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§ Abstract 

Biological-Network Guided Machine Learning for Understanding Gene 

Regulation in Human Brains and Disease Phenotypes from Multi-omics Data 

Saniya Khullar 

Under the supervision of Professor Daifeng Wang at the University of Wisconsin-Madison  

 

Understanding the genetic basis of nervous system diseases, such as Alzheimer’s disease (AD), is 

crucial due to their profound impact on global health and individual quality of life. These diseases present 

a spectrum of clinical manifestations, with diverse phenotypes that affect their onset, progression, and 

severity. Genome-Wide Association Studies (GWAS) have shed light on numerous genetic variants, 

including Single Nucleotide Polymorphisms (SNPs), linked to AD and other brain-related disorders. 

However, a challenge remains to unravel molecular and cellular mechanisms by which these variants 

contribute to disease pathology. 

A notable difficulty is that many SNPs have only modest effect sizes but can cumulatively 

influence the risk of brain-related disorders. Moreover, ~90% of SNPs are in non-protein-coding regions 

of DNA and their functional impact is difficult to decipher. Thus, it is important to interpret the role of 

these previously orphaned variants in the context of disease manifestation. The integration of multi-modal 

patient data has significantly enhanced our understanding of the molecular and cellular dynamics that 

underpin disease progression and phenotypic variation. Despite this progress, and the advances in 

computational methods integrating multi-omics data, a cohesive narrative that connects genotype and 

phenotype through gene regulatory mechanisms, like gene regulatory networks (GRNs), is still missing; 

GRNs link Transcription Factor (TF) proteins to the target genes (TGs) they help regulate. Indeed, while 

GWAS and expression Quantitative Trait Loci (eQTL) studies have started to map the relationships 

between SNPs and disease risk and SNPs and TG expression changes, respectively, the disruption of 

GRNs and their impact on disease TGs is not fully understood. 

To help address these gaps, I introduce SNPheno, my computational pipeline developed to link 

disease-associated SNPs with GRNs, and TGs involved in complex phenotypes. SNPheno helps elucidate 

the impact of SNPs on transcriptional dysregulation by investigating how they can alter TF binding sites 

and, subsequently, TF regulation of TGs. These disruptions are correlated with disease phenotypes and 

aberrant biological processes and pathways, particularly in brain-related diseases. I apply SNPheno to 
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uncover genetic mechanisms associated with AD and severe Covid-19, examining 3 brain regions with 

known dysregulation in AD, using bulk-level data that reflects the collective patterns of diverse cell types. 

The complexity of gene regulation within specific cell types necessitates a deep dive into TF 

coordination at the cellular level. Existing tools often overlook crucial, widespread TF-TF protein-protein 

interactions (PPIs) that underpin gene regulation in a cell-type-specific context. To bridge this gap, I 

introduce NetREm, a novel approach utilizing network regression embeddings to reveal the intricate 

network of TF coordination and regulatory modules regulating gene expression. NetREm integrates prior 

knowledge like direct and/or indirect PPIs among TFs, providing a more detailed representation of cell-

type-specific GRNs and TF-TF PPIs. We benchmark NetREm’s performance in various human and 

mouse cell types and apply it to construct both GRNs and TF-TF coordination networks in myelinating 

and non-myelinating human Schwann cells, as well as in eight glial/neuronal cell types in AD and control 

states. Top findings are validated using functional genomic data from humans, rats, and mice, including: 

eQTLs, GWAS, CUT&RUN (Cleavage Under Targets and Release Using Nuclease) sequencing, 

Chromatin immunoprecipitation sequencing (ChIP-seq) data, knockout studies. 

Overall, my interpretable machine learning-based pipelines construct genotype-to-phenotype 

networks that identify potential candidate biomarkers for various health outcomes. This dissertation 

illuminates how non-coding SNPs may influence complex biological mechanisms such as TF-TF 

coordination, and how these mechanisms translate into changes in gene expression at the tissue or cell-

type level, contributing to diverse disease phenotypes. Further, I explore the evolution of these regulatory 

and coordination mechanisms during disease progression and their variability across brain regions and 

cell types. I annotate existing TF-TF PPIs at the cell-type level and flag novel PPIs for follow-ups. By 

presenting SNPheno and NetREm, I offer two novel computational approaches for predicting and 

integrating GRN and TF-TF coordination networks from multi-omics data. These methods deepen our 

understanding of brain-related diseases and beyond, contribute to on-going advancements in precision 

medicine, and also aid in identifying network-based biomarkers for disease phenotypes. 
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§ Chapter 1: Introduction 

§ 1.1 Background and Motivation 

The human brain, a complex central hub, orchestrates multitudes of functions – from governing organs 

and tissues to shaping behaviors, emotions, intelligence, thoughts, memories. These aspects collectively 

define our humanity and personality (NINDS NIH et. al 2013). Recent statistics highlight the gravity of 

neurological disorders, the leading cause of death in 2016 (GBD 2016 Neurology Collaborators et. al 2019). 

Moreover, nearly 20% of U.S. adults were affected by mental illnesses in 2019 (NIMH NIH et. al), and 

these statistics are worsening and becoming bleaker. For instance, over 33% of Covid-19 survivors have 

developed psychiatric or neurological illnesses (e.g. Alzheimer’s disease (AD)) within 6 months post-

infection (Nania et. al 2021). Tackling fundamental questions in this domain is crucial for advancing 

precision medicine and helping pave a way for developing targeted therapies and interventions globally. 

During my Ph.D. program, I have focused on researching and helping advance our understanding of 

challenges related to 4 key research gaps in this area. In this section, I provide background and 

motivation for these 4 problems and highlight existing approaches and limitations in addressing them.  

Patient population data on cohorts with various brain diseases measure several phenotypes like 

disease progression. Many complex diseases exist on a clinical continuum, with some patients having 

milder and others having debilitating intensity levels (Ivleva et al. 2010). Identifying neurocognitive 

phenotypes may help explain the underlying biology of complex brain disorders (Congdon et al. 2010), as 

the extent of impairment varies greatly. “There is no one type of autism, but many” (AutismSpeaks.org), as 

Autism Spectrum Disorder (ASD) exists on a spectrum of degrees of difficulty with social skills, speech, 

repetitive behaviors, non-verbal communication, educational attainment (ASD severity endophenotype 

(Wong et. al 2021)). With neuronal connections and neurons dying, AD patients gradually forget aspects 

about themselves, losing memory, cognitive abilities, executive function. Many underlying molecular 

changes happen (e.g. amyloid-𝛽 plaques, chronic neuroinflammation, neurofibrillary tangles (NFTs)). AD 

phenotypes include stages, MMSE scores (measure cognitive function/awareness in elderly), NFTs, Braak 
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progression (neuropathology), CERAD scores (Blalock et al. 2011), diagnosis age, cognitive diagnosis, age 

at death (Bennett et al. 2018), cognitive resilience (ability of individuals with neurodegeneration to ward off 

AD (Aiello Bowles et al. 2019)). A study on Schizophrenia (SCZ) populations analyzed stages (clinical high 

risk for psychosis, first episode of psychosis, chronic SCZ (del Re et al. 2015)) while another focused on 2 

molecular SCZ subtypes (Bowen et al. 2019). A Multiple Sclerosis (MS) study looked at 3 categories based 

on frequency of MS-related attacks, recovery states, neurological deficits, impairment levels (Tajouri et al. 

2007). Another study (Cappelletti et al. 2023) measured Parkinson’s disease (PD) phenotypes related to the 

degree of Lewy bodies (LBs, i.e. Alpha-synuclein protein aggregates in different brain regions) in the 

frontal cortex of 84 postmortem donors (23 healthy, 61 with varying degrees of LB pathology). 

Phenotypes (e.g. activity level count, time in an elevated zero-maze, percent of time spent in open 

quadrants) helped study molecular interplays among stress, alcohol, and anxiety in mice Hippocampal 

tissues (Luo et al. 2018). Electronic Health Records (EHRs) are also used to obtain disease phenotypes 

(Strauss et al. 2021). Properly defining Bipolar Disorder (BD) phenotypes, using diagnosis and clinical 

features, has enabled genetic investigations to uncover BD susceptibility genes (MacQueen et. al 2005). 

These diseases present a wide clinical spectrum, with diverse phenotypes related to their onset, 

progression, severity. 

Adult humans have over 37 trillion cells, categorized into ~200 distinct types (Bianconi et al. 

2013). Each cell type, despite having identical DNA, expresses a unique set of genes relevant to its 

specific role and context in the body. Abnormal gene expression is often linked to diseases. Investigating 

these gene expression patterns can improve our understanding of cell-type-specific disease mechanisms 

and may help identify key genes involved in diseases and their associated phenotypes (Wong et. al 2021).  

Emerging single-cell data analyses have shown many target genes (TGs) have cell-type-specific 

gene expression patterns, highlighting gene regulation is both cell-type and context-dependent. The 

composition of brain regions, which varies in diseases such as AD (e.g. potential increase in immune cells 

and decrease in neurons), can be effectively studied using single-cell data like scRNA-seq (i.e. single-cell 

gene expression), scATAC-seq, DNase-seq, scChIP-seq (Jiang et. al 2020). This data can help reveal 
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intricate TG dynamics in complex biological processes across various cell types (He et al. 2023), helping 

identify genuine biological variants (e.g. single nucleotide polymorphisms (SNPs)), disease-associated 

TGs, specific cell types pathologically targeted by diseases (Sealfon et. al 2021). SNPs are the most 

common type of genetic variation, where a single base change in the DNA sequence can influence gene 

function, contribute to individual differences, and impact disease susceptibility. Techniques on single-cell 

data allow for exploration of functional genomics, epigenetic signatures, regulatory mechanisms, and 

gene expression at a cell-type level, capturing the complete transcriptome of individual cells, shedding 

light on intricate characteristics of various tissues. Through scRNA-seq, cells from different individuals 

can be analyzed simultaneously, measuring thousands of genes per cell (Wang et al. 2021b), thereby 

mitigating technical batch effects, enabling detection of expressed cell-type-specific genes. Recent 

advancements in single-cell multi-omics can revolutionize our understanding of cell-type-specific TG 

regulation in brain diseases. 

Nonetheless, understanding gene regulation, especially in the context of cell-type-specific gene 

expression and deeper disease phenotypes in brain disorders, is still challenging (Gap #1). The regulation 

of transcription of a given TG involves various regulatory factors, including non-coding SNPs, proteins 

like Transcription Factors (TFs), regulatory elements (e.g., enhancers, promoters). These factors 

collectively form gene regulatory networks (GRNs), comprising directed regulatory relationships from 

TFs to TGs, which respond to extracellular signals to control gene expression and functions, determining 

cell types, identities, disease states (Sinha et. al 2020). GRNs are pivotal in transcriptional regulation, 

helping explain how TFs bind to specific TF Binding Sites (TFBSs) on regulatory elements to regulate 

transcription and subsequent expression of their TGs. State-of-the-art tools (e.g. BEELINE (Pratapa et. al 

2020), SCENIC (Aibar et. al 2017), GRNBoost (Moerman et al. 2019), Signac (Stuart et. al 2021), scGRNom 

(Jin et al. 2021), PoLoBag (Roy et. al 2020), TIGRESS (Haury et al. 2012), SCODE (Matsumoto et al. 2017), 

Inferelator 3.0 (Skok Gibbs et al. 2022), CellOracle (Kamimoto et al. 2023)) build cell-type GRNs from 

single-cell gene expression data, using co-expression, correlation, differential equation, Bayesian-

network, information-theoretic, machine learning, and/or multi-omics integration-based techniques to 
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infer potential relations among individual candidate TFs and their TGs that they help regulate (e.g. TF-TG 

regulatory links). Nonetheless, gene regulation in eukaryotic organisms, like humans, is inherently 

intricate; these tools may discard TF-TG pairs with weak or de-coupled relations (e.g. uncorrelated 

expression), when such TFs could instead regulate the TG through more complicated avenues (e.g. joint 

coordination with other TFs)(Zaborowski and Walther 2020). These tools may also struggle to account for 

the noisiness of gene expression data, which may also be attributed to coordination among TFs (Parab et 

al. 2022). Further, there is an issue of high correlation among TF predictors, and these tools may drop 

some of these correlated predictors (that may include true, causal TFs for the TG regulation) and/or opt 

for more independent predictors (that may not necessarily be causal). Thus, a core drawback of these tools 

is that they mainly consider TFs in isolation, overlooking the interdependent protein-protein interactions 

(PPIs) among coordinating TFs that are critical for cell-type TG regulation.  

Complicating gene regulatory mechanisms is this fact that, in humans, combinations of TFs often 

interact directly or indirectly (typically cooperate not compete) along with the transcription initiation 

complex to coordinate regulation of their TGs. The extent and implications of this TF coordination, 

driving TG regulation genome-wide, is a widely observed yet poorly understood phenomena (Ibarra et. al 

2020), especially across cell types. Uncovering the interactome (set of molecular physical interactions 

among biological entities may help explain how gene functions and regulation work together; a 

significant hurdle in network biology is the quality and coverage of interactome data of PPIs (Sevimoglu 

and Arga 2014). These protein interactions are involved in orchestrating various biological processes 

among organelles and structures in the cell (Liu et al. 2018). While SCINET (Li and Li 2008) reconstructs 

cell-type interactomes, it falls short in illustrating TG regulation. TF-Cluster (Nie et al. 2011) identifies 

functionally coordinated TFs involved in biological processes but does not focus on TG regulation and is 

based on coexpression analysis (and does not use any existing prior knowledge). That is, there is this 

knowledge gap in understanding the TF-TF coordination networks of indirect and direct interactions 

among TFs at the protein-level that are involved in the regulation of TGs (Gap #2). Current human PPI 

networks of direct and/or indirect functional associations among TFs are often at a global level (i.e. are 
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not cell-type-specific (Yeger-Lotem and Sharan 2015)) and may not encompass all interactions among TFs 

that are important for cell-type gene regulation. These PPI networks are largely incomplete, hindering the 

study of network properties of disease genes. Estimates suggest that there may be ≈130-650k human 

PPIs, but only a fraction of them are identified through experiments (Sevimoglu and Arga 2014; Venkatesan 

et al. 2009) and may include incomplete and false positive (FP; false PPI) links (Yu et al. 2020).  

This lack of cell-type-specific PPI networks presents another challenge to be tackled. On-going 

research efforts urge developments in bioinformatics and computational biology tools to cost-effectively 

help annotate existing PPIs and discover and nominate novel PPIs (to be examined by follow-ups in wet-

lab studies) at the cell-type-level (Yu et al. 2020). There is a growing need for condition-specific (e.g. cell-

type) interactomes that represent protein interactions in specific tissues or under conditions, which can 

enhance the significance of network analysis, especially when studying disease-associated alterations in 

PPIs. Brain disorders like AD demonstrate tissue-specific gene expression changes attributed to 

transcriptional regulation by TFs (Pearl et al. 2019), which likely coordinate with each other in TF-TF 

coordination networks. Risk variants (e.g. SNPs) for diseases (e.g. developmental disorders) are known to 

alter PPIs. Nonetheless, the specific impact of these mutations on not only diseases but also on disease-

related phenotypes is largely unexplored (Cheng et al. 2021), and efforts to annotate PPIs at a cell-type 

level are in their infancy.  

In light of these varying phenotypes in brain diseases, researchers are exploring how genetic 

variants (e.g. SNPs) influence disease genes and phenotypes, as that is still unclear. Genome-Wide 

Association Studies (GWAS) have identified numerous SNPs associated with AD and other brain 

disorders, establishing Disease-SNP links. However, these SNPs typically exhibit weak effect sizes and 

contribute cumulatively to the complexity of these diseases. Remarkably, ~90% of these SNPs are on 

non-coding DNA (Maurano et. al 2012; Li and Ritchie 2021), often within regulatory elements like TFBSs. 

These locations suggest they might affect TF binding, consequently disrupting TG regulation and 

expression, either locally or distally (Farrow et al. 2022). Such disruptions can influence core disease genes 

and phenotypes within complex networks, underscoring the need to explore their dysregulation effects on 
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disease outcomes. Nonetheless, deciphering the molecular and cellular impact of SNPs on TG expression 

in brain diseases represents a formidable challenge. While computational tools for analyzing the impact of 

coding SNPs on disease outcomes are relatively advanced, frameworks for studying non-coding SNPs are 

still budding (Wong et. al 2021; Novikova et al. 2021a). Disease GWAS, when combined with expression 

quantitative trait loci (eQTL: SNP-TG links), can identify disease risk SNPs associated with TG 

expression; phenome-wide association studies (PheWAS) test for meaningful associations between 

GWAS SNPs and disease phenotypes (Diogo et al. 2018). Yet, these approaches often fall short in 

elucidating the detailed gene regulatory mechanisms by which these SNPs influence disease-related TGs 

and their respective role in deeper disease phenotypes, especially as these diseases exist on a spectrum 

(Gap #3). This gap highlights a broader challenge in the field (Sevimoglu and Arga 2014): effectively 

integrating diverse data sources to understand how genetics (including non-coding mutations) and 

environmental factors impact disease phenotypes functionally. Thus, developing methods to understand 

the impact of non-coding SNPs on disease phenotypes, particularly at the cell-type and tissue levels, is 

vital for uncovering novel genetic mechanisms associated with disease phenotypes. This is crucial, given 

the significant role of regulatory variation in contributing to phenotypic diversity observed in human 

populations (Thompson et. al 2015). 

Researchers utilize the deeper population phenotypes for complex diseases along with gene 

expression data to perform various analyses. For instance, they employ Differential Expression (DE) 

analysis to identify significant DE genes (DEGs) (Love et al. 2023) associated with phenotypes and co-

expression networks (e.g. Weighted Gene Co-Expression Network Analysis (WGCNA) (Langfelder and 

Horvath 2008) on bulk data, scWGCNA on single-cell data (Morabito et al. 2021)) to correlate genes with 

gene modules, disease phenotypes, biological pathways, enrichments. Co-expressed genes typically share 

similar expression dynamic patterns, implying that they may share a common set of TFs binding to their 

regulatory elements (i.e. are likely to be co-regulated (Allocco et al. 2004)), ensuring their coordinated 

transcription (van Duin et al. 2023). Still, co-expression network analysis is unsupervised learning and 

learns several False Positive associations (Badia-i-Mompel et al. 2023). Further, these computational 
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methods do not adequately explain patterns of TG regulation and direct regulatory interactions. It is vital 

to also uncover underlying gene regulatory mechanisms controlling DEGs, co-expression networks, gene 

expression dynamics (Pearl et al. 2019). There is a need for integrative methods to build comprehensive 

GRNs (e.g. combining GRNs and gene co-expression networks) to help uncover how perturbations in 

GRNs may be associated with changes in disease phenotypes and other context-specific biological 

pathways. GRNs are entangled in cellular machinery and it is vital to link gene regulation to these cellular 

processes (Badia-i-Mompel et al. 2023).  

Machine Learning (ML) approaches have significantly enhanced the integration of multi-omics 

data, improving predictions about the impact of SNPs on phenotypes, the effects of dysregulated TGs on 

biological pathways, and future disease risks at both tissue and cell-type levels (Sealfon et. al 2021). There 

is increasing focus on network-based ML methods, which connect non-coding SNPs with potential TGs 

and use network biology to identify novel disease-related TGs (Wong et. al 2021). An example is NetWAS 

(Network-Wide Association Study), which uses tissue- and cell-type-specific networks along with gene-

level P-values in an ML classifier to re-prioritize GWAS associations, thereby identifying TGs associated 

with diseases (Wong et al. 2018). Such methods incorporate the latest multi-omics data across various 

tissues and diseases, revealing insights into the associations between SNPs, and control versus disease 

states. Other studies have tried to integrate co-expression networks with edge-weighted PPI networks to 

construct disease-specific networks to uncover biomarkers for diseases (Su et al. 2022). However, these 

current ML approaches (e.g. NetWAS) are limited in their ability to fully explore prioritized GRNs for 

disease and phenotype prediction, especially at the cell-type level. Multi-omics data, combined with 

networks on gene regulatory mechanisms and pathway ML models, are crucial for deepening our 

understanding of human diseases (Wong et. al 2021). 

Recent literature underscores the need for predictive models that include information on genes, 

modules, and pathways involved in diseases, focusing on how network perturbations affect disease risk 

(Wong et. al 2021; Chandrashekar et. al. 2023). Network biology advocates the construction of ‘triggers 

networks’, integrative biological networks (weaving networks related to: regulatory interactions, PPIs, 
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metabolism, signaling) that relate potential biomarkers to disease mechanisms (Sevimoglu and Arga 2014). 

While many computational methods integrating multi-omics data have been developed for predicting 

brain disease biomarkers, they often fall short in fully elucidating the link between genotype and 

phenotype through gene regulatory mechanisms at both tissue and cell-type levels (Chandrashekar et. al. 

2023; Gupta et. al 2022). Designing network-based predictive ML models that incorporate biological 

ground truth data, including regulatory, interaction, and functional networks associated with diseases, is 

key to predicting disease phenotypes and identifying candidate biomarkers (Gap #4).  

§ 1.2 Research Contributions 

§ 1.2.1 Overview 

In response to the 4 broad challenges highlighted in §1.1, I have developed 2 innovative computational 

tools, SNPheno (§ Chapter 2, Figure 1.1) and NetREm (§ Chapter 3, Figure 1.2).  

• SNPheno: Predict the role of non-coding SNPs on gene regulatory mechanisms and phenotypes 

• NetREm: Network Regression Embeddings reveal cell-type TF coordination for gene regulation  

My research uses multi-omics data to investigate gene regulatory mechanisms (e.g. GRNs, gene co-

expression networks, TF-TF coordination networks) and their links to brain disease phenotypes, aiming to 

create a comprehensive narrative from genotype to phenotype. I built SNP-effected-GRNs to elucidate 

how non-coding disease SNPs may potentially affect complex biological processes and contribute to 

disease severity. Further, my work examines the evolution and variability of regulatory and TF 

coordination mechanisms across brain regions and cell types during disease progression. This includes 

identifying cell-type-specific PPI subnetworks that play roles in TG regulation.  

Many of the networks that I construct (e.g. TF-TF coordination networks, SNP-effected-GRNs, 

comprehensive GRNs) are unprecedented. Hence, creative methods are needed to utilize their knowledge 

and data structures to make inferences on potential biomarkers. Thus, I apply ML models to these 

networks to identify potential biomarker SNPs and TGs for brain diseases. In summary, SNPheno and 
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NetREm are poised to help deepen our understanding of brain-related diseases and aid in identifying 

network-based biomarkers for disease phenotypes.  

In my personal capacity, I regard the development of the SNPheno and NetREm computational 

tools as my most significant contributions to the field thus far. These tools have been pivotal in advancing 

our understanding of genetic regulation and disease mechanisms, and I see them as foundational building 

blocks for further research, laying the groundwork for future innovations in precision healthcare and 

personalized medicine. As I write about these tools, I do so with both humility and pride. 

§ 1.2.2 Computational tools 
SNPheno (Khullar and Wang 2023, 2021): addresses Challenges 1, 3, and 4. SNPheno is a novel 

computational method to integrate multi-modal features at the cell-type level to link non-coding SNPs to 

disease genes and phenotypes for various brain diseases. It is challenging to identify genetic variants (e.g. 

SNPs) that may alter GRNs in brain disorders. An integrated annotation at a base-pair resolution, across 

cell and tissue types, is required for mechanistic and diagnostic predictions and determining 

shared/different mechanisms among these diseases. Through SNPheno we can better understand the 

molecular architecture of various brain diseases, namely both the: shared regulatory mechanisms and 

differential disease, epigenetic, tissue, and cell-type/tissue-type specific impacts of these SNPs across 

complex diseases. SNPheno networks help better explain the role of non-coding SNPs on disease 

phenotypes at a cell and tissue-type level to provide novel insights on genetic mechanisms associated with 

brain-related disease phenotypes. 

NetREm (Khullar et al. 2023): addresses Challenges 1, 2, 3 (partially), and 4. NetREm is an innovative 

computational method that integrates multimodal data to output cell-type-specific regulatory and 

coordination networks that predict how TFs coordinate (cooperatively or antagonistically) in groups to 

co-regulate TGs. TFs act in concert with each other in biologically-meaningful PPIs to regulate target 

gene expression. Direct as well as indirect TF-TF interactions may be captured by PPI networks (PPINs). 

Traditional, state-of-the-art GRN-inference tools do not consider PPIs when predicting TF-TG 

relationships. NetREm is designed to improve upon weaknesses in these existing tools that do not 
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consider the interdependent role of TF coordination with other TFs for regulating TGs; it leverages 

network-regularized regression to predict expression of target genes subject to a PPIN constraint among 

the predictors. Overall, NetREm inputs gene expression, a TF-TF PPIN, and an optional prior state-of-

the-art cell-type GRN that links TFs to target genes TGs (initial feature selection of TFs).  

§ 1.3 Research Outline 
In Chapter 2, I introduce SNPheno, a computational pipeline to connect disease-associated SNPs, GRNs, 

and TGs implicated in complex phenotypes. This tool aims to shed light on the influence of SNPs on 

transcriptional dysregulation by examining the effect of alterations in TFBSs on TF regulation of TGs, 

disease phenotypes, abnormalities in biological pathways. SNPheno creates a comprehensive SNP-

effected-GRN linking disease SNPs to their respective TGs, phenotypes, pathways. In this chapter, we 

apply SNPheno to AD and Covid-19, focusing on 3 brain regions dysregulated in AD. This analysis uses 

bulk-level data comprised of diverse cell types. Initial steps include gene co-expression network analysis 

in these regions, revealing that certain genes exhibit similar expression dynamics in relation to AD 

progression and associate with rogue immunity. This underscores interactions among TG expression, 

neuroimmunology, Covid, AD. Subsequent GRN predictions identify TFs governing co-expressed genes. 

By examining GRNs and AD-phenotype-related co-expression modules and KEGG (Kyoto Encyclopedia 

of Genes and Genomes) pathways for AD and Covid, we identify AD-Covid genes in each brain region as 

primary features in our ML analysis for predicting Covid severity. We identify 36 predictive AD-Covid 

genes across our models and use them to differentiate AD from Controls in another brain region (Zhang et 

al. 2024). Notably, our ML performance in predicting Covid severity and AD surpasses existing methods 

using established marker genes. Finally, we map AD and severe Covid GWAS SNPs onto our GRNs to 

explore functional mechanisms and AD phenotypes related to these SNPs, particularly focusing on the 36 

predictive AD-Covid genes.  

In Chapter 3, I introduce NetREm (Khullar et al. 2023) a novel method using network regression 

embeddings to reveal complex networks of TF coordination that regulate TG expression. To provide a 

more detailed representation of cell-type-specific TF-TG regulatory networks and TF-TF coordination 
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networks, NetREm incorporates additional data, such as PPIs. NetREm uncovers cell-type-specific TF-TF 

PPI subnetworks and novel cell-type TF-TF links for follow-ups to examine (i.e. if both TFs in that TF-

TF link interact directly or indirectly). That is, NetREm identifies functionally-coordinating groups of 

TFs, likely involved in biologically meaningful PPIs, which may co-regulate the TGs. I present 

simulation studies on toy data to showcase NetREm’s methodology and its relative advantages. Then, I 

benchmark the performance of NetREm’s TF-TG regulatory networks and TF-TF coordination networks 

in various cell-types spanning humans and mice. Further, I utilize multiomics data to derive initial GRNs 

of candidate TF-regulatory element-TG links, which I input to NetREm for 2 real-world applications in 

humans: 1. myelinating (mSCs) versus non-myelinating (nmSCs) Schwann cells (SCs); 2. Eight glial 

and/or neuronal cell-types in AD versus Controls. In both applications, we apply NetREm to construct 

both TF-TG regulatory networks (complementary to a GRN) and unprecedented TF-TF coordination 

networks. These initial GRNs are constructed using various multi-omics data (e.g. scATAC-seq data on 

accessible DNA regions for the cell-type, cell-type cis-candidate regulatory elements (cCREs) of 

chromatin interactions, eQTL data, gene expression data, PPIs, TF binding profiles). We validate top 

findings using available functional genomic data in humans, rats, or mice (e.g. eQTLs, GWAS, 

CUT&RUN sequencing, ChIP-seq data, knockout studies). We obtain TF-TF links annotated with 

neurodegenerative diseases. Then, we compute changes in cell-type TF-TF coordination network 

embedding values between Control and AD across TGs as input to our ML models; these models identify 

candidate cell-type biomarker TGs for neurodegeneration. Further, we present examples of GWAS-eQTL 

colocalized disease risk SNPs altering Transcriptional Regulatory Modules (TRMs, subnetworks of TF-

TF coordination networks) and TF-TG regulatory networks associated with disease-associated TGs. 

In Chapter 4, I summarize and critically assess the limitations of SNPheno and NetREm, 

discussing the implications of both methods and outlining potential avenues for future research. Please 

note that supplementary Chapter A (SNPheno) and Chapter B (NetREm) are publicly-available on 

GitHub (SaniyaKhullar 2024) and contain supplementary methods and materials, figures, tables, data files, 

and hyperlinks for Chapters 2 and 3 of this main dissertation, respectively. Proteins (e.g. TFs, and TGs 
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(italics) are represented by HGNC (Human Genome Organization (HUGO) Gene Nomenclature 

Committee) symbols. It is my hope that the insights and discoveries from this dissertation will pave the 

way for future innovations and interventions that can transform patient care and public health outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 – Challenges addressed by SNPheno 

Current approaches do not explain the entire gene regulatory mechanisms that link SNP to disease outcomes or 

phenotypes. It is important to understand the full regulatory mechanisms. For instance, GWAS associate SNPs 

with diseases. PheWAS associate SNPs with disease phenotypes, and eQTL data tries to link expression 

quantitative trait SNPs (i.e. eSNPs) with changes in target gene expression (i.e. eTGs) in eSNP-eTG pairs. 

SNPheno helps integrate this in a holistic method. 
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Figure 1.2 – Challenges addressed by NetREm 

It is challenging to integrate PPIs among TFs along with other multi-omics data to infer gene regulatory 

mechanisms at the cell-type and tissue-type levels.  
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§ Chapter 2: SNPheno: Predicting brain-regional gene 

regulatory networks from multi-omics for Alzheimer’s 

disease phenotypes and Covid-19 severity  

§ 2.0 Abstract 

Neuroinflammation and immune dysregulation play a key role in Alzheimer’s disease (AD) and are also 

associated with severe Covid-19 and neurological symptoms. Also, genome-wide association studies 

(GWAS) found many risk single nucleotide polymorphisms (SNPs) for AD and Covid-19. However, our 

understanding of underlying gene regulatory mechanisms from risk SNPs to AD, Covid-19 and 

phenotypes is still limited. To this end, we performed an integrative multi-omics analysis to predict gene 

regulatory networks for major brain regions from population data in AD. Our networks linked 

transcription factors (TFs) to TF binding sites (TFBSs) on regulatory elements to target genes (TGs). 

Comparative network analyses revealed cross-region-conserved and region-specific regulatory networks, 

in which many immunological genes are present. Furthermore, we identified a list of AD–Covid genes 

using our networks involving known AD and Covid-19 genes. Our machine learning analysis prioritized 

36 AD–Covid candidate genes for predicting Covid severity. Our independent validation analyses found 

that these genes outperform known genes for classifying Covid-19 severity and AD. Finally, we mapped 

genome-wide association study SNPs of AD and severe Covid that interrupt TFBSs on our regulatory 

networks, revealing potential mechanistic insights of those disease risk variants. Our analyses and results 

are open-source available, providing an AD–Covid functional genomic resource at the brain region level. 

§ 2.1 Introduction 

AD, a neurodegenerative disease, affects over 50 million elders worldwide (Alzheimers.net). Late-onset 

AD (LOAD) comprises > 97% of all AD cases, usually occurring after age 65 (Rabinovici 2019). AD 

patients experience phenotypic changes such as memory loss, cognitive decline, weak executive function 

(Alzheimers.net) (e.g. poor Mini-Mental State Exam (MMSE) scores). Many underlying molecular changes 

happen like an accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), chronic 
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neuroinflammation (may begin decades before clinical onset). Nonetheless, molecular mechanisms 

behind AD progression and phenotypes remain elusive. Misguided innate immunity may be a major 

culprit driving AD based on the neuroimmunomodulation theory of AD (Maccioni et. al 2018). 

Molecular interconnections that exist between the central nervous system (CNS) and immune 

system (Zass et al. 2017) are also seen via the strong correlations between AD and the severity of Covid-19 

infection (Thompson et. al 2022). Covid-19, a robust marker for an overreactive immune system, can also 

mediate neuroinflammation (Amruta et. al 2021). β-coronaviruses (like Covid-19) may attack the CNS, 

elevating AD dementia processes (Erausquin et. al 2021). Covid survivors have greater risk of 

neurological/psychiatric problems and brain fog (neuro-Covid (Heming et al. 2021) or long-Covid); patients 

may have visible neuropathological abnormalities in brain structure (Thompson et. al 2022) (e.g. 

Hippocampus atrophy (Gordon et. al 2021)) similar to those found in AD patients (Reiken et. al 2022). AD 

brains have high levels of circulating pro-inflammatory cytokines associated with activation of microglia 

[macrophage resident immune cells typically downregulated in healthy brains (Zass et al. 2017); these 

cytokines also contribute to the cytokine storm causing exaggerated inflammation characteristic of severe 

Covid (Su et. al 2021). In fact, Covid patients experiencing delirium (symptom linked with high risk of 

AD) are at grave risk of death and typically sent to an Intensive Care Unit (ICU) (Gordon et. al 2021). Elder 

patients (age > 65 years) are 70% likelier to be diagnosed with AD within a year of Covid infection 

(Lindsey et. al 2022). There is a 2-fold increased risk of Covid death in AD patients (Anderson et. al 2021) 

and of higher severity of Covid for patients with APOE4 (E4 alleles for the key LOAD risk gene APOE) 

(Inal 2020). Links among Covid, cognitive decline and neurodegenerative diseases like AD are puzzling 

and poorly understood (Gordon et. al 2021). AD itself has over 34 canonical and intricately interconnected 

pathways, making that process daunting (Mizuno et. al 2012). Focusing on AD–Covid pathways may be a 

useful starting point of departure given their strong links. Thus, understanding genetic effects and 

underlying molecular mechanisms for shared AD–Covid paths may shed more insights on rogue immune 

responses not only in AD but also in severe and/or neuro Covid-19. 
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Several neuroimmunology pathways are shared by AD and Covid. One of them is the NF-κB 

(Nuclear Factor Kappa-light-chain-enhancer of activated B cells) pathway that is found in almost all cell-

types and that regulates, inter alia, brain homeostasis (maintains synapse plasticity, learning, memory; 

moderates neuron survival/apoptosis)(Jha et. al 2019), innate immunity, inflammation (Lawrence 2009). A 

prominent hypothesis believes AD may be caused by an impaired NF-κB pathway (Jha et. al 2019) with 

overactivated NF-κB transcription factors (TFs) like RELA and NFKB1. This may lead to more 

cytokines, neuroinflammation, oxidative stress complications, activated microglia, neuron death (Jha et. al 

2019). NF-κB TFs are also involved in a positive feedback loop, activating pro-inflammatory cytokines in 

severe Covid (Su et. al 2021). RELA, one of the most important TFs regulating Covid response (Fagone et. 

al 2020), is associated with APOE4 (Xiong et al. 2021). Gene regulatory networks (GRNs) can capture how 

these TFs regulate several genes of pro-inflammatory cytokines. Thus, to understand neuroimmunology in 

Covid-19 and AD better, it is important to analyze these underlying gene regulatory mechanisms. 

