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Abstract

Biomanufacturing methods use live cells to manufacture vaccines and proteins.

The use of live cells introduces several operational challenges, including uncertainty

in yield and quality, random batch failures, and challenges in meeting specific purity

and yield requirements for engineered drugs. In this thesis, we present optimization

models to reduce costs and lead times in biomanufacturing operations.

First, we present a stochastic model that balances the risk of batch failures and

yield-quality trade-offs to reduce costs in upstream biomanufacturing operations.

We develop reliability models for random batch failures, and then provide an infinite

horizon Markov decision model to derive the structural properties of the optimal

operating policies. We develop stationary policies that closely approximate the

optimal value function and are easier to implement in practice.

Second, we analyze a protein purification problem. In this setting, each order

denotes an engineered protein having specific production requirements on the yield

and quality. We develop a Markov decision model to optimize the pooling decisions

for a fixed sequence of chromatography operations. We partition the state space

into distinct decision zones that have similar financial characteristics, and then

analyze the best starting material and optimal policies that would lead to guaranteed

performance outcomes. We present zone-based optimal pooling policies that are easy

to implement in practice, and discuss a state aggregation and an action elimination

scheme leading to computational advantage in solving realistic industry problems.

Third, we consider the interaction between upstream fermentation and downstream

purification operations. We first examine the downstream purification decisions

where the joint decision on chromatography techniques and pooling windows are



ii

identified to separate the protein of interest from multiple unwanted impurities.

We develop a stochastic optimization model to identify the optimal choice of chro-

matography techniques and pooling windows at each purification step. Then, we

analyze the upstream protein mass decisions, i.e., the best amount of protein to be

manufactured through fermentation considering the uncertainty in yield and quality

of the downstream purification operations. Based on the financial trade-offs between

upstream and downstream operations, insights obtained from the downstream model

are used to identify the best decisions for the upstream fermentation operations.

This research provides several contributions to theory and practice. First, the pro-

posed models provide novel functional relationships between yield, quality and costs

under various operating policies (optimal and suboptimal) in biomanufacturing op-

erations. Next, we develop Markov decision models that capture both biology-level

and manufacturing system level dynamics in a unified framework. We analyze the

structural properties, and propose optimal guidelines for industry practices. Further,

we develop approximations to solve large data sets. Lastly, we build models that

address common challenges and issues encountered in the biomanufacturing industry.

Our research findings have been developed in close collaboration with the bioman-

ufacturing industry and have been implemented in practice. To facilitate industry

implementation, software prototypes have been developed at Java. Implementation

at Aldevron has resulted in 25% reduction in total lead times and 20% reduction

in operating costs of protein purification operations on average. Applications of op-

erations research are mostly new to the biotechnology community. We believe that

as more companies embrace operations research, it will be an essential part of the

protein research and development processes.
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Chapter 1

Introduction

Biomanufacturing refers to the process of manufacturing therapeutic drugs using

live systems, such as, bacteria, insect cells or eukaryotic cells. Recent advances

in biomanufacturing, genetics and genomics have led to the development of novel

biologic drugs for diseases like cancer, rheumatoid arthritis, and many others. Re-

combinant proteins and monoclonal antibodies are examples of such novel drugs that

are used in the treatment of autoimmune disorders, various types of cancer, and

cardiovascular diseases. Since the approval of the first recombinant protein in 1982,

the biomanufacturing industry has grown considerably. In the area of biopharma-

ceuticals (or biologics) alone, more than 5,000 biopharmaceuticals are currently in

research and development over the world, and the market analysis reports predict

sales of biopharmaceutical drugs to reach beyond $140 billion by 2016 (Beuzekom

and Arundel, 2009).

In contrast to the traditional pharmaceuticals that are chemically synthesized,

biomanufacturing methods use live systems to produce these drugs. The use of live

cells requires biomanufacturing operators to deal with several operational challenges,

including batch failures, batch-to-batch variability, uncertainties in yield and quality,
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challenges in meeting specific purity and yield requirements specified by the end

use or application, and their impacts on costs and lead times. In this study, we

develop stochastic optimization models that address these challenges, and show

that the manufacturing policies obtained from our optimization models can be

powerful in helping biomanufacturers to cope with uncertainties and trade-offs in

their operations. We develop optimization models to analyze, optimize and control

biomanufacturing systems, improve biomanufacturing efficiency, shorten lead times

and reduce costs.

The rest of the chapter is organized as follows. We first provide an overview of

the biomanufacturing operations in Section 1.1. Next, we introduce the operational

challenges encountered in upstream and downstream operations, and then highlight

the research questions in Section 1.2. We specify the approach adopted to address

these questions in Section 1.3, and then conclude with the potential societal impacts

of the research outcomes in Section 1.4.

1.1 Overview of Biomanufacturing Operations

Biomanufacturing typically consists of two major steps, upstream bioreactor oper-

ations, and downstream purification operations (see Figure 1.1). In the upstream

bioreactor operations, the cell cultures produce the proteins of interest through

fermentation. The fermentation process usually consists of distinct metabolic phases

and is carried out in one or more bioreactors (McNeil and Harvey, 2008; Maiti

et al., 2009). Bioreactors are typically stainless steel vessels that provide a controlled

environment for cells to grow and produce the proteins of interest. At the appropriate

time, the proteins of interest along with the byproducts (called as impurities) are

harvested from the bioreactor. The yield and throughput of upstream bioreactor
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Upstream Bioreactor Operations

Downstream Purification Operations

Figure 1.1: Typical manufacturing stages in biomanufacturing operations

operations is a function of the phases dictated by the cell physiology and the

operating environment in the bioreactor. Depending on the characteristics of the

protein of interest and impurities, the downstream operations could consist of several

purification steps, such as, centrifugation, chromatography, ultrafiltration, and diafil-

tration. Among these, chromatography is a key technology, and most bio-separation

processes contain at least one chromatographic step. A typical chromatography step

uses a column packed with resins consisting of porous beads. The resins differ in

their affinity to the protein and the impurities. Using multiple iterations through the

chromatography column, this difference in affinity is exploited to separate the protein

of interest from all other unwanted impurities. Downstream purification operations

ensure that the final batch meets a predetermined purity requirement specified by the

end use or application (i.e., the minimum acceptable quality standard that should be

attained before delivering the final batch to the customer).

At each step of the manufacturing operations, the protein yield, throughput and

quality of individual production runs are subject to significant variability due to
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time varying nature of the cell lines, complex nature of the underlying biological and

chemical reactions, stochastic failures due to process uncertainty and contamination.

These dynamics at each individual stage makes optimization of biomanufacturing

operations extremely challenging. Researchers and practitioners spend significant

effort and costs in understanding the complex biology and chemistry to develop

these products, and the sophisticated process monitoring and control necessary to

determine a reliable manufacturing process that provides high yield and throughput.

Research and development efforts to arrive at stable manufacturing processes that

guarantee predicable quality and yields are critical for the biomanufacturing industry.

Process repeatability and control of quality variations are critical requirements of

Current Good Manufacturing Practices (cGMP) and Process Analytical Technology

(PAT) guidelines established by the Food and Drug Administration (FDA) for

various levels of approvals. Addressing this need, we develop stochastic optimization

models that capture both the biological and chemical characteristics of the underlying

processes as well as the operational challenges including batch failures, uncertainties

in yield and quality, and batch-to-batch variability. Our study shows that costs,

quality, throughput and lead times in biomanufacturing operations could be improved

through the effective application of the operations research tools and methodologies.

By developing models and analyses for optimization and control of biomanufacturing

systems and supply chains, this research leads to a knowledge base that would enable

significant improvements in yield and cost reductions in biomanufacturing operations.



5

1.2 Operational Challenges, Opportunities and

Research Questions

Modeling and optimizing biomanufacturing operations require specialized models

that are capable of capturing unique trade-offs and challenges in biomanufacturing

operations. A critical assessment of the literature and discussions with industry

revealed several open issues related to modeling and optimizing biomanufacturing

operations. In this section, we provide the biomanufacturing challenges typically

encountered in practice, and then highlight the research questions addressed in this

study.

Upstream Fermentation Operations

Biomanufacturing operations involve several operational challenges in upstream

fermentation processes. First, the use of live cells in the fermentation processes

introduce randomness and variability in yield and quality of the batch. The time

varying nature of the cell lines implies that the cell culture goes through multiple

metabolic phases, and the yield is a complex function of metabolic phases and

time-varying parameters, such as, titer, biomass concentration, number of viable

cells, growth rate and product formation rate (Narhi and Nordstrom, 2005).

Furthermore, the upstream fermentation system is very vulnerable to various

factors ranging from batch failures due to inadequate cell density at inoculation,

contamination, cell mutations, and random shock due to equipment failures, opera-

tor mistakes or other disruptions in the manufacturing environment. Penalty costs

associated with batch failures could be very high in the biomanufacturing industry



6

due to expensive labor and materials.

Additionally, the critical decision to terminate the fermentation process and

harvest the proteins are typically made on the basis of cell physiology and metabolic

phases (namely, lag phase, exponential growth phase, stationary phase, deceleration

phase, and death phase) in the biomanufacturing practices (Maiti et al., 2009; Gnoth

et al., 2007). However, such policies ignore the impact of secondary growth of

unwanted byproducts, batch-to-batch variability, uncertainty in yield and quality,

and disturbances in the manufacturing environment (due to errors in media formu-

lation, inadequate cell density at inoculation, contamination, mutation or equipment

failures) while making harvesting decisions. If the batch obtained from the upstream

fermentation contains excess amount of unwanted impurities (byproducts), then this

would directly increase the operating costs of subsequent purification operations.

These challenges lead to the following research questions:

RQ 1: How can we develop comprehensive models to determine the optimal har-

vesting policies in the upstream operations to maximize yield and minimize costs?

RQ 2: Does harvesting at higher amounts of antibody always generate higher profit,

or does the resulting amount of metabolic wastes and failure risks lead to costs

that justify compromising on yield? When do risks and costs of quality outweigh

additional revenue expected from higher yields?

RQ 3: How can we assess the robustness of bioreactor operations to random shocks,

failures, and variability? How inefficient are the current harvesting policies? What

are the critical degrees of failure risks that present opportunities for improvement,

and what is the managerial importance of the harvesting policies that impose prede-

fined limits on unwanted byproducts?
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Downstream Purification Operations

Downstream purification operations involve several operational challenges and

trade-offs. First, the number of purification steps and overall downstream costs

(cost of resins, buffers, operating costs) are strongly impacted by the random yield

and batch quality obtained from the upstream process as well as the limitations

and randomness in the performance of subsequent chromatography operations and

the requirements on the final yield and quality specified by the end use or application.

Secondly, the downstream operations consists of several purification steps and

the costs of downstream purification operations can be prohibitive. For instance, the

cost of raw materials (resins) used in the purification processes could be up to $4-5M

(Farid, 2009). Similarly, biomanufacturing firms incur large penalty costs associated

with yield shortages or quality failures. For example, customers might not purchase

the batch of protein if it does not conform to the purity requirement.

Third, the decision maker performing the purification operations needs to iden-

tify the best choice of equipment (called as the chromatography technique) and

the operating policy (called as the pooling window) to satisfy specific customer

requirements on yield and quality. However, identifying the best operating policies

are challenging since each chromatography technique and pooling window result in

different yield and quality outcomes. The downstream purification operations consist

of multiple steps in series, and hence the choice of chromatography technique and

pooling window at one step affects the performance of purification in subsequent

steps. Due to the large number of available chromatography techniques and pooling

windows, the problem size could be very large (with millions of combinatorial choices
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for purification policies) in most industry settings.

Additionally, individual upstream and downstream purification steps have their

own yields, and the overall throughput and yield losses are function of the number

of purification steps, and the yield and quality in each individual step (Farid, 2009).

Due to the high penalty costs associated with yield shortages and quality failures,

biomanufacturing companies need both the optimal policies and also other robust

policies that deliver guaranteed performance.

Furthermore, the biomanufacturing industry also needs decision support tools

that take into consideration the complex interaction between the upstream fermenta-

tion and downstream purification operations. For example, the final purity and yield

of a batch depend on several inter-linked factors, such as, the condition of the starting

material obtained from upstream, the limitations in the purification outcomes of the

available chromatography techniques, production requirements on yield and purity

specified by the end use or application, expensive operating costs, and high penalty

costs associated with yield shortages and quality failures. Furthermore, upstream

decisions that identify the amount of protein to be manufactured in the upstream

fermentation processes strongly depend on the performance of the downstream pu-

rification operations due to the strict purity and yield requirements specified by the

client. Therefore, a unified framework that considers these interactions and financial

trade-offs between upstream fermentation and downstream purification decisions is

required to reduce the overall costs and lead times in biomanufacturing operations.

To the best of our knowledge, these interactions have not been adequately studied in

a unifying stochastic optimization framework for biomanufacturing decisions.

These operational challenges lead to the following research questions:
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RQ 4: How can we develop comprehensive models to determine both the optimal

chromatography technique and the pooling window at each purification step to

maximize profitability? For example, what are the optimal pooling windows given

the choice of chromatoraphy techniques? What is the best choice of chromatography

technique and pooling window to meet purity and yield requirements?

RQ 5: Can the biomanufacturing company determine in advance whether the purity

and yield requirements specified by the customer are achievable with the starting

material provided by the customer? If achievable, how confident can the biomanu-

facturing company be about meeting these specific requirements on purity and yield?

Are there any performance guarantees? How can profitability be maximized?

RQ 6: How easy or tricky is the purification process likely to be, based on the

starting material and limitations of the available purification techniques? What is

the impact of the separation capabilities of the available chromatography techniques

on costs and revenues?

RQ 7: How would the insights and policies be different, if the biomanufacturing

company adopts a risk averse analysis, instead of a risk neutral probabilistic ap-

proach? How would the insights be different if the biomanufacturing company use

deterministic models rather than stochastic models to identify the best chromatog-

raphy techniques?

RQ 8: Can we develop models that capture the interaction between the upstream

protein amount decisions and downstream purification decisions? What are the best

upstream protein amounts that achieve the desired production requirements despite

the process uncertainties in the downstream purification operations?
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Implications on Biomanufacturing Supply Chain Contracts

The orders for engineered proteins are often placed by large pharmaceutical com-

panies to small, specialized contract biomaufacturers. Although the large pharmaceu-

tical companies often outsource the manufacture of engineered proteins, the manufac-

turing protocol is typically not fully specified at the time of order placement, because

these proteins are uniquely engineered for research and development studies. The con-

tract biomanufacturer therefore undertakes high risk of failure due to uncertainties

in the process outcomes. If the contract biomanufacturer agrees to accept an order,

then they often perform several initial test runs (called as the scouting experiments)

to determine if and how the protein of interest can be manufactured to meet customer

specifications. After successful scouting experiments, larger scale production runs are

performed. Even during the production runs, the contract biomanufacturer incurs a

risk of failure due to complexity and uncertainty in biomanufacturing operations. In

Chapter 6, we discuss the potential ways in which the optimization models developed

in this thesis could be incorporated in contract design.

1.3 Research Approach and Contributions

Our proposed approach provides and interdisciplinary framework that integrates

knowledge related to the (i) biology and chemistry of the biomanufacturing pro-

cesses, (ii) engineering knowledge about manufacturing systems and production plan-

ning, and the (iii) mathematical foundations of uncertainty theory, stochastic control

and optimization. The production setting, modeling assumptions and managerial

questions analyzed in this study are fairly general and validated through industry

feedback. The research outcomes provide insights and guidelines that improve batch

quality and yield of upstream bioreactor processes, and reduce penalty costs asso-
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ciated with yield shortages and quality failures in downstream operations. We also

compare the performance of the optimal policies for both upstream and downstream

operations with the current industry practices, and underscore the importance of the

operations research methodologies necessary to obtain improvements in biomanufac-

turing operations. In this section, we first elaborate on the collaboration team, and

then discuss the analytical approach and contributions.

1.3.1 Collaboration Team

Due to the complex nature of the biomanufacturing operations, this research was

conducted through multidisciplinary research team including academicians (Christos

Maravelias from the Department of Chemical and Biological Engineering, Brian

Flager from the Department of Chemical and Biological Engineering, Derek Hei

from Waisman Biomanufacturing Center), several biomanufacturing companies, gov-

ernment agencies (Wisconsin Economic Development Corporation), and non-profit

organizations (BioForward). We adopted a multidisciplinary effort that integrates

the knowledge from operations management, stochastic modeling, and biological

engineering. Our research has produced data sets and solutions to support com-

mon operational challenges encountered in the biomanufacturing industry. We use

stochastic optimization tools and models to optimize profitability of the biomanufac-

turing operations, reduce batch failures, and improve lead times. Our collaboration

with the local biomanufacturing industry includes: (1) Biomanufacturing working

group sessions (BioWGS), and (2) One-to-one research projects carried out with

industry partners.

Biomanufacturing working group sessions provide high engagement with local

biomanufacturing companies. The optimization models and insights proposed in this

research project have been formulated and validated by a large group of bioman-
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ufacturers. For example, Cellular Dynamics International, Epicenter, Functional

Biosciences, Gilson, Imbed Bio, Invitrogen, Life Technologies, Mirus Bio, Primorigen

Biosciences, Semba Biosciences, ThermoFisher have been participating in these work-

ing group sessions. The main objectives of these working group sessions are to (1) to

establish a platform to identify community issues and research questions relevant to

the biomanufacturing industry, (2) validate the models and insights with a group of

industry partners, (3) gather industry data, (4) implement the proposed optimization

models and assess their impacts on business practices. Our research outcomes have

already been recognized by media and non-profit agencies, including Xconomy (a

business news forum in the U.S.) (Engel, 2014), BioForward (a leading Life Science

community) (BioForward, 2014), and the Wisconsin Economic Development Corpo-

ration (WEDC, 2014). To facilitate industry implementations, software prototypes

with friendly user interfaces have been developed. Feedback from our industry part-

ners suggests that our insights are likely to transform the biomanufacturing practices.

These working group sessions have been complemented by one-to-one research

projects that involve deeper level of engagement with our industry partners and col-

laborators. These includes weekly visits to Aldevron in order to analyze their op-

erational challenges, collect data, build credible models that have high impact on

practice, and validate the insights. We have been developing decision support tools

and models to hedge against uncertainties in biomanufacturing operations and reduce

operating costs.

1.3.2 Analytic Approach

To evaluate the trade-offs related to the batch quality, stochastic yield, fermentation

operating strategies and the total costs, we develop models based on Markov decision

processes. A key characteristic of these models is that they integrate the dynamics
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of the protein growth with stochastic models for growth of unwanted byproducts

and associated failures. These models are then used to derive the optimal harvesting

policies for fermentation process (RQ1). Subsequently, we conduct several numerical

analysis using fermentation data available in the literature to identify the optimal

harvesting time based on the risks, cost, and yeild/quality trade-offs involved in the

fermentation processes (RQ 2). We test the impact of the bioreactor reliability on

the optimal costs and policies, and also assess the sensitivity of system performance

to sub-optimal harvesting policies under various bioreactor reliability settings (RQ

3). These are summarized in Chapter 3.

Next, we develop stochastic optimization models to determine optimal purification

strategies that maximize profitability, i.e, the best selection of the pooling windows

given a sequence of chromatography techniques (see Chapter 4), and the best choice

of both chromatography techniques and the corresponding pooling windows at each

purification step (see Chapter 5)(RQ 4 and RQ 5). We develop optimization models

to identify the optimal purification strategies that consider both the specific require-

ments on purity and yield as well as the limitations in the available chromatography

techniques in Chapter 4. Then, we expand this model in Chapter 5 to include the

choice of alternative chromatography techniques and multiple impurity types (RQ

4 and RQ 5). We use structural properties of the optimal policies and costs to

derive practical guidelines for the purification decisions in Chapter 4 and 5. These

guidelines quantify risks and costs in purification operations (RQ 6). We study not

only the optimal policies but also guaranteed performance measures to achieve the

purity and yield requirements specified by the end use or application. Through

numerical analysis, we also investigate the impact of randomness on the chromatog-

raphy technique selection problem (RQ 7). We build a stochastic optimization model

that considers the interlinked nature of the upstream protein amount decisions and
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Figure 1.2: Our research approach

downstream purification decisions, and optimize the upstream decisions considering

the randomness in downstream purification outcomes (RQ 8).

This study makes several contributions to both theory and practice. We provide

models that provide functional relationships between yield, quality and costs under

various operating policies (optimal and suboptimal policies typically used in prac-

tice). We develop Markov decision models that capture both the biology-level and

manufacturing-systems level dynamics in a unified framework to optimize several

biomanufacturing decisions in upstream and downstream operations. We analyze

the structural properties of the Markov decision models, and propose optimal guide-

lines for upstream and downstream operating policies. We develop approximations

to solve the Markov Decision models using realistic data sets obtained from the

literature and industry; and validate our models and insights through discussions

with a large group of biomanufacturers at the working group sessions and conferences.

Figure 1.2 summarizes our research approach. Our approach provides a collabora-

tive framework integrating theory and practice. In terms of the theoretical research,
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we start with performing a review of the literature and then build novel mathematical

models leading to research publications. At the same time, our models and publica-

tions are enriched with industry input. We work closely with our industry partners

(i.e., Aldevron) to develop specific tools to support biomanufacturing operations. We

also share and implement our findings with a larger industry group through work-

ing group sessions and conference presentations. These outputs, in turn, enrich our

research findings, our models and publications through building credible models by

means of industry support, and also quantifying the impacts of our research outcomes

on industry practices. To facilitate industry implementations, we developed a user-

friendly software at Java. This software has been already in use for daily operations at

Aldevron. The implementation of the purification optimization models at Aldevron

resulted in 25% reduction in total lead times and 20% reduction in operating costs

associated with protein purification on average. Applications of operations research

are mostly new to the biotechnology community. We believe that as more companies

like Aldevron embrace operations research, it will be an essential part of the protein

research and development processes.

1.4 Potential Impacts on Society

Biopharmaceuticals can have significant impacts on well-being of patients by extend-

ing life and/or improving the quality of life. Market analysis reports predict sales of

biopharmaceuticals to reach beyond $140 billion by 2016. Today, more than 5, 000

biopharmaceuticals are in development over the world (Beuzekom and Arundel,

2009). However, the industry is fast becoming the victim of its own success, since an

emerging deficit in biomanufacturing capacity threatens to restrict the development

and commercialization of these drugs (Dove, 2002). As biomanufacturing continues

to advance, most companies are finding it vital to address biomanufacturing costs,
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Figure 1.3: Typical timeline in biopharmaceutical research and development

capacity and time lines at multiple levels (Langer, 2009).

Figure 1.3 shows the typical timeline in a biopharmaceutical drug development

project. As the figure illustrates, 3−6 years are required for discovery and preclinical

phase, whereas another 6−7 years are spent for clinical trials. Additionally, according

to Forbes, the average cost of bringing a new drug to market is $1.3 billion (Herper,

2012). Contract biomanufacturing companies are involved in all stages of the re-

search and development (i.e., several dedicated small R&D firms conduct research at

discovery and preclinical phase, but also provide support for clinical trials and scale

up). Our research outcomes would benefit not only the contract biomanufacturing

companies but also the large pharmaceutical companies since they often outsource

their research and development projects to contract biomanufacturers. Therefore,

we believe that helping contract biomanufacturing companies with reducing their

manufacturing costs and timelines could have significant impacts on increasing the

speed for drug discovery and also reduce R&D expenditures of the whole supply

chain. As Langer (2009) indicates, methods for lowering the costs of manufacturing,

increasing the speed of scale-up for clinical testing, and decreasing the cost of product
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Figure 1.4: Entities in biomanufacturing supply chains

development are all important for factors to speed up the time-to-market.

The outcomes of this research are applicable across different biomanufacturing

firms. Especially, most of our industry partners are small-sized companies with

less than 50 employees, and have strategic importance in the biopharmaceutical

supply chains. Market analysis shows that 75% of biomanufacturing R&D firms are

small companies (Beuzekom and Arundel, 2009). Additionally, 85% of new drugs

were developed by a small dedicated biomanufacturing firm that was later acquired

by a large pharmaceutical company (Beuzekom and Arundel, 2009). Therefore,

building optimization models that could reduce their costs and lead times could have

significant societal impact by increasing the speed for drug discovery over the long

run and the budget allocated for research and development. For example, throughout

our collaboration, we have developed several tools to evaluate business risks, improve

capacity planning decisions, and reduce lead times and costs. The implementation

of the optimization models at Aldevron has resulted in 25% reduction in total lead

times and 20% reduction in operating costs of protein purification operations on

average. This has played a vital role as they have grown 3-fold during the duration

of the collaboration. Applications of operations research are mostly new to both

community. We believe that as more companies like Aldevron embrace operations

research, regulatory authorities might mandate the use of such methodologies in

protein research and development.
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Figure 1.5: Interdisciplinary research approach for biomanufacturing operations

Figure 1.4 represents the main entities and information flow in biomanufacturing

supply chains, and also positions the interaction between large pharmaceutical com-

panies, small scale biomanufacturing companies, and universities. As the Figure 1.4

indicates, the large pharmaceutical companies often outsource some of their research

and development projects to small biomanufacturers (contract biomanufacturers)

to mitigate their risks and reduce their costs. Therefore, the research outcomes

developed by the contract biomanufacturing companies are vital for R&D efforts

conducted by large pharmaceutical companies. On the other hand, researchers at the

universities develop therapies that might commercialize through the contract bioman-

ufacturing companies. Furthermore, if such therapies are shown to be effective and

promising, then these contract biomanufacturing companies are quite often acquired

by the large pharmaceutical companies. Therefore, the information flow and supply

chain dynamics shown in Figure 1.4 illustrate that contract biomanufacturers are

critical entities; and hence reducing their costs and lead times could benefit the whole

biomanufacturing supply chain by speeding up the time-to-market of therapeutics.

Studies in the biomanufacturing literature spend significant efforts in understand-

ing the complex biology and chemistry behind these new drugs, but they do not

typically evaluate the system-level performance of this complex manufacturing set-

ting to address operational challenges and issues. To address this need, we develop
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stochastic optimization models that provide a holistic approach in capturing the risks

and trade-offs associated with the biomanufacturing operations. We adopt an in-

terdisciplinary research approach that combines the knowledge from chemistry and

biology, manufacturing systems and optimization theory, and quality and reliability

engineering, as illustrated in Figure 1.5. This interdisciplinary approach provides a

unifying framework for manufacturing system challenges and the underlying biology

and chemistry behind biomanufacturing operations. Our research has been conducted

due to the generous support provided by the National Science Foundation under the

grant CMMI 1334933.
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Chapter 2

Literature Review

In this chapter, we present an overview of the related literature on the upstream

bioreactor and downstream purification operations, and highlight our contributions.

2.1 Related Work in Upstream Operations

In upstream bioreactor operations, there are two research streams that are closely re-

lated to this study: (i) modeling and control of fermentation systems (Section 2.1.1),

and (ii) reliability modeling and optimization of systems subject to multiple depen-

dent competing failure modes (Section 2.1.2).

2.1.1 Modeling and Control of Fermentation

The fermentation literature investigates the biology and chemistry behind bioreactor

dynamics, and focuses on characterizing the best manufacturing techniques and

protocol for a specific biologics of interest. The literature on fermentation systems

includes both deterministic and stochastic models to optimize fermentation systems.

In this section, we provide discussion on both deterministic and stochastic models.
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Deterministic Models for Fermentation Systems: Deterministic models

include kinetic process models for cell growth and product formation, such as,

Monod-type equations and input-output models. For example, a large number of

studies provide kinetic models consisting of nonlinear ordinary differential equations

to predict the cell behavior and capture the inter-dependency between biomass

concentration, growth rates, antibody secretion rates and substrate formation rates

during fermentation (Patel et al., 2000; Jang and Barford, 2000; Liu et al., 2003; Tsao

et al., 2004; Xing et al., 2010). Kinetic models are typically estimated from empirical

fermentation data, and can be integrated in open-loop or close-loop fermentation

control models to determine the prescribed recipe that describes the best manufac-

turing protocol for a specific biologics (Kawohl et al., 2007; Radhakrishnan et al.,

1999). The literature on deterministic models of fermentation system often aims to

develop control and optimization models to identify the best feeding strategies that

either maximize the yield or minimize the difference between the desired process

trajectory and the actual trajectory. For example, Luus (1993b) develops an optimal

feeding policy to maximize the yield obtained from a batch; whereas Jenzsch et al.

(2006) develop feeding strategies to control the specific growth rate at the desired

set-point profile.

Stochastic Models for Fermentation Systems: Stochastic modeling and

control methodologies have been studied in the chemical and biological engineering

literature to model uncertainties in cell growth and product formation. For example,

Kawohl et al. (2007) present model predictive control mechanisms using stochastic

nonlinear ordinary differential equations and the extended Kalman filter approach.

Gnoth et al. (2007) study the variability in biomass concentration and develop

feedback control strategies to maintain the biomass concentration at its desired

set-point profile. Only a few studies in the literature develop stochastic optimiza-
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tion models to capture uncertainties in cell dynamics and optimize the yield and

quality obtained from fermentation. For example, Luus (1993a) adopts a dynamic

programming approach to identify the optimal feeding strategy that maximizes

ethanol concentration subject to predefined constraints on batch volume and feed

rates. Saucedo and Karim (1997, 1998) present an MDP formulation to optimize

feeding policies in a fed-batch fermentation process. The authors provide an infinite

horizon, total discounted cost MDP model to maximize ethanol concentration and

reduce costs associated with feeding. The authors present a case study in ethanol

production but do not investigate the structural properties of the optimal value func-

tion. Peroni et al. (2005) present an Approximate Dynamic Programming approach

to maximize the yield and minimize the process time in a fed-batch fermentation

systems. The authors develop total discounted profit-to-go function to optimize

feed rates and identify optimal harvesting time. The profit-to-go function considers

the profit associated with the product concentration accumulating inside the batch.

Zero or negative profit-to-go indicate the harvesting decision. The authors encounter

the curse of dimentionality because of continuum feeding rates and biomass con-

centration, and hence develop approximations to estimate the optimal value function.

Research Gaps: Stochastic models in the fermentation literature often do not

consider the risks and costs associated with metabolic byproducts, random shocks

and batch failures. Furthermore, we observe that studies that build stochastic

models for fermentation operations often provide the model formulations and case

studies, but do not analytically investigate the structural properties of the optimal

value functions and operating policies. Furthermore, simulation studies have been

used to understand the impact of batch failures and stochastic yield on quality and

throughput (Petrides and Siletti, 2004; Saraph, 2003, 2004). However, these studies
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evaluate system level dynamics, and do not optimize cell-level harvesting policies.

To conclude, we observe that the fermentation literature concentrates on cell-

level models to understand the underlying biology and chemistry of these complex

processes, but often ignores the high-level operational challenges encountered in the

biomanufacturing industry. Fermentation studies typically focus on the dynamics

of biological processes to determine ways to maximize the yield or minimize the

deviations from the set-point profiles. However, high-level operational challenges

that are also critical in biological decision making include the parallel accumulation of

both yield and unwanted byproducts inside the batch, cost-quality trade-offs between

upstream and downstream operations, random disturbances and batch failures (see

Section 1). Our contribution in this study is to address this gap through an integrated

stochastic model that captures both cell-level dynamics and high-level operational

challenges. We develop realistic stochastic models to capture random disturbances

on cell growth, failure modes, and the accumulation of both yield and unwanted

metabolic wastes. We present a Markov decision model that evaluates various cost-

quality trade-offs to identify the optimal fermentation time. The proposed MDP

model identifies the optimal condition-based bioreactor harvesting policies that takes

into consideration the risks and costs associated with yield, quality and batch failures.

Furthermore, we analytically derive the structural properties of the value function and

the optimal harvesting policies.

2.1.2 Reliability Modeling and Optimization

Reliability modeling and optimization of systems subject to multiple competing

failure modes is another research stream that is closely related to this work. Failure

processes involving shocks models or degradation models has been extensively studied

in the reliability literature. Two shock models that are closely related to this work
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are the extreme shock model, where the failure occurs when the magnitude of a

shock exceeds a predefined threshold, and the cumulative shock models where the

failure occurs when the cumulative damage (e.g., degradation) exceeds a predefined

threshold (Barlow and Proschan, 1965; Nakagawa, 2007).

Shock and Failure Models: Neuts and Bhattacharjee (1981) provide one of

the first papers where the survival function for a shock model is explicitly calcu-

lated, and a matrix-analtytic method is used to model a shock and wear process.

Subsequently, several studies analyze extreme and cumulative shock models to

investigate system failure and limiting average availability. For example, Klutke and

Yang (2002) analyze a system with hidden failures, where the system degrades at a

constant rate, and shocks cause additional degradation. The authors use regenerative

arguments to analyze the limiting average availability of the system. Similarly, Wang

et al. (2011) model systems where each shock result in a sudden increase in failure

rate, and also analyze systems where each shock result in a random increase in the

degradation path. The authors develop reliability models to represent the survival

behavior of the considered systems. Kharoufeh and Cox (2005) model a degrading

system where the rate of degradation is governed by a random environment. The

authors derive system lifetime distribution and limiting average availability, and

use real sensor data to estimate full and residual lifetime distributions. Similarly,

reliability analysis of systems involving multiple catastrophic and degradation failure

processes has received a considerable amount of attention in the literature (Huang

and Askin, 2003; Li and Pham, 2005; Ye et al., 2011). Optimal time-based or

condition-based replacement policies in systems with multiple failure modes have

been considerably studied (Rangan et al., 2006; Huynh et al., 2011; Liu et al., 2013b).
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Multiple Dependent Failure Processes: We observe that relatively fewer

research have been carried out on multiple dependent failure processes. Sheui and

Griffith (2002) study shocks that can lead to either minor failures removed by mini-

mal repair or a catastrophic failure. They use renewal theory to develop an extended

block replacement policy based and recommend repair or replacement decisions based

on the number of shocks since the last replacement. Similarly, Montoro-Cazorla and

Pérez-Ocón (2010) analyze shock arrivals following the phase-type distribution based

on the number of accumulated shocks. In this setting, shocks deteriorate the system

or can lead to a catastrophic failure. The authors study maintenance and replacement

policies where corrective repair occurs when the system receives a prefixed number

of N shocks, and a preventive repair occurs when the system has undergone k < N

nonfatal shocks. Subsequently, Montoro-Cazorla and Pérez-Ocón (2011) extend this

analysis to study general distributions of repair times and random number of shocks

before a fatal failure. Furthermore, Yu et al. (2014) study a maintenance problem of

degrading systems under extreme shock but also consider the impact of procurement

lead time while making order-replacement decisions.

There are a few closely related studies to our work that analyze multiple depen-

dent shock failure processes. For example, Rafiee et al. (2013) analyze two failure

processes caused by the same random shock process: soft failure due to continuous

degradation of the system, and hard failure due to catastrophic impact of shocks.

Four different shock patterns that could accelerate the degradation rate of the system

are analyzed. The authors provide reliability models for different shock patterns but

do not investigate maintenance and replacement decisions. Similarly, Peng et al.

(2010) analyze the most related reliability setting to our work. The authors develop

reliability models to represent soft failures and hard failures generated through the

same shock process, and develop optimal inspection and maintenance policies to
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reduce costs. The authors assume fixed costs of replacement, inspection and penalty

cost of downtime; and use the renewal theory to identify the optimal inspection

and maintenance policy to minimize the expected total cost. Our work differs from

Peng et al. (2010) in that we model non-stationary degradation rates and survival

probabilities that are mainly driven by the process time, and consider a more generic

framework to model shock arrivals. Furthermore, we perform Markov decision

analysis to identify the optimal condition-based replacement policies, where the costs

and rewards are not fixed but a function of the system state.

Research Gaps: Complementing this vast literature on reliability modeling and

analysis, our study considers the effects of the time elapsed since the last shock and

its impact in terms of sudden and progressive failures of batches, however, our failure

model and plausible remedial actions are different than the studies mentioned above

due to the specialized application domain. Aforementioned studies consider either

extreme shock models or cumulative shock models. Furthermore, studies involving

multiple failure processes often assume independent failures where any of the failure

process would cause the system to fail. However, upstream bioreactor operations

have multiple dependent failure processes. In the upstream biomanufacturing setting

considered, each shock arrival does not necessarily imply a sudden failure due to

catastrophic shocks, but could accelerate the accumulation of waste metabolites

over time leading to progressive failure. Furthermore, we complement the existing

literature on multiple dependent failure processes by developing a generic framework

that models non-stationary degradation rates and survival probabilities that are

mainly driven by the process time, and use general distribution for shock arrivals.

Despite the vast majority of reliability studies that examine shock/wear models

and replacement policies, relatively few studies have considered MDP and reliability
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methodologies in a unified framework to analyze systems with complex failure dy-

namics (Kurt and Kharoufeh, 2010; Elwany et al., 2011; Ulukus et al., 2012). Unique

features of the biologic systems also introduce interesting trade-offs between quality

and yield in the optimal policy. For example, most classical condition-based replace-

ment models aim to minimize costs associated with inspection, replacements, and

failures caused by degradation and shocks (Gottlieb, 1982; Boland and Proschan,

1983; Özekici, 1988). However, accumulation of antibody concentration provides a

compelling incentive to run the fermentation for longer duration despite the parallel

growth of unwanted metabolic wastes, which has not been encountered in the classical

cost-driven condition-based replacement models.

2.2 Related Work in Downstream Operations

Our study in downstream purification operations is related with a broader class of

the dynamic programming literature for sequential decision making problems. For ex-

ample, Bertsekas and Rhodes (1971); Puterman (1994); Bertsekas (2012) provide an

excellent overview on the dynamic programming and sequential decision making under

uncertainty. However, specific application of these stochastic optimization methodolo-

gies in the context of protein purification is limited in the existing operations research

literature. Therefore, our literature review mainly focuses on the optimization models

for the chromatography operations available in the chemical and biological engineer-

ing literature. We classify the relevant literature into two main streams: (i) Models

for optimizing the pooling windows (Section 2.2.1), and (ii) Models for optimizing

the selection and sequencing of the chromatography techniques (Section 2.2.2).
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2.2.1 Optimal Selection of the Pooling Windows

Analysis of the Chromatography Output: Several studies analyze the pu-

rification performance of the chromatography operations to identify the yield and

purity expected to be obtained using a specific chromatography technique. The

decision on the pooling windows determines the fraction of the protein of interest

is collected and the corresponding purity obtained at the end of a chromatography

step as a result of a given pooling window. To identify the best pooling window

decision, the existing literature focuses on characterizing the chromatography output

to determine the quality and yield trade-offs associated with each pooling windows.

For example, Ngiam et al. (2003) present a framework that captures the trade-off

between the purity and yield in chromatography operations to determine the best

pooling window strategy needed to meet the specific production requirements on

the final purity and yield. They use chromatography data to build fractionation

diagrams and also provide diagrams that represent the maximum purification factor

versus the yield associated with each pooling strategy. The fractionation diagram

denotes the relative change in the mass of protein of interest based on the total mass

eluted; whereas the maximum purification factor versus yield diagram represents the

trade-off between the purity and yield obtained by the end of a specific chromatogra-

phy technique (Ngiam et al., 2001). Several other studies analyze the performance of

chromatography techniques to model and quantify the purity and yield obtained by

the end of a chromatography step (Vasquez-Alvarez et al., 2001; Salisbury et al., 2006).

Optimization Models: Another popular approach adopted in the literature

is to optimize the pooling windows using mixed integer linear programming models

(MILP). For example, Polykarpou et al. (2011a, 2012b) provide a MILP model that

minimizes the number of purification steps and identify the best pooling window

decision along with the best selection of the chromatography techniques to achieve
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the minimum purity requirement specified by the end user. The proposed models

consider the retention time and deviation factors in each chromatography technique

to identify the amount of protein and impurity obtained as a function of the pooling

windows selected at a chromatography technique. Similarly, Polykarpou et al.

(2012a) build a MILP model to identify the best pooling window and chromatog-

raphy technique, and uses a piece-wise approximation technique to linearize the

optimization model.

Specialized models that capture the complex trade-offs and dynamics involved

in multi-step chromatography operations have been studied in the literature. For

example, Salisbury et al. (2006) provide a graphical methodology to identify the best

operating decisions by taking into consideration the trade-offs between yield, purity

and productivity in a two-step chromatography setting. The proposed graphical

model identifies the optimal set for the best operating conditions in the first chro-

matography step that ensures that the material obtained by the end of the second

step meets the desired specifications. Similarly, Huuk et al. (2014) provide a process

flow optimization approach and identify the separation performance and the pooling

windows in a multi-step chromatography setting. The authors use a case study of

two consecutive ion exchange chromatography to demonstrate the benefits of the

proposed model and optimization approach. Gao and Engell (2005) study an iterative

optimization strategy to optimize the set points of a batch chromatography in the

presence of set-point perturbations. The authors also provide a simulation study to

illustrate the proposed set-point optimization approach in batch chromatography.

A comprehensive overview of the other available model-based techniques to opti-

mize and control chromatography operations is provided by Engell and Toumi (2005).
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Research Gaps: The optimization of the downstream purification operations

involves the models for optimal pooling windows and also optimal chromatography

techniques. Therefore, we discuss the research gaps for downstream purification op-

erations in Section 2.2.2, after we introduce the literature on the optimal selection of

the chromatography techniques.

2.2.2 Optimal Selection of the Chromatography Techniques

Optimal Sequencing of the Chromatography Techniques: Several studies

build deterministic optimization models to determine the optimal selection and

sequencing of the chromatography techniques in a multi-step purification setting.

For example, Vasquez-Alvarez et al. (2001) and Vasquez-Alvarez and Pinto (2004)

develop mixed integer linear programming models to minimize the number of pu-

rification steps while achieving a predetermined purity level specified by the end

use. These models also provide operating policies that maximize the purity for a

given number of purification steps. The authors use physicochemical data associ-

ated with chromatography operations to identify the best selection and sequencing

of the chromatography steps. Similarly, a mixed integer nonlinear programming

model was developed by Lienqueo et al. (2009) to identify the optimal selection

of the peptide purification tags. The objective of the study is to maximize the

recovery of the protein of interest while minimizing the total costs associated with

the purification steps. Nfor et al. (2013) study a framework for the optimiza-

tion, evaluation and the rational elimination of the least feasible policies to minimize

the number of purification steps while meeting the predetermined purity requirement.

