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abstract

Breast cancer, the leading cause of cancer death for women, can be detected at earlier stages
through screening. Therefore, several countries have implemented population-based mam-
mography screening programs. While mammography is the gold standard for breast cancer
screening, it has several drawbacks such as high rates of false positives that lead to patient anxiety
and additional costs. Besides, most of the existing screening guidelines ignore individual risk
factors for breast cancer, which may result in less frequent screening for high-risk women and
unnecessary screenings for low-risk women. Therefore, careful design of breast cancer screening
is crucial to minimize the potential harms of the screening and improving the health outcomes.

In this dissertation, we study three aspects of the breast cancer screening problem: impact
of breast density and supplemental screenings, breast cancer screening in resource-restricted
settings and racial disparities in breast cancer outcomes. We first analyze the impacts of breast
density and supplemental tests on breast cancer screening policies. We formulate the optimal
breast cancer screening problem using a discrete-time partially observable Markov decision
process (POMDP) model. The state space of our model is composed of the patient’s health states
and the breast density states. At each decision epoch, the physician first decides whether or
not the patient should undergo mammography screening, and then uses the observed mam-
mography result to decide whether or not to follow up with supplemental screening. Our
numerical study demonstrates that incorporating breast density into the design of breast cancer
screening policies can significantly affect the screening recommendations. In addition, we find
that incremental benefit of supplemental tests over digital mammography is rather limited; in
particular, patients with higher risk of breast cancer should be recommended more frequent
mammography screenings instead of supplemental tests.

Next, we investigate the optimal allocation of limited mammography resources to screen a
population. We propose a constrained POMDP model that maximizes total expected quality-
adjusted life years of the patients when they are allowed only a limited number of mammography
screenings. We use a variable resolution grid-based approximation scheme to convert the
constrained POMDP model into a mixed-integer linear program and conduct several numerical
experiments using breast cancer epidemiology data. We observe that asmammography screening
capacity decreases, patients in the 40-49 age group should be given the least priority with respect
to screening. We further find that efficient allocation of available resources between patients
with different risk levels leads to significant quality-adjusted life year gains, especially for the
patients with higher breast cancer risk.

Finally, we consider race as a risk factor for breast cancer and investigate the contributing



x

factors leading to higher breast cancer mortality among black women. We modify the University
of Wisconsin Breast Cancer Simulation model to obtain race-specific models and analyze the
differences in disease natural history, treatment utilization and mammography uptake. Our
findings indicate that targeted prevention and detection strategies that go beyond equalizing
access to mammography may be needed to eliminate racial disparities.



1

1 introduction

Breast cancer is the second most common cancer that affects the women after skin cancer. In

the United States, one in eight women is expected to develop breast cancer in their lifetime and

14.5% of female cancer deaths are attributed to breast cancer [Siegel et al., 2015]. A major reason

for the high number of deaths is that breast cancer is an asymptomatic disease (i.e., noticeable

symptoms are typically revealed too late for successful treatment). However, numerous studies

in the medical literature emphasize the importance of early detection to improve overall patient

survival, and strongly support screening to help achieve this goal. In particular, American

Cancer Society (ACS) reports that detecting the disease at early stages increases five-year survival

rates from 27% to 98% [ACS, 2011].

There are several screening methods for breast cancer such as clinical breast examination,

mammography, Magnetic Resonance Imaging (MRI) and ultrasound computed tomography.

Among these methods, the most commonly used screening modality for breast cancer is mam-

mography. On one hand, many studies report that mammography has the potential to reduce

breast cancer mortality by 20%-30% through early detection of the cancer (Kerlikowske et al.

[1995]). On the other hand, mammography screening has several drawbacks including exposure

to radiation, false-positive test results, and risk of overdiagnosis and overtreatment. For instance,

almost half of the women who are screened annually are expected to experience a false-positive

mammogram within 10 years since the false-positive rate of screening mammography is around

10% [Elmore et al., 1998]. Emphasizing such issues, a recent study by the Swiss Medical Board

recommends to not to introduce any new screening programs for breast cancer in Switzerland,

and furthermore, to phase out existing programs [Biller-Andorno and Jüni, 2014].

Screening exams are administered to detect breast cancer in women who have no apparent

symptoms. If the screening exam leads to suspicious results, the physician usually follows

up with a diagnostic test to check the tissue. Diagnostic mammogram is the most commonly

used diagnostic test to evaluate abnormalities detected on a screening exam. It differs from
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a screening mammography in that additional views of the breast are taken, and therefore a

more detailed x-ray of the breast tissue is provided. In addition, MRI and ultrasound can

also be used as diagnostic tests. In this dissertation, we do not consider the post-screening

diagnostic decisions and focus on the breast cancer screening problem. More information about

optimization approaches in breast cancer diagnosis can be found elsewhere [Chhatwal et al.,

2010, Ayvaci et al., 2012].

Risk factors associated with the breast cancer further complicates assessment of the benefits

and harms of the screening. For instance, some studies note that breast cancer is known to

be more aggressive for younger women and suggest more frequent screening at earlier ages

[Jayasinghe et al., 2005]. However, other studies suggest more frequent screening for older

women considering that nearly 50% of the newly diagnosed cancers occur in women older than

60 and mammography screening have higher accuracy for older women [ACS, 2011, Kerlikowske

et al., 2000]. Reflecting the aforementioned controversies, there exist significant inconsistencies

in mammography screening guidelines in the world. Several countries have different guidelines

in terms of starting age and ending age, as well as the frequency of the screening. For instance,

patients are recommended biennial mammography screening between ages 45 and 69 in Spain,

and triennialmammography screening between ages 50 and 70 in theUnitedKingdom [Klabunde

et al., 2007]. Similar inconsistencies inmammography screening guidelines may exist evenwithin

the same country. For example, in the U.S., while U.S. Preventive Services Task Force (USPSTF)

recommends biennial mammography screening between ages 50 and 74, American College of

Radiology (ACR) recommends annual mammography screening, starting at age 40 [USPSTF,

2009, Lee et al., 2010]. Table 1.1 summarizes different screening guidelines by various medical

organizations in the US and selected countries that have population-based screening programs.

Screening a population of individuals may be beneficial in detecting diseases at an early

stage. However, majority of women would not receive any benefits from screening, since only a

small portion of the screened population would develop breast cancer throughout their lifetime.
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Institution/Country Start Age End Age Screening intervals in years

American Cancer Society 40 Not specified 1

American Medical Association 40 Not specified 1

American College of Radiology 40 Not specified 1

National Cancer Institute 40 Not specified 1 - 2

U.S. Preventive services Task Force 50 74 2

American College of Preventive Medicine 50 Not specified 1 - 2

American Academy of Family Physicians 50 Not specified 1 - 2

Canada, Italy, Japan 50 69 2

France, Netherlands 50 74 2

Spain 45 69 2

United Kingdom 50 70 3

Table 1.1: Recommended mammography screening policies by various institutions in the United
States and other countries with organized population-based cancer-screening programs (adopted
from Ayer et al. [2012])

As such, the main weakness of population-based screening guidelines remains to be ignoring

an individual woman’s breast cancer risk factors other than age. Gail and Rimmer [1998] note

that each woman has different personal characteristics that affect breast cancer risk; these factors

include family history, breast density, body mass index, alcohol consumption, parity, extent of

breastfeeding and ages at menarche, menopause and first birth. For instance, a woman with a

family history of breast cancer is two or three times more at risk of getting breast cancer [Gilbar,

1998]. As a result, screening guidelines tailored to individual risk factors have potential to

increase life-savings in high-risk women, while preventing unnecessary mammograms and the

resulting harms in low-risk women. Moreover, rising screening costs and mounting economic

pressure further necessitates optimizing breast cancer screening recommendations. One study

reports that the combined cost of mammography screening along with the work-up costs of

positive findings is estimated to be $3 billion to $5 billion dollars in the United States [Burnside

et al., 2001].

The main focus of this dissertation is to deal with the question of how to improve breast
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cancer screening recommendations based on individual risk factors. In this regard, we study

three problems faced by policy makers: eliminating racial disparities in breast cancer outcomes,

improving screening recommendations using breast density information and supplemental

screening methods, and analyzing the impact of limited resources on breast cancer screening

recommendations. In the remainder of this chapter, we first discuss the role of breast density as

a risk factor and potential of supplemental screening methods on improving health outcomes in

Section 1.1. Then, in Section 1.2, we describe the breast cancer screening problem in resource-

restricted settings. We summarize the role of racial disparities on breast cancer incidence and

mortality in Section 1.3 and conclude the chapter in Section 1.4 with an overview of the thesis

and contributions.

1.1 Role of Breast Density and Supplemental Screening Methods on

Breast Cancer Screening Policies

Mammography is themost commonly used screeningmethod for breast cancer. Amammography

is an x-ray image of the breast that makes it possible to detect tumors that cannot be felt. The

image can be captured on film or stored directly onto a computer (digital). As the digital

mammography is viewed on a computer, it has the added benefit of lightening or enlarging the

images to better examine the breast. Both film and digital mammographies are known to be less

accurate for women with dense breasts for whom cancer may be masked by dense breast tissue

[Lee et al., 2014]. Digital mammography largely replaced the film mammography in many U.S.

clinics particularly because of its improved sensitivity for women with dense breasts [Pisano

et al., 2005]. However, as the specificity of digital mammography is modestly lower than film

mammography, overall health benefits of digital mammography remain unclear [Kerlikowske

et al., 2011, Stout et al., 2014].