Gene expression and regulation are key mechanisms leading to human diseases. Studies found 

differentially expressed genes (DEGs) in AD in various brain regions like the Hippocampus Cornu 

Ammonis 1 (CA1), Lateral Temporal Lobe (LTL), Dorsolateral Prefrontal Cortex (DLPFC). In particular, 

the CA1 region—which is crucial for autobiographical memory, mental time travel, and self-awareness—

usually has the biggest loss in memory ability, neurogenesis, volume and neuronal density in the AD 

Hippocampus (Bartsch et. al, 2011). The LTL contains the cerebral cortex (responsible for hearing, 

understanding language, visual processing, and facial recognition) (Goldstein et al. 2017) and is impacted 

early in AD (Nativio et. al 2020). The DLPFC is involved in executive functioning (working memory and 

selective attention), supports cognitive responses to sensory information (Sturm et al. 2016), works with the 

Hippocampus to help mediate complex cognitive functions (Brinton et al. 2009), and has plasticity deficits 

in AD patients (Kumar et. al, 2020). It is still challenging to understand the molecular and cellular 

mechanisms that fundamentally drive the early progression of AD, especially in these three brain regions.  

Gene co-expression networks are widely used to identify co-expressed gene modules and link 

expression patterns to AD phenotypes (Morabito et. al 2020). Genes in a module show similar expression 
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dynamics across phenotypes, denoting that they share certain molecular mechanisms that are dysregulated 

in AD (Wan et al. 2018). Nevertheless, understanding gene regulatory mechanisms controlling DEGs, co-

expressed genes and modules for various AD phenotypes as they relate to the immune system is unclear. 

Gene expression and function are controlled by various regulatory factors working together in a GRN, 

like: TFs binding to TF binding sites (TFBSs) on regulatory elements (e.g. enhancers, promoters). 

However, our understanding of gene regulation in AD and in AD–Covid is still limited. 

Researchers have identified genetic risk variants associated with various brain-related diseases 

like AD and found that most risk SNPs (occur at a single DNA position among individuals) may be 

involved in changes in gene regulation. Over 90% of disease risk SNPs from GWAS are in non-coding 

regions (Kumar et al. 2017), as 98.5% of human DNA is non-coding. GWAS SNPs shed more light on 

specific biological effects of certain variants and mechanisms associated with complex disease 

phenotypes. This genetic variation can lead to differential disease risk in people; harmful protein-coding 

SNPs typically lead to downstream effects (e.g. truncated, loss-of-function, or harmful proteins; altered 

protein properties or structures) that can be properly examined (Wong et. al 2021). GWAS linked LOAD 

SNPs to genes by proximity to coding DNA(Novikova et al. 2021b), uncovering risk genes associated 

with microglia, increased cytokines, activation, neuroinflammation, worse AD (Kinney et al. 2018a); 

besides APOE4, no causal AD determinants are known. This is the “missing heritability problem”: 

GWAS SNPs explain just a small fraction of total heritability of complex diseases (Wong et. al 2021).  

Most brain-related diseases like AD are polygenic, shaped by many SNPs, genes, environmental 

factors (e.g. epigenetics) that are still poorly understood (van der Wijst et al. 2020). Recent studies support 

an omni-genic model, where complex diseases can be attributable to thousands of harmful SNPs battling 

other protective SNPs (Wong et. al 2021), affecting genes that can further impact core genes (via 

interactions, shared functions, pathways, networks). Thus, even SNPs with small effect sizes (p > 5e-8, 

below statistical significance, having small impact on disease susceptibility) can contribute to overall 

disease phenotypes. Unlike for protein-coding SNPs, there is no uniform way to decode functional impact 

of non-coding SNPs. Computational approaches elucidate the role of coding variants on human diseases 
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utilizing well-established properties of protein-coding DNA, and novel approaches need to uncover how 

previously orphaned non-coding variants can impact disease (Wong et. al 2021). PheWAS (phenome-wide 

association study) tests for any meaningful genotype-phenotype association between GWAS SNPs and 

various disease phenotypes (Diogo et al. 2018). It still is challenging to link GWAS or PheWAS non-

coding disease-risk SNPs to potential disease genes and understand their downstream functions (e.g. 

impact on genes, cellular, molecular mechanisms), and association with deeper disease phenotypes like 

susceptibility and progression.  

To address these issues, we performed an integrative analysis (SNPheno pipeline) of multi-omics 

to reveal genes, functions and GRNs from AD and/or severe Covid-19 GWAS SNPs to AD phenotypes 

for the three brain regions as mentioned above (Figure 2.1, §2.2). Given a brain region, we built a gene 

co-expression network using population gene expression data from an AD cohort and identified co-

expressed genes and modules associated with AD phenotypes. We then integrated chromatin interaction 

data (e.g. High-throughput chromosome conformation capture (Hi-C)) and TF-gene expression 

relationships to predict TFs regulating co-expressed genes by binding to the regulatory elements that 

control these genes. Our machine learning (ML) analysis prioritized 36 AD–Covid candidate genes for 

predicting Covid severity and we evaluated further their ability to predict AD. Finally, we identified risk 

SNPs altering these TFBSs and analyzed their impact on our GRNs and AD phenotypes. We emphasized 

subnetworks and regulatory SNPs associated with our predicted AD–Covid genes. Thus, our analysis may 

provide deeper insights into molecular causes of neuroimmunology pertaining to AD, Covid-19 severity, 

neuro-Covid and AD–Covid. 

§ 2.2 Materials and Methods 

2.2.1 SNPheno: Our pipeline of integrative analysis for predicting gene 

regulatory mechanisms from AD and/or severe Covid-19 risk variants to AD 

phenotypes 

Our analysis can be summarized as a pipeline to predict SNP-effected-GRNs (linking SNPs to GRNs) 

from disease risk variants to phenotypes (Figure 2.1). SNP-effected-GRNs for specific phenotypes link 
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disease risk SNPs, non-coding regulatory elements and TFs to genes and genome functions, providing 

comprehensive mechanistic insights on gene regulation associated with disease phenotypes. Specifically, 

the pipeline includes the following steps. Here, our analysis is open-source available at 

https://github.com/daifengwanglab/ADSNPheno. We use human reference genome: hg19 (GRCh37: 

Genome Reference Consortium Human Build 37) for genomic coordinates and our following analysis. 

• Step 1: Input population gene expression data of individuals and clinical information on AD 

phenotypes such as Braak staging and progression. 

• Step 2: Input data are used to construct a gene co-expression network linking all possible gene pairs. 

Network edge weights are correlations of gene expression profiles across input samples. The network 

is clustered further into gene co-expression modules. Genes in a module are likely to share similar 

functions and be co-regulated by specific regulatory mechanisms. 

• Step 3: Annotate gene co-expression modular functions and biological pathways by enrichment 

analyses of genes in the given module (using various biological resources). 

• Step 4: Associate modules and genes with AD phenotypes of the input samples, revealing potential 

driver genes (e.g. hubs) and modules for these phenotypes. 

• Step 5: Predict gene regulatory networks (GRNs) for genes and gene modules. We apply multiple 

computational methods to predict GRNs that link TFs to non-coding regulatory elements (e.g. 

enhancers, promoters) to genes and modules, providing regulatory mechanistic insights on AD genes 

and modules. 

• Step 6: Link disease risk variants (e.g. Single Nucleotide Polymorphisms (SNPs)) to the gene 

regulatory network. Our pipeline identifies functional AD and/or severe Covid risk SNPs that alter 

(increase or decrease) TF binding to TF binding sites (TFBSs) in regulatory elements in the GRN i.e. 

regulatory SNPs. We can then connect these non-coding regulatory SNPs to genes and modules and 

then to AD phenotypes and biological enrichments. 

• Step 7: Output a SNP-effected-GRN that links AD and/or severe Covid risk SNPs, non-coding 

regulatory elements, TFs to genes and their gene modules, genome functions (via module enrichment 

https://github.com/daifengwanglab/ADSNPheno
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analysis in Step 3) for AD phenotypes in the input data. This network has SNP-Regulatory Element-

TF-gene-module-phenotype links. 

This SNP-effected-GRN highlights how non-coding disease SNPs alter TF binding on or near TFBSs in 

regulatory elements for TGs, which belong to certain gene co-expression modules (based on shared 

expression dynamic patterns) that have various biological functions and have respective associations with 

various AD phenotypes in the patient population data.  

Figure 2.1 – SNPheno: Integrative analyses to predict gene regulatory networks from disease risk 

variants to phenotypes 

 
Primarily, this analysis consists of 7 major steps as a pipeline: SNPheno. 

• Step 1: it inputs the population gene expression data with phenotypic information.  

• Step 2: It uses that expression data to construct and cluster gene co-expression networks → gene modules.  

• Step 3: It performs enrichment analysis for these gene modules.  

• Step 4: It links genes and modules to various phenotypes from the input population.  

• Step 5: It predicts the Transcription Factors (TFs) and regulatory elements (e.g. TF binding sites along 

enhancers and/or promoters) that regulate genes and co-regulate modular genes as a GRN.  

• Step 6: It further finds disease risk variants [e.g. Genome-Wide Association Studies (GWAS) Single 

Nucleotide Polymorphisms (SNPs)] that alter the binding sites of TFs from this GRN.  

• Step 7: Finally, it outputs a SNP regulatory network (SNP-effected-GRN) linking functional non-coding 

disease risk variants to impacted TFs and enhancers/promoters to regulated genes and modules to enriched 

functions and pathways to disease phenotypes. This network thus provides a deeper understanding of gene 

regulatory mechanisms in diseases. As a demo, in this paper, we applied this pipeline to Alzheimer’s 
disease (AD) population datasets from different brain regions.  
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We predicted brain-specific GRNs for various AD phenotypes such as progression stages. Then, we built 

SNP-effected-GRNs by mapping single nucleotide polymorphisms (SNPs) from several AD GWAS 

datasets and a GWAS related to Covid-19 severity in Covid-positive individuals to these GRNs. 

2.2.2 Population gene expression data and data processing in Alzheimer’s 

disease (AD) 
We applied this pipelined analysis to post-mortem human AD population gene expression data for 3 

major AD brain regions: Hippocampal CA1 (Hippocampus), LTL, DLPFC. We removed lowly expressed 

genes (0 variance; relative weights below 0.1), using the goodSamplesGenes() function in the weighted 

gene co-expression network analysis (WGCNA) (Langfelder and Horvath 2008) package in R. There are 

12,183 shared genes across these 3 regions, including non-coding genes. We did not pre-adjust gene 

expression data using covariates (e.g. patient metadata) as those are used downstream as phenotypes. We 

performed feature engineering to create additional phenotypes for the human samples. We processed the 

data as follows, striving to meet quality control standards. 

Hippocampus: We used microarray gene expression dataset (GSE1297) (Blalock et al. 2004), 

which had total RNA expression values for 22,283 HG-U133 Affymetrix Human Genome U133 Plus 2.0 

Microarray Identifier probes for 31 individual samples (9 control (no AD) and 22 samples in various AD 

stages: 7 initial, 8 moderate, 7 severe). We used GEOquery (Davis et. al 2007), hgu133a.db (Carlson et. al 

2016), hgu133acdf (Project TB, 2015) and Affy (Gautier et. al, 2004) R packages to download raw gene 

expression data and perform Robust Multichip Average (RMA) normalization (Fan et. al 2013) to account 

for background and technical variations among the samples. We mapped microarray probes to genes, 

averaging values that mapped to the same gene Entrez ID and removing unmapped probes. We applied a 

𝑙𝑜𝑔2(𝑥 + 1) transform to the gene expression data (the 𝑥) and then standardized that data by R’s (R Core 

Team, 2021) scale() function. The final Hippocampus expression data has 13,073 genes for the 31 samples.  

LTL: We used normalized bulk RNA-Seq dataset (GSE159699) (Nativio et. al 2020) with total 

RNA expression values for 27,130 different genes for 30 individual samples. This group of individual 

samples includes 18 control samples (8 young (below age 60), 10 old (above age 60)) and 12 old samples 
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with advanced AD. We applied a 𝑙𝑜𝑔2(𝑥 + 1) transformation to the data. The final LTL gene expression 

data has 25,292 genes for these 30 samples.  

DLPFC: We used FPKM (Fragments per kilobase of exon per million mapped fragments) gene 

expression data from the ROSMAP Study (synapse.org ID: syn3219045) (Perry et. al, 2018). We found that 

638 out of 640 individual RNA-Seq samples have mapped phenotypes. For instance, for the final 

consensus cognitive diagnosis (cogdx) phenotype on cognitive impairment: we have 201 samples in 

Group 1 (none), 168 in Groups 2–3 (mild), 269 in Groups 4–6 (AD/other dementia). We applied a 

𝑙𝑜𝑔2(𝑥 + 1) data transform and then standardized data with R’s scale() function (R Core Team, 2021). The 

final DLPFC gene expression data has 26,014 genes for the 638 samples. 

2.2.3 Regulatory elements and Chromatin interactions in human brain regions 
Epigenomic data has identified a variety of regulatory elements like enhancers and promoters. Chromatin 

interaction data (e.g. Hi-C) further revealed interactions among enhancers and gene promoters. Thus, we 

integrated recently published epigenomic and chromatin interaction data to link enhancers to genes (via 

promoters). For the Hippocampus, we obtained enhancers and promoters from Brain Open Chromatin 

Atlas (Fullard et. al 2018) and promoter-based interactions from GSE86189 (Jung et. al 2019). We used R 

package TxDb.Hsapiens.UCSC.hg19.knownGene (Team BC, Maintainer BP, et. al 2019) to retrieve 

promoter start and stop positions of genes in the LTL and DLPFC, using a short ultra-conserved promoter 

length of 5,000 base pairs upstream of the protein-coding start site on the DNA (Rödelsperger et al. 2009). 

GSE130746 (Nativio et. al 2020) H3K27ac (DNA Histone H3 protein acetylation of the lysine residue that 

is found at the N-terminal position 27 for H3) data (used for the LTL) has information on the gene, 

distance from the histone H3K27ac epigenetic mark to that gene’s Transcription Start Site (TSS), 

enhancer start and end positions; our final LTL enhancers were at least 1 kilobase pair (kbp) away from 

the TSS. We used PsychENCODE (Gandal et. al 2018) enhancers and interacting enhancer-promoter pairs 

for the DLPFC. 
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2.2.4 Weighted Gene co-expression network analysis (WGCNA) 
We applied WGCNA (Langfelder and Horvath 2008) to population gene expression data to construct and 

cluster gene co-expression networks into gene co-expression modules (minimum module size = 30 genes; 

no modules were merged). Then, we applied an additional K-Means clustering step based on code (Botía 

et. al 2017) and methodology previously utilized and proven to improve conventional WGCNA module 

assignments and functional enrichments (Lear et al. 2023), in applications like finding brain-specific cell-

type marker enrichments. This step utilizes modular eigengenes (MEs) from WGCNA modules as initial 

centroids, initial WGCNA gene assignments and computable distance between the genes and MEs for K-

Means to re-assign genes to optimal modules (retaining the number of modules originally detected by 

WGCNA) across iterations till convergence. In total, we obtained 30 gene co-expression modules for 

Hippocampus (13,073 genes), 56 for LTL (25,292 genes), 35 for DLPFC (26,014 genes). 

2.2.5 Enrichment analyses of gene co-expression modules 
Co-expressed genes in the same module are highly likely to be involved in similar functions and 

pathways. Enrichment analysis has thus been widely used to identify such functions and pathways in a 

gene module. P-values for enrichments were adjusted using the Benjamini–Hochberg (B-H) correction 

procedure (for multiple hypothesis testing) and enriched terms with adjust P-value < 0.05 were selected. 

Given a group of genes (e.g. from a module) for each brain region, we performed enrichment analysis 

using multiple tools and their respective gene databases (e.g. Metascape (Zhou et al. 2019), g:Profiler 

(Reimand et al. 2007), WGCNA (Langfelder and Horvath 2008), rentrez (Winter et al. 2020), Bader Laboratory 

(Bader et. al, 2021), Maayan Laboratory (Rouillard et al. 2016), ABAEnrichment (Grote et al. 2016), 

Psygenet2r (Gutierrez-Sacristan et al. 2023), TissueEnrich (Jain and Tuteja 2019), ClusterProfiler (Wu et al. 

2021; Yu et al. 2012), CellMarker (Zhang et al. 2019)). Table A.1 (SaniyaKhullar 2024) lists the hundreds of 

data sources used for enrichment analyses. Since we used multiple tools for enrichment analysis, a gene 

module could have many − log10(𝑎𝑑𝑗𝑢𝑠𝑡 P) enrichment values for a given enriched term; in that case, 

we used the highest enrichment value for that term for the module. To visualize enriched terms for a 
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phenotype in a brain region, we averaged non-zero − log10(𝑎𝑑𝑗𝑢𝑠𝑡 P) values for only the gene modules 

that are significantly positively correlated (Pearson 𝑟 > 0, P < 0.05) with that phenotype. 

2.2.6 Association of genes and modules with AD phenotypes 
AD patients experience memory loss, cognitive decline, and weak executive function, as reflected in their 

poor Mini-Mental State Examination (MMSE) results. These changes are brought about by an 

accumulation of Amyloid plaques between neurons, Neurofibrillary Tangles (NFTs) within neurons, and 

neuroinflammation that ultimately lead to massive neurodegeneration (Riddle 2012). We further 

associated genes and modules with these key AD developmental phenotypes, including: AD stages and 

progression (moderate stage, severe stage, AD Progression), healthy/resilient (Control individuals or 

resilient individuals with better cognitive abilities despite advanced AD pathology), APOE genotype 

(E4/E4 is a huge AD risk factor, while E2/E2 is protective (Safieh et. al, 2019)), Braak staging (stages from 

1 to 6, with 6 linked to severe neuropathological damage and spread of NFTs across the brain), 

accumulation of Amyloid plaques between neurons (neuritic plaque accumulation measured by CERAD 

score), cognitive impairment level. We associated gene co-expression modules with all possible AD 

phenotypes from the input data, by computing the pairwise correlations of each modular eigengene (ME) 

with each phenotype. WGCNA’s MEs are the first principal components of modular gene expression; an 

ME is a vector representing gene expression levels of input samples and is the likeliest gene expression 

pattern of the genes in that module. We used WGCNA’s moduleTraitCor() and moduleTraitPvalue() 

functions to correlate these MEs with phenotypes, finding the most significantly positively associated 

phenotypes for our gene modules for our analysis (P-value < 0.05, positive correlation 𝑟). Our modules of 

interest i.e. ‘phenotype-enriched modules’ are positively correlated with at least one AD-related 

phenotype (including the control stage phenotype since such modules may typically be down-regulated in 

expression during AD progression). We performed similar analysis (that we used for the MEs) for each of 

our genes using the expression data for that given gene to find significant phenotypes positively 

associated with that gene in that brain region. We used gene co-expression networks to examine the 
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relationship between genes and AD phenotypes and identify potential driver (hub) genes for modules 

(based on the degree of connectivity for each gene in its respective gene co-expression module). 

2.2.7 Prediction of gene regulatory networks (GRNs) from multi-omics 

GRNs, a key molecular mechanism, fundamentally control gene transcription and expression. Co-

expressed genes are likely co-regulated by similar GRNs. In fact, studies (e.g. (Allocco et al. 2004)) have 

observed that a given pair of genes with very strongly correlated gene expression profiles are very likely 

to have a common TF that binds to their respective promoter regions on the DNA; moreover, higher co-

expression correlations among these genes are associated with an increased number of common TFs (Gu 

et al. 2011). Thus, our analysis integrates multiple methods to predict GRNs from gene expression data. 

We predicted GRNs in brain regions using not only gene expression data but also chromatin interaction 

data to link TFs to regulatory elements to target genes (TGs)/modules. For our full DLPFC GRN, we used 

the published PsychENCODE GRN (Elastic Net regression weight cutoff: 0.1) filtered for genes in the 

DLPFC gene expression data (Wang et al. 2018a). Our full GRNs linked TFs to regulatory elements (REs) 

(enhancers/promoters; chromosome #: regulatory region start—end) to TGs. 

We used these 4 steps to construct our full Hippocampus GRN and full LTL GRN. First, we 

identified REs that potentially interact using recent chromatin interaction data (Hi-C) and Step 1 of 

the scGRNom pipeline (Jin et al. 2021). Second, we infer TFBSs on the basis of consensus binding site 

sequences on interacting enhancers and promoters by TFBSTools (Tan and Lenhard 2016) and motifmatchr 

(Schep and University 2023) using Step 2 of the scGRNom pipeline. We generate a chromatin interaction-

based reference network linking TFs to REs (by TFBSs) to TGs (by interactions). Third, using gene 

expression data for a given brain region, we predicted all possible TF–TG pairs (or TF-modules) with 

strong expression relationships by applying three widely used tools: RTN (Groeneveld et al. 2023), TreNA 

Ensemble Solver (Arment S et al. 2021), GENIE3 (Huynh-Thu et. al, 2010) (and TF-gene-module pairs by 

RTN). Thus, we created a gene expression-based network by combining TF–TG pairs found by ≥ 2 of 

these 3 tools. Fourth and finally, we mapped the gene expression-based network TF–TG pairs to the TF-
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TG pairs in the chromatin interaction-based reference network. The full GRN (for Hippocampus or LTL) 

thus contains TF–TG pairs found in both the chromatin interaction and the gene expression-based 

networks (§A.1 (SaniyaKhullar 2024) has more details). 

For each of the 3 brain regions, we built final GRNs by using our prior analysis (see earlier), 

which had assigned TGs to gene co-expression modules and associated the modules with AD phenotypes 

and biological enrichments. This prior analysis provided richer annotations for TGs in our full GRNs. Our 

final GRN for each brain region comprehensively linked TFs to non-coding regulatory elements to TGs 

and these TGs to gene modules to AD phenotypes/enrichments. 

2.2.8 Identifying AD-Covid GRNs and genes using GRNs and gene modules 
To investigate potential mechanistic interplays between AD and Covid-19, we compared AD (hsa05010) 

and Covid-19 (hsa05171) KEGG networks (Kanehisa and Goto 2000) and found AD–Covid mechanisms 

like: NF-κB, Inhibitor of Nuclear Factor Kappa B Kinase (IKK), c-Jun N-terminal Kinase (JNK), 

Interleukin-6 (IL-6), Phosphoinositide 3-Kinase (PI3K), Tumor Necrosis Factor alpha (TNFa), TNF 

Receptor (TNFR). We found a statistically significant overlap of 22 genes between both KEGG networks 

based on a hypergeometric test (7,559 human genes in KEGG universe, 384 human KEGG genes in AD, 

232 human KEGG genes in Covid-19). The 22 shared KEGG genes correlate highly with AD phenotypes 

in different brain regions. This motivated us to find neuroimmunology genes in AD–Covid. We used 

Pathview (Luo and Brouwer 2013) to visualize correlations of KEGG network mechanisms with AD 

phenotypes. For each region, we constructed an AD–Covid gene list using its respective final GRN and 

gene co-expression modules as follows. First, we built an AD–Covid GRN: a subnetwork of GRN with 

TFs regulating and/or TGs of the 22 shared KEGG genes such that each GRN edge contains at least 1 

shared KEGG gene. 2nd, we filtered these AD–Covid GRNs to only include genes that belong to an ‘AD-

phenotype enriched’ gene module. Hence, genes in our AD–Covid GRN were either 1 of the 22 shared 

KEGG genes or directly linked to them by a GRN link. Moreover, these AD–Covid genes had altered 

expression dynamic patterns associated with AD. Thus, we built four AD–Covid gene lists: LTL, DLPFC, 

Hippocampus, combined list of the 3. These 4 lists were later used to predict Covid-19 severity (see next). 
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2.2.9 Gene expression analysis and machine learning (ML) prediction for 

Covid-19 severity from AD-Covid gene regulatory networks 

To gauge the clinical performance of our AD–Covid genes in terms of predicting Covid severity (proxy 

for immune system dysregulation), we looked at recent population RNA-seq gene expression data of 

human Covid-19 blood samples (GSE157103) (Overmyer et. al, 2021). We median normalized this data 

(19,472 genes) and applied differential expression analysis by DESeq2 (Love et al. 2023) between 50 

severe (Intensive Care Unit (ICU)) and 50 non-severe (non-ICU) Covid patients. Aside from applying 

differential expression analysis to find individual-associated differentially-expressed genes (DEGs), we 

performed machine learning (ML) analysis to determine if any of our four AD–Covid gene lists (from our 

AD–Covid GRNs) and the respective normalized blood gene expression data could predict the probability 

of severe Covid (being in the ICU) for Covid patients better than a benchmark list of Covid genes could. 

We used a SVM classifier model (linear kernel, balanced class weights, on the basis of Python’s Scikit-

Learn (Pedregosa et al. 2011) svm.SVC package) to output the predicted probabilities of severe Covid for 

Covid samples. We randomly partitioned our data using an 80–20 training–testing split with 80 samples 

(40 ICU, 40 non-ICU) in training data and held out 20 samples (10 ICU, 10 non-ICU) in test data. 

Stratified 5-Fold Cross Validation (CV) was used to calculate training classification accuracy; each fold 

held out 16 samples (8 from each class) for validation and trained an SVM model on the remaining 64 

samples (32 from each class). Input data used to build each model was the median normalized Covid gene 

expression data for the respective selected genes (features) for the training samples. We did not use age 

and gender as predictors given their low correlations with Covid severity. 

For our ML analysis, we gathered a benchmark list of 18 known and published Covid genes from 

4 studies (Hu et. al, 2021; Pairo-Castineira et. al 2020; Hou et al. 2020; Kong et al. 2020). A study (Hu et. al, 

2021) used U.K. Biobank GWAS and Covid mortality data to discover 8 genes associated with high Covid 

mortality: DNAH7, CLUAP1, DES, SPEG, STXBP5, PCDH15, TOMM7, WSB1. Another study (Pairo-

Castineira et. al 2020) has identified 7 risk genes (OAS1, OAS2, OAS3, TYK2, DPP9, IFNAR2, CCR2) 
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associated with life-threatening Covid outcomes (e.g. inflammatory organ damage). Numerous studies 

(Hou et al. 2020) implicate SNPs in ACE2 and TMPRSS2 genes as risk factors for Covid susceptibility. 

Another Covid severity study used a Random Forests ML model and has identified VEGF-D as the most 

predictive indicator (Kong et al. 2020). To build our benchmark model, we first performed RFE CV 

(RFECV) on a SVM model using these 18 benchmark genes to calculate the accuracy of adding a gene to 

the model and optimal number of genes to use i.e. smallest number of genes with the maximum stratified 

5-fold CV training accuracy when classifying ICU versus non-ICU Covid patients. Second, we ran RFE 

on a SVM model with that optimal number of genes to select the predictive genes from the training data. 

Third, we used these selected benchmark genes to train another SVM model as our benchmark model. We 

fixed all models to use this same number of genes to help facilitate direct comparison of the predictive 

models. We performed the second and third steps instead on each of our respective input AD–Covid gene 

lists to build our four AD–Covid models. Thus, we built 5 models to predict Covid severity: benchmark, 

combined, Hippocampus, LTL, and DLPFC. We compared the prediction performance of each of our 

four AD–Covid models with that of the benchmark model using: accuracy, AUC and Decision Curve 

Analysis (DCA, §A.1 (SaniyaKhullar 2024)) on training and test (generalize potential clinical impact of 

models) data. For each model, we report training metrics by averaging values across all five stratified 

folds. We flagged ‘AD–Covid genes’ used in any of our four AD–Covid models (predictive for severe 

Covid) as potential candidate biomarkers for AD–Covid-neuroimmunology. 

2.2.10 ML prediction for AD & Covid severity from AD-Covid genes 
We analyzed the performance of our AD–Covid genes (those from among our 4 AD–Covid models) for 

predicting AD on a new human population cohort (GSE125050) (Srinivasan et al. 2020) of 22 AD and 21 

control postmortem Superior Frontal Gyrus (SFG) tissues in the frontal cortex (linked with AD 

pathology). That study isolated RNA-seq data for 4 brain cell types (neurons, astrocytes, endothelial cells, 

microglia) from SFG tissues. We pooled raw gene expression data for these 4 cell-types (62 control, 

46 AD samples, Table A.2 (SaniyaKhullar 2024)) for our task. For each cell type, we held out three AD 

and three Control cell-type samples for testing (total: 12 AD, 12 Control). The remaining 84 samples were 
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used to train a model (Python’s Scikit-Learn (Pedregosa et al. 2011)) Logistic Regression (LR) package, 

liblinear solver, balanced class weights) to predict AD or control for a given sample. Our features were 

pooled gene expression data values for AD–Covid genes and four dummy (0 or 1) features noting the 

cell-type for each sample. We built another LR model as a benchmark, only changing the gene features 

we used, which were now 597 AMP-AD (AMP-AD (Agora)) nominated genes for AD identified in the 

SFG gene expression data. The AMP-AD consortium flagged these AMP-AD genes as good targets for 

AD treatment and/or prevention based on computational analyses in previous studies of human samples. 

We kept shared and common AMP-AD and AD-Covid genes as gene features to train both LR models. 

We compared the test performance of the optimal AD–Covid LR model and benchmark AMP-AD LR 

model to better quantify the effectiveness of our AD–Covid genes in predicting AD as well. Furthermore, 

we noted our AD–Covid genes that were DEGs in recent single-cell transcriptomic data (Mathys et. al 

2019) analysis for AD pathology versus controls in Excitatory (ExNs) and/or Inhibitory (InNs) neurons. 

2.2.11 Linking Genome-Wide Association Study (GWAS) SNPs for AD and 

for Covid-19 severity to gene regulatory elements  

GWAS have identified genetic risk variants associated with diseases like AD. However, most AD 

SNPs lie on non-coding regions, hindering finding AD genes and understanding downstream disease 

functions. We consider SNPs with P < 5e-5 to include candidate disease SNPs via interrupting gene 

regulation at large (Table A.3 (SaniyaKhullar 2024)). We looked at summary statistics of 26,969 AD risk 

GWAS SNPs across 5 studies (Jansen et. al 2019; Kunkle et. al 2019; Wightman et. al, 2021; Turley et al; 

Bellenguez et. al 2022) and 1,642 SNPs from the 7th round of GWAS meta-analyses related to severity 

across all Covid-19 positive human populations (COVID-19 Host Genetics Initiative 2022): 16,512 

hospitalized cases (severe) versus 71,321 not hospitalized controls (non-severe). Risk SNPs for a 

condition have a positive effect size in the GWAS, i.e. the SNP is associated with higher disease 

phenotypes or traits. On the other hand, protective SNPs have a negative effect size, so the SNP is 

associated with decreased disease phenotypes or traits.   
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We mapped SNPs to regulatory elements (REs) in the GRNs via altered TFBSs (Figure 

2.1, pipeline step 6). We overlapped 28,597 AD and/or severe Covid risk SNPs (14 common) with 

regulatory elements (enhancers, promoters) in our final GRNs. MotifbreakR (Coetzee et al. 2015) identified 

24,576 SNPs altering TFBSs of 791 TFs. These regulatory SNPs either increase TF affinity for the TFBS 

(based on TF sequence-specific motifs) or interrupt and subsequently decrease TF binding to that RE. We 

linked these SNPs to TGs from REs with altered TFBSs, adding a 10 kilobase (kbp) and 2 kbp buffer 

extension to the start and end positions of enhancers and promoters, respectively. Thus, we mapped our 

SNPs to our final GRNs. Our SNP regulatory network (SNP-effected-GRN: SNP effect on our final 

GRN) comprised our predicted SNP–RE–TF–TG–Module–Phenotype links. We used expression 

quantitative trait loci (eQTL) data (associates SNP with changes in TG expression (Liu et. al 2022)) from 

various sources (Table A.4 (SaniyaKhullar 2024); tissues: brain (PsychENCODE Consortium; THE GTEX 

CONSORTIUM 2020; Patel et. al 2021)/blood(Patel et. al 2021); cell-types: brain (Byrois et. al 2022; Zeng et al. 

2022)) to annotate SNP-effected-GRN links with this external SNP-TG validation as highly-confident; our 

SNP-effected-GRN may explain GRN mechanisms behind these causal eQTL links. An eQTL is a genetic 

region that may help explain how SNPs impact variety in gene expression phenotype levels for local (cis) 

or distal (trans) genes (Nica and Dermitzakis 2013; Liu et. al 2022). Further, we performed linkage 

disequilibrium (LD) via LDlink (Machiela et. al 2015)) (GRCh37 genome, all human populations) to 

correlate a pair of SNPs (on the same chromosome); linked SNPs have significantly correlated alleles and 

tend to be non-randomly inherited together in all populations. §A.1 has more details and a framework for 

analyzing our SNP-effected-GRN. 

§ 2.3 Results 

2.3.1 Gene co-expression network analysis reveals gene expression dynamics 

for AD phenotypes across multiple brain regions 

First, we applied our analysis to population gene expression datasets of three major brain regions relating 

to AD: Hippocampal CA1 (Hippocampus), LTL and DLPFC (§2.2: Materials and Methods). We 

identified several gene co-expression modules showing specific gene expression dynamic changes for 
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various AD phenotypes (File A1: Hippocampus, File A2: LTL, File A3: DLPFC (SaniyaKhullar 2024)), 

implying potential underlying gene regulatory mechanisms associated with the phenotypes. Given a brain 

region, we constructed and clustered a gene co-expression network to a set of gene co-expression 

modules. In a gene co-expression network for a brain region, nodes (or vertices) are genes and each edge 

represents that two respective genes have correlated gene expression profiles across the samples (i.e. co-

expression). There are likely groups of co-expressed genes within the network that form densely 

connected sub-networks (gene modules). Genes in a module share similar gene expression dynamics in 

that respective brain region for the observed AD phenotypes. Modular eigengenes (MEs) represent 

expression dynamics for a gene module, using the first principal components of module gene expression 

matrices. 

Hippocampus: 21 of 30 gene modules (9,525 genes) are ‘phenotype-enriched’ as they are 

significantly positively associated with at least one key AD-related phenotype. Their MEs show specific 

expression dynamics (Figure 2.2A: 7 select modules; Figure A.1A (SaniyaKhullar 2024): all 30 modules). 

Pink and lightyellow modules have high gene expression values for Controls and cluster together. On the 

other hand, greenyellow, yellow, tan and magenta modules cluster together given their high expression in 

AD. Next, we used expression dynamic patterns to link modules to phenotypes (Figure 2.2B: 7 select 

modules; Figure A.1B (SaniyaKhullar 2024): all 30 modules) by significant positive correlations. The tan 

module has the highest severe AD correlation (𝑟 = 0.68). The midnightblue module is significant for 

Braak 4 stage (mild dementia), the lightyellow module for cognitive resilience. The greenyellow module 

significantly correlates with AD, AD progression, moderate/severe AD, cognitive impairment, Braak 

6 stage (severe dementia).  

LTL: 28 of 56 co-expression modules are phenotype enriched. We highlighted five MEs 

in Figure 2.2C (Figure A.1C (SaniyaKhullar 2024): all 56 modules). The sienna3 module has higher 

expression values for old and young Controls. Orange, magenta, and yellow modules cluster together with 

high expression in AD. As shown in Figure 2.2D for the same 5 select modules (Figure A.1D 

(SaniyaKhullar 2024): all 56 modules), the sienna3 module correlates positively with Controls (𝑟 = 0.63) 
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and being asymptomatic for dementia or any other AD-related symptoms (𝑟 = 0.55). Yellow, orange and 

magenta modules associate with aging, AD/Braak progression, neuritic plaques; the orange module has 

𝑟 = 0.72 for AD/dementia.  

DLPFC: The sample size in the DLPFC, which is 20-fold larger relative to those of the other 2 

regions, likely attributes to the comparatively lower module-phenotype correlations we observe in the 

DLPFC. Still, we see significantly correlated modules with select AD phenotypes and highlight 6 of 35 

modules (all 35 are phenotype-enriched) (Figures 2.2E-F, P < 0.05). The tan module is associated with 

the worst APOE genotype (E4/E4) and with age for diagnosis of AD; royalblue and green DLPFC 

modules correlate with severe AD based on last MMSE score. In terms of better and healthier outcomes, 

the darkolivegreen module is significant for Controls, higher MMSE scores, cognitive resilience. Figures 

A.1E-F (SaniyaKhullar 2024) show results for all 35 gene co-expression modules in the DLPFC.  

