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loadings (Ẑtxt). Bottom: Example of a discovered concept with
its representative images and text descriptions. . . . . . . . . . 14

5.1 Comparison of concept clusters obtained by ourVarimax-rotated
decomposition (left column) and raw SVD (right column) on
CLIP image embeddings. Each cell shows the top nine images
for a given concept, annotated with their retrieved text de-
scriptions. Our method produces tight, semantically coherent
clusters and precise labels, whereas raw SVD yields mixed-
semantics groups and more generic descriptions. . . . . . . . . 21

5.2 Reconstruction quality versus number of concepts. Higher
cosine similarity indicates better preservation of the original
embedding structure. Ourmethod offers better interpretability-
fidelity trade-off than SpLiCE. . . . . . . . . . . . . . . . . . . . 22



x

9.1 Graphical models for aggregating judge scores under dif-
ferent structural assumptions. (a) A naive model assumes
scores reflect only a true latent quality (Q) and that all judges
are equally reliable and represent independent views. (b)
Connection-aware approach models intra-judge interactions
(J2 − J3 − J4), but still assumes the presence of a single latent
quality score. (c) Our Confounder-aware model explicitly in-
troduces additional latent confounders (C) influencing judge
scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11.1 Progressive judge selection on the FeedbackQA dataset. CARE
robustly integrates new judges and consistently outperforms
baseline aggregation methods. . . . . . . . . . . . . . . . . . . . 52

11.2 Averaged cross-entropy loss of our algorithm versus the num-
ber of samples. Markers denote average over three random
seeds, and the shaded band denotes one standard deviation. . 55

17.1 Edge length transformation preserves partial distances. The
transformation adds constant c to blue twigs and subtracts c
from red twigs, leaving all red-blue distances unchanged. . . . 70

17.2 Illustration of the canonical mapping. Left: Tree with same-
color siblings mapped to canonical tree. Right: Tree with con-
secutive merges with same color mapped to canonical tree.
Edge lengths are used in proof for Proposition 17.1.2 . . . . . . 70

17.3 Two-step co-hierarchy recovery algorithm. Algorithm 6 esti-
mates block memberships (Ẑ, Ŷ) and interactions (B̂). Algo-
rithm 5 then reconstructs a tree from block interactions, attach-
ing original vertices accordingly. . . . . . . . . . . . . . . . . . 74



xi

18.1 Co-hierarchy recovered from the 20-Newsgroups corpus. Each
leaf node is labeled with a document (e.g., doc0) or term (e.g.,
term0), along with a manually assigned topic label (e.g., “Mid-
west Conflict”, “Software”). Internal nodes represent cluster
merges at varying branch lengths, capturing the semantic prox-
imity between documents and terms. . . . . . . . . . . . . . . . 75

A.1 Illustration of how p-values change with rank k. Left: white
noise image embedding frompretrainedViT-L/14model. Right:
white noise embedding of dimension 10, 000× 768. . . . . . . 87

A.2 Comparison of bootstrap distributions and observed test statis-
tics. The blue histograms show the distribution of test statistics
computed from rotation-invariant resamples under the null
hypothesis. The red dashed lines indicate the observed test
statistics computed from CLIP embeddings of ImageNet vali-
dation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3 Top-24 concepts using our method with leading images and
corresponding text descriptions. We observe image and text
concepts are well-aligned with similar semantic topics. . . . . 91

A.4 Top-6 waterbirds concepts with text descriptions. We noticed
there are bird-focused concepts (e.g. first row, left column)
that specify the species more clearly and mention distinctive
features. There are background-focused concepts (e.g. first
row, middle column), that highlight the type of environment.
We also observed a multiple birds concept (second row, left
column). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.5 Demonstration of analogical reasoning with concepts. The
equation Cgd (group of dogs) − Cd (single dog) + Cb (single
bird) yields a concept that correctly identifies groups of birds
in both image and text spaces. . . . . . . . . . . . . . . . . . . . 93



xii

B.1 Effect of the proposed heuristic in a fully Gaussian synthetic
setup. We estimate the true quality variableQ and report the
mean squared error. The heuristic improves estimation in the
non-orthogonal setting, but slightly degrades performance in
the orthogonal setting where true and confounding compo-
nents are disjoint. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.2 Change in MAE (↓) for individual LLM judges after applying
the robustness prompt. . . . . . . . . . . . . . . . . . . . . . . . 129

B.3 Change in Kendall’s τ (↑) for individual LLM judges after the
robustness prompt. . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.4 Change in aggregate MAE (↓) after propagating the robustness
prompt through each aggregation method. . . . . . . . . . . . 130

B.5 Change in aggregate Kendall’s τ (↑) after the robustness prompt.131
B.6 Random Partitioning vs. Graph Aware Partitioning. A ran-

dom partitioning (a) leaves cross-view edges that violate the
independence assumptions of tensor methods, whereas the
graph-aware partitioning (b) considers cross-view edges and
restores the required separation. . . . . . . . . . . . . . . . . . 132

B.7 ℓ2 reconstruction error (mean ± SD) for random vs. graph-
aware grouping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



xiii

abstract

The central theme of this work is about identification, quantification, and
exploitation of latent structure inherent within complex, high-dimensional
data. Across diverse machine learning scenarios, latent variables often
encode meaningful patterns that are critical to both interpretability and
model performance. This work explores such latent structures through
three distinct yet conceptually interconnected projects.

Part I investigates latent conceptual structures within embeddings pro-
duced by deep neural networks, specifically Contrastive Language–Image
Pre-training (CLIP) embeddings (Radford et al., 2021). By developing a
rigorous statistical framework, we quantify rotation-sensitive structures
to ensure that identified concepts represent robust, interpretable patterns
rather than artifacts specific to certain methodologies. This approach
enhances interpretability and helps mitigate reliance on spurious data
correlations, as empirically demonstrated through improved worst-group
accuracy on challenging benchmarks.

Part II addresses latent structures manifesting as biases and confound-
ing factors in model evaluation frameworks, particularly when leveraging
multiple Large Language Model (LLM) judges. Here, we employ prob-
abilistic graphical models, explicitly capturing and disentangling latent
correlations and confounders among judges. Our novel decomposition
approach combines sparse-plus-low-rank matrix decomposition with ten-
sor methods, resulting in a principled, statistically grounded aggregation
methodology. This framework significantly reduces evaluation biases
and aggregation errors, thereby yielding more reliable and interpretable
evaluations.

Finally, part III explores latent hierarchical structures in bipartite graphs,
aiming to uncover systematic co-clustering patterns that relate entities
from two distinct domains. Instead of treating entities separately, we pro-



xiv

pose a unified hierarchical approach termed a co-hierarchy, which encapsu-
lates latent structural dependencies via spectral decomposition techniques.
This co-hierarchical framework reveals intricate relationships across hier-
archical levels, enhancing interpretability and predictive understanding
in applications such as recommendation systems and document classifica-
tion.

Collectively, these projects illustrate a unified goal: extracting meaning-
ful latent structures from data without explicit label supervision. While
each work employs distinct statistical methods—ranging from hypothesis
testing and spectral decomposition to graphical modeling—all emphasize
rigorous theoretical guarantees and practical effectiveness in leveraging
latent structures.

While these connections underscore a cohesive shared theme, each
part of the dissertation corresponds to a separate manuscript, designed to
be self-contained. Each manuscript introduces unique notation, provides
independent theoretical results, and can be read independently.



Part I

Quantifying Structure in CLIP
Embeddings: A Statistical
Framework for Concept

Interpretation

1
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abstract

Concept-based approaches, which aim to identify human-understandable
concepts within a model’s internal representations, are a promising way to
interpret embeddings from deep neural network models like CLIP. While
these approaches help explain model behavior, current methods lack sta-
tistical rigor, making it hard to validate identified concepts and compare
different techniques. To address this challenge, we introduce a hypothesis
testing framework that quantifies rotation-sensitive structures within the
CLIP embedding space. Once such structures are identified, we propose a
post-hoc concept decomposition method. Unlike existing approaches, it
offers theoretical guarantees that discovered concepts represent robust,
reproducible patterns (rather than method-specific artifacts) and outper-
forms other techniques in terms of reconstruction error. Empirically, we
show that our concept-based decomposition algorithm effectively balances
reconstruction accuracy with concept interpretability and helps mitigate
spurious cues in data. Applied to a popular spurious correlation dataset,
our method yields a 22.6% increase in worst-group accuracy after remov-
ing spurious background concepts.

Note to Reader
This manuscript is collaborated with co-authors Chenghui Li, Frederic
Sala, and Karl Rohe. It is currently submitted and under review. The
notation used here is self-contained and can be read independently of
other parts of the paper.



3

1 introduction

CLIP Radford et al. (2021) is a powerful tool useful for a wide range of
visual applications. Interpreting its high-dimensional embeddings is chal-
lenging due to the complex and entangled nature of the learned represen-
tations. Recent works address this via concept-based decomposition, aiming
to identify interpretable semantic patterns within model components, em-
beddings, and neurons (Gandelsman et al., 2024a,b; Balasubramanian
et al., 2024).

Existing approaches broadly fall into two categories. The first category,
exemplified by SpLiCE (Bhalla et al., 2024), decomposes CLIP embed-
dings into sparse, human-interpretable concepts such as words. While
this sparse decomposition improves interpretability, it introduces recon-
struction errors, meaning that a substantial portion of the original em-
bedding’s information is lost. This negatively impacts downstream tasks
such as zero-shot classification, where preserving semantic information is
crucial. The second category uses Singular Value Decomposition (SVD)
to decompose embeddings into linear combinations of concept vectors
(Fel et al., 2024; Graziani et al., 2023; Zhang et al., 2021). These methods
maintain high reconstruction fidelity (i.e., the reconstructed embedding
closely approximates the originalwithminimal error by filtering out noise).
However, they often struggle with concept interpretability, as singular
vector directions are not inherently aligned with human-interpretable
concepts, making their meaning largely dependent on human intuition.
This highlights a trade-off: methods that prioritize interpretability often
sacrifice reconstruction fidelity, while those that preserve fidelity tend to
lack meaningful concept alignment.

Beyond this seeming interpretability-reconstruction fidelity trade-off,
an even deeper issue remains: existing methods are ad-hoc rather than
the result of a rigorous statistical framework. In real-world settings, em-
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beddings are inherently noisy, and without statistical guarantees, it is
unclear whether the concepts extracted by a given method capture mean-
ingful structure or merely reflect artifacts of noise. A key challenge is that
noise and meaningful structure can both produce seemingly interpretable
components, leading to silent failures where methods extract spurious
“concepts” that do not correspond to real semantic attributes.

To address both challenges, we first propose a hypothesis testing frame-
work to detect rotation-sensitive structure in the embedding subspace. Our
key insight is that semantic concepts manifest as directional patterns in
embedding space that are sensitive to rotation, unlike random noise which
remains statistically unchanged under rotation. By testing for rotation-
sensitive patterns, our method distinguishes noise from true underlying
structure, ensuring that extracted concepts reflect meaningful, stable prop-
erties of the data rather than arbitrary artifacts.

Building on the theoretical insights of Varimax rotation (Rohe and
Zeng, 2020), we develop a post-hoc method that requires no additional
training or human annotation. Our approach achieves both the inter-
pretability benefits of sparse decomposition and the high reconstruction
fidelity of SVD-based methods while offering statistical guarantees of
concept recoverability.

The remainder of this paper is organized as follows:

• In Section 2, we present a hypothesis testing framework to quantify
rotation-sensitive concept structure in the embedding space. We
provide the detailed test procedure, theoretical guarantees for test
statistics, as well as empirical results.

• In Section 3, we introduce a post-hoc concept-based decomposition
method accompanied with an automatic concept interpretation al-
gorithm.

• In Section 4, we formalize a statistical model that connects concepts
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with embeddings and prove concept identifiability under certain
assumptions. We show that concept decomposition methods with a
fixed, misspecified concept vocabulary can suffer from reconstruc-
tion errors.

• In Section 5, we show through qualitative analysis that our method
learns interpretable concepts and maintains high reconstruction fi-
delity, as evidenced by a sparsity-performance trade-off analysis. We
also show that our method is effective in identifying and removing
spurious concepts.
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2 hypothesis test for rotation sensitive concepts

We develop a hypothesis testing framework to detect concepts in embed-
ding spaces through rotational properties. We first characterize mean-
ingful concepts through rotational sensitivity (Sec. 2.1), validating our
intuition on synthetic and real datasets. We then develop a resampling
procedure (Sec. 2.2), test statistics (Sec. 2.3), and test procedure swith
experimental results in (Sec. 2.4).

2.1 Characterizing Meaningful Structure via
Rotational Sensitivity

We first explain why a rotation-based approach is well-suited for statisti-
cally modeling concepts in embeddings. Neural networks process embed-
dings through inner products with weight vectors, which measure how
closely the embedding aligns with each weight vector’s direction, making
embeddings inherently directional objects. When examining embedding
spaces for meaningful structure, we are essentially asking whether the
distribution of embeddings shows preferences for certain directions over
others. A completely structureless embedding space samples points uni-
formly from all directions, making it rotationally invariant. In contrast,
meaningful concepts manifest as preferred directions in the embedding
distribution, breaking this invariance.

To accurately characterize these rotational preferences, we focus on
the rotational properties of singular vectors rather than raw embeddings.
This choice is crucial because heterogeneous scaling in different directions
(i.e., elliptical patterns in data) can create apparent rotation sensitivity in
the raw embeddings even when no meaningful structure exists. Singu-
lar vectors, being normalized to unit variance, allow us to identify true
directional preferences while controlling for such scaling effects.
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Figure 2.1: Visualization of singular vector loadings from CLIP embed-
dings from ViT-B/32 backbone model, where loadings represent how
much each singular vector contributes to an image’s representation. Left:
Projection onto 2nd and 3rd singular vectors (after Varimax rotation) of
embeddings from white noise images, showing rotation-invariant struc-
ture. Right: Same projection for ImageNet validation images, revealing
distinct radial streak patterns that indicate rotation-sensitive structure.
Each point represents one image, with first singular vector excluded to
remove mean effects.

We now formalize these ideas, starting with a formal definition of
rotational invariance:

Definition 2.1.1 (Probabilistic Rotational Invariance). A probability dis-
tribution with density function f on Rd is said to be rotationally invariant
if for any rotation matrix R ∈ Rd×d (i.e., R⊤R = Id and det(R) = 1), the
distribution of x is the same as the distribution of xR, f(x) = f(xR) for all
x ∈ Rd and all rotation matrices R.

Intuitively, this definition formalizes when a distribution looks the
same in all directions; there are no preferred directions or patterns in the
data. To illustrate this definition, we first examine classical examples of
rotation invariance, both at the data distribution level and the concept
level:
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Example 1 (Standard Multivariate Normal is Rotationally Invariant). The
multivariate Gaussian distribution N(0, Id) is rotationally invariant.

While Example 1 demonstrates rotation invariance at the data level, we
are particularly interested in the rotational properties of concept-specific
patterns, which we capture through singular vectors:

Example 2 (Singular Vectors of Gaussian Noise are Rotationally Invariant).
Let A ∈ Rn×d be a matrix with entries Aij drawn i.i.d. from N(0, 1). Then
the left singular vector matrix U ∈ Rn×k and right singular vector matrix
V ∈ Rd×k are both rotationally invariant.

This serves as our null model, representing the absence of meaning-
ful concept structure. In contrast, embeddings that encode meaningful
concepts exhibit rotation sensitivity. For example,

Example 3 (GaussianMixtureModel Shows Rotation Sensitivity). Consider
data drawn from a Gaussian mixture model: x ∼ 1

2N(µ, Id) + 1
2N(−µ, Id),

where µ = (1, 0, 0, . . . , 0)⊤ ∈ Rd. This distribution is not rotationally
invariant.

We show its concept structure is also rotation-sensitive and defer the
details in Example 4.

We can further validate these examples using real CLIP embeddings
in Figure 2.1. The left panel shows embeddings of white noise images,
displaying uniform distribution from all directions (i.e., rotation invari-
ance) similar to Ex. 2. The right panel shows ImageNet embeddings,
revealing clear directional structure through radial streaks, analogous to
the structured distribution in Ex. 3.

To formalize these ideas, let A ∈ Rn×d be the data matrix. We obtain
its truncated singular value decomposition, where U ∈ Rn×k contains the
first k left singular vectors of A. Each column of U represents a principal
direction of variation in the data. Our hypothesis test specifically examines
the rotational properties of left singular vectors (matrix U).
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2.2 Sampling from the Rotation invariant
Distribution

Rotation sensitivity only manifests when an embedding prefers certain
directions. To mimic the absence of such structure, we generate a null sam-
ple by independently rotating each row of the embedding while preserving
its length. We describe the details of this method in Algorithm 8, which
is deferred to Appendix. Comparing any test statistic to the distribution
obtained from these rotated replicas yields a Monte-Carlo p-value for the
presence of rotation-sensitive patterns.

The following proposition establishes the theoretical guarantees for
our resampling procedure:

Proposition 2.2.1 (Statistical Properties of Resampling). Let {xi}ni=1 ⊂ Rd

be i.i.d. samples from a probability distribution with density f. For any measurable
test statistic T : Rd×n → R, define:

T1 = T(x1, . . . , xn), xroti = Rixi, Ri iid
∼ Uniform(SOd), T∗ = T(xrot1 , . . . , xrotn ).

If f is rotationally invariant, then T∗ and T1 have the same distribution and are
conditionally independent given the set of norms {∥xi∥2}

n
i=1.

This proposition guarantees that under the null hypothesis of rotational
invariance, resampled test statistic (T∗) follows the same distribution as
the original statistic (T1).

2.3 Test Statistics

To detect and quantify rotation-sensitive structure in embedding spaces,
we propose two complementary test statistics that capture different aspects
of rotation sensitivity: distributional non-Gaussianity through kurtosis
and achievable sparsity under rotation through Varimax objective function.
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Kurtosis-based Statistic. Our first test statistic measures the non-Gaussian
patterns in U, as meaningful concepts typically deviate from normal dis-
tributions. We define:

TS1(U) =
1
k

k∑
i=1

|kurtosis(U.i)|, where kurtosis(X) = E[(X− µ)4]

(E[(X− µ)2])2 − 3,

with µ = E[X]. Under the rotation invariance null hypothesis, we expect
this statistic to be close to zero.

Theorem 2.3.1. Under the null model of Example 2, an equivalent rescaled
version of TS1(U) follows a standard normal distribution.

This normalization provides an efficient computational path for hy-
pothesis testing under Gaussian assumptions. We defer the detailed proof
to Appendix.
Varimax-based Statistic. Our second test statistic optimizes over rotations
to detect patterns that may be hidden in the original coordinate system.
We define:

v(U,R)=
k∑

ℓ=1

1
n

n∑
i=1

(
|URiℓ|

4−
( 1
n

n∑
q=1

|URqℓ|
2)2), TS2(U)= max

R∈SOk

v(U,R),

(2.1)

where v is theVarimax objective function, and SOk is the special orthogonal
group of k × k rotation matrices. This statistic measures the maximum
achievable sparsity under rotation, making it particularly sensitive to
structured patterns that may be hidden in the original coordinate system.

To apply these test statistics, we use a bootstrap approach. We first gen-
erate samples from the null distribution by applying random rotations to
the original data matrix. We then compute both test statistics on these null
samples to form their empirical distributions. The p-values are calculated
by comparing the observed test statistics against these null distributions.
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Algorithm 1 Hypothesis Test for Rotation-Sensitive Concepts
Input: Matrix U ∈ Rn×k, resamples Nresample
Output: Varimax p-value pv, kurtosis p-value pkur
1: for i = 1 to Nresample do
2: Urot

i ← Rotation Invariant Matrix(U) ▷ Algorithm 8
3: Zrot

i ← Urot
i × arg maxR∈SOk

v(Urot
i ,R) ▷ Apply Varimax rotation in

eq: equation 2.1
4: Compute statistics TS1(Z

rot
i ), TS2(Z

rot
i )

5: end for
6: Ẑ← U× arg maxR∈SOk

v(U,R)
7: Compute TS1(Ẑ), TS2(Ẑ)
8: Compute p-values:
9: pkur ←

∑
1[TS1(Ẑ)>TS1(Z

rot
i )]

Nresample

10: pv ←
∑
1[TS2(Ẑ)>TS2(Z

rot
i )]

Nresample

11: return pkur,pv

2.4 Test Procedure and Results

We present a hypothesis testing procedure to detect rotation-sensitive
structure in embedding spaces. Under the null hypothesis of rotation
invariance, we expect large p-values indicating no meaningful structure
(e.g., ⩾ 0.05) , while significantly small p-values (e.g., ⩽ 0.05) suggest the
presence of rotation-sensitive structure. Algorithm 1 outlines our testing
approach.

We evaluate our method using CLIP ViT-L/14 embeddings on three
datasets: ImageNet validation set images, white noise images (Gaussian
noise fed into the CLIP model), and pure white noise embeddings. As
shown in Figure A.2, our test statistics reveal strong evidence of rotation-
sensitive structure in CLIP embeddings of ImageNet images, with both
test statistics showing significant separation between their bootstrap null
distributions and observed values. Control experiments on white noise
confirm our method’s validity. Both white noise embeddings (p-values: 0.55
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for Kurtosis, 0.6 for Varimax) and white noise images (p-values: 0.62 for
Kurtosis, 0.81 for Varimax) yield non-significant p-values, confirming that
random noise contains no meaningful structure.
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3 identifying interpretable concepts

We present our main algorithm to identify rotation-sensitive concept struc-
ture in the embedding space, as motivated by the notions in Section 2.
Our approach decomposes the embedding matrix into two components: a
sparse loading matrix that captures how individual images relate to con-
cepts, and an orthogonal concept dictionary that maintains independence
between discovered concepts. This achieves both interpretability and high
reconstruction fidelity.

3.1 Method Overview

As shown in Figure 3.1, our pipeline processes image and text inputs
through a pretrained CLIP model to obtain embeddings. Given image
embeddingsA ∈ Rn×d and text embeddings T ∈ RM×d, we learn k orthog-
onal concepts represented through three key matrices: concept dictionary
matrix Ŷ, image loadings Ẑimg, and text loadings Ẑtxt. The image and
text loadings indicate how strongly each image or text embedding aligns
with the learned concept - higher values represent a stronger association
with a particular concept in the dictionary.