Optimal Chromatography Techniques and Pooling Windows: There are

a few studies available in the literature that focus on both optimizing the selection

of the chromatography techniques and the pooling window at each purification step
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simultaneously. Similarly, Polykarpou et al. (2012a,b) present a mixed integer linear

programming model to optimize the best chromatography technique and the best

pooling window at each technique to minimize the number of purification steps while

attaining the pre-defined purity requirement. The authors use a case study consisting

of 13 contaminants and 21 candidate steps to demonstrate the use of the model and

quantify the computational efficiency of the proposed approach.

Optimal Process Design: Another stream in the literature focuses on the

design decisions associated with the chromatography techniques to identify the op-

timal selection and sequencing of the purification steps and strategies. For example,

Liu et al. (2013a) provide a mixed integer nonlinear programming model to optimize

design decisions related with the cost-effective chromatography sizing strategies,

and provide an industry case example to optimize design decisions in multi-column

steps. Similarly, a mixed integer nonlinear programming model was developed by

Liu et al. (2014) to optimize the sequencing and sizing of the chromatography

operations. The authors optimize chromatography design decisions, such as, the

number of columns, column diameter, bed height, and the number of cycles per

batch. On the other hand, there are several simulation-optimization studies in the

literature that provide stochastic models for chromatography operations and capture

the randomness in purification operations to minimize costs. For example, Zhou

et al. (2005) provide a framework consisting of mathematical modeling, computer

simulation and optimization to quantify process trade-offs and assess the performance

of the available operating strategies. Similarly, Nfor et al. (2009) present a novel

approach on purification process development that uses biothermodynamics, high

throughput experimentation, and simulation tools in order to provide a process

understanding on biopharmaceutical manufacturing and respond quickly to quality

and market demands. Furthermore, several simulation models are developed to
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characterize the complex interaction between the upstream fermentation and several

downstream purification operations (Saraph, 2001, 2003, 2004; Petrides and Siletti,

2004; Chhatre et al., 2007; Brunet et al., 2012). These simulation models are used to

identify the best design decisions related with upstream fermentation, downstream

chromatography and other biomanufacturing operations, including process improve-

ment analysis, such as, process de-bottlenecking, throughput analysis and scheduling.

Research Gaps: Studies described in Section 2.2 often use the chromatography

data as input for optimization models to achieve the desired purity level with the

minimum number of chromatography steps while minimizing costs. However, the

existing optimization studies focus on only minimizing operating costs, and do not

capture the financial implications of risks and penalty costs incurred when the

specific customers requirements are not achieved. In this study, we provide a unified

framework that captures the financial risks, purity and yield requirements as well

as the limitations in the available chromatography techniques and penalty costs to

optimize upstream and downstream operating decisions. We derive guidelines that

quantify risks and costs, and provide performance guarantees for achieving customer

requirements on purity and yield. To our knowledge, such guidelines and performance

guarantees have not been studied yet in the biomanufacturing literature. The pro-

posed framework in Chapter 5 also considers the interlinked nature of the upstream

and downstream operations to make the best decisions on the amount of protein

that needs to be obtained at upstream operations by considering the randomness in

the downstream purification outcomes. Several simulation studies that capture the

interaction between different biomanufacturing steps are available in the literature,

but there is a significant room for improvement for stochastic optimization models

that mathematically capture the complexity of biomanufacturing systems along with
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financial trade-offs and business risks.

To conclude, the research gaps identified and discussed in this section lead to the

research questions in Chapter 1. In order to address the opportunities for improve-

ment identified in our literature review, we develop stochastic optimization models

that consider reliability issues and yield/quality trade-offs in Chapter 3. We develop

a Markov decision model to identify the best pooling strategies for engineered pro-

teins based on specific yield and purity requirements in Chapter 4. Furthermore, we

develop an optimization framework to identify the best selection of the chromatog-

raphy techniques and pooling windows, and also link these downstream purification

decisions with upstream protein production decisions in Chapter 5.



34

Chapter 3

Harvesting Time Optimization

Problem

3.1 Introduction

A typical biomanufacturing process is comprised of upstream operations where viable

cells produce biologics of interest and downstream operations where the biologics are

purified (See Figure 3.1). Upstream operations involve fermentation carried out in

bioreactors where viable cells are mixed in a suitable media. The primary output from

the fermentation process includes antibodies (or proteins) along with other metabolic

wastes as byproducts. The batch obtained from upstream is often stocked in low

temperature (−80 ◦C) refrigerators. Based on specific customer orders, samples are

drawn from this stock and purified through a series of downstream operations using

Fermentation Centrifuge

Cells and 
media

Chromatography Filtration ShippingStorage

Figure 3.1: Typical biomanufacturing operations
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centrifuge, chromatography and filtration. The objective of downstream purification

is to separate the desired biologics from unwanted metabolic wastes, and ensure the

final batch quality.

Viable cells + Media
Fermentation−−−−−−−→ Metabolic wastes + Antibodies of interest

In practice, the critical decision to harvest the batch is typically made on the

basis of cell physiology and metabolic phases, and the belief is that high yields is

always better (Luus, 1993a; Saucedo and Karim, 1997; McNeil and Harvey, 2008).

However, does harvesting at higher amounts of antibody always generate higher

profit, or does the resulting amount of metabolic wastes and failure risks lead to

costs that might warrant to compromise on yield? When do risks and costs of

quality outweigh additional revenue expected from higher yields? Further, what are

the critical degrees of failure risks that present business value for improving current

harvesting practices, and what is the managerial importance of the predefined control

limits for toxic byproducts?

In this chapter, we answer these questions through an integrated stochastic model

that captures both cell-level dynamics and system-level tradeoffs. Our work makes

several contributions: (i) We develop models to capture random disturbances on

upstream biomanufacturing operations. We consider multiple dependent failure pro-

cesses, and model the simultaneous growth of both yield and unwanted byproducts

inside the same batch. Prior work do not consider the risks and costs associated with

metabolic byproducts, antibody yield, random shocks and batch failures in a unified

framework. (ii) We evaluate various yield/quality tradeoffs using a Markov decision

model, and identify the optimal condition-based bioreactor harvesting policies. We

incorporate unique characteristics of biomanufacturing operations, and analytically

derive the structural properties of the optimal harvesting policy. In particular,
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accumulation of the desired antibodies provides an interesting incentive to run the

fermentation for longer duration, despite the parallel deterioration of the culture

environment. The resulting yield and quality tradeoff is not encountered in the

classical cost-driven condition-based replacement models. (iii) Our model integrates

two streams of work (fermentation modeling and control, and reliability modeling

and optimization) providing a multidisciplinary approach to this important problem.

(iv) We demonstrate the use of the model by studying IgG1 antibody production.

We compare the performance of the optimal harvesting policy with popular policies

typically used in practice. The analysis suggests that trying to maximize the desired

antibody yield is not necessarily optimal from the profit perspective, which would be

counter-intuitive to the most popular yield-driven harvesting policies. We leverage

insights from optimal policies to develop smart stationary policies that are easier to

implement in practice.

The remainder of the chapter is organized as follows. Section 3.2 introduces the oper-

ational challenges in biomanufacturing, and provides the background for formulating

the bioreactor harvesting problem analyzed in this chapter. The mathematical model

is formulated in Section 3.3, and structural properties of the optimal harvesting policy

are analyzed in Section 3.4. Numerical studies in Section 3.5 evaluate the sensitivity

of the value function to bioreactor reliability levels, and compares the performance

of the optimal policy with other harvesting policies typically used in practice. Sec-

tion 3.6 provides concluding remarks.
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Figure 3.2: Expected amount of viable cells, ammonia and IgG1 over time (Ozturk
et al., 1992)

3.2 Background on Biomanufacturing Operations

3.2.1 Bioreactor Dynamics

Figure 3.2 illustrates the dynamics of a fermentation process using the state infor-

mation typically available to the decision maker. The figure presents the expected

amount of viable cell density, ammonia and IgG1 antibody levels over time (Ozturk

et al., 1992). The time evolution of the viable cell density in Figure 3.2(a) shows

that cells undergo several physiological phases during fermentation. For example, the

cell culture is observed to enter an exponential growth phase at time t = 50 hr, and

a deceleration phase at time t = 150 hr. During the deceleration phase, viable cell

density drops significantly from 15× 105 cells/ml to 5× 105 cells/ml. The cells enter

a death phase at time t = 300 hr which is the final harvesting time for fermentation.

In parallel with physiological phases, cell cultures typically produce toxic metabolic

wastes during fermentation. Ammonia is an example of such metabolic wastes

accumulating inside the batch, as shown in Figure 3.2(b). Accumulation of metabolic

wastes such as ammonia is often an indicator of a deteriorating culture environment
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(Tsao et al., 2004). Excessive formation of these byproducts could lead to cytotoxic

effects and poor batch quality (Newland et al., 1994; Yang et al., 2000). Current

practices typically aim to minimize the formation of waste metabolites during the

fermentation process, and maintain its concentration below a predefined threshold

(Yang et al., 2000). We use the term baseline-metabolite profile to denote the

expected concentration of waste metabolites during the fermentation process. The

baseline-metabolite profile represents the expected amount of waste metabolites

accumulated over time due to inherent cell physiology (See Figure 3.2(b)). However,

the actual evolution of waste metabolites is influenced by other extraneous factors

(such as disturbances due to cellular activities and environmental conditions) as

outlined in Section 3.2.3.

IgG1 antibody concentration in Figure 3.2(c) represents the yield obtained from the

batch. In this example, the cell culture starts producing the antibodies of interest to-

wards the middle of exponential growth phase (t = 100 hr), and achieves the highest

antibody productivity during the deceleration phase. For some cell cultures, studies

provide empirical evidence that the evolution of metabolic wastes and antibody se-

cretion rates are two independent processes evolving over time (Omasa et al., 1992;

Ludemann et al., 1994; Tsao et al., 2004; Xing et al., 2010). For example, IgG1

production rate in Figure 3.2 was reported to be independent of the ammonia levels.

3.2.2 Quality Specifications and Control

Biomanufacturing operations need to abide by Food and Drug Administration

(FDA) approved manufacturing protocols to guarantee the final product quality.

The manufacturing protocol represents all the manufacturing methods, procedures,

process parameters and their corresponding specification limits through the course

of the manufacturing process. The protocol requires that critical process parameters
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lie within their acceptable ranges to ensure product quality (Rathore and Winkle,

2009; Shivhare and McCreath, 2010). For this purpose, continuous monitoring and

control of several physico-chemical process parameters, such as pH, temperature

and ammonia has become a routine practice (Tsao et al., 2004). However, due to

limitations of available sensor technologies, estimation of the biological parameters

still need to done through offline measurements carried out at specific instants during

the course of the reaction. Assessing the state of the reaction allows the operator to

estimate the risk of batch failures and determine if the reaction should be terminated

(harvesting available output) or continued to proceed as per the prescribed manufac-

turing protocol. A batch failure occurs when the critical process variables fall outside

acceptable limits defined by the manufacturing protocol. Maintaining the critical

process parameters within their acceptable limits could be challenging due variability

in fermentation systems. For example, Gnoth et al. (2007) operate 12 batches using

the same control strategy, and report high variations in product concentrations at

each successive run. In upstream biomanufacturing, this batch-to-batch variability is

mainly attributable to stochastic, non-linear growth pattern of cells.

In this chapter, we address the bioreactor operator’s problem of maximizing profit

while still operating within the approved manufacturing protocol. Depending on the

state of the reaction, the protocol includes a prescribed set of activities to main-

tain the desired process trajectory, such as, feeding the cells, adding fresh media,

adjusting temperature and pH, etc. In addition to undertaking actions prescribed in

the protocol, she can also adjust harvest times for a batch (thereby terminating the

fermentation) to minimize failure costs.
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Figure 3.3: Fermentation with a random shock on day 25 (Yang et al., 2000)

3.2.3 Reliability Issues

Although bioreactors are highly-controlled environments, process observations indi-

cate that fermentation systems are subject to random shocks due to equipment failure

and/or biology-induced factors. These shocks cause sudden and sharp deviations

in viable cell density. For example, Figure 3.3 shows the fermentation data for

the clinical production of a monoclonal antibody (Yang et al., 2000). The batch is

controlled to maintain a viable cell density of 15 ± 3 × 106 cells/ml. On day 25,

an unexpected sharp drop in the viable cell density incurs due to shocks that were

caused by fouling. Random shocks might cause severe damages leading to either

sudden failure or progressive failure in fermentation systems.

Sudden failure occurs when a batch deteriorates as a result of a shock, and healthy

cells die massively and abruptly. Examples of sudden failure could be viral con-

tamination and cell mutation. A progressive failure occurs when the amount of

byproducts accumulated inside the batch exceeds a deterministic, predefined thresh-

old level. Progressive failures represent failure to meet quality specifications, i.e. if

the amount of waste metabolites exceeds the predefined threshold level, the batch

becomes impure and toxic due to excessive byproducts. Examples of progressive

failure include cytoplasmic acidification and glycosylation. In case of batch failure,
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the batch is discarded, and cannot be processed further in downstream.

Even though a shock may not cause a sudden failure, it could still trigger a progressive

failure by causing step increases in the amount of metabolic wastes. For example,

Figure 3.4 illustrates such random increments in ammonia levels due to shocks in

viable cell density. Studies have shown that about 80% of all batch failures are due

to contamination, operator error, equipment failure and failure to meet specifications

(Langer, 2008). Sudden and progressive failures defined in our problem setting ac-

count for these most common failure modes. The risks in biomanufacturing operations

are typically considered as low frequency, high-impact risks (CBI, 2010), as failures

could cost up to $1 Million per occurrence in a large scale facility (Langer, 2008). The

high cost of failures are mainly due to expensive resources, and sterilization activities

during which the production line could stop until the batch is securely discarded and

the facility is sterilized.

3.3 Model Formulation

We present a mathematical model for fermentation systems. The objective is to

identify the best harvesting policies to maximize total discounted profit. We develop
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a discrete time, continuous state space, infinite horizon Markov Decision Process

(MDP) model. Section 3.3.1 presents the notation used to build the MDP model. The

evolution of monoclonal antibodies is modeled in Section 3.3.2. A bioreactor reliability

framework is presented in Section 3.3.3 to model batch failures and metabolic waste

concentrations. Models developed in Sections 3.3.2 and 3.3.3 are then integrated in

the optimality equation at Section 3.3.4 to identify the optimal bioreactor harvesting

policy.

3.3.1 Decision Epochs, States, Actions and Rewards

Decision epochs The bioreactor operator performs measurements at each decision

epoch T = {t : 0, τ, 2τ, 3τ, . . . , T} for τ > 0. The time interval τ between any

two successive decision epochs is called as a period. The length τ of a period is

determined by process-specific characteristics of cell lines, media, and bioreactor

operating module; and could range from minutes to days. Decision epochs denote

the age of a fermentation process. The maximum age of a batch is bounded by T due

to limitations imposed by cell viability, nutrient deficiencies and growth inhibitors

(see Figure 3.2).

State space The state of the fermentation is denoted by the ordered triplet

(nt, wt,mt) on finite state space N ×W ×M , where N = {n : 0, τ, 2τ, 3τ, . . . , T},

W ≡
[
0, W̄

)
∪ {∆}, and M ≡

[
0, M̄

]
. The state nt ∈ {0, τ, 2τ, 3τ, . . . , T} for

τ > 0 represents the discrete time periods elapsed since the last shock. The state

nt ∈ N determines the arrival rate of shocks, as described in Section 3.3.3. We let

wt ∈
[
0, W̄

)
represent the amount of waste metabolites in the batch at a given time

t ∈ T . We assume that fermentation starts at time zero with no waste metabolites

inside the bioreactor, w0 = 0. The state space W is bounded by a deterministic,

predefined threshold value
{
W̄
}

in accordance with federal standards on batch
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quality. The state {∆} denotes a batch failure state. For notational convenience,

we define S ≡ W \ {∆}. Let mt ∈
[
0, M̄

]
denote the concentration of monoclonal

antibodies (mAbs) at time t ∈ T . We assume that fermentation starts at time zero

with no mAbs, m0 = 0. Note that mAbs accumulate inside the batch until the batch

is harvested or abandoned due to batch failure. The maximum achievable mAbs

concentration in a batch culture is bounded by M̄ due to limitations in cell viability,

specific growth rate and antibody production rate, etc. (McNeil and Harvey, 2008).

Action space The action space A = {C,H} consists of two actions. Action {C}

represents the action of continuing the fermentation according to the established

manufacturing protocol. This could include a prescribed set of activities that in-

fluence the fermentation process (such as, adding fresh media, adding cells, feeding

cells, clearing issues with fouling and clogging, adjusting pH and temperature levels,

etc.). These corrective actions in the protocol aim to keep the fermentation dynamics

in its desired trajectory. We use {C} to denote the set of all prescribed actions in

the protocol for that state to continue to operate the fermentation. However, the

operator can decide to harvest the batch in order to avoid future batch failures.

Action {H} represents this decision to terminate the upstream fermentation process

for that batch.

Let at (nt, wt,mt) be the action taken at the decision epoch t and state (nt, wt,mt).

Failed batches at any decision epoch t ∈ T are immediately harvested, i.e.

at (nt,∆,mt) = H for all nt ∈ N and mt ∈ M . Similarly, a batch is har-

vested if it reaches either the maximum fermentation time, aT (nT , wT ,mT ) = H,

or the maximum mAb concentration, at
(
nt, wt, M̄

)
= H, or the specification limit

for the waste metabolites, at
(
nt, W̄ ,mt

)
= H, for all t ∈ T and wt ∈ S. Harvested

batches are immediately replaced with the new ones, resulting in t = n = 0 and
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w0 = m0 = 0.

Fermentation operating costs The function rc(wt,mt) = Kc + f(wt,mt) repre-

sents costs of operating the fermentation during one period when the batch is in

state (nt, wt,mt) ∈ N × S ×M , and is independent of nt and t. Kc denotes fixed

costs of operating the bioreactor during one period, i.e., process monitoring (running

and maintaining the sensors, analytics), equipment and labor costs, clean room

charges (sterilizing and maintaining the clean room). f(wt,mt) represents variable

costs of operating the fermentation at state (nt, wt,mt). Variable costs are typically

associated with raw material costs (i.e., cost of media, buffers, feeds, and cell lines),

inspection costs and quality control (online and offline sampling, analytics) (Farid,

2007; Rathore et al., 2004; Werner, 2004). The function f(wt,mt) could have fairly

general cost structures.

Cost of batch failure Penalty cost associated with batch failure is denoted by r(∆)

for all (nt, wt,mt) ∈ N × S ×M and t ∈ T . We assume that failed batches are

discarded to ensure safety. We model r(∆) as a predefined parameter independent of

(nt, wt,mt) and t. r(∆) includes costs associated with sterilization efforts, and costs

of initial cell lines, inoculation, buffers, labor and opportunity costs (Langer, 2008).

Failure cost can be significantly high due to sterilization efforts, resource costs and

other opportunity costs. For example, in case of viral contamination, the production

line can stop until the batch is securely disposed and the facility is sterilized. This

could translate into various hidden costs, such as, loss of reputation, disruptions in

the production plan, and re-scheduling efforts.

Rewards obtained from harvesting The reward function rh(wt,mt) = r(mt) −

g(wt) captures both the revenue r(mt) obtained from the batch when it is har-



45

vested at yield mt, and the purification costs g(wt) related with the concentration

of waste metabolites wt. The purification costs include raw material costs (costs

of resins and buffers), equipment costs (costs of running a chromatographic cycle,

filtration), labor costs (setting up and monitoring the chromatographic runs), cost

of quality assurance and control activities (high performance liquid chromatography,

labor costs, analytics, documentation), and clean room charges. Among these

cost components, raw material costs (especially the cost of resins used in chromato-

graphic runs) tend to dominate the total cost of downstream operations (Farid, 2008).

The amount of waste metabolites represents the batch quality obtained from up-

stream, and is considered as one of the main drivers of the purification workload in

downstream operations. For example, batches with high levels of impurities would

require multiple chromatographic runs and inspection steps to achieve the required

levels of purity (Kalyanpur, 2002; Werner, 2004; Farid, 2007). This would translate

into higher raw material costs, equipment cost, labor and inspection costs in down-

stream. Therefore, the reward function rh(wt,mt) captures both the revenue obtained

from the yield and downstream purification costs related with waste metabolites, and

is independent of nt.

3.3.2 Evolution of Monoclonal Antibodies

The amount of monoclonal antibodies inside the batch increases over time as a con-

sequence of cell physiology. We define {Mt, t ∈ T } as a stochastic process that repre-

sents the evolution of mAbs. If the bioreactor operator decides to continue to operate

the fermentation according to the prescribed manufacturing protocol at time t where

0 ≤ t < T , then a random amount of mAbs xt accumulates by the next decision

epoch t + 1. Therefore, the amount of mAb at time t + 1 can be modeled using the
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additive function in Equation 3.1:

mt+1 =


0 if the batch is harvested,

mt + xt if the batch is not harvested at time t.

(3.1)

where mt represents the amount of mAb at time t, and the random variable Xt

denotes the random amount of mAbs produced during period [t, t+ 1). We model

Xt as a continuous random variable whose probability density function is fxt (·) with

a general distribution, and support in the interval
[
xLt , x

U
t

]
for all t ∈ T . Random

increments in the amount of mAb at any time t is bounded such that 0 ≤ xLt and

xUt ≤ M̄ as a consequence of the limited cell productivity, substrate limitations and

inhibition (Jenzsch et al., 2006). Probability distribution function fxt (·) is typically

estimated based on fermentation data (Saucedo and Karim, 1997; Ozturk et al., 1992).

3.3.3 Bioreactor Reliability Modeling

In this section, we present a bioreactor reliability model that is used to predict the

evolution of waste metabolites and failure risks on a finite, irreducible discrete time

Markov chain. We first model the amount of waste metabolites accumulating in the

batch due to shocks and cell physiology. Next, we model the shock arrival process,

and finally describe the bioreactor reliability function.

Evolution of waste metabolites: Let {Wt, t ∈ T } be a non-stationary stochastic

process that represents the evolution of waste metabolites. The total amount of waste

metabolites wt accumulated by time t is a function of two random quantities, Bt and

Et. If the bioreactor operator does not harvest the batch at time t, then the amount
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of waste metabolites wt+1 at time t+ 1 can be represented using Equation 3.2:

wt+1 =


wt + bt + et if there is a shock during [t, t+ 1) ,

wt + bt if there are no shocks during [t, t+ 1) .

(3.2)

The random variable Bt represents the additional amount of metabolic wastes se-

creted due to the baseline metabolic activities during period [t, t+ 1), and the random

variable Et denotes the amount of metabolic waste generated as a result of the shocks

(see Section 3.2.3). Bt is modeled with general distribution f bt (·) and support [0,∞).

The baseline-metabolite profile represents the expected trajectory of the concentra-

tion of waste metabolites, and is associated with basal metabolic activities during cell

growth and reproduction. Similarly, the random variable Et represents the amount of

metabolic waste generated as a result of a shock during period [t, t+ 1). We assume

that Et is a random variable with general distribution f et (·) and support [0,∞) for

all t ∈ T . Probability distribution functions f bt (·) and f et (·) could be estimated based

on fermentation dynamics (Omasa et al., 1992; Ozturk et al., 1992; Yang et al., 2000).

Shock arrival process and the evolution of n: The amount of waste metabo-

lites Wt is a function of the shocks on the fermentation system. Let N be a random

variable denoting the time between two consecutive shocks, and ρ be a vector of pa-

rameters of the unspecified distribution of the time between two shocks. We define

ζ(n, ρ) =: P (N = n|N ≥ n) as the probability of a shock in the next time epoch, given

that the time elapsed since the last shock is n and the bioreactor operator decides

to continue the fermentation process. We note that the function ζ(n, ρ) could have

a fairly general structure. This modeling flexibility is necessary because each biopro-

cess has its unique failure characteristics and hazard rates. These characteristics are

commonly determined by the cell lines, buffers, media, bioreactor operating modules,

etc. For example, mammalian cell cultures are likely to have more frequent shock
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arrivals than other types of cell lines; whereas single use expression systems have

less likelihood of incurring sudden failures such as cross-contamination. As a special

case, we let ρ = (p, θ) and define ζ(n, ρ) = 1 − (1 − p)(n+1)θ−nθ , which is also known

as the discrete Weibull distribution (Nakagawa and Osaki, 1975). Characteristics of

the discrete Weibull distribution described in Property 3.3.1 allows the flexibility in

modeling shocks with increasing (θ > 1), decreasing (θ < 1), or constant (θ = 1)

hazard rates for shock arrivals.

Property 3.3.1. The function ζ(n, ρ) = 1−(1−p)(n+1)θ−nθ is an increasing function

in n for θ > 1 and a decreasing function in n for 0 < θ ≤ 1. When θ = 1, shock

arrival probability becomes independent of n and reduces to p ∈ (0, 1), such that, the

distribution of N can be represented with geometric distribution.

Bioreactor reliability function Rt(n,w): We model sudden and progressive fail-

ures that may occur due to shocks and their impact on metabolic wastes. Shocks have

two possible impacts: (i) a shock can either cause a sudden failure due to massive cell

deaths and mutation, (ii) a shock can accelerate the increase in the amount of waste

metabolites to result in progressive failure eventually. We model these two impacts

using the bioreactor reliability function. The bioreactor reliability function represents

the probability of no batch failures until the next decision epoch, if the bioreactor

operator decides to continue the fermentation process. For notational convenience,

we suppress the subscript t on state (nt, wt,mt) hereafter, and let Rt(n,w) denote

the probability that a batch survives both sudden and progressive failures at state

(n,w) ∈N × S during the time period [t, t+ 1). Then,
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Rt(n,w) = ζ(n, ρ)αt

∫ W̄−w

0

[∫ W̄−w−b

0

f et (e) de

]
f bt (b) db

+(1− ζ(n, ρ))

∫ W̄−w

0

f bt (b) db (3.3)

= ζ(n, ρ)αt

∫ W̄−w

0

f e+bt (z) dz + (1− ζ(n, ρ))

∫ W̄−w

0

f bt (b) db (3.4)

where, αt represents the probability that a shock does not cause a sudden failure

during the period [t, t+ 1). For notational convenience, Equation 3.4 uses the con-

volution Zt = Et + Bt with the density function f e+bt (z)dz = f et ∗ f bt . The random

variable Zt models the random increments in the amount of metabolic wastes due

to combined impacts of the baseline-metabolites Bt, and random shocks Et. The

bioreactor reliability function establishes the relationship between the risk of sudden

failure {αt} and the probability of progressive failure
{
wt : wt ∈ [W̄ ,∞)

}
, through

the same shock process {ζ(n, ρ)}. The reliability function defined in Equation 3.4

also provides the basis for modeling the evolution of waste metabolites through time.

Property 3.3.2. The bioreactor reliability function Rt(n,w) is a decreasing function

in n for θ > 1, and an increasing function in n for 0 < θ ≤ 1. When θ = 1, the

reliability function becomes independent of n, and can be represented with a constant

number across all n ∈N .

Property 3.3.2 presents the monotonicity characteristics of Rt(n,w) in n when ζ(n, ρ)

has discrete Weibull distribution. However, insights from Property 3.3.2 is fairly

generic and would hold for other shock processes with increasing (θ > 1), decreasing

(θ < 1), or constant (θ = 1) hazard rates. Characteristics of the bioreactor reliability

function presented in Property 3.3.2 allows us to analyze the structural properties of

the optimal policy in Section 3.4.
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3.3.4 The Optimality Equation

Let Vt(n,w,m) be the expected total discounted profit when the batch is in state

(n,w,m) ∈ N ×W ×M at time t ∈ T . The objective is to identify the optimal

condition-based harvesting policy to maximize the value function Vt(n,w,m). The

value function considers both the revenue obtained from yield of mAbs and the costs

associated with purifying metabolic wastes. For all t ∈ T \ {T} and m ∈ M , the

optimality equation is expressed as follows (Puterman, 1994):

Vt(n,w,m)

=


max {rh(w,m) + V0(0, 0, 0), −rc(w,m) + βCt(n,w,m)} if w ∈

[
0, W̄

)
,

−r(∆) + V0(0, 0, 0) if w = ∆.

(3.5)

where, Ct(n,w,m)

= [1−Rt(n,w)] [−r(∆) + V0(0, 0, 0)]

+ ζ(n, ρ) αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)Vt+1(0, w + z,m+ x) dx dz

+ [1− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)f
x
t (x)Vt+1(n+ 1, w + b,m+ x) dx db.

(3.6)

The discount factor is represented by 0 < β < 1. The function Ct(n,w,m) denotes

the expected rewards obtained from the action of continuing the fermentation at

time t and state (n,w,m). We note that state transitions are modeled through

Ct(n,w,m). More specifically, the function Ct(n,w,m) integrates the evolution of

both antibodies (in Equation 3.1) and waste metabolites (in Equation 3.2) into single

period transition probabilities (in Equation 3.6). For example, the first summand

in the right hand side of Equation 3.6 corresponds to the event of batch failure

(progressive or sudden batch failure) during the period [t, t+ 1). Note that a failed
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batch is immediately replaced with a new one leading to V0(0, 0, 0). The second

term in Equation 3.6 corresponds to the following series of events: the batch is not

harvested at time t, the fermentation system encounters a shock arrival during the

period [t, t+ 1), and the batch survives (sudden and progressive failures) during that

period. Similarly, third term in Equation 3.6 corresponds to the event that no shocks

arrives during [t, t+ 1) and the batch survives progressive failure.

Boundary conditions for the optimality equation are as follows. The maximum age

T of fermentation implies aT (n,w,m) = H with VT (n,w,m) = rh(w,m) +V0(0, 0, 0).

Similarly, the maximum allowable metabolic waste concentration W̄ and the maxi-

mum achievable mAb concentration M̄ imply at(n, W̄ ,m) = H and at(n,w, M̄) = H,

respectively. We consider infinite horizon bioreactor harvesting decisions, where failed

or harvested batches are immediately replaced with the new ones, leading to t = n = 0

and w0 = m0 = 0.

3.4 Structural Properties and Optimal Policy

In this section, we first present modeling assumptions on operating costs and rewards,

and then analyze structural properties of the optimal bioreactor harvesting policies.

The proofs of all results in this section are presented in the Appendix. An important

note is that we use a discretization scheme enabling us to use induction on the iterates

of value iteration algorithm as a proof technique.

3.4.1 Modeling Assumptions

Assumption 3.4.1. rc(w,m) is nondecreasing in (w,m) for all w ∈ S,m ∈M , and

independent of (t, n) ∈ T ×N .
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Assumption 3.4.2. rh(w,m) is nonincreasing in w ∈ S, nondecreasing in m ∈M ,

and independent of (t, n) ∈ T ×N . Further, rh(w, 0) = 0 for all w ∈ S, so that

batches with no mAbs does not yield any rewards.

Assumption 3.4.3. Batch failures are high impact events, implying r(∆) > rh(0, M̄),

and r(∆) > rh(w,m) ≥ rc(w,m).

Process observations have shown that batches with higher impurities and antibody

densities challenge process monitoring, inspection and corrective/preventive actions

(Rathore et al., 2004; Werner, 2004). Therefore, Assumption 3.4.1 implies that sin-

gle period bioreactor operating costs do not decrease as the concentrations of both

waste metabolites and mAbs increase. Assumption 3.4.2 implies that higher yields

result in higher revenues, so that rh(w,m) is nondecreasing in m ∈M . The rewards

obtained from harvesting rh(w,m) also considers downstream purification costs as-

sociated with waste metabolites w (i.e., cost of resins, labor, buffers and filtration).

Purification costs are related with downstream operations that separate mAbs from

metabolic wastes to meet desired quality and safety standards. Batches with higher

metabolic wastes challenge downstream purification operations by increasing the pu-

rification workload (Kalyanpur, 2002; Werner, 2004; Farid, 2007). Therefore, the

reward function rh(w,m) is modeled as nonincreasing in w ∈ W , nondecreasing in

m ∈ M , and independent of (t, n). We note that rh(w,m) ≥ 0 and rh(w, 0) = 0

for all w ∈ S and m ∈ M . Assumption 3.4.3 holds as we model biomanufacturing

systems with low frequency, high impact failures (Langer, 2008; CBI, 2010), implying

that r(∆) > rh(0, M̄) and r(∆) > rh(w,m) ≥ rc(w,m) for all w ∈ S and m ∈ M .

All costs and rewards are assumed to be finite and bounded.
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3.4.2 Structural Analysis

In this section, we analyze structural characteristics of the value function, and provide

optimal condition-based harvesting policies in Theorems (3.4.1)-(3.4.3) which are easy

to implement in practice.

Property 3.4.1. Vt(n,w,m) ≥ 0 for all t ∈ T and (n,w,m) ∈N × S ×M .

Proof See Appendix.

The value function in Equation (5.7) maximizes the expected benefits obtained from

mAbs while minimizing operating costs associated with upstream, downstream, and

batch failures. Property 3.4.1 shows that expected value function never becomes neg-

ative despite the penalty and operating costs. Property 3.4.1 sets the business case for

operating the bioreactor. It would either imply not running the bioreactor at t = 0,

or harvesting the bioreactor at later stages of fermentation when the accrued opera-

tional costs, penalty cost and risks associated with batch failures outweigh expected

revenue obtained from mAbs.

Proposition 3.4.1. The value function Vt(n,w,m) is nonincreasing in n ∈ N , for

all t ∈ T and (w,m) ∈W ×M , if ζ(n, ρ) is nondecreasing in n and

∫ W̄−w

0

f bt (b)rh(w + b,m) db ≥ αt

∫ W̄−w

0

f e+bt (z)rh(w, M̄) dz (3.7)

Proof See Appendix.

Proposition 3.4.1 shows the monotonicity of the value function in n, and provides

sufficiency condition under which Vt(n,w,m) is nonincreasing in n. Proposition 3.4.1

implies that expected profit obtained from the batch never increases as the time

elapsed since the last shock increases. The condition imposes a constraint on the

rates at which rewards obtained from harvesting change as a function of w and m. In

particular, consider a boundary condition where w + b leads to the upperbound W̄ .
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In this special case, the condition in (3.7) implies:

rh(W̄ ,m)

rh(w, M̄)
≥
αt
∫ W̄−w

0
f e+bt (z) dz∫ W̄−w

0
f bt (b) db

. (3.8)

We note that both right and left-hand side of Equation (3.8) represent a ratio. The

right-hand side of Equation (3.8) captures the survival probability under a shock

arrival αt
∫ W̄−w

0
f e+bt (z) dz, and no shock arrivals

∫ W̄−w
0

f bt (b) db. Consider next the

expression on left-hand side. Since rh(w,m) is nonincreasing in w and nondecreasing

in m (Assumption 3.4.2), the left-hand side denotes a ratio and positions the opti-

mistic and pessimistic rewards at state (w,m). Note that rh(w, M̄) corresponds to

the rewards of harvesting when mAbs concentration reaches the maximum level M̄

and the metabolic waste concentration remains constant at w. rh(W̄ ,m) corresponds

to the rewards from harvesting when cells do not secrete any additional mAbs, but

the waste concentration reaches its specification limit W̄ . Therefore, Equations (3.7)

and (3.8) establish the relation between the risk of failure and the rates at which

rewards change as a function of w and m. An interesting observation is the fact that

ζ(n, ρ) does not appear in these equation despite dictating the shock arrival process.

Theorem 3.4.1. There exists an optimal threshold level n∗ ∈N for all t ∈ T , w ∈ S

and m ∈M , such that the optimal decision is to harvest the bioreactor if and only if

n ≥ n∗, ζ(n, ρ) is nondecreasing in n, and the condition in (3.7) holds.

Proof See Appendix.

Theorem 3.4.1 shows that when ζ(n, ρ) is nondecreasing in n (i.e., θ > 1 in discrete

Weibull), then the optimal policy is of control-limit type based on the time elapsed

since the last shock. This implies that it is always optimal to harvest the fermentation

when time elapsed since the last shock reaches or exceeds the threshold value n∗, and

to continue to operate the fermentation according to the manufacturing protocol till

the next decision epoch otherwise. Sufficiency conditions under which there exists a
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control limit type policy are useful in practice because these control limits policies

provide guidelines that are easy to implement in practice.

Proposition 3.4.2. The value function Vt(n,w,m) is nonincreasing in w ∈ S for

all t ∈ T , n ∈N and m ∈M .

Proof See Appendix.

Proposition 3.4.2 shows that the expected value function is nonincreasing in w, such

that the total expected profit obtained from the batch never increases as waste

metabolites accumulate inside the batch. Monotonicity of the expected value func-

tion in w is utilized to identify the structure of the optimal policy based on the

concentration of waste metabolites.

Theorem 3.4.2. Let w+ > w− ≥ 0 such that w+, w− ∈W . For all n ∈ N , t ∈ T ,

and m ∈ M , there exists an optimal threshold level w∗ ∈ W \ {∆} such that the

optimal decision is to harvest the bioreactor if and only if w ≥ w∗ and the condition

in (3.9) holds:

rh(w
−,m)− rh(w+,m)

≤ β
[
Rt(n,w

−)−Rt(n,w
+)
]
r(∆)

+ ζ(n, ρ)αtβ

∫ W̄−w−

0

f e+bt (z)
[
rh(w

− + z,m)− rh(w−, M̄)
]

dz

+ [1− ζ(n, ρ)] β

∫ W̄−w−

0

f bt (b)
[
rh(w

− + b,m)− rh(w−, M̄)
]

db

(3.9)

where w∗ is the waste metabolite-based control limit.

Proof See Appendix.

Theorem 3.4.2 represents sufficiency conditions for the existence of a waste metabolite-

based optimal control limit policy, such that it is always optimal to harvest the batch

when the amount of metabolic wastes reaches or exceeds the threshold level w∗,
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and continue to operate the bioreactor according to the manufacturing protocol

till the next decision epoch otherwise. The condition identified in Theorem 3.4.2

captures the risks and costs associated with the amount of metabolic wastes. More

specifically, the term rh(w
−,m)− rh(w+,m) on the left-hand side of inequality (3.9)

represents the additional benefits obtained from harvesting the batch at lower levels

of metabolic wastes w−, instead of harvesting at w+, when the mAb concentration

is m in both cases. The term [Rt(n,w
−)−Rt(n,w

+)] r(∆) denotes the additional

risk and cost of batch failure when the concentration of waste metabolites increases

from w− to w+. The second and third terms in right hand side of Equation (3.9)

consider two extreme cases for rewards when the fermentation operates at state

(n,w−,m) and the batch does not fail. The second term corresponds to a case where

the amount of mAbs reaches the maximum level M̄ while the amount of metabolic

waste remains at w−, as denoted by ζ(n, ρ)αtβ
∫ W̄−w−

0
f e+bt (z)

[
rh(w

−, M̄)
]

dz +

[1− ζ(n, ρ)] β
∫ W̄−w−

0
f bt (b)

[
rh(w

−, M̄)
]

db. The third term corresponds to a case

where cells do not secrete any additional mAbs, but the amount of metabolic

waste increases, as denoted by ζ(n, ρ)αtβ
∫ W̄−w−

0
f e+bt (z) [rh(w

− + z,m)] dz +

[1− ζ(n, ρ)] β
∫ W̄−w−

0
f bt (b) [rh(w

− + b,m)] db. Therefore, condition (3.9) speci-

fied in Theorem 3.4.2 imposes constraints on the rates at which risks and rewards

change as a function of the amount of waste metabolites and mAbs.

Proposition 3.4.3. The value function Vt(n,w,m) is nondecreasing in m ∈M for

all t ∈ T , n ∈N and w ∈W .

Proof See Appendix.

Proposition 3.4.3 shows that expected profit obtained from the batch never decreases

with mAb concentration. The result follows since higher mAb yields lead to higher

revenues (Assumption 3.4.2). Proposition 3.4.3 is used to investigate structure of the

optimal policy with respect to the amount of mAbs.
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Theorem 3.4.3. For all n ∈N , t ∈ T , and w ∈ S, there exists an optimal threshold

level m∗ ∈M such that the optimal decision is to harvest the bioreactor if and only

if m ≥ m∗ and the condition in (3.10) holds:

rh(w,m
+)− rh(w,m−)

≥ β ζ(n, ρ)αt

∫ W̄−w

0

f e+bt (z)
[
rh(w + z, M̄)− rh(w + z,m−)

]
dx dz

+ β [1− ζ(n, ρ)]

∫ W̄−w

0

f bt (b)
[
rh(w + b, M̄)− rh(w + b,m−)

]
dx db

(3.10)

for all n ∈N , t ∈ T , w ∈ S, {m+,m−,m∗} ∈M , where m∗ is the mAb-based control

limit.

Proof See Appendix.

Theorem 3.4.3 identifies sufficiency conditions under which there exists a mAb-based

optimal control-limit type policy, such that it is always optimal to harvest the

bioreactor when the amount of mAbs reaches or exceeds the threshold level m∗, and

to continue to operate the bioreactor according to the manufacturing protocol until

the next decision epoch, otherwise. The condition in Equation (3.10) captures the

tradeoff between benefits obtained from harvesting at higher levels of mAbs and

additional purification costs associated with higher levels of waste metabolites. More

specifically, the term rh(w,m
+)−rh(w,m−) denotes the incremental benefits obtained

from higher mAb concentrations while the waste concentration remains constant at

w. The right-hand side in Equation (3.10) represents the highest achievable reward

at state (w,m−), such that the fermentation reaches the maximum amount of mAbs

M̄ without any increments in the amount of waste metabolites w. Overall, the

condition captures the tradeoff between the incentive of achieving the highest mAb

yield, and the risks of incurring higher purification and failure costs.
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Structural analysis obtained in this section provide insights for the optimal condition-

based harvesting policies based on the amount of mAbs, waste metabolites and the

time elapsed since the last shock. We note that optimal control limits are monotonic

in n, ammonia levels w, and antibody levels m at a given time t; but not monotonic

in t due to nonlinear, non-stationary behavior of the cells and fermentation kinetics.

Next, we conduct a numerical analysis on IgG1 antibody production as an illustrative

example in Section 3.5. We derive optimal condition-based harvesting policies for

IgG1 production, and assess the performance of simple harvesting policies typically

used in practice.

3.5 Effect of Bioreactor Reliability: Optimal Pol-

icy and Current Practice

In this section, we model IgG1 antibody production to demonstrate optimal

condition-based harvesting policies. We conduct numerical analysis to (i) compare

the performance of the optimal harvesting policy with simple policies typically

used in practice, and (ii) analyze sensitivity of the optimal control limits and value

function to various degrees of bioreactor reliability levels at constant hazard rate and

increasing hazard rates for shock arrivals. We consider production of IgG1 for our

study (Ozturk et al., 1992). In this production setting, we investigate low-frequency

high-impact shocks with constant hazard rate for shock arrivals (Section 3.5.1), and

then evaluate systems with increasing hazard rates for shock arrivals (Section 3.5.2).

