks, which include those of producers and consumers, increased to 43 million pounds of contained molybdenum. Inventories of molybdenum in concentrate at mine locations increased from 8.7 to 15.1 million pounds. Producers' stocks of molybdenum in consumer products, such as oxide, ferromolybdenum, molybdate, metal powders, and other types, increased

to 22 million in 1987. Compared with apparent consumption, yearend producers' stocks of these materials totaled about 1-1/3 years' supply. Domestic consumers held inventories of about 6 million pounds throughout most of the year, representing approximately a 2-month supply compared with average monthly reported consumption.

w Withheld to avoid disclosing company proprietary data.

*Includes calcium molybdate.

*Includes purified molybdenum disulfide, molybdenite concentrate added directly to steel, molybdenum metal powder, molybdenum metal, pellets, and other molybdenum materials.

*Data may not add to totals shown because of independent rounding.

⁴Includes magnetic and nonferrous alloys.

⁵Less than 1/2 unit.

Table 4.—Industry stocks of molybdenum materials, December 31

(Thousand pounds of contained molybdenum)

Material	1983	1984	1985	1986	1987
Concentrate: Mine and plant	11,637	12,450	9,322	8,715	15,082
Producers: Molybdic oxides¹ Metal powder Ammonium molybdate Sodium molybdate Other²	22,991 - 503 1,038 - 79 3,741	17,295 594 684 W 3,582	16,281 W W W W 4,733	16,459 W W W 4,240	W 457 W W 21,711
Total	28,352	22,155	21,014	20,699	22,168
Consumers: Molybdic oxides¹ Ferromolybdenum³ Ammonium and sodium molybdate Other⁴	1,467 570 70 1,567	1,552 721 80 1,540	2,020 597 47 1,778	2,168 618 129 1,654	3,653 554 76 1,643
Total ⁵	3,674	3,893	4,441	4,569	5,925
Grand total ⁵	43,663	38,498	34,777	33,983	43,175

W Withheld to avoid disclosing company proprietary data.

Includes technical and purified molybdic oxide and briquets. ²Includes ferromolybdenum, calcium molybdate, phosphomolybdic acid, molybdenum disulfide, molybdic acid, molybdenum metal, pellets, molybdenum pentachloride, and molybdenum hexacarbonyl.

³Includes calcium molybdate.

Data may not add to totals shown because of independent rounding.

PRICES

The price of "Metals Week Dealer" (MWD) molybdic oxide (per pound of contained molybdenum) decreased from \$3.18 in January to \$2.85 at the end of December 1987. The average MWD price of oxide was \$3.01 or \$0.10 less than the average MWD price in 1986.

The posted producer price for molybdic oxide was \$3.45 in January. During May the price was reduced to \$3.25 and remained at that level through December 1987.

Table 5.—Domestic price listings for molybdenum

(Per pound of contained metal)

	1986	1987
Merchant quotes: Concentrate (byproducts) Ferromolydenum-export Oxide Producer quotes: Oxide	\$2.50 3.52 2.92 3.45	\$2.59 3.58 3.01 \$3.45-3.25

Source: Metals Week.

FOREIGN TRADE

Exports.-Exports of molybdenum in concentrate and oxide decreased compared with that of 1986. Molybdenum concentrate exports were about 54% of domestic mine production. Approximately 98% of reported concentrates and oxides was shipped to Austria, Belgium-Luxembourg, Canada, the Federal Republic of Germany, Japan, the Netherlands, Sweden, and the United Kingdom. The calculated molybdenum content of all exports was 46 million pounds in 1987. Total value of exports decreased from \$185 million in 1986 to \$140 million in 1987.

Imports.—Approximately 13.5 million pounds of molybdenum in various forms was imported into the United States, an increase of 7.5 million pounds over that of 1986. Total value of all forms of molybdenum imported increased from \$27 million in 1986 to \$48 million in 1987. In terms of both value and quantity, the major forms imported were as concentrate, materials in chief value molybdenum, and molybdenum compounds. The principal originating countries for these imports were Canada and Chile.

The President withdrew the duty-free

Includes purified molybdenum disulfide, molybdenite concentrate added directly to steel, molybdenum metal powder, molybdenum metal, pellets, and other molybdenum materials.

treatment afforded under the Generalized System of Preferences (GSP) to imports of molybdenum ore, TSUS-601.33, and materials in chief value of molybdenum, TSUS-603.40, from all countries on or after December 31, 1987. In addition, the President issued Proclamation 5758 on December 24, 1987, which stated that general headnote 3 (e)(v)(A) to the TSUS is modified by striking out "Chile" from the enumeration of independent countries whose products are eligible for benefits under the GSP; and that no article that is the product of Chile and imported into the United States after the effective date of this Proclamation shall be

eligible for preferential treatment under the GSP. This Proclamation was to become effective on February 29, 1988.

The countries mostly affected by these changes were Chile, Mexico, and Peru.

Table 6.—Molybdenum reported by producers as shipments for export from the United States

(Thousand pounds of contained molybdenum)

	1986	1987
Molybdenite concentrate	18,267	21,198
Molybdic oxide	21,325	12,273
All other primary products	836	966

Table 7.—U.S. exports of molybdenum ore and concentrates (including roasted concentrates), by country

(Thousand pounds of contained molybdenum and thousand dollars)

Country	1985		1986		1987	
	Quantity	Value	Quantity	Value	Quantity	Value
Austria	31	50			4,369	11,576
Belgium-Luxembourg	5,743	30,114	3,088	8,782	5,337	12,526
Brazil	153	627	222	761	114	381
Canada	780	1,979	3.662	8.149	1.507	2.348
Chile	102	377	93	130	44	109
France					228	644
Germany, Federal Republic of	3,379	7.758	2,028	4.299	5.966	13,564
Japan	7,031	26,202	5,818	16,555	2,852	8,071
Mexico	71	135	22	137	3	18
Netherlands	40,076	160,250	24.997	75.802	12,443	31.557
Sweden	949	2,896	2,792	6.047	1.275	3,062
United Kingdom	4,991	15,463	6,243	14,499	5,765	12,911
Other	552	1,840	188	845	611	1,615
Total ¹	63,859	247,690	49,153	136,006	40,514	98,381

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 8.—U.S. exports of molybdenum products, by product and country

(Thousand pounds, gross weight, and thousand dollars)

D. L. d. L. d.	1986		1987	
Product and country	Quantity	Value	Quantity	Value
Ferromolybdenum:1				
Canada	40	154	45	171
Japan	187	406	74	314
Malaysia	1	4	4	15
Mexico	101	346	27	74
Other	5	19	īi	31
Total ²	332	929	161	605
Metal and alloys in crude form and scrap:				
Belgium	1	17	1	4
Canada	$3\overline{4}$	317	22	184
France	2	34	-8	36
Germany, Federal Republic of	148	790	7Ŏ	418
India	2		ĭ	6
Japan	220	923	$22\bar{7}$	1.406
Mexico	9	105	12	128
Netherlands	139	171	78	323
United Kingdom	344	592	16	154
Other	101	153	78	845
Total ²	1,000	3,111	513	3,504

See footnotes at end of table.

Table 8.—U.S. exports of molybdenum products, by product and country —Continued (Thousand pounds, gross weight, and thousand dollars)

Product and country	19	1986		87
- Trouble und country	Quantity	Value	Quantity	Value
			100	
Vire:				
Argentina	3	76	2	4
Belgium-Luxembourg	8	349	20	25
Brazil	42	750	47	. 80
Canada	46	760	31	58
France	14	199	23	4
Germany, Federal Republic of	97	1,096	202	2,50
India	(3)	´ 8	(3)	_,,
Italy	66	886	67	97
Japan	96	1,989	67	1.20
Mexico	19	107	9	2
Netherlands	2	23		
Singanom	$\tilde{6}$	51	4 2	
South Africa, Republic of	(3)			
Chain		9	2	
Spain	19	234	19	2
Sweden	22	277	25	- 3
United Kingdom	26	471	15	3
Other	28	386	39	96
Total ²	494	7,671	573	9.04
wder: Belgium-Luxembourg	71	485	974	2,36
Canada	14	175	289	
France	64			2,57
France		357	92	58
Germany, rederal Republic of	16	195	77	37
Italy	5	60	2 7	9
Japan	210	278		8
Mexico	1	6	6	4
Netherlands	333	330	26	18
Sweden	7	51	13	9
Taiwan	49	437	133	94
United Kingdom	45	91	497	1,15
Other	41	356	28	42
Total ²	854	2,821	2,145	8,86
emifabricated forms, n.e.c.:				
Australia	11	216	. 8	14
Belgium-Luxembourg	3	148	-	
Brazil	45	855	19	34
Canada	20	571	13	32
France	31	914	34	
Germany, Federal Republic of	83	1,497	29	1,14
Japan	7	223		65
Mexico			29	70
Methods J.	(³)	14	3	7
Netherlands	34	1,145	63	2,54
Philippines			(³)	
Singapore	(³)	2	(³)	
South Africa, Republic of	10	385	7	29
Ciffed Kingdom	75	1,752	47	1.28
Other	167	1,398	30	63
Total ²	486	9,119	282	8,16
		0,110		5,10
lybdenum compounds: Argentina			(³)	
Australia	$-\frac{1}{1}$	- 3	8	1
Belgium-Luxembourg	$54\hat{6}$	824	68	34
Brazil	11	40		
Canada	138		$\begin{array}{c} 5 \\ 274 \end{array}$	1 10
Germany, Federal Republic of		411		1,16
Japan	3,234	4,219	3	3
Movico	1,880	4,027	3,152	7,24
Mexico	60	129	86	22
Netherlands	3,262	4,532	159	33
Sweden	1,879	2,450		
Switzerland	(³)	2		_
United Kingdom	4,347	$5,47\overline{9}$	150	37
Other	1,703	2,882	791	1,40
Total ²	17.000	04.00=	2.5	
Total ²	17,063	24,997	2,696	11,14

Source: Bureau of the Census.

¹Ferromolybdenum contains about 60% to 65% molybdenum.

²Data may not add to totals shown because of independent rounding.

³Less than 1/2 unit.

Table 9.—U.S. imports for consumption of molybdenum

(Thousand pounds and thousand dollars)

	1.7		1986			1987	
Item	TSUS No.	Gross weight	Con- tained molyb- denum	Value	Gross weight	Con- tained molyb- denum	Value
Ore and concentrate	601.33	1.740	1,120	3,057	2,195	1,264	3,109
Material in chief value molybdenum	603.40	1,786	1,102	3,284	8,664	5,248	15,497
Ferromolybdenum	606.31	1,599	1,077	3,626	3,815	2,283	8,042
Waste and scrap	628.70	NΑ	529	2,870	NA	646	2,545
Unwrought	628.72	NA	191	2,510	NA	174	2,308
Wrought	628.74	102	NA	2,701	158	ÑA	2,801
Ammonium molybdate	417.28	528	318	1,320	1,355	786	2,870
Molybdenum compounds	419.60	1,870	1,236	4,913	2,702	1,822	7,594
Potassium molybdate	420.20	40	27	134		_,	.,
Sodium molybdate Mixtures of inorganic compounds, chief value	421.10	434	403	758	150	64	262
molybdenum	423.88	127	38	212	66	46	220
Molybdenum orange	473.18	1,651	NA	1,754	2,438	NA NA	2,461
Total ¹		9,878	6,040	27,138	21,543	12,333	47,711

NA Not available.
¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 10.-U.S. import duties on molybdenum

Item	TSUS	Most favored nation (MFN)	Non-MFN
Tem	No.	Jan. 1, 1987	Jan. 1, 1987
Molybdenum ore and concentrate	601.33	9 cents per pound	35 cents per pound.
Material in chief value molybdenum	603.40	6 cents per pound plus 1.9% ad valorem.	50 cents per pound plus 159 ad valorem.
Ferromolybdenum Molybdenum:	606.31	4.5% ad valorem	31.5% ad valorem.
Waste and scrap	628.70	6% ad valorem	50% ad valorem.
Unwrought	628.72	6.3 cents per pound plus 1.9% ad valorem.	50 cents per pound plus 150 ad valorem.
Wrought Molybdenum chemicals:	628.74	6.6% ad valorem	60% ad valorem.
Ammonium molybdate	417.28	4.3% ad valorem	29% ad valorem.
Calcium molybdate	418.26	Free	24.5% ad valorem.
Molybdenum compounds	419.60	3.2% ad valorem	20.5% ad valorem.
Potassium molybdate	420.22	3% ad valorem	23% ad valorem.
Sodium molybdate	421.10	3.7% ad valorem	25.5% ad valorem.
Mixtures of inorganic compounds,		o /o da valorem	20.0 % au valoreni.
chief value molybdenum	423.88	2.8% ad valorem	18% ad valorem.
Molybdenum orange	473.18	3.9% ad valorem	25% ad valorem.

WORLD REVIEW

World mine production of molybdenum was 187 million pounds, a decrease of 17 million pounds from that in 1986. Canada, Chile, the U.S.S.R., and the United States accounted for more than 87% of the molybdenum produced worldwide. Although comprehensive statistics on world consumption

were not available, market evidence clearly indicated that supply exceeded demand. World molybdenum consumption and stocks increased during 1987.

¹Physical scientist, Branch of Ferrous Metals.

MINERALS YEARBOOK, 1987

Table 11.—Molybdenum: World mine production, by country¹

(Thousand pounds of contained molybdenum)

the state of the s						
	Country ²	1983	1984	1985	1986 ^p	1987 ^e
Bulgaria ^e		 420	420	420	400	400
Canada (shipments)		 22,474	25,479	17,311	24,804	25,530
Chile		33,651	37,172	40,541	36,555	36,800
China ^e		 4,400	4,400	4,400	4,400	4,400
Japan ^e		 214	324	215		12_
Korea, Republic of		313	348	734	696	700
Mexico		 12,932	8,938	8,292	7,385	8,000
Mongolia ^e		 2,120	2,200	2,200	r _{2,425}	2,425
Niger ^e			73	44	44	33
Niger		 5,825	6,557	8.898	7,681	7,700
Peru			0,001	0,000	1,001	.,
Philippines		 24,500	24,700	24,900	25,100	25,300
U.S.S.R.e				108,409	93.976	³ 75,117
United States		 33,593	103,664	100,409	90,910	10,111
Total		 140,616	214,275	216,364	203,466	186,405

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through June 17, 1988. ²In addition to the countries listed, North Korea, Romania, Turkey, and Yugoslavia are believed to produce molybdenum, but output is not reported quantitatively, and available general information is inadequate to make reliable estimates of output levels. ³Reported figure.

Nickel

By William S. Kirk¹

The international nickel market was characterized by record-high demand and price levels. Domestic reported consumption rose by 19%, the highest level of consumption since 1984. The steep price increases were a result of the inability of supply to keep pace with demand.

Domestic Data Coverage.—There was no domestic primary nickel production. Do-

mestic consumption data for nickel are developed by the Bureau of Mines from a voluntary survey of U.S. plants. Of the 307 plants to which a survey request was sent, 295 responded, representing 82% of the apparent primary nickel consumption shown in table 4. Apparent consumption of primary nickel was derived by using imports minus exports plus adjustments for

Table 1.—Salient nickel statistics
(Short tons of contained nickel unless otherwise specified)

	1983	1984	1985	1986	1987
7 11 100					
Inited States:					
Mine production: Nickel ore (gross weight)		1,674,600	868,100	603,400	
Shipments		14.540	6.127	1,175	
		11,010	0,22	-,	
Plant production: Smelter, from domestic ores (includes byproduct nickel)	w	9.604	5.214	1.651	_
Refinery, from imported matte	33,400	35.329	31,168	-,	
Reinery, from imported mattere	00,100	00,020	02,200	==	
Secondary recovery, from purchased scrap.e	30,076	35,760	36,690	35,320	P38,26
From ferrous scrap		19,407	16,955	8,406	P8.39
From nonferrous scrap	19,776	19,407	10,555	0,400	0,00
Exports:	23,359	31.638	21.745	2.812	2.41
Primary (unwrought)		58,525	51,429	23,269	27,91
Total (gross weight)	43,913	58,525	31,425	20,209	21,01
Imports:	150 000	176,715	157.690	129.094	148,27
Primary	152,333	249,929	220.349	159,298	176.80
Primary (gross weight)	215,361		236,001	172,683	191,15
Total (gross weight)	225,537	264,778	230,001	112,000	191,10
Consumption:					
Reported:	105.045	100 001	119,907	107.062	130,50
Primary	127,845	136,861			34,31
Secondary (purchased scrap) ^e	42,034	49,649	42,295	31,862	34,31
Apparent:			155 505	107 700	155,50
Primary	150,879	155,395	157,795	137,582	
Secondary (purchased scrap)e	49,852	55,167	53,645	43,724	46,6
Stocks, Dec. 31:					o= o-
Government	32,309	32,209	37,222	r37,215	37,21
Producer	38,500	37,300	17,400	10,300	6,82
Consumer:					
Primary	20,448	20,934	19,106	16,557	10,39
Secondary	10,304	6,520	6,302	4,669	4,37
Employment, Dec. 31:					
Mine	160	130	130		-
Smelter	230	170	170		-
Refinery	420	420			-
Price (cathode):1					
New York dealer, per pound	\$2.20	\$2.22	\$2.26	\$1.86	\$2.2
World: Mine production	r742,123	r846,935	882,250	835,725	867,09

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

¹Weighted average calculated by Metals Week.

Government and industry stock changes.

Legislation and Government Programs.-The Institute of Scrap Iron and Steel (ISIS) urged the U.S. Environmental Protection Agency (EPA) to remove nickel from EPA's Extremely Hazardous Substances (EHS) list. ISIS pointed out that nickel did not meet EPA's original listing criterion of toxicity. If nickel were allowed to stay on the list, many scrap processors and scrap consumers would become subject to emergency planning requirements because of the presence of nickel in the scrap metal, which they routinely handled. As of vearend 1987 the issue was unresolved.

The 100 most hazardous substances found in Superfund sites were listed by the EPA and ranked in four priority groups on the basis of chemical toxicity, frequency of occurrence at Superfund sites, and potential for human exposure. Nickel was included in the first group primarily because of its frequency of occurrence.

Negotiations between the United States and the U.S.S.R. aimed at permitting the U.S. importation of Soviet nickel suffered a setback. In December 1983, the U.S. Department of the Treasury placed an embargo on the importation of unfabricated nickel originating in the U.S.S.R. because of the Soviet refusal to certify that its shipments contained no Cuban nickel. Talks begun in December 1986 to resume Soviet shipments to the United States had seemed close to being successful, but no agreement was reached during the year.

The U.S. Department of the Treasury, Bureau of the Mint, purchased 1,975 tons of nickel under six solicitations at a total price of \$9,615,302.

DOMESTIC PRODUCTION

On January 7, 1987, M. A. Hanna Co. announced the permanent closure of the sole U.S. nickel mine-smelter complex. The operation, at Riddle, OR, had been closed and on standby status since August 1986 because of low nickel prices. Apparently, the company had decided that little chance existed for the prices to rebound in the foreseeable future. Although the smelter could produce 12,000 short tons of nickel in ferronickel per year (about 8% of the annual U.S. primary nickel consumption), periodic temporary closures since 1982 had kept the output well below the rated capacity of

the smelter. Approximately 300 employees were affected by the closure.

The production of domestic secondary nickel in the form of scrap was a major part of the supply of nickel for consumption. Since the Bureau of Mines documented only the recovery of nickel in scrap that was consumed, recovery and consumption figures were essentially the same. The nickel recovered from stainless steel scrap was calculated from the gross weight of the scrap and estimated at 5.7%, which was the weighted-average nickel content of all grades of stainless steel scrap consumed.

53.645

43.724

46,657

Table 2.—Nickel recovered from purchased scrap in the United States, by kind of scrap and form of recovery^e

(Short tons of contained nickel)

	1985	1986	1987 ^p
KIND OF SCRAP			
Aluminum-base Copper-base Ferrous-base Nickel-base	111 2,505 36,690 14,339	107 2,031 35,320 6,266	188 2,097 38,265 6,107
Total	53,645	43,726	46,657
FORM OF RECOVERY			
Aluminum-base alloys	115 W 11,512 36,690 5,328	118 W 6,364 35,367 1,875	229 6,594 38,297 1,537

^eEstimated. ^PPreliminary. W Withheld to avoid disclosing company proprietary data; included with "Copper-base alloys."

CONSUMPTION

Driven chiefly by the stainless steel industry, nickel consumption increased. Reported domestic primary nickel consumption increased 22% and apparent consumption rose to 202,157 short tons. Consumption grew in all categories except cast irons; electric, magnet, and expansion alloys; and other nickel and nickel alloys. In nickel-bearing stainless steel, the largest end-use sector, production was up 22% over that of 1986. Although most stainless steel production was for domestic consumption, much was exported, a result of the lower value of the U.S. dollar. Imports of stainless steel fell slightly, while exports rose 73%.

Domestic demand for stainless steel was derived from the pulp and paper, food processing, and petrochemical industries.² Stainless steel scrap consumption increased during 1987 as a result of price increases. Nickel demand in superalloys rose sharply as the aerospace industry replaced engines. Demand in plating was essentially flat owing to the reduction in automobile production and transfer of some plating business to Canada, where the exchange rate was more favorable.

Commercially pure unwrought nickel (Class I), in the form of electrolytic cathodes, pellets, briquets, or powder, again dominated the forms of primary nickel consumed. These forms comprised most of the nickel consumed in all products except in the cast irons, stainless and heat-resistant steels, and nickel-copper alloys end-use sectors, wherein they were a major, but not dominant, nickel source. The Class II materials—ferronickel, nickel oxide, oxide sinter, and utility grade nickel—were primarily used in producing stainless and heat-resistant steels.

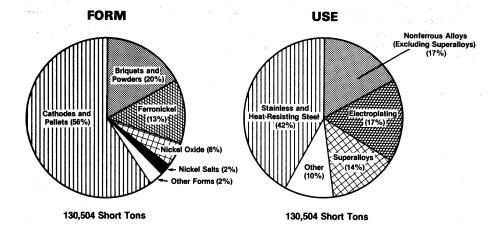


Figure 1.—U.S. nickel consumption in 1987, by form and use.

Table 3.—Reported U.S. consumption of nickel, by form

(Short tons of contained nickel)

Form	1983	1984	1985	1986	1987
Primary:					
Ferronickel	15,595 96,981 9,670 4,402 1,197	18,419 104,958 7,087 2,962 3,435	17,993 90,379 6,297 2,770 2,468	13,256 82,884 7,357 2,416 1,149	17,418 98,678 9,926 2,438 2,052
Total primarySecondary (scrap) ²	127,845 42,034	136,861 49,649	119,907 42,295	107,062 31,824	130,504 P34,316
Grand total	169,879	186,510	162,202	138,886	164,820

Preliminary.

¹Metallic nickel salts consumed by plating industry are estimated.

Table 4.—U.S. consumption of nickel in 1987, by use

(Short tons of contained nickel)

Use	Com- mer- cially pure nickel	Ferro- nickel	Nickel oxide	Nickel salts	Other pri- mary forms	Total primary	Second- ary ^{e p} (scrap)	Grand total
Cast irons	590	314	40	w	239	1,183	571	1,754
Chemicals and chemical uses	1,607		84	95	159	1,945		1,945
Electric, magnet, expansion alloys _	206					206	32	238
Electroplating (sales to platers) ¹ Nickel-copper and copper-nickel	20,299	w		2,338	13	22,650		22,650
allovs	4,261	w	2	w	368	4.631	6,578	11,209
Other nickel and nickel alloys Steel:	17,812	61	2 5	ŵ	76	17,954	1,201	19,155
Stainless and heat-resistant	27.843	16,677	8.894		761	54,175	24,966	79,141
Alloys (excludes stainless)	7,970	346	240		4	8.560	412	8,972
Superalloys	17,276		339		$36\overline{4}$	17,979	325	18,304
Other ²	809	20	322	2	68	1,221	231	1,452
Total reported by companies								
canvassed	98,673	17,418	9,926	2,435	2,052	130,504	34,316	164,820
Total all companies, apparent	XX	XX	XX	XX	XX	3155,500	46,657	202,157

^eEstimated. ^pPreliminary. W Withheld to avoid disclosing company proprietary data; included with "Other."

STOCKS

The combined stocks of primary nickel maintained in the United States by foreign producers with U.S. sales offices and metaltrading companies with U.S. sales offices decreased 34% during the year. At yearend, these stocks represented 12 days of domestic consumption. The drop was a reflection of very strong demand. Nickel stocks on the London Metal Exchange (LME) fell 38%. The yearend inventory was 4,584 tons. Consumer stocks declined by 50% during 1987. Stocks of nickel in ferrous scrap held by

iron and steel producers were down 14% from that of 1986.

The quantity of nickel contained in the National Defense Stockpile decreased from 37,223 tons to 37,215. This change represented an inventory adjustment. The adjustment occurred when a quantity of nickel was moved from one General Services Administraton storage depot to another. In the process, it was found to weigh less than its recorded weight.

²Based on gross weight of purchased scrap consumed and estimated average nickel content.

XX Not applicable.

Based on monthly estimates.

²Includes batteries, ceramics, and other alloys containing nickel.
³U.S. production plus imports minus exports minus stock increases.

NICKEL 645

Table 5.—Nickel in consumer stocks in the United States, by form

(Short tons of contained nickel)

Form	1983	1984	1985	1986	1987
Primary:					
Ferronickel	893 $17,359$	$692 \\ 17,479$	$1,930 \\ 13,754$	$1,028 \\ 11.829$	776 8,218
Oxide and oxide sinter	1,677	2,259	3,059	3.281	995
Salts	268	229	184	175	196
Other	251	275	179	244	208
Total primary	20,448	20,934	19,106	16,557	10,393
Secondary (scrap)	10,304	6,520	6,302	4,669	^p 4,375
Grand total	30,752	27,454	25,408	21,226	14,768

^pPreliminary.

PRICES

The world nickel price increased dramatically, particularly toward yearend. The LME cash price began the year at \$1.60 per pound and rose gradually to about \$2.60 in November. In December, the LME price briefly exceeded \$4.00 and averaged \$3.48 for the month.

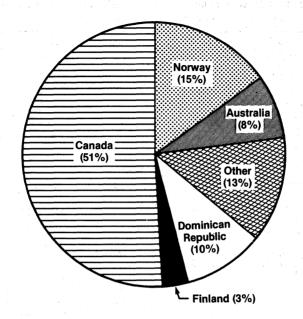
There were four primary factors that accounted for the enormous price increases. The first factor was the very high demand for nickel used in stainless steel. This was unforeseen by producers and consumers. Domestic reported consumption of nickel for stainless steel rose from 29,800 tons in 1986 to 40,350 tons in 1987, a 35% increase.

The second factor was the closure of nickel production facilities. Some producers were forced to shut down their operations during the recent years of low nickel prices.

The third factor was the shortage of stainless steel scrap. Owing to improved methods of casting and cutting, there was less scrap available in 1987 than there was a few years ago.

The fourth factor was the cessation of ferronickel shipments from the Dominican Republic. In December, the Government of the Dominican Republic imposed a 25% export duty on ferronickel produced in that country by Falconbridge Dominicana C. por A. The world's second largest ferronickel producer, Falconbridge, considered the duty prohibitive and halted shipments. One of Falconbridges's main objections was that

the export duty rate was pegged to the exchange rate of the peso relative to the U.S. dollar. A further decline in the value of the peso could have increased duties considerably.


There were a number of lesser factors that had an affect on nickel prices, primarily equipment failures. Many of these problems occurred because plants were being strained by operating at full capacity. Most of the minor factors would not have a significant impact on the nickel market in ordinary times.

The LME price remained the leading nickel price indicator. For 1987, this price averaged \$2.19 per pound, up 25% from that of 1986. In the United States, the New York dealer price for electrolytic nickel best indicated prices paid by U.S. consumers. At a weighted average of \$2.28 per pound for 1987, as calculated by Metals Week, the New York dealer price rose about the same amount from its 1986 level as did the LME price. A major North American producer reported that its average realized price for the year rose 12% to \$2.18 per pound.

The price of stainless steel scrap, the largest source of secondary nickel for consumption, followed the price of primary nickel. According to the American Metal Market, the price of 18-8 stainless steep in Pittsburgh rose from a range of \$480 to \$490 per ton at the beginning of the year to a range of \$710 to \$720 by yearend.

FOREIGN TRADE

The net import reliance rose to 79%, as domestic primary production fell to zero, and virtually all primary nickel consumed in the United States was imported. Canada again supplied most of the imported nickel, including most of the nickel imported from Norway, which was mined and smelted in Canada before being refined in Norway.

148,273 Short Tons

Figure 2.—Major sources of U.S. primary nickel imports in 1987.

Table 6.—U.S. exports of nickel and nickel alloy products, by class

(Gross weight unless otherwise specified)

	19	984	19	85	19	86	19	87
Class	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Primary: Cathodes, pellets, briquets, and shot (unwrought) Electroplating anodes	25,997 140	\$118,453 965	17,761 132	\$86,596 965	1,936 108	\$12,542 961	1,547 213	\$10,581 1,864
Ferronickel Powder and flakes	7,880 1,790	NA 12,062	5,355 1,106	NA 8,942	455 584	NA 5,913	165 582	NA 6,720
Total Nickel content ¹	35,807 31,638	131,480 XX	24,354 21,745	96,503 XX	3,083 2,812	19,416 XX	2,507 2,413	19,165 XX
Wrought: Bars, rods, angles, shapes,	-							
sections Plates, sheets, strip Tubes, pipes, blanks, fit-	3,342 1,968	34,808 21,316	4,253 2,645	45,060 28,726	2,239 3,676	29,735 25,151	2,780 5,597	31,595 37,188
tings, hollow bar Wire Nickel-compound catalysts	428 1,119 2,718	7,929 11,166 15,156	303 954 3,523	$\substack{6,356\\9,147\\22.811}$	684 844 2,243	6,430 8,520 10,631	294 1,216 3,984	6,916 11,896
Nickel waste and scrap	13,143	23,566	15,397	26,705	10,500	15,012	11,541	16,940 17,273
Grand total	58,525	245,421	51,429	235,308	23,269	114,895	27,919	140,973

Sources: Bureau of the Census and Journal of Commerce.

NA Not available. $\,$ XX Not applicable. $^{1}\text{Based}$ on estimated nickel content and gross weight of primary nickel products.

129,094

Table 7.-U.S. imports for consumption of nickel products, by class

(Gross weight unless otherwise specified)

	19	85 .	198	36	198	87
Class	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Primary:						
Smelter products:						
Ferronickel	36,528	\$60,253	37,901	\$53,672	45,389	\$57,481
Salts and other (including slurry)	68,210	101,101	9,170	19,281	5.241	24,754
Refined nickel:	,				•	
Cathodes, pellets, briquets,						
and shot (unwrought)	97,779	446,009	99.017	407,210	113,249	455,126
Flakes	242	1,151	600	2,420	937	3,622
Oxide and oxide sinter	5,079	20,722	2,868	4.372	2,278	4,277
Powder	12,511	66,566	9,742	48,631	11,040	56,784
						
Total	220,349	695,802	159,298	535,586	178,143	602,044
Nickel content ¹	157,690	XX	129,094	XX	148,273	XX
Wrought:						
Bars, plates, sheets, anodes	3,177	32,276	2,310	17.048	1,518	12.901
Pipes, tubes, fittings	3,744	33,984	1,487	16,616	1,539	24,63
Rods and wire	2,990	22,103	2,640	19,228	2,235	16,527
Shapes, sections, angles	189	1.297	153	1.002	152	800
Nickel waste and scrap	5,552	16,430	6,795	19,581	7,567	25,133
INICKEI Waste allu scrap	3,352	13,100	3,100	10,001	.,001	20,200
Grand total	236,001	801,892	172,683	609,061	191,154	682,038

Sources: Bureau of the Census and Journal of Commerce.

Table 8.—U.S. nickel imports for consumption of new nickel products in 1987, by country (Short tons of contained nickel)

Cathodes. pellets, Total Powder and Oxide and Salts^e and Ferronickel Country briquets, flakes oxide sinter other 1987 1986 (unwrought) 11,883 Australia _____ Botswana _____ 11,347 218 1.067 29 12,444 __ ___ 218 75,240 253 25 2,383 60,020 9,757 $68\overline{3}$ Canada _____ Colombia _____ 62,392 3,270 3,270 3,137 Dominican Republic 5,654 5,362 14,390 31 14,421 5,046 5,046 Finland _____ ___ 12 (1) 399 3,011 2,686 France__ 2,600 Germany, Federal Republic of 134 202 $(^1)$ 148 483 316 (¹) 14 317 469 3,797 Japan 301 New Caledonia _ _ _ Norway _ _ _ _ South Africa, Re-1,254 28 21,694 21,66616,669 ___ 3 3,081 7,159 2.282 796 public of_____ United Kingdom _ _ 1,744 2,756 3,294 547 3,045 8,097 1,266 2,756 3,240 (1) $\bar{388}$ 90 Zimbabwe___ Other ____ 54

683

18,945

3,419

148,273

Total²

11,977

113,249

Sources: Bureau of the Census and Journal of Commerce.

XX Not applicable.

Based on estimated nickel content and gross weight of primary nickel products.

^eEstimated.

Less than 1/2 unit.

²Data may not add to totals shown because of independent rounding.

WORLD REVIEW

World demand for nickel, about 625,000 tons in 1986, was originally expected to be about the same in 1987. However, as a result of record worldwide stainless steel production, world demand increased to about 705,000 tons, according to an industry source. World supply was considerably lower at approximately 675,000 tons.

Representatives from the major nickel producing and consuming countries were scheduled to hold the inaugural meeting of the International Nickel Study Group (INSG) when at least 15 countries representing 50% or more of the world trade in nickel accepted the terms of reference for the group. The meeting, which was tentatively scheduled for June, was postponed because fewer countries had agreed to join.

Australia.-Although the Agnew Mine, owned by Seltrust Holdings Ltd. (60%) and Mount Isa Mines Ltd. (40%), remained closed throughout the year, it was kept on a care-and-maintenance status. Plans called for an underground exploration program to determine the extent of ore grades at depth. Future plans and feasibility studies were to be based on the results. Metals Exploration Ltd. permanently closed the Nepean Mine in Western Australia in May owing to the depletion of reserves. The mine had produced ore containing about 3,000 short tons of nickel per year. Western Mining Corp. began producing ore from its new Lanfranchi Mine in the Kambalda District.

Dallhold Investments Pty. Ltd., an Australian investment company, purchased a 50% share of Queensland Nickel Pty. Ltd., which operated the Greenvale Mine and Yabulu refinery in Queensland that had been held by Freeport-McMoRan Inc., New Orleans, LA. Later in the year, Dallhold purchased the other 50% of the Greenvale project from another Australian company, Metals Exploration Ltd. Dallhold reportedly planned to import nickel ore from New Caledonia to provide feedstock for its Yabulu refinery in Queensland. The ore was to supplement and eventually replace feedstock coming from the Greenvale Mine.

Brazil.—Cia. Niquel Tocantins expansion plans to double its refinery capacity by 1988 were delayed. The nickel producer reportedly announced plans to achieve that goal by 1990, raising the capacity to 11,000 short tons per year.

Canada.—The Provincial Environmental

Minister of Manitoba drafted a regulation that, if passed, would require Inco Ltd.'s Thompson nickel smelter to immediately curtail sulfur dioxide emissions from 414,000 tons to 330,000 tons per year. By 1994, the company would be expected to achieve further reductions to 220,000 tons per year. A joint Federal-Provincial government research program to reduce sulfur dioxide emissions by rejecting the mineral pyrrhotite continued.

Inco, the largest nickel producer among market economy countries, increased its share of the Western World nickel market from 30% in 1986 to 34%. After several years of heavy losses or meager profits, the company posted its highest profits since 1980. Inco announced that it was launching a \$20 million development project at its underground nickel mining operations in Thompson, Manitoba. Production was to begin within 1 year, with the deposit providing more than 5 million tons of nickel ore over the next 15 years.

Another Inco expansion project was the old Coleman Mine on the north rim of the Sudbury Basin. All-electric mining equipment, similar to that used in the Crean Hill Mine, was expected to be used. Inco planned for full production to be reached in 1990. In addition, the Creighton Deep ore body and the Crean Hill Mine were brought into production by Inco.

Inco reached an agreement on a new 3-year contract with mining and production workers at its Thompson plant in Manitoba. Under the new contract, workers were to receive a 50-cent-per-hour salary increase the first year and a 25-cent-per-hour increase in each of the next 2 years plus a cost-of-living increase over the life of the agreement.

Falconbridge Ltd. bought additional shares in its subsidiary, Falconbridge Dominicana a ferronickel operation in the Dominican Republic. Falconbridge purchased Armco Inc.'s 17.5% share, bringing its share to 85.2%. Separately, Falconbridge Ltd. also announced a plan to raise \$13.2 million for exploration by issuing flowthrough shares. In addition, Falconbridge Ltd. restructured its mining holdings by selling its 49% share in Western Platinum Ltd., Republic of South Africa, to Lonrho PLC Ltd., the majority partner.

Outokumpu Mines Ltd. Toronto, a subsid-

iary of Outokumpu Finland, formed a joint venture with Hudson Bay Mining & Smelting Co. Ltd., Toronto, by exercising its option to purchase 40% of the Namew Lake deposit. The deposit, in northern Manitoba, was reported to contain well over 50,000 tons of nickel. The plant was to be built under a turnkey contract by a division of Outokumpu. Nickel production was expected to begin in 1988, with the full annual production rate of about 10,000 tons of nickel, contained in concentrates, to be reached in the last quarter of the year. Negotiations were underway with Canadian producers to refine the concentrate. Two of them, Inco and Sherritt Gordon Mines Ltd., had refineries nearby.

Cuba.—The Cubans opened a processing line during the year at their Punta Gorda plant, increasing its capacity by 10,000 tons per year. All Cuban production was shipped to the U.S.S.R. or Czechoslovakia.

Dominican Republic.—In December, the Dominican Republic imposed a 25% export duty on ferronickel produced in that country by Falconbridge Dominicana, a subsidiary of Falconbridge Ltd., the world's second largest ferronickel producer. Falconbridge

Dominicana was operating under a 20-yearold agreement that precluded any such action. Therefore, the company halted shipments of ferronickel rather than pay what it considered to be a prohibitive duty. At yearend, the issue had not been resolved. Falconbridge continued to produce and stockpile ferronickel. Also, Falconbridge increased its interest in its subsidiary (See "Canada" in this section.)

the state-Finland.—Outokumpu Ov. owned metals producer, closed the Kotalahti nickel mine in April to avoid operating losses. The company was depending on the Enonkoski Mine, opened in 1986, for feedstock.

Greece.-Larco S.A., the Greek stateowned ferronickel producer, was in serious financial straits owing to low nickel prices. The company planned to lay off nearly onehalf of its work force and was scheduled to be auctioned in mid-1988. However, as a result of the surge in nickel prices, Larco put some of its production equipment back on-stream, and production rose from 770 short tons in October to an estimated 1,100 tons in December. Production in 1988 was expected to be 1,300 tons per month.

Table 9.—Nickel: World mine production, by country¹

(Short tons of nickel content)

Country	1983	1984	1985	1986 ^p	1987 ^e
	7.000	10 100	10,600	10,700	10,900
Albania (content of ore) ^e	7,900	10,100 84,793	94,531	84,590	82,100
A methodic (content of concentrate)	84,465		21,567	20,803	² 18,230
Rotswana (content of matte)	20,079	20,507 25,940	22,377	14,843	14,700
Progil (content of ore)	17,153	25,940	22,311	22	22
Rurma (content of speiss)	22		187,361	180,381	207,000
Camada3	141,220	192,017		² 7,600	27,600
China	14,300	15,400	27,600	r e _{20,500}	22,800
Colombia (content of ferroallovs)	19,243	24,124	17,013	e36,000	37,500
Cuba (content of oxide, sinter, sulfide)	41,487	35,087	35,458	24,239	24,500
Daniniaan Popublic	21,522	26,371	28,450		² 11,637
Finland (content of concentrate)	5,858	r7,626	9,421	13,102	2,200
a Domiblio	2,400	2,200	r _{2,200}	r _{2,200}	
Greece (recoverable content of ore)	18,500	18,400	20,600	r _{1,600}	13,200
Greece (recoverable content of ore)	54,430	52,474	44,463	58,058	64,000
	50,885	64,293	r e79,800	r e68,100	61,800
New Caledonia (recoverable content of ore)	397	358	468	483	440
Norway (content of concentrate)	15,322	14,993	31,039	14,099	² 8,619
Philippines	2,300	2,300	2,200	2,200	2,200
Poland (content of ore)	22,600	27,600	27,600	r _{35,100}	37,800
South Africa, Republic of	187,000	192,000	198,000	205,000	205,000
TICCD (tent of one)	187,000	14,540	6,127	1,175	
IInited States (content of ore shipped)	r _{1.760}	r _{2,400}	r _{3,100}	r _{3,500}	3,50
Vuggelerie (content of ore)			12,253	r _{11,430}	11,35
Zimbabwe (content of concentrate) ^e	13,250	13,390	12,200	11,100	
Total	r742,123	r846,935	882,250	835,725	867,09

rRevised.

^{*}Insofar as possible, this table represents recoverable mine production of nickel; where data relate to some more highly 1 Insofar as possible, this table represents recoverable mine production of nickel; where data relate to some more highly processed form, the figure given has been used in lieu of unreported actual mine output to provide some indication of the magnitude of mine output, and is so noted parenthetically following the country name, or by footnote. Table includes data available through June 24, 1988.

*Reported figure.**

³Refined nickel and nickel content of oxides and salts produced, plus recoverable nickel in exported mattes and speiss.

Includes a small amount of cobalt not reported or recovered separately.

Table 10.—Nickel: World plant production, by country¹

(Short tons of nickel content)

Country ²	1983	1984	1985	1986 ^p	
Australia ³			1000	1990,	1987
		42,615	44,982	46,404	440.0
Brazil ^s Canada ³ China ^e	9,165	10,127	14.680	14.840	449,8
Colombia ⁵	96,100	114,600	100.300	180,381	14,7
		15,400	24,800	24,800	214,4
Cuba ⁶ Czechoslovakia ⁶ Cominican Rapublia ⁵	14,396	18,810	13,007	e20,500	24,8
Czechoslovakiae	10,298	9,311	9,759	r e9,600	22,8
	3,300	5,000	5,000	5,000	9,8
	23,369	26,698	28,450		4,4
Prance	16,355	16.846	17,258	24,239 19,611	24,2
erman Democratic Republic ^e ermany, Federal Republic of ^{e 7}	5,401	5,751	7,738	11,023	416,9
ermany, Federal Republic of 7	3,300	3,300	3,300	11,023 13,500	8,2
reece	1,320	1,100	800	0,000	3,5
rreecendonesia ⁵ apan ⁸	14,174	17,448	17.584	11,380	4.0.
apan ⁸ ew Caledonia ⁵	5,352	5.320	5,293	4,980	410,14
ew Caledonia ⁵	90,556	98,489	102,175		2,20
orway_	23,939	32,141	39,797	102,186	4102,81
orway	31,547	39,185	41,351	36,377	⁴ 32,5
plande	6,721	3,889	18,732	$\frac{42,118}{2,288}$	449,12
oland outh Africa, Republic of SSR ^e	2,300	2,300	2,300	2,200	-
	^e 18,740	22,597	e22,000	r e28,000	2,10
nited Kingdom	204,000	211,000	r _{215,000}	r _{222,000}	30,20
nited States	25,574	24.582	19,621		222,00
nited States Igoslavia ^{e 5}	33,400	44,933	36,382	34,130 1,651	432,51
mbabwe	r _{1,100}	r2,000	r _{3,100}	r3,500	0.50
	11,184	11,300	10,340	10,725	3,50
Total	F711 000			10,120	10,80
Estimated. Preliminary Revised	^r 711,968	^r 784,742	803,749	861,533	891,599

^pPreliminary. Revised.

Refined nickel plus nickel content of ferronickel produced from ore and/or concentrates unless otherwise specified.

¹Refined nickel plus nickel content of ferronickel produced from ore and/or concentrates unless otherwise specified. Table includes data available through June 24, 1988.

²In addition to the countries listed, North Korea is believed to have produced metallic nickel and/or ferronickel, but information is inadequate for formulation of reliable estimates of output levels. Several countries produced nickel-concountries producing matte include the following, with output indicated in short tons of contained output countries producing matte include the following, with output indicated in short tons of contained nickel: Australia: 1983–54,900 (estimated); 1984–56,330 (estimated); 1985–56,858; 1986–54,078; and 1987–62,728; Botswana: 1983–1986–30,999; and 1987–92,577; 1986–20,913; and 1987–18,230; Indonesia: 1983–20,159; 1984–25,149; 1985–27,498; 1986–10,097; and 1987–9,130.

⁴Reported figure

⁵Nickel content of ferronickel only. (No refined nickel was produced.)

"Nickel content of ferronickel only. (No refined nickel was produced.)

Content of granular nickel oxide and powder only; Cuba also produces nickel oxide sinter and a processed sulfide, but these are not included in order to avoid double counting, as they may be processed to metal elsewhere. Output of sinter processed sulfide was as follows, in short tons: 1983—12,723; 1984—9,804; 1985—7,776; 1986—7,700; and 1987—7,900 (estimated). Output of estimated; and 1987—19,200 (estimated).

Includes nickel content of nickel alloys.

Sincludes nickel content of formsickel and sinkel and

⁸Includes nickel content of ferronickel, refined nickel, and nickel oxide.

Japan.—Oita Nickel Co. Ltd., a subsidiary of Tokyo Nickel Co. Ltd., installed a new roasting furnace that increased its nickel oxide sinter production capacity from 17,000 to 35,000 tons per year. The company processed nickel matte from Indonesia. Nippon Mining Co. Ltd. permanently closed its smelter at Saganoseki in September. The smelter had a capacity of 11,000 short tons of nickel contained in ferronickel.

Korea, Republic of.-Construction was begun on a new utility nickel production facility in Onsan. The plant was to be owned and operated by Korea Nickel Corp., which was jointly owned by Korea Zinc Co. (70%) and Inco, Canada (30%). Construction of the 13,000-ton-per-year plant was ex-

pected to be completed by yearend of 1988. Feedstock was to be nickel oxide or nickel oxide sinter supplied by Inco from Canada or Indonesia. The project was initiated owing to an expected increase in demand for nickel by the domestic stainless steel indus-

Norway.-The Norwegian firm of Leonard, Nielson & Sonner reportedly investigated the possibility of developing a nickel deposit near Ballengen in northern Norway. The deposit was said to contain 2 to 2.75 million short tons of nickel.

Philippines.—The U.S.S.R. reportedly submitted a proposal to participate technically and financially in the Nonoc Mining and Industrial Corp. nickel operation near

651 NICKEL

Surigao.

South Africa, Republic of .- Lonrho gained almost full control of Western Platinum by purchasing Falconbridge's 49% share. Western Platinum produced byproduct nickel and cobalt from its platinum-group metals operations.

U.S.S.R.—Outokumpu Oy won a contract to supply nickel-processing equipment to the Pechenga concentrator project in the Kola Peninsula. The equipment was to be used for modernizing the grinding, flotation, and chemical preparation plants. Reports indicated that production was disrupted following an accident at the Soviet nickel production facility in Norilsk. The Soviets were expanding their line of nickel products. The monchegorsk Severonikel plant, near Murmansk, was to begin production of nickel powder and pellets. New cutting mills also went into operation. The latter action was taken, not only to add value to their nickel products, but to expand the Soviets' potential end market. Formerly their uncut nickel either had to be shipped to Rotterdam for cutting or sent to the few stainless steel producers with facilities large enough to handle it.

Zimbabwe.-The Zimbabwean Government reportedly agreed to provide funds to Bindura Nickel Corp. so that the company

could continue to operate.

TECHNOLOGY

Mining and Processing.—Inco used a continuous loader-crusher combination with a belt-bender conveyor system that could carry ore around corners to institute a continuous mining system.

The Enonkoski Mine, in southeastern Finland, was that country's most modern mine.3 The mine featured the latest in Finnish high-technology mining and mineral processing equipment and systems. Outokumpu the operator, developed a computer-

aided mine planning system.

Cobalt-rich manganese crusts in the Exclusive Economic Zone represented a resource of cobalt, nickel, and other metals. Three promising chemical processes for extracting metals from the crusts were investigated: sulfuric acid oxidation pressureleaching, aqueous sulfur dioxide leaching, and acid sulfation. Each has resulted in metal extractions exceeding 95%. The advantages of each were described.4

Nickel Products.—An electrical wiring cable was developed that was reported to be capable of withstanding temperatures in excess of 1,093° C. The cable had a number of applications in the oil industry where critical electronic circuits must remain functional in a flash fire. The cable was sheathed in high-nickel alloy 825 with a or pure nickel-clad copper conductor.5

Electroplated coatings of nickel alloys were developed as replacements for gold, silver, and palladium in electrical contacts.6 These alloys were NiX, where X equals such materials as antimony, arsenic, boron, germanium, and phosphorus.

In Japan, the adoption of flexible stainless steel pipe to replace galvanized steel pipes for gas pipelines in urban areas was

proposed.7 The stainless steel type 304 pipe reduced the potential for gas leaks that could occur at the numerous fittings required by galvanized pipe.

A method of increasing the activity of nickel as a catalyst more than 100,000 times was developed.8 Nickel normally forms a protective oxide coating when exposed to air, causing it to become resistant to chemical reactions. Giving nickel powder an ultrasonic bath by irradiating it with sound waves at 20 kilohertz agitates the particles so that they are cleaned of their oxide layer by abrasion. A clean metal surface is therefore continuously present to react as a catalyst.

A company that produces heating element wires obtained a license to use a nickel-aluminide produced by Oak Ridge National Laboratory. Early test results encouraged the company to believe that aluminides offered significant advantages as a heating element material. The successful penetration of this material into the heating element market could result in increased nickel consumption.

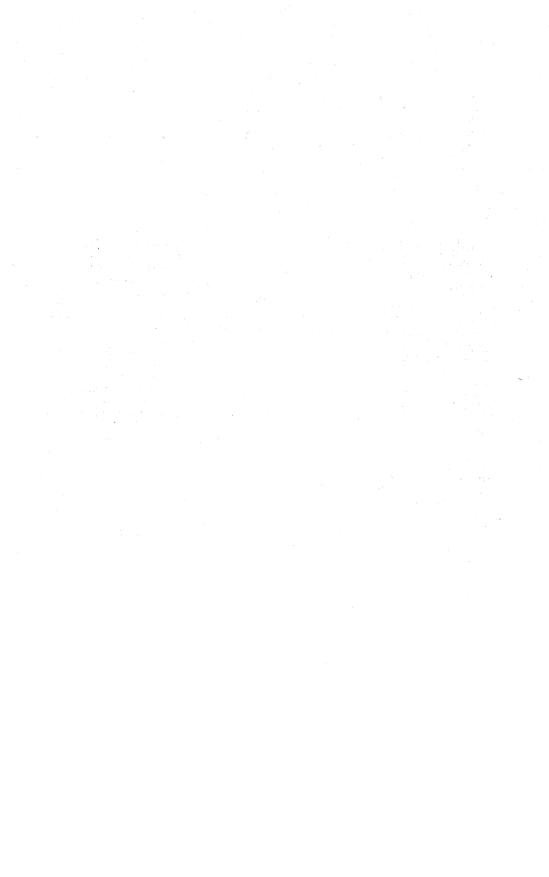
¹Physical scientist, Branch of Ferrous Metals.

⁴Physical scientist, Branch of Ferrous Metals.

²Manshreck-Head, M. Nickel Prices Recover Sharply.

Eng. and Min. J., v. 189, No. 4, 1988, pp. 33-35.

³White, E. L. Enonkoski New Finnish Nickel-Copper Mine Relies on HighTech Systems. Eng. and Min. J., v. 188, No. 4, 1987, pp. 43-47.


⁴Allen, J. P., L. J. Froisland, and M. B. Shirts. Chemical Processing of Cobalt-Manganese Crusts. Paper No. A87-15, Metall Soc AIME Warrendale. PA. 1987, 18 nn.

Processing of Coolin-Manganese Crusts, Paper No. Act 19, Metall. Soc. AIME, Warrendale, PA, 1987, 18 pp. 5-Fielding, R. E. Flash Fires Fail To Damage High-Nickel Alloy-Sheathed Cable Designed for Oil/Gas Plants. Nickel, v. 3, No. 1, Sept. 1987, p.4. ⁶Robbins, M. NiX Coating Replaces Gold, Silver, Palladi-

^{*}Robbins, M. Nix Coating Replaces Gold, Only Stainless Um. Nickel, v. 3, No. 2, Dec. 1987, pp. 4-5.

*Matsuyama, G. Home Gas Lines...Flexible Stainless Pipe. Nickel, v. 3, No. 1, Sept. 1987, p. 5.

*Science News. Sound Waves for Activating Nickel. V. 131, No. 25, June 20, 1987, p. 388.

Nitrogen

By William F. Stowasser¹

U.S. production of anhydrous ammonia containing 82.2% nitrogen increased 12% over production in 1986. The total value of ammonia sold or used was about \$1.2 billion. The value of apparent consumption was about \$1.4 billion. These values were based on average 1987 f.o.b. gulf coast spot prices. The market for ammonia fertilizers. particularly the export market, showed improvement over the low point in demand in 1983. Nitrogen fertilizer demand was dependent on the demand from the agricultural sector. Demand for agricultural products and nitrogen improved in the last half of 1987. Exports of farm products rose and Federal subsidies, although less than those of 1986, added about \$20 billion to farm income. Global crop production declined by about 4% and it is expected that inventories will decline, export demand for U.S. farm

products will increase, and demand for nitrogenous fertilizers will increase. Anhydrous ammonia imports increased to 3.9 million tons, which was substantially more than imports over the past 5 years that ranged from 1.7 to 2.3 million tons per year. Anhydrous ammonia exports increased to 1.5 million tons per year, or about three times those of 1986.

Domestic Data Coverage.—Domestic production data for anhydrous ammonia were developed by the Bureau of the Census, U.S. Department of Commerce, and published monthly under product code 28371 30 in Current Industrial Reports, Inorganic Fertilizer Materials and Related Products, M28B. The Bureau of the Census surveyed approximately 100 firms manufacturing inorganic fertilizer materials. Production data are shown in table 1.

Table 1.—Salient ammonia statistics

(Thousand short tons of contained nitrogen)

	1983	1984	1985	1986	1987 ^p
United States: Production ¹ 2 Exports Imports for consumption Consumption, apparent ² 3 World: Production	11,297	13,368	13,238	11,499	13,284
	298	438	1,010	531	848
	2,169	2,699	2,306	2,048	2,357
	13,719	15,346	14,439	13,305	15,251
	*88,661	*96,930	98,939	P99,275	e102,653

Estimated. Preliminary. Revised.

¹Synthetic anhydrous ammonia and coke oven ammonia.

²Coke oven ammonia not available for 1985-87.

³Includes producers' stock changes in synthetic anhydrous ammonia and coke oven ammonia.

DOMESTIC PRODUCTION

Anhydrous ammonia production was uniform throughout the year. Production, expressed in tons of contained nitrogen, was about 1.1 to 1.2 million tons per month from January through June. Production declined to about 1 million tons per month from July through September. Production increased to 1.2 million tons per month in October, November, and December, to supply a strong export demand that developed for ammonium phosphates. Uniform spot-

selling prices of ammonia, f.o.b. gulf, and a stable consumption pattern contributed to the consistent production level during the year.

Chevron Chemical Co. shut down its 1,195-ton-per-day anhydrous ammonia plant at Pascagoula, MS, in January 1987. Olin Corp. decided that its 92,000-ton-per-year nitrogen-rated urea plant at Lake Charles, LA, will remain closed indefinitely. Ammonia production was not affected.

Table 2.—Fixed nitrogen production in the United States

(Thousand short tons of contained nitrogen)

	1983	1984	1985	1986	1987 ^p
Ammonium compounds, coking plants:					
Ammonia liquor ¹	. 5	_ 5	NA	NA	NA
Ammonium sulfate ¹	46	r ₆₅	NA	NA	NA
Anhydrous ammonia, synthetic plants ²	11,246	13,309	13,238	11,499	13,284
Total	11,297	13,368	13,238	11,499	13,284

^pPreliminary. ^rRevised. NA Not available.

The combining of hydrogen with atmospheric nitrogen to form ammonia is the first step in making nitrogen fertilizers. Ammonia and phosphoric acid reacted with each other to form diammonium phosphate and monoammonium phosphate. Granular ammonium phosphates have become the leading fertilizers in the world. Carbon monoxide produced in ammonia production is converted to carbon dioxide. When it reacts with ammonia at elevated temperature and pressure, urea is formed. Urea is the highest analysis solid nitrogen fertilizer. Ammonia is burned to manufacture ammonium nitrate, passed through a catalyst, and absorbed in water to produce nitric acid. Nitric acid reacting with ammonia forms an ammonium nitrate solution, which is evaporated to a melt and granulated for use as a fertilizer.

Table 3.—Major nitrogen compounds produced in the United States

(Thousand short tons, gross weight)

Compound	1985	1986	1987 ^p
Acrylonitrile	1,173	1,157	1,275
Ammonium nitrate	6,907	5,569	6,416
Ammonium phosphate _	12,373	10,039	12,773
Ammonium sulfate ¹	2,049	2,084	2,183
Nitric acid	7,808	6,561	7,102
Urea	6,478	6,005	7,431

^pPreliminary

Sources: Bureau of the Census and International Trade

Table 4.—Domestic producers of anhydrous ammonia in 1987

(Thousand short tons per year of ammonia)

Company	Location	Capacity
Agrico Chemical Co	Blytheville, AR	407
Do	Donaldsonville, LA	
Do	Verdigris, OK	
Air Products and Chemicals Inc	New Orleans, LA	
Do		
Allied Chemical Corp	Hopewell, VA	
American Cyanamid Co		
Arcadian Corp		
Do		
Borden Chemical Co	Geismar, LA	400
Carbonaire Co. Inc	Palmerton, PA	35
Center Plains Industries Inc	Dumas, TX	
C. F. Industries Inc		420

¹Quarterly Coal Report, U.S. Department of Energy, Jan.-Mar. 1985.

²Current Industrial Reports, M28B, Bureau of the Census.

¹Excludes coke plant ammonium sulfate.

NITROGEN

Table 4.—Domestic producers of anhydrous ammonia in 1987 —Continued (Thousand short tons per year of ammonia)

Company	Location	Capacity
Chevron Chemical Co	El Segundo, CA	20
Do	Finley, WA	
Columbia Nitrogen Corp		
Cominco American Incorporated	Borger, TX	
E. I. du Pont de Nemours & Co. Inc	Beaumont, TX	520
Farmland Industries Inc		
Do		
First Mississippi Corp		340
W. R. Grace & Co Green Valley Chemical Corp		
International Minerals & Chemical Corp		
Laroche Industries	Cherokee, AL	
Mississippi Chemical Corp		
Monsanto Co		
		23
N-Ren Corp Do	Pryor, OK	
Occidental Chemical Co	Tacoma, WA	
Occidental Chemical Co		
Pennwalt Chemical Co	Portland, OR	
PPG Industries Inc		
J. R. Simplot Co		
Sohio Chemical Co		
Tennessee Valley Authority		
Terra Chemicals International Inc	Port Neal, IA	230
Triad Chemical Co		
Union Chemical Co		
Do		
Wycon Chemical Co		
Total		

Source: Economics and Marketing Research Section, Tennessee Valley Authority. World Fertilizer Capacity, Ammonia. Muscle Shoals, AL, July 4, 1987.

CONSUMPTION AND USES

The consumption of nitrogen as nitrogenous fertilizers by U.S. farms recovered in 1987 after the decline in 1986. Consumption in 1987 compared favorably with that of 1985. The lower consumption level in 1986 was due primarily to a 7% decline in planted acreage. Although planted acres declined in 1987, nitrogen application rates probably increased because farm income increased, farm debt had declined steadily since 1982, and farmland prices had improved. Demand for most crops was greater than production. Export demand for nitrogenous fertilizers improved, and thereby affected demand for domestic consumption of ammonia in fertilizer production.

Nitrogen fertilizer plays a critical role in supplying world food and fiber requirements. There is considerable confusion in the industry when political and environmental issues interact to restrain the consumption of nitrogenous fertilizers. Consumption of nitrogenous fertilizers is generally forecast to increase to meet food demands in the world. New ammonia plants are planned to replace obsolete plants and increase capacity. Current oversupplies

were probably caused by miscalculating future demand, but even with excess capacity, nitrogen supplies may have to increase to meet fertilizer and food demands in the future. After decades of fertilizer application to restore the soil's original fertility and after centuries of cropping, the industry is being persuaded to limit application of nitrogen by organizations monitoring the environment. There is concern by environmental organizations that excessive application of nitrogen fertilizers to the soil will increase the probability that nitrogen will be leached into ground waters. Ground water contamination and its effect on human health may decrease nitrogen application rates. The impact of this controversy may have more effect on nitrogen consumption in the future than politically administered acreage reduction programs.

Approximately 80% of ammonia production was used as fertilizer or was used to manufacture fertilizer blends or compounds. An estimated 10% was used to manufacture fibers, plastics, and resins; 4% was used for explosives; and 6% was used in

miscellaneous applications.

STOCKS

Producers' stocks at the beginning of 1987 were 1.5 million tons of contained nitrogen. Stocks gradually declined and stood at less than 1 million tons from April through November. At yearend, producers' stocks were slightly more than 1 million tons of

contained nitrogen. The reduction indicated that producers' expectations for improvement in nitrogen demand were not optimistic. Acreage reduction programs and a hesitant farm economy reduced producer confidence in the market.

PRICES

Ammonia prices at the beginning of the year were \$77 to \$79 per ton, f.o.b. The price improved in the first quarter of the year to \$116 to \$120 per ton. In the second quarter, prices were stable, ranging from \$116 to \$119 per ton. In the third quarter, delivered prices were \$93 to \$95 per ton. By yearend, prices declined to \$83 to \$86 per ton. The price improvement in the export market

was accompanied by higher freight rates for ammonia. Another factor influencing ammonia prices early in the year was the lack of agreement between Spain and the Soviet Union on prices for fourth-quarter shipments from the Soviet Union. In December, lower priced Soviet production was again available and prices declined.

Table 5.—Price quotations for major nitrogen compounds at yearend 1987

(Per short ton)

Compound	Price
Ammonium nitrate: Delivered Corn Belt Ammonium sulfate: F.o.b. Corn Belt Anhydrous ammonia:	\$100-\$120 90- 102
Delivered Corn Belt F.o.b. gulf coast Diammonium phosphate: F.o.b. central	130- 140 203- 206
FloridaUrea:	170- 173
Delivered Corn Belt F.o.b. gulf coast, granulated F.o.b. gulf coast, prilled	125- 135 118- 122 114- 117

Source: Green Markets, Fertilizer Market Intelligence Weekly, Dec. 28, 1987.

FOREIGN TRADE

Anhydrous ammonia exports increased 60% compared with those of 1986. The increase was attributable to an improved world market. The gross weight of exported nitrogen compounds for fertilizer and industrial uses increased 27% in 1987. Diammonium phosphate exports increased 37% in 1987. Exports to China accounted for most of the incremental increase in export tonnage.

Imports of anhydrous ammonia increased 14% in 1987. Imports of urea decreased 28% in 1987. Imports of fertilizer materials declined 9% in 1987.

Of the 6.2 million tons of diammonium phosphate exported in 1987, 1.6 million tons was shipped to China, 655,000 tons was

shipped to Belgium for distribution in Western Europe, and 485,000 tons was exported to Turkey.

The principal supplies of anhydrous ammonia imported into the United States were 1.4 million tons from Canada, 814,000 tons from the U.S.S.R. as part of the barter contract with Occidential Chemical Agricultural Products Inc., 398,000 tons from Trinidad and Tobago, and 525,000 tons from Mexico. All of these suppliers had low-cost natural gas feedstock to produce anhydrous ammonia for international trade. The principal supplies of imported urea were 355,000 tons from the U.S.S.R., 248,000 tons from the Netherlands, and 122,000 tons from Kuwait.

Table 6.—U.S. exports and imports for consumption of major nitrogen compounds in 1987

(Thousand short tons and thousand dollars)

Compound	Gross weight	Nitrogen content	Value
EXPORTS			
ertilizer materials:			
Ammonium nitrate	257	90	NA
Ammonium sulfate	746	157	NA
Anhydrous ammonia	1,031	847	NA.
Diammonium phosphate	6,225	1,121	N.A
Monoammonium phosphate	592	65	N.A
Nitrogen solutions	777	249	N A
Sodium nitrate	10	2	N.A
Urea	1,125	518	N.A
Mixed chemical fertilizers	7	1	NA.
Other ammonium phosphates	28	3	NA
Other nitrogen fertilizers	66	13	N.A
ndustrial chemicals:			
Ammonia, aqua (ammonia content)	3	3	168
Ammonium nitrate	28	9	1,421
Ammonium phosphate	3	1	3,642
Ammonium sulfate	3	1	70
and the second of the second o			
Total	10,901	3,080	¹ 5,307
IMPORTS		. 1	
ertilizer materials:			
Ammonium nitrate	307	107	23,325
	1		73
Ammonium nitrate-limestone mixtures		(2)	
Ammonium nitrate-iimestone mixtures	$28\hat{5}$	60	18,317
Ammonium sulfateAnhydrous ammonia		60 2,326	18,317 228,124
Ammonium sulfate	$28\overline{5} \\ 2,830 \\ 2$	2,326 (2)	18,317 228,124
Ammonium sulfateAnhydrous ammonia	$\frac{285}{2,830}$	60 2,326	18,317 228,124 934 13,110
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate	$28\overline{5} \\ 2,830 \\ 2$	2,326 (2) 23 5	18,317 228,124 934 13,110
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen	285 2,830 2 152 29 515	60 2,326 (²) 23 5 165	18,317 228,124 934 13,110 5,035 27,557
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate	285 2,830 2 152 29 515 22	60 2,326 (2) 23 5 165	18,317 228,124 93, 13,110 5,031 27,557 4,167
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions	285 2,830 2 152 29 515 22 21	60 2,326 (²) 23 5 165 3	18,317 228,124 934 13,110 5,033 27,557 4,167 2,309
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate	285 2,830 2 152 29 515 22 21 102	2,326 (2) 23 5 165 3 16	18,317 228,124 934 13,110 5,033 27,557 4,167 2,309 10,959
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate-sodium nitrate mixtures	285 2,830 2 152 29 515 22 21	60 2,326 (²) 23 5 165 3	18,317 228,124 934 13,110 5,035 27,557 4,167 2,305 10,955 205,260
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate-sodium nitrate mixtures Sodium nitrate Urea Mixed chemical fertilizers	285 2,830 2 152 29 515 22 21 102 2,501 35	2,326 (2) 23 5 165 3 16 1,150	18,31 ² 228,12 ² 93 ⁴ 13,11 ⁶ 5,03 ⁶ 27,55 ⁷ 4,16 ⁷ 2,30 ⁶ 10,955 205,26 ⁶ 4,98 ⁶
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate Codium nitrate Urea Mixed chemical fertilizers Other ammonium phosphates	285 2,830 2 152 29 515 22 21 102 2,501 35 124	2,326 (2) 23 5 165 3 16 1,150 4 14	18,317 228,124 93- 13,110 5,035 27,557 4,167 2,305 10,955 205,260 4,985 18,696
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate Sodium nitrate Urea Mixed chemical fertilizers Other ammonium phosphates Other nitrogen fertilizers Other introgen fertilizers	285 2,830 2 152 29 515 22 21 102 2,501 35	2,326 (2) 23 5 165 3 16 1,150	18,317 228,124 93- 13,110 5,035 27,557 4,167 2,305 10,955 205,260 4,985 18,696
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate-sodium nitrate mixtures Sodium nitrate Urea Mixed chemical fertilizers Other ammonium phosphates Other nitrogen fertilizers didustrial chemicals:	285 2,830 2 152 29 515 22 21 102 2,501 35 124 62	60 2,326 (²) 23 5 165 3 3 16 1,150 4 14	18,317 228,124 934 13,116 5,035 27,557 4,167 2,309 10,955 205,260 4,988 18,696 10,708
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate Sodium nitrate Urea Mixed chemical fertilizers Other ammonium phosphates Other nitrogen fertilizers dustrial chemicals: Ammonium nitrate	285 2,830 2 152 29 515 22 21 102 2,501 35 124 62	60 2,326 (2) 23 5 165 3 16 1,150 4 14 12	18,817 228,124 934 13,110 5,035 27,557 4,167 2,309 10,955 205,266 10,703 18,696 10,703
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate-sodium nitrate mixtures Sodium nitrate Urea Wixed chemical fertilizers Other ammonium phosphates Other nitrogen fertilizers dustrial chemicals: Ammonium nitrate Ammonium phosphate	285 2,830 2 152 29 515 22 21 102 2,501 35 124 62	60 2,326 (2) 23 5 165 3 16 1,150 4 14 12 25	18,317 228,122 934 13,110 5,036 27,557 4,167 2,300 10,958 205,266 4,988 18,696 10,708
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate Urea Mixed chemical fertilizers Other ammonium phosphates Other nitrogen fertilizers dustrial chemicals: Ammonium nitrate Ammonium phosphate Ammonium phosphate Ammonium phosphate Ammonium phosphate Ammonium phosphate Ammonium phosphate	285 2,830 2 152 29 515 22 21 102 2,501 35 124 62 72	60 2,326 (2) 23 5 165 3 16 1,150 4 14 12 25 1 (2)	18,817 228,124 9314 13,110 5,035 27,557 4,167 2,309 10,959 205,260 4,989 18,696 10,703
Ammonium sulfate Anhydrous ammonia Calcium cyanamide or lime nitrogen Calcium nitrate Diammonium phosphate Nitrogen solutions Potassium nitrate Potassium nitrate-sodium nitrate mixtures Sodium nitrate Urea Wixed chemical fertilizers Other ammonium phosphates Other nitrogen fertilizers dustrial chemicals: Ammonium nitrate Ammonium phosphate	285 2,830 2 152 29 515 22 21 102 2,501 35 124 62	60 2,326 (2) 23 5 165 3 16 1,150 4 14 12 25	18,317 228,124 934 13,110 5,035 27,557 4,167 2,309 10,959 205,260 4,989 18,696 10,703

NA Not available.

Total includes chemicals only.

²Less than 1/2 unit.

Source: Bureau of the Census.

WORLD REVIEW

The conflict in the Persian Gulf did not have a significant impact on fertilizer trade. There are two Saudi Arabian ammoniaurea plants, one at Al Jubail and the other at Damman. The other major producers in the region are Bahrain, Kuwait, Qatar, and the United Arab Emirates. Gas feedstock costs could be expected to increase in Western Europe and the United States if the gulf conflict escalated. The link between oil prices and gas feedstock is such that most natural gas contracts equate the price of gas to the price of heavy fuel oil in terms of heating value. Escalation of the gulf war would have an impact on nitrogen production costs and on nitrogen fertilizer trade.

Australia.—Snamprogetti Ltd. planned to construct a 1,357-ton-per-day anhydrous ammonia plant and a 4,600-ton-per-day urea plant at Port Kembla, New South Wales. The plant will use natural gas as the feedstock.

In Western Australia, CSBP and Farmers and Norsk Hydro A/S planned a 1,234-tonper-day nitrogen-rated ammonia plant and a 598-ton-per-day nitrogen-rated urea plant to be 20 miles south of Perth.2

INCITEC announced a 600,000-ton-peryear nitric acid plant and an ammonium nitrate plant at its Newcastle, New South Wales, complex. Construction was scheduled for completion in late 1988.3

China.—M. W. Kellogg Ltd. of the United Kingdom received a contract to construct a 163,000-ton-per-year anhydrous ammonia plant at the ammonia-urea complex at Sichuan. The plant was planned to come onstream in late 1989. Shanxi Chemical Fertilizer Co. commissioned a 980,000-ton-

per-year nitrophosphate plant 500 miles south of Beijing.4

France.—The CdF Chemie Group planned a 330,000-ton-per-day nitric acid plant and a 500,000-ton-per-year ammonium nitrate plant at Rouen.⁵

1004

Table 7.—Ammonia: World production, by country¹

(Thousand short tons of contained nitrogen)

Albanis*	Country ²	1983	1984	1985	1986 ^p	1987 ^e
Albenia*	Afghanistan ^e	9	345	50	T44	44
Algeria		84	88			88
Argentinia						165
Australia						75
Austria* 546 550 550 500 4 Bahrain						3456
Bahrain	Austriae					441
Bangladesh		040	990	550	300	441
Belgium	Bangladesh	197	380	205	490	469
Brazil	Belgium					296
Bulgaria	Brazil					1.049
Burma*						
Canada						
China* 15,200 15,400 16,500 17,000 16,00 Colombia 112 103 110 111 110						
Colombia	Odilada					3,022
Cuba 95 189 *210 *e176 2 Czechoslovakia 651 635 550 677 6 75 75 75 75 75 75 75 75 75 75 75 75 75 72 r ************************************						16,000
Czechoslovakia	Colombia			110	e110	- 98
Denmark	Cuba				r e ₁₇₆	220
Egypt	Czechoslovakia	651	635	580	677	660
Finland 75 76 72 repg France 2,200 e2,600 2,217 2,229 32,22 German Democratic Republic 1,329 1,326 1,329 1,315 1,3 Germany, Federal Republic of 1,877 2,164 2,103 1,731 2,1 Greece 250 250 250 250 250 250 250 250 250 250	Denmark	. 13	(4)	· (4)	(⁴)	
France		713	756	754	750	869
France	Finland Finland	75			r e72	77
German Democratic Republic 1,329 1,326 1,329 1,315 1,336 1,321 1,315 1,336 1,321 1,315 1,336 1,321 1,315 1,336 1,321 1,315 1	France	e _{2.200}			2 229	32,236
Greece	German Democratic Republic					1,380
Greece*	Germany, Federal Republic of				1 731	2,130
Findingstry System System Street System Street System Street System Street System Street System Syste	Greece ^e					280
Iceland	Hungary					867
Indias	Iceland					
Indonesia	Indio5					9
Iran	Indonesia					5,842
Iraq		1,268				2,606
Ireland						75
Israel	raq					66
Italy	reland	324	409	372		440
Japan		59	63	63	e63	68
Japan		1,169	1,334	1.609	1.664	31,579
Korea, Republic of 474 512 487 470 55 Kuwait 345 319 356 497 65 Libya 491 545 453 388 N Mexico 2,134 1,954 2,049 1,766 2,04 New Zealand 48 64 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 61 11 11 1,243 1,220 1,272 1,33 33 38 1 1,211 1,243 1,220 1,272 1,33 1,21 1,243 1,220 1,272 1,33 2,22 1,24<	Japan	1,703	1,839	1.794	1.627	1,715
Korea, Republic of 474 512 487 470 55 Kuwait 345 319 356 497 65 Libya 491 545 453 388 N Mexico 2,134 1,954 2,049 1,766 2,04 New Zealand 48 64 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 61 11 11 1,243 1,220 1,272 1,33 33 38 1 1,211 1,243 1,220 1,272 1,33 1,21 1,243 1,220 1,272 1,33 2,22 1,24<	Korea, North ^e	500				500
Kuwait 345 319 356 497 61 Libya 491 545 453 388 N Malaysia 32 43 59 re330 33 Mexico 2,134 1,954 2,049 1,766 2,00 Netherlands 1,922 2,549 2,630 2,373 3,11 New Zealand 48 64 66 66 6 Nigeria 48 64 66 66 6 Norway 565 702 505 330 331 Pakistan 1,211 1,243 1,220 1,272 1,30 Peru* 94 94 94 66 10 Philippines 22 18 819 919 19 Poland 1,571 1,647 81,382 81,380 2,00 61 Qatar 581 572 580 600 61 61 70 1665 17 17 165 17 1665 17 1665 17 18	Korea, Republic of	474				526
Libya	Kuwait	345	319			637
Malaysia 32 43 59 re330 31 Mexico 2,134 1,954 2,049 1,766 2,00 Netherlands 1,922 2,549 2,630 2,373 3,11 New Zealand 48 64 66 66 8 Nigeria — — — — — — Norway 565 702 505 330 38 Pakistan 1,211 1,243 1,220 1,272 1,30 Peru* 94 94 94 94 66 16 Philippines 22 18 *19 *19 *19 Poland 1,571 1,647 *61,382 *61,380 2,00 Portugal 122 176 170 *165 17 Qatar 531 572 580 600 61 Romania 3,006 3,154 3,175 *3,200 3,06 Saudi Arabia 323 *458 481 514 70 South Africa, Republic of 634 639 *639 *639 *639 *639 *639 *639 *639 *639 *639 *639 *639 <	Libya	491			388	NA
Mexico 2,134 1,954 2,049 1,766 2,00 Netherlands 1,922 2,549 2,630 2,373 3,11 New Zealand 48 64 66 66 6 Nigeria 565 702 505 330 33 Pakistan 1,211 1,243 1,220 1,272 1,30 Peru* 94 94 94 94 66 10 Philippines 22 18 *19 *19 19 19 19 19 19 19 10 11 11 12 11 11 12 12 11 12 12 12 12 12 12	Malaysia	32			r e330	354
Netherlands 1,922 2,549 2,630 2,373 3,11 New Zealand 48 64 66 *66 1 Nigeria	Mexico					2.000
New Zealand 48 64 66 66 8 Nigeria 1 565 702 505 330 33 Pakistan 1,211 1,243 1,220 1,272 1,34 Peru* 94 94 94 66 10 Philippines 22 18 *19 *19 19 Poland 1,571 1,647 *1,382 *1,380 2,01 20 12 170 *165 17 *17 *165 17 *165 <td>Netherlands</td> <td></td> <td></td> <td></td> <td></td> <td>3,117</td>	Netherlands					3,117
Nigeria						80
Norway 565 702 505 330 *38 Peru* 1,211 1,243 1,220 1,272 1,36 Prilipipines 22 18 *19 *19 *19 Poland 1,571 1,647 *1,382 *1,380 2,01 Portugal 122 176 170 r *615 17 Qatar 531 572 580 600 61 Romania 3,006 3,154 3,175 *3,200 3,08 Saudi Arabia 323 *458 481 514 70 Spain *58 738 664 512 48 Spri Lanka 69 *677 *63 58 Sweden 54 54 20 51 5 Sweden 36 33 33 33 33 Syria 125 *124 146 151 10 Taiwan 342 296 228 292 26 Trinidad and Tobago 1,995 1,990 1,997 1,900 1,900 20 USS R 1869 1850 1869 1850 20 20 20 20 20 <td>Nigeria</td> <td></td> <td>04</td> <td></td> <td>00</td> <td>110</td>	Nigeria		04		00	110
Pakistan 1,211 1,243 1,220 1,272 1,30 Peru* 94 94 94 66 10 Philippines 22 18 *19 *19 *19 Poland 1,571 1,647 *1,382 *1,380 2,01 Portugal 122 176 170 *6165 17 Qatar 531 572 580 600 61 Romania 3,006 3,154 3,175 *3,200 3,0 Saudi Arabia 323 *458 481 514 7 South Africa, Republic of 634 639 *639 *639 *639 Spain *558 738 664 512 45 Sri Lanka 69 *97 *33 Sweden 54 54 20 51 5 Switzerland* 36 33 33 33 4 Syria 125 *124 146 151 10 Taiwan 342 296 228 292 26 Trinidad and Tobago 1,095 1,190 1,197 *1,200 1,24 Turkey 30 30 2	Norway	565	702	505	220	
Peru* 94 94 94 66 10 Philippines 22 18 **19 **19 **19 Pol Pol Pol **10 **13 **19 **19 **19 Pol Pol **10 **13 **13 **12 176 170 **165 17 **32 **3200 30 0 60 60 60 60 60 60 60 63 48 51 40 51 42 51 42 51 42 51 42 52 51 42 52						
Philippines 22 18 e19 e19 17 Poland 1,571 1,647 e1,382 e1,380 2,01 Poland 1,571 1,647 e1,382 e1,380 2,01 Portugal 122 176 170 re165 17 Portugal 3,006 3,154 3,175 e3,200 3,00 61 Romania 3,006 3,154 3,175 e3,200 3,00 83,006 A4 Arabia 323 respectively. The second of the						
Poland 1,571 1,647 e1,380 2,01 Portugal 122 176 170 re165 17 Qatar 531 572 580 600 6 Romania 3,006 3,154 3,175 e3,200 3,0 Saudi Arabia 323 rest 481 514 70 South Africa, Republic of 634 639 e639 e609 e7 e33						100
Portugal 122 176 170 r e 65 17 Qatar 531 572 580 600 61 Romania 3,006 3,154 3,175 83,200 3,05 Saudi Arabia 323 r 458 481 514 70 South Africa, Republic of 634 639 r 77 r 83 r 78 r 78 <	Poland					·
Qatar 551 572 580 600 61 Romania 3,006 3,154 3,175 *3,200 3,00 Saudi Arabia 323 *458 481 514 70 South Africa, Republic of 634 639 *639 *639 60 Spain *558 738 664 512 45 Sri Lanka 69 *77 *33 - Sweden 54 54 20 51 5 Switzerland* 36 33 33 33 35 Syria 125 *124 146 151 10 Taiwan 125 *124 146 151 10 Trinidad and Tobago 1,095 1,190 1,197 *1,200 1,24 USS R 1869 1869 180 20 239 209 20	Poeturel				1,380	2,018
Romania 3,006 3,154 3,175 e3,200 3,05 Saudi Arabia 323 f458 481 514 70 South Africa, Republic of 634 639 e639 e77 e33 s3 33 33 33 33 34 s3 e73 e73 e73 </td <td>Tortugal</td> <td></td> <td></td> <td></td> <td></td> <td>170</td>	Tortugal					170
Saudi Arabia 323 7458 481 514 70 South Africa, Republic of 634 639 669 669 669 Spain 7558 738 664 512 48 Sri Lanka 69 677 63 52 Sweden 54 54 20 51 5 Switzerlande 36 33 33 33 33 Syria 125 7124 146 151 10 Taiwan 342 296 228 292 26 Prinidad and Tobago 1,095 1,190 1,197 1,200 1,24 USS R 387 320 239 209 20 20	atar					618
Saudi Arabia 323 *458 481 514 7(South Africa, Republic of 634 639 *639 *639 669 Spain *558 738 664 512 45 Sri Lanka 69 *77 *33 *3 Sweden 54 54 20 51 5 Switzerlande 36 33 33 33 34 Syria 125 *124 146 151 10 Taiwan 342 296 228 292 26 Trinidad and Tobago 1,095 1,190 1,197 *1,200 1,24 Vurkey 307 320 239 209 20 US.S.R 1869 875 50 699 20	tomania	3,006		3,175	e3,200	3,090
South Africa, Republic of 634 639 669 669 669 669 664 512 46 Spain - 7558 738 664 512 46 Sri Lanka 69 677 63 - 69 77 63 - Sweden 54 54 20 51 5 54 54 20 51 5 Switzerlande 36 33 33 33 33 33 33 33 33 33 33 33 34 20 151 10	Saudi Arabia	323	^r 458	481		702
Spain	South Africa, Republic of	634		e639		603
Sri Lanka 69 e77 e33 Sweden 54 54 20 51 5 Switzerlande 36 33 33 33 33 34 Syria 125 r124 146 151 10 Taiwan 342 296 228 292 26 Trinidad and Tobago 1,995 1,190 1,197 e1,200 1,24 Turkey 307 320 239 209 20 USS.R 1869 150 200 202 126	Spain	r ₅₅₈	738	664	519	495
Sweden 54 54 20 51 5 Switzerlande 36 33 33 33 4 Syria 125 7124 146 151 10 Faiwan 342 296 228 292 26 Trinidad and Tobago 1,095 1,190 1,197 e1,200 1,24 Turkey 307 320 239 209 20 US.S.R 1869 150 306 32 239 20 20	Sri Lanka				012	400
Switzerland** 36 33 33 33 4 Syria	Sweden				51	50
Syria 125 r124 146 151 10 Taiwan 342 296 228 292 26 Trinidad and Tobago 1,095 1,190 1,197 1,200 1,24 Turkey 307 320 239 209 20 USSR 18,699 1,510 20 29 20 20	Switzerland ^e					
Taiwan 342						43
Trinidad and Tobago	raiwan					102
Turkey 307 320 239 209 20 U.S.S.R 18 699 19 510 20 029 21 cgr 22 02	Prinided and Tobago					262
U.S.R 18 629 19 510 20 062 21 605 22 05						1,242
United Arab Emirates 18,029 19,510 20,062 21,605 22,05						200
Onited Arab Emirates 249 311 320 39	J.D.D.IL	18,629				22,050
	Jinved Alao Emiraves		249	311	320	333

See footnotes at end of table.

Table 7.—Ammonia: World production, by country¹ —Continued

(Thousand short tons of contained nitrogen)

	 Country ²	191		1983	1984	1985	1986 ^p	1987 ^e
		100						
United Kingdom	 		بالاست	1.896	2,024	1,948	1,530	31,560
	 			11,297	13,368	13,238	11,499	313,284
Venezuela ^e	 			3418	510	r ₅₄₀	^r 720	577
Yugoslavia ^e				3452	440	460	440	847
	 			31	31	19	27	330
Zimbabwe	 			78	76	76	66	3 ₇₂
Total	 			r88,661	r96,930	98,939	99,275	102,653

rRevised. Preliminary. eEstimated. NA Not available.

⁴Revised to zero. ⁵Data are for years beginning Apr. 1 of that stated.

TECHNOLOGY

An increase in nitrogenous fertilizer consumption probably will be required in future years, particularly to support food production in developing countries where the demand will occur. A compromise may become necessary between using nitrogenous fertilizers to maintain and increase food production and the need to minimize nitrates in drinking water. To alleviate high levels of nitrates in drinking water, a number of solutions have been proposed: (1) blending with water that has a low nitrate concentration, (2) storing of water in reservoirs to permit natural denitrification mechanisms time to take effect, and (3) replacing the high nitrate water source with one with acceptable nitrate levels. In the event that these options are not viable, water treatment plants may be the only economically acceptable option for controlling nitrate levels. According to the British Sulphur Corp., two processes show promise for nitrate removal: single bed, strong-base anion exchange and continuous fluidizedbed biological denitrification. Commercial strong-base ion exchange resins, normally in the chloride form, are used to remove nitrates. Spent resin is regenerated with a sodium chloride solution and rinsed with water, prior to returning to the system.

Both fixed-bed and continuous-loop ion exchange plants have been used in the United Kingdom for removing nitrates. In the absence of dissolved oxygen, biological denitrification reduces nitrates. A biodegradable carbon substrate that may be methanol, ethanol, or acetic acid must be added to sustain bacterial growth and a supply of phosphate is also necessary for good biological activity. Fixed bed and bacterial floc blankets have been successfully used; however, the fluidized bed system is preferred.

In the United States, minimum tillage is practiced to minimize contaminating ground water. Deep plowing increases percolation of chemical residues into ground water sources. Conservation (minimum) tillage ties up surface-applied nitrogen. The efficiency of the minimum-till practice is effective in stopping the downward movement of nitrogen. The risk of ammonia volatilization into the air when soil conditions are dry can be reduced by injecting liquid nitrogen into the soil.

[&]quot;Table includes data available through May 20, 1988.
"In addition to the countries listed, Vietnam has a nitrogen (N content of ammonia) production capacity of about 60,000 short tons per year; it is not known at what output level the plant is operating.

3Reported figure.

⁶Synthetic anhydrous ammonia and coke oven ammonia. Coke oven ammonia data not available for 1985 and 1986.


¹Physical scientist, Branch of Industrial Minerals. ²Nitrogen (London). Plant and Project News. No. 165. Jan.-Feb. 1987, p. 13.

3——. No. 170, Nov.-Dec. 1987, p. 12.

Page 11 of work cited in footnote 2.

⁵Page 13 of work cited in footnote 3.

No. 168. July-Aug. 1987, pp. 38-41.

Peat

By James P. Searls¹

Peat production in the United States increased slightly in 1987. In decreasing order of quantity, Florida, Michigan, Illinois, Iowa, and Indiana were the major peat-producing States. Reed-sedge peat was the most common kind produced, followed by humus, sphagnum moss, and hypnum moss. Peat sold in both bulk and packaged forms by domestic producers decreased 8% in quantity and increased 9% in value. Apparent consumption was essentially unchanged. Imports for consumption, primarily from Canada, decreased 7% but represented about one-third of apparent consumption. The predominant end use of peat was for agricultural and horticultural purposes. One peatland owner started con-

struction of a 23-megawatt-electric powerplant, and another owner was in the permitting phase to establish a 200-megawatt-electric powerplant.

Domestic Data Coverage.—Domestic production data for peat are developed by the Bureau of Mines from a voluntary survey of U.S. peat operations. Of the 114 operations to which a survey request was sent, 8 reported that they were out of business. Of the remaining 106 mines, 97 responded, representing 92% of the total production shown in table 1. Production for the nine nonrespondents was estimated using prior year production levels adjusted for regional production trends and inflation.

Table 1.—Salient peat statistics

	1983	1984	1985	1986	1987
United States: Number of active operations Production	94 704 725 223 503 \$18,667 \$25.73 \$18,34 \$29.00 419 1,042 438 *244,459	101 800 814 373 441 \$19,907 \$24.47 \$20.47 \$27.85 485 1,146 577	99 839 882 396 486 \$21,892 \$24.81 \$20.29 \$28.49 477 1,255 638 229,226	92 r912 r1,038 r522 516 r\$23,988 r\$23.11 r\$16.44 \$29.86 553 r1,548 r555 P236,505	92 955 958 499 459 \$26,170 \$27.31 \$18.32 \$37.07 515 1,544 481 e252,465

eEstimated Preliminary. rRevised.

Apparent consumption equals U.S. primary production plus imports minus exports plus adjustments for industry stock changes.

DOMESTIC PRODUCTION

Peat was produced by 92 active domestic operations with a wide variation in production levels. Ten operations produced more than 25,000 short tons per year. There were five reed-sedge operations and one humus operation in Florida, two reed-sedge operations and one humus operation in Michi-

gan, and one reed-sedge operation in Illinois. These 10 operations accounted for 50% of the total production. Irrespective of the size of the operation, reed-sedge production accounted for 60% of total output in 1987, humus was 30%, sphagnum moss was 5%, and hypnum moss was 5%.

Table 2.—Relative size of peat operations in the United States

	Size	in short	tons pe	er year	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		tive ations	(thou	iction isand tons)
					 k	1986	1987	1986	1987
25,000 and over						*11 8 10	10 13 7	r ₄₈₂ 155 122	475 250 83
5,000 to 9,999						13 r ₁₅ 11	9 19 9	85 r ₄₆ 14	67 60 13
Under 1,000 Total ¹	 				 	 92	25	7 F912	955

Revised.

¹Data may not add to totals shown because of independent rounding.

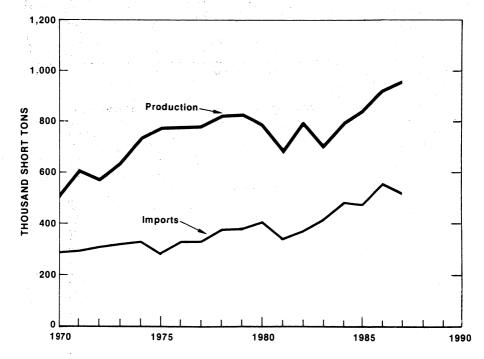


Figure 1.—Production and imports of peat in the United States.

CONSUMPTION AND USES

U.S. peat producers' domestic sales decreased 8% by weight. The sales distribution pattern was of 66% reed-sedge, 28% humus, 3% hypnum moss, 2% sphagnum moss, and 1% other. Sales of unclassified peat were entirely from stocks. The largest end use was for general soil improvement, which accounted for 64% of total sales. Approximately 71% of that was sold in packages, and the rest was sold in bulk form. Large percentages of each of the four types of peat were sold into this end use.

The sales of reed-sedge and humus in bulk form to potting soil manufacturers and nurseries accounted for an additional 27% of total sales. Sales increased for peat that was used as an earthworm culture medium, for golf courses, mixed fertilizers, potting soils, and unclassified end uses. Peat sales decreased for general soil improvement, mushroom beds, nurseries, as root packing for flowers, trees, and shrubs, as seed inoculant, and for vegetable growing.

Table 3.—U.S. peat sales by producers in 1987, by use

	In b	ulk	In pac	kages	Tot	al ¹
Use	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Earthworm culture medium	_ 3,439	\$64	263	\$7	3,702	\$70
General soil improvement	_ 176,905	2,908	439,138	11.006	616,043	13.915
Golf courses	29,825	783	259	13	30,084	797
Ingredient for potting soils	144 992	2,785	13,682	896	158,674	3.681
Mixed fertilizers	9 744	130	20,002		9.744	130
Mushroom beds	1,248	46	13		1.261	47
Nurseries	115 655	1,816	665	69	116,320	1.884
Packing flowers, plants, shrubs, etc	717	10	000	05	717	1,004
Seed inoculant	942	335	5,238	5.036	6.180	5,371
Vegetable growing	1.194	26	125	3	1.319	29
Other	14,128	236			14,128	236
Total	498,789	9,139	459,383	17,031	958,172	26,170

¹Data may not add to totals shown because of independent rounding.

Table 4.—U.S. peat production and sales by producers in 1987, by State

. 3		Pro- duction		Sales	
State	Active oper- ations	Quantity (thou- sand short tons)	Quantity (thou- sand short tons)	Value ¹ (thou- sands)	Percent pack- aged
California	2	w	w	w	28
Colorado	3	w	W	Ŵ	7
Florida	13	353	363	\$6,068	15
Georgia	2	W	w	w	99
IIIInois	. 5	w	ŵ	w	96
Indiana	5	45	44	w	68
Iowa	3	w	24	ŵ	59
Maine	2	ŵ		••	00
Maryland	ī	ŵ	w	w	22
Massachusetts	ī	ŵ	ŵ	ŵ	100
Michigan	15	240	281	5,290	73
Minnesota	5	35	30	3,250 W	87
Montana	ž	w	w	w	. 01
New Jersey	ž	w	32		ou T
New York	Ä	**	34	614	87
North Carolina	9	w	w	34	7.5
North Dakota	- 4	w	w	W	62
Ohio	1	777		W	7
Pennsylvania	ွဲ	W	w	W	
South Carolina	8	20	18	513	. 23
Washington	į	w	w	w	50
Washington	4	_8_	.7	191	
West Virginia	1	w	w	w	
Wisconsin	4	17	9	W	33
Total ² or average	92	955	958	26,170	48

W Withheld to avoid disclosing company proprietary data; included in "Total."

Values are f.o.b. producing plant.

²Data may not add to totals shown because of independent rounding.

Table 5.—U.S. peat sales by producers in 1987, by use

	-								
	S	Sphagnum moss	s	H	Hypnum moss	SS		Reed-sedge	
:	ď	Quantity	Velue	Quantity	ntity	Volue	Qua	Quantity	Velue
Use	Weight (short tons)	Volume ¹ (cubic yards)	thon- sands)	Weight (short tons)	Volume (cubic yards)	(thou-sands)	Weight (short tons)	Volume (cubic yards)	(thou-sands)
Barthworm culture medium General soil improvement General soil improvement Ingredient for potting soils Mixed fertilizers Mushroom beds Packing flowers, plants, shrubs, etc Seed incoulant Seed incoulant Other	413 15,523 744 166 13 27 27 27 5,400	1,387 83,586 2,480 1,016 100 100 18,000	\$13 852 20 20 12 12 2 2 2 2 2 2 1 2 2 12 12 12 12 12	450 20,106 5,450 650 1,200 700 400 400	1,000 1,500 1,500 1,500 1,600 1,000 1,000 1,000	\$12 647 198 15 45 45 16 10	$\begin{array}{c} 2,139\\ 452,350\\ 15,222\\ 132,758\\ \hline -\overline{48}\\ 23,993\\ 300\\ 5,780\\ 5,780\\ 484\\ 152\\ \end{array}$	3,990 947,622 31,290 267,314 567,314 500 11,716 968 420	\$38 10,058 3,258 3,258 7 7 5,361 12 3
Total ²	22,313	106,774	1,027	29,801	73,101	696	633,226	1,317,170	19,628
		Humus			Other			Total ²	
	Weight (short tons)	Quantity it Volume t (cubic yards)	Value (thou-sands)	Qua Weight (short tons)	Quantity ght Volume ort (cubic s) yards)	Value (thousands)	Weight (short tons)	Quantity ht Volume t (cubic	Value (thou-sands)
Barthworm culture medium General soil improvement Golf courses. Ingredient for potting soils Marked fertilizers Mushroom beds Mushroom beds Packing flowers, plants, shrubs, etc Seed incculant Vegetable growing Other	700 128,064 8,668 25,100 9,744 91,600 390 25	1,200 201,955 16,496 42,973 16,240 152,900 680 7779 50	\$8 2,357 273 396 130 1,280 - 6 6	8,151	40,755		3,702 616,043 30,084 158,674 9,744 1,261 116,332 6,180 6,180 1,319	7,577 1,283,963 62,266 312,803 16,240 3,202 207,854 1,280 1,2716 2,947 60,225	\$70 13,915 797 3,681 130 47 1,884 5,371 29 29
Total ²	264,681	433,273	4,455	8,151	40,755	92	958,172	1,971,073	26,170
147 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									

¹Volume of nearly all sphagnum moss was measured after compaction and packaging.
²Data may not add to totals shown because of independent rounding.
³Less than 1/2 unit.

PEAT

Table 6.—U.S. peat production and producers' yearend stocks in 1987, by kind

Kind	Active operations	Production (short tons)	Percent of production	Yearend stocks (short tons)
Sphagnum moss Hypnum moss Reed-sedge Humus Other	. 8	50,441 41,703 574,349 288,272	5.3 4.4 60.1 30.2	40,471 22,027 322,137 94,180 2,500
Total	¹ 92	954,765	100.0	481,315

¹Data do not add to total shown because some plants produce multiple kinds of peat.

PRICES AND SPECIFICATIONS

The average reported price per ton for all types of peat, f.o.b. plant, increased 18% in 1987 compared with that of 1986. The unit price for bulk peat increased 11% over that

of 1986, and the unit price for packaged peat increased 24% over that of 1986. The price per ton of imported peat increased nearly 10% over that of 1986.

Table 7.—Prices1 for peat in 1987

(Dollars per unit)

	Sphag- num moss	Hypnum moss	Reed- sedge	Humus	Other	Average
Domestic:						
Bulk:						
Per short ton	22.18	32.29	21.76	13.68	11.24	18.32
Per cubic yard	7.96	13.90	10.67	8.51	2.25	9.52
Packaged or baled:	,		20.01	0.01	2.20	5.52
Per short ton	75.03	32.63	37.08	30.91		37.07
Per cubic yard	10.39	12.92	17.60	17.43		16.84
Average:			21100			10.04
Per short ton	46.01	32.51	31.00	16.83	11.24	27.31
Per cubic yard	9.62	13.25	14.90	10.28	2.25	13.28
Imported, total, per short ton ²	137.93	XX	XX	XX	XX	137.93

XX Not applicable.

Table 8.—Average density of domestic peat sold in 1987

(Pounds per cubic yard)

Sphag- num moss	Hypnum moss	Reed- sedge	Humus	Other
718	861	981	1 245	400
277				
418	815	961	1,222	$\overline{400}$
	num moss 718 277	718 861 277 792	num moss nyphum sedge 718 861 981 277 792 949	num moss Hypnum moss Reed-sedge Humus 718 861 981 1,245 277 792 949 1,128

FOREIGN TRADE

Peat imports for domestic consumption decreased 7% in quantity but increased nearly 2% in value compared with those of 1986. More than 99% of imported products was sphagnum moss peat from Canada. Sphagnum moss peat was in demand for its special qualities, consumer loyalty to a brand name, and inadequate domestic pro-

duction. Domestic sphagnum moss peat production was insufficient to satisfy domestic demand. Almost 41% of the imported peat entered the United States through two customs districts in the State of New York. Large quantities also entered through customs districts in Maine, Michigan, Montana, and North Dakota.

¹Prices are f.o.b. plant.

²Average customs value.

Table 9.—U.S. imports for consumption of peat moss in 1987, by country

	a .	· · · · · · · · · · · · · · · · · · ·	Poultry stable-	y- and grade	Ferti gra		То	tal
		Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Canada Mexico Netherla New Zeal Philippin Other!	and		13,928 178 17 160 34 56	\$1,822 21 6 24 4 12	$499,915$ $\overline{74}$ 12 $\overline{141}$	\$69,034 	513,843 178 91 172 34 197	\$70,856 21 17 27 4 41
Total ²			 14,373	1,890	500,142	69,076	514,515	70,966

¹Includes Belgium, Cameroon, China, Denmark, the Federal Republic of Germany, Guatemala, Ireland, Japan, Morocco, Sweden, and the United Kingdom.

**Poata may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 10.—U.S. imports for consumption of peat moss in 1987, by customs district

	Poultr stable-		Fertil gra		Tot	al ¹
Customs district	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Boston, MA	37	\$5			37	\$5
Boston, MA	5,305	825	53,244	\$6,873	58,549	7.698
Buffalo, NY =	7,302	706	43,442	6,025	50,744	6.731
Buffalo, NY ² Detroit, MI ² Duluth, MN ²	1,502		3,436	561	3,436	561
Duluth, MN ²			85,137	14,822	85,137	14,822
Great Falls, MT ²	·		12	3	12	21,022
Honolulu, HI	178	$\overline{21}$	12	0	178	2
Laredo, TX	77	16			77	16
Los Angeles, CA Miami, FL	129	16			129	16
Miami, FL	129	10	96	18	96	18
New York, NY	388	126	30	10	388	120
Norfolk, VA ²		7	151,129	17.921	151.154	17.92
Ogdensburg, NY ²	25	,	70.273	11,084	70,273	11,08
Pembina, ND ²				5,704	56,337	5.74
Portland, ME ²	376	41	55,961		20,692	2,87
St. Albans, VT ²	29	4	20,663	2,867 5	20,692 35	2,01
San Francisco, CA		.==	35		585	13
San Juan PR ²	525	117	60	. 15	969 1	104
Savannah, GA	1	4		0.170	10.054	3,17
Seattle, WA2			16,654	3,179	16,654	3,17
Tampa, FL	1	1			. 1	
Total ¹	14,373	1,890	500,142	69,076	514,515	70,960

¹Data may not add to totals shown because of independent rounding.

²Predominantly of Canadian origin.

Source: Bureau of the Census.

WORLD REVIEW

There were moderate increases in the level of peat used for fuel in Ireland and the U.S.S.R. This caused a 7% rise in estimated world peat production. Reinterpretation of data changed the level of the U.S.S.R. fuel peat consumption and a decrease in world peat production.

PEAT

Table 11.—Peat: World production, by country¹

(Thousand short tons)

11 11 15 15 16 24 2,991 25 1,577 306 77 106 8,746 22 496	5 11 5 70 6 44 8 378 1 3,461 5 1,671 6 318 7 77 6 10,68 6 2,887 2 22 5 500	7 6 7 6 7 6 8 1 6 8 1 6 8 1 6 8 1 6 8 1 6 8 1 6 8 1 6 8 1 6 8 1 6 1 6	14 800 55 385 3,500 230 2,400 270 77 589 56,331
11 *55(33 24\$ 2,999 250 1,577 300 77 1006 8,746 22 496	5 11 5 70 5 44 8 378 1 3,461 5 1,671 6 318 7 7 7 6 2,887 8 22 5 500	14 restite 14 restite 14 restite 14 restite 14 restite 15 restite	14 800 55 385 3,500 230 2,400 270 77 589 56,331 22 440
11 *55(33 24\$ 2,999 250 1,577 300 77 1006 8,746 22 496	5 11 5 70 5 44 8 378 1 3,461 5 1,671 6 318 7 7 7 6 2,887 8 22 5 500	14 restite 14 restite 14 restite 14 restite 14 restite 15 restite	14 800 55 385 3,500 230 2,400 270 77 589 56,331 22 440
248 2,991 250 1,576 306 77 106 8,746 22 496	0 705 44 3 376 1 3,461 0 220 5 1,671 6 313 77 6 106 6 2,897 2 22 500	1 resident	800 55 385 3,5000 230 2,400 270 77 589 56,331 22 440
248 2,991 250 1,576 306 77 106 8,746 22 496	5 44 3 378 1 3,461 2 220 5 1,671 313 7 77 6 106 6 2,887 2 22 500	3 r e ₃₈₅ r e _{3,500} 240 2,223 271 77 106 5,566 22 440	55 3,500 230 2,400 270 77 77 589 56,331 22 440
2,991 250 1,575 305 77 106 8,746 22 496	3,461 3,461 5 1,671 5 313 7 77 6 106 6 2,897 2 22 500	2,223 271 77 106 5,566 22 440	3,500 230 2,400 270 77 589 56,331 22 440
2,991 250 1,575 305 77 106 8,746 22 496	3,461 3,461 5 1,671 5 313 7 77 6 106 6 2,897 2 22 500	2,223 271 77 106 5,566 22 440	3,500 230 2,400 270 77 589 56,331 22 440
250 1,575 305 77 106 8,746 22 496	220 5 1,671 5 313 7 77 6 106 6 2,897 2 22 500	240 2,223 271 77 106 5,566 22 440	230 2,400 270 77 *89 *56,331 22 440
1,577 305 77 106 8,746 22 496	5 1,671 5 313 7 77 6 106 6 2,897 2 22 5 500	2,223 271 77 106 5,566 22 440	2,400 270 77 589 56,331 22 440
305 77 106 8,746 22 496	313 7 77 6 106 6 2,897 2 22 6 500	271 77 106 5,566 22 440	589 56,331 22 440
305 77 106 8,746 22 496	313 7 77 6 106 6 2,897 2 22 6 500	271 77 106 5,566 22 440	589 56,331 22 440
77 106 8,746 22 496	7 77 6 106 6 2,897 2 22 6 500	77 106 5,566 22 440	589 56,331 22 440
106 8,746 22 496	3 106 3 2,897 2 22 5 500	106 5,566 22 440	⁵ 89 ⁵ 6,331 22 440
8,746 22 496	2,897 2 22 5 500	5,566 22 440	⁵ 6,331 22 440
8,746 22 496	2,897 2 22 5 500	5,566 22 440	⁵ 6,331 22 440
22 496	2 22 5 500	22 440	22 440
496	500	440	440
			J 14
33	99	99	
33			
		99	
1	1	1	1
220			220
61			58
66	44	66	66
200,000			210,000
19,300	17,600	21,500	26,500
7			
	828	912	5 955
11	11		
roos 015	290 292	226 EVE	959 405
			252,465 36,822
3 1 -	19,300 3 789 1 11 9 ^r 235,915	0 19,300 17,600 3 789 828 1 11 11 0 ^r 235,915 229,226	0 19,300 17,600 21,500 3 789 828 912 1 11 11

Preliminary. ^eEstimated. rRevised.

TECHNOLOGY

Construction was started at midyear on a commercial peat-fired electric powerplant. A Belgium engineering firm, a Texas venture capital firm, and a Maine peat producer, Peat Products of America Inc., combined resources to construct and operate the 22.8megawatt-electric Down East Peat powerplant near Deblois, ME.2 The output will be purchased by a local power company. A North Carolina peatlands owner, First Colony Farms Inc., applied for environmental permits and regulatory approvals for a 200-megawatt-electric powerplant on the Albemarle-Pamlico Peninsula.

¹Table includes data available through June 10, 1988.

In addition to the countries listed, Austria, Iceland, and Italy produce negligible quantities of fuel peat, and the German Democratic Republic and Venezuela are major producers, but output is not officially reported, and available information is inadequate for formulation of reliable estimates of output levels.

³Excludes data from some States.

⁵Reported figure.

¹Physical scientist, Branch of Industrial Minerals. Peat Products of America Inc. (Bangor, ME). DEP Breaks Ground on Electric Power Plant. Press Release, July 11, 1987, 1 p.

Perlite

By Arthur C. Meisinger¹

U.S. production of processed perlite increased 5% in quantity and value. Expanded perlite sales, however, decreased slightly in quantity with average value per short ton about the same as that of 1986. The quantity of processed perlite imported from Greece continued to slowly increase, primarily for use in expanding plants along the eastern seaboard. Construction-related uses for expanded perlite declined 10% but continued to account for most of the domestic perlite market with 66% of total sales.

Domestic Data Coverage.—Domestic production data for perlite are developed by the Bureau of Mines from two separate volun-

tary surveys, one for domestic mine operations and the other for plant operations. Of the 14 mining operations to which a request was sent, all responded; 13 were active, representing 100% of the total processed ore sold and used shown in table 1. Of the 66 expanding plants canvassed, 62 were active; of these, 39 plants, or 63%, responded, representing 50% of the total expanded perlite sold and used shown in table 1. Plant data for the 23 nonrespondents were estimated using reported prior-year production levels adjusted by trends in employment and other guidelines.

Table 1.—Perlite mined, processed, expanded, and sold and used by producers in the United States

(Thousand short tons and thousand dollars)

			Pı	rocessed perl	ite		Expanded perlite			
Year	Perlite mined ¹	Sold to expanders		Used a plant to expanded	make	Total quantity sold and	Quantity produced	Sold an	d used	
		Quantity	Value	Quantity	Value	used	produced	Quantity	Value	
1983 1984 1985 1986 1987	608 653 678 735 778	293 310 309 303 333	9,942 10,395 10,714 9,536 10,471	181 188 209 204 200	5,722 6,243 6,821 6,110 6,023	474 498 518 507 533	387 440 461 480 464	385 439 459 479 466	63,500 74,000 81,000 83,700 81,800	

¹Crude ore mined and stockpiled for processing.

DOMESTIC PRODUCTION

Processed Perlite.—Perlite mined for processing from 13 operations by 12 companies in 6 Western States totaled 778,000 tons. New Mexico, with five mine operations, accounted for 86%. The remaining 14% came from Arizona, California, Colorado, Idaho, and Nevada.

Production of processed perlite sold and used increased 5% in quantity and value

compared with that of 1986. New Mexico operations accounted for 82% of the U.S. total.

Ore producers were Guzman Construction Co.; Harborlite Corp.; Nord Perlite Co., a subsidiary of Nord Resources Corp., and Perlite Co., a subsidiary of Wonder Industries, in Arizona; American Perlite Co. in California; Persolite Products Inc. in Colo-

rado; National Perlite Co. in Idaho; Delamar Perlite Co. in Nevada; and Grefco Inc., Manville Products Corp., Silbrico Corp., and USG Corp. in New Mexico.

Perlite.—The quantity of Expanded expanded perlite produced by 62 plants in 32 States decreased slightly compared with that of 1986. Expanded perlite sales also decreased slightly in quantity. Leading States in descending order of sales were Mississippi, Pennsylvania, California, Georgia, Illinois, Florida, Kentucky, Virginia, Minnesota, Indiana, Alabama, and Texas. California and Texas each had seven active expanding plants.

Table 2.—Expanded perlite produced and sold and used by producers in the United States, by State

		19	86			19	987	
	0		Sold and used	and the second	Quantity		Sold and used	
State	Quantity produced (short tons)	Quantity (short tons)	Value (thou- sands)	Average value per ton ¹	produced (short tons)	Quantity (short tons)	Value (thou- sands)	Average value per ton ¹
California California Indiana Kansas Massachusetts _ Pennsylvania _ Texas Utah Wisconsin Other ²	40,100 27,600 19,800 1,100 2,000 W 22,500 1,300 1,000 364,000	41,500 27,500 19,200 1,100 2,000 W 21,900 1,300 1,000 363,600	\$7,696 5,171 4,932 301 644 W 5,033 350 270 59,228	\$186 188 256 274 329 W 230 260 270 163	41,900 26,600 21,000 1,100 2,200 47,800 18,300 1,900 1,200 302,100	42,900 26,700 21,400 1,100 2,000 47,800 19,100 1,900 1,200 302,100	\$7,922 4,638 5,186 290 714 8,801 4,582 575 301 48,772	\$188 177 248 277 366 188 244 300 24
Total ³	480,000	479,000	83,700	175	464,000	466,000	81,800	17

Virginia, Wyoming, and data indicated by symbol. ...

3Data may not add to totals shown because of independent rounding.

CONSUMPTION AND USES

Apparent domestic consumption of processed perlite increased nearly 5% to 563,000 tons compared with 537,000 tons in 1986. Domestic consumption of expanded perlite was slightly lower than that of 1986, primarily because of a decline in the roofinsulation board market. Constructionrelated uses for perlite decreased 10% to 306,200 tons. Expanded perlite used as fillers, filter aid, and for horticultural aggregate increased significantly and totaled 137,000 tons compared with 114,600 tons in 1986.

W Withheld to avoid disclosing company proprietary data; included with "Other."

1 Average value based on unrounded data and rounded to nearest dollar.

2 Includes Alabama, Arizona, Arkansas, Colorado, Georgia, Idaho, Illinois, Iowa, Kentucky, Louisiana, Maine, Michigan, Minnesota, Mississippi, Missouri, Nevada, New Jersey, New York, North Carolina, Oregon, Tennessee, Virginia, Wyoming, and data indicated by symbol W.

Table 3.—Expanded perlite sold and used by producers in the United States, by use

(Short tons)

Use	1986	1987
Concrete aggregate Fillers Filter aid Formed products¹ Horticultural aggregate² Low-temperature insulation Masonry and cavity-fill insulation Plaster aggregate Other³	18,800 58,000 309,300 37,800 2,500 12,800 8,700	7,600 28,900 66,000 277,200 42,100 3,500 13,300 8,100
Total	4479,000	19,300 466,000

¹Includes acoustic ceiling tile, pipe insulation, roof insulation board, and unspecified formed products.

²Includes fertilizer carriers.

PRICES

The average price of processed perlite sold to expanders and used by captive expanders were \$31.44 and \$29.97 per ton, respectively. The average value of all processed perlite sold and used was \$30.95 per

ton compared with \$30.86 per ton in 1986. The value of expanded perlite sold and used averaged \$176 per ton compared with \$175 per ton in 1986.

FOREIGN TRADE

Perlite exports, primarily to Canada, were estimated to be 35,000 tons compared with 30,000 tons in 1986. Imports of perlite ore from Greece were estimated to be 65,000

tons compared with 60,000 tons in 1986.

¹Industry economist, Branch of Industrial Minerals.

Table 4.—Perlite: World production, by country¹

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Australia ³	_				
Czechoslovakia ^e	3	4	e ₃	e ₃	4
Greece	449	49	49	50	49
	167	196	178	e ₁₉₀	190
	103	^r 104	104	121	120
1 6	83	88	88	80	80
Movico3	83	83	83	83	83
NT 7. 1 12	46	35	41	e40	40
DL:::	1			40	40
Punkan	2	17		-e4	
U.S.S.R.e	32	67	e66	e ₆₆	66
United States (660	660	660	660	
United States (processed ore sold and used by producers)	474	498	518		660
Total		400	918	507	4533
10tai	1,703	r _{1,801}	1.794	1.804	1,829

^eEstimated. ^pPreliminary. ^rRevised.

³Includes fines, high-temperature insulation, paint texturizer, refractories, and various nonspecified industrial

⁴Data do not add to total shown because of independent rounding.

Estimated. *Preliminary. Revised.

1Unless otherwise specified, figures represent processed ore output. Table includes data available through June 3, 1988.

2In addition to the countries listed, Algeria, Bulgaria, China, Iceland, Mozambique, the Republic of South Africa, and Yugoslavia are believed to have produced perlite, but output data are not reported, and available information is account of reliable estimates of output levels.

3Crude ore.

Phosphate Rock

By William F. Stowasser¹

The precipitous decline in phosphate rock production in 1986 from 50.8 million tons² to 40.3 million tons appears to have stabilized in 1987 when 41.0 million tons was produced. The result of the slight increase in production in 1987 was a further decline in both domestic and export selling prices in an intensely competitive international market. Exports of phosphoric acid, ammonium phosphates, and superphosphate were the principal markets for the phosphate indus-

try, but selling prices at times throughout the year did not cover production costs.

Phosphate rock consumption increased about 4%, a reflection of the depressed domestic and international markets for agricultural products and phosphate fertilizers. In the United States, acreage reduction programs remained in place, and Government subsidies supported the agricultural sector at a level equivalent to that of 1986.

Table 1.—Salient phosphate rock statistics¹
(Thousand metric tons and thousand dollars unless otherwise specified)

1987	1986 ^r	1985	1984	1983	± '
					United States:
148,426	135,683	175,227	163,012	125,691	Mine production (crude ore)
40,954	40,320	50,835	49,197	42,573	Marketable production
12,470	12.248	r _{15.634}	14,889	13,088	P ₂ O ₅ content
793,280	2\$897.131	2\$1,235,800	\$1,182,244	\$1,021,095	Value
4\$19.37	4\$22.25	4\$24.31	3\$24.03	3\$23.98	Average per metric ton
43.673	41.776	46,634	53,277	46,839	Sold or used by producers ⁵
13,286	12,750	14,363	16,244	14,336	P ₂ O ₅ content
845,812	2\$929.621	2\$1,133,675	\$1,278,356	\$1,122,966	Value
\$19.37	\$22.25	\$24.31	\$23.99	\$23.97	Average per metric ton ^{4 6}
8.454	7.848	9,136	11,528	12,010	Exports ⁷
2,737	2,521	2,931	3,646	3,839	P ₂ O ₅ content
194,691	\$211,701	2\$263,631	\$324,784	\$327,345	Value
\$23.03	\$26.97	\$28.86	\$28.17	\$27.26	Average per metric ton ⁴
464	528	834	89	9	Imports for consumption
\$22,134	\$25,435	\$1,747	\$274	\$376	C.i.f. value
\$47.70					
35,683					
10,884					
145,148	P138,740	148,606	F151,568	r _{140,889}	World: Production
	\$26.97 528 \$25,435 \$48.18 34,456 13,277	\$28.86 *34 \$1,747 *\$51.54 37,532 15,534	\$28.17 \$9 \$274 \$31.71 41,758 11,897	\$27.26 9 \$376 \$42.69 34,838 14,500	Average per metric ton ⁴ Imports for consumption C.i.f. value Average per metric ton Consumption ¹⁰ Stocks, Dec. 31: Producers'

^eEstimated. ^pPreliminary. ^rRevised.

Data for the same items appearing in this and other tables may not reconcile because of computer rounding.

²The total value is based on a weighted value.

³Arithmetic average of sold or used values. ⁴Computer-calculated average value based on the weighted sold or used value.

⁵Includes domestic sales and exports.

⁶Weighted average of sold or used values.

⁷Exports reported to the Bureau of Mines by companies.

⁸Bureau of the Census data, excluding reported Canadian and Israeli imports.

Average unit value obtained from unrounded data.
 Measured by sold or used plus imports minus exports.

Phosphate rock inventories declined throughout the year from about 13 million tons to 11 million tons at yearend. Employment in the phosphate rock mining industry was about 5,000. A number of phosphate rock mines in Florida and Idaho were closed for all or part of the year. It is estimated that the phosphate rock industry operated at about 63% of its capacity of 63.2 million tons per year.

Domestic Data Coverage.—Domestic production data for phosphate rock are developed by the Bureau of Mines from two separate voluntary surveys of U.S. operations. Typical of these surveys is the semiannual "Phosphate Rock Survey." Of the 25 operations to which a survey request was sent, all responded, representing 100% of the U.S. production data shown in table 1.

Legislation and Government grams.-The Corps of Engineers, U.S. Army, completed the Federal improvement to Tampa Harbor, FL, in December 1985 at a cost of \$170 million. The main channel from the Gulf of Mexico to East Bay was enlarged to 12.8 meters deep and 152.4 meters wide. with appropriate overdepths and overwidths in the entrance for wave allowance. Branch channels 12.2 meters deep in Port Tampa, Hillsborough Bay Cut D, and Sparkman Channels and 11.6 meters deep in Ybor Channel were being dredged in 1987. Federal maintenance of the Port Sutton terminal channel is scheduled following its enlargement to 12.8 meters deep and 61 meter wide at local cost.

The work was accomplished with the expectation that future exports of phosphate rock from Tampa Bay would follow the pattern developing in 1975. It was forecast that larger tonnages would be hauled by large carriers and lesser amounts in smaller ships. With adequate channel depths, the cargoes would be carried in 40,000- to 85,000-deadweight-ton ships, but a substantial tonnage would still be carried in 20,000- to 40,000-deadweight-ton vessels.

The 1987 session of the Florida Legislature granted the Florida phosphate industry a significant two-phase reduction of the severance tax beginning July 1, 1987. The severance tax in 1986 was \$2.51 per ton. The rate was reduced slightly to \$2.46 per ton for the January 1, 1987, through June 30, 1987, period. From July 1, 1987, through December 31, 1987, the rate was \$1.97 per ton. The rate in 1988 was scheduled to be \$1.49 per ton. The severance tax reduc-

tion had the effect of reducing phosphate rock production costs in Florida.

An integral part of the budget reconciliation legislation passed by the U.S. Congress in late December was major changes in farm programs. Target prices established by the U.S. Department of Agriculture were reduced from 1987 levels. Paid land diversion for feed grains was reduced from 15% with a payment of \$2 per bushel to 10% and a payment of \$1.75 per bushel. Caps were placed on paid land diversion programs.

Target prices were established at \$4.23 per bushel for wheat, \$2.93 per bushel for corn, 75.9 cents per pound for cotton, and \$11.50 per hundredweight for rice. To achieve the 2-year budget savings mandated by the Gramm-Rudman-Hollings Deficit Reduction Act, target prices will drop in 1989. The wheat target will drop to \$4.10, corn to \$2.84, cotton to 73.4 cents, and rice to \$10.80.

The U.S. Court of Appeals for the District of Columbia dismissed suits seeking to compel the Secretary of the Interior to issue to the appellants leases to mine phosphate rock in the Osceola National Forest. The judgment of the district court was vacated, and the suits were dismissed as moot. After the appellants filed suit in the district court in 1983, Congress enacted the Florida Wilderness Act in 1984, prohibiting the U.S. Department of the Interior from issuing phosphate leases to mine phosphate rock in the Osceola Forest. On cross-motions the district court held that to demonstrate the discovery of "valuable deposits" of phosphates, the appellants were required to show the economic and technical feasibility of reclaiming lands covered by the lease applications. The court of appeals concluded that the restoration technologies did not exist in 1984 or at any earlier time. The court did not discuss the effect of the Florida Wilderness Act on the litigation or even refer to that statute. The effect of the statute was to make the cause a moot one. The appellants argued that the committee reports on the Florida Wilderness Act were not intended to prejudice or affect any pending legislation. Government agencies assured Congress that the legislation would not prejudice the rights of the lease applicants in any way, and they should be permitted to bring an action in the U.S. Claims Court for compensation for value of the leases.

DOMESTIC PRODUCTION

Production of marketable phosphate rock from Florida and North Carolina increased 6% compared with that of 1986, and production in Tennessee and the Western States decreased 22%. One mining operation was closed in Tennessee, and several mines in Montana and Idaho were closed for part of the year. A number of mines remained closed in Florida.

Florida and North Carolina.—Phosphate rock was produced in central Florida by Agrico Chemical Co., CF Industries Inc., Estech Inc., Gardinier Inc., W. R. Grace & Co., International Minerals & Chemical Corp. (IMC), Mobil Mining and Minerals Co., and USS Agri-Chemicals Inc. In Hamilton County, northern Florida, Occidental Chemical Agricultural Products, Inc., produced phosphate rock.

Manko Co., Howard Phosphate Co., and Loncala Phosphate Co. recovered soft phosphate rock from hard-rock phosphate mine tailing ponds in north-central Florida. The soft rock was sold as an animal feed supple-

ment.

Texasgulf Chemical Co., a subsidiary of Société Nationale Elf Aquitaine, operated the Lee Creek Mine on the Pamlico River in eastern North Carolina. The only organization producing phosphate rock in North Carolina, Texasgulf announced a joint venture with Albright and Wilson Americas to construct a phosphoric acid purification plant at Lee Creek. Texasgulf will supply wet-process phosphoric acid and operate the facility. Albright and Wilson will use the industrial-grade phosphoric acid to produce sodium phosphates in plants in South Carolina and Ohio.

Agrico, a subsidiary of Williams Co. of Tulsa, OK, was sold to Freeport-McMoran Resource Partners Ltd. In Florida, Agrico closed the Saddle Creek Mine in December and reopened the Payne Creek Mine. The Fort Green Mine's operating schedule was changed to balance production.

CF Industries produced phosphate rock from its Hardee Complex Mine. The matrix was mined from the North Pasture deposit. Low domestic demand for phosphate fertilizers restricted operation of the Hardee Complex Mine to one shift per day through-

out the year.

Estech operated the Watson Mine, which is two-thirds owned by Zen Noh Phosphate Corp. The Silver City Mine was reopened in late 1986 and was scheduled to produce from the remaining reserve for another 4 years. The Watson Mine will also be deplet-

ed in 1991.

The Four Corners Mine, co-owned by W. R. Grace and IMC, had closed in March 1986 and remained closed in 1987. The decision not to reopen the mine in 1988 was confirmed at yearend. W. R. Grace operated the Hookers Prairie Mine in Polk County, FL. In March, W. R. Grace announced that its agricultural chemical business was for sale.

IMC operated the Clear Springs, Kingsford, Noralyn-Phosphoria, and Haynsworth Mines in central Florida. IMC planned to reconstruct the Lonesome Mine and reopen it in the early 1990's or when demand improves to justify additional production.

Mobil purchased the idle Big Four Mine from FCS Energy Inc., in February 1987, only a few days after FCS Energy purchased the mine from AMAX Inc. The Fort Meade

Mine operated throughout the year.

Occidental Chemical Co. operated the Suwannee River and Swift Creek Mines north of Lake City, FL. All of the phosphate rock production except for phosphate rock exports was converted into superphosphoric acid at the chemical plants at the respective mines. Occidental has a contract to export up to 700,000 tons per year P₂O₅ as superphosphoric acid to the U.S.S.R.

USS Agri-Chemicals, a division of U.S. Diversified Group, USX Corp., operated the Rockland Mine in a 50-50 partnership with Freeport Chemical Co. The Fort Meade Chemical Products plant, adjacent to the Rockland Mine, is a 50-50 partnership with W. R. Grace. The Bartow Chemical plant, Bartow, FL, is another partnership with W. R. Grace. All of USS Agri-Chemical's assets were for sale.

Tennessee.—Occidental and Stauffer Chemical Co. mined phosphate rock in Giles, Hickman, Maury, and Williamson Counties in south-central Tennessee. The phosphate rock was smelted in electric furnaces to produce elemental phosphorus. Occidental purchased 2,300 acres of Giles County farmland from the Tennessee Valley Authority for their phosphate rock deposits.

Imperial Chemical Industries purchased Stauffer Chemical Co. in June and within several months sold the chemical division of Stauffer to Rhône-Poulenc Inc.

Western States.—Phosphate rock was mined in Idaho, Montana, and Utah. Phosphate rock from Montana was used to manufacture phosphate fertilizer in Canada. Phosphate rock from Idaho was used to produce fertilizer and elemental phosphorus.

Cominco American Incorporated reactivated the Warm Springs Mine in Montana. The underground mine had been closed since November 1985. A washing, crushing, and drying plant will be moved from Kimberly, British Columbia, Canada, to the Warm Springs Mine. The company, which had previously shipped mine-run ore, planned to upgrade the ore by removing clay in the washer and to ship a sized dry product to Cominco's fertilizer plant at Trail, British Columbia. Full-scale production was scheduled for 1989.

The Conda Partnership was a 50-50 partnership of Beker Phosphate Corp. and Western Cooperative Fertilizers Ltd., Calgary, Alberta, Canada. Nu-West Industries purchased the assets of Beker's phosphate fertilizer plant at Conda, ID, and Beker's 50% interest in the Conda Partnership. The mines and Conda beneficiation plant were closed in May 1986 and reactivated in September 1987.

Chevron Resources Co. mined phosphate

rock from the Vernal, UT, mine. After beneficiation, the concentrated slurry was pumped to Rock Springs, WY. Sulfur was supplied to the Rock Springs plant from a large gasfield with high concentration of hydrogen sulfide at Carter Creek, WY. Ammonia was shipped to Rock Springs. The Rock Springs plant was designed to produce 320,000 tons per year of dry fertilizer and 27,000 tons per year of superphosphoric acid.

J. R. Simplot Co. operated the Gay Mine on the Fort Hall Indian Reservation and the Smoky Canyon Mine in the Caribou National Forest. About 80% of the ore from the Gay Mine, a 24% to 26% P₂O₈ shale, was shipped to FMC Corp.'s electric-furnace plant west of Pocatello, ID. The balance of main-bed ore was used by Simplot in its fertilizer plant. Slurried ore from the Smoky Canyon Mine was pumped to Conda, ID. After concentration the product was calcined and shipped by rail to the Pocatello fertilizer plant.

Table 2.—Production of phosphate rock in the United States, by region1

(Thousand metric tons and thousand dollars)

	Mine pro	duction			Ma	rketable	producti	on	-	
Porion	Mille pro	duction	Used o	lirectly	Bene	ficiated		Total	2	Ending
Region	Rock	P ₂ O ₅ con- tent	Rock	P ₂ O ₅ con- tent	Rock	P ₂ O ₅ con- tent	Rock	P ₂ O ₅ con- tent	Value ³	stocks
1986 ^r	135,683	17,807	3,285	860	37,035	11,388	40,320	12,248	897,131	13,277
1987: January-June: Florida and North Carolina Idaho, Montana, Tennessee, and	68,657	8,163			17,610	5,387	17,610	5,387	352,825	10,379
Utah	2,922	702	1,005	265	795	236	1,800	502	28,026	1,450
Total ²	71,579	8,865	1,005	265	18,406	5,624	19,410	5,889	4379,863	11,829
July-December: Florida and North Carolina Idaho, Montana, Tennessee, and	72,728	9,138			18,596	5,750	18,596	5,750	363,176	9,337
Utah	4,119	1,420	1,778	476	1,170	354	2,948	830	49,258	1,547
Total ²	76,847	10,558	1,778	476	19,766	6,104	21,544	6,580	4413,206	10,884
Grand total ²	148,426	19,423	2,783	741	38,172	11,728	40,954	12,469	4793,069	XX

Revised. XX Not applicable.

Data for the same items appearing in this and other tables may not reconcile because of computer rounding.

Plata may not add to totals shown because of independent rounding. ³Computer-calculated value based on the weighted sold or used value.

The total value is based on a weighted value. The total value does not equal the sum of the regional or 1/2-year totals because weighted regional or overall 1/2-year unit values were used in the calculations. The regional and 1/2-year values are approximate.

CONSUMPTION AND USES

Phosphate rock is the raw material used to manufacture phosphate fertilizers, animal feed phosphates, and elemental phosphorus. Phosphate rock was exported to countries with production facilities for fertilizer, animal feeds, and phosphorus. Phosphate rock was converted into merchantgrade and superphosphoric acid, ammonium phosphates, and superphosphates that were sold domestically or exported. The principal feed phosphate producers, Occidental, Texasgulf, Consolidated Minerals Inc., and IMC, produced for the domestic market. Elemental phosphorus produced in Tennessee, Idaho, and Montana by Occidental, Stauffer, and Monsanto supplied domestic plants that produce a large number of phosphorus chemicals.

Phosphate rock consumption improved 4% in 1987. The increase occurred because of increases in phosphate rock and phosphate fertilizer exports. Domestic demand was restricted by acreage reduction programs and weak export demand for agricultural products. Phosphate rock mined in Florida and North Carolina was consumed in manufacturing fertilizer or animal feeds. The Utah and Montana production was used to produce fertilizer. Phosphate rock produced in Idaho was used to produce fertilizer and elemental phosphorus. All Tennessee phosphate rock was consumed in electric furnaces.