Our gene modules across regions uncover gene expression dynamic patterns across phenotypes, 

suggesting that genes in a module are likely involved in similar functions and pathways. To understand 

this, we performed module enrichment analysis as follows. 

2.3.2 Eigengenes and enrichments of co-expression modules reveal hub 

genes, gene functions, and pathways in AD phenotypes 
We performed gene set enrichment analyses (§2.2: Materials and Methods) to understand better the 

biological functions, diseases, pathways, structures and other observed phenomena of our modules and 

link them to various AD phenotypes (Figure 2.2). Healthy phenotypes are Control, cognitive resilience, 

protective APOE E2/E2 genotype. Our brain region module enrichments underscore the role of the 

immune system and neuroimmunology among other factors in AD progression and verify that the 

phenotype correlations we detected for our gene modules may indicate true biological signals. Figure 

A.2A-C (SaniyaKhullar 2024) shows enrichment results for select gene co-expression modules, for each of 

the 3 brain regions, which have strong correlations 𝑟 with relevant phenotypes in the population.  

In AD, the Hippocampus (Figure A.3A, File A1 (SaniyaKhullar 2024)) has a major loss in volume, 

neurogenesis, memory, neuron density (Bartsch et. al, 2011). Healthy gene modules are enriched with 
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synaptic plasticity, dendrite development, calcium signaling. Perhaps resilient individuals are protected 

from microsatellite instability and amyloid accumulation. Age and AD progression modules are 

associated with abnormal innate immunity, Covid-19 spike protein, NF-κB pathway (overexpressed in 

AD (Jha et. al 2019)), activation of JNK and MAPK cascade [active in AD, involved in tau phosphorylation, 

neuroinflammation (Lee and Kim 2017), synapse dysfunction, neuron death (Lu et. al 2014). Severe AD 

modules are associated with metabolic processes (Mapstone et al. 2020), immune memory, interferon 

signaling [high in AD mouse Hippocampus (Naughton et al. 2020); this response to amyloid may activate 

microglia, initiating neuroinflammation and synapse loss in neurons (Roy et. al 2020).  

The LTL (Figure A.3B, File A2 (SaniyaKhullar 2024)) is impacted early in AD (Nativio et. al 2020). 

Control modules are enriched with Wnt signaling (inhibits tau protein hyperphosphorylation and 

production of amyloid-beta (Aβ) plaques (Inestrosa and Varela-Nallar 2014)), whose dysregulation may lead 

to neurodegeneration. In AD and plaque modules, Nlp protein loss from Mitotic centrosomes is enriched 

(may cause microtubule instability, abnormal cell morphology, AD (Dubey et al. 2015)). We found cell-

type and other pathway enrichments in AD progression phenotypes: NF-κB activation, astrocyte 

projection (glial cell type that is increasingly active near Aβ plaques in AD (Vasile et. al, 2017)), prion 

pathway (disruption may lead to Aβ plaques (Kellett and Hooper 2009)). Dramatic Histone H4 acetylation 

epigenetic losses on DNA regions near genes may decrease memory formation during aging and AD in 

the LTL (Nativio et. al 2020).  

The DLPFC (Figure A.3C, File A3 (SaniyaKhullar 2024)) works with the Hippocampus to 

mediate complex cognitive functions (Diaz Brinton 2012) and has plasticity deficits in AD (Kumar et. al 

2017). Microglia exclusively express AD genes like APOE (Hemonnot et. al 2019). Here, APOE2 modules 

are associated with mitochondrial inheritance (P < 1e-16; whose dysfunction is associated with various 

brain-related disorders (Shen et al. 2023)) and are shielded from neurotoxins, whereas APOE4 modules are 

enriched with Aβ response (may regulate microglia (Fullard et. al 2018)), cognitive dysfunction. Promising 

associations (some with P < 1e-58) for APOE4 and AD-related modules support a crucial role of reactive 

microglia for AD disease progression. In AD, microglia may change shape, are more phagocytic, go awry 



34 
 

and release pro-inflammatory cytokines, leading to Aβ and neurofibrillary tangles (NFTs) (Kinney et al. 

2018b), synapse decline, neuroinflammation, cell death, neurodegeneration (Hemonnot et. al 2019). Our 

results may shed light on links between APOE4 and neuroinflammation, with enrichments such as: 

autoimmune diseases (e.g. Wegener’s Granulomatosis), synapse pruning, astrocyte activation, microglia, 

abnormal innate immunity and cytokine levels (DLPFC in AD patients typically has more pro-

inflammatory cytokines like IL-1B, linked to Aβ plaques (Kinney et al. 2018b)). Healthy modules are 

enriched with Electron Transport Chain (altered in AD (Ebanks et al. 2020)), neuron recognition, synapse 

plasticity, calcium ion regulated exocytosis. Finally, we compared 3 brain regions (Figure 2.2G, Figure 

A.3D (SaniyaKhullar 2024)): Braak stage modules are enriched with Ki-1 antigen (tumor marker of 

activated immune cells regulating NF-κB and apoptosis), focal adhesion (plaques), VEGFA-VEGFR2 

(altered levels in AD may impact microglia/neuron survival (Cho et. al 2017)). Control and AD 

DLPFC/Hippocampus modules share neuroimmunomodulation. AD and Braak stage modules are 

enriched with blood–brain barrier (BBB), virus attachment, complement system (CS) activation (innate 

immune-mediated defense altered in AD (Carpanini et. al 2019)), oligodendrocyte differentiation [this 

change in this glial cell type is linked to neurodegeneration, Aβ accumulation (Quintela-López et al. 2019)]. 

Figure 2.2 – Gene co-expression modules significantly associated with AD phenotypes show specific 

expression dynamic patterns across phenotypes and enriched functions and pathways.  

Corresponding heatmaps for all modules in the 3 brain regions are in Figure A.1A-F (SaniyaKhullar 

2024)).  
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Figure 2.2A) - Module eigengenes (MEs) of 7 gene co-expression modules in the Hippocampal CA1 

region where rows: modules and columns: individual human samples. Red: high expression level. Blue: 

low expression level. On the left hand side of this heatmap is a dendrogram tree based on agglomerative 

hierarchical clustering so that similar modules (in terms of values for MEs) cluster close together. 

 

 

Figure 2.2B) - Shows the correlation coefficients and P-values for the same 7 Hippocampal CA1 gene 

modules and various select AD phenotypes. 

File A1 (SaniyaKhullar 2024) contains additional phenotypes. Row: modules. Columns: AD phenotypes. Red: 

highly positive Pearson correlation (𝑟 > 0). Green: highly negative correlation (𝑟 < 0). 
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Figure 2.2C) - Module eigengenes (MEs) of select gene co-expression modules in the LTL region.  

Red: high expression; blue: low expression level. Heatmap for select gene co-expression modules in LTL. 
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Figure 2.2D) - Correlation coefficients and p-values between for the same modules (for that given brain 

region as in Figure 2.2C) and AD phenotypes in the LTL region.  

File A2 (SaniyaKhullar 2024) contains additional phenotypes. Row: modules. Columns: AD phenotypes. Red: 

highly positive correlation. Green: highly negative correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2E) - Module eigengenes (MEs) of select gene co-expression modules in the DLPFC region.   
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Figure 2.2F) - Correlation coefficients 𝑟 and p-values between for the same modules (in Figure 2.2E) 

and AD phenotypes in the DLPFC region. Row: modules. Columns: AD phenotypes. File A3 

(SaniyaKhullar 2024) contains additional phenotypes. 

 

 

Figure 2.2G) - Shows select biological functions and pathways that are enriched for modules positively 

correlated (P < 0.05, r > 0) with AD across the 3 brain regions.  

Values in the cells, circle sizes and gradient color (yellow to red) correspond to the highest enrichment 

− log10(adjust P− value) value of any gene module associated with the phenotype of AD diagnosis (i.e. AD 

phenotype) from that given brain region. There are N  =  31 post-mortem human samples in the 

Hippocampus, N  =  30 in the LTL and N  =  638 in the DLPFC. 

2.3.3 Prediction of brain-region gene regulatory networks for AD phenotypes 

To understand underlying molecular mechanisms regulating gene expression associated with various AD 

phenotypes, we predicted the GRNs for target genes (TGs) and gene modules of brain regions, especially 

using multi-omics data (§2.2 Materials and Methods). Brain region GRNs link TFs and regulatory 

elements (e.g. enhancers or promoters) to TGs and co-expressed genes (e.g. from the same gene module). 

GRN edges can be activation or repression of TGs by TFs, which follow-ups can investigate. These 

GRNs can be further linked to AD phenotypes significantly associated with TGs and modules. We 

applied many popular approaches and public databases to predict networks and used their shared 

predictions to build our highly confident GRNs. We found: 1,043 candidate TFs in the Hippocampus, 

1,580 in the LTL, (and 1,588 in the DLPFC), which we input into RTN, GENIE3 and TReNA Ensemble 

Solver for the Hippocampus and LTL, respectively. Table A.5 (SaniyaKhullar 2024) shows statistics of 
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TF–Regulatory Element–TG network nodes and edges. Files A4 and A5 (SaniyaKhullar 2024) contain our 

detailed final Hippocampus and LTL GRN edge lists, respectively.  

We found TFs statistically significantly regulate 21 LTL gene co-expression modules and 21 

Hippocampus gene modules (Figure A.4A-D (SaniyaKhullar 2024)); for example, in the Hippocampus, 

neurogenesis TF REST regulates a module of 883 genes, NFKB1 regulates one Control module, RELA 

regulates three gene modules (2 Control modules, 1 AD progression module). REST is induced by Wnt 

signaling, protects neurons from Aβ-protein toxicity (Lu et al. 2014). During AD, overexpression of AD 

risk genes may be partly explained by REST’s inability to bind to chromatin and repress its target AD 

genes (Maezawa et al. 2012); this may lead to autoinflammation, immune disorders (Magno et al. 2019a).We 

also find that in the Hippocampus, ZNF226 regulates 3 modules (2 which are associated with the Control 

stage) and GATA 2 regulates 4 modules (1 Control Stage module and 2 modules associated with 

worsening AD phenotypes).  

2.3.4 Gene regulatory networks and AD phenotypes associated with shared 

AD-Covid pathways 

Rogue immune responses characterize AD and Covid-19. Microglia, the brain's resident immune cells, 

become chronically activated in both AD and COVID-19. This chronic activation leads to sustained 

inflammation within the brain, causing neurocognitive symptoms and neuronal damage. Our 

hypergeometric test of overlap between both AD and Covid-19 (SARS-CoV-2) Kyoto Encyclopedia of 

Genes and Genomes (KEGG) networks (P = 0.0034) was significant, suggesting that the shared AD–

Covid mechanisms are important. COVID-19 disrupts the blood-brain barrier (BBB), a feature also 

observed in AD. By studying the inflammatory and immune responses triggered by SARS-CoV-2, we can 

draw parallels to the mechanisms driving AD.  

We thus analyzed these shared mechanisms implicated in adverse effects and inflammation in 

both diseases (Jha et. al 2019), like the NF-κB pathway. The NFKB pathway is a key regulator of immune 

and inflammatory responses. In mammals, the NF-κB TF family has 5 TFs: NFKB1 (or p105/p50 
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protein), NFKB2 (or p100/52 protein), REL (or c-Rel), RELA (or p65 protein) and RELB (proto-

oncogene near APOE). Reactive Oxygen Species (ROS) activate RELA and NFKB1 TFs. Both TFs then 

transcribe pro-inflammatory cytokines (e.g. Interleukin-6 (IL-6), IL-1B, TNF), reducing long-term 

potentiation (LTP) during AD (typically resulting in reduced strength of synaptic signal transmission 

between neurons, lower synaptic plasticity, memory loss and learning delays) and leading to exaggerated 

and potentially lethal immune responses in Covid (e.g. tissue injury, hypoxia (Erausquin et. al 2021), 

hyperinflammation, Acute Respiratory Distress Syndrome (ARDS) (Kircheis et al. 2020; Khullar et al. 2020)) 

(Figure A.5 (SaniyaKhullar 2024)). We found that gene expression levels of NF-κB TFs correlate 

positively with AD severity but negatively with controls in all three regions (Hippocampus: Figure A.6A 

(SaniyaKhullar 2024)). NFKB1 and RELB correlate negatively with controls in three regions, as do NFKB2 

and RELA in the DLPFC and Hippocampus (Figure A.6B (SaniyaKhullar 2024)). All 5 TFs correlate 

positively with severe AD in the Hippocampus and two TFs correlate positively with AD in DLPFC 

(Figure A.6C (SaniyaKhullar 2024)). Upregulation of NF-κB TFs may be a key AD–Covid interplay as 

activation of these TFs is linked to greater inflammation in Covid and in AD (Kircheis et al. 2020). NFKB1 

and RELA’s severe AD Hippocampus module has immune enrichments like PID (Pathway Interaction 

Database) IL-1 pathway, abnormal innate immunity, immunoglobulin level. We investigated our GRNs 

involving NF-κB TFs. Figure 2.3A shows shared target genes (TGs) for NFKB1 and/or RELA in the 

DLPFC and Hippocampus; seven TGs are regulated by both TFs in both regions, like ANP32B and 

EMP3. Figure 2.3B shows how RELA and NFKB1 indirectly regulate IL-1B in the LTL via TFs: TCF3, 

RFX3, RREB1, IRF1, TP53. 

We looked at the SARS-CoV-2 (Covid-19 KEGG: hsa05171) network to analyze how the NF-κB 

pathway and regulated cytokines may be associated with AD–Covid links and neuroinflammation (Figure 

2.3C). During Covid-19 infection, the SARS-CoV-2 Spike protein is primed by TMPRSS2, binds to the 

ACE2 [high expression in brain/macrophages (Kwee and Kwee 2020)] receptor and interacts with AT1R 

(Angiotensin II Receptor Type 1) to enter and infect the cell (Qiao et al. 2021). Neurons may be directly 

invaded by SARS-CoV-2 or by systemic infection compromising the blood-brain barrier (BBB, 
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dysfunctional in AD), elevating brain levels of chemokines, Complement System (CS) factors and 

cytokines (increased in AD) (Tremblay et. al, 2020) that damage neurons (Gordon et. al 2021). TMPRSS2, 

ACE2 and AT1R Hippocampal expression levels correlate positively with severe AD (Figure 2.3D). 

NFKB1 and RELA belong to the same Severe AD greenyellow Hippocampal module with many 

immune enrichments like: microglia, PID IL-1 Pathway, abnormal innate immunity and immunoglobulin 

level, innate immune system response, and activated NFKB signals survival (Figure A.2 (SaniyaKhullar 

2024)). In our GRNs, NFKB1 and RELA regulate genes of several cytokines associated with the severe 

Covid-19 Cytokine Storm and/or reduced long-term potentiation (Figure A.7A-D (SaniyaKhullar 2024)). 

We used our GRNs to analyze how NFKB1 and RELA regulate genes of several pro-inflammatory 

cytokines that are involved in the severe Covid cytokine storm [associated with BBB dysfunction, anti-

neuron antibodies, neuroinflammation, neurodegeneration (Erausquin et. al 2021), activation of microglia 

and astrocytes]. In the DLPFC, RELA binds to an enhancer of CXCL10, which has altered levels 

associated with immune dysfunction and inflammatory disease severity (Liu et al. 2011). NFKB1 binds to 

LTL enhancer of CSF3R, a regulator of neutrophil (innate immune system cells that change level and 

function in severe Covid (Reusch et. al, 2021)) and microglia maintenance (Hampel et. al 2020). NFKB1 

regulates IL-2 binding to an IL-2 enhancer on chromosome 4: 121,696,658–121,696,872. In AD brains, 

Aβ stimulation may activate NF-κB TFs to upregulate TNFa and IL-1B (regulates amyloid precursor 

protein (APP) synthesis) in microglia and astrocytes (Jha et. al 2019), likely triggering neuron death, 

cytokine cascade, more plaques, inflammation, tissue destruction (Kinney et al. 2018b; Landhuis 2021). 

NFKB1 and RELA regulate TFs that further regulate inflammatory cytokines IL-1B, IL-12B, CCL2, 

MMP1/3, CLGN. In the Hippocampus, NFKB1 regulates SPI1 and BATF that then jointly regulate 

MMP1. RELA regulates TNFa-induced proteins TNFAIP3/6 (regulate long-term potentiation in AD) in 

the Hippocampus; IL-2 and TNFa are highly expressed in Covid patients with severe pneumonia who 

develop ARDS (needing to go to the ICU and receive emergency oxygen (Kircheis et al. 2020)) as well as 

in severe AD patients (as are cytokines CCL2, IL-1B, IL-12B). RELA activates IL-12A/B (recruits 

Natural Killer cells (Roberts 2015)) and IL-1B via their respective enhancers and regulates IL-6 (induces 
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C-Reactive Protein (CRP) synthesis that activates the Complement System (Zass et al. 2017)) by binding to 

an IL-6 promoter. 

Activation of the immune-related Complement System (CS) is involved in an inflammatory 

feedback loop with neutrophil activation, resulting in tissue injury (Java et. al, 2020) in severe Covid. CS 

components like the C1qrs enzyme complex activate microglia to the M1 state, releasing inflammatory 

mediators (Java et. al, 2020) causing Hippocampus atrophy (Marshe et. al, 2021) (these M1 microglia induce 

neurotoxicity; M2 microglia are instead anti-inflammatory and neuroprotective). We found that C1qrs 

correlates negatively with Control and Initial AD, but positively with AD severity (e.g. Moderate and 

Severe AD) in the Hippocampus (Figure A.8 (SaniyaKhullar 2024)). Indeed, many CS components 

correlate positively with AD progression (Figure A.9 (SaniyaKhullar 2024)). APOE genotype is also 

associated with differences in Complement Cascade Component C1qrs expression in Covid-19 patients 

(Inal 2020) in the DLPFC (negative correlation with APOE E2 allele, positive with the APOE E4 allele) 

(Figure A.10 (SaniyaKhullar 2024)). Immunoglobulin-G (IgG) antibodies, whose responses to epitopes are 

key to Covid (Heffron et. al, 2021; Ong et al. 2024) immune response, correlate positively with moderate but 

not severe AD. Fibrinogen and the SELP protein changed from negative to positive associations from 

moderate to severe AD. Figure A.11 (SaniyaKhullar 2024) shows correlations between other shared AD–

Covid mechanisms (based on KEGG pathways) and AD phenotypes (e.g. Hippocampus: Tumor Necrosis 

Factor Receptor (TNFR) with severe AD, IkappaB kinase (IKK) with cognitive impairment; LTL: IKK 

with neuritic plaques; DLPFC: c-Jun N-terminal kinases (JNKs) with cognitive resilience). We identified 

other KEGG AD-COVID pathways that are highly correlated with having AD (Figure A.12A-C 

(SaniyaKhullar 2024)) across the 3 brain regions. 

By targeting GRNs related to the shared AD-Covid pathways like the NFKB pathway, we can 

uncover new therapeutic targets and strategies to manage both AD and COVID-19. Modulating the 

NFKB pathway could help reduce neuroinflammation and slow disease progression of AD, and can 

mitigate the hyperinflammatory response, potentially reducing the severity and improving outcomes for 

patients with severe Covid-19. For Covid-19-induced cognitive impairments (that are similar to AD in 
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terms of symptoms), understanding the NFKB pathway's role can help address the long-term cognitive 

impacts seen in Covid-19 survivors. Exploring the commonalities in inflammatory pathways, particularly 

the NFKB pathway, may help uncover new therapeutic targets and strategies to address both Covid-19-

induced cognitive impairments and AD. 

Figure 2.3 – Gene regulatory networks and phenotypes for NFKB, a shared pathway of AD & Covid-19. 

 

Figure 2.3A) – A subnetwork focusing on overlaps in the GRN between the DLPFC and Hippocampus, 

focusing on the target genes (TGs) regulated by NF-κB TFs: RELA (belongs to NF-κB class II) and 

NFKB1 (belongs to NF-κB class I). Here, only TF–TG links found in both brain regions are shown.  
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Figure 2.3B) – RELA and NFKB1 TFs regulate other TFs in a domino chain reaction that then regulate 

the pro-inflammatory cytokine IL-1B in the LTL.  

This illustrates the complexity of GRNs. For instance, RELA regulates TCF3, which then regulates RREB1, 

which then regulates IRF1, which then regulates TP53, which lastly regulates IL-1B.  

 

 

Figure 2.3C) – Gene regulatory networks & phenotypes for NFKB, a shared pathway of AD & Covid-19. 

The Covid-19 virus (SARS-CoV-2) spike protein enters and infects the cell. Gene regulation of pro-

inflammatory cytokines by activated NF-κB TFs from our Hippocampal, LTL and/or DLPFC GRNs is linked 

with severe Covid-19 outcomes (e.g. cytokine storm and beyond). This visualization is adapted from the 



45 
 

Covid-19 KEGG network (hsa05171), focusing on the NF-κB pathway. Gray dashed arrows indicate 

regulation and black arrows indicate activation of cytokines by the respective TF. GRN edge lists in §A.4 (File 

A4 for the Hippocampus, File A5 for the LTL) (SaniyaKhullar 2024) show more examples. 

 

 

Figure 2.3D) – Pearson correlations between AD phenotypes and expression levels of genes from Figure 

2.3C in the Hippocampus; the gene-phenotype correlations with P-value < 0.05 are denoted with an 

asterisk (*) on top. 

2.3.5 Machine learning prediction of Covid-19 severity from AD-Covid 

related gene regulatory networks (GRNs) 

There are several other shared AD–Covid mechanisms. File A6 (SaniyaKhullar 2024) and File 

A7 (SaniyaKhullar 2024) have results for this section. Covid-19 phenotype positively correlates with many 

AD KEGG mechanisms (Figure A.13 (SaniyaKhullar 2024)). We normalized gene expression data of a 
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recent Covid-19 cohort (N = 50 Intensive Care Unit (ICU) vs. N = 50 non-ICU human samples) (Overmyer 

et. al, 2021) (Figure A.14 (SaniyaKhullar 2024)) and identified 5,085 differentially expressed genes (DEGs, 

2,505 upregulated and 2,580 downregulated) for severe Covid (ICU). We looked at our three final brain 

region GRNs related to the 22 shared genes between AD and Covid KEGG networks, including TFs that 

regulate them and/or their TGs i.e. AD–Covid GRNs (Table A.6 (SaniyaKhullar 2024)). We then identified 

the AD–Covid lists from these 3 AD–Covid GRNs and filtered these gene lists down to only include the 

genes from the modules associated with AD phenotypes (21, 28, and 35 modules for the Hippocampus, 

LTL and DLPFC, respectively). Finally, a combined AD–Covid gene list had 2,153 genes (pooling our 

final AD–Covid genes lists from the Hippocampus: 1,146 genes, DLPFC: 895, LTL: 322) (Figure A.15 

(SaniyaKhullar 2024) details this process) of which 733 are severe Covid DEGs. Covid-19 severity 

correlates positively with many AD KEGG mechanisms and vice-versa (Figure A.12-A.13 (SaniyaKhullar 

2024)). Seven DEGs are in all 4 gene lists (5 upregulated genes like SPI1, 2 downregulated genes: 

PIK3R3 and STAT2). AD–Covid genes strongly associate with Covid-19 severity. 

We applied support vector machine (SVM or SVC, §2.2: Materials and Methods) models to 

predict the probability of severe Covid-19 outcomes in Covid patients. Each model was trained using this 

normalized Covid gene expression data for a list of genes. We applied recursive feature elimination (RFE) 

cross validation (CV) on an SVM model for the 18 benchmark Covid genes (from previous studies (Hu et. 

al, 2021; Pairo-Castineira et. al 2020; Hou et al. 2020; Kong et al. 2020)) (Figure 2.4A); RFECV found 10 

benchmark genes were optimal (highest 5-fold stratified CV accuracy on training data). We ran RFE on 

each of our 5 lists (benchmark and 4 AD–Covid lists) to select the top 10 optimal genes (predictive for 

Covid severity) for each list (based on the training data), which we then used to build our benchmark 

model and 4 AD–Covid models, respectively. Forty-six genes were found across all 5 input lists 

(benchmark, combined, Hippocampus, LTL, DLPFC); the 36 genes from our four AD–Covid models are 

our AD–Covid genes (we found 0 overlaps with the 10 benchmark genes). Our 4 AD–Covid models 

outperformed the benchmark model on training data with higher average area under the receiver-operator 

characteristic curve (AUC) (Figure A.16 (SaniyaKhullar 2024)) and accuracy (Table A.7 (SaniyaKhullar 
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2024)). Our models perform better than the benchmark model on test data (20 balanced samples) with 

higher AUC (except for the LTL model) and accuracy (Figure 2.4B). Relative to the benchmark model, 

the DLPFC model (optimal; accuracy: 85%, AUC: 0.98) boosted accuracy by 25% and AUC by 0.19. 

Decision curve analysis (DCA(Vickers and Elkin 2006; Sørensen et. al 2018), §A.1 (SaniyaKhullar 2024)) 

found that our models generally have higher clinical Net Benefits than the benchmark model across all 

probability thresholds (from 0% to 100%; average Net Benefit increase of 0.153) and therefore have a 

greater clinical usability (Figure A.17 (SaniyaKhullar 2024)). Hence, using our optimal AD–Covid model 

(for a given probability threshold) on average increases the number of truly severe Covid patients 

detected by approximately 153 per 1,000 Covid patients, without changing the number of non-severe 

patients who are needlessly sent to the Intensive Care Unit (ICU). Overall, our 36 genes have higher 

predictability for Covid severity than benchmark Covid genes on new Covid patient blood gene 

expression data. Our AD–Covid models may provide potential novel strategies to guide clinical decisions 

on sending Covid patients to the ICU or not. 

We found that our 36 AD–Covid genes (Table A.8 (SaniyaKhullar 2024)) driving Covid severity 

may also drive neuroinflammation, which is predictive of AD. For this, we trained a logistic regression 

(LR) model to predict the probability of AD using Superior Frontal Gyrus (SFG) brain region gene 

expression data. Three AD–Covid genes (ANP32B, GPI, SPI1) are AMP-AD (Ryan and Petanceska et. al, 

2022) nominated AD genes. GPI promotes neuron survival and immune-functions [e.g. serves as tumor-

secreted cytokine (AMP-AD (Agora))]. TF SPI1 regulates immune functions and microglia-mediated 

neurodegeneration in AD (Rustenhoven et al. 2018a), and correlates strongly with AD/Braak Progression in 

the Hippocampus. We used 35 of those 36 genes (SMIM27 was missing) and added four binary (dummy: 

0/1) features to control for the four cell-types (39 features in total). We compared our test performance for 

24 samples: (12 AD, 12 Control) with that of a LR model using 597 AMP-AD (Ryan and Petanceska et. al, 

2022) genes (601 features). Our AD–Covid LR model outperformed the AMP-AD LR model: AUC 

(0.583 vs. 0.569), accuracy (70.3% vs. 62.5%), DCA (29 optimal probability thresholds vs. 21) (Figure 

A.18A-B (SaniyaKhullar 2024)). 
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Thus, our 36 AD–Covid genes are predictive of not only Covid severity but also of AD, as they 

performed better than their respective benchmark models and have promising clinical translational ability 

for predicting immune dysregulation, inflammation, AD and severe/neuro Covid. Gene ANP32B 

[enriched in extracellular vesicles in AD mice brain tissues (Muraoka et. al, 2021)] strongly predicts Covid 

severity as it was found in DLPFC and Hippocampus models; ATM, EMP3, and LILRA6 were found in 

Hippocampus and combined models. Figure A.19 (SaniyaKhullar 2024) reveals how 13 of these 36 genes 

are DEGs in excitatory (ExNs) and/or inhibitory (InNs) neurons for AD pathology overall and/or early 

AD pathology versus none using recent data (Mathys et. al 2019); for instance, SPI1 is downregulated in 

ExNs in both comparisons, whereas MYLIP is upregulated in InNs for early AD (versus controls). We 

highlight the DLPFC GRN subnetwork for all 10 predictive genes directly regulating or regulated by at 

least 1 of the 22 shared KEGG genes (Figure 2.4C, Hippocampus/LTL: Figure A.20A-B (SaniyaKhullar 

2024)). Our 3 brain region GRN subnetworks reveal TF–TG interactions that may predict pro-

inflammatory cytokine levels and neuroinflammation. NFKB1 and RELA regulate several genes across 

all three regions, associated with immune dysregulation (able to predict Covid severity), like ANP32B in 

the DLPFC. SPI1 and NFKB1 target PLEK, whose expression is linked to synapse failure and cognitive 

dysfunction in AD (Guo et al. 2019). STAT5B regulates glucocorticoid receptor activity, which impacts the 

expression of pro- and anti-inflammatory genes (Zass et al. 2017). We found that STAT5B jointly regulates 

PI3K subunits PIK3CD and PIK3CB in the DLPFC (NFKB2 regulates PIK3R1 in the LTL); altered PI3K 

(shared AD–Covid mechanism) signaling may increase IRF5 activity (Naughton et al. 2020) in AD 

(Gabbouj et. al 2019) and in severe Covid. These 10 DLPFC SVC model-based AD–Covid genes are 

enriched (Zhou et al. 2019) with immune system diseases like Hodgkin Lymphoma, T-cell Leukemia, 

Waldenstrom Macroglobulinemia. 

Figure 2.4 – Prediction of Covid-19 severity using AD-Covid gene regulatory networks (GRNs).  
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Figure 2.4A) – Prediction accuracy of Covid-19 severity after selecting different numbers of genes from 

AD–Covid GRNs and recently found Covid-19 genes (benchmark genes). The accuracy was calculated 

based on the support vector machine classification (SVM or SVC) model with 5-fold stratified cross-

validation on 80 balanced training samples. The dashed lines correspond to the minimal numbers of select 

genes with the highest accuracy (i.e. optimal gene sets for predicting Covid-19 severity).  
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Figure 2.4B) – Receiver operating characteristic curves and corresponding AUC values for classifying 

Covid-19 severity in the test data of 20 balanced samples using the SVC machine learning models.  
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Figure 2.4C) – Subnetwork of the DLPFC GRN relating to the 10 AD–Covid DLPFC genes for 

predicting Covid-19 severity (N = 10) with the shared KEGG genes. Blue: genes/TFs found in the optimal 

DLPFC final model (which are also 10 of the 36 AD–Covid genes). White: 1 of the 22 shared KEGG 

genes (between AD and Covid KEGG networks). There is no overlap between both sets of genes. 

2.3.6 Identification of disease risk variants for AD phenotypes via integration 

of GWAS and gene regulatory networks 

It is crucial to understand how non-coding disease-associated SNPs (over 90% of risk SNPs (Kumar et al. 

2017)) affect gene regulatory mechanisms that eventually impact AD phenotypes. For this purpose, we 

looked at both AD SNPs and Covid-19 severity (based on hospitalization status upon Covid infection) 

SNPs from recent GWAS. We did this for two main reasons. First, studies have found that even mild 

Covid-19 infection is associated with brain changes (Abbasi 2022) and that severe Covid SNPs may 

contribute to cognitive dysfunction (Gordon et. al 2021), thereby worsening AD phenotypes. Second, 

incorporating severe Covid SNPs may help us discover how Covid-related genetic risk variants are 
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associated not only with Covid severity but also with AD and cognitive impairment (e.g. neuro-Covid), 

both of which are currently unknown (Gordon et. al 2021). We mapped AD SNPs and Covid severity SNPs 

onto our final GRNs to see how these SNPs alter TFBSs on regulatory elements (enhancers and/or 

promoters) that regulate target genes (TGs) and gene modules. Furthermore, we linked these SNPs to AD 

phenotypes of corresponding TGs and modules for our three brain regions i.e. ‘brain-region SNP-

effected-GRN for AD phenotypes’: SNP–TF–Regulatory Element–TG–Module–Phenotype. Thus, we 

could predict how AD and/or severe Covid SNPs impact TF regulation of TGs that belong to modules 

enriched with biological functions; TGs and modules may associate with AD phenotypes. Our SNP-

effected-GRN predicted 144,098 total unique SNP–TF–TG relationships across the three regions (for 

17,795 SNPs impacting TFBSs, 14 common AD–Covid SNPs); 6,245 SNP–TG relations had at least 1 

validated blood/brain expression quantitative trait loci (eQTL) link. File A8 (SaniyaKhullar 2024) has 

metrics and our annotated SNP-effected-GRN. Below, we highlight strong examples from our many SNP-

effected-GRN predictions. 

Our SNP-effected-GRN may predict how AD and/or severe Covid SNPs may alter the expression 

of TGs like our 36 AD–Covid genes. In Figure 2.5 we use our Hippocampus SNP-effected-GRN to focus 

on NFYA (Nuclear Transcription Factor Y Subunit Alpha), 1 of 525 common TGs dysregulated by AD 

SNPs and by severe Covid SNPs. Figure 2.5A shows many predicted NFYA enhancers. AD SNP 

rs2073014 strongly hinders EHF and ELF1 TFs (that both belong to the ETS TF family (Corces et al. 

2020)) from binding to an NFYA enhancer. On the other hand, severe Covid SNP rs2495242 strongly 

increases HSF2 regulation of NFYA. SNP rs2073014 is a mutation that changes the DNA base from a T to 

a C at chromosome 6 position: 41,029,109, disrupting EHF and ELF1 motifs (Figure 2.5B); both motifs 

are significantly enriched in all single-cell assay for transposase-accessible chromatin (scATAC-seq) 

peaks (typically corresponding to enhancers) (Corces et al. 2020) of open chromatin in microglia. We found 

48 prefrontal cortex (PFC) eQTL SNPs associated with reduced NFYA expression that correlate 

positively with rs2073014 based on linkage disequilibrium (LD) analysis; this verifies that rs2073014 is 

associated with NFYA expression in the brain. Rs193235873, a Covid severity SNP, increases TP63 
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regulation of E2F4 (and TP63 significantly regulates E2F4’s Braak 6 stage module), which in turn 

regulates NFYA (Figure 2.5C). NFYA is associated with AD (Gupta et al. 2022), plays a key role in 

various cancers (Li et al. 2020) and regulates 5 AD–Covid genes like LILRA2 and ANP32B (their shared 

module positively correlates with worse AD phenotypes). Figure A.21A (SaniyaKhullar 2024) identifies 

cell-type eQTL SNPs impacting the regulation of ANXA11 (an AD-Covid gene) by five TFs, like NFKB1, 

in the Hippocampus. In particular, SNPs linked to our AD–Covid genes and correlated with AD 

phenotypes may help explain genetic mechanisms of critical illness, neuroimmunology and cognitive 

impairment in Covid (Pairo-Castineira et. al 2020) and in AD. 

We predicted 5 shared AD and severe Covid SNPs in IFNAR2 Hippocampus and/or LTL 

enhancers that may impact regulation of IFNAR2, a known Covid severity gene (Jalkanen et al. 2023). 

These 5 SNPs are in LD with blood eQTL SNP rs7509997 that is strongly positively associated 

(P = 3.31e-49) with IFNAR2 expression. During AD, cytokine CSF3R’s overexpression in the LTL may 

be partly explained by SNPs like rs483341 that disrupt the ability of TF REST (protects neurons from Aβ-

protein toxicity (Lu et. al 2014)) to bind to chromatin to repress its TGs (Maezawa et. al 2012) like CSF3R, 

leading to inflammation (Magno et al. 2019b). Harmful AD SNP rs2564970 (P = 5.47e-08), which is 4 

bases from a predicted CR1 (Complement receptor type 1) Hippocampus enhancer (chromosome 1: 

207,464,045 - 207,464,283), may strongly disrupt NFKB1 and RELA regulation of CR1, a major AD 

gene associated with the complement system (CS). Moreover, our SNP-effected-GRN predicts previously 

unknown SNPs and specific TFs associated with NF-κB TF activation in AD, which may make NF-κB 

TFs neuroprotective or neurotoxic. We predict that harmful Covid severity SNP rs2736322 disrupts 

RREB1’s ability to bind to an FAM167A LTL enhancer and subsequently regulate FAM167A, a TG which 

correlates positively with AD and Braak stages and belongs to an AD LTL module. This may explain this 

SNP’s negative eQTL relationship with FAM167A expression across various brain cell-types. 

