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Abstract

Parthenocarpy is a desirable trait for cucumber production and is particularly valuable in
environments where pollination is difficult or adversely affected by abiotic factors.
Parthenocarpic cucumber cultivars have been successfully developed, but the genetic and
molecular mechanisms behind parthenocarpic expression remain largely unknown. Since
parthenocarpy is often considered a yield component, it is difficult to separate the true
parthenocarpic character from other yield related traits. Therefore, this study was designed to
better define what is considered true parthenocarpic expression and then to use this knowledge to
identify QTL associated with parthenocarpic fruit set. Building off of previous studies
demonstrating that parthenocarpic fruit set is initiated in the days before and immediately after
anthesis, a new approach to phenotyping parthenocarpic fruit set in cucumber focused on early
fruit initiation and development was implemented. With a clear approach to phenotypic
evaluation, a mapping population consisting of 205 F3 families derived from a cross between
processing cucumber inbred lines ‘2A’ (parthenocarpic) and ‘Gy8’ (non-parthenocarpic) was
evaluated for parthenocarpic fruit set. Genotypic data collected for each F» individual was
utilized to construct a linkage map consisting of 192 marker loci in seven linkage groups and

covering 571.7 cM. Multiple QTL mapping methodologies (interval mapping, composite



il
interval mapping, and multiple interval mapping) were employed to detect and construct optimal
models for the inheritance of parthenocarpic fruit set. Seven additive QTL associated with
parthenocarpic fruit set were detected with four identified consistently in all analyses. The four
consensus QTL were located on chromosome 5 at 32.3 - 54.7 ¢cM, chromosome 6 at 0.0 - 9.7 cM,
chromosome 6 at 80.0 - 83.0 cM, and chromosome 7 at 21.8 - 32.1 cM. Bioinformatic analysis
of the genomic regions harboring the four consensus QTL was conducted and multiple candidate
genes were identified. A model was proposed to explain the roles of potential candidate genes in
parthenocarpic expression observed in cucumber. The QTL identified for parthenocarpic fruit
set by this study are valuable to cucumber breeders interested in developing parthenocarpic
cultivars and to researchers interested in the genetic and molecular mechanisms of

parthenocarpic fruit set.
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Introduction

Fertilization and fruit development are critical to angiosperm reproduction and dispersal. Upon
successful pollination and fertilization, a number of physiological events occur that lead to fruit
set and the development of the fruit and seed. Fruit development can be divided into four major
phases (Gillaspy et al., 1993). Phase 1 includes ovary development, fertilization, and fruit set.
During phase 1, cell division is reduced until physiological cues associated with pollination are
received, which determine whether to proceed with or to abort fruit set (Gillaspy et al., 1993).
With successful fruit initiation, phase 2 is characterized by rapid cell division, which occurs for
approximately 7-10 days (Gillaspy et al., 1993). Phase 3 consists of rapid cell expansion, which
can see a fruit increase in size by a factor of 100 fold or more (Gillaspy et al., 1993; Coombe,
1976). Fruit development concludes with the onset of fruit ripening in phase 4.

Fruit set can occur independent of pollination and/or fertilization and is referred to as
parthenocarpy. Parthenocarpic fruit set can be induced with the application of compatible
foreign pollen or aqueous pollen extracts to the stigma (Fitting, 1909; Gustafson, 1937; Noll,
1902; Yasuda, 1930; Yasuda, 1934; Yasuda, 1935; Srivastava, 2002). Pollen and pollen extracts
are known to contain auxins, gibberellins, and brassinosteroids, which among other
phytohormones may trigger fruit set (Gustafson, 1937; Gustafson, 1942; Tsao, 1980; Srivastava,
2002). Indeed, the exogenous application of phytohormones has been widely utilized in the
manipulation of parthenocarpic crops (Pandolfini et al., 2009; Schwabe and Mills, 1981).
Parthenocarpic fruit set can be influenced by events occurring away from the ovary. For
example, removal of plant apical meristems induces parthenocarpic fruit set; presumably through

alterations of hormone signaling (Carbonell and Garcia-Martinez, 1980; Coombe, 1962; Parry,



1976; Quinlan and Preston, 1971; Saunders et al., 1991; Serrani et al., 2010; Westwood and
Bjornstad, 1974). Efficacy of fruit set can also be influenced by abiotic factors such as
temperature, humidity, and low light intensity (George et al., 1984; Picken, 1984; Pike and
Peterson, 1969; Vardy et al., 1989a; Vardy et al., 1989).

Parthenocarpy can be invoked artificially or observed naturally. Genetic parthenocarpy
can be either obligatory or facultative. Obligatory parthenocarpy defines instances when a plant
can only produce parthenocarpic fruit. With facultative parthenocarpy, fruits develop
parthenocarpically only in the absence of fertilization. If successful pollination and fertilization
occur, fruit will develop with fertile seeds. Within obligatory and facultative parthenocarpy, a
distinction is made between vegetative and stimulated parthenocarpy. Vegetative parthenocarpy
occurs when fruit set is observed without pollination. Fruit set through stimulated parthenocarpy
requires pollination but fertilization is prevented or fails to occur. Parthenocarpy is distinct from,
but often confused with stenospermocarpy. Stenospermocarpy occurs when both pollination and
fertilization occur but the embryo aborts shortly after. Fruits continue to develop without viable
seeds although traces of the seed coats are often observed.

Naturally occurring parthenocarpy has a genetic basis. Tomato has served as model
organism for fruit development studies and consequently the inheritance of parthenocarpy has
been well characterized in the crop. Four independent recessive genes, pat (parthenocarpic
fruit), pat-2, and the two gene pat-3/pat-4 background, have each been identified as inducers of
facultative parthenocarpy in tomato (Nuez et al., 1986; Philouze and Maisonneuve, 1978;
Philouze, 1989; Philouze and Pecaut, 1986; Soressi and Salamini, 1975; Vardy et al., 1989a).
The pat-2 and pat-3/pat-4 genes are associated with increased levels of bioactive gibberellins

within ovaries before pollination (Fos et al., 2000; Fos et al., 2001). Parthenocarpic fruits



obtained with pat are often undersized and thus deemed undesirable in cultivar development
(Falavigna et al., 1978; Philouze and Pecaut, 1986). The parthenocarpic fruits of lines
expressing pat-2 are normal size but pat-2 has been found to be pleiotropic and results in reduced
yield and vigor in some genetic backgrounds (Philouze et al., 1988). Parthenocarpic lines
obtained with pat-3/pat-4 have normal sized fruits. However, when seeded fruits are set on the
same plant, the developing parthenocarpic fruits will be substantially smaller than the seeded
fruit. This along with its polygenic inheritance again makes pat-3/pat-4 less than ideal for
breeding proposes (Gorguet et al., 2005; Philouze, 1989). In addition to the pat genes, Gorguet
et al. (2008) identified three unique QTL associated with parthenocarpic expression in two
tomato populations, which both contained S. habrochaites background. Inheritance of
parthenocarpic expression in each population was controlled by two QTL with one QTL being
common in both populations.

Due to the desirability of parthenocarpic fruits, the inheritance of parthenocarpic
expression has been studied in a number of other species. A QTL study of parthenocarpic
inheritance in eggplant revealed a two QTL model of inheritance (Miyatake et al., 2012).
Analyses of segregation data found parthenocarpy to be under the control of at least two
dominant genes in mandarin (Vardi et al., 2008). In pepino (Solanum muricatum Aiton),
parthenocarpy was inherited as a single dominant gene (Prohens et al., 1998). Segregation ratios
in diploid banana (M. acuminata) suggested the presence of at least three genes influencing the
inheritance of parthenocarpy (Simmonds, 1953). Finally, observations of parthenocarpic
expression in blueberry suggested parthenocarpy was complex and polygenically inherited

(Ehlenfeldt and Vorsa, 2007).



In cucumber, the mode of genetic inheritance remains unresolved although highly
successful greenhouse cultivars have been developed. Hawthorn and Wellington (1930) and
Meshcherov and Juldasheva (1974) both reported models consisting of a single recessive gene
for the inheritance of parthenocarpy. Pike and Peterson (1969) also developed a single gene
model, although they reported parthenocarpy to be inherited as a single incompletely dominant
gene. Kvasnikov et al. (1970) were the first to propose complex inheritance for parthenocarpy
with a model consisting of many recessive genes. This was followed by a proposal by de Ponti
and Garretson (1976) of an additive three gene inheritance model. Similarly, EI-Shawaf and
Baker (1981) found parthenocarpy to be quantitatively inherited with both additive and non-
additive gene effects. Most recently, Sun et al. (2006) reported four major genomic regions
associated with parthenocarpic expression with significant epistasis and large
genotypexenvironment interactions.

Acrtificial parthenocarpy is induced through the application of exogenous phytohormones.
Auxin, gibberellic acid (GA), cytokinin, and combinations of these are the most common
phytohormones used to induce parthenocarpic expression (Gillaspy et al., 1993; Pandolfini,
2009; Vivian-Smith and Koltunow, 1999). A number of studies have also demonstrated the
ability of auxin transport inhibitors to induce parthenocarpic expression (Beyer and Quebedeaux,
1974; Robinson et al., 1971; Serrani et al., 2010). In addition to these, the exogenous application
of brassinosteroids was found to induce parthenocarpic fruit set in cucumber (Fu et al., 2008).
Meanwhile, abscisic acid and ethylene are reported to have antagonistic roles in fruit set and
parthenocarpic expression (Nitsch et al., 2009; Pascual et al., 2009; Vriezen et al., 2008; Wang et

al., 2009a).



Auxin signaling is regulated by indole-3-acetic acid (IAA) and auxin response factor
(ARF) transcription factors that act as inhibitors of auxin responsive genes (Leyser, 2006). ARF
and 1AA proteins form heterodimers that recognize auxin responsive genes (Goetz et al., 2007).
It has been proposed that prior to pollination, IAA/ARF protein complexes repress fruit set genes
(Goetz et al., 2006). Application or endogenous biosynthesis of auxin triggers the proteolytic
degradation of IAA proteins, which results in the disintegration of the heterodimer complex and
subsequently releases repression of auxin responsive genes (Dharmosiri and Estelle, 2004;
Leyser, 2006; Woodward and Bartel, 2005). In addition, silencing or loss of function mutations
to either ARF or IAA proteins removes their inhibitory effects, likely through failure to form the
heterodimer complex, and induces parthenocarpic expression (Goetz et al., 2006; Goetz et al.,
2007; de Jong et al., 2009; Wang et al., 2005). Interestingly, exogenous application of
gibberellic acid induces parthenocarpic expression without altering the expression of auxin
responsive genes (Vriezen et al., 2008). Further, exogenous application gibberellin biosynthetic
inhibitors can block auxin induced parthenocarpic expression (Fuentes et al., 2012; Serrani et al.,
2008; Serrani et al., 2010).

Further evidence that gibberellins, and not auxins, are critical to parthenocarpic fruit
development comes from analysis of hormone levels between an obligatory parthenocarpic
mandarin cultivar and a self-incompatible cultivar that exhibits stimulative parthenocarpy (Talon
etal., 1990; Talon et al., 1992). Differences were observed in the levels of gibberellins
throughout development between the cultivars (measurements taken 24 days before anthesis until
40 days after anthesis) with gibberellin concentrations reaching their highest levels at anthesis in
the obligatory parthenocarpic cultivar. Gibberellin levels in the stimulated parthenocarpic

cultivar were not changed from the control at anthesis. In addition, comparable levels of auxin



were observed between the two cultivars throughout the experiment. Similar reports from
Arabidopsis and tomato consistently report elevated expression of gibberellins in association
with parthenocarpic expression (Dorcey et al., 2009; Fos et al., 2000; Fos et al., 2001; Olimpieri
et al., 2007; Pascual et al., 2009; Serrani et al., 2007; Serrani et al, 2008; Serrani et al., 2010).
Ben-Cheikh et al. (1997) found that the increase in gibberellins observed during pollination was
not the result of the pollen itself and suggests that another factor contained within pollen triggers
gibberellin biosynthesis.

The gibberellin signaling pathway is regulated by inhibitory DELLA proteins that restrict
plant growth and negatively regulate gibberellin growth responses (Dill and Sun, 2001; Dill et
al., 2004; Li et al., 2012; Sun, 2011). DELLA proteins are members of the GRAS protein family
of transcription factors characterized by the conserved amino acid motif “DELLA” (Thomas and
Sun, 2004). The number of reported endogenous DELLA proteins varies by species with five
identified in Arabidopsis, four identified in cotton, and only one identified in rice (Hu et al.,
2011; Ueguchi-Tanaka et al., 2007). Silencing or loss of DELLA proteins has been found to
induce facultative parthenocarpic expression (Carrera et al., 2012; Dorcey et al., 2009; Fuentes et
al., 2012; Marti et al., 2007). Applications of auxin, cytokinin, and brassinosteroids have all
been found to promote biosynthesis of gibberellins (Bouquin et al., 2001; Ding et al., 2013;
Fuentes et al., 2012; Jager et al., 2005; Li et al., 2012; Nadhzimov et al., 1988; Serrani et al.,
2008; Serrani et al., 2010; Wang et al., 2009b; Weiss and Ori, 2007). Increased gibberellin
levels lead to degradation of DELLA proteins through binding of DELLAS in the GA-GID1-
DELLA complex and releases DELLA mediated repression of GA responsive genes (Harberd et
al., 2009, Sun, 2011). Interestingly, the ability of multiple hormones to affect gibberellin

biosynthesis suggests a hierarchy in plant hormone signaling.



Parthenocarpic expression has been manipulated through the use of transgenes designed
to overexpress auxin. This has been achieved through the expression of the DefH9-iaaM
transgene construct in a variety of crops (Donzella et al., 2000; Ficcadenti et al., 1999; Mezzetti
et al., 2004; Rotino et al., 1997; Yin et al., 2006). DefH9 is a placenta-ovule specific promoter
from Antirrhinum majus (Rotino et al., 1997). The iaaM gene of Pseudomonas syringae encodes
tryptophan 2-monoxigenase, an enzyme converting tryptophan to indole-acetamide, which is
spontaneously or enzymatically converted to indole-3-acetic-acid (auxin) within plant cells
(Kosuge et al., 1966; Pandolfini et al., 2009; Rotino et al., 1997). DefH9-iaaM containing plants
exhibit facultative parthenocarpy and seed set is possible (Rotino et al, 2005). However, ovary
development commences prior to anthesis in DefH9-iaaM plants and most fruits develop
parthenocarpically (Acciarri et al., 2002; Rotino et al., 2005). A second transgenic construct
consisting of the ovary and young fruit specific TPRP-F1 promoter and the Agrobacterium
rhizogenes gene rolB has been used. The rolB gene conditions increased sensitivity to auxin
(Carmi et al., 2003). The transgenic fruits created with both constructs have been reported to
have equal or improved quality when compared to their seeded counterparts (Carmi et al., 2003;
Costantini et al., 2007; Maestrelli et al., 2003; Rotino et al., 2005).

Parthenocarpic cucumber cultivars have been successfully developed, but the genetic and
molecular mechanisms behind parthenocarpic expression remain largely unknown. This
information is essential for breeding programs proposing to incorporate parthenocarpy into elite
processing cucumber populations and hybrids. Therefore, this study was designed to better
define what is considered true parthenocarpic expression and then to use this knowledge to
identify QTL associated with parthenocarpic fruit set. A new approach to phenotyping

parthenocarpic fruit set in cucumber was implemented in order to better define true



parthenocarpic expression. This new approach sought to build off of studies demonstrating that
parthenocarpic fruit set is determined in the days before and immediately after anthesis by
focusing on early fruit initiation and development. With a clear approach to phenotypic
evaluation, traditional QTL mapping approaches such as interval mapping, composite interval
mapping, and multiple interval mapping were employed to detect and construct optimal models
for the inheritance of parthenocarpic fruit set in cucumber. With the identification of genomic
regions known to associate with parthenocarpic fruit set, bioinformatic analyses of these regions
were conducted and potential candidate genes for parthenocarpic fruit set were identified. The
QTL identified for parthenocarpic fruit set by this study are valuable to cucumber breeders
interested in developing parthenocarpic cultivars and to researchers interested in the genetic and

molecular mechanisms of parthenocarpic fruit set.
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Chapter 1
A Novel Approach to Phenotypic Evaluation of Parthenocarpic Fruit Set in Processing

Cucumber (Cucumis sativus L.)

Abstract

Parthenocarpic processing cucumber (Cucumis sativus L.) varieties have the potential for
increasing yield, improving fruit quality, and extending production periods. Since parthenocarpy
is often considered a yield component, it is difficult to separate the true parthenocarpic character
from other yield related traits. In order to better define what is considered true parthenocarpic
expression, a new approach to phenotyping parthenocarpic fruit set in cucumber was
implemented focusing on early fruit initiation and development. An F2:3 population was used to
characterize the inheritance of parthenocarpic fruit set by crossing a highly parthenocarpic inbred
line, ‘2A’, with a non-parthenocarpic inbred line, ‘Gy8’. A continuous distribution of F3 family
means suggested that parthenocarpic fruit set is quantitatively inherited in this population.
Patterns of fruit set on experimental plants revealed that potential for parthenocarpic fruit set
could be effectively evaluated with as few as five pistillate flowers. In addition, the pruning of
axillary shoots in the maintenance of greenhouse plants was found to inadvertently increase

parthenocarpic fruit set.
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Introduction

Cucumber (Cucumis sativus L.) is one of the most cultivated and economically important crops
in the world. Worldwide production in 2010 was estimated at 62.7 million metric tons while the
US crop totaled nearly 900,000 metric tons with a farm gate value of $462 million (FAOSTAT,
2013). Despite the crops prevalence, processing cucumber yields in the U.S. have not
substantially increased from levels seen in the 1980°s (Gusmini and Wehner, 2008). A
phenomenon known as first fruit inhibition, where the first fertilized fruit inhibits growth of
subsequent fruits, is thought to be a major obstacle to yield improvement in cucumber (Denna,
1973; El-Shawaf and Baker, 1981; McCollum, 1934; de Ponti, 1976; Strong, 1921; Sun et al.,
2006a; Tiedjens, 1928; Uzcategui and Baker, 1979). A potential solution is the use of
gynoecious (pistillate flowers only) parthenocarpic cucumber varieties. The use of gynoecy is
essential for successful parthenocarpic cultivars since genetic parthenocarpy in cucumber is
facultative and plants that are pollinated are able to set seeded fruit (Denna, 1973). Gynoecious
parthenocarpic varieties offer several advantages over conventional seeded varieties. One
beneficial factor is that parthenocarpic varieties are able to set fruit sequentially without
suffering from first fruit inhibition (Denna, 1973; Sun et al., 2006a). Second, parthenocarpic
varieties do not require pollination and are therefore less vulnerable to poor pollination
conditions (abiotic and biotic) and the need for insect pollinators (de Ponti, 1976; Pike and
Peterson, 1969; Sun et al., 2006a; VVaroquaux et al., 2000). Third, parthenocarpic varieties often
have more uniformly shaped fruit desired by the processing industry because they do not suffer
from incomplete pollination that can cause misshapen fruit in conventional varieties

(Aalbersberg and van Wijchen, 1987; Baker et al., 1973; de Ponti, 1976).
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Parthenocarpy, defined as the development of virgin fruits, is a desired trait in many plant
species. Parthenocarpy has long been an important trait in cucumber, especially for greenhouse
production (Sturtevant, 1890). European greenhouse cultivars in the 19" century were selected
for high yield, but often cultivars were also indirectly selected for parthenocarpic fruit set due to
their increased productivity in poor pollinating conditions (Robinson and Reiners, 1999). Since
then, parthenocarpic fruit set in cucumber has been manipulated both genetically and with the
exogenous application of various synthetic phytohormones. The application of auxin, cytokinin,
gibberellic acid, brassinosteroids, and auxin transport inhibitors all result in the induction of
parthenocarpic fruit set in cucumber (Beyer and Quebedeaux, 1974; Cantliffe and Phatak, 1975;
Choudhury and Phatak, 1959; Elassar et al., 1974; Fu et al., 2008; Homan, 1964; Kim et al.,
1992; Robinson et al., 1971). However, this method of obtaining parthenocarpic expression has
many drawbacks including the need for continuous application of phytohormones throughout
growth, increased input costs for growers, environmental impact concerns, and human dietary
concerns related to consumption of phytohormones (Rotino et al., 1997).

Since parthenocarpy can be easily induced by the application of various hormones, many
have suggested the mechanisms for parthenocarpic fruit set are hormone production, transport,
and/or crosstalk related. Genetic studies have been inconclusive on the inheritance of
parthenocarpy in cucumber and have ranged from proposals of single gene inheritance to
complex multigenic inheritance models (EI-Shawaf and Baker, 1981; Hawthorn and Wellington,
1930; Kvasnikov et al., 1970; Meshcherov and Juldasheva, 1974; Pike and Peterson, 1969; de
Ponti and Garretson, 1976; Sun et al., 2006a; Sun et al., 2006b). A recent study by Sun et al.

(2006Db) concludes with a model of complex genetic inheritance that is heavily influenced by
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environmental conditions. Parthenocarpy has also been induced with the use of transgenic
overexpression of auxin in cucumber ovaries (Yin et al., 2006).

The objective of this research is to gain a better understanding of the genetic
characteristics of parthenocarpy in cucumber so that it may be better utilized by breeding
programs seeking to develop parthenocarpic processing cucumber cultivars. Since
parthenocarpy is often considered a yield component, it is difficult to separate the true
parthenocarpic character from other yield related traits. A new approach to phenotyping
parthenocarpic fruit set in cucumber was implemented in order to better define true
parthenocarpic expression. This new approach sought to build off studies demonstrating that
parthenocarpic fruit set is determined in the days before and immediately after anthesis by
focusing on early fruit initiation and development (Fos et al., 2000, Gillaspy et al., 1993;

Molesini et al., 2009; Pascual et al., 2009; Ruan et al., 2012).

Materials and Methods

Population Development

Two gynoecious U.S. processing cucumber inbred lines differing in their expression of
parthenocarpic fruit set were selected for the study of parthenocarpic fruit set (Addendum 1).
The highly parthenocarpic inbred line, ‘2A’, is gynoecious (gy), indeterminate (De), and is able
to consistently set multiple parthenocarpic fruits without pollination in both open field and
greenhouse environments (Sun et al., 2006a). The non-parthenocarpic inbred line, ‘Gy8’, is
gynoecious, indeterminate, and yields few to no fruit in the absence of pollination (Sun et al.,

2006a). ‘Gy8’ was selected because it exhibits growth and fruit characteristics similar to ‘2A’



20

including: stable gynoecious expression, fresh and brine stock quality, an indeterminate growth
habit, and a blocky shape with length to diameter ratios greater than three when fruits are four
cm in diameter (Sun, 2004). An additional benefit to the selection of these parental lines was the
opportunity to directly compare results to previous research on parthenocarpic yield in cucumber
performed with another 2AxGy8 F»:3 population developed by Sun et al. (2006a and 2006b).

An F2:3 population was developed to explore the complex inheritance of parthenocarpic
fruit set in cucumber. Inbred lines ‘2A’ and ‘Gy8” were crossed to produce F1 seed. A single F1
plant was self-pollinated and 205 F plants were grown in a greenhouse during the spring of
2011. Each F plant was self-pollinated to produce F3 seeds which were used to generate the F3
families described in this study. Since all plants mentioned in this study are gynoecious;
parental, F1, and F2 plants involved in the creation of the population by seed were manipulated
to produce male flowers for use in pollination with 3mM silver thiosulfate [Ag(S203)2]> as a

foliar spray (Nijs and Visser, 1980).