Table 3.—U.S. phosphate rock sold or used grade distribution pattern

	Grade (percent			Distri	bution (pe	ercent)	
	BPL¹ content)	4.	1983	1984	1985 ²	1986 ^r	1987
74 or more			3.0 5.5 8.3 60.6 14.6 8.0	4.7 2.0 10.1 63.0 8.1 12.1	2.9 4.2 12.0 62.9 13.1 4.8	4.5 4.0 7.8 57.5 20.3 5.9	3.4 5.4 7.1 61.6 17.5 5.0

Revised.

Table 4.—Florida and North Carolina phosphate rock sold or used grade distribution pattern

Grade (percent		Distri	bution (pe	ercent)	
BPL¹ content)	1983	1984	1985 ²	1986	1987
74 or more	3.5	5.4	3.4	5.1	3.8
72 to less than 74	6.4	2.4	4.8	4.6	6.0
70 to less than 72	9.6	9.9	12.6	9.0	7.6
66 to less than 70	64.2	67.5	65.9	60.7	65.3
60 to less than 66	13.0	7.0	12.8	20.6	17.3
Less than 60	3.3	7.8	.6		(3)

^{1.0%} BPL (bone phosphate of lime or tricalcium phosphate)=0.458% P₂O₅.

3Less than 0.1 of 1%.

Table 5.—Tennessee and Western States phosphate rock sold or used grade distribution pattern

Grade (percent		Distri	bution (pe	ercent)	
BPL¹ content)	1983 ²	1984 ²	1985 ²	1986 ^r	1987
70 to less than 7266 to less than 70	NA	NA	ŅA	07.7	3.5
60 to less than 66	NA NA	NA NA	NA NA	36.1 18.5	33.9 19.3
Less than 60	NA	NA	NA	45.4	43.3

Revised. NA Not available

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate)=0.458% $P_{2}O_{5}$.

²Data do not add to 100% because of independent rounding.

²Data do not add to 100% because of independent rounding.

^{11.0%} BPL (bone phosphate of lime or tricalcium phosphate)=0.458% P₂O₅.

²Data for Tennessee and Western States (Idaho, Montana, and Utah) were reported separately in the 1985 and 1986 Minerals Yearbook chapter.

Table 6.—Phosphate rock sold or used by producers in the United States, by grade and region¹

(Thousand metric tons and thousand dollars)

	Florida	Florida and North Carolina	rolina	Tonnogo	Tonnoccoo and Works States	Ctoton3			
Grade (percent BPL² content)	Rock	P ₂ O _s	Value ^{4 5}	Rock	P ₂ O _s	Value ^{4 5}	Rock	P ₂ O _s	Value ⁴ 5
January-June 1986 ^r July-December 1986 ^r	17,665	5,466	398,067	2,776	780	68,006	20,441	6,246 6,504	466,073
January-June 1987; 74 or more	410	142	11.850				410	149	11 950
7/2 to less than 74 7/0 to less than 72 66 to less than 72	1,719	579 394	39,269 27,933				1,719	579 394	39,269 27,933
60 to less than 66. Below 60.	3,753 17	3,679 1,053 4	73,474 73,474 372	88 88 88 88	220 220 230 230 230 230 230 230 230 230	19,331 4,664 10,049	12,740 4,224 905	3,937 1,182 231	247,521 78,138 10,421
Total ⁶	19,027	5,851	381,088	2,186	613	34,044	21,214	6,465	415,132
July-December 1987:	1,071	368	25,244		1	1	1.071	368	25.244
712 to less uthan 14 70 to less than 70 66 to less than 70 60 to less than 66	624 1,707 13,337 2,925	4, 155, 107,	13,428 42,848 248,167 54,985	173	57 266	6,095 20,271	624 1,880 14,196	208 611 873 873	13,428 48,943 268,438
Below 60	2,010	100	007,40	1,270	323	14,703	3,418 1,270	323 323	59,924 14,703
Total ⁶	19,664	6,039	383,972	2,795	783	46,708	22,459	6,821	430,680

¹Data for the same items appearing in this and other tables may not reconcile because of computer rounding. ²1.0% BPL (bone phosphate of lime or tricalcium phosphate)=0.458% P_2O_5 .

³Includes Idaho, Montana, and Utah.

F.o.b. mine.

⁸The total value is based on a weighted value. The total value does not equal the sum of the regional totals because weighted regional unit values were used in the calculations. The regional values are approximate.

**Data may not add to totals shown because of independent rounding.

Table 7.—Phosphate rock sold or used by producers in the United States, by use (Thousand metric tons)

1987 Total² 1986 total July-December January-June P₂O₅ P₂O₅ Use P₂O₅ P_2O_5 Rock con-Rock con-tent con-Rock Rock content tent 9,329 Domestic:3 30,868 15,852 4,791 4,538 15,017 27,979 210 8,512 Wet-process phosphoric acid _____ 50 15 Wormal superphosphate ______
Triple superphosphate _____
Defluorinated rock _____ 505 75 303 65 162 927 436 27 141 1,292 78 186 26 111 38 2 1,032 325 Direct applications______
Elemental phosphorus _____ 3,013 791 1,317 347 1,696 444 r_{3,177} r₁₆₂ r₈₂₂ 166 42 91 23 19 75 Ferrophosphorus_____ 5,454 35,219 10,549 18,242 16,978 5,095 r33,930 r10.228 1,368 8,454 2,737 4,237 1,369 4,217 7,848 2,521 Exports4_____ 43,673 13,286 6,821 21.214 6,464 22,458 r_{12,751} r41,778 Grand total2_____

³Includes rock converted to products and exported.

Table 8.—Phosphate rock sold or used by producers in the United States, by use and region1

(Thousand metric tons)

	Florid North C	a and arolina	Tennessee a Stat	nd Western tes ²	Tota	al ³
Use	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content	Rock	P ₂ O ₅ content
1986*	_ 36,333	11,236	5,443	1,515	41,776	12,750
1987: January-June:	· ·					
Domestic: ⁴ Agricultural Industrial	_ 14,854 _ 34	4,503 10	731 1,358	227 356	15,586 1,392	4,730 366
Total Exports ⁵	14,888 4,140	4,513 1,339	2,089 97	583 30	16,978 4,237	5,096 1,369
Total ³	19,028	5,852	2,186	613	21,215	6,465
July-December: Domestic:4 Agricultural Industrial	15,487 24	4,685 7	968 1,763	302 460	16,455 1,787	4,987 467
Total Exports ⁵	15,511 4,153	4,692 1,348	2,731 64	762 20	18,242 4,217	5,454 1,368
Total ³	19,664	6,040	2,795	782	22,459	6,822
Grand total ³	38,692	11,892	4,981	1,395	43,674	13,287

¹Data for the same items appearing in this and other tables may not reconcile because of computer rounding.

²Data may not add to totals shown because of independent rounding.

⁴Exports reported to the Bureau of Mines by companies.

revised.

Data for the same items appearing in this and other tables may not reconcile because of computer rounding.

Includes Idaho, Montana, and Utah.

Data may not add to totals shown because of independent rounding.

Includes rock converted to products and exported.

⁵Exports reported to the Bureau of Mines by companies.

Table 9.—Florida and North Carolina phosphate rock sold or used by producers1

	Rock	P ₂ O ₅	Va	lue
Year	(thou- sand metric tons)	(thou- sand metric tons)	Total ² (thou- sands)	Average per ton f.o.b. mine
1983 1984 1985 1986 1987	40,223 46,411 40,857 36,333 38,692	12,456 14,309 12,702 11,236 11,891	\$944,509 1,089,647 972,748 810,429 765,061	\$23.48 23.48 23.81 22.31 19.77

¹Data for the same items appearing in this and other tables may not reconcile because of computer rounding.

²The total value is based on a weighted value.

Table 10.—Tennessee and Western States1 phosphate rock sold or used by producers2

	Rock	P ₂ O ₅ content	Va	lue
Year	(thou- sand metric tons)	(thou- sand metric tons)	Total ³ (thou- sands)	Average per ton f.o.b. mine
1983 ⁴ 1984 ⁴ 1985 ⁴ 1986 ^r 1987	NA NA NA 5,443 4,981	NA NA NA 1,515 1,395	NA NA NA \$119,192 80,751	NA NA NA \$21.90 16.21

NA Not available

Table 11.—Marketable phosphate rock yearend stocks

(Million metric tons)

1978 1979 1980	15.7 14.5
	13.7
1981	19.6
1982	18.8
1984	14.5
1985	11.9
1986	15.5
1987	^r 13.3 10.9

r_{Revised}

PRICES

Phosphate rock was sold under contracts negotiated between buyers and sellers. Although list selling prices were occasionally published by producing organizations, actual negotiated prices were not published.

Phosphate rock export prices from Tampa and Jacksonville, FL, included freight, loading, and weighing costs of \$6.17 and \$9.30, respectively. The severance tax, included in

the export price, was \$2.46 per ton for the first half of the year and \$1.97 per ton in the second half.

The weighted averaged prices or values, f.o.b. mine, for each grade of phosphate rock and for each producing region were calculated and published by the Bureau of Mines from the semiannual survey of producers.

Table 12.—Phosphate rock estimated export prices1 per metric ton, unground, f.o.b. vessel Tampa Range or Jacksonville, FL, by grade

Grade (percent BPL ² content)	1984 ³	1985 ⁴	1986 ⁵	1987 ⁶
75	\$35.00	\$34,00	\$33.00	\$32.00
	30.50	30.50	31.00	29.00
	27.50	28.00	27.00	27.50
	26.50	26.00	25.50	24.00

 $^{^{1}\}text{Prices include severance taxes, rail freight costs from mine to port, and port loading and weighing charges.} \\ ^{2}\text{1.0\% BPL (bone phosphate of lime or tricalcium phosphate)} = 0.458\% P_{2}O_{5}. \\ ^{2}\text{Estimated selling price including $2.39 severance tax.} \\ ^{2}\text{Estimated selling price including $2.52 severance tax.} \\ ^{2}\text{Estimated selling price including $2.52 severance tax.} \\ ^{2}\text{Estimated selling price including $2.53 severance tax.} \\ ^{2}\text{Estimated selling price including $2.54

¹Includes Idaho, Montana, and Utah.

²Data for the same items appearing in this and other tables may not reconcile because of computer rounding. ³The total value is based on a weighted value.

⁴Data for Tennessee and Western States were reported separately in the 1985 and 1986 Minerals Yearbook chap-

⁵Estimated selling price including \$2.51 severance tax.

⁶Estimated selling price including \$2.46 severance tax.

Table 13.—Moroccan phosphate rock export prices, U.S. dollars per metric ton, f.a.s. Safi or Casablanca, by grade

Grade (percent BPL ¹ con- tent)	1984	1985	1986	1987
Khouribga:				
76 to 77	47.00	47.00	45.00	42.00
70 to 71	36.00	36.00	36.00	34.00
Youssoufia:				
74 to 75	43.00	43.00	40.50	39.50
68 to 69 _	30.00	30.00	30.50	30.00

eEstimated.

Table 14.—Price or value of Florida and North Carolina phosphate rock, by grade

(Dollars per metric ton, f.o.b. mine)

		1986	:		1987	
Grade (percent BPL ¹ content)	Domes- tic	Export	Average	Domes- tic	Export	Average
74 or more	28.87	35.05	31.32	26.73	24.48	25.05
72 to less than 74	18.93	24.67	22.43	19.90	23.68	22.49
70 to less than 72	18.80	25.18	24.38	23.64	24.26	24.21
66 to less than 70	20.32	22.15	20.50	18.62	21.06	18.87
60 to less than 66	24.63	21.53	24.47	19.26	17.10	19.13
Less than 60				21.66		21.66
Average	21.64	25.02	22.31	18.93	22.87	19.77

 $^{^11.0\%}$ BPL (bone phosphate of lime or trical cium phosphate)=0.458% $P_2O_5.$

Table 15.—Price or value of Tennessee and Western States¹ phosphate rock, by grade

(Dollars per metric ton, f.o.b. mine)

		1986			1987	
Grade (percent BPL ² content)	Domes- tic	Export	Average	Domes- tic	Export	Average
70 to less than 72	r _{28.36} 10.04 r _{14.93}	47.87 41.69	r _{33.61} 16.11 r _{14.93}	35.27 22.62 10.70 11.47	31.50	35.27 23.47 10.70 11.47
Average	r18.18	46.21	^r 21.90	15.70	31.50	16.21

rRevised.

Table 16.—Price or value of U.S. phosphate rock, by grade

(Dollars per metric ton, f.o.b. mine)

		1986			1987	
Grade (percent BPL¹ content)	Domes- tic	Export	Average	Domes- tic	Export	Average
74 or more 72 to less than 74 70 to less than 72 66 to less than 70 60 to less than 66 Less than 60	28.87 18.93 18.80 *20.86 23.13 *14.93	35.05 24.67 25.18 27.26 28.23	31.32 22.43 24.38 ^r 21.57 23.48 ^r 14.93	26.73 19.90 28.32 18.88 18.12 11.55	24.48 23.68 24.26 21.69 17.10	25.05 22.49 24.83 19.15 18.07 11.55
Average	^r 21.16	26.97	r22.25	18.49	23.03	19.37

Revised.

 $^{^{1}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate)=0.458% $P_{2}O_{5}$.

¹Includes Idaho, Montana, and Utah.

 $^{^{2}1.0\%}$ BPL (bone phosphate of lime or tricalcium phosphate)=0.458% $P_{2}O_{5}$.

^{11.0%} BPL (bone phosphate of lime or tricalcium phosphate)=0.458% P₂O₅.

FOREIGN TRADE

Export tonnage of phosphate rock was 8% higher than that of 1986, although it did not exceed the average of the past 7 years. The increase in export sales was due primarily to competitive prices offered by U.S. exporters. Phosphate rock was again in oversupply in 1987, causing downward pressure on prices.

Phosphate rock imports for consumption decreased in 1987. The principal countries exporting to the United States were Togo and Morocco. Lesser tonnages were imported from the Federal Republic of Germany, the Netherlands Antilles, the United Kingdom, and miscellaneous sources.

Table 17.—U.S. exports of phosphate rock, by country

 $(Thousand\ metric\ tons\ and\ thousand\ dollars)$

(Schedule B No. 480.4500)

	198	6	19	87
Country	Quantity ¹	Value	Quantity ¹	Value
Australia Australia Austria Belgium-Luxembourg Brazil Canada Finland France Germany, Federal Republic of India Italy Japan Korea, Republic of Mexico Netherlands New Zealand Philippines Poland Romania Sweden United Kingdom Other	43 2,351 91 787	NA	52 34 317 9 1,384 699 592 344 394 1,036 1,344 412 668 162 604 150 98	NA NA
Other	9,176	211,701	8,685	194,691

NA Not available.

Table 18.—U.S. exports of superphosphates, more than 40% P₂O₅, by country

(Thousand metric tons and thousand dollars)

(Schedule B No. 480.7050)

	19	986	19	87
Country	Quantity	Value ¹	Quantity	Value ⁱ
Argentina Australia Belgium-Luxembourg Brazil Bulgaria Burma Canada Chile Colombia Costa Rica Czechoslovakia Dominican Republic France Germany, Federal Republic of Ireland Japan Mexico	10 60 43 207 46 16 277 129 12 10 118 13 	NA NA	11 79 30 172 23 15 434 170 21 26 11 3) NA

See footnotes at end of table.

¹Individual country exports furnished by Bureau of the Census will not add to totals.

²Total quantity and value reported to the Bureau of Mines, f.o.b. mine.

Table 18.—U.S. exports of superphosphates, more than 40% P_2O_5 , by country —Continued

(Schedule B No. 480.7050)

	Country	198	86	198	37
	Country	Quantity	Value ¹	Quantity	Value ¹
Uruguay	· · · · · · · · · · · · · · · · · · ·	15)		14	
Other			NA	46	NA
Total		1,233	155,774	1,160	192,308

NA Not available.

All values f.a.s. (free alongside ship).

Source: Bureau of the Census.

Table 19.—U.S. exports of superphosphates, less than 40% P₂O₅, by country

(Schedule B No. 480,7030)

	1	986	1	987
Country	Quantity (metric tons)	Value ¹ (thousands)	Quantity (metric tons)	Value ¹ (thousands)
CanadaOther	3,990	\$87	2,404 376	NA NA
Total	3,990	87	2,780	\$94

NA Not available.

¹All values f.a.s. (free alongside ship).

Source: Bureau of the Census.

Table 20.—U.S. exports of diammonium phosphates, by country

(Thousand metric tons and thousand dollars) (Schedule B No. 480.8005)

Country	19	86	19	87
Country	Quantity	Value ¹	Quantity	Value ¹
Argentina	106		72	
Australia	190	1	181	١
Belgium-Luxembourg	353	1	594	1
Brazil	173	1	101	1
Canada	117	1	162	1
Chile	67	1	71	- 1
China	542		1,441	1
Colombia	91	1	133	i
Costa Rica	17	•	22	1
Dominican Republic	25	•	43	
Scuador	90		43 30	•
France	25 28 26	1		,
Germany, Federal Republic of	17		146	
Guatemala	25		137	
India	441		13	
iran	441	١ ,,,	.== '	١
[reland	17) NA	116) NA
italy		1	54	
Japan	196		326	
Kenya	162		343	
Mexico	700		80	
New Zealand	83	1	39	l .
Pakistan	24	1	34	•
Peru	607		32	1
Brain			48	ł .
hailand			163	
	. 9		32	ı
,	286	ı	44	1
Venezuela	32	I	37	I
Yugoslavia	7.7	1	224	1
tugosiavia	24 /		55	1
лаег	462 /		874	
Total	4,120	641,385	5,647	890,801

NA Not available.

¹All values f.a.s. (free alongside ship).

Source: Bureau of the Census.

Table 21.—U.S. exports of phosphoric acid, less than 65% P₂O₅, by country

(Thousand metric tons and thousand dollars)
(Schedule B No. 480.7015)

	19	986	198	7
Country	Quantity	Value ¹	Quantity	Value ¹
Australia Canada Colombia India Indonesia Japan Venezuela Other	-2 9 273 46 -106 264) NA	61 2 3 179 65 58 79 53	NA
Total	700	110,010	500	85,912

NA Not available.

Source: Bureau of the Census.

Table 22.—U.S. exports of elemental phosphorus, by country

(Schedule B No. 415.3500)

	19	86	19	87
Country	Quantity (metric tons)	Value ¹ (thou- sands)	Quantity (metric tons)	Value ¹ (thou- sands)
Brazil	6,537		5,621	\$10.368
Canada	487		133	210
Japan Korea. Re-	8,436		6,170	9,339
public of	402 (NA NA	1.277	1.715
Mexico	2,832	1	6.481	8,424
Taiwan	1,424		84	103
Other	148		536	637
Total	20,266	\$33,310	20,302	30,796

NA Not available.

Source: Bureau of the Census.

Table 23.—U.S. imports for consumption of phosphate rock and phosphatic materials

(Thousand metric tons and thousand dollars)

		198	36	198	37
Fertilizer	TSUS No.1 -	Quantity	Value ²	Quantity	Value ²
Phosphates, crude and apatite ³ Phosphatic fertilizers and fertilizer materials	480.4500 480.7070-	528	22,265	464	18,816
Phosphatic termizers and termizer materials	480.8095	69	8,351	55	7,820
Dicalcium phosphate	418.2800	1,420	1,209	1,960	2,086
Phosphorus	415.3500	1,510	3,548	4,463	6,609
Phosphoric acid, technical-grade	480.7010	· (⁴)	157	1	1,667
Normal superphosphate	480.7030	1	204	3	585
Triple superphosphate	480.7050	1	112	49	6,262

¹Tariff Schedules of the United States.

Source: Bureau of the Census.

WORLD REVIEW

Phosphate rock production exceeded world demand. Oversupply of phosphate rock in world markets sharpened competition; prices declined, and profit margins disappeared. Numerous phosphate rock mines were closed or operating schedules were reduced to balance demand and prevent inventories from rising.

Demand for phosphate fertilizers declined substantially as food supplies increased throughout the world. The oversupply of agricultural commodities drastically reduced demand for phosphate fertilizers. Acreage reduction programs in the United States, designed to reduce farm commodity surpluses, and similar programs in Western Europe and Japan were extended through 1987 in an attempt to manage agricultural

production, reduce inventories, and improve the farm economy.

Plans to develop new phosphate rock mines or expand existing mines were deferred or canceled by governments and companies. It is probable that the phosphate rock industry will, under pressure from lower prices, have to wait until supply and demand are in balance before new projects and ventures are implemented.

The phosphate rock tabulation in table 24 was developed with the assistance of the International Fertilizer Industry Association Ltd., Paris, France.

Australia.—In Western Australia, Union Oil sold its 60% interest in the Mount Weld phosphate deposit, near Laverton, to CSBP & Farmers. The Broken Hill Pty. Ltd. (BHP)

¹All values f.a.s. (free alongside ship).

¹All values f.a.s. (free alongside ship).

²Declared customs valuation.

³Excludes reported imports from Canada and Israel.

⁴Less than 1/2 unit.

retained its 40% interest. About 7,500 tons of phosphate rock was mined. It was unsuitable for the manufacture of superphosphates but was used in organic horticultural fertilizer products. Queensland Phosphate Pty. Ltd. produced 26,813 tons from the Duchess Mine in a campaign operation. The mine was in a care and maintenance condition for the balance of the year.³

China.—The State Statistical Bureau, Beijing, reported that phosphate fertilizer production peaked at 2,666,000 tons in 1983 and declined in successive years to 1,760,000 tons in 1985.

Christmas Island.—The Australian Government closed the phosphate rock mines on Christmas Island after production declined in 1986, and the rate of production continued downward in 1987.4

Egypt.—A new beneficiation plant for the El Nasrab phosphate rock mine was scheduled to start operating in early 1988. Prior to construction of the new plant, the phosphate rock was hand-sorted and crushed. The new plant will process up to 1.2 million tons per year using two production lines.⁵

Iraq.—The Government of Iraq announced the discovery of 3,500 million tons of phosphate rock reserves at the Akashat Mine.

Jordan.—Jordan Phosphate Mines Co. planned to produce 800,000 tons of phosphate rock from the Eshidiya Mine in 1988. The Rusaifa Mine, closed in 1985, remained inactive. Production in 1987 was restricted to the El Abiad and El Hassa Mines.

Mexico.—The fertilizer project at Lazaro Cardenas on the Pacific coast was commissioned. The first-phase 50-LAC project and part of the second-phase 93-LAC project were completed in 1986; however, the triple superphosphate plant of 93-LAC was not completed until 1987.

Morocco.—The Moroccan Office Cherifien des Phosphates announced plans to increase the phosphoric acid capacity at Jorf Lasfar by adding to Maroc Phosphore.

The new plants will double the capacity of Jorf Lasfar. A new mine on the Oulad Abdoun Plateau, part of the Khouribga District, will gradually replace the Sidi Daoui Mine as it is depleted. The new mine, Sidi Chennane, is scheduled to start producing in 1990 and will supply dried phosphate rock to Jorf Lasfar.

Senegal.—Industries Chemiques du Senegal (ICS) is a chemical complex adjacent to the Taiba phosphate mines at Darow-Khoudoss, 90 kilometers northeast of Dakar. The plant has gradually increased production since its inception. The sulfuric acid plant has a capacity of 560,000 tons per year, and the phosphoric acid plant was rated at 220,000 tons per year. Triple superphosphates and diammonium phosphates are produced in the Dakar suburbs for the export market.⁸

Syria.—Gecopham, a Government-owned company, produced phosphate rock from two mines in the Kneifiss and the eastern areas of the Ghardiral Hamal region of the Palmrides. Gecopham added mining machinery in the phosphate mines and expanded the export facilities at Tartous from 1.3 million tons per year to 2.4 million tons per year to be able to supply additional phosphate rock if sales improve.9

Tunisia.—The Government authorized the development of the Kef Eddour phosphate mine near Gafsa to produce phosphate rock for a new phosphoric acid plant at La Skirrah, which was due on-stream in 1987. The phosphoric acid plant will use phosphate rock from the Gafsa District until the 1.4-million-ton-per-year Kef Eddour Mine is completed.¹⁰

U.S.S.R.—The Soviet Union awarded a contract to Outokumpu Oy, Finland's state-owned mining company, to construct a new flotation plant on the Kola Peninsula. The beneficiation plant's first stage was completed in 1985 with a capacity of 1.3 million tons per year.¹¹

Table 24.—Phosphate rock, basic slag, and guano: World production, by country

(Thousand metric tons)

Commodition			Gross weight					P ₂ O ₈ content		
Commoducy and country	1983	1984	1985	1986P	1987e	1983	1984	1985	1986P	1987e
Phosphate rock:										
Algeria	808	61 000	1 907	1 000	000	0.00				
Australia	3	15	1,001	1,203	1,073	2/6	303	381	280 280	336
Brazil	3.208	3.855	4 214	4 509	7777 A	1110	1 945	- 1	, 000	71
Chile	1	2	7	7.	Ť.	1,113 (6)	1,345	1,475	1,620	1,694
China ^e	12.500	11.800	6.970	6.700	0000	0 975	100	T 00	100	T :
Christmas Island (Indian Ocean)	1,094	1.259	1.187	001,0	4049	0,0,0	3,180	1,882	1,810	2,700
Colombia	17	1.	2,7	260	750	000	443	418	310	292
Egypt	647	1.043	e _{1 074}	1.22	1 083	906	7 020	9	۽ ۾	x 0 (
Finland	381	477	512	527	1,000	202 171	203	0.77	315	312
India	889	892	626	55	750	141	907	189	195	195
Indonesia	9	67	-	3	3 00	6	107	907	213	7.23
Iraq	1,199	1.000	1.000	1000	1 500	196	916	910	1 6	1 00
Israel	2,969	3,312	4.076	3,673	49 708	600	000	010	210	086
Jordan	4,749	6,263	6,067	6,249	6,80	1548	9 0 49	1,410	1,110	1,214
Korea, North	200	200	200	500	500	160	240,2	2,010	2,072	2,254
Mexico ⁵	686	375	550	909	900	117	110	190	091	160
Morocco ⁶	20.106	21.245	20 737	91 178	90 055	111	113	100	180	197
Nauru	1,684	1358	1,508	1,110	41 976	0,400	0,102	0,5/4	6,714	6,650
Pakistan	1001	00061	1,000	1,434	490	048	223	.581	222	230
Peru	ec	1 65	161	8 8	7 6	-	[c	16	•10
Philippines	4	2	9	9	90	٠,	4.0	4.0		7.7
SenegalSenegal	1.521	1 919	1814	1 850	1 000	1 62	71 00	2 1 2	37	27
South Africa, Republic of	2,887	2,525	9.489	0,000	000,1	934	283	655	-641	089
Sri Lanka	16	14	14	2,920 15	2,043 91	986	989	, 883	$^{-1,060}$	$\overline{0}$
Sweden	107	32	187	149	1266	٠-	o <u>1</u>	<u>.</u>	٠ و	2
Syria	1.229	1.514	e1 970	e1 606	1 086	14.1	10.7	4.0	7.0	78.5
Tanzania	20	12	10.	e10	1000	000	104	086	485	909
Thailand	100	900	97 7	3 10	10	o -	4-	4.	go •	4
Togo	2.081	9.696	9.459	9 9 1 4	40.644	1226	7 6	7 000	7	-
Tunisia	5,924	5,346	4 530	7,951	300	100	919	61 500	840	096
Turkey	20	96	697	0,001	0,030	7,100	1,054	T,303	1,712	1,836
U.S.S.R.	r33 100	r33 300	rgg 750	rss 900	13 24 100	10 ogo	3 2	212		9
United States	42.573	49 197	50,100	39,710	440.054	10,990	10,000	00,01	10,700	10,750
Vietname	006	000	1516	100,110	40,904	13,088	14,889	15,674	11,857	12,491
Zimbabwe	133	125	135	136	300	3 5	99	170	175	105
J				001	87	Ŧ	44	48	48	99
Total	r140,889	r151,568	148,606	138,740	145,148	r43.728	r46.987	46.558	43 509	AE 79E
									anotor	20,100

Basic (Thomas converter) slag: Argentina Belgiu Egypt France Germany, Federal Republic of Luxembourg	250 410 1,124 409 586	254 410 1,194 446 728	e1 143 10 1,165 491 701	e1 r e150 8 855 874 855 874 	1 175 8 1,000 370 700	(3) 202 203 105 105	(3) 46 22 215 622 131	28 22 210 67 67 61	(8) r e27 2 154 154 117	32 32 180 126 126
Total	2,384	2,637	2,515	2,038	2,254	448	r457	432	355	390
Guano: Chile	⊕⊕ 1 1 3 3	3 1 5	3 (3) 1	8 (3) 61 5	7 1 5	6662 6662	£3	ଚ୍ଚିତ୍ର	1 (3) (3) 2	1 © © 23
Total	9	r ₀	6	14	13	67	87	2	8	8

Egatimated. PPreliminary. 'Revised.

1 Table includes data available through May 13, 1988. Data for major phosphate-rock-producing countries derived in part from the International Fertilizer Industry Association; other figures are from official country sources where available.

In addition to the countries listed. Belgium and Uganda may have produced small quantities of phosphate rock, and Namibia may have produced small quantities of guano, but output levels.

1 Less than 1/2 unit.

⁴Reported figure. Fincludes only output used to manufacture fertilizers. ⁶Production from Western Sahara area included with Morocco.

TECHNOLOGY

The declining quality of phosphate rock reserves has promoted the development of processes to reduce the levels of impurities in marketable phosphate rock. Impurities collected in phosphoric acid cause problems in processing the acid and with the quality of downstream products. In some instances it is possible to beneficiate the phosphate ore or matrix by physically separating a size fraction that contains the impurity. If the impurity is part of the chemical structure of the mineral and cannot be liberated by size reduction, the ore will not respond to the treatment. In addition to classification, it is usually necessary to employ flotation if the mixture of ore and gangue is of a similar size. A flotation circuit is commonly used to separate phosphate minerals from a silicate gangue and reduce carbonate to an acceptable level. The flotation feed is treated with reagents to cause the surfaces of different minerals to be attracted to air or water, permitting one or more to be floated or depressed in the mixture of water and air bubbles.

Société Industrielle d'Acide Phosphorique et d'Engrais (SIAPE) installed a 13,000-tonper-year P₂O₅ demonstration plant to reduce magnesium oxide in phosphoric acid. The plant, which used a folded-bed chemical separation process, was constructed and commissioned in Sfax, Tunisia, in 1986. An ion-exchange section removes magnesium, and the resin is regenerated with sulfuric acid. Magnesium oxide was reduced from 0.55% to 0.65% to 0.04% to 0.1% levels.12

Negev Phosphates Ltd., developed a proprietary flotation reagent that can separate phosphate-bearing minerals from calcium carbonate. This process replaces a washing and classification flowsheet that separates a middle-size-fraction from phosphate-poor coarse and fine fractions. The flotation process improved grade and recovery. The flo-

tation process was used at the Tamar facility, recovering phosphate rock from a fine waste tailing.13

Highly reactive, finely ground phosphate rock can be used as a fertilizer where the soils, particularly soils in the tropics, are deficient in phosphorus. If the indigenous phosphate rock is unsuitable for dried application, a partially acidulated phosphate rock may perform well, and the crop response may be similar to that of soil treated with conventional single or triple superphosphate. A partially acidulated phosphate rock (PAPR) is one that is acidulated with less than the stoichiometric quantity of sulfuric or phosphoric acid to achieve complete solubility. The amount of watersoluble phosphate in a PAPR will vary with the degree of acidulation.

Run-of-pile PAPR is produced by continuously mixing ground phosphate rock and sulfuric acid in a pugmill or similar mill. The mixed product may be transferred to storage.

The single-step acidulation-granulation process mixes phosphate rock, acid, and water plus recycled material in a rotary drum granulator. The product is dried, screened, and crushed if necessary to obtain a sized product.14

¹Physical scientist, Branch of Industrial Minerals. ²All quantitiess are in metric tons unless otherwise

specified.

³U.S. Embassy, Canberra, Australia. State Dep. Airgram, Apr. 8, 1987, 1 p.

⁴Fertilizer Week. No. 35, Jan. 11, 1988, p. 4. Fertilizer International. No. 236, Oct. 9, 1986, p. 6. ⁶Mining Annual Review. June 1987, pp. 454-455.

⁷Fertilizer International. No. 237, Oct. 23, 1986. ⁸Page 427 of work cited in footnote 6.

Pages 449-450 of work cited in footnote 6.

 ¹⁹U.S. Embassy, Tunis, Tunisia. State Dep. Airgram
 01579, Feb. 19, 1988, 2 pp.
 11Engineering and Mining Journal. No. 147, Jan. 1987,

p. 14. ¹²Phosphorus & Potassium. No. 148, Mar.-Apr. 1987, pp. 35-40.

^{-.} No. 147, Jan.-Feb. 1987, p. 37. No. 150, July-Aug. 1987, pp. 48-53.

Platinum-Group Metals

By J. Roger Loebenstein¹

The Stillwater Mining Co. (SMC) opened a new platinum-palladium mine in Montana and shipped its first concentrate to Belgium for refining. This was the first time since 1976 that the United States mined

platinum-group metals (PGM) as a primary product from a domestic deposit. The Republic of South Africa remained the leading producer of platinum. The U.S.S.R. remained the leading producer of palladium.

Table 1.—Salient platinum-group metals1 statistics

(Thousand troy ounces unless otherwise specified)

	1983	1984	1985	1986	1987
United States:	*				
Mine production ²	6	15	w	w	w
Value ³ thousand dollars	\$1,118	\$2,456	w	w	<u> </u>
Refinery production:					
Primary refined	9	24	7	^r 4	6
Secondary:					_
Nontoll-refined	303	340	259	r ₃₅₄	165
Toll-refined	995	1,157	1,038	^r 1,155	1,444
Total refined metal Stocks, yearend:	1,307	1,521	1,304	r _{1,513}	1,615
Industry (refined) National Defense Stockpile:	943	1,319	1,129	r _{1,292}	1,235
Platinum	453	453	453	453	453
Palladium ⁴	1,255	1.262	1,265	1.265	1.265
Iridium ⁵	28	30	30	30	30
Exports:				•	
Refined ⁶	446	599	526	382	432
Total	1,229	1,162	889	751	708
Imports for consumption:	-,	-,	-		
Refined ⁶	2,790	3,928	3.438	3,727	3,179
Total	3,218	4,474	3,990	4.477	3,807
Imports, general	3,218	4,485	3,990	4,399	3,807
Consumption (reported sales to industry)	1.914	2,200	2,271	r _{2,080}	1,944
Consumption, apparent ⁷	2.813	3,299	3,358	r _{3,536}	2,969
Net import reliance ⁸ as a percent of apparent	-,	-,	-,	0,000	_,000
consumption	89	89	92	r ₉₀	94
Price, dealer, average, per ounce:				•	
Platinum	\$424	\$357	\$291	\$461	\$553
Palladium	\$136	\$148	\$107	\$116	\$130
World: Mine production ⁹	6,525	r7,653	7.941	P8,314	e8,671

^eEstimated. Preliminary. rRevised. W Withheld to avoid disclosing company proprietary data.

¹The platinum group comprises six metals: platinum, palladium, iridium, osmium, rhodium, and ruthenium.

²Byproduct of copper refining. ³Value based on dealer prices.

Fincludes 7,200 ounces purchased in 1984 and 2,400 ounces purchased in 1985, but not added to inventory in those years.

Includes 2,400 ounces purchased in 1983 and another 2,400 ounces purchased in 1984, but not added to inventory in

⁶Includes both unwrought and semimanufactured.

^{&#}x27;1983-84 includes mine production plus nontoll-refined production plus refined imports for consumption minus refined exports plus or minus changes in Government and industry stocks. 1985-87 mine production excluded to avoid disclosing company proprietary data.

8 Refined imports for consumption minus refined exports plus or minus changes in Government and industry stocks.

⁹¹⁹⁸⁵⁻⁸⁷ totals exclude U.S. mine production to avoid disclosing company proprietary data.

PGM were used for a number of advanced material applications. For example, platinum-iridium alloys were used in crucibles for growing crystals used in computer memory devices and lasers. Platinum was used as a catalyst in the electrodes of phosphoric acid fuel cells, used for generating electricity.

Domestic Data Coverage.—Domestic production data for PGM are developed by the Bureau of Mines from a voluntary survey of U.S. refiners. Of the 24 refiners to which a

survey request was sent, all responded. These represent 100% of the total refined metal production shown in tables 1 and 2.

Legislation and Government Programs.—An advisory panel composed of industry and Government representatives recommended that the Government should add rhodium and ruthenium to the National Defense Stockpile. Currently, the only PGM in the stockpile are platinum, palladium, and iridium.

DOMESTIC PRODUCTION

Exploration for PGM at the Stillwater Complex in Montana was first initiated in 1967 by Manville Corp. In March, SMC, a joint venture of Lac Minerals Ltd., Chevron Corp., and Manville Corp., shipped its first load of PGM concentrate to Métallurgie Hoboken-Overpelt S.A. (MHO) in Belgium. MHO processed the concentrate, which contained about 40 troy ounces of platinum and palladium per short ton. It returned the metal sponge to the partners, who then sold the metals in the spot market. Gold, rhodium, and silver also were recovered by MHO. In 1987, production of platinum was estimated to be 25,000 ounces. Production of palladium was estimated to be 75,000 ounces. By 1990, production of platinum and palladium is projected to double.2

The U.S. Geological Survey reportedly discovered substantial quantities of platinum in gold ore from the Tolovana and Rampart mining districts near Fairbanks, AK.3 ASARCO Incorporated produced refined platinum and palladium as byproducts of copper refining from their Amarillo, TX. refinery.

Secondary metal was refined by about 24 firms. Most PGM scrap was refined on a toll basis. The largest scrap processor in the United States was Johnson Matthey Inc.

A new company, Catalyst Collectors Corp. (CCC), based in Union, NJ, was formed to collect and process catalytic converter scrap. CCC planned to have its scrap refined through Nippon Engelhard Ltd. in Tokyo, Japan.

The Industrial Products Div. of Heraeus Inc., based in Newark, NJ, announced plans to expand its precious metals recycling program. Heraeus recovers PGM, gold, and silver from scrap generated by the chemical, pharmaceutical, and electronics industries.

Table 2.—Platinum-group metals refined in the United States
(Troy ounces)

	Platinum	Palladium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
PRIMARY METAL							
Nontoll-refined:							
1983	879	5,005					5,88
1984	1.430	13,003					14,4
1985	524	3,463					3,9
1986	613	3,742					4,3
1987	1.032	5,095					6,1
oll-refined:	1,002	0,000					-,-
1983	1,150	2,026					3,1
1984	1,153	4,895	1.000	250		2,000	9,2
1985	1,100	•	•			2,200	3,3
1986	(1)	(1)		(1)		(1)	0,0
	()	()		()		()	
1987							-

Table 2.—Platinum-group metals refined in the United States —Continued (Troy ounces)

			1 1			1	1,100
	Platinum	Palladium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
						4	
SECONDARY METAL							
Nontoll-refined:							
1983	118,579	177,816	2.357		3,663	750	303,165
1984	89,702	243,347	735	27	3,668	2.047	339,526
1985		201,362	252	2.	3,126	1,474	258,597
1986 ^r	70.867	277,366	297		4,316	1,313	354.159
1987	37,939	120,351	115	$\overline{604}$	3,944	1,515	164,520
Toll-refined:	91,303	120,551	119	004	5,544	1,551	104,020
1983	433,700	456,732	5,820	925	41,624	55,788	994,589
1984	524,158	568,489	7,826	49	37.584	19.288	1,157,394
1985	490,595	490.948	7.007	3	36,336	13,356	1,038,245
	674.412						
		398,270	3,584	1,415	57,618	19,701	1,155,000
1987	725,961	616,311	3,269	796	60,930	37,430	1,444,697
1986 TOTALS ^r		÷.,				*	
Total primary	613	3,742		(¹)		(¹)	4,355
Total secondary	745,279	675,636	3,881	1,415	$61.9\overline{34}$	21,014	1,509,159
Total secondary	140,419	010,000	3,001	1,410	01,934	21,014	1,509,158
Total refined metal	745,892	679,378	3,881	1,415	61,934	21,014	1,513,514
1987 TOTALS							
Total primary	1,032	5,095	0.557		 .		6,127
Total secondary	763,900	736,662	3,384	1,400	64,874	38,997	1,609,217
Total refined metal	764,932	741,757	3,384	1,400	64,874	38,997	1,615,344

Revised.

CONSUMPTION AND USES

Domestic industrial consumption of PGM remained essentially the same as that of 1986. PGM were used principally in catalysts for the control of automobile and industrial plant emissions; in reforming catalysts used to upgrade the octane rating of gasolines; and in catalysts used to produce acids, organic chemicals, and pharmaceuticals. They were also used in bushings for making glass fibers used in fiber-reinforced-plastic and other advanced materials, in electrical contacts, in capacitors, in conductive and resistive films used in electronic circuits, and in dental alloys used for making crowns and bridges.

Platinum, palladium, and rhodium were used in emission catalysts for light trucks (weighing 14,000 pounds or less, gross weight) and for automobiles. A typical emission catalyst in 1987 contained 0.057 ounce of platinum, 0.015 ounce of palladium, and 0.006 ounce of rhodium. Historically, quantities of the metals contained in each catalyst have varied. Variation depends on the year the vehicle was manufactured, the vehicle's engine size, the normal operating temperature of the vehicle's engine, and the manufacturer of the catalyst. In 1987, domestic vehicle production was 10.6 million vehicles outfitted with catalytic converters. One-third was light trucks and the rest were automobiles. For comparison, in 1983 domestic production was 9 million vehicles,

with one-quarter of total vehicles being light trucks. Thus, it appears that light trucks are growing in importance in the total vehicle market using catalytic converters.

In electronic applications, ruthenium was the principal PGM used in thick film resistors. Palladium was the principal PGM used in thick-film conductors, multilayer ceramic capacitors, and connectors.

For glass applications, most of the PGM, specifically platinum, rhodium, and palladium, were used in bushings for the extrusion of textile or continuous-filament glass fiber.

In other applications, platinum and iridium crucibles were used for growing oxide single crystals, such as gadolinium gallium garnet (GGG) and yttrium aluminium garnet (YAG). GGG and YAG are used for computer memory devices and solid-state lasers. Platinum with titanium and columbium was used for cathodic protection of steel reinforcing bars in bridge and highway concrete. It prevents their corrosion by deicing salts used on roadways.

The Bureau of Mines does not collect data on domestic investor demand for platinum. According to Johnson Matthey PLC, the mid-range estimate for platinum investment demand in North America decreased to about 100,000 ounces, somewhat less than half of the 1986 level.

¹Revised to zero.

Table 3.—Platinum-group metals¹ sold to consuming industries in the United States

(Troy ounces)

Year and industry	Platinum	Palla- dium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
1983	796,716	921,829	5,023	1,389	44,225	144,777	1,913,959
1984	876,227	1,150,500	7.117	1,072	76,253	88,619	2,199,788
1985	1,025,765	1,060,319	10,664	885	88,252	85,574	2,271,459
- 1986:		100					
Automotive ²	625,000	165,000	r ₉₃		67,000	r ₅₀₀	r857,593
Chemical	77,696	44,485	929	17	5,083	24,910	153,120
Dental and medical	^r 20.752	r267,138	372	672	611	98	r289,643
Electrical	103,506	r286,390	1,630		6,813	61,489	r459,828
Glass	r _{15,945}		93		2,952	20	r19,010
Jewelry and decorative	11,330	4,795	1,033		3,195	745	21.098
Petroleum	30,566	60,959	-7	- 1 II	-,		91,525
Miscellaneous	r96,209	61,182	8,132		7,775	15,202	r _{188,500}
Total ^r	981,004	889,949	12,282	689	93,429	102,964	2,080,317
1987:		1.5	7				
Automotive ²	605,000	160,000	55		63,000		828,055
Chemical	61,719	34,682	884	1	3,446	2,242	102,973
Dental and medical	15,387	333,601	3,252	919	334	341	353,834
Electrical	58,545	318,301	882		5,775	24,857	408,360
Glass	9,157		- 55		1,772	24	11,008
Jewelry and decorative	5,706	7,099	626		7,391	259	21,081
Petroleum	23,773	41,344					65,117
Miscellaneous	45,962	100,239	2,330		4,823	630	153,984
Total	825,249	995,266	8,084	919	86,541	28,353	1,944,412

Revised

STOCKS

In addition to the stocks reported and held by refiners, importers, and dealers, end users of PGM held sizable quantities of PGM that were not reported to the Bureau of Mines.

Table 4.—Refiner, importer, and dealer stocks of refined platinum-group metals¹ in the United States, December 31

(Troy ounces)

Year	Platinum	Palladium	Iridium	Osmium	Rhodium	Ruthe- nium	Total
1983	433,457	412,178	16,944	489	51,107	28,973	943,148
	648,130	524,924	19,600	1,302	53,120	71,571	1,318,647
	571,725	454,999	16,930	274	47,133	37,618	1,128,679
	656,718	545,206	19,649	381	47,417	22,664	1,292,035
	611,000	558,005	16,275	36	32,018	17,653	1,234,987

rRevised.

PRICES

World platinum supply exceeded industrial demand plus investment demand in 1987 by about 280,000 ounces (table 10). As a result, average monthly dealer prices were more often under \$600 per ounce than over \$600 per ounce. Less fluctuation was felt in average monthly dealer prices in 1987 than

in 1986, possibly because of fear in 1986 that the U.S. Congress would impose economic sanctions on purchases of PGM from the Republic of South Africa. Trading volume for platinum and palladium on the New York Mercantile Exchange declined in 1987.

¹Comprises primary and nontoll-refined secondary metals.

²1984-87 platinum, palladium, and rhodium sales to the automotive industry are estimated based on U.S. light truck sales and U.S. automobile production.

¹Includes metal in depositories of the New York Mercantile Exchange (NYMEX); on Dec. 28, 1987, this comprised 291,000 troy ounces of platinum and 61,800 troy ounces of palladium.

Table 5.—Average producer and dealer prices1 of platinum-group metals

(Dollars per troy ounce)

	Plat	inum	Palla	adium	Rho	dium	Irio	lium	Ruth	enium	Osr	nium
	Pro- ducer	Dealer	Pro- ducer	Dealer	Pro- ducer	Dealer	Pro- ducer	Dealer	Pro- ducer	Dealer	Pro- ducer	Deale
1983	475	424	130	136	600	312	600	309	45	28	110	132
1984	475	357	147	148	625	607	600	424	(2)	103	(3)	455
1985	475	291	127	107	915	929	600	438	(²)	101	(3)	915
1986:												
January _	475	365	120	102	1,150	1,149	600	422	(²)	70	(³)	874
February _	475	373	120	101	1,150	1,104	600	425	(2)	71	(3)	854
March	475	413	120	110	1,150	1,140	600	440	(2)	75	(3)	850
April	475	417	120	107	1.150	1,132	600	427	(2)	72	(3)	687
May	475	411	120	108	1,150	1,144	600	407	(2)	69	(3)	633
June	475	432	120	110	1,150	1,156	600	399	(2)	70	(3)	650
July	475	439	120	111	1,150	1,163	600	396	(2)	69	(a)	650
August	505	537	127	128	1,169	1,202	600	406	(2)	70	(3)	650
September	600	595	150	140	1,300	1,317	600	414	(2)	70	(3)	650
October	600	571	150	135	1,364	1,205	600	414	(2)	79	(a)	650
November	600	510	150	122	1,267	1,101	600	408	(2)	78	(3)	650
December_	600	474	150	117	1,200	1,075	600	407	(2)	77	(3)	650
Average	519	461	131	116	1,196	1,157	600	414	(2)	73	(3)	704
1987:												
January _	600	515	150	123	1,200	1.124	600	397	(2)	74	(³)	650
February _	600	515	150	120	1,200	1,180	600	394	(2)	71	(3)	650
March	600	525	150	123	1,200	1,157	600	384	(2)::	71	(3)	650
April	600	585	150	136	1,200	1,201	600	375	(2)	72	(3)	626
May	600	605	150	145	1,200	1,245	600	384	(2)	72	(3)	625
June	600	565	150	137	1,220	1,225	600	379	(2)	72	(3)	625
July	600	568	150	140	1.275	1,230	507	345	(²)	67	(3)	632
August	600	608	150	140	1,275	1.273	600	350	(2)	68	(3)	650
September	600	586	150	137	1.275	1.272	420	354	(2)	68	(3)	650
October	600	564	150	129	1,275	1,270	420	332	(2)	68	(3)	650
November	600	494	150	111	1,275	1,246	420	330	(2)	67	(3)	600
December_	600	500	150	121	1,275	1,243	420	335	(2)	67	(³)	590
Average	600	553	150	130	1,239	1,222	532	363	(2)	70	(3)	633

Average prices calculated at the low end of the range and rounded to the nearest dollar.

Source: Metals Week.

Table 6.—NYMEX trading volume for future contracts, yearend

(Number of contracts)

	1984	1985	1986	1987
Platinum¹	571,127	693,256	1,624,635	1,361,546
Palladium² _	159,019	133,223	145,562	160,284

¹⁵⁰ troy ounces per contract.

The European Options Exchange in Amsterdam, in conjunction with stock exchanges in Montreal, Sydney, and Vancouver, opened the world's first platinum options contract. An options contract allows one to buy metal at a specified price for a specified period. Before it expires, an option

can either be sold to another investor or exercised. If exercised, the investor must invest additional funds to purchase metal, according to the terms of the option.

In the United Kingdom, Samuel Montagu Ltd., Aryton Metals Ltd., Sharps Pixlev Ltd., Mase Westpac Ltd., Johnson Matthey, and Engelhard Corp., joined to create the London Platinum and Palladium Market, a wholesale professional market. Member firms are exempt from paying value-added taxes on wholesale platinum and palladium transactions. Creation of the London market is expected to increase trading significantly in the next few years. Membership is open to other platinum-palladium traders besides the original six founding members.

²Producer price suspended on June 7, 1984. ³Producer price suspended on Jan. 13, 1984.

²100 troy ounces per contract.

Table 7.—U.S. exports of platinum-group metals, by year and country

	Ores and concen-	Waste, scrap,	4	Metal not rolled (troy ounces)		Metal rolled (troy ounces)	rolled unces)	Te	Total
Year and country	trates (troy ounces)	sweepings (troy ounces)	Platinum	Palladium	Other platinum group	Platinum	Other platinum group	Troy	Value (thousands)
1983 1984 1986 1986	31,827 40,920 3,967 29,375	751,140 522,425 358,417 339,373	138,928 177,401 182,487 93,112	155,607 182,692 215,626 175,605	71,289 167,635 87,727 86,474	45,671 43,484 4,526 11,043	34,292 27,475 35,901 15,693	1,228,754 1,162,032 888,651 750,675	\$309,917 274,775 187,161 201,807
Australia Belgium-Luxembourg Berazil Canada China China France China France Germany, Federal Republic of Israel Is	2,092 724 724 110 1,244 1,000 1,000	17,346 598 15,230 8,992 4,592 16,087 115 115 115 114,642	25,158 6,813 6,813 15 17 12 142,747 12 166 23 350 183 6,209 160 183	2,888 2,386 174 119,144 12,776 2,776 8,676 8,676 22,096 861 861 864 8,576 141 6,238 6,236 6,236 9,200 5,200 6,200	5,664 1,071 26,857 7,772 986 10,391 1,0391 1,0391 1,039 1,090 1,00	2,028 205 205 414 4147 110 198 170	2,027 2,02 2,02	2,898 25,396 3,082 101,537 101,535 17,585 17,585 18,505 2,339 1,345 1,34	165 10,046 10,046 18,389 88,369 18,387 4,765 12,137 4,765 1,776 1,776 1,723 1,723 1,723 1,723 1,723 1,739 1,
Total	5,530	271,197	82,349	183,997	140,109	7,859	17,256	708,297	224,969

Source: Bureau of the Census.

Table 8.—U.S. imports for consumption of platinum-group metals, by year and country

						Unwrought (troy ounces)					
Year and country	Platinum grains and nuggets	Platinum sponge	Palladium	Iridium	Osmium	Osmiri- dium	Rhodium	Ruthenium	Unspeci- fied combi- nations	Platinum- group metals from precious metal ores	Sweepings, waste, and scrap
1983 1984 1985 1986	8,513 19,786 20,827 10,465	1,005,208 1,527,841 1,464,645 1,713,971	1,223,951 1,795,939 1,396,810 1,387,131	23,266 18,225 20,972 30,368	1,747 1,630 5,153 5,776	$848 \\ 150 \\ 4,\overline{500}$	119,958 155,671 201,028 179,068	163,623 198,257 162,887 176,580	18,143 8,822 10,330 19,864	$2,137 \\ \bar{2}\bar{1}\bar{8} \\ 1,870$	417,431 526,738 530,724 737,813
Argentina Argentina Argentina Australia Belgium-Luxembourg Botswana Canada China Colombia Colombia Colombia El Salvador France Germany, Federal Republic of Hong Kong Italy Japan Mexico Netherlands Norway South Africa, Republic of Sweden Tawan U.S.S.R. United Kingdom Venezuela	203 112 8396 81 81 81 81 81 81 81 81 81 81 81 81 81	195 30,894 4,075 1,043 1,043 9,173 9,173 1,183 1,883 1	2,786 120,994 2,000 48,099 977 2,344 2,253 2,448 2,448 9,635 9,635 10 126,985 696,182 15,103 224,427 185,401	2.309	444 445 1,530		11,254 76 255 255 273 890 462 462 108,856 42,529 30,769	3,000 2,000 2,000 1,1140 1,140 138 25,611	\$4 \$0 \$280 \$280 \$300 \$300 \$1,475 \$1,475 \$432 \$432	1,165	3,468 109,225 2,027 130,111 12,129 12,404 12,404 182,755 69 57,440 22,789 15,708 20,436 62,342 8,543
Total	821	1,124,018	1,529,161	11,814	2,048	5,800	211,466	84,399	7,983	1,789	624.916

Table 8.—U.S. imports for consumption of platinum-group metals, by year and country—Continued

		Ser	Semimanufactured (troy ounces)	pa.		Platinum- group metals in	Total	lg g
Year and country	Platinum	Palladium	Iridium	Rhodium	Unspecified combinations	naveriais - not elsewhere specified (troy ounces)	Troy	Value (thousands)
1983 1984 1986 1986	109,376 60,140 78,206 94,655	108,247 158,012 84,492 114,596	213 164 3,700 4	11,245 2,389 145 1	$\frac{10}{10}$ $1,480$ 2	4,116 332 7,977 513	3,218,022 4,474,106 3,989,594 4,477,177	\$752,756 1,118,088 1,025,692 1,346,715
Arcentina	1	1		!	. !		3.555	2 001
Belgium-Luxembourg	1:	1	1	1		1 1	115,443	2,734
Botswana	1	1	1		1	1	155,134	35,330
China	1,857	H	1 1	t [1 <u>1</u>	49	000°c 187.889	498 35.568
Colombia	1 960	1	1	1	1	10	2,946	1,715
Denmark	T,300	1	1	1	1	208	2,196	1,083
El Salvador	1	1 1					2,129	350
France	1	1	1	- [3,875	1	6,880	1,536
Germany, Federal Republic of	1	1.992	ľ	I I	1	1	2,580	1,613
Hong Kong	289	629	1 1	: 1 [1]	<u> </u>	1: 1	209,664	13,357
Japan	490	!-	. ·	L I]	, I ,	43,454	14,976
Mexico	: :	• ¦	1 	1. F I 1 I		1	57.589	2,368
Norway	1	25	1	1	1		162,308	49,756
South Africa, Republic of	1 1	5,000	1.		1	i	23,289	445
Towns	-	1	: [-	1 4 1 1	15.703	10.181
U.S.S.R.	1000	2,244	1	19	1	1 1	37,783	4,743
United Kingdom	32.583	50,620	18	160	1		380,810	101,456
Venezuela	-		3	8 1	1) - -	9,797	400,007 905
Outlet	647	240			က		14,386	7,763
Total	45,804	151,499	65	829	3,878	257	3,806,547	1,240,080

Source: Bureau of the Census.

Table 9.—Estimated U.S. imports of platinum, palladium, and rhodium, by country¹

(Thousand troy ounces)

Country	Plat	inum	Palla	adium	Rho	lium
	1986	1987	1986	1987	1986	1987
South Africa, Republic of	1,178 45 366 483	883 22 209 376	531 247 337 857	702 315 267 716	98 25 38 33	109 43 31 29
Total ²	2,073	1,490	1,972	2,000	195	212

¹This table is based on the figures shown in table 8. Estimates are based on the explicit categories of platinum, palladium, and rhodium plus estimates of the metal content in the following categories: unspecified combinations, ores, and scrap, and materials not elsewhere specified.

²Data may not add to totals shown because of independent rounding.

WORLD REVIEW

Three companies in the Republic of South Africa produced PGM from platinum ores. The U.S.S.R. and two companies in Canada produced PGM from nickel-copper ores. The South African companies were Rustenburg Platinum Mines Ltd., Impala Platinum Holdings (Pty.) Ltd., and Western Platinum Ltd.; the Canadian companies were Inco Ltd. and Falconbridge Nickel Mines Ltd. World production of platinum was 3.8 million ounces and world production of palladium was 4.0 million ounces, of which the U.S.S.R. produced an estimated 980,000 ounces of platinum and 2.6 million ounces of palladium.

World platinum supply exceeded industri-

al demand plus investment demand by about 280,000 ounces in market economy countries (table 10). Palladium and rhodium supply and demand were fairly balanced. According to Johnson Matthey, investment demand in 1987 was only half of its 1986 level, possibly because of uncertain world economic and political conditions in 1986.

Nineteen eighty-seven marked a year of intense exploration for PGM. The Republic of South Africa, Canada, Australia, and New Zealand reported the most activity.

Australia.—Australia planned to produce legal tender platinum bullion coins, in 1ounce, 1/2-ounce, 1/4-ounce, and 1/10-ounce weights.

Table 10.—Supply and demand for platinum, palladium, and rhodium in 1987 (Thousand troy ounces)

	Platinum	Palladium	Rhodium
SUPPLY			
Mine production (market economy countries):			
South Africa, Republic of e	2,600	1,100	130
Callaua	186	195	17
Other	39	68	
Total	2,825	1,363	1.45
	2,020	1,303	147
Secondary from old scrap:			
Japan United States Other	45	200	7
Other	37	117	4
	10	150	2
TotalSoviet sales to market economy countries	92	467	13
Soviet sales to market economy countries	459	1,609	54
Total	3,376	0.400	
	3,376	3,439	214

See footnote at end of table.

Table 10.—Supply and demand for platinum, palladium, and rhodium in 1987 --Continued

(Thousand troy ounces)

		Platinum	Palladium	Rhodium
DEMAND		2002 2004	1 1	
i elle New Addi	in with the significant	1,352	1,644	100
				87 20
		200	200	5
		12,877	3,399	212
	DEMAND	DEMAND	DEMAND 1,352 825 500 200	DEMAND 1,352 1,644 825 995 500 560 200 200

^eEstimated.

Sources: Johnson Matthey PLC, CPM Group Ltd., and Bureau of Mines estimates.

Belgium-Luxembourg.—Johnson Matthey announced plans to build a new automobile catalyst manufacturing plant in Evere to complement the company's existing facility in Royston, United Kingdom. The plant will have a capacity of 4.5 million exhaust catalysts per year, making it one of the largest plants in Europe. The new plant is expected to produce catalysts by the end of 1988. It will help meet a European Economic Community directive requiring all new car models with engines larger than 2 liters to be fitted with converters after October 1988.

Canada.—Madeleine Mines Ltd. of Toronto said that it would develop its Lac des Iles platinum-palladium deposit. The company plans to build a smelter at Thunder Bay and a refinery in Calgary to process the output of its 3,000-short-ton-per-day open pit mine. The mine could be producing 15,000 ounces of platinum and 120,000 ounces of palladium by 1988.5

International Platinum Corp. owns interests in over 20 PGM properties. It explored for PGM in Canada and the United States. Among its most promising Canadian properties were Big Trout Lake, Ontario; Lac des Iles, Ontario; Delta Sill, Quebec; and Red Lake, Ontario. Degussa AG of the Federal Republic of Germany, a major world refiner and fabricator of precious metals, entered into a joint venture agreement with International Platinum. Degussa was to acquire a 50% interest in properties owned by International Platinum, but International Platinum would remain as operator of the joint venture. Degussa was to provide some of the \$4.5 million budgeted for exploration of the properties over the next 3 years.6

France.—The French Government issued its first commemorative platinum and palladium coins in celebration of the bicentennial of the French Revolution. The platinum coins weigh 20 grams and the palladium coins weigh 17 grams. Manfra, Tordella & Brookes Inc. of New York was the exclusive distributor in North America.

Korea, Republic of .- In a joint venture, Hankuk Engelhard Corp. and Hyundai Motor Co. planned to build an automotive exhaust catalyst manufacturing plant in Ahnsahn city. Hankuk Engelhard is owned by Engelhard Corp. and Hi-Seong Metal Industries Co. Ltd. Startup of the plant was expected in the fourth quarter of 1987.

South Africa, Republic of.—All three of the PGM producers in the Republic of South Africa-Rustenburg Platinum Mines Ltd., Impala Platinum Holdings (Pty.) Ltd., and Western Platinum—announced major expansion plans in 1987.

Rustenburg decided to expand production of PGM at its Atok Mine and possibly develop a mine at its deposit at Maandagshoek, both in the black homeland of Lebowa. Together, the two deposits were to be known as Lebowa Platinum Mines Ltd. and would be listed on the Johannesburg Stock Exchange. Lebowa could produce as much as 300,000 ounces of PGM per year by 1991.7

¹Excludes approximately 220,000 ounces of investment demand.

Impala planned to build a new mine near Marikana that would produce 100,000 ounces per year of platinum by 1991. Eventually it would increase to 300,000 ounces per year. The new mine, called Karee, was expected to replace declining production from Impala's existing mines.8

Western Platinum planned to double its output of PGM to 500,000 ounces per year by 1992 or 1993. The additional production was expected to be mined from the UG-2

reef.9

Between 1989 and 1993, five new PGM companies presumably will begin mining the Merensky and UG-2 reefs of the Bushveld Complex in the Republic of South Africa. It was projected that South Africa production of platinum could grow from an estimated 2.5 million ounces in 1987 to 3.5 million ounces by the early 1990's. Some of the new production was no doubt spurred by the need to supply the growing demand for PGM in the autocatalyst market.

Northam Platinum Ltd., a subsidiary of Gold Fields of South Africa Ltd., continued to develop its deep mine near Rustenburg's Amandelbult section. Mining at depths of over 6,600 feet, the project was expected to require elaborate refrigeration facilities. Initial production of 250,000 ounces per year of PGM was slated to begin by 1991. By 1994, Northam could produce 350,000 ounces per year of PGM. Up to 200,000 ounces of this total would be platinum.

Golden Dumps Ltd. announced plans to develop a new PGM mine to exploit the UG-2 reef, to be called Lefkochrysos, near the town of Brits. Production was expected

to be 170,000 ounces per year of PGM by 1989, mined from deposits only 65 feet below the surface. Other deposits, over 3,000 feet deep, could eventually be producing about 650,000 ounces per year of PGM, of which 350,000 ounces per year would be platinum.10

Rand Mines Ltd. and Vansa Vanadium S.A. Ltd. agreed to develop a new PGM mine, near Lydenburg. It would initially produce about 435,000 ounces per year of PGM (140,000 ounces per year of platinum) beginning about 1992. The new mine, called Rhodium Reefs, was to mine the UG-2 reef exclusively.11

In Lebowa, another company, Messina Ltd., announced that it would begin trial mining and metallurgical testing of PGM from a mine being developed at Zebedielia, east of Rustenburg's Atok Mine. When developed, the mine is expected to produce 150,000 ounces of platinum by 1993.12 Also in Lebowa, Severin Mining and Development Inc. planned to open a new, very deep platinum mine by 1990.13

Zimbabwe.—Two Australian companies, Delta Gold and Mumbil Mines, announced the formation of a joint venture to consider development of a portion of the Great Dyke in Zimbabwe in an area called the Hartley project, which was previously explored by Union Carbide Corp. between 1968 and 1972. Delta and Mumbil hoped to develop the Hartley project into an operation with an annual output of 100,000 ounces of platinum, 80,000 ounces of palladium, and 30,000 ounces of gold.14

Table 11.—Platinum-group metals: World production, by country¹ (Troy ounces)

	(110) ounces	, .:		and the second	. 4
Country ²	1983	1984	1985	1986 ^p	1987 ^e
Australia, metal content, from domestic nickel					
ore:3					4.
Palladium	e10.000	1000			
Platinum	e12,000	16,815	15,304	13,760	15,800
Canada: Platinum mana	^e 1,900	2,122	3,054	3.697	4,200
Canada: Platinum-group metals from nickel ore	223,925	348,216	337,088	391,917	4433,681
Colombia: Placer platinum	10,303	10,106	11,650	14,368	
Ethiopia: Placer platinume	125	125	11,050		15,000
Finland:	120	120	190	r ₁₅₀	150
Palladium	2,283	1 000		4 2	
riacinum _	2,286	1,093	1,125	3,086	3,000
Japan, metal recovered from nickel-copper ores:5	2,100	1,061	1,125	3,858	4,000
Palladium					4.
Platinum	37,122	33,802	43,703	46,699	445,558
Principle of the princi	21,460	19,523	22,216	21,312	
South Africa, Republic of: Platinum-group metals	,	,0-0	22,210	41,514	424,209
Irom platinum ore 5	2,600,000	3,500,000	9 700 000	TO 000 000	
U.S.S.R.: Placer platinum and platinum-group	2,000,000	0,000,000	3,700,000	^r 3,960,000	4,220,000
metals recovered from nickel-copper ores	3,600,000	9.700.000			
	3,000,000	3,700,000	3,800,000	3,850,000	3,900,000
See footnotes at and of table					,

Table 11.—Platinum-group metals: World production, by country¹ —Continued

(Troy ounces)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
United States: Placer platinum and platinum- group metals from gold-copper ores	6,257	14,635	w	: 	• • • • • • • • • • • • • • • • • • •
Palladium Platinum Platinum	42,926 4193	3,100 200	3,300 250	^r 3,100 ^r 250	3,100 250
Zimbabwe: Palladium Platinum	2,395 1,695	1,222 772	965 611	1,125 836	1,150 850
Total	6,524,770	r _{7,652,792}	7,940,541	8,314,158	8,670,948

"Total."

"Total."

"Table includes data available through May 6, 1988. Platinum-group metal production by the Federal Republic of Germany, Norway, and the United Kingdom is not included in this table because the production is derived wholly from imported metallurgical products and to include it would result in double countries.

imported metallurgical products and to include it would result in double counting.

In addition to the countries listed, China, Indonesia, Papua New Guinea, and the Philippines are believed to produce platinum-group metals, and several other countries may also do so, but output is not reported quantitatively, and there is no reliable basis for the formulation of estimates of output levels. However, a part of this output not specifically reported by country is presumably included in this table credited to Japan. (See footnote figure; excludes platinum-group metals recovered in other countries from nickel ore of Australian origin; however, a part of this output may be credited to Japan. (See footnote 5.)

⁴Reported figure.

*Reported figure.

Japanese figures do not refer to Japanese mine production, but rather represent Japanese smelter-refinery recovery from ores originating in a number of countries; this output cannot be credited to the country of origin because of a lack of from ores originating in a number of countries; this output cannot be credited to the country of origin because of a lack of Canada, Indonesia Papua New Guinea, and the Philippines. Output from ores of Australian, Indonesian, Papua New Guinean, and Philippine origin are not duplicative, but output from Canadian material might duplicate a part of reported or the paper of the part o Canadian production

⁶Includes osmiridium produced in gold mines.

TECHNOLOGY

The Davison Div. of W. R. Grace & Co. developed a new metal substrate catalytic converter for controlling pollution emissions from car exhausts and power stations. The substrate is made of thin metal foil, formed into corrugations, stacked and retained by rings on both edges. The new metal substrates reportedly have improved thermal durability over conventional ceramic substrates.15

Mitsui & Co. of Cleveland, OH, marketed a system for recovering precious metals from scrapped automobile catalytic converters. System capacities ranged from 1 short ton per day to more than 20 tons per day of crushed catalyst material. The metals are dissolved in hydrochloric acid and deposited electrolytically on carbon particles, filtered, and redissolved in hydrochloric acid. The pure metals can then be selectively precipitated.16

plement. Production Flows Faster Than Stillwater Projections. V. 95, No. 240, Dec. 11, 1987, p. 8A.

³American Metal Market. Platinum Found in Alaska Gold. V. 95, No. 187, Sept. 25, 1987, pp. 1, 8.

⁴Robson, G. G. Platinum, 1987 Interim Review, Johnson Matthey PLC. P. 11.

⁵London Mining Journal. Lac des Iles Decision. V. 309, No. 7930, Aug. 14, 1987, p. 125. ⁶Metal Bulletin Monthly. Platinum Price Drives PGM

Bandwagon. No. 204, Dec. 1987, pp. 14-16.

*Metals Week. Rustenburg To Double Atok's Output.

V. 58, No. 42, Oct. 19, 1987, p. 8. ⁸Metals Week. Impala To Establish New Platinum Mine. V. 58, No. 43, Oct. 26, 1987, p. 7.

Metal Bulletin. Westplat To Double Output. No. 7168,

Mar. 13, 1987, p. 13.

¹⁰London Mining Journal. A Proliferation of Platinum Projects. V. 309, No. 7932, Aug. 28, 1987, pp. 166-167. ¹¹Salak, J. American Metal Market. Huge S. African Platinum Mine May Open in '92. V. 95, No. 155, Aug. 11,

1987, pp. 1, 6. ¹²Metal Bulletin. Messina Platinum Mine Gets Go-

Ahead. No. 7208, Aug. 6, 1987, p. 9.

¹³Metals Week. A New Platinum Mine Is Being Planned. V. 58, No. 41, Oct. 12, 1987, p. 8.

¹⁴Mining Journal. Great Dyke Attracts Australians. V. 309, No. 7939, Oct. 16, 1987, p. 305. ¹⁵Materials Edge. Grace Moves Into U.S. Metal Catalyters

ic Converters. No. 1, Sept.-Oct. 1987, p. 9.

16 International Precious Metals Institute. Precious Metals Recovery From Catalytic Converters. V. 11, No. 9, Sept. 1987, p. 4.

¹Physical scientist, Branch of Nonferrous Metals. ²American Metal Market, Platinum-Group Metals Sup-

Potash

By James P. Searls¹

U.S. potash production in terms of potassium oxide (K2O) equivalent rose 5% relative to that of 1986. Apparent consumption rose 5% on the same basis. Spring production was 47% of the annual total. Sales by U.S. producers rose 29% for the year, and average prices rose 5% on the basis of K2O equivalent. Yearend stocks decreased 59%. The United States continued to be a net importer. Net import reliance as a percentage of apparent consumption was 75%. Canada provided an amount equal to 73% of

the domestic apparent consumption. U.S. exports decreased, with exports to India falling to zero, exports to Brazil and Mexico decreasing, and exports to Japan increasing slightly.

Domestic Data Coverage.—Domestic production data for potash are developed by the Bureau of Mines from a voluntary semiannual survey of U.S. operations. Of the nine operations to which a survey request was sent, all responded, representing 100% of the total production shown in table 1.

Table 1.—Salient potash¹ statistics (Thousand metric tons and thousand dollars unless otherwise specified)

	1983	1984	1985	1986	1987
United States:		1.0			
Production	2,770	3,039	2,569	0.001	0.404
K ₂ O equivalent	1,429			2,381	2,464
Sales by producers	2,950	1,564	1,296	1,202	1,262
K ₂ O equivalent		3,184	2,505	2,291	2,904
Value ²	1,513	1,639	1,266	1,147	1.485
Average value per ton of product	\$220,800	\$241,800	\$178,400	r\$144,900	^e \$195,700
dollars Average value per ton of K ₂ O equivalent	\$74.85	\$75.95	\$71.22	r\$63.24	\$67.38
do	\$145.97	\$147.55	\$140.89	r\$126.28	\$131.73
Exports ³	564	836	973	1.025	926
K ₂ O equivalent	300	446	513	547	
Value	\$55,760	\$85,660			470
Imports for consumption ^{3 5}	7.322		NA	NA	NA
K ₂ O equivalent		7,948	7,571	6,934	6,706
Customs volus	4,440	4,829	4,593	4,212	4.073
Customs value	\$600,600	\$658,100	\$499,100	\$385,100	\$432,700
Consumption, apparent ⁶	9,708	10,296	9,103	8,200	8,683
K2O equivalent	5,653	6,022	5,346	4,843	5,088
Yearend producers' stocks, K2O equivalent	⁷ 391	8312	9336	10378	
World: Production, marketable K ₂ O equivalent	27,418	29,334	29,151	P28,758	155 e29,812

 $^{{}^{\}mathbf{p}}$ Preliminary. Revised. NA Not available.

¹Includes muriate and sulfate of potash, potassium magnesium sulfate, glaserite, and some parent salts. Excludes other chemical compounds containing potassium

²F.o.b. mine.

³Excludes potassium chemicals and mixed fertilizers.

F.a.s. U.S. port.

5Includes nitrate of potash.

⁶Calculated from production plus imports minus exports plus/minus industry and Government stock changes.

⁷Inventory adjustment of minus 46,000 tons.

⁸Inventory adjustment of minus 4,000 tons.

⁹Inventory adjustment of minus 6,000 tons. ¹⁰Inventory adjustment of minus 12,900 tons.

DOMESTIC PRODUCTION

Domestic K₂O production rose 5% in 1987 compared with that of 1986. Of the total production for the year, 79% was standard. coarse, and granular muriate of potash, also known as potassium chloride, and 8% was sulfate of potash, also known as potassium sulfate. The remaining production comprised manure salts, soluble and chemical grades of muriate of potash, and sulfate of potash-magnesia, also known as potassium magnesium sulfate. The terms "standard," "coarse," and "granular," refer to the particle sizes of the finished product. "Standard," "coarse," and "granular" are the "three muriates," a term that ignores manure salts and soluble and chemical grades of muriate of potash. "Sulfates" is a term for the combination of sulfate of potash and sulfate of potash-magnesia.

The New Mexico producers accounted for 90% of the total marketable potash salts production. Production of crude salts in New Mexico was 11.4 million tons² with an average K₂O content of 14.6%. The producers were AMAX Potash Corp. of AMAX Inc.; International Minerals & Chemical Corp. (IMC); Lundberg Industries Ltd.; New Mexico Potash Corp., which is owned by Cedar Chemical Inc., a subsidiary of Fermenta AB of Sweden; and Western Ag-Minerals Co., which is controlled by Rayrock Resources Ltd. of Canada. Lundberg Industries filed for protection from its creditors under chapter 11 of the Federal Bankruptcy Code in June. A trustee for the court took control of mine and plant operations in September. All of the producers, except Western Ag-Minerals, mined sylvinite ore and beneficiated the ore into muriate of potash. Western Ag-Minerals and IMC mined langbeinite ore and beneficiated the ore to sulfate of potash-magnesia. IMC mined both types of ore and reacted fractions of each potash product to produce sulfate of potash.

Sulfate of potash was also manufactured at two plants in Texas and one in Utah. The plant in Dumas, TX, was operated by Lundberg Industries until November. Plant ownership then reverted to Ideal Basic Industries Inc., its former owner, and was operated as Potash Resources Inc. The plant was then leased to AMAX Potash and operated by AMAX Potash through year-

end. Its production is reported in Bureau of Mines statistics. The Permian Chemical Corp. plant in Odessa, TX, filed for protection from its creditors under chapter 11 of the Federal Bankruptcy Code and shut down on August 31. The Permian plant and the Climax Chemical Co. plant in Utah together produced about 22,000 tons. These companies are not included in Bureau of Mines statistics because they are not mining firms.

Greensand, also known as glauconite, a natural silicate of potassium, aluminum, iron, and magnesium, was produced by Inversand Co., a subsidiary of Hungerford and Terry Inc., near Clayton, NJ, and by Contractors Sand & Gravel Co. near Middletown, DE. Production and sales information is withheld to avoid disclosing company proprietary data. Processed greensand continued to be sold as a filter media for the removal of manganese and iron from drinking water supply systems. Classified raw greensand was resold by Zook and Ranck Inc. as a soil conditioner and as a source of slowly released potash, with a K₂O content between 5% and 10%, to the organic farmers in North America.

In Utah, Texasgulf Chemicals Co. of Texasgulf Inc., which is owned by Elf Aquitaine Inc. of the Paris-based Société Nationale Elf Aquitaine, produced muriate of potash from underground bedded deposits by solution mining and solar evaporation. The salts from the solar ponds were beneficiated by flotation to separate the sylvite from the halite. This company changed its name to Moab Salt Inc. at yearend. Kaiser Chemicals of Kaiser Aluminum & Chemical Corp. produced muriate of potash from near-surface brines at the west end of the Bonneville Salt Flats by solar evaporation and flotation. Magnesium chloride was a byproduct. Great Salt Lake Minerals & Chemicals Corp., a subsidiary of Gulf Resources & Chemical Corp., remained closed throughout the year while repairing flood damage.

In California, Kerr-McGee Chemical Corp. continued to produce both muriate and sulfate of potash along with other products from underground brines at Searles Lake.

Table 2.-Production, sales, and inventory of U.S. produced potash, by type and grade

(Thousand metric tons and thousand dollars)

		Production	ction				Sold or used	pesn.			Stoc	Stocks, end of 6-month period	month per	2
Type and grade	G.	Gross weight	K ₂ O equivalent	o alent	Gross	oss ght	K ₂ O equivalent	Ollent	Va	Value	Gross	oss eht	K ₂ O	
	1986	1987	1986	1987	1986	1987	1986	1987	1986	1987	1986	1987	1986	1987
January-June:														
Muriate of potash, 60% K2O minimum:														
Standard	342	240	500	147	373	344	228	910	19 500	617.700	100	011	6	ě
Cremiles	75	107	46	99	101	122	62	12	5,800	e6,400	21	110	121	2 6
Chemical	763	403	159	245	274	522	166	316	14,100	e24,100	88	123	2 23	3 22
Potassium sulfata	٦ و	ي ع	£:	4	œ	Ξ	ō	7	×	M	က	-	8	? -
Other potassium salts	£ 2	362	45	84.8	8	107	46	25	15,200	e16,200	65	98	1 eg	18
	100	070	2	8	368	392	£	96	W	W	197	153	47	35
Total ⁴	1,104	1,177	539	590	1,214	1,498	595	759	83,000	e94,000	268	446	267	210
July-December:														
Muriate of potash, 60% K ₂ O minimum:														
Standard	392	298	239	182	345	338	211	908	16.100	91 800	976	9	150	
Coarse	98	113	23	69	74	124	45	92	1 6.800	8.700	3 2	0 -	6	4 ×
Chemical	417	471	523	285 285	787	493	172	536	10,300	31,700	215	97	13 6	92
Potassium sulfate	28	. 5	10	9	27.	x s	ထဋ	.c.	*	≱	7	2	4	;
Other potassium salts ³	282	295	£ 55	7 E	101	10e	70.0	54 50 60	15,300	16,800	84.	8	22	16
			3		107	000	ž	8	≥	*	219	112	49	22
Total*	1,277	1,287	663	671	1,077	1,405	552	726	r 61,900	101,700	892	328	378	125
Grand total	0 901	1010	000	000					11					
The state of the s	106,2	7,404	1,202	7,262	2,291	2,904	1,147	1,485	1,485 144,900	e195,700	XX	XX	XX	XX

W Withheld to avoid disclosing company proprietary data; included in "Total." XX Not applicable. rRevised. Estimated. ¹F.o.b. mine.

^{*}Less than 1/2 unit.
*Includes soluble muriate, glaserite, manure salts, and potassium magnesium sulfate.
*Thata may not add to totals shown because of independent rounding.

Table 3.—Production and sales of potash in New Mexico

(Thousand metric tons and thousand dollars)

	Cmid	e salts¹		Market	able potass	ium salts	
		roduction)	Prod	luction		Sold or used	
Period	Gross weight	K ₂ O equivalent	Gross weight	K ₂ O equivalent	Gross weight	K ₂ O equivalent	Value ²
1986: January-June July-December	4,397 5,382	636 777	971 1,147	463 588	1,085 927	522 465	73,500 59,400
Total ³	9,779	1,413	2,118	1,051	2,013	987	132,900
1987: January-June July-December	5,615 5,786	820 841	1,088 1,161	539 598	1,345 1,283	669 654	e83,500 90,700
Total ³	11,400	1,661	2,249	1,136	2,627	1,323	174,200

^eEstimated.

Table 4.—Salient U.S. sulfate of potash¹ statistics

(Thousand metric tons of K_2O equivalent and thousand dollars)

	1984	1985	1986	1987
D. L. Maria	109	106	88	. 100
ProductionSales by producers	126	103	88 97	109
Sales by producers	\$47,197	\$36,465	\$19.858	\$33,059
Value ²	34	46	479	4118
Exports ³ Value ⁵	\$13,940	NA	NA	NA
Value Value	29	25	27	26
Imports ³	\$12,600	\$10,400	\$9,900	\$10,500
Value ⁶	121	82	⁴ 45	416
Consumption, apparent ⁷	31	34	25	16
Yearend producers' stocks	91	94	20	10

CONSUMPTION AND USES

Apparent domestic consumption of all forms of potash rose 5% compared with that of 1986. Prices rose near yearend as antidumping duties were assessed on potash imported from Canada. Demand for grains and, therefore, demand for potash remained strong as farmers expected the marginal cost increases for potash to be passed on to the consumer. This was made possible by the drop in the relative value of the dollar in the world marketplace, thereby reducing the cost of U.S.-produced grains relative to that of other nations' grains.

¹Sylvinite and langbeinite.

²F.o.b. mine.

³Data may not add to totals shown because of independent rounding.

NA Not available.

¹Excludes potassium magnesium sulfate.

²F.o.b. mine.

³Bureau of the Census.

⁴Preliminary export data pending verification by the Bureau of the Census.

⁵F.a.s. U.S. port. ⁶C.i.f. to U.S. port.

Calculated from production plus imports minus exports plus/minus industry stock changes.

2,504

,218 .720

431

57,382

5.541

13

13 12

269

 $1\overline{51}$

632

995 8,588

410

361.119

26.008

14.918

Nonagricultural

POTASH

Table 5.—Sales of North American potash, by State of destination (Metric tons of K2O equivalent)

State	pot	ash	potash		
	1986	1987	1986	1987	
	52,968	62,341	87,005	95,097	
	825	1,625	7,592	57	
	943	2,382	79	1,104	
	45,055	64,576	188	588	
	51,786	68,967	8,392	10,863	
	7,035	7,181	3,454	3,183	
	4,238	3,752	91	148	
	23,125	15,673	37,215	34,205	
	134,077	142,998	2,131	650	
	103,479	109,765	580	1,369	
	12,219	14,670	44		
	24,525	22,750	22	566	
	621,147	680,434	1,457	2,373	
	335,011	370,977	220	344	
	408,702	492,891	641	432	
	28,613	44,020	1.177	2,174	
	116,581	93,328	166	248	
	64,416	120,990	946	1,445	
	7,284	8,725	630	1,051	
	33,456	27,639	112	192	
	5,270	3,762	461	1,029	
	185,381	210,073	1,060	3,582	
	316,132	360,272	352	1,371	
	23,342	35,421	35,895	39,325	
	222,751	287,563	2,967	4,341	
	10,869	11.316	14	432	
	30,148	30,378	132	648	
	363	13	209	243	
	461	1,024	25	58	

461 7.819

61,211 88,380

23,599

18,508

25,596 53,717

99,854 12,719

108,475 119,236

5,615

3.070

120,248

36,408

2,855 277,501

4,343,991

1,497

398,569

5,946

9,642

58,901

70.853

23,444

23,106

29,844

57.387 1,588

53,942

13.590

128,035

146,036

7,755 2,850

76,226

38,211

284,227

4,752,774

2,887

1,879

420,919

16,273

64.833

6,544 1,350

106

585

295

2,169

480

611

327,264

19,634

10,639

6.739

201

61

Agricultural

Source: Potash & Phosphate Institute.

Wisconsin ______

Alabama Alaska ______ Arizona______

California _____

Connecticut _____ Delaware_____ Florida Georgia _ _ _ _ _ _ _ _ _ Hawaii ______ Idaho ______ Illinois ______ Indiana _ _ _ _ _ _ Iowa_____ Kansas ______ Kentucky_____ Louisiana ______

Massachusetts_____ Michigan _ _ _ _ _ _ Minnesota _____ Mississippi ______ Missouri ______ Montana Nebraska______

Arkansas_

Colorado _

Maine_ Maryland

Nevada_

Ohio

Utah

Oregon _

New Mexico _ New York __

Table 6.—Sales of North American muriate of potash to U.S. customers, by grade

New Hampshire

New Jersey ______

North Carolina

Oklahoma

Rhode Island South Carolina

South Dakota

Washington ______ West Virginia _____

Total _______

Wyoming_____

North Dakota ______

(Thousand metric tons of K2O equivalent)

Grade	1984	1985	1986	1987
Agricultural:				
Standard	446	346	319	328
Coarse	2,219	2,065	1,882	2,078
Granular	1,511	1,666	1,683	1,866
Soluble	471	392	336	360
Total	4,647	4,469	4,220	4,632
Nonagricultural:				
Soluble	120	138	98	88
Other	227	227	225	269
Total	347	365	323	357
Grand total _	4,994	4,834	4,543	4,989

Source: Potash & Phosphate Institute.

According to the Potash & Phosphate Institute, the major consumers of agricultural potash from Canadian and U.S. potash producers, in decreasing order, were Illinois, Iowa, Ohio, Indiana, Minnesota, Missouri, and Wisconsin. These seven States consumed 61% of the total from Canadian and U.S. producers. Domestic producers provided 8% of Illinois' potash consumption, 5% of Iowa's consumption, 2% of Ohio's consumption, 3% of Indiana's consumption, 1% of Minnesota's consumption, 46% of Missouri's consumption, and 1% of Wisconsin's consumption. The major agricultural consumers of domestically produced potash, in decreasing order, were Texas, Missouri, California, Illinois, Kansas, and Florida. These six States accounted for 62% of the total. The major consumers of domestically produced sulfates of potash, in decreasing order, were Florida, Georgia, California, Texas, and North Carolina.

These five States accounted for 58% of the total.

STOCKS

Yearend producers' stocks of potash declined 59% from that of 1986. Yearend

stocks represented 12% of annual production, or 6.4 weeks of average production.

PRICES

Prices of potash were relatively low through midyear. With the application of dumping margins by the U.S. Department of Commerce on Canadian potash, prices rose after August 20 to more profitable levels for the domestic producers. The average annual price, f.o.b. mine, of U.S. potash sales of all types and grades rose 4% from that of 1986 to \$131.73 per ton. The average

price was \$123.78 in the first half of the year and \$140.04 in the second half. The average annual price for the three grades of muriate rose to \$92.92 per ton. Standard-grade muriate of potash averaged \$93.68 per ton, coarse-grade muriate averaged \$99.80 per ton, and granular-grade averaged \$90.72 per ton. The average annual price for sulfate of potash fell to \$303.43 per ton.

Table 7.—Prices1 of U.S. potash, by type and grade

(Dollars per metric ton of K2O equivalent)

	19	85	19	986	19	987
Type and grade	January- June	July- December	January- June	July- December	January- June	July- December
Muriate, 60% K ₂ O minimum:						
Standard	101.99	97.37	85.17	76.46	84.28	103.28
Coarse	102.42	87.35	92.63	81.16	86.35	113.05
Granular	101.30	78.85	84.75	77.73	76.11	106.21
All muriate ²	101.73	88.71	87.85	80.11	80.24	106.06
Sulfate, 50% K ₂ O minimum	367.24	339.98	332.24	295.58	331.06	295.65

¹Average prices, f.o.b. mine, based on sales.

FOREIGN TRADE

Total U.S. potash exports reported by the Bureau of the Census decreased 14%, by ton product. The major destinations of potash exports in Latin America, which received 60% of the total, were, in decreasing order, Brazil, Peru, Colombia, the Dominican Republic, Mexico, and Costa Rica. These countries represented 86% of the exports to Latin America. Exports to India fell to zero. Exports to Japan rose 8%, and exports to Canada rose 83%. Japan, Canada, Hong Kong, Ireland, and China, in decreasing order, represented 81% of exports to non-

Latin American countries.

A 3% decrease in total U.S. imports for consumption of potash was represented primarily by reduced imports of muriate of potash from Canada. Canada supplied 92% of all muriate imports and 91%, by K₂O equivalent, of all potash imports. Israel was the second largest source of imports, with 4% of muriate of potash imports and 8%, by K₂O equivalent, of total potash imports. Imports from the U.S.S.R. increased by 510% from those of 1986.

²Excluding soluble and chemical muriates.

Table 8.-U.S. exports of potash

	Approximate	Quantity (metric tons)	77 1 1
	average K ₂ O content (percent)	Product	K₂O equiv- alent	Value ¹ (thousands)
1986:	1			
Potassium chloride, all grades Potassium sulfate Potassium magnesium sulfate	61 51 22	708,357 155,608 161,065	432,098 79,360 35,434	NA NA NA
Total	XX	1,025,030	546,892	NA
1987: Potassium chloride, all grades Potassium sulfate Potassium magnesium sulfate	61 51 22	511,590 230,899 183,931	312,022 117,849 40,468	NA NA NA
Total	xx	926,420	470,339	NA

NA Not available. XX Not applicable.

¹The Bureau of the Census ceased publication of value data in 1985.

Source: Bureau of the Census.

Table 9.—U.S. exports of potash, by country

			Metric ton	s of product			Total v	3
Country	Potas chlor			n sulfates, ades ¹	Tot	al ²	(thous	
<u> </u>	1986	1987	1986	1987	1986	1987	1986	1987
Argentina	4,990	30	5,880	1,500	10,870	1,530		
Australia	6,000	2,700	12,000	7,400	18,090	10,100		
Bahamas	14		2,880	500	2,890	500		
Belgium-Luxembourg	80,290		52		80,340			
Belize	620	1,530	320	40	940	1,570	1	
Brazil	175,510	157,800	11,210	18,010	186,740	175,810	1	
Canada	730	23,990	43,920	57,810	44,650	81,800		
Chile	5.150	1,040	28,260	19,030	33,410	20,070		
China	54,080		9,470	31,930	63,550	31,930	•	
Colombia	22,060	14,870	19,020	40,850	41,080	55,720		
Costa Rica	4,400	20,070	17,010	16,010	21,410	36,080		
Denmark	2,200	,	10,250	20	10,250	20		
Dominican Republic	21.690	34,750	2,260	3,450	23,950	38,200	•	
Ecuador	13,430	6,890	1.040	3,320	14,470	10,210		
El Salvador	2,970	0,000	460	12,000	3,430	12,000	.	
France	2,510	$\bar{210}$		1,230	0,400	1,440		
French West Indies	3,890			1,200	3,890	1,110		
Germany, Federal Republic	3,030				0,000			
		5,020				5,020		
of		•		5,850		5,850		
Greece			$3,\overline{170}$	370	$3,\overline{170}$	370		
Guatemala		0.210	3,170	310	5,170			
Guyana	000	2,310	$\overline{74}$		1 050	2,310	1	
Haiti	980	4.050		50	1,050	50	\ ,,,	
Honduras	1,540	4,250	2,090	270	3,630	4,520) NA	N.
Hong Kong	04.70=	38,410			04 400	38,410	1	
India	84,400	07.700			84,400	07.70		
reland	10,010	37,700		5.7	10,010	37,700		
taly	300	·	1,740	410	2,040	410		
Japan	70,470	58,770	90,950	115,020	161,420	173,790		
Korea, Republic of		70	400	180	400	250	1	
Leeward and Windward							l	
Islands		8,070				8,070	l .	
Malaysia			10,910	13,220	10,910	13,220		
Mexico	50,340	11,150	14,950	25,040	65,290	36,190	8	
Netherlands	16,270	24,350			16,270	24,350	•	
New Zealand	25,160		360	90	25,520	90	E .	
Pakistan	-0,-00			15,000	·	15,000	•	
Panama	4,250	3,620	2,230	660	$6,\bar{480}$	4,280	1	
Peru	8,550	50,160	8,730	16,840	17,280	67,000	•	
Philippines	67	50,100	11,760	20,020	11,830	50		
Saudi Arabia		00		4.740	11,000	4,740		
Spain		3.180		3,010		6,190	ı	
Sweden	800	400		5,010	800	400	I	
Switzerland	12.370				12,370		1	
			$\overline{40}$		26,270	4	1	
raiwan	26,230		3.510		3,510	[
Thailand	700	200		980	3,510 2,490	$_{1,ar{1}ar{8}ar{0}}$ /		
Other	700	200	1,790	960	2,490	1,180		
Total ²	708,360	511,590	316,670	414,830	1,025,030	926,420	NA	N/

NA Not available.

¹Includes potassium magnesium sulfate.

²Data may not add to totals shown because of independent rounding.

³The Bureau of the Census ceased publication of value data in 1985.

Source: Bureau of the Census.

Table 10.—U.S. imports for consumption of potash, by country

				2	Metric tons of produc	of produ	ಕ					lotal value ((thousands)	
Country	Pota	Potassium chloride	Potassium sulfate	sium ate	Potas nit	Potassium nitrate	Potassium sodium nitrate	sium nitrate	To	Total ¹	Customs	smo	Cif	ų.
	1986	1987	1986	1987	1986	1987	1986	1987	1986	1987	1986	1987	1986	1987
Belgium-Luxembourg Canada Canada Chile Chile Dominican Republic German Democratic Republic Germany, Federal Republic Germany, Federal Republic Japan Netherlands Spain Switzerland Tawan U.S.S.R United Kingdom	6,394,100 6,394,100 93,000 5,900 310,000 1,600 1,600 1,600 2,500 1,600 1,600 1,600 1,600 1,600 1,600 1,600	1,000 6,064,100 7,400 106,700 2,700,100 1,000 1,000 12,300 12,300	6,000 440 1 45,800 1 6 1 6 1 7	500 1,000 (*) (*) 200 200 19 19	76 	16,800	4,400 10,700 10,700 200	6,900 9,700 100 100 100 100 100 100 100 100 100	10,000 10,700 10,700 10,700 51,700 2,500 1,600 24,500 24,500	1,500 12,700 12,700 1,400 106,700 54,600 286,900 1,000	\$1,400 340,000 1,500 1,500 27,000 200 200 200 200 200 200 200 200 200	\$82,00 1,600 1,600 5,600 22,400 22,400 20,200 10 500 10 1,200	\$1,600 770,400 71,600 5,500 9,400 31,800 100 300 200 1,700 1,700	\$200 1,800 1,800 1,800 10,800 25,200 2,500 2,00 10,900 1,500
Total ¹	6,836,500	6,617,500	51,900	50,900	30,100	19,900	15,300	17,900	6,933,800	6,706,200	385,100	432,700	422,900	473,700

^rRevised. ^1Data may not add to totals shown because of independent rounding. ^2Less than 1/2 unit.

Source: Bureau of the Census, as adjusted by the Bureau of Mines.

Table 11.—U.S. imports for consumption of potash

	Approx- imate	Quantity (metric tons)	Value (th	ousands)
	average K ₂ O content (percent)	Product	K ₂ O equivalent ^e	Customs	C.i.f.
1986: Potassium chloride Potassium sulfate Potassium nitrate	61 51 45 14	6,836,500 51,900 30,100 15,300	4,170,200 26,500 13,600 2,100	\$365,400 8,900 8,600 2,200	\$400,780 9,900 9,800 2,400
Potassium sodium nitrate mixtures Total	XX	6,933,800	4,212,400	385,100	1422,900
1987: Potassium chloride Potassium sulfate Potassium nitrate Potassium solium nitrate mixtures	61 51 45 14	6,617,500 50,900 19,900 17,900	4,036,000 25,900 9,000 2,500	417,100 9,500 4,200 2,200	456,400 10,500 4,800 2,400
Total	XX	6,706,200	4,073,400	432,700	474,100

XX Not applicable. ^eEstimated.

Source: Bureau of the Census, as adjusted by the Bureau of Mines.

WORLD REVIEW

World production increased slightly from that of 1986 as consumption of potash returned to 1984 levels. World prices were exemplified by the per ton price of standard muriate of potash, f.o.b. Vancouver, Canada, reported by British Sulphur Corp. Ltd. This price rose from approximately \$98 per ton K₂O, or the high \$50's per ton of product, in April, to approximately \$125 per ton K₂O, or the middle \$70's per ton of product, at yearend. The price rise reflected a diminishing of the 1986 oversupply of potash that occurred after the flooding of two mines and some market economy production cutbacks. The Western European potash market started to adjust to the commencement of imports from Brunswick, Canada; Israel; and New Mexico, United States.3 With the entrance of Spain into the European Economic Community in 1986, Spanish potash entered the French market.4

Argentina.—The Province of Catamarca, in developing the Salar de Hombre Muerto, was investigating the feasibility of making westward shipments to the Chilean Pacific Coast Port of Puerto Caldera, a proposed outlet for the expected production of muriate of potash, sulfate of potash, and lithi-11m carbonate.5

Australia.—CRA Ltd. projected the size of its proposed sulfate of potash plant at Dampier, Western Australia, at 30,000 tons per year. It was studying alternative production processes.6

Brazil.—The new development at Fazendinha was forecast to cost about \$1 billion

for a capacity of 1.5 million tons per year of muriate of potash. Reserves have been estimated at 570 million tons, with no mention of average or cutoff ore grade. About 40 kilometers away from Fazendinha, at Arari, is a 600-million-ton reserve of sylvinite, which also was quoted without mention of average ore grade or cutoff ore grade.7 Metalmin SA and J. S. Redpath Co. of Canada formed a joint venture to investigate a new process for mining sylvinite in water-saturated deposits at the Taquari-Vassouras Mine.⁸ This mine has lagged behind the owner's expectations of produc-

production Canada.—Canadian about 50% of capacity for the year because of several events.

1. The Potash Co. of America Inc.'s Patience Lake Mine, the oldest potash mine in Saskatchewan, was flooded by an aquifer and closed during the winter after the mine equipment was salvaged.

2. The International Minerals & Chemical Corp. (Canada) Ltd.'s Esterhazy K-2 Mine continued at 75% capacity while the leak into the mine from an aquifer was slowly plugged.

3. Potash Corp. of Saskatchewan replaced its top management, reduced production, and commenced a reevaluation of its marketing program. The company lost Can\$103.4 million in 1986, and the Province of Saskatchewan considered shouldering, in some manner, the Can\$810 million accumulated operating debt.

In August, the U.S. Department of Commerce levied antidumping duties on all

Data do not add to total shown because of independent rounding.

Canadian potash producers, ranging from 9% to 85% margins on the declared border price. In September, the Province of Saskatchewan passed The Potash Resource Act, which establishes a production board to set production quotas for all the Saskatchewan potash mines in time of low prices and overproduction.

The ownership of some potash mines changed during the year. The minority owner (40%) of Allan Potash Mine, Saskterra Fertilizers Ltd.. was sold to Canterra Energy Ltd. Canada Development Corp. owned 100% of Saskterra Fertilizers before the sale and owned 95.7% of Canterra Energy after the sale through an exchange of Saskterra Fertilizers for stock in Canterra Energy. In August, PPG Inc. chose KAC Holdings Inc. of Great American Management and Investment Inc. (GAMI)-an investment management company that has diversified into finance, manufacturing, and agricultural chemicals-to purchase Kalium Chemicals. GAMI's agricultural subsidiary is Vigoro Industries Inc., and Kaiser Agricultural Chemical Inc. is a division of Vigoro. The principals of Sullivan & Proops Inc. are management consultants to Vigoro, and Sullivan & Proops owns about 20% of Kalium Chemicals.

Table 12.—Salient Canadian potash statistics

(Thousand metric tons of K2O equivalent)

	1984	1985	1986	1987
Production ¹ Domestic sales by do-	7,749	6,637	6,697	7,267
mestic producers ¹ Exports:	436	434	327	499
United States ¹ Overseas ¹ Imports for	3,892 2,544	4,163 1,928	4,091 2,612	4,223 3,133
consumption ² Domestic	20	14	10	19
consumption ³ Yearend producers'	456	448	337	518
stocks1	1,543	1,766	1,537	1,135

Data supplied by the Potash & Phosphate Institute. ²From Bureau of the Census export data. Sulfate of potash and nitrate of potash were landed on the Canadian east coast from European sources.

³Domestic sales by domestic producers plus imports.

China.—Some details were released concerning the 118,000-ton-per-year pilot plant at Qarhan Lake in the Qinghai Province.9 It will produce 59% K₂O (93.5% KCl) from a 9square-kilometer evaporation field.

Israel.—Haifa Chemicals Ltd. announced plans to increase potassium nitrate capacity from 250,000 to 280,000 tons per year of product.10 The Dead Sea Works Ltd. an-

nounced plans to increase capacity of muriate of potash from 1.23 to 1.4 million tons per year. Plans have resurfaced to extend the railroad network to Eilat for direct shipment of potash and other materials into the Red Sea and the Indian Ocean. The conveyor belt carrying finished product from Sdom to the new rail terminal of Tzefa was completed. A backup system of truck unloading equipment for truck haulage from Sdom was also installed.11

Italy.-The sulfate of potash plant at Casteltermini, also known as Campofranco, was closed for modernization.12 The closure contributed to Italy's production decrease in 1986 and the continuing strength of the sulfate of potash price.

Jordan.—The Arab Potash Co. started the process of increasing plant capacity from 720,000 to 840,000 tons per year of muriate of potash by 1989 by means of increasing carnallite decomposition capacitv. Plans were announced to further increase capacity to the range of 1.1 to 1.2 million tons per year by 1993.13

Tunisia.—The Government of France loaned an undisclosed sum of money to the Government of Tunisia for the planned 60,000-ton-per-year sulfate of potash plant. The estimated plant cost was \$80 million.14

U.S.S.R.—Expectations were limited for recovery of the Berezniki 3 Mine of the Uralkaliy Group, north of Perm, which was flooded in 1986. Potash ore from the Berezniki 4 Mine was being hauled to the Berezniki 3 refinery. The Soviet potash warehouse at Nakhodka, near Vladivostok, was damaged by a typhoon in October 1986.15

¹Physical scientist, Branch of Industrial Minerals.

²All tonnages reported in metric tons, K₂O equivalent, unless otherwise noted.

³Phosphorus & Potassium. Western Europe Potash eview—A Market in Transition. No. 147, Jan. Feb. 1987, Review—A Market in Transition. No. 147, Jan.-Feb. 1987, pp. 14-24.

*European Chemical News. V. 49, No. 1287, Aug. 10-17, 1987, p. 12.

Sphosphorus & Potassium. Potash Plant & Project News. No. 148, Mar.-Apr. 1987, p. 15. -. Potash Plant and Project News. No. 150, July-

Aug. 1987, p. 16.
7——. Potash Plant and Project News. No. 147, Jan.-Feb. 1987, p. 13.

Work cited in footnote 7.

Potash Plant and Project News. No. 151, Sept.-Oct. 1987, p. 15.

ct. 1301, p. 10.

OFertilizer Week. No. 30, Nov. 30, 1987, p. 4.

Potassium. Dead Sea Works. No. 147,

Jan. Feb. 1987, pp. 27-29.

12 Piazzese, S. Twenty-five Years of the Italian Potash Industry. Phosphorus & Potassium. No. 150, July-Aug.

¹³Industrial Minerals (London). Mineral Notes. No. 241,

Oct. 1987, p. 77.

14Ghazaii, A. The Dilemma That Is Tunisia. Chem. Bus. of Eur. Chem. News. Feb. 1987, p. 36.

12Phosphorus & Potassium. World Markets. No. 151, Sept.-Oct. 1987, p. 8.

POTASH

Table 13.—Marketable potash: World production, by country¹

(Thousand metric tons of K₂O equivalent)

Country	1983	1984	1985	1986 ^p	1987 ^e
Brazil				10	30
Canada ²	6,938	7,527	6,661	6,752	7,465
Chile ³	21	18	e ₂₁	^e 20	20
China ⁴	29	40	e40	e ₄₀	40
France	1.536	1,739	1,750	1,617	1,650
German Democratic Republic	3,431	3,465	3,465	3,485	3,500
Germany, Federal Republic of	2,419	2,645	2,583	2,161	2,140
Israel	1,000	1,100	1,200	1,255	1,300
Italy ⁵	184	163	205	158	160
Jordan	172	295	561	660	720
Spain	657	677	659	795	750
U.S.S.R	9,294	9,776	10,367	10,200	10,400
United Kingdom	308	325	343	403	⁶ 435
United States	1,429	1,564	1,296	1,202	⁶ 1,262
Total	27,418	29,334	29,151	28,758	29,812

^eEstimated. Preliminary.

¹Table includes data available through Apr. 29, 1988.

²Official Government figures. Potash & Phosphate Institute production data are given in table 12.

³Data represent officially reported output of potassium nitrate product (gross weight basis) converted assuming 14%

^{*}Crude salt.

*CReported salt.

*CReported salt.

*Chinese data on production of potassic fertilizers are in terms of nutrient content; small additional quantities may be produced and used by the nonfertilizer chemical industry.

*Crude salt.

*CReported figure.

Pumice and Pumicite

By Arthur C. Meisinger¹

Domestic production for pumice and pumicite declined 29% in quantity and 22% in value compared with 1986 production. Imports for consumption of pumice also declined 29%, reflecting the weakened U.S. demand for pumice aggregate in concrete construction products. Greece continued to be the major source of pumice imports with

Domestic Data Coverage.—Domestic production data for pumice and pumicite are developed by the Bureau of Mines from one voluntary survey of U.S. operations. Of the 24 operations to which a survey request was sent, 19, or 79%, responded, of which 15 were active and represented 95% of total production data shown in table 1. Production for the remaining nonrespondents was estimated using reported prior year data adjusted by trends in employment and other guidelines.

Table 1.—Salient pumice and pumicite statistics

(Thousand short tons and thousand dollars unless otherwise specified)

(Thousand short tolls and thousand	1983	1984	1985	1986	1987
United States: Sold and used by producers: Pumice and pumicite Value (f.o.b. mine and/or mill) Average value per ton Exports Imports for consumption Consumption, apparent World: Production, pumice and related volcanic materials	\$4,486 \$9.99 1 184 632 *12,681	502 \$4,929 \$9.82 1 293 794 • 12,800	508 \$4,553 \$8.96 1 242 749 11,825	554 \$5,756 \$10.39 1 385 938 P11,458	392 \$4,493 \$11.46 1 272 663 e _{11,753}

rRevised.

DOMESTIC PRODUCTION

Production of pumice and pumicite by domestic producers dropped to its lowest level in 5 years, a decrease of 29% from that of 1986. Value of production declined 22%. Lower market demand for concrete-aggregate-size pumice, primarily from New Mexico operations, contributed significantly to the large decline in domestic output. Twenty mines and/or mills were operated by 18 companies in 7 States, with California, Idaho, New Mexico, and Oregon accounting for 95% of U.S. production.

Principal domestic producers were Glass Mountain Pumice Inc. (formerly Tionesta Aggregates Co.), Tulelake, CA; Hess Pumice Products, Malad City, ID; Producers Pumice Inc., Boise, ID; Copar Pumice Co. Inc., Santa Fe, NM; General Pumice Corp., Santa Fe, NM; Utility Block Co., Albuquerque, NM; Cascade Pumice Co., Bend, OR; and Central Oregon Pumice Co., Bend, OR. Together, these eight companies accounted for 89% of the tonnage and 63% of the value of U.S. pumice and pumicite production.

¹Production plus imports, minus exports, plus adjustments for Government and industry stock changes.

Table 2.—Pumice and pumicite sold and used by producers in the United States, by State
(Thousand short tons and thousand dollars)

State	1986		1987		
		Quantity	Value	Quantity	Value
rizona	 				Tarae
alifornia	 	2	30		
ew Mexico	 	46	1,263	$4\overset{1}{2}$. 1 50
ther ¹	 	255	2,370	87	1,53
	 	251	2,094		99
Total		501	2,034	262	1,95
	 	554	² 5,756	392	

¹Includes Hawaii, Idaho, Kansas, Oklahoma (1986), and Oregon. ²Data do not add to total shown because of independent rounding.

CONSUMPTION AND USES

U.S. apparent consumption decreased 29% compared with that of 1986. The principal domestic use of pumice as aggregate in concrete products for the construction market declined significantly from 697,000 short tons sold and used in 1986 to 376,000 tons. Weaker local market demands and higher priced imported pumice contributed largely to the decline in consumption.

Pumice and pumicite used as abrasives increased 71%, primarily owing to the large demand for washing designer jeans. Pumice for use as decorative building block increased 15%, partly owing to several producers switching production from aggregate to block for the higher priced block market. Landscaping and other uses had slight sales decreases during the year.

Table 3.—Pumice and pumicite sold and used by producers in the United States, by use

(Thousand short tons and thousand dollars)

Use	1986		1987	
	Quantity	Value	Quantity	Value
Abrasives (includes cleaning and scouring compounds) Concrete admixture and aggregate Cocorative building block Andscaping Other Total	17 316 168 22 31	517 2,258 1,893 196 892	29 122 194 19 28	719 622 2,295 195 662
¹Includes heat-or-cold inculating	554	5,756	392	4,498

¹Includes heat-or-cold insulating medium, pesticide carriers, road construction material, roofing granules, and miscellaneous uses.

PRICES

The average value, f.o.b. mine or mill, for domestic pumice and pumicite sold and used was \$11.46 per ton, a 10% increase compared with the 1986 value. The increase was due to the greater demand for higher priced block pumice.

Prices quoted in Chemical Marketing Reporter remained unchanged from those of 1986 for domestic grades of pumice bagged in 1-ton lots and were, at yearend, \$270 per

ton for fine and \$300 per ton for medium, coarse, and 2-extra coarse. Yearend quoted prices on imported (Italian) pumice, f.o.b. east coast, bagged in 1-ton lots, were \$280 per ton for fine, \$350 per ton for medium, and \$300 per ton for coarse.

The average declared customs value of pumice imported from Greece for use in concrete masonry products increased 28% from \$6.87 per ton in 1986 to \$8.81 per ton.

FOREIGN TRADE

Pumice imported for consumption decreased 29% compared with that of 1986. Pumice imports for use in concrete masonry products declined one-third from 381,000 tons in 1986 to 254,000 tons, owing to a

weakened U.S. market for concrete aggregate pumice and an increase of \$4.55 per ton over the 1986 import price.

Table 4.—U.S. imports for consumption of pumice, by class and country

	Crude or unmanufactured		Wholly or partly manufactured		For use in the manufacture of concrete masonry products		Manu- factured, n.s.p.f.
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Value (thou- sands)
1986: Ecuador	645	\$54	==		250.076	$2,\overline{418}$	· ₁
Greece Iceland Italy	2,555 177 83	162 38 22	$\begin{array}{c} 24 \\ \overline{464} \end{array}$	$\frac{$10}{163}$	352,076 22,047 6,965	2,418 166 183	\$178 5
Mexico Other ¹	$-\overline{28}$	21	21	31	3	9	329
Total	3,488	297	509	204	381,091	2,776	512
1987: Ecuador Greece Guatemala	$2,ar{402} \ 3,762$	$449 \\ 301$	$1\overline{70}$ 264	51 22	1,588 222,048	83 1,957	$1\overline{55}$
Iceland Italy	332 42 7,536	81 19 899	$6\overline{3}\overline{2}$	$2\overline{0}\overline{1}$	$22,050 \\ 7,051$	$2\overline{35}$ 589	189 81
Mexico Turkey Other ²	2,906 373	512 153	41 94	14 92	683 173	127 9	460
Total	17,353	2,414	1,201	380	253,593	3,000	899

Source: Bureau of the Census.

Table 5.—Pumice and related volcanic materials: World production, by country1

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
	7.0	60	15	17	18
Argentina ³	$\frac{76}{3}$	11	8	6	7
Austria: Trass	NA	NA	116	186	190
		11	11	11	11
Cape Verde Islands: Pozzolane	$^{11}_{192}$	190	227	245	220
Chile: Pozzolan		2	2	2	2
Costa Rica ^e Dominica: Pumice and volcanic ash ^e	2		120	120	110
Dominica: Pumice and volcanic ashe	120	120	547	452	500
France: Pozzolan and lapilli	669	551		237	190
France: Pozzolan and lapilli Germany, Federal Republic of: Pumice (marketable)	243	^r 386	228	201	100
Greece:			604	e ₆₉₀	690
Pumice	552	691	684		1.040
Description	1,004	1,001	1,034	e _{1,050}	243
Guadeloupe: Pozzolan ^e	265	275	240	^r 244	245
Guadeloupe: Pozzolali					13
Guatemala: Pumice	. 17	^e 15	13	12	13
Volcanic ash	(⁴)	(4)		7.7	55
Iceland	50	61	62	58	55
					000
Italy: Pumice and pumiceous lapilli	r _{1,026}	^r 995	e 825	e770	800
Pumice and pumiceous lapliffication Pozzolan	r _{6,162}	r _{6,296}	e _{5,500}	e _{5,000}	5,500
Pozzolan	-,	.,			

See footnotes at end of table.

¹Industry economist, Branch of Industrial Minerals.

¹Includes Austria, Canada, Denmark, France, the Federal Republic of Germany, Hong Kong, Iran, Ireland, Japan, the Netherlands, Niger, Spain, Taiwan, and the United Kingdom.

²Includes Australia, Brazil, Canada, France, the Federal Republic of Germany, Indonesia, Japan, the Republic of Korea, the Netherlands, Norway, Singapore, Spain, Taiwan, and the United Kingdom.

Table 5.—Pumice and related volcanic materials: World production, by country1 —Continued

(Thousand short tons)

Country ²	1983	1984	1007		
Martinique: Pumice ^e New Zealand	160	150	1985	1986 ^p	1987 ^e
Spain ⁵	19 1,105 449 556	17 915 502 551	936 508 562	155 e22 1,067 554 e560	145 17 1,050 ⁶ 392 560
Total	^r 12,681	r _{12,800}	11,825	11,458	11,753

eEstimated. PPreliminary. Revised. NA Not available.

1 Table includes data available through May 20, 1988.

2 Pumice and related volcanic materials are also produced in a number of other countries, including (but not limited to) Ethiopia, Iran, Japan, Mexico, Turkey, and the U.S.S.R., but output is not reported quantitatively, and available information is inadequate for the formulation of reliable estimates of output levels.

3 Unspecified volcanic materials produced mainly for use in construction products.

4 Less than 1/2 unit.

5 Includes Canary Islands.

6 Reported figure.

Rare-Earth Minerals and Metals

By James B. Hedrick¹

Domestic production of rare-earth concentrates in 1987 increased as a result of increased demand for television and lighting phosphors, glass-polishing compounds. and permanent magnets. However, mines continued to operate at about two-thirds of their rated production capacity. Foreign sources of rare earths obtained a smaller share of the U.S. market, while domestic exports increased from 1986 levels. Molycorp Inc. and Associated Minerals (USA) Ltd. Inc. were the only domestic mine producers of commercial quantities of rareearth minerals.

Domestic Data Coverage.—Domestic mine production data for rare earths are developed by the Bureau of Mines from the voluntary "Rare-Earths and Thorium" survey. The two mines to which a survey form was sent responded, representing 100% of production. Production data are withheld to avoid disclosing company proprietary data.

Table 1.—Salient U.S. rare-earth statistics

(Metric tons of rare-earth oxides (REO) unless otherwise specified)

	1983	1984	1985	1986	1987
Production of rare-earth concentrates ¹	17,083	25,311	13,428	11,094	16,710
Exports: ^e					
Ore and concentrate	2,684	4.304	4,419	3,433	4,534
Ferrocerium and pyrophoric alloys	59	27	23	29	82
Imports for consumption:	•				
Monazite	2.215	3,114	3,132	1,628	617
Metals, alloys, oxides, compounds	1.857	2,926	1,124	1,155	625
Stocks, Dec. 31: Producers' and processors'	w	2,520 W	W	1,133 W	W
Consumption, apparent ^e	19,600	21,400	12,100	11,800	9,400
Prices, Dec. 31: Dollars per kilogram:	20,000	21,100	12,100	11,000	0,400
Bastnasite concentrate, REO basis	\$2.14	\$2.14	\$2.14	\$2.14	\$2.31
Monazite concentrate, REO basis	\$0.71	\$0.64	\$1.09	\$1.06	\$0.90
Mischmetal, metal basis	\$12.35	\$12.35	\$12.35	\$12.35	\$12.35
Employment, mine and mill ^{e 2}	266	321			
Net import reliance 3 as a percent of apparent consumption			330	283	299
wet import remance as a percent of apparent consumption	12	(4)	(4)	5.94	(4)

W Withheld to avoid disclosing company proprietary data.

³Imports minus exports plus adjustments for Government and industry stock changes.

⁴Increase in industry stocks exceeded net imports.

Comprises only the rare earths derived from bastnasite, as reported in Unocal Corp. annual reports.

Employment at a rare-earth mine in California and at mineral sands operations in Florida and Georgia. The latter mines produced monazite concentrate as a byproduct of mining ilmenite, rutile, and zircon, and employees were not signed to specific commodities.

Pro-Legislation and Government grams.-Sales of materials held in the National Defense Stockpile (NDS), including rare earths in sodium sulfate, continued to be suspended during 1987 because the \$250 million limit imposed on the NDS Transaction Fund was exceeded during 1985. Under the Department of Defense Authorization Act, 1987 (Public Law 99-661), no rare earths were authorized for disposal in fiscal year 1987. In fiscal year 1988, beginning October 1, 1987, the Department of Defense Authorization Act for fiscal years 1988 and 1989 (Public Law 100-180) continued authorization in effect on September 30, 1987. It authorized the President to change the stockpile requirements by less than 10% by submitting an explanation and justification to Congress, to be effective on or after the first day of the next fiscal year. Changes greater than 10% were to require congressional approval. Public Law 100-180 also directed the President to designate a single Federal office to have responsibility for the NDS. At yearend, it was expected that the Defense Logistics Agency, under the U.S. Department of Defense, would be directed to this task.

Environmental Issues.—The California Desert Protection Act of 1987 proposed to close approximately 8 million acres of California desert to mining exploration and development. Minerals known to occur in the region covered by the act include gold, rare earths, silver, and various industrial minerals. The proposed area is also bordered by the principal world producer of rare earths, the Mountain Pass Mine. The area has been identified as having high-to-moderate resource potential. Exclusion of exploration in this area could be critical if the United States needs additional supplies of rare earths.²

DOMESTIC PRODUCTION

In 1987, rare earths were mined and concentrated at Molycorp's Mountain Pass Mine in California and Associated Minerals' Green Cove Springs Mine in Florida. Molycorp, Rhône-Poulenc Inc., W. R. Grace & Co.'s Davison Chemical Div., and Research Chemicals Div. of NUCOR Corp. were the principal processors of rare earths in the United States.

Molycorp, the only domestic producer of the mineral bastnasite, a rare-earth fluocarbonate, announced a 5-year modernization and expansion program to increase its production of refined oxides and metals, especially neodymium, for use in permanent magnets, and cerium for use in automotive catalysts. The company reported sales of rare earths were up 14% from that of 1986.3

Australian-owned Associated Minerals was the only commercial mineral sands operation in the United States to recover the mineral monazite, a rare-earth phosphate. Monazite was recovered at Associated Minerals' Florida operations as a byproduct of processing heavy-mineral sands for the titanium minerals ilmenite, leucoxene,

and rutile, and for the zirconium mineral zircon.

Neomet Corp., a joint venture of REMA-COR and Mitsubishi Metal Corp., began commercial production of neodymium metal for use in high-strength permanent magnets from its plant at West Pittsburgh, PA.

Rhône-Poulenc continued engineering studies at its iron ore tailings deposit at Mineville, NY. Owing to the complex nature of the ore, which is a rare-earth-bearing apatite with magnetite and other iron minerals, a new separation process was being developed. Rhône-Poulenc had not set a date for production, but expected to supplement its existing separation plants in Freeport, TX, and La Rochelle, France.

W. R. Grace, Shin-Etsu Chemical Co. Ltd., and Mitsui & Co. Ltd. announced the opening of a new plant to produce separated rare earths at the Davison Chemical Div. of W. R. Grace's rare-earth-processing facilities in Chattanooga, TN. The new plant will reportedly employ separation technology licensed from Shin-Etsu.⁴

CONSUMPTION AND USES

Domestic rare-earth processors consumed an estimated 9,400 metric tons of equivalent rare-earth oxides (REO) in various forms in 1987, 20% less than was consumed in 1986. Bastnasite consumption was 9% lower and monazite consumption was 164% higher compared with those of 1986.

Shipments of rare-earth products from domestic processors of ore, concentrates, and intermediate concentrates amounted to 14,500 tons of equivalent REO, an increase of 10% from the 1986 shipments of 13,200 tons.

Consumption of mixed rare-earth compounds decreased 88% from the 1986 level, while consumption of purified compounds increased 34%. Higher consumption of purified compounds was the result of continued strong demand for dysprosium, neodymium, samarium, and certain other rare earths used in high-strength permanent magnets, for yttrium and europium oxides used in phosphors, and for yttrium oxides used in high-temperature ceramic and refractory applications.

The producers of mischmetal, rare-earth silicide, and other rare-earth alloys con-

sumed 4% more rare earths in 1987 than in 1986, although shipments of these goods fell 91% during the same period. Shipments of high-purity rare-earth metals decreased 18% during the year.

The approximate distribution of rare earths by use, based on information supplied by primary processors and some consumers, was as follows: catalysts (including petroleum, chemical, and pollution), 53%; metallurgical uses (including iron and steel additives, alloys, and mischmetal), 22%; ceramics and glass (including polishing compounds and glass additives), 18%; and miscellaneous uses (including phosphors, electronics, permanent magnets, lighting, and research), 7%.

Major end uses were in petroleum fluid cracking catalysts, metallurgical applications, glass and ceramics, permanent magnets, and phosphors. Rare earths were used in high-technology applications to produce synthetic crystals used in lasers, high-strength permanent magnets, optical fibers, magnetic resonance imaging scanners, and high-temperature superconductors.

STOCKS

U.S. Government stocks of rare earths in the NDS, all classified as excess to goal, remained at 457 tons throughout 1987. Rare-earth stocks held in the NDS were contained in sodium sulfate and were inventoried on a contained-REO basis.

Industry stocks of rare-earth ores and concentrates held by six producing, processing, and consuming companies increased 28%. Bastnasite stocks held by the principal producer and four other processors increased 167% over the 1986 level. Yearend stocks

of monazite increased 10%, while stocks of yttrium concentrates increased 21%. Stocks of other rare-earth concentrates fell 86%.

Stocks of mixed rare-earth compounds increased 23%, while stocks of purified compounds, mostly separated rare-earth oxides, increased 17%. Yearend stocks of mischmetal, rare-earth silicide, and other alloys containing rare earths were down 96%, while inventories of high-purity rare-earth metals were down 82%.

PRICES

The price range of Australian monazite (minimum 55% REO including thoria, f.o.b./f.i.d.), as quoted in Australian dollars (A\$), decreased from A\$550-A\$900 per ton at yearend 1986 to A\$660-A\$710 per ton by yearend 1987. Changes in the United States-Australian foreign exchange rate in 1987 caused the corresponding U.S. price to decline a lesser amount, about 6 cents on the dollar. The U.S. price range, converted from Australian dollars, decreased from US\$565-

US\$598' in 1986 to US\$477-US\$513' in 1987. The average declared value of imported monazite increased in 1987 to \$560 per ton, up \$186 from the 1986 value.

The yearend price quoted in Industrial Minerals (London) for yttrium concentrate (60% Y₂O₃, f.o.b. Malaysia) was \$35 per kilogram. Domestic prices quoted for yttrium concentrate during 1987, developed by the Bureau of Mines from various sources, ranged from \$55 to \$65 per kilogram of

contained yttrium oxide.

Prices quoted by Molycorp for unleached, leached, and calcined bastnasite in truck-load or trainload quantities, containing 60%, 70%, and 85% REO, were \$1.00, \$1.05, and \$1.25 per pound of contained REO, respectively, at yearend 1987.

The price of cerium concentrate quoted by American Metal Market was \$1.40 per pound of contained cerium oxide at yearend 1987, unchanged for the third consecutive year. The price of lanthanum concentrate was also unchanged at \$1.40 per pound of contained REO.

The mischmetal (99.8%, lots over 100 pounds, f.o.b. shipping point) price for 1987, quoted in American Metal Market, remained unchanged from the 1986 price range of \$4.90 to \$5.60 per pound.

Molycorp quoted prices for lanthanide (rare earth) and yttrium oxides, net 30 days, f.o.b. Louviers, CO, Mountain Pass, CA, or York, PA, effective July 1, 1987, as follows:

Product (oxide)	Percent ¹ purity	Quantity (pounds)	Price per pound
Cerium	99.0	200	\$8.00
Europium	99.99	25	725.00
Gadolinium	99.99	55	60.00
Lanthanum	99.99	300	8.75
Neodymium	96.0	300	5.00
Do	99.9	50	40.00
Praseodymium_	96.0	300	16.80
Samarium	96.0	55	85.00
Terbium	99.9	55	375.00
Yttrium	99.99	50	52.50

¹Purity expressed as percent of total REO.

Molycorp also quoted prices for lanthanide (rare earth) compounds, net 30 days, f.o.b. York, PA, or Louviers, CO, effective January 2, 1987, as follows:

Product (compound)	Percent purity	Quantity (pounds)	Price ¹ per pound
Cerium carbonate	99.0	150	\$4.00
Cerium fluoride	Tech grade	250	3.00
Cerium nitrate	95.0	250	2.15
Lanthanide chloride Lanthanum car-	46.0	525	1.00
bonate	99.9	300	5.90
Lanthanum chloride Lanthanum-lanthanide	46.0	525	.95
carbonate Lanthanum-lanthanide	60.0	200	2.15
nitrate Neodymium car-	39.0	250	1.50
bonate	96.0	300	4.00

¹Priced on a contained REO basis.

Rhône-Poulenc quoted rare-earth prices, per kilogram, net 30 days, f.o.b. New Brunswick, NJ, or duty paid at point of entry, effective January 1, 1987, as follows:

Product ¹ (oxide)			Price per kilogram
Cerium	99.5	20	\$21.25
Erbium	96.0	50	200.00
Europium	99.99	40	1,960.00
Gadolinium	99.99	50	136.50
Lanthanum	99.99	25	18.10
Praseodymium_	96.0	20	38.85
Samarium	96.0	25	132.50
Terbium	99.9	20	880.00
Yttrium	99.99	50	115.50

¹Dysprosium, holmium, lutetium, thulium, and ytterbium oxide prices on request from Rhône-Poulenc Inc.

Rhône-Poulenc also quoted prices for rare earths produced at its Freeport, TX, plant, net 30 days, f.o.b. Freeport, TX, effective January 1, 1987, as follows:

Product (compound)	Percent ¹ purity	Quantity (kilo- grams)	Price ² per kilogram
Cerium carbonate	95.0	20	\$8.90
Cerium hydroxide	95.0	20	11.25
Cerium nitrate	95.0	200	11.05
Cerium oxide Lanthanum car-	99.5	20	17.75
bonate Lanthanum-neodymi-	99.5	20	12.60
um carbonate	98.0	20	8.70
Lanthanum nitrate	99.5	200	11.90
Lanthanum oxide Neodymium car-	99.5	20	13.25
bonate	95.0	20	9.25
Neodymium nitrate	95.0	200	10.05
Neodymium oxide	95.0	20	11.05

¹Purity expressed as percent of total REO. ²Priced on a contained REO basis.

and throughout 1987, as follows:

Nominal prices for various rare-earth oxides and metals were quoted per kilogram by Research Chemicals, net 30 days, f.o.b. Phoenix, AZ, effective November 1, 1986,

Element	Oxide ¹ price per kilogram	Metal ² price per kilogram
Cerium Dysprosium Erbium Europium Gadolinium Holmium Lanthanum Lutetium Neodymium Praseodymium Samarium Terbium Thulium Ytterbium Ytterbium Yttrium	\$40 200 250 1,900 140 600 20 4,900 80 130 200 1,200 3,300 225 118	\$175 630 725 7,600 500 1,600 150 14,200 280 400 395 2,800 8,000 1,000 510

¹Minimum 99.9%-pure, 1- to 20-kilogram quantities. ²Ingot form, 1 to 5 kilograms, from 99.9%-grade oxides.

FOREIGN TRADE

Exports of rare-earth concentrates originated mainly from Molycorp's Mountain Pass Mine in California. Exports of rareearth metal ores, including bastnasite and a variety of mixed and individual rare-earth concentrates, but excluding monazite, decreased from 6.0 million kilograms in 1986 to 4.5 million kilograms in 1987. Exports of rare-earth metal ores, excluding monazite, were valued at \$11.8 million in 1987. Major destinations were Japan (60%), Austria (10%), and the United Kingdom (8%).

Exports of ferrocerium and other pyrophoric alloys containing rare earths totaled 81,626 kilograms, 146% higher than 1986 exports. Major destinations for these exports were Japan (31%), Canada (21%), and Venezuela (12%).

Exports of thorium ore, including monazite, were essentially unchanged from the 1986 level. France was the destination of almost all of the reported total of 582,995 kilograms valued at \$427,838, or \$733.86 per ton.

Table 2.—U.S. import duties on rare earths

	Item	TSUS No.	Most favored nation (MFN)	Non-MFN
		the second second	Jan. 1, 1987	Jan. 1, 1986
Ore and conce	ntrate ¹	601.12, 601.45	Free	Free.
Cerium chlori	de, oxide, compounds	418.40, 418.42, 418.44	7.2% ad valorem $_$	35% ad valorem.
Rare-earth oxi	ides except cerium oxide	423.0030	3.7% ad valorem $_{-}$	25% ad valorem.
Rare-earth me yttrium).	etals (including scandium and	632.38	do	Do.
Alloys wholly (mischmetal	or almost wholly of rare-earth metals	632.78	32 cents per pound.	\$2 per pound.
Other alloys w metals.	holly or almost wholly of rare-earth	632.79	20 cents per pound plus 2.4% ad valorem.	\$2 per pound plus 25% ad valorem
Ferrocerium a	and other pyrophoric alloys	755.35	22 cents per pound plus 2.6% ad valorem.	Do.
Yttrium-beari yttrium con	ng materials and compounds (includes centrates).	907.51	Free	25% ad valorem or 30% ad valo- rem. ²

¹Crude or concentrated by crushing, flotation, washing, or by other physical or mechanical processes that do not involve substantial chemical change.

²Tariff is 25% if previous import item classification was 423.00 or 423.96, part 2, schedule 4, or 30% if 603.70, part 1,

Table 3.—U.S. imports for consumption of monazite, by country

	1983		19	1984		1985		1986		1987	
Country	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	
Australia	3,726	\$1,395	5,610	\$2,156	5,694	\$1,984	2,660	\$978			
India Malaysia South Africa, Re-	$\bar{302}$	$\bar{122}$					300	128	$\bar{527}$	\$298	
public of Thailand			51 	46					594	329	
Total REO content ^e	4,028 2,215	1,517 XX	5,661 3,114	2,202 XX	5,694 3,132	1,984 XX	2,960 1,628	1,106 XX	1,121 617	627 XX	

XX Not applicable.

Source: Bureau of the Census. REO content estimated by the Bureau of Mines.

schedule 6.