Because of the imperfect nature of mammography, patients may generally seek supplemental
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screening methods, such as Magnetic Resonance Imaging (MRI) and ultrasound, to achieve

better detection accuracy [Berg et al., 2012]. However, there are ongoing debates about the cost-

effectiveness of the use of supplemental tests in breast cancer screening. While there exists a group

of physicians that frequently refer patients for supplemental screenings, others use these tests

more conservatively, which is most likely due to a lack of clear guidelines. Moreover, additional

costs incurred due to supplemental tests may also affect the physician’s recommendation.

Recent medical literature identifies a patient’s estimated breast cancer risk along with the

patient’s breast density as key factors influencing the decision to use supplemental tests [Berg

et al., 2012, Lee et al., 2014, Sprague et al., 2014]. Regardless of their breast density, patients with

high breast cancer risk may be recommended to undergo MRI screening because of its high

sensitivity. However, due to its low-availability, high cost, and low-specificity, use of MRI for the

general population is limited [Berg, 2014]. On the other hand, ultrasound is widely available

and has relatively low cost compared to MRI. As a result, it is often the preferred supplemental

screening test for women with high breast cancer risk. Despite their potential benefits especially

for high-risk patients, the effect of supplemental tests on long-term health outcomes is still

debated. In a recent study, Sprague et al. [2014] conclude that supplemental ultrasound screening

for women with dense breasts substantially increases costs while producing relatively small

benefits. Similarly, Melnikow et al. [2016] conclude that supplemental screening of women with

dense breasts would increase the false-positive results considerably and more research is needed

to understand the effects of supplemental screenings on breast cancer outcomes.

Along with several other factors such as family history and obesity, breast density is consid-

ered to be a strong risk factor for breast cancer [Wang et al., 2014]. As a result of its significance,

some states in the U.S. enacted laws that require patients to be informed about their breast

density. Besides, breast density has a dynamic nature — that is, it changes as the patient gets

older. For instance, Sprague et al. [2014] report that while 61.4% of women younger than 50 have

dense breasts, this ratio drops to 40.8% for women older than 50. Therefore, optimization of
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breast cancer screening policies is further complicated by the incorporation of breast density

information to the decision process.

1.2 Role of Limited Resources on Breast Cancer Screening Policies

Cost of mammography and lack of resources in terms of number of diagnostic machines and

the number of trained workforce to interpret these mammograms (i.e., radiologists) limit the

widespread use of mammography for breast cancer screening in many developing countries

[BahadurSingh et al., 2014]. In fact, many countries face capacity issues even when the cost of

screening is of no concern. For example, according to the 2013 census of China, there are 117

million Chinese women between the ages 50-69 [China Statistical Yearbook, 2015]. Implementing

biennial screening in this age group only (which is a less aggressive screening policy than most

policies adopted by developed countries) would require adding more than 30,000 radiologists to

the overall workforce, assuming a radiologist can interpret approximately 2000 mammographies

per year [Smith-Bindman et al., 2008], which would necessitate increasing the number of radiol-

ogists in China by nearly 50% [IRQN, 2015]. Similar issues exist in other developing countries as

well. For instance, Reddy et al. [2012] note that a nationwide mammographic screening program

in India is infeasible primarily due to the poor infrastructure and the costs involved in screening.

Although several developed countries implement population-based mammography screen-

ing guidelines, the majority of developing and underdeveloped countries do not have mam-

mography screening programs. In fact, WHO recommends mammography screening only

for resource-rich countries [WHO, 2015]. However, even in resource-rich countries such as in

the U.S., there is a growing concern about the cost of mammography screening. For example,

California Department of Public Health, the state-run program providing free mammography

screenings to uninsured women, raised the eligibility age for breast cancer screening services

from 40 to 50 for women in the Every Woman Counts program effective from January 1, 2011

[Schneider, 2010]. The primary reason for dropping coverage for these women was cited as “the



7

unprecedented fiscal challenge” as a result of increasing demand for breast cancer screening and

declining revenues. Susan G. Komen Foundation also reports that there have been significant

budget cuts in mammography screening funds for low-income women in several states includ-

ing California, Colorado, Michigan, New York, Ohio, Pennsylvania, and Washington [Susan G.

Komen Foundation, 2011].

Another important factor to consider in allocating limitedmammography screening resources

is the variation among patients with respect to breast cancer risk. For example, patients with

family history are twice or three times more likely to develop breast cancer compared to ones

with no family history of breast cancer [Gilbar, 1998]. Therefore, high-risk patients such as those

with a family history are likely to benefit more from mammography screening. Considering this

variation in risk may be particularly important when resources are limited. For instance, given a

very limited budget, a policy maker may prioritize screening patients with family history over

those without a family history.

1.3 Role of Racial Disparities on Breast Cancer Incidence and

Mortality

Racial disparities between African-American and European-American women in the U.S. re-

garding breast cancer incidence and mortality have long been a public health concern. Despite

lower incidence rates, breast cancer mortality rates have been higher among black women for the

past 30 years and disparity in the mortality between black and white women continues to grow

[Ghafoor et al., 2002, Smigal et al., 2006]. For example, according to Surveillance Epidemiology

and End Results (SEER), mortality rate for black women was 31 per 100,000 women in 2008,

whereas it was 22 for whites, which points to 40% difference in mortality rates [Howlader et al.,

2011].

Multiple factors are associated with poorer survival among black women, including histori-
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cally lower rates of mammography screening, decreased likelihood of receiving stage appropriate

treatment, more comorbid conditions and higher rates of obesity [Vastag, 2003, Newman, 2005,

Chlebowski et al., 2005, Amend et al., 2006]. In addition, several studies suggest that black

women are usually diagnosed with breast cancer at a more advanced stage and are more likely

to have tumors with worse prognosis than whites, which suggest that variation in tumor natural

history might be a significant contributing factor for racial disparities [Wojcik et al., 1998]. In this

regard, understanding the racial variation in breast cancer biology, racial differences in actual

treatment utilization, and the differences in screening uptake is important to refine optimal

strategies for eliminating racial disparities in breast cancer outcomes.

1.4 Thesis Overview

We close the introduction with a detailed overview of the thesis, which contributes to improving

breast cancer screening policies.

In Chapter 3, we evaluate the benefits of supplemental screening tests through incorporating

breast density information and recommend screening policies that maximize an individual

patient’s total quality-adjusted life years (QALYs). We model the optimal breast cancer screening

problem as a discrete-time partially observable Markov decision process (POMDP). We estimate

the parameters of our model from University of Wisconsin Breast Cancer Simulation Model

(UWBCS), which uses breast cancer epidemiology data. Our model provides insights to elimi-

nate unnecessary supplemental tests and help physicians make more personalized screening

recommendations.

In Chapter 4, we investigate the breast cancer screening problem in a resource-constrained

setting, which is often the case for developing countries but it can also include screening programs

in developed countries such as the EveryWomanCounts program in California. We seek answers

tomany important health policy questions such as: How should limitedmammography screening

resources be allocated for patients in different age groups? Given a limited capacity, should
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we screen high-risk groups aggressively and ignore low-risk population or screen high-risk

patients less aggressively and allocate some resources to the low-risk groups? What would be

the impact of increasing screening capacity on the overall health outcomes? In order to address

these questions, we propose a constrained POMDP modeling framework with the objective

of maximizing the total expected QALYs of the patients. We analyze the impact of limited

resources at both population and individual levels. We first model an individual patient’s breast

cancer screening problem considering that only a limited number of mammography screenings

is available per patient. Then, we extend our model to consider different risk groups and obtain

a resource allocation scheme between patients with different risk levels in a given population. To

our knowledge, even unconstrained POMDPs are notorious for being computationally intractable

and there is no known efficient solution algorithm to solve constrained POMDPs to optimality.

In that regard, we propose a grid-based approximation scheme to solve the constrained POMDP

model using a mixed-integer linear program. We estimate the parameters of our model from

a validated simulation model that uses breast cancer epidemiology data and compare the

performance of our proposed policies to those of various population-based screening policies.

Although we primarily use U.S.-based data sources, our approach and general policy insights

apply to other resource-limited settings as well.

In Chapter 5, we investigate the underlying factors causing the racial disparities in breast

cancer incidence and mortality. We classify the contributing factors into three main categories:

natural history of the disease, screening uptake and treatment utilization. We modify UWBCS, a

previously validated microsimulation model for breast cancer, to obtain race-specific models.

We use these race-specific models to assess the contributions of each factor on the breast cancer

mortality difference between black andwhite women. Obtaining the race-specific models require

a lengthy calibration procedure, where we adjust some of the natural history parameters of the

UWBCS to replicate U.S.-observed breast cancer incidence andmortality rates for black andwhite

women. The natural history parameters (e.g., mean tumor growth rate and percentage of benign
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tumors) usually cannot be informed by the existing data sources and their values are largely

unknown. A common approach for calibration is to generate a set of natural history parameter

combinations and evaluate these parameter combinations via simulation to obtain the best

fitting parameter values. UWBCS has ten natural history parameters and considering that each

parameter takes five values, the number of parameter combinations would be approximately 9.7

millions (510). In this study, we propose a novel method using machine learning approaches to

speed up the calibration procedure. We further discuss that our calibration method is applicable

to a generic simulationmodel that requires evaluation of large number of parameter combinations

for the calibration.
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2 literature review

In this chapter, we review the related literature. Section 2.1 introduces the POMDP models

and their applications in healthcare. Section 2.2 summarizes the analytical models in cancer

screening with an emphasis on breast cancer screening. Finally, Section 2.3 describes the studies

on racial disparities in breast cancer outcomes.

