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Abstract 

 

This dissertation explores the influence of land use changes on soil dynamics and 

functionality in tropical regions. Specifically, it addresses three main research questions. Firstly, 

it examines the global impact of land use changes on microbial biomass, abundance, and traits in 

tropical regions while identifying knowledge gaps and areas for further research in tropical 

microbial ecology. Secondly, it investigates how tropical secondary forest succession affects 

microbial function in diverse soil environments and explores the connection between changes in 

microbial function and soil carbon variability across different successional stages. Lastly, it aims 

to define a benchmark tool for soil carbon assessment in a variety of tropical climates, land use 

practices, and soil types, with potential applications for farmers, land managers, soil researchers, 

policymakers, and individuals interested in soil health assessment. 

The research findings underscore the significant effects of land use conversions on soil 

microbial communities and their associated ecosystem functions. To better understand the 

global-scale response of tropical regions to environmental changes, a comprehensive 

understanding of the diverse climates, vegetation, management practices, and soil conditions in 

these regions is essential. Additionally, this study examines the dynamics of microbial 

communities during forest succession and highlights the urgent need for further research to 

comprehend microbial functionalities in disturbed tropical forest soils. Furthermore, it 

emphasizes the importance of establishing benchmarks for assessing soil carbon in tropical soils, 

taking into account the impacts of land use change, and developing guidelines or protocols 

accordingly. 

This dissertation identifies knowledge gaps and suggests future research directions, 

including the exploration of a broader range of soil types, investigations into dry systems, 

examination of specific soil characteristics, and the incorporation of advanced molecular 

techniques. The ultimate goal of this work is to contribute to the understanding of soil dynamics, 

provide insights for sustainable soil management, and offer strategies for climate change 

mitigation in tropical regions. 
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Introduction 

Land use change in tropical regions has become a critical issue due to the increasing 

demand for agricultural and wood products, grazing for cattle, and residential and urban 

development (Aide et al. 2013), resulting in significant impacts on soil carbon (Powers and 

Marín-Spiotta 2017). The carbon inputs to soils from plant detritus in the tropics are roughly 

balanced by losses to the atmosphere through the respiration of soil microorganisms that feed on 

that material (Mitchard 2018). However, even a 1% imbalance in soil carbon effluxes over 

influxes would be equivalent to approximately 10% of global anthropogenic carbon emissions 

(Nottingham et al. 2020), emphasizing the substantial effect that tropical land cover changes can 

have on global emissions. Current estimates suggest that without efforts to alter the current 

trajectory of deforestation and land use management practices, the tropics will become a net 

source of carbon to the atmosphere in the coming decades (Mitchard 2018). However, these 

estimates are based on limited and highly variable data, and there is a significant knowledge gap 

regarding the response of soil carbon to land use change in tropical soils. 

Studies evaluating the respond of SOC to the effects of deforestation for agricultural, and 

livestock uses results in global losses of SOC, with the exception of certain pastures, but it has 

revealed high variability in the response of soil carbon to land use change (Guo and Gifford 

2002, Don et al. 2011, Powers et al. 2011). This variability is further complicated by large 

geographic biases in available data, indicating a lack of comprehensive sampling across the 

diverse climates and soils found in the tropical region (Powers et al. 2011), suggesting the need 

to address factors influencing soil organic carbon in the tropics. Microbial communities in soil 

play vital roles in ecosystem processes, including litter decomposition and organic matter 

transformations (Friesen et al. 2011, Wieder et al. 2013). Monitoring changes in microbial 
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communities and their functions can provide valuable insights into the processes influencing 

carbon dynamics. Also, climate and physicochemical soil properties have been widely 

recognized as significant drivers of dynamics at both global and regional scales (Luo et al. 2017, 

Wiesmeier et al. 2019). Therefore, to improve our understanding of soil carbon dynamics in the 

tropics, it is crucial to evaluate factors that affect soil carbon across a wide range of climates, 

soils, and environmental conditions. 

The field of soil health offers indices and benchmarks that can be instrumental in 

understanding soil carbon changes. Soil health refers to the continued capacity of soil to function 

as a vital living ecosystem, supporting plants, animals, and humans (Lehmann and Kleber 2015). 

By establishing benchmarks, we can assess the effects of various factors and inform future 

assessment and management strategies. This knowledge will provide farmers, land managers, 

and policymakers with a baseline for implementing measures to maintain or enhance soil health. 

Moreover, it will enable climate mitigation strategists to develop effective plans for the future. 

Therefore, my Ph.D. research aimed to investigate how land-use change affects microbial 

communities and soil carbon across different climates, land uses, and soil properties. 

In the first chapter, I investigated how land-use change influences microbial communities 

and soil carbon across a wide range of climate conditions, land uses, and soil properties. I 

conducted a global meta-analysis using published data from comparative studies in tropical 

regions. By analyzing 83 paired studies that reported data on microbial biomass, abundance, 

composition, and enzyme activity under representative land-use change transitions in the tropics, 

I calculated response ratios for different land conversion types, such as from reference forests to 

agriculture, pastures, plantations, and secondary forests. I found that microbial biomass 

decreased with forest conversion to agriculture and plantations. Also, microbial abundance and 
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enzyme activity showed variable results depending on the specific type of forest conversion, 

while microbial diversity and richness did not exhibit any difference. Notably, the published 

studies reviewed in the meta-analysis were not representative of the full range of biophysical 

conditions observed in the tropics, with an overrepresentation of sites in moist regions in the 

American tropics.  

In the second chapter, I conducted a case study utilizing a chronosequence of sites 

representing a catena to investigate further how microbial function changes, in this case, during 

forest succession as a result of pasture abandonment on different soil orders. For this, I collected 

soil samples across a series of chronosequences in Puerto Rico on different soil orders, measured 

soil organic carbon, and analyzed DNA targeting ITS2 and 16S genes to quantify fungal and 

bacterial communities. I found that forest succession significantly affected bacterial diversity and 

fungal community composition across different successional stages. Also, I found variations in 

the relative abundance of certain bacterial phyla following pasture abandonment. While fungal 

phyla exhibited minimal changes across succession, distinct trends emerged when considering 

functional characteristics. Interestingly, I also found that the variation of bacterial phyla, as well 

as the variation of fungal functional groups across succession, were modulated by soil 

characteristics. Furthermore, I found that microbial functional characteristics partially explained 

variations in soil carbon concerning forest age and soil order, underscoring the complex 

relationship within these disturbed tropical forest soils.  

In the third chapter, I conducted a regional scale analysis to understand how land use 

change affects soil carbon across a diversity of tropical soil environments. For this, I developed 

an assessment of soil carbon benchmark models using available data for Puerto Rico across 

various climates, land uses, and soil types, with a specific focus on agroecosystems. By 
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collecting data from the United States Natural Resources Conservation Services (USDA NRCS) 

Kellogg database and relevant publications, I obtained a dataset of 586 pedons representing nine 

out of ten soil orders in Puerto Rico, encompassing five land uses. I evaluated factors influencing 

soil organic carbon within the 0-30 cm depth and examined two benchmark styles for soil health. 

My findings revealed significant variations in SOC across different land uses, with different 

factors controlling SOC levels in pastures, agricultural lands, and forests. When evaluating a Soil 

Health Gap benchmark model on my sites, the gaps in soil carbon between forests and 

agricultural or pasture lands varied depending on soil order and climate conditions. This suggests 

that certain managed lands may contain more carbon than forest systems, with soil environment 

and climate modulating this relationship. I also evaluated the Scores Benchmark model using the 

distribution of soil carbon across multiple environmental conditions and concluded that this 

benchmark would be more suitable for tropical soils than the Soil Health Gap Benchmark. 

However, these Benchmark styles could have advantages and disadvantages depending on the 

area's scale and Soil health goal.  

Research Questions:  

Chapter 1: How do land use changes affect microbial biomass, abundance, and traits in 

tropical regions globally? What are the knowledge gaps in the literature and areas for further 

research in tropical microbial ecology? 

Chapter 2: How does tropical secondary forest succession influence microbial function in 

different soil environments? How do changes in microbial function influence soil carbon 

variability across successional stages?  
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Chapter 3: Can we define a benchmark tool for soil carbon in a diversity of tropical 

climates, land use, and soils can be used as a tool for farmers, land managers, soil researchers, 

policymakers, and anyone interested in soil health assessment? 
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Chapter 1: A meta-analysis of tropical land-use change effects on the soil microbiome: 

Emerging patterns and knowledge gaps 

Introduction 

Tropical regions are currently experiencing some of the fastest rates of land-use change 

globally (Aide et al., 2012). From 2010-2015, tropical forests were lost at a rate of 5.5 M ha/yr, 

greater than the loss of boreal forests (0.08M ha/yr), or in contrast with an increase in temperate 

and subtropical (Keenan et al., 2018, Veldkamp et al., 2020). Habitat loss is the primary driver of 

plant and animal diversity declines worldwide (Millennium Ecosystem Assessment, 2005), yet 

the effects of changes in land use and land cover (hereafter, land-use change) on the abundance 

and diversity of soil microorganisms and their function has not been well documented. Soil 

microorganisms are key players in multiple ecosystem processes, such as plant fitness (Friesen et 

al., 2011), litter decomposition, nutrient availability, and soil organic matter (SOM) 

transformations (Turner et al., 2013; Wieder et al., 2013). Losses of soil biodiversity and food 

web complexity can affect carbon (C) and nutrient cycling (de Graaff et al., 2015), yet whether 

land-use change results in microbial species richness declines or shifts in community 

assemblages and activity is still unknown. 

Land-use change, such as deforestation or forest clearing for agriculture and livestock 

grazing, can influence the soil microbiome through shifts in plant communities and management 

practices, which can alter the amount, timing, and spatial distribution of substrates for microbial 

growth (Cai et al., 2018; Krashevska et al., 2018). For example, perennial and annual cropping 

systems differ in rhizosphere inputs, which influence fungal communities and total microbial 

biomass (Liang et al., 2012; Zhang et al., 2019; Zhang et al., 2018). Grazing and fertilization can 

affect soil resources and alter the abundance of microbial groups involved in nitrogen (N) 
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cycling (Meyer et al., 2013). Management practices, such as the use of mechanization for 

clearing and tillage, can transform soil physical and chemical properties and the spatial 

relationship among organisms, which can alter heterotrophic food webs and biogeochemical 

cycling (Mathew et al., 2012).  

Modifications in pathways and rates of biogeochemical processes coupled to changes in 

overall microbial biomass or the abundance of key microbial groups (Bai et al., 2019; Docherty 

& Gutknecht, 2012; Potthast et al., 2012) may result from the preferential use of different 

substrates by distinct microorganisms (Paterson et al., 2008; Strickland et al., 2009; Zhong et al., 

2020). For example, the forest soil microbiome may be better adapted to degrading lignin-rich 

litter than the microbiome of grassland soils (Cleveland et al., 2003). Bacteria are expected to 

assimilate more decomposed substrates, whereas fungi may preferentially degrade more recent 

plant C inputs (Frey, 2019; Poll et al., 2006).  

Enzyme activities can be used as a proxy for microbial function and are sensitive to 

changes in plant cover and management (Sinsabaugh et al., 2002; Zhao et al., 2018). Enzymes 

involved in plant litter decomposition catalyse the breakdown of compounds, such as cellulose, 

hemicellulose, and lignin, and control the release of plant- and microbe-available nutrients from 

organic forms (Horwath & Paul, 2015). These activities can be sensitive to changes in plant 

cover and management (Sinsabaugh et al. 2002). For example, some studies have found that 

agricultural practices can reduce levels of enzyme activity compared to forest soils due to soil 

disturbance by tillage (Acosta-Martínez et al., 2007). Other studies have found that rates of 

enzyme activity can increase with pasture establishment after deforestation (Tischer et al., 2015). 

However it is important to consider how plant diversity effects on decomposition and nutrient 

cycling create biogeochemical heterogeneity, as well as microbial functional redundancy, to 
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understand how the soil microbiome is affected by forest clearing and conversion to agriculture 

or livestock grazing, especially in species-rich tropical regions (Chaer et al., 2009; Smith et al., 

2015; Townsend et al., 2008). 

Here we conduct a meta-analysis on the response of soil microbial biomass, composition, 

and functional activity under different land-cover types representative of major land-use changes 

transitions in tropical regions. We focused on soil bacteria and fungi. We identify current 

knowledge gaps in the literature, including geographic biases in available data. Our 

understanding of the diversity of tropical soil microorganisms lags behind temperate regions. 

Identifying how tropical land-use change alters interactions among soil microbial community 

composition and function can provide insight into feedbacks between tropical ecosystems and 

global change factors, such as climate change (Graham et al., 2016; Powell et al., 2015).  We 

hypothesized that forest conversion to agriculture, pasture, and tree plantation would decrease 

soil microbial biomass, abundance, and function, with consequences for biogeochemical cycling. 

We expected that secondary forests regrowing from human land use would recover microbial 

communities and function. Because microbial communities are dependent on soil resource 

availability, we expected that changes in microbial communities would mirror expected changes 

in soil pH, carbon, nitrogen, and phosphorus with land-use change. 

Methods 

We conducted a literature review using Web of Knowledge and Google Scholar databases 

to find studies within the tropical latitudes (between 23°26´16˝N and 23°26´16˝S) using the 

terms “tropical”, “land use”, “land cover”, “soil microbes”, “microbial biomass”, “fungi”, and 

“mycorrhizal fungi” (published up until February 2019, the last date we updated our search).  

This search resulted in 110 primary sources. Eighty-three of those reported data for paired 
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comparisons between two or more land-use types. We used PlotDigitizers software to estimate 

values when data were only reported in figures (Huwaldt & Steinhorst, 2015).  

 We selected studies that were conducted using a paired plot approach to compare 

reference forests to other land use or vegetation cover types: (a) forests to agriculture (b) forests 

to pastures, (c) forests to plantations, and (d) forests to secondary forests (Table S1). The studies 

needed to have a reference forest to be able to compare changes. Studies that only included 

regrowing forest and secondary forest without reference forests were not selected for this meta-

analysis. We averaged data reported from plot replicates within a site (location). However, most 

studies reported mean values for different land covers.  

Most of the studies grouped the data by soil depth, date collected or by season. Due to the 

limited number of studies reporting each possible combination of categories, we created 

consolidated variables. We limited our analysis to data for the topsoil layer (0-20 cm depth) to 

include the largest number of studies. If reported depths fit into the category of 20 cm depth (i.e., 

0-5, 5-10, 0-10,10-20 0-15 cm), we averaged the data for the different layers up to 20 cm. If a 

study reported two or more sampling collection dates or seasons (e.g. wet and dry), we calculated 

average values. We acknowledge that sampling collection date and season are important factors 

that could influence microbial communities, yet few studies reported seasonal measurements of 

enough microbial variables of interest for our meta-analysis.  

Land use and vegetation covers were grouped under five categories: “forest”, 

“agriculture”, “pasture”, “plantation forest” and “secondary forest.” We primarily used site 

identification provided by the authors. Forests were those presented as reference points by study 

authors and included unmanaged forests largely undisturbed by human activities. Agriculture 

included crops and systems with some level of resource inputs. Pastures included managed and 
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unmanaged grasslands and forage systems that were actively being used to support cattle or other 

livestock or were recently abandoned but still under grass cover. Plantations were defined as 

managed systems of woody trees or palms. Secondary forests were identified as successional 

forests establishing after clearing or after cessation of other land-use activities and could include 

sites recovering from logging, pasture, agriculture, and other non-forest uses.  

We included a large number of microbial and environmental variables in our meta-

analysis (Table 1). Studies reported many different microbial measurements depending on their 

research objective. For microbial variables, we grouped the data based on the type of 

measurements. For example, we analyzed studies using PLFA and DNA sequencing to measure 

microbial abundance separately, recognizing that different approaches have different assumptions 

that can lead to different responses.  

Data analysis  

We conducted all analyses using R 3.3.2. The effect of land-use change transitions on 

microbial variables was calculated as the response ratio (RR) using the equation (Gurevitch, 

1993; Q. Zhang et al., 2017):  

RR = ln(Land-use Change)-ln(Forest) 

where “Land-use Change” and “Forest” are the mean of the replacement land cover and the 

reference forest system, respectively. Many studies did not report the standard deviation and the 

number of samples that were used in the analyses. Therefore, in order to include as many studies 

as possible, we conducted an unweighted meta-analysis as used in Guo & Gifford (2002) and 

Johnson & Curtis (2001). To determine if there was a significant difference between the 

reference forest sites and other land uses, we calculated the 95% confidence interval (CI). If the 
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CI did not overlap with zero, then the response ratio was considered significant. In addition to 

separate analyses by land-use change transition, we use the general category “forest conversion” 

to report an average response of soil variables to replacement of reference forest cover by 

agriculture, pasture, and plantation forests combined. 

We performed a one-way ANOVA Type III for an unbalanced design to analyze 

differences between response ratios across rainfall classes for each land-use change comparison 

only for microbial biomass carbon. We did not perform the aforementioned analysis with other 

variables because the number of samples were too low to fit all the land-use change and rainfall 

classes.  To test if microbial biomass mirrored the magnitude of changes in soil properties, we 

used simple linear regression models between the response ratio of microbial biomass (carbon 

(C) and nitrogen (N)) and the response ratio of soil properties, specifically pH, organic C, total N 

and total phosphorus (P) across all land-use changes.  

To identify potential geographic biases in available data on tropical soil microbiome 

response to land-use change (sensu Powers et al., 2011), we assessed how well the literature 

represented variation in mean annual precipitation (MAP), mean annual temperature (MAT), 

ecoregions, and soil type observed across the tropics. We calculated the percentage of land in the 

tropics represented by each climatic category, ecoregion, or soil type using ArcGIS (ArcGIS 10; 

ESRI 2010). We performed a Chi squared analysis to assess how well the studies represented 

MAP and MAT (Powers et al., 2011). When missing from the original publication, we used the 

WorldClim version 2 Global Climate Data set (Hijmans et al., 2005) for compiling climate data, 

and the Food and Agriculture Organization (FAO) Harmonized World Soil Database v 1.2 

(Fischer et al., 2008) to identify soil types. We used The Nature Conservancy’s terrestrial 

ecoregions map, which is based on the World Wildlife Fund ecoregions classification (Olson et 
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al., 2001). Ecoregions represent potential vegetation types based on climatic variables and were 

classified as moist broadleaf forest, dry broadleaf forest, coniferous forest, and grassland, 

savanna, and shrubland. Mean annual temperature was subdivided into three categories (18-

21°C, 22-25°C, and 26-30°C) which accounted for the Koppen climate classification system 

criterion (Köppen, 1900; Kottek & Hantel, 2005). Mean annual precipitation was divided into 

rainfall classes associated with different tropical forest life zones: dry (<1000 mm), moist (1000-

2500 mm) and wet (>2500 mm) representing 17%, 59% and 23% of the sites, respectively. When 

analysing for biases, we pooled studies from all land-use transitions as the number of studies was 

too small to compare each category individually. There were too few studies to perform the Chi 

squared on soil type and ecoregion type, given the large number of categories for each variable, 

but expected representation of each category was compared qualitatively to observed 

representation in the literature. 

Results 

We recorded 10,314 observations of 87 variables from 83 studies (Supplementary 

database). Thirty-six studies included multiple pairs of sites of the same land-use change 

comparison. Field sites were located in 25 countries, with the greatest proportion in Brazil 

(33%), India (7%), and Costa Rica (6%) and the lowest proportion in Argentina, Benin, 

Cameroon, Colombia, Dominican Republic, Ethiopia, Hawaii, Nigeria, Sumatra, and Tahiti, 

Taiwan (1%). 

Microbial biomass response to land-use change 

On average, forest conversion resulted in losses of soil microbial biomass carbon and 

nitrogen (Figure 1, Table S2). For microbial biomass C, these results were primarily observed in 

conversion of forest to agriculture and plantations. Conversion to pasture did not affect microbial 
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biomass C. Only conversion of forest to plantation showed a significant decline in microbial 

biomass N. Microbial biomass P was not affected by forest conversion. Secondary forests did not 

show any difference in microbial biomass C, N or P compared to forest values. 

Microbial biomass carbon was the most represented variable among the three rainfall 

classes: dry (23% of studies), moist (52%) and wet (25%) life zones.  Wet secondary forests had 

a greater microbial biomass carbon response ratio than moist secondary forests (F=3.35, P=0.04, 

Figure 2, Table S3). There was no effect of rainfall class on microbial biomass carbon during 

conversion of forest to plantations. In forest conversion to pastures (F=6.17, P<0.01) and in 

agricultural lands (F=18.27, P<0.01), microbial biomass carbon response ratio was greater in dry 

systems compared to moist systems.  

Microbial abundance response to land-use change 

On average, forest conversion resulted in a decrease or no change in microbial abundance 

measured by DNA sequencing and phospholipid fatty acid analysis (PLFA; Figure 3, Table S2). 

Four studies performed sequencing analysis (one study conducted pyrosequencing and the rest 

conducted Illumina sequencing). Forest replacement by plantations decreased total bacterial 

PLFAs and Gram – bacterial PLFAs. Conversion of forests to agriculture resulted in a decrease 

in the abundance of proteobacteria DNA sequences, total bacterial PLFAs, and Gram – bacterial 

PLFAs. In contrast, the conversion of forests to pastures increased the abundance of 

actinobacteria DNA sequences and total fungal PLFA. Secondary forests had greater abundance 

of Firmicutes and lower actinobacteria DNA sequences than forests.  

Enzyme activity response to land-use change 

Extracellular enzyme activity generally decreased with forest conversion (Figure 4, Table 

S2). Plantations showed lower activities for all enzymes reported. Conversion to pastures 
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increased α-glucosidase and urease activity. Deforestation for agriculture decreased activities of 

alkaline phosphatase, α-glucosidase and arylsulfatase. Secondary forests had greater levels of α-

glucosidase activity and lower levels of ß-glucosidase and arylsulfatase than reference forests. 

Activities of acid phosphatase, alkaline phosphatase and urease did not differ between forests 

and secondary forests. 

Bacterial diversity response to land-use change 

Forest conversion resulted in no change in soil bacterial diversity as measured by 

Shannon and Simpson indices (Figure 5, Table S2). However, OTU Chao1 richness decreased 

with forest conversion to agricultural lands (Table S2).  

Fungal response to land-use change 

Fungal variables showed variable responses to land-use change (Figure 6, Table S2). 

Conversion from forest to plantation decreased arbuscular mycorrhizal fungi richness (AMF). 

Fungal spore density from all species in the soil and AMF richness decreased with conversion to 

agriculture. AMF colonization of roots increased in pastures. Secondary forests had greater 

arbuscular root colonization and less AMF richness than reference forests.  

Microbial biomass responses to changes in soil properties 

We tested for relationships between average response ratios for microbial biomass and 

the response ratios for soil properties across all four land-use change transitions. The response 

ratios for microbial biomass N (Figure 7e) and microbial biomass P (Figure S2) were positively 

correlated with the response ratio for soil pH. Microbial biomass C response ratios did not show 

any relationship with soil pH (Figure 7a). Microbial biomass C and microbial biomass N 

response ratios increased with organic C, total soil N, and total P response ratios.  
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How representative are microbial studies of tropical environments?  

The available literature reporting microbial biomass and compositional variables for 

paired land uses does not reflect the diversity of biophysical variables represented in tropical 

regions. The range of MAP observed in the study sites (from 500 mm to 4,400 mm) was not 

representative of rainfall variation in the tropics (Chi square P<0.001; Figure 8a). Sites in the wet 

(>2500 mm) and moist (1000-2500 mm) life zones were overrepresented at the expense of drier 

sites. The range of MAT was also not representative of the temperature variation in the tropics 

(Chi Square P=0.035; Figure 8b). There were not enough studies to perform a Chi square 

analysis on the representativeness of the study sample set by ecoregion or soil order, although 

visual interpretation of the data suggest some strong biases in the literature. Grasslands, 

savannas, shrublands, coniferous forest, dry broadleaf forest and ecoregions were 

underrepresented while moist broadleaf forests were overrepresented compared to expected by 

their observed distribution across tropical landscapes (Figure S3a). Moist broadleaf forests 

composed 71% of field observations. The diversity of tropical soils is underrepresented in the 

literature. The FAO global soil map identifies 27 soil units in the tropics, yet only 16 of these 

were represented in the literature reviewed (Figure S3b). Twenty-one percent of the study sites 

were on Ferrasols and Acrisols. Cambisols were the third most studied soil order (12% of field 

observations). 

Discussion 

Our findings show that land-use cover changes in tropical regions affect soil microbial 

communities and functions. Notably, forest conversion to intensely managed systems decreases 

microbial biomass, abundance, and enzyme activities. Forest conversion to pastures showed 

increases, decreases, or no changes to microbial communities and functions, suggesting some 
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microbial variables may depend on the response of soil properties after deforestation. After 

abandonment of pasture, agricultural or plantation forest management, secondary forest 

succession can recover microbial communities and function. Moist ecosystems were 

overrepresented in the literature, whereas dry ecosystems were greatly underrepresented. 

Therefore, our understanding of how microbial communities and function are affected by land-

use change is biased towards moist and wet regions.  

Greater changes in microbial biomass and composition with replacement of forest by more 

intensively managed land  

Measured declines in soil microbial biomass carbon, nitrogen and phosphorus with 

conversion of forests to agriculture and plantations are consistent with expectations for changes 

in soil properties in more intensely managed systems. The overall decrease of microbial biomass 

C and N can be associated with the decrease of soil C and N stocks common in agricultural 

systems (Bossio et al., 2005). Losses of soil C and N are attributed to the removal of plant 

residues and nutrients through biomass harvest and to accelerated decomposition of organic 

matter through soil disturbance during tillage and other soil preparation techniques (Montecchia 

et al., 2011). Management practices that improve organic matter inputs to soils can remedy 

observed decreases in microbial biomass in agricultural soils. On sandy soils in the tropical dry 

forest of eastern Amazonia, the addition of manure fertilizer coupled with irrigation increased 

microbial biomass C relative to the adjacent forest during the dry season (Medeiros et al., 2015). 

Banger et al., (2008) found that manure additions increased microbial biomass C on tropical 

agricultural fields beyond that observed with inorganic fertilizers. Similarly, conversion of 

conventional agriculture to organic farming in Brazil increased soil microbial biomass C and soil 

C (Santos et al., 2012). Observed decreases in soil microbial biomass after establishment of 
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plantations has been attributed to reductions in soil nutrients due to woody biomass harvest and 

residue management (Liu et al., 2012). Allen et al., (2015) found that reduction in microbial 

biomass with establishment of plantations in Indonesia was related to soil nutrient availability in 

highly weathered Acrisols. 

Surprisingly, conversion of forests to pastures did not alter soil microbial biomass C, N, 

or P pools. However, this result could be related to carbon dynamics in soils. Forage grasses 

common in many tropical ecosystems are characterized by large root C inputs (Fischer et al., 

1994) and many studies report no change or even gains in soil C pools with pasture 

establishment (Cleveland et al., 2003; Marín-Spiotta et al., 2008; Neill et al., 1997; Trumbore et 

al., 1995). Consistent with our findings for more intensively managed sites, soil C stocks and 

microbial biomass have been found to decline with increasing pasture age and grazing intensity 

in the eastern Amazon (Melo et al., 2012) and in Hawai'i (Elmore & Asner, 2006).  

Changes in microbial composition but no change in microbial diversity with forest conversion  

Forest conversion altered the abundance of different microbial groups depending on the 

land-use conversion. Conversion to agriculture and tree plantation decreased the abundance of 

bacterial PLFA biomass, consistent with observed declines in total soil microbial biomass pools.  

Fungal PLFA biomass, spore abundance and root colonization were greater in pasture soils 

compared to forests, which could be due to increased fine-root derived C inputs under pasture 

(Picone, 2000). Distinct microbial communities between tropical forests and pastures have been 

attributed to differences in root biomass, soil pH, moisture, and nutrient availability (Borneman 

& Triplett, 1997; Picone, 2000).  

Replacement of forest with alternative land uses did not alter microbial community 

diversity as measured by traditional richness indices, although AMF spore richness decreased 
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with conversion to pastures and in secondary forests. A recent meta-analysis of tropical rain 

forest soils found an increase in bacterial alpha diversity and changes in composition with forest 

conversion to pastures and plantation (Petersen et al., 2019). However, most of these results were 

not strictly attributed to conversion from forest to other land uses, but to variability in soil 

properties such as pH and available C for microorganisms.  

Reductions in enzyme activity with conversion to intensively-managed systems  

Extracellular enzymes catalyse the decomposition of C-rich macromolecules into smaller, 

soluble compounds that plants and microorganisms can use for energy and nutrient acquisition. 

As such, they are often measured as indicators of microbial function, activity, and soil health. 

Overall, our meta-analysis found that extracellular enzyme activity decreased or showed no 

change with deforestation. Agricultural soils and plantation soils tended to have reduced enzyme 

activities, whereas pastures and secondary forests showed reduction, increases, or no net change 

(Acosta-Martínez et al., 2007; Sotomayor-Ramírez et al., 2009). Decreases in microbial 

functional capacity resulting from land-cover change and long-term agricultural practices can 

affect microbial influences on nutrient and carbon dynamics. 

Variability in enzyme activity response with land-use change can be due to a variety of 

methodological and ecological factors. Enzyme assay conditions are not standardized across 

laboratories, which may affect findings (Burns, 1982; German, Marcelo et al., 2012; German et 

al., 2011). At the same time, extracellular enzymatic activity is regulated by environmental 

factors such as temperature, moisture, soil pH and substrate availability (Burns & Dick, 2002; 

Tabatabai, 1994; Tate III, 2002). Soil texture, structure and mineralogy also affect enzymatic 

activity (Burns, 1982; Quiquampoix et al., 2002; Tate III, 2002). Variability in environmental 

properties within and across land uses in a study can mask potential effects of changes in 
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microbial biomass or composition with land management. For example, differences in soil types 

among replicate sites masked potential effects of land use in Western Kenya (Bossio et al., 2005). 

Large variability among soil sample replicates and strong seasonal differences in enzyme activity 

along a forest successional chronosequence on former pastures in Puerto Rico may have also 

obscured differences between land use and cover types (Smith et al., 2015). 

Recovery of forest microbiome during secondary succession  

The meta-analysis revealed few differences between secondary forests and reference 

forest sites. In summary, secondary forests and reference forests had similar amounts of 

microbial biomass C, N and P, total bacterial and fungal PLFA biomarkers, abundance of 

Acidobacteria and Proteobacteria, activity rates of acid phosphatse, alkaline phosphatase, and 

urease, and AMF spore density. This suggests that forest succession can reverse some of the 

observed declines in microbial biomass properties during deforestation. However, it could also 

suggest that the variability among studies is too high and values can be either positive or 

negative resulting in a non-significant response ratio.  

Reforestation provides the opportunity to study successional trajectories of soil microbial 

communities. Mycorrhizal fungi can persist through at least 30-40 years of pasture use (Fischer 

et al., 1994) and potentially facilitate plant colonization during reforestation. In Costa Rica, 

studies have found greater microbial biomass carbon, fungal abundance and diversity in 

secondary forests compared to pastures used for cattle (Hafich et al., 2012; McGee et al., 2019). 