Experimental Organization

Experiment 1

Experiment 1 was conducted from July 2011 to September 2011 at the University of Wisconsin-
Madison Walnut Street Research Greenhouses (WSGH) located in Madison, WI. Five
greenhouses, each measuring 6.1 m x 6.1 m were used in order to accommodate the large
number of plants. Each greenhouse contained one plant from each of 201 F3 families, four
plants from each of the parental inbred lines ‘2A’ and ‘Gy8’ and one F1 plant. Each greenhouse
contained 210 plants. In total, experiment 1 included 1050 plants allocated as 5 plants from each

of 201 F3 families, 20 plants from each of ‘2A’ and *Gy8’, and 5 F1 plants.
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Plants in each greenhouse were placed in staggered rows oriented in a north to south
direction with 14 plants in each row and a total of 15 rows. The diameter of each potted plant
was 25.4 cm with 12.7 cm of space between pots within individual rows and 14.2 cm of space
between pots of neighboring rows. To facilitate access to the plants for watering and care, two
45.7 cm walkways were created between the 5 and 6™ rows and the 10" and 11™ rows,
respectively. The space between each of the walls of the greenhouse and the plants was 45.7 cm

(Addendum 2).

Experiments 2 and 3
To address issues related to crowding found in experiment 1, some modifications were made in
experiments 2 and 3. Experiment 2 was conducted from September 2011 to December 2011 and
experiment 3 was conducted from March 2012 to June 2012. Both experiments were conducted
in five 6.1 m x 6.1 m greenhouses at WSGH. Three plants from each of 205 F3z families were
randomly distributed across each experiment with an additional four plants from each of ‘2A’
and ‘Gy8’ and one F1 plant included in each greenhouse as controls. Each greenhouse contained
132 plants. In total, experiment 2 and 3 each included 660 plants allocated as 3 plants from each
of 205 F3 families, 20 plants from each of ‘2A’ and ‘Gy8’, and 5 F1 plants.

Plants in each greenhouse were placed in rows oriented in a north to south direction with
11 plants in each row and a total of 12 rows. The diameter of each potted plant was 25.4 cm
with 22.9 cm of space between pots within individual rows and 17.8 cm of space between pots of
neighboring rows. To facilitate access to the plants for watering and care, two 45.7 cm
walkways were created between the 4™ and 5" rows and the 8" and 9" rows respectively. The

space between each of the walls of the greenhouse and the plants was 45.7 cm (Addendum 3).
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Greenhouse Conditions and Plant Maintenance

Plants were grown in Classic 1000 plastic pots (20.6 cm bottom x 25 cm top x 23.2 cm height
with a 9.5 liter capacity) with Metro Mix Professional Growing Mix soil (Sun Gro Horticulture
Canada CM Ltd.). Along with the starter nutrients included in the Metro Mix Professional
Growing Mix, plants were supplemented with 70.9 g of Nutricote 100 Controlled Release
Fertilizer (Arysta LifeScience North America, Cary, NC). Each greenhouse was
environmentally controlled throughout the duration of each experiment. Plants were grown
under 14 hour days. When natural light levels dropped below 650 HE, supplemental artificial
high pressure sodium lights were utilized. Temperatures were maintained at 29.4°C during day
time hours and 23.9°C during night time hours. During growth, plants were watered once per

day and regularly staked to grow vertically on 1.83 m long bamboo poles with wire twist ties.

Data Collection

Parthenocarpic fruit set was measured as the number of fruits initiated on each plant. Ovaries
were considered to have initiated development if upon visual inspection, clear growth and
expansion was visible. Ovaries that had initiated growth but later ceased at any point during
development were included as successfully initiated fruits (Figure 1). In order to limit

confounding factors related to other traits, plants were maintained as follows:

1. When plants were between 10-15 nodes in length, the first five nodes of each plant were
cleared of all vegetation, including flowers, to aid in limiting differences in flowering time

(development of flowers at earlier nodes) and problems in subsequent fruit setting associated
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with crown fruit set (Denna, 1973). This also served to create space for watering and air
circulation.

2. When plants were between 10-15 nodes in length, all lateral branches were removed and
continued to be removed regularly throughout the remainder of growth in an attempt to equalize
potential differences in plant photosynthetic capacity.

3. Plants were inspected regularly to only allow one pistillate flower per node to ensure that each

plant had an equal number of pistillate flowers and opportunity for fruit set.

The presence of an initiated fruit and the size of the fruit if present were recorded from
individual plant nodes 6 through 30. Data collection was conducted when approximately 95% of
plants had reached 35 nodes in length (approximately 60 days after germination). When plants
had reached 35 nodes in length, conclusive evaluation of the 30" node could be made in data

collection.

Data Analysis

Mean, median, maximum, and minimum values for initiated fruit in each experiment were
calculated from data collected for all F3 individuals. Frequency distributions were calculated
from all F3 individuals in each experiment and also from F3 family means for comparison. Due
to the lack of replication and sampling errors related to the growth of only three to five
segregating F3 individuals from each Fz family, an examination of genetic and environmental
effects was not performed. To determine if greenhouse environments were similar between
experiments, two sample t-tests were calculated between pairs of experiments from experiment

means calculated with data from all F3 individuals. In addition, heat maps were constructed for
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each experiment in order to visually inspect for major spatial patterns suggesting the uneven
distribution of values. A Spearman rank correlation was performed in order to determine if data
collected in each individual experiment could be pooled in order to alleviate the severity of
sampling errors from only sampling three to five individuals of each Fs family. Data analysis

and plots were created with the statistical software R version 2.13.2.

Supplemental Validation Experiment: Effects of Plant Maintenance and Treatment

An experiment observing the effects of plant treatment in experiments 1-3 was grown at WSGH
consisting of 20 total plants with 10 plants coming from each of the parental inbred lines ‘2A’
and ‘Gy8’. Five plants from each parental line were subjected to the same plant maintenance
and greenhouse conditions as used in the focus study. The remaining five plants from each
parental line were allowed to grow unhindered in the same greenhouse environment.
Parthenocarpic fruit set data was recorded when all plants had reached 35 nodes in main stem
length. For plants that had been subjected to plant maintenance, data was collected only from
nodes 6 through 30 on the main stem. For the plants allowed to grow unhindered, data was
collected first from nodes 1 through 30 of the main stem with inclusion of all lateral branches. A

second data collection was taken from only nodes 6 through 30 of each plant.

Results and Discussion

General Assessment of the Three Focus Experiments

The three focus experiments of this study were assessed for overall data quality. Each of the

three greenhouse experiments conducted in this study returned comparable ranges for the number
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of fruit initiated per plant (0-15) and average number of fruit initiated per plant (3.23-3.76)
(Table 1). However, two sample t-tests conducted between pairs of experiments revealed that
while the average number of fruit initiated in experiments 2 and 3 are not significantly different,
they both varied significantly from experiment 1 (Table 2). In addition, the frequency
distribution of total parthenocarpic fruit initiated in experiment 1 showed some skewing of data
towards fewer fruit when compared with experiments 2 and 3 (Figure 2).

These results complement observations made during the growth of the experimental
plants. During experiment 1, observations were made that some plants were losing foliage and
failing to set fruit on lower plant nodes. The plants appeared to be suffering from crowding;
presumed to be due to the high density planting used in experiment 1 (Addendum 2). This was
unexpected based upon greenhouse observations made prior to this study. However, experiment
1 was completed as originally designed since many plants had already aborted flowers on the
lower plant nodes and the severity of crowding was not deemed critical enough to compromise
the experiment. Upon completion of experiment 1, a heat map did not reveal any major spatial
patterns suggesting the uneven distribution of values (Addendum 4).

Before beginning experiment 2, the experimental design was modified to reduce the
number of plants in the subsequent experiments by 40% to ensure that crowding would no longer
be an interfering variable (Addendum 3). The number of F3 families included in the study was
increased from 201 to 205 simply to balance each greenhouse with even rows. No symptoms of
plant crowding were observed during the growth of experiments 2 and 3. Both experiments 2
and 3 returned data that was highly consistent and a t-test concluded that the means of the two

experiments are not significantly different (Table 1, Table 2). Heat maps of both experiments do
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not reveal any major spatial patterns suggesting the uneven distribution of values (Addendum 5,
Addendum 6).

Given that the two sample t-tests found experiment 1 to be significantly different from
the other experiments, a Spearman rank correlation between each of the experiments was
performed in pairs (Table 3). The Spearman rank correlations were performed using the F3
family means obtained in each experiment. However, since F3 plants are known to be
genetically segregating, the data is susceptible to sampling error from small sample sizes.
Included in the Spearman rank correlations was a fourth data set consisting of a compilation of
data from experiments 2 and 3. This was done to increase the sample size obtained from these
experiments, as they shared similar results and were conducted identically. The creation of the
fourth combined dataset allowed for a better comparison of experiments 2 and 3 to experiment 1.
In all Spearman rank correlation pairs there was a significant positive correlation found in the
order of rank of the F3z families (Table 3). In light of this, the data from experiment 1 was found
to be acceptable for pooling with experiments 2 and 3 for the QTL mapping portion of this study
(Chapter 3) (Figure 3). The continuous distribution of values in each of the experiments
confirms the quantitative inheritance of parthenocarpic fruit set in cucumber, which will be
explored in the following chapters.

The phenotypic evaluation used in this study can be compared to the methods used by de
Ponti (1976) in cucumber, as well as Kikuchi et al. (2008) and Miyatake et al. (2012) in
eggplant, since the number of pistillate flowers was strictly controlled at 25 per plant. De Ponti
(1976) had proposed the use of a parthenocarpic percentage statistic as the most effective way to
evaluate parthenocarpy in cucumber. The data recorded in this study can also be computed as

parthenocarpic percentage on a per plant basis with the following formula (de Ponti, 1976):
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% parthenocarpy = (number of parthenocarpic fruits/total number of pistillate flowers) x 100.

The use of this formula allows for more accurate evaluation of parthenocarpic expression when
working with lines with differing numbers of pistillate flowers, differences in fruit size, and yield
capacity. For simplification, parthenocarpic percentage was not formally used in this study as
many of these factors were already accounted for in the selection of parent lines and the

experimental treatment of plants.

Location of Parthenocarpic Fruit Initiation

The location of where fruit set occurs became important for a more detailed understanding of
parthenocarpic fruit set. Each experiment was scored node by node along the main stem for the
occurrence of parthenocarpic fruit initiation (Figure 4). The data revealed a difference in the
average node of fruit initiation between experiment 1 and the other two experiments during the
first 30 nodes of the plant (Figure 4). The difference appeared to reflect the observation that the
lower nodes of some plants in experiment 1 were aborting flowers and caused what appears to be
a delay in the onset of the fruit initiation.

In experiments 2 and 3, a bimodal distribution of fruit initiation is observed during the
first 30 nodes of growth (Figure 4). This was anticipated to be due to source/sink relationships
and reflects that once plants have begun fruit set they continue to set fruit until they are unable to
support any additional fruits with available assimilates (Lee and Bazzaz, 1982a; Lee and Bazzaz,
1982b; Lloyd, 1980; Schapendonk and Brouwer, 1984; Stephenson, 1981; Stephenson et al.,

1988; de Stigter, 1969). Following this, there appeared to be a quiescent period and many
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flowers are aborted. Once active fruits reach a certain level of maturity, fruit set resumes and
another flush of fruits is initiated. Experiment 1 is expected to follow this same phenomenon but
because of the delayed fruit set, a bimodal distribution was not observed during the first 30 nodes
of growth (Figure 4).

The bimodal distribution seen during the first 30 nodes of plant growth suggested that the
ability of an individual plant to support a second flush of fruits may be a possible confounding
factor to the accurate measurement of parthenocarpic fruit set. From the perspective of the
application of parthenocarpy to processing cucumber varieties it should be noted that processing
cucumber varieties rarely are allowed to reach 30 nodes in maturity during commercial
production. These varieties are typically harvested for immature fruit when plants are
approximately only 20 nodes in length (de Ponti, 1976) (Addendum 7). In consideration of this,
a dataset comprised of data from node 6 to node 20 was created (Figure 5). Due to the
complications in experiment 1 from delayed fruit set, this analysis was conducted using data only
from experiments 2 and 3. The data from nodes 6 through 20 in experiments 2 and 3 were
continuously distributed and resembled the distribution of data obtained when considering nodes
6 through 30, suggesting that effective phenotyping of parthenocarpic fruit set could be
conducted on immature plants with only 20 nodes of plant growth (Figure 5).

Differences in the location of fruit set were observed between the parental lines in all
three experiments (Figure 6). Throughout this study the highly parthenocarpic parent (*2A”)
consistently initiated fruit development very early on plant nodes 6 through 10 while the non-
parthenocarpic parent (‘Gy8’) rarely initiated fruit development before node 10. It has been
suggested that accurate preselection of young plants with superior parthenocarpic expression

could be achieved by observing fruit set on the first five pistillate flowers of the plant by
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breeding programs (de Ponti, 1976). Interested in the hypothesis that early parthenocarpic fruit
set was indicative of overall parthenocarpic capacity, another dataset was created which was only
inclusive of data collected from plant nodes 6 through 10 from experiments 2 and 3 (Figure 7).
This dataset resembled a logarithmic distribution of values with the non-parthenocarpic parent
(‘Gy8’) averaging nearly zero fruit per plant. Further discussion of early fruit set and the

potential for preselection will be explored in Chapter 3.

Exploring the Effects of Plant Maintenance and Treatment

The plant maintenance and treatment experiment indicated that the pruning of lateral branches
and the lower five nodes of each plant affects the number of parthenocarpic fruit initiated as well
as the timing of fruit set (Table 4, Figure 8). Line ‘2A’ showed no change in the number of
parthenocarpic fruit initiated when comparing fruit initiation occurring on nodes 6 through 30 on
both pruned and unpruned plants (Table 4). In contrast, ‘Gy8’ showed an increase in the number
of parthenocarpic fruit initiated in pruned plants when considering plant nodes 6 through 30.
Both lines yielded approximately 3.5 more initiated fruit per plant when flowers from lateral
branches were included in the comparison (Table 4). However, these additional fruit on ‘Gy8’
were mostly set late and away from the crown of the plant. This differs from the pattern of fruit
set in pruned ‘Gy8’ plants where fruit set occurs earlier (Figure 8). The increase in initiated
parthenocarpic fruit on both parental lines when lateral branches are not disturbed is plausibly a
direct result of increased plant photosynthetic capacity (Marcelis et al., 2004; Schapendonk and
Brouwer, 1984; Stephenson, 1981). However, the early fruit set and increase in initiated fruit
seen along the main stem of pruned ‘Gy8’ plants is potentially related to changes in hormone

signaling and/or balance in response to wounding. Previous studies have shown that the removal
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of apical and/or axillary shoot meristems promoted fruit growth and in some instances induced
parthenocarpic fruit set (Carbonell and Garcia-Martinez, 1980; Coombe, 1962; Parry, 1976;
Quinlan and Preston, 1971; Saunders et al., 1991; Serrani et al., 2010; Westwood and Bjornstad,
1974). In addition, dominance relationships between fruits and shoots have been demonstrated
and it seems plausible that the removal of axillary shoots in this study disrupted the inhibition of
fruit growth by the growing shoot and led to parthenocarpic fruit set (Bangerth, 1989; Gruber
and Bangerth, 1990; Serrani et al., 2010; Westwood and Bjornstad, 1974). The timing of shoot
removal has also been reported to result in increased fruit set and in some instances
parthenocarpic fruit set has been observed when shoot removal occurs shortly before or after
anthesis (Carbonell and Garcia-Martinez, 1980; Coombe, 1962; Quinlan and Preston, 1971;
Saunders et al., 1991; Westwood and Bjornstad, 1974). Interestingly, the onset of parthenocarpic
fruit set on pruned ‘Gy8’ plants after node 10 coincides with the timing of lateral shoot pruning
in this study.

The implications of this for the larger greenhouse study are that the estimates of
parthenocarpic potential for plants with little genetic potential for parthenocarpic fruit set were
being over estimated. Plants with high genetic potential were presumably more accurately
estimated as they set fruit until a maximum in plant load capacity was attained regardless of
experimental treatment. Once this maximum plant load was attained, the plants failed to set any
additional fruit until existing fruits matured and thus resulted in the observed bimodal fruit
distributions. Although possibly confounded by the capacity of a plant to support multiple fruit,
F3 families with high genetic potential for parthenocarpic fruit set still scored as the highest
yielding in the focus greenhouse study (Addendum 8). Fs families with low genetic potential for

parthenocarpic fruit set were the lowest yielding in the focus greenhouse study although these
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families were observed with higher yields than would be expected for non-parthenocarpic lines
due to responses to plant wounding (Addendum 8). This potentially explains why the non-
parthenocarpic parent line ‘Gy8’ unexpectedly yielded multiple parthenocarpic fruit per plant in

the focus study.

Future Focus

This study takes a new approach to assessing parthenocarpic fruit set potential. By focusing on
fruit initiation and early fruit development, a major step has been taken in separating the true
parthenocarpic character from yield related traits that have confounded past studies. This study
may still be confounded by the capacity of individual plants to bear differing fruit loads. Future
studies may wish to address this by instituting a continuous harvest of fruits as soon as fruits can
be declared as either initiating development or failing to initiate development. However,
following this approach may in itself be complicated by plant stresses and changes in fruit
dominance if fruits are being continuously removed from the plant (Gruber and Bangerth, 1990).
This exemplifies the complexity in accurately assessing parthenocarpic potential. Though an
idealized protocol may not be obtainable for accurately phenotyping parthenocarpic potential,
future studies should continue to focus on early fruit development as the key to parthenocarpic

fruit set.
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Table 1. The number of fruit initiated per plant in each of the three greenhouse experiments
conducted to study parthenocarpic fruit set in a 2AxGY8 F2:3 population of C. sativus.

Exp Mean  95% Mean CI? Std Dev Median Max Min Total PlantsY
Exp 1 3.23 3.10-3.36 2.56 3 15 0 1018
Exp 2 3.74 3.57-3.90 1.71 4 10 0 653
Exp 3 3.76 3.60-3.92 1.70 4 11 0 658

205% Mean Confidence Interval.

YExperiment 1 contained 5 F3 plants from each of 201 F3 families. Experiments 2 and 3
contained 3 F3 plants from each of 205 F3 families. All Experiments contained 20 plants of each
parental line and 5 2AXGY8 F1.
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Table 2. The p-values obtained from two sample t-tests used for comparing of each of the three
greenhouse experiments conducted to study parthenocarpic fruit set in a 2AxXGy8 F»:3 population
of C. sativus.

Exp1l Exp 2 Exp 3
Exp 1 8.43E-06*** 2.91E-06***
Exp 2 8.43E-06*** 0.80
Exp 3 2.91E-06*** 0.80

***Calculated values were found to be significant at alpha = 0.01.



Table 3. Spearman’s rank correlation coefficients (Spearman, 1904) from comparisons of F3
family means in each of the three greenhouse experiments conducted to study parthenocarpic
fruit set in a 2AxGy8 F2:3 population of C. sativus. Due to changes in experimental design

between experiment 1 and experiments 2 and 3, which were conducted identically, rho values are

also presented comparing experiment 1 with a data set consisting of combined data from

experiments 2 and 3.

Exp 1 Exp 2 Exp 3 Exps 2 and 3°
Exp 1 0.48*** 0.49%** 0.56***
Exp 2 0.48*** 0.54*** XY
Exp 3 0.49%** 0.54*** XY
Exps 2 and 3* 0.56*** XY xY

“Combined data set containing the combined data of experiments 2 and 3.

YRho values were not calculated for comparisons of experiment 2 or experiment 3 to the
combined data set containing data from both experiments 2 and 3.

***Calculated values were found to be significant at alpha = 0.01.
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Figure 2. Frequency distributions of the total number of fruit initiated per plant in experiments 1-3. Data
was collected from plant nodes 6 thru 30 for a maximum possible total of 25 initiated fruit per plant. In each
experiment the average values of the control parental lines and 2AxGy8 hybrid are designated with arrows.
A: Experiment 1 consisted of 1050 2AxGy8 F; and accompanying control plants. B: Experiment 2 consisted
of 660 2AxGy8 F, and accompanying control plants. C: Experiment 3 consisted of 660 2AxGy8 F; and

accompanying control plants.
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Figure 3. Frequency distributions of the total number of fruit initiated per plant in the pooling of
experiments 1-3. Data was collected from plant nodes 6 thru 30 for a maximum possible total of 25 initiated
fruit per plant. In each figure the average pooled values of the control parental lines and 2AxGy8 hybrid are

designated with arrows. A: Frequency distribution of the total number of fruit initiated per plant in the

pooling of experiments 1-3. The pooled experiments together consisted of 2370 2AxGy8 F, and

accompanying control plants. B: Frequency distribution of the average number of fruit initiated for 205 F,
families obtained by pooling across the three experiments. Each F, family is represented by 11 F; plants.

A.
>
o
c
0]
>
O
5]
p—
L
B.
>
o
c
[N)
>
o
5]
P —
L

600

500

400 ~

300

200

100

1 2 3 4 5 6 7 8 9 10 11 12 13
Total Number of Fruit Initiated

14

2 3 4 5 6
Average Number of Fruit Initiated Per F; Family

15

42

12A
1 Gys

Key

L2AxGy8 F1 Hybrid




43

Figure 4. Frequency distributions displaying the frequency of fruit set initiation at each plant node across
experiments 1-3. All plants were cleared of flowers and vegetation on nodes 1 thru 5. A: Experiment 1
consisted of 1050 2AxGy8 F; and accompanying control plants. B: Experiment 2 consisted of 660 2AxGy8
F, and accompanying control plants. C: Experiment 3 consisted of 660 2AxGy8 F, and accompanying
control plants.
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Figure 5. Frequency distributions of the total number of fruit initiated per plant in experiments 2 and 3.
Data was collected from plant nodes 6 thru 20 for a maximum possible total of 15 initiated fruit per plant. In
each experiment the average values of the control parental lines and 2AxGy8 hybrid are designated with
arrows. A: Experiment 2 consisted of 660 2AxGy8 F, and accompanying control plants and was grown
from September 2011 to December 2011. B: Experiment 3 consisted of 660 2AxGy8 F, and accompanying
control plants and was grown from March 2012 to June 2012.
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Figure 6. Photograph depicting the typical fruit number and fruit set location in C. sativus
parental lines ‘2A’ (left) and ‘Gy8’ (right) and the 2AxGy8 F; hybrid (center).
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Figure 7. Frequency distributions of the total number of fruit initiated per plant in experiments 2 and 3.

Data was collected from plant nodes 6 thru 10 for a maximum possible total of five initiated fruit per plant.
In each experiment the average values of the control parental lines and 2AxGy8 hybrid are designated with
arrows. A: Experiment 2 consisted of 660 2AxGy8 F, and accompanying control plants. B: Experiment 3

consisted of 660 2AxGy8 F; and accompanying control plants.
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Addendum 1. Descriptions of the origin and trait characteristics of inbred lines ‘2A’, ‘Gy8’, and
‘Gy7’.

Inbred line *2A’ originated from an attempt to identify genetic sources with stronger
expression of gynoecy and to combine it with disease resistance, high yield, and improved fruit
quality in cucumber. A population designated Gynoecious Synthetic (GS; not publicly released)
was developed from the random mating of 50 gynoecious lines and hybrids. The GS population
was subjected to more than 10 generations of half-sib selection for gynoecious sex expression
and high fruit number per plant in both pollinated and pollen free field plantings. A highly
parthenocarpic line developed from the GS population was selected and crossed with the
gynoecious line ‘Gy7’ in order to improve disease resistance, fruit quality, and horticultural
characteristics of the new line. This line was designated ‘2A’. The ‘2A’ inbred used in this
study is a Fo selection from this cross. ‘2A’ is indeterminate, gynoecious, and has stable
parthenocarpic expression in a wide range of environments. Fruits have warts with stippling.
‘2A is resistant to scab, cucumber mosaic virus, downy mildew, anthracnose, angular leaf spot,
and has some field tolerance to powdery mildew. (Sun, 2004).