Algorithm 2 details our decomposition method, which has three key
steps. First, we normalize the embedding matrix for better spectral estima-
tion (see details in Appendix A.3). Second, we perform SVD to identify
the principal directions in the embedding space. However, these raw SVD
components, while capturing the underlying structure, are not automati-
cally aligned with human-interpretable concepts. This motivates our third
step: Varimax rotation, which maximizes the variance of squared loadings
for each concept, naturally pushing individual loadings toward either high
values or zero and thus promoting sparsity. This sparsification is crucial
for interpretability—it associates each data point primarily with its most
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Figure 3.1: Pipeline overview. CLIP embeddings from images and texts
are processed to extract interpretable concepts. Image embeddings are
factorized into sparse loadings (Ẑimg) and a concept dictionary (Ŷ), while
text embeddings are projected to obtain loadings (Ẑtxt). Bottom: Example
of a discovered concept with its representative images and text descrip-
tions.

Algorithm 2 Concept-based Embedding Decomposition
1: Input: Embedding matrix A ∈ Rn×d, number of concepts k
2: Output: Concept matrix Ŷ ∈ Rd×k, image loadings Ẑ ∈ Rn×k

3: Ã← Normalization(A)
4: U,D,V⊤ ← SVD(Ã)
5: R← arg maxR∈SOk

v(UD,R) ▷ Optimizes objective in Eq. equation 2.1
6: Ẑ← UDR

7: Ŷ ← VR

8: return Ẑ, Ŷ

relevant concepts and makes concepts more semantically distinct by con-
necting them only to related examples. The rotation step effectively aligns
the rotation-sensitive structure we detected (Section 2) with interpretable
axes in the embedding space. We empirically validate the necessity of this
rotation in Section 5, where we show that rotated sparse concepts exhibit
clearer semantics compared to raw SVD components.



15

Algorithm 3 Automatic Concept Interpretation

1: Input: Concept matrix Ŷ ∈ Rd×k, text descriptions {Mi}
M
i=1, text em-

beddings T ∈ RM×d, descriptions per concept r
2: Output: Text descriptions {Tj}

k
j=1 for each concept

3: L← TŶ ▷ Project text embeddings to concept space
4: for each concept j = 1, . . . ,k do
5: Ij ← indices of top r values in L·j
6: Tj ← {Mi : i ∈ Ij}

7: end for
8: return {Tj}

k
j=1

3.2 Concept Interpretation

We propose two methods to interpret each concept from the decomposi-
tion. The first uses the image loading matrix Ẑ to identify representative
examples for concepts. For the j-th concept, we examine its corresponding
column Ẑ·j and select the r images with highest loading scores. These
typically share common semantic features, allowing us to derive an inter-
pretable theme for the concept.

Our second method (Alg. 3), provides automatic concept interpreta-
tion through text descriptions without human intervention. This approach
requires a pool of text descriptions for the image dataset, which can be
obtained through LLMs or visual-language models (e.g., LLaVA (Liu
et al., 2023)). The algorithm projects these text descriptions onto our
learned concept space and identifies the most relevant descriptions for
each concept. In our experiments, we use the curated text description set
from Gandelsman et al. (2024b), which provides general descriptions of
ImageNet classes.
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4 theoretical results: identification and
recovery bounds

In this section, we establish theoretical guarantees for our concept decom-
position method. We first prove that our method can reliably identify
meaningful concepts under certain statistical assumptions, extending pre-
vious work on Varimax rotation identification. We then analyze fundamen-
tal limitations of fixed-concept approaches, demonstrating why adaptive
concept learning is necessary.

4.1 Concept Identification

Our identification guarantees build on a key insight: when embedding
data exhibits sufficient statistical structure, there exists a unique rotation
(up to permutation) that aligns with interpretable concepts. We formalize
this through the following assumptions:

Assumption 4.1.1 (The identification assumptions for Varimax). The ma-
trix Z ∈ Rn×k satisfies the identification assumptions for Varimax if all of
the following conditions hold on the rows Zi ∈ Rk for i = 1, . . . ,n: (i) the
vectors Z1,Z2, . . . ,Zn are i.i.d., (ii) each vector Zi has k independent ran-
dom variables (not necessarily identically distributed), (iii) the elements
of Zi have kurtosis κ > 3.

The independence conditions (i) and (ii) ensure structural consistency
across samples, while (iii) requires sufficient non-Gaussianity in the data.
We relax the equal variance assumption from Rohe and Zeng (2020), al-
lowing different concepts to have different strengths of expression. This
is crucial. In the vintage sparse-PCA model the data admit the factoriza-
tion X = ZBY⊤, where Z, Y are Varimax-rotated eigenvectors, and B is
the diagonal matrix of eigenvalue, left and right multiplied by rotation
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matrices. Because B absorbs all scaling, Z and Y can be rescaled without
losing orthogonality. Our model instead factors the data as X = ZY ′ for
clear interpretation purpose, where Z is data loading on each concept, and
Y is the concept dictionary. Hence, any attempt to transfer scale from Z
to Y would break the orthogonality of Y, which makes concept dictionary
harder to interpret.

Theorem 4.1.2 (Varimax rotation identification). Suppose that Z ∈ Rn×k

satisfies Assumption 4.1.1. Define Z̃ = Z − E(Z). For any rotation matrix
R̃ ∈ O(k),

arg max
R∈O(k)

E
(
v(R,ZR̃⊤)

)
= {R̃P : P ∈ P(k)},

where P(k) = {P ∈ O(k) : Pij ∈ {−1, 0, 1}}, is the full set of matrices that allow
for column reordering and sign changes, and v is defined in equation 2.1.

Under our assumptions, this shows the Varimax objective identifies
the correct concept rotation up to permutation.

4.2 Reconstruction Error Bounds for
Fixed-Concept Methods

When the conceptmatrix is fixed, reconstruction errors arise from potential
misalignment between predefined concepts and the ground-truth concept
structure. To formalize this limitation, we denote the ground-truth latent
concept matrix as C∗ ∈ Rd×k and the fixed concept matrix (such as in
SpLiCE) as CW ∈ Rd×m where k ⩽ d < m. We assume CW may fail to
capture some information present in C∗, which we quantify through the
following condition: minP∈Rm×k ∥CWP−C∗∥F ⩾ δ, where P is an arbitrary
projection matrix, δ > 0 represents the minimum possible misalignment
between the fixed and true concepts, and ∥ · ∥F represents the Frobenius
norm.
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Theorem 4.2.1 (Fixed concept-decomposition method reconstruction error
lower bound). Given the misspecification condition above, consider A ∈ Rn×d

such that A = Z∗C∗⊤ with positive k-th singular value, i.e. σk(Z∗) > 0, then
we have minZ∈Rn×m ∥A − ZC⊤

W∥F ⩾ σk(Z
∗)δ, where σk(Z) =

√
σk(Z⊤Z) is

the absolute k-th largest singular value of Z.

This theorem quantifies the risk of fixing the concept decomposition
matrix in SpLiCE: when the predefined concept vocabulary cannot be
aligned with the true concepts, reconstruction error is unavoidable. Our
proposed method avoids this limitation by learning concepts from the
data.
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5 experiment results

We evaluate our method through qualitative and quantitative analyses.
We assess the interpretability of learned concepts via visualizations and
textual alignment, analyze the trade-off between sparsity and reconstruc-
tion fidelity, and demonstrate the effectiveness of our method in removing
spurious correlations across multiple datasets.

5.1 Qualitative Evaluation of Discovered
Concepts

We evaluate the effectiveness of our concept decomposition method visu-
ally and textually .
Setup. We apply our method to CLIP ViT-B/32 embeddings of the Ima-
geNet validation set, using the curated text description set from Gandels-
man et al. (2024a) that provides class-specific descriptions generated via
ChatGPT.
Results. Figure 5.1 compares concept clusters discovered by our Varimax-
rotated decomposition (left column) against those from raw SVD (right
column). For two representative concepts, we display the top nine im-
ages by loading score (Ẑ.j) alongside their automatically retrieved text
descriptions from Algorithm 3. The top row shows a concept manually
selected to demonstrate the effectiveness of our method, while the bottom
row concept displays a randomly selected concept from a pool of 50. Our
method consistently yields semantically coherent clusters (e.g. butterfly
feeding scenes, screws) with concise, focused descriptions. In contrast,
raw SVD clusters mixed themes such as furniture and animals, screws and
knitwears, accompanied with broader, less specific descriptions. These
differences demonstrate that Varimax rotation effectively isolates mean-
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ingful concept directions in the CLIP embedding space, resulting in far
more structured and interpretable concept representations than standard
SVD decomposition.

5.2 Sparsity-performance Trade-off

We analyze how the number of concepts in our decomposition affects
reconstruction fidelity, measured by cosine similarity between original
and reconstructed embeddings.
Setup. We evaluate our method on the ImageNet validation set using two
CLIP models: ViT-B/32 (512 dimensions) and ViT-L/14 (768 dimensions).
We compare against SpLiCE (Bhalla et al., 2024) as a baseline.
Results. Figure 5.2 shows that reconstruction fidelity improves with in-
creasing number of concepts k for both models. ViT-L/14 consistently
shows lower cosine similarity compared to ViT-B/32 at equal k, reflecting
the challenge of capturing its richer 768-dimensional embedding space
with the same concept budget. Our method achieves substantially higher
reconstruction fidelity compared to SpLiCE when using comparable num-
bers of concepts.

The quality of reconstruction is crucial as it indicates how well our
decomposition preserves the semantic information encoded in the original
embeddings. While concept decomposition inherently involves a trade-
off between interpretability and information preservation, our method
offers flexible control through the number of concepts k, allowing users
to balance these competing objectives. Unlike SpLiCE, which prioritizes
interpretability at the cost of significant information loss, our approach
maintains interpretable concepts while better preserving the original em-
bedding structure. This preservation of semantic information is essential
for downstream applications and validates that our discovered concepts
capture meaningful aspects of the data.
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Figure 5.1: Comparison of concept clusters obtained by our Varimax-
rotated decomposition (left column) and raw SVD (right column) on
CLIP image embeddings. Each cell shows the top nine images for a given
concept, annotated with their retrieved text descriptions. Our method
produces tight, semantically coherent clusters and precise labels, whereas
raw SVD yields mixed-semantics groups and more generic descriptions.



22

Model Waterbirds iWildCam CelebA
Avg WG† Gap‡ Acc mF1 MRec Avg WG† Gap‡

ZS 84.8 38.1 46.7 6.23 0.001 0.002 81.2 74.2 7.0
SVD-recon. 85.5 39.0 46.5 3.83 0.001 0.001 78.1 74.9 3.2
Spurious Removed 89.6 60.7 28.9 18.8 0.003 0.006 82.6 75.1 7.5

Table 5.1: Performance comparison across datasets. WG†: worst-group
accuracy (higher better), Gap‡: accuracy gap (lower better), mF1: micro-
F1, MRec: macro-recall. Best results in bold. Purple and green highlights
indicate best worst-group accuracy and smallest accuracy gap.

Figure 5.2: Reconstruction quality versus number of concepts. Higher
cosine similarity indicates better preservation of the original embedding
structure. Our method offers better interpretability-fidelity trade-off than
SpLiCE.

5.3 Removing Spurious Correlations

We evaluate our method’s ability to identify and remove spurious corre-
lations across three datasets: Waterbirds (Sagawa et al., 2019), WILDS-
iWildCam (Beery et al., 2020), and CelebA (Liu et al., 2015). Dataset
details are provided in Appendix A.3.
Setup. For all experiments, we use CLIP ViT-B/32 embeddings (512 di-
mensions) and decompose them into k = 50 concepts using Algorithm 2.
Spurious concepts are identified using dataset-specific strategies (detailed
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in Appendix A.3), which analyze correlation between concept embed-
dings and text descriptions emphasizing different attributes (e.g., target
vs. background features). We defer the details of how to remove spurious
concepts to appendix.

We compare three embeddings: the full, original CLIP image embed-
ding; the concept-based reconstruction, where embeddings are recon-
structed from all learned concepts; and the spurious-removed reconstruc-
tion (Ours), where embeddings are reconstructed after removing spurious
concepts. For classification, we follow the standard zero-shot classification
setup.
Results. Our method consistently improves zero-shot prediction per-
formance after removing spurious concepts (Table 5.1). On Waterbirds,
removing spurious background concepts improves worst-group accuracy
by 22.6% and reduces the accuracy gap by 17.8%. On iWildCam, the pre-
diction accuracy triples from 6.23% to 18.8%; and on CelebA, we achieve
highest average and worst-group accuracy while using only 5% of the
original embedding dimensions. The SVD-reconstructed embeddings
maintain similar average accuracy to the original embeddings for Water-
birds dataset, suggesting our method preserves task-relevant information
while removing noise.
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6 conclusion

We introduced a hypothesis testing framework to quantify rotation-sensitive
structures in the embedding spaces andproposed a concept-decomposition
method that achieves both high reconstruction fidelity and clear inter-
pretability. We validated it through theoretical and empirical analyses.
Applied to challenging distribution shift benchmarks, our method con-
sistently demonstrated significant improvements after identifying and
removing spurious concepts.

Limitations. Our approach assumes linearity in the embedding decom-
position, which may overlook complex non-linear structures potentially
present in the embedding space. In addition, we note that the interpretabil-
ity of discovered concepts partially depends on the quality and scope of
the text descriptions available, potentially introducing biases or limiting
generalization. Finally, while our hypothesis testing procedure is robust
to rotationally invariant noise, it does not explicitly handle structured,
non-rotational noise patterns, leaving room for further refinement in more
nuanced settings.
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abstract

LLM-as-a-judge—oftenwithmultiple judges—is now the standard paradigm
for scalable model evaluation. This strategy is known to suffer from bi-
ases, spurious correlations, confounding factors, etc., and many heuristic
approaches have been proposed to tackle these. We address this problem
from the point of view of probabilistic graphical models, enabling us to
capture the challenges involved in using multiple judges in a principled
way. By considering Markov random fields (MRF) with multiple latent
factors, we can model undesired correlations between judges, a latent
unknown true notion of quality, and one or more additional latent distrac-
tors (for example, generation length). The key technical challenge is to
identify and learn a higher-rank latent variable MRF, which we solve via a
new approach that mixes sparse plus low-rank and tensor decompositions.
This enables us to better understand the quality and behavior of judges,
leading to improved evaluation capabilities. In addition, we show how
to augment our approach via programmatic judges that can be cheaply
constructed and added to standard model-based judges. Empirically, our
framework, CARE (Confounder-Aware Aggregation for Reliable Evalua-
tion), demonstrates consistent gains on diverse public benchmarks, reduc-
ing aggregation error by up to 25.15% and showing robust integration of
programmatic judges. Additionally, CARE offers superior performance
and efficiency compared to individual-judge intervention strategies. These
results underscore CARE’s ability to effectively model correlations and
mitigate biases, leading to more accurate and robust aggregation of LLM
judge scores.
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Note to Reader
This manuscript is collaborated with co-authors Changho Shin, Tzu-
Heng Huang, Srinath Namburi and Frederic Sala, and is currently
submitted and under review. The notation used here is self-contained
and can be read independently of other parts of the paper.
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7 introduction

Large language models (LLMs) are the workhorse solution for automated
evaluation of model generations. For example, using LLM-as-a-judge sys-
tems avoids incurring the cost and latency of expert annotation (Zheng
et al., 2023). Given the ease of applying such tools, a common evaluation
paradigm is to ensemble multiple LLM judges to form consensus evaluation
scores (Hu et al., 2024). While attractive, these approaches are unreliable.
Judges can be individually inaccurate and suffer from biases, e.g., relying
on spurious factors like position or verbosity (Ye et al., 2025; Shi et al.,
2024; Wang et al.). Additionally, judge models are highly correlated (due
to being trained on the same data), so that incorporating more judges may
add no additional evaluation signal—or worse, boost confidence in an
incorrect assessment (Deutsch et al., 2022; Li et al., 2025).

Many heuristic techniques have been proposed to mitigate these is-
sues. Single judge bias-reduction methods include answer-order shuffling
(Chen et al., 2024), prompt calibration (Li et al., 2024a; Furniturewala et al.,
2024; Guo et al., 2022), and fine-tuned evaluators (e.g., JudgeLM (Zhu
et al., 2023), PandaLM (Wang et al.)). Ensembling methods aggregate
judge scores via a simple majority vote or average (Li et al., 2024b) in
the hope of reducing unreliability. Unfortunately, these approaches do
not provide a general and principled way to improve LLM-as-a-judge
frameworks. Indeed, ad-hoc approaches target one spurious factor (e.g.,
generation length (Ye et al., 2025)) and leave others in place, or make
implicit assumptions that are unlikely to hold (e.g., majority vote and
unweighted averages assume access to independent and equally reliable
judges).

These difficultiesmotivate the need for a general and principled approach
to LLM-as-a-judge ensembles. We provide one through the lens of proba-
bilistic graphical models—a classic framework that can be used for model-
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ing and aggregating viewpoints. Concretely, we recast multi-judge evalu-
ation as probabilistic inference in a higher-rank latent variable Markov
Random Field (MRF). This enables us to model and deal with key chal-
lenges in LLM-as-a-judge ensembles:

• No access to ground-truth scores: One latent variable in the MRF
represents a ground-truth quality for the generation being evaluated;
we have no access to it and never observe it.

• Unknown spurious factors: Other latent MRF components model
unknown and general distractors or spurious correlations that are
associated with—but not causal—to generation quality. These might
include generation length, verbosity, and other factors.

• Complex correlations: Judges may have correlations beyond their
voting behavior, due to the use of shared data for training or shared
base models. These correlations are flexibly modeled by MRF inter-
actions between variables corresponding to judges.

Higher-rank latent variable MRFs provide a principled and general
recipe to automated model-based evaluation. The recipe is to learn the
MRF (i.e., learn its parameters, including those for the latent variables,
from observed data—LLM votes) then compute a posterior estimate of the
latent ground-truth quality. However, learning such higher-rank latent
MRFs is challenging. We must address 1) how can we learn the model
parameters despite never observing any latent variable, and 2): how can
we identify which latent corresponds to a ground-truth quality score
(rather than spurious factors)?

We tackle this technical challenge with a two-pronged approach. First,
to address 1), we introduce a novel two-stage technique to learn higher-
rank latent MRFs. It combines a sparse plus low-rank decomposition that
partially recovers the model with a second tensor decomposition step to
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fix the remaining parameters. While each approach has been individually
used to learn latent factor models in more limited settings, our new com-
bined approach is substantially more general. Second, to handle 2), we
introduce a variety of approaches that boost identifiability such as anchor-
ing latent factor to human labels, enforcing balanced variable loadings,
which enables us to distinguish between latent variables corresponding to
ground-truth scores versus spurious factors or confounders.

In addition to our basic estimator, we develop an adaptive approach
that augments an existing set of judges with new, generated judges. The aug-
mented evaluators we focus on in particular are programmatic judges—
programs that can perform evaluation that are themselves the output of
LLMs. We find that such programmatic judges enable (1) boosting the sig-
nal for evaluation and (2) facilitate the expansion of the judge set, leading
to improved accuracy and robustness.
Summary of Contributions.

1. We propose CARE, the first confounder-aware aggregation framework
that explicitly models shared latent confounders among LLM judges,
unifying single-judge debiasing with principled statistical fusion.

2. We prove identifiability and derive finite-sample error bounds, show-
ing that our estimator can reliably aggregate judge scores even when
confounders are non-trivial.

3. We characterize the inherent model misspecification error incurred
bymethods ignoring confounders, demonstrating CARE’s advantage
over independence-based competitors.

4. We demonstrate consistent gains on diverse public benchmarks, re-
ducing aggregation error by up to 25.15% and proving more effective
and efficient than individual-judge intervention strategies.
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5. We show that CARE robustly integrates programmatic judges and
supports progressive expansion of the evaluator pool, consistently out-
performing baseline aggregation methods.

By explicitly modeling confounders during aggregation, our frame-
work offers a principled alternative to current heuristic pipelines and
substantially enhances the reliability of LLM-as-a-judge.
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8 background and overview

We start with brief background on automated evaluation and probabilistic
graphical models.
LLM-as-a-judge. The goal of these techniques is to efficiently and cheaply
evaluate model generations. Large language models can act as inexpen-
sive, fast proxies for human raters by returning (i) scalar quality scores (e.g.,
1–10 Likert or percentile ranks) (Zhu et al., 2023; Wang et al.; Shi et al.,
2024), (ii) pairwise preferences that indicate which of two candidate answers
is better—an output format popularized by RLHF pipelines (Ouyang et al.,
2022; Bai et al., 2022), and (iii) categorical labels such as error type, topic tag,
or correctness flags (Gilardi et al., 2023; Chen et al., 2024). As individual
LLM judges are often biased, recent work (Verga et al., 2024a) deploys
multiple LLM judges and aggregates their opinions—via majority vote,
average pooling, or other techniques—to boost robustness and accuracy.
Our framework builds on this line of work but seeks a more principled ap-
proach to multi-judge aggregation that explicitly models shared confounders and
correlated errors.
Graphical Models and Latent-Variable MRFs. Graphical models repre-
sent conditional independence in multivariate distributions, with Markov
Random Fields (MRFs) being particularly valuable due to their effective
structure learning and efficient inference capabilities, enabling the dis-
covery of meaningful dependency structures from data for probabilistic
reasoning at scale. In our LLM-as-a-judge setting, we employ MRFs to
jointly model judge scores (J), confounding factors (C), and latent quality
variables, allowing us to capture intricate dependencies among LLM eval-
uations while maintaining efficient inference and learnability. When key
influences are unobserved, such as the true quality signal, augmenting
an MRF with latent nodes allows for the recovery of this hidden structure
or “ground-truth” variables from noisy observations. This latent-variable
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MRF perspective is crucial in our context, offering a principled method
to estimate the latent, true-quality signal from observable judges’ scores
while accounting for correlated judging errors.
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9 care: confounder-aware aggregation for
reliable evaluation

We introduce CARE (Confounder-Aware Aggregation for Reliable Evalu-
ation), our graphical model-based aggregation framework that robustly
estimates the true quality of LLM-as-a-judge assessments. Our framework
explicitly models the influence of a latent true-quality variable and addi-
tional latent confounders on the observed scores provided by multiple
judges.

