
Predictability of Multiscale Waves and Tropical

Rainfall and the Impact of Averaging

By

Ying Li

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2020

Date of final oral examination: July 24, 2020

The dissertation is approved by the following members of the Final Oral Committee:

Samuel N. Stechmann, Professor, Mathematics

Nan Chen, Assistant Professor, Mathematics

Elizabeth Maroon, Assistant Professor, Atmospheric and Oceanic Sciences

Stephanie Henderson, Assistant Professor, Atmospheric and Oceanic Sciences



i

Abstract

For tropical rainfall, there are several potential sources of predictability, including synoptic-

scale convectively coupled equatorial waves (CCEWs) and intraseasonal oscillations such

as the Madden–Julian Oscillation (MJO). In prior work, predictability of these waves

and rainfall has mainly been explored using forecast model data. Here the first goal

is to estimate the intrinsic predictability using, instead, mainly observational data. To

accomplish this, Tropical Rainfall Measuring Mission (TRMM) data is decomposed into

different wave types using spectral/Fourier filtering. Predictability of MJO rainfall is

estimated to be 22 to 31 days, depending on longitude, as measured by the lead time

when pattern correlation skill drops below 0.5. Predictability of rainfall associated with

convectively coupled equatorial Rossby waves, Kelvin waves, and a background spec-

trum or non-wave componentare estimated to be 8 to 12 days, 2 to 3 days and 0 to

3 days, respectively. Combining all wave types, the overall predictability of tropical

rainfall is estimated to be 3 to 6 days, over the Indian and Pacific Ocean regions, and

on equatorial synoptic and planetary length scales. For comparison, outgoing longwave

radiation (OLR) was more predictable than rainfall by 5 to 10 days over these regions.

Wave-removal tests were also conducted to estimate the contribution of each wave type

to the overall predictability of rainfall. In summary, no single wave type dominates

the predictability of tropical rainfall; each of the types (MJO, CCEWs, and non-wave

component) has an appreciable contribution, due to variance contribution, length of

decorrelation time, or a combination of these factors.

How to denoise the data and achieve better forecast skills? Based on conventional

wisdom, one would expect a more skillful forecast if predicting weather averaged over one

week instead of the weather averaged over one day. Similarly, one would expect a more
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skillful forecast when averaging over a large spatial area instead of a smaller spatial area.

Meanwhile, in making weather and climate predictions, the goal is often not to predict

the instantaneous, local value of temperature, wind speed, or rainfall; instead, the goal

is often to predict these quantities after averaging in time and/or space—for example,

over one day or one week. What is the impact of spatial and/or temporal averaging

on forecasting skill? This question is then investigated using simple stochastic models

that can be solved exactly analytically. While the models are idealized, their exact

solutions allow clear results that are not affected by errors from numerical simulations

or from random sampling. As a model of time series of oscillatory weather fluctuations,

the complex Ornstein-Uhlenbeck process is used. To furthermore investigate spatial

averaging, the stochastic heat equation is used as an idealized spatiotemporal model for

moisture and rainfall. Space averaging and time averaging are shown to have distinctly

different impacts on prediction skill. Spatial averaging leads to improved forecast skill,

in line with some forms of basic intuition. Time averaging, on the other hand, is more

subtle: it may either increase or decrease forecast skill. The subtle effects of time

averaging are seen to arise from the relative definitions of the time averaging window

and the lead time. These results should help in understanding and comparing forecasts

with different temporal and spatial averaging windows.

With the prior knowledge of the theoretical results from the stochastic models,

we move forward to systematically investigate the impact of averaging based on data

from operational weather forecasts. Data is analyzed for precipitation and surface tem-

perature, for lead times of 3 and 7 days, respectively, and for time- and space-averaging

diameters of 1 to 7 days and 100 to 4500 km, respectively. We find that time averaging

is actually less effective than spatial averaging at improving forecast skill. A theoretical

explanation is provided for the minimal effectiveness of time averaging, based on formu-

las for the decorrelation time of synthetic weather time series from a stochastic model.

In effect, while time averaging creates a time series that is visually smoother, it does not
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necessarily cause a substantial increase in the predictability of the time series.
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Chapter 1

Introduction

The main research work described in this thesis will be focusing on investigations in the

important multiscale waves, such as Madden-Julian Oscillation and convectively coupled

equatorial waves, and trying to discover interesting phenomena from data analysis for

tropical rainfall, surface temperature, etc.

Madden-Julian Oscillation (MJO) and Convectively Coupled Equatorial Waves

(CCEWs) play important roles in tropical climate modelling and weather predictions. In

this chapter, we introduce the theory and background about these significant multiscale

waves and their influence in the field of atmospheric science, especially in equatorial

fluid dynamics.

A brief introduction about the applications of stochastic models and time averag-

ing in the climate and weather modelling appearing in some recent research work will be

covered as well in this chapter, followed by a deep dive in the predictability of multiscale

waves and impacts of averaging in the next chapters.

1.1 Madden-Julian Oscillation

In the tropical atmosphere, the Madden-Julian Oscillation (MJO) is the largest element

of the intraseasonal (30- to 90-day) variability, identified by and then named for Roland

Madden and Paul Julian of the American National Center for Atmospheric Research
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(NCAR) in 1971. MJO is also known as the 30- to 60-day oscillation, 30- to 60-day

wave or intraseasonal oscillation. The MJO is best described as intraseaonal tropical

climate variability which varies on a week-to-week basis so that there can be multiple

MJO events within a season. As a large-scale coupling between atmoshperic circulation

and tropical deep atmospheric convection, MJO is revealed by anomalous rainfall most

clearly through less intermittent Outgoing Long-wave Radiation (OLR) and it is also

closely connected with a lot of other tropical atmospheric phenomena, such as the mon-

soon, tropical cyclogenesis, El Niño-Southern Oscillation (ENSO), etc. It can also have

dramatic impacts in the mid-latitudes, contributing a lot to various extreme events in

the United States several times a year, including Arctic air outbreaks during the winter

months across the central and eastern areas of the United States [28,65].

Unlike ENSO, which is stationary, the Madden-Julian Oscillation is a traveling

pattern that propagates eastward, at approximately 4 to 8 m/s through the atmosphere

above the warm parts of the Indian and Pacific oceans. Consequently, the Madden-

Julian Oscillation is characterized by an eastward progression of large regions of both

enhanced and suppressed tropical rainfall, observed mainly over the Indian and Pacific

Ocean. The MJO is an eastward moving disturbance of rainfall, winds, clouds and

pressure that traverses the planet in the tropics and returns to its initial starting point

in about 30 to 60 days [46,47].

Fig. 1.1 shows the activity of outgoing longwave radiation (OLR) throughout the

whole year of 2010. The observational data are averaged over the tropical belt. Eastward

propagation indicating MJO activities can be clearly observed through the motion of

OLR as time changes in this figure.
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Figure 1.1: A Hovmöller diagram of outgoing longwave radiation (OLR)
showing the MJO in the year 2010 after averaging over the tropical belt.

The MJO consists of two phases: the enhance rainfall phase and the suppressed

rainfall phase. The enhanced rainfall phase is also known as the enhanced convective

phase [90]. In the enhanced convective phase, winds at the surface converge and air

is pushed up throughout the atmosphere. At the top of the atmosphere, the winds

reverse. This kind of rising air motion tends to increase condensation and rainfall.

On the contrary, in the suppressed convective phase, winds converge at the top of the

atmosphere, the air is forced to sink and then to diverge at the surface. The air warms

and dries as it sinks from high altitudes, which suppresses rainfall. The planet is often
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dissected by the strong MJO into two halves in these two different phases. These two

phases produce opposite changes in clouds and rainfall and this entire dipole propagates

eastward. More cloudiness, rainfall and storminess in the enhanced convective phase

while more sunshine and dryness in the suppressed convective phase are caused by this

eastward movement of the dipole structure in the tropics. However, the changes in the

rainfall and winds not only impacts the tropics but also the extratropics. The direct

influence can be tracked poleward farther than 30 degrees latitude from the equator in

both northern and southern hemispheres [29, 71].

Irregular global weather and climate phenomenon will appear according to dif-

ferent statuses of the present MJO’s movement. When MJO’s movement slow or stall

during the Northern Hemisphere summer and early autumn occasionally, it will result

in consistently enhanced rainfall for one side of the global and consistently depressed

rainfall for the other side. If the MJO goes quite for a period of time, it will lead to

non-anomalous storm activity in different regions of the globe. Mechanistically, MJO

affects the global climate and weather through its alteration of tropical heating patterns

that sets off a Rossby wavetrain/teleconnection pattern.

There exist plenty of MJO-related local effects and downstream effects. For ex-

ample, the MJO has significant effects on timing and strength of the Indian and West

African summer monsoon during the Northearn Hemisphere summer season as well as

influence on tropical cyclones throughout the boreal warm season in the north Pacific

and the north Atlantic basins [6, 37]. The interannual variability in MJO oscillation

activities between long periods of strong activities and weak or absent oscillations is also

partially connected to the ENSO cycle. Strong links between the MJO events and ex-

treme west coast precipitation events in the North America including storms and floods

are suggested by a lot of strong evidence [21], which makes MJO important for weather

and climate predictions in an extended range and areas beyond the tropics.
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In addition, rapid global warming in ocean temperature changes the residence

time of MJO over the tropical oceans, resulting in the changes of rainfall patterns across

the globe. From all aspects, MJO is an important component in weather and climate

predictions due to its huge impact in different tropical and extratropical climatic events

and issues [53].

1.2 Convectively Coupled Equatorial Waves

1.2.1 Equatorial Fluid Dynamics

To describe the deep convection in the fluid dynamics of the atmosphere and ocean,

the shallow water system is widely used to model and control these complex processes.

The shallow water theory describes motions of incompressible and homogeneous density

fluid dynamics in a single thin layer on a rotating sphere that is independent from the

vertical direction.

A general form of the shallow equations can be written as

∂u

∂t
− fv = −∂φ

∂x
(1.1)

∂v

∂t
+ fu = −∂φ

∂y
(1.2)

∂φ

∂t
+ ghe(

∂u

∂x
+
∂v

∂y
) = 0 (1.3)

where u is the zonal velocity, v is the meridional velocity, φ is the geopotential, g is

the acceleration due to gravity, he is the depth of the undisturbed layer of fluid and

f is the Coriolis coefficient associated with the Coriolis force. Physcially, the Coriolis

force is an inertial or fictitious force acting on objects in motion within a frame of

reference that rotates with respect to an inertial frame. The Coriolis effect describes the

pattern of deflection taken by objects due to the Earth’s rotation with different rotation
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speed at different latitudes. Both the velocity of the Earth and the velocity of the fluid

influence the impact of the Corislis effect, contributing to a lot of large-scale weather

patterns. Specifically, f = 2Ωsin(θ) on earth where Ω is the angular rotation rate (π/12

radians/hour) of the Earth and θ is the latitude.

In the tropics, an appropriate valid approximation for the Coriolis parameter f is

a linear function of y as f = βy where y is the distance from the equator. The shallow

water equations turn into a tropical version as

∂u

∂t
− βyv = −∂φ

∂x
(1.4)

∂v

∂t
+ βyu = −∂φ

∂y
(1.5)

∂φ

∂t
+ ghe(

∂u

∂x
+
∂v

∂y
) = 0 (1.6)

Zonally propagating wave solutions in the form of
u

v

φ

 =


u0(y)

v0(y)

φ0(y)

 exp [i(kx− ωt)], (1.7)

where k is the zonal wavenumber and ω is the frequency, are sought through substitutions

and rearrangements. Then the problem is reduced into a cleaned version of a second-

order differential equation of v0 only:

d2v0

dy2
+ (

ω2

ghe
− k2 − k

ω
β − β2y2

ghe
)v0 = 0 (1.8)

With this quantum harmonic oscillator equation, the solutions to this equation are well

known which decay away from the equator and the constant part of the coefficient in
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parentheses must satisfy

√
ghe
β

(
ω2

ghe
− k2 − k

ω
β) = 2n+ 1, n = 0, 1, 2, 3, · · · (1.9)

The relationship between the frequency ω and the wavenumber k is therefore

established through the equation (1.9). The horizontal dispersion relationships for a

bunch of important and well-known equatorial waves of the atmoshpere and ocean,

including eastward inertio-gravity (EIG), westward inertio-gravity (WIG), equatorial

Rossby (ER) waves are defined through this relationship. In addition, mixed Rossby-

gravity (MRG) waves correspond to the n = 0 solution for (1.9) but require special

consideration. v0 = 0 for all y is an extra solution to the equations (1.4)-(1.5) but not

covered by the relationship (1.9). This extra solution corresponds to the Kelvin wave.

More detailed explanations about the equatorial fluid dynamics and convectively coupled

equatorial waves can be can be found at the paper [33] and the book [49].

With the nondimensional frequency ω∗ ≡ ω/(β
√
ghe)

1/2 and nondimensional

zonal wavenumber k∗ ≡ k(
√
ghe/β)1/2, the dispersion curves for these important equa-

torial waves are plotted in the Fig. 1.2. Kelvin wave solution is labeled as n = −1 in

Fig. 1.2 for consistency with equation (1.9).

Equatorial waves decay rapidly away from the equator but they can propagate in

the longitudinal and vertical directions. As a result of the combination of the rotation

of the spherical shaped Earth and rapid increase in the magnitude of the Coriolis force

away from the equator, the equatorial waves are trapped close to the equator. These

trapped atmospheric and oceanic waves near the equator affect a lot on many climate

and weather events such as ENSO. From the perspective of the analytical solutions, full

horizontal structures of the wave solutions can be obtained by substitution of v0 solutions

from (1.8) into the original shallow water equations (1.4) - (1.6). Fig. 1.3 shows the full
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Figure 1.2: Dispersion curves for equatorial waves as a function of the nondi-
mensional frequency ω∗ and the nondimensional zonal wavenumber k∗, cited
from [33] c© Advancing Earth and space science. Used with permis-
sion.

structures for some of these equatorial waves. The interesting trapped phenomenon near

the equator are clearly and vividly shown in the solutions depicted in Fig. 1.3, playing

important roles in not only the tropical but also the global atmospheric physical processes

and climate phenomena through their influence on the global circulation patterns.

1.2.2 Analysis in the Wavenumber-Frequency Domain

Satellite data serve as a crucial aid in exploring the location and strength of deep trop-

ical convection because in situ observations over the tropics are very limited. There are

some widely and commonly used datasets for research in MJO and CCEWs. The inter-

polated NOAA-produced outgoing longwave radiation (OLR) product is most utilized

and serves as a very good statistical proxy for tropical convection with records starting
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Figure 1.3: Horizontal structures of a subset of the zonally propagating wave
solutions to the shallow water equations (equations (1.4)-(1.6)) on an equa-
torial β plane at nondimensional wavenumber k∗ = 1 or -1, cited from [33]
c© Advancing Earth and space science. Used with permission.

from 1974. Measured by infrared-sensing geostationary weather satellites, the degree of

outgoing long wave radiation tracks the active phase of MJO. Stronger convection or

thunderstorm complexes are expected to appear with lower amount of OLR. The Cloud
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Archive User Services (CLAUS) dataset produces a global grid of brightness tempera-

ture (Tb) at 0.5◦ grids and 8 times a day within the tropics through geostationary and

polar orbiting images. It is another useful dataset for representing deep convection with

an advantage of the higher resolutions compared to the OLR dataset. Reanalysis data

are also commonly used for research about the atmospheric dynamics. Reanalysis con-

siders both observational data and first-guess model data to get an estimate about the

atmospheric state. Reanalysis is good and efficient at capturing large-scale features of

CCEWs but is limited in isolating more subtle details in the wave dynamics due to the

use of radiosonde data.

Figure 1.4: Zonal wavenumber-frequency power spectra of the (a) antisym-
metric component and (b) symmetric component of OLR, calculated for the
entire period of record from 1979 to 1996. For both components, the power
has been summed over 15◦S–15◦N lat, and the base-10 logarithm taken for
plotting. Contour interval is 0.1 arbitrary units . Shading is incremented in
steps of 0.2. Certain erroneous spectral peaks from artifacts of the satellite
sampling are not plotted. Cited from [84] c© American Meteorological
Society. Used with permission.
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Figure 1.5: Wavenumber–frequency power spectrum of the (a) symmetric and
(b) antisymmetric component of Cloud Archive User Services (CLAUS) Tb
for July 1983 to June 2005, summed from 15◦N to 15◦S, plotted as the ratio
between raw Tb power and the power in a smoothed red noise background
spectrum (see WK99 [84] for details). Contour interval is 0.1, and contours
and shading begin at 1.1, where the signal is significant at greater than the
95% level. Dispersion curves for the Kelvin, n = 1 equatorial Rossby (ER), n
= 1 and n = 2 westward inertio-gravity (WIG), n = 0 eastward inertio-gravity
(EIG), and mixed Rossby-gravity (MRG) waves are plotted for equivalent
depths of 8, 12, 25, 50, and 90 m. Cited from [33] c© Advancing Earth
and space science. Used with permission.
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As prominent spectral peaks are oriented along the dispersion curves of shallow

water modes for a resting basic state from observational data, to isolate the MJO and

different equatorial waves, the method of analysis and fitering in wavenumber-frequency

domain is widely adopted for researching in these waves [84]. Power spectrum analysis

of observational data of CLAUS and OLR along with rainfall provides strong evidence

and support for the scientific reasonability and feasibility for analysis in wavenumber-

frequency domain analysis. A lot of features in the power spectrum of the observational

data are in line with the theory excellently. A spectrum obtained by dividing the raw

power in satellite brightness temperature by an estimate of its red noise background for

the CLAUS data is shown in Fig. 1.5 ([33]) and the contours of the logarithm of the

power in the antisymmetric and symmetric components of OLR are shown in Fig. 1.4

([84]). One can see the eastward propagating MJO is occuring mostly at eastward

wavenumbers 1,2 and 3 and cetered at a period of about 48 days in OLRS but not so

detectable in OLRA for the raw OLR data, where OLRS(φ) = [OLR(φ)+OLR(−φ)]/2 is

the symmetric component and OLRA(φ) = [OLR(φ)−OLR(−φ)]/2 is the antisymmetric

component for OLR as a function of latitude φ. At the same time, one can see very

clearly that spectral peaks are located very well along the dispersion curves of CCEWs

derived from the shallow water equations for the CLAUS data.
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Figure 1.6: Thick boxes indicate the regions of the wavenumber-frequency
domain used for filtering of the OLR dataset to retrieve the longitude-time
information of the convectively coupled tropical waves for the (a) antisym-
metric component and (b) symmetric component of the OLR. The thin lines
are the various equatorial wave dispersion curves for the five different equiv-
alent depths of h 5 8, 12, 25, 50, and 90 m. Cited from [84] c© American
Meteorological Society. Used with permission.

Based on these exploration and evidence, the wavenumber-frequency filtering

can be applied to the observational dataset to extract the characteristics of MJO and

convectively coupled waves in the time-longitude domain for each latitude. Fig. 1.6

displays the defined regions of filtering for MJO and each equatorial wave.

All these theories, datasets and methodologies serve as scientific cornerstones and

provide crucial aid for a lot of tropical climate and weather research and as well as for

the further analysis and research in the following chapters.
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1.3 Stochastic Models and Averaging

Stochastic models have emerging applications in mathematical modeling in atmospheric

science, such as tropical precipitation and water vapor dynamics , tropical waves, etc.

Although deterministic models haven played important roles in modeling the fluid dy-

namics of atmosphere and ocean physically, stochastic models are a trending modeling

method to add uncertainty in the models to have a better description of the uncer-

tain quantities in atmospheric science. Through stochastic models, signals can be well

modeled and a lot of important characteristics such as the the power spectrum can be

captured in the wavenumber-frequency domain. At the same time, time and/or space

averaging are widely used techniques in climate and weather predictions to aim at deal-

ing with the limitation of data availability, denoising, predicting quantities over a region

or time period. For example, in the research work of [92], time averaging is applied to

predict precipitation over a range of time scales from a day to months with short to

medium lead times for an operational forecast system, investigating forecast skills from

short time predictions to intraseasonal time scale. One would expect improved forecast

skills for most of the cases due to the denoising effects embedded in the averaging pro-

cess based on the conventional wisdom. But systematical analysis in the impacts of time

and spatial averaging are still ambiguous and lacking in this field both for theoretical

analysis and observational data analysis. Motivated by this, a systematical investigation

about this concern has been implemented and addressed in Chapter 3 and Chapter 4.
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Chapter 2

Predictability of Tropical Rainfall

and Waves: Estimates from

Observational Data [40]

2.1 Introduction

Different types of “weather waves” exist in different areas of the globe. While baro-

clinic eddies generate much of the synoptic-scale weather fluctuations in midlatitudes,

convectively coupled equatorial waves (CCEWs) are, in a sense, the “weather waves”

of the tropics. CCEWs are a significant component of synoptic-scale variability—

i.e., time scales of roughly 2–10 days and length scales of roughly 1,000–10,000 km

(e.g., [33, 77, 78, 84]). The Madden–Julian Oscillation (MJO) is another significant con-

tributor to tropical weather and climate, with a larger-scale signature on scales of roughly

30–90 days and 20,000 km (e.g., [36, 83,90]).