Inbred line ‘Gy8’ is an indeterminate and gynoecious advanced selection derived from a
cross of processing cucumber lines ‘Gy14A’ and ‘UW70’. *‘UW70’ has a complex pedigree
including contributions from lines: “MSU 713-5’, ‘MSU 7°, “New Hampshire PM #1 Bush’,
‘New Hampshire Tiny Dill’, “‘Chipper’, and ‘SC 10°. ‘Gy8’ has moderately long, medium green
vines and an indeterminate, branched habit similar to *‘Gy14A’. Fruits are cylindrical with
slightly rounded to blocky ends, light to medium green color, white spines, moderate warts,
moderate stippling, and moderate striping. Fruits of ‘Gy8’ are generally about 0.3 of an L/D unit
longer than those of ‘Gy14A’. ‘Gy8’ is resistant to scab, cucumber mosaic virus, downy

mildew, anthracnose, angular leaf spot, and has some field tolerance to powdery mildew under
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Wisconsin conditions. ‘Gy8’ has good combining ability for fruit number and hybrids with
‘Gy8’ parentage have performed well in trials located in all major processing cucumber
production areas in the United States (Lower, 1996).

Inbred line ‘Gy7’ is a determinate, gynoecious advanced selection derived from a cross of
processing cucumber lines ‘Gy4’ and ‘M21°. ‘Gy7’ has dark green vines with one to five
laterals. Fruits of ‘Gy7’ are longer than ‘Gy14A’ with tapered ends, white spines, dark green
medium size warts, slight stippling, and slight striping. ‘Gy7’ is resistant to scab, downy
mildew, anthracnose and angular leaf spot under Wisconsin conditions. ‘Gy7’ has good
combining ability for fruit number and hybrids with ‘Gy7’ parentage have performed well in
trials located in all major processing cucumber production areas in the United States (Lower,

1996).
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Addendum 7. The maturity of non-parthenocarpic cucumber cultivars at the time of harvest in
2012 commercial production trials at the University of Wisconsin-Madison Agricultural
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Research Station in Hancock, WI. Maturity was measured by the number of nodes on the main

stem. Ten plants from each of three commercial plots were sampled. Two of the plots were
planted with the same *Excursion’ cultivar.

Cultivar

Entry Number

Number of Nodes at Harvest

Vlaspik

© 00 NO Ol WN -

[EEN
o

18
18
18
17
18
19
19
18
18
18

Excursion

O© 00O NO Ol & WN B

[ =Y
o

19
18
21
18
24
19
18
20
20
21

Excursion

O© 00 NO Ol WN K-

[EEN
o

18
20
19
21
20
21
20
19
22
20

Overall Average

19.3
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Addendum 8. 2AxGy8 F3 family means for each experiment conducted to study parthenocarpic
fruit set in cucumber.

Family Exp 1 Exp 2 Exp 3 Exp 2 and 37 Pooled”
1 3.40 5.33 5.00 5.17 4.36
2 3.40 3.00 4.00 3.50 3.45
3 5.80 4.00 5.00 4.50 5.09
4 4.80 4.67 7.00 5.83 5.36
5 2.00 2.67 3.33 3.00 2.55
6 4.60 5.00 3.33 4.17 4.36
7 1.40 2.00 4.00 3.00 2.27
8 1.40 1.67 3.00 2.33 191
9 2.40 3.67 4.33 4.00 3.27
10 5.00 4.67 3.67 4.17 4.55
11 1.00 2.67 3.00 2.83 2.00
12 0.60 5.00 4.00 4.40 2.50
13 3.20 4.33 5.33 4.83 4.09
14 3.20 6.00 3.33 4.67 4.00
15 2.80 6.00 4.00 5.00 4.00
16 1.60 3.00 2.33 2.67 2.18
17 1.80 2.67 3.33 3.00 2.45
18 1.75 4.00 3.00 3.50 2.80
19 1.20 2.67 2.00 2.33 1.82
20 1.60 3.67 4.33 4.00 2.91
21 4.40 3.67 5.33 4.50 4.45
22 1.80 2.67 1.33 2.00 191
23 3.60 5.33 3.33 4.33 4.00
24 1.80 1.67 3.00 2.33 2.09
25 4.80 5.67 4.33 5.00 491
26 2.00 3.67 4.33 4.00 3.09
27 2.00 3.00 4.00 3.50 2.82
28 3.40 2.67 2.33 2.50 2.91
29 6.00 5.67 3.33 4.50 5.18
30 1.80 3.00 2.33 2.67 2.27
31 2.40 2.33 3.67 3.00 2.73
33 2.50 3.33 3.33 3.33 3.00
34 6.40 6.00 4.33 5.17 5.73
35 4.80 3.33 3.33 3.33 4.00
36 3.00 6.00 2.67 4.00 3.50
37 3.40 3.00 4.33 3.67 3.55
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Family Exp 1 Exp 2 Exp 3 Exp 2 and 3* Pooled”
38 3.50 4.00 5.33 4.67 4.20
39 3.00 3.33 3.33 3.33 3.18
40 0.80 3.67 3.00 3.33 2.18
41 4.60 4.33 4.33 4.33 4.45
42 3.40 4.00 3.67 3.83 3.64
44 5.80 4.00 4.33 4.17 491
45 2.20 5.33 4.67 5.00 3.73
46 5.00 4.00 3.33 3.67 4.27
47 2.40 3.00 3.00 3.00 2.73
49 5.20 4.00 4.33 4.17 4.64
50 1.40 3.33 3.67 3.50 2.55
51 3.40 3.00 3.67 3.33 3.36
52 3.67 3.33 4.67 4.00 3.89
53 1.80 2.67 2.33 2.50 2.18
o4 2.20 1.67 2.33 2.00 2.09
55 5.80 3.67 3.67 3.67 4.64
56 7.40 4.67 7.50 5.80 6.60
o7 3.80 4.33 5.67 5.00 4.45
58 2.60 3.67 4.67 4.17 3.45
59 5.00 4.67 5.67 5.17 5.09
60 4.00 2.00 4.00 3.00 3.45
61 3.60 3.00 4.00 3.50 3.55
62 6.00 3.67 4.00 3.80 4.90
63 2.80 3.67 3.33 3.50 3.18
64 5.00 4.00 7.00 5.50 5.27
65 1.60 4.00 4.00 4.00 291
66 2.20 3.50 2.33 2.80 2.50
67 1.60 2.00 3.00 2.50 2.09
68 3.40 6.33 5.67 6.00 4.82
69 NA 2.67 2.33 2.50 2.50
72 2.60 3.00 2.00 2.50 2.55
73 2.00 3.33 2.00 2.67 2.36
74 5.60 4.00 6.67 5.33 5.45
75 5.80 3.67 3.00 3.33 4.45
76 1.80 3.67 2.67 3.17 2.55
77 0.80 1.67 3.00 2.33 1.80
78 2.60 5.00 5.00 5.00 3.91
79 1.00 2.33 3.33 2.83 2.10
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Family Exp 1 Exp 2 Exp 3 Exp 2 and 3* Pooled”
80 2.00 4.67 2.00 3.33 2.73
81 3.20 3.33 5.00 4.17 3.73
82 2.75 3.67 4.00 3.83 3.40
83 0.80 3.00 2.00 2.50 1.73
84 4.20 5.33 3.33 4.33 4.27
85 3.20 3.67 5.00 4.33 3.82
86 4.00 3.50 4.67 4.20 4.10
87 2.20 3.67 3.67 3.67 3.00
88 2.00 5.00 4.67 4.83 3.55
89 1.40 2.67 2.00 2.33 1.91
90 4.00 5.00 5.33 5.17 4.70
91 4.75 3.33 4.67 4.00 4.30
92 1.60 3.00 3.33 3.17 2.45
93 4.00 6.67 5.00 5.83 5.00
94 5.60 4.33 7.00 5.67 5.64
95 1.40 2.67 3.00 2.83 2.18
97 3.80 5.33 5.67 5.50 4.73
98 3.00 3.67 2.67 3.17 3.09
99 3.40 4.33 3.67 4.00 3.73
100 3.20 3.00 4.00 3.50 3.36
101 2.60 4.33 2.00 3.17 291
102 3.20 3.33 4.67 4.00 3.64
103 3.80 4.33 3.67 4.00 3.91
104 3.20 4.33 3.00 3.67 3.45
105 2.75 2.67 2.67 2.67 2.70
107 5.40 4.67 4.00 4.33 4.82
108 4.40 1.67 3.00 2.33 3.27
109 4.60 3.33 4.00 3.67 4.09
110 4.20 4.33 2.67 3.50 3.82
111 1.80 2.00 3.33 2.67 2.27
113 4.20 6.00 4.33 5.17 4.73
114 1.75 2.33 4.00 3.17 2.60
115 3.00 2.67 2.33 2.50 2.73
116 1.40 3.00 2.67 2.83 2.18
117 0.80 3.67 4.67 4.17 2.64
118 6.20 4.33 5.67 5.00 5.55
119 2.00 5.33 2.33 3.83 3.00
120 3.60 3.33 2.67 3.00 3.27
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Family Exp 1 Exp 2 Exp 3 Exp 2 and 3* Pooled”
121 3.40 4.00 3.00 3.50 3.45
122 4.80 4.67 5.67 5.17 5.00
123 4.80 2.67 2.33 2.50 3.55
124 0.80 3.67 3.33 3.50 2.27
125 3.20 6.67 4.67 5.67 4.55
126 6.40 1.67 3.67 2.67 4.36
127 0.60 1.33 2.00 1.67 1.18
128 7.40 6.00 4.67 5.33 6.27
129 2.00 4.33 4.67 4.50 3.36
131 2.00 1.67 1.67 1.67 1.82
133 3.60 4.00 3.67 3.83 3.73
134 4.20 4.00 4.00 4.00 4.09
135 3.40 4.33 4.00 4.17 3.82
136 1.00 1.00 1.67 1.40 1.20
137 3.60 5.67 3.00 4.33 4.00
138 7.00 6.33 5.00 5.67 6.00
139 4.00 3.00 3.00 3.00 3.45
140 6.25 6.67 3.33 5.00 5.50
141 2.60 2.33 2.67 2.50 2.55
142 2.40 3.00 3.33 3.17 2.82
143 3.80 2.67 2.33 2.50 3.09
144 1.60 3.00 3.67 3.33 2.55
145 0.80 2.67 2.33 2.50 1.73
146 3.60 2.33 2.67 2.50 3.00
147 2.00 4.67 4.67 4.67 3.45
148 2.80 4.67 5.33 5.00 4.00
149 2.80 4.00 4.33 4.17 3.55
150 2.80 4.67 3.00 3.83 3.36
151 3.00 2.00 3.33 2.67 2.82
152 5.20 3.33 2.67 3.00 4.00
153 2.00 3.33 2.33 2.83 2.50
154 5.80 5.33 4.33 4.83 5.27
155 NA 1.50 1.67 1.60 1.60
156 1.75 2.00 4.00 3.00 2.50
157 1.60 3.33 3.67 3.50 2.64
158 1.20 2.33 3.33 2.83 2.20
161 2.80 3.33 3.00 3.17 3.00
162 1.60 2.00 2.67 2.33 2.00




60

Family Exp 1 Exp 2 Exp 3 Exp 2 and 3* Pooled”
164 2.60 7.00 4.33 5.67 4.27
165 1.40 2.33 3.00 2.67 2.09
167 4.00 4.67 5.00 4.83 4.45
168 2.00 3.00 4.67 3.83 3.00
169 4.50 5.00 4.67 4.83 4.70
170 4.80 4.00 4.67 4.33 4.55
171 1.20 1.33 2.33 1.83 1.70
172 4.25 5.00 4.00 4.50 4.40
173 2.40 4.33 3.67 4.00 3.20
174 7.60 4.00 5.00 4.50 5.91
175 2.00 4.33 3.33 3.83 3.00
176 2.50 4.33 5.33 4.83 3.90
177 0.75 2.67 2.33 2.50 1.80
178 7.00 4.33 4.67 4.50 5.64
179 1.60 4.00 3.00 3.50 2.64
180 3.20 3.67 4.67 4.17 3.73
181 1.40 3.00 2.67 2.83 2.18
182 1.80 3.00 4.00 3.50 2.73
184 0.75 1.33 1.00 1.17 1.00
185 5.00 2.67 4.00 3.33 4.09
186 3.40 3.67 3.67 3.67 3.55
187 3.20 6.00 5.33 5.67 4.55
188 1.80 3.33 3.33 3.33 2.64
189 2.00 3.33 3.00 3.17 2.64
190 3.00 6.67 5.67 6.17 4.90
191 NA 1.33 1.67 1.50 1.50
192 2.00 2.33 3.00 2.67 2.36
193 3.20 3.00 4.00 3.50 3.36
196 3.00 4.00 5.67 4.83 4.00
198 5.00 4.33 4.67 4.50 4.73
199 7.20 4.67 3.67 4.17 9.55
200 6.20 4.33 4.67 4.50 5.27
201 6.20 3.00 4.33 3.67 4.82
202 7.20 3.67 5.33 4.50 5.73
203 2.25 2.33 3.00 2.67 2.50
205 NA 1.50 4.00 3.00 3.00
206 2.20 3.00 4.33 3.67 3.00
207 4.60 3.00 4.67 3.83 4.18
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Family Exp 1 Exp 2 Exp 3 Exp 2 and 3* Pooled”
208 2.20 2.00 2.00 2.00 2.09
209 3.00 2.00 2.33 2.17 2.55
210 2.40 2.00 3.33 2.67 2.55
211 3.80 2.67 2.33 2.50 3.09
212 3.25 3.00 3.67 3.33 3.30
213 3.00 5.00 3.00 4.00 3.55
214 3.00 3.33 4.67 4.00 3.60
215 3.40 5.33 3.00 4.17 3.82
216 5.40 6.00 6.00 6.00 5.73
217 4.33 4.33 6.00 5.17 4.89
218 3.80 3.00 4.33 3.67 3.73
219 1.40 2.67 1.67 2.17 1.82
220 3.40 4.33 3.67 4.00 3.73
221 2.40 4.00 3.67 3.83 3.18
222 5.00 3.67 3.00 3.33 4.00
223 3.80 4.00 4.00 4.00 3.91
224 2.40 3.33 2.33 2.83 2.64
2A 3.78 6.50 5.95 6.23 5.52
Gy8 3.10 3.15 3.00 3.08 3.08
2AxGy8 F1 2.75 2.80 3.20 3.00 2.93

3 family means from experiments 2 and 3 combined.

YF3 family means from experiments 1-3 pooled.
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Chapter 2
Construction of a Linkage Map in an F2:3 Population Segregating for Parthenocarpic Fruit

Set in Cucumber (Cucumis sativus L.)

Abstract

The construction of linkage maps in cucumber for the identification of QTL and potential
candidate genes for economically important traits has become more functional and prolific with
the recent release of whole genome sequence data and the development of thousands of co-
dominant SSR molecular markers. In this study we have developed a moderately saturated
linkage map for use in identifying QTL associated parthenocarpic fruit set in cucumber. A
mapping population consisting of 205 F3 families was generated from the cross of a highly
parthenocarpic inbred line, ‘2A’, with a non-parthenocarpic inbred line, ‘Gy8’. Despite the low
level of polymorphism (6.65%) between the two parental lines, a linkage map consisting of 185
SSR, 5 STS, and 2 dCAPS marker loci in seven linkage groups covering 571.7 cM was
developed. Measured in physical distance, the linkage map covered 164.3 Mb and accounted for
approximately 85% of the distance covered by the assembled chromosomes in the Gy14 Draft
Genome Assembly Version 1.0 (193.2 Mb). The linkage map has an average marker interval of
3 cM. In addition, with the recent publication by Sun et al. (2006b) utilizing an independent
population developed from the same parental lines, comparisons could be made to validate the

observed low levels of polymorphism and genomic regions lacking polymorphism in this study.
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Introduction

Cucumber has a number of characteristics that make it ideal for genetic and marker assisted
selection (MAS) studies. Cucumber has a short life cycle of approximately 90 days from seed to
seed and is easy to grow. Furthermore, cultivated cucumber does not appear to suffer from
inbreeding depression, although it is monoecious and an outcrossing species (Cramer and
Wehner, 1999; Jenkins, 1942; Robinson and Decker-Walters, 1997; Rubino and Wehner, 1986).
This characteristic is favorable for genetic studies and maintenance of genetic stocks. From a
genomic perspective, cucumber has a relatively small genome size of 367 Mb with seven
chromosome pairs (27 = 2x = 14) (Arumuganathan and Earle, 1991). In addition, there is
evidence that cucumber has not had a recent genome duplication event and a majority of genes
appear as single copy genes throughout the genome (Huang et al., 2009). Cucumber also
benefits from a wealth of knowledge from previous studies, as the crop has served as a model
species for studying plant biological processes such as sex determination, plant vascular
physiology, and organellar genomics (Alverson et al., 2011; Havey, 1997; Havey et al., 1998;
Lough and Lucas, 2006; Tanurdzic and Banks, 2004; Wang et al., 2010; Xoconostle-Cazares et
al., 1999; Zhang et al., 2010a).

A major obstacle to previous genetic mapping efforts has been the narrow genetic base of
cucumber. Past evaluations of genetic diversity in cucumber have reported low degrees of
variation between 3 and 12% (Dijkuizen et al., 1996; Horejsi and Staub, 1999; Knerr et al., 1989;
Meglic et al., 1996; Meglic and Staub, 1996). As expected, commercial varieties were found to
have an extremely narrow genetic base in these studies. However, a recent study by Lv et al.

(2012) utilized SSR markers to analyze a diverse mega collection of 3342 cucumber accessions
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from various international germplasm collections and identified three distinct population groups
(India, China/East Asia, and North America/Europe/West Asia) with higher estimates of overall
diversity exceeding 20%. A large amount of variation was found not only within, but also
between the population groups and suggests that crosses made outside of effective heterotic
groups may provide new sources of variation. Interestingly, a high level of homogeneity within
each population group was noted and may reflect past genetic bottlenecks and inbreeding within
cucumber populations. These findings suggest that heterosis can be obtained if wide and diverse
crosses are employed (Ghaderi and Lower, 1979a; Ghaderi and Lower, 1979b; Hayes and Jones,
1916; Hutchins, 1938; de Lalla et al., 2010; Singh et al., 2012).

The first linkage maps in cucumber were constructed using phenotypic data to link
morphological traits (Fanourakis and Simon, 1987; Pierce and Wehner, 1990; Vokalounakis,
1992). These maps only consisted of a few simply inherited trait loci and were difficult to utilize
in MAS due to small numbers of loci and weak linkages between traits. The development of
molecular markers enabled the development of more saturated linkage maps and the
identification of stronger linkages between traits and map loci. The first uses of molecular
markers in linkage mapping utilized predominantly isozyme and restriction fragment length
polymorphism (RFLP) markers (Kennard et al., 1994; Knerr and Staub, 1992; Meglic and Staub,
1996). These early maps provided a foundation for mapping economically important traits in
cucumber, but the high costs and limited availability of these markers restricted researchers to
construction of sparsely populated linkage maps. Soon linkage maps expanded to the use of
random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism
(AFLP) markers which were able to inexpensively generate multiple map loci per marker and did

not require any prior knowledge of sequence. Using RAPD and AFLP markers, the first
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moderately saturated linkage maps were produced for use in quantitative trait locus (QTL)
identification and MAS (Fazio et al., 2003; Horejsi et al., 2000; Park et al., 2000; Serquen et al.,
1997; Sun et al., 2006b).

In recent years, there has been rapid progress in the development of genetic and genomic
resources in cucumber. The release of whole genome sequences for three cucumber lines, North
American processing type ‘Gy14’, Northern China fresh market type ‘9930, and North
European type ‘B10’, and the development of a large amount of co-dominant simple sequence
repeat (SSR) molecular markers have made genetic mapping and gene cloning in cucumber
much easier than before (Cavagnaro et al., 2010; Huang et al., 2009; Ren et al., 2009; Woycicki
etal., 2011; Yang et al., 2012). With the introduction of sequencing technologies, RAPD and
AFLP markers were largely replaced with SSR, single nucleotide polymorphism (SNP), and
sequenced characterized amplified region (SCAR) markers because of their co-dominant nature
and improved reproducibility across differing populations. By utilizing cucumber genome
sequence data and large collections of inexpensive SSR markers, numerous studies have been
able to construct linkage maps to identify QTL and in some cases candidate genes for
horticulturally important traits (Amano et al., 2013; He et al., 2013; Kang et al., 2011; Li et al.,
2011; Li et al., 2013; Miao et al., 2011; Zhang et al., 2010b; Zhang et al., 2013). The large
number of SSR loci mapped by various studies and their easy transference across populations has
led to the construction of highly saturated consensus linkage maps (Ren et al., 2009; Yang et al.,
2013). These consensus maps can be used to overcome problems with low genetic diversity
found in single cross populations by exploiting genetic diversity found in wide ranging

populations. Saturated consensus maps used in combination with available whole genome
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sequence data are providing a valuable resource for QTL identification, map-based gene cloning,
association mapping, and MAS in cucumber.

For this study, SSR markers were chosen for construction of a linkage map for later use
in identifying QTL associated with parthenocarpic fruit set in cucumber. SSR markers were
chosen because they are readily available and are relatively inexpensive to utilize. The main
objective during construction of the linkage map was to maximize genome coverage while
placing marker loci at regular intervals throughout the map. In genomic regions where available
polymorphic SSR markers were exhausted, sequence tag site (STS) and derived cleaved
amplified polymorphic sequence (dCAPS) markers were synthesized to supplement the SSR
based linkage map. A second objective of this study was to increase marker saturation in

genomic regions identified as potential QTL for refinement of QTL locations.

Materials and Methods

Mapping Population

An F2:3 mapping population was created for linkage map construction and QTL identification
from a cross between the highly parthenocarpic processing cucumber inbred line, ‘2A’, and the
non-parthenocarpic processing cucumber inbred line, ‘Gy8’ (Chapter 1 Addendum 1). For
construction of the linkage map, 205 F» plants derived from the self-pollination of a single
2AxGy8 F plant were genotyped. For QTL identification (Chapter 3) and a preliminary QTL
analysis preformed to aid in the construction of the linkage map, each F3 plant was scored for the

number of ovaries initiating parthenocarpic fruit development (refer to Chapter 1). The mean
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value obtained for each F3 family was assigned as the phenotype of the F» plant from which it

was derived.

Molecular Marker Analysis
Genomic DNA was isolated from unexpanded young leaves. Leaf samples were first lyophilized
and then ground into fine powder with a high-throughput homogenizer (OPS Diagnostics,
Lebanon, NJ). Genomic DNA was then extracted from the ground tissue with the CTAB method
and purified with phenol/chloroform (Murray and Thompson, 1980). The DNA concentration of
all samples was determined using a NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies, Wilmington, DE). Samples were then diluted with 1X TE Buffer (pH 8.0) to a
concentration of 25 ng uL™!.