9.1 Graphical Model Framework And
Assumptions

For each prompt-response pair, we observe scores J = (J1, . . . , Jp)⊤ from
p judges. We assume these observed scores depend on latent variables
including one true quality variable Q and one or more confounders C =

(a) Naive: only true-
quality

(b) Connection-aware (c) Confounder-aware
(Ours)

Figure 9.1: Graphical models for aggregating judge scores under dif-
ferent structural assumptions. (a) A naive model assumes scores reflect
only a true latent quality (Q) and that all judges are equally reliable and
represent independent views. (b) Connection-aware approach models
intra-judge interactions (J2 − J3 − J4), but still assumes the presence of a
single latent quality score. (c) Our Confounder-aware model explicitly
introduces additional latent confounders (C) influencing judge scores.
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(C1, . . . ,Ck), whichwe define asH = (Q,C). Our graphical model encodes
the conditional independence structure among the nodes in (J,Q,C): if
there is no edge between a pair of nodes, they are independent conditioned
on the other nodes. An example is shown on the right in Fig. 9.1. We as-
sume this structure is sparse; i.e., there are not too many edges in the graph,
and make this precise later on. We note the main difference between panel
(b) and (c) in Fig. 9.1 is that by explicitly modeling confounding factors,
we can interpret why two judges are correlated (e.g., both influenced by a
shared position-bias node) rather than merely observing an unexplained
edge as in (b).

This framework is quite general and is compatible with a variety of
distributions. For example, we may take J,Q,C to involve discrete vari-
ables, Gaussians, or mixed models. We can take the model to be an MRF
or alternatively a mixture model. Our approaches are compatible with a
broad range of choices, with practitioners able to select the most suitable
modeling assumptions for their settings.
Goals and Assumptions. Under the chosen modeling assumptions, our
goal is to learn the distribution over J,Q,C. This involves handling three
challenges. First, C1: we never observe the latents inH—neither ground truth
nor confounders. Second, C2: we cannot assume any particular interaction in
the graph. Third, C3: even if we recover the model parameters, wemust be
able to distinguish between Q and the confounders C to identify the model.
The latter is required to discoverwhich latent is the ground-truth quality—
and which is a confounder. Once these obstacles are overcome, we seek
to perform aggregation, e.g., compute a posterior P(Q|J), the Bayesian
estimate for the latent true quality conditioned on all observable judge
scores.

In the following, we will work under the assumption that the judge
scores J conditioned on the latents form a multivariate Gaussian distribu-
tion, i.e., J | H ∼ N(µH,Σ), where µH is the conditional mean of observable
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variables. We defer other scenarios to the Appendix.

9.2 CARE Algorithm

The idea behind CARE is to examine two techniques, each of which is
stymied by one of the obstacles C2 or C3 and to delicately combine them in
a novel way. First, the sparsity of the conditional independence graph is
encoded into an two-dimensional object that can be empirically estimated
(e.g., the observable covariance matrix, or a cross-moment matrix). How-
ever, the presence of the latent variables (C1) obscures this structure—but
a sparse + low-rank decomposition can reveal it Chandrasekaran et al. (2012).
However, while we can decompose the resulting low-rank term via SVD
in the hope of identifying the model, we can only do so up to rotations.
Therefore we are blocked by C3.

Conversely, tensor product decompositions Anandkumar et al. (2014)
exploit tensor rigidity to enable this decomposition to be uniquely iden-
tified. However, for these techniques the judges must be independent
conditioned on the latents—and we cannot assume this by C2.

CARE (Algorithm 4) combines these approaches. First, it estimates the
underlying graph structure from the observed judge scores via the sparse
+ low-rank decomposition, overcoming C1 and C2. It then uses recovered
sparse term to estimate the graph and discover subsets of judges with
sufficient conditional independence. These sets are then used to construct
a tensor that can be decomposed via standard approaches (e.g., tensor
power method) to recover the model, mitigating C3.

This procedure is then followed by a symmetry-breaking step. This
requires a weak assumption on the quality of the judges; in practice, even
this assumption can be removed by employing simple heuristics to identify
the true-quality factor among the latent factors. Finally, we aggregate judge
scores into robust evaluations by weighting according to loadings from
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Algorithm 4 CARE: Confounder-Aware Aggregation for Reliable Evalua-
tion
Input: Score matrix J ∈ Rn×p, parameters (γn, τ), decomposition method

D ∈ SVD, Tensor
Output: Estimated True Quality {q̂(i)}ni=1

1: Graph Sparse Structure Estimation: Compute appropriate observed
matrix f(J).

2: Sparse + low-rank decomposition:

(Ŝ, L̂)← arg min
S,L

1
2∥f(J) − S− L∥

2
F + γn(∥S∥1 + τ∥L∥∗)

3: Latent Factor Extraction:
4: if D = SVD then ▷ Fully Gaussian scenario
5: Compute UΛU⊤ ← SVD(L̂), where U ∈ Rp×h

6: else if D = Tensor then ▷ Binary-Gaussian mixture scenario
7: Partition judges into independent groups using Ŝ
8: Form empirical third-order tensor from judge groups
9: Run tensor decomposition, obtain latent conditional means µqc

and mixture proportions πqc

10: end if
11: Symmetry Breaking: Identify the true-quality factor using heuristics

described in 9.3
12: Latent Quality Estimation: Use the identified quality factor, compute

q̂(i) for each example, where q̂(i) = P(Q = 1 | Ji) for mixture model
or q̂(i) = E[Q | J] for fully Gaussian

the identified quality factor.
We study two special cases to build our intuition; more general settings

are shown in the Appendix.
CARE ForGaussianMixtures. Wehave binary latents (Q,C)with Pr

(
Q =

q, C = c
)
= πqc, where the judges follow a Gaussian conditional distribu-

tion with mean µqc ∈ Rp and covariance Σ:

J
∣∣ (Q = q, C = c) ∼ N

(
µqc, Σ

)
, (q, c) ∈ {0, 1}2.
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Here, performing the sparse + low-rank decomposition and obtaining L̂
is insufficient: the eigen-decomposition of L̂ does not directly yield identi-
fiable latent-judge connections. We rely on third-order tensor statistics to
identify conditional distributions explicitly:

E(X1 ⊗ X2 ⊗ X3 | Q,C) = E(X1 | Q,C)⊗ E(X2 | Q,C)⊗ E(X3 | Q,C),

where judges are partitioned into independent groups X1,X2,X3 using
the learned sparse structure Ŝ. Performing a tensor decomposition yields
the conditional means µqc and mixture proportions πqc. Then, applying
Bayes’ rule allows estimation of latent variables given observed scores:

P(Q = 1|J) ∝ π10µ10 + π11µ11. (9.1)

CARE for Fully Gaussian Models. Under the fully Gaussian assumption,
latent variables H are continuous, and the inverse covariance matrix (the
precision matrix) encodes independence:

Σ = Cov
[
(J,H)⊤

]
, Σ−1 = K =

(
KJJ KJH

KHJ KHH

)
, S = KJJ, L = KJHK

−1
HHKHJ.

If assuming connections KJH between latent variables and judges are or-
thogonal and no direct connections among latent variables (i.e. KHH is
diagonal), the low-rank matrix L̂ admits eigen-decomposition L̂ = UΛU⊤,
where eigenvectors in U directly correspond to latent-judge edges (KJH),
and eigenvalues correspond to KHH. Each eigenvector represents how
one latent variable influences observable judges. With these edges re-
covered, the conditional mean of true quality Q can be estimated by
E(Q | J) = K−1

QQKQJJ, a weighted linear combination of observed scores.
The fully Gaussian model prevents decomposing the low-rank term

uniquely (due to rotational invariance). This holds regardless of whether
we apply SVD or a tensor decomposition, leading to the special handling
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in Algorithm 4. As a result, in this case, orthogonal and independent latent
assumptions are needed for identifying the latent-judge connection. This
works the best when each judge is connected to exactly one latent variable.
If a judge depends on both the confounder C and the true quality Qwith
comparable weights, the recovered columns {µ̂r} are only identifiable up
to an arbitrary rotation, causing estimation errors.

9.3 Heuristics for Identifiability and Robust
Estimation

Any instantiation of CARE will require symmetry-breaking procedures
for latent variable identifiability. For example, the fully Gaussian case
needs a heuristic to identify the true-quality direction among latent factors,
distinguishing Q from confounders C. In the binary-Gaussian mixture
scenario, an additional step resolves ambiguity between latent states (Q =

0 vs. Q = 1). Doing so will require additional information that can
come from modeling assumptions, the use of ground-truth samples, or
heuristics. We detail some examples below:
Identifying True-Quality Factor for Joint-GaussianModel. We introduce
heuristics particularly aimed at distinguishing the true-quality latent vari-
able from confounding latent variables. First, the human-anchor criterion
leverages a small validation set containing human ratings. By including
these human judgments in the graphical model, we anchor the latent
quality variable to ground truth by selecting the latent factor exhibiting
the strongest connection to the human evaluations. Second, we apply
a loading balance heuristic, identifying the true-quality factor as one that
loads broadly and with similar magnitude across all competent judges.
Conversely, factors dominated by a few judges typically indicate shared
confounding rather than true quality.
Identifying Latent States for Mixed Model. In scenarios such as the
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tensor-based method, symmetry breaking additionally involves distin-
guishing latent states corresponding to different quality levels (e.g.,Q = 0
versus Q = 1). In practice, we can use known labeled samples (such
as high-quality examples) to anchor and identify latent-state configura-
tions. By comparing different latent configurations with these known
labeled samples, we select the latent-state assignment that best aligns with
empirical observations, effectively removing latent state ambiguity.
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10 theoretical analysis

We formalize the graphical model under joint Gaussian distribution and
notation (Section 10.1), then discuss the identifiability of graph structure
with exact and approximate recovery (Section 10.2) and quantify the
sample complexity required for consistent recovery of our SVD-based
algorithm (Section 10.3). Next, we present the model misspecification
error when confounding factor is not correctly characterized (Section 10.4).
Finally, we discuss sample complexity required for tensor-based algorithm
under mixed Gaussian distribution (Section 10.4). All proofs are deferred
to Appendix B.4.

10.1 Model and Notation

Wediscuss themodel under joint Gaussian distributionwhere all variables
follow the same definitions as in Section 9. Briefly, J = (J1, . . . , Jp)⊤ stacks
the p observable judge scores, and H = (Q,C1, . . . ,Ck)

⊤ collects the h =

k+ 1 latent variables.

Σ = Cov
[
(J,H)⊤

]
, Σ−1 = K =

(
KJJ KJH

KHJ KHH

)
,

where the subscript J (resp. H) refers to observable (resp. latent) coor-
dinates.

The observable block factorizes via the Schur complement:

(ΣJJ)
−1 = S+ L, S = KJJ, L = KJH K

−1
HH KHJ.

Here Σo is the covariance matrix of observable variables, S ∈ Rp×p is
sparse and encodes direct conditional edges among judges, L is low-rank
with rank(L) ⩽ h and captures dependencies mediated by the latent
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variables. Entry (KJH)iℓ is the edge weight between judge i and latent
factor ℓ.

10.2 Graph Structure Identifiability

While (S,L) can be recovered (e.g. via convex sparse-plus-low-rank reg-
ularization (Chandrasekaran et al., 2012), the finer structure of KJH is
usually not identifiable from L. For example, for arbitrary rotation ma-
trix R ∈ Rh×h, L = (KJHK

−1/2
HH R)(R⊤K

−1/2
HH KHJ), this indicates one cannot

distinguish KJHK
−1/2
HH from KJHK

−1/2
HH R without further constraints. Hence,

we need to impose additional assumptions:

Assumption 10.2.1 (Latent–latent independence and eigen-gap). KHH =

diag(d1, . . . ,dh) with d1 > d2 > · · · > dh > 0.

Assumption 10.2.2 (Orthogonal latent–observable connections). The columns
of KJH are orthogonal, i.e. K⊤

JHKJH is diagonal. A special case is the disjoint-
support model where each judge connects to exactly one latent factor.

Next, we provide an exact recovery result given the above assumptions.

Theorem 10.2.3 (Exact Recovery). Under Assumptions 1 and 2, columns in
KJH are identifiable up to column permutations and sign flips.

Real-world data rarely satisfy the exact orthogonality in Assumption
10.2.2. To assess robustness, consider the following perturbed connection
matrix:

K̃JH = KJH + E, ∥E∥2 small.

The associated low-rank part is L̃ = K̃JHK
−1
HHK̃HJ. Let the eigen-pairs of

L = KJHK
−1
HHKHJ and L̃ be {(λi,ui)}

h
i=1 and {(λ̃i, ũi)}

h
i=1, ordered so that

λ1 > · · · > λh > 0, and denote the eigen-gap by

δi = min
j̸=i

|λi − λj| > 0.
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Theorem 10.2.4 (Stability under approximate orthogonality). For every
i ∈ [h],

∥ûi − ui∥2 ⩽
2∥K−1

HH∥2 ∥E∥2

δi
+ O

(
∥E∥2

2
)
.

This indicates that latent–observable directions remain identifiable (up
to column permutations and sign flips) whenever the perturbation norm
∥E∥2 is small relative to the eigen-gap δi. We defer the proof to Appendix
B.4.

10.3 Sample Complexity Bound

We now quantify how many i.i.d. samples are needed for the two–stage
estimator in Algorithm 4 to recover the latent–observable directions KJH∈
Rp×h.

As detailed in Algorithm 4, our estimator for KJH proceeds in two
stages: first, a sparse+ low-rank decomposition of sample precisionmatrix.
Second, we extract the latent–observable directions by taking the rank-h
eigen-decomposition L̂n =

∑h
i=1 λ̂i ûiû

⊤
i and setting K̂JH := [û1, . . . , ûh].

Theorem 10.3.1 (Sample complexity for recovering KJH). Let

L∗ = KJHK
−1
HHKHJ ∈ Rp×p

have distinct eigenvalues λ1 > · · · > λh and define the (global) eigengap δ :=

min1⩽i<j⩽h|λi − λj|. Assume the identifiability, incoherence, and curvature
conditions of Chandrasekaran et al. (2012). Then for any ϵ > 0, with probability
at least 1 − 2e−ϵ,

max
i⩽h

∥∥ ûi − ui

∥∥
2 = O

( √
ϵ√

nξ(T) δ

)
,
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where n is the sample size, ûi and ui are the i-th eigenvectors of L̂n and L∗

respectively. T = T(L∗) is the tangent space of L∗, ξ(T) is the curvature constant
from Chandrasekaran et al. (2012).

We defer the proof to Appendix B.4. At a high-level, we adapt the
identifiability, incoherence and curvature conditions from Theorem 4.1
of Chandrasekaran et al. (2012) and combine it with extended result of
Davis-Khan’s theorem (Yu et al., 2015).

This bound shows that the column-wise ℓ2 error decays at the standard
parametric rate n−1/2, and is attenuated by both the manifold curvature
ξ(T) and the eigengap δ. Achieving an accuracy of at most α ∈ (0, 1)
therefore requires

n = Õ
( ϵ

ξ(T)2δ2α2

)
samples, up to universal constants and log-factors.

10.4 Misspecification Error

Many label aggregation frameworks (e.g.,Bach et al. (2019); Fu et al. (2020);
Shin et al. (2022)) assume a single latent variable that explains the ob-
served labels. However, in setups like LLM-as-a-judge, the scores may be
influenced by additional latent factors or confounders that also affect the
observed annotations. Ignoring these confounder latents leads to model
misspecification, which can bias the aggregated labels. We characterize
this bias and analyze its impact on the estimated aggregation weights.

Let L∗ =
∑h

ℓ=1
1
dℓ

kℓkT
ℓ be the true rank-h low-rank component of the

observable precisionmatrix, derived from the latent-observable connection
matrixKJH = [k1, . . . , kh] and latent-latent precisionKHH = diag(d1, . . . ,dh).
Let utrue

1 = k1/||k1||2 be the true direction of influence for the quality score
latent variable Q (assuming k1 ̸= 0).
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Define A = 1
d1

k1kT
1 . Its principal (and only non-zero) eigenvalue is

λ1 =
1
d1
||k1||

2
2, and its spectral gap (to its other zero eigenvalues) is δ = λ1.

Let E =
∑h

ℓ=2
1
dℓ

kℓkT
ℓ be the confounding component, so L∗ = A + E. Let

v1 be the principal unit-norm eigenvector of L∗. When a rank-1 model is
fitted, the estimated direction is ûpop

1 = v1.

Theorem 10.4.1. If ||E||op ⩽ δ/2, the ℓ2 deviation of the estimated direction v1

from utrue
1 is bounded by:

∣∣∣∣v1 − sutrue
1
∣∣∣∣

2 ⩽
2 ||E||op

δ
=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ

kℓkT
ℓ

∣∣∣∣∣∣
op

1
d1

||k1||
2
2

for a sign s = ±1 (chosen so that s(utrue
1 )Tv1 ⩾ 0).

We provide the following theoretical guarantees for our Algorithm 4.
Identifiability of the Latent Structure. To ensure identifiability of the
latent structure, we introduce assumptions on latent independence and
orthogonality of latent-observable connections. Under these assumptions,
we prove exact recovery of the latent directions, as well as stability under
mild perturbations from orthogonality (see Appendix 10.2).
Sample Complexity Bound. We derive sample complexity bounds for
consistent estimation of latent-observable connections, demonstrating
how estimation accuracy depends on factors like eigengaps and manifold
curvature (Appendix 10.3).
Model Misspecification Error. We analyze errors arising from model mis-
specification—specifically, the bias introduced when confounding latent
factors are omitted—and provide explicit bounds on the resulting errors
in estimated conditional means (Appendix 10.4).

The theorem quantifies the directional bias in the estimated influence
of Q when confounders are ignored. This bias is proportional to the
collective “strength” of confounders in the precision domain (numerator)
and inversely proportional toQ’s own “strength” (denominator). Fitting a
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rank-1 model forces this bias, while a higher-rankmodel offers the capacity
to separate these influences.

Corollary 10.4.2 (Error Bound for Estimated Conditional Mean of Q).
Denote the true conditional mean of true quality score latent variableQ given the
observable variablesO = (J1, ..., Jp) be denoted byE[Q|O]true. Then,E[Q|o]true =
−

||k1||2
d1

(utrue
1 )To. Let an estimated conditional mean with the misspecified direc-

tion, E[Q|o]mis, be formed using the misspecified direction v1 be E[Q|o]mis =

−
||k1||2
d1

(s · v1)
To, where s = ±1 is chosen such that s · (utrue

1 )Tv1 ⩾ 0. Then, the
absolute error in the estimated conditional mean due to the directional misspecifi-
cation is bounded by:

|E[Q|o]mis − E[Q|o]true| ⩽
2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ

kℓkT
ℓ

∣∣∣∣∣∣
op

||k1||2
||o||2

This holds if the condition from the main theorem, ||E||op ⩽ δ/2 = 1
2d1

||k1||
2
2, is

met, where E =
∑h

ℓ=2
1
dℓ

kℓkT
ℓ .

This corollary shows that the error in the estimated conditional mean
of Q (due to using the misspecified direction for Q’s influence) scales
with:

• The magnitude of the observable vector o (specifically, ||o||2).

• The collective strength of the confounding latent variables in the
precision domain (

∣∣∣∣∣∣∑h
ℓ=2

1
dℓ

kℓkT
ℓ

∣∣∣∣∣∣
op
).

• Inversely with the ℓ2-norm of the true connection weights of Q
(||k1||2).

Especially, we see that strong confounders widen the gap bound, whereas
heavier connection weights to the true score shrink it. Put differently,
misspecification hurts most when confounders are strong and the quality
signal is weak.
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Sample Complexity for CARE tensor algorithm

Assumption 10.4.3 (Model and identifiability). Let J = (X⊤
1 ,X⊤

2 ,X⊤
3 )

⊤ ∈
Rp (p = p1 + p2 + p3) be one observations i.i.d generated as

(Q,C) ∼ Multinomial({πqc}q,c∈{0,1}), Xℓ | (Q = q,C = c) ∼ N
(
µ(ℓ)
qc , Σ

)
,

with ℓ ∈ {1, 2, 3}. Write r ∈ [4] ↔ (q, c) ∈ {0, 1}2 and define wr := πqc,
ar := µ

(1)
qc ∈ Rp1 , br := µ(2)

qc ∈ Rp2 , cr := µ(3)
qc ∈ Rp3 .

(A1) Block-conditional independence. X1 ⊥ X2 ⊥ X3 | (Q,C).

(A2) Full-rankmoment tensor. The population third-order momentM :=

E[X1 ⊗ X2 ⊗ X3] =
∑4

r=1wr ar ⊗ br ⊗ cr has rank 4, with πmin :=

minr πr > 0 and λmin := minr ∥ar∥2∥br∥2∥cr∥2 > 0.

(A3) Non-degenerate covariance. σ2
max := ∥Σ∥op <∞.

(A4) Spectral gap. The CP factors are uniquely defined up to scaling/sign
and satisfy the eigenvalue-gap condition of Theorem 5.1 in Anandku-
mar et al. (2014). Denote that gap by δ > 0.

(A5) Correct graph partition. There exist a graph partition such that
judges betweendifferent groups are conditionally independent. StepA
of Algorithm 9 returns the true groups G1,G2,G3.

Theorem 10.4.4 (Sample complexity of CARE tensor step). Fix 0 < ε < 1
and let the assumptions above hold. Run Algorithm 2 (CARE) on n i.i.d. samples
to obtain {µ̂qc, π̂qc}q,c∈{0,1}. Under Assumption 10.4.3, there exist universal
constants C1,C2 > 0 such that if

n ⩾ C1
σ6

max
δ2 π2

min
p log

(
p/ε
)
,
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then with probability at least 1 − ε

max
q,c
∥µ̂qc − µqc∥2 ⩽ C1

σ3
max
δ

√
p log(p/ε)

n
,

max
q,c

|π̂qc − πqc| ⩽ C2

√
p log(p/ε)

n
.