In the present chapter, some of the main questions of interest are: What are

the intrinsic limits of predictability of the “weather waves” of the tropics (CCEWs and

the MJO)? Furthermore, to what extent do CCEWs and the MJO contribute to pre-

dictability of, more generally, tropical rainfall? The goal is to estimate both (i) the

predictability of wave signals of each individual type and (ii) the predictability of the
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overall precipitation signal, which is comprised of a mixture of the signals of different

waves and a “background” signal [22,84]. If the “background signal” is overwhelmingly

strong, then the CCEWs may not contribute much predictability to the overall precip-

itation signal; on the other hand, it is also possible that the coherence of CCEWs may

contribute to an enhancement in the amount of predictability of tropical precipitation,

beyond the predictability of the “background signal” alone.

An investigation of these questions serves many purposes. For instance, CCEWs

and the MJO have been difficult to simulate in global climate models (e.g., [24,27,42]);

and for assessing model performance, forecast skill could be a useful metric if upper

bounds on predictability are known (e.g., for the MJO, see [57,83]). Also, if CCEWs are

shown to offer a significant source of predictability, then it would provide motivation for

the search for improved understanding and simulation of CCEWs.

Some recent work has provided some estimates of the predictability of CCEWs

and tropical precipitation, and the approach of the present chapter will differ in many

ways. [88] investigated predictability using convection-permitting simulations with the

Weather Research and Forecasting (WRF) model. The 9-km horizontal grid spac-

ing provided detailed simulations of multi-scale tropical weather systems, although it

was computationally expensive and the investigation was limited to approximately one

month. [15] and [25] investigated larger amounts of data from approximately one year

and over five years, respectively. These latter two studies used data from several nu-

merical weather predictions models such as the Global Forecast System (GFS) of the

National Centers for Environmental Prediction (NCEP), the Integrated Forecast Sys-

tem (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), the

NCEP Climate Forecast System, version 2 (CFSv2), and the Navy Earth System Model

(NESM). In the present chapter, in contrast, predictability will be estimated without a

numerical weather prediction model; instead, estimates of predictability will be derived
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from primarily observational data. As such, these different approaches provide comple-

mentary estimates that together can give a fuller picture of predictability. Some of the

advantageous aspects of the present approach are that (i) the use of mainly observa-

tional data provides perhaps a more independent estimate, since it is not subject to the

particulars of physics assumptions within models, and (ii) the computational expense

of the model simulations is eliminated, which allows us to consider relatively long time

series with relatively little computational expense.

The concept of predictability can be categorized into intrinsic predictability ver-

sus practical predictability. Intrinsic predictability represents the inherent limit of pre-

diction given a nearly perfect forecast model of dynamical system and nearly perfect

initial/boundary conditions; in such a setting, the predictability is then an indication

of the chaotic nature of the dynamical system [14, 43, 76]. Practical predictability is

the ability to make a prediction, given realistic uncertainties in both the forecast model

and initial/boundary conditions [44, 45, 91]. The prior work of [15] and [25] was mainly

related to practical predictability. In the present chapter, the approach is perhaps more

closely aligned with estimating intrinsic predictability, since perfect initial conditions

are used, and since the results do not rely on a numerical weather prediction model.

The remainder of the chapter is organized as follows. In section 2.2, the ob-

servational data is described, along with the methods for estimating predictability. In

section 2.3, estimates of predictability are presented for the rainfall associated with in-

dividual wave types (MJO, CCEWs, and the non-wave component). In section 2.4,

the different wave types are combined to provide estimates of predictability of the full

rainfall signal. In section 2.5, the predictability of rainfall data is compared with the

predictability of outgoing longwave radiation (OLR) data. Finally, section 2.7 includes

a concluding discussion.
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2.2 Data and Methods

2.2.1 Data and Setup

The Tropical Rainfall Measuring Mission (TRMM) data is used here for investigating the

intrinsic predictability. The TRMM data mainly used in this chapter has a daily tempo-

ral resolution and 0.25◦ spatial resolution running from January 1st, 1998 to December

31st, 2017. Daily precipitation totals are derived from 3B42 Research Version. The

dataset is downloaded from https://pmm.nasa.gov/data-access/downloads/trmm.

TRMM data is available at different temporal resolution including the 3 hourly

product and the daily product. While the 3-hourly data comes with the advantage of

higher temporal resolution, it also has some disadvantages. For instance, the 3-hourly

data will include the diurnal cycle, which may a priori need some special treatment, and

3-hourly data is perhaps not necessary for investigating the wave types with the largest

spectral peaks (MJO, Kelvin, and Rossby [84]). For this reason, the daily version of

TRMM data is mainly used here unless otherwise specified. Some sensitivity tests using

3-hourly data and further discussions are included in section 2.6.

For testing the robustness and sensitivity of the main results, in addition to

TRMM precipitation data, gridded daily interpolated OLR data from January 1979 to

December 2013 from National Oceanic and Atmospheric Administration (NOAA) polar-

orbiting satellites are also analyzed in this study. OLR data has often been used in the

past as a proxy for tropical precipitation and deep tropical convection, so it is interesting

to compare the predictability of OLR with the predictability of TRMM data (OLR

download link: https://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.

html). The OLR data initially from NCAR archives has gaps, and the gaps have been

filled using temporal and spatial interpolation ([41]) to create the interpolated OLR

data used here. The data for each day are archived on a resolution of 2.5◦ latitude ×

https://pmm.nasa.gov/data-access/downloads/trmm
https://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html
https://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html
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2.5◦ longitude globally. Note that the OLR and TRMM datasets have different native

resolutions; therefore, in making comparisons between the two, a spatial filter is used to

include only certain wavelengths that are resolved by both datasets; see section 2.5 for

the specifications.

For the purpose of assessing model parameters and evaluating the prediction

skills, the dataset is split into training data and testing data. The long time data before

the year 2011 for TRMM (the year 2005 for OLR) is used as the training period for

training parameters in the model and January 2011 to December 2015 (January 2005

to December 2009 for OLR) serves as the prediction period for testing. Data after the

year 2015 is not used as testing data since a cosine tapering has been applied for these

data for the purpose of Fourier transform. In the preprocessing, a smoothed seasonal

cycle of the entire dataset is removed via the annual mean and the first three harmonics

for all the data, so the remaining data represent anomalies from the seasonal cycle. An

alternative definition of the seasonal cycle was also tested, where the hard cut-off at the

third harmonic was replaced by a smoothed cutoff defined by a cosine tapering, and no

significant differences in the results were seen.

CCEWs have a meridional structure with equatorial synoptic length scale of

O(1000) km (e.g., [33, 60]). For this reason, instead of taking data at all the spatial

and temporal points directly, we are only considering rainfall after averaging over the

tropical belt, which provides a rainfall signal r(x, t) for longitude x and time t. In the

future it would be interesting to consider the rainfall signal at each latitude y instead of

averaging over the tropical belt. The tropical belt average is performed with a Gaussian

weight, which can be viewed as a projection onto a parabolic cylinder function. Specif-

ically, the projection to parabolic cylinder mode 0 is used here, namely projecting the

data onto the function

φ0(y) =
1

π1/4
e−y

2/2. (2.1)
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To define the projection, denote r(x, y, t) as the rainfall data, where x is the longitude, y

is the latitude, and t is the time. In (2.1), y is nondimensional, created by scaling with

the reference scale 1500km. The discrete version of tropical belt average (the projection)

then is

r(x, t) =

∫ ∞
−∞

r(x, y, t)φ0(y)dy ≈
90◦N∑
90◦S

r(x, yi, t)φ0(yi)∆y (2.2)

While it is also common to instead average with equal weight over a band of latitudes

such as 10◦S to 10◦N, the Gaussian weight is chosen here because it provides a smoother

average, and it provides a connection with the parabolic cylinder functions, which pro-

vide a set of meridional basis functions for equatorial waves. Averaging meridionally

using a Gaussian weight is also used in some previous papers (e.g., [60,63,74,75]). Note

that for some wave types, such as equatorial Rossby waves, an even tighter connection

with equatorial wave theory would perhaps use additional parabolic cylinder functions,

since the convergence patterns of equatorial Rossby waves include off-equatorial contri-

butions. Also note that, by using a symmetric-in-y average in (2.1)–(2.2), the data is not

expected to include the mixed Rossby–gravity (MRG) waves, since their signal appears in

the antisymmetric data (i.e., the data from equator-to-5◦N-averaged precipitation, minus

equator-to-5◦S-averaged precipitation; [84]). While the symmetric-in-y data from (2.1)–

(2.2) will be the main focus here, the methods have also been repeated for antisymmetric-

in-y data by replacing φ0(y) in (2.1)–(2.2) with φ1(y) = π−1/4
√

2 y exp (−y2/2). Using

φ1(y) instead of φ0(y) allows the antisymmetric-in-y data to be identified, and it is

used in the results below to investigate the predictability of MRG and n = 0 eastward

inertio-gravity (EIG) waves.

2.2.2 Wave Decompositions with Fourier Filtering

For identifying signals due to different types of waves, the main method used in this

study is the space-time spectral analysis (e.g., [84]). A brief overview is as follows.
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The method begins with some preprocessing, described above, to remove the

seasonal cycle, and to obtain an average over the latitudes near the equator, via a

Gaussian weight. The result of the preprocessing is r(x, t), from (2.2). As further pre-

processing, a cosine tapering is applied near the beginning and end of the time series,

so the values of the time series are zero and the beginning and end, thereby providing a

signal that is periodic in time, in preparation for a Fourier Transform.

Next, a spatial Fourier Transform followed by a temporal Fourier Transform is

applied on the longitude-time data r(x, t) to convert the signal into the wavenumber–

frequency domain, namely,

r(x, t) =
∑
k

∑
ω

r̂k,ωe
−iωte2πikx/Pe , (2.3)

where k is the zonal wavenumber, ω is the frequency and Pe is the circumference of the

Earth at the equator (approximately 40,000 km). The Fourier coefficients r̂k,ω are then

used to identify the different wave types.

In order to isolate the signal for each of the different wave types (e.g., MJO,

CCEWs, etc.), we follow the method of Fig. 6 of the research paper [84] (The figure has

been shown as Fig. 1.6 in the introduction chapter). In particular, each wavenumber–

frequency point (k, ω) is assigned to a different wave type α, where α is an index that

indicates the wave type (MJO, Kelvin, Equatorial Rossby, and the non-wave component).

The Fourier decomposition in Eqn. 2.3 can then be written as a sum over different wave

types α, rather than a sum over different frequencies ω:

r(x, t) =
∑
k

∑
α

r̂k,α(t)e2πikx/Pe , (2.4)
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with

r̂k,α(t) =
∑

ω∈Ωk,α

r̂k,ωe
−iωt, (2.5)

where α is an index that indicates the wave type (MJO, Kelvin, Equatorial Rossby,

and the non-wave component) and Ωk,α is the set of frequencies for wave type α at

wavenumber k.

For example, for the MJO, Ωk,α is set to be Ωk,α = {ω : 1/96 ≤ ω ≤ 1/30} for

wavenumber k = 1, 2, 3, 4, 5 to extract MJO signals r̂k,α(t) via Eqn. 2.5 at wavenumber

k = 1, 2, 3, 4, 5. In practice, the dataset is filtered to keep the part from 1/96 cpd to

1/30 cpd in the wavenumber-frequency domain for wavenumber k = 1, 2, 3, 4, 5 respec-

tively and set all the other part of the data for wavenumber k = 1, 2, 3, 4, 5 all zeros.

To convert back, an inverse Fourier transform is applied to the filtered data for each

wavenumber k from 1 to 5. After that, the first 10% and the last 10% of these data at

each wavenumber are cut (due to the cosine tapering applied at the beginning and end of

the dataset to facilitate the Fourier transform). Then predictions are made using these

filtered data at each wavenumbers independently. The total true MJO signal is consid-

ered to be the combination of these final filtered data for wavenumber k = 1, 2, 3, 4, 5

(i.e.,
∑5

k=1 r̂k,α(t)e2πikx/Pe) and the prediction for the total MJO signal is generated by

combining predictions at each wavenumber in the same way (i.e.,
∑5

k=1 r̂
pred
k,α (t)e2πikx/Pe ,

where r̂predk,α (t) is the prediction for r̂k,α(t)). Analyses on other CCEWs (e.g., n=1 ER,

Kelvin) are performed following the similar procedures by setting a different set to Ωk,α

according to the filtering boxes from Fig. 6 of [84]. The “non-wave component” is de-

fined here as the remaining part of the signal after the MJO, ER, Kelvin waves have

been removed from the original spectral data. Westward inertio-gravity (WIG) waves

are treated here as a part of the non-wave component, due to the limitations of using

daily TRMM observed data, although some explorations of WIG waves with 3-hourly

data are described in section 2.6.
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2.2.3 Modeling Wave Signals as Damped Oscillators with

Stochastic Forcing

As motivation for model choice, we recall that a goal here is to estimate predictability

with less reliance on operational forecast models and more reliance on observational data.

This goal is made possible here by the wave decomposition method described above, since

the signal from one individual wave type can be modeled reasonably well by a simple

damped oscillator model, which can be used as a simple forecast model. In this section,

the simple model is described along with the method for fitting to observational data.

As a simple model for an individual wave type, a damped oscillator with stochastic

forcing will be used. Specifically, the complex Ornstein-Uhlenbeck (cOU) process (see,

e.g., [50]) is applied for modeling and predicting filtered signal r̂k,α(t) at each single

wavenumber k and each wave type α [recall from (2.4) the details about defining r̂k,α(t)].

The traditional Ornstein–Uhlenbeck process is real-valued and does not oscillate ([19]);

on the other hand, the cOU process is complex-valued and is a damped oscillator with

stochastic forcing. The cOU process is also exactly solvable and meaningful for predicting

the complex Fourier coefficient r̂k,α(t) for a single wave. In what follows, we write r(t)

in place of r̂k,α(t) to simplify notation. The evolution of the cOU process is a complex

linear stochastic differential equation:

dr(t) = (−γ + iω)r(t) + σdW (t) (2.6)

where γ, σ > 0 and ω are real numbers and

dW (t) ≡ dW1(t) + idW2(t)√
2

(2.7)
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is a complex Gaussian white noise where each component satisfies

dWj(t) ≡ Ẇj(t)dt, j = 1, 2, (2.8)

that is, white noise Ẇj(t) is intuitively like a “derivative” of the Wiener process Wj(t)

and it satisfies the following properties:

E[Ẇj(t)] = 0, (2.9)

E[Ẇj(t)Ẇj(s)] = δ(t− s), (2.10)

E[Ẇi(t)Ẇj(s)] = 0 for i 6= j. (2.11)

The exact solution of (2.6) is

r(t) = e(−γ+iω)tr(0) + σ

∫ t

0

e(−γ+iω)(t−s)dW (s) (2.12)

Here, 1/γ represents the decorrelation time of the signal and wω is the oscillation fre-

quency with 2π/ω to be the time of one oscillation period. σ is the standard deviation

of the white noise. The whole signal r(t) is a periodic decaying signal with random

white noise. As t → ∞, r(t) will converge to a stationary Gaussian distribution with

mean 0 and variance σ2/(2γ) (e.g., [48, 50]). The autocorrelation function is given by

the analytical formula

R(τ) = R(t, t+ τ) = e−(γ+iω)τ (2.13)

in the stationary state as t → ∞ and τ is the lag. To summarize, as a forecast model,

(2.12) provides an ensemble of forecasts, with a forecast mean of r(t) = e(−γ+iω)tr(0).

One might wonder why white noise is used here, whereas the tropical rainfall

spectrum is known to have a form similar to red noise (e.g., [22, 84]). The formulation
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here is, in fact, consistent with a red-noise spectrum of tropical rainfall. The basic

feature of spatiotemporal “red noise” is that the variance is decreasing as a function of

temporal frequency or spatial wavenumber k. These basic features are actually built into

the different values of the parameters γ and σ for different wavenumber k. For instance,

for a larger wavenumber k, the fitted cOU process will have a corresponding smaller

variance σ2/2γ with the fitted values of γ and σ for this particular wavenumber. Different

cOU processes are fitted for different wavenumbers independently. With different choices

of parameters for different wavenumbers, the basic feature of decreasing variance as a

function of wavenumber k is retained.

The model parameters γ, ω are needed to make a forecast, and different val-

ues are used for each zonal wavenumber k and wave type α. Here the parameters are

chosen by matching the observed autocorrelation of the training data and the analytic

autocorrelation function. The model parameters are determined to capture the first

maximum/minimum of the real and imaginary parts of the observed autocorrelation

for positive lags, except for the non-wave component. For the non-wave component,

since it has no propagation direction, its values of ω are nearly zero, so γ, ω are se-

lected by matching the discrete summation of observed autocorrelation function and the

integral of the analytic autocorrelation function, a method that provides better model

performance. Also, this is consistent with treating the non-wave component like the

background spectrum of tropical convection, for which a natural simple model is eddy

diffusion ([22]) without any wave oscillations.

An example of the autocorrelation fitting is shown for the MJO in Figure. 2.1. The

left panel shows the observed autocorrelation function and the analytical autocorrelation

function from (2.13), where the parameters γ and ω were chosen to capture the first

maximum/minimum of the real and imaginary parts of the observed autocorrelation

function. As seen in the figure, the autocorrelation function of the fitted model has a



26

quite good fitting up to lags of one month, although there is nonnegligible model error for

lags that are larger than one month. It is possible that a nonlinear oscillator model (e.g.,

[8]) would be able to fit the statistics even more accurately; however, the present chapter

is aimed at modeling many different wave types and many different wavenumbers, which

involves model parameters for each wave type and each wavenumber; therefore, a simple

linear oscillator model is advantageous here for its minimal number of parameters, and

it provides reasonable results, as shown in Figure. 2.1.
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Figure 2.1: Panel a (Panel d): Real (Imaginary) part of the fitted auto-
correlation function (red line) and the numerical auto-correlation function
from the observational TRMM data (blue line) for wavenumber k = 1 of
MJO; Panel b (Panel e): Real (Imaginary) part of the time series for MJO
(k=1) observations and forecasts with lead time as 25 days in the year 2011;
Panel c and f : Forecast skill (correlation coefficient and RMSE) for predic-
tions for five-years signals of MJO(k=1).

2.2.4 Estimating Predictability

To estimate predictability, forecasts are performed using the stochastic, damped oscilla-

tor models described in sections 2.2.2–2.2.3. The initial conditions r(0) for the forecast

are assumed to be perfect, in which case the formula for the mean prediction is given
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by the expected value of (2.12), i.e.,

E[r(t)] = E[e(−γ+iω)tr(0) + σ

∫ t

0

e(−γ+iω)(t−s)dW (s)] = e(−γ+iω)tr(0). (2.14)

Note that such a forecast method would not be applicable to real-time forecasting due

to the use of Fourier filtering in time, as described in section 2.2.2; some real-time wave

decomposition methods have been proposed (e.g., [32,58,59,60,74,75,85,86]), although

it is not clear that real-time methods are as skillful at wave decompositions as non-real-

time methods based on temporal Fourier filtering. In any case, the use of these perfect

initial conditions is in line with the main goal here of estimating bounds on intrinsic

predictability.

The prediction skill is evaluated by two commonly used criteria, Correlation

Coefficient (ρ) and Root Mean Square Error (RMSE). Mathematically, with the true

data X = (X1, X2, · · · , XN) at N points in time and the corresponding predictions

Xpred = (Xpred
1 , Xpred

2 , · · · , Xpred
N ), the correlation coefficient is calculated by

ρ(X,Xpred) =

∑N
i=1(Xi −X)(Xpred

i −Xpred
)√∑N

i=1(Xi −X)2

√∑N
i=1(Xpred

i −Xpred
)2

(2.15)

where X, X
pred

are the averages of Xi,X
pred
i (i = 1, 2, · · · , N) respectively and the

RMSE is

RMSE(X,Xpred) =

√√√√ 1

N

N∑
i=1

(Xi −Xpred
i )2 (2.16)

The overall forecasting skill is defined as the lead day where ρ(X,Xpred) ≥ 0.5 and

RMSE(X,Xpred) ≤ SD(X) (standard deviation of the data of the true signal). In

other words, the criterion of a reasonable forecast is a threshold of 0.5 for correlation

coefficient and 1 standard deviation for the RMSE. These threshold choices are also
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commonly used in other forecast studies (e.g., [7]).