Furthermore, we have Figures A.21B-C and A.22A-B (SaniyaKhullar 2024) that elaborate on the following 

select stories: AD SNPs on regulatory elements may dysregulate Hippocampus expression of 3 AD–

Covid genes: EMP3, LILRA2, SPI1 (Figure A.21B (SaniyaKhullar 2024)). Harmful AD SNP rs754366 (has 
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a positive Prefrontal Cortex (PFC) eQTL link to APOC2 expression) may increase SPI1 binding to an 

APOC2 DLPFC enhancer where it activates APOC2 (Figure A.21C (SaniyaKhullar 2024)).  

Non-coding AD SNPs in microglia scATAC-seq peaks may impact regulation of KCNN4 

(Potassium Calcium-Activated Channel Subfamily N Member 4), an AD risk microglia gene with 

previously no known mutations (Maezawa et. al 2012) associated with alterations in its expression (Figure 

A.22A (SaniyaKhullar 2024)). Different Hippocampal and LTL SNPs impact regulation of KCNN4, a key 

AD drug target overexpressed during AD. We visualize the impact of rs62117780 on FOXC2 and 

POU2F2 regulation (and KCNN4’s Braak progression module) in the Hippocampus and rs4802200 on 

E2F7 regulation in the LTL. KCNN4 belongs to the magenta AD LTL module that has key enrichments 

like death receptor signaling, autoinflammatory disorder, TNFa/NFkB Signal Complex (Figure A.2B 

(SaniyaKhullar 2024)). Hence, increased KCNN4 expression is associated with AD progression in both 

regions. Rs62117780 is in a microglia signal peak (Figure A.22B (SaniyaKhullar 2024)), consistent with 

findings that KCNN4 is mainly expressed in microglia and regulates microglial activation by modulating 

Calcium (Ca2+) influx signaling and membrane potential (Maezawa et al. 2012). KCNN4 has low 

expression in healthy neurons and is associated with neuroinflammation and reactive gliosis during AD. 

Blocking KCNN4 likely curbs microglial neurotoxicity, leading to slower neuronal loss and better 

memory levels (Yi et al. 2017). This link uncovers how AD SNPs regulate KCNN4 expression in AD. 

Next, we focused primarily on AD-related GWAS SNPs. We found many regulatory networks 

associating various non-coding AD SNPs with AD phenotypes (interpretation guide: Figure A.23 

(SaniyaKhullar 2024)). Low SPI1 expression in Hippocampus controls may reduce microglial-mediated 

neuroinflammatory responses and delay AD onset (Rustenhoven et al. 2018a). SPI1, a microglia master 

regulator TF, regulates immune functions in AD (Yashiro et al. 2019), is strongly correlated with AD 

(correlation 𝑟 = 0.355), AD Progression (𝑟 = 0.375), Braak progression (𝑟 = 0.437), and Braak 6 stage (𝑟 

= 0.407), and belongs to a severe AD gene co-expression module (𝑟 = 0.41). In the Hippocampus, many 

SNPs may disrupt the ability of various TFs to regulate SPI1 (Figure A.24A (SaniyaKhullar 2024)); as a 

TF, SPI1 significantly regulates DMPK and its Severe AD Hippocampal module, and its regulated genes 
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are upregulated in microglia, leading to microglia-mediated AD neurodegeneration (Rustenhoven et al. 

2018b). SNP rs2834164, which is associated with AD and with Covid-19 severity, may disrupt the ability 

of POU4F2 to regulate IL10RB in the Hippocampus; we find eQTL support for this SNP relationship and 

IL10RB is associated with AD and belongs to a Control Stage gene module that is positively correlated 

with better performance on the Mini-Mental State Exam (Figure A.24B (SaniyaKhullar 2024)). In Figure 

A.24C (SaniyaKhullar 2024), we visualize some AD risk SNPs that alter the regulation of target gene ACE 

in the Hippocampus and the LTL brain regions.  

Further, we visualize how Covid-19 severity risk SNPs alter the regulation of CCR1, an early and 

specific marker of AD (Halks-Miller et al. 2003) across all 3 brain regions (Figure A.24D (SaniyaKhullar 

2024)). In the Hippocampus, CCR1 belongs to the Braak 2 associated gene module and is associated with 

the Braak 4 stage (mild dementia), while it is associated with Braak 1 or 2 stages (asymptomatic 

outcomes) in the LTL. The DLPFC sees increased expression of CCR1 associated with AD, Braak 

progression, cognitive impairment, frequent neuritic plaques, dementia overall, along with other AD 

progression phenotypes. Similarly, CCR1 belongs to a severe stage module in the DLPFC. Chemokines 

like CCR1 are secreted by astrocytes and play core roles in AD pathology and neuroinflammation (Liu et. 

al 2014). Additionally, a previous study (Halks-Miller et al. 2003) found that CCR1-positive plaque-like 

structures in the hippocampus and entorhinal cortex are strongly associated with dementia severity and 

specifically correlate with amyloid beta peptides of the 1-42 species (Abeta42)-positive neuritic plaques 

in AD; importantly, examination of seven other dementing neurodegenerative diseases revealed that 

CCR1 immunopositivity was absent unless Abeta42-positive plaques were present. These findings 

highlight that neuronal CCR1 does not act as a general marker of neurodegeneration but is instead a 

component of the neuroimmune response to Abeta42-positive neuritic plaques. Further, recent studies 

have identified severe Covid-19 risk SNPs colocalize with regulatory elements and alter chemokine 

receptor gene control in monocytes and macrophages; in fact, such SNPs have been linked to increased 

expression of chemokines like CCR1 in inflammatory monocytes and macrophages and higher risk of 

hospitalization post-Covid infection (Stikker et al. 2022). Our SNP-effected-GRNs thus underscore the role 
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of an immune system gone haywire in not only severe Covid-19 outcomes but also in AD progression 

phenotypes across multiple brain regions.   

Figure A.25A-B (SaniyaKhullar 2024) shows how 1 AD risk SNP, rs3851178, may alter TF 

binding abilities and subsequent regulation of different TGs across brain regions. This example shows 

how the SNP-effected-GRNs enable comparative analysis of regulatory networks and phenotype 

outcomes across brain regions.  

In Figure A.26A-B (SaniyaKhullar 2024), we examine the varying impact of AD risk SNP 

rs78073763 on gene regulation of PPP1R37. In the LTL, PPP1R37 is positively associated with the 

Control stage; this gene is associated with a severe cognitive impairment gene module in the DLPFC and 

is positively correlated with Braak progression and with various AD-related phenotypes. This SNP 

changes the DNA from a T to a G (at chromosome 19: 45,649,838 position, hg19 genome) and may boost 

RARA regulation of PPP1R37 in the LTL, disrupt PAX5 and SPIC regulation of PPP1R37 in the 

DLPFC, and boost GCM1’s regulation of this gene in the DLPFC. PPP1R37 expression is strongly 

associated with APOE expression with extensive cross-tissue effects on AD (Liu et al. 2021). As non-

coding SNPs may have highly cell-type specific effects, we explored the epigenetic landscape and 

regulatory element signals for significant putative functional SNP rs78073763, that impacts expression of 

PPP1R37 (co-expressed TG with APOE). This SNP is present in microglia-specific regulatory elements 

(Corces et al. 2020) (Figure A.26C (SaniyaKhullar 2024)), underscoring dysregulated microglia and 

neuroimmunology in AD.  

Our pipeline flags candidate Covid-19 susceptibility non-coding SNPs, which may also worsen 

AD phenotypes, most likely via triggering a cascade of neuroinflammatory pathways. The above stories 

and more (§A (SaniyaKhullar 2024)) underscore the importance of our work and findings. Moreover, our 

SNP-effected-GRN may help explain GRN mechanisms behind several causal blood/brain eQTL links.  

Figure 2.5 – Select SNP regulatory networks (SNP-effected-GRNs) linking AD and Covid-19 severity 

risk variants (GWAS SNPs) to AD phenotypes in the Hippocampus.   
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Figure 2.5A) - AD SNP rs2073014 may disrupt binding of 2 TFs (EHF and ELF1) to an NFYA enhancer. 

Another Covid-19 severity SNP instead increases HSF2 TF binding and subsequent regulation (activation 

or repression is unknown) of NFYA. 

 

 

Figure 2.5B) - This shows how AD SNP rs2073014 interrupts the binding sites of EHF and ELF1 TFs in 

the Hippocampus (on the basis of their respective sequence-specific motifs). 
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Figure 2.5C) - On the right is a legend for this network. Bi-directional dashed arrows represent SNP 

association with AD and/or severe Covid-19 on the basis of summary statistics from recent GWAS.  

Arrows with dots in the middle represent that the SNP strongly impacts TF Binding (either increasing or 

disrupting it; details available in §A.4 (SaniyaKhullar 2024)). The solid arrow represents that the TF regulates 

that given TG in the Hippocampus GRN. Grey arrows represent that the TG and/or TG module are statistically 

significantly positively correlated (P < 0.05, r > 0) with that given AD-related phenotype. Here, we analyze the 

role of 1 AD SNP and 2 Covid severity SNPs in eventually impacting the regulation of NFYA in the 

Hippocampus. For instance, SNP rs193235873 impacts the ability of TP63 to regulate E2F4 that then regulates 

NFYA. Furthermore, we show how NFYA regulates 5 AD–Covid genes (RPS13, ANXA11, LILRA2, ANP32B, 

SF3B1) and we highlight the Hippocampus gene modules for these 5 genes (using black arrows that contain a 

white rectangle). In addition, we link the gene modules and these 5 AD–Covid genes with their respective AD-

related phenotypes. Thus, we predict how AD SNPs and Covid-19 severity SNPs may eventually impact the 

regulation of 5 of our 36 AD–Covid genes that are associated with various AD phenotypes. 

§ 2.4 Discussion 

In the coming years, AD and Covid-19 will exert an ever-increasing toll on our society, making both 

diseases of paramount importance to address. Links among Covid, cognitive decline, and 

neurodegenerative diseases are puzzling and poorly understood (Gordon et. al 2021). Nonetheless, it is 

currently unknown whether Covid triggers new development of AD or accelerates progression of AD 

(Lindsey et. al 2022). There is on-going research on disabilities (e.g. memory, attention, sleep problems 

(Gordon et. al 2021)) in long-Covid (Lindsey et. al 2022). Individuals with neurological conditions like AD 

have high risk of Covid morbidity and mortality (Amruta et al. 2021). AD is linked to rogue immune 

mechanisms; pattern recognition receptors on astrocytes/microglia may respond to misfolded aggregated 

proteins, by releasing inflammatory molecules, worsening AD (Heneka et al. 2015).  

In this chapter, we tried to investigate the role of neuroimmunology in AD and severe Covid-19, 

cognitive impairment associated with Covid, and AD-Covid links. Given the immense societal impacts of 
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AD and Covid-19, there is an urgent need for more research in this area. We performed an integrative 

multi-omics analysis (genotype, chromatin interaction, transcriptomics, epigenomics) to predict gene 

regulatory (GRNs) and gene co-expression networks in 3 AD-related brain regions. We used potential 

gene regulatory connections between AD and Covid-19 and AD-related gene co-expression modules for 

our machine learning analysis to predict Covid severity. We prioritized a set of 36 optimal 36 AD-Covid 

genes. Decision Curve Analysis (DCA) showed these 36 AD-Covid genes outperform known Covid-19 

genes for predicting Covid severity (sending Covid patients to Intensive Care Unit (ICU) or not), 

demonstrating clinical translational ability of our predictive models. Further, those genes outperform 

nominated genes for predicting AD in a new brain region. Thus, our genes may be predictive of immune 

dysregulation and inflammation associated with Covid-19 and AD and can be targeted in follow-up 

studies. Lastly, we applied our SNPheno pipeline to build SNP Regulatory Networks (i.e. SNP-effected-

GRNs) linking AD and/or severe Covid SNPs to our GRNs, co-expression modules, and AD phenotypes. 

We emphasized SNPs relating to our optimal 36 AD-Covid genes that may explain possible genetic 

causes for dysregulated neuroimmunology in AD and Covid. We flagged genes and SNPs for follow-up 

analysis. Our analysis can serve as a general-purpose tool to understand functional genomics and gene 

regulation in several other diseases. 

Brain regions are composed of varied cell types that may impact co-expression networks and 

gene regulation; for example, AD patients may have fewer neurons and more immune cells. Many human 

brain cell-type GRNs were predicted from recent single-cell sequencing data (e.g. scRNA-seq, scATAC-

seq), which enable studying cell-type functional genomics and GRNs (Jiang et. al 2020). In the future, our 

pipeline may be extended to single-cell transcriptomic data by applying a single-cell workflow for 

WGCNA: scWGCNA (Morabito et al. 2021), which constructs gene co-expression networks from snRNA-

seq (single-nucleus RNA-seq: profiles mostly nuclear transcripts) and/or scRNA-seq (single-cell RNA-

seq: profiles mostly nuclear and cytoplasmic transcripts (Bakken et. al 2018)) single-cell gene expression 

data (that suffers from inherent sparsity).  
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We validated that many phenotype-associated SNPs are located on regulatory elements with cell-

type epigenomic activities. An integrative analysis of cell-type GRNs can also be performed to 

understand regulatory mechanisms for GWAS risk variants for refined AD phenotypes (e.g. cerebrospinal 

fluid, psychotic symptoms (Hampel et. al 2020)). Using pooled cell types in the Superior Frontal Gyrus 

(SFG) to predict AD may have confounding factors as a human sample could have many corresponding 

cell-type samples. That the Covid transcriptomic data was from blood samples may present limitations as 

AD–Covid GRNs use transcriptomic data from brain tissues. Still, researchers found immune 

dysregulation in both AD brain and blood samples (Guo et. al, 2019). Elevated pro-inflammatory molecules 

in Covid patients can compromise the blood-brain barrier (the BBB breaks down in AD), enter the brain 

and encounter astrocytes and microglia (both cell-types malfunction in AD); such patients are more 

susceptible to severe Covid and further neurological damage. Thus, Covid-19 patient blood gene 

expression data may predict future Central Nervous System (CNS) invasion and neuroinflammation. Our 

findings support further research into understanding better the causal links between AD and Covid 

(Kinney et al. 2018b) (e.g. it is unknown if Covid triggers new development of AD or accelerates AD 

progression). Treatments and drug development can perhaps be targeted at AD–Covid pathways to 

alleviate patient suffering i.e. care providers may suppress Interferon response or use acetylcholinesterase 

inhibitors (current AD treatment strategy) (Naughton et al. 2020) to stimulate the cholinergic anti-

inflammatory pathway in Covid patients. Such treatments may reduce the overall risk of cognitive decline 

in Covid survivors (Gordon et. al 2021).  

Currently, research in AD–Covid, long- or neuro-Covid and AD neuroimmunology is nascent and 

more data is being generated, which may be used to eventually expand on our current work (especially 

given sample size limitations of our data). Many large scientific consortia generate matched multi-omics 

data of individuals like AMP-AD (Ryan and Petanceska et. al, 2022), PsychENCODE (PsychENCODE 

Consortium), brainSCOPE (Emani et al. 2024), TCGA (Weinstein et al. 2013). We can extend our machine 

learning (ML) analysis to predict personalized phenotypes and prioritize phenotype-specific functional 

genomics and GRNs in diseases from this data. We found TFs regulate many gene modules and link to 
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AD phenotypes, suggesting possible collinearity driven by TF regulations across phenotypes. Emerging 

ML approaches like neural networks may decouple phenotypic collinearity, uncovering phenotypic-

specific TFs. Studies emphasize systems biology and ML approaches (like ours) to identify biomarkers 

for neuroinflammation (Hampel et. al 2020) in AD, Covid-associated cognitive impairment (Gordon et. al 

2021) (e.g. neuro-Covid or long-Covid) and Covid severity. Neuroimmunology research is discovering the 

role of dysregulated immune responses in other complex neurologic diseases like Schizophrenia (SCZ), 

Amyotrophic Lateral Sclerosis, Myasthenia Gravis, Parkinson’s disease, Multiple Sclerosis (Coyle 2011). 

For instance, overactivated NF-κB signaling is also found in Post-Traumatic Stress (PTSD) and Bipolar 

(BD) Disorders (Zass et al. 2017). Covid-19 may similarly be used to understand the role of misguided 

immunity in SCZ, as SCZ is an autoimmune disease (excess pruning of synapses by microglia) and the 

second largest risk factor for Covid-19 death after age (NYU Langone Health, 2021; Nemani et al. 2021). 

Overall, we hope that our approach can be applied to help understand molecular mechanisms in other 

diseases by uncovering the association of orphaned GWAS loci in non-coding DNA regions with disease 

phenotypes and by using closely related diseases to help reveal additional mechanisms at play. 

§ 2.5 Availability of data, software, and materials 

Our analysis (codes and data including diagnosis information) is open-source available at 

https://github.com/daifengwanglab/ADSNPheno and our functional genomics resource for AD is 

available at https://adsnpheno.shinyapps.io/AlzheimersDisease_SNPheno. Our corresponding methods 

and materials, figures (Figures A.1-A.26), tables (Tables A.1-A.8), and data files (Files A1-A8) for 

SNPheno are available in § Chapter A of the supplementary file (SaniyaKhullar 2024) that is hosted at: 

https://github.com/SaniyaKhullar/Supplementary_Chapters_Dissertation. 
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https://adsnpheno.shinyapps.io/AlzheimersDisease_SNPheno
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§ Chapter 3: NetREm: Network Regression Embeddings 

reveal cell-type transcription factor coordination for gene 

regulation 

§ 3.0 Abstract 

Transcription factor (TF) coordination plays a key role in target gene (TG) regulation via protein-protein 

interactions (PPIs) and DNA co-binding to regulatory elements. Single-cell technologies facilitate gene 

expression measurement for individual cells and cell-type identification, yet the connection between TF 

coordination and TG regulation of various cell types remains unclear. To address this, we developed a 

novel computational approach, Network Regression Embeddings (NetREm), to reveal cell-type TF-TF 

coordination activities for TG regulation. NetREm leverages network-constrained regularization using 

prior knowledge of direct and/or indirect PPIs among TFs to analyze single-cell gene expression data. We 

tested NetREm by simulation data and benchmark its performance in 4 real-world applications that have 

gold standard TF-TG networks available: mouse (mESCs) and simulated human (hESCs) embryonic stem 

(ESCs), human hematopoietic stem (HSCs), and mouse dendritic (mDCs) cells. Further, we showcased 

NetREm’s ability to prioritize valid novel TF-TF coordination links in human Peripheral Blood 

Mononuclear cell (PBMC) sub-types. We applied NetREm to analyze various cell types in both central 

(CNS) and peripheral (PNS) nerve system (NS) (e.g. neuronal, glial, Schwann cells (SCs)) as well as in 

Alzheimer’s disease (AD). Our findings uncover cell-type coordinating TFs and identify new TF-TG 

candidate links. We validated our top predictions using CUT&RUN (Cleavage Under Targets and Release 

Using Nuclease) and knockout loss-of-function expression data in rat/mouse models and compared results 

with additional functional genomic data, including expression quantitative trait loci (eQTL) and Genome-

Wide Association Studies (GWAS) to link genetic variants (single nucleotide polymorphisms (SNPs)) to 

TF coordination. NetREm is open-source available on GitHub as a software package. 

§ 3.1 Introduction 
Transcription Factors (TFs) are proteins that work together to regulate (activate or repress) target gene 

(TG) expression in a coordination fashion, especially at the cell-type level (Lambert et al. 2018). TFs bind 
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to cognate DNA sequence-specific TF binding sites (TFBSs) on regulatory elements (e.g. enhancers and 

promoters) to mediate transcription of their respective TGs. Nonetheless, these gene regulatory 

mechanisms are multi-faceted; regulatory elements of TGs are formed by combinatorial interactions of 

multiple TFs within regulatory elements that form transcriptional regulatory modules (TRMs) (Guo and 

Gifford 2017) to ultimately govern transcription initiation (Nie et al. 2020). Most TFs cooperate with other 

TFs (rather than operate in isolation), working in concert to regulate gene expression utilizing 

mechanisms like co-binding or tethered-binding (Nie et al. 2020). TFs can be part of stable complexes (e.g. 

heterodimers (Ibarra et. al 2020)) or they can enhance binding affinity of other TFs to nearby TFBSs 

(synergistic activation) to regulate TGs (Ibarra et. al 2020; Zhao 2023). It is not uncommon for the 

regulation of one TG to necessitate interactions with 10-15 TFBSs (Bentsen et. al 2022). Despite the 

prevalence of such TF-TF coordination, the underlying intricacies of this phenomena are not yet fully 

comprehended (Ibarra et. al 2020). Further, a set of core TFs can determine cell-type-specific transcription 

profiles (Lee et al. 2012; D’Alessio et al. 2015). Indeed, TF binding grammar is complex (Bentsen et. al 2022), 

context-specific and cell-type-specific, depending on other proteins and chromatin structure around 

TFBSs. Since the diversity of TF binding is core for cell-type specificity (Lee et al. 2012), models of TG 

regulation by TFs (e.g. gene regulatory networks (GRNs)) must incorporate complex combinatorial 

analyses of TFs and their intricate interactions with one another.  

Coordination among TFs regulates TG expression by modulating TF binding stability, 

localization, or post-translational modifications, affecting their regulatory function, activity, signaling. 

Contemporary research indicates a heightened adaptability among TFs in TG regulation, evidenced by 

phenomena like nucleosome-mediated cooperativity and the dynamic organization of TFBSs. These 

observations imply potential cooperativity even among disparate TFs lacking direct physical protein-

protein contact (Mirny 2010; Badia-i-Mompel et al. 2023). Historically, classical models of TF cooperativity 

were predicated on direct protein-protein interactions (PPIs), which are physical contacts among proteins 

to handle various biological processes; for instance, to increase their binding affinity and motif specificity 

(Sönmezer et al. 2021), TFs may oligomerize to form transcriptional complexes to regulate TG expression 
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(Wang et al. 2023). However, it is now understood that TFs occupying the same regulatory region need not 

interact directly to jointly coordinate the transcriptional activation of a TG. That is, cooperativity among 

TFs can be via indirect PPIs as well (Rao et al. 2021). For example, the binding of a TF (e.g. pioneer TFs 

recognizing and binding to their TFBSs even in heterochromatin, closed/compact chromatin) can remodel 

local chromatin configurations or prompt DNA conformational transitions, such as nucleosomal DNA 

unwrapping or nucleosome eviction, thereby exposing TFBSs and rendering the DNA more amenable to 

subsequent binding by secondary or non-pioneer TFs (Mirny 2010; Rao et al. 2021; Sinha et al. 2023; Mayran 

and Drouin 2018). Additionally, through the tethered-binding mechanism involving coactivators and/or 

corepressors, TFs can exert regulatory influence over TGs via the direct or indirect cooperative 

recruitment of intermediary proteins, such as p300/CBP and the mediator complex (Spitz and Furlong 

2012). In fact, recent studies suggest that most TF pairs that cooperate may form these DNA-mediated 

complexes (Ibarra et. al 2020). Even in the absence of direct PPIs, the coordinate effort of many TFs is 

indispensable for co-factor recruitment and the establishment of nucleosome-free regions, hallmark 

features of promoters and active enhancers (Rao et al. 2021), which characterize the distinct transcriptional 

profiles of specific cell-types. Antagonistic coordination, via sequestration and/or competition for TFBSs, 

generates cell-state heterogeneity by driving opposing effects on epigenetic programs and TG expression; 

some TFs bind DNA only in the presence of cooperating TFs and absence of antagonistic TFs (Hu et al. 

2022; Berenson et al. 2023). 

Recent single-cell data analyses (Mathys et. al 2019; Wang et. al 2018) show cell-type-specific 

expression dynamic patterns, implying that gene regulation is cell-type-specific. However, the 

mechanistic role and extent of TF associations with other TFs (e.g. cooperativity) to drive TG regulation 

across cell-types remain unclear (Nie et al. 2020; Ibarra et. al 2020; Karczewski et al. 2011; Hannenhalli and 

Levy 2002). For instance, neuronal and glial cells are important in nervous system development, function, 

repair and processes like myelination, synaptogenesis, neuroplasticity. Studies (e.g. (Joung et al. 2023)) 

have observed that overexpression of combinations of TFs can lead to massive alterations in GRNs, 

which may depend on the cell-type. Cell types play key roles in brain-related diseases. Microglia drive 



65 
 

neuroinflammation linked with Alzheimer’s disease (AD) progression (Leng and Edison 2021) and excess 

synaptic pruning in Schizophrenia (SCZ) (Wang et al. 2019). Depression, Autism Spectrum Disorder 

(ASD), and SCZ may involve oligodendrocyte function (Maglorius Renkilaraj et al. 2017). Many TFs 

associated with SCZ and Bipolar Disorder (BD) have high expression in adult astrocytes (Pearl et al. 2019). 

Recent Attention-Deficit Hyperactivity Disorder (ADHD) studies identified causal risk genes highly 

expressed in fetal astrocytes, neurons, microglia (Fahira et al. 2019). Thus, understanding TF coordination, 

at the cell-type level, is crucial for dissecting the GRNs that govern processes fundamental to cognition, 

movement, behavior, and potential dysregulation in neurodegenerative diseases.  

Despite extensive single-cell data analyses (Mathys et. al 2019; Wang et. al 2018), the extent of TF-

TF coordination in regulating TGs across various cell types remains unclear (Nie et al. 2020; Ibarra et. al 

2020; Karczewski et al. 2011; Hannenhalli and Levy 2002). Single-cell data is instrumental not only in 

identifying cell-type-specific biomarker genes but also in inferring cell-type-specific GRNs, which are 

crucial for understanding the development and maintenance of cellular identity and fates (Van de Sande et. 

al, 2020). GRN-inference tools often reverse engineer gene expression data to find coordinated patterns of 

expression and gene-gene interactions to predict the interplay between TFs and TGs, trying to uncover 

potentially meaningful biological signals from the noise (Wang et al. 2023; Campos et al. 2019; Zaborowski 

and Walther 2020). State-of-the-art (SOTA) tools create cell-type GRNs using various methods (e.g. co-

expression, correlation 𝑟, information theory, differential equation, machine learning, multi-omics 

integration) but often overlook interdependent TF-TF PPI networks (PPINs) crucial for TG regulation. 

These tools presuppose that alterations in the expression of genes encoding TFs lead to subsequent 

changes in expression of their TGs (Zaborowski and Walther 2020) and infer potential cell-type-specific 

relationships among individual candidate TFs and their TGs that they help regulate (e.g. TF-TG 

regulatory links).  

Differences among these tools is often attributed to their underlying assumptions applied to 

understand the nature of TF to TG regulatory dynamics (Nguyen et al. 2020) and methods (e.g. correlation) 

used to associate candidate TFs with their TGs (Kim et al. 2023). For example, the SCENIC (Aibar et. al 
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2017) pipeline utilizes co-expression analysis, such as GRNBoost (Moerman et al. 2019), on gene 

expression data to identify TGs for individual candidate transcription factors (TFs), focusing more on 

single TFs than on TF networks. SCODE (Matsumoto et al. 2017) uses ordinary differential equations on 

gene expression data to infer regulatory networks. PoLoBag utilizes polynomial lasso bagging for signed 

GRN inference (Roy et. al 2020), while TIGRESS (Haury et al. 2012) uses least angle regression (LARS) 

combined with stability selection. The BEELINE (Moerman et al. 2019) pipeline assesses 12 cell-type-

specific GRN algorithms using a benchmark framework alongside gene expression data. However, GRN 

methods relying solely on single-omics data, typically single-cell gene expression, can miss vital 

molecular interactions and regulatory mechanisms influencing TF activity, such as chromatin 

accessibility, DNA methylation, histone modifications, and PPIs, including TF-TF interactions. Multi-

omics integration tools (e.g. SCENIC+ (Bravo González-Blas et al. 2023), scGRNom (Jin et al. 2021), Signac 

(Stuart et. al 2021), Inferelator 3.0 (Skok Gibbs et al. 2022), CellOracle (Kamimoto et al. 2023)) which combine 

gene expression data with chromatin interactions, accessibility, and TF binding data, attempt to infer 

more comprehensive cell-type-specific GRN relationships among regulatory elements, TFs, and TGs. 

Nonetheless, a key limitation of these GRN tools is they focus on TFs in isolation, often 

neglecting the network of critical interdependent TF-TF regulatory coordination (e.g. PPI links) that is 

essential for cell-type gene regulation. As a result, these tools may struggle to retain TF-TG pairs with 

weak or de-coupled relations (e.g. uncorrelated expression), potentially excluding fundamental and 

intricate aspects of gene regulatory mechanisms (Zaborowski and Walther 2020). For instance, studies have 

found that even uncorrelated expression between a given (TF, TG) pair may bury and obscure a true 

biological regulatory relationship; this TF may still be involved in regulating the TG, although perhaps 

via other complicated avenues (e.g. joint coordination with other TFs)(Zaborowski and Walther 2020). In 

fact, cooperation and competition among TFs (i.e. TF binding process) has been shown to increase the 

noise in the gene expression profiles of TGs (Parab et al. 2022). These coordinating TF predictors are often 

co-expressed (significant magnitude of correlation with each other and high multicollinearity), impacting 

TG expression levels through synergistic or antagonistic coordination (Parab et al. 2022); however, in the 
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absence of additional context (e.g. PPIs for TFs), these GRN inference tools may potentially select 

independent TFs and/or remove some of these co-expressed TF predictors that are truly causal for the TG 

expression (Nicodemus and Malley 2009). In previous studies, PPIs have been used to infer synergistic 

binding of cooperative TFs (Nagamine et al. 2005) and classify the nature of interactions among TFs (Perna 

et al. 2020). Thus, there is a need for these GRN-inference tools to incorporate different levels of gene 

expression regulation, including PPIs (Zaborowski and Walther 2020). The BGRMI tool solely uses PPIs to 

learn relevant terms for TF heterodimer complexes to add to the model, ignoring the inherent PPI network 

structure (including indirect associations) and corresponding network weights (Iglesias-Martinez et al. 

2016). While SCINET (Li and Li 2008) reconstructs cell-type-specific interactomes by integrating a 

reference interactome with gene expression data, it does not explicitly reveal cell-type gene regulation. 

TF-Cluster (Nie et al. 2011) identifies functionally coordinated TFs involved in biological processes but 

does not focus on TG regulation and is based on coexpression analysis (and does not use any existing 

prior knowledge). RTNduals (Chagas et al. 2019) predicts TF co-regulatory behavior solely from 

expression data, which may not always yield outputs, and does not return a predicted TF-TG regulatory 

network. 

Previous studies have leveraged network-regularized (e.g. graph-regularized, network Lasso) 

regression models to identify disease-associated genes and gene networks, incorporating existing 

biological information and metadata as prior knowledge (Li and Li 2008; Wang et al. 2015; Dirmeier et al. 

2018; Li and Li 2010; Kim et al. 2013). This biological knowledge guides and constrains the regression 

problem, helping improve the biological relevance of the final inferred regression model. Nonetheless, 

these models have not been tailored to elucidate TF coordination in gene regulation. Further, there is a 

pressing need for these network-regularized regression models to evolve, enabling them to learn from 

regression data and prior networks while also creating robust latent embedding representations from these 

inputs. Several studies (e.g. (Chu et al. 2023; Gharavi et al. 2021; Choy et al. 2019)) have showcased the 

power of embeddings for downstream analysis, their efficacy at extracting significant relationships and 

facilitating new insights in biology and in other contexts. To bridge these gaps, we developed NetREm 
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(Network Regression Embeddings), a novel computational framework designed to infer cell-type TF 

coordination activities for gene regulation. 

Building on established network-regularized regression techniques, NetREm integrates 

multimodal data (e.g. TF binding profiles, direct/indirect TF-TF PPIs, derived TF-TF colocalization, gene 

expression, chromatin interaction, scATAC-seq epigenomic markers) capturing intricate aspects of TG 

regulation. It constructs robust predictive models for TF-TG regulation (complementary GRNs) as well as 

TF-TF coordination. A distinct feature of NetREm is its innovative ability to generate network regression 

embeddings, which identify and quantify coordination among cell-type TFs for co-regulating individual 

TGs. Public databases like STRINGdb provide direct and/or indirect, organism-specific, global, 

undirected, cell-type-agnostic PPIs for >12k organisms (Szklarczyk et al. 2023). Despite PPINs having 

some incorrect PPIs (False Positives (FPs)) and being largely incomplete (Kotlyar et. al 2022), it is helpful 

to integrate TF-TF PPINs as prior information (McCalla et al. 2023; Li and Jackson 2015; Ghanbari et al. 2015; 

Imoto et al. 2003; Mukherjee and Speed 2008). This improves NetREm’s predicted GRNs from expression 

data. NetREm also addresses the need for not only cell-type-specific annotation of known PPIs, but also 

discovery of new PPIs. It provides much-needed insights into TRMs, reveals cell-type- and disease- 

specific TF-TF PPINs, and aids interactome studies in uncovering disease gene properties and differential 

PPIN rewiring (Göös et al. 2022; Sevimoglu and Arga 2014). That is, NetREm can reveal TRMs comprising 

co-associated TFs and can prioritize TGs and coordination among TFs that significantly vary across 

different cell types or disease states. NetREm may help uncover and prioritize TF-TF cell-type-specific 

and disease-specific interactions that are subnetworks of the original PPI. This may aid studies that use 

the human interactome to uncover network properties of disease genes and differential network rewiring 

that is context-specific (Sevimoglu and Arga 2014). Further, this may enhance our understanding of how 

direct and/or indirect PPIs among TFs play roles in transcription regulation, which is currently poorly 

known (Göös et al. 2022). As demonstrations, we applied NetREm to simulation data and various cell types 

in both central and peripheral nerve systems (PNS) such as myelinating (mSCs) and non-myelinating 
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(nmSCs) SCs, as well as in Alzheimer's disease (AD) and control states in various neuronal and glial 

cells. However, NetREm is an open-source tool for general-purpose use. 

§ 3.2 Methods and Materials 

3.2.1 NetREm Methodology 

Overall, NetREm provides a holistic approach to understanding cell-type-specific gene regulatory 

mechanisms and enriches our understanding of core cell-type interactions (direct and indirect) among TFs 

that are involved in these processes. Please see §B.1 (SaniyaKhullar 2024) for more details on the methods 

for NetREm.  

Integrating multimodal data and networks in NetREm workflow 

Preliminary definitions: Proteins (e.g. TFs), and TGs (italics) are represented by HGNC symbols. TF 

gene expression is a proxy for TF protein abundance, assuming high gene expression (quantifies mRNA 

abundance) translates to high protein expression. NetREm can be applied to both single-cell and bulk 

expression data (sample by gene). Bulk data represents pooled collections of cell lines or tissues, yielding 

averaged expression profiles, as seen in patients. 

We start with single-cell gene expression data for 𝑀 samples (individual cells) and 𝒯 genes in a 

cell-type; scRNA-seq data is typically high-dimensional (𝑀 ≪ 𝒯), sparse, non-negative. We focus on 

𝐺 TGs, (i.e. {TG𝑘}𝑘=1
𝐺 ), with expression profiles {𝑦𝑘}𝑘=1

𝐺 , respectively, and 𝒩 potential cell-type TFs, 

where 𝐺 ≤  𝒯, 𝒩 < 𝒯. If all TFs are master regulators: 𝒯 = 𝐺 + 𝒩; else (some TGs are TFs): 𝒯 < 𝐺 +

𝒩. We ensure that a given TG is not its own candidate TF. 

NetREm can use prior GRN information that identifies {𝑁𝑘}𝑘=1
𝐺  respective promising candidate 

TFs for the set of 𝐺 TGs where 𝑁𝑘 ≤ 𝒩 and varies based on the optimal prior GRN TFs selected for the 

given TG𝑘. When prior GRN information is absent, TG𝑘 (and other 𝐺 − 1 TGs) will have the same fixed 

𝑁𝑘 = 𝒩 candidate TFs; it is to be understood that if TG𝑘 is also a TF, its self-TF is excluded, so it has 

𝑁𝑘 = 𝒩– 1 candidate TFs. These steps below are repeated for each of the 𝐺 TGs. For simplicity, we 
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explain the pipeline for predicting expression of a single TG. We use 𝑁 to represent the # of its candidate 

TFs for this TG, and 𝑦 for its true expression. 