2.1 Partially Observable Markov Decision Processes

Partially observable Markov decision process (POMDP) models relax the completely observable

system state assumption in Markov decision processes (MDP). As such, probability of being in a

particular state is taken as the basis for choosing an action. POMDPs are useful for problems

for which actions can help modifying system trajectory in a desired manner and gathering

information for future decisions.

POMDPs have many application areas including inventory control [Treharne and Sox, 2002],

inspection of structural units (e.g., roads and bridges) [Ellis et al., 1995], search for moving

objects [Eagle, 1984], and machine maintenance and replacement [Eckles, 1968, Maillart, 2006].

Furthermore, POMDPs have been frequently used in medical decision making problems such

as medical diagnosis and treatment [Hu et al., 1996, Hauskrecht and Fraser, 2000], healthcare

system analysis [Smallwood et al., 1971] and cancer screening [Ayer et al., 2012, Zhang et al.,

2012]. Monahan [1982] provides an overview of POMDPs and some of the potential applications.

POMDP models are notoriously difficult to solve optimally. The main difficulty in solving

the POMDP models stems from the fact that the belief space is a continuum. As such, we have

infinitely many equations with infinite number of variables in the optimality equations. A key

observation to improve solvability of the POMDP models is that the POMDP value functions

have piecewise linear convex representations. More specifically, Smallwood and Sondik [1973]

show that POMDP value functions (V (π) for belief state π) can be represented as V (π) = απ
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and propose the first exact solution algorithm that aims to construct minimal α-vector set. Later,

several other studies extend Sondik’s algorithm to solve POMDPs optimally, [Monahan, 1982,

Cheng, 1988, Cassandra et al., 1997]. It is important to note that the majority of these optimal

solution algorithms rely on piecewise linear representation of the value functions.

Dimensionality and precision issues rendermost POMDPmodels intractable by exact solution

methods. Therefore, several other studies propose approximation algorithms. In particular, finite

grid approximation to the uncountable state space is a frequently used approximation technique

for POMDPs. Lovejoy [1991b] uses a fixed grid method to generate upper and lower bounds for

the optimal value function. Sondik and Mendelssohn [1979] uses a variable grid method that

allow the grid points used in the approximation algorithm to vary from one iteration to next.

We refer the readers to Lovejoy [1991a] for a detailed survey of available algorithms.

2.2 Analytical Models in Cancer Screening

Operations research tools are well utilized in the literature to determine efficient cancer screening

schedules for a population or an individual patient. A comprehensive survey on modeling and

analysis of cancer screening problems can be found in Alagoz et al. [2011] and Ivy [2009]. We

restrict our review to the papers addressing stochastic models in cancer screening.

Most studies in the literature propose simulation models to evaluate whether a particular

population-based screening strategy such as annual mammography screening between ages

40-74 is cost-effective or not in a resource-rich country. For example, National Cancer Institute’s

Cancer Intervention and Surveillance Modelling Network (CISNET) consortium involves six

breast cancer models that use simulation/statistical tools to make recommendations to policy

makers in the U.S. [NCI, 2013].

In addition to the simulation models, several studies use Markovian models to investigate

cancer screening decisions. Among such models, partially observable Markov chains (POMC)

have gained attention for modeling cancer screening problems as they can capture age-based
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dynamics of cancer screening and the effects of imperfect test results. POMCs have been used by

Maillart et al. [2008] and Madadi et al. [2015] to compare various screening policies for breast

cancer. Also, Li et al. [2014] use a POMC model to evaluate a broad range of colonoscopy

screening schedules.

Some other studies develop Markov decision process (MDP) models to optimize screening

decisions. For instance, Chhatwal et al. [2010] and Ayvaci et al. [2012] model breast cancer biopsy

decision-making problem as MDPs. In particular, Ayvaci et al. [2012] develop a constrained

MDP model to identify optimal post-mammography diagnostic decisions for an individual

patient under budgetary restrictions. As they do not aim to optimize the screening decisions,

they disregard the imperfect test results and assume that the model states are fully observable.

They conduct an extensive numerical study and find that diagnostic-decision-making thresholds

increase significantly as the budget gets tighter.

As POMDPs generalize MDPs by allowing incomplete information about the state of the

process, which is a natural situation inmost cancer screening problems, they have been frequently

used in several studies. In particular, studies that consider cancer screening problem frequently

aim to identify optimal screening decisions from an individual patient’s perspective to maximize

the health outcomes by balancing the benefits of screening via early detection and harms caused

by false-positive test results. For example, Erenay et al. [2014] develop a POMDP model to

identify the optimal screening schedules for colorectal cancer for both individual men and

women, and Zhang et al. [2012] propose a POMDP model to optimize prostate cancer biopsy

referral decisions for individual men. In this body of work, the closest studies to our work are

those by Ayer et al. [2012, 2016]. Ayer et al. [2012] propose a POMDP model to individualize

the breast cancer screening problem, and Ayer et al. [2016] extend this work to incorporate the

patient’s adherence behavior to the screening recommendations. However, Ayer et al. [2012,

2016] do not consider the impact of breast density and availability of supplemental screening

methods on the personalized breast cancer screening policies.
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In the Operations Research/Management Science literature, a limited number of studies

have investigated the impact of resource restrictions in cancer screening. Güneş et al. [2015]

propose a compartmental model for the allocation of limited colonoscopy resources between

screening and diagnostic services, assuming that patients are recommended periodic screening

with colonoscopy every ten years. Lee et al. [2014] use reinforcement learning to design policies

for hepatocellular carcinoma screening where k out of n patients are chosen for screening at

each period. Our main difference from these studies is that we consider both imperfect test

results and resource constraints simultaneously in our modeling framework. As such, this leads

to a different modeling and solution approach, which can be used for determining the optimal

resource allocation between risk-groups, and optimal screening strategy within each group. To

this end, our proposed approach is unique in that it not only provides a framework to optimize

the breast cancer screening problem under resource constraints, but also provides a modeling

framework to optimize resource allocation decisions in other screening problems, where disease

status is only partially observable.

2.3 Racial Disparities

Racial disparities in breast cancer outcomes have been the subject of many studies over the

years. Majority of these studies carry out retrospective analysis and use available data sources

to investigate potential contributing factors to racial disparities. Smith-Bindman et al. [2006],

Jazieh and Buncher [2002], Elmore et al. [2005] observe that mammography screening uptake

and mammography effectiveness due to differences in breast density distributions might vary

significantly between black and white women. Morris et al. [2007], Chlebowski et al. [2005],

Banerjee et al. [2007], Carey et al. [2006], Bauer et al. [2007], Wojcik et al. [1998] find that black

women are more likely to be diagnosed with breast cancer at a later stage and are more likely to

have tumors with poorer prognosis such as Estrogen Receptor (ER) negativity, poorer differen-

tiation and greater lymph node involvement. Furthermore, Elmore et al. [2005], Fedewa et al.
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[2010], Hershman et al. [2005, 2009] suggest that black women experience more delays between

cancer detection and treatment initiation and they are also more likely to terminate treatment

prematurely, and Shavers and Brown [2002], Joslyn [2002], Li et al. [2003] conclude that black

women are less likely to undergo required surgeries and follow-up radiation therapy after the

surgery.

There are only a few studies in the literature that use analytical models to investigate racial

disparities in breast cancer outcomes. In a recent study, van Ravesteyn et al. [2011] report that the

higher breast cancer mortality rates for black women could be attributed to differences in natural

history parameters (26-44%), use of adjuvant therapy (11-19%) and uptake of mammography

screening (7-8%) and they conclude that 38% to 46% of the difference cannot be explained by

their models. Later, Batina et al. [2013] evaluate the contribution of racial differences in tumor

natural history to observed disparities in breast cancer incidence. Their findings indicate that

mean tumor growth rate is found to be 63.6% higher, and percentage of highly aggressive tumors

are 2.2 times greater for black women compared to the white women.
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3 impact of breast density and supplemental screening methods on

breast cancer screening policies

3.1 Problem Definition

Breast cancer is a disease in which cancer cells form in the tissues of the breast. Since there

are usually no physical symptoms of breast cancer, patients usually undergo mammography

screening to detect the disease. There are several critical decisions involved in the design of

breast cancer screening policies. These decisions are complicated by the changes in the breast

density of the patient, probabilistic progression of breast cancer, imperfect test results, and

quality-of-life considerations associated with screening decisions. In addition, there are no clear

guidelines about the use of supplemental screening tests in timely detection of breast cancer.

There have been recent advances in using mathematical optimization models for specific aspects

for the breast cancer screening problem. However, optimal policies that simultaneously consider

a patient’s breast density and the availability of supplemental tests are not yet well understood.