For the purpose of evaluating cOU predictions and wave exclusion tests, two

baselines for comparison are used: the zero prediction and persistence prediction. The

zero prediction is obtained by predicting that the signal will be identically zero for all

future data points. (Note that the time series is centered to mean zero, so this can also

be viewed as a climatological prediction, where the predicted value is the climatological

mean.) The persistence prediction is obtained by predicting that the future weather

condition will be the same as the present condition.

2.3 Predictability of Individual Wave Modes: MJO,

CCEWs, and the Non-wave Component

In this section, we investigate the question: What is the intrinsic predictability of MJO-

related rainfall, CCEW-related rainfall, and background-spectrum rainfall? Each of the

wave types will be considered in isolation to identify the predictability of each individual

wave mode.

2.3.1 MJO

MJO predictability is shown for each wavenumber k in Fig. 2.2 and Table 2.1. The

predictability is defined as the lead time when the correlation coefficient drops to 0.5.

In brief, all MJO wavenumbers have predictability of approximately 25–32 days.

As one example forecast for illustration, time series for k = 1 are shown in

Fig. 2.1b,e. The figure shows a comparison of the true signal and predicted signal at lead

time of 25 days. This lead time was chosen for illustration because it is approximately

the predictability limit of the k = 1 MJO signal (see Fig. 2.2 and Table 2.1). As seen in

Fig. 2.1b,e, the predicted signal catches the overall variability of the oscillations quite
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well although it fails to catch the more extreme values with the present simple forecasting

framework. In the other panels, in Fig. 2.1c,f, the RMSE and correlation coefficient are

shown. The correlation coefficient is seen to decrease as lead time increases, and it

decreases to 0.5 at a lead time of 25 days, which is used as the value reported in Fig. 2.2

and Table 2.1.

To move beyond forecasts of individual wavenumbers, we can combine the wavenum-

bers k = 1 to 5 of the MJO signal, using (2.4). In brief, only the MJO signal (from wave

k = 1 to 5) is kept, and the signals of all other wave types are set to zero. Algorithmi-

cally, the space–time data rMJO(x, t) is then obtained using a temporal inverse Fourier

transform followed by a spatial inverse Fourier transform. From the space–time data

rMJO(x, t), one can observe a forecast of the MJO at each location around the equator.

Such a forecast skill at each longitude is shown in Fig. 2.3. In terms of RMSE (Fig. 2.3

Panel a), the forecast skill is greatest over the Indian Ocean and western Pacific warm

pool (longitudes from roughly 60E to 180), although this is also the region of greatest

standard deviation in the MJO signal. In terms of correlation coefficient (Fig. 2.3 Panel

b ), the forecast skill is more nearly equal at each longitude. As a summary of forecast

skill, in the Panel c in Fig. 2.3, it can be seen that the forecast skill is approximately 25-

30 days at each longitude, similar to the forecast skill for individual wavenumbers shown

in Fig. 2.2 and Table 2.1. Hence, whether viewed longitude by longitude or wavenumber

by wavenumber, the predictability of the MJO is estimated to be 25–30 days.

Wave type Wavenumber Forecast skill γ ω ω̂

MJO k=1 25 0.33 -4.39 -0.023

MJO k=2 27 0.37 -4.28 -0.023

MJO k=3 32 0.36 -4.39 -0.023

MJO k=4 26 0.35 -4.39 -0.023

MJO k=5 28 0.41 -4.71 -0.025

ER k=-2 33 0.17 -6.09 -0.032
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ER k=-3 16 0.52 -7.85 -0.042

ER k=-4 12 1.03 -9.42 -0.050

ER k=-5 11 1.08 -11.78 -0.063

ER k=-6 9 1.18 -12.62 -0.067

Kelvin k=1 17 0.38 -9.00 -0.048

Kelvin k=2 6 1.79 -15.71 -0.083

Kelvin k=3 4 2.85 -23.56 -0.125

Kelvin k=4 4 3.76 -27.49 -0.146

Kelvin k=5 2 4.81 -39.27 -0.208

Non-wave Component k=1 2 1.72 0.08 0.001

Non-wave Component k=2 8 0.76 -0.20 -0.001

Non-wave Component k=3 5 1.94 -0.26 -0.001

Non-wave Component k=4 2 3.52 -0.10 -0.001

Non-wave Component k=5 1 10.04 -0.29 -0.002

MRG k=-1 5 1.07 -47.12 -0.250

MRG k=-2 5 1.29 -47.12 -0.250

MRG k=-3 4 1.93 -47.12 -0.250

MRG k=-4 3 2.72 -47.12 -0.250

MRG k=-5 5 2.21 -39.27 -0.208

EIG k=1 5 1.30 -47.12 0.250

EIG k=2 3 2.75 -47.12 -0.250

EIG k=3 2 4.90 -47.12 -0.250

EIG k=4 2 13.65 -70.69 -0.375

EIG k=5 3 12.55 -70.69 -0.375

Table 2.1: Summary of forecast skills for the wave types: MJO, ER, Kelvin,
Non-wave Component, MRG and n = 0 EIG. Note: Forecast skills have the
unit days, γ, ω have the unit 2π/Month and ω̂ = ω/(30 · 2π) is the frequency
(CPD) with the unit 1/day.
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Figure 2.2: Forecast skills for different wavenumbers of MJO, ER wave,
Kelvin wave, Non-wave Component , MRG wave and n = 0 EIG wave.
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two panels: RMSE (panel a) and correlation coefficient (panel b) for predict-
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c): Overall forecast skill for predicting MJO components from TRMM data
with different methods cOU (solid pink) and persistence prediction (dashed
green).



32

2.3.2 CCEWs

Predictability is estimated for two CCEWs: the ER and Kelvin waves. The results

will be analyzed from two perspectives: wavenumber by wavenumber, and longitude by

longitude.

First, predictability is reported for each individual wavenumber, analyzing each

wavenumber separately from each other wavenumber, in Table 2.1 and Fig. 2.2. The

predictability is seen to depend strongly on wavenumbers. For instance, the ER wave

has a predictability of 33 days for wavenumber 1 but a predictability of roughly 8–10

days for wavenumbers 5 to 10; and the Kelvin wave has a predictability of 17 days for

wavenumber 1 but a predictability of roughly 2–3 days for wavenumbers 5 to 10.

Overall, one can see a rough general trend in Table 2.1 and Fig. 2.2: predictability

tends to increase as wave oscillation period increases. This is consistent with the intuition

that waves with longer oscillation periods also tend to have longer decorrelation time γ−1,

and longer decorrelation times are associated with longer predictability times. A figure

of ω̂ for different wave types versus different wavenumbers along with some additional

figures are also provided in the supporting information.

Second, to analyze the predictability at different longitudes, the data from differ-

ent wavenumbers are combined together to predict, e.g., the ER signal as a function of

longitude. The spatial variations of predictability for the ER and Kelvin waves are shown

in the first two columns in Fig. 2.4. Both ER and Kelvin have their largest variance

over the Indian Ocean and western Pacific warm pool, from about 60◦E to 150◦W. The

predictability of the ER wave varies from 8 days to 12 days over all the locations, while

the forecast skill of the Kelvin wave varies from 2 days to 3 days, with little variation

from location to location.
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Figure 2.4: Forecast skills for ER wave, Kelvin wave and non-wave compo-
nent. From the left to right are ER wave (panel a,d,g), Kelvin wave (panel
b,e,h) and non-wave component (panel b,e,h), from the top to bottom are
RMSE (panel a,b,c), correlation coefficient (panel d,e,f) and overall forecast
skill (panel g,h,i).

2.3.3 Non-wave Component

Lastly, consider the non-wave component. The wavenumber-by-wavenumber results

are shown in Table 2.1 and Fig. 2.2. Note that the non-wave component is not as-

signed a particular propagation direction (e.g., eastward or westward), so the +k and

−k wavenumbers are analyzed together as a single unit, as wavenumber k. The pre-

dictability of the non-wave component is typically low, in the range of 1 to 2 days. An

anomaly is seen in wavenumbers 2 and 3, for which the predictability times are 8 and

5 days, respectively; these longer predictability times are likely the result of, e.g., the
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MJO signal being partially identified as “non-wave component,” since the MJO signal

could potentially influence some frequencies that lie outside the filtering box of Fig. 6

of [84]. Overall, though, when viewed longitude by longitude (see Fig. 2.4 Panel (i)),

the non-wave component has low predictability of roughly 1 day.

We note here the possibility of localized regions of enhanced predictability, as

illustrated by the case of the non-wave component near 120E longitude; see Fig. 2.4

Panel (i). To ensure that this behavior is not a result of an error in the data analysis,

one can trace its source to the plot of correlation coefficients, from which the forecast

skill is calculated; see Fig. 2.4 Panel (f). One can see that the curves for two different

lead times (e.g., lead times of 2 and 3 days) can sometimes be nearly overlapping when

their correlation coefficients are nearly equal; e.g., see 120E longitude. If this occurs

for a correlation coefficient of 0.5 (i.e., the cutoff correlation coefficient for defining the

“forecast skill”), then the forecast skill can have a sharp change for nearby longitudes, as

seen here for the non-wave component near 120E longitude. Such behavior also appears

if OLR data is analyzed instead of TRMM data, as shown below in section 2.5.

We speculate that it may be related to the unique geographical features of the

Indo-Pacific maritime continent, such as its associated topography and/or land-sea con-

trast.

This behavior could be eliminated by choosing a different cutoff, such as 0.6

instead of 0.5, since we see this behavior here for the lower correlation coefficient values

of 0.55 or lower; but we will retain the cutoff of 0.5 since it is a commonly used definition

of forecast skill.
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2.4 Predictability of Tropical Rainfall

The previous section assessed predictions of rainfall associated with an individual wave

type (MJO, ER, Kelvin, or non-wave component). In this section, in contrast, predic-

tions of the full rainfall signal are analyzed. As a first brief look, see Fig. 2.5. The solid

curve indicates the predictability of the full rainfall signal, and it is repeated identically

in each panel of the figure. The forecast skill is roughly 3 to 6 days over the Indian and

Pacific Ocean regions. This skill represents a substantial improvement over what was

seen for the non-wave component alone (see Fig. 2.4), which was predictable for only

roughly 1 to 2 days. The improved skill can be attributed to the additional wave types

beyond the non-wave component: the CCEWs and the MJO.

In what follows, to provide a more detailed view of the full rainfall signal, wave-

exclusion studies are also used in order to assess the contribution of each wave type to

overall predictability (Sec. 2.4.1). Also, to assess predictability on different length scales,

the planetary length scales (zonal wavenumbers -5 to +5) are investigated in Sec. 2.4.2.

2.4.1 Wave-Exclusion Studies

In this section, we ask: How important is each individual wave type for the predictability

of the full rainfall signal? To investigate this question, we exclude the predictions of one

wave type in predicting TRMM rainfall data, and evaluate the resulting decrease in

predictability. To exclude a wave type, two methods are examined: either (i) setting the

prediction of the wave’s signal to be zero, or (ii) using a persistence prediction for that

wave type. While we are changing the predictions for the component of the one wave

type of interest, all the other components of the signal remain being predicted by cOU

processes, as in our standard methodology.
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The main results of the wave-exclusion studies are shown in Fig. 2.5. The fore-

cast skill is presented as a function of longitude. With all wave types predicted and

none excluded, the precipitation is most predictable over the Indian Ocean to Pacific

Ocean regions, where the predictability is roughly 3 to 6 days, aside from the longer

predictability of 9 days near 120E. When one wave type is excluded, a substantial loss

of predictability is typically seen. In particular, if either the MJO, ER, or non-wave

component is excluded, then a loss of predictability of several days can be seen over the

Indian Ocean and Pacific Ocean regions.

For the Kelvin wave, on the other hand, the results are somewhat mixed. Little

predictability is lost if the Kelvin wave is excluded by predicting it to be zero. Over many

parts of the Indian and Pacific Oceans, no predictability is lost, and over other parts of

the tropics, the loss is 1 to 2 days of predictability. Given that the overall predictability

is only 1 to 2 days for many regions outside the Indian and Pacific Oceans, one could

possibly view this as a substantial loss. Also, if the Kelvin wave is instead excluded by

using a persistence forecast, then a substantial loss in predictability is seen: roughly 1

to 4 days.

Two factors are perhaps sufficient to explain each wave type’s importance: decor-

relation time and variance. The decorrelation time (γ−1) has a rough correspondence

with the predictability, as seen in Table 2.1 (see also Figs. 2.2, 2.3, and 2.4). For in-

stance, the MJO and ER waves have the longest decorrelation times and predictability,

whereas the non-wave component and Kelvin waves have shorter decorrelation times

and predictability. However, decorrelation time alone is not enough to explain the con-

tribution of each wave type to the predictability of overall rainfall. For instance, the

MJO and non-wave component have somewhat similar contributions based on the wave

exclusion studies (Fig. 2.5), yet the non-wave component has a very short decorrelation

time. Hence, a second factor is needed to explain why the non-wave component has an
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Figure 2.5: Panel a: Forecast skill for predicting TRMM data (wavenumber
from -15 to 15) with cOU processes for all wave and non-wave components.
Panel b-e: Forecast skills for predicting five-years TRMM data (wavenumber
from -15 to 15) with different predicted MJO (Panel b), ER wave (Panel c),
Kelvin wave (Panel d) and non-wave component (Panel e). Three forecast
methods are used wave-exclusion studies: cOU prediction (pink), persistence
prediction (blue) and prediction with all zeros (green).

important contribution: variance. The variance (or, rather, its square root, the standard

deviation) is shown for each wave type in Fig. 2.6. The non-wave component has the

largest standard deviation of all wave types, so substantial predictability will be lost if a

poor forecast is used for such a large share of the total standard deviation. In this way,

each of the wave types has an appreciable contribution to the overall predictability of

rainfall, due to a long decorrelation time or a large variance or a combination of these
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factors.

2.4.2 Planetary-Scale Predictions

In the results above, the equatorial synoptic length scales (zonal wavenumbers -15 to

+15) were considered, in order to include effects of many CCEWs. Instead, if we are

only interested in the large-scale variations of rainfall, is it possible to achieve better

prediction skill?

This question is now investigated by considering only zonal wavenumbers k = −5

to 5, in order to represent the planetary-scale zonal variations of rainfall. One might ex-

pect enhanced predictability if only the largest scales are considered, consistent with the

general idea that spatial averaging will improve forecast skill (e.g., [39]). Physically, we

would expect slower phase speeds for some important CCEWs for smaller wavenumber k.

For example, it will be true for the Kelvin wave since it has lower frequency for smaller
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k defined in the wavenumber-frequency domain. As a result, enhanced predictability

will be expected if only signals with small wavenumbers are considered. Exactly how

much improvement is seen? The predictability is shown in Fig. 2.7. The forecast skill is

quite long: roughly 10 to 20 days over the Indian and Pacific Ocean regions. Comparing

Fig. 2.7 to the forecast skills for wavenumbers from -15 to 15 in Fig. 2.5a, the forecast

skill for the planetary scale predictions has very significant improvements from 60◦E to

150◦W. The planetary scale predictions are overall about 5-15 days more predictable in

these areas, particularly near 120◦E and 180◦ with about 10-15 days improvements in

forecast skills.
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Figure 2.7: Forecast skills for predicting five-years TRMM data on planetary
scales (wavenumber from -5 to 5) with different prediction methods for the
MJO.

The dominant coherent wave signal on planetary scales is the MJO. How im-

portant is the MJO to the predictability of rainfall on planetary scales? To investigate

this question, a wave-removal study is implemented where the MJO is removed in one

of two different ways: predict the MJO-associated rainfall is zero, or use a persistence

prediction for the MJO-associated rainfall. The results are shown in Fig. 2.7. The fore-

cast skill of tropical rainfall is significantly decreased when the MJO is removed from

consideration. Specifically, the forecast skill is only 4 to 7 days over the Indian and

Pacific Ocean regions if the MJO is removed. Hence, the MJO plays a crucial role in
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the predictability of rainfall on planetary scales, and it contributes up to 15 days of

additional predictability.

2.5 Comparing predictability of precipitation versus

cloudiness (OLR)

Besides precipitation, another quantitative measure of moist convection is OLR. OLR

data is commonly used as a proxy for cloudiness, for many purposes, such as identifying

CCEWs or the MJO (e.g., [32, 86]). In prior studies on predictions of CCEWs and

the MJO, [15] analyzed precipitation whereas [25] analyzed OLR. The predictability

could possibly vary significantly depending on which data is used, since, e.g., OLR and

precipitation represent distinct physical quanitities with potentially different properties.

In this section, we investigate the predictability of OLR, and we compare it with the

predictability of precipitation.

For comparing OLR and precipitation, results are shown in Fig. 2.8, and can be

summarized as follows.

On the one hand, for the broad conclusions regarding comparisons of different

wave types, the results are essentially the same, and they are therefore not repeated in

detail for the OLR case. For instance, whether OLR or precipitation data is used, each

of the wave types is seen to have an appreciable contribution to the predictability of the

full rainfall signal. The detailed amounts of each wave’s contribution can be different

for OLR versus precipitation, as illustrated in Fig. 2.8 for the case of the non-wave

component (see section 2.4 for a note about the enhanced predictability of the non-wave

component near 120E longitude). Nevertheless, the broad conclusion remains the same:

each of the wave types has an appreciable contribution.
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On the other hand, one clear difference between OLR and precipitation is that

OLR is generally speaking more predictable. Fig. 2.8 quantifies the difference in pre-

dictability. The larger predictability of OLR is seen whether viewing individual wave

types or the full rainfall signal. The detailed amount can be different for different wave

types; for example, for the non-wave component, Fig. 2.8 shows that OLR is more pre-

dictable than precipitation by only roughly 1 to 2 days at most locations, whereas for

the full rainfall signal, OLR is more predictable than precipitation by roughly 5 to 10

days at many locations over the Indian and Pacific Ocean regions. Other wave types,

such as the MJO (not shown), are also noticeably more predictable in terms of OLR

versus precipitation.

a. b.

c. d.

Figure 2.8: Forecast skills for the non-wave component of (a) TRMM and
(b) OLR. Forecast skills for the full signal including all wavetypes for (c)
TRMM and (d) OLR. Red bar is for the forecast skill from the comparison
between the predictions of 31 wavenumbers and the 31 wavenumbers of the
true signal, green bar is for the forecast skill from the comparison between
the predictions of 31 wavenumbers and the true signal with all wavenumbers.
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As some additional sensitivity tests, beyond considering two quantities (precip-

itation and OLR), we also analyzed the impact of using only zonal wavenumbers -15

to 15 in the predictions. In other words, recall that only the synoptic and planetary

scales (zonal wavenumbers -15 to 15) have been considered throughout the present pa-

per. Such a choice was made in part because the predictability of wavenumbers with

10 ≤ |k| ≤ 15 is already low (see Table 2.1 and Fig. 2.2) and in part because the focus

was on CCEWs and the MJO. The predictability of higher wavenumbers (|k| > 15) is

low, but they could influence the overall predictability if they account for significant

variance. To investigate, we now ask the question: If only zonal wavenumbers -15 to

15 are predicted, and if all higher wavenumbers are predicted to be zero, and if the

prediction is assessed via comparison with the full dataset (including |k| > 15), then

what is the resulting prediction skill? In other words, if only wavenumbers -15 to 15

are modeled, how skillfully can the full dataset (including |k| > 15) be predicted? The

results are shown in Fig. 2.8c for the full TRMM rainfall dataset, which includes zonal

wavenumbers -720 to 720. The predictability drops significantly, consistent with the

fact that the higher wavenumbers (smaller scales) contribute an appreciable amount of

variance and tend to be less predictable (e.g., see Table 2.1 and Fig. 2.2). A similar

drop in predictability is also seen for OLR in Fig. 2.8d, although the higher resolution

comparison is not too drastically different in its predictability compared to the standard

case. OLR predictability may be less sensitive to changes in resolution because it is

generally more smoothly varying than precipitation, or possibly because the higher res-

olution OLR data includes only wavenumbers -72 to 72 (as opposed to the precipitation

case which includes wavernumbers -720 to 720 at its highest resolution).

2.6 Discussion

In this section, several additional tests are discussed, along with some additional discus-

sion and comparisons with other studies.
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While the results above were obtained using daily data, another version of TRMM

rainfall data is also available as 3-hourly data, which offers additional possibilities, such

as the resolution of WIG waves. As one test with the 3-hourly data, we compared two

cases: one case where WIG waves were treated as its own wave type and another case

where WIG waves were included with the non-wave component. In these tests, for each

time available in the time series, a 24-hour running time average was used to average

over the effects of the diurnal cycle; note that the result is still a 3-hourly time series,

although each data point corresponds to a 24-hour time average. In comparing these

two cases, the results were essentially the same, suggesting that, at least when analyzed

after a 24-hour running time average, the WIG waves do not contribute a substantial

addition to the predictability. This is possibly due to the fact that the spectrum is red,

so the variance of high-frequency waves such as the WIG waves is a relatively small

contribution to the overall rainfall variance and predictability.