Table 4.—U.S. imports for consumption of rare earths, by country

	19	85	19	86	19	87
Country	Quantity (kilo- grams)	Value	Quantity (kilo- grams)	Value	Quantity (kilo- grams)	Value
erium chloride:					24 400	#90 040
Mali					34,499 20,892	\$39,240 36,661
MoroccoSingapore	 .		34,500	\$39,871	105,017	109,982
United Kingdom					1,624	5,603
			24 500	39,871	162,032	191,486
Total		<u> </u>	34,500	99,011	102,002	131,400
-			1			
erium compounds: Canada	- 121 <u></u>		11,987	8,328		1 000
France	1,770	\$8,981	247,420	354,290 32,141	80 370	1,068 34,223
Germany, Federal Republic of Switzerland	206	34,469	188	32,141	2	2,863
United Kingdom	10	2,306				
	1.000	45.750	050 505	394,759	452	38,154
Total	1,986	45,756	259,595	394,139	402	50,104
-	-					
erium oxide: Austria			91	1,195	91	1,142
Canada			117	7,561		·
China	$5.\overline{327}$	$81.\overline{670}$	100 4,595	1,083 76,014	2,336	37,542
France Germany, Federal Republic of	5,321 94	2,283			· :	
Japan			561	18,844	44,200	1,054,727
United Kingdom	27	1,707				
	5,448	85,660	5,464	104,697	46,627	1,093,411
Total	5,440	80,000	0,101	101,001	10,021	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
erium salts:						4 5 0 5 6
France	1:			4,099	5,338	15,378
Japan	-,-		11 5,296	11,647	· · ·	
Netherlands			0,200	11,011		
Total	*	<u></u>	5,307	15,746	5,338	15,378
tare-earth oxide excluding cerium oxide: Belgium-Luxembourg	110	46,342	963 500	31,269 15,383		· · · · · · · · · · · · · · · · · · ·
Brazil Canada			22	3,270	$\overline{430}$	54,197
Chile		==			100	8,33
China	3,830	348,923	41,943	2,082,324 12,535,724	9,319 216,869	1,015,77 13,995,53
France Germany, Federal Republic of	170,556 811	11,132,432 266,213	200,601 1,839	486,350	10,848	263,88
Hong Kong			981	63,551	20	29,18
The les			3 514	3,750 90,074		-
Ivory Coast Japan	7.814	872,783	10,130	1,094,614	5,595	611,93
Malarraia	h 210	186,534			5,980	119,36
Netherlands	919	36,372	0.450	400 016	3,815	915,91 426,14
Norway	5,550	655,382	2,478	402,216	3,073 3	38,59
South Africa, Republic of Switzerland	318	111,800	35	13,050		
HCCD	6.506	691,201	22,776	1,809,588	26,516	1,663,12
United Kingdom	197	38,133	5,468	311,050	744	328,39
Total	202,861	14,386,115	288,253	18,942,213	283,312	19,470,37
10tai						
Rare-earth alloys:1					2,000	14,23
Argentina	162,998	817,875	47,359	$239,\bar{274}$	129,632	609,13
Brazil		011,010		200,211	4,535	72,55
China		==			56	13,44
France	1,062	9,946	2 665	49,148	$3,\overline{194}$	63.38
Germany, Federal Republic of	17,211	167,343	3,665 11	1,130	737	30,74
Japan United Kingdom	5,057	35,535	15,100	119,729	102	18,36
		1 020 600	66,135	409,281	140,256	821,85
Total	186,328	1,030,699	00,100	400,201	140,200	021,00
Rare-earth metals including scandium and	. 100	2,968	786	24,395	1,284	35,48
yttrium: Austria			5,655	299,929	6,619	392,06
AustriaChina					1,541	114,01
AustriaChinaGermany, Federal Republic of						12.73
AustriaChina China Germany, Federal Republic of Hong Kong			97	15.611	5 	_
Austria China Germany, Federal Republic of Hong Kong Ivory Coast	 	76,099	$\begin{array}{c} \bar{97} \\ 1,000 \end{array}$	15,611 76,099	$1,7\overline{24}$	181,38
Austria China Germany, Federal Republic of Hong Kong Ivory Coast Japan U.S.R	1,000 2,061	76,099 183,044	97 1,000 9,666	76,099 805,497	$\substack{1,\overline{724}\\500}$	181,38 32,46
Austria China Germany, Federal Republic of Hong Kong Ivory Coast Japan	1,000 2,061	76,099	$\begin{array}{c} \bar{97} \\ 1,000 \end{array}$	76,099	$1,7\overline{24}$	12,78 181,38 32,46 581,82

Table 4.—U.S. imports for consumption of rare earths, by country —Continued

	1	985	1986		1987	
Country	Quantity (kilo- grams)	Value	Quantity (kilo- grams)	Value	Quantity (kilo- grams)	Value
Other rare-earth metals:					0.700	005.01.4
Austria	329	20.050	7 000	91 40 500	3,733	\$97,314
France		\$9,870	7,066	\$149,562	17,971	593,959
Germany, Federal Republic of		15,275	2 80	1,207 4,695	469 72	13,211
JapanUnited Kingdom		0.005	60			5,872
United Kingdom	209	9,225	60	2,842	(2)	1,272
Total	1,193	34,370	7,208	158,306	22,245	711,628
Ferrocerium and other pyrophoric alloys:						
Austria	1,000	13,240	655	10.032	22	
Brazil	45,349	632,014	32,799	434,340	35,890	475,256
Canada					10,142	75,057
France		641,505	50,123	640,986	43,701	656,671
Germany, Federal Republic of			765	15,092	890	24,633
Hong Kong			892	2,943		
Japan	. 20	1,699	796	14,953	202	5,203
Korea, Republic of			8,778	21,276	0.000	
Netherlands			58	1,153	3,280	43,434
Taiwan					319	1,273
Thailand	$\bar{245}$	10.000	396	10 500	257	2,329
United Kingdom	245	13,080	396	13,526	148	10,301
Total	113,385	1,301,538	95,262	1,154,301	94,829	1,294,157

¹Essentially all mischmetal.

Source: Bureau of the Census.

WORLD REVIEW

Bastnasite, the world's principal source of rare earths, was mined as a primary product in the United States and as a byproduct of iron ore mining in China. Significant quantities of rare earths were also recovered from monazite, which was primarily a byproduct of mineral sands mined for titanium and zirconium minerals or tin in Australia, Brazil, China, India, and Malaysia. Smaller amounts of rare earths, especially yttrium, were obtained from byproduct xenotime. Xenotime was recovered primarily as a byproduct of processing tin ore in Malaysia and Thailand but was also produced in Australia and China. Small quantities of rare earths, including yttrium (which reportedly is adsorbed on some residual clays), were also produced in China. Yttrium and rare earths were also recovered from spent uranium leach solutions in Canada.

World reserves of rare earths were estimated by the Bureau of Mines at 48 million tons of contained REO, of which 23% is in market economy countries. China, with 76%, had the largest share of world reserves.

Australia.—The Mineral Sands Div. of Renison Goldfields Consolidated Ltd. (RGC) announced that exploration west of its Allied Eneabba Mine, Western Australia, was successful in finding mineral sands resources of 150 million tons grading 3.5% heavy minerals. Further exploration in the area was planned. To optimize mining at its Eneabba properties, RGC reportedly planned to mine selected areas by dredging rather than by its present dry mining method. RGC also completed redesign of its processing plant for mineral sands at Eneabba, which allowed increased recovery of all minerals, including monazite.¹⁰

RGC continued exploration for heavymineral sands on Moreton Island, Queensland. The Queensland government adopted the recommendation of a report that would allow mining on 1,200 hectares (6.4%) of the island as short-term use.¹¹

The government of Western Australia announced that Rhône-Poulenc of France was to build a 6,000-ton-(REO)-per-year, rare-earth separation plant at Pinjarra, Western Australia. The plant, scheduled for completion in 1989, reportedly will process monazite by liquid-liquid solvent extraction. Monazite feed for the plant will come primarily from RGC's mineral sands operations in Western Australia. The process of the plant will come primarily from RGC's mineral sands operations in Western Australia.

Less than 1/2 unit.

Mineral Deposits Ltd., a subsidiary of The Broken Hill Pty. Co. Ltd. (BHP), announced the opening of a heavy-mineral sands mining operation at Viney Creek, New South Wales, in 1987. Mineral Deposits recovered heavy-mineral sands, including monazite, using twin dredges connected to a floating, wet concentrator. Monazite and other heavy-mineral concentrates were produced at Mineral Deposits' nearby dry concentrator plant at Hawks Nest. 14

TiO₂ Corp. completed feasibility studies of its heavy-mineral sands deposit at Cooljarloo, Western Australia, and declared it viable. The deposit reportedly contains 12 million tons of ore with a cutoff grade of 2%

heavy-mineral sands.15

A rare-earth deposit was discovered in the Northern Territory 100 kilometers east of Alice Springs. The deposit reportedly contains significant quantities of rare earths in the mineral allanite. As part of an Australian consortium formed to study the deposit, Australia's Commonwealth Scientific and Industrial Research Organization is undertaking prefeasibility studies.¹⁶

West Coast Holdings Ltd. announced plans to install a pilot plant at its Brockman multimineral deposit in Western Australia. The deposit reportedly contains columbium (niobium), gallium, hafnium, rare earths, tantalum, thorium, and zirconium. The Brockman deposit, 15 kilometers southeast of Halls Creek, is a joint venture of West Coast Holdings and Greater Pacific Investments Ltd. If additional feasibility reports are favorable, a plant to process 200,000 tons per year of ore was to be built.17 West Coast Holdings estimated potential annual rare-earth production at 170 tons of yttrium, 37 tons of mixed heavy rare earths, 24 tons of dysprosium, 17 tons of erbium, 6 tons of samarium, and 3 tons of terbium.18

Brazil.—Production of monazite concentrates in 1985 was 3,953 tons. The State of Espírito Santo produced 281 tons, a decrease from the 451 tons produced in 1984. The State of Rio de Janeiro produced 3,672 tons, an increase from the 1984 production of 3,161 tons.

Measured reserves of monazite were 17,274 tons. Estimated REO content based on these reserves was 8,506 tons. Monazite reserves were in the States of Bahia, Espírito Santo, Paraná, and Rio de Janeiro. 19

Canada.—Joint-venture partners Hecla Mining Co. and Highwood Resources Ltd. continued development of their berylliumyttrium-rare-earth-zirconium deposit at Thor Lake, Northwest Territories. The partners have already completed pilot plant and market research studies. Funding from Hecla was reportedly allocated to improve chemical processing, full-scale plant design, and market development.²⁰

China.—The China Rare Earth Information Centre reported 1987 production of 15,100 tons of REO, an increase from the 11,860 tons produced in 1986. The recordhigh level of production ranks China a close second to the United States in overall production. China reportedly consumed 4,800 tons of equivalent REO, up 13% from that of 1986. Rare-earth consumption in fertilizers and by the oil industry was 600 tons (250 tons REO) and 900 tons, respectively. Export volume also reportedly increased to 6,500 tons REO with an estimated value of \$60 million.²¹

Jiangxi Province announced the startup of a 170-ton-per-year refinery at Shangrao to produce heavy-group rare earths. The annual yttrium oxide capacity of the plant was estimated at 40 tons.²²

Can-Pacific Rare Earths & Metals Corp. (Canada) announced plans to build a 1,000-ton-per-year REO separation plant in Jiangxi Province. The joint-venture project with China was scheduled to commence in 1988.²³

Gabon.—A columbium (niobium) deposit containing rare earths was discovered 40 kilometers east of Lambaréné in middle Ogooué. Although the deposit is reportedly sizable, no reserve figures were released.²⁴

Japan.—Imports of rare earths in 1987 were reported in the Japan Metal Journal, as follows:

Product	Quantity (kilograms)
Cerium fluoride Cerium oxide Ferrocerium and other pyrophoric alloys _ Lanthanum oxide Rare-earth chloride	1,636 257,880 52,306 101,922 3,751,481
Rare-earth metals including yttrium and scandiumYttrium oxide	278,405 390,998

Principal sources of imported compounds by weight were Brazil, China, India, and the United States.

Data on Japanese demand for rare earths in 1987 was reported as follows:²⁵ cerium oxide, 3,150 tons; lanthanum oxide, 380 tons; samarium oxide, 350 tons; mischmetal,

250 tons; yttrium oxide, 240 tons; rare-earth fluoride, 60 tons; europium oxide, 10 tons; and other REO's, 450 tons.

Rhône-Poulenc announced that it will build a small rare-earth processing and separation plant on an island off the coast of Osaka. The plant is owned 59% by Rhône-Poulenc's Japanese company, Nippon Rare Earths Co. Ltd., and 41% by Sumitomo Metal Mining Co. Ltd. Construction started in 1987 and was expected to be completed in 1988.

A deposit containing rare-earth-bearing sphene was discovered in 1987 near Kamioka, Gifu Prefecture. The silicate mineral, sphene, reportedly contains 0.5% rare earths. The Agency of Natural Resources and Energy, under the Ministry of International Trade and Industry, announced plans to develop technology to recover rare earths from sphene and determine its commercial feasibility.²⁶

Dowa Mining Co. Ltd. announced it would construct a rare-earth extraction plant at Hanaoka, Akita Prefecture. Planned capacity for the separation plant was 300 tons of REO per year. Dowa Mining reportedly will process Chinese concentrates purchased under long-term contract.²⁷

Madagascar.—QIT-Fer et Titane Inc. of Canada announced that it had completed initial feasibility studies of a heavy-mineral sands deposit in southeast Madagascar. The joint-venture project was 51% owned by the Government of Madagascar and 49% by QIT. The drilling program confirmed the existence of an ore body containing mineral sands, including monazite. Further drilling and the construction of a pilot plant at the site were planned.²⁸

Malaysia.—Environmental concerns over the processing and disposal of radioactive thorium hydroxide, produced as a byproduct of processing the naturally radioactive mineral monazite for rare earths and yttrium, resulted in the 1985-86 closing of Asian Rare Earth's (ARE) refining plant near Ipoh. The ARE plant remained closed from October 1985 through February 1986, while ARE reportedly complied with 12 courtordered safety measures, including construction of an above-ground temporary storage facility. Radioactive thorium hydroxide was previously shipped for burial to

a storage site at Papan. A new, reportedly safer site, was selected 5 kilometers north of the city in 1986.²⁹ The ARE plant is also a major producer of yttrium concentrate from the mineral xenotime. Production of xenotime from Malaysia through 1986 was as follows:

		Quantity (metric tons)
1982	<u></u>	14
1983		13 384
1984		384
1985 .		1,124
1986		145

Thailand.—A heavy-mineral sands mine at Chumphon began operation in November 1986. Monazite production from the mine for the final 2 months of 1986 was 140 tons.³⁰

Monazite and xenotime were produced as byproducts of processing mineral sands for tin. Monazite was produced in 1986 at Prachuap Khiri Khan in the central region, and at Chumphon, Phuket, Ranong, and Takua Pa in the southern region. Thailand reportedly exported 1,205 tons of monazite in 1986 to Canada, France, and the United Kingdom. During the same year, xenotime was produced only from the mine at Phuket, and 33 tons was reportedly exported to France and the Netherlands. Production of xenotime concentrates through 1986 was as follows:

4.7	Quantity (metric tons)
1982	. 46
1983 1984	. 46 . 38 . 28
1985	. 158 28

United Kingdom.—Swift Levick Supermagloy Ltd. (SLS), part of the rare-earth permanent magnet division of the Magnetic Materials Group of the United Kingdom, announced the commissioning of a new plant to supply magnets. SLS currently produces 12 tons per year of rare-earth magnets from a plant at Swindon. The new plant, to be built at Rotherham, has a planned capacity of 50 tons per year.³¹

Table 5.—Monazite concentrate: World production, by country¹

(Metric tons)

Country ²		1983	1984	1985	1986 ^p	1987 ^e
Australia Brazil Brazil Indiae 3 Indiae 3 Malaysia ⁴ Mozambique ⁶ Sri Lanka ⁶ Thailand United States Zaire		15,141 5,256 4,000 1,051 54 300 277 W 15	16,260 3,622 4,000 r4,980 4 5147 298 W	18,735 1,895 4,000 5,808 4 200 245 W	14,822 1,947 4,000 5,959 4 200 1,609 W	12,000 2,000 4,000 6,000 4 200 1,500 W
Total	· 	26,044	r _{29,313}	30,887	28,541	25,704

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data; not included in "Total"

"Total." ¹Table includes data available through Apr. 29, 1988.

³Data are for year beginning Apr. 1 of that stated.

⁵Reported figure.

Table 6.—Rare earths: World production, by country

(Metric tons of REO equivalent)

	Country	1985	1986 ^p	1987 ^e
Australia	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10,304	8,152	6,600
Brazil		1,042	1,071 NA	1,100 NA
		8,500	11,860	15,100
India ^e		2,200 3,869	2,200 3,364	2,200 3,300
		3,003	2	2
O		110 230	110 902	110 825
United States ¹		13,428	11,094	16,710
Total		39,685	38,755	45,947

^eEstimated. ^pPreliminary. NA Not available.

TECHNOLOGY

The Rare-Earth Information Center at Iowa State University, Ames, IA, inaugurated a limited circulation monthly newsletter entitled "RIC Insight." The publication will deal with current technological advances and conferences related to rare earths.³²

Researchers at General Motors Corp. designed a solar-powered car using rare-earth permanent magnets that won the 3,200-kilometer World Solar Challenge in Australia. The high-efficiency (92%) electric motors used in the car each incorporated 6 neodymium-iron-boron magnets and produced 2 horsepower at 4,000 revolutions per minute at a weight of 3.7 kilograms.

A fiber-optic temperature sensor was developed using neodymium-doped glass bond-

ed to two optical fibers: one to deliver laseremitted radiation and the other to transmit the resulting fluorescence to a receiver. Based on the change of fluorescence decay time with temperature, the sensor used glass doped with 9% neodymium. It was operable in the range of -50° to 300° C.33

A magnesium alloy containing zirconium, along with yttrium and other rare earths, was developed by researchers at Magnesium Elektron Ltd. in the United Kingdom. Designated WE54, the new alloy has high-temperature stability up to 300° C, reportedly higher than any magnesium alloy now available. The alloy contains 0.5% zirconium, 5.5% yttrium, and 3.5% other rare earths. The new alloy will probably be used in aerospace applications.34

In addition to the countries listed, China, Indonesia, North Korea, the Republic of Korea, Nigeria, and the U.S.S.R. may produce monazite, but output, if any, is not reported quantitatively, and available information is inadequate to make reliable estimates of output levels.

⁴The 1983 figure is exports and the 1984-87 figures are production.

¹Comprises only the rare earths derived from bastnasite as reported in Unocal Corp. annual report, 1987.

Rare-earth fertilizers have reportedly increased yields of wheat. Agricultural specialists in China's Henan Province conducted experiments on more than 27,300 hectares of land planted in wheat. By adding rare earths over a 3-year period, the crop yield improved 5% to 8% and had higher contents of protein and lysine.35

Researchers used rare earths to determine the source of an impact that occurred 65 million years ago at the boundary of the Cretaceous and Tertiary periods (K-T boundary). The cause of the impact, which triggered a mass extinction, including possibly that of the dinosaurs, remains in controversy. The relative abundance of rare-earth elements produces patterns that reflect the origins of the rock.36 The rare-earth pattern in the K-T boundary indicated material excavated near a continent, possibly in the eastern Pacific. If true, the location of the impact may never be found. Since part of the ocean crust has been subducted beneath North America.37

A rare-earth laser system was developed that rapidly detects airborne beryllium particles, a known carcinogen. Scientists at Los Alamos National Laboratory in New Mexico used a neodymium:yttrium-aluminum garnet (Nd:YAG) laser to perform laserinduced spectroscopy to vaporize and analyze material on a target filter. The new rare-earth system can analyze for beryllium in 2.5 minutes compared to as much as 8 hours for chemical analysis.38

An Nd:YAG laser was also used in a recently developed measurement system for water depth. The system, known as a scanning lidar bathymeter, is used for airborne hydrographic surveying down to depths of 40 meters in clear coastal water. It operates by emitting a short pulse of infrared and a short pulse of visible (green) radiation from a dual frequency Nd:YAG laser. The infrared pulse is scattered from the water surface, while the green pulse penetrates and is scattered by the bottom. Both pulses are detected by a receiver that computes the water depth based on the time elapsed between pulse scatterings.39

Yttria-stabilized composite materials of zirconia bonded-zirconia fibers were produced with highly efficient thermal insulating properties. Able to withstand temperatures up to 2,316° C, the insulation, designated ZZX-4200, was developed by scientists at Martin-Marietta Energy Systems in Oak Ridge, TN. Insulating efficiency was im-

proved by orienting the fibers perpendicularly to the wall thickness of the structure, reportedly halving heat flow when compared to homogeneous and randomly oriented fibers. Comparable materials have been efficient up to about 1.760° C.40

A review of processes used to produce neodymium metal and certain neodymium alloys was published. Electrolytic and metallothermic processes were discussed, including calciothermic reduction for producing neodymium commercially for use in high-strength permanent magnets.41

¹Physical scientist, Branch of Nonferrous Metals. ²Mineral Summary. Background Data for the California Desert Protection Act of 1987. BuMines and USGS, vols.

1 and 2, 433 pp.

3Unocal Corp. Annual Report 1987. Molycorp Inc. pp. 20-

⁴Rare-Earth Information Center News. Grace To Separate Rare Earths. V. 21, No. 3, Sept. 1, 1986, p. 2. ⁵Free on board/free into container depot.

6Metal Bulletin (London). Non-Ferrous Ores in Europe. Dec. 31, 1987, p. 2.

TValues have been converted from Australian dollars (A\$) to U.S. dollars (US\$) at the exchange rate of A\$1.5052 US\$1.00 based on yearend 1986 foreign exchange rates reported by the Wall Street Journal.

change rates reported by the Wall Street Journal.

*SValues have been converted from Australian dollars
(A\$) to U.S. dollars (US\$) at the exchange rate of

A\$1.3841 = US\$1.00 based on yearend 1987 foreign exchange rates reported by the Wall Street Journal.

*Hedrick, J. B. Availability of Rare Earths. Am. Cer.

Soc. Bull., v. 67, No. 5, May 1987, pp. 858-861.

10Renison Goldfields Consolidated Ltd. Annual Report

1987. 44 no.

1987. 44 pp.

11 Industrial Minerals (London). More on Moreton Island Minsands. No. 237, June 1987, p. 8.

12 Robjohns, N. Rare Earths. Mining Annual Review in Min. J. (London), June 1987, p. 89.

13 Industrial Minerals (London). Rhône-Poulenc To Develop Rare-Earths Plant. Mar. 1987, p. 9.

June 1987, p. 8.

15 — TiO₂ Corp. Declares Cooljarloo Minsands Viable. No. 237, June 1987, p. 8.

16 — Potantial P. 8.

. Potential Rare Earth Deposit. No. 243, Dec. 1987, p. 9.

¹⁷Australian Mining. Rare Earth Plant Under Study for Western Australia. Sept. 1987, p. 47.

is Industrial Minerals (London). Brockman Feasibility Report. No. 238, July 1987, pp. 8-9.
is Annuário Mineral Brasileiro 1986. Monazita (Portu-

guese), 391 pp.

²⁰Mining Journal (London). Funds for Thor Lake
Studies. V. 309, No. 7947, Dec. 11, 1987, p. 479.

²¹China Rare Earth Information Centre. Output 15,000. China Rare Earth Information Centre, Bactou Research Institute, Bactou, Inner Mongolia. No. 8, Feb. 1988, p. 1.

²⁴Mining Journal (London). Niobium in Gabon. V. 309, No. 7941, Oct. 30, 1987, p. 348.

²⁵The Rare Metal News. Rare Earths (1987 Actual

Demand-1988 Forecast Demand) (Japanese). No. 1446, Apr.

Demand-1906 rotechet Demand, Output 16, 1988, p. 6.

26 U.S. Embassy, Tokyo, Japan. MITI Plans To Study Domestic Rare Earth Production. State Dep. Airgram 17004, Feb. 1988, 1 p.

27 Japan Metal Journal. Dowa To Advance Into Rare Earth Field. Feb. 9, 1987, p. 6.

²⁹Industrial Minerals (London). QIT Expanding Heavy Minerals Project. No. 236, May 1987, p. 15. ²⁹The Asian Wall Street Journal. Malaysian Plant Is Hobbled By Protests. V. XI, No. 183, May 21, 1987, p. 1.

Mineral Statistics of Thailand 1982-1986. Monazite. Thailand Dep. of Miner. Resour., 1987, p. 44.
 Materials Edge. Swift Levick Increases Rare-Earth Magnet Output. No. 2, Oct. 1987, p. 15.
 Personal Communication. Information on obtaining RIC Insight is available from the Rare-Earth Information Center, Institute for Physical Research and Technology, Iowa State University, Ames, IA, 50011-3020.
 Grattan, K., A. Palmer, and C. Wilson. Miniaturised Microcomputer-Based Neodymium "Decay-Time" Temperature Sensor. J. Phys., pt. E, Sci. Instrum., v. 20, 1987, pp. 1201-1205.

1201-1205.

³⁴Gschneidner, K. (ed). Elektron WE54. Rare-Earth Inf. Cent., v. XXII, No. 2, p. 4.

³⁵Industrial Minerals (London). Rare-Earths Help Chinese Wheat. No. 237, June 1987, p. 73.
 ³⁴Filidebrand, A., and W. Boynton. The K-T Impact Excavated Oceanic Mantle: Evidence From REE Abundances. Lunar Planet, Sci. Conf. 18, 1987, p. 103.
 ³⁷Science. Searching Land and Sea for the Dinosaur Killer. V. 237, No. 4817, Aug. 21, 1987, pp. 856-857.
 ³⁸Laser Focus/Electro-Optics. Tech Briefs. July 1987, pp. 42.

p. 42.

p. 42.

39 — Lidar Applications: Airborne Scanning Lidar
Bathymeter Measures Water Depth. Feb. 1987, p. 48.

40 Research & Development. IR 100 Award Minners:Ceramic Fiber Insulation. Oct. 1987, p. 77.

41 Sharma, R. Neodymium Production Processes. J. Met.,

Feb. 1987, pp. 33-37.

Salt

By Dennis S. Kostick¹

Production and sales of salt decreased for the second consecutive year because of a decline in demand for salt for water treatment and highway deicing.

Apparent consumption of salt decreased slightly in response to a decline in domestic demand and trade. Exports of salt decreased 54% to the lowest level since 1983. Imports for consumption of salt decreased 14%; the lowest level reported since 1982.

Domestic Data Coverage.—Domestic pro-

duction data for salt are developed by the Bureau of Mines from two voluntary surveys of U.S. operations. Typical of the surveys is the salt company survey. Of the 74 operations to which a survey request was sent, 71 responded, representing 96% of the total production shown in table 1. Production for the three nonrespondents was estimated on the basis of their prior response to the 1987 production estimate survey.

Table 1.—Salient salt statistics
(Thousand short tons and thousand dollars)

	1983	1984	1985	1986	1987
United States:			1000	1900	1901
Production¹ Sold or used by producers¹ Value Exports Value Imports for consumption Value Consumption, apparent² World: Production	32,973 34,573 \$597,081 517 \$12,368 5,997 \$60,194 40,053 *175,099	39,181 39,225 \$675,099 820 \$15,299 7,545 \$74,100 45,950 r190,070	39,217 40,067 \$739,609 904 \$15,988 6,207 \$65,593 45,370 191,628	37,282 36,663 \$665,400 1,165 \$16,928 6,665 \$79,709 42,163 P194,720	36,943 36,493 \$684,170 541 \$8,217 5,716 \$66,936 41,668

^eEstimated. ^pPreliminary. ^rRevised. ¹Excludes Puerto Rico.

DOMESTIC PRODUCTION

The total quantity of all types of salt produced by domestic producers decreased slightly, based on an incomplete survey of the industry. Salt sold or used for captive purposes, primarily chloralkali manufacture, also decreased slightly. According to the Bureau of Mines survey for 1987, 33 companies operated 67 salt-producing plants in 15 States. Eight of the companies and 10 of the plants produced more than 1 million short tons each and accounted for

80% and 60%, respectively, of the U.S. total. Many individual companies and plants produced more than one type of salt. In 1987, 13 companies (19 operations) produced solar-evaporated salt; 7 companies (18 operations), vacuum pan and open pan salt; 10 companies (15 operations), rock salt; and 17 companies (27 operations), salt brine.

The five leading States in quantity of salt sold or used were Louisiana, 34%; Texas, 21%; New York, 13%; Ohio, 9%; and Kan-

²Sold or used plus imports minus exports.

sas, 5%. A significant quantity of the salt produced in Alabama, Kansas, Louisiana, New York, North Dakota, Ohio, Texas, Utah, and West Virginia was produced as brine, of which the majority was consumed captively to manufacture chlorine and caustic soda.

The percentage of salt sold or used by U.S. producers, by type, was as follows:

	1986	1987
Salt in brine Mined rock	49 34	49 33
Vacuum pan salt and grainer or open pan saltSolar-evaporated salt	10 7	11 7
Total	100	100

Diamond Crystal Salt Co. bought Sol-Aire Salt and Chemical Co. from AMAX Inc. at the beginning of the year. Sol-Aire had a solar salt complex on the Great Salt Lake in Utah. The acquisition allowed Diamond Crystal to expand its market, which predominantly was in the Eastern United States. However, later in the year, Diamond Crystal, once one of the largest domestic

salt producers, was sold for \$65 million to International Salt Co., a subsidiary of Akzo NV, a large Netherlands chemical corporation. Diamond Crystal, which operated salt facilities in Michigan, North Dakota, Ohio, and Utah, claimed that the sale was necessary because it was no longer competitive with large international salt companies.²

Geostow Inc., a joint venture of Geostock, a U.S. affiliate of a French company, and Northeastern Waste Systems Inc. of Buffalo, NY, acquired surface and underground cavity rights to 10,000 acres of mined-out sections of International Salt's Retsof rock salt mine in New York. Geostow plans to store ash containing dioxins from coalburning powerplants and solid waste incinerators 1,200 feet below the surface, despite objections from the salt company and local residents. The State's Department of Environmental Quality favors incineration over landfills as a long-term solution to solid waste problems, and the Geostow project could accommodate all incinerator ash in New York for the next 28 to 50 years, if approved. The company filed for State permits at yearend.3

Table 2.—Salt production in the United States

(Thousand short tons)

	Year	Vacuum pans and open pans	Solar	Rock	Brine	Total
1983		3,697	2,053	9,449	17,774	32,973
1984		3,629	2,705	13,653	19,195	139,181
1985		3,613	2,549	13,990	19,065	39,217
1986		3,637	2,679	13,333	17,633	37,282
1987		3,776	3,120	12,230	17,817	36,943

¹Data do not add to total shown because of independent rounding.

Table 3.—Salt produced in the United States, by product form and type

(Thousand short tons)

Product form	Vacuum pans and open pans	Solar	Rock	Brine	Total
1986					
	636	1,816	12,751	17,633	32,836
BulkCompressed pellets	923	92	XX	XX	1,015
Packaged	1,769	678	515	XX	2,962
Pressed blocks	309	93	67	XX	469
Total	3,637	2,679	13,333	17,633	37,282
1987					
Bulk	682	2,220	11,671	17,817	32,390
Compressed pellets	984	99	XX	XX	1,083
Packaged	1,787	712	488	XX	2,987
Pressed blocks	324	90	71	XX	485
Total ¹	3,776	3,120	12,230	17,817	36,943

XX Not applicable

¹Data may not add to totals shown because of independent rounding.

Table 4.—Salt sold or used1 in the United States, by product form and type

(Thousand short tons and thousand dollars)

Product form	Vacuum pans and open pans	oans and pans	Solar	ar	Rock	k	Brine	e	Total	
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
1986 Bulk	606 920	25,842 88,686	1,701 93	23,745 6,194	11,927 XX	151,786 XX	17,920 XX	92,210 XX	32,154 1,013	293,583 94,880
Packaged: Less-than-5-pound units More-than-5-pound units	151 1,600	NA NA	1 675	NA NA	34 570	NA NA	XX	XX	186 2,845	NA
Total	1,751	184,569	929	28,755	604	30,062	XX	XX	3,031	243,386
Pressed blocks: For livestock For water treatment	148 158	NA NA	55 37	NA NA	1 66	NA NA	XX	XX	204 261	N N A
Total	306	22,491	92	5,580	29	5,480	XX	XX	465	33,551
Grand total	3,583	321,588	2,562	64,274	12,598	187,328	17,920	92,210	36,663	665,400
1987										
Bulk Compressed pellets	661 983	26,521 95,840	1,731	23,927 6,983	11,331 XX	141,637 XX	18,124 XX	89,363 XX	31,847 1,082	281,448 102,823
Packaged: Less-than-5-pound units	156 1,653	NA NA	1 705	NA	32 529	N N A A	XX	XX	189 2,888	NA
Total ²	1,809	202,940	200	33,512	561	28,863	X	XX	3,076	265,315
Pressed blocks: For livestock For water treatment.	156 167	NA NA	54 36	NA NA	12	NA AA	XX	XX	211 275	NA
Total ²	323	22,857	06	060'9	73	5,637	XX	XX	487	34,584
Grand total ²	3,776	348,158	2,627	70,513	11,965	176,137	18,124	89,363	36,493	684,170

NA Not available. XX Not applicable.

1-As reported at sait production locations. The term "sold or used" indicates that some sait, usually sait brine, is not sold but is used for captive purposes by the plant or company.

1-As reported at sait production locations. The term "sold or used" indicates that some sait insported sait imported, purchased, or sold from inventory from regional distribution centers, sait sold or used by type may differ from totals shown in tables 7 and 8, which are derived from company reports.

2-Date may not add to totals shown because of independent rounding.

Table 5.—Salt sold or used1 by producers in the United States, by State

(Thousand short tons and thousand dollars)

19	86	198	37
Quantity	Value	Quantity	Value
1,656	68,887	1,689	70,148
5,071	122,601	4,918	108,999 119,962
8,520	62,996	7,810	104,099 60,857 34,264
1,112 4,581	148,718	5,194	185,841
36,663	665,400	36,493	684,170 900
	Quantity 1,656 11,608 5,071 4,115 8,520 1,112 4,581	1,656 68,887 11,608 103,611 5,071 122,601 4,115 126,757 8,520 62,996 1,112 31,830 4,581 148,718 36,663 665,400	Quantity Value Quantity 1,656 68,887 1,689 11,608 103,611 12,498 5,071 122,601 4,918 4,115 126,757 3,276 8,520 62,996 7,810 1,112 31,830 1,108 4,581 148,718 5,194 36,663 665,400 36,493

eEstimated.

Includes Alabama, Arizona, California, Kansas (brine only), Michigan, Nevada, New Mexico, North Dakota, Oklahoma, and West Virginia.

Table 6.—Evaporated salt sold or used by producers in the United States, by State
(Thousand short tons and thousand dollars)

		198	36	198	37
	State	Quantity	Value	Quantity	Value
Kansas		856	60,221	893	61,263
Louisiana		 193	18,747	212	20,086
New York		739	62,884	775	63,184
TT: 1		 1,068	30,901	1,055	33,734
0.1 9		 3,289	213,109	3,466	240,403
Total		 6,145	385,862	36,403	418,670
Puerto Rico ^e		 40	880	40	900

^eEstimated.

²Includes Arizona, California, New Mexico, Michigan, North Dakota, Ohio, Oklahoma, and Texas.

³Data do not add to total shown because of independent rounding.

CONSUMPTION AND USES

Increased demand for caustic soda and chlorine in the alumina and pulp-bleaching markets, respectively, contributed to higher salt brine production and consumption for chloralkali manufacture. However, because of incomplete survey results, salt brine production and consumption totals are underreported for 1987. The chlorine and caustic soda industry, which traditionally has been the largest end-use market, required about 19.7 million tons of salt for feedstock, based on the stoichiometric calculation of 1.8 tons of salt needed to produce 1 ton of chlorine and 1.1 tons of coproduct caustic soda. Because many chloralkali companies closed or placed on standby plants that were uneconomic to maintain, the industry reached a record high 98% average effective capacity utilization in 1987 compared with 89% achieved in 1986.

Production of chlorine gas and sodium hydroxide, as reported by the Bureau of the Census, was as follows, in thousand short tons:

	1986 ^r	1987
Chlorine gas (100%)	10,436	10,980
Sodium hydroxide, liquid (100%)	10,691	11,518

Revised.

Chevron Chemical Co. began producing a new road deicer made of calcium-magnesium-acetate (CMA), which is reportedly one-fifteenth as corrosive as salt. Although CMA costs about \$400 per ton and rock salt sells for only about \$15 per ton, tests proceeded on CMA as a salt substitute on roads in environmentally sensitive areas in California, Michigan, and Wisconsin.

¹The term "sold or used" indicates that some salt, usually salt brine, is not sold but is used for captive purposes by the plant or company.

²Quantity and value of brine included with "Other."

¹The term "sold or used" indicates that some salt, usually salt brine, is not sold but is used for captive purposes by the plant or company.

Table 7.—Distribution of domestic and imported salt by producers in the United States, by end use and type

(Thousand short tons)

End use	SIC	Vacuum pans and open pans	ins and	S	Solar	Ä	Rock	Salt in		Total1	
		Domestic I	Imported	Domestic	Imported	Domestic	Imported	orine	Domestic	Imported	Grand
1986						٠	e i				
Chloralkali producers Other chemical	2812 28 (excludes 2812, 2899)	40 373	W	406	M	1,313	W	16,856 51	18,615 757	368 62	18,983 818
Total		413	W	497	228	1,554	W	16,907	19,372	430	19,801
Food-processing industry: Meat packers	201	159	· M	88	I I	164	M		417	19	436
	202 2091, 203 905	94 118 116	\@@	1 gg 10	273	8 <u>6</u> 0	€∾∌	1	100 238 139	m gg c	271 271
Grain mill products	204 (excludes 2047) 206-208, 2047, 2099	61 130	C M	€ 7	\$ 8 °	16 41	* * *	¦ ¦€	135 177 186	16 2 4	79 202
Total1		089	75	157	53	312	17	1	1,150	75	1,225
General industrial: Textiles and dyeing Metal processing Rubber	22 33, 34, 35, 37 2822, 30 (excludes 3079)	85 14 2	≱€	30 21 20 20 20	≽°-	35 265 3	€ 4	4 € 2	154 291 132	72 13	226 304 133
Oil Pulp and paper Tanning and/or leather	13, 29 26 311 9691	11.286.	¦≱∙€	288 178 62	11.62 23	86.52	 4⊕1	255	276 276 148	13 31 4 2	907 152 152
Total ¹	2001	256	41	649	131	566	16	357	1,829	188	2,017
Agricultural: Feed retailers and/or dealers-mixers_ Feed manufacturers	9048	374	88	245	833	279	≱€	€	898	42 42	940
Direct-buying end users	00	17	M	=	×	7	©	1 1	36	1-1	37
Total		457	8	403	W	443	W	(2)	1,304	61	1,365

See footnotes at end of table.

Table 7.—Distribution of domestic and imported salt by producers in the United States, by end use and type —Continued

(Thousand short tons)

End use	SIC	Vacuum pans and open pans	pans and pans	S.	Solar	X	Rock	Salt in		Total ¹	
		Domestic	Imported	Domestic	Imported	Domestic	Imported	orine .	Domestic	Imported	Grand
1986 —Continued											
Water treatment: Government (Federal, State, local) Commercial or other	2899 2899	22 19	M :	100	W	223 37	W 5	13	347 135	23.83	367 158
Total ¹		41	M	166	37	261	W	14	483	43	525
Ice control and/or stabilization: Government (Federal, State, local) Commercial or other	9621 5159	. 9 19	M M	132 12	WW	7,979	1,826 W	1	8,118	2,079	10,197
Total		25	П	144	277	8,267	1,826	1	8,437	2,104	10,541
Distributors: Agricultural distribution Grocery wholesalers and/or retailers_ Institutional wholesalers and end	5159 514, 54 58, 70	70 629 25	M M M	80 136 4	W 55	82 120 114	888	111	232 885 143	54 61 6	286 946 150
Water-conditioning distribution U.S. Government resale U.S. Government resale U.S. Government resalers —	7399 9199 5251	291 6 660	W	259 1 138	216 W 185	249 1 552	**	€ (1 1	799 8 1,350	229 1 206	1,028 9 $1,556$
Total ¹ Other n.e.s. ³		1,681	22	619 138	478 16	1,118 209	59 19	(2) 329	3,418 753	559 42	3,975 795
Grand total ¹		3,629	101	2,776	1,273	12,730	2,127	17,610	36,745	43,501	40,246

1,361 W 16,066 17,830 125 17,955 216 W 422 687 73 760	77 W 16,108 18,517 198 18,715	216 W (-4) 184 18 452 92 W 1 264 32 296 93 W - 1 167 167 10 W 167 40 W (-5) 213 16 229	371 17 1 1,252 69 1,321	39 W (5) 150 87 237 289 W (7) 294 17 311 8 W 138 145 W 145 82 W 201 677 20 697 82 W 13 348 39 387 68 W -3 224 23 241	585 16 361 1,858 191 2,049	345 W 947 48 995 233 W 894 22 416 10 W 41 1 42	588 W 1,382 71 1,453
	1,577						
W 41	41	8 26 W W W	46	33 W W 36 W W	119	37 W	59
355 94	449	46 38 38 1 1	122	111 111 267 228 39 39	622	201 95 13	309
w	W	W : W : W	2	M : : M M	99	M : :	W
48	383	172 103 133 139 64 148	759	95 14 44 25 14 100	293	401 66 18	485
2812 28 (excludes 2812, 2899)		201 202 2091, 208 206 204 (excludes 2047) 206-208, 2047, 2099		22 38, 34, 85, 37 28,22, 30 (excludes 3079) 26, 311 9621		2048 02	
Chemical: Chloralkali producers Other chemical	Total	Food-processing industry: Mest packers Dairy Canning Baking Grain mill products Other food processing	Total	General industrial: Textifies and dyeing Metal processing Rubber Oil ber and paper Taming and or leather Other industrial	Total ¹	Agricultural: Feed retailers and/or dealers-mixers – Feed manufacturers – – – – – – – – Direct-buying end users – – – – – – – – – – – – – – – – – – –	Total

See footnotes at end of table.

Table 7.—Distribution of domestic and imported salt by producers in the United States, by end use and type —Continued

(Thousand short tons)

End use	SIC	Vacuum pans and open pans	ns and ins	Solar	ar	Æ	Rock	Salt in		Total ¹	
		Domestic In	Imported	Domestic	Imported	Domestic	Imported	prine	Domestic	Imported	Grand
1987 —Continued											
Water treatment: Government (Federal, State, local) Commercial or other	2899 2899	22 18	1 1	27 81	13 14	162 40	88	11	212 150	15 15	227 165
Total		40		108	27	202	W	13	362	30	392
Ice control and/or stabilization: Government (Federal, State, local) Commercial or other	9621 5159	5 13	11	138 28	168	7,645	1,508	es	7,791	1,676	9,467
Total		18	2	166	184	7,917	1,590	က	8,104	1,774	9,878
Distributors: Agricultural distribution Grocery wholesalers and/or retailers_ Instructional wholesalers and end instructional wholesalers and end	5159 514, 54 58, 70	78 646 28	≱ ≱ ¦	71 175	MAM	105 121 99	M M	•C	254 942 130	48 65 7	302 1,007 137
Water-conditioning distribution U.S. Government resale Other wholesalers and/or retailers	7399 9199 5251	309 7 703	w _w	276 3 114	888	229 1 647	≱≱≱	೮೮೮	814 11 1,463	249 1	1,063 12 1,660
TotalOther n.e.s		1,771 104	18	643 348	471 27	1,202	79 24	(2) 1,080	3,614 1,694	567 55	4,181
Grand total ¹		3,851	116	2,767	975	12,603	1,867	17,567	36,788	42,957	39,747

W Withheld to avoid disclosing company proprietary data; included in "Total" and "Grand Total."

¹Data may not add to totals shown because of independent rounding. Because data includes salt imported, produced, and/or sold from inventory from regional distribution centers, salt sold or used by type may differ from totals shown in tables 1, 4, 5, and 6, which are derived from plant reports at salt production locations. Data may differ from totals shown in table 8 because of changes in inventory and or incomplete data reporting.

²Less than 1/2 unit.

*Imported for distribution by U.S. producers; included in totals in tables 11, 12, and 13. Includes exports.

SALT

Table 8.—Distribution of domestic and imported evaporated and rock salt1 in the United States, by destination

(Thousand short tons)

		1986			1987	
	Evapor	rated		Evapo	rated	
Destination	Vacuum pans and open pans	Solar	Rock	Vacuum pans and open pans	Solar	Rock
Alabama	48	(2)	330	52	(2)	354
Alaska	3	w		1	w	001
Arizona	6	58	3	7	61	w
Arkansas	31	1	56	33	w	60
California	150	842	1	157	900	w
Colorado	19	125	51	19	101	80
Connecticut	11	11	223	11	11	283
Delaware	2	32	7	2	14	28
District of Columbia	1	(2)	W	1	(2)	w
Florida	90	W	30	93	67	29
Georgia	67	w	81	77	28	88
Mawaii	W	w		w	w	
Idaho	5	7 8	w	6	60	W
Illinois	358	79	1,134	372	67	1,002
Indiana	149	32	650	154	40	605
Iowa	151	43	250	162	43	211
Kansas	93	17	259	96	20	299
Kentucky	39	w	388	41	w	440
Louisiana	44	w	320	54	W	352
Maine	6	w	223	6	64	150
Maryland	46	w	163	47	107	237
Massachusetts	33	46	531	36	8	656
Michigan	W	W	1,527	242	19	927
Minnesota	145	127	369	168	130	282
Mississippi	23	(2)	W	21	(2)	115
Missouri	112	17	302	120	19	418
Montana	2	34	w	2	42	· w
Nebraska	86	32	172	93	35	133
Nevada	W	w	w	W	186	W
New Hampshire		W	w	2	22	191
New Jersey	126	153	295	118	172	281
New Mexico	6	w	2	5	w	2
New York North Carolina	248	W	W	258	97	2,092
North Dakota	152	85	w	173	102	71
Ohio	37 W	10 19	1 506	53	11	7
Oklahoma	38	W	1,596	328	24	1,351
Oregon	w	55	6740	w	69	
Pennsylvania	162	104	1.015	$\begin{array}{c} 11 \\ 172 \end{array}$	56	1 000
Rhode Island	6	4	W	5	119 3	1,039
South Carolina	38	w	12	40	9	105
South Dakota	39	26	39	44	26	13 35
Tennessee	67	(2)	625	69	(2)	
exas	153	82	197	160	92	610 208
Jtah	4	169	w	4	192	W
Vermont	6	W	189	6	W	152
7irginia	75	120	106	77	117	201
Vashington	w	406	(2)	18	222	201 (2)
Vest Virginia	16	406 W	172	18 14	222 W	
Visconsin	223	48	927	223		181 707
	W W	48 24	921	223 1	53 28	707
Vyoming						
	598	835	2,720	71	375	404

W Withheld to avoid disclosing company proprietary data; included with "Other."

³Includes shipments to overseas areas administered by the United States, Puerto Rico, exports, some shipments to unspecified destinations, and shipments to States indicated by symbol W.

unspecified destinations, and snipments to states indicated by symbol w.

*Data may not add to totals shown because of independent rounding. Because data includes salt imported, purchased, and/or sold from inventory from regional distribution centers, evaporated and rock salt distributed by State may differ from totals shown in tables 1, 4, 5, and 6, which are derived from plant reports at salt production locations. Data may differ from totals shown in table 7 because of changes in inventory and/or incomplete data reporting.

The reported percent distribution of salt by major end use in 1987 was chemicals, 47%; ice control, 25%; distributors, 11%; food and agricultural, 7%; industrial, 5%; water treatment, 1%; and other combined with exports, 4%. For a complete end-use

analysis in table 7, specific sectors of distribution, such as agricultural and watertreatment conditioning, can be combined with the primary agricultural and water categories.

Each salt type includes domestic and imported quantities. Excludes brine because it usually is not shipped out of State. ²Less than 1/2 unit.

STOCKS AND PURCHASES

Total yearend stocks reported by producers were 2.0 million tons. Most of these stocks were rock salt and solar salt. Many States, municipalities, distributors, and road-deicing contractors stockpiled additional quantities of salt in anticipation of adverse weather conditions.

Intraindustry purchases of salt amounted to 1.7 million tons, of which 65% was salt brine; rock salt, 23%; vacuum pan salt, 8%; and solar salt, 4%.

PRICES

Price quotations are not synonymous with average values reported to the Bureau of Mines. The quotations do not necessarily represent prices at which transactions actually occurred, nor do they represent bid and asked prices. They are quoted here to serve only as a reference to yearend price levels. The following yearend prices were quoted in

Chemical Marketing Reporter.4

Salt, evaporated, common, 80-pound bags, car-	5 1 1 1 1 1 1 L
lots or truckloads, North, works, 80 pounds_	\$4.02
Salt, chemical-grade, same basis, 80 pounds	4.30
Salt, rock, medium coarse, same basis,	
80 pounds	2.70
Bulk, same basis, per ton	\$18.00-25.00
Sodium chloride, USP granular bags, per	
pound	0.29

Table 9.—Average values1 of salt, by product form and type

(Dollars per short ton)

Product form	Vacuum pans and open pans	Solar	Rock	Brine
1986 Bulk Compressed pellets Packaged	42.65	13.95	12.73	5.15
	96.37	66.66	XX	XX
	105.44	42.53	49.77	XX
Average ² Pressed blocks	91.27	23.76	14.51	5.15
	73.61	60.47	81.49	XX
1987 Bulk Compressed pellets Packaged	40.12	13,82	12.50	4.93
	97.50	70.54	XX	XX
	112.18	47.47	51.45	XX
Average ² Pressed blocks	94.21	25.40	14.34	4.93
	70.76	67.67	77.22	XX

XX Not applicable.

Net selling value, f.o.b. plant, excluding container costs.

²Salt value data previously reported were an aggregate value per ton of bulk, compressed pellets, and packaged salt. For time series continuity, an average of these three types of product forms is presented, which is based on the aggregated values and quantities of the product form for each type of salt shown in table 4.

FOREIGN TRADE

Although the United States imported nearly 11 times the quantity of salt that it exported, reduced domestic demand for salt resulted in a decrease in salt imports, primarily from Canada. This decrease in imports from Canada created a surplus in the Canadian salt supply, thereby affecting U.S. exports to Canada, which represented about 88% of the total U.S. export market. The balance of exports was distributed to 37 other countries.

More than 99% of total salt imports was bulk rock salt and solar salt. The Bahamas, Canada, Chile, and Mexico supplied 84% of total imports. The total for imports of bulk salt was adjusted by the Bureau of Mines to

739 SALT

correct for an August 1987 shipment from Italy through the Philadelphia customs district, which was erroneously reported as 2.2 million tons instead of 22,000 tons.

Imports of salt in bags, sacks, barrels, and

brine, primarily from Canada, the Federal Republic of Germany, the Republic of Korea, the Netherlands, and the United Kingdom, represented the remainder of imports.

Table 10.—U.S. exports of salt, by country

(Thousand short tons and thousand dollars)

Country	198	36	1987	
Country	Quantity	Value	Quantity	Value
Argentina	. (1)	20	. 1	13
Australia	(1)	14	(¹)	30
Bahamas	(1)	45	`í	28
Brazil	42	704		
Canada	1,091	13,265	477	6,839
Costa Rica	(1)	99	(¹)	8
Denmark	2	17	(1)	22
Dominican Republic	(1)	31	`á	65
Ecuador	Ύí	234		00
Honduras	(1)	10	(1)	14
Kenya	(1)	171		
Mexico	ìó	334	26	489
Netherlands Antilles	i	82	(1)	27
Saudi Arabia	6	1.170	24	421
South Africa, Republic of	(1)	-,- 4		
United Arab Emirates	(1)	10	1	12
United Kingdom	· `6	195	•	
Venezuela	(1)	22	(1)	- 4
Other	``6	501	`	245
Total	1,165	16,928	541	8,217

¹Less than 1/2 unit.

Source: Bureau of the Census; figures adjusted by the Bureau of Mines.

Table 11.—U.S. imports for consumption of salt

(Thousand short tons and thousand dollars)

Year		In bags, sac or other (duti	packages	Bulk (dutiable		
	Quantity	Value	Quantity	Value		
1984		71	2,386	¹ 7,474	¹ 71,714 ² 61,799	
		66	3,794	² 6,141		
1986		70	3,170	³ 6,595	376,539	
1987		44	5,122	45,672	461,814	

¹Includes salt brine from Hong Kong, Iceland, and the United Kingdom through New York, NY, customs district, 500 pounds (\$940); from the Federal Republic of Germany and Norway, through Chicago, IL, customs district, 110 short tons \$3,299); from Denmark through Detroit, MI, customs district, 23 short tons (\$191); and from Japan through Charleston, 5C, customs district, 110 pounds (\$527).

Source: Bureau of the Census; figures adjusted by the Bureau of Mines.

^{(\$3,299);} from Denmark through Detroit, MI, custems district, 23 snort tons (\$191); and from sepan through Charleson, SC, customs district, 110 pounds (\$527).

SC, customs district, 110 pounds (\$527).

Includes salt brine from Spain through New York, NY, customs district, 1,987 short tons (\$27,620); from Denmark through Cleveland, OH, customs district, 395 short tons (\$76,714); from Japan through Charleston, SC, customs district, 691 short tons (\$4,620); from Switzerland through Chicago, IL, customs district, 28 short tons (\$4,539); and from the Federal Republic of Germany through Washington, DC, customs district, an undisclosed quantity valued at \$5,444.

Includes salt brine from Norway through Los Angeles, CA, customs district, 200 pounds (\$1,606); from Denmark through Cleveland, OH, 3 short tons (\$16,360); from the Federal Republic of Germany through Chicago, IL, 277 short tons (\$12,834); and from Switzerland through Chicago, IL, 1,000 pounds (\$5,588).

Includes salt brine from Canada through Buffalo, NY, customs district, 79 short tons (\$3,389); from Norway through Los Angeles, CA, customs district, 10 short tons (\$1,396); from Denmark through Cleveland, OH, customs district, 4 short tons (\$43,221); and from the Federal Republic of Germany through New York, NY, customs district, 708 short tons (\$43,221); and from the Federal Republic of Germany through New York, NY, customs district, 708 short tons (\$43,221); and from the Federal Republic of Germany through New York, NY, customs district, 708 short tons (\$43,221); and from the Federal Republic of Germany through New York, NY, customs district, 708 short tons (\$43,221); and from the Federal Republic of Germany through New York, NY, customs district, 708 short tons (\$43,221); and from the Federal Republic of Germany through New York, NY, customs district, 708 short tons (\$43,221); and from the Federal Republic of Germany through New York, NY, customs district, 708 short tons (\$43,221); and from the Federal Republic of Germany through New York, NY, customs dis

Table 12.—U.S. imports for consumption of salt, by country

(Thousand short tons and thousand dollars)

Country	1986		1987	
Country	Quantity	Value	Quantity	Value
Bahamas	915	9,798	965	7,765
Canada ¹	2,944	26,932	2,002	24,330
Chile	312	3,153	415	3,682
France ²	101	1,974	66	546
German Democratic Republic		·	14	63
Germany, Federal Republic of	6	315	7	394
Italy ⁴	135	2,289	⁵ 204	417
Mexico ⁶	1,711	26,339	1,409	16.212
Netherlands	213	4,047	203	4,002
Netherlands Antilles	61	1,100	230	3,350
Spain ⁷	124	1,351	41	446
Spain ⁷ Other	143	2,411	5,716	66,936
Total	6,665	79,709	5,716	66,936

Source: Bureau of the Census; figures adjusted by the Bureau of Mines.

Table 13.—U.S. imports for consumption of salt, by customs district

(Thousand short tons and thousand dollars)

Customs district	198	36	1987	
	Quantity	Value	Quantity	Value
Anchorage, AK	(¹)	90	(¹)	15
Baltimore, MD	311	3.241	269	2,64
Boston, MA	43	989	11	924
Buffalo, NY	1	61	5	8
Chicago, IL	355	4.137	165	2,12
Cleveland, 0H	23	240	48	616
Detroit, MI	1.256	11.543	640	8.23
Duluth, MN	59	554	79	798
Los Angeles CA	132	2,306	127	1.949
Milwaukee, WI	859	5,546	456	5,43
New Orleans, LA	194	2,424	203	2,54
New York, NY	345	6,696	508	5,678
Norfolk, VA	73	877	144	1.262
Ogdensburg, NY	11	130	118	1,318
Philadelphia, PA	189	2,552	² 579	3,18
Portland, ME	510	4,265	465	5.09
Portland, OR	595	8,884	427	5,36
Providence, RI	259	2,754	255	2,682
St. Albans, VT	6	174	1	54
San Juan, PR	21	381	16	287
Savannah, GA	361	3,797	396	3,62
Seattle, WA	639	11.680	464	5,369
Campa, FL	129	1,401	56	1.066
Wilmington, NC	287	4,838	255	4.242
Other	7	149	29	2,352
Total	6,665	79,709	5,716	66,936

¹Less than 1/2 unit.

Source: Bureau of the Census; figures adjusted by the Bureau of Mines.

¹Includes salt in bags, sacks, and barrels through 7 customs districts, 34,241 short tons (\$2,187,191) in 1986; and 10 customs districts, 32,050 short tons (\$2,242,384) in 1987.

²Includes salt in bags, sacks, and barrels through 5 customs districts, 3,041 short tons (\$69,401) in 1986; and 3 customs districts, 222 short tons (\$77,933) in 1987.

^{*}Includes salt in bags, sacks, and barrels through 8 customs districts, 6,152 short tons (\$287,031) in 1986; and 6 customs districts, 2,542 short tons (\$304,426) in 1987.

^{*}Includes salt in bags, sacks, and barrels through 3 customs districts, 10 short tons (\$156,204) in 1986; and 2 customs districts, 85short tons (\$28,123) in 1987.

*Adjusted to correct erroneous notation of shipment in August.

^{*}Adjusted to correct erroneous notation of snipment in August.

*Includes salt in bags, sacks, and barrels through 2 customs districts, 67 short tons (\$12,295) in 1986; and 1 customs district, 273 short tons (\$38,155) in 1987.

⁷Includes salt in bags, sacks, and barrels through 1 customs district, 1 short ton (\$1,038) in 1986; and 2 customs districts, 32 short tons (\$14,279) in 1987.

²Adjusted to correct erroneous notation of shipment from Italy in August.

WORLD REVIEW

Botswana.—The Government formed a joint venture with African Explosives and Chemical Industries Inc. of the Republic of South Africa to produce soda ash and salt from underground brines in the Sua Pan. The project was anticipated to produce 600,000 tons of salt annually.

China.—The largest known salt deposit in China was discovered in Jiangsu Province. The deposit contained reserves of 200 to 400 million tons of salt. Two other deposits with reserves of 44 million and 3 million tons were also discovered in Jiangsu. Near Laizhou Bay in Shandong Province, an underground salt brine deposit was discovered containing about 400,000 tons of salt. Once developed, these deposits are expected to provide salt as feedstock for many proposed chemical and industrial projects in China.

Table 14.—Salt: World production, by country¹

(Thousand short tons)

Afghanistan ^e Albania ^e Algeria Angola ^e Argentina: Rock salt	11 80 e ₁₆₅ 60	11 80	11	11	11
Algeria Angola ^e Argentina: Rock salt	80 e165			11	
AlgeriaAngole ^e Argentina: Rock salt	e165				
Angola ^e Argentina: Rock salt		193	80	82	83
Argentina: Rock salt			185	209	220
Rock salt	00	55	11	11	11
	1				
Uther sait		1	1	1	1
Other saltAustralia (marine salt and brine salt)	746	r _{1,032}	1,595	1,342	1,300
Austria:	5,699	6,278	e6,800	e _{6,800}	6,800
Deals solt					
Evaporated salt	. 1	1	. 1	2	1
Salt in brine	396	462	483	536	500
Sahamase	155	263	254	276	280
Bahamas ^e Bangladesh ⁴	950	960	940	31,092	³ 894
	268	741	539	e550	550
	· (5)	(5)	(5)	(5)	(⁵)
Brazil:					()
Rock salt	61,023	1.046	1.097	e1.100	1,100
Marine salt	63,592	3,944	1.911	e2.800	
Bulgaria	95	98	98	100	2,800
Rurma ⁷	317	309	353		100
ambodia	45	45		354	370
Canada	9.482	11.282	45	45	45
Chile	788		11,117	11,389	11,000
China ^e		690	831	1,138	960
Colombia:	17,780	17,950	³ 15,924	19,070	19,800
Rock salt	P				
	<u>r</u> 299	_299	260	250	3226
Marine salt	^r 466	r ₇₃₂	545	552	3496
costa Rica (marine salt) ^e	120	120	333	33	33
Cuba	198	204	244	254	250
yprus			8	7	200
zechoslovakia	265	268	e ₂₇₀	e ₂₇₀	270
enmark	449	577	586	e550	
ominican Republic ^e	70	70	3 ₅₂		550
gypt	1.012	953		60	60
ll Salvador ^e	2		1,170	^e 1,400	1,400
thiopia: ^e 4	Z	3	3	3	3
D. 1 1					
	17	17	17	17	17
Marine salt	121	130	130	130	130
D. 1 1					
Brine salt	311	249	407	425	410
Marino colt	1,184	1,240	1,272	1,240	1,250
Marine salt	1,493	1,522	1,569	1,775	1,820
Salt in solutionerman Democratic Republic:	4,673	4,869	4,593	4.368	4,410
				,	-,
Rock salt Marine salt	3,384	3,390	3,395	3.390	3,390
warine sait	62	64	64	65	65
ermany, Federal Republic of: Marketable:				-	00
Rock salt	6,906	7,837	10.642	10.048	10,100
Marine salt and other salt	5,074	5,624	3,765	4,395	4,400
hana ^e	55	55	55	55	4,400 55
reece	176	146	165	e ₁₆₅	
uatemala	17	e ₁₈			165
onduras ^e	35		19	43	³ 41
eland		35	35	35	35
	1	1	1	e 2	2

See footnotes at end of table.

Table 14.—Salt: World production, by country¹—Continued

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
India:					
Rock salt ^e	3 ₅	6	4	r ₂	2
Marine salt	7,725	8,514	10,885	11,151	12,100
ndonesia	681	408	e 660	550	<u> </u>
ran ⁸	752	762	775	r e770	770
rage	90	90	80	80	80
srael ^e	160	160	170	170	170
taly:	i	0.500	0.501	0.504	0.00
Rock salt and brine salt	3,807	3,588	3,501	3,784 e660	3,600
Marine salt9	811	797	628		31 540
apan ¹⁰	1,015	1,053	e1,300	1,510 e ₃₅	³ 1,540
ordan	37	24	35	-99	9
Kenya:	e70	80	73	r e ₇₀	70
Rock salt	e26	31	28	39	4
	630	630	630	630	63
Korea, North ^e Korea, Republic of	530	571	709	804	373
	e22	23	23	e23	2
Kuwaitaos ^e ebanon ^e	11	9	11	33	3
.a.s.e	6	6	6	6	Ĭ
.ebanon ^e eeward and Windward Islands ^e	55	55	55	55	5
eeward and windward islands	13	13	13	13	1
ibya ^e	33	33	33	33	3
Madagascar ^e	5	5	5	5	
Madagascar ^e Malta Malta	(5)	(⁵)	(⁵)	e ₍₅₎	(5
Mauritania ^e	6	6	6	`6	
Mauritania ^e Mauritius ^e	7	. 7	ž	ž	
Mexico	6,287	6,798	7,129	6,533	6,60
Mongolia ^e	18	18	18	18	1
Morocco	77	69	102	106	³ 11
Mozambique ^e	30	30	30	30	3
Namibia (marine salt)	151	97	168	e ₁₅₀	15
Vetherlands	3,444	4,050	4,579	4,148	34,38
Netherlands Antilles ^e	3312	390	390	390	39
New Zealand	89	63	e70	e70	7
Nicaragua ^e	20	17	17	17	1'
Nicaragua ^e Niger ^e	3	3	3	3	
Pakistan:4					
Rock salt	629	659	643	635	55
Other salt	e210	^e 200	296	267	32
Panama (crude)	1194	20	18	11	.1
Peru	165	279	226	440	44
Philippines	421	442	464	866	55
Poland:	1 0 4 0	1 000	1 000	1 940	31,35
Rock salt	1,246	1,306	1,323	1,346	³ 5,44
Other salt	2,750	3,887	4,040	4,630	-5,44
Portugal:	4077	502	510	506	51
Rock salt Marine salt ^e	467	120	130	120	12
Marine sait	120 5.066	5,373	5,532	5,903	5,95
Romania	190	182	176	160	11
SenegalSierra Leone ^e	220	220	220	220	22
Somaliae	33	33	33	33	3
South Africa, Republic of	820	679	796	829	e ₇₇
Spain:	020	010	100		
Rock salt	2,214	2,376	2.381	e2,300	2,30
Marine salt and other evaporated salt	1,267	1,359	1,190	e ₁ ,100	1,10
Sri Lanka	142	118	85	115	³ 12
Sudan	80	80	342	44	4
Switzerland	349	410	412	e400	41
Syria	96	96	e100	e ₁₀₀	10
Taiwan	87	241	206	150	324
Tanzania	31	24	23	24	2
Thailand:					
Rock salt	6	11	14	2	
Rock salt Other salt ^e	180	180	180	180	18
Tunisia	413	364	421	457	46
Turkev	1,390	1,422	1,311	1,292	31,34
Uganda ^e	6	6	6	6	
U.S.S.R	17,857	18,200	17,747	e _{17,700}	17,70
United Kingdom:					
Rock salt	1,451	1,730	2,238	^e 2,200	2,20
Nock sait					
Rock salt Brine salt 12 Other salt 12	1,537 3,969	1,569 4,557	1,711 3,928	e1,700 e3,900	1,′ 3,

See footnotes at end of table.

Table 14.—Salt: World production, by country¹ —Continued

(Thousand short tons)

Country ²	1983	1004			
	1900	1984	1985	1986 ^p	1987 ^e
United States including Puerto Rico (sold or used by producers): Rock salt					
Other salt:	9,941	13,355	14,690	12,598	³11,96
United States Puerto Rico ^e	24,632 32	25,871 30	25,377	24,065	³ 24,52
/enezuelae	3 ₃₄₂	360	35 390	40 r ₄₆₃	44
emen (Aden)e	980 80	880 80	r ₃₂₀	*500 80	2
Vemen (Sanaa) ^e Tugoslavia	155 459	160 419	³ 165 450	³ 331 556	318 55
Total	r _{175,099}	r190,070	191,628	194,720	195,59

^pPreliminary. rRevised.

TECHNOLOGY

The Alabama Electric Cooperative planned to develop the Nation's first compressed-air energy storage facility in a salt dome near McIntosh, AL. Electricity from coalfired generators will drive compressors to store the air in solution-mined salt formations during periods of low energy demand. The energy would be reclaimed during peak demand periods by passing the air through a combustion turbine to generate electricity. The facility would generate 50 megawatts of electricity, have a storage capacity of 26 hours, and be in operation by

1989.8

Table includes data available through July 8, 1988.

[&]quot;Salt is produced in many other countries, but quantities are relatively insignificant and reliable production data are not available. Some salt brine production data for the manufacture of chlorine, caustic soda, and soda ash are not sale of incomplete data reporting by many countries.

⁴Data are for year ending June 30 of that stated.

⁵Less than 1/2 unit.

⁶Data represent sales

The present sales. The production as reported by the Burmese Government was as follows, in short tons: 1983—221,502; 1984—89,470; 1985—49,061; 1986—57,413; and 1987—70,289.

Data are for year beginning Mar. 21 of that stated

Does not include production from Sardinia and Sicily, estimated at 220,000 short tons annually.

¹⁰Data are for fiscal year ending Mar. 31 of that stated. ¹¹Crude salt.

¹²Data captioned "Brine salt" for the United Kingdom are the quantities of salt obtained from the evaporation of brines; that captioned "Other salt" are the salt content of brines used for purposes other than production of salt by

¹Physical scientist, Branch of Industrial Minerals.

Free Press (Detroit, MI). Salt Division of Diamond Crystal Sold. July 30, 1987.

Livonia Gazette (New York). Plans To Dump Ash Opposed by Salt Mine. Oct. 20, 1987.

Chemical Marketing Reporter. V. 232, No. 26, Dec. 28, 1007 no 26.

^{1987,} p. 35.

⁵European Chemical News. U.S. Cartel Tries To Halt Botswana Soda Ash Project. V. 49, No. 1297, Oct. 26, 1987,

p. 6.

Mining Magazine (London). World Highlights. Large
Salt Find. V. 157, No. 2, 1987, p. 114.

⁷Industrial Minerals (London). Mineral Notes. Chinese

Brine Deposit. No. 243, 1987, p. 94.

8 The Daily Sentinel (Scottsboro, AL). Salt Dome is Storage Bin for Energy. Feb. 25, 1987.

Sand and Gravel

By Valentin V. Tepordei¹

A total of 896 million short tons of construction sand and gravel was produced in the United States in 1987, the fifth consecutive year of growth. This level of production was a result of the growth that occurred in the last several years in the construction industry, mostly in highway maintenance and construction work, housing, and commercial construction.

Exports of construction sand and gravel decreased slightly in 1987, while imports for consumption increased by 38%, but remained at a very low volume. Domestic apparent consumption of construction sand and gravel in 1987 was 895 million tons.

Production of industrial sand and gravel increased about 2% over that of 1986, but remained below the production levels of 1984 and 1985. The production increase in 1987 was due to a slight improvement in demand for silica sand.

Exports of industrial sand and gravel in 1987 decreased 11%, while imports for consumption increased 18%. Domestic apparent consumption of industrial sand and gravel in 1987 was 27.4 million tons. Apparently, the low value of the U.S. dollar did not have any significant impact on the volume of exports and imports of sand and gravel, construction or industrial.

Table 1.—Salient U.S. sand and gravel statistics1

(Thousand short tons and thousand dollars)

1983	1984	1985	1986	1987
e655,100	773,900	^e 800,100	883,000	^e 896,200
e\$1,935,000	\$2,244,000	^e \$2,438,000	\$2,747,200	^e \$3,002,500
26,080	28,680	29,070	26,940	27,380
\$329,500	\$370,370	\$370,730	\$354,460	\$357,660
537	705	357	484	631
\$5,667	\$6,844	\$3,340	\$4,853	\$6,424
26,620	29,380	29,430	27,420	28,010
\$335,200	\$377,200	\$374,070	\$359,300	\$364,100
2,350	3,038	2,379	2,015	1,895
\$32,487	\$37,981	\$31,515	\$28,201	\$31,786
	*655,100 *\$1,935,000 26,080 \$329,500 537 \$5,667 26,620 \$335,200 2,350	*655,100 773,900 *\$1,935,000 \$2,244,000 26,080 28,680 \$329,500 \$370,370 537 705 \$5,667 \$6,844 26,620 29,380 \$335,200 \$377,200 2,350 3,038	**************************************	**************************************

eEstimated.

¹Puerto Rico excluded from all sand and gravel statistics.

²Data may not add to totals shown because of independent rounding.

Domestic Data Coverage.—Domestic production data for construction and industrial sand and gravel are developed by the Bureau of Mines from voluntary surveys of U.S. producers. Full surveys of construction sand and gravel producers are conducted for even-numbered years only. For oddnumbered years, preliminary surveys are conducted that collect production information on a sample basis in order to generate only annual preliminary estimates at the State level. Industrial sand and gravel producers are surveyed every year. Of the 170 industrial sand and gravel operations surveyed, 155, or 91%, reported to the Bureau of Mines. Their combined production represented 94% of the U.S. total published in table 1. The nonrespondents' production was estimated using mostly employment data. Of the 170 operations, 166, or 98%, were active and 4 were idle.

Government Pro-Legislation and grams.-On April 2, the U.S. Congress enacted the 1987 Surface Transportation Assistance Act that extended the Federal-Aid Highway Program for 5 more years at a total funding level of \$68 billion, with annual authorizations ranging between \$13.6 and \$13.9 billion. On December 31, the Airport Improvement Program (AIP) legislation was enacted that appropriated \$1.7 billion funding level for fiscal years 1988 to 1990, and \$1.8 billion for fiscal years 1991 and 1992. The total of \$8.7 billion represented a 65% increase in funding over the previous AIP program. The program funding levels for fiscal year 1988 were later reduced by the Continuing Resolution (Public Law 100-202) by \$0.57 billion for the highway program and by \$0.43 billion for the airport program.

Responding to requests made by the industry, the Occupational Safety and Health Administration (OSHA) extended a partial stay to July 21, 1988, for the new provisions of its revised asbestos standards for nonasbestos forms of actinolite, anthophyllite, and tremolite minerals. The stay was issued to allow OSHA time to review additional information and to collect more data, including that on the feasibility of regulating these nonasbestos-form minerals. The extension of the stay was needed because of the range of the affected industries and the lack of mineralogic and exposure data in these industries. The former asbestos standard remains in effect throughout the extension of the stay.

The introduction of the revised OSHA regulations regarding the airborne asbestos standards that include nonasbestos forms of actinolite, anthophyllite, and tremolite would have a significant impact on the aggregates as well as on the construction industries. The resulting costs to society in the form of increased construction costs and disruption of supply of aggregates were considered potentially enormous.

CONSTRUCTION SAND AND GRAVEL

DOMESTIC PRODUCTION

Revised production estimates for 1986 indicate that U.S. output of construction sand and gravel increased 1.5% in 1987. Production increased in New England, West North Central, South Atlantic, Pacific, and Middle Atlantic, and decreased in Mountain, East North Central, East South Central, and West South Central. The Pacific region continued to lead the Nation, followed by East North Central and the Mountain region.

Among the four major geographic regions, the West again led the Nation in the production of construction sand and gravel with 36% of the U.S. total. The Midwest region was next with 27%, and the South was third with 23%. Construction sand and gravel was produced in every State, and the 10 leading States were, in descending order of volume, California, Texas, Michigan, Ari-

zona, Ohio, New York, Florida, Illinois, Alaska, and Washington. Their combined estimated production represented 50% of the national total.

Tarmac PLC of Wolverhampton, United Kingdom, purchased a 60% interest in Lone Star Industries Inc. of Greenwich, CT, aggregates, cement, concrete, and concrete products operations in North Carolina, South Carolina, and Virginia. The purchase agreement included a provision that will allow Tarmac to acquire the remaining 40% interest after January 1, 1990.

J. L. Shiely Co. of St. Paul, MN, acquired the Freidheim Co. of St. Paul, MN, a producer of aggregates, ready-mixed concrete, and concrete blocks in the Minneapolis-St. Paul area. In December, J. L. Shiely agreed to be acquired by English China Clays Ltd. of Cornwall, United Kingdom.

ARC America Corp. of Newport Beach, CA, a subsidiary of Consolidated Gold Fields Ltd. of the United Kingdom, acquired American Aggregates Corp. of Greenville, OH, a producer of sand and gravel and crushed stone with operations in California, Indiana, Michigan, and Ohio.

Blue Circle Industries PLC of Reading, United Kingdom, through a U.S. subsidiary, acquired Raia Industries Inc., a New Jersey aggregates and ready-mixed concrete producer with extensive aggregates reserves in the State.

On May 12, 1987, following the recommendation made by the association's board of directors, the members of the National Sand and Gravel Association (NSGA) approved dissolving the 71-year-old organization and reinstating it as the National Aggregates Association. As the reserves of available sand and gravel continue to diminish, more and more NSGA members are becoming crushed stone producers as well. Concern for the long-term future of the association and the sand and gravel industry convinced its members to open NSGA membership to all aggregate producers by amending the bylaws and changing the name of the organization.

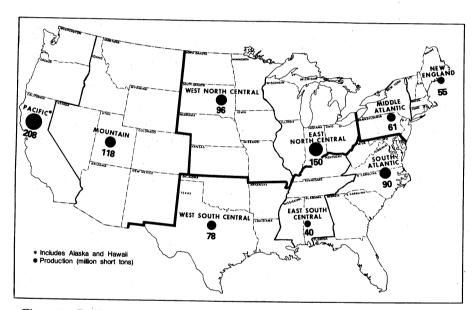


Figure 1.—Production of construction sand and gravel in the United States in 1987, by geographic region.

FOREIGN TRADE

Exports.—Exports of construction sand decreased 12% to 593,000 tons. Canada was the major destination, receiving 81% of the total, while Mexico received 9%. Exports of construction gravel increased by 11% to 544,000 tons, 91% of which went to Canada, and 3% to the Leeward Islands.

Imports.—Imports of construction sand and gravel increased 38% to 283,000 tons, 70% of which came from Canada and 14% from Antigua.

TECHNOLOGY

In response to a joint request from the House Committee on Merchant Marine and Fisheries and the House Committee on Science, Space, and Technology of the U.S. Congress, the Office of Technology Assessment evaluated the near-term development potential of selected offshore minerals within the U.S. Exclusive Economic Zone (EEZ). The report examined the current knowledge about the hard mineral resources within the EEZ, explored the economic and

security potential of seabed resources, assessed the technologies available to explore and mine those resources, identified the issues facing the Congress and the executive branch of the Government, and presented options for dealing with these issues. The report concluded that progress in seabed mining would require Government commitment to ocean exploration, resolution of data secrecy problems, an improved demand for some minerals, and perhaps new legislation. The report ranked sand and gravel first among six minerals with development potential, and indicated that around high-growth, high-density areas in the Northeast and the west coast of the United States, marine sand and gravel may soon prove profitable to mine and may attract the interest of the aggregates industry. But without assurances that the Federal Government will actively support ocean exploration and provide a statutory framework to encourage private development of seabed minerals, the economic prospect is bleak for most seabed mining.2

During the 71st Annual Convention of the National Sand and Gravel Association that was held on February 8-11, 1987, in San Francisco, CA, a comprehensive program of educational seminars covering technical, financial, legal, marketing, and self-improvement subjects was organized by the association. Some of the topics covered included new methods of exploring for sand and gravel, economic transportation from pit to plant, dispatching and batching in the computer age, methods for measuring fleet maintenance efficiency, and computerized maintenance operations.

The introduction of sophisticated electronic equipment and computer systems

for improved efficiency of mining and processing operations continued in the sand and gravel industry. Computer programs are used for plant design, including selection of flow diagrams, types and sizes of crushing and screening equipment, and to produce blueprints of plant drawings. Operations such as blasting, excavation, crushing and screening, loading, and hauling have advanced into highly technical disciplines that use a wide range of automated equipment. Computerized systems that provide a high degree of plant automation in day-to-day operation, quality control, and truck dispatch systems are being used more and more by producers. Most producers are significantly improving the efficiency of their operations, not only by investing in larger equipment, but also through automation.

Construction of a pilot plant that will convert phosphogypsum, a waste product of the phosphate industry, into aggregates for road and building construction was started in August. The pilot plant is being built in Convent, LA, by Freeport-McMoRan Inc. to test a new proprietary technology developed by Davy McKee Corp. and the Florida Institute of Phosphate Research. The pilot plant is designed to convert 35 tons per day of phosphogypsum into 29 tons per day of sulfuric acid and 25 tons per day of aggregates. The pilot plant will cost \$2 million to construct and another \$1 million to operate for 6 months. The breakthrough in developing an economical process to convert phosphogypsum into useful products comes at a time when disposal of the byproduct waste has become an environmental issue in Louisiana.3

Table 2.—Construction sand and gravel sold or used in the United States, by geographic region

	***	19	86			19	987	
Geographic region	Quantity (thousand short tons)	Percent of total	Value (thou- sands)	Percent of total	Quantity ^e (thousand short tons)	Percent of total	Value ^e (thou- sands)	Percent of total
Northeast:						•	#100 400	c
New England	50,546	5	\$154,857	6	55,300	6	\$189,400	· 6
Middle Atlantic	60,544	7	226,374	8	61,400	7	247,000	8
Midwest:	•							
East North Central	151,742	17	421,712	15	150,300	17	457,700	15
West North Central	88,444	10	205.825	8	95,500	11	255,000	9
South:	00,111		/					
South Atlantic	83.992	10	276,964	10	90,100	10	297,300	10
East South Central	40,415	5	115,193	4	40,000	4	126,700	9
West South Central	92,791	11	307,573	11	78,100	9	270,300	9
	32,131		001,010		,		•	
West:	117.972	13	356,615	13	117,700	13	399,800	13
Mountain	196,556	22	682,060	25	207,800	23	759,300	25
Pacific	190,000		002,000		201,000		,	
Total ¹	883,000	100	2,747,200	100	896,200	100	3,002,500	100

eEstimated.

¹Data may not add to totals shown because of independent rounding.

Table 3.—Construction sand and gravel sold or used in the United States, by State

(Thousand short tons and thousand dollars)

State	19	86	198	7 ^e
State	Quantity	Value	Quantity	Value
Alabama	10,781	30.807	10,300	35.60
Alaska	27,762	61,954	27,200	73,40
Arizona	40,468	140,004	38,100	141.30
Arkansas	8,571	26,999	7.200	23.90
	128,407	498.456	141,600	561.30
California	23,233		22,800	84.30
Colorado		70,095		
Connecticut	7,254	25,984	8,400	37,0
Delaware	1,547	4,156	2,300	_6,40
Florida	28,233	67,898	30,000	74,9
Georgia	8,126	23,222	9,000	26,9
ławaii	605	2,666	700	3,5
daho	5,708	14,830	7,200	28,0
llinois	27,867	82,523	28,300	93,30
ndiana	19.642	61,232	18,900	65,20
OW8	14.511	40,418	19,000	63,80
Kansas	15,609	33,721	15,600	37.80
	7.194	16.986	7,100	15.2
Centucky	14,292	46.134	12,200	43.6
ouisiana				22.1
Maine	8,572	22,843	8,600	
Maryland	18,173	86,925	19,600	92,9
Massachusetts	19,200	60,464	21,800	75,3
Michigan	42,514	91,886	42,800	105,3
Minnesota	24.055	53,116	25,200	67,4
Mississippi	15,080	42,809	14,700	47,0
Missouri	9,746	24,065	10,900	30,4
Montana	8.066	19,391	6.800	18.8
Nebraska	9,675	23,912	10,300	26.3
	12,197	35,692	10,600	30,7
Nevada	8.418	26.089	9,100	33.3
New Hampshire	13,999	53,746	15,200	61.2
New Jersey				31.0
New Mexico	8,471	25,862	8,600	
New York	31,172	103,748	31,400	112,9
North Carolina	7,543	23,127	8,600	30,1
North Dakota	5,135	10,741	4,900	10,2
Ohio	36,806	126,747	36,400	136,9
Oklahoma	10,366	24,585	10,500	24,2
Oregon	13,441	42,597	13,000	42.2
Pennsylvania	15,373	68,880	14,800	72,9
Rhode Island	2,269	8,252	2,700	10.9
outh Carolina	7,200	19.783	7,500	19.5
	9,713	19,853	9,600	19.1
South Dakota				
Cennessee	7,360	24,592	7,900	28,9
Cexas	59,562	209,855	48,200	178,6
Jtah	16,452	39,763	21,000	56,7
Vermont	4,834	11,226	4,700	10,8
Virginia	11,670	46,488	12,100	43,4
Washington	26,342	76,387	25,300	78,9
West Virginia	1,501	5.365	1,000	3.2
Wisconsin	24,913	59,325	23,900	57.0
Wyoming	3,377	10,977	2,600	9,0
Total ¹	883,000	2,747,200	896,200	3,002,50

^eEstimated.

¹Data may not add to totals shown because of independent rounding.

Table 4.—U.S. exports of construction sand and gravel, by country

(Thousand short tons and thousand dollars)

	Construct	tion sand	Gra	evel
Country	Quantity	F.a.s. value ¹	Quantity	F.a.s. value ¹
1986				
BahamasCanada	$6\overline{4}\overline{6}$	2.606	11 392	86 1.264
French West IndiesGermany, Federal Republic of	(2)	77	26 (2)	144
JapanLeeward and Windward Islands	3 - <u>1</u> 2	489 514	$-\frac{1}{4}$ 50	82 524
Mexico Netherlands Antilles Peru	(2) 5	11 264	9	120
reru Saudi Arabia Trinidad and Tobago	(²)	53 152	(2) (2)	17 39
Other	5	1,280	(2)	108
Total	674	5,446	492	2,392
1987				a e a Lina
ArgentinaAustralia	6	667 69		
Brazil CanadaC Colombia	480	$\begin{array}{c} 43 \\ 2,930 \\ 16 \end{array}$	$\bar{496}$	1,497
Colombia French West Indies Japan	8 3	83 185	12	178
Leeward and Windward Islands	2 55	14 765	17 10	228 768
Netherlands Netherlands Antilles	3 1	647 23		8
Panama Peru	8 5	192 252 13		
Saudi Arabia Taiwan Trinidad and Tobago	5	68 88	 (2)	
United KingdomVenezuela	1	96 317	3	. 37
Other	<u> </u>	1,143		126
Total ³	593	7,610	544	2,923

¹Value of material at U.S. port of export; based on transaction price, including all charges incurred in placing material alongside ship.

²Less than 1/2 unit.

Source: Bureau of the Census.

Table 5.—U.S. imports for consumption of construction sand and gravel, by country

(Thousand short tons and thousand dollars)

	198	36	198	37
Country	Quantity	C.i.f. value ¹	Quantity	C.i.f. value ¹
Antigua	34	103	41	267
AustraliaBahamas			2 13	470 78
British Virgin Islands	$-\frac{1}{5}$	62	3	59
CanadaCosta Rica	157	707	198 19	965 87
Japan	$-\frac{1}{4}$	88		
SpainTaiwan	(2)	3		33
Other	$-\frac{1}{5}$	$\bar{449}$	5	408
Total	205	1,412	283	2,367

 $^{^1}$ Value of material at U.S. port of entry; based on purchase price and includes all charges (except U.S. import duties) in bringing material from foreign country to alongside carrier. 2 Less than 1/2 unit.

Source: Bureau of the Census.

³Data may not add to totals shown because of independent rounding.

INDUSTRIAL SAND AND GRAVEL

DOMESTIC PRODUCTION

The total output of industrial sand and gravel increased by approximatly 2% to 28 million tons. The Midwest major geographic region continued to lead the Nation with about 41% of the U.S. total, followed by the South with about 36% and the West with 12%. Two major geographic regions, the Midwest and the South, produced 77% of the total U.S. industrial sand output. Compared with 1986, the output of industrial sand and gravel increased 7% in the South, 2% in the West, and 1% in the Midwest, but decreased 7% in the Northeast.

Based on the 1985 census estimations on population, 1987 U.S. per capita industrial sand and gravel production was 0.12 ton. Per capita production by major geographic region was 0.19 ton in the Midwest, followed by the South with 0.12 ton, the West with 0.07 ton, and the Northeast with 0.06 ton.

The five leading States in the production of industrial sand and gravel in 1987,

in descending order of volume, were Illinois, Michigan, California, New Jersey, and Florida. Their combined production represented 48% of the national total. Of the major producing States, significant increases were recorded in Florida, 28%, and Texas, 16%, while production decreased significantly in Michigan, 16%, New Jersey, 10%, and California, 5%.

The Bureau of Mines canvassed 94 producers of industrial sand and gravel with 166 active operations. About 73% of the industrial sand and gravel was produced by 43 operations, each with an annual production of more than 200,000 tons. The 10 leading producers of industrial sand and gravel were, in descending order of tonnage, Unimin Corp., U.S. Silica Co., The Morie Co. Inc., Fairmount Minerals Ltd., Standard Sand & Silica Co., Badger Mining Corp., Oglebay Norton Co., Construction Aggregates Corp., and Owens-Illinois Inc. Their combined production, from 61 operations, represented 74% of the U.S. total.

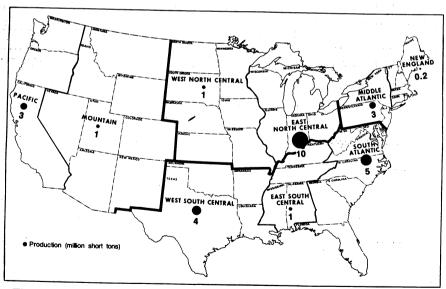


Figure 2.—Production of industrial sand and gravel in the United States in 1987, by geographic region.

U.S. Silica, a subsidiary of Pacific Coast Resources Corp. of Los Angeles, CA, purchased Warrior Sand Co. of Hurtsboro, AL, a major producer of foundry sands in the South. This acquisition extended its network of plants in the United States to 17 industrial sand operations in 14 States.

The top two companies, Unimin and U.S. Silica, hold a large proportion of the industrial sand production capacity in the United States.

California Silica Products Co., a subsidiary of Oglebay Norton of Cleveland, OH, announced the completion of an expansion to its silica sand operation at San Juan Capistrano, CA. The plant, which was designed to produce glass sand, will also supply some new markets, including the construction industry.

CONSUMPTION AND USES

Sand and gravel production reported by producers to the Bureau of Mines is actually material sold or used by the companies or their customers. Stockpiled material is not reported until it is consumed or sold.

Of the 28 million tons of industrial sand and gravel sold or used, 42% was consumed as glassmaking sand and 25% as foundry sand. Other important uses were abrasive sand, 7%, and hydraulic fracturing sand, 5%. Because some producers did not report a breakdown by end use, their total production as well as the estimated production for nonrespondents were included in "Other uses, unspecified," which represent about 8% of the U.S. total. On the regional level, most of the glassmaking sand was produced in the South, 39%, and the Midwest, 27%, followed by the West and the Northeast. Most of the foundry sand was produced in the Midwest, 73%, and the South, 18%. Of the smaller by volume but important uses, most of the hydraulic fracturing sand was produced in the Midwest, 73%, and most of the abrasive sand was produced in the South, 46%, and the Midwest, 28%.

TRANSPORTATION

Of the total industrial sand and gravel produced, 63% was transported by truck from the plant to the site of first sale or use, down from 66% in 1986; 34% was transported by rail, up from 31% in 1986; and 3% by waterway, unchanged from 1986. Because most of the producers did not report shipping distances or cost per ton per mile, no transportation cost data were available.

PRICES

The average value, f.o.b. plant, of U.S. industrial sand and gravel decreased slight-

ly to \$13.00 per ton. Average unit values for industrial sand and industrial gravel were \$13.06 and \$10.18 per ton, respectively. Nationally, industrial sand used as fillers for rubber, paint, and putty, etc., had the highest value per ton, \$57.62, followed by silica sand used in ceramics, \$38.25, fiberglass (ground), \$30.49, silica flour, \$28.72, and scouring cleansers, \$25.21.

FOREIGN TRADE

Exports.—Exports of industrial sand decreased 11% to 758,000 tons, while the value increased 4% to \$21.3 million. Of this, 79% went to Canada, 7% went to Mexico, and 7% went to several European countries.

Imports.—Imports for consumption of industrial sand increased 18% to 104,000 tons valued at \$1.1 million. Of this, 52% came from Antigua, 18% from the Bahamas, and 17% from Australia.

TECHNOLOGY

The technology of glass manufacturing is changing almost continuously. These changes require improvements in the processing of raw silica sands to meet the new specifications imposed by the changing technology. A review of the glass sand industry in the United Kingdom that includes physical and chemical specification, deposit evaluation, plant design, plant operation, and quality management was published.⁴

The most important considerations concerning raw material selection for the glass industry are cost, availability, purity and consistency of chemical composition, and grain size. Except for the specialty glasses, glass is a low-cost, high-bulk product that requires low-cost raw materials. Although the choices of raw materials for common glass may be similar, the conditions of supply and demand among countries are often quite different for a variety of reasons. Using technological innovation and aggressive marketing policy, the glass industry in certain parts of the world is consolidating. A comprehensive review of the flat glass, container glass, glass fibers, and specialty glass industries in the major producing countries or regions of the world was published.5

¹Physical scientist, Branch of Industrial Minerals. ²U.S. Congress. Marine Minerals: Exploring Our New Ocean Frontier. Off. Technol. Assess., OTA-O-342, 1987,

³⁴⁹ pp.

³Rukavina, M. Phosphate Industry Hopes To Turn
Phosphogypsum Waste Into Aggregates. Rock Prod., v. 90,
No. 9, Sept. 1987, pp. 17, 78.

No. 9, Sept. 1987, pp. 17, 78.

*Kirby, C., and Lavender, M. Developments in the Glass Sands Supply Industry. Ind. Miner. (London), No. 242, Nov. 1987, pp. 55-63.

*SO'Driscoll, M. Glass Markets—Added Value Impetus. Ind. Miner. (London), No. 239, Aug. 1987, pp. 33-63.

Table 6.—Industrial sand and gravel sold or used in the United States, by geographic region

		19	86			19	87	
Geographic region	Quantity (thousand short tons)	Percent of total	Value (thou- sands)	Percent of total	Quantity (thousand short tons)	Percent of total	Value (thou- sands)	Percent of total
Northeast:								
New England	129	1	\$3,541	1	161	1	\$3,921	
Middle Atlantic	3,088	11	41.132	11	2.830	10		10
Midwest:	0,000	11	71,102	11	2,000	10	38,155	10
East North Central	9,990	36	116,698	32	9,931	35	105 015	
West North Central	1,340	5	16,011				105,815	29
South:	1,040		10,011	4	1,516	5	20,263	6
South Atlantic	5,452	20	71,292	20	F F 4 F			
East South Central	945	3			5,545	20	75,505	21
			9,198	3	1,098	4	10,719	3
West South Central West:	3,161	11	42,929	12	3,545	13	49,065	13
Mountain	694	3	9.251	3	847	3	13,980	4
Pacific	2,621	10	49,257	14	2,535	ğ,	46,658	13
Total ¹	27,420	100	359,300	100	28,010	100	364,100	100

¹Data may not add to totals shown because of independent rounding.

Table 7.—Industrial sand and gravel sold or used in the United States, by State
(Thousand short tons and thousand dollars)

State	19	86	198	37
State	Quantity	Value	Quantity	Value
Alabama	433	3.388	580	5,02
Arizona	w	w	w	5,02.0 W
Arkansas	400	3,975	505	5.14
California '	2.364	44.813	2.241	41,472
Colorado	_,ou	W	W	41,412
Connecticut	w	· ẅ	w	, w
Florida	1,467	14,930	1.884	19,71
Georgia	w W	W W	1,004 W	19,718 W
Idaho	· ẅ	ẅ	w	W.
Illinois	4.039	52,133	4.346	
Indiana	193	1.490		45,547
Kansas	132	1,155	230	1,357
Kentucky	W		127	1,400
Louisiana	256	W	W	W
Maryland	250 W	4,225	289	3,997
Massachusetts	₩ 45	W	w	W
Michigan		739	56	922
Minnesota	3,343	29,493	2,792	22,451
Mississippi	W	w	W	w
Missouri	W	W	w	w
Montana	517	6,230	622	7,786
Nebraska	W	W	W	W
Nevada Nevada Nevada Nevada Nevada Nevada	W	W	W	W
	518	W	578	W
New Jersey	2,341	29,878	2,112	27.872
New York	59	1,164	58	651
North Carolina	1,464	16,656	1.184	15,329
North Dakota	w	W	· "W	w
Ohio	1,221	21.183	1,249	21.292
Oklahoma	1,203	16,454	1.243	17,078
Pennsylvania	688	10,091	w W	w
Rhode Island	22	143	ŵ	ŵ
South Carolina	800	14.081	844	15.188
l'ennessee	488	5,523	W	10,100 W
l'exas	1.302	18,274	1.509	22.843
Utah	6	123	1,505	22,040
Virginia	w	W	w	
Washington	ẅ	w	294	F 100
West Virginia	w	w	294 W	5,186
Wisconsin	1.194			W
Other	2,927	12,399	1,314	15,168
	4,921	50,768	3,945	68,545
Total ¹	27,420	359,300	28,010	364,100

W Withheld to avoid disclosing company proprietary data; included with "Other." $^{\rm 1}{\rm Data}$ may not add to totals shown because of independent rounding.

Table 8.—Industrial sand and gravel production in the United States in 1987, by size of operation

	Size range	Number of operations	Percent of total	Quantity (thousand short tons)	Percent of total
25,000 to 49,999 50,000 to 99,999 100,000 to 199,999 200,000 to 299,999 300,000 to 399,999 400,000 to 499,999 500,000 to 599,999		26 8 9 8	24.7 16.9 16.9 15.7 4.8 5.4 4.8 3.0 3.0	370 1,023 2,179 3,851 1,903 3,117 3,528 4,315 3,369 4,354	1.3 3.7 7.8 13.7 6.8 11.1 12.7 15.4 12.0
Total		 166	100.0	¹ 28,010	100.0

¹Data do not add to total shown because of independent rounding.

Table 9.—Number of industrial sand and gravel operations and processing plants in the United States in 1987, by geographic region

		Mining ope	rations on lar	ıd		Total
Geographic region	Stationary	Portable	Stationary and portable	No plants or unspecified	Dredging operations	active operations
Northeast:						
New England	4			1		5
Middle Atlantic	9		2	2	4	17
Midwest:						
East North Central	39		1		3	43
West North Central	8				. 3	11
South:				_	•	
South Atlantic	17			3	. 8	28
East South Central	10			1	3	14
West South Central	15		·	1	10	26
West:	100				_	`
Mountain	6	1			1	. 8
Pacific	11			1	2	14
Total	119	1	3	9	34	166

Table 10.—Industrial sand and gravel sold or used by U.S. producers, by major use

		Northeast			Midwest	i		South			West			U.S. total1	
Major use	Quantity tity (thousand	Value (thou-sands)	Value per ton	Quantity (thousshort tons)	Value (thou- sands)	Value per ton	Quantity (thousand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand	Value (thou- sands)	Value per ton	Quantity (thousand sand tons)	Value (thou- sands)	Value per ton
1987															
Sand: Glassmaking: Containers Containers First (plate and window) Specialty Fiberglass (ungound) Fiberglass (ground)	1,344 W W	\$17,068 W W W	\$12.70 13.05 14.76 9.41	1,980 842 153 216 W	\$15,705 7,511 2,008 2,054 W	\$7.93 8.92 13.12 9.51 33.59	2,906 1,095 190 153	\$33,152 12,293 2,474 1,731 W	\$11.41 11.23 13.02 11.31 30.44	2,095 W W W	\$36,418 W W	\$17.38 14.97 17.57 15.97 20.75	8,326 \$ 2,156 512 538 341	102,344 22,821 6,996 6,005 10,398	\$12.29 10.58 13.66 11.16 30.49
Molding and core Molding and core facings (ground) Refractory	523 W	6,963 W W	13.31 W 10.00	$\frac{4,804}{258}$	42,642 1,4 <u>22</u>	8.88	1,217	12,436	10.22	129 W	2,186 W	16.95 W	6,673 W 259	64,227 W 1,437	9.62 W 5.55
Silicon carbideFlux Flux for metal smeltingAbrasives:			1 1	130 W	831 W	6.39 8.93	\M	. ⊠	1.88	<u>ī</u> 7	2,319	$30.\overline{12}$	130 114	831 2,593	6.39 22.75
BiastingScouring cleansers (ground) Sawing and sanding Chemicals (ground and unground)	281 W	4,560 W	$\begin{array}{c} 16.23 \\ 33.00 \\ \hline 13.31 \end{array}$	431 W W	4,930 W W	11.44 24.41 20.00 12.86	860 W	15,094 W 3,618	17.55 40.50 16.30	214 W	4,122 W	19.26 14.58	1,786 62 W 513	28,708 1,563 W 7,438	16.07 25.21 20.00 14.50
Rubber, paint, putty, etc Silica flour Ceramic (ground):	88	≱≱	39.05 18.29	221	3,087 6,488	43.48 29.36	46 W	4,378 W	95.17 25.05	≱ ¦	M -	18.38	147 247	8,470 7,093	57.62 28.72
Pottery, brick, tile, etc Filtration Traction (engine)	226 W	2,958 W	37.87 13.07 9.09	108 299	4,886 738 2,391	45.24 15.06 8.00	101 153 132	3,144 2,126 1,325	31.13 13.90 10.04	8 °8	W 172 W	8.00 28.67 12.09	225 433 465	8,606 5,989 4,081	38.25 13.83 8.78
Roofing granules and fillers Hydraulic fracturing Other uses, specified Other uses, unspecified	51 W 525 31	1,709 W 7,748 794	33.51 W 14.76 25.61	1,014 466 270	0 155 19,584 6,783 3,525	12.92 19.31 19.32 13.06	251 375 451 1,596	W 4,479 6,968 11,049 16,676	4.00 17.84 18.58 24.50 10.45	77 W 480 245	1,438 W 8,244 5,277	18.68 26.43 17.18 21.54	392 1,396 XX 2,142	228 7,782 26,742 XX 26,273	5.07 19.85 19.16 XX 12.27
Total ¹ or average	2,982	41,797	14.02	11,324	124,740	11.02	9,747	130,943	13.43	3,324	60,178	18.10	27,877	357,657	13.06

See footnotes at end of table.

Table 10.-Industrial sand and gravel sold or used by U.S. producers, by major use -Continued

		Northeast			Midwest			South			West			U.S. total1	
Major use	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton	Quantity (thousand	Value (thou- sands)	Value per ton	Quantity (thousand sand short tons)	Value (thou- sands)	Value per ton
1987 —Continued															
Gravel: Metallurgical: Silicon, ferrosilicon Filtration Other uses	6 -	\$279	\$31.00	88 W W	% % %	\$10.00 W 11.83	≱≽≽	888	\$9.73 7.42 12.08	¦&	\$460 ***	\$7.93	454 W	\$4,436 W	\$9.77 16.86 10.43
Total ¹ or average	6	279	31.00	123	1,339	10.89	441	\$4,346	9.85	88	460	7.93	631	6,424	10.18
Grand total ¹ or average	2,991	42,076	14.07	11,447	11,447 126,078	11.01	10,188	135,289	13.28	3,382	60,638	17.93	28,010	364,100	13.00

W Withheld to av. id disclosing company proprietary data; included with "Other uses, specified"; also included in "U.S. total" by use. XX Not applicable.

**IData may not add to totals shown because of independent rounding.

**Mostly estimated total production, plus other uses (small quantities) as reported by the producers.

Table 11.—Transportation of industrial sand and gravel in the United States in 1987 to site of first sale or use

	Method of shipment	7.13	Quantity (thousand short tons)	Percent of total
Truck			17,470	63
Waterway			17,470 9,562 903 72	34 3
Total			¹28,010	100

¹Data do not add to total shown because of independent rounding.

Table 12.—U.S. exports of industrial sand, by country

(Thousand short tons and thousand dollars)

	198	36	19	87
Country	Quantity	F.a.s. value ¹	Quantity	F.a.s. value ¹
North America:				
Bahamas	(2)	40	1	18
Canada	7Ì3	9.224	600	8,638
Costa Rica	(2)	8	(2)	7
Dominican Republic	`4	104	`ź	96
Leeward and Windward Islands	ī	56	3	35
Mexico	63	1,708	50	1.388
Netherlands Antilles	8	106	8	174
Panama	13	254	8	273
Other	r ₂	^r 198	3	262
Total ³	804	11,698	676	10,890
South America:				
Argentina	(2)	29		340
Chile	(2)		2	
Colombia	(5)	265	1	372
Fanadar	(2)	132	1	174
Ecuador	(•)	100	(*)	97
Peru Venezuela	3	124	Ĭ	135
Other	ა 1	159 95	6 (2)	341 217
Total ====================================	5	904	11	1,675
Europe:				
Belgium	7	778	17	1,176
France	(2)	182	(*)	198
Germany, Federal Republic of	1	425	`8	874
Italy	3	145	8	531
Netherlands	3	1,164	6	1,722
Norway	(*)	. 8	(²) 9	37
United Kingdom	10	520	9	334
Yugoslavia	2	811	(*)	98
Other	2	776	`3	551
Total ³	28	4,809	52	5,522
Asia:				
Indonesia	1	256	(²)	8
Japan	Ž	835	`6	770
Korea, Republic of	ī	198	ĭ	328
Singapore	ī	286	5	888
Other	rī	r702	ĭ	367
Total	6	2,277	13	2,361
Middle East and Africa:				
	A	10	•	_
	(*) 2	16	(2)	7
South Africa, Republic of United Arab Emirates	2	10 152	3	344
Other		¹⁵² ¹ 277	i	48 152
Total Ceania	5 1	455 220	5 1	551 253
Grand total ³	849	20,363	758	21,253
Grand with	049	20,363	798	21,258

Source: Bureau of the Census.

TRevised.

1 Value of material at U.S. port of export; based on transaction price, including all charges incurred in placing material alongside ship.

2 Less than 1/2 unit.

3 Data may not add to totals shown because of independent rounding.

MINERALS YEARBOOK, 1987

Table 13.—U.S. imports for consumption of industrial sand, by country

(Thousand short tons and thousand dollars)

	19	86	198	37
Country	Quantity	C.i.f. value ¹	Quantity	C.i.f. value ¹
Antigua	28	173	54	134
Australia	22	387	18	407
Bahamas			19	30
Canada	3	87	6	51
Jermany, Federal Republic of			, 0	365
Japan	23	27		
United Kingdom	12	102	(2)	38
Other	(²)	238	1	45
Total	88	1,014	104	31,071

¹Value of material at U.S. port of entry; based on purchase price and includes all charges (except U.S. import duties) in bringing material from foreign country to alongside carrier.

²Less than 1/2 unit.

³Data do not add to total shown because of independent rounding.

Source: Bureau of the Census.

Silicon

By Clark R. Neuharth¹

Demand for silicon ferroalloys and silicon metal overall increased compared with that of 1986 owing to increased production of aluminum, iron and steel, and silicon-base chemicals. Domestic producers increased production to meet demand since exports of both ferrosilicon and silicon metal increased and imports of silicon materials overall were only slightly higher than those of 1986.

Domestic Data Coverage.—Domestic production data for the silicon commodity are developed by the Bureau of Mines by means of monthly and annual voluntary domestic surveys. Typical of these surveys is the monthly "Silicon Alloys" survey. Of the 17 canvassed operations to which a survey collection request was made, all responded, representing 100% of the total production shown in table 1.

Table 1.—Production, shipments, and stocks of silvery pig iron, ferrosilicon, and silicon metal in the United States in 1987

(Short tons, gross weight, unless otherwise specified)

Alloy		content cent)	Producers' stocks,	Gross pro-	Net ship-	Producers' stocks, Dec. 31,
	Range	Typical	Dec. 31, 1986 ^r	duction	ments	1987
Silvery pig iron	5-24	18	w	w	w	w
Ferrosilicon	25-55	48	57,211	312,330	254,996	40,759
Do Silicon metal (excluding semiconductor	56-95	76	22,730	47,584	51,408	16,801
grades) Miscellaneous silicon alloys (excluding	96-99	98	5,193	150,080	149,713	4,135
silicomanganese)	32-65		15,408	73,525	68,461	16,090

^rRevised. W Withheld to avoid disclosing company proprietary data.

Government Pro-Legislation and grams.-House bill (H.R.) 3 and its counterpart, Senate bill (S.) 490 entitled "Omnibus Trade Act of 1987," were introduced in the U.S. House of Representatives and Senate. The purpose of S. 490, which was subsequently passed by the Senate and incorporated into H.R. 3, was to revise trade remedy statutes, such as dumping and subsidy laws. H.R. 3 would create sweeping changes in existing trade laws governing import relief and other aspects of international competitiveness. S. 556 and its counterpart, H.R. 1580, were subsequently introduced for the purpose of prohibiting U.S. investment in the Republic of South Africa, as well as exports to and imports from that country. However, these sanction bills included clauses exempting any minerals or materials considered by the President and Congress to be strategic to defense needs. This exemption would very likely include ferroalloys and related ores.

On July 1, the United States removed imports of Brazilian silicon metal from the Generalized System of Preferences exemption list, placing a 5.3% duty on imports of silicon metal in the 99.0% to 99.7% purity category.

A West Virginia law was passed giving a tax break to power companies that supply ferroalloy producers in that State. Under the new law, power companies were not subject to gross sales tax on power distributed to produce ferroalloys. However, the power companies were required to pass

along the savings to the ferroalloy producers through rate reductions.

DOMESTIC PRODUCTION

Production and shipments of siliconcontaining ferroalloys and silicon metal overall showed significant increases compared with those of 1986. The standard 50% (25% to 55%) grade and miscellaneous silicon alloy production levels increased over 20%. Magnesium ferrosilicon accounts for the major portion of miscellaneous silicon alloys. Production of silicon metal also increased nearly 20%, although that of 75% (56% to 95%) grade decreased by about onequarter. Producers' stocks of silicon-containing materials were down overall at yearend owing to high demand from consuming industries.

Applied Industrial Minerals Corp. shut down its Kimball, TN, ferrosilicon plant early in the year owing to competition from low-priced imports. SKW Alloys Inc. started silicon metal production in January after completing the conversion of one of its ferrosilicon furnaces in Niagara Falls, NY. Universal Consolidated Cos. purchased M. A. Hanna Co.'s ferronickel smelter in Riddle, OR, which the company had previously closed. However, Universal planned to reactivate the facility to produce ferrosilicon in 1988.

Moore McCormack Resources Inc. completed the sale of Globe Metallurgical Inc., a

silicon and ferrosilicon producer, to a management group backed by Lee Capital Corp., an investment banking firm based in Boston, MA. Globe planned to continue producing silicon metal, magnesium ferrosilicon, and 50% ferrosilicon at its facilities in Beverly, OH, and Selma, AL.

Foote Mineral Co. sold both of its ferrosilicon production facilities at the end of the year. The Graham, WV, plant, which had been closed since 1985, was purchased by an employee group under the name American Alloys Inc. The new company planned to start production of 50% ferrosilicon by March 1988 and possibly convert some of its capacity to silicon metal production later in the year. Keokuk Ferro-Sil Inc., a group formed by former Foote employees, purchased the Keokuk, IA, facility and planned to continue production of silvery pig iron and 50% ferrosilicon.

Nippon Kokan K.K. indefinitely postponed construction of its \$60 million polysilicon production facility in Millersburg, OR, owing to sluggishness in U.S. demand for the semiconductor starting material.²

Estimated ferrous scrap consumption by the domestic silicon ferroalloys industry to produce silicon ferroalloys was 250,000 tons in 1987, compared with 220,000 tons in 1986.

Table 2.—Producers of silicon alloys and/or silicon metal in the United States in 1987

Producer	Plant location	Product
Aluminum Co. of America, Northwest Alloys Inc	Addy, WA	FeSi and Si.
Applied Industrial Minerals Corp		FeSi.
Do		Do.
Dow Corning Corp	Springfield, OR	Si.
Elkem Metals Co	Alloy, WV	FeSi and Si.
Do	Ashtabula, OH	FeSi.
Do		Do.
Foote Mineral Co., Ferroalloys Div	Graham, WV ¹	Do.
Do		FeSi and silvery
	,	pig iron.
Globe Metallurgical Inc	Beverly, OH	FeSi and Si.
Do		Si.
M. A. Hanna Co., Silicon Div	Wenatchee, WA	FeSi and Si.
Ohio Ferro-Alloys Corp	Montgomery, AL	Si.
Reactive Metals & Alloys Corp	West Pittsburgh, PA _	FeSi.
Reynolds Metals Co	Sheffield, AL	Si.
SKW AlloysInc	Calvert City, KY	FeSi.
Do	Niagara Falls, NY	FeSi and Si.

¹Sold to American Alloys Inc. at yearend.

²Sold to Keokuk Ferro-Sil Inc. at yearend.

SILICON 761

CONSUMPTION AND USES

Apparent consumption (demand) of silicon-containing ferroalloys and silicon metal increased compared with that of 1986. The overall increase, about 5%, reflected higher production levels in the aluminum, iron and steel, and silicon-base chemical industries. Significant increases were seen in the consumption of standard 50% grade ferrosilicon and miscellaneous silicon alloys that are used in the production of iron and steel. Ferrous applications accounted for about two-thirds of all the silicon materials consumed. based on silicon content.

Metallurgical-grade silicon metal produced by tonnage methods is used as the basic raw material in the manufacturing of many chemical products and intermediates such as silicones and silanes. Silanes are used in the production of high-purity silicon for semiconductor devices and solar cells (photovoltaic cells). The Bureau of Mines does not collect data on electronic grades of silicon, which are relatively low in quantity but have a high unit value. The aluminum industry uses silicon metal in the production of wrought and cast products.

PRICES

Prices for silicon-containing ferroalloys and silicon metal were generally higher than those of 1986 owing to tight supplies created by increased demand from the aluminum, iron and steel, and silicon-base chemical industries. The published prices for domestically produced 50% and 75% grade ferrosilicon remained essentially unchanged through the first half of the year, but increased nearly 20% through the second half to 47 cents per pound of contained silicon. The respective average yearly prices of 41.3 and 40.3 cents per pound for 50% and 75% grade ferrosilicon were only slightly higher than those of 1986. The published prices for domestically produced silicon metal remained unchanged through-

out the year, ranging from 62.0 to 67.35 cents per pound, depending on iron content.

Posted import prices for 50% and 75% grade ferrosilicon started the year much lower than those of domesti ally produced material, but both ended the year in line with the domestic list price of 47 cents per pound. The respective average prices for imported 50% and 75% grade ferrosilicon, 37.8 and 36.2 cents per pound, were about 10% higher than those of 1986. The posted price for imported silicon metal also increased steadily during the year to a level of 63 cents per pound, averaging 57.6 cents per pound. The average price was 4% higher than the average for 1986.

FOREIGN TRADE

Exports of ferrosilicon increased 33% in terms of gross weight, although the value of exported ferrosilicon was 40% higher than that of 1986. Over one-half of that material was shipped to Canada. Ferrosilicon was exported to 23 other countries. Silicon metal exports increased 72%, although the value increased 63%. Nearly 70% of the silicon metal exported was shipped to Japan, with the remainder distributed among 33 other countries.

Imports for consumption of ferrosilicon increased slightly compared with those of 1986, and at 230,658 tons was the largest amount ever imported by the United States. Although imports of most ferrosilicon categories increased, imports of 75% grade ferrosilicon (over 60% but not over 80% silicon), which normally account for the largest share of imports, decreased 7%. Imports of silicon metal overall decreased 10%, owing mostly to a significant decrease in shipments from Brazil.

Table 3.—U.S. exports of ferrosilicon and silicon metal

Year	Quantity (short tons)	Value (thou- sands)
FERROSILICON		
1983	13,338	\$10.712
1984	29,364	21,135
1985	12,969	12,671
1986	11,331	8,306
1987	15,049	11,647
SILICON METAL		
1983	2,767	47.826
1984	4,420	88,543
1985	2,120	61,647
1986	5,378	65,157
1987	9,247	106,213

Source: Bureau of the Census.

		1986		1987			
Grade and country		ntity t tons)	Value	Quantity (short tons)		Value	
	Gross weight	Silicon content	(thou- sands)	Gross weight	Silicon content	(thou- sands)	
Ferrosilicon:							
Over 8% but not over 30% silicon:							
Brazil	22	6	\$17	3,527	575	\$1,080	
Canada China			<u>-</u>	51	15	9	
Germany, Federal Republic of	65	11	$\overline{62}$	22	6	. 8	
.Janan				$-\frac{1}{2}$	- 1	$-\bar{2}$	
South Africa, Republic of				73	11	33	
United Kingdom	17	$-\frac{1}{3}$	24				
Total ¹	103	19	103	3,675	607	1,132	
Over 30% but not over 60% silicon, with over							
2% magnesium:							
Brazil	2.638	1.194	1.351	5.577	2.523	2,908	
Canada	130	60	26	495	266	145	
France	442	202	388	76	36	80	
Germany, Federal Republic of	287	150	746	608	331	1,859	
Italy	40	18	27	60	27	46	
Japan	55 17	25	97	109	48	202	
Norway	189	8 84	11 135	22	10	15	
United Kingdom			100	$\bar{18}$	$\bar{1}\bar{0}$	30	
Total ¹	3,797	1,741	2,781	6,965	0.070	5.000	
• ==	5,191	1,741	2,781	6,965	3,252	5,286	
Over 30% but not over 60% silicon, not elsewhere classified:							
Argentina				1,683	943	832	
Brazil	4,647	2,437	2,707	14,778	7,494	6,894	
Canada	15,321	7,303	4,159	7,541	3,660	2,304	
France Germany, Federal Republic of	1,792 837	1,017 461	1,387	2,379	1,326	1,794	
Iceland	5,512	$\frac{461}{3.029}$	$876 \\ 1.715$	105	59	141	
Japan	18	3,02 <i>3</i> 8	34	$1\overline{8}\overline{8}$	$\overline{92}$	$\bar{308}$	
Mexico	ii	6	7	100	32	300	
Spain	1,115	640	1,012	1,068	$6\overline{15}$	$1.0\overline{45}$	
U.SS.R	15,425	7,338	3,638	31,003	14,887	9,137	
Venezuela	5,013	2,406	1,182				
Total ¹	49,690	24,644	16,717	58,747	29,076	22,456	
-						22,4	

See footnote at end of table.

Table 4.—U.S. imports for consumption of ferrosilicon and silicon metal, by grade and country —Continued

		1986			1987	
Grade and country	Qua: (short	ntity t tons)	Value	Qua (short	ntity t tons)	Value
	Gross weight	Silicon content	(thou- sands)	Gross weight	Silicon content	(thou- sands)
Ferrosilicon —Continued						
Over 60% but not over 80% silicon, with over						
3% calcium: Argentina	300	181	\$308	1,317	820	\$1,235
Brazil Canada	$7,151 \\ 54$	4,438 34	6,179 51	$\frac{8,260}{273}$	5,326 208	6,294 153
France	1,925	1,194	1,741	1,606	990	1,450
France Germany, Federal Republic of Italy Mexico Netherlands	1,069 570	674 352	913 508	150 663	99 405	124 540
Mexico	5	4	4			
Netherlands Spain	19 134	12 83	16 126	19 148	$\begin{array}{c} \overline{13} \\ 90 \end{array}$	15 139
Venezuela				2,756	2,067	1,316
Total ¹	11,227	6,971	9,846	15,191	10,019	11,267
Over 60% but not over 80% silicon, not						
elsewhere classified: Argentina				10,552	8,069	4,897
Belgium-Luxembourg Brazil				666	503	311
Brazil Canada	35,203 23,158	26,492 17,653	15,822 11,424	44,289 $17,689$	33,083 13,438	20,246 8,846
Chile	882	683	336			
China			-,-	$\frac{2,872}{3}$	$^{2,163}_{2}$	1,294 18
Dominican RepublicFrance	$3,\!456$	2,626	$1,75\bar{2}$	242	175	722
Germany, Federal Republic of	633	465 6,331	1,318 3,602	$703 \\ 7,320$	500 5,367	1,916 3,440
Iceland Italy	8,271			132	87	123
Janan	$\frac{36}{42,299}$	$\frac{22}{32,157}$	67 18,454	33,784	25,793	15,089
Norway Philippines South Africa, Republic of				20	15	11
South Africa, Republic of	5,707	4,298	2,355	817 52	613 39	411 37
Spain United Kingdom				1.113	835	502
Venezuela Yugoslavia	34,030 2,646	24,901 1,992	$13,8\overline{18} \\ 1,273$	23,584 2,018	17,525 $1,550$	9,682 864
Total ¹	156,322	117,620	70,221	145,855	109,755	68,410
Over 90% but not over 96% silicon:						
Brazil	209	201	151	154 2	$\frac{145}{2}$	135 3
Canada Germany, Federal Republic of	56	55	46	. 2		
MexicoNorway	1,626	1,545	713	70	67	$\overline{62}$
Norway				10	01	
Total ¹	1,892	1,800	910	226	214	200
Total ferrosilicon	223,031	152,795	100,578	230,658	152,923	108,749
Silicon metal:						
Over 96% but not over 99% silicon: Argentina	552	NA	445		NA	
Brazil Canada	255	NA NA	254 5,784	1,901	NA NA	1,816
Canada France	5,849 48	NA NA	59	32	NA NA	41
Norway		NA		451	NA	388 339
United Kingdom Yugoslavia	205 1,948	NA NA	244 1,610	278	NA NA	339
Total ¹	8,856	NA	8,397	2,662	NA	2,584
=						
Over 99% but not over 99.7% silicon: Argentina	3,192	3,167	3,005	6,235	6,180	5,880
Belgium-Luxembourg	(2) 12,620	(2) 12.526	12,200	4,807	$4,\!7\bar{6}\bar{5}$	4.527
Brazil	6,012	5,960	6,795	9,836	9,754	10,632
China	2.282	2.265	2,321	1,331	1,319 509	1,209 510
France Germany, Federal Republic of	2,282	2,265 11	2,321	512 (2)	(2)	4
Japan				55	55	48
Norway Portugal	70 2,756	$\begin{array}{c} 70 \\ 2,728 \end{array}$	60 2,818	180	179	208
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		•	•			

See footnotes at end of table.

Table 4.—U.S. imports for consumption of ferrosilicon and silicon metal, by grade and country —Continued

	,	1986			1987	
Grade and country		ntity t tons)	Value (thou-	Quantity (short tons)		Value
	Gross weight	Silicon content	sands)	Gross weight	Silicon content	(thou- sands)
Silicon metal —Continued Over 99% but not over 99.7% silicon — Continued					•	
South Africa, Republic of	1,766	1,751	\$1,756	2,738	2,713	\$2,469
Spain	349	346	331			
Sweden	768	762	714	1,794	1,776	1,830
Switzerland	1 400	1 100		19	18	21
Yugoslavia	1,436	1,423	1,488	5,941	5,876	5,621
Total ¹	31,263	31,006	31,507	33,448	33,144	32,960
Over 99.7% silicon:						
Belgium-Luxembourg	2	NA.	21	3	NA.	54
Canada	(2)	NA	1	2	NA	4
China		NA	•	2	NA	36
Denmark	2	NA	120	(²)	NA	97
France	ī	NA	212	Ìή	NA	1.036
Germany, Federal Republic of	513	NA	19.054	694	NA	27,685
Hong Kong		NA	1	(2)	NA	3
Italy	56	NA	3,409	55	NA	7,624
Japan	146	NA	1,866	55	NA	2,168
Korea, Republic of	(²)	NA	14	(²)	. NA	6
Malaysia		NA		(²)	`、NA	11
Norway	6	NA	12	100	NA	
Sweden	1	NA	8	(²)	NA	14
Switzerland	. 5	NA	466	(²)	NA	4
Taiwan		NA		1	NA	10
U.S.S.R	(2)	NA	3	(2)	NA	2
United Kingdom	(²)	NA	90		NA	
Total ¹	733	NA	25,276	820	NA	38,754
Total silicon metal ¹	40,851	XX	65,180	36,930	XX	74,298

Revised. NA Not available. XX Not applicable.

Data may not add to totals shown because of individual rounding of converted units.

²Less than 1/2 unit.

Source: Bureau of the Census.

WORLD REVIEW

Demand for silicon-containing ferroalloys and silicon metal increased in many countries compared with that of 1986 owing to increased steel and aluminum production. Prices for both ferrosilicon and silicon metal rose steadily as supplies tightened. However, a continuing production shift from traditional suppliers to developing countries helped to keep the overall market in check.

The European Economic Community (EEC) imposed a 6.2% import duty on Yugoslav ferrosilicon and announced that it would make permanent a provisional antidumping duty of \$58 per ton against 75% grade ferrosilicon coming into Europe from Brazil. The EEC also imposed a \$58 per ton antidumping duty against ferrosilicon from the U.S.S.R. after imports were found to be entering Western Europe at significantly

reduced prices.³ The United States threatened to impose additional duties on siliconcontaining materials from Brazil in retaliation to Brazil's strict import regulations on U.S. computer software.⁴

Argentina.—Silarsa S.A., a new company formed by Stein Ferroalloys S.A. and two units of the A. Johnson & Co. Group of the United States, planned a new venture to produce 16,000 tons per year of silicon metal, primarily for sale in the United States. Startup was scheduled for 1988. Electrometalurgica Andina S.A. increased silicon metal production capacity to 11,000 tons per year by activating a new 12,000-kilovolt-ampere (kV•A) furnace at its San Juan facility.⁵

Australia.—The country's first silicon metal smelter, a joint venture between Pioneer Concrete Ltd. and French metals SILICON 765

producer Pechiney, started production in Tasmania. The plant's single 14-megawatt furnace is capable of producing 12,000 tons per year.6 Agnew Clough Ltd. and the Australian Industry Development Corp. established a trust to build a 25,000-ton-peryear silicon metal production facility in the Wundowie area. Total cost of the project was projected to be \$70 million with construction beginning in 1988.7

Brazil.-Production of both ferrosilicon (300,000 tons) and silicon metal (44,000 tons)increased 8% compared with that of 1986. Currently the world's fifth largest ferroalloy producer, Brazil continued to capture more of the world market for silicon products as exports of ferrosilicon and silicon

metal increased nearly 25%.

Comargo Correa Metals S.A. neared completion on the construction of its new silicon metal production facility. The plant consists of four 18,000-kV•A furnaces with a combined capacity of 35,000 tons per year. Startup of the facility was scheduled for April 1988. The company also planned for a second phase of the project with an equal amount of capacity to be brought on-line in 1990.8 Bozel Mineracao e Ferroligãs S.A. started a new 15,000-kV•A silicon metal furnace in Minas Gerais, with the capacity to produce 9,000 tons annually.9

Several Brazilian companies planned ferrosilicon capacity expansions, including Cia. de Cimento Portland Maringa, which completed construction of a 15,000-kV•A furnace at its ferroalloy plant in São Paulo.10

China.-Silicon metal producers in China, after more than doubling their production capacity over the past several years, continued to increase exports and captured nearly one-half of the Japanese market. Exports of silicon metal to Japan were 61,704 tons, a 68% increase over those of 1986. China also significantly increased its exports of silicon metal to the United States and Western Europe. China increased production of ferrosilicon to meet increasing demand from its domestic steel industry while further expanding into world markets. Ferrosilicon shipments to Japan were nearly five times the amount reported in 1986. The Chinese Government considered strict export controls and significant capacity expansions as means of ensuring material for domestic needs.11

Électrométallurgie France.—Pechinev considered a plan to switch production at its Dunkirk plant from ferrosilicon to either silicomanganese or charge chrome. The company decided to close its Saint Beron facility owing to high energy and labor costs and the availability of low-cost imports from Brazil and China. A decision on future production at the temporarily closed Laudon plant was pending. 12

India.—Ferrosilicon production increased 20% during fiscal year 1986-87, despite electric power shortages caused by the country's worst drought in nearly 100 years. One of the country's major ferrosilicon producers, VBC Alloy Co., announced plans to diversify into specialty ferroalloy products.13

Japan.—Consuming industries demanded more ferrosilicon and silicon metal than in 1986 owing to increased steel and aluminum production. The Japanese Ferroalloy Association reported that overall production of ferrosilicon dropped more than 25% in 1987 to 87,900 tons. However, a significant increase in imports helped close the demand gap. Japanese silicon metal imports also increased nearly 10% compared with those of 1986.

Norway.—Elkem A/S, the world's largest silicon metal producer, announced that it would temporarily cut production at its Meraker plant from 35,000 to 19,000 tons per year owing to market conditions. Despite the cut, Elkem's share of world silicon metal production was expected to remain above 20%.14 Tinfos Jernverk A/S announced the permanent closure of its ferrosilicon and silicon metal plant at Notodden. Production at the Notodden plant, which had a combined ferrosilicon-silicon capacity of over 90,000 tons per year, was stopped at the end of 1986.15

Portugal.—Cia. Portuguesa de Fornos Electricos S.A.R.L.'s Nelas facility, which was shut down in late 1986, remained closed pending a court decision on the company's future viability. High electrical power costs and totally depleted stocks were stated as Fornos' major obstacles to reactivating the plant.16

South Africa, Republic of .- Rand Carbide Ltd. decided to cut ferrosilicon production by 20% owing to an appreciation of the rand on exchange markets. The company said it would concentrate on selling its remaining production locally.17

Spain.—Facing high labor and power costs, ferroalloy producers entered rationalization talks with the Government. Industry sources expected the talks to result in production cutbacks and possible plant closures.18

U.S.S.R.—Owing to increased demand from its domestic steel industry, the Soviet Union was believed to be planning a 20% cut in ferrosilicon exports. Exports of Soviet ferrosilicon to the United States and Japan had significantly increased over the past several years. 19

Venezuela.—C.V.G. Ferrosilicio de Ven-

ezuela C.A. (FESILVEN) planned to increase its ferrosilicon production capacity from 65,000 to 95,000 tons by 1988. FESIL-VEN also began the initial planning of a silicon metal project.20

TECHNOLOGY

Silicon remains the material of choice in the world semiconductor industry owing mostly to its natural ability to form a surface oxide. The insulating properties of this oxide are important to the planar technology involved in device manufacturing. A number of materials are being considered as replacements for silicon in semiconductor devices because of more attractive semiconductive properties. Gallium arsenide devices have proven to be five times faster than those made of silicon and have a significantly higher radiation hardness (i.e., will withstand greater amounts of radiation). However, with its natural oxideforming ability and other manufacturing advantages, silicon still holds a comfortable lead in device manufacturing. One of the most recent thrusts of research has been attempts to deposit layers of gallium arsenide onto a silicon substrate in order to take advantage of the most desirable properties of both materials.21

Advanced ceramic materials, such as silicon carbide and silicon nitride, have a low density and offer unique properties needed for these materials to become replacements for metals in engineering applications. High strength, hardness, and temperature stability make these materials potentially useful for cutting tools, gas turbine engine components, turbocharger rotors, and heat exchangers. Ceramics are also very corrosion resistant, making them attractive for pump and valve applications in which highly corrosive chemicals are present.22 Although ceramics offer many desirable properties, their usefulness in engineering applications has been restricted because of brittleness. Ceramic materials can also be very costly and difficult to fabricate into usable products. These failings have slowed the development of the once envisioned completely ceramic internal combustion engine. Recent work has been centered on the development of specific components to improve overall engine efficiency23 and the joining of ceramic and metal parts.24

¹Physical scientist, Branch of Ferrous Metals. ²American Metal Market. V. 96, No. 18, Jan. 27, 1988,

p. 4.

³Metal Bulletin (London). No. 7243, Dec. 10, 1987, p. 19.

⁴American Metal Market. V. 95, No. 232, Dec. 1, 1987,

p. 1. V. 95, No. 155, Aug. 11, 1987, p. 1.
 Metal Bulletin (London). No. 7242, Dec. 7, 1987, p. 17.

¹⁰_____. V. 19, No. 4563, Nov. 13, 1987, p. 11. 11_____. V. 19, No. 4582, Dec. 11, 1987, p. 10.

¹² Page 19 of work cited in footnote 6. ¹³Metal Bulletin Monthly (London). No. 203, Nov. 1987,

p. 11.

14 Metal Bulletin (London). No. 7224, Oct. 5, 1987, p. 9.

15 The Tex Report. V. 19, No. 4392, Mar. 10, 1987, p. 4.

16 The Tex Report. V. 19, No. 7247. Dec. 24, 1987, p. 1 ¹⁶Metal Bulletin (London). No. 7247, Dec. 24, 1987, p. 11. ¹⁷The Tex Report. V. 19, No. 4411, Apr. 6, 1987, p. 2.

¹⁸Metal Bulletin (London). No. 7227, Oct. 15, 1987, p. 17. -. No. 7244, Dec. 14, 1987, p. 13.

No. 7159, Feb. 10, 1987, p. 11.
 Materials Edge. No. 2, Nov. 1987, pp. 43-50. ²²ASTM Standardization News. Oct. 1987, p. 50.
 ²³Science News. V. 132, Oct. 3, 1987, p. 214.

²⁴Ceramic Bulletin. V. 66, No. 2, 1987, p. 320.

Silver

By Robert G. Reese Jr.1

Domestic silver production increased owing in part to byproduct silver production at many of the new gold mines opened during the year and to the reopening of several silver mines in response to the higher silver price. Several companies consolidated their precious metals holdings into subsidiary companies and then either sold the stock of the new subsidiaries directly to the public or distributed it to the parent companies'

shareholders. These sales or stock distributions resulted in an improved balance sheet for the parent company and/or an infusion of capital. New labor agreements continued to be characterized by immediate wage and benefit reductions, although many, if not most, new contracts tied worker compensation to the silver price and to mine productivity.