The cost parameters for this study were determined using a two-step approach.

Initial estimates of the cost parameters were obtained through a literature survey

(Rathore et al., 2004; Werner, 2004; Farid, 2007; Kelley, 2009). Subsequently, we

organized a series of working group sessions with several local biomanufacturing
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companies (BioWGS, 2014) to validate our model formulation, parameter choices,

and verify how the model/insights compare with industry practices. Based on these

insights, we consider linear rewards with rh(w,m) = 10m − w, rc(w,m) = 2 + w

to account for the purification costs and upstream operating costs, respectively.

These parameters are representative of industry practices for the manufacture of

IgG1 antibodies. However, we made some assumptions on the cost of batch failure

based on discussions at the working group sessions. We learned that penalty cost

of failure includes various components that vary from company to company. For

example, the production line in the facility can completely stop until the clean

room is securely sterilized after a viral batch contamination. This could lead to

various opportunity costs (i.e., loss of reputation, re-scheduling efforts, additional

general and administrative expenses, loss of production during sterilization periods,

high resource costs, etc.). In our numeric analysis, we assume r(∆) = 880 for the

penalty cost, which is approximately 8-10 times greater than the highest achievable

revenue per batch and subsequently (in Section 3.5.1) analyze the sensitivity of the

performance of the system for values in the range r(∆) = {440, 880, 1760}.

The specification limit for progressive failure is W̄ = 6 mM of ammonia concen-

tration. In this example, the typical practice suggests to maintain the ammonia

concentration below w = 4mM , or harvest the batch otherwise. The threshold value

of 4mM ammonia level has been identified because it was observed that cell specific

growth rate decreases by 50% at 4mM of ammonia levels (Ozturk et al., 1992).

Although sensitivity of the specific growth rate to ammonia could be different for

each cell line, setting 50% growth inhibition level as a threshold is a typical practice

in fermentation literature. Cells are observed to enter the exponential growth phase

at time t = 50 hr, and the deceleration phase at time t = 150 hr. During the deceler-

ation phase, viable cell density drops significantly from 1.5e6 cells/ml to 5e5 cells/ml.
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Hence, the maximum fermentation time is modeled as T = 300 hrs with period τ = 50

hrs as shown in Figure 3.2. Each of the decision epoch is roughly associated with

a physiological phase: beginning of the exponential growth phase t = 50 hr, middle

of the exponential growth phase t = 100 hr, end of the exponential growth phase

t = 150 hr, deceleration phase t = 200 hr, end of the deceleration phase t = 250 hr,

and the death phase t = 300 hr. Time between two decision epochs τ is defined based

on the current practice which typically involves measurements in the intervals of 2 to

3 days (BioWGS, 2014). Nevertheless, we conduct numerical analysis to investigate

the sensitivity to other values of τ , i.e., τ = {10, 25, 50} hours, and observe that op-

timal policies and managerial insights remain the same at finer levels of discretization.

All computations are carried out using a discount factor of β = {0.98, 0.99, 0.999}. We

use discount factors that are close to one because they best reflect the medium-term

planning horizon which is most often applicable in the upstream biomanufacturing

setting. Numerical analysis reported in this section is based on β = 0.98. By using

such discount factor, we ensure that costs are relatively similar over the short term

but far distant costs are less valuable. Although 50 hours seem to be a long time

interval, we believe that it best represents a medium term planning horizon on the

overall time frame required for a project, which is typically several weeks or months

in the context of biomanufacturing operations.

We also replicate all numerical computations using an average cost rate objective in

order to ensure that managerial insight derived from the discounted cost model are

not attributed to the potential impacts of the discount factor, but rather due to the

bioreactor dynamics and trade-offs. We observe that managerial insights obtained

from both cost objectives are very similar in our problem context. A discussion on

the average cost formulation is provided in the Appendix. To be consistent with
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Sections 3.3 and 3.4, figures and tables reported in this section are mainly based on

the discounted cost formulation. Where appropriate, we highlight the similarities

and differences between the performance of these two cost objectives based on the

numerical analysis. Note that we consider discrete Weibull distribution to model

shock arrivals, ζ(n, ρ) = 1−(1−p)(n+1)θ−nθ , where ρ = (p, θ) are the known parameters

of the discrete Weibull distribution.

3.5.1 Bioreactors with Constant Hazard Rate for Shock Ar-

rivals

We first illustrate a bioreactor reliability setting with a geometrically distributed

shock arrival process. An example of such bioreactor systems could be continuous

perfusion bioreactors, where the culture media is refreshed on a regular basis. Table

3.1 presents a sensitivity analysis to compare the performance of optimal harvesting

policy with simple policies typically used in practice. The first column in Table 3.1

denotes bioreactor reliability settings considered for the sensitivity analysis. Reliabil-

ity settings in Table 3.1 are all identical except the probability of surviving sudden

failures αt, and probability of shock arrival p. We assume constant αt for all t ∈ T

and denote it by α. Note that θ = 1 represents memoryless shock arrivals where

ζ(n, ρ) is independent of n. Note that Table 3.1 reports the performance of both the

discounted cost and average cost objectives.

The first scenario in Table 3.1 corresponds to the maximum reliability setting

considered in this chapter with parameters α = 0.98, p = 0.001. It represents the

maximum control on bioreactor with nominal probability of shock arrivals and risk

of sudden failures. We estimate that parameters α = 0.8 and p = 0.01 correspond

to an average reliability level typically encountered in this problem setting, based on

data from Langer (2008). Hence, we refer to the scenario α = 0.8 and p = 0.01 as
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Table 3.1: Optimal value function VΠ∗(normalized) and percentage improvements δΠ

for θ = 1

Discounted cost objective Average cost objective

Scenarios VΠ∗ δΠ1 δΠ2 VΠ∗ δΠ1 δΠ2

Maximum reliability 1.00 7% 6% 1.00 5% 4%
Baseline reliability 0.86 9% 7% 0.86 8% 6%

Less reliable systems with (p)
(0.02) 0.72 14% 11% 0.70 10% 6%
(0.03) 0.59 23% 17% 0.56 14% 9%
(0.04) 0.44 37% 26% 0.39 17% 10%
(0.05) 0.31 89% 58% 0.27 48% 26%
(0.06) 0.19 >100% >100% 0.17 >100% >100%
(0.08) 0.00 - - 0.00 - -

baseline reliability setting through the rest of the chapter. Shock arrivals are related

with unpredictable cell behaviors and external factors that can not be directly con-

trolled. Therefore, we model different bioreactor reliability levels through parameters

ζ(n, ρ), α and θ. Table 3.1 evaluates fermentation systems that are subject to more

frequent shocks than the baseline reliability setting, with parameters α = 0.8 and

p ∈ {0.02, 0.03, 0.04, 0.05, 0.06, 0.08}. The scenario with parameters α = 0.8 and

p = 0.06 corresponds to the least reliable setting with a positive value function.

We evaluate two bioreactor harvesting policies, yield maximizing policy Π1, and mod-

erately yield aggressive policy Π2, which are most typically used in practice. Policy

Π1 suggests to harvest either at the final fermentation time t = 300 hr, or at the

antibody level 50 mg/l (maximum achievable), or at 4 mM of ammonia level. The

motivation for the yield maximizing policy Π1 is to maximize antibody yield at the

time of harvest. Achieving the highest possible yield from the bioreactor has been

one of the most popular objectives in practice and research (Luus, 1993a; Saucedo

and Karim, 1997; Yang et al., 2000; Jenzsch et al., 2006; Farid, 2007; Kawohl et al.,

2007). Whereas the moderately yield aggressive policy Π2 is less aggressive in anti-

body yield, and suggests to harvest at either time t = 300 hr, or at the antibody level
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of 40mg/l (80% of the maximum achievable antibody level), or at 4 mM of ammonia.

Note that policies Π1 and Π2 differ in terms of their antibody-based control limits.

The main motivation driving both of these policies is to achieve high antibody yields

while maintaining ammonia level below 4 mM .

Impact of Reliability on Costs

The second column in Table 3.1 presents the optimal value function VΠ∗ at time

t = 0 and state (0, 0, 0) under the discounted cost objective, where Π∗ denotes

the optimal harvesting policy. Similarly, the fifth column in Table 3.1 presents the

optimal value function VΠ∗ based on the average cost objective. All VΠ∗ in the table

are normalized based on VΠ∗ at the most reliable setting (α = 0.98, p = 0.001).

First, we focus on the managerial insights obtained from the discounted cost model.

We observe that VΠ∗ increasingly decreases as the bioreactor becomes less reliable.

For example, consider the baseline reliability setting with α = 0.8 and p = 0.01.

Increasing p from 0.01 to 0.02 decreases the optimal value function from 0.86 to 0.72,

resulting in 16% reduction. Whereas increasing p from 0.05 to 0.06 results in 38%

reduction in VΠ∗ . Note that VΠ∗ at p = 0.08 is zero, indicating that low reliability

levels could negate the business case for manufacturing antibodies. In this specific

example, Proposition 3.4.1 indicates that it is optimal to not run the fermentation if

the bioreactor reliability is equal to or less than (α = 0.8, p = 0.08). Insights from

the table also show that cell-level shocks have significant impacts on profitability

and should not be ignored in the operational decisions. For example, we observe

14% reduction in VΠ∗ when the bioreactor reliability drops from the most reliable

setting to the baseline reliability; whereas this reduction could reach up to 81 %

when the reliability level drops to the least reliable setting with a positive value

function (α = 0.08, p = 0.06). Next, we evaluate the performance of the average cost

objective. We observe that insights obtained from the average cost objective are
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similar to the ones obtained using the discounted cost formulation. For example, we

obtain 14% reduction in the optimal value function when the bioreactor reliability

drops from the most reliable setting to the baseline reliability; whereas this reduction

could reach up to 83% when the reliability level drops to the least reliable setting

with a positive value function (α = 0.08, p = 0.06). Therefore, we observe that

managerial insights obtained from the discounted cost model are not attributable to

the impact of the discount factor but rather related with the bioreactor dynamics

and trade-offs.

Table 3.1 also presents the percentage improvements δΠ1 and δΠ2 in the discounted

cost value function, that could be achieved at current practice, through implement-

ing the optimal policy in replacement of the yield maximizing policy Π1, and the

moderately yield-aggressive policy Π2, respectively. We observe that typical practices

perform 10% below the optimal policy at high and baseline levels of reliability. This

implies that a typical biomanufacturing facility that focuses on maximizing yield while

maintaining ammonia concentration below 4mM (50% cell death threshold) would

on average perform only 7-9 % worse off than the optimal policy. However, the lim-

itations of current policies become more pronounced with increase in p. We observe

that the optimal policy could be at least 25% better off than the simple harvesting

policies at moderate/low levels of reliability. This implies that harvesting policies

aiming to achieve high yield could significantly hurt business profitability under high

risks environments, mainly due to quality constraints, purification costs and failure

costs. Similarly, we observe that moderately yield-aggressive policy Π2 outperforms

the yield maximizing policy Π1 in all considered settings; despite the fact that Π2 is

a less aggressive policy in yield but has the same ammonia-based control limits as

Π1. Especially, benefits obtained from adopting a less aggressive policy Π2 instead of

the yield maximizing policy Π1 is more pronounced at low levels of reliability. How-
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ever, we observe that the optimal policy always outperforms both of Π1 and Π2. The

managerial insights obtained from the average cost model are similar. In Table 3.1,

the percentage improvements reported by the average cost objective are slightly less

than the ones obtained from the discounted cost objective. For example, we see that

current practices perform 4−8% below the optimal policy at high and baseline levels

of reliability, whereas the percentage improvement at lower reliability levels are up

to 48%. The main difference in the percentage improvements under the average cost

and discounted cost models are attributable to the impact of discount factor that

penalizes short-term failures. However, insights from both of these cost objectives

indicate that substantial improvements in the profitability could be achieved through

the optimal harvesting policies.

Impact of Reliability on Policy Structure

We show the structure of the optimal harvesting policy. Figure 3.5 presents the

optimal ammonia-based and antibody-based control limits at the most reliable

(α = 0.98, p = 0.001), baseline reliability (α = 0.8, p = 0.01) and least reliable

(α = 0.8, p = 0.06) settings using the discounted cost objective. In Figure 3.5, we

demonstrate the optimal control limits at the beginning of exponential growth phase

(t = 50 hr), later stage of the exponential growth phase (t = 100 hr), earlier stage

of the deceleration phase (t = 200 hr) and the later stage of the deceleration phase

(t = 250 hr). Note that the cell culture of interest has a non-growth related antibody

production behavior so that cells secrete antibodies of interest mainly during the

deceleration phase. The region below the control limit line represents the action

of continuing to operate the fermentation, and the region above the control limit

denotes harvesting.
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Figure 3.5: Optimal control limits throughout fermentation time t

We observe that, unlike the yield maximizing policy Π1 and moderately yield-

aggressive policy Π2 with constant ammonia-based and antibody-based control limits

over time, the optimal policy dynamically adjusts control limits based on the state

and age of fermentation (see Figure 3.5). It is interesting to observe that the optimal

ammonia-based control limit did not frequently adopt 4mM of ammonia threshold

(corresponding to 50% reduction in growth rate) typically used in practice. Optimal

ammonia-based control limit is observed to be less conservative than the typical

practice at high levels of reliability (i.e., 5mM at the most reliable setting and during

the deceleration phase t = 200, see Figure 3.5(c)), but more conservative at lower
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reliability levels (i.e., less than 4mM at the baseline reliability setting, time t = 200

and antibody level greater than or equal to 15mg/l; and less than 3mM at the least

reliable setting and time t = 200, Figure 3.5(c)). Optimal control limits obtained

from the average cost objective have the same trends and managerial insights, i.e.,

optimal ammonia-based control limits are observed to be less conservative than the

typical practice at high reliability (with a limit of 5mM on the ammonia amount in

the most reliable setting at t = 200 hours).

Smart Stationary Policies

The optimal control limits in Figure 3.5 are non-stationary because of non-linear and

non-stationary nature of antibody and ammonia production. However, harvesting

policies typically used in practice, Π1 and Π2, are stationary policies with control

limits imposed on the fermentation time. Since stationary policies are easier to

implement in practice, we exploit the structure of the optimal policies and propose

smart stationary policies that can yield close to optimal performance. We define two

smart stationary policies, Π3 and Π4. Smart stationary policy Π3 suggests to harvest

either at time t = 250 hr, or at 50 mg/l antibody level (maximum achievable), or

at 4 mM of ammonia level. Smart stationary policy Π4 harvests either at time

t = 250 hr, or at 40 mg/l antibody level (80% of the maximum achievable antibody

level), or at 4 mM of ammonia. Note that smart stationary policy Π3 and the

yield maximizing policy Π1 (or similarly Π2 and Π4) are the same except that the

stationary policy Π3 (or similarly Π4) has incentive to harvest earlier (t = 250) than

the final fermentation time (t = 300). Finally, we define another stationary policy

Π5, which is a yield-focused policy ignoring ammonia-based control limits. The

yield-focused policy Π5 suggests to harvest either at time t = 250 hr or at 40 mg/l

antibody level (80% of the maximum achievable antibody level). Note that the smart

stationary policy Π4 and the yield-focused policy Π5 are the same except that Π5
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Table 3.2: Performance of the smart stationary policies (for θ = 1)

Scenarios δΠ3 δΠ4 δΠ5

Maximum reliability 1% 1% 2%
Baseline reliability 1% 1% 17%

Less reliable systems with (p)
(0.02) 1% 1% 39%
(0.03) 1% 1% >100%
(0.04) 2% 2% -
(0.05) 4% 4% -
(0.06) 22% 22% -
(0.08) - - -

does not have any ammonia-based control limits. Table 3.2 shows the performance

of these simple stationary policies.

The results reveal several managerial insights. First, we observe that the smart

stationary policies Π3 and Π4 have the same performance, despite the fact that Π2

outperforms Π1 in Table 3.1. This would be mainly attributable to both expected

bioreactor kinetics over time (Figure 3.2) and the upper-bound on final fermentation

time (t = 250) suggested in smart stationary policies Π3 and Π4. It is interesting

to observe that stationary policies Π3 and Π4 provide a very good approximation of

the optimal value function (within 1% to 4% of the optimal value), except the least

reliable setting. In this example, smart stationary policies Π3 and Π4 demonstrate

how we can use MDP to develop efficient stationary harvesting policies that might

be easier to implement. The performance of the smart stationary policies using the

average cost objective is identical to that obtained from the discounted cost model,

except that the smart stationary polices provide a better approximation of the optimal

policy under the least reliable setting (α = 0.80, p = 0.06) with δΠ3 = δΠ4 = 14%.

Next, we observe that the yield-focused policy Π5 under-performs the smart sta-

tionary policy Π4, which highlights the significance of ammonia-based control limits.
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This implies that cost of ignoring by-products could be significantly high, especially

at low or baseline level reliability systems. Interestingly, Π5 performs only 2% worse

off than the optimal policy at the most reliable setting, but the performance of Π5

drops rapidly as fermentation becomes less reliable. The dash ‘-’symbol in table

represents a negative value function, implying that the corresponding policy is not a

proper strategy to run the business. For example, ignoring by-products at low level

reliability systems would result in significant losses in this production setting. The

performance of the yield-focused policy is almost identical to that obtained from the

discounted cost model.

Harvesting earlier than the final fermentation time could be counter-intuitive when

we only consider the expected fermentation kinetics. For example, ammonia levels

in Figure 3.2 is expected to remain almost the same during the time interval t ∈

(250, 300); whereas a 5mg/l increase in antibody mass is expected by time t = 300.

Optimal policy suggests to harvest at t = 250 despite the feasibility of achieving an

additional yield of 5mg/l without compromising from the quality. This would mainly

be attributable to costs and risks associated with high levels of ammonia.

Sensitivity Analysis in Penalty Cost

The penalty cost of batch failure includes components that could vary from company

to company (due to differences in re-scheduling efforts, administrative expenses, high

resource costs required for sterilization, loss of production, and other opportunity

costs). In this section, we assess the impact of penalty cost on the optimal value

function and evaluate the performance of the popular harvesting policies under

different penalty costs. For all numerical analysis in this chapter, we consider a value

of r(∆) = 880, which is 8 − 10 times higher than the revenue of a batch. However

in this section, we consider values in the range r(∆) = {440, 880, 1760}, to asses two
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Table 3.3: Impact of penalty cost r(∆) on VΠ∗ and percentage improvements δΠ (for
θ = 1)

r(∆) = 440 r(∆) = 880 r(∆) = 1760

Scenarios VΠ∗ δΠ1 δΠ2 VΠ∗ δΠ1 δΠ2 VΠ∗ δΠ1 δΠ2

Maximum reliability 1.005 6% 4% 1.000 7% 6% 0.995 7% 6%
Baseline reliability 0.93 7% 5% 0.86 9% 7% 0.74 15% 11%

Less reliable with (p)
(0.02) 0.84 9% 7% 0.72 14% 11% 0.48 40% 28%
(0.03) 0.76 10% 7% 0.59 23% 17% 0.25 >100% >100%
(0.04) 0.68 13% 9% 0.44 37% 26% 0.02 >100% >100%
(0.05) 0.60 16% 10% 0.31 89% 58% 0.00 - -
(0.06) 0.51 19% 13% 0.19 >100% >100% - - -
(0.08) 0.35 33% 21% 0.00 - - - - -

extreme cases of the value used in the rest of the chapter.

Table 3.3 compares the optimal value function and the performance of popular har-

vesting policies under different penalty costs. We observe that the setting with max-

imum reliability is not significantly sensitive to the penalty cost. However, the same

is not true for the setting with baseline reliability. In this setting, it is interesting to

observe that the popular policy, which aims to maximize the yield, could be 4− 7%

suboptimal even under the lowest penalty cost considered. We also observe that,

moderately yield aggressive policy Π2 outperforms the yield maximizing policy Π1

in all scenarios considered. Also, for a given reliability setting, the benefit obtained

from the optimal policy becomes significant as the penalty cost increases. Analysis

using the average cost objective reveals similar managerial insights as the discounted

cost objective.

3.5.2 Bioreactors with Increasing Hazard Rate for Shock Ar-

rivals

In this section, we assess bioreactor reliability models with increasing failure rate

(IFR) for shock arrivals, and investigate the impact of IFR shock arrivals on optimal

value function and control limits. IFR shock arrivals are often found in mammalian
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cell cultures or fed-batch fermentation systems due to risks in fouling, contamination,

mutation or stability issues. We model IFR shock arrivals using the discrete Weibull

model ζ(n, ρ) described in Section 3.3.3.

Table 3.4 represents a sensitivity analysis on impacts of IFR shock arrivals at various

levels of bioreactor reliability. For this purpose, we introduce IFR shock arrivals into

4 scenarios: systems with the maximum (α = 0.98, p = 0.001), baseline (α = 0.8, p =

0.01), low (α = 0.8, p = 0.03), and the least (α = 0.8, p = 0.06) reliability settings.

The degree of IFR behavior is modeled using parameter θ ∈ {1.2, 1.4, 1.6, 1.8} as

shown in the second column in Table 3.4. Note that higher values of θ in ζ(n, ρ) =

1 − (1 − p)(n+1)θ−nθ imply higher probability of shock arrival for a given n. Third

column in Table 3.4 represents the maximum likelihood of a shock arrival at the

corresponding reliability setting. Note that n ≤ t, and the 5th decision epoch is the

last decision epoch (t = 250 hr). Hence, probability ζ(5, p) denoted in the third

column is the probability of a shock during the last period, given that no shocks have

been observed in the system since t = 0. We also note that the minimum probability

of a shock is ζ(0, p) = p.

Impact of Reliability on Cost

In Table 3.4, the optimal value functions VΠ∗ are normalized based on the most

reliable setting in geometrically distributed shock arrival process (α = 0.98, p =

0.001, θ = 1). Harvesting strategies Πi for i ∈ {1, . . . , 5} remain the same as Section

3.5.1. Columns 5 − 9 represent percentage improvements δΠi obtained in the value

function when the optimal policy is adopted instead of simple sub-optimal policies

Πi typically used in practice. We observe that managerial insights obtained from

Section 3.5.1 are all valid in IFR shock arrival setting as well. We see that moderately

yield-aggressive policy Π2 outperforms the yield maximizing policy Π1 despite being
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Table 3.4: Optimal value function and performance of alternative sub-optimal policies
(for θ > 1)

Scenario θ ζ(5, p) VΠ∗ δΠ1 δΠ2 δΠ3 δΠ4 δΠ5

1.0 0.001 1.000 7% 6% 1% 1% 2%
Maximum reliability 1.2 0.002 0.998 6% 5% 1% 1% 3%
(α = 0.98, p = 0.001) 1.4 0.003 0.995 7% 5% 1% 1% 4%

1.6 0.005 0.990 7% 5% 1% 1% 6%
1.8 0.008 0.983 8% 6% 1% 1% 8%

1.2 0.017 0.791 13% 9% 1% 1% 35%
Baseline reliability 1.4 0.027 0.692 21% 16% 1% 1% 75%
(α = 0.8, p = 0.01) 1.6 0.044 0.550 44% 30% 1% 1% > 100%

1.8 0.068 0.358 > 100% > 100% 3% 3% -

1.2 0.050 0.381 71% 47% 2% 2% -
Low reliability 1.4 0.081 0.137 - - 57% 56% -

(α = 0.8, p = 0.03) 1.6 0.127 0.000 - - - - -

Least reliability 1.2 0.099 0.000 - - - - -
(α = 0.8, p = 0.06)

less aggressive in antibody yield, and both Π1 and Π2 under-perform the optimal

policy especially at baseline and low levels of reliability. Difference between the smart

stationary policy Π4 and the yield-focused policy Π5 emphasizes the importance of

ammonia-based control limits. This shows that failure to incorporate batch quality

issues at upstream harvesting decisions could significantly increase purification costs

at downstream. Smart stationary policies Π3 and Π4 are observed to successfully ap-

proximate the optimal value function at low and baseline levels of reliability. However,

the smart stationary policies have limitations at low levels of bioreactor reliability.

This underscores the importance of the optimal condition-based harvesting policies

as the bioreactor becomes less reliable. Analysis using the average cost objective

reveals similar managerial insights. For example, we observe 4% to 7% improvement

in the value function when the optimal policy is adopted instead of Π1 and Π2 at

the maximum reliability setting; whereas 7% to 26% improvement is observed in the

baseline reliability setting for θ = {1.2, 1.4, 1.6}, and the improvement exceeds 60%

for θ = 1.8. Since the impact of the discount factor is eliminated in the average cost

objective, we observe that the policies Π1 and Π2 perform slightly better under the
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discounted cost objective. However, optimal policies in the average cost model still

provide substantial improvements even under the maximum reliability setting, and

the potential benefits of the optimal policies are critical as the fermentation system

becomes less reliable. Smart stationary policies remain within 1% of the optimal

value function and hence provide successful approximation under the average cost

setting.

We observe that VΠ∗ increasingly decreases as the system becomes less reliable due to

IFR shock arrivals. The optimal value function drops faster at low reliability systems

as θ increases. This implies that VΠ∗ is more susceptible to IFR behavior at low

reliability levels compared to high reliability settings. Furthermore, we observe that θ

might have significant impacts on the optimal value function at all levels of reliability.

For example, consider the baseline reliability setting with α = 0.8 and p = 0.01. For

θ = 1, the optimal value function is VΠ∗ = 0.86 as indicated in Table 3.1. We observe

that when θ increases from 1 to 1.2, the maximum probability of a shock arrival only

increases from ζ(5, p) = 0.010 to ζ(5, p) = 0.017; however, the value function drops

considerably from 0.86 to 0.791. The impact of IFR behavior becomes more severe as

the failure rate increases. For example, as θ increases from 1.2 to 1.6, the probability

of shock arrival increase from ζ(5, p) = 0.017 to ζ(5, p) = 0.044, and hence the value

function drops significantly from 0.791 to 0.50. This implies that the value function

could be highly susceptible to the failure rate, and it is critical to consider the failure

behavior of fermentation systems while making harvesting decisions. Analysis under

the average cost objective indicates similar behavior of the value function.

Impact of Reliability on Policy Structure

Next, we analyze the impact of IFR shocks on ammonia and antibody-based optimal

control limits. For this purpose, we select a high reliability (with θ = 1.2) and a
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a) Optimal control limits at the high reliability setting (0.98, 0.001, 1.2)

b) Optimal control limits at the low reliability setting  (0.8, 0.03, 1.4)

Figure 3.6: Optimal control limits as a function of n at high and low levels of reliability

low reliability (θ = 1.4) setting from Table 3.4, and evaluate how optimal control

limits change as a function of n. Figure 3.6 represents ammonia-based and antibody-

based optimal control limits at time t = 100 (i.e., later stage of the exponential growth

phase) and t = 250 (i.e., ideal harvesting time suggested by the optimal policy). Note

that Figure 3.6 represents ammonia-based and antibody-based optimal control limits

at various levels of n for a given time t, ammonia concentration w and antibody level

m. It is interesting to observe that optimal control limits are not very sensitive to n.

For example, control limits in Figure 3.6 a) are constant in n for each time t = 100 and

t = 250 hrs. This observation could be counter-intuitive since higher levels of n imply

higher probability of shock arrivals. In this example, the main reason for constant
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control limits over n is mainly attributable to low probabilities of shock arrival at

the most reliable setting. However, in low reliability setting, the control limits in

Figure 3.6 b) become slightly more conservative as time elapsed since the last shock

increases. We also note that optimal control limits are monotonic in n, ammonia

levels w, and antibody levels m at a given time t; but not monotonic in t due to non-

stationary process kinetics. Analysis of the optimal policies using the average cost

objective reveals similar managerial insights. We observe that optimal policies shown

in Figure 3.6 are identical under these two objectives, except the policy suggested

for the high reliability setting at time t = 100 hours. In that setting, the optimal

policy suggested by the discounted cost objective has a stationary control limit of

5 mM ammonia when IgG1 amount is less than 40 mg/l; whereas the average cost

objective suggests a non-stationary control limit on ammonia which varies between

4.5 mM and 2.5 mM. However, managerial insights obtained from both of these cost

objectives indicate that control limits shown in Figure 3.6 are not very sensitive to n

mainly due to the low probability of shock arrivals.

3.6 Conclusions

Biomanufacturing methods use live systems such as bacterial or mammalian cells to

manufacture the biologics of interest. Use of live systems introduce several challenges

in modeling and optimization of biomanufacturing operations due to batch-to-batch

variability, random evolution of fermentation dynamics, parallel growth of unwanted

metabolic wastes and desired antibodies inside the same batch, and multiple de-

pendent failure processes caused by random disturbances in cellular activities and

fermentation dynamics.
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We incorporate biology-induced randomness associated with fermentation dynamics

into a cell-level stochastic model to capture the evolution of unwanted metabolic

wastes and desired antibodies, and model multiple dependent failure processes in

upstream operations. The cell-level reliability model is then integrated in a Markov

decision process formulation to analyze system-level decisions on batch harvesting

policies. The model studies the impact of cell-level fermentation dynamics and

batch failures on system-level financial trade-offs between upstream and downstream

operations.

We analyze the structural characteristics of the value function, and derive optimum

condition-based harvesting policies for upstream biomanufacturing operations. The

optimal policy provides simple guidelines that are easy to implement in practice.

Through numerical studies, we evaluate the impact of bioreactor reliability on

the optimal control limits and profitability. We compare the performance of the

optimal policy for IgG1 antibody production with popular harvesting policies used

in practice. Our study shows that a typical biomanufacturing facility that focuses

on maximizing IgG1 antibody yield could on average improve their profitability by

4-9 %, using the optimal condition-based harvesting policies. The benefits obtained

from the optimal policies becomes very significant (more than 40% improvement) at

fermentation systems with high risks of batch failures. The case study considered

in the numerical analysis shows that trying to maximize the yield is not necessarily

optimal from the profit perspective. Although counter-intuitive, the optimal policy

has an incentive to harvest the fermentation earlier than the popular practice even

when the concentration of metabolic byproducts are expected to remain constant and

stable. This would mainly be attributed to financial trade-offs between batch quality,

antibody yields and batch failures. MDP model captures system-level trade-offs that

are not apparent in the process kinetic models representing cell dynamics alone.



77

We also use insights obtained from the optimal policy to propose smart stationary

policies that could closely approximate the optimal value function.



78

3.7 Appendix: Proofs

Proof of Property 3.4.1. Consider the value function for all (n,w,m) ∈N × S ×M

and t ∈ T \ T ,

Vt(n,w,m) = max {rh(w,m) + V0(0, 0, 0), −rc(w,m) + β Ct(n,w,m)} (3.11)

where Ct(n,w,m) is defined in Equation 3.6. We use Equation 3.11 to analyze two

cases: (i) If −rc(w,m) + β Ct(n,w,m) ≥ 0, then Vt(n,w,m) ≥ 0 for all (n,w,m) ∈

N×S×M and t ∈ T . (ii) When −rc(w,m)+βCt(n,w,m) < 0, then Vt(n,w,m) ≥ 0

if and only if rh(w,m) + V0(0, 0, 0) ≥ 0. Hence, the proof reduces to showing that

rh(w,m) + V0(0, 0, 0) ≥ 0 all (n,w,m) ∈ N × S ×M and t ∈ T . Equation 3.11 is

revisited to define V0(0, 0, 0) = max {rh(0, 0) + V0(0, 0, 0), −rc(0, 0) + β C0(0, 0, 0)}.

Now consider the case where −rc(0, 0) + β C0(0, 0, 0) < 0, then the state (0, 0, 0)

at t = 0 becomes an absorbing state with zero rewards, since rh(w, 0) = 0 for all

w ∈ S by Assumption 3.4.2. This implies that, if −rc(0, 0) + β C0(0, 0, 0) < 0, then

V0(0, 0, 0) = 0 with a0(0, 0, 0) = H. Therefore, inequality V0(0, 0, 0) ≥ 0 always holds.

Hence rh(w,m) + V0(0, 0, 0) ≥ 0 for all (w,m) ∈ S ×M , since rh(w,m) ≥ 0 and

rh(w, 0) = 0 for all w ∈ S and m ∈M . Similarly, the boundary conditions for both

the maximum age and mAb concentration imply that aT (n,w,m) = at(n,w, M̄) = H

with rewards rh(w,m) + V0(0, 0, 0) ≥ 0 and rh(w, M̄) + V0(0, 0, 0) ≥ 0 respectively.

Hence, Vt(n,w,m) ≥ 0 for all (n,w,m) ∈ N × S ×M and t ∈ T from which the

result follows.

Proof of Proposition 3.4.1. The proof is done by induction on the iterates of value

iteration algorithm. For n ∈ N and m ∈ M , we define the initial value for i = 0

without loss of generality as:
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V0
t (n,w,m) =

 0, if w ∈
[
0, W̄

)
,

−r(∆), if w = ∆.

Next, assume that V it(n,w,m) is nonincreasing in n, then

V i+1
t (n,w,m)

=

 max {rh(w,m) + V i0(0, 0, 0),−rc(w,m) + β Cit(n,w,m)} , if w ∈
[
0, W̄

)
,

−r(∆) + V i0(0, 0, 0), if w = ∆.

(3.12)

We note that neither the cost of harvesting, nor the cost of continuing depends

on n in Equation 3.12. To complete the proof, we need to show that Cit(n,w,m)

is nonincreasing in n for all t ∈ T , w ∈ W and m ∈ M . Consider two different

values for the time elapsed since the last shock, n + 1 and n, such that n + 1 > n.

We start with writing the difference between the expected rewards of continuing the

fermentation at n and n+ 1 for any time t ∈ T and state (w,m) ∈ S ×M :
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Cit(n,w,m)− Cit(n+ 1, w,m)

= [Rt(n+ 1, w,m)−Rt(n,w,m)]
[
−r(∆) + V i0(0, 0, 0)

]
+ ζ(n, ρ)αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w + z,m+ x) dx dz

+ [1− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w + b,m+ x) dx db (3.13)

− ζ(n+ 1, p)αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w + z,m+ x) dx dz

− [1− ζ(n+ 1, p)]

∫ W̄−w

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 2, w + b,m+ x) dx db

≥ ζ(n+ 1, p)αt

∫ W̄−w

0

f e+bt (z)
[
−r(∆) + V i0(0, 0, 0)

]
dz

+ [1− ζ(n+ 1, p)]

∫ W̄−w

0

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
db

− ζ(n, ρ)αt

∫ W̄−w

0

f e+bt (z)
[
−r(∆) + V i0(0, 0, 0)

]
dz

− [1− ζ(n, ρ)]

∫ W̄−w

0

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
db

+ ζ(n, ρ)αt

∫ W̄−w

0

∫ M̄

0

f ε+bt (z)fxt (x)V it+1(0, w + z,m+ x) dx dz

+ [1− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 2, w + b,m+ x) dx db (3.14)

− ζ(n+ 1, p)αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w + z,m+ x) dx dz

− [1− ζ(n+ 1, p)]

∫ W̄−w

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 2, w + b,m+ x) dx db

≥ [ζ(n+ 1, p)− ζ(n, ρ)]αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)
[
−r(∆) + V i0(0, 0, 0)

]
dx db

− [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
dx db

− [ζ(n+ 1, p)− ζ(n, ρ)]

αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w + z,m+ x) dx dz (3.15)

+ [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)V it+1(n+ 2, w + b,m+ x) dx db (3.16)
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≥ [ζ(n+ 1, p)− ζ(n, ρ)]αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)
[
−r(∆) + V i0(0, 0, 0)

]
dx db

− [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
dx db

− [ζ(n+ 1, p)− ζ(n, ρ)]αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w, M̄) dx dz (3.17)

+ [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)V it+1(n+ 2, w + b,m) dx db (3.18)

≥ [ζ(n+ 1, p)− ζ(n, ρ)]αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)
[
−r(∆) + V i0(0, 0, 0)

]
dx db

− [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
dx db

− [ζ(n+ 1, p)− ζ(n, ρ)]

αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)
[
rh(w, M̄) + V i0(0, 0, 0)

]
dx dz (3.19)

+ [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)
[
rh(w + b,m) + V i0(0, 0, 0)

]
dx db(3.20)

= [ζ(n+ 1, p)− ζ(n, ρ)]αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x) [−r(∆)] dx db (3.21)

− [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b) [−r(∆)] dx db (3.22)

− [ζ(n+ 1, p)− ζ(n, ρ)]αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)
[
rh(w, M̄)

]
dx dz

+ [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b) [rh(w + b,m)] dx db

≥ − [ζ(n+ 1, p)− ζ(n, ρ)]αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)
[
rh(w, M̄)

]
dx dz (3.23)

+ [ζ(n+ 1, p)− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b) [rh(w + b,m)] dx db (3.24)

≥ 0 (3.25)

Property 3.3.2 indicates that Rt(n,w) is a decreasing function in n for θ > 1.

Therefore, we get [Rt(n+ 1, w,m)−Rt(n,w,m)] ≤ 0 and [ζ(n+ 1, p)− ζ(n, ρ)] ≥ 0.

Equation (3.14) follows from Equation (3.13), the induction hypothesis and Property



82

3.4.1. Equations (3.17) and (3.18) are obtained from Equations (3.15) and (3.16) re-

spectively, and follow from the monotonicity of the value function in w and m (Propo-

sition 3.4.2 and Proposition 3.4.3). The boundary condition at(0, w, X̄) = H applies

to Equation (3.17) resulting in (3.19) with reward
[
rh(w, M̄) + V i0(0, 0, 0)

]
. Equation

(3.20) follows from (3.18) because V it+1(n+2, w+b,m) ≥ [rh(w + b,m) + V i0(0, 0, 0)] by

definition of the value function in (5.7). We observe that sum of the Equations (3.21)

and (3.22) is greater than or equal to zero since
∫ W̄−w

0
f bt (b) db ≥ αt

∫ W̄−w
0

f e+bt dz.

Equations (3.23) and (3.24) reduce to inequality (3.25) under the conditions specified

in (3.7). Similarly, the boundary conditions for both the maximum age and mAb con-

centration imply aT (n,w,m) = at(n,w, M̄) = H with rewards rh(w,m)+V0(0, 0, 0) ≥

0 and rh(w, M̄) + V0(0, 0, 0) ≥ 0, which are independent of n. Note that since

Cit(n,w,m) is nonincreasing in n by the inequality (3.25), then the value function

Vt(n,w,m) is also nonincreasing in n ∈ N for all t ∈ T and (w,m) ∈ W ×M .

Hence, the result follows from the convergence of value iteration algorithm.

Proof of Theorem 3.4.1. Assume that the result holds and consider the inequality,

rh(w,m) + V0(0, 0, 0) ≥ rc(w,m) + βCt(n∗, w,m) (3.26)

The left-hand side of the inequality (3.26) is constant in n. On the other hand,

insights obtained from the proof of Proposition 3.4.1 indicate that Ct(n,w,m) is

nonincreasing in n. Hence, the right hand side of inequality (3.26) is nonincreas-

ing in n. Therefore, inequality (3.26) holds for any (n,w,m) ∈ N × S ×M and

t ∈ T such that n ≥ n∗. In other words, given that the optimal decision is to har-

vest at state (n∗, w,m), the optimal decision for any n ≥ n∗ is also to harvest at

(n,w,m) ∈ N × S ×M and t ∈ T . Therefore, the optimal replacement policy is of

control limit type policy with control limit n∗.
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Proof of Proposition 3.4.2. The proof is done by induction on the steps of the value

iteration algorithm. Let V it(n,w,m) denote the value function at ith iteration of the

value iteration algorithm. We start by defining the initial value for i = 0. Without

loss of generality, we assume:

V0
t (n,w,m) =

 0, w ∈
[
0, W̄

)
,

−r(∆), w = ∆.

Note that V0
t (n,w,m) is nonincreasing in w. Next, we assume that V it(n,w,m) is

nonincreasing in w. Then, we obtain from Equation 5.7,

V i+1
t (n,w,m)

=

 max {rh(w,m) + V i0(0, 0, 0), −rc(w,m) + β Cit(n,w,m)} , if w ∈
[
0, W̄

)
,

−r(∆) + V i0(0, 0, 0), if w = ∆.