Other sensitivity studies were also carried out to examine different ways of mod-

eling the non-wave components. Since the non-wave component has a wide range of

frequencies, whereas the CCEW types were defined over more restrictive ranges of

wavenumbers and frequencies, one may want to examine alternative methods where

the non-wave component is divided into subcomponents. Two alternative cases were

considered. First, the non-wave component was divided into the two subcomponents of

oscillation periods less than 5 days and greater than 5 days. As a second case, three

components were used: periods less than 5 days, between 5 and 10 days, and greater

than 10 days. In these alternative cases, the forecast skill for the non-wave components

are nearly the same as in the standard case in Fig. 2.2 and Table 2.1. For the different

wavenumbers, the skill is either the same as in the standard case, or sometimes 1 day

better skill, and 2 days better skill for a small number of wavenumbers. Hence the

precise forecast skill of the non-wave component changes a little if different methods are

used, but the overall broad conclusions about different wave types still hold.
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It is interesting to make some further comparisons with other prior work. For

instance, practical and intrinsic predictability of multiscale weather and CCEWs over

Indian Ocean were investigated based on the Weather Research and Forecasting (WRF)

Model in [88]. They found that the practical predictability limit decreases rapidly as

scale decreases along with many other interesting error analysis and results about the

predictability. More specifically, one of the conclusions in [88] is that precipitation

has a more limited predictability in comparison to other variables, and its practical

predictability limit is only 3 days for large scales and < 12 h for the smaller scales.

Both the decreasing predictability for smaller scales and the limited predictability of

precipitation are also reflected in the present chapter to some extent. In other work, [57]

estimate MJO predictability to be 20-30 days based on single-member hindcast and 35-

45 days based on ensemble-mean hindcasts, respectively. Those results are somewhat

consistent with the 20-30-day predictability of the MJO estimated in the present chapter,

although it is difficult to compare in detail due to the different quantities predicted. [57]

focus on predictions of the real-time multivariate (RMM) MJO index of [86], which is

based on zonal winds and OLR, variables that are typically seen to be more predictable

than precipitation, which was the variable of focus in the present chapter. Beyond these

examples of prior work, there are also a number of other interesting papers that examine

the practical predictability of current models (e.g., [34,82,87] and references therein) .

2.7 Conclusion

In this chapter, the main goal was to analyze the predictability of CCEWs and the

MJO, and to assess how important each wave type is to the predictability of the full

rainfall signal. The methodology utilized observational data as much as possible, in

order to avoid the influence of any particular model’s assumptions about detailed physics

parameterizations. Also, the methodology allowed the forecasts to be decomposed into

the contributions from each wave type (CCEWs, the MJO, and a background spectrum
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or non-wave component), and each wave type was treated with an independent forecast

model. In this way, one wave type could be considered by itself in isolation, or one wave

type could be excluded to measure its influence on the full rainfall signal.

CCEWs and the MJO were seen to provide a significant source of predictability.

If the tropics had no CCEWs nor MJO, then it would arguably be a tropics where

the entire spectrum looks like the non-wave component, or background spectrum or

random scattered thunderstorms (e.g., [22]). Since the non-wave component of rainfall

has a predictability of 0 to 3 days, whereas the the overall predictability of tropical

rainfall was estimated to be roughly 3 to 6 days, over the Indian and Pacific Ocean

regions, one could say that CCEWs and the MJO contribute approximately 3 additional

days of predictability. From a slightly different viewpoint, one could say that CCEWs

and the MJO double the range of predictability, from 0–3 days to 3–6 days. These

results help to quantify the importance of CCEWs and the MJO, in terms of rainfall

predictability, as an alternative measure of importance beyond more traditional measures

such as climatological variance (e.g., [77, 78,84]).

Two factors are perhaps sufficient to explain the importance of each wave type:

decorrelation time and variance. For the first factor, if a wave type has a long decor-

relation time, then it is also likely to be predictable at long lead times. For the second

factor, if a wave type has a large variance—i.e., if it contributes a significant fraction

of the overall variance—then it is likely to make a significant contribution to the over-

all predictability as well. In the case of the non-wave component, which has largest

contribution to variance of all mode types, the contribution is to limit the overall pre-

dictability to several days, in opposition to the other wave types, such as the MJO,

which are more predictable but which have lesser contributions to the overall variance.

The wave-exclusion studies of section 2.4 helped to quantify the contributions of each

wave type, and to illustrate the importance of the two factors of decorrelation time and
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variance.

In a comparison of two datasets, OLR data was seen to be much more predictable

than TRMM precipitation data. Such a result is consistent with the well-known general

property that OLR data is more smoothly varying in space and time than precipitation

data. Here a quantitative comparison was given in terms of predictability. OLR was

seen to be more predictable than rainfall, over many locations in the Indian and Pacific

Ocean regions, by approximately 5 to 10 days. Given that rainfall predictability was

estimated to be roughly 3 to 6 days, the additional predictability of 5 to 10 days for

OLR is quite large. One implication is that it could be difficult to compare and contrast

different studies, such as [15] who analyzed precipitation and [25] who analyzed OLR.

Finally, results were also provided for another question: What are the decay

time scales of CCEWs and the MJO? Observational estimates of the decay time scales

were provided here in Table 2.1, and they can be compared with the decay time scales

predicted by theoretical models (e.g., [62,73]). As a brief comparison, [73] report theoret-

ical values of MJO decay time scales of roughly 1.5 months in their standard parameter

regime. Here the MJO decay time scale was estimated from precipitation observations

to be roughly 3 months. Note, however, that the 3-month estimate was based on fitting

the autocorrelation function for lags of roughly 0 to 30 days (in order to provide an

accurate forecast for these relatively short lag times). Instead, if the autocorrelation

function were fit for longer lags, such as 0 to 100 days (see Fig. 2.1a,d), then an estimate

of roughly 1.5 months would be more appropriate, based on the decay of the autocor-

relation function from lag 0 to a lag of 50 or 100 days. As another estimate, if OLR is

used instead of precipitation data, we found decay times of roughly 1.7 months for zonal

wavenumbers 1, 2, and 3. In brief, while different methods could lead to different decay

time scales from observational estimates, and while different parameter values could lead

to different decay time scales from theoretical models, there is some broad agreement
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between observations and theory in this preliminary comparison. It would be interesting

in the future to make a more detailed comparison between theoretical and observational

estimates of CCEW and MJO decay time scales.
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Chapter 3

Spatial and Temporal Averaging

Windows and Their Impact on

Forecasting: Exactly Solvable

Examples [39]

3.1 Introduction

Weather predictions are commonly made for averaged quantities. For example, the

amount of rainfall might be predicted as an average in time over an hour, day, week,

month, season, etc. [70, 87, 92]. For longer time averages, the forecasts are often as-

sociated with intraseasonal variability such as the Madden–Julian Oscillation (MJO)

[1, 8, 31, 36, 46, 47, 51, 90] or El Niño–Southern Oscillation (ENSO) [3, 35, 56, 64, 79]. For

shorter time averages, the forecasts are often associated with synoptic variability or indi-

vidual convective storms. The question of spatial averaging becomes particularly relevant

as further details of convective systems are resolved by newer numerical weather pre-

diction models, and many new challenges arise in formulating forecasts of precipitation

and in assessing errors and uncertainties [2, 5, 16,17,55,66,68].

One of the main questions here is: How does prediction skill vary as the space-
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and/or time-averaging window is varied? Here this question is investigated using exactly

solvable models, which allows precise assessment of forecasts without being tarnished by

errors from numerical approximations or pseudo-random Monte Carlo sampling. The

first model used here is the complex Ornstein–Uhlenbeck (cOU) process, a stochastic

model for time series of weather fluctuations (e.g. [50]). The second model used here is

the stochastic heat equation, which has been used as an idealized spatiotemporal model

of tropical rainfall [22, 72,73].

A priori, one would perhaps expect from basic intuition that spatially and/or

temporally averaged variables should have longer predictability. Intuition would suggest

that averaging should filter out the high-frequency, nearly unpredictable components

of the system, and only the low-frequency, more-predictable components of the system

would remain. For example, a time average over a week or a month should “average

out” the small-scale fluctuations in rainfall associated with individual convective storms,

and the remaining, averaged signal should be associated with low-frequency variability

such as the MJO and/or ENSO.

In the results shown here, this basic intuition sometimes holds and sometimes

does not. Different results will be seen for spatial versus temporal averaging. Spatial

averaging leads to improved forecast skill, in line with the basic intuition described

above. Time averaging, on the other hand, is more subtle: it may either increase or

decrease forecast skill, depending on the relative definition of the lead time.

Our original motivation stemmed from analyzing some preliminary forecasts of

precipitation associated with convectively coupled equatorial waves (CCEWs) and the

MJO, using the model of [73]. In forecasting the rainfall associated with such multiscale

systems, the skill could potentially be measured in a variety of ways, depending on

the length scales and time scales and wave types of interest. Some very recent studies

have now analyzed the forecast skill in this setting using operational numerical weather
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prediction models [15, 26, 88, 89]. In the future it would be interesting to conduct more

detailed forecasts with the model of [73], which could offer theoretical perspectives owing

to the model’s simplicity relative to numerical weather prediction systems.

This chapter is organized as follows. The model equations and prediction setup

are defined in section 3.2. Forecasts of time series of the cOU process are presented

in section 3.3. Subtleties of time averaging are discussed in further detail in section

3.4, including comparisons of different definitions of lead time relative to the averaging

window. Forecasts of the spatiotemporal rainfall model (the stochastic heat equation)

are presented in section 3.5, allowing investigation of both time averaging and space

averaging, and allowing investigation of time averaging for a more complicated system

that has numerous degrees of freedom. Conclusions are described in section 3.6.

3.2 Models and Methods

In this section, the two exactly solvable models are introduced: the complex Ornstein-

Uhlenbeck process as a model for a single oscillatory mode, and the stochastic heat

equation as a model for spatiotemporal dynamics. In addition, several aspects of the

forecasting setup are also described, including measures of forecast skill and definitions

of time and space averaging.

3.2.1 Mathematical Models

Complex Ornstein-Uhlenbeck(cOU) Process

A complex Ornstein-Uhlenbeck(cOU) process is applied for the first insight of the fore-

casting behaviors in predicting signals at single time points or signals averaged over a

temporal window. Conducting forecasting analyses on a cOU process is a meaningful at-

tempt for detecting the forecast skill for predicting signals with a single oscillation mode.
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We consider a complex linear stochastic differential equation for the Ornstein-Uhlenbeck

process

du(t) = (−γ + iω)u(t) + σdW (t), (3.1)

where γ, σ > 0 and ω are real numbers and

dW (t) ≡ dW1(t) + idW2(t)√
2

(3.2)

is a complex Gaussian white noise where each component satisfies

dWj(t) ≡ Ẇj(t)dt, j = 1, 2 (3.3)

that is, white noise is a ”derivative” of the Wiener process Wj(t) and it satisfies the

following properties

E[Ẇj(t)] = 0 (3.4)

E[Ẇj(t)Ẇj(s)] = δ(t− s) (3.5)

E[Ẇi(t)Ẇj(s)] = 0 for i 6= j. (3.6)

The exact solution of (3.1) is

u(t) = e(−γ+iω)tu(0) + σ

∫ t

0

e(−γ+iω)(t−s)dW (s). (3.7)

As t → ∞, u(t) will converge to a stationary Gaussian distribution with mean 0 and

variance σ2

2γ
(see details in [50]).

In the simulation and plotting in this chapter, we choose the parameters γ =

0.1 month−1, ω = 4
3
π month−1, σ = 0.5 to represent a wave with oscillation period
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Figure 3.1: Panel a: Time series of the real part of a simulated signal from a
cOU process over 12 months; Panel b: Time series of RMM1 index in the year
2000. In both panels, the blue curve is the original signal while the dashed
red curve is the half-month averaged signal (namely û(t, Tw = 0.5 month)
from t = 0 to t = 12 months in (3.12)).

2π/ω = 1.5 months like the MJO and a decorrelation time 1/γ = 10 months that is longer

than the oscillation period, resulting in the occurrence of sequences of irregular wave

oscillations. All the analytic formulas have been checked with the numerical simulations.

A simulated time series over 12 months is shown in panel a of Fig. 3.1 along with the time

series of Real-time Multivariate MJO (RMM) index in the year 2000. The similarities

between the two time series show that the cOU signals are good representations for the

dynamics to some extent. When a time averaging is applied, small oscillations will be

removed from the original signal through the temporal averaging process so that the

signal becomes smoother with an expectation for a lower variance.

For investigating more about influences of temporal and spatial averaging in fore-

casting, a one dimensional model based on the stochastic heat equation is analyzed for

some insight. The simple model applied to the water vapor dynamics has been shown

that it has behaviors very similar to the observational statistics in the article [22]. The
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model is a stochastic PDE

∂q

∂t
= b052 q − 1

τ
(q − q∗) + F +D∗Ẇ , (3.8)

where q(t, x) is the signal at time t and location x depending on a spatial interaction

constant b0, the relaxation time τ , the relaxation target q∗, an external force F and the

stochastic forcing variance D2
∗. Now, Ẇ is a space-time white noise. It can be charac-

terized as a centered Gaussian process such that E[Ẇ (s, x)Ẇ (t, y)] = δ(s − t)δ(x − y).

We call (3.8) as SHE or SPDE for abbreviations in this chapter. In the one dimensional

case, (3.8) can be solved analytically as

q(t, x) = q∗ + τF +
e−t/τ

(4πb0t)1/2

∫
R
e
− |x−y|

2

4b0t (q(0, y)− q∗ − τF )dy

+ e−t/τD∗

∫
t

0

1

(4πb0|t− s|)1/2

∫
R
e
− |x−y|

2

4b0(t−s) es/τẆ (s, y)dyds. (3.9)

Besides the analytical solution, there are many useful and important statistics that can

be computed directly using the analytical solution, such as the temporal covariance

cov[q(t, x)q(s, x)] and the spatial covariance cov[q(t, x)q(t, y)] which will help a lot in

accessing the forecast skill (See in appendix section 3.7.3). The signal arising from

this type of stochastic partial differential equation like (3.8) will enter into a stationary

Gaussian distribution as time goes to infinity. The stationary distribution has mean

q∗ + τF and variance D∗

4

√
τ
b0

. In addition, in spatial Fourier space, q(t, x) can be

decomposed into the integral of a bunch of components satisfying the equation of a cOU

process (3.1) independently. All the components have a corresponding decorrelation time

1/γ in the cOU process that is not greater than τ and ω = 0. From this point of view,

q(t, x) can be seen as the combination of numerous different waves with decorrelation

time not greater than τ and oscillation frequency ω = 0. A detailed description and

derivation for the discrete version of this Fourier transform can be seen in [22].
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a. b.

c.
d.

Figure 3.2: Panel a. A simulated global image of q(t, x); Panel b. A global
image of of OLR observational data in the year 2010 after averaging over
the tropical belt; Panel c. The power spectrum density of the simulated
data; Panel d. Zonal wavenumber-frequency spectrum of the base-10 log-
arithm of the background power from the OLR observational data cited
from Wheeler&Kiladis’s paper [84] c© American Meteorological Soci-
ety. Used with permission.



55

In our simulation and figures, we aim to simulate the rainfall statistics according

to the probability distribution in [22] and the power spectrum density plot in [84].

τ = 96 hours, q∗ = 65 mm, F = −0.125 mm · hour−1, b0 = 104 km2 · hour−1, D∗ =

25 mm ·km1/2 ·hour−1/2 are chosen for this purpose. All the analytic formulas have been

checked with the numerical simulation. Both the temporal averaging and the spatial

averaging have an influence on eliminating the small oscillations and smoothing. A

global dynamic view of the simulated q(t, x) over one year is shown in panel a of Fig. 3.2

along with the OLR observational data in the year of 2010 after averaging over the

tropical belt, which provides a OLR signal OLR(t, x) for time t and longitude x. The

power spectrum density plot of the simulated data in panel c of Fig. 3.2 performs a good

match with the power density based on the observational OLR data in the paper [84]

(shown in panel d of Fig. 3.2). The similarities between the observational data and the

simulated data provide evidence for that stochastic heat equation is a reasonable and

good model for representing the atmospheric dynamic system.

3.2.2 Measures of Forecasting Skill: Mean Square Error (MSE)

and Pearson Correlation Coefficients (ρ)

Two types of frequently-used criterions, mean square error(MSE) and the Pearson cor-

relation coefficients, are used in this chapter for evaluating the forecasting skill. The

mean square error measures the average of the squares of the errors that is the difference

between the predictions and the true signal. When a temporal or spatial averaging is

applied, the variance of the averaged signal will also be scaled from the variance of the

original signal. Hence, instead of the MSE, the ratio of the MSE over the variance of

the averaged signal seems to be a more reasonable and meaningful measure for the as-

sessment. The Pearson correlation coefficient is a measure of the strength and direction

of the linear relationship between two variables. Mathematically, if X(t) is the true

signal from the cOU process (3.1) or the stochastic heat equation (3.8) and Y (t) is our
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prediction, both X(t) and Y (t) are stationary and ergodic processes and (X(t), Y (t))

is also a jointly stationary and ergodic process. Stationarity ensures that the first mo-

ment E[X(t)], E[Y (t)], the second moment E[X(t)2], E[Y (t)2] and the mixed moment

E[X(t)Y (t)] are all constants that are not depending on the time t. Then the MSE of

the estimator Y (t) with respect to the unknown variable X(t) is defined as

MSE(X(t), Y (t)) = E[(Y (t)−X(t))2], (3.10)

which is a constant not depending on the time t. The formula for the Pearson correlation

coefficients ρ can be expressed as

ρ(X(t), Y (t)) =
cov(X(t), Y (t))

σXσY
, (3.11)

where cov(X(t), Y (t)) = E[(X(t)− E[X(t)])(Y (t)− E[Y (t)])] is the covariance between

X(t), Y (t) and σX , σY are the standard deviations of X, Y respectively. ρ(X(t), Y (t)) is

also a constant that doesn’t change over time. In a situation of analyzing the real data,

we have the true data from the true signal as X1, X2, · · · , XN and our corresponding

predictions Y1, Y2, · · · , YN . By ergodicity, as N → ∞, the sample means 1
N

∑N
i=1 Xi,

1
N

∑N
i=1 Yi converge in squared mean to E[X(t)], E[Y (t)] and limN→∞

1
N

∑N
i X

2
i =

E[X(t)2], limN→∞
1
N

∑N
i Y

2
i = E[Y (t)2], limN→∞

1
N

∑N
i XiYi = E[X(t)Y (t)]. These con-

nect the sample MSE and sample correlation coefficient of a real dataset with our ide-

alized and theoretical definitions (3.10) and (3.11).

3.2.3 Temporal and Spatial Averaging: Definitions and Nota-

tions

When we do the temporal averaging, there are different ways to place the temporal

averaging window. Motivated by Fig.1 in the paper [92], the default definitions of

the lead time when there is a temporal averaging window in this chapter are shown in
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Figure 3.3: Schematic of default lead time and temporal averaging window
definitions in the analysis. The horizontal axis represents forecast time from
the initial condition at t0.

Fig. 3.3. For the temporal averaged cOU signal û(t, Tw) at time t with averaging window

width Tw, it is defined as the averaged signal from time t to time t+ Tw, namely

û(t, Tw) =
1

Tw

∫ t+Tw

t

u(s)ds. (3.12)

Similarly, the temporal averaged stochastic heat equation signal at time t with averaging

window width Tw at a single location x is defined as

q̂(t, x, Tw) =
1

Tw

∫ t+Tw

t

q(s, x)ds. (3.13)

For the spatial averaging at location x, the signals are averaged over a spatial window

[x−Lw/2, x+Lw/2] with Lw as the averaging window width and x as the center of the

spatial averaging window, namely

q̃(t, x, Lw) =
1

Lw

∫ x+Lw/2

x−Lw/2
q(t, y)dy. (3.14)
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The averaged signal with both temporal and spatial averaging is a combination of (3.13)

and (3.14) as

q(t, x, Tw, Lw) =
1

LwTw

∫ x+Lw/2

x−Lw/2

∫ t+Tw

t

q(s, y)dsdy. (3.15)

The changes of variances in the cOU or SHE signals through the temporal and/or spatial

averaging are also investigated, which is described in appendix section 3.7.1 in detail.

Note that both the complex Ornstein-Uhlenbeck process and the stochastic heat

equation are Markovian processes. With the aids of Markovian properties of the two

models, a lot of useful analytical formulas are derived and calculated when we assess

the forecasting skills involving temporal and/or spatial averaging in the later sections.