Our goal in this paper is to use optimization modeling to better understand the impact of these

factors on breast cancer screening recommendations.

Figure 3.1 provides an overview of the typical screening process that is commonly used in the

U.S. medical practice. The screening process consists of making decisions at regular intervals —

typically every 6 months, annually, biennally, or triannually. There is a nonzero state-dependent

likelihood of patient death during each screening interval, causes of which include breast cancer

as well as others. In each screening interval t, the physician first decides whether the patient,

with some breast cancer risk assessment πt, should receive mammography screening (M) in the

current period or wait (W) until the next decision epoch. If the wait action is chosen, the patient

may self-diagnose herself (i.e., through feeling a suspicious lump on her breast or via clinical

breast exam) and, using the outcome of her self-diagnosis, she constructs a posterior πt+1 and

faces the same mammography screening decision in the new decision epoch t+ 1, provided that
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she survives.

If, on the other hand, mammography screening action is chosen, it can result in a positive

(+) finding, which indicates the existence of some abnormal suspicious tissue that may or may

not be an actual cancer, or a negative (−) finding, which indicates a lack of any evidence for

potentially cancerous tissue. In addition to serving as a signal for the patient’s cancer status, a

mammogram also reveals the breast density of the patient, which is otherwise unknown to the

physician. MRI and ultrasound can be used along with mammography screening to improve

the detection accuracy. However, stand-alone usage of these tests are not recommended as they

are associated with large numbers of false-negative and false-positive results [Berg et al., 2012].

Furthermore, note that MRI and ultrasound may also be used as diagnostic tests after a positive

mammography result, but we assume that positive test results are immediately followed by a

perfect diagnostic test such as biopsy, which correctly identifies the cancer status of the patient,

and therefore, we only focus on using such supplemental tests after a negative mammogram.

If the diagnostic test (e.g., biopsy) confirms the positive screening test result, the patient is

assumed to immediately start cancer treatment, concluding the screening decision process. On

the contrary, if the diagnostic test nullifies the positive screening test result, the patient restarts

the screening decision process in the next decision epoch t+ 1 with posterior πt+1, provided

that she does not die of other causes.

A negative mammography result is used in two major ways. It reveals the true current breast

density of the patient and helps the physician update her or his assessment of the patient’s risk

of breast cancer before taking a recourse action in the form of recommending a supplemental

screening or doing nothing (N) until the next decision epoch. It is important to note that the

timing t′ of the recourse actions is shortly after the initial mammography screening decisionwhen

compared to the full duration of the decision epoch. This distinction will be critical in updating

the risk assessments. If a supplemental screening test is taken, the patient follows a similar

pathway to that of the initial mammography decision except that a negative supplemental test
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result is not followed by any other decisions, and therefore, the patient faces the mammography

decision again with an updated posterior πt+1 in the next decision epoch t+ 1, provided that

she survives.
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Figure 3.1: Breast cancer screening decision-making diagram
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3.2 The POMDPModel

We formulate a discrete-time finite-horizon POMDP model to optimize breast cancer screening

recommendations of a physician. Screening decisions are made at discrete points t over a finite

time horizon T < ∞. We define the core state space of the process as S = S̄ ∪ {∇}, where ∇

is an absorbing state that represents death, and S̄ = {d, h | d ∈ D, h ∈ H}. D is discrete set of

breast-density related states, and we takeH = ∆∪C, where ∆ denotes the cancer-free state and C

is a discrete set of breast-cancer related states. Note that health states are not directly observable,

whereas breast density states are only revealed when the patient undergoes a screening exam.

As a result, the physician has incomplete knowledge about patient’s state (dt, ht) ∈ S̄ at any

decision epoch t.

Since the decision maker cannot fully observe the core state s ∈ S̄, she constructs a belief

π(s), which corresponds to the probability of being in s. That is, a belief state π is a probabilistic

construct about the physician’s assessment of the patient’s health and breast density. The set of

all belief states is given by the simplex Π(S̄) =
{
π ∈ <|S̄| :

∑
s∈S̄ π(s) = 1, π(s) ≥ 0, ∀s ∈ S̄

}
,

and π ∈ Π(S̄) is updated in Bayesian manner as actions are taken and observations are made

over time.

At the beginning of any decision epoch, the physician recommends either watchful waiting

(W ) or mammography screening (M ), and hemay follow-up themammogramwith a supplemen-

tal screening exam (a ∈ ASup). The physician may also choose to recommend doing nothing (N )

as an alternative to supplemental screening (see Figure 3.1 for an illustration). For convenience,

we refer to the set of all possible actions as A = {W,M,N} ∪ ASup and the set of screening

actions as AScr = {M} ∪ ASup.

Taking action a ∈ A \ {N} leads to an observation that signals patient’s health and breast

density states. In particular, the physician makes a positive (ξ+) or a negative (ξ−) observation

about the patient’s health state according to the sensitivity and specificity of the action. If the

patient takes the wait action, she does not make any observations about her breast density state
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(ηno). Alternatively, if the patient undergoes screening, then her breast density is revealed and

she makes the observation ηi at breast density state di ∈ D. We represent the observations for

the core states as o = (η, ξ) ∈ Ωa, where ΩW = {(ηno, ξ) : ξ ∈ {ξ−, ξ+}} and Ωa = {(η, ξ) : η ∈

{η0, . . . , η|D|}, ξ ∈ {ξ−, ξ+}} for all a ∈ A \ {W,N}.

A screening test can detect in situ or invasive cancer with probabilities equal to its sensitivity

for the stage of the tumor and breast density of the patient, denoted as τ (d,h)
a , for a ∈ AScr.

Similarly, patient can make a self-detection with probability τ (d,h)
W . If the patient does not have

cancer, each of these actions can lead to a false-positive diagnosis with probability 1− νda , where

νda is the specificity of the corresponding action. We use fat (η, ξ|d, h) to denote the observation

probabilities for the core states at decision epoch twhen the patient takes the action a ∈ A. A

table form representation of the fat (η, ξ | d, h) values is given in Appendix A.2.

Transition probabilities pat (d′, h′|d, h) denote the probability that a patient will be in state

(d′, h′) in decision epoch t + 1, given that she is in state (d, h) and takes action a ∈ A. Breast

density is a significant risk factor for breast cancer (see Appendix A.1). Therefore, estimated

transition probabilities reflects the effects of breast density on tumor onset and progression.

The immediate rewards in ourmodel correspond to the QALYs accrued by a patient at a given

decision epoch. We use the half-cycle correction method to calculate the immediate rewards.

Let ωt(s) represent the immediate reward for occupying state s ∈ S̄ at decision epoch t. That is,

ωt(s) = λ(s)×
[
1×P (alive in t+ 1|current state is s)+0.5×P (dead in t+ 1|current state is s)

]
,

where λ(s) is disutility multiplier for occupying state s ∈ S̄. Then, immediate reward at belief

state π ∈ Π(S̄) is calculated as follows:

rt(π) =
∑
s∈S̄

π(s)ωt(s).

If the patient is diagnosed with cancer at the decision epoch t, she accrues a lump-sum reward
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ψt(s), and quits the decision process. Besides, no action is taken at the final decision epoch and

the patient accrues a terminal reward ωT (s) in state s ∈ S.

We also account for quality of life reductions due to disutilities associated with screening

actions. Each screening test has disutilities that depend on the outcome of the test. Let u(a)

represent the the disutility of taking action a ∈ AScr. Also, let µTP and µFP represent the

disutilities of true-positive (TP) and false-positive (FP) screening results, respectively. We obtain

the disutility value, γ(s, a, o), associated with the screening action a ∈ AScr for each state

s = (d, h) and observation o ∈ Ωa as follows:

γ(s = (d, h), a, o) =



u(a), if o = (η, ξ−) ∈ Ωa,

u(a) + µFP , if h = ∆, o = (η, ξ+) ∈ Ωa,

u(a) + µTP , if h 6= ∆, o = (η, ξ+) ∈ Ωa.

Then, expected disutility of taking a screening action a ∈ AScr at the belief state π ∈ Π(S̄) is

γ(π, a) =
∑
s∈S̄

∑
o∈Ωa

π(s)fa(o|s)γ(s, a, o).

Belief state, π, of the patient changes as the patient takes actions and makes observations

about her health and breast density. Let π′(s) represent the probability of occupying state s ∈ S̄

at the subsequent decision epoch when the current belief state of the patient is π, action is a ∈ A,
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and observation is o ∈ Ωa. That is,

π′(s′) =



∑
s∈S̄ π(s) · fat (o | s) · pat (s′|s)∑
s∈S̄ π(s) · fat (o | s) · Pat (s)

if a = W, o = (η, ξ) ∈ ΩW , (3.2a)

or a ∈ ASup, o = (η, ξ−) ∈ Ωa,

π(s′) · fMt (o | s′)∑
s∈S̄ π(s) · fMt (o | s)

, if a = M, o = (η, ξ−) ∈ ΩM , (3.2b)

pat (s
′ = (d′, h′)|s = (d,∆)) if a ∈ AScr, o = (η, ξ+) ∈ Ωa, (3.2c)∑

s∈S̄ π(s) · pNt (s′ | s)
PNt (s)

if a = N . (3.2d)

where Pat (d, h) =
∑

(d′,h′)∈S̄ p
a
t (d
′, h′|d, h) is the probability of patient being alive at the decision

epoch t+ 1.