Optional (recommended) prior cell-type GRN information: Constructing candidate links from 

TFs to TGs may improve the quality of NetREm’s solution via initial feature selection of 𝑁 biologically 

meaningful TFs tailored for TG, where 𝑁 < 𝒩. Using diverse information on expression regulation 

guides the regression (Zaborowski and Walther 2020). We integrated prior GRNs (initial TF-RE-TG links) 

from multi-omics data in various applications related to Schwann cell sub-types (application 6) and to 

Alzheimer’s disease (AD) versus controls in 8 neuronal/glial cell-types (application 7). When no prior 

GRN is used: if TG is a TF, it has 𝑁 = 𝒩 − 1 candidate TFs, otherwise it has all 𝒩 TFs as candidates. 

PPI network (PPIN, network prior): Our comprehensive, weighted, undirected PPIN 

𝕎 illuminates biological interactions among proteins (network nodes) with strong functional association 

evidence in the organism. It inherently captures direct (e.g. complex formation, transient interactions) 

and/or indirect (e.g. participate in shared processes or bind by intermediate hidden partners (De Las Rivas 

and Fontanillo 2012)) PPIs. Alas, PPINs attribute weight 𝑤 > 0 to all PPIs, even to those with antagonistic, 

competing roles in paths (Szklarczyk et al. 2023); each edge 𝑤 accounts for uncertainty in 𝕎 and is 

proportional to the probability that the 2 connected nodes interact (i.e. their integrative functional 

essentiality in 𝕎) (Li and Liu 2022). For the TG, we subset 𝕎 to obtain 𝑊(0) that captures known TF-TF 

PPIs, reflects potential structure/relation background information among TG’s 𝑁 candidate TF proteins, 

and is symmetric (i.e. (𝑊(0))
𝑇

= 𝑊(0)). Higher 𝑤𝑖𝑗 denotes more confidence that 𝑇𝐹𝑖 and 𝑇𝐹𝑗 partner, 

directly and/or indirectly, in processes like regulating DNA chromatin loops of interacting REs for TG 

regulation (Wang et al. 2021a). Here, 𝑤𝑚𝑖𝑛 = min{𝑤𝑖𝑗 ∈ 𝑊(0)} is the smallest confidence for known 

direct/indirect TF-TF links among 𝑁 TFs. To enable NetREm to consider candidate TFs missing from 

𝑊(0), we add artificial weight 0 < 𝜂 < 𝑤𝑚𝑖𝑛 for missing pairwise edges; these novel edges may not exist 

(i.e. TFs truly do not coordinate: True Negatives) or are yet to be discovered (FNs). We obtain our final, 

fully-connected, TG-specific, TF-TF input PPIN: 𝑊 ∈ ℝ𝑁 × 𝑁  where 𝑤𝑖𝑗 = 𝑤𝑗𝑖 > 0. 𝑊 has 
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𝑁(𝑁−1)

2
 unitless, global PPIs with 𝑤𝑖𝑗 > 0 equal to: 𝑤𝑖𝑗

(0)
 for known and 𝜂 for artificial TF-TF links. We 

do not consider self-loops; instead, we set 𝑊𝑖𝑖 =
𝑑𝑖

𝑁−1
 where 𝑇𝐹𝑖’s degree (connectivity) with other 𝑁 −1 

TFs is 𝑑𝑖 = ∑ 𝑤𝑖𝑘𝑘≠𝑖 > 0. 

𝑊 =

[
 
 
 
 
∑ 𝑤1𝑗

𝑁
𝑗=2,   𝑖≠𝑗

𝑁−1
𝑤21

⋮
𝑤𝑁1

     

𝑤12

∑ 𝑤2𝑗
𝑁
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𝑁−1

⋮
𝑤𝑁2

     

…
…
⋱
…
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⋮
∑ 𝑤𝑁𝑗

𝑁
𝑗=1,𝑖≠𝑗

𝑁−1 ]
 
 
 
 

𝑁 × 𝑁

=

[
 
 
 

𝑑1

𝑁−1
𝑤21

⋮
𝑤𝑁1

     

𝑤12
𝑑2

𝑁−1

⋮
𝑤𝑁2

     

…
…
⋱
…

     

𝑤1𝑁

𝑤2𝑁

⋮
𝑑𝑁

𝑁−1 ]
 
 
 

𝑁 × 𝑁

. 

NetREm integrates input data: For the 𝑀 samples, the 𝑋 ∈ ℝ𝑀 × 𝑁 matrix contains expression 

data for 𝑁 predictors, while 𝑦(0) ∈ ℝ𝑀 is the expression vector for TG. We standardize each column of 𝑋 

(𝑋𝑖𝑗 ←
𝑋𝑖𝑗−𝜇𝑗

𝜎𝑗
) and 𝑦 (𝑦𝑖 ←

𝑦𝑖−𝜇𝑦

𝜎𝑦
) by respective means 𝜇𝑗 , 𝜇𝑦 and standard deviations 𝜎𝑖, 𝜎𝑦, making them 

unitless. Then, each TF in 𝑋 has 𝜇𝑗̅ ≈ 0 and 𝜎𝑗 ≈ 1; 𝜇𝑦 ≈ 0, 𝜎𝑦 ≈ 1. Pairwise 𝑟 are preserved. If 𝑀 < 𝑁, 

𝑋 suffers the curse of dimensionality. With technological advances and the advent of large single-cell 

sequencing studies, we anticipate a boost in 𝑀 so 𝑀 ≫ 𝑁 will soon be the norm (Cuomo et al. 2023), 

especially since 𝑁 ≪ 𝒯 (relatively few genes are transcribed and translated to proteins that are TFs). 

NetREm identifies which of 𝑁 TFs can predict TG expression 𝑦, considering PPIs among TFs. NetREm 

can comprehensively integrate multi-omics data and PPINs to discover key TFs and TF-TF coordination 

events for TG regulation in a cell-type-specific manner. 

Step 1: Network regularized regression 

Given gene expression data with 𝑀 samples (rows) and 𝑁 features (columns) represented as 𝑋 ∈ ℝ𝑀 × 𝑁 

(e.g. 𝑁 candidate TF expression values for each 𝑀) and response 𝑦 ∈ ℝ𝑀 (e.g. TG expression for each 

𝑀), we want to learn a linear predictor 𝑦 ≈ 𝑋𝑐∗ for TG. By imposing prior TF-TF PPIN information as a 

regularization term, we develop a functional map highlighting connectivity patterns among 𝑁 TFs for TG; 

this typically steers NetREm to favor groups of TFs with shared PPIN connectivity over isolated TFs, 

thereby enhancing its ability to capture biologically relevant PPIs (Li and Liu 2022). Coefficients 𝑐∗ ∈

ℝ𝑁 represent the importance of TFs for regulating TG and are found by optimizing the following problem 

with objective function: 
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𝑐∗ = argmin
𝑐

𝑓(𝑐) =
1

2𝑀
||𝑦 − 𝑋𝑐||

2
+ 𝛼||𝑐||

1
+

𝛽

2
∑∑𝑤𝑖𝑗 (

𝑐𝑖

√𝑑𝑖

−
𝑐𝑗

√𝑑𝑗

)

2𝑁

𝑗=𝑖

𝑁

𝑖=1

          𝐸𝑞 (1) 

Our 3 terms in equation 𝐸𝑞 (1) are unitless and compatible for addition:  

1 (data-fitting): ensures 𝑋𝑐 is close to 𝑦, and 
1

2𝑀
 is a normalization factor to make it invariant to sample 

size 𝑀. 2 (sparsity-prior): favors a sparse solution (small # of non-zero 𝑐∗), helping simplify the model 

and boost reliability. 3 (network-prior): penalizes differences between 𝑐∗ of connected TF nodes, 

normalized by their respective network centrality 𝑑 and adjusted for their global (organism-based) PPI 

weights with other candidate TFs in TG-specific input 𝑊. Inspired by (Li and Li 2008), this approach 

allows for a more equitable representation of TFs, irrespective of their 𝑑; this network-oriented variant of 

Ridge 𝐿2 penalty ∑ 𝑐𝑖
2𝑁

𝑖=1 , promotes topology-aware 𝑐∗ shrinkage and smoothing for neighboring 𝑇𝐹𝑖 and 

𝑇𝐹𝑗, with probability proportional to 𝑤𝑖𝑗. It underscores the principle that strongly connected TFs likely 

perform shared functions, even if their influence on TG expression (𝑐∗ signs) differs. This recognizes the 

community structure in existing PPINs that groups proteins with similar biological roles with 𝑤 > 0, not 

distinguishing between cooperative (+) and antagonistic (-) PPIs (Padi and Quackenbush 2015; Szklarczyk et 

al. 2023). NetREm leverages this refined understanding, offering a comprehensive perspective on the 

interplay of TFs in 𝑊. 

We can tune 2 hyperparameter knobs: network-constrained prior, 𝛽 > 0, decides the strength of 

the PPIN regularization penalty (applied 1st: higher 𝛽 guides NetREm to prioritize TFs with strong PPIs); 

sparsity prior, 𝛼 ≥ 0, impacts ℒ1 penalty (applied 2nd). NetREm, a PPIN-aware adaptation of ElasticNet, 

performs automatic variable selection based on expression and PPIN data, grouping and selecting 

strongly-connected TFs (emphasizing known TF-TF PPI subnetworks) in a spirit akin to ElasticNet. If 

𝑀 ≪ 𝑁, ElasticNet and NetREm may still select ≤ 𝑁 TFs as final; this addresses limitations of Lasso 

regression that may indiscriminately select only 1 TF from a group of highly correlated TFs and only ≤

𝑀 TFs if 𝑀 ≪ 𝑁 (Zou and Hastie 2005; Li and Li 2008). 



73 
 

Step 2: Gene embeddings from network regression 

Our novel method transforms the original problem into a Lasso regression problem in a new space with 

cell-type-specific TF-TF interactions. 1st, we represent the network-prior term in a more compact matrix-

vector form as: 
𝛽

2
∑ ∑ 𝑤𝑖𝑗 (

𝑐𝑖

√𝑑𝑖
−

𝑐𝑗

√𝑑𝑗
)
2

𝑁
𝑗=𝑖

𝑁
𝑖=1 =

𝛽

2
𝑐𝑇𝐴𝑐, where 𝐴 = 𝐷𝑇(𝑊⨀𝑉)𝐷 =

[
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⋮
1 ]

 
 
 
 

.  𝐴,𝐷, 𝑉,𝑊 are all symmetric ℝ𝑁 × 𝑁 matrices. 

We define 𝑉 = 𝑁 ∙ 𝐼 − 11𝑇 where 1 ∈ ℝ𝑁 × 1 is a 𝑁 dimensional all 1 column vector, and 𝑊 ⊙ 𝑉 is 

element wise (⨀) multiplication of 𝑊 and 𝑉 (i.e. Hadamard product).  𝐷 = 𝑑𝑖𝑎𝑔(1/√𝑑) is a diagonal 

matrix with main diagonal degree-based elements 1/√𝑑𝑖 and off-diagonals 0:  𝐷 =

[
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𝑁 × 𝑁

= 𝐷𝑇   where 𝑑𝑖 = ∑ 𝑤𝑖𝑗
𝑁
𝑗=1,   𝑗≠𝑖 . 𝑉 is invariant to 𝑊, 𝐷, and input TFs and TGs; 

instead 𝑉 only depends on 𝑁 (# of candidate TFs) to obtain its constant values. That is,  𝑉 =

[
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 and 𝑊⨀𝑉 = [

𝑑1

−𝑤21

⋮
−𝑤𝑁1

     

−𝑤12

𝑑2

⋮
−𝑤𝑁2

     

…
…
⋱
…

     

−𝑤1𝑁

−𝑤2𝑁

⋮
𝑑𝑁

]

𝑁 × 𝑁

. 

Given that squared term (
𝑐𝑖

√𝑑𝑖
−

𝑐𝑗

√𝑑𝑗
)
2

≥ 0 and 𝑤𝑖𝑗 ≥ 𝜂 > 0 and 𝛽 > 0, the quadratic form 𝑐𝑇𝐴𝑐 ≥ 0 for 

any vector of optimal 𝑐∗ and 𝐴 = [𝑎𝑖𝑗] ∈ ℝ𝑁 × 𝑁 is therefore symmetric and positive semi-definite. Here, 

𝑎𝑖𝑗 = 𝑎𝑗𝑖 < 0 for 𝑖 ≠ 𝑗 and main diagonal 𝑎𝑖𝑖 = 1  for 𝑖 = 1,… ,𝑁.  𝐴 scales each entry (𝑊 ∘ 𝑉)𝑖𝑗 by 

1/√𝑑𝑖𝑑𝑗 so 𝐴𝑖𝑗 = (𝑊 ⊙ 𝑉)𝑖𝑗/√𝑑𝑖𝑑𝑗. Here, 𝐴 captures connectivity and interaction strengths in 𝑊 in a 

form suitable for regularized regression. As 𝐴 is based on a fully-connected PPIN (i.e. there are no 

completely isolated subsets of TF nodes), it is a normalized variant of normalized graph Laplacian matrix 

𝐿, specifically tailored for context where 𝑤 and 𝑑 are crucial. Off-diagonals are −1 ≤ 𝐴𝑖𝑗 =

−𝑤𝑖𝑗/√𝑑𝑖𝑑𝑗 < 0 where 𝑖 ≠ 𝑗, since 𝑑𝑖 = ∑ 𝑤𝑖𝑘𝑘≠𝑖 ≥ 𝑤𝑖𝑗 and 𝑑𝑗 = ∑ 𝑤𝑗𝑘𝑘≠𝑗 ≥ 𝑤𝑗𝑖, so √𝑑𝑖𝑑𝑗 ≥ 𝑤𝑖𝑗; 
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negative values indicate respective penalty for dissimilarity between connected nodes since the 

regularization term aims to minimize differences in characteristics (modeled by |𝑐∗|) amongst TFs by 

regularizing and smoothing 𝑐∗ across input PPIN based on connectivity. Using this matrix-vector 

representation, we reformulate 𝑓(𝑐) in 𝐸𝑞 (1) as 

𝑓(𝑐) =
1

2𝑀
||𝑦 − 𝑋𝑐||

2
+ 𝛼||𝑐||

1
+

𝛽

2
𝑐𝑇𝐴𝑐 

We note that ||𝑦 − 𝑋𝑐||
2

= (𝑦 − 𝑋𝑐)𝑇(𝑦 − 𝑋𝑐) = 𝑦𝑇𝑦 − 2𝑦𝑇𝑋𝑐 + 𝑐𝑇𝑋𝑇𝑋𝑐. Thus,   

𝑓(𝑐) =
1

2𝑀
(𝑦𝑇𝑦 − 2𝑦𝑇𝑋𝑐 + 𝑐𝑇𝑋𝑇𝑋𝑐) + 𝛼||𝑐||

1
+

𝛽

2
𝑐𝑇𝐴𝑐 

                       =
1

2𝑀
𝑐𝑇(𝑋𝑇𝑋 + 𝛽𝑀𝐴)𝑐 − 

1

𝑀
𝑦𝑇𝑋𝑐 +  𝛼||𝑐||

1
+ 

1

2𝑀
𝑦𝑇𝑦 

We set 𝐸 =
𝑋𝑇𝑋

𝑀
+ 𝛽𝐴 ∈ ℝ𝑁 × 𝑁, which we derive by dividing 𝑋𝑇𝑋 + 𝛽𝑀𝐴 by 𝑀. 𝐸 is symmetric and 

positive semi-definite since 𝐴 and Gram matrix 𝑋𝑇𝑋 ∈ ℝ𝑁 × 𝑁 are symmetric and positive semi-definite 

and 𝛽,𝑀,𝑁 > 0. Here, (𝑋𝑇𝑋)𝑖𝑖 = 𝑀, reflecting sum of squared values of each TF, indicative of variance 

(𝜎2 = 1) scaled by 𝑀. Off-diagonals (𝑋𝑇𝑋)𝑖𝑗 (for 𝑖 ≠ 𝑗) represent sums of products of pairs of different 

TFs so |(𝑋𝑇𝑋)𝑖𝑗| ≤ 𝑀 since 
(𝑋𝑇𝑋)

𝑖𝑗

𝑀
 represents: |𝑐𝑜𝑟(𝑇𝐹𝑖, 𝑇𝐹𝑗)| ≤ 1. Thus, this 1st gene expression-based 

term (i.e. cell-type-specific data term) for 𝐸 is: 
𝑋𝑇𝑋

𝑀
, representing correlation 𝑟 among TFs, has max value 

1, is the covariance matrix of 𝑋 scaled by 
1

𝑀
. The 2nd term (i.e. cell-type-independent PPI term): 𝛽𝐴 is 𝛽 

for main-diagonals and has off-diagonals −𝛽 ≤ 𝛽𝐴𝑖𝑗 < 0 (for 𝑖 ≠ 𝑗). As region-specific PPINs become 

available for the given organism, they may be used as input to NetREm in place of the current, global, 

organism-specific PPINs to improve the cell-type-specificity of the results. Thus, 𝐸𝑖𝑗 = 𝑟(𝑥𝑖, 𝑥𝑗) −

𝛽
𝑤𝑖𝑗

√𝑑𝑖𝑑𝑗
, which balances 𝑟 with PPIN knowledge (for a given 𝛽 value) and information (

𝑤𝑖𝑗

√𝑑𝑖𝑑𝑗
). 

𝑓(𝑐) =
1

2𝑀
𝑐𝑇(𝑋𝑇𝑋 + 𝑀𝛽𝐴)𝑐 − 

1

𝑀
𝑦𝑇𝑋𝑐 +  𝛼||𝑐||

1
+ 

1

2𝑀
𝑦𝑇𝑦 

                                =
1

2𝑁
𝑐𝑇𝑋̃𝑇𝑋̃𝑐 −  

1

𝑁
𝑦̃𝑇𝑋̃𝑐 + 𝛼||𝑐||

1
+

1

2𝑀
𝑦𝑇𝑦                                              
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                   =
1

2𝑁
||𝑦̃ − 𝑋̃𝑐||

2
+ 𝛼||𝑐||

1
+

1

2𝑀
𝑦𝑇𝑦 − 

1

2𝑁
𝑦̃𝑇𝑦̃ ,          𝐸𝑞 (2) 

where 𝑋̃ ∈ ℝ𝑁 × 𝑁 and is symmetric (i.e. 𝑋̃ =  𝑋̃𝑇) and 𝑦̃ ∈ ℝ𝑁 satisfies: 

1

𝑁
𝑋̃𝑇𝑋̃ =

1

𝑀
𝑋𝑇𝑋 + 𝛽𝐴            𝐸𝑞 (3𝑎) 

               
1

𝑁
𝑦̃𝑇𝑋̃ =

1

𝑀
𝑦𝑇𝑋                   𝐸𝑞 (3𝑏)                    

Finally, we reformulate 𝐸𝑞 (2) as a conventional Lasso problem (by omitting constant term  
1

2𝑀
𝑦𝑇𝑦 −

 
1

2𝑁
𝑦̃𝑇𝑦̃) that we solve using existing standard Lasso or LassoCV (Pedregosa et al. 2011) solvers: 

𝑐∗ = argmin
𝑐

𝑓(𝑐) =
1

2𝑁
||𝑦̃ − 𝑋̃𝑐||

2
+ 𝛼||𝑐||

1
  𝐸𝑞 (4) 

To compute 𝑋̃ and 𝑦̃ we perform a Singular Value Decomposition (SVD) on 𝐸 expressed as: 𝐸 = 𝑈Σ𝑈𝑇. 

Here 𝑈 ∈ ℝ𝑁 × 𝑁 is the matrix of the left singular vectors of 𝐸 and Σ ∈ ℝ𝑁 × 𝑁 is a diagonal matrix of 

singular values 𝒮 = {𝑠1, 𝑠2, … ,  𝑠𝑁} of 𝐸. All 𝑁 values in 𝒮 are non-negative and convey info regarding 

strength or importance of each corresponding dimension (𝑠max = max(𝒮) and 𝑠min = min(𝒮)). Then, 

𝐸 = 𝑈Σ
1

2Σ
1

2𝑈𝑇 = (𝛴
1

2𝑈𝑇)
𝑇

(𝛴
1

2𝑈𝑇). Based on 𝐸𝑞 (3𝑎), 𝐸 =
1

𝑁
𝑋̃𝑇𝑋̃. Then, 𝑋̃𝑇𝑋̃ = 𝑁𝐸. Hence, 

(√𝑁𝛴
1

2𝑈𝑇)
𝑇

(√𝑁𝛴
1

2𝑈𝑇) = 𝑋̃𝑇𝑋̃. For improved stability, we set small singular values (e.g., 𝑠𝑖 <

10−6𝑠max) to 0, resulting in truncated Σ𝑡𝑟𝑢𝑛𝑐, and similarly, we adjust inverse Σtrunc
−1 setting inverse 

elements corresponding to small singular values to 0. By substituting Σtrunc
−

1

2 in place of Σ−
1

2, we 

effectively use truncated SVD, enhancing NetREm’s robustness by excluding contributions from small 

singular values. Thus, 𝑋 and 𝑦 are transformed to a new latent space of gene expression embeddings that 

incorporate PPIN information: 𝑋̃ ∈ ℝ𝑁 × 𝑁 and 𝑦̃ ∈ ℝ𝑁, respectively, in 𝐸𝑞 (4): 

𝑋̃ = √𝑁Σtrunc

1

2𝑈𝑇 where 𝑋̃ = [

| | ⋯

𝑋1̃ 𝑋2̃ …
| | ⋯

    

|

𝑋𝑁̃

|
]

𝑁 × 𝑁

 

 𝑦̃ =
√𝑁

𝑀
Σtrunc

−
1

2𝑈𝑇𝑋𝑇𝑦 

When 𝛽 = 0, the transformation yields 𝑋’s principal components (PCs) via SVD on 𝑋𝑇𝑋, a trivial case 

without PPIN information; however, since we require 𝛽 > 0, 𝑋̃ not only reflects its PCs but also includes 
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PPIN structure, with 𝛽𝐴 added to 
1

𝑀
𝑋𝑇𝑋, creating an “embedding”. This comprehensive approach 

captures both data patterns and PPI relations. The higher 𝛽 is, the greater the contribution of PPIN 

relations will be towards 𝑋̃ and 𝑦̃, which encapsulates expression relations and PPIN information. We 

perform Lasso regression to solve 𝐸𝑞 (4) for 𝑋̃ and 𝑦̃, determining optimal 𝑐∗. §B.1 (SaniyaKhullar 2024) 

provides more details. 

Output 1: Identification of potential novel cell-type TFs in TF-TG regulatory network 

TF-TG regulatory network for TG: 

Several TFs regulate transcriptional activity of TG in a cell-type at a certain time (Nie et al. 2011). Solving 

the network-regularized regression problem produces a vector of Lasso 𝑐∗ ∈ ℝ𝑁 for 𝑁 TFs predicting true 

TG expression 𝑦. We focus on 𝑐∗ ≠0, which represents 𝑁∗ final TFs for TG out of 𝑁 candidates, where 0 

< 𝑁∗ ≤ 𝑁. NetREm constructs a comprehensive directed TF-TG regulatory network (complementary 

GRN) of 𝑁∗ edges, weighted by 𝑐∗. Here |𝑐𝑖
∗|, indicates the strength of the 𝑇𝐹𝑖-TG link, measuring 𝑇𝐹𝑖’s 

relative importance in regulating TG. 𝑇𝐹𝑖 with 𝑐𝑖
∗ > 0 may activate TG and 𝑇𝐹𝑗 with 𝑐𝑗

∗ < 0 may repress 

TG transcription and subsequent expression. This tug-of-war between activators and repressors 

orchestrates TG regulation. Biological complexity enables certain TFs to have dual-function roles, 

alternating between activation and repression depending on context and signals (Skok Gibbs et al. 2022; 

Boyle and Després 2010). In fact, the role of the TF in regulating TG expression (i.e. activator versus 

repressor role) may be governed by a spatial grammar (e.g. precise position of TF relative to 

Transcription Start Site (TSS) of TG, spatial configuration of TFBSs)(Duttke et al. 2024). Given the 

competitive nature of TFBS binding, 𝑁 − 𝑁∗ discarded TFs may lose to some of the 𝑁∗ TFs (i.e. 

antagonistic relation), but we do not speculate on this. Overall, NetREm unearths novel cell-type-specific, 

coordinating TFs involved in TG regulation, providing a more nuanced view of TF-TG interactions. 

We evaluated our performance in training and testing expression data, comparing predicted 𝑦̃ ̂ ∈

ℝ𝑁 × 1 to actual 𝑦̃ using metrics like Mean Square Error (MSE) = 
1

𝑁
∑ (𝑦̃𝑣 ̂ − 𝑦̃)

2𝑁
𝑣=1 . To achieve more 

accurate regulatory links, we integrated multiomics data like TF-DNA-binding (Dibaeinia and Sinha 2020) 
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in applications 6-7 to predict prior GRNs. We identified regulatory elements (REs) for TG and 

determined TFs likely to bind directly to or associate indirectly with TFBSs on these REs. We input 𝑁 

TG-specific candidate TFs to NetREm for TG. Then, we overlaid NetREm’s 𝑁∗ TF-TG regulatory links 

for TG with this prior GRN (initial TF–RE –TG links for 𝑁 TFs for TG). This helped us annotate our 

links with epigenomic information on REs. Ultimately, we isolated highly-confident final TF-RE-TG 

links for our final 𝑁∗ TFs. 

Cell-type TF-TG regulatory network: 

We applied NetREm, iteratively, to each of the 𝐺 TGs and weave together individual TF-TG links 

(details: §B.1 (SaniyaKhullar 2024)). We may narrow down links by retaining TFs with |𝑐∗| >  𝑐𝑚𝑖𝑛 (min 

threshold, default: 0) and TGs meeting specific criteria (e.g. 𝑀𝑆𝐸𝑇𝐺 < 𝑀𝑆𝐸𝑚𝑎𝑥). Our cell-type-specific 

complementary GRN relates TFs to TGs they regulate, helping explain how cell-types establish and 

maintain cellular identity. We may annotate/validate this network by identifying eSNPs impacting TF 

binding with eQTL links to altered TG expression (Coetzee et al. 2015); when prior GRNs are used, we 

ensure SNPs fall in the same REs where TFs are predicted to bind, linking them to TG regulation. 

Output 2: Cell-type-specific TF-TF coordination (direct/indirect TF-TF interactions) 

TG-specific cell-type coordination 𝐵: 

NetREm helps fulfill the need for cell-type-specific proteome analysis by which proteins interact to carry 

out processes like TG regulation. Existing PPINs aggregate direct and/or indirect PPIs in an organism. 

This broad approach has limitations, as not all proteins are expressed in every cell or tissue type, and 

some may be aberrant in diseases (Padi and Quackenbush 2015). To overcome this, there are efforts to 

annotate global PPIs at various levels, including tissue-specific protein expression, cell-line-specific links, 

phenotype-based studies (e.g. CPPID) (Federico and Monti 2020). However, co-expression of TFs need not 

imply they interact in specific cell or tissue types (Gonzalez-Teran et al. 2022). Further, PPINs do not 

distinguish between cooperation and antagonism. This underscores the need for NetREm’s 2nd output that 

predicts how TFs coordinate to regulate TG in the cell-type. 
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NetREm’s 2nd output is a weighted and signed TG-specific TF-TF coordination network given by 

an adjacency matrix of coordination scores 𝐵, if 𝑁∗ ≥ 2 final TFs for TG. These scores are a function of 

both embeddings 𝑋̃ and 𝑐∗: 𝐵 = 𝑓(𝑋̃, 𝑐∗). In our framework, 𝐵𝑖𝑗 > 0 suggests cooperativity (e.g. co-

binding, pioneer-settler TF relations) and 𝐵𝑖𝑗 < 0 indicates antagonism (e.g. sequestration) between 𝑇𝐹𝑖 

and 𝑇𝐹𝑗 for co-regulating TG. 

We used 𝑐∗ to predict the nature of interactions among 𝑁∗ TFs for TG in a symmetric matrix 𝐶 ∈

ℝ𝑁 ×𝑁. Here, 𝐶𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝑐𝑖 , 𝑐𝑗) = {1 if 𝑐𝑖
∗𝑐𝑗

∗ > 0; −1 if 𝑐𝑖
∗𝑐𝑗

∗ < 0;  0 otherwise} and 𝐶𝑖𝑖 = 0. RTNduals 

assesses coordinated behavior of 2 TFs by analyzing correlation distributions between them and their 

shared TGs; building on approaches like these, we use 𝐶 to deduce relative coordination relations among 

TFs for TG, acknowledging TFs may exhibit antagonistic or cooperative interactions depending on TG 

and context. If 𝐶𝑖𝑗 > 0, both TFs likely cooperate, aiming to either upregulate or downregulate TG 

expression in unison; their combined synergistic net effect on the TG is stronger than their individual 

effects. Conversely, if 𝐶𝑖𝑗 < 0, both likely act antagonistically, with conflicting influences on TG 

expression; this activator-repressor antagonism weakens their combined effect compared to their 

individual impacts, potentially due to partially canceling each other’s activities (Berenson et al. 2023). 

When 𝐶𝑖𝑗 = 0 (and 𝑖 ≠ 𝑗), at least 1 of the 2 TFs is not a final TF and we cannot ascertain their potential 

nature of interaction. 

Earlier, we set 𝐸 =
𝑋𝑇𝑋

𝑀
+ 𝛽𝐴. The 1st term 

𝑋𝑇𝑋

𝑀
 represents the original normalized inner product 

space from column vectors 𝑥1, 𝑥2, … , 𝑥𝑁 of 𝑋, where 𝑥𝑖 ∈ 𝑅𝑀 represents 𝑇𝐹𝑖’s standardized expression 

levels across 𝑀 cells in cell type. The 2nd term 𝐴 = 𝐷𝑇(𝑊⨀𝑉)𝐷 purely depends on TF-TF PPIN 

strengths 𝑤 > 0 and can be retrieved from public databases. By 𝐸𝑞 (3𝑎), 𝐸 =
𝑋𝑇𝑋

𝑀
+ 𝛽𝐴 =

1

𝑁
𝑋̃𝑇𝑋̃; we 

thus transform 𝑋 and network-prior PPIN data to 𝑋̃ embedding data. This yields a new normalized inner-

product space 
1

𝑁
𝑋̃𝑇𝑋̃ that helps depict and encode an aspect of cell-type TF-TF coordination scores for 

regulating TG. Since 𝑁 is a scalar, we use |𝑋̃𝑇𝑋̃| ∈ ℝ𝑁 × 𝑁. For each 𝑇𝐹𝑖 − 𝑇𝐹𝑗 pair, we divide |𝑋𝑖̃
𝑇
𝑋𝑗  ̃|, 



79 
 

which is proportional to the extent of their potential coordination, by ||𝑋𝑖̃|| ∙ ||𝑋𝑗̃|| to scale it. ||𝑋𝑖̃|| =

√∑ (𝑥𝑖𝑧̃)
2𝑀

𝑧=1 > 0 is the Euclidean norm of 𝑇𝐹𝑖’s embedding 𝑋𝑖̃. This essentially is their cosine similarity 

(cos) magnitude: |cos(𝑋𝑖̃, 𝑋𝑗̃)| =
|𝑋𝑖̃

𝑇
𝑋𝑗̃|

||𝑋𝑖̃||∙||𝑋𝑗̃||
≤ 1. To learn coordination scores, we use coefficient-aware-

cos metric: 𝐵𝑖𝑗
(0)

= |cos(𝑋𝑖̃, 𝑋𝑗̃ )|⨀𝐶 for 𝑖 ≠ 𝑗 and 𝐵𝑖𝑖
(0)

 = 0. We apply max absolute value scaling 
𝐵𝑖𝑗

(0)

max(|𝐵|)
 

where max(|𝐵|) is the max magnitude of ℓ𝑁 =
𝑁(𝑁−1)

2
 scores. Our TG-specific TF-TF coordination 𝐵 ∈

ℝ𝑁 × 𝑁 has: 𝐵𝑖𝑗 =
100𝐵𝑖𝑗

(0)

max(|𝐵|)
 where −100 ≤ 𝐵𝑖𝑗 ≤ 100 if 𝑇𝐹𝑖 and 𝑇𝐹𝑗 are among 𝑁∗ TFs (i.e. 𝑐𝑖

∗𝑐𝑗
∗ ≠ 0) 

where 𝑖 ≠ 𝑗; else 𝐵𝑖𝑗 is 0 for all remaining cases. Of ℓ𝑁 scores, ℓ𝑁∗ =
𝑁∗(𝑁∗−1)

2
 are ≠0. 

TFs with higher |𝐵| have stronger coordination for co-regulating TG. NetREm predicts 𝐵 for 

known TF-TF PPIs (pairs with 𝑤𝑖𝑗 > 𝜂), uncovering meaningful, cell-type-specific PPI subnetworks. 

These documented PPIs have established partnership for orchestrating biological processes. It also 

predicts 𝐵 for novel, artificial PPI links (𝑤𝑖𝑗 = 𝜂), flagging (high |𝐵|) promising FN TF-TF links for 

follow-up investigation. TF-TF coordination can be direct (e.g. form complexes, tethering) or indirect 

(e.g. TFs may not interact physically but can modify local chromatin environments, facilitating binding of 

other TFs) (Srivastava and Mahony 2020). Typically, direct PPIs rely on genome-wide data, indirect (e.g. 

guilt-by-association) PPIs use genetic interaction data (Wang et al. 2009). While studies predict negatomes 

(proteins unlikely to interact physically) (Jha et al. 2022), they offer limited insights on indirect PPIs. 

Cell-type coordination 𝐵̅: 

Functionally-coordinated TFs help regulate sets of TGs at a given time point (Nie et al. 2011) through 

direct and/or indirect interactions with one another. In reality, 𝑇𝐹𝑖 and 𝑇𝐹𝑗 may only co-regulate a subset 

of the 𝐺 TGs in the cell-type, if at all. Nonetheless, their coordination behavior is considered across all 𝐺 

TGs to implicitly adjust for this; that is, that the learned cell-type TF-TF coordination score 𝐵̅𝑖𝑗 will 

reflect better their coregulatory behavior for the cell-type. 
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To create a weighted and signed cell-type-specific coordination network among 𝒩 TFs, 𝐵̅, we 

first aggregate individual 𝐵 across 𝐺 TGs. Each TG (i.e. TG𝑘) has expression (𝑦𝑘), 𝑁𝑘 candidate TFs 

(where 𝑁𝑘 ≤ 𝒩), and coordination score matrix 𝐵𝑘 ∈ ℝ𝑁𝑘 × 𝑁𝑘 , where 𝑘 = 1,… , 𝐺 and −100 ≤ 𝐵𝑘 ≤

100. Next, to compute aggregate cell-type values from {𝐵𝑘}𝑘=1
𝐺 , we 0 pad 𝐵𝑘 ∈  ℝ𝑁𝑘 × 𝑁𝑘 to 𝐵̂𝑘 ∈ ℝ𝒩×𝒩 

where 𝐵̂𝑖𝑗
𝑘 = 𝐵𝑖𝑗

𝑘  if both 𝑇𝐹𝑖 and 𝑇𝐹𝑗  are 𝑁𝑘
∗ final TFs (i.e. 𝑐𝑖

∗, 𝑐𝑗
∗  ≠ 0) selected for TG𝑘 and 𝐵̂𝑖𝑗

𝑘 = 0 

otherwise. Then, we compute the mean of these TG-specific undirected TF-TF coordination matrices 

{𝐵̂𝑘}
𝑘=1

𝐺
 as ℬ(0) =

∑ 𝐵̂𝑘𝐺
𝑘=1

𝐺
 where ℬ(0) ∈ ℝ𝒩×𝒩. We note there are ℓ𝒩 = 0.5𝒩(𝒩 − 1) unique TF-TF 

links (i.e. 𝑇𝐹𝑖 − 𝑇𝐹𝑗 link is the same as 𝑇𝐹𝑗 − 𝑇𝐹𝑖 and hence counted once). We flatten ℬ(0) to a vector 

ℬ ∈ ℝℓ𝒩  of corresponding values for the corresponding  ℓ𝒩 unique TF-TF links. For each 𝑇𝐹𝑖 −

𝑇𝐹𝑗 link, we convert |ℬ𝑖𝑗| to a percentile 0 ≤ 𝑃𝑖𝑗 ≤ 100, where higher values indicate greater relative 

coordination among ℓ𝒩 links and 𝑃 ∈ ℝℓ𝒩 ; this enables a direct comparison of coordination strengths by 

normalizing |ℬ|’s distribution to a uniform 0 to 100 scale. We sort |ℬ| in ascending order (small to large) 

and determine relative position, 𝑅𝑖𝑗, of |ℬ𝑖𝑗| so 𝑃𝑖𝑗 = 100(
𝑅𝑖𝑗−1

ℓ𝒩
)% and higher 𝑃𝑖𝑗 reflects proportionally 

larger |ℬ𝑖𝑗|. A pair of TFs may exhibit cooperative behavior to regulate some TGs and antagonistic 

behavior to regulate others. Our goal is to amalgamate learned coordination information across multiple 

TGs to reach a conclusion about the net nature of cell-type coordination (i.e. signed percentiles), in a 

manner akin to information content measures. We note that sign(ℬ) is 1 if ℬ𝑖𝑗 > 0, -1 if ℬ𝑖𝑗 < 0, 0 

otherwise. This informs the overall net cell-type coordination behavior between 𝑇𝐹𝑖 and 𝑇𝐹𝑗. 