All polymerase chain reactions (PCR) were performed using an Applied Biosystems
2720 thermal cycler (Applied Biosystems, Foster City, CA). Each PCR reaction consisted of: 1
pL of diluted DNA (25ng/uL), 1uL of 1X PCR buffer (Fermentas, Glen Burnie, MD), 0.5uLL
each of 5 uM forward and reverse primers, 0.2uL of 10 uM dNTPs, 0.5U of Dream Taq Taq
polymerase (5U/uL) (Fermentas, Glen Burnie, MD), and 6.7 pL of water for a final reaction
volume of 10 pL. A touchdown PCR program detailed by Weng et al. (2005) was utilized for all
primer sets. The program is as follows: 3 min initial denaturation at 95°C; six cycles of 45 s at
94°C for denaturation, 5 min at 68°C for annealing, 1 min at 72°C for extension, with the
annealing temperature being reduced by 2°C per cycle; eight cycles of 45 s at 94°C for
denaturation, 2 min at 58°C for annealing, 1 min at 72°C for extension, with the annealing
temperature reduced by 1°C per cycle; a final 25 cycles of 45 s at 94°C for denaturation, 2 min at

50°C for annealing, and 1 min at 72°C for extension (Weng et al., 2005). PCR amplicons
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obtained through dCAPS markers were digested with the appropriate restriction enzyme prior to
gel electrophoresis. PCR amplicons from all primer sets were size-fractionated in denaturing
polyacrylamide gels as described by Chen et al. (1998) with the exception of the use of 9%
denaturing polyacrylamide gel prepared from stock solutions. Visualization of banding patterns
was achieved by silver staining as described by Bassam et al. (1991) and modified by Weng and
Lazar (2002). Banding patterns were scored manually and digital photographs were produced
for long term preservation and reference (Addendum 1). Only two alleles were observed at each
marker locus in this population.

Linkage analysis was conducted using JoinMap 3.0 software (Van Ooijen and Voorrips,
2001). Marker groups were calculated using the independence test logarithm of odds (LOD)
with a minimum threshold of 4.0. Linkage groups and genetic distances were calculated by the
regression mapping algorithm and the Kosambi mapping function with the following thresholds:
linkage larger than a 1.0 LOD value, recombination frequency of 0.400, and a goodness of fit
jump of 5.0 (Kosambi, 1943). A ripple function was performed after the addition of each marker

locus to construct an optimized marker order.

Whole Genome Re-sequencing Data

The parental lines ‘2A” and ‘Gy8’ were re-sequenced with the Illumina HiSeq 2000 platform
(Illumina Inc., San Diego, CA) using the 2x100 base paired ends module with a mean coverage
of 10x. The resulting short reads produced for ‘2A” and ‘Gy8’ were mapped to the Gy14 Draft
Genome Assembly Version 1.0 as a reference genome using Bowtie Short Read Alignment
Software, Version 0.12.8 (Langmead et al., 2009; Yang et al., 2012). After alignment, Bowtie

was used to identify indel and SNP polymorphisms between ‘2A’ and ‘Gy8’.
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Molecular Markers for Linkage Analysis

For map construction, 3532 SSR markers previously developed from the genome sequences of
cucumber inbred lines ‘Gy14’ and ‘9930’ were selected for polymorphism screening (Cavagnaro
et al., 2010; Ren et al., 2009). Linkage groups were matched to the corresponding chromosome
using the Gyl4 draft genome assembly in accordance to Yang et al. (2012). After a rough
linkage map was assembled using the available polymorphic SSR markers, an additional 153
indel-derived STS markers and 21 dCAPS markers were designed from polymorphisms
identified between ‘2A’ and ‘Gy8’ with Bowtie from whole genome re-sequencing data
(Michaels and Amisino, 1998). These additional markers were designed to fill large gaps
identified in the rough linkage map and to increase marker density in genomic regions identified
as preliminary QTL by an initial QTL mapping analysis performed using a preliminary linkage
map. Selected indel polymorphisms were required to be a minimum of five base pairs (bp) in
length and to have unanimous agreement among aligned sequence reads. Indel polymorphisms
with higher sequence read coverage were preferentially selected and typical coverage for those
selected was between 7-15x. SNP polymorphisms were held to the same selection criteria other
than a length requirement. STS marker primers were designed with primer design software,
Primer 3 (Rozen and Skaletsky, 2000). dCAPS marker primers containing a restriction enzyme
cut site around the SNP polymorphism were designed using dCAPS Finder 2.0 software (Neff et
al., 2002). Since dCAPS Finder 2.0 only identifies a single primer containing the polymorphism,
Primer 3 was used to design the second primer of the primer set. Both STS and dCAPS primer
sets were designed to amplify regions ranging in length from 140 to 250 bp. To verify the

specificity of the newly designed STS and dCAPS markers, in silico PCR was performed to
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confirm single PCR amplicons using the Gy14 and 9930 draft genome assemblies as templates

(Huang et al., 2009; Yang et al., 2012).

Results and Discussion

General Assessment of the Linkage Map

The linkage map constructed by this study for the investigation of parthenocarpic fruit set in
cucumber contains 192 marker loci consisting of 185 SSR, 5 STS, and 2 dCAPS markers
contained within the expected seven linkage groups (Figure 1). The linkage map covers a total
map length of 571.7 cM as calculated using the Kosambi mapping function in JoinMap 3.0
software (Van Ooijen and Voorrips, 2001). Measured in physical distance, the linkage map
covers 164.3 Mb and accounts for approximately 85% of the distance covered by the assembled
chromosomes in the Gy14 draft genome assembly (193.2 Mb) (Table 1). The linkage map has
an average marker density of one marker locus every 3 cM (Table 1).

Of the 3532 SSR markers screened for polymorphisms, 235 (6.65%) were found to be
polymorphic between the parental lines ‘2A” and ‘Gy8’ (Table 2). Since many of the
polymorphic SSR markers were located in close proximity to each other, some identified
polymorphic markers were excluded from linkage map construction because they were regarded
as duplicate markers. However, in genomic regions identified as preliminary QTL by an initial
QTL mapping analysis, all SSR markers were analyzed and included in the linkage map. In
addition, due to the suspected poor quality and low coverage of the re-sequencing data, very few
of the STS and dCAPS markers successfully identified true polymorphisms (7/174 or 4.0%). All

STS and dCAPS markers identified as polymorphic were included in the linkage map.
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Significant segregation distortion was observed for marker loci along a large portion of
chromosome 5 (Table 3). Segregation distortion is a common phenomenon and can result from
changes in fertility of either gametes or zygotes and may also be a consequence of environmental
factors (Lyttle, 1991; Xu et al., 1997). A clear explanation for segregation distortion along
chromosome 5 in this population is not immediately evident but it is interesting to note in
combination with the two large physical intervals unaccounted for by the linkage map that lie on
either side of the region showing distortion (Table 4, Table 3). Chromosomes 1 and 4 also
contain a small number of marker loci showing segregation distortion (Table 3).

There are numerous intervals larger than 3 Mb without marker coverage in the linkage
map (Table 4). The largest intervals unaccounted for by the linkage map occur on chromosomes
1 and 5. None of the chromosomes show strong evidence for the clustering of markers due to
suppressed recombination (Table 1, Table 5). Any perceived clustering of markers on the
linkage map is mostly explained by the inclusion of markers in close physical proximity of each
other; due to the uneven distribution of available polymorphic markers. Table 4 presents the
number of SSR, STS, and dCAPS markers screened for polymorphisms within each interval
larger than 3 Mb that lacked marker coverage by the linkage map. No polymorphisms could be
detected in these regions with the available markers. An attempt to minimize the size of these
intervals by the addition of markers in flanking regions inadvertently led to numerous markers
located in close physical proximity. In addition, each chromosome has comparable
measurements of physical chromosome distance covered per centimorgan, suggesting the
absence of major regions of recombination promotion or suppression (Table 1). Comparison of

the marker loci order and relative positions in the 2AxGy8 linkage map with marker loci
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positions in the Gy14 draft genome assembly also support the observation of normal

recombination frequencies and absence of major marker clustering (Table 5).

General Assessment of Large Intervals Unaccounted for by the Linkage Map
A comparison of the Gy14 draft genome assembly and the linkage map shows that the linkage
map contains a number of relatively large intervals lacking marker coverage (Table 4, Table 5).
While it is possible that polymorphisms do exist in these regions, the number of loci screened in
these regions without the successful identification of a polymorphism is well below the average
expected polymorphism rate of 6.65% for this population (Table 2). Common ancestry between
the two parental lines, ‘2A’ and ‘Gy8’, could be potentially contributing to genomic regions of
low polymorphism in this population. Although a direct common ancestor could not be
identified, both inbred lines have pedigrees including numerous lines developed thru the
cucumber research programs at the University of Wisconsin-Madison (Chapter 1 Addendum 1).
Both parental lines also include close relationships with the public gynoecious inbred line series
(e.g. the Gy series), with ‘2A” descending from ‘Gy7’ and ‘Gy8’ itself descending from ‘Gyl14’
(Chapter 1 Addendum 1). In addition, breeding efforts to incorporate traits relating to fruit
quality, disease resistance, and favorable processing characteristics into elite processing
cucumber lines may have also led to the incorporation of genomic regions derived from similar
sources (Chapter 1 Addendum 1).

The 2AxGy8 linkage map constructed here will ultimately be utilized for identification of
QTL associated with parthenocarpic fruit set in cucumber. The large intervals in the linkage map
without marker coverage may hinder the ability to detect QTL. This is especially concerning for

the detection of minor QTL. However, the presence of any major QTL will likely be detectable
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even with large unaccounted for intervals on the linkage map. The inheritance of parthenocarpic
fruit set in cucumber is unclear as past studies have suggested models ranging from single gene
inheritance to complex multigenic inheritance; with a recent QTL study by Sun et al. (2006b)
indicating complex inheritance with numerous small QTL (El-Shawaf and Baker, 1981;
Hawthorn and Wellington, 1930; Kvasnikov et al., 1970; Meshcherov and Juldasheva, 1974;
Pike and Peterson, 1969; de Ponti and Garretson, 1976; Sun et al., 2006a; Sun et al., 2006b).
While Sun et al. (2006b) utilized another 2AxGy8 F2:3 population derived from the same
parental lines as the population used here, it should be noted that the current study employed a
new approach to phenotypic evaluation of parthenocarpic fruit set in an attempt to limit
confounding traits related to environment and yield that were significant in the previous study.
Therefore, there is not any expectation for the presence of major or minor QTL in this study.
Ultimately, the expectation is that QTL will be identified in the regions of the linkage map

showing polymorphisms between the two parental lines.

Comparison to Other C. sativus Linkage Maps

The 2AxGy8 linkage map presented here is similar in the number of marker loci and map
distance covered to other recent linkage maps constructed for F> and RIL cucumber populations
(Amano et al., 2013; He et al., 2013; Kang et al., 2011; Li et al., 2011; Miao et al., 2011; Weng
et al., 2010; Zhang et al., 2010b). The level of polymorphism observed (6.65%) is relatively low
when compared to other published single cross mapping populations (6.4%-17.0%) (Fazio et al.,
2003; He et al., 2013; Kennard et al. 1994; Li et al., 2011; Miao et al., 2011; Serquen et al.,
1997; Sun et al., 2006b; Weng et al., 2010; Zhang et al., 2010b) (Table 2). In agreement with

this study, Sun et al. (2006b) observed a polymorphism rate of 6.68% for predominantly AFLP



74

and RAPD markers in another 2AxGy8 F2:3 population developed for the study of
parthenocarpy. The lower genetic diversity seen in both of the 2AxGy8 populations is likely due
to the noted similarities in development of the parental lines, but may also reflect a suspected
overall narrow genetic base among the majority of elite commercial processing type cucumber
lines. The lack of polymorphism in this population may hinder future attempts at fine mapping
QTL regions.

The large intervals lacking marker coverage in the 2AxGy8 linkage map are similar to
the intervals unaccounted for by the linkage map constructed by Sun et al. (2006b) (Addendum
2). The study by Sun et al. also observed few available polymorphic marker loci for
chromosomes 1 and 5 (Table 1, Addendum 2). Correspondingly, the large unaccounted intervals
1.1, 1.2, 2.1, and 5.1 are also unaccounted for by the Sun et al. linkage map (Figure 1, Table 4,
Addendum 2). These observations collaborate to add confidence to the accuracy of the 2AxGy8

linkage map constructed by this study.

Future Focus

This study presents a moderately saturated linkage map with good utility for the identification of
QTL contributing to parthenocarpic fruit set in cucumber. The quality of the map will ultimately
be decided by the ability to successfully detect QTL accounting for a majority of the phenotypic
variation observed for parthenocarpic fruit set. If sufficient QTL are not identified, one possible
remedy includes screening more SSR, indel, and SNP loci in the large genomic regions lacking
marker coverage in the current 2AxGy8 linkage map, as numerous unexplored loci still exist.
However, assuming the successful discovery of QTL for parthenocarpic fruit set, this linkage

map will serve as a strong foundation for further fine mapping in the target genomic regions.
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Table 3. Table presenting the segregation data for each marker locus contained in the 2AxGy8
linkage map. The linkage map consists of 185 SSR, 5 STS, and 2 dCAPs marker loci in seven
linkage groups. The “A” genotype has been assigned to ‘2A” while the “B” genotype represents
‘Gy8’. Distortion from the expected 1:2:1 segregation for co-dominant markers is evaluated by
the chi square test. The linkage map contains two SSR markers on Chromosome 6, UW084474
and UW026722, that could only be visually scored as dominant markers with the protocol
outlined by this study. These markers were evaluated with an expected segregation ratio of 3:1.

CHR Locus Position? | A/A | A/B | B/B | A/-Y | No Data x> | Df Sig.*
1 UWO085383 0.0 | 48 104 | 49 0 4 025 | 2 -
1 SSR13109 1.0 | 46 108 50 0 1 0.86 | 2 -
1 SSR15108 1.7 | 44 110 | 51 0 0 1.58 | 2 -
1 SSR04644 43| 44 102 53 0 6 094 | 2 -
1 SSR04304 49| 46 107 50 0 2 0.75 | 2 -
1 SSR11654 9.0 50 98 54 0 3 034 | 2 -
1 SSR05793 10.6 | 47 101 49 0 8 0.17 | 2 -
1 UWO045607 32.7| 41 102 56 0 6 239 | 2 -
1 SSR15755 373 | 45 97 61 0 2 292 | 2 -
1 UWO084360 39.7 | 46 96 51 0 12 0.26 | 2 -
1 UWO083897 40.3 | 43 101 59 0 2 253 | 2 -
1 SSR14526 40.7 | 47 93 59 0 6 230 | 2 -
1 UWO084542 41.4 | 48 99 57 0 1 097 | 2 -
1 UWO083821 446 | 56 81 56 0 12 498 | 2 *
1 UWO074644 82.0 | 49 101 54 0 1 0.26 | 2 -
2 UWO084907 0.0 54 102 | 45 0 4 0.85 | 2 -
2 SSR00204 09| 54 100 | 46 0 5 0.64 | 2 -
2 SSR18937 3.7 52 98 46 0 9 037 | 2 -
2 SSR13532 46| 52 101 46 0 6 041 | 2 -
2 UWO059395 72| 58 105 42 0 0 2.62 | 2 -
2 UWO043178 75| 53 104 | 38 0 10 317 | 2 -
2 UWO043203 7.6 51 92 36 0 26 2.65 | 2 -
2 UWO085388 9.0 | 57 100 | 38 0 10 383 | 2 -
2 UWO043299 9.1 | 58 104 | 41 0 2 297 | 2 -
2 UWO084463 94| 58 105 38 0 4 438 | 2 -
2 UWSTS0384 9.8 | 58 106 | 39 0 2 396 | 2 -
2 UWO057528 10.6 | 59 105 39 0 2 418 | 2 -
2 SSR04869 11.1| 57 108 | 40 0 0 341 | 2 -
2 UWO085357 122 ] 61 104 | 40 0 0 435 | 2 -
2 UWO085360 134 53 98 39 0 15 225 | 2 -
2 SSR04870 164 | 57 102 | 43 0 3 1.96 | 2 -
2 UWO078361 31.6 | 53 104 | 47 0 1 043 | 2 -
2 UWO078335 32.0| 53 106 | 46 0 0 0.72 | 2 -
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CHR Locus Position? | A/A | A/B | B/B | A/-Y | No Data x> | Df Sig.*
2 UWO078088 33.0| 50 105 42 0 8 1.51 | 2 -
2 UWO053502 355 | 51 105 43 0 6 1.25 | 2 -
2 UWO082700 41.3 | 46 107 | 45 0 7 1.30 | 2 -
2 SSR16916 499 | 44 100 | 42 0 19 1.10 | 2 -
2 UWO036707 52.1| 49 109 | 45 0 2 1.27 | 2 -
2 UWO083968 524 | 46 107 | 46 0 6 1.13 | 2 -
2 UWO016354 724 | 57 94 51 0 3 1.33 | 2 -
2 UWO012751 83.6 | 52 91 48 0 14 0.59 | 2 -
2 SSR16028 88.9 | 51 98 52 0 4 0.13 | 2 -
2 SSR03606 91.5| 47 92 47 0 19 0.02 | 2 -
3 SSR14159 0.0 51 104 | 47 0 3 034 | 2 -
3 SSR05312 5.8 51 107 | 44 0 3 1.20 | 2 -
3 SSR02451 6.5| 51 107 | 40 0 7 252 | 2 -
3 UWO085290 11.5] 50 107 39 0 9 2.89 | 2 -
3 SSR16408 154 | 55 106 | 42 0 2 206 | 2 -
3 SSR05891 21.9 | 44 86 41 0 34 0.11 | 2 -
3 SSR14725 23.8 | 44 109 | 46 0 6 1.85 | 2 -
3 SSR0O1573 253 | 47 111 45 0 2 1.82 | 2 -
3 UWO055751 259 | 48 109 | 46 0 2 1.15 | 2 -
3 SSR03409 28.3 | 42 109 | 45 0 9 2.56 | 2 -
3 UWO083723 47.8 | 50 103 51 0 1 0.03 | 2 -
3 UWO084166 47.8 | 50 103 48 0 4 0.16 | 2 -
3 SSR07220 48.4 | 49 102 50 0 4 0.05 | 2 -
3 SSR00525 53.0| 50 106 | 47 0 2 049 | 2 -
3 SSR02068 53.1| 49 108 | 48 0 0 0.60 | 2 -
3 SSR06210 54.8 | 47 113 45 0 0 2.19 | 2 -
3 UWO083972 55.6 | 44 112 | 49 0 0 2.00 | 2 -
3 SSR16056 56.9 | 44 111 46 0 4 223 | 2 -
3 SSR02132 57.0| 44 110 | 50 0 1 1.61 | 2 -
3 UWO084363 61.0| 47 102 55 0 1 0.63 | 2 -
3 UWO083944 62.5| 43 102 53 0 7 1.19 | 2 -
3 UWO085394 76.2 | 45 98 45 0 17 034 | 2 -
3 SSR13949 79.6 | 52 94 50 0 9 037 | 2 -
3 SSR05328 83.1 | 46 101 46 0 12 042 | 2 -
3 SSR11397 83.2 | 48 99 44 0 14 042 | 2 -
3 SSR30236 100.2 | 55 105 45 0 0 1.10 | 2 -
3 SSR23159 102.5| 52 107 | 46 0 0 0.75 | 2 -
3 SSR10783 106.0 | 53 108 | 44 0 0 1.38 | 2 -
3 SSR15312 106.5 | 51 103 44 0 7 0.82 | 2 -
3 SSR20578 106.8 | 52 106 | 43 0 4 1.41 | 2 -
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CHR Locus Position” | A/A | A/B | B/B | A/-Y | NoData | x* | Df | SigX
3 | UWO084555 108.8 | 47 | 109 | 46 0 3 128 | 2 -
4 | SSR11074 0.0 48 | 101 | 53 0 3 025 | 2 -
4 | UW083992 33| 45 | 104 | 49 0 7 0.67 | 2 -
4 | SSR05783 55| 41 106 | 52 0 6 207 | 2 -
4 | UWO083734 64| 42 | 105 | 58 0 0 262 | 2 -
4 | UW084487 10.4 | 41 96 61 0 7 422 | 2 -
4 | SSR05899 11.5] 44 98 63 0 0 392 | 2 -
4 | SSRO1615 15.7 | 41 90 58 0 16 349 | 2 -
4 | UWO084453 220 44 94 67 0 0 6.57 | 2 x
4 | SSR12386 30.2 | 39 96 61 0 9 502 | 2 *
4 | UWO084379 332 | 43 97 63 0 2 434 | 2 -
4 | UWO083899 346 | 42 96 66 0 1 635 | 2 x
4 | SSR05415 38.1 | 40 92 59 0 14 4.04 | 2 -
4 | SSR04482 415 | 44 93 55 0 13 145 | 2 -
4 | UW029413 425 | 43 100 | 59 0 3 255 | 2 -
4 | SSR13021 456 | 53 98 52 0 2 025 | 2 -
4 | SSR04649 50.0 38 | 109 | 51 0 7 373 | 2 -
4 | UW084520 505 39 | 114 | 51 0 1 424 | 2 -
4 | SSR02697 50.6 | 38 | 110 | 51 0 6 301 | 2 -
4 | UWO083971 585 48 99 52 0 6 0.17 | 2 -
4 | SSR14393 58.7( 50 | 100 | 52 0 3 0.06 | 2 -
4 | SSR10368 59.7| 48 | 104 | 353 0 0 029 | 2 -
4 | UWO083893 69.2 | 56 81 40 0 28 4.16 | 2 -
4 | UW08389%4 71.4 | 58 90 55 0 2 269 | 2 -
4 | SSRO5515 73.8 1 53 90 51 0 11 1.05 | 2 -
4 | UWO084851 81.2 | 58 94 51 0 2 1.59 | 2 -
4 | SSR16498 81.9 | 54 92 52 0 7 1.03 | 2 -
4 | SSR00249 82.8 | 56 95 53 0 1 1.05 | 2 -
4 | SSR18551 83.2 | 58 93 53 0 1 1.83 | 2 -
4 | SSR14054 84.7 | 58 86 53 0 8 343 | 2 -
4 | SSR18559 86.0 | 58 96 50 0 1 133 | 2 -
4 | UWO084518 86.9 | 56 93 50 0 6 1.21 | 2 -
4 | UWO084519 87.7| 58 94 51 0 2 1.59 | 2 -
5 | UW084492 0.0 57 | 106 | 31 0 11 8.64 | 2 ko
5 | UWO085421 1.3 57 | 103 | 33 0 12 6.84 | 2 ko
5 | UWO084451 27| 58 | 106 | 35 0 6 6.17 | 2 *x
5 SSR11264 139 53 115 | 33 0 4 8.16 | 2 ko
5 SSR16110 149 55 | 118 | 32 0 0 9.85 | 2 | *#*
5 | UWO084566 152 ] 53 113 | 32 0 7 841 | 2 ko
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CHR Locus Position” | A/A | A/B | B/B | A/-Y | NoData | x* | Df | SigX
5 SSR32717 1571 54 | 117 | 34 0 0 8.00 | 2 ok
5 | UWO005172 16.8 | 45 | 107 | 33 0 20 6.10 | 2 ko
5 SSR0O7711 1741 56 | 106 | 32 0 11 7.61 | 2 *x
5 SSR15321 204 50 | 115 | 38 0 2 501 | 2 *
5 SSR00182 2571 49 | 118 | 36 0 2 7.03 | 2 kx
5 | UW001903 264 | 46 | 119 | 35 0 5 843 | 2 ok
5 | UW059902 323 46 | 115 | 40 0 4 454 | 2 -
5 SSR13409 526 | 59 93 49 0 4 2,11 | 2 -
5 SSR02895 529 | 57 95 50 0 3 1.20 | 2 -
5 | UWO084644 534 58 95 48 0 4 1.60 | 2 -
5 SSR19343 53.8 | 60 98 46 0 1 224 | 2 -
5 SSR20897 547 57 95 51 0 2 1.19 | 2 -
6 | SSR16163 0.0 50 | 103 | 49 0 3 0.09 | 2 -
6 | SSR02021 22| 44 92 40 0 29 0.55 | 2 -
6 | UWSTS0316 33| 53 103 | 47 0 2 040 | 2 -
6 | UW084474 93| 0 0 50 | 152 3 0.00 | 1 -
6 | UWSTS0322 9.7 52 | 102 | 51 0 0 001 | 2 -
6 | SSR01012 12.6 | 52 | 102 | 50 0 1 0.04 | 2 -
6 | SSR15245 133 49 | 103 | 49 0 4 0.12 | 2 -
6 | SSR19672 16.2 | 47 98 48 0 12 0.06 | 2 -
6 | SSR07198 17.3 ] 51 100 | 49 0 5 0.04 | 2 -
6 | SSR16020 18.6 | 50 | 105 | 49 0 1 0.19 | 2 -
6 | UW026722 266 0 0 39 | 134 32 042 | 1 -
6 | SSR14061 289 | 38 | 104 | 46 0 17 281 | 2 -
6 | UW083805 299 48 | 110 | 45 0 2 1.51 | 2 -
6 | UW025975 328 45 | 111 | 49 0 0 1.57 | 2 -
6 | SSR17023 438 49 | 104 | 48 0 4 025 | 2 -
6 | SSR13996 47.1| 49 | 103 | 50 0 3 0.09 | 2 -
6 | SSR14652 480| 50 | 100 | 50 0 5 0.00 | 2 -
6 | UW000036 48.6 | 46 93 50 0 16 022 | 2 -
6 | SSR15492 49.0 | 46 97 53 0 9 052 | 2 -
6 | DM0071 512 52 | 100 | 48 0 5 0.16 | 2 -
6 | SSR18443 53.0( 55 | 103 | 44 0 3 1.28 | 2 -
6 | SSR00126 63.7 | 56 98 50 0 1 0.67 | 2 -
6 | SSR14859 69.7 | 48 | 106 | 49 0 2 041 | 2 -
6 | SSR10740 7331 49 | 102 | 49 0 5 0.08 | 2 -
6 | SSR19842 75.1 | 53 102 | 47 0 3 038 | 2 -
6 | UWSTS0295 76.2 | 56 98 47 0 4 093 | 2 -
6 | UWSTS0299 773 52 | 106 | 46 0 1 0.67 | 2 -
6 | UWSTS0296 773 52 | 106 | 46 0 1 0.67 | 2 -
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CHR Locus Position? | A/A | A/B | B/B | A/-Y | No Data x> | Df Sig.*
6 UWSTS0263 773 | 49 104 | 46 0 6 0.50 | 2 -
6 UWSTS0297 774 | 50 105 46 0 4 0.56 | 2 -
6 SSR17604 77.6 | 51 101 47 0 6 021 | 2 -
6 UWSTS0304 80.0 | 52 103 46 0 4 0.48 | 2 -
6 UWSTS0302 80.0 | 54 103 46 0 2 0.67 | 2 -
6 UWSTS0303 80.0 | 52 105 46 0 2 0.60 | 2 -
6 UWSNPO125 80.0 | 54 105 46 0 0 0.75 | 2 -
6 UWSTS0266 80.0 | 54 105 46 0 0 0.75 | 2 -
6 SSR00584 80.0| 54 104 | 46 0 1 071 | 2 -
6 UWO020717 80.6 | 47 92 42 0 24 033 | 2 -
6 UWSTS0269 83.0| 49 108 | 46 0 2 092 | 2 -
6 UWSTS0310 84.0 | 51 104 | 46 0 4 049 | 2 -
6 SSR18956 84.7 | 47 101 42 0 15 1.02 | 2 -
6 SSR06240 90.8 | 53 95 45 0 12 0.71 | 2 -
6 SSR16683 91.8| 54 102 | 46 0 3 0.65 | 2 -
6 SSR18669 922 | 54 101 43 0 7 1.30 | 2 -
6 SSR17408 973 | 52 99 52 0 2 0.12 | 2 -
6 SSR18251 99.1| 50 95 54 0 6 0.57 | 2 -
6 SSR03357 100.5 | 50 96 55 0 4 0.65 | 2 -
7 UWSTS0250 0.0 50 99 50 0 6 0.01 | 2 -
7 SSR00015 15.5] 50 102 50 0 3 0.02 | 2 -
7 UWO084483 16.6 | 51 102 51 0 1 0.00 | 2 -
7 SSR00890 17.2 | 52 101 47 0 5 0.27 | 2 -
7 SSR04689 19.1| 50 106 | 46 0 3 0.65 | 2 -
7 SSR00931 20.3 | 53 104 | 48 0 0 0.29 | 2 -
7 SSR18648 20.6 | 53 105 47 0 0 047 | 2 -
7 UWO083819 21.5| 50 100 | 46 0 9 024 | 2 -
7 UWO085202 21.8 | 51 99 47 0 8 0.17 | 2 -
7 UWO060272 23.0| 45 102 | 45 0 13 0.75 | 2 -
7 SSR07473 23.9| 48 105 48 0 4 0.40 | 2 -
7 UWO084146 24.1 | 45 106 | 48 0 6 094 | 2 -
7 UWO085407 26.3 | 46 102 | 49 0 8 034 | 2 -
7 SSR11742 32.1| 50 98 54 0 3 034 | 2 -
7 UWO014906 332 50 99 55 0 1 042 | 2 -
7 SSR04704 346 | 48 101 56 0 0 0.67 | 2 -
7 SSR00048 42.0 | 49 99 57 0 0 0.86 | 2 -
7 SSR13885 433 | 46 100 | 54 0 5 0.64 | 2 -
7 SSR06349 443 | 46 99 55 0 5 0.83 | 2 -
7 UWO084414 46.5 | 50 100 | 55 0 0 037 | 2 -
7 UWO015467 46.5 | 50 100 | 54 0 1 024 | 2 -