It would be interesting in the future to investigate whether similar results are still seen

with non-Markovian processes.

3.3 Forecasting the Complex Ornstein-Uhlenbeck

Process

3.3.1 Forecasting at a Single Time Point

In an idealized situation, we have the perfect model of a cOU process for predicting,

which means we have the exact true values of the parameters γ, ω, σ in (3.1). However,

by using the ensemble mean prediction, the value of σ essentially will not affect the

prediction skill. The true signal is a known realization from the cOU process, we denote

it as

utruth(t; θ) = The true signal = u(t; θ) (3.16)

with the underlying parameter θ which labels the realization of the stochastic process.

By (3.7), treating t−tL as the current time, one single prediction for time t with lead time
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tL will be another realization starting from utruth(t− tL; θ) with underlying parameter ζ

as

upred(t, tL; ζ, θ) = The prediction of the value of u at time t,

given the value of u at time t− tL,

for ensemble member label ζ

= e(−γ+iω)tLutruth(t− tL; θ) + σ

∫ t

t−tL
e(−γ+iω)(t−s)dW (s; ζ). (3.17)

Note that, technically speaking, W (s; ζ) here is from another new Wiener process which

could be denoted as W̃ (s; ζ), although the tilde will be left off in order to ease notation.

Also note that the prediction upred can be separated into components from the θ realiza-

tion and ζ realization according to the Markovian nature of the process, as the future is

independent from the past.

At the same time utruth(t; θ) is also a realization starting from utruth(t − tL; θ) with

underlying parameter θ as

utruth(t; θ) = e(−γ+iω)tLutruth(t− tL; θ) + σ

∫ t

t−tL
e(−γ+iω)(t−s)dW (s; θ). (3.18)

Then the ensemble mean of the predictions in the form of (3.17) serves as the ensemble

forecasting for time t with ensemble size ∞ which is

upred(t, tL; θ) = Eζ [upred(t, tL; ζ, θ)]

= e(−γ+iω)tLutruth(t− tL; θ). (3.19)

First, we predict the signal at single time points with the perfect cOU model and lead

time tL. The mean square error (MSEu) and the Pearson correlation coefficient (ρu)
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between the prediction and the true signal can be calculated as

MSEu(tL) = Eθ[|utruth(t; θ)− upred(t, tL; θ)|2]

= Eθ[|σ
∫ t

t−tL
e(−γ+iω)(t−s)dW (s; θ)|2]

=
σ2

2γ
(1− e−2γtL), (3.20)

where σ2

2γ
is the variance of the true signal.

ρu(tL) =
Eθ[(upred(t, tL; θ)− Eθ[upred(t, tL; θ)])(utruth(t; θ)− Eθ[utruth(t; θ)])∗]

(var[upred(t, tL; θ)])1/2(var[utruth(t; θ)])1/2

=
Eθ[upred(t, tL; θ)u∗truth(t; θ)]

(var[upred(t, tL; θ)])1/2(var[utruth(t; θ)])1/2

=
e(−γ+iω)tLEθ[utruth(t− tL; θ)u∗truth(t; θ)]

e−γtL(var[utruth(t− tL; θ)])1/2(var[utruth(t; θ)])1/2

=
e(−γ+iω)tLe(−γ−iω)tLEθ[utruth(t− tL; θ)u∗truth(t− tL; θ)]

e−γtL σ
2

2γ

= e−γtL . (3.21)

With a perfect model, the mean square error will keep increasing as the lead time

increases but will never exceed the variance of the underlying true signal. As lead time

grows to infinity, MSEu is approaching the variance of the true signal. The correlation

coefficient ρu(tL) keeps decreasing with respect to the increasing in the lead time and

will drop below 0.5 if the lead time tL is larger than ln(2)/γ, approximately 0.69 of the

decorrelation time 1/γ. The characteristics of the forecasting skills at a single time point

for a cOU process are shown with the blue lines in Fig. 3.4. Since the conclusions from

MSE ratios are consistent with those from the correlation coefficients throughout this

chapter, we show only MSE formulas but not plots everywhere.
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Figure 3.4: Panel a. forecasting skill (correlation coefficient) for different
temporal averaging windows of a cOU process with ω = 0 under the default
definitions clarified in the section 3.2.3; Panel b. forecasting skill (correlation
coefficient) for different temporal averaging windows of a cOU process with
ω = 2π/(1.5 months) under the default definitions clarified in the section
3.2.3.
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Figure 3.5: Panel a. forecasting skill for different lead times of a cOU pro-
cess with ω = 0 under the default definitions clarified in the section 3.2.3;
Panel b. forecasting skill for different lead times of a cOU process with
ω = 2π/(1.5 months) under the default definitions clarified in the section
3.2.3.
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3.3.2 Forecasting with Temporal Averaging

Now we move on to assess the forecasting skill with a temporal averaging window. The

forecasting skill is achieved by comparing the averaged true cOU signal at time t, namely

ûtruth(t, Tw; θ) =
1

Tw

∫ t+Tw

t

utruth(s; θ)ds

=
1

Tw

∫
t+Tw

t

e(−γ+iω)(s−t+tL)utruth(t− tL; θ)

+ σ

∫ s

t−tL
e(−γ+iω)(s−s′)dW (s′; θ)ds (3.22)

and the ensemble prediction at time t with lead time tL by the default definition clarified

in the section 3.2.3 for this averaged true signal. Seeing t − tL as the current time, a

single prediction with lead time tL for this averaged signal with underlying ensemble

label ζ is specified as

ûpred(t, tL, Tw; ζ, θ) =
1

Tw

∫ t+Tw

t

upred(s, s− (t− tL); ζ, θ)ds

=
1

Tw

∫
t+Tw

t

e(−γ+iω)(s−t+tL)utruth(t− tL; θ)

+ σ

∫ s

t−tL
e(−γ+iω)(s−s′)dW (s′; ζ)ds. (3.23)

Then the ensemble forecast is the mean of the above forecast with respect to ζ

ûpred(t, tL, Tw; θ) = Eζ [ûpred(t, tL, Tw; ζ, θ)]

=
1

Tw

∫
t+Tw

t

e(−γ+iω)(s−t+tL)u(t− tL; θ)ds. (3.24)
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Having all these ready, we proceed to compute the forecasting skill in this temporal

averaging case.

M̂SEu(tL, Tw) = Eθ[|ûtruth(t, Tw; θ)− ûpred(t, tL, Tw; θ)|2]

= Eθ[|
1

Tw

∫
t+Tw

t

σ

∫ s

t−tL
e(−γ+iω)(s−s′)dW (s′; θ)ds|2]

= var[ûtruth(t, Tw; θ)]− σ2

2γ

e−2γtL

(γ2 + ω2)T 2
w

[e−2γTw − 2e−γTw cos(ωTw) + 1],

(3.25)

where var[ûtruth(t, Tw; θ)] is given in (3.52).

We do not present the details of the calculations that lead to (3.25), since they

are relatively long and they provide limited additional insight. To check the accuracy of

the formula in (3.25), we conducted Monte Carlo numerical simulations of the stochas-

tic process in order to find statistical estimates of the forecast skill, and the formula in

(3.25) was in agreement with the statistical estimates (not shown). This same scenario

will repeat itself numerous times in the remainder of the chapter; namely, many details

of calculations will be omitted, but the accuracy of the formulas was verified using nu-

merical statistical estimates.

From the formula in (3.25), one can see the following properties. With cos(ωTw) ≤

1, the term e−2γTw − 2e−γTw cos(ωTw) + 1 ≥ (e−γTw − 1)2 ≥ 0, which indicates that

M̂SEu(tL, Tw) ≤ var[ûtruth(t, Tw; θ)] always holds. The mean square error is always

controlled under the variance of the temporal averaged signal if forecasting with a perfect

model. It can be verified that as Tw → ∞, M̂SEu(tL, Tw) → 0 and as tL → ∞,
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M̂SEu(tL, Tw)→ var[ûtruth(t, Tw)].

For the Pearson correlation coefficient,

ρ̂u(tL, Tw)

=
Eθ[ûpred(t, tL, Tw; θ)û∗truth(t; θ)]

(var[ûpred(t, tL, Tw; θ)])1/2(var[û∗truth(t; θ)]])
1/2

= [
var[ûpred(t, tL, Tw; θ)]

var[ûtruth(t; θ)]
]1/2

= ρu(tL)·[
(γ2 + ω2)(e−2γTw − 2e−γTw cos(ωTw) + 1)

2γTw(γ2 + ω2)− 2(γ2 − ω2) + 2e−γTw
(

(γ2 − ω2) cos(ωTw)− 2γω sin(ωTw)

)]1/2

.

(3.26)

The performances of the forecasting skills for different temporal averaging windows and

different lead time are demonstrated graphically in Fig. 3.4 and Fig. 3.5. (Note that

a special behavior can sometimes arise when the temporal averaging window Tw is an

integer multiple of the oscillation period, 2π/ω. For example, in Fig. 3.5, if Tw equals

the oscillation period of 1.5 months, the prediction will have a very bad forecasting

skill. This is mainly because the signal is almost completely averaged out when the

temporal averaging window equals an integer multiple of the oscillation period; see also

appendix 3.7.1.)

From these two figures 3.4 and 3.5, we can see clearly an interesting result: as

the temporal averaging window increases, the correlation coefficient actually decreases,

which means a worse forecasting for a larger temporal averaging window. This is counter-

intuitive. When a temporal averaging window is applied, intuitively we would expect

a lot of fast oscillations and unpredictable components would be averaged out, making

the resulting signal much easier to predict. But the results from the formulas tell us a
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totally counter story that the temporal averaging makes the forecast skill worse!

3.4 Subtle Impacts of Definitions of Averaging Win-

dow and Lead Time

Figure 3.6: Schematic of a new lead time and temporal averaging window
definition in the analysis. The horizontal axis represents forecast time from
the initial condition at t0.
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Figure 3.7: Panel a. forecasting skill for different temporal averaging win-
dows of a cOU process with ω = 0 under the new definition clarified in the
Fig. 3.6 and equation (3.27); Panel b. forecasting skill for different temporal
averaging windows of a cOU process with ω = 2π/(1.5 months) under the
new definition clarified in the Fig. 3.6 and equation (3.27).
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In the previous section, why did a wider temporal averaging window give a worse

forecasting skill, counter to what one would expect from basic intuition? With this

question in mind, we have tried to review all of the details of the procedure in order to

determine the underlying cause. One key factor seems to be the relative definitions of the

lead time and the temporal averaging window, and the relative definition seems to cause

differences in the forecasting skills under different settings. To illustrate the different

ways of making such definitions, here in this section we use an alternative definition:

the time of the right endpoint of a temporal averaging interval is taken to be the “base

time” of the averaged signal, which means a temporal averaged signal over a temporal

averaging window with length Tw is defined as

ûRtruth(t; θ) =
1

Tw

∫ t

t−Tw
utruth(s; θ)ds. (3.27)

A diagram for this new definition is shown in Fig. 3.6. In this new definition, it needs

Tw < tL to make the entire temporal averaging window lie in the future. If Tw > tL,

then part of the averaging window lies in the past which means that only part of the

signals in the averaging window that lies in the future needs to be predicted since the

past is already known. Comparing the old and new definitions, the forecasting skill

can be easily evaluated by replacing the old lead time tL in (3.25) and (3.26) with

tL − Tw if tL ≥ Tw, namely M̂SE
R

u (tL, Tw) = M̂SEu(tL − Tw, Tw) and ρ̂Ru (tL, Tw) =

ρ̂u(tL − Tw, Tw). If tL < Tw, the prediction in this new definition will be made of a

part of already known past values and a part of future forecasting. When tL < Tw,

M̂SE
R

u (tL, Tw) = M̂SEu(0, tL) · t2L/T 2
w while ρ̂Ru needs to be calculated starting from the

new definition. Here, we omit the calculation details and directly give out the formulas.

M̂SE
R

u (tL, Tw)



67

=

 var[ûtruth(t, tL; θ)]
t2L
T 2
w
− σ2

2γ
1

(γ2+ω2)T 2
w

[e−2γtL − 2e−γtLcos(ωtL) + 1] if tL < Tw

var[ûtruth(t, Tw; θ)]− σ2

2γ
e−2γtL

(γ2+ω2)T 2
w

[e2γTw − 2eγTwcos(ωTw) + 1] if tL ≥ Tw

(3.28)

ρ̂Ru (tL, Tw)

=



[
var[ 1

Tw

( ∫ t
t+tL−Tw

utruth(s;θ)ds+
∫ t+tL
t upred(s,s−t;θ)ds

)
]

var[ûtruth(t,Tw;θ)]

]1/2

if tL < Tw

ρu(tL)

[
(γ2+ω2)(e2γTw−2eγTw cos(ωTw)+1)

2γTw(γ2+ω2)−2(γ2−ω2)+2e−γTw

(
(γ2−ω2) cos(ωTw)−2γωsin(ωTw)

)]1/2

if tL ≥ Tw

(3.29)

where

var[
1

Tw

( ∫ t

t+tL−Tw
utruth(s; θ)ds+

∫ t+tL

t

upred(s, s− t; θ)ds
)
]

=
1

T 2
w

[
(Tw − tL)2var[ûtruth(t, Tw − tL; θ)] +

σ2

2γ

1

γ2 + ω2
(e−2γtL − 2e−γtLcos(ωtL) + 1)

+
σ2

2γ
Re[

2

(γ + iω)2
(1− e(−γ−iω)tL)(1− e(−γ−iω)(Tw−tL))]

]
(3.30)

and var[ûtruth(t, Tw; θ)] is given in (3.52).

From Fig. 3.7, we care more about the case when tL > Tw where the entire

temporal averaging window falls in the future. Now, under the new definition, when

ω = 0, the forecasting skills are improving when a wider temporal averaging window is

applied. For ω 6= 0, things get a little bit more complicated. Forecast is very unskillful

when the signal is averaged over a window with length that is multiples of the oscillation

period 2π/ω. But the highest skill in the second cycle for 2π/ω ≤ Tw ≤ 4π/ω is even

better than the highest skill in the first cycle when 0 ≤ Tw ≤ 2π/ω for positive lead time.
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Figure 3.8: Schematic of another new lead time and temporal averaging
window definition in the analysis. The horizontal axis represents forecast
time from the initial condition at t0.
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Figure 3.9: Panel a. Pearson correlation coefficient of forecasting a cOU
process with ω = 0 under the new definition clarified in the Fig. 3.8; Panel b.
Pearson correlation coefficient of forecasting a cOU process with ω = 2π/1.5
months under the new definition clarified in the Fig. 3.8.

These results show in a counter way as those under the default definition we discussed in

the section 3.3.2. This is all caused by the different definitions of the averaging window.

Another choice of the temporal averaging window at time t is to put the window

center exactly at the time point t as in the Fig. 3.8. With curiosity, we also dig into this
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case. The formulas of the new forecasting skills MSEC
u (tL, Tw) and ρCu (tL, Tw) can be

derived directly based on (3.28) and (3.29) through the relationship MSEC
u (tL, Tw) =

MSER
u (tL + Tw/2, Tw) and ρCu (tL, Tw) = ρRu (tL + Tw/2, Tw) and their behaviors can be

observed in Fig. 3.9. For ω = 0, the forecasting skill is similar to but slightly better

than the single time point predictions. For the ω = 2π/1.5 months, the very limited

forecasting skill stays the same at Tw is multiples of oscillation cycles.

A summary figure, Fig. 3.10, is plotted to give a comprehensive view of the

changes in forecast skill with different definitions of the temporal averaging window. As

the center of the temporal averaging window over time t moves from the left side to the

right side of time t, such as from the definition in Fig. 3.6 to Fig. 3.3, the forecast skill

becomes worse. The centered definition in Fig. 3.8 has slightly better forecast skill than

the baseline which is the single time point forecasting.

Note that two different γ values are chosen in Fig. 3.10, γ = 0.1 in panel a and

γ = 0.5 in panel b. We can see that the differences in forecast skill among different

locations of the temporal averaging windows are slight when γ = 0.1 as the y-axis in

panel a of Fig. 3.10 ranges from about 0.95 to 1.15 but are much more significant when

γ = 0.5. This is because the correlation coefficient ratio ρ̂(tL, Tw)/ρ(tL) under different

definitions depends on γTw, which can be seen as follows. If we think the baseline is the

case of single time point forecasting and then define a as

a =
The temporal averaging window center minus the lead time tL in baseline

Tw
.

(3.31)

Then a is a variable representing where the temporal averaging window is placed. Denote

ρ̂(tL, Tw) under the definition of the temporal averaging window with a as ρ̂(tL, Tw, a).
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When ω = 0, the correlation coefficient ratio can be calculated as

ρ̂(tL, Tw, a)/ρ(tL) =
ρ̂
(
tL − (Tw/2− aTw), Tw)

)
ρ(tL)

=
(

exp(−γTw)
)a

[
exp(γTw) + exp(−γTw)− 2

2γTw + 2 exp(−γTw)− 2
]1/2. (3.32)

It is depending on γTw while independent from tL.

In any case, to summarize, it is clear from Fig. 3.10 that the definition of the time

averaging window, relative to the definition of the lead time, has a significant impact on

the change in forecast skill. Certain definitions can even lead to the counter-intuitive

result that time averaging causes a worse forecast skill. A “centered” time averaging

window, which is centered about the target prediction time, appears to offer only a small

increase in forecast skill, despite intuitive expectations that time averaging should offer

larger increases in forecast skill.

3.5 Forecasting an Idealized Spatiotemporal Rain-

fall Model: Stochastic Heat Equation

A complex Ornstein-Uhlenbeck process is an interesting test case since it is a good pre-

sentation for a single wave. Nevertheless, spatial averaging issues cannot be conducted

in a forecasting problem for a cOU signal. Meanwhile, in the real world, we are often

trying to predict signals composed of numerous waves or modes. The cOU process is

insufficient for getting insights for those situations. Therefore, we proceed to study the

forecasting problem for the signal arising from a stochastic heat equation in the form

of (3.8). Now we return to the default definition of the time-averaging window from

section 3.2.3 and take a look at the forecasting behaviors for this type of signals.
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Figure 3.10: Forecast skills (Pearson correlation coefficients) with temporal
averaging under different definitions as in Fig. 3.13 compared to the baseline
(single time point forecasting) for predicting cOU processes with ω = 0. Tw =
2 months is fixed and the correlation coefficient ratio is not depending on the
lead time tL. Only cases where the entire averaging window for forecasting
lies in the future are considered here (in other words, tL > Tw). The blue
dot stands for the definition in Fig. 3.6 with better forecast skill , the cyan
diamond represents the definition of the similar skill as baseline (slightly
better) in Fig. 3.8, the green square is used for the definition of the worse
forecast skill in Fig. 3.3. Panel a is for the case γ = 0.1 and panel b is for
the case γ = 0.5.

3.5.1 Forecasting at a Single Time Point and a Single Spatial

Location

The stochastic PDE (3.8) can be solved analytically. For convenience, let’s denote

Q(t, x) = q(t, x)− q∗ − τF, (3.33)

then E[Q(t, x)] = 0 for t→∞. Similar to the cOU process, the true signal qtruth(t, x; θ)

is a realization from (3.8), say it is with underlying parameter θ as

qtruth(t, x; θ)
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= q(t, x; θ)

= Q(t, x; θ) + q∗ + τF

= q∗ + τF +
e−tL/τ

(4πb0tL)1/2

∫
R
e
− |x−y|

2

4b0tL Q(t− tL, y; θ)dy

+D∗

∫
tL

0

1

(4πb0|tL − s|)1/2

∫
R
e
− |x−y|

2

4b0(t−s) e−(tL−s)/τẆ (s+ t− tL, y; θ)dyds. (3.34)

A single prediction qpred(t, x, tL; ζ, θ) for predicting qtruth(t, x; θ) with lead time tL is then

a realization with another underlying parameter ζ. In other words, it is

qpred(t, x, tL; ζ, θ)

= q∗ + τF +
e−tL/τ

(4πb0tL)1/2

∫
R
e
− |x−y|

2

4b0tL Q(t− tL, y; θ)dy

+D∗

∫
tL

0

1

(4πb0|tL − s|)1/2

∫
R
e
− |x−y|

2

4b0(t−s) e−(tL−s)/τẆ (s+ t− tL, y; ζ)dyds. (3.35)

With lead time tL, the ensemble forecast for time t is the mean of all the single predictions

qpred(t, x, tL; ζ, θ) starting from qtruth(t− tL, x; θ) = Q(t− tL, x; θ) + q∗ + τF , which is

qpred(t, x, tL; θ) = Eζ [qpred(t, x, tL; ζ, θ)]

= q∗ + τF +
e−tL/τ

(4πb0tL)1/2

∫
R
e
− |x−y|

2

4b0tL Q(t− tL, y; θ)dy. (3.36)

Now the forecasting skill can be achieved straightforwardly by comparing the qtruth(t, x; θ)

and qpred(t, x, tL; θ) and direct calculation.