This result was attributed to increased levels of soil N, organic C, and phosphate with forest 

succession. As secondary forests aged in a successional chronosequence in Puerto Rico, the 

amount of fungal PLFA biomarkers decreased, whereas Gram positive bacteria and anaerobic 
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Gram-negative bacteria became more abundant, resembling the community of primary forest 

soils (Smith et al., 2015).  

Many tropical studies show that succession and restoration can return properties of the 

soil microbial community to pre-disturbance levels with the recovery of aboveground biomass 

(Araújo et al., 2013; Knief et al., 2005), yet recovery times can vary. Variability in the length of 

time for microbial recovery with reforestation is likely affected by environmental properties, 

such as soil type and climatic controls on primary production and plant inputs, as well as the 

severity of disturbance associated with land-use change (Carpenter et al., 2001). Recovery of soil 

microbial biomass and activity comparable to undisturbed old forest in the Dominican Republic 

occurred within 5-7 years after agricultural abandonment (Templer et al.,2005). In highland wet 

forests in Western Amazon, bacterial community composition shifted to that of the primary 

forests within 5-30 years of forest regeneration (Jesus et al., 2009). In north-eastern Brazil, soil 

microbial biomass and enzyme activity in areas that had been logged recovered in less than 10 

years, but stoichiometry of microbial biomass carbon-to-nitrogen ratios differed, reflecting 

potential legacy effects of N losses from land use (Araújo et al., 2013). Overall, the soil 

microbiome during tropical reforestation shows relatively rapid recovery to levels of biomass 

and community composition of undisturbed forests, although time to recovery can vary greatly 

with past land-use intensity and soil type.   

Microbial response to forest conversion is positively related to changes in soil properties  

Soil physical and chemical properties play a strong role in regulating microbial 

communities by influencing gradients of environmental conditions, such as pH, oxygen, 

temperature and moisture, that affect microbial physiology (Morris & Blackwood, 2007; Russo 

et al., 2012). The response of certain microbial variables, including microbial biomass C, N and 
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P were positively correlated to response ratios of soil pH, and soil organic carbon, total nitrogen 

and total phosphorus concentrations. Experimental manipulations in a lowland tropical forest 

showed significant shifts in microbial community structure in response to plant litter and 

throughfall inputs, attributed to changes in the amount and bioavailability of C and N substrates 

reflecting top-down control in soils (Nemergut et al., 2010). In contrast, along a soil fertility 

gradient and nutrient addition experiment in Hawaii, the effect of invasive tree species on soil 

microbes was mediated by soil N and P levels, highlighting the important bottom-up control of 

soil resources on microbial composition (Kao-Kniffin & Balser, 2008). High levels of N 

availability result in greater microbial biomass and activity in soils (Potthast et al., 2012) and low 

P availability constrains processes such as decomposition and microbial use of available carbon 

in highly weathered tropical soils (Cleveland et al., 2002).  

A recent synthesis concluded that tropical deforestation can have long-term effects on soil 

properties, such as pH, base saturation, and bulk density, in addition to changes in organic matter 

(Veldkamp et al., 2020). Considering a soil’s physical, chemical and biological component is 

important for helping us understand land-use change effects on the soil microbiome. 

Measurements at the appropriate spatial and temporal scale that consider heterogeneity in factors 

influencing soil microbial communities and their function are necessary to reveal directional 

responses to temporal seasonality and environmental changes. Other challenges in quantifying 

and predicting the response of soil microbes to land-use change are paucity in environmental 

data, including soil properties, or even lack of soil descriptions in many microbial studies.  

Gaps in our knowledge of microbial response to tropical land-use change  

Our current understanding of the response of the tropical soil microbiome to some of the 

most common land-use conversions come from a limited number of sites that are not 
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representative of the diversity of environmental conditions found in the tropics. Similar 

geographic biases have been reported for the literature on soil C response to land-use change in 

the global tropics (Marín-Spiotta & Sharma, 2013; Powers et al., 2011). Identifying these gaps in 

our knowledge is crucial, given the strong influence of environmental variables on soil microbial 

processes.  

Our finding that drier regions (<1000 mm/y MAP) were underrepresented in the literature 

is important because soil microbial community composition and function are known to be 

especially sensitive to changes in soil moisture (Barbhuiya et al., 2004; Cleveland et al., 2003; 

Costa et al., 2013; Liu et al., 2012; Saynes et al., 2005; Singh et al., 2010). Moisture fluctuations 

play an important role in microbial communities and on their contribution to biogeochemical 

cycling of C, N, and other important plant nutrients (Bouskill et al., 2016; Liptzin & Silver, 

2015; Yuste et al., 2017). Particularly, transitions from dry to wet seasons increase respiration 

and denitrification rates resulting in greater CO2 and N2O fluxes from soil to the atmosphere 

(Calvo-Rodriguez et al., 2020; Waring & Powers 2016). Yet, uncertainties in our ability to 

predict microbial response to land-use change is magnified by projected increased variability in 

rainfall and frequency or severity of droughts in the tropics (Mora et al., 2013; Uriarte et al., 

2016). Changes in the length and temporal distribution of wet and dry seasons may affect 

microbial function and community structure through changes in soil water content, affecting a 

soil’s capacity to buffer microbes from extreme temperatures (Schipper et al., 2007; Tucker & 

Reed, 2016; Wood et al., 2013).   

Bias in the types of soils studied also require caution when extrapolating results across 

the tropics, because soil types can influence substrate availability, enzyme activity, and soil 

microbial biomass (Cleveland et al., 2003). Expanding soil microbial research on sites that 
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represent large land areas of the tropics yet are poorly studied will enhance our understanding of 

biogeochemical consequences of potential changes in microbial communities. Currently, most of 

the available data on soil microbial response to land-use change comes from the American 

tropics, especially Brazil, whereas other areas, such as the African tropics, are underrepresented. 

This geographic bias, identified also for research on soil C response to land-use change (Powers 

et al., 2011), has many causes and implications (e.g., Wilson et al., 2016) but is especially 

problematic for informing regional projections and land management policies. 

Conclusions  

Tropical deforestation to intensively managed systems alters soil microbial community 

structure and function with consequences for biogeochemical cycling and nutrient pools. Our 

meta-analysis revealed the following trends in the literature: (1) Conversion of forests to 

agriculture and tree plantations typically yielded reductions in microbial biomass and enzyme 

activity and shifts in community composition, (2) Differences between pastures and forests were 

more variable, with some studies reporting gains, losses or no net change in microbial biomass 

with pasture establishment, reflecting reported heterogeneity in the response of soil C pools in 

the literature, and (3) Secondary forests recovered microbial biomass and diversity but microbial 

composition and structure remained different from that of reference forests.  

 The diversity of ecoregions, rainfall classes, and soil orders found across the global 

tropics was not well represented in the literature on soil microbial response to land-use change. 

Microbial land-use change studies have been conducted in only 60% of the FAO soil orders 

expected in the tropics. Given the importance of soil physical and chemical properties on 

microbial processes, these limitations affect our understanding of the mechanisms controlling C 

cycling and nutrient availability in tropical soils. Moist and wet sites are overrepresented 
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compared to drier sites, which hinders predictions about the response of tropical soil microbes to 

future climate change, especially given projected variability in rainfall for many regions of the 

tropics. Despite these geographic uncertainties, emergent trends indicate differential response of 

soil microbial communities and related ecosystem functions to land-use conversions. 
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Figures  

 

Figure 1. Microbial biomass response ratios. Values represent average response ratios with 95% 

confidence intervals. The numbers with each ratio represent the number of paired sites. The 

conversion value is the mean of conversion from forest to agriculture, pasture, and plantation. F 

= forests, Ag = agriculture, Pas = pastures, Plan = plantations and SF = secondary forests. 

Asterisk (*) shows significant response. 

 

 

Figure 2. Microbial biomass carbon response ratios across rainfall classes. Bars represent 

average response ratio and lines represent standard errors.  F = forests, Ag = agriculture, Pas = 

pastures, Plan = plantations and SF = secondary forests. Small case letters show differences 

among rainfall classes within each land-use change (p <0.05). 
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Figure 3. Microbial abundance response ratios. Values represent average response ratios with 

95% confidence intervals. The numbers with each ratio represent the number of paired sites.  

The conversion value is the mean of conversion from forest to agriculture, p pasture, and 

plantation. F = forests, Ag = agriculture, Pas = pastures, Plan = plantations, SF = secondary 

forests and PLFA = phospholipid-derived fatty acids. Asterisk (*) shows significant response. 
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Figure 4. Enzyme activity response ratios. Values represent average response ratios with 95% 

confidence intervals. The numbers with each ratio represent the number of paired sites.  The 

conversion value is the mean of conversion from forest to agriculture, pasture, and plantation. F 

= forests, Ag = agriculture, Pas = pastures, Plan = plantations and SF = secondary forests. 

Asterisk (*) shows significant response. 
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Figure 5. Bacteria diversity and richness response ratios. Values represent average response 

ratios with 95% confidence intervals. The numbers with each ratio represent the number of 

paired sites.  The conversion value is the mean of conversion from forest to agriculture, pasture, 

and plantation. F = forests, Ag = agriculture, Pas = pastures, Plan = plantations and SF = 

secondary forests. Asterisk (*) shows significant response. 

 

 

 

Figure 6. Fungal measurements response ratios. Values represent average response ratios with 

95% confidence intervals. The numbers with each ratio represent the number of paired sites. The 

conversion value is the mean of conversion from forest to agriculture, pasture, and plantation. F 

= forests, Ag = agriculture, Pas = pastures, Plan = plantations, SF = secondary forests and 

AMF = arbuscular mycorrhizal fungi. Asterisk (*) shows statistically significant response. 
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Figure 7. Relationship between response ratio of microbial biomass and soil properties including 

forest conversion to agriculture, pastures, plantations, and secondary forests. RR = response 

ratio, MBC = microbial biomass carbon, MBN = microbial biomass nitrogen and N = soil 

nitrogen, OC = organic carbon, P = phosphorus. 
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Figure 8. The location of study sites on maps of distribution of (a) mean annual temperature and 

(b) mean annual precipitation across the tropics. The bar graphs represent the percent 

distribution of study sites in white and the percent distribution of land cover in study sites in 

white and the percent distribution of land cover in black. 
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Supplementary 

 

Table S1. List of references and location for comparison of paired study sites under four main land 1 
change transitions in the tropics.  2 

Reference Location Land change transition 

Acosta-Martinez et al. 

2007   
Puerto Rico Forest vs Pasture 

Ahmed et al. 2019 Ethiopia Forest vs Pasture 

Burke et al. 2003 
Hawaii, Ecuador, 

Brazil 
Forest vs Pasture 

Carney et al. 2004 Costa Rica Forest vs Pasture 

Cenciani et al. 2009 Brazil Forest vs Pasture 

Cleveland et al. 2003 Costa Rica Forest vs Pasture 

deCarvaljo et al. 2016 Brazil Forest vs Pasture 

Fischer et al. 1994 Costa Rica Forest vs Pasture 

Fracetto et al. 2013 Brazil Forest vs Pasture 

Frazão et al. 2010 Brazil Forest vs Pasture 

Gavito et al. 2008 Mexico Forest vs Pasture 

Goss-Souza et al.2017 Brazil Forest vs Pasture 

Groffman et al. 2001 Costa Rica Forest vs Pasture 

Hamaoui et al. 2016 Brazil Forest vs Pasture 

Jewda et al. 2009 Kenya Forest vs Pasture 

Jewda et al. 2012 Kenya Forest vs Pasture 

Johnson and Wedin 1997 Costa Rica Forest vs Pasture 

Lammel et al. 2015 Brazil Forest vs Pasture 

Lammel et al. 2017 Brazil Forest vs Pasture 

Leal et al. 2013 Brazil Forest vs Pasture 

Leal et al. 2009 Brazil Forest vs Pasture 

Luizao et al. 1992 Brazil Forest vs Pasture 

Luizao et al. 1999 Brazil Forest vs Pasture 

Medeiros et al. 2015 Brazil Forest vs Pasture 

Melo et al. 2012 Brazil Forest vs Pasture 

Mendes et al. 2015a Brazil Forest vs Pasture 

Mendes et al. 2015b Brazil Forest vs Pasture 

Mgana and Kuyakov 2014 Tanzania Forest vs Pasture 

Mirza et al. 2014 Brazil Forest vs Pasture 

Mueller et al. 2016 Brazil Forest vs Pasture 

Navarrete et al. 2011 Brazil Forest vs Pasture 

Ndaw et al. 2009  Brazil Forest vs Pasture 

Ormeño-Orillo et al. 2012 Mexico Forest vs Pasture 

Pabst et al. 2013 Tanzania Forest vs Pasture 

Potthast et al. 2012 Ecuador Forest vs Pasture 

Prasad et al. 1994 India Forest vs Pasture 
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To see the full list and bibliography, go to Díaz-Vallejo, E.J., Seeley, M., Smith, A.P. and Marín-Spiotta, E. (2021), A 

meta-analysis of tropical land-use change effects on the soil microbiome: Emerging patterns and knowledge gaps. 

Biotropica, 53: 738-752. https://doi-org.ezproxy.library.wisc.edu/10.1111/btp.12931 

Table S2. Mean of all response ratio of soil microorganisms variables for forest to agriculture 

pasture, plantation, and secondary forest transition. The overall group represent the mean of 

forest conversion to agriculture, pasture, and plantation.  (F = Forest, A = Agriculture, Pas = 

Pasture, Plan =Plantation, S=Secondary Forest, SD= Standard Deviation, N = Number of 

samples, AMF = Arbuscular mycorrhizal fungi and ECM = Ectomycorrhizal fungi). Asterisk (*) 

shows significant response. 

https://doi-org.ezproxy.library.wisc.edu/10.1111/btp.12931
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Category Variable F_A SD N F_Pas SD N F_Plan SD N F_S SD N Conversion SD N

Microbial 

Biomass

Carbon -0.881 * 1.221 34 -0.177 0.758 32 -0.939 * 0.6518 26 -0.241 0.6953 30 -0.6529 * 1.2205 92

Nitrogen -0.461 0.743 10 -0.147 0.598 17 -0.626 * 0.2148 20 -0.152 0.5168 13 0.0411 * 0.6236 48

Phosphorus -0.336 0.574 5 0.4063 0.645 4 -0.401 * 0.1989 3 -0.044 0.1181 2 0.1049 0.6196 12

Colonies

 Fungal -0.511 1

 Bacteria -0.145 1

OTU 

Abundace

Archea 0.1331 0.285 3 -0.441 0.672 2 -0.0967 0.5023 5

Bacteria -1.496 * 1.106 4 -0.605 * 0.524 3  -1.1139 * 0.9642 7

Fungi -4.125 * 1.02 3 -0.448 0.347 2   -2.6516 * 2.1462 5

Actinomycetes 0.0812  1 -0.037 0.312 2 0.0022 0.2306 3

Proteobacteria -0.295 * 0.239 3 -0.224 0.265 3 -0.015 0.0211 2 -0.045 * 0.044 4 -0.1984 * 0.2241 8

Actinobacteria -0.191  0.824 2 0.324 * 0.002 2 -0.054 0.7989 2 -0.294 * 0.1578 2 0.0263  0.5658 6

Acidobacteria -0.409 0.469 3 -0.306 0.284 3 -0.454 0.3844 2 -0.196 * 0.1775 4 -0.38161 * 0.335 8

Firmicutes -0.693  1 0.6931  1 -0.133 0.7924 2 0.3466 * 0.2323 2 -0.0664 0.7317 4

PLFA

Total -0.767 * 0.679 9 0.0722 0.208 2 -0.164 0.4481 6 -0.357 0.4682 3 -0.4552 * 0.6458 17

Bacteria -0.435 * 0.098 2  -0.295 * 0.2025 8 -0.309 0.3829 3 -0.3229 * 0.1909 10

Gram Positive -0.002 0.356 3 0.0409 0.152 2 -0.185 0.4014 5 -0.026 0.2745 6 -0.0841 0.337 10

Gram Negative -0.531 * 0.258 3 -0.132 * 0.076 2 -0.512 * 0.1894 8 -0.377 0.5777 6 -0.4577 * 0.2313 13

Fungal -0.558 0.696 2 0.3638 * 0.049 3 -0.018 0.2467 8 -0.369 0.5903 3 -0.0129 0.4025 13

Enzyme

a-Galactosidase -0.346 * 0 3 0.2229 * 0 3 -0.0614 0.3114 6

B-Glucosaminidase -0.107 * 0 3 0.2664 * 0 3 0.07961 0.2045 6

B-Glucosidase -0.213 0.645 11 -0.3 1.918 9 -0.653 * 0.3893 10 -2.591 * 2.4325 8 -0.3856 1.1152 30

a-Glucosidase -0.553 * 0.468 5 0.411 * 0.254 4 -0.626 * 0.6356 5 0.4573 * 0.4001 10 -0.3034 0.6537 14

Xylanase 0.2452 0.48 3 0.0561 0.2346 2 0.1695 0.3735 5

B-Xylosidase -0.385 * 0.094 2

Acetylglucosaminidase -0.242 0.393 4 -2.533 * 2.278 5 -0.2419 0.393 4

Phosphatase 0.7492 * 0.141 2

Phophomonoesterase -0.591 * 0.126 3 -0.927 * 0.3133 9 -0.8429 * 0.3119 12

Urease -0.616 1.154 10 -0.203 * 0.029 2 -0.402 * 0.4907 16 -0.107 0.5327 10 -0.4644 * 0.7703 28

Acid Phosphatase -0.049 0.818 16 -0.29 0.458 5 -0.371 * 0.5019 9 0.0909 0.507 12 -0.1855 0.6833 30

Alkaline Phosphatase -0.512 * 0.806 11 -0.078 0.296 2 -1.38 * 0.8033 6 0.3686 0.5501 7 -0.7406 * 0.8725 19

Cellobiohydrolase 0.8274 * 0.293 4 2.1284  1 0.9276 * 0.3641 5 1.0875 * 0.6349 5

Chitinase -0.687  1 0.5196  1 -0.0838 0.8533 3

Phenol Oxidase 0.2604 * 0.007 2

Peroxidase 1.2436 * 0.337 2

Laccase -0.588  1

Cellulase -0.214  1 0.7818 * 0.4273 2 0.4497 0.6496 3

Arylsulfatase -0.768 * 0.869 10 -0.225 0.339 4 -1.429 NA 1 -0.448 * 0.2867 2 -0.6676 * 0.784 15

Bacteria 

Diversity

Similarity 0.0556  1

Simpson 0.4173 0.651 3 0.5056 1.245 4 1.5699  1 0.223 0.7794 4 0.6055 0.9693 8

Shannon Diversity 0.164 0.51 8 0.0962 0.387 8 0.0639 * 0.0216 2 -0.216 0.4968 4 0.16067 0.40502 18

Whitaker Global 0.0371 0.126 3 -0.047 0.119 3 -0.0051 0.1187 6

Pielou Evenness -0.111  1 -0.392 1.117 3 -0.06  1 -0.3215 0.9226 4

Fisher Diversity 0.977  1 0.4292  1 0.7031 0.3873 2

OTU Jackniefe -0.513  1 -0.024  1 -1.471  1 -0.2686 0.3454 2

OUT Chao1 -0.283 * 0.167 2 -0.087 0.493 3 -0.626 0.5448 2 -0.16571 0.37408 5

OTU ACE 1.635 2.217 2 0.14  0.629 3 -0.442  0.8053 2 -0.57001  1.53983 5
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Table S2. Continue 

 

Table S3. Results of all ANOVAs for microbial biomass carbon across rainfall class. 

 

 

Figure S1. Relation between response ratio of microbial biomass phosphorus with soil 

properties. RR = response ratio, MBP = microbial biomass phosphorus, N = nitrogen, OC = 

organic carbon. 

Category Variable F_A SD N F_Pas SD N F_Plan SD N F_S SD N Conversion SD N

Fungal 

Spores

Spore Density -0.637 * 0.525 7 0.6989 1.32 7 -0.54 0.8688 5 0.3349 0.91 7 -0.1191 1.1198 19

Shannon Diversiry -0.056  1 -0.1651  1

Simpson 0.2231  1 0.6286  1

AMF Spore Abundance 1.1629 1.72 4 1.1314 1.7934 5 -0.075 0.3006 2 2.995 * 1.9766 2 0.9234 * 1.5577 11

AMF Spore Richness -0.275 0.351 6 0.1192 0.1225 4 -0.467 * 0.4437 6 -0.6004 * 0.2449 3 -0.2485 * 0.4062 16

AMF Diversity Jacknife 0.1805 * 0.026 2 0.0756 0.2157 2 0.0278 0.1624 2 0.0946 0.14 6

AMF Shannon Diverisy 0.3742  1 0.0619 0.0018 2 0.251  1 0.1659 0.1803 3

AMF Shannon Eveness 0.3805  1 -0.077  1 0.1054  1 0.1517 0.3234 2

AMF Pielou Evenness 0.026 * 0.0119 2

AMF Simpson 0.1453 0.1656 2

AMF Total Spore 

Species -0.25 0.487 8 -0.07 0.2485 6 -0.412 * 0.2764 6 -0.4092 * 0.5125 7 -0.2447 * 0.3772 20

Fungal  OTU

ECM Abundance -0.767 2.5153 2 0.5394 2.7514 2

OTU Richness -0.487  1 -0.078 * 0.0292 2 0.149 0.2479 3 -0.2142 0.2373 3

True B Diversiry -0.014 0.0116 2 -0.0027 0.0115 2

Root 

Colonization

AMF Root Colonization -0.24 0.34 2 1.0903 * 0.8243 3 0.0039 0.1033 2 1.2836 * 0.1453 2 0.2279 0.7892 9

ECM Root Colonization -0.2016  1

Proteins 

Extractable Glomalin -0.484  1 -0.3542  1

Total Glomalin -0.618  1 -0.1297 * 0.0742 2

F value p value 

Forest to Secondary Forest 3.56 0.04

Forest to Plantation 0.94 0.41

Forest to Pasture 6.18 0.01

Forest to Agriculture 18.27 0.00
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Figure S2. Study sites across ecoregions and soil orders in the tropics. (a) Map of ecoregions 

across the tropics. Points on the map represent study locations. (b) The bar graph compares soil 

order representation in the tropics. In the bar graphs, the percent distribution of study sites is in 

white and the percent distribution of land cover is in black. 

 

References 

Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D., & Pérez-Alegría, L. (2007). Enzyme 

activities as affected by soil properties and land use in a tropical watershed. Applied Soil 

Ecology, 35(1), 35-45. doi:10.1016/j.apsoil.2006.05.012 

Aide, T. M., Clark, M. L., Grau, H. R., Lopez-Carr, D., Levy, M. A., Redo, D., . . . Muniz, M. 

(2012). Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). 

Biotropica, 0(0), 1-10.  

Allen, K., Corre, M. D., Tjoa, A., & Veldkamp, E. (2015). Soil Nitrogen-Cycling Responses to 

Conversion of Lowland Forests to Oil Palm and Rubber Plantations in Sumatra, Indonesia. 

PLoS One, 10(7), e0133325. doi:10.1371/journal.pone.0133325 

Araújo, A. S. F., Cesarz, S., Leite, L. F. C., Borges, C. D., Tsai, S. M., & Eisenhauer, N. (2013). 

Soil microbial properties and temporal stability in degraded and restored lands of Northeast 

Brazil. Soil Biology and Biochemistry, 66, 175-181. doi:10.1016/j.soilbio.2013.07.013 

Bai, Z., Wu, X., Lin, J.-J., Xie, H.-T., Yuan, H.-S., & Liang, C. (2019). Litter-, soil- and C:N-

stoichiometry-associated shifts in fungal communities along a subtropical forest 

succession. Catena, 178, 350-358. doi:10.1016/j.catena.2019.03.037 

Banger, K., Kukal, S. S., Toor, G., Sudhir, K., & Hanumanthraju, T. H. (2008). Impact of long-

term additions of chemical fertilizers and farm yard manure on carbon and nitrogen 



37 
 

 
 

sequestration under rice-cowpea cropping system in semi-arid tropics. Plant and Soil, 

318(1-2), 27-35. doi:10.1007/s11104-008-9813-z 

Barbhuiya, A. R., Arunachalam, A., Pandey, H. N., Arunachalam, K., Khan, M. L., & Nath, P. C. 

(2004). Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands 

of a tropical wet-evergreen forest. European Journal of Soil Biology, 40(3-4), 113-121. 

doi:10.1016/j.ejsobi.2005.02.003 

Borneman, J., & Triplett, E. W. (1997). Molecular microbial diversity in soils from eastern 

Amazonia: evidence for unusual microorganisms and microbial population shifts 

associated with deforestation. Applied and Environmental Microbiology, 63(7), 2647-

2653.  

Bossio, D. A., Girvan, M. S., Verchot, L., Bullimore, J., Borelli, T., Albrecht, A., . . . Osborn, A. 

M. (2005). Soil microbial community response to land use change in an agricultural 

landscape of western Kenya. Microbial Ecology, 49(1), 50-62. doi:10.1007/s00248-003-

0209-6 

Bouskill, N. J., Wood, T. E., Baran, R., Hao, Z., Ye, Z., Bowen, B. P., . . . Gilbert, B. (2016). 

Belowground response to drought in a tropical forest soil. II. Change in microbial function 

impacts carbon composition. Frontiers in Microbiology, 7, 323.  

Brinkmann, N., Schneider, D., Sahner, J., Ballauff, J., Edy, N., Barus, H., . . . Polle, A. (2019). 

Intensive tropical land use massively shifts soil fungal communities. Sci Rep, 9(1), 3403. 

doi:10.1038/s41598-019-39829-4 

Burns, R. G. (1982). Enzyme activity in soil: location and a possible role in microbial ecology. 

Soil Biology and Biochemistry, 14(5), 423-427.  

Burns, R. G., & Dick, R. P. (2002). Enzymes in the environment: activity, ecology, and 

applications: CRC Press. 

Cai, X., Lin, Z., Penttinen, P., Li, Y., Li, Y., Luo, Y., . . . Fu, W. (2018). Effects of conversion 

from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient 

pools, microbial biomass and enzyme activities in a subtropical area. Forest Ecology and 

Management, 422, 161-171. doi:10.1016/j.foreco.2018.04.022  

Calvo‐Rodriguez, S., Kiese, R., & Sánchez‐Azofeifa, G. A. (2020). Seasonality and budgets of 

soil greenhouse gas emissions from a tropical dry forest successional gradient in Costa 

Rica. Journal of Geophysical Research: Biogeosciences, 125(9), e2020JG005647. 

Carpenter, F. L., Mayorga, S. P., Quintero, E. G., & Schroeder, M. (2001). Land-use and erosion 

of a Costa Rican Ultisol affect soil chemistry, mycorrhizal fungi and early regeneration. 

Forest Ecology and Management, 144(1-3), 1-17. doi:Doi 10.1016/S0378-1127(00)00361-

3 

Chaer, G., Fernandes, M., Myrold, D., & Bottomley, P. (2009). Comparative resistance and 

resilience of soil microbial communities and enzyme activities in adjacent native forest and 

agricultural soils. Microbial Ecology, 58(2), 414-424. doi:10.1007/s00248-009-9508-x 

Cleveland, C. C., Townsend, A. R., Schmidt, S. K., & Constance, B. C. (2003). Soil microbial 

dynamics and biogeochemistry in tropical forests and pastures, southwestern Costa Rica. 

Ecological Applications, 13(2), 314-326. doi:Doi 10.1890/1051-

0761(2003)013[0314:Smdabi]2.0.Co;2 

Costa, D., Freitas, H., & Sousa, J. P. (2013). Influence of seasons and land-use practices on soil 

microbial activity and metabolic diversity in the “Montado ecosystem”. European journal 

of soil biology, 59, 22-30.  



38 
 

 
 

de Graaff, M. A., Adkins, J., Kardol, P., & Throop, H. L. (2015). A meta-analysis of soil 

biodiversity impacts on the carbon cycle. Soil, 1(1), 257-271. doi:10.5194/soil-1-257-2015 

Docherty, K. M., & Gutknecht, J. L. (2012). The role of environmental microorganisms in 

ecosystem responses to global change: current state of research and future outlooks. 

Biogeochemistry, 109(1), 1-6.  

Eaton, W. D., Giles, E., & Barry, D. (2010). Microbial community indicators of soil development 

in tropical secondary forests (Costa Rica). Ecological Restoration, 28(3), 236-238.  

Elmore, A. J., & Asner, G. P. (2006). Effects of grazing intensity on soil carbon stocks following 

deforestation of a Hawaiian dry tropical forest. Global Change Biology, 12(9), 1761-1772.  

ESRI, A. "ArcGIS 10.1." Environmental Systems Research Institute, Redlands, CA, USA (2012). 

Fischer, C. R., Janos, D. P., Perry, D. A., Linderman, R. G., & Sollins, P. (1994). Mycorrhiza 

inoculum potentials in tropical secondary success. Biotropica, 26, 369-377.  

Fischer, G., Nachtergaele, F., Prieler, S., Van Velthuizen, H., Verelst, L., & Wiberg, D. (2008). 

Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, 

Austria and FAO, Rome, Italy, 10.  

Frey, S. D. (2019). Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics. Annual 

Review of Ecology, Evolution, and Systematics, 50(1), 237-259. doi:10.1146/annurev-

ecolsys-110617-062331 

Friesen, M. L., Porter, S. S., Stark, S. C., von Wettberg, E. J., Sachs, J. L., & Martinez-Romero, 

E. (2011). Microbially mediated plant functional traits. Annual Review of Ecology, 

Evolution, and Systematics, 42(1), 23-46. doi:10.1146/annurev-ecolsys-102710-145039 

German, D. P., Marcelo, K. R., Stone, M. M., & Allison, S. D. (2012). The M ichaelis–M enten 

kinetics of soil extracellular enzymes in response to temperature: a cross‐latitudinal study. 

Global Change Biology, 18(4), 1468-1479.  

German, D. P., Weintraub, M. N., Grandy, A. S., Lauber, C. L., Rinkes, Z. L., & Allison, S. D. 

(2011). Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. 

Soil Biology and Biochemistry, 43(7), 1387-1397.  

Graham, E. B., Knelman, J. E., Schindlbacher, A., Siciliano, S., Breulmann, M., Yannarell, A., . . 

. Nemergut, D. R. (2016). Microbes as Engines of Ecosystem Function: When Does 

Community Structure Enhance Predictions of Ecosystem Processes? Front Microbiol, 7, 

214. doi:10.3389/fmicb.2016.00214 

Guo, L. B., & Gifford, R. (2002). Soil carbon stocks and land use change: a meta analysis. Global 

Change Biology, 8(4), 345-360.  

Gurevitch, J. (1993). Meta-analysis: combining the results of independent experiments. Design 

and analysis of ecological experiments.  