We defer the proof to B.4.
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11 experimental results

We evaluate the effectiveness of CARE across diverse experimental setups,
encompassing synthetic, semi-synthetic, and real-world scenarios. Our
goal is to validate the following key claims:

• Improving aggregation of LLM judge: CARE produces more ac-
curate and robust aggregate scores from multiple LLM judges com-
pared to existing methods. (Section 11.1)

• Effective Integration of Program Judges: CARE integrates program-
matic judges, known to have high bias, by explicitly modeling their
biases (Huang et al.) (Section 11.2).

• Evolving Jury via Progressive Program Judge Expansion: CARE
effectively incorporates an expanding pool of judges, demonstrating
consistent improvements in aggregation performance as judges are
progressively added (Section 11.3).

• Greater Robustness than Individual Intervention: CARE is com-
petitive against interventions at the individual judge level, which
typically require extensive manual tuning (Section 11.4).

• Demonstrating Robustness under Controlled Confounding Fac-
tors: CARE remains accurate when evaluations are deliberately af-
fected by controlled biases, as demonstrated by the semi-synthetic
data from Chen et al. (2024) (Section 11.5).

• Validating Theoretical Results in a Fully Controlled Setting: We
empirically validate our theoretical results through synthetic experi-
ments (Section 11.6).

Datasets & Metrics. We use FeedbackQA (Li et al., 2022), UltraFeedback
(Cui et al., 2023), and HelpSteer2 (Wang et al., 2024b) datasets for re-
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sponse scoring. Each of these dataset has a ground-truth quality score
label, specified as following: in FeedbackQA, each answer is rated by hu-
mans on a 1–5 helpfulness scale; in UltraFeedback, responses receive a 0–10
score aggregated from human annotators and GPT-4; and in HelpSteer2,
“helpfulness” is rated on a 0–4 scale by human evaluators. Performance is
benchmarked using Mean Absolute Error (MAE) to measure numerical
accuracy and Kendall’s τ rank correlation (Kendall, 1938) to evaluate rank-
ing consistency, accommodating variations in judge scales and calibration.
Baselines. We compare CARE to following baseline aggregation methods:
(i) majority voting (MV), (ii) simple averaging (AVG) (Li et al., 2024b),
(iii) discrete-based weak supervision (WS) (Bach et al., 2019), and (iv)
continuous-based weak supervision (UWS) (Shin et al., 2022).
LLM Judges. We consider the following LLMs as judges to score responses:

• Llama-3.2-1B (Grattafiori et al.,
2024)

• Llama-3.1-8B-Instruct (Grattafiori
et al., 2024)

• Mistral-7B-Instruct-v0.3 (Jiang
et al., 2023)

• Qwen3-0.6B (Team, 2025)

• Qwen3-1.7B (Team, 2025)

• Qwen3-4B (Team, 2025)

• Qwen3-8B (Team, 2025)

• Phi-4-mini-instruct (Abouelenin
et al., 2025)

• gemma-3-1b-it (Team et al., 2025)

• gemma-3-4b-it (Team et al., 2025)

11.1 Improving Aggregation of LLM judges

Setup. We compare aggregation methods using the 10 LLM judges listed
above. To ensure consistency, we adapt the prompt template from Roucher
(n.d.), modifying it to fit our experimental setup. The exact used prompt
is provided in Appendix B.5.
Results. We present aggregation performance in Table 11.1. The CARE
approach consistently outperforms baseline methods. Specifically, CARE
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Table 11.1: Aggregation performance across different datasets, measured
by MAE and Kendall’s τ CARE outperforms baseline methods in most
cases.

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8812 0.3703 0.9951 0.1629 0.8522 0.2985
AVG 0.8492 0.4497 0.9822 0.1611 0.6860 0.3621
WS 0.8144 0.4401 1.3030 0.1511 1.1603 0.3306
UWS 0.9051 0.4580 0.9849 0.1697 0.6794 0.3669
CARE 0.7866 0.4542 0.9742 0.1805 0.6379 0.3806

Table 11.2: Performance on different datasets using both LLMand program
judges. Program judges are beneficial in FeedbackQA but may introduce
noise in HelpSteer2 and UltraFeedback. In both cases, CARE consistently
outperforms other baselines.

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8607 0.3815 1.0244 0.1465 0.8751 0.3179
AVG 0.8128 0.4671 1.1012 0.1268 1.0371 0.3733
UWS 0.8179 0.4816 0.9992 0.1040 0.9534 0.3047
CARE 0.7582 0.4796 0.9800 0.1398 0.7351 0.3520

achieves the lowest MAE on FeedbackQA (0.7866) and UltraFeedback
(0.6379), outperforming the majority vote (MV) baseline by 10.74% and
25.15%, respectively. These gains highlight CARE’s ability to model corre-
lations among LLM judges and mitigate compounding biases.

11.2 Effective Integration of Program Judges

Setup. We integrate our LLM-based evaluators with ten program judges,
each encoding their evaluation logic in program code and synthesized
by OpenAI’s GPT-4o (Hurst et al., 2024). These judges are designed
to assess response quality through specific, individual criteria, such as
structure, readability, safety, relevance, and factuality. While cost-effective to
construct them, their deterministic naturemay introduce systematic biases,
potentially leading to noisy signals. Details of program judge generation
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process are provided in Appendix B.5.

0 2 4 6 8
Number of added program judges

0.70

0.75

0.80

0.85

0.90
M

AE
 

MV
AVG
WS
UWS
CARE

Figure 11.1: Progressive judge selection on the FeedbackQA dataset.
CARE robustly integrates new judges and consistently outperforms base-
line aggregation methods.

Results. Table 11.2 presents the integration results. Adding program
judges enhance performance on FeedbackQA, where CARE achieves the
lowest MAE (0.7582) and highest τ (0.4796), outperforming the MV base-
line’s MAE by 11.92%. However, performance declines on HelpSteer2 and
UltraFeedback, where CARE records MAEs of 0.9800 and 0.7351, respec-
tively, still outperforming MV by 4.33% and 15.99%. Despite these vari-
ations, CARE consistently exceeds baselines on MAE across all datasets,
demonstrating its effectiveness when encountering noisier signals for ag-
gregation.

11.3 Progressive Judge Expansion

Setup. Next, we start with a fixed set of LLM judges and progressively
add program judges from a pool of 23. At each step, we greedily select
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Table 11.3: Comparison with aggregation methods using individually
intervened LLM judges. While other baselines aggregate scores from
debiased LLM judges, CARE operates directly on raw outputs.

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8004 0.9640 0.9951 0.1629 0.8562 0.2799
AVG 0.8029 0.4412 0.9822 0.1611 0.6801 0.3704
WS 0.7674 0.4429 1.3030 0.1511 1.1516 0.3588
UWS 0.8117 0.4390 0.9849 0.1697 0.6683 0.3782
CARE 0.7866 0.4542 0.9742 0.1805 0.6379 0.3806

the program judge that yields the largest improvement in the validation
of MAE. The process stops when no further reduction in validation MAE
is observed. We evaluate aggregation methods as in previous sections,
using FeedbackQA, where program judges were most beneficial.
Results. Figure 11.1 shows the experimental result. CARE achieves con-
sistently lower error as more program judges are added, highlighting its
ability to adaptively improve with additional supervision. This points to a
promising direction for developing dynamic, expandable judge ensembles.

11.4 Comparison with Individual Intervention

Setup. An alternative to our confounder-aware approach is direct inter-
ventions at the individual judge level. Specifically, we compare CARE to
prompt-based interventions proposed by Ye et al., which instruct LLM
judges to account for known sources of bias. The intervened prompt used
for this comparison is included in Appendix B.5.
Results. Table 11.3 presents the results. While bias-aware prompting
improves performance in most cases, CARE remains the top performer in
the majority of settings, and even when not, it is competitive with the best.
This suggests that CARE can effectively mitigate biases without relying
on careful prompt engineering.
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Table 11.4: Robustness to artificially injected bias. CARE is particularly
effective against stylistic biases such as beauty (rich content) and authority,
but less effective for gender and fallacy biases, whichmay impact the actual
quality of system answers.

Beauty Bias Fallacy Oversight Bias Gender Bias Authority Bias
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.9190 0.3336 1.8971 -0.0284 1.7428 0.1272 0.8239 0.2977
AVG 0.5063 0.3943 1.4007 0.1181 1.1355 0.2879 0.3250 0.4288
WS 1.9225 0.3792 2.5588 0.0680 2.0217 0.2474 0.9296 0.4886
UWS 0.5080 0.4383 1.3826 0.0491 1.1646 0.2576 0.2705 0.5799
CARE 0.3749 0.5334 1.8996 0.0116 1.5985 0.2311 0.2466 0.6327

11.5 Robustness to Confounding Factors

Setup. We evaluate robustness using the dataset from Chen et al. (2024),
in which LLM responses are systematically altered to introduce specific
biases via targeted GPT-4 prompts. The dataset includes four types of
injected bias: beauty, fallacy oversight, gender, and authority. LLM judges
are prompted to assign scores from 1 to 10 for each response. Robustness
is assessed by comparing aggregated scores before and after bias injection,
usingmean absolute error (MAE) andKendall’s τ. LowerMAE and higher
Kendall’s τ indicate better robustness under perturbation.
Results. Table 11.4 shows that CARE exhibits strong robustness to stylistic
biases—such as beauty and authority—maintaining consistent rankings
and score levels. In contrast, its robustness diminishes when facing biases
that alter the factual or semantic content, including logical fallacies and
gender-related framing.

11.6 Synthetic Experiments

We evaluate the performance of CARE-Tensor using simulated binary-
Gaussian mixture data. Dataset details deferred to Appendix.
Sample Complexity Result. We investigate how the sample size n influ-
ences estimation accuracy. We estimate conditional means µ̂qc and latent



55

Figure 11.2: Averaged cross-entropy loss of our algorithm versus the
number of samples. Markers denote average over three random seeds,
and the shaded band denotes one standard deviation.

state proportions π̂qc using Algorithm 9. Subsequently, we compute the
posterior probabilities P(Q = 1 | J) via the Bayesian formulation in Eq. 9.1.
We measure the performance using cross-entropy loss. Lower entropy
loss yields more accurate prediction. We observe a clear decreasing trend
in cross-entropy loss as sample size increases.
Tensor Decomposition vs SVD. We illustrate the advantage of tensor
decomposition over classical eigen-decomposition (SVD) in addressing
rotation ambiguity with higher-order moments. We quantify performance
using mean squared error (MSE) between true conditional means µqc

and estimated means µ̂qc. Detailed methodologies for SVD estimation are
deferred to the appendix.

Evaluating across 10 random seeds, we find substantial performance
differences: CARE-Tensor achieves significantly lower estimation errors
with MSE (0.51± 0.41) compared to the eigen-decomposition baseline
(SVD) with MSE (1.18± 0.74). This shows tensor decomposition accu-
rately recovers conditional means without affected by rotation ambiguity.
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12 related work

We discuss related work in bias in LLM-as-a-judge, label aggregation, and
highlight our contribution. An extended discussion on related work can
be found in Appendix B.2.

Bias in LLM-as-a-judge. Large language models (LLMs) used as auto-
mated evaluators exhibit systematic preferences such as positional, ver-
bosity, authority, and self-enhancement biases (Ye et al., 2025; Zhu et al.,
2023). To mitigate these issues, prior work has explored prompt-based in-
terventions (Shi et al., 2024; Jiao et al., 2024; Ye et al., 2025) and fine-tuned
evaluators such as JudgeLM and PandaLM, which aims to align model
judgments more closely with human preferences (Zhu et al., 2023; Wang
et al.; Li et al., 2024d). While effective locally, these techniques debias
each single LLM judge and do not address the downstream problem of
aggregating multiple, potentially correlated, LLM scores.

Label Aggregation. Classic aggregation models such as Dawid–Skene
(Dawid and Skene, 1979), GLAD (Whitehill et al., 2009), and MACE
(Hovy et al., 2013) infer latent truth by modeling annotator-specific error
rates. Weak-supervision frameworks generalize this idea to programmatic
sources (Bach et al., 2019; Fu et al., 2020; Shin et al., 2022). Recently, Hu
et al. (2024) introduce GED, a framework that ensembles and denoises
preference graphs from multiple weak LLM evaluators to produce con-
sistent and reliable model rankings. Wang et al. (2025) analyzed various
inference methods for decoding LLM-as-a-judge by looking at the judge
probability distributions and computing statistics such as mean and mode
(i.e greedy decoding) and studied how pre- vs post-aggregation of judge
outputs affect the judge scores. However, existing methods do not account
for shared confounding factors that systematically influence annotators
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or LLMs alike.

Our Contribution. We propose the first confounder-aware aggregation
method for the LLM-as-a-judge setting. Unlike prior work that assumes
independent annotator noise around a latent true score, our approach
explicitly models shared latent confounders—such as verbosity or for-
mality—that may jointly affect all judges. This bridges the gap between
single-judge bias mitigation and statistical aggregation, enabling more
reliable consensus scores in the presence of correlated judgment errors.



58

13 conclusion

We introduce CARE, a confounder-aware aggregation framework that
formulatesmulti-judge scoring as inference in a higher-rank latent-variable
model and delivers three main contributions. (i) It explicitly models
shared confounders, providing an aggregation scheme tailored to LLM-
judge scenarios. (ii) It offers statistically principled estimators—sparse-
plus-low-rank covariance recovery and tensor method—with provable
identifiability. (iii) On three public benchmarks, CARE lowers MAE and
raises Kendall’s τ by up to 15%. Taken together, these advances enable
principled, scalable, and low-cost evaluation pipelines for LLMs.
Limitations. Our theory assumes sufficient sparsity and approximate
factor orthogonality; strong collinearity among latent variables, or latent
components exhibiting similar spectral strengths may still hinder identi-
fiability. In addition, selecting the “quality” factor currently relies on a
simple loading-balance heuristic that can be unstable when confounders
dominate, and our experiments are confined to English, text-only, scalar
ratings—generalization to multilingual or multimodal settings remains
future work.
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14 introduction

Hierarchical structures naturally emerge in numerous complex systems,
ranging frombiological classifications and organizational charts to document-
term relationships and e-commerce user-item interactions. Traditionally,
these hierarchical models have focused on unipartite settings—organizing
entities of the same type into clusters or hierarchies. However, real-world
scenarios frequently involve bipartite relationships, representing interac-
tions between distinct sets of entities such as users and items, or authors
and keywords.

Such bipartite structures can sometimes suggest underlying joint hi-
erarchical organizations, which we refer to as co-hierarchies. In these co-
hierarchies, each side potentially follows a tree-structured organization,
and there might be mutual consistency between the hierarchies. Identify-
ing and recovering these co-hierarchical structures from bipartite data has
the potential to enhance interpretability, improve recommendation quality,
and facilitate latent structure discovery. Nevertheless, existing hierarchical
methods struggle with capturing these nuanced bipartite hierarchies due
to intrinsic identifiability challenges.

Motivation for exploring co-hierarchical structures extends beyond
purely bipartite data contexts. Consider the widely used biplot in Prin-
cipal Component Analysis (PCA), which simultaneously visualizes ob-
servations and features. This joint representation potentially offers richer
insights by concurrently analyzing both entity types involved.

Similarly, clustering approaches that incorporate nodes with distinct
behavioral patterns can uncover more meaningful community structures.
For instance, Rohe et al. (2012) explored clustering in directed graphs,
explicitly acknowledging that nodes might exhibit different patterns in
sending versus receiving connections. Their approach identified crucial
asymmetries, highlighting the importance of jointly analyzing different
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interaction behaviors within the same clustering framework. Although
our work differs in focusing explicitly on interactions between two distinct
sets of entities rather than directed interactions within a single set, the
underlying motivation remains consistent: jointly modeling entities with
fundamentally different interaction behaviors yields deeper structural
insights.

Addressing this critical gap, we introduce a formal framework specif-
ically tailored for modeling and recovering hierarchical structures in bi-
partite contexts. Our approach begins by formalizing the notation of a
co-hierarchy for bipartite graphs and show its connection to bipartite Degree
Corrected Stochastic Blockmodel (DCSBM). We then identify the ambigu-
ity that arise when only cross-type relationship are observed, highlighting
why naive tree-reconstruction procedures can fail. Finally, we identify a
natural yet rich subclass-perfect red-blue cherry trees-for which, we design
a simple yet effective recovery algorithm and prove both exact-recovery
guarantees and robustness to perturbations.

Specifically, our main contributions are:

1. We introduce a general definition of co-hierarchies, relating hier-
archical structures directly to bipartite degree-corrected stochastic
block models (DCSBMs).

2. We define and study a practically motivated subclass, perfect red-
blue cherry trees, which ensures strong identifiability.

3. We propose an efficient algorithm tailored to these perfect trees,
accompanied by rigorous theoretical guarantees on exact recovery
and perturbation robustness.

4. We provide practical diagnostics and illustrate our method’s empiri-
cal effectiveness.
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The remainder of this paper proceeds as follows: Section 15 reviews
related literature. Section 16 introduces the co-hierarchy model and its
connection to Degree Corrected Stochastic Block Model. In Section 17,
we identify identifiability issues, define the canonical perfect cherry-tree
representations, and present an algorithm to recover the canonical tree.
Section 18 evaluates empirical performance on Newsgroup-20 dataset.
Section 19 provides theoretical guarantee for our co-hierarchy estimation
algorithm.



63

15 related work

Our work bridges several distinct areas within hierarchical and bipartite
data analysis:
Flat co-clustering andbipartite community detection. Classical co-clustering
approaches, such as spectral methods and stochastic blockmodels (SBMs),
partition bipartite data into latent groups without explicit hierarchical
structure. Seminalwork byDhillon (2001) introduced spectral co-clustering
using bipartite graph partitioning, while subsequent approaches have im-
proved computational efficiency and flexibility (Chakrabarti et al., 2004;
Chen et al., 2023).
Unipartite hierarchical clustering methods. Hierarchical clustering algo-
rithms like Ward’s method, average linkage, and Neighbor-Joining (NJ)
extensively model hierarchical structures in unipartite settings, with sub-
stantial theoretical guarantees available (e.g., Atteson’s theorem on NJ).
However, adapting these approaches directly to bipartite data is non-trivial
due to distinct structural assumptions.
Hierarchical methods for bipartite data. Recent efforts have extended
hierarchical clustering to bipartite scenarios. Initial efforts by Li and Li
(2010) introduced hierarchical co-clustering, which was further devel-
oped to handle incremental updates (Pensa et al., 2014) and applied to
various domains like music data organization (Li et al., 2012) and entity
exploration in linked data (Zheng et al., 2018). However, existing hierar-
chical approaches focus primarily on algorithmic aspects and practical
applications, lacking a rigorous model and theoretical guarantees for un-
derstanding when and how hierarchical structure can be recovered from
bipartite data.

In summary, while substantial literature exists for hierarchical and
bipartite analysis independently, no current method simultaneously recov-
ers interpretable hierarchical structures from bipartite data with rigorous
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theoretical guarantees. Our framework fills this gap by explicitly linking
bipartite DCSBMs with hierarchical recovery under clear identifiability
conditions, ensuring both interpretability and theoretical soundness.
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16 degree-corrected stochastic block model via
latent tree structure

Webegin by briefly reviewing the concept of Tree-StochasticGraphs (TSGs)
in the unipartite setting, as they provide foundational insights into the
structure and identifiability of hierarchical models. Subsequently, we
introduce our main focus: co-hierarchies for bipartite data.

16.1 Unipartite Background: T-Stochastic
Graphs (TSGs)

A unipartite T-Stochastic Graph (TSG) is defined over a set of nodes
structured hierarchically as leaves of a rooted tree. Each internal node
corresponds to a cluster of leaf nodes, reflecting hierarchical groupings.
A T-Stochastic Graph generates a random graph represented by the ad-
jacency matrix A ∈ Rn×n where edge probabilities are determined by
distances dT in a latent hierarchy (i.e. a tree) T:

E(Aij) := λij = exp(−dT(i, j)),

where λij represents expected connecting probability between nodes i and
j, dT(i, j) represent the distance between nodes i and j in the tree T.

TSGs directly correspond to Degree-Corrected Stochastic BlockModels
(DCSBMs), thereby connecting hierarchical clustering methods to proba-
bilistic generative models. However, existing TSG frameworks primarily
consider unipartite graphs, leaving bipartite scenarios unexplored.
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16.2 Co-hierarchy: Bipartite T-Stochastic
Graphs

We now generalize the TSG concept to bipartite settings, introducing the
notion of "co-hierarchy," represented by red-blue hierarchical trees. At a
high level, to make a co-hierarchy, we are going to assign a color (red or
blue) to every leaf node in T. The two colors correspond to the two types
of nodes in the bipartite graph.

Here is a more careful explanation. A unipartite graph G = (V ,E)
has a node set V with n elements and an edge set E. A bipartite graph
G = (VR,VB,E) has two node sets VR with n1 elements and VB with n2

elements. In the incidence matrix A ∈ Rn1×n2 for the bipartite graph G,
the rows are indexed by the node set VR and the columns are indexed by
the node set VB.

In the unipartite case, the leaf nodes of T are indexed by the node set
V . In the bipartite case, the leaf nodes of T are indexed by the union of VR

and VB. To discuss the differences we will add colors to the nodes in T;
make all of the VR nodes red and make all of the VB nodes blue. The color
of the internal nodes is left ambiguous for now. We refer to the resulting
graph as a red-blue tree.

Definition 16.2.1 (Co-hierarchy: Red-Blue Tree). A red-blue tree T is a tree
whose leaf nodes can be partitioned into two disjoint subsets of size n1

and n2:

{r1, r2, . . . , rn1} (red leaf nodes), {b1,b2, . . . ,bn2} (blue leaf nodes).

The red nodes correspond to the row nodes in the bipartite graph, while
the blue nodes correspond to the column nodes.

To formally connect co-hierarchies with bipartite graphs, we define:
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Definition 16.2.2 (Bipartite T-stochastic Graph). A bipartite T-stochastic
graph associated with red-blue tree T is a random bipartite graph G =

(VR,VB,E) with incidence matrix A, where the edge probability between
ri ∈ VR and bj ∈ VB is:

P(Aij = 1) = exp(−dT(ri,bj))

This model directly generalizes DCSBMs to hierarchical bipartite set-
tings, maintaining interpretabilitywhile capturing richer structure through
the hierarchical interactions. Moreover, co-hierarchies naturally address
a critical challenge known as the "partial-distance" problem: observing
connections only between distinct partitions (red-blue edges) obscures
complete pairwise distances within each set, complicating direct hierar-
chical recovery.