The patient does not advance to the decision epoch t+ 1 if she undergoes mammography

screening and receives a negative test result (ξ−). Instead, shemakes a transition to the immediate

decision epoch t′. Therefore, we use the formula (3.2b) to update π for this case. On the other

hand, if the patient receives a positive test result (ξ+) from any screening action, her true health

state is revealed. If the test is true-positive, then we do not need to update the patient’s belief state

as the patient quits the decision process and starts receiving treatment. If the test is false-positive,

then we use the natural history progression of the disease to update the belief state as in (3.2c).

Finally, if the patient does not receive a supplemental screening test, she does not make another

observation in this period, and her belief state is updated according to formula (3.2d).

Our model aims to determine the breast cancer screening decisions that maximize expected

QALYs over the patient’s lifetime. As we allow sequential screenings in our model, we separate

the value functions into two stages. We define the optimal value functions V W
t (π) and VM

t (π) as

the maximum expected QALYs from year t through T for the first stage wait and mammography

actions, respectively. Second stage value functions are only relevant if the patient takes the

mammography action and makes a negative observation about her health state (i.e., o = ξ−).
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We use V N
t,η(π), and V a

t,η(π) to represent the value functions for the second stage do-nothing

and supplemental screening action a ∈ ASup, respectively. The optimality equation for the wait

action is as follows:

V W
t (π) = rt(π) +

∑
(d,h)∈S̄

π(d, h)
∑

(η,ξ)∈ΩW

fWt (η, ξ|d, h)PWt (d, h)V ∗t+1(π′). (3.3)

Similarly, we obtain the optimal value function for the mammography action as follows:

VM
t (π) = −γ(π,M) +

∑
(d,∆)∈S̄

π(d,∆)
∑

(η,ξ+)∈ΩM

fMt (η, ξ+|d,∆)ωt(d,∆) (3.4a)

+
∑

(d,h)∈S̄

π(d, h)
∑

(η, ξ−)∈ΩM

fMt (η, ξ−|d, h)V ∗t′ (π
′) (3.4b)

+
∑

(d,∆)∈S̄

π(d,∆)
∑

(η,ξ+)∈ΩM

fMt (η, ξ+|d,∆)PMt (d,∆)V ∗t+1(π′) (3.4c)

+
∑

h6=∆,(d,h)∈S̄

π(d, h)
∑

(η,ξ+)∈ΩM

fMt (η, ξ+|d, h)ψt(d, h). (3.4d)

The optimal value function for the mammography action is collection of the immediate rewards

(3.4a), rewards from the next decision epoch (3.4b)-(3.4c) and the terminal reward incurred when

the patient is not healthy and the test result is positive (3.4d). The immediate reward consists

of disutility of mammography and the quality-adjusted life years accrued when the test result

is positive. The rewards from the next decision epoch are dependent on the mammography

result. If the mammography result is negative, then the physician makes a decision about the

supplemental screenings and the corresponding rewards are accrued. If the mammography

result is positive, then the patient advances to the next decision epoch only if the test is false-

positive.

In addition, we use the following optimal value functions to determine the supplemental

screening decisions:
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V ∗t′ (π) = max
a∈{N}∪ASup

{V a
t′ (π)}, (3.5)

V N
t′ (π) = rt(π) +

∑
s∈S̄

π(s)PWt (s)V ∗t+1(π′), (3.6)

V a
t′ (π) = −γ(π, a) +

∑
(d,h)∈S̄

π(d, h)
∑

(η, ξ−)∈Ωa

fat (η, ξ−|d, h)ωt(d, h)

+
∑

(d,h)∈S̄

π(d, h)
∑

(η, ξ−)∈Ωa

fat (η, ξ−|d, h)Pat (d, h)V ∗t+1(π′)

+
∑

(d,∆)∈S̄

π(d,∆)
∑

(η,ξ+)∈Ωa

fat (η, ξ+|d,∆)ωt(d,∆)

+
∑

(d,∆)∈S̄

π(d,∆)
∑

(η,ξ+)∈Ωa

fat (η, ξ+|d,∆)Pat (d, h)V ∗t+1(π′)

+
∑

h6=∆,(d,h)∈S̄

π(d, h)
∑

(η,ξ+)∈Ωa

fat (η, ξ+|d, h)ψt(d, h), a ∈ ASup. (3.7)

Note that the optimal value functions for a supplemental screening action a ∈ ASup is very

similar to the optimal value function of the mammography action except that when the test

result is negative, the patient accrues an immediate reward and advances to the next decision

epoch. Finally, an optimal solution to our problem can be obtained by solving the following

optimality equations:

V ∗t (π) = max {V W
t (π), VM

t (π)}, t < T , π ∈ Π(S̄), (3.8)

V ∗T (π) =
∑

(d,h)∈S̄

π(d, h)ωT (d, h), π ∈ Π(S̄). (3.9)
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3.3 Solution Methodology

Current state-of-the-art in exact solution algorithms for POMDPs can only solve problems

with very few core states. Therefore, several approximation methods are proposed to solve

POMDP models more efficiently. Grid-based approaches are the most natural and widely-used

approximations to solve POMDPs. In a recent study, Sandikci et al. [2013] use a fixed-resolution

non-uniform grid method to solve their POMDP model for the liver allocation problem. Also,

Zhang et al. [2012] approximate the solution to their POMDPmodel for prostate cancer screening

problem by using a fixed-finite-grid method with a grid size of 1000. More information about

the grid-based methods for POMDPs can be found in Lovejoy [1991a].

We approximate the optimal solution to the value functions (3.8)-(3.9) by discretizing belief

space into a finite set of grid points. Let G = {b1, b2, ..., b|G|} be the grid set and K = {1, ..., |G|}

be the index set of G. Assuming G includes all the extreme points of Π(S̄), any updated belief

state π′ /∈ G can be written as a convex combination of the points in G by using the convex

interpolation

π′ =
∑
k∈K

βk`
k,

where `k ∈ G,
∑|G|

k=1 βk = 1, βk ≥ 0, for k ∈ K [Sandikci et al., 2013]. After constructing G, we

approximate the optimal value function V ∗t (·) by V̂t(·), where V̂t(π′) =
∑

k∈K βkV̂t(`
k), ∀π′ /∈ G.

Lovejoy [1991b] shows that this approximation provides an upper bound on the optimal solution

as long as the corner points of the belief simplex Π(S̄) are included in G.

3.3.1 Constructing the Grid Set

In any grid-based approach, the grid points are chosen such that all of the nonzero values in a

grid point are positive integer multiples of 1/y, where y is a positive integer representing the

grid resolution. For instance, when the number of core states |S̄| = 3 and y = 2, we can form a
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grid set consisting of following six grid points:

[1, 0, 0], [1/2, 1/2, 0], [1/2, 0, 1/2], [0, 1, 0], [0, 1/2, 1/2], [0, 0, 1].

A commonly used approach for generating a grid set is the fixed-resolution uniform grid method.

For our problem, the number of grid points generated using the fixed-resolution uniform grid

approach with resolution value y can be calculated as follows:

|GS̄ | =
(
|S̄|+ y − 1

y

)
=

(|S̄|+ y − 1)!

y!(|S̄| − 1)!
. (3.10)

Let |S̄| = 10 and resolution value y = 100. Then, the corresponding grid set contains approx-

imately 4.3 × 1012 grid points. As the fixed-resolution uniform grid approach leads to large

grid sets for increased resolution values, we use a variable-resolution uniform grid approach to

form GS̄ ⊂ Π(S̄). More specifically, we construct a grid set for partially observable health states

(GC ⊂ Π(C)), and another grid set for breast density states (GD ⊂ Π(D)). Then, we construct the

final grid set GS̄ by taking the outer product of the elements of each grid set as follows:

GS̄ = {vi ⊗ vj , ∀vi ∈ GC , ∀vj ∈ GD}.

We use a different type of variable-resolution grid method to construct the grid set for the

partially observable health states. We observe that the majority of the belief states included in

Π(C) are not representative of the breast cancer risk. For instance, no patients would have a health

belief state corresponding to zero probability of being healthy unless they are diagnosed with

breast cancer. Therefore, we focus on parts of Π(C) that contain belief states that are potentially

more representative of the patient’s health status. For this purpose, we partition the Π(C) into

I regions and each region is described according to the first components of the belief states as
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follows:

κi = {π ∈ Π(C) | π(0) ∈ [ϕi−1, ϕi)},

where ϕ = (ϕ0, ϕ1, ..., ϕI) is the vector of break points with ϕ0 = 1, and ϕI = 0. We observe

that the patients are more likely to have belief states for which the probability of being healthy is

significantly higher than the probability of having cancer. Therefore, we use higher resolution

values to sample from the regions that contain such belief states. That is, y1 ≥ y2 ≥ · · · ≥ yI ,

where yi is the resolution value assigned to region κi. Let κ̄i represent the union of the first i

regions, i.e., κ̄i = ∪ij=1κ
j and κi = κ̄i \ κ̄i−1. We obtain the number of grid points in κ̄i using a

resolution value of yi as follows:

φ(κ̄i, y) =

(
|C|+ b(1− ϕi)yc − 1

|C| − 1

)
.