Hafich, K., Perkins, E. J., Hauge, J. B., Barry, D., & Eaton, W. D. (2012). Implications of land 

management on soil microbial communities and nutrient cycle dynamics in the lowland 

tropical forest of northern Costa Rica. Tropical Ecology, 53(2), 215-224.  

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution 

interpolated climate surfaces for global land areas. International Journal of Climatology: 

A Journal of the Royal Meteorological Society, 25(15), 1965-1978.  

Horwath, W., & Paul, E. (2015). Carbon cycling: the dynamics and formation of organic matter. 

Soil microbiology, ecology and biochemistry, 4, 339-382.  

Huwaldt, J. A., & Steinhorst, S. (2015). Plot Digitizer, version 2.6. 8. In: Software. 



39 
 

 
 

Jesus, E. d. C., Marsh, T. L., Tiedje, J. M., & Moreira, F. M. d. S. (2009). Changes in land use 

alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 

3(9), 1004-1011. doi:10.1038/ismej.2009.47 

Johnson, D. W., & Curtis, P. S. (2001). Effects of forest management on soil C and N storage: 

meta analysis. Forest Ecology and Management, 140(2-3), 227-238.  

Kao-Kniffin, J., & Balser, T. C. (2008). Soil fertility and the impact of exotic invasion on microbial 

communities in Hawaiian forests. Microbial Ecology, 56(1), 55-63. 

Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., & Lindquist, E. (2015). 

Dynamics of global forest area: Results from the FAO Global Forest Resources 

Assessment 2015. Forest Ecology and Management, 352, 9-20. 

Knief, C., Vanitchung, S., Harvey, N. W., Conrad, R., Dunfield, P. F., & Chidthaisong, A. (2005). 

Diversity of methanotrophic bacteria in tropical upland soils under different land uses. 

Applied and Environmental Microbiology, 71, 3826-3831.  

Köppen, W. (1900). Attempted climate classification in relation to plant distributions. Geogr Z, 6, 

657-679.  

Kottek, M., & Hantel, M. (2005). 17 Global climate maps (Part 12/12). In Observed Global 

Climate (pp. 124-144): Springer. 

Krashevska, V., Malysheva, E., Klarner, B., Mazei, Y., Maraun, M., Widyastuti, R., & Scheu, S. 

(2018). Micro-decomposer communities and decomposition processes in tropical lowlands 

as affected by land use and litter type. Oecologia, 187(1), 255-266. doi:10.1007/s00442-

018-4103-9 

Liang, C., Jesus, E. d. C., Duncan, D. S., Jackson, R. D., Tiedje, J. M., & Balser, T. C. (2012). Soil 

microbial communities under model biofuel cropping systems in southern Wisconsin, 

USA: Impact of crop species and soil properties. Applied Soil Ecology, 54, 24-31. 

doi:http://doi.org/10.1016/j.apsoil.2011.11.015 

Liptzin, D., & Silver, W. L. (2015). Spatial patterns in oxygen and redox sensitive biogeochemistry 

in tropical forest soils. Ecosphere, 6(11), 1-14.  

Liu, L., Gundersen, P., Zhang, T., & Mo, J. (2012). Effects of phosphorus addition on soil 

microbial biomass and community composition in three forest types in tropical China. Soil 

Biology and Biochemistry, 44(1), 31-38. doi:10.1016/j.soilbio.2011.08.017 

Marín-Spiotta, E., Swanston, C. W., Torn, M. S., Silver, W. L., & Burton, S. D. (2008). Chemical 

and mineral control of soil carbon turnover in abandoned tropical pastures. Geoderma, 

143(1-2), 49-62.  

Marín-Spiotta, E., & Sharma, S. (2013). Carbon storage in successional and plantation forest soils: 

a tropical analysis. Global Ecology and Biogeography, 22(1), 105-117.  

Mathew, R. P., Feng, Y., Githinji, L., Ankumah, R., & Balkcom, K. S. (2012). Impact of no-tillage 

and conventional tillage systems on soil microbial communities. Applied and 

Environmental Soil Science, 2012, 1-10. doi:10.1155/2012/548620 

Medeiros, E. V. d., Notaro, K. d. A., Barros, J. A. d., Moraes, W. d. S., Silva, A. O., & Moreira, 

K. A. (2015). Absolute and specific enzymatic activities of sandy entisol from tropical dry 

forest, monoculture and intercropping areas. Soil and Tillage Research, 145, 208-215. 

doi:10.1016/j.still.2014.09.013 

Melo, V. S., Desjardins, T., Silva Jr, M. L., Santos, E. R., Sarrazin, M., & Santos, M. M. L. S. 

(2012). Consequences of forest conversion to pasture and fallow on soil microbial biomass 

and activity in the eastern Amazon. Soil Use and Management, 28(4), 530-535. 

doi:10.1111/sum.12003 



40 
 

 
 

Meyer, A., Focks, A., Radl, V., Keil, D., Welzl, G., Schoning, I., . . . Schloter, M. (2013). Different 

land use intensities in grassland ecosystems drive ecology of microbial communities 

involved in nitrogen turnover in soil. Plos One, 8(9). doi:UNSP e73536 

DOI 10.1371/journal.pone.0073536 

Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-Being: Biodiversity 

Synthesis. Retrieved from Washington, D.C.:  

Montecchia, M. S., Correa, O. S., Soria, M. A., Frey, S. D., García, A. F., & Garland, J. L. (2011). 

Multivariate approach to characterizing soil microbial communities in pristine and 

agricultural sites in Northwest Argentina. Applied Soil Ecology, 47(3), 176-183. 

doi:10.1016/j.apsoil.2010.12.008 

Mora, C., Frazier, A. G., Longman, R. J., Dacks, R. S., Walton, M. M., Tong, E. J., . . . Anderson, 

J. M. (2013). The projected timing of climate departure from recent variability. Nature, 

502(7470), 183-187.  

Morris, S. J., & Blackwood, C. B. (2007). The ecology of soil organisms. In Soil microbiology, 

ecology and biochemistry (pp. 195-229): Elsevier. 

Neill, C., Melillo, J. M., Steudler, P. A., Cerri, C. C., de Moraes, J. F., Piccolo, M. C., & Brito, M. 

(1997). Soil carbon and nitrogen stocks following forest clearing for pasture in the 

southwestern Brazilian Amazon. Ecological Applications, 7(4), 1216-1225.  

Nemergut, D. R., Cleveland, C. C., Wieder, W. R., Washenberger, C. L., & Townsend, A. R. 

(2010). Plot-scale manipulations of organic matter inputs to soils correlate with shifts in 

microbial community composition in a lowland tropical rain forest. Soil Biology and 

Biochemistry, 42(12), 2153-2160.  

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, 

E. C., . . . Morrison, J. C. (2001). Terrestrial Ecoregions of the World: A New Map of Life 

on EarthA new global map of terrestrial ecoregions provides an innovative tool for 

conserving biodiversity. BioScience, 51(11), 933-938.  

Paterson, E., Osler, G., Dawson, L. A., Gebbing, T., Sim, A., & Ord, B. (2008). Labile and 

recalcitrant plant fractions are utilised by distinct microbial communities in soil: 

Independent of the presence of roots and mycorrhizal fungi. Soil Biology and Biochemistry, 

40(5), 1103-1113. doi:10.1016/j.soilbio.2007.12.003 

Petersen, I. A. B., Meyer, K. M., & Bohannan, B. J. (2019). Meta-analysis reveals consistent 

bacterial responses to land use change across the tropics. Frontiers in Ecology and 

Evolution, 7, 391.  

Picone, C. (2000). Diversity and Abundance of Arbuscular-Mycorrhizal Fungus Spores in Tropical 

Forest and Pasture1. Biotropica, 32(4). doi:10.1646/0006-

3606(2000)032[0734:Daaoam]2.0.Co;2 

Poll, C., Ingwersenm, J., M., S., Gerzabek, M. H., & Kandeler, E. (2006). Mechanisms of solute 

transport affect small-scale abundance and function of soil microorganisms in the 

detritusphere. European Journal of Soil Science 57, 583-595.  

Potthast, K., Hamer, U., & Makeschin, F. (2012). Land-use change in a tropical mountain 

rainforest region of southern Ecuador affects soil microorganisms 

and nutrient cycling. Biogeochemistry, 111, 151-167. doi:10.1007/s10533-011-9626-7 

Powell, J. R., Welsh, A., & Hallin, S. (2015). Microbial functional diversity enhances predictive 

models linking environmental parameters to ecosystem properties. Ecology, 96, 1985-

1993.  



41 
 

 
 

Powers, J. S., Corre, M. D., Twine, T. E., & Veldkamp, E. (2011). Geographic bias of field 

observations of soil carbon stocks with tropical land-use changes precludes spatial 

extrapolation. Proceedings of the National Academy of Sciences, 108(15), 6318-6322.  

Quiquampoix, H., Servagent-Noinville, S., & Baron, M.-H. (2002). Enzyme adsorption on soil 

mineral surfaces and consequences for the catalytic activity. Enzymes in the environment. 

Marcel Dekker, New York, 285-306.  

Russo, S. E., Legge, R., Weber, K. A., Brodie, E. L., Goldfarb, K. C., Benson, A. K., & Tan, S. 

(2012). Bacterial community structure of contrasting soils underlying Bornean rain forests: 

Inferences from microarray and next-generation sequencing methods. Soil Biology and 

Biochemistry, 55, 48-59.  

Santos, V. B., Araujo, A. S. F., Leite, L. F. C., Nunes, L. A. P. L., & Melo, W. J. (2012). Soil 

microbial biomass and organic matter fractios during transition from covnentional to 

organic farming systems. Geoderma, 170, 227-231. doi:0.1016/j.geoderma.2011.11.007 

Saynes, V., Hidalgo, C., Etchevers, J. D., & Campo, J. E. (2005). Soil C and N dynamics in primary 

and secondary seasonally dry tropical forests in Mexico. Applied Soil Ecology, 29(3), 282-

289. doi:10.1016/j.apsoil.2004.11.007 

Schipper, L., Baisden, W., Parfitt, R., Ross, C., Claydon, J., & Arnold, G. (2007). Large losses of 

soil C and N from soil profiles under pasture in New Zealand during the past 20 years. 

Global Change Biology, 13(6), 1138-1144.  

Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate 

change: terrestrial feedbacks and mitigation options. Nat Rev Micro, 8(11), 779-790.  

Sinsabaugh, R. L., Carreiro, M. M., & Alvarez, S. (2002). Enzyme and microvial dynamics of 

litter decomposition. In R. G. Burns & R. P. Dick (Eds.), Enzymes in the Environment: 

Activity, Ecology, and Applications (pp. 249-265): CRC Press. 

Smith, A. P., Marín-Spiotta, E., & Balser, T. (2015). Successional and seasonal variations in soil 

and litter microbial community structure and function during tropical post-agricultural 

forest regeneration: A multi-year study. Global Change Biology(21), 3532–3547. 

doi:10.1111/gcb.12947 

Sotomayor-Ramírez, D., Espinoza, Y., & Acosta-Martínez, V. (2009). Land use effects on 

microbial biomass C, β-glucosidase and β-glucosaminidase activities, and availability, 

storage, and age of organic C in soil. Biology and Fertility of Soils, 45(5), 487-497.  

Strickland, M. S., Lauber, C., Fierer, N., & Bradford, M. A. (2009). Testing the functional 

significance of microbial community composition. Ecology, 90(2), 441-451. 

doi:10.1890/08-0296.1 

Tabatabai, M. (1994). Soil enzymes. Methods of Soil Analysis: Part 2 Microbiological and 

Biochemical Properties, 5, 775-833.  

Tate III, R. L. (2002). Microbiology and enzymology of carbon and nitrogen cycling. Enzymes in 

the environmental Marcel Dekker. Inc Nueva York, 227-248.  

Templer, P. H., Groffman, P. M., Flecker, A. S., & Power, A. G. (2005). Land use change and soil 

nutrient transformations in the Los Haitises region of the Dominican Republic. Soil Biology 

and Biochemistry, 37(2), 215-225. doi:10.1016/j.soilbio.2004.07.031 

Tischer, A., Blagodatskaya, E., & Hamer, U. (2015). Microbial community structure and resource 

availability drive the catalytic efficiency of soil enzymes under land-use change conditions. 

Soil Biology and Biochemistry, 89, 226-237. doi:10.1016/j.soilbio.2015.07.011  

Townsend A, Asner G, Cleveland C (2008) The biogeochemical heterogeneity of tropical forests. 

Trends in Ecology & Evolution, 23, 424–431. 



42 
 

 
 

Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P., Nepstad, D. C., & Martinelli, L. A. 

(1995). Belowground cycling of carbon in forests and pastures of Eastern Amazonia. 

Global Biogeochemical Cycles, 9(4), 515-528.  

Tucker, C. L., & Reed, S. C. (2016). Low soil moisture during hot periods drives apparent negative 

temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model 

comparison. Biogeochemistry, 128(1-2), 155-169.  

Turner, B. L., Lambers, H., Condron, L. M., Cramer, M. D., Leake, J. R., Richardson, A. E., & 

Smith, S. E. (2013). Soil microbial biomass and the fate of phosphorus during long-term 

ecosystem development. Plant and Soil, 367(1-2), 225-234. doi:10.1007/s11104-012-

1493-z 

Uriarte, M., Schwartz, N., Powers, J. S., Marín‐Spiotta, E., Liao, W., & Werden, L. K. (2016). 

Impacts of climate variability on tree demography in second growth tropical forests: the 

importance of regional context for predicting successional trajectories. Biotropica, 48(6), 

780-797.  

Veldkamp, E., Schmidt, M., Powers, J. S., and Corre, M.D. (2020). Deforestation and reforestation 

impacts on soils in the tropics. Nature Reviews Earth & Environment, 1-16.  

Waring, B. G., & Powers, J. S. (2016). Unraveling the mechanisms underlying pulse dynamics of 

soil respiration in tropical dry forests. Environmental Research Letters, 11(10), 105005. 

Wieder, W. R., Bonan, G. B., & Allison, S. D. (2013). Global soil carbon projections are improved 

by modelling microbial processes. Nature Climate Change. doi:doi:10.1038/nclimate1951 

Wilson, K. A., Auerbach, N. A., Sam, K., Magini, A. G., Moss, A. S. L., Langhans, S. D., . . . 

Meijaard, E. (2016). Conservation research is not happening where it is most needed. PLoS 

Biology, 14(3).  

Wood, T. E., Detto, M., & Silver, W. L. (2013). Sensitivity of soil respiration to variability in soil 

moisture and temperature in a humid tropical forest. PLoS One, 8(12).  

Yuste, J. C., Hereş, A.-M., Ojeda, G., Paz, A., Pizano, C., García-Angulo, D., & Lasso, E. (2017). 

Soil heterotrophic CO2 emissions from tropical high-elevation ecosystems (Páramos) and 

their sensitivity to temperature and moisture fluctuations. Soil Biology and Biochemistry, 

110, 8-11.  

Zhang, H., Liu, T., Wang, Y., & Tang, M. (2019). Exogenous arbuscular mycorrhizal fungi 

increase soil organic carbon and change microbial community in poplar rhizosphere. Plant, 

Soil and Environment, 65(No. 3), 152-158. doi:10.17221/2/2019-pse 

Zhang, K., Cheng, X., Shu, X., Liu, Y., & Zhang, Q. (2018). Linking soil bacterial and fungal 

communities to vegetation succession following agricultural abandonment. Plant and Soil, 

431(1-2), 19-36. doi:10.1007/s11104-018-3743-1 

Zhang, Q., Yang, J., Koide, R. T., Li, T., Yang, H., & Chu, J. (2017). A meta-analysis of soil 

microbial biomass levels from established tree plantations over various land uses, climates 

and plant communities. Catena, 150, 256-260. doi:10.1016/j.catena.2016.11.028 

Zhao, F. Z., Ren, C. J., Han, X. H., Yang, G. H., Wang, J., & Doughty, R. (2018). Changes of soil 

microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested 

ecosystems. Forest Ecology and Management, 427, 289-295. 

doi:10.1016/j.foreco.2018.06.011 

Zhong, Z., Zhang, X., Wang, X., Fu, S., Wu, S., Lu, X., . . . Yang, G. (2020). Soil bacteria and 

fungi respond differently to plant diversity and plant family composition during the 

secondary succession of abandoned farmland on the Loess Plateau, China. Plant and Soil, 

448(1-2), 183-200. doi:10.1007/s11104-019-04415-0 



43 
 

 
 

Chapter 2: Soil bacterial and fungal traits across secondary forest succession in a soil 

weathering gradient. 

Introduction 

Recent advances in microbial ecology have highlighted the importance of understanding 

the resilience of microbial communities and their effect on ecosystem processes following 

disturbances (Antwis et al. 2017). Human-induced changes in ecosystems, such as deforestation 

and the subsequent expansion of secondary forest areas, have significant global consequences on 

microbial communities, including changes in microbial biomass, abundance, enzyme activity, 

diversity, and richness (Petersen et al. 2019, Díaz-Vallejo et al. 2021). Alterations in microbial 

communities due to land use change can affect biogeochemical processes, such as soil organic 

carbon and nutrient dynamics. However, the functional implications of microbial changes, 

particularly in the context of secondary forest succession, remain poorly understood (Bissett et 

al. 2013), especially in tropical regions. 

Multiple studies have demonstrated that microbial communities undergo shifts during 

secondary succession, and soil properties influence these shifts. Increased litter inputs during 

forest succession have been found to positively impact fungal beta diversity, while changes in 

soil properties primarily affect bacterial composition and diversity (Wang et al. 2002, Cline and 

Zak 2015). The regrowth of tropical forests leads to enhanced microbial biomass, abundance, 

and enzyme activities comparable to those in reference or primary forests (Díaz-Vallejo et al. 

2021). Moreover, microbial biomass and community composition can recover relatively quickly 

during secondary succession, although the recovery times may vary (Templer et al. 2005, da C 

Jesus et al. 2009, Araújo et al. 2013). On local scales, forest succession has shown relationships 

with increased microbial abundance, diversity, and soil nitrogen levels, organic carbon, and 
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phosphate (Hafich et al. 2012, McGee et al. 2019). Globally, studies have shown positive 

correlations between land use-induced changes in microbial biomass and fluctuations in soil pH, 

carbon, nitrogen, and phosphorus levels (Díaz-Vallejo et al., 2021), indicating that is soil 

properties increases, microbial biomass will increase too. Therefore, changes in soil properties 

due to land use change and forest recovery can modulate microbial communities. 

Understanding the microbial response to secondary forest succession in the tropics 

requires considering soil nutrient change effects on microbial processes along with the inherent 

heterogeneity of tropical soils (Townsend et al. 2008). Previous studies have highlighted the 

wide range of variability in the impact of secondary forest succession on soil nutrient trends in 

tropical regions (Powers and Marín-Spiotta 2017), which can potentially influence microbial 

responses spatially. Tropical soil properties exhibit variations both vertically, in terms of soil 

depth, and horizontally across space, following the concept of a soil catena, where matter fluxes 

are spatially linked across the landscape (Sommer and Schlichting 1997). This natural 

phenomenon plays a crucial role in influencing nutrient distribution (Van Langenhove et al. 

2021), thereby affecting microbial activity (Semenov et al. 2013). Within a soil catena, variations 

in soil nutrients can modulate microbial processes, such as organic matter decomposition 

(Kaspari and Yanoviak 2008, Powers and Salute 2011). Furthermore, the interplay of sulfur and 

potassium levels can also impact microbial respiration rates (Luizão et al. 2007). Additionally, 

soil pH can serve as a spatial regulator of the availability and influence of macro and 

micronutrients on soil microbial processes (Pansu et al. 2010). Thus, any changes in soil 

properties spatially along a soil catena play a crucial role in shaping microbial communities and 

their functional traits. 
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Previous research has highlighted the high variability of microbial responses to 

afforestation in the tropics (Díaz-Vallejo et al. 2021). One of the key challenges in predicting 

microbial responses to secondary forest succession in the tropics is the aforementioned soil 

heterogeneity. Existing studies on tropical ecosystems focusing on microbial communities and 

soil carbon changes related to land use and secondary forest succession have primarily focused 

on highly weathered soils (Powers et al. 2011, Marín-Spiotta and Sharma 2013, Díaz-Vallejo et 

al. 2021), which introduces biases in our understanding. Given the tremendous diversity of 

tropical soils, studying secondary forest succession across a tropical catena encompassing 

different soil orders could provide valuable insights into the responses of microbial functional 

traits and their potential implications for biogeochemical trends. Therefore, investigating 

secondary forest succession across various soil orders in tropical regions is essential for 

comprehensively understanding the responses of microbial functional traits and their potential 

implications for biogeochemical trends. 

The functional traits approach holds significant advantages when evaluating the 

functional implications of microbial changes across tropical forest secondary succession in 

varying soil environments. Originally established in the study of plant and animal ecology, this 

approach has garnered increasing interest in microbial ecology by shifting the focus from 

taxonomy and community composition to functional characterization (Green et al. 2008). 

Adopting the functional traits approach provides a comprehensive framework for understanding 

how microbial communities respond to environmental changes and the subsequent implications 

for soil biogeochemistry (Green et al. 2008, Fierer 2017, Blagodatskaya et al. 2021, Romillac 

and Santorufo 2021). The functional traits approach allows researchers to examine the life 

history strategies of microorganisms, which represent a set of traits that are associated with 



46 
 

 
 

physiological and evolutionary trade-offs favored under different environmental conditions 

(Malik et al. 2020). By characterizing microbial functional traits, researchers can gain insights 

into how disturbances might impact microbial communities and their potential effects on critical 

soil processes, such as soil organic carbon dynamics (Fierer 2017).  

Functional characterizations of bacteria can provide valuable insights into their ecological 

relevance (Louca et al. 2016). For instance, chemolithotrophs bacteria derive energy from the 

oxidation of inorganic compounds (Kulakowski et al. 2018). Ureolytic bacteria, break down urea 

into ammonia and carbon dioxide. Similarly, methanotrophic bacteria utilize methane as a carbon 

and energy source, while phototrophic bacteria use carbon dioxide and light (Kulakowski et al. 

2018). All these functional characterizations can potentially impact soil carbon dynamics through 

processes such as fixation, transformation, or release into the atmosphere. Fungi can also be 

characterized based on their trophic strategies as saprotrophs, symbiotrophs, and pathotrophs 

(Jastrow et al. 2007, Štursová et al. 2012, Treseder and Lennon 2015). These functional groups 

can have a differential influence on soil carbon dynamics. Saprotrophic fungi contribute to rapid 

soil carbon turnover through the degradation of complex organic compounds, while mycorrhizal 

fungi, particularly ectomycorrhizal fungi, promote carbon persistence by competing with 

saprotrophs (Averill and Hawkes 2016, Shah et al. 2016). However, little is known about changes 

in microbial functional characterization and their potential role in influencing soil processes 

across succession, particularly in the tropics (see McGee et al. 2019).  

Therefore, the aims of this study were to evaluate 1) how microbial communities change 

with tropical forest succession in different soil orders along a weathering catena and 2) to 

evaluate if microbial functional traits can explain soil carbon variation. We hypothesized that soil 

microbial community composition, diversity, and function will change across forest regrowth on 
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former pastures and that soil orders will modulate variability, but the direction of change will 

vary for specific functional groups. We also hypothesized that microbial traits will explain a 

portion of the variability of soil carbon across succession due to the importance of those traits for 

carbon cycle processes in soil. Understanding the resilience and functional traits of microbial 

communities during forest succession in tropical regions, particularly in relation to soil 

properties and different soil orders, is crucial for comprehensively assessing their impact on 

ecosystem processes and soil carbon dynamics, thereby providing valuable insights for managing 

and conserving tropical soils and their associated biogeochemical cycles. 

Methods 

Site description 

The field sites are located in the Municipios of Ciales, Florida, and Arecibo in the 

northern-central karst region of Puerto Rico (18°21'02" N, 66°35'13" W). The area’s climate is 

classified as subtropical moist forest in the Holdridge life zone (Ewel and Whitmore 1973), with 

annual rainfall averaging 2,000 mm and the mean annual temperature ranging from 17-29 °C 

(Daly et al. 2003). The bedrock of the study site is primarily limestone from the upper Oligocene 

and the Tertiary (USGS). Soils in this area represent a gradient of weathering from less 

weathered at the top of steep karst hills to more highly weathered soil in the valleys. A 

predictable catena is found along the topography, starting from the top: Inceptisols to Mollisols, 

to Alfisols, to Ultisols (Vaughan et al. 2019). Because climate and parent material are the same in 

this region, topography is the primary soil-forming factor differing in this catena (Vaughan et al. 

2019). Hillslopes in this area have a gentle relief with moist soil conditions (Ewel and Whitmore 

1973). For the study, the sites selected were located in the Mollisols and Alfisols areas of the 

catena. Mollisols represent the Soller series, described by clayey, mixed, active, isohyperthermic, 
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shallow Typic Haprendolls (NRCS Official Series Description). Alfisols represent the Tanama 

series, described by clayey, mixed, active, isohyperthermic Lithic Hapludalfs (NRCS Official 

Series Description).  

The clearing of forest areas for agricultural purposes started with European settlement 

during the 1500s and continued until the 1940s (Herman et al. 2008). In early 1820, pastures 

were 55% of the island (Wadsworth 1950). By the 1900s, 78% of the land was under agricultural 

or livestock use (Wadsworth 1950). Agriculture was focused on sugarcane and pineapple in 

lowlands and shade coffee in high elevations, declining 95 and 88 %, respectively, from the 

1950s to the 1970s (Kennaway and Helmer 2007). Agriculture land abandonment and forest 

recovery started in the second half of the 20th century as a result of an economic shift toward 

industry (Franco et al. 1997). Forest cover increased from 18 percent in the 1950s to 57 percent 

in 2004 (Brandeis et al. 2009). Pasture lands decreased from 55% to less than 20% during the 

forest cover increase (Grau et al. 2003). The current land cover in our study sites is primarily a 

mix of secondary forests and pastures. 

The study sampling design consists of sites within Mollisols and Alfisols with different 

forest successional stages categorized as pastures and secondary forests with ages from 15 to 60 

years. Successional ages were classified using historical aerial images and measuring time after 

the last visible clearing and confirmed, when possible, with local landowners, neighbors, and 

land managers. To facilitate analyses, forest age was reclassified as forest age classes: 15-29 

years (n = 7), 30-39 years (n = 3), 40-49 years (n = 4), > 50 years (n = 2), and active pastures (0 

years, n= 8). Within each soil order, representative sites were selected with representative 

successional ages (Alfisols n = 14 and Mollisols n = 11).  
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At each site, we collected paired soil cores (5 cm diameter x 10 cm depth) at three 

replicate semi-randomized locations for six cores per site. After collection, the soil was 

refrigerated, and a sub-sample was stored in a freezer at -20 °C. Samples were shipped from 

Puerto Rico to the University of Wisconsin- Madison in a cooler with ice bags and stored again 

in a -80 °C freezer after arrival.  

Soil carbon measurements  

Soil subsamples for elemental analysis were air-dried and ground to a fine powder using 

a SpexMill 8000D. Samples were tested for inorganic carbon using 10% HCl following (Nelson 

and Sommers 1983). Samples that tested positive were acid fumigated for 24 hours following 

(Harris et al. 2001). All samples were analyzed in a Flash 2000 Elemental Analyzer for total 

carbon and nitrogen (non-fumigated samples) and organic carbon (fumigated samples). Aspartic 

acid was used as a standard, and aspartic acid and soil reference material were used to check 

every ten samples.  

DNA extractions 

Soils were extracted for DNA sequencing analysis using 0.25 g of frozen soil subsamples. 

We performed DNA extractions for each sample with a blank every 24 extractions. Following the 

manufacturer's protocol, we used the DNEasy PoweLyzer PowerSoil DNA extraction kit 

(QIAGEN, Germantown, MD). DNA extracted was amplified in triplicates with PCR, targeting 

the ITS2 gene region with 5.8S-Fun ITS4-Fun primers (Taylor et al. 2016) and the v4 region of 

the 16S gene using 515f and 806r primers (Walters et al., 2015) with barcodes and Illumina 

sequencing adapters added (Kozich et al. 2013). PCR amplicons were pooled per sample, 

purified, and normalized using a SequalPrep Normalization Plate (96, ThermoFisher Scientific, 
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Waltham, MA) and cleaned up with a Wizard gel cleanup Kit. All pooled samples were 

submitted to the UW-Madison Biotechnology Center for 2x300 PE Illumina MiSeq sequencing. 

DNA processing 

The results from the ITS2 forward and reverse sequences were merged, quality filtered, 

and primer clipped using the ITSx function from the QIIME2 2020.2 software package (Boylen 

et al. 2019). The dada2 denoise-paired algorithm was implemented to determine amplicon 

sequence variant level OTUs (Callahan et al. 2016). We tested trimming and truncating 

parameters to determine optimal sequence rotation and quality control values. We used the 

UNITE 2022.10.16 database (UNITE‐Community, 2017) as the ITS2 reference database at 97% 

ID to assign taxonomy. We trained the classifier using QIIME2 feature-classifier classify sklearn 

(a naïve Bayes classifier). The classifier was trained for the region-specific to the primers 5.8S-

Fun ITS4-Fun. 

We quality-filtered and trimmed the 16S sequence reads and dereplicated them using 

dada2 (Callahan et al. 2016). We assigned taxonomies to the 16S reads with the aligned 515f-

806r region of the 97% ID OTUs from the Silva 138 database using a mothur classif.seqsknn 

method (version 138; Quast et al. 2013). There reads can be use to classify taxonomy to bacteria 

and archaea, but for this work we focus only on bacteria results.  

Functional traits 

To assign potential functional traits to the organisms, we used ecological traits, which are 

functional assignments based on the life strategy, phenotypic, and quantitative genomic traits of a 

taxon using its nomenclature for assignation (can target different taxonomic ranks; Djemiel et al. 

2022). For 16S data, we used the FAPROTAX database (Louca et al. 2016) to assign metabolic 

functions, ecological traits, or large functional groups relevant to prokaryotes. We used 
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FUNGuild using all confident levels to maximize sequence classifications (Nguyen et al. 2016) 

for ITS data, which assigns ecological traits to fungi based on their taxonomy.  

Bioinformatics and statistical approach 

All bioinformatics were completed primarily using R packages phyloseq (McMurdie and 

Holmes 2013), ggplot2, and dplyr (Wickham et al. 2015, Wickham 2016). We did not average by 

the site to represent the variability of our study area, resulting in a total of 75 samples. To 

compare community composition across samples, we used Bray-Curtis dissimilarities on 

Hellinger-transformed relative abundances (Legendre and Gallagher 2001). The community 

composition was presented using NMDS ordinations. To test if forest successional ages or soil 

order influenced community composition, we performed a PERMANOVA using the adonis 

function in the vegan R package (Oksanen et al. 2013). Diversity indices (Shannon’s Diversity 

and Shannon’s Evenness) were estimated using the vegan package in R (Oksanen et al. 2013). To 

test for differences across successional ages and between soil orders for microbial diversity, 

phylum relative abundance, and functional characterizations, we performed ANOVAs with 

interactions and Tukey HSD for multiple comparison corrections. We also used linear regression 

with cubic smoothing spline to visualize trends across succession and the effect of soil order on 

the trends, comparing models with and without the soil order effect using an ANOVA. To test 

how functional groups could potentially influence soil carbon, we performed linear regression 

models with the abundance of the functional group relative abundance and the interaction of 

successional ages + functional group relative abundance and the interaction of soil orders. Data 

that did not fit assumptions for ANOVA or linear regressions were transformed. We considered 

there to be a significant effect when the p-value <0.05, but we also considered there to be a 
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marginal effect explaining potential trends if the p-value was <0.10 due to our highly variable 

system and the limited number of field samples.  