The final cell-type TF-TF coordination network 𝐵̅ is defined by: 𝐵̅ = sign(ℬ) ∙ 𝑃, where 

𝐵̅, ℬ, 𝑃 ∈ ℝℓ𝒩  and -100 ≤ 𝐵̅ ≤ 100, is the same range as TG-specific coordination scores. Each non-zero 

score in 𝐵̅ is unique. |𝐵𝑖𝑗
̅̅ ̅̅ | denotes relative strength of 𝑇𝐹𝑖 − 𝑇𝐹𝑗 coordination and cell-type co-regulation 

(i.e. normalized interaction significance); the sign encapsulates their net observed behavior across 𝐺 TGs: 

−100 ≤ 𝐵𝑖𝑗
̅̅ ̅̅ < 0: both TFs are antagonistic overall, 0 < 𝐵𝑖𝑗

̅̅ ̅̅ ≤ 100: both TFs cooperate overall. TF-TG 
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regulatory networks provide more insights. If 𝐵𝑖𝑗
̅̅ ̅̅ ≈ 0 and both TFs co-regulate TGs, we cannot deduce 

any meaningful information regarding the nature of their cell-type-specific interaction.  

 Thus, NetREm predicts how TFs coordinate with each other in networks to co-regulate TGs. For 

each of the 𝐺 TGs in the cell-type, it outputs a TG-specific TF-TF coordination network: −100 ≤ 𝐵 ≤

100, where 𝐵𝑖𝑗  is the 𝑇𝐹𝑖 – 𝑇𝐹𝑗 coordination to co-regulate TG. Here, 𝐵̅ is a function 𝑓 of {𝐵𝑘}𝑘=1
𝐺  across 

𝐺 TGs in the cell-type and is an overall cell-type-specific TF-TF coordination network: −100 ≤ 𝐵̅ ≤

100, where 𝐵̅𝑖𝑗 is the net 𝑇𝐹𝑖 – 𝑇𝐹𝑗 coordination behavior across all 𝐺 TGs in the cell-type. The 𝐺 TG-

specific TF-TF coordination networks {𝐵𝑘}𝑘=1
𝐺  and the overall cell-type TF-TF coordination network 

𝐵̅ contain scores between -100 and 100, where negative scores suggest potential antagonistic co-

regulatory relations and positive scores assign potential cooperative relations among the TFs, via direct 

and/or indirect mechanisms.  

3.2.2 Real-world Datasets and Pre-processing 
§B.1 (SaniyaKhullar 2024) details the parameters and evaluation for our applications. We applied NetREm 

for each TG in the cell-type for 7 main applications spanning 2 organisms (humans: 1, 2, 5-7; mouse: 3, 

4). We ran NetREm without prior GRNs for these 5 applications: 1. Simulated data for human embryonic 

stem cells (hESCs). 2. Human Hematopoietic Stem cells (HSCs), which are self-renewing and long-lived 

cells in the bone marrow that are essential to produce blood cells (e.g. red blood cells, white blood cells, 

platelets). 3. Mouse Embryonic Stem cells (mESCs), which are derived from the inner cell mass of the 

early embryo and are pluripotent since they can self-renew, develop, specialize, differentiate, and mature 

into any cell type in the body. 4. Mouse Dendritic cells (mDCs), which are immune cells that capture and 

present antigens to other immune cells. 5. Human Peripheral Blood Mononuclear cells (PBMCs), which 

contain 9 sub cell-types (i.e. clusters 𝐶) that are part of the immune system: Naïve CD4 T (𝐶 0), CD14 

Mono (𝐶 1), Memory CD4 T (𝐶 2), B cells (𝐶 3), CD8 T (𝐶 4), FCGR3A Mono (𝐶 5), Natural Killer cells 

(𝐶 6), Dendritic Cells (𝐶 7), and Platelet cells (𝐶 8). In these 5 applications, we fixed 𝑁 = 𝒩 candidate 

TFs for all TGs. If the TG is also a TF, we removed it from the set for the TG, so 𝑁 = 𝒩 − 1. In 
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applications 1-4, we used gold standards to hone our TGs and TFs so TF-TG regulatory links are 

comparable with ground truth (McCalla et al. 2023); we trained models for TGs and for 𝒩 TFs found in 

both gene expression and ground truth data. For PBMCs, we trained NetREm on 9 cell types with 1,029 

TFs (Lambert et al. 2018).  

We ran NetREm on 2 applications in humans using prior GRNs from multi-omics to define a 

custom set of 𝑁 highly probable, candidate TFs for each TG (𝑁 differs across TGs): 6. Myelinating 

(mSCs) and non-myelinating (nmSCs) human Schwann cells (SCs) in the peripheral nervous system 

(PNS). 7. Alzheimer’s disease (AD) and Control stages in humans for 8 cell-types in the central nervous 

system (CNS). 4 Glial cells: Astrocytes (Astro), Oligodendrocytes (Oligo), Oligodendrocyte Progenitor 

cells (OPCs or Oligodendrocyte Precursor cells); Microglia (Mic); 2 Neuronal cells: GABA-ergic 

Inhibitory neurons (InNs), Glutamatergic Excitatory neurons (ExNs); 2 Vascular and Blood-Brain Barrier 

(BBB) cells: Pericytes, Endothelial BBB (Endo. BBB) cells.  

Single-cell gene expression data 

Please note that §B.1 (SaniyaKhullar 2024) provides preprocessing details for our 7 main applications and 

additional datasets, respectively. 1: We randomly selected 1,250 TGs and corresponding TFs from 

weighted and signed (+: activates; -: represses) ground truth GRN atlas from TF induction analysis 

(Sharov et al. 2022). This results in 𝒩 = 207 TFs and 5,050 GRN links we input to SERGIO to simulate 

realistic single-cell data for 100 and 1,000 cells and 1,442 genes. We varied the noise parameter settings 

(30, 60, 90)%, retrieving 3 different synthetic expression datasets. 2: We used (Buenrostro et al. 2018). 3: 

We used (Tran et. al 2019) that reprograms mouse embryonic fibroblasts to embryonic-like induced 

pluripotent stem cells. 4: We used normalized data (McCalla et al. 2023) from (Shalek et. al 2014) for >1.7k 

primary bone marrow DCs. 5: We used public healthy donor data on 2.7k PBMCs based on (Satija et. al. 

2024). 6: We used (Avraham et al. 2022) for mSCs and nmSCs in DRG L4,5 regions from 5 donors. 7: We 

used processed (Gupta et al. 2022) for 24 AD and 24 healthy humans for 8 cell types based on 80,660 

droplet-based single-nucleus prefrontal cortex transcriptomes (Mathys et. al 2019). 
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Prior GRN reference information on TG regulation 

In applications 6-7, we employed multi-omics and epigenetic data from open scATAC-seq chromatin 

regions mapped to TGs peak-TG links) to identify potential interacting REs for TGs. We mapped 

sequence-specific TF motifs to REs, using Position Weight Matrix (PWM) databases to predict TFBSs, 

forming a motif-based GRN: direct TF-RE-TG candidate links. We pruned this motif-based TF list based 

on relative TF expression (proxy for protein abundance) and motif matching scores. To capture 

overlooked TFs, we augmented our pruned TF list by adding TFs with known PPIs and predictions of TF-

TF colocalization, complexes, and/or Molecular Function similarity (Wu et al. 2021). This addresses 

limitations of GRN-inference tools that rely solely on accessible motif matches and may miss causal TFs 

for TGs (Zhang et al. 2023); as ~10% of the ~1.6k human TFs lack motif data and are traditionally 

excluded, using PPIs during GRN inference is recommended to incorporate these missing TFs (Badia-i-

Mompel et al. 2023). Augmented TFs may bind to TFBSs directly (weak signals) or indirectly (associate 

with DNA-binding TFs) (Gordân et al. 2009; Sloan et al. 2016). Our final prior GRNs comprise these initial 

TF-RE-TG links. We input the 𝑁 biologically-promising TG-specific candidate TFs to NetREm for the 

given TG.  

These subjective steps are detailed in §B.1 (SaniyaKhullar 2024): step-by-step. We showed how we 

integrate these data sources (along with others) to help determine the list of 𝑁 candidate TFs for each 

target gene (TG), which will be part of our input gene expression data 𝑋 when running NetREm for each 

TG in the given cell-type. We note that data provided by recent studies enables the construction of prior 

gene regulatory networks for various cell-types in the human body (e.g. (Zhang et al. 2021) that uncovers 

regions of open chromatin in 222 distinct human cell-types; scQTLbase (Ding et al. 2023) currently 

integrates single-cell eQTL data for 57 different cell types and 95 cell states). Incorporating this prior 

information (e.g. TF binding predictions, chromatin accessibility) from multi-omics data can lead to more 

biologically meaningful and potentially truer cell-type TF-TG regulatory networks (Badia-i-Mompel et al. 

2023). 
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Organism-Specific Protein-Protein Interaction (PPI) Networks (PPINs) 

We employed public STRINGdb (Szklarczyk et al. 2023) to construct human and mouse PPINs (details: 

§B.1 (SaniyaKhullar 2024); we add more resources for humans) for proteins that partner through direct 

(physical binding, complex coexistence) and/or indirect (e.g., metabolic/signaling paths) PPIs (Oughtred et 

al. 2021) based on the full networks of scored links between proteins in the protein network data. We 

scaled average combined scores (across many evidence types) to assign weights: 0.01 < 𝑤 ≤ 1. Any self-

loops are ignored. For each of the 𝐺 TGs in a context, we filtered this partly-connected PPIN 𝕎 to only 

keep its 𝑁 TFs to yield 𝑊(0). Nonetheless, some of the 𝑁 TFs may not be in 𝑊(0) and some edges may 

be missing for the existing TFs for existing TFs in this potentially partly-connected 𝑊(0). Thus, when we 

run NetREm, we assigned an artificial weight 𝜂 = 0.01 to missing edges so 0.01 ≤ 𝑤 ≤ 1 for 𝑖 ≠ 𝑗 for all 

𝑁 TFs. This ensures numerical stability and propel discovery of novel TF-TF links; this yields our TG-

specific final comprehensive fully-connected TF-TF PPIN (input 𝑊). 

§ 3.3 Results 

3.3.1 Overview of Network Regression Embeddings (NetREm) 
We developed NetREm as a robust, multi-omics, computational approach to build and integrate networks 

of TF-to-TG regulation and TF-TF coordination in a cell-type-specific manner (Figure 3.1). Network 

regularization-based approaches like NetREm are useful in applications where predictors form 

subnetworks to influence the outcome (Li and Liu 2022). NetREm uses single-cell or bulk gene expression 

data, a comprehensive PPIN (e.g. STRINGdb) that globally captures verified direct/indirect functional 

associations among TFs (Peng et al. 2017). Providing a prior, candidate GRN (e.g. initial TF-RE-TG links) 

is optional but recommended as it improves biological relevance of outputs with its initial feature 

selection; TFs in this prior GRN are considered candidates for the TG and NetREm identifies the subset 

of these links that are predictive. NetREm integrates this multi-modal data, applying a 2-step optimization 

process for each TG: 1. It formulates a network-regularized regression problem, using the input PPIN as a 

priori information, to sift through 𝑁 candidate TFs, to find those most likely to co-regulate TG. The input 

PPIN is processed to become a fully-connected network comprising not only known but also artificially 
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added links (with minimum edge weight 𝑤) for the 𝑁 candidate TF proteins for the TG.  2. To solve this 

regression problem, it then employs Singular Value Decomposition (SVD) to create network regression 

embeddings, which are used in Lasso regression to predict TG expression. In the process, NetREm learns 

not only key TFs (coefficients 𝑐∗, a complementary GRN) but also a TG-specific TF-TF coordination 

network -100 ≤ 𝐵 ≤ 100, predicting cooperative (> 0) or antagonistic (< 0) TF-TF relationships for 

regulating TG. It also annotates known PPIs, uncovering confident cell-type-specific TF-TF PPI 

subnetworks involved in TG regulation (Szklarczyk et al. 2023). By integrating genomic and foundational 

PPIs, NetREm uses transfer learning to discover unanticipated, biologically significant TF-TG links and 

novel functional TF-TF relationships for future investigation (Zhang et al. 2013). Aggregating outputs 

across all TGs, yields cell-type-specific directed TF-TG regulatory and undirected overall TF-TF 

coordination (-100 ≤ 𝐵̅ ≤100) networks. These outputs support downstream analyses, like linking non-

coding SNPs to potential regulatory roles via expression trait loci (eQTL) SNP-TG (i.e. eSNP-eTG) 

associations in our networks. 

We demonstrated NetREm’s versatility across diverse real-world scenarios by benchmarking our 

TF-TG networks against established gold standard GRNs in human (hESCs, HSCs) and mouse (mESCs, 

mDCs) models. We used diverse techniques to assess 𝐵̅ across these settings, as well as additional human 

contexts: 9 PBMCs, pooled stem cells from GTEx (Eraslan et. al 2022), 4 CNS cell types (Lake et al. 2018). 

Further, we highlighted NetREm’s use of prior input GRNs, derived from multi-omics data, for specific 

contexts (cell types, diseases) in 2 human applications: 1. mSCs vs. nmSCs; 2. AD vs. controls in 8 

neuron/glia cell types. The resulting TF-TG networks, integrated with TF-RE-TG annotations (Methods: 

§3.2), yield enhanced, context-specific TF-RE-TG regulatory and coordination 𝐵̅ networks.  
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Figure 3.1 – Overview of Network Regression Embeddings (NetREm) a multi-step, multi-omics 

computational framework to construct comprehensive cell-type-specific directed TF-TG regulatory 

network and undirected TF-TF coordination 𝐵̅ networks.  

 
 

We apply this pipeline for each TG in a cell-type of 𝐺 TGs. NetREm integrates multimodal data: gene 

expression (𝑋 ∈ ℝ𝑀 × 𝑁, 𝑦 ∈ ℝ𝑀) for 𝑀 cells (samples), direct/indirect TF-TF PPIs with weights 𝑊, optional 

prior GRN information (e.g. TF-RE-TG links). This prior GRN helps select only relevant TF predictors for TG 

(from multiomics data) to reduce dimensionality of 𝑋: 𝑀 (rows), 𝑁 TFs (columns). 𝑋 and 𝑦 are standardized 

(mean 𝜇: 0, standard deviation 𝜎:1) across cells for TFs and TG. Goal: identify TFs, out of 𝑁 candidates, 

whose expressions best predict TG expression 𝑦. (Methods provides details) 

• Step 1 involves setting up a PPI network-regularized regression problem (preprocessing it with artificially 

added minimum edges to ensure it is fully-connected for 𝑁 candidate TFs) to identify optimal TFs (out of 

the 𝑁) for TG, guided by: network prior hyperparameter 𝛽, sparsity prior hyperparameter 𝛼.  

• Step 2 solves this, transforming (𝑋, 𝑦) and PPIs to latent space gene expression embeddings (𝑋̃ ∈ ℝ𝑁 × 𝑁, 

𝑦̃ ∈ ℝ𝑁) by SVD on an 𝐸 =
𝑋𝑇𝑋

𝑀
+ 𝛽𝐴 matrix (𝐴 = 𝐷𝑇(𝑊⨀𝑉)𝐷). 𝐸 combines expression relations and 

PPIN information. (𝑋̃, 𝑦̃) undergo Lasso regression (via model-type: Lasso (𝛼 is given) or LassoCV (𝛼 

chosen by cross-validation (CV); default: no intercept) to predict optimal coefficients 𝑐∗ ∈ ℝ𝑁 for TG.  

NetREm outputs 2 networks capturing different aspects of TG regulation that can be integrated. #1: links 

optimal TFs to TG by 𝑐∗ (> 0: activator, < 0: repressor) in a TF-TG regulatory network. This complementary 

GRN likely uncovers novel cell-type TFs like 𝑥𝑗 and reflects underlying biology of TF-TF coordination. If we 

input a prior GRN, we may use it to annotate our TF-TG links with biological metadata (e.g. TF-RE-TG 

network). #2: TG-specific TF-TF coordination network 𝐵 predicts indirect/direct relationships among TFs to 

regulate TG. 𝑇𝐹𝑖 − 𝑇𝐹𝑗 coordination 𝐵𝑖𝑗 shows cooperative (> 0 if both TFs are co-activators or co-

repressors) or antagonistic: (< 0 if 1 is repressor, other is activator) co-regulation of TG. Here 𝐵: 𝑐∗-aware 

cosine similarity scores, a function 𝑓 of 𝑋̃ and 𝑐∗. NetREm thus identifies novel coordination among cell-type 

TFs for co-regulating TG. Results are stitched together across runs for all 𝐺 TGs to obtain final cell-type 

outputs, including the overall cell-type TF-TF coordination network 𝐵̅.  
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3.3.2 Simulation study 

We tested NetREm on simulated single-cell gene expression data for 10,000 cells as a proof-of-concept, 

where: 𝑋 (matrix of expression levels for 𝑁 = 5 candidate TF predictors) and 𝑦 (TG expression vector) 

were drawn from a normal distribution with dropouts to achieve ~40% sparsity, mimicking single-cell 

data (Figure B.1A (SaniyaKhullar 2024)). Training data (70%; 𝑀: 7,000 cells) standardizes (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛, 

𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡) so that each variable has (𝜇 = 0, 𝜎 = 1). TFs 1 to 5 have expression with Pearson 

𝑟(𝑇𝐹, 𝑇𝐺) ≈ [0.9, 0.5, 0.4, -0.3, -0.8] with 𝑦, respectively, in training and testing data (Figure 3.2A, 

Figure B.1B-B.1C (SaniyaKhullar 2024)). Our PPIN of known direct and/or indirect PPIs among TFs has 

strong 𝑤 for 𝑇𝐹1 − 𝑇𝐹2 (0.8), 𝑇𝐹4 − 𝑇𝐹5 (0.95). We set 𝑤 to 𝜂 = 0.01 for missing PPIs, making our 

PPIN fully-connected. NetREm(𝛽 = 1, 𝛼 = 0.1) predicts 𝑦 based on 𝑋, subject to the PPIN constraint. It 

outputs 2 networks: TF-TG regulation (𝑐∗) relates expression levels of TFs to TG expression (Figure 

3.2B) and TG-specific TF-TF coordination (𝐵 scores) (Figure 3.2C) of behavior among TFs to regulate 

TG. 

We compared NetREm to 4 default Scikit-Learn (Pedregosa et al. 2011) benchmark regression 

models (BRMs) fit with no intercept: Linear Regression and 3 regularization ones (ElasticNetCV, 

LassoCV, RidgeCV). TFs with lower ranks have higher |𝑐∗| and are more important. Absolute values of 

𝑐∗ for 𝑇𝐹2 and 𝑇𝐹4 are significantly higher in NetREm (Figure B.1D, Table B.1: p < 2e-16 

(SaniyaKhullar 2024)), highlighting NetREm’s grouped variable selection property that prioritizes them due 

to their strong corresponding PPIs with 𝑇𝐹1 and 𝑇𝐹5 that both strongly correlate with 𝑦 (Li and Li 2008) 

(Figure B.1E (SaniyaKhullar 2024)). Unlike BRMs that favor 𝑇𝐹3 over 𝑇𝐹4 (since 𝑇𝐹3 has greater |𝑟| with 

𝑦), NetREm prioritizes 𝑇𝐹4 over 𝑇𝐹3 since 𝑇𝐹4 strongly interacts with 𝑇𝐹5, while 𝑇𝐹3 has weak PPIs 

with other TFs. Sensitivity analysis (Figure 3.2D-E) for fixed 𝛼 and 𝛽 confirms |𝑐∗| for 𝑇𝐹2 and 

𝑇𝐹4 increase as their respective PPIs with 𝑇𝐹1 and 𝑇𝐹5 strengthen. NetREm’s test MSE increases from 

0.15 to 0.22 as 𝛽 increases from 0.01 to 1 (Figure B.1F (SaniyaKhullar 2024)). Test MSEs for BRMs 

≈0.14, which we can also achieve with NetREm(𝛽 = 0.01, LassoCV 𝛼); nonetheless, studies emphasize 
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obtaining more interpretable and context-driven features by incorporating network information into 

models, even if accuracy is sacrificed (Li and Liu 2022). Figure B.1G (SaniyaKhullar 2024) illustrates 

changes in 𝐵 as 𝛽 increases from 0.01 to 2. 

One of NetREm’s salient features is its ability to explicitly model and integrate PPIN structures 

and relationships among TFs. By doing so, it identifies key TFs for predicting 𝑦, which may not exhibit 

strong 𝑟 with 𝑦 individually. NetREm also generates a coordination network among TFs that co-regulate 

TG, a capability beyond the scope of BRMs. Instead, BRMs, primarily focus on prediction accuracy by 

selecting 𝑐∗ to best represent each TF’s impact on 𝑦, typically treating TFs as “lone wolves”, neglecting 

TF-TF interdependencies vital to GRNs. Our 𝐵 network shows 𝑇𝐹1 and 𝑇𝐹2 cooperate with 𝑇𝐹3 weakly 

to increase 𝑦, 𝑇𝐹4 and 𝑇𝐹5 collaborate to decrease it; 𝑇𝐹1-𝑇𝐹2 and 𝑇𝐹4-𝑇𝐹5 links are highly-confident. 

NetREm predicts novel direct/indirect links like 𝑇𝐹1-𝑇𝐹5 activator-repressor antagonism 𝐵 = -97.9. 

𝑇𝐹3 has weaker relations with 𝑇𝐹1 than 𝑇𝐹2 does (41.7 vs. 71.5) and the smallest |𝑐∗| = 3.4e-2. 

We detailed more simulations in Figure B.2A-F, Figure B.3A-C, Figure B.4A-H, and Figure  

B.5A-I and Tables B.2-B.3 in Chapter §B (SaniyaKhullar 2024)). We showed that results are stable and 

consistent for various expression sparsity levels and for 𝑀 ≪ 𝑁 cases as well, excess 𝛽 over-constrains 

NetREm causing its predictions to suffer (bias-variance trade-offs), NetREm has more robust 𝑐∗ estimates 

(less variable) and more accurate TF assignments, and it can capture complex TF-TF PPIs. Our toy data 

with a few TFs and 1 TG intuitively explains NetREm and its advantages. 

Overall, NetREm’s network constraint regularization enhances model robustness as it is less 

sensitive to noise and artifacts in the data. This is especially beneficial in high-dimensional datasets (e.g. 

gene expression data, where there are more features (genes) than samples) where the risk of overfitting 

and multicollinearity are prevalent; this may result in correlations among variables that are simply by 

chance and not inherently meaningful (Campos et al. 2019; Hoefsloot et al. 2008). Further, single-cell gene 

expression data is susceptible to high dropout and sparsity (e.g. ≈70% of entries can be close to 0), such 

that the true distribution of gene expression of genes may not be captured and results may be unreliable 
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(Nguyen et al. 2020). Sometimes, this data can be noisy due to the inherent complexity of gene regulation 

in eukaryotes (e.g. humans), which may obscure TF-TF correlations, making it difficult to identify 

functionally coordinated TFs (Nie et al. 2011). Still, TFs typically co-regulating several common TGs (i.e. 

have strong synergistic activity and behavior) may potentially exhibit high correlations with each other 

than with other TFs due to their similar and loosely coordinated gene expression profiles (Roy et. al 2020; 

Nie et al. 2011). This high intercorrelation among TFs may be problematic when using gene expression 

data to predict TF-TG regulatory links. For instance, many correlated TF predictors may truly be related 

to TG expression (e.g. TFs GATA1 and P300 are quite correlated and form a complex for TG regulation 

in K562 cell lines (Ahsendorf et al. 2017)); however, benchmark (and other machine learning) models tend 

to struggle with highly correlated features, and usually select independent TF predictors or drop a few of 

these true co-regulating TFs. This sadly compromises the integrity of the learned TF-TG regulatory 

network (Roy et. al 2020) as some correlated TFs may be causal for TG regulation (Nicodemus and Malley 

2009) and many TFs typically coordinate to regulate TG expression (Ibarra et. al 2020). Coordinating TFs 

are likely to share common PPIs, including potentially strong, direct and/or indirect physical interactions 

with each other as partners to regulate shared TGs (Perna et al. 2020). 

NetREm’s network-constrained regularization optimization problem incorporates the structure of 

these strong, known, indirect and/or direct physical PPIs among TFs (given by respective PPI weight), to 

encourage coefficients among strongly connected TFs in PPI network to be more similar. Integrating this 

PPI may account for some of the noise in gene expression data, which may be attributed to TF 

coordination (Parab et al. 2022). Thus, by leveraging network pre-knowledge, NetREm accurately discerns 

and assigns each TF's influences, yielding dependable, detailed insights into individual roles, undeterred 

by intercorrelations and instead inspired by a promising ground truth framework. NetREm offers superior 

generalizability and consistency, potentially capturing intricate underlying structures and interactions in 

the data that might be oversimplified by benchmark models. This balanced integration of predictive 

accuracy and structural interpretability positions NetREm as a computationally efficient and 

methodologically sound choice. In summary, NetREm integrates TF-TG regulatory links and TF-TF 
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coordination scores, holistically, to understand better the TF behaviors involved in regulating TG and 

deepen our grasp of TF regulatory dynamics. Next, we benchmarked NetREm in real-world settings: 

many TFs and TGs. We applied it step-by-step for each TG in a cell-type to learn 𝐵 (i.e. TF-TF 

coordination network for each individual TG in the cell-type), cell-type TF-TG regulation, and overall 

cell-type TF-TF coordination network 𝐵̅. Here, 𝐵̅ is a function 𝑓 of {𝐵𝑘}𝑘=1
𝐺  across 𝐺 TGs in the cell-

type.  

Figure 3.2 – Simulation study of 5 TFs and 1 target gene (TG) 

 

Figure 3.2A) - The bottom left shows the prior biological, undirected TF-TF PPI network with default 

edge weights (0.01), with stronger experimentally-verified connections for 𝑇𝐹1- 𝑇𝐹2 (0.8) and 𝑇𝐹4- 𝑇𝐹5 

(0.95). The top right presents a Pearson correlation (𝑟) matrix among the TFs and TG in the training gene 

expression data where: 𝑟(𝑇𝐹, 𝑇𝐺) = [0.9, 0.5, 0.4, -0.3, -0.8]. Dot sizes represent magnitude, and colors 

indicate positive (blue) or negative (red) correlations. 
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Figure 3.2B) - Coefficients 𝑐∗ for TFs in TF-TG regulatory network, based on NetREm(𝛽 =1, 𝛼 = 0.1, no 

𝑦-intercept). Potential activators: 𝑇𝐹1 to 𝑇𝐹3. Repressors: 𝑇𝐹4 and 𝑇𝐹5. 

 

Figure 3.2C) - TG-specific TF-TF coordination network (scores: 𝐵) with red (antagonistic: -; activator-

repressor links) and blue (cooperative: +; links between co-activators or co-repressors). Functionally-

valid coordination: 𝑇𝐹1- 𝑇𝐹2 and 𝑇𝐹4- 𝑇𝐹5; others are novel. 
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Figure 3.2D) - Effects of varying 𝑇𝐹1-𝑇𝐹2 𝑤 in original PPIN, from 0.01 to 1 in 0.01 increments, holding 

all else fixed (e.g. same expression data and NetREm(𝛽 =1, 𝛼 = 0.1, no 𝑦-intercept)) Respective 𝑇𝐹2 𝑐
∗ 

coefficient increases monotonically in arc shape from 0.106 to 0.251. The red dot signifies the selected 

edge weight used for the simulated TF-TF PPI network (i.e. the 𝑤). 

 

 

Figure 3.2E) - A similar sensitivity analysis for 𝑇𝐹4 and 𝑇𝐹5 shows that 𝑇𝐹4’s |𝑐∗| increases, becoming 

more negative from 0 to -9.2e-2, as 𝑇𝐹4-𝑇𝐹5 edge weight is perturbed. 

3.3.3 Benchmarking NetREm with No Prior GRN Information 

Now we assess how effectively NetREm predicts cell-type TF-TG and 𝐵̅ networks in real-world scenarios 

lacking prior GRN information (Methods: §3.2). All TGs have the same 𝑁 candidate TFs; for TGs that 
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are TFs, 𝑁 is reduced by 1. We anticipate that incorporating prior GRNs derived from multiomics data 

may enhance our performance by providing a tailored, context-specific list of promising TFs for each TG. 

3.3.3.1 Evaluating TF-TG regulatory links 

To evaluate our networks in terms of predicting regulatory TF-TG links as well as accurate TF roles 

(based on signed 𝑐∗: + for activators, - for repressors), we compare NetREm with BRMs for predicting 

signed-TF-TG links. We use SERGIO (Dibaeinia and Sinha 2020) to input a signed hESC GRN and 

generate 6 realistic datasets (1,250 TGs, 𝑁 = 207), varying 𝑀 and noise %. Overall, NetREm has the 

highest precision, indicating its superior reliability in correctly identifying true TF-TG links, assigning 

activator/repressor roles, minimizing FPs (Figure B.6A-F (SaniyaKhullar 2024)). 

We benchmark our inferred TF-TG links using single-cell expression data for human HSCs and 

mice (mESCs, mDCs) (Figure B.7A-I and Figure B.8, Tables B.4-B.6 (SaniyaKhullar 2024)) against gold 

standard GRNs (McCalla et al. 2023; Zhang et al. 2023). Due to its use of biological information (Shojaie and 

Michailidis 2009), NetREm demonstrates higher sensitivity in identifying relevant biomarkers, though it 

shows lower specificity compared to Lasso and ElasticNet (Li and Li 2008). By adjusting 𝛽 and 𝛼, we fine-

tune NetREm’s behavior; increasing 𝛼 might decrease sensitivity but enhance specificity. Our findings 

are consistent across updates in input PPINs, comparing well between mouse STRINGdb versions 11 and 

12 in mESCs. 

NetREm features a unique grouped variable selection mechanism that leverages PPIN structures 

to prioritize tightly-linked TF groups involved in known PPIs. This optimizes the selection of cell-type 

TFs that co-regulate TGs, enhancing NetREm’s ability to identify complex TF-TF relations. We highlight 

this in HSCs. ElasticNet and Lasso fail to identify critical TF-TG links, for instance, missing regulation of 

ATF2, a key HSC TF (Ju et al. 2023). Conversely, Linear Regression and Ridge predict that ATF2 is 

regulated by all 𝑁 = 177 TFs, showing their alarming potential for FPs. However, NetREm(𝛽 = 10) 

identifies 8 TFs for ATF2, with 7 confirmed by gold standards. This pattern extends to other TGs like 

BRD2, RNF167, DUSP2; NetREm identifies groups of both validated and novel TFs involved in 
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biologically relevant PPIs for these TGs and more. For instance, 1 of 10 novel TFs for RNF167 is TFAP4, 

which forms PPIs for adipogenesis and cell population proliferation regulation alongside 3 of 17 verified 

final TFs. NetREm effectively uses prior TF-TF PPIN knowledge to identify genuine TF-TF coordination 

for TG regulation, navigating through data noise and avoiding false correlations (𝑟). It integrates 𝑟 and 

PPIs among TFs, to achieve superior generalizability and consistency in identifying intricate TF-TF 

relationships that BRMs may struggle with. 

Our TF-TG networks complement state-of-the-art cell-type GRN tools. To show this, we utilize 

input (normalized gene expression data), validation (ground truth GRN for evaluating accuracy of the 

inferred GRNs), and output (predicted state-of-the-art (SOTA) cell-type GRNs) data provided by a 

previous study (McCalla et al. 2023) that benchmarked the performance of these SOTA GRN inference 

tools in mouse dendritic cells (mDCs): Inferelator (Greenfield et. al 2013), knnDREMI (van Dijk et. al 2018), 

LEAP (Specht and Li 2017) mean, MERLIN (Roy et al. 2013), Pearson mean (baseline network: undirected 

fully connected network, where edges are weighted by correlation between each pair of genes over all 

cells), PIDC (Chan et al. 2017) mean, SCENIC (Aibar et. al 2017), SCODE (Matsumoto et al. 2017) mean, 

Scribe (Qiu et al. 2020), SILGGM (Zhang et al. 2018) mean. These SOTA GRN inference models utilize the 

following methods for network inference from scRNA-seq data: graphical models and dependency 

networks (Inferelator, MERLIN, SCENIC, SILGGM), information theoretic (kNN-DREMI, PIDC, 

Scribe), ordinary differential equations (SCODE), correlation (LEAP, Pearson) (McCalla et al. 2023). We 

compare the performance of NetREm’s TF-TG regulatory network in mDCs to those of these SOTA 

GRN inference tools. NetREm has comparable performance with these SOTA GRNs across various 

metrics (sensitivity, specificity, F1 Score, balanced accuracy, overall accuracy). No method outperforms 

another for predicting TF-TG links. NetREm, however, infers TG-specific 𝐵 and cell-type-specific TF-TF 

coordination networks 𝐵̅, capabilities that other tools lack. 
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3.3.3.2 Evaluating TF-TF Coordination 

We evaluated the performance of our 𝐵̅ in mESCs, mDCs, and PBMCs using V11 PPIN as input (proxy 

for outdated information), categorizing TF-TF pairs into 4 groups based on their status in V11 and in 

updated V12: absent in both, present in both (TPs), removed in V12 (FPs), discovered in V12 (FNs). Top 

TF-TF links have higher |𝐵̅|. Welch 1-sided tests (p-adj < 0.05) compare |𝐵̅| across groups (Tables: B.7-

B.12; Figures: B.9A-D, B.10A-B, B.11A-C (SaniyaKhullar 2024)). For instance, in mESCs, NetREm 

often reflects known PPIs, flags FPs to remove, and uncovers biological truths, nominating promising 

candidate PPIs for follow-ups. Overall, NetREm prioritizes known TPs and can potentially flag future 

TF-TF PPIs (FNs) that are currently unknown. 

Further, we benchmarked NetREm against the RTNduals (Chagas et al. 2019) tool. In 12 of 13 

human contexts (Figure B.12A-C (SaniyaKhullar 2024)), our top 𝑘 links using V11 input PPIN outperform 

RTNduals, with a higher % that are verified PPIs in V12 and other sources. This underscores NetREm’s 

efficacy in identifying TPs and leveraging historical PPINs to predict previously unknown PPIs; this is 

encouraging as only a small number of ~130-650k estimated human PPIs are currently known (Sevimoglu 

and Arga 2014; Venkatesan et al. 2009; Yu et al. 2020). 