In practice, we observe the incidence matrix A, and our goal is to es-
timate the underlying hierarchical tree structure T. In certain cases, the
entire hierarchical structure can be recovered exactly; in more general
settings, however, inherent ambiguities may restrict us to partial recon-
struction. Specifically, multiple distinct hierarchies can yield identical
bipartite observations, making direct recovery challenging. In the follow-
ing sections, we first clarify sources of ambiguity and then introduce a
structured subclass of hierarchical models—perfect red-blue cherry trees—for
which we develop a robust algorithm capable of exact hierarchical recon-
struction.
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17 method

17.1 Identifiability and Canonical
Representation

As established in Section 16, a bipartite graph G = (VR,VB,E) only cap-
tures edges between distinct vertex sets VR and VB. As a result, many
different trees induce identical partial distance matrices, rendering them
indistinguishable to any algorithm. We first separate those aspects of the
trees that are intrinsically unidentifiable from those that can be recovered.

We proceed in two steps. First, we list several examples of ambiguity.
Let T be an arbitrary red–blue tree and D its red–blue distance matrix.
The following three phenomena leave D unchanged:

1. Same-color sibling permutations. Re-ordering a block of red (or
blue) siblings under a common parent does not affect any red–blue
path length.

2. Linear chains of same-color nodes. Compressing or expanding a
path that alternates color once and then continues with the same
color leaves all cross-type distances intact (Proposition 17.1.2).

3. Twig-balance shift. Adding a constant c to every blue twig while
subtracting c from every red twig preserves every entry ofD (Propo-
sition 17.1.1).

Next, we enforce a canonical representation that removes these three
ambiguity while leaving the observable distances untouched:

1. Sibling merge collapses same-color siblings into one representative
leaf.

2. Path reduction eliminates redundant chains of identical color.
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3. Twig balance fixes the free parameter in Proposition 17.1.1 by equal-
izing total red and blue twig length.

After these operations each equivalence class of trees maps to a sin-
gle canonical tree. These transformations are necessary, omitting any of
the three transformations leads to rank-deficient exp(−D) and provably
misleads the reconstruction (see Figure 17.2 and the proof of Proposi-
tion 17.1.2).

Yet the canonical transformations we listed above are necessary but not
sufficient for uniqueness. Different but observationally equivalent canonical
trees can still share the same partial distances. In Section 4.2 we demon-
strate this phenomenon and introduce additional assumptions—the perfect
red–blue cherry condition—that removes the remaining ambiguity and
yields a fully identifiable tree class.

Proposition 17.1.1 (Partial Distance Preservation Under Edge Length
Transformation). Let T be a co-hierarchy with partial distance matrix D. For
any constant c ∈ R, define Tc by:

1. Increasing all blue twig lengths by c

2. Decreasing all red twig lengths by c

Then Tc has the same partial distance matrix as T.

Figure 17.1 illustrates this transformation, showing how modifying
twig lengths in opposite directions preserves all observable distances
between nodes of different colors. This invariance property motivates the
development of our canonical form, which we now introduce.

Leveraging this invariance, we define the canonical form of a red-blue
tree through three transformations:

• Sibling Merge: Merge siblings of the same color into a single node.
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Figure 17.1: Edge length transformation preserves partial distances. The
transformation adds constant c to blue twigs and subtracts c from red
twigs, leaving all red-blue distances unchanged.

Figure 17.2: Illustration of the canonical mapping. Left: Tree with same-
color siblings mapped to canonical tree. Right: Tree with consecutive
merges with same color mapped to canonical tree. Edge lengths are used
in proof for Proposition 17.1.2

.

• Path Reduction: Remove redundant consecutive merges involving
nodes of the same color.

• Twig Balance: Adjust twig lengths to equalize the total lengths of
red and blue twigs.

These operations eliminate structural redundancies and ambiguities, ensur-
ing a full-rank exponential transformation exp(−D) (Proposition 17.1.2).

Figure 17.2 illustrates these operations.
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The following proposition establishes their necessity:

Proposition 17.1.2 (Rank Preservation). The path reduction operation of the
canonical mapping (operation 2) is necessary for exp(−D) to have full rank.
Specifically, if a tree structure permits a path reduction operation but the operation
is not performed, then exp(−D) is rank deficient.

17.2 Perfect Red-Blue Cherry Trees are
Canonical Trees

While the canonical map just defined removes ambiguities due to sib-
ling permutations and chain symmetries, it alone does not guarantee a
unique reconstruction: balanced “twig” subtrees can still swap without
affecting pairwise distances. To eliminate this remaining freedom—and
both simplify the model and enable a practical recovery algorithm-we
further restrict our canonical representation to perfect red-blue cherry trees,
characterized by each internal node at the lowest hierarchical level joining
exactly one red and one blue leaf. This structure guarantees strong identi-
fiability, simplifies recovery, and aligns naturally with the canonical form
transformations described earlier.

Given the canonical form’s structural clarity, we propose a straightfor-
ward recovery algorithm (Algorithm 5). The proposed algorithm has two
steps, first we apply the Hungarian algorithm to optimally pair red and
blue leaves, forming cherries, and calculate distances among parent nodes
using these cherries. Next, we reconstruct the internal tree structure from
these parent distances via Neighbor Joining (NJ). This two-step approach
efficiently recovers the exact underlying tree structure in ideal conditions.
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Algorithm 5 Red-Blue Tree Reconstruction
Input: Distance matrix D ∈ Rk×k for leaves R = {r1, . . . , rk} and B =

{b1, . . . ,bk}.
Output: Binary tree T̂ with k red–blue cherries.
1: Define the cost function

f(D,Π) =
k∑

i=1

Di,π(i) = ⟨D,Π⟩,

for any permutationmatrixΠ ∈ Pk. Determine the optimal assignment

Π∗ = arg min
Π∈Pk

f(D,Π).

This yields the pairing (ri, bπ∗(i)) for i = 1, . . . ,k.
2: Define a parent pi for each pair (ri,bi) and the inter-parent distances

by

d(pi,pj) = 1
2

[
d(ri,bj) + d(rj,bi) − d(ri,bi) − d(rj,bj)

]
,

for i, j = 1, . . . ,k, forming the matrix Dp = [d(pi,pj)] ∈ Rk×k.
3: Apply the Neighbor Joining algorithm to Dp to obtain a tree T̂p on

{pi}.
4: Replace each pi in T̂p with its corresponding pair (ri,bi) to form T̂ .
5: Return: T̂ .

17.3 End-to-End Co-hierarchy Recovery
Algorithm

Pipeline outline. Given the bipartite incidence matrix A∈Rn1×n2 (rows
= red objects, columns = blue objects) and a target co-hierarchy size k,
our recovery procedure proceeds in two stages:

1. Block-structure estimation. We first uncover the k lowest-level red and
blue “cherries”—i.e. leaf pairs that share a commonparent—together



73

with their interaction strengths. This is accomplished by the Vintage
Sparse PCA subroutine (Algorithm 6), a varimax-rotated, sparsity-
promoting SVD that simultaneously returns

Ẑ, Ŷ (soft leaf–to–cherry memberships), B̂ (red–blue interactions).

The factorization Ã ≈ ẐB̂Ŷ⊤ is provably identifiable under mild
conditions.

2. Tree reconstruction. Treating each estimated cherry as a single com-
posite leaf, we convert interaction weights to additive distances via
D̂ = − log(B̂). On this k×k distancematrix we invoke a red-blue tree
recovery algorithm tailored to red-blue inputs. The result is a fully
specified red-blue tree T̂ whose leaves refine back to the original
nodes by the memberships in Ẑ, Ŷ (Algorithm 7).

Algorithms. Our method is summarized in Algorithms 6–7, providing a
two-step, end-to-end solution that transforms raw incidence data into an
interpretable and canonical red-blue co-hierarchy (Figure 17.3).

Algorithm 6 (Vintage Sparse PCA) identifies coherent red and blue
communities (cherries) by estimating blockmembershipmatrices Ẑ, Ŷ and
a block interaction matrix B̂. Algorithm 7 then reconstructs a co-hierarchy
by processing the estimated block interactions into a red-blue tree and
appending original vertices to their respective block nodes using Ẑ, Ŷ.

Complexity and Robustness. Algorithm 6 operates in O(k · nnz(A))
time, linear in the number of non-zero entries of A for fixed k. The final
neighbor-joining (NJ) step requires O(k3) time. Section 19 provides de-
tailed perturbation bounds, guaranteeing exact topology recovery under
measurement noise of order Õ(η/k), with η being the shortest internal
edge of the ground-truth tree.
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Figure 17.3: Two-step co-hierarchy recovery algorithm. Algorithm 6 esti-
mates block memberships (Ẑ, Ŷ) and interactions (B̂). Algorithm 5 then
reconstructs a tree from block interactions, attaching original vertices ac-
cordingly.

Algorithm 6 Vintage Sparse PCA (vsp)
1: Input: Incidence matrix A∈Rn1×n2 , number of cherries k
2: Output: Memberships Ẑ, Ŷ, interaction matrix B̂
3: Graph normalisation: Ã←D−1/2

R AD
−1/2
B

4: Compute rank-k SVD: (U,V)←SVD(Ã,k)
5: Varimax rotations: (RU,RV)←varimax(U,V)
6: Ẑ← √n1URU, Ŷ ← √n2 VRV

7: B̂← Ẑ⊤ÃŶ

8: return Ẑ, Ŷ, B̂

Algorithm 7 End-to-End Co-hierarchy Recovery
1: Input: Incidence matrix A, number of cherries k
2: Output: Recovered co-hierarchy T̂
3: (Ẑ, Ŷ, B̂)← vsp(A,k) ▷ Algorithm 6
4: Convert weights to distances: D̂←− log(B̂)
5: T̂← Algorithm5(D̂) ▷ Red-Blue Tree Reconstruction Algorithm
6: return T̂
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18 experiment results

Setup. We ran our co-hierarchy estimator on the classic 20-Newsgroups
collection. After standard English stop-word removal, lower-casing, and
pruning words that appear in > 90 % or < 20 posts. The processed corpus
contains 18846 documents and a vocabulary of 3694 unique terms. We
interpret the TF–IDF-weighted document–term matrix as the adjacency
matrix of a bipartite graph and apply the Vintage Sparse PCA + Red-Blue
Neighbor-Joining pipeline (see Algorithm 7). Setting the latent dimension
to k = 10 yields the consensus tree reproduced in Figure 18.1.

Result. Figure 18.1 shows the recovered consensus tree. Ten coherent
meta-clusters emerge, grouping semantically related documents and their
characteristic vocabulary. Table 18.1 summarizes each cluster by (i) its top
terms, and (ii) a concise topic label that we assigned manually.

Documents and terms belonging toClusters 3& 9 are siblings in the tree,

Figure 18.1: Co-hierarchy recovered from the 20-Newsgroups corpus. Each
leaf node is labeled with a document (e.g., doc0) or term (e.g., term0),
along with a manually assigned topic label (e.g., “Midwest Conflict”,
“Software”). Internal nodes represent cluster merges at varying branch
lengths, capturing the semantic proximity between documents and terms.
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Topic (label) Representative high-scoring terms (de-
scending)

0 General chat / autos would, get, like, think, one, know, thing,
people, car, time

1 Software file, window, ftp, edu, server, program, ver-
sion, display, image, application

2 Low-freq. noise max, part, end, tad, hst, col, air, tie, wax,
ahl

3 Sports – hockey discourse game, team, player, play, season, league,
hockey, chicago, win, detroit

4 Space / science news space, research, science, nasa, mission, cen-
ter, national, national, university, april,
earth

5 Christianity god, jesus, christian, christ, bible, church,
faith, sin, belief, religion

6 Armenian–Turkish conflict armenian, turkish, muslim, turk, armenia,
genocide, village, turkey, argic, serdar

7 Crypto key, encryption, clipper, chip, government,
law, security, escrow, enforcement, secure

8 PC hardware (SCSI/IDE) drive, card, scsi, disk, controller, ide, mhz,
bus, floppy, ram

9 NHL box-score abbreviations det, pit, bos, tor, chi, que, van, buf, nyi, stl

Table 18.1: Recovered clusters (k = 10). Topic labels are added post-hoc
for readability.

confirming the shared sports theme but finer lexical separation. Clusters 1
& 8 (software vs. hardware) form another subtree, reflecting the broader
“computing” super-topic. The conversation-style Cluster 0 sits close to the
root, acting as a linguistic “hub” with common functional words.
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19 theoretical guarantees

19.1 Exact Recovery Guarantee

Theorem 19.1.1 (Correctness of Red–Blue Cherries via Hungarian Algo-
rithm). Applying the Hungarian algorithm guarantees correct identification of
the lowest-level red-blue cherries.

Proof. Assume for contradiction that the Hungarian algorithm picks the
pairing (r1,b2) and (r2,b1) instead of true pairs (r1,b1) and (r2,b2). Let
p1,p2 be internal parents for (r1,b1), (r2,b2).

We note that

d(r1,b2) + d(r2,b1) = d(r1,b1) + d(r2,b2) + 2d(p1,p2).

Since d(p1,p2) > 0, we have:

d(r1,b2) + d(r2,b1) > d(r1,b1) + d(r2,b2).

This contradicts optimality, hence the Hungarian solution correctly identi-
fies cherries.

19.2 Perturbation Stability

Next, we characterize the perturbation stability of our tree recovery al-
gorithm. In particular, we first analyze the sensitivity of the Hungarian
matching step to perturbations in the distance matrix D. Combined with
known perturbation results for Neighbor Joining (NJ), this analysis will
allow us to bound the overall stability of the recovery procedure.

SensitivityAnalysis forHungarianMatching Given a distancematrixD
for two equal-sized sets R (red leaves) and B (blue leaves), the Hungarian
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algorithm computes an optimal assignment

Π∗ = arg min
Π∈Pk

f(D,Π), with f(D,Π) =
∑

(r,b)∈Π

Dr,b,

where Pk denotes the set of k× k permutation matrices.
To quantify robustness, we consider the allowable perturbation matrix

∆D which that does not change optimal assignment plan:

Π∗ = arg min
Π∈Pk

f(D,Π) = arg min
Π∈Pk

f(D+ ∆D,Π).

In the next proposition, we characterize the allowable perturbation via
a concept named sensitivity sr,b, which is the minimal cost increase when
reversing the assignment status of (r,b):

sr,b =

f(D,Πr,b) − f(D,Π∗), if (r,b) ∈ Π∗,

f(D,Π∗) − f(D,Πr,b), if (r,b) /∈ Π∗,

where Πr,b denotes the optimal assignment when the pairing (r,b) is
forced to change its status.

Proposition 19.2.1 (Perturbation Stability of Hungarian Matching). Let
k = |R| = |B|. Define the perturbation matrix

∆D =
{
δr,b =

sr,b

2k

}
(r,b)∈R×B

.

Then, under the perturbed distance matrix D + ∆D, the Hungarian algorithm
recovers the original optimal assignment Π∗.

Proof. To show that Π∗ remains optimal, we must verify that for any alter-
native assignment Π ̸= Π∗:

f(D+ ∆D,Π∗) − f(D+ ∆D,Π) ⩽ 0.
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Equivalently, we need:

f(∆D,Π∗) − f(∆D,Π) ⩽ f(D,Π) − f(D,Π∗).

Assume that Π differs from Π∗ in exactly t pairs (with t ⩽ k). Then
the maximal cost advantage under the perturbation satisfies:

∑
(r,b)∈Π∗\Π

δr,b ⩽ 2tmaxr,b |sr,b|

2k ⩽
2t
2k

(
f(D,Π)−f(D,Π∗)

)
⩽ f(D,Π)−f(D,Π∗).

Since this extra cost is less than the original cost difference f(D,Π) −
f(D,Π∗), it follows that Π∗ remains the optimal assignment under the
perturbation.

In our context, we can explicitly compute the sensitivity. We present it
in the following proposition.

Proposition 19.2.2. Suppose (ri,bi) are optimal assignments corresponding to
parent nodes pi. The sensitivity is explicitly computed as:

sri,bi
= 2d(pi,pj), sri,bj

= −2d(pi,pj).

Proof. If the optimal pairing (ri,bi) is removed from Π∗, the next-best pair-
ing will involve the closest red-blue cherry with minimum distances be-
tween the parents, say (rj,bj). Incorporating any additional pair (rm,bm)

only adds non-negative cost:[
d(ri,bj) + d(rj,bm) + d(rm,bi)

]
−
[
d(ri,bj) + d(rj,bi) + d(rm,bm)

]
= d(pj,pm) + d(pm,pi) − d(pi,pj) ⩾ 0.

Thus, theminimal extra cost incurred byflipping the assignment is 2d(pi,pj)
for an existing pair, and the analogous reasoning for a non-existent pair
yields −2d(pi,pj).
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Sensitivity Analysis for Tree Reconstruction Next, we combine the
above perturbation analysis for the Hungarian algorithm with the pertur-
bation result for the NJ algorithm to obtain an overall allowable perturba-
tion bound on the partial distance matrix. This bound ensures that: (1)
The Hungarian algorithm recovers the original optimal assignment; (2)
The Neighbor Joining (NJ) algorithm recovers a tree that is topologically
equivalent to the true tree.

Atteson [1997] showed that NJ is consistent if the pairwise distance
matrix is perturbed by at most η/2, where η is the length of the shortest
edge in the true tree. Combined with our earlier result on the Hungarian
matching step, we obtain the following theorem.

Theorem 19.2.3. Let ∆D = {δr,b}(r,b)∈R×B be a perturbation matrix such that:

|δri,bj
| ⩽ min

{
d(pi,pj)

2k , η4

}
⩽ min(1

k
, 1

4)η,

for all (ri,bj) ∈ R × B, then, under the perturbed distance matrix D + ∆D,
Algorithm 5 will recover a tree that is topologically equivalent.

Proof. By our earlier analysis (see Proposition 19.2.1), the condition

|δri,bj
| ⩽

d(pi,pj)
2k

ensures that the optimal assignment Π∗ remains unchanged under the
perturbed matrix D + ∆D. Meanwhile, Atteson [1997] demonstrated
that the Neighbor Joining algorithm recovers the correct tree topology
provided the error in the pairwise distances is at most η/2, where η is the
shortest edge length in the true tree. In our context, the perturbation in
the inter-parent distance satisfies

δ(pi,pj) ⩽
1
2

(
|δ(ri,bi)|+ |δ(rj,bj)|+ |δ(ri,bj)|+ |δ(rj,bi)|

)
⩽
η

2 ,
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since each term is bounded by η/4. Therefore, both the Hungarian match-
ing and the NJ steps are robust to the perturbation, ensuring that the
original optimal assignment and the corresponding tree topology are
preserved.
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a appendix for part I

Supplementary materials contain additional experiment details, results
and proofs. We provide glossary table in Section A.1, extended discussion
on related work in Section A.2, additional experiment details in Section
A.3 and results in Section A.4, technical lemmas and additional theoretical
results in Section A.5, A.6, and proof in Section A.7.

A.1 Glossary

The glossary is given in Table A.1 below.

A.2 Extended Related Work

Hypothesis Test for Rotation-Sensitive Structure Earlywork onmultivari-
ate inference already framed “no preferred direction” as a null hypothesis
and developed tests for departures from spherical symmetry. Classical
procedures such as Mauchly’s test for sphericity (Mauchly, 1940), John’s
test for identity covariance (John, 1971), and the Bingham–Watson fam-
ily of uniformity tests on the hypersphere treat rotational invariance as
the baseline state of a distribution; significant rejections therefore signal
the presence of directional (i.e., rotation-sensitive) structure. In high-
dimensional settings, modern random-matrix tests-e.g. the Ledoit–Wolf
(Ledoit and Wolf, 2002) and Chen–Lei–Mao (Chen et al., 2010) statistics
for detecting covariance spikes—extend the same principle by comparing
observed eigen-spectra with isotropic nulls. Our approach inherits these
ideas but adapts them to neural embeddings, where raw coordinates can
be arbitrarily scaled or rotated. We deploy a rotation-invariant bootstrap
that gauges whether an embedding layer departs from isotropy before we
perform Varimax for interpretability.
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Symbol Definition
U Matrix containing singular vectors from SVD decomposition
Z Image loading matrix, represents how images load onto concepts
SOk Special orthogonal group (rotation matrices) in Rk×k

A Input embedding matrix of size Rn×d

Y Estimated concept matrix of size Rd×k

k Number of concepts
n Number of data points/images
d Dimension of embeddings
R Rotation matrix
T Text embedding matrix
Cj The j-th concept
σd(Z) The absolute d-th largest singular value of Z
C∗ Ground-truth latent concept matrix
CW Word concept matrix
v(U,R) Varimax objective function
TS1(U) Kurtosis test statistic
TS2(U) Varimax objective function test statistic
TS3(U) Rescaled kurtosis test statistic
∥ · ∥F Frobenius norm
kurtosis(U.i) Kurtosis of the i-th column of U
P(k) Set of permutation matrices in Rk×k

Table A.1: Glossary of Notation

Rotation-sensitive Structure and Factor Interpretability Classical factor
analysis has long recognized that raw factors are rotation–indeterminate:
any orthogonal transform of the loading matrix yields the same likeli-
hood, so interpretability hinges on choosing a “simple-structure” rotation
such as Varimax (Kaiser, 1958). Recent statistical results show this is not
just cosmetic — Varimax can be viewed as a consistent spectral estimator
that recovers the true sparse structure under mild conditions (Rohe and
Zeng, 2023). Independent-component analysis resolves the same indeter-
minacy by exploiting non-Gaussianity to make the rotation identifiable,
demonstrating that probabilistic assumptions can anchor the axes in a
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semantically meaningful way (Hyvärinen et al., 2023). In modern rep-
resentation learning, the same symmetry re-appears: embeddings trained
with contrastive or language-model objectives are identifiable only up to
an unknown linear map, implying that any axis-aligned interpretation
is fragile unless one fixes the rotation with additional bias (Roeder et al.,
2021). Empirically, post-hoc rotations have been shown to sharpen se-
mantics — e.g. Park et al. (2017) rotate word-embedding bases to make
individual dimensions correspond to human concepts without hurting
downstream accuracy. Our work unifies these threads: we provide a hy-
pothesis test that detects rotation-sensitive structure in CLIP embeddings,
then apply a statistically-grounded Varimax rotation to expose sparse,
concept-aligned axes, thus reconciling fidelity with interpretability within
a single framework.