Results 

Bacterial diversity  

Bacterial Shannon’s Evenness index differed after pasture abandonment (p-value = 0.004; 

Table 1; Figure 1a), with a significant interaction between forest age class and soil order (p-value 

= 0.012). Tukey’s HSD showed higher evenness in pastures compared to forests of 15-29 years 

(p-value = 0.088), 30-39 years (p-value = 0.09), and >50 years (p-value = 0.022).  Bacterial 

evenness decreased with forest age, but in Mollisols it increased at forests of 40 years or more. 

We found no significant difference in Richness or Shannon Diversity index for bacteria across 

succession or between soil orders. However, there was a marginal difference (p-value = 0.084) 

for Shannon diversity and forest age. This might indicate that Shannon diversity decreases from 

pastures to early-stage forests but increases again at older stages.  

The bacterial NMDS (K = 3, Stress 0.143; Figure 2a) did not show any clear groupings 

between the two soil orders or any pattern with forest age. The PERMANOVA for bacterial 

communities showed a significant effect on soil order (p-value = 0.001), forest age class (p-value 

= 0.001), and their interaction (p-value = 0.001; Table 2). However, the betadisperse analysis 

showed that the forest age class (p-value = 0.001) and soil order (p-value = 0.03; Table 3) 

groupings were heterogeneous, meaning that the dispersion of the samples may influence the 

significance of the forest age class and soil order grouping in the PERMANOVA.  

Fungal diversity  

Fungal richness, Shannon diversity index, or Shannon’s Evenness index did not differ 

with forest age class or soil order (Table 1).   
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The fungal NMDS (k=3, Stress = 0.149; Fig 2b) showed a gradual change in community 

composition across forest age class and different grouping between soil orders. The 

PERMANOVA for the fungal communities showed a significant effect between soil orders (p-

value = 0.001), forest age class (p-value = 0.001), and their interaction (p-value = 0.001; Table 

2). The betadisperse analysis showed a homogeneous dispersion in the fungal data supporting the 

PERMANOVA results of soil order grouping (p-value = 0.561) but not for forest age class (p-

value = 0.001; Table 3).  

Bacteria relative abundance 

The most abundant bacterial phyla in our samples were Actinobactiota (15.5%), 

Acidobacteriota (13.19%), and Proteobacteria (12%; see the others in Table 4), which are also 

known to be highly abundant in soils (Janssen 2006, Lauber at al., 2009). To test how the most 

abundant bacterial phylum’s relative abundance differed across forest age and soil order, we used 

a two-way ANOVA (Table 5, Figure 3) followed by a Tukey HSD (Table 6). We found that 

Actinobacteria relative abundance significantly differed by soil order (p-value = 0.007), with an 

interaction between forest age and soil order (p-value = 0.036). Mollisols had a greater 

abundance of Actinobacteria than Alfisols (p-value = 0.009); this difference was highlighted in 

pastures. Acidobacteriota relative abundance differed among forest age classes (p-value = 

<0.001) and the interaction between forest age and soil order (p-value < 0.001). The Tukey HSD 

showed that Acidobacteriota relative abundance was lower in pastures of Mollisols compared to 

forest of 15-29 years (p-value = 0.012), 40-49 years (p-value = 0.001), and > 50 years (p-value = 

0.020). The relative abundance of Proteobacteria differed by forest age class (p-value = 0.04).  

Tukey HSD only showed a difference between forests of 15-29 years and 30-39 years (p-value 
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0.097) and between forests of 40-49 years and 30-39 years (p-value = 0.090),  suggesting a 

decrease from pasture to early stages, an increase in mid-stages, and a decrease later. 

We also report the results of Methylomirobilota (5%) and Verrucomicrobiota (4.4%) due 

to their importance as indicators of land use change. Methylomirobilota relative abundance also 

significantly differed among forest age classes (p-value < 0.001). The Tukey HSD showed that 

pastures have lower Methylomirobilota relative abundances than forests of 15-29 years (p-value 

< 0.001), 40-49 years (p-value < 0.001), and >50 years (p-value < 0.001). Verrucomicrobiota 

relative abundance showed a significant difference in forest age classes (p-value < 0.001), soil 

orders (p-value =0.003), and the interaction between forest age and soil orders (p-value = 0.009). 

The Tukey HSD showed that pastures in Alfisols have higher Verrucomicrobiota relative 

abundances than forests of 15-29 years (p-value = 0.007), 40-49 years (p-value = 0.017), and >50 

years (p-value = 0.067), and, in general, Alfisols have greater relative abundances than Mollisols 

(p-value = 0.022).  

To visualize the trends of changes in the relative abundacnes of bacterial phyla across 

forest ages, we used natural spline lines with 3 degrees of freedom (Figure 4). Most of our 

models represented a variability from R2 <0.01 to 0.41. Acidobacteriota (R2 = 0.41), and 

Methylomirabilota (R2 = 0.31), increased non-linearly from pastures to older-stage forests. 

Actinobacteriota (R2 = 0.18) and Verrucomicrobiota (R2 = 0.33) decreased non-linearly from 

pasture to older-stage forests. Proteobacteria (R2 = 0.03) did not show any clear trend across 

successional stage. Soil order had a significant effect on all the aforementioned phyla except 

Proteobacteria and Methylomirabilota (Table 7). These findings indicate that the successional 

patterns in bacterial phyla are influenced by soil order. 
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Fungi relative abundance 

The most abundant fungal phyla at our sites were Ascomycota (30.7%) and 

Basidomycota (16.1%). We were not able to assign taxonomy at the phylum level to 15% of our 

fungal community (Table 4). To test how fungal phyla’s relative abundances differ across forest 

age and soil order, we used a two-way ANOVA (Table 8, Figure 7) followed by a Tukey HSD 

(Table 9). Mortierellomycota relative abundance differed among forest age classes (p-value 

<0.001) and by soil orders (p-value = 0.035). The Tukey HSD revealed that forests of 40–49 

years had more Mortierellomycota than pastures (p-value <0.001), and forests of 15-29 years (p-

value = 0.016), and 30–39 years (p-value = 0.017). We also found that Glomeromycota was 

higher in pastures compared to forests (p-value = 0.056). None of the other fungal phyla differed 

among forest age classes and soil orders.  

To see the trends in fungal phyla across forest ages, we used natural spline lines with 3 

degrees of freedom (Figure 6). Our models represented a variability from <0.01 to 0.21% 

(measured by R2). Mortierellomycota was the phylum with the best-represented variability (R2 = 

0.21), indicating a non-linear increase across forest succession. Ascomycota (R2 = 0.08) and 

Glomeromycota (R2 = 0.06) showed a non-linear decrease across succession, while 

Basidomycota (R2 = 0.03) showed a non-linear increase. The variation in these phyla was very 

low, represented by forest age and soil order. None of the fungal relative abundances varied by 

soil order (Table 10). 

Bacteria functional traits 

A total of 12% of the bacterial OTUs were classified were classified using the 

FAPROTAX database. From those, we chose to use functional classifications directly relevant to 

the soil carbon cycle (see Table 11 for relative abundances). We used a two-way ANOVA to test 
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how different bacterial functional groups differed across forest age classes and soil orders (Table 

12, Figure 7) and Tukey HSD (Table 13). Chitinolytic bacteria relative abundance differed across 

forest age classes (p-value <0.001), soil orders (p-value < 0.001), and their interaction (p-value < 

0.001). The Tukey HSD test showed lower Chitinolytic bacteria relative abundance in pastures 

compared to forests of15 to 29 years (p-value < 0.001) and 30-39 years (p-value = 0.079), but in 

Alfisols, it increased at forests of 30-39 years and decrease again with forest age. Methylotrophic 

bacteria differed across forest ages (p-value = 0.003), with greater relative abundance in pastures 

compared to forests of 15-29 years (p-value = 0.011), 40-49 years (p-value = 0.015) and >50 

years (p-value = 0.071). Cellulolytic bacteria relative abundance differed across forest ages (p-

value = 0.043) and soil orders (p-value = 0.009).  Their relative abundance was greater in 

Alfisols than Mollisols (p-value = 0.015) and in pastures than forests of 15-29 years (p-value = 

0.065). Aromatic compound degradation bacteria relative abundance decreased from pastures to 

older forests of 40-49 years (p-value = 0.005) and > 50 years (p-value = 0.099). Bacteria 

involved in aromatic hydrocarbon degradation were more abundant in Alfisols than in Mollisols 

(p-value 0.068). Chemotrophic bacteria relative abundance showed a complex pattern with 

succession, decreasing from pastures to forests of 15-29 years (p-value = 0.004), then increasing 

in forests of 30-39 years (p-value < 0.001), and decreasing again in the older forests, 40-49 years 

(p-value < 0.001) and >50 years (p-value = 0.001).  

To see trends across succession in these functional classifications, we used spline lines 

with 3 degrees of freedom (Figure 8). The variability of these models ranged from 0.06 to 0.41 

(measured by R2). Chemotrophic (R2 = 0.15) and Chitinolytic (R2 = 0.10) bacteria increased in 

the early stages of forest succession and then decreased in Mollisols, whereas Cellulolytic (R2 = 

0.15) bacteria showed the opposite trend. In Alfisols, Cellulolytic and Chemotrophic bacteria 
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decreased after pasture abandonment, increased during early forest succession, and declined in 

older forests, while Chitinolytic bacteria showed the opposite trend. These results suggest that 

successional trends in bacterial functional classification vary with soil order (Table 14). 

Fungi functional traits  

A total of 48% of the fungal OTUs were classified using the FUNGuild database. For 

trophic-level classification, there were 34.1% of Saprotrophs, 12.2% of Pathotrophs, and 15.5% 

of Symbiotrophs (Table 11). We used a two-way ANOVA to test how different fungal functional 

groups differed across forest age classes and soil orders (Table 15, Figure 9) and Tukey HSD 

(Table 16). Saprotrophic fungi relative abundance was lower in pastures than in forests of 40-49 

years (p-value = 0.026) and was greater in Alfisols compared to Mollisols (p-value = 0.058). 

Symbiotrophs’ relative abundance differed across forest ages (p-value = 0.003) and soil order (p-

value = 0.011). The forests of 40-49 years had a greater relative abundance of Symbiotrophs than 

pastures (p-value = 0.009), forests of 15-29 years (p-value = 0.021), and 30-39 years (p-value = 

0.010), suggesting an increase during succession. Alfisols had more symbiotrophs than Mollisols 

(p-value = 0.036). Pathotrophs did not differ between forest age classes or soil orders.  

We used spline line models to visualize trends in these trophic categories across forest 

age varied from <0.01 to 0.14 (measured by R2; Figure 10, Table 17). Saprotrophs increased with 

forest age, while Pathotrophs showed a decrease with succession, followed by an increase in 

older forests. However, the models for Saprotrophs and Pathotrophs only explained a small 

percentage of the variability of the data. The relative abundance of Symbiotrophs increased with 

forest age on Alfisols only. 

For guild classification, 1.06% were Arbuscular mycorrhizal fungi, 2.01% were 

Ectomycorrhizal fungi, 1.24% were Plant pathogens, and 5.28% were Wood Saprotrophs across 
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all samples (Table 11). Arbuscular mycorrhizal fungi’s relative abundance was greater in pastures 

than in forests (p-value = 0.056; Figure 11). Ectomycorrhizal relative abundance was greater in 

forests of >50 years than in pastures (p-value = 0.036) and forests of 15–29 years (p-value = 

0.034), suggesting an increase across succession. Plant pathogens’ relative abundance was 

greater in Alfisols than in Mollisols (p-value = 0.014). We found no differences in the relative 

abundances of arbuscular mycorrhizal fungi and wood saprotrophs across successional stages or 

soil orders.  

The spline line models represented <0.01 to 0.13 of the variability of the data (measured 

by R2). Arbuscular mycorrhizal fungi decreased with forest age (R2 = 0.1; Figure 12, Table 17) 

with no difference across soil orders. Wood saprotrophs showed no change with reforestation in 

Mollisols, whereas in Alfisols, their abundance increased early on, followed by a decrease later 

with succession (R2 = 0.13).  

Bacteria’s relationship to soil carbon  

Actinobacteria relative abundances were negatively related to SOC (β = -0.128, p-value = 

0.041, R2 = 0.36), and the effect was stronger in forests >50 yrs. (β = -0.199, p-value 0.051, R2 = 

X; Table 18). Verrucomicrobiota relative abundances were negatively related to soil carbon (β = - 

0.619, p-value 0.027, R2 = 0.48) with a significant effect on soil order (p-value = 0.007). 

Firmicutes relative abundances were only positively related to soil carbon in forests > 50 years (β 

= 1.584, p-value 0.041), representing a variability of 39%. In contrast, Acidobacteria was 

positively related to SOC (β = 0.128526, p-value = 0.078, R2 = 0.41), and the effect was more 

significant in forests >50 years (β = 0.303, p-value < 0.001). Proteobacteria was positively 

related to SOC (β = 0.181, p-value = 0.032, R2 = 0.54), and the effect was more substantial in 

forests of 30-39 years (β = 0.066, p-value = 0.005). Methylomirabilota was only positively 
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related to soil carbon for forests of 30-39 years (β = 0.619, p-value 0.045) and negatively to 

forests of > 50 years (β = -0.733, p-value 0.034), and this model explained 38% of the variability. 

Of the bacteria related to soil carbon, none show a significant effect on different soil types. 

Bacterial functionality was related to soil carbon. Chitinolytic bacteria were negatively 

related to soil carbon (β = -5.931e-15, p-value < 0.001, R2 = 0.42), and this relationship was 

modulated across forest age classes. Fermentation bacteria was negatively related to soil carbon 

(β = - 3.101e-14, p-value < 0.001, R2 = 0.38), and this relationship was modulated across forest 

age classes. 

Fungi’s relationship to soil carbon  

Ascomycota relative abundances were positively related to soil carbon (β = 0.035, p-

value = 0.001, R2 = 0.50; Table 19) with a stronger effect in forests of > 50 years (β = 0.046, p-

value = 0.007) and showed an inverse relationship in forest of 30-39 years (β = -0.0638, p-value 

= 0.002). Motirellomycota relative abundances were positively related to soil carbon in forests of 

30-39 years (B = -3.04, p-value 0.007), and negatively related soil carbon forests of > 50 years (β 

= -0.347449, p-value = 0.008) this model represented 37% of the variability. Basidomycota 

relative abundances were only negatively related to forest soil carbon of 30-39 years (β = -0.050, 

p-value = 0.003, R2= 0.41). Gloreomycota relative abundances were negatively related to soil 

carbon (β = -3.037869, p-value = 0.058, R2 = 0.17), with a strong effect on soil order (p-value 

<0.001).  

Pathotrophs were negatively correlated to soil carbon in Mollisols while positively 

correlated to carbon in Alfisols (β = -1.485e-01, p-value 0.003). Ectomycorrhizal fungi were 

negatively related to soil carbon in the forest of 15-29 years (B = -0.427, p-value 0.035) and 

positively related in the forest of 30-29 (β = 0.844, p-value 0.006) and 40-49 years (β = 0.604, p-
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value = 0.039) model represents a variability of 40%. Plant pathogens were positively related to 

soil carbon in forests of 30-39 years (β = 0.462644, p-value = 0.049) with the model representing 

32% of the variability. Wood saprotrophs were positively related to soil carbon (β = 0.0342, p-

value 0.001, R2 = 0.43), with soil order having a strong influence (p-value = 0.010).  

Discussion 

This study aimed to investigate the effects of tropical forest succession on microbial 

communities in different soil orders along a weathering catena, as well as to assess whether 

microbial functional traits explained the variation in soil carbon across succession and soil 

orders. When examining bacterial diversity, we found that forest succession had a significant 

impact on alpha diversity but not beta diversity. On the other hand, fungal beta diversity was 

influenced by forest succession, while alpha diversity remained relatively stable. Our results 

suggest that there is a difference in microbial response to forest succession. Interestingly, we 

observed distinct variations in the relative abundance of certain bacteria following pasture 

abandonment, with some bacteria showing differences solely between forests and pastures, while 

others exhibited changing trends across different forest ages. While fungal phyla displayed 

minimal changes across succession, analyzing their functionality revealed important trends. This 

suggests a potential shift in the functional roles of fungi in response to environmental changes. 

Notably, our findings highlight the crucial role of soils in shaping the microbial response to 

forest succession, linking that part of the variability found in microbial communities across 

succession is the result of diverse soil environments. Additionally, we found that microbial 

functional characteristics partially explained variations in soil carbon related to forest age and 

soil order, underscoring the complex relationship within these disturbed ecosystems. Although 

our study provides valuable insights, further research is needed to enhance the classification of 
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microbial functionalities and roles in disturbed forest soil, particularly in tropical regions. In the 

subsequent sections, we dip into the implications of our findings, offering a more detailed 

exploration and discussion of their significance. 

Forest succession influences bacterial and fungal beta and alpha diversity differently. 

Forest succession plays a crucial role in influencing microbial diversity, particularly in 

relation to bacterial and fungal communities. When assessing alpha diversity, which measures 

the richness and evenness of species within a specific habitat, distinct responses were observed 

between bacteria and fungi. For bacteria, alpha diversity was affected by changes in vegetation, 

indicating alterations in the number and relative abundance of bacterial taxa within specific 

habitats. Notably, pastures exhibited greater bacterial evenness compared to any forest 

successional age class. Additionally, a trend of decreasing Shannon diversity was observed from 

pastures to early-stage forests, followed by an increase in older stages. These results differ from 

findings in tropical and subtropical regions with similar karst soil as in our study, where bacterial 

diversity typically increases across secondary succession (Ren et al. 2017, Wang et al. 2022). 

Enhanced bacterial diversity across secondary succession can be attributed to increased carbon 

and nitrogen levels (Wang et al. 2022), and higher plant diversity following afforestation has also 

been associated with increased bacteria diversity (Ren et al. 2017). However, a recent meta-

analysis of tropical rainforest soils found an increase in bacterial alpha diversity and changes in 

composition with forest conversion to pastures and plantations (Petersen et al. 2019). Yet, most 

of these results were not strictly attributed to carbon for bacteria. In our study sites, the reduction 

in bacterial diversity in secondary forests may be attributed to early successional stage plants 

exploiting nutrients that are limiting availability for microorganisms (Powers and Marín-Spiotta 

2017), leading to changes in bacterial alpha diversity. When looking at fungal alpha diversity, we 
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found that it remained relatively stable despite vegetation cover changes, indicating a consistent 

number and relative abundance of fungal taxa. 

In contrast to alpha diversity, beta diversity focuses on variations in species composition 

between different habitats or areas. For bacteria, beta diversity shows significant response to land 

use change but it exhibit significant variation too, indicating that the composition of bacterial 

species remained relatively consistently variable across different habitats or areas. The high 

variability of bacterial communities during forest succession can be attributed to bacteria's ability 

to adjust gene expression for various metabolic pathways based on resource availability in the 

environment (McGee et al. 2019). Unless there are significant disturbances in the soil, such as 

topsoil removal, bacterial communities will remain highly variable. Conversely, fungal beta 

diversity was influenced by forest succession, indicating differences in fungal species 

composition between pastures and forests, as well as across different successional stages. 

Differences in fungal community composition between pastures and forests may be attributed to 

changing patterns in nutrient acquisition during transitions in vegetation communities (Mueller et 

al. 2016, Cho et al. 2017). Moreover, variations in the chemical composition of organic matter 

returned through plant litter across succession (Marín-Spiotta et al. 2008) could contribute to 

differences in fungal communities (Bai et al. 2019). These findings highlight the intricate 

dynamics of microbial communities during forest succession and underscore the crucial role of 

vegetation composition and nutrient inputs through litter deposition in shaping patterns of 

bacterial and fungal diversity. 

Bacterial relative abundance varied after pasture abandonment. 

The relative abundance of different bacteria phyla exhibited significant variations during 

forest succession after pasture abandonment. Actinobacteria, Acidobacteria, and Proteobacteria 
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were the most abundant, which is consistent with previous reports of soils in the tropics 

(Schneider et al. 2015, Zhang et al. 2017). Some bacterial groups differed more between pastures 

and forests than with forest age. Acidobacteria, for example, increased after pasture 

abandonment but had similar abundances across different forest ages. Similar findings were 

reported in the Brazilian Amazon (Navarrete et al. 2015). Acidobacteria is known to be abundant 

in the phyllosphere of tropical trees (Kim et al. 2013), suggesting litter could influence the 

increase of abundance in forest soils. The lack of changes in Acidobacteria across succession can 

be the result of the length of recovery of tropical forests. Forest structure can recover in 20 years 

after pasture abandonment (Marín-Spiotta et al. 2007), and biomass and stem density have also 

shown fast recovery in wet tropical forests (Poorter et al. 2019). This suggests that the fast 

recovery of forests could also be influencing a fast recovery of Acidobacteria which may 

contribute to no changes across later successional stages. Another phylum, Verrucomicrobia, 

showed higher relative abundance in pastures compared to forests. This finding aligns with 

results from the Brazilian Amazon, where an increase of 11.6% in Verrucomicrobia's relative 

abundance was observed in pastures, and the community composition within this phylum 

significantly differed from the forest community (Ranjan et al. 2015). In line with previous 

literature, our findings align with the proposal that Acidobacteria and Verrucomicrobia can serve 

as potential indicators of soil land use effects, specifically in the context of forest-to-pasture 

conversion (Pajares et al., 2016). 

Differences in relative abundance across forest ages were observed in several phyla, 

including Proteobacteria, Myxococcota, Latescibateriota, and the functional classification of 

Chemotrophic bacteria. Proteobacteria decreased from pastures to early stages of succession, 

followed by an increase in mid-stages and a subsequent decline in older forests. This trend 
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suggests that the increasing soil organic matter as a result of leaf litter during afforestation may 

promote the growth of Proteobacteria (Zhang et al. 2020), which we supported by Protobacteria 

positively related to SOC in our study. Notably, the higher abundance of Proteobacteria and 

Chemotrophs in pastures and mid-stages suggests variability in nitrogen availability across 

succession, as Proteobacteria and some bacteria Chemotrophs are known to play a role in the 

nitrogen cycle and thrive in nitrogen-rich soil environments (Pfister et al. 2010). Our results 

support our hypothesis that bacteria abundance and functionality will vary due to pasture 

abandonment and forest succession, although the implications for ecosystem function require 

further investigation.  

Saprotrophic and symbiotrophic fungi increase across forest succession.  

Saprotrophic and Symbiotrophic fungi exhibit varying abundance patterns throughout 

forest succession, with notable findings related to specific fungal phyla. Our analysis revealed 

that the most prevalent fungal phyla were Ascomycota and Basidiomycota, which aligns with 

previous studies in tropical soil environments (Ren et al. 2017, McGee et al. 2019). Surprisingly, 

we observed no differences in the relative abundance of Ascomycota and Basidiomycota across 

different stages of forest succession. Still, our spline model analysis showed a non-linear 

decrease in the relative abundances of Ascomycota across the succession stages, while 

Basidiomycota exhibited a non-linear increase. However, due to the high variability observed in 

their relative abundances, our models could only explain less than 8% of the variation, indicating 

the influence of other factors in driving their dynamics. Ascomycota and Basidiomycota may be 

more strongly influenced by resource availability rather than vegetation change across 

succession.  
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Glomeromycota, a phylum primarily associated with arbuscular mycorrhizal fungi, 

showed a decrease after pasture abandonment. This observation implies that pastures may have a 

greater relative abundance of arbuscular mycorrhizal fungi compared to forest systems. Similar 

observations were found in Brazilian Amazon were Glomeromycota spores were more abundant 

in pastures and early secondary forests (Leal et al., 2009). Supporting this statement, when 

evaluating the functional classification of arbuscular mycorrhizal fungi, we also noticed a 

marginal trend of greater relative abundance of arbuscular mycorrhizal fungi in pastures 

compared to forests. Notably, while Glomeromycota exhibited a decrease after pasture 

abandonment, there was an increase in the relative abundance of Symbiotrophic fungi. However, 

these results could be supported by the increase in the relative abundance of ectomycorrhizal 

fungi in older forest stages, which could indicate a switch from different mycorrhizal fungi 

symbiotic associations as result of vegetation change.  

Interestingly, Mortierellomycota, a phylum consisting of decomposers (Benny et al 

2016), also was more abundant in older forest stages. This finding aligns with expectations, as 

late-successional forests receive greater carbon inputs through above-ground litter deposition, 

especially coarse woody debris, favoring the carbon-decomposing fungi (Cornwell et al. 2008). 

The positive relationship of saprotrophic fungi and ectomycorrhizal fungi at later forest stages 

was surprising due to the expectation that organic matter accumulation will increase with forest 

age, influencing a higher relative abundance of decomposers in soils and a lower relative 

abundance of mycorrhizal fungi (Averill and Hawkes 2016, Schilling et al. 2016). A possible 

explanation for this could be that ectomycorrhizal fungi can function as saprotrophic fungi 

decomposing organic matter in soil due to potentially greater litter inputs, which has been 

supported by their evolutionary history (Lindahl and Tunlid 2015, Averill 2016).  



66 
 

 
 

Soils have a strong effect in modulating microbial response to forest succession. 

Soils play a crucial role in shaping the microbial response to forest succession, and our 

study highlights the importance of considering soil heterogeneity when evaluating the impact of 

land use on microbial communities in tropical regions. Our findings demonstrate that soil type 

influences the relative abundances of Actinobacteria and Myxococcota across forest succession. 

Generally, Mollisols exhibit greater relative abundances of Actinobacteria and Myxococcota than 

Alfisols. However, Mollisols show a decrease in relative abundance from pastures to early stages 

of forest succession, followed by an increase in older stages, while no apparent differences were 

observed in Alfisols. The effect of our alkaline, high organic matter Mollisols on these phyla has 

previously been seen in other studies, especially for Actinobacteria. Previous research has found 

that Actinobacteria are more abundant in alkaline soils rich in organic matter (Goodfellow and 

Williams 1983), and their relative abundance may be linked to the decomposition of organic 

matter (Pfister et al. 2010, Becerra-Lucio et al. 2021). This would suggest that in our catena 

system, the weathering of Mollisols into Alfisols, reducing organic matter and pH, may be 

modulating bacteria relative abundances.  

Symbiotrophic fungi relative abundance appeared to increase in older stages of 

succession in Alfisols, while in Mollisols, it seemed to decrease in forests older than 50 years. 

Many studies have reported that symbiotic relative abundance negatively correlates with 

saprotrophic relative abundance (specifically ectomycorrhizal fungi) due to competition for 

nitrogen in soils (Cairney 2012, Averill et al. 2014). However, if soil nutrients are limited at late 

stages, ectomycorrhizal fungi would be more abundant at later stages (Cox et al. 2010). The 

availability of organic matter in Mollisols may promote a decrease in symbionts, while a more 
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weathered soil in which Alfisols have less organic matter could imply fewer resources for 

microorganisms compared to Mollisols leading to a higher relative abundance of symbionts. 

Our findings emphasize that microbial communities respond not only to vegetation 

changes but also to the availability of resources and the chemical characteristics of soil 

environments. Future research should incorporate the diversity of soils found in tropical regions 

to gain a comprehensive understanding of how land use changes affect not only biogeochemical 

cycles but also the organisms inhabiting the soil, which can have potential implications for 

ecosystem recovery and function across forest succession. 

Microbial functional characteristics can explain some of the variations of soil carbon. 

Our research highlights the significant role of microbial functional characteristics in 

explaining variations in soil carbon content. Despite the absence of a clear trend in SOC 

concentrations across succession, our findings demonstrate that microbial functional 

characteristics in combination with soil orders and successional stages could explain 30-50% of 

the variability in carbon content. This underscores the importance of understanding microbial 

communities’ response to environmental change and how it relates to soil carbon cycle (Schimel 

and Schaeffer 2012). Notably, the relationship between different microbial groups varied 

depending on the successional stage and soil type. 

Among the bacteria functional groups, Fermentation and chitinolytic bacteria were found 

to be significantly negatively related to soil carbon, with this relationship being modulated across 

forest age classes. In contrast, bacteria phyla emerged as strong predictors of soil carbon across 

succession and soil orders. Actinobacteria, which exhibited a negative correlation with SOC, 

particularly in older forests, are frequently associated with decomposition processes in the 

mineral horizons of soils, contributing to the breakdown of polysaccharides and phenolic 
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compounds during plant biomass decay (Štursová et al. 2012, Větrovský et al. 2014). On the 

other hand, Acidobacteria showed a positive correlation with SOC, with a more pronounced 

effect observed in older forests. Proteobacteria also positively correlated with SOC, especially in 

forests aged 30-39 years. Certain groups of bacteria within the Proteobacteria phylum have been 

identified as expressing ligninolytic and cellulolytic capabilities involved in organic material 

decomposition (Brown and Chang 2014). 

Furthermore, our research examined the functional characterization of fungi and their 

influence on soil carbon. We found that pathogenic fungi exhibited a negative correlation with 

soil carbon in Mollisols while showing a positive correlation in Alfisols. We hypothesize that the 

negative relationship observed in Mollisols can be attributed to the accumulation of pathogens in 

the rhizosphere, which directly depletes carbon and nutrients from plant tissues and reduces root 

uptake capacity. This, in turn, leads to negative feedback on plant growth (Bever et al. 1997), 

resulting in reduced inputs of carbon to the soil. Conversely, we hypothesize that in Alfisols, 

pathogens can act as saprotrophs, decomposing simple organic compounds (Deacon 1997) and 

promoting the transformation of carbon-stable compounds in the soil (Treseder and Lennon 

2015, Kyaschenko et al. 2017). Despite these findings, our understanding of pathogenic fungi 

and their role in biogeochemical cycles remains significantly limited. However, it is recognized 

that the presence of pathogenic fungi can affect the input and decomposition of plant organic 

matter by other microorganisms, thereby influencing carbon cycling in the soil (Zanne et al. 

2020). Therefore, considering the role of pathogens is important for comprehending soil carbon 

dynamics. 

Additionally, we found a positive relationship between wood saprotrophs and soil carbon. 