Table 1.—Salient silver statistics

	1983	1984	1985	1986	1987
United States:			*		
Mine production thousand troy ounces	43,431	44,592	39,433	r34,524	39,790
Value thousands	\$496.850	\$362,976	\$242,205	r\$188,846	\$278,930
Percentage derived from:	φ400,000	\$502,510	φ 242,2 00	\$100,0 4 0	φ210,000
Precious metals ores	76	80	70	63	· w
Base metal ores	24	20	30	37	w
Placers	(1)	(1)	(¹)	(¹)	(1)
Refinery production:		()	(-)	(-)	(-)
Domestic and foreign ores and concentrates					
thousand troy ounces	57,759	59,331	53,808	42.413	44,838
Secondary (old scrap)do	29,415	27.842	27,830	r _{24,494}	
Exports:	29,410	21,042	21,830	24,494	26,034
Refineddodo	13,658	10.340	12,611	10.109	11,240
Otherdo	18,294	14,107			
Imports for consumption:	10,294	14,107	12,145	15,005	15,853
Refineddodo	161.199	93,546	197 900	105 905	CF 050
Otherdo			137,398	125,365	67,959
Stocks, Dec. 31:	18,692	21,420	15,203	19,525	13,867
	15 440	01.015	10.10	T	
Industrydo	17,449	21,217	18,467	r 17,671	15,034
Futures exchangesdo	151,232	137,631	173,144	162,089	169,731
Consumption:				•	
Industry and the artsdo	116,440	114,841	118,555	r _{121,743}	118,500
Coinagedodo	2,128	2,665	^r 362	^r 7,535	15,074
Price, average per troy ounce ²	\$11.44	\$8.14	\$6.14	\$5.47	\$7.01
Employment ³	2,400	2,600	3,000	2,200	1,800
World:	.,	.,	.,	_,	-,
Mine production thousand troy ounces	r387,711	r413.930	422,093	P415,929	e429,091
Consumption:4	,		,	5,0 _ 6	,
Industry and the artsdodo	340,700	353,300	357,200	380,700	384,600
Coinagedo	r _{18,200}	8,700	12,700	r _{26,000}	31,100

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data.

¹Less than 1/2 unit. ²Handy & Harman.

³Mine Safety and Health Administration.

⁴Market economy countries only. Source: Handy & Harman.

Domestic Data Coverage.—Domestic mine production data for silver are developed by the Bureau of Mines from four separate voluntary surveys of U.S. operations. Typical of these surveys is the lode mine production survey of copper, gold, lead, silver, and zinc. Of the 255 silver-producing lode mines to which a survey form was sent, 200 responded. Of these, 119 were active, accounting for an estimated 99% of the total U.S. mine production shown in tables 1, 2, 3, 5, 6, and 7.

Legislation Government and Programs.-The U.S. Supreme Court ruled in the case of California Coastal Commission v. Granite Rock Co. that the States have some regulatory authority over mining activity on Federal lands. The decision upheld the California Coastal Commission's authority to require that Granite Rock get a State permit before mining limestone in Los Padres National Forest. The U.S. Forest Service had granted permission for the mining activity. The decision stated that States could regulate for environmental purposes on Federal lands unless State regulation was prohibited by Congress or unless the State's regulations conflicted with Federal regulations. The Court said that, although the State's power in this area was limited, future litigation would be necessary to define the limits. The decision was expected to make it easier for the States to defend their regulation of private commercial enterprises, including precious metals mines, on Federal lands.

On October 28, the President signed Public Law 100-141, the 1988 Olympic Commemorative Coin Act, which authorized the U.S. Mint to produce 10 million silver coins and 1 million gold coins to commemorate the 1988 summer Olympics, scheduled to be held in Seoul, Republic of Korea. The silver and gold coins were to contain 0.77 ounce² silver and 0.34 ounce gold, respectively. Both coins were to be legal tender. A surcharge was authorized to be added to the price of each coin to help support U.S Olympic athletes.

DOMESTIC PRODUCTION

Silver was produced from precious metals ores at 89 lode mines, while 30 lode mines produced silver as a byproduct of the processing of copper, lead, and zinc ores. The 25 largest mines accounted for 93% of total domestic mine output. In 1987, 12 mines each produced more than 1 million ounces of silver; their aggregated production equaled 76% of total domestic production. Silver was also produced at 14 placer operations.

Arizona.—In April, ASARCO Incorporated purchased Anamax Mining Co.'s interest in the Eisenhower Mine, thereby acquiring total ownership of the four copper mines that share the pit at its Mission Complex. Acquisition of Eisenhower increased Asarco's reserves at Mission by an estimated 39 million tons of ore, grading 0.63% copper and 0.12 ounce of silver per ton. Asarco also acquired the Mineral Hill deposit adjacent to Mission, which contains an estimated 14 million tons of ore, grading 0.94% copper and 0.14 ounce of silver per ton.

The Copperstone Mine, owned by Cyprus Minerals Co., began production in the fourth quarter, just 7 months after Cyprus began construction at the mine. The mine used agitation leaching to recover gold and a small quantity of byproduct silver.

In June, Cyprus purchased the Lakeshore copper-silver mine from Noranda Inc.,

changing its name to Casa Grande. Production at the mine was limited to the copper recovered from in situ leaching of oxide ore, but Cyprus planned to use a 150,000-ton-peryear roaster at the mine to treat some of the copper concentrates produced at Cyprus' nearby Sierrita copper-silver-molybdenum mine.

Newmont Mining Corp., as part of a restructuring program that has been shifting the corporation's emphasis from copper to gold and silver, merged its wholly owned Pinto Valley Copper Corp. subsidiary with its Magma Copper Co. subsidiary and transferred 80% of the ownership of Magma to Newmont's shareholders. Newmont retained a 15% interest in Magma, while the remaining 5% of Magma's shares was to be used in an incentive program for Magma's management. The assets of Magma included a copper smelter and several coppersilver-molybdenum mines in Arizona.

Consolidated Gold Fields PLC, a South Africa-based company, increased its holding in Newmont, a significant domestic silver producer, from 26.2% to nearly 49.4%.

Idaho.—Asarco negotiated a new 3-year agreement with workers at the Galena Mine. Reportedly, the contract reduced wages by \$3.30 per hour, reduced benefits, and suspended cost-of-living adjustments. The contract also provided for partial wage

769

restorations in 1988 and 1989.

Coeur d'Alene Mines Corp. and Hecla Mining Co. terminated exploration and development of properties, including the Silver Summit Mine, owned by Consolidated Silver Corp. Poor exploration results were cited as a factor in the decision. Control of the properties was to revert to Consolidated in early 1988.

Coeur d'Alene's Thunder Mountain Mine received a first-place award for the protection of Idaho's natural resources. The award was given by the Pacific Northwest Pollution Control Association for the mine's successful use of new and/or improved environmental engineering methods.

Commercial operations resumed Hecla's Lucky Friday Mine in June. The improved silver price was cited as one factor in the decision to reopen the mine, which had been closed since April 1986. A new mining method, called the underhand longwall mining method, was implemented on the 5300 level. The new method, developed jointly by Hecla and the U.S. Bureau of Mines, was expected to reduce Lucky Friday's operating costs and improve safety through the use of mechanized equipment, a ramp system, and cemented sandfill. Workers at Lucky Friday ratified a new 3year labor agreement. The new contract, while reducing wages and benefits 15% during its first year and by an additional amount the second year, established a profit-sharing plan.

NERCO Inc. completed construction of a heap-leaching facility at the DeLamar Mine. Heap leaching was to be used in tandem with the existing agitation leaching system. Over the next 7 years, heap leaching was expected to recover an additional 65,000 ounces of gold and 1.4 million ounces of silver from the low-grade reserves.

Although the Sunshine Mine was closed most of the year, Sunshine Mining Co. negotiated a new contract with the members of the International Brotherhood of Electrical Workers (IBEW). The new contract contained a flexible wage scale based on the silver price and the production of the mine. The IBEW was one of two unions representings workers, the other union being the United Steelworkers of America (USWA). Like the IBEW contract, the USWA contract expired in April; however, a new agreement was not reached. In late November, Sunshine began recalling workers preparatory to reopening the Sunshine Mine. Owing to the expiration of the USWA contract and the impasse in negotiations,

Sunshine based the recalled workers' compensation on its last contract offer, which was similar to the compensation in the IBEW contract.

Montana.—Production began in April at the Montana Tunnels gold-silver-lead-zinc mine. The milling process at the mine initially consisted of producing a sulfide concentrate, by bulk flotation, leaching the concentrate with cyanide to recover gold and silver, and then producing separate lead and zinc concentrates by selective flotation. The mill began producing separate lead and zinc concentrates before the leaching step, and, as a result, most of the precious metals were contained in the lead and zinc concentrates.

Silver production at the Zortman-Landusky Mine declined in 1987, in part because of the lower grade of the ore treated, despite a longer than usual operating season. Production of silver and gold was aided by a new carbon adsorption and stripping facility and the use of a buried drip system. The system allowed extension of heap leaching, although at less than full capacity, into the winter months.

The Black Pine Mine was reopened in May in response to the higher silver price.

Nevada.—AMAX Inc. formed Gold Inc. to handle precious metals activities. AMAX subsequently sold a 13% interest in AMAX Gold, reducing its interest in the company to 87%. AMAX Gold's only operating mine was the Sleeper Mine in Humboldt County, where heap-leaching capacity was increased from 750,000 tons to 4.5 million tons per year and additional gold-silver reserves, approximately onequarter of a mile south of the original Sleeper pit, were developed. The increase in heap-leaching capacity along with production from the new pit, called the Wood pit, was expected to increase Sleeper's metal production by more than 30%.

Precious metals production began in January at Atlas Corp.'s Gold Bar Mine primarily through a mill using carbon-in-leach technology; however, heap leaching was used to process low-grade ore. By the end of June, the mill was operating at its design capacity of 1,500 tons per day.

Battle Mountain Gold Co. began production at the Surprise Mine in August. The mine, approximately 10 miles northeast of the company's Fortitude Mine, produced a gold-silver ore by conventional open pit methods. Mill-grade ore was treated at the Fortitude mill. Lower grade ore was stockpiled for possible future heap leaching.

At the Round Mountain Mine, Echo Bay Mines Ltd. began several projects to increase its ore processing capacity from 18,000 to 35,000 tons per day in order to enable heap leaching of Type II ore. Included in the expansion were construction of additional crushing, heap-leaching, and recovery facilities.

FMC Corp. combined its precious metals assets and formed FMC Gold Co. FMC subsequently sold 11.4% of FMC Gold's shares. Among FMC Gold's holdings were the Paradise Peak silver-gold mine (100% ownership) in Nye County, the Jerritt Canyon Mine (30% ownership) in Elko County, and the Austin Mine (27.6% ownership) in Churchill County. Jerritt Canyon and Austin were both gold mines that produced some byproduct silver.

Heap-leaching operations began in September at the Big Springs Mine, a joint venture of Freeport-McMoRan Gold Co. (60% interest) and Bull Run Mining Co. (40% interest). Construction of a fluid-bed roasting system and conventional milling facilities was begun during the year and was expected to be operational in 1988. Reserves at yearend 1987, were 2.4 million tons of ore.

At the Alligator Ridge Mine, a 1,000-tonper-day carbon-in-leach plant was constructed by the mine's joint-venture partners, Nerco and BP Gold Co., to permit recovery of precious metals from some carbon-bearing reserves; it was expected to extend the mine's life to the end of the decade.

New Mexico.—In September, St. Cloud Mining Co. and Cyprus formed a joint venture to develop and mine St. Cloud's Pinos Altos property. Concentrate production from the copper-silver-gold ore commenced in November; the ore was milled at the St. Cloud Mine.

Limited mining was resumed at the St. Cloud Mine during the second quarter. Almost all of the mine's production was sold directly to regional copper smelters as siliceous convertor flux.

Other States.—Fluor Corp. substantially completed the restructuring program it had begun in 1985, returning to its "core" businesses of engineering, construction, and

technical services and divesting itself of natural resource industries. It sold its domestic zinc operations to Horsehead Industries Inc. Included in the sale were the Balmat and Pierrepont Mines in New York, both of which produce byproduct silver. In October, it sold its remaining 90.3% holding in St. Joe Gold Corp. and its interest in other gold properties to Dallhold Investments Pty. Ltd. St. Joe Gold owned El Indio gold-silver mine in Chile.

Mining began at the Portland Pit, a joint venture of Texasgulf Minerals and Metals Inc. and Golden Cycle Gold Corp. in Colorado. Mined ore was stockpiled pending completion of a leach pad and construction of a mill. The new mill was being constructed using a part of the Carlton mill and was to produce a doré product from the higher graded ore through cyanide leaching. Heap leaching was to be used for lower grade ore. Production of gold and silver was expected to begin in the spring of 1988.

A yearend surface subsidence at the Ropes Mine in Michigan resulted in the mine's temporary closure. As a result of the subsidence, Callahan Mining Corp. decided to change the mining system for Ropes to a continuous caving system with backfilling to assure ground stability.

The Sweetwater Mine, a byproduct silver producer in Missouri, was reopened by Asarco in December. The mine, formerly known as the Milliken Mine when it was owned by Kennecott, had been closed since 1983. Annual capacity for Sweetwater was 75,000 tons of lead and 4,500 tons of zinc in concentrates.

British Petroleum Co. PLC (BP) acquired the remaining 45% of Standard Oil Co. of Ohio. The acquisition gave BP total ownership of the Bingham Canyon copper-goldsilver mine in Utah.

At the Knob Hill Mine in Washington, Hecla opened the Golden Promise shaft, installed a new backfill storage and delivery system, and made improvements to the pumping system. The new shaft provided access to the higher grade Golden Promise area of the mine. Gold and silver output increased significantly as mining operations moved into this area.

CONSUMPTION AND USES

Domestic consumption of silver remained steady in 1987, with only five industries

indicating more than a 10% change from 1986 consumption levels.

STOCKS

At yearend 1987, Commodity Exchange Inc. (COMEX) stocks were 156.4 million ounces, having ranged from a month-end low of 150.2 million ounces in January to a month-end high of 160.1 million ounces in August. Yearend stocks held by the Chicago Board of Trade (CBT) were 13.5 million ounces, having ranged from a low of 12.6 million ounces on the last trading days of September, October, and November to a

high of 16.8 million ounces on the last trading day of January.

The quantity of silver held in the National Defense Stockpile continued to decline in 1987, as the U.S. Mint drew down the silver for use in two Government coinage programs. Refiner, fabricator, and dealer stocks, as reported to the Bureau of Mines, declined throughout the year possibly owing in part to the higher silver price.

PRICES

The domestic silver price as quoted by Handy & Harman increased, reversing the declining trend of the previous 4 years. The price began the year at \$5.44 and was \$6.70 at yearend. Analysts attributed the rising price to numerous factors, including the weakening of the U.S. dollar in relation to certain foreign currencies, larger U.S. trade deficits, strong speculative demand, chartguided technical trading, investor concerns about the U.S. inflation rate, increased Middle East tensions, possible labor disruptions in the Republic of South Africa, and the possibility that some major silverproducing nations might withhold some of their production.

Notable in the second half of 1987 was the lack of silver price movement following the record drop in the stock market's Dow Jones Industrial Average on October 19. The price, instead of rising owing to the increased uncertainty following the stock

market drop, declined, possibly indicating the need by many investors to liquidate their commodity holdings to cover stock market losses.

As with the domestic price, the London spot price increased during the year and followed a pattern similar to that of the Handy & Harman price. The U.S. dollar equivalent of the London spot price, as quoted in Metals Week, began 1987 at \$5.37 per ounce and ended the year at \$6.70. The low and high prices of \$5.36 and \$10.93 occurred on January 7 and April 17, respectively. The average for 1987 was \$7.03.

The amount of silver represented by the futures contracts traded on COMEX increased nearly one-third in 1987 to 25.3 billion ounces. Trading volume at the CBT increased about 17% in 1987 to 597 million ounces. Silver futures trading volume on the Mid-America Commodity Exchange increased from 10 to 11 million ounces.

FOREIGN TRADE

U.S. silver exports increased slightly in 1987 as the weaker U.S. dollar made domestic silver more competitive in the global market. The United Kingdom, France, and Japan recorded the largest increases in receipts of U.S. silver exports. Shipments to the United Kingdom increased by more than 2 million ounces, of which nearly 1.9 million ounces was in the form of refined bullion. U.S. silver exports to France increased by nearly 1.6 million ounces, of which nearly 1.4 million ounces was contained in waste and scrap material. Japan increased its purchases of refined bullion from the United States by nearly 1.3 million ounces.

In addition to helping make U.S. silver exports more competitive, the weaker U.S. dollar was probably a significant factor in

the decrease in U.S. silver imports for consumption. Silver sellers in countries whose currencies were appreciating in terms of the U.S. dollar could obtain a higher silver price in terms of their local currencies by selling their silver in markets other than those in the United States. As a result, U.S. silver imports dropped 44% to their lowest level since 1980, when 79 million ounces was imported. The countries with the largest decreases in silver exports to the United States were Canada with a 26.2-million-ounce decrease and the United Kingdom and Belgium-Luxembourg with decreases of 11.7 million and 11.5 million ounces, respectively. The lower exports from these three countries primarily represented decreased refined bullion shipments.

WORLD REVIEW

World mine production of silver increased slightly in 1987 owing in part to the recovery of byproduct silver at many of the new gold mines opened during the year. Other factors included the reopening of several mines, primarily in the United States, in response to the higher silver price and the increased world production of base metals such as copper, lead, and zinc, from which silver is recovered as a byproduct. Although not generally a primary exploration target, potential new silver sources continued to be discovered, most often associated with gold. Australia, Canada, Mexico, Oceania, and Peru were among the most active exploration areas in the world.

Total consumption of silver in market economy countries, according to Handy & Harman, was 415.7 million ounces, an increase of 9 million ounces over the revised figure for 1986. Of the total, 384.6 million ounces was used in industrial applications, an increase of 3.9 million ounces over the 1986 level. The quantity of silver used for coinage increased from 26 million ounces in 1986 to 31.1 million ounces in 1987.3

The total silver required by all market economy countries, including the United States, for industrial use, coinage, bullion stocks, and net exports to centrally planned economy countries exceeded their primary production by 96.8 million ounces. The shortfall was met with silver obtained from the following sources, according to Handy & Harman: old scrap, 75.9 million ounces; outflow from stock held in India, 11.3 million ounces; demonetized coin, 2 million ounces; and withdrawals from Government stocks, 7.6 million ounces. Estimated net exports to centrally planned economy countries was 2 million ounces.

Australia.—At the Hellyer Mine, the Luina mill (formerly the Cleveland mill) was expanded from a pilot plant to a flotation concentrator with a capacity of 276,000 tons of ore per year. Commercial production began in April. Aberfoyle Ltd. decided to expand the capacity at Hellyer to 1.1 million tons per year. Construction of a new mill was a major component of the project, which was expected to be completed in early 1989.

Battle Mountain began production at the Pajingo Mine in September. The mine, an open pit operation in Queensland, was expected to produce 60,000 ounces of gold and 200,000 ounces of silver at full capacity in

1988.

The Broken Hill Proprietary Co. Ltd. (BHP) completed the restructuring of its Australian and New Zealand gold assets, forming BHP Gold Mines Ltd. Included in BHP Gold Mines were three operating mines, four advanced exploration projects, and other properties. Although these assets were primarily gold properties, most either produced or contained byproduct silver. BHP retained a 56% interest in BHP Gold Mines at yearend.

The Woodlawn zinc-copper-silver-lead mine was sold by CRA Ltd. to Denehurst Ltd.

Trial mining began at Mount Isa Mine Ltd.'s (MIM) Hilton Mine in June. Initial testing involved the cut-and-fill mining method at a rate in excess of 2,000 tons per week. Additional testing was expected to include the sublevel open-stoping method.

North Broken Hill Holdings Ltd. (NBHH) formed Norgold Ltd. to conduct its precious metals exploration and development activities. NBHH subsequently sold 37% of Norgold's shares to NBHH's stockholders, thereby reducing its holding in Norgold to 63%.

An agreement between Renison Goldfields Consolidated Ltd. and the Government of the State of Tasmania on an aid package along with confirmation of higher grade reserves below the mine's current operating levels was expected to enable the Mount Lyell Mine to remain open through 1994. The aid package reportedly included provisions for the State government to fund a portion of the capital investment needed to mine the deeper reserves and to defer some tax and royalty payments. Another factor in the decision to extend operations at Mount Lyell reportedly was currency exchange rates. The declining value of the Australian dollar resulted in an improved domestic copper price.

Canada.—Hudson Bay Mining & Smelting Co. Ltd. (HBMS) completed the purchase of the Ruttan Mine from Sherritt Gordon Mines Ltd. The Ruttan Mine in Manitoba produced copper, zinc, and silver and was a major source of copper and zinc concentrates for the HBMS smelter at Flin Flon, Manitoba. Prior to the purchase, Sherritt announced plans to close the mine. At yearend 1987, Ruttan had nearly 9 million tons of reserves containing almost 2 million ounces of silver.

SILVER 773

In response to the increasing importance of precious metals, especially gold, to its operation, Inco Ltd. consolidated its precious metals activities in a new subsidiary called Inco Gold Co. Inco Gold was to continue exploration and development of Inco's precious metals properties, eventually becoming a mine operator. By yearend, Inco Gold was involved in over 50 precious metals ventures and prospects in Brazil, Canada, Indonesia, and the United States.

In 1987, Inco completed the conversion of its Crean Hill Mine in Ontario to an all-electric operation and reactivated the mine. Among the metals expected to be produced at Crean Hill were copper and small quantities of gold and silver. Crean Hill's last full

year of operation was 1977.

A fire in April at the Gaspé Mine resulted in the death of one miner and the destruction of the underground conveyor system. The mine was subsequently closed owing in part to low copper prices and to the high cost of rehabilitating the mine. Although the Quebec government reportedly made financial aid available to Noranda Inc. to assist in reopening the mine, it remained closed through yearend.

Placer Dome Inc. was formed by the amalgamation of Placer Development Ltd., Dome Mines Ltd., and Campbell Red Lake Mines Ltd. Following the merger, Placer Dome became one of the world's largest gold-producing companies, as well as a significant silver-copper-molybdenum producer with operations worldwide.

Teck Corp. signed an agreement transfer-

ring its Highmont Mine and mill to Highland Valley Copper Co. With this agreement, Highland Valley Copper consolidated all the major copper-silver mining and milling facilities in the Highland Valley area of British Columbia. Following the merger, Cominco Ltd.'s interest in Highland Valley was reduced from 55% to 50% to accommodate Teck's 5% interest in the company. Lornex Mining Corp.'s interest in Highland Valley remained at 45%.

Other Countries.—Asarco sold its 51% interest in the Quioma Mine in Bolivia to its partners in the venture. The lead-zinc-silver mine was closed in 1986 in response to the low lead and zinc prices. Reportedly, the mine was reopened in 1987 when the price

of lead and zinc increased.

In September, the Mexican Government began selling "Certificados de Plata" (Ceplata's). These certificates were backed by silver and were similar to an earlier Mexican financial product that was backed by oil. Each certificate represented 100 ounces of 99.9% pure silver and could be either sold for cash or exchanged for silver. The initial offering was for 40,000 certificates and reportedly sold out in 1 day. The certificates enabled investment in silver without having to take physical possession or be concerned about the security of the metal. The Government encouraged the purchase of the certificates by granting them a favored tax status. Following the success of the initial offering, additional larger issues were being considered.

TECHNOLOGY

Silver-related research and development was extensive in 1987. A sample of the reported work included the development of several silver alloys for use in electrical contacts, investigations into the antibacterial effect of silver in some medical applications, and applications for various silver catalysts.

These and numerous other reports on silver-related research were summarized by

the staff of the Silver Institute in its "New Silver Technology" publication.4

troy ounce.

3Handy & Harman. The Silver Market, 1987. 72d Annual Report. 26 pp.

¹Physical scientist, Branch of Nonferrous Metals. ²Ounce as used throughout this chapter refers to the

⁴Silver Institute. New Silver Technology. Silver Summaries From the Current World Literature monthly publication; available from the Silver Institute, 1026 16th St. NW, Washington, DC 20036.

Table 2.—Mine production of recoverable silver in the United States, by State

(Troy ounces)

	State	1983	1984	1985	1986	1987
Alaska		4,123	W	w	w	10,010
Arizona		4,491,532	4.246.616	4,885,310	r4,506,197	3,667,077
California		 26,899	W	115,478	155,176	121,817
Colorado		 2,145,616	2,199,888	548,696	644,574	860,562
Idaho		 17,684,278	18,869,186	18.827.948	11,206,851	W
Illinois		 W	W	W	W	W
Michigan				W	w	W
Missouri		2,021,343	1.401.070	1,635,301	1,459,185	1.180.584
Montana		5,707,963	5,652,847	4,009,979	4,773,264	5.837.418
Nevada		5,179,394	6,477,032	4,946,523	6,408,783	12,189,822
New Mexico		W	w	W	W	W
New York		 33.137	w	W	w	w
		 856	w			W
South Carolina				. w	w	W
South Dakota		 62,314	50.036	63,156	W.	W
		 w	W	W	w	W
		 4,566,610	w	w	ŵ	w
Washington		W	ŵ	w	w	Ŵ
Total		 43,430,937	44,591,671	39,432,973	r34,523,896	39,790,269

^rRevised. W Withheld to avoid disclosing company proprietary data; included in "Total."

Table 3.—Mine production of recoverable silver in the United States, by month

(Thousand troy ounces)

Month	1983	1984	1985	1986 ^r	1987
January	3,101	3,774	3,429	3,703	2,846
February	3,051	3,897	3,049	3,257	2,755
March	3,776	4,202	3,389	3,282	2,997
April	3,681	4.027	3.211	3,183	3,437
May	3,675	3,892	3,355	2,879	3,282
June	3,767	3,780	3,234	2,778	3,340
July	3,588	3,576	3,238	2,704	3,666
August	3,755	3,719	3,359	2,611	3,518
September	3,563	3,245	2,922	2,623	3,603
October	3,408	3,662	3,847	2,635	3,457
November	3,414	3,323	3,122	2,372	3,345
December	4,652	3,495	3,278	2,497	3,544
Total	43,431	44,592	39,433	34,524	39,790

rRevised.

Table 4.—Twenty-five leading silver-producing mines in the United States in 1987, in order of output

Rank	Mine	County and State	Operator	Source of silver
1	Troy	Lincoln, MT	ASARCO Incorporated	Silver-copper ore.
$\bar{2}$	Rochester	Pershing, NV	Coeur Rochester Inc	Silver ore.
3	Galena	Shoshone, ID	ASARCO Incorporated	Do.
4	Candelaria	Mineral, NV	Nerco Metals Inc	Do.
5	Paradise Peak	Nye, NV	FMC Gold Corp	Gold ore.
6	Coeur	Shoshone, ID	ASARCO Incorporated	Copper ore.
7	Escalante	Iron, UT	Hecla Mining Co	Silver ore.
8	Bingham Canyon _	Salt Lake, UT	Kennecott	Copper ore.
9	DeLamar	Owyhee, ID	Nerco DeLamar Co	Gold-silver ore.
10	Tyrone	Grant, NM	Phelps Dodge Corp	Copper ore.
11	Battle Mountain	Lander, NV	Battle Mountain Gold Co	Gold ore.
12	White Pine	Ontonagon, MI	Copper Range Co	Copper ore.
13	Morenci	Greenlee, AZ	Phelps Dodge Corp	Do.
14	Lucky Friday	Shoshone, ID	Hecla Mining Co	Silver ore.
15	Mission Complex ¹ _	Pima, AZ	ASARCO Incorporated	Copper ore.
16	Bagdad	Yavapai, AZ	Cyprus Bagdad Copper Co	Do.
17	Montana Tunnels	Jefferson, MT	Montana Tunnels Mining Inc	Gold ore.
18	Sierrita	Pima, AZ	Cyprus Sierrita Corp	Copper ore.
19	Continental	Silver Bow, MT	Montana Resources Inc.	Do.
20	San Manuel	Pinal, AZ	Magma Copper Co	Do.
21	Sunnyside	San Juan, CO	Sunnyside Gold Corp	Gold ore.
22	Buick	Iron, MO	The Doe Run Co	Lead ore.
23	Ray	Pinal, AZ	ASARCO Incorporated	Copper ore.
24	Chino	Grant, NM	Phelps Dodge Corp	Do.
25	Republic Unit	Ferry, WA	Hecla Mining Co	Gold ore.

¹Includes Eisenhower, Mission, Pima, and San Xavier Mines.

Table 5.—Silver produced in the United States, by State, type of mine, and class of ore

	Placer -						Lode	·	
	(troy	-	Gold	lore	· .	Gold-	silver ore	Silv	er ore
Year and State	ounces of silver)		nort ons	ou	roy nces ilver	Short tons	Troy ounces of silver	Short tons	Troy ounces of silve
983 984	4,035 1,503	24,58	29,722 31,032	1,33	6,835 3,227	1,129,756 1,587,850	1,794,753 2,890,407	7,804,144	30,079,5 31,328,9
985 986	6,434 6,490	26,88 42,91	88,194 14,649	1,64 3,85	7,506 8,979	1,043,854 869,099	2,039,797 1,809,687	4,302,681 5,555,677	24,012,8 15,835,5
987:				-					
Alaska	10,010								
Arizona	W		W		W				
California	1,811	8,3	39,669	12	20,006			,-	
Colorado Idaho			W W		W 7,319	· w	w	w	
Illinois					·				
Michigan			w		W				
Missouri								w	
Montana	5.000		06,230 31,695		3,903 1,656			8,150,597	7,242,1
Nevada New Mexico	5,000	23,00	w w	4,94	W	w	w	0,100,001	1,242,1
New York									
Oregon	W		W		W				
South Carolina			W.		W			· · · · · · · · · · · · · · · · · · ·	
South Dakota			W		W				
Tennessee			w		w			w	
Washington			w		w				
Total	22,786	58,5	73,667	7,14	15,044 18	W XX	W W		13,785,8
Percent of total silver	(1)		XX	7.			· • • • • • • • • • • • • • • • • • • •		
				Lo	ae				
		Coppe	r ore			Other ²		To	otal
	Shor		Tro		SI	ort	Troy	Short	Troy
	tons		ound of sil			ons	ounces of silver	tons	ounce of silve
-			4			#0.0.F	0.004.505	200 200 215	10,100.0
83	4171,614,		47,344			59,845	3,061,565	208,262,215	43,430,9
84	4166,255,	710	46,526			73,113	2,511,153 2,067,156	221,801,849 199,206,578	44,591,6 39,432,9
85	154,658, 4146,673,	010 026 1	9,659 11,104 ⁴	1,224		13,173 45,883	1,909,191	202,059,244	r34,523,8
	140,015,	300	11,104	±,000	0,0	40,000	1,000,101	202,000,244	01,020,0
087:									10,0
	100 000	487	3,529	9,883		w	$\bar{\mathbf{w}}$	162,686,453	3,667,0
Alaska Arizona	162,367,							8,339,669	121,8
Arizona California	162,367,								860,
Arizona California Colorado	162,367,					w	$\bar{\mathbf{w}}$	4,337,092	
Arizona California Colorado Idaho	162,367,	 w		w				2,536,037	
Arizona. California Colorado Idaho Illinois	162,367,					w	\bar{w} \bar{w}	2,536,037 W	
Arizona California Colorado Idaho Illinois Michigan	162,367,	 w w		w		w w		2,536,037 W W W	
Arizona California Colorado Idaho Illinois Michigan Missouri Montana	162,367,					w w w	w 1,180,584 W	2,536,037 W W W 30,161,624	5,837,4
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Nevada	162,367,	w w w		w		w w		2,536,037 W W W 30,161,624 31,682,355	5,837,4
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Nevada New Mexico	162,367,	 w w		w		W W W 63	1,180,584 W 1,049	2,536,037 W W W 30,161,624 31,682,355 W	5,837,4
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Nevada New Mexico New York	162,367,	w w w		w		w w w	w 1,180,584 W	2,536,037 W W 30,161,624 31,682,355 W	5,837,4
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Nevada New Mexico New York Oregon	102,307,	w w w		w		W W W 63	1,180,584 W 1,049	2,536,037 W W W 30,161,624 31,682,355 W	5,837,4
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Newada New Mexico New York	102,307,	w w w		w		W W W 63	1,180,584 W 1,049 W 	2,536,037 W W W 30,161,624 31,682,355 W W W W	5,837,4
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Nevada New Mexico New York Oregon South Carolina South Dakota Tennessee	102,307,			w w 		W W W 63	1,180,584 W 1,049	2,536,037 W W W 30,161,624 31,682,355 W W W W	5,837,4
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Nevada New Mexico New York Oregon South Carolina South Dakota Tennessee	162,367,	w w w w 		w w w w w w w w w w w w w w w w w w w		W W 63	W 1,180,584 W 1,049 W 	2,536,037 W W 30,161,624 31,682,355 W W W W W	5,837,4
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Nevada New Mexico New York Oregon South Carolina South Dakota Tennessee	162,367,			w w 		W 63		2,536,037 W W W 30,161,624 31,682,355 W W W W	1,180,5 5,837,4 12,189,8
Arizona California Colorado Idaho Illinois Michigan Missouri Montana Nevada New Mexico New York Oregon South Carolina South Dakota Tennessee	239,174,	w w w w	15,33(\w\ \w\ \w\ \\ \w\ \\ \\ \\ \\ \\ \\ \\		W W 63	W 1,180,584 W 1,049 W 	2,536,037 W W 30,161,624 31,682,355 W W W W W	5,837,4

^{*}Revised. W Withheld to avoid disclosing company proprietary data; included in "Total."

*Less than 1/2 unit.

*Includes lead, zinc, copper-lead, lead-zinc, copper-zinc, and copper-lead-zinc ores.

*Includes silver recovered from tungsten and fluorspar ores.

*Includes copper-zinc ore and silver recovered from copper-zinc ore.

Table 6.—Silver produced in the United States by cyanidation1

		Leaching tanks, an contair	d closed	Leaching heaps or	
	Year	Ore treated (thousand short tons)	Silver recovered (troy ounces)	Ore treated (thousand short tons)	Silver recovered (troy ounces)
1983 1984 1985 1986 1987		9,733,730 11,172,695 15,421,903 19,269,750 15,558,436	7,058,108 7,752,063 6,819,904 7,504,350 8,957,240	12,727,412 18,222,366 14,875,363 27,620,640 49,730,775	2,201,221 2,986,172 2,701,360 3,641,741 8,212,971

 ¹May include small quantities recovered by leaching with thiourea, by bioextraction, and by proprietary processes.
 ²Including autoclaves.
 ³May include small quantities recovered by gravity methods.
 ⁴May include tailings and waste ore dumps.

Table 7.—Lode silver produced in the United States, by State

	Amalgamation	mation	Cyani	Cyanidation	Smelt	Smelting of concentrates	trates	Smelting of ore	g of ore		Totol
Year and State	Ore treated (short tons)	Silver recovered (troy ounces)	Ore treated (short tons)	Silver recovered (troy ounces)	Ore concen- trated (short tons)	Concentrates smelted (short tons)	Silver recovered (troy ounces)	Ore smelted (short tons)	Silver recovered (troy ounces)	Total ore processed ¹ (short tons)	silver recovered (troy ounces)
1983 1984 1986 1986	3,400 752,421	50 10,396	22,461,142 29,395,061 30,297,266 46,890,390	9,259,329 10,738,235 9,521,264 11,146,091	185,513,477 192,253,620 168,650,998 154,212,790	4,939,007 4,108,133 4,523,641 3,904,999	33,338,651 33,373,850 29,313,819 723,065,267	284,196 153,168 258,314 203,643	2829,030 478,083 591,456 295,652	208,262,215 221,801,849 199,206,578 202,059,244	243,427,060 44,590,168 39,426,539 734,517,406
Arizona— California Calorado Idaho Illaho Il	 >		8,839,069 W 2,120,911 W 75 112,471,506 31,682,292 W W W	116,415 W W W W W W W 316,662 12,183,778 W W W	148,258,252 600 W W W W W W W W W W W W W W W W W W	2,374,888 W W W W W W W W W W W W W W W W W W	3,631,661 3,691,661 W W W W W W W W W W W W W W W W W W	M	W W W W W W W W W W W W W W W W W W W	162,686,453 8,339,689 4,337,092 2,586,037 W W W 30,161,624 W W W W W W W W W W W W W W W W W W W	23,667,077 120,006 860,562 W W 1,180,584 25,837,418 12,184,8W W W W W W W W W W W W W W W W W W W
Total	W	W	65,289,211	17,170,211	236,327,243	4,912,522	22,051,734	W	М	312,443,833	39,773,448

Revised. W Withheld to avoid disclosing company proprietary data; included in "Total."
Includes old tailings and some non-silver-bearing ores not separable, in amounts ranging from 0.04% to 0.12% of the totals for the years listed. Excludes fluorspar, molybdenum, and tungsten ores from which silver was recovered as a byproduct and excludes ores leached for recovery of copper.
Includes some placer production to avoid disclosing company proprietary data.

MINERALS YEARBOOK, 1987

Table 8.—U.S. refinery production of silver

(Thousand troy ounces)

Raw material	1983	1984	1985	1986	1987
Concentrates and ores:				• • •	
Domestic and foreign	57,759	59,331	53,808	42,413	44,838
Old scrap	29,415	27.842	27,830	r24,494	26,034
New scrap	38,158	42,091	44,643	r46,563	42,319
Total	¹125,331	129,264	126,281	r _{113,470}	113,191

Table 9.—U.S. consumption of silver, by end use

(Thousand troy ounces)

End use ¹	1983	1984	1985	1986	1987
Electroplated ware	3.154	3,542	3,660	3,724	3,010
Sterlingware	7,022	3,638	3,527	3,935	3,897
Jewelry	6,861	5,773	5,779	r4.666	4,514
Photographic materials	51,827	55,322	57.895	r _{58,554}	61,377
Dental and medical supplies	1.532	1,569	1,480	1,474	1,409
Mirrors	970	970	970	970	1.000
Brazing alloys and solders	5,837	5,889	5,593	r _{6.467}	5,591
Electrical and electronic products:	-7	-,	,,,,,,	0,201	0,002
Batteries	2,800	2.671	2,470	r _{3.309}	2,413
Contacts and conductors	26,298	25,633	27,509	r _{27,429}	23,457
Bearings	170	260	190	375	317
Catalysts	2,424	2,448	2,409	2,313	2,474
Coins, medallions, commemorative objects	2,979	2,564	2,514	3,957	4,194
Miscellaneous ²	4,567	4,562	4,559	r _{4,569}	4,847
Total net industrial consumption ³	116,440	114.841	118,555	r121.743	118,500
Coinage	2,128	2,665	¹ 362	r _{7,535}	15,074
Total consumption ³	118.568	117.506	r _{118.917}	r _{129.278}	133,574

Table 10.—Yearend stocks of silver in the United States

(Thousand troy ounces)

	1983	1984	1985	1986	1987
Industry	17,449 151,232 34,565 100 137,500	21,217 137,631 31,889 342 137,500	18,467 173,144 32,621 460 137,500	^r 17,671 162,089 33,819 2,500 127,306	15,034 169,731 39,517 2,400 113,082

rRevised.

^rRevised. ¹Data do not add to total shown because of independent rounding.

^TRevised.

¹End use as reported by converters of refined silver.

²Includes silver-bearing copper, silver-bearing lead anodes, ceramics, paint, etc.

³Data may not add to totals shown because of independent rounding.

Table 11.—U.S. silver prices

(Dollars per troy ounce)

	:	Low)	High	A
Period	Price	Date	Price	Date	Average
1983	8.34	Nov. 17	14.74	Feb. 16	11.44
1984	6.26	Dec. 20	10.04	Mar. 5	8.14
1985	5.57	Mar. 12	6.74	Mar. 27	6.14
1986	4.87	May 20	6.20	Jan. 27	5.47
1987:					
January	5.36	Jan. 7	5.68	Jan. 27	5.53
February	5.39	Feb. 18	5.57	Feb. 2,9	5.49
March	5.45	Mar. 2,3	6.31	Mar. 31	5.68
April	6.28	Apr. 1	10.20	Apr. 27	7.43
May	7.41	May 26	9.37	May 18	8.44
June	6.84	June 25	7.86	June 11	7.41
July	7.24	July 1	8.26	July 31	7.68
August	7.39	Aug. 28	8.80	Aug. 4	7.85
September	7.28	Sept. 1	7.72	Sept. 4	7.59
October	6.91	Oct. 29	8.20	Oct. 19	7.56
November	6.36	Nov. 5,10	7.07	Nov. 30	6.66
December	6.60	Dec. 4	7.00	Dec. 14	6.79
Year	5.36	Jan. 7	10.20	Apr. 27	7.01

Source: Handy & Harman daily quotation.

Table 12.—U.S. exports of silver, by country

œ
-
~
ಹ
œ
5
~
=
3
0
٥,
ŭή
0

Year and country	Ores and concentrates	and rates	Wastes and sweepings	s and ings	Doré and precipitates	and tates	Refined	ned on	Total ¹	11
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
1983	67 1,048	554 8.335	17,231	197,996	996	9,516	13,658	169,383	31,952	377,449
1985 1986	270 284	1,651	10,325 12,913	67,884 72,729	1,550 1,805	9,551 11,436	12,611 10,109	81,746 56,785	24,756 25,114	160,832 142,581
1987:										
Belgium-Luxembourg	7	52	1,459	11,700	l)	1	6	26	1,475	11,809
Canada	<u></u>	-9	1 0 6	8 194	10 93	73	009	3,845	610	3,917
1	.	3	5,683	39,155	66	647	134	10,023	5.916	40,492
Germany, Federal Republic of	1	1	218	1,680	317	2,112	261	1,914	796	5,706
Sweden	1 1		1.172	354 7 767	163	1,216	5,426	36,359	5,642	37,930
Switzerland		!!	1 10	11	156	1,468	4	20	1,1,2	1,488
I nited Kingdom	1	1	3 081	97 667	7 508 1 050	1,962	11	73	283	2,081
Other	-2	38	35	246	1,050	63	2,568	18,427	1,599	54,198 1,462
Total ¹	15	150	13,675	96,738	2,163	16,294	11,240	79,123	27,093	192,305

 $^{1}\mathrm{Data}$ may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 13.-U.S. imports for consumption of silver, by country

(Thousand troy ounces and thousand dollars)

Year and country	Ores and concentrates	and rates ¹	Wastes and scrap	s and tp	Doré and precipitates	and tates	Refined bullion	ned ion	Total ²	112
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
1983 1984 1985 1985	13,911 13,018 3,533 5,516	145,419 105,587 20,180 30,926	1,241 903 1,771 1,867	13,010 7,871 10,854 10,372	3,540 7,499 9,900 12,141	39,038 64,901 65,364 68,590	161,199 93,546 137,398 125,365	1,926,102 784,838 855,550 688,296	179,891 114,966 152,601 144,890	2,123,569 963,198 951,947 798,183
1987: Belgium-Luxembourg Brazil. Canada Chile Dominican Republic France Nextco Netherlands Panama Peru South Africa, Republic of Singapore United Kingdom Yugoslavia Other	85 650 17 1,561 1 561 1 63 1 163 1 183 1 183	655 3 665 177 10,974 1,032 1,032 610 628	2,303 2,303 1,122 1,122 2,122 1,08 2,28 2,28 2,28 2,28 2,28 2,28 2,28 2	14,951 154 154 184 1580 2,002 2,002 756 176 176 177 181 168	1,055 5,224 6,224 898 1,7 1,7 1,63 361 21	37 6,608 37,617 5,7817 92 1,123 2,147 	2.385 201 16,665 113 102 40,779 2,43 6,535 768 768	14.194 1.349 115.831 621 621 841 275.848 1.379 43.707 5.427 5.21	2,392 20,673 5,375 903 42,479 163 163 163 163 163 163 163 163 163 163	14,230 2,004 14,230 18,568 5,830 8,11 287,740 1,123 2,999 48,028 1,365 1,183 1,365 1,183 1,365 1,183 1,365 1,183 1,365 1,183 1,365 1,183 1
Total ²	2,681	18,019	3,404	22,514	7,781	53,858	67,959	460,235	81,826	554,627

Includes silver content of base metal ores, concentrates, and matte imported for refining. $^2\mathrm{Data}$ may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

MINERALS YEARBOOK, 1987

Table 14.—Silver: World mine production, by country¹

(Thousand troy ounces)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Algeria ^e	120	120	120	120	120
Augeria	2,500	1,984	2,170	2,134	2,000
rigertia Australia	33,208	31,260	34,914	32,882	32,762
olivia	6,025	4,560	3,580	3,058	3,800
razil ³	486	829	e _{1,013}	^e 1,490	1,610
ulgaria ^e	930	930	930	910	910
urma	558	455	568	527	⁴ 839
anada	35,559	42,655	38,484	34,979	40,180
hile	15,055	15,766	16,633	16,078	15,800
	2,500	2,500	2,500	3,000	3,000
	99	130	153	r e ₁₆₈	144
olombia ⁵	2	2	2	2	2
osta Rica ^e	964	1,029	e _{1.000}	e1.000	1,000
zechoslovakia	1,329	1,207	1,581	1,356	1,150
ominican Republic	3	2	, e ₂	e ₂	2
cuador	22	22	~	_	
l Salvador	13	15	14	17	16
iji	980	r _{1,101}	998	1,193	41,421
inland			849	832	4810
rance	696	770	1,320	1,320	1.200
erman Democratic Republic	1,380	1,290		884	41,736
erman Democratic Republicermany, Federal Republic of	1,167	1,225	1,090		
Hana ^e	. 14	14	14	14	14
Greece	41,797	1,800	1,700	1,700	1,700
Greenland	492	334	e300	385	4418
Ionduras	2,587	2,697	2,765	1,745	2,000
ndia ⁵	469	862	816	1,048	1,200
ndonesia	1,135	1,121	1,175	1,369	1,560
reland	ŕ319	279	276	262	423
taly ^{5 6}	2,361	1,554	2,301	1,813	42,668
taly	9,877	10,403	10,915	11.294	49,040
apan	1,600	1,600	1,600	1,600	1.600
Korea, North ^e	3,366	3,759	3,990	5,034	5,000
Korea, Republic of	¹ 485	470	522	455	50
Malaysia (Sabah)	63.607	75,340	73,167	e75,200	75,00
Mexico	2,850	2,410	2,733	1,566	1,41
Morocco	3,535	3,255	3,404	3,472	3,30
Vamibia	ა,ააა (⁷)	3,233	0,404	0,112	, 0,00
New Zealand		e_50	30	e ₂₅	2
Nicaragua	63			re _{1,787}	41.96
Papua New Guinea	1,524	1,427	1,483		66.00
Peru	50,477	53,080	58,230	61,916	41.65
Philippines	1,823	1,574	1,685	1,688	
Poland	21,798	23,920	26,717	26,653	26,50 2
Portugal	20	22	33	17	
Romaniae	820	810	810	800	75
Solomon Islands	(⁷)				4
South Africa, Republic of	6,513	6,997	6,700	7,145	46,69
Spain	1,496	4,999	9,482	5,697	⁴ 5,70
ppam	r _{6,655}	r7,676	7,442	r e _{9.000}	9,00
weden	345	364	366	é406	31
[aiwan	90	e85	26	50	
`unisia		220	220	220	22
Turkey ^e	220			48,200	48,20
U.S.S.R. e 5	47,200	47,400	47,900		439.79
United States	43,431	44,592	39,433	34,524	
Yugoslavia ⁵	3,987	4,051	5,015	5,690	4,85
Zaire	1,288	1,225	1,516	e _{1,500}	1,40
Zambia	933	795	607	861	496
Zimbabwe	938	893	799	841	85
	r _{387,711}	r _{413,930}	422.093	415,929	429,09
Total	901,111	410,000	422,000	110,000	,00

 $^{^{\}mathbf{r}}$ Revised. $^{\mathbf{p}}$ Preliminary. eEstimated.

¹Recoverable content of ores and concentrates produced unless otherwise specified. Table includes data available

¹Recoverable content of ores and concentrates produced unless otherwise specified. Faile includes data available through July 1, 1988.

²In addition to the countries listed, Austria and Thailand may produce silver, but information is inadequate to make reliable estimates of output levels.

³Of total production, the following quantities, in thousand troy ounces, are identified as placer silver (the balance being silver content of other ores and concentrates): 1983—247; 1984—250 (estimated); 1985—434 (estimated); 1986—640 (estimated); and 1987—650 (estimated).

⁴Reported figure.

⁵Smelter and/or refinery production.

⁶Includes production from imported ores.

⁷Less than 1/2 unit.

Slag—Iron and Steel

By Judith F. Owens¹

Iron and steel slag sales were essentially unchanged from those of 1986. A significant decrease in sales and use of steel slag was offset by an increase in sales of iron-blast-furnace slag. Air-cooled iron-blast-furnace slag continued to comprise the largest portion of total blast furnace slag sold or used.

The construction industry continued to be the major user of iron and steel slag products. Air-cooled iron-blast-furnace slag was used mainly for asphaltic concrete aggregate, concrete aggregate, fill, railroad ballast, and road base. The use of air-cooled slag as a road base decreased slightly from that of 1986. Sales and uses of granulated and expanded iron-blast-furnace slags increased significantly over that of 1986 and, were primarily used for fill, lightweight

concrete aggregate, road base, soil conditioning, and the production of slag cement. Steel slag was typically used as road base and fill. The average unit values of both iron slag and steel slag remained essentially unchanged from those of 1986.

Domestic Data Coverage.—Sales, use, and transportation data for iron and steel slag are developed by the Bureau of Mines from a voluntary annual survey of U.S. processors. Of the 95 operations canvassed, 80 responded, representing 84% of the total sales or use data shown in table 1. Data for the nonrespondents were estimated based on prior year slag sales data. Of the 80 respondents, 4 reported their operations as idle and 3 reported their plants as closed.

DOMESTIC PRODUCTION

Domestic iron and steel slag production, which is not reported to the Bureau of Mines, apparently increased owing to a significant increase in U.S. iron and steel production. However, sales and consumption of iron and steel slag, as reported by processors, remained essentially unchanged from those of 1986, when combined. Steel slag consumption decreased significantly, but was offset by a slight increase in the sales and use of iron-blast-furnace slag. According to the U.S. Department of Commerce, private nonresidential and highway and bridge construction decreased 8% and 3%, respectively, and public construction increased 2%. Federal funding for highway

construction was interrupted during 1987 as a result of an impasse in Congress over the renewal of spending authority under the Federal-aid-Highways Programs. In effect, this impasse most likely decreased slag consumption for road construction from October 1986 to April 1987.² Sales of slag products generally reflect demand from the construction industry.

Iron-blast-furnace slag sold or used increased slightly, totaling 15.8 million short tons valued at \$96.1 million. Approximately two-thirds of this, in decreasing order, was produced in Indiana, Pennsylvania, Ohio, and Michigan.

Table 1.—Iron and steel slags sold or used1 in the United States

			I	ron-blast-furnace	urnace slag			-	Steel slag	slag	Total	lotal slag ²
Year	Air-cooled	poled	Granulated	lated	Expar	papu	Total iron slag	n slag	Onentity	Value	Quantity	Value
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Caraman			
1983 1984 1986 1986 1986	12,380 15,325 13,363 13,501 13,448	50,999 66,289 62,588 58,899 61,092	 	୧୧୧୧୧	1,175 1,452 1,742 1,879 2,389	13,736 19,142 24,290 33,851 35,003	13,554 16,776 15,106 15,380 15,837	64,735 85,432 86,878 92,750 96,096	4,832 5,287 5,972 5,689 4,935	14,546 17,327 17,472 17,883 15,354	18,386 22,063 21,078 21,068 20,772	79,280 102,758 104,351 110,633 111,449

¹Value based on selling price at plant.

²Data may not add to totals shown because of independent rounding.

³Included with "Expanded" to avoid disclosing company proprietary data.

Of all the iron and steel slag products sold, 86% traveled by truck with an average marketing range of 32 miles; 7% traveled by waterway with an average range of 559

miles; and 7% traveled by rail with an average range of 156 miles. The remaining 1% was used at the plant where it was processed.

CONSUMPTION AND USES

Iron and steel slags were consumed mainly by the construction industry as substitutes for natural aggregates and other construction materials. Historically, iron and structions have been used in place of other materials because of their lower costs, superior performance for many applications, or shortages of natural aggregates.

Practically all of the iron-blast-furnace slag products are eventually utilized. Of the air-cooled iron-blast-furnace slag sold or used in 1987, 53% was used as road base, 13% as concrete aggregate, 10% as fill, 8% as asphaltic concrete aggregate, and 5% as railroad ballast. The remaining 11% was used in concrete products, glass manufacture, mineral wool, soil conditioning, sewage treatment, and other miscellaneous uses. Expanded blast furnace slag was

mainly used as a lightweight concrete aggregate. Granulated blast furnace slag was mainly utilized in cement manufacture. The largest growth area for iron slag appears to be in the replacement of cement in concrete construction and in fill.

Based on raw steel production, an estimated 3.1 million tons of steel slag was recycled to blast furnaces in 1987. However, the bulk of the steel slag produced was used in aggregate applications. Steel slag processed and sold primarily as road base comprised 44%; as fill, 25%; as asphaltic concrete aggregate, 13%; and as railroad ballast, 3%. The remaining 15% was used for ice control, soil conditioning, and miscellaneous uses. The major growth areas for steel slag usage would appear to be as fill and road base.

PRICES

The average price, f.o.b. plant, for all iron-blast-furnace slag sold remained essentially unchanged at \$6.07 per ton. The price of air-cooled iron slag increased 4% over that of 1986 to \$4.54 per ton. The average price of granulated iron slag showed a significant decrease from that of 1986,

reflecting a significant increase of lower priced granulated slag entering the market-place. Expanded slag price information was withheld to avoid disclosing company proprietary data. The unit value of steel slag remained stable.

FOREIGN TRADE

U.S. foreign trade data for iron and other steel slag cannot be determined because slag is classified in categories with other materials and cannot be separated. U.S. exports of slag are classified under the headings "Metal Bearing Ores and Metal Bearing Materials" or "Waste and Scrap Not Specifically Provided For."

Basic slag, a byproduct of basic steelmaking processes, is imported for use as a fertilizer because of its high lime and phosphorus content. Statistics developed by the U.S. Department of Commerce, Bureau of the Census, indicated that 82,394 tons of basic slag valued at \$786,000 was imported from Canada, and 38,524 tons valued at \$310,058 was imported from Japan. Basic slag was also imported from the Federal Republic of Germany, 11,539 tons valued at \$89,148, followed by Mexico with 395 tons valued at \$6,716, and the United Kingdom with 313 tons valued at \$5,318.

WORLD REVIEW

Estimated world production of iron-blastfurnace slag and steel slag was 130 million tons and 58 million tons, respectively. These estimates are based on iron and steel production estimates for 1987. Reported production of iron and steel slag by country is

incomplete owing to late reporting, incompleteness of data, and lack of reporting by some countries. Some countries do not report slag production because slag is thought of as a waste product rather than as a resource.

Production estimates for major world producers of iron-blast-furnace slag and steel slag, respectively, are as follows: European Economic Community, 21 million tons and 10 million tons: Japan, 27 million tons and 14 million tons; and U.S.S.R., 27.8 million tons and 8.8 million tons. These production estimates, based on estimated production of iron and steel, have remained essentially unchanged from those of 1986.

TECHNOLOGY

Pretoria Portland Cement Ltd.'s Newcastle portland blast furnace cement plant in the Republic of South Africa made use of new technology in the processing of granulated iron-blast-furnace slag. For the first time in the country, tubular conveyors were used that operated at steeper angles than did standard conveyors, and they could turn corners horizontally. Another first was the use of a fluidized bed for drying of the slag. Owing to the efficient design of the facility, it occupies a smaller area than do most slag processors and has encountered fewer problems with spillage. This facility, which produces a finished product called slagment, offers the Republic of South Africa's construction industry a new source for concrete products and a new market for blast furnace slag processors.3

The American Concrete Institute reported that, owing to rising costs of portland cement, recent attention has focused on the use of ground, granulated blast furnace slag as a separate constituent in concrete. Advantages to the cement industry include reduced costs, improved workability, and increased ultimate compressive and flexural strength. Advantages to the slag industry would be a higher valued product per ton, greatly surpassing the value of other end uses.4

A process for stabilizing steelmaking slag was granted a U.S. patent in 1987. In this process, a boron-containing mineral such as borax or kernite is added to the slag prior to cooling. This prevents the slag from powdering during the cooling stage. This would be advantageous to the steel slag industry because the slag would be easier to handle and the process would produce a homogenous product.5

Researchers in Japan have discovered that certain types of iron-blast-furnace slags are an effective deterrent in the liberation of phosphate from sediments in shallow or coastal waters. It was determined that the most effective type of iron slag was soft granulated iron slag, which suppressed the phosphate liberation by as much as 98.8% when mixed with or laid upon the sediments. This discovery may be important to marine biology in helping to control eutrophication or the oversaturation of water with nutrients that can lead to oxygen deficiencies in closed water areas.6

¹Physical scientist, Branch of Ferrous Metals.

²U.S. Department of Commerce. Construction Review.

V. 33, No. 6, Nov.-Dec. 1987, pp. 2, 11.

³Venter, P. W. Construction of a New Slag Processing Factory at Newcastle. South Afr. Mech. Eng., v. 37, May

1987, pp. 207-211. ⁴ACI Committee 226. Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete. ACI Mater. J., v. 84, No. 4, Jul.-Aug. 1987, pp. 327-342. *Ishizaka, K., F. Sudo, A. Seki, and Y. Aso. Method of Stabilizing a Steel Making Slag. U.S. Pat. 4,655,831, Apr. 7,

⁶Yamada, H., K. Mitsu, S. Kazuo, and H. Masakazu. Suppression of Phosphate Liberation From Sediment Using Iron Slag. J. Int. Assoc. on Water Pollu. Res. & Control, v. 21, No. 3, Mar. 1987, pp. 325-333.

Table 2.—Iron-blast-furnace slags sold or used in the United States, by region and State

Pegion and State			16	1986			19	1987	
Quantity Value Value	Region and State	Air-cooled, and unsc	, screened creened	Tot all ty	al, rpes	Air-cooled and uns	, screened creened	Tota all ty	Pes .
Virginia 1,225 5,774 W 6,832 17,246 W 4,1234 W 1,225 1,423 W 4,1334 W 1,225 1,423 W 5,774 W W W W 8,685 13,505 2,887 20,335 2,109 12,351 W 8,685 13,579 W W W W W W 8,685 13,579 W W W W W W W 8,685 13,579 W W W W W W W W W 1,193 4,645 W		Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
t Virginia 1,225 5,774 W W W W W 2,460 18,805 2,887 20,385 2,109 12,851 W 1,198 4,645 W W W W 1,198 2,836 13,86 2,836 808 2,776 808 1,198 4,645 W W W W W 1,198 2,836 13,9 808 2,776 808 1,198 4,645 W W W W 1,198 2,836 13,9 808 2,776 808 1,198 4,645 W W W W 1,198 1,10 2,836 808 2,776 808 1,198 1,10 15,890 92,750 13,448 61,094 15,897	North Central: Illinois, Indiana, Michigan	5,079 2,202	16,235 12,744	W	AA A	5,322 2,282	17,246 14,293	MΜ	≱≽
I.Virginia 1,225 5,774 W W W W W W 2,460 13,806 2,887 20,385 2,109 12,351 W W W 4,645 1,139 4,645 1,139 4,645 W W W W W 7,70 2,836 730 2,836 808 2,776 808 18,501 68,899 15,880 92,750 13,448 61,094 15,887	Total	7,281	28,979	7,998	34,229	7,604	31,539	8,273	36,250
8,685 19,579 W W W W S,174 1,198 4,645 1,198 4,645 W W W W V 612 8,388 612 8,368 W W W T30 2,336 730 2,336 808 2,776 W 18,501 68,899 15,386 92,750 18,448 61,094 15,887		1,225 2,460	5,774 13,805	W 2,887	W 20,335	W 2,109	W 12,351	M	M M
18,501 68,899 15,380 92,750 13,448 61,094 15,887	Total Texas, Utah South: Alabama and Kentucky Pacific: California	3,685 1,193 612 730	19,579 4,645 8,363 2,336	W 1,193 612 730	W 4,645 8,868 2,336	M M 808	W W W 2,776	5,174 W W 808	50,028 W W 2,776
	Grand total ²	13,501	668'89	15,380	92,750	13,448	61,094	15,837	96,096

W Withheld to avoid disclosing company proprietary data; included in "Total" and "Grand total."
'Value based on selling price at plant.
'Data may not add to totals shown because of independent rounding.

Table 3.—Locations and processing methods of iron slag and sources of steel slag¹ in 1987

Alabama:		Processin iro	g method o n slag	f	Gr.	Sou	rces of steel	slag
Alabama City:	ite, city, and company	Air-	Ex-		Steel - slag	Open hearth	oxygen	Elec- tric
Vulcan Materials Co							·	
Vulcan Materials Co.	ulcan Materials Co	1			1	-	1	
Arkanasa: Fort Smith: International Mill Service Co California: Fantana: Heckett Co California: Fantana: Heckett Co California: Fantana: Heckett Co Cautomia: Fantana: Heckett Co Cautomia: Fantana: Heckett Co Cautomia: Fantana: Heckett Co Cautomia: Fantana: Heckett Co International Mill Service Co International Mill Service Co Cartersville: International Mill Service Co Chicago: Chicago: International Mill Service Co Inte		1	· · · · · · ·		1		1	- 1. - 1.
International Mill Service Co		2			2	*	2	
Heckett Co	national Mill Service Co		· · · · <u></u>		1			
Fountain Sand and Gravel Co	a: Fontana: ett Co	1		<u> </u>				
Delaware: Claymont: International Mill Service Co	tain Sand and Gravel Co				- <u>-</u> 1	==	- ₁	
International Mill Service Co		1			1		1	
International Mill Service Co	national Mill Service Co				1		1	_
Atlanta: International Mill Service Co	Fampa: national Mill Service Co				1			
Cartersville: International Mill Service Co	ta: nternational Mill Serv-			*	1			
Illinois:	rsville: nternational Mill Serv-							
Alton:	Total				2			
International Mill Service Co	• .	******						
Chicago:	nternational Mill Serv-				. 1			
Committee Comm	go: Ieckett Co	1		* a a * <u></u>				, _
Granite City:	nternational Mill Serv- ice Co		:		. 1		1	·-
Total	ite City: nternational Mill Serv-							
Total	t. Louis Slag Products		 .	. 	1			-
Ndiana:					3		2	
Burns Harbor: The Levy Co. Inc 1 1 1 East Chicago: Heckett Co 1 1 1 The Levy Co. Inc 1 1 The Levy Co. Inc 1 1 Gary: International Mill Service Co 1 1 Total 2 1 3 3 towa: Keokuk: International Mill Service Co Kentucky: Ashland								
East Chicago:	s Harbor:	1	1		1		1	_
Cary: International Mill Service Co	Chicago: leckett Co				1		1	
Total		1						-
owa: Keokuk: International Mill Service Co 1 Kentucky: Ashland					1		1	
International Mill Service Co 1 1 Kentucky: Ashland	Total	2	1		3		3	
Kentucky: Ashland	okuk: national Mill Service Co				1			
Heckett (o	y: Ashland ett Co	1						
Louisiana: LaPlace: International Mill Service Co 1	a: LaPlace:	1			1			_

Table 3.—Locations and processing methods of iron slag and sources of steel slag in 1987 —Continued

	Proc		g method o n slag	Control (1) Solida (1) Amilio amedica	C41	Sou	rces of steel	slag
State, city, and company	Air- cooled		Ex- panded	Granu- lated	Steel slag	Open hearth	Basic oxygen process	Elec tric
				**				
aryland: Baltimore:								
Maryland Slag Co		1						
Sparrows Point:							. 77	
Blue Circle Atlantic C. J. Langenfelder & Sons				1				-
Inc				1	1	1	1	- N
		1		1	1	1	1	
						1		
ichigan:								
Detroit: Edward C. Levy Co		1	1		1 1		1	
Monroe:		•			•			
International Mill Serv-								
ice Co					1			
Total		1	1		2		1	
innesota: Newport: International Mill Service Co						- - -	 .	
International Mill Service Co ississippi: Jackson:					1			
Heckett Co	**				1	1.1		
issouri: Kansas City:	•	-		_ = -				
International Mill Service Co	.				1			
ew Jersey:								
Perth Amboy:								
International Mill Serv-								
ice Co Riverton:	-				1			
International Mill Serv-	100					+1		
ice Co					1		1 1	
Total							***************************************	
Total ew York: Buffalo:	-				2			
Buffalo Crushed Stone Corp _		1						
orth Carolina: Charlotte: Heckett Co								
					1			
nio:								
Canton:					_			
Heckett Co Cleveland:	-				1			
Standard Slag Co		1						
ро		1		==				
Stein Inc	-		, ,		1		1	
Hamilton: American Materials Corp		1						
Lorain:		_						•
Fritz Enterprises Inc		1						
Stein Inc Lordstown:	-				. 1		1	
Standard Slag Co	_			1				
Mansfield:	_	-		-				•
Heckett Co Marion:	_	-			1			
International Mill Serv-								
ice Co	_				1			
Middlewan:	_				-			
American Materials Corp International Mill Serv-		1	,					
ice Co		_			1		1	
migo o directori.	-	-			•			-
International Mill Serv-					_			
ice Co Standard Slag Co	-	ī			1		1	-
Warren:		1						-
Heckett Co	_	_			1		1	
Standard Slag Co		1						
Total		7		1	8		5	
		•		1	•		Ð	
lahoma: Sand Springs: International Mill Service Co								

Table 3.—Locations and processing methods of iron slag and sources of steel slag $^{\rm i}$ in 1987 —Continued

the ways of		Pro		g method o n slag	f	a	Sour	rces of stee	l slag
State, city, and company	£	Air- cooled	Activity of the	Ex- panded	Granu- lated	Steel - slag	Open hearth	Basic oxygen process	Elec- tric
Pennsylvania:									
Bala-Cynwyd:									5 5 5
Warner Co			1	. 1		'			.,.v. -
Beaver Falls: International Mill Serv-	٠.								9
ice Co						1 .	<u> </u>		
Belle Vernon:									
Duquesne Slag Products			4						13000
Co			1		1			 .	-
Bethlehem:				1					
Sheridan Slag Corp Burgettstown:				1		· · · · · · - ;-	·	· . —	_
Duquesne Slag Products									
Co					1				
Butler:									
Heckett Co						1			
Coatesville:									
International Mill Serv-						1			
ice Co Johnstown:						1			
Heckett Co						1 .	100		
Lebanon:	2 2 1 1				1 10 10 20	· -			
Sheridan Slag Corp			1		·				
Midland:									
International Mill Serv-									
ice Co						. 1			
Monessen: International Mill Serv-									
ice Co						1		1	_
Morrisville:								_	
Heckett Co						1	1		_
Patton:	1 4								
International Mill Serv-								•	
ice Co						1		1	
Penn Hills: Gascola Slag Co						. 1	1		
Phoenixville:									-
International Mill Serv-									
ice Co						1			
Riddlesburg:									
New Enterprise Stone &									
Lime Co. Inc			1	· · ·					-
Steelton: Hempt Bros. Inc						1			
West Aliquippa:						-			
Duquesne Slag Products									
Co			1.			1		1	_
Duquesne Slag Products						*			
Co			1			$-\overline{1}$		- 1	-
Do Wheatland:			1			. 1		1	-
Dunbar Slag Co. Inc			1			1	1	1	_
Total			8	2	1	14	3	5	
South Carolina: Georgetown:						_			
Heckett Co						1			

Table 3.—Locations and processing methods of iron slag and sources of steel slag¹ in 1987 —Continued

	Pro	cessin; iror	g method o n slag	f	Q. 1	Sour	rces of steel	slag
State, city, and company	Air- cooled		Ex- panded	Granu- lated	Steel slag	Open hearth	Basic oxygen process	Elec- tric
exas:								
Beaumont: International Mill Serv- ice Co.								
El Paso: International Mill Serv-					1			
ice Co Lone Star: Gifford-Hill & Co. Inc		1			1			
Longview: International Mill Serv-		•				,		
ice Co Midlothian: International Mill Serv-					1			
ice Co Seguin: International Mill Serv-					1			
ice Co					1			
Total		1			5			
ah: Plymouth: International Mill Serv-								
ice Co Provo:		'			1			
Heckett Co		1			1	1		
Totalashington: Seattle: Heckett Co		1	-		2	1		
i'a e		==			1			
est Virginia: Weirton: International Mill Service Co Standard Slag Co		- ₁	==	 	1 		1	-
Total		1			1		1	
Grand total		30	4	3	58	5	22	3'

¹Number indicates the existence of an active plant shown by processing method or furnace source; previous years showed the number of active processing lines for some plants.

Table 4.—Shipments of iron and steel slag in the United States in 1987, by method of transportation

Method of transportation	Quantity (thousand short tons)
Truck Waterway Rail Not transported (used at plant site)	17,807 1,419 1,327 219
Total	20,772

Table 5.—Air-cooled iron-blast-furnace slag sold or used in the United States, by use (Thousand short tons and thousand dollars)

	198	36	198	37
Use -	Quantity	Value	Quantity	Value
Asphaltic concrete aggregate	977	5,089	1,094	6,351
Concrete aggregate	1,753	8,799	1,717	8,759
Concrete products	513	2.474	317	1,930
Fill Fill	779	3,257	1,358	4,058
Glass manufacture	107	w	W	W
Mineral wool	519	2,862	488	2,614
Railroad ballast	875	3,826	675	3,141
	7.453	28,165	7.157	30,050
Road base Roofing, built-up and shingles	74	660	82	744
Sewage treatment	w	w	W	W
	ŵ	w	W	W
Soil conditioningOther ²	452	33,767	560	33,446
Total ⁴	13,501	58,899	13,448	61,092

W Withheld to avoid disclosing company proprietary data; included with "Other."

³Includes glass manufacture.

Table 6.—Granulated and expanded iron-blast-furnace slags sold or used1 in the United States, by use

(Thousand short tons and thousand dollars)

		19	86			19	987	
Uses	Granu	lated	Expar	nded	Granu	lated	Expa	nded
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Cement manufacture	(2)	(2)	w	w	(2)	(2)	w	w
Concrete products	(2)	(2)	W W W	W W W	(2)	(2)	W	w
Lightweight concrete aggregate Road base Soil conditioning	(2)	(2) (2)	W	W W	(2) (2)	(2) (2)	W W 2,389	W W 35,003
Other ³	(²) (²)	(²)	1,879	33,851	(2)	(2)	2,389	35,003

W Withheld to avoid disclosing company proprietary data; included with "Other."

Value based on selling price at plant.

Included with "Expanded" to avoid disclosing company proprietary data.

Table 7.—Steel slag sold or used1 in the United States, by use

	198	36	198	7
Use	Quantity	Value	Quantity	Value
Asphaltic concrete aggregate	632 1,318 W 2,549 1,190	2,613 3,861 W 7,879 3,531	624 1,215 164 2,179 753	2,810 3,410 513 6,546 2,075
Total ³	5,689	17,883	4,935	15,354

W Withheld to avoid disclosing company proprietary data; included with "Other."

Value based on selling price at plant.

Includes ice control, miscellaneous uses, and data indicated by symbol W.

⁴Data may not add to totals shown because of independent rounding.

³Includes miscellaneous uses and data indicated by symbol W.

Training to avoid discussing company proprietary data; included with Coner.

Excludes tonnage returned to furnace for charge material. Value based on selling price at plant.

Includes ice control, soil conditioning, miscellaneous uses, and data indicated by symbol W.

³Data may not add to totals shown because of independent rounding.

Table 8.—Average value at the plant for iron and steel slags sold or used in the United States

(Dollars per short ton)

			Iron-blast	-furnace slag		G. 1	
	Year	Air- cooled	Granu- lated	Expanded	Total iron slag	Steel slag	Total slag
1983 1984 1985 1986 1987		4.12 4.33 4.68 4.36 4.54	W W W 21.26 11.14	9.67 11.49 11.00 12.57 W	4.78 5.09 5.75 6.03 6.07	3.01 3.28 2.93 3.14 3.11	4.31 4.66 4.95 5.25 5.36

W Withheld to avoid disclosing company proprietary data.

Table 9.—Average selling price and range of selling prices at the plant for iron and steel slags in the United States in 1987, by use

(Dollars per short ton)

			Iron-blast	furnace slag			Stee	l slag
Use	Air-	cooled	Gran	nulated	Expa	nded		_
	Average	Range	Average	Range	Average	Range	Average	Range
Asphaltic concrete								
aggregate	5.81	2.44- 9.33	-				4.51	2,30-5,29
Cement manufacture _			. W	W W				
Concrete aggregate	5.10	2.55- 9.09	W	W				
Concrete products	6.10	1.84- 9.09						
Fill	2.99	1.50- 7.12	W	w			2.81	1.00-6.75
Glass manufacture	w	W						
Lightweight concrete								
aggregate					w	w		
Mineral wool	5.36	3.43-10.54						
Railroad ballast	4.66	3.71- 8.00					3.13	2.65-3.75
Road base	4.20	2.17- 9.09	w	W			3.00	1.69-5.80
Roofing, built-up and							0.00	2100 0100
shingles	9.03	5.16-11.55						
Sewage treatment	W	W						
Soil conditioning	W	W	w	w				
Other	4.25	3.37- 6.30	11.14	1.62-34.20	$\bar{\mathbf{w}}$	w	2.69	2.19-4.03

W Withheld to avoid disclosing company proprietary data; included with "Other."

Sodium Compounds

By Dennis S. Kostick¹

U.S. soda ash production rebounded because of an increase in domestic and export soda ash demand. These increases began in the third quarter as market conditions improved in the chemical, fiberglass, and flue gas desulfurization sectors. Exports to Asia remained strong, primarily to China, which

accounted for about one-fourth of total U.S. exports. Production of natural and synthetic sodium sulfate was unchanged; however, exports increased as imports for consumption and ending inventories decreased, indicating stagnant domestic growth in consumption.

Table 1.—Salient sodium compound statistics

		Sod	a ash	Sodium s	ulfate1
		1986	1987	1986	1987
United States: Production					
		 18,438	² 8,891	r ₈₁₂	805
Exports		 e\$553,517	\$593,685	r\$69,923	\$69,769
		 42,049	42,224	111	122
Imports for consumption		 4 \$241,238	4\$253,200	\$10,183	\$10,554
Value		106	150	188	138
Stocks, Dec. 31: Producer		 \$15,023	\$18,334	\$13,829	\$10,363
Consumption apparent	18	 5294	259	672	⁶ 55
Consumption, apparent World: Production		 6,590	6,853	834	838
world, rioduction		 P31,179	e32,395	p4,974	e _{5,007}

eEstimated. Preliminary. ^rRevised.

¹Includes natural and synthetic except where noted. Total production data for sodium sulfate obtained from the Bureau of the Census.

2Includes some soda liquors, converted to soad ash equivalent.

³The value for soda ash includes synthetic soda ash, for 1986 only. The value for synthetic sodium sulfate is based upon

the average value for natural sodium sulfate.

1 Export data were adjusted by the Bureau of Mines to reconcile data discrepancies among the Bureau of the Census, the American Natural Soda Ash Corp., and Statistics Canada.

5 Includes synthetic soda ash.

⁶Natural only.

Domestic Data Coverage.—Domestic production data for soda ash and natural sodium sulfate are developed by the Bureau of Mines from monthly and annual voluntary surveys of U.S. operations. Of the seven soda ash operations and four natural sodium sulfate operations to which a survey request was sent, all responded, representing 100% of the total production data shown in table 1.

DOMESTIC PRODUCTION

Soda Ash.—The domestic soda ash industry operated at 84% of total nameplate capacity as production rose more than 5% compared with the previous year. The increase in output was necessary to meet the rise in demand created by favorable market conditions.

The 51% share of Stauffer Chemical Co. of Wyoming was sold to Imperial Chemical Industries (ICI) and later to Rhône-Poulenc S.A., both European synthetic soda ash producers. Including other French and Australian investments in Texasgulf Chemical Co. and General Chemical Co., respectively, the total foreign ownership in the U.S. soda ash industry represented about 30% of nameplate capacity.

T. G. Soda Ash Inc. obtained environmental permits from the Wyoming Department of Environmental Quality to increase capacity to 1.3 million tons; however, an operational capacity of 1.1 million tons was still being maintained by the plant.

Denison Resources NL, an Australian mineral company, signed a letter of intent near yearend to acquire the Owens Lake sodium carbonate deposit in California from

Lake Minerals Corp., a subsidiary of Cominco American Incorporated. Dennison planned to construct an \$85 million facility to produce 500,000 tons of soda ash annually and a similar amount of sodium sulfate.2

Sodium Sulfate.—Production of natural sodium sulfate decreased slightly, but recovery of synthetic sodium sulfate increased slightly. At midyear, the natural sodium sulfate industry operated at 72% of total nameplate capacity. Based on second-half production data, the industry operated at about 90% of total nameplate capacity, which was reduced by 70,000 tons to 440,000 tons per year with the temporary closure of Ozark-Mahoning Co.'s Brownfield, TX, facility. Extensive rainfall that diluted the brinefield, which caused production problems, was the reason for the action.

The synthetic sodium sulfate industry operated at about 81% of total annual nameplate capacity, which was 524,000 tons. J. M. Huber Co., Etowah, TN, increased synthetic sodium sulfate capacity by 5,000 tons per year because the company expanded its silica pigment operation.

Table 2.—Producers of soda ash and natural sodium sulfate in 1987.

Product and company	Plant nameplate capacity (thousand short tons)	Plant location	Source of sodium
Soda ash. natural:			
FMC Wyoming Corp	2,850	Green River,	Underground trona.
General Chemical Corp. 1	2,200	do	Do.
Kerr-McGee Chemical Corp	1,300	Argus, CA	Dry lake brine.
Do^2	150	Westend, CA _	Do.
Stauffer Chemical Co. of Wyoming ³	1,960	Green River, WY	Underground trona.
Tenneco Minerals Co	1.000	do	Do.
T. G. Soda Ash Inc.4	1,100	Granger, WY_{-}	Do.
Total	10,560		
Sodium sulfate, natural:			
Great Salt Lake Minerals & Chemicals Corp.5	50	Ogden, UT 🔔	Salt lake brine.
Kerr-McGee Chemical Corp	240	Westend, CA_{-}	Dry lake brine.
Ozark-Mahoning Co.5	70	Brownfield, TX.	Subterranean brine.
Do	150	Seagraves, TX	Do.
Total	€ 510		

General Chemical Corp. formed a joint venture with Australian Consolidated Industries International, which acquired 49% of the soda ash operation.

2Scheduled to terminate soda ash production in Jan. 1988.

³Bought by Rhône-Poulenc S.A. in Sept. 1987.

Owned by Société Nationale Elf Aquitaine. ⁵Placed on standby Aug. 1987

⁶Capacity reduced to 440,000 tons effective Aug. 1987 because Ozark's Brownfield plant was placed on standby.

Table 3.—Synthetic and natural sodium sulfate1 produced in the United States

		Synth	etic and nat (quantity)	ural ²	Natu	ıral
	Year	Lower purity ³ (99% or less)	High purity	Total ⁴	Quantity	Value
1983		r461 r426 r375 r342 347	r453 r475 r436 r471 458	r914 r901 r811 r812 805	423 435 389 396 382	39,425 40,125 35,860 34,102 33,086

Revised.

¹All quantities converted to 100% Na₂SO₄ basis.

Table 4.—Estimated consumption of soda ash in the United States, by end use

(Thousand short tons)

	End use		Egy .	1986	1987
Glass: Bottle and container _ Flat Fiber				2,150 750 300	2,10 72 32
Other	 		 	275	27
Total	 		 	3,475	3,42
oaps and detergents	 			1,300 650 200	1,45 62 20
Vater treatment l'ue gas desulfurization _ other	 		 •	250 200 515	25 30 60
Total	 			3,115	3,42
Grand total	 	%	 	6,590	6,85

¹Includes soda ash used in petroleum and metal refining, leather tanning, enamels, etc.

CONSUMPTION AND USES

Soda ash consumption increased 4% and reversed its downward trend from the previous 3 years.

Beginning in the third quarter, the domestic demand for chemicals increased significantly. High chlorine and caustic soda operating rates created tight supplies, which resulted in an increase in the spot price for these chlor-alkalis. The trend continued and some caustic-soda-based consumers began converting to soda ash on a limited scale by yearend.

The use of soda ash and sodium sulfate in glass manufacture increased slightly, primarily in the fiberglass and specialty glass sectors. Demand for flat glass was down because of the downturn in residential and commercial construction starts. Soda ash consumed in glass container manufacture stabilized despite continued competition from plastic containers.

Liquid detergents represented nearly 40% of the domestic detergent market. Consumer preference for convenience and environmental concerns regarding phosphates continued to reduce the amount of soda ash and sodium sulfate used in detergent formulations. One powdered laundry detergent producer, however, did announce it will change its powder formulation to require more sodium sulfate beginning in 1988.

²Current Industrial Reports, Inorganic Chemicals, Bureau of the Census. Revisions for 1983-86 from 1986 Annual, MA28A, p. 6. 3Includes Glauber's salt.

⁴Data may not add to totals shown because of independent rounding.

STOCKS

Soda Ash.—Yearend stocks of dense soda ash in plant silos, warehouses, terminals, and on teamtracks amounted to 259,000 tons, or 12% less than the 1986 yearend inventories. The drawdowns we're attrib-

uted to higher fourth-quarter sales, which reduced the amount of onhand stocks.

Sodium Sulfate.—Inventories of natural sodium sulfate decreased 24%.

PRICES

Soda Ash.—At midyear, a list price increase of \$4 per ton and an off-schedule price increase of \$6 per ton, both f.o.b. mine or plant, Wyoming, were announced, bringing the list and spot prices up to \$87 and \$89, respectively. Excess production capacity and strong consumer resistance prevented the producers from achieving the full realization of the price increases. Market prices remained well below these published prices. The average annual value of natu-

ral soda ash, f.o.b. Green River, WY, and Searles Valley, CA, was \$66.78 per ton.

Sodium Sulfate.—Prices of natural and synthetic high-purity sodium sulfate reportedly were at the list levels, ranging from \$105 to \$115 per ton, depending on location and grade. Saltcake listed at about \$60 per ton, f.o.b. plant.³ The average annual value of bulk natural product, f.o.b. mine or plant, was \$86.72 per ton.

Table 5.—Sodium compounds yearend prices

	1986	1987
Sodium carbonate (soda ash):		2.50.00
Light, paper bags, carlots, works per ton Light, bulk, carlots, worksdo	\$150.00 123.00	\$150.00 123.00
Dense, paper bags, carlots, worksdodo Dense, bulk, carlots, worksdo	120.00 83.00	131.00 83.00
Sodium sulfate (100% Na ₂ SO ₄):		
Technical detergent, rayon grade, bags, carlotsdodo Sodium sulfate, bulk, carlots, works ¹ dodo	\$90.00- 96.00 113.00- 114.00	\$90.00- 96.00 113.00- 114.00
Domestic salt cake, bulk, works¹ do	65.00- 98.00 .235	65.00- 98.00 .235

¹East of Mississippi River.

FOREIGN TRADE

Soda Ash.—Bureau of the Census data for exports to Canada were under reported, according to industry sources. With the cooperation of Statistics Canada, International Trade Division, total exports were adjusted by the Bureau of Mines.

Although China continued to be the largest importer of U.S. soda ash, its share of imports decreased from 32% in 1986 to 23% in 1987. The decline was attributed to reduced soda ash consumption because of intentional slowdowns in housing and commercial construction starts, which required significant quantities of flat glass. The construction pace was progressing faster than the seventh 5-year plan stipulated. A surplus of glass containers manufactured the previous year also contributed to fewer glass bottles made and less soda ash consumed in 1987.

Certain countries maintained trade barriers to limit entry of U.S. soda ash. Early in

the year, a commitment was obtained from the Japanese to investigate U.S. soda ash access in Japan. At yearend, the Japanese Fair Trade Commission found that although the four Japanese soda ash producers did not violate Japan's antimonopoly act, they did engage in restrictive trade practices.⁴

Table 6.—U.S. exports of sodium carbonate and sodium sulfate

(Thousand short tons and thousand dollars)

	V	Sodium o	carbonate	Sodium	sulfate
	Year	Quantity	Value ¹	Quantity	Value ¹
1984		1,648	160,774	76	9,587
1985		21,747	2173,937	119	11,899
1986		² 2,049	² 241,238	111	10,183
1987		² 2,224	² 253,200	122	10,554

¹Free alongside ship (f.a.s.) value at U.S. port. ²Adjusted by the Bureau of Mines to account for discrepancies in data.

Source: Bureau of the Census.

Sources: Chemical Marketing Reporter. Current Prices of Chemicals and Related Materials. V. 230, No. 26, Dec. 29, 1986, p. 31; and v. 232, No. 26, Dec. 28, 1987. p. 35.

Table 7.—Regional distribution of U.S. soda ash exports in 1987, by customs districts (Short tons)

Customs districts	North	Central America	South	Caribbean	Europe	Middle East	Africa	Asia	Oceania	Total
Atlantic: Baltimore, MD Charleston, SC Mami, FL New York, NY Philadelphia, PA	196	25 25 44 1	14 - 5 7,840 10	7 1 38 88 1 1		111-11		1,544		17 2 325 9,530 10 298
Gulf: Galveston, TX Galveston, TX Mobile, AL New Orleans, LA Port Arthur, TX	}	25 1 8,726 6	$\begin{array}{c} 24 \\ 1,171 \\ 345,385 \\ \end{array}$	19,687	47,725	154	8,806 2,322 74,878		320	8,830 375 3,648 496,401 6
Pacificand Anchorage, AK Los Angeles, CK Los Angeles, CK San Diego, CA San Prancisco, CA	1,988 1,822 4 050	7,071	$\begin{array}{c} 151,1\overline{45} \\ 13,615 \\ 3,1\overline{68} \end{array}$		36,070		22,704 39,132 	155,154 892,349 43	75,769	1,988 336,076 1,056,935 1,822 3,211 4,055
North Central: Detroit, MI Duluth, MN Great Ralls, MT Northeast.	102,958 38 16,205 14,130				6 6 6 2			STIP.		102,967 38 16,205 14,130
Buffalo, NY Ogdensburg, NY St. Albans, VT Southwest: Laredo, TX	198 121 117 72 72 140,574									121 121 117 12 140,574 6
Nogales, AL	282,577 2308,422	15,957 15,957	522,377 522,377	20,014 20,014	83,818 83,818	155 155	147,842 147,842	1,049,098	76,119 76,119	2,197,957 22,223,802

¹Bureau of the Census.

²Adjusted by the Bureau of Mines to reconcile discrepancies between Bureau of the Census data and Statistics Canada data, which industry sources report were closer to actual transactions in Canada. The discrepancy probably occurred in the North Central customs districts.

Table 8.—U.S. imports for consumption of sodium sulfate

	Year	Crude (sa	ılt cake)1	Anhy	drous	Tot	al ¹
		Quantity	Value ²	Quantity	Value ²	Quantity	Value ²
1984		61 40 32 37	4,223 2,549 1,885 2,189	204 155 156 101	16,975 11,943 11,944 8,173	265 195 188 138	21,198 14,492 13,829 310,363

¹Includes Glauber's salt as follows: 1984—12 tons (\$4,997); 1985—none; 1986—38 tons (\$9,175); and 1987—666 tons (\$38,318).

²Customs, insurance, and freight (c.i.f.) value at U.S. port.

Source: Bureau of the Census.

Table 9.—U.S. imports for consumption of sodium carbonate

	19	86	19	87
	Quantity	Value ¹	Quantity	Value ¹
	(short	(thou-	(short	(thou-
	tons)	sands)	tons)	sands)
Sodium carbonate, calcined	105,917	\$14,991	149,603	\$18,211
Sodium carbonate, hydrated and sesquicarbonate	48	32	500	123
Total	105,965	15,023	150,103	18,334

¹Customs, insurance, and freight (c.i.f.) value at U.S. port.

Source: Bureau of the Census.

WORLD REVIEW

Botswana.—Soda Ash Botswana (Pty.) Ltd., a subsidiary of British Petroleum Minerals International, withdrew plans to construct a soda ash refinery in the Makgadikgadi Pan. A South African industrial group, African Explosives and Chemicals Industries, in which Anglo American Corp. and ICI each own a 30% share, decided to continue with the project. The American Natural Soda Ash Corp. protested the project on the grounds that Botswana was a politically risky source of supply and that the soda ash would prove to be more expensive and less pure than U.S. soda ash.5

Egypt.—A natural sodium sulfate operation was proposed for construction at Lake Qarun near Fayyoum. The project should begin construction by 1989. A synthetic soda ash plant, with an annual capacity of 200,000 tons, was also proposed for construction at El Arish in the Sinai.6

Korea, North.-Plans were announced to remodel and expand many chemical plants, including the Sunchon synthetic soda ash facility. The goal is to increase soda ash output by 4.5 times in the next 7-year plan.

Tanzania.—A plant was constructed at Mikocheni that will use natural sodium carbonate from Lake Natron to produce caustic soda for use by local soap manufacturers, textile mills, and vegetable oil refineries. The project will help offset the level of imports, which had been about 15,000 tons per year of soda ash.7

U.S.S.R.—Sodium sulfate production resumed from Kara-Bogaz-Gol after an 8-year hiatus due to environmental problems.8 The facility was reconstructed and modernized, which should reestablish the U.S.S.R. as the largest producer of natural sodium sulfate in the world.

³Data do not add to total shown because of independent rounding.

¹Physical scientist, Branch of Industrial Minerals.

^{*}Physical scientist, Branch of Industrial Minerals.

*Chemical Marketing Reporter. U.S. May See Aussie
Entry in Soda Ash. V. 232, No. 14, Oct. 5, 1987, p. 7.

**______ Sodium Sulfate Slump, Some Hope in Sight.

V. 232, No. 26, Dec. 28, 1987, pp. 3, 18.

*______ Japan Soda Ash Barriers Lower. V. 232, No. 24,

Dec. 14, 1987, pp. 3, 11.

*Mining Journal (London) Rotswana Soda Ash. V. 309

Dec. 14, 1301, pp. 0, 11.

SMining Journal (London). Botswana Soda Ash. V. 309,
No. 7940, 1987, p. 327.

SMining Annual Review. Egypt. 1987, p. 436.

⁷Industrial Minerals (London). Mineral Notes. No. 244, 1988, p. 63.

⁸Mining Annual Review. U.S.S.R. 1987, p. 464.

SODIUM COMPOUNDS

Table 10.—Sodium carbonate: World production, by country

(Short tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Albania ^e	30,900	33,100	34,200	35,300	34,000
Australia	330,000	330,000	330,000	330,000	330,000
Austriae	190,000	165,000	165,000	r _{165,000}	165,000
Belgium	286,341	451,224	492,164	507,000	500,000
Brazile	² 231,485	210,000	210,000	220,000	231,000
Bulgaria	1,400,918	1.336,292	1,142,695	e1,210,000	1,320,000
Canada ^e	470,000	400,000	385,000	385,000	385,000
Chinae	21,976,442	2,070,000	2,220,000	2.310.000	2,610,000
Colombia	130,392	142,683	124,791	124,473	138,000
Zechoslovakia	104,694	111,711	123,459	124,561	121,000
Denmark ³	159	139	126	129	130
Egypt	47,399	53,072	54.132	e55,000	55,00
France	1.100,000	990,000	990,000	825,000	880,000
German Democratic Republic	977,749	981,056	974,442	975,544	978,00
Jermany, Federal Republic of	1.342.614	1,503,551	1,556,462	1,589,531	1,554,00
Greece	1.100	1,100	1,100	1,100	1,10
ndia	820,481	915,869	896,839	962,978	1,003,00
	95,000	100,000	100,000	90,000	95,00
taly ^e Japan	1.216,265	1,142,140	1,165,254	1,125,292	1,157,00
Kenya ⁴	213,506	249,177	251,062	261,964	275,00
Korea, Republic of	254,193	273,292	276,559	291,245	309,00
Mexico ⁵	438,279	466,277	504,197	e500,000	500,00
Netherlands ^e	460,000	440,000	420,000	420,000	420,00
Pakistan	113,932	131,376	130,169	144,286	145,50
	909,406	1,011,921	e940,000	e940,000	990,00
PolandPortugal ^e	180,000	165,000	165,000	170,000	180,00
Romania	868,620	1.005.307	921,531	^e 940,000	950,00
	550,000	610,000	610,000	580,000	610,00
Spain ^e Switzerland ^e	50,000	49,000	50,000	r48,000	25,00
Taiwan	103,419	118,179	123,479	147,002	110,00
Furkey ^e	132,000	220,000	331,000	386,000	410,00
U.S.S.R. ⁶	5,620,679	5,639,418	5,418,956	5,546,824	5,700,00
United Kingdom ^e	1,430,000	1,100,000	1.100,000	1,100,000	1,100,00
United States ⁷	8,467,118	8,511,359	8.511.055	8,438,192	28,890,74
Yugoslavia	202,135	207,555	220,053	229,245	² ³ 222,158
Total	30,745,226	31,134,798	30,938,725	31,178,666	32,394,634

Table 11.—Sodium sulfate: World production, by country¹ (Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Natural:					0.5
Argentina	50	36	34	e39	35
Canada	500	427	403	e409	413
Chile ³	1	1	_1	e 1	1
Egypte	42	2	r 2	r 2	2
Iran ^e	13	13	13	r ₁₃₆	136
Mexico ⁵	436	456	440	505	496
South Africa, Republic of	1	1	(⁶)	1	1
Spain	345	405	530	497	496
Turkey	68	92	120	161	165
U.S.S.R. e 7	r395	r390	r ₃₈₅	r ₃₈₀	400
United States	423	435	389	396	4382
Total	r _{2,234}	r _{2,258}	2,317	2,527	2,527
Synthetic:					
Austriae	61	55	55	61	61
Belgium ^e	276	276	287	292	287
Chile ⁸	57	63	58	76	72
Finlande	39	39	39	39	39
France	165	132	138	121	127

Estimated. PPreliminary. Revised.

'Table includes data available through May 6, 1988. Synthetic unless otherwise specified.

'Reported figure.

'Production for sale only; excludes output consumed by producers.

'Natural only.

'Includes natural and synthetic; in 1985, Mexico produced 200,000 tons of natural soda ash.

'Excludes potash for 1985-87.

'Includes natural and synthetic.

Table 11.—Sodium sulfate: World production, by country1 —Continued

(Thousand short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Synthetic —Continued					
German Democratic Republic	168	181	190	200	193
Germany, Federal Republic of	138	141	153	180	182
Greece ^e	48	8	8	8	8
Hungary ^e	11	11	11	r ₁₀	10
Italy ^e	99	88	r ₈₈	83	88
Japan	287	307	305	279	287
Netherlands ^e	55	50	50	50	50
Portugal ^e	62	55	55	57	61
Spain ^{e 9}	187	187	165	165	182
Sweden ^e	110	110	110	110	110
U.S.S.R. ^{e 7}	r300	r300	r300	r300	300
United States ¹⁰	^r 491	r466	422	416	4423
Total	^r 2,514	r _{2,469}	2,434	2,447	2,480
Grand total	r4,748	r _{4,727}	4,751	4,974	5,007

eEstimated. Preliminary. Revised.

Estimated. Preliminary. Revised.

1 Table includes data available through May 6, 1988.

2 In addition to the countries listed, China, Norway, Poland, Romania, Switzerland, and the United Kingdom are known to or are assumed to have produced synthetic sodium sulfate, and other unlisted countries may have produced this commodity, output is not reported, and available information is inadequate to make reliable estimates of output levels.

³Natural mine output, excluding byproduct output from the nitrate industry, which is reported separately under "Synthetic" in this table.

¹Reported figure.

^{*}Series reflects output reported by Industrias Peñoles S.A. de C.V., Mexico's principal producer, plus an additional 33,000 short tons (revised, estimated) by a smaller producer.

*Less than 1/2 unit.

⁷Conjectural estimates based on 1968 information on natural sodium sulfate and general economic conditions.

⁸Byproduct of nitrate industry.

Squantities of synthetic sodium sulfate credited to Spain are reported in official sources in a way such as to indicate that they are in addition to the quantities reported as mined (reported in this table under "Natural"), but some

duplication may exist.

10 Perived approximate figures; data presented are the difference between reported total sodium sulfate production (natural and synthetic not differentiated) and reported natural sodium sulfate sold by producers (reported under "Natural" in this table).

Crushed Stone

By Valentin V. Tepordei¹

A total of 1.2 billion short tons of crushed stone was reportedly produced in the United States in 1987, an increase of 17.3% over that of 1986. It is the highest production ever recorded in the United States, 9.2% more than the previous record-high production of 1.1 billion tons reported in 1979. About 70% of the crushed stone production continued to be limestone and dolomite, followed by granite, traprock, sandstone and quartzite, shell, marble, calcareous marl, volcanic cinder and scoria, and slate, in order of volume.

Foreign trade in crushed stone remained relatively minor. Exports and imports increased 10.3% and 25.5%, respectively. Ninety-seven percent of the exported and 37% of the imported crushed stone was limestone. Apparent consumption of crushed stone was 1.2 billion tons.

Table 1.—Salient U.S. crushed stone statistics

(Thousand short tons and thousand dollars)

(Thousand Shore term		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		1983	1984	1985	1986	1987
Sold or used by producers: Quantity¹ Value¹ Exports (value) Imports for consumption (value) (value)		861,600 \$3,327,000 \$23,021 \$12,610	*956,000 *\$3,755,600 \$23,970 \$17,543	1,000,800 \$4,053,000 \$29,347 \$11,640	e _{1,023,200} e _{\$4,255,000} \$36,957 \$12,451	1,200,100 \$5,248,600 \$26,063 \$14,024

eEstimated.

Domestic Data Coverage.—Domestic production data for crushed stone are developed by the Bureau of Mines from voluntary surveys of U.S. producers. Full surveys of crushed stone producers are conducted for odd-numbered years only. For evenpreliminary surveys, numbered years, which collect production information on a sample basis, are conducted to generate only annual preliminary estimates at the State level.

Of the 5,634 crushed stone operations surveyed, 3,473 were active. Of these, 2,677 or 77.1% reported to the Bureau of Mines. Their total production represented 80.2% of the total U.S. crushed stone output. The nonrespondents' production was estimated using adjusted prior years' production reports and/or employment data. Of the 2,677 reporting operations, 569 did not indicate a breakdown by end use. Their production, as

well as estimates of 828 nonrespondents, representing 30.6% of the U.S. total, is included in tables 11, 13, and 15-18 under "Other unspecified uses." A total of 1,330 quarries were either idle or presumed to be idle, because no information was available to estimate their production.

Government Pro-Legislation and grams.-On April 2, the U.S. Congress enacted the 1987 Surface Transportation Assistance Act (STAA), which extended the Federal-Aid Highway Program for 5 more years. The total funding was \$68 billion, with annual authorizations ranging between \$13.6 and \$13.9 billion. On December 31, the Airport Improvement Program (AIP) legislation was enacted, which appropriated \$1.7 billion for fiscal years 1988-90 and \$1.8 billion for fiscal years 1991 and 1992. The \$8.7 billion total represented a 65% increase in funding over the previous AIP.

¹Does not include American Samoa, Guam, Puerto Rico, and the Virgin Islands.

²Excludes precipitated calcium carbonate.

Funding for the fiscal year 1988 program was later reduced by the Continuing Resolution (Public Law 100-202) by \$0.57 billion for the STAA program and by \$0.43 billion for the AIP.

Responding to requests made by the industry, the Occupational Safety and Health Administration (OSHA) extended a partial stay to July 21, 1988, for implementation of the new provisions of its revised asbestos standards for nonasbestiform varieties of actinolite, anthophyllite, and tremolite minerals. The stay was issued to allow OSHA time to review additional data regarding the feasibility of regulating these nonasbestiform minerals. The extension was needed because of the range of the

affected industries and the lack of mineralogic and exposure data in these industries. The former asbestos standards remain in effect for the extent of the stay.

The introduction of the revised OSHA regulations regarding the airborne asbestos standards, which include nonasbestiform varieties of actinolite, anthophyllite, and tremolite, would have a very significant impact on the aggregates industries, consequently affecting the construction industries. The resulting costs to society, in the form of increased construction costs and disruption of the supply of aggregates, were considered potentially enormous according to industry estimates.

DOMESTIC PRODUCTION

Of the total 1.2 billion tons of crushed stone produced in the United States, 841 million tons or 70% was limestone and dolomite, 180 million tons or 15% was granite, and 103 million tons or 8.6% was traprock. The remaining 6.4% was shared by marble, calcareous marl, shell, sandstone and quartzite, slate, volcanic cinder and scoria, and miscellaneous stone.

A comparison of the four major geographic regions indicated that in 1987 the South continued to lead the Nation in the production of crushed stone with 47.7% of the

total, followed by the Midwest with 26.2%, and the Northeast with 15.7%. Approximately 74% of the total U.S. crushed stone output was produced in two major geographic regions, the South and the Midwest. Of the nine geographic regions, the South Atlantic led the Nation in the production of crushed stone with 316 million tons or 26.3% of the U.S. total. Next was the East North Central region with 196 million tons or 16.3% of the total, followed by the Middle Atlantic with 154 million tons or 12.8%.

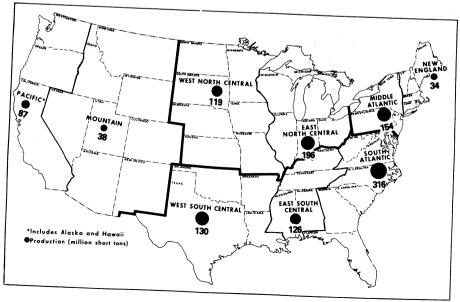


Figure 1.—Production of crushed stone in the United States in 1987, by geographic region.

A comparison of the estimated 1986 and reported 1987 production data by regions indicated that the output of crushed stone increased in all regions except the West South Central, which includes Texas. The largest increases were recorded in New England, 45.6%; the Middle Atlantic, 28.6%; and the East North Central, 28.2%.

Based on the 1985 Bureau of the Census population estimates, 1987 U.S. per capita crushed stone production was 5.0 tons. Per capita production by major geographic region was 7.0 tons in the South, followed by the Midwest with 5.3 tons, the Northeast with 3.8 tons, and the West with 2.6 tons.

Crushed stone was produced in every State except Delaware. The 10 leading States in the production of crushed stone, in order of volume, were Pennsylvania, Texas, Florida, Georgia, Virginia, Missouri, Illinois, Ohio, Tennessee, and North Carolina. Their combined production represented 53.4% of the national total.

ARC America Corp. of Newport Beach, CA, a subsidiary of Consolidated Gold Fields PLC of the United Kingdom, acquired American Aggregates Corp. of Greenville, OH, one of the largest aggregates producers in Ohio. American Aggregates owned a significant amount of reserves in the State and operated 10 crushed stone quarries and 12 sand and gravel pits.

Blue Circle Industries PLC of London, United Kingdom, acquired Raia Industries Inc. of Hackensack, NJ. Raia Industries operated a crushed stone quarry and readymixed cement operations in Sussex County, NJ.

Vulcan Materials Co. of Birmingham, AL, acquired White Mines Co. of San Antonio, TX. The purchase included a rock asphalt quarry at Uvalde, TX; a basalt quarry at Knippa, TX; and three limestone quarries at Brownwood, Abilene, and Weatherford, TX. The newly acquired operations were combined with Vulcan's existing Texas operation to form a new division with headquarters in San Antonio, TX.

Florida Rock Industries Inc. of Jacksonville, FL, acquired Arundel Corp. of Baltimore, MD, a large construction aggregates producer with operations in Delaware, Maryland, North Carolina, and Virginia. Prior to the acquisition, Florida Rock's 14 quarries were in Florida and Georgia.

Dravo Basic Materials Co. of Kenner, LA, acquired from Florida Crushed Stone Co. of Leesburg, FL, a limestone quarry at Perry, FL, that will allow Dravo to supply aggre-

gates to the Tallahassee market. Dravo already has operations in Chattahoochee, Pensacola, and Tampa, FL.

USX Corp. of Pittsburgh, PA, sold its two Michigan limestone quarries, Calcite Quarry and Cedarville Quarry, to Michigan Limestone Operations Ltd., a newly formed company.

Limestone.—Beginning with the 1983 survey, a new canvassing procedure was implemented that is designed to collect separate information on the amount of limestone and dolomite produced in the United States. In 1987, 153 quarries reported producing only dolomite, while 35 additional quarries reported producing both limestone and dolomite, without making a distinction between the two kinds of stone. Therefore, the limestone totals shown in this chapter include an undetermined amount of dolomite, in addition to the dolomite reported separately. Compared with that of 1985, the 1987 output of crushed limestone, including some dolomite, increased 15.7% to 792 million tons valued at \$3.2 billion. Limestone was produced by 1,130 companies at 2,496 quarries in 46 States. Leading States, in order of tonnage, were Texas, Pennsylvania, Florida, Missouri, and Illinois; these five States accounted for 39.6% of the total U.S. output. Leading U.S. producers were, in order of volume, Vulcan, Martin Marietta Aggregates, Koppers Co. Inc., Florida Rock, and the Rogers Group. These five companies accounted for about 16% of total U.S. output of limestone.

Dolomite.-Production of dolomite increased 55% to 49 million tons valued at \$207 million. Crushed dolomite was reportedly produced by 86 companies in 24 States. An additional undetermined amount of dolomite is included in the total crushed limestone data. Leading States in the production of dolomite, in order of tonnage, were Pennsylvania, Michigan, Alabama, New York, and Ohio; these five States accounted for 67% of the total U.S. output. Leading U.S. producers were Glasgow Inc., Stabler Co., Bethlehem Steel Corp., Vulcan, and Michigan Minerals Associates; their combined production represented 44% of the total U.S. dolomite production.

Marble.—Production of crushed marble increased 129% to 5.6 million tons valued at \$62 million. Crushed marble was produced by 18 companies at 47 quarries in 11 States. Leading States, in order of tonnage, were Virginia, California, Alabama, Georgia, and Vermont; these five States accounted for 93% of the total U.S. output. Leading pro-

ducers of crushed marble, in order of tonnage, were Koppers, CalMat Co., and Georgia Marble Co.; their combined production represented 65% of the total U.S. output.

Calcareous Marl.—Output of marl increased 5% to 4.2 million tons valued at \$7.7 million. Marl was produced by 15 companies at 16 quarries in 7 States. South Carolina accounted for 81% of total U.S. output. Leading producers, in order of tonnage, were Dundee Cement Co., Giant Portland & Masonry Cement Co., and Gifford-Hill & Co.; their combined production represented 80% of the total U.S. output.

Shell.—Shell is mainly derived from fossil reefs or oyster shell. The output of crushed shell decreased 8% to 8.4 million tons valued at \$51 million. The decrease is mostly due to the restrictions imposed on the industry in Louisiana as a result of concerns that shell dredging produces irreversible damage to the environment. Crushed shell was produced by 15 companies from 19 operations in 7 States. The major producing States were Louisiana and Florida and the leading producers, in order of tonnage, were Dravo, Ashland Oil Inc., Leisey Shell Corp., Pontchartrain Dredging Corp., and Quality Aggregates Inc.; their combined production represented 77% of the U.S. output.

Granite.—Compared with that of 1985, the 1987 output of crushed granite increased 24% to 180 million tons valued at \$901 million. Crushed granite was produced by 136 companies at 735 quarries in 31 States. Leading States, in order of tonnage, were Georgia, North Carolina, Virginia, South Carolina, and California; these five States accounted for 76% of the U.S. output. Leading U.S. producers, in order of tonnage, were Vulcan, Martin Marietta, Koppers, Georgia Marble, and Tarmac America; their combined production represented 54% of the U.S. total.

Traprock.—Production of crushed traprock increased 24% to 103 million tons valued at \$505 million. Traprock was produced by 257 companies at 813 quarries in 23 States. Leading States, in order of tonnage, were Oregon, New Jersey, Washington, Connecticut, and Massachusetts; these five States accounted for 58% of U.S. output. Leading U.S. producers, in order of tonnage, were Tilcon Inc., U.S. Forest Service Region 3, Traprock Industries Inc., Koppers, and Chantilly Crushed Stone Inc.; their combined production accounted for

25% of the total U.S. output.

Sandstone and Quartzite.—The combined output of crushed sandstone and quartzite increased 40% to 32 million tons valued at \$158 million. Crushed sandstone was produced by 121 companies at 181 quarries in 27 States, while crushed quartzite was produced by 28 companies at 28 quarries in 17 States. Leading States in the production of sandstone were Pennsylvania, Arkansas, and California and for quartzite Georgia, South Dakota, and Virginia; the three States accounted for 55% of the U.S. output of sandstone and 61% of the U.S. output of quartzite. Leading producers, in order of tonnage, were Arkhola Sand and Gravel Co., Commercial Stone Corp., and Dutra Construction Co. for crushed sandstone, and Martin Marietta, Salem Stone Corp., and Concrete Material Co., for crushed quartzite.

Slate.—Compared with that of 1985, the 1987 output of crushed slate increased 201% to 2.3 million tons valued at \$14.3 million. Crushed slate was produced by 8 companies at 10 quarries in 6 States. Leading States, in order of tonnage, were North Carolina and Georgia. Leading producers, in order of tonnage, were Martin Marietta, Big River Industries, and Lesuer-Richmond Slate Corp. The top three producers accounted for most of the U.S. output of crushed slate.

Volcanic Cinder and Scoria.—Production of volcanic cinder and scoria increased 23% to 3.7 million tons valued at \$15 million. Volcanic cinder and scoria were produced by 39 companies from 359 operations in 13 States. Leading States, in order of volume were, Oregon, Arizona, California, North Carolina, and Hawaii; their combined production accounted for 78% of the total U.S. output. Leading producers, in order of tonnage, were the U.S. Forest Service, Martin Marietta, and U.S. Industries Inc.; their combined production accounted for 44% of U.S. output.

Miscellaneous Stone.—Output of other kinds of crushed stone increased 43% to 19 million tons valued at \$78 million. Miscellaneous stone was produced by 59 companies from 304 quarries in 22 States. Leading States, in order of volume, were Pennsylvania, Maryland, and Florida; their combined production accounted for 70% of the total U.S. output. Leading producers, in order of tonnage, were Rockville Crushed Stone, Capeletti Inc., and Gill Quarries Inc.

Table 2.—Crushed stone sold or used in the United States, by kind

		1985 1987		1985				
Kind	Number of quarries	Quantity (thousand short tons)	Value (thousands)	Unit value	Number of quarries	Quantity (thousand short tons)	Value (thousands)	Unit value
Limestone	2,316	685,002	\$2,618,621	\$3.82	2,496	792,448	\$3,249,713	\$4.10
Dolomite	87	31,348	133,271	4.25	119	48,656	206,904	4.25
Marble	22	2,437	20,439	8.39	- 51	5,576	62,335	11.18
Calcareous marl	14	3,959	8,083	2.04	16	4,154	7,650	1.84
Shell	17	9,106	37,951	4.16	19	8,402	51,028	6.07
Granite	580	145,254	669.807	4.61	735	179,972	900,682	5.00
Traprock	644	83,548	388,027	4.64	813	103,413	505,187	4.89
Sandstone and guartzite	378	23,148	103,483	4.47	523	32,495	157,934	4.86
Slate	7	773	3,758	4.86	10	2,330	14,258	6.12
Volcanic cinder and scoria	256	2,953	12,504	4.23	359	3,657	14,952	4.09
Miscellaneous stone	81	13,269	56,875	4.29	304	19,027	77,954	4.10
Total ¹	XX	1,000,800	4,053,000	4.05	XX	1,200,100	5,248,600	4.37

Table 3.—Crushed stone sold or used in the United States, by region

and granteer the control of the cont	1986	e	1987	
Region	Quantity	Value	Quantity	Value
Northeast:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
New England Middle Atlantic	23,700 119,600	119,500 609,100	34,500 153,782	203,581 767,445
Midwest: East North Central	152.600	544.900	195.622	804,954
West North Central	107,200	385,700	118,759	431,975
South: South Atlantic East South Central West South Central	275,600 104,700 136,400	1,252,700 438,000 488,700	315,991 126,245 129,613	1,510,541 556,353 465,909
West: Mountain Pacific	31,700 71,700	119,000 297,400	38,121 87,497	147,323 360,517
Total ²	1,023,200	4,255,000	1,200,100	5,248,600

^eEstimated.

Table 4.—Crushed stone sold or used by producers in the United States, by State¹

(Thousand short tons and thousand dollars)

Q+-+-	1986 ^e		1987	
State	Quantity	Value	Quantity	Value
Alabama	24,000	120,500	30,018	146,247
Alaska	2,000	8,500	2,033	8,94
Arizona	5,600	25,100	7,712	33,999
Arkansas	15,500	58,500	15,234	63,847
California	38,500	159,300	44,315	186,504
Colorado	8,000	30,700	8.045	33,46
Connecticut	7,700	45,800	11.412	76,668
Florida	69,000	288,200	278,992	² 350.537
Georgia	56,700	293,100	60,834	318,90
ławaii	7,100	42,100	5.732	41.548
daho	3,700	12,700	3,852	15,346
llinois	44.200	179,600	52,102	216,212
ndiana	² 22,600	² 76,500	31.067	106.770
OW8	23,400	98,000	25.991	110,100
Kansas	16,600	60,300	19.319	69,628
Kentucky	³ 38,400	³ 137,000	43,330	173,222

XX Not applicable.

Data may not add to totals shown because of independent rounding.

Includes volcanic cinder and scoria.

²Data may not add to totals shown because of independent rounding.

Table 4.—Crushed stone sold or used by producers in the United States, by State¹

State	198	6 ^e	1987	
State	Quantity	Value	Quantity	Value
Louisiana ⁴	5,400	25,300	4,390	36,514
Maine	1,600	4,400	2,010	7,532
Maryland	26,400	126,000	30,136	151,579
Massachusetts	10,000	50,000	14,907	78,969
Michigan	27,800	83,900	37,909	109,514
Minnesota	8,300	26,300	8,995	29,246
Mississippi	1.600	4,400	1.492	9.621
Missouri	51,200	170,500	54.910	184.824
Montana	52,200	56,200	1.463	3,585
Nebraska	4.000	17,900	4.316	19,461
Nevada	1,500	7,000	61.264	65.700
New Hampshire	1,800	5,900	2.479	10.386
New Jersey	15,300	95,400	717,576	7111.951
New Mexico	3,900	15,300	4,503	15.919
New York	40,600	196,600	38.103	188.694
North Carolina	43,500	206,500	48.847	
North Dakota	45,500 W	200,500 W	40,041 W	237,181
	39,300	147.300		900 000
			51,590	300,096
Oklahoma	30,900	102,100	625,155	683,732
Oregon	15,100	53,400	20,663	73,902
Pennsylvania	63,700	317,100	97,213	458,676
Rhode Island	41,000	⁴ 5,700	1,228	7,797
South Carolina	18,200	76,700	824,278	8105,387
South Dakota	3,600	12,600	5,070	18,515
Tennessee	940,700	9175,600	51,406	227,263
Texas	84,200	301,500	84,347	276,477
Utah	4,500	14,100	7,989	23,60€
Vermont	1,600	7.600	92,159	920,400
Virginia	52,000	224,700	60,376	295,903
Washington	9,000	34,100	14.754	49,618
West Virginia	9,800	37,500	12,458	50.947
Wisconsin	18,700	57,600	⁵ 22,757	571,776
Wyoming	91.700	95,900	3,171	15.049
Other	1,100	4,000	2.230	16,831
taran da antara da a	1,100	4,000	2,230	10,051
Total ¹⁰	1,023,200	4,255,000	1,200,100	5,248,600

Table 5.-U.S. crushed stone sold or used by producers in 1987, by size of operation

Size range (Thousand short tons)	Number of operations	Quantity (thousand short tons)	Percent
0 to 25	764	7,262	0.6
25 to 50	331	12.110	1.0
50 to 75	248	15,561	1.3
	197	17,323	1.5
100 to 200	525	77,276	6.4
200 to 300	332	81,583	6.8
300 to 400 400 to 500	192	67,500	5.6
	168	75,341	6.3
500 to 600	111	61,700	5.1
	116	74,990	6.3
700 to 800	78	58,926	4.9
	76	65,177	5.4
900 to 1999	44	41,522	3.5
1,000 to 1,999	207	277,373	23.1
2,000 and over	84	266,485	22.2
Total	3,473	¹1,200,100	100

¹Data do not add to total shown because of independent rounding.

^{*}Estimated. W Withheld to avoid disclosing company proprietary data; included with "Other."

1To avoid disclosing company proprietary data, certain State totals do not include all kinds of stone produced within the State; the portion not shown has been included with "Other."

2Excludes mart.

3Excludes care.

³Excludes sandstone.

⁴Excludes other stone.

⁵Excludes traprock. ⁶Excludes dolomite.

⁷Excludes limestone. ⁸Excludes shell.

⁹Excludes granite.

¹⁰Data may not add to totals shown because of independent rounding.

Table 6.—Crushed limestone and dolomite sold or used in the United States in 1987, by State

	Limesto	ne	Dolomite		
State -	Quantity	Value	Quantity.	Value	
	24.155	100,413	4,753	21,705	
labama		W	-,,		
laska	W 0.749	15,977			
rizona	3,748		1.483	w	
rkansas	3,726	14,349	396	6.011	
alifornia	20,226	77,126		0,011	
olorado	2,565	10,701			
onnecticut	377	2,350	• • • • •	7,481	
lorida	72,184	329,011	1,128	1,401	
	w	W	W		
eorgia	1,337	9,093		7.0	
[awaii	373	1.034	(¹)	(1	
daho	49.883	207,185	2,154	8,539	
linois	29.549	101,000	1.486	5,65	
ndiana	25,991	110,106	-,		
owa		66,306			
ansas	18,788	00,000	w	: V	
Centucky	W	4.005	**	3	
Maine	1,509	4,395			
Maryland	18,793	94,102			
Assachusetts	1,739	10,019		17,57	
	32,180	91,508	5,588		
lichigan	w	W	W	,	
Innesota	1.492	9,621			
Iississippi	51.680	174,925	1,151	4,50	
Missouri	1,244	2,803			
Montana	4,316	19,461		-	
lebraska	4,510 W	W	W	1	
levada		ŵ			
Vew Jersey	W	10,263			
New Mexico	3,150		3,723	18,60	
Vew York	26,052	113,576	5,125	10,00	
Vorth Carolina	4,242	22,414	0.040	13.18	
Ohio	48,181	286,479	3,243	15,16	
Oklahoma Oklahoma	W	• • • • W	W		
	W	W	===	50.17	
Oregon	58,274	288,608	15,455	59,10	
Pennsylvania	678	4,866		_	
Rhode Island	5,980	24,670		· -	
South Carolina	3,872	11,408		-	
South Dakota	0,012 W	W	w		
'ennessee	79,684	251,792	1,328	3,6	
exas		251,132 W	w		
Jtah	W		**		
Vermont	1,807	8,065	$2.1\overline{12}$	16.2	
Virginia	19,622	87,616		1.0	
Washington	689	2,400	415	1,0	
West Virginia	10,737	39,586		0.4	
west virginia	18,175	58,477	1,075	2,4	
Wisconsin	w	W	W	a	
Wyoming	145,452	588,009	3,165	21,0	
Other				206,90	
Total ²	792,450	3,249,700	48,650	200,0	

W Withheld to avoid disclosing company proprietary data; included with "Other." $^{1}\mathrm{Less}$ than 1/2 unit.

Table 7.—Crushed calcareous marl sold or used by producers in the United States in 1987, by State

State	Quantity	Value
	w	w
Florida	w	ŵ
Indiana	ŵ	ŵ
Maine	20	67
Michigan	31	156
North Carolina.	3,355	6,089
South Carolina	w	W
Texas	748	1,338
Other		
Total	4,154	7,650

W Withheld to avoid disclosing company proprietary data; included with "Other."

²Data may not add to totals shown because of independent rounding.

Table 8.—Crushed granite, traprock, and sandstone and quartzite sold or used by producers in the United States in 1987, by State

State	Gra	nite	Traprock		Sandstone and quartzite	
	Quantity	Value	Quantity	Value	Quantity	Value
Alabama	w	w				11.670
Alaska	511	1.966	635	2,718	w	
Arizona	3,014	13,636		2,118	w	Ä
Arkansas	5,826	26,784				W
California	9,890	40,362	8.017	40,403	4,038	16,432
Colorado	4,505	19,126	0,017	40,403	2,736	9,755
Connecticut	W	W	10.958	$73,\bar{607}$	153	628
Georgia	47.204	247,555	10,300	13,001	0.000	11.000
Hawaii	21,201	241,000	$4.1\overline{39}$	01 100	2,082	11,383
daho	$1\overline{7}\overline{2}$	814		31,160		=
Illinois			2,684	9,151	623	4,347
ndiana					66	488
Kansas		, - -			W	W
Kentucky					531	3,322
ouisiana					W	W
Maine	·			7.5	√ 14	97
Maryland	0.104		W	W	W	W
Magazahugatta	3,104	16,504	3,188	11,986	267	1,690
Massachusetts	2,198	16,838	9,960	45,681	W	W
Michigan			W	. 1	W	W
Minnesota	W	W	W	W	W	w
Missouri	W	W			<u> </u>	
Montana			W	W	132	534
levada	33	48				
lew Hampshire	1,002	4,938	1.477	5,448		
lew Jersey	5,964	42,510	11.612	69,441		
lew Mexico	W	· w	223	w	w	w
lew York	W	W	3.178	23,331	1.050	6.042
North Carolina	38,665	183,868	3.058	15,931	w	0,042 W
)hio				10,001	165	434
Oklahoma	1.176	4.804			353	1.261
regon	351	1,179	16,331	57.784	1.166	4,704
ennsylvania	w	w	7,669	35.714	8.438	44,289
hode Island	534	ŵ	,,002 W	W	0,400	44,289
outh Carolina	14,943	74,629		. **		
outh Dakota	W	W			1 105	C 151
exas		**	w	w	1,195	6,451
tah	w	w	vv	, w	1,614	9,853
ermont	ŵ	w			544	1,647
irginia	26,824	137,584	$7.8\bar{3}\bar{3}$	20.050	1.05	
Vashington	633	2,655		39,852	1,185	4,974
Vest Virginia	, 000	2,000	11,401	37,675	984	3,451
Visconsin	$1.87\overline{4}$	$6.\overline{266}$	$\bar{\mathbf{w}}$	7.7	1,721	11,361
/yoming	W W	0,200 W	w	W	1,634	4,614
ther	11,548	58,612	$1,\overline{050}$	5,304	1,805	10,178
Total ¹	180,000	900,700	103,400	505,200	32,500	157,900

W Withheld to avoid disclosing company proprietary data; included with "Other." $^1\mathrm{Data}$ may not add to totals shown because of independent rounding.

Table 9.—Volcanic cinder and scoria and miscellaneous crushed stone sold or used by producers in the United States in 1987, by State

(Thousand short tons and thousand dollars)

State	Volcanic ci scor		Miscellaneous stone	
	Quantity	Value	Quantity	Value
Alaska	845 490 93 255 18 222	3,217 2,137 665 1,294 	111 43 153 1,095 729 2,266 1 W W	610 W 956 3,361 2,345 3,815 W W
New MexicoOregon	113 860	310 2,833	W 766	2,328

Table 9.—Volcanic cinder and scoria and miscellaneous crushed stone sold or used by producers in the United States in 1987, by State —Continued

		State		Volcanic cinder and scoria		Miscellaneous stone	
And the second				Quantity	Value	Quantity	Value
Pennsylvania						6,749	27,953
Tennessee				·	-,-	W 269	1,942
Texas				100	$\bar{412}$	(1)	2
Virginia						W	w
Washington _				80	411	554	1,933
Other ²				581	2,610	6,280	32,697
Total ³				3,700	15,000	19,000	78,000

W Withheld to avoid disclosing company proprietary data; included with "Other."

**Less than 1/2 unit.

**Includes data for North Carolina, North Dakota, and Wyoming.

**Data may not add to totals shown because of independent rounding.

Table 10.—Kind of crushed stone produced in the United States in 1987, by State

Miscella-	**** * * * * * * *
Volcanic cinder N and scoria	* * * * * * * *
Slate	** * **
Quartzite	× × × × × × × × × × × ×
Sand- stone	**** *** ** * * ***
Trap- rock	× × × × ×××× × ×××× ×××
Granite	****** * * * * ***** *****
Shell	× × × × × ×
Marl	* * * * *
Marble	* * * * * * * * * * * * * * * * * * * *
Dolo- mite	× ×× ×× × × × × × × ×
Lime- stone	************************
State	Alabama Arkansa Arkansas Arkansas California Colorado Colorado Colorado Florida Hawaii Hawaii Hawaii Hawaii Hawaii Hunois Hillinois Hill

×××	××	×	××
×	×	×	
	×		
×	××		-
××	×××	<×	×
×	××	× ×	××
×	×××	××	×
×			
×			
×	××	×	×
×××	××	××	٠.
×××	×××	<××	××
Texas	Vermont	1 1 1	Guan Puerto Rico Virgin Islands

CONSUMPTION AND USES A SECOND TO SECOND THE SECOND STATES OF THE SECOND

Crushed stone production reported to the Bureau of Mines is actually material that was either sold or used by the producers. Stockpiled production is not reported. Therefore, the sold or used tonnage represented the amount of production released for domestic consumption or export in a given year. Because some of the crushed stone producers did not report a breakdown by end use, their total production, as well as the estimated production of nonrespondents, was included in the tables under "Other unspecified uses" starting with the 1983 survey. This change in the processing procedures should be taken into account when 1983 through 1987 use patterns are compared with prior years.

In 1987, U.S. consumption of crushed stone was 1.2 billion tons valued at \$5.2 billion, a 17.3% increase over the estimated consumption of 1986, and a 19.9% increase over the reported consumption of 1985. About 55% of this tonnage was used as construction aggregates, mostly for highway and road construction and maintenance, 9% for cement and lime manufacturing, 2% for agricultural purposes, 2% for a variety of industrial uses, and 32% for other unspecified uses. No significant changes occurred in the use patterns of crushed stone at the national level except for the large increase in the amount included under "Other unspecified uses."

Limestone.—Of the 792 million tons of crushed limestone consumed, 50% was used as construction aggregates, 13% for cement and lime manufacturing, and 3% for agricultural purposes. Owing to the significant increase in the amount of limestone included under "Other unspecified uses," from 138 million tons in 1985 to 261 million tons in 1987, a meaningful comparison of changes in the consumption of limestone by uses between 1985 and 1987 cannot be made. It is recommended that with any such comparison, the quantities and values included with "Other unspecified uses" be distributed among the reported uses being analyzed based on the following calculation: The percentage for each reported use should be calculated as a percentage of the U.S. total minus "Other unspecified uses"; the resulting percentages then should be applied to "Other unspecified uses" and the resulting quantities and values added to the reported uses published in the table.

Dolomite.—Of the 49 million tons of crushed dolomite consumed, 66% was used as construction aggregates, 3% as agricultural lime, 3% as flux stone, 1% for lime manufacturing, and 25% for other unspecified uses. An additional undefined amount of dolomite consumed in a variety of uses is reported with the limestone.

Marble.—Of the 5.6 million tons of crushed marble consumed, 25% was used as fillers and extenders, 9% was used for construction purposes, and 42% was used for other unspecified uses.

Calcareous Marl.—Of the 4.2 million tons of marl consumed, 98% was used for cement manufacturing and 1% was used for agricultural purposes.

Shell.—Of the 8.4 million tons of crushed shell consumed, 37% was used as construction aggregates and 62% for other unspecified uses.

Granite.—Of the 180 million tons of crushed granite consumed, 76% was used as construction aggregates, 5% was used as railroad ballast, and 19% was used for other unspecified uses.

Traprock.—Of the 103 million tons of crushed traprock consumed, 50% was used as construction aggregates, less than 2% was used as railroad ballast, and 48% was used for other unspecified uses.

Sandstone and Quartzite.—Of the 32 million tons of combined crushed sandstone and quartzite consumed, 60% was used as construction aggregates, 2% as railroad ballast, 1% for cement manufacturing, and 36% for other unspecified uses.

Slate.—Of the 2.3 million tons of crushed slate consumed, 63% was used for a variety of industrial applications and 37% was used as construction aggregates.

Volcanic Cinder and Scoria.—Of the 3.7 million tons of volcanic cinder and scoria consumed, 43% was used as construction aggregates, mainly for road construction and maintenance, and 52% was used for other unspecified uses.

Miscellaneous Stone.—Of the 19 million tons of miscellaneous crushed stone consumed, 71% was used as construction aggregates and 29% for other unspecified uses.

Table 11.—Crushed stone sold or used by producers in the United States in 1987, by use

	Use		Quantity	Value
Coarse aggregate (+1-1/2 inch)				- 74
Manadam (+1-1/2 mcn)		and the second second	10.688	44.00
Macadam			24.353	108.0
Riprap and jetty stone			6.497	27.57
			2,367	9.64
			2,301	3,04
Coarse aggregate, graded:			100.000	F04.00
			109,699	504,93
Bituminous aggregate, coars	se		72,626	339,9
	nt aggregate		25,148	116,4
Railroad ballast			16,471	67,76
Other graded coarse aggrega	ate		7,138	31,84
Fine aggregate (-3/8 inch):			1.55	
Stone sand, concrete			19.540	100,33
Stone sand bituminous mix	or seal		19.037	85.8
			25,328	101.44
			1.194	6.30
Coarse and fine aggregates:			-,	0,0
Coarse and time aggregates.	· •		194,872	717.3
			30.451	117.10
Unpaved road surfacing			2.438	11.9
	gate			
			63,670	263,98
	gates		5,477	16,6
Other construction material	s ¹		28,279	149,89
Agricultural:				1920
Agricultural limestone			20,602	93,80
Poultry grit and mineral foo	d		2,047	20,5
			391	2,5
Chemical and metallurgical:				
		*	93,233	270.3
			13,047	64.40
Dood humod delemite men	facture		650	5.4
	macture		5,998	28,4
			207	1.30
			755	6.6
			1,550	7,4
			1,000	1,48
Special:				
Mine dusting or acid water t	reatment		774	7,18
Asphalt fillers or extenders			1,634	11,8
Whiting or whiting substitu	te		403	12,2
Other fillers or extenders _			5,182	88,14
Roofing granules			1,672	8,7
			4.742	31,0
			381,969	1.767.2
Other unspecified uses		<u>-</u>	001,000	1,101,20
m . 14			1,200,100	5,248,60
Total ⁴			1,200,100	0,240,0

¹Includes dam construction and drain fields.

²Includes stone used in chemicals, disinfectant and animal sanitation, and refractory stone (including ganister).

³Includes production reported without a breakdown by use and estimates for nonrespondents.

⁴Data may not add to totals shown because of independent rounding.