MSEq(tL)
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= Eθ[(qtruth(t, x; θ)− qpred(t, x, tL; θ))2]

= Eθ[(D∗

∫
tL

0

1

(4πb0|tL − s|)1/2

∫
R
e
− |x−y|

2

4b0(t−s) e−(tL−s)/τẆ (s+ t− tL, y; θ)dyds)2]

=
D2
∗

4

√
τ

b0

erf(

√
2tL
τ

). (3.37)

Note D2
∗

4

√
τ
b0

is the variance of the true signal. Hence the mean square error is again

controlled under the variance of the true signal with the perfect model.

ρq(tL) =
Eθ[(qpred(t, x, tL; θ)− Eθ[qpred(t, x, tL; θ)])(qtruth(t, x; θ)− Eθ[qtruth(t, x; θ)])]

(var[qpred(t, x, tL; θ)])1/2(var[qtruth(t, x; θ)])1/2)

= (
var[qpred(t, x, tL; θ)]

var[qtruth(t, x; θ)]
)1/2

= [1− erf(

√
2tL
τ

)]1/2. (3.38)

Essentially, the forecasting skill at a single time point and a single spatial location is

only related to the ratio of tL and τ and doesn’t involve any other parameters in the

model. With tL ≤ 0.33τ , ρq(tL) ≥ 0.5. In our simulation, for τ = 96h = 4 days in the

idealized rainfall model, tL ≤ 1.32344 days = 31.76256 hours will have a good forecast

correlation coefficient ρq(tL) ≥ 0.5.

3.5.2 Forecasting at a Single Spatial Location with Temporal

Averaging

Temporal averaging forecasting skill for a single spatial location for the signal from the

stochastic heat equation is studied as well. The temporal averaged signal is

q̂truth(t, x, Tw; θ) =
1

Tw

∫ t+Tw

t

qtruth(s, x; θ)ds =
1

Tw

∫ t+Tw

t

Q(s, x; θ)ds+ q∗ + τF,

(3.39)
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Figure 3.11: Panel a. forecasting skill for different temporal averaging win-
dows of a SPDE process under the default definition clarified in the section
3.2.3; Panel b. forecasting skill for different spatial averaging windows of a
SPDE process under the default definition clarified in the section 3.2.3 .

where

Q(s, x; θ) =
e−(s−(t−tL))/τ

[4πb0

(
s− (t− tL)

)
]1/2

∫
R
e
− |x−y|2

4b0

(
s−(t−tL)

)
Q(t− tL, y; θ)dy

+D∗

∫
s−(t−tL)

0

1

(4πb0|s− (t− tL)− µ|)1/2
·

(

∫
R
e
− |x−y|2

4b0(s−(t−tL)−µ) e−(s−(t−tL)−µ)/τẆ (µ+ t− tL, y; θ)dy)dµ (3.40)

and the ensemble forecast is achieved by taking the ensemble mean of all the single

predictions

q̂pred(t, x, tL, Tw; θ) =
1

Tw

∫
t+Tw

t

e−(s−(t−tL))/τ

[4πb0

(
s− (t− tL)

)
]1/2
·

(

∫
R
e
− |x−y|2

4b0

(
s−(t−tL)

)
Q(t− tL, y; θ)dy)ds+ q∗ + τF, (3.41)
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M̂SEq(tL, Tw) = Eθ[(q̂truth(t, x, Tw; θ)− q̂pred(t, x, tL, Tw; θ))2]

=
D2
∗

4

√
τ

b0

τ 2

T 2
w

[
2(tL + Tw)

τ

∫ 2(tL+Tw)/τ

(2tL+Tw)/τ

erf(
√
x)dx

− 2tL
τ

∫ (2tL+Tw)/τ

2tL/τ

erf(
√
x)dx

− 2Tw
τ

∫ Tw/τ

0

erf(
√
x)dx+

∫ (2tL+Tw)/τ

2tL/τ

xerf(
√
x)dx

−
∫ 2(tL+Tw)/τ

(2tL+Tw)/τ

xerf(
√
x)dx+ 2

∫ Tw/τ

0

xerf(
√
x)dx

]
, (3.42)

where

∫ B

A

erf(
√
x)dx =Berf(

√
B)− Aerf(

√
A)− 1

2
erf(
√
B) +

1

2
erf(
√
A)

+

√
B

π
exp(−B)−

√
A

π
exp(−A) (3.43)

and

∫ B

A

xerf(
√
x)dx =

1

2
B2erf(

√
B)− 1

2
A2erf(

√
A)− 3

8
erf(
√
B) +

3

8
erf(
√
A)

+
1

2
√
π
B3/2exp(−B)− 1

2
√
π
A3/2exp(−A)

+
3

4
√
π
B1/2exp(−B)− 3

4
√
π
A1/2exp(−A). (3.44)

The correlation coefficient can again be proved to be the square root of the ratio between

the two variances of the true averaged signal and the prediction as

ρ̂q(tL, Tw) =

(
var[q̂pred(t, x, tL, Tw; θ)]

var[q̂truth(t, x, Tw; θ)]

)1/2

, (3.45)

where

var[q̂pred(t, x, tL, Tw; θ)]
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=
D2
∗

4

√
τ

b0

{
1− τ 2

T 2
w

[ ∫ (2tL+Tw)/τ

2tL/τ

(xerf(
√
x))dx−

∫ 2(tL+Tw)/τ

(2tL+Tw)/τ

xerf(
√
x)dx

− 2tL
τ

∫ (2tL+Tw)/τ

2tL/τ

erf(
√
x)dx+

2(tL + Tw)

τ

∫ 2(tL+Tw)/τ

(2tL+Tw)/τ

erf(
√
x)dx

]}
(3.46)

and var[q̂truth(t, x, Tw; θ)] is given in (3.53).

For positive lead time, the skill has slight improvements for very narrow temporal

averaging window Tw and then starts to drop as the averaging window becomes wider and

wider. Fig. 3.11 shows this characteristic when lead time tL is longer than about 6 hours.

The SHE signal is composed of a lot of cOU waves with different decorrelation times

but no oscillations if we view it from Fourier space. Recalling the discussion from the

cOU part, the quickly decaying waves with short decorrelation times are hard to predict

and those slowly decaying waves with long decorrelation times are predictable. When

a temporal averaging window is used, we average out the quickly decaying waves which

improves the forecasting skill while the forecasting skill for each individual predictable

wave is dropping which may deteriorate the forecasting. The improvement part can be

deduced from both intuition and the correlation formula. When we apply the temporal

averaging, we remove those unpredictable waves and diminish the overall variance of the

signal, making it easier to predict. The variance contribution of the predictions for those

quickly decaying waves is always almost zero in var[q̂pred(t, x, tL, Tw; θ)] while temporal

averaging definitely reduces the variance of the true signal q̂truth(t, x, Tw; θ). The Pearson

correlation coefficient appears to be the ratio of these two values indicating that the av-

eraging out of those quickly decaying waves will help the forecast. The forecast on those

slowly decaying waves is worse when a temporal averaging window under the default

definition in section 3.2.3 is applied. Hence, the overall change in the forecasting skill

is a trade off between the improvements brought by averaging out the quickly decaying

waves and the decline caused by the worse forecast for those slowly decaying waves.
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Whether the forecasting skill improves or degrades for a predictable wave when

temporal averaging is used highly depends on how we place the temporal averaging

window. If a temporal averaging window is placed as in Fig. 3.6, then the forecasting

for the SHE signal increases when a wider temporal averaging window is applied since

both the averaging out of the quickly decaying signals and the averaging of the slowly

decaying signals are helping the forecast. The same thing will happen if we invoke the

averaging definition in Fig. 3.8 with the same reasons.

3.5.3 Forecasting at a Single Time Point with Spatial Averag-

ing

For the spatial averaging, we define the spatial averaged signal at location x with spatial

window length Lw by averaging all the signals over the interval [x − Lw/2, x + Lw/2]

as in (3.14), namely the averaged truth signal q̃truth(t, x, Lw; θ) and its corresponding

prediction q̃pred(t, x, tL, Lw; θ) are

q̃truth(t, x, Lw; θ) =
1

Lw

∫ x+Lw/2

x−Lw/2
qtruth(t, y; θ)dy (3.47)

and

q̃pred(t, x, tL, Lw; θ) =
1

Lw

∫ x+Lw/2

x−Lw/2
qpred(t, y, tL; θ)dy. (3.48)

We omit more details in this section and directly give the formulas for the forecasting

skills as following.

M̃SEq(tL, Lw) =
D2
∗

4

√
τ

b0

{
2
√
b0τ

Lw
− 2b0τ

L2
w

erf(
√

2tL/τ)

+
b0τ

L2
w

exp(− Lw√
b0τ

)

(
1− erf(

Lw√
8b0tL

−
√

2tL/τ)

)



78

− b0τ

L2
w

exp(
Lw√
b0τ

)

(
1− erf(

Lw√
8b0tL

+
√

2tL/τ)

)
− 2

√
b0τ

Lw
exp(−2tL/τ)

(
erf(

Lw√
8b0tL

)−
√

8b0tL√
πLw

(
1− exp(− L2

w

8b0tL
)
))}

,

(3.49)

ρ̃q(tL, Lw) =

(
var[q̃pred(t, x, tL, Lw; θ)]

var[q̃truth(t, x, Lw; θ)]

)1/2

, (3.50)

where

var[q̃pred(t, x, tL, Lw; θ)] =
D2
∗

4

√
τ

b0

{
b0τ

L2
w

[exp(− Lw√
b0τ

) + exp(
Lw√
b0τ

)− 2]

b0τ

L2
w

exp(− Lw√
b0τ

)erf(
Lw√
8b0tL

−
√

2tL/τ)

+ b0τexp(
Lw√
b0τ

)erf(− Lw√
8b0tL

−
√

2tL/τ)

− 2b0τ

L2
w

erf(−
√

2tL/τ) +
2
√
b0τ

Lw
exp(−2tL/τ)erf(

Lw√
8b0tL

)

− 2
√
b0τ√
πLw

√
8b0tL
Lw

exp(−2tL/τ)(1− exp(− L2
w

8b0tL
))

}
(3.51)

and var[q̃truth(t, x, Lw; θ)] is given in (3.54).

The spatial averaging improves the forecasting skills unambiguously. A wider spatial

averaging window produces a better forecast. Since the spatial averaging window is in-

dependent from the lead time, we would expect the improvements in forecasting brought

by the spatial averaging no matter whether the averaging window at location x is placed

more on the left side of x, centered at x or more on the right side of x.
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3.5.4 Forecasting with Both Temporal and Spatial Averaging
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Figure 3.12: Panel a. forecasting skill of a temporal averaged SPDE process
under the default definition clarified in the section 3.2.3 with a fixed spatial
averaging window Lw = 25 km; Panel b. forecasting skill of a temporal
averaged SPDE process under the default definition clarified in the section
3.2.3 with a fixed spatial averaging window Lw = 275 km.

Regarding the formulas of forecast skills with both temporal and spatial averaging for

predicting a SHE signal, see in appendix section 3.7.2. Instead, we take a look at the

patterns through Fig. 3.12 here. The forecasting performance is the combination ef-

fects of the temporal and spatial averaging where the spatial averaging always helps

to improve the forecasting while the temporal averaging helps the forecasting for very

narrow windows and then make the forecasting worse for wider windows. If the defini-

tions shown in Fig. 3.6 or Fig. 3.8 are used, then the temporal averaging is also helping

the forecasting so that the skills are always improving with wider spatial and temporal

windows in those cases.
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Figure 3.13: Schematics of comparison between different definitions of tempo-
ral averaging window and single time point predictions and brief conclusions
for predicting cOU processes with ω = 0.

3.6 Conclusions

The effect of time averaging on forecast skill was seen to be significantly different de-

pending on the definitions of the temporal averaging window and the lead time. Two

main competing effects contribute to this difference. On the one hand, time averaging

should increase forecasting skill by eliminating (“averaging out”) high-frequency, nearly

unpredictable components from the signal; such an effect is consistent with some a priori,

basic intuition. On the other hand, time averaging can decrease forecasting skill if the

time-averaging window [t, t+ Tw] lies in the future, beyond the time t of the prediction,

since the signal is less predictable for times that are farther in the future. As a result,

it is difficult to make a general statement about whether time averaging leads to an

increase or decrease in forecasting skill. The answer depends on the relative definitions

of the time-averaging window and the lead time; see Fig. 3.13 for a schematic diagram.

Spatial averaging was seen to always improve the forecast skill. It eliminates
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(“averages out”) high-frequency, nearly unpredictable components from the signal, and

it leaves behind only the low-frequency, more-predictable components of the signal. Such

behavior is consistent with a priori, basic intuition. No subtlety exists in the relative

definition of lead time and a spatial averaging window.

What is the “correct” definition of lead time, relative to the time-averaging win-

dow? One might argue that the lead time should be defined with respect to the end of an

averaging window, [t− Tw, t]. Such a definition seems sensible for a number of reasons.

For instance, in terms of the initial data for the forecast, the time-averaged state over

the past Tw time units would be known at the initial time. Also, this definition leads

to enhanced prediction skill, which is in line with some basic intuition for the impact

of averaging on prediction skill, and it seems desirable to have agreement with basic

intuition. However, it is possible that the enhanced prediction skill is not entirely due to

the averaging itself; instead, it is likely enhanced at least partially due to the fact that

the time-averaging window [t− Tw, t] contains signal data before the target time t, and

this “earlier” data should naturally be more predictable than the “later” data at time

t. Consequently, it is unclear whether there is a “best” definition of lead time, relative

to the time-averaging window, since several competing factors are intermingled.

The models here were chosen to be exactly solvable and to be somewhat represen-

tative of atmospheric, oceanic, and climate variability. Therefore, the results here could

potentially be expected to hold to some degree even for more complicated dynamical

models. However, it is possible that nonlinearities [7, 8, 9, 10, 11, 30, 52, 61, 80] and other

factors could potentially impact the conclusions, and it would be interesting to investi-

gate similar questions with more complicated models in the future. As one small step in

this direction, we have added advection to the stochastic heat equation by replacing ∂tq

by ∂tq+ c∂xq with an advection speed of c ≈ 15 m/s; numerical results of forecasts with

time averaging (not shown) are essentially the same as the main conclusions presented
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above. It would be interesting to investigate other models in the future.

3.7 Appendices

3.7.1 Temporal and Spatial Averaging: Model Statistics

Before we evaluate the forecasting skill, we need to investigate a little bit in the change of

variance of the signal through the temporal averaging and spatial averaging. Relatively

small mean square errors are expected for forecasts with temporal or spatial averaging

since averaging will create a smaller variance for the averaged signal. The trends of the

variance changes as we do the averaging are shown in Fig. 3.14. For a complex OU

process from (3.1), after approaching the stationary distribution arbitrary closely, the

averaged mean will be nearly 0 while the variance of the averaged signal over a temporal

window with length Tw is close to the stationary value of

var[û(t, Tw)] =
σ2

2γ
· 1

(γ2 + ω2)2T 2
w

· [2γTw(γ2 + ω2)− 2(γ2 − ω2)

+ 2e−γTw
(
(γ2 − ω2)cos(ωTw)− 2γωsin(ωTw)

)
], (3.52)

where σ2/2γ is the variance of the unaveraged cOU signal and this variance has properties

lim
Tw→0

var[û(t, Tw)] =
σ2

2γ
= var[u(t)], lim

Tw→∞
var[û(t, Tw)] = 0,

which agree with one’s intuition that the signal will be averaged out if the temporal

averaging window is very large. From the panel a of Fig. 3.14, we can see that the

variance of the cOU signal is monotone decreasing if ω = 0 as we increase the length of

the temporal averaging window. When ω 6= 0, the variance of the averaged cOU signal is

decreasing at first if we enlarge the temporal averaging window and the signal is almost

averaged out after a time period 2π/ω according to that its variance is almost below 15%
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Figure 3.14: Panel a. variance change over temporal averaging for ω = 0
and different γ of a cOU process; Panel b. variance change over temporal
averaging for ω = 2π/(1.5 months) and different γ of a COU process ; Panel
c. variance change over temporal averaging for a stochastic PDE process;
Panel d. variance change over spatial averaging for a stochastic PDE process

of the original variance after a time period in panel b of Fig. 3.14. As the decorrelation

time 1/γ decreases(γ increases), the declining rate of the variance is changing from a

cosine type decreasing to an exponential decreasing. In the case ω = 0, the variance

decline is dominated by γ only. In the case ω 6= 0, the variance always decreases to a

very small amount after a time period regardless of the values of γ.

Regarding the stationary process stemming from the stochastic heat equation

(3.8), both the impacts of the temporal and spatial averaging on the variance have to
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be considered. The averaged signal always has the same mean q∗ + τF . Through the

temporal averaging with a temporal window of length Tw, the variance of the temporal

averaged signal becomes

var[q̂(t, x, Tw)] =
D2
∗

4

√
τ

b0

[
1− erf(

√
Tw
τ

)
(3

4
(
τ

Tw
)2 − τ

Tw
+ 1
)

+ exp(−Tw
τ

)
( 3

2
√
π

(
τ

Tw
)3/2 − 1√

π
(
τ

Tw
)1/2
)]
. (3.53)

Through the spatial averaging with a spatial window of length Lw, the variance of the

spatial averaged signal will be

var[q̃(t, x, Lw)] =
D2
∗

4

√
τ

b0

· 2[

√
b0τ

Lw
− b0τ

L2
w

(1− exp(− Lw√
b0τ

))], (3.54)

where D2
∗

4

√
τ
b0

is the variance of the unaveraged stochastic partial differential equation

signal. The variance is decreasing monotonically as the averaging window increases in

both the temporal averaging case and the spatial averaging case for the stochastic partial

differential equation process by panel c and panel d of Fig. 3.14. By the analytic formulas

(3.53) and (3.54), the variance of the temporal averaged SPDE signal compared to the

original unaveraged variance is determined by the ratio of the temporal averaging window

Tw and the relaxation time τ only and not related to other parameters in the model (3.8).