Saprotrophic fungi, including wood saprotrophs, play a critical role in the decomposition of 
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organic matter in the soil. They contribute to the breakdown of lignin and cellulose compounds, 

leading to the transformation of carbon into more stable forms within the soil which may they 

contribute to increases of carbon or could be responding to more available carbon in the soil 

(Treseder and Lennon 2015, Kyaschenko et al. 2017). Ectomycorrhizal fungi also displayed a 

positive correlation with SOC at later stages. This indicates their role in increasing soil carbon in 

late successional stages forests by limiting decomposition processes carried out by other 

organisms (e.g., bacteria), thereby preventing carbon loss through CO2 (Cairney 2012, Averill 

and Hawkes 2016, Shah et al. 2016, Baskaran et al. 2017). Fungal phyla relative abundance, 

particularly Ascomycota and Basidiomycota, can also contribute to our understanding of soil 

carbon Ascomycota showed a positive association with soil carbon, with the strength of this 

association varying depending on the succession stage and soil type. . In contrast, Basidiomycota 

exhibited a negative relationship with forest soil carbon, specifically in the age range of 30-39 

years. Both Ascomycota and Basidiomycota can rapidly metabolize organic substrates derived 

from root exudates, and their relative abundances are influenced by litter decomposition 

(Hannula et al. 2012, Bastida et al. 2013). Although no direct relationship between Ascomycota 

and Basidiomycota and succession was observed, their associations with soil carbon align with 

expectations based on their ecological roles. 

Challenges in using functional characterization to understand the resilience of microbial 

communities and their impact on ecosystem processes. 

The use of functional traits has been important in providing a framework for earth system 

modelers to understand soil biogeochemistry responses to environmental changes (Wieder et al. 

2013). However, the use of functional traits to understand the resilience of microbial 

communities and their impact on ecosystem processes presents several challenges. Although 
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functional traits provide valuable insights, our study revealed that the complete representation of 

bacterial and fungal communities was limited, with only 12% and 48% of reads classified, 

respectively. This suggests that a substantial portion of the microbial diversity that could be 

influencing ecosystem function during pasture abandonment and forest succession remains 

unclassified. However, this is not unique to our study. Although these databases present a great 

opportunity to study microbial function response to environmental changes, they have limitations 

(Djemiel et al. 2022). The FAPROTAX database, primarily populated with bacterial and 

Archaeal communities, poses limitations as it assigns ecological traits based on species names 

(Louca et al. 2016). Thus, taxa lacking species-level classification cannot be adequately assessed 

at higher taxonomic levels. Also, FAPROTAX was developed from information on ocean 

microbes (Louca et al. 2016). The representation of the database for soil accounts for less than 

25% (Djemiel et al. 2022), which can be the main explanation as to why our samples were 

poorly assigned. 

FunGuild database classification poses challenges due to the importance of the resolution 

of taxonomic levels classification from UNITE database. Assigning traits to taxa of interest 

requires taxonomic names at the genus or species level, which may not always be available. In 

our case, a significant percentage of sequences (15%) could not be classified by the UNITE 

database, limiting our ability to assign ecological traits as FunGuild uses taxonomic 

classification where 66% are at the genus level and 34% at the species level (Nguyen et al. 

2016). Also, FunGuild provides confidence rankings (“highly probable,” “probable,” and 

“possible”) representing the likelihood that a taxon belongs to a given guild. However, we did 

not select the particular confidence resolution to maximize sample classification in our data. The 
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lack of comprehensive classification and varying levels of confidence in trait assignment within 

FunGuild can introduce additional uncertainty to a study’s findings and implications. 

While these methodologies provide a basis for hypothesis development and general 

assessments of microbial communities and their ecological roles, further research is required to 

expand the databases and improve the representation of the diversity of microorganisms found in 

soils. This need is particularly pronounced in tropical ecosystems, which are understudied and 

subject to potential biases compared to other soil types (Díaz-Vallejo et al. 2021). Addressing 

these challenges will contribute to a more accurate understanding of microbial communities and 

their functional contributions in diverse ecosystems. 

Conclusion 

In conclusion, our study provides insights into the impact of tropical forest succession on 

microbial communities in different soil orders within a catena. We found that forest succession 

influenced bacterial alpha-diversity and fungal beta-diversity. The relative abundance of certain 

bacteria varied following pasture abandonment, while major phyla of fungi showed minimal 

changes. Saprotrophic and Symbiotrophic fungi increased after pasture abandonment and forest 

succession. Moreover, soil type played a crucial role in modulating the microbial response to 

forest succession. Additionally, we found that microbial functional characteristics partially 

explained the variations in soil carbon with respect to forest age and soil order. These findings 

highlight the complex dynamics of microbial communities during forest succession and 

emphasize the need for further research to enhance our understanding of microbial functionalities 

in disturbed tropical forest soils. 

 

 

 



72 
 

 
 

 

Figures  

 

 
Figure 1. Bacterial and Fungal diversity indexes among forest age classes and soil orders. yrs. = 

years 

 

 

 
Figure 2. Non-metric scaling analysis for Bacterial and Fungal beta diversity across forest age 

classes and soil orders. yrs. = years 
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Figure 3. Relative abundances of Bacterial phyla across forest age classes and soil orders. yrs. = 

years 

 

 
Figure 4. Spline lines trends with 3 degrees of freedom for bacterial relative abundances phyla 

across forest ages and between soil orders. yrs. = years 
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Figure 5. Fungal phyla relative abundances across forest age classes and soil orders. yrs. = 

years 
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Figure 6. Spline lines trends with 3 degrees of freedom for fungal phyla relative abundances 

phyla across forest ages and between soil orders. yrs. = years 

 

Figure 7. Bacterial functional groups relative abundance across forest age classes and soil 

orders. yrs. = years 
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Figure 8. Spline line trends with 3 degrees of freedom for bacterial functional groups relative 

abundances phyla across forest ages and between soil orders. yrs. = years 

 

 

 

Figure 9. Fungal trophic functional groups relative abundance across forest age classes and soil 

orders. yrs. = years 

 



77 
 

 
 

 

Figure 10. Spline line trends with 3 degrees of freedom for fungal trophic functional groups 

relative abundances across forest ages and between soil orders. yrs. = years 

 

Figure 2. Fungal guild functional groups relative abundance across forest age classes and soil 

orders. yrs. = years 
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Figure 3. Spline line trends with 3 degrees of freedom for fungal guild functional groups relative 

abundances across forest ages and between soil orders. yrs. = years 
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Tables 

 

df

Sum of 

Squares

Mean of 

Squares F value p-value

Bacteria

Richness

Forest Age Class 4 0.875 0.219 1.974 0.109

Soil Order 1 0.205 0.205 1.847 0.179

Forest Age Class * Soil Order 4 0.439 0.110 0.990 0.419

Residuals 65 7.205 0.111

Shannon 

Diversity 

Index 

Forest Age Class 4 1.100 0.275 2.154 0.084

Soil Order 1 0.253 0.253 1.978 0.164

Forest Age Class * Soil Order 4 0.607 0.152 1.189 0.324

Residuals 65 8.299 0.128

Shannon 

Evenness

Forest Age Class 4 0.001 0.000 4.215 0.004

Soil Order 1 0.000 0.000 2.091 0.153

Forest Age Class * Soil Order 4 0.001 0.000 3.470 0.012

Residuals 65 0.005 0.000

Fungi

Richness

Forest Age Class 4 1.182 0.295 2.086 0.093

Soil Order 1 0.155 0.155 1.097 0.299

Forest Age Class * Soil Order 4 1.003 0.251 1.770 0.146

Residuals 65 9.207 0.142

Shannon 

Diversity 

Index 

Forest Age Class 4 0.631 0.158 0.364 0.833

Soil Order 1 0.038 0.038 0.088 0.767

Forest Age Class * Soil Order 4 1.797 0.449 1.039 0.394

Residuals 65 28.124 0.433

Shannon 

Evenness

Forest Age Class 4 0.014 0.003 0.281 0.889

Soil Order 1 0.001 0.001 0.046 0.831

Forest Age Class * Soil Order 4 0.025 0.006 0.507 0.731

Residuals 65 0.788 0.012

Table 1. Analysis of Variance Results for testing differences of Bacterial and Fungal diversity indexes 

among forest age classes, soil orders, and their interaction. 



80 
 

 
 

 

 

 

 

 

 

 

df

Sum Of 

Squares R2 F value p-value 

Bacteria

Soil Order 1 0.715 0.021 1.656 0.001

Forest Age Class 4 2.679 0.080 1.551 0.001

Soil Order * Forest Age Class 4 2.170 0.065 1.256 0.001

Residual 65 28.067 0.835

Total 74 33.631 1

Fungi

Soil Order 1 0.946 0.029 2.511 0.001

Forest Age Class 4 4.133 0.127 2.743 0.001

Soil Order * Forest Age Class 4 2.877 0.089 1.909 0.001

Residual 65 24.486 0.755

Total 74 32.443 1

Table 2. PERMANOVA results for Bacterial and Fungal Communities differences among soil 

order, forest age classes, and the interaction between them 

df

Sum of 

Squares Mean Squares F value # Permutations p-value

Bacteria 

Forest Age Class 4 0.028 0.007 9.368 999.000 0.001

Residuals 70 0.052 0.001

Soil Order 1 0.003 0.003 5.057 999 0.032

Residuals 73 0.045 0.001

Fungi

Forest Age Class 4 0.044 0.011 11.115 999 0.001

Residuals 70 0.069 0.001

Soil Order 1 0.000 0.000 0.380 999 0.561

Residuals 73 0.063 0.001

Table 3. Betadisper results from  Bacterial and Fungal Communities differences among soil order 

and forest age classes. 
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Phylum Relative abundance (%) 

Bacteria 

Actinobacteriota 15.566

Acidobacteriota 13.187

Proteobacteria 12.037

Planctomycetota 5.682

Methylomirabilota 5.019

Verrucomicrobiota 4.409

Chloroflexi 4.311

Myxococcota 2.924

Firmicutes 2.189

Latescibacterota 1.676

Fungi

Ascomycota 30.668

Basidiomycota 16.108

Unknown 15.053

Mortierellomycota 7.430

Glomeromycota 1.059

Rozellomycota 0.975

Kickxellomycota 0.672

Mucoromycota 0.378

Chytridiomycota 0.168

Entorrhizomycota 0.014

Blastocladiomycota 0.004

Basidiobolomycota 0.001

Table 4 Baterial and Fungal relative abundances across 

all samples
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df

Sum of 

Squares

Mean of 

Squares F value p-value

Actinobacteriota

Forest Age Class 4 0.031 0.008 1.437 0.232

Soil Order 1 0.041 0.041 7.551 0.008

Forest Age Class * Soil Order4 0.059 0.015 2.726 0.037

Residuals 65 0.354 0.005

Acidobacteriota

Forest Age Class 4 0.045 0.011 7.308 0.000

Soil Order 1 0.002 0.002 1.103 0.298

Forest Age Class * Soil Order4 0.043 0.011 6.985 0.000

Residuals 65 0.100 0.002

Planctomycetota

Forest Age Class 4 0.030 0.007 2.612 0.043

Soil Order 1 0.003 0.003 0.985 0.325

Forest Age Class * Soil Order4 0.021 0.005 1.818 0.136

Residuals 65 0.184 0.003

Methylomirabilota

Forest Age Class 4 0.037 0.009 11.607 0.000

Soil Order 1 0.000 0.000 0.005 0.945

Forest Age Class * Soil Order4 0.003 0.001 0.827 0.513

Residuals 65 0.052 0.001

Verrucomicrobiota

Forest Age Class 4 0.049 0.012 5.573 0.001

Soil Order 1 0.021 0.021 9.435 0.003

Forest Age Class * Soil Order4 0.033 0.008 3.673 0.009

Residuals 65 0.144 0.002

Chloroflexi

Forest Age Class 4 0.012 0.003 2.028 0.101

Soil Order 1 0.000 0.000 0.061 0.805

Forest Age Class * Soil Order4 0.004 0.001 0.719 0.582

Residuals 65 0.093 0.001

Myxococcota

Forest Age Class 4 0.003 0.001 4.371 0.003

Soil Order 1 0.001 0.001 6.390 0.014

Forest Age Class * Soil Order4 0.001 0.000 1.654 0.171

Residuals 65 0.013 0.000

Firmicutes

Forest Age Class 4 0.005 0.001 2.350 0.063

Soil Order 1 0.005 0.005 8.130 0.006

Forest Age Class * Soil Order4 0.003 0.001 1.363 0.257

Residuals 65 0.037 0.001

Latescibacterota

Forest Age Class 4 0.007 0.002 6.483 0.000

Soil Order 1 0.000 0.000 0.013 0.910

Forest Age Class * Soil Order4 0.001 0.000 0.962 0.434

Residuals 65 0.018 0.000

Table 5. Analysis of Variance Results for testing differences of Bacterial 

phyla relative abundances among forest age classes, soil orders, and 

their interaction. 
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Difference Lowe CI Upper CI p-value

Actinobacteriota

15-29 yrs.-Pastures -0.034 -0.101 0.033 0.624

30-39 yrs.-Pastures -0.025 -0.113 0.063 0.932

40-49 yrs.-Pastures -0.059 -0.138 0.021 0.251

>50 yrs.-Pastures -0.037 -0.125 0.051 0.769

30-39 yrs.-15-29 yrs. 0.009 -0.081 0.099 0.999

40-49 yrs.-15-29 yrs. -0.025 -0.106 0.057 0.915

>50 yrs.-15-29 yrs. -0.003 -0.093 0.087 1.000

40-49 yrs.-30-39 yrs. -0.034 -0.133 0.066 0.878

>50 yrs.-30-39 yrs. -0.012 -0.118 0.094 0.998

>50 yrs.-40-49 yrs. 0.022 -0.078 0.121 0.973

Mollisols-Alfisols 0.048 0.012 0.084 0.010

Acidobacteriota

15-29 yrs.-Pastures 0.045 0.007 0.083 0.012

30-39 yrs.-Pastures 0.038 -0.012 0.087 0.221

40-49 yrs.-Pastures 0.063 0.018 0.108 0.002

>50 yrs.-Pastures 0.056 0.006 0.105 0.020

30-39 yrs.-15-29 yrs. -0.007 -0.058 0.043 0.994

40-49 yrs.-15-29 yrs. 0.018 -0.028 0.064 0.807

>50 yrs.-15-29 yrs. 0.011 -0.040 0.061 0.977

40-49 yrs.-30-39 yrs. 0.025 -0.031 0.081 0.711

>50 yrs.-30-39 yrs. 0.018 -0.042 0.078 0.917

>50 yrs.-40-49 yrs. -0.007 -0.063 0.049 0.996

Mollisols-Alfisols 0.007 0.017 0.030 0.584

Planctomycetota

15-29 yrs.-Pastures -0.021 -0.067 0.024 0.680

30-39 yrs.-Pastures 0.033 -0.026 0.093 0.526

40-49 yrs.-Pastures -0.028 -0.082 0.026 0.591

>50 yrs.-Pastures -0.030 -0.090 0.029 0.619

30-39 yrs.-15-29 yrs. 0.055 -0.006 0.115 0.097

40-49 yrs.-15-29 yrs. -0.007 -0.062 0.049 0.997

>50 yrs.-15-29 yrs. -0.009 -0.069 0.052 0.994

40-49 yrs.-30-39 yrs. -0.061 -0.129 0.006 0.090

>50 yrs.-30-39 yrs. -0.063 -0.135 0.008 0.109

>50 yrs.-40-49 yrs. -0.002 -0.069 0.065 1.000

Mollisols-Alfisols 0.011 -0.015 0.037 0.399

Table 6. Tukey HSD results for SOC pair comparisons for Bacterial phyla relative 

abundance differences among forest age classes, soil orders, and their 

interaction. 
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Methylomirabilota

15-29 yrs.-Pastures 0.036 0.012 0.059 0.001

30-39 yrs.-Pastures 0.021 -0.009 0.052 0.304

40-49 yrs.-Pastures 0.058 0.031 0.086 0.000

>50 yrs.-Pastures 0.053 0.023 0.084 0.000

30-39 yrs.-15-29 yrs. -0.014 -0.045 0.017 0.704

40-49 yrs.-15-29 yrs. 0.023 -0.005 0.051 0.170

>50 yrs.-15-29 yrs. 0.018 -0.014 0.049 0.512

40-49 yrs.-30-39 yrs. 0.037 0.003 0.072 0.029

>50 yrs.-30-39 yrs. 0.032 -0.005 0.069 0.122

>50 yrs.-40-49 yrs. -0.005 -0.040 0.029 0.993

Mollisols-Alfisols -0.003 -0.019 0.014 0.762

Verrucomicrobiota

15-29 yrs.-Pastures -0.055 -0.100 -0.011 0.007

30-39 yrs.-Pastures -0.033 -0.091 0.025 0.517

40-49 yrs.-Pastures -0.060 -0.113 -0.007 0.017

>50 yrs.-Pastures -0.056 -0.114 0.003 0.067

30-39 yrs.-15-29 yrs. 0.023 -0.037 0.082 0.822

40-49 yrs.-15-29 yrs. -0.005 -0.058 0.049 0.999

>50 yrs.-15-29 yrs. 0.000 -0.060 0.059 1.000

40-49 yrs.-30-39 yrs. -0.027 -0.093 0.038 0.772

>50 yrs.-30-39 yrs. -0.023 -0.093 0.047 0.891

>50 yrs.-40-49 yrs. 0.004 -0.061 0.070 1.000

Mollisols-Alfisols -0.030 -0.056 -0.004 0.023

Chloroflexi

15-29 yrs.-Pastures -0.018 -0.049 0.013 0.482

30-39 yrs.-Pastures -0.030 -0.071 0.011 0.250

40-49 yrs.-Pastures -0.033 -0.070 0.004 0.100

>50 yrs.-Pastures -0.012 -0.053 0.028 0.912

30-39 yrs.-15-29 yrs. -0.012 -0.053 0.030 0.931

40-49 yrs.-15-29 yrs. -0.015 -0.053 0.023 0.803

>50 yrs.-15-29 yrs. 0.006 -0.036 0.047 0.995

40-49 yrs.-30-39 yrs. -0.003 -0.049 0.043 1.000

>50 yrs.-30-39 yrs. 0.017 -0.032 0.067 0.855

>50 yrs.-40-49 yrs. 0.021 -0.025 0.067 0.719

Mollisols-Alfisols 0.003 -0.015 0.021 0.713
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Myxococcota

15-29 yrs.-Pastures -0.006 -0.019 0.006 0.649

30-39 yrs.-Pastures -0.009 -0.026 0.007 0.509

40-49 yrs.-Pastures 0.012 -0.003 0.027 0.174

>50 yrs.-Pastures 0.005 -0.011 0.022 0.892

30-39 yrs.-15-29 yrs. -0.003 -0.020 0.013 0.984

40-49 yrs.-15-29 yrs. 0.018 0.003 0.033 0.012

>50 yrs.-15-29 yrs. 0.011 -0.005 0.028 0.316

40-49 yrs.-30-39 yrs. 0.021 0.003 0.039 0.017

>50 yrs.-30-39 yrs. 0.015 -0.005 0.034 0.244

>50 yrs.-40-49 yrs. -0.007 -0.025 0.012 0.856

Mollisols-Alfisols -0.007 -0.015 0.000 0.044

Firmicutes

15-29 yrs.-Pastures -0.002 -0.023 0.019 0.998

30-39 yrs.-Pastures -0.023 -0.051 0.004 0.141

40-49 yrs.-Pastures 0.007 -0.018 0.032 0.941

>50 yrs.-Pastures -0.009 -0.037 0.019 0.906

30-39 yrs.-15-29 yrs. -0.021 -0.050 0.007 0.234

40-49 yrs.-15-29 yrs. 0.009 -0.017 0.035 0.863

>50 yrs.-15-29 yrs. -0.007 -0.035 0.022 0.968

40-49 yrs.-30-39 yrs. 0.030 -0.001 0.062 0.065

>50 yrs.-30-39 yrs. 0.015 -0.019 0.048 0.736

>50 yrs.-40-49 yrs. -0.016 -0.047 0.016 0.640

Mollisols-Alfisols -0.138 -0.026 -0.002 0.022

Latescibacterota

15-29 yrs.-Pastures 0.023 0.010 0.037 0.000

30-39 yrs.-Pastures 0.003 -0.015 0.021 0.992

40-49 yrs.-Pastures 0.014 -0.002 0.031 0.110

>50 yrs.-Pastures 0.017 -0.001 0.035 0.072

30-39 yrs.-15-29 yrs. -0.021 -0.039 -0.002 0.021

40-49 yrs.-15-29 yrs. -0.009 -0.026 0.008 0.565

>50 yrs.-15-29 yrs. -0.006 -0.025 0.012 0.876

40-49 yrs.-30-39 yrs. 0.012 -0.009 0.032 0.508

>50 yrs.-30-39 yrs. 0.014 -0.008 0.036 0.361

>50 yrs.-40-49 yrs. 0.003 -0.018 0.023 0.996

Mollisols-Alfisols -0.001 -0.010 0.008 0.784
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Res.Df RSS df Sum of SquaresF value p-value R2

Actinobacteriota

Forest Age 71 0.27442 0.28

Forest Age * Soil Order 67 0.214 4 0.060418 4.729 0.002019 0.18

Acidobacteriota       

Forest Age 71 0.099728 0.2

Forest Age * Soil Order 67 0.070411 4 0.029317 6.9741 9.35E-05 0.41

Proteobacteria       

Forest Age 71 0.14144 0.03

Forest Age * Soil Order 67 0.13245 4 0.008992 1.1371 0.3467 0.03

Planctomycetota

Forest Age 71 0.07967 0.24

Forest Age * Soil Order 67 0.07519 4 0.00448 0.9981 0.4149 0.24

Methylomirabilota

Forest Age 71 0.051625 0.33

Forest Age * Soil Order 67 0.049951 4 0.001674 0.5614 0.6915 0.31

Verrucomicrobiota

Forest Age 71 0.15244 0.15

Forest Age * Soil Order 67 0.11343 4 0.039016 5.7615 0.000479 0.33

Chloroflexi 

Forest Age 71 0.084191 0.03

Forest Age * Soil Order 67 0.082414 4 0.001776 0.361 0.8355 < 0.01

Myxococcota

Forest Age 71 0.015644 0.07

Forest Age * Soil Order 67 0.014292 4 0.001352 1.5849 0.1885 0.1

Firmicutes

Forest Age 71 0.044817 < 0.01

Forest Age * Soil Order 67 0.040314 4 0.004503 1.871 0.1257 0.04

Latescibacterota

Forest Age 71 0.018822 0.21

Forest Age * Soil Order 67 0.016464 4 0.002358 2.399 0.05866 0.27

Table 7. Linear regression with cubic smoothing spline results from Bacterial phyla relative abundance 

across forest age. The effect of soil order is evaluated by conducting an ANOVA on regression with and 

without soil order. 



87 
 

 
 

 

df

Sum of 

Squares

Mean of 

Squares F value p-value

Ascomycota

Forest Age Class 4 0.957 0.239 1.590 0.187

Soil Order 1 0.215 0.215 1.429 0.236

Forest Age Class * Soil Order 4 0.732 0.183 1.217 0.312

Residuals 65 9.780 0.151

Basidiomycota

Forest Age Class 4 0.314 0.078 1.683 0.165

Soil Order 1 0.001 0.001 0.019 0.890

Forest Age Class * Soil Order 4 0.338 0.085 1.816 0.136

Residuals 65 3.027 0.047

Chytridiomycota

Forest Age Class 4 0.000 0.000 0.611 0.656

Soil Order 1 0.000 0.000 0.792 0.377

Forest Age Class * Soil Order 4 0.000 0.000 0.597 0.666

Residuals 65 0.006 0.000

Glomeromycota

Forest Age Class 4 0.019 0.005 2.430 0.056

Soil Order 1 0.001 0.001 0.277 0.601

Forest Age Class * Soil Order 4 0.001 0.000 0.162 0.957

Residuals 65 0.129 0.002

Kickxellomycota

Forest Age Class 4 0.000 0.000 0.800 0.530

Soil Order 1 0.000 0.000 0.006 0.937

Forest Age Class * Soil Order 4 0.000 0.000 0.531 0.713

Residuals 65 0.010 0.000

Mortierellomycota

Forest Age Class 4 1.030 0.257 5.721 0.001

Soil Order 1 0.209 0.209 4.636 0.035

Forest Age Class * Soil Order 4 0.306 0.077 1.703 0.160

Residuals 65 2.924 0.045

Table 8. Analysis of Variance Results for testing differences of fungal phyla relative abundances 

among forest age classes, soil orders, and their interaction. 
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Difference Lowe CI Upper CI p-value

Ascomycota

15-29 yrs.-Pastures -0.153 -0.480 0.175 0.688

30-39 yrs.-Pastures -0.232 -0.660 0.196 0.555

40-49 yrs.-Pastures -0.220 -0.607 0.168 0.510

>50 yrs.-Pastures -0.332 -0.761 0.096 0.202

30-39 yrs.-15-29 yrs. -0.079 -0.516 0.357 0.986

40-49 yrs.-15-29 yrs. -0.067 -0.464 0.330 0.990

>50 yrs.-15-29 yrs. -0.180 -0.616 0.257 0.778

40-49 yrs.-30-39 yrs. 0.012 -0.471 0.496 1.000

>50 yrs.-30-39 yrs. -0.100 -0.617 0.416 0.982

>50 yrs.-40-49 yrs. -0.113 -0.596 0.371 0.966

Mollisols-Alfisols 0.130 -0.053 0.313 0.162

Basidiomycota

15-29 yrs.-Pastures 0.080 -0.103 0.264 0.735

30-39 yrs.-Pastures 0.176 -0.064 0.416 0.253

40-49 yrs.-Pastures 0.063 -0.154 0.280 0.925

>50 yrs.-Pastures 0.172 -0.068 0.412 0.273

30-39 yrs.-15-29 yrs. 0.095 -0.149 0.340 0.810

40-49 yrs.-15-29 yrs. -0.017 -0.239 0.205 0.999

>50 yrs.-15-29 yrs. 0.092 -0.153 0.336 0.832

40-49 yrs.-30-39 yrs. -0.113 -0.383 0.158 0.771

>50 yrs.-30-39 yrs. -0.004 -0.293 0.286 1.000

>50 yrs.-40-49 yrs. 0.109 -0.162 0.380 0.793

Mollisols-Alfisols -0.024 -0.128 0.080 0.652

Chytridiomycota

15-29 yrs.-Pastures 0.003 -0.005 0.011 0.850

30-39 yrs.-Pastures -0.002 -0.012 0.009 0.990

40-49 yrs.-Pastures -0.002 -0.011 0.008 0.990

>50 yrs.-Pastures 0.001 -0.009 0.012 0.995

30-39 yrs.-15-29 yrs. -0.005 -0.015 0.006 0.744

40-49 yrs.-15-29 yrs. -0.004 -0.014 0.005 0.701

>50 yrs.-15-29 yrs. -0.001 -0.012 0.009 0.995

40-49 yrs.-30-39 yrs. 0.000 -0.012 0.012 1.000

>50 yrs.-30-39 yrs. 0.003 -0.010 0.016 0.955

>50 yrs.-40-49 yrs. 0.003 -0.009 0.015 0.953

Mollisols-Alfisols -0.002 -0.007 0.002 0.351

Table 9. Tukey HSD results for SOC pair comparisons for Fungal phyla relative 

abundance differences among forest age classes, soil orders, and their 

interaction. 
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Glomeromycota

15-29 yrs.-Pastures -0.031 -0.068 0.005 0.118

30-39 yrs.-Pastures -0.038 -0.085 0.010 0.180

40-49 yrs.-Pastures -0.037 -0.080 0.006 0.122

>50 yrs.-Pastures -0.032 -0.080 0.015 0.318

30-39 yrs.-15-29 yrs. -0.006 -0.055 0.042 0.996

40-49 yrs.-15-29 yrs. -0.006 -0.049 0.038 0.997

>50 yrs.-15-29 yrs. -0.001 -0.049 0.047 1.000

40-49 yrs.-30-39 yrs. 0.001 -0.053 0.054 1.000

>50 yrs.-30-39 yrs. 0.005 -0.052 0.062 0.999

>50 yrs.-40-49 yrs. 0.005 -0.049 0.058 0.999

Mollisols-Alfisols 0.008 -0.013 0.029 0.448

Kickxellomycota

15-29 yrs.-Pastures 0.001 -0.009 0.011 1.000

30-39 yrs.-Pastures -0.007 -0.020 0.007 0.643

40-49 yrs.-Pastures -0.004 -0.016 0.008 0.843

>50 yrs.-Pastures -0.002 -0.015 0.011 0.992

30-39 yrs.-15-29 yrs. -0.007 -0.021 0.006 0.563

40-49 yrs.-15-29 yrs. -0.005 -0.017 0.007 0.769

>50 yrs.-15-29 yrs. -0.003 -0.016 0.011 0.978

40-49 yrs.-30-39 yrs. 0.002 -0.013 0.017 0.994

>50 yrs.-30-39 yrs. 0.004 -0.012 0.021 0.935

>50 yrs.-40-49 yrs. 0.002 -0.013 0.017 0.992

Mollisols-Alfisols 0.000 -0.005 0.006 0.862

Mortierellomycota

15-29 yrs.-Pastures 0.089 -0.096 0.275 0.661

30-39 yrs.-Pastures 0.037 -0.206 0.279 0.993

40-49 yrs.-Pastures 0.348 0.128 0.567 0.000

>50 yrs.-Pastures 0.141 -0.101 0.384 0.484

30-39 yrs.-15-29 yrs. -0.053 -0.300 0.194 0.975

40-49 yrs.-15-29 yrs. 0.258 0.034 0.483 0.016

>50 yrs.-15-29 yrs. 0.052 -0.196 0.299 0.977

40-49 yrs.-30-39 yrs. 0.311 0.037 0.585 0.018

>50 yrs.-30-39 yrs. 0.105 -0.188 0.397 0.854

>50 yrs.-40-49 yrs. -0.206 -0.480 0.067 0.227

Mollisols-Alfisols -0.102 -0.214 0.019 0.074



90 
 

 
 

 

 

 

Res.Df RSS df Sum of SquaresF value p-value R2

Ascomycota

Forest Age 71 2.3098 0.06

Forest Age * Soil Order 67 2.145 4 0.16478 1.2867 0.284 0.08

Basidiomycota

Forest Age 71 1.4716 0.01

Forest Age * Soil Order 67 1.3612 4 0.11045 1.3592 0.2575 0.03

Chytridiomycota

Forest Age 71 0.006236 < 0.01

Forest Age * Soil Order 67 0.006037 4 0.000199 0.552 0.6982 < 0.01

Glomeromycota

Forest Age 71 0.098293 0.1

Forest Age * Soil Order 67 0.097103 4 0.00119 0.2053 0.9346 0.06

Kickxellomycota

Forest Age 71 0.010254 < 0.01

Forest Age * Soil Order 67 0.009973 4 0.000281 0.4718 0.7562 < 0.01

Mortierellomycota

Forest Age 71 1.2633 0.18

Forest Age * Soil Order 67 1.1449 4 0.11838 1.7319 0.1533 0.21

Table 10. Linear regression with cubic smoothing spline results from Fungal phyla relative abundance 

across forest age. The effect of soil order is evaluated by conducting an ANOVA on regression with and 

without soil order. 