“Position is measured in centimorgans as calculated using the Kosambi map function in JoinMap 3.0
software (Van Ooijen and Voorrips, 2001).

YA/- marker class includes both A/A and A/B genotypes that were indistinguishable by size-
fractionation in 9% denaturing polyacrylamide gel electrophoresis.

*Segregation distortion at each marker locus was evaluated by the chi square test with
incremental levels of significance: * = 0.10, ** = 0.05, and *** = 0.01.
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Table 4. Identification and location of intervals exceeding 3 Mb in the linkage map without
marker coverage. The linkage map was constructed for a C. sativus F23 population consisting of
205 F» individuals derived from a cross of parthenocarpic inbred line ‘2A’ and non-
parthenocarpic inbred line ‘Gy8’. All SSR, STS, and dCAPS markers screened for
polymorphisms between the parental lines were analyzed with in silico PCR using the Gy14 draft
genome assembly version 1.0 (Yang et al., 2012). The table presents the number of markers
identified by in silico PCR as being located within the intervals unaccounted for by the linkage
map. None of the markers in these intervals were found to be polymorphic in the 2AxXGy8
population. It should be noted that in silico PCR was only able to confirm PCR amplicons for
77.6% of markers screened by this study. Consequently, the number of markers screened within
these intervals is likely greater, but the data presented provides an estimate of marker availability
in these regions.

Flanking Assembly Flanking | Assembly | Interval | Markers

Interval” Marker PositionY Marker PositionY | Length* | Screened™
CHR 1-1 | SSR05793 3.14 Uwo045607 10.25 7.11 124
CHR 1-2 | UW083821 14.69 Uw074644 23.69 9.01 165
CHR 1-3 | UW(074644 23.69 End 28.50 4.80 40
CHR 2-1 | Start 0.00 Uwo084907 5.81 5.81 81
CHR 2-2 | UW036707 18.02 UWO016354 21.78 3.77 58
CHR 3-1 | SSR03409 9.39 SSR07220Y 15.82 6.43 39
CHR 3-2 | SSR11397 31.86 SSR30236 35.49 3.63 42
CHR 5-1 | Start 0.00 Uwo084492 7.03 7.03 226
CHR 5-2 | UW059902 19.54 SSR13409 26.31 6.77 243
CHR 6-1 | UW025975 10.00 SSR17023 14.82 4.82 52
CHR 7-1 | UW015467 14.36 End 19.34 4.98 92

“Intervals in the linkage map must be larger than 3 Mb for inclusion in this table. Intervals are
numbered in descending order beginning form the start of the Gy14 chromosome assembly
version 1.0 (Yang et al., 2012).

YPhysical position measured in Mb in the Gy14 draft genome assembly version 1.0.

*Measured in Mb.

“Number of screened markers with identifiable in silico PCR amplicons located within each
linkage map interval.

"Nearest interval flanking marker with assembly position data available.
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Chapter 3
Identification of Quantitative Trait Loci Associated with Parthenocarpic Fruit Set in

Processing Cucumber (Cucumis sativus L.)

Abstract

Successful parthenocarpic cucumber cultivars have been developed and used for many years.
However, the genetic inheritance of parthenocarpic expression in cucumber has not been well
characterized. Therefore, an F2:3 population was developed for a narrow cross between a highly
parthenocarpic inbred line, ‘2A’, and a non-parthenocarpic inbred line, ‘Gy8’, to identify QTL
associated with parthenocarpic fruit set. Seven QTL associated with parthenocarpic fruit set
were detected with four QTL being identified consistently in all analyses. Consensus QTL were
located on chromosome 5 at 32.3 - 54.7 cM (parth5.1), chromosome 6 at 0.0 - 9.7 cM (parth6.1),
chromosome 6 at 80.0 - 83.0 cM (parth6.2), and chromosome 7 at 21.8 - 32.1 cM (parth7.1). All
QTL were additive and significant epistatic interactions were not detected. The locations of
these four QTL were compared with QTL identified for parthenocarpy and yield in previous
studies. Yield QTL were not found to co-localize with the QTL identified for parthenocarpic
fruit set in this study. In addition to parthenocarpic expression, seed size and seed weight traits
were observed to segregate in this population. Seed size and seed weight traits were highly
correlated and QTL analyses of both traits revealed similar results. Two QTL consistently
associated with seed size and weight were identified on chromosome 5 at 14.9 - 20.4 cM and on
chromosome 6 at 80.0 cM. The QTL on chromosome 6 at 80.0 - 83.0 cM was identified as being

a potentially pleiotropic locus affecting both parthenocarpic expression and seed size and weight.
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Sequence information was extracted from the genomic region encompassed by each of the four
QTL associated with parthenocarpic fruit set and explored for Arabidopsis gene homologs with
the BLASTn tool provided by NCBI. Multiple candidate genes were identified and potentially

promising candidates are discussed in depth.

Introduction

Parthenocarpy is a desirable trait for the production of fruit and vegetable crops that have
undesirable large and/or hard seeds. Parthenocarpic cultivars are also beneficial in the
production of crops in which pollination is difficult or impacted by abiotic factors and these
cultivars often result in increased yield. Naturally occurring parthenocarpy has been observed in
many plant species and parthenocarpic cultivars are common in citrus, cucurbit, and solanaceous
crop production (Beraldi et al., 2004; Fos et al., 2000; Gorguet et al., 2008; de Menezes et al.,
2005; Miyatake et al., 2012; Sun et al., 2006; Vardi et al., 2008). Models of inheritance vary
widely from simple inheritance to complex quantitative inheritance within each of these species
depending upon population materials (Beraldi et al., 2004; Fos et al., 2000; Gorguet et al., 2008;
de Menezes et al., 2005; Miyatake et al., 2012; Sun et al., 2006; Vardi et al., 2008). There are
disagreements among studies on the mode of genetic inheritance in cucumber. Hawthorn and
Wellington (1930) and Meshcherov and Juldasheva (1974) both reported models consisting of a
single recessive gene for the inheritance of parthenocarpy. Pike and Peterson (1969) also
developed a single gene model and reported parthenocarpy to be inherited as a single
incompletely dominant gene. Kvasnikov et al. (1970) were the first to propose complex

inheritance for parthenocarpy with a model consisting of many recessive genes. This was
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followed by a proposal by de Ponti and Garretson (1976) of an additive three gene inheritance
model. Similarly, El-Shawaf and Baker (1981) found parthenocarpy to be quantitatively
inherited with both additive and non-additive gene effects. Most recently, Sun et al. (2006)
reported four major genomic regions associated with parthenocarpic expression with significant
epistasis and large genotypexenvironment interactions.

Genes associated with natural parthenocarpy have not been cloned and the events directly
involved in the initiation of fruit set remain unknown. However, reports from Arabidopsis and
tomato consistently report elevated expression of gibberellins in association with parthenocarpic
expression (Dorcey et al., 2009; Fos et al., 2000; Olimpieri et al., 2007; Pascual et al., 2009;
Serrani et al., 2007; Serrani et al, 2008; Serrani et al., 2010). Interestingly, both auxin and
cytokinin induced parthenocarpic expression have been found to be mediated by gibberellins and
gibberellin biosynthetic inhibitors can block auxin and cytokinin induced parthenocarpic
expression (Ding et al., 2013; Fuentes et al., 2012; Serrani et al., 2008; Serrani et al., 2010).
These observations demonstrate a key role for gibberellins in parthenocarpic expression and fruit
set.

Parthenocarpy has also been exploited in crop production through the application of
exogenous phytohormones (Gillaspy et al., 1993; Vivian-Smith and Koltunow, 1999). Auxin,
gibberellic acid, cytokinin, and combinations of these are the most common phytohormones used
to induce parthenocarpic expression (Pandolfini, 2009). In addition to auxin, gibberellic acid,
and cytokinin, the exogenous application of brassinosteroids was found to induce parthenocarpic
fruit set in cucumber (Fu et al., 2008). Although not previously associated with parthenocarpic
expression, the exogenous application of brassinosteroids has been used to increase yields in

crop production (Divi and Krishna, 2009; Vriet et al., 2012). The ability to induce
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parthenocarpic expression with multiple hormones exemplifies the complexity behind hormone
signaling and illuminates the paradox of how eight known plant hormones (auxins, gibberellins,
cytokinins, ethylene, abscisic acid, brassinosteroids, jasmonic acids, and strigolactones) can
regulate every physiological process in plants.

Brassinosteroids are a large family of growth promoting polyhydroxylated steroid
hormones involved in regulating numerous aspects of physiological response during vegetative
and reproductive development (Clouse, 2011). Brassinolide and its precursor, castasterone, are
the most commonly found brassinosteroids in plants (Srivastava, 2002). After the discovery of
brassinosteroids during the 1970’s, numerous molecular genetic and biochemical studies were
conducted utilizing brassinosteroid deficient and insensitive mutants to elucidate the
brassinosteroid signaling pathway. Brassinosteroids are perceived by the brassinosteroid
receptor Brassinosteroid Insensitive 1 (BRI1). BRI1, a leucine-rich-repeat containing receptor-
like kinase (LRR-RLK), acts as a transmembrane brassinosteroid receptor for the brassinosteroid
signaling pathway (Li and Chory, 1997). Binding of BRI with brassinosteroids activates the
intracellular domain of BRI through phosphorylation and allows for association with its co-
receptor, BRI1-Associated Receptor Kinase 1 (BAK1), which further enhances the kinase
activity of BRI1 (Li et al., 2002; Nam and Li, 2002; Wang et al., 2008). Activated BRII leads to
a number of intermediate phosphorylation and dephosphorylation steps before ending with two
transcription factors, Brassinazole Resistant 1 (BZR1) and Brassinazole Resistant 2 (BES1),
which regulate brassinosteroid responsive gene expression (He et al., 2005; Sun et al.; 2010; Yin
et al, 2005; Yuetal., 2011).

The objective of this research is to determine a model of inheritance and identify

quantitative trait loci (QTL) associated with parthenocarpic fruit set in cucumber. In order to
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accomplish this objective, a new approach to phenotypically evaluating parthenocarpic potential
focusing on early fruit initiation and development in cucumber was utilized. Traditional QTL
mapping approaches such as interval mapping (IM), composite interval mapping (CIM), and
multiple interval mapping (MIM) were employed to detect and construct optimal models for the
inheritance of parthenocarpic fruit set. After identification of a consensus QTL model, genomic
regions associated with parthenocarpic fruit set were explored for potential candidate genes.
Finally, a candidate gene model for future investigation is proposed and QTL for use in
increasing efficiency by breeding programs seeking to incorporate parthenocarpic expression

into elite cucumber breeding populations are presented.

Materials and Methods

Mapping Population

An F2:3 mapping population was created for identification of QTL associated with
parthenocarpic fruit set from a cross between the highly parthenocarpic processing cucumber
inbred line, ‘2A’, and the non-parthenocarpic processing cucumber inbred line, ‘Gy8’ (Chapter 1
Figure 6). The population consists of 205 F3 families. Phenotypic data was collected from 11
plants from each F3 family with the exception of four F3 families which were represented by
only 6 F3 individuals. Each F3 plant was scored for the number of ovaries initiating
parthenocarpic fruit set (Chapter 1). For construction of a genetic linkage map, the mean value
obtained for each F3 family was assigned as the phenotype of the F2 plant from which it was
derived. A genetic linkage map consisting of 185 SSR, 5 STS, and 2 dCAPS marker loci was

constructed with genotypic data collected from all 205 F» individuals (Chapter 2).
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In addition to parthenocarpic fruit set, a difference in seed size and weight between the
parental lines was observed as a segregating secondary trait in this population (Addendum 1).
Parental inbred line ‘2A’ was observed to have smaller seeds than parental inbred line ‘GyS8’.
Seed size was measured as seed length multiplied by seed width. Seed length was measured as
the length (cm) of five healthy and fully developed seeds laid end to end. Seed width was
measured as the width (cm) of five healthy and fully developed seeds laid side by side. Seed
weight was measured as the total weight in grams of 50 healthy and fully developed seeds. The
seeds measured in this population were seeds obtained by self-pollination of each of the 205

2AxGy8 F2 plants of the experimental population used for the study of parthenocarpic fruit set.

QTL Mapping of Parthenocarpic Fruit Set

All QTL analyses were performed with the statistical software R version 3.0.2 with the QTL
mapping package “qtl” (R/qtl) version 1.30.4 (Broman et al., 2003). QTL analyses were
performed with datasets consisting of data collected from experiment 1 alone, experiments 2 and
3 combined, and the pooling of experiments 1-3. A detailed discussion for the justification of
these datasets is in Chapter 1. Briefly, the decision to analyze experiment 1 individually was due
to observed differences in the timing of fruit set and the change in the experimental design that
was implemented in experiments 2 and 3 after crowding of plants was observed in experiment 1.
The construction of a dataset consisting of experiments 2 and 3 combined was made because of
the high level of similarity between the data from each experiment. Finally, a Spearman rank
correlation performed between the data of experiments 1-3 determined that although differences

were observed in experiment 1, the rank of F3 family means between all three experiments were
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positively correlated and thus a dataset could be constructed with data from experiments 1-3
pooled.

Differences in the timing and location of fruit set were observed between the parental
lines and this was further explored. In order to do this, the data from experiments 2 and 3 were
modified to only include parthenocarpic fruits initiating development on the first 10 and first 20
nodes (5 and 15 scorable nodes, respectively, due to the trimming of the bottom 5 nodes) of each
F3 plant. Data from experiment 1 was not included in these analyses due to the noted delay in
fruit set related to crowding. QTL analyses were performed on the datasets consisting of data
from the first 10 and first 20 nodes of experiments 2 and 3.

Each dataset was analyzed by IM, CIM, and MIM QTL detection approaches. With the
MIM approach, QTL and potential interactions between QTL were preliminarily evaluated with
the scantwo function. The analysis was conducted with Haley-Knott regression. A permutation
test with 1000 replications was used to determine LOD significance thresholds at alpha = 0.05
and 0.10 levels. With the output of the scantwo function providing a general view of the major
QTL that would be included in a best fit QTL model for parthenocarpic fruit set, the function
stepwiseqtl was used to perform a forward and backward search to identify the best fit QTL
model. The stepwiseqtl function utilizes penalized LOD scores to evaluate the addition of each
QTL or interaction term added to the QTL model (Manichaikul et al., 2009). The penalized
LOD score seeks to control the false positive discovery rate by using a penalty to keep the rate of
inclusion for spurious QTL at a predefined level (Manichaikul et al., 2009). The LOD thresholds
calculated via scantwo are used to calculate the penalties via the calc.penalties function. In
model selection, the stepwiseqtl algorithm first performs a single QTL genome scan to identify

the QTL position with the largest LOD score. Then a scan for additional additive QTL,
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interacting QTL, and possible pairwise interactions between QTL is performed. After the
addition of each QTL, the position of each QTL is refined while taking into account the positions
of the other QTL in the model. The addition of QTL terms to the model continues to a
predefined maximum threshold. The backward elimination step then considers removing the
smallest QTL or QTL interaction term one at a time all the way back to the first term of the
model. Finally, the model with the highest overall penalized LOD score and least number of
terms is selected. Once the QTL terms of the best fit model are selected, the functions makeqt/
and fitqt/ are used to construct the model and evaluate the fit of the model. The function lodint
was used to determine 1.5 LOD confidence intervals for each QTL.

IM was conducted utilizing Haley-Knott regression and the scanone function. A
permutation test with 1000 replications was used for each dataset to determine LOD significance
thresholds at alpha = 0.05 and 0.10 levels. All significant QTL identified were assembled into a
best fit QTL model using the functions makeqt!/ and fitqtl. The function lodint was used to
determine 1.5 LOD confidence intervals for each QTL.

CIM was conducted utilizing Haley-Knott regression and the cim function. The number
of marker covariates selected is critical to the accuracy of CIM and the number of marker
covariates should ideally reflect the number of true QTL. In the preliminary evaluation of each
dataset with the CIM approach, the number of marker covariates was set to be equal to the
number of QTL detected by the IM approach. A permutation test with 1000 replications and a
specified number of covariates was used for each dataset to determine LOD significance
thresholds at alpha = 0.05 and 0.10 levels. For each dataset, an initial QTL analysis was
performed with the window size set at 10 cM and the number of marker covariates set to the

number of QTL observed in IM. A plot of LOD curves was then produced and inspected for the
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detection of additional QTL. Evidence for inclusion of additional QTL was concluded when the
CIM LOD curve extended above the alpha = 0.05 threshold a greater number of times than the
number specified marker covariates. In this case the number of marker covariates was redefined
to reflect the new number of expected QTL. A new permutation test was performed with the
new appropriate number of marker of covariates specified. A new QTL analysis was performed
and the process repeated until the number of expected QTL was in agreement with the number of
specified marker covariates. All significant QTL identified were assembled into a best fit QTL
model using the functions makeqt! and fitqtl. The function /odint was used to determine 1.5

LOD confidence intervals for each QTL.

QTL Mapping of Seed Size and Seed Weight

QTL analyses of seed size and seed weight were performed with datasets consisting of data
collected from the seeds obtained by self-pollination of 205 2AxGy8 F plants. Each dataset
was analyzed by MIM, CIM, and IM QTL detection approaches. With each approach, the QTL
analysis was conducted identically for seed size and seed weight as it was described for

parthenocarpic fruit set. All QTL analyses were performed with R/qtl.