A.3 Additional Experiment Details

All our experiment results are carried out using frozen pretrained weights
from open-clip (ViT-B/32 and ViT-L/14), and no additional model training
is involved.

Concept Decomposition Algorithm Details

ScalingDataMatrixWescaled datamatrixA ∈ Rn×d before applying SVD
in the concept decomposition algorithm. Define the row normalization
vector as:

degr = A1d ∈ Rn, τr =
1
n

1T
ndegr ∈ R, Dr = diag(degr+τr1n) ∈ Rn×n

Similarly, define the columnquantitiesdegc = 1T
nA ∈ Rd, τc = 1

d
degc1d ∈

R, and Dc = diag(degc + τc1d) ∈ Rd×d. The scaled data matrix is then
defined as Ã = D

−1/2
r AD

−1/2
c , which we use as input to the concept decom-
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position algorithm instead of the original matrix A. This scaling step with
regularization parameters τr and τc helps stabilize the spectral estimation
and prevents potential outliers in the singular vectors that could arise from
noise in the data matrix (Le et al., 2017; Zhang and Rohe, 2018).

Hypothesis Test Experiment Details

To validate our hypothesis testing framework, we conducted experiments
on both a real dataset—the ImageNet validation set—and two synthetic
datasets: white-noise image embeddings and pure white-noise embed-
dings. The goal was to assess the framework’s ability to detect non-random
structures in different types of data.
Datasets.

• ImageNet Validation Set: We used embeddings computed by a
pretrained Vision Transformer (ViT-B/32) model on images from
the ImageNet validation set.

• White-Noise Image Embeddings: We generated 10,000 white-noise
images, each of size 224 × 224 pixels with 3 color channels. Each
pixel value was drawn independently from a standard Gaussian
distribution. These images were then processed by the pretrained
ViT model to obtain embeddings of size 10, 000× 512.

• Pure White-Noise Embeddings: We directly generated a random
noise matrix of dimensions 10, 000× 512, with each entry sampled
from a standard Gaussian distribution, without passing through the
embedding model.

Experiment Details. For each dataset, we obtained an embedding matrix
Ã as described above. We then performed Singular Value Decomposition
(SVD) on Ã, decomposing it into Ã = UDV⊤. Here, U is a matrix whose
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columns are the left singular vectors, representing orthogonal directions
in the embedding space, and whose rows correspond to the images.

We observed that the first column of U (the first principal component)
often captured mean or bias effects in the embeddings. The loadings
on this component were concentrated around a constant value, offering
limited information about the latent structure of the data. Therefore, we
excluded the first column of U, defining Ũ = U[:, 2 :], to focus on more
informative components.

Next, we applied our hypothesis testing framework to Ũ to compute
p-values and test statistics, assessing the statistical significance of any
non-random patterns present in the data.
Randomness in the Procedure

Our hypothesis testing procedure involves randomness in two key
aspects:

1. Row-wise Random Rotations: To generate conditionally rotation-
invariant data, we applied random rotations to each row of Ũ. This
step introduces randomness in the transformation of the data.

2. Generation of Synthetic Data: The white-noise image and pure
white-noise embeddings were generated using random sampling
from standard Gaussian distributions.

To account for the variability introduced by these random processes,
we performed additional tests using 5 different random seeds and varied
the rank k of Ũ.
Selection of Rank kWe investigated how the choice of rank k, the number
of singular vectors retained in Ũ, affects the results of the hypothesis tests.
We expect the p-values to increase with larger k, indicating a decreased
ability to detect rotation-sensitive structure. As k increases, more columns
of U are included, potentially introducing additional noise and reducing
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the statistical power to detect non-Gaussian signals. We report our re-
sults in Figure A.1. We observed that for white noise image embeddings,
p-values increase as k increases, which aligns with our expectation. For
white noise embedding, we observed p-values are oscillating around 0.5
and show no clear pattern as k changes. This aligns with our theoretical
results from Example 4, which suggests U follows a rotationally invari-
ant distribution, and p-value should follow an approximately uniform
distribution between 0 and 1.

Figure A.1: Illustration of how p-values change with rank k. Left: white
noise image embedding from pretrained ViT-L/14 model. Right: white
noise embedding of dimension 10, 000× 768.

Spurious Concept Removal Experiment

Datasets details

• Waterbirds (Sagawa et al., 2019): Bird species (waterbird/landbird)
with spurious background correlations (water/land)

• WILDS-iWildCam (Beery et al., 2020; Koh et al., 2021): Animal
species classification with spurious location-specific features across
camera traps
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Dataset Task Spurious Attribute #Images #Classes
Waterbirds Bird Species Background 4,795 2
iWildCam Animal Species Location 42,791 182
CelebA Hair Color Eyeglasses 19,962 2

Table A.2: Dataset characteristics and their corresponding spurious corre-
lations.

• CelebA (Liu et al., 2015): Hair color classification (blonde/non-
blonde) with spurious attribute correlation (eyeglasses)

Dataset statistics can be found in table A.2.
Spurious Concept Detection Methods. We develop strategies to automat-
ically identify spurious concepts, tailored to each dataset’s characteristics:

• ForWaterbirds, we generate text descriptions following the template
"A {bird_type} with a {background_type} background." We identify
spurious concepts as those where top-ranking descriptions share
common backgrounds but varied bird species.

• For iWildCam, we employ a contrastive approach using two sets
of descriptions: one focusing on animal features and another on
location attributes. We compute cosine similarities between concept
embeddings and these description embeddings to identify concepts
that correlate strongly with location features.

• For CelebA, we generate descriptions emphasizing either hair color
or eyeglasses attributes, using a similar contrastive approach to sep-
arate target concepts from spurious ones.

Removing Spurious Concepts To remove spurious concepts, we recon-
struct image embeddings while setting the coefficients of identified spuri-
ous concepts to zero. Given the decomposition Ai. =

∑
j αjCj where Cj
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are learned concept vectors, we enforce αspurious = 0 to filter out spurious
information.
Waterbirds Experiment For Waterbirds experiment, we use [’a landbird’,
’a waterbird’] as class prompts. In the zero-shot prediction experiment, we
first compute text embeddings for class prompts, and compute cosine simi-
larity between class prompt embeddings and image embeddings. Then for
each image, we extract the class with higher similarity as the prediction.

For removing spurious concepts, we first decompose image embedding
into a linear combination of concepts with Algorithm 2: Ai. =

∑
j αjCj.

Suppose we have identified spurious concepts with our proposed method
as explained in main content, by removing spurious concepts we set the
coefficients for spurious concepts to 0. In other words, αspurious = 0.

Algorithm to Generate Rotation-Invariant Matrix

Algorithm 8 Generate Rotation-Invariant Matrix
1: Input: Matrix U ∈ Rn×k

2: Output: Rotation-invariant matrix Urot ∈ Rn×k

3: for each row ui ∈ Rk, i = 1, 2, . . . ,n do
4: Generate random rotation matrix Ri ∈ Rk×k

5: urot
i ← Riui ▷ Rotate the row ui

6: end for
7: Urot ← [urot

1 ,urot
2 , . . . ,urot

n ]
T

▷ Matrix of rotated rows
8: return Urot

A.4 Additional Experiment Results

Bootstrap simulation results

In Figure A.2, we present bootstrap kurtosis and observed kurtosis distri-
bution defined in Section 2.3.
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(a) Bootstrap Varimax Objective vs Ob-
served

(b) Bootstrap Kurtosis vs Observed
Kurtosis

Figure A.2: Comparison of bootstrap distributions and observed test statis-
tics. The blue histograms show the distribution of test statistics computed
from rotation-invariant resamples under the null hypothesis. The red
dashed lines indicate the observed test statistics computed from CLIP
embeddings of ImageNet validation set.

Additional Concept Results for ImageNet

Weprovide additional concept results for ImageNet validation set in Figure
A.3. Embeddings are computed by ViT-B-32 model.

Concept Results for Waterbirds

We provide concept results for Waterbirds dataset in Figure A.4.

Additional experiment results

Concept Learns Analogical Relations
Word embeddings are known to capture semantic relationships through

vector arithmetic, famously demonstrated by analogies such as “king -
man + woman = queen” (Mikolov et al., 2013). We demonstrate that
our learned concepts exhibit similar compositional properties with visual
concepts.
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Figure A.3: Top-24 concepts using our method with leading images and
corresponding text descriptions. We observe image and text concepts are
well-aligned with similar semantic topics.
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Figure A.4: Top-6 waterbirds concepts with text descriptions. We noticed
there are bird-focused concepts (e.g. first row, left column) that spec-
ify the species more clearly and mention distinctive features. There are
background-focused concepts (e.g. first row, middle column), that high-
light the type of environment. We also observed a multiple birds concept
(second row, left column).

To evaluate this, we identify three key concepts from our learned rep-
resentation: Cgd (representing groups of dogs), Cd (single dog), and
Cb (bird). We then construct a new concept through vector arithmetic:
C = Cgd −Cd+Cb. Intuitively, this operation should capture the transfor-
mation from “single entity” to “group” and apply it to birds. We evaluate
this constructed concept in two ways: by projecting image embeddings
(Score = AC where A contains image embeddings) and text embeddings
onto this concept space. As shown in Figure A.5, both the top-scoring
images and their associated text descriptions align with our expectation,
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Figure A.5: Demonstration of analogical reasoning with concepts. The
equation Cgd (group of dogs)− Cd (single dog)+ Cb (single bird) yields
a concept that correctly identifies groups of birds in both image and text
spaces.

consistently returning groups of birds, demonstrating that our method
successfully captures and transfers the concept of collectiveness across
different semantic categories.

A.5 Technical Lemmas

In this section, we provide some technical results for convenience.
The following lemma is a generalization to (Li et al., 2023, Lemma H.5)

for a non-square matrix. We recall σk(Z) =
√
σk(Z⊤Z) as the k-th largest

absolute singular value of Z.
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Lemma A.5.1. For A ∈ Rd×k, B ∈ Rk×n where n > d ⩾ k, we have

∥A∥F · σk(B) ⩽ ∥AB∥F ⩽ ∥A∥F · σ1(B). (A.1)

Proof. Assume the SVD of B is UBDBVB. Then,

∥AB∥F = ∥AUBDBVB∥F = ∥AUBDB∥F. (A.2)

By applying a similar induction proof as in (Li et al., 2023, Lemma H.5) to
AUBDB where AUB ∈ Rd×k and DB ∈ Rk×k, we obtain

∥AUBDB∥F ⩾ ∥AUB∥F · σk(DB) = ∥A∥F · σk(DB) (A.3)

and
∥AUBDB∥F ⩽ ∥AUB∥F · σ1(DB) = ∥A∥F · σ1(DB). (A.4)

This concludes the proof.

A.6 Additional theoretical results

Example 4. Let A ∈ Rn×m with Aij i.i.d. generated from a Gaussian
mixture model 1

2N(1, 1) + 1
2N(−1, 1). When min{n,k} > 2, the left and

right singular vector matrices of A are rotation-sensitive.

A.7 Missing proofs

Proof of Example 1

Proof. The density of the standard multivariate normal distribution is
given by

f(x) =
1

(2π)d/2 exp
(
−

1
2∥x∥

2
)

,



95

which depends only on the L2 norm ∥x∥. For any rotation matrix R, we
have ∥xR∥ = ∥x∥ because rotations preserve norms. Therefore,

f(xR) =
1

(2π)d/2 exp
(
−

1
2∥xR∥

2
)

=
1

(2π)d/2 exp
(
−

1
2∥x∥

2
)

= f(x).

This shows that the density (and thus the distribution) of x is unchanged
under rotations, proving rotational invariance.

Proof of Example 2

Proof. It suffices to show the result when k = min{n,m}. Due to the nature
of normally distributed random variables, for any orthogonal matricesG ∈
Rm×m and H ∈ Rn×n, the entries of GAH are i.i.d. and follow a standard
normal distribution. Therefore, this guarantees spherical symmetry for
the left and right singular matrices U and V⊤ of A, implying that both U
and V⊤ follow a uniform distribution with respect to the Haar measure
on the Stiefel manifold.

For any rotation matrix R ∈ Rk×k, we have (UR)⊤UR = Ik. Consider
fR(U) = UR, which defines a one-to-one map from the Stiefel manifold
to itself. By the one-to-one property, UR has the same distribution as U,
namely following the uniform distribution to the Haar measure on the
Stiefel manifold. A similar result holds for V⊤.

This guarantees rotation invariance.

Proof of Example 3

Proof. To show that this distribution is not rotationally invariant, we need
to find a rotation matrix R such that the distribution of xR differs from the
distribution of x.

Let R be a rotation matrix that rotates the vector µ to another direction.
For simplicity, consider a rotation R that maps µ to Rµ = ν, where ν =
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(0, 1, 0, . . . , 0)⊤.
The original distribution of x has two components centered at µ and

−µ. After rotation, the distribution of xR has components centered at
Rµ = ν and R(−µ) = −ν.

However, the probability density function (pdf) of x before rotation is

f(x) =
1
2

1
(2π)d/2 exp

(
−

1
2∥x− µ∥

2
)
+

1
2

1
(2π)d/2 exp

(
−

1
2∥x+ µ∥

2
)

.

After rotation, the pdf becomes

fR(x) = f(xR) =
1
2

1
(2π)d/2 exp

(
−

1
2∥xR− µ∥2

)
+

1
2

1
(2π)d/2 exp

(
−

1
2∥xR+ µ∥2

)
.

But since ∥xR − µ∥2 ̸= ∥x − µ∥2 in general, the pdf fR(x) is not equal to
f(x). Specifically, the locations of the mixture components have changed,
leading to a different distribution.

Moreover, consider evaluating the probability at a specific point. For
example, at x = µ, we have

f(µ) =
1

2(2π)d/2 exp
(
−1

2∥µ− µ∥2
)
+

1
2(2π)d/2 exp

(
−1

2∥µ+ µ∥2
)

=
1

2(2π)d/2

[
1 + exp

(
−2∥µ∥2)] .

After rotation, at x = µ, we have

fR(µ) = f(µR) =
1
2

1
(2π)d/2 exp

(
−

1
2∥µR− µ∥2

)
+

1
2

1
(2π)d/2 exp

(
−

1
2∥µR+ µ∥2

)
.

Since µR ̸= µ, the values of f(µ) and fR(µ) are different, confirming that
the distribution is not rotationally invariant.
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Proof of Example 4

Proof. We present the proof that the right singular vector matrix of A is
rotation-sensitive, and the proof of the left singular vector matrix follows
similarly. It suffices to show the probability density function on two right
singular vectors in Rk are different.

Consider v = (1, 0, 0, . . . , 0) and v ′ = ( 1√
k

, 1√
k

, . . . , 1√
k
). Then, (Av)i ∼

1
2N(1, 1) + 1

2N(−1, 1) for i = 1, . . . ,n, and (Av ′)i i.i.d. follows a Binomial
distribution of Gaussianmixturemodel. When min{n,k} > 2, the probabil-
ity density function on these two vectors is different because the variance
of (Av)i equals 1, and the variance of (Av ′)i is apparently smaller than 1.
This completes the proof.

Proof of Proposition 2.2.1

Under H0, to show that Arot is rotation invariant, we need to prove that for
any fixed rotation matrix R ∈ SO(d), the distribution of ArotR is the same
as that of Arot.

Since conditional on the same ∥Ai∥2 = ∥Arot
i ∥2, for any Arot

i there must
exist Ri such that

Arot
i = AiRi,

where Ri uniformly sampled from SO(d). For any R ∈ SO(d), multiplying
Arot on the right by R:

Arot
i R = (AiRi)R = Ai(RiR) = AiR̃i,

where we define R̃i = RiR. Since Ri are uniformly distributed over SO(d)

and independent, and R is a fixed element of SO(d), the products R̃i = RiR

are also uniformly distributed over SO(d), independent from each other,
and independent from Ai. Therefore, the distribution of AiR̃i is the same
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as that of AiRi:
AiR̃i

d
= AiRi.

This implies that the rows of ArotR have the same joint distribution as the
rows of Arot:

{Arot
i R}

n
i=1

d
= {Arot

i }ni=1.

This completes the proof.

Proof of Theorem 2.3.1

For theoretical analysis, we derive an equivalent standardized form:

TS3(U) =

√
nk√
33

(
1
k

k∑
i=1

|kurtosis(U.i)|−
3n
n+ 2

)
. (A.5)

Recall that U⊤U = I, therefore we have
∑n

j=1U
2
ji = 1 for any i. We can

simplify the rescaled kurtosis as

TS3(U·i) =

√
nk√
33

(
n

k

k∑
i=1

n∑
j=1

U4
ji −

3n
n+ 2

)
. (A.6)

We recall from the proof of Example 2 that for fixed i,U·i follows a normal
distribution on Haar measure. Denote

Xi = n

n∑
j=1

U4
ji −

3n
n+ 2.

We compute

E[U2s
ij ] =

Γ(n2 )Γ(s+
1
2)

Γ(n2 + s)Γ( 1
2)

.

When s = 2, we have
E[U4

ij] =
3

n(n+ 2) .
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Therefore, by plugging this formula in our computation, we obtain

E[Xi] =
3n
n+ 2 −

3n
n+ 2 = 0,

and
E[U8

ij] =
7
2

5
2

3
2

1
2

(n2 + 3)(n2 + 2)(n2 + 1)n2
.

On the other hand, by rewriting Uij as Si√∑
i S

2
i

, we obtain (Uij,Ui ′j) and

(
Uij+Ui ′j√

2 , Uij−Ui ′j√
2 ) are identically distributed. Therefore, we have

E
[
U4

ijU
4
i ′j

]
= E

[(
Uij +Ui ′j√

2

)4(
Uij −Ui ′j√

2

)4
]

.

This can be reduced to

E
[
U8

ij

]
= 4E

[
U6

ijU
2
i ′j

]
+ 5E

[
U4

ijU
4
i ′j

]
. (A.7)

On the other hand, we have

E
[
U6

i ′jU
2
i ′j

]
=

1
n− 1

(
E
[
U6

i ′j

]
− E

[
U6

i ′j

])
=

15
(n+ 6)(n+ 4)(n+ 2)n .

(A.8)
Combining equation A.7 and equation A.8, we obtain,

E
[
U4

ijU
4
i ′j

]
=

9
(n+ 6)(n+ 4)(n+ 2)n .

By plugging the computations of moments, we obtain

E
[
X2
i

]
= n3E[U8

ij] + n
3(n− 1)E[U4

ijU
4
i ′j] − n

3(n− 1)(E[U4
ij])

2

=
105× n2

(n+ 6)(n+ 4)(n+ 2) +
9n2(n− 1)

(n+ 6)(n+ 4)(n+ 2) −
9n(n− 1)
(n+ 2)2 .

The leading order term of this variance is 33
n
. By the central limit theorem
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and the fact that X2
i are i.i.d. random variables, we conclude the result.

Proof of Theorem 4.1.2

Recall Assumption 4.1.1 that E[Z̃ij] = 0, E(Z̃2
ij) = σ

2
j , E(Z̃4

ij) = ηj ⩾ 3σ4
j .

v(R, Z̃R̃⊤) =
1
n

k∑
ℓ=1

n∑
i=1

[Z̃R̃R]4iℓ −

(
1
n

n∑
q=1

[Z̃R̃R]2qℓ

)2
 .

To simplify notation, we denote O = R̃R ∈ O(k). We want to optimize
v(R, Z̃⊤R̃⊤) over O. We analyze two terms, respectively. For the fourth
moment term

E

(
1
n

k∑
ℓ=1

n∑
i=1

[Z̃O]4iℓ

)
= E

 1
n

k∑
ℓ=1

n∑
i=1

(
k∑

j=1

Z̃ijOjl

)4
= E

 1
n

k∑
ℓ=1

n∑
i=1

 1
n

k∑
ℓ=1

n∑
i=1

Z̃4
ijO

4
jl + 3

∑
h ̸=h ′

Z̃2
ihZ̃

2
ih ′O2

hlO
2
h ′l


=

1
n

k∑
ℓ=1

n∑
i=1

 k∑
j=1

ηjO
4
jl + 3

∑
h ̸=h ′

σ2
hσ

′2
hO

2
hlO

2
h ′l


=

k∑
ℓ=1

 k∑
j=1

ηjO
4
jl + 3

∑
h ̸=h ′

σ2
hσ

′2
hO

2
hlO

2
h ′l

 ,

because the expectation of all other cross terms in the computation contains
at least one moment of an entry, which is 0 according to the independence
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and E[Z̃ij] = 0. For the second moment term,

E
[ 1
n

k∑
ℓ=1

n∑
i=1

( 1
n

n∑
q=1

[Z̃O]2qℓ
)2
]
=

1
n2

k∑
ℓ=1

( n∑
q=1

( k∑
j=1

Z̃qjOjl

)2
)2

= E
[ 1
n2

k∑
ℓ=1

( n∑
q=1

k∑
j=1

Z̃2
qjO

2
jl +

n∑
q=1

∑
h ̸=h ′

Z̃qhZ̃qh ′OhlOh ′l

)2]

=
1
n2 cross terms+ E

[ 1
n2

k∑
ℓ=1

( n∑
q=1

k∑
j=1

Z̃2
qjO

2
jl

)2
]

︸ ︷︷ ︸
Term 1

+ E
[ 1
n2

k∑
ℓ=1

( n∑
q=1

∑
h ̸=h ′

Z̃qhZ̃qh ′OhlOh ′l

)2
]

︸ ︷︷ ︸
Term 2

.

since E(Z̃qj) = 0, the expectation of all the cross terms should be 0 and
can be removed from the equation. Now we compute terms 1 and 2,
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respectively. For term 1,

E (Term 1) = 1
n2

k∑
ℓ=1

E

(
n∑

q=1

k∑
j=1

Z̃2
qjO

2
jl

)2

=
1
n2

k∑
ℓ=1

Var
(

n∑
q=1

k∑
j=1

Z̃2
qjO

2
jl

)
+

(
E

[
n∑

q=1

k∑
j=1

Z̃2
qjO

2
jl

])2
=

1
n2

k∑
ℓ=1

 n∑
q=1

k∑
j=1

O4
jlVar

(
Z̃2

qj

)
+

(
n∑

q=1

k∑
j=1

O2
jlE(Z̃2

qj)

)2
=

k∑
ℓ=1

 1
n

k∑
j=1

O4
jl(ηj − σ

4
j) +

(
k∑

j=1

O2
jlσ

2
j

)2
=

k∑
ℓ=1

(
k∑

j=1

O2
jlσ

2
j

)2

+
1
n

k∑
ℓ=1

k∑
j=1

(ηj − σ
4
j)O

4
jl.