Functional Group Relative abundance (%)

Bacteria

Aromatic compound degradation 0.123

Cellulolysis 0.787

Chemoheterotrophy 4.57

Chitinolysis 0.203

Fermentation 0.0482

Methylotrophy 0.0987

Fungi

Pathotroph 12.2

Saprotroph 34.1

Symbiotroph 15.5

Arbuscular mycorrhizae 1.06

Ectomycorrhizae 2.01

Plant Pathogens 1.24

Wood Saprotroph 5.28

Table 11.  Bacterial and Fungal functional groups' relative abundances
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df

Sum of 

Squares

Mean of 

Squares F value p-value

Chitinolysis

Forest Age Class 4 0.0002 0.0000 8.3260 0.0000

Soil Order 1 0.0001 0.0001 14.5180 0.0003

Forest Age Class * Soil Order 4 0.0002 0.0000 7.7240 0.0000

Residuals 65 0.0004 0.0000

Fermentation

Forest Age Class 4 0.0000 0.0000 2.6220 0.0427

Soil Order 1 0.0000 0.0000 0.2250 0.6368

Forest Age Class * Soil Order 4 0.0000 0.0000 1.7620 0.1472

Residuals 65 0.0001 0.0000

Methylotrophy

Forest Age Class 4 0.0001 0.0000 4.2940 0.0038

Soil Order 1 0.0000 0.0000 0.3630 0.5490

Forest Age Class * Soil Order 4 0.0000 0.0000 1.2180 0.3118

Residuals 65 0.0006 0.0000

Methanol Oxidation

Forest Age Class 4 0.0000 0.0000 0.7620 0.5540

Soil Order 1 0.0000 0.0000 1.4830 0.2280

Forest Age Class * Soil Order 4 0.0000 0.0000 0.7500 0.5610

Residuals 65 0.0000 0.0000

Cellulolysis

Forest Age Class 4 0.0026 0.0006 2.6120 0.0433

Soil Order 1 0.0017 0.0017 7.1220 0.0096

Forest Age Class * Soil Order 4 0.0010 0.0002 1.0230 0.4023

Residuals 65 0.0159 0.0002

Aromatic Compound Degradation

Forest Age Class 4 0.0001 0.0000 3.5890 0.0105

Soil Order 1 0.0000 0.0000 0.0030 0.9571

Forest Age Class * Soil Order 4 0.0000 0.0000 0.1450 0.9647

Residuals 65 0.0003 0.0000

Aromatic Hydrocarbon Degradation

Forest Age Class 4 3.57E-06 8.92E-07 0.794 0.5335

Soil Order 1 4.48E-06 4.49E-06 3.992 0.0499

Forest Age Class * Soil Order 4 3.49E-06 8.73E-07 0.777 0.5443

Residuals 65 7.30E-05 1.12E-06

Chemoheterotrophy

Forest Age Class 4 0.017764 0.004441 11.216 5.57E-07

Soil Order 1 0.000104 0.000104 0.262 0.6106

Forest Age Class * Soil Order 4 0.003543 0.000886 2.237 0.0746

Residuals 65 0.025736 0.000396

Table 12. Analysis of Variance Results for testing differences of Bacterial functional groups 

relative abundances among forest age classes, soil orders, and their interaction. 
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Difference Lowe CI Upper CI p-value

Chitinolysis

15-29 yrs.-Pastures 0.004 0.001 0.006 0.001

30-39 yrs.-Pastures 0.003 0.000 0.006 0.080

40-49 yrs.-Pastures 0.000 -0.003 0.003 0.993

>50 yrs.-Pastures 0.002 -0.002 0.005 0.672

30-39 yrs.-15-29 yrs. -0.001 -0.004 0.003 0.982

40-49 yrs.-15-29 yrs. -0.003 -0.006 0.000 0.029

>50 yrs.-15-29 yrs. -0.002 -0.006 0.001 0.383

40-49 yrs.-30-39 yrs. -0.003 -0.006 0.001 0.289

>50 yrs.-30-39 yrs. -0.002 -0.006 0.003 0.828

>50 yrs.-40-49 yrs. 0.001 -0.003 0.005 0.915

Mollisols-Alfisols 0.186 0.000 0.003 0.017

Fermentation

15-29 yrs.-Pastures 0.000 -0.001 0.000 0.471

30-39 yrs.-Pastures 0.000 -0.001 0.001 0.971

40-49 yrs.-Pastures -0.001 -0.002 0.000 0.068

>50 yrs.-Pastures -0.001 -0.002 0.000 0.143

30-39 yrs.-15-29 yrs. 0.000 -0.001 0.001 0.970

40-49 yrs.-15-29 yrs. 0.000 -0.001 0.001 0.722

>50 yrs.-15-29 yrs. 0.000 -0.001 0.001 0.825

40-49 yrs.-30-39 yrs. -0.001 -0.002 0.001 0.508

>50 yrs.-30-39 yrs. -0.001 -0.002 0.001 0.612

>50 yrs.-40-49 yrs. 0.000 -0.001 0.001 1.000

Mollisols-Alfisols 0.000 0.000 0.006 0.574

Methylotrophy

15-29 yrs.-Pastures -0.003 -0.005 0.000 0.012

30-39 yrs.-Pastures -0.003 -0.006 0.001 0.195

40-49 yrs.-Pastures -0.003 -0.006 0.000 0.016

>50 yrs.-Pastures -0.003 -0.006 0.000 0.072

30-39 yrs.-15-29 yrs. 0.000 -0.003 0.004 0.997

40-49 yrs.-15-29 yrs. 0.000 -0.003 0.003 0.994

>50 yrs.-15-29 yrs. 0.000 -0.003 0.003 1.000

40-49 yrs.-30-39 yrs. -0.001 -0.004 0.003 0.967

>50 yrs.-30-39 yrs. -0.001 -0.004 0.003 0.995

>50 yrs.-40-49 yrs. 0.000 -0.003 0.004 0.999

Mollisols-Alfisols 0.000 -0.002 0.001 0.778

Table 13. Tukey HSD results for SOC pair comparisons for Bacterial 

functional groups relative abundance differences among forest age 

classes, soil orders, and their interaction. 



93 
 

 
 

 

Methanol Oxidation

15-29 yrs.-Pastures 0.000 0.000 0.000 0.597

30-39 yrs.-Pastures 0.000 -0.001 0.000 0.801

40-49 yrs.-Pastures 0.000 -0.001 0.000 0.736

>50 yrs.-Pastures 0.000 -0.001 0.000 0.801

30-39 yrs.-15-29 yrs. 0.000 0.000 0.000 1.000

40-49 yrs.-15-29 yrs. 0.000 0.000 0.000 1.000

>50 yrs.-15-29 yrs. 0.000 0.000 0.000 1.000

40-49 yrs.-30-39 yrs. 0.000 0.000 0.000 1.000

>50 yrs.-30-39 yrs. 0.000 -0.001 0.001 1.000

>50 yrs.-40-49 yrs. 0.000 0.000 0.000 1.000

Mollisols-Alfisols 0.000 0.000 0.000 0.286

Cellulolysis

15-29 yrs.-Pastures -0.013 -0.027 0.001 0.065

30-39 yrs.-Pastures 0.001 -0.017 0.019 1.000

40-49 yrs.-Pastures -0.010 -0.026 0.006 0.432

>50 yrs.-Pastures -0.008 -0.026 0.010 0.720

30-39 yrs.-15-29 yrs. 0.014 -0.004 0.032 0.218

40-49 yrs.-15-29 yrs. 0.003 -0.013 0.020 0.982

>50 yrs.-15-29 yrs. 0.005 -0.013 0.023 0.933

40-49 yrs.-30-39 yrs. -0.011 -0.031 0.010 0.581

>50 yrs.-30-39 yrs. -0.009 -0.030 0.013 0.788

>50 yrs.-40-49 yrs. 0.002 -0.018 0.022 0.999

Mollisols-Alfisols -0.009 -0.017 -0.019 0.015

Aromatic Compound Degradation

15-29 yrs.-Pastures -0.001 -0.003 0.000 0.179

30-39 yrs.-Pastures -0.001 -0.003 0.001 0.782

40-49 yrs.-Pastures -0.003 -0.005 -0.001 0.006

>50 yrs.-Pastures -0.002 -0.004 0.000 0.100

30-39 yrs.-15-29 yrs. 0.000 -0.002 0.003 0.981

40-49 yrs.-15-29 yrs. -0.001 -0.003 0.001 0.484

>50 yrs.-15-29 yrs. -0.001 -0.003 0.002 0.933

40-49 yrs.-30-39 yrs. -0.002 -0.004 0.001 0.361

>50 yrs.-30-39 yrs. -0.001 -0.004 0.002 0.789

>50 yrs.-40-49 yrs. 0.001 -0.002 0.003 0.970

Mollisols-Alfisols 0.000 -0.001 0.011 0.933
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Aromatic Hydrocarbon Degradation

15-29 yrs.-Pastures 0.000 -0.001 0.001 0.935

30-39 yrs.-Pastures 0.000 -0.002 0.001 0.785

40-49 yrs.-Pastures -0.001 -0.002 0.001 0.634

>50 yrs.-Pastures -0.001 -0.002 0.001 0.716

30-39 yrs.-15-29 yrs. 0.000 -0.001 0.001 0.984

40-49 yrs.-15-29 yrs. 0.000 -0.001 0.001 0.952

>50 yrs.-15-29 yrs. 0.000 -0.001 0.001 0.966

40-49 yrs.-30-39 yrs. 0.000 -0.001 0.001 1.000

>50 yrs.-30-39 yrs. 0.000 -0.001 0.001 1.000

>50 yrs.-40-49 yrs. 0.000 -0.001 0.001 1.000

Mollisols-Alfisols 0.000 -0.001 0.000 0.068

Chemoheterotrophy

15-29 yrs.-Pastures -0.022 -0.039 -0.005 0.004

30-39 yrs.-Pastures 0.023 0.000 0.045 0.046

40-49 yrs.-Pastures -0.024 -0.044 -0.004 0.013

>50 yrs.-Pastures -0.016 -0.038 0.007 0.296

30-39 yrs.-15-29 yrs. 0.045 0.022 0.068 0.000

40-49 yrs.-15-29 yrs. -0.002 -0.022 0.019 1.000

>50 yrs.-15-29 yrs. 0.007 -0.016 0.030 0.925

40-49 yrs.-30-39 yrs. -0.047 -0.072 -0.021 0.000

>50 yrs.-30-39 yrs. -0.038 -0.065 -0.011 0.002

>50 yrs.-40-49 yrs. 0.008 -0.017 0.034 0.892

Mollisols-Alfisols 0.001 -0.010 0.013 0.821
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Res.Df RSS df Sum of SquaresF value p-value R2

Chitinolysis

Forest Age 71 0.000675 0.16

Forest Age * Soil Order 67 0.000452 4 0.000223 8.2863 1.72E-05 0.41

Fermentation

Forest Age 71 6.70E-05 0.07

Forest Age * Soil Order 67 6.56E-05 4 1.34E-06 0.3432 0.8478 0.04

Methylotrophy

Forest Age 71 0.000586 0.17

Forest Age * Soil Order 67 0.000546 4 4.00E-05 1.2264 0.308 0.18

Methanol Oxidation 

Forest Age 71 1.02E-05 <0.01

Forest Age * Soil Order 67 9.55E-06 4 6.60E-07 1.1573 0.3376 0.01

Cellulolysis

Forest Age 71 0.018222 0.05

Forest Age * Soil Order 67 0.015348 4 2.87E-03 3.137 0.01998 0.15

Aromatic Compound Degradation

Forest Age 71 0.000322 0.11

Forest Age * Soil Order 67 0.00032 4 1.75E-06 0.0918 0.9847 0.06

Chemoheterotrophy

Forest Age 71 0.035434 0.09

Forest Age * Soil Order 67 0.033015 4 0.00242 1.2277 0.3075 0.1

Table 14. Linear regression with cubic smoothing spline results from Bacterial Functional groups' relative 

abundance across forest age. The effect of soil order is evaluated by conducting an ANOVA on regression 

with and without soil order. 
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df

Sum of 

Squares

Mean of 

Squares F value p-value

Throphic 

Pathotroph

Forest Age Class 4 0.114 0.029 1.716 0.157

Soil Order 1 0.022 0.022 1.335 0.252

Forest Age Class * Soil Order 4 0.042 0.010 0.628 0.644

Residuals 65 1.084 0.017

Saprotroph

Forest Age Class 4 1.434 0.359 2.959 0.026

Soil Order 1 0.448 0.448 3.700 0.059

Forest Age Class * Soil Order 4 0.607 0.152 1.252 0.298

Residuals 65 7.878 0.121

Symbiotroph

Forest Age Class 4 0.830 0.208 4.463 0.003

Soil Order 1 0.317 0.317 6.827 0.011

Forest Age Class * Soil Order 4 0.381 0.095 2.049 0.098

Residuals 65 3.022 0.047

Guilds 

Arbuscular mycorrhizae

Forest Age Class 4 0.019 0.005 2.430 0.056

Soil Order 1 0.001 0.001 0.277 0.601

Forest Age Class * Soil Order 4 0.001 0.000 0.162 0.957

Residuals 65 0.129 0.002

Ectomycorrhizae

Forest Age Class 4 0.010 0.003 2.765 0.035

Soil Order 1 0.001 0.001 0.951 0.333

Forest Age Class * Soil Order 4 0.008 0.002 2.185 0.080

Residuals 65 0.060 0.001

Plant Pathogens

Forest Age Class 4 0.002 0.000 0.675 0.612

Soil Order 1 0.004 0.004 6.164 0.016

Forest Age Class * Soil Order 4 0.003 0.001 1.067 0.380

Residuals 65 0.038 0.001

Wood Saprotroph

Forest Age Class 4 0.012 0.003 1.263 0.294

Soil Order 1 0.002 0.002 0.704 0.405

Forest Age Class * Soil Order 4 0.021 0.005 2.286 0.070

Residuals 65 0.151 0.002

Table 15. Analysis of Variance Results for testing differences of Fungal functional groups relative 

abundances among forest age classes, soil orders, and their interaction. 
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Difference Lowe CI Upper CI p-value

Pathotroph

15-29 yrs.-Pastures -0.06662 -0.17377 0.040538 0.416205

30-39 yrs.-Pastures -0.12193 -0.2621 0.018242 0.117936

40-49 yrs.-Pastures -0.03705 -0.16383 0.089743 0.924188

>50 yrs.-Pastures -0.06053 -0.2007 0.079637 0.746048

30-39 yrs.-15-29 yrs. -0.05531 -0.19818 0.087563 0.814143

40-49 yrs.-15-29 yrs. 0.029572 -0.1002 0.159344 0.968279

>50 yrs.-15-29 yrs. 0.006085 -0.13679 0.148959 0.999953

40-49 yrs.-30-39 yrs. 0.084883 -0.07325 0.243015 0.563998

>50 yrs.-30-39 yrs. 0.061396 -0.10765 0.230446 0.846731

>50 yrs.-40-49 yrs. -0.02349 -0.18162 0.134646 0.993594

Mollisols-Alfisols -0.0255 -0.08617 0.035184 0.451125

Saprotroph

15-29 yrs.-Pastures 0.117153 -0.18174 0.416047 0.807224

30-39 yrs.-Pastures -0.04655 -0.43753 0.34443 0.997274

40-49 yrs.-Pastures 0.384192 0.030535 0.737848 0.026531

>50 yrs.-Pastures 0.043654 -0.34733 0.434636 0.997878

30-39 yrs.-15-29 yrs. -0.1637 -0.56223 0.234821 0.779199

40-49 yrs.-15-29 yrs. 0.267039 -0.09494 0.629018 0.246567

>50 yrs.-15-29 yrs. -0.0735 -0.47203 0.325026 0.985445

40-49 yrs.-30-39 yrs. 0.430743 -0.01034 0.871831 0.058886

>50 yrs.-30-39 yrs. 0.090205 -0.38134 0.561747 0.983315

>50 yrs.-40-49 yrs. -0.34054 -0.78163 0.100549 0.206429

Mollisols-Alfisols -0.14074 -0.31234 0.038595 0.10644

Saprotroph

15-29 yrs.-Pastures 0.016138 -0.17676 0.20904 0.999317

30-39 yrs.-Pastures -0.06739 -0.31972 0.184947 0.944308

40-49 yrs.-Pastures 0.276303 0.048059 0.504547 0.00984

>50 yrs.-Pastures 0.078707 -0.17363 0.33104 0.905691

30-39 yrs.-15-29 yrs. -0.08352 -0.34073 0.173678 0.892398

40-49 yrs.-15-29 yrs. 0.260165 0.02655 0.49378 0.0215

>50 yrs.-15-29 yrs. 0.062569 -0.19463 0.31977 0.959896

40-49 yrs.-30-39 yrs. 0.343689 0.059019 0.628359 0.010109

>50 yrs.-30-39 yrs. 0.146093 -0.15823 0.450418 0.664778

>50 yrs.-40-49 yrs. -0.1976 -0.48227 0.087074 0.304468

Mollisols-Alfisols -0.11989 -0.23221 7564128 0.367816

Table 16. Tukey HSD results for SOC pair comparisons for fungal 

functional groups relative abundance differences among forest age 

classes, soil orders, and their interaction. 
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Arbuscular mycorrhizae

15-29 yrs.-Pastures -0.03145 -0.06762 0.004724 0.118256

30-39 yrs.-Pastures -0.03773 -0.08505 0.009588 0.179895

40-49 yrs.-Pastures -0.03699 -0.07979 0.00581 0.122025

>50 yrs.-Pastures -0.03239 -0.07971 0.014925 0.318129

30-39 yrs.-15-29 yrs. -0.00628 -0.05451 0.041951 0.996139

40-49 yrs.-15-29 yrs. -0.00554 -0.04935 0.038268 0.996551

>50 yrs.-15-29 yrs. -0.00094 -0.04918 0.047289 0.999998

40-49 yrs.-30-39 yrs. 0.00074 -0.05264 0.054123 1

>50 yrs.-30-39 yrs. 0.005338 -0.05173 0.062407 0.99894

>50 yrs.-40-49 yrs. 0.004598 -0.04879 0.057982 0.999234

Mollisols-Alfisols 0.008013 -0.01293 0.028955 0.448151

Ectomycorrhizae

15-29 yrs.-Pastures -0.00096 -0.02724 0.025317 0.999975

30-39 yrs.-Pastures -0.00062 -0.035 0.03375 0.999999

40-49 yrs.-Pastures 0.003397 -0.0277 0.034489 0.99805

>50 yrs.-Pastures 0.035874 0.0015 0.070248 0.036515

30-39 yrs.-15-29 yrs. 0.000337 -0.0347 0.035375 1

40-49 yrs.-15-29 yrs. 0.004358 -0.02747 0.036182 0.995312

>50 yrs.-15-29 yrs. 0.036835 0.001798 0.071872 0.034508

40-49 yrs.-30-39 yrs. 0.00402 -0.03476 0.042799 0.998412

>50 yrs.-30-39 yrs. 0.036498 -0.00496 0.077954 0.110542

>50 yrs.-40-49 yrs. 0.032477 -0.0063 0.071256 0.14315

Mollisols-Alfisols -0.00852 -0.02367 0.006627 0.265948

Plant Pathogens

15-29 yrs.-Pastures -0.00795 -0.02898 0.013086 0.827197

30-39 yrs.-Pastures -0.00573 -0.03324 0.021781 0.97714

40-49 yrs.-Pastures -0.01003 -0.03492 0.014852 0.790691

>50 yrs.-Pastures 0.002764 -0.02475 0.030275 0.998597

30-39 yrs.-15-29 yrs. 0.002215 -0.02583 0.030257 0.999455

40-49 yrs.-15-29 yrs. -0.00209 -0.02756 0.023383 0.99937

>50 yrs.-15-29 yrs. 0.010709 -0.01733 0.038751 0.821504

40-49 yrs.-30-39 yrs. -0.0043 -0.03534 0.026734 0.995084

>50 yrs.-30-39 yrs. 0.008494 -0.02469 0.041674 0.951958

>50 yrs.-40-49 yrs. 0.012797 -0.01824 0.043834 0.776835

Mollisols-Alfisols -0.01399 -0.02514 -0.00284 0.01461

Wood Saprotroph

15-29 yrs.-Pastures -0.00041 -0.04215 0.04132 1

30-39 yrs.-Pastures -0.01942 -0.07401 0.035176 0.856328

40-49 yrs.-Pastures -0.0139 -0.06328 0.035483 0.933249

>50 yrs.-Pastures 0.026271 -0.02832 0.080864 0.662758

30-39 yrs.-15-29 yrs. -0.019 -0.07465 0.036644 0.873565

40-49 yrs.-15-29 yrs. -0.01348 -0.06403 0.03706 0.944508

>50 yrs.-15-29 yrs. 0.026685 -0.02896 0.082332 0.665652

40-49 yrs.-30-39 yrs. 0.005518 -0.05607 0.067108 0.999105

>50 yrs.-30-39 yrs. 0.045687 -0.02015 0.111529 0.304781

>50 yrs.-40-49 yrs. 0.040169 -0.02142 0.101758 0.366985

Mollisols-Alfisols -0.01022 -0.03349 0.013056 0.384456
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Res.Df RSS df Sum of SquaresF value p-value R2

Pathotroph

Forest Age 71 0.66893 0.02

Forest Age * Soil Order 67 0.61281 4 0.05612 1.5339 0.2024 0.05

Saprotroph

Forest Age 71 1.9478 <0.01

Forest Age * Soil Order 67 1.788 4 0.15976 1.4966 0.2131 0.04

Symbiotroph

Forest Age 71 1.3301 0.08

Forest Age * Soil Order 67 1.1657 4 0.16437 2.3618 0.06192 0.14

Arbuscular Mycorrhizae

Forest Age 71 0.098293 0.1

Forest Age * Soil Order 67 0.097103 4 0.00119 0.2053 0.9346 0.06

Ectomycorrhizae

Forest Age 71 0.063852 0.03

Forest Age * Soil Order 67 0.061964 4 0.001888 0.5102 0.7284 <0.01

Plant Pathogens

Forest Age 71 0.03983 <0.01

Forest Age * Soil Order 67 0.034651 4 0.005179 2.5035 0.05038 0.07

Wood Saprotroph

Forest Age 71 0.1452 <0.01

Forest Age * Soil Order 67 0.1207 4 0.024502 3.4003 0.01362 0.13

Table17. Linear regression with cubic smoothing spline results from Fungal Functional groups' relative 

abundance across forest age. The effect of soil order is evaluated by conducting an ANOVA on regression 

with and without soil order. 
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Estimate Estimate Error t- value p-value F value R2

Actinobacteriota

Intercept 0.081 0.014 5.697 0.000 4.88 0.37

Relative Abundance -0.129 0.062 -2.084 0.041

15-29 yrs 0.021 0.026 0.824 0.413

30-39 yrs. -0.036 0.030 -1.189 0.239

40-49 yrs 0.035 0.026 1.323 0.191

>50 yrs. 0.059 0.033 1.821 0.073

Soil Order 0.027 0.021 1.312 0.194

15-29 yrs * Relative Abundance -0.057 0.111 -0.518 0.606

30-39 yrs. *Relative Abundance 0.061 0.128 0.475 0.636

40-49 yrs * Relative Abundance -0.091 0.118 -0.769 0.445

>50 yrs. * Relative Abundance -0.277 0.139 -1.987 0.051

Soil Order * Relative Abundance -0.005 0.084 -0.057 0.955

Acidobacteriota 

Intercept 0.017 0.023 0.726 0.470 5.76 0.41

Relative Abundance 0.200 0.112 1.788 0.079

15-29 yrs 0.017 0.033 0.535 0.594

30-39 yrs. 0.107 0.049 2.197 0.032

40-49 yrs 0.005 0.043 0.113 0.910

>50 yrs. -0.239 0.062 -3.844 0.000

Soil Order 0.011 0.028 0.405 0.687

15-29 yrs * Relative Abundance -0.036 0.153 -0.239 0.812

30-39 yrs. *Relative Abundance -0.650 0.237 -2.746 0.008

40-49 yrs * Relative Abundance 0.037 0.197 0.187 0.852

>50 yrs. * Relative Abundance 1.156 0.304 3.807 0.000

Soil Order * Relative Abundance 0.028 0.139 0.201 0.841

Proteobacteria

Intercept 0.021 0.014 1.437 0.156 8.83 0.54

Relative Abundance 0.181 0.083 2.189 0.032

15-29 yrs -0.005 0.027 -0.170 0.865

30-39 yrs. 0.066 0.026 2.549 0.013

40-49 yrs -0.001 0.025 -0.033 0.974

>50 yrs. -0.041 0.027 -1.527 0.132

Soil Order -0.020 0.020 -0.964 0.339

15-29 yrs * Relative Abundance 0.082 0.165 0.501 0.618

30-39 yrs. *Relative Abundance -0.420 0.145 -2.900 0.005

40-49 yrs * Relative Abundance 0.075 0.148 0.502 0.617

>50 yrs. * Relative Abundance 0.059 0.137 0.430 0.669

Soil Order * Relative Abundance 0.195 0.110 1.779 0.080

Table 18. Regression analysis results from testing SOC to Bacterial relative abundance and its interaction 

with forest age class and soil order. 
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Planctomycetota

Intercept 0.048 0.014 3.359 0.001 3.82 0.30

Relative Abundance 0.101 0.242 0.417 0.678

15-29 yrs -0.018 0.025 -0.717 0.476

30-39 yrs. -0.024 0.026 -0.940 0.351

40-49 yrs 0.023 0.035 0.658 0.513

>50 yrs. -0.020 0.032 -0.623 0.535

Soil Order 0.017 0.014 1.243 0.218

15-29 yrs * Relative Abundance 0.505 0.477 1.059 0.294

30-39 yrs. *Relative Abundance 0.164 0.423 0.388 0.699

40-49 yrs * Relative Abundance -0.122 0.659 -0.185 0.854

>50 yrs. * Relative Abundance 0.134 0.514 0.261 0.795

Soil Order * Relative Abundance 0.075 0.161 0.468 0.641

Methylomirabilota

Intercept 0.050 0.012 4.235 0.000 4.89 0.39

Relative Abundance 0.031 0.141 0.223 0.824

15-29 yrs 0.004 0.026 0.138 0.891

30-39 yrs. -0.065 0.025 -2.592 0.012

40-49 yrs 0.014 0.023 0.597 0.553

>50 yrs. 0.022 0.023 0.966 0.338

Soil Order 0.041 0.013 3.222 0.002

15-29 yrs * Relative Abundance -0.017 0.280 -0.062 0.951

30-39 yrs. *Relative Abundance 0.688 0.303 2.270 0.027

40-49 yrs * Relative Abundance -0.057 0.241 -0.237 0.814

>50 yrs. * Relative Abundance -0.494 0.301 -1.639 0.106

Soil Order * Relative Abundance -0.290 0.165 -1.760 0.083

Verrucomicrobiota

Intercept 0.074 0.009 8.459 0.000 7.44 0.49

Relative Abundance -0.398 0.177 -2.253 0.028

15-29 yrs 0.017 0.016 1.040 0.302

30-39 yrs. -0.046 0.016 -2.895 0.005

40-49 yrs 0.029 0.020 1.475 0.145

>50 yrs. 0.019 0.017 1.112 0.270

Soil Order 0.026 0.009 2.779 0.007

15-29 yrs * Relative Abundance -0.202 0.358 -0.563 0.575

30-39 yrs. *Relative Abundance 0.387 0.324 1.195 0.236

40-49 yrs * Relative Abundance -0.318 0.477 -0.667 0.507

>50 yrs. * Relative Abundance -0.290 0.362 -0.803 0.425

Soil Order * Relative Abundance -0.151 0.147 -1.030 0.307
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Chloroflexi

Intercept 0.035 0.008 4.428 0.000 7.10 0.48

Relative Abundance 0.428 0.146 2.929 0.005

15-29 yrs 0.001 0.014 0.095 0.925

30-39 yrs. 0.023 0.016 1.454 0.151

40-49 yrs 0.024 0.017 1.411 0.163

>50 yrs. -0.069 0.020 -3.488 0.001

Soil Order 0.033 0.010 3.187 0.002

15-29 yrs * Relative Abundance 0.122 0.216 0.565 0.574

30-39 yrs. *Relative Abundance -0.971 0.289 -3.355 0.001

40-49 yrs * Relative Abundance -0.210 0.335 -0.628 0.532

>50 yrs. * Relative Abundance 1.368 0.392 3.486 0.001

Soil Order * Relative Abundance -0.271 0.146 -1.853 0.069

Myxococcota

Intercept 0.031 0.013 2.456 0.017 7.76 0.50

Relative Abundance 0.390 0.280 1.397 0.167

15-29 yrs 0.010 0.030 0.327 0.745

30-39 yrs. -0.044 0.025 -1.722 0.090

40-49 yrs 0.054 0.023 2.336 0.023

>50 yrs. 0.040 0.018 2.207 0.031

Soil Order 0.050 0.015 3.464 0.001

15-29 yrs * Relative Abundance -0.068 0.640 -0.107 0.915

30-39 yrs. *Relative Abundance 0.829 0.568 1.461 0.149

40-49 yrs * Relative Abundance -0.815 0.503 -1.620 0.110

>50 yrs. * Relative Abundance -1.309 0.421 -3.109 0.003

Soil Order * Relative Abundance -0.740 0.338 -2.190 0.032

Firmicutes

Intercept 0.054 0.006 8.618 0.000 5.38 0.3941

Relative Abundance 0.241 0.242 0.998 0.322

15-29 yrs 0.020 0.011 1.796 0.077

30-39 yrs. -0.018 0.012 -1.548 0.127

40-49 yrs 0.015 0.010 1.571 0.121

>50 yrs. -0.031 0.012 -2.699 0.009

Soil Order 0.028 0.009 3.032 0.004

15-29 yrs * Relative Abundance -0.332 0.307 -1.080 0.284

30-39 yrs. *Relative Abundance -0.819 0.620 -1.322 0.191

40-49 yrs * Relative Abundance -0.197 0.233 -0.845 0.401

>50 yrs. * Relative Abundance 1.585 0.761 2.083 0.041

Soil Order * Relative Abundance -0.361 0.274 -1.321 0.191
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Latescibacterota