To validate NetREm’s capability to prioritize biologically relevant links, we leveraged a 

Contextual PPI Database (CPPID) (Kotlyar et. al 2022) that annotates PPIs with >243 terms but lacks cell-

type specificity (Figure B.13 (SaniyaKhullar 2024)). By showing that our top links are indeed enriched for 

context-specific terms (e.g. nervous system (NS)-related in Microglia (Mic) and pooled SCs, immune-

related in PBMCs), we suggested a potential extrapolation to cell-type specificity. This highlights 

NetREm’s pioneering potential to discover cell-type TF-TF PPIs, addressing a crucial gap in existing 

global PPINs. 

3.3.4 Gene regulatory links between transcription factors (TFs) and target 

genes (TGs) in myelinating and non-myelinating human Schwann cells (SCs) 
With emerging new single-cell epigenomic data from many human tissues, we can model GRNs in novel 

contexts. We applied NetREm to analyze SCs, which are pivotal in maintaining, regenerating, 
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myelinating, supporting PNS neurons. SCs are derived from neural crest and exhibit tremendous 

flexibility not only in myelination but also in several other tissues; they also function as terminally 

differentiated cells that can reverse differentiation after nerve injury to aid nerve regeneration (Ma and 

Svaren 2018). Single-cell rodent NS studies reveal substantial diversity in SC differentiation status (Gerber 

et al. 2021; Yim et. al 2022). 2 main SC phenotypes (or sub-types) are: 1) mSCs associated with larger 

diameter axons (>1 micron); 2) nmSCs that wrap a bundle of smaller diameter axons (typically sensory 

axons) i.e. a Remak bundle. While mSCs envelop axons in myelin sheaths to enhance conduction speed, 

nmSCs support sensory axon function/interactions without forming myelin, contributing to overall nerve 

integrity. 

Uncovering TF-TG regulatory mechanisms modulating cellular processes in mSCs and nmSCs 

may help us understand and treat debilitating nerve injuries, demyelinating disorders, and hereditary 

neuropathies. Mutations affecting SC function are the most prevalent cause of demyelinating genetic 

neuropathy Charcot-Marie-Tooth disease (CMT) (Tao et. al 2019) and some affect major transcriptional 

TFs of SC differentiation like EGR2 and SOX10 (Srinivasan et al. 2012; Fröb and Wegner 2021). Both TFs 

are co-expressed in myelinating SCs, colocalizing at several myelin REs (Jones et al. 2007; Poitelon et. al 

2016). Mutations in EGR2 may disrupt cooperative SOX10 TFBS binding (LeBlanc et. al 2006) and its 

subsequent regulation of TGs. SC regulation also involves TEAD1 and other Hippo regulators to govern 

shared TGs and orchestrate PNS myelination (Srinivasan et al. 2012; Lopez-Anido et al. 2016). Since there 

are no TFs that are exclusively expressed by SCs, uncovering TF-TF coordination networks crucial for 

SC lineage maturation and differentiation into mSCs or nmSCs also holds significance (Ma and Svaren 

2018). However, distinct transcriptional regulatory networks coordinating SC function and underlying 

states and cell fates require a variety of TFs beyond EGR2 and SOX10 (Hung et al. 2015). 

In response, we applied NetREm to each TG in mSCs and nmSCs using single-cell data for 

human Dorsal Root Ganglion (DRG). We derive prior GRNs using multiomics data (details: Methods: 

§3.2). To do this, we annotate open chromatin regions in adult human SCs with known RE peak-to-TG 

links (Zhang et al. 2021) and use motif-based analysis to predict TFs that may associate with these REs. By 
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removing low-expressed TFs in corresponding training gene expression data for mSCs and nmSCs in the 

human DRG, we create tailored prior mSC and nmSC GRNs. For each TG in an SC-type, we input its 𝑁 

TG-specific selected candidate TFs (from respective prior GRN of initial TF-RE-TG links) to NetREm. In 

total, NetREm outputs 183,242 mSC and 277,541 nmSC total TF-TG links (File B1 (SaniyaKhullar 2024)) 

comprising 221 TFs and 8,950 TGs in mSCs, 228 TFs and 5,207 TGs in nmSCs. Both share: 33,806 TF-

TG links, 27,037 sign-TF-TG links, 3,841 TGs, 197 TFs. TF EGR2 is mSC-specific (Balakrishnan et al. 

2021). We enhance our networks by overlaying them with prior GRN annotations, resulting in our 

finalized TF-RE-TG regulatory networks. 

We examined NetREm’s results for 8 core SC TFs that have validation (genome binding and 

loss-of-function (LOF)) data from rodent SCs: EGR2, NR2F2, RXRG, SOX10, SREBF1, STAT1, 

TEAD1, YY1. LOF TGs, whose expression varies upon TF knockdown, show their direct or indirect 

dependency on the TF (Nie et al. 2020). Valid direct TGs are a subset of LOF TGs with ChIP-seq evidence 

of nearby TF binding, suggesting direct regulation by the TF (Titsias et al. 2012); this dual confirmation 

enhances confidence in these direct TGs (Badia-i-Mompel et al. 2023). RXRG lacks LOF data. In Figure 

3.3A we provide counts of NetREm-predicted: direct, all LOF, and novel candidate TGs. We also report 

on eTGs with strong Tibial Nerve eQTL support (THE GTEX CONSORTIUM 2020) based on mapped 

SNP-TF-RE-TG predictions: instances where an eSNP strongly alters TF binding to a RE, influencing TG 

expression (Methods: §3.2). For example, we predict 2,015 YY1 TGs in nmSCs (139 direct, 304 LOF 

only, 1,572 novel), where LOF and direct TGs are significant (hypergeometric p < 0.05); of these, 40 

direct (28.8%), 75 LOF only (24.7%), 488 novel YY1 (31%) TGs are eTGs. In both SCs, our final TF-TG 

predictions for all LOF and direct TGs have higher sensitivity and F1 scores compared to LassoCV and 

ElasticNetCV and higher accuracy and specificity than GRNBoost2, Linear Regression, RidgeCV 

(Figure B.14 (SaniyaKhullar 2024)). 

We explore cases where NetREm accurately identifies a core SC TF as the top predictor (low 

rank) for its direct TG, even when training expression data shows a low 𝑟(TF, TG) (Figure 3.3B), i.e. low 

correlation between TF and TG gene expression levels. This is important as studies observe that in 
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eukaryotes (unlike in prokaryotes), Pearson correlations 𝑟 and mutual information among TFs and known 

TGs are not much higher than those between TFs and non-TGs (Zaborowski and Walther 2020; Escorcia-

Rodríguez et al. 2023). For example, SOX10 weakly correlates with SIPA1L2 (Tao et. al 2019)(candidate 

modifier TG for CMT type 1A) but predicted to have rank 17. Despite its relatively weak 𝑟 = -0.14 with 

MBP, a major constituent of myelin sheaths, STAT1 is its top 10 TF. Although APP exhibits a higher 𝑟 

with STAT1 compared to FBN1 (9.7e-2 vs. 10.8e-2), NetREm ranks STAT1 higher as an activator for 

FBN1 than for APP (13 vs. 20). This aligns with findings (Gu et. al 2022) of STAT1 LOF impacts of -0.61 

for FBN1, -0.51 for APP. 

NetREm reveals biologically relevant signals, identifying novel TGs for TFs. RXRG’s high 

regulatory activity in nmSCs (Table B.13 (SaniyaKhullar 2024)) is consistent with rodent/human studies 

(Gerber et al. 2021). All TGs across 3 groups (EGR2 mSC, SOX10 mSC and nmSC) are enriched in PNS-

related terms (Figure 3.3C). We find 2,316 SOX10 TGs (159 shared, 428 direct, 1,314 LOFs overall) 

with 29 direct and 103 LOFs overall in both SCs. Figure 3.3D shows rat nerve epigenome tracks for 4 

novel SOX10 candidate mSC TGs (not LOF or direct TGs of SOX10: FAHD1, LARS2, SCAMP5, 

SOCS3) with strong SOX10 binding to SC regulatory regions in open chromatin (Lopez-Anido et. al 2015) 

and Figure B.15A-D (SaniyaKhullar 2024) reveals the respective predicted locations of SOX10 binding to 

regions open chromatin in adult human SCs for these 4 TGs. In Figure 3.3E, SNP rs55927047 enhances 

TEAD1 binding to its TFBS on FOXN2’s promoter to help activate FOXN2 in adult mSCs. Orthologous 

rat nerve TEAD1 ChIP-seq peaks also overlap with this promoter. This eSNP correlates strongly (is in 

linkage disequilibrium (LD)) with rs79073127 that links to higher inflammatory polyneuropathy risk in 

Pan UK Biobank GWAS (Turley et al). FOXN2 GWAS-eQTL colocalizes for this condition, with 75% 

probability (Wallace 2020). Both SNPs correlate with increased FOXN2 expression. We highlight 

additional TFs in SCs, underscoring their significant roles despite limited validation. Notably, our 297 

mSC TGs for MEIS2 (core TF in DRG sensory neurons (Roussel et al. 2022)) are prominent in PPI 

pathways like: PI3K-Akt signaling (crucial for PNS myelination (Ishii et al. 2021)), actin cytoskeleton 

organization (essential for PNS regeneration (Wang et al. 2018b)) (Figure 3.3F). These TGs have higher 
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expression in pooled SCs compared to 4 CNS cell types (1-sided t, p-adj < 2e-6), a pattern absent in 

controls. Figure B.16A (SaniyaKhullar 2024) showcases principal hub TFs like EGR1 (485 nmSC eTGs) 

and RXRA (971 eTGs), regulating the most eQTL-validated eTGs in SCs. In Figure B.16B (SaniyaKhullar 

2024), we present an example of an eQTL SNP linked to changes in the expression of TG TTC3 in human 

nmSCs, potentially by altering YY1’s ability to bind to TF binding sites along or near promoter proximal 

regions of TTC3. We found ChIP-seq peaks support YY1 binding to this orthologous region in rodents and 

noted that TTC3 has strong GWAS-eQTL colocalization with nervous system-related disorders.   

Figure 3.3 – Gene regulatory links between transcription factors (TFs) and target genes (TGs) in 

myelinating (mSCs) and non-myelinating (nmSCs) human Schwann Cells (SCs)  

 

Figure 3.3A) - Bar plot categorizing TGs found for core TFs in mSCs (6 TFs: EGR2, NR2F2, SOX10, 

SREBF1, TEAD1, and YY1) and nmSCs (missing TF EGR2 given it is not a TF in the nmSCs). The top 

panel displays TGs with expression quantitative trait loci (eQTL) validation. The bottom panel reveals 

original counts with star (*) for over-enriched TGs based on hypergeometric test (p-adj < 5%). 
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Figure 3.3B) -X-axis: correlation between core SC TF and validated direct TG (red: EGR2 TG, gold: 

NR2F2 TG, green: SOX10 TG, turquoise: SREBF1 TG, blue: STAT1 TG, purple: TEAD1 TG, pink: 

YY1 TG) based on training gene expression data for mSCs. Y-axis: rank of absolute value of NetREm’s 

regression coefficient 𝑐∗ for that TF for that given TG, where smaller rank values imply a greater 

magnitude for the coefficient (and stronger relationship), i.e. greater |𝑐∗|. For simplicity, we show results 

where the TF is the top 5 to 20 for its direct TG. 
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Figure 3.3C) - Select gene enrichments for all EGR2 mSC, SOX10 mSC, SOX10 nmSC TGs predicted 

by final NetREm model. Enrichments are hierarchically clustered, − log10(𝑞) values are reported. 
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Figure 3.3D) - Epigenome tracks in rats (rn5 reference genome) for 4 potential novel candidate SOX10 

mSC TGs with SOX10 as a top predictor TF. Here SOX10 is predicted as their activator TF (positive 

coefficient 𝑐∗). These tracks correspond to rat sciatic nerve ChIP-seq peaks, SOX10 peaks in the 

peripheral nervous system (PNS), histone modifications associated with enhancers (H3K27ac 

immunoprecipitation sorted tags).  
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Figure 3.3E) - Tibial Nerve eQTL SNP (eSNP) rs55927047 (chromosome 2: position 47,783,515 in hg38 

human reference genome, change in DNA base from C to G) located in the FOXN2 promoter (overlaps 

with orthologous TEAD1 ChIP-seq binding regions in rats) may strongly boost TEAD1 affinity for 

binding to the FOXN2 promoter to activate expression (given 𝑐∗ > 0) of FOXN2, a candidate GWAS-

eQTL colocalized TG biomarker for inflammatory polyneuropathy. FOXN2 is a novel TG for TEAD1 

that has experimental support as a proximal TEAD1 TG based on ChIP-seq binding within 100 kilobases 

of its Transcription Start Site (TSS). Genome coordinates based on: hg38 human reference genome. 
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Figure 3.3F) - Left: Boxplots compare relative expression percentiles for all MEIS2 mSC TGs in GTEx 

pooled SCs (Eraslan et. al 2022)) with those in 4 CNS cell types (Microglia, Oligodendrocytes, Excitatory 

Neurons, Inhibitory Neurons (Lake et al. 2018)). Median percentile for MEIS2 mSC TGs in SCs overall 

is 71.4 versus ≤ 61.3 in controls (non-TGs for MEIS2 in mSCs). Right: enriched PPI paths for MEIS2 

mSC TG proteins, which are important in SCs. 

3.3.5 Coordination among transcription factors (TFs) for gene regulation in 

myelinating and non-myelinating human Schwann cells (SCs) 

Our test MSEs are significantly lower than those of Linear and Ridge BRMs (Figure 3.4A, Table B.14 

(SaniyaKhullar 2024)). NetREm predicts SC-type-specific coordination 𝐵 for each TG. It also outputs 

22,809 mSC and 24,795 nmSC non-zero direct/indirect TF-TF coordination 𝐵̅ links (File B2 

(SaniyaKhullar 2024)). Notably, top Context PPI Database (CPPID) contexts for strong mSC and/or nmSC 

|𝐵̅| relate to the DRG region and the brain (Figure B.17A (SaniyaKhullar 2024)). Figure 3.4B shows 23 of 

24 mSC-specific TFs in a mSC 𝐵̅ network of 77 known PPIs, excluding novel links (𝑤 = 0.01) for 

simplicity (nmSCs: Figure B.17B (SaniyaKhullar 2024)); POU3F1-EGR2 mSC cooperativity is very strong 

(𝐵̅ = 99.14 percentile), JUNB-ATF4 (𝐵̅ = 96.98) interact in PNS neoplasms like Schwannomas. BNC2’s 

regulatory activity in nmSCs may be attributed to the absence of its predicted repressor EGR2, ranked 10 

of 20 mSC TFs for BNC2. 

NetREm discovers and prioritizes novel TF-TF coordination links that are promising. 48 of our 

novel links in nmSCs (37 also in mSCs), comprising 30 TFs, are validated by strong SAINT scores of 

physical TF-TF binding in recent BioID/AP-MS human experiments (Göös et al. 2022) (Figure B.17C 

(SaniyaKhullar 2024)). RXRG, TEAD1, and YY1 co-regulate 366 nmSC (Figure B.17D (SaniyaKhullar 

2024)) and 15 mSC TGs, suggesting their preferential coordination in nmSCs. These 4 core SC TFs co-

regulate 174 TGs in nmSCs, SETD2 in mSCs: RXRG, STAT1, TEAD1, and YY1 (Figure B.17E 

(SaniyaKhullar 2024)). In fact, RXRG links with STAT1, TEAD1, and YY1 are unknown in our input 

PPIN (Figure B.18A (SaniyaKhullar 2024)). RXRG strongly positively correlates with TEAD1 and YY1 (𝑟 

= 0.5, 0.7) in nmSCs, but negatively in mSCs (-0.9, -0.7) in mice sciatic nerves (Gerber et al. 2021). 

STAT1 has 591 (Jaccard Similarity (JS): 0.21), YY1 has 599 (JS: 0.20), TEAD1 has 843 (JS: 0.26, 

significant) co-regulated nmSC TGs with RXRG (Figure B.18B-C (SaniyaKhullar 2024)). In nmSCs, 
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RXRG and YY1 share 94 eSNPs, 95 eTGs, 88 eQTLs compared with 28, 54, 24 for RXRG and STAT1 

(cooperate for 704 TGs (Figure B.18D (SaniyaKhullar 2024)), antagonistic for 104 (Figure B.18E 

(SaniyaKhullar 2024))); RXRG- cooperation 𝐵̅ is: TEAD1 (16.3), STAT1 (23.5), YY1 (24.1) (Figure 

B.18F (SaniyaKhullar 2024)). 

To independently test our predicted TF-TF coordination for these core SC TFs, we use binding 

data from rat SCs in PNS, derived from ChIP-seq analysis of the active enhancer H3K27ac mark and 

ChIP-seq and CUT&RUN (Cleavage Under Targets and Release Using Nuclease) read density assay data 

of TF binding in nerve or S16 SC line. Of 15,864 ChIP-Seq H3K27 enhancer peaks shared between PNS 

and S16 lines, RXRG shares 3,450 and 2,017 peaks with YY1 and TEAD1 (Figure B.18G (SaniyaKhullar 

2024)). 43.9% of RXRG peaks have YY1 binding (most colocalization among core SC TFs) and 25.7% of 

RXRG peaks have TEAD1 binding (Figure B.18H (SaniyaKhullar 2024)). Conversely, 24% of TEAD1 

peaks and 28% of YY1 peaks have RXRG binding. CUT&RUN helps identify where TFs bind to DNA in 

the genome and determine the extent of colocalized binding along REs. TEAD1 CUT&RUN centered 

across EGR2 peaks reveals TEAD1 colocalizes at ~40% of EGR2 TFBSs (Figure 3.4C), supporting 

predicted EGR2-TEAD1 coordination in mSCs. YY1 CUT&RUN reads overlap ~70% when centered on 

RXRG peaks and SOX10 peaks. SC marker CDH19 is preferentially expressed in nmSCs (Stratton et al. 

2017) and has RXRG ChIP-seq binding nearby. Tibial Nerve eQTL SNP rs17799413 may be associated 

with lower CDH19 expression (slope: 2.4e-1), strongly altering binding of TEAD1 in both SCs and 7 core 

TFs (e.g. RXRG, YY1) in nmSCs. CUT&RUN sequencing reveals TEAD1 and RXRG binding peaks are 

40 kb upstream of CDH19’s TSS (Figure 3.4D). NCAM1, a YY1 LOF and SOX10 direct TG, codes for 

an adhesion molecule preferentially expressed in nmSCs (Martini and Schachner 1986; Wang et al. 2022a). 

Our network predicts regulation of NCAM1 by TEAD1, YY1, and RXRG in nmSCs. Rs10749999 

associates with higher NCAM1 expression (slope: 9e-2) and may boost YY1 and TEAD1 binding in 

nmSCs. Active SC enhancers ≈130 and 200 kb upstream of NCAM1’s Transcription Start Site (TSS) 

have TEAD1 and YY1 binding. NCAM1 has TEAD1, RXRG, and YY1 binding at a promoter 

surrounding its gene locus. Rat H3K27Ac and TF ChIP-seq data shows RXRG co-regulates: 555 TGs 
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with TEAD1, 352 with YY1, and 27 of 91 mapped STAT1 TGs. This further supports our predicted 

coordination by these 4 TFs, showing NetREm’s prowess in identifying novel colocalizing TFs in the 

absence of current evidence of direct binding interactions from high-throughput studies of PPIs. 

Computational methods help decipher functional impacts of SNPs on PPIs, aiding in uncovering 

disease risk genes for targeted precision therapies. Most non-coding, disease-associated SNPs alter human 

PPIs rather than protein properties like folding or stability (Cheng et al. 2021). Integrating TF-TG 

regulatory (𝑐∗) and TF-TF coordination (𝐵) networks with non-coding eSNP rs11663049 sheds insights 

on how PPIs associate with phenotype: polyneuropathy in diabetes (Figure 3.4E). Dysregulated mitotic 

checkpoint regulators may lead to abnormal insulin signaling in diabetes (Choi et al. 2016). CEP192 helps 

form mitotic spindles (Joukov et al. 2010) and colocalizes for this phenotype with 69% probability. The 

eSNP reduces the risk of this phenotype and CEP192 expression and may strongly decrease binding of 6 

activator TFs to CEP192’s promoter in nmSCs. CEP192 is co-regulated by RXRG-STAT1 TG. RXRG-

NR4A2, NR4A2-THRB associate with PNS neoplasms. SOX10, with its dynamic, cell-type-specific 

cooperation, works with these TFs; SOX family TFs achieve cell-type-specificity via partner TFs that 

facilitate TG regulation by binding to nearby SOX TFBSs (Stevanovic et al. 2021). SOX10-NFIA cooperate 

in nmSCs (𝐵̅ = 81.3) but display antagonism influencing glial lineage diversification (Glasgow et al. 2014) 

in mSCs (𝐵̅ = -78.7).  

We present a similar example (Figure B.19 (SaniyaKhullar 2024)) for mSCs, where we predict 

how SNP rs9847953 is associated with altered regulation of TG ZNF589 in mSCs, by potentially 

impacting a TF-TF coordination network comprising 5 TFs (boosting binding and/or TFBS motif affinity 

of 3 activators and decreasing that for 2 repressor); overall, this SNP-TG pair is significantly associated 

with injuries to the nervous system, in particular: injury of nerves at wrist and hand levels. While ZNF589 

is a final TG in our mSC regulatory network, it is not found as a TG in our final nmSC regulatory 

network. 

To illustrate differences in TG-specific TF-TF coordination networks 𝐵 between SC sub-types, 

even for shared TGs, we examine TG ART3 that colocalizes with neurofibromatosis (NF: characterized by 
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the formation of NS-related tumors) with a 68% probability (Figure 3.4F). We predict an interacting 

DNA chromatin loop (Zhang et al. 2021) of REs in open chromatin in adult SCs, featuring differing 

𝐵̅ between mSCs and nmSCs involving strong repressors and activators (Sharov et al. 2022) to regulate 

ART3. 3 eSNPs link to lower ART3 expression: NF-associated rs4859594 correlates with 2 regulatory 

SNPs (rs6856681: intronic enhancer; rs9998233: promoter proximal RE) that may disrupt coordination 

networks by strongly decreasing activator binding to ART3’s REs, increasing it for repressors. Both SCs 

types have SOX2 as a common TF; it is a core regulator of SC myelination and myelinating disorders, 

and a super pioneer TF that previous studies note is associated with cancer cell proliferation and survival 

(Benedetti et al. 2022). SOX2 coordinates with TFs at ART3’s proximal promoter, eagerly cooperating with: 

TEAD1 (𝐵 = 15.76) in nmSCs, SETDB1 (𝐵 = 24.2) in mSCs. PPARA-NFIX (nmSCs) and NR3C2-PBX3 

(mSCs) are antagonistic relations on the enhancer. 

Figure 3.4 – Coordination among transcription factors (TFs) for gene regulation in myelinating (mSCs) 

and non-myelinating (nmSCs) human Schwann cells (SCs) 

 

 

Figure 3.4A) - Density boxplots: NetREm outperforms Linear Regression and RidgeCV in both SCs, 

with lower test MSEs. NetREm predicts links for more TGs than ElasticNet and Lasso do. For mSCs, 

NetREm achieves median MSE: 0.95; nmSC: 1.1. We focus on the same TGs in each SC sub-type (based 

on final predictions): 3,248 in mSCs and 5,980 TGs in nmSCs.  
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Figure 3.4B) - Input TF-TF PPIN subnetwork for only known TF-TF PPIs among 23 of 24 mSC-specific 

TFs only; artificial (novel) links excluded. Edges represent cell-type TF-TF cooperation (𝐵̅) across TGs in 

mSCs in the mSC NetREm TF-TG Regulatory Network, since 𝐵̅ > 0 for all. High 𝐵̅ = stronger cooperation in 

mSCs. Edges annotated based on Contextual PPI database (Kotlyar et. al 2022). 
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Figure 3.4C) - Left to right: Heatmaps show read density overlaps of the TEAD1 CUT&RUN assay 

centered on EGR2 peaks, YY1 CUT&RUN read density centered on RXRG peaks, and YY1 CUT&RUN 

read density centered on SOX10 peaks. 

 

 

 

Figure 3.4D) - CUT&RUN sequencing tracks of YY1, RXRG, and TEAD1 TFs, along with ChIP-seq 

tracks of H3K27ac enhancer peaks, are shown from the S16 Schwann cell line in rats. Boxes highlight 

enhancer regions where TFs colocalize across genes CDH19 (top tracks) and NCAM1 (bottom tracks). 

Both TGs are impacted by Tibial Nerve eQTL SNPs (eSNPs) that alter regulatory TF binding at their loci. 
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Figure 3.4E) - While Figure 3.3D focuses on the impact of a single eSNP on 1 TF, this panel provides a 

more extensive example for TG CEP192 in nmSCs, which GWAS-eQTL colocalizes with decreased risk 

of polyneuropathy in diabetes. Tibial Nerve eSNP (yellow node) is associated with decreased risk of this 

condition and decreased CEP192 expression by disrupting bindings (brown arrows) of 6 activator TFs 

(positive coefficients 𝑐∗ > 0, green nodes) and boosting bindings (black arrows) of potential repressor 

TFs (𝑐∗ < 0, blue nodes) to a CEP192 regulatory region (i.e. promoter). SOX10 cooperates with them. 

CEP192-specific raw TF-TF 𝐵 coordination scores are undirected links. Functionally-validated direct 

and/or indirect TF-TF interactions (found in the input PPI network) are grey links and novel TF-TF links 

(not in input PPI network) are colored teal.  Further, these functionally-validated TF-TF interactions are 

colored if they are associated with PNS Neoplasms (red) or Nervous System-related disorders (blue) 

based on the Contextual PPI database (Kotlyar et. al 2022). 
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Figure 3.4F) - Tibial Nerve eSNPs potentially influence regulation of GWAS-eQTL colocalized 

neurofibromatosis TG ART3 through activators and repressors forming distinct TRMs in mSCs and 

nmSCs along interacting REs (regulatory elements) in a 3D loop of open chromatin in adult SCs. ART3’s 

(intronic) promoter has Activity by Contact (ABC) scores (Zhang et al. 2021) of ~0.04 with intronic 

enhancer, ~0.02 with proximal promoter RE. TF-TF 𝐵 edge widths are shown relative to other TF-TF 𝐵 

links in that given ART3 RE (i.e. intronic enhancer, promoter proximal). Blue and red links refer to direct 

and/or indirect TF-TF interactions in nmSCs and mSCs, respectively, with support from the input PPI; the 

corresponding pink and green links are for the remaining TF-TF coordination links that are novel (and 

may constitute direct and/or indirect TF-TF relationships, which follow-up studies may investigate).  

3.3.6 Prediction & comparative analysis of cell-type coordination among TFs 

for gene regulation across neuronal/glial cell types in Alzheimer’s disease 

Cell-type-specific TF-TF coordination networks 𝐵̅ are crucial for neuronal functions like synapse 

plasticity and neurotransmission, and are disrupted in AD, leading to memory loss, neuroinflammation, 

cognitive decline (Mathew et al. 2022). Understanding how altered 𝐵̅ impacts TG expression in AD is 
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essential for identifying master regulators and developing targeted therapies (Wang et al. 2016). Signaling 

PPIs associated with dementia symptoms highlight the potential of targeting these altered PPIs (Mao et al. 

2020) to delay AD progression (Vargas et al. 2018).  

In response, we integrate multi-omics data to construct 16 context-specific prior GRNs for 8 cell 

types in AD and Controls. For each TG in a context, NetREm uses the 𝑁 TG-specific candidate TFs from 

the respective prior GRN as input features, based on TFs that may associate with its REs to regulate it 

(Methods). Ultimately, NetREm generates 16 corresponding TF-RE-TG (TF-TG links: File B3 

(SaniyaKhullar 2024)) and 𝐵̅ (File B4, word cloud: Figure B.20A (SaniyaKhullar 2024)) networks. Reverse 

engineering changes in networks across cell types may help illuminate molecular drivers of AD. 

We evaluate and quantify the scale-free characteristics of our predicted TF-TG regulatory 

networks by comparing NetREm with scNET (Gupta et al. 2022), which applies the scGRNom pipeline (Jin 

et al. 2021) to generate TF-RE-TG networks based on the same preprocessed, underlying gene expression 

data for 8 contexts: 4 out of 8 cell types in AD versus Control stages. Across all 8 contexts, NetREm 

demonstrates superior scale-free topology, with power law degree exponent (γ) higher than scNET’s γ by 

between 0.343 and 1.032 and with coefficient of determination (R²) higher than scNET’s R² by between 

0.031 and 0.421 (Table B.15 (SaniyaKhullar 2024)). These improvements ranges over scNET indicate that 

NetREm more accurately captures properties of real-world biological networks, with γ closer to the ideal 

2-3 range and R² nearer to 1 (Chen et. al 2023; Broido and Clauset 2019; Langfelder and Horvath 2008).  

To assess biological relevance, we used the comprehensive and recently developed brainSCOPE 

resource (Emani et al. 2024; brainSCOPE Resource 2024), which provides a high-resolution atlas of cell-type-

specific GRNs with detailed transcriptional profiles, as a proxy for signed ground truth networks in 

Controls. We compared TF-sign-TG regulatory links predicted by NetREm and scNET in Control 

Microglia (Mic) and Oligodendrocytes (Oli), carefully filtering the respective networks to retain only 

genes common to NetREm, scNET, and brainSCOPE, followed by an additional filter for brainSCOPE-

identified cell-type-specific TFs and TGs. NetREm outperforms scNET, achieving a higher Jaccard 

similarity (JS) score of 0.083 in Mic, a 59.6% improvement over scNET’s 0.052, and 0.053 in Oli, a 
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23.3% increase over scNET’s 0.043. We also computed weighted signed average Area Under Precision 

Recall (AUPR) metrics on these filtered networks (§B.1 (SaniyaKhullar 2024)), ensuring that AUPR 

calculations focus on valid and comparable transcriptional interactions across all models. Overall, 

NetREm outperforms scNET in predicting transcriptional regulatory interactions when compared to the 

brainSCOPE baseline in both Control Mic and Control Oli. In Mic, NetREm achieves an average AUPR 

of 0.687, compared to 0.645 for scNET, while in Oli, NetREm similarly performs better with an average 

AUPR of 0.713 versus 0.648 for scNET. These results reinforce NetREm’s stronger biological relevance 

and predictive accuracy, highlighting its robustness in predicting meaningful TF-TG regulatory 

interactions across different cell types and disease contexts. 

We explored TG-specific coordination 𝐵 in Control vs. AD stages for 2 AD risk genes (Jia et al. 

2020; Bossaerts et al. 2022) (Figure 3.5A). TMPRSS15 in Mic (𝑡: 36.1, p-adj < 4.8e-283) and ABCB5 in 

Inhibitory Neurons (InNs) (𝑡: 22.6, p-adj < 4.5e-112) show notable increases in 𝐵 in AD versus baseline 

Controls for the respective cell-type. Some TF-TF pairs strongly cooperate (50 ≤ 𝐵 ≤100) exclusively in 

AD: ZBTB14-ZNF281, FLI1-TAL1 for TMPRSS15; ZNF331-ZNF354A, MYEF2-SOX2 for ABCB5. For 

TMPRSS15, known AD links IRF7-STAT3 and STAT3-STAT5B have strong antagonism (i.e. -100 ≤

𝐵 ≤ -50) in controls but cooperate in AD. Figure 3.5B compares strong 𝐵̅ among select TFs between 

conditions for Mic and InNs. IRF7-STAT3 is in Mic, MYEF2-SOX2 is in InNs only. AD link STAT3-

STAT4 is antagonistic in Controls for TMPRSS15 in Mic and in Control Mic overall (but cooperative for 

other 3 networks). RORA-ELK1 is cooperative in all 3 but antagonistic in Control Mic. FOSL2-BACH1 

is antagonistic in Mic but cooperative in InNs. Indeed, RORA activity increases in InNs and Mic in AD 

(Acquaah-Mensah et al. 2015). AD-annotated links in AD InNs/Mic include ELK1-SPI1 and ELK1-STAT3. 

Figure 3.5C presents a multifaceted network weaving together TF-TG regulatory links, TF-TF 

coordination, phenotypes, SNPs. TF-TF coordination is discernibly stronger and positive in Control Mic 

(1-sided 𝑡), pointing to potentially disrupted cooperativity during AD. Our attention is drawn to regulation 

of ANXA11, a critical player in diverse functions (e.g. apoptosis, neutrophil function) and signaling paths 
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(e.g. MAPK, P53) (Mirsaeidi et al. 2016). ANXA11 is 1 of our 36 AD-Covid genes (Chapter §2, Table 

A.8). Mutations in ANXA11 are correlated with NS diseases (Wang et al. 2022b) and high risk of 

inflammatory conditions like sarcoidosis (Smith et al. 2017). Our AD-Covid study (Khullar and Wang 2023) 

assigns ANXA11 to a Hippocampal Control gene co-expression module. NetREm offers nuanced insights 

on non-coding SNPs for AD (rs11202929) and cognitive function (rs12412257), linked to more and less 

ANXA11 expression, respectively, in Mic (resident CNS macrophage immune cells). Rs12412257 

associates with reduced word interpolation ability, a measure of fluid intelligence and reasoning (Turley et 

al) and prognostic marker of AD (Eyigoz et al. 2020). Rs11202929 is protective against AD (GWAS slope 

< 0) and may enhance binding affinity of 12 cooperating activators to TFBSs on ANXA11's enhancer in 

open chromatin in adult Mic. SPI1 is a core Mic TF for AD genes (Rustenhoven et al. 2018b). ANXA11 has 

higher Mic expression in controls than in AD (𝑡 p-adj = 2.6e-68, log2(Fold Change) of (Control/AD) = 

0.78; 668 AD, 676 controls). Our significant GWAS-eQTL colocalization analyses reveals that ANXA11 

expression positively associates with lower AD risk and with better word interpolation ability. NetREm 

provides a powerful framework to deepen our understanding of complex GRNs and their implications 

across a spectrum of health conditions. 

We further evaluate our 𝐵̅. Figure B.20B (SaniyaKhullar 2024) compares 𝐵̅ across 16 networks for 

216 novel links validated in recent physical human experiments (Göös et al. 2022). In control ExNs and 

InNs, 𝑟 ≈ 0.54 and 0.45, respectively, between 𝐵̅ and Jaccard Similarity (JS) of ChIP-seq peak overlap (a 

metric used as a proxy for cooperativity (Yu et al. 2015)) for 6 TFs in neural cells (Figure B.21A-C 

(SaniyaKhullar 2024)). 

For each cell-type, we build default Random Forest (RF) (Figure 3.5D), Logistic Regression, 

Naïve Bayes, and XGBoost machine learning models (Pedregosa et al. 2011) to detect TGs with altered 𝐵 

from Controls to AD that may predict TF-TF links annotated (in CPPID) with neurodegenerative disease 

(Figure B.22A-C (SaniyaKhullar 2024)). Input data consists of changes in 𝐵 across TGs from Control to 

AD, for the given cell type. To tackle this positive unlabeled learning problem (Yang et al. 2014), we 
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undersample class 0 so each cell-type has an equal count of TF-TF links in both classes (§B.1 

(SaniyaKhullar 2024)). We evaluate performance via stratified 5-fold CV noting RF is the most optimal 

approach as all 8 RF cell-type models have average area under Receiver-Operator Characteristic (ROC) 

curve (AUC) ≥ 0.81. Across our models, the top 500 RF feature TGs (in terms of feature importance 

scores) are enriched for neurodegeneration, cell-type functions, immunity, intellectual disabilities, 

tauopathy (Figure 3.5E). OPCs and InNs have the highest overlap (35 top TGs) (Table B.16 

(SaniyaKhullar 2024)); disrupted InN signaling to OPCs may diminish myelination and CNS interneuron 

activity, and severely impair prefrontal cortical network functions and social cognitive behavior (Fang et 

al. 2022). 