For term 2,

E (Term 2) = 1
n2

k∑
ℓ=1

E

 n∑
q=1

∑
h ̸=h ′

Z̃qhZ̃qh ′OhlOh ′l

2

=
2
n2

k∑
ℓ=1

n∑
q=1

∑
h ̸=h ′

(
E(Z̃2

qh)E(Z̃2
qh ′)O2

hlO
2
h ′l

)
=

2
n

k∑
ℓ=1

∑
h ̸=h ′

(
σ2
hσ

2
h ′O2

hlO
2
h ′l

)
=

2
n

k∑
ℓ=1

( k∑
h=1

σ2
hO

2
hl

)2

−

k∑
h=1

σ4
hO

4
hl

 .

Combing the computation for second and fourth moment, we obtain
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v
(
R, Z̃ R̃⊤) = k∑

ℓ=1

( k∑
j=1

ηjO
4
jl + 3

∑
h ̸=h ′

σ2
h σ

2
h ′ O2

hlO
2
h ′l

)

−

k∑
ℓ=1

( k∑
j=1

O2
jl σ

2
j

)2
−

1
n

k∑
ℓ=1

k∑
j=1

(ηj − σ
4
j)O

4
jl

−
2
n

k∑
ℓ=1

(( k∑
h=1

σ2
hO

2
hl

)2
−

k∑
h=1

σ4
hO

4
hl

)

=

k∑
ℓ=1

k∑
j=1

(
n−1
n
ηj −

3n−3
n
σ4
j

)
O4

jl +
(

2 − 2
n

) k∑
ℓ=1

(∑
j

σ2
j O

2
jl

)2

⩽
k∑

ℓ=1

k∑
j=1

(
n−1
n
ηj −

3n−3
n
σ4
j

)
+
(

2 − 2
n

) k∑
ℓ=1

∑
j

σ4
j

∑
j

O4
jl

⩽
k∑

ℓ=1

k∑
j=1

(
n−1
n
ηj −

3n−3
n
σ4
j

)
+
(

2 − 2
n

) k∑
ℓ=1

∑
j

σ4
j .

Equality can and can only be achieved when O is a permutation matrix,
where each row and each column have and only have exactly one 1. This
completes the proof.

Proof of Theorem 4.2.1

Denote the generalized inverse of C⊤
WCW as (C⊤

WCW)†. Then, by project-
ing from the column space of CW to C∗, we can rewrite the condition
minP∈Rm×k ∥CWP −C∗∥F ⩾ δ as

∥CW(C⊤
WCW)†C⊤

WC∗ −C∗∥F ⩾ δ. (A.9)
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Similarly, by plugging A = Z∗C∗⊤,

min
Z∈Rn×k

∥A− ZC⊤
W∥F = min

Z∈Rn×k
∥Z∗C∗⊤ − ZC⊤

W∥F

= ∥Z∗C∗⊤ − Z∗C∗⊤CW(C⊤
WC)†C⊤

W∥F

⩾ ∥CW(C⊤
WCW)†C⊤

WC∗ −C∗∥F · σk(Z∗),

where the inequality follows from Lemma A.5.1. We conclude the result
by plugging equation A.9 in the above equation.
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b appendix for part II

The appendix is structured as follows. It starts with the glossary table,
defining key notations used throughout the paper in Appendix B.1. Next,
Appendix B.2 discusses additional related work. In Appendix B.3, we
introduce details about our tensor-based CARE algorithm, discussion for
general CAREmethod, and additional discussion about method heuristics.
Following this, Appendix B.4 offers theoretical support of our approach
and supported proofs. It includes the graphical model formulation, graph
structure recovery error bound, sample complexity, and the misspecifi-
cation error arising from incorrectly characterized confounding factors.
Subsequently, Appendix B.5 provides experimental details and additional
experiment results. Finally, Appendix B.6 concludes by discussing the
broader impacts and limitations of the work.

B.1 Glossary

The notations are summarized in Table B.1 below.

B.2 Extended Related Work

Biases in LLM–as–a–Judge

Large language models (LLMs) have quickly become the standard au-
tomatic evaluators for generation tasks because they correlate well with
human judgments in translation and summarization (Kocmi and Feder-
mann, 2023; Shen et al., 2023; Chiang and yi Lee, 2023). Yet a growing body
of work shows that these models are far from impartial. Positional bias—
preferring the second answer in a pairwise comparison—was first noted
in MT-Bench (Zheng et al., 2023) and later quantified in detail by Wang
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Table B.1: Glossary of variables and symbols used in this paper.
Symbol Definition
(J1, . . . , Jp) p vector of Judges score
Q True-quality latent variable
(C1, . . . ,Ck) k latent confounder variables
H All the hidden variables (true + confounder) i.e (Q C1, . . . ,Ck)
h dimension of H i.e all hidden variables = k + 1
X Score matrix of dimension (n× p) where n is the number of examples and p is the number of judges
K Precision matrix
Koo Observable-observable connection matrix
Koh Observable-latent connection matrix
Khh Latent-latent connection matrix
Σo Covariance matrix of observable variables
S Sparse matrix (Rp×p) which encodes edges between judges
L Low-rank matrix (with rank(L) ⩽ h) which captures dependencies mediated by latent variables
R Rotation matrix (Rh×h)
γn Regularization for sparse and low-rank matrix S in Algorithm 4
τ Regularization for low-rank matrix L in Algorithm 4
ŝ
(i)
agg Aggregated scores for ith example in the dataset from p judges
Σ̂ Sample precision estimation or covariance matrix
Ŝ Sample Sparse matrix (Rp×p) which encodes direct connectional edges among judges
L̂ Sample Low-rank matrix (with rank(L) ⩽ h) which captures dependencies mediated by latent variables
U Latent factor extraction matrix i.e latent-judge connections (Rp×h) from Algorithm 4
Θ Precision matrix
w Weight for aggregating judges
λ Singular values of L
u⋆ Singular vector of L corresponds to true quality factor
λ⋆ Singular value of L that corresponds to true quality factor
µqc Conditional mean of judges given Q = q,C = c
µ̂qc Estimated conditional mean of judges given Q = q,C = c
πqc Probability of Q = q,C = c
π̂qc Estimation of probability of Q = q,C = c
{Gℓ}

3
ℓ=1 Groups of judges that are independent of judges outside the group

T̂ Empirical 3-way tensor
µ̂
(1)
qc , µ̂(2)

qc , µ̂(3)
qc Estimated conditional mean of three views

µ̂ρ(r) Estimated conditional mean of judges after permutation
µanchor(r) Conditional mean of anchor sets

et al. (2024a), who observed reversals of up to 30% when simply swap-
ping order. Verbosity bias, wherein longer answers receive higher scores
regardless of quality, is highlighted by Chen et al. (2024). LLM judges
also display self-enhancement bias, overrating responses produced by
models from the same family (Zeng et al., 2024). Less studied but equally
problematic are concreteness/authority biases: judges over-reward an-
swers that contain citations, numbers, or confident tone even when these
features are irrelevant (Park et al., 2024).

Mitigation strategies span two levels. Prompt-level interventions random-
ize answer order, enforce symmetric formatting, and instruct the judge to
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ignore superficial features (Wang et al., 2024a; Li et al., 2024d). Adding
chain-of-thought rationales or decomposing the rubric into sub-criteria
(accuracy, conciseness, style) also moderates shallow heuristics (Khan
et al., 2024). On the model level, fine-tuned evaluators such as JudgeLM
(Zhu et al., 2023) and Split-and-Merge Judge (Li et al., 2024d) are trained
on curated data that explicitly counter positional and length biases. Peer-
review and debate schemes go a step further: PRD lets a second LLM
critique the first judge and often corrects biased decisions (Li et al., 2024c),
while Khan et al. (2024) show that dialog with a more persuasive model
leads to more truthful verdicts.

Despite progress, most debiasing work treats a single judge in isolation.
When evaluations aggregate many LLM scorers—for robustness, cost shar-
ing, or diversity—biases can compound in complex ways that individual
fixes do not capture.

Label Aggregation for Multiple Noisy Evaluators

Weak-supervision. Treating each LLM prompt or model as a noisy label-
ing function aligns aggregation with modern weak supervision. Snorkel
(Ratner et al., 2017; Bach et al., 2019) estimates source accuracies and
dependencies to denoise programmatic labels, laying the foundation for
LLM-prompt aggregation. Fu et al. (2020) introduces a scalable moment-
matching estimator with closed-formweights.Shin et al. (2022) generalizes
label models beyond categorical labels to arbitrary metric spaces, greatly
expanding their applicability. Cachay et al. (2021) jointly optimizes a clas-
sifier and a differentiable label model, outperforming two-stage pipelines
when sources are dependent. Firebolt further removes requirements on
known class priors or source independence, estimating class-specific ac-
curacies and correlations in closed form Kuang et al. (2022). Shin et al.
(2023) shows that fixing source bias in labeling functions using optimal
transport can improve both accuracy and fairness.
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Aggregation of multiple LLM judges. Recent work shows that ensem-
bling smaller evaluators can beat a single large judge. The PoLL jury combines
three diverse 7–35B models and attains higher correlation with human
ratings than GPT-4 while costing 7× less and reducing bias (Verga et al.,
2024b). GEDmerges preference graphs fromweak evaluators (Llama3-8B,
Mistral-7B, Qwen2-7B) and denoises cycles; its DAG ranking surpasses
a single 72B judge on ten benchmarks Hu et al. (2024). JudgeBlender
ensembles either multiple models or multiple prompts, improving pre-
cision and consistency of relevance judgments over any individual LLM
(Rahmani et al., 2024). These findings echo classic “wisdom-of-crowds”
results—when paired with principled aggregation, a panel of smaller,
heterogeneous judges can outperform a much larger model, offering a
practical path toward reliable, low-cost evaluation.

Our Contribution in Context

Prior research either (i) debiases one judge at a time or (ii) aggregates
multiple judges assuming independent noise. Our confounder-aware ag-
gregation unifies these threads. We posit latent factors (e.g., verbosity,
formality) that influence all judges simultaneously and show how to infer
both the latent truth and the shared confounders. This yields more reli-
able consensus scores when individual judges—human or LLM—share
systemic biases.

B.3 Algorithm Details

This section details the implementation of our CARE framework. Specifi-
cally, it includes the full CARE tensor algorithm, details about SVD base-
line method for comparing our tensor-based algorithm, generalizations
beyond Gaussian assumptions, and practical heuristics to address non-
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orthogonality in latent factors and justification for where the sparse struc-
ture lies in mixed Gaussian data.

Tensor-based CARE Algorithm

SVD Baseline in Synthetic Experiment

We form the empirical two-way moment between view 1 and view 2:

M̂1,2 =
1
n

n∑
i=1

X
(i)
1 X

(i)⊤
2 =

∑
q,c
πq,c µ1,q,c µ

⊤
2,q,c + sampling noise,

where πq,c = Pr[Q = q,C = c] and µv,q,c = E[Jv | Q = q,C = c] for
judge/view v A singular-value decomposition

M̂1,2 = U12 Σ12 V
⊤
12

yields factor matrices

U12 Σ
1/2
12 ≈ [µ1,q,c]R, V12 Σ

1/2
12 ≈ [µ2,q,c]R,

where R ∈ O(4) is an unknown orthogonal matrix.
Repeating on M̂1,3 =

1
n

∑
i X

(i)
1 X

(i)⊤
3 = U13 Σ13 V

⊤
13 produces a second

rotated copy of [µ1,q,c]. We solve the Procrustes problem

R = arg min
O∈O(4)

∥∥U12 Σ
1/2
12 − U13 Σ

1/2
13 O

∥∥ ∗ F,
then set µ̂2,q,c = (V12 Σ

1/2
12 )R⊤ and µ̂3,q,c = (V13 Σ

1/2
13 )R⊤ to align all three

views.
This SVD baseline recovers {µv,q,c} up to the permutation/sign ambi-

guity inherent in any orthogonal transform.
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Algorithm 9 CARE (T)
Input: Score matrix J ∈ Rn×p, tolerance ε.
Output: Estimates

{
µ̂qc, π̂qc

}
q,c∈{0,1}.

A. Anchor discovery (graph partition)
1: Compute the sample covariance Σ̂ = J⊤J/n and perform the

sparse+low-rank split Σ̂ ≈ Ŝ+ L̂ (Alg. 4).
2: Partition judges into three disjoint groups {Gℓ}

3
ℓ=1 that satisfy

a ̸=b, j1∈Ga, j2∈Gb =⇒ |Ŝj1,j2 | ⩽ ε,

ensuring no direct edges with strength greater than ϵ can exist across
groups.
B. Empirical third-order moment tensor

3: for ℓ = 1, 2, 3 do
4: Xℓ ← columns of J indexed by Gℓ ▷ Xℓ ∈ Rn×|Gℓ|

5: end for
6: Compute

T̂ =
1
n

n∑
i=1

X
(i)
1 ⊗ X

(i)
2 ⊗ X

(i)
3 ∈ R|G1|×|G2|×|G3|.

C. Tensor decomposition
7: Run aCP tensor-power decomposition on T̂ to obtain k=4 components{

(π̂qc, µ̂(1)
qc , µ̂(2)

qc , µ̂(3)
qc)

}
q,c∈{0,1}2 , where π̂qc > 0 and µ̂(ℓ)

qc ∈ R|Gℓ|.
D. Assemble full means

8: for q, c ∈ {0, 1}2 do
9: µ̂qc ← concat

(
µ̂
(1)
qc , µ̂(2)

qc , µ̂(3)
qc

)
∈ Rp.

10: end for
E. State alignment with anchors

11: Find the permutation ρ of {1, . . . , 4} that minimizes
∑4

r=1
∥∥µ̂ρ(r) −

µanchor(r)
∥∥2

2, where the four anchor prototypes correspond to (Q,C)=
{00, 01, 10, 11}.

12: (µ̂00, µ̂01, µ̂10, µ̂11)← (µ̂ρ(1), µ̂ρ(2), µ̂ρ(3), µ̂ρ(4)).
F. Mixing weights

13: (π̂00, π̂01, π̂10, π̂11)← (π̂ρ(1), π̂ρ(2), π̂ρ(3), π̂ρ(4)).
14: return {µ̂qc, π̂qc}q,c∈{0,1}.



111

General CARE Setup

Extension Beyong the Gaussian Observation Model. The multivariate-
Gaussian assumption for J|H is convenient—its first two or three moments
already encode all information needed for the sparse + low-rank and ten-
sor steps—but it is not a requirement. Because CARE learns the graphical
structure, the same pipeline applies whenever each judge’s conditional dis-
tribution lies in an exponential family or, more generally, a latent-variable
generalized linear model (GLM):

• Categorical or ordinal scores. For Likert ratings or pairwise prefer-
ences we can set

Ji | H ∼ Categorical
(
softmax(W⊤

i H)
)

or Ordinal−logit(W⊤
i H).

The graph—hence the sparse mask S—is unchanged; only the node-
wise likelihoods differ. We still recover S from conditional-mutual-
information or pseudo-likelihood scores, andwe still factorize higher-
order indicator moments such as E

[
1{Ja=ℓ} 1{Jb=m} 1{Jc=n}

]
.

• Mixed Discrete-Continous Scores. When some judges output real
scores and others categorical flags, we use a mixed conditional dis-
tribution:

p(J|H) =
[
Πi∈Cont.N(Ji;µHi

,σ2
i)
] [
Πj∈Disc.Bernoulli(σ(W⊤

j H))
]

.

CARE formsmixed raw/indicator moments, and identifiability again
follows from standard tensor-decomposition guarantees for mixed
conditional means.

• Heavy-tailed or skewed real scores. When numeric scores are
skewed or contain outliers, amultivariate-t orGaussian scalemixture
is appropriate. Up to a scalar factor, the covariance still decomposes
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as sparse+ low-rank, so Steps 1–2 of Algorithm 4work after a simple
rescaling.

Empirically, we find that replacing the Gaussian local likelihood only
affects the estimation of sparse structure and extraction of latent factors,
not the subsequent symmetry-breaking or posterior computation; thus
the overall CARE pipeline generalizes with minimal adjustments.

Heuristics and Justifications

Heuristic for Addressing Orthogonality Violations in CARE (SVD).
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(b) Non-Orthogonal

Figure B.1: Effect of the proposed heuristic in a fully Gaussian synthetic
setup. We estimate the true quality variableQ and report themean squared
error. The heuristic improves estimation in the non-orthogonal setting,
but slightly degrades performance in the orthogonal setting where true
and confounding components are disjoint.

Existing heuristics for identifying the true quality latent factor can
estimate corresponding weights, but they often suffer from bias when the
orthogonality assumption—central to the application of SVD—is violated.
This issue commonly arises in real-world datasets. We found the following
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weighting rule effective in both synthetic and real-world settings:

w← λ⋆u⋆ −
∑

ui∈U\{u⋆}

λiui,

where w represents the learned weights for each judge, λ∗ and u∗ is the
singular value and vector of L that corresponds to the direction that is
closest to true quality latent variable, λi,ui represent rest of the singular
values and vectors, which can be interpreted as spurious/confounding
factors.

This rule intuitively subtracts the influence of overlapping (non-orthogonal)
confounding components from the estimated true score factor.

Figure B.1 illustrates the effect of this heuristic in a synthetic fully Gaus-
sian setup. In the non-orthogonal case—where confounding components
overlap with the true signal—the heuristic improves the estimation of the
true latent variable. In contrast, it underperforms in the orthogonal case,
where judges influenced by true scores are cleanly separated from those
influenced by confounders.
Justification of Decomposing Covariance Matrix. In the joint Gaussian
setting we decompose the precisionmatrix, whose sparsity pattern directly
encodes conditional independences in an undirected graphical model. For
a mixed Gaussian model, however, each observation J ∈ Rp is generated
by first drawing a latent class label Q,C ∈ {0, 1}2 (with probabilities πqc)
and then sampling

J | Q,C = q, c ∼ N
(
µqc, Σ

)
,

where the within-component covariance Σ does not depend on q, c. Be-
cause the latent variable only perturbs the mean, the marginal covariance
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of J splits, via the law of total covariance, into

Cov(J) = E
[
Cov(J | Q,C)

]︸ ︷︷ ︸
=Σ

+ Cov
(
E[J | Q,C]

)︸ ︷︷ ︸
=
∑

q,c πqc (µqc−µ̄)(µqc−µ̄)⊤

, µ̄ :=
∑
q,c
πqcµqc.

(B.1)
The first term, Σ, is the same sparse block-diagonal matrix we plant in
the simulator to model direct judge–judge interactions; the second term
is an outer-product mixture of at most 4 linearly independent directions
and hence has rank ⩽ 4. Equation equation B.1 therefore exhibits the
population covariance as a sparse + low-rank decomposition,

Cov(J) = S + L, S = Σ (sparse), L = Cov
(
E[J | Q,C]

)
(low rank).

Because sparsity now lives in S, not in the inverse covariance, estimating
S and L by fitting a sparse-plus-low-rank model directly to the empiri-
cal covariance is both natural and statistically identifiable for the mixed
Gaussian case.

B.4 Theory

Proof of Theorem 10.2.3

Proof. Let low-rank matrix satisfies L =
∑h

i=1 di uiu
⊤
i with ui the i-th

column of Koh. By Assumption 10.2.2 the ui are mutually orthogonal, and
by Assumption 10.2.1 the eigenvalues d1 > · · · > dh are distinct; hence
this rank-1 decomposition is the (unique) spectral decomposition of L.
Thus each ui is identifiable from L up to sign and ordering, proving the
theorem.

Proof of Theorem 10.2.4
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Proof. We apply standard matrix perturbation theory for eigenvectors.
Starting from the eigenvalue decomposition:

Lui = λi ui,

we write the perturbed matrix as

L̃ = (Koh +E)K−1
hh(Koh +E)⊤ = L + KohK

−1
hhE

⊤ + EK−1
hhK

⊤
oh + EK−1

hhE
⊤.

Let ∆L = L̃− L. By the Davis–Kahan theorem,

∥ûi − ui∥2 ⩽
2 ∥∆L∥2

δi
,

where δi = minj̸=i |λi − λj| > 0. Moreover,

∥∆L∥2 ⩽ 2 ∥Koh∥2 ∥K−1
hh∥2 ∥E∥2 + O(∥E∥2

2)

and ∥Koh∥2 = 1. Hence

∥ûi − ui∥2 ⩽
2 ∥K−1

hh∥2 ∥E∥2

δi
+ O(∥E∥2

2).

This completes the proof.

Proof of Theorem 10.3.1

Proof of Theorem 10.3.1. Step 1 – Spectral error of L̂n. ApplyChandrasekaran
et al.’s Theorem 4.1 with the regularization parameters

γn =
48
√

2Dψ(2 − ν)

ξ(T)ν

√
ϵ

n
, σ, θ as in their conditions (3)–(4).

Under the incoherence and curvature conditions of their Proposition 3.3,
there exists a universal constant C1 > 0 such that, with probability at least
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1 − 2e−ϵ, ∥∥ L̂n − L∗
∥∥

2 ⩽ C1

√
ϵ/n

ξ(T)
. (B.2)

Step 2 – Eigenvector perturbation via Davis–Kahan. Let L∗ = UΛU⊤

with Λ = diag(λ1, . . . , λh, 0, . . . , 0) and collect the top–h eigenvectors in
Uh = [u1, . . . ,uh]. Write the spectral decomposition of the estimator as
L̂n = ÛhΛ̂Û

⊤
h + R, where R contains only the eigen-components of rank

> h. Set the perturbation E := L̂n − L∗.
Applying Corollary 3 from Yu et al. (2015) to the i-th eigenpair gives

∥ui − ûi∥2 ⩽
23/2∥E∥2

δi
. (B.3)

Step 3 – Combine the two bounds. Insert equation B.2 into equation B.3:

∥ ûi − ui ∥2 ⩽
23/2C1

δ ξ(T)

√
ϵ

n
∀ i ∈ [h],

and take the maximum over i. This proves the advertised high-probability
bound

max
i⩽h
∥ ûi − ui ∥2 = O

(√
ϵ/n

ξ(T)δ

)
.