Then, the total number of grid points for the variable-resolution grid approach is

|GC | = φ(κ̄1, y1) +

I∑
i=2

(
φ(κ̄i, yi)− φ(κ̄i−1, yi)

)
. (3.11)

An example resolution assignment for the belief simplex Π(C), when |C| = 3 is given in Figure

3.2. In this example, we divide the belief space into four regions and use different resolution

values to sample from each region. Let y1 = 1000, y2 = 200, y3 = 20, y4 = 10 be the resolution

values that are used to sample grid points from region one through region four. Then, the

variable-resolution uniform grid approach leads to a grid set with 1083 grid points. On the other

hand, for the resolution value of y = 1000, the fixed-resolution uniform grid approach leads to a

grid set with 501,501 grid points. That is, we can obtain the same accuracy at the focused region

(i.e., region one) by using approximately 99.8% less points compared to the fixed-resolution

uniform grid approach.

Next, we form the grid set GD ⊂ Π(D) for the density states. We use a fixed-resolution
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[1, 0, 0] [0, 1, 0]

[0, 0, 1]

π(0) ∈ [0.96, 1]
highest resolution

π(0) ∈ [0.9, 0.96)

π(0) ∈ [0.6, 0.9)

π(0) ∈ [0, 0.6)
lowest resolution

Figure 3.2: An example resolution setting for Π(C)

uniform grid approach to construct GD. However, we eliminate the grid points that have nonzero

values interleaved with zeros from the grid set. These grid points imply that the patient is

assigned a nonzero probability of having breast density di and dk, but zero probability of having

breast density dj , where di < dj < dk. Such grid points represent unlikely breast density

probability distributions for a patient and it is not useful to include those points in the grid set.

As a result, number of grid points in set GD reduces to [Sandikci et al., 2013]:

min{y−1,|D|}∑
i=0

(
y − 1

i

)
· (|D| − i).

3.3.2 Finding Interpolation Weights

There may be more than one set of interpolation weights, {βk}, that spans the updated belief

state, π′, and choosing the combination that yields better approximate values (closer to V ∗(π′))

is important. We consider following approaches for obtaining interpolation weights:

1. Iterative with full grid set [IF]: In order to find the interpolation weights, Sandikci et al. [2013]
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propose solving the following linear programming (LP) model:

ζ(G,π′) = min
{ ∑

k∈K
βkV̂t+1(`k) |

∑
k∈K

βk`
k = π′,

∑
k∈K

βk = 1, βk ≥ 0 ∀k ∈ K
}
. (3.12)

Observe that, to obtain the interpolation weights (β), this LP is solved at every decision

epoch, for each action, for each observation and for each grid point, since they all may

affect the value of updated belief state. Note that this approach iteratively calculates

the β-values as the approximate QALY values for the grid points at decision epoch t+ 1

(V̂t+1(`k), `k ∈ G) are used in solving the LP.

2. Iterative with disaggregated grid set [ID]: The difficulty of computing ζ(G,π′) increases in the

size of the grid set. As an alternative, we use a subset of grid points, Ḡ ⊂ G, to interpolate

π′, where Ḡ is formed by using the corner points of the grid set for the density states GD.

That is,

Ḡ =
{
vi ⊗ vj , ∀vi ∈ GC , ∀vj ∈ {e1, ..., e|D|}

}
,

where ek is a unit vector of size |D|with kth element equal to one and all other elements

equal to zero. Note that, ζ(Ḡ,π′) gives an upper bound on the optimal value of ζ(G,π′).

We can partition the set Ḡ into smaller grid sets to calculate ζ(Ḡ,π′) more efficiently. Let

Ḡd represent the set of grid points that have non-zero entries for only breast density state d,

i.e., Ḡd = {v ⊗ ed, ∀v ∈ GC}, and Kd = {1, 2, ..., |Ḡd|} be the index set of this grid set. Then,

Ḡ = ∪Dd=1Ḡd and ζ(Ḡ,π′) =
∑D

d=1 ζd(Ḡd,π′), where ζd(Ḡd,π′) can be described as follows:

ζd(Ḡd,π′) =
{
min

∑
k∈Kd

βkV̂t+1(`k) |
∑
k∈Kd

βk`
k(d, h) = π′(d, h), ∀h ∈ C,

∑
k∈Kd

βk =
∑
h∈C

π′(d, h),

βk ≥ 0, ∀k ∈ Kd
}
. (3.13)
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As such, partitioning the grid set Ḡ leads to a more efficient approach for obtaining the

interpolation weights as we solve much smaller LPs.

3. Distance-based [DB]: Alternative to the iterative approaches, we can also choose the grid

points used in the interpolation according to their distance to the updated belief state π′.

More specifically, interpolation weights can be obtained using the following LP:

Υ(Ḡ,π′) = min
{ ∑

k∈K

∑
s∈S̄

βk|π′(s)− `k(s)| |
∑
k∈K

βk`
k = π′,

∑
k∈K

βk = 1, βk ≥ 0 ∀k ∈ K
}
,

(3.14)

where Ḡ ⊆ G. While we use Manhattan distance as the distance measure in above LP,

other metrics can also be employed for Υ(Ḡ,π′). Furthermore, Ḡ can be refined to reduce

the size of the LP. That is, we can construct Ḡ using n closest points to π′ and the corner

points of Π(S̄), so that LP is always feasible. Also note that distance-based approach can

be extended to [ID] as well (i.e., when Ḡ = ∪Dd=1Ḡd).

While the LPs can be solved in parallel for a given decision epoch for all three approaches,

[DB] is more advantageous in terms of parallelization as we can calculate the interpolation

weights for each period independently. Furthermore, iterative approaches can take prohibitively

long times as the size of G increases. For instance, when we use a grid set with approximately

4400 grid points for our problem (using the parameter setting given in Section 3.4) [IF], [ID], and

[DB] takes 18.0, 6.0, and 1.5 hours to calculate the β-values, respectively. In addition, difference

in the resulting approximate function values for the grid points is less than %0.01.

3.4 Parameter Estimation

In our numerical experiments, we define each decision epoch to be one year and consider patients

between ages 40 and 100; hence T = 60. Health status of a patient is generally categorized into

three states in terms of breast cancer, namely, cancer-free, in situ cancer, and invasive cancer
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[Fryback et al., 2006]. Therefore, we take C = {∆, h1, h2}, where h1 corresponds to in situ cancer,

and h2 corresponds invasive cancer. Note that in situ cancer is an early stage cancer and can

become invasive over time whereas invasive cancer corresponds to a late stage cancer. We use the

categorization suggested by the Breast Imaging Reporting and Data System (BI-RADS) for breast

density. In particular, we take D = {d0, d1, d2, d3}, where d0 corresponds to fatty, d1 corresponds

to scattered fibrodengular, d2 corresponds to heterogeneously dense and d3 corresponds to extremely

dense breast density categories.

We only consider MRI and ultrasound as supplemental screening modalities since other

modalities such as tomosynthesis and molecular breast imaging are not widely used in breast

cancer screening. MRI uses magnets and radio waves to produce detailed 3-dimensional images

of the breast tissue. The patient has a contrast solution injected before the MRI and she needs

to remain still during the test for an extended amount of time, which causes a lot of stress and

discomfort. On the other hand, ultrasound is a significantly less invasive procedure and the test

is generally performed using a handheld device that uses sound waves to make images of the

breast. Unlike mammography, neither MRI nor ultrasound exposes the patient to any radiation.

We use several previously validated data sources to estimate the parameters of our model.

The validity of our model and resulting policy insights are based on these data sources and

our comparisons with the relevant studies in the literature. Our primary sources of data for

the parameter estimation are the University of Wisconsin Breast Cancer Simulation (UWBCS)

and the Surveillance, Epidemiology, and End Results (SEER) Program. More specifically, we

estimate the transition probabilities using UWBCS and post-cancer lifetime from SEER. We

present the details of parameter estimation regarding screening exam performance in Section

3.4.1, the disutility values associated with the screening exams in Section 3.4.2, and breast cancer

risk estimation in Section 3.4.3.
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3.4.1 Performance of the screening exams

In a given decision epoch, if the patient does not receive any type of screening exam, she can

make a self-detection either via clinical breast examination or breast self exam. We use Barton

et al. [1999]’s and Baxter et al. [2001]’s studies to estimate sensitivity and specificity of the clinical

breast exams and breast self exam, respectively. We obtain the proportion of clinical breast

exam and breast self exam from Elmore et al. [2005] and Messina et al. [2004] to calculate the

sensitivity and specificity of the self-detection by a patient. Table 3.1 summarizes the sensitivity

and specificity values for breast self-exam (BSE), clinical breast exam (CBE), and self-detection.

BSE, CBE, and self-detection
Test Sens. (%) Spec. (%) Data source
BSE 26 90 Baxter et al. [2001]
CBE 54 94 Barton et al. [1999]
Self-detection 44 92 -

Table 3.1: Performance values for the Wait action.

Table 3.2 shows the sensitivity and specificity values for different screening modalities.

Mammography sensitivity and specificity values are estimated from Sprague et al. [2014]’s study.