Table 12.—Crushed limestone and dolomite sold or used by

(Thousand short tons)

- Clark		crete regate		ous aggre- ate		one and erings	Riprap and rail- road ballast	
State	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value
Alabama	5,054	21,577	4,633	16,868	2,863	10,773	1,079	4,030
Alaska					W	w		
Arizona	w	w	w	W	w	w		
Arkansas	188	787	364	w	929	3,401	488	1,839
California	w	W	w	W	525	1,123	. W	.W
Colorado			w	W	W	w		
Connecticut			1					
Florida	21,136	114,768	8,262	43,101	13,394	40,212	257	1,210
Georgia	1,220	6,741	1,511	7,478	2,525	13,242	79	382
Hawaii	259	2,524			215	1,658		
Idaho	-,-				50	125	1	
Illinois	4,969	19,765	6,025	27,874	16,196	58,860	1,252	6,167
Indiana	3,704	10,774	3,423	11,141	3,789	13,516	1,684	6,217
Iowa	1,942	9,338	3,873	17,871	4,905	18,256	116	505
Kansas	1,435	6,387	1,457	6,382	3,904	13,257	390	1,794
Kentucky	3,670	13,377	5,772	22,406	8,510	32,326	1,843	7,150
Maine	· W	W	- 1 - 1					
Maryland	1,175	4,996	527	2,694	700	3,124	177	792
Massachusetts	W	W	W	W		/		
Michigan	1.604	4,423	609	1.540	4.130	12.389	265	1.251
Minnesota	365	1,042	504	1.721	3,667	11.545	156	611
Mississippi	w	, w	w	w	w	. W	W	w
Missouri	4,502	17,304	3,463	13,508	10,288	36,208	3,604	11,540
Montana	4,002	11,001	0,100	10,000	10,200	00,200	0,001	11,010
Nebraska	$1.\bar{516}$	6.877	w	w	696	3,362	78	417
Nevada	1,510	0,011	. "	. **	000	0,002		711
New Jersey	w	w	w	w	. W	w		
New Mexico	256	529	74	220	736	2,696	$\bar{290}$	1,555
New York	2,150	11.317	5.572	26,782	3,583	16,846	999	5,038
North Carolina	523	2.887	, 3,512 W	20,102 W	912	4,749	w	0,000 W
North Carolina	2.912	10.349	2.213	8,883	13,112	45,217	1.049	4,034
OhioOklahoma	1,826	6,496	784	3,184	956	2,465	167	604
	1,020	0,400	104	0,104	300	2,400	101	004
Oregon	5,411	25,703	11,600	48,902	11,493	49,484	425	2,011
Pennsylvania	5,411	20,100	11,000	40,302	11,430	40,404	420	2,011
Rhode Island	$7\overline{19}$	3.696	482	2.197	1,788	4,506	w	w
South Carolina	'19 W	3,090 W	139			4,506 W	125	559
South Dakota				533	W 000		453	1.889
Tennessee	5,346	24,630	8,723	37,101	8,899	36,306		
Texas	11,561	45,334	8,201	36,820	27,177	60,964	863	4,374
Utah					20	40	3,230	W
Vermont	0.000	15 000	0.000	10 000	W	W		0.505
Virginia	3,393	15,670	2,222	10,623	3,947	15,103	814	3,595
Washington		2 222	22	104	1	3	4	18
West Virginia	641	2,289	455	1,897	330	1,340	63	281
Wisconsin	1,139	3,856	1,195	3,404	7,229	20,903	243	1,857
Wyoming	313	951	540	1,976	199	660	303	1,119
Total (excluding withheld)	88,930	394,386	82,645	355,212	157,667	534,658	543,084	70,837
Total withheld	1,703	6,578	1,271	8,193	2,273	8,426	W	8,277
	2,1.00		-,1			-,0		
Grand total ¹	90,633	400,964	83,916	363,405	159,940	543,084	20,494	79,114
Guam	w	620			W	w	W	10
Puerto Rico	941	4,753	75	411	w	W	W	w

W Withheld to avoid disclosing company proprietary data; included with "Total withheld" and "Other uses."
¹Data may not add to totals shown because of independent rounding.

²Less than 1/2 unit.

producers in the United States in 1987, by State and use

and thousand dollars)

		construc- n uses		ment Ifacture		ultural ses		me facture	Oth	er uses	Т	otal ¹
-	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value
	4,054 (²)	15,813 1	3,795	11,088	733	4,658	1,535	5,742	5,163 W	31,569 W	28,908 W	122,119 W
	w	w	$2,\overline{116}$	7.819					1,632	8,158	3,748	15,977
	177	538	2,110 W	W	169	1,181	w	w	2,896	11,698	5,210	19,443
	w	w	17,076	51,368	w	W	w	w	3,021	30,647	20.622	83,137
	w	w	W	W	w	w	W	w	2,565	10,701	2,565	10,701
	W	44			· W	247			377	2,060	377	2,350
	10,609	35,548	1,985	8,002	1,091	7,351			16,577	86,300	73,312	336,492
	822	4,590	W	W	W	W			4,444	19,946	10,600 1,337	52,377 9,093
	W	W	746	4,252	W	W			117 298	659 835	373	1.034
	1 047	$7,0\bar{2}\bar{7}$	W 1,762	W 4,999	25 4,639	74 16,367	$\bar{\mathbf{w}}$	$\bar{\mathbf{w}}$	15,246	74.665	52,036	215,724
	$\frac{1,947}{2,267}$	8,169	3,584	10,092	2,059	8,103	. **	. **	10,524	38,646	31,035	106,658
	1,814	7,803	2,811	7,385	2,546	15,931	W	$\tilde{\mathbf{w}}$	7.985	33,017	25,991	110,106
	1,927	7,146	3,001	8,056	291	795			6,385	22,489	18,788	66,306
	2,924	10,195	w	w	1,686	6,267	·w	w	18,834	81,196	43,239	172,916
	·		W	W	W	W			1,509	4,395	1,509	4,395
	1,472	6,660	2,660	7,914			W	W	12,082	67,923	18,793	94,102
	320	2,020			w	W	W	W	1,419	7,999	1,739	10,019
	347	1,100	5,386	9,053	212	1,084	3,528	W	21,687	78,246	37,769 7,381	109,086 24,057
	356	1,470			250	851			2,084 1,368	6,816 8,960	1,492	9,621
	2,956	W 12,217	$3,\bar{103}$	$7,\overline{552}$	124 1,881	662 6,063	w	w	23,033	75,037	52,832	179,430
	2,900	12,211	3,103 W	1,552 W	1,001	0,000			1,244	2,803	1.244	2.803
	$7\overline{62}$	4,154	w	w	329	2,069			936	2,582	4,316	19,461
			ŵ	w	w	w	w	w	1,121	5,247	1,121	5,247
	w	w	122		w	·W			w	W	W	W
	1,060	3,189	W	w					733	2,073	3,150	10,263
	2,905	11,773	4,019	9,802	123	948			10,425	49,672	29,776	132,178
	2,341	13,147	1 500	0.55	. W	W	$\tilde{\mathbf{w}}$	$1.4\bar{2}\bar{3}$	466	1,631 $212,587$	4,242 51,424	22,414 299,662
	2,053	6,793	1,538	3,913	1,437 79	6,464 224		,	27,110 15,587	59,513	23,911	81,318
	1,986 W	4,136 W	2,525 W	4,696 W	. 19	224			W	33,513 W	20,311 W	W
	7,785	26,758	7,427	31,590	1.144	$11.1\overline{24}$	1,620	11,972	26,824	140,168	73,729	347,711
	1,100	20,100			16	W			662	4,866	678	4,866
	1,844	8,029			w	ŵ			1,147	6,242	5,980	24,670
	74	300	$\bar{\mathbf{w}}$	w			w	w	3,533	10,016	3,872	11,408
	10,484	42,475	w	W	1,265	4,910	w	W	16,196	79,779	51,366	227,090
	2,636	5,930	9,247	20,595	326	949	724	2,995	20,276	77,509	81,012	255,470
		$\bar{\mathbf{w}}$	1,438	4,352	6	98	W	W	1,758 1,807	14,011 8,065	6,453 1,807	18,501 8,065
	W		1,114	6,798	$7\overline{13}$	6,605	·w	$\bar{\mathbf{w}}$	5,656	8,065 31,395	21,734	103,871
	3,876	$14,083 \\ 71$	1,114	6,198	7	32			1,066	3,265	1.103	3,498
	$\frac{5}{1,143}$	5,129	w	w	33	318			8,073	28,331	10,737	39,586
	513	1,123	w	w	879	4,472	$\bar{\mathbf{w}}$	w	8.052	25,281	19,249	60,896
	119	458	w	w					226	525	1,698	5,689
	71,573	267,889	75,331	219,325	22,064	107,846	7,408	22,132		1,467,523		3,439,806 16,812
_	1,350	6,616	11,456	33,752	819	7,742	6,284	47,671	2,848	16,811	2,848	
	72,923 W	274,505 W	86,787	253,077	22,883	115,588	13,692	69,803	XX	XX	841,100 355	3,456,600 2,289
	W	w	$\bar{\mathbf{w}}$	$5,9\overline{02}$						13,154	5,377	24,221

XX Not applicable.

Table 13.—Crushed limestone and dolomite sold or used by producers in the United States in 1987, by use

	Limes	tone	Dolomite		
Use —	Quantity	Value	Quantity	Value	
Coarse aggregate (+1-1/2 inch):	and the second				
Macadam	8.041	30,428	169	. 74	
Riprap and jetty stone	14,945	55,614	487	2,01	
Filter stone	4,526	17,886	171	65	
Other coarse aggregate	1,191	4,742	697	2.41	
Coarse aggregate, graded:	-,	-,			
Concrete aggregate, coarse	71.095	306.531	4,290	20.09	
Bituminous aggregate, coarse	45,749	198,658	3,750	17.55	
Bituminous aggregate, coarseBituminous surface-treatment aggregate	16,992	73,756	1.075	4.26	
	4,232	16,550	1,099	4.93	
Railroad ballast	568	2,299	3,400	10,83	
Other graded coarse aggregate	500	2,299	0,400	10,00	
Fine aggregate (-3/8 inch):	13.569	65,116	1.073	6,35	
Stone sand, concrete					
Stone sand, bituminous mix or seal	9,581	39,950	1,302	5,15	
Screening, undesignated	16,866	64,427	430	1,10	
Stone sand, induminous link of seal Screening, undesignated Other fine aggregate	607	2,867			
Coarse and fine aggregates:		1.5	3 111		
Graded road base or subbase	117,348	385,981	7,676	27,6	
Unpaved road surfacing	24,200	88,732	616	2,4	
Terrazzo and exposed aggregate	590	1.938	(¹)	100	
Crusher run, fill or waste	33,638	126,501	2.112	8.2	
Other coarse and fine aggregates	1,304	4,472	3,016	7.4	
Other construction materials ²	9,265	36,722	339	1.5	
Other construction materials	5,200	00,122		1,0	
Agricultural: Agricultural:	19.081	82.679	1.521	11.1	
Agricultural limestone	1.958	19.993	1,021	11,1	
Agricultural: Agricultural limestone Poultry grit and mineral food	218	1,493	29	1.	
Other agricultural uses	218	1,495	29	,1	
nemical and metallurgical:	05 500	055 405			
Cement manufacture		255,467			
Lime manufacture	12,499	62,071	542	2,3	
Dead-burned dolomite manufacture	67	716	w		
Flux stone	4,498	20,887	1,237	5,1	
Chemical stone	189	1,287	W	• • • • • •	
Glass manufacture	755	6,642			
Sulfur oxide removal	1,550	7,458			
Special:				100	
Mine dusting or acid water treatment	691	6,273	W .		
Asphalt fillers or extenders	1.495	10,921	. W		
Whiting or whiting substitute	213	7.221	W	1	
Other fillers or extenders	3,513	53,727	147	1.6	
Roofing granules	206	1,744	8	-,-	
Donor monufacture	w	,,, v			
Paper manufactureOther miscellaneous uses ³	2,463	15.962	1.208	8,0	
Other miscellaneous uses					
Other unspecified uses ⁴	260,953	1,172,003	12,259	54,9	
Total ⁵	792,450	3,249,700	48,650	206,9	

W Withheld to avoid disclosing company proprietary data; included with "Other miscellaneous uses."

Included with "Other construction materials."

Includes stone used in dam construction and drain fields.

Includes stone used in chemicals, disinfectant and animal sanitation, waste material, and data indicated by symbol W.

Includes production reported without a breakdown by use and estimates for nonrespondents.

Data may not add to trads shown because of independent counding.

⁵Data may not add to totals shown because of independent rounding.

Table 14.—Crushed marble sold or used by producers in the United States in 1987, by use (Thousand short tons and thousand dollars)

A CONTRACTOR OF THE CONTRACTOR	Use	Quantity	Value
Coarse aggregate, graded		12	100
Fine aggregate (-3/8 inch):			
Screenings, undesignated		2	36
Other fine aggregate		3	25
Coarse and fine aggregates:			
Graded road base or subbase		373	W
Terrazzo and exposed aggregat	e	80	1.594
Crusher run or fill or waste		15	79
Other construction materials ¹		27	2.110
Chemical and metallurgical: Lime	manufacture	5	92
Special: Whiting or whiting substi	tute and fillers	1,530	37,031
Other miscellaneous uses2		1,195	7.050
Other unspecified uses 3		2,335	14,304
Total4		5,600	62,300

W Withheld to avoid disclosing company proprietary data; included with "Other unspecified uses."

Table 15.—Crushed granite and traprock sold or used by producers in the United States in 1987, by use

Use	Gra	nite	Traprock		
. Ose	Quantity	Value	Quantity	Value	
Coarse aggregate (+1-1/2 inch):					
Macadam	1.185	6,115	456	2,701	
Riprap and jetty stone	5.008	30,641	2,293	10,765	
Filter stone	1.180	5.522	254	1.512	
Other coarse aggregate	1,100	0,022	326	2,087	
Coarse aggregate, graded:	·	~ ~ .	020	2,001	
Concrete aggregate, coarse	23,589	123,805	6,561	34,235	
Bituminous aggregate, coarse	15,722	85.549	4.941		
Bituminous surface-treatment aggregate	3,609	19,995	1,962	25,870	
	8,692			10,108	
Other graded coarse aggregate	40	34,502	1,682	7,290	
Fine aggregate (-3/8 inch):	40	126	2,746	17,543	
	0.000	10.700		0.00	
Stone sand, concrete	2,990	13,788	613	8,129	
Stone sand, bituminous mix or seal	5,447	26,366	1,300	6,499	
Screening, undesignated	6,717	30,781	231	1,025	
Other fine aggregate	267	1,408	298	1,920	
Coarse and fine aggregates:					
Graded road base or subbase	34,814	159,063	21,016	84,777	
Unpaved road surfacing	1,555	7,533	2,605	10.319	
Terrazzo and exposed aggregate	859	3,560	62	358	
Crusher run or fill or waste	20.471	98,868	3,156	13,270	
Other coarse and fine aggregates	48	126	736	3,538	
Other construction materials	13,236	83,122	2,225	14,201	
Other miscellaneous uses1	1.144	5,235	650	3.341	
Other unspecified uses ²	33,398	164,577	49,298	245,699	
ampromie abou	00,000	104,811	40,200	440,099	
Total ³	180,000	900,700	103,400	505,200	

¹Includes roofing granules, granite used in poultry grit and mineral food, and traprock.

Includes agricultural stone, cement manufacture, and roofing granules.

Includes production reported without a breakdown by use, estimates for nonrespondents, and data indicated by symbol W.

4Data may not add to totals shown because of independent rounding.

Includes production reported without a breakdown by end use and estimates for nonrespondents. ³Data may not add to totals shown because of independent rounding.

Table 16.—Crushed sandstone and quartzite sold or used by producers in the United States in 1987, by use

(Thousand short tons and thousand dollars)

	Sands	tone	Quar	tzite
Use	Quantity	Value	Quantity	Value
Coarse aggregate (+1-1/2 inch):				
Macadam	325	1,186		
Riprap and jetty stone	1.086	5,736	125	619
Filter stone	227	1,417	14	104
Other coarse aggregate	6	114		
Coarse aggregate, graded:				
Concrete aggregate, coarse	1.716	9.665	1,123	5,30
Bituminous aggregate, coarse	1,952	9,834	256	1.18
Bituminous surface-treatment aggregate	673	3,923	186	77
Railroad ballast	292	1.837	400	2,18
Railroad ballast	72	306		_,
Other graded coarse aggregate	12	000		
Fine aggregate (-3/8 inch):	1.126	6.111	357	1.63
Stone sand, bituminous mix or seal	938	5.832	20	6
Screening, undesignated	704	2,229	20	
Other fine aggregate	104	2,223		
Coarse and fine aggregates:	5,430	23,584	911	4.39
Graded road base or subbase	346	1.647	69	29
Unpaved road surfacing		625	09	20
Terrazzo and exposed aggregate	82		- 3	. 1
Crusher run or fill or waste	1,311	4,939		
Other construction materials	424	2,265	534	2,88
Chemical and metallurgical:				0.5
Cement manufacture	197	842	139	97
Flux stone	· · · · · ·		262	2,44
Special:				
Asphalt fillers or extenders	20	W	7.5	_
Refactory stone			25	7
Other fillers or extenders			3	1
Other miscellaneous uses ¹	69	836		_
Other unspecified uses ²	10.101	46,204	970	5,84
Other anspermen uses		,		
Total ³	27,100	129,100	5,400	28,80

W Withheld to avoid disclosing company proprietary data; included with "Other miscellaneous uses."
¹Includes stone used in poultry grit and mineral food and data indicated by symbol W.

²Includes production reported without a breakdown by end use and estimates for nonrespondents.

³Data may not add to totals shown because of independent rounding.

Table 17.—Crushed volcanic cinder and scoria sold or used by producers in the United States in 1987, by use

(Thousand short tons and thousand dollars)

Use	Quantity	Value
Coarse aggregate (+1-1/2 inch): Riprap and jetty stone	8	40
Concrete aggregate, graded: Concrete aggregate, coarse	396	927
Coarse and fine aggregates: Graded road base or subbase	426	1,951
Unpaved road surfacing	212	1,083
Terrazzo and exposed aggregate	207	1,567
Crusher run or fill or waste	65	670 954
Other construction materials ¹	278 157	599
Other miscellaneous uses ² Other unspecified uses ³	1,908	7,161
Total ⁴	3,700	15,000

¹Includes railroad ballast, bituminous aggregate (coarse), fine aggregate, stone sand, and screening.

Includes railroad ballast, bituminous aggregate (totals), fine against a against a fine fine fine roofing granules and a minor amount of stone used for agricultural purposes.

Includes production reported without a breakdown by use and estimates for nonrespondents. ⁴Data may not add to totals shown because of independent rounding.

Table 18.—Crushed miscellaneous stone¹ sold or used by producers in the United States in 1987, by use

(Thousand short tons and thousand dollars)

Use	Quantity	Value
Coarse aggregate (+1-1/2 inch):		
Macadam	511	2,832
Riprap and jetty stone	396	2,259
Other coarse aggregate	83	217
Coarse aggregate, graded:		
Concrete aggregate, coarse	929	4,375
Bituminous aggregate, coarse	231	1,118
Bituminous surface-treatment aggregate	630	3,551
Other graded coarse aggregate	300	628
Fine aggregate (-3/8 inch):	-	,
Stone sand, concrete	134	536
Stone sand, bituminous mix or seal	112	425
Coarse and fine aggregates:		120
Graded road base or subbase	6,878	28,650
Unpaved road surfacing	846	5,073
Terrazzo and exposed aggregate	105	510
Crusher run or fill	2,898	11,389
Other coarse and fine aggregates	358	797
Other construction materials ²	3,098	16,243
Agricultural: Other agricultural purposes	75	409
Chemical and metallurgical: Cement manufacture	4.051	7.238
Other miscellaneous uses ³	1,553	8,524
Other unspecified uses ⁴		56.116
Other unspectified uses	10,724	90,110
Total ⁵	33,900	150,900

¹Includes marl, other stone, shell, and slate.

⁵Data may not add to totals shown because of independent rounding.

PRICES

Compared with that of 1985, the 1987 average unit price of crushed stone increased 8% to \$4.37. By kind of stone, the average unit prices showed increases of 46% for shell, 33% for marble, 26% for slate, 9% for granite and sandstone and quartzite, 7% for limestone, and 5% for

traprock. At the same time, the average unit prices decreased by 10% for marl, 4% for miscellaneous stone, and 3% for volcanic cinder and scoria. Despite the increase in the reported output of crushed dolomite in 1987, the average unit price remained unchanged at \$4.25.

TRANSPORTATION

Of the total crushed stone produced, 51% was transported by truck from the processing plant or quarry to the first point of sale or use, 4% was transported by rail, and 3%

by waterway. For about 40% of the total crushed stone produced in 1987 no means of transportation was reported by the producers or the production was used on-site.

Includes filter stone, lightweight aggregate, railroad ballast, and undesignated screenings.

³Includes fillers or extenders and roofing granules.

Includes production reported without a breakdown by end use and estimates for nonrespondents.

Table 19.—Crushed stone sold or used by producers in the United States in 1987, by method of transportation

The second of th	Method of transportation	The second secon	Quantity	Percent
Truck Rail			 613,760 50,435 29,271	51 4 3
Other Not transported			 26,968 479,696	2 40
Total			 ¹1,200,100	100

¹Data do not add to total shown because of independent rounding.

FOREIGN TRADE

Exports.—Compared with those of 1986, exports of crushed stone increased 10.3% to 3.2 million tons, while the value decreased 29.5%. About 97% of the exported crushed stone was limestone, of which more than 99% was exported to Canada.

Imports.—Imports of crushed stone increased 25.5% to 3.6 million tons, and 14.7% in value to \$12.5 million. About 37% of this tonnage was limestone, 84% of which came from Canada, 8% from the Bahamas, and 5% from Mexico.

Imports of calcium carbonate fines decreased 25% to 263,000 tons, and 2% in value to \$1.5 million. Eighty-six percent of the natural chalk came from the Bahamas, while most of the processed calcium carbonate was imported from France, 84%; the United Kingdom, 7%; and Japan, 5%.

Shipments of crushed stone from Scotland, the United Kingdom, and Nova Scotia, Canada, into the United States continued in 1987 and were mostly responsible for the increase in total imports. The imported crushed stone, used mostly as con-

struction aggregates, was distributed in North Carolina, South Carolina, Florida, Louisiana, and Texas. This trend was expected to increase significantly as a result of recent developments in Canada and Mexico. The Newfoundland Resources & Mining Co. Ltd. of Mississauga, Ontario, Canada, a subsidiary of Explaura Holdings PLC of London, United Kingdom, is developing a crushed stone quarry in Lower Cove, Newfoundland, Canada. The company plans to market its high-quality crushed limestone to end users in the construction, chemical, metallurgical, and mining industries on the east coast of Canada and the United States. The quarry is expected to become operational in 1989. Vulcan of Birmingham, AL, formed a joint venture with Mexico's Calizas Industries del Carmen S.A. to develop a limestone quarry on the Yucatan Peninsula that will produce construction aggregates to be marketed in Florida, Louisiana, and Texas. The shipments of crushed stone are expected to begin in late 1988 or early 1989.

Table 20.—U.S. exports of crushed stone in 1987, by destination

(Thousand short tons unless otherwise specified)

4 10 10 10	Destination	Quartzite	Limestone ¹	Other	Total
North America:	,	The second second			
			1 -	182	182
			893		893
			3,105,138	67,772	3,173,725
	ic			413	413
Leeward and Wind	ward Islands			1,719	1,719
Mexico		908	321	4,578	5,807
			55	24	227
Total		1,871	3,106,407	74,688	3,182,966
South America:					
On 13			751	21	772
				113	113
			$\overline{63}$	1,164	1,286
See footnote at end	of table.				

Table 20.—U.S. exports of crushed stone in 1987, by destination —Continued

(Thousand short tons unless otherwise specified)

Destination	Quartzite	Limestone ¹	Other	Total
South America —Continued				Total
Other				
		13	85	9
Total	59	827	1,383	2,26
Europe: France Germany, Federal Republic of Netherlands	366 1,171		18,253 253	18,61: 1,42
Other	591 469 392	55 15	1,514 425	59: 2,03: 83:
Total	2,989	70	20,446	23,50
Asia: — Japan Korea, Republic of Taiwan Other	3,064 1,499 54 84	64 38	2,223 54 298 273	5,351 1,553 390 357
Total	4,701 231 20	102 1,434	2,848 2,655 121	7,651 4,320 141
Grand total thousands	9,871 \$6,337	3,108,840 \$15,412	102,141 \$4,313	3,220,852 \$26,063

¹Includes ground limestone.

Source: Bureau of the Census.

Table 21.—U.S. imports for consumption of crushed stone and calcium carbonate fines, by type

(Thousand short tons and thousand dollars)

Type -	198	36	1987		
Туре	Quantity	Customs value	Quantity	Customs value	
Crushed stone and chips: Limestone Marble, breccia Quartzite Slate Other	1,454 3 6 5 1,396	6,466 190 335 76 3,836	1,330 3 67 1 2,193	4,775 333 1,234 66 6,092	
Total ¹	2,864	10,902	3,595	12,500	
Calcium carbonate fines: ² Natural aragonite ³ Chalk, whiting	345 5	948 600	25 7 5	856 668	
Total ¹	351	1,548	263	1,524	
Grand total ¹	3,215	12,451	3,858	14,024	

¹Data may not add to totals shown because of independent rounding.

²Excludes precipitated calcium carbonate.

³Includes some chalk and other calcareous materials.

Source: Bureau of the Census.

WORLD REVIEW

Canada.—The 1986 production of stone in Canada was 107.6 million tons valued at \$489 million; about 95% of this output was crushed stone. The Province of Ontario continued to be the largest producer of stone with 45 million tons valued at \$226 million, followed by Quebec with 36 million tons valued at \$172 million. Preliminary estimates for 1987 stone production indicate an increase of about 11% to 117 million tons valued at \$547 million, with the Province of Ontario accounting for about 48% of the total output.

United Kingdom.—The 1986 production

of crushed stone for construction purposes was 137 million tons, as reported by the British Aggregate Construction Materials Industries Association. About 79% of this output was limestone and dolomite. The Southwest was the largest producing region with 40.0 million tons, followed by East Midlands with 38.3 million tons, and Wales with 26.2 million tons. About 64% of the total crushed stone production was limestone and 28% was igneous rock. Preliminary production figures for 1987 indicated an increase of about 16% compared with those of 1986.

TECHNOLOGY

The introduction of sophisticated electronic equipment and computer systems used to improve the efficiency of mining and processing operations continued in the crushed stone industry. On the increase was the use of computer programs that formulate plant design, including selection of types and sizes of crushers and screens. complete with blueprints and flow diagrams. The use of computerized systems that provide a high degree of automation in the day-to-day operation of the plant, quality control, and computerized truck dispatch systems was also on the upswing in crushed stone quarries. Operations such as blasting, excavation, crushing and screening, and loading and hauling, have advanced into highly technical disciplines that use a wide range of automated equipment. In addition to investing in larger equipment, most producers can significantly improve the efficiency of their operations through automation.

In August, Genstar Stone Products Co. of Hunt Valley, MD, a subsidiary of Redland PLC of Groby, United Kingdom, dedicated a \$10 million crushed stone plant at its Texas, MD, quarry. The plant is controlled by a sophisticated central computer system that allows the simultaneous production of as many as eight different products, ranging from riprap to manufactured sand. The entire plant is run by three operators, one in the central computer control room, one in the primary crusher control room, and one on the ground. Twelve closed-circuit TV monitors and two computer screens in the central control room provide a continuous visual display of the operating status of each of the main plant sections. They also

provide the operator with information about production rate, cumulative production figures, plant running times and down times, as well as a daily log of events. Genstar's Texas quarry is considered to be one of the most technologically advanced automated quarries in the world.²

Construction of a pilot plant that will convert phosphogypsum, a waste product of the phosphate industry, into aggregates for road and building construction was started in August 1987. The pilot plant is being built in Convent, LA, by Freeport-McMoRan Inc. to test a new proprietary technology developed by Davy McKee Corp. and the Florida Institute of Phosphate Research. In the process, a mixture of phosphogypsum, petroleum coke, waste phosphoric clays, and pyrites is fed onto a circular grate and is processed in a series of sealed zones on the grate. The raw gas, high in SO2, is collected and fed to a metallurgical-type sulfuric acid plant, and the sintered, clinker-like byproduct is discharged from the grate in dry form. The pilot plant is designed to convert 35 tons per day of phosphogypsum into 29 tons per day of sulfuric acid and 25 tons per day of aggregates. The pilot plant will cost \$2 million to construct and another \$1 million to operate for 6 months. The breakthrough in developing an economical process to convert phosphogypsum into useful products comes at a time when disposal of the byproduct waste had become an environmental issue in Louisiana.3

Hillhead '87 Review, the fourth biennial quarry exhibition featuring actual equipment working at the show site, was held at Tarmac's Hillhead Quarry, near Buxton,

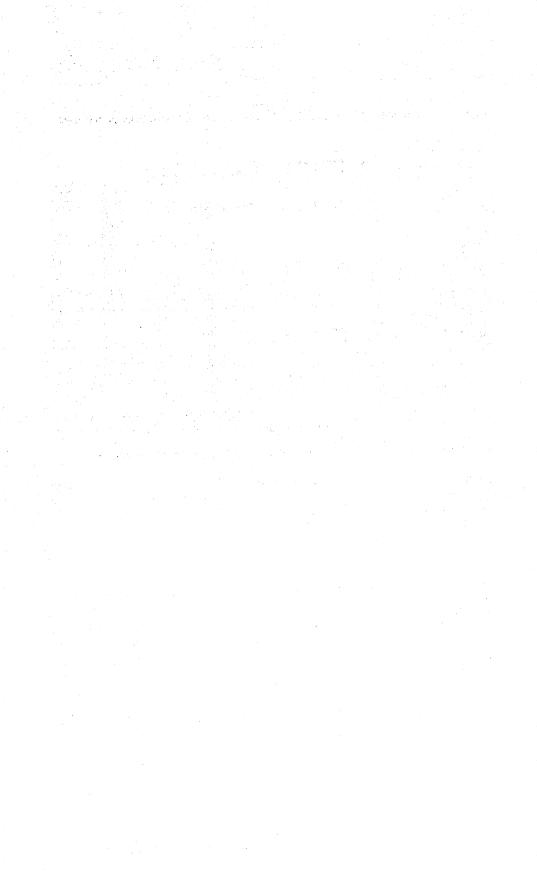
Derbyshire, United Kingdom. A wide range of loaders, crawlers, trucks, specialized railroad cars, mobile and stationary crushers, rock breakers, screening plants, and heavy construction equipment were put to work in the quarry during the show. In addition, more than 100 exhibitors displayed static equipment and accessories in a large pavilion at the center of the quarry. This international exhibition is becoming one of the most important quarrying and heavy construction equipment shows in the world.4

Results of various techniques that were tested over the years indicate that high calcium carbonate limestone is the product of choice for reducing the acidity of contaminated lakes and streams in Canada, Finland, Norway, Sweden, and the United States. Limestone is relatively inexpensive, noncaustic, dissolves easily, and is easy to handle. The limestone used for liming surface waters comes in three forms: dry powder that is used in lakes, preslurried materi-

al used in streams, and granular limestone used in rivers. Sweden was the first country to use limestone for treatment of acidic surface waters. Between 1977 and 1982, 1,500 lakes and streams were treated in Sweden as part of an experimental program. Later the program was extended to one-half of the country's surface waters. In the United States, 81 projects were initiated to assess the adverse effects of acid deposition on lakes and streams, while experimental liming projects were conducted in Maryland, Massachusetts, Minnesota, Tennessee, and West Virginia.5

¹Physical scientist, Branch of Industrial Minerals

²Hill, B. Automation Repays Investment at U.S. Quarry.


²Hill, B. Automation Repays Investment at U.S. Quarry. Quarry Mgmt. (Nottingham), May 1988, pp. 9-22.

³Rukavina, M. Phosphate Industry Hopes To Turn Phosphogypsum Waste Into Aggregates. Rock Prod., v. 90, No. 9, Sept. 1987, pp. 17, 78.

⁴Huhta, R. S. Highlights of Hillhead. Rock Prod., v. 90, No. 9, Sept. 1987, pp. 53-59.

Hillhead '87 Review. Quarry Mgmt., July 1987, pp. 9-20.

⁵Roehlkepartain, J. L. Limestone: Key to Renovating Acidic Lakes and Streams. Rock Prod., v. 90, No. 2, Feb. 1987, pp. 21-24.

Dimension Stone

By Harold A. Taylor, Jr.1

Production of dimension stone increased slightly to 1.18 million short tons valued at \$190 million. More than one-half of the dimension stone produced was granite. Limestone, marble, sandstone, and slate were also produced.

Exports of dimension stone increased 40% in value to \$20 million. The value of dimension stone imports for consumption increased 16% to \$439 million, equivalent to 231% of the value of domestic production.

Domestic Data Coverage.—Domestic pro-

duction data for dimension stone are developed by the Bureau of Mines from voluntary surveys of U.S. producers of rough and finished dimension stone. Of the 442 dimension stone operations surveyed, including those that were idle, 415, or 94%, responded, representing 97% of the total value sold or used by producers, as shown in table 1. Production data for nonrespondents were estimated using preliminary production reports, adjusted prior years production levels, and employment data.

Table 1.—Salient U.S. dimension stone statistics

(Thousand short tons and thousand dollars)

	1983	1984	1985	1986	1987
Sold or used by producers ¹	1,090	*1,141	1,104	e1,163	1,184
Value ¹	\$147,843	*\$161,912	\$172,435	e173,269	\$190,153
Exports (value)	19,126	\$23,007	\$13,835	\$14,623	\$20,470
Imports for consumption (value) ^r	\$191,663	\$222,596	\$291,246	\$379,724	\$439,278

^eEstimated. ^rRevised.

DOMESTIC PRODUCTION

In 1987, dimension stone was produced by 185 companies at 271 quarries in 35 States. Leading States, in order of tonnage, were Indiana, Georgia, and Vermont, producing together 39% of the Nation's total. Georgia's output was down 10% from the vear before, and Indiana's down 4%. Of the total 1987 production, 52% was granite, 28% was limestone, 10% was sandstone, 3% was slate and 2% was marble. The remaining 5% was miscellaneous stone, including argillite, schist, soapstone, and traprock (basalt). Leading producing companies in terms of tonnage were Cold Spring Granite Co. principally in California, Minnesota, South Dakota, and Texas; Rock of Ages Corp. in New Hampshire and Vermont; and Coggins Granite Industries Inc. in Georgia.

Granite.—Dimension granite includes all coarse-grained igneous rocks. Production increased slightly to 629,000 tons and increased 10% in value to \$107 million. Granite was produced by 64 companies at 103 quarries in 22 States. Georgia continued to be the leading State, producing 26% of the U.S. total, followed by Vermont and Massachusetts. These three States together produced more than 51% of the U.S. total. Cold Spring Granite, Rock of Ages Corp., and Coggins Granite Industries were the leading producers and accounted for 31% of U.S. production.

¹Excludes Puerto Rico.

In December, the International Trade Administration, U.S. Department of Commerce, made a preliminary positive countervailing duty determination on granite products from Spain. A number of Spanish manufacturers had received subsidies such as short-term Government loans to exporters, and rebates of interest, grants, and preferential access to Government credit under a regional development program to encourage employment in the Province of Galicia. Furthermore, Basque-area authorities provided subsidies through cash grants for making investments in capital goods. This action was preliminarily determined not to be countervailable. Several other subsidy programs were not used and several are still being investigated. Except for two firms with different rates, the net subsidy was determined to be 2.51%. Barring difficulties, the final determination was to be made by March 3, 1988. If the determination is positive, the U.S. International Trade Commission (ITC) will determine whether these imports injure the U.S. industry.

Also in December, the International Trade Administration made a preliminary negative countervailing duty determination on granite products from Italy. This determination of no benefit is based on a net subsidy of zero for almost all responding firms and a de minimis subsidy of 0.36% for all other firms, including those firms that did not respond to requests for information. The countervailable programs identified were a reduction in social security payments for firms in the Mezzogiorno, a regional loan program, and local tax concessions. Although one firm was found to have a de minimis benefit from a local tax concession. Some programs did not confer a subsidy. Those included an accelerated depreciation and tax exemptions for reinvested capital gains. Others, such as a rebate of customs duties, export credit financing, and preferential rates on Italian railroads, were not used. A final negative determination would end the case, but a positive finding would move it to the ITC for an injury determination.

Limestone.-Dimension limestone in-

cludes bituminous, dolomitic, and siliceous limestones. It was produced by 38 companies at 45 quarries in 13 States. Indiana, the leading State, was followed by Wisconsin and Texas. Leading producers were Indiana Limestone Co. Inc., Elliott Stone Co. Inc., and Independent Limestone Co. The top three companies accounted for 28% of U.S. output.

Marble.—Dimension marble includes certain hard limestones, travertines, and any other calcareous stones that can be polished. Dimension marble was produced by 7 companies at 10 quarries in 6 States. Georgia, Vermont, and New Mexico, in order of tonnage, were the leading States, accounting for approximately 85% of U.S. output. Leading producers were Georgia Marble Co., Vermont Marble Co., and Rocky Mountain Stone Co. The top three companies accounted for 85% of U.S. output.

Sandstone.—Dimension sandstone includes calcareous- and siliceous-cemented sandstones or conglomerates. Quartzite, which is also included, may be described as siliceous-cemented sandstone. It was produced by 35 companies at 40 quarries in 17 States. Leading States were, in order of volume, Ohio, New York, and Pennsylvania. These three States accounted for almost two-thirds of U.S. output. Delaware Quarries Inc., Waller Bros. Stone Co., and Standard Slag Co. were the leading producers, accounting for 39% of U.S. production. In addition to the quantities shown in table 6, dimension quartzite totaled 19,451 tons worth \$1,465,315.

Slate.—Dimension slate was produced by 19 companies at 29 quarries in 5 States. The two leading producing States, in order of volume, Pennsylvania and Vermont, accounted for 75% of U.S. output. The top three producers, A. Dally and Sons Inc., Hilltop Slate Co., and Le Sueur-Richmond Slate Co. Inc., accounted for an estimated 54% of U.S. output by value.

Miscellaneous Stone.—Miscellaneous dimension stone, including traprock, was produced by 10 companies from 10 quarries in 4 States, and totaled 17,961 tons valued at \$1,232,624.

Table 2.—Dimension stone sold or used by producers in the United States, by State

	19	86 ^e	19	87
State	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Value (thousands
Alabama	7,797	\$968	w	W
Arkansas	5,145	305	10.541	\$629
	22,794	2,582	33,335	4.554
California Colorado	3,600	255	3,000	133
	24,425	1,653	18,140	1.646
Connecticut	198,905	20,678	179,207	21,68
Georgia			179,207 W	21,000 W
[llinois	1,750	107		
Indiana	190,995	20,252	183,609	23,11
Kansas	W	W	11,423	44
Maine	W	w	7,512	5,924
Maryland	20,505	1,286	22,843	1,510
Massachusetts	78,728	14,928	76,579	12,74
Michigan	5,836	148	W	W
Minnesota	27,973	10.507	41,354	12,96
Missouri	w	W	3,212	454
New Hampshire	82.294	6,451	67,479	10.684
New Mexico	21.615	378	21.893	620
	15,637	3.002	38,553	5.82
New York		6,633	32,669	5.12
North Carolina	41,418		47.816	2,42
Ohio	35,698	2,708		
Oklahoma	18,503	913	8,311	86
Pennsylvania	72,352	8,100	60,118	10,17
South Carolina	7,550	533	2,319	313
South Dakota	54,934	18,399	50,718	18,20
Fennessee	5,598	1,553	3,360	573
l'exas	49,457	15,407	75,426	10,030
Utah	W	W	2.004	98
Vermont	104.610	27.075	103,923	30.07
Virginia	9.542	3,128	9.077	2,720
	1,223	69	297	42
Washington	22,912	2,878	36,903	3,69
Wisconsin Other ¹	31,551	2,371	32,228	2.86
лner	31,001	2,011	02,220	2,000
Total ²	1,163,347	² 173,269	1,183,849	190,15

Table 3.—Dimension granite sold or used by producers in the United States, by State

	19	86 ^e		1987 ^p	
State	Quantity (short tons)	Value (thousands)	Quantity (short tons)	Cubic feet (thousands)	Value (thousands
California	15,075 11,742	\$1,257 826	16,525 W	202 W	\$3,410 W
Georgia	166,504	9,504	166,108	1,652	11,054
Maine	· w	W	7,512	91	5,924
Massachusetts	w	W	74,079	866	12,372
New Hampshire	81,647	6,423	67,479	818	10,684
North Carolina	28,813	4,675	28,526	346	4,786
Oklahoma	6,346	762	5,950	70	796
Pennsylvania	9,132	1,898	12,516	149	2,566
South Carolina	8,052	568	2,319	28	312
South Dakota	53,402	18,236	50,718	541	18,209
Texas	w	W	46,717	545	6,935
Vermont	97,267	14,661	83,660	1,012	15,400
Wisconsin	3,253	1,956	2,730	31	2,241
Other ¹	144,009	36,239	64,526	756	12,367
Total ²	625,242	97,005	629,365	7,106	107,056

^eEstimated. ^pPreliminary. W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes data for Colorado, Maryland, Minnesota, Missouri, New York, South Carolina, Virginia, Washington, and data indicated by symbol W.

²Data may not add to totals shown because of independent rounding.

^eEstimated. W Withheld to avoid disclosing company proprietary data; included with "Other." ¹Includes data for Arizona, Idaho, Iowa, Montana, Oregon (1986), and data indicated by symbol W. ²Data may not add to totals shown because of independent rounding.

CONSUMPTION AND USES

Dimension stone was marketed over wide areas. Industry stockpiles were not monitored, and production during 1987 was assumed to equal consumption.

Consumption of domestic dimension stone decreased slightly to 1.18 million tons valued at \$190.2 million. Dressed ashlars and partially squared pieces made up 24% of the total value of consumption, followed by dressed monumental, 14%; rough stone used for monumental purposes, 14%; curb-

ing, 12%; rough blocks for building and construction, 10%; and other uses, 26%.

Of the total consumption of domestic granite, 24% by value was of rough monumental, 23% was of ashlars and partially squared pieces, and 22% was curbing.

Consumption of domestic limestone totaled 329,800 tons valued at \$35.0 million, of which 33% by value was of ashlars and partially squared pieces and 28% was of rough blocks for building and construction.

Table 4.—Dimension limestone sold or used by producers in the United States in 1987, by State

	State	Quantity (short tons)	Cubic feet (thousands)	Value (thousands
Indiana Kansas Texas Wisconsin_ Other ¹		179,809 11,423 28,707 31,584 78,318	2,480 149 370 373 989	\$22,890 445 3,095 1,297 7,240
Total ²		329,843	4,361	34,968

¹Includes Alabama, California, Iowa, Minnesota, Montana, New York, Ohio, and Virginia.

²Data may not add to totals shown because of independent rounding.

Table 5.—Dimension marble sold or used by producers in the United States in 1987, by State

State	Quantity	Cubic feet	Value
	(short tons)	(thousands)	(thousands)
MassachusettsOther 1	2,500	25	\$375
	21,871	258	20,038
Total	24,371	² 282	20,413

¹Includes Georgia, New Mexico, Tennessee, and Vermont.

Table 6.—Dimension sandstone sold or used by producers in the United States in 1987, by State

State	Quantity (short tons)	Cubic feet (thousands)	Value (thousands)
Arkansas	10,541	132	\$629
California	['] 6	(1)	1
Indiana	3,800	49	225
New York	24,288	311	2,117
Ohio	28,597	391	2,336
Pennsylvania	24,003	308	922
Wisconsin	12	(¹)	1
Other ²	25,039	316	1,067
Total	116,286	³ 1,506	7,298

¹Less than 1/2 unit.

³Data do not add to total shown because of independent rounding.

²Data do not add to total shown because of independent rounding.

²Includes Alabama, Arizona, Colorado, Georgia, Maryland, Michigan, Missouri, North Carolina, Oklahoma, and Tennessee.

Table 7.—Dimension stone sold or used by producers in the United States in 1987, by use

o' i aga s		Use	2.34	A STATE OF THE STATE OF	Quantity (short tons)	Cubic feet (thousands)	Value (thousands
Irregular-shape Flagging Monumental _ Other2 Dressed stone: Ashlars and par Slabs and block Monumental _ Curbing Flagging (slate) Roofing slate _ Structural and	d stone ¹ tially squared is for building a	pieces			240,329 148,888 2,700 225,492 20,221 210,034 52,671 49,965 129,294 34,510 9,086 14,892 5,636 7,077 33,054	3,072 1,853 27 2,450 242 2,611 672 553 1,532 456 466 	\$19,919 5,193 165 26,214 1,837 45,729 18,101 27,137 23,339 1,785 7,626 3,200 2,963 4,556
Total ⁴	- No. (6.) 	1. 1 4 /183	a siste 	san ng lesa sa T Hati	1,183,849	13,826	190,153

¹Includes rubble.

Table 8.—Dimension granite sold or used in the United States in 1987, by use

The second secon	Use	Annual and a second	Quantity (short tons)	Cubic feet (thousands)	Value (thousands
Rough stone:		and the state of t			
Rough blocks for building and	construction		85,052	961	\$8,621
			27,767	325	1.108
Flagging			2,700	27	165
Monumental			220,084	2,385	26,003
Other ²			8,891	90	383
Dressed stone:		1. M. 24 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		
Ashlars and partially squared	pieces		106,132	1,231	25,275
Slabs and blocks for building a	and construction		11,308	134	1,405
Flagging			2,633	32	468
Monumental			37,813	425	20,311
Curbing			119,543	1,410	23,082
Other ³			7,442	86	236
Total	· .		629,365	7,106	4107,056

Table 9.—Dimension limestone sold or used by producers in the United States in 1987, by use

Use	Quantity (short tons)	Cubic feet (thousands)	Value (thousands
Rough stone:			
Rough blocks for building and construction	137,837	1,890	\$9,964
Irregular-shaped stone ¹	70.082	880	1,266
Other ²	10,623	143	1,300
Dressed stone:			-•
Ashlars and partially squared pieces	57,030	750	11,562
Slabs and blocks for building and construction	34,068	450	9,616
Monumental	3,061	22	264
Curbing	1,295	16	68
Flagging	12,735	168	434
Other ³	3,112	42	493
Total	329,843	4,361	434,968

¹Includes rubble.

^{*}Includes ruppie:

Includes unspecified uses.

Includes a minor amount of slate used for billiard tabletops, miscellaneous, and unspecified uses.

Data may not add to totals shown because of independent rounding.

¹Includes rubble.
²Includes rough stone used for flagging and unspecified uses.
³Includes flagging and unspecified uses.
⁴Data do not add to total shown because of independent rounding.

²Includes monumental and unspecified uses.

³Includes unspecified uses

⁴Data do not add to total shown because of independent rounding.

Table 10.—Dimension marble sold or used by producers in the United States in 1987, by use

Use	Quantity (short tons)	Cubic feet (thousands)	Value (thousands)
Rough stone: Rough blocks for building and construction Irregular shaped stone ¹	_ 3,571 _ 4,752	38 56	\$734 350
Oressed stone: Monumental ²	16,048	188	19,330
Total	_ 24,371	282	³ 20,413

¹Includes rubble and a minor amount of stone used for monumental purposes

Table 11.—Dimension sandstone sold or used by producers in the United States in 1987, by use

	Use	Quantity (short tons)	Cubic feet (thousands)	Value (thousands
Rough stone:				
Rough blocks for	or building and construction	11,705	156	\$501
	ed stone1	32,485	415	1.527
		1,846	23	95
Dressed stone:		2,020		• • • • • • • • • • • • • • • • • • • •
	rtially squared pieces	36,869	486	1.637
Slabs and block	s for building and construction	621	8	27
		6,695	86	505
0.103		26,065	332	3,007
Total		116,286	1,506	4 7,298

¹Includes rubble.

Table 12.—Dimension slate sold or used by producers in the United States in 1987, by use

Use	Quantity (short tons)	Value (thousands)
Flagging (slate)Roofing (slate)	9,086 14,892	1,785 7,626 3,200
Structural and sanitary Flooring (slate)	5,636 7,077	3,200 2,963
Other ¹	2,990	873
Total	39,681	² 16,446

¹Includes a minor amount of slate used for billiard tabletops, blackboards, and unspecified uses.

PRICES

The average price for dimension stone 1986. rose to \$161 per ton, up 8% from \$149 in

FOREIGN TRADE

Exports.-Exports of dimension stone, about one-half of which was granite, increased 40% in value.

Imports.-Imports for consumption of dimension stone increased 16% in value to \$439 million, mostly because of an increase in imports of polished slabs of marble, partly offset by a decrease in imports of dressed granite. Imports of polished marble slabs, mostly from Italy, increased 45% to

²Includes dressed ashlars and partially squared pieces, slabs, blocks, a small amount used in flagging, and unspecified

³Data do not add to total shown because of independent rounding.

Includes monumental and unspecified uses.
Includes curbing and unspecified uses.
Data do not add to total shown because of independent rounding.

²Data do not add to total shown because of independent rounding.

accounted for 54% of imports, followed by \$179 million. Imports of dressed granite granite, 33%; travertine, 6%; and slate, 4%. decreased 10%. On a value basis, marble

Table 13.—U.S. exports of dimension stone, by type (Thousand short tons and thousand dollars unless otherwise specified)

	1986		1987		Major destination	
Туре	Quantity	Value	Quantity	Value	in 1987 (percent ¹)	
Granite articles	NA	1,530	NA	2,608	Canada 44%	
Granite, rough	53.3	6,046	54.2	7,800	Japan 58%.	
Limestone, dressed, for building or monumental	25.9	113	2,4	257	United King- dom 24%.	
Limestone articles	4.8	178	18.0	1,000	Italy 80%.	
Marble, breccia, and onyx, rough or squared.	14.2	290	20.9	514	Canada 63%.	
Marble, breccia, and onyx articles	NA	1,727	NA	2,694	Japan 24%.	
Slate building articles	NA	118	NA	213	Canada 49%.	
Slate building articles, other	NA	967	NA	905	Canada 25%.	
Stone, rough, for building or monumental	15.6	1,735	19.0	2,280	Canada 48%.	
Stone, other, including alabaster or jet	NA	1,919	NA	2,199	Canada 60%.	
Total	NA	14,623	NA	20,470		

NA Not available.

¹By value.

Source: Bureau of the Census.

Table 14.—U.S. imports for consumption of dimension granite, by country

(Thousand cubic feet and thousand dollars)

_	Rou	gh¹	Dres	Other n.s.p.f. undeco-	
Country	Quantity	Value	Quantity	Value	rated ² (value)
1985	3,020	6,097	7,928	103,680	11,064
1986:	4.05	100	050	0.000	459
Brazil	167	166	253	3,603	
Canada	1,078	3,757	199	12,365	2,486 16
India	14	287	268	1,290	4,05
<u>Italy</u>	665	218	7,596	104,467	368
Japan	r(3)	10	10	167	30
Portugal			341	1,773	. •
Saudi Arabia	(3)	25	7	373	
South Africa, Republic of	382	1,695	(³)	19	
Spain	13	.57	646	10,985	50
Other	377	492	320	7,143	1,211
Total ⁴	2,699	6,707	9,635	142,185	8,642
987:					
Brazil	575	152	315	3,294	199
Canada	5,329	5,125	249	12,621	50
India	9	165	120	2,446	20
Italy	37	587	4,626	89,655	4,60
Japan			15	188	6
Portugal	593	1,224	20	977	5
Saudi Arabia	1	. 11	19	303	
South Africa, Republic of	80	-2,435	1	44	
Spain	1	. 3	355	10,527	70
Other	708	938	342	7,540	540
Total4	7,333	10,641	6,063	127,594	6,078

Source: Bureau of the Census.

¹Excludes unmanufactured, nonmonumental granite.

²Quantity not reported. Excludes granite n.s.p.f. decorated.

³Less than 1/2 unit.

^{*}Data may not add to totals shown because of independent rounding.

Table 15.—U.S. imports for consumption of major categories of dimension marble, travertine, and other calcareous stones, by country

Country		ccia, or onyx, ed slabs	Marble, breccia, or onyx, other n.s.p.f. ¹	Travertine dressed ³	
	Quantity (thousand square feet)	Value (thousands)	Value (thousands)	Quantity (short tons)	Value (thousands
1985	56,137	\$88,579	\$39,521	180,311	\$18,654
1986:					
France	976	2,975	671	23	
Germany, Federal Republic of	362	493	832	13	20 9
Greece	2,883	6.124	535	15	
Italy	51,184	83,785	29,810	172,430	12
Mexico	1 176	2.032	2,719	425	15,066
Pakistan	71	103	523	440	231
Philippines	198	342	102	771	
Portugal	3.049	5.936	961	43	
Spain	10.832	15,620	2.824	43	14
Taiwan	1.665	2.749		739	69
Other	1,672	3,479	6,367 2,383	124	75
Total	74,069	123,637	47,728	173,812	15,496
1987:					
France	1,307	0.055			
Germany, Federal Republic of	. 1,307 . 320	6,657	464	. 59	23
Greece	3.569	597	866		·
Italy	53,338	9,155	1,042	55	66
Mexico	1.894	120,692	29,686	104,508	14,285
Pakistan	1,894	3,201	2,567	776	364
Philippines	. 26	. 8	528		
Portugal	365	763	315		
Spain	3,240	7,513	1,278		1.0
Taiwan	15,925	20,161	2,868	1,437	127
Other	4,382	4,813	9,407		
	2,279	5,469	4,088	165	261
Total ⁴	86,645	179,030	53,109	107,000	15,128

Source: Bureau of the Census.

Table 16.—U.S. imports for consumption of other dimension stone, by type

	198	36	19	37		
Туре	Quantity	Value (thou- sands)	Quantity	Value (thou- sands)	Major source in 1987 (percent ¹)	
Granite, n.s.p.f., decorated		\$933		\$1,344	Italy 57%.	
Limestone, dressed, hewn short, tons	34.553	2,288	25.545	6,184	France 63%.	
Marble and breccia, rough cubic feet	87,002	515	86.538	840	Italy 61%.	
Marble, breccia, onyx, slab and tiles, unpolished	01,002	010	00,000	040	Italy 01%.	
square feet	914.748	2,593	1,441,111	4.428	Italy 50%.	
Slate, roofingdo	2,152,986	927	4,053,425	1.863	Spain 51%.	
Slate, other, n.s.p.f	-,,	8,876	1,000,120	13,404	Italy 63%.	
l'ravertine articles, undecorated		6,222		8,250	Italy 94%.	
I'ravertine articles, decorated		1,532		1.573	Italy 92%.	
Stone, unmanufactured short tons	30,940	966	5,765	658		
Stone, dressed, building	2,483	825	24,589	2.094	Mexico 50%.	
Stone, other n.s.p.f., undecorated	2,400	2,034	24,009		Mexico 35%.	
Stone, other n.s.p.f., decorated				2,574	Italy 16%.	
		3,723		4,486	Mexico 21%.	

¹By value.

Source: Bureau of the Census.

¹Excludes special kinds of rough marble, breccia, or onyx.

²Quantity not reported.

³Suitable for use as monumental, paving, or building stone. Excludes travertine articles.

⁴Data may not add to totals shown because of independent rounding.

WORLD REVIEW

Dimension stone is quarried in most countries of the world. As usual, Italy produced about one-half of the world's total. Other significant producers were Brazil, Finland, India, Norway, Portugal, Spain, Sweden, Turkey, and the United States.

Bulgaria.—Bulgaria, a sizable producer of dimension stone, usually produces about 240,000 tons of rough block, of which marble comprises 120,000 tons. Significant amounts of other kinds of stone are also produced. Exports to destinations outside Eastern Europe are quite small, usually averaging 1,000 to 2,000 tons per year, and almost all marble.

The first description of the dimension stone industry in Bulgaria in a long time appeared this year. The deposits are scattered fairly evenly throughout the country except for the north. Domestic use of stone has increased dramatically in the last few decades. The quarries used a mix of modern equipment, such as chain saws, and older equipment, such as helicoidal wire saws. A number of finishing plants were situated around the country, most of which used Italian, West German, and Bulgarian equipment. Most marble slab produced is 2 centimeters thick and much of the marble tile produced is 1 centimeter thick. The marble produced is almost all gray or white with various colored streaks or marks. Travertine and breccia also are produced.2

Germany, Federal Republic of.—According to the most recent estimates of the Government of the Federal Republic of Germany, dimension stone production is usually 1.1 to 1.3 million tons per year, with 70% to 75% of the total coming from Bavaria. This number includes many firms with fewer than 10 employees, companies usually that are missed by the statistical surveys. Bavarian production is mostly of granite, marble, and Solenhofen limestone. Production of rough blocks in 1982 was estimated at a minimum of 104,600 tons of marble and 20,600 tons of granite.

The industry uses some innovative extraction techniques. For Jura marble, large pieces of stone are divided by drilling a series of holes to which an automatic wedger is applied. Resembling a jackhammer in appearance, the hydraulic device drives a wedge down between the feather parts of the machine, forcing the stone apart. Slate is cut from the face with a self-propelled, circular, diamond saw machine along a

rectangular grid. Blows from a self-propelled hydraulic hammer split off the material from the face.

The market for roofing slate has increased greatly in the last decade, mostly at the expense of asbestos tiles once asbestos-related health problems became known. Domestic production of roofing slate grew from around 16,500 tons in 1975 to 55,000 tons in 1986.

The major West German marble is the light yellow Jura marble, of which about \$90 million is produced each year. The marble is quarried mostly in Bavaria in conjunction with the Solenhofen limestone. It is usually used in polished form as window and door sills and flooring. Exports constitute about 25% of production, almost all destined to other Western European nations.

Japan.—Production of dimension granite in 1987 was estimated to be 500,000 tons from about 1,000 quarries. Production of dimension marble was about 300 tons in 1987. The granite, almost all standard gray, was quarried in Aichi, Ehime, Fukushima, Ibaragi, and Yamaguchi Prefectures.

The principal use of dimension granite is for monuments. Typical monumental products include grave plot stones, stone lanterns, torji gates, and cemetery fences.

Customers are conservative and buy gray granite monuments exclusively in most of Japan although some black granite is used north of Tokyo. Based on industry sources and a small sample of plants, the more a plant is involved in producing monuments the more likely it is to be labor intensive, have a small staff and use older types of equipment. No plants are known to use robots.

The next largest uses of dimension granite stone are for buildings, curbing, embankments, and paving. Almost all tile is imported. Customers prefer gray, pink, black, and red granite for building purposes, plus minor amounts of other colors. The granite is sold usually as 2.5-centimeter slabs, sometimes as 3-centimeter slabs. A plant producing primarily architectural products is likely to be less labor intensive, larger, and have more modern equipment such as automatic polishers.

Other stones are used in much smaller volumes. Marble is almost exclusively used in buildings; virtually none goes to monuments. Customers prefer colored, multicolored, and veined marbles over white. Growth in marble use has tended to be offset by the use of increasingly thinner marble. Relatively small amounts of slate are used, including roofing slate, but the use of it seems to be increasing rapidly. However, roofing slate encounters severe competition from traditional curved gray tile, since tile lasts nearly as long, costs the same, and is more culturally acceptable to the Japanese.

Japanese culture strongly influences the purchases of dimension stone. Dimension stone used outdoors must be in harmony with the environment and become part of an overall design; this means that requests for color and pattern are very specific. Stone required for the interior or exterior of buildings must be of a very uniform color and pattern, as close to matching as possible, without any surficial cracks or scars. This requirement sometimes extends beyond the limits imposed by the variability of a natural product. There may be other stringent requirements, such as low water absorption or tight physical and chemical standards for stone in outdoor use. This is particularly true for granite monuments.

Korea, Republic of.—Dong-in Stone Industrial Co. Ltd. scheduled the opening of a huge new granite processing and finishing complex at Chongju City. The complex will cost about \$20 million and employ 600 people, including those working in its associated diamond tool and machinery plant. It ultimately will include 38 gang saws, each producing 20,000 square feet of granite slab

per month.

U.S.S.R.—The Soviet Union is a sizable producer of dimension stone but not as large as might be expected from its immense land area. Production totaled about 350,000 tons, mostly of granite but with significant amounts of other kinds produced. Exports, composed of mostly granite, to destinations other than its allied countries are quite small, usually averaging 5,000 to 10,000 tons per year.

A description of the Soviet dimension stone industry, with an emphasis on its products, appeared in a Western stone publication this year, the first such description in many years. The more important or better known stones described included the reddish-brown granite with coarse ovoid feldspar grains from Kuzrechenskoye, the black gabbro-norite (black granite) with blue or rose plagioclase from Chernaya Salma, the deep crimson quartzite from Petrozavodsk that was used to make Napoleon's tomb in Paris, and the black coarse-grained labradorite from Golovino, Zhitomir region. Many techniques employed in other countries are not yet in use in the U.S.S.R. For example, the installation of diamond wire saws in marble quarries is just beginning, as is the automation of saws and the introduction of diamond tools in the finishing plants.3

 ¹Physical scientist, Branch of Industrial Minerals.
 ²Stoev, S. The Decorative Stone Industry in Bulgaria.
 Stone Industries, v. 22, No. 5, June 1987, pp. 27-30.
 ³Oskolkov, V. A. Growth of U.S.S.R. Stone Industry.
 Stone Ind., v. 22, No. 1, Jan.-Feb. 1987, pp. 22-24.

Sulfur

By David E. Morse¹

The United States retained its position as the world's foremost producer and consumer of sulfur. Production and shipments from U.S. Frasch mines, the Nation's major source of discretionary sulfur, decreased because low international prices reduced export opportunities. Although the industry operated well below capacity, shipments by Frasch producers to their major consumer, the domestic phosphate fertilizer industry, increased because exports of fertilizers by U.S. producers were substantially higher than those in 1986.

Production of recovered elemental sulfur,

a nondiscretionary byproduct of petroleum refining and natural gas processing, continued to increase, setting an alltime record high; domestic output from this source exceeded the quantity of elemental sulfur produced by any other nation in the world. Shipments of recovered elemental sulfur to domestic consumers were greater than Frasch shipments. For the first time, recovered sulfur exports, primarily from California where sulfur supplies exceed local demands, were higher than Frasch sulfur exports.

Table 1.—Salient sulfur statistics
(Thousand metric tons, sulfur content, and thousand dollars unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Production:	9 909	4 109	5,011	4,043	3,202
Frasch	3,202	4,193 5,214	5,313	5,816	6,161
Recovered ¹	4,955 1,133	1,245	1,285	1,228	1,176
Other forms	1,100	1,240	1,200	1,220	1,110
Total	9,290	10,652	11,609	11,087	10,539
Shipments:					
Frasch	4,111	5,001	4,678	4,108	3,610
Recovered ¹	5,041	5,210	5,266	5,798	6,180
Other forms	1,133	1,245	1,285	1,228	1,176
Total	10,285	11,456	11,229	11,134	10,966
Exports, elemental ²	992	1,334	1,365	1.895	1,242
Imports, elemental	1,695	2,557	2,104	1,347	1,599
Consumption, all forms	10,988	12,679	11,968	10,586	11,323
Stocks, Dec. 31: Producer, Frasch and recovered	3,223	2,419	2,799	2,748	2,316
Value:					
Shipments, f.o.b. mine or plant:					
Frasch	\$414,210	\$546,106	\$573,570	\$508,512	\$386,834
Recovered ¹	384,214	416,878	485,084	533,752	492,136
Other forms	116,255	121,692	123,937	105,639	90,707
Total	914,679	1,084,676	1,182,591	1,147,903	969,677
Exports, elemental ³	\$109,298	\$156,067	\$189,248	\$251,664	\$139,431
Imports, elemental ⁴	\$129,110	\$200,189	\$199,240	\$142,220	\$152,096
Price, elemental, dollars per metric ton, f.o.b. mine or plant	\$87.24	\$94.31	\$106.46	\$105.22	\$89.78
World: Production, all forms (including pyrites)	r49,770	r _{51,859}	54,331	P54,074	e54,221
World, I roduction, an iorms (moluding pyrices)	20,110	01,000	04,001	- 2,0 . 2	,

^eEstimated. ^pPreliminary. ^rRevised. ¹Includes Puerto Rico and the Virgin Islands.

²Includes exports from the Virgin Islands to foreign countries.

³Includes value of exports from the Virgin Islands to foreign countries.

⁴Declared customs valuation.

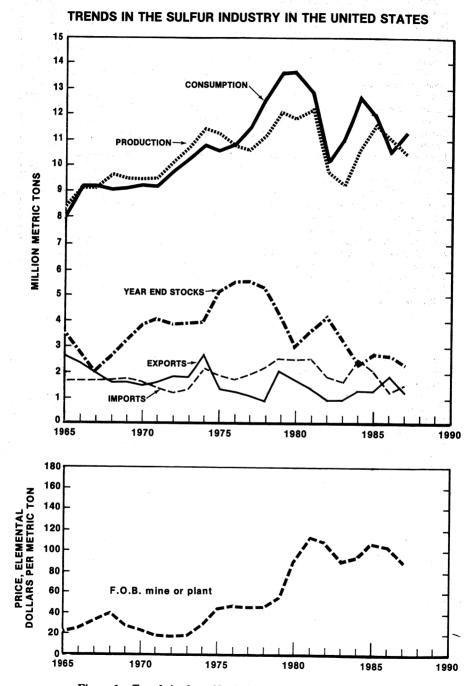


Figure 1.—Trends in the sulfur industry in the United States.

Byproduct sulfuric acid from the Nation's nonferrous smelters and roasters, essentially mandated by laws concerning sulfur dioxide (SO2) emissions, supplied a significant quantity of sulfuric acid to the domestic merchant acid market. Marketing sulfuric acid continued to be a problem for most producers because smelters were near Western copper mines and not close to large sulfuric acid markets.

Total world production of sulfur in all forms increased over that of 1986; however, mined sulfur and pyrites output were lower. Recovered elemental production increased in Asia, Eastern Europe, and North America, and was slightly less in Western Europe, where declining production from gas plants was nearly offset by increased output from petroleum refineries. Nearly two-thirds of the world's elemental sulfur production came from recovered sources. The quantity of sulfur supplied from these sources was dependent on the world demand for fuels and petroleum products, not on the demand for sulfur.

World consumption increased, especially

in the fertilizer sector. Consumption for other industrial uses continued to pressured by environmental constraints placed on either the products produced or by effluents from the processes. World trade also increased, but the trade patterns were altered significantly because of restricted imports by the U.S.S.R. and by lower international prices. World stocks of elemental sulfur declined by an estimated 700,000 metric tons and contributed to an oversupply condition in the international marketplace.

Domestic Data Coverage.—Domestic production data for sulfur are developed by the Bureau of Mines from four separate, voluntary surveys of U.S. operations. Typical of these surveys is the "Elemental Sulfur" survey. Of the 184 operations to which a survey request was sent, 182 responded, representing 99.91% of the total production shown in tables 1 and 2. The production of the two nonrespondents was estimated using prior production histories adjusted to reflect trends in output of their primary products.

DOMESTIC PRODUCTION

Sulfur is one of the few elements that occur in the native, or elemental, state. It also occurs combined with iron and base metals as sulfide minerals, and with the alkali metals and alkali earths as sulfate minerals. In coal and petroleum, sulfur is found in a variety of complex organosulfur compounds, and in natural gas as hydrogen sulfide (H₂O) gas. Commercial production of sulfur in the United States is accomplished by a variety of methods dictated by the source of sulfur.

Frasch.-Native sulfur associated with the caprocks of salt domes and in sedimentary deposits is mined by the Frasch hotwater method, in which the native sulfur is melted underground and brought to the surface with an airlift. In January 1987, the United States had four Frasch mines operating in Texas and Louisiana. Mines in Louisiana were Freeport Minerals Co. at Garden Island Bay on the Mississippi River Delta and Grand Isle, 7 miles offshore in the Gulf of Mexico. Mines in Texas were Pennzoil Sulphur Co. at Culberson and Texasgulf Inc. at Boling Dome in Wharton County. Texasgulf's Comanche Creek facility in western Texas was idle for the entire year. Freeport continued to rehabilitate its Caminada Pass, LA, property, which had last produced sulfur in 1968. At yearend, the Frasch mining industry was operating at about 65% of capacity.

Frasch sulfur output decreased 841,000 tons from the quantity produced in 1986. Total shipments to domestic and overseas consumers declined by 500,000 tons. Frasch sulfur accounted for 30% of domestic production in 1987, compared with 36% in 1986. Approximately 87% of Frasch sulfur shipments was for domestic consumption, and 13% for export. The total value of Frasch sulfur shipments decreased nearly \$122 million.

Recovered.—Production of recovered elemental sulfur, a nondiscretionary byproduct from petroleum refining, natural gas processing, and coking plants, accounted for 59% of the total domestic output of sulfur in all forms, compared with 52% in 1986. Both production and shipments reached alltimehigh levels of over 6.16 million tons owing to record-high production from the Nation's petroleum refineries and gas processing plants. Recovered elemental sulfur was produced by 56 companies at 157 plants in 26 States, 1 plant in Puerto Rico, and 1 plant in the Virgin Islands. Most of these plants were of relatively small size, with only 13 reporting an annual production exceeding

100,000 tons. By source, 59% was produced at 84 refineries or satellite plants treating refinery gases and 3 coking plants, and 41% was produced by 28 companies at 70 natural gas treatment plants. The five largest recovered sulfur-producing companies in 1987 were Chevron U.S.A. Inc., Exxon Co. U.S.A., Shell Oil Co., Standard Oil Co. (Indiana), and Texaco Inc. These companies' 60

plants accounted for 63% of recovered elemental sulfur output during the year.

A full year of production from Exxon's La Barge gas plant was responsible for pushing Wyoming sulfur output over 1 million tons for the first time. Texas continued to lead all other States in recovered elemental production and accounted for one-fourth of all recovered sulfur shipments.

Table 2.—Production of sulfur and sulfur-containing raw materials in the United States (Thousand metric tons)

					. 7		19	986	19	87
	40						Gross weight	Sulfur content	Gross weight	Sulfur content
Frasch sulfur Recovered su Byproduct su	lfur ¹ lfuric acid	(100% basis) pr	oduced at	copper, lead	. molybdei		4,043 5,816	4,043 5,816	3,202 6,161	3,202 6,161
and zinc pla Other forms ²	$ants_{}$					<u>-</u>	2,811 767	919 309	3,069 445	1,003 173
Total			<u></u>	. · ·			XX	11,087	XX	10,539

XX Not applicable.

¹Includes Puerto Rico and the Virgin Islands.

²Includes hydrogen sulfide, liquid sulfur dioxide, and pyrites.

Table 3.—Sulfur produced and shipped from Frasch mines in the United States

(Thousand metric tons and thousand dollars)

	Year		Production	Shipments		
	Total		Louisiana	Total ¹	Quantity	Value ²
1983 1984 1985 1986 1987		1,915 2,257 2,940 2,463 1,833	1,286 1,937 2,071 1,579 1,369	3,202 4,193 5,011 4,043 3,202	4,111 5,001 4,678 4,108 3,610	414,210 546,106 573,570 508,512 386,834

Data may not add to totals shown because of independent rounding.

²F.o.b. mine.

Table 4.—Recovered sulfur produced and shipped in the United States1

(Thousand metric tons and thousand dollars)

		Production			nents
Year	Natural gas plants	Petroleum refineries ²	Total	Quantity	Value ³
1983 1984 1985 1986 1987	2,371 2,407 2,373 2,246 2,536	2,584 2,807 2,940 3,570 3,624	4,955 5,214 5,313 5,816 46,161	5,041 5,210 5,266 5,798 6,180	384,214 416,878 485,084 533,752 492,136

¹Includes Puerto Rico and the Virgin Islands.

²Includes a small quantity from coking operations.

³F.o.b. plant.

⁴Data do not add to total shown because of independent rounding.

Table 5.—Recovered sulfur produced and shipped in the United States, by State

(Thousand metric tons and thousand dollars)

		1986			1987	
		Shipm	ents		Shipm	ents
State	Production	Quantity	Value	Production ·	Quantity	Value
Alabama California California Corida Couisiana Michigan and Minnesota Mississippi New Mexico North Dakota Dhio Pennsylvania Penssylvania Exas Wisconsin Wyoming Other¹ Total²	338 634 80 372 524 158 702 46 105 46 52 1,517 2 684 558	341 630 80 368 527 158 707 46 104 46 53 1,516 26 676 545	36,452 50,964 W 36,581 57,418 13,938 79,287 3,621 7,043 5,188 4,540 141,223 117 33,517 63,863	319 656 72 255 538 152 778 46 126 42 59 1,516 W 1,010 591	319 670 72 256 536 152 780 46 127 43 532 W 1,015 576	30,629 39,764 W 26,03 51,07 12,644 70,37 2,870 8,000 3,91 4,41 134,23 46,62 61,54

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes Arkansas, Colorado, Delaware, Indiana, Kansas, Kentucky, Montana, New Jersey, Utah, Virginia, Washington, Puerto Rico, the Virgin Islands, and data indicated by symbol W.

²Data may not add to totals shown because of independent rounding.

Table 6.—Recovered sulfur produced and shipped in the United States, by Petroleum Administration for Defense (PAD) district

(Thousand metric tons)

	19	86	1987		
District and source	Production	Shipments	Production	Shipments	
PAD 1: Petroleum and coke Natural gas	_ 254 _ 79	258 79	253 72	246 72	
Total ¹	334	338	325	319	
PAD 2: Petroleum and coke Natural gas		712 106	602 128	603 128	
Natural gas Total	822	818	730	731	
PAD 3:2	1,830	1,818 1,390	1,961 1,336	1,966 1,339	
Natural gas	0.015	3,208	3,298	3,306	
PAD 4 and 5:	769	766 666	806 999	81: 1,00	
Natural gas		1,432	1,806	1,82	
Total ¹	F 010	5,798	6,161	6,18	

¹Data may not add to totals shown because of independent rounding. ²Includes Puerto Rico and the Virgin Islands.

Byproduct Sulfuric Acid.—Sulfur contained in byproduct sulfuric acid produced at copper, lead, molybdenum, and zinc roasters and smelters amounted to 10% of the total domestic production of sulfur in all forms. Eight acid plants operated in conjunction with copper smelters and eight were accessories to lead, molybdenum, and zinc smelting and roasting operations. The

five largest acid plants accounted for 70% of the output, and production in five States was 87% of the total. The five largest producers of byproduct sulfuric acid were ASARCO Incorporated, Inspiration Consolidated Copper Co., Kennecott, Magma Copper Co., and Phelps Dodge Corp. Their eight plants produced 84% of the 1987 total.

Table 7.—Byproduct sulfuric acid¹ produced in the United States

(Thousand metric tons, sulfur content, and thousand dollars)

	Year	Copper plants ²	Zinc plants ³	Lead and molyb- denum plants ³	Total	Value
1983	*	601	126	104	831	54,995
1984		736	145	81	962	59,098
1985		729	141	87	957	56,299
1986		755	124	40	919	54,164
1987		831	134	38	1,003	61,996

¹Includes acid from foreign materials.

³Excludes acid made from native sulfur.

Pyrites, Hydrogen Sulfide, and Sulfur Dioxide.—Contained sulfur in these products represented 2% of the total domestic production of sulfur in all forms. The total sulfur contained in these products was less than that in 1986. The leading producers were Chevron, Magma, Phelps Dodge,

and Tennessee Chemical Co. Tennessee Chemical terminated pyrite-mining operations, began burning purchased sulfur for sulfuric acid production at its Copper Hill, TN, facility, and restarted its Augusta, GA, sulfur-based acid plant.

Table 8.—Pyrites, hydrogen sulfide, and sulfur dioxide sold or used in the United States

(Thousand metric tons, sulfur content, and thousand dollars)

Year	Pyrites	Hydrogen sulfide	Sulfur dioxide	Total	Value
1983 _ 1984 _ 1985 _ 1986 1987 _	W W W W	W W W W	50 45 43 W	302 283 328 309 173	61,260 62,594 67,638 51,475 28,711

W Withheld to avoid disclosing company proprietary data; included in "Total."

²Excludes acid made from pyrites concentrates.

843

TRENDS IN THE PRODUCTION OF SULFUR IN THE UNITED STATES

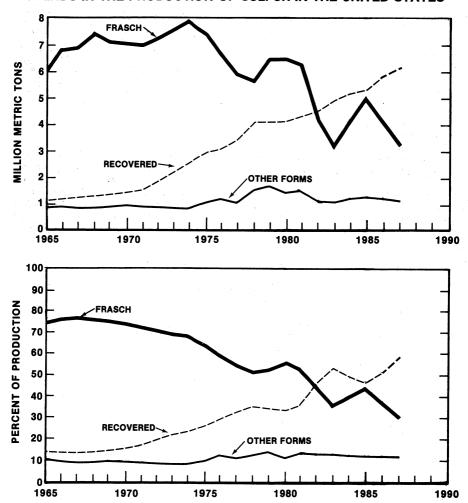


Figure 2.—Trends in the production of sulfur in the United States.

CONSUMPTION AND USES

Domestic consumption of sulfur in all forms increased 7% over that of 1986. In 1987, 86% of the sulfur was obtained from domestic sources, compared with 87% in 1986. The sources of supply were domestic recovered elemental sulfur, 48%; domestic Frasch sulfur, 28%; and combined domestic byproduct sulfuric acid, pyrites, H₂O, and SO₂, 10%. The remaining 14% was supplied by imports of Frasch and recovered elemen-

tal sulfur.

The Bureau of Mines collected end-use data on sulfur and sulfuric acid according to the Standard Industrial Classification of industrial activities. Shipments by end use of elemental sulfur were reported by 60 companies, and shipments of sulfuric acid were reported by 55 companies. Shipments of elemental sulfur and sulfuric acid were reported by 12 companies.

The largest sulfur end use, sulfuric acid, represented 87% of shipments for domestic consumption. Some identified end uses were tabulated in the "Unidentified" category because these data were proprietary. Data collected from companies that did not identify shipment by end use were also tabulated as "Unidentified." Although there are no supporting data, it could be reasonably assumed that a significant portion of the sulfur in the "unidentified" category could have been shipped to sulfuric acid producers or exported. The difference between exports reported in the canvass and exports of 1.2 million tons reported by the Bureau of the Census may have been caused by differences in accounting between company records and compilations of Census, or by sales to other parties that exported sulfur and were not included in the Bureau of Mines canvass.

In 1987, sulfuric acid retained its position, both domestically and worldwide, as the most universally used mineral acid and the largest volume inorganic chemical in terms of the quantity produced and consumed annually. U.S. shipments of 100% sulfuric acid increased by over 1.7 million tons in 1987 because demand for the production of phosphatic fertilizers, the largest single end use of sulfuric acid, increased 8%. Ship-

ments of sulfuric acid for petroleum refining and other petroleum and coal products, the second largest end use, decreased 7% from those of 1986. Demand for sulfuric acid in copper ore leaching was over 1 million tons because high-purity copper from solvent extraction-electrowinning (SX-EW) operations could be produced at a significantly lower cost than that from conventional smelting methods.

According to the 1987 canvass reports, company receipt of spent or contaminated sulfuric acid for reclaiming totaled 2.7 million tons. The largest source of this spent acid continued to be the petroleum refining industry, which accounted for 60% of the total returned. The petroleum refining industry was a net user of 820,000 tons of sulfuric acid. About 875,000 tons of spent acid was reclaimed from plastic and synthetic materials operations. The remaining reclaimed acid was returned from manufacturers of soaps and detergents, steel, industrial organic chemicals, other chemical products, storage batteries, drugs, explosives, agricultural chemicals, and some unidentified sources. The largest use of sulfur in all forms, for agricultural purposes, increased from 7.7 million tons in 1986 to 8.2 million tons.

Table 9.—Consumption of sulfur¹ in the United States

(Thousand metric tons)

	1983	1984	1985	1986	1987
Frasch: Shipments Imports Exports	4,111	5,001	4,678	4,108	3,610
	604	722	724	726	793
	601	911	986	1,250	465
Total	4,114	4,812	4,416	3,584	3,938
Recovered: Shipments ² Imports Exports	5,041	5,210	5,266	5,798	6,180
	1,091	1,835	1,380	621	806
	391	423	379	645	777
TotalPyrites, shipmentsByproduct sulfuric acid, shipmentsByproduct sulfuric acid. shipments	5,741	6,622	6,267	5,774	6,209
	W	W	W	W	W
	831	962	957	919	1,003
	302	283	328	309	173
Total, all forms	10,988	12,679	11,968	10,586	11,323

W Withheld to avoid disclosing company proprietary data; included with "Other forms, shipments."

¹Crude sulfur or sulfur content. ²Includes Puerto Rico and the Virgin Islands.

Includes consumption of hydrogen sulfide, liquid sulfur dioxide, and data indicated by symbol W.

Table 10.—Elemental sulfur sold or used in the United States, by end use

(Thousand metric tons)

SIC	End use	1986	1987
20	Food and kindred products	w	w
26, 261	Pulp and paper products	21	32
282, 2822	Synthetic rubber, and other plastic products	W	w
287	Agricultural chemicals	551	541
28,286	Agricultural chemicalsOther chemicalsO	19	55
284	Soans and detergents	52	26
29, 291	Petroleum refining and petroleum and coal products	92	180
281	Other industrial inorganic chemicals	76	80
30	Rubber and miscellaneous plastic products	W	<u>w</u>
	Sulfuric acid: Domestic sulfur Imported sulfur	7,017 1,079	7,420 1,493
	Total	8.096	8,913
	Unidentified	620	403
	Total domestic uses	9,527	10,230
	Exports	1,511	1,127
	Exports	1,011	
	Grand total	11.038	11,357

W Withheld to avoid disclosing company proprietary data; included with "Unidentified."

Table 11.—Sulfuric acid sold or used in the United States, by end use

(Thousand metric tons of 100% H₂SO₄)

SIC	End use	1986	1987
102	Conner ares	830	1.046
1094	Copper oresUranium and vanadium ores	98	85
10	Other ores	81	52
261	Pulpmills	701	740
261 26	Other paper products	48	62
	Inorganic pigments and paints and allied products	363	360
285, 2816	inorganic pigments and paints and affied products	915	899
281	Other inorganic chemicalsSynthetic rubber and other plastic materials and synthetics	766	773
282, 2822	Synthetic rubber and other plastic materials and synthetics		
2823	Cellulosic fibers, including rayon	138	140
283	Drugs	50	90
284	Soaps and detergents	232	246
286	Industrial organic chemicals	973	1,178
2873	Nitrogenous fertilizers	251	201
2874	Phosphatic fertilizers	21,330	23,116
2879	Pesticides	72	(1)
287	Other agricultural chemicals	80	108
2892	Explosives	93	150
2899	Water-treating compounds	371	301
28	Other chemical products	136	140
	Petroleum refining and other petroleum and coal products	2,617	2,427
29, 291	Petroleum retining and other petroleum and coal products	2,017	12
30	Rubber and miscellaneous plastic products		206
331	Steel pickling	211	
333	Nonferrous metals	103	93
33	Other primary metals	41	24
3691	Storage batteries (acid)	151	124
	Unidentified	1,480	1,316
	Total domestic	32,140	33,889
	Exports	36	44
	Grand total	32,176	33,933

¹Included with "Other agricultural chemicals."

Table 12.—Sulfur and sulfuric acid sold or used in the United States, by end use

(Thousand metric tons, sulfur content)

SIC	End use	Elem sulf	ental fur ¹	(sulfur	ric acid r equiva- ent)	1	Total		
		1986	1987	1986	1987	1986	1	1987	
102	Copper ores			271	342	271	1 1	342	
1094	Uranium and vanadium ores		.7.5	32	28	32	- 1	28	
10	Other ores		,	26	17	26		17	
20	Food and kindred products	w	, w	20		w		w	
26, 261	Pulpmills and paper products	21	32	245	262	266	1.5	294	
28, 285, 286, 2816	Inorganic pigments, paints and allied products, industrial organic chemicals,		02	210	202	200		434	
	other chemical products	² 19	² 55	119	118	138		173	
281	Other inorganic chemicals	76	80	299	294	375		374	
282, 2822	Synthetic rubber and other plastic		80	233	234	919		3/4	
	materials and synthetics	w	w	250	253	250		050	
2823	Cellulosic fibers, including rayon	**	. "	45	46			253	
283				16	29	45 16		46	
284	Orugs Soaps and detergents	$\overline{52}$	26	76	80		- 1	29	
286	Industrial organic chemicals		20	318	385	128		106	
2873	Industrial organic chemicals Nitrogenous fertilizers			82	66	318 82		385	
2874	Phosphatic fertilizersPesticides			6.973	7.556		100	66	
2879	Pesticides			24		6,973		,556	
287	Other agricultural chemicals	551	541	26	(3)	24		(3)	
2892	Other agricultural chemicals Explosives	201	541		35	577		576	
899	Water-treating compounds			30 121	49 98	30		49	
28	Other chemical products			45		121	30	98	
9, 291	Petroleum refining and other petroleum			45	46	45		46	
,	and coal products	92	180	055	500				
80	Rubber and miscellaneous plastic products	w	W W	855	793	947		973	
31	Steel pickling	w	W		4	3		4	
33	Nonferrous metals		·	69	67	69		67	
3	Other primary metals			34	31	34	8.3	, 31	
691	Storage batteries (acid)			13	.8	13		8	
	Exported sulfuric acid			50	41	50		41	
	mapor our burrer to acid			12	14	12		- 14	
	Total identified	811	01.4	10.004	10.000	40045			
	Unidentified	620	914	10,034	10,662	10,845		,576	
\$	<u>-</u>	020	` 403	484	430	1,104		833	
	Grand total	1,431	1,317	10,518	11,092	11,949	19	,409	

W Withheld to avoid disclosing company proprietary data; included with "Unidentified."

¹Does not include elemental sulfur used for production of sulfuric acid.

²No elemental sulfur used in inorganic pigments and paints and allied products.

³Included with "Other agricultural chemicals."

TRENDS IN THE CONSUMPTION OF SULFUR IN THE UNITED STATES

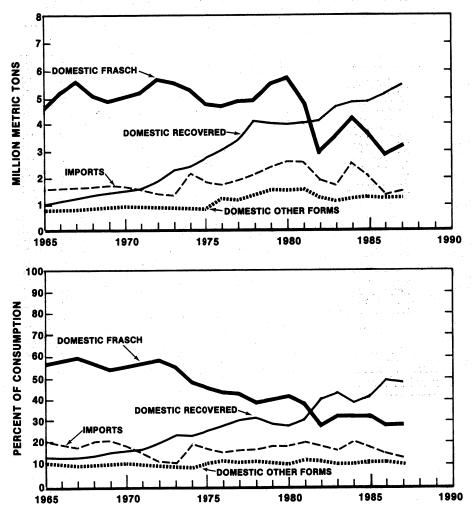


Figure 3.—Trends in the consumption of sulfur in the United States.

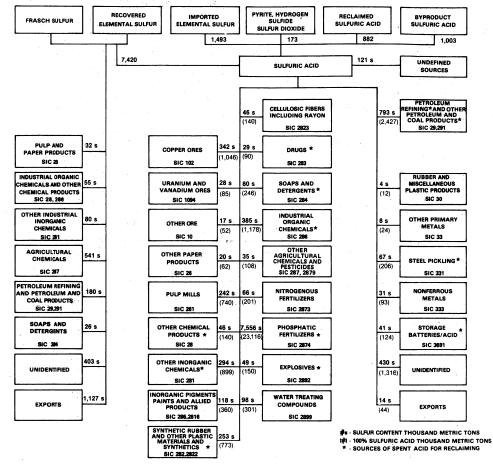


Figure 4.—Sulfur-sulfuric acid supply and end-use relationship in 1987.

STOCKS

Yearend inventories held by producers of Frasch and recovered elemental sulfur decreased 16%, after inventory adjustments, from those at yearend 1986. Combined yearend stocks amounted to approxi-

mately a 2.8-month supply compared with a 3.3-month supply in 1986, based on domestic and export demands for Frasch and recovered sulfur.

Table 13.—Yearend sulfur stocks of U.S. producers

(Thousand metric tons)

Year	Frasch	Recovered	Total
1983	3,070	153	3,223
1984	2,264	155	2,419
1985	2,598	201	2,799
1986	2,532	216	2,748
1987	2,122	194	2,316

PRICES

The posted price for liquid sulfur exterminal Tampa, FL, was reduced to \$135 per long ton from \$152.50 per long ton in April. Price discounts, which began in 1983 for large-volume customers, of \$10 per long ton were eliminated at the same time. The posted price was reduced again for secondhalf purchases to \$127.50 to \$128 per long ton. Spot prices and contract prices for sulfur, f.o.b. Vancouver, British Columbia, Canada, were \$110 to \$115 per metric ton during the first quarter of the year. Vancouver spot prices were reduced \$12 to \$15 per ton in the second quarter, reaching a low level of \$90 to \$93 per ton for the year in September. Fourth-quarter spot prices from Vancouver recovered slightly by yearend but remained below \$100 per ton. The Vancouver first-half contract price of \$110 per ton was reduced to \$100 for second-half loadings.

On the basis of total shipments and value reported to the Bureau of Mines, the average value of shipments of Frasch sulfur, f.o.b. mine, for domestic consumption and exports combined decreased from \$105.22 to \$89.78 per ton. The average value, f.o.b. plant, for shipments of recovered elemental sulfur varied widely by geographic region: lowest in the Rocky Mountain States, higher on the west coast, somewhat higher in the midcontinent, and near the values for Frasch sulfur in the East and South. Although reported values for recovered elemental sulfur were generally lower throughout the Nation, the disproportionately low average value for Wyoming distorts the average calculation for all recovered elemental sulfur shipments.

Table 14.—Reported sales values of shipments of sulfur, f.o.b. mine or plant

(Dollars per metric ton)

Year	Year Frasch		Average		
1983	100.76	76.22	87.24		
1984		80.02	94.31		
1985	122.62	92.11	106.46		
1986	123.79	92.06	105.22		
1987	107.15	79.63	89.78		

FOREIGN TRADE

Exports of elemental sulfur from the United States, including the Virgin Islands, decreased 34% in quantity and 45% in value. According to the Bureau of the Census, exports from the west coast increased by over 25% to 577,000 tons or 46% of total U.S. exports.

The United States was again a net importer of sulfur with imports exceeding exports by over 357,000 tons in 1987. Frasch sulfur from Mexico and recovered elemental sulfur from Canada, both delivered to U.S. terminals and consumers in the liquid phase, continued to furnish nearly all U.S. sulfur import requirements. Total elemental sulfur imports increased 19% in quanti-

ty; imports by rail from Canada increased 26%, while waterborne shipments from Mexico were 9% higher. An estimated 540,000 tons of sulfur shipped to the west coast of Mexico from Canada and the United States was exchanged for Mexican sulfur delivered to Florida and U.S. east coast ports.

The United States also had significant trade in sulfuric acid. Sulfuric acid exports increased by 46% from those of 1986. Imports, which were significantly greater than exports, were mostly from Canada and increased slightly from the quantity reported in 1986. The value of imported sulfuric acid, however, decreased by over 17%.

Table 15.—U.S. exports1 of elemental sulfur, by country

(Thousand metric tons and thousand dollars)

Country	19	86	1987	
	Quantity	Value	Quantity	Value
Algeria	22	2.990		
Argentina	11	1,605	13	1,850
Australia	1	720	12	1,862
Belgium-Luxembourg	249	30,907	217	26,801
Brazil	188	28,880	258	31,532
Canada	19	1,116	15	31,532 1,386
Colombia	14	1,869	21	2,255

See footnote at end of table.

Table 15.—U.S. exports1 of elemental sulfur, by country —Continued

(Thousand metric tons and thousand dollars)

	19	86	1987	
Country	Quantity	Value	Quantity	Value
Sgypt	40	4,585	·	
rance	11	1,335	25	2,57
ndia	66	8,663	85	8,40
ndonesia	53	6,839	24	2.33
rael	25	3,533	(2)	,
	- 1	553	14	2,49
Korea, Republic of	139	13,768	222	20,79
Mexico	564	77,920	108	10,44
Morocco	7	820	3	17
Vetherlands		. 620	21	2.11
lomania	56	7.101	48	5,12
enegal	19	2,308	26	2.57
outh Africa, Republic of	49	6,590	23	2,40
aiwan			64	6,94
unisia	322	42,215		2.06
urkey	19	2,439	18	
Jruguay	_ 8	_1,133	(2)	. 7
Other	^r 13	r _{3,775}	24	5,20
Total ³	1,895	251,664	1,242	139,43

Revised.

Source: Bureau of the Census.

Table 16.—U.S. exports of sulfuric acid (100% H₂SO₄), by country

	1986		1987	
Country	Quantity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)
Canada	16,890	\$680	27,695	\$948
Chile	499	27	9,867	488
Costa Rico	589	40	1,557	86
Dominican Republic	382	63	263	44
Ecuador	144	16	5.044	220
Egypt	239	53	1,493	67
France	376	19	-,	
Japan	693	47	19	22
Korea, Republic of	1.208	848	1.973	991
Mexico	21,427	833	16,497	69
Vamibia	1.495	60	20,20	
NamiblaNamiblaNetherlands Antilles	6,400	320	8,966	37
Panama	3,613	193	2,920	128
Saudi Arabia	418	78	1,380	7
Taiwan	526	159	3,380	350
Trinidad and Tobago	38	5	803	34
United Kingdom	695	25	3,194	108
Venezuela	6.664	476	6,368	37
Venezueia	r4,710	r ₆₇₉	6,535	85
Total	67,006	4,621	97,954	¹5,84

Source: Bureau of the Census.

^{*}Revised.

*Includes exports from the Virgin Islands.

*Less than 1/2 unit.

*Data may not add to totals shown because of independent rounding.

^rRevised.

¹Data do not add to total shown because of independent rounding.

SULFUR 851

Table 17.—U.S. imports of elemental sulfur, by country

(Thousand metric tons and thousand dollars)

Country	19	1986		1987	
	Quantity	Value ¹	Quantity	Value ¹	
Mexico Venezuela		16	50,342 89,709 1,891 278	764 793 41 1	52,048 94,444 4,897 708
Total		1,347	142,220	1,599	4 152,096

¹Declared customs valuation.

3Less than 1/2 unit.

Source: Bureau of the Census.

Table 18.—U.S. imports of sulfuric acid (100% H₂SO₄), by country

		198	6	1987		
Country	F. C.	Quantity (metric tons)	Value ¹ (thou- sands)	Quantity (metric tons)	Value ¹ (thou- sands)	
Belgium		16	\$8	12	\$42	
Canada		589,174	20,511	715,008	22,284	
Denmark		8,408	457		·	
Finland		15,712	590			
France		67	184	49	15	
FranceGermany, Federal Republic of		33,183	2,544	2	12	
taly		6,943	283	9,444	479	
Japan		8	40	30,634	91	
Netherlands		2,877	118			
Spain		61,843	2,888	5,112	28:	
Sweden		21,583	828	2,281	348	
Switzerland	:	596	381	3,600	171	
United Kingdom		19,167	1,006	(2)	2	
Other		ř123	r ₄₆	68	70	
Total ³		759,702	29,883	766,210	24,760	

Revised.

Source: Bureau of the Census.

WORLD REVIEW

World sulfur production, consumption, and trade increased; however, international prices for elemental sulfur decreased. The U.S.S.R., which had imported over 800,000 tons of elemental sulfur from Canada in 1986, indicated early in the first quarter that it would not require more than 60,000 tons during 1987. Consumers of elemental sulfur, perceiving an oversupply condition in the international market, pressed for price reductions and other considerations from major exporters. Canadian exporters, faced with the loss of one-seventh of their export business, adopted an aggressive marketing stance and reduced prices f.o.b. Van-

couver, British Columbia, Canada, by \$12 to \$15 per ton for deliveries beginning in the second quarter. Saudi Arabia reduced the "Government Expected Price," f.o.b. Jubail, \$13 per ton to \$100 per ton on April 1. In the highly competitive northern European market, liquid price quotes for the second half dropped about \$20 per ton to \$120 per ton. Second-half prices for liquid sulfur in the Tampa, FL, area were settled at \$127.50 to \$128 per long ton, a \$15 decrease from January. International prices in the \$96 to \$100 range, f.o.b. from Canada and Persian Gulf countries, effectively restricted U.S. Frasch exporters from many of their tradi-

²Includes the Dominican Republic, France, the Federal Republic of Germany, and Japan in 1986; and Belgium, Chile, the Federal Republic of Germany, Japan, and Switzerland in 1987.

⁴Data do not add to total shown because of independent rounding.

Declared c.i.f. valuation.

²Less than 1/2 unit.

³Data may not add to totals shown because of independent rounding.

tional markets; Frasch sulfur exports were reduced to the lowest levels since the early 1950's, when U.S. Government controls were in place.

Despite the perceived oversupply in the international marketplace, stocks of sulfur worldwide were reduced by nearly 700,000 tons. Stock levels were reduced by 1.4 million tons in Canada, and over 400,000 tons in the United States. Stocks increased in Iran, Iraq, Mexico, Saudi Arabia, and the U.S.S.R.

Canada.—Shipments of sulfur in all forms were about 7.98 million tons, or 1.41 million tons greater than production. Elemental sulfur exports increased in quantity by about 300,000 tons to nearly 6.57 million tons. The value of sulfur exports, however, decreased by over 20%. Canada remained the world's largest exporting country.

In February, Shell Canada Ltd. announced the discovery of a major new gas condensate field at Caroline, near Sundre, Alberta. The Caroline Field was the largest Albertan discovery in over a decade; gas reserves were estimated to be nearly 57 billion cubic meters with a hydrogen sulfide content 30% to 35%. Shell and its partners expected to begin development of the field and be producing over 1 million tons of sulfur by the early 1990's.

An October fire at Suncor Inc.'s Fort McMurray, Alberta, oil sands-bitumen extraction plant caused damages estimated at Canadian \$50 to \$60 million. Prior to the accident the facility was producing over 300 tons per day of elemental sulfur. Repairs were begun and full production is to be resumed by April 1988.

Canterra Energy Ltd. commissioned a cold flotation facility at its Ram River, Alberta, gas processing plant to recover contaminated sulfur from its block base pad. The company reduced its block inventory by several million tons during the 1980's and the 100,000-ton-per-year unit was to aid in recovering material not suitable for remelt.

Noranda Inc., in an agreement with the Federal and Provincial Governments, announced plans to construct a 350,000-ton-per-year sulfuric acid plant at its Horne copper smelter in Rouyn-Noranda, Quebec.² The acid plant was to reduce SO₂ emissions from the smelter by over 50%. Construction was to begin in 1988 with commissioning set for mid-1989.

Chile.—Misubishi Heavy Industries Ltd. of Japan began construction of a 600,000-

ton-per-year sulfuric acid plant designed to recover exhaust gases from the Chuquica-mata copper smelter. Corporación Nacional del Cobra de Chile contracted for the acid plant in 1986 to service its new flash smelter designed by Outokumpu Oy of Finland. Most of the acid plant's output was to be used to treat Chuquicamata's oxide zone copper ore in a heap leach, SX-EW system that was scheduled to recover 80,000 tons per year of copper by 1990.

China.—A new 3-million-ton-per-year pyrite mine was reportedly commissioned near Yunfu, Guangdong Province. China continued to explore for sulfur resources to augment production from pyrites for use in its program to increase fertilizer production from indigenous resources.

Egypt.—In November, Freeport Egyptian Sulphur Co., a subsidiary of Freeport-McMoRan Inc., reported a sulfur discovery near El 'Arish in the northern Sinai Desert.³ A 140-foot interval containing sulfur was discovered at a depth of 1,200 to 1,340 feet. Further drilling was scheduled for the rest of the year and into 1988 to determine the size and extent of the deposit.

Iran.—Sulfur production remained below rated capacity of the nation's gas treatment facilities and petroleum refineries because of the ongoing war with neighboring Iraq. An estimated 150,000 tons of sulfur was put into inventories, and exports were estimated at 70,000 tons.

Iraq.—Sulfur exports continued to be routed overland through neighboring nations because safe passage could not be assured for Iraqi material in the Persian Gulf. Production was increased at the Mishraq Mine and from the Kurkuk gas plant. Freeport-McMoRan of the United States and the State Organization for Minerals discussed setting up a filtration plant, using Freeport technology, to treat production from the Mishraq Mine that had a high bitumen content.

Mexico.—Frasch sulfur production continued to increase and was scheduled to increase further with the commissioning of the Otapan Mine in 1988. Sulfur imports from Canada and the U.S. west coast were nearly 540,000 tons, which did not appear in official Mexican trade statistics. Most of these imports occurred by means of exchange agreements for deliveries of Mexican Frasch sulfur to the United States.

Construction began on a 600,000-ton-peryear sulfuric acid plant at Mexicana de Cobre S.A.'s La Caridad copper smelter. The smelter operated with a high stack to disperse sulfur dioxide, but Mexico was obligated to install the acid plant as part of a 1985 agreement with the United States to limit emissions from Mexican smelters and Phelps Dodge's Douglas, AZ, smelter.

Morocco.—Morocco became the world's leading importer of elemental sulfur because of increasing consumption at its phosphate fertilizer facilities at Safi and Jorf Lasfar. Imports increased to nearly 2 million tons from 1.7 million tons and were projected to increase additionally by 500,000 tons in 1988-89 when the Jorf Lasfar facility was expected to become fully operational.

Poland.—Sulfur exports of 3.85 million tons included nearly 2 million tons to Eastern Europe and 915,000 tons to Western Europe. Most of the remainder was shipped to Brazil, India, and Morocco.

Saudi Arabia.—Sulfur production from natural gas processing plants and oil refineries increased slightly. Excess production of sulfur over domestic and export demand created a stock increase at the Berri gas plant of an estimated 500,000 tons.

U.S.S.R.—Production of elemental sulfur increased substantially because the new Astrakhan natural gas processing plant commenced operations. Output from the facility, which had four processing trains,

was significantly less than the design capacity of 2.7 million tons per year. Each of the four trains had successfully been tested at full capacity during the year, and output at yearend was estimated to be nearly 4,000 tons per day. Construction of the second phase will double the size of the Astrakhan facility.

In November, it was announced in Moscow that Montedison S.p.A. of Italy and Occidental Petroleum Corp. of the United States signed an agreement with the U.S.S.R. to build and operate a petrochemical plant near the Tengiz oil-gas-condensate field. The facility was designed to produce 1 million tons per year of commercial sulfur. A separate facility under construction was planned to produce 450,000 tons per year of sulfur at Tengiz by 1989. The Tengiz Field had reserves of over 2.5 billion tons (18 billion barrels), making it one of the world's largest oil discoveries.4 Production of oil from the field was scheduled to reach 30 million tons per year by 1995, which would vield 4.5 to 5 million annual tons of sulfur. By 1995, the total annual output of elemental sulfur from Tengiz and Astrakhan combined could be over 10 million tons.

Sulfur production from the Noril'sk nonferrous metallurgical center reportedly began late in 1987.

Table 19.—Sulfur: World production in all forms, by country and source¹
(Thousand metric tons)

Country ² and source ³	1983	1984	1985	1986 ^p	1987 ^e
Algeria: Byproduct, natural gas and petroleum ^e	15	20	20	20	20
Australia:					
Byproduct: Metallurgy	170	190	435	433	435
Petroleum	13	13	12	10	49
Total	183	203	447	443	444
Austria:				·········	
Byproduct:	9	10	11	11	11
Metallurgy Natural gas and petroleum	32	28	24	29	28
Gypsum	26	26	27	24	25
Total ⁵	^r 68	^r 65	62	64	64
Bahamas: Byproduct, petroleum ^e	5	3	1		
Banrain: Byproduct, petroleum	49	^e 50	42	^e 45	45
Belgium: Byproduct, all sources ^e	250	240	250	260	250
Bolivia: Native	3	2	3	5	10
Brazil:					
Frasch	r 3	4	4	6	6
Pyrites	*76	89	91	92	92
Byproduct:	^r 44	52	79	100	115
Metallurgy	r ₆₅	52 71	79 55	74	75
1 600 Oloum	- 69	/1	35	14	
Total	^r 188	216	229	272	288

See footnotes at end of table.

Table 19.—Sulfur: World production in all forms, by country and source¹ —Continued (Thousand metric tons)

Country ² and source ³	1983	1984	1985	1986 ^p	1987 ^e
Bulgaria: ^e					
PyritesByproduct, all sources	80 56	75 62	65 53	80 62	80 65
Total	136	137	118	142	145
Canada:					
Pyrites ^{e 6} Byproduct:	9	(7)	(7)	(*)	
MetallurgyNatural gas	. 678 5,390	875 5,260	822 5.296	758 5,161	4803 45,249
Petroleum ^e Tar sands	170	165 296	5,296 *174 392	¹ 189 435	190 4426
Total	46,577	r _{6,596}	r _{6,684}	r _{6,543}	6,668
Chile:	. 0,511	0,030	0,004	0,545	0,000
Native:	10	14	15	10	10
Refined From caliche	. 16 . 83 . 32	14 40 32	15 64 30	13 44	13 44
Byproduct, metallurgy		86	109	98	40
Total	131	80	109	98	97
China: ^e Native	200	200	300	300	300
Pyrites Byproduct, all sources	2,300 350	2,100 350	2,200 400	2,500 300	2,500 300
Total	2,850	2,650	2,900	3,100	3,100
Colombia:		90	41	9.0	40
NativeByproduct, petroleum	. 31	36 10	41 10	e ₁₀	40 10
Total	. 37	46	51	r e ₄₆	50
Cuba: e					
Pyrites Byproduct, petroleum	. 5 . 8	$-\overline{8}$	$\overline{8}$	- 8	-8
Total	. 13	. 8	. 8	. 8	. 8
Cyprus: ⁸ Pyrites	21	10	31	25	25
Czechoslovakia: ^e Native	. 5	5	46	6	6
PyritesByproduct, all sources	60	60 10	462 412	60 10	60 11
Total	75 e ₉	75	480	76	77
Denmark: Byproduct, petroleum		11	7	13	13
Ecuador: ^e Native	. 5	5	4	4	5
Byproduct: Natural gas	. 5	5	5	5	5
Petroleum	5	5	5	5	5
TotalEgypt: Byproduct, natural gas and petroleum ^e	. 15 . 1	15 1	$^{14}_{r_3}$	$^{14}_{r_4}$	15 5
Finland:					
PyritesByproduct:	224	211	248	275	4 311
MetallurgyPetroleum	. 264 . 48	265 45	257 45	r e ₂₆₀	220 40
Total	536	521	550	577	571
France:					
Byproduct: Natural gas	1,653	1,589	1 226	946	872
Petroleum	157	163	1,386 e160	^e 180	200
Unspecified ^e	1,910	1,862	1,723	1,306	1,252
Total					

See footnotes at end of table.

Table 19.—Sulfur: World production in all forms, by country and source¹ —Continued (Thousand metric tons)

Country ² and source ³	1983	1984	1985	1986 ^p	1987 ^e
Germany, Federal Republic of:					
Byproduct:					
Metallurgy ^{e 9}	400	350	320	300	300
Natural gas Petroleum ^e	632 195	851 190	964 200	998 190	1,030 210
Unspecified ^e	95	90	200 85	85	210 88
Total ^e	1 999				
	1,322	1,481	1,569	r _{1,573}	1,628
Greece: Pyrites	CFT	70	650	T ean	
Byproduct: ^e	67	78	€ 78	r e ₆₆	70
Natural gas Petroleum	115 45	120	130	130	130
		5	5	5	5
Total ^e	187	203	213	^r 201	205
Hungary: ^e					
Pyrites Byproduct, all sources	3	2	2	1	.1
		9	9	10	10
Total	12	11	11	11	11
India:					
PyritesByproduct:	25	18	7	. 8	12
Metallurgy ^e	110	115	120	120	120
Petroleum	4	e ₅	(¹⁰)	e ₁	
Total ^e	139	138	r ₁₂₇	r ₁₂₉	132
Indonesia: ⁸ Native	3	5	4	e ₄	4
ran:					
Native ^e Byproduct, natural gas and petroleum	20	30	30	30	30
and the state of the	16	130	150	r e ₂₅₀	300
Total ^e	36	160	180	^r 280	330
rag: ^e Frasch					
Frasch Byproduct, natural gas and petroleum	300	500	500	600	620
Byproduct, natural gas and petroleum	40	70	70	r200	250
Total	340	570	570	e800	870
srael: Byproduct, natural gas and petroleum ^e	10	10	10	e ₁₅	20
taly: Native					
Demites	9 271	8	1		
Byproduct, all sources ^e 11	210	192 200	280 200	309 185	300 190
Total ^e	490	400	481		
	430	400	481	494	490
apan: Pyrites	272	259	253	158	79
Byproduct:				198	
MetallurgyPetroleum	1,239 1,102	1,191 1,142	1,201 1,044	1,228 985	1,215 927
Total	2,613	2,592	2,498	2,371	2,221
Korea, North: ^e					
Pyrites Byproduct, metallurgy	200 30	200 30	200 30	200 30	200 30
Total	230	230			
	230	230	230	230	230
Corea, Republic of: Pyrites	(¹⁰)	(10)			
Byproduct: ^e	(~~)	(¹⁰)			
Metallurgy Petroleum	54	54	55	55	55
	36	36	35	35	35
Total ^e	90	90	90	90	90
	145	151	198	4 260	350
uwait: Byproduct, natural gas and petroleum ^e ibya: Byproduct, natural gas and petroleum ^e	14	14	14	14	14

See footnotes at end of table.

Table 19.—Sulfur: World production in all forms, by country and source¹ —Continued (Thousand metric tons)

Country ² and source ³	1983	1984	1985	1986 ^p	1987
Mexico: Frasch	1,225	1,364	1,551	1,588	41,80
Byproduct:	100	160	160	r ₁₇₀	18
Metallurgy ^e Natural gas and petroleum	377	461	469	462	441
Total ^e	1,702	1,985	2,180	r _{2,220}	2,39
Namibia: Pyrites	81	104	108	134	13
Netherlands:					
Byproduct: Metallurgy	100			- - -	·
Petroleum	105	245	250	250	24
Total Wetherlands Antilles: Byproduct, petroleum	205 87	245 63	250 e ₂₅	250 e ₄₀	24
New Zealand: Byproduct, all sources	i	1	ē ₁	ě ₁	
					
Pyrites Byproduct:	179	r ₂₀₃	193	181	17
Metallurgy	e95	62	60	$^{ m e}_{13}^{67}$	8
Petroleum	8	8	10		
Total Dman: Pyrites ^e	282 11	273 31	263 31	261 31	26
Pakistan: Native	1	1	1	1	
Byproduct, all sources ^e	26	26	26	26	. 2
Total	27	27	27	27	
Peru:	(¹⁰)	(¹⁰)	(¹⁰)	(10)	(1
NativeByproduct, all sources	65	64	68	è66	``
	65	64	68	e66	(
Philippines:					
Pyrites	29	r ₃₉	108	113	41
Byproduct, metallurgy ^e	57	95	100	120	14
Total ^e	86	^r 134	^r 208	^r 233	2
Poland. ^e 12	4.400	4.500	44 900	4 400	4,50
Frasch Native	4,460 500	4,500 490	44,386 490	4,400 500	4,5 5
Byproduct: Metallurgy	170	170	170	170	1'
Petroleum Gypsum	30 20	30 20	30 20	30 20	
				5,120	5,2
Total	5,180	5,210	5,096	0,120	0,2.
Portugal: Pyrites	124	140	155	144	14
Byproduct, all sources	5	4	e ₅	e 5	
Total	129	144	e160	e ₁₄₉	1
Qatar: Byproduct, natural gas=	19	33	37	^e 37	
Romania: e	900	900	200	150	1
Pyrites Byproduct, all sources	200 150	200 150	150	$\frac{150}{140}$	1
	350	350	350	290	2
Saudi Arabia: Byproduct, natural gas and petroleum Singapore: Byproduct, petroleum	^r 793	833 6	1,100 e ₅	e _{1,300}	1,4
		-		-	
South Africa, Republic of: Pyrites	474	464	562	499	5
Pyrites Byproduct. ^e Metallurgy	125	491	485	r ₁₀₈	1
Petroleum ¹³	32	30	100	110	1

See footnotes at end of table.

Table 19.—Sulfur: World production in all forms, by country and source¹ —Continued (Thousand metric tons)

(Thousand metric	c tons)				
Country ² and source ³	1983	1984	1985	1986 ^p	1987 ^e
Spain:					
PyritesByproduct: ^e	1,073	1,094	1,231	1,195	1,000
Coal (lignite) gasification Metallurgy Petroleum	$120 \\ 8$	3 125 9	$\begin{array}{c} 2 \\ 115 \\ 7 \end{array}$	105 8	110 8
Total ^e	1,204	1,231	1,355	1,310	1,120
Sweden: Pyrites Byproduct:	^r 219	r ₂₁₂	210	227	220
Metallurgy Petroleum	114 20	122 26	123 23	125 49	125 50
TotalSwitzerland: Byproduct, all sources	353 3	r360 3	356 3	401 3	395
Syria: Byproduct, natural gas and petroleum ^e Taiwan: Byproduct, all sources Trinidad and Tobago: Byproduct, petroleum ^e	30 27 8	35 29 7	35 43 5	35 63 5	40 65
Turkey:	•		ð	9	3
NativePyrites ^e	35 2	41	44	41	40
Byproduct, all sources ^e	75	78	80	80	80
Total ^e =	112	119	r ₁₂₄	^r 121	120
U.S.R.:° Frasch Native. Pyrites	800 1,800 ¹ 2,700	800 1,800 1 2,600	850 r _{1,800} r _{2,500}	875 r _{1,900} r _{2,350}	950 1,900 2,300
Byproduct: Metallurgy Natural gas Petroleum	r _{1,600} r _{1,800} 450	r _{1,700} r _{1,850} 450	r _{1,700} 4 _{1,974} 450	r _{1,700} r _{2,000} 450	1,650 2,300 450
Total	r _{9,150}	r _{9,200}	r _{9,274}	r _{9,275}	9,550
United Arab Emirates: Abu Dhabi: Byproduct: Natural gas					
Petroleum	10	35 15	104 1	^e 90 ^e 1	90 1
Total	10	50	105	^e 91	91
United Kingdom: Byproduct: Metallurgy					
Petroleum Spent oxides	69 55 3	71 75 1	79 80 	70 105 	464 110
Total ⁵	127	^r 146	149	175	174
United States: Frasch Pyrites Byproduct:	3,202 W	4,193 W	5,011 W	4,043 W	43,202 W
MetallurgyNatural gas	831 2,371	962 2,407	957 2,373	919 2,246	41,003 42,536
Petroleum Unspecified	2,584 302	2,807 283	2,940 328	3,570 309	43,624 4173
Total ⁵ Jruguay: Byproduct, petroleum ^e	9,290 2	10,652 2	11,609 2	11,087 2	⁴ 10,539 2
Venezuela: Byproduct, natural gas and petroleum ^e	85	86	88	90	92
Yugoslavia: Pyrites and pyrrhotite Byproduct:	298	301	323	344	4323
MetallurgyPetroleum	180 3	160 3	170 3	^r 175 3	175 3
Total ^e aire: Byproduct, metallurgy ^e	481 36	464 37	496 36	r ₅₂₂ 36	501 36

See footnotes at end of table.

Table 19.—Sulfur: World production in all forms, by country and source1 —Continued (Thousand metric tons)

					*	
Country ² and source ³	1.	1983	1984	1985	1986 ^p	1987 ^e
		4				
Zambia:						
Zamoia: Pyrites		^r 26	18	28	19	19
Byproduct, all sources ^e		80	80	80	80	80
Total ^e		r ₁₀₆	98	108	99	99
	· . =					
Zimbabwe: ^e		25	25	25	25	25
Pyrites Byproduct, all sources		5	5	5	5	5
Total		30	30	30	30	30
Grand total ⁵	_ =	r49,770	r _{51,859}	54,331	54,074	54,221
Of which:		20,110	0-,		e Tellini	
Frasch		r _{9,990}	^r 11,361	12,302	11,512	11,084
Native		2,711	2,677	2,803	2,884	2,894
Pyrites		^r 9,054	r8,725	9,191	9,186	8,900
Byproduct:		3	3	2	2	2
Coal (lignite) gasification		r _{6,627}	r _{6.919}	7,105	7,101	7,187
Metallurgy		r _{11,985}	r _{12.150}	12,269	11,613	12,247
Natural gas		r _{1.558}	12,130	2,181	2,679	2,932
Natural gas and petroleum, undifferentiated		r _{5,283}	r _{5,698}	5,734	6,433	6,468
Petroleum		3,200	3,030	0,104	0,200	0,200
Spent oxides Tar sands		330	296	392	435	426
Unspecified sources		2,179	2,144	2,305	2,185	2,040
Gypsum Gypsum Gypsum		46	46	47	44	45
Gypsum						

W Withheld to avoid disclosing company proprietary data; included with ^pPreliminary. rRevised. "Byproduct: Unspecified sources."

Table includes data available through June 3, 1988.

*In addition to the countries listed, a number of nations may produce limited quantities of either elemental sulfur or compounds (chiefly H₂S or SO₂) as a byproduct of petroleum, natural gas, and/or metallurgical operations, but output, if any, is not quantitatively reported, and no basis is available for the formulation of reliable estimates of output. Countries not listed in this table that may recover byproduct sulfur from oil refining include Albania, Bangladesh, Brunei, Burma, Costa Rica, Guatemala, Honduras, Jamaica, Malaysia, Nicaragua, Paraguay, and Yemen-Aden. Albania and Burma may also produce byproduct sulfur from crude oil and natural gas extraction. No complete listing of other nations that may produce byproduct sulfur from metallurgical operations (including processing of coal for metallurgical use) can be compiled, but the total of such output is considered as small. Nations listed in this table that may have production from sources other than those listed are identified by individual footnotes.

*The term "source" reflects both the means of collecting sulfur and the type of raw material. Sources listed include the following: (1) Frasch recovery; (2) native, comprising all production of elemental sulfur by traditional mining methods (thereby excluding Frasch); (3) pyrites (whether or not the sulfur is recovered in the elemental form or as acid); (4) byproduct recovery, either as elemental sulfur or as sulfur compounds from coal gasification, metallurgical operations including associated coal processing, crude oil and natural gas extraction, petroleum refining, tar sand cleaning, and processing of spent oxide from stack-gas scrubbers; and (5) recovery from the processing of mined gypsum. Recovery of sulfur in the form of sulfuric acid from artificial gypsum produced as a byproduct of phosphatic fertilizer production is excluded because to include it would result in double counting. It should be noted that production of Frasch sulfur, other native sulfur, pyrites-derived sulfur, mined gypsum pr

Reported figure

Data may not add to totals shown because of independent rounding

⁶Byproduct pyrite and pyrrhotite from the processing of metallic sulfide ores.

⁷Revised to zero.

In addition, may produce limited quantities of byproduct sulfur from oil refining.

Includes only the elemental sulfur equivalent of sulfuric acid produced as a byproduct from metallurgical furnaces; additional output may be included under "Byproduct: Unspecified sources."

Less than 1/2 unit.

¹¹Includes recovery from gypsum, if any.

12 Official Polish sources report total Frasch and native mined elemental sulfur output annually, undifferentiated; this figure has been divided between Frasch and other native sulfur on the basis of information obtained from supplementary sources.

13 Estimates for 1985 and 1987 include byproduct production from synthetic fuels.

SULFUR 859

TECHNOLOGY

Monsanto Enviro-Chem Systems Inc. entered into an agreement with E. I. du Pont de Nemours & Co. Inc. to become the worldwide licensee for Du Pont's froth scrubbing technology for use in sulfuric acid applications. Monsanto, which designs and constructs sulfuric acid plants, believed that this technology was well suited to clean the exit gases from copper smelters and pyrites roasting plants prior to their introduction into the associated sulfuric acid plant. Monsanto stated that the advantages over conventional gas-cleaning facilities included lower capital and maintenance costs.


high cleaning efficiency, lower energy requirements, and a simple reliable design with few moving parts. The 25% savings in energy consumption was especially attractive to copper smelting companies because of the reduced acid production costs.6

¹Physical scientist, Branch of Industrial Minerals.

Canadian Mining Journal. Mar. 1988, p. 67.
Sulphur. No. 194, Jan. Feb. 1988, pp. 12-13.
Fertilizer Focus. V. 5, No. 3, Apr. 1988, p. 4.

Sotsialisticheskaya Industriya (Socialist Industry)
Moscow). Oct. 8, 1987, p. 1.

Fries, R. M., and R. M. Brendel, Monsanto Dynawave
Scrubbers. Monsanto Enviro-Chem. Syst. Inc., St. Louis,

Talc and Pyrophyllite

By Robert L. Virta¹

Domestic production of talc and pyrophyllite increased 4% from that of 1986. Sales of crude and processed talc and pyrophyllite decreased slightly in tonnage and increased slightly in value. Imports for consumption increased slightly. Exports increased 36% in tonnage and 29% in value.

Domestic Data Coverage.—Domestic production and sales data for talc and pyrophyllite are developed by the Bureau of

Mines from a voluntary survey of U.S. mines and mills. Of the 82 mines and mills to which a survey request was sent, 56 responded, representing 68% of the U.S. production data shown in table 1. Production for the 26 nonrespondents was estimated using reported prior year production levels adjusted by trends in employment and other guidelines.

Table 1.—Salient talc and pyrophyllite statistics

(Thousand short tons and thousand dollars)

· ·					
	1983	1984	1985	1986	1987
United States:					
Mine production, crude:					
Talc	_ 980	1,042	1,188	1,219	1,258
Pyrophyllite	87	85	81	83	92
Total ¹	1,066	1,127	1,269	1,302	1,349
Value:					
Talc	_ \$18,998	\$21,755	\$27,768	\$29,687	\$27,178
Pyrophyllite	1,282	1,412	1,420	1,540	1,607
Total	20,280	23,167	29,188	31,227	28,785
Sold by producers, crude and processed:	-				
Talc	_ 1,038	1,101	1.067	1.070	1.057
Pyrophyllite	125	97	81	83	90
Total	1,163	1,198	1,148	1 150	1115
	1,100	1,130	1,148	1,153	1,147
Value:					
Talc		\$112,515	\$114,542	\$111,924	\$112,716
Pyrophyllite		3,578	3,273	3,366	3,712
Total¹Exports² (talc)	. 108,796	116.093	117,815	115,290	e116,429
Exports ² (talc)	_ 218	256	237	234	318
value	\$12 916	\$16,162	\$14,282	\$16,302	\$21,040
Imports for consumption ³ (talc) Value		45	47	52	53
Consumption	\$7,691	\$9,156	\$9,532	\$8,715	\$10,348
Consumption, apparent ⁴	. 989	1,009	_1,079	1,120	1,084
	7,781	r _{8,303}	r _{8,423}	P8,256	e8,310

Estimated. Preliminary. Revised.

Data may not add to total shown because of independent rounding.

²Excludes powders—talcum (in package), face, and compact.

³Does not include imported pyrophyllite.

⁴Production, plus imports, minus exports, plus adjustments in Government and industry stock changes.

Government Proand Legislation Occupational Safety and grams.—The Health Administration (OSHA) extended through July 21, 1988, an administrative stay on its 1986 regulation governing worker exposure to the nonasbestiform varieties of actinolite, anthophyllite, and tremolite. During the stay, OSHA continued to analyze the impact of using the asbestos. standard to regulate the nonasbestiform varieties of the minerals.2

U.S. import duties on talc minerals from

most favored nations were crude and unground, 0.02 cent per pound; ground, washed, powdered, and/or pulverized, 2.4% ad valorem; cut, sawed, or in blanks, crayons, cubes, disks, or other forms, free; and other not specifically provided for, 4.8% ad valorem

The stockpile inventories of 1,081 short tons for block or lump talc and 1,809 tons for ground talc at yearend were unchanged from those of 1986.

DOMESTIC PRODUCTION

Talc.—U.S. mine production of crude talc increased 3% in tonnage and decreased 8% in value. Talc and soapstone were produced at 28 mines in 10 States. Mines that operated in Montana, New York, Texas, and Vermont accounted for 95% of domestic talc production. Montana led all States in the tonnage and value of talc produced.

The largest domestic producers of talc, listed alphabetically, are Cyprus Industrial Minerals Co.; Dal-Tile (Texas Talc Co.) Gouverneur Talc Co., a subsidiary of R. T. Vanderbilt Co. Inc.; Pfizer Inc., Minerals, Pigments and Metals Div.; Vermont Talc Co.; and Windsor Minerals Inc.

Vermont Talc opened a mine near Troy, VT, to supply talc to its flotation mill at Johnson, VT.

Cyprus completed developmental work and began mining talc from a deposit near Alpine, AL. Talc from the deposit will be processed at the Cyprus mill facilities in Alpine.

Pyrophyllite.—Pyrophyllite was produced by four companies operating six mines in California and North Carolina. Production increased 11% over that of 1986.

Table 2.—Crude talc and pyrophyllite produced in the United States, by State

(Thousand short tons and thousand dollars)

	19	86	1987		
State	Quan- tity	Value	Quan- tity	Value	
California	64	1,528	w	w	
Georgia (talc)	9	61	20	286	
Montana	w	w	386	12,320	
North Carolina	83	1,552	W	W	
Texas (talc)	283	6.456	255	4,380	
Other ¹ (talc)	863	21,630	688	11,799	
Total	1,302	31,227	1,349	28,785	

W Withheld to avoid disclosing company proprietary data; included with "Other."

¹Includes Arkansas, New York, Oregon, Vermont, Virginia (1987).

CONSUMPTION AND USES

Apparent domestic consumption of crude and processed talc and pyrophyllite decreased 3%. Sales of talc and pyrophyllite decreased slightly in tonnage and increased slightly in value.

End-use distribution of ground talc was ceramics, 33%; paint, 15%; paper, 14%; roofing, 12%; plastics, 8%; cosmetics, 6%; and insecticide, refractory, rubber, and other, 12%.

The largest portion, 61%, of domestically produced ground pyrophyllite was used in ceramics, 16% was used in refractories, 9% in insecticides, and 14% in paint, plastic, roofing, rubber, and other.

A survey of the European paper industry indicated that talc consumption was approximately 550,000 tons per year. Over 75% of the talc consumed was used as paper filler. Slightly less than 8% was used for

pitch-control and 8% was used as a coating pigment. Talc's importance as a pitch control agent was reduced through the use of chemical additives. The major consuming European countries were Austria, Finland, France, Italy, and Spain.³

A survey of the talc industry in Europe indicated that changes in the general economy, overcapacities at processing plants, and loss of markets to other minerals resulted in more competition within the talc industry. Growth within the pulp and paper industry was expected to slow because of increased use of calcium carbonate as a paper filler. With increasing restrictions on the use of chemicals, new papermaking machines, and increased waste paper recycling, the market for talc as a pitch control agent had the greatest potential for growth. Growth within the roofing industry was not ex-

pected because of competition from limestone, sand, slate, and antistick polyolefin films, and the increasing use of single-ply roofing applications. Talc consumption by the ceramics industry was expected to increase because of demand for earthenware.

electroceramics, floor tiles, and sanitary ware. Consumption of talc by the plastics industry was expected to increase 7% to 10% because of the demand for talc-filled polypropylene.4

Table 3.—End uses for ground talc and pyrophyllite

(Thousand short tons)

		1986			1987			
Use	Talc	Pyrophyl- lite	Total ¹	Talc	Pyrophyl- lite	Total		
CeramicsCosmetics ²	343	64	407	313	83	396		
InsecticidesPaint	46 6	13	49 18	60 (3)	12	60 12		
Paper Plastics	168 127	2 	170 127	138 127		140 127		
RefractoriesRoofing	69 3	20	69 22	79 2	1 21	80 23		
Rubber	106 25	2 (³)	108 25	112 19	(3)	113 19		
	90	13	103	88	14	102		
Total ¹	983	116	1,099	938	135	1,073		

¹Data may not add to totals shown because of independent rounding.

PRICES

Talc prices varied depending on the quality, and on the degree and method of processing.

Prices, quoted by the Engineering and

Mining Journal, December 1987, per short ton of domestic ground tale, in carload lots, f.o.b. mine or mill, including containers follow:

New Jersey:	
Mineral pulp, bags extra	\$18.50-\$20.50
Vermont:	
98% through 325 mesh, bulk	70.00
99.99% through 325 mesh, bags:	
Dry processed	147.00
Water beneficiated	213.00-228.00
New York:	
96% through 200 mesh	67.00- 75.00
98% to 99.25% through 325 mesh	83.00-100.00
100% through 325 mesh,	
fluid-energy ground	165.00
California:	
Standard	130.00
Fractionated	37.00- 71.00
Micronized	150.00-220.00
Cosmetic steatite	44.00- 65.00
Georgia:	
98% through 200 mesh	50.00
99% through 325 mesh	60.00
100% through 325 mesh.	00.00
fluid-energy ground	100.00

Approximate equivalents, in dollars per short ton, of price ranges quoted in Industrial Minerals (London), December 1987, for talc, c.i.f. main European ports, were as follows:

²Incomplete data. Some cosmetic talc known to be included with "Other."

Less than 1/2 unit.

Includes art sculpture, asphalt filler and coatings, crayons, floor tile, foundry facings, rice polishing, stucco, and other uses not specified.

Norwegian: Ground (ex store)	\$162-\$180
	207- 288
Micronized (ex store)	
French, fine-ground	216- 342
Italian, cosmetic-grade	315
Chinese, normal (ex store):	
UK 200 mesh	254
UK 325 mesh	265
New York, paint, minimum 20-ton lot	175

FOREIGN TRADE

to \$596 per ton, averaging \$66 per ton. Talc exports increased 36% in tonnage and 29% in value. Prices ranged from \$12

Table 4.—U.S. exports of talc1 (Thousand short tons and thousand dollars)

		ium- nbourg	Can	ada²	Jaj	pan	Me	xico	Oth	ner ³	T	otal
Year	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value	Quan- tity	Value
1983	1 11 6 15 30	55 722 373 1,273 2,482	74 76 81 59 61	4,629 5,265 4,864 4,411 5,000	16 22 18 22 26	1,077 1,518 1,422 1,707 2,405	86 107 108 112 149	2,805 3,696 4,492 4,464 5,614	41 40 24 27 52	4,350 4,961 3,131 4,447 5,538	218 256 237 4234 318	12,916 16,162 14,282 16,302 421,040

Table 5.—U.S. imports for consumption of talc, by country

	Crude ungre		powder	Ground, washed, powdered, or pulverized		Cut and Talc, sawed n.s.p.f. unm		Tot unmanuf	
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
1985	10,772	\$1,350	33,234	\$5,140	2,889	\$2,097	\$945	46,895	\$9,532
1986: Australia Brazil Canada China Italy Korea, Republic of Other	9,353 -54 418 6 	569 - 4 25 2 50 66	112 37,307 141 1,077 1,616	39 4,949 37 240 685	750 116 485 53 230	334 153 438 26 304	50 46 237 5	9,353 862 37,475 903 147 1,130 2,102	569 423 5,152 699 44 319 1,509
Total1	10,086	715	40,253	5,951	1,634	1,254	795	51,973	8,715
1987: Australia Brazil Canada China Italy Korea, Republic	1,450 216	87 24	277 38,729 85 917	42 5,362 -24 252	398 108 386 1,123	151 128 288 1,090	12 65 275	1,450 675 38,837 386 1,424	87 205 5,555 563 1,138
Other ³	8,438	805	777	431	288	341	952	9,503	2,529
Total ¹	10,104	916	40,784	6,112	2,337	2,017	1,304	53,225	10,348

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

¹Excludes powders—talcum (in package), face, and compact.

²Probably includes shipments in transit through Canadian ports.

³Includes 48 countries in 1987.

⁴Data do not add to total shown because of independent rounding.

²Includes 17 countries. ³Includes 21 countries.

WORLD REVIEW

The United States remained the world's largest talc producer, and Japan remained the largest pyrophyllite producer. China, Japan, and the United States accounted for 46% of the world's talc and pyrophyllite production.