Identification of Candidate Genes

After identification of four QTL associated with parthenocarpic fruit set that had consensus
among the five datasets, the genome sequence surrounding each QTL was explored for candidate
genes. For each QTL, the genome sequence between the flanking markers of a 1.5 LOD
confidence interval was extracted from the Gyl4 Draft Genome Assembly Version 1.0 (Yang et

al., 2012). This sequence was imported into the nucleotide-nucleotide Basic Local Alignment
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Search Tool (BLASTn) version 2.2.29+ utility customized for plant genomes provided by NCBI
(Altschul et al., 1997). All BLASTn default settings were used with the exception of limiting the
search database to only Arabidopsis thaliana mRNA sequences. All sequence matches were
considered and matches were of high interest if they were found to associate with matches
identified in one of the other three QTL regions. Genome positions of candidate genes were
identified by using the Arabidopsis CDS of each gene as a query in a BLASTn search of Gy14
draft genome assembly. After a rough match for the position of each candidate gene was
identified, the entire match and an additional 5 kb of upstream and downstream flanking
sequence was extracted. This extended region was structurally annotated with the FGENESH
utility provided by Softberry in order to predict the structure of each candidate gene in cucumber

(Solovyev et al., 2006).

Alignment of Re-sequencing Data for BRI1 and BAK1 Genes

The genes predicted by Softberry with shared identities with BRI1 and BAK1 of Arabidopsis
thaliana found in the major QTL regions of chromosome 6 at 0.0 - 9.7 cM (parth6.1) and at 80.0
- 83.0 cM (partho6.2), respectively, were compared by sequence alignment between the parental
lines. Assembled whole genome re-sequencing data obtained for the parental lines ‘2A’ and
‘Gy8’ (Chapter 2) along with data from the Gy14 draft genome assembly, which was used as a
reference, were used in alignment. Alignments of DNA, predicted mRNA, and predicted protein
sequences for both parental lines and ‘Gy14” were performed using Clustal W2 software (Larkin
et al., 2007). Sanger sequencing of the parental lines was used to validate any polymorphisms

identified between the parental lines in the re-sequencing data. In addition, at least five dCAPS
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markers for each candidate gene were designed for SNPs identified from the re-sequencing data

as validation.

Sanger Sequencing of BAK1 and BRI1

The predicted genes with shared identities with BAK1 and BRI of Arabidopsis thaliana were
sequenced via Sanger sequencing of the parental lines ‘2A’ and ‘Gy8’. The predicted gene
sequence for each gene was obtained from the results of the Softberry FGENESH analysis. The
sequence used for sequencing began approximately 1 kb before the structural gene and ended
approximately 150 bp after the polyadenylation site. The sequence was divided into overlapping
sections approximately 1.5 kb in length. Primers were designed in opposite orientations at the
ends of each section and served as the start sites for individual Sanger sequencing reactions.
Sequencing reads were expected to extend a minimum of 800 bp and overlap at the center of
each 1.5 kb segment. Primers were designed with the primer design software, Primer 3 (Rozen
and Skaletsky, 2000). PCR protocols were the same as described in Chapter 2. PCR amplicons
were size-fractionated in 3% agarose gel and visualized with ethidium bromide staining. The
PCR amplicon band for each primer pair was cut from the agarose gel and purified with the use
of a Qiaex II Gel Extraction Kit (Qiagen Sciences, Germantown, Maryland). BigDye Terminator
(Applied Biosystems, Foster City, CA) sequencing reactions were used to label the DNA for
Sanger sequencing. Each reaction consisted of: 1 pL of diluted DNA (25ng/uL), 1 pL of 5 uM
primer, 4 uL of BigDye Terminator reaction mix, and 4 uL of water for a final reaction volume
of 10 uL. The BigDye Terminator PCR program is as follows: 5 min initial denaturation at
96°C; 25 cycles of 10 s at 96°C for denaturation, 5 s at 50°C for annealing, and 4 min at 60°C for

extension. Excess BigDye Terminator was removed and PCR amplicons were purified with
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CleanSeq magnetic beads (Agencourt Bioscience Corporation, Beverly, MA) prior to submission
to the University of Wisconsin Biotechnology Center for Sanger sequencing. Alignment of
candidate gene sequence obtained via Sanger sequencing from both parental lines was performed

with Clustal W2 software.

Results and Discussion

Identification of QTL Associated With Parthenocarpic Fruit Set

In order to determine the optimal QTL model for the inheritance of parthenocarpic fruit set in
this 2AxGy8 cucumber population, MIM, CIM, and IM QTL mapping approaches were utilized.
The decision to utilize multiple QTL detection approaches was made in order to build confidence
for the inclusion or exclusion of QTL in the optimal model. Each approach has benefits in QTL
detection. The IM approach is strongest in detecting single QTL traits. Since parthenocarpic
fruit set is inherited as a complex trait in the 2AxGy8 population (Chapter 1), the IM approach is
utilized here as a starting point in model construction. IM is also useful in generating LOD
curves for visual inspection of data and QTL quality. LOD curves can also be generated with
CIM, but the use of covariates can lead to inflated LOD scores (Broman and Sen, 2009).
Similarly, LOD curves generated by MIM in R/qtl described here will reflect slightly different
LOD values. Where IM and CIM calculate LOD scores by comparison of models consisting of a
single QTL of interest with the null model, MIM compares full QTL models with a model
consisting of the full model with the QTL of interest and all of its interaction terms omitted to

calculate LOD scores (Broman and Sen, 2009). In addition, when significant epistatic
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interactions between QTL are present, the model will call for inclusion of QTL that may not
appear significant when considered alone.

The CIM and MIM approaches are better suited to detecting multiple QTL. CIM uses
marker covariates as proxies for detected QTL. The inclusion of the marker covariates in the
model removes most of the effects of the QTL, which would otherwise appear as residual
variation, and thus increases the power to detect additional QTL with smaller effects (Broman
and Sen, 2009). By using simultaneous consideration of multiple QTL, the MIM approach is
valuable in reducing residual variation from QTL with large effects, separating linked QTL, and
detecting epistatic interactions between QTL (Broman and Sen, 2009). Specifically, MIM is the
only approach used by this study with the ability to search for and detect epistatic interactions
between QTL.

QTL analyses of data obtained from the pooling of experiments 1-3 indicated the
presence of seven unique additive QTL accounting for 73.0% (CIM) - 75.5% (MIM) of the
observed phenotypic variation for parthenocarpic fruit set (Table 1). The two QTL detected on
chromosome 6 at 2.2 - 9.7 ¢cM and 80.6 - 83.0 cM together accounted for approximately 26 -
40% of the observed phenotypic variation depending upon the method used. The remaining
QTL each accounted for less than 10% of the observed phenotypic variation. Epistatic
interactions between QTL were not detected in this dataset. Both the CIM and MIM approaches
detected the same QTL with only slight differences in location, which was due to the use of the
refineqtl function with MIM that led to the shifting of the QTL to better fitting locations (Table
1). The appearance of a large change in position for the QTL identified on chromosome 5 is an
artifact of the low marker density on the genetic linkage map for chromosome 5 as neighboring

markers are located more 20 cM apart (Table 1, Chapter 2 Table 5). IM was only able to detect
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five of the seven QTL, but was in agreement with the other methods on the position of those
QTL (Figure 1, Figure 2, Table 1). IM failed to confirm the presence of a QTL on chromosome
2 at 0.0 cM and a third linked QTL on chromosome 6 at 53.0 cM. This is not unexpected with
the IM approach as it is weaker in detection of small and/or linked QTL. All analyses indicated
the presence of complementation between the parental lines of this population for the inheritance
of parthenocarpic fruit set. Favorable alleles for parthenocarpic fruit set at the QTL detected on
chromosome 5 at 32.3 - 54.7 ¢cM, chromosome 6 at 2.2 - 9.7 ¢cM, and chromosome 7 at 21.5 -
21.8 cM were obtained from the parthenocarpic parental inbred line ‘2A’. Favorable alleles for
parthenocarpic fruit set at the QTL detected on chromosome 2 at 0.0 cM, chromosome 4 at 83.2 -
87.7 cM, chromosome 6 at 53.0 cM, and chromosome 6 at 80.6 - 83.0 cM were obtained from
the non-parthenocarpic parental inbred line ‘Gy8’. None of the analyses detected QTL with
significant dominance effects at alpha = 0.05.

QTL analyses of data from experiment 1 indicated the presence of as many as six (MIM)
unique additive QTL accounting for 62.6% (CIM) - 69.0% (MIM) of the observed phenotypic
variation for parthenocarpic fruit set (Table 2). Again, CIM and MIM approaches returned
similar results with the key difference being the ability of MIM to detect a significant third
linked QTL located between the two major QTL on chromosome 6 (Table 2). In addition, MIM
detected a significant epistatic interaction between two of the QTL located on chromosome 6 at
13.3 ¢cM and 53.0 cM. However, this interaction only accounts for 2.9% of the observed
phenotypic variation (Table 2). With this dataset, IM failed to detect the QTL on chromosomes
4 and 5 (Figure 1, Figure 2). Favorable alleles at each QTL were the same as found in the pooled
data from experiments 1-3. Most importantly, when comparing the QTL analyses of the data

from experiment 1 with the analyses done for experiments 1-3, all methods omit the presence of
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QTL on chromosome 7 and diminish the effect of the QTL on chromosome 5 in experiment 1
(Figure 1, Figure 2, Table 1, Table 2). The effect of the QTL on chromosome 2 is approximately
twice as large in experiment 1 as it in the pooled analysis, indicating that the presence of the
QTL is strongly associated with the data obtained in experiment 1 (Table 1, Table 2). None of
the analyses detected QTL with significant dominance effects at alpha = 0.05.

QTL analyses of the combined data obtained from experiments 2 and 3 identified the
presence of four unique additive QTL accounting for 54% of the observed phenotypic variation
for parthenocarpic fruit set by each of the QTL detection approaches (Table 3). MIM did not
detect epistatic interactions between QTL, nor the presence of a third linked QTL between the
two major QTL of chromosome 6 with this dataset. In addition, this dataset did not detect the
QTL on chromosomes 2 and 4 that were present in the dataset from experiment 1 (Figure 1,
Figure 2, Table 2, Table 3). CIM and MIM each placed the four QTL in identical positions with
IM shifting the positions slightly (Table 3). Interestingly, all four QTL detected appear to have
similar effect and contributions to observed phenotypic variation (approximately 10-15% each)
(Table 3). Favorable alleles at each QTL were the same as found in the pooled data from
experiments 1-3. None of the analyses detected QTL with significant dominance effects at alpha
=0.05. A comparison of the QTL analyses of the data collected from experiments 2 and 3 with
the data collected in experiment 1 showed that there was disagreement on the inclusion of QTL
on chromosomes 2, 4, and 7. However, the LOD score curves for the QTL detected on
chromosome 4 show elevation in both analyses although it never crosses the alpha =0.10 LOD
threshold in the analyses of the combined dataset from experiments 2 and 3 (Figure 1, Figure 2).

This supplies weak evidence for confirmation the QTL on chromosome 4. The QTL on



117

chromosome 2 is undetectable in the combined data from experiments 2 and 3. The QTL on
chromosome 7 is undetectable in the analyses of data from experiment 1.

QTL analyses of datasets constructed from data collected in experiment 1 alone,
experiments 2 and 3 combined, and the pooled data from experiments 1-3 all detected models
consisting of four to seven QTL associated with parthenocarpic fruit set (Figure 1, Figure 2,
Table 1, Table 2, Table 3). All analyses were highly consistent in the placement of detectable
QTL across datasets and QTL detection methodologies. All analyses confirm the presence of
QTL of moderate to large effect on chromosome 5 at 32.3 - 54.7 cM (wide range due to low
marker density in this genomic region), chromosome 6 at 0.0 - 9.7 cM, and chromosome 6 at
80.0 - 83.0 cM. Due to the noted experimental issues related to plant crowding observed in
experiment 1, more confidence should be placed in the QTL modeling from the combined data of
experiments 2 and 3. With the QTL only detected in the analysis of experiment 1 (chromosomes
2 and 4), it is plausible that these QTL are related to parthenocarpic fruit set and/or yield in high
stress environments. Similarly, the high stress environment may potentially explain the absence
of the QTL from chromosome 7 in the analysis of data from experiment 1.

The presence of a third linked QTL on chromosome 6 at 53.0 cM was not detectable in
the analysis of combined data from experiments 2 and 3. Inspection of the LOD curves obtained
through interval mapping with datasets from experiment 1 alone and experiments 2 and 3
combined show large broad QTL peaks for the QTL on chromosome 6 centered at 80.0 - 83.0
cM (Figure 1, Figure 2). In addition, there is a slight uptick in LOD scores around 53.0 cM in
both datasets, although the change in LOD score is less than 1.0 in data collected from
experiments 2 and 3 (Figure 1, Figure 2). These observations indicate that an additional QTL

linked to the QTL on chromosome 6 at 80.0 - 83.0 cM may be present. The analyses of the
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dataset from experiment 1, where the presence of the linked QTL is detected, indicates that the
possible linked QTL are in coupling phase and this may explain the large LOD scores attributed
to the QTL at 80.0 - 83.0 cM (Table 2). The epistatic interaction detected between the QTL on
chromosome 6 at 13.3 ¢cM and 53.0 cM may also partially explain the detection of the linked
QTL in experiment 1 (Table 2). Since this interaction was not significant in the combined
dataset from experiments 2 and 3, it may have led to the failure to identify the linked QTL if this
locus acts epistatically. Alternatively, the uptick in LOD scores and broad QTL peak may be
related to large linkage blocks and crossover events in a few individuals in this genomic region.
However, no evidence for this occurrence was observed in analysis of the genotypic data in
Chapter 2.

Ultimately, the pooling of data from experiments 1-3 provides the best fitting QTL model
and accounts for a very large amount of the phenotypic variation observed for parthenocarpic
fruit set (73.0 - 75.5%). The data from experiment 1 remains highly valuable as QTL with
moderate to large effects were detected and validated, despite the observed complications related
to plant crowding. However, the QTL on chromosomes 2 and 4, which were only detectable in
data from experiment 1, should be considered cautiously. At best, these two QTL can only be
considered minor QTL as they each only account for approximately 5% of the observed
phenotypic variation in the pooled dataset. The presence of linked QTL on chromosome 6 at
53.0 cM and 80.0 - 83.0 cM remains inconclusive and will require further marker saturation in
these genomic regions and possibly validation with another population with more individuals.

In order to determine if the observed differences between the parental lines in the timing
and location of fruit set would reveal unique QTL related to early parthenocarpic fruit set, QTL

analyses were performed with datasets consisting of data from the first 10 and first 20 nodes of
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each F3 plant. QTL analyses of data from the first 10 and first 20 nodes of each F3 plant were
only conducted with data from experiments 2 and 3 due to the observed delay in fruit set
attributed to plant crowding in experiment 1. Analysis of data from the first 20 nodes (15
scorable nodes due to the trimming of the bottom 5 nodes) indicated the presence of as many as
five (MIM) additive QTL accounting for 61% (CIM) - 65% (MIM) of the observed phenotypic
variation for parthenocarpic fruit set (Figure 3, Figure 4, Table 4). All analyses returned
consistent results with QTL identified on chromosome 5 at 52.9 ¢cM, chromosome 6 at 0.0 cM,
chromosome 6 at 80.0 cM, and chromosome 7 at 24.1 cM (Table 4). MIM identified an
additional QTL with small effect on chromosome 4 at 86.9 cM. These QTL were also consistent
with those identified in the analyses of the datasets collected for the first 30 nodes of experiment
1 alone and experiments 2 and 3 combined. Again, all four QTL, excluding the QTL on
chromosome 4, appear to have similar effect and contributions to observed phenotypic variation
(approximately 10-15% each), except for the QTL on chromosome 6 at 80.0 cM which has twice
the effect of the other QTL (Figure 3, Figure 4, Table 4). The reason for the increase in the
effect of the QTL on chromosome 6 at 80.0 cM in the dataset collected for the first 20 nodes
versus the dataset collected for all of the data collected for experiments 2 and 3 combined (30
nodes) is unknown. It may be a reflection of the importance of the locus to parthenocarpic fruit
set in the first 20 nodes of plant growth. Alternatively, it may be related to the possibility of a
second linked QTL in this region as discussed previously. However, if two linked QTL do exist
in this region they were again inseparable in this dataset by all QTL detection methods
examined. Favorable alleles at each QTL were the same as found in experiments 1-3 for data
collected from the first 30 nodes. Interestingly, only the QTL on chromosome 4 at 86.9 cM and

chromosome 6 at 80.0 cM show favorable alleles being contributed from ‘Gy8’. This result
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better aligns with the expectation that favorable alleles for parthenocarpic fruit set would be
contributed by the parthenocarpic parental line ‘2A’. MIM did not detect epistatic interactions
between QTL. None of the analyses detected QTL with significant dominance effects at alpha =
0.05.

From a practical perspective, the QTL results and modeling from data collected for the
first 20 nodes of plant growth were nearly identical to that collected for the first 30 nodes of
plant growth in experiments 2 and 3 (Table 3, Table 4). This demonstrates that future studies
will be capable of phenotypically evaluating parthenocarpic fruit set with as few as 20 nodes of
plant growth. This observation also complements the fact that parthenocarpic processing
cucumber lines are typically commercially harvested at approximately 20 nodes of plant growth
(Chapter 1 Addendum 7). In addition, it satisfies any concern related to the ability of an
individual plant to set a second flush of fruit as a confounding factor in this study (Chapter 1).

Analysis of data from the first 10 nodes (5 scorable nodes due to the trimming of the
bottom 5 nodes) indicated the presence of three additive QTL accounting for approximately 40%
of the observed phenotypic variation for parthenocarpic fruit set (Table 5). All analyses returned
consistent results with QTL identified on chromosome 6 at 3.3 ¢cM, chromosome 6 at 80.0 cM,
and chromosome 7 at 24.1 - 32.1 cM (Table 5). These QTL were also consistent with those
identified in the analyses of the datasets collected for experiment 1 alone and experiments 2 and
3 combined. The QTL on chromosome 5 at 32.3 - 54.7 ¢cM which was present in all other QTL
analyses was not detected in data from the first 10 nodes of plant growth (Figure 3, Figure 4).
The QTL effects of the QTL on chromosome 6 at 3.3 and 80.0 cM, respectively, are nearly
identical (Figure 3, Figure 4, Table 5). The QTL on chromosome 7 at 24.1 - 32.1 cM is the QTL

of strongest effect in data from the first 10 nodes of plant growth (Figure 3, Figure 4, Table 5).
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Favorable alleles at each QTL were the same as found in experiments 1-3 for data collected from
the first 30 nodes. MIM did not detect epistatic interactions between QTL. None of the analyses
detected QTL with significant dominance effects at alpha = 0.05.

The strong effect of the QTL from chromosome 7 in data collected from the first 10
nodes of plant growth suggests that it may be important in very early parthenocarpic fruit set. If
true, this potentially explains the inability to detect this QTL in the QTL analysis of experiment
1, as early fruit set was disrupted by stress related to plant crowding. Overall, phenotypic
selection for parthenocarpic fruit set is possible with as few as 10 nodes of plant growth (Chapter
1 Figure 7, Table 5). However, there is some risk of omitting QTL that may be important to
fully maximizing parthenocarpic potential, such as the QTL on chromosome 5. It is proposed
here that phenotypic selection should be done with 20 nodes of plant growth as active fruit set of
the first flush of fruits is often continuing at node 10 and beyond in the parthenocarpic parental
line ‘2A” (Chapter 1 Figure 6). Limiting evaluation to 10 nodes (only 5 scorable nodes) may be
too strict and plants should be allowed to finish set of the first flush of fruits (four - seven fruits
for plants with high parthenocarpic potential) to maximize observed expression.

The new approach employed by this study for accurate phenotyping of parthenocarpic
fruit set in cucumber by focusing on early fruit initiation and development was highly effective.
QTL analyses of pooled data from experiments 1-3 revealed seven additive QTL accounting for
73.0% (CIM) - 75.5% (MIM) of the observed phenotypic variation. We propose that these QTL
be designated as parth2.1 (chromosome 2 at 0.0 — 0.9 cM), parth4.1 (chromosome 4 at 83.2 —
87.7 cM), parth5.1 (chromosome 5 at 32.3 - 54.7 cM), parth6.1 (chromosome 6 at 0.0 - 9.7 cM),
parth6.2 (chromosome 6 at 80.0 - 83.0 cM), parth6.3 (chromosome 6 at 53.0 cM), and parth7.1

(chromosome 7 at 21.8 - 32.1 cM). Further, analyses of individual datasets obtained from
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experiment 1 alone, experiments 2 and 3 combined, and the first 10 and 20 nodes of plant growth
consistently indicated the presence of four QTL (parth5.1, parth6.1, parth6.2, and parth 7.1)
with moderate to large effect (approximately 10 - 20%) for parthenocarpic fruit set potential.

The favorable alleles at each of these four QTL are attributed to the parthenocarpic parental line
‘2A’ with the exception of parth6.2, were the favorable allele is contributed by the non-
parthenocarpic parental line ‘Gy8’. The remaining three minor QTL (parth2.1, parth4.1, and
parth6.3), which were not consistently found in all analyses, all had favorable alleles attributable
to ‘Gy8’ at these loci. It seems plausible that these three minor QTL may be related to
parthenocarpic fruit set and/or yield in high stress environments. Regardless, future focus on
understanding the mechanism of parthenocarpic fruit development in cucumber should focus on

the consensus four moderate to large effect QTL.

Comparison to Previously Identified QTL for Parthenocarpic Expression in Cucumber

A comparison of QTL associated with parthenocarpic expression in cucumber identified by this
study and the one conducted by Sun et al. (2006), with another 2AxGy8 F2.3 population,
revealed both agreement and disagreement. In the Sun et al. study, plants were grown in isolated
outdoor field plots and parthenocarpic potential was measured as the number of fruit exceeding
2.8 cm in diameter during a single harvest performed when 15 % of fruit were at least 5 cm in
diameter. QTL analyses were performed with MIM, CIM, and IM QTL detection approaches.
Through the use of common SSR markers described in Chapter 2, a rough comparison of QTL
locations can be made (Chapter 2 Addendum 2). Both studies identified three QTL on
chromosome 6 at similar chromosome positions (Addendum 2). Similarly, each of these QTL

were estimated to account for 10-15% of the phenotypic variation. None of the other QTL
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identified by either study could be validated by both studies. The Sun et al. study also concluded
there were four major genomic regions associated with parthenocarpic expression, although not
the same four regions identified by this study.

The Sun et al. study suggested that some QTL associated with parthenocarpic expression
corresponded with QTL identified by Fazio et al. (2003) for fruit number per plant at first harvest
(yield). To investigate this observation, an additional comparison was made between the QTL
identified by this study and QTL associated with fruit yield by Fazio et al. (Addendum 2). A
strong association between the QTL for the two traits was not observed. Only the QTL on
chromosome 6 at 53.0 cM (parth6.3) appears to overlap between the two traits. This observation
adds confidence for the effectiveness of the approach taken by this study to accurately evaluate
and phenotype parthenocarpic expression with minimal interference from yield as a confounding

trait.