(3.27)

Since rh(w,m) and −rc(w,m) are nonincreasing in w, it is sufficient to show that

Cit(n,w,m) is also nonincreasing in w for all t, n and m. Next, we use a discretization

scheme on state space W enabling us to use induction on the iterates of the value

iteration algorithm as a proof technique. Consider two arbitrary metabolic waste

concentrations w+ and w−, such that w+ ≥ w− ∈W \ {∆}. To complete the proof,

we use the following steps show that Cit(n,w−,m)− Cit(n,w+,m) ≥ 0 for any t ∈ T :



84

Cit(n,w−,m)− Cit(n,w+,m)

= Rt(n,w
+)
[
−r(∆) + V i0(0, 0, 0)

]
−Rt(n,w

−)
[
−r(∆) + V i0(0, 0, 0)

]
(3.28)

+ ζ(n, ρ)αt

∫ W̄−w−

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w− + z,m+ x) dx dz (3.29)

+ [1− ζ(n, ρ)]

∫ W̄−w−

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w− + b,m+ x) dx db(3.30)

− ζ(n, ρ)αt

∫ W̄−w+

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w+ + z,m+ x) dx dz

− [1− ζ(n, ρ)]

∫ W̄−w+

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w+ + b,m+ x) dx db

= ζ(n, ρ)αt

∫ W̄−w+

0

f e+bt (z)
[
−r(∆) + V i0(0, 0, 0)

]
dz (3.31)

+ [1− ζ(n, ρ)]

∫ W̄−w+

0

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
db (3.32)

− ζ(n, ρ)αt

∫ W̄−w−

0

f e+bt (z)
[
−r(∆) + V i0(0, 0, 0)

]
dz (3.33)

− [1− ζ(n, ρ)]

∫ W̄−w−

0

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
db (3.34)

+ ζ(n, ρ)αt

∫ W̄−w+

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w− + z,m+ x) dx dz (3.35)

+ ζ(n, ρ)αt

∫ W̄−w−

W̄−w+

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w− + z,m+ x) dx dz (3.36)

+ [1− ζ(n, ρ)]

∫ W̄−w+

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w− + b,m+ x) dx db(3.37)

+ [1− ζ(n, ρ)]

∫ W̄−w−

W̄−w+

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w− + b,m+ x) dx db(3.38)

− ζ(n, ρ)αt

∫ W̄−w+

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w+ + z,m+ x) dx dz

− [1− ζ(n, ρ)]

∫ W̄−w+

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w+ + b,m+ x) dx db
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≥ −ζ(n, ρ)αt

∫ W̄−w−

W̄−w+

f e+bt (z)
[
−r(∆) + V i0(0, 0, 0)

]
dz

− [1− ζ(n, ρ)]

∫ W̄−w−

W̄−w+

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
db

+ ζ(n, ρ)αt

∫ W̄−w+

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w+ + z,m+ x) dx dz (3.39)

+ ζ(n, ρ)αt

∫ W̄−w−

W̄−w+

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w− + z,m+ x) dx dz

+ [1− ζ(n, ρ)]

∫ W̄−w+

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w+ + b,m+ x) dx db(3.40)

+ [1− ζ(n, ρ)]

∫ W̄−w−

W̄−w+

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w− + b,m+ x) dx db

− ζ(n, ρ)αt

∫ W̄−w+

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w+ + z,m+ x) dx dz

− [1− ζ(n, ρ)]

∫ W̄−w+

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w+ + b,m+ x) dx db

≥ −ζ(n, ρ)αt

∫ W̄−w−

W̄−w+

f e+bt (z)
[
−r(∆) + V i0(0, 0, 0)

]
dz

− [1− ζ(n, ρ)]

∫ W̄−w−

W̄−w+

f bt (b)
[
−r(∆) + V i0(0, 0, 0)

]
db

+ ζ(n, ρ)αt

∫ W̄−w−

W̄−w+

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w+ + z,m+ x) dx dz (3.41)

+ [1− ζ(n, ρ)]

∫ W̄−w−

W̄−w+

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w+ + b,m+ x) dx db(3.42)

≥ 0 (3.43)

Equations (3.31)-(3.34) are obtained by rewriting the reliability function in

Equation 3.28 using the definition in Equation 3.4. We split Equations (3.29)-

(3.30) into smaller regions using the fact that
∫ W̄−w−

0
V (z) dz =

∫ W̄−w+

0
V (z) dz +∫ W̄−w−

W̄−w+ V (z) dz, and hence get Equations (3.35) to (3.38). Equations (3.39) and

(3.40) are obtained using the induction hypothesis and Property 3.4.1. Similarly,

Equations (3.41) and (3.42) are obtained by the induction hypothesis and Property
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3.4.1. In Equations (3.41) and (3.42), we note that ∆ =
{
w : w ∈

[
W̄ ,∞

)}
with

reward [−r(∆) + V i0(0, 0, 0)], from which the inequality (3.43) is established. Simi-

larly, the boundary conditions for both the maximum age and mAb concentration

imply aT (n,w,m) = at(n,w, M̄) = H with rewards rh(w,m) + V0(0, 0, 0) ≥ 0 and

rh(w, M̄) + V0(0, 0, 0) ≥ 0 which are nonincreasing in w by Assumption 3.4.2. Hence,

the proof follows from the convergence of value iteration algorithm. Notice that

because all the terms on the right hand side of Equation 3.27 are nonincreasing in w,

V i+1
t (n,w,m) is also nonincreasing in w for all t ∈ T , and (n,w,m) ∈N ×W ×M

from which the result follows.

Proof of Theorem 3.4.2. Proof is done by contradiction. Consider two arbitrary waste

metabolite concentrations, w+, w− ∈ W \ {∆} such that w+ ≥ w−. Theorem 3.4.2

indicates that if at(n,w
−,m) = H then at(n,w

+,m) = H. Assume by contradiction

that at(n,w
−,m) = H then at(n,w

+,m) = C. The contradiction hypothesis implies

that

rh(w
−,m) + V0(0, 0, 0) ≥ −rc(w−,m) + βCt(n,w−,m) (3.44)

rh(w
+,m) + V0(0, 0, 0) ≤ −rc(w+,m) + βCt(n,w+,m) (3.45)

Equations (3.44) and (3.45) lead to the following inequality:
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rh(w
−,m)− rh(w+,m)

≥ βCt(n,w−,m)− βCt(n,w+,m) (3.46)

≥ βRt(n,w
+) [−r(∆) + V0(0, 0, 0)]− βRt(n,w

−) [−r(∆) + V0(0, 0, 0)]

+ ζ(n, ρ)αtβ

∫ W̄−w−

0

f e+bt (z)Vt+1(0, w− + z,m) dz (3.47)

+ [1− ζ(n, ρ)] β

∫ W̄−w−

0

f bt (b)Vt+1(n+ 1, w− + b,m) db (3.48)

− ζ(n, ρ)αtβ

∫ W̄−w+

0

f e+bt (z)Vt+1(0, w+ + z, M̄) dz (3.49)

− [1− ζ(n, ρ)] β

∫ W̄−w+

0

f bt (b)Vt+1(n+ 1, w+ + b, M̄) db (3.50)

≥ β
[
Rt(n,w

−)−Rt(n,w
+)
]
r(∆)

+ ζ(n, ρ)αtβ

∫ W̄−w−

0

f e+bt (z)rh(w
− + z,m) dz (3.51)

+ [1− ζ(n, ρ)] β

∫ W̄−w−

0

f bt (b)rh(w
− + b,m) db (3.52)

− ζ(n, ρ)αtβ

∫ W̄−w+

0

f e+bt (z)rh(w
−, M̄) dz (3.53)

− [1− ζ(n, ρ)] β

∫ W̄−w+

0

f bt (b)rh(w
−, M̄) db (3.54)

≥ β
[
Rt(n,w

−)−Rt(n,w
+)
]
r(∆)

+ ζ(n, ρ)αtβ

∫ W̄−w−

0

f e+bt (z)
[
rh(w

− + z,m)− rh(w−, M̄)
]

dz

+ [1− ζ(n, ρ)] β

∫ W̄−w−

0

f bt (b)
[
rh(w

− + b,m)− rh(w−, M̄)
]

db

which contradicts the condition in (3.9). We note that assumption r(∆) >

rh(0, M̄) on modeling high impact batch failure supports the condition in (3.9). Equa-

tion (3.46) follows from Assumption 3.4.1, such that rc(w
+,m) − rc(w

−,m) ≥ 0.

Equations (3.47) to (3.50) are obtained from nondecreasing behavior of the value

function in m based on Proposition 3.4.3. We note that costs and rewards are in-

dependent of t and n by Assumptions (3.4.1) and (3.4.2). Hence, Equations (3.51)

and (3.52) follow from (5.7), such that Vt(n,w,m) ≥ rh(n,w,m) + V0(0, 0, 0) for all
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(n,w,m) ∈ N × S ×M and t ∈ T . Equations (3.53) and (3.54) are obtained from

the boundary condition at(n,w, M̄) = H for all (n,w) ∈N × S and t ∈ T .

Proof of Proposition 3.4.3. The proof is done by induction on the iterates of value

iteration algorithm. We define the initial value for i = 0 as

V0
t (n,w,m) = 0 for all m ∈M .

Next, consider two arbitrary mAb concentration, m+, m− ∈M , such that m+ ≥

m−. Assume that V it(n,w,m) is nondecreasing in m, then

V i+1
t (n,w,m+)

=

 max {rh(w,m+) + V i0(0, 0, 0),−rc(w,m+) + β Cit(n,w,m+)} , if w ∈
[
0, W̄

)
,

−r(∆) + V i0(0, 0, 0), if w = ∆.

≥

 max {rh(w,m−) + V i0(0, 0, 0),−rc(w,m−) + β Cit(n,w,m+)} , if w ∈
[
0, W̄

)
,

−r(∆) + V i0(0, 0, 0), if w = ∆.
(3.55)

≥

 max {rh(w,m−) + V i0(0, 0, 0),−rc(w,m−) + β Cit(n,w,m−)} , if w ∈
[
0, W̄

)
,

−r(∆) + V i0(0, 0, 0), if w = ∆.
(3.56)

= V i+1
t (n,w,m−) (3.57)

Inequality (3.55) follows from Assumptions (3.4.1) and (3.4.2). Inequality (3.56)

is obtained from the induction hypothesis, as shown in (3.59). More specifically, con-

sider Cit(n,w,m+) for all n ∈ N , t ∈ T , and w ∈ W . We first note the boundary

conditions, aT (n,w,m) = at(n,w, M̄) = H, with VT (n,w,m) = rh(w,m) +V0(0, 0, 0)

and Vt(n,w, M̄) = rh(w, M̄) + V0(0, 0, 0), which are nondecreasing in m by Assump-

tion (3.4.2). Next, we consider Cit(n,w,m+) for all t ∈ T \ {T},
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Cit(n,w,m+) = [1−Rt(n,w)]
[
−r(∆) + V i0(0, 0, 0)

]
+ ζ(n, ρ)αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w + z,m+ + x) dx dz

+ [1− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w + b,m+ + x) dx db

≥ [1−Rt(n,w)]
[
−r(∆) + V i0(0, 0, 0)

]
(3.58)

+ ζ(n, ρ)αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)fxt (x)V it+1(0, w + z,m− + x) dx dz

+ [1− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)f
x
t (x)V it+1(n+ 1, w + b,m− + x) dx db

= Cit(n,w,m−) (3.59)

We note that inequality (3.58) is obtained from the induction hypothesis. The

proof follows from the convergence of value iteration algorithm.

Proof of Theorem 3.4.3. Proof is done by contradiction. Consider two arbitrary

mAb concentrations, m+,m− ∈ M such that m+ ≥ m−. Theorem 3.4.3 indicates

that if at(n,w,m
−) = H then at(n,w,m

+) = H. Assume by contradiction that

at(n,w,m
−) = H and at(n,w,m

+) = C. The contradiction hypothesis implies that

rh(w,m
−) + V0(0, 0, 0) ≥ −rc(w,m−) + βCt(n,w,m−) (3.60)

rh(w,m
+) + V0(0, 0, 0) ≤ −rc(w,m+) + βCt(n,w,m+) (3.61)
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Equations (3.60) and (3.61) lead to the following inequality:

rh(w,m
−)− rh(w,m+)

≥ βζ(n, ρ)αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)qt(x)Vt+1(0, w + z,m−) dx dz (3.62)

+ β [1− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)qt(x)Vt+1(n+ 1, w + b,m−) dx db (3.63)

− βζ(n, ρ)αt

∫ W̄−w

0

∫ M̄

0

f e+bt (z)qt(x)Vt+1(0, w + z, M̄) dx dz (3.64)

− β [1− ζ(n, ρ)]

∫ W̄−w

0

∫ M̄

0

f bt (b)qt(x)Vt+1(n+ 1, w + b, M̄) dx db (3.65)

≥ βζ(n, ρ)αt

∫ W̄−w

0

f e+bt (z)
[
rh(w + z,m−)− rh(w + z, M̄)

]
dz (3.66)

+ β [1− ζ(n, ρ)]

∫ W̄−w

0

f bt (b)
[
rh(w + b,m−)− rh(w + b, M̄)

]
db (3.67)

which contradicts the condition in (3.10). Note that inequality (3.62) follows from

Assumption (3.4.1), rc(w,m
+)−rc(w,m−) ≥ 0. Equations (3.63) to (3.65) follow from

Property 3.4.3. We note that rewards are independent of t and n by Assumptions

(3.4.1) and (3.4.2). Hence, Equations (3.66) and (3.67) are obtained from the bound-

ary condition at(n,w, M̄) = H and the fact that Vt(n,w,m) ≥ rh(n,w,m)+V0(0, 0, 0)

for all (n,w,m) ∈N × S ×M and t ∈ T , from which the result follows.
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Chapter 4

Pooling Window Optimization

Problem

4.1 Introduction

In this chapter, we focus on the manufacturing processes for engineered proteins as

part of the pharmaceutical research and development efforts. These proteins are

often engineered for a specific end use or application. For example, a pharmaceutical

company could subcontract the manufacturing of a recombinant protein to a smaller

biomanufacturing firm as part of its research and development efforts. Manufactur-

ing of these proteins at the biomanufacturing firm would then involve specialized

upstream fermentation operations followed by several downstream purification op-

erations. In this chapter, we focus on the downstream purification operations.

Purification of engineered proteins are challenging for several reasons. For example,

individual proteins have unique chemical and physical properties, and their end use

sets constraints on the production methods to satisfy rigorous approval processes.

Further, an order has an associated yield requirement (i.e., the desired amount of the

protein of interest) and a stringent purity requirement (i.e., the minimum acceptable
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quality). The customer typically would not purchase the batch of proteins if it fails

to meet the purity requirement. However, they might be willing to compromise on

yield at a penalty cost as long as the purity requirement is met.

Table 4.1 presents a typical workflow to purify an engineered protein. Upon

the receipt of an order, the scientist at the biomanufacturing firm starts performing

small scale scouting runs. Scouting runs represent a set of experiments that helps the

scientist collect data about the purification attributes of this protein on several alter-

native techniques (referred to as chromatography techniques). Once the performance

of the protein with respect to the available chromatography techniques have been

identified, the scientist performs validation runs. The role of the validation runs is

to mitigate risks and quantify the yield and purity to be expected in the subsequent

production runs at larger scale. For this purpose, the scientist conducts several

what-if experiments to explore the performance of alternative operating policies that

could potentially achieve the specific requirements on yield and purity. Once the

best operating policy is identified, the production run is performed at larger scale to

achieve the end product that satisfies the specific production requirements. The over-

all process often takes 3 to 5 weeks due to the experimental nature of the purification

operations. Further, the scouting and validation runs could be as expensive as the

production runs themselves. While the scouting and production runs are inevitable

for engineered proteins, we believe that the intermediate validation runs present

a significant opportunity for reducing lead times and costs through application of

the operations research techniques. One of the main objectives in this study is to

investigate whether the information obtained from scouting runs can directly be fed

into an optimization model to identify the optimal purification polices that can be

used in production runs, thereby reducing costs and lowering lead times. As shown

in Table 4.1, reducing the time spent in the validation runs via an optimization
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Table 4.1: Current and proposed workflow for purification development

Current workflow Scouting runs → Validation runs → Production run
1 week, $3x cost 1-2 weeks, $3x cost 1-2 weeks, $4x cost

Proposed workflow Scouting runs → Optimization Model → Production run
1 week, $3x cost ≤ 1 day, ≤ $0.1x cost 1-2 weeks, $4x cost

model could improve the total cost and lead time up to 33% while also freeing up

the associated capacity.

Protein purification operations involve several operational challenges, such as,

yield and quality trade-offs, randomness in the starting material, expensive labor

and equipment costs, and large penalty costs when the production requirements

are not satisfied. Variability in the starting material along with the limitations in

chromatography techniques impose significant challenges in meeting the predeter-

mined requirements on purity and yield. For example, if the starting material does

not have enough protein and/or has excess amount of impurities, then the specific

requirements on the final purity and yield might never be satisfied, even though the

scientist takes the optimal courses of purification actions. In such circumstances,

committing to the purification order could substantially hurt both the client and the

biomanufacturing firm. As pointed out by our industry collaborator, Tom Foti, the

Vice President of Aldevron, predicting the failures “earlier than later” is critical.

In this chapter, we provide an optimization framework that quantifies the risks

and costs in protein purification operations to answer the following questions: (i) For

a given starting material, can the biomanufacturing company determine whether the

final purity and yield requirements specified by the customer are achievable at all? If

achievable, can we establish performance guarantees for these specific requirements?

If not achievable, can we develop guidelines on the starting material to predict the

batch failures in advance? (ii) How easy or complex is the purification process likely
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to be, based on the starting material and limitations in the available purification

techniques? How can the total profit be maximized for each purification order? (iii)

How would the insights and policies be different, if the biomanufacturing company

adopts a conservative worst case approach for hedging against uncertainties and

large failure costs? By answering these questions using an optimization framework,

we believe that biomanufacturing firms can significantly improve their profitability

and reduce their lead times for purification of engineered proteins.

To answer these questions, we analyze the protein purification problem using

the dynamic programming approach. Our contributions are as follows: First, we

investigate the structural properties of the state space, and partition the state space

into decision zones having similar financial characteristics. More specifically, the

decision zones provide a rigorous and formal assessment of the starting material,

manufacturing capabilities and business risks at the beginning of each purification

run. Next, we propose a zone-based decision making approach which is particularly

useful in practice since it provides optimal policies based on the condition of the

starting material. Insights from the structural analysis are then used to develop

a state aggregation and an action elimination scheme that leads to computational

advantage in solving realistic industry problems.

A key aspect of our work is that we not only provide optimal purification policies

using stochastic optimization, but also provide guaranteed performance using a

worst-case analysis approach to generate the decision zones. We adopt this strategy

because of the randomness, high operating costs, and penalty costs involved in

industry practices. Biomanufacturing companies often need guaranteed performance

measures to ensure profitability and customer satisfaction. Our models provide

practical guidelines to evaluate the profitability and failure risk of a starting material
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provided by a customer. To our knowledge, such guaranteed performance measures

have not been investigated yet in the context of biomanufacturing.

This research is an outcome of an ongoing multi-year collaboration with Aldevron

(2013-2015). Aldevron (www.aldevron.com) is a contract biomanufacturing firm

specializing in a variety of services including plasmid DNA, protein production

services and antibody development. At Aldevron’s daily operations, the optimization

framework has been in use for all R&D protein purification projects since October

2014. The implementation has resulted in an average of 25% reduction in the total

lead times and 20% reduction in operating costs required for protein purification

operations, as discussed in Sections 4.7-4.8. Our research outcomes have also been

shared and validated with a larger biomanufacturing community (BioWGS, 2014).

Through industry implementation, we observe that the optimization framework has

the potential for significantly scaling back if not eliminating the validation runs. Our

study is one of the first attempts to apply operations research concepts to purification

of engineered proteins, and integrates the knowledge from biological engineering and

stochastic modeling to derive guidelines that improve industry practices.

The remainder of the chapter is organized as follows. Section 4.2 provides a

background on purification operations and introduces the trade-offs and challenges.

We develop a mathematical model in Section 5.2, and analyze its structural properties

in Sections 4.4-4.6. We demonstrate the implementation of the optimization model

in Sections 4.7-4.8, and provide concluding remarks in Section 9.
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Figure 4.1: Typical manufacturing stages in biomanufacturing

4.2 Background in Protein Purification

A typical biomanufacturing process consists of upstream fermentation operations

where bacteria or eukaryotic cells produce the proteins of interest, and downstream

purification operations where these proteins are purified through multiple chromatog-

raphy steps (See Figure 4.1). The primary output of fermentation is a batch mixture

that includes the protein of interest and significant amounts of other unwanted im-

purities derived from the host cell or fermentation medium. After fermentation, this

batch must be purified using multiple chromatography steps (typically, 2 − 6 steps)

based on specific production requirements. The objective of each chromatography

operation is to separate the protein of interest from unwanted impurities to achieve

the desired purity. In this chapter, we focus on optimizing protein purification deci-

sions related to chromatography operations. We first provide a brief background on

chromatography operations, and then introduce the process challenges and trade-offs.

4.2.1 Chromatography Operations

Chromatography is one of the most common but also most challenging operations

in biomanufacturing (Farid, 2008; Polykarpou et al., 2011b). The objective of

chromatography operations is to separate the protein of interest from unwanted

impurities to meet a pre-determined purity requirement specified by the end use or

application. Purity represents the fraction of the proteins of interest in a batch based

on the total amount of both host-cell proteins and impurities. Purity requirement is

defined by the end use or application of the purified protein. For example, a protein
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Figure 4.2: An example of chromatography output

to be used as a drug must be highly pure (i.e., 99.9% purity), whereas a protein used

for a feed study could have lower purity requirement (i.e, 85% purity).

Chromatography operations are performed in a cylindrical column that is packed

with special resins that bind to either the protein of interest or impurities. Chro-

matography techniques rely on the difference in physico-chemical characteristics be-

tween the proteins and impurities to separate one from other, i.e., difference in molec-

ular weight, shape, charge, hydrophobicity, and affinity for a ligand. For example, gel

filtration chromatography separates the target protein from impurities based on differ-

ences in size and shape, whereas ion-exchange chromatography relies on the difference

in electric charges. A typical purification process could involve 2-6 chromatography

steps using different techniques, and each step could take 8 hours or more, depending

on the process conditions.

Yield and Purity Trade-offs

Figure 4.2 (a) presents an example of chromatography output. This example uses

the differential affinity of proteins to divalent metal ions as the separation principal.

In Figure 4.2 (a), we can observe distinct columns on the x-axis called as lanes. Each
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lane can be thought as equivalent to a discrete time interval (i.e., close to 1 minute in

practice). Each lane is comprised of some fraction of the total amount of the protein

of interest, as well as a fraction of the total amount of the unwanted impurities.

The y-axis in Figure 4.2 (a) represents the molecular mass of the target protein and

impurities associated with each lane. Figure 4.2(b) plots the fraction of protein and

impurity for each lane when the chromatography process described in Figure 4.2 (a)

is used.

The scientist performing the purification must decide which lane to ‘pool’. For

example, if she pools lanes 6-10, then she collects a large fraction of the protein along

with a large fraction of the impurity. On the other hand, if she pools lanes 9-10, she

compromises on the yield (i.e., collects a smaller fraction of the protein), but improves

the purity (i.e, collects a smaller fraction of the impurity). This illustrates one of the

main trade-offs related with yield and purity of a chromatography step. In this ex-

ample, the scientist can choose to pool any consecutive lanes between lanes 4-13. For

instance, lanes 4 to 11, lanes 6 to 10, lanes 7 to 9, are examples of some alternative

candidate pooling windows. Depending on the outcome of a chromatography step, the

scientist actually makes decisions regarding the chromatography technique and the

pooling window for each of the subsequent steps. In fact, identifying the sequence

of chromatography techniques itself is a separate optimization problem. However,

we consider purification settings where this sequence is pre-determined based on the

scouting runs, and only focus on the pooling window selection problem at each chro-

matography step.

Challenges in Decision Making

The main challenges in choosing pooling windows to optimize the purification process

are summarized as follows. (1) Yield and quality trade-offs. Each order is associated
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with predetermined protein yield and purity requirements specified by the end use

or application. If the final batch does not meet either of the yield and purity re-

quirements, the company incurs large penalty costs associated with yield shortages

and quality failures. The scientist might have to compromise on the protein yield

to achieve the desired purity. (2) Engineered proteins. Each order is unique in the

sense that the scientist re-engineers and manufactures each order (protein-impurity

mixture) for the first time. This requires evaluating and optimizing each order inde-

pendently, unlike mass production. (3) Uncertainty. Protein and impurity amounts

at the beginning of each chromatography step involves uncertainty. Also, each chro-

matography step has limited capability in terms of separating proteins from impuri-

ties. (4) Interlinked decisions. Purification involves multiple chromatography steps in

series. The output of each step affects the input for subsequent steps and ultimately to

possibility for successfully attaining the yield and purity requirements specified by the

end use. (5) Starting batch. The starting material is typically manufactured through

fermentation, and the scientist involved in purification might have limited control over

it. Fermentation operations often use bacteria or eukaryotic cells, to manufacture the

starting material. The use of these cells introduces variability and uncertainty in the

amount of proteins and impurities obtained from the fermentation operation. These

in turn affect the subsequent purification decisions. (6) Problem size. The problem

involves large state and action spaces, challenging the decision making in practice.

For example, the state space is typically in terms of milligrams of proteins, whereas

the action space increases exponentially in the number of purification steps.

4.3 The Model

We formulate a finite horizon Markov decision model for purification decisions.
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Decision epochs: A decision epoch represents the beginning of a chromatog-

raphy step t, T = {t : 1, . . . , T − 1}, where T − 1 denotes the last chromatography

step. We let T represent the terminal period. At time T , the batch is either shipped

to the customer or scrapped.

States: The state space is defined as P ×I ∪ {∆}. The state pt ∈ P , pt ∈ [0, p1],

denotes the amount of protein of interest available in the batch at the beginning

of tth chromatography step. Similarly, it ∈ I, it ∈ [0, p1] denotes the amount

of impurity at the beginning of tth chromatography step. Note that the starting

material (p1, i1) ∈ P ×I represents the protein and impurity amounts obtained from

fermentation operations. Typically, both of the protein and impurity amounts are in

milligrams. The batch has the maximum possible amount of protein and impurity

(p1, i1) at the beginning of the first chromatography step. The stopping state {∆} is

an absorbing state with no rewards, and represents a batch which is either shipped

to the customer or scrapped.

Actions: The action space is defined as At = Wt ∪ {S}. Let at(pt, it) de-

note the action selected at the beginning of chromatography step t ∈ T at

state (pt, it). The action wt ∈ Wt denotes the pooling window wt correspond-

ing to the chromatography step t ∈ T . Let Lt denote an ordered set of lanes

available at each chromatography step t, where Lt = {1, 2, . . . , Lt}. Then, a

pooling window wt corresponds to a subset of consecutive lanes from the set Lt,

where the set of all possible pooling windows at a chromatography step t ∈ T is

Wt =
{

(i, . . . , j) ∈ Lt : j = i + k, i = {1, . . . , Lt}, k = {0, 1, . . . , Lt − i}
}

. The total

number of possible pooling windows at each chromatography step t ∈ T is denoted

by Nt. Note that Nt is large but finite and bounded. The action {S} represents the

action of stopping the purification process. Once the purification stops, the batch is
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either shipped or scrapped. The operator can decide to stop the purification at the

beginning of any chromatography step t ∈ T . Note that, at the terminal period T ,

the only available action is to stop, aT (pT , iT ) = S for all (pT , iT ) ∈ P ×I. Similarly,

at(∆) = S for all t ∈ T ∪ {T}.

Transitions: The transition probabilities are defined based on the mathematical

models for chromatography operations (Vasquez-Alvarez et al., 2001; Salisbury et al.,

2006; Polykarpou et al., 2011b). We adopt these models to identify the amount of

proteins and impurities that remain in the batch after completion of the chromatog-

raphy step t ∈ T . At each chromatography step t ∈ T , a random fraction {Ψt|wt}

of the impurity it is carried over the next step t + 1, implying that the remaining

amount of impurity was eliminated through the chromatography step t. Therefore,

it+1 = (ψt|wt)it. (4.1)

The random fraction {Ψt|wt} has distribution gt(·|wt) with finite support

[ψlt|wt, ψut |wt] for all wt ∈ Wt, t ∈ T . It represents a random fraction of the amount

of impurities it that remains inside the batch at the beginning of (t+ 1)th step, given

that there are it units of impurities at the beginning of chromatography step t, and

the pooling window wt is selected for the chromatography step t.

Similarly, at each chromatography step t ∈ T , a random fraction {Θt|wt} of the

protein of interest is carried over the next step t + 1, implying that the remaining

amount of the protein was eliminated during the chromatography step t. Therefore,

pt+1 = (θt|wt)pt. (4.2)

{Θt|wt} represents the random fraction of protein pt that remains inside the

batch at the beginning of (t + 1)th step, given that there are pt units of protein at
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the beginning of chromatography step t, and the pooling window wt is selected. The

random fraction {Θt|wt} has distribution ft(·|wt) with finite support [θlt|wt, θut |wt] for

all wt ∈ Wt, t ∈ T .

The probability density functions ft(·|wt) and gt(·|wt) can be different for each

chromatography step t, depending on physico-chemical characteristics of the proteins,

impurities, and specific chromatography technique chosen at each step. Regardless,

the finite support for each ft(·|wt) and gt(·|wt) can be determined based on the

physico-chemical characteristics of the molecules and chromatography techniques,

described in Section 4.2. We assume that Θt and Ψt are independent based on the

fact that proteins of interest and impurities have distinct physical and chemical

characteristics (Vasquez-Alvarez et al., 2001; Polykarpou et al., 2011b). Available

chromatography techniques mainly differ in terms of how they exploit these unique

characteristics to separate proteins from impurities.

One of the key performance measures for a chromatography technique is its

purification capability under the pooling window wt. The purification capability is

defined in terms of the best and worst possible amounts of proteins and impurities

that might remain in the batch at the end of the chromatography step t. Note that for

each chromatography step t and pooling window wt, {Θt|wt} and {Ψt|wt} have finite

support (θlt|wt, θut |wt) and (ψlt|wt, ψut |wt), respectively. This implies that (θu, ψl|wt)

and (θl, ψu|wt) denote the best and worst purification capabilities when wt is chosen

at the chromatography step t. Then, let (θ̄t, ψ̄t|wt) define the expected purification

capability of the chromatography step t using window wt. This purification capability

associated with each window wt at the chromatography step t is used to identify a

stochastic ordering of actions for the structural analysis in Section 4.6. The system

transitions to state {∆} if the purification process is abandoned at any step t ∈ T ,
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or at the end of planning horizon T .

Purity Requirement and Costs: The quality of a batch at chromatography

step t is measured in terms of its purity, defined as γt = pt
pt+it

for (pt, it) ∈ P × I and

t ∈ T ∪ {T}. Batch purity is a critical performance measure, and a minimum purity

level γd is often a part of the requirements specified by the end use or application.

If a batch does not meet this minimum purity requirement, i.e., γt < γd, then the

customer would not purchase that batch. Only batches that achieve the predefined

quality standard γt ≥ γd are shipped to the customer. The desired purity level

could range from 85% to 99.9% based on specific requirements of each order. Since

biomanufacturing firms do not have financial incentives to attain purity levels higher

than the minimum requirement, the goal is often to meet the purity requirement γd.

After the completion of a purification project, if the batch does not meet the

minimum purity requirement, a penalty cost of quality failure cf is incurred. Penalty

cost cf could vary from company to company, and could include penalties associated

with project delays, loss of reputation, and its impact on future orders. Operating

costs of a chromatography step t is denoted by ct, and include raw material costs

(resins and buffers), equipment and labor costs, and quality control costs (HPLC,

analytics, documentation). Operating costs could be different at each step t based

on the type of resin, buffer, column, and other specifications of the chromatography

techniques used at each step (Farid, 2008).

Yield Requirement and Revenue: At the completion of purification, the rev-

enue obtained from a batch depends on both its purity and yield. If the batch meets

the minimum purity requirement γt ≥ γd, then the revenue obtained from per unit of

protein is r; otherwise r = 0. Each order has a predetermined yield requirement pd



104

specified by the end use or application, such that, the total revenue expected to ob-

tain from the purification project is 1γt≥γdr(pd), where 1(·) is the indicator function.

Further, 1γt≥γdr(pt) = 1γt≥γdr(pd) for pt ≥ pd, i.e, customers do not pay for proteins

manufactured in excess of their yield requirement. However, if the batch yields less

protein than the customer requirement pd, the biomanufacturing company incurs a

yield penalty cost c`(pd− pt)+, where c` denotes the shortage cost per unit of protein

short. Note that both the penalty cost and revenues obtained from the purification

are linear in protein amounts. If purification stops at step t ∈ T ∪{T} and 1γt≥γd,pt<pd ,

the total profit is given by r(pt)− c`(pd−pt)+. Also note that r(pt)− c`(pd−pt)+ can

be negative. In practice, the typical yield requirement could be as low as 25%-40% of

the amount of proteins p1 initially available in the batch, reflecting the manufacturing

challenge involved in achieving purity levels of 85%-99.9%. Therefore, the final re-

ward rS(pt, it) resulting from stopping the purification process at state (pt, it) ∈ P×I

is as follows:

rS(pt, it) =


−cf if γt < γd,

r(pd) if γt ≥ γd and pt ≥ pd,

r(pt)− c`(pd − pt) if γt ≥ γd and pt < pd,

(4.3)

for t ∈ T when at(pt, it) = S, and for t = T . Note that r ≤ c` ≤ cf . The stopping

state {∆} has no rewards rS(∆) = 0.

The Value Function: We formulate a finite horizon non-discounted Markov

decision model with the following value function Vt(pt, it) for all (pt, it) ∈ P × I:

Vt(pt, it) = max
{wt,S}∈At

{
rS(pt, it),−ct + E

θt,ψt|wt
Vt+1(θtpt, ψtit)

}
, for t = {1, . . . , T − 1},(4.4)
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VT (pT , iT ) = rS(pT , iT ), (4.5)

where the expectation is taken with respect to the probability distribution of θt

and ψt, i.e.,

E
θt,ψt|wt

Vt+1(ptθt, ψtit) =

∫ ψut |wt

ψlt|wt

∫ θut |wt

θlt|wt
ft(θt|wt)gt(ψt|wt)Vk+1(θtpt, ψtit)dθdψ (4.6)

Note that Vt(∆) = 0 for t ∈ T . Let π∗t denote the optimal pooling policy from step

t ∈ T until the final time T . If w∗t maximizes the right hand side of Equation (4.4)

for each (pt, it) and t, the policy π∗1 = {w∗1, . . . , w∗T} is optimal (Puterman, 1994).

Note that purity and yield requirements are not imposed as hard constraints in

the mathematical model, but through cost penalties. In the biomanufacturing indus-

try, customers understand the challenges involved in the manufacture of engineered

proteins, and recognize that the manufacturer might not necessarily be able to meet

both the yield and purity requirements. However, severe penalty costs associated

with failure to meet the yield and purity requirements makes this a challenging busi-

ness environment. We do not consider the discount factor in our formulation because

the purification operations typically consists of 2 − 6 chromatography steps, which

represent a short-term planning horizon (1 to 7 days) compared to the overall protein

manufacturing lead time (i.e., 7−8 weeks on average). In this setting, discounting the

value function could lead to a bias in decision making. Further, since the motivating

industry setting involves contract biomanufacturers where each batch represents an

engineered protein uniquely made for a specific customer demand, a finite horizon

optimization model for each batch is reasonable.
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4.4 Structural Analysis of the State Space and

Bounds

In this section, we investigate the structural properties of the state space and provide

guidelines to quantify risks and costs associated with chromatography operations.

We partition the state space into nonempty sets called as zones (namely failure zone

in Section 4.4.1, target zone in Section 4.4.2 and risk zone in Section 4.4.3). To do

so, we first establish some important structural properties of the value function in

Proposition 4.4.1.

Proposition 4.4.1. The value function Vt(pt, it) is nondecreasing in pt ∈ P for a

given it ∈ I, and nonincreasing in it ∈ I for a given pt ∈ P, for all t ∈ T ∪ {T}.

Proof See Appendix.

Monotonicity of the value function in Proposition 4.4.1 implies that the optimal

profit obtained from a batch never decreases as the protein amount increases, and

never increases as the impurity amount increases. Note that Proposition 4.4.1 holds

for any probability density functions ft(·)dθ and gt(·)dψ as long as they are well

behaved (i.e., finite moments). In subsequent sections, we use the monotonicity of

the value function to identify several structural properties of the state space.

4.4.1 Failure Zones

We define the failure zone Ft which characterizes the minimum amount of purity and

yield required for a batch at the beginning of each chromatography step t ∈ T , i.e.,

the biomanufacturer has no financial incentives to perform the purification, if the

batch does not meet these minimum requirements at the start of each chromatogra-
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phy step t ∈ T .

Theorem 4.4.1. [Failure Zone] The optimal policy has the property that for some

(p′t, i
′
t), where

p′t
(p′t+i

′
t)
< γd for t ∈ T , the optimal action is to abandon the purification

a∗t (p
′
t, i
′
t) = S for all states in Ft = {(pt, it) ∈ P ×I : pt ≤ p′t and it ≥ i′t}. Ft is called

as the failure zone at the chromatography step t ∈ T .

Proof See Appendix.

Theorem 4.4.1 states that there exists a set of (pt, it) ∈ Ft, called as the failure

zone Ft, where the optimal action is to abandon the purification operation and scrap

the batch, 1(pt,it)∈Fta
∗(pt, it) = S, for t ∈ T . Note that Theorem 4.4.1 does not require

the specific knowledge of the probability density functions ft(·)dθ and gt(·)dψ; and

only uses the monotonic behavior that follows from Equations (4.1)-(4.2), i.e., the

state (pt+1, it+1) ∈ P × I at step t + 1 ∈ T is a non-increasing function of the state

(pt, it) ∈ P × I at step t ∈ T . Figure 4.3 illustrates an example of the failure zone

using industry data for a chromatography step. Next, Proposition 4.4.2 characterizes

the failure zone Ft at step t ∈ T , in terms of the costs and purification capabilities

of the remaining steps.

Proposition 4.4.2. A batch state (pt, it) ∈ P × I with pt
(pt+it)

< γd belongs to the

failure zone Ft at the chromatography step t ∈ T , if either of the following conditions

hold:

(i) it > pt
1− γd
γd

∏
wj

(θlj|wj)
(ψuj |wj)
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Figure 4.3: An example of the zones for a chromatography step using industry data

for all πt = (wt, wt+1, . . . , wT−1), and j = {t, . . . , T − 1},

(ii) pt ≤
−cf + ct + cl

(
pd − pt

∏
wj

(θlj|wj)
)+

r
∏

wj
(θlj|wj)

and it ≤ pt
1− γd
γd

∏
wj

(θlj|wj)
(ψuj |wj)

for all πt = (wt, wt+1, . . . , wT−1), and j = {t, . . . , T − 1}, {t, j} ∈ T .

Proof See Appendix.

Condition (i) in Proposition 4.4.2 represents the case where the purity and yield

requirements lie outside the purification capability of all the purification strategies

wj ∈ Wj available in the remaining steps j = t, . . . , T − 1. Condition (ii) corresponds

to the case where none of the purification strategies wj available in the remaining steps

j = t, . . . , T − 1 provide adequate financial incentives for continuing the purification

process. Note that Proposition 4.4.2 defines Ft using the worst possible realization of

the purification outcomes (θlt, ψ
u
t |wt) across all pooling windows wt at all chromatog-

raphy steps t ∈ T . This yields a worst-case classification of states in Ft and provides

a guaranteed performance measure to hedge against failures and large penalties.
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4.4.2 Target Zones

We characterize a particular subset in the state space, called as the target zone

Tt at the start of a chromatography step t ∈ T , where both yield and purity

requirements specified by the customers can be eventually achieved at the end of

the planning horizon T , if (pt, it) ∈ Tt and the optimal pooling actions are taken at

each step t, . . . , T − 1 (See Section 4.6 for a discussion on the optimal actions). Such

guaranteed performance measures are critical in a biomanufacturing setting, because

it helps to hedge against uncertainties and failures, and also better manage customer

expectations. Furthermore, the target zone Tt provides a measure of the difficulty

involved in meeting customer requirements on final purity and yield from the state

(pt, it) at the chromatography step t ∈ T . To characterize the target zone Tt at each

step t, we use recursion based on the worst possible outcome corresponding to an

action wt at each chromatography step t ∈ T . We first define the terminal zone S of

the purification operations in Definition 4.4.1.

Definition 4.4.1. The terminal zone S corresponds to the set of protein and impu-

rity states that meet both yield and purity requirements specified by the end use or

application, i.e.,

S =
{

(pt, it) : pt ≥ pd, it ≤
1− γd
γd

pt

}
for (pt, it) ∈ P × I, t ∈ T . (4.7)

It follows that, if the batch is in the terminal zone at the beginning of a chro-

matography step t ∈ T , i.e., (pt, it) ∈ S, then the purification can be stopped at the

step t, and the batch can be shipped to the customer.

Next, the terminal zone S is used to define the target zone Tt for each chromatogra-

phy step t ∈ T . If a batch (pt, it) belongs to the target zone Tt at the beginning of the
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chromatography step t, then there exists a sequence of actions that will guarantee that

both yield and purity requirements can be achieved by the end of the planning horizon

T . Clearly, based on the terminal zone S in Definition 4.4.1, the target zone TT at the

end of the planning horizon T is defined as TT =
{

(pT , iT ) : pT ≥ pd, iT ≤ 1−γd
γd

pT

}
.

Next, we define the operator Jwt as follows,

Jwt (pt+1 ≥ x, it+1 ≤ y pt+1) :

(pt+1 ≥ x, it+1 ≤ y pt+1)→ (pt ≥
x

(θlt|w)
, it ≤ ypt

(θlt|w)

(ψut |w)
). (4.8)

The input to the operator Jwt (·) are the bounds on pt+1 and it+1 at the beginning of

(t+1)th step, and the operator scales its input to provide output corresponding to the

bounds on pt and it at the start of tth step for a particular choice of window w ∈ Wt.

The operator Jwt (·) uses the worst-case purification capability of the window w ∈ Wt

to determine these bounds. Using the operator Jwt (·), Proposition 4.4.3 characterizes

the target zones Tt for each chromatography step t ∈ T .

Proposition 4.4.3. The target zone Tt at the beginning of the chromatography step

t is defined as

TT =
{

(pT , iT ) : pT ≥ pd, iT ≤
1− γd
γd

pT

}
, (4.9)

Tt =
⋃
w∈Wt

Jwt (Tt+1), (4.10)

for the pooling windows w ∈ Wt and steps t ∈ T , where Jwt (·) is defined in Equa-

tion (4.8).

Proof See Appendix.

The target zone Tt in Proposition 4.4.3 is obtained recursively using the worst

case purification capability (θlt, ψ
u
t |wt) for each available pooling window wt in each

of the remaining chromatography steps t ∈ T . It identifies all states (pt, it) that
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can lead to the terminal zone S by the end of the planning horizon T . Figure 4.3

demonstrates an example of the target zone for a chromatography step using industry

data. The following characteristics of the target zones follow from Proposition 4.4.3,

and provide important managerial implications (Bertsekas and Rhodes, 1971):

(i) At the beginning of tth chromatography step, if the starting state of the batch

(pt, it) belongs to the target zone Tt, then the scientist can always guarantee

that there exists at least one purification strategy that leads to the terminal

zone S by the time T .

(ii) The target zone provides bounds (p̂t, ît} on the starting state at step t, such

that, Tt = {(pt, it) : pt ≥ p̂t, it ≤ ît} for t ∈ T .

The characteristics of the target zones (item (i) and (ii) listed above) have practi-

cal implications for managing purification operations. For example, item (i) indicates

that target zones provide performance guarantees in terms of achieving the purity

and yield requirements since Proposition 4.4.3 uses the worst-case outcomes in each

chromatography step. Despite limitations in the chromatography techniques, such

performance guarantees about the ability to meet specific customer requirements

provide a competitive advantage to the biomanufacturing firms by ensuring customer

satisfaction. Item (ii) states that the target zone has a threshold type structure, and

hence can be easily interpreted and implemented in practice.