Australia.—Thames Mining NL opened its Mount Seabrook Mine in Western Australia following completion of mine planning and plant design studies. The company will produce cosmetic and industrial-grade talc.5

Table 6.—Talc and pyrophyllite: World production, by country¹

(Short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Argentina (talc, steatite, pyrophyllite)	32.729	30.629	23,366	r e27,900	27,900
Australia	194,644	r205,867	153,652	207.287	193,000
	134,623	147,722	144,903	146,959	143,000
Austria (unground talc) Brazil (talc and pyrophyllite) ³	437,025	455,637	426,647	463,742	468,500
Burma	141	100	141	62	66
BurmaCanada (shipments) (talc, pyrophyllite,					
soapstone)	106,924	138.891	139,993	135,584	155,000
Chile	702	465	1,432	2,488	2,200
China ^e	1.050,000	1.050.000	1,100,000	1,100,000	1,100,000
Colombia	7.318	7,479	9.492	20,393	20,400
Egypt	4.981	13,463	8,488	9,700	9,900
Finland	351,009	360,976	351,138	313,253	364,000
France (ground tale)	315,812	322,315	342,705	347,189	346,000
Germany, Federal Republic of (market-	,		,		
able)	15,773	19,030	22,835	24,123	23,100
Greece (steatite)	2,388	1.887	1,901	e2,000	2,050
Hungary ^e	18,700	19,300	18,700	17,700	16,500
India (pyrophyllite and steatite)	389,162	460,473	422,111	436,520	457,500
Italy (talc and steatite)	175,239	157,329	142,875	166,676	166,400
Janan ⁴	1.615.791	1,652,303	1,580,978	1,470,441	1,380,000
Koron Northe	185.000	185,000	185.000	185,000	185.000
Korea, North ^e Korea, Republic of (talc and pyrophyllite)	696.810	935,475	1,027,880	879.291	880,000
Mexico	12,161	9.811	32,959	e22,000	27.500
Nepal ⁵	16,825	8,372	6.630	9,678	9,900
Norway ^e	110,000	6124.561	r _{110,000}	r _{110,000}	110,000
Norway	17,588	17,161	22,248	25,376	27,500
Pakistan (pyrophyllite) Paraguay	17,500	165	e ₁₃₂	25,370 e132	132
Peru (talc and pyrophyllite)			551	r e _{1,200}	1.100
	5,767	10,183	380	e1,200	
Philippines	968	1,022			1,100
Portugal	6,018	6,838	3,976	4,565	4,400
Romania ^e	66,000	72,000	72,000	72,000	72,000
South Africa, Republic of Spain (steatite)	12,337	15,886	15,925	14,602	14,600
Spain (steatite)	76,574	79,628	97,859	81,476	88,000
Sweden	23,210	19,712	15,432	2,205	2,200
Taiwan	29,821	20,591	19,357	23,757	22,000
Thailand (talc and pyrophyllite)	22,209	31,393	47,926	43,046	44,000
U.S.S.R. ^e	560,000	570,000	570,000	570,000	580,000
United Kingdom	17,600	21,000	22,046	13,230	13,200
United States (talc and pyrophyllite)	1,066,400	1,127,421	1,268,750	1,302,179	61,349,440
Uruguay	755	1,828	e1,700	e1,700	1,700
Zambia	1,447	405	10,504	293	290
Zimbabwe	607	314	482	879	880
Total	7,781,190	r8,302,632	8,432,094	8,255,726	8,310,458

Revised. ^pPreliminary

^{*}Estimated. *Preliminary. *Kevised.

Table includes data available through May 27, 1988.

In addition to the countries listed, Czechoslovakia produces talc, but available information is inadequate to make reliable estimates of output levels.

Total of beneficiated and salable direct-shipping production of talc and pyrophyllite.

Includes tale, pyrophyllite, and pyrophyllite clay.

Data based on Nepalese fiscal year beginning mid-July of year stated.

⁶Reported figure.

⁷Includes talc and wonderstone.

Western Mining Corp. Ltd. assumed complete control of Three Springs Talc Pty. Ltd. Three Springs Talc operated one of the world's largest talc mines. The talc was used in ceramics, paint, paper, and plastics.6

Canada.—Carey Canada Inc. discovered a large, high-grade talc deposit near East Boughton, Quebec. The deposit contains 78% to 80% talc. Mine reserves were estimated to be 8.8 million tons. The company planned additional studies of the deposit to determine its commercial potential.7

China.—A deposit estimated to contain 18 million tons of pyrophyllite was discovered in the Fujian Province.8

Korea, Republic of.—The Department of Energy and Resources discovered a talc deposit near Kongju. Reserves were estimated to be 10 million tons.9

United Kingdom.—Shetland Talc Ltd., jointly owned by Dalriada Mineral Ventures Ltd. and Anglo-European Minerals Ltd., continued exploratory work on a talcmagnesite deposit in the Shetland Islands. Samples were collected and tested in a pilot plant operation.10

¹Physical scientist, Branch of Industrial Minerals.

Federal Register. Occupational Safety and Health Administration. Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite. V. 52, No. 83, Apr. 30, 1987, pp. 15722-15723.

1987, pp. 15722-15723.

*Benbow, J. European Paper. Ind. Miner. (London), No. 243, Dec. 1987, pp. 73-89.

*Schober, W. Talc in Europe. Ind. Miner. (London), No. 237, June 1987, pp. 40-51.

*Mining Journal (London). More Talc From Thames. V. 309, No. 7946, Dec. 4, 1987, p. 458.

*Industrial Minerals (London). Three Springs Talc Takeover. No. 281, Jan. 1987, p. 9.

*Rock Products. Large Talc Deposit Found in Canada. V. 90, No. 8, Aug. 1987, p. 16.

*Industrial Minerals (London). Fujian Pyrophyllite Discovery. No. 239, Aug. 1987, p. 83.

-. Talc Development in the Shetlands. No. 236, May 1987, p. 15.

Thorium

By James B. Hedrick¹

Mine production of monazite, the principal source of thorium, decreased slightly in 1987 from the only domestic monazite producer. Monazite produced in the United States was exported, and thorium products used domestically were derived from imported materials, existing company stocks, and thorium nitrate previously released from the National Defense Stockpile (NDS).

Major nonenergy uses were in aerospace alloys, mantles for incandescent lanterns, welding electrodes, and refractory applications. The only energy use of thorium in the United States was in the high-temperature gas-cooled (HTGC) nuclear reactor at Fort St. Vrain, CO. High-technology applications included investment molds for casting hightemperature metals and alloys and as thoriated tungsten elements in microwave magnetron tubes.

Data Coverage.—Domestic **Domestic** mine production data for thorium-bearing monazite are developed by the Bureau of Mines from a voluntary survey of U.S. operations, the "Rare Earths and Thorium" survey. The one mine to which a survey form was sent responded, representing 100% of total production. Mine production data for thorium contained in monazite are withheld to avoid disclosing company proprietary data. Additional statistics on thorium were developed by surveying various processors and end users, and evaluating import-export reports.

Table 1.—Salient U.S. thorium statistics1

(Metric tons of ThO2, unless otherwise specified)

	1983	1984	1985	1986	1987
Exports: Metal, waste and scrap	1.06 45.80	1.01 45.37	1.64 69.34 2.17	17.01 19.71	20.41 30.69
Consumption, apparent nonenergy applications 2	44.74	44.36	74.36	72.38	39.41
Prices, yearend, dollars per kilogram, ThO ₂ : ³ Nitrate, mantle-grade Oxide, 99% grade	\$10.60 \$31.00	\$10.10 \$35.85	\$10.10 \$35.85	\$13.60 \$40.00	\$10.10 \$41.00

Some data through 1985 have been revised to reflect only refined products; excludes monazite concentrates with 1985. All domestically consumed thorium was derived from imported metals, alloys, and compounds; monazite containing 350 to 550 tons of thorium oxide has been imported annually but has not been recently used to produce thorium products. 3Rhône-Poulenc Inc.

Government and Legislation grams.—Sales of materials held in the NDS, including thorium nitrate, continued to be suspended during 1987 because the \$250 million limit imposed on the NDS Transaction Fund was exceeded during 1985. Two laws governed the disposal of thorium nitrate from the NDS in 1987. The Department of Defense Authorization Act, 1987, (Public Law 99-661), authorized a total of 4,536 kilograms (10,000 pounds) of thorium nitrate for disposal in fiscal year 1987. In fiscal year 1988, beginning October 1, 1987, the Department of Defense Authorization Act for fiscal years 1988 and 1989 (Public Law 100-180) continued authorization that was in effect on September 30, 1987. Public Law 100-180, signed on December 4, 1987, also authorized the President of the United States to change the stockpile

requirements by less than 10% without congressional approval. However, an explanation and justification of changes were to be submitted to Congress, effective on or

after the first day of the next fiscal year. Changes greater than 10% would require congressional approval.

DOMESTIC PRODUCTION

Associated Minerals, a subsidiary of the Australian-owned firm Associated Minerals Consolidated Ltd., a wholly owned subsidiary of Renison Goldfields Consolidated Ltd. (RGC) of Australia, was the only commercial minerals sands operation in the United States to produce monazite in 1987. Monazite was produced as a byproduct of miner-

als sands mined for titanium and zirconium minerals at Green Cove Springs, FL. W. R. Grace & Co., Davison Chemical Div., and Rhône-Poulenc Inc., a subsidiary of Rhône-Poulenc S.A. of France, were the principal processors of thorium-containing ores in the United States.

Table 2.—U.S. companies with thorium processing and fabricating capacity

Company	Plant location	Operations and products
Atomergic Chemetals Corp	,	Produces oxide, fluoride, metal.
Bettis Atomic Power Laboratory	West Mifflin, PA	Nuclear fuels; Government research and development.
Cerac IncCeradyne Inc	Milwaukee, WI Santa Ana, CA	Produces ceramics. Produces advanced technical ceramics.
Chicago Magnesium Castings Co	Blue Island, IL	Magnesium-thorium allovs.
Coleman Co. Inc	Wichita, KS	Produces thoriated mantles.
Controlled Castings Corp	Plainview, NY	Magnesium-thorium alloys.
GA Technologies IncW. R. Grace & Co., Davison Chemical Div	San Diego, CA Chattanooga, TN	Nuclear fuels. Produces thorium compounds from monazite.
GTE Sylvania	Towanda, PA	Produces thoriated welding rods.
Hitchcock Industries Inc	South Bloomington, MN $_{}$	Magnesium-thorium allovs.
Phillips Elmet	Lewiston, ME	Produces thoriated welding rods.
Rhône-Poulenc Inc	Freeport, TX	Produces thorium nitrate from an intermediate compound of monazite.
Spectrulite Consortium Inc	Madison, IL	Magnesium-thorium alloys.
Teledyne Cast Products Teledyne Wah Chang	Pomona, CA Huntsville, AL	Do. Produces thoriated
Union Carbide Corp., Nuclear Div	Oak Ridge, TN	welding rods. Nuclear fuels;
Wellman Dynamics Corp	Creston, IA	test quantities. Magnesium-thorium
Westinghouse Materials Co. of Ohio ¹	Cincinnati, OH	alloys. Produces compounds and metals; manages DOE thorium stocks.

¹Manager of U.S. Department of Energy stocks; formerly NLO Inc., prior to Jan. 1, 1986.

CONSUMPTION AND USES

Domestic thorium users reported consumption of an estimated 39.4 metric tons of thorium oxide equivalent in 1987, a decrease of 33 tons from the 1986 level. Nonenergy uses accounted for almost all of the total. The drop in consumption was primari-

ly the result of reduced demand for thorium oxide used in high-temperature refractory molds, because suitable substitutes had been developed. Domestic environmental concerns over thorium's natural radioactivity substantially increased the industry's THORIUM 869

handling, storage, and disposal costs, which were expected to continue to encourage the search for nonradioactive substitutes. The approximate distribution of thorium by end use, based on information supplied by producers, primary processors, and several consumers, was as follows: refractory applications, 57%; lamp mantles, 18%; aerospace alloys, 15%; welding electrodes, 5%; and other applications, including ceramics and lighting, 5%.

Almost all thorium used in metallurgical applications was alloyed with magnesium. Magnesium-thorium alloys used by the aerospace industry are lightweight and possess high strength and excellent creep resistance at elevated temperatures, properties that are useful in aerospace applications. Small quantities of thorium were used in dispersion-hardened nickel alloys for high-strength, high-temperature applications.

Thorium oxide (thoria) had the highest melting point of all the oxides at 3,300° C, a property that contributed to its use in several refractory applications, including high-strength, high-temperature ceramics; investment molds; crucibles; and research on heat-dissipative core-retention beds for nuclear reactors.

Thorium nitrate was used in the manufacture of mantles for incandescent "camping" lanterns and for oil lamps. Thorium nitrate was also used to produce thoriated tungsten welding electrodes. Thoriated tungsten electrodes were used to join stainless steels, nickel alloys, and other alloys that usually require a continuous and stable arc to achieve quality welds. The nitrate form was also used to produce thoriated tungsten elements used in the negative pole of magnetron tubes. Thorium was used because of its ability to emit electrons at relatively low temperatures when heated in a vacuum. Magnetron tubes were used to emit electrons at microwave frequencies to heat food in microwave ovens and in radar communication.

Thorium was used in other types of electron-emitting tubes, in bulbs to light airport runways, in special high-refractivity glass, in radiation detectors, in computer memory components, in catalysts, in photoconductive films, in target materials for X-ray tubes, and in fuel cell elements.

In energy applications, thorium was used as a nuclear fuel in the thorium-232/ura-nium-233 fuel cycle in one domestic commercial reactor.

STOCKS

Government stocks of thorium nitrate in the NDS were 3,230,400 kilograms (1,544,845 kilograms of equivalent thorium oxide) on December 31, 1987, unchanged from the yearend 1985 inventory. The NDS goal at yearend was 272,155 kilograms of thorium nitrate (130,153 kilograms of equiv-

alent thorium oxide); remaining stocks have been declared excess to the goal.

The U.S. Department of Energy's inventory at yearend was 1,244,048 kilograms of thorium oxide equivalent contained in ore, metal, and various compounds.

PRICES

The average declared value of imported monazite increased during 1987 to \$560 per ton, up \$186 from the 1986 value. The price range of Australian monazite (minimum 55% rare-earth oxide including thoria, f.o.b.-f.i.d.),² as quoted in Australian dollars (A\$)³ decreased from US\$565-US\$598⁴ per ton at yearend 1986, to US\$477-US\$513⁵ per ton by yearend 1987. Changes in the United States-Australian foreign exchange rate in 1987, resulting from the economic weakness of the U.S. dollar against Australian currency, caused the corresponding U.S. prices to be about \$0.12 higher on the dollar.

The yearend price for monazite, based on a thorium oxide content of 7%, was in the range of \$6.81 to \$7.34 per kilogram of thorium oxide contained.

Rhône-Poulenc Inc. quoted prices for thorium compounds per kilogram, net 30 days, f.o.b. Freeport, TX, or duty paid at point of entry, effective January 1, 1987, as follows: thorium oxide, 99% purity, \$44.00; and 99.99% purity, \$68.00. Thorium nitrate at 99.5% purity (mantle-grade) was quoted at \$13.87 per kilogram.

Thorium alloy prices quoted by Magnesium Elektron at yearend 1987 were \$35.89 per pound for thorium hardener in single drum quantities and \$4.97 per pound for thorium-containing HZ-32 alloy ingot.

Table 3.—U.S. foreign trade in thorium and thorium-bearing materials

(Quantity in kilograms unless otherwise specified).

	1985	35	15	1986	1987	3.1	
	Quantity	Value	Quantity	Value	Quantity	Value	Principal destinations and sources, 1987
EXPORTS							
Thorium ore, monazite	743,103	\$415.024	581 854	6396 646	900	000	
Metals*	1,440 -	182,373	14,949	954,604	17,961	402,370	France 582,076; Japan 919. United Kingdom 11 493: Federal Demobilished
IMPORTS							many 5,000; Sweden 461; other 1,007.
Ore and concentrate:							
Thorium ore, monazite metric tons	5,694	1,984,486	2.960	1 105 996	1 191	000	
Compounds:	398,580	XX	211,700	XX	78,470	XX XX	I nailand 594; Malaysia 527.
Nitrate	16 949	910.010					
Oxide	50.777	841 331	7,004	283,841	34,670	653,986	France 19,248; India 15,422.
Oxide equivalent, in gas mantles ^{e 2}	1,877	449,112	1,668	495.797	11,625	346,218	France 7,399; Netherlands 4,226.
Other	90	507			racit	***0,000	India 455; Mata 452; Malaysia 427; Taiwan 211; Israel 100: other 140
Metals and alloys	69 205	171,463	658	187,119	929	250,355	United Kingdom 637. Switzerland 10
Unwrought and wrought and waste and scrap	680	18 24 18 234	290,09	NA	22,019	NA	All from United Kingdom.
		10001	1	1	1,149	37,999	United Kingdom 1.149
enotimeted NIA NI							

^eEstimated. NA Not available. XX Not applicable. ¹Unwrought and wrought and waste and scrap. ²Based on the manufacture of 2,205 gas mantles per kilogram of thorium oxide.

Sources: Bureau of the Census and a producer.

FOREIGN TRADE

France had been the only destination of U.S. exports of thorium ore, including monazite, from 1980 to 1986. However, in 1987, Japan and France were recipients of U.S. exports of thorium ore, including monazite. Thorium products processed and manufactured in the United States in 1987 were derived mainly from imported materials, primarily thorium compounds and rareearth concentrates from France and India, and magnesium-thorium alloys from the United Kingdom.

WORLD REVIEW

Australia.—The Mineral Sands Div. of RGC announced that exploration west of its Allied Eneabba Mine, Western Australia, was successful in locating mineral sands resources of 150 million tons grading 3.5% heavy minerals. Further exploration in the area is planned. To optimize mining at its Eneabba properties, RGC reportedly will mine selected areas by dredging instead of by its present dry mining method. RGC also completed redesign of its mineral-sandsprocessing plant at Eneabba, which allowed increased recovery of all minerals, including thorium-bearing monazite.6

RGC continued exploration on Moreton Island, Queensland. The Queensland government adopted the recommendation of a report that would allow mining on 1,200 hectares (6.4%) of the island as short-term

use.7

Western Australia's government nounced that Rhône-Poulenc S.A., was to build a rare-earth separation plant at Pinjarra, Western Australia. The plant reportedly will process monazite by liquid solvent extraction to produce rare earths and by-

product thorium.8

Mineral Deposits Ltd., a subsidiary of The Broken Hill Pty. Co. Ltd., announced the opening of a heavy-mineral-sands mining operation at Viney Creek, New South Wales, in mid-1987. Mineral Deposits recovered heavy-mineral sands, including thorium-containing monazite, using twin dredges connected to a floating wet concentrator. Monazite and other heavy-mineral concentrates were produced at Mineral Deposits' nearby Hawks Nest dry concentrator plant.9

TiO₂ Corp. completed feasibility studies of its heavy-mineral sands deposit at Cooljarloo, Western Australia, and declared it viable. The deposit reportedly contains 12 million tons of ore, with a cutoff grade of

2% heavy minerals.10

A rare-earth and thorium deposit was discovered in the Northern Territory. Lo-

cated 100 kilometers east of Alice Springs, the deposit reportedly contains significant quantities of rare earths and thorium in the mineral allanite. As part of an Australian consortium formed to study the deposit, Australia's Commonwealth Scientific and Industrial Research Organization is undertaking prefeasibility studies.11 West Coast Holdings Ltd. announced plans to install a pilot plant at its Brockman multimineral deposit in Western Australia. The deposit reportedly contains thorium, rare earths, yttrium, gallium, zirconium, hafnium, tantalum, and niobium. The Brockman deposit, 15 kilometers southeast of Halls Creek, is a joint venture of West Coast Holdings and Greater Pacific Investments Ltd. If additional studies prove mining is feasible, a \$115 million plant to process 200,000 tons per year of ore was planned.12

Brazil.-Production of monazite concentrate in 1985 was 3,953 tons, 281 tons from the State of Espírito Santo, a decrease from the 451 tons produced in 1984, and 3,672 tons from the State of Rio de Janerio, an increase from the 1984 production of 3,161

Measured reserves of monazite were 17,274 tons. Estimated thorium oxide content based on these reserves is 1,123 tons. Monazite reserves were in the States of Bahia, Espírito Santo, Paraná, and Rio de Janeiro.13

Madagascar.—QIT-Fer et Titane Inc. (QIT) of Canada announced it had completed initial feasibility studies of a heavymineral sands deposit in southeast Madagascar. The joint venture project is 51% owned by the Government of Madagascar and 49% by QIT. The drilling program has confirmed the existence of an ore body containing mineral sands, including thorium-bearing monazite. Further drilling and the construction of a pilot plant at the site were planned.14

Physical scientist, Branch of Nonferrous Metals. ²Free on board/free into container depot.

³Metal Bulletin (London). Non-Ferrous Ores in Europe.

"Metal Bulletin (London). Non-rerrous Ores in Europe. Dec. 31, 1987, p. 29.

4Values have been converted from Australian dollars (A\$) to U.S. dollars (US\$) at the exchange rate of A\$1.5053 = US\$1.00 based on yearend 1986 foreign exchange rates reported by the Wall Street Journal.

Change rates reported by the wan ourset Journal.

Svalues have been converted from Australian dollars

(A\$) to U.S. dollars (US\$) at the exchange rate of

A\$1.3841 = US\$1.00 based on yearend 1987 foreign exchange rates reported by the Wall Street Journal.

Paging Caldfields Consolidated Ltd. Annual Report

⁶Renison Goldfields Consolidated Ltd. Annual Report 1987. 44 pp.

⁷Industrial Minerals (London). More on Moreton Island Minsands. No. 237, June 1987, p. 8.

. Rhône-Poulenc To Develop Rare-Earths Plant. Mar. 1987, p. 9.

Mineral Deposits Up and Running. No. 237, June 1987, p. 8.

10_____. TiO₂ Corp. Declares Cooljarloo Minsands Viable. No. 237, June 1987, p. 8. - Potential Rare Earth Deposit. No. 243, Dec.

1987, p. 9.

12 Australian Mining. Rare Earth Plant Under Study for Western Australia. Sept. 1987, p. 47.

13 Anuário Mineral Brasileiro 1986. Monazita. 391 pp. 14 Industrial Minerals (London). QIT Expanding Heavy Minerals Project. No. 236, May 1987, p. 15.

Table 4.—Monazite concentrate: World production, by country¹

(Metric tons)

			<u> </u>		
Country ²	1983	1984	1985	1986 ^p	1987e
Australia Brazil India ⁶ Malaysia ³ Mozambique ⁶ Sri Lanka ⁶ Thailand United States	15,141 5,256 4,000 1,051 44 300 277 W 15	16,260 3,622 4,000 4,980 4 147 298 W	18,735 1,895 4,000 5,808 4 200 245 W	14,822 1,947 4,000 5,959 4 200 1,609 W	12,000 2,000 4,000 6,000 4 200 1,500 W
Total	26,044	^r 29,313	30,887	28,541	25,704

^eEstimated. ^pPreliminary. rRevised. W Withheld to avoid disclosing company proprietary data; not included in "Total."

1 Table includes data available through Apr. 29, 1988.

[&]quot;Table includes data available through Apr. 25, 1988.

In addition to the countries listed, China, Indonesia, North Korea, the Republic of Korea, Nigeria, and the U.S.S.R. may produce monazite, but output, if any, is not reported quantitatively, and available general information is inadequate of The 1983 figure is exports and 1984-87 figures are production.

Tin

By James F. Carlin, Jr.1

For the seventh consecutive year, there was a world excess of tin. The excess in 1987 was reduced to about one-half from that of 1986, as world mine production stabilized and world consumption increased. Repercussions from the exhaustion of the International Tin Council (ITC) fund to support the tin price in late 1985 continued throughout 1987. Legal actions continued against the London Metal Exchange (LME) and the

ITC, brought by tin dealers and banks who had lost money allegedly due to activities of the LME and ITC in late 1985. The price of tin ranged in a narrow band somewhat higher than in 1986, but was still well below the level of recent years. The continuation of relatively low prices led to additional restructuring of tin-mining operations in many producing countries with several mine closures and resultant unemployment.

Table 1.—Salient tin statistics
(Metric tons unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Production:				****	***
Mine	W	W	W	w	W
Smelter	2,500	4,000	e3,000	3,213	¹ 3,905
Secondary	14,205	15,417	14,109	r _{14,850}	15,793
Exports ²	1.340	1.429	1,478	1,547	1,318
Imports for consumption:	_,	-,	,		
	34.048	41,224	33,830	35,768	41,150
Metal Ore (tin content)	969	3,272	1.616	3,936	2,953
	000	. 0,	-,	-,	
Consumption: Primary	34.301	r37,201	r36,524	¹ 33,324	35,597
Primary		F11,114	r12.145	r _{10.198}	8,599
Secondary	11,246			r _{13,857}	14,641
Stocks, yearend, U.S. industry	9,859	r _{9,679}	^r 12,359	15,001	14,041
Prices, average cents per pound:		F45 00		004 10	309.01
New York market	601.28	567.80	525.90	294.12	
Metals Week composite	654.78	623.80	³ 595.95	r 3383.22	418.78
London	589.19	556.55	3556.26	NA	NA
Kuala Lumpur ⁴	590.78	564.95	3540.70	3272.26	303.45
World: Production:					
	r196,942	r198,463	188,635	P179,377	e179.713
Mine	200,124	r201.555	197,836	P191,403	e189,556
Smelter	200,124	201,000	101,000	101,400	100,000

^eEstimated. ^PPreliminary. ^rRevised. NA Not available. W Withheld to avoid disclosing company proprietary data; U.S. mine production for 1983-87 was negligible.

³Prices quoted for 10 months only

¹Reported figure. ²Exports (excluding reexports).

⁴Beginning in 1985, Kuala Lumpur replaced Penang as the reference market.

Domestic Data Coverage.—Domestic production data for tin are developed by the Bureau of Mines from a voluntary survey of U.S. mines. Of the four mines to which a survey form was sent, all responded. Domestic production, which was negligible, was withheld to avoid disclosing company proprietary data.

Legislation and Government Programs.—The General Services Administration (GSA) sold 4,080 metric tons of tin in 1987, all of which represented payment material for GSA's Ferroalloy Upgrading Program, which started April 11, 1984.

At yearend, the National Defense Stock-

pile inventory was 177,053 tons; the stockpile goal was 42,674 tons.

Federal laws provided a depletion allowance of 22% for domestic operations and 14% for U.S. companies producing in other countries.

The U.S. Environmental Protection Agency (EPA) issued a Preliminary Determination on October 7, 1987, to ban all tributyl tin antifouling marine paints that have specified leaching or release rates. The EPA finding carried a 90-day comment period, offering rebuttal from concerned parties.

DOMESTIC PRODUCTION

PRIMARY TIN

Mine Production.—One mine operating in Alaska produced tin concentrates. Domestic mine production data were withheld to avoid disclosing company proprietary data, but total output amounted to only a small fraction of domestic tin requirements.

Smelter Production.—The only domestic tin smelter, Tex Tin Corp., in Texas City, TX, increased tin metal output. The smelter recovered tin primarily from imported and domestic concentrates, as well as some secondary tin-bearing materials, and its own stockpile of tin residues and slags. The smelter's main source of tin concentrates was Peru. The facility also produced a line of solders.

SECONDARY TIN

shagar Feet

The United States was believed to be the world's largest producer of secondary tin. Tin metal recovered from tinplate scrap was the only type of secondary tin available as free tin; other secondary tin was available in scrap materials as an alloying ingredient. Secondary tin from recycled fabricated parts was an important source of material for the solder and the brass and bronze industries. The Steel Can Recycling Association in Pittsburgh, PA, funded and operated by five domestic tinplate producers, sought to advance the collection, prepartion, and transportation of can scrap.

Table 2.—Secondary tin recovered from scrap processed at detinning and other plants in the United States

		1986	1987
Tinplate scrap treated	metric tons	499,652	506,514
Tin recovered in the form of: Metal Compounds (tin content)	do	1,134 W	1,151 W
Total Weight of tin compounds produced Average quantity of tin recovered per metric ton of tinplate scrap used Average delivered cost of tinplate scrap	do do kilograms _ per metric ton	1,134 W r2.25 \$44.76	1,151 W 2.23 \$44,15

^rRevised. W Withheld to avoid disclosing company proprietary data.

TIN

Table 3.—Tin recovered from scrap processed in the United States, by form of recovery (Metric tons unless otherwise specified)

1986	1987
1,134	1,151
r _{8,869}	10,082
891	623
66	76
3,676	3,765
197	66
17	30
4,847	4,560
W	W
*14,850	15,793
\$125,461	\$145,809
	1,134 r8,869 891 66 3,676 197 17 4,847 W

W Withheld to avoid disclosing company proprietary data.

Table 4.—U.S. stocks, receipts, and consumption of new and old scrap and tin recovered, by type of scrap

(Metric tons)

			ross we	ight of scr	ар				
Type of scrap	Stocks,	Receipts	(Consumpt	ion	Stocks,	Tir	recovere	id" 1
	Jan. 1	Receipts	New	Old	Total	Dec. 31	New	Old	Total
1986 ^r									
Copper-base scrap	9,489	134,056	10,194	123,086	133,280	10,265	416	4,743	5,159
Brass mills ²	2,731	7,044	7,017	27	7,044	2,464	224		224
Foundries and other plants	3,464	26,221	5,845	17,470	23,315	6,370	274	720	994
Total tin from copper-base									
scrap	XX	XX	XX	XX	XX	XX	914	5,463	6,377
Lead-base scrap	39,501	778,359	66,024	722,251	788,275	29,585	1,730	5,311	7,041
Tin-base scrap ³	21	139	w	95	95	65	1,345	87	1,432
Grand total	XX	XX	XX	XX	XX	XX	3,989	10,861	14,850
1987									
Copper-base scrap	10,265	142,137	11,393	131,672	143,065	9,337	475	5,105	5,580
Brass mills2	2,464	43,884	43,871	w	43,871	2,894	596		596
Foundries and other plants	6,370	26,080	7,568	18,390	25,958	6,492	357	794	1,151
Total tin from copper-base									
scrap	XX	XX	XX	XX	XX	XX	1,428	5,899	7,327
Lead-base scrap	29,585	893,250	68,586	818,429	887,015	35,820	1,795	5,379	7,174
Tin-base scrap ⁵	65	49	W	92	92	22	1,207	85	1,292
Grand total	XX	XX	XX	XX	XX	XX	4,430	11,363	15,793

¹Includes tin metal recovered at detinning and other plants.

Includes tin metal recovered at desiming and once practice.

Includes tin recovered from copper, lead, and tin-base scrap.

Includes foil, terne metal, and cable lead.

^{*}Based on Metals Week composite price.

Estimated. Revised. W Withheld to avoid disclosing company proprietary data. XX Not applicable.
 Tin recovered from new and old copper-base scrap, brass mills, and foundries.
 Brass-mill stocks include home scrap, and purchased scrap consumption is assumed equal to receipts; therefore, line does not belance.
 Includes tinplate and other scrap recovered at detinning plants; Bureau of Mines not at liberty to publish separately.

CONSUMPTION AND USES

Primary tin consumption increased over that of 1986, mainly owing to gains in tinplate and tin chemicals. Solder was the largest application of primary tin, followed closely by tinplate. Tinplate consumption experienced its first increase in many years as its cost advantage relative to competitive materials for containers became significant, and as tinplate exports surged owing to the lower dollar value.

Tinplate continued to lose markets to aluminum in some container applications. Tinplated steel and tin-free steel accounted for 31% of the 109.2 billion metal cans shipped, and aluminum accounted for 69%. In 1986, when steel accounted for 33% and aluminum for 67%, 104.9 billion metal cans were shipped. Aluminum held an overwhelming segment of the beverage can market, while steel predominated in the food can and the general packaging markets.²

Secondary consumption declined as low prices for primary tin made secondary material less attractive.

Table 5.—U.S. consumption of primary and secondary tin

(Mei		

	1983	1984 ^r	1985 ^r	1986 ^r	1987
Stocks, Jan. 1 ¹	7,549	8,063	8,430	9,336	9,876
Net receipts during year: Primary Secondary Scrap	36,494 5,412 7,435	38,813 6,110 6,791	38,006 8,904 7,471	35,475 11,636 6,346	38,446 11,707 6,635
Total receipts	49,341	51,714	54,381	53,457	56,788
Total available	56,890	59,777	62,811	62,793	66,664
Tin consumed in manufactured products: Primary Secondary	34,301 11,246	37,201 11,114	36,524 12,145	33,324 10,198	35,597 8,599
TotalIntercompany transactions in scrap	45,547 245	48,315 317	48,669 214	43,522 354	44,196 512
Total processed	45,792	48,632	48,883	43,876	44,708
Stocks, Dec. 31 (total available less total processed)	11,098	11,145	13,928	18,917	21,956

rRevised.

Table 6.—Tin content of tinplate produced in the United States

Tinplate waste	Tir	nplate (all for	ms)
(waste, strips, cobbles, etc., gross weight) (metric tons)	Gross weight (metric tons)	Tin content ¹ (metric tons)	Tin per metric ton of plate (kilograms)
166,186	2,586,810	9,328	3.6
			3.6 4.2
120,186 118,870	2,068,246 2,275,984	8,660 10,357	4.2 4.6
	(waste, strips, cobbles, etc., gross weight) (metric tons) 166,186 151,540 146,041 120,186	(waste, strips, cobbles, etc., gross weight) (metric tons) 166,186 2,586,810 151,540 2,409,399 146,041 2,215,042 120,186 2,068,246	(waste, strips, cobbles, etc., gross weight (metric tons) Gross weight (metric tons) Tin content (metric tons) 166,186 2,586,810 9,328 151,540 2,409,399 8,659 146,041 2,215,042 9,321 120,186 2,682,246 8,660

r Revised

¹Includes tin in transit in the United States.

¹Includes small tonnage of secondary tin and tin acquired in chemicals.

Table 7.—U.S. consumption of tin, by finished product

(Metric tons of contained tin)

		1986 ^r			1987	
Product	Primary	Secondary	Total	Primary	Secondary	Total
Alloys (miscellaneous) ¹ Babbitt Bar tin Bronze and brass Chemicals Collapsible tubes and foil Solder Tinning Tinning Tinplate ² Tip powder Type metal	W 966 449 1,781 W 11,955 1,437 8,660 1,002	358 W 1,721 W W 3,855 W W W	W 1,324 449 3,502 W 15,810 1,437 8,660 1,002 W 1.134	W 850 703 1,835 W 10,928 1,398 10,357 W 1,175	W 210 1,724 W W 4,312 W W W W	W 1,060 703 3,559 W 15,240 1,398 10,357 W W
White metal ³	1,067 6,007	4,197	10,204	8,351	2,353	10,704
Total	33,324	10,198	43,522	35,597	8,599	44,196

W Withheld to avoid disclosing company proprietary data; included with "Other." rRevised.

Table 8.—U.S. industry yearend tin stocks

(Metric tons)

1983	1984 ^r	1985 ^r	1986 ^r	1987
6,326 732 682	5,490 1,562 1,124	5,712 2,342 1,342	5,754 3,021 1,377	6,643 2,333 1,289
7,740	8,176	9,396	10,152	10,265
608 1,511	802 701	1,642 1,321	1,272 2,433	1,890 2,486
2,119	1,503	2,963	3,705	4,376
9,859	9,679	12,359	13,857	14,641
	6,326 732 682 7,740 608 1,511 2,119	6,326 5,490 732 1,562 682 1,124 7,740 8,176 608 802 1,511 701 2,119 1,503	6,326 5,490 5,712 732 1,562 2,342 682 1,124 1,342 7,740 8,176 9,396 608 802 1,642 1,511 701 1,321 2,119 1,503 2,963	6,326 5,490 5,712 5,754 732 1,562 2,342 3,021 682 1,124 1,342 1,377 7,740 8,176 9,396 10,152 608 802 1,642 1,272 1,511 701 1,321 2,433 2,119 1,503 2,963 3,705

rRevised.

PRICES

The price of tin metal, as published in Metals Week, remained in a narrow price band all year, still in a historically low range well below the levels achieved during the past decade.

¹Includes terne metal.

²Includes secondary pig tin and tin acquired in chemicals.
³Includes pewter, britannia metal, and jewelers' metal.

¹Includes tin in transit in the United States.

²Data represent scrap only, tin content.

Table 9.—Monthly composite price of Straits tin for delivery in New York

(Cents per pound)

	Month		1986			1987	
	Mondi	High	Low	Average	High	Low	Average
January		 NA	NA	NA	421.82	414.43	418.49
February		 NA	NA	NA	422.11	411.89	417.15
warch		 515.68	392.94	455.79	420.25	409.11	414.01
April		 372.20	350.56	364.25	421.17	414.85	418.30
May		 363.23	345.22	352.24	423.66	419.43	421.79
June		 350.91	343.86	346.61	418.54	408.97	414.49
July		 351.53	342.38	346.52	410.52	396.99	403.09
August		 351.25	344.14	347.01	421.11	403.35	411.48
September		 347.44	343.21	345.83	421.87	418.93	420.73
October		 382.68	343.81	353.87	431.49	416.21	424.80
November		 395.05	374.16	384.22	438.92	427.37	
December		 411.02	393.19	402.77	431.29	425.06	433.28
		 11.04	000.10	404.11	401.29	420.06	427.77
Average ¹		 XX	XX	r 1383.22	XX	XX	418.78

^rRevised. NA Not available. XX Not applicable.

Source: Metals Week.

FOREIGN TRADE

Imports for consumption of tin concentrates decreased, indicating the tight supply situation for concentrates worldwide. For many years, there has existed a world excess of tin-smelting capacity compared with tin mine capacity. Imports of tin metal increased, with Brazil remaining the major source by a wide margin, followed by China, Malaysia, Indonesia, and Bolivia. China tripled its imports to the United States

compared with those of the prior year. During the year, a trend emerged of foreign producers direct marketing their own refined tin metal to U.S. consumers, thus bypassing the traditional independent broker route. This approach was utilized by producers in Australia, China, and Indonesia. Imports of tin in all forms (ore and concentrate, metal, and waste and scrap) remained free of U.S. duty.

Table 10.—U.S. imports for consumption and exports of miscellaneous tin, tin manufactures, and tin compounds

	Misc	cellaneous tin a	nd tin manufac	tures	Tin con	npounds
		Imports		Exports	Imp	orts
Year	Tinfoil, tin powder, flitters, metallics, tin and manufac- tures, n.s.p.f.	scrap, r	immings, esidues, s, n.s.p.f.	Tin scrap and other tin-bearing material, except tinplate scrap	Quantity (metric tons)	Value (thousands)
	Value (thousands)	Quantity (metric tons)	Value (thousands)	Value (thousands)		
1985 1986 1987	\$3,290 1,280 1,854	877 1,121 2,270	\$2,804 1,899 9,241	\$18,357 19,843 13,549	827 860 838	\$5,164 5,165 5,162

Source: Bureau of the Census.

¹Prices quoted for 10 months only.

TIN

Table 11.—U.S. exports and imports for consumption of tin, tinplate, and terneplate in various forms; exports of ingots, pigs, bars; imports of tinplate scrap

	Ingots, p	igs, bars		Tinplate an	d terneplate	• • • • •	Ting scr	
	Exp	orts	Exp	orts ¹	Im	ports	Imp	orts
Year	Quan- tity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quan- tity (metric tons)	Value (thou- sands)
1985 1986 1987	1,478 1,547 1,318	\$16,744 9,742 9,456	155,119 219,074 209,526	\$85,000 91,793 106,156	381,137 344,973 329,783	\$222,504 199,484 193,110	3,815 2,375 2,543	\$441 242 380

¹Tinplate circles, strips, and cobbles are included with exports of tinplate and terneplate.

Source: Bureau of the Census.

Table 12.—U.S. imports for consumption of tin, by country

	19	86	19	87
Country	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands
Concentrates (tin content):				
Bolivia	259	\$2,344	732	\$1,755
Canada	1	1	F 122	1.12
Peru	3,676	11,348	2,165	7,596
Zaire		·	56	158
Total	3,936	13,693	2,953	9,509
Metal: 1		ν,	ar a la selectión de la comp	7.1
Austria			60	. 389
Australia	94	691	1,406	9.596
Belgium	01	00.	302	2,005
Belize	99	505	· · · · · · · · · · · · · · · · · · ·	2,000
Bolivia	4.893	28.943	3,476	10,579
Brazil	9,456	62.334	13,089	87,306
British Indian Ocean Territory	0,400	02,001	20	136
Burma			20	119
Canada	32	$2\bar{5}\bar{2}$	43	197
Chile	1,776	11,291	39	118
China	2,955	19,681	8,044	52,152
Denmark	2,000	15,001	90	609
France	35	190	40	267
Germany, Federal Republic of	18	62	(2)	201
	10	92	3	
	$\bar{422}$	2,593	714	4,227
Hong Kong	850	6,006	220	1.432
	4.149	27,973	4.001	27,339
Indonesia	60	365	4,001	21,000
Iran	2	20		
Israel	75	630		
Italy	100	651	60	394
Japan	100	091	1	5
Korea, Republic of	6.230	43.221	4.959	32,499
Malaysia	432	2,075	4,555 727	5,018
Mexico	452 471	2,578	379	2,555
Netherlands	4/1	2,518	319 79	2,555 527
Nigeria			20	41
Seychelles	$\bar{691}$	$5.1\overline{63}$	743	5.036
Singapore	091	9,103	122	799
Somalia	35	332	122	199
South Africa, Republic of	99	332	$\bar{490}$	3,234
Switzerland	107	851	490	3,234
Taiwan	135		1.460	9.452
Thailand	1,901	13,965		9,452 257
United Arab Emirates	730	4,363	40 467	
United Kingdom		4,363	407	3,178
Zaire	5 123	669	35	226
Total ³	35,768	235,506	41,150	259,699

¹Bars, blocks, pigs, or granulated. ²Less than 1/2 unit.

Source: Bureau of the Census.

³Data may not add to totals shown because of independent rounding.

WORLD REVIEW

The Sixth International Tin Agreement, which commenced on July 1, 1982, continued in effect throughout 1987, although its operations were restricted. Many high-level permanent employees of the ITC departed during the year and only a skeletal staff remained. The United States was not a member of the agreement.

Legal actions continued to be conducted on behalf of tin dealers and banks that had lost money, allegedly owing to activities of the LME and the ITC in late 1985, as the ITC utilized borrowed funds to support the

tin price.

The Association of Tin Producing Countries (ATPC), comprising seven major producer nations-Australia, Bolivia, Indonesia, Malaysia, Nigeria, Thailand, and Zaire-completed its fourth year as an organization. ATPC viewed itself as being complementary to, and supportive of, the activities of the ITC, and the organization continued to persuade its member countries to restrain tin production and exports until a world supply-demand equilibrium achieved. Industry sources estimated the world tin surplus at about 40,000 tons at vearend 1987.

Australia.—The Renison Bell Mine in Tasmania, owned by Renison Consolidated Goldfields Ltd., increased tin output and accounted for an estimated 90% of Australia's tin mine production as numerous smaller tin mines closed during the year due to the relatively low tin price. The Renison Mine was the world's largest hardrock underground tin mine and was a relatively low-cost producer with substantial high-grade reserves. Renison operated at its full capacity of 850,000 tons of tin ore throughput. The entire tin concentrate output from Renison was reportedly toll smelted in Malaysia. During 1987, Renison commenced a program of direct sales of most of its refined tin metal to user firms in industrialized countries, including large tonnages to U.S. companies.

Greenbushes Ltd. continued to mine tin and tantalum, with throughput increasing to 1.4 million tons of ore. Tin output declined to 400 tons, and the overall operating rate was 40% below capacity. The firm expected improved tantalum prices in 1988 and planned to recommission its tailings retreatment plant, which would increase tin and tantalum concentrate production.

Great Northern Mining Corp. Ltd. ceased tin production in mid-1987, placing its Jumna mill near Irvinebank, Queensland, on care and maintenance until tin prices improved. During 1987, the firm produced 308 tons of tin-in-concentrate.

The Tolltreck Metal Products Ltd. tin smelter in Sydney and the Greenbushes tin smelter, at their tin-tantalum mine near Bunbury, reduced smelting operations to a part-time basis due to shortages of concentrates.

Kokan Mining Co. Ltd., a subsidiary of Nippon Kokan K.K. of Japan, and Greenbushes Tin Ltd. of Australia announced plans for a joint venture to mine tin and tantalum ore in the Pilbara mining district of Western Australia beginning in 1988. The deposits were about 200 kilometers south of Port Hedland.

Bolivia.—The Bolivian tin-mining industry continued the substantial down-sizing and restructuring that had started in 1985. Despite this, all production units within state-owned Corporación Minera de Bolivia (COMIBOL), the country's largest tin producer, were reportedly unprofitable. COMI-BOL was authorized to lease some of its mining properties to cooperatives formed by former workers. To operate the properties, the cooperatives must pay COMIBOL a minimum rent of 1% of the net value of mineral production. Under consideration for these leases were the Catavi, Colquiri, Colquechaca, Japo, Santa Fe, Morococala, and Viloco tin mines, and the Machacamarca tin processing plant. Reportedly, in 1987, COMIBOL's production was limited to two tin mines at Viloco and Caracoles.

Brazil.—Brazil was not a member of the ATPC but agreed to cooperate with its guidelines and restrict its exports of tin to 21,000 tons during 1987. Brazil ranked as the world's second largest tin producer. Tin mine and smelter production was primarily owned by private enterprise, domestic and foreign. Brazilian tin mines generally were considered to be the lowest cost tin mines in the world.

The leading producer, Paranapanema, accounted for more than one-half of Brazil's total tin output, operating at least seven tin mines. The Pitinga Mine, about 300 kilometers northeast of Manaus in Amazonas State, was the firm's largest mine, and occupied an area of 250 square kilometers.

TIN 881

Pitinga's reserves were reportedly 230,000 tons of contained tin in high-grade ore. In addition to cassiterite, other valuable minerals such as columbite-tantalite and zirconite were reportedly present but not currently mined.

Brascan Recursos Naturais S.A. (BRN), jointly owned by Brascan Ltd. and BP Mineração, was Brazil's second leading tin producer. It operated several mines, all in the State of Rondônia. BRN's tin concentrates were shipped to its Cesbra smelter for refining.

Brumadinho, the third largest tin producer, operated alluvial tin mines in Rondônia and continued to explore tin properties in Goiãs State. Brumadinho transported all its tin concentrates to the tin smelter of Bera do Brasil S.A., near São Paulo. Bera was 70% owned by Brumadinho and 30% by Paul Bergsoe and Son A/S of Denmark.

Rhodia, the Brazilian subsidiary of Rhône Poulenc S.A. (France), acquired the Mineração São Francisco de Assis tin mine from St. Joe Minerals Corp. for about \$7 million.

There were reports of a major new tin ore-body discovery in the Rondônia region. Deposits reportedly contained between 10,000 and 100,000 tons of tin and were in the Alto Paraiso area.

Canada.—The East Kemptville Tin Corp. Ltd. continued tin mining operations at its open pit mine at East Kemptville, Nova Scotia. The firm was owned by a consortium of United States and Canadian banks, with mine operations handled by Rio Algom Ltd., the prior owner. The mine was reported to contain 41 million tons of high-grade ore and 15 million tons of low-grade ore, with an average grade of 0.16% tin. At full capacity, the mill throughput of 9,000 tons daily was projected to yield about 4,800 tons annually of tin-in-concentrate as well as some copper and zinc. During 1987, the mine operated at substantially less than full capacity, the recovery rate was about 63%, and the mine was reportedly profitable. Most of the output of the mine was shipped to the Capper Pass Ltd. tin smelter in North Ferriby, United Kingdom.

China.—Tin resources were concentrated in the southern region, especially in Guangdong, Guangxi, Hunan, Jiangxi, and Yunnan Provinces. The country's largest tin producer is Yunnan Tin Corp., followed by DaChang Tin Mining Bureau in Guangxi. The combined annual output of these two accounted for about 60% of China's production of tin concentrates. In 1987, China

reportedly exported about 10,000 tons of refined tin, most of which was shipped to the United States.

India.—Sartin Ltd. announced plans to construct a 300-ton-per-year tin smelter at Chowdwar with the aid of Base Synergy Associates Ltd. (United Kingdom). The new smelter was expected to use domestic tin concentrates from the Koraput District in India as well as imported tin concentrates.

Indonesia.—Tin mining was mostly performed at offshore sites in Indonesia, which is one of the few countries to increase tin mine output in recent years. P.T. Tambang Timah (P.T. Timah), the state-owned mining firm, was the major producer. This firm raised tin production in 1987, accounting for 80% of Indonesia's tin output. P.T. Timah was the world's largest tin-mining company, producing an estimated 22,000 tons annually from 247 mines and 29 dredges.

P.T. Koba Tin was the second largest producer and was jointly owned by Kajaura Mining Corp. (Pty.) Ltd., Australia, and P.T. Timah. Koba closed its Bangka Island tin mining operation. Unlike most major world tin producers, who sell their tin in the United States through independent brokers, Indonesia has for many years sold its tin directly to U.S. users through its own agency.

Malaysia.—Although Malaysia remained the world's leading tin producer, its tin industry continued to restructure. The largest producing firm, Malaysia Mining Corp., undertook a program of either disposing of or reducing its holdings in tin mines that had limited tin reserves. Among those affected were Aokan Tin Dredging, Ayer Hitam Tin Dredging, Kampong Lanjut Tin Dredging, Kamunting Tin Dredging, Tongkah Harbour Tin Dredging, and Tronoh Mines.

Two large tin smelters in Penang, one owned by Datuk Keramat and the other owned by Malaysia Smelting Corp., operated at about 80% capacity. Both smelters operated increasingly on a toll-smelting basis, handling tin concentrates from Australia, Bolivia, and China, because the tin mine output from Malaysia has generally decreased in recent years.

Mexico.—Tin mining occurred in the three adjoining States of Durango, Zacatecas, and San Luis Potosí in north-central Mexico. The country's major tin mine, the El Perro Mine, in San Luis Potosí, was owned by Cía. Minera Pizzuto.

Estano Electro S.A. de C.V. operated a tin

smelter at Tlalnepantla, near Mexico City. Fundidora de Estãno S.A. operated a tin smelter at San Luis Potosí. Metales Potosí S.A. ran a smelter in San Luis Potosí as did Minera de Río S.A. All four smelters mainly treated imported tin concentrates.

Namibia.—The Uis Mine in the Brandberg area produced most of the country's tin. The Uis Mine was owned by Industrial Minerals Mining Corp. (Pty.) Ltd., a wholly owned subsidiary of South African Iron and Steel Industrial Corp. Ltd. (Iscor). The Uis tin deposits occurred as low-grade 0.11% to 0.15% tin cassiterite mineralization. The tin concentrates were shipped directly to the Vanderbijlpark steelworks in the Republic of South Africa, where they provided a large part of Iscor's tin for use in making electrolytic tinplate.

Nigeria.—The five tin-mining companies were Amalgamated Tin Mines of Nigeria (Holdings) Ltd., Bisichi-Jantar Nigeria Ltd., Kaduna Prospecting Nigeria Ltd., Ex-Lands Nigeria Ltd., and Gold & Base Metal Mines of Nigeria Ltd. All tin concentrates were smelted domestically by Makeri Smelting

Co. Ltd. at Jos in Plateau State.

Peru.—The sole tin mine was the San Rafael Mine owned by Minsur S.A. near Juliaca. The mine was within the northern extension of the Bolivian tin belt. Tin grades averaged 1.8%. Peru was the main supplier of tin concentrate to the United States.

Minsur announced plans to construct a \$10 million tin smelter at Pisco. A new organization, Funsur, was to be formed to build the smelter, with partial funding through Government incentives. Plant construction was expected to start in early 1988, with a 2-year completion goal.

South Africa, Republic of.—Gold Fields of South Africa Ltd. was the parent firm of two moderate-sized tin producers, Rooiberg Tin Ltd. and Union Tin Mines Ltd. Zaaiplaats Tin Mining Co. Ltd. was also a

producer.

Spain.—The country's two remaining tin mines announced permanent closure as a result of low tin prices. Minera Adelaide S.A. closed its La Parilla tin-tungsten mine near Caceres after it encountered flooding problems. Minas de San Finx S.A., near La Coruna, also stopped production.

Thailand.—Some major tin-mining firms that had suspended production in 1986 resumed activity. Dutch Chemical Products Holdings Ltd. acquired a 76% interest in the dormant Thai Pioneer Enterprise smelter. The 3,600-ton-per-year tin smelter had been closed since 1982, but there were plans

to reopen it by 1988. The smelter was expected to secure tin concentrates from miners in central and northern Thailand.

The Thai Tinplate Manufacturing Co. announced plans to increase its capacity to 270,000 tons annually of tinplate. In 1987, Thailand was a net tinplate importer.

U.S.S.R.-Although the U.S.S.R. ranked as the world's fourth leading producer of tin ore, it was reportedly a net importer of tin metal. Tin mining was centered in the far eastern regions of the country where tinmining and beneficiation capacities were being expanded. A new automated production line to extract tin from lean ore was commissioned at the Khingan tin complex in the Birobidzhan Autonomous Oblast' in the Soviet Far East. Output at Khingan was expected to double by 2000. Expansion continued at the Deputatskiy tin-mining and beneficiation complex in Yakutia, with a new tin concentrator reportedly near completion. The planned second-stage expansion of Deputatskiy, scheduled for 1995, would increase tin production to the level where the U.S.S.R. would no longer need to import tin. The country imported about 35% of its tin requirements in 1987.

United Kingdom.—Carnon Consolidated Tin Mines Ltd. continued operations, with Government aid to its two tin mines in Cornwall. Operating costs were reduced by selective mining of rich and easily accessible veins, postponement of long-term development projects, staff cutbacks, and a wage freeze. Significant mine and mill improvements were made, especially at South Crofty Mines, where refurbishment of the hoisting shaft more than doubled ore-hoisting capacity. About one-half of Carnon's tin concentrates was sent to Rio Tinto-Zinc Corp. PLC's Capper Pass tin smelter, and the remainder was refined in Europe. The Capper Pass smelter depended on imports, mostly from South America, for most of its feed stock.

Geevor Tin Mines PLC stopped tin mining at midyear after hoisting 40,000 tons of tin ore during the first 6 months at its Pendarves Mine.

Zaire.—The major tin producer was Société Minière et Industrielle de Kivu (Sominki) in Kivu. The firm was 28% Government-owned and 72% owned by Empain-Schneider Group of France. Tin concentrates were shipped to Europe for smelting. The second largest producer was Société Zairetain, with 50% Government ownership and 50% ownership by Geomines Cie. of Belgium.

Table 13.—Tin: World mine production, by country¹

(Metric tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Argentina	291	274	451	379	300
Australia	29.275	7.923	6.374	8.470	9.000
Bolivia	25,278	19,911	16,136	10,479	7.000
Brazil	13,275	19.957	26,514	25,200	328,900
Burma	1.642	2.028	1,751	1.495	3939
Cameroon	e ₁₀	14	9	9	9
Canada	141	217	120	e2,450	3,390
China ^e	15,000	15.000	15,000	15,000	15,000
Czechoslovakia ^e	250	250	250	250	250
German Democratic Republice		1.800	1.800	1.600	1.000
Indonesia		23,223	21,759	24,049	327,000
Japan	600	485	510	500	21,000 386
Korea, Republic of	000	19	21	.1	5
Laos	359	430	e540	e ₅₅₀	550
Malaysia	41.367	41,307	36.884	29,135	330.388
Mexico	r ₃₃₄	416	380	585	³ 372
Namibia	e1,400	906	984	710	600
Niger	40	76	e100	e60	110
Nigeria	1.560	1.700	e990	e1.090	1.100
Peru	2,808	3,314	3.779	4.817	5,000
Portugal	347	e300	e200	e100	100
Rwanda	1.068	1,093	813	29	100
South Africa, Republic of	2,668	2,301	2.153	2.054	31,413
Spain	444	438	637	e ₄₀₀	400
Swaziland	5	100	001	400	400
Tanzania	r ₆	e _A		r eo	- 9
Thailand	19.943	r21.960	16.864	17.066	315,006
Uganda	18	21,500 e18	e ₁₈	**,000 e ₁₈	10,000
U.S.S.R.e	22,000	23.000	23,000	23,500	24.000
United Kingdom	4.025	5,216	5,204	4.276	4,000
United States	4,020 W	5,210 W	5,204 W	4,216 W	4,000 W
Vietname	550	500	600	650	680
Zaire ⁴	2,163	2,708	3.100	e2.800	1,500
Zambia	2,100 e ₂₂	4,100	22	2,000	3,500
Zimbabwe ^e	1,700	1,670	1,670	1,650	1,600
Total	r196,942	r _{198,463}	188,635	179,377	179,713

^eEstimated. ^pPreliminary. Revised. W Withheld to avoid disclosing company proprietary data; not included in

Table 14.—Tin: World smelter production, by country¹

(Metric tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Argentina ²	254	292	135	365	350
Australia	2,913	2,899	2,683	1,399	600
Bolivia	14,164	15,842	12,859	7,673	2,800
Brazil	12,950	18,887	24,701	24,427	26,400
China ^e	15.000	15,000	15,000	15,000	15,000
Czechoslovakia ²	307	425	€430	^é 430	430
German Democratic Republic ^e	2,000	2,000	2,200	1.600	1.800
Germany, Federal Republic of	\$417	417	400	350	300
Indonesia		22,467	20,909	22,080	323,800
Japan		1,354	1,391	1,280	³ 895
Malaysia ⁴	53,338	46,911	45,500	43,788	45,000
Mexico ⁵		1,531	1,492	e1.500	1,500
Netherlands	5,398	6.517	6,033	e5,000	5,000
Nigeria		1,400	1,020	e1,000	1,000
Portugal		432	408	199	130
Rwanda		e1.000	e800	100	200
South Africa, Republic of		1.592	2.069	2.001	31.479
Spain		4.400	3,900	e3,500	3,600
Thailand		19,729	17,996	19,672	15,300
U.S.S.R.e		25,500	r25,500	26,000	26,500
United Kingdom		7,105	7,548	9.227	12,000

See footnotes at end of table.

^{**}Estimated. **Preliminary. **Revised. W withnesd to avoid disclosing company proprietary data; not included in 'Total.'

1 Contained tin basis. Data derived in part from the Monthly Statistical Bulletin of the International Tin Council, London. Table includes data available through June 17, 1988.

2 Excludes tin content of copper-tin concentrates.

3 Reported figure.

4 Nonduplicated total of content of concentrates plus smelter production.

Table 14.—Tin: World smelter production, by country¹ —Continued

(Metric tons)

	Country	1983	1984	1985	1986 ^p	1987 ^e
United States ⁶ Vietnam ^e Zaire Zimbabwe		2,500 ³ 520 201 1,234	4,000 475 170 1,210	e3,000 570 85 1,207	3,213 *620 (⁷) 1,079	³ 3,927 645 1,100
Total		200,124	r201,555	197,836	191,403	189,556

^eEstimated. ^pPreliminary. ^rRevised.

²May include secondary tin. ³Reported figure.

⁵Primarily from imported tin concentrate.

⁷Revised to zero.

TECHNOLOGY

A variety of tin chemical formulations were developed to meet specific requirements in several markets for heat stabilizers. In the market for vinyl siding and window profiles, the Carstab Div. of Morton Thiokol Corp. developed a new compound class, which can be used with organotin mercaptides reportedly to provide excellent processing latitude and superior weathering in earthtone colors. Ciba-Geigy developed a maleate-free tin carboxylate for use in noncoated vinyl siding, with superior weathering reported. The Argus Div. of Witco Corp. developed a low-sulfur butyltin which reportedly improved heat stability and chalking resistance. The Interstab Div. of Akzo Chemie America Co. introduced an estertinbased product with reportedly superior color-retaining properties for the home window frame field. In the market for polyvinyl chloride bottles, Rhone-Poulenc developed a beta diketone for a taste and odor-sensitive application for clear water bottles. M&T Chemical Corp. introduced a new octyl tin liquid for food bottles. In the market for piping, Interstab developed an estertinbased liquid, reportedly offering good whiteness properties.3

Weirton Steel Corp. announced development of an easy-open end for steel cans. Although adaptable to both three-piece and two-piece food cans, plans were to use the new ends initially on three-piece containers. Typical applications would be for packaging fruits, vegetables, dry products, and pet foods.⁴

Metal Box Engineering Corp. Ltd. in the United Kingdom, developed a new automated spin-necking and pre-spin-necking technique for tinplate cans. This process report-

edly saves considerable material in the canmaking process and thus offers cost reductions and a lighter weight can, two factors that could enable tinplate to increase its share of the beverage can market.⁵

Selective Electronic Inc. developed Laser Pour, a new mold-level-control system for tin and related alloy casting shapes. The closed-loop system was constructed around a laser level sensor and was claimed to offer total system control resulting in maximum casting quality and efficiency. The unit could provide high-quality and lower cost castings of tin and its alloys.

Solarex Corp. announced development of a thin-film, amorphous silicon solar cell deposited on glass coated with a proprietary, textured tin oxide. The solar cell has a conversion efficiency of 11.9%, reportedly the highest efficiency achieved for a single-junction, thin-film solar cell. With further development, the cell could find application in commercial solar cells.⁷

Several firms announced introduction of new tin solders to meet the market needs for the plumbing industry. The recently amended Safe Drinking Water Act prohibited the use of lead in solders in municipal drinking water systems; consequently, solder makers developed alternative solders. Some typical new solders developed for this market were 95% tin, 5% antimony; and 95% tin, 5% silver.

⁷Chemical & Engineering News. V. 65, No. 21, May 25, 1987, p. 19.

¹Data derived in part from the Monthly Statistical Bulletin of the International Tin Council, London. Output reported throughout is primary tin only unless otherwise specified. Table includes data available through June 17, 1988.

⁴Includes small production of tin from smelter in Singapore.

⁶Includes tin content of alloys made directly from ores.

¹Physical scientist, Branch of Nonferrous Metals. ²Can Manufacturer's Institute. Metal Can Shipments Report 1987. Washington, DC, 1987, p. 5. ³Modern Plastics. V. 64, No. 9, Sept. 1987, pp. 70-71.

⁴Iron and Steel Engineer. V. 65, No. 9, Sept. 1987, p. 44. ⁵Canning International. V. 2, No. 2, May 1987, pp. 21-22. ⁶Tin International. V. 60, No. 6, June 1987, p. 125.

Titanium

By Langtry E. Lynd¹ and Ruth A. Hough²

Production and consumption of titanium dioxide (TiO₂) pigments reached new recordhigh levels for the fifth consecutive year. Increases in U.S. TiO₂ consumption were mainly for use in paper and plastics. Domestic consumption of titanium concentrates increased; a slight drop in ilmenite and rutile production was more than offset by a rise in the quantity of TiO₂ consumed in imported concentrates. U.S. production of titanium sponge metal increased, and demand for mill products improved as a result of increased orders for commercial aircraft and for chemical industry equipment.

Prices of concentrates and pigment were steady to slightly higher throughout the year, and metal prices were firming at yearend.

Domestic Data Coverage.—Consumption data for titanium raw materials are developed by the Bureau of Mines from a voluntary domestic survey. Of the 30 operations to which a request was sent, 97% responded, representing 99.99% of the consumption of ilmenite, rutile, and titanium slag shown in tables 1 and 6. Consumption for the one nonrespondent was estimated using reported prior year consumption levels.

Table 1.—Salient titanium statistics

 $(Short\ tons\ unless\ otherwise\ specified)$

	1983	1984	1985	1986	1987
United States:					
Ilmenite concentrate:					
Mine shipments	w	W	W	W	W
Value thousands	W	W	W	W	w
Imports for consumption	259,328	409,605	506,804	465,617	338,977
Consumption	730,578	783,391	756,071	806,270	813,819
Titanium slag:					
Imports for consumption	138,708	209,839	291,828	361,872	450,608
Consumption	166,401	200,858	252,027	276,324	277,214
Rutile concentrate, natural and synthetic:					
Imports for consumption	111,578	180,508	179,663	174,820	218,188
Consumption	265,558	317,902	305,278	329,151	353,296
Sponge metal:					
Production	13,966	24,326	23,257	17,402	19,675
Imports for consumption	1,199	¹ 2,667	¹ 1,717	1,626	1,018
Consumption ^e	16,072	24,713	21,606	19,489	19.812
Price, Dec. 31, per pound	\$5.55	\$5.55	\$3.50-\$4.00	\$3.90-\$4.30	\$4.00-\$4.20
Titanium dioxide pigment:	*	*	*	• • • • • • • • • • • • • • • • • • • •	
Production	760,385	834,889	r863,543	r930,653	951.685
Imports for consumption	174,857	193,501	196,213	202,674	192,043
Consumption, apparent ²	853,008	916,198	r984,579	r _{1.000,960}	1,048,259
Price, Dec. 31, cents per pound:	000,000	010,100	001,010	1,000,000	1,010,000
Anatase	69.0	69.0	72.0	77.0	77.0
Rutile	75.0	75.0	78.0	82.0	82.0
World: Production:	10.0	10.0	10.0	02.0	02.0
Ilmenite concentrate ³	r2.948.089	r _{3.831,103}	3,891,119	p3,735,466	e4,060,636
	*347,766	375,684	411,839	P433,430	e496,442
Rutile concentrate, natural		1,260,000		P1,417,000	e1,707,000
Titaniferous slag	1,160,000	1,200,000	1,410,000	1,417,000	1,707,000

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data. ¹Excludes sponge imported by the General Services Administration (GSA) for the national stockpile.

²Production plus imports minus exports plus stock decrease or minus stock increase. ³Excludes U.S. production data to avoid disclosing company proprietary data.

Legislation and Government Programs.—The Government's National Defense Stockpile (NDS) goal for titanium sponge metal remained at 195,000 short tons. The Government stockpile inventory in December contained 25,965 tons of specification metal and 10,866 tons of nonspecification material. The Government stockpile goal for rutile was unchanged at 106,000 tons. The total rutile stockpile inventory at yearend was 39,186 tons, including 56 tons of nonspecification material.

The International Trade Administration (ITA), U.S. Department of Commerce, ruled in February 1987 that Japanese producers did not dump their sponge in the United States between November 1, 1984, and October 31, 1985, and that Japanese sponge would no longer be subject to antidumping duties, confirming a preliminary ITA finding made in November 1986.

In March, Commerce ruled that antidumping duties reflecting a dumping margin of 83.96% would be assessed on titanium sponge imports from the U.S.S.R. This action was based on a review of shipments from the U.S.S.R. between August 1, 1983, and July 31, 1985, and reaffirmed a preliminary ruling announced in late 1986. The same dumping margin had previously been determined on sponge imported from the U.S.S.R. between August 1, 1982, and July 31, 1983.

Rutile (including titanium slag) was included in a list of strategic minerals, certified to the Congress under the authority of the President, as qualifying for exemption from the import restrictions of the Comprehensive Anti-Apartheid Act of 1986. Under the act, such materials may be excepted from prohibition of imports from parastatal organizations of the Republic of South Africa only if the quantities essential for the economy or defense of the United States are unavailable from reliable and secure sources.

DOMESTIC PRODUCTION

Concentrates.—U.S. producers of ilmenite were Associated Minerals (USA) Ltd. Inc. (AMU) at Green Cove Springs, FL, and E. I. du Pont de Nemours & Co. Inc. at Starke and Highland, FL. AMU is a subsidiary of Renison Goldfields Consolidated Ltd. of Australia.

As in 1986, AMU was the only domestic producer of natural rutile concentrate. Kerr-McGee Chemical Corp. was the sole producer of synthetic rutile, at Mobile, AL.

P. W. Gillibrand Co. continued to separate and stockpile heavy minerals containing ilmenite at its rock, sand, and gravel operation in the Soledad Canyon area, Los Angeles County, CA.

Ferrotitanium.—Ferrotitanium was produced by Ashland Chemical Co., Columbus, OH; Reactive Metals and Alloys Corp., West Pittsburg, PA; and Shieldalloy-GFE Corp., Newfield, NJ. Most of the production consisted of the 70% titanium grades.

Metal.—Wyman-Gordon Co. announced plans to install a plasma-refining system at its Millbury, MA, plant to produce nickelbase alloy powders and titanium alloy electrodes. The installation was expected to cost \$11.7 million and to be completed in late 1988. The new system, which will have the capacity to produce 4 million pounds of titanium electrodes per year, will enable Wyman-Gordon to produce, rather than buy, key materials used to make turbine engine and airframe structural compo-

nents

The Timet Div. of Titanium Metals Corp. of America was carrying out a transition from laboratory output of titanium aluminide products to manufacture on a mill production scale, including sheet, bar, plate, billet, strip, and foil. Titanium aluminide, with a basic formula of Ti₃Al, has hightemperature capability up to 1,400° F, compared with about 1,000° F for Ti-6Al-2Sn-4Zr-2Mo, the best high-temperature titanium alloy now available in commercial quantities. Titanium aluminide was being produced mainly in two alloy compositions: alpha-2 (Ti-21Cb-14Al) and super-alpha-2 (Ti-20Cb-14Al-3.2V-2.OMo). The columbium, vanadium, and molybdenum provide improved workability.

Engineers at Rohr Industries Inc., Chula Vista, CA, reported that they had developed the first honeycomb structure made from titanium aluminide. The honeycomb structure is thought to offer one of the best strength-to-weight ratios available for aerospace applications. Because of its resistance to high temperature, titanium aluminide could be competitive with superalloys, and the titanium aluminide structure is about one-half the weight of a superalloy material. Titanium aluminide may be used to make structural aircraft components and gas turbine engine parts.

The General Electric Co. (GE) announced plans to redesign titanium compressor

blades that were involved in several fires in engines used in the Navy's F-18 fighter planes. The fires in the GE 404 engines were believed to have started when titanium compressor blades broke as a result of engine vibration and metal fatigue. GE said it will still make the blades from titanium. In addition to redesigning the first-and third-stage compressor blades in the engines, GE said it planned to coat the compressor casings with a material that would contain a fire if one started. GE agreed to replace the compressor blades in about 320 Navy F-18 engines.

McDonnell Aircraft Co. reportedly awarded orders for 425 tons of titanium plate for one year's production of *Eagle* and *Hornet* fighters to RMI Co., Niles, OH; Timet Div., Pittsburgh, PA; and Oregon Metallurgical Corp. (Oremet), Albany, OR. In 1986, McDonnell contracted with five titanium

producers for a larger order. Industry sources stated that prices for aerospace-quality plate were lower than those of 1986, indicating the competitive nature of the bidding. However, prices on various titanium plate products were reportedly being raised by midyear.

On December 14, 1987, Oremet completed the purchase of Owens-Corning Fiberglas Corp's 80% share in the company. As part of the transaction, Oremet sold most of Owens-Corning's share to Oremet's employees. The sale ended 10 months of negotiations between Oremet and Owens-Corning, which had been trying to sell its share in Oremet for almost 2 years. As a result of the agreement, Oremet's employees owned 67% of the company and minority stockholders' interest in Oremet increased to about 33% from about 20%.

Table 2.—U.S. titanium metal production capacity in 1987

	Ownership	Plant location		acity t tons)
Company	Ownership	1 14110 100431011	Sponge	Ingot1
Howmet Corp., Titanium Ingot	Pechiney, France	Whitehall, MI	·	7,000
Div. International Light Metals Corp	Martin Marietta Corp., 60%; Nippon Kokan K.K., 40%.	Torrance, CA		5,500
A. Johnson Metals Corp	Axel Johnson Group, Stockholm, Sweden.	Lionville, PA	- -	² 2,000
Lawrence Aviation Industries	Self	Port Jefferson, NY	· _ =	1,500
Inc. Oregon Metallurgical Corp.	Oremet employees, 67%;	Albany, OR	4,500	11,000
(Oremet). RMI Co	USX Corp., 50%; National Distillers & Chemical Corp., 50%.	Ashtabula, OH	9,500	
	do	Niles, OH Monroe, NC	==:	18,000 4,000
Teledyne Allvac Teledyne Wah Chang Albany	Teledyne Inc	Albany, OR Henderson, NV	14,000	1,000 17,500
Titanium Metals Corp. of America.	NL Industries Inc., 50%; Allegheny International Inc., 50%.	Verdi, NV	22,000	² 3,500
Viking Metallurgical Corp Wyman-Gordon Co	Quanex CorpSelf	Worcester, MA		2,500
			28,000	73,500

¹Based on 7 days per week full production. Includes 68,000 tons vacuum arc double/triple melt, of which triple melt generally ranged from 10% to 30%. The remaining 5,500 tons was single melt electron-beam capacity for remelt electrodes and commercially pure ingot and slab.

²Single melt only.

Pigment.—Production of TiO₂ pigment increased for the fifth consecutive year and was 99% of nominal capacity. Kerr-McGee announced that it would increase the annual capacity of its Hamilton, MS, TiO₂ pigment plant from 85,000 tons to 106,000 tons, the expansion to be completed by the first

quarter of 1989. SCM Chemicals Inc. planned to expand capacity at one of its two TiO₂ plants in Ashtabula, OH, by 18,000 tons per year, at a cost of \$18 million, bringing SCM's total capacity at Ashtabula to 118,000 tons per year. The expansion was expected to be completed by October 1988.

Table 3.—Components of U.S. titanium metal supply and demand

(Short tons)

Component	1983	1984	1985	1986	1987
Production:			· .		
Sponge	12 000	04.000	00.055		
Ingot	13,966 26,439	24,326	23,257	17,402	19,67
		39,964	35,387	35,093	37,216
Exports:					
Sponge	39	171	51	69	
Other unwrought	259	204	181	207	94
Scrap	5,379	4.109	6,760		225
Scrap Ingot, slab, sheet bar, etc	1,371			6,403	5,603
Other wrought	783	2,071	2,248	2,119	2,719
		778	1,147	1,132	1,985
Total	7,830	7,333	10,387	9,930	10,626
mports:					
Sponge			_		
Soren		¹ 2,667	¹ 1,717	1,626	1,018
ScrapIngot and billet		1,850	2,134	2,375	2,445
Mill maduate	81	176	179	106	75
Mill products	^r 935	840	1,449	1,239	983
Total ²	3,788	5,533	r _{5,478}	5,346	4,521
tocks, Dec.31					
Concernment Conser (tet-1	122.036				
Government: Sponge (total inventory)	32,331	32,470	36,831	36,831	36,831
Industry:					
Sponge	3.136	3,147	4.755	9 100	0.504
Scrap	12.635	12,489		3,180	2,504
Ingot	3,273		11,686	11,558	10,155
Other	22	4,526	4,000	4,100	4,458
		18	34	33	15
Total industry	19,066	20,180	20,475	18,871	17,132
eported consumption:					
Sponge	16.072	94.719	01 000	10.400	10.00
Scrap	10,072	24,713	21,606	19,489	19,812
Ingot	10,467	15,549	14,720	16,487	18,037
Mill products (net shipments)3		39,062	35,020	33,801	35,561
Continum (abi	15,949	22,808	22,760	20,842	22,286
Castings (shipments)3	240	268	411	⁴ 435	475

^rRevised.

Table 4.—Capacities of U.S. titanium dioxide pigment plants on December 31, 19871

Company and plant location	Pigment capacity (short tons per year)
	Sulfate process	Chloride process
E. I. du Pont de Nemours & Co. Inc.:	· · · · · · · · · · · · · · · · · · ·	
Antioch, CA		05.000
De Lisle, MS		37,000
Edge Moor, DE		150,000
New Johnsonville TN		114,000
New Johnsonville, TN		252,000
	60.000	45,000
Refr-McGee Chemical Corp., Hamilton, MS	,	85,000
SCM Chemicals Inc., Hanson Industries II S A		35,000
Ashtabula, OH		100 000
Baltimore, MD	00.000	100,000
	66,000	50,000
Total		
Total	126,000	833.000

¹The table does not include Hitox Corp.'s Corpus Christi, TX, production capacity of about 10,000 tons per year of buff TiO₂, which is made by refining and fine-grinding of synthetic rutile.

Revised.

1Excludes sponge imported by GSA for the national stockpile.

2Data may not add to totals shown because of independent rounding.

3Bureau of the Census, Current Industrial Reports, Ser. ITA-991.

Table 5.—Components of U.S. titanium dioxide pigment supply and demand

(Short tons unless otherwise specified)

	19	184	19	85	198	198	19	19871
Component	Gross weight	TiO ₂ content	Gross weight	TiO ₂ content	Gross weight	TiO ₂ content	Gross weight	TiO ₂ content
ProductionShinments:	834,889	777,031	r863,543	r 802,827	r930,653	r865,182	951,685	889,131
Quantitythousands thousands thousands	905,383 \$1,106,898	\$1,106,898	\$1,275,131	\$84,758 \$1,275,131	1,085,084	1,013,079	1,149,853 \$1,700,644	1,077,425
Imports for consumption Stocks. Dec. 31	193,501	e180,091	196,213	179,912 F179,912	202,674	102,506 188,416 671,486	192,029	109,953 e179,420
Consumption, apparent ³	916,198	e854,673	r984,579	916,008	1,000,960	931,647	1,048,259	981,188

egstimated. Revised. Taevised. Tagensied. Data coverage beginning in 1986 was extended to include additional major importers. Includes interplant transfers. Production plus imports minus exports plus stock decrease or minus stock increase.

Sources: Bureau of the Census and Bureau of Mines.

CONSUMPTION AND USES

Concentrates.-The total domestic consumption of titanium in concentrates increased slightly, mainly because of the increased production of TiO, pigment.

Ferrotitanium.—Consumption of nium in the form of ferrotitanium and scrap in steel and other alloys increased about 10%, mainly because of higher production of stainless steel and superalloys.

Metal.—Consumption of sponge and ingot increased slightly while net shipments of mill products increased 7%. Consumption of scrap increased 9%, and the proportion of scrap in ingot feedstock rose to 48.5%. continuing a long-term trend toward higher scrap utilization. Castings shipments increased 5%. Mill product shipments were 54% in the form of billet; 31% sheet, strip, plate, tubing, pipe, extrusions, and other: and 15% rod and bar. Bar and billet were the major forms used for aircraft engines and airframes, while the other forms were used mainly for nonaerospace industrial applications. Mill product usage was estimated to be about 78% for aerospace and 22% for other industrial applications.

Current use of titanium in large commercial aircraft represents about 6% of aircraft empty weight. Titanium is utilized where high-strength toughness, heat resistance, and high structural efficiency are required.

Typical military aircraft uses are for structural forgings and wing skins for F-14 and F-15 aircraft; rotor parts for helicopter blade systems; B-1B fracture-critical forgings and wing support sections; and rotor discs, blades, and compressor blades on various engines. Major nonaerospace industrial uses are those requiring superior resistance to corrosion, such as surface condensers in powerplants, heat exchangers. and chemical industry equipment. One of the first commercial applications of titanium was in the form of tubing used to carry seawater for cooling in oil refineries and chemical plants.3 Titanium is being increasingly used in medical implant devices because of its outstanding corrosion resistance and compatibility with body tissues. Automotive uses may be extended beyond race-car applications, as evidence is accumulated showing that higher costs for titanium as valve train materials may be offset by improvements in performance and fuel economy.4

Pigment.—Apparent consumption of TiO2 pigments was about 1,048,000 tons, nearly 5% higher than in 1986. Demand exceeded supply, and consumption probably would have been significantly higher if more production capacity had been available.

Table 6.—U.S. consumption of titanium concentrates

(Short tons)

Year	Ilmenite ¹		Titanium slag		Rutile (natural and synthetic) ²		
	Gross weight	TiO ₂ content ^e	Gross weight	TiO ₂ content ^e	Gross weight	TiO ₂ content ^e	
1983 1984 1985	730,578 783,391 756,071	474,285 498,977 481,011	166,401 200,858 252,027	127,267 152,534 199,610	265,558 317,902 305,278	250,418 298,639 286,488	
1986: Alloys and carbide Pigments Welding-rod coatings and fluxes Miscellaneous ⁵	(3) 804,050 (3) 2,220	(3) 511,070 (3) 1,655	276,324 	(4) 221,959 	259,821 8,081 61,249	244,178 7,667 57,539	
Total	806,270	512,725	276,324	221,959	329,151	309,384	
1987: Alloys and carbide Pigments Welding-rod coatings and fluxes Miscellaneous ⁵	(³) 811,435 (³) 2,384	(³) 504,178 (³) 1,912	(4) 277,214 	(4) 223,478 	288,761 4,388 60,147	271,658 4,168 56,558	
Total	813,819	506,090	277,214	223,478	353,296	332,384	

eEstimated.

¹Includes a mixed product containing rutile, leucoxene, and altered ilmenite.

Includes a mixed produce of the containing the cont

⁵Includes ceramics, chemicals, fiber glass, and titanium metal.

Table 7.— Distribution of U.S. domestic titanium pigment shipments, titanium dioxide content, by industry¹

(Percent)

Industry	1983	1984	1985	1986	1987
Paint, varnish, lacquer	48.9 27.3 13.2 1.8 1.1 1.0 6.7	54.8 19.9 15.4 2.0 1.2 1.0 5.7	54.3 20.5 16.2 1.7 1.0 .7 5.6	52.6 20.7 15.8 2.0 1.4 2.2 5.3	49.5 24.3 17.0 1.8 1.2 .6
Total	100.0	100.0	100.0	100.0	100.0

¹Data coverage beginning in 1986 was extended to include additional major importers.

Table 8.—U.S. consumption of titanium products¹ in steel and other alloys

(Short tons)

	1983	1984	1985	1986	1987
Carbon steel	744 1,748 749 W	659 1,851 677 W	483 2,104 491 W	732 2,185 297 W	784 2,457 358 W
Total steel	3,241 38 535 252 12	3,187 62 622 473 18	3,078 23 657 357 18	3,214 65 630 322 35	3,599 W 689 320 45
Total consumption	4,078	4,362	4,133	4,266	4,653

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified." Includes ferrotitanium containing 20% to 70% titanium and titanium metal scrap.

STOCKS

The 31% decrease of TiO₂ content of ilmenite stocks at yearend was more than offset by the increase of the TiO₂ content of rutile and slag stocks. Stocks of titanium

pigment (TiO₂ content) at yearend were at the lowest level since 1977 when the Bureau began to publish data on titanium pigment stocks.

Table 9.—U.S. stocks of titanium concentrates and pigment, December 31
(Short tons)

	Gross weight	TiO ₂ content
T 1		
Ilmenite: ¹	237,430	147,357
	279,106	169,723
1986	214,449	129,717
1987	,	
Titanium slag:1	106,062	83.821
1985	*80.885	r65,213
1986	131,735	106,882
1987	131,730	100,002
Rutile:1	445.050	100 010
1985	115,973	109,319
1986	^r 113,988	r _{107,491}
1987	118,655	110,217
Titanium pigment: ²		
1985	56,756	e52,041
	76,896	e71,486
1986	52,336	e48,896
1987	02,000	40,000

Estimated. Revised.

¹Producer, consumer, and dealer stocks.

²Bureau of the Census. Producer stocks only.

Table 10.—Published prices of titanium concentrates and products

	1986¹	1987¹
Concentrates:		
Ilmenite, f.o.b. eastern U.S. portsper metric ton	(2)	
Ilmenite, f.o.b. Australian ports	# 47 00 #F0 00	(2)
Ilmenite, large lots, bulk, f.o.b. U.S. east coast	\$47.00-\$53.00	\$46.00-\$52.00
Rutile, bagged, f.o.b. Australian portsper short ton	50.00- 56.00	50.00- 56.00
Rutile, bulk, fo.b. Australian portsdo	398.00-422.00	398.00-418.00
Rutile, large lots, bulk, f.o.b. U.S. east coastdo	374.00-386.00	372.00-392.00
Synthetic rutile for Mobile AI	355.00-375.00	355.00-375.00
Titonium clos 2007 TiO fel Coul C fe	350.00	350.00
Synthetic rutile, f.o.b. Mobile, AL	210.00-215.00	215.00-225.00
do	225.00-230.00	235.00-245.00
Sponge, reported salesper pound Sponge, Japanese, under contract, c.i.f. U.S. ports, including import duty	3.90- 4.30	4.00- 4.20
Mill products:	No quotation	No quotation
Bardo	0.05	
Billetdo	9.25- 10.04	8.50- 9.61
Platedo	7.10- 7.76	6.45- 6.52
Sheetdodo	8.00- 9.53	10.33- 10.74
Strin	9.50- 10.00	8.50- 9.50
Stripdo	10.10- 10.60	10.10- 10.60
Titanium dioxide pigment, f.o.b. U.S. plants, anatasedo	.7577	.7577
Titanium dioxide pigment, f.o.b. U.S. plants, rutile	.8082	.8082

^eEstimated.

Sources: American Metal Market, Industrial Minerals (London), Metals Week, and industry contacts.

FOREIGN TRADE

Exports of all titanium metal categories except scrap increased; ingot, billet, and slab exports rose by 28%, and those in the other wrought category were up 75% over the corresponding 1986 levels. Imports for consumption of titanium sponge dropped 37% in 1987, mainly because of the virtual cessation of imports from Japan except to fulfill previous commitments. The withdrawal of Japanese sponge producers from the U.S. market resulted from the steep appreciation of the Japanese ven and low market prices. The drop in availability of Japanese sponge raised a supply problem for nonintegrated U.S. producers of ingot and mill products, but the three U.S. sponge producers reportedly offered to sell sponge to the nonintegrated producers. Although

the sponge produced in the United States is higher in volatile impurity content than the Japanese sponge, causing some problems for the nonintegrated producers, U.S. capacity was believed to be ample to supply the U.S. market at anticipated sponge consumption levels.

Exports of TiO₂ were higher and imports for consumption were lower probably because European prices were higher, discouraging U.S. imports and encouraging exports.

Imports for consumption of total TiO_2 in concentrates increased 6% in 1987. A 27% decrease in ilmenite imports was more than offset by increases in imports of slag, rutile, and synthetic rutile.

¹Yearend.

²List price suspended effective Jan. 1, 1985.

TITANIUM

Table 11.—U.S. exports of titanium products, by class

	19	85	1986		1987	
Class	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Concentrates: Ilmenite Rutile	27,759	\$6,953	r _{1,951} r _{3,364}	r\$280 r1,135	4,435	\$1,395
Total ¹	27,759	6,953	5,314	1,414	4,435	1,395
Metal: Sponge Other unwrought Scrap Ingots, billets, slabs, etc Other wrought Total ¹	51 181 6,760 2,248 1,147	338 2,604 14,533 40,942 29,481 87,898	69 207 6,403 2,119 1,132	461 1,757 10,652 38,754 31,413	94 225 5,603 2,719 1,985	746 2,254 9,721 44,203 40,534 97,458
Pigment and oxides: Titanium dioxide pigments Titanium compounds, except pigment-grade Total	101,954 1,247 103,201	108,384 4,486 112,870	112,227 3,220 115,447	145,920 10,415 156,335	120,029 13,028 133,057	181,707 28,478 210,185

rRevised.

Source: Bureau of the Census.

Table 12.—U.S. imports for consumption of titanium concentrates, by country

	198	35	198	6	1987		
Concentrate and country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
Ilmenite: Australia	506.539	\$14,060	427,453	\$13,846	333,523	\$10.640	
India		ψ14,000 	18,783	1,831	5,454	1,341	
Indonesia Sri Lanka	_ 265	530	19.381	1,160			
Total		14,590	465,617	16,837	338,977	11,981	
10001							
Titanium slag:			****	05 000	010 004	41 005	
Canada	_ 195,230 _ 96,598	$36,350 \\ 15,881$	194,058 167,814	35,696 29,030	219,364 231,244	41,625 41,381	
South Africa, Republic of		19,001	101,614	23,000	201,244	41,001	
Total	291,828	52,231	361,872	64,726	450,608	83,006	
Rutile, natural:							
Australia	_ 66,054	19,062	73,844	25,222	112,749	41,199	
Brazil		481	1,126	214			
Namibia		10.822	11,052 19,439	3,852 7,039	19.090	6,668	
Sierra LeoneSouth Africa, Republic of	_ 32,994 44.146	10,022	37.124	9,521	28,885	9,542	
Other	286	10,034	90	16	6	3	
Total ¹	146,602	40,509	142,675	45,865	160,730	57,412	
Rutile, synthetic:							
Australia	_ 33,061	3,458	32,035	6,315	50,722	12,021	
China			110	34	101	34	
India					3,227	1,127 1,497	
Japan					3,401	1,497	
Netherlands					' _		
Total	33,061	3,458	32,145	6,349	57,458	14,701	
Titaniferous iron ore: ² Canada	858	38	710	23	13,148	757	

Source: Bureau of the Census.

¹Data may not add to totals shown because of independent rounding.

¹Data may not add to totals shown because of independent rounding.

²Includes materials consumed for purposes other than production of titanium commodities, principally heavy aggregate and steel furnace flux.

Table 13.—U.S. imports for consumption of titanium dioxide pigments, by country

	19	1985		1986		1987	
Country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	
Australia	5,285	\$5,967	5,271	\$6,604	3,923	\$5,398	
Belgium-Luxembourg	16,459	15,508	18,009	20,649	16,941	19,451	
Canada	26,658	30,019	24,509	28,476	17.533	21,352	
Finland	5,799	6,200	5,930	6,995	4.293	5,501	
France	39,379	42,167	36,818	44,719	26.921	32,325	
Germany, rederal Republic of	39,723	38,955	48,867	57,902	47,707	60,630	
<u> </u>		1,855	3,239	4,338	3,167	4.423	
Japan		6,267	5,083	5,586	5,000	6,693	
Mexico		4,050	1,424	1,595	74	206	
Netherlands	1,238	1,120	2,760	3,307	623	690	
Norway	6,978	5,968	7,495	8,282	9.218	10.519	
South Africa, Republic of	- 551	634	1,708	2,160	2,046	2,571	
Spain	21,283	23,659	17,292	20,965	22,616	27,620	
United Kingdom	21,242	22,880	21,876	25,885	29,538	36,640	
Yugoslavia	516	508	412	631	332	652	
Other ¹	913	1,054	1,981	1,964	2,111	2,274	
Total ²	196,213	206,809	202,674	240,058	192,043	236,945	

¹Includes Algeria, Austria, Brazil, China, Denmark, Dominican Republic, Greece, Hong Kong, Jordan, the Republic of Korea, Mali, New Zealand, Panama, Peru, Singapore, Sweden, Switzerland, and Taiwan, in one or more of these years.

²Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 14.—U.S. imports for consumption of titanium metal, by class and country

	19	85	19	86	1987	
Class and country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Unwrought: Sponge:						
China			20	\$77	18	\$5
Germany, Federal Republic of	•	==			(²)	1
Japan	31,689	\$10,007	1,606	9,504	1,000	6,25
Korea, Republic of	28	156		·		· ·
United Kingdom	(2)	1				
Total ⁴	31,717	10,164	1,626	9,583	1,018	6,32
Ingot and billet:						
Canada	29	247	8	83		
Germany, Federal Republic of	46	844	47	778	2 14	24
Israel	(2)	6	8	232	12	
Japan	101	950	40	590	12 46	33
United Kingdom	2	49	3	56	46 1	430
Other	(²)	r ₃₅	(²)	8	(²)	25 58
Total ⁴	179	2,131	106	1,747	75	1,115
Waste and scrap:						
Austria			236	512	310	673
Belgium-Luxembourg	47	61	52	50	149	200
Canada	117	155	260	461	156	28
China	372	839	54	90	71	11:
France	122	498	205	630	234	63
Germany, Federal Republic of	87	316	110	327	213	69
Japan	352	1.175	338	1.112	603	1.89
Sweden	90	311	51	149	20	1,036
Switzerland	162	318	238	470	99	28
U.S.S.R	78	194	149	311	33	201
United Kingdom	595	2.001	584	1,567	515	1,64
Other	111	207	96	246	75	116
Total ⁴	2,134	6,075	2,375	5,927	2,445	6,579

See footnotes at end of table.

Table 14.—U.S. import	s for consumption of tit	anium metal, by clas	s and country
	s for consumption of tit —Continued	A CARLON CONTRACTOR OF THE CON	

	1	985 .	19	86	198	7
Class and country	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)	Quantity (short tons)	Value (thou- sands)
Wrought titanium:	390	\$6,293	r376	r\$5,874	387	\$7,112
Germany, Federal Republic of	(2)	18	r ₂₅	^r 454	46	463
Japan	987	13,128	r ₆₃₃	r _{9,083}	480	6,683
	55	1,254	\mathbf{r}_{43}	r _{1,269}	43	790
United Kingdom				roce	27	
United Kingdom	18	345	. 10	^r 266	21	698

rRevised.

Less than 1/2 unit.

⁴Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

WORLD REVIEW

World production of TiO₂ in concentrates increased about 12% in 1987. World production and demand for TiO₂ pigments were again at record-high levels, with demand estimated at about 2.8 million tons. Prices of concentrates and pigments increased in response to the high demand. Pigment producers continued to add to existing plant capacity and were building or planning to build new pigment plants in Brazil, the Republic of Korea, Saudi Arabia, Singapore, and Taiwan.

Titanium sponge metal production in the market economy countries decreased 7% to about 32,000 tons mainly because of a substantial decrease in Japanese sponge production.

Australia.—Australia was again the largest producer of titanium minerals, with exports of ilmenite, in order of decreasing quantity, mainly to the United States, Japan, the United Kingdom, and Spain; and exports of rutile, in order of decreasing quantity, mainly to the United States, the United Kingdom, and the Netherlands.

Associated Minerals Consolidated Ltd. (AMC), Mineral Sands Div. of Renison Goldfields, began operation of its new 124,000-ton-per-year synthetic rutile plant at Narngulu, near Geraldton in Western Australia, bringing AMC's total synthetic rutile capacity to 190,000 tons per year.

Westralian Sands Ltd. began production at its 110,000-ton-per-year synthetic rutile plant at Capel, Western Australia. Completion of this plant brings Australia's total synthetic rutile production capacity to 300,000 tons per year.

TiO₂ Corp. completed a feasibility study of its Cooljarloo deposit and concluded that its

proposed mineral sands project is economically viable. Initial production was planned for late 1988.

SCM was planning to increase the annual capacity of its TiO₂ pigment plant at Bunbury, Western Australia, from 40,000 tons to 77,000 tons, in conjunction with conversion from the sulfate process to the chloride process. Earlier plans had been for expansion to only 50,000 tons per year. Cost of the expansion was estimated at about \$107 million, with completion scheduled for late 1988.

Belgium.—NL Chemicals Inc. announced a project to convert its TiO₂ plant at Landerbrugge, near Ghent, to the chloride process. The 44,000-ton-per-year plant will replace the existing sulfate process facility on the same site at a cost of \$60.3 million. All dumping of spent acid wastes in the North Sea will cease, and SO₂ air emissions will be reduced by 90%.⁵

Brazil.—In August 1987, Du Pont's Brazilian subsidiary and Constructora Andrade Gutierrez S.A., one of Brazil's biggest construction firms, submitted a proposal to the Brazilian Government to form a 50-50 joint venture to construct a \$180 million, 60,000ton-per-year TiO2 pigment plant. The pigment plant is to be near the proposed titanium concentrate plant to be built in the Tapira region, Minas Gerais State, by Cia. Vale do Rio Doce, by 1991, with an initial capacity of 88,000 tons per year of anatase concentrate. Each of the members of the proposed joint venture had previously planned to build separate TiO₂ facilities in the same region.6

Canada.—QIT-Fer et Titane Inc., Montreal, decided to expand its capacity for

¹Country of transshipment rather than country of production.

³Excludes sponge imported by GSA for the national stockpile.

production of 80% TiO2 slag by 20% to slightly more than 1.1 million tons per year by mid-1988. The project was expected to cost about \$100 million, and was to involve the refurbishing and modernization of two furnaces at QIT's smelter in Sorel, Quebec. Canada, to bring their capacity up to that of seven other more modern furnaces at Sorel.

NL Chem Canada Ltd. completed construction and began operation of its new 42,000-ton-per-year chloride process plant at Varennes, Quebec, in mid-1987. NL Chem Canada continued to operate a 40,000-tonper-year sulfate process TiO2 plant at the same location.

China.—Production of ilmenite concentrate at the Panzhihua Mine in eastern Sichuan Province was to be increased from the current rate of 20,000 to 50,000 tons per

year, with long-term plans to produce 300,000 tons per year. The Panzhihua ore consists mainly of titaniferous magnetite and is an important source of vanadium.

Japan.—The escalating value of the Japanese yen made titanium sponge produced in Japan uncompetitive in the United States. and Japanese producers virtually withdrew from the U.S. sponge market around midyear, except to fulfill previous contracts. Sponge production in Japan was reduced sharply, and production for the year was only 11,105 tons, or 43% of annual production capacity of 26,000 tons. Estimates of annual production capacities by company in 1987 were Osaka Titanium Co. Ltd., 13,200 tons; Toho Titanium Co. Ltd., 10,600 tons; and Showa Titanium Co. Ltd., 2,200 tons.

Table 15.—Titanium: World production of concentrates (ilmenite, leucoxene, rutile, and titaniferous slag), by country1

(Short tons)

Concentrate type and country	1983	1984	1985	1986 ^p	1987 ^e
Ilmenite and leucoxene:2					
Australia:					
Ilmenite		1,645,937	1,564,031	1,364,322	1,521,000
Leucoxene		35,395	15,222	15,590	13,500
Brazil		45,134	84,166	83,194	82,500
China ^e		154,000	154,000	154,000	154,000
Finland		e184,000	140,055		
India ³		154,323	157,630	e _{154,000}	154,000
Malaysia	_ r245,498	r _{295,959}	346,937	457,394	551,000
Norway	- 612,826	r718,522	811,126	885.841	4939,523
Portugal	298	181	159	256	240
Sierra Leone					46,173
Sri Lanka	90.145	112,489	126,605	e110,000	110,000
Thailand		r ₁₆₃	1,188	14.869	28,700
U.S.S.R. ^e		485,000	490,000	496,000	500,000
United States	W	w	w	w	W
Total	r2,948,089	r3,831,103	3,891,119	3,735,466	4,060,636
Rutile:					
Australia	r _{180.089}	187,860	233,265	237,850	283,000
Brazil		454	786	546	550
India ^{e 3}		6,600	47,496	8.000	8,000
Sierra Leone ⁵	79,146	100,641	88.858	107,034	4124,892
South Africa, Republic of	62,000	62,000	61,000	61,000	61,000
Sri Lanka	8,921	7.129	9,434	e8.000	8,000
U.S.S.R. ^e		11,000	11.000	11,000	11.000
United States		W	11,000 W	W	W
Total	r _{347,766}	375,684	411,839	433,430	496,442
m:4 :C 1					
Titaniferous slag:	E00.000	000 000	6 000 000	Poor ooo	
Canada ⁶	700,000	800,000	e930,000	e937,000	992,000
South Africa, Republic of ⁶ 7	460,000	460,000	480,000	480,000	715,000
Total	_ 1,160,000	1,260,000	1,410,000	1,417,000	1,707,000

Estimated. Preliminary. rRevised. W Withheld to avoid disclosing company proprietary data

Estimated. "Preliminary. 'Revised. w Withnest to avoid discussing company proprietary data. 'Table excludes production of unbeneficiated anatase ore in Brazil, in short tons, as follows: 1882—2,610,028; 1984—2,943,538; 1985—3,000,000 (estimated); 1986—3,000,000 (estimated); and 1987—3,307,000 (estimated). This material reportedly contains 20% TiO₂. Table includes data available through June 24, 1988.
'Illmenite is also produced in Canada and in the Republic of South Africa, but this output is not included here because an estimated 90% of it is duplicative of output reported under "Titaniferous slag," and the rest is used for purposes other than preduction of the included here in spicionally as steal furneachily and heavy aggregate.

than production of titanium commodities, principally as steel furnace flux and heavy aggregate.

³Data are for fiscal year beginning Apr. 1 of year stated.

⁴Reported figure.

⁵Contains 96% TiO₂.
6Contains 80% TiO₂.

⁷Contains 85% TiO2.

897

Madagascar.—On behalf of QIT Madagascar Minerals Ltd., a joint-venture partnership owned 51% by the Government of Madagascar and 49% by QIT, QIT completed an initial evaluation of the heavy minerals prospect in southeast Madagascar, confirming and extending previous reserve estimates. The larger reserve estimate led to an increase in the planned mine production capacity to 660,000 tons per year of ilmenite instead of the 330,000 tons originally proposed. Startup of a commercial operation is planned for the second half of 1990. Most of the ilmenite is to be shipped to QIT's smelter in Sorel, Quebec, Canada, for conversion to a 90% TiO2 slag suitable for chlorination.7

Norway.—KSI Ilmenittsmelteverket A/S (KSI) experienced startup difficulties in the operation of its new plant to smelt ilmenite in Tyssedal. Unexpected expenditures incurred in correcting equipment problems were blamed for additional capital requirements, which led to interrupted production,

and were unresolved at yearend.

Senegal.—In April, the President of Senegal signed a decree granting exploration rights for titanium minerals to Du Pont.

Sierra Leone.—Sierra Rutile Ltd., owned by Nord Resources Corp., Dayton, OH, completed expansion of its rutile capacity to about 140,000 tons per year. Sierra Rutile was also planning to produce a small quantity of ilmenite, beginning in late 1987.

U.S.S.R.—Production of titanium sponge was estimated to be 49,000 tons. Annual sponge production capacity was estimated to be about 55,000 tons.

United Kingdom.—Deeside Titanium Ltd., Western Europe's only titanium sponge producer, was to reduce its production rate in late 1987 because of lower demand and profitability. Deeside previously cut production in 1985, and reportedly has never reached full-capacity production of 5,500 tons per year since it began operation in 1982. Production in 1987 was estimated at about 1,500 tons.

TECHNOLOGY

The Bureau of Mines published costestimation handbooks on mining,⁸ mineral processing,⁹ and small placer mines.¹⁰ These reports were prepared to assist in the preparation of prefeasibility-type estimates for capital and operating costs of mining and beneficiation of various types of mineral occurrences, including titanium minerals, using current technology.

A study on titanium chlorination solid wastes done under a Bureau of Mines contract was reported. Conceptual designs and the results of tests on processes used to recover titanium from chlorination-process solid waste were described. Recoveries of 80% to 88% of the titanium in the waste as a concentrate of 94% to 95% TiO, were achieved, reducing the amount of final waste effluent to less than 40% of current quantities.¹¹

With the objective of assessing the feasibility of preparing chlorination-grade titanium concentrate from domestic ilmenite, the Bureau smelted and treated by sulfation and leaching an ilmenite from northern Minnesota. The final product from small-scale testing contained up to 95.5% TiO₂ and met chlorination-charge specifications for critical impurities.¹²

The Bureau made an economic study of selected heavy-mineral placer deposits in the U.S. Exclusive Economic Zone (EEZ). Three placer areas were investigated and

evaluated using engineering and cost models.¹³

The U.S. Congress, Office of Technology Assessment, examined the current knowledge about the hard mineral resources within the EEZ, explored the economic and security potential of seabed resources, and assessed the technologies available to explore for and mine those resources, including titanium-bearing sands.¹⁴

The Bureau reported results of an investigation of a process to produce titanium powder directly from titanium salts. Potassium titanium fluorides and potassium fluoride were reduced with potassium at 650° to 750° C. After leaching, products with low potassium and fluorine content were obtained, but oxygen levels of more than 1% demonstrated the need for further research. 15°

The Bureau also investigated the use of Kroll-type magnesium reduction to produce titanium alloy powder. Chlorides of titanium, aluminum, and vanadium were reduced together simultaneously at 750°, 850°, and 950° C, using various feed rates and crucible diameters. Results of electron microprobe analysis showed that the chemical composition of the products was less homogeneous than desired, so that a homogenizing step such as melting might be required to produce a sufficiently uniform product. 16

A comprehensive Bureau report of the historical development and status of technology for producing titanium concentrates and metal from U.S. resource materials was published. Commercially feasible processes and investigations of alternate procedures were reviewed. Procedures were described for producing titanium concentrates from a variety of starting materials, producing and purifying titanium tetrachloride, reduction of titanium tetrachloride to metal with magnesium or sodium or by electrowinning, and metal purification, consolidation, and melting.17

As part of its research program on developing substitute materials for tungsten, tantalum, and cobalt in cutting tools, to lessen U.S. dependence on foreign sources of these critical materials, the Bureau investigated the effects of composition and processing variables on the transverse rupture strength and hardness of nickel-alloybonded titanium carbide to identify compositions that exhibit promising mechanical properties. A number of promising compositions were determined.18

The Bureau also investigated the recovery of titanium from domestic perovskite (CaTiO₃) deposits. An acid sulfation method was developed that will extract about 97% of the titanium and columbium and up to 90% of the rare-earth oxides from perovskite concentrates. Cost evaluation results indicated that processing perovskite concentrates by acid sulfation can be an economically viable means of producing TiO2.19 Cerium and lanthanum were recovered from the perovskite sulfate-leach solutions as a sodium sulfate double salt.20

The U.S. Geological Survey published a report on the geology and mineral deposits of the Roseland District of Nelson and Amherst Counties, VA. The district was formerly an important producer of titanium minerals and still contains more than 5% of identified U.S. resources of those minerals.21

The perovskite deposits near Powderhorn, CO, were described as containing onehalf of the total usable U.S. reserves of titaniferous raw materials. The geology of the deposits was reviewed, and possible methods for recovery and processing of a perovskite concentrate to manufacture TiO2 pigment were discussed.22

The National Aeronautics and Space Administration (NASA) developed an oxygenbarrier coating for titanium that may extend the temperature range over which titanium may be used considerably above the current range of 800° to 1,000° F. At high temperatures, the coating forms titanium aluminide and silicide compounds that are nearly impervious to oxygen, even at temperatures as high as 1,300° F.23

A monograph was published containing evaluations of pure titanium and 66 binary titanium alloys. The volume includes crystal structure and lattice parameter tables, thermodynamics, and a complete bibliography through 1985.24

Titanium-base materials, particularly titanium aluminides, were described as promising for providing the strength, low density, and temperature resistance that will be needed for development of advanced performance aircraft such as the national aerospace plane.25 An overview of rapid solidification (RS) indicated that the refinement of microstructure and extended solid solution ranges achievable by RS technology may lead to titanium alloys with improved hightemperature properties.26

Precision forging technology for critical aerospace applications was described as on the threshold of a major revolution. Costs of dies for titanium have been substantially reduced, and the availability of the more readily forgeable near-beta alloys, such as Ti-10-2-3, has increased the size of forgings that may be made from titanium.27

¹Physical scientist, Branch of Nonferrous Metals.

²Supervisory mineral data assistant, Branch of Nonferrous Metals.

³Kane, R. L. Titanium in Seawater Piping. J. Met., v. 39,

No. 3, Mar. 1987, pp. 10-11.

Allison, J. E., A. M. Sherman, and M. R. Bappna.
Titanium in Engine Valve Systems. J. Met., v. 39, No. 3,

Mar. 1987, pp. 15-18.

**SEuropean Chemical News. NL Chemicals Converts Belgian TiO₂ Plant. V. 49, No. 1303, Dec. 7, 1987.

⁶Kepp, M. Du Pont Seeks Brazilian Venture To Build Titanium Dioxide Plant. Am. Met. Mark., v. 95, No. 163, Aug. 21, 1987, pp. 1, 8.

Industrial Minerals.(London) World of Minerals-

Madagasca, QIT Expanding Heavy Minerals Project.
No. 236, May 1987, p. 15.

*Bureau of Mines. Bureau of Mines Cost Estimating
System Handbook (In Two Parts). 1. Surface and Underground Mining. IC 9142, 1987, 631 pp.

Bureau of Mines Cost Estimating System Handbook (In Two Parts). 2. Mineral Processing. IC 9143, 1987,

 ⁵⁶⁶ pp.
 10 Stebbins, S. A. Cost Estimation Handbook for Small
 10 Stebbins, S. A. Cost Estimation Handbook for Small Placer Mines. BuMines IC 9170, 1987, 94 pp.

¹¹Krishnaswamy, R., and N. H. Parker. Study on Titanium Chlorination Solid Wastes. BuMines OFR 4-88, Oct. 1987, 184 pp.

¹²Nafziger, R. H., and G. W. Elger. Preparation of Titanium Feedstock From Minnesota Ilmenite by Smelting and Sulfation-Leaching. BuMines RI 9065, 1987, 13 pp.

13 Bureau of Mines. An Economic Reconnaissance of Selected Heavy Mineral Placer Deposits in the U.S. Exclusive Economic Zone. OFR 4-87, Jan. 1987, 122 pp.

excusive economic zone. UFK 4-87, Jan. 1987, 122 pp. 14US. Congress, Office of Technology Assessment. Marine Minerals: Exploring Our New Ocean Frontier. U.S. GPO, Washington, DC, OTA-0-342, July 1, 1987, 349 pp. 15Harbuck, D. D. Formation of Titanium Powder by Potassium Reduction of Titanium Salts. BuMines OFR 41-97, Aug. 1987, 204

Potassium Reduction of Titanium Salts. BuMines OFR 41-87, Aug. 1987, 20 pp.

1ºTraut, D. E., G. J. Slavens, and D. A. Hansen.
Coreduction of TiCl₄, AlCl₃, and VCl₄ To Produce Titanium Alloy Sponge. BuMines RI 9133, 1987, 17 pp.

1ºThenry, J. L., W. W. Stephens, D. D. Blue, and J. H. Maysilles. Bureau of Mines Development of Titanium Production Technology. BuMines B 690, 1987, 120 pp.

1ºFisher, G. T., II, L. L. Oden, and G. Asai. Effects of Compositon and Processing Variables on Transverse Rupture Strength and Hardness of Nickel-Alloy-Bonded Titanium Carbide. BuMines RI 9115, 1987, 25 pp.

1ºFieterson, A. E. TiO₂ From Perovskite Concentrates Using Acid Sulfation. Pres. at the TMS-AIME Annu. Meeting, Denver, CO, Feb. 24-27, 1987, 13 pp; available from BuMines Salt Lake City Research Center, Salt Lake City, UT. City, UT.

²⁰Davidson, C. F., and J. K. Winters. Recovery of Rare Earths From Titanium Sulfate Leach Solutions. Pres. at the TMS-AIME Annu. Meeting, Denver, CO, Feb. 24-27, 1987, 12 pp; available from BuMines Salt Lake City Research Center, Salt Lake City, UT.
 ²¹Herz, N., and E. R. Force. Geology and Mineral Deposits of the Roseland Deposit of Central Virginia. U.S. Geol. Sur. Prof. Paper 1371, 1987, 56 pp.
 ²²Thompson, J. V. Titanium Resource in Colorado Equals All Other U.S. Deposits. Eng. and Min. J., v. 188, No.7, July 1987, pp.27-30.
 ²³NASA Technical Briefs. Oxygen-Barrier Coating for Titanium. V. 11, No. 4, p. 39.
 ²⁴Murray, J. L. (ed.). Phase Diagrams of Binary Titanium Alloys. ASM Int. Met. Park, OH, 1987, 350 pp.
 ²⁵Robinson, J. J. Getting the Space Plane Off the Ground—A Materials Enterprise. J. Met., v. 39, No. 7, July 1987, pp. 8-9.
 ²⁶Froes, F. H., Y. W. Kim, and F. Hehman. Rapid

²⁶Froes, F. H., Y. W. Kim, and F. Hehman. Rapid Solidification of Al, Mg, and Ti. J. Met., v. 39, No. 8, Aug.

1887, pp. 14-21.

27 Church, F. L. Precision Forging—Cuts Costs, Boosts
Performance of Aerospace Products. Mod. Met., v. 43, No.
8, Sept. 1887, pp. 8-12.

Tungsten

By Gerald R. Smith¹

All U.S. tungsten mines remained closed in 1987 owing to continued low prices. Domestic production of intermediate ammonium paratungstate (APT) for the year was slightly below the 1986 level. However, after the signing of an Orderly Marketing Agreement (OMA) between the United States and China in September, the domestic industry showed some improvement. The OMA regulated the quantities of APT and tungstic acid to be imported from China. APT was produced at a rate 19% higher than the average for the first 9 months of the year

and 24% higher than for the last 3 months of 1986.

Domestic Data Coverage.—Domestic production data for tungsten are developed by the Bureau of Mines by means of three separate, voluntary surveys. These surveys are "Tungsten Ore and Concentrate," "Tungsten Concentrate and Tungsten Products," and "Tungsten Concentrate." Of the 47 operations to which survey requests were sent, all responded, representing 100% of the total production shown in table 1.

Table 1.—Salient tungsten statistics
(Metric tons of tungsten content unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Concentrate:					
Mine production	980	1,203	996	780	34
Mine shipments	1,016	1,173	983	817	34
Value thousands	\$10,528	\$13,409	\$9,143	\$5,774	\$216
Consumption	5.181	8,577	6,838	4,804	5,506
Shipments from Government stocks	259	1,368	902	301	708
Exports	1	129	124	34	2
Imports for consumption	2.861	5,807	4.746	2,522	4,435
Stocks, Dec. 31:	_,		,	,	•
Producer	47	46	60	21	21
Consumer	1.085	959	1.077	502	329
Ammonium paratungstate:	2,000		-,		
Production	5.021	7,339	6.527	5,604	5,336
Consumption	5,655	8,808	7.941	6,475	6,363
Stocks, Dec. 31: Producer and consumer	970	1,191	1,056	468	292
	5.0	1,101	1,000	100	
Primary products:	6.020	9,799	8,219	6.408	6,640
	6,523	10,216	8,096	7.214	7,228
Consumption	0,020	10,210	0,030	1,214	. 1,220
Stocks, Dec. 31:	1.433	1,850	1,968	1.484	1.646
Producer				860	787
Consumer	1,446	1,585	1,206	800	101
World: Concentrate:		T		D	640.000
Production	40,925	r46,148	46,513	P42,656	e40,232
Consumption	^r 42,577	^r 49,838	47,785	P44,822	e41,733

^eEstimated. ^pPreliminary. ^rRevised.

Government Legislation and Programs.-In February 1987, the General Services Administration (GSA) sold 7,979 kilograms of nonstockpile grade concentrate acquired under the Defense Production Act of 1950. A low-grade concentrate amounting to 5,309 kilograms still remains in this inventory. Physical disposals of nonstockpile grade concentrate in support of the ferroallov upgrading program totaled 700,000 kilograms during the year. At yearend only 31,258 kilograms of concentrate,

authorized for release under this program, remained unsold.

U.S. House of Representatives and Senate conferees approved an amendment to the Omnibus Trade Bill (House bill 3) in November that would suspend for 3 years the duty of \$0.17 per pound of contained tungsten in imported ores and concentrates. The amendment was introduced to provide a step toward free and stable trade in a material upon which the United States relies heavily on imports.

Table 2.—U.S. Government tungsten stockpile material inventories and goals

(Metric tons of tungsten content)

And the second second			Inventory by program, Dec. 31, 1987		
	Material	Goals	National stockpile	DPA ¹ inventory	Total
Tungsten concentrate: Stockpile grade Nonstockpile grade		25,152	24,996 10,552	72 5	25,068 10,557
Total		25,152	35,548	77	35,625
Ferrotungsten: Stockpile grade Nonstockpile grade		=======================================	381 537		381 537
Total ²			919		919
Tungsten metal powder: Stockpilegrade Nonstockpile grade			711 150	==	711 150
Total		726	861		861
Tungsten carbide powder: Stockpilegrade Nonstockpile grade		907	871 51		871 51
Total		907	922		922

Defense Production Act (DPA) of 1950.

DOMESTIC PRODUCTION

All tungsten mines remained closed throughout 1987 as low prices for concentrate continued to make operations uneconomical. Concentrate was acquired mainly through imports, although GSA stockpile sales contributed about 14% to the total supply. A small quantity of concentrate also was produced from previously mined ore stocks.

Curtis Tungsten Inc., Upland, CA, started development work in the first quarter of the year toward reopening the Andrew scheelite mine in the San Gabriel Mountains east of Los Angeles. The mine had been operated on a limited scale during 1985, but was forced to close owing to declining tungsten prices and to unresolved questions regarding access to the land. During 1987, concentrate prices reached a level that the ownership considered to be a break-even point. In addition, all difficulties relating to access to the mine were resolved.

U.S. Tungsten Corp. continued to operate its APT mill in Bishop, CA, although significantly below its production capacity.

AMAX Inc. suspended operations at its APT mill in Fort Madison, IA, in March.

²Data may not add to totals shown because of independent rounding.

Table 3.—Tungsten concentrate shipped from mines in the United States

		Quantity		Reported value, f.o mine ¹	.b.
entropy Property Sulfine Control Sulfine Control	Year	Metric ton units of WO ₃ ²	Tungsten content (metric tons)	Total Average (thou-per unit sands) of WO ₃	Average per kilogram of tungsten
1983 1984 1985 1986 1987		128,130 147,958 123,944 103,053 4,288	1,016 1,173 983 817 34	\$10,528 \$82.17 13,409 90.63 9,143 73.77 5,774 56.04 216 ³ 50.34	\$10.36 11.43 9.30 7.07 6.35

¹Values apply to finished concentrate and are in some instances f.o.b. custom mill.

³Metals Week, U.S. Spot Quotations-Annual Average.

Table 4.—Major producers of tungsten concentrate and principal tungsten processors in the United States in 1987

Company	Location of mine, mill, or processing plant
Producers of tungsten concentrate: U.S. Tungsten Corp., a division of Strategic Minerals Corp Processors of tungsten: General Electric Co General Electric Co Kennametal Inc Teledyne Firth Sterling Teledyne Wah Chang Huntsville U.S. Tungsten Corp., a division of Strategic Minerals Corp	Bishop, CA. Euclid, OH, and Detroit, MI. Towanda, PA. Latrobe, PA, and Fallon, NV. La Vergne, TN. Huntsville, AL. Bishop, CA.

CONSUMPTION AND USES

Domestic consumption of tungsten in primary products remained essentially unchanged from that of 1986. Tungsten carbide powder, used in cutting and wearresistant materials, accounted for about 54% of the consumption. Other end uses were mill products; specialty steels; and miscellaneous materials, including superalloys, welding and hard-facing rods, and chemical and ceramic uses. Consumption of tungsten carbide declined by about 9% from

1986 values primarily because of the decrease in the demand for machine tools. The average number of oil drilling rigs operating in the United States also declined slightly from the average 957 recorded in 1986. Countering the decline in the demand for wear-resistant components was an increase in the consumption of tungsten mill products used in lighting, electrical, electronic, welding, and various other specialty industries.

Table 5.—Production, disposition, and stocks of tungsten products in the United States in 1987

(Metric tons of tungsten content)

	Hydrogen- reduced metal powder		n carbide vder	*		
		Made from metal powder	Crushed and crystal- line	Chemicals	Other ¹	Total
Gross production during year Used to make other products listed here Net production Stocks, Dec. 31: Producer	6,375 3,540 2,835 845	3,519 1 3,518 432	W W W W	W W W 58	3,556 2,485 1,071 311	13,450 6,026 7,424 1,646

W Withheld to avoid disclosing company proprietary data; included with "Other."

²A metric ton unit equals 10 kilograms of tungsten trioxide (WO₃) and contains 7.93 kilograms of tungsten.

¹Includes ferrotungsten, scheelite (produced from scrap), nickel-tungsten, and self-reducing oxide pellets.

Table 6.—Consumption and stocks of tungsten products in the United States in 1987, by end use

(Metric tons of tungsten content)

End use	Ferro- tungsten	Tung- sten metal powder	Tung- sten carbide powder	Scheelite (natural, synthetic)	Tung- sten scrap ¹	Other tungsten materi- als ²	Total
Steel: Stainless and heat-resisting Alloy Tool Superalloys Alloys (excludes steels and superalloys): Cutting and wear-resistant materi-	64 28 152 W	 W	 w	W W 154 W	4 W 212	w w w	68 28 306 212
als	 9	124 W W W 1,951	3,787 W W 	w 101	W W 210	W W W 41 171	3,911 W W 41 2,662
Total Consumer stocks, Dec. 31, 1987	253 62	2,075 16	4,007 570	255 18	426 71	212 50	7,228 787

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

PRICES

Scheelite prices quoted in the Metal Bulletin (London) increased steadily throughout the year, reaching the March-April 1986 average level of \$61.00 per metric ton unit by yearend. Wolframite prices, although exhibiting some fluctuations during the year, also recovered to attain the April 1986 average level of about \$53.00 per metric ton

According to Metals Week quotations. APT prices in the U.S. market rose by about 7% in the final 2 months of the year following the signing of the OMA with China. At yearend, duty-paid prices for APT were \$82.00 to \$83.00 per metric ton unit. APT prices generally began to rise as early as

March. Much of the impetus for this rise was attributed to efforts by the Chinese to institute stringent price and distribution controls on exported tungsten materials. Duty-paid purchases of Chinese APT were quoted as low as \$60.00 per metric ton unit at the beginning of 1987.

U.S. prices for hydrogen-reduced metal powder and tungsten carbide powder decreased slightly during the year. After stabilizing in April at \$21.00 per kilogram for metal powder and \$20.60 for tungsten carbide powder, transaction prices broadened downward to ranges of \$20.00 to \$21.00 per kilogram and \$19.60 to \$20.60 per kilogram, respectively.

Does not include that used in making primary tungsten products.

Includes melting base, self-reducing tungsten, tungsten chemicals, and others. ³Includes welding and hard-facing rods and materials and nonferrous alloys.

Table 7.—Monthly price quotations of tungsten concentrate in 1987

lal	rage WO ₃	Dollars per hort ton unit	40.38	40.76	43.69	44.38	48.43	49.77	49.29	49.57	47.27	47.64	48.13	49.86	=
Internationa Tungsten	Indicator, weighted average price, 60% to 79% WO ₃	Dollars Der per metric sh on unit	44.51	44.93	48.16	48.92	53.39	54.86	54.33	54.64	52.11	52.51	53.05	54.96	
	Dollars per metric ton unit	Average r	40.51	42.16	51.68	56.22	55.67	55.12	53.46	46.85	43.82	46.72	54.56	57.32	
Metals Week, U.S. spot quotations, 65% WO ₃ basis, c.i.f. U.S. ports ³	ř	Average A	36.75	38.25	46.88	51.00	50.50	20.00	48.50	42.50	39.75	42.38	49.50	52.00	
k, U.S. spot qu basis, c.i.f. U.S	Dollars per short ton unit	High	40.00	40.50	20.00	55.00	25.00	55.00	52.50	48.00	44.00	45.50	23.00	26.00	
Metals Wee	Do Sh	Low	33.50	36.00	43.75	47.00	46.00	45.00	44.50	37.00	35.50	39.25	46.00	48.00	
Metal Bulletin (London), wolframite, European market, 65% WO ₃ basis ²	Dollars per short ton unit	Average	36.86	38.67	43.80	47.44	47.40	46.72	46.92	45.25	43.44	41.93	46.72	48.31	
	[[8	Average	40.63	42.63	48.28	52.29	52.25	51.50	51.72	49.88	47.88	46.22	51.50	53.25	
tin (London), market, 65%	Dollars per metric ton unit	High	46.00	46.13	50.67	54.86	55.00	22.00	55.44	57.00	26.00	53.00	56.56	28.00	
Metal Bulle	Ŏ B	Low	35.25	39.13	45.89	49.71	49.50	48.00	48.00	42.75	39.75	39.44	46.44	48.50	
opean mar-	Dollars per short ton unit	Average	45.81	46.38	48.39	51.38	51.77	52.62	52.77	53.98	53.98	54.69	54.98	55.34	:
lon), scheelite, European mar- 1% WO ₃ basis ¹		Average	50.50	51.13	53.34	56.64	57.07	58.00	58.17	59.50	59.50	80.58	60.61	61.00	
in (London), s ket, 70% W	Dollars per metric ton unit	High	55.00	55.63	57.89	60.71	61.00	61.00	61.11	62.00	62.00	63.56	64.22	65.00	
Metal Bulletin (Lond ket, 7(Low	46.00	46.63	48.78	52.57	53.13	22.00	55.22	57.00	57.00	21.00	21.00	57.00	
	Month		January	February	March	April	May	June	July	August	September	October	November	December	14

¹Low and high prices are reported semiweekly. Monthly averages are arithmetic averages of semiweekly low and high prices. The average price per metric ton unit of WOs, which is an average of all Low and high prices are reported semiweekly. Monthly averages are arithmetic averages for semiweekly low and high prices. The average price per metric ton unit of WOs, which is an average of all semiweekly low and high prices, was \$49.00 for 1987. The average equivalent price per short ton unit of WO₃ was \$44.45 for 1987. semiweekly low and high prices, was \$57.15 for 1987. The average equivalent price per short ton unit of WO₃ was \$51.84 for 1987.

³Low and high prices are reported weekly. Monthly averages are arithmetic averages of weekly low and high prices. The average price per short ton unit of WO3, which is an average of all weekly low and high prices, excluding duty, was \$45.67 for 1987. The average equivalent price per metric ton unit of WO₃ was \$50.34 for 1987.
Weighted average price per metric ton unit of WO₃ was \$51.36 for 1987. The equivalent weighted average price per short ton unit of WO₃ was \$46.60 for 1987.

FOREIGN TRADE

Total exports of tungsten in concentrate and primary products were only slightly higher than those of 1986. Decreases in exports of concentrate and metal powder were essentially counterbalanced by increases in exports of APT, tungsten carbide and other compounds, alloys, and assorted unwrought tungsten forms. Imports of all products for consumption increased by approximately 50%, largely owing to the increase in imports of concentrate.

On May 22, 1987, the United States International Trade Commission (ITC) ruled that imports of APT and tungstic acid from China had caused injury to the U.S. tungsten industry. To remedy the market disruption determined to exist, the ITC recommended to the President that, for the next 5 years, the combined volume of imports of APT and tungstic acid from China be limited to the larger of 506 metric tons of tungsten content per year or 7.5% of U.S.

consumption of these materials. Subsequently, the President determined to provide relief for the domestic industry in the form of a negotiated OMA. On September 28, 1987, the OMA was signed between the United States and China. Under the terms of the agreement, lasting from October 1, 1987 to September 30, 1991, total Chinese imports of APT and tungstic acid were limited to 193 metric tons of tungsten content in the last quarter of 1987, with progressive increases from 821 metric tons in 1988 to 880 and 930 metric tons for the years 1989 and 1990, respectively. The limit set for the first 9 months of 1991 was 680 metric tons. The agreement also incorporated provisions to ensure that the effectiveness of the limits was not undermined by transshipment or by increased imports of tungsten oxide. It also provided for future adjustments to the quotas should the specified limits be exceeded in any time period.

Table 8.—U.S. exports of tungsten ore and concentrate, by country

			19	86	1987	
	The second secon		Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)
Germany,	Federal Republic of		 28 6 (¹)	\$187 53 2	(1) 1 -(1)	\$9 20 2
Total _			 34	242	2 2	31

Less than 1/2 unit.

Source: Bureau of the Census.

Table 9.—U.S. exports of ammonium paratungstate, by country

		1986		1987			
Country	Gross weight (metric tons)	Tungsten content ¹ (metric tons)	Value (thou- sands)	Gross weight (metric tons)	Tungsten content ¹ (metric tons)	Value (thou- sands)	
Belgium-Luxembourg	(2)	(2)	\$6	237 69	168 49	\$1,384 568	
France	$-\bar{3}$	$-\bar{2}$	22	1	i	11	
Germany, Federal Republic of	2	2	47	2	1	28	
Japan Mexico	$-\frac{1}{4}$	$-\frac{1}{2}$	$\bar{3}\bar{1}$	2 2	1	23 15	
Portugal United Kingdom	$-\overline{1}$	- <u>ī</u>	21	10 80	57 57	61 615	
Total	10	7	127	403	285	2,705	

¹Tungsten content estimated by multiplying gross weight by 0.7066.

Source: Bureau of the Census

²Data do not add to total shown because of independent rounding.

²Less than 1/2 unit.

TUNGSTEN

Table 10.-U.S. exports of tungsten carbide powder, by country

	198	36	19	87
Country	Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)
Argentina	(¹)	\$1	(1)	\$14
Australia	`1	37	`4	160
Austria	18	473	11	268
Belgium-Luxembourg	22	714	7-	
Brazil	15	584	- 7	272
Canada	54	1,598	69	1,744
Denmark	ii	221	ĭ	27
Finland	5	61	6	98
Germany, Federal Republic of	45	1.444	97	2,188
ndia	4	119	4	82
reland	•		(¹)	30
srael	(1)	10	(1)	
taly	ìó	400	33	1,050
Japan	10	213	24	704
Mexico	7	158	6	126
Netherlands	19	933	10	594
Peru	(1)	10	2	30
	(-)			
	Ţ	47	(¹)	2
South Africa, Republic of	b	256		
	2 8	19	12	. 87
	8	220	3	100
United Kingdom	72	908	62	487
Venezuela Other	3	86	6	216
лner	36	756	26	790
Total	349	9,268	383	9,068

¹Less than 1/2 unit.

Source: Bureau of the Census.

Table 11.—U.S. exports of tungsten and tungsten alloy powder, by country

		1986		1987			
Country	Gross weight (metric tons)	Tungsten content ¹ (metric tons)	Value (thou- sands)	Gross weight (metric tons)	Tungsten content ¹ (metric tons)	Value (thou- sands)	
Australia	3	2	\$106	20	16	\$479	
Austria	21	17	431	1	1	17	
Belgium-Luxembourg	4	3	95	5	4	100	
Brazil	10	- 8	254	6	5	167	
Canada	38	31	1,222	42	34	1,197	
Finland	23	18	358	12	10	179	
Germany, Federal Republic of	110	88	2,665	84	67	2,147	
reland	11	9	311	1	(2)	13	
Israel	256	205	4,430	36	29	572	
[taly	39	31	825	37	28	660	
Japan	3	2	138	7	5	178	
Mexico	6	4	122	7	ě.	157	
Netherlands	467	374	5,142	360	288	3,682	
Singapore	1	1	19	(²)	(2)	. 8	
Switzerland	76	$6\overline{1}$	1.430	1ÒÍ	81	1,577	
United Kingdom	25	20	514	8	7	198	
Other	96	77	1,717	110	88	1,988	
Total	1,189	951	19,779	837	669	13,319	

 $^{^1} Tungsten$ content estimated by multiplying gross weight by 0.80. $^2 Less$ than 1/2 unit.

Source: Bureau of the Census.

Table 12.—U.S. exports of miscellaneous tungsten-bearing materials

	198	36	1987		
Product and country	Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)	
ungsten and tungsten alloy wire:					
Argentina	1	\$353	2	\$51	
Brazil	6	924	9	98	
Canada	13	2,871	26	3,22	
France	2	246	. 2	20	
Germany, Federal Republic of	9	2,436	9	2,04	
User Vans	2	179	2	16	
Hong Kong	9	883	6	5	
Italy	3	381	5	60	
italy	3	912	3	78	
Japan	5	649	5	90	
Korea, Republic of	3	350	6	5	
Mexico	3				
Poland	. (*)	31	(1)	_	
Taiwan	4	445	8	7	
United Kingdom	4	792	6	8	
Other	6	2,077	12	2,6	
Total	70	13,529	101	14,74	
Inwrought tungsten and alloy in crude form, waste, and scrap:					
Australia	(1)	10	1		
	57	308	31	3	
Austria	15	88	01	·	
Belgium-Luxembourg	18	329	4	_	
Canada			4		
Finland	(1)	2	7.5		
Germany, Federal Republic of	404	1,478	457	1,5	
Israel			(¹)		
Japan	5	80	(¹)		
Mexico	1	29			
Notherlands	3	19			
South Africa, Republic of	ī	15			
Sweden	î	7	- 1		
United Kingdom	36	276	73	5	
Other	1	13	6		
	542	2,654	573	2,5	
				-,	
ther tungsten metal:	2	138	3	1	
Australia	8	612	ĭ	1	
Austria			19	2,9	
Canada	27	2,945			
France	4	686	.6	4	
Germany, Federal Republic of	26	1,162	14	ϵ	
Italy	2	89	(¹) 23		
Japan	19	2,779	23	2,7	
Mexico	3	256	5.	8	
Netherlands	1	220	2	5	
Singapore	(¹)	28	(¹)		
South Africa, Republic of	71	7	`í		
	1	34	(¹)		
Sweden	1 4	241	4	2	
Switzerland	4		7	2	
Taiwan	.5	291			
United Kingdom	17	1,299	11	1,0	
Venezuela	1	32	(1)		
Other	10	604	12	7	
Total	130	11,423	108	10.6	

See footnote at end of table.

Table 12.—U.S. exports of miscellaneous tungsten-bearing materials —Continued

	198	36	198	87
Product and country	Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)
Other tungsten compounds:				
Austria	1	\$13	(¹)	\$1
Belgium-Luxembourg	(¹) .	2	(¹)	
Brazil	4	107	(1)	2
Canada	4	444	1	3
China	(¹)	1	· (1)	
France	ìí	36	13	19
Germany, Federal Republic of	5	222	34	38
Hong Kong	ī	33	1	2
Ireland	2	83	(¹)	1
Israel	(¹)	28	(1)	
Italy	`í	42	`í	
Japan	6	263	- 5	10
Korea, Republic of	(¹)	373	. 3	1
Mexico	25	237	2	-
Netherlands	1	42	(1)	:
Singapore	2	51	(1)	
	1	29	(1)	
Sweden	1	87 87	10-	
United Kingdom	4	14	(1)	
Venezuela	(-)	127	50	18
Other	Ð	121		
Total	61	2,234	120	1,61

¹Less than 1/2 unit.