Note that digital mammography performs best for breast density d1 and performs worst for

breast density d0, whereas film mammography performance decreases with increased breast

density. We also obtain the supplemental ultrasound sensitivity and specificity values from

Sprague et al. [2014]. In our experiments, we use the ultrasound sensitivity and specificity as

55% and 94%, respectively. Several studies report that MRI sensitivity varies between 88-95%,

and MRI specificity varies between 60-75% [Peters et al., 2008, Knuttel et al., 2014]. As such, we

use the values for MRI sensitivity and specificity as 90% and 72%, respectively. Both MRI and

ultrasound performance are not affected by age and breast density of the patient.
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Film Digital
Density Age group Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)
d0 40-49 81.6 95.5 71.3 94.2

50-74 86.3 96.2 77.9 95.2
75-100 91.5 96.2 83.1 95.2

d1 40-49 79.9 91.6 83.6 89.5
50-74 85.3 92.9 88 91.2
75-100 90.5 92.9 93.2 91.2

d2 40-49 75.0 89.2 75.9 86.4
50-74 80.7 90.2 81.6 88.5
75-100 85.9 90.2 86.8 88.5

d3 40-49 59.7 90.4 76.0 89.3
50-74 67.6 92.0 81.7 91.1
75-100 72.8 92.0 86.9 91.1

Table 3.2: Mammography screening performance by density and age group.

3.4.2 Disutility values for the screening exams

Table 3.3 shows the disutility values associated with screening exams and positive test results.

Several studies report that patients are more cautious towards MRI when compared to mam-

mography or ultrasound, as MRI is a longer and more painful exam [Berg et al., 2009]. Therefore,

disutility of MRI exam is higher compared to mammography and ultrasound. In our analyses,

we take the disutility of undergoing MRI as two days and we explore sensitivity with respect to

this parameter in Section 3.5.3.

3.4.3 Personal breast cancer risk

Several risk estimation tools are developed to predict the breast cancer risk of a patient. In

our analysis, we use the BCSC risk calculator to estimate the breast cancer risk for individual

patients (https://tools.bcsc-scc.org/BC5yearRisk/calculator.htm). Table 3.4 summarizes the
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Intervention Disutility values Data source
Self-detection 0 days -
Mammography 0.5 days Mandelblatt et al. [1992]
Ultrasound 0.5 days -
MRI 2 days -
False Positive 2 weeks Chhatwal et al. [2010]
True Positive 2 weeks Velanovich [1995]

Table 3.3: Interventions and associated QALY decrements.

invasive cancer risk estimates for 40-year old patients according to their risk categories and breast

densities.

d0 d1 d2 d3

average-risk 0.08% 0.17% 0.29% 0.35%
high-risk 0.17% 0.36% 0.61% 0.74%
very high-risk 0.55% 1.19% 1.99% 2.44%

Table 3.4: Invasive cancer risk at age 40 for patients with different breast densities and risk levels.

In our analysis, we categorize the women into three risk groups: average-risk, high-risk, and

very high-risk. Our risk estimates suggest that, depending on the breast density, a high-risk

woman is approximately two times more likely to get cancer and a very high-risk woman is

approximately six to seven times more likely to get cancer compared to an average risk woman. It

is important to note that BCSC risk calculator does not include some risk factors such as BRCA1

and BRCA2 gene mutations and having previous chest radiation. However, such risk factors

can be easily incorporated into our model. For instance, women with BRCA1 gene mutations

are approximately seven to eight times more likely to get breast cancer [Chen and Parmigiani,

2007], and by adjusting our initial breast cancer risk estimates and transition probability matrices

accordingly, we can make our model suitable for women with BRCA1 gene mutations.
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3.5 Numerical Results

We solve the approximation of our POMDP model using the backward induction algorithm.

In our base case grid settings, we partition the health belief space, Π(C), into four regions

according to the first components of the health belief states. We use the vector of break points

ϕ = (1, 0.96, 0.9, 0.6, 0) to define the regions (e.g., first region is defined by κ1 = {π ∈ Π(C)|π(0) ∈

[1, 0.96)}). Also, we use the resolution values 1000, 200, 20 and 10 to sample grid points from

κ1, κ2, κ3, and κ4, respectively. This resolution setting leads to a health grid set (GC) with 1083

grid points. Considering that we only need the corner points of the breast density belief space,

our final grid set contains 4332 grid points. We observe that this grid setting provides tight

upper bounds for the QALY values (see Appendix A.3 for a detailed performance analysis).

3.5.1 Optimal Mammography Screening Policies

Figure 3.3 shows the in situ and invasive cancer risk combinations for which it is optimal to

recommend each screening modality when film mammography is used as the initial screening

test. We observe that ultrasound is more preferable over MRI when breast cancer risk is relatively

low. Furthermore, risk combinations to recommend each action changes based on the patient’s

breast density. In particular, patients are recommended more supplemental screenings as breast

density increases.

We do not observe the same monotone increase in supplemental screening recommendations

with increased breast density when digital mammography is used as the initial screening test

(see Figure 3.4). This is mainly due to nonuniform performance of digital mammography across

the breast densities. For instance, considering that the digital mammography performs best

for the patients with breast density d1, the area of risk combinations for which supplemental

screenings are recommended is smallest for d1. As digital mammography is more widely used

in the clinics [Stout et al., 2014], we use digital mammography as the initial screening test in the

rest of the numerical experiments.
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Figure 3.3: Film mammography risk thresholds for a 40-year old average-risk patient

An important aspect of personalized screening recommendations is that a patient’s screening

history affects her future screening recommendations. We consider two possible screening

scenarios for a patient and report the number of mammography and supplemental screenings

recommended for these scenarios in Table 3.5. “Sce1” corresponds to the scenario where the

patient always makes negative observations as a result of any action and “Sce2” corresponds

to the case where the patient makes positive observations due to wait action every 10 years. If

the patient is in the average-risk category and her breast density is d0 or d1, she is not recom-
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Figure 3.4: Digital mammography risk thresholds for a 40-year old average-risk patient

mended supplemental screening tests for both scenarios. That is, increased breast cancer risk

due to positive observations would only lead to increased number of mammography screening

recommendations but not supplemental screening recommendations. On the other hand, if the

patient is in the high-risk category or has dense breasts (d2 or d3), she might be recommended a

limited number of ultrasound screenings.
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average-risk high-risk very high-risk
M R U M R U M R U

d0 Sce1 9 0 0 27 0 1 39 0 1
Sce2 16 0 1 29 0 2 39 0 2

d1 Sce1 15 0 0 27 0 0 40 0 1
Sce2 18 0 0 30 0 1 40 0 1

d2 Sce1 16 0 0 38 0 1 40 0 6
Sce2 19 0 3 39 0 2 40 0 6

d3 Sce1 24 0 0 40 0 0 40 0 18
Sce2 26 0 2 40 0 0 40 0 18

Table 3.5: Number of screenings recommended for patients from different risk groups under
different scenarios.

3.5.2 Value of Modeling Breast Density and Supplemental Screenings

We next compare our POMDP model to population based screening guidelines that have been

in effect in many countries. Note that these guidelines do not make any supplemental screening

recommendations. Table 3.6 shows the results of this experiment for very high-risk patients (see

Appendix A.4 for the experiments regarding average-risk and high-risk patients). Each screening

guideline is given by the frequency of screening as well as the screening start and end ages.

For example, “tri_50_70” represents triennial screening between ages 50 and 70. Also, “noScr”

represents the case where the patient does not receive any screenings, “pomdp” represents

our model and “pomdp_nss” represents a modified version of our model, where patients are

not allowed to receive supplemental screenings. We compare these approaches according to

expected number of screenings recommended (avg. Scr), expected number of false-positive

screenings (avg. FP) and QALY values for the patient (QALY) where “QALY gain” column shows

the QALY improvements over the “noScr” scenario in months.

Dynamic screening policies obtained by our model (pomdp and pomdp_nss) outperform

population-based screening guidelines in terms of QALY gains. Also, pomdp models provide

patient-specific screening recommendations, therefore prevents unnecessary screenings and
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avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 36.712 -
tri_50_70 9.16 0.41 38.212 18.00
bi_50_70 12.77 0.64 38.418 20.47
bi_40_74 19.94 1.08 39.096 28.60
an_40_74 34.06 2.09 39.226 30.18
pomdp_nss 37.68 2.35 39.428 32.59
pomdp 37.82 2.37 39.437 32.70

(a) Breast density: d0

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 34.684 -
tri_50_70 11.25 0.56 37.330 31.75
bi_50_70 14.49 0.86 37.592 34.89
bi_40_74 21.75 1.49 38.477 45.52
an_40_74 34.92 2.90 38.652 47.62
pomdp_nss 37.90 3.18 38.865 50.18
pomdp 38.70 3.24 38.868 50.22

(b) Breast density: d1

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 33.086 -
tri_50_70 12.60 0.58 36.539 41.43
bi_50_70 15.96 0.89 36.859 45.28
bi_40_74 22.99 1.65 37.894 57.70
an_40_74 35.46 3.20 38.164 60.94
pomdp_nss 37.92 3.48 38.369 63.40
pomdp 39.98 3.66 38.377 63.50

(c) Breast density: d2

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 31.955 -
tri_50_70 13.69 0.53 36.003 48.58
bi_50_70 16.64 0.80 36.354 52.79
bi_40_74 24.08 1.44 37.526 66.86
an_40_74 35.94 2.84 37.866 70.93
pomdp_nss 37.94 3.06 38.058 73.24
pomdp 45.23 3.66 38.072 73.40

(d) Breast density: d3

Table 3.6: Comparison of screening policies for very high-risk patients

false-positive test results. We observe that supplemental screenings leads to marginal QALY

gains for every breast density category, which indicates that they are ineffective in increasing

QALY of the patients. Also note that breast density of the patient significantly affects the

screening recommendations. For example, our POMDP model (pomdp) leads to 37.82 screening

recommendations (on average) with 32.70 months QALY gain for the patient with d0 breast

density, and 45.23 screening recommendations (on average) and 73.40 months QALY gains for

the patient with d3 breast density.