Step 4 – Invert to a sample-size requirement. Setting the right-hand side
to a target accuracy ε ∈ (0, 1) and solving for n yields n ⩾ 4C2

1
ε2

ϵ
ξ(T)2δ2 ,

which is the sample-complexity statement in the theorem.

Proof of Theorem 10.4.1

Proof. By Davis-Kahan theorem (Theorem 2 in Yu et al. (2015)), if ||E||op ⩽

δ/2, then the ℓ2 distance between v1 and utrue
1 (after aligning their signs

via s = ±1) is bounded by:

∣∣∣∣v1 − s · utrue
1
∣∣∣∣

2 ⩽
2 ||E||op

δ
.
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Plugging in E yields the desired result:

∣∣∣∣v1 − s · utrue
1
∣∣∣∣

2 ⩽
2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ

kℓkT
ℓ

∣∣∣∣∣∣
op

1
d1

||k1||
2
2

.

Proof of Corollary 10.4.2

Proof. The absolute difference is:

|E[Q|o]mis − E[Q|o]true| =
∣∣∣∣− ||k1||2

d1
(s · v1)

To −

(
−
||k1||2
d1

(utrue
1 )To

)∣∣∣∣
=

∣∣∣∣− ||k1||2
d1

(s · v1 − utrue
1 )To

∣∣∣∣
=

||k1||2
d1

∣∣(s · v1 − utrue
1 )To

∣∣
By the Cauchy-Schwarz inequality,

∣∣(x)Ty
∣∣ ⩽ ||x||2 ||y||2. Applying this:

|E[Q|o]mis − E[Q|o]true| ⩽
||k1||2
d1

∣∣∣∣s · v1 − utrue
1
∣∣∣∣

2 ||o||2

The term ||s · v1 − utrue
1 ||2 is equivalent to ||v1 − s · utrue

1 ||2 from the main
theorem statement, where s aligns utrue

1 with v1. From the preceding
Theorem, we have the bound (where δ = 1

d1
||k1||

2
2):

∣∣∣∣v1 − s · utrue
1
∣∣∣∣

2 ⩽
2 ||E||op

δ
=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ

kℓkT
ℓ

∣∣∣∣∣∣
op

1
d1

||k1||
2
2

Substituting this bound into the inequality for the error in the conditional
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mean:

|E[Q|o]mis − E[Q|o]true| ⩽
||k1||2
d1

(
2 ||E||op
1
d1

||k1||
2
2

)
||o||2

=
||k1||2
d1
·

2d1 ||E||op

||k1||
2
2
· ||o||2

=
2 ||E||op

||k1||2
||o||2

=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ

kℓkT
ℓ

∣∣∣∣∣∣
op

||k1||2
||o||2

Proof for Theorem 10.4.4

Proof sketch. Step 1: Concentration of the empirical tensor. Let M̂ :=
1
n

∑n
i=1 X

(i)
1 ⊗X

(i)
2 ⊗X

(i)
3 . Because each Xℓ is sub-Gaussian with proxy σmax,

the operator-norm Bernstein bound for order-3 tensors (Lemma 5 of Hsu
and Kakade, 2013) yields

∥M̂−M∥op = O
(
σ3

max

√
p log(p/ε)

n

)
w.p. 1 − ε/2.

Step 2: Robust CP decomposition. Applying the non-symmetric
tensor power method of (Anandkumar et al., 2014, Alg. 2) to M̂ and
invoking their perturbation bound (Theorem 5.1 therein) gives, for every
component r ∈ [4],

∥∥(âr, b̂r, ĉr) − (ar,br, cr)
∥∥

2 = O
(

1
δ
∥M̂−M∥op

)
.

Step 3: Assembling full means. Algorithm 9 concatenates the three
block-means, so µ̂r − µr = (âr − ar, b̂r − br, ĉr − cr), and the same O(·)
factor carries through.
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Step 4: Mixing-weight estimation. Given accurate factor recovery,
the usual least-squares re-estimation of weights satisfies |π̂qc − πqc| =

O
(
∥M̂ −M∥op

)
(Anandkumar et al., 2014, Theorem B.1), yielding the

stated rate.
Step 5: Union bound. Combine Steps 1–4 and union-bound over the

four components to obtain the final probability 1 − ε.

B.5 Experiment Details

In this section, we provide experimental details and additional experi-
ment results. We describe datasets details, evaluation prompts we used to
collect LLM judgments, and individual judge performance. In addition,
we introduce the construction of programmatic judge, and ablation stud-
ies including prompt-based interventions. Finally, we include additional
experiment results for our tensor-based CARE algorithm: synthetic experi-
ments results on graph-aware judge partition, and real-world applications.

Datasets

FeedbackQA(Li et al., 2022). Aquestion-answering datasetwith human-
provided scalar ratings of answer helpfulness, ranging from 1 to 5. We use
the validation set in our experiments, treating the average of two human
ratings as the ground truth.

HelpSteer2 (Wang et al., 2024b). A large-scale dataset of assistant re-
sponses annotated with real-valued scores (0 to 4) across multiple axes,
including helpfulness, correctness, coherence, complexity, and verbosity.
We use the validation set and take the helpfulness score as the ground
truth.
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UltraFeedback (Cui et al., 2023). A scalar feedback dataset where assis-
tant responses are rated from 0 to 10 based on overall quality, using scores
aggregated from GPT-4 and human raters. We randomly sample 5,000
examples for evaluation.

Synthetic Dataset (Section 11.6). We construct a synthetic dataset with
latent state probabilities set to πqc = [0.2, 0.2, 0.3, 0.3], corresponding to
latent states (Q,C) as (0, 0), (0, 1), (1, 0), (1, 1) respectively. The judges are
organized into three distinct groups, each containing four judges whose
conditional means µqc are randomly drawn from a uniform distribution
ranging between 1 and 4. Dependence structures are imposed explicitly:
for judges independent of the true quality variable Q, we constrain their
conditional means such that averages depend solely on the confounder
C (i.e., rows corresponding to Q = 0 and Q = 1 are identical for each C
state).

Prompt Templates

In this subsection we provide the prompts we used for collecting LLM
judgements.

LLM Judge Scoring Template (FeedbackQA, HelpSteer2, Ultra-
feedback)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the
system_answer answers the user concerns expressed in the
user_question. Give your answer as a float on a scale of {min_rating}
to {max_rating}, where {min_rating} means that the system_answer
is not helpful at all, and {max_rating} means that the answer
completely and helpfully addresses the question.
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Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and
{max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

Intervened LLM Judge Scoring Template (Section 11.4)

You are a careful and impartial evaluator. Your task is to rate how
well the system_answer responds to the user_question, focusing on
substance, correctness, and completeness.

Rate the answer on a scale from {min_rating} to {max_rating},
where:
- {min_rating} means the answer does not address the question or is
misleading,
- {max_rating} means the answer fully and helpfully addresses the
question with accurate, relevant, and concise information.
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Avoid common judgment biases:
- Do **not** reward irrelevant fluency, length, or politeness.
- Do **not** penalize answers solely for brevity if they are complete.
- Do **not** be influenced by phrasing style unless it affects clarity or
correctness.

Judge only the answer’s content in relation to the question.
Ignore formatting, grammar, or tone unless they impact understand-
ing or utility.

Provide your feedback as follows:

Feedback:::
Total rating: (a float from {min_rating} to {max_rating})

Now, here are the inputs:

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

LLM Judge Toxicity Scoring Template (CivilComments)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the
system_answer answers the user concerns expressed in the
user_question. Give your answer as a float on a scale of {min_rating}
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to {max_rating}, where {min_rating} means that the system_answer
is not helpful at all, and {max_rating} means that the answer
completely and helpfully addresses the question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and
{max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

Individual LLM Judge Performance

Table B.2 shows the performance of individual LLM judges. Overall, we
find that aggregation methods outperform or match the best single judge.
Since the relative performance of individual LLM judges is not known
a priori in practical settings, aggregation offers a useful approach for
integrating judges in an agnostic manner.
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Table B.2: Individual Judge Performance in Section 11.1

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

gemma-3-1b-it 1.0073 0.2315 1.0666 0.0825 1.0606 0.1812
gemma-3-4b-it 0.7578 0.4537 0.9920 0.1402 0.8492 0.2309

Llama-3.1-8B-Instruct 0.8148 0.4341 1.1364 0.1261 0.8648 0.3194
Llama-3.2-1B 1.2219 -0.0525 1.0049 -0.0132 1.0119 0.0752
Llama-3.2-3B 1.0362 0.0051 0.9995 0.0251 1.1522 0.1648

Mistral-7B-Instruct-v0.3 1.0244 0.4539 1.0793 0.1116 0.8572 0.1735
Phi-4-mini-instruct 0.8082 0.4557 1.0692 0.1576 0.8355 0.3147

Qwen3-0.6B 1.0969 0.2073 1.1255 0.0370 1.0233 0.1254
Qwen3-1.7B 1.1507 0.2485 1.0693 0.1049 1.1382 0.1926
Qwen3-4B 1.0999 0.2854 0.9675 0.2290 0.7088 0.3921
Qwen3-8B 1.0517 0.4417 0.9675 0.2094 0.7512 0.3140

Programmatic Judges

Programmatic judges, synthesized by LLMs, distill and convert evalua-
tion logic into interpretable, cheap-to-obtain program code (Huang et al.,
2025). These program judges provide specialized, independent assess-
ments compared to using LLMs directly as evaluators. We integrate these
judge sets into CARE to enhance evaluation signals.

We describe the creation of programmatic judges and the criteria they
encode. Using OpenAI’s GPT-4o (Hurst et al., 2024), we generate judges
with the following prompt:

Program Judge Template

You are now a judge to evaluate LLM generated response with a
given question. You will write your evaluation logic into code and
generate python programs to return their scores. Higher represents
better response quality. Consider complex criteria for assessing
responses, leveraging third-party models, embedding models, or
text score evaluators as needed.

Function signature: def _judging_function(self, question, re-
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sponse):

We synthesize 23 programs and select 10 representative ones for our
experiments (see Section 11.2 and Section 11.3). These programs evaluate
responses based on diverse criteria: (i) structure, (ii) readability, (iii)
safety, (iv) relevance, and (v) factuality. For example:

• Structure: A judge counts transitionmarkers (e.g., “therefore,” “how-
ever”) to assess coherence, with more markers indicating better qual-
ity.

• Relevance: A judge uses TF-IDF to convert questions and responses
into vectors, computing cosine similarity to measure semantic align-
ment (see Program B.1). Another employs semantic embeddings
for similarity metrics (see Program B.2).

• Readability: A judge leverages a third-party API to evaluate com-
plexity, using metrics like the Flesch–Kincaid grade level (see Pro-
gram B.3).

All judging logic, conditions, and pre-defined keyword lists are generated
by the LLM. Below, we provide examples to illustrate this approach.

Listing B.1: Lexical Overlap Computation using TF-IDF.

def _ l e x i c a l _ove r l ap ( s e l f , question , response ) :
" " " Compute l e x i c a l overlap using TF−IDF for

↪→ re levance evaluat ion . " " "
# Preprocess input quest ion and response (e . g . ,

↪→ lowercase , remove stopwords)
ques t ion_c lean = s e l f . _preprocess ( quest ion )
response_clean = s e l f . _preprocess ( response )
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# Return 0 . 0 i f e i t h e r input i s empty a f t e r
↪→ preprocess ing

i f not ques t ion_c lean . s t r i p () or not
↪→ response_clean . s t r i p () :
re turn 0 . 0

# Transform inputs to TF−IDF vec tors using the
↪→ vec t o r i z e r

t f i d f _ma t r i x =
↪→ s e l f . t f i d f _ v e c t o r i z e r . f i t _ t r an s fo rm ([ quest ion_clean ,
↪→ response_clean ])

quest ion_vec = t f i d f _ma t r i x [0] # Ex t ra c t
↪→ quest ion vec tor

response_vec = t f i d f _ma t r i x [1] # Ex t ra c t
↪→ response vec tor

# Compute cos ine s im i l a r i t y between vec tors and
↪→ re turn as f l o a t

re turn f l o a t ( c o s i n e _ s im i l a r i t y ( question_vec ,
↪→ response_vec ) [0][0])

Listing B.2: Semantic Similarity using Embedding Model.

def _ semant i c_ s imi l a r i ty_s t rong ( s e l f , question ,
↪→ response ) :
" " " Compute semantic s im i l a r i t y between quest ion

↪→ and response . " " "
# Return 0 . 0 i f e i t h e r input i s empty
i f not quest ion . s t r i p () or not response . s t r i p () :

re turn 0 . 0

# Encode quest ion and response in to dense
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↪→ vec tors using the embedding model
question_embedding =

↪→ s e l f . semantic_embedding_strong_model . encode(
question , max_length=4096

) [ ’ dense_vecs ’ ]
response_embedding =

↪→ s e l f . semantic_embedding_strong_model . encode(
response , max_length=4096

) [ ’ dense_vecs ’ ]

# Compute dot product s im i l a r i t y between
↪→ embeddings

s im i l a r i t y = question_embedding @
↪→ response_embedding

# Clamp s im i l a r i t y score between 0 . 0 and 1 . 0 and
↪→ re turn as f l o a t

re turn f l o a t (max(0 . 0 , min ( 1 . 0 , s im i l a r i t y ) ) )

Listing B.3: Readability Metrics Calculation.

def _ r e adab i l i t y ( s e l f , response ) :
" " " Ca lcu la te r e adab i l i t y metr i cs fo r response . " " "
# Compute r e adab i l i t y scores using t e x t s t a t

↪→ l i b r a r y
return {

# Flesch Reading Ease ( inver ted : higher
↪→ score means harder to read )

" f l e sch_read ing_ease " : 100 −
↪→ t e x t s t a t . f l e s ch_read ing_ease ( response ) ,

# SMOG Index ( higher score i nd i c a t e s higher
↪→ reading d i f f i c u l t y )
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" smog_index " : t e x t s t a t . smog_index( response ) ,
}

We report the performance of individual program judges in Table B.3.
While their standalone performance is limited, they provide useful signals
for the integration strategies discussed in Sections 11.2 and 11.3.

Table B.3: Program Judge Performance. (*) represents the selected judges
in Section 11.2.

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

factuality_check_score (*) 1.9956 0.0872 1.1992 0.0075 1.1910 0.0492
factuality_factKB_score (*) 1.0343 0.2288 1.7180 0.0414 1.4342 0.1051

readability_flesch_reading (*) 1.2185 0.0431 2.5682 0.0445 2.5145 0.1396
readability_smog (*) 0.9805 0.1277 2.3286 0.0283 2.3122 0.1604

relevance_bleu 1.4035 0.0126 2.7452 -0.0355 2.7330 0.0560
relevance_keyword_overlap 1.2779 0.1977 2.3735 0.0138 2.2725 0.1461
relevance_lexical_overlap (*) 1.1371 0.2316 2.0148 -0.0144 1.9182 0.1187

relevance_rouge 1.3079 0.2066 2.5603 0.0232 2.4838 0.1327
relevance_semantic_sim_strong (*) 0.8759 0.4092 1.1182 0.0395 0.9866 0.1601

safety_toxicity (*) 1.5396 -0.0380 1.1105 0.0300 1.0139 -0.0043
structure_avg_paragraph_length_dist 1.4560 -0.1883 2.5562 -0.0081 2.4637 0.1074
structure_avg_sentence_length_dist 1.5248 -0.0140 2.4407 -0.0287 2.4179 0.1612

structure_cohesion_score 1.4078 0.2070 2.7139 0.0345 2.6578 0.1567
structure_emphasis_count 1.2826 0.1988 2.6642 0.0482 2.5955 0.2060

structure_headings 1.4765 0.0423 2.6521 -0.0340 2.5916 0.1049
structure_lexical_diversity 1.0672 0.1625 2.1864 0.0444 2.0981 0.1935

structure_list_usage 1.6284 0.0159 3.0208 -0.0108 3.0132 0.0872
structure_logical_transitions (*) 1.2694 0.1743 2.2693 0.0520 2.4355 0.2263

structure_max_sentence_length (*) 1.3039 0.1272 2.7532 0.0104 2.7511 0.1377
structure_min_sentence_length 1.3568 0.1887 2.4872 0.0400 2.4322 0.2046

structure_questions 1.2443 0.2692 2.4910 0.0360 2.4064 0.2114
structure_sentence_balance 1.4423 0.1835 2.6757 0.0501 2.6444 0.2203
structure_sentence_count (*) 1.3099 0.1742 2.4408 0.0807 2.6570 0.2300

Effects of Prompt-Based Intervention (Section 11.4)

We begin by analyzing how the intervention using a robust prompt affects
the performance of individual LLM judges. Figures B.2 (MAE) and B.3
(Kendall’s τ) present the performance differences relative to the vanilla
prompt. While the intervention aims to reduce confounding signals, its
impact varies—some model–dataset combinations show improvement,
while others show degradation.
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We then assess how these shifts influence aggregate performance.
Figures B.4 and B.5 show the corresponding changes in aggregation ac-
curacy. Most baseline methods benefit from the intervention, whereas
CARE shows a slight performance drop. A plausible explanation is that
once confounding signals are mitigated, the additional latent variables in
CAREmay begin tomodel residual noise rather thanmeaningful structure,
slightly reducing its performance. Nevertheless, as shown in Section 11.4,
CARE without intervention still outperforms other baselines with the
robustness prompt, highlighting its effectiveness even without manually
crafted interventions for hidden confounders.
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Figure B.2: Change in MAE (↓) for individual LLM judges after applying
the robustness prompt.

Additional Real-World Experiment on Gaussian Mixture

We consider a Gaussian mixture setting where the latent variable is binary,
but the observables (judge outputs) are real-valued Gaussian scores. This
experiment evaluates the effectiveness of Algorithm 9 on a real dataset.

Setup. We use a subset of the CivilComments dataset (Borkan et al.,
2019), randomly sample 5,000 examples. The ground-truth label is binary
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Figure B.3: Change in Kendall’s τ (↑) for individual LLM judges after the
robustness prompt.
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Figure B.4: Change in aggregateMAE (↓) after propagating the robustness
prompt through each aggregation method.

toxicity (0 or 1), while LLM judges provide real-valued toxicity scores
ranging from 0 to 9. In addition to the original LLM judges, we include
five LLMs:

• meta-llama/Meta-Llama-3-8B-Instruct,

• mistralai/Mistral-7B-Instruct-v0.2,

• Qwen/Qwen2.5-0.5B-Instruct,
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Figure B.5: Change in aggregate Kendall’s τ (↑) after the robustness
prompt.

• Qwen/Qwen2.5-1.5B-Instruct,

• Qwen/Qwen2.5-3B-Instruct.

For the MV and WS baselines, we first discretize judge scores using
a threshold of 4.5 before applying majority vote or weighted sum. For
AVG and UWS, we aggregate scores first, then apply the threshold. CARE
(Algorithm 9) directly infers the latent binary label from continuous scores.
We evaluate all methods using classification accuracy.

Table B.4: Aggregated accuracy (higher is better) in CivilComments
dataset.

Method Acc. (%)
MV 74.32%
AVG 73.80%
WS 74.95%
UWS 74.95%
CARE 75.27%

Results. Table B.4 shows that CARE achieves the highest accuracy. This
result highlights its ability to better handle confounding factors and per-
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(a) Random Partitioning (b) Graph-aware Partitioning

Figure B.6: Random Partitioning vs. Graph Aware Partitioning. A random
partitioning (a) leaves cross-view edges that violate the independence
assumptions of tensor methods, whereas the graph-aware partitioning (b)
considers cross-view edges and restores the required separation.

form effective latent inference, even when the observed data (continuous
scores) differ from the latent variable type (binary labels).

Synthetic Experiment on Graph-Aware Tensor
Decomposition

When judges exhibit conditional dependencies, naively partitioning them
into views violates the independence assumptions required by tensor
decomposition. We hypothesize that partitioning judges via a graph-
aware procedure that respects dependency structure yields substantially
better estimation than random partitioning.

Setup. We simulated 10,000 items scored by p = 12 judges, partitioned
into three views of four judges each. To induce conditional dependencies,
we planted edges of strength 0.3 within each true view at 40% density. We
then compared two grouping strategies across ten random seeds:

• Random: assign judges to views uniformly at random;

• Graph-Aware: assign views to minimize cross-block edges in the em-
pirical precision matrix.
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Performance was measured by the ℓ2 error in recovering the latent compo-
nent means, i.e. ||µqc − µ̂qc||2).
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Figure B.7: ℓ2 reconstruction
error (mean ± SD) for ran-
dom vs. graph-aware group-
ing.

Results. As shown in Figure B.7, graph-
aware grouping dramatically reduces re-
construction error—by more than an or-
der of magnitude—compared to random
grouping. This confirms the importance of
respecting dependency structure during
view formation and underscores the ad-
vantage of CARE, which integrates graph
structure directly into the tensor decompo-
sition procedure.

Computing Resources

We used a server equipped with an
NVIDIA RTX 4090 (24GB). Generating
LLM judge outputs took up to 3 hours per dataset. In contrast, the aggre-
gation algorithmswere efficient, completing in under 1 minute for datasets
with approximately 5,000 rows.

B.6 Broader Impact Statement

This work presents a novel approach to aggregate scores from multiple
LLMs serving as judges by identifying confounding variables and thus
potentially reducing the bias in the overall judge scores. The potential
broader impact includes a framework for improved LLM-as-a-judge scores
which can be used at various applications. However, it is important to ac-
knowledge that using LLMs as potential judges to automate labor-intense
annotation taskswhich is an active area of research carries some limitations
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and past research has discussed some unintended consequences, such as
over-reliance on judge outputs, misuse and misinterpretation of results
which might carry high real-world stakes. It is crucial to use automated
LLM-as-a-judge tools responsibly and ethically, considering potential bi-
ases in data and models, and ensuring transparency and accountability in
their application.
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