Source: Bureau of the Census.

Table 13.—U.S. imports for consumption of tungsten ore and concentrate, by country

		198	36	1987		
	Country	Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)	
uetrolio		192	\$946	65	\$34	
		400	3,231	750	3,47	
Brazil		8	44		·	
Burma		85	470	96	47	
			425	312	4,28	
		104	472	86	26	
hina			1,840	1.139	5.79	
lormony Fodoval Per	oublic of		4	69	45	
			•	46	24	
			$2\overline{7}\overline{9}$			
			879	$2\overline{27}$	85	
				-11	6	
			2,029	362	1,79	
			1,520	422	2,63	
			1,020	101	38	
			67	101	00	
			01	16	5	
				10	3	
		264	$1.\overline{415}$	418	2,01	
			219	284	79	
urkey			219	204	- 13	
Total		2,522	13,840	4,414	23,96	

¹Less than 1/2 unit.

Source: Bureau of the Census.

Table 14.—U.S. imports for consumption of ammonium tungstate, by country

	198	36	19	87
Country	Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)
China Germany, Federal Republic of	971 131 5	\$8,894 1,618 44	1,239 65	\$9,768 664
Korea, Republic of witzerland 	(1) 48 1	491	$\frac{\overline{61}}{\overline{1}}$	49
United Kingdom			36	198
Total	1,156	11,058	1,402	11,122

¹Less than 1/2 unit.

Source: Bureau of the Census.

Table 15.—U.S. imports for consumption of ferrotungsten, by country

				198	36	198	37
		Country		Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)
Austria				85	\$770	40	\$316
Brazil Canada				4	22	1 7 7 2	700
China				75	443	17 220	68 1,284
	leral Republic	of	 	(1)	2	220	1,204
Netherlands .			 	4.	21		
						15	36
Portugal			 	14	141		
Switzerland_			 	3	1 9	8	72
O III CO I I I I I I I I	····		 	- 3	19		
Total				185	1.418	300	1.776

¹Less than 1/2 unit.

Source: Bureau of the Census.

Table 16.—U.S. imports for consumption of miscellaneous tungsten-bearing materials

	19	86	198	37
Product and country	Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)
Other metal-bearing materials in chief value of tungsten: Austria Brazil China South Africa, Republic of United Kingdom	13 8 43 7	\$104 49 226 39	 1	 \$5
Total	71	418	1	5
Waste and scrap containing not over 50% tungsten: Canada France Other	1 35	$\frac{15}{205}$	1 8 2	64 11
Total	36	220	11	81
Waste and scrap containing over 50% tungsten: Austria Canada China France Germany, Federal Republic of Hong Kong	30 15 5 15 15	864 152 34 186 9	9 21 148 16 34 3	88 287 955 82 205 25

TUNGSTEN

Table 16.—U.S. imports for consumption of miscellaneous tungsten-bearing materials
—Continued

	198	6	19	87
Product and country	Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)
Vaste and scrap containing over 50% tungsten —Continued			engaga de la composition de la constitución de la c	ere mere en fransk
Israel Italy Japan Mexico Netherlands Singapore South Africa, Republic of Sweden Switzerland	69 1 16 5 228 28 	\$610 15 251 46 1,416 752 62	195, 11, 11, 10, 270, 16, 15, 72, 8	\$1,13 2 11 8 1,42 25 15 32 5
United Kingdom	5	125 4,607	121 960	5,78
Total	435	4,007	300	0,10
Unwrought tungsten, except alloys, in lumps, grains, and powders: Belgium-Luxembourg	3 29 2 17 3 54 1 (1)	93 609 109 256 37 1,104 46 15	(a) 21 3 1 1 26 2 5	2 53 15 2 4 77 7
Jnwrought tungsten, alloys: Austria Canada Germany, Federal Republic of Other	(1) 3 7 4	31 283 158 186	1 (¹) 3 3	.e.jk. 1
Total	14	658	7	2
Wrought tungsten: ² Austria Belgium-Luxembourg Japan United Kingdom Other	1 10 32 3 2	43 845 3,337 107 227	(1) 5 35 1 1	44 2,6
TotalTotalTotalTotal	48 156	4,559 1,167	42 276	3,3 1,5
Calcium tungstate: Germany, Federal Republic of Japan Other	9 1 	328 29 	7 1 (¹)	2
TotalPotassium tungstate	. 10	357 	8 (1)	2
Sodium tungstate: ChinaCernany, Federal Republic of	129 1	734 17	<u>(1)</u>	and the second
Total	130	751	(¹)	
Tungsten carbide: Austria Belgium-Luxembourg Canada China China Germany, Federal Republic of Japan Korea, Republic of	2 34 35 238 (1) 41 23	53 1,207 657 4,710 33 734 232	4 3 422 1 12 5	
Other	2	7 690		
Total	375	.7,689	494	0,

See footnotes at end of table.

	198	36	1987		
Product and country	Tungsten content (metric tons)	Value (thou- sands)	Tungsten content (metric tons)	Value (thou- sands)	
Other tungsten compounds: Canada China Other	. 8	\$209	(¹)	\$	
	(¹)	1	15	6	
	11	125	10	19	
Total	19	335	25	26	
Mixtures, organic compounds, chief value in tungsten: Other	10	226	8	20	

¹Less than 1/2 unit.

Source: Bureau of the Census.

Table 17.—U.S. import duties on tungsten

TSUS No.	Item	Rate of duty effect	ive Jan. 1, 1987
110.		Most favored nation (MFN)	Non-MFN
601.54	Tungsten ore	17 cents per pound on	70
		tungsten content.	50 cents per pound on
603.45	Other metal-bearing materials in chief value	10 cents per pound on	tungsten content.
	of tungsten.	tungeton content on	60 cents per pound on
		tungsten content and 4.8% ad valorem.	tungsten content ar
606.48	Ferrotungsten and ferrosilicon tungsten	5.60% ad valorem.	40% ad valorem.
329.25	Waste and scrap containing by weight not	5.6% ad valorem	35% ad valorem.
	over 50% tungsten.	4.9% ad valorem	50% ad valorem.
529.26	Waste and scrap containing by weight over	1907 - 1 1	_
	50% tungsten	4.2% ad valorem	Do.
29.28	Unwrought tungsten, except alloys, in lumps,	10.50	
	grains, and powders.	10.5% ad valorem	58% ad valorem.
29.29	Unwrought tungsten, ingots, and shot	6.000 1 1	
29.30	Unwrought tungsten, other	6.0% ad valorem	50% ad valorem.
29.32	Unwrought tungsten, alloys, containing	6.6% ad valorem	60% ad valorem.
	by weight not over 50% tungsten.	4.7% ad valorem	35.5% ad valorem.
29.33	Unwrought tungsten, alloys, containing	6.600 - 1 - 1	
	by weight over 50% tungsten.	6.6% ad valorem	60% ad valorem.
29.35	Wrought tungsten	0.500 1 1	
16.40	Tungstic acid	6.5% ad valorem	Do.
17.40	Ammonium tungstate	10.5% ad valorem	55% ad valorem.
18.30		10.0% ad valorem	49.5% ad valorem.
20.32	Potassium tungstate	do	43.5% ad valorem.
21.56	Sodium tungstate	do	50.5% ad valorem.
22.40	Tungsten carbide	do	46.5% ad valorem.
22.42	Other tungsten compounds	10.5% ad valorem	55.5% ad valorem.
23.92	Mixtures of two or more inorganic	10.0% ad valorem	45.5% ad valorem.
	compounds in chief value of tungsten.	do	Do.

WORLD REVIEW

The Committee on Tungsten (COT) of the United Nations Conference on Trade and Development (UNCTAD) convened its 19th session in Geneva, Switzerland, in November 1987. The general view of the situation in the tungsten market presented by the consuming countries was that economic growth would remain modest, with a possible increase in some cases. Consequently, market demand generated by economic performance would remain limited, at least in the short run. However, the evolution of consumption could vary from one sector to another. Some of the major end-use sectors,

including oil and gas drilling, mineral mining, construction, and industrial machinery and equipment production, were unlikely to show any substantial improvement in activity. Better prospects for demand were expected in a number of applications, such as in automobiles, truck and jet engines, and in electronics. These improvements would compensate, at least in part, for the decline in consumption in other sectors. Structural and technological changes in the industry, including increased use of substitutes and more efficient use of tungsten products, were likely to continue having a negative

²Estimated from reported gross weight.

effect on consumption.

Several representatives expressed concern about the depressed prices in the tungsten market and the continued difficulties faced by mining operations in their countries. Mines remained completely shut down in Canada, France, and the United States. Mines had also been closed in many other countries, including Australia, Brazil, Peru, Portugal, the Republic of Korea, and Spain. Fears were expressed that continued low concentrate prices would preclude the reopening of closed down mines. The closing down of mine operations was attributed to the availability of inexpensive imported materials and unremunerative prices. Although there were some price improvements during 1987, there were still considerable quantities of tungsten material overhanging the market. The market outlook, therefore, was expected to depend greatly on supply restraint and other factors, including development of new end uses. The existing idled mine capacities, together with the materials held in various types of stocks, would continue to act as an overhang preventing any rapid price increases.

The UNCTAD secretariat also presented reports on changing market patterns, structural and technological changes, and exchange rate variations in the tungsten industry. Producer and consumer nations continued to disagree on the most acceptable method for resolving current tungsten market problems. China, supported by some other producing countries, proposed the institution of an international price stabilization agreement between consumer and producer nations. Most consumer nations, on the other hand, suggested that stabilization could be enhanced by reinforcing the work of the COT. More information on market conditions could lead to better investment and operating decisions by individual producers and consumers. Several participants suggested that a market-oriented approach to product pricing and trade by China, the major exporting country, would also be beneficial.

On December 31, 1987, the Primary Tungsten Association (PTA) was disbanded and replaced by the International Tungsten Industry Association (ITIA). Financial support to the PTA by the producing countries had eroded significantly as a result of de-

clining market prices for concentrate and subsequent mine closures. The ITIA, with broader membership, will be supported not only by producers, but also by consumers, converters, traders, assayers, and other participants in the tungsten industry.

The European Economic Community (EEC) tungsten producers compiled information supporting their contention that the Chinese were selling upgraded tungsten products at prices well below that considered to be reasonable market values. In order to remedy the situation, the producers were considering either requesting the EEC to conduct a formal antidumping investigation or negotiating an OMA similar to that signed between China and the United States.

Brazil.—Scheelite production decreased by about 23% as a result of continuing depressed prices. Production levels for the year essentially were capable of meeting only Brazil's demand with little remaining for export.

China.-A new trade organization was established by the Chinese in February in an effort to stabilize tungsten prices. The organization, under the unified leadership of China National Nonferrous Metals Import and Export Corp. and China National Metals & Minerals Import and Export Corp., will conclude all contracts with foreign companies for exports of tungsten concentrate and APT. Branch offices will function only to process these contracts. Two other members of the organization, China Metallurgical Import and Export Corp. and China National Chemicals Import and Export Corp., will handle sales of ferrotungsten and other tungsten chemicals, respectively.

Spain.—The La Parrilla Mine was closed in April as a result of flooding problems and continued low market prices, with subsequent mounting debts. In October, efforts were initiated by the Spanish trade union, General Workers Union, representing the miners, to reopen the mine. A request was submitted to the regional government that either additional financing be provided to the private owners of the mine or the mine be operated by the regional government. Prior to its closing, the mine accounted for nearly 80% of Spain's production of tungsten concentrate.

Table 18.—Tungsten: World concentrate production, by country¹

(Metric tons of tungsten content)

Country	1983	1984	1985	1986 ^p	1987 ^e
Argentina	41	37	17	e ₂₅	
Australia	2.015	r _{1.709}	1.971		25
Austria	1,408	1.632		1,600	² 1,150
Bolivia	2,449	1,893	1,481 1,643	1,387	1,250
Brazil	1,026	1,037		1,095	500
Burma	930		1,090	875	² 672
Canada	328	1,096	945	715	425
China ^e		3,715	3,174	1,416	
Czechoslovakia	12,500	13,500	15,000	15,000	18,000
France	50	_50	_50	50	45
France Guatemala	832	796	735	982	
India	7.5		.6	9	10
	15	21	28	23	25
Japan Korea, North ^e	475	477	568	579	170
Korea, North	500	1,000	1,000	1,000	1,000
Korea, Republic of	2,480	2,702	2,579	2,455	2,500
Malaysia	31	25	^e 20	^e 25	25
Mexico	186	274	282	294	² 213
Mongolia ^e	1,500	1,500	1.500	1.500	1.500
New Zealand	6	['] 6	5	-,°e ₅	5
Peru	762	699	723	593	600
Portugal	1.183	1.509	1.755	1.637	1.500
Rwanda	231	260	167	13	1,000
Spain	517	565	458	495	100
Sweden	365	385	402	357	350
Thailand	562	741	586	475	660
Turkey ^e	390	153	100	50	² 262
Uganda ^e	24	4	4	4	202
U.S.S.R. ^e	9.100	9.100	9,200	•	0.000
United States	980	1.203		9,200	9,200
Zaire	44	30	996	780	· ² 34
Zimbabwe	15	29	18 10	^e 15 2	5. 2
Total	40,925	r46,148	46,513	42,656	40,232

Table 19.—Tungsten: World concentrate consumption, by country¹

(Metric tons of tungsten content)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Consumption, reported:					
Australia ^{e 3}	200	175	150	125	95
Austria	1.629	2.096	e _{2,000}	e2,000	
Canada ^{e 3}	1,025	12	2,000		1,800
France	520	815		12	10
Japan	1.977	2,302	$\frac{808}{2,616}$	667	620
Korea, Republic of	1,555	2,070	2,016	2,145	2,060
Mexico	22	2,010 77	2,048	1,987 42	1,950
Portugal	174	159	133	e ₅₀	50
Sweden	774	765			80
United Kingdom	560	610	820 600	1,020	500
United States	5,181			580	550
Consumption, apparent:5	9,181	8,577	6,838	4,804	⁴ 5,506
A	00				
Belgium-Luxembourg	23	37	17	25	30
	e ₁₀	142	341	30	-200
	450	538	1,048	672	678
	100	100	100	100	100
	6,500	7,000	7,500	7,500	5,000
Czechoslovakia ^e	1,300	1,300	1,300	1,300	1,300
German Democratic Republic ^e	250	270	270	270	250
Germany, Federal Republic of	2.030	3,934	2,073	1,720	1.450
Hungary	400	r400	400	400	400
India	250	157	250	e250	250

See footnotes at end of table.

^eEstimated. ^pPreliminary. ^rRevised. ¹Table includes data available through May 20, 1988. ²Reported figure.

Table 19.—Tungsten: World concentrate consumption, by country¹ —Continued (Metric tons of tungsten content)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Consumption, apparent: 5 —Continued					
Italy	27 1,000 300 1,073 250 107 15,900	78 1,000 300 594 250 80 16,000	e100 1,000 400 603 250 29 16,000	e100 1,000 350 1,264 250 159 16,000	1,00 35 1,00 25 17 16,00
Total	r _{42,577}	r _{49,838}	47,785	44,822	41,78

rRevised. Preliminary.

¹Source, unless otherwise specified, is the Statistical Summaries Update of the UNCTAD Committee on Tungsten; 19th Session, Geneva, Switzerland, Nov. 9-13, 1987.

TECHNOLOGY

Several technological advancements were achieved during the year to enhance the use of tungsten-bearing materials. Single crystal castings of nickel-base superalloys containing 10% to 12.5% tungsten were demonstrated to exhibit superior high-temperature capabilities compared with their predecessors, the polycrystal and columnar crystal alloys.2 These alloys are used as airfoils in modern gas turbine engines and must maintain strength at high temperatures in corrosive environments. Some renewed interest was generated in turbine engine applications for previously developed columbium-based superalloys containing 10% tungsten.3 Results of earlier studies had shown the practical temperature range for these cast alloys to be nearly 275° C above that of the nickel-base superalloys. Powder metallurgy was suggested as an attractive processing technique for improving the overall metallurgical characteristics of the columbium-based alloys.

High-purity tungsten pipe of structural quality was prepared using a chemical vapor deposition (CVD) process.4 After deposition of the tungsten on a thin copper cylinder, the copper was dissolved in acid leaving a microcrystalline tungsten pipe. Although pure tungsten metal resists corrosion and high temperatures, its characteristics prevent it from being formed into such a practical shape by standard metalworking techniques. Tungsten pipe is prepared commercially using powder metallurgy processes but is less pure than the CVD type

because copper, iron, or nickel, must be added as binder material.

As electronics technology has begun to advance across a broad spectrum, there has been a noticeable increase in the demand for certain oxides of tungsten as dielectric materials and ceramic capacitors.5 When combined with other refractory metal oxthese materials exhibit excellent electronic properties well beyond those of the more common metallic oxides used in the electronics industry.

Use of tungsten and molybdenum compounds to kill termites gained interest as a result of a study conducted 6 years ago by a genetic engineering company.6 In that study, observations were made of certain microbes that resided in the intestines of the termite. Specifically, these microbes used tungsten and molybdenum chemicals as part of a process to supply nitrogen to the termites. After feeding the termites various tungsten and molybdenum chemicals to determine their role in the process, the microbes continued to fix nitrogen, but, for still unknown reasons, the termites died. The obvious commercial significance of this discovery is the fact that these harmless chemicals could replace the banned insecticides that had been used to control termites.

Developments in cutting tools and cutting tool technology captured significant interest during the year. Competition intensified for the market in silicon carbide, whiskerreinforced, alumina cutting inserts used to machine superalloys in aircraft engine-

²In addition to the countries listed, Denmark, Finland, Israel, Norway, Romania, Switzerland, and Yugoslavia may consume tungsten concentrate, but consumption levels are not reported, and available general information is inadequate to permit formulation of reliable estimates of consumption levels.

Estimated by the Bureau of Mines.

⁵Production plus imports minus exports. For a few countries where data were available, variations in stocks were used in determining consumption.

components.7 Inserts with whisker sizes ranging from 0.3-micrometer to 0.6 to 0.8micrometer to 1 to 3 micrometers diameter were tested and marketed. Performance results among the various whisker inserts varied, but each was superior to traditional carbide inserts.

Kennametal Inc., Latrobe, PA, introduced a new, partly ceramic, grade of cutting tool that could further reduce the demand for tungsten.8 The new grade, KT 175, ceramic-metal insert should act as an intermediate between traditional tungsten carbide cutting tools and the harder but more brittle, whisker-reinforced inserts. KT 175 is a titanium carbide, titanium nitridebased ceramic that uses nickel as a binder. Tool life has been demonstrated to be three times that of uncoated cemented tungsten carbides.

A new application being developed for polycrystalline diamond compact (PDC) tools is their use as drill blanks on mining

picks for continuous miners, longwall miners, and roadheaders.9 Results of studies demonstrated that these PDC tools consumed less energy during cutting and were less incendiary than conventional carbide tools.

¹Physical scientist, Branch of Ferrous Metals.

²Gell, M., D. N. Duhl, D. K. Gupta, and K. D. Sheffler. Advanced Superalloy Airfoils. J. Met., v. 39, No. 7, 1987,

pp. 11-15.

**3Loria, E. A. Niobium-Base Superalloys Via Powder Metallurgy Technology. J. Met., v. 39, No. 7, 1987,

pp. 22-26.

Advanced Materials and Processes Incorporating Metal
Progress. Pure Tungsten Pipe Made With CVD Process.

V. 132, No. 4, 1987, pp. 20-21.

5——. Special Metals in Electronics. V. 132, No. 5, 1987, pp. 65-69.

⁶Brill, W. J., and W. C. Von Meyer. Method and Composition for Control of Termite and Shipworms. U.S. Pat. 4,504,468, Mar. 12, 1985.

Pat. 4,504,400, Mar. 12, 1300.

"Weiss, B. Competition Increasing in Ceramic Tools.

Metalworking News, v. 14, No. 659, 1987, p. 1.

Balcerek, T. Kennametals's Partly Ceramic Grade of Cutting Tool Insert to Be Shown. Am. Met. Mark., v. 95, No. 50, 1987, p. 5.

Schler D. K. Manufactured Diamonds and Enhanced

⁹Sitler, D. K. Manufactured Diamonds and Enhanced Mining Tool Performance. Min. Eng., v. 39, No. 1, 1987,

Vanadium

By Henry E. Hilliard¹

Reported consumption of vanadium (V) increased after more than 2 years of decline. Most of the increase could be attributed to the domestic steel industry, which had a much better year than expected. About 85% of all vanadium was consumed by the steel industry as an alloying agent for steel. Domestic production and shipments of raw steel increased significantly with a corresponding increase in demand and production of vanadium. The increase in demand was met by increased production from fly ash, spent catalysts, and refinery residues. Production from domestic ores declined during this period.

Imports of vanadium raw materials increased due to shortages of domestic ore and petroleum residues. The increase in more expensive imports combined with an increase in the price of aluminum (Al), used in the production of ferrovanadium (FeV) and V-Al masteralloys, resulted in the announcement of price increases by most producers. Overall exports declined despite the lower value of the U.S. dollar but showed signs of improvement in the latter part of the vear.

Table 1.—Salient vanadium statistics

(Short tons of contained vanadium unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Production:					
Ore and concentrate:	0.151	1 617	w	· w	w
Recoverable vanadium ¹	2,171	1,617	w	ŵ	ŵ
Trains Inousands	\$30,675	\$24,551	· w	w	ŵ
Vanadium avides recovered from ore ²	2,433	2,620			2,508
Vanadium oxides recovered from petroleum residue ³	893	1,701	2,695	2,330	
Consumption	3,277	4,761	4,883	4,308	4,653
					100
Exports: Ferrovanadium (gross weight)	775	469	454	513	436
O I componente -	59	12	3	.86	1 401
Vanadium pentoxide, anhydride (gross weight)	2,648	3,712	1,527	1,544	1,461
Other compounds (gross weight)	95	305	322	343	479
Other compounds (gross weight)					400
Imports (general): Ferrovanadium (gross weight)	846	1,461	977	747	422
	. 58	633	303	2,013	2,264
Vanadium pentoxide, anhydride	408	149	63	443	357
World: Production from ores, concentrates, slags	30,924	34,291	433,299	P 432,530	e 434,300
World: Production from ores, concentrates, stags	23,021	,			

W Withheld to avoid disclosing company proprietary data

¹Recoverable vanadium contained in uranium and vanadium ores and concentrates received at mills, plus vanadium recovered from ferrophosphorus derived from domestic phosphate rock.

²Produced directly from all domestic ores and ferrophosphorus; includes metavanadates.

³Includes vanadium recovered from ashes and spent catalysts.

⁴Excludes U.S. production.

Domestic Data Coverage.—Domestic production data for vanadium are developed by the Bureau of Mines from voluntary surveys of U.S. mills and processing facilities. Of the 10 plants and/or mills canvassed in 1987, 9 responded with complete data, representing more than 95% of total production. Production for the one nonrespondent was estimated using reported prior year production levels adjusted by trends in employment and other guidelines. Supplemental data were provided by two powergenerating stations. Data on uraniumvanadium mining operations were obtained from an independent survey conducted by the U.S. Department of Energy (DOE). When efforts to obtain response to a Bureau survey fail, it becomes necessary to use estimation techniques to account for the missing data.

Legislation and Government grams.—The National Defense Stockpile (NDS) goal of 7,700 tons of vanadium contained in vanadium pentoxide (V2O5) and 1,000 tons in FeV was in effect throughout 1987. Actual yearend stockpile inventories, reported by the General Services Administration (GSA), contained only 721 tons of vanadium as V₂O₅. In May, a defense authorization bill advanced in the House and the Senate that contained proposals to give Congress more control over NDS goals. The Senate version of the bill would allow the President to retain authority over stockpile goals, but within narrower limits. The President could increase or decrease stockpile goals for materials by up to 10% without congressional approval, but would first have to identify the changes in the annual materials plan. The plan is the President's official advisory to Congress on anticipated NDS acquisitions and disposals. If the President wanted to eliminate or reduce an inventory goal by more than 10%, the change would have to be approved by Congress in the form of legislation. Under provisions of the House bill, which had already passed the Critical Materials Subcommittee, the President would lose all of his independent stockpile goal setting authority. Congress would set the goals by law, and stockpile management would be shifted from GSA to the U.S. Department of Defense. The House and Senate versions of the bill were not complementary and differences were to be worked out in a joint House-Senate Conference Committee.

In a decision of importance to importers

of vanadium materials, the Supreme Court ruled that States may tax imported goods sitting in duty-free customs-bonded warehouses if those goods are slated for domestic sale. The decision paved the way for the imposition of State and local taxes on foreign products. U.S. importers sometimes store imported goods in duty-free customsbonded warehouses when import quotas for a particular product have been filled for the year. During this period, the goods are not subject to local property taxes. Courts have ruled that such goods are part of "the stream of commerce" and should not be taxed by State and local governments. In this case, evidence indicated that the goods in question were scheduled to be used in products sold in the United States, not abroad. The decision could have a considerable impact on storing such goods in the future. About \$7 million in local taxes was at issue in this case alone.

In July, the 10th U.S. Court of Appeals in Denver, CO, ruled that DOE must restrict the enrichment of foreign uranium to protect the domestic uranium industry. The case began when domestic uranium-vanadium mining companies challenged DOE's interpretation of a Federal law intended to protect the United States from becoming dependent on foreign uranium. The litigation was based on a section of the Atomic Energy Act that required the Government to ensure the viability of the U.S. uranium industry. DOE first concluded in 1985 and again in 1986 that the industry wasn't viable, but refused to restrict imports, arguing that to do so would exacerbate trade tension with major trade partners such as Canada and would drive nuclear powerplant operators abroad for uranium enrichment. Annual U.S. production slumped from about 44 million pounds of uranium oxide and 15 million pounds of byproduct V₂O₅ in 1980 to less than one-third of that in 1986.2 Since annual U.S. consumption was about 39 million pounds, utilities and other users reduced stocks or filled needs from Australia, Canada, and elsewhere. Uranium from the Republic of South Africa has already fallen under restrictions owing to anti-apartheid sanctions. In 1986, imports of South African uranium surged 300% to more than 13 million pounds. Almost 60% of the deliveries took place in December 1986, the last month before the embargo took effect.

DOMESTIC PRODUCTION

Production of V_2O_5 and shipments of finished products saw slight increases in 1987 with most of the increases coming in the fourth quarter. Pentoxide production was more than 6,000 tons compared with less than 5,000 tons in 1986. Production of V_2O_5 was aided by an unexpected good year for the steel industry, where raw steel production was up more than 8%. V_2O_5 is the principal starting material for the manufacture of alloys, chemicals, catalysts, and other vanadium compounds.

Recoverable production, which represents receipts of domestic ore and vanadiumbearing ferrophosphorus slag, continued the decline that began in 1983. Production from ores was closely tied to the uranium industry, which had fallen on hard times in the 1980's because of reduced demand, imports, and excess capacity, resulting in a sharp decline in the price of uranium oxide (U₃O₈). The outlook for the moribund uraniumvanadium mining and milling industry showed signs of improvement in late 1987, particularly after a favorable decision by the 10th U.S. Circuit Court of Appeals restricted the use of DOE enrichment facilities to domestic material. It would not, however, affect enrichment of foreign uranium for reexport, nor the ability of domestic utilities to have their uranium enriched outside the United States. Vanadium production lost from domestic ores was partially offset by increased production from lowcost petroleum residues, utility ash, and spent catalysts.

Shieldalloy Corp., Newfield, NJ, bought Foote Mineral Corp.'s ferrovanadium plant in Cambridge, OH, for \$6.8 million in June. Shieldalloy is a producer of ferroalloys, tantalum, aluminum master alloys, and chromium. In December, the parent company of Shieldalloy, the Metallurg Group, announced plans to merge Shieldalloy with Metallurg Alloy Corp., effective January 1, 1988. The new company, Shieldalloy Metallurgical Corp., will maintain its headquarters in New York, NY. Shortly after announcing the merger, Shieldalloy and Affiliated Metals and Minerals Inc., Pittsburgh, PA, signed a letter of intent to develop a joint venture to produce V₂O₅ from a fly ash previously thought to be too low in vanadium content for economical processing. The processing plant was to be in New

Castle, PA, where Affiliated operated an FeV unit and had some of the equipment already in place for producing V_2O_5 from vanadium-bearing slags. All output from the plant will be consumed internally in the production of FeV.

The Umetco Minerals Div. of Union Carbide Corp. reopened the LaSalle uranium mine in Utah and hired several miners to fulfill delivery contracts rather than continue to purchase ore as in the past. Ore from the mine was used to supply the White Mesa mill at Blanding, UT. The mill resumed operation in late 1985 after being closed for several months. The mill, with a design capacity of 2,000 tons of ore per day, produced 4.8 million pounds of uranium oxide and 2.8 million pounds of V2O5 in 1986.3 Meanwhile, Atlas Corp. announced a restructuring of its operations to focus on its core business of mining precious metals. The company closed its uranium operations because of the continuing depressed state of the uranium industry. Atlas' uraniumvanadium mill at Moab, UT, had been closed since 1985.

Strategic Minerals Corp. (Stratcor), Danbury, CT, began producing Nitrovan in the United States for the first time. Nitrovan is a nitrogen derivative of vanadium containing 5% to 10% nitrogen. The company previously produced the additive for steel only at its plant in Brits, Republic of South Africa. A new facility was built at an existing vanadium plant in Niagara Falls, NY. Stratcor installed a new furnace, mixing facilities, and other equipment at a cost estimated at about \$9 million.

Table 2.—Mine production and recoverable vanadium of domestic origin produced in the United States

(Short tons of contained vanadium)

Year	Mine produc- tion ¹	Recover- able vanadium²
1983	W W W W	2,171 1,617 W W W

W Withheld to avoid disclosing company proprietary

data.

¹Measured by receipts of uranium and vanadium ores and concentrates at mills, vanadium content.

²Recoverable vanadium contained in uranium and vanadium ores and concentrates received at mills, plus vanadium recovered from ferrophosphorus derived from domestic phosphate rock.

Table 3.—U.S. production of vanadium oxides¹

(Short tons)

Year	Gross weight	Oxide content ²
1983	4,590	4,344
1984	4,688	4,678
1985	W	w
1986	W	w
1987	W	w

W Withheld to avoid disclosing company proprietary data.

¹Produced directly from all domestic ores and ferrophosphorus; includes metavanadates.

²Expressed as equivalent V₂O₅.

CONSUMPTION, USES, AND STOCKS

Reported consumption of vanadium compounds in 1987 was 4,653 tons of contained vanadium. The largest consumers were producers of high-strength low-alloy steels, followed by carbon steel and full alloy steels.

One of the most important uses of vanadium is as an alloying element by the steel industry. The addition of 1% to 5% vanadium-to-steel produces grain refinement and increases the hardenability. Vanadium is a strong carbide former, which causes carbide particles to form in the steel, thus restricting the grain boundaries during heat treatment. This produces a fine grain that exhibits greater toughness and impact resistance than a course-grained steel and is more resistant to cracking during quenching. The carbide dispersion also confers wear resistance, weldability, and good hightemperature strength. Vanadium steels are used in dies and taps because of their wear resistance. They also are used as construction steels in light and heavy sections, for heavy iron and steel castings, forged parts, automobile parts, springs, and ball bearings. Vanadium is an important component of ferrous alloys used in jet aircraft engines and turbine blades, where high-temperature creep resistance is required.

The principal application of vanadium in nonferrous alloys was in the titanium 6A1-

4V alloy, which is irreplaceable in supersonic aircraft, where strength-to-weight ratio is a primary consideration. Vanadium imparts high-temperature strength to titanium, a property essential in high-performance jet engines, high-speed air frames, and rocket motor cases. Vanadium foil can be used as bonding material in the cladding of titanium to steel. Vanadium can be used in copper-base alloy production to control gas content and microstructure. Small amounts of vanadium are added to aluminum alloys used in the manufacture of pistons for internal combustion engines. The vanadium enhances the alloy's strength and reduces its coefficient of thermal expansion. Vanadium is a component in several permanent-magnet alloys containing cobalt, iron, and nickel. The most common of these alloys contains 2% to 13% vanadium. Vanadium compounds are also used as catalysts in certain chemical and petrochemical reactions.

Reported consumers' and producers' stocks of vanadium oxides, metal, alloys, and chemicals totaled 2,057 tons of contained vanadium at yearend 1987 compared with 1,842 tons at yearend 1986. Combined producers' and consumers' stocks represented a 3-month supply at the current rate of consumption.

VANADIUM

Table 4.—Producers of vanadium alloys or metal in the United States in 1987

Producer	Plant location	Products ¹
Affiliated Metals and Minerals Inc KB Alloys Inc Do Reading Alloys Inc Shieldalloy Metallurgical Corp Strategic Minerals Corp	New Castle, PA Henderson, KY Wenatchee, WA Robesonia, PA Newfield, NJ Niagara Falls, NY	FeV. VAl, ZrVAl. Do. FeV, VAl, V. FeV, Ferovan. ² FeV, VAl, Nitrovan, ² Carvan. ²
Teledyne Wah Chang Albany	Albany, OR	V, VAl.

¹FeV, ferrovanadium; V, vanadium metal; VAl, vanadium aluminum; ZrVAl, zirconium vanadium aluminum.

Table 5.—U.S. consumption and consumer stocks of vanadium materials, by type

(Short tons of contained vanadium)

			1986		37
	Туре	Consump- tion	Ending stocks	Consump- tion	Ending stocks
Ammonium metavanadate		3,617 11 W 680	252 W W 62	3,925 17 W 711	322 10 W 40
Total		4,308	314	4,653	372

W Withheld to avoid disclosing company proprietary data; included with "Other."

Includes other vanadium-iron-carbon alloys as well as vanadium oxides added directly to steel.

Table 6.-U.S. consumption of vanadium in 1987, by end use

(Short tons of contained vanadium)

End use	Quantity
Steel: Carbon	1,197
Stainless and heat-resisting	65
Statiness and near-resisting	816
High-strength low-alloy	1,336
Tool	465
Unspecified	
	3,879
Total	25
Cast ironsSuperalloys	10
Alloys (excluding steels and superalloys):	
Cutting and supply registant materials	w
Welding and alloy hard-facing rods and materials	7
Nonferrous alloys	684
Other alloys ¹	w
Chemicals and ceramics:	10
Catalysts	12 W
Other ²	w 36
Miscellaneous and unspecified	
Grand total	4,653

W Withheld to avoid disclosing company proprietary data; included with "Miscellaneous and unspecified."

²Registered trademarks for patented products.

²Consists principally of vanadium-aluminum alloy, plus relatively small quantities of other vanadium alloys and vanadium metal.

¹Includes magnetic alloys. ²Includes pigments.

PRICES

The Metals Week price quotation for domestic 98% fused V₂O₅ (metallurgicalgrade) at the beginning of 1987 was \$3.65 per pound V₂O₅ content, f.o.b. mill. Domestic FeV producers, Stratcor of Danbury, CT, and Shieldalloy Metallurgical Corp. at Newfield, NJ, raised the prices of their FeV by 25 cents and 30 cents per pound, respectively. Stratcor's price for 80% FeV was raised to \$6.75 per pound of contained vanadium. Stratcor's new prices for its patented products, Vanox and Nitrovan, were raised to \$5.75 and \$7.00 per pound, respectively. Shieldalloy increased the price of its standard 60% FeV and 42% Ferovan to \$6.60 per pound. Shieldalloy also raised the price of its ammonium vanadate by 30 cents to \$5.00

per pound. Both companies cited rising costs for raw materials and aluminum as the major cause of the price increases. Meanwhile, Reading Alloys, Robesonia, PA, increased the prices of its aluminum master alloys, effective at the end of the fourth quarter. The new prices were \$10.35 per pound for the 65% vanadium alloy and \$11.85 per pound for the 85% alloy.

The round of price increases began after Highveld Steel and Vanadium Corp. Ltd. of South Africa successfully raised its fourth quarter prices for V_2O_5 by 10% to \$2.95 per pound. Also, better-than-expected steel production in the United States increased the demand for vanadium as an alloying agent, which tended to support higher prices.

FOREIGN TRADE

Exports of vanadium products were essentially unchanged from those of 1986, after declining each year since 1984. Canada, the Federal Republic of Germany, Japan, and Mexico were the largest importers of U.S. vanadium products. Other major importers were Taiwan and the Republic of Korea. With the exception of Canada and the Republic of Korea, these countries imported V₂O₅ almost exclusively. Exports of V_2O_5 and catalysts containing V_2O_5 totaled 1,461 tons, slightly less than the 1,500 tons exported in 1986 and considerably less than the 3,712 tons exported in 1984. The average declared value of V2O5 exports was about \$3.00 per pound; for FeV exports, the average value was \$4.68 per pound of contained vanadium. Imports for consumption of major vanadium compounds declined after increasing in 1984 and 1985, while imports of vanadium raw materials increased. Imports for consumption of FeV totaled 422 tons gross weight, down from 747 tons in 1986.

The FeV averaged about 81% vanadium with a mean customs value of \$5.53 per pound of contained vanadium. Austria was the largest exporter of FeV to the United States, followed by Canada, the Federal Republic of Germany, and the Republic of South Africa. Pentoxide imports totaled 229 tons V content with a mean customs value of \$4.83 per pound. The Republic of South Africa was by far the leading source of V₂O₅ imports, with more than 207 tons. Imports of vanadium contained in ores, slags, and residues totaled 2,264 tons V content, a 12% increase over 1986 imports. About 41% of these imports were in the form of vanadiferous iron slags from Highveld's Witbank steelworks in the Republic of South Africa. The remaining 60% consisted of an assortment of petroleum residues, spent catalysts, and utility ash from, in order of decreasing tonnages, Kuwait, Mexico, Venezuela, the Federal Republic of Germany, Canada, and 14 other countries.

VANADIUM

Table 7.—U.S. exports of vanadium in 1987, by country

(Thousand pounds and thousand dollars)

Country	Ferrovanadium (gross weight)		Vanadium ore and concentrate (vanadium content)		Vanadium compounds (gross weight)				
					Pentoxide (anhydride) ¹		Other ²		
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	
					5	34	10	15	
rgentina					98	142			
ustralia					18	27			
langladesh					35	38	22	99	
Selgium-Luxembourg					350	837	557	58	
Brazil					482	669	134	35	
Canada	393	1,964			(3)	6	2		
Chile						6	_		
					4				
Colombia					49	59	52	6	
Denmark								3	
inland						5.7	5.	0	
France					21	102	1		
Germany, Federal Republic of							41	. 4	
Hungary	7.7							_	
ndia	15	65		,	- 9	18		_	
Indonesia					2	15		_	
Italy					385	902	42	7	
Japan					253	352			
Korea, Republic of	172	853				10	(3)	_	
Aorea, Republic of	2	8			7		43	13	
Malaysia	68	358			643	1,502	50	16	
Mexico	00						50	•	
Netherlands					48	87		-	
Norway					17	35		-	
Pakistan					3	3		_	
Peru					62	93			
Philippines					74	86			
Singapore					42	83		_	
Switzerland					267	367			
Taiwan					29	40		_	
						18		-	
Thailand					11			-	
Uruguay	222	833			4	34			
Venezuela					3	3			
Zimbabwe							250		
Total ⁴	872	4,081			2,922	5,566	958	1,49	

Source: Bureau of the Census.

Table 8.—U.S. imports of ferrovanadium, by country

(Thousand pounds and thousand dollars)

(2.110							
		1986		1987			
Country	Gross weight	Vanadium content	Value	Gross weight	Vanadium content	Value	
General imports:	311	255	1,459	449	367	2,045	
Austria Belgium-Luxembourg	37 532	30 430	139 2,495	$\bar{275}$	$\bar{228}$	$1,\overline{202}$	
CanadaChinaGermany, Federal Republic of	22 249	18 194	105 1,006	86 34	62 28	392 138	
South Africa, Republic of United Kingdom	303 40	248 32	1,135 188				
Total ¹	1,494	1,207	6,527	843	685	3,777	
Imports for consumption: Austria	311	255	1,459	449	367	2,045	
Belgium-Luxembourg	37 532	30 430	139 2,495	275 86	228 62	1,202 392	
Germany, Federal Republic of	249 303 40	194 248 32	1,006 1,135 188	34	28	138	
United Kingdom	1,472	1,189	6,423	843	685	3,777	

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

¹May include catalysts containing vanadium pentoxide.

²Excludes vanadates.

³Less than 1/2 unit.

⁴Data may not add to totals shown because of independent rounding.

Table 9.—U.S. imports of vanadium pentoxide (anhydride), by country

Country		1986		1987			
	Gross weight (pounds)	Vanadium content (pounds)	Value	Gross weight (pounds)	Vanadium content (pounds)	Value	
General imports: Belgium-Luxembourg China France Germany, Federal Republic of Japan South Africa, Republic of Total ¹	435,398 2,863 22,430 1,084,566	20,996 243,910 1,604 12,565 607,574	\$89,061 1,042,694 16,172 98,310 2,547,157	534,379 1,055 18 740,254	299,359 591 10 414,690	\$1,349,202 6,258 1,201 2,012,907	
	1,582,736	886,649	3,793,394	1,275,706	714,651	3,369,568	
Imports for consumption: Belgium-Luxembourg China France Germany, Federal Republic of Japan	37,479 435,398 2,863 22,430	20,996 243,910 1,604 12,565	89,061 1,042,694 16,172 98,310	74,957 1,055	41,991	189,787 6,258	
South Africa, Republic of	972,132	544,588	$2,317,\overline{482}$	18 740,254	10 414,690	1,201 2,012,907	
Total ¹	1,470,302	823,663	3,563,719	816,284	457,282	2,210,153	

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

WORLD REVIEW

Australia.-According to a report released by the Australian Bureau of Mineral Resources, Australia has almost 10 million tons of demonstrated "paramarginal" vanadium resources, in addition to 10,000 tons of demonstrated economic vanadium deposits. About 85% of total identified resources is in oil shale deposits at Julia Creek, Queensland, whose development depends on oil economics. Australia also has substantial resources of vanadium in titaniferous magnetite. Possible development of those deposits, however, most likely would be driven by the titanium market and would require development of economic techniques to recover metal values from the magnetite ores. The magnetites could be used to produce pig iron with titanium- and vanadium-rich slags as a byproduct. Until now, little or no investigative work had been done on the mineralogy of these ores or on their amenability to metallurgical concentration and recovery techniques.

Brazil.—Finland's Rautaruukki began negotiations for the sale of a vanadium plant and process technology to Odobrech of Brazil. Plant capacity was scheduled to be 4,900 tons V₂O₅ per year; 1,700 tons of production will be exported with the remainder converted to FeV for internal consumption. The plant will use feed from ore deposits in Maracus and Campo Alegre de

Lordes. The deposits average 1.3% V₂O₅. Production, the first ever in Brazil, is expected to begin in 1990. In 1986, Brazil imported most of its V₂O₅ from the Federal Republic of Germany and the United States.

China.—The Bank of China arranged a \$210 million loan for the expansion of the iron and steel complex at Panzhihua, Sichuan. The transaction involved 24 banks in 12 countries, including the First National Bank of Chicago. The loan was part of \$810 million allocated by the Government to double annual crude steel output at Panzhihua to 3 million tons. Although China is the world's fourth largest steel producer, the average per capita output is less than 110 pounds, compared with the world average of 353 pounds. The syndicated loan will be used to finance the importation of key equipment and instruments, and the remainder will be used for the construction of a blast furnace, a continuous-casting plant, a cold-rolling mill, and a hot-rolling mill.

Ore used by the steel complex was a titaniferous magnetite with a high vanadium content. The Chinese planned to boost production of titanium to 50,000 tons per year and V_2O_5 to 2,000 tons per year. The Panzhihua Mine, with reserves of 30 million tons and 80% of China's vanadium slag

production, was slated to produce 2,000 tons of V_2O_5 per year. However, the Government failed to find a foreign partner to establish a joint venture with an aim to improve the present yields.

China produced V_2O_5 in six locations, four of which could also produce ferrovanadium. The Panzhihua Iron and Steel Co. plant in Sichuan is a steel plant with an annual production of 70,000 tons of vanadium slag (about $12\%\ V_2O_5$). It used titaniferous magnetite ore delivered from a nearby mine to produce pig iron. Vanadium-bearing slags from Panzhihua were shipped to the country's vanadium plants for processing into

vanadium pentoxide.

The Emei ferroalloy plant in Sichuan is equipped with a rotary kiln with the capacity to produce 1,000 tons of V₂O₅ per year. Export sales were made through the Sichuan branch of China Metallurgical Import and Export Corp. The Chengde plant in Hebei is equipped with a rotary kiln with the capacity to produce 1,500 tons of V_2O_5 per year and also has the technology to produce ferrovanadium. The Shanghai metallurgical plant No. 2 has two 40-meter rotary kilns with the capacity to produce 2,300 tons of V₂O₅ per year. The plant received vanadium slags from the ironworks in Ma'anshan. The Jinzhou ferroalloy plant in Liaoning, with three 40-meter kilns, is capable of producing 6,000 tons of V₂O₅ per year and 4,000 tons of FeV per year. The plant, equipped with a furnace rated at 4,000 tons of FeV capacity per year, also produced chromium metal and ferrotitanium. The Nanjing ferroalloy plant in Jiangsu has the capacity to produce 1,000 tons of V_2O_5 per year. It currently produces about 350 tons of V₂O₅ and about 200 tons of FeV annually, primarily from oil shale.

South Africa, Republic of .- The first stage of the Kennedy's Vale vanadium project, under construction near Steelpoort in eastern Transvaal for Vansa Vanadium S.A. Ltd., was completed in August, and the plant was scheduled for commissioning in June 1988. Capital cost of the plant increased to about \$12.6 million compared with earlier estimates of \$7.2 million. The first sales of V2O5 were expected to take place in July 1988. The plant was to produce 3,300 tons of V2Os and an unspecified amount of ammonium metavanadate for sale in Japan, South America, and the European Community. Initially, sales are expected to be relatively small with little impact on world markets. However, Vansa plans a rapid and aggressive buildup of sales, with vanadium

providing the majority of its earnings by

Vanadium was produced by three companies. The largest of the three, Highveld Steel and Vanadium Corp., operated the Mapochs Mine at Roossenekal in eastern Transvaal. Highveld produced vanadium slags and pentoxide at two plants situated near Witbank. The Vantra Div. extracted V_2O_5 by the roast-leach process; Highveld Steel ironworks smelts the ore in electric furnaces after prereduction in rotary kilns. The other two companies, Transvaal Alloys Pty. Ltd. and Vametco Minerals Co., extracted vanadium by a similar roast-leach process and produced V₂O₅ and other vanadium compounds. Ore was mined from nearby surface deposits.

South African vanadium producers have not revealed production and commercial information since 1985 because of the growing pressure of anti-apartheid sanctions against the country. The last published figures available from the Government-operated Minerals Bureau put vanadium production in 1985 at about 13,000 tons, 40% of world output and 71% of Western World production. Estimates for 1987 varied from a low of 15,700 tons to a high of more

than 18,000 tons.

Venezuela.—In December 1987, Venezuela ranked second as an oil exporter to the United States, averaging about 850,000 barrels per day. Venezuelan oil may contain up to 1,500 parts per million of vanadium, which translates to more than 80,000 pounds per day of V₂O₅ entering the United States.4 In its push to open new markets for its oil, Venezuela had been buying interest in petroleum refineries, particularly in the United States. Among recent investments were 50% interest in refineries at Lake Charles, LA, and Corpus Christi, Through additional joint ventures in the United States, Petróleos de Venezuela S.A. (PDVSA) expected to expand sales by 700,000 barrels of crude per day.

U.S. geological teams visited Venezuela to confirm the country's sharp upward revisions in its estimates of proven oil reserves. Venezuela's recent upgrading more than doubled its own estimates of proven reserves to 55 billion barrels, about twice those of the United States. In addition, PDVSA counted 267 billion barrels of proven reserves of lower quality, extra heavy crude in its Orinoco Oil Belt. Proven reserves are generally defined as those that can be produced with current technology at

today's prices.

Table 10.—Vanadium: World production, by ccuntry1

(Short tons of contained vanadium)

Country					
	1983	1984	1985	1986 ^p	1987€
Production from ores, concentrates, slag; ² China (in vanadiferous slag product) ^e Finland (in vanadium pentoxide product)	5,000 3,516	5,000 3,376	5,000 2,350	5,000	5,000
South Africa, Republic of: ³ Content of pentoxide and vanadate products ^e Content of vanadiferous slag product ^{e 5}	5,620	6,633 7,165	6,537 8,912	⁴ 6,350 10,580	6,600 12,100
TotalU.S.S.R.eUnited States (recoverable vanadium)	9,737 10,500 2,171	13,798 10,500 1,617	15,449 10,500 W	16,930 10,600 W	18,700 10,600 W
Total	30,924	34,291	633,299	632,530	⁶ 34,300
roduction from petroleum residues, ashes, spent catalysts: ⁷ Japan (in vanadium pentoxide product) United States (in vanadium pentoxide and ferrovanadium products)	778	^e 770	e840	929	925
	893	1,701	2,695	2,330	42,508
Total	1,671	2,471	3,535	3,259	3,433
Grand total	32,595	36,762	36,834	35,789	37,733

^eEstimated. ^pPreliminary. W Withheld to avoid disclosing company proprietary data; not included in "Total." In addition to the countries listed, vanadium is also recovered from petroleum residues in the Federal Republic of Germany, the U.S.S.R., and several other European countries, but available information is insufficient to make reliable estimates. Table includes data available through July 15, 1988.

³Includes production for Bophuthatswana.

⁴Reported figure.

TECHNOLOGY

Several occurrences of placer mineral deposits have been identified in Alaska and are being investigated by the Bureau of Mines as part of its program to inventory the State's vast but little-known mineral wealth.5 Although the deposits are not likely to be economic at current metal prices, more than 40 million tons of mineralized materials have been inferred, and it is likely that additional tonnages could be found with more intensive exploration. Geochemically anomalous values of vanadium and several other metals, including rare earths, were identified in some of the placer concentrates taken in drainages of the White Mountain study area. The presence of anomalous values probably indicates the presence of lode rather than placer mineralization.

Most vanadium is recovered as a byproduct of other processes such as the leaching of carnotite uranium ores. Vanadium recovery from leach solutions is usually done by dialkylphosphoric acid (DAPEX) or by amine (AMEX) solvent extraction processes. The AMEX process requires the oxidation of vanadium to the pentavalent state prior to solvent extraction. Sodium chlorate and,

to a lesser extent, hydrogen-peroxideoxygen systems are used as oxidants. Sodium chlorate has the disadvantage of being slow and requiring high operating temperatures. Hydrogen peroxide is an effective oxidant but may result in waste owing to decomposition and reductive side reactions. Comparative oxidation tests using two actual uranium mill raffinates showed that the use of Caro's acid eliminated these problems.6 A four-stage countercurrent extraction performed on the raffinates revealed that extraction efficiency and the extraction coefficient were higher when Caro's acid was used as opposed to hydrogen perox-

Researchers at the University of New South Wales in Australia demonstrated a rechargeable storage battery employing electrically charged vanadium solutions instead of the conventionally charged plates of lead-acid batteries.7 The battery is based on National Aeronautics and Space Administration redox flow cell research and uses two vanadium solutions pumped separately through adjacent half cells. Electricity is produced by the exchange of electrons between the solutions. The researchers ex-

²Production in this section is credited to the country that was the origin of the vanadiferous raw material.

Data on vanadium content of vanadium slag are estimated on the basis of a reported tonnage of vanadium-bearing slag (gross weight) multiplied by an assumed grade of 14.1% vanadium.

Excludes U.S. production.

⁷Production in this section is credited to the country where the vanadiferous product is extracted; available information is inadequate to permit crediting this output back to the country of origin of the vanadiferous raw material.

pected to have a prototype 25-kilowatt-hour battery ready for production in 1989. An international marketing agreement was signed between the university's commercial arm, Unisearch Ltd., and Agnew Clough Ltd. of Western Australia. In related research, a number of vanadium oxides were studied with special regard to their application as the active component in rechargeable lithium cells.8 Substances with socalled open crystal structures are used as electrochemically active materials for insoluble positive electrodes in secondary lithium cells. The lattices of these substances have cavities that act as open, freely passable channels for lithium ions. Vanadium oxides are of special interest for this particular application because of their comparatively low equivalent weight.

Extensive testing of commercial fluid cracking catalysts (FCC) showed that, when all metals are removed by demineralizing the catalyst, the catalyst is effectively reactivated. Because vanadium is the primary metal associated with catalytic activity, it is important to understand the effect on catalytic activity when only the vanadium is removed. To isolate the vanadium effect on catalysts, researchers at ChemCat Corp. performed tests on various nonzeolitic amorphous catalysts, zeolitic rare-earths (REY) catalysts, and zeolitic ultrastable Y (USY) catalysts, where vanadium was the only metal removed.9 Results were compared with reactivation by the Demet process, which effectively removes the vanadium as well as the iron, nickel, and sodium. Vanadium was removed from samples of FCC catalyst obtained from two different refineries, and, in each case, their catalytic activity was selectively improved.

An Israeli botanist identified a microscopic fungus that acts as a superabsorbent sponge, soaking up large amounts of the metals that are often found in the wastewater from mining and manufacturing processes. The fungus can extract such heavy metals as mercury, nickel, vanadium, and uranium.10 Apparently, the fungus works more quickly, can be grown more cheaply, and can be reused more often than other microorganisms under study. When effluent passes through a filter impregnated with the fungus, the fungus separates metals from the water after only a brief contact time. After the fungus is sated with the metals, it can easily be removed from the filter, the metals extracted, and the fungus reused.

A contract for continued research into the use of powder metal aluminum alloys for use at temperatures as high as 600° F to replace titanium aircraft components was awarded to Lockheed Aeronautical Systems Co., Burbank, CA.11 The new alloys may find applications in the Advanced Tactical Fighter (ATF) under development by the U.S. Air Force. The alloys being tested include FES 0812 and FES 1212 from the research and development centers of Allied-Signal Corp., Morristown, NJ. The alloys are based on an aluminum-iron-vanadiumsilicon mix. According to Allied, the alloys can be used at temperatures as high as 800° F.12

Most of the technology used industrially to extract vanadium from refinery residues, oil-fired boiler slags, and fly ash include roasting the material at high temperature followed by leaching with aqueous solvents. Japanese researchers developed a process for the extraction of metal values without roasting using the technique of direct leaching with subsequent solvent extraction.13 Hydrochloric acid leaching showed the best extraction capability for vanadium and other metals. Sodium hydroxide leaching showed the highest selectivity for vanadium. A combination of the two leaching methods hastened the recovery and separation of metals.

¹Physical scientist, Branch of Ferrous Metals.

Vanadium? The Role of Trace Metals. in Petroleum. Annu. Arbor Sci., 1985, pp. 201-205.

*Fechner, S. A., and M. D. Balen. Results of 1987 Bureau of Mines Placer Investigations of the White Mountains Study Area, Alaska. BuMines OFR 5-88, 1988, 158 pp. Barker, J. C., and J. D. Warner. USBM Inventories Alaskan Rare Earths Deposits. Eng. and Min. J., v. 189, No. 2, Feb. 1988, pp. 42-43.

*Mattus, A. J., S. B. Magid, and M. F. Lopez. A Comparative Study of the Uses of Caro's Acid (Peroxymonosulphuric Acid) and Hydrogen Peroxide To Oxidize Vanadium Prior to Solvent Extraction. CIM Bull., v. 76, No. 854, 1983, pp. 102-109.

*Skyllas-Kazacos, M., and F. Grossmith. Efficient Vanadium Flow Cell. J. Electrochem. Soc., v. 134, No. 12, Dec.

dium Flow Cell. J. Electrochem. Soc., v. 134, No. 12, Dec. 1987, pp. 2950-2953.

⁸Wiesener, K., W. Schneider, D. Ilis and E. Steger. Vanadium Oxides in Electrodes for Rechargeable Lithium

Vanadium Oxides in Electrodes for Rechargeable Lithium Cells. J. Power Sources, v. 20, Nos. 1-2, 1987, pp. 157-164. West, K., B. Zachau-Christiansen, M. J. L. Ostergard, and T. Jacobsen. Vanadium Oxides as Electrode Material for Rechargeable Lithium Cells. J. Power Sources, v. 20, Nos. 1-2, 1987, pp. 165-172. ⁹Elvin, F. J. Vanadium Poisoning Effect on Catalyst Isolated. Oil and Gas J., v. 85, No. 9, Mar. 2, 1987, pp. 42-43. ¹⁰Wall Street Journal. Fungus Eats Metal. V. 209, No. 50 Apr. 9, 1087

¹⁰Wall Street Journal. Fungus Eats Metal. V. 209,
 No. 69. Apr. 9, 1987.
 ¹¹Metal Working News. Lockhead To Study Use of PM Aluminum Alloys. V. 14, No. 655, Nov. 2, 1987, p. 30.
 ¹²Aviation Week & Space Technology. New Alloys, Composites Used in Advanced Aircraft, Space Programs. V. 127, No. 15, Oct. 12, 1987, pp. 71-122.
 ¹³Tsuboi, I., M. Tamakai, and J. Ingham. Recovery of Vanadium From Oil-Fired Boiler Slag. J. Chem. Eng. (Japan), v. 20, No. 5, Oct. 1987, pp. 505-510.

¹Physical scientist, Branch of Ferrous Metals.

²Uranium Industry Annual 1986. Energy Information Administration, Office of Coal, Nuclear, Electric, and Alternate Fuels, Department of Energy, Washington, DC, DOE/EIA-0478(86), 1987, 143 pp.

³The Mining Record. Utah Mining Developments. V. 98, No. 12, Mar. 25, 1987, p. 5.

⁴Fischer, R. P. American Oil Refineries: Can They Yield Vanadium? The Role of Trace Metals. in Petroleum. Annu. Arbor Sci. 1985 np. 2012-205.

Vermiculite

By Arthur C. Meisinger¹

U.S. production of vermiculite concentrate declined slightly to 303,000 short tons valued at \$33.1 million. Sales of exfoliated vermiculite were slightly lower than that of 1986, but the average value per ton increased. South Carolina replaced Montana as the leading State in vermiculite concentrate production.

Domestic Data Coverage.—Domestic production data for vermiculite are developed by the Bureau of Mines from two separate voluntary surveys, one for domestic mine operations and the other for exfoliation plant operations. Of the five mining oper-

ations to which a survey request was sent, four responded. The one nonrespondent's data were estimated using previous years' production levels adjusted by trends in employment and other guidelines. Of the 41 exfoliating plants to which a survey request was sent, 37 responded. Those respondents accounted for 85% of the total exfoliated vermiculite sold and used shown in table 1. The four nonrespondents' data were estimated using previous years' production levels adjusted by trends in employment and other guidelines.

Table 1.—Salient vermiculite statistics
(Thousand short tons and thousand dollars unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Sold and used by producers:					
Concentrate	282	315	314	317	303
Value	\$27,200	\$31,500	\$32,400	\$34,400	\$33,105
Average valuedollars per ton	\$96.45	\$100.00	\$103.18	\$108.52	\$109.24
Exfoliated	224	264	258	253	252
Value	\$52,200	\$56,500	\$47,900	\$53,200	\$54,600
Average valuedollars per ton	\$233.04	\$214.02	\$185.66	\$210.28	\$216.67
Exports to Canada	19	22	e23	e ₂₅	e ₂₀
Imports for consumption	e24	32	e38	e35	e30
World: Production ²	490	545	556	P579	e ₆₀₁

^eEstimated. ^pPreliminary.

DOMESTIC PRODUCTION

Production of vermiculite concentrate declined 4% to 303,000 tons valued at \$33.1 million compared with 317,000 tons valued at \$34.4 million in 1986.

W. R. Grace & Co. continued as the leading domestic producer with operations at Libby, MT, and Enoree, SC. Vermiculite was also mined in South Carolina by Patter-

son Vermiculite Co. near Enoree and by Strong-Lite Products Corp. near Woodruff. Increased production by the three South Carolina producers coupled with a decrease in output from the Libby mine in Montana made South Carolina the leading producing State. Virginia Vermiculite Ltd., Louisa County, VA, was the only other producer

¹Based on rounded data.

²Excludes production by centrally planned economy countries.

during the year.

Domestic sales of exfoliated vermiculite by 12 producers declined slightly in quantity and increased slightly in value. Output came from 41 plants in 28 States, of which 29 plants in 24 States were operated by W. R. Grace.

In descending order of output sold and used, the principal exfoliated vermiculiteproducing States were California, Ohio, South Carolina, Florida, New Jersey, and Texas.

CONSUMPTION AND USES

Apparent domestic consumption of vermiculite concentrate declined slightly from 327,000 tons to 318,000 tons.

The quantity of exfoliated vermiculite

sold and used for agriculture increased slightly, while sales for aggregates, insulation, and other uses decreased slightly compared with 1986 quantities.

Table 2.—Exfoliated vermiculite sold and used in the United States, by end use

(Short	tons)
--------	-------

	End use	1986	1987
Aggregates: Concrete Plaster		50,800 2,200	49,200 700
Premixes ¹	<u>-</u>	80,000	81,300
Total		133,000	131,200
	——————————————————————————————————————	21,000 35,900 2,100	19,600 35,700 1,700
Total		59,000	57,000
Agricultural: Horticultural Soil conditioning Fertilizer carrier		19,700 5,300 33,500	23,100 8,100 30,600
Total Other ³		58,500 2,900	61,800 2,200
Grand total4	= 	253,000	252,000

¹Includes acoustic, fireproofing, and texturizing uses.

Includes high-temperature and packing insulation and sealants.

Includes various industrial uses not specified.

⁴Data may not add to totals shown because of independent rounding.

Table 3.—Active vermiculite exfoliating plants in the United States in 1986

Company	County	State Pennsylvania.	
A-Tops Corp	Beaver		
Brouk Co	St. Louis	Missouri.	
orouk Co	Irondale	Alabama.	
	Maricopa	Arizona.	
	Pulaski	Arkansas.	
	Alameda	California.	
	Orange	Do.	
	Denver	Colorado.	
	Broward	Florida.	
	Duval	Do.	
	Hillsborough	Do.	
		Illinois.	
	Du Page	Kentucky.	
	Campbell		
	Orleans	Louisiana.	
	Prince Georges	Maryland.	
W. R. Grace & Co., Construction Products Div	Hampshire	Massachusetts.	
	Wayne	Michigan.	
	Hennepin	Minnesota.	
	St. Louis	Missouri.	
	Douglas	Nebraska.	
	Mercer	New Jersey.	
	Cavuga	New York.	
	Guilford	North Carolina	
	Oklahoma	Oklahoma.	
	Multnomah	Oregon.	
	Lawrence	Pennsylvania.	
	Greenville ¹	South Carolina.	
	Davidson	Tennessee.	
	Bexar	Texas.	
	Dallas	Do.	
	Salt Lake	Utah.	
Intermountain Products Inc	Kenosha	Wisconsin.	
Koos Inc	Union	Ohio.	
O. M. Scott & Sons		South Carolina	
Patterson Vermiculite Co	Laurens	Montana.	
Robinson Insulation Co	Cascade		
The Schundler Co	Middlesex	New Jersey.	
Strong-Lite Products Corp	Jefferson	Arkansas.	
Do	DeKalb	Illinois.	
Verlite Co	Hillsborough	Florida.	
Vermiculite Products Inc	Harris	Texas.	

¹Two plants in the county.

PRICES

The average value of vermiculite concentrate sold and used by U.S. producers was \$109 per ton, f.o.b. plant, the same as in 1986. The average value of exfoliated vermiculite, f.o.b. plant, increased slightly from \$210 per ton to \$217 per ton.

Engineering and Mining Journal quoted yearend prices for unexfoliated vermiculite as follows, per short ton: Montana and South Carolina, f.o.b. mine, \$100 to \$150; and the Republic of South Africa, c.i.f. Atlantic ports, \$110 to \$160.

FOREIGN TRADE

Imports of vermiculite concentrate from the Republic of South Africa were estimated to be 35,000 tons. Exports to Canada were estimated to be 20,000 tons. Exports represented about 7% of total U.S. sales.

¹Industry economist, Branch of Industrial Minerals.

Table 4.—Vermiculite: World production, by country¹

(Short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e	
Argentina	4,355	4,906	5,387	5,740	5,500	
Brazil	10,888	10,094	10,242	14,482	15,000	
Egypt	331	é360	538	546	550	
India	2,658	2,153	1.990	7,365	4,400	
Japan ^e	19,000	19,000	19,000	r _{17,000}	17,000	
Kenya	e1,300	961	1,670	2,804	2,800	
Mexico	440	557	474	^é 500	500	
South Africa, Republic of	168.691	191.536	202,902	213,470	3252,278	
United States (sold and used by producers)	282,000	315,000	314,000	317,000	3303,000	
Total	489,663	544,567	556,203	578,907	601,028	

^eEstimated. ^pPreliminary. ^rRevised. ¹Excludes production by centrally planned economy countries. Table includes data available through July 15, 1988. ²In addition to the countries listed, Tanzania may produce vermiculite, but available information is inadequate to make reliable estimates of output levels, if any. ³Reported figure.

Zinc

By James H. Jolly¹

Domestic zinc mine production increased in 1987, reversing a 6-year downtrend in output. Zinc metal production also increased and was the highest since 1981. Domestic output of zinc oxide improved despite the closure of two plants. However, for the first time since the early 1850's, no American-process zinc oxide was produced from ores or concentrates. New Jersey Zinc and St.

Joe, two well-known old-line names of the domestic zinc industry, virtually disappeared from the zinc scene in 1987, when the last descendants of the original companies merged their zinc operations and products under a new company name. Despite improved production, the United States provided only a fraction of the world's zinc output.

Table 1.—Salient zinc statistics

(Metric tons unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Production:					
Domestic ores, recoverable content	275,294	252,768	226,545	202,983	216,981
Valuethousands	\$251,204	\$270,833	\$201,607	\$170,050	\$200,529
Slab zinc:					
From domestic ores	210,315	197,912	198,003	191,079	211,633
From foreign ores	25,379	55,220	63,204	62,288	58,377
From scrap	69,390	78,113	72,567	62,914	72,653
Total	305,084	331,245	333,774	316,281	342,663
Secondary zinc ¹	279,237	317,968	274,456	r277,757	309,890
Exports:	60,168	30,579	23,264	3,269	16,921
Ores and concentrates (zinc content)	427	760	1.011	1,938	1.082
Slab zinc	421	100	1,011	1,500	1,002
Imports for consumption: Ores and concentrates (zinc content)	63,156	86,172	90.186	75,786	46,464
	617.679	639,228	610,900	665.126	705,985
Slab zinc Stocks of slab zinc, Dec 31:	011,019	000,220	010,500	000,120	100,000
	148,139	137.626	119.892	100,723	96,088
Industry Government stockpile	340,577	340,577	340,577	340,577	340,577
Consumption:	040,011	040,011	040,011	040,011	040,011
Slab zinc:					
Reported	805,891	848,903	770,671	705,963	788,728
ReportedApparent (rounded) ²	r933,000	r980,000	r961,000	r999,000	1,052,000
All classes (rounded) ³	r _{1.246.300}	r _{1.343,500}	r _{1.279.600}	r _{1.296,000}	1,364,000
Price: High Grade, cents per pound (delivered)	41.39	48.60	40.37	38.00	41.92
World:	41.09	40.00	40.51	90.00	41.54
Production:					
Mine thousand metric tons	r _{6,283}	r _{6,524}	6.801	P6.829	e7,144
Smelterdodo	6,249	r _{6,527}	6,852	P6,761	e7,030
Price: London, cents per pound	34.73	40.46	36.23	34.19	36.20

^eEstimated. ^pPreliminary. ^rRevised

¹Excludes secondary slab and remelt zinc.
²Domestic production plus net imports plus or minus stock changes.

³Based on apparent consumption of slab zinc plus zinc content of ores and concentrates and secondary materials.

U.S. zinc metal consumption rose significantly owing to an improved domestic economy, expanding export markets, and increases mainly in the galvanizing sector. Metal imports were at an alltime high and exceeded 700,000 metric tons for the first time. Imports of zinc oxide were also at an alltime high and accounted for about 29% of the domestic apparent consumption.

World mine and smelter production of zinc were at record-high levels, and both exceeded 7 million tons for the first time. World zinc metal consumption was record setting for the fourth consecutive year, and exceeded 7 million tons also for the first time.

U.S. and world zinc prices trended downward in the first few months, influenced by the settlement of smelter strikes and increasing stocks in the last few months of 1986. Prices rose in the middle of the year, again affected to some extent by a smelter strike, but moderated when the strike was settled.

Domestic Data Coverage.—Domestic data for zinc are developed by the Bureau of Mines from seven separate, voluntary surveys of U.S. operations. Typical of these is the "Slab Zinc" consumption survey. Of the 307 operations to which the survey request was sent, 297 responded, representing an estimated 97% of the total reported slab zinc consumption shown for 1987 in tables 1, 15, 16, and 17. Consumption for the nonrespondents was estimated using prior year

consumption levels. Reported consumption represented 75% of the total apparent consumption reported on tables 1 and 14.

Legislation and Government Programs.—The National Defense Stockpile goal for zinc was 1,292,739 tons, unchanged since May 1980. The total zinc inventory held in the stockpile also has been virtually unchanged since 1974, and at yearend, was 343,202 tons including 2,625 tons contained in brass. At yearend, the President and Congress were considering legislation that would transfer management of the stockpile to the U.S. Department of Defense from the current multiagency management structure.

In June, the Environmental Protection Agency (EPA) eliminated 6 metals, including zinc, from the list of 83 contaminants that EPA was required to regulate by 1989 under the 1986 amendment to the Safe Drinking Water Act. EPA stated that zinc was essential to life and that it was not known to cause health problems at the levels found in drinking water.

In August, EPA announced the results of its assessment of zinc and zinc oxide as candidates for regulation under the Clean Air Act (CAA).² The agency said it did not have enough health data to determine whether the materials presented any carcinogenic, mutagenic, or teratogenic danger when inhaled. It concluded that no regulations under CAA were currently warranted.

DOMESTIC PRODUCTION

MINE PRODUCTION

Higher mine output of zinc was attributed largely to initial production from the Montana Tunnels Mining Inc.'s gold-silverzinc-lead mine near Helena, MT, and to a full year's production at mines that closed temporarily in 1986 because of poor market conditions. The 25 leading U.S. zinc-producing mines accounted for 99% of production, with the 10 leading mines accounting for about 82%. Tennessee was the principal zinc-producing State, followed by New York, Missouri, and Colorado. The leading zinc mine producers were ASARCO Incorporated; The Doe Run Co.; Jersey Minière Zinc Co., a subsidiary of the Belgian company Union Minière S.A.; and Zinc Corporation of America (ZCA), a new subsidiary of Horsehead Industries Inc., formed in November 1987 by the merger of Fluor Corp.'s zinc company, St. Joe Resources Co., and Horsehead's New Jersey Zinc Co. Inc. (NJZI). ZCA became a major domestic zinc mine producer via its acquisition of St. Joe Resources' Balmat and Pierrepont Mines in New York. ZCA's only other zinc mine, NJZI's Sterling Mine in New Jersey, was closed all year.

In Tennessee, zinc was produced from zinc ore at six underground mines and from sulfur-copper-zinc ores at an underground mine at Copperhill. Jersey Minière, operator of the Gordonsville-Elmwood Mine in central Tennessee, and Asarco, operator of four eastern Tennessee mines, were the leading producers. The mine at Copperhill, operated by Tennessee Chemical Co., was closed permanently in August owing to economic factors. This closure ended about 140 years of almost continuous mining activity in the Copperhill mining district.

935

Asarco's zinc production in Tennessee was almost 50% higher than in 1986, largely because the mines operated all year; whereas, in 1986, all four were closed for part of the year owing to poor market conditions. According to the Asarco annual report, the company milled 2.7 million tons of ore producing 65,000 tons of zinc in concentrates at its Tennessee operation in 1987, compared with 1.8 million tons of ore milled yielding 43,300 tons of zinc in 1986. At yearend, ore reserves at the four mines were estimated to be 5.9 million tons averaging 3.23% zinc, representing a drop in ore reserves of about 0.2 million tons of similar grade ore from 1 year earlier.

In Missouri, zinc was produced as a byproduct of lead at eight underground lead mines along the Viburnum Trend in southeastern Missouri. Doe Run, owned 57.5% by St. Joe Minerals Corp. and 42.5% by Homestake Mining Co., was the largest producer, milling 3.6 million tons of ore averaging 5.8% lead, 0.8% zinc, and 0.6% copper from five mines and producing about 18,500 tons of zinc in 36,900 tons of zinc concentrate. At yearend, the ore reserves at Doe Run's Missouri mines were 68 million tons averaging 5.1% lead, 0.9% zinc, and 0.3% copper.

The Magmont Mine, a joint venture of Cominco American Incorporated and Dresser Industries Inc., was the largest zincproducing mine in Missouri in 1987. According to Cominco Ltd.'s annual report, the company milled 1.0 million tons of Magmont lead-zinc-copper ore yielding 69,200 tons of lead, 12,900 tons of zinc, and 1,800 tons of copper in concentrates. In 1986, comparable production was 0.95 million tons of ore milled yielding 79,500 tons of lead, 11,500 tons of zinc, and 1,600 tons of copper. Ore reserves at yearend were 4.3 million tons averaging 6.4% lead, 1.3% zinc, and 0.3% copper.

Asarco processed lead-zinc ore at two Missouri mines, West Fork and Sweetwater, in 1987. The latter, acquired from Ozark Lead Co. in December 1986, was reopened by Asarco late in the year at about 40% of capacity. Zinc output was minimal; however, about 3,000 tons of zinc in concentrates was expected to be produced in 1988. At the West Fork Mine, metal production in concentrates fell despite a 46% increase in ore milled in 1987. According to the Asarco annual report, the company milled 404,000 tons of ore producing 5,200 tons of zinc, 26,400 tons of lead, and 147,000 ounces of silver in concentrates in 1987 compared

with production of 6,500 tons of zinc, 30,500 tons of lead, and 182,000 ounces of silver in 1986. Asarco continued the expansion program at the West Fork Mine, aiming to attain full design capacity by mid-1988, when annual mine-mill capacity was projected to be 60,000 tons of lead and 9.000 tons of zinc in concentrates. Ore reserves at the West Fork Mine were estimated to be 9.8 million tons of ore averaging 1.94% zinc, 7.07% lead, 0.04% copper, and 0.27 ounce of silver per ton at yearend.

In Colorado, zinc production was largely a coproduct of gold-silver operations at the Leadville Mine, managed by Asarco but jointly owned with the Resurrection Mining Co., and at the Sunnyside Mine, owned by Sunnyside Gold Corp., a subsidiary of Echo Bay Mines Ltd. According to the Asarco annual report, the company milled 198,000 tons of ore in 1987 yielding 13,000 tons of zinc, 7,000 tons of lead, 337,000 ounces of silver, and 16,673 ounces of gold in concentrates. Production was about the same in 1986. Ore reserves at yearend were 715,000 tons averaging 8.09% zinc, 3.95% lead, 1.8 ounces of silver per ton, and 0.06 ounce of gold per ton. Sunnyside Gold substantially increased its zinc production owing to a full year's operation and an increase to 640 tons in the daily ore-processing rate. An aggressive exploration program resulted in a net increase in ore reserves of about 110,000 tons despite production of 233,000 tons of ore in 1987. At yearend, proven and probable ore reserves were 530,000 tons averaging 5.4% zinc, 3.8% lead, 0.57% copper, 3.5 ounces of silver per ton, and 0.15 ounce of gold per ton.

Virtually all of Idaho's zinc production was produced by Hecla Mining Co. at its Lucky Friday silver-lead-zinc mine in northern Idaho. The mine, which was closed in April 1986 because of low silver prices, reopened in June because of improved metal prices and a lack of progress in labor negotiations. In July, union workers agreed to wage and benefit cuts, but, over the 3year contract period, workers were expected to recover some lost wages by a profitsharing plan to be instituted in the second and third years of the contract. At yearend, Lucky Friday ore reserves were 580,000 tons averaging 12.3% lead, 2.2% zinc, and 15.9

In Montana, Pegasus Gold Inc. commenced milling operations at its new Montana Tunnels gold-silver-zinc-lead mine in late March. Ore was mined by open pit methods,

ounces of silver per ton.

followed by crushing, grinding, flotation, and leaching to recover gold and silver. This was followed by additional flotation to produce lead and zinc concentrates. In 1987, production was 31,800 ounces of gold, 529,300 ounces of silver, 3,900 tons of lead, and 6,500 tons of zinc. At yearend, ore reserves were 47 million tons averaging 0.023 ounce of gold per ton, 0.44 ounce of silver per ton, 0.25% lead, and 0.65% zinc. A 15-year operation was envisioned.

In Alaska, Cominco American moved the startup date of its Red Dog zinc-lead-silver project ahead 1 year to 1990. A 54-mile road over the Alaskan tundra from the port site on the Chukchi Sea to the mine site was nearly completed in 1987 and was expected to be fully operational in early 1988. The road, consisting of numerous bridges and a 4.5-foot-high gravel road bed laid over special sheeting to overcome permafrost problems, was constructed at rates up to about 100 feet per hour. Millsite preparation and housing for workers were scheduled for completion in 1988 and the mill in 1989. Concentrate shipments were scheduled to begin in 1990. At capacity, the company planned to produce annually 314,000 tons of zinc and 64,000 tons of lead in concentrates. Ore reserves were 77 million tons averaging 17.1% zinc, 5% lead, and 2.6 ounces of silver per ton.

Greens Creek Mining Co., a wholly owned subsidiary of BP Minerals America Inc., and minority partners, Hecla, who purchased 28% interest in the mine from BP in May; Exalas Resources Corp.; and CSX Oil and Gas Corp. decided to develop the Greens Creek silver-zinc-lead deposit on Admiralty Island, AK. Plans called for Greens Creek Mining, the majority holder in the venture to develop a trackless underground mine and a 910-ton-per-day mill operation yielding annually about 77,000 tons of concentrates containing 6.4 million ounces of silver, 36,000 ounces of gold, 23,000 tons of zinc, and 8,000 tons of lead. Initial production was expected in early 1989. Ore reserves were estimated to be 3.2 million tons averaging 22.0 ounces of silver and 0.16 ounce of gold per ton, 9.7% zinc and 3.9% lead. A 10-year operation was envisioned.

SMELTER AND REFINERY PRODUCTION

Smelter production of zinc improved substantially owing partly to the resumption of production in January at Huron Valley Steel Corp.'s 27,000-ton-per-year secondary zinc plant at Belleville, MI. The Huron

Valley plant was closed in June 1986 because of equipment failure.

Slab zinc was produced at four primary smelters by three companies: ZCA, AMAX Zinc Co. Inc., and Jersey Minière. Secondary slab zinc was produced at 10 plants; the leading producers of metal from secondary materials were ZCA, Huron Valley Steel, and Interamerican Zinc Co. Asarco's Corpus Christi, TX, primary zinc refinery remained on standby status in 1987; however, the company was considering a plan at yearend that would turn the facility into a wasteprocessing center, thereby terminating its status as a primary smelter.

The formation of ZCA created a company with plant capacities to be the largest domestic producer of zinc metal, dust, powder, and oxide. The new Horsehead subsidiary included the former St. Joe Resources primary zinc smelters at Monaca, PA, and Bartlesville, OK; a zinc dust plant at Depue, IL; and zinc oxide, dust, and alloy production facilities at Horsehead's Palmerton, PA, plant.

Horsehead Resource Development Co. (HRD), another Horsehead subsidiary, processed about 180,000 tons of zinc-containing, steelmaking electric arc furnace (EAF) dusts at its Palmerton, PA, Waelz-kiln processing plant in 1987. Most of the impure zinc oxide produced was shipped to ZCA's Monaca, PA, smelter for refinement to zinc metal. HRD planned to open another EAF dust-processing plant at Calumet City, IL, in early 1988. The new plant, also a Waelzkiln facility, was expected to process about 70,000 tons of EAF dust per year, producing a crude zinc oxide product and an iron-rich slag suitable for highway and construction purposes.

Oxford Energy Co. began zinc recovery at its new 40,000-ton tire-recycling plant at Modesto, CA. Yearly recovery of about 700 tons of zinc in crude zinc oxide material was expected. This material and that from a larger tire-recycling facility under construction at Sterling, CT, were expected to be processed at ZCA's Monaca, PA, zinc plant to reclaim the zinc.

Zinc Oxide.—In the United States, zinc oxide was produced entirely from slab zinc and scrap material, marking the first time that ores or concentrates were not directly used for zinc oxide production since the beginning of the domestic zinc industry in the early 1850's. Zinc oxide was produced at 11 plants in 1987; however, 2 of these plants, ZCA's American-process zinc oxide plant at

ZINC 937

Palmerton, PA, and Pacific Smelting Co.'s plant at Torrance, CA, ceased operation in December. With the closure of the ZCA plant, the only domestic producer of oxide by the American process was the Eagle Zinc Co. at Hillsboro, IL.

ZCA was by far the largest producer, having the combined zinc oxide facilities of NJZI and St. Joe Resources. Pacific Smelting consolidated all future zinc oxide production at its 18,000-ton-per-year plant at Memphis, TN. In 1987, Asarco reported zinc oxide production of 8,400 tons at its 20,000-ton-per-year plant at Hillsboro, IL.

Zinc Salts.—Zinc sulfate was produced by 10 companies from secondary zinc materials and waste streams from electrolytic zinc plants. Zinc sulfate was produced in both solid and liquid form, mainly for agricultural purposes. Zinc-chloride-type chemicals were produced at five plants from secondary zinc materials or chemical waste streams.

Byproduct Sulfur.—Production of sulfur in byproduct sulfuric acid at four primary zinc smelters using zinc sulfide concentrate as feed material was 124,000 tons, virtually the same as in 1986.

CONSUMPTION AND USES

Domestic zinc consumption for most enduse categories increased in 1987, continuing the consumption uptrend started in 1986. The construction sector of the economy accounted for an estimated 43% of zinc consumption, followed by transportation, 22%; machinery, 10%; electrical, 10%; and chemical and other industries, 15%. Galvanizing and electrogalvanizing, mainly for sheet and strip, continued to be the principal use of slab zinc, consuming an estimated 52%, followed by zinc-base die-cast alloys, 22%; brass alloys, 13%; rolled zinc, 3%; and other uses, 10%. Special High Grade (SHG) accounted for about one-half of the slab zinc consumed, followed by Prime Western (PW) and High Grade (HG). About 23,400 tons of SHG was used by the U.S. Mint to produce 9.6 billion pennies in 1987.

According to the American Iron and Steel Institute, shipments of galvanized sheet and strip totaled 8.25 million tons, up from 7.06 million tons in 1986. Of the total shipments, electrogalvanized sheet accounted for 16% compared with only 7% in 1986. The substantial increase in electrogalvanized sheet shipments was due largely to strong demand by the automobile industry for increased corrosion protection of body parts. The typical U.S.-built, 1987-model automobile contained an estimated 9 pounds of zinc for corrosion protection, compared with about 8.4 pounds in 1986.

Zinc-base alloy and die and foundry casting shipments, according to the Bureau of the Census, totaled about 228,000 tons in 1987. The estimated distribution by weight was about one-third each for automotive, hardware, and other uses. The typical U.S.-built, 1987-model automobile contained about 20 pounds of zinc die-cast parts, representing a slight increase.

Zinc consumption in copper-base alloys by

brass mills, ingot makers, and foundries increased about 11% from that of 1986.3 According to the Copper Development Association Inc., the brass and bronze industries consumed about 298,000 tons of zinc, the source of which was about equally divided between refined zinc metal and brass and bronze scrap metal. Brass mills accounted for more than 89% of the total zinc consumed as metal and scrap.

According to the International Lead and Zinc Study Group (ILZSG), the principal uses of zinc metal in 1986 in the major market economy countries, including the United States, were galvanizing, 42.7%; brass and bronze, 20.9%; zinc-base alloys, 5.6%; zinc semimanufactures, 8.4%; chemicals, 8.7%; zinc dust and powder, 1.6%; and miscellaneous, 2.1%.

The apparent domestic consumption of zinc oxide was about 198,000 tons, up from 165,000 tons in 1986. Imports were at record-high levels and domestic production and shipments were up substantially. The rubber industry continued to be the principal consumer of zinc oxide. One of the five new electrogalvanizing plants that came onstream in 1986 was a significant consumer of zinc oxide because the compound was the source of zinc for the process.

The U.S. Library of Congress reportedly began diethyl zinc (DEZ) gas treatments on many of its brittle and disintegrating books to prevent further paper decomposition caused by the breakdown of aluminum sulfate in paper to sulfuric acid, which attacks paper fibers. DEZ, which is composed of 55% zinc, neutralizes the acidity of the paper, leaving a protective residue of zinc oxide and zinc carbonate. Plans called for treating about 1 million books annually, requiring about 50 tons of DEZ.

STOCKS

At yearend 1987, metal stocks held by domestic producers, consumers, and merchants were down 16% from those held at yearend 1986. The decline represented the sixth straight yearly decrease and reflected a continuing trend by holders of zinc stocks to minimize inventories and reduce investment in stocks. The 1987 ending domestic stock levels were only 43% of those held at the end of 1981. Domestic metal stock levels initially fell in the early months of 1987. tended to be stable in the middle months as both demand and prices improved, and declined toward the end of the year, in part because the world supply of metal began to tighten.

Metal stock levels in the market economy countries, according to ILZSG, followed the same basic pattern as in the United States. Stocks, as reported by ILZSG, were highest at the end of January, 678,000 tons; lowest in November, 516,000 tons; and at yearend, 565,000 tons. Stock reductions were, in part, due to labor disputes that sharply reduced metal availability in the second half of the year.

London Metal Exchange (LME) zinc met-

al stocks remained at relatively low levels, especially at midyear, mainly because the availability of HG metal was in short supply. LME stocks reached a low of 28,100 tons in June and a high of 44,000 tons in December. At yearend, the LME was considering the establishment of a new U.S.-dollarbased, SHG zinc metal contract to replace the HG contract that only was implemented in September 1985. The change was thought necessary because SHG has become the most widely used metal grade. Plans called for the new contract to be in place by mid-1988. The new contract, if implemented, could lead to the demise of the European Producer Price (EPP), the basis used by zinc miners and European smelters for establishing their raw materials contracts, mainly because the LME price better represents the actual price of zinc in Europe rather than the less responsive EPP price.

Inventories of zinc contained in concentrates at domestic primary smelters, according to the American Bureau of Metal Statistics Inc., totaled 38,450 tons at yearend versus 43,800 tons at the end of 1986. Stocks were lowest, 32,100 tons, in July.

PRICES

Zinc prices trended downward during the first 3 months of 1987, continuing a downward trend begun in late 1986 mainly owing to improved world supply of zinc metal. In late April and in May, prices firmed and increased mainly owing to anticipated and subsequent strike action at Cominco Ltd.'s refinery at Trail, British Columbia, Canada. In the summer months, prices remained relatively stable, bouyed by the continuing Cominco Ltd. strike and production problems at the Cajamarquilla zinc smelter in Peru and at the Kidd Creek and Flin Flon zinc smelters in Canada. In September, the Cominco Ltd. strike was settled, bringing about a modest fall in zinc prices. Also contributing to the price decline in this period was the resumption of zinc shipments from the Cajamarquilla smelter and the announcement by major European producers that they again were shelving plans to reduce their zinc-smelting capacity. Zinc prices tended to improve after mid-November, responding mainly to increased Chinese buying and to tightening of zinc supplies in Europe and the United States.

World zinc prices, essentially the EPP and LME price, paralleled U.S. price trends, although the prices, in terms of most other major currencies, experienced fewer fluctuations owing to relative changes in U.S. dollar exchange rates.

Zinc oxide prices, as quoted in American Metal Market, ranged from 52 to 57 cents per pound in 1987. Although this quote range held throughout the year, premiums or discounts were given depending on the price of HG at the time and on the available supply. The average value of imported zinc oxide in 1987 was 36.9 cents per pound compared with 33.8 cents in 1986.

The price quoted in Chemical Marketing Reporter (CMR) for zinc sulfate, monohydrate industrial grade, 36% zinc in bags in carload lots, ranged from \$30 to \$32 per 100 pounds. Agricultural zinc sulfate in bulk was quoted by CMR at \$26.50 per 100 pounds. Standard pigment-grade zinc dust, types 1 and 2 in drums, was quoted at 59 to 67 cents per pound, and technical-grade zinc chloride, 50% solution in tanks, was quoted at \$20.20 per 100 pounds.

FOREIGN TRADE

Exports of zinc waste and scrap again reached record-high levels, exceeding those of 1986 by 29% and were double those of 1985. Taiwan was the principal destination, accounting for about 80% of U.S. exports. Increased exports of concentrates came mainly from Western precious metal producers.

Slab zinc imports for consumption exceeded 700,000 tons for the first time. Canada accounted for more than one-half of the total imports, followed by Spain, Mexico, and Australia. Similarly zinc oxide imports, largely from Canada and Mexico, were record highs, exceeding last year's record level by 13,000 tons and capturing about 29% of the domestic market, up from 26% in 1986 and 22% in 1985.

The vast tonnage difference between general imports and imports for consumption of zinc concentrates continued to reflect the high level of reexports of Canadian zinc concentrates to world markets through Skagway, AK, by Curragh Resources Corp., operators of the Faro lead-zinc mine in the Yukon Territory.

The International Trade Commission imposed antidumping and countervailing duties on 1985 imports of brass sheet and strip from companies in seven countries determined to have dealt in unfair trade practices. In 1985, the collective imports accounted for 68% of the brass sheet and strip imports and were valued at \$90 million. Duties as high as 49% were to be collected on future imports from the affected companies. The ban on imports of zinc from the Republic of South Africa imposed in 1986 continued.

In October, Canada and the United States signed a preliminary trade liberalization agreement, known as the Canada-U.S. Free Trade Agreement, which includes provision for the mutual elimination of tariffs on most nonferrous metals by 1999. The tariffs on slab zinc, zinc alloys, and zinc dust and powder were scheduled to be eliminated over a 10-year period at 10% per year. At yearend however, the pact was undergoing review and had not been ratified by either country.

WORLD REVIEW

World zinc production and consumption attained record-high levels in 1987. Consumption was record setting for the fourth consecutive year and exceeded 7 million tons for the first time. Also exceeding 7 million tons for the first time was world zinc mine and metal production.

World consumption of metal, led by a substantial rise in U.S. consumption, was about 0.1 million tons higher than the record set in 1986. On a geographical basis, North and South America (the Americas) accounted for virtually all of the consumption increase as both Europe and Asia remained at last year's consumption level. The market economy countries, according to ILZSG, consumed about 5.1 million tons of zinc metal or about 72% of world consumption. The United States, Japan, and Western Europe accounted for about onehalf of world consumption and two-thirds of that of the market economy countries. In 1987, galvanizing increased its proportion of world zinc metal consumption to an estimated 45%; other major consuming sectors, brass and bronze alloys and zinc-base alloys, accounted for about 22% and 16%, respec-

tively.

Record-high world mine production, 7.2 million tons, was largely attributed to a strong rise in Canadian production, which exceeded 1986 production by more than 0.2 million tons. Australia, the Republic of South Africa, and Spain also recorded substantial gains in zinc mine production mainly because of full-year and/or new mine operations. Japan was the only major producer having a significant decrease in output because four mines closed, reducing zinc production by more than 50,000 tons from the previous year. Canada continued to be the principal world zinc producer and, together with Australia, Peru, and the U.S.S.R., accounted for about one-half of world output. The Americas produced about 40% of the world mine production, and Europe, including the U.S.S.R., about 30%. World exports of zinc in concentrates exceeded 2 million tons, one-half of which was exported by Canada and Australia. The principal concentrate-importing countries were Belgium, the Federal Republic of Germany, France, Japan, and the Netherlands.

World mine capacity remained about 8.2

million tons, as the capacities of mines opening and closing were more or less in balance in 1987. Seventeen new or expanded mines in the market economy countries added about 280,000 tons to world capacity in 1987; however, the gain was negated by the closure or reduction of capacity by a similar amount at 16 operations. The most significant new mine openings or capacity increases occurred in Australia, Canada, Italy, and the United States. Significant mine capacity reductions or closings occurred in Australia, Canada, the Federal Republic of Germany, and Japan.

Smelter output was up sharply due to generally higher production in a number of countries, including Canada, where strike-related production losses were less severe than in 1986. About one-third of world zinc metal production was produced by three countries: Canada, Japan, and the U.S.S.R. World primary smelter capacity, about 8.2 million tons, was virtually unchanged from that of 1986 despite the permanent closure of a 90,000-ton-per-year zinc smelter at Viviez, France, at yearend. The lost capacity was recaptured by the doubling of capacity at another company smelter at Arby, France, to 200,000 tons.

The world zinc supply-demand position was essentially in balance in 1987, unlike that of 1986, when strikes at production facilities tended to shift supply-demand to the demand side. Metal stocks in the market economy countries fell during the year in response to strong demand and ended the year at about 565,000 tons, 50,000 tons less than at the end of 1986. Unlike previous years, the market economy countries for the first time imported more zinc metal from the centrally planned economy countries than they exported, owing mainly to increased exports by North Korea and China to Western markets, including the LME. World prices, weak during the early months of 1987, rose at midyear largely in response to a strike at Cominco Ltd.'s refinery at Trail, British Columbia, Canada. Prices fell after the strike was settled but tended to recover late in the year because of renewed Chinese buying in Western markets, improved demand, and potential supply problems because of strikes and technical problems at mines and smelters mainly in Peru and Canada.

Australia.—Increased zinc production was attributed to a full year's output at the zinc mines at Broken Hill, New South Wales, the bringing on-stream of Aberfoyle

Ltd.'s new Hellyer Mine in Tasmania, and initial mining at the Cadjebut deposit in Western Australia. MIM Holdings Ltd. continued to increase output at its Hilton Mine in Queensland, phasing the production into the company's Mount Isa Mine operations. At midyear, Denehurst Ltd. began underground production at the former Woodlawn, New South Wales, copper-zinc-lead-silver open pit, which was purchased from Australia Mining & Smelting Ltd. Plans call for the mining of 0.5 million tons per year from the remaining ore body, estimated to have 2.5 million tons of recoverable reserves grading 11.8% zinc, 4.8% lead, 1.4% copper, and 3.3 ounces of silver per ton.

Aberfoyle, 46% owned by Cominco Ltd., treated Hellyer zinc-lead ore at its converted Cleveland tin mill in 1987, which provided experience for the new 1.1-million-ton-per-year concentrator under construction at the mine site. Plans call for mill completion and full operation in early 1989. The estimated in situ ore reserves at Hellyer totaled 15 million tons averaging 22.8% zinc, 6.4% lead, and 3.9 ounces of silver per ton.

BHP Minerals Ltd., 58%, and Billiton (Australia) Ltd., 42%, began mining at their Cadjebut Mine in June. Ore was stockpiled awaiting commissioning of the new mill in early 1988. Planned ore throughput was 320,000 tons per year yielding 41,000 tons of zinc and 7,500 tons of lead in concentrates. Minable reserves were estimated to be about 3.3 million tons grading 14% zinc and 4.5% lead.

Murchison Zinc Pty. Ltd., 45%; Esso Australia Ltd., 35%; and Aztec Exploration Ltd., 20%, continued exploration of their Golden Grove Hill deposits in Western Australia. The companies were considering development of an underground mine in 1990 with a potential output of 100,000 tons of zinc per year. Ore reserves were 9.3 million tons grading 15.8% zinc, 1.3% lead, and 0.5 and 0.04 ounce of silver and gold, respectively, per ton.

The Electrolytic Zinc Co. of Australia Ltd. was conducting a feasibility study to increase the capacity at its Risdon, Tasmania, zinc smelter to 320,000 tons per year from the present 220,000 tons by the early 1990's. The new capacity would make the Risdon facility the world's largest zinc smelter.

Canada.—Mine production of zinc, which accounted for about 21% of world output, was up sharply in 1987, mainly due to accelerated ore production at Pine Point

Mines Ltd.'s mine in the Northwest Territories. Although the Pine Point Mine closed in July, milling of stockpiled ore continued through yearend and was not expected to cease until mid-1988. A record high 483,500 tons of 59.5% zinc concentrate, up about 50,000 tons over that of 1986 in zinc contained, was produced in 1987, making the Pine Point Mine the single largest Canadian zinc producer. Brunswick Mining and Smelting Ltd.'s No. 12 Mine in New Brunswick, Falconbridge Ltd.'s Kidd Creek Mine in Ontario, Curragh Resources Corp.'s Faro Mine in the Yukon, and the Pine Point Mine, accounted for about 60% of Canadian mine production and 12% of world output.

In September, Newfoundland Zinc Mines Ltd. reopened its Tecam Mine at Daniel's Harbour, Newfoundland. The company, which closed the mine in April 1986, planned to initially produce about 2,800 tons of zinc in concentrates per month. Several new mines, with annual zinc capacities totaling 160,000 tons, were under development for initial startup in 1988. Noranda's Isle Dieu Mine in Quebec, with an expected capacity to produce 50,000 tons of zinc annually, was essentially replacement capacity for the company's nearby Mattagami Lake and Norita Mines, both of which are nearing ore reserve depletion. The Ruttan copper-zinc mine in Manitoba was acquired by the Hudson Bay Mining and Smelting Co. Ltd. (HBMS) in October. During the vear, HBMS closed two small zinc-producing mines in Manitoba, the Ghost Lake and Centennial Mines, and planned to increase annual zinc production capacity at the Ruttan Mine to 13,000 tons in 1988. The increase was planned partially to maintain the feed source for its zinc and copper smelters at Flin Flon, Manitoba.

Curragh Resources Corp. sold one-half of its 92% interest in the Faro Mine and nearby deposits to Giant Resources Ltd. in July. Boliden AB of Sweden owned the remaining 8% share. Curragh and Giant Resources planned to develop and phase in ore production from the nearby Grum and Vangorda lead-zinc deposits as production from the Faro Mine begins to decline in the next few years. Ore reserves at the two nearby deposits were estimated at 46 million tons grading 9% combined lead and

inc

Germany, Federal Republic of.—Preussag AG Metall planned to close its 70,000-ton-per-year Harlingerode zinc smelter in the second half of 1988 as a result of poor economic results. The smelter, which processed both scrap and concentrate, was the last operating plant in Europe using the vertical retort process developed in 1929 by the New Jersey Zinc Co.

Honduras.—Rosario Resources Inc., a subsidiary of AMAX, closed down its El Mochita lead-zinc-silver mine in April owing to high production cost. In August, an investor group, American Pacific Holdings (APH), bought the El Mochito Mine. Following concessions by the Government on taxes and power rates, APH reopened the mine in October. In 1986, its last full year of production, the El Mochito Mine had an output of 49,000 tons of zinc, 11,500 tons of lead, and 1.2 million ounces of silver.

Peru.-San Ignacio de Morochoca S.A. (SIMSA), the country's largest private zinc mine producer, completed the expansion program at its San Vicente zinc mine to increase daily mine and mill ore capacity from 1,800 tons to 3,000 tons. In 1987, production was about 85,000 tons of contained zinc in concentrate. Ore reserves at the San Vicente Mine were about 5.1 million tons averaging 12.6% zinc and 0.8% lead at yearend. SIMSA also completed a smelter feasibility study late in the year and was considering the construction of a 45,000-tonper-year electrolytic zinc smelter, which initially would process mostly company concentrates. Plans called for construction to be completed in 5 years at a cost of about \$120 million.

Spain.—Cía. Industrial Asua-Erandio S.A. (ASER) began shipments of Waelz oxide briquets from its new secondary zinc plant near Bilbao following startup in April. The plant, which treats hazardous steelmaking dust imported from Denmark and the Federal Republic of Germany, produced about 10,000 tons of oxide briquets containing about 45% zinc and 12% lead in 1987. The briquets were sold to European smelters for refinement to metal. ASER planned to produce 22,000 tons of briquets in 1988.

TECHNOLOGY

The Bureau of Mines completed an appraisal of the availability of 34 mineral commodities, including zinc.⁴ The report includes geologic, engineering, and economic evaluations of about 2,900 mines, deposits, and mineral processing plants in the market economy countries.

Aspects of secondary zinc recovery, including trends in recovery, economic and environmental aspects, technological changes, and perspectives in a number of countries were discussed at a special ILZSG meeting. Three thermal processes to recover zinc from steelmaking EAF dusts were also discussed. Particular emphasis was placed on EAF dust treatment in the United States because proposed regulations by EPA may not allow, after August 1988, disposal in landfills, as currently done, without thermal treatment. An estimated 500,000 tons of EAF dust was generated in the United States in 1987.

A comprehensive coverage of zinc-related investigations and an extensive review of current world literature on zinc extraction, alloys, uses, products, and research was available in quarterly issues of Zincscan, published by the Zinc Development Associa-

tion, London, United Kingdom.

¹Physical scientist, Branch of Nonferrous Metals.

²Federal Register. Environmental Protection Agency.
Assessment of Zinc and Zinc Oxide as Potential Toxic Air Pollutants. V. 52, No. 167, Aug. 28, 1987, pp. 32597-32600.

³Copper Development Association Inc. Annual Data 1988, Copper Supply & Consumption 1967-1987, 1987, 20 pp.

⁴U.S. Buyeau of Mines, An Association M.

1988, Copper Supply & 20 pp.

4U.S. Bureau of Mines. An Appraisal of Minerals Availability for 34 Commodities. B 692, 1987, 300 pp.

5 International Lead and Zinc Study Group. Secondary Lead and Zinc Final Report of the Recycling Subcommittee. Washington, DC, Sept. 9-11, 1987, 379 pp.; available from International Lead and Zinc Study Group, Metro House, 58 St. James St., London, England SW1A1LD.

Table 2.—Mine production of recoverable zinc in the United States, by month

(Metric tons)

Month	1986	1987		
January	20,606	17,800		
repruary	18,617	17,774		
March	19,790	19.023		
April	15,472	18,015		
May	12,358	17,830		
June	14,382	18,093		
July	16,724	17,806		
August	15.510	19.096		
September	16,726	18,495		
October	19,576			
November	15,355	18,514		
December		16,081		
December	17,867	18,454		
Total	202,983	216,981		

Table 3.—Mine production of recoverable zinc in the United States, by State

(Metric tons)

1983	1984	1985	1986	1987
1017	337	117	***	
				W
				w
			w	W
			57	10
51,044	45,458	49,340	37,919	34,956
10 155				W
			W	
	W	W	W	w
109,958	116,526	104,471	102.118	115,699
	W			,
275,294	252,768	226,545	202,983	216,981
	W W W 57,044 16,475 56,748 16,792 109,958	W W W W W W W W W W W W W W S7,044 45,458 16,475 W 56,748 W 16,792 109,958 116,526 W W W W W W W W W W W W W W W W W W W	W W W W W W W W W W W W W W W W W W W	W W W W 351 W W W W W W 57,044 45,458 49,340 37,919 16,475 W W W W 56,748 W W W W 16,792 109,958 116,526 104,471 102,118

W Withheld to avoid disclosing company proprietary data; included in "Total."

ZINC

Table 4.—Twenty-five leading zinc-producing mines in the United States in 1987, in order of output

Rank	Mine	County and State	Operator	Source of zinc
1	Elmwood-Gordonsville	Smith, TN	Jersey Minière Zinc Co	Zinc ore.
2	Pierrepont	St. Lawrence, NY	Zinc Corporation of America	Zinc ore.
3	Young	Jefferson, TN	ASARCO Incorporated	Do.
4 5	Immel	Knox, TN	do	Do.
5	Balmat	St. Lawrence, NY	Zinc Corporation of America	ъ.
6	New Market	Jefferson, TN		
7	Buick	Iron, MO	ASARCO Incorporated	Do
8	Magmont	do	The Doe Run Co	Lead ore.
	- · ·		Cominco American Incorporated	Lead-zinc ore.
9	Zinc Mine Works	Jefferson, TN $___$	USX Corp	Zinc ore.
0	Leadville Unit	Lake, CO	ASARCO Incorporated	Lead-zinc ore.
1	Coy Montana Tunnels	Jefferson, TN	do	Zinc ore.
2	Montana Tunnels	Jefferson, TN Jefferson, MT	Montana Tunnels Mining Inc.	Gold ore.
3	Sunnyside	San Juan, CO	Sunnyside Gold Corp	Do.
4	West Fork	Reynolds, MO	ASARCO Incorporated	
5	Rosiclare	Hardin and Pope.	Ozark-Mahoning Co	Lead ore.
		II.	Ozark-Manoning Co	Flouspar.
6	Viburnum No. 29	Washington, MO	The Doe Run Co	Lead ore.
7	Fletcher	Reynolds, MO	do	
8	Lucky Friday	Shoshone, ID	Hecla Mining Co	Lead-zinc ore.
9	Copperhill	Polk, TN	Tennessee Chemicals Co	Silver ore.
Ō	Casteel	Iron, MO	The Dee Pur Co	Copper-zinc ore.
1	Viburnum No. 28	do	The Doe Run Co	Copper-lead ore.
2	Sweetwater	Reynolds, MO	ACARCO I	Lead ore.
3	Catnip Hill	Jessamine, KY	ASARCO Incorporated	Do.
1	Clayton	Custer, ID	Lexington Quarry Co	Zinc ore.
5	Cross	Boulder, Co	Clayton Silver Mines Inc	Silver ore.
	01000	Douider, CO	Hendricks Mining Co. Inc	Gold ore.

Table 5.—Primary and secondary slab zinc produced in the United States $_{
m (Metric\ tons)}$

	1983	1984	1985	1986	1987
Primary:					
From domestic ores From foreign ores	210,315 25,379	197,912 55,220	198,003 63,204	191,079 62,288	211,633 58,377
Total	235,694	253,132	261,207	253,367	270,010
Secondary: At primary smelters At secondary smelters	40,545 28,845	44,930 33,183	39,723 32,844	49,852 13,062	w W
Total	69,390	78,113	72,567	62,914	72,653
Grand total (excludes zinc recovered by remelting)	305,084	331,245	333,774	316,281	342,663

W Withheld to avoid disclosing company proprietary data.

Table 6.—Distilled and electrolytic zinc, primary and secondary, produced in the United States, by grade

(Metric tons)

Grade	1983	1984	1985	1986	1987
Special High High Continuous Galvanizing Controlled Lead Prime Western	95,395 78,511 50,661 10,231 70,286	123,325 71,892 48,200 9,384 78,444	98,282 98,979 26,139 20,952 89,422	78,978 84,738 20,589 18,883 113,093	83,740 88,952 38,751 W 131,220
Total	305,084	331,245	333,774	316,281	342,663

W Withheld to avoid disclosing company proprietary data; included with "Prime Western."

Table 7.—Annual slab zinc capacity of primary zinc plants in the United States, by type of plant and company

Type of plant and company		SI	Slab zinc capacity (metric tons)		
Type of plant and company	19	86	1987		
Electrolytic: AMAX Inc., Sauget, IL. ASARCO Incorporated, ¹ C Jersey Minière Zinc Co., C Zinc Corporation of Ameri Electrothermie: Zinc Corporation of Ameri	larksville, TN ca, Bartlesville, OK	10 8 8 5	6,000 4,000 2,000 1,000	76,000 104,000 82,000 51,000	
Total available capaci Total operating capac	ity		4,000 0,000	404,000 300,000	

¹Zinc plant closed indefinitely in Apr. 1985.

Table 8.—Secondary slab zinc plant capacity in the United States, by company

	Plant location	Capa (metric	
Company		1986	1987
Arco Alloys Corp W. J. Bullock Inc T. L. Diamond & Co. Inc Gulf Reduction Corp Hugo Neu-Proler Co Huron Valley Steel Corp Interamerican Zinc Co New England Smelting Works Inc Pacific Smelting Co Do Zinc Corporation of America	Speiter, WV Houston, TX Terminal Island, CA Belleville, MI Adrian, MI West Springfield, MA	65,000	65,000

Table 9.—Stocks and consumption of new and old zinc scrap in the United States in 1987, by type of scrap

(Metric tons, zinc content)

				Consumption			
Type of scrap	Stocks, Jan. 1	Receipts	New scrap	Old scrap	Total	Stocks, Dec. 31	
Diecastings	782 3,481 3,692 9,231	6,072 50,719 19,062 33,158	39,456 34,718	6,157 9,864 21,878	6,157 49,320 21,878 34,718	697 4,880 876 7,671	
Galvanizer's dross Old zinc ¹ Remelt die-cast slab	9,231 225 709 48	2,241 13,189 3,905	3,885	2,270 13,145	2,270 13,145 3,885	196 753 68	
Skimmings and ashes ³ Other ⁴	21,034 W	80,892 13,871	80,721 13,871		80,721 13,871	21,205 W	
	39,202	223,109	172,651	53,314	225,965	36,346	

W Withheld to avoid disclosing company proprietary data; included in "Total."

¹Includes engraver's plates and rod and die scrap.

²Includes new clippings.

³Includes sal skimmings and die-cast skimmings.

⁴Includes chemical residues.

Table 10.—Production of zinc products from zinc-base scrap in the United States (Metric tons)

Product	1983	1984	1985	1986	1987
Redistilled slab zinc	69,390 34,773 66 3,109 6,535 2,801	78,113 35,254 71 3,380 6,112 2,368	72,567 27,115 3,059 5,667	62,914 24,295 1,814 4,184 W	72,653 28,253 825 8,513 W
Galvanizing stocksSecondary zinc in chemical products	59,085	66,221	56,109	r _{67,271}	93,020

^rRevised. W Withheld to avoid disclosing company proprietary data.

Table 11.—Zinc recovered from scrap processed in the United States, by kind of scrap and form of recovery

(Metric tons)

	4 2	1 12	1986	1987
	KIND OF SCRAP			
New scrap: Zinc-base Copper-base Magnesium-base		 	^r 158,885 ^r 111,990 41	181,861 124,306 35
Total		 	^r 270,916	306,202
Copper-baseAluminum-base Magnesium-base			50,193 *20,363 336 163	55,043 20,877 262 159 76,341
Grand total		=	r _{341,971}	382,543
Metal: Slab zinc ¹ Zinc dust By remelting		 	62,914 24,295 1,300	72,653 28,253
•		_	88,509	100,906
In brass and bronze In aluminum-base alloys In magnesium-base alloys		 	5,998 *179,639 350 204	9,338 178,811 274 194
Zinc chloride		 	38,422 20,524 ^r 7,690 635	51,408 19,752 12,034 9,826
Total		 	r _{253,462}	281,637

Table 12.—U.S. production of zinc dust1

	0 4.1	Va	lue
Year	Quantity - (metric tons)	Total (thou- sands)	Average per pound
1983	40,508	\$45,849	\$0.513
1984	41,044	59,902	.662
1985	30,813	38,721	.570
1986	27,247	33,039	.550
1987	29,890	36,276	.551

¹Does not include zinc dust produced for internal plant

^rRevised.

¹Includes zinc content of slab made from remelt die-cast slab.

MINERALS YEARBOOK, 1987

Table 13.—U.S. consumption of zinc

(Metric tons)

	1983 ^r	1984 ^r	1985 ^r	1986 ^r	1987
Slab zinc, apparent (rounded) Ores and concentrates (zinc content) ¹ Secondary (zinc content) ²	933,000 36,912 276,370	980,000 45,487 318,018	961,000 39,886 278,710	999,000 19,236 ¹ 277,757	1,052,000 2,536 309,890
Total (rounded) ³	1,246,300	1,343,500	1,279,600	1,296,000	1,364,000

Revised.

Table 14.—Apparent consumption1 of slab zinc, by industry and product

(Metric tons)

	Industry and product	1986	1987
Galvanizing: Sheet and strip		361,200	999 000
Other		168,000	382,000 168,000
Total Brass and bronze		529,200 135,100	550,000 139,600
Zinc-base alloys: Diecastings Other		216,700 14,000	217,200 11,500
Total		230,700	228,700
Zinc oxide		43,000	36,700 64,000
Light metal alloys		14,500	16,100 16,900
Grand total		999,000	1,052,000

¹Based on reported slab zinc consumption.

Table 15.—U.S. reported consumption of slab zinc in 1987, by industry and grade (Metric tons)

Industry	Special High Grade	High Grade	Continuous Galvanizing Grade	Controlled Lead Grade	Prime Western	Remelt	Total
Galvanizing	94,530 176,555 41,334 22,143 61,428 19,325	67,232 2,068 29,038 - W 1,708	53,714 54 	26,053 13,284 	162,227 4 8,951 W 524	1,298 55 4,983 2,220	405,054 178,682 84,360 35,427 61,428 23,777
Total	415,315	100,046	53,768	39,337	171,706	8,556	788,728

W Withheld to avoid disclosing company proprietary data; included with "Special High Grade."

¹Includes ore used directly in galvanizing.

^{*}Includes one used directly in garvanizing.

*Excludes secondary slab and remelt zinc.

*Data have been revised based on apparent consumption; previously based on reported consumption.

Includes zinc used in making zinc dust, wet batteries, desilverizing lead, powder, alloys, anodes, chemicals, castings, and miscellaneous uses not elsewhere specified.

ZINC

Table 16.—U.S. reported consumption of slab zinc, by industry and product

(Metric tons)

Industry and product	1986	1987
Galvanizing:		
Sheet and strip	241.872	276,737
Wire and wire rope	13,090	13,84
Tubes and pipe	20,745	21,820
Fittings (for tubes and pipe)	3,025	3,820
Tanks and containers	3,537	2,919
Structural shapes	32,484	32,35
Fasteners	4,208	3.742
Pole-line hardware	1,904	2.47
Fencing, wire cloth, netting	10.953	11,169
Other and unspecified uses	34,133	36,16
Other and unspecified uses		
Total	365,951	405,054
Brass and bronze products:		
Sheet, strip, plate	25,906	29,00
Rod and wire	15,065	24,900
Tubes	2,093	1,75
Castings and billets	15,979	14,47
Copper-base ingots	13,635	13,40
Other copper-base products	1,003	820
Total	73,681	84,360
Zinc-base alloys:		
Diecasting alloys	163,957	169,82
Dies and rod alloys	3,068	3,35
Slush and sand-casting alloys	8,085	5,50
Total	175.110	178,68
Rolled zinc ¹	28,597	35,42
Roned zinc Zinc oxide	40,061	61,42
Zinc oxide	40,001	01,12
Other:	10.007	1470
Light-metal alloys	13,007	14,78
Miscellaneous ²	9,556	8,99
Total	22,563	23,77
Grand total	705,963	788,72

Table 17.—U.S. reported consumption of slab zinc in 1987, by State

(Metric tons)

State	Galva- nizers	Brass mills ¹	Die- casters ²	Other ³	Total
Alabama	w	w			11,003
Arkansas	W				W
California	22,452	w		W	28,557
Colorado	W		w		w
Connecticut	2,005	2,761	w	W	9,676
Delaware	W	´			w
Florida	W				W
Georgia	ŵ		w		1,804
Hawaii	ŵ				W
Illinois	69,919	w	32,759	w	131,489
Indiana	40,371	w	w w	w	47,074
Iowa	,		ŵ	w	W
Kentucky	w		• • • • • • • • • • • • • • • • • • • •		w
Louisiana	· ẅ		w		2,491
Maryland	ŵ		••		, w
Massachusetts	2.083	w		w	2,866
Michigan	Ž, W	18,466	39,354	ŵ	62,531
Minnesota	ŵ	10,100	00,001	••	w
Mississippi	ŵ				ŵ
Missouri	ŵ			w	4,446
Nebraska	ŵ			ŵ	5,817
	1,260	w		ŵ	1,935
New Jersey New York	3,592	w	63,283	ŵ	90,150
	0,332 W	**	W	ŵ	W
North Carolina	**		**	**	**

See footnotes at end of table.

¹Includes zinc used in penny production.

²Includes zinc used in making zinc dust, wet batteries, desilverizing lead, powder, alloys, anodes, chemicals, castings, and miscellaneous uses not elsewhere specified.

Table 17.—U.S. reported consumption of slab zinc in 1987, by State —Continued (Metric tons)

State	Galva- nizers	Brass mills ¹	Die- casters ²	Other ³	Total
		7			
Ohio	49,273	w	29,919	w	87,730
Oklahoma	W			W	2,508
Oregon	ŵ	w		• •	887
Pennsylvania	105.421	ŵ	w	41.308	152,614
South Carolina	W	••	•••	12,000	w
Tennessee	· w			w	41,246
Texas	w			ŵ	9,756
Utah	w	w			w
Virginia	w	w	w		4,399
Washington	· w		**	w	1,079
West Virginia	ẅ	·		ŵ	25,926
***·	W	w	w	· w	8,318
Undistributed	107,381	58,151	13.313	77.101	45,870
Undistributed	107,001	90,191	15,515	11,101	40,810
Total ⁴	403,757	79,378	178,628	118,409	780,172

W Withheld to avoid disclosing company proprietary data; included with "Total" and "Undistributed." Includes brass mills, brass ingot makers, and brass foundries.

Table 18.—Rolled zinc produced and quantity available for consumption in the United States

(Metric tons)

	1986	1987
Production¹ Exports Imports for consumption Available for consumption	34,316 721 3,811 42,737	42,771 1,723 960 40,342

¹Includes other plate over 0.375 inch thick, and rod and wire.

Table 19.—Production and shipments of zinc pigments and compounds1 in the **United States**

(Metric tons)

	19	986	1987		
	Produc- tion	Shipments	Produc- tion	Shipments	
Zinc oxide Zinc sulfate Zinc chloride	120,448 55,221 16,214	121,480 53,796 13,216	140,595 48,771 25,265	137,957 44,518 21,928	

¹Excludes leaded zinc oxide and lithopone.

Table 20.—Zinc content of zinc pigments¹ and compounds produced by domestic manufacturers, by source

(Metric tons)

		1986					1987	
		Zinc in pigments and com- pounds produced from—		m. 4 - 1	Zinc	m + 1		
	Ore	Slab zinc	Secondary material	Total -	Ore	Slab zinc	Secondary material	Total
Zinc oxide Zinc sulfate Zinc chloride	17,311 W	40,585 	38,422 22,363 7,690	96,318 22,363 7,690	w	61,014	51,408 19,752 12,034	112,422 19,752 12,034

W Withheld to avoid disclosing company proprietary data; included with "Secondary material."

Includes producers of zinc-base alloys for discastings, stamping dies, and rods.

³Includes slab zinc used in rolled zinc products and in zinc oxide.

⁴Excludes remelt zinc.

¹Excludes leaded zinc oxide, zinc sulfate, and lithopone.

Table 21.—Reported distribution of zinc oxide shipments, by industry¹
(Metric tons)

Industry	1983	1984	1985	1986	1987
AgricultureCeramics	2,569 5,987 19,217 9,716 10,239 67,971 19,355	2,380 7,472 23,611 8,117 9,246 79,390 16,702	2,575 7,286 22,477 8,215 8,324 71,574 15,715	3,910 5,012 22,704 10,797 W 70,307 8,750	4,346 6,126 28,486 10,009 W 79,486 9,504
	135,054	146,918	136,166	121,480	137,957

W Withheld to avoid disclosing company proprietary data; included with "Other."

In addition, zinc oxide was imported as follows: 1983—31,588; 1984—35,741; 1985—39,375; 1986—43,924; and 1987—57,276. Distribution cannot be distinguished by industry.

Table 22.—Distribution of zinc sulfate shipments

(Metric tons)

Industry	1984	1985	1986	1987
AgricultureOther	28,162 8,950	33,786 8,723	45,965 7,831	36,875 7,643
Total	37,112	42,509	53,796	44,518

Table 23.—Stocks of slab zinc in the United States, December 31

(Metric tons)

	1983	1984	1985	1986	1987
Primary producers Secondary producers Consumers Merchants	20,750 3,149 89,041 35,199	42,025 4,303 72,506 18,792	29,030 3,389 60,310 27,163	16,722 3,203 54,239 26,559	13,449 3,162 57,125 22,352
Total	148,139	137,626	119,892	100,723	96,088

Table 24.—Average monthly U.S., LME, and European producer prices for equivalent zinc

(Metallic zinc, cents per pound)

		1986		1987		
Month	United States ²	LME cash	European producer	United States ²	LME cash	European producer
January February March April May June July August September October November December	32.87 30.88 31.22 32.13 32.97 36.54 39.55 40.83 43.70 45.78 45.78 43.51	29.18 27.58 28.35 29.91 32.06 36.45 36.58 37.01 39.48 40.17 37.17 36.18	31.75 30.08 29.48 31.34 33.24 37.24 38.10 38.53 40.95 41.73 40.59 39.46	41.40 38.38 37.70 38.19 42.23 45.05 45.67 44.43 42.59 41.75 42.38 43.31	34.43 33.56 33.16 34.53 38.01 39.80 37.59 36.44 34.28 34.28 38.42 39.25	37.87 34.92 34.92 37.06 37.65 39.01 39.01 37.19 37.19 37.67 39.01
Average	38.00	34.19	38.04	41.92	36.20	37.20

¹London Metal Exchange.

Source: Metals Week.

²Based on High Grade zinc delivered.

Table 25.—U.S. exports of zinc and zinc alloys, by country

	198	35	198	36	1987	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou sands
nwrought zinc and zinc alloys:		-			-	
Belgium-Luxembourg	20	\$22	5	\$18	6	\$
Canada	432	925	1,081	2,550	1,059	2,6
Chile	501	451	(1)	3	1,000	2,0
Egypt	255	250		. •		
Finland Germany, Federal Republic of	200	200	33	31		
Germany, Federal Republic of	21	18	9	33	120	-
Ghana	26	26			120	
India	48	62	34	32		
Israel	25	56	04	04		and the second
Jamaica	20	30	59	50	77	
Janan	37	73				
Japan Korea, Republic of	87	98	27	72	27	
Malaysia	01	90	431	774	4,257	8,€
Maria	79	007	11	8		
Mexico Netherlands		207	93	133	44	1
Denomination	27	67	11	19	2	
Panama	5	9	32	52	42	
Salvador	3	4	21	22	1	
Spain			6	14		
Switzerland	- <u>ī</u>	1	21	63	$-\overline{3}$	
Taiwan	618	463	1,610	1,074	1,113	
Trinidad			17	19	•	
United Kingdom	12	40	1	īi	- 7	
Venezuela	20	63	-		50	5
Other ²	37	95	46	205	99	
Total	2,254	2,930	3,548	5,183	6,907	12,9
rought zinc and zinc alloys: Argentina	17	47	8	21	1	
Australia	ī	ž	10	16		
Bahamas	41	52	10	21	39	
Brazil		٠	ĭ	5	00	
Canada	1.379	2,085	1,300	1,599	1,087	1.7
Chile	11	80	2,000	7	53	1,4
Colombia	13	56	10	26	. 7	
Costa Rica	ĭ	2	200	90	i	
Costa Rica Dominican Republic	11	45	200 1			
Ecuador	20	41		10	23	
Egypt	6	17	13	23	2	
El Salvador			7.7			
France	6	18	10	41	23	
Germany, Federal Republic of	23	69				
Current Republic of	2	3	49	84	863	
Guyana	4	11	.1	. 2	6	
India	- 9		18	11	2	
Japan		24	47	108	59 .	1
Korea, Republic of	14	34	2	3	4	
Leeward and Windward Islands	1	1	34	48	18	
Mexico	397	821	288	613	521	7
Netherlands Antilles	6	4	6	12	46	
Pakistan			6	11		
Panama	20	41	ž	12	22	
Philippines	3	9	$2\overline{4}$	54	42	1
Saudi Arabia	2	24			1	-
Singapore	·	ī			•	
South Africa, Republic of	11	26	- 8	$\overline{24}$	$-\frac{1}{3}$	
Spain		20	20	11	3 1	
Switzerland	17	63	20	11	1	
	34	83	20	$\overline{42}$	$-\bar{2}$	
Trinidad and Tobago	27	35				
United Kingdom	48		1 75	5	10	
Venezuela	33	41	75 40	158	11	
Other ³	55 52	182 154	40 45	56 106	29 127	2
		101	*20	100	141	
Total	2,210	4,071	2,252	3,219	3,003	4,0

Less than 1/2 unit.

¹Less than 1/2 unit.
²Includes Angola, Argentina, Australia, Barbados, Brazil, Costa Rica, Dominican Republic, Ecuador, El Salvador, France, Guatemala, Honduras, Hong Kong, Indonesia, Italy, Kenya, Kuwait, Leeward and Windward Islands, Libya, Netherlands Antilles, New Guinea, New Zealand, Peru, Philippines, Saudia Arabia, Singapore, Thailand, the United Arab Emirates, and Yugoslavia.
³Includes Austria, Belgium-Luxembourg, Belize, Bermuda, China, Cyprus, Denmark, Finland, French Guiana, Guatemala, Hong Kong, Iran, Ireland, Israel, Italy, Jamaica, Kuwait, Libya, Morocco, Mozambique, the Netherlands, New Zealand, Nicaragua, Norway, Peru, Portugal, Qatar, Somalia, Sri Lanka, Suriname, Turkey, the United Arab Emirates, and Uruguay.

Table 26.—U.S. exports of zinc

			Ores and			E	locks, pigs	s, anodes, etc	•	
	Year			concen		Unwr	ought	Unwro allo		
	1041			Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	
1985 1986 1987				23,264 3,269 16,921	\$8,216 1,590 8,304	1,011 1,938 1,082	\$1,525 3,533 2,114	1,243 1,610 5,825	\$1,405 1,650 10,823	
	_	Wro	ught zinc	and zinc allo	/s	1774		Durat	4	
	•	Sheets, plates, strips			Angles, bars, pipes, rods, etc.		Waste and scrap (zinc content)		Dust and flakes	
	•	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	
1985 1986 1987		776 721 1,732	\$1,973 1,513 2,337	1,434 r _{1,531} 1,271	\$2,098 1,706 1,711	43,947 68,660 88,277	\$19,600 32,803 46,182	2,037 1,551 1,927	\$2,480 2,104 3,300	

 $^{^{\}mathbf{r}}$ Revised.

Source: Bureau of the Census.

Table 27.-U.S. exports of zinc ores and concentrates, by country

(Zinc content)

	19	86	1987		
Country	Quantity (metric tons)	Value (thousands)	Quantity (metric tons)	Value (thousands)	
Canada Germany, Federal Republic of Mexico Panama Taiwan	3,265 -3 (1)	\$1,582 -7 1	12,972 3,857 8 	\$7,359 881 4 59	
Total ²	3,269	1,590	16,921	8,304	

Table 28.—U.S. general imports of zinc, by country

	198	35	198	36	1987	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
ORES AND CONCENTRATES						
(zinc content)						
Australia	2,934	\$819	1.981	\$262	476	\$63
Canada	47,200	18,351	150,100	23,512	399,755	61,634
Chile			68	57	12	. 2
China					223	30
Germany, Federal Republic of					5,103	3,044
Honduras	14,302	4,175	14,218	1,756	6,469	869
Mexico	12,988	4,232	6,251	1,693	5,494	1,648
Peru	13,402	4,970	25,118	5,057	7,978	3,001
South Africa, Republic of	473	1,963				
United Kingdom	92	64				
Total	91,391	34,574	197,736	32,337	425,510	70,291

¹Less than 1/2 unit.
²Data may not add to totals shown because of independent rounding.

Table 28.—U.S. general imports of zinc, by country —Continued

SLAND Y

Profession of the section of the first		19	85	198	36	1987	
	Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
BLOCK	S, PIGS, OR SLABS ¹						
Algeria			100			505	\$389
Argentina _		2,500	\$1,741				4500
Australia		29,610	26,482	40,686	\$28,421	51,435	42,451
Belgium-Lux	embourg	1.000	802	,	4.20,000	9.769	8,371
Canada		383,618	326,388	349,335	253,110	360,729	301,773
China		505,525	,	1.342	1,185	4,199	3,474
Colombia			,	200	162	2,200	0,11.
Costa Rica				147	92		
Finland		19.601	16.832	23,134	18,896	18,336	15,702
		5.410	4.027	5.756	4,933	10,539	8,575
	nesia	0,410	2,021	2,938	1.962	10,000	0,010
Commony Fo	deral Republic of	11.991	11.937	9.712	7,236	$15.\overline{272}$	13,065
		11,551	11,501		7,230 884	10,212	10,000
		· · · · · · · · · · · · · · · · · · ·		1,011 40		1 000	1 000
LIOUR VOUR		1/7 + 			48	1,289	1,020
italy		0.500	0.000	12,743	9,668	16,388	12,752
Japan	blic of	2,700	2,386	1,951	1,283	11,943	9,892
Korea, Kepul	Direct					3,868	4,184
Mauritius _				430	292		
Mexico		53,846	38,355	49,619	36,372	53,344	42,368
Netherlands		13,053	10,293	20,767	15,538	28,281	23,451
New Zealand				300	257	500	423
Norway		10,822	8,975	12,809	10,133	17,507	15,440
Panama		13	13				
		36,326	29,104	43,590	30.720	22,383	17.235
Poland		652	491	1.183	973	250	232
Saudi Arabia		39	25	-,			
South Africa	, Republic of	3.696	2,753	11.730	7.106		
Spain		17,058	13,370	48,948	40.515	55,427	42,256
		11,000	10,0.7	22	27	00,121	10,000
USSR				812	544		
United King	dom	6.779	5,320	5,968	3,929	3,570	2.875
Viscoelavia		0,119	0,020	3,979	3,398	2,035	1,550
		12.042	8,597	15,974	9,346	17,338	12.870
		14,032		10,514	5,040	1,078	12,870 873
Daimoia						1,070	010
Total		610.762	507.898	665.126	487,030	705,985	581,221

¹In addition, in 1987, 332 tons of zinc anodes was imported from Australia, Canada, Denmark, the Federal Republic of Germany, Israel, Japan, Mexico, the Netherlands, Norway, Sweden, Taiwan, and the United Kingdom.

Table 29.—U.S. imports for consumption of zinc, by country

	198	35	198	36	1987	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
ORES AND CONCENTRATES						
(zinc content)						
Australia	1,936	\$256	1,226	\$477		
Canada	50,031	20.017	28,645	10,069	28.960	\$7.13
Honduras	14,302	4,175	14,218	1.756	6,469	86
Mexico	12,900	4.149	6,251	1,693	5,422	1.63
Peru	10,452	3,002	25,446	5,101	5,613	2,68
South Africa, Republic of	473	1,963	,	-,	-,	_,
United Kingdom	92	64				
Total	90,186	33,626	75,786	19,096	46,464	12,32
BLOCKS, PIGS, OR SLABS ¹					************	
Algeria					505	389
Argentina	2,500	1.741			000	
Australia	29,610	26,483	40,686	28,421	51.435	42,45
Belgium-Luxembourg	1,000	802	,	,	9,769	8,37
Canada	383,618	326,388	349,335	253,110	360,729	301,77
China			1.342	1.185	4.199	3,47
Colombia			200	162	-,	
Costa Rica			147	92		
Finland	19,601	16,832	23,134	18.896	18.336	15,702
France	5.410	4,027	5,756	4,935	10,539	8,57

Table 29.—U.S. imports for consumption of zinc, by country —Continued

	198	5	198	6	198	7
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
BLOCKS, PIGS, OR SLABS ¹ — Continued						
			2,938	\$1.962		
French Polynesia	11,991	\$11.937	9,712	7,236	15,272	\$13,065
Germany, Federal Republic of	11,551	φ11,001	1,011	884		- 210 <u>01</u>
Greece			40	48	1,289	1.020
Hong Kong			12,743	9.668	16,388	1,252
Italy	2,700	2,386	1,951	1.283	11,943	9,892
Japan	2,100	2,000	1,001	1,200	3,868	4,184
Korea, Republic of			430	292	4,044	
Mauritius	53.984	38,460	49.619	36.372	53.344	42,368
Mexico	13.053	10.293	20,767	15,537	28,281	23,451
Netherlands	13,000	10,250	300	257	500	42
New Zealand	10.822	8,975	12.809	10.133	17.507	15,440
Norway		12	12,000	10,100	11,001	77,77
Panama	13		43,590	30,720	22,383	17.23
Peru	36,326	29,104 491	1.183	973	250	232
Poland	652	491 25	1,100	3.0	200	
Saudi Arabia	39		11.730	7.106		
South Africa, Republic of	3,696	2,753	48.948	40.515	55,427	42,250
Spain	17,058	13,370	40,540	27	00,421	zejec.
Taiwan	6	· · · · · · · · · · · · · · · · · · ·	812	544		
U.S.S.R	==			3.928	3,570	2,87
United Kingdom	6,779	5,320	5,968	3,398	2.035	1.55
Yugoslavia		==	3,979		17,338	12,87
Zaire	12,042	8,597	15,974	9,346	1,078	878
Zambia					1,078	010
Total	610,900	508,003	665,126	487,030	705,985	581,221

¹In addition, in 1987, 332 tons of zinc anodes was imported from Australia, Canada, Denmark, the Federal Republic of Germany, Israel, Japan, Mexico, the Netherlands, Norway, Sweden, Taiwan, and the United Kingdom.