The variance of the spatial averaged SPDE signal compared to the original unaveraged

variance is determined by the ratio of square root of b0τ and the spatial averaging window

Lw only.
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3.7.2 Formulas of forecasting skill for a both temporal and spa-

tial averaged SPDE

• Mean Square Error MSEq(tL, Tw, Lw)

MSEq(tL, Tw, Lw)

=
D2
∗

4

√
τ

b0

1

L2
wT

2
w

τ 2

2

[
2Tw
τ

(
P(Tw/τ, Lw)− P(0, Lw)

)
+

2tL
τ

(
P((2tL + Tw)/τ, Lw)− P(2tL/τ, Lw)

)
− 2(tL + Tw)

τ

(
P(2(tL + Tw)/τ, Lw)− P((2tL + Tw)/τ, Lw)

)
− 2
(
Q(Tw/τ, Lw)−Q(0, Lw)

)
−
(
Q((2tL + Tw)/τ, Lw)−Q(2tL/τ, Lw)

)
+
(
Q(2(tL + Tw), Lw))−Q((2tL + Tw)/τ, Lw)

)]
, (3.55)

where

P(x, y) =

√
1

b0τ
[(h2(x, y) + g2(x, y))− y(h1(x, y) + g1(x, y))]

+ (2x− 1)[(h1(x, y)− g1(x, y))− y(h0(x, y)− g0(x, y))]

− 4
√
b0τ · x · exp(−x)

(
y · erf(

y

2
√
b0τx

)− 2

√
b0τx

π

(
1− exp(− y2

4b0τx
)
))
,

(3.56)
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Q(x, y) =− 1

4b0τ
[(h3(x, y)− g3(x, y))− y(h2(x, y)− g2(x, y))]

+
3

4

1√
b0τ

[(h2(x, y) + g2(x, y))− y(h1(x, y) + g1(x, y))]

+ (x2 − 3

4
)[(h1(x, y)− g1(x, y))− y(h0(x, y)− g0(x, y))]

−
√
b0τ(2x+ 3)x · exp(−x)·(
y · erf(

y

2
√
b0τx

)− 2

√
b0τx

π

(
1− exp(− y2

4b0τx
)
))
,

(3.57)

h0(x, y) =

∫ y

0

exp(
z√
b0τ

)erf(
z

2
√
b0τx

+
√
x)dz, (3.58)

h1(x, y) =

∫ y

0

z · exp( z√
b0τ

)erf(
z

2
√
b0τx

+
√
x)dz, (3.59)

h2(x, y) =

∫ y

0

z2 · exp( z√
b0τ

)erf(
z

2
√
b0τx

+
√
x)dz, (3.60)

h3(x, y) =

∫ y

0

z3 · exp( z√
b0τ

)erf(
z

2
√
b0τx

+
√
x)dz, (3.61)

g0(x, y) =

∫ y

0

exp(− z√
b0τ

)erf(
z

2
√
b0τx

−
√
x)dz, (3.62)

g1(x, y) =

∫ y

0

z · exp(− z√
b0τ

)erf(
z

2
√
b0τx

−
√
x)dz, (3.63)

g2(x, y) =

∫ y

0

z2 · exp(− z√
b0τ

)erf(
z

2
√
b0τx

−
√
x)dz, (3.64)

g3(x, y) =

∫ y

0

z3 · exp(− z√
b0τ

)erf(
z

2
√
b0τx

−
√
x)dz. (3.65)

• Correlation coefficient ρq(tL, Tw, Lw)

ρq(tL, Tw, Lw) =

(
var[q̄pred(t, x, tL, Tw, Lw; θ)]

var[q̄truth(t, x, Tw, Lw; θ)]

)1/2

, (3.66)
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var[qtruth(t, x, Tw, Lw; θ)]

=
D2
∗

4

√
τ

b0

1

L2
w

{
τ 2

T 2
w

[
Tw
τ

(
P(Tw/τ, Lw)− P(0, Lw)

)(
Q(Tw/τ, Lw)−Q(0, Lw)

)]
+ b0τ

(
exp(

Lw√
b0τ

) + exp(
Lw√
b0τ

)− 2
)}
,

(3.67)

var[qpred(t, x, tL, Tw, Lw; θ)]

=
D2
∗

4

√
τ

b0

1

L2
w

{
b0τ [exp(

Lw√
b0τ

) + exp(− Lw√
b0τ

)− 2]

+
1

T 2
w

[ ∫ 2tL+Tw

2tL

f1(α,Lw)dα−
∫ 2(tL+Tw)

2tL+Tw

f1(α,Lw)dα

− 2tL

∫ 2tL+Tw

2tL

f0(α,Lw)dα + 2(tL + Tw)

∫ 2(tL+Tw)

2tL+Tw

f0(α,Lw)dα

]}
,

(3.68)

where tL is the lead time, Tw is the width of the temporal averaging window, Lw

is the width of the spatial averaging window and

f0(α, β) =b0τexp(−
β√
b0τ

)erf(
β

2
√
b0α
−
√
α/τ)

− b0τexp(
β√
b0τ

)erf(
β

2
√
b0α

+
√
α/τ)

+ 2b0τerf(
√
α/τ) + 2

√
b0τβexp(−α/τ)erf(

β

2
√
b0α

)

− 4b0

√
τα

π
exp(−α/τ)(1− exp(− β2

4b0α
)),

(3.69)

f1(α, β) = αf0(α, β). (3.70)
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3.7.3 Calculations of some important statistics

By the change of the variable in (3.33), inserting into the SPDE (3.8) gives

∂Q

∂t
= b04Q− 1

τ
Q+D∗Ẇ . (3.71)

With one more step of changing the variable by v(t, x) = et/τQ(t, x), the equation (3.71)

is simplified to a simple and regular stochastic heat equation

∂v

∂t
= b04 v +D∗e

t/τẆ . (3.72)

v then can be solved directly as

v(t, x) =
1

(4πb0t)1/2

∫
R
e
− |x−y|

2

4b0t v(0, y)dy +D∗

∫ t

0

1

(4πb0|t− s|)1/2

∫
R
e
− |x−y|

2

4b0(t−s) es/τẆ (s, y)dyds.

(3.73)

The important statistics of the q(t, x) and Q(t, x) can be calculated through this analytic

solution (3.73) as the following.

• Mean

For a bounded initial value |q(0, y)| ≤ K(K is a finite constant)

|E[q(t, x)]− (q∗ + τF )| = |E[Q(t, x)]|

= |E[e−t/τv(t, x)]|

=

∣∣∣∣e−t/τ 1

(4πb0t)1/2

∫
R
e
− |x−y|

2

4b0t v(0, y)dy

∣∣∣∣
=

∣∣∣∣e−t/τ 1

(4πb0t)1/2

∫
R
e
− |x−y|

2

4b0t
(
q(0, y)− q∗ − τF

)
dy

∣∣∣∣
≤ e−t/τ

1

(4πb0t)1/2

∫
R
e
− |x−y|

2

4b0t (K + q∗ + τF
)
dy

= (K + q∗ + τF )e−t/τ → 0 as t→∞
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⇒ lim
t→∞

E[q(t, x)] = q∗ + τF. (3.74)

• Covariance and variance

cov[q(s, x), q(t, y)] (3.75)

= cov[Q(s, x), Q(t, y)]

= cov[e−s/τv(s, x), e−t/τv(t, y)]

= e−(s+t)/τcov[v(s, 0), v(t, x− y)]

= e−(s+t)/τ D
2
∗

4πb0

·

E
[ ∫ t

0

∫ s

0

∫
R

∫
R

1

|t− r|1/2|s− r′|1/2
e
− |x−y−y

′|2
4b0(t−r)

− |y′′|2
4b0(s−r′) (3.76)

· Ẇ (r, y′)Ẇ (r′, y′′)er/τer
′/τdy′dy′′dr′dr

]
= e−(s+t)/τ D

2
∗

4πb0

∫ s∧t

0

∫
R

1

|t− r|1/2|s− r|1/2
e
− |x−y−y

′|2
4b0(t−r)

− |y′|2
4b0(s−r) e2r/τdy′dr

= e−(s+t)/τ D2
∗

(4πb0)1/2

∫ s∧t

0

(s+ t− 2r)−1/2exp

(
− |x− y|2

4b0(s+ t− 2r)

)
e2r/τdr

=
D2
∗

4
√
πb0

∫ s+t

|s−t|
l−1/2exp(−|x− y|

2

4b0l
− al)dl. (3.77)

For the temporal covariance at a single location, take x = y in (3.77),

cov[q(s, x), q(t, x)] =
D2
∗

4
√
πb0

∫ s+t

|s−t|
l−1/2exp(−l/τ)dl

(let η = (l/τ)1/2) =
D2
∗

4
√
πb0

∫ √(s+t)/τ

√
|s−t|/τ

2
√
τexp(−η2)dη

=
D2
∗

4

√
τ

b0

· 2√
π

∫ √(s+t)/τ

√
|s−t|/τ

exp(−η2)dη

=
D2
∗

4

√
τ

b0

(erf(
√

(s+ t)/τ)− erf(
√
|s− t|/τ)). (3.78)
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For the asymptotic spatial covariance at a single time point, take s = t in (3.77),

lim
t→∞

cov[q(t, x), q(t, y)] =
D2
∗

4
√
πb0

∫ ∞
0

l−1/2exp(−|x− y|
2

4b0l
− l/τ)dl

(Let η =
√
l) =

D2
∗

2
√
πb0

exp(− 1√
b0τ
|x− y|)

∫ ∞
0

exp

(
−
( |x− y|

2
√
b0η
− η√

τ

)2
)
dη

=
D2
∗

2
√
πb0

exp(−
√

1

b0τ
|x− y|) ·

√
πτ

2

=
D2
∗

4

√
τ

b0

exp(− 1√
b0τ
|x− y|). (3.79)

For the stationary variance for q(t, x), take x = y in (3.79),

lim
t→∞

var[q(t, x)] =
D2
∗

4

√
τ

b0

. (3.80)
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Chapter 4

Is weather forecast skill improved

by time averaging?

4.1 Introduction

It is natural to expect more accurate forecasts of time-averaged quantities. For instance,

one would expect that the rainfall averaged over one week can be forecast with greater

skill than the rainfall averaged over one day. Likewise, one would expect that the rainfall

averaged over a large region (such as the area of a state or province) could be predicted

with greater skill than the rainfall over a smaller region (such as a city or town).

Is this conventional wisdom true? If so, how much additional forecast skill is

gained by spatial and/or temporal averaging?

Some past work has examined forecast skills for different spatial or temporal

averaging [67, 92], although the studies were not set up in a way that allows direct

assessment of the conventional wisdom. To most clearly assess the conventional wisdom,

it is necessary to compare forecasts in a way that holds all parameters fixed (lead time,

etc.) except for changes in the averaging window. Such an assessment is the goal of the

present chapter.

In the previous chapter, the conventional wisdom was assessed, but on simple
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dynamical systems rather than operational weather forecasts. For simple (stochastic)

dynamical systems, it was seen that time averaging was ineffective at improving forecast

skill, while spatial averaging did improve forecast skill.

Will the weather system show a similar behavior? Is time averaging ineffective

at improving weather forecasts? Or, on the other hand, does conventional wisdom hold

for weather forecasts, due to some fundamental difference between weather and simple

stochastic dynamical systems?

The rest of this chapter is organized as follows. Methods and data are described

in section 4.2. The impact of averaging on forecast skill is assessed in section 4.3, and in

section 4.4 a theoretical explanation is provided for the limited effect of time averaging

on forecast skill. Section 4.5 is a concluding section. Additional sensitivity studies are

presented in section 4.6. Theoretical calculations are included in appendix section 4.7.

4.2 Methods

4.2.1 Data

The operational weather forecast data used here is from the Global Forecast System

(GFS) [18] and for two variables: precipitation and surface temperature. The 3 hourly

and 1◦ gridded global GFS dataset is used here for allowing assessment of longer available

lead times. The open source data can be downloaded at https://www.ncdc.noaa.gov/

data-access/model-data/model-datasets/global-forcast-system-gfs. GFS anal-

ysis data at lead time of 0 days (also called the day-0 analysis) is used to serve as the

truth for both precipitation rate and surface temperature for assessing the forecast skill.

For some sensitivity tests, Global Precipitation Measurement (GPM) [23] data are

also used as a baseline truth, for comparison with the use of GFS day-0 analysis data

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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as truth for precipitation. The 30-min research/final run version of GPM data with

spatial resolution 0.1◦ is used here for the variable “precipitationCal” (Multi-satellite

precipitation estimate with gauge calibration). The GPM data are fully available from

60◦N - 60◦S while much data is missing outside this range. Hence, only GPM data within

60◦N - 60◦S are used in the analysis here to ensure stable and reliable results. GPM

data can be downloaded from https://pmm.nasa.gov/data-access/downloads/gpm.

As another type of sensitivity test, data has also been used for anomalies from

the seasonal cycle. To create the anomaly data, a smoothed seasonal cycle has been

substracted from the GFS forecast data before moving forward with further analysis.

For the seasonal cycle of precipitation rate, the enhanced monthly long term mean

CPC Merged Analysis of Precipitation (CMAP) [12] with 2.5◦ latitude x 2.5◦ longitude

global grid derived from years 1981 to 2010 is used (and it can be downloaded from

https://psl.noaa.gov/data/gridded/data.cmap.html). For creating the seasonal

cycle for surface temperature, GFS analysis data with lead 0 from January 1, 2005, to

December 31, 2017 are used. In the preprocessing, the 6 hourly smoothed seasonal cycle

is calculated via the annual mean and the first three harmonics at every location globally

through discrete Fourier transform and inverse discrete Fourier transform. Particularly,

a bilinear interpolation follows for the smoothed CMAP precipitation seasonal cycle to

interpolate the data into 1◦ grids to match the grids of the GFS dataset. After removing

the smoothed seasonal cycle from the GFS forecast data, the remaining data represent

anomalies from the seasonal cycle.

Four main assessments are conducted here, and they cover a variety of quantities

of interest (precipitation vs. surface temperature), datasets, time ranges (in line with

the availability of the datasets), etc.: (1) 3.5-months GFS precipitation forecast data

from June 17, 2019 to October 08, 2019 are compared with GFS day-0 analysis data for

precipitation. (2) 11-months GFS surface temperature forecast data from March 01, 2018

https://pmm.nasa.gov/data-access/downloads/gpm
https://psl.noaa.gov/data/gridded/data.cmap.html
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to January 28, 2019 are compared to GFS day-0 analysis data for surface temperature.

(3) 11-months GFS precipitation forecast data from November 01, 2018 to August 31,

2019 are compared with GPM dataset. (4) The assessments 1 and 2 were also repeated

with GFS precipitation/temperature data as anomalies from the seasonal cycle. GFS

forecast data for precipitation rate and surface temperature (Assessments 1 and 2) are

mainly used in this main manuscript. Analysis involving GPM dataset and the same

analysis on the anomaly data of GFS (Assessments 3 and 4) are also investigated as

sensitivity tests. More details and results can be found in the next section.

4.2.2 Data Analysis Setup

To calculate the forecast skills, 7 days lead time is used for the surface temperature data.

Since precipitation usually is less predictable than the surface temperature, 3 days lead

time is used for precipitation rate forecasts. Time averaging window ranges from 1 day

to 6 days with an increment of 0.5 day, and the diameter of a spatial averaging window

ranges from 100 km, 450 km to 4500 km with an increment of 450km.

We start with 1-day time averaging and 100-km space averaging. Then, for

varying the time averaging window, the 100-km space averaging diameter is held fixed,

and the time averaging window is increased. Similarly, for varying the spatial averaging

diameter, the 1-day time averaging window is held fixed, and the spatial averaging

diameter is increased.

To achieve the comparability between the forecast dataset and the truth data and

a well-defined setup for the time averaging window, some data processing is implemented

before calculating the forecast skill with different averaging windows.

First, for comparisons involving spatial averaging windows larger than or equal to

900km, 30 min GPM data are averaged at each latitude and longitude to be coarsened
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from 0.1◦ to 1◦ at the very beginning. The GFS forecast/analysis data and GPM data

are then averaged over a circular region with diameter of 450km (or 900 km, ... , 4500

km) followed by the comparison.

Second, for comparisons involving time averaging, the baseline is with spatial

averaging with a diameter of 100km. For high resolution GPM data with 0.1◦, the

data is directly averaged over a circular region with diameter of 100km to create a

preprocessed GPM data with 100km spatial averaging with the guarantee of enough

sample points within 100km for each integer latitude and longitude. For GFS data

with 1◦, an underlying problem arising for those tropical locations is that they don’t

have enough sample points within 100km spatial averaging due to the coarse grid. To

achieve a better estimate, a bilinear interpolation has been applied to the GFS dataset

to create new data with 0.2◦ grids, which is then spatial averaged over a circular region

with diameter of 100km as a new preprocessed GFS dataset. Using the preprocessed

datasets, we can move forward to do time averaging with 1 day, 1.5 days, ..., 6 days.

4.2.3 Evaluating Forecast Skills

The Pearson correlation coefficient ρ is used here as the main metric for evaluating the

forecast skill. The coefficient ρ can be expressed as

ρ(X(t), Y (t)) =
cov(X(t), Y (t))

σXσY
, (4.1)

where cov(X(t), Y (t)) = E[(X(t)− E[X(t)])(Y (t)− E[Y (t)])] is the covariance between

X(t), Y (t) and σX , σY are the standard deviations of X, Y respectively. In practice,

the expected value E is calculated as a time average, so ρ(X(t), Y (t)) is a constant that

doesn’t change over time. In particular, in a situation of analyzing the real data, we have

the true data from the true signal as X1, X2, · · · , XN and our corresponding predictions

Y1, Y2, · · · , YN , each given at N points in time. The correlation coefficient is calculated
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by

ρ =
1
N

∑N
i=1(Xi − 1

N

∑N
i Xi)(Yi − 1

N

∑N
i Yi)

( 1
N

∑N
i=1(Xi − 1

N

∑N
i Xi)2)1/2( 1

N

∑N
i=1(Yi − 1

N

∑N
i Yi)

2)1/2
(4.2)

For time averaging, a centered averaging window is used in this chapter. Namely,

as Fig. 4.1 shows, for a time averaging window having length Tw and centered at time

t, the averaged signal at time t is defined as the average of the signals over the window

[t−Tw/2, t+Tw/2]. If t0 is the current time and the lead time is tL, the averaged forecast

with the lead time tL is the averaged forecast over [t−Tw/2, t+Tw/2] where t = t0 + tL.

The true signal will be the averaged true signals averaged over [t−Tw/2, t+Tw/2]. Then

the averaged forecast and the averaged true signal at time t will be compared for further

forecast skill evaluation.

Figure 4.1: Schematic of lead time and temporal averaging window definition
in the analysis. The horizontal axis represents forecast time from the initial
condition at t0.

Another measure used here is the ratio r, which measures the impact on forecast

skill brought by space averaging versus by time averaging. Some details of its definition

are as follows. Recall that the baseline case is the forecast skill when one day and 100km

averaging are applied. Denote ρ(Lw, Tw) as the correlation coefficient for the forecast

skill with spatial averaging diameter Lw and time averaging window duration Tw. Then
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for every location on the earth, r is defined as

r =
ρ(900 km, 1 day)− ρ(100 km, 1 day)

ρ(100 km, 2 day)− ρ(100 km, 1 day)
(4.3)

For creating a global map of the ratio r, some manual settings are made to better

present the comparison between time averaging and spatial averaging. Areas are marked

with white if a negative ratio r occurs; such a situation corresponds to a forecast skill

increase by spatial averaging but the forecast skill decrease by time averaging. In the

opposite scenario, when a forecast increase is seen for time averaging and a forecast skill

decrease for spatial averaging, the ratio r is manually set to be 0.001 for visualizations

with blue colors to represent better performance in forecast skills through time averaging.

Grey areas are locations where either missing values are present or where the forecast

skill decreases for both spatial and time averaging, since this latter scenario should

be distinguished from positive r values due to forecast skill increases for both spatial

and time averaging. To summarize, in the global map presented in this chapter, only

blue color represents a better forecast skill for the time averaging, grey color represents

locations where a comparison is invalid due to missing values or both forecast skills

decrease after time averaging or spatial averaging, and all the other colors (yellow, forest

green, medium sea green, white colors) are locations where spatial averaging has better

performance in increasing the forecast skill compared to the time averaging.

4.2.4 Computational Methods

A substantial computational cost is required in order to calculate forecast skills with

various spatial and time averaging windows and at all global locations. For example,

consider the assessment of the forecast skill for GFS temperature data with different

time averaging windows (1 day to 14 days) and different spatial averaging, using as

input a global dataset with approximately one year of data at 6 hourly time intervals.
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Furthermore, the GFS temperature forecast dataset includes lead times from lead 0

to lead 16 days. To analyze such a dataset, memory about 70-75 GB is needed for

each latitude to keep the running time of the calculation within about 8 hours for one

latitude. To manage the calculations, high-throughput computing (HTC) is used to

evaluate forecast skills at all latitudes simultaneously, to reduce the overall calculation

time.

4.3 Impact of averaging on forecast skill

Weather forecast skill is analyzed for the Global Forecast System (GFS). GFS is the

operational numerical weather forecast model of the US National Centers for Environ-

mental Prediction (NCEP). To analyze the impact of time averaging, the forecast data

is averaged over a particular window duration, such as 1 day, for assessing the forecast

skill. Additional durations are also investigated, such as 2 days, 3 days, etc., and the

skills for different durations are compared. Similarly, for analyzing the impact of spatial

averaging, the forecast data is averaged over a circular region with diameter of 100 km,

and, for comparison, additional diameters are also considered, such as 900 km, 1800 km,

2700 km, etc.

Fig. 4.2 shows the forecast skill for different time and space averaging windows.

The forecast skill is reported as a correlation coefficient, although it is an average of

correlation coefficients. Further details are described in the Methods section. In brief,

the skill (correlation coefficient) was first calculated for each location on the Earth, and

then the skill was averaged over all locations globally, leading to the the globally averaged

forecast skill that is plotted in Fig. 4.2. Results are shown for both precipitation (panel

a) and surface temperature (panel b).

Fig. 4.2 demonstrates one important basic result: spatial averaging is much more
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effective than time averaging at improving forecast skill at the global level.

Specifically, as the averaging window increases in size, the forecast skill with

spatial averaging (blue squares) is increasing much faster than the forecast skill with

time averaging (red circles).

(a) (b)

Figure 4.2: Effect of time and space averaging on forecast skill, averaged
globally. (a) Precipitation, at a lead time of 3 days. (b) Surface temperature,
at a lead time of 7 days. Bottom x-axis: Time averaging window length; Left
y-axis: Forecast skill (correlation coefficient) when time averaging is applied;
Top y-axis: Spatial averaging window length; Right y-axis: Forecast skill
(correlation coefficient) when spatial averaging is applied.

To take a closer look, beyond a global average, Fig. 4.3 shows a metric of forecast

skill increase and displays it at each location around the globe. The metric is a ratio r

that is defined as

r =
∆xρ

∆tρ
(4.4)

where ρ is the forecast skill (correlation coefficient), and ∆tρ is the change in forecast skill

due to an increase in time-averaging window duration (from 1 day to 2 days), and ∆xρ
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is the change in forecast skill due to an increase in spatial-averaging window diameter

(from 100 km to 900 km). Hence, if r > 1, then spatial averaging is more effective than

time averaging at improving forecast skill, whereas if 0 < r < 1, then time averaging is

more effective than spatial averaging at improving forecast skill. Fig. 4.2 shows that, at

nearly all locations worldwide, r > 1 and therefore spatial averaging is more effective

than time averaging at increasing forecast skill.