4.4.3 Risk Zones and Bounds on the Value Function

As a direct consequence of the target zones Tt and failure zones Ft, we define the risk

zone, Rt =
{

(pt, it)| p′t < pt < p̂t, ît < it < i′t, where (p′t, i
′
t) ∈ Ft, and (p̂t, ît) ∈ Tt

}
for

all t ∈ T . The risk zone includes all states (pt, it) that are neither in the target zone

Tt, nor in the failure zone Ft at the beginning of the step t ∈ T . This subset of the
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state space is a measure of the financial risk associated with purifying a particular

batch. For example, a batch that is in the risk zone Rt at the start of the step t

could either achieve the final purity and yield requirements at time T or fail to do so

leading to large penalties associated with shortage costs or quality failures. Next, we

characterize the bounds on the optimal value function V∗t (pt, it) based on the zones

at each step t ∈ T as follows:

V∗t (pt, it) = −cf for all (pt, it) ∈ Ft, t ∈ T . (4.11)
T−1∑
j=t

−cj + r(pd) ≤ V∗t (pt, it) ≤ r(pd) for all (pt, it) ∈ Tt, t ∈ T . (4.12)

−cf ≤ V∗t (pt, it) ≤
T−1∑
j=t

−cj + r(pd) for all (pt, it) ∈ Rt, t ∈ T . (4.13)

Note that Equation (4.11) for the failure zone is a direct consequence of Theo-

rem 4.4.1. Similarly, the cost bounds on the target zone in inequality (4.12) follow

from Proposition 4.4.3 and the stopping cost structure in Equation (4.3). The cost

bounds on the risk zone in inequality (4.13) follow from the monotonicity of the value

function in Proposition 4.4.1. Since the state space is continuous and has high di-

mension, these bounds provide managerial insights to quantify the risks and costs

for states within each zone. For example, any batch state in the failure zone will

result in large penalty cost −cf ; whereas a batch state in the target zone can lead

to a large reward up to r(pd). On the other hand, a batch in the risk zone can lead

to financial losses due to shortage costs. Insights from the bounds provide basis for

an aggregation scheme in Section 4.5 and are used in the structural analysis of the

optimal purification policies in Section 4.6.
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4.5 State Aggregation, Action Elimination and

Ordering Scheme

We use insights from the structural analysis of the state space to construct a state ag-

gregation and an action elimination procedure for the Markov decision model. Recall

that the state space is continuous, and the size of the action space increases exponen-

tially in the number of purification steps. Therefore, a state aggregation and action

elimination procedure could provide computational advantage solving complex indus-

try problems. Additionally, we define a stochastic ordering scheme for the pooling

windows wt ∈ W at step t ∈ T based on the quality and yield trade-offs associated

with each chromatography step t.

4.5.1 State Aggregation

The state aggregation scheme groups certain nonempty subset of the original system

states into a single aggregate state. We first define an aggregate state called as the

failure state dt at the chromatography step t ∈ T , and characterize the aggregation

scheme for the failure state dt in Proposition 4.5.1.

Proposition 4.5.1. All batch states (pt, it) ∈ P×I that are an element of the failure

zone (pt, it) ∈ Ft can be grouped and viewed as a single state called as the failure state

dt.

Proof See Appendix.

Proposition 4.5.1 indicates that all original system states that are in the failure

zone Ft can be grouped and viewed as a single state, the failure state dt at the

chromatography step t ∈ T . Hence, in the original problem, the failure state is an
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absorbing state with reward r(dt) = −cf .

Note that the bounds on the value function derived in Section 4.4.3 indicate that

the optimal value V∗t (pt, it) is constant over the partition
{
1pt≤p′t,it≥i′t |(p

′
t, i
′
t) ∈ Ft

}
of the original state space P × I at each t ∈ T ∪ {T}. More specifically, we have

V∗t (pt, it) = −cf for all (pt, it) ∈ {1pt≤p′t,it≥i′t |(p
′
t, i
′
t) ∈ Ft}. Since all protein-impurity

pair that satisfy Proposition 4.5.1 are already an element of the failure zone Ft, the

aggregation scheme proposed for the purification problem is exact, in the sense that

the aggregate state dt encompasses subsets of the original system states that have

equal costs (Bertsekas, 2012).

4.5.2 Action Elimination and Ordering

In this section, we first provide an action elimination procedure in Proposition 4.5.2,

which is then used to create a stochastic ordering scheme for the pooling windows

wt ∈ Wt at each step t ∈ T .

Proposition 4.5.2. Let wit and wjt be two distinct pooling windows at the chromatog-

raphy step t ∈ T , such that, Ft(Θ|wit) ≥st Ft(Θ|w
j
t ), Gt(Ψ|wit) ≤st Gt(Ψ|wjt ), and

(θlt|wit) < (θlt|w
j
t ), (θut |wit) < (θut |w

j
t ), and (ψlt|wit) > (ψlt|w

j
t ), (ψut |wit) > (ψut |w

j
t ).

Then,

(i) Vt(ptθt, ψtit|wit) < Vt(ptθt, ψtit|w
j
t ) for t ∈ T , and for all (pt, it) ∈ P × I.

(ii) The pooling window wit is said to be strictly dominated by the pooling window

wjt at step t ∈ T , such that, a∗t (pt, it) 6= wit as a direct result of part (i), for t ∈ T and

for all (pt, it) ∈ P × I.

Proof See Appendix.
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Conditions in Proposition 4.5.2 ensures that the pooling window wit leads to

lower amount in protein and higher amount in impurity compared to the pooling

window wjt , given that both wit and wjt have the same starting condition (pt, it) at

the chromatography step t. Proposition 4.5.2 indicates that the pooling window wit

is expected to result in lower profits than the pooling window wjt for all (pt, it) at the

chromatography step t, Vt(ptθt, ψtit|wit) < Vt(ptθt, ψtit|w
j
t ). As a direct outcome, the

pooling window wit can be eliminated from the set of actions Wt at the chromatogra-

phy step t. Let Ŵt denote the set of actions at step t ∈ T obtained after executing

this action elimination procedure, i.e., Ŵt ⊂ Wt at step t ∈ T .

Figure 4.4 shows an example of a strictly dominated pooling window using

industry data described in more detail in Section 4.8. Consider two pooling windows

wi and wj with the following characteristics: The window wi pools the lanes 7

to 11, and its purification capability is (θ̄ = 0.71, ψ̄ = 0.53|wi) with the bounds

(θl = 0.64, ψl = 0.47|wi) and (θu = 0.78, ψu = 0.58|wi). The window wj corresponds

to the lanes 5 to 8 with the purification capability (θ̄ = 0.73, ψ̄ = 0.52|wj), and

the bounds (θl = 0.65, ψl = 0.46|wj) and (θu = 0.8, ψu = 0.51|wj). Also, we note

that there exists a stochastic dominance in the probability distributions of these two

pooling windows, i.e., Ft(Θ|wi) ≥st Ft(Θ|wj), Gt(Ψ|wi) ≤st Gt(Ψ|wj). Therefore, the

conditions in Proposition 4.5.2 are satisfied, and pooling the lanes 5 to 8 is better off

than pooling the lanes 7 to 11. Hence, the pooling window wi is strictly dominated

by wj for this specific chromatography step.

Next, we provide a stochastic ordering mechanism for the pooling windows

wt ∈ Ŵt at each step t ∈ T . Note that there are Nt possible windows at the

chromatography step t ∈ T . Let the index n denote the position of the window

wnt in our ordering scheme, i.e., the pooling window wnt is the nth pooling window
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among Nt possible windows that are stochastically ordered for the step t ∈ T .

Subsequently, Property 1 and Assumption 4.5.1 provide necessary conditions for a

stochastic ordering of all pooling windows wnt ∈ Ŵt at the chromatography step t ∈ T .

Property 4.5.1 (Property 1.). (θlt|wn−1
t ) < (θlt|wnt ) < (θlt|wn+1

t ), (θut |wn−1
t ) <

(θut |wnt ) < (θut |wn+1
t ), and (ψlt|wn−1

t ) < (ψlt|wnt ) < (ψlt|wn+1
t ), (ψut |wn−1

t ) < (ψut |wnt ) <

(ψut |wn+1
t ) for all {wn−1

t , wnt , w
n+1
t } ∈ Ŵt, and t ∈ T .

Assumption 4.5.1. Ft(Θ|wn−1
t ) ≥st Ft(Θ|wnt ) ≥st Ft(Θ|wn+1

t ) and Gt(Ψ|wn−1
t ) ≥st

Gt(Ψ|wnt ) ≥st Gt(Ψ|wn+1
t ) for all {wn−1

t , wnt , w
n+1
t } ∈ Ŵt, and t ∈ T .

Property 1 indicates that the bounds (θlt, ψ
l
t|wnt ) and (θut, ψ

u
t |wnt ) of the pooling

window wnt increase in the index n, for each chromatography step t ∈ T . Char-

acteristics in Property 1 are typically found in the chemical engineering literature

to analyze the pooling windows and generate fractionation diagrams (Ngiam et al.,

2001, 2003). Assumption 4.5.1 ensures that for a given chromatography step t ∈ T ,

both the fraction of protein (θt|wnt ) and the fraction of impurity (ψt|wnt ) associated

with nth pooling window wnt increases as its rank index n increases. This behavior

illustrates the basic yield-quality trade-off encountered in protein purification, as

discussed in Section 4.2.

Based on the discussion above, we order the pooling windows wnt ∈ Wt for each

chromatography step t ∈ T using the following procedure: The pooling windows

wnt ∈ Wt are first listed in ascending order based on (θ̄t|wnt ). Next, strictly dominated

windows are eliminated based on Proposition 4.5.2 to obtain the set of feasible actions

Ŵt. Ties are broken randomly. Property 1 and Assumption 4.5.1 imply that the

windows wnt are listed in ascending order in terms of (ψ̄t|wnt ). The same procedure

is performed for each chromatography step t independently. This procedure leads to
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Figure 4.4: Example of a dominated pooling window (based on purification data from
Aldevron)

an ascending ordering of the pooling actions in terms of both protein and impurity

fractions (θ̄t, ψ̄t|wt) as well as (θlt, ψ
l
t|wt) and (θut , ψ

u
t |wt) associated with all pooling

windows wt ∈ Ŵt at each chromatography step t ∈ T . If the pooling windows

satisfy Property 1 and Assumption 4.5.1, we can make the following observations

after executing the action elimination and ordering procedure:

(i) a pooling window wit ∈ Ŵt that has the least fraction of protein (θ̄t|wit) ≤

(θ̄t|wjt ), among all the pooling windows wjt ∈ Ŵt \ {wit} at the step t ∈ T , also has

the least fraction of impurity (ψ̄t|wit) ≤ (ψ̄t|wjt ) at the chromatography step t ∈ T .

(ii) a pooling window wjt ∈ Ŵt that has the most fraction of protein (θ̄t|wjt ) ≥

(θ̄t|wit) among all the pooling windows wit ∈ Ŵt \ {wjt}, also has the most fraction of

impurity (ψ̄t|wjt ) ≥ (ψ̄t|wit) at the chromatography step t ∈ T .

(iii) all pooling windows wnt ∈ Ŵt can be sorted in ascending order based on their

purification capability (θ̄t, ψ̄t|wnt ), i.e., (θ̄t|wn−1
t ) ≤ (θ̄t|wnt ) and (ψ̄t|wn−1

t ) ≤ (ψ̄t|wnt ),

for all {n, n+ 1} ∈ Nt at each chromatography step t ∈ T .

Note that observations (i)−(iii) above are direct consequence of Proposition 4.5.2

and the trade-off between purity and yield associated with the pooling windows.
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Next, we fix a pooling window wnt ∈ Ŵt at chromatography step t ∈ T . Any pooling

window wjt ∈ Ŵt having larger index than n, j > n, is referred to as larger window.

For example, if the pooling window wjt is larger than wnt , it has higher protein and

impurity fractions then nth window, i.e., (θt, ψt|wjt ) > (θt, ψt|wnt ). Similarly, any

pooling window wjt ∈ Ŵt with index smaller than n, j < n, is referred to as smaller

window, i.e., (θt, ψt|wjt ) < (θt, ψt|wnt ). Hence, the smallest window resulting from

this ordering scheme gets the least fraction of protein but also the least fraction of

impurity; whereas the largest window collects the highest fraction of both protein and

impurity.

4.6 Structural Analysis of the Optimal Policy

In this section, we focus on identifying the structural properties of the optimal policies

by exploiting the structural properties of the state space as defined in Section 4.4.

4.6.1 Optimal Policies in the Failure Zone and Risk Zone

Recall that, if the batch state is in the failure zone (pt, it) ∈ Ft at step t ∈ T ,

then Theorem 4.4.1 indicates that the optimal policy is to stop the purification,

a∗t (pt, it | pt, it ∈ Ft) = S. In this section, we analyze structural properties of the

optimal policy when the batch is in the risk zone Rt. To do so, we first define the set

of all protein-impurity pairs (pt, it) ∈ P × I that meet the final purity requirement

specified by the customer, called as the purity set P =
{

(pt, it) : it ≤ pt
1−γd
γd

}
. Note

that S ⊂ P, as the terminal zone S meets both the purity and yield requirements,

whereas P only meets the purity requirement. Note that, if (pt, it) ∈ S or (pt, it) ∈ P,

then the optimal action is to stop at the beginning of the chromatography step t ∈ T .

In Proposition 4.6.1, we first define the effective purity set Pet at chromatography

step t ∈ T that corresponds to all protein-impurity pairs that can lead to the purity
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set P by time T .

Proposition 4.6.1. The effective purity set at the beginning of the chromatography

step t is

PeT =
{

(pT , iT ) :
1− γd
γd

pT ≥ iT

}
, (4.14)

Pet =
⋃
w∈Wt

Kw
t (Pet+1), (4.15)

for pooling windows w ∈ Wt and {t, t+ 1} ∈ T , where Kw
t (·) is defined as:

Kw
t (y pt+1 ≥ it+1) : (y pt+1 ≥ it+1)→ (ypt

(θut |w)

(ψlt|w)
≥ it) (4.16)

for any positive real numbers y ∈ R+, the pooling window w ∈ Wt, and {t, t+1} ∈ T .

Proof See Appendix.

Note that if a state (pt, it) belongs to the effective purity set Pet at a step t ∈ T ,

then there exists at least one purification policy πt = {wt, wt+1, . . . , wT−1} that

could achieve the desired purity levels specified by the end use or application. Note

that Proposition 4.6.1 uses the best-case realizations of the purification capabilities

(θlt, ψ
u
t |wt). This ensures that the set Pet only includes the states (pt, it) from which the

final purity requirement can definitely be achieved by the time T . Proposition 4.6.1

is used to identify the structural characteristics of the optimal purification policy in

Theorem 4.6.1.

Theorem 4.6.1. [Risk Zone] The optimal action a∗t (pt, it) at state (pt, it) ∈ Rt

and chromatography step t ∈ T has the property that, a∗t (pt, it) =
{
w∗t ∈ Wt :

(pt+1, it+1| pt, it, w∗t ) ∈ Pet+1

}
for {t, t+ 1} ∈ T , and for all (pt, it) ∈ Rt with γt < γd.
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Proof See Appendix.

Theorem 4.6.1 indicates that when the batch state is in the risk zone Rt at step

t, then the optimal policy selects the pooling windows in such away as to keep the

batch state (pt+1, it+1) within the effective purity set Pet+1 of the next decision epoch

t+1 ∈ T . Theorem 4.6.1 provides guidelines to choose the best candidates for pooling

windows at the risk zone. We note that the purification example in Section 4.8 illus-

trates the lack of threshold-type optimal policies using industry data. However, the

guidelines obtained from Theorem 4.6.1 can significantly help the scientist evaluate

and understand which pooling windows are good or bad choices for a chromatography

step based on financial risks.

4.6.2 Optimal Policies in the Target Zone

We explore the optimal purification policies when the starting state of the batch is

in the target zone, (pt, it) ∈ Tt, at the beginning of the chromatography step t ∈ T .

We break this analysis into two cases: In Case 1, yield shortages are not allowed, i.e.,

the biomanufacturing firm is committed to meet both purity and yield requirements.

However, in Case 2, yield shortages are permitted even though the batch state is in the

target zone, i.e., the biomanufacturing firm might meet the purity but not the yield

requirement at the expense of incurring a penalty cost. First, we define the problem

of reachability of a target set (Bertsekas and Rhodes, 1971), and then use the char-

acteristics of the reachability problem to identify the optimal policies in Case 1 and 2.

Definition 4.6.1. The target set TT is said to be reachable at time T , from state

(pt, it) and chromatography step t, if there exists at least one purification policy πt =

(wt, · · ·wT−1), such that, the batch state (pt+1, it+1) = (θtpt, ψtit|wt) is contained in TT
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at time T for all possible sequence of purification capabilities at the chromatography

steps {t, t+ 1, . . . , T − 1}.

Definition 4.6.1 indicates that both the yield and purity requirements are said to

be reachable from state (pt, it) and step t, only if there exists a purification policy that

attains these minimum requirements by time T , despite incurring the worst possible

purification capabilities in all chromatography steps. As a direct consequence of

Definition 4.6.1 and Proposition 4.4.3, the reachability problem has the following

characteristics (Bertsekas and Rhodes, 1971).

Property 4.6.1 (Property 2.). The target zone TT is reachable at time T from all

points of the target zone Tt defined in Proposition 4.4.3, for t = {1, . . . , T − 1}.

Property 4.6.2 (Property 3.). If the target zone TT−1 is reachable at the chromatog-

raphy step T − 1, from state (pt, it) ∈ Tt and chromatography step t ∈ T , then the

target zone TT is reachable at time T from all points of the target zone (pt, it) ∈ Tt

at the chromatography step t ∈ T .

Property 2 implies that the final yield and purity requirements can be attained by

time T as long as the batch state at the chromatography step t is an element of the

target zone Tt defined in Proposition 4.4.3. Property 3 states that the reachability

problem from the chromatography step t to the end of the planning horizon T ,

can be reduced to the reachability problem from the chromatography step t to the

chromatography step T − 1. Therefore, if the batch state (pt, it) is in the target zone

Tt at step t ∈ T , then there is a sequence of actions such that the subsequent states

(pt+1, it+1), . . . , (pT , iT ) are always in the target zones Tt+1, . . . ,TT regardless of the

disturbances in the chromatography steps.

Optimal Policy for Case 1 (Yield shortage not allowed): We first investi-

gate a special case of the problem, where the scientist has to perform chromatography
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steps in such a way as to satisfy both yield and purity requirements at the end of

the planning horizon T , when the starting state at the chromatography step t ∈ T

is within its target zone, (pt, it) ∈ Tt. Then, the problem is equivalent to the

problem of reachability of a target set, as stated in Definition 4.6.1. Character-

istics of the reachability problem in Properties (2)-(3) are used in deriving the

optimal policies for Case 1. Theorem 4.6.2 provides the optimal purification policies

when the batch state is in the target zone, (pt, it) ∈ Tt, at chromatography step t ∈ T .

Theorem 4.6.2. [Target Zone, Case 1] When (pt, it) ∈ Tt, the optimal policy has

the following characteristics: a∗t (pt, it) =
{
w∗t ∈ Wt : {(θltpt, ψut it+1|w∗t ) ∈ Tt | (pt, it) ∈

Tt}
}

for {t, t+ 1} ∈ T , for all (pt, it) ∈ Tt with γt < γd.

Proof See Appendix.

Theorem 4.6.2 provide guidelines to select the optimal pooling window wt at a

chromatography step t ∈ T . Theorem 4.6.2 indicates that the optimal action at

step t will perform the purification in such a way as to stay within the target zone

Tt+1 of the next chromatography step t + 1 ∈ T , when the starting batch state is

in the target zone at the beginning of a chromatography step t, (pt, it) ∈ Tt. Note

that the optimal policy is a direct implication of the characteristics of the target

zones in Property (2)-(3). Recursive application of Theorem 4.6.2 to all remaining

chromatography steps indicates that, if the batch state is (pt, it) ∈ Tt, then the

optimal policy is to select the pooling windows in a way as to ensure that the

subsequent states (pt+1, it+1), . . . , (pT−1, iT−1) lie within their respective target zones

Tt+1, . . . ,TT−1 in all remaining chromatography steps t + 1, . . . , T − 1. Note that, if

the initial state of the batch is in its target zone, then the definition of the target

zones in Proposition 4.4.3 ensures that there exists at least one optimal policy that

satisfies Theorem 4.6.2. Also note that the optimal policy is to stop when the state
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(pt, it) is an element of the terminal zone, (pt, it) ∈ S, at a chromatography step t ∈ T .

Optimal Policies for Case 2 (Yield shortage allowed): We define a new

reachability problem by allowing yield shortage, i.e., pT ≤ pd, despite the batch state

(pt, it) being in the target zone Tt at a chromatography step t ∈ T . The optimal

policies in Case 2 consider the trade-offs between operating costs and shortage costs.

Although compromising on yield might not be ideal, especially when it is know that

the initial batch (p1, i1) is in the target zone T1; allowing shortage costs could help

the biomanufacturing firm reduce the number of purification steps by compromising

on yield. In some cases, this could increase their profitability despite shortage costs.

To analyze the optimal policies in Case 2, we relax the yield requirement from

Case 1. Then, the structural analysis becomes similar to Section 4.6.1, except that,

Theorem 4.6.3 provides optimal policies with guaranteed performance for achieving

the purity requirement despite allowing shortage costs.

Theorem 4.6.3. [Target Zone, Case 2] For all (pt, it) ∈ Tt, such that, γt < γd

at the chromatography step t ∈ T , the optimal policy has the characteristic that

a∗t (pt, it) =
{
w∗t ∈ Wt : (pt+1, it+1| pt, it, wt) ∈ Pet+1

}
, where the effective purity set Pet

is defined in Proposition 4.6.1, and uses the operator Lwt (y pt+1 ≥ it+1) : (y pt+1 ≥

it+1)→ (ypt
(θlt|w)

(ψut |w)
≥ it) for all t ∈ T , and y ∈ R+.

Proof See Appendix.

In Theorem 4.6.3, the optimal policy takes into consideration the trade-off be-

tween shortage costs and operating costs. Note that Theorem 4.6.3 provides guaran-

teed performance on achieving the final purity requirement, since the operator Lwt in

Theorem 4.6.3 takes into consideration the worst-case realization of the purification

capabilities. In Case 2, although the biomanufacturing firm has the capability for
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meeting both the purity and yield requirements by the time T , the optimal policy

can choose to compromise on yield in order to reduce the number of purification steps

and operating costs. In practice, in order to maintain good long-term relationships

with the customers, the biomanufacturing firm might decide to meet both the de-

mand and purity requirements whenever they have enough purification capabilities

– even if this decision might not be the best decision that increases profitability of

a particular order. In such cases, the decision maker will proceed with the optimal

policy suggested in Theorem 4.6.2, instead of Theorem 4.6.3.

4.6.3 Worst-Case Guarantees versus Probabilistic Approach

Biomanufacturing firms often adopt a worst-case approach while making operating

decisions in order to hedge against uncertainties and reduce the risk of incurring

large penalty costs. It was for this reason that the analysis in Section 4.4 and Sec-

tion 4.6 are conducted using worst-case purification capabilities associated with the

pooling windows. Alternatively, we can generalize this approach using a probabilistic

approach based on the expected purification capabilities and costs. In this section,

we re-interpret the zones identified in Section 4.4 and policies in Section 4.6 in the

context of the worst-case and probabilistic approaches. Subsequently, we use industry

data in Section 4.8 to investigate how different would the insights and policies be

different, if the biomanufacturing firm adopts the worst case approach compared to

the probabilistic one.

Let Vwt (pt, it) and Vpt (pt, it) be the value function at step t ∈ T and state

(pt, it) ∈ P × I under the worst case and the probabilistic approach, respectively.

The value function Vwt (pt, it) is obtained by solving the set of Equations (4.4)-(4.5)

using the worst outcomes of the purification capability (θlt, ψ
u
t |wt) at each chromatog-

raphy step t ∈ T and pooling window wt ∈ Wt; whereas the probabilistic approach



125

obtains the value function Vpt (pt, it) solving the set of Equations (4.4)-(4.5) based on

the underlying probability distributions ft(·) and gt(·), as discussed in Section 5.2.

Similarly, we let Fwt and Twt be the failure zone and target zone under the

worst-case approach, respectively. Fpt and Tpt are the failure and target zone under

the probabilistic approach, respectively. Theorem 4.4.1 and the bounds on the value

function derived in Section 4.4.3 indicates that Fwt corresponds to all (pt, it) with

the worst-case value function Vwt (pt, it) = −cf . Similarly, Proposition 4.4.2 uses

the worst-case purification capabilities to identify Fwt . On the other hand, using

Theorem 4.4.1 and the bounds on the value function derived in Section 4.4.3, we

observe that Fpt represents all states (pt, it) having an expect value Vpt (pt, it) = −cf .

Similarly, Fpt can be characterized by replacing (θlt, ψ
u
t ) with the expected purification

capabilities (θ̄t, ψ̄t) for all t ∈ T in Proposition 4.4.2. Proposition 4.4.3 defines the

target zone under the worst-case approach Twt . Based on the bounds derived in

Section 4.4.3, the target zone Tpt under the probabilistic approach corresponds to all

(pt, it) whose expected value lies within
∑T−1

j=t −cj + r(pd) ≤ V∗t (pt, it) ≤ r(pd) at

each step t. No doubt, the target zone under the probabilistic approach Tpt can be

characterized using the expected purification outcomes (θ̄t, ψ̄t) instead of the worst

case performance (θlt, ψ
u
t ) in Proposition 4.4.3; however this would not be useful in

providing guaranteed performance for achieving the specific requirements on purity

and yield. It is easy to observe that Fpt ⊂ Fwt , and Twt ⊂ Tpt at each chromatography

step t ∈ T . The guidelines on the optimal policies stated in Theorems 4.4.1-4.6.3

would use the probabilistic zones Fpt and Tpt for the probabilistic approach, and Fwt

and Twt for the worst-case analysis.

In the probabilistic approach, note that the aggregation scheme in Proposi-

tion 4.5.1 is exact when the failure zone Fpt considered in the aggregation scheme is
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defined based on the best purification outcomes (θut , ψ
l
t|wt) for each step t ∈ T and

pooling windows wt ∈ Wt. Using the best purification outcomes in the aggregation

scheme for the probabilistic approach ensures that we capture sufficient conditions

under which the firm has no financial incentives for performing the purification.

4.7 Implementation at Aldevron

In this section, we elaborate on the project timeline, implementation challenges and

results obtained at Aldevron.

4.7.1 Timeline

The optimization framework has been constructed, revised, validated, and imple-

mented over a two-year period (2013-2015) through continuous interaction with Alde-

vron’s protein purification team and senior management. Our research collaboration

with Aldevron started in February 2013. Through weekly company visits, we observed

operational challenges that are typical to the biomanufacturing operations, collected

data, validated our models, carried out the implementation, and quantified the sav-

ings. The purification optimization model was built during August 2013-February

2014. Data collection and revisions were performed during February-June 2014. Re-

sults obtained from the mathematical model were validated during June-September

2014 by various test runs comparing the current practice with the optimal policies. In-

sights obtained at Aldevron were shared with a broader biomanufacturing community

through series of working group sessions (BioWGS, 2014; BioForward, 2014), followed

by the actual implementation and use of the model in Aldevron’s daily operations

since October 2014.
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4.7.2 Implementation Results

Two years into collaboration, the optimization model has been currently in use for

all R&D protein purification orders. Since the implementation of the optimization

framework, Aldevron has realized lead time and cost reductions. On average, the

implementation has led to 25% reduction in total lead times and 20% reduction

in operating costs involved in R&D protein purification. These lead time and cost

savings were mainly due to the following three factors:

1. Scaling back the validation runs. Using the information obtained from the

scouting experiments to run the optimization model has allowed to scale back the

number of validation runs needed prior to full scale production. For the majority

of purification projects, the scientists were able to take the process information ob-

tained from scouting runs, and then feed this information directly into the optimiza-

tion model. In minor instances, the scouting experiments indicates some potential

issues with variability and stability of the proteins. In such cases, the scientists kept

performing the validation runs to gain further data and process understanding.

2. Formal assessment of the risks and better understanding of manufacturing ca-

pabilities. The optimization model provides a rigorous and formal assessment of the

business risks at the beginning of each purification run. This information is espe-

cially critical in communicating the manufacturing challenges with the customer. For

example, one of the major challenges in purification operations is the variability in

the starting material. Without formal assessment of the manufacturing capabilities

and risks, it is very difficult to predict and react to the challenges in attaining the

production requirements. The optimization framework provides an improved under-

standing of the business risks and financial trade-offs involved in protein purification

operations. The proposed zone-based decision making approach provides a quick

and reliable analysis of the manufacturing capabilities leading to better and easier



128

communication with the clients. The knowledge on “guaranteed performance” or

“guaranteed failure” obtained by the end of scouting runs has been invaluable for

both the clients and the biomanufacturing company.

3. Process economics taken into consideration. Prior to the use of the opti-

mization framework, potential operating policies were assessed based on historical

experience. Given the combinatorial nature of the pooling strategies, it was in-

evitable for the scientist to take shortcuts to avoid getting overwhelmed with the

number of available pooling choices at each step. As a result, the scientists often

used to focus on meeting the purity requirement, and did not consider the overall

financial implications while making pooling decisions. In contrast, the optimization

model provides a formal framework that captures the uncertainties in purification

outcomes, financial trade-offs, and the limitations in manufacturing capabilities. As

a result, the purification policies suggested by the optimization model are based on

the process economics as well as chemical characteristics (i.e., scouting data), and

hence has led to lower costs and shorter lead times.

Cost and lead time reductions were determined in two phases: 1. Validation phase

(June-September 2014): During the Summer 2014, we collected scouting data for all

engineered purification orders, and then identified the decision zones and optimal

operating polices based on this information. However, the optimal policies and de-

cision zones were generated only for validation purposes, and were not implemented

in daily practice. In this phase, the scientists kept performing the purification opera-

tions based on their expertise. For validation purposes, the policies proposed by the

optimization model were compared against the ones adopted by the scientists. This

information was used to quantify potential savings (costs and lead times) that could

have been achieved if the optimal policies were used instead of the current practice. 2.

Implementation phase (since October 2014): Once the optimization framework was
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implemented, savings obtained as a result of the framework were quantified through

a policy evaluation mechanism. For each purification project, we collected informa-

tion about the operating policy that the scientist would have used if the optimization

model was not implemented. Then, we used this information to evaluate the per-

formance of that specific policy associated with that specific order (i.e., evaluate the

value function for a given policy), and then compared it against the performance of

the optimal policy. Since protein purification operations require high costs, long lead

times and limited resources, it was not possible to conduct both the optimal poli-

cies and other business practices simultaneously in the laboratory for the purpose of

quantifying the savings.

4.7.3 Implementation Challenges

Feedback from the broader biomanufacturing community beyond Aldevron has been

a core part of the problem definition, analysis and validation. For example, we

organized a series of working group sessions with the local biomanufacturing firms

during various phases of this research (BioWGS, 2014). The objectives were to under-

stand problem characteristics, validate assumptions, define managerial questions and

identify relevant optimization techniques. Our models and insights have also been

shared with a larger biomanufacturing community (BioForward, 2014). Application

of operations research tools to solve these problems are new to the industry, and the

response has been more of cautious enthusiasm. This is mainly due to the fact that

biomanufacturing processes are highly regulated, and changing their current practice

impacts the regulatory approval process. Feedback from the community is that as

more companies embrace the application of operations research models to optimize

operations, both biomanufacturing firms and regulatory authorities are likely to view

such approaches as being essential for reducing costs and lead times in the research

and development. However, operations research implementations at Aldevron have



130

already started to gain an important visibility in the Wisconsin’s bioscience com-

munity through BioForward and the Wisconsin Economic Development Corporation

(BioForward, 2014; WEDC, 2014).

Other implementation challenges were related to formatting the data required

to run the optimization model. The dynamic programming algorithm used in the

optimization framework is coded using Java and includes a user-friendly interface.

Initially, the data obtained from scouting runs were in the format of gel pictures as

shown in Figure 4.2. A special biomanufacturing image processing software was used

to convert these gel images into the protein and impurity amounts corresponding to

each lane. This information was stored in a table format at MS Excel, and then fed

into the Java code to run the optimization model. Although the resulting data was

reliable, the overall process of converting the gel images into a data format compatible

with our optimization tool was laborious. To overcome this challenge, the scientists

adopted another alternative data collection technique that eliminates the process of

reading the gel images. This alternative technique allows to directly measure the

protein and impurity amounts instead of reading this information from gel images.

Although this alternative data collection technique is cheaper and faster, and the only

reason why it was not used before is due to the typical industry practices and culture.

Special training sessions were conducted to get the buy-in of all purification scientists

and also help them in getting familiar with the optimization framework. Overall, the

protein purification team has been very satisfied with the way how the tool helped

their decisions.
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Figure 4.5: Two step chromatography outputs

4.8 An Illustrative Case Study

Since each purification order is custom-engineered and unique, each order has its own

operating policies and managerial insights specific to that order. Therefore, we believe

that it would not be useful to explain the optimal policies and managerial insights for

every single protein considered in the implementation process at Aldevron. Instead,

we elaborate on one of the custom-engineered purification orders at Aldevron (Sec-

tion 4.8.1) and explain the way how the optimization framework was implemented

for that actual order. More specifically, we demonstrate the decision zones, identify

the optimal policies, and discuss the managerial insights for an actual purification

order (Sections 4.8.2-4.8.3). Further, we compare the difference between worst-case

and probabilistic approaches in terms of the decision zones and optimal policies (Sec-

tion 4.8.4), and quantify the computational savings due to action elimination and

state aggregation (Section 4.8.5). To protect client confidentiality, actual data and

cost information obtained from Aldevron are masked. However, the parameters and

assumptions used in this section are typical and valid across the biomanufacturing

industry.
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4.8.1 Problem Setting and Parameters

The protein of interest considered involved in the implementations are all engi-

neered proteins used for in vitro studies in biomanufacturing. In this section, we

consider a protein purification problem with two chromatography steps, as shown

in Figure 4.5. The first step uses the binding affinities between proteins and metal

ions as a separation principle, and the second step uses separation based on elec-

tric charge. Figure 4.5 shows that the first step has 10 candidate lanes (starting

from lane 4 to 13) leading to 55 candidate pooling windows. The second step has

candidate 12 lanes (from lane 6 to 17) leading to 78 candidate pooling windows.

Main characteristics of the pooling windows can be summarized as follows. In the

first chromatography step, the smallest pooling window w1
1 has the purification

capability of 0.009 ≤ (θ1|w1
1) ≤ 0.011 and 0.003 ≤ (ψ1|w1

1) ≤ 0.0036, and the largest

pooling window w55
1 has 0.878 ≤ (θ1|w55

1 ) ≤ 1 and 0.67 ≤ (ψ1|w55
1 ) ≤ 0.819. In

the second chromatography step, the smallest pooling window w1
2 corresponds to

0.042 ≤ (θ2|w1
2) ≤ 0.051 and 0.003 ≤ (ψ2|w1

2) ≤ 0.004, and the largest pooling

windows w78
2 has 0.856 ≤ (θ2|w78

2 ) ≤ 1 and 0.6 ≤ (ψ2|w78
2 ) ≤ 0.741. In both of

the chromatography steps t, the purification capabilities are uniformly distributed

within 10% of their mean (θ̄t, ψ̄t) for t = {1, 2}. All pooling windows in both of the

chromatography steps satisfy data characteristics and assumptions in Section 4.5.2.

The yield requirement is 8 milligram (mg) of protein with a purity level equal or

greater than 85%. The actual cost information obtained from Aldevron is masked for

confidentiality purposes, and representative values are used instead. The operating

costs of each chromatography step is ct = $15 for t = 1, 2. These include costs asso-

ciated with labor, materials, equipment, inspection and analytics. Rewards obtained

per mg of protein is r = $5, and the shortage cost per mg of protein is cl = $6.
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Figure 4.6: Optimal value and decision zones for the first and second step

The penalty cost of failure is cf = $48, which is equivalent to the maximum possible

shortage cost considered in our purification setting.

4.8.2 Decision Zones and Their Financial Implications

We investigate financial implications of a batch condition obtained from fermenta-

tion. For this purpose, we analyze the structural properties of the optimal value

function, and characterize the failure, risk and target zones for each chromatography

step. Figure 4.6 presents the zones and the optimal value function at each chro-

matography step. The value function associated with the zones in Figure 4.6 are as

follows: For the first step, (1) EV1(p1, i1) = −48, (2) −48 < EV1(p1, i1) < 10, (3-6)

10 ≤ EV1(p1, i1) ≤ 40, and the solid line for EV1(p1, i1) = 0. Optimal value for second

step: (1) EV2(p2, i2) = −48, (2) −48 < EV2(p2, i2) < 25, (3-4) 25 ≤ EV2(p2, i2) ≤ 40,

and the solid line for EV2(p2, i2) = 0. Managerial insights derived from Figure 4.6

are discussed below, and summarized in Table 4.2.

In Figure 4.6, the region (1) in both of the chromatography steps corresponds to

the failure zone with EVt(pt, it|(pt, it) ∈ Ft) = −48 for t = {1, 2}. This region rep-

resents protein-impurity states (pt, it) ∈ Ft, t = {1, 2}, where the biomanufacturing
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firm is better off with abandoning the purification. As expected, the failure zone in

the second chromatography step is observed to be larger than the one in the first

chromatography step.

Region (2) in Figure 4.6 represents the risk zone Rt with −48 < EV1(p1, i1) < 10

for the first step, and −48 < EV2(p2, i2) < 25 for the second step. If the protein-

impurity state is an element of the risk zone, the biomanufacturing firm is expected

to incur financial losses due to combined impact of shortage costs and operating

costs, even if the final batch meets the purity requirement.

Regions (3 − 6) at the first chromatography step represent the target zone Tt

where the firm is capable of meeting both the demand and purity requirements of

the end use or application. For example, if the starting batch (p1, i1) is in the region

(3), the firm can expect to achieve the final yield and purity requirements through

two chromatography steps using the optimal policies, and yielding EV1(p1, i1) = 10.

However, the optimal policy in region (4) suggests that the firm might be better off

compromising on yield to achieve the final purity requirement at the end of the first

step, and incurring some penalty cost associated with shortage costs. In this case, the

operating costs for the second chromatography step are greater than the penalty cost

of shortage incurred. Note that although both the demand and purity requirements

could be met in the region (4), it is financially better to abandon the purification at

the end of the first step, and incur the shortage penalties, i.e., 10 < EV1(p1, i1) < 25.

In practice, intangible costs associated with loss of goodwill may motivate the firm

to choose pooling windows that keep the batch state within the target zone of the

next step (Theorem 4.6.2), with EV1(p1, i1) = 10.



135

Table 4.2: Summary of the insights based on Figure 4.6

Region Range of EVt(pt, it) Business Implications

Step 1 (1) EV1(p1, i1) = −48 Stop and scrap the batch.
(2) −48 < EV1(p1, i1) < 10 Risk zone with high potential losses. Can meet the purity,

but will incur high operating and shortages.
(3) EV1(p1, i1) = 10 Can meet both purity and yield requirements in two steps.
(4) 10 < EV1(p1, i1) < 25 Can meet both purity and yield requirements in two steps.

However, financially better off with single step, despite shortages.
(5) EV1(p1, i1) = 25 Can meet both purity and yield requirements in one step.
(6) EV1(p1, i1) = 40 Stop. Desired terminal state.

Step 2 (1) EV2(p2, i2) = −48 Stop and scrap the batch.
(2) −48 < EV2(p2, i2) < 25 Risk zone with high potential losses. Can meet the purity,

but will incur high operating and shortage costs.
(3) EV2(p2, i2) = 25 Can meet both purity and yield requirements in one step.
(4) EV2(p2, i2) = 40 Stop. Desired terminal state.

With a batch starting in the region (5), the firm can expect to achieve the final

purity and yield requirements at the end of the first chromatography step, with

EV1(p1, i1) = 25. In this case, a second step chromatography is not required. Region

(6) in the first step and region (4) in the second step represent all protein-impurity

pairs meeting the specific requirements on purity and yield.

The solid line in Figure 4.6 for both of the chromatography steps corresponds

to all state impurity pairs (pt, it) having EVt(pt, it) = 0 for t = 1, 2. The states

to the left of the solid line correspond to a region where the firm should expect

financial losses due to combined impact of shortage costs and operating costs, even

if the final batch met the purity requirement. Due to the monotonicity of the value

function (Proposition 4.4.1), the profit is nondecreasing in protein amounts pt for a

given impurity level it. Hence, the solid line in the first chromatography step has an

important managerial implication: if the starting condition of a batch is on the left

hand side of the solid line, then the firm might prefer to scrap the starting material,

re-work in-house or request the provider to send a new starting material.
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4.8.3 Optimal Policies and Comparison with Practice

Next, we compare the purification policy used in practice with the optimal pol-

icy. We analyze optimal policies for batches with starting state p1 ∈ [25, 30] mg,

and i1 ∈ [15, 20] mg, and compare with policy adopted at Aldevron for a batch

having (p1, i1) ∈ (27.5, 17.5). From Figure 4.6, we observe that this starting range

p1 ∈ [25, 30] mg and i1 ∈ [15, 20] mg encompasses the risk zone, the solid line with

no profit, and the target zone. Note that the starting state (27.5, 17.5) is in the

risk zone for the first chromatography step. Therefore, the firm does not have any

performance guarantees for this purification order in terms of yield and purity. We

quantify and compare the risks and costs associated with this starting state.

State-dependent optimal policies: Let π∗ denote the optimal policy, and

V1(p1, i1|π∗) represent the optimal value function. Table 4.3 presents a snapshot

of the optimal policy for the first chromatography step. Table 4.3 only displays

the optimal policies at selected states (i.e., in the intervals of 2.5 mg) in order to

improve the readability. In Table 4.3, {S} represents the stopping action. For other

actions in Table 4.3, we present the staring lane, end lane, and the corresponding

action index. For example, L6-8 (21) means pooling from lane 6 to lane 8 (including

lane 8), and this action the 21st feasible action out of 36 pooling windows at the

first chromatography step. Cells colored in gray represent the target zone based on

Figure 4.6, and the entries in bold correspond to the failure zone.