Figure 3.5 – Prediction and comparative analysis of cell-type coordination among transcription factors 

(TFs) for target gene (TG) regulation across neuronal and glial cell types in Alzheimer’s disease (AD) 
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Figure 3.5A) - Scatterplots comparing raw TF-TF links and corresponding coordination scores 𝐵 for 2 

AD risk TGs, TMPRSS15 for Microglia and ABCB5 for Inhibitory Neurons, in Control versus AD. Red 

and orange points are TF-TF links annotated by Contextual PPI database  (CPPID) (Kotlyar et. al 2022) for 

AD and other neurodegenerative diseases, respectively. Blue points: no annotation for neurodegeneration. 
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Figure 3.5B) - Circular network diagrams visualizing cell-type TF-TF coordination (direct and/or indirect 

interactions) in AD/control Microglia (Mic) and Inhibitory Neurons (InNs), focusing on select TFs 

denoted by light green nodes. These TFs exhibit strong and potentially cooperation (50 ≤ 𝐵̅ ≤ 100) or 

antagonism (-100 ≤ 𝐵̅ ≤ -50). Red links are AD-related in the Contextual PPI database (CPPID)(Kotlyar 

et. al 2022). TFs not expressed or lacking strong links in this filtered network are in peach. Thick edges are 

AD-related in CPPID. Peach: TFs not expressed or lacking strong links with other TFs in this visual. 
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Figure 3.5C) - 12 TFs that may cooperate to activate ANXA11 in TF-TG regulatory network in Control 

Mic (higher expression for ANXA11 than in AD). Widths for TF-TF links are 𝐵 scores for ANXA11 

regulation in Controls and colors are based on statistical significance of TF-TF links across all TGs in 

both Mic networks. Light gray links: higher in AD; red: higher in Controls; black: not significant. A SNP 

correlating with lower AD susceptibility, increases binding of this TF-TF network, and links to higher 

ANXA11 expression. Risk SNP for reduced cognitive ability (poor word interpolation skills) links to 

lower ANXA11 expression. 
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Figure 3.5D) - Average Stratified 5-fold Cross Validation (CV) Receiver Operator Characteristic (ROC) 

curves for Random Forest (RF) models designed to predict TF-TF links annotated in neurodegenerative 

diseases (class 1) in the Contextual PPI database (CPPID) (Kotlyar et. al 2022) based on balanced class data 

(equal # of links in class 0 and class 1). 

 

 

Figure 3.5E) - Heatmap of gene enrichment analysis terms for 500 optimal genes (top feature 

importance) for each cell-type identified by Random Forest (RF) models for 8 cell types. Hierarchical 

clustering is performed on rows (cell types) and columns. 

§ 3.4 Discussion 

In this chapter, we present NetREm, a computational multi-omics-based approach that employs network-

regularized regression on single-cell gene expression data to predict cell-type coordination among 

Transcription Factors (TFs) for target gene (TG) regulation. NetREm addresses a major challenge in 

traditional studies of cell-type gene regulatory networks (GRNs). Gene expression data, often nascent, 
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sparse and noisy, fails to capture crucial GRN mechanisms such as TF binding to DNA, coordination 

among TFs/cofactors, and DNA accessibility, and typically provides weak signals for distinguishing TP 

from FP TF-TG links (Kim et al. 2023; Badia-i-Mompel et al. 2023). Sole reliance on expression data for 

GRN inference is therefore woefully inadequate, and perhaps even futile, often leading to unstable and 

inaccurate results. 

Explicitly modeling direct and indirect TF-TF interactions can enhance GRN inference, enabling 

discovery of novel TF-TG links and key cell-type TFs (Skok Gibbs et al. 2022). Functionally-related TF 

predictors, like neighbors in scale-free feature networks (e.g. TF-TF PPINs), can coordinate 

synergistically or antagonistically in biological processes like TG regulation (Kong and Yu 2018). 

Nonetheless, traditional methods often miss such complex dynamics of TF-TF PPIs involved in GRNs 

(Yazaki et al. 2016). 

State-of-the-art cell-type GRN inference tools like SCENIC indirectly hint at TF-TF interactions 

by analyzing TFs that co-regulate multiple TGs. However, these tools primarily focus on TFs with strong 

motif binding, excluding other prior information. For instance, in our comparative analysis, SCENIC 

identifies many TFs in SCs (nmSCs: 640, mSCs: 522) but overlooks TEAD1 in both SCs, instead 

detecting 3 other TEAD family TFs. TFs like TEAD1, which exhibit relatively weak motif-binding 

signals, are drowned out. In contrast, by incorporating TF-TF PPINs, NetREm effectively captures 

essential GRN relations for core SC TFs like TEAD1. This underscores the importance of integrating 

comprehensive prior information like PPINs, in GRN predictions from expression regression, a capability 

that NetREm successfully implements (Dibaeinia and Sinha 2020). 

NetREm reveals cell-type coordination among TFs, 𝐵̅, with some mediated by physical and 

others by indirect (e.g. pioneer/settler models show TFBSs are often >50 bp apart in REs) PPIs (Martin et al. 

2023). By weighing known direct/indirect PPIs in the context of TG regulation, NetREm helps 

characterize existing PPINs at a cell-type level (Johnson et al. 2021; Murtaza et al. 2022; Hsu et al. 2022). It 

also helps address the link prediction problem, flagging undiscovered PPIs for follow-ups (Singh and Vig 

2017). The lack of cell-type PPI annotations, while a challenge, offers NetREm an opportunity to 
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contribute to ongoing efforts to broaden understanding of PPIs and protein dynamics with its dual 

capacity to annotate known TF-TF PPIs and discover novel cell-type-specific ones (Yu et al. 2023). 

NetREm predicts unprecedented, weighted, cell-type-specific TF-TF coordination networks 𝐵̅ 

across various conditions, including both human and mouse contexts, even in the absence of prior GRNs. 

Our benchmarking showed our TF-TG regulatory networks not only performed competitively with SOTA 

GRNs but also uncovered novel cell-type TFs that coregulate TGs; further, our 𝐵̅ effectively prioritized 

TP and FN TF-TF links. 

Disrupted cell-type PPIs are critical in neurobiological disorders, since PPIs mediate neuronal 

functions (Mathew et al. 2022). We integrated multi-omics data, capturing various levels of TG regulation 

(e.g., scRNA-seq, scATAC-seq), to learn prior GRNs for NS cell-types for our SC and AD human 

applications. Detecting these candidate GRN TFs for TGs is key to inferring biologically significant cell-

type TF-TG links (Zaborowski and Walther 2020; Zhang et al. 2023). Aligning NetREm’s TF-TG links with 

prior GRNs helps us deduce TF-RE-TG links. NetREm uncovered novel TF-TF crosstalk for TG 

regulation in SCs and during AD in neurons/glia. 

Insights derived from NetREm may contribute to advancing targeted therapies and regenerative 

medicine. We apply our predicted regulatory and coordination networks to trace how non-coding eSNPs 

may alter co-regulatory dynamics among TFs, potentially altering expression of disease-associated eTGs. 

NetREm expands upon previous work in network regularized regression by learning and 

generating embeddings using SVD. In the future, we can incorporate nonlinear dimensionality reduction 

into NetREm to capture nonlinear patterns and regularize latent representations with prior information. 

We may see if any final TFs form homodimers or adapt NetREm to account for this. Additionally, 

regularization networks can integrate other information, like signaling pathways, to learn TF-TF 

coordination for TG regulation.  

Beyond expression regression, we can extend NetREm to other emerging single-cell omics like 

scATAC-seq to explore TF and chromatin interactions in open regions. In Table B.17 (SaniyaKhullar 

2024), we provide additional examples of potential applications of NetREm to the field of biology (e.g. 
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disease gene identification, drug response prediction, epistatic interactions among SNPs that influence 

complex traits/disease, calculate individual polygenic risk scores considering genetic variant interactions). 

NetREm extends to any discipline where predictors exhibit a network structure that informs the outcome. 

§ 3.5 Availability of data, software, and materials 
We implement NetREm as an open-source software package: GitHub.com/SaniyaKhullar/NetREm with 

details in §B.1 (SaniyaKhullar 2024). Tables B.18 - B.19 (SaniyaKhullar 2024) provide a breakdown of the # of 

TGs, # of TFs if 𝑁 is fixed (applications 1 – 5) or metrics if variable (applications 6 – 7). For instance, in 

hESCs, we run NetREm 1,250 times (1 for each TG), with 𝑁 = 206-207 TFs for each TG. Table B.20 

(SaniyaKhullar 2024) lists resources, data, and materials utilized. We use human hg38 and rat rn5 reference 

genomes. Please note that metrics for NetREm’s final cell-type outputs (TF-TG gene regulatory networks 

(GRNs) and TF-TF coordination networks) in applications 6 (human SC sub-types: mSCs versus nmSCs) 

and 7 (AD versus control across 8 neuronal/glial cell types) are available in Table B.21 with 

corresponding Figure B.23. Our corresponding methods and materials, figures (Figures B.1-B.23), tables 

(Tables B.1-B.21), and data files (Files B1-B4) for NetREm are available in § Chapter B of the 

supplementary file (SaniyaKhullar 2024) that is hosted at: 

https://github.com/SaniyaKhullar/Supplementary_Chapters_Dissertation. 

 

 

 

 

 

 

 

 

https://github.com/SaniyaKhullar/NetREm
https://github.com/SaniyaKhullar/Supplementary_Chapters_Dissertation
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§ Chapter 4: Conclusion and future work 

§ 4.1 Summary, limitations, and future work for SNPheno 

4.1.1 Summary of SNPheno 

In § Chapter 2, we applied SNPheno to perform an integrative multi-omics study to predict AD GRNs 

along with gene co-expression modules for three major brain regions. Using these networks and modules, 

we further linked several AD–Covid genes that improve AD and severe Covid predictions (Zhang et al. 

2024), and also revealed regulatory mechanisms of genome-wide association study (GWAS) SNPs of AD 

and of severe Covid-19.  

4.1.2 Limitations of SNPheno, potential alternatives, and future work 

SNPheno has several potential pitfalls that we have considered and tried to limit. There are also limitless 

avenues for future work, which we are currently pursuing.  

4.1.2.1 Exploring other avenues whereby non-coding SNPs may impact TG expression 

The first is that our work only considered gene regulation from TFs, but disease variants can impact other 

regulatory mechanisms (e.g. histone modifications and DNA methylation) to further effect gene 

expression. In addition to SNPs, we could consider other genetic variants like insertions/deletions or 

structural variants (copy number, etc.) or RNA-binding protein variants. Nonetheless, researchers are 

generating population-level epigenetic and whole genome sequence data to systematically identify 

epigenetic activities and structural variants. Such data can help improve our predicted GRNs. There are 

upcoming methods for multi-omics profiling of single cells, including CITE-seq, SLIDE-seq, paired-seq, 

single-nucleus chromatin accessibility (Sealfon et al. 2021). 

4.1.2.2 Extending SNPheno to Single-cell gene expression data for matched individuals 

Our application of SNPheno is in terms of bulk-level data for 3 brain regions. In the future, there will be 

epigenomics data available for individuals with various disease conditions (e.g. Hi-C chromatin 

interaction data for individuals with AD at the brain region and/or cell-type-level), which we can utilize to 

build more precise cell-type and/or brain region GRNs for individuals in various conditions. Moreover, 

multi-omics data may be disparate and unmatched among individuals in the population, which may result 
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in inconsistencies; nonetheless, there are upcoming data resources for multi-omics data for matched 

individuals. There are recent single-cell gene expression data sets (e.g. (Mathys et. al 2019)) for 

Alzheimer’s disease versus controls, which SNPheno may be applied on. To build gene co-expression 

networks (where genes with similar expression dynamic patterns are likely co-regulated and assigned to 

common or similar gene co-expression module), we used WGCNA. This approach is typically used for 

bulk-level gene expression data since single-cell gene expression data (e.g. scRNA-seq or snRNA-seq) is 

inherently sparse. Our pipeline may be extended to single-cell data by recent methods such as scWGCNA 

(Morabito et al. 2021), to identify disease-associated and other phenotype-associated modules of co-

expressed genes at the cell-type level. In addition, we can run scGRNom tool to infer cell-type reference 

gene regulatory networks (GRNs), by using recent human data (e.g. (Zhang et al. 2021)) on chromatin 

interactions among cell-type candidate cis-regulatory elements (cCREs) in adult and/or fetal stages.  

4.1.2.3 Integrating eQTLs to improve SNPheno networks 

Another limitation is that many disease loci identified by GWAS studies do not coincide with any known 

eQTL. A potential reason why is due to cis-bulk-eQTL data. In future, we can integrate cell-type-eQTLs 

and trans-eQTLs (along with cis-eQTLs) for novel insights into trans-regulatory mechanisms associated 

with diseases. More data is being generated on cell-type eQTLs, which we can integrate in the future to 

validate our findings. There is emerging single-cell data that can help uncover more disease risk genes 

and details of transcriptional regulation at much finer resolutions. In response, there are large-scale 

international collaborative efforts, like the single-cell eQTLGen consortium (van der Wijst et al. 2020), 

which is collecting a large sample size of data in individual immune cell types to better understand cell-

type specific effects in cis and trans-genes, and prioritize risk genes. For instance, scQTLbase (Ding et al. 

2023) is a recent comprehensive database and visualization platform combining 304 datasets, across 57 

cell types and 95 cell states. Further, the recent brainSCOPE (Emani et al. 2024) resource provides cell-

type-specific eQTLs from single-cell data for several nervous system-related brain cell types.  
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Currently, we use independent eQTLs to help prioritize and validate SNPheno links from non-

coding SNPs to impacted TGs. Given the recent availability of cell-type-specific eQTLs from various 

resources, we can use some resources to directly improve SNPheno networks instead. To reduce the 

potential for False Positive (FP) links, we may extend SNPheno to utilize eQTL data and GWAS-eQTL 

colocalization analysis to filter SNP-effected-GRN predictions that are made and improve SNPheno 

networks overall. In the future work, we are extending SNPheno to build cell-type gene regulatory networks 

for thousands of traits based on GWAS studies like the Pan UK Biobank.  

 

Figure 4.1 – Adapting the SNPheno pipeline to incorporate GWAS-eQTL colocalization   

We update the pipeline for SNPheno (Figure 2.1). We add GWAS-eQTL colocalization to Step 6. Colocalization 

analysis reveals links between SNP and TG expression for more robust results. 

Further, we may predict the impact of insertions/deletions (i.e. indels) of DNA bases on TF binding. 

Currently, SNPheno focuses on the impact of SNPs (1 DNA variation) on TF Binding. Perhaps we could 

predict how deletions of regions coinciding with TFBSs for TFs may disrupt TF binding and regulation of 

that respective TG; similarly, insertions of regions coinciding with TFBSs for TFs may lead to potentially 

new binding of TFs for the given TG.  

4.1.2.4 Incorporate Protein-Protein Interaction (PPI) networks into SNP-effected-GRNs 

We can potentially incorporate PPI networks to better understand how translational machinery may be 

involved in disease risks (central dogma of molecular biology: gene to protein (via transcription) to 

protein (via translation). Thus, we can integrate PPI networks into our SNP-effected-GRNs to determine 

groups of TFs that interact together (e.g. cooperativity (+) or antagonistically (-)) or validate gene co-
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expression modules based on findings of their protein products interacting more often with each other. 

Studies have observed a community structure within PPI networks (Padi and Quackenbush 2015), with 

groups of proteins interacting together with each other, to associate with biological functions and 

processes. These studies find that disease genes are often located nearby in the human PPI and there may 

be disease modules of PPIs implicated in diseases. In this way, we may extend SNPheno (that is at a 

transcriptional level) to predict post-translational effects and modules. Thus, we may associate the GRNs 

and gene co-expression modules in our SNP-effected-GRNs with PPIs, to prioritize disease modules and 

biomarkers at the protein level (e.g. disease-associated PPI modules). We may combine SNPheno with 

NetREm (incorporates PPI networks as a constraint to learn TF-TG regulatory networks) to create more 

holistic GRN links that also include coordination among TFs.  

4.1.2.5 Heterogeneous Graph embedding techniques to reveal relationships among SNPs, 

predict gene regulatory links, and functionally annotate roles of SNPs 

 

Figure 4.2 – Embedding SNPheno heterogeneous networks to uncover novel relationships among nodes 

and predict new links 

SNPheno builds heterogeneous graphs linking non-coding phenotype-associated SNPs to TGs they may 

help dysregulate (via altered gene regulatory network mechanisms). We note different relationships and 
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various nodes (e.g. phenotype, SNP, genes: TF versus target gene) and edge relationships. These 

networks are hierarchical. We can learn relationships among these nodes by graph embedding 

approaches. Then, we perform graph-embedding to reduce and meaningfully summarize the graph’s 

dimensionality using a variety of potential techniques (that preserve higher order graph proximities 

among nodes) like: DeepWalk (Perozzi et al. 2014), node2vec (Grover and Leskovec 2016), Graph 

Convolutional Networks. For instance, node2vec uses a Skipgram (Mikolov et al. 2013) neural network 

model on a corpus of node sentences, to learn embeddings. Node2Vec is a powerful algorithm designed 

for learning continuous feature representations for nodes in a graph, useful in various machine learning 

applications such as node classification and link prediction. It leverages a biased random walk strategy to 

explore the graph, capturing both the local and global network structures. By balancing depth-first and 

breadth-first sampling through parameters 𝑝 and 𝑞, Node2Vec generates a diverse set of node sequences, 

which are then fed into the Skipgram model, originally developed for natural language processing tasks. 

The Skipgram model processes these sequences to maximize the likelihood of preserving node 

neighborhoods in the embedding space, producing low-dimensional vectors that reflect the complex 

structural and relational patterns of the original graph. This approach allows Node2Vec to create 

embeddings that are highly informative and applicable to a wide range of network analysis tasks. 

These embeddings can be used in various downstream tasks. We can perform link prediction 

tasks to predict effects of rare or never-seen SNPs, or SNPs whose impact has not yet been observed but 

may soon be observed through more technological advances in sequencing. We may look at other 

methods by which non-coding genetic variants impact gene expression (besides TF binding disruption), 

like chromatin modifications and DNA accessibility. Biology is complex so we can utilize link prediction 

approaches on network graphs (shown to be more accurate using graph embeddings than other data types 

(Goyal and Ferrara 2018)) to predict missing interactions or potential links that SNPheno has not yet 

identified. Link prediction tasks can be invaluable towards predicting effects of rare or never-seen SNPs, 

or SNPs whose impact may soon be observed (through technological advances in sequencing (Wong et. al 

2021)). We could build SNPheno networks using different GWAS datasets for a given disease and see if 
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link prediction methods for older GWAS SNPheno networks predict links observed using newer GWAS 

(assuming newer GWAS is conducted on a larger sample size and returns more meaningful results).  

We can use SNPheno to help annotate the potential function of clusters of SNPs. For instance, we 

may perform enrichment of SNPs based on enrichment of genes in their cluster or by aggregating GWAS 

traits that the SNPs are significant for. In addition, we can use cosine similarity among phenotype nodes 

to uncover a network that reveals potential phenotype trait similarity.  

4.1.2.6 Adjusting the epigenomic data to account for dynamic DNA accessibility 

SNPheno uses epigenomic data to determine regions of euchromatin (open chromatin) on DNA for TFs to 

recognize their sequence-specific motifs to bind to help regulate expression of their TGs. Thus, SNPheno 

does not consider the ability of TFs to bind to heterochromatin (closed or compact chromatin). 

Nonetheless, there are pioneer TFs, special TFs that can recognize their TFBSs on heterochromatin, 

which triggers remodeling of the chromatin landscape to make it more accessible for other TFs (i.e. non-

pioneer TFs) to bind (Mayran and Drouin 2018). Moreover, DNA accessibility can fluctuate dynamically 

(Klemm et. al, 2019) and considering chromatin accessibility as binary (open or closed) may be harmful for 

GRN prediction (Miao and Kim 2022). It may be helpful to adjust the underlying GRN methods to consider 

DNA accessibility more quantitatively (Badia-i-Mompel et al. 2023). In the future, we may incorporate 

freshly-available epigenomic data on chromatin accessibility in disease states to infer more accurate 

disease-specific GRNs.  

§ 4.2 Summary, limitations, and future work for NetREm 

4.2.1 Summary of NetREm 
 

NetREm helps highlight the intricate interplay of TFs in regulating TGs across various cellular contexts. 

The complex coordination among TFs, crucial for TG expression, remains largely uncharted. Traditional 

models mostly focus on individual TFs, overlooking the collaborative dynamics vital for TG regulation. 

NetREm innovates beyond these limits, offering a refined, network-regularized regression model that 

unravels sophisticated pathways of direct/indirect TF coordination. Our model assimilates multi-omics 
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data (e.g. PPIs, epigenomic markers, TF binding, chromatin interaction), fostering comprehensive 

networks for TF-TG regulation and TF-TF coordination.  

4.2.2 Limitations of NetREm, potential alternatives, and future work 
There are limitations to NetREm and areas for further research and innovation.  

4.2.2.1 Incorporating negative network weights in network-regularized regression model 

Covariates in regression models can be interconnected on a network, and incorporating this network 

structure into regularized regression models via a network penalty term can improve model performance.  

In the future, we may extend NetREm to incorporate any negative interactions that may be known in the 

input PPIN. Currently, NetREm assumes that the input TF-TF PPIN has positive weights 𝑤 > 0. This is 

since the PPI represents the strength and probability of 2 protein nodes interacting and does not focus on 

the nature of their interaction. That is, whether proteins act antagonistically (-) or cooperatively (+) in a 

pathway, their corresponding PPI weight in current PPI networks simply denotes the magnitude of their 

interaction. Nonetheless, there are on-going efforts to annotate the nature of PPIs. In the future, some PPIs 

could be annotated as being cooperative or antagonistic. Hence, input TF-TF PPINs may eventually 

contain negative weights as well as positive ones. Given this, we may refer to network regularized 

regression studies for insights and inspiration on modeling not only positive but also negative weights. 

For instance, the iterative algorithm called 3CoSE (3-step Covariate and Connection Sign Estimation) 

(Weber et al.) has been developed. When connection signs (+ or -) in the network are unknown, they must 

be estimated alongside covariate coefficients. This 3CoSE algorithm alternates between estimating the 

connection signs (e.g. +: activating, cooperating; -: repressing, antagonistic) and covariate coefficients. 

Simulation results and an application in forecasting event times demonstrate the algorithm's effectiveness 

across various settings.  

4.2.2.2 Incorporating self-weights in the input network weight matrix 𝑊 

Most TFs cooperate with other TFs (rather than operate in isolation), working in concert to regulate TG 

expression utilizing mechanisms like co-binding or tethered-binding (Nie et al. 2020). TFs can be part of 

stable complexes (Ibarra et. al 2020) or they can enhance binding affinity of other TFs to nearby TF 
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binding sites (TFBSs) (synergistic activation) to regulate TGs (Ibarra et. al 2020; Zhao 2023). It is not 

uncommon for the regulation of one TG to necessitate interactions with 10-15 TFBSs (Bentsen et. al 2022). 

Many TFs are unable to bind alone and instead typically require PPIs to form homomeric (TF pairs with 

identical TF: 𝑇𝐹𝑖 − 𝑇𝐹𝑖 links) or heteromeric (pairs with different TFs: 𝑇𝐹𝑖 − 𝑇𝐹𝑗 links) complexes prior 

to binding to DNA (Morgunova and Taipale 2017). Despite the prevalence of such TF-TF coordination, the 

underlying intricacies of this phenomena are not yet fully comprehended (Ibarra et. al 2020). NetREm 

currently uncovers different TFs that coordinate to regulate a given TG in a particular cell-type and 

context. In our regression problem, we do not consider self-loops (i.e. TF interactions with itself); instead, 

we design our 𝑊 so that the main diagonal represents a given node’s average connectivity to all 𝑁 −

1 other nodes in the TG-based input PPI network excluding itself (i.e. its average degree 𝑑𝑖). In the future, 

we may extend NetREm incorporate functionality to model homodimer PPIs. Eventually, as a second 

step, NetREm can utilize known homodimer PPIs to determine whether any of those final TFs forms a 

homodimer. Another alternative is to adjust the NetREm model to incorporate self-loops to explicitly 

model homodimers. To do this, we will have to reformulate the 𝑊 matrix. 

4.2.2.3 Non-linear dimension reduction to reveal embeddings 

NetREm learns gene expression embeddings (𝑋̃, 𝑦̃) using singular value decomposition (SVD). In the 

future, we can integrate nonlinear dimensionality reduction into NetREm to reveal nonlinear and prior 

knowledge regularized latent representations.  

4.2.2.4 Different regularization approaches to predict TG expression from gene 

expression embeddings  

We utilize Lasso regression to predict gene expression embedding values of our target gene (TG): 𝑦̃ from 

the gene expression embeddings of the 𝑁 candidate TF predictors 𝑋̃. We provide an alternative 

ElasticNetREm implementation that uses ElasticNet(𝑋̃, 𝑦̃) regression instead of Lasso(𝑋̃, 𝑦̃) regression. 

That is, we adapt our Network regularized regression model to utilize other regularization models based 

on the gene embeddings from network regression (besides Lasso) such as ElasticNet. Currently, we use 

Lasso regression. In the future, we could explore Ridge regression models to solve this problem. That is, 
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we can input the gene embedding regressions into problems involving other types of regularizations such 

as L2 norm. We can add more regularization terms and explore the effects. 

4.2.2.5 Non-linear objective function to predict TG expression from embeddings 

In the future, we may consider other non-linear objective functions to predict 𝑦̃ from 𝑋̃. Studies (e.g. 

(Wang et al. 2023)) observe that mutual information (MI)-based models may perform better than linear 

based models at detecting GRNs since TFs often exhibit nonlinear behavior (e.g. cooperativity, 

oligomerization: formation of protein complexes to regulate gene expression). We may explore utilizing 

the gene regression embeddings (combining prior gene regulatory knowledge, gene expression data, and 

PPI weights) as input data not just for linear regularization models, but as input for Mutual Information 

(MI)-based models. We may also consider PoLoBag (Polynomial Lasso Bagging) (Roy et. al 2020) on our 

gene embeddings for signed GRN inference (activator vs. repressor) as this tool may help incorporate not 

only linear relationships (1st order polynomial interactions) but also non-linear relationships (through 

higher-order multiplicative interactions). We may consider an ensemble approach (e.g. TreNA Ensemble 

Solver (Arment S et al. 2021)) to annotate TF-TG regulatory links based on different machine learning 

models that predict that respective link (e.g. Lasso (original approach), ElasticNet, Ridge, MI-based or 

tree-based methods like GENIE3). More confident TF-TG regulatory links will be inferred by more 

models and/or have higher performance scores (e.g. higher coefficient magnitudes |𝑐∗|).  

4.2.2.6 Incorporating more prior knowledge into the model 

We can incorporate other regulatory interactions among TF proteins from various data resources besides 

PPI databases. That is, we can also consider integrating other important biological knowledge in our 

networks for regularization, such as signaling pathways. In doing so, we may uncover more systematic 

insights of direct and indirect TF interactions (i.e. coordination among TFs) on gene regulation. If there 

are other networks that capture relationships among TF predictors, we could consider adding those 

networks in with other hyperparameters. We may also explore additional ways to add more prior 

knowledge to the network regularized regression term, such as enforcing positive coefficients for known 

activator TFs and negative coefficients for known repressor TFs.  
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4.2.2.7 Characterizing direct versus indirect coordination links 

NetREm may uncover cell-type-specific and/or disease-specific PPI subnetworks of and the network 

properties and protein properties of these transcriptional regulatory modules (TRMs) of direct and/or 

indirect TF-TF interactions can be analyzed to help understand PPI network-disease relationships, an 

open area of future research (Sevimoglu and Arga 2014). NetREm helps characterize the existing global PPI 

networks of known PPIs, by identifying cell-type-specific TF-TF PPI subnetworks that coordinate to co-

regulate TGs. We may characterize known TF-TF links found in the input PPI as being indirect or direct, 

to provide more details on their mode of interaction with one another. To this end, we may look at 

physical PPIs from STRINGdb and other resources and determine which PPIs are direct; the remaining 

known PPIs may be considered indirect PPIs. This remains a big yet important area to research on. In 

addition, NetREm identifies novel TF-TF PPIs for follow-ups to investigate. This is essential as only a 

few actual PPIs have been identified and a majority are still unknown. Future work for NetREm may also 

include uncovering the true nature of novel TF-TF coordination links and whether the novel interactions 

are indirect interactions or potential direct PPI links that have not yet been discovered. One plan would 

include utilizing tools based on DeepMind’s AlphaFold protein prediction model, such as AlphaFold2 

(Singh and Vig 2017) or AlphaFold3 (Abramson et. al, 2024) that predicts protein-ligand interactions and 

protein-nucleic acid interactions; such tools could be applied to our novel TF-TF links to help predict the 

class of the TF-TF coordination link: indirect or direct.  

4.2.2.8 Improving TF-TF coordination networks  

We will need to develop approaches to reduce the number of False Positive (FP) TF-TF coordination 

links that are uncovered. In addition, there may be False Negative (FN) results due to potential missing 

links in the input PPI. Inherently, PPIs contain a significant proportion of FP and FN results. Various 

computational analysis techniques could be utilized to rank the reliability of PPI links (Sevimoglu and Arga 

2014), mainly reducing the FPs. While NetREm utilizes a comprehensive input PPI that is derived from 

many different resources, there may be additional tools that could be used to detect FNs and add those 
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links (Karagoz and Arga 2013; Chua and Wong 2008). There are new data sources and technologies for 

inferring cooperativity among TFs, which could be used as input data to NetREm’s PPI or for validation 

of the model results and potential reduction of FP results. Traditional methods like ChIP-seq for 

identifying bound TFs are limited in resolution and sensitivity. However, newer chromatin profiling 

techniques, including ChIP-exo (Rao et al. 2021; He et al. 2015), ORGANIC native-ChIP (Kasinathan et. al 

2014), CUT&RUN (Skene and Henikoff 2017), offer base-pair level detail. Additionally, DNase and 

micrococcal nuclease (MNase) methods help map in vivo TF footprints. DNase digestion mainly reveals 

accessibility, while MNase limit digest produces DNA fragments shielded by chromatin proteins 

(Hesselberth et. al 2009; Henikoff et al. 2011), aiding in genome-wide inference of accessibility and binding. 

There are new studies that integrate high-resolution MNase-seq, ORGANIC ChIP, CUT&RUN, and 

dSMF (dual-enzyme single-molecule footprinting) to pinpoint TF-binding events at enhancers in the S2 

cells of Drosophila (fruit fly organism). A recent study devised a technique combining MNase-seq and 

CUT&RUN to simultaneously map multiple TF bindings, deducing co-binding events for Drosophila 

(Rao et al. 2021). The unbound state of an enhancer is gauged using dSMF, to facilitate assessment of 

cooperativity among co-binding TFs at enhancers; the authors verify that co-binding is linked to 

nucleosome occupancy and stability, aligning with theories that TF cooperativity facilitates nucleosome 

displacement at active enhancers. Notably, the low occupancy of TFBSs in the Drosophila genome 

suggests that transient TF binding and slow nucleosome replacement are key to enhancer functionality. In 

the future, these tools may be applied to uncover cooperativity among TFs genome-wide in humans.  

4.2.2.6 Additional benchmarking of NetREm’s TF-TG regulatory networks 

We benchmarked the performance of our complementary GRNs (our TF-TG regulatory links) with that of 

other well-known, state-of-the-art methods. For Schwann cells (SCs) we have validation data for 8 core 

TFs, which we explored. We gathered metrics on validated direct TGs, loss of function TGs, and novel 

candidate TGs for these 8 TFs in myelinating Schwann cells and non-myelinating SCs based on NetREm 

predictions. We used SERGIO to simulate single-cell data in human Embryonic Stem Cells based on 
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ground truth input GRN; we can use the recent GRouNdGAN (Zinati et al. 2024) method (improves upon 

SERGIO tool) to generate improved gene expression datasets for our evaluation of our method. In 

addition, we can utilize recently predicted cell-type GRNs by brainSCOPE (Emani et al. 2024) to evaluate 

our predicted networks (in terms of predicting TF-TG pairs that are experimentally validated or 

computationally identified) in glial and neuronal cell-types in our AD versus control application. 

4.2.2.7 Use TF-TF coordination networks to uncover modules of genes with similar 

patterns of coregulation 
 

Multiple TGs may be co-regulated by common TFs. Co-expression network analysis is a valuable method 

used to identify co-regulated genes and discover new disease genes and gene co-expression modules. 

Typically, genes with strongly correlated expression profiles often share common TFs binding to their 

promoters and cluster into the same modules. These modules represent biological functions and paths 

associated with disease phenotypes. To reveal modules of genes with similar patterns of coordination, we 

may perform hierarchical clustering of TG-specific 𝐵 coordination scores for the cell-type across the cell-

types and/or disease states. In doing this, we may uncover clusters of genes (e.g. gene modules) based on 

their TF-TF coordination scores. We may associate TF-TF links with various traits and context provided 

by the Contextual PPI database (Kotlyar et. al 2022). Then, we can determine module-trait correlations, 

similar to how WGCNA (Langfelder and Horvath 2008) determines phenotype-associated modules. Thus, 

this approach can work in tandem with single-cell WGCNA (scWGCNA), which determines gene co-

expression modules based on expression dynamic patterns; in our case, NetREm-derived gene modules 

would be based on TF-TF coordination dynamic patterns, which may provide another layer of 

understanding.  

4.2.2.8 Applications of Coordination Scores 

 

Studies observe that TF-TF PPIs may play core roles in mediating the long-range enhancer regulation and 

have suggested that these TF PPIs can be used as input features to machine learning models to improve 

the predictive accuracy of long-range interactions among regulatory elements like enhancers and 

promoters (Wang et al. 2021a). Such models may prioritize TF PPIs for long-range enhancer regulation, 
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helping uncover properties of enhancer-driven gene regulation and biology. Nonetheless, the number of 

candidate TF PPIs is astronomical (~200,000), even after filtering for cell-type-specific TFs, resulting in 

high-dimensionality of TF PPI features and a strong risk of overfitting. NetREm enables discovery of 

cell-type-specific subnetworks of the PPIs, i.e. cell-type TF PPIs, and coordination scores 𝐵, which could 

help future downstream analysis work (e.g. predicting these long-range interactions among regulatory 

elements, especially at the cell-type-level, given the unique epigenomic landscape specific to cell-types). 

4.2.2.9 Web-application for NetREm 

We plan to convert NetREm findings to a web-application and web database for the community to use. In 

addition, we have deployed our open-source code on GitHub and will be providing more tutorials. We 

may add a standalone web-application to help users run NetREm seamlessly using their own input data.  

§ 4.3 Concluding statements 

I vividly recall a high school dinner conversation with my aunt, a Ph.D. in a biology-related field. She 

spread her arms wide and said, "If the true biological knowledge about a human cell is this vast, then we 

only know this tiny amount," indicating just a small inch. This realization, along with noticing in my 

biology textbook that the roles of centrioles were still uncertain, left me both fascinated and awed by how 

much remains unknown in this field. I recognize that my research is built upon the work of countless 

researchers who have paved the way with their dedication to expanding our understanding.  

As I conclude this chapter of my academic journey, I am deeply committed to carrying forward 

the research and knowledge I've gained to make a meaningful impact in public health. My work reflects a 

lifelong mission to use science and data to improve lives and contribute to the betterment of society. With 

unwavering passion, empathy, and dedication, I look forward to the opportunities ahead to advance our 

understanding of diseases and contribute to the broader scientific community. This research is just the 

beginning, and I am eager to apply the lessons, experiences, and tools that I developed during this journey 
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(NetREm and SNPheno) to the next chapter of my career, to help make a lasting impact in the world.        

ॐ Om! 
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