Identification of QTL Associated With Seed Size and Seed Weight

In addition to parthenocarpic fruit set, seed size and seed weight traits were observed to be
segregating in this 2AxGy8 population. A single dataset for each trait was constructed from the
measurement of seed obtained from the self-pollination of F» plants. Each dataset was analyzed
with MIM, CIM, and IM QTL detection approaches in the same manner as outlined for
parthenocarpic fruit set. Analyses of data collected for seed size indicated the presence of as
many as four (MIM) additive QTL accounting for 19% (CIM) - 36% (MIM) of the observed
phenotypic variation (Figure 5, Figure 6, Table 6). There was minor disagreement between the
QTL detection approaches on the number of QTL, with CIM and IM detecting two QTL and

MIM detecting four (Table 6). However, all three approaches concurred on the presence of QTL
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on chromosome 5 at 14.9 ¢cM and chromosome 6 at 80.0 cM. Each QTL was of small to
moderate effect and accounted for approximately 10% of the observed phenotypic variation.
MIM detected an epistatic interaction between the QTL located on chromosomes 3 and 4 (Table
6). This is likely the reason for the discrepancy between MIM and the other QTL detection
approaches as these loci are not significant when considered alone. None of the analyses
detected QTL with significant dominance effects at alpha = 0.05. Favorable alleles for smaller
seed size were associated with parental line ‘2A’ at each QTL except for the QTL on
chromosome 5 at 14.9 cM where favorable alleles where contributed by ‘Gy8’ (Table 6). The
QTL of greatest interest is the QTL on chromosome 6 at 80.0 cM which corresponds to parth6.2.
Analyses of data collected for seed weight indicated the presence of as many as four
(MIM) additive QTL accounting for 23% (CIM) - 37% (MIM) of the observed phenotypic
variation (Figure 6, Figure 7, Table 7). Similar to the QTL analyses of seed size, all QTL
analyses of seed weight identified QTL located on chromosome 5 at 20.4 cM and chromosome 6
at 80.0 cM (Figure 5, Figure 7, Table 6, Table 7). This is not surprising since the seed weight
and seed size traits are expected to be highly correlated and this observation adds support for
these two loci as true QTL (Addendum 9). Each QTL accounted for approximately 10% of the
observed phenotypic variation. None of the analyses detected QTL with significant dominance
effects at alpha = 0.05. Again, all favorable alleles for smaller seed size were associated with
parental line ‘2A’ at each QTL except for the QTL on chromosome 5 at 14.9 cM where favorable
alleles where contributed by ‘Gy8’ (Table 7). MIM identified the presence of two additional
QTL on chromosome 4 at 6.4 ¢cM and chromosome 7 at 23.0 ¢cM, which were not detected with

CIM or IM (Table 7). MIM also identified an epistatic interaction between the QTL located on
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chromosome 6 at 80.0 cM and chromosome 7 at 23.0 cM. This is interesting to note as both of
these QTL were also identified as important to parthenocarpic fruit set.

The seed size and weight traits are particularly interesting in this population since the
QTL located on chromosome 6 at 80.0 cM is important to the expression of parthenocarpic fruit
set and both seed traits (Figure 8). The QTL on chromosome 6 at 80.0 cM could potentially have
pleiotropic effects on both traits. The QTL for the seed traits on chromosome 5 at 14.9 - 20.4 cM
does not appear to be the same as parth5.1 (Figure 8). However, the LOD curves for each trait
do intersect above the LOD threshold of alpha = 0.10 at approximately 25.7 ¢cM on chromosome
5. Given the low marker density, it remains a low possibility that these two QTL could be
identifying the same locus on chromosome 5. The QTL associated with seed size and weight on
chromosome 4 at 6.4 - 10.4 cM and chromosome 5 at 14.9 - 20.4 cM are confirmed by a more in
depth study of these traits by Wang et al. (2014). However, the QTL on chromosome 6 at 80.0
cM was not identified by Wang et al. and supports this locus as a unique locus affecting seed size

in this population.

Identification of Candidate Genes

After the identification of four consistent QTL for the inheritance of parthenocarpic fruit set, the
genomic sequence neighboring each QTL was explored for candidate genes by BLASTn search
of Arabidopsis mRNA sequences. The functions of all gene homolog matches were investigated
and evaluated for potential to influence parthenocarpic fruit set. However, since the consensus in
the available literature implicates parthenocarpic expression as being under plant hormonal
control, gene homologs with function in hormonal pathways were closely evaluated as potential

candidates. Each QTL region included several plant hormone related gene homologs. The
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parth6.2 QTL possessed the narrowest 1.5 LOD interval so all candidate genes in this region
were first considered as the basis of a potential genetic mechanism (Addendum 3, Addendum 4).
One gene homolog in this region was the brassinosteroid receptor BRI1 (Addendum 4).
Interestingly, a previous study by Fu et al. (2008) found the exogenous application of synthetic
brassinosteroids to induce parthenocarpic expression in a non-parthenocarpic cucumber cultivar.
In addition, the application of brassinazole, a brassinosteroid biosynthesis inhibitor, inhibited
parthenocarpic expression in a parthenocarpic cucumber cultivar (Fu et al., 2008). Another piece
of evidence comes from the observations of decreased seed size in plants deficient in
brassinosteroid signaling and BRI1 mutants (Huang et al., 2012; Morinaka et al., 2006;
Nakagawa et al., 2012; Tanabe et al., 2005). Since the QTL on chromosome 6 at 80.0 - 83.0 cM
(parth6.2) was shared for both parthenocarpic fruit set and seed size, BRI1 is a promising
preliminary candidate gene for this QTL.

With BRI1 identified as a candidate gene at parth6.2, the other three QTL regions were
explored for gene homologs that may potentially interact with BRI1. Two homologs of BAK1
were found to be located in the QTL regions of parthé6.1 and parth7.1 (Addendum 3, Addendum
5, Addendum 6). Although BAKI1, another LRR-RLK, is unable to perceive brassinosteroids, it
acts a co-receptor to BRI and enhances BRI activity (Kim and Wang, 2010; Li et al, 2002;
Nam and Li, 2002, Russinova et al., 2004, Wang et al., 2008). As demonstrated in both
Arabidopsis and tomato, the BAK1 protein also directly interacts with the BRII protein and
together they form a heterodimer (Bajwa et al., 2013; Russinova et al., 2004; Wang et al., 2008).
Since a direct interaction between these two proteins has been shown to occur and along with the
fact that homologs of these interacting proteins were located within three of the four QTL

regions identified for parthenocarpic fruit set, this occurrence may be more than coincidental.
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Another potential candidate gene, phosphatase 2A B' alpha (PP2A), was identified in the QTL
region of parth6.1. PP2A has been demonstrated to be an important component of the
brassinosteroid signaling pathway (Tang et al., 2011). PP2A promotes brassinosteroid signaling
by dephosphorylation and consequent activation of BZR1 (Tang et al., 2011). PP2A B’ alpha
mutants obtained through T-DNA insertions displayed phenotypes similar to slight BRI1 mutant
phenotypes. Both BAK1 and PP2A are promising candidate genes for parthenocarpic fruit set in
cucumber worthy of further investigation. However, the focus of this study choose to pursue
BAKI due to the fact that BAK1 homologs were located within two of the four QTL identified
for parthenocarpic fruit set and this occurrence was considered to be more than coincidental. In
addition, potential mutations to either BAK1 or PP2A would likely result in similarly lower
levels of activated BZR1.

A thorough examination of gene homolog matches in the fourth QTL region, parth5.1,
identified the DELLA proteins Gibberellic Acid Insensitive (GAI) and Repressor of GA1-3
(RGA) as potential candidate genes (Addendum 3, Addendum 7). DELLASs are transcription
regulators that restrict plant growth and negatively regulate gibberellin growth responses (Dill
and Sun, 2001; Dill et al., 2004; Li et al., 2012; Sun, 2011). Silencing or loss of DELLA
proteins has been found to induce facultative parthenocarpic expression (Carrera et al., 2012;
Dorcey et al., 2009; Fuentes et al., 2012; Marti et al., 2007). Microarray studies have observed
significant overlap in the genes affected in the brassinosteroid insensitive mutant bri-/16 and the
gibberellic acid insensitive mutant ga/-3 (rga), suggesting both have similar effects on a large
number of common genes (Bai et al., 2012; Cheminant et al., 2011; Sun et al., 2010). DELLA
proteins RGA and GAI have also been found to directly interact with BZR1 by binding to the

active dephosphorylated form of BZR1 and inhibiting its transcriptional activity (Bai et al., 2012;
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Gallego-Bartolome et al., 2012; Li et al., 2012). This demonstrates the role of DELLASs in
negatively regulating the brassinosteroid pathway. The presence of a gene homolog found to
interact with a downstream product of BRI1 in the fourth QTL region supported the proposal of a

possible crosstalk mechanism between the gibberellin and brassinosteroid signaling pathways.

A Potential Mechanism for Parthenocarpic Fruit Set

Our findings point to a potential mechanism for parthenocarpic fruit set based on crosstalk
between the brassinosteroid and gibberellin signaling pathways. Parthenocarpic expression can
be viewed as the release of fruit growth inhibition without pollination. Following this theme,
parthenocarpy has been found to be under control of GA signaling, which in part includes
removal of growth inhibition imposed by DELLAs through GA induced DELLA degradation
(Dorcey et al., 2009; Fuentes et al. 2012; Marti et al., 2007; Serrani et al., 2008; Serrani et al.,
2010). Unfortunately, limited evidence exists in the literature connecting brassinosteroids to
parthenocarpic expression. Further, none of the typical phenotypic responses observed in
brassinosteroid deficient and insensitive plants such as: dwarfism, dark green leaves, altered leaf
and vascular morphology, delayed senescence and flowering, and male infertility were observed
in the 2AXGy8 population (Altmann, 1999; Clouse et al., 1996; Li and Chory, 1997; Noguchi et
al., 1999; Yamamuro et al., 2000; Montoya et al., 2002). However, preliminary observations
made prior to commencing this experiment agree with the observations of Sun et al. (2006) in
noting that ‘2A” does have reduced plant vigor in comparison to ‘Gy8’. Although not
conclusive, this may be an indication of reduced brassinosteroid perception or biosynthesis.
Indeed, not all mutant alleles of BRII result in severe phenotypes and some may closely

resemble the wildtype phenotype (Morinaka et al., 2006; Noguchi et al., 1999). BRI null
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mutants have been found to accumulate very high levels of brassinosteroids; while partial loss of
function alleles have also been found to have elevated levels (Bancos et al., 2002; Noguchi et al.,
1999). This likely is a result of the inability to perceive brassinosteroids at the receptor and
consequently a brassinosteroid dependent biosynthesis feedback mechanism fails to activate
(Bancos et al., 2002; Mathur et al., 1998). The effect of brassinosteroids on endogenous
gibberellin levels is still unresolved. Exogenous application of brassinosteroids has been found
to induce the expression of genes involved in gibberellin biosynthesis in brassinosteroid deficient
and wildtype plants (Bouquin et al., 2001; Li et al., 2012; Wang et al., 2009). However, this
effect was not observed in brassinosteroid insensitive plants (Bouquin et al., 2001). Conversely,
measurements of bioactive gibberellic acid and its precursors revealed brassinosteroid deficient
and insensitive mutants produced significantly elevated levels of gibberellic acid precursors
(Jager et al., 2005; Nadhzimov et al., 1988). In pea, examination of both brassinosteroid
deficient and insensitive mutants revealed elevated levels of bioactive gibberellic acid, although
brassinosteroid deficient mutants were found not to be statistically different from wildtype plants
despite an observed 2.7 fold increase (Jager et al., 2005). Further, the loss of DELLA protein
function may also promote gibberellin signaling response through loss of inhibition (Harberd et
al., 2009; Sun, 2011; Weston et al., 2008). These observations along with the candidate genes
identified by this study imply that the gibberellin signaling pathway may potentially be a core
component of parthenocarpic fruit set in cucumber.

Construction of a proposed mechanism for parthenocarpic fruit set begins with BRI1.
Reports of decreased seed size in BRI1 mutants and induction of parthenocarpic expression with
the application of exogenous brassinosteroids support BRII as a candidate gene in this

population. Since the parthenocarpic parental line ‘2A’ has a small seed size, it must contain a
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BRI allele with at least partial loss of function or expression. The BRI co-receptor, BAKI,
has been identified as a candidate gene at two of the four QTL. If parthenocarpic fruit set in
cucumber is partially the result of a loss in brassinosteroid perception, ‘2A’ presumably contains
alleles of BAK1 with at least partial loss of function or expression at both QTL. Diminished
efficacy in binding between BRI1 and BAK1 proteins would further decrease brassinosteroid
perception. With diminished perception of brassinosteroids, endogenous brassinosteroid levels
accumulate and could enhance gibberellin biosynthesis.

Due to the lack of typical phenotypic responses observed with BRI1 defective mutants, a
complete loss of function at the BRII locus in this population is unlikely. The BRI1 mutant
observed in this population likely represents a partial loss of function allele of BRI1 that appears
phenotypically similar to wildtype plants as has been observed in Arabidopsis and rice
(Morinaka et al., 2006; Noguchi et al., 1999). A partial loss of function allele of BRI1 would
allow for a low level of brassinosteroid signaling through homodimerization in the absence of
functioning BAK1 proteins (Wang et al., 2008). Alternatively, the point of mutation may not
occur in the structure of BRI itself but may occur at transcription recognition sites altering
BRII expression. Morinaka et al. (2006) demonstrated that transgenic suppression of BRI1
expression could produce very mild non-dwarf brassinosteroid related phenotypes.

The identification of a DELLA protein with homology to GAI and RGA in the fourth
QTL region fits as a possible candidate gene if parthenocarpic fruit set is a partial result of loss
or degradation of DELLA proteins. Loss of inhibition due to DELLA proteins enhances plant
responses to gibberellins (Harberd et al., 2009; Sun, 2011; Weston et al., 2008). In this proposed
model, ‘2A”’ contains a defective DELLA protein that leads to enhanced response to gibberellin

signaling. The decrease in brassinosteroid perception serves to further enhance this response
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through alteration of gibberellin biosynthesis. A mechanism revolving around direct crosstalk
between DELLAs and BZR1 of the brassinosteroid signaling pathway as reported by Bai et al.
(2012), Gallego-Bartolome et al. (2012), and Li et al. (2012), is not a likely mechanism for this
interaction as BZR1 levels would also be expected to be decreased in BRI1 mutants. Further, it
has also been demonstrated that BRI1 mutants do not affect the expression levels of DELLA
proteins (Li et al., 2012). Alternatively, we propose an interaction between the increase in
endogenous brassinosteroid levels and gibberellin biosynthesis as promoting parthenocarpic fruit
set. A similar model has been suggested for studies of auxin and cytokinin induced
parthenocarpic expression where both auxin and cytokinin were found to promote parthenocarpic
fruit set through enhanced biosynthesis of gibberellins (Ding et al., 2013; Fuentes et al., 2012;
Serrani et al., 2008; Serrani et al., 2010; Weiss and Ori, 2007). Due to the complexity of
hormone crosstalk it should be expected that increases in endogenous brassinosteroid levels may
also directly or indirectly affect the signaling pathways of other hormones involved in
parthenocarpic fruit set (i.e. auxin).

Montoya et al. (2005) observed strong expression of brassinosteroid C-6 oxidase, a gene
involved in brassinosteroid biosynthesis, in the carpels of developing flowers and associated with
seed development in developing tomato fruits. During fruit development, the strongest
expression was observed during early seed development. Further, grafting experiments revealed
that brassinosteroids were not transported from the site of synthesis. A lack of endogenous
brassinosteroid transport has also been reported by others (Bishop and Yokota, 2001; Symons
and Reid, 2004). Organ specific expression of brassinosteroid biosynthetic genes has also been
observed with the highest levels of expression observed in pollen, seeds, and fruits (Bajguz and

Tretyn, 2003; Bancos et al., 2002; Montoya et al., 2005; Shimada et al., 2003; Symons et al.,
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2006). These observations suggest that the proposed model could selectively affect flowering
and early fruit development without significantly affecting other plant organs. In addition,
elevated brassinosteroid levels induced by defective brassinosteroid perception at the
BRI1/BAK1 complex may also mimic levels observed during seed development and potentially
promote parthenocarpic expression through the proposed model.

The biggest challenge to this proposed model is the fact that the favorable allele at
parth6.2 is contributed by the non-parthenocarpic parental line ‘Gy8’ (Table 1, Table 4, Table 5).
If the proposed model is true, this means that the wildtype BRI1 allele is favorable in
combination with null or partial loss of function DELLA and BAK1 alleles for parthenocarpic
fruit set. However, this observation does not eliminate the proposed model. The wildtype BRI1
allele in combination with null or partial loss of function BAK1 alleles would still exhibit
weakened brassinosteroid perception due to the inability to form the BRI1/BAKI heterodimer
complex. As noted, BRIl can homodimerize and initiate basal brassinosteroid signaling
responses, allowing for activation of growth promoting brassinosteroid response genes (Wang et
al., 2005; Wang et al., 2008). This may not only serve to alleviate the deleterious effects of
severely diminished brassinosteroid perception, but also contribute to plant fitness enabling
increased fruit set. Nearly all F3 families with the highest potential for parthenocarpic fruit set
were homozygous for the ‘Gy8’ allele at parth6.2. However, only 12 F3 families achieved
higher measurements of parthenocarpic fruit set than the parthenocarpic parental line ‘2A’
(Addendum 8). One possible reason why so few lines were found to exceed ‘2A’ may be related
to the decision to collect phenotypic data on parthenocarpic fruit set at a single time when plants
had reached 35 nodes in growth. As discussed in Chapter 1, it is likely that ‘2A’ and F3 families

and with high potential for parthenocarpic fruit set were never observed at their full potential due
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to the confounding trait of an individual plants capacity for fruit load. In this case, the ideal
genotype for parthenocarpic fruit set maybe one that includes the BRI1 allele of ‘Gy8’, but a
noticeable increase in parthenocarpic expression is not observed over ‘2A’ because the fruit load
capacity of an individual plant has already been exceeded. An ideal genotype including the
wildtype BRII allele may also explain why some F3 families with high parthenocarpic potential
did not have small seeds (Addendum 8§, Addendum 9). What remains to be answered is if the
favorable allele possessed by ‘Gy8’ is favorable in all gene combinations. Previous studies
reporting linkage between the F' locus (gynoecy) and parthenocarpy in cucumber support the
existence of a major QTL in proximity to parth6.2 as identified in this study (de Ponti and
Garretsen, 1976) (Addendum 2). However, if the favorable allele at this locus were contributed
by the non-parthenocarpic ‘Gy8’, it would be in contradiction to those previous studies. Further,
the question of why the highly parthenocarpic line ‘2A’ is capable of high parthenocarpic
potential while lacking the wildtype BRI allele suggests that the ideal genotype at the BRI1
locus may be dependent on the genotypes at the other candidate gene loci, and in particular
BAKI1. The fact that the favorable allele at the parth6.2 QTL is contributed from ‘Gy8’ in this
population may also support BRII as the candidate gene by suggesting the elimination of other
candidate genes. For example, geranylgeranyl pyrophosphate synthase (GGPS), encodes a
precursor to gibberellin biosynthesis and also appears in the BLASTn search for this region,
would not be a good fit when considering the favorable allele for this candidate gene is
contributed by the non-parthenocarpic parent ‘Gy8’ (Kuntz et al. 1992). The assumption if
GGPS were the candidate gene would be that increased gibberellin biosynthesis would induce
parthenocarpic expression. However, since the favorable allele for parthenocarpic fruit set is

contributed by the non-parthenocarpic parent ‘Gy8’, this assumption would not fit.
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Alignment of Re-sequencing Data for BRI1 and BAK1 Genes

With a proposed genetic mechanism for the inheritance of parthenocarpic fruit set in cucumber,
an attempt to identify casual polymorphisms in the cucumber homologs of BRI1 and BAK1 was
made. The gene sequence and structure including transcription initiation sites, exons, and introns
for BRIl and BAK1 were extracted from the Gy14 draft genome assembly with the FGENESH
utility provided by Softberry. Only the copy of BAK1 found at parth6.1 was investigated.
Using the gene sequences from ‘Gyl4’ as a reference, whole genome re-sequencing data for
‘2A” and ‘Gy8’ (Chapter 2) were compared by sequence alignment. Numerous single nucleotide
polymorphisms were identified between the parental lines for each gene. To identify any
potential codon changes that could be attributed to nucleotide polymorphisms, the assembled
gene sequences for each parent were imported into the FGENESH utility to identify predicted
protein sequences (Addendum 10, Addendum 11). Interestingly, the predicted protein sequences
for each gene revealed a single amino acid change between the parental lines (Addendum 10,
Addendum 11).

Sanger sequencing of each gene in the parental lines was performed in order to validate
the polymorphisms identified with the re-sequencing data. None of the nucleotide
polymorphisms were confirmed as true polymorphisms with Sanger sequencing. The reliability
of the re-sequencing data was already questioned by the numerous false polymorphisms
identified during attempts to fill gaps in the genetic linkage map in Chapter 2. To further
validate, dCAPS markers were designed for both of the nucleotide polymorphisms predicted to
result in a codon change from the re-sequencing data. At least four additional dCAPS markers
were designed for nucleotide polymorphisms predicted to lie in the intron regions for each gene.

None of the dCAPS markers were found to be polymorphic between the parental lines. The
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failure to identify polymorphisms in the gene sequences of BRIl and BAK1 by this study does
not mean that polymorphisms do not exist in either candidate gene. With the quality of the re-
sequencing data in question, each gene should ideally be sequenced fully by Sanger sequencing.
In addition, more of the surrounding sequence should be investigated to allow for errors in gene

prediction and to also allow for polymorphisms that effect transcription.