We make the following observations regarding the optimal policy. First, we

observe that the optimal action is to stop the purification for states in the failure

zone F1 (i.e., top left of Table 4.3), and for the terminal zone S (i.e, bottom right

of Table 4.3). Second, we see that in the target zone T1, the optimal policies

do not have a threshold-type structure, but they do satisfy the characteristics in
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Table 4.3: A snapshot of the optimal pooling policies for selected states (first chro-
matography step)

Protein (mg) 10 12.5 15 17.5 20 22.5 25 27.5 30

Impurity (mg)
20 S S S S L4–13 (36) L7–8 (17) L7–8 (17) L6–8 (21) L7–9 (19)

17.5 S S S L7–8 (17) L4–10 (29) L6–9 (24) L7–8 (17) L6–8 (21) L7–10 (20)
15 S S L7–9 (19) L7–9 (19) L4–10 (29) L4–9 (26) L6–9 (24) L4–8 (23) L6–12 (30)

12.5 S S L4–8 (23) L4–8 (23) L4–13 (36) L5–10 (28) L4–9 (26) L4–10 (29) L5–10 (28)
10 S L5–10 (28) L6–10 (27) L4–9 (26) L6–9 (24) L5–8 (22) L7–8 (17) L7–10 (20) L7 (13)

7.5 L6–8 (21) L4–9 (26) L4–9 (26) L4–9 (26) L5–10 (28) L5–8 (22) L7–9 (19) L7–8 (17) L7–8 (17)
5 L4–10 (29) L5–10 (28) L5–12 (33) L7–8 (17) L6–7 (16) L6–8 (21) L7–8 (17) L7–10 (20) S

2.5 L4–9 (26) L4–8 (23) S S S S S S S
0 S S S S S S S S S

Theorem 4.6.2-4.6.3. Third, in the risk zone R1, we observe a non-increasing trend

in the action index as the impurity amount decreases for a given protein amount.

For example, for p1 = 17.5, the optimal policy chooses actions of higher order as

the impurity amount decreases. However, this monotonic trend is not present for all

protein-impurity pairs. For example, for p1 = 20 mg and i1 = 20 mg, the optimal

policy suggests to pool lanes 4− 13 with the action index 36. When i1 = {15, 17.5},

it adopts a smaller window (lanes 4 − 10 with the action index 29). However, at

i1 = 12.5, it switches back to lanes 4− 13 with the action index 36. Such deviations

in threshold type policies are also observed in the second step. We also observe

the lack of threshold type policies as the protein amount increases for a fixed impurity.

For our starting state (p1, i1) = (27.5, 17.5), the optimal policy suggests to

pool lanes 6 − 8 in the first chromatography run, and lanes 6 − 9 in the second

chromatography run, π∗ = {Lanes 6− 8,Lanes 6− 9} with V1(27.5, 17.5|π∗) = $9.

Comparison with current practice: Based on the scouting and validation

experiments, Aldevron decided to pool lanes 6− 9 in the first chromatography step,

and lanes 7− 10 in the second chromatography step. Characteristics of these pooling

windows are as follows: 0.747 ≤ Θ1 ≤ 0.913, 0.545 ≤ Ψ1 ≤ 0.666, and 0.524 ≤ Θ2 ≤

0.640, 0.204 ≤ Ψ2 ≤ 0.250. We let π′′1 = {Lanes 6 − 9,Lanes 7 − 10} denote the
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Figure 4.7: Zones for two chromatography steps under the worst-case analysis

pooling policy used in practice, with the value function V1(p1, i1|π′′1). As a result of

the policy π′′1 , 13.314 mg of protein and 2.212 mg of impurity were obtained at the

end of the production run. Therefore, the yield and purity requirements specified by

the end use or application (8 mg of protein with ≥ 85% purity) were satisfied for this

order. However, when we compare the realization of purification capabilities during

the production run against the supports derived at scouting runs, we observe that the

realizations were in favor of the biomanufacturing firm for that specific production

run (i.e, closer to the mean, with realizations θ1 = 0.832, ψ1 = 0.602 and θ2 = 0.582,

ψ2 = 0.21). Therefore, we evaluate the performance of the policy π′′1 even though

yield and purity requirements were satisfied in our example run. We observe that

the value function associated with the current practice is V1(27.5, 17.5|π′′1) = $7.2,

whereas the value function of the optimal policy is V1(27.5, 17.5|π∗1) = $9. Therefore,

for the stating state (27.5, 17.5), we observe that 25% improvement in the expected

profit is achieved through optimization.

4.8.4 Comparison between Worst-Case and Probabilistic Ap-

proach

In this section, we evaluate the difference between pessimistic (worst-case) and prob-

abilistic approaches for the two step purification process shown in Figure 4.5. The
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Table 4.4: Comparison between the worst-case and probabilistic analysis

Evaluation criteria Step 1 Step 2

Difference in zones % overlap % overlap
Failure 85.5% 81.5%
Risk 69.0% 60.1%
Target 94.3% 99.6%

% Difference in value function % of total states % of total states
No difference 65.5% 80.0%
> 0% and < 1% 24.4% 20.0%
> %1 9.6% 0%
> %5 0.5% 0%

Difference in policies % of total states % of total states
Same window 54% 74%
Smaller window in worst-case 39% 26%
Larger window in worst-case 7% 0%

zones and their value function using worst-case analysis are presented in Figure 4.7.

Table 4.4 compares and quantifies the difference between the worst-case (Figure 4.7)

and probabilistic approaches (Figure 4.6) in terms of zones, optimal value function

and optimal purification policies.

Difference in zones: Figure 4.7 presents the failure zone Fwt (Region 1) and tar-

get zone Twt (Regions 3 to 6) under the worst-case approach for the chromatography

steps t = 1, 2. When we compare Figure 4.6 with Figure 4.7, we observe that the

failure zone under the worst-case approach Fwt is larger than the failure zone in the

probabilistic case Fpt , t = 1, 2. This is expected since the worst-case analysis takes

into consideration the worst possible realization of purification capabilities. However,

we observe high degree of overlap between Fwt and Fpt in this purification project.

For example, Table 4.4 shows that 85.5% of the states that belong to Fw1 also belong

to Fp1; whereas, the degree of overlap between these two zones reduces to 81.5% for

the second step purification. We observe that the overlap percentage for the zones is

lower in step 2, because the second step is the last chromatography step, and hence
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the worst-case approach tends to minimize the failure risks and total costs (operating

and failure costs) using a pessimistic scenario for purification capabilities.

Table 4.4 shows that 94.3% of the states in the probabilistic target zone Tp1 also

belong to the worst-case target zone Tw1 for the first step. The overlap between Tp2

and Tw2 increases 99.6% in the second step. Hence, Tpt of this purification project

is not very sensitive to uncertainty in the purification capabilities for t = 1, 2. This

behavior could be attributed to several factors, such as, low standard deviation

associated with the purification capabilities, and high separation capabilities of

both chromatography steps. Therefore, due to high degree of overlap, either of the

probabilistic and worst case analysis could be used to characterize the target zone in

this purification order.

Difference in the value function: Next, we evaluate the difference in the

optimal value function between the worst-case and probabilistic approaches. Let

Vpt (pt, it) and Vwt (pt, it) represent the value function under the probabilistic approach

and worst-case approach, respectively, for (pt, it) ∈ P × I and t = {1, 2}. Ta-

ble 4.4 presents the percentage difference between these two value functions, i.e.,

Vpt (pt,it)−Vwt (pt,it)

Vwt (pt,it)
for (pt, it) ∈ P × I and t = {1, 2}. Table 4.4 indicates that, in

65.5% of all states, there is no difference in the optimal value functions between

these two approaches. This observation would be attributed to the high degree of

overlap between the target and failure zones of these two approaches. Similarly, we

observe that in 89.9% of all states, the difference between the value functions are less

than 1%. For a small fraction of the state space (0.5% of all states), the percentage

difference in value functions is higher than 5%. These states typically correspond to

protein-impurity pairs within the risk zone and having zero profit or less.
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Difference in optimal policies: Lastly, we evaluate the difference between

the optimal purification policies for the worst-case and probabilistic approaches, as

shown in Table 4.4. In the first step, we observe that 54% of the states have the same

optimal purification policies suggested by these two approaches. These include states

belonging to target and failure zone under both of these two approaches. The main

difference in the optimal policy is observed in the risk zone, where, the worst-case

approach adopts smaller pooling windows than the probabilistic approach in 39% of

the states. These states typically correspond to lower protein and impurity levels

(i.e., states with zero profit or losses). Interestingly, the worst-case approach adopts

larger windows compared to the probabilistic approach in 7% of the state space at

the first chromatography step. This behavior is particularly observed at high protein

and impurity levels (i.e., when the starting batch has more than 22 mg of protein, and

more than 19 mg of impurity). The overlap between the purification policies suggested

by the worst-case and probabilistic approach is higher in the second chromatography

step. For example, both of these two approaches suggest the same policies in 74% of

the states. In the remaining 26% of the state space, the worst-case approach adopts

smaller pooling windows than the probabilistic approach, as expected. Furthermore,

we observe that the worst-case approach abandons the purification when the batch

purity gets closer to 50% (i.e, p2 ≤ 17.5, i2 ≥ 16); whereas the probabilistic approach

performs the purification using small pooling windows to eliminate impurities.

4.8.5 Impact of State Aggregation and Action Elimination

Using the state aggregation scheme in Proposition 4.5.1 and the action elimination

procedure in Proposition 4.5.2, we obtain significant savings in the computational

effort required to obtain solutions to industry sized problems. For example, applying

the state aggregation scheme to the purification project presented in Section 4.8.2 has

led to grouping 35.5% of the state space into a single aggregate state in the first step,
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and similarly 43.5% of the state space in the second step. After eliminating strictly

dominated actions at each chromatography step based on Proposition 4.5.2, the total

number of pooling windows reduced from 55 to 36 candidate windows in the first

step, and from 78 to 20 candidate windows in the second chromatography step. The

combined impact of the state aggregation and action elimination procedures resulted

in 54% reduction in the CPU time.

4.9 Conclusions

We focus on protein purification operations conducted by biomanufacturers and

pharmaceutical companies. Each order represents an engineered protein having

purity and yield requirements specified by the end use or application, and bioman-

ufacturing firms often incur high penalty costs when these specific requirements are

not achieved. However, achieving of both the purity and yield requirements is often

challenging in a typical biomanufacturing setting, since the biomanufacturing firms

might have to compromise on the protein yield in order to achieve the desired purity

level. Furthermore, the starting material involves significant variability and uncer-

tainty in terms of the protein and impurity amounts which affects the subsequent

purification decisions. The problem involves continuous state space and a large

action space due to the interlinked nature of the purification decisions. Limitations

in the purification capabilities of the available chromatography techniques further

challenge the purification decisions. Due to high penalty costs and strict production

requirements on purity, biomanufacturing decisions need practical guidelines and

guaranteed performance measures to hedge against uncertainties in their operations.

We develop an optimization framework which captures the yield and purity trade-

offs, uncertainty in the starting material, limitations in the purification capabilities,
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and interlinked decisions involving multiple purification steps for engineered proteins.

We analyze the structural properties and establish theoretical results that provide

practical guidelines for quantifying the risks and costs, and optimize purification

decisions based on the specific production requirements on yield and purity. Our

analysis partitions the state space into distinct, nonempty subsets called as the

failure zone, risk zone and target zone. These zones provide an analysis of financial

trade-offs and business risks based on the condition of the starting material and the

limitations in manufacturing capabilities. For each zone, we then provide practical

guidelines for purification decisions to maximize the total profitability. Zone-based

decision making is particularly practical and easy to implement in most biomanufac-

turing settings. We also provide guaranteed performance measures using a worst-case

analysis, and compare the managerial insights obtained from the probabilistic and

worst-case approaches.

The optimization framework has been developed and implemented at Aldevron.

Furthermore, the model and managerial insights have been shared and validated with

a larger industry group (BioWGS, 2014; BioForward, 2014). Implementation insights

at Aldevron indicate an average of 25% reduction in lead times and 20% reduction

in operating costs. We believe that our optimization framework provides a rigorous

analysis of the risks and financial trade-offs involved in protein purification. Ap-

plications of operations research techniques are mostly new to the biomanufacturing

community, and most biomanufacturing processes are bound by strict regulatory con-

trols. As more companies like Aldevron embrace operations research and integrate

it into practice, regulatory authorities might mandate the use of such approaches to

improve biomanufacturing efficiency.
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4.10 Appendix: Proofs

Proof of Proposition 4.4.1. We prove the monotonicity of the value function using

proof by induction. We first investigate the value function VT (pT , iT ) at stopping

time t = T . Note that VT (pT , iT ) = rS(pT , iT ). It is easy to observe that stopping

costs rS(pT , iT ) in Equation (4.3) are nondecreasing in pT ∈ P for a given iT ∈ I;

and nonincreasing in iT ∈ I for a given pT ∈ P .

Next, we assume by induction hypothesis that Vt(pt, it) is nondecreasing in pt ∈ P

for a given it ∈ I, and for all t ∈ T . First, we proceed with investigating the

monotonicity of the value function in pt for a given it ∈ I. Let p−t < pt, {p−t , pt} ∈ P

for t ∈ T . By definition of the value function in Equation (4.4), we have, for it ∈ I

and t ∈ T ,

Vt(pt, it) = max
wt∈Wt

{
rS(pt, it),−ct + E

θt,ψt|wt
Vt+1(θtpt, ψtit|wt)

}
≥ max

wt∈Wt

{
rS(p−t , it),−ct + E

θt,ψt|wt
Vt+1(θtpt, ψtit|wt)

}
(4.17)

≥ max
wt∈Wt

{
rS(p−t , it),−ct + E

θt,ψt|wt
Vt+1(θtp

−
t , ψtit|wt)

}
(4.18)

= Vt(p−t , it) (4.19)

where, Equation (4.17) follows from the cost structure in Equation (4.3), and

Equation (4.18) is obtained from the induction hypothesis. Proof for monotonicity

of the value function in it ∈ I for a given pt ∈ P and for all t ∈ T is entirely

analogous.

Proof of Theorem 4.4.1. It is sufficient to show that if a∗(p′t, i
′
t) = S then a∗(pt, it) = S

for all states in Ft = {(pt, it) ∈ P × I : pt ≤ p′t and it ≥ i′t}, t ∈ T .

Note that at time t = T , the only available action is to stop with rewards

VT (pT , iT ) = rS(pT , iT ). Next, we fix any (pt, it) ∈ Ft, and assume by contradic-
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tion hypothesis that a∗(p′t, i
′
t) = S, but a∗(pt, it) = w, for (pt ≤ p′t, it ≥ i′t), where

w ∈ Wt and w 6= S. This implies that,

rS(p′t, i
′
t) > −ct +

∫ ψu|w

ψl|w

∫ θu|w

θl|w
ft(θt|w)gt(ψt|w)Vt+1(θtp

′
t, ψti

′
t)dθdψ (4.20)

and

− ct +

∫ ψu|w

ψl|w

∫ θu|w

θl|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt, ψtit)dθdψ > rS(pt, it) (4.21)

which together imply

rS(p′t, i
′
t)− rS(pt, it)

>

∫ ψu|w

ψl|w

∫ θu|w

θl|w
ft(θt|w)gt(ψt|w)Vt+1(θtp

′
t, ψti

′
t)dθdψ

−
∫ ψu|w

ψl|w

∫ θu|w

θl|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt, ψtit)dθdψ. (4.22)

Note that rS(p′t, i
′
t)−rS(pt, it) = 0 due to stopping cost structure in Equation (4.3).

Theorem 4.4.1 defines (p′t, i
′
t) such that γd >

p′t
(p′t+i

′
t)

. Hence, rS(p′t, i
′
t) = −cf , and also

rS(pt, it) = −cf since (pt ≤ p′t, it ≥ i′t). Therefore, inequality (5.13) indicates that the

term on its right hand side is negative. However,

∫ ψu|w

ψl|w

∫ θu|w

θl|w
ft(θt|w)gt(ψt|w)Vt+1(θtp

′
t, ψti

′
t)dθdψ

−
∫ ψu|w

ψl|w

∫ θu|w

θl|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt, ψtit)dθdψ (4.23)

≥
∫ ψu|w

ψl|w

∫ θu|w

θl|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt, ψtit)dθdψ

−
∫ ψu|w

ψl|w

∫ θu|w

θl|w
ft(θt|w)gt(ψt|w)Vt+1(θtpt, ψtit)dθdψ (4.24)

= 0.
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Therefore, the term on the right hand side of inequality (5.13) is positive, which

contradicts the inequality (5.13), and hence the proof follows. Note that Equa-

tion (5.14) follows from the monotonicity of the value function in Proposition 4.4.1,

and the fact that EVt+1(θtp
′
t, ψti

′
t) is negative by the contradiction hypothesis, and

note that (pt ≤ p′t, it ≥ i′t) ∈ Ft.

Proof of Proposition 4.4.2. We prove Proposition 4.4.2 by induction. We first focus

on condition (i). Let (pt, it) ∈ P × I with γd >
pt

(pt+it)
at step t ∈ T . Assume by

induction hypothesis that (pt, it) satisfy the condition (i). Then, at the last chro-

matography step T − 1, we have,

VT−1(pT−1, iT−1)

= max
{wT−1∈WT−1}

{
rS(pT−1, iT−1),−cT−1 + E

θT−1,ψT−1|wT−1

rS(θT−1pT−1, ψT−1iT−1)
}

= max
{
− cf ,−cT−1 − cf

}
(4.25)

= −cf

Note that Equation (4.25) follows from the induction hypothesis and the stopping

costs structure defined in Equation (4.3).

Similarly, at the chromatography step t ∈ T , we have,

Vt(pt, it) = max
{wt∈Wt}

{
rS(pt, it),−ct + EVt+1(θtpt, ψtit)

}
≥ max

{
− cf ,−ct − cf

}
(4.26)

= −cf

where, inequality in Equation (4.26) follows from the induction hypothesis and

stopping costs as condition (i) holds. Hence, abandoning the purification at state
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(pt, it) leads to less financial losses than continuing the purification under condition

(i). The proof for condition (ii) is entirely analogous to that of condition (i).

Proof of Proposition 4.4.3. We use backward induction. At the end of the planning

horizon T , the target zone is by definition:

TT =
{

(pT , iT ) : pT ≥ pd,
1− γd
γd

pT ≥ iT

}
.

In order for (pT , iT ) to be element of TT by time T , it is sufficient that, at T − 1,

we have

(pT−1, iT−1) ∈
{ ⋃

w∈WT−1

pT−1 ≥
pd

(θlT−1|w)
,
1− γd
γd

pT−1

(θlT−1|w)

(ψuT−1|w)
≥ iT−1

}
,

which is equivalent to

(pT−1, iT−1) ∈
⋃

w∈WT−1

JwT−1(TT ),

based on JwT−1 in Equation (4.8). Hence, TT−1 ≡
⋃
w∈WT−1

JwT−1(TT ). Repeated

application of the same procedure leads to

TT−k =
⋃

w∈WT−k

JwT−k(TT−k+1), for k = 1, . . . , T − 1.

which is equivalent to the Equation (4.10) in Proposition (4.4.3).

Proof. Proof of Proposition 4.5.1 Let the partition
{
Ipt≤p′t,it≥i′t

}
represent all protein-

impurity pairs satisfying Proposition 4.5.1. Note that Proposition 4.5.1 has the same

conditions as the failure zone in Proposition 4.4.2. Therefore, based on Theorem 4.4.1,
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we have V∗t (pt, it) = −cf over the partition
{
Ipt≤p′t,it≥i′t

}
specified in Proposition 4.5.1,

since Ipt≤p′t,it≥i′t ∈ Ft for all chromatography steps t ∈ T and pooling windows wt ∈

Wt. Hence, the aggregate failure state can be modeled as an absorbing state with

reward r(dt) = −cf , and the aggregation scheme is exact since the failure state dt

encompasses subsets of the original system states that have same costs and transitions.

Proof of Proposition 4.5.2: First, we fix any protein-impurity pair (pt, it) ∈ P × T

at the chromatography step t ∈ T . Let wit and wjt be two distinct pooling windows

at the chromatography step t ∈ T , such that, Ft(Θ|wit) ≥st Ft(Θ|w
j
t ), Gt(Ψ|wit) ≤st

Gt(Ψ|wjt ), and (θlt|wit) < (θlt|w
j
t ), (θut |wit) < (θut |w

j
t ), and (ψlt|wit) > (ψlt|w

j
t ), (ψut |wit) >

(ψut |w
j
t ), as specified in Proposition 4.5.2. Next, we evaluate the optimal value func-

tion Vt(pt, it|wjt ) at state (pt, it) under the pooling action wjt at the chromatography

step t:

Vt(pt, it|wjt )

= −ct +

∫ ψu|wjt

ψl|wjt

∫ θu|wjt

θl|wjt
ft(θt|wjt )gt(ψt|w

j
t )Vt+1(ptθt, ψtit|wjt )dθdψ

> −ct +

∫ ψu|wit

ψl|wit

∫ θu|wit

θl|wit
ft(θt|wit)gt(ψt|wit)Vt+1(ptθt, ψtit|wit)dθdψ (4.27)

= Vt(pt, it|wit).

Note that Equation (4.27) follows from the conditions in Proposition 4.5.2 and the

monotonicity of the value function in Proposition 4.4.1. Hence, for any (pt, it) ∈ P×T

at the chromatography step t ∈ T , the value function Vt(pt, it|wjt ) under the pooling

window wjt denotes strictly higher profit then the value function Vt(pt, it|wit) under

the pooling window wit. Hence, wit is said to be strictly dominated by wjt at the

chromatography step t ∈ T since Vt(pt, it|wjt ) > Vt(pt, it|wit) and thus a∗(pt, it) 6=

wit.
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Proof of Proposition 4.6.1: We use backward induction to identify the effective purity

set. At the end of the planning horizon T , the effective purity set is, by definition,

PeT =
{

(pT , iT ) :
1− γd
γd

pT ≥ iT

}
.

Using the same definition at chromatography step T − 1, we have,

PeT−1 =
{

(pT , iT ) :
⋃

w∈WT−1

1− γd
γd

(θuT−1|w)

(ψlT−1|w)
pT ≥ iT

}
,

which is equivalent to

PeT−1 =
⋃

w∈WT−1

Kw
T−1(PeT ).

For k = 1, . . . , T − 1, the operator Kw
T−k(·) is defined as

Kw
T−k(y pT−k+1 ≥ iT−k+1) : (y pT−k+1 ≥ iT−k+1)→ (ypT−k

(θuT−k|w)

(ψlT−k|w)
≥ iT−k). Using

backward induction, successive application of the same procedure to the chromatog-

raphy steps T − k, k = 2, . . . , T − 1 leads to the following recursion:

PeT =
{

(pT , iT ) :
1− γd
γd

pT ≥ iT

}
,

PeT−k =
⋃

w∈WT−k

Kw
T−k(PeT−k+1),

as stated in Proposition 4.6.1.

Proof of Theorem 4.6.1: Theorem 4.6.1 identifies the optimal policy for states that

are element of the risk zone (pt, it) ∈ Rt. We note that, all state impurity pairs such
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that a∗t (pt, it) = S at time t ∈ T are classified as (pt, it) ∈ Ft, by definition of the

failure zone.

First, we classify the pooling actions in the risk zone into two distinct sets: W̄t =

{w̄t ∈ Wt : (θut pt, ψ
l
tit|w̄t) 6∈ Pet+1| (pt, it) ∈ Rt, at(pt, it) = w̄t}, and W̌t = {w̌t ∈

Wt : (θut pt, ψ
l
tit|w̌t) ∈ Pet+1| (pt, it) ∈ Rt, at(pt, it) = w̌t} for all t ∈ T . An example

of action type w̄t could be a pooling window that leads the the failure zone over the

next decision epoch; whereas an example of action type w̌t is a pooling window that

keeps the system state within the risk zone of the next decision epoch. Hence, our

objective function for this sub-problem can be rewritten as:

Vt((pt, it)|(pt, it) ∈ Rt) =

max
wt∈{W̄t∪W̌t}

{
rS(pt, it),−ct + EVt+1(θtpt, ψtit|wt)

}
, (4.28)

and

VT (pT , iT ) = rS(pT , iT ). (4.29)

At the end of the planning horizon T , we have VT (pT , iT ) =

rS(pT , iT ) =


−cf if (pT , iT ) 6∈ PeT ,

r(pd) if (pT , iT ) ∈ PeT and pt ≥ pd,

r(pt)− c`(pd − pt) if (pT , iT ) ∈ PeT and pt < pd.

(4.30)

As a result of Equations (4.28)-(4.30), we observe that at time T − 1, the optimal

action is to keep the system state within the effective purity set of the next period,

i.e., a∗T−1(pT−1, iT−1) = {w̌T−1 ∈ W̌T−1 : (θT−1pT−1, ψT−1iT−1|w̌T−1) ∈ PeT} for all

(pT−1, iT−1) ∈ RT−1.

Similarly, at time t ∈ T \ T − 1, by the definition of the desired purity set in

Proposition 4.6.1, we observe that a batch state {(pt+1, it+1) 6∈ Pet+1|(pt, it) ∈ Rt}

has no chance of meeting the final purity requirement by the time T , even under
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the best possible realization of the purification capabilities. Hence, using the cost

structure in Equation (4.30), we have Vt+1(pt+1, it+1) = rS(pt+1, it+1) = −cf for all

{(pt+1, it+1) 6∈ Pet+1)}. As a result, the optimal action at step t has the characteristic

that a∗t (pt, it) =
{
w̌t ∈ W̌t : (θtpt, ψtit| w̌t) ∈ Pet+1

}
for {t, t + 1} ∈ T and for all

(pt, it) ∈ Rt.

Proof of Theorem 4.6.2. Theorem 4.6.2 analyzes the optimal policies for all (pt, it) ∈

Tt, t ∈ T in Case 1. We use backward induction. At the end of the planning horizon

T , we have VT (pT , iT ) =

rS(pT , iT ) =


−cf if γT < γd,

r(pd) if (pT , iT ) ∈ TT

r(pt)− c`(pd − pt) if γT ≥ γd and pt < pd.

(4.31)

Hence, at time T − 1, the optimal pooling action is in such a way as

a∗T−1(pT−1, iT−1) =
{
w∗T−1 ∈ WT−1 : ((θlT−1pT−1, ψ

u
T−1iT−1|w∗T−1) ∈ TT | (pT−1, iT−1) ∈

TT−1)
}

for all (pT−1, iT−1) ∈ TT−1 with γT−1 < γd. Note that the structure of the tar-

get zones in Proposition 4.4.3 and Property (1)-(3) ensure that there exists at least one

such policy. We proceed similarly with time t ∈ T . Note that the bounds on the value

function derived in Section 4.4.3 indicate that (1) V∗t (pt, it) = −cf for all (pt, it) ∈ Ft,

t ∈ T . (2)
∑T−1

j=t −cj + r(pd) ≤ V∗t (pt, it) ≤ r(pd) for all (pt, it) ∈ Tt, t ∈ T . (3)

−cf ≤ V∗t (pt, it) ≤
∑T−1

j=t −cj + r(pd) for all (pt, it) ∈ Rt, t ∈ T . Hence, based on

the bounds of the value function, the optimal pooling policy for all (pt, it) ∈ Tt is in

such as way as a∗t (pt, it) =
{
w∗t ∈ Wt : ((θltpt, ψ

u
t it+1|w∗t ) ∈ Tt+1 | (pt, it) ∈ Tt)

}
for

{t, t+ 1} ∈ T , for all (pt, it) ∈ Tt. Proposition 4.4.3 and Property (1)-(3) ensure that

there exists at least one such policy.
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Proof of Theorem 4.6.3. Since Case 2 is relaxing the yield requirement from Case 1,

The proof is entirely analogous to that of Theorem 4.6.1, and hence omitted.
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Chapter 5

Simultaneous Optimization of

Upstream and Downstream

Operations

In this chapter, we focus on the interaction between the upstream fermentation and

downstream purification decisions, such that, the scientist identifies the best amount

of protein to be manufactured in the upstream fermentation operations, and also

determines the best choice of equipment (called as the chromatography technique)

and the best operating policy (called as the pooling window) for the downstream

operations. In most industry practices, meeting the specific requirements on the final

yield and purity could be challenging due to high operating costs, random yield losses,

uncertain process outcomes, and financial trade-offs. For example, drugs that are in

the final phases of their research and development (and whose potential end-users are

humans) should abide by stringent purity requirements, i.e., the batch shipped to the

customer should be free of contaminants and other unwanted impurities. Achieving

high purity for a batch could require multiple purification steps with expensive

operating costs and failure risks. However, ‘a good starting material’ that involves
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‘sufficient’ amount of protein can significantly alleviate the risks and challenges

in protein purification operations. Increasing the protein mass obtained from the

upstream batch is possible and also a popular research topic. However, improving the

protein mass could require expensive operating and re-engineering costs, and might

not always outweigh its resulting benefits in the downstream purification operations.

We develop a stochastic optimization framework to address common challenges

encountered in industry practices, and answer the following research questions:

Given the limitations in the purification operations and financial trade-offs, does

producing high amount of protein in upstream operations always result in higher

profit? What is the ‘best’ protein mass to start a specific purification order? What

are the best choices of chromatography techniques and pooling windows based on

specific production requirements? Can we develop exact approximation mechanisms

to solve industry size problems? How can biomanufacturing firms overcome the

challenges in conforming to high purity requirements?

Our research has been conducted in close collaboration with Aldevron, a contract

biomanufacturer specializing in protein manufacturing. Furthermore, our research

questions, mathematical model, assumptions, and managerial insights have been

validated through a series of working group sessions with the local biomanufacturing

industry in Wisconsin (BioWGS, 2014) and have been shared with a larger biotech-

nology community (BioForward, 2014; Engel, 2014). Our study is one of the first

of its nature that combines the knowledge from operations research and chemical

engineering to develop a stochastic optimization framework for engineer-to-order pro-

tein manufacturing. The proposed optimization framework addresses manufacturing

system-level challenges that are often encountered in practice. These challenges

include random yield losses, uncertain purity outcomes, financial trade-offs, strict
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production requirements, failure risks, and the interlinked nature of the manufactur-

ing steps. Most literature focus on modeling and optimizing biological and chemical

parameters but often ignore these manufacturing system challenges. However, these

challenges are often encountered in industry practices and lead to several managerial

and operational issues in decision making. In this study, we provide a unifying

framework that links the underlying biology and chemistry of protein manufacturing

processes with manufacturing system challenges to improve profitability. Further-

more, we investigate the structural properties of the optimization problem, and

develop optimal polices that are easy to implement in practice. We study a state

aggregation scheme that significantly reduces the curse of dimentionality in large

problems, and demonstrate the use of the optimization model with a case study at

Aldevron.

The remainder of the chapter is organized as follows. We provide a background on

biomanufacturing operations and define the problem in Section 5.1. We develop an

optimization model in Section 5.2, and analyze its structural properties in Section 5.3.

The model formulation is revised using a state aggregation scheme in Section 5.4. An

industry case study is presented in Section 5.5, and concluding remarks are provided

in Section 5.6.

5.1 Background on Protein Manufacturing and

Prior Work

In this section, we discuss the manufacturing processes, production requirements,

operational and financial trade-offs involved in protein manufacturing, and provide

the problem definition.
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5.1.1 Yield and Purity Requirements

Purity is a typical measure of the batch quality in biomanufacturing operations, and

represents the fraction of the total amount of the protein of interest based on the total

amount of proteins and impurities available in the batch. Several chromatography

techniques are used to separate the protein of interest from unwanted impurities in

order to meet a predefined purity requirement specified by the end use or application.

Depending on the end use, the purity requirement could range from 80% to 99.9%

for a batch. For example, if the end users are humans, then the batch often needs to

be free of unwanted impurities to satisfy regulatory requirements. In this chapter,

we are specifically interested in optimizing the purification decisions of drugs whose

potential end-users are humans, and hence the final batch should abide by very high

purity requirements (i.e., ≥ 99.9% purity).

The yield requirement represents the amount (mass) of the protein of interest

that should be obtained by the end of the purification operations. We note that we

use the terms ‘amount’ and ‘mass’ interchangeably during the rest of the chapter.

The yield requirement is typically specified by the customer along with the purity

requirement. When the yield requirement is not achieved, the biomanufacturing

company incurs penalty costs associated with per unit of protein short. The yield

requirement often corresponds to 25% to 40% of the protein of interest available in the

starting material, demonstrating the challenges in meeting both the purity and yield

requirements simultaneously. Furthermore, the biomanufacturer often encounters a

trade-off between the upstream and downstream operating costs (Section 5.1.2) as well

as a trade-off between the yield and purity obtained at each chromatography step in

the downstream operations (Section 5.1.3 and Section 5.1.4).
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5.1.2 Optimizing Protein Mass in Upstream Operations

The amount of the protein of interest along with unwanted impurities increase simul-

taneously during the fermentation process. The scientist operating the fermentation

does not have the ability to block or interfere with the formation of the impurities

since these are natural metabolites. Different types and amounts of impurities that

are expected to be obtained by the end of the fermentation operation are known

to the scientist. However, the scientist has the ability to control the amount of the

protein of interest obtained through the fermentation process. To do so, there are

several upstream controls that increase the protein formation during fermentation.

These include feeding the cell culture, adjusting the harvesting times, increasing the

productivity of cell lines through biological and chemical inferences, re-engineering

cells to increase their productivity, etc. Increasing the protein concentration obtained

from a batch is a very popular research topic in the biomanufacturing literature, and

is referred to as the problem of increasing the titer. Although increasing the protein

mass obtained from a batch is possible, it may significantly boost the upstream

operating costs since these costs are nondecreasing in the protein amount obtained.

Consequently, increasing the protein mass increases the upstream costs but also

reduces the risk of incurring lost sale penalty costs by the end of the purification

operations. On the other hand, increasing the protein mass “more than required”

could hurt the profitability of a batch since the customers do not purchase the

proteins manufactured in excess of their yield requirement. Identifying the best

amount of protein that should be obtained from the upstream batch is challenging

since the scientist incurs random yield losses and uncertainty in the batch purity

while performing the downstream purification operations. Although higher protein

mass increases the upstream costs, it alleviates the downstream purification risks.

Due to this trade-off, this scientists needs a framework that identifies the optimal

protein mass based on the expected performance of the downstream operations and
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the specific production requirements.

Studies on upstream fermentation often focus on developing models for cell growth

and product formation (Patel et al., 2000; Tsao et al., 2004; Xing et al., 2010). Several

studies investigate optimal control strategies to increase the product formation and

protein amount (Saucedo and Karim, 1997; Yang et al., 2000; Peroni et al., 2005;

Gnoth et al., 2007; Xing et al., 2010). However, fermentation studies typically focus on

cell-level dynamics, and often do not capture risk and cost trade-offs associated with

unwanted impurities and limited separation capabilities of purification operations. In

this chapter, we do not develop fermentation control policies to increase the product

formation or protein amount. Instead, we focus on identifying the optimal amount

of protein that should be obtained by the end of the fermentation given that the

scientist has multiple control options for increasing the protein mass up to a desired

amount. We build a framework that links the upstream protein mass decisions with

the downstream purification decisions, failure risks, financial trade-offs and specific

production requirements for engineer-to-order proteins.

5.1.3 Optimizing Pooling Decisions for a Given Chromatog-

raphy Technique

Figure 5.1 (a) shows an example of the outcome obtained from a chromatography

operation. Each column in Figure 5.1 (a) is called as a lane and corresponds to a

discrete time interval which could often be as small as one minute in most industry

settings. The y-axis in Figure 5.1 (a) represents the molecular mass of the target pro-

tein and impurities associated with each lane. Each lane is comprised of some fraction

of the total amount of the protein of interest, as well as some fraction of different

types of unwanted impurities. For example, consider the lane 8 in Figure 5.1 (a).

In this lane, there are 8 different types of molecules, i.e., one of the molecules in
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(a) Chromatography Outcome (b) Distribution per Lane

Figure 5.1: An example of chromatography outcome

Figure 5.1 (a) is the protein of interest and the remaining ones are different types of

unwanted impurities as indicated by the arrows. A typical practice in the literature

is to translate the chromatography outcome in Figure 5.1 (a) into visual diagrams

shown in Figure 5.1(b). Figure 5.1(b) plots the fraction of protein and the fraction of

a selected impurity type available in each lane when the chromatography technique

described in Figure 5.1 (a) is used.

The scientist performing the chromatography operation decides which chromatog-

raphy technique and pooling window to use simultaneously. First, we introduce the

pooling window decision for a given chromatography technique. Consider the chro-

matography outcome in Figure 5.1(b). For simplicity, we plot only two different

impurity types in Figure 5.1(b), namely Impurity A and B, and use this example to

discuss the process trade-offs and pooling decisions. If the scientist pools lanes 3-15

in Figure 5.1(b), then she collects all of the protein along with Impurity A and B. On

the other hand, if she pools lanes 9-15, she compromises on the yield (i.e., collects

a smaller fraction of the protein) but completely eliminates Impurity A and some

fraction of Impurity B. Alternatively, the scientist might decide to significantly com-

promise on the yield (i.e., lose ≈ 55% of the protein) by pooling lanes 12-15, but this
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Figure 5.2: Difference in the separation capability of two chromatography techniques

decision helps achieving 100% purity since all unwanted impurities are eliminated.

This simple example illustrates the yield and purity trade-off typically encountered

in chromatography operations. Pooling window decisions can become more complex

when a chromatography technique demonstrates differential affinity to different types

of impurities. In practice, depending on the outcome of a chromatography step, the

scientist makes decisions regarding the chromatography technique and the pooling

window for each of the purification steps. This leads to another problem, namely the

choice of chromatography technique.

5.1.4 Optimizing the Choice of Chromatography Technique

Figure 5.2 shows the output obtained from two different chromatography techniques

based on industry data. Both of the graphs in Figure 5.2 use the same starting

material but different techniques to separate the protein of interest from unwanted

impurities. The starting material contains the protein of interest along with Impurity

A and B. The x-axis in Figure 5.2 represents the lanes, and the y-axis denotes the

fraction of the protein and impurities corresponding to each lane. The solid curve in

Figure 5.2 represents the protein of interest, and other curves are associated with dif-
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ferent types of impurities available in each lane for a given chromatography technique.

Figure 5.2 demonstrates that the choice of chromatography technique strongly

influences the relative positions of the protein and impurities and their corresponding

amount in each lane. For example, Impurity A is located on the left hand side of the

protein of interest under the first chromatography technique in Figure 5.2. However,

the same Impurity A overlaps completely with the protein of interest under the

second chromatography technique presented in Figure 5.2. It is clear to see that

the second technique is not capable of separating Impurity A from the protein of

interest. However, it provides better separation outcome for Impurity B compared

to the first chromatography technique. The pooling window decision in this setting

is now influenced by the choice of chromatography technique. For example, if the

scientist needs to completely eliminate Impurity B, then she could pool the lanes

12-15 on the first chromarography technique (compromising on ≈ 55% of the protein

of interest) or she could pool the lanes 2-11 on the second chromatography technique

without compromising on the protein. The relative locations of the protein and

impurities and their corresponding amounts in each lane are complex functions of

the physical and chemical properties, and vary for each different chromatography

technique. Closed-form expressions to estimate chromatography outcomes based on

physico-chemical characteristics are available in the literature (Vasquez-Alvarez et al.,

2001; Polykarpou et al., 2011b). In this chapter, we use industry data to capture the

expected outcome of a chromatography technique. In practice, a starting material

could contain up to 100 different types of impurities to be separated using 5-10

available chromatography techniques. The combinatorial complexity arising from

multiple types of impurities and chomatography techniques, and their associated

yield and purity trade-offs makes purification decisions complex.
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There are several studies in the literature that build deterministic optimization

models to identify the optimal selection and sequencing of the chromatography tech-

niques (Vasquez-Alvarez et al., 2001; Vasquez-Alvarez and Pinto, 2004; Lienqueo

et al., 2009; Nfor et al., 2013). A common characteristics of the literature is that

mixed integer linear programming models are developed to minimize the number of

purification steps while achieving a predetermined purity level. There are only few

studies in the literature that focus on optimizing both the selection of the chromatog-

raphy techniques and the pooling window simultaneously. (Polykarpou et al., 2011b,

2012a,b). However, most studies focus on minimizing the number of purification

steps and do not capture the manufacturing system challenges, such as, randomness

in purification outcomes, business risks and financial trade-offs in engineer-to-order

protein manufacturing.

5.1.5 Summary of Challenges in Decision Making

In practice, the decisions on upstream protein mass, downstream chromatography

techniques and pooling windows are challenging due to (i) Cost trade-offs between

upstream and downstream: Higher protein mass increases the operating costs in up-

stream processes but reduces the failure risks and associated costs in downstream

operations, (ii) Purity and yield trade-offs in purification: The biomanufacturing

company often needs to compromise on the protein yield to achieve the stringent

requirements on the final purity, (iii) Uncertainty in chromatography outcome: The

amount of protein and impurities available in each lane are often subject to variabil-

ity and uncertainty, (iv) Different types of impurities: The starting material could

contain various types of impurities whose separation performance differs for each

available chromatography technique, (v) Interlinked decisions: Biomanufacturing op-

erations involve multiple manufacturing steps in series where the outcome of one step

directly impacts the performance of subsequent steps, and (vi) Large penalty costs:
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The biomanufacturing company incurs large penalty costs associated with failure to

meet the specific purity and yield requirements. To address these challenges, we de-

velop a stochastic optimization model that maximizes the total expected profit of an

engineer-to-order protein batch.

5.2 Model Formulation

In this section, we provide a Markov decision model that maximizes the total ex-

pected profit obtained from a specific order. We decompose the optimization problem

into two sub-problems: the upstream protein mass problem and the downstream

purification problem.

Decision Epochs: We consider discrete time, finite horizon Markov decision

model. The set T = {t : 1, . . . , T−1} denotes the decision epochs for the downstream

purification problem, where each decision epoch t ∈ T represents the beginning of

a chromatography step. The number of chromatography steps required to achieve

the desired purity level is finite and bounded by T − 1 due to the limitations in

the number of chromatography techniques. Next, we let t = 0 denote the decision

epoch for the upstream protein mass problem that determines the amount of protein

available in the starting material. Hence, the set T ∪ {0} denotes all the decision

epochs of the optimization problem. The end of the planning horizon is captured by

T , such that, the batch is either shipped to the customer or scrapped at a penalty

cost at the final time t = T .

State Space: First, we focus on the state space for the downstream purification

problem. Let pt ∈ P represent the amount (mass) of the protein of interest available

in the batch at the beginning of the chromatography step t ∈ T . Note that pt ∈ [0, p1]
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for all chromatography steps t ∈ T since the amount of protein pt available at the

beginning of each step t is bounded by the starting material p1. Next, we define the

different types of impurities and their corresponding amounts available in the batch.