Some additional interesting features also can be seen in Fig. 4.3. For instance, for

precipitation, in Fig. 4.3a, over a large fraction of the global locations, spatial averaging

is three times more effective (r > 3, yellow areas) than time averaging at improving the

forecast skill. It is only in very few small regions that time averaging performs more ef-

ficiently (blue areas). For surface temperature, in Fig. 4.3b, an interesting characteristic

is an apparent land–sea contrast: time averaging is least effective compared to spatial

averaging (r > 3, yellow color) over ocean regions, less effective (1 < r < 3, green colors)

over land regions, and more effective (0 < r < 1) over coastal regions. These geographic

features are so apparent in the spatial map of r values that the outlines of the continents

arise naturally in Fig. 4.3b. Time averaging is more effective than spatial averaging at

only a very small number of locations, along the coastlines of the continents; this is

possibly due to the unique conditions associated with coastal microclimates.
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(a)

(b)

Figure 4.3: Global map of the ratio of forecast skill increase, defined in (4.4)
as r = ∆xρ/∆tρ, where ∆xρ is the change in forecast skill due to increased
spatial averaging, and ∆tρ is the change in forecast skill for increased time av-
eraging. (a) Precipitation. (b) Surface temperature. Detailed explanations
for the white and grey colors can be found in the Methods section.

4
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4.4 Theoretical explanation

Why does time averaging have limited impact on forecast skill? Conventional wisdom

would say that time averaging should provide a smoother time series, and a smoother

time series should be more predictable.

Here we show that, in fact, if a time series is smoother, it is not necessarily much

more predictable. A theoretical illustration of this can be seen using an auto-regressive

(AR) model (also called red noise, correlated noise, colored noise, or the Ornstein–

Uhlenbeck process in the continuous-time version). The AR(1) model takes the form

un+1 = un + (∆t/Td)u
n + ξn, (4.5)

where un is the quantity of interest (e.g., precipitation or surface temperature) at time

step n, ∆t is the time step, Td is the decorrelation time, and ξn is a white noise process.

Such a model is often used to represent atmospheric and oceanic phenomena [13,20,40].

An example time series is shown in Fig. 4.4a. The example was created to be similar

to a surface temperature signal, and it uses a decorrelation time of Td = 3.8 days. Also

shown in Fig. 4.4a is a smoothed version of the AR(1) time series which was created by

time averaging over a window of 2 days. The time-averaged signal is much smoother

than the original signal, and one might therefore expect the time-averaged signal to be

much more predictable.

In Fig. 4.4b, an experiment is implemented for testing the impacts of time aver-

aging on the simulated time series from the AR process using 3 days as the lead time.

One can see that, as the time averaging window increases, the forecast skill has only

slight improvements, similar to what had been seen in the operational weather forecast

data in Fig. 4.2.
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Analytical formulas can be derived to better understand the effects of time aver-

aging on the AR model. As one quantity of interest, the decorrelation time provides a

measure of predictability, and its value T d for the time-averaged process can be calcu-

lated by

T d =

∫ ∞
0

ACF (τ)dτ (4.6)

where ACF (τ) is the autocorrelation function with time lag τ . For the signal u(t)

from the original AR(1) model (in its continuous-time form as the Ornstein–Uhlenbeck

process), the autocorrelation function is ACF (τ) = exp(−τ/Td), and the decorrelation

time is Td. For a time-averaged signal (ū(t) = 1
Tw

∫ t+Tw/2
t−Tw/2 u(s)ds) averaged over a time

window with length Tw, we find the decorrelation time to be

T d = Td ·
(Tw/Td)

2

2[(Tw/Td)− 1 + e−Tw/Td ]
≈ Td +

1

3
Tw (4.7)

Details of the calculation of T d are shown in Sec. 4.7.

The analytical formula in (4.7) provides insight into how the time averaging

window length, Tw, affects the decorrelation time, T d. When time averaging is performed

on the signal, how does the decorrelation time T d of the smoothed signal compare with

the original signal’s decorrelation time, Td? As seen in (4.7), T d is proportional to

Td, and the proportionality factor depends on the key quantity Tw/Td. If Tw/Td is

small—i.e., if the time-averaging window length is smaller than the original signal’s

decorrelation time—then time averaging has only a small impact on the decorrelation

time and forecast skill. For example, in Fig. 4.4, where Td = 3.8 days, a time averaging

window of Tw = 2 days leads to a T d that is only 18% larger than Td. This is a somewhat

small change given what might be expected from how much smoother the time-averaged

signal looks in Fig. 4.4a. Even for larger values of Tw, which would create even smoother

time series, the corresponding increase in T d is somewhat small compared with what one

might expect. For example, when Tw = Td, so that the time-averaged signal is greatly
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smoothed, the corresponding decorrelation time is T d ≈ 1.36Td, for a 36% increase even

in this largely smoothed case. Both of these examples are in line with the approximation,

shown in (4.7), of T d ≈ Td + (1/3)Tw, which suggests that the additional decorrelation

time brought about by time-averaging is only one-third as large as the time averaging

window duration Tw. These slight changes in decorrelation time will then translate into

only slight changes in forecast skill, as can be seen in either analytical formulas [39] or

in the plot in Fig. 4.4b.

(a) (b)

Figure 4.4: Effects of time averaging on an AR(1) model. (a) An example
time series of the simulated AR(1) process (blue solid line) and a smoothed
version of it (red dashed line) obtained by time averaging with a 2-day win-
dow. (b) Forecast skills with different time averaging windows for a fixed
lead time of 3 days for the AR(1) model.

4.5 Conclusions

An investigation was conducted to assess the conventional wisdom that time averaging

and space averaging will provide increases in forecast skill. The results show spatial

averaging can enhance skill more than time averaging. Consistent evidence is seen in
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forecast data from both operational weather forecasts and simple stochastic models

(either time series models or spatiotemporal stochastic models) that can be studied

analytically. Taken together, this is evidence from a variety of models that time averaging

may create a smoother time series that is not necessarily much more predictable.

One could speculate on the possible origin of the conventional wisdom (that time

averaging should improve forecast skill significantly). It is possible that the conventional

wisdom arose in an early era of forecasting, prior to the advent of weather forecasting

with ensembles. It was only in the 1990s that operational weather forecasts began to

use ensembles [2,4,38]. If only a single ensemble member is used, then one would indeed

expect improvement in a weather forecast from time averaging. If an ensemble is used

for the forecast, then an average over the ensemble members will likely create a similar

type of benefit as a time average of an individual ensemble member’s forecast.

It is also possible that the effects of time averaging depend on the time scales

of the averaging. Here, lead times of 3 and 7 days were investigated, along with time

averaging windows of duration up to 6 days. It would be interesting to investigate

other time scales, such as subseasonal to seasonal predictions or short-term climate

predictions [54, 69, 81]. Nevertheless, one might expect the principles of the theoretical

AR model (Fig. 4.4) to hold no matter the time scales.

4.6 Appendix 1: Additional Sensitivity Tests

In this section, to test the robustness of the results in the main manuscript, additional

sensitivity tests are implemented. One test involves using anomaly data (using anomalies

from the seasonal cycle), and another test involves using another dataset, the GPM

(Global Precipitation Measurement) dataset, as the truth signal for precipitation.
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4.6.1 Analysis on anomaly data

Forecast skill changes are now investigated in the GFS precipitation rate/surface tem-

perature anomaly data. The anomaly data is defined by subtracting a smoothed seasonal

cycle before assessing the forecast skills.

For the precipitation rate, the enhanced monthly long term mean CPC Merged

Analysis of Precipitation (CMAP) is used for calculating the seasonal cycle. For the

surface temperature, GFS analysis data with lead 0 are used. More details about the

seasonal cycles are explained in the Method section.

(a) (b)

Figure 4.5: Effect of time and space averaging on forecast skill, averaged
globally. (a) Precipitation anomaly, at a lead time of 3 days. (b) Surface
temperature anomaly, at a lead time of 7 days.

The main results are shown in Fig. 4.5. In the comparison between forecast

performance changes via time averaging vs. spatial averaging, essentially the same

result is obtained: spatial averaging is more efficient than time averaging in improving

the forecast skills, both for the precipitation and the temperature. One difference seen in

Fig. 4.5b is that the temperature forecast skill is lower for the anomalies from the seasonal
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cycle, in comparison to the case of the main text, where the temperature forecast skills

were higher. This difference indicates that variations from the seasonal cycle contribute

a substantial amount of the forecast skill. Nevertheless, as seen in this additional test,

the effects of time averaging vs. space averaging are essentially the same whether or not

the seasonal cycle is retained or removed.

4.6.2 Assessing tropical precipitation forecast skills using GPM

data

In the main text, the truth signal was taken to be the day-0 analysis from the GFS

model. Here, as an additional test, an observational data product is used as the truth

signal instead of the model data product. In particular, GPM data is used to serve as

the true precipitation data for testing the robustness as well. We compare the GFS

precipitation forecast data, at a lead time of 3 days, to the GPM data to assess the

forecast skill.

Due to the GPM only having full observations from 60◦S to 60◦N while a max-

imum of 4500 km spatial averaging diameter is required in our analysis, the results of

this additional test are limited to tropical locations from 12◦S to 12◦N, so that the entire

spatial averaging disc is contained in the GPM data coverage from 60◦S to 60◦N .

As seen in Fig. 4.6, it is again seen that spatial averaging outperforms time

averaging in increasing forecast skill. One difference here is that, for short spatial/time

averaging, the tropical averaged precipitation rate forecast skills are lower than the global

averaged ones shown in the main text. This is within expectation based on earlier work

since tropical precipitation has less predictability than extratropical precipitation. This

additional test can also be taken as a special case of analyzing one region (i.e., the

tropics), and again the main conclusion is robust: spatial averaging improves forecast

skills more than time averaging.
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Figure 4.6: Effect of time and space averaging on forecast skill, averaged
over tropical areas from 12◦S to 12◦N for comparing GFS precipitation rate
forecast with GPM data, at a lead time of 3 days

4.7 Appendix 2: Analytic Formulas for Decorrela-

tion Time

In this section, we present the derivation of the analytic formula for the decorrelation

time, including the decorrelation time of the time-averaged process. In the calculation,

we use a continuous-time version of the AR(1) model called the Ornstein–Uhlenbeck

(OU) process.

The Ornstein-Uhlenbeck process is defined as

du(t) = −u(t)/Td + σdW (t) (4.8)

with positive parameters Td, σ > 0 and dW (t) is related to a Gaussian white noise Ẇ (t)
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via

dW (t) = Ẇ (t)dt, (4.9)

that is, white noise is a “derivative” of the Wiener process W (t) and it satisfies the

following properties

E[Ẇ (t)] = 0, (4.10)

E[Ẇ (t)Ẇ (s)] = δ(t− s). (4.11)

The exact solution of (4.7) is

u(t) = e−t/Tdu(0) + σ

∫ t

0

e−(t−s)/TddW (s) (4.12)

As t→∞, or as the initial time tends to −∞, u(t) will converge to a stationary Gaussian

distribution with mean 0 and variance σ2Td/2 [19,50]. In what follows, we consider the

stochastic process in its stationary state.

For the definition of the time averaged signal ū(t), we use the values of u(t)

averaged over a centered time-averaging window with length Tw, so the averaged signal

is defined as

ū(t) =
1

Tw

∫ t+Tw/2

t−Tw/2
u(s)ds (4.13)

To define the decorrelation time T d, we use the auto-correlation function, ACF (τ) =

E[u(t)u(t+ τ)]/var[u(t)] = C(τ)/C(0) for time lag τ where C(τ) is the auto-covariance

function for lag τ . Then the analytic formula for the de-correlation time of u(t) is defined
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as

T d =

∫ ∞
0

ACF (τ)dτ

=

∫ ∞
0

C(τ)

C(0)
dτ

=

∫∞
0
C(τ)dτ

C(0)
.

(4.14)

The next goal is to find the formula for C(τ). To do this, it is convenient to

re-write the definition of u(t) as

ū(t) =
1

Tw

∫ t+Tw/2

t−Tw/2
u(s)ds

=
1

Tw

∫ ∞
−∞

u(s)1[t−Tw/2,t+Tw/2](s)ds

=

∫ ∞
−∞

u(α)g(t− α)dα

= (g ∗ u)(t)

(4.15)

where 1(t) is the indicator function and g(t) = 1
Tw
1[−Tw/2,Tw/2](t). Hence, this expresses

ū(t) as a convolution between the original signal u(t) and a rectanglar function g(t). By

now transforming to Fourier space, the convolution will become a multiplication and

allow several useful formulas to be obtained:

ûν = ĝν ûν ,

|ûν |2 = |ĝν |2|ûν |2,

E|ûν |2 = |ĝν |2 · E|ûν |2,

Ĉ(ν) = Ĝ(ν) · Ĉ(ν)

(4.16)
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Ĝ(ν) = |ĝ(ν)|2 = |
∫ ∞
−∞

1

Tw
1[−Tw/2,Tw/2](x)e−2πxνidx|2

= | 1

Tw

∫ Tw/2

−Tw/2
e−2πxνidx|2

= | 1

−2πTwνi
(e−πνTwi − eπνTwi)|2

= | 1

2πTwν
i(cos (πνTw)− i sin (πνTw)− cos (πνTw)− i sin (πνTw))|2

= | 1

πTwν
sin (πνTw)|2

=
sin2 (πTwν)

π2T 2
wν

2

(4.17)

From these expressions, one can see that the problem of finding C(τ) is equivalent to

the problem of finding Ĉ(ν), since the two quantities are related by a Fourier transform.

To find an analytic expression for ̂̄C(ν), we start from the definition of the OU

process to find ûν :

du(t)

dt
= −ut/Td + σẆt∫ ∞

−∞

du(t)

dt
e−2πiνtdt = −ûν/Td + σ̂̇W ν

u(t)e−2πiνt|∞−∞ + 2πiν

∫ ∞
−∞

u(t)e−2πiνtdt = −ûν/Td + σ̂̇W ν

2πiνûν = −ûν/Td + σ̂̇W ν

ûν =
σ̂̇W ν

1/Td + 2πνi

(4.18)

E[ûν û
∗
ν′ ] =

σ

1/Td + 2πνi
· σ

1/Td − 2πν ′i
E[̂̇W ν

̂̇W ∗

ν′ ]

=
σ2

1/T 2
d + 4π2ν2

δ(ν − ν ′)
(4.19)
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Hence

Ĉ(ν) =
σ2

1/T 2
d + 4π2ν2

(4.20)

By the equality in (4.16),

Ĉ(ν) = Ĝ(ν) · Ĉ(ν) =
sin2 (πTwν)

π2T 2
wν

2

σ2

1/T 2
d + 4π2ν2

(4.21)

Returning now to C(τ), the numerator
∫∞

0
C(τ)dτ in the definition of the decor-

relation time (4.14) can be derived as∫ ∞
0

C(τ)dτ =
1

2

∫ ∞
−∞

C(τ)dτ

=
1

2

∫ ∞
−∞

C(τ)e−2πiντdτ

∣∣∣∣
ν=0

=
1

2
Ĉ(ν = 0)

=
1

2
lim
ν→0

Ĉ(ν)

=
1

2
lim
ν→0

sin2 (πTwν)

π2T 2
wν

2

σ2

1/T 2
d + 4π2ν2

=
σ2T 2

d

2

(4.22)

Then what remains needed from (4.14) is the denominator, C(0). From the equation (52)

in the paper [39], for a complex-valued OU process, the variance of the time avaraged

signal has been calcuated. By taking the γ = 1/Td and ω = 0, the auto-covariance

function for the averaged real-valued OU process can be found as

C(0) =
σ2T 3

d

T 2
w

(Tw/Td − 1 + e−Tw/Td) (4.23)
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Finally, from the definition of the decorrelation time in (4.14), we find

T d =

∫∞
0
C(τ)dτ

C(0)

=
σ2T 2

d /2
σ2T 3

d

T 2
w

(Tw/Td − 1 + e−Tw/Td)

= Td ·
(Tw/Td)

2

2(Tw/Td − 1 + e−Tw/Td)
,

(4.24)

which is the desired result of an analytic expression for the decorrelation time of the

time-averaged process u(t).

As a consistency check, it can be verified that, for the original unaveraged signal

u(t), the decorrelation time is just Td; to see this, take the limit Tw → 0 in (4.24) to see

that

lim
Tw→0

T d = lim
Tw→0

Td ·
(Tw/Td)

2

2(Tw/Td − 1 + 1− Tw/Td + (Tw/Td)2

2
+O(T 3

w))

= Td lim
Tw→0

(Tw/Td)
2

(Tw/Td)2 +O(T 3
w)

= Td.

Furthermore, a simpler, approximate version of (4.24) can be derived as follows,
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assuming that Tw/Td is small:

T d = Td ·
(Tw/Td)

2

2(Tw/Td − 1 + e−Tw/Td)

= Td ·
(Tw/Td)

2

2(Tw/Td − 1 + (1− Tw/Td + (Tw/Td)2

2!
− (Tw/Td)3

3!
+O((Tw/Td)4))

= Td ·
(Tw/Td)

2

(Tw/Td)2 − 1
3
(Tw/Td)3 +O((Tw/Td)4)

= Td ·
1

1− 1
3
(Tw/Td) +O((Tw/Td)2)

= Td(1 +
1

3
(Tw/Td) +O((Tw/Td)

2))

= Td +
1

3
Tw + Td ·O(T 2

w/T
2
d )

(4.25)

For small Tw/Td, equation (4.25) leads to

T d ≈ Td +
1

3
Tw. (4.26)
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Chapter 5

Conclusions

5.1 Research Questions and Main Findings of the

Study

In this thesis, we start with an introduction about Madden-Julian oscillation (MJO)

and Convectively Coupled Equatorial Waves (CCEWs) which play important roles in

weather forecasting in both tropical and extratropical regions. We then use the obser-

vational datasets to estimate the predictability of tropical rainfall and waves. Through

modeling the signal components at each wavenumber and within each type of the equato-

rial waves, we find out the predictability of MJO and CCEWs as well as their importance

in predicting the rainfall.

Carrying the question about how to improve the forecast after researching in the

predictability of the different waves and tropical rainfall, we move on to consider about

the time and spatial averaging impact on weather forecast since intuitively they are

expected to remove high-frequency unpredictable components and improve the forecast

skill.

With the help of the simple complex Ornstein-Uhlenbeck (cOU) process and

stochastic heat equation, we research in the impacts of time and spatial averaging to get

some insights first. It shows the effect of time averaging depends on the definitions of
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the temporal averaging window and the lead time while spatial averaging always helps

in improving the forecast skill. We surprisingly find out that time averaging is very

limited in improving forecast when a centered or right defined time averaging window is

applied, particularly compared to the effect of spatial averaging.

After the analytical investigation in the simple idealized stochastic models, we

start to wonder whether the same conclusion about the limited improvement in forecast

by time averaging still holds in modern operational forecast data or not. The GFS

precipitation and surface temperature are analyzed to explore the effects of time and

spatial averaging on forecast on the real forecast datasets, which validates that time

averaging has much more limited improvement in forecast skill compared to spatial

averaging again.

5.2 Future Work

Throughout the thesis, we systematically investigate in the predictability of the tropical

rainfall and the effects of time and spatial averaging on weather forecast. We find

interesting results and raise new questions through this process, which is definitely worth

further research in the future.

As next steps, higher resolution dataset can be used to see how much more

predictability will be brought for MJO, CCEWs and the tropical rainfall. At the same

time, the effect of finer spatial averaging such as spatial averaging with a diameter smaller

than 100km can be analyzed without the concern of applying bilinear interpolation for

sampling and smaller increments in the diameter of the spatial averaging instead of about

a 450km increment as what we did in Chapter 4 will be allowed with the availability of

higher resolution data.

It would also be interesting to investigate the effects of time averaging on other
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time scales, such as subseasonal to seasonal predictions or short-term climate predictions.

In Chapter 4, when we compare the spatial and time averaging, the coastline

shows a very big difference from the land and ocean. Investigations about the global

behaviors of time and spatial averaging by excluding the coastline or separating the land

and ocean will also be a good topic to be researched.

Furthermore, how can we integrate the information we find out to pick one optimal

averaging window for improving the forecast is worth exploring as well. Another idea

is how to improve the forecast skill at finer spatial locations with the help of spatial

averaging. Since larger spatial averaging helps in improving forecast skill more, perhaps

Bayesian method can be applied to help in forecasting quantities on finer grids from the

better forecast on coarser grids.

There are indeed a lot of ideas and research can be implemented on related

questions and topics in the future beyond the work shown here!
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