Intercept 0.046 0.007 6.284 0.000 5.17 0.38

Relative Abundance 0.106 0.315 0.334 0.739

15-29 yrs 0.009 0.013 0.692 0.492

30-39 yrs. -0.034 0.014 -2.363 0.021

40-49 yrs -0.014 0.015 -0.902 0.371

>50 yrs. -0.001 0.017 -0.040 0.968

Soil Order 0.020 0.009 2.164 0.034

15-29 yrs * Relative Abundance -0.039 0.440 -0.090 0.929

30-39 yrs. *Relative Abundance 0.685 0.701 0.976 0.333

40-49 yrs * Relative Abundance 0.925 0.526 1.758 0.084

>50 yrs. * Relative Abundance -0.166 0.895 -0.185 0.854

Soil Order * Relative Abundance 0.276 0.338 0.815 0.418

cellulolysis

Intercept 0.059 0.005 11.561 < 2e-16 6.15 0.43

Relative Abundance -0.527 0.288 -1.828 0.072

15-29 yrs 0.013 0.009 1.513 0.135

30-39 yrs. -0.023 0.009 -2.585 0.012

40-49 yrs 0.019 0.007 2.564 0.013

>50 yrs. 0.005 0.008 0.552 0.583

Soil Order 0.024 0.007 3.613 0.001

15-29 yrs * Relative Abundance -0.357 0.669 -0.533 0.596

30-39 yrs. *Relative Abundance 0.249 0.619 0.402 0.689

40-49 yrs * Relative Abundance -0.795 0.598 -1.331 0.188

>50 yrs. * Relative Abundance -0.313 0.463 -0.677 0.501

Soil Order * Relative Abundance -0.709 0.407 -1.740 0.087

chemoheterotrophy

Intercept 0.066 0.014 4.794 0.000 5.80 0.42

Relative Abundance -0.236 0.217 -1.086 0.282

15-29 yrs -0.004 0.030 -0.138 0.890

30-39 yrs. 0.040 0.029 1.405 0.165

40-49 yrs 0.020 0.023 0.886 0.379

>50 yrs. -0.027 0.024 -1.105 0.273

Soil Order -0.018 0.015 -1.177 0.244

15-29 yrs * Relative Abundance 0.180 0.500 0.359 0.721

30-39 yrs. *Relative Abundance -0.828 0.444 -1.863 0.067  

40-49 yrs * Relative Abundance -0.228 0.414 -0.552 0.583

>50 yrs. * Relative Abundance 0.057 0.331 0.172 0.864

Soil Order * Relative Abundance 0.619 0.224 2.769 0.007  



104 
 

 
 

 

chitinolysis

Intercept 0.044 0.004 10.129 0.000 9.65 0.56

Relative Abundance 4.413 1.608 2.745 0.008 **

15-29 yrs 0.007 0.008 0.980 0.331

30-39 yrs. -0.002 0.008 -0.289 0.774

40-49 yrs 0.010 0.008 1.306 0.196

>50 yrs. -0.020 0.009 -2.409 0.019 *

Soil Order 0.009 0.007 1.336 0.186

15-29 yrs * Relative Abundance 1.385 3.264 0.424 0.673

30-39 yrs. *Relative Abundance -3.093 2.767 -1.118 0.268

40-49 yrs * Relative Abundance -3.101 2.816 -1.101 0.275

>50 yrs. * Relative Abundance 1.215 2.268 0.536 0.594

Soil Order * Relative Abundance 1.427 1.954 0.730 0.468

aromatic_compound_degradation

Intercept 0.055 0.005 10.234 0.000 3.75 0.29

Relative Abundance 0.698 4.484 0.156 0.877

15-29 yrs 0.009 0.009 0.981 0.330

30-39 yrs. -0.022 0.010 -2.143 0.036

40-49 yrs 0.017 0.008 2.077 0.042

>50 yrs. 0.001 0.011 0.102 0.919

Soil Order 0.022 0.008 2.888 0.005

15-29 yrs * Relative Abundance 3.282 8.000 0.410 0.683

30-39 yrs. *Relative Abundance -3.681 7.444 -0.495 0.623

40-49 yrs * Relative Abundance -10.311 12.617 -0.817 0.417

>50 yrs. * Relative Abundance -10.496 10.301 -1.019 0.312

Soil Order * Relative Abundance 1.087 2.704 0.402 0.689

fermentation

Intercept 0.048 0.005 10.259 0.000 4.89 0.37

Relative Abundance 14.604 8.296 1.760 0.083

15-29 yrs 0.006 0.008 0.729 0.469

30-39 yrs. -0.014 0.009 -1.585 0.118

40-49 yrs 0.020 0.007 2.667 0.010

>50 yrs. -0.013 0.008 -1.550 0.126

Soil Order 0.028 0.007 3.968 0.000

15-29 yrs * Relative Abundance 14.634 18.208 0.804 0.425

30-39 yrs. *Relative Abundance -14.332 15.711 -0.912 0.365

40-49 yrs * Relative Abundance -25.150 17.616 -1.428 0.158

>50 yrs. * Relative Abundance 1.310 13.167 0.100 0.921

Soil Order * Relative Abundance -13.200 7.779 -1.697 0.095 .

methylotrophy

Intercept 0.046 0.004 11.803 < 2e-16 0.52 0.44

Relative Abundance 16.702 4.369 3.823 0.000

15-29 yrs 0.010 0.007 1.524 0.132

30-39 yrs. -0.014 0.008 -1.740 0.087

40-49 yrs 0.016 0.006 2.626 0.011

>50 yrs. -0.024 0.008 -2.908 0.005

Soil Order 0.023 0.006 3.775 0.000

15-29 yrs * Relative Abundance 19.400 7.559 2.566 0.013

30-39 yrs. *Relative Abundance -20.534 8.224 -2.497 0.015

40-49 yrs * Relative Abundance -26.580 8.310 -3.199 0.002

>50 yrs. * Relative Abundance NA NA NA NA

Soil Order * Relative Abundance -1.097 2.560 -0.429 0.670
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Estimate Estimate Error t- value p-value F value R2

Ascomycota

Intercept 0.035947 0.006301 5.706 3.34E-07 7.93 0.5074

Relative Abundance 0.037288 0.010861 3.433 0.001059

15-29 yrs 0.000323 0.011167 0.029 0.976993

30-39 yrs. 0.010313 0.011485 0.898 0.372608

40-49 yrs 0.022064 0.009877 2.234 0.029054

>50 yrs. -0.0273 0.010932 -2.498 0.015129

Soil Order 0.033217 0.009442 3.518 0.000813

15-29 yrs * Relative Abundance 0.013717 0.020432 0.671 0.504452

30-39 yrs. *Relative Abundance -0.0639 0.020255 -3.155 0.002463

40-49 yrs * Relative Abundance -0.01614 0.015783 -1.023 0.310295

>50 yrs. * Relative Abundance 0.046796 0.016956 2.76 0.007562

Soil Order * Relative Abundance -0.0267 0.013341 -2.001 0.04968

Basidiomycota

Intercept 0.061018 0.007474 8.164 1.84E-11 5.694 0.411

Relative Abundance -0.03081 0.024013 -1.283 0.204146

15-29 yrs 0.017826 0.011205 1.591 0.116632

30-39 yrs. -0.05 0.012395 -4.034 0.000151

40-49 yrs 0.011397 0.010018 1.138 0.259596

>50 yrs. -0.00183 0.012816 -0.143 0.886645

Soil Order 0.023724 0.009631 2.463 0.016508

15-29 yrs * Relative Abundance -0.04538 0.035799 -1.268 0.209557

30-39 yrs. *Relative Abundance 0.101669 0.033928 2.997 0.003902

40-49 yrs * Relative Abundance 0.012944 0.029437 0.44 0.661632

>50 yrs. * Relative Abundance 0.009648 0.035962 0.268 0.789356

Soil Order * Relative Abundance 0.010462 0.033329 0.314 0.754626

Glomeromycota

Intercept 0.054569 0.00489 11.16 < 2e-16 3.98 0.307

Relative Abundance -3.03787 1.786165 -1.701 0.093916

15-29 yrs 0.00929 0.009112 1.02 0.311811

30-39 yrs. -0.02644 0.009216 -2.869 0.005598

40-49 yrs 0.015535 0.008276 1.877 0.06515

>50 yrs. -0.00402 0.008834 -0.455 0.650495

Soil Order 0.023439 0.006441 3.639 0.000554

15-29 yrs * Relative Abundance -0.47607 1.397289 -0.341 0.734457

30-39 yrs. *Relative Abundance 7.553919 4.493007 1.681 0.097664

40-49 yrs * Relative Abundance 0.927845 2.20803 0.42 0.675759

>50 yrs. * Relative Abundance -8.1362 6.070124 -1.34 0.18494

Soil Order * Relative Abundance -0.05002 0.164411 -0.304 0.76195

Table 19. Regression analysis results from testing SOC to Fungal relative abundance and its interaction 

with forest age class and soil order. 
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Kickxellomycota

Intercept 0.056284 0.00502 11.213 < 2e-16 4.674 0.3532

Relative Abundance -0.7376 0.419488 -1.758 0.08355

15-29 yrs 0.020453 0.009419 2.171 0.03367

30-39 yrs. -0.02348 0.009459 -2.482 0.01574

40-49 yrs 0.016841 0.008584 1.962 0.05419

>50 yrs. 0.002585 0.009038 0.286 0.77583

Soil Order 0.021552 0.007451 2.892 0.00524

15-29 yrs * Relative Abundance -1.25444 0.782845 -1.602 0.11407

30-39 yrs. *Relative Abundance 1.054322 0.951952 1.108 0.27227

40-49 yrs * Relative Abundance -0.18558 0.702723 -0.264 0.79257

>50 yrs. * Relative Abundance -2.05204 1.037895 -1.977 0.05241

Soil Order * Relative Abundance -0.0144 0.553857 -0.026 0.97935

Mortierellomycota

Intercept 0.05696 0.005398 10.552 1.47E-15 5.015 0.3738

Relative Abundance -0.06545 0.046485 -1.408 0.164042

15-29 yrs 0.011428 0.008547 1.337 0.185983

30-39 yrs. -0.037 0.010089 -3.667 0.000506

40-49 yrs 0.018322 0.008147 2.249 0.028015

>50 yrs. 0.016836 0.011421 1.474 0.145421

Soil Order 0.023403 0.00708 3.306 0.001568

15-29 yrs * Relative Abundance -0.09267 0.08879 -1.044 0.300635

30-39 yrs. *Relative Abundance 0.326227 0.118486 2.753 0.0077

40-49 yrs * Relative Abundance -0.04851 0.048153 -1.007 0.317645

>50 yrs. * Relative Abundance -0.34745 0.128173 -2.711 0.008639

Soil Order * Relative Abundance -0.02319 0.054396 -0.426 0.671297

Pathotroph

Intercept 3.71E-02 8.08E-03 4.593 2.14E-05 5.212 3.85E-01

Relative Abundance 7.59E-02 4.94E-02 1.535 0.12983

15-29 yrs -3.03E-05 1.29E-02 -0.002 0.99813

30-39 yrs. -2.54E-02 1.65E-02 -1.533 0.13018

40-49 yrs 7.26E-03 1.34E-02 0.543 0.58922

>50 yrs. 7.79E-03 1.91E-02 0.409 0.68414

Soil Order 5.06E-02 1.05E-02 4.844 8.63E-06

15-29 yrs * Relative Abundance 5.51E-02 6.19E-02 0.889 0.37729

30-39 yrs. *Relative Abundance 2.96E-02 1.19E-01 0.25 0.80345

40-49 yrs * Relative Abundance 3.35E-02 6.55E-02 0.511 0.61131

>50 yrs. * Relative Abundance -1.00E-01 1.50E-01 -0.668 0.50627

Soil Order * Relative Abundance -1.49E-01 4.91E-02 -3.023 0.00362
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Saprotroph

Intercept 0.044486 0.009024 4.93 6.29E-06 3.986 0.3074

Relative Abundance 0.00839 0.012151 0.69 0.49242

15-29 yrs 0.000977 0.015267 0.064 0.94917

30-39 yrs. -0.02611 0.017567 -1.486 0.14223

40-49 yrs 0.014022 0.014452 0.97 0.33564

>50 yrs. 0.00403 0.018459 0.218 0.82789

Soil Order 0.041762 0.014026 2.977 0.00412

15-29 yrs * Relative Abundance 0.010664 0.022113 0.482 0.63131

30-39 yrs. *Relative Abundance 0.009627 0.027386 0.352 0.72635

40-49 yrs * Relative Abundance 0.002232 0.017393 0.128 0.89831

>50 yrs. * Relative Abundance -0.0156 0.028946 -0.539 0.59192

Soil Order * Relative Abundance -0.02713 0.021348 -1.271 0.20837

Symbiotroph

Intercept 0.043991 0.007822 5.624 4.57E-07 3.878 0.2996

Relative Abundance 0.026526 0.03407 0.779 0.43913

15-29 yrs 0.009407 0.012871 0.731 0.46756

30-39 yrs. -0.02512 0.015698 -1.6 0.11454

40-49 yrs 0.017386 0.0107 1.625 0.10918

>50 yrs. -0.00384 0.017181 -0.224 0.82371

Soil Order 0.03207 0.011125 2.883 0.00539

15-29 yrs * Relative Abundance -0.01335 0.043861 -0.304 0.7619

30-39 yrs. *Relative Abundance 0.016704 0.082717 0.202 0.84062

40-49 yrs * Relative Abundance -0.0038 0.028807 -0.132 0.8954

>50 yrs. * Relative Abundance 0.001359 0.103578 0.013 0.98957

Soil Order * Relative Abundance -0.02929 0.047344 -0.619 0.53839

Arbuscular mycorrhizae

Intercept 0.054569 0.00489 11.16 < 2e-16 3.98 0.307

Relative Abundance -3.03787 1.786165 -1.701 0.093916

15-29 yrs 0.00929 0.009112 1.02 0.311811

30-39 yrs. -0.02644 0.009216 -2.869 0.005598

40-49 yrs 0.015535 0.008276 1.877 0.06515

>50 yrs. -0.00402 0.008834 -0.455 0.650495

Soil Order 0.023439 0.006441 3.639 0.000554

15-29 yrs * Relative Abundance -0.47607 1.397289 -0.341 0.734457

30-39 yrs. *Relative Abundance 7.553919 4.493007 1.681 0.097664

40-49 yrs * Relative Abundance 0.927845 2.20803 0.42 0.675759

>50 yrs. * Relative Abundance -8.1362 6.070124 -1.34 0.18494

Soil Order * Relative Abundance -0.05002 0.164411 -0.304 0.76195
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Chapter 3: Defining carbon benchmark values for agroecosystems across diverse tropical soil 

environments for soil health assessment. 

Introduction 

Soil organic carbon (SOC) plays a crucial role in ecosystem functioning by affecting soil 

structure, water retention, nutrient availability, and rhizosphere and microbial processes (Rawls 

et al. 2003, Lal 2016, Kay 2018, Poirier et al. 2018). As one of the largest reservoirs of carbon in 

terrestrial ecosystems (Jobbágy and Jackson 2000), any changes in SOC can significantly impact 

atmospheric concentrations of carbon dioxide and methane. Therefore, it is important to 

understand the response of SOC to environmental and land use modifications in order to mitigate 

climate change. As a reservoir of nutrients in soils, understanding processes leading to the loss 

and recovery of soil organic matter is important for enhancing agricultural productivity. 

However, accurately predicting the effects of these changes on SOC poses challenges due to the 

complex interactions among climatic factors, soil conditions, and biotic properties (Lehmann and 

Kleber 2015, Rasmussen et al. 2018, Vaughan et al. 2019). Failure to consider these interactions 

when making SOC predictions can lead to substantial uncertainty in model outcomes (Luo et al. 

2016). To overcome this challenge, the use of soil health tools, such as benchmarks, can establish 

a baseline for understanding SOC variability across different land uses, climates, soil conditions, 

and biotic properties. 

Previous studies have demonstrated that the conversion of forests to agricultural land use 

has generally resulted in global losses of SOC, with the exception of certain pasture lands (Guo 

and Gifford 2002, Don et al. 2011, Powers et al. 2011). This conversion raises concerns about the 

potential increase in anthropogenic greenhouse gas emissions and the decline in soil health. 

These concerns are particularly relevant in tropical regions, where deforestation alone accounts 
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for a significant portion of soil carbon emissions resulting from land use change, ranging from 

10% to 30% (Achard et al. 2004). However, research has shown that the impact of land use on 

SOC in tropical regions is highly variable (Don et al. 2011), which can be attributed to 

insufficient research coverage encompassing the diverse climates and soil conditions prevalent in 

these areas (Powers et al. 2011). To overcome these biases, large-scale assessments of SOC are 

needed.  

Soil health scientists are actively working on defining indicators and benchmarks of soil 

properties to assess global and local environmental issues, providing insights into the effects of 

land use change on SOC and strategies to manage any losses in different regions (Allen et al. 

2011, Bran Nogueira Cardoso et al. 2013). By recognizing SOC as a critical indicator of soil 

health, it becomes crucial to understand the impact of land use changes on SOC across various 

climate and soil environments in tropical regions. This understanding can help inform 

sustainable land management practices and policies to mitigate soil carbon losses and promote 

soil health in these areas. 

Over the years, various benchmarks have been developed to evaluate soil health and gain 

insights into how different agricultural practices affect soil properties and function. One such 

benchmark is the Soil Health Gap, defined as the difference between soil health in undisturbed 

soil and the current soil health in cropland soil within a specific agroecosystem (Maharjan et al. 

2020). However, the idea of undisturbed soil poses challenges in areas affected by extensive 

deforestation. In many parts of the tropics, forest cover is dominated by secondary growth, which 

can show the legacy effects of past land uses (FAO, 2010, Powers and Marín-Spiotta 2017). 

Secondary forests could be considered as proxies for undisturbed forests to understand carbon 

dynamics, based on data from previous studies demonstrating recovery of aboveground biomass 
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with forest succession (Jones et al. 2019). However, SOC recovery in such forests exhibits 

considerable variation, resulting in inconsistent outcomes (Marín-Spiotta and Sharma 2013, 

Powers and Marín-Spiotta 2017), which can result in incorrect assessment when using secondary 

forests as proxies in the Soil Health gap benchmark and significant challenges if there are no 

primary or undisturbed forests available for comparison. 

Alternatively, benchmarks can be derived based on the distribution of SOC values found 

in specific regions or environmental conditions. Using the distribution of values, scores can be 

created to reflect the variability observed within a specific region, and these scores can be used 

to assess current SOC value in agricultural lands to evaluate if SOC is low compared to areas 

with similar environmental characteristics. Two examples of such benchmarks are the 

Comprehensive Assessment of Soil Health (CASH), which utilizes cumulative normal 

distribution of regional data sets from the northern United States (Idowu et al. 2009), and the Soil 

Management Assessment framework, which integrates biological, chemical, and physical soil 

health indicators by transforming measured values into 0-1 scores (Andrews et al. 2004). An 

updated version combining those two methods is the Soil Health Assessment Protocol and 

Evaluation (SHAPE), which interprets soil health based on peer soil groups defined by edaphic 

and climate factors (Nunes et al. 2021). By using these tools, we can improve soil health 

assessments to understand what drives SOC variability in tropical regions and to provide future 

land management recommendations. However, developing these benchmarks requires a 

comprehensive understanding of the factors influencing soil carbon dynamics and their 

interactions. Therefore, to establish a benchmark for agricultural soils in the tropics, it is crucial 

to understand what factors control SOC in soils of the tropics. 
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Climate and physicochemical soil properties have been widely recognized as significant 

drivers of (SOC) dynamics at both global and regional scales (Luo et al. 2017, Wiesmeier et al. 

2019). Climate variables, such as temperature and precipitation, influence organic matter inputs 

through net primary productivity and decomposition, as well as soil biological, chemical, and 

physical characteristics that affect rates of accumulation and loss of organic carbon in soils 

(McGroddy and Silver 2000, Conant et al. 2011, Hobley et al. 2016).  Soil texture - in particular, 

clay content - is commonly used as a primary predictor of SOC in many biogeochemical models; 

however, this relationship varies depending on climatic and other conditions (Oades 1988, 

Schimel et al. 1994, Rasmussen et al. 2018). A recent study across a wide precipitation range in 

the tropics found that climate, land use type, and clay content had limited predictability on soil 

carbon, whereas soil order classification, pH, and the fine silt plus clay fractions together 

explained a greater portion of the observed variation (Vaughan et al. 2019). However, our 

understanding of the factors influencing soil carbon within different land uses under diverse 

climatic and soil environmental conditions remains limited.  

In this study, we aimed to 1) investigate the influence of agricultural land and vegetation 

cover on the variability of SOC content in a region with diverse climate and soil factors, 2) 

identify the factors that significantly affect SOC content within different agricultural land and 

vegetation covers, and 3) develop a benchmark for SOC assessment by using the Soil Health Gap 

benchmark and the Scores Benchmarks as conceptual models and evaluate their applicability and 

usefulness in our study context. We hypothesize that agricultural lands will lead to lower 

amounts and variability in SOC content compared to forests due to the high abundance of 

secondary forests in the tropics with inconsistent SOC responses. We also hypothesize that SOC 

variability at the regional scale will be modulated by climate, but within land use will be 
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dependent on soil physicochemical characteristics. Lastly, we hypothesize that the Soil Health 

Gap model will not be ideal for tropical regions due to the limited availability of primary forests 

as reference points and the secondary forests’ high SOC variability. Hence, we expect that a 

Score benchmark representing the variation in the tropics will be a more practical approach. We 

use the island of Puerto Rico as a case study to investigate the factors influencing soil carbon 

dynamics and to establish a soil carbon benchmark specific to tropical regions given the island's 

well-documented land use history, diverse climate and soil environments, and richness of 

available data. We evaluated 586 pedons across a wide range of climatic conditions and 9 

USDA-classified soil orders. By synthesizing available soil organic carbon concentrations and 

environmental and agricultural data at a regional scale, our work serves as guidance to improve 

predictions of SOC in tropical regions and to evaluate and assess agricultural impacts on SOC to 

develop soil conservation management plans. 

Methods 

A Case Study: Puerto Rico 

The Caribbean Area Natural Resources Conservation Service (NRCS) has identified soil 

health as a priority for increased agricultural productivity and protection of soil from erosion and 

other disturbances in Puerto Rico (NRCS 2023). Several recent programs have addressed the 

potential for conservation investments to improve soil organic carbon.  Historically, Puerto Rico 

experienced extensive deforestation for agriculture and livestock purposes, with approximately 

78 percent of the island's land being deforested during the 1900s (Wadsworth 1950). However, in 

the 20th century, large portions of agricultural land were abandoned as the economy shifted 

towards industrialization and a service-based sector (Franco et al. 1997). Currently, potential 

agricultural lands encompass 42 percent of Puerto Rico (Gould et al. 2017). These include lands 
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well-suited for mechanized and non-mechanized agriculture, such as row and specialty crops, 

livestock, dairy, hay, pasture, and fruits, which occupy 23 percent of Puerto Rico, and areas 

suitable for forestry production, such as timber and non-timber products, agroforestry, and shade 

coffee, which occupy 19 percent.  

Puerto Rico is an archipelago located between 17° 45' N and 18° 30' N and 65° 45' W to 

67° 15' W. The main island occupies 8740 km2 with vegetation zones ranging from dry, semi-

deciduous forests in the southwest area to moist forests covering most of the island, to wet and 

rainy forests in the northeast and high elevation areas. Elevation ranges from sea level to the 

highest mountain peak at 1338 m in Cerro de Punta, located in the central region of the main 

island. The climate in Puerto Rico is tropical and predominantly maritime (Daly et al. 2003). The 

spatial pattern in temperature is linked to elevation, topographic position, and proximity to the 

ocean. Puerto Rico exhibits a diverse range of climate conditions. The mean annual temperature 

varies from 20 ºC in high elevations to 26 ºC in coastal areas. The island experiences a broad 

range of mean annual precipitation, ranging from 4500 mm in the northeast region to 850 mm in 

the south coast area. These climate gradients observed across Puerto Rico provide a relatively 

representative climate scenario for tropical regions.  

Additionally, Puerto Rican soils encompass 10 of the 12 USDA soil orders, offering the 

advantage of various soil properties that can contribute to understanding spatial variability in soil 

carbon. Soils are classified as Alfisols, Entisols, Histosols, Inceptisols, Mollisols, Oxisols, 

Ultisols, Vertisols, Aridisols, and Spodosols. The diversity of soils in Puerto Rico is driven by the 

diverse parent materials, climatic conditions, and weathering processes found on the island 

(Lugo and Brown 1993, Muñoz et al. 2018).  The suitability of land for agriculture and the last 

past use legacies makes, and the diverse soils and climate environments in Puerto Rico make it 
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an ideal location to examine land use on soil carbon dynamics. However, the limited availability 

of primary forests creates a challenge when evaluating different benchmarks, as the Soil Health 

Gap benchmarks are designed to have as a control undisturbed forests, which provides the 

opportunity to evaluate the potential of secondary forests as proxies of primary forest for soil 

health evaluations. Also, the diverse climates and soil environments provide a great opportunity 

to evaluate the variability of Score Benchmark at different scales.  

Data collection  

Part of the data was derived from samples submitted by the NRCS for soil 

characterization to the NRCS Kellogg Soil Survey Laboratory in Lincoln, NE (n of pedons = 

234) using the “SoilDB” package in R (Beaudette et al. 2016) and extracting the data from the 

publicly available NRCS database. The pedons of this database contained measured chemical 

and physical properties of diverse geographical representations in Puerto Rico. Only latitude, 

longitude, soil series, soil order, soil suborders, SOC, sand, clay, and silt percentages were used 

from this dataset. The land use and management were recorded in the NRCS database so we 

extracted land use information from the National Land Cover Database (NLCD) circa 2001 for 

Puerto Rico using Google Earth Engine. The pedons were classified under “Developed, Open 

Space,” “Developed, Low Intensity,” “Developed, Medium Intensity,” “Barren Land,” 

“Evergreen Forest,” “Shrub/Scrub,” Grassland/Herbaceous,” “Pasture/ Hay,” “Cultivated Crops,” 

and “Emergent Herbaceous Wetlands.” To get more representation of land uses across different 

soil orders and climate regions, we reclassified all these categories into the following land use 

classifications “Agriculture,” which indicates cultivated crops, “Pastures” which indicates 

Pastures, Hays, Grasslands, and Herbaceous lands that can be used or are being used for cattle, 

“Forests” which includes evergreen forests and woody vegetation areas, “Range” which is 
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described as herbaceous and shrubby vegetation, and “Wetlands”. We used aerial imagery for the 

categories classified as Developed to reclassify into one of the land use classes. 

Data from the rest of the pedons (n = 352) were requested from the corresponding authors 

of Marin-Spiotta et al. 2008, Vaughan et al. 2019, and Acosta-Martinez et al. 2007. The data 

from these three publications contained land use, latitude, longitude, soil series, soil order, SOC 

concentration, sand, clay, and silt percentages for the first 10-30 cm of depth. Using the 

Taxonomic Classification of the Soils of Puerto Rico 2017 (Muñoz et al. 2018), we confirmed 

soil order and extracted soil suborder for each pedon.  

The data from the NRCS database and the publications were combined to provide a total 

of 586 pedons representing 9 of 10 soil orders (Alfisols, Entisols, Histosols, Inceptisols, 

Mollisols, Oxisols, Ultisols, Vertisols, and Aridisols) in Puerto Rico and covering five different 

land uses (Agriculture, Pastures, Forest, Wetland, and Rangelands). Using WorldClim data, we 

extracted mean annual temperature (MAT) and mean annual precipitation (MAP) with a 

resolution of 1 km2.  The SOC concentration values for each pedon averaged by 0-30 depth 

ranged from 0.01 - 46.6% (Figure 1). For this study, we are using SOC concentration due to the 

lack of data on bulk density and carbon stocks in the NRCS databases We acknowledge that SOC 

concentrations are not standardized by soil volume and may result in biases when comparing 

sites (Don et al. 2007). However, our work objectives are to evaluate factors controlling SOC 

concentrations and different Benchmark models, which provide an opportunity to build up from 

our results for later researcher focus on assessing SOC stocks across diverse climates and 

environmental conditions. 
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Data analyses 

We selected only the first 30 cm of the depth of each pedon for analysis due to high SOC 

carbon abundance and because it is the most active and most affected depth of the soil as a result 

of land use change (Jobbágy and Jackson 2000). Due to the variable depth of the horizon of each 

pedon, all variables were averaged by all horizons between 0 and 30 cm to standardize the depth 

among the pedons. To investigate the influence of agricultural land and vegetation cover on the 

variability of averaged SOC from 0-30 cm depth, we used an analysis of variance (ANOVA) to 

determine the significant difference among land uses or vegetation covers and Tukey HSD for 

pair comparisons. To identify the factors that affect SOC concentration within different land uses 

and vegetation covers, we sub-divided the dataset into Agriculture, Pasture, and Forest sub-

datasets, and we evaluated the effect of soil order, soil suborder, texture class have on SOC 

concentration using an ANOVA and Tukey HSD for pair comparisons. We used simple linear 

regression to test for the effect of temperature, precipitation, clay, clay + silt, and soil pH on the 

averaged SOC from 0-30 cm depth. Note that we evaluated clay as a standard factor and reported 

it in tables, but we only discussed the effect of silt + clay in our results due to the low influence 

of clay alone on SOC, which has been previously reported (Rasmussen et al. 2018, Vaughan et 

al. 2019). Then, for each land use and vegetation cover type, we incorporated those factors that 

contributed to the variability of soil carbon into stepwise regression models backward and 

forward using the function “step” from the “MASS” R package (Ripley et al. 2013). We 

considered a significant value when the p-value <0.05. 

For the development of the benchmarks, first, we performed a stepwise model backward 

and forward using the function “step” from the “MASS” R package to select the combination of 

variables that represented most of the variability across the whole island. We also performed a 
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Random Forest model using the package “randomForest” (Liaw and Wiener 2002) and 

determined variable importance using the function “varImPlot” from the package “caret” in R 

(Kuhn 2008). To apply the Score Benchmark, we trained a Random Forest model using 70% of 

the data and validated the model with 30% of the data. Then, we predicted all the values from 

our data and calculated the Empirical Cumulative Distribution by grouping the data into soil 

orders. To apply the Soil Health Gap Benchmark, we calculated the difference between the 

average SOC content in forest and agricultural lands and in forest and pasture lands grouped by 

soil order and soil order + climate. For climate, we classify precipitation into Dry (<1000 mm), 

Moist (1000–2500 mm), and Wet (>2500 mm) rainfall class and temperature into < 21 C, 22-25 

C, >26, following the Koppen climate classification system criterion  (Köppen 1900, Kottek and 

Hantel 2005). To test if soil order influenced the gap and to test if the gap was higher for 

agricultural lands or pastures, we used an ANOVA and Tukey HSD for pair comparisons. We 

considered a significant value when the p-value <0.05 unless otherwise noted. 

Results 

Land use effect on soil carbon 

The average SOC concentrations from 0-30 cm depth varied significantly across land 

uses (p-value < 0.001; Table 1, Figure 1). A Tukey HSD test showed that all land uses were 

significantly different, except for Rangelands (Table 2.). SOC in Rangelands did not differ from 

Agricultural lands (p-value = 0.126), Forests s (p-value = 0.995), and Pastures (p-value = 0.165). 

Wetlands had the greatest carbon concentrations (7.75 ± 5.8 %), followed by Forests (which 

include evergreen forests and woody vegetation areas; 3.7 ± 3.51 %), Pastures (which indicates 

Pastures, Hays, Grasslands, and Herbaceous lands that can be used or are being used for cattle; 
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2.51 ± 1.36 %), Rangelands (which is described as herbaceous and shrubby vegetation 2.20 ± 

0.68 %), and Agriculture (which indicated cultivated crops; 1.62 ± 0.7 %). 