Let K = {k : 1, 2, . . . , K} be the set of K distinct types of impurities where K <∞.

Let ik,t ∈ Ik denote the amount of the impurity type k ∈ K available in the batch

at the beginning of the chromatography step t ∈ T . Hence, the impurity states

(i1,t, . . . , iK,t) ∈ I1× . . .×IK represent the set of all distinct types of impurities k ∈ K

and their corresponding amounts ik,t available in the batch at the beginning of the

chromatography step t ∈ T . Note that ik,t ∈ [0, ik,1] for each impurity type k ∈ K and

chromatography step t ∈ T . The amount of protein p1 and the amount of impurities

ik,1 for each impurity type k ∈ K at the beginning of the first chromatography step

is finite and determined by the upstream fermentation operations. We define the

state {∆} as the stopping state, i.e., an absorbing state with zero cost representing

the end of the optimization problem where the batch is either shipped or scrapped.

Therefore, (pt, i1,t, . . . , iK,t)∪{∆} is the state of the downstream purification problem

for all chromatography steps t ∈ T . Note that we use the terms ‘amount’ and ‘mass’

interchangeably.

Next, we consider the state space for the upstream protein mass problem. The

amount of protein p0 and impurity ik,0 for all impurity types k ∈ K available in the

batch at the beginning of the upstream fermentation operation is represented by

the state (p0, i1,0, . . . , iK,0). It is assumed that there are no proteins or impurities

available in the batch at the beginning of the fermentation process. Therefore, the

starting state of the upstream protein mass problem is p0 = 0 and ik,0 = 0 for all

impurity types k ∈ K.
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Action Space: We first present the set of actions for the downstream purification

problem. Let C = {c : 1, 2, . . . , C} be the set of available chromatography techniques,

and hence the action c ∈ C denotes the choice of the chromatography technique

c to be used at a given purification step t ∈ T . The action space C is finite and

countable since there are limited number of chromatography techniques available in a

biomanufacturing facility. Next, let Lc = {1, 2, . . . , Lc} denote an ordered set of lanes

available at each chromatography technique c ∈ C. Note that the maximum number

of lanes Lc on a chromatography technique c could be different for each technique

c ∈ C. Then, a pooling window wc ∈ Wc on the chromatography technique c repre-

sents a subset of consecutive lanes from the set Lc. More specifically, the set of all

possible pooling windows for a chromatography technique c isWc = {(i, . . . , j) ∈ Lc :

j = i+m, i = {1, . . . , Lc},m = {0, 1, . . . , Lc− i}} = {wc : w1, w2, . . . , wNc}, where Nc

is the maximum number of pooling windows available on a chromatography technique

c. Note that the set Wc = {wc : w1, w2, . . . , wNc} represents the set of all possible

pooling windows that can be adopted at the chromatography technique c ∈ C. The

set of pooling windows is finite, countable and bounded by Nc since there are limited

number of lanes Lc at each chromatography technique c (See Section 5.1). Let

at(pt, i1,t, . . . , iK,t) represent the action taken at the beginning of the purification step

t ∈ T and state (pt, i1,t, . . . , iK,t). In the downstream purification problem, the scien-

tist makes the joint decision (c, wc) ∈ C ×Wc on both the chromatography technique

c ∈ C and the pooling window wc ∈ Wc used at the beginning of the purification step

t. Additionally, the scientist has the possibility for taking the stopping action {S}

by either scrapping the batch or shipping it to the customer. We note that the only

available action at the stopping state {∆} is at(∆) = S for all purification steps t ∈ T .

In the upstream protein mass problem, the fermentation starts with p0 = 0 and

ik = 0 for all k ∈ K. The scientist has the ability to control the fermentation process
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through a set of controls U that determines the amount of protein p1 obtained by the

fermentation operation. The control u(p1) ∈ U represents a fermentation operating

policy that leads to p1 ∈ [0, pmax] units of protein of interest by the end of the

fermentation process. In practice, this operating policy is a combination of actions

related to harvesting time, physical and biological parameters, and feeding policies.

In this chapter, we do not build a detailed optimization model for the fermentation

operating policies. Instead, we consider a high-level fermentation problem where

we assume that a one to one mapping exists between the amount of protein p1

obtained at the end of the fermentation and the control policy u(p1) ∈ U . We refer

the reader to the fermentation optimization literature (discussed in Section 5.1.2)

where detailed control models are developed to establish the relation between the

fermentation operating actions u(p1) ∈ U and the resulting protein amount p1

(Saucedo and Karim, 1997; Yang et al., 2000; Xing et al., 2010). Note that the

maximum amount of the protein that could be achieved through any actions used

during the fermentation is bounded by pmax due to the limitations of the cell culture.

Transitions: In the downstream purification problem, the state transitions de-

fine the amount of the protein of interest pt and the amount ik,t of each impurity

type k ∈ K that remain in the batch after the chromatography technique c ∈ C is

performed using the pooling window wc ∈ Wc at a purification step t ∈ T . First, we

model the changes in the amount ik,t after the completion of the chromatography step

t ∈ T . For a given impurity type k ∈ K, let {Ψk|c, wc} be a random fraction of the im-

purity amount ik,t that remains inside the batch after performing the chromatography

technique c using the pooling window wc. This implies that the remaining amount of

the impurity type k was eliminated as a result of the action (c, wc) ∈ C ×Wc taken

at the beginning of that purification step t. Therefore,
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ik,t+1 = (ψk|c, wc)ik,t. (5.1)

Let the random fraction {Ψk|c, wc} have the distribution gk(·|c, wc) for all

(c, wc) ∈ C × Wc and k ∈ K, with finite support [ψlk|(c, wc), ψuk |(c, wc)]. Note that

Equation (5.1) holds for all impurity types k ∈ K. Since a chromatography technique

exploits the physico-chemical properties of the protein and impurities to separate

one from other, the distribution gk(·|c, wc) is unique for each impurity type k ∈ K;

and is independent of time t ∈ T and impurity amount ik,t for all k ∈ K. However,

the distribution gk(·|c, wc) is defined by the choice of chromatography technique c,

pooling window wc and physico-chemical characteristics of the impurity type k ∈ K.

We refer the reader to the chemical engineering literature for details (Vasquez-Alvarez

et al., 2001; Polykarpou et al., 2011b).

Similarly, let {Θ|c, wc} be the random fraction of protein pt that remains inside

the batch at the beginning of (t + 1)th step, given that there are pt units of protein

at the beginning of the purification step t, and the action (c, wc) is performed. This

implies that the remaining amount of the protein of interest is eliminated during that

chromatography step t. Therefore,

pt+1 = (θ|c, wc)pt. (5.2)

The random fraction {Θ|c, wc} has distribution f(·|c, wc) and a finite support

[θl|(c, wc), θu|(c, wc)] for all (c, wc) ∈ C ×Wc. Note that the distribution f(·|c, wc) is

a function of the chromatography technique c ∈ C and pooling window wc ∈ Wc, but

is independent of the time t ∈ T and impurities ik,t for all k ∈ K. The finite support

of the distributions f(·|c, wc) and gk(·|c, wc) for all k ∈ K can be determined either

using industry data or based on the physico-chemical characteristics of the protein and
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impurities and their response to each chromatography technique c (Vasquez-Alvarez

et al., 2001; Polykarpou et al., 2011b). The state transitions as a result of the action

(c, wc) ∈ C ×Wc are therefore captured by

(
pt+1, i1,t+1, . . . , iK,t+1

)
=
(
θpt, ψ1i1,t, . . . , ψKiK,t|c, wc

)
. (5.3)

In Equations (5.1)-(5.3), we note that the random fractions (Θ,Ψ1, . . . ,ΨK |c, wc)

are independent of protein mass pt, impurity mass it, impurity type k and purification

step t, but only depend on the chromatography technique c and its pooling window

wc. This is because a chromatography technique separates a specific impurity type k

by exploiting its physical and chemical properties, such as, molecular weight, electric

charge, hydrophobicity, etc. These physicochemical characteristics are specific to

the type of protein and impurities (regardless of their masses) and also independent

of other impurities available in the batch and their masses (Vasquez-Alvarez et al.,

2001; Polykarpou et al., 2011b). Note that the system transitions to the stopping

state {∆} when at(pt, i1,t, . . . , iK,t) = S at any t ∈ T ∪ {0}. At the final time T , the

only available action is to stop the purification, i.e., aT (pT , i1,T , . . . , iK,T ) = S for all

pT ∈ P , ik,T ∈ Ik, k ∈ K.

In the upstream protein mass problem, the scientist has the ability to control and

adjust the protein mass p1 ∈ P obtained at the end of the fermentation, but can

not interfere with the amounts of various impurities obtained along with the protein

at the end of the fermentation. The main reason is because impurities are natural

by-products, such as, ammonia and lactate, and hence their formation can not be

interfered or prevented due to cellular dynamics. Given that the fermentation starts

with p0 = 0 and ik,0 = 0 for all k ∈ K, the batch state (p1, i1,1, . . . , iK,1) obtained at

the end of the fermentation using the control u(p1) ∈ U is given by
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(
p1, i1,1, . . . , iK,1

)
=
(
p0, i1,0, . . . , iK,0 | u(p1)

)
(5.4)

Purity Requirement and Purification Costs: Cost of running a purification

step using the chromatography technique c ∈ C is denoted by rc, and consists of

setup costs (i.e., calibration, column preparation and washing), material costs (i.e.,

resins and buffers), equipment and labor costs. The biomanufacturing company also

incurs high penalty costs when the purity and yield requirements specified by the

end use are not met. Let γd and pd denote the purity requirement and the yield

requirement respectively. The batch purity γt at state (pt, i1,t, . . . , iK,t) is a quality

measure defined by γt = pt
pt+

∑
k ik,t

for any t ∈ T ∪ {T}. In practice, if the drug is

in the final phase of the clinical trials or the end users are humans, then the purity

requirement is often very high with γd ≥ 99.9%. The biomanufacturing company

incurs high penalty costs cf when the batch fails to meet the predefined purity

requirement γd. The customers are typically large pharmaceutical companies con-

ducting clinical trials, and hence a batch that does not meet the purity requirement

can not be further utilized for the research and development efforts at the customer’s

site. Therefore, the customers often do not purchase the batch when it fails to meet

the purity requirement. The penalty cost of quality failure cf could range from com-

pany to company, since it includes penalty costs associated with project delays, loss

of reputation, cost of disappointing the customers and its impact on future orders, etc.

Yield Requirement and Revenue: At any manufacturing step t ∈ T ∪{0, T},

the revenue obtained from stopping the batch at the state (pt, i1,t, . . . , iK,t) is defined

as follows:
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rs(pt, i1,t, . . . , iK,t) =


r(pd) if pt ≥ pd and γt ≥ γd,

r(pt)− c`(pd − pt) if pt < pd and γt ≥ γd

−cf otherwise.

(5.5)

If the batch meets both of the production requirements (i.e, the case pt ≥

pd and γt ≥ γd in Equation 5.5) then the customers purchase only the amount

ordered pd, and do not pay for proteins manufactured in excess of their yield re-

quirement, i.e., 1γt≥γd,pt≥pdr(pt) = r(pd) where 1 is the indicator function and r(pd)

represents the revenue obtained from pd units of protein sold. On the other hand, if

the batch satisfies the purity requirement but not the yield requirement (i.e., the case

γt ≥ γd and pt < pd in Equation 5.5), then the biomanufacturing company obtains a

revenue r(pt) associated with the protein amount pt but also incurs a penalty cost

c`(pd − pt) due to yield shortages. Typically, the revenue is characterized per unit

of protein delivered, and the yield penalty cost is per unit of protein in short, i.e.,

r(pt) = r × pt and c`(pd − pt) = c` × (pd − pt) for all 0 < pt ≤ pd, where r is the

revenue per unit of protein sold and c` is the yield penalty cost per unit of protein

in short. If the batch does not conform to the minimum purity requirement (i.e., the

case γt < γd in Equation 5.5) then no revenue is obtained and the biomanufacturing

firm incurs a large penalty cost of failure, cf . Note that cf > r(pd), and depending

on the amount (pd− pt)+, the yield penalty cost c`(pd− pt)+ could be as large as the

penalty cost cf .

Upstream Costs: The cost of upstream fermentation operations is captured

by cu(p1), and represents the cost of labor, equipment, inspection and raw materials

(buffers and cell lines) required to obtain p1 ∈ P units of protein by the end of the

fermentation process. We assume that cu(p1) is nondecreasing in p1 since additional
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resources are required to increase the protein mass. Although we do not assume any

specific form for the upstream cost cu(p1), it is often a piece-wise linear function in

most industry settings (See Section 5.5.3).

The Value Function: We develop a finite horizon Markov decision model that

identifies the best choice of the chromatography technique and its pooling window

for the downstream purification problem, and the best choice of the protein amount

p1 ∈ P for the upstream problem. The objective is to maximize the total expected

profit obtained from a batch. Let Vt(pt, i1,t, . . . , iK,t) denote the value function for the

downstream purification problem when there are pt units of the protein of interest and

(i1,t, . . . , iK,t) units of impurity type k ∈ K are present in the batch at the beginning

of tth purification step, t ∈ T . At the end of the planning horizon t = T , the value

function is

VT (pT , i1,T , . . . , iK,T ) = rs(pT , i1,T . . . , iK,T ) + V(∆). (5.6)

For all t ∈ T , the value function of the downstream purification problem is

Vt(pt, i1,t, . . . , iK,t) = max
(c,wc)∈C×W

{
− rc + EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|c, wc

)
,

rs(pt, i1,t . . . , iK,t) + V(∆)
}
, (5.7)

where, the expectation operator is

EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|c, wc

)
=

∫
θ

∫
ψ1

. . .

∫
ψK

Vt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|c, wc

)
×

f(θ|c, wc)× g1(ψ1|c, wc)× . . .× gK(ψK |c, wc)dψK . . . dψ1dθ. (5.8)
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Combining the upstream protein mass problem at time t = 0 with the downstream

purification problem at t = 1, the value function V0 of the optimization model is given

by

V0(p0, i1,0, . . . , iK,0) = max
u(p1)∈U

−cu(p1) + V1

(
p1, i1,1, . . . , iK,1|u(p1)

)
. (5.9)

Note that {∆} is an absorbing state with no costs or rewards, and the starting

state for the upstream protein mass problem is p0 = 0 and ik,0 = 0 for all k ∈ K.

5.3 Structural Properties

In this section, we first investigate the structural properties of the downstream pu-

rification problem at t ≥ 1 and then use these structural characteristics to generate

managerial insights for the upstream protein mass problem at t = 0. In the reminder

of the chapter, we use a discretization scheme to analyze the structural properties

of the optimal value function and policies. All proofs are available in the Appendix.

Modeling assumptions on the transition probabilities and stopping rewards are sum-

marized in Assumption 5.3.1 and 5.3.2.

Assumption 5.3.1. Let wnc ∈ Wc be the nth pooling window on the chromatog-

raphy technique c ∈ C at any step t ∈ T . For each technique c, the pooling

windows wnc ∈ Wc can be ordered, such that,
∫ j

0
f(θ|c, wnc )dθ ≤

∫ j
0
f(θ|c, wn+1

c )dθ and∫ m
0
gk(ψk|c, wnc )dψk ≤

∫ m
0
gk(ψk|c, wn+1

c )dψk for all k ∈ K on a given technique c ∈ C,

0 ≤ j ≤ 1, 0 ≤ m ≤ 1. This implies that
∫
θ

∫
ψ1
. . .
∫
ψK

{
f(θ|(c, wn+1

c ))g1(ψ1|(c, wn+1
c ))×

. . . × gK(ψK |(c, wn+1
c )) −f(θ|(c, wnc ))g1(ψ1|(c, wnc )) × . . . × gK(ψK |(c, wnc ))

}
dψK . . . d

ψ1dθ > 0.

Assumption 5.3.2. Let p+ ∈ P and p− ∈ P, such that, p+ > p−. Then,

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c ) −rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )
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≥ rs(θp
+, ψ1i1, . . . , ψKiK |c, wnc ) −rs(θp−, ψ1i1, . . . , ψKiK |c, wnc )

for a given impurity level (i1, . . . , iK) and chromatography technique c ∈ C.

Using the index n, Assumption 5.3.1 presents an ordering scheme for the pooling

windows wnc ∈ Wc on a given chromatography technique c ∈ C. In practice, the

first pooling window of this ordering scheme is called as the yield-aggressive window

and the last window is the quality-aggressive window for a given chromatography

technique c ∈ C. Assumption 5.3.1 can be easily validated with industry data. For

example, the chromatography outcome in Figure 5.1 suggests that Assumption 5.3.1

often holds in practice. This ordering scheme is used in Theorem 5.3.2 to investigate

the structural properties of the optimal pooling windows on a given chromatography

technique. For notational convenience, we suppress the subscript t when possible in

the reminder of the chapter.

Assumption 5.3.2 corresponds to a broader version of the commonly used sup-

peradditivity property in terms of the states and pooling actions. It implies that

the difference in stopping rewards between pooling a larger indexed window wn+1
c

and a smaller indexed pooling window wnc is higher for a larger protein state p+ ∈ P

than a smaller protein state p− ∈ P . Although this corresponds to the superaddi-

tivity assumption commonly used in the Markov decision literature, Lemma 5.3.1

characterizes under which conditions Assumption 5.3.2 holds in our specific problem

setting. The term rs(θpt|c, wc) in Lemma 5.3.1 represents the stopping rewards

(Equation 5.5) obtained from the following sequence of events: there are pt units of

protein at the purification step t ∈ T and the scientist pools the window wc on the

chromatography technique c at the purification step t, and the purification stops at

the step t+ 1. For notational convenience we drop the subscript t in Lemma 5.3.1.
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Lemma 5.3.1. Under the ordering scheme in Assumption 5.3.1 and the stopping

cost structure in Equation (5.5), Assumption 5.3.2 always holds for all t ∈ T except

under the following conditions:

(i) r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c ) + r(θp−|c, wnc )− r`(pd − θp−|c, wnc )

≤ r(θp−|c, wn+1
c )− r`(pd − θp−|c, wn+1

c ) + r(pd)

(ii) r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c )− r(θp+|c, wnc ) + r`(pd − θp+|c, wnc )

≤ r(θp−|c, wn+1
c )− r`(pd − θp−|c, wn+1

c )− r(θp−|c, wnc ) + r`(pd − θp−|c, wnc )

(iii) There exists wnc and wn+1
c , such that, (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd

but (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd for {p+, p−} ∈ P, and ik ∈ Ik, k ∈ K.

Proof See Appendix.

Conditions (i) and (ii) in Lemma 5.3.1 compare the incremental changes in the

stopping rewards and lost sale costs when the protein amount p and the ordering

index n associated the pooling windows increase. Condition (iii) corresponds the

case where higher indexed windows and higher protein amounts in the starting

material allow to satisfy the purity requirement but lower indexed windows and lower

protein amounts fail to meet the purity requirement when the purification stops

at some t ∈ T . To provide practical insights, we refer to the yield-aggressive and

quality-aggressive windows as a special case of this condition. Then, condition (iii)

implies that the starting material containing higher protein amount p+ can meet the

purity requirement using the quality-aggressive policy, however, the yield-aggressive

policy using less protein amount p− in the starting material fails to meet the purity

requirement when the purification stops at some t ∈ T . Next, we investigate the
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structural properties of the downstream purification problem in Proposition 5.3.1,

and then use these characteristics to provide managerial insights for the upstream

protein mass problem.

Proposition 5.3.1. (1) For the downstream purification problem, the value function

Vt(pt, i1,t, . . . , iK,t) is nondecreasing in pt and nonincreasing in ik,t for all k ∈ K at

t ≥ 1.

(2) At a given impurity level (i1,t, . . . , iK,t) and purification step t ∈ T , there exists

three protein threshold values, p̌t, p̄t and p̂t, such that, Vt(pt, i1,t, . . . , iK,t) = −cf for

all pt ≤ p̌t, Vt(p̄t, i1,t, . . . , iK,t) = 0, and Vt(pt, i1,t, . . . , iK,t) = a > 0 for all pt ≥ p̂t

where a is a constant. Note that p̂t ≥ p̄t ≥ p̌t for all t ∈ T .

Proof See Appendix.

Part (1) of Proposition 5.3.1 indicates that the value function associated with the

downstream purification problem never decreases as the protein amount pt increases,

and never increases as the impurity amount ik,t increases for all impurity types

k ∈ K at any chromatography step t ∈ T . Note that T = {t : 1, . . . , T − 1}. The

monotonicity property of the value function is used in part (2) of Proposition 5.3.1

as well as in the subsequent theorems to characterize the structural properties of the

optimal policies.

Part (2) of Proposition 5.3.1 reveals managerial insights about the protein amount

in the starting material, and leads to important implications for the upstream protein

mass problem at t = 0. It shows that there exists three protein thresholds values,

p̌t, p̄t and p̂t for a given impurity level (i1,t, . . . , iK,t) at the purification step t ∈ T .

The protein thresholds values p̌1, p̄1 and p̂1 associated with the first chromatography

step t = 1 provide important managerial insights for the upstream protein mass
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problem: When the upstream protein mass is p̌1 < p1 < p̄1, then it implies that the

amount of protein obtained from the fermentation process is too less, such that, the

biomanufacturing company is expected to incur a financial loss rather than profit.

The threshold value p̄1 corresponds to the case where the downstream purification

operations result in an expected profit of zero. Lastly, the threshold value p̂1 implies

that increasing the upstream protein mass more than p̂1 units does not increase the

profitability of purification operations due to the specific yield requirements. Using

these insights, Theorem 5.3.1 identifies the batch states (p̌t, i
′
1,t, . . . , i

′
K,t) that are

expected to result in failure at a downstream purification step t ∈ T .

Theorem 5.3.1. The optimal policy has the property that for some (p̌t, i
′
1,t, . . . , i

′
K,t)

where γd >
p̌t

p̌t+
∑
k i
′
k,t

, it is optimal to stop the purification, a∗t (pt, i1,t, . . . , iK,t) = S,

for all pt ≤ p̌t and ik,t ≥ i′k,t at time t ∈ T , k ∈ K.

Proof See Appendix.

Theorem 5.3.1 shows that there exists a partition on the state space, pt ≤ p̌t and

ik,t ≥ i′k,t for all k ∈ K at t ∈ T , such that, the biomanufacturing company has no

financial incentives for conducting the purification operations when the starting batch

state is in this partition. Practically, Theorem 5.3.1 defines some control limits on

the protein and impurity amounts to characterize a deficient starting material at the

beginning of each chromatography step, i.e., the biomanufacturing company expects

to fail to meet the specific customer requirements and incurs large penalty costs when

the starting batch state is in this partition. In other words, if failure is inevitable

in downstream, it is better to fail earlier than later. Next, Theorem 5.3.2 evaluates

the structural properties of the optimal pooling windows for a given chromatography

technique.
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Theorem 5.3.2. For all pt > p̌t, if Assumption 5.3.1 and Assumption 5.3.2 hold,

then the optimal pooling policy a∗t (pt, i1,t, . . . , iK,t|c) = wn∗c is nondecreasing in pt for

pt ≥ p∗t at a given impurity level (i1,t, . . . , iK,t) when the chromatography technique

c ∈ C is used at the purification step t ∈ T .

Proof See Appendix.

Theorem 5.3.2 characterizes the structural properties of the optimal pooling win-

dows wn∗c on a chromatography technique c ∈ C using Assumptions 5.3.1-5.3.2. Note

that Assumption 5.3.1 only provides a stochastic ordering scheme for the pooling win-

dows wnc using a chromatography technique c. This assumption holds in practice due

to the principles of chromatographic separation described in Section 5.1. However,

Assumption 5.3.1 does not guarantee a stochastic ordering for the chromatography

techniques. In most industry settings, different chromatography techniques have dif-

ferent affinities to various types of impurities, and hence a stochastic ordering across

chromatography techniques is impractical. Therefore, Theorem 5.3.2 focuses on the

structural characteristics of the optimal pooling policies for a given chromatography

technique c. Theorem 5.3.2 suggests that the scientist adopts policies that are more

quality-aggressive as the amount of protein in the starting material increases. As an

alternative interpretation of Theorem 5.3.2, we see that the optimal pooling policies

at each purification step preserve at least some fraction θ∗ of the protein, and the

scientist tends to be less concerned in terms of yield losses as the amount of protein

in the starting material increases.

Although the downstream purification problem (t ≥ 1) has some nice structural

properties, the value function of the optimization model (including the upstream

protein mass decision at t = 0 and downstream operations at t ≥ 1) is not mono-

tonically increasing or decreasing due to the cost trade-offs between upstream and
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downstream operations. It is possible to determine some conditions under which

the value function of the overall optimization model is monotonic. However, these

conditions will be restrictive for industry problems and will not have practical

relevance (for example, we use industry data in Section 5.5 to identify the optimal

protein mass and the optimal purification policies, and see that the value function

V0 of the optimization problem does not have monotonic properties in most cost

settings encountered in practice). However, it is still possible to analytically evaluate

the performance of different operating policies for the upstream problem. For ex-

ample, Theorem 5.3.3 compares and evaluates the performance of popular upstream

protein mass decisions, and identifies the conditions under which an upstream policy

outweighs its alternatives. To generate managerial insights in Theorem 5.3.3, we use

a discretization scheme δ where ε = pd/δ represents the specific yield requirement of

the customer. In practice, the discretization unit δ often corresponds to a milligram

or gram, depending on the specific end use or application.

Theorem 5.3.3. Let Π1 and Π2 be two different upstream operating policies with the

corresponding value function, VΠ1
0 and VΠ2

0 , respectively.

(1) Let Π1 be the upstream policy a0 = u(p1), such that, p1 > p̂1, p1 ∈ P. Let Π2

be the upstream policy a0 = u(p̂1). Then, VΠ2
0 > VΠ1

0 .

(2.a) Let Π1 be the upstream policy a0 = u(p1), such that, p̄1 ≤ p1 < p̂1, p1 ∈ P.

Let Π2 be the policy a0 = u(p̂1). Then, VΠ1
0 > VΠ2

0 if the following condition holds:

cu(p̂1)− cu(p1) > r(pd).

(2.b) Let Π1 and Π2 be the upstream policies identical to part (2.a). Then, VΠ2
0 >

VΠ1
0 if the following condition holds: cu(p̂1)− cu(p1) < r(pd)− r(pε−1) + c`(pd− pε−1).

(3) Let Π1 be the upstream policy a0 = u(p1), such that, p̌1 ≤ p1 < p̄1, p1 ∈ P.

Let Π2 be the upstream policy a0 = p̄1. Then, VΠ1
0 > VΠ2

0 if the following condition

holds: cu(p̄1)− cu(p1) > cf .
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(4) Let Π1 be the upstream policy a0 = u(p1), such that, p1 ≤ p̌1, p1 ∈ P. Let Π2

be the upstream policy a0 = S. Then, VΠ2
0 > VΠ1

0 .

Proof See Appendix.

Part (1) of Theorem 5.3.3 compares two upstream operating policies: Π1 in-

creases the upstream protein mass more than p̂1 units, whereas Π2 keeps the

upstream protein mass at p̂1 units. It is assumed that the scientists takes the optimal

courses of actions for the downstream purification problem. Part (1) shows that the

upstream policy Π2 is always better off than Π1 due to the specific yield requirements.

Part (2) compares the policy Π1 that maintains the upstream protein mass in the

range p̄1 ≤ p1 < p̂1 against the policy Π2 that increases the upstream protein mass up

to p̂1 units. Part (2.a) states that the policy Π1 is better off than Π2 when the cost

of increasing the upstream protein mass is very expensive. For example in practice,

it is possible to encounter instances where increasing the protein mass requires

excessive re-engineering efforts to improve the productivity of the cell lines. In such

cases, increasing the protein mass might not be financially justified compared to the

expected revenue from the batch. On the other hand, part (2.b) considers identical

polices as part (2.a), but identifies cost configurations where Π2 is better off than Π1

in terms of maximizing the total expected profit of the optimization problem. The

condition in part (2.b) compares the incremental increases in the upstream operating

costs associated with higher protein mass (p̄1) against the incremental changes in the

revenue and lost sale costs associated with lower levels of protein mass (p̄1 ≤ p1 < p̂1).

Using the discretization scheme δ where ε = pd/δ, we note that the term ε− 1 in part

(2.b) corresponds to the protein amount with one unit of lost sales.
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Part (3) considers the upstream policy Π1 where the upstream protein mass is

maintained in the range p̌1 ≤ p1 < p̄1 leading to a negative expected profit for the

downstream purification problem; whereas the policy Π2 adopts p̄1 units of protein

resulting in zero profit for the downstream purification operations. Part (3) identifies

the cost configuration where Π1 is better off than Π2 in terms of the expected profit

of the optimization problem. The condition in part (3) compares the penalty costs

of failures with the cost of increasing the protein mass. In practical context, it

represents a cost configuration where the cost of failures are less critical than the

cost of efforts required to increase the protein mass. Although not very often, it is

possible to encounter such cost settings for proteins in research and development

phase. Part (4) shows that it is always better off to abandon the purification and

incur large failure costs rather than starting the purification with the protein amount

p1 ≤ p̌1.

The structural properties and managerial insights derived in this section have been

developed based on feedback from our industry partners, and are easy to implement

in practice. In Section 5.5, we demonstrate the use of the optimization model and

illustrate the structural properties using an industry case study from Aldevron. One

of the challenges in solving industry size problems is associated with the curse of

dimentionality due to the large state space of the optimization problem. Therefore,

we revise the model formulation in Section 5.4 using a state aggregation scheme, and

discuss under which conditions the proposed aggregation scheme is exact.

5.4 The Reduced-Dimension MDP Model

A typical industry setting could contain up to 100 different types of impurities

with 5-10 candidate chromatography techniques, each having 50-100 pooling window
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choices. Although the action space is manageable, the size of the state space increases

exponentially in the number of impurities. The state space could easily explode in

most industry settings, making the optimization problem challenging to solve and

analyze. To address this issue, we use an aggregation scheme to revise the state

space, transitions and the value function of the optimization model, and refer to this

revised version as the reduced-dimension model. Then, we use the structural insights

obtained in Section 5.3 to identify the conditions under which the reduced-dimension

model is exact. The state space, transitions, rewards and the value function of the

reduced-dimension model are as follows.

State Space: Each impurity state ik,t ∈ Ik is a binary variable ik,t ∈ {0, 1}

for all k ∈ K at time t ∈ T ∪ {T}, such that, the state ik,t indicates whether the

specific impurity type k ∈ K is present in the batch (ik,t = 1) or has been completely

eliminated (ik,t = 0) by the time t ∈ T ∪ {T}. Therefore, the impurity state

(i1,t, . . . , iK,t) ∈ I1 × . . . IK is a 2K dimensional vector representing which impurities

are actually present in the batch and which ones have been completely removed. The

state pt ∈ P representing the amount of the protein available in the batch at time

t ∈ T ∪ {T} remains the same as Section 5.2. In the reduced-dimension model, the

starting state is (p1, 1, . . . , 1) and the desired terminal states meeting both the yield

and purity requirements are (pt, 0, . . . , 0) where pt ≥ pd for pt ∈ P and t ∈ T ∪ {T}.

State Transitions: In the reduced-dimension model, the transitions in the pro-

tein state pt ∈ P remain the same as the dynamics in Equation (5.2)-(5.4). However,

the transitions associated with the impurity states (i1,t, . . . , iK,t) are simplified using

the probability distribution function Pk(ik,t+1|ik,t, c, wc) for each impurity type k ∈ K

at time t ∈ T ∪ {T}. Note that {ik,t, ik,t+1} ∈ {0, 1} for all {t, t + 1} ∈ T ∪ {T}.

At each chromatography step t ∈ T , the function Pk(ik,t+1|ik,t, c, wc) represents
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the probability of achieving the impurity state ik,t+1 ∈ {0, 1} as a result of the

chromatography technique c and the pooling window wc, given that the state of

the impurity type k ∈ K before that purification step is ik,t ∈ {0, 1}. The original

model defined in Section 5.2 captures the transition probabilities using the prob-

ability distribution functions gk(·|c, wc)dψk, whereas the transition probabilities in

the reduced-dimension model are probability mass functions Pk(ik,t+1|ik, c, wc) for

each impurity type k ∈ K, t ∈ T , (c, wc) ∈ C × Wc. For each chromatography

technique c ∈ C, the function Pk(ik,t+1|ik,t, c, wc) can be easily determined using the

chromatography data (e.g., Figure 5.1). The transition probabilities for the upstream

protein mass problem at time t = 0 remain the same as Equation (5.4) since the

upstream decisions control the amount of protein at the beginning of the first step

purification operation.

Since a chromatography technique exploits the difference in the physicochemical

properties of each impurity type k as a separation principle, the probability distri-

butions Pk(ik,t+1|ik,t, c, wc) are independently distributed for each impurity type k

under the action (c, wc) ∈ C × Wc. Therefore, the state transitions associated with

all impurities (i1,t+1, . . . , iK,t+1) ∈ I1× . . .×IK are captured by the joint probability

distribution Pk(i1,t+1|i1,t, c, wc)× . . .×P (iK,t+1|iK,t, c, wc). Note that once an impurity

type k is eliminated from the batch, the same impurity k is never regenerated, i.e.,

Pk(ik,t+1 = 1|ik,t = 0, c, wc) = 0 for all (c, wc) ∈ C ×Wc at {t, t + 1} ∈ T . However,

the probability Pk(ik,t+1 = 0|ik,t = 1, c, wc) of eliminating a specific impurity type

k ∈ K is a function of the chromatography technique c ∈ C, the pooling window

wc ∈ Wc, and the physicochemical characteristics of the impurity k ∈ K as discussed

in Section 5.1.



183

Rewards and the Value Function: The costs and rewards remain the same

as Section 5.2. We note that the revenue rs(p, i1, . . . , iK) obtained from stopping the

batch at state (p, i1, . . . , iK) is a special case of Equation (5.5) where γd = 100%.

Therefore, the value function of the downstream purification problem and the up-

stream protein mass problem remain the same as Equations (5.6)-(5.9) along with the

same boundary conditions. We note that the expectation operation in the reduced-

dimension model is

EVt+1

(
pt+1, i1,t+1 . . . , iK,t+1 | pt, i1,t . . . , iK,t, (c, wc)

)

=

∫
θ

1∑
i1,t+1

. . .
1∑

iK,t+1

f(θ|c, wc)× P1(i1,t+1|i1,t, c, wc)× . . .× PK(iK,t+1|iK,t, c, wc)×

Vt+1

(
θpt, i1,t+1, . . . , iK,t+1

)
dθ

Next, Proposition 5.4.1 summarizes the state aggregation scheme used to for-

mulate the reduced-dimension model, and identifies the conditions under which this

aggregation scheme is exact.

Proposition 5.4.1. For each impurity type k ∈ K, the values of the impurity state

ik,t ∈ [0, i(k,1)] can be aggregated and viewed as a binary variable, ik,t ∈ {0, 1}, such

that, ik,t = 0 represents the case where all amount of the impurity type k has been

removed from the batch by the time t ∈ T ∪ {T}, and ik,t = 1 denotes the case where

a positive amount ik,t ∈ (0, ik,1] of impurity type k is present in the batch at time

t ∈ T ∪ {T}. This aggregation scheme is exact for 100% purity requirement.

Proof See Appendix.

Proposition 5.4.1 indicates that the state aggregation scheme is exact for a

special instance of the optimization problem where the final purity requirement

is γd = 100%. Proposition 5.4.1 uses the specific characteristics of the transition
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probabilities and stopping costs under 100% purity requirement, and indicates that

it is sufficient to keep track of which impurity types are present in the batch rather

than capturing their corresponding amounts at 100% purity requirement. The idea

with the aggregation scheme is simple and intuitive. It relies on the fact that the

transition probabilities depend on the type of impurities but not their amounts

(i.e., chromatography performs the separation based on the physical and chemical

properties of the protein and impurities) and that all impurity types needs to be

removed under 100% purity requirement.

Proposition 5.4.1 provides a way to address the curse of dimentionality for a

special instance of the optimization problem which is frequently encountered in

practice. Excessively high purity requirements are frequently encountered in the

biomanufacturing industry, and dealing with these requirements is a significant chal-

lenge in practice. It is important to note that when the drugs are used as feed study

in the earlier phases of the research and development, the purity requirement could

be as low as 85%. However, drugs that are in the later phases of clinical trials, and

whose end-users are potentially humans, should abide by very high purity standards.

Due to high penalty costs, uncertainties, and manufacturing trade-offs involving both

upstream and downstream operations, these excessive purity requirements impose an

important layer of challenge in biomanufacturing practices.

All structural characteristics and managerial insights discussed in Section 5.3 are

valid for the reduced-dimension model since it is a special case of the optimization

model considered in Section 5.2. For example, insights related with the monotonic-

ity of the downstream value function and the protein threshold values in Proposi-

tion 5.3.1, the structural characteristics of the pooling windows in Theorem 5.3.2 and

the upstream policies considered in Theorem 5.3.3 are not impacted by the aggrega-
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tion scheme. However, the threshold values i′k,t associated with each impurity k ∈ K in

Theorem 5.3.1 lose their managerial implications since the reduced-dimension model

does not capture the amount of impurities. Instead, Theorem 5.3.1 can be interpreted

such that it is optimal to stop the purification operation when pt ≤ p̌t for a given

impurity state (i1,t, . . . , ik,t) using the chromatography technique c ∈ C at time t ∈ T .

5.5 Insights from Industry Case Study

In this section, we demonstrate the application of the optimization model using a

case study from Aldevron. We first introduce the problem setting in Section 5.5.1,

and then discuss the managerial insights for the downstream purification problem in

Section 5.5.2 and the upstream protein mass problem in Section 5.5.3.

5.5.1 Problem Setting

The purification data considered in this case study is obtained from our industry

partner, Aldevron. The production requirements are 10 milligrams of protein at

100% purity. The target protein is manufactured for in vitro studies. Scouting

runs indicate that the purification process involves 6 candidate chromatography

techniques with an average of 80 pooling windows per chromatography technique.

The starting material consists of a mixture of 9 different impurities along with the

protein of interest. Expected separation outcomes of each available chromatography

technique is presented in Figure 5.3. The solid line in Figure 5.3 represents the

expected fraction of the protein of interest corresponding to each lane using a specific

chromatography technique. The dotted lines are associated with different types of

impurities that are available in the starting material. Chromatography techniques

differ from each other by their separation outcomes, i.e., the relative locations of

impurities and the protein of interest, and their corresponding amount per each lane.
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Figure 5.3: Expected separation outcomes of the candidate chromatography tech-
niques
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For example, Figure 5.3 tracks a specific impurity type (named as Impurity A) on

different chromatography techniques. As the figure shows, the location and amount

of Impurity A corresponding to each lane is different for each chromatography

technique. Similarly, the separation outcome associated with the protein of interest

varies for each technique in Figure 5.3. We note that we mask the information for

remaining impurities in Figure 5.3 to protect client confidentiality. However, as

Figure 5.3 illustrates, the combinatorial nature of the separation outcomes along

with strict quality requirements and high operating costs make this a challenging

problem in practice.

Cost and revenue information used in this case study represents industry standards

based on feedback from several local biomanufacturing companies (BioWGS, 2014),

and is normalized for confidentiality purposes. The normalized values of costs and

revenue are as follows: chromatography operating costs are rc = $3 for each available

chromatography technique since they all use similar types of resins and buffers in this

case study, failure cost cf = $24, lost sale cost c` = $1.2 per milligram of protein in

short, revenue r = 1$ per milligram of protein produced at 100% purity. Upstream

operating costs cu(p1) may vary based on the size and number of bioreactors, feeding

strategies and harvesting polices adopted to achieve the desired amount of protein.

Therefore, we provide a separate discussion on upstream costs and perform sensitivity

analysis in Section 5.5.3.

5.5.2 Insights for Purification Decisions

We present the optimal polices and structural insights for the purification problem

considered in the case study, and discuss the managerial implications of the analytic

results derived in Section 5.3.
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Figure 5.4: Expected outcomes of the optimal policies at each step (for p1 > 16
milligrams)

Overview of the Optimal Policies: Figure 5.4 presents the optimal policies

for the downstream purification problem considered in the case study when p1 > 16

milligrams. We note that the optimal policy in Figure 5.4 has two purification steps

where the chromatography technique in Figure 5.3 (c) and Figure 5.3 (f) are selected

for the first and second step, respectively. Purification policies shown in Figure 5.4

are the optimal ones when the batch obtained from upstream contains p1 > 16

milligrams of protein along with 9 types of impurities. Dotted lines in Figure 5.4

represent the different types of impurities that will be removed using the optimal

chromatography technique and pooling window in the first step; whereas dashed

lines correspond to the impurities that will be removed using the optimal policy

in the second step. The optimal pooling window for the first chromatography step

corresponds to the lanes 9 to 15 in Figure 5.4 (a). Then, based on the expected

outcome of the first step, we expect to pool the lanes 2 to 11 in the second step,

as shown in Figure 5.4 (b). The chromatography technique chosen in the first

step is expected to completely eliminate 5 out of 9 different types of impurities

but also requires (1 − θ) = 12.5% yield losses on average. The chromatography
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Figure 5.5: Expected outcomes of the optimal policies at each step (for 2 < p1 ≤ 16
milligrams)

technique selected in the second step is expected to have high separation capability

for all remaining impurity types with no significant yield losses expected on average

(i.e., 1 − θ ≈ 0%). It is interesting to observe that the optimal policy in this ex-

ample adopts higher yield losses in the first step and lower yield losses in the final step.

The optimal purification policies change as a function of the starting material

obtained from upstream operations. For example, Figure 5.5 illustrates the optimal

purification policies when the starting material contains 2 < p1 ≤ 16 milligrams of

protein along with 9 different impurities. It is interesting to note that the choice of

the chromatography technique remains the same as the ones in Figure 5.4 (although

this need not always be the case). However, the optimal pooling window are different

for both of the chromatography steps compared to Figure 5.4. In Figure 5.5 (a),

the optimal policy pools the lanes 8 to 15 in the first step, eliminating 4 out of 9

impurities. Based on the expected outcome of the first step, we expect that the

optimal policy pools the lanes 2 to 9 in the second step as shown in Figure 5.5 (b).