Source: Bureau of the Census.

Table 30.—U.S. imports for consumption of zinc

	Ores and con		Blocks slat		Sheets, plat other fo		Waste scre	
	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
1985	90,186 75,786 46,464	\$33,626 19,096 12,322	610,900 665,126 705,985	\$508,003 487,030 581,221	3,559 3,811 960	\$2,757 3,048 1,384	3,247 4,521 4,025	\$1,848 1,987 1,928
	Dross and s			fume ontent)	Dust, powder, flakes		Total	
	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	(tho	alue ^z usands)
1985	4,942 6,087 6,711	\$2,419 3,098 3,443	11 16	\$2 18	8,681 7,446 7,001	\$10,78 8,20 7,9	60	\$559,484 522,478 608,256

¹Unwrought alloys of zinc were imported as follows, in metric tons: 1985—1,096 (\$841,413); 1986—113 (\$107,389); and 1987—60 (\$53,687).

²In addition, the value of manufactures of zinc imported was as follows: 1985—\$713,112; 1986—\$1,206,175; and 1987—\$150,000 (\$10,000 (

^{\$1,569,545.}

Table 31.—U.S. imports for consumption of zinc pigments and compounds

en de la companya de La companya de la co	198	86	1987		
	Quantity	Value	Quantity	Value	
	(metric	(thou-	(metric	(thou-	
	tons)	sands)	tons)	sands)	
Zinc oxide Zinc sulfide Lithopone Zinc chloride Zinc sulfate Zinc sulfate Zinc you'de Zinc cyanide Zinc cyanode Zinc compounds, n.s.p.f	43,924	\$32,769	57,276	\$46,572	
	766	1,197	997	1,693	
	1,204	729	1,282	810	
	1,572	1,278	1,254	1,096	
	3,311	1,971	3,339	1,964	
	122	199	229	425	
	256	462	231	427	
	6,162	8,401	4,064	7,091	

Source: Bureau of the Census.

Table 32.—Zinc: World mine production (content of concentrate and direct shipping ore unless noted), by country $^{\rm 1}$

(Thousand metric tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Algeria	12.1	14.6	13.5	14.0	14
Argentina	36.6	34.9	35.7	39.5	14.0
Australia	699.0	676.5	759.1	662.3	37.0
Austria	19.4	20.9	21.7	16.3	733.
DOIIVIA	47.1	37.8	37.1	33.5	15.
Drazii	118.6	r _{113.7}	123.8	123.9	36.3
Bulgaria*	68.0	68.0	68.0		119.
	4.5	5.3		70.0	70.0
Canada	1.069.7	1,207.1	4.4	4.6	² 2.6
ChileChile_	6.0	19.2	1,172.2	1,290.8	1,500.2
Cnina	160.0		22.3	10.5	19.6
Colombia	100.0	160.0	300.0	² 396.0	425.0
Congo (Brazzaville)	e3.0	==	2.0	e 6.0	
Zechoslovakia		2.8	2.3	^e 2.3	2.3
Ecuador ^e	9.8	7.2	e _{7.3}	6.3	6.5
Finland	(³)	(³)	(³)	(3)	(3
France	55.9	60.2	e61.0	€60.Ó	55.1
France Fermany, Federal Republic of	34.3	36.2	40.6	39.5	31.3
der many, rederal republic of	113.5	113.1	117.6	103.7	2102.2
Greece	21.3	22.5	21.5	22.5	² 21.0
reeniand	79.2	71.3	70.3	62.1	
Honduras	38.0	41.5	44.0	² 25.4	² 69.2
lungarv	2.4	2.3		-25.4 2	10.0
ndia	40.4	44.3	2.2		
ran	39.5	44.3 47.1	45.3	49.2	² 53.4
reland	186.0		50.0	36.0	36.0
taly	42.9	206.1	191.6	181.7	² 177.0
apan		42.3	45.4	26.3	47.0
Korea, North ^e	255.7	252.7	253.0	222.2	² 165.8
Korea, Republic of	140.0	140.0	180.0	180.0	225.0
fexico	56.0	49.2	45.7	37.3	² 23.5
forecoe	266.3	303.6	291.9	271.4	304.0
forocco ^e	7.5	10.7	14.7	13.1	210.3
Vamibia	33.5	32.2	30.3	35.4	35.3
Nigeria e	(³)	(³)	(3)		30.0
101 Way	32.4	28.5	27.8	e _{27.5}	22.2
Peru	r491.7	r465.9	523.4	597.6	2592.3
nilippines	2.3	2.2	1.9	1.6	
oland	189.0	190.7	190.8	190.4	² 1.1
omania ^e	45.0	44.0	43.0		189.6
outh Africa, Republic of	110.0	106.1	96.9	43.0	42.0
pain	167.7	230.4		101.9	² 112.7
weden	204.2	210.0	234.7 216.4	223.1	235.0
nanand	204.2			213.9	200.0
unisia	$\bar{7}.\bar{\bar{5}}$	41.4	77.5	97.2	² 88.7
urkey	31.1	6.7	5.6	4.5	4.5
.S.S.R.e		50.4	37.4	41.1	58.0
nited Kingdom	805.0	810.0	810.0	810.0	810.0
nited States	8.9	7.5	5.3	5.6	5.0
letnam"	296.7	277.5	251.9	216.0	² 232.9
ugoslavia	7.0	7.0	5.0	5.0	5.0
aire	86.8	^r 85.8	89.3	94.6	² 80.5
aireambia	76.2	74.8	77.5	81.3	81.3
MINIO	55.2	41.1	32.0	33.0	² 35.4
Total ⁵	-			00.0	00.4
10001	r _{6.282.9}	r _{6,523.5}	6,801.3	6,829.1	7,143.9

^eBetimated. ^pPreliminary. ^rRevised.

¹Table includes data available through July 15, 1988.

²Reported figure.

³Less than 1/2 unit.

⁴Content in ore hoisted.

⁵Data may not add to totals shown because of independent rounding.

ZINC

Table 33.—Zinc: World smelter production, by country¹

(Thousand metric tons)

31.2	1984	1985	1986 ^p	1987 ^e
91 9		35.7	34.5	35.0
81.4	35.0	30.1		
80 U	27.7	30.4	29.1	30.0
	2.2	2.5	e3.0	4.5
		32 9	e32.1	34.5
32.0	29.9	02.0		
	901.0	288 7	305.7	3310.2
		4.5	4.5	4.5
		202 2	310.2	314.7
		25.0	r e24.0	24.5
25.0 275.8	285.3	289.6	285.0	284.5
999	106.9	116.1	129.7	138.0 6.0
11.0	7.5	4.6	5.9	0.0
	1144	120.7	135.6	144.0
			90.0	392.0
	683.2	692.4	571.0	610.5
	185.0	275.0		375.0 9.0
	9.1			152.0
155.3	158.8	160.4	155.4	102.0
			- :	
231.5	238.5	268.6	269.5	249.0 17.0
	20.0	17.0	18.0	11.0
	050 5	285.6	287.5	266.0
		F17.0	r _{17.0}	19.0
10.5				
		990.0	3443	348.3
				329.8
27.8	30.8	21.3		3377.0
356.5	356.4	367.8		•377.6°).
.6	.6	.6		
				301
53.3	55.8			³ 61.
.2	.2	. <u>z</u>		
F0 F	56.0	e71.1	e72.2	61.
55.5 155.9	169.7	215.6	229.4	256.
FF0.0	644.4	629.5	626.5	³ 591.
	110.1	110.1	81.5	374
135.0		700 C	709.0	3665
701.3				210
				3 ₁₈₆
	108.5			180
			196.2	207
			90.4	3116
		169.7	155.9	14
	176.0	180.0		317
		5.9		
	41.0	40.0		- 3: 3:9:
	88.4	93.7		21
189.9	207.4			36
				2
14.3	19.9	22.2	10.4	
				90
870.0				
95.0		100.0		
965.0	995.0		1,005.0	1,01
200.0	85.6		85.9	
	**T111.0	2.0 2.2 32.0 29.9 298.5 301.9 4.5 4.5 303.0 306.4 28.0 24.0 275.8 285.3 99.9 106.9 11.0 7.5 111.0 114.4 90.0 90.0 617.0 683.2 175.0 185.0 9.1 9.1 155.3 158.8 231.5 238.5 18.0 20.0 249.5 258.5 16.5 17.0 328.7 325.6 27.8 30.8 356.5 356.4 .6 .6 53.3 55.8 .2 .2 .2 53.5 16.9 169.7 579.0 644.4 122.3 110.1 701.3 754.5 120.0 120.0 108.0 108.5 175.7 167.0 187.5 299.7 90.7 94.2 154.0 148.4 170.3 176.0 3.8 6.4 42.0 41.0 84.4 189.9 207.4 14.3 19.9 870.0 900.0 95.0 900.0 95.0	2.0 2.2 2.5 32.0 29.9 32.9 298.5 301.9 288.7 4.5 4.5 4.5 303.0 306.4 293.2 223.0 24.0 25.0 275.8 285.3 289.6 99.9 106.9 116.1 11.0 7.5 4.6 11.0 114.4 120.7 90.0 90.0 90.0 617.0 683.2 692.4 175.0 185.0 275.0 91. 9.1 9.1 9.2 155.3 158.8 160.4 231.5 238.5 268.6 18.0 20.0 17.0 249.5 258.5 285.6 18.0 20.0 17.0 328.7 325.6 339.9 27.8 30.8 27.9 356.5 356.4 367.8 -6 .6 .6 53.3 55.8 70.9 -2 2 2 53.5 169.7 215.6 579.0 644.4 629.5 155.9 169.7 215.6 579.0 644.4 629.5 100.0 120.0 180.0 108.0 108.5 11.7 175.7 167.0 175.4 187.5 209.7 290.7 90.7 94.2 92.7 154.0 148.4 169.7 170.3 176.0 180.0 180.0 108.5 11.7 175.7 167.0 175.4 187.5 209.7 94.2 92.7 90.7 94.2 92.7 154.0 148.4 169.7 170.3 176.0 180.0 3.8 6.4 5.9 42.0 41.0 40.0 3.8 6.4 5.9 42.0 41.0 40.0 3.8 6.4 5.9 42.0 41.0 40.0 3.8 6.4 5.9 42.0 41.0 40.0 3.8 6.4 5.9 3.9 207.4 213.3 3.9 207.4 213.3 1.1 19.9 22.2	30.0 2.1 2.5 e3.0 32.0 29.9 32.9 e32.1 298.5 301.9 288.7 305.7 4.5 4.5 4.5 4.5 303.0 306.4 293.2 310.2 23.0 24.0 25.0 reg.4.0 285.3 289.6 285.0 99.9 106.9 116.1 129.7 11.0 114.4 120.7 135.6 90.0 90.0 90.0 90.0 617.0 683.2 692.4 571.0 175.0 185.0 275.0 3336.0 9.1 9.1 9.2 9.0 155.3 158.8 160.4 e155.4 231.5 238.5 268.6 269.5 18.0 20.0 17.0 reg.6 18.0 20.0 17.0 reg.6 249.5 258.5 285.6 287.5 16.5 17.0 reg.6 328.7 325.6 339.9 344.3 27.8 30.8 27.9 26.6 356.5 356.4 367.8 370.9 27.8 30.8 27.9 26.6 356.5 356.4 367.8 370.9 28.7 29.2 2.2 2.2 29.3 22 2.2 2.2 153.5 56.0 e71.1 e72.2 155.9 169.7 215.6 229.4 579.0 644.4 629.5 626.5 110.1 110.1 81.5 701.3 754.5 739.6 708.0 108.0 108.5 111.7 127.4 175.7 167.0 175.4 173.7 187.5 209.7 90.7 90.2 190.7 94.2 92.7 90.4 154.0 148.4 169.7 175.4 175.7 167.0 176.4 173.7 187.5 209.7 90.7 90.7 196.2 90.7 94.2 92.7 90.4 154.0 148.4 169.7 155.9 170.3 176.0 180.0 179.0 3.8 6.4 5.9 96.5 42.0 41.0 40.0 39.0 84.4 88.4 93.7 90.4 189.9 207.4 213.3 202.0 14.3 19.9 22.2 15.4

See footnotes at end of table.

MINERALS YEARBOOK, 1987

Table 33.—Zinc: World smelter production, by country¹ —Continued

(Thousand metric tons)

Country					
country	1983	1984	1985	1986 ^p	1987€
United States: Primary					
Secondary	235.7 69.4	253.1 78.1	261.2 72.6	253.4 62.9	³ 270 ³ 72
Total	305.1 6.0	331.2 6.0	333.8 4.2	316.3 4.2	³342.
/ugoslavia: Primarye Secondarye Secondarye	77.0 11.0	81.6 11.0	71.4 12.0	77.0 12.3	93. 24.
Totalaire, primaryambia, primary	88.0 62.5 37.9	92.6 66.1 29.2	83.4 64.0 22.8	89.3 63.9 22.5	118. 363. 321.
Grand total 4Of which:	r _{6,249.0}	r _{6,526.5}	6,852.4	6,760.6	7,029.
Primary Secondary Undifferentiated Preliminary Provised	4,654.3 r361.9 1,232.8	^r 4,874.1 ^r 360.1 ^r 1,292.3	5,082.9 352.0 1,417.5	4,949.6 320.6 1,490.5	5,122.5 343.4 1,564.0

*Estimated. *Preliminary. The similar of the total of the

*Detail may not add to totals shown because of independent rounding.

Zirconium and Hafnium¹

By James B. Hedrick²

Mine production of zircon, the principal ore mineral of zirconium and hafnium, increased in 1987. Three domestic companies produced zircon from three heavy-mineral sands deposits in Florida, and from one operation in New Jersey. Zircon was mined in Florida as a coproduct of the titanium minerals, ilmenite and rutile, and in New Jersey from tailings previously produced as a byproduct of processing ilmenite. World demand for zircon was strong from the ceramic, foundry, and refractory industries, resulting in limited availability.

Major nonenergy uses for zirconium were in foundry sands, refractories, ceramics, abrasives, chemical manufacture, and metallurgical applications. Hafnium was used in metallurgical applications, refractory alloys, and in ceramic cutting tools.

Advanced technology applications of zirconium included stabilized zirconia used in extrusion dies in the nonferrous metals industry and in ceramic parts and coatings in high-temperature applications. Also, zirconium fluoride and hafnium fluoride glasses were being developed as replacements for silicon dioxide glasses in fiber optics.

Domestic Data Coverage.—Domestic mine production data for zircon are developed by the Bureau of Mines from a voluntary survey of U.S. operations entitled the "Production of Zircon." Of the three mining companies to which the form was sent all responded, representing 100% of mine production. Zircon production data are withheld to avoid disclosing company proprietary data.

Table 1.—Salient U.S. zirconium statistics

(Metric tons)

	1983	1984	1985	1986	1987
Zircon:	w	w	w	w	w
Production	11,995	8,644	15,291	15,852	20,054
Exports	40,358	60,270	39,723	68,764	67.917
Imports for consumption		117.934	117,934	143,335	132,800
Consumption, apparent ¹	90,718			¹ 28,074	39,218
Stocks, Dec. 31: Dealers and consumers ²	33,110	29,811	26,570	20,014	00,210
Zirconium oxide:			0.000	7 140	E 000
Production 8 3	3,736	6,689	8,322	7,148 1,648	5,226
Exports	633	383	951	1,648	1,200
Imports for consumption	409	719	1,332	464	1,274
Consumption, apparent	3,084	5,262	6,804	6,078	3,800
Stocks, Dec. 31: Producers'e 3	812	1,073	1,383	2,002	1,213

eEstimated. Revised. W Withheld to avoid disclosing company proprietary data.

Environmental Impact.—A February ruling by the Oregon Energy Facility Siting Council stated that Teledyne Wah Chang Albany's (TWCA) sludge ponds, created as a waste during the pre-1980 processing of

zircon, did not require regulation by the Council. The sludge contains radioactive materials, including radon, thorium, and uranium, that naturally occur in zircon. The Council determined that Teledyne's

¹Includes insignificant amounts of baddeleyite.

²Excludes foundries.

³Excludes oxide produced by zirconium metal producers.

ponds did not contain significant levels of radioactivity to come under their jurisdiction. Significant expenditures have been

made by TWCA in its effort to meet environmental requirements.3

DOMESTIC PRODUCTION

Zircon was mined, along with titanium minerals, by E. I. du Pont de Nemours & Co. Inc. at Starke and Trail Ridge, FL, and by Associated Minerals (USA) Ltd. Inc. at Green Cove Springs, FL. The combined capacity of these three operations was estimated to be 113,000 metric tons per year.

A new company, Mineral Recovery Inc., began production of zircon from tailings in Lakehurst, NJ, at yearend 1986. Mineral Recovery defaulted on its option to renew its lease from Heritage Minerals Inc., which acquired control of the operation in August 1987. Tailings at the mine were created prior to March 1982 when ASARCO Incorporated closed its ilmenite operation. An estimated 1.5 million tons of tailings was on-site prior to the start of zircon recovery. Heritage planned to continue recovery of zircon through 1990, when tailings are ex-

pected to be depleted. Future plans may include the installation of a dredging operation to recover zircon and other heavy minerals.

Five processors produced 42,394 tons of milled (ground) zircon from domestic and imported zircon, and five companies, excluding those that produce the oxide as an intermediate product in making zirconium sponge metal, produced 5,226 tons of zirconium oxide. Two companies produced zirconium sponge, ingot, and alloys, as well as hafnium sponge and crystal bar. Three companies produced cubic zirconia for use as diamond and other gem stone simulants.

A new company, The Applegate Group, was formed in Newark, NJ, to market the zirconium ore, baddeleyite, and other mineral-related products, including rareearth alloys and compounds.

Table 2.—Producers of zirconium and hafnium materials in 1987

Company	Location	
	Location	Materials
ZIRCONIUM MATERIALS		
American Minerals Inc	Camden, NJ	3.6'11 1
Associated Minerals (USA) Ltd. Inc.	Green Corre Same - Tit	Milled zircon.
UlDa-Geigy Corp., Drakenfeld Colore	Green Cove Springs, FL	Zircon.
Continental Mineral Processing Corn	Showardle OII	Ceramic colors and milled.
Corhart Refractories Corp	Washington, PA Sharonville, OH Buckhannon, WV	Milled zircon.
Do	Commission, WV	Refractories.
	Corning, NY	Do.
Didier-Taylor Refractories Corp Do E. I. du Pont de Nemours & Co. Inc	Louisville, KY	Do.
Do	Cincinnati, OH	Do.
E. I. du Pont do Nomeyer & Co. T.	South Shore, KY	Do.
E. I. dd I officie Nemours & Co. Inc	Starke, FL and Trail Ridge,	Zircon and foundry mixes.
Fikam Matala Ca	FL.	and to analy mileos.
Elkem Metals Co	Alloy, WV	Alloys.
Harshaw Chemical Co	Liyria, OH	Oxide and other compounds.
Heritage Minerals Inc.	Lakehurst, NJ	Zircon.
	St. Joseph, MI	Refractories and milled zircon.
	Cleveland, OH	Welding rods.
	Andrews, SC Flemington, NJ	Ultrox and milled zircon.
Magnesium ciektron inc	Flemington NJ	Compounds.
	Huntsville, AL	Oxide.
Silieidality Corp	Newfield, NJ Cambridge, OH	
Do	Cambridge OH	Welding rods and alloys. Alloys.
Sola Basic Industries Engineered Coromics Div	Gilberts, IL	
Diamonto Chi Engineered Meteriele Co	Folgono NV	Ceramics.
LAWICEramics	Falconer, NY	Refractories.
Teledyne Wah Chang Albany	Niagara Falls, NY	Milled zircon, oxide, compounds
	Albany, OR	Uxide, sponge, ingot, mill prod-
Thiokol Corp., Ventron Chemicals Div	D. 1 264	ucts.
Franselco, a division of Ferro Corp	Beverly, MA	Oxide.
Western Zirconium Inc	Penn Yan, NY	Do.
restern Encomain file	Ogden, UT	Oxide, sponge, ingot, mill prod-
Tech Corp	_	ucts.
Admork Inc	Bow, NH	Oxide.
edmark Inc	Dover, OH	Refractories.
icar Products Inc	Florida, NY	Fibrous ceramics.
ARCOA Products, Ceramic Products	Solon, ÓH	Oxide and ceramics.
HAFNIUM MATERIALS		omac and cerainics.
Celedyne Wah Chang Albany	Albanii OD	
Vestern Zirconium Inc	Albany, OR	Oxide, sponge, ingot, crystal bar.
	Ogden, UT	Do.

¹Formerly Foote Mineral Co.

CONSUMPTION AND USES

Of the domestic zircon produced in 1987, 36% was used in proprietary mixtures as foundry sand, and the remainder was used in refractory sand blends with kyanite, sillimanite, and staurolite; in chemicals; in refractories; in weighing agents; in ceramic glazes and enamels; in zircon-titanium dioxide welding rod coatings; for sandblasting abrasive; and for the production of zirconium and hafnium metal.

Baddelevite, another zirconium mineral, was used primarily in the manufacture of alumina-zirconia abrasives and also for ceramic colors, refractories, and other miscellaneous uses.

Research on calcia-, magnesia-, and yttria-stabilized zirconia continued. These materials were considered to have considerable potential for use in ceramic coatings in jet aircraft engines and in other applications where high-strength and high-temperature oxidation resistance are required. Yttria-stabilized zirconia ceramics were also used in automobiles in oxygen sensors in the exhaust system to supply microprocessor data for adjusting the air-fuel ratio to improve fuel efficiency and reduce pollution emissions.

Most of the hafnium and zirconium metals were consumed by the nuclear power industry. Zirconium metal was used in reactors as fuel cladding and structural components owing to its low thermal neutron cross section and excellent corrosion resistance. Nuclear-grade zirconium was alloyed with chromium, iron, nickel, and tin to further improve its corrosion resistance at high temperatures and high pressures. Zirconium's corrosion resistance was attributed to its ability to form a very thin, dense oxide layer that is impervious to the diffusion of ions.4 Most of the remainder of the zirconium metal was used by the chemical and textile industry in other corrosive acidic and caustic environments for piping,

heat exchangers, tank coils, thermosiphon evaporators, and bayonet heaters.5 The electronic industry also used small amounts of zirconium metal, including lead lanthanum zirconium titanates, for optical arrays and electro-optic devices. CB 103, a columbium-hafnium alloy, was used in F-15 and F-16 fighter jet aircraft engines.

Table 3.—Estimated consumption1 of zircon2 in the United States, by end use

(Metric tons)

End use	1986	1987
Zircon refractories ³	21,772	20,000
AZS refractories	13,245	11,800
Zirconia ⁵ and AZ abrasives ⁶	14.878	15,000
Zirconia and AZ abrasives	5,443	5,000
Alloys ⁷ Foundry applications	50,802	47,000
Other ⁸	37,195	34,000
Total	143,335	132,800

¹Based on total apparent consumption.

Table 4.—Estimated consumption1 of zirconium oxide2 in the United States, by end use

(Metric tons)

End use	1986	1987
AZ abrasivesAZS refractories 3 Other refractories Chemicals Glazes, opacifiers, colors	W 635 2,812 1,451 1,180	W 600 1,300 1,200 700
Total	6,078	3,800

W Withheld to avoid disclosing company proprietary data, not included in "Total."

Table 5.—Yearend stocks of zirconium and hafnium materials in the United States

(Metric tons)

<u>Item</u>	1986	1987
Zircon concentrate held by dealers and consumers excluding foundries Milled zircon held by dealers and consumers excluding foundries	^r 22,792 ^r 5,282	36,251 2,967
Zirconium:¹ Oxide ^e Sponge, ingot, scrap, alloysSRefractories	2,002 445 7,783	1,213 489 4,380 27
Hafnium: Sponge and crystal bare	27	

rRevised. eEstimated.

²Includes insignificant amounts of baddeleyite.

³Dense and pressed zircon brick and shape ⁴Fused cast and bonded alumina-zirconia-silica-based refractories.

⁵Excludes oxide produced by zirconium metal producers.

⁶Alumina-zirconia-based abrasives

Excludes alloys above 90% zirconium. ⁸Includes chemicals, metallurgical-grade zirconium tetrachloride, sandblasting, welding rods, and miscellaneous

¹Based on total apparent consumption.

²Excludes oxide produced by zirconium metal producers. Includes baddeleyite.

³Fused cast and bonded.

¹Excludes material held by zirconium sponge metal producers.

Table 6.—Published prices of Australian zircon

(U.S. dollars per ton)

	Date of publication	Standard grade	Intermediate grade	Premium grade
December 1986 December 1987		114-120 138-151	126-138 157-177	138-144 183-203

Source: Industrial Minerals (London). No. 231, Dec. 1986, p. 87; and No. 243, Dec. 1987, p. 103.

Table 7.—Published yearend prices of zirconium and hafnium materials

Specification of material		1986	1	987
Zircon:	-			
Domestic, standard-grade, f.o.b. Starke, FL, bulk, per short ton 1		\$190.00		\$202.00
bulk, per short ton ¹ Imported sand, containing 65% ZrO ₂ , f.o.b., bulk, per metric ton ² Domestic grapular begge bulk said 6.	- 0100.00	99.00		121.00
Domestic, granular, bags, bulk rail, from works, per short ton ³	\$126.00		\$163.00-	
Domestic, milled, 200- and 325-mesh, rail, from works, bags, per short ton ³	165.00		165.00-	
Baddeleyite, imported concentrate:4	- ;	225.00		225.00
96% to 98% ZrOs minus 100-mech o if Atlantic nexts				
99% + ZrO2, minus 325 mesh c if Atlentic ports, per pound		50		.50
99% + ZrO ₂ , minus 325-mesh, c.i.f. Atlantic ports, per pound		.97		1.02
Powder commercial grade drums 2 000 pour de la lace				
Electronic, same basis, per pound		4.25		4.25
Electronic, same basis, per pound		7.25		7.25
Insulating, unstabilized, 325° F, same basis, per pound Dense, stabilized, 30° F, same basis, per pound	3.31-		3.31-	
			3.55-	3.75
in contain tayonioride: Crystal, cartons, 5-ton lots, from works, nor nound3		2.82	100	2.82
ircontum acetate solution:		1.04	.91-	1.04
25% ZrO ₂ , drums, carlots, 15-ton minimum, from works, per pound				
		.97		.97
irconium hydride: Electronic-grade, powder, drums, 100-pound lots, from works, per		.78		.78
pound ³ powder, arams, roo-pound lots, from works, per	r 0.			
pound	r.31-	.75	.31-	.75
Powder, per pound	7 5.00			
		150.00	60.00-	
		17.00	12.00-	17.00
afnium: Sponge, per pound ⁵	20.00-	40.00	16.00-	45.00
	80.00-	130.00	75.00-	135.00

Table 8.—U.S. exports of zirconium ore and concentrate, by country

Country	198	6	1987		
	Metric tons	Value	Metric tons	Value	
Algeria	9	\$5,157			
Argentina	768				
Austrana	117	272,789	242	\$125,54	
Belgium-Luxembourg		106,567		· _	
Brazil	127	93,896	340	206,12	
Canada	162	68,000		,	
Colombia	226	66,964	. 848	$339.\overline{72}$	
Ccuador	725	358,600	1.552	728,56	
rance	193	91,911	461	212,72	
lormony Federal D. 11: 4		,	91	44.08	
Germany, Federal Republic ofn	7,706	1,439,411	4,868		
ndia		-,,	19	1,542,71	
reland	44	23,550	18	7,81	
ary	$\tilde{21}$	14.789		3,60	
	3	3,660	3,303	809,33	
torea, republic of	14		18	11,43	
	4,543	8,514	148	75,28	
nited Kingdom	190	1,372,807	6,048	1,798,70	
		43,563	732	219,31	
ther	864	513,590	1,042	520,05	
	140	83,276	324	157,27	
Total	15,852	4,567,044	20,054	6,802,29	

¹Revised.

¹E. I. du Pont de Nemours & Co. Inc. price lists. Dec. 1986 (effective Jan. 1, 1987); and Dec. 1987 (effective Jan. 1, 1988).

²Industrial Minerals (London). No. 231, Dec. 1986, p. 87; and No. 243, Dec. 1987, p. 103.

³Chemical Marketing Reporter. V. 230, No. 26, Dec. 31, 1986 (effective Dec. 26, 1986), p. 32; and v. 231, No. 25, Dec. 21, 1987, p. 49.

⁴The Applegate Group Inc., Newark, NJ. Baddeleyite price lists. Jan. 1, 1987, and Jan. 1, 1988.

⁵American Metal Market. V. 94, No. 252, Dec. 31, 1986, p. 15; and v. 95, No. 245, Dec. 18, 1987, p. 6.

ZIRCONIUM AND HAFNIUM

Table 9.—U.S. exports of zirconium, by class and country

	198	6	1987		
Class and country	Metric tons	Value	Metric tons	Value	
Zirconium and zirconium alloys, wrought:			_		
Belgium-Luxembourg	- 11	\$1,272,400	5	\$355,807	
Canada	148	8,016,468	207	10,896,627	
Finland	17	722,611	9	384,285	
France	25	1,007,609	70	2,562,785	
Germany, Federal Republic of	191	11,851,377	87	6,657,124	
Italy	22	3,002,167	(¹)	2,332	
Japan	330	20,016,720	361	25,074,231	
Korea, Republic of		,,	8	404,706	
Spain	24	6.798,024	10	2,011,195	
Sweden	63	2,357,298	80	2,681,434	
Switzerland	(1)	5,552			
Taiwan	(1)	5,665	16	959,682	
	69	3,320,340	104	3,897,200	
United Kingdom	3	86.757	26	701.785	
Other		00,131	20	101,100	
Total	903	58,462,988	983	56,589,193	
Zirconium and zirconium alloys, unwrought					
and waste and scrap:	3	54.668	5	76,441	
Canada	33	359,080	35	365,969	
France	. 7	87,676	6	226,604	
Germany, Federal Republic of	82	3,324,723	71	3,569,960	
Japan	8 <u>2</u> 7	43.315	20	62.445	
Netherlands	, 7	43,313	32	670,250	
Peru		000 004	38	935,252	
Sweden	11	267,784	38 30	324,967	
United Kingdom	28	376,689	- 30 - 5		
Other	5	156,672	5	71,140	
Total	176	4,670,607	242	6,303,028	

¹Less than 1/2 unit.

Source: Bureau of the Census.

Table 10.—U.S. exports of zirconium oxide, by country

	198	36	1987		
Country	Metric tons	Value	Metric tons	Value	
Argentina	17	\$83,153	15	\$79,635	
Australia	3	11,397	47	49,519	
Belgium-Luxembourg	82	94,920	(¹)	3,465	
Brazil	7	37,070	8	63,867	
Canada	425	556,051	226	649,447	
Ecuador	72	36,580	(¹)	2,521	
France	3	29,330	4	18,205	
Germany, Federal Republic of	12	105,103	30	229,152	
Hong Kong	. 4	29,473	1	7,035	
Italy	(¹)	29,123	21	81,001	
Japan	63	224,848	55	265,764	
Korea, Republic of	5	17,536	(¹)	10,899	
Mexico	^r 45	158,715	105	175,508	
Netherlands	14	44.675	5	33,494	
Singapore	9	15,960	5	15,208	
Sweden	16	64,642	1	24,779	
Taiwan	54	152,645	14	85,757	
United Kingdom	801	2,247,335	646	2,073,739	
Other	15	71,387	19	79,360	
Total ²	1,648	4,009,943	1,206	3,948,355	

¹Revised.

¹Less than 1/2 unit.

²Data may not add to totals shown because of independent rounding.

Table 11.—U.S. imports for consumption of zirconium ores, by country

	198	35	1986		1987	
Country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)
Argentina	5,261	\$520	8,104	\$847		
Australia	22,088	2.272	37,255	4,233	50.641	\$6,917
Canada ¹	2,093	225	669	81	207	20
Hong Kong	302	28	000	Ŭ.		20
. ,	58	25	120	46	20	18
Netherlands			28	1	20	34
Philippines	79	407	20	-	 .	
South Africa, Republic of	9.842	1,120	00 700	0.00	10004	0.000
			22,588	2,625	16,964	3,266
Other	(³)	2			85	27
Total	39,723	4,599	68,764	7,836	67,917	10,243

¹Believed to be country of shipment rather than country of origin.
²In addition, very small quantities of baddeleyite were imported.
³Less than 1/2 unit.

Source: Bureau of the Census.

Table 12.—U.S. imports for consumption of zirconium and hafnium in 1987, by class and country

Class and country	Metric tons	Value thousands
Zirconium, wrought: Canada France Germany, Federal Republic of Other	11 261 8 2	\$90 12,98 8 9
Total	282	14,06
Zirconium, unwrought and waste and scrap: Canada France Germany, Federal Republic of Japan United Kingdom	9 9 20 9 28	6 3 21 6 18
	75	57
Zirconium alloys, unwrought: France Germany, Federal Republic of U.S.S.R. United Kingdom Total	1 1 1 (¹)	3 3 1
Zirconium oxide: Belgium-Luxembourg Canada China France Germany, Federal Republic of Japan South Africa, Republic of United Kingdom	32 97 1 96 10 108 287 643	3 6 9 25 18 1,18 54
	1,274	4,85
Zirconium compounds: France Germany, Federal Republic of Japan South Africa, Republic of United Kingdom Other	172 14 40 1,590 773 9	588 355 399 3,088 1,511
Total	² 2,599	6,00
Hafnium, unwrought and waste and scrap: France	1	18

¹Less than 1/2 unit. ²Data do not add to total shown because of independent rounding.

WORLD REVIEW

Australia.—The Mineral Sands Div. of Renison Goldfields Consolidated Ltd. (RGC) announced that exploration west of its Allied Eneabba Mine, Western Australia, was successful in locating mineral sands resources of 150 million tons grading 3.5% heavy minerals. Further exploration in the area was planned. To optimize mining at its Eneabba properties, RGC will reportedly mine selected areas by dredging instead of its present dry mining method. RGC also completed redesign of its mineral sands processing plant at Eneabba, which allowed increased recovery of all minerals, including zircon.

RGC continued exploration on Moreton Island, Queensland. The Queensland government adopted the recommendation of a report that would allow mining on 1,200 hectares (6.4%) of the island as short-term use.

Mineral Deposits Ltd., a subsidiary of The Broken Hill Pty. Co. Ltd. (BHP), announced the opening of a heavy-mineral sands mining operation at Viney Creek, New South Wales, in mid-1987. Mineral Deposits recovered heavy-mineral sands, including zircon, using twin dredges connected to a floating wet concentrator. Zircon and other heavy-mineral concentrates were produced at Mineral Deposits' nearby Hawks Nest dry concentrator plant.

TiO₂ Corp. completed feasibility studies of its heavy-mineral sands deposit at Cooljarloo, Western Australia, and declared the project viable. The deposit reportedly contains 12 million tons of ore, with a cutoff grade of 2% heavy minerals.¹⁰

West Coast Holdings Ltd. announced plans to install a pilot plant at its Brockman multimineral deposit in Western Australia. The deposit reportedly contains zirconium, hafnium, rare earths, yttrium, thorium, gallium, tantalum, and columbium (niobium). The Brockman deposit, 15 kilometers southeast of Halls Creek, is a joint venture of West Coast Holdings and Greater Pacific Investments Ltd. If additional feasibility studies prove out, a \$115 million plant to process 200,000 tons of ore per year

was planned. Estimated plant output of zirconium and hafnium was 1,500 tons and 40 tons per year, respectively.¹¹

ICI Australia Operations Pty. Ltd announced plans to build a high-purity zirconia plant at Rockingham, Western Australia. The plant was planned to supply the increasing demands of the advanced ceramic industry, especially for electronic and engineering applications. Planned capacity of the new plant was 450 tons per year of high-purity zirconia and 250 tons per year of zirconium chemicals. Construction was planned to commence in May 1987 and be completed in mid-1988. A variety of products, including stabilized and partially stabilized zirconia, was scheduled for production. Products from the plant will be marketed worldwide by Z-Tech Pty. Ltd.12

Brazil.—Production of zircon concentrates in 1985 was 9,462 tons from the State of Amazonas, 435 tons from the State of Espírito Santo, 354 tons from the State of Minas Gerais, 53 tons from the State of Paraná, and 10,735 tons from the State of Rio de Janerio.¹³

Deposits containing zirconium were discovered in the vicinity of the Pitinga tin mine in the State of Amazonas, tripling Brazil's zirconium reserves. Measured reserves of zircon ore were 60.4 million tons with a zirconium content of 1.1 million tons. Zircon reserves were in the States of Amazonas, Bahia, Espírito Santo, Minas Gerais, Paraíba, Paraná, Rio de Janeiro, and São Paulo. Paulo. Paulo. Paraíba, P

Madagascar.—QIT-Fer et Titane Inc. (QIT) of Canada announced it had completed initial feasibility studies of a heavy-mineral sands deposit in southeast Madagascar. The joint venture project was 51% owned by the Government of Madagascar and 49% by QIT. The drilling program reportedly confirmed the existence of an ore body containing mineral sands, including zircon. Ilmenite will reportedly be mined as the principal product with monazite, rutile, and zircon recovered as byproducts. Further drilling and the construction of a pilot plant at the site were planned. 16

Table 13.—Zirconium concentrate: World production, by country¹

(Metric tons)

Country	1983	1984	1985	1986 ^p	1987 ^e
Australia	r382,005 7,431 15,000 11,395 2,548 162,281 5,721 199 80,000 W	r457,599 r6,375 15,000 e12,000 r7,993 153,123 3,708 290 80,000 W	501,440 21,039 15,000 14,800 11,652 160,533 4,061 1,292 85,000 W	451,824 13,351 15,000 e16,000 12,633 e160,000 e4,000 1,705 85,000 W	439,000 15,000 15,000 16,000 12,000 160,000 3,500 1,500 85,000 W
Total	^r 666,580	^r 736,088	814,817	759,513	747,000

W Withheld to avoid disclosing company proprietary data; not included in ^eEstimated. Preliminary. Total.

¹Includes data available through May 20, 1988.

TECHNOLOGY

A new magnesium alloy containing zirconium, yttrium, and other rare earths was developed by researchers at Magnesium Elektron Ltd. in the United Kingdom. Designated WE54, the new alloy had hightemperature stability up to 300° C, reportedly higher than any magnesium alloy now available. The alloy contained 0.5% zirconium, 5.5% yttrium, and 3.5% other rare earths.17

Zirconium tetrafluoride was studied as a possible optical fiber to transmit infrared laserbeams for medical applications. The zirconium fluoride fiber transmits light energy in the 1- to 4-micrometer range, with good transmission at 2.94 micrometers, the lasing wavelength of a Q-switched erbium: yttrium-aluminum garnet (Er:YAG) laser. Research to strengthen the fiber was said to be needed because in its present form, although bendable, it is still brittle and crushable.18

Aerojet TechSystems, an aerospace company, developed concepts for a space-based interceptor (SBI) using hafnium in its design. SBI's would be used to intercept and impact intercontinental ballistic missiles during the boost phase. Carbon-carbon composite, infiltrated with hafnium carbide, was proposed for use in the SBI's engine to withstand the high combustion temperatures of oxygendifluoride-diborane propellant. An experimental engine using the hafnium carbide material was tested using chloropentafluoride-hydrazine propellant, which reportedly could be used in the SBI's second-stage booster.19

Researchers at Fansteel Inc. reportedly produced several experimental parts for

engines of the Advanced Tactical Fighter (ATF), including one using columbium alloyed with zirconium, titanium, and tungsten (CB 782). Although CB 782 had been in existence for years, the alloy was not currently used in aircraft engines. As a result of higher operating temperatures, the columbium alloy presently used in the F-15 and F-16, CB 103, was reportedly not being considered as seriously as other columbiumbased alloys for the ATF engines.20

¹Zirconium and hafnium are nearly identical in chemical properties and atomic volume and are associated in the principal ore mineral zircon, in a ratio of about 50 to 1. The two elements are separated for nuclear power applications but not for other uses.

²Physical scientist, Branch of Nonferrous Metals. ³Montgomery, M. Siting Council Stays Out of Wah Chang. Salem (Oregon) Statesman J. Feb. 28, 1987.

*Kane, R., and W. Boyd. Use of Titanium and Zirconium in Chemical Environments. Ch. in Industrial Applications of Titanium and Zirconium, ASTM STP 728, ASTM, 1981,

pp. 3-8.

**Bowen, L. Use of Zirconium Heat Exchangers in Viscase Rayon Process. Ch. in Industrial Applications of Titanium and Zirconium, ASTM STP 728, ASTM, 1981, pp. 119-125.

⁶Renison Goldfields Consolidated Ltd. Annual Report 1987. 44 pp.

Work cited in footnote 5.

*Industrial Minerals (London). More on Moreton Island Minsands. No. 237, June 1987, p. 8.

*______ Mineral Deposits Up and Running. No. 237,

June 1987, p. 8.

10 ______, TiO₂ Corp. Declares Cooljarloo Minsands Viable. No. 237, June 1987, p. 8.

11 Australian Mining. Rare Earth Plant Under Study for

"Australian Mining, Kare Earth Plant Under Study for Western Australia. Sept. 1987, p. 47. ¹²Industrial Minerals (London). ICI Plans High Purity Zirconia Plant. No. 232, Feb. 1987, p. 8.

Anuario Mineral Brasileiro 1986. Zirconio, pp. 356-358. Brazilian

Mining Journal (London). Brazilium/Uranium. V. 308, No. 7918, May 22, 1987.
 15Work cited in footnote 8.

¹⁶Industrial Minerals (London). QIT Expanding Heavy
 Minerals Project. No. 236, May 1987, p. 15.
 ¹⁷Gschneidner, K. (ed.). Rare-Earth Information Center

News. Elektron WE54, v. 22, No. 2, p. 4.

18 Lasers & Applications. Medical-Updating Fiber Deliv-

¹⁹Assers & Applications. Medical-Updating Fiber Delivery Systems. Apr. 1987, p. 40.

¹⁹Aviation Week & Space Technology. Firm Develops Concepts for Interceptor Propulsion. V. 127, No. 15, Oct. 12, 1987, pp. 30-31.

²⁹American Metal Market. Fighter Test Set for Fansteel Columbium Alloy Parts. V. 95, No. 107, June 4, 1987. p. 5.

²Data are for fiscal year beginning Apr. 1 of that stated.

Other Industrial Minerals

By Staff, Branch of Industrial Minerals

CONTENTS

Page		Page
Quartz Crystal 965	Wollastonite	970
Strontium 967	Zeolites	971

INTRODUCTION

Effective in the 1987 Minerals Yearbook, the following changes have been made: "Asphalt" has been deleted; "Greensand" is included in the "Potash" chapter; "Meerschaum" is included in the "Clays" chapter; and "Staurolite" is included in the "Abrasive Materials" chapter.

QUARTZ CRYSTAL¹

Cultured quartz crystal production increased significantly in 1987, following 2 years of reduced production. Consumption of domestic lascas as feedstock for cultured quartz crystal increased. Imports of lascas from Brazil also increased. Although no lascas was mined in the United States during the year, the domestic producer supplied material to consumers from company stockpiles. Specimen-quality natural quartz was very much in demand; quartz crystal for this application is discussed in the Gem Stone chapter.

Domestic Data Coverage.—Domestic production and consumption data for quartz

crystal are developed by the Bureau of Mines from a voluntary survey of U.S. operations. Of the seven companies canvassed for production of cultured quartz crystal, all responded, and the six active operations represented 100% of total production shown in table 1. Of the 36 operations that were canvassed concerning consumption of quartz crystal, 33 responded and 28 were active in 1987, representing approximately 95% of total consumption, also shown in table 1. Consumption for the remaining respondents was estimated using reported prior-year consumption levels.

Table 1.—Salient U.S. electronic- and optical-grade quartz crystal statistics

(Thousand pounds and thousand dollars)

	1983	1984	1985	1986	1987
Production:					
Mine ^{e 1}	_ 600	2,500	1,000	1,200	
Cultured	_ 426	1,027	568	524	840
Exports:		-,			
Natural: ²					
Quantity	_ 28	42	60	74	139
Value		\$234	\$290	\$411	\$708
Cultured: ²			•	•	
Quantity	_ 80	277	185	324	448
Value	_ \$3,258	\$11,021	\$3,723	\$5,686	\$6,954
Lascas:	_ ,-,	+,	ψ 0,._ 0	ψο,σοσ	40,002
Quantity	_ 3339	e _{1,600}	e800		
Imports of Brazilian lascas:4	_ 000	1,000	000		
Quantity	_ 153	569	173	52	146
Value	_ \$121	\$373	\$99	\$51	\$157
		4010	Ψ00	401	4101
Consumption:					
Natural (electronic- and optical-grade)	_ 13				(5)
Cultured (lumbered)	_ 112	77	44	43	(⁵) 55
Cultured (as grown)	_ 312	391	224		
Carraten (as Rrown)		391	224	428	552
Total	437	475	275	473	607

^eEstimated.

²Bureau of the Census.

⁵Less than 1/2 unit.

Legislation and Government Programs.—The National Defense Stockpile contained 1.8 million pounds of natural quartz crystal, valued at \$11 million, throughout the year. This quantity represented an excess of 1.2 million pounds above the goal set for the stockpile although no authority existed for disposal of this excess.

DOMESTIC PRODUCTION

Coleman Quartz Inc., the only domestic company known to produce lascas, supplied consumers with the feed material for cultured quartz crystal from company stocks.

Production of cultured quartz crystal increased 60% in 1987, the first increase since 1984. Six companies were active producers of cultured quartz crystal. The two largest producers, Sawyer Research Products Inc. of Eastlake, OH, and Thermo Dynamics Corp. of Merriam, KS, were independent growers that produced crystal bars for domestic and foreign consumers in the crystal device fabrication industry. Motorola Inc. of Chicago, IL, and Electro Dynamics Corp. of Overland Park, KS, produced quartz crystal for internal consumption and the domestic device fabrication industry. P. R. Hoffman Material Processing Co. of Carlisle, PA, also reported outside sales. Bliley Electric Co. of Erie, PA, produced only for internal consumption.

CONSUMPTION AND USES

Consumption of lascas by the six domestic quartz crystal producers increased from 610,000 pounds to 1.1 million pounds in 1987. The 28 active companies in 12 States consumed 28% more quartz crystal in 1987 than was consumed in 1986. Of these companies, 25 consumed only cultured quartz crystal and 3 consumed both natural and cultured crystal. No companies exclusively consumed natural quartz crystal.

Imported natural quartz crystal continued to be required as seed material for growing cultured quartz. Cultured quartz crystal was the primary material used as resonators in electronic applications. Applications included timing signals for watches and clocks; microprocessors in industrial, automotive, and consumer products; and military-aerospace and commercial bandpass filters and oscillators that require very high selectivity and stability.

STOCKS

Crystal growers stocks of as-grown cultured quartz crystal were reported as 154,000 pounds at the beginning of 1987. At year-end, these stocks had increased to 180,000 pounds.

¹Excludes lascas produced for specimen and jewelry material uses.

³Journal of Commerce Port Import/Export Reporting Service. ⁴Bureau of the Census as adjusted by the Bureau of Mines.

PRICES

The average price for domestic lascas reported by consumers was \$0.45 per pound. The customs value of Brazilian lascas decreased slightly to \$0.95 per pound. The average value of as-grown cultured quartz, based on reported sales of about 509,000 pounds, was \$12.71 per pound, a decrease of 6% compared with that of 1986. Sales volume increased 23%. The average value of lumbered quartz, as-grown quartz that has been processed by sawing and grinding, decreased 8% to \$58.29 per pound, based on reported sales of 119,000 pounds. Sales volume increased 61%.

FOREIGN TRADE

Cultured quartz crystal exports, as reported by the Bureau of the Census, increased 38% in 1987 to 447,904 pounds. The average f.a.s. value was \$15.52 per pound, a 12% decrease compared with exports in 1986. Most of these exports, 239,334 pounds, went to Japan. The Republic of Korea received 158,580 pounds of cultured quartz crystal from U.S. producers.

Imports of Brazilian lascas, designated as "Crude Brazilian Pebble," increased 181% to 146,381 pounds with a customs value of \$138,604.

STRONTIUM²

Demand for strontium minerals and compounds increased as U.S. television manufacturers expanded domestic production. Imports of celestite, a strontium ore consisting of at least 90% strontium sulfate, increased, indicating expanded domestic production of strontium compounds. Imports of most strontium compounds also grew. Chemical Products Corp. (CPC) of Cartersville, GA, was the only U.S. producer of strontium compounds from the ore celestite. CPC produced compounds from imported material because there were no active celestite mines in the United States.

Domestic production data for strontium are developed by the Bureau of Mines from a voluntary survey of U.S. operations. The one operation to which the survey request was sent responded, representing 100% of total production. However, production and stock data were withheld from publication to avoid disclosing company proprietary data.

The strontium survey is also used to calculate the distribution of strontium compounds by end use. Of the 12 operations to which a survey request was sent, 10 responded, 1 did not respond, and 1 was no longer active. The information collected from this survey represents nearly 100% of the end-use data shown in table 2. Consumption for the nonrespondent was estimated using reported prior-year consumption levels.

DOMESTIC PRODUCTION

CPC was the only producer of strontium carbonate from imported celestite. CPC was also the only major domestic strontium nitrate producer. Mallinkrodt Inc. of St. Louis, MO, produced strontium chloride

and Mineral Pigments Corp. of Beltsville, MD, produced strontium chromate. A few other companies produced downstream strontium compounds, but on a very small scale.

CONSUMPTION AND USES

The largest end use for strontium was in the manufacture of faceplate glass for color television picture tubes. Strontium, which is supplied as strontium carbonate and converted to strontium oxide during the manufacturing process, blocks X-ray emissions from the picture tube during operation of the television set. A number of domestic television manufacturers announced a return to domestic production because unfavorable currency exchange rates with Japan have caused the price of imported sets to increase significantly. Additional domestic production of televisions increased demand for strontium carbonate.

Another end use for strontium expected to continue to grow is strontium ferrites, formed by heating a mixture of strontium carbonate and iron oxide. The resulting material is formed into permanent ceramic magnets, which are used in fractional horsepower motors for automobile accessories, loudspeakers, computers, and other electronic equipment.

Use of strontium nitrate in pyrotechnics and signals, the second largest market for strontium, was considered to be a mature market. Strontium nitrate is used in this application because of the brilliant red flame created when it burns.

Smaller amounts of strontium compounds are used in a variety of applications. Strontium carbonate was used to remove lead from electrolytically refined zinc. Strontium chromate was used as a corrosion inhibitor in pigments and paint, strontium phosphate was used in fluorescent lights, and strontium chloride was an active ingredient in toothpaste for sensitive teeth.

Demand for strontium metal, used to improve castability of aluminum, continued to increase owing to the demand for aluminum castings in the automobile industry. Strontium oxide was one of the materials used in high-temperature superconductor research.

Table 2.—U.S. estimated distribution of primary strontium compounds, by end use

(Percent)
----------	---

End use	1985	1986	1987
Electrolytic production of zinc Ferrite ceramic magnets Pigments and fillers Pyrotechnics and signals Television picture tubes Other	6 12 8 15 52 7	6 r ₁₁ 7 r ₁₂ r ₆₀ r ₄	5 11 5 13 63
Total	100	100	100

Revised.

PRICES

The average customs value for celestite imported from Mexico was about \$86 per short ton. A small quantity of ore was imported from China at about \$114 per ton. The weighted average value for all imported strontium minerals was about \$86 per ton. This value represented a decrease of almost 16% from customs value reported in 1986. Values of imported strontium compounds varied according to the type of compound.

FOREIGN TRADE

The Federal Republic of Germany remained the most important source of im-

ported strontium compounds, with Mexico the second most important source. Imports of strontium carbonate, precipitated and not precipitated, increased 21%. Imports of strontium nitrate decreased about 49%. Canada was once again the major supplier of strontium metal, with imports increasing 62%.

Late in the year, the U.S. Department of Commerce completed reviewing an allegation of dumping of Italian strontium nitrate from June 1, 1985, through May 31, 1986. The review found no evidence of dumping, and so the antidumping duty on strontium nitrate from Italy was revoked.³

According to the Port Import/Export Reporting Service of the Journal of Commerce, U.S. exports of strontium compounds were about 3,500 tons, an increase of 133% over the exports reported from the same source in 1986. Of these exports, 97% of the total was strontium carbonate that went to Japan, the world's leading consumer of strontium compounds. Other strontium compounds exported were the chromate, ferrite, nitrate, oxalate, and phosphate, all in relatively small quantities.

Table 3.—U.S. imports for consumption of strontium minerals, by country

	19	86	1987		
Country	Quan- tity (short tons)	Value ² (thou- sands)	Quan- tity (short tons)	Value ² (thou- sands)	
China Mexico Spain	348 30,904 1,983	\$64 2,991 342	297 42,172 	\$34 3,636 	
Total ³	33,236	3,396	42,469	3,670	

¹Celestite (strontium sulfate).

Source: Bureau of the Census.

Table 4.—U.S. imports for consumption of strontium compounds and metal, by country

	1986		1987	
Country	Pounds	Value ¹	Pounds	Value ¹
Strontium carbonate, not precipitated: Germany, Federal Republic of Mexico Spain	39,682	\$11,663 	44,092 34,172	\$10,948 1,875
Total	39,682	11,663	78,264	12,823
Strontium carbonate, precipitated: Germany, Federal Republic of Japan	8,208,672 3,739,467	2,247,425 931.557	10,120,618 11,670 4,263,566	2,771,119 7,822 1,139,916
Mexico United Kingdom	27	2,536	41,798	24,693
Total	11,948,166	3,181,518	14,437,652	3,943,550

²Customs value.
³Data may not add to totals shown because of independent rounding.

Table 4.—U.S. imports for consumption of strontium compounds and metal, by country
—Continued

Country	19	86	1987		
Country	Pounds	Value ¹	Pounds	Value ¹	
			1 oungs	v aiue-	
Strontium chromate:2					
Belgium	101.050	444.15.6			
Canada	101,853	266,510	21,826	23,7	
France Germany, Federal Republic of Spain	41.005		29,765	41.50	
Germany, Federal Republic of	41,005	49,275	160,932	186,62	
SpainUnited Kingdom	59,524	53,017	39,684	44.84	
United Kingdom	46,297	53,592		-1,0	
Total	453	2,432	10,400	10,77	
Total	249,132	424,826	262,607	207 51	
Strontium nitrate:			202,001	307,51	
Germany, Federal Republic of					
		6,389	1,357	8,22	
		398,385	1,183,671	455.58	
			2,205	2,00	
SwitzerlandUnited Kingdom	2,103,227	816,793	481,708	206,21	
United Kingdom		41,762	101,100	200,21	
		35,841		_	
Total	0.040.505				
	3,248,567	1,299,170	1,668,941	672,02	
Strontium compounds, other:	-				
CanadaGermany, Federal Republic of					
Germany, Federal Republic of	46.295	00.400	3,489	31,956	
JapanNetherlands	40,295 247,486	32,433	6,614	8,129	
Netherlands United Kingdom	241,486	180,311	546,742	1,206,432	
United Kingdom	66	1,237	148,546	150,299	
	6,324	14,857	31,838	53,800	
Total	300,171	228,838	797 000		
trontium salts, potassium oxalate and other:		220,000	737,229	1,450,616	
China					
China Germany, Federal Republic of	- 115,985		37,478	1,253	
Total	- 115,985	21,986	6,614	7,891	
Total	- 115,985	21.986	44.092	0.144	
trontium sulfate, other than celestite:			11,002	9,144	
Delgium					
Denmark	- 407,407	43,698	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
France		1	-ī	4,000	
France Germany, Federal Republic of	- 110	1.439		4,000	
m	630,302	189,948	2,696,297	157,939	
Total	_ 1,037,819	235,085	0.000.000		
rontium metal, unwrought:	7, 1,0 20	200,000	2,696,298	161,939	
Canada					
CanadaUnited Kingdom	- 50,928	467,759	82,724	7.7 00.7	
		-01,100		747,805	
Total			11	1,131	
	- 50,928	467,759	82,735	740.000	
Customs value.		,.00	04,100	748,936	

²Imported as strontium chromate pigment (TSUS 473.19).

Source: Bureau of the Census.

WORLD REVIEW

Australia.—Status Minerals NL discovered a celestite deposit in the desert region of the South Australian Great Artesian Basin. Areas of ore grading 90% to 96.6% were identified, and more complete evaluation of the deposit was being conducted. Mineral concentrate and chemical production studies were planned following the completion of the evaluation.

Canada.—Timminco Ltd., with headquarters in Toronto, Ontario, began production of strontium metal at its new facilities at Westmeath, Ontario. The new facilities are operated by the Timminco Metals Div., (formerly known as the Chromasco Div. of Timminco Ltd.), the world's largest producer of strontium metal. The company was also upgrading its operations for secondary processing of strontium at the Westmeath site.⁵

Korea, Republic of.—Two separate plants were announced for the production of barium and strontium carbonates to supply the growing demand for these chemicals by the television-manufacturing industry in the Far East. Kofran Chemical Co. was formed by Rhône-Poulenc S.A. of France and Oriental Chemical Industry Ltd. of Korea to build a 22,000-ton-per-year facility at Inchon. Kali-Chemie AG of the Federal Republic of Germany, the world's largest producer of barium and strontium carbon-

ates joined with Samsung Corning Co. of Korea to create Daehan Specialty Chemicals Co. Ltd. This company was formed to build a plant for barium and strontium

carbonates with an annual capacity of 33,000 to 44,000 tons at an undisclosed location on the northwestern coast.7

Table 5.—Strontium minerals: World production, by country

(Short tons)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Algeria ^e	6,000 742 *24,251 456 41,343 149 38,000 42,808 13,340	6,000 r441 r23,149 2,866 35,264 622 29,760 38,600 17,750	6,000 1,084 1,543 27,558 5,083 33,601 791 46,848 38,600 25,353	6,000 1,249 8,119 24,251 5,144 26,774 1,099 38,030 38,600 15,543	6,000 1,100 8,000 24,250 4195 468,597 1,100 38,000 38,600 16,500
United Kingdom	r _{167,089}	r _{154,452}	186,461	164,809	202,342

rRevised. Preliminary. eEstimated.

Data are for year beginning Mar. 21 of that stated.

⁴Reported figure.

Mexico.—Cía. Minera La Valenciana S.A. made its first shipment of strontium carbonate from its new plant at Torreon in the Coahuila State. The production equipment was purchased from FMC Corp. when that company closed its strontium carbonate facilities in Modesto, CA, in 1984. Cía. Minera La Valenciana produced strontium carbonate from celestite from its San Augustine Mine. This mine also provides celestite for CPC. The Mexican carbonate is targeted for the expanding market in the Far East, and the celestite exports will continue to supply U.S. demand.8

Pakistan.—Tawakkal Mineral Exports Corp. expanded production of celestite, containing 94% strontium sulfate, from 11 tons per day to 55 tons per day by 1989. The company was also conducting a study to evaluate the potential for producing strontium chemicals.9

WOLLASTONITE10

Wollastonite is natural calcium silicate and has a theoretical composition of CaO•SiO₂.

The tonnage of wollastonite sold or used by U.S. producers in 1987 increased slightly. Specific data were withheld to avoid disclosing company proprietary data. The three producers, in descending order of output, were NYCO, a division of Processed Minerals Inc., Essex County, NY; R. T. Vanderbilt Co. Inc., Lewis County, NY; and Pfizer Inc., San Bernardino County, CA. NYCO announced plans for the construction of a new plant for the production of chemically modified minerals, including wollastonite. Completion of the new facility was scheduled for 1988.11

Some of the uses of wollastonite are as a filler in ceramic tile, marine wallboard, paint, plastics, and refractory liners in steel mills, and as a partial replacement for short-fibered asbestos in certain applications such as brake linings.

Technical improvements in filler properties in plastics and rubber have been made in recent years with better compatibility between the polymer and the filler. This is achieved by chemical surface treatment of the mineral fillers. Wollastonite, when treated in such a manner, results in improved flexural modulus in polypropylene and improved reinforcement in nylon.12

Chemical Marketing Reporter, at yearend 1987, quoted prices for wollastonite, truckloads, f.o.b. plant, as \$200 per ton for general grade, \$140 per ton for 325 mesh, \$160 per ton for 400 mesh, and \$500 per ton for 1,250 mesh.

Plantinova Resources Ltd. and its jointventure partner Cominco Ltd. carried out

²In addition to the countries listed, China, Poland, and the U.S.S.R. produce strontium minerals, but output is not ¹Table includes data available through June 10, 1988. reported quantitatively, and available information is inadequate to make reliable estimates of output levels.

test work on their wollastonite deposit near Tweed, Ontario, Canada. The next stage of development, scheduled to be completed in March 1988, includes detailed core drilling to obtain cylindrical core samples of the deposit, a pilot-plant-scale flotation run, and economic evaluation. Future markets could include Europe and Japan.¹³

Samples from a deposit in the Republic of South Africa containing approximately 69% wollastonite, with quartz, calcite, and iron-bearing minerals as the main impurities, were investigated for possible beneficiation. Iron content of the ore was reduced by magnetic separation from 1.5% to less than 0.3% after grinding to smaller than 70 mesh. Flotation of the wollastonite was less successful, with high grades of wollastonite being achieved at the expense of recovery.¹⁴

In the United Kingdom, Blue Circle Industrial Ltd. produced surface modified grades of wollastonite treated with aminosilane and methacryloxy-silanes. The product

is an effective reinforcing filler in polyamide compounds, polyurethane, phenolics, melamine, polyvinyl chloride, and other plastics. Tests carried out by the company showed that treated wollastonite, when compared with other fillers, gave increased stiffness and strength, improved heat distortion temperature, and low coefficient of expansion.¹⁵

Competition in the tile market and increasing production costs have resulted in the introduction of highly automated production processes with a one-fire, fast-fire cycle. To meet the requirements of the production process, improved material compositions were investigated. A wall tile body containing, by weight, 65% coarse wollastonite, 30% kaolin, and 5% minus 400-mesh nepheline syenite showed good flexural strength, low shrinkage, good resistance to moisture expansion, and water absorption in the desired range. 16

ZEOLITES17

Six companies mined or sold chabazite and clinoptilolite from deposits in six States. Natural zeolites were used for aquaculture, catalysts, cat litter, odor control, and removing radioactive ions from nuclear plant effluent.

Steelhead Resources Ltd. purchased Tenneco Specialty Minerals, a subsidiary of Tenneco Minerals Co. Tenneco owned natural zeolite deposits in California, Nevada, and Oregon. Steelhead Resources will continue to mine the Barstow, California, deposit and will operate as Steelhead Specialty Minerals.

A new company, ZChem Inc., was formed to supply natural zeolite products to the paper industry. The company was established following successful testing of bleached and unbleached clinoptilolite by several paper companies. ZChem is wholly owned by Teague Mineral Products Inc. and has deposits with substantial reserves of white, high-purity clinoptilolite. 19

Lawrence Livermore National Laboratory began testing clinoptilolite as a soil additive on Bikini Atoll in the South Pacific. The study will determine if cesium uptake by food crops can be reduced by adding

natural zeolites to the soil.²⁰ The soil was contaminated with cesium during nuclear testing during the 1940's and 1950's.

The University of Mississippi received a grant to investigate the use of natural zeolites for removing ammonia and other contaminants from catfish ponds. Natural zeolites already are used in fish hatcheries for removing ammonia from the water. The application of this technology to catfish farming may increase the yield of catfish per acre of pond. ²¹

The ion-exchange capacities of clinoptilolite, ferrierite, and mordenite for lead were investigated. Clinoptilolite had a higher maximum exchange capacity for lead than did ferrierite and mordenite. Ammoniumtreated clinoptilolite exchanged more lead than sodium-treated clinoptilolite. The reversibility of the exchange reactions also were investigated. The exchange reactions were reversible for mordenite and ammonium-treated ferrierite but not for clinoptilolite and sodium-treated ferrierite. The maximum exchange capacity and the reversibility of the exchange reaction determine the usefulness of a natural zeolite for removing lead from effluents.22

The crystal structure of a large-pore zeolite, recently developed by Exxon Corp., was proposed. The zeolite consists of alternating layers of mordenite and mazzite structures. Researchers believe that by changing the sequence of the mordenite and mazzite structures, a family of synthetic zeolites can be developed.23 The large pore size of the new synthetic zeolite could permit large organic molecules to enter the zeolite structure and undergo catalysis. Currently employed synthetic zeolites have small pore sizes that prevent large molecules from entering the structure. The ability to change the stacking sequence of the mazzite and mordenite structures may allow researchers to synthesize zeolites with slightly different catalytic properties.

A large-pore molecular sieve, based on an aluminum phosphate structure, was developed by Virginia Polytechnic Institute and State University in cooperation with Dow Chemical USA. Unlike current zeolite sieves, which have pore sizes less than 7 angstroms in diameter, the aluminum phosphate sieve has pore sizes up to 14 angstroms in diameter. The molecular sieve could improve the efficiency of the catalysis process because large organic molecules could enter the zeolite structure through large pore openings to undergo the catalysis.24

The oxide forms of aluminum, calcium, potassium, silicon, and sodium are the common starting materials for synthesizing zeolites. The potential use of low-cost perlite, pumice, and volcanic tuff as a starting material was evaluated. Under identical conditions, zeolites were more readily synthesized from pumice than from perlite or volcanic tuff. In a pilot plant operation, zeolites such as hydrosodalite, faujasite, and phillipsite, were synthesized. Iron present in the perlite and pumice was incorporated into the synthetic zeolites. The iron-bearing zeolites could be used only where iron did not interfere with their commercial applications. Higher value zeolites such as zeolite A, X, and Y could be synthesized from the residual pilot plant solutions, which contained no iron.25

¹Prepared by Joyce A. Ober, physical scientist.

²Prepared by Joyce A. Ober, physical scientist. ³Federal Register. International Trade Commission Commerce). Strontium Nitrate From Italy; Final Results of Antidumping Duty Administrative Review and Revocation. V. 52, No. 244, Dec. 21, 1987, p. 48318.

*Industrial Minerals (London). Celestite and Zeolite Potential for Status. No. 239, 1987, p. 8.

Timminco Ltd. 1987 Annual Report. 12 pp.

No. 244, 1988, p. 10.

- First Shipments of CMV Strontium Carbonate.

First Shipments of CMV Strontum Carponate.
 No. 238, 1987, p. 11.
 Griffiths, J. Pakistan's Mineral Potential. Ind. Miner. (London), No. 238, 1987, pp. 20, 31.
 Prepared by Michael J. Potter, physical scientist.
 Chemical Marketing Reporter. Minerals Plant Slated.
 V. 231, No. 21, May 25, 1987, p. 4.
 Haskin, R. W., and C. Eckert. Minerals in Plastics. Ind. Miner. (London), No. 234, Mar. 1987, p. 57.
 Industrial Minerals (London). World of Minerals. No. 242, Nov. 1987, pp. 8-9.

¹³Industrial Minerals (London). World of Minerals. No. 242, Nov. 1987, pp. 8-9.
 ¹⁴Jonker, L. Beneficiation of a South African Wollastonite by Magnetic Separation and Flotation. Council for Mineral Technology, Randburg, South Africa, Rep. No. M219D, May 30, 1987, 29 pp.
 ¹⁵Griffiths, J. Surface Modified Minerals. Ind. Miner. (London), No. 241, Oct. 1987, p. 37.
 ¹⁶Sainamthip, P., and J. S. Reed. Fast-Fired Wall Tile Bodies Containing Wollastonite. Am. Ceram. Soc. Bull., v. 66, No. 12, Dec. 1987, pp. 1726, 1730.
 ¹⁷Prepared by Robert L. Virta, physical scientist.
 ¹⁸American Mining Congress Journal. Steelhead Buys Tenneco Specialty Minerals Unit. V. 74, No. 3, Mar. 1988, p. 22.

p. 22.

19 Industrial Minerals (London). Teague's Zeolite Progress. No. 244, Jan. 1988, p. 12.

**Work cited in footnore 19.
**21Oxford Eagle. Grant Will Assist UM Studies in Zeolites. Jan. 30, 1987, p. 1.
**22*Loizidou, M., and R. P. Townsend. Ion-Exchange Properties of Natural Clinoptilolite, Ferrierite, and Mordenite: Part 2. Lead-Sodium and Lead-Ammonium Equilibria.
Collitea. 7 No. 2 Map. 1987 pn. 153.150 Zeolites, v. 7, No. 2, Mar. 1987, pp. 153-159

Zeolites, v. 7, No. 2, Mar. 1987, pp. 103-109.

²³European Chemical News. Exxon Proposes Zeolite
Structure. V. 49, No. 1299, Nov. 9, 1987, p. 20.

²⁴Chemical Marketing Reporter. Large Pore Molecular
Sieve Synthesized. V. 232, No. 13, Sept. 28, 1987, p. 18.

²⁵Giordano, No., V. Reccupero, L. Pino, and J. C. J. Bart.

Zeolitization of Perlite. Ind. Miner. (London), No. 240, Sept. 1987, pp. 83-95.

Other Metals

By Staff, Branches of Nonferrous and Ferrous Metals

CONTENTS

	Page	化二氯化二甲二甲二甲二甲酚 医二氯化二甲二二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲二甲	Page
Arsenic	973		982
Cesium and Rubidium	976	Selenium	984
Germanium	977	Tellurium	988
Indium	980	Thallium	989
Dhonium	981		

ARSENIC¹

ASARCO Incorporated, the only domestic arsenic producer, terminated coppersmelting operations and the associated recovery of byproduct arsenic trioxide at Tacoma, WA, in 1985. It still shipped small quantities of trioxide from its remaining stocks in 1987. Imports for consumption of arsenic trioxide were slightly higher than in 1986.

Domestic Data Coverage.—Shipments of small amounts of arsenic trioxide from remaining stocks by Asarco were reported voluntarily to the Bureau of Mines.

Legislation Government and grams.—The Environmental Protection Agency (EPA) issued its preliminary position to cancel most of the nonwood pesticide uses for inorganic arsenicals. Included in the list were lead arsenate, calcium arsenate, sodium arsenite, sodium arsenate, and arsenic trioxide. Exceptions to the list were turf herbicidal use of the flowable formulation of calcium arsenate, the grapefruit growth regulator use of lead arsenate, and the grape fungicidal use of sodium arsenite. These three uses and the desiccant use of arsenic acid were still under special review by EPA. All copper acetoarsenite and arsenic acid herbicide registrations had already been voluntarily canceled. The EPA invited comments on the proposal.2

Life Systems Inc., under contract for the

U.S. Public Health Service, published a toxicological profile for arsenic, which was made available for public comment. Toxicological data and the regulatory status of arsenic were discussed.³

DOMESTIC PRODUCTION

Asarco shipped small quantities of arsenic trioxide to customers from the remaining stocks at its closed copper smelter in Tacoma, WA. Koppers Co. Inc. in Conley, GA, a major producer of arsenical wood preservatives, produced arsenic trioxide, which it converted to arsenic acid. The acid was marketed or consumed internally in the production of chromated copper arsenate wood preservatives. The Applied Research Group, Charlotte, NC, and Hickory Grove Industries, Hickory Grove, SC, both owned by Hickson Inc., United Kingdom, produced arsenic acid for use in the wood industry. In addition, Mineral Research Development Corp., Harrisburg, NC, and Chemical Specialties Inc., Valdosta, GA, both owned by LaPorte Industries PLC, United Kingdom, also produced arsenic acid for use in the wood industry. W. R. Metals Inc. in Wheat Ridge, CO, produced arsenic acid in Wyoming from arsenic-bearing lead smelter flue dusts containing about 50% arsenic.

CONSUMPTION AND USES

Arsenic compounds, principally arsenic trioxide, accounted for 98% of the arsenic consumed in 1987 Demand for arsenic was about the same level in 1987 as it was in 1986. The wood industry continued to be the dominant industry using trioxide. The estimated end-use distribution of arsenic (metal content) was 69% in wood preservatives. 23% in agricultural products (principally herbicides and desiccants), 4% in glass, 2% in metallic form in nonferrous alloys and electronics, and 2% in other uses (animal feed additives, pharmaceuticals, etc.).

The bulk of metallic arsenic was used in lead- and copper-base alloys as a minor additive (about 0.01% to 0.5%) to increase strength in the posts and grids of lead-acid storage batteries and to improve corrosion resistance and tensile strength in copper allovs. A relatively small amount of highpurity arsenic metal, about 15 metric tons. was used in the electronics industry Gallium arsenide and its alloys have been used in products such as light-emitting diodes and displays, room-temperature lasers, microwave devices, solar cells, and photoemissive surfaces. Gallium arsenide integrated circuits are currently undergoing commercial development, and, compared with silicon circuits, have higher operating frequencies, lower power consumption, lower noise. and superior resistance to radiation damage. Because of these superior properties. they are expected to have extensive military and commercial applications.

PRICES

Prices for imported refined arsenic trioxide from Mexico remained constant throughout the year at \$0.44 per pound. This was the only price quoted by Metals Week

Table 1.—Arsenic price quotations

(Cents per pound, yearend)

		1985	1986	1987
Trioxide, domestic, 95% As ₂ O ₃ , f. Trioxide, Mexican, 99.13% As ₂ O ₃ Metal, domestic, 99% As ¹		33 42 210	33 44 185	(²) 44 (²)

¹Producers' quote.

Table 2.—U.S. imports for consumption of arsenicals, by class and country

	199	35	19	36	19	1987	
Class and country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	
Arsenic trioxide:						***	
Australia	30	\$3					
Belgium-Luxembourg	1.498	1,074	1.255	\$967	1.643	\$1,325	
Bolivia	98	67	2,200	Ψυσ.	16	1(
Canada	3,669	4.059	1,924	$\tilde{310}$	2.012	708	
Chile	191	101	1,659	727	4,800	1.935	
China	105	46	39	25	233	136	
France	3,608	2,264	6,274	4,072	5,341	3,180	
Germany, Federal Republic of	0,000	2,204	200	169	0,041	0,100	
Hong Kong			200		36	18	
Iran					241	87	
Japan	371	184	141	74	48	38	
Korea, Republic of	011	104	141	14	102	30 70	
Mexico	3.399	$2.9\overline{46}$	4.408	$3.\overline{471}$			
Namibia	0,099	2,940	4,406 354	224	4,457	3,550	
Netherlands	$2\bar{3}\bar{6}$	$\overline{149}$. 504	224	93	60	
Philippines			936	005	1 000		
	23 18	10 12		335	1,280	436	
PortugalSaudi Arabia	18	12	36	24	~-	,	
	170	70	96	.53			
South Africa, Republic ofSweden	113	72	1,210	475	1,380	848	
	2,996	3,014	7,069	5,341	4,824	4,140	
Switzerland	110			727	307	248	
United Kingdom	116	58	128	80	30	22	
Total ¹	16,472	14,059	25,728	16,347	26,843	16,800	

²Price suspended. ³Metals Week.

Table 2.—U.S. imports for consumption of arsenicals, by class and country —Continued

	19	85	19	86	19	87
Class and country	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value (thou- sands)	Quantity (metric tons)	Value
Arsenic acid:						
Australia Germany, Federal Republic of United Kingle				45,172 <u>-</u> 1	16	\$2
United Kingdom	1,993	41 000	(2)	\$1		Ψ2
	1,995	\$1,360	1,381	999	1,038	824
Total	1,993	1,360	1,381	1,000	1,054	852
Arsenic sulfide:					1,004	69,
Germany, Federal Republic of					11 1 1 1 1	
		$-\frac{1}{2}$		·	15	10
		_	70			
United Kingdom			16	4		
			(²)	12	<u> </u>	
Total	2	2	16	14	15	10
rsenic metal:					10	10
Belgium-Luxembourg						
	23	644			2	- 18
	136	311	8	731	16	1,054
	100	911	295	951	463	972
	- <u>-</u> 2	195	$\bar{7}$	_==	(2)	1
	47	158	34	272	2	174
JapanNetherlands	22	171	2	115	139	291
	·	1.1	(2)	382	9	951
	171	642		4	~	
		042	34	124	(2)	1
TaiwanUnited Kingdom	- 5	17	10	53		
United Kingdom	(2)	12	5	17		
Total ¹	405		7		(²)	8
	407	2,150	395	2,649	631	3,471
ad arsenate:						
Canada	29	13			e egile	
	20		$\overline{6}$			
	(2)	1	-	56		
Netherlands	66	128				
	68	144				
United Kingdom		144	60	114	50	705
Total ¹	162	287			30	95
lium arsenate:	102	281	66	170	50	95
France					_	
France	20	7				
Israel Other					407	
	(2)	3			421	72
Total	90					
	20	10			421	72
enic compounds, n.s.p.f.:						
Drazil .						
			9	482		
MEXICO	23		(2) .	1		
	23 (²)	52				
Other	()	66	(2)	175	(2)	41
	(-)	13	(2)	13	(2)	42
Total ¹	23	131	10			 ,
				671	(2)	83 *

¹Data may not add to totals shown because of independent rounding. Less than 1/2 unit.

Source: Bureau of the Census.

WORLD REVIEW

Arsenic is recovered as arsenic trioxide in about 20 countries from the smelting or roasting of nonferrous metal ores or concentrates. Arsenic metal, which accounts for only 3% of world demand for arsenic, is produced by the reduction of arsenic trioxide. Commercial-grade arsenic metal, which is 99%-pure arsenic, is produced in only a few countries. This grade accounts for the majority of arsenic metal production. Highpurity arsenic, which is 99.99% pure or

greater and is used in the semiconductor industry, is produced by about 10 companies. Furukawa Co. Ltd. in Japan and Preussag AG in the Federal Republic of Germany are believed to be the world's largest producers, with reported metal production capacities of 30 tons and 15 tons per year, respectively. Other high-purity arsenic producers include Cominco Ltd. in Canada; Mitsubishi Metal Corp. and Rasa Industries Co. Ltd. in Japan; and Johnson Matthey PLC and MCP Electronic Materials Ltd. in the United Kingdom.

Table 3,—Arsenic trioxide: World production, by country²

(Metric tons)

	(a.m			and the second second	
3	1983	1984	1985	1986 ^p	1987 ^e
Country ³ Belgium ^e Solivia Anada ⁶ ⁴ France Germany, Federal Republic of ^e Hapan ^e Namibia ⁶ Peru ⁷ Philippines ⁶ ⁸ Portugal ^e Sweden ^e ⁹ U.S.S.R.e U.S.S.R.e	3,000 107 2,000 4,727 360 300 560 4,557 1,126 1,009	3,000 144 3,000 3,500 3,528 360 500 NA 5,496 2,504 1,090 18,000 6,800	3,000 361 3,000 4,000 *8,000 360 500 NA 6,312 2,471 1,257 5,000 170 10,000 8,100 2,200	3,000 241 3,000 6,000 *10,000 860 500 NA 7,016 1,936 *1,210 5,000 150 10,000 8,100	3,500 13(3,000 5,000 9,000 36(500 1,00 1,20 5,000 1,20 5,000 8,10
Total	42,126	48,402	54,731	56,513	54,8

*Estimated. *Preliminary. NA Not available.

¹Including calculated arsenic trioxide equivalent of output of elemental arsenic and arsenic compounds other than arsenic trioxide where inclusion of such materials would not duplicate reported arsenic trioxide production.

²Table includes data available through June 10, 1988.

²Table includes data available through June 10, 1988.

²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ³Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, Czechoslovakia, the German Democratic Republic, Hungary, Spain, the United Kingdom, and ²Austria, China, China

Yugoslavia have produced arsenic and/or arsenic compounds in previous years, our information is manequate to make reliable estimates of output levels, if any.

*Figures include estimated production of low-grade dusts that were exported to the United States for further refining.

*Figures include estimated production of low-grade dusts that were exported to the United States for further refining.

*Figures include estimated production of low-grade dusts that were exported to the United States for further refining.

*Figures include estimated production of low-grade dusts that were exported to the United States for further refining.

*Figures include estimates for further refining by foreign producers. It has not been listed separately to avoid double marketable quality and required further refining by foreign producers. It has not been listed separately to avoid double counting.

**Output of Isumep Corp. Ltd. only.

**Output of Empresa Minera del Centro del Perú (Centromin Perú) as reported by the Ministerio de Energia y Mines.

**The Philippines may have had some arsenic output in 1984 from the Philippine Smelting and Refining Corp. (PASAR) copper smelter, but available information is inadequate to make reliable estimates of output levels, if any. copper smelter, but available information is inadequate to make reliable estimates of output of metallic arsenic exported.

**Based on arsenic trioxide exported plus the arsenic trioxide equivalent of the output of metallic arsenic exported.

CESIUM AND RUBIDIUM⁴

Domestic data for cesium and rubidium are developed by the Bureau of Mines from a voluntary survey of U.S. operations. Of the four operations to which a survey request was sent, two companies responded; production data are withheld to avoid disclosing company proprietary data. Cesium and rubidium metals and compounds were produced from pollucite and lepidolite ores imported from Canada. The metals were produced by the Electronic Materials and Refractory Metals Div. of Cabot Corp., Revere, PA. Cabot also produced cesium and rubidium compounds. The Special Products Div. of Carus Chemical Co., LaSalle, IL, produced cesium compounds. Cabot's prices for cesium and rubidium materials in quan-

tities under 50 pounds remained unchanged from its 1986 prices. Per pound quotes to the nearest dollar for technical grades and high-purity grades, the latter in parentheses, were as follows: cesium metal \$275 (\$325), rubidium metal \$300 (\$375), common cesium compounds \$36 to \$44 (\$73 to \$79), and common rubidium compounds \$104 to \$112 (\$155 to \$170).

Japan's Matsushita Electric Co. reportedly developed a new paper-thin rubidiumcontaining electrolyte suitable for use in devices such as batteries, chemical sensors, and pacemakers; it is light, and operates over a relatively wide range of temperatures, -60° C to 100° C.5

Table 4.—U.S. imports for consumption of cesium compounds, by class and country

	19	85	198	36	19	987		
Class and country	Quantity (pounds)	Value	Quantity (pounds)	Value	Quantity (pounds)	Value		
Cesium chloride:								
Canada					31,445	\$2,667,401		
Germany, Federal Republic of	20,452	\$630,635	27.924	\$952,998	29,098	1,078,217		
Netherlands	33	1.887	44	2,639	,	-,,		
Norway	362	11.335	210	12,187	345	14,986		
Sweden	115	7.367	124	9,096	8	1,110		
United Kingdom	192	5,464	124	5,050	352	12,557		
United Kingdom	172	0,404			302	12,001		
Total	21,154	656,688	28,302	976,920	61,248	3,774,271		
Cesium compounds, n.s.p.f.:		-						
German Democratic Republic	119	2,625						
Germany, Federal Republic of	28,358	735,785	7.140	165,717	12,500	241.659		
Greece	110	2,726	,,,,,	100,111	12,000	,,,,,,,		
Italy	110	2,120		82	4,783			
Japan	170	32,250	1,984	5,821	4,100			
Netherlands	110	32,230	58	11.390	62	12.214		
	200	104 100			02	14,414		
United Kingdom	626	164,468	3	1,076				
Total	29,383	937,854	9,185	184,004	12,644	258,656		

Source: Bureau of the Census.

GERMANIUM⁶

The estimated domestic production and consumption of germanium increased compared with that of 1986. Infrared systems and fiber optics continued to be the major end uses. The domestic fiber-optic market decreased for the second successive year, and germanium consumption for fiber optics also declined. The National Defense Stockpile (NDS) goal for germanium was increased substantially. Germanium is a strategic material that is vital to the manufacture of infrared systems needed by advanced aircraft and other defense applications.

Domestic Data Coverage.—Domestic refinery production and consumption data for germanium are estimated by the Bureau of Mines based on discussions with domestic producers.

Legislation and Government Programs.—Pursuant to section 3 of the Strategic and Critical Materials Stock Piling Act (50 U.S.C. 98 and following) and Executive Order 12155, the Federal Emergency Management Agency determined that, effective July 24, 1987, the NDS goal for germanium was increased from 30,000 kilograms to 146,000 kilograms, where it remained at yearend.

The General Services Administration (GSA) began the purchase of zone-refined germanium metal for the NDS. During the two initial rounds that took place in May and August, the GSA was successful in the purchase of 7,000 kilograms of metal. The

first-round puchase price was at \$666 per kilogram, and the second was at \$731 per kilogram. In September, the GSA contracted to purchase 23,000 kilograms of germanium during the third round of bidding to meet the previous 30,000-kilogram goal for the NDS. Tightening of supplies, probably owing in part to the GSA purchases, led to prices of \$740 to \$784 per kilogram for this round. In an effort not to disrupt the market, delivery times were stretched out to August 1989. The freemarket price increased from a range of \$700 to \$800 per kilogram to about \$825 per kilogram when GSA began awarding the contracts. All of the contract prices were considerably below the U.S. published price. Germanium was expected to come from Belgium, France, and the United States to satisfy these contracts.

Although metal transactions were conducted during the year, deliveries were not made, and no stocks of germanium were reported by GSA at yearend.

DOMESTIC PRODUCTION

Domestic refinery production from both primary and secondary materials was estimated to be 25,000 kilograms. Refined germanium products were produced by Eagle-Picher Industries Inc., Quapaw, OK; KBI Div. of Cabot, Revere, PA; and Atomergic Chemetals Corp., Plainview, NY.

The Jersey Minière Zinc Co. in Clarksville, TN, continued to produce germaniumrich residues as a byproduct of processing zinc ores from its Gordonsville and Elmwood Mines. These residues reportedly were shipped to Métallurgie Hoboken-Overpelt S.A. (MHO) in Belgium for germanium recovery and refining.

Lack of working capital and technical problems with its leach extraction unit reportedly caused Musto Exploration Ltd. to temporarily close its Apex Mine and refinery operation at St. George, UT, as of September 1987. Company officials indicated that the facilities would remain closed for more than 4 months. During the closure, the company planned to make required equipment repairs and to continue its metallurgical test work to increase overall recoveries for both germanium and gallium. Musto Exploration was the only company in the world to recover germanium and gallium as principal products.

CONSUMPTION AND USES

The consumption of germanium was estimated at 40,000 kilograms, a slight increase compared with that of 1986. The estimated consumption pattern by end use of germanium in 1987 was as follows: infrared systems, 65%; fiber optics, 10%; gamma-ray, X-ray, and infrared detectors, 6%; semiconductors, 5%; and other, 14%.

The largest end use for germanium continued to be in infrared optics, mainly for military use in guidance and weaponsighting systems. Germanium-containing lenses and windows transmit thermal radiation similar to visible light transmission by optical glass. Germanium glass was also used for nonmilitary surveillance and monitoring systems in fields such as satellite systems and fire alarms.

The U.S. fiber-optic market continued the downward trend started in 1986. Consumption of germanium in this application decreased about 17% compared with that of 1986. Many of the long-distance fiber-optic telecommunication systems have been completed and others are planned for installation in the future. However, fiber-optic applications for local-area-network systems were becoming a reality and reportedly offered the most effective means of transmitting voice and data with immunity to electromagnetic and noise interference. Optical signals cannot be intercepted easily, and they provide a more secure system. These attributes and the light weight of fibers compared with conventional communication systems make fiber optics an ideal system for military and civilian applications.

PRICES

The domestic producer prices, published by Metals Week, for germanium metal and germanium dioxide remained at \$1,060 and \$660 per kilogram, respectively.

The Belgian producer prices, published by Metal Bulletin (London), for germanium metal and germanium dioxide began the year at \$1,116 and \$676 per kilogram, respectively. On February 11, the prices decreased to \$795 per kilogram for germanium metal and \$455 per kilogram for germanium dioxide. The Belgian producer prices remained at these levels through yearend.

FOREIGN TRADE

A comparison of the value per kilogram of imported germanium material with the published foreign producer price for germanium metal, before estimated processing charges, was used to estimate the germanium content of imported scrap. In 1987, the estimated germanium content of total imports was calculated to be approximately 13,000 kilograms.

Table 5.—U.S. imports for consumption of germanium, by class and country

	198	86	1987	
Class and country	Gross weight (kilograms)	Value	Gross weight (kilograms)	Value
Unwrought and waste and scrap:				
Belgium-Luxembourg	833	\$850,804	1,401	\$1,455,925
Canada	21	17,058	35	22,903
China	6,296	2,746,121	5,168	2,402,457
France	19	16,590	5,448	2,737,307
Germany, Federal Republic of	137	197,860	1,121	755,366
Hong Kong	489	209,186	549	240,630
India	85	13,337		

Table 5.—U.S. imports for consumption of germanium, by class and country —Continued

	19	86	1987	
Class and country	Gross weight (kilograms)	Value	Gross weight (kilograms)	Value
Inwrought and waste and scrap —Continued				
Israel	195 542	\$38,948 30,063	195	\$5,985
Netherlands Sweden Switzerland	889 179	85,757 127,806	15	23,415
Taiwan United Kingdom	45 213	10,490 89,329	391 686	46,588 296,238
Total	9,943	4,433,349	15,009	7,986,814
Vrought: Belgium-Luxembourg China France Germany, Federal Republic of Israel Netherlands	2,347 198 8 415 	2,726,407 73,856 1,315 290,640	1,340 584 549 16	1,348,383 652,902 499,518 3,496
Total	2,968	3,092,218	2,489	2,504,299

WORLD REVIEW

Australia.—The Overseas Telecommunications Commission called for vendors to submit bids for the installation of an underwater fiber-optic cable system. This longdistance network system is the first phase of the previously announced Tasman II fiber-optic system, which will link Australia to New Zealand by 1991, North America by 1993, and Asia by 1995.9

Japan.—Germanium metal production decreased dramatically from 8,810 kilograms to 4,637 kilograms. Germanium dioxide production was 13,358 kilograms, which was equivalent to that of 1986.10

Spain.—Asturiana de Zinc S.A. sold its first lot of 1,200 kilograms of germanium concentrates derived from processing zinc concentrates from the La Troya Mine, Guipézcoa, Spain. The mine is owned by Exminesa, a consortium including Asturiana, Banco Urquijo, Cominco, and Union Corp. It was expected to produce 40,000 tons of zinc and 6,000 kilograms of germanium per year.

U.S.S.R.—Unlike market economy countries, which produce germanium as a byproduct of the refining of base metal ores, the U.S.S.R. reportedly recovered germanium from coal tar and coking residues generated by coking coal from the Donetsk Basin in the Ukraine. Also under consideration was the recovery of germanium from fly ash generated in powerplants, possibly using an extraction technique similar to

that used in the United Kingdom prior to the mid-1970's.

TECHNOLOGY

The Bureau of Mines investigated pressure-leaching techniques for recovering gallium and germanium from low-grade ores and zinc-processing residue samples. Detailed studies were made on an ore sample obtained from the Apex Mine, St. George, UT, which contained 0.033% gallium and 0.096% germanium. Pressure leaching of this ore sample at 200° C for 3 hours, coextracted 93% of the gallium and 96% of the germanium when the sulfur dioxide used in the reactor was greater than 2,200 pounds per short ton of treated ore. Selective extraction of 91% to 96% germanium was obtained using less than 1,500 pounds of sulfur dioxide per short ton of treated ore.11

Development of high-strength optical fibers and related components for widebandwidth two-way telecommunications have paved the way for fiber-optic guided missile systems. In these systems, many miles of spooled fiber, carried aboard a missile, are played out to maintain two-way communication between the missile and the launcher during the flight time. Numerous flights of this type of weapon system successfully demonstrated its target accuracy against both tanks and airborne helicopters.12

INDIUM13

Indium was produced by the Arconium Corp., Providence, RI, and Indium Corp. of America, Utica, NY. Domestic production in 1987 increased slightly more than that of 1986, and imports maintained a significant market share. The Bureau of Mines does not publish domestic production data on indium. Small quantities of secondary indium were available from specialty-metal-recycling firms. The potential for the use of indium in advanced materials was increased through research on component chemicals for coatings and solar cells.

CONSUMPTION AND USES

Indium usage increased in 1987. Consumption in the categories of fusible alloys and solders remained strong. Consumption for nuclear control rods remained low, essentially at a replacement level. Research continued on a broad range of possible new

applications, especially for high-performance solders, for solar cells, and an indiumtin oxide coating for flat glass that would be transparent to visible light, electrically conductive, and would prevent entry of infrared rays. Estimated consumption patterns for indium metal were solder, alloys, and coatings, 50%; electrical and electronic components, 35%; and research and other uses, 15%.

PRICES

The producer price of indium, published in Metals Week, was \$2.87 per troy ounce at the beginning of 1987. It increased steadily throughout the first 7 months to \$9.95 per troy ounce in July, at which level it remained until yearend. The sharp price rise during 1987 was attributed by industry analysts to strong demand in Japan, particularly for liquid crystal displays.

Table 6.—U.S. imports for consumption of indium, by class and country

(Thousand troy ounces and thousand dollars)

	198	35	198	36	1987	
Class and country	Quantity	Value	Quantity	Value	Quantity	Value
Inwrought and waste and scrap:	99	257	313	751	335	1.994
Belgium-Luxembourg		100	41	107	43	280
Canada		423	218	520	148	93
China	110	308	113	411	341	1,614
FranceGermany, Federal Republic of		30	2	50	9	103
Hong Kong		50	26	72	15	14
Italy	259	596	331	759	185	1,12
Jamaica		17				=
Japan	_ 2	43	6	104	29	47
Netherlands	_ 16	67	23	50	46	21
Peru	. 111	260	60	139	102	64
Switzerland	_ 16	36	. 8	17	$\overline{262}$	1,88
United Kingdom	147	1,009	221	1,159	202	1,00
Total ²	955	3,197	1,362	4,138	1,515	9,42
Vrought:						_
China			9	21	(¹)	1
France	_ 19	90				-
Germany, Federal Republic of	_ (1)	3	1	-9		Ē
Japan	_ 3	60	1	70	1	29
United Kingdom	_ 3	124	6	440	Э	28
Other		6	(1)	7		
Total ²	_ 25	283	18	495	7	37

¹Less than 1/2 unit

Source: Bureau of the Census.

²Data may not add to totals shown because of independent rounding.

WORLD REVIEW

World production increased slightly to an estimated 2.5 million troy ounces. A world supply shortage existed primarily due to strong demand from Japan.

Major world refiners included Cominco in Canada; MHO in Belgium; Penarroya in France and Italy; Dowa Mining Co. Ltd. and Mitsui Mining & Smelting Co. Ltd. in Japan; Minero Perú Comercial in Peru; Mining and Chemical Products Ltd. in the United Kingdom; and Government metallurgical complexes in China and the U.S.S.R.

TECHNOLOGY

Research in Japan developed a new direct synthesis technique for making indium phosphide. In this method, liquid phosphorus was utilized instead of the normal phosphorus gas. During the phase transition of phosphorus from liquid to gas and then gas to liquid, the liquid phosphorus reacts with indium to produce indium phosphide of a very high-purity crystalline structure. This development may enhance the application of indium phosphide in commercial use in such areas as solar cells and laser diodes for fiber optics.¹⁴

Research in Taiwan resulted in direct deposition of the transparent conductor indium-tin-oxide by direct thermal evaporation of metallic indium and tin in an ambient oxygen environment. The key point in reducing the resistivity of the indium-tin-oxide film apparently was to control the tinto-indium weight ratio to an optimum value of 3 to 1. These findings may enhance commercialization of a range of possible applications for indium coatings on glass and other surfaces.¹⁵

RHENIUM16

Cyprus Minerals Co. was the only domestic producer to recover rhenium in 1987. Rhenium contained in molybdenite was mined as a byproduct of porphyry copper ore from seven mines in the Southwestern United States. Consumption of rhenium increased about 19% in 1987. Imports for consumption decreased about 17%. The major use continued to be bimetallic platinum-rhenium catalysts to produce lead-free gaso-

line. The price of rhenium metal increased to \$500 per pound in 1987 from \$350 in 1986, and the price of ammonium perrhenate remained at \$200 per pound.

Domestic Data Coverage.—Domestic mine production data for rhenium are developed by the Bureau of Mines from the reported molybdenum production at the seven operating porphyry-copper-molybdenum-rhenium mines in the United States.

Table 7.—Salient U.S. rhenium statistics

(Pounds of contained rhenium)

	1983	1984	1985	1986	1987
Mine production ¹ Recovered ² Consumption ⁶ Imports (metal) Imports for consumption of ammonium	*16,200	r _{17,200}	^r 21,100	r _{21,700}	21,800
	W	W	W	W	W
	8,800	10,200	13,000	13,000	15,500
	623	1,962	4,943	5,495	7,436
perrhenate	5,947	4,754	3,325	^r 12,189	7,225
Stocks, Dec. 31	W	W	W	W	W

^eEstimated. ^rRevised. W Withheld to avoid disclosing company proprietary data. ¹Calculated rhenium contained in MoS₂ concentrates.

FOREIGN TRADE

Imports for consumption decreased as a whole, but rhenium in the form of metal increased. Most of the ammonium-perrhenate was received from Chile, the Federal Republic of Germany, and Sweden. Chile and the Federal Republic of Germany supplied the rhenium metal.

World production of rhenium was esti-

mated to be 40,000 pounds, exclusive of U.S. production. Rhenium was recovered from byproduct molybdenite concentrates from porphyry copper deposits in Canada, Chile, China, Iran, Peru, the U.S.S.R., and the United States. In addition, the U.S.S.R. also recovered rhenium as a byproduct from the Dzhezkazgan sedimentary copper deposit in Kazakhstan. Rhenium metal and compounds were recovered from molybdenum

²In prior years, this was shown as mine production.

concentrates in Chile, France, the Federal Republic of Germany, Sweden, the U.S.S.R., the United Kingdom, and the United States. Chile's recovery of rhenium was the largest amount produced by a market economy country.

Table 8.—U.S. import duties for rhenium materials

***		TSUS	Most favored nation (MFN)	Non-MFN
Item		No.	Jan. 1, 1987	Jan. 1, 1987
Unwrought metal Wrought metal Ammonium perrhenate Perrhenic acid		628.9000 628.9500 417.4520 416.4540	3.7% ad valorem 5.5% ad valorem 3.1% ad valorem 4.2% ad valorem	25% ad valorem. 45% ad valorem. 25% ad valorem. Do.

Table 9.—U.S. imports for consumption of ammonium perrhenate, by country
(Rhenium content)

	19	1985		1986		1987	
Country	Quantity (pounds)	Value (thousands)	Quantity (pounds)	Value (thousands)	Quantity (pounds)	Value (thousands	
Belgium-Luxembourg			76 1.022	\$22 175	70	\$27	
Brazil	2,918	\$611	8,360	r _{1,502}	4,906	1,426 2	
China					154	61	
Ecuador Germany, Federal Republic of	407	58	r _{1,938} 158	r ₃₅₂ 28	547 209	176 89	
Japan Netherlands			635	120	1,040	272	
Sweden United Kingdom				, , , , , , , , , , , , , , , , , , ,	295	69	
Total	3,325	669	r _{12,189}	r _{2,199}	7,225	2,122	

rRevised.

Source: Bureau of the Census.

Table 10.—U.S. imports for consumption of rhenium metal, by country

	1985		1986		1987	
Country	Gross weight (pounds)	Value	Gross weight (pounds)	Value	Gross weight (pounds)	Value
Chile Germany, Federal Republic of	3,300 1,424	\$825,000 337,662	3,150 1,904	\$2,014,000 432,000	5,463 1,867	\$1,445,049 593,093
United Kingdom	193 27	54,065 8,378	441	171,000	106	34,342
Total	4,943	1,225,105	5,495	2,617,000	7,436	2,072,484

¹Includes Haiti, Sweden, Switzerland, and Uruguay.

Source: Bureau of the Census.

SCANDIUM17

Production of refined scandium in the United States increased. Most of the scandium processed in the United States in 1987 was derived from previously mined domestic ores and concentrates. Demand for scandium for use in laser crystals and specialuse light bulbs, its principal markets, increased slightly. Scandium was obtained as a byproduct from tungsten concentrates, fluorite tailings, and uranium solutions at three locations in the Western United

States. The uranium-scandium mine source, which had ceased operating in 1985, reopened in 1987. As an advanced material, scandium-containing synthetic garnet crystals were components in high-energy lasers.

Domestic Data Coverage.—Domestic production data for scandium are estimated by the Bureau of Mines on the basis of discussions with domestic producers, processors, and consumers.

DOMESTIC PRODUCTION

Byproduct scandium-bearing ore and concentrate from three domestic mines were processed in 1987. Bingham Canyon was the only domestic mine operating in 1987 that produced ore containing byproduct scandium. As a result of scandium's high cost, the industry is reportedly investigating methods to economically recover scandium from scrap materials, principally laser rods.

Energy Fuels Nuclear Inc. produced scandium concentrate as a byproduct of uranium processing. Ore for Energy Fuels Nuclear's plant was derived as a byproduct of copper recovered by leaching at Kennecott's Bingham Canyon Mine, Bingham Canyon, UT. Energy Fuels Nuclear purchased the Bingham Canyon uranium-scandium recovery facility in 1986 from Westinghouse Electric Corp. and reopened the plant in February 1987. Prior to its purchase, Westinghouse had ceased operation of the plant in August 1985.

Refined scandium products, principally scandium oxide, were produced domestically by Baldwin Metal Processing Co., Phoenix, AZ; Boulder Scientific Co., Mead, CO; Materials Preparation Center, Ames, IA; Research Chemicals Div. of Nucor Corp., Phoenix, AZ; and Sausville Chemical Co. Inc., Garfield, NJ.

Refined scandium was recovered by Baldwin Metal Processing Co. from residual fluorite screenings accumulated at an inactive fluorite mine at Crystal Mountain, MT. By yearend, Baldwin Metal had reportedly closed its processing operations. Boulder Scientific produced scandium from previously mined tungsten concentrates derived from the processing of molybdenum ores at AMAX Inc.'s Climax Mine, Climax, CO, and from scandium concentrates produced by Energy Fuels Nuclear's uranium facility at Bingham Canyon, UT. AMAX's molybdenum and byproduct tungsten operations at Climax closed in mid-1986 and were kept on a maintenance basis throughout 1987.

Scandium was also refined by Sausville Chemical from scandium concentrate produced at Bingham Canyon, UT.

CONSUMPTION AND USES

Domestic consumption of scandium in 1987 was estimated at 66 kilograms of equivalent scandium oxide, an increase of 15 kilograms from the estimated quantity consumed in 1986. The major use for scan-

dium was in laser crystals of gadoliniumscandium-gallium garnets (GSGG), which were used in high-average-energy laser systems. GSGG laser crystals are more than twice as energy efficient as yttrium-aluminum garnets as a lasing medium. Laser applications for GSGG are in communications and high-average-energy (not pulsed) applications such as hydrogen fusion research and antimissile defense systems, and in lower energy lasers used in medical, electronic, and industrial applications.

Scandium is used in high-intensity mercury vapor lights to produce a highly efficient, near-sunlight color emission that is used for indoor and outdoor nighttime lighting to simulate daylight for color television broadcast. Three to five milligrams of scandium are added per bulb.

The radioactive isotope scandium-46 was used as a tracing agent in petroleum refineries and in oil wells.

Scandium metal, backed by molybdenum, was used in dual anode tubes in X-ray fluorescence spectrometers. Excitation efficiency of the dual anode system is reportedly excellent in detection of the light elements through titanium.

Small amounts of scandium metal reportedly were used in semiconductors, while minor amounts found use in petroleum catalysts and collimators in neutron lenses.

Additions of scandium to titanium carbide reportedly create a binary carbide with a hardness close to that of diamond.

PRICES

No published prices for scandium were available. Yearend nominal prices for scandium oxide per kilogram, compiled by the Bureau of Mines from information from several suppliers, were as follows: 98% purity, \$6,500; 99% purity, \$7,000; 99.99% purity, \$9,500; 99.99% purity, \$11,000; 99.995% purity, \$13,000; 99.999% purity, \$15,000. Scandium metal prices varied considerably, depending on the quantity of material being purchased and its purity.

FOREIGN TRADE

No trade data were available for scandium as an individual item. However, analysis of small shipments of high value from probable scandium import sources suggested that about 2 kilograms of scandium oxide was imported from the United Kingdom.

Based on data compiled by the Bureau of Mines, the United States was a net exporter of scandium in 1987 and is no longer dependent on foreign sources for its current demands.

WORLD REVIEW

Foreign countries that mined scandium in 1987 included Australia, China, Norway, and the U.S.S.R. Refined scandium was processed in France, Japan, Norway, and the United Kingdom.

A/S Megon announced the opening of a scandium oxide processing pilot plant in June at Norway's Institute of Energy, near Oslo. The plant, which was scheduled to open in June, has a planned capacity of 10 kilograms of scandium oxide per month. The opening of the plant coincides with the discovery of two scandium-rich deposits in Finnmark County in northern Norway, and at Evje, 50 kilometers northwest of Kristiansand, in the south. 18

TECHNOLOGY

Scandium and rare-earth elements in Jamaican bauxite wastes were characterized by researchers at the University of the West Indies, Kingston, Jamaica. The red mud waste generated by processing Jamaican bauxite by the Bayer process was determined to be enriched with scandium, compared with the ore. Scandium oxide contents of 200 to 390 parts per million were detected in the bauxite wastes at a uniform rate of distribution. 19

Developers at Mitsubishi have added scandium oxide to the cathode ray tubes (CRT) of certain rear-projection, big-screen televisions. The addition of scandium oxide reportedly blocks the formation of a reactant on the cathodes oxide layer, allowing increased electron beam output and improved longevity of the CRT.²⁰

SELENIUM²¹

Domestic output of refined selenium, a byproduct of copper refining, increased by about 50%. One domestic producer resumed production at its refinery, which had been closed since 1985, and the two other producers increased their production. Despite the increase in domestic production, the United States continued to rely heavily on imports, which met most of the domestic demand.

Apparent consumption of refined selenium rose about 10%, reflecting increased agricultural use and an increase in the

production of photoreceptors for plain paper copiers, the largest use for refined selenium. With world demand exceeding production, the price of selenium rose steadily throughout the year.

Domestic Data Coverage.—Domestic data for selenium are developed by the Bureau of Mines from a voluntary survey of stocks, production, and shipments at the three U.S. producers. All three producers responded to the survey. Data are withheld to avoid disclosing company proprietary information.

Table 11.—Salient selenium statistics
(Kilograms of contained selenium unless otherwise specified)

	1983	1984	1985	1986	1987
United States:					
Production, primary refined	353,860	253,598	W	W	W
Shipments to consumers	374,030	224,401	W	W	W
Exports, metal, waste and scrap	93,368	122,929	154,122	161,007	162,217
Imports for consumption	297,029	376,946	400,658	462,646	495,862
Consumption, apparent	577,691	478,418	w	W	· W
Stocks, Dec. 31: Producers'	152,790	139,159	W	W	W
Dealers' price, average per pound,	•				
commercial-grade2	\$3.87	\$9.02	r\$7.44	r\$5.70	\$6.51
World: Refinery production	r _{1,402,992}	r _{1,493,851}	1,324,756	P1,193,744	e _{1,245,059}

^eEstimated. ^pPreliminary. ^rRevised. W Withheld to avoid disclosing company proprietary data. ¹Granular selenium, a semirefined form of selenium, is included in stocks.

²Metals Week. 1985-87 calculated from published price ranges.

Government Legislation and grams.-In April, the Food and Drug Administration, U.S. Department of Health and Human Services, published new regulations concerning the use of selenium as an additive in feed for major food-producing animals. The new regulations allow for an increase in the maximum supplementation level of selenium in "complete" feed from 0.1 to 0.3 part per million, as well as proportional increases in separate feed supplements and salt-mineral mixtures. This action was in response to a petition filed in 1986 by the American Feed Industry Association Inc.22

DOMESTIC PRODUCTION

Primary selenium was recovered as a byproduct of the electrolytic refining of copper. Selenium, along with precious metals, accumulates in anode slimes generated in the electrolytic cells.

Primary selenium was recovered by three domestic copper refiners: Asarco at Amarillo, TX; Phelps Dodge Refining Corp. at El Paso, TX; and BP Minerals America Corp. (formerly Kennecott) at Magna, UT. Production at the Magna refinery, which had been closed since 1985, resumed during the third quarter of the year. Selenium-bearing anode slimes from other domestic copper refineries were either shipped to one of the above refineries or exported for processing.

Production of refined selenium increased 50% despite an increase of only 4% in electrolytic copper production. Responding to higher prices, producers sought to increase production of refined selenium by maximizing their recovery of selenium from anode slimes and by processing accumulated stocks of crude selenium into refined material. However, shipments by domestic producers increased by only 15%, as producers sought to replenish depleted stocks, possibly in anticipation of further price increases.

Most selenium of domestic origin was produced as commercial-grade selenium, averaging 99.5% selenium, and available as powder, shot or small lumps, and pigment-grade selenium powder, with a minimum 99.8% purity. A small quantity of high-grade selenium, with a minimum 99.99% selenium content, and ferroselenium, were also produced.

About 100 tons of selenium contained in scrap derived from the manufacture of photocopier drums and from used photocopier drums was exported for processing.

CONSUMPTION AND USES

Consumption of selenium increased by

more than 10% in 1987, as a result of demand in a strong agricultural market and the effects of a weakened U.S. dollar. Demand for selenium by end use was estimated as follows: electronic and photocopier components, 43%; pigments and chemicals, 20%; glass manufacturing, 20%; and other, including agriculture and metallurgy, 17%.

The major demand for selenium in the electronics end-use sector was as a photoreceptor on the drums of plain-paper electrophotographic copiers. This end use contributed significantly to the growth in U.S. demand, with several Japanese manufacturers having established production facilities in the United States and world demand for photoreceptors having grown at about 5% per year. Agricultural use of selenium, where sodium selenate or selenite was used as feed additives or nutritional supplements to compensate for animal feed grown in selenium-deficient soil, increased significantly in response to new Food and Drug Administration regulations increasing the allowable supplemental levels. Most of the domestic demand in this sector was met by imports.

In the glass industry, selenium was used primarily in the production of container glass as a decolorant. It was also used in architectural glass to reduce solar-heat transmission. Selenium-bearing cadmium sulfoselenide red pigments were used as colorants for plastics, glass, and ceramics.

PRICES

The price of selenium, which had been depressed throughout 1986, rose steadily during 1987 in response to declining stock levels and world demand in excess of production. The New York dealer price range for commercial-grade selenium, quoted by Metals Week on a weekly basis, began the year at \$5.40 to \$5.65 per pound and rose steadily to \$9.00 to \$9.50 per pound at yearend. The free-market European price followed the same pattern.

FOREIGN TRADE

Total imports for consumption of selenium, as measured in terms of contained selenium, rose for the fourth consecutive year, to a level about two-thirds above the 1983 level. The strength of imports was tied to the high domestic industrial demand stimulated by the weakened U.S. dollar, and to new regulations governing agricultural usage. Total exports were at about the same level as in 1986; about two-thirds of the exports was scrap.

Table 12.—U.S. exports of selenium metal, waste and scrap, by country

	198	85	198	36	19	37
Country	Quantity (kilograms, contained selenium)	Value	Quantity (kilograms, contained selenium)	Value	Quantity (kilograms, contained selenium)	Value
Argentina		\$22,750	2,907	\$44,163	998	\$10,704
Australia	962	29,220				
Belgium-Luxembourg				· · · ·	17,941	140,504
Brazil		10.400	319	5,099	59	3,250
Canada		40,595	324	5,171	2,772	44,307
China					1,955	28,290
Colombia	894	22,660	7,387	144,870	_,	
France		5,075	1.011	16,150	$1.1\overline{59}$	18,526
Germany, Federal Republic of		126,793	1,011	20,200	-,	,
India		4,765				
Italy		20,015	1,883	21,835	299	4,290
		289,592	42.875	245,381	34.611	270,252
Japan Korea, Republic of	45	1,800	10.165	52,265	1.031	21,662
Malaysia	40	1,000	4,802	76,752	1,001	21,002
Mexico		308,481	15,231	237,033	30.385	462,450
Netherlands		106,360	19,421	180.238	7,484	83,160
		6,760	10,421	100,200	1,404	00,100
Norway		42,000	17,178	$43.\overline{486}$	$9.0\overline{72}$	6.000
Philippines		1.950	272	3,350	9,012	0,000
Portugal		1,950	212	5,550	$1.0\overline{14}$	10 000
SpainSwitzerland	4 000	75 959	0.004	99 779	1,014	12,258
Switzerland	4,990	75,350	2,984	32,763	F1 040	F40 000
United Kingdom	51,096	316,177	34,200	342,461	51,246	546,020
Venezuela			48	1,446	1,814	28,987
Other					377	5,520
Total ¹	154,122	1,430,743	161,007	1,452,463	162,217	1,686,180

¹Data may not add to totals shown because of independent rounding.

Source: Bureau of the Census.

Table 13.—U.S. imports for consumption of selenium, by class and country

	19	185	19	86	1987	
Class and country	Quantity (kilograms, contained selenium)	Value	Quantity (kilograms, contained selenium)	Value	Quantity (kilograms, contained selenium)	Value
Unwrought and waste and scrap:						
Belgium-Luxembourg	63,353	\$1,572,220	86,143	\$2,736,960	94,477	\$2,649,893
Canada	111,927	2,353,429	130,038	2,386,721	136,621	2,784,833
Chile	7,500	153,902	3,000	42,118		
China					4,475	47,503
Costa Rica			362	11,940		
Finland					1,000	13,302
German Democratic Republic	45	14,743		. ==		
Germany, Federal Republic of	5,550	126,877	205	9,496	1,940	25,767
Japan	72,609	2,056,694	87,858	1,958,821	85,657	1,759,989
Japan Korea, Republic of			2,000	19,852	1,500	13,524
Netherlands	15,239	30,851	3,680	61,216		
Philippines	16,748	243,747	10,000	86,200	12,000	111,667
Sweden	100	3,750	===			4 0 4 7 000
United Kingdom	66,434	910,947	97,408	1,501,694	76,379	1,245,330
Yugoslavia			5,000	43,572	20,000	153,657
Total	359,505	7,467,160	425,694	8,858,590	434,049	8,805,465
Selenium dioxide:						
Belgium-Luxembourg			. 8	1.011		
Germany, Federal Republic of	$6.9\overline{16}$	$164.\overline{471}$	5.405	113,472	3.594	70,990
Japan	0,020	202,212	0,100	,	6,227	138,782
United Kingdom			$\overline{142}$	3,114	1,314	29,724
Total	6,916	164,471	5,555	117,597	11,135	239,496
Selenium salts:						
Belgium-Luxembourg	567	29,839				
France	901	29,009			$\overline{46}$	1.233
Korea, Republic of	$4.8\overline{47}$	$4.9\overline{62}$	$1.\overline{626}$	$2,\overline{662}$	40	1,200
United Kingdom	7,000	114,959	650	7,798	300	7,677
Omed Amgdom	1,000	114,509	000	1,196	300	1,011
Total	12,414	149,760	2.276	10.460	346	8,910

Table 13.—U.S. imports for consumption of selenium, by class and country —Continued

Class and country	1985		1986		1987	
	Quantity (kilograms, contained selenium)	Value	Quantity (kilograms, contained selenium)	Value	Quantity (kilograms, contained selenium)	Value
Sodium selenite:						
Belgium-Luxembourg					230	\$5,550
Canada	42	\$2,090	4	\$1,648	345	8,454
Germany, Federal Republic of	3,013	80,091	14,987	125,108	19,734	259,174
Japan	1,058	29,575	230	15.917	414	35,260
United Kingdom	13,835	332,551	10,931	258,425	26,640	597,024
Total	17,948	444,307	26,152	401,098	47,363	905,462
Other selenium compounds:						
Belgium-Luxembourg					464	35,478
Canada	1,105	3,394			48	2,400
Germany, Federal Republic of	22	1,443	338	10,351	250	5,324
Japan	1,588	81,559				
Sweden	123	1,398			264	6,296
United Kingdom	1,037	44,072	2,631	152,070	1,943	99,668
Total	3,875	131,866	2,969	162,421	2,969	149,166
Grand total	400,658	8,357,564	462,646	9,550,166	495,862	10,108,499

Source: Bureau of the Census; figures adjusted by the Bureau of Mines.

WORLD REVIEW

World consumption of selenium increased by an estimated 10% in 1987 and continued to grow faster than world production. Consumption growth was particularly strong in the United States and China. It was estimated that Chinese imports more than doubled from the 1986 level, making China the fourth largest selenium consumer after the United States, the United Kingdom, and Japan.

In Belgium, a planned expansion of MHO

selenium-refining capacity at its Hoboken operations during 1987 was delayed. The expansion from 160 tons per year to an estimated 360 tons per year was rescheduled for completion by yearend 1988. MHO recovered selenium from anode slimes generated at its Olen refinery, principally from imported Zairian copper, and from purchased anode slimes, some of which originated in the United States. Most of the selenium produced was high-purity metal suitable for electronic applications.

Table 14.—Selenium: World refinery production, by country¹

(Kilograms, contained selenium)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Belgium ^e	r140,000	r180,000	r230,000	250,000	230,000
Canada ³	266,000	e354,000	361,000	345,000	345,000
Chile	43,869	25,450	50,037	16,267	20,000
Finland	11,172	16,975	14,038	5,693	10,000
India	3,684	4,191	4,850	r e4,800	4,800
Japan	433,122	464,524	496,835	426,567	4481,109
Mexico	24,000	44,000	42,000	23,000	25,000
Peru	19,514	20,758	14,506	12.012	12,000
Sweden	42,000	68,000	46,000	r e50,000	50,000
United States	353,860	253,598	w	W	W
Yugoslavia ^e	443,720	45,000	46,000	45.000	45,000
Zambia ⁵	22,051	17,355	19,490	15,405	422,150
Total	r _{1,402,992}	r _{1,493,851}	1,324,756	1,193,744	1,245,059

W Withheld to avoid disclosing company proprietary data; not included in Preliminary. Revised. "Total."

"Insofar as possible, data relate to refinery output only; thus, countries that produced selenium contained in copper ores, copper concentrates, blister copper, and/or refinery residues, but did not recover refined selenium from these materials indigenously, were excluded to avoid double counting. Table includes data available through June 10, 1988. "In addition to the countries listed, Australia, the Federal Republic of Germany, and the U.S.S.R. produced refined selenium, but output is not reported, and available information is inadequate for formulation of reliable estimates of output levels. Australia is known to produce selenium in intermediate metallurgical products and has facilities to produce elemental selenium. In addition to having facilities for processing imported anode slimes for the recovery of selenium and precious metals, the United Kingdom has facilities for processing selenium scrap.

3Tha 1982-85 refinery output is from all sources including imported materials and secondary sources: 1986-87 excludes

The 1983-85 refinery output is from all sources, including imported materials and secondary sources; 1986-87 excludes secondary production.

Reported figure.

⁵Data are for fiscal year ending Mar. 31 of that stated. In addition to refined selenium produced, Zambia exported significant quantities of selenium contained in anode slimes.

TECHNOLOGY

Copper indium diselenide (CuInSe₂) continued to draw interest as a thin-film solar-cell material. Research efforts were being directed at improving cell efficiency and building large-area modules suitable for practical application. Although efficiencies of about 12% have been achieved, the U.S. Department of Energy predicts that an efficiency of about 15% will be required to produce cost-effective solar power.²³

The Fifth International Conference on the Chemistry of Selenium and Tellurium

was held in Oak Ridge, TN. Sessions held included those on the organic, physical, and biochemical aspects of selenium, and on selenium films.

The Selenium-Tellurium Development Association Inc., Darien, CT, published a brochure providing background information on selenium as an essential nutrient for animals, humans, and plants. The brochure outlines some of the detrimental effects of selenium deficiency and effective ways of providing selenium to animals whose diets are deficient in selenium.²⁴

TELLURIUM²⁵

Commercial-grade tellurium (minimum 99% tellurium) and tellurium dioxide were produced by Asarco as byproducts of copper processing at its electrolytic copper refinery at Amarillo, TX. Asarco provided tellurium production data to the Bureau of Mines; however, the data are withheld to avoid disclosing company proprietary data.

Domestic demand for tellurium and its compounds increased by at least 15% in 1987. Most of the demand for commercial-grade material was satisfied by domestic production, but demand for high-purity tel-

lurium was met almost entirely by imports.

The principal use of tellurium was as an alloying metal in free-machining steel and copper. High-purity tellurium was of strategic significance because of its use in mercury-cadmium-telluride, an infrared sensing material for thermal imaging in night vision and navigation systems. Estimated consumption of tellurium, by end-use category, was iron and steel, 58%; nonferrous metals, 20%; chemicals and rubber manufacturing, 15%; other uses, including xerographic and electronic applications, 7%.

Table 15.—U.S. imports for consumption of tellurium, by class and country

Class and country	1985	r	19861		1987	
	Gross weight (kilograms)	Value	Gross weight (kilograms)	Value	Gross weight (kilograms)	Value
Unwrought and waste and scrap:						
Belgium-Luxembourg	5	\$5878	47	\$1,021	1,041	\$32,401
Canada	13,458	453,929	7,159	504,983	4,525	463,462
Germany, Federal Republic of	5	1,404		·	5	1,441
Japan	499	29,083	754	43,891	347	38,149
Netherlands	500	9,653				
Peru	963	18,963	4,863	70,244		
United Kingdom	4,999	107,398	9,000	175,543	2,962	72,904
Total	20,429	626,308	21,823	795,682	8,880	608,357
Compounds:						
Belgium-Luxembourg	907	15,381	10	1,277		
Canada	90	1,904		_,	(1)	1.879
Germany, Federal Republic of	64	3,369			133	6,463
Japan	103	10,900	63	$7,\overline{161}$	188	9,743
Philippines	9.220	202,483		1,101	100	0,110
Switzerland	0,220	202,400			- - 7	1,633
United Kingdom	22	5,536	359	76,545	932	114,192
	10,406	239,573	432	84,983	1,260	133,910
Salts:						
Germany, Federal Republic of			8.466	30.397	16,550	64,238
Netherlands	$2.\overline{400}$	$5.\overline{410}$	0,100	22,001	10,000	2 1,200
United Kingdom					10	1,355
Total	2,400	5,410	8,466	30,397	16,560	65,593
Grand total	33,235	871,291	30,721	911,062	26,700	807,860

Revised.

Source: Bureau of the Census.

Less than 1/2 unit.

In response to a global production deficit and a drawdown in domestic and world stocks, the domestic producer price of tellurium metal, which had remained stable at about \$10 per pound since 1982, rose steadily throughout the year to about \$20 per pound at yearend.

Table 16.—Tellurium: World refinery production, by country¹

(Kilograms, contained tellurium)

Country ²	1983	1984	1985	1986 ^p	1987 ^e
Canada ³	16,000	^e 21,000	19,000	r e20,000	27,000
	54,800	64,500	65,600	55,600	⁴ 53,305
	15,806	14,066	15,007	9,836	10,000
	W	W	W	W	W

Preliminary. W Withheld to avoid disclosing company proprietary data. Revised. Estimated.

⁴Reported figure.

THALLIUM²⁶

The U.S. demand for thallium during the last 6 years has been met by imports. The small market size and the toxicity of thallium are the principal factors that will continue to influence domestic dependence on foreign sources for the supply of thallium. Based on import data, the domestic consumption of thallium was estimated to be 3,000 pounds in 1987, significantly higher than in 1986. Metal traders reported that the average price of thallium metal in 200pound lots ranged from \$60 per pound for 99.9%-pure thallium metal to about \$100 per pound for 99.999%-pure metal, compared with \$20 and \$65 per pound, respectively, in 1986.

Legislation and Government grams.-The Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) extended and amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). Certain requirements were established for the EPA and the Agency for Toxic Substances and Disease Register (ATSDR) with regard to hazardous substances that are most commonly found at facilities on the CERCLA National Priorities List (NPL), and which pose the most significant potential threat to human health. Section 110 of SARA amends section 104(i) of CERCLA by establishing requirements for the preparation of (1) a list of hazardous substances found at NPL sites (in

order of priority), (2) toxicological profiles of those substances, and (3) a research program to improve or expand the information available on these substances. EPA and ATSDR published the first priority list of 100 hazardous substances on April 17, 1987, in compliance with the law. The list was divided into 4 priority groups of 25 substances each. In this list, thallium was among the hazardous substances of the fourth priority group.27

In July, EPA published its final rule on land-disposal restrictions of liquid wastes in response to the Resource Conservation and Recovery Act (RCRA), as amended by Hazardous and Solid Waste Amendments of 1984. The RCRA required EPA to restrict the land disposal of hazardous wastes, containing the so-called California list. The rule prohibited land disposal of liquid wastes containing thallium compounds at concentrations greater than or equal to 130 milligrams per liter, thallium content.28

³U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. Toxicological Profile For Arsenic. Nov. 1987, 130 pp.

Prepared by staff, Branch of Nonferrous Metals. SMCCUIJOch, R. Advances in Japanese Batteries. Mater. Edge, No. 3, Jan. 1988, pp. 45, 47.

Prepared by Thomas O. Llewellyn, physical scientist.

Insofar as possible, data relate to refinery output only; thus, countries that produced tellurium contained in copper ores, copper concentrates, blister copper, and/or refinery residues, but did not recover refined tellurium, are excluded to avoid double counting. Table is not totaled because of the exclusion of data from major world producers, notably the U.S.S.R. and the United States. Table includes data available through June 10, 1988.

²In addition to the countries listed, Australia, Belgium, the Federal Republic of Germany, and the U.S.S.R. are known The produce refined tellurium, but output is not reported, and available information is inadequate for formulation of reliable estimates of output levels. Moreover, the other major copper-refining nations such as Chile and Zambia may produce refined tellurium, but output in these nations is conjecturel.

3 Refinery output from all sources, including imports and secondary sources.

¹Prepared by J. Roger Loebenstein, physical scientist. Federal Register. Environmental Protection Agency. Inorganic Arsenicals; Preliminary Determination To Cancel Registration of Pesticide Products Containing Inorgan-ic Arsenicals Registered for Nonwood Preservative Use. V. 52, No. 1, Jan. 2, 1987, pp. 132-140.

⁷Federal Register. Federal Emergency Management Agency. Determination of National Defense Stockpile Goal for Germanium. V. 52, No. 174, Sept. 9, 1987, p. 33992.

⁸Where necessary, values have been converted from Belgian francs (BF) to U.S. dollars at the 1987 average exchange rate of BF37.334=US\$1.00.

⁹Photonics Spectra. Aussies Seek FO Bids. V. 21, Issue 2,

Photonics Spectra. Aussies Seek FO Bids. V. 21, Issue 2, Feb. 1987, p. 50.
193pan Metal Journal. V. 18, No. 12, Mar. 21, 1988, p. 6.
11Judd, J. C., M. P. Wardell, and C. F. Davidson. Extraction of Gallium and Germanium From Domestic, Resources (Pres. at the 116th TMS Annual Meeting, Denver, CO, Feb. 24-26, 1987). Light Metals, 1988, ed. by L. G. Boxall. Metall. Soc. AIME, Warrendale, PA, pp. 856-862.
12Anderson, S. J., and A. E. Popa. Fiber Optics airborne Weaponry. Photonics Spectra, v. 21, Issue 3, Mar. 1987, pp. 113-120.
13Prepared by James F. Carlin, Jr., physical scientist.
14Inada, T., T. Fujii, M. Eguchi, and T. Fukuda. New

¹³Prepared by James F. Carlin, Jr., physical scientist.
 ¹⁴Inada, T., T. Fujii, M. Eguchi, and T. Fukuda. New Direct Syntheses Technique For Indium Phosphide Using Liquid Phosphorus. J. Crystal Growth (Engl. Transl.), v. 82, No. 3, Mar. 1987, pp. 561-565.
 ¹⁵Sea-Way, J., and L. Si-Chen. Preparation and Characterization of Indium-Tin-Oxide Deposited by Direct Thermal Evaporation of Metal Indium and Tin. J. Electrochem. Soc. (Engl. Transl.), v. 134, No. 8, Aug. 1987, pp. 2056-2061.
 ¹⁶Prepared by John W. Blossom, physical scientist.
 ¹⁷Prepared by James B. Hedrick, physical scientist.

¹⁷Prepared by James B. Hedrick, physical scientist.

¹⁸Robbins, J. Scandium in Scandinavia—A New Development. Mater. Edge, June 1987, p. 6.
 ¹⁹Wagh, A., and W. Pinnock. Occurrence of Scandium and Rare Earth Elements in Jamaican Bauxite Waste. Econ. Geol., v. 82, 1987, pp. 757-761.
 ²⁰Slovick, M. Big Screen Breakthroughs. Video. Feb. 1988, pp. 48-54.

²¹Prepared by Daniel L. Edelstein, physical scientist.

⁴Prepared by Daniel L. Edelstein, physical scientist.
²Prederal Register. Food and Drug Administration. Food Additives Permitted in Feed and Drinking Water of Animals, Selenium. V. 52, No. 65, Apr. 6, 1987, pp. 10887-10888.

²⁸Zweibel, K. Photovoltaic Cells: New Technologies Are Moving From Lab to Marketplace. Bull. Selenium-Tellurium Development Association Inc., No. 30, 1987,

pp. 3-4.

24 Oldfield, J. E. Selenium: Uses in Agriculture by Plants, Animals, and Humans. Selenium-Tellurium Development Association Inc., Darien, CT, 9 pp.

25 Pransard by Paniel I. Edeletin physical ectantist

⁵Prepared by Daniel L. Edelstein, physical scientist.

²⁸Prepared by Daniel L. Edelstein, physical scientist.
 ²⁶Prepared by Thomas O. Llewellyn, physical scientist.
 ²⁷Federal Register. Environmental Protection Agency.
 Notice of the Fist Priority List of Hazardous Substances
 That Will Be the Subject of Toxicological Profiles. V. 52,
 No. 74, Apr. 17, 1987, pp. 12866-12874.
 ²⁸——Environmental Protection Agency Land Dis-

170. 14, Apr. 17, 1361, pp. 1200-1201.
28 — Environmental Protection Agency. Land Disposal Restrictions For Certain "California List" Hazardous Wastes and Modifications to the Framework. V. 52, No. 130, July 8, 1987, pp. 25760-25792.

Table 17.—U.S. imports for consumption of thallium, by country

Country		Compounds	Unwrought and waste and scrap		
	Gross weight (pounds)	Content ¹ (pounds)	Value	Gross weight (pounds)	Value
1986: Belgium-Luxembourg Canada	867	694	\$ 19,223	1,037	\$29,661 1,033
France Germany, Federal Republic of Japan	440 524 22	352 419 18	8,643 28,898 1,414		
Netherlands United Kingdom	(²) 10	(2)	2,250		
Total	r _{1,863}	^r 1,491	r60,428	1,039	30,694
1987: Belgium-Luxembourg France Germany, Federal Republic of United Kingdom	237 220 485 11	190 176 388 9	16,670 4,573 20,929 2,450	1,151 1,034	23,731 20,756
Total	953	763	44,622	2,185	44,487

Source: Bureau of the Census

¹Estimated by the Bureau of Mines.

²Revised to zero.