Factors affecting soil organic carbon in agricultural land and pastures. 

We evaluated the effect of soil order, soil suborder, MAT, MAP, percentage of clay + silt, 

pH, and USDA soil texture classification for SOC % in agriculture and pasture to detect factors 

influencing their variability (Table 3, Table 4, Figure 2). In agricultural soils, we found that soil 

order (p < 0.001, R2 = 0.51) and suborder (p < 0.001, R2 = 0.50) had a strong effect on SOC%. 

Average temperature (p-value = 0.001, R2 = 0.1) and precipitation (p-value < 0.001, R2 = 0.17) 

significantly influence SOC% in agricultural lands. Similarly, soil properties, silt + clay 

percentage (p-value < 0.001, R2 = 0.32), and texture class (p-value < 0.001, R2= 0.19) were 

significantly related to agriculture SOC% and represented 20-32% of the variability, but pH (p-

value = 0.003, R2 = 0.08) only represented an 8%. A stepwise linear regression showed that the 

best model to predict agricultural SOC% includes soil order, percentage of silt + clay, average 

temperature, and pH (p-value < 0.001, R2 = 0.60; Table 5).  

In pasture soils (Figure 3), soil order (p < 0.015, R2 = 0.06) and suborder (p < 0.001, R2 = 

0.20) significantly influenced SOC%. In contrast to agricultural soils, soil suborders represented 

more of the variability of the data suggesting that finer levels of taxonomic classification may be 

more informative than soil order. When evaluating climate conditions, we found no effect of 

average temperature (p-value = 0.36, R2 < 0.001) nor precipitation (p-value = 0.509, R2 < 0.001) 

on SOC% in pasture lands. When analyzing soil properties, silt + clay percentage (p-value < 

0.001, R2 = 0.32%) and texture class (p-value < 0.001, R2 = 0.32) were significantly related to 

pastures SOC% and represented a third of the variability, but pH (p-value = 0.003, R2 = 0.10) 
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only represented 10%. For pastures, the stepwise linear regression best model included soil 

suborder, percentage of silt + clay, and pH (p-value < 0.001, R2 = 0.45; Table 5). 

Factors affecting soil organic carbon in forest soils. 

We evaluated the effect of soil order, soil suborder, average temperature, average 

precipitation, percentage of clay + silt, pH, and USDA soil texture classification for SOC % in 

forest soils to detect factors influencing its variability (Table 3, Table 4, Figure 4). We found that 

soil order (p = 0.003, R2 = 0.05) and suborder (p < 0.001, R2 = 0.46) significantly influence 

forest SOC %. Similar to pasture soils, these results suggest that soil suborders represented more 

of the variability of the data, pointing out that finer levels of taxonomic classification may be 

more informative than soil order. When looking at climate conditions, we found that both 

average temperature (p-value = 0.001, R2 = 0.14) and precipitation (p-value < 0.001, R2 = 0.11) 

affect SOC % in forest soils. For soil properties, silt + clay percentage (p-value < 0.001, R2 = 

0.19) and USDA texture classes (p-value < 0.001, R2=0.20) were significantly related to forests 

SOC% and represented 20% of the variability, but pH (p-value = 0.452, R2 < 0.001) in this case, 

was not significant. A stepwise regression running forward and backward showed that the best 

model to predict forest SOC% included the variables soil suborder, USDA texture classes, and 

average temperature (p-value < 0.001, R2 = 0.60; Table 5). 

Development of a benchmark 

To be able to develop a benchmark, we used a stepwise regression to identify the most 

important factors influencing SOC% across the whole island of Puerto Rico. This stepwise 

regression was different from those above because it consolidated all land uses and considered 

the type of land use as a factor of interest. The stepwise model showed that the best model to 

describe SOC% included the soil suborder, land use type, USDA taxonomic classification, 



128 
 

 
 

average temperature, and pH (p-value <0.001, R2 = 0.55; Table 5). However, due to our limited 

sample size within each soil suborder, we decided to continue developing the benchmark using 

the soil order taxonomic level. We also performed a Random Forest model to identify variable 

importance using the percentage increase in Mean Squared Error (IncMSE), and we found that 

all variables were above 20% of IncMSE, including average precipitation and soil order (Figure 

5). We decided to keep average precipitation and soil order in our model.  

To develop the Gap Benchmark, we subtracted the average SOC concentration of forests 

minus the SOC concentration from agricultural or pasture sites within each soil order and climate 

classification to calculate the gap. We found that forests on Alfisols, Inceptisols, Mollisols, 

Oxisols, and Ultisols have more carbon than agriculture or pastures, but forests in Aridisols and 

Vertisols have less. An ANOVA showed that soil order was relevant in controlling the gap 

between forest vs. agriculture or pastures (p-value = 0.012; Table 6). We also found a marginal 

difference between the pasture and agricultural gaps (SOC difference from forests; p-value 

0.068; Table 6, Figure 8), suggesting that the gap is greater in agricultural lands compared to 

pastures. When we take into account climate, we found that in moist regions (rainfall of 100-

2500 mm and temperature of  > 26), agricultural lands in Alfisols and pasture lands in Aridisols 

and Mollisols have more carbon than forest, indicating that climate plays an important role in the 

difference of soil carbon from forests to agricultural lands (Figure 9).  

To develop the Scoring Benchmark, we decided to exclude samples from Histosols, 

range, and wetlands due to their limited representation in the data. By training a Random Forest 

model with 70% of the data, we developed the scoring benchmark from 0 to 1 by grouping the 

prediction by soil order and calculating the Empirical Cumulative Distribution Function. Using 

the test data (that accounted for 30% of the total dataset), we predicted SOC% in which we could 
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assign a score, but the test data predictions resulted in less than 60% performance (RMSE= 0.49, 

R2 = 0.59; Figure 6, See Score Benchmark in Figure 7). 

Discussion 

Our primary goal was to understand the factors influencing soil organic carbon (SOC) 

concentration in different soil types under various agricultural and vegetation covers in a wide 

range of climatic conditions. We developed a benchmark for SOC assessment using two 

conceptual models and evaluated their applicability in a tropical region with diverse land covers, 

soil types, and climates. We found that SOC variance differed among land uses, and the factors 

controlling SOC concentration varied within pastures, agricultural lands, and forests. For the 

whole island of Puerto Rico, several factors collectively accounted for half of the SOC 

variability, including soil suborder, land use type, USDA texture classification, average 

temperature, and pH. The differences in soil carbon between forests and agricultural or pasture 

lands varied depending on soil order and climate conditions, with a more pronounced gap 

observed in agricultural lands. Our study highlights that a Score benchmark model would be 

more suitable for diverse tropical soils, but improving the prediction of soil carbon would require 

evaluating a wider range of influencing factors. The implications of these findings are discussed 

further in the study. 

Variability in soil carbon across different land uses  

The results of our study highlight the influence of vegetation cover and land use change 

on SOC. We observed high variance in SOC concentration within forested areas and wetlands, 

with a standard deviation ranging from 3.51 to 5.8 %. In the case of forests, the variance in soil 

carbon can be attributed to a combination of factors, including land use legacies, climatic 

conditions, and soil characteristics. Forested areas may exhibit distinct patterns of SOC due to 
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historical land use practices, such as deforestation, grazing, and crop production, which can leave 

long-lasting impacts on carbon stocks (Powers and Marín-Spiotta 2017). Additionally, climatic 

conditions, such as temperature and precipitation, can influence the decomposition rates of 

organic matter and the overall carbon dynamics within forest soils (Conant et al. 2011). 

Furthermore, soil characteristics, such as texture, mineral composition, and nutrient availability, 

can vary across forest types, leading to variations in SOC concentrations (Oades 1988, Schimel 

et al. 1994, Rasmussen et al. 2018). We will go into more detail about how these factors 

influence our forest sites in the following section.  

In our analysis of wetlands, we observed high variance in soil organic carbon (SOC) due 

to the diverse range of soil types and climates in our dataset. The wetland pedons included 

Entisols, Histosols, Inceptisols, Mollisols, Ultisols, Vertisols, and MAT, with temperatures 

ranging from 25.4-26.5°C and MAP ranging from 867-1864 mm. The variation in soil 

characteristics and the wide range of MAP can significantly influence SOC content, as the 

frequency of saturated or water-covered soils influences biogeochemical processes (Perez-

Alegria 2001). For instance, soil orders like Vertisols, found in dry areas, exhibit SOC content 

ranging from 1-7%, while Histosols and Entisols, located in moist and wet areas such as 

mangrove swamps, marshes, lagoons along the coast, deposits along streams and in coastal 

floodplains exhibit SOC variation of 7-25% (Muñoz et al. 2018). This distinction in soil types 

and their associated water saturation levels can affect biogeochemical dynamics that control 

SOC.  

Supporting our expectations, SOC concentration and its variance were found to be lower 

in agricultural land compared to forests and wetlands. The standard deviation of SOC in 

agricultural land was 0.7% in our study. This relatively low variance may be attributed to 
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management practices employed in these agricultural systems, which regulate the amount of crop 

residue incorporated into the soil (Lugo and Brown 1993). The return of crop residues to the soil 

has a direct impact on SOC levels (Graham et al. 2002), and intensive management and high 

biomass export in crop systems often result in lower SOC concentrations (Graham et al. 2002). 

However, it should be noted that our data resolution did not allow for detailed information on 

crop types or specific management practices, which limits our understanding of the observed low 

variability. Future research should incorporate such information to enhance our comprehension 

of the factors influencing SOC dynamics in agricultural systems. 

In contrast, pasture lands exhibited a significant variance of SOC concentration, with a 

standard deviation of 1.36%. Previous research findings have also highlighted the high variance 

in SOC levels after forest conversion to pasture (Houghton 1995). The impact of this conversion 

on SOC levels has shown contrasting results in different studies, with some reporting increases 

(de Moraes et al. 1996, Neill et al. 1997) and others documenting decreases (Detwiler 1986, 

Fearnside and Imbrozio Barbosa 1998). The variance of SOC in pasture lands is influenced by 

management practices and climatic conditions, as suggested by (Guo and Gifford 2002). These 

factors will be discussed in greater detail in the subsequent section. Notably, grasslands, pastures, 

and perennial crops, which maintain permanent vegetation cover and experience high root 

turnover, contribute substantially to SOC inputs (Brown and Lugo 1990). This could explain the 

generally higher SOC concentrations observed in pasture lands compared to agricultural systems. 

Soil carbon environmental controls vary within land use types. 

The environmental controls on SOC vary within different land use types, revealing 

distinct patterns and factors influencing SOC concentrations. In forest systems, various factors 

contribute to the variability of SOC, including soil suborder, texture classes, and average 
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temperature. Interestingly, unlike in pasture and agriculture, pH did not play a significant role in 

SOC variability within forests. Many pedons of this study are karst-derived and contain free 

calcium carbonates, as evidenced by strong effervescence under acid in the field and in the lab 

found by Vaughan et al. (2019). These soils are rich in calcium and characterized by high pH, 

which can protect soil organic matter from decomposition through various mechanisms 

(Rasmussen et al. 2018). The presence of calcium and other base cations facilitates the formation 

of cation bridges between clay particles and organic matter, leading to stabilization in mineral-

organic associations (Oades 1988, Lützow et al. 2006) while also promoting the formation of soil 

aggregates that potentially enhance the physical protection from decomposers (Six et al. 2004). 

However, in our data, soils with low pH, such as Oxisols, also had high concentrations of SOC, 

affecting a possible linear trend between pH and SOC content.   

Precipitation had a significant though low effect on SOC in forest ecosystems, accounting 

for approximately 11% of the variability. Studies conducted in the Caribbean have demonstrated 

that SOC accumulation rates during succession are higher in moist and wet life zones than in dry 

forests (Brown and Lugo 1990). Additionally, other climate variables, such as temperature, 

during tropical succession have been found to be influential predictors of SOC in pantropical 

regions (Marín-Spiotta and Sharma 2013). These findings suggest that while the impact of 

climatic variables may be relatively low, they are crucial for comprehending the dynamics of 

SOC in forest soils.  

Climate variables were also a significant predictor of SOC in agricultural lands. MAP 

explained nearly 20% of the variability in SOC within agricultural sites. MAT and soil 

characteristics such as soil order, the percentages of silt + clay, and pH also played a crucial role 

in controlling 60 % SOC concentration variability in agricultural soils. The relationship between 
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climate and soil properties in agricultural systems and their impact on SOC has been observed 

globally, particularly in tropical regions (Don et al. 2011). In a meta-analysis, Don et al. (2010) 

found that 55% of the SOC variability in agricultural systems was attributed to climatic and soil 

parameters, suggesting that the rest of the variability could be the result of management practices 

and crop residuals. Unfortunately, the resolution of our dataset did not account for management 

practices and the intensity of land use. Future analyses must consider management practices as 

they have been observed in other environments to have a significant effect on SOC within 

agricultural ecosystems (Alvarez 2005).  

In contrast to agricultural lands, pasture lands were predominantly influenced by soil 

properties, such as soil suborder, percentage of silt + clay, and pH, accounting for 45% of the 

SOC variability. MAT and MAP did not affect soil C in our study, contrasting with a global meta-

analysis by Dlamini et al. (2016), where MAT and MAP were the primary drivers of SOC 

variability in grasslands. In our study, soil texture, particularly the percentage of silt + clay, was 

more influential than climate. Fine-textured soils are expected to promote greater SOC content 

due to the stabilization of organic matter by clay and silt particles, protecting it from 

decomposition (Parton et al. 1987, Six et al. 2002). Although soil texture and soil pH may be 

good predictors of SOC in our analysis, there is still a 55% variability that was still not explained 

by the factors studied. This variability could be the result of management and grazing intensities 

influencing soil structure and compaction, affecting SOC dynamics (Dlamini et al. 2016, Byrnes 

et al. 2018).    

Our study suggests that when considering pastures and forests, focusing on soil suborder 

classification provides a more informative perspective on SOC variability compared to soil 

orders. Soil orders inherently encompass substantial SOC variation within their categories 
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(Mayes et al. 2014). Contrasting to our results, Vaughan et al., (2019) found that soil order has a 

strong influence on SOC stocks. No effect of soil order could be the result of the uncertainty 

evaluating SOC concentration without the controls of soil area or bulk density (Don et al. 2007). 

Yet, soil suborders, which reflect major environmental controls on soil formation processes and 

indicate moisture or temperature regimes (Muñoz et al. 2018), appear to be more relevant for 

explaining SOC variability in forests and pastures, while in the case of agricultural soils can be 

more broadly explained across different soil orders. 

Benchmark models for predicting SOC values regionally. 

Benchmark models for predicting SOC concentration values at the regional level are 

essential for understanding soil health and informing agricultural and conservation practices. In 

this study, we assessed two benchmark models, the Soil Health Gap, and Scores Benchmarks, to 

determine their suitability in tropical regions characterized by diverse climates, soil 

environments, and vegetation composition. Both models serve distinct purposes and may not 

offer equal utility in all cases. 

The Scores Benchmark offers the advantage of representing data variability and assigning 

scores to SOC, enabling individuals to assess their position within the SOC variability based on 

selected environmental conditions. This model has been successfully implemented in the United 

States. Notably, the Soil Management Assessment Framework (SMAF) developed by Andrews et 

al. (2004) integrates biological, chemical, and physical soil health indicators by transforming 

measured values into 0-1 scores. SMAF has demonstrated effectiveness in evaluating agricultural 

management styles in various regions, such as Georgia, California, Wisconsin, and Iowa, over 

time (Andrews et al. 2004); however, with some overestimations. Another tool, the 

Comprehensive Assessment of Soil Health (CASH), developed by Idowu et al. in (2009), utilizes 
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multiple soil health measurements in the northeastern United States and provides a good 

evaluation of soil health. 

An updated model, the Soil Health Assessment Protocol, and Evaluation (SHAPE), 

developed by Nunes et al. in (2020), combines the SMAF and CASH methods. SHAPE 

interprets soil health based on peer groups defined by edaphic and climate factors, encompassing 

a wider sample size (n = 14,680) across the United States. This updated model improves upon 

the overestimation observed in SMAF while yielding results similar to those obtained with 

CASH (Nunes et al. 2021). These examples illustrate how Score benchmarks address the 

increasing demand for accessible, interpretable, and quantitative scoring curves, providing 

regionally relevant knowledge about soil status in response to agronomic and conservation 

initiatives. In our regional-scale study, the Scores Benchmark exhibited several advantages due 

to its ability to account for diverse factors influencing soil carbon. 

It is important to acknowledge that the SOC concentration variation explained by 

benchmark models may not account for all factors influencing SOC, such as management 

practices, nutrient availability, plant organic matter inputs, topographic aspects, and organisms' 

metabolic processes. These factors should be considered in future developments of score 

benchmarks for tropical regions to enhance accuracy and applicability. Our dataset revealed that 

soil order, land use type, USDA texture classification, MAT, and pH accounted for 60% of the 

SOC variance. Developing score benchmarks require extensive data collection and 

representation of various environmental conditions influencing soil carbon. 

On the other hand, the Soil Health Gap Benchmark is particularly suited for comparing 

specific agricultural sites with nearby forests. By utilizing appropriate control measures that 

enable the identification of land management practices known to decrease SOC, the Soil Health 
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Gap benchmark can effectively address site-level scale soil carbon loss while controlling for 

multiple contributing factors that influence SOC variability. In order to effectively implement the 

Gap Benchmark, it is crucial to possess prior knowledge regarding the impact of various land 

management practices, since they are known to affect SOC differently (Alvarez 2005). 

Conventional tillage, for instance, disrupts the soil structure and leads to the loss of SOC 

(Alvarez 2005). Conversely, the application of manure has been shown to increase SOC levels 

(Ozlu and Kumar 2018, Ozlu et al. 2019), while the practice of cover cropping enhances soil 

aggregation and reduces erosion (Alori et al. 2020). 

Applying the Soil Health Gap Benchmark on a large scale can introduce complexities and 

potentially lead to the over- or under-representation of SOC gaps, primarily due to the influence 

of climate on SOC concentrations. Several meta-analyses have corroborated these findings, 

emphasizing the significance of factors such as temperature, precipitation, and ecological zones 

in comprehending the variability of SOC differences between managed lands and forests at a 

broader scale (Guo and Gifford 2002, Don et al. 2011). Critical Zone researchers have argued 

that a more universal measure of soil health may be possible by including climate indicators, but 

adding such indicators may also increase the uncertainty of already uncertain results (Yoder et al. 

2022). This uncertainty arises from spatial climate variability, which impacts SOC at larger 

scales and influences the processes governing SOC inputs and outputs (McGroddy and Silver 

2000, Conant et al. 2011, Hobley et al. 2016). 

Furthermore, when applying this benchmark on a large scale, the predominance of 

secondary forests in the analyzed region introduces additional complexities. When looking at 

individual field studies investigating SOC dynamics across tropical secondary succession, 

varying outcomes emerge. Some studies report gains, losses, or no significant net change in bulk 
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soil carbon during tropical secondary forest succession (Hughes et al. 1999, de Koning et al. 

2003, Bautista-Cruz and del Castillo 2005, Marin-Spiotta et al. 2009, Powers et al. 2011). 

Therefore, the use of secondary forests may not be suitable for Soil Health Gap Benchmark. 

In general, both the Scores and Soil Health Gap benchmarks have their advantages and 

disadvantages. These approaches can be employed to model and predict SOC, a crucial dynamic 

soil property recognized by the U.S. Department of Agriculture Natural Resources Conservation 

Service (USDA NRCS) as essential for improving agricultural productivity and protecting soil 

from erosion and disturbances (NRCS 2023). It is recommended that benchmark models used to 

assess indices should be easily adaptable so not only scientists but also policymakers and farmers 

take advantage of it used to evaluate soil health. The Gap Benchmark can be relatively 

straightforward to manipulate, requiring limited controls. However, it may introduce biases 

depending on the scale employed. On the other hand, the Scoring Benchmark is more complex 

due to the need to understand the factors controlling SOC and its variations under specific 

environmental conditions. Nevertheless, further research is necessary to clarify the factors 

influencing the observed variability of SOC in tropical regions. Considering the high variability 

of SOC observed in our analyzed pedons, the Scores Benchmark is considered more appropriate 

for tropical regions due to its applicability at multiple scales and soil health goals. Its generalized 

results enable users to determine whether their soil is above or below the average conditions and 

goals of interest. 

Conclusion 

Our study aimed to investigate the influence of agricultural land and vegetation cover on 

SOC variability and to use this information to develop benchmark models for SOC assessment to 

inform soil health management programs and land-climate models. We found significant 
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variations in SOC across different land uses, with factors such as soil suborder, land use type, 

USDA texture classification, mean annual temperature, and pH collectively explaining 60% of 

SOC variability. The changes in SOC between forests and agricultural or pasture lands varied 

depending on soil order and climate conditions, indicating the importance of addressing the 

geographical gaps observed in the literature. Most research in the tropics focuses on highly 

weathered soils and wet climates (Powers et al. 2011, Marín-Spiotta and Sharma 2013, Díaz-

Vallejo et al. 2021), but tropical regions are heterogeneous with a wide diversity of soils, 

climates, and vegetation (Townsend et al. 2008). Our work highlights that to be able to predict 

the response of tropical SOC to land use change and inform management practices, it is 

important to consider SOC response in these diverse environmental conditions.  

Our analysis of benchmark models revealed that the Scores Benchmark offers advantages 

in representing SOC variability and assigning scores to SOC at regional scales. In contrast, the 

Soil Health Gap benchmark may be more suitable at site-level scales. However, challenges exist 

in implementing the benchmarks, particularly in tropical regions with diverse forest and 

agricultural systems and complex SOC controls. Generally, both benchmarks have advantages 

and disadvantages, but considering the ease of manipulation, a scoring benchmark would be 

more appropriate for tropical regions. Our research highlights the need to develop a benchmark 

for tropical soils to address the effects of land use change on soil carbon and establish guidelines 

or protocols.  
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Figures 

 

Figure 1. Soil organic carbon content from 0-30 cm depth a) density and distribution across b) 

soil orders and c) land uses. 
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Figure 2. Agricultural lands soil organic content distribution across a) soil orders, b) soil 

suborders, c) Mean Annual Temperature, d) Mean Annual Precipitation, e) Silt + Clay, and d) 

pH. 
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Figure 3. Pasture lands soil organic content distribution across a) soil orders, 

b) soil suborders, c) Mean Annual Temperature, d) Mean Annual Precipitation, 

e) Silt + Clay, and d) pH. 
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Figure 4. Forest soil organic content distribution across a) soil orders, b) soil suborders, c) 

Mean Annual Temperature, d) Mean Annual Precipitation, e) Silt + Clay, and d) pH. 
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Figure 5. Random forest variable importance.taxorder= soil order, AbgPrec = Mean annual 

precipitation, AvgTemp = Mean annual temperature, Avr_Text = USDA texture classifications.  

 

Figure 6. Random forest model validation using 30% of total data. 
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Figure 7. Soil organic carbon Score Benchmark by soil order. 

 

 

Figure 8. Soil organic carbon Soil Health Gap Benchmark by soil order. Gap = the difference of 

SOC in forest vs. agricultural lands or pastures.  
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Figure 9. Soil organic carbon Soil Health Gap Benchmark by soil order and climate classes. 

Gap = the difference of SOC in forest vs. agricultural lands or pastures.  
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Tables  

 

 

 

df Sum of Squares Mean of Squares F value p-value

Land Use 4 54.61 13.651 29.5 <2e-16

Residuals 581 268.87 0.463

Table 1. Analysis of Variance Results for testing differences among 

land use types. 

Difference Lower CI Upper CI p-value

Forests-Agriculture 0.71 0.48 0.94 0.00

Pastures-Agriculture 0.44 0.19 0.69 0.00

Range-Agriculture 0.38 -0.06 0.82 0.13

Wetlands-Agriculture 1.47 1.03 1.92 0.00

Pastures-Forests -0.27 -0.46 -0.09 0.00

Range-Forests -0.33 -0.73 0.07 0.17

Wetlands-Forests 0.76 0.35 1.17 0.00

Range-Pastures -0.06 -0.47 0.36 1.00

Wetlands-Pastures 1.04 0.61 1.46 0.00

Wetlands-Range 1.09 0.54 1.65 0.00

Table 2. Tukey HDS to test pair comparisons among difference 

land use types. 
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df Sum of Squares Mean of Squares F value p-value

Agricultural lands

Soil Order 6 14.970 2.495 15.720 0.000

Residuals 78 12.380 0.159

Soil Suborder 12 15.840 1.320 8.260 0.000

Residuals 72 11.510 0.160

USDATexture Classification 7 7.241 1.034 3.962 0.001

Residuals 77 20.104 0.261

Pasture lands

Soil Order 7 5.690 0.812 2.575 0.016

Residuals 152 47.950 0.315

Soil Suborder 18 15.660 0.870 3.230 0.000

Residuals 141 37.980 0.269

USDATexture Classification 9 19.080 2.120 9.202 0.000

Residuals 150 34.550 0.230

Forest lands Soil Order 6 11.060 1.844 3.386 0.003

Residuals 289 157.370 0.545

Soil Suborder 17 82.930 4.878 15.860 <2e-16

Residuals 278 85.510 0.308

USDATexture Classification 10 38.320 3.832 8.364 0.000

Residuals 282 129.200 0.458

Table 3. Analysis of Variance testing difference of SOC among soil orders, suborders, and USDA texture 

class classification. 
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Estimate Standar Error t-value p-value F value R2

Agricultural lands

Intercept -6.952 0.820 -8.483 0.000 11.050 0.107

Mean Annual Temperature 0.109 0.033 3.324 0.001

Intercept -3.550 0.168 -21.150 <2e-16 18.750 0.174

Mean Annual Precipitation 0.000 0.000 -4.330 0.000

Intercept -5.919 0.263 -22.534 <2e-16 21.500 0.328

Clay% 0.018 0.003 5.231 0.000

Silt% 0.027 0.004 6.114 0.000

Intercept -4.937 0.239 -20.660 <2e-16 9.178 0.089

pH 0.112 0.037 3.030 0.003

Pasture lands

Intercept -3.045 0.829 -3.674 0.000 0.833 -0.001

Mean Annual Temperature -0.031 0.034 -0.913 0.363

Intercept -3.670 0.201 -18.227 <2e-16 0.438 -0.004

Mean Annual Precipitation 0.000 0.000 -0.662 0.509

Intercept -5.222 0.167 -31.203 <2e-16 38.090 0.320

Clay% 0.018 0.002 8.005 0.000

Silt% 0.017 0.002 7.227 0.000

Intercept -4.735 0.226 -20.920 <2e-16 17.840 0.096

pH 0.157 0.037 4.224 0.000

Forest lands

Intercept 0.606 0.588 1.029 0.304 49.500 0.142

Mean Annual Temperature -0.177 0.025 -7.036 0.000

Intercept -4.578 0.176 -25.967 <2e-16 37.900 0.112

Mean Annual Precipitation 0.001 0.000 6.157 0.000

Intercept -5.194 0.205 -25.345 <2e-16 34.670 0.187

Clay% 0.019 0.003 7.172 0.000

Silt% 0.023 0.003 7.799 0.000

Intercept -3.689 0.208 -17.738 <2e-16 0.566 -0.001

pH 0.028 0.037 0.752 0.453

Table 4. Regression analysis results from testing SOC relationship to Mean annual temperature, Mean annual 

precipitation, Silt+Clay%, and pH. 

R2 F value p-value

Agricultural lands SOC = o β₀ + β₁(Soil Oder) + β₂(Silt+Clay) + β₃(Annual Temperature) + β₄(pH) + e 0.6 15.09 1.13E-13

Pasture lands SOC = β₀ + β₁(Soil Suborder) + β₂((Silt+Clay) + β₃(pH) + e 0.45 7.674 2.72E-14

Forest Lands SOC = β₀ + β₁(Soil Suborder) + β₂(Texture Classification) + β₃(Annual Temperature) + e 0.598 17.66 < 2.2e-16

Whole region SOC  = β₀ + β₁(Soil Suborder) + β₂(Land use type) + β₃(Texture Classification) + β₄(pH) + β₅(Annual Temperature) + e 0.055 18.34 < 2.2e-16

Table 5. Stepwise model results for best model for SOC on each land use type and the whole region of Puerto Rico. 
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Conclusion 

This work underscores the importance of considering the vast diversity of climates, 

vegetation, management practices, and soil conditions in tropical regions to understand their 

potential influence on a global-scale response to environmental changes. Specifically, it reveals 

trends that indicate distinct responses of soil microbial communities and associated ecosystem 

functions to land-use conversions. Furthermore, the research highlights the complex dynamics of 

microbial communities during forest succession and emphasizes the urgent need for further 

studies to enhance our understanding of microbial functionalities in disturbed tropical forest 

soils. Importantly, the research emphasizes the need to develop a benchmark for tropical soils to 

address the effects of land use change on soil carbon and establish guidelines or protocols. To 

achieve this, further investigations are required to explore the factors influencing soil carbon 

variability. 

Future research should enhance our understanding of microbial functionalities and their 

roles in disturbed tropical forest soils. Our work reveals a significant bias towards moist and wet 

areas of the tropics. Little is known about dry systems and how land uses influence microbial 

communities and their functionalities. Also, incorporating other molecular techniques, such as 

metagenomics and metatranscriptomics, would enable a more in-depth exploration of microbial 

functional potentials and their responses to environmental changes. Furthermore, considering the 

influence of specific soil characteristics, such as pH, texture, and nutrient availability, on 

microbial communities and functionality would enhance our understanding of the complex 

interactions between soil properties, forest succession, and microbial dynamics at local scales. 

Additionally, incorporating a broader range of soil types found in tropical regions would provide 
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a more comprehensive understanding of the impact of land use changes on microbial 

communities and ecosystem functioning at global scales. 

Future research should focus on enhancing our understanding of SOC dynamics and 

improving SOC assessment in agricultural and forested lands. By investigating the long-term 

effects of different land management practices, we will be able to understand SOC accumulation 

and stability variability found in the tropics. Additionally, considering the interactions between 

SOC and other soil properties, such as nutrient availability, topography, and macro and 

microorganisms, will contribute to a more comprehensive understanding of SOC dynamics. 

Incorporating technologies, such as remote sensing and molecular analysis techniques, can also 

help to improve spatial mapping and quantification of SOC at larger scales. Furthermore, 

collaboration among researchers, policymakers, and land managers is crucial for implementing 

sustainable soil management practices and promoting the adoption of appropriate SOC 

assessment tools. By addressing these future directions, we can advance our knowledge of SOC 

dynamics and contribute to developing effective strategies for soil health management and 

climate change mitigation. 

Overall, the findings of this research provide valuable insights into the complex 

relationships between land use changes, soil dynamics, and ecosystem functioning, emphasizing 

the need for further investigations and interdisciplinary collaborations to tackle the challenges 

associated with tropical soil management and conservation. 

 

 