Although there is a small difference between the pooling window shown in Figure 5.4
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and Figure 5.5, it directly impacts the different types of impurities eliminated at

each purification step. For example, the specific impurity starting at lane 2 and

ending at lane 9 in Figure 5.5 (a) remains in the batch by the end of the first step

when 2 < p1 ≤ 16 milligrams; although that impurity is completely removed during

the first step when p1 > 16 milligrams, as shown Figure 5.4 (a). In this specific

case study, we observe that the optimal purification policies always choose the same

chromatography technique as the ones in Figure 5.4 but varies in terms of the pooling

polices when the protein amount p1 in the starting material changes but the starting

impurity types remain constant. Based on this insight, we next analyze the value

function and optimal pooling policies for different values of p1.

Expected Profit and Optimal Thresholds: Figure 5.6 (a) plots the optimal

value function of the downstream purification problem based on the protein amount

p1 involved in the starting material. Note that the value function V1(p1, i1,1, . . . , i9,1)

in Figure 5.6 represents the expected profit at the beginning of the first chromatog-

raphy step given that the batch obtained from the upstream fermentation operations

contains all 9 different types of impurities shown in Figure 5.3. The value function

V1(p1, i1,1, . . . , i9,1) of the downstream purification problem in Figure 5.6 is nonde-

creasing in the protein amount p1. The critical protein-thresholds for the starting

material are: p̌1 = 2 milligrams with V1(p1, i1,1, . . . , i9,1) = −24 for all p1 ≤ p̌1 = 2,

p̄1 = 15.5 milligrams with V1(15.5, i1,1, . . . , i9,1) = 0, and p̂1 = 23 milligrams with

V1(p1, i1,1, . . . , i9,1) = $14 for all p1 ≥ p̂1 = 23. As the value function indicates,

the biomanufacturing company expects to incur losses in downstream purification

operations when the starting material involves less than 15.5 milligrams of protein.

In practice, depending on the upstream operating costs, the biomanufacturing firm

could reduce or even avoid these losses through optimizing the upstream protein

mass decisions (See Section 5.5.3). On the other hand, the downstream purification
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problem achieves its maximum profit when the starting material obtained from

upstream contains more than 23 milligrams of protein. Note that the demand

requirement is pd = 10 milligrams but p̂1 ≥ 23 milligrams, illustrating the chal-

lenge in achieving the purity requirement without significantly compromising on yield.

Figure 5.6 (b) presents the optimal pooling windows as a function of the pro-

tein amount p1 when the chromatography technique indicated in Figure 5.4 (or Fig-

ure 5.5) are used. Figure 5.6 (b) shows that if the starting material contains p1 ≤ 2

milligrams of protein, then it is optimal to stop the purification despite incurring a

large penalty cost for purity failures. On the other hand, if the starting material

contains 2 < p1 ≤ 16 milligrams of protein, then the optimal policy suggest to pool

the lanes 8-15 in the first purification step; whereas it is optimal to pool the lanes

9-15 if the starting material contains p1 > 16 milligrams of protein. Figure 5.4 and

Figure 5.5 compares the specific impurities that are expected to remain in the batch

by the end of the first purification step when these two different pooling polices are

adopted. The main trade-off between these two pooling policies involves whether

to completely eliminate the specific impurity starting in lane 2 and ending in lane
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Figure 5.7: Total expected profit as a function of the upstream operating costs cu(p1)

9 by the end of the first chromatography step or not. The optimal pooling policy

shown in Figure 5.6 (b) demonstrates that the optimal policy is likely to tend towards

quality-aggressive policies (i.e., pooling the lanes 8-15 vs. lanes 9-15) as the protein

amount in the starting material increases for a given chromatography technique. We

note that this finding aligns with the structural characteristics of the optimal pooling

policies in Theorem 5.3.2.
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5.5.3 Insights for Upstream Protein Mass Decisions

We investigate the optimal amount of protein that should be manufactured in the

upstream fermentation operations by taking into consideration the interlinked nature

of the upstream protein mass and downstream purification decisions. Upstream

operating costs often vary as a function of several parameters, such as, the specific

type and number of bioreactors used in upstream processes, feeding strategies, cell

re-engineering efforts, labor and materials used, harvesting policies, etc. Based on

the feedback from our industry partners, we consider four different cost structures

for the upstream operations (see Figure 5.7), and investigate the impact of these

alternative strategies on the total expected profit.

Figure 5.7 considers four different cost settings for fermentation operations as a

function of the protein amount p1 manufactured in the upstream processes. These

upstream cost settings are defined based on industry feedback. Figure 5.7 also

presents the total expected profit and the optimal protein mass decisions. The solid

lines in Figure 5.7 correspond to the upstream operating costs, and the dashed lines

represent the total expected profit of the optimization problem based on both up-

stream and downstream operations. Figure 5.7 (a) and Figure 5.7 (b) assume a linear

cost structure for the fermentation operations as a function of the protein amount

p1. This cost structure corresponds to the case where a single large bioreactor is used

to manufacture p1 units of protein. In such cases, the biomanufacturing company

incurs a total operating cost cu(p1) = mp1 + n where m represents the variable

costs (i.e., costs of cell culture, buffers, media, process monitoring and control.

etc.) and n is the fixed cost of operating the bioreactor (i.e., clean room charges,

equipment costs, process analytics, etc). The difference between the upstream costs

in Figure 5.7 (a) and (b) is as follows: In Figure 5.7 (a), the total cost of fermentation

operation is roughly equivalent to the cost of one purification step when pd ≤ p1 ≤ p̂1;
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while the fixed and variable cost considered in Figure 5.7 (b) are twice expensive

than the ones in Figure 5.7 (a). Upstream operating costs in Figure 5.7 (b) are

roughly equivalent to the total cost of downstream purification operations when

pd ≤ p1 ≤ p̂1. We note that the value function of the downstream purification

problem is V1(p1, i1,1, . . . , i9,1) = $14 for all p1 ≥ p̂1 = 23. When the upstream costs

are taken into consideration, the maximum profit expected from the order reduces

to V∗0 = $10.57 in Figure 5.7 (a) and V∗0 = $7.27 in Figure 5.7 (b). We note that the

optimal protein mass is p∗1 = 23 milligrams in both Figure 5.7 (a) and (b), which is

also identical to p̂1 that maximizes the expected profit of the downstream purification

problem in Figure 5.6.

Figure 5.7 (c) and Figure 5.7 (d) consider linear operating costs with step-wise

increments every p1 = 10 milligrams. This setting represents the case where batch or

fed-batch processes are operated either in parallel or series. For example, upstream

operating costs in Figure 5.7 (a) and Figure 5.7 (c) are identical when 0 ≤ p1 ≤ 10

milligrams. However, producing 10 < p1 ≤ 20 milligrams of protein in Figure 5.7 (c)

requires two bioreactor runs, each producing 0 ≤ p1 ≤ 10 milligrams. Therefore, the

step increments in Figure 5.7 (c) are mainly associated with the additional bioreactor

runs. At high protein amount p1, we note that the cost structure in Figure 5.7 (a)

benefits from the economies of scale when compared to Figure 5.7 (c). Similarly, the

upstream operating costs in Figure 5.7 (b) and Figure 5.7 (d) are identical when

0 ≤ p1 ≤ 10 milligrams. However, the manufacturing setting in Figure 5.7 (d)

requires an additional bioreactor run every p1 = 10 milligrams while the setting in

Figure 5.7 (b) benefits from the economies of scale. Although the cost settings in

Figure 5.7 (a) and Figure 5.7 (b) are more favorable than their counterparts in Fig-

ure 5.7 (c) and Figure 5.7 (d), they are not always feasible because of the bioreactor

capacity constraints. As Figure 5.7 (c) and (d) illustrate, the total expected profit
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Figure 5.8: Total expected profit when higher protein mass is expensive

considering both upstream and downstream operations does not necessarily have a

monotonic structure, although upstream operating costs are nondecreasing in p1.

The maximum expected profit is V∗0 = $8.57 in Figure 5.7 (c) and V∗0 = $3.27 in

Figure 5.7 (d) with the optimal protein mass of p∗1 = 23 in both cases. Note that the

abrupt change in the total profit at p1 = 21 in Figure 5.7 (d) is associated with an

additional bioreactor run required to manufacture more than 20 milligrams of protein.

It is interesting to observe that all upstream costs considered in Figure 5.7 have led to

the optimal protein mass p∗1 = 23 milligrams which is identical to the critical protein

threshold value p̂1 of the downstream purification problem. However, this observation

does not necessarily hold for all upstream cost settings, as discussed in Theorem 5.3.3.

Figure 5.8 illustrates two examples of upstream cost settings where p∗1 < p̂1. Up-

stream operating costs in Figure 5.8 are increasing exponentially in p1. Compared

to their counterparts in Figure 5.7 (a) and (b) where increasing the batch volume

simply increases the protein mass of a bioreactor run, the manufacturing settings in

Figure 5.8 (a) and (b) represent the cases where additional labor and material, spe-

cial media and cells are required to boost the protein mass obtained from a single

bioreactor run. At high protein mass where the bioreactor capacity is a constraint,
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it is possible to encounter such costs structures for engineer-to-order drugs that are

in research and development. Although the downstream purification operations have

the value function V1(p1, 1, . . . , 1) = $14 for p1 ≥ 23, the total expected profit con-

sidering both upstream and downstream operations drops significantly to V∗0 = $3.07

with p∗1 = 22 milligrams in Figure 5.8 (a), and V0 = $− 4.33 with p∗1 = 19 milligrams

in Figure 5.8 (b). We note that the financial losses expected in Figure 5.8 (b) indi-

cate that the price r charged per unit of protein delivered to the customer does not

compensate the efforts in upstream operations. In such cases, Figure 5.8 (b) signals

that some managerial actions are needed to turn financial losses into opportunities

for profit. For example, these actions could include but not limited to outsourcing

the starting material to subscontractors that charge cu(p1) similar to those seen in

Figure 5.7, re-evaluating the unit price r charged to the customer, identifying op-

portunities to reduce upstream operating costs, etc. Based on feedback from our

partners, we note that the managerial insights obtained from Figures 5.6-5.8 could

provide substantial basis to facilitate the way in which biomanufacturers communicate

their manufacturing challenges with their customers.

5.6 Conclusions

Protein manufacturing typically involves upstream fermentation operations where

the cell culture grows and produces the protein of interest, and the downstream pu-

rification operations where the batch of protein is purified by eliminating unwanted

impurities (i.e., contaminants, metabolic residues, dead cells, etc). We focus on

engineer-to-order proteins that are in the research and development phase. These

research and development efforts are typically conducted by a large pharmaceutical

company, but the manufacturing operations could be often performed by contract

biomanufacturers because of the high failure risks, need for specialized labor and
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equipment, and other manufacturing challenges involved in re-engineering proteins.

These manufacturing challenges are typically associated with several factors, i.e.,

limitations in the purification capabilities of available chromatography techniques,

randomness in the process outcomes and yield losses, stringent quality requirements

for the final batch, expensive operating and penalty costs, interlinked nature of the

manufacturing steps, and the strong interaction between the upstream protein mass

and downstream purification decisions. There are excellent studies in the literature

that contribute to the knowledge behind the biology and chemistry of these opera-

tions, but there is a room for improvement for a unified framework that combines the

underlying biology and chemistry with the business implications of biomanufacturing

decisions (i.e., process economics and financial trade-offs, manufacturing capabilities

vs. production requirements, etc.). Because of these manufacturing challenges,

current practices typically rely on historical experience and personal expertise to

deal with the business implications of biological decisions. In this study, we build a

stochastic optimization framework to optimize the profitability of engineer-to-order

proteins considering the manufacturing system-level challenges and business implica-

tions of biomanufacturing decisions.

The optimization problem is decomposed in two sub-problems: the upstream

protein mass problem where the optimal amount of protein obtained from the

fermentation is identified, and the downstream purification problem where the best

choices of the chromatography techniques and polling windows are determined.

First, we analyze the structural properties of the downstream purification problem.

We characterize three critical threshold values, p̌t, p̄t, p̄t for the protein amount pt

involved in the starting material at a purification step t. These threshold values

provide substantial basis for the biomanufacturing firm to evaluate and quantify

the profit (or losses) expected from a specific order. We analyze the structural
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properties of the optimal polling windows for a given chromatography technique, and

identify the conditions under which the optimal policy is to abandon the purification

operations. We then use the structural insight of the downstream purification

problem to evaluate the characteristics of the upstream protein mass problem and

assess the performance of popular protein mass policies used in practice. The cost

of upstream fermentation operations could be a complex function of several design

parameters, such as, the type and number of bioreactors used, cell harvesting and

feeding strategies, etc. Therefore, we consider several different upstream fermentation

configurations typically encountered in practice, and evaluate their optimal value

function and their corresponding protein mass decisions.

This study has been conducted in close collaboration with industry through a se-

ries of working group sessions (BioWGS, 2014), and the research outcomes have been

shared with a broader biotechnology community (BioForward, 2014; Engel, 2014).

Since biomanufacturing operations are subject to strict regulations, the community

response has been of cautious enthusiasm. However, as more biomanufacturing com-

panies embrace operations research tools and techniques, we believe that the regu-

latory authorities might mandate the application of such tools to improve bioman-

ufacturing practices. Future work could evaluate supply chain contract designs and

pricing decisions for engineer-to-order proteins based on the insights obtained from

this optimization framework.
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5.7 Appendix: Proofs

Proof of Lemma 5.3.1. We evaluate several cases to assess the conditions under

which Assumption 5.3.2 holds. We note that all other cases that are not enumerated

in this proof are infeasible scenarios due to the characteristics of the pooling windows

described in Assumption 5.3.1.

Case 1:

• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) ≥ pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c, wnc ) ≥ pd and (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

≥ γd.

Based on the stopping rewards considered in this case, the condition in Assump-

tion 5.3.2 indicates

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd)− r(pd)− r(pd) + r(pd)

= 0.

Hence, Assumption (5.3.2) is satisfied in this case.

Case 2:

• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) ≥ pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and
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• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

In this case, the stopping rewards indicate

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd)− r(pd)− r(pd)− cf

< 0.

Hence, Assumption (5.3.2) does not hold in this case.

Case 3:

• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) ≥ pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

< γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

The stopping rewards yield to

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd)− r(pd) + cf − cf

= 0.

Hence, Assumption (5.3.2) holds in this case.
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Case 4:

• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c, wnc ) ≥ pd and (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

≥ γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd)− r(θp−|c, wn+1
c ) + r`(pd − θp−|c, wn+1

c )+ − r(pd) + r(pd)

≥ 0.

Hence, Assumption (5.3.2) is satisfied.

Case 5:

• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c, wnc ) < pd and (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

≥ γd.
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rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd)− r(θp−|c, wn+1
c ) + r`(pd − θp−|c, wn+1

c )+

−r(pd) + r(θp−|c, wnc )− r`(pd − θp−|c, wnc )

≥ 0.

Hence, Assumption (5.3.2) is satisfied.

Case 6:

• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd)− r(θp−|c, wn+1
c ) + r`(pd − θp−|c, wn+1

c )+ − r(pd)− cf

≤ 0.

Hence, Assumption (5.3.2) does not hold in this case.

Case 7:
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• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

< γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd)− r(θp−|c, wn+1
c ) + r`(pd − θp−|c, wn+1

c )+ + cf − cf

≥ 0.

Hence, Assumption (5.3.2) is satisfied.

Case 8:

• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c,wn+1
c )

(θp−+
∑
k ψkik|c,w

n+1
c )

< γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd) + cf − r(pd)− cf

= 0.
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Hence, Assumption (5.3.2) is satisfied.

Case 9:

• (θp+|c, wn+1
c ) ≥ pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c,wn+1
c )

(θp−+
∑
k ψkik|c,w

n+1
c )

< γd, and

• (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

< γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(pd) + cf + cf − cf

≥ 0.

Hence, Assumption (5.3.2) is satisfied.

Case 10:

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c, wnc ) ≥ pd and (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

≥ γd.
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rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c )− r(θp−|c, wn+1
c )

+r`(pd − θp−|c, wn+1
c )− r(pd) + r(pd)

≥ 0.

Hence, Assumption (5.3.2) is satisfied in this case.

Case 11:

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c, wnc ) < pd and (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

≥ γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c )− r(θp−|c, wn+1
c )

+r`(pd − θp−|c, wn+1
c )− r(pd) + r(θp−|c, wnc )− r`(pd − θp−|c, wnc )

In this case, Assumption (5.3.2) holds under the conditions specified in Lemma 5.3.1.

Case 12:



206

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c )− r(θp−|c, wn+1
c )

+r`(pd − θp−|c, wn+1
c )− r(pd)− cf

≤ 0

Hence, Assumption (5.3.2) does not hold in this case.

Case 13:

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) < pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c, wnc ) < pd and (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

≥ γd.
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rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c )− r(θp−|c, wn+1
c ) + r`(pd − θp−|c, wn+1

c )

−r(θp+|c, wnc ) + r`(pd − θp+|c, wnc ) + r(θp−|c, wnc )− r`(pd − θp−|c, wnc )

≤ 0

Hence, Assumption (5.3.2) holds under the conditions specified in Lemma 5.3.1.

Case 14:

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c, wnc ) < pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c )− r(θp−|c, wn+1
c ) + r`(pd − θp−|c, wn+1

c )

−r(θp+|c, wnc ) + r`(pd − θp+|c, wnc )− cf

≤ 0

Hence, Assumption (5.3.2) does not hold in this case.
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Case 15:

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c, wn+1
c ) < pd and (θp−|c,wn+1

c )

(θp−+
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

< γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c )− r(θp−|c, wn+1
c ) + r`(pd − θp−|c, wn+1

c )

+cf − cf

≥ 0

Hence, Assumption (5.3.2) is satisfied.

Case 16:

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c,wn+1
c )

(θp−+
∑
k ψkik|c,w

n+1
c )

< γd, and

• (θp+|c, wnc ) ≥ pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c ) + cf − r(pd)− cf

≤ 0
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Hence, Assumption (5.3.2) does not hold in this case.

Case 17:

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c,wn+1
c )

(θp−+
∑
k ψkik|c,w

n+1
c )

< γd, and

• (θp+|c, wnc ) < pd and (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

≥ γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c ) + cf − r(θp+|c, wnc )

+r`(pd − θp+|c, wnc )− cf

≤ 0

Hence, Assumption (5.3.2) does not hold in this case.

Case 18:

• (θp+|c, wn+1
c ) < pd and (θp+|c,wn+1

c )

(θp++
∑
k ψkik|c,w

n+1
c )
≥ γd, and

• (θp−|c,wn+1
c )

(θp−+
∑
k ψkik|c,w

n+1
c )

< γd, and

• (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

< γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.
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rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= r(θp+|c, wn+1
c )− r`(pd − θp+|c, wn+1

c ) + cf + cf − cf

≥ 0

Hence, Assumption (5.3.2) holds in this case.

Case 19:

• (θp+|c,wn+1
c )

(θp++
∑
k ψkik|c,w

n+1
c )

< γd, and

• (θp−|c,wn+1
c )

(θp−+
∑
k ψkik|c,w

n+1
c )

< γd, and

• (θp+|c,wnc )
(θp++

∑
k ψkik|c,wnc )

< γd, and

• (θp−|c,wnc )
(θp−+

∑
k ψkik|c,wnc )

< γd.

rs(θp
+, ψ1i1, . . . , ψKiK |c, wn+1

c )− rs(θp−, ψ1i1, . . . , ψKiK |c, wn+1
c )

−rs(θp+, ψ1i1, . . . , ψKiK |c, wnc ) + rs(θp
−, ψ1i1, . . . , ψKiK |c, wnc )

= 0

Hence, Assumption (5.3.2) holds in this case.

Proof of Proposition 5.3.1. (a) We first show that Vt(pt, i1,t, . . . , iK,t) is nondecreasing

in pt for a given impurity level ik,t for all k ∈ K at time t ∈ T . The proof is

done by induction. At the end of the planning horizon t = T , the only available

action is to stop, aT = S. Clearly, the stopping rewards rs(pT , i1,T , . . . , iK,T ) given

in Equation 5.5 are nondecreasing in pT . Next, assume by induction hypothesis that
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Vt(pt, i1,t, . . . , iK,t) is nondecreasing in pt at time t ∈ T . Let p−t ∈ P and pt ∈ P , such

that, p−t < pt at t ∈ T . Then,

Vt(pt, i1,t, . . . , iK,t)

= max
(c,wc)∈C×W

{
− rc +

∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|c, wc)g1(ψ1|c, wc), . . . , gK(ψK |c, wc)×

Vt
(
θpt, ψ1i1,t, . . . , ψKiK,t|c, wc

)
dψK . . . dψ1dθ, rs(pt, i1,t, . . . , iK,t)

}
(5.10)

≥ max
(c,wc)∈C×W

{
− rc +

∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|c, wc)g1(ψ1|c, wc), . . . , gK(ψK |c, wc)×

Vt
(
θp−t , ψ1i1,t, . . . , ψKiK,t|c, wc

)
dψK . . . dψ1dθ, rs(p

−
t , i1,t . . . , iK,t)

}
(5.11)

= Vt(p−t , i1,t, . . . , iK,t)

Note that Equation (5.11) follows from Equation (5.2), Equation (5.7) and the

induction hypothesis. The proof of the monotonicity of Vt(pt, i1,t, . . . , iK,t) in ik,t is

entirely analogous and hence omitted.

(b) Note that the bounds on the value function are −cf ≤ Vt(pt, i1,t, . . . , iK,t)

≤ r(pd) for pt ∈ P and ik,t ∈ Ik for all k ∈ K at t ∈ T . Clearly, these bounds

follow from the stopping costs in Equation (5.5). Therefore, the existence of the

threshold value p̄t, such that, Vt(p̄t, i1,t, . . . , iK,t) = 0, is a direct consequence of the

monotonicity of the value function in pt and its bounds. Next, we use induction to

investigate the existence of the threshold value p̂t at t ∈ T . At time T , the only

available action at state (pt, i1,t, . . . , iK,t) is to stop with rewards rs(pT , i1T , . . . , iK,T ).

The structure of stopping costs in Equation (5.5) indicates that rs(pT , i1T , . . . , iK,T )

is nondecreasing in pT ∈ P for a given impurity level (i1,T , . . . , iK,T ), and constant for

all pT ≥ pd that satisfy the purity requirement. Next, at any time t ∈ T , we observe

that the value function is bounded by r(pd), i.e.,
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Vt(pt, i1,t, . . . , iK,t)

= max
(c,wc)∈C×W

{
− rc + EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|c, wc

)
, rs(p, i1,t . . . , iK,t) + V(∆)

}
≤ max

(c,wc)∈C×W

{
− rc + EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|c, wc

)
, r(pd)

}
(5.12)

= r(pd).

Note that Equation (5.12) is a direct consequence of the monotonicity of

the value function in pt and the stopping cost structure in Equation (5.5), i.e.,

rs(pt, i1,t . . . , iK,t) = r(pd) for all pt ≥ pd when the purity requirement is met at t ∈ T .

Hence, based on the monotonicity in part (a), the value function is nondecreasing in

pt < p̂t and then constant for some pt ≥ p̂t. Next, we refer the reader to the proof

of Theorem 5.3.1 for the existence of the threshold value p̌. Note that the ordering

p̂ ≥ p̄ ≥ p̌ follows from the monotonicity of the value function in p.

Proof of Theorem 5.3.1. Note that Theorem 5.3.1 defines the states (p̌t, i
′
1,t, . . . , i

′
K,t),

such that, γd >
p̌t

p̌t+
∑
k i
′
k,t

and pt ≤ p̌t for all impurity types k ∈ K. At time T , the only

available action is to stop with rewards VT (pT , i1,T , . . . , iK,T ) = −cf for all pT ≤ p̌T

and ik ≥ i′k, k ∈ K. Next, it is sufficient to show that if a∗t (p̌t, i
′
1,t, . . . , i

′
K,t) = S then

a∗t (pt, i1,t, . . . , iK,t) = S for pt ≤ p̌t and ik,t ≥ i′k,t for all k ∈ K at time t ∈ T . Assume

by contradiction hypothesis that a∗t (p̌t, i
′
1,t, . . . , i

′
K,t) = S but a∗t (pt, i1,t, . . . , iK,t) =

(c, wc) for a given pt ≤ p̌t and ik,t ≥ i′k,t, where (c, wc) ∈ C ×W . Then,

rS(p̌t, i
′
1,t, . . . , i

′
K,t) > −rc + EVt+1

(
θp̌t, ψ1i

′
1,t, . . . , ψKi

′
K,t|(c, wc)

)
and

− rc + EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|(c, wc)

)
> rS(pt, i1,t, . . . , iK,t)
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which together imply

0 > EVt+1

(
θp̌t, ψ1i

′
1,t, . . . , ψKi

′
K,t|(c, wc)

)
− EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|(c, wc)

)
.

(5.13)

Since Theorem 5.3.1 defines the states (p̌t, i
′
1,t, . . . , i

′
K,t) such that γd >

p̌t
p̌t+

∑
k i
′
k,t

,

note that the left hand side of the Equation (5.13) is a direct result of the stopping

costs, i.e., rS(p̌t, i
′
1,t, . . . , i

′
K,t) = rS(pt, i1,t, . . . , iK,t) = −cf . However, we observe that

EVt+1

(
θp̌t, ψ1i

′
1,t, . . . , ψKi

′
K,t|(c, wc)

)
− EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|(c, wc)

)
≥ EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|(c, wc)

)
−EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|(c, wc)

)
(5.14)

= 0

which contradicts Equation (5.13), and hence the proof follows. Note that Equa-

tion (5.14) is obtained using the monotonicity of the value function in Proposi-

tion 5.3.1.

Proof of Theorem 5.3.2. Consider two protein amounts, p+
t ∈ P and p−t ∈ P ,

such that, p+
t ≥ p−t > p̌t. We use backward induction to study the structural

properties of the optimal pooling window w∗c on chromatography technique c. At

time T , there is no decision on the pooling windows since the only available action

is to stop with rewards described in Equation 5.5. At time T − 1, assume that

a∗T−1(p−T−1, i1,T−1, . . . , iK,T−1|c) = wn+1
c but a∗T−1(p+

T−1, i1,T−1, . . . , iK,T−1|c) = wnc at a

given impurity level (i1,T−1, . . . , iK,T−1) and chromatography technique c ∈ C. This

implies that,
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0 >

∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|(c, wnc ))g1(ψ1|(c, wnc )), . . . , gK(ψK |(c, wnc ))

rs
(
θp−T , ψ1i1,T , . . . , ψKiK,T

)
dψK . . . dψ1dθ

+

∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|(c, wn+1
c ))g1(ψ1|(c, wn+1

c )), . . . , gK(ψK |(c, wn+1
c ))

rs
(
θp+

T , ψ1i1,T , . . . , ψKiK,T
)
dψK . . . dψ1dθ

−
∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|(c, wnc ))g1(ψ1|(c, wnc )), . . . , gK(ψK |(c, wnc ))

rs
(
θp+

T , ψ1,T i1,T , . . . , ψKiK,T
)
dψK . . . dψ1dθ

−
∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|(c, wn+1
c ))g1(ψ1|(c, wn+1

c )), . . . , gK(ψK |(c, wn+1
c ))

rs
(
θp−T , ψ1i1,T , . . . , ψKiK,T

)
dψK . . . dψ1dθ (5.15)

We note that, if Assumption 5.3.1 and Assumption 5.3.2 hold, then the term

on the right hand side of (5.15) is always positive, which contradicts the inequality

in (5.15). Note that if the conditions stated in Lemma 5.3.1 are satisfied such that

Assumption 5.3.2 holds, then Equation (5.15) leads to a contradiction.

At time t ∈ T , assume that a∗t (p
−
t , i1,t, . . . , iK,t|c) = wn+1

c but a∗t (p
+
t , i1,t, . . . , iK,t|c)

= wnc at a given impurity level (i1,t, . . . , iK,t) and chromatography technique c ∈ C.

This implies that,



215

0 >

∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|(c, wnc ))g1(ψ1|(c, wnc )), . . . , gK(ψK |(c, wnc ))

Vt+1

(
θp−t , ψ1i1,t, . . . , ψKiK,t

)
dψK . . . dψ1dθ

+

∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|(c, wn+1
c ))g1(ψ1|(c, wn+1

c )), . . . , gK(ψK |(c, wn+1
c ))

Vt+1

(
θp+

t , ψ1i1,t, . . . , ψKiK,t
)
dψK . . . dψ1dθ

−
∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|(c, wnc ))g1(ψ1|(c, wnc )), . . . , gK(ψK |(c, wnc ))

Vt+1

(
θp+

t , ψ1i1,t, . . . , ψKiK,t
)
dψK . . . dψ1dθ

−
∫
θ

∫
ψ1

. . .

∫
ψK

f(θ|(c, wn+1
c ))g1(ψ1|(c, wn+1

c )), . . . , gK(ψK |(c, wn+1
c ))

Vt+1

(
θp−t , ψ1i1,t, . . . , ψKiK,t

)
dψK . . . dψ1dθ

=

∫
θ

∫
ψ1

. . .

∫
ψK

{
f(θ|(c, wn+1

c ))g1(ψ1|(c, wn+1
c )), . . . , gK(ψK |(c, wn+1

c ))

−f(θ|(c, wnc ))g1(ψ1|(c, wnc )), . . . , gK(ψK |(c, wnc ))
}
×

Vt+1

(
θp+

t , ψ1i1,t, . . . , ψKiK,t
)
dψK . . . dψ1dθ

−
∫
θ

∫
ψ1

. . .

∫
ψK

{
f(θ|(c, wn+1

c ))g1(ψ1|(c, wn+1
c )), . . . , gK(ψK |(c, wn+1

c ))

−f(θ|(c, wnc ))g1(ψ1|(c, wnc )), . . . , gK(ψK |(c, wnc ))
}
×

Vt+1

(
θp−t , ψ1i1,t, . . . , ψKiK,t)dψK . . . dψ1dθ

(5.16)

Next, we evaluate the term on the right hand side of inequality (5.16) under three

cases:

Case 1: p+
t+1 ≥ p−t+1 ≥ p̄t+1

In this case, Vt+1

(
θp−t , ψ1i1,t, . . . , ψKiK,t) ≥ 0 and Vt+1

(
θp+

t , ψ1i1,t, . . . , ψKiK,t) ≥

0. Hence, monotonicity of the value function in Proposition 5.3.1 along with As-

sumptions 5.3.1-5.3.2 imply that the term on the right hand side of inequality (5.16)

is positive, which contradicts (5.16).
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Case 2: p̄t+1 > p+
t+1 ≥ p−t+1

In this case, Vt+1

(
θp−t , ψ1i1,t, . . . , ψKiK,t) < 0 and Vt+1

(
θp+

t , ψ1i1,t, . . . , ψKiK,t) <

0. Monotonicity of the value function along with Assumptions 5.3.1-5.3.2 lead to a

contradiction with inequality (5.16).

Case 3: p+
t+1 ≥ p̄t+1 > p−t+1

In this case, Vt+1

(
θp−t , ψ1i1,t, . . . , ψKiK,t) < 0 but Vt+1

(
θp+

t , ψ1i1,t, . . . , ψKiK,t) ≥

0. Hence, the proof follows from monotonicity of the value function and Assump-

tions 5.3.1-5.3.2.

Proof of Theorem 5.3.3. We evaluate the value function of the design problem VΠ1
0

and VΠ2
0 under the upstream operating policies Π1 and Π2. For this purpose, we use

the structural properties of the downstream problem defined in Proposition 5.3.1.

(1) Proposition 5.3.1 indicates that the value function associated with the down-

stream problem’s first step operation is V1(p1, i1,1, . . . , iK,1) = r(pd) when p1 > p̂1.

It is easy to observe that VΠ1
0 = −cu(p1) + V1(p1, i1,1, . . . , iK,1) = −cu(p1) + r(pd)

where p1 > p̂1. Hence VΠ1
0 is nondecreasing in p1 when p1 > p̂1. On the other hand,

VΠ2
0 = −cu(p̂1) + r(pd). Therefore, VΠ2

0 > VΠ1
0 since cu(p1) > cu(p̂1) when p1 > p̂1.

(2.a) For p̄1 ≤ p1 < p̂1, we have VΠ1
0 = −cu(p1) + V1(p1, i1,1, . . . , iK,1) and VΠ2

0 =

−cu(p̂1) + r(pd) due to Proposition 5.3.1. Assume by contradiction that VΠ2
0 > VΠ1

0 .

This implies

−cu(p̂1) + r(pd) > −cu(p1) + V1(p1, i1,1, . . . , iK,1)

≥ −cu(p1) + V1(p̄1, i1,1, . . . , iK,1)

= −cu(p1) (5.17)

which contradicts the condition given in part (2.a) of the theorem.
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(2.b) Following on the part (2.a), we now investigate the conditions under which

VΠ2
0 > VΠ1

0 . Assume by contradiction hypothesis that VΠ1
0 > VΠ2

0 , then, this implies

that

cu(p̂1)− cu(p1) > r(pd)− V1(p1, i1,1, . . . , iK,1)

≥ r(pd)− r(pε−1) + c`(pε−1) (5.18)

which contradicts the condition specified in part (2.b) of the theorem. Note that 0 ≤

V1(p1, i1,1, . . . , iK,1) < r(pd) in the range p̄1 ≤ p1 < p̂1, as shown in Proposition 5.3.1.

Hence, we use a discretization scheme ε to derive managerial insights on the maximum

value V1(p1, i1,1, . . . , iK,1) that could be achieved in the interval p̄1 ≤ p1 < p̂1.

(3) In this case, we have VΠ1
0 = −cu(p1) +V1(p1, i1,1, . . . , iK,1) where p̌1 ≤ p1 < p̄1,

p1 ∈ P , and VΠ2
0 = −cu(p̄1) + V1(p̄1, i1,1, . . . , iK,1) = −cu(p̄1) + 0 due to Proposi-

tion 5.3.1. Assume by contradiction that VΠ2
0 > VΠ1

0 . This implies that,

cu(p1)− cu(p̄1) > V1(p1, i1,1, . . . , iK,1)

≥ V1(p̌1, i1,1, . . . , iK,1) (5.19)

= −cf (5.20)

which contradicts the condition specified in Theorem 5.3.3, part (3). Note that

p̌1 ≤ p1 < p̄1, and hence Equation (5.19) follows from the monotonicity of the value

function.

(4) For all p1 ≤ p̌1, we have VΠ1
0 = −cu(p1) − cf and VΠ2

0 = −cf due to Proposi-

tion 5.3.1. Hence, VΠ2
0 > VΠ1

0 .

Proof of Proposition 5.4.1. Consider the original problem described in Section 5.2.

Let Ix be a partition of the state space where Ix ≡ {(pt, i1,t, . . . , iK,t)|pt ∈ P and ik,t >

0 for at least one impurity type k ∈ K} at time t ∈ T . For the proposed aggregation
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scheme to be exact, it is enough to show that the value function is piecewise constant

over the partition Ix of the state space. At time t = T , the stopping costs under

γd = 100% purity requirement are:

rs(pT , i1,T , . . . , iK,T )

=


r(pd) if pT ≥ pd and ik,T = 0 for all k ∈ K,

r(pT )− c`(pd − pT ) if pT < pd and ik,T = 0 for all k ∈ K,

−cf otherwise.

(5.21)

The stopping cost structure in Equation (5.21) is constant over the partition Ix

of the state space, i.e., the value function over the partition Ix is VT (Ix) = −cf .

At time t = T − 1, the value function is:

VT−1(pT−1, i1,T−1, . . . , iK,T−1)

= max
(c,wc)∈C×W

{
rs(pT−1, i1,T−1 . . . , iK,T−1) + V(∆),

−rc + EVT
(
θpT−1, ψ1i1,T−1, . . . , ψKiK,T−1|(c, wc)

)}
(5.22)

which is piecewise constant over the partition Ix since rc is constant and indepen-

dent of the state, and also the transition probabilities gk(Ψk = 0|c, w) are independent

of the protein pT−1 and impurity amount ik,T−1 for all ik ∈ Ix. Hence, the proof fol-

lows from the structural characteristics of VT (Ix) and Equation (5.21). Next, at any

time t ∈ T , we have

Vt(pt, i1,t, . . . , iK,t) = max
(c,wc)∈C×W

{
− rc + EVt+1

(
θpt, ψ1i1,t, . . . , ψKiK,t|(c, wc)

)
,

rs(p, i1,t . . . , iK,t) + V(∆)
}
, (5.23)

which is piecewise constant over the partition Ix due to the induction hypothesis,

structural properties of the costs rc and rs(p, i1 . . . , iK), and the structural character-
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istics of the transition probabilities gk(Ψk = 0|c, w). Hence, the proof follows from

Bertsekas (2012)(Vol 2, pages 476-479).
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Chapter 6

Future Directions

6.1 Biomanufacturing Supply Chain Contracts

The optimization models developed in Chapters 3, 4 and 5 can be used to refine

pricing decisions, reduce risks, and provide more value to contract biomanufacturers

and their clients. As a future work, one can investigate how to incorporate the

optimization models developed in Chapter 3, 4, and 5 into contract design. More

specifically, stochastic games between the large pharmaceutical company (client) and

the contract biomanufacturer (supplier) can be analyzed. The large pharmaceutical

company outsources the manufacture of an engineered protein, but the manufactur-

ing protocol is often not specified since the protein is uniquely engineered for clinical

trials. If the contract biomanufacturer agrees to accept that order, then they often

perform several initial test runs (named as scouting experiments) to determine if and

how the protein of interest can be manufactured to meet customer specifications.

While negotiating with the clients, the contract biomanufacturer could benefit

from the optimal harvesting time analysis in Chapter 3, the decision-zones (risk,

target and failure zones) derived in Chapter 4, and the optimization framework
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linking the upstream and downstream decisions in Chapter 5. Therefore, future

research can incorporate these insights into designing/refining the terms of contracts.

For example, it could be interesting to explore the following issues:

Refining pricing schemes for failure and risk zones: Information obtained

from scouting runs would enable the contract biomanufacturer to predict batch

failures (i.e., the failure zone in Chapter 4) before committing to the production

runs. Knowing the failures before starting the production runs would significantly

help reduce time delays and penalty costs. For example, if a starting material is

identified to be in the failure zone, then the biomanufacturer and the client could take

several corrective actions before stating production runs, and hence prevent costly

delays and expensive penalties. These actions would include (but not limited to)

re-negotiating the production requirements with the client, requesting better starting

material from the client, re-manufacturing the starting material in-house, outsourcing

the starting material, re-negotiating the price with the client, or terminating the

contract. Feedback from our industry partners indicate that a formal and rigorous

assessment of risks and batch failures based on scouting runs would significantly fa-

cilitate the way how biomanufacturers communicate their challenges with their clients.

Refining pricing schemes based on target zones: Negotiating the pricing

scheme after scouting runs could be beneficial when the starting material is in the

target zone. For example, if the starting material is in the target zone, the contract

biomanufacturer would be able to provide performance guarantees to the client using

the information from scouting runs. This would add significant value to the client

since they will be able to confidently schedule future experiments for the subsequent

phases of clinical trials, and they will also have significant visibility for the success-

ful completion of their order. This would also add significant value to the contract
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biomanufacturer since they would be able to provide performance guarantees despite

process uncertainties and also enhance customer satisfaction. We believe that the

contract biomanufacturer’s capability of providing performance guarantees after per-

forming scouting runs would increase their competitive advantage. Therefore, refin-

ing the terms of contracts based on these performance guarantees and decision-zones

would significantly improve the communication with the clients, hedge against failure

risks and expensive penalty costs, provide better visibility for the production pipeline

and ensure customer satisfaction.

6.2 Performance Evaluation of the Decision Zones

In Chapter 4, we analyze the pooling window optimization problem related to down-

stream purification operations. We study the structural properties of the state space,

and then partition the state space into distinct decision zones. Note that the failure

zone represents all impurity and protein amounts in the starting batch, such that, the

biomanufacturing company has no financial incentives for performing the purification

operations. Furthermore, the target zone provides a guaranteed performance, such

that, the biomanufacturing company can be confident about meeting the customer

requirements on purity and yield when the starting material is in that zone. The

risk zone, on the other hand, represents all protein and impurity amounts in the

starting material such that the biomanufacturing company has high risk of incurring

large yield penalty costs or quality failures. The analysis in Chapter 4 characterizes

and derives closed form expressions on these zones, and also investigates the optimal

purification policies corresponding to each zone.

As a future work, one can investigate the main factors that affect the size and

structure of the decision zones in Chapter 4 and quantify their sensitivity to criti-
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cal process parameters (i.e., the number of purification steps, yield and purity re-

quirements, operating and penalty costs, and the separation capabilities of the chro-

matography techniques, etc). Specifically, the following research questions could be

interesting to explore:

• What are the main factors that drive the size and structure of the failure zone,

risk zone and target zone? How sensitive is each zone to critical process param-

eters, such as, the number of purification steps, yield and purity requirements,

operating and penalty costs, etc?

• How does the size and structure of each zone change as a function of the critical

process parameters? What is the impact of the chromatographic separation

capabilities on these decision-zones?

6.3 Analysis of Biomanufacturing Systems Under

Capacity Constraints

Chapter 3 develops stochastic models to identify the optimal harvesting time for up-

stream bioreactor operations, and Chapter 4 and Chapter 5 develop optimization

models for downstream purification operations. Future work could build optimiza-

tion models that capture manufacturing system-level constraints, such as, storage

capacity constraints, production capacity constraints, scheduling issues, availability

of equipment and labor, etc. Future work could analyze the following questions:

• Should the equipment availability in downstream operations be considered while

making the harvesting decisions in upstream? For example, should a batch

harvested earlier/later than its optimal time identified in Chapter 3 based on

the equipment availability in downstream operations? Or should the harvesting
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decision take advantage of the storage option and not consider the equipment

availability in downstream operations?

• How can one develop production planning and scheduling strategies that con-

sider the interaction between upstream and downstream operations and also

take into account the randomness in yield, quality, processing times and costs?

To answer these research questions, future work could involve building simulation

models or queuing networks to analyze the manufacturing system-level interactions

between upstream and downstream operations. For example, simulation studies or

performance evolution of the queuing networks could reveal several managerial in-

sights related with the impact of equipment availability at downstream operation on

the harvesting decision at the upstream operations. Furthermore, simulation studies

or queuing network models could help evaluate several performance parameters, such

as, the total lead time taking into consideration the complex interaction between up-

stream and downstream operations, throughput of the biomanufacturing system and

the amount of the protein delivered to customers, etc. Such performance measures

derived by the simulation models or queuing networks could provide important in-

sights in evaluating several scheduling policies based on the equipment availability

constraints and randomness in biomanufacturing operations.
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