Future Focus

The QTL identified for parthenocarpic fruit set by this study are valuable to cucumber breeders
interested in developing parthenocarpic cultivars and to researchers interested in the inheritance
and mechanism of parthenocarpic fruit set. However, future efforts will be needed in fine
mapping the QTL regions identified here in order to either confirm the proposed candidate genes
or identify new ones. As seen in the available literature, manipulation of most plant hormones or
hormone transport mechanisms can result in parthenocarpic expression. Because of this, the
candidate genes identified here must also be validated in other parthenocarpic cucumber
populations to explore whether a single or multiple sources of parthenocarpy exist. Finally, the
mechanism proposed here warrants further investigation but future studies must still consider

other candidate genes identified from the QTL regions.
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Figure 6. Plot of LOD curves for chromosomes 5(A) and 6(B) obtained by interval mapping from data
collected for the seed size and weight of each F, plant. Seed size was scored as the mean length (cm)
multiplied by the mean width (cm) of five seeds from a single fruit for each plant. Mean length and width
measurements were taken from the longest and widest dimension of five healthy and fully developed seeds.
Seed weight was scored as the weight in grams of 50 healthy and fully developed seeds from a single fruit.
QTL analyses were performed with R/qtl software (Broman et al., 2003).
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Addendum 8. Phenotypic data used in all analyses of the 2AXGy8 F2.3 cucumber population.
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The seed size and seed weight traits were collected from the F» generation. Parthenocarpic fruit
set data was collected from the F3 generation and presented as a mean of those values for each

F; family.
Family Parthenocarpic Seed Size (cm?)’ Seed Weight (g)*
Fruit Set”
1 4.36 8.55 1.1
2 3.45 8.80 1.3
3 5.09 8.55 1.6
4 5.36 8.08 1.4
5 2.55 7.74 1.1
6 4.36 7.98 1.0
7 2.27 6.15 1.1
8 1.91 6.24 0.9
9 3.27 8.40 1.2
10 4.55 8.55 1.4
11 2.00 8.55 1.5
12 2.50 6.40 1.1
13 4.09 8.36 1.3
14 4.00 8.55 1.3
15 4.00 8.55 1.3
16 2.18 7.56 1.2
17 2.45 9.20 1.5
18 2.80 6.72 1.1
19 1.82 5.78 0.8
20 291 5.10 0.9
21 4.45 7.20 1.4
22 1.91 8.74 1.6
23 4.00 8.36 1.1
24 2.09 7.74 1.1
25 491 9.70 1.6
26 3.09 9.80 1.6
27 2.82 8.10 1.3
28 291 8.74 1.5
29 5.18 9.20 1.7
30 2.27 6.40 1.0
31 2.73 5.40 1.0
33 3.00 4.95 0.7
34 5.73 7.14 1.4




Family Parthenocarpic Seed Size (cm?)’ Seed Weight (g)*
Fruit Set”
35 4.00 8.93 1.7
36 3.50 8.36 1.3
37 3.55 9.66 1.4
38 4.20 6.97 1.2
39 3.18 6.97 1.4
40 2.18 5.60 0.9
41 4.45 6.72 1.1
42 3.64 5.70 1.0
44 491 7.98 1.5
45 3.73 7.79 1.2
46 4.27 9.00 1.4
47 2.73 8.74 1.4
49 4.64 5.85 1.1
50 2.55 8.36 1.4
51 3.36 7.31 1.2
52 3.89 6.72 1.3
53 2.18 5.55 0.9
54 2.09 6.00 1.1
55 4.64 5.85 1.0
56 6.60 8.74 1.4
57 4.45 8.55 1.4
58 3.45 6.00 1.0
59 5.09 6.88 1.4
60 3.45 4.48 0.9
61 3.55 5.04 1.1
62 4.90 7.14 1.2
63 3.18 6.63 1.1
64 5.27 8.20 1.3
65 2.91 7.98 1.2
66 2.50 7.48 1.4
67 2.09 8.46 1.5
68 4.82 6.80 1.3
69 2.50 6.40 0.9
72 2.55 6.56 1.2
73 2.36 6.72 1.4
74 5.45 6.88 1.2
75 4.45 7.48 1.5
76 2.55 6.40 1.2

182



Family Parthenocarpic Seed Size (cm?)’ Seed Weight (g)*
Fruit Set”
77 1.80 5.10 0.8
78 3.91 6.97 1.2
79 2.10 6.97 1.4
80 2.73 5.18 1.1
81 3.73 7.92 1.5
82 3.40 7.31 1.5
83 1.73 5.60 1.1
84 4.27 5.85 1.2
85 3.82 8.55 1.5
86 4.10 6.40 1.2
87 3.00 7.56 1.3
88 3.55 6.97 1.1
89 1.91 7.38 1.2
90 4.70 7.23 1.4
91 4.30 6.56 1.2
92 2.45 5.10 0.9
93 5.00 5.85 1.1
94 5.64 7.74 1.6
95 2.18 4.20 0.6
97 4.73 6.40 1.2
98 3.09 6.00 1.0
99 3.73 6.97 1.3
100 3.36 7.79 1.4
101 2.91 8.10 1.7
102 3.64 6.08 1.1
103 3.91 5.60 0.9
104 3.45 8.60 1.5
105 2.70 7.48 1.3
107 4.82 6.40 1.2
108 3.27 7.20 1.4
109 4.09 6.88 1.4
110 3.82 7.82 1.5
111 2.27 8.17 1.4
113 4.73 7.98 1.6
114 2.60 6.08 1.2
115 2.73 7.02 1.4
116 2.18 8.55 1.5
117 2.64 7.31 1.3
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Family Parthenocarpic Seed Size (cm?)’ Seed Weight (g)*
Fruit Set”
118 5.55 8.80 1.5
119 3.00 9.00 1.5
120 3.27 6.24 1.2
121 3.45 9.00 1.7
122 5.00 7.41 1.1
123 3.55 8.10 1.2
124 2.27 7.92 1.4
125 4.55 9.00 1.5
126 4.36 6.24 1.2
127 1.18 7.14 1.2
128 6.27 6.30 1.2
129 3.36 7.79 1.5
131 1.82 5.70 1.0
133 3.73 6.15 1.2
134 4.09 7.14 1.3
135 3.82 9.80 2.0
136 1.20 4.80 0.9
137 4.00 7.20 1.2
138 6.00 6.97 1.3
139 3.45 4.48 0.8
140 5.50 5.10 1.0
141 2.55 7.14 1.3
142 2.82 6.40 1.2
143 3.09 8.10 1.6
144 2.55 8.17 1.7
145 1.73 8.80 1.2
146 3.00 5.10 0.8
147 3.45 6.24 1.1
148 4.00 6.80 1.4
149 3.55 7.48 1.6
150 3.36 8.40 1.6
151 2.82 6.97 1.3
152 4.00 8.55 1.6
153 2.50 7.56 1.4
154 5.27 7.38 1.2
155 1.60 5.44 0.7
156 2.50 6.00 1.1
157 2.64 4.90 0.9
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Family Parthenocarpic Seed Size (cm?)’ Seed Weight (g)*
Fruit Set”
158 2.20 6.46 1.2
161 3.00 9.00 1.3
162 2.00 5.60 NA
164 4.27 7.38 1.3
165 2.09 6.40 1.3
167 4.45 6.88 1.3
168 3.00 9.00 NA
169 4.70 7.20 1.1
170 4.55 7.98 1.1
171 1.70 5.25 1.1
172 4.40 5.44 1.1
173 3.20 5.10 0.9
174 5.91 8.28 1.7
175 3.00 6.40 1.1
176 3.90 6.97 1.3
177 1.80 4.80 0.9
178 5.64 7.20 1.4
179 2.64 7.79 1.3
180 3.73 6.45 1.4
181 2.18 7.31 1.6
182 2.73 8.80 1.6
184 1.00 5.25 0.7
185 4.09 6.24 1.0
186 3.55 5.55 1.1
187 4.55 5.92 1.2
188 2.64 7.74 1.7
189 2.64 6.29 1.2
190 4.90 5.76 1.1
191 1.50 6.40 1.0
192 2.36 6.72 1.1
193 3.36 7.82 1.5
196 4.00 7.31 1.2
198 4.73 8.28 1.5
199 5.55 7.92 1.4
200 5.27 7.02 1.5
201 4.82 7.74 1.4
202 5.73 8.10 1.7
203 2.50 6.24 1.2
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Family Parthenocarpic Seed Size (cm?)’ Seed Weight (g)*
Fruit Set”
205 3.00 6.12 0.8
206 3.00 6.46 1.1
207 4.18 8.93 1.7
208 2.09 6.08 0.9
209 2.55 7.02 1.5
210 2.55 6.24 1.2
211 3.09 6.97 0.9
212 3.30 5.44 1.0
213 3.55 5.25 0.9
214 3.60 6.97 1.3
215 3.82 6.15 1.1
216 5.73 7.65 1.5
217 4.89 6.97 1.2
218 3.73 7.38 1.3
219 1.82 7.14 1.5
220 3.73 7.65 1.5
221 3.18 7.14 1.4
222 4.00 6.29 1.1
223 3.91 6.72 1.1
224 2.64 7.98 1.5
2A 5.52 5.18 0.9
Gy8 3.08 8.05 1.4
2AxGy8 Fl 2.93 NA NA
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“Parthenocarpic fruit set was measured as the number of parthenocarpic fruits initiated on each

plant. Values presented here are the means of 11 F3 individuals.

YSeed size was scored as the mean length (cm) multiplied by the mean width (cm) of five seeds

from a single fruit for each plant. Mean length and width measurements were taken from the

longest and widest dimension of five healthy and fully developed seeds.

*Seed weight was scored as the weight in grams of 50 healthy and fully developed seeds from a

single fruit.
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Addendum 9. Correlation coefficients calculated from comparisons of parthenocarpic fruit set,
seed size, and seed weight traits in a 2AxGy8 F2.3 cucumber population.

Parthenocarpic
Fruit Set Seed Size Seed Weight
Parthenocarpic
Fruit Set 0.22%* (0.27%**
Seed Size 0.23%* 0.79%#**
Seed Weight 0.27%%* (0.79%**

*#*Calculated values were found to be significant at alpha = 0.01.

** Calculated values were found to be significant at alpha = 0.05.
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Addendum 10. Alignment of the predicted protein sequences of the candidate gene BRI,
obtained from the parental lines ‘2A” and ‘Gy8’. Protein sequences were predicted with
assembled sequence data obtained from whole genome re-sequencing of the parental lines. The
predicted BRI protein from ‘Gy14’ was constructed from sequence data extracted from the
Gyl4 Draft Genome Assembly Version 1.0 and is included as a reference (Yang et al., 2012).
Protein prediction was performed with the FGENESH utility provided by Softberry (Solovyev et
al., 2006). The gap in sequence data observed for ‘Gy8’ is due to a gap between contigs of the
‘Gy8’ assembled re-sequencing data. An asterisk marks a potential polymorphism between ‘2A°
and the other sequences.

2A MIPFFPSSSNSFLTFFFFFVSLTFLSFSVSSVTPSSSHGDTQKLVSFKASLPNPTLLOQNW
GY14 MIPFFPSSSNSFLTFFFFFVSLTFLSFSVSSVTPSSSHGDTQKLVSFKASLPNPTLLQNW
GY8 MIPFFPSSSNSFLTFFFFFVSLTFLSFSVSSVTPSSSHGDTQKLVSFKASLPNPTLLQNW

2A LSNADPCSFSGITCKETRVSAIDLSFLSLSSNFSHVFPLLAALDHLESLSLKSTNLTGSI
GY 14 LSNADPCSFSGITCKETRVSAIDLSFLSLSSNFSHVFPLLAALDHLESLSLKSTNLTGSI
GYS LSNADPCSFSGITCKETRVSAIDLSFLSLSSNFSHVFPLLAALDHLESLSLKSTNLTGSI

2A SLPSGFKCSPLLASVDLSLNGLFGSVSDVSNLGFCSNVKSLNLSFNAFDFPLKDSAPGLK
GY14 SLPSGFKCSPLLASVDLSLNGLFGSVSDVSNLGFCSNVKSLNLSFNAFDFPLKDSAPGLK
GY8 SLPSGFKCSPLLASVDLSLNGLFGSVSDVSNLGFCSNVKSLNLSFNAFDFPLKDSAPGLK

2A LDLQVLDLSSNRIVGSKLVPWIFSGGCGSLQHLALKGNKISGEINLSSCNKLEHLDISGN
GY14 LDLQVLDLSSNRIVGSKLVPWIFSGGCGSLQHLALKGNKISGEINLSSCNKLEHLDISGN
GY8 LDLQVLDLSSNRIVGSKLVPWIFSGGCGSLQHLALKGNKISGEINLSSCNKLEHLDISGN

2A NFSVGIPSLGDCSVLEHFDISGNKFTGDVGHALSSCQQLTFLNLSSNQFGGPIPSFASSN
GY14 NFSVGIPSLGDCSVLEHFDISGNKFTGDVGHALSSCQQLTFLNLSSNQFGGPIPSFASSN
GYS8 NFSVGIPSLGDCSVLEHFDISGNKFTGDVGHALSSCQQLTFLNLSSNQFGGPIPSFASSN

2A LWFLSLANNDFQGEIPVSIADLCSSLVELDLSSNSLIGAVPTALGSCFSLQTLDISKNNL
GY14 LWFLSLANNDFQGEIPVSIADLCSSLVELDLSSNSLIGAVPTALGSCFSLQTLDISKNNL
GY8 LWFLSLANNDFQGEIPVSIADLCSSLVELDLSSNSLIGAVPTALGSCFSLQTLDISKNNL

2A TGELPIAVFAKMSSLKKLSVSDNKFFGVLSDSLSQLAILNSLDLSSNNFSGSIPAGLCED
GY14 TGELPIAVFAKMSSLKKLSVSDNKFFGVLSDSLSQLAILNSLDLSSNNFSGSIPAGLCED
GY8 TGELPIAVFAKMSSLKKLSVSDNKFFGVLSDSLSQLAILNSLDLSSNNFSGSIPAGLCED

2A PSNNLKELFLQNNWLTGRIPASISNCTQLVSLDLSFNFLSGTIPSSLGSLSKLKNLIMWL
GY14 PSNNLKELFLQNNWLTGRIPASISNCTQLVSLDLSFNFLSGTIPSSLGSLSKLKNLIMWL
GY8 PSNNLKELFLOQNNWLTGRIPASISNCTQLVSLDLSFNFLSGTIPSSLGSLSKLKNLIMWL

2A NQLEGEIPSDFSNFQGLENLILDFNELTGTIPSGLSNCTNLNWISLSNNRLKGEIPAWIG
GY14 NQLEGEIPSDFSNFQGLENLILDFNELTGTIPSGLSNCTNLNWISLSNNRLKGEIPAWIG
GY8 NQLEGEIPSDFSNFQGLENLILDFNELTGTIPSGLSNCTNLNWISLSNNRLKGEIPAWIG
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Addendum 10 continued.

2A
GY14
GY8

2A
GY14
GYS8

2A
GY14
GY8

2A
GY14
GY8

2A
GY14
GY8

2A
GY14
GY8

2A
GY14
GY8

2A
GY14
GY8

2A
GY14
GY8

2A
GY14
GY8

2A
GY14
GY8

SLPNLAILKLSNNSFYGRIPKELGDCRSLIWLDLNTNLLNGTIPPELFRQSGNIAVNFIT
SLPNLAILKLSNNSFYGRIPKELGDCRSLIWLDLNTNLLNGTIPPELFRQSGNIAVNFIT
SLPNLAILKLSNNSFYGRIPKELGDCRSLIWLDLNTNLLNGTIPPELFRQSGNIAVNFIT

GKSYAYIKNDGSKQCHGAGNLLEFAGIRQEQVNRISSKSPCNFTRVYKGMIQPTFNHNGS
GKSYAYIKNDGSKQCHGAGNLLEFAGIRQEQVNRISSKSPCNFTRVYKGMIQPTFNHNGS
GKSYAYIKNDGSKQCHGAGNLLEFAGIRQEQVNRISSKSPCNFTRVYKGMIQPTFNHNGS

MIFLDLSHNMLTGSIPKDIGSTNYLYILDLGHNSLSGPIPQELGDLTKLNILDLSGNELE
MIFLDLSHNMLTGSIPKDIGSTNYLYILDLGHNSLSGPIPQELGDLTKLNILDLSGNELE
MIFLDLSHNMLTGSIPKDIGSTNYLYILDLGHNSLSGPIPQELGDLTKLNILDLSGNELE

GSIPLSLTGLSSLMEIDLSNNHLNGSIPESAQFETFPASGFANNSGLCGYPLPPCVVDSA
GSIPLSLTGLSSLMEIDLSNNHLNGSIPESAQFETFPASGFANNSGLCGYPLPPCVVDSA
GSIPLSLTGLSSLMEIDLSNNHLNGSIPESAQFETFPASGFANNSGLCGYPLPPCVVDSA

GNANSQHQRSHRKQASLAGSVAMGLLFSLFCIFGLITVVIEMRKRRKKKDSALGSYVESH

GNANSQHQRSHRKQASLAGSVAMGLLFSLFCIFGLIIVVIEMRKRRKKKDSALDSYVESH

GNANSQHQRSHRKQASLAGSVAMGLLFSLFCIFGLIIVVIEMRKRRKKKDSALDSYVESH
*

SQSGTTTAVNWKLTGAREALSINLATFEKPLRKLTFADLLEATNGFHNDSLIGSGGFGDV
SQSGTTTAVNWKLTGAREALSINLATFEKPLRKLTFADLLEATNGFHNDSLIGSGGFGDV
SQSGTTTAVNWKLT ----GGFGDV

YKAQLKDGSTVAIKKLIHVSGQGDREFTAEMETIGKIKHRNLVPLLGYCKVGEERLLVYE
YKAQLKDGSTVAIKKLIHVSGQGDREFTAEMETIGKIKHRNLVPLLGYCKVGEERLLVYE
YKAQLKDGSTVAIKKLIHVSGQGDREFTAEMETIGKIKHRNLVPLLGYCKVGEERLLVYE

YMKYGSLEDVLHDQKKGGIKLNWSARRKIAIGAARGLAFLHHNCIPHITHRDMKSSNVLL
YMKYGSLEDVLHDQKKGGIKLNWSARRKIAIGAARGLAFLHHNCIPHITHRDMKSSNVLL
YMKYGSLEDVLHDQKKGGIKLNWSARRKIAIGAARGLAFLHHNCIPHITHRDMKSSNVLL

DENLEARVSDFGMARLMSAMDTHLSVSTLAGTPGYVPPEYYQSFRCSTKGDVYSYGVVML
DENLEARVSDFGMARLMSAMDTHLSVSTLAGTPGYVPPEYYQSFRCSTKGDVYSYGVVML
DENLEARVSDFGMARLMSAMDTHLSVSTLAGTPGYVPPEYYQSFRCSTKGDVYSYGVVML

ELLTGKRPTDSADFGDNNLVGWVKQHVKLDPIDVFDPELIKEDPSLKIELLEHLKVAVAC
ELLTGKRPTDSADFGDNNLVGWVKQHVKLDPIDVFDPELIKEDPSLKIELLEHLKVAVAC
ELLTGKRPTDSADFGDNNLVGWVKQHVKLDPIDVFDPELIKEDPSLKIELLEHLKVAVAC

LDDRSWRRPTMIQVMTMFKEIQAGSGMDSHSTIGTDNGGFSVDMVDMSLKEVPEPEGK
LDDRSWRRPTMIQVMTMFKEIQAGSGMDSHSTIGTDNGGFSVDMVDMSLKEVPEPEGK
LDDRSWRRPTMIQVMTMFKEIQAGSGMDSHSTIGTDNGGFSVDMVDMSLKEVPEPEGK
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Addendum 11. Alignment of the predicted protein sequences of the candidate gene BAKI,
obtained from the parental lines ‘2A’ and ‘Gy8’. Protein sequences were predicted with
assembled sequence data obtained from whole genome re-sequencing of the parental lines. The
predicted BAK1 protein from ‘Gyl4’ was constructed from sequence data extracted from the
Gyl4 Draft Genome Assembly Version 1.0 and is included as a reference (Yang et al., 2012).
Protein prediction was performed with the FGENESH utility provided by Softberry (Solovyev et
al., 2006). The gap in sequence data observed for ‘2A” and ‘Gy8’ is due to gaps between contigs
of the assembled re-sequencing data. The mismatch of sequence flanking the gap between
contigs of ‘2A’ is a result of an overhanging base pair attached to the edge of the first contig
which resulted in a change to the predicted protein around this gap. An asterisk marks a
potential polymorphism between ‘2A’ and the other sequences.

2A MRRKCLGWSLSRHFPRCSAKAFLTAFGQLVLPFGSDVDDHLMEMEQYKVLALGFVSLILL
GY14 MRRKCLGWSLSRHFPRCSAKAFLTAFGQLVLPFGSDVDDHLMEMEQYKVLALGFVSLILL
GY8 MRRKCLGWSLSRHFPRCSAKAFLTAFGQLVLPFGSDVDDHLMEMEQYKVLALGFVSLILL

2A VRPLWLVSANMEGDALHSLRTSLQDPNNVLQSWDPTLVNPCTWFHVTCNNDNSVIRVDLG
GY14 VRPLWLVSANMEGDALHSLRTSLQDPNNVLQSWDPTLVNPCTWFHVTCNNDNSVIRVDLG
GYS8 VRPLWLVSANMEGDALHSLRTSLQDPNNVLQSWDPTLVNPCTWFHVTCNNDNSVIRVDLG

2A NAALSGTLVPQLGLLKNLQYLELYSNNISGVIPSDLGNLTSLVSLDLYLNRFSGPIPDTL
GY14 NAALSGTLVPQLGLLKNLQYLELYSNNISGVIPSDLGNLTSLVSLDLYLNRFSGPIPDTL
GY8 NAALSGTLVPQLGLLKNLQYLELYSNNISGVIPSDLGNLTSLVSLDLYLNRFSGPIPDTL

2A GKLSKLRFLFVYFLHCFFLECFNKDSRLNNNSLAGPIPMSLTNISSLQVLDLSNNHLSGV
GY14 GKLSKLRFLFVYFLHCFFLECFNKDSRLNNNSLAGPIPMSLTNISSLQVLDLSNNHLSGV
GYS8 GKLSKLRFLFVYFLHCFFLECFNKDSRLNNNSLAGPIPMSLTNISSLQVLDLSNNHLSGV

2A VPDNGSFSLFTPISFANNLDLCGPVTGRPCPGSPPFSPPPPFVPPPPISSPGMKMSSLVE
GY14 VPDNGSFSLFTPISFANNLDLCGPVTGRPCPGSPPFSPPPPFVPPPPISSPGMKMSSLVE
GYS8 VPDNGSFSLFTPISFANNLDLCGPVTGRPCPGSPPFSPPPPFVPPPPISSPGMKMSSLVE

2A KIQTQPSNVRMVFLSSPGKKMVRYVYPSSPCKMVDGFFFLSPELTPQSSFLTRALTMLTD
GY14 KIQTQPSNVRMVFLSSPGKKMVRYVYPSSPCKMVDGFFFLSPELTPQSSFLTRALTMLTD
GYS8 KIQTQPSNVRMVFLSSPGKKMVRYVYPSSPCKMVDGFFFLSPELTPQSSFLTRALTMLTD

2A GSVGWWHVIDNRVEGDFSSQNGGGNSATGAIAGGVAAAAALLFAAPAIAFAWWRRRKPQE

GY14 GSVGWWHVIDNRVEGDFSSQNGGGNSATGAIAGGVAAGAALLFAAPAIAFAWWRRRKPQE

GY8 GSVGWWHVIDNRVEGDFSSQNGGGNSATGAIAGGVAAGAALLFAAPAIAFAWWRRRKPQE
*

2A VFFDVPAEEDPEVHLGQLKRFSLRELQVATDSFRRTYARWRAAVSN
GY14 VFFDVPAEEDPEVHLGQLKRFSLRELQVATDSFSNKNILGRGGFGKVYKGRLADGSLVAV
GYS VFFDVPAEEDPEVHLGQLKRFSLRELQVATDSFT A%
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Addendum 11 continued.

2A RSRDDQHGCAPNLLRLRGFCMTPTERLLVYPYMANGSVASCLR
GY14 KRLKEERTPGGELQFQTEVEMISMAVHRNLLRLRGFCMTPTERLLVYPYMANGSVASCLR
GY8 KRLKEERTPGGELQFQTEVEMISMAVHRNLLRLRGFCMTPTERLLVYPYMANGSVASCLR

2A ERPPSQPPLDWRTRKRIALGSARGLSYLHDHCDPKIITHRDVKAANILLDEEFEAVVGDFG
GY14 ERPPSQPPLDWRTRKRIALGSARGLSYLHDHCDPKITHRDVKAANILLDEEFEAVVGDFG
GY8 GDFG
2A LAKLMDYKDTHVTTAVRGTIGHIAPEYLSTGKSSEKTDVFGYGIMLLELITGQRAFDLAR

GY14 LAKLMDYKDTHVTTAVRGTIGHIAPEYLSTGKSSEKTDVFGYGIMLLELITGQRAFDLAR
GY8 LAKLMDYKDTHVTTAVRGTIGHIAPEYLSTGKSSEKTDVFGYGIMLLELITGQRAFDLAR

2A LANDDDVMLLDWVKGLLKEKKLEMLVDPDLQNNYIESEVEQLIQVALLCTQGSPMDRPKM
GY14 LANDDDVMLLDWVKGLLKEKKLEMLVDPDLQNNYIESEVEQLIQVALLCTQGSPMDRPKM
GYS8 LANDDDVMLLDWVKGLLKEKKLEMLVDPDLQNNYIESEVEQLIQVALLCTQGSPMDRPKM

2A SEVVRMLEGDGLAERWDEWQKVEILRQEIDLSPHPNSDWIVDSTENLHAVELSGPR
GY14 SEVVRMLEGDGLAERWDEWQKVEILRQEIDLSPHPNSDWIVDSTENLHAVELSGPR
GY8 SEVVRMLEGDGLAERWDEWQKVEILRQEIDLSPHPNSDWIVDSTENLHAVELSGPR