Table 3.7 shows the expected number of screenings for each breast density and risk-group

categories. As the supplemental screenings are only allowed after negative mammography result,

we also present the percentage of time each supplemental screeningmethod is recommended. For

example, a very high-risk patient with breast density d3 is recommended to undergo ultrasound
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33.8% of the time she receive a negative mammogram. These results show that the patients are

infrequently recommended to receive supplemental screenings. Also, we observe that increased

breast cancer risk mainly leads to more mammography screening recommendations rather than

increasing the amount of supplemental screenings recommended.

average-risk high-risk very high-risk
E[M] E[R] E[U] E[M] E[R] E[U] E[M] E[R] E[U]

d0 13.20 0(0.0%) 0.01(0.0%) 26.38 0(0.0%) 1.11(4.9%) 36.83 0(0.0%) 0.99(3.5%)
d1 15.10 0(0.0%) 0.02(0.2%) 25.47 0(0.0%) 0.20(1.0%) 37.83 0(0.0%) 0.87(3.4%)
d2 15.69 0(0.0%) 0.72(6.2%) 31.44 0(0.0%) 1.05(4.5%) 37.94 0(0.0%) 2.03(8.9%)
d3 19.61 0(0.0%) 0.73(5.0%) 35.66 0(0.0%) 0.06(0.2%) 38.00 0(0.0%) 7.23(33.8%)

Table 3.7: Number of screenings recommended.

3.5.3 Sensitivity Analysis

We conduct a one-way sensitivity analysis on sensitivity and specificity of the screening modali-

ties to demonstrate the impact of test performance on the number of screening recommendations.

In this experiment, we only consider a very-high risk patient and assume that the patient does

not receive any positive observations throughout her lifetime. Table 3.8 shows the range of

screening counts by screening modality based on the patient’s breast density. For example, in

Table 3.8(a), number of mammography screenings recommended to the patient with d0 breast

density changes between 38 and 37 as the sensitivity of the mammography changes. Sensitivity

analysis for the specificity values indicate that the number of screenings recommended to a

patient is significantly affected by the variations in the specificity of the tests. For example, a 5%

decrease in the specificity of mammography would lead to recommending 20 ultrasounds to a

patient with d3 breast density, whereas increasing the mammography specificity by 5% leads to

13 ultrasound recommendations for the same patient.

One-way sensitivity analysis can also be used to investigate the concerns about the perfor-

mance of the supplemental tests. For example, a main drawback of MRI is its low specificity.
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Table 3.8(b) shows that even a 20% increase in the specificity value of MRI would not increase the

number of MRI recommendations. Similarly, ultrasound is known to have low sensitivity. Table

3.8(c) shows that there is a significant increase on the number of ultrasound recommendations

to the patients with dense breasts as the ultrasound sensitivity improves. We also conduct a

one-way sensitivity analysis for the disutility of MRI by varying the disutility value between 0.5

days and two days (base case value is two days). However, we do not observe any change in the

results with decreased disutility values for MRI, which strengthen our insights that the main

factor for fewer MRI recommendations is its low specificity.

3.6 Concluding remarks

We investigate the breast cancer screening problem considering the breast density of the patient

and availability of the supplemental screenings. We formulate this problem as a POMDP

and propose a grid-based approximation to solve the POMDP model. We use breast cancer

epidemiology data in our numerical experiments and observe that breast density information

could significantly affect screening recommendations. In addition, our numerical analysis

indicates that for the patients with higher breast cancer risk, more frequent mammography

screenings are preferable over supplemental screenings. As such, our study makes a potential

contribution to the recent debate about breast density legislation that recommends patients with

dense breasts to discuss supplemental screening tests with their providers.

Replacement of film mammography by digital mammography in the United States has

significantly reduced the difference in screening mammography sensitivity according to breast

density. In particular, sensitivity of digital mammography for women with dense breasts is

around 76% to 82% depending on age. Therefore, benefits of supplemental screenings diminish

as digital mammography already performs well for women with dense breasts. In this regard,

our findings mostly overlaps with two recent studies by Sprague et al. [2014] and Melnikow et al.

[2016] that analyze the impact of supplemental screenings. On the other hand, although we
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sens(M) ∈ [−0.05,+0.05] spec(M) ∈ [−0.05,+0.05]

M R U QALY change M R U QALY change
d0 (38,37) (1,0) (0,1) 0.564 (38,39) (0,0) (1,1) 1.478
d1 (40,40) (0,0) (1,1) 0.692 (40,40) (0,0) (1,1) 1.338
d2 (40,40) (0,0) (26,1) 0.796 (40,40) (0,0) (11,4) 1.193
d3 (40,40) (0,0) (33,2) 0.768 (40,40) (0,0) (20,13) 1.078

(a) One-way sensitivity analysis for mammography

sens(R) ∈ [−0.05,+0.05] spec(R) ∈ [+0.05,+0.20]

M R U QALY change M R U QALY change
d0 (39,39) (0,0) (1,1) 0.000 (39,39) (1,1) (0,0) 0.042
d1 (40,40) (0,0) (1,1) 0.000 (40,40) (0,0) (1,1) 0.000
d2 (40,40) (0,0) (6,6) 0.000 (40,40) (0,1) (6,5) 0.023
d3 (40,40) (0,0) (18,18) 0.000 (40,40) (0,1) (18,16) 0.017

(b) One-way sensitivity analysis for MRI

sens(U) ∈ [+0.10,+0.30] spec(U) ∈ [−0.05,+0.05]

M R U QALY change M R U QALY change
d0 (38,39) (0,0) (1,1) 0.060 (40,39) (1,0) (0,1) 0.046
d1 (40,40) (0,0) (1,1) 0.031 (40,40) (0,0) (1,1) 0.040
d2 (40,40) (0,0) (17,28) 0.182 (40,40) (0,0) (1,38) 0.251
d3 (40,40) (0,0) (24,34) 0.282 (40,40) (0,0) (2,37) 0.421

(c) One-way sensitivity analysis for ultrasound

Table 3.8: Sensitivity analysis considering an very high-risk patient

consider very high-risk women in our study, some women might have more than one strong risk

factors such as BRCA1 gene mutations and multiple first-degree relatives who have had breast

cancer. We recognize that such patients should not follow the general guidelines and should be

screened more aggressively.
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4 analysis of mammography screening policies under resource

constraints

4.1 Problem Definition

In this chapter, we provide a framework for analyzing breast cancer screening policies both at the

individual and population level. As a part of this framework, we maximize the total expected

QALYs of the patients under resource constraints. Specifically, we develop a finite-horizon

discrete-time constrained POMDP model to optimize the allocation of limited mammography

screening resources to maximize the benefits of mammography screening. We reformulate the

constrained POMDP model as a mixed-integer program and further extend this model to devise

a resource allocation scheme between patients from different risk groups.

We impose a limit on the number of mammography screenings instead of the actual cost of

screening, since the number ofmammography screenings captures various resource requirements

including the cost of screening, number of machines to take mammography exams, and the

number of trained personnel to interpret mammograms. Note that the screening limits can

be determined based on the available resources for a given country or a screening program.

For instance, in Chile, the public health system provides only two mammography screenings

throughout the lifetime of a woman [OECD, 2013].

Our work makes several important contributions to both theory and practice. First, as far

as we are aware, ours is the first study to consider the resource constraints and imperfect test

results simultaneously while optimizing screening decisions in a cancer screening problem.

Second, we use a novel approach to obtain clinically intuitive policies. More specifically, the use

of a mixed-integer linear program allows us to impose constraints to ensure that the resulting

optimal policies are of the control-limit type, which are easy to implement and more appealing

to policy makers. Third, using breast cancer epidemiology data, we test our approach and find

important policy implications that would help policy makers in a resource-limited setting. For
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example, we find that it is not cost-effective to allocate more than eight screenings to average-risk

patients throughout their lives. Finally, the explicit modeling of the constraints allows us to

overcome limitations of previous studies in health policy making where the subjective disutility

values associated with the interventions may significantly affect the recommended policies. We

numerically demonstrate that our proposed screening policies are robust to the disutility values

associated with mammography screening.

The remainder of this chapter is organized as follows. Section 4.2 describes the model

components and presents our constrained POMDP model. We introduce our approximation

scheme to solve the constrained POMDP model in Section 4.3 and we formulate a mixed-integer

linear programming model for resource allocation problem in Section 4.4. In Section 4.5, we

describe our data and provide the details of parameter estimation. In Section 4.6, we report our

numerical results. Finally, we summarize our findings and conclude in Section 4.7.

4.2 The POMDPModel

Wedevelop a finite-horizon discrete-time constrained POMDPmodel to optimize the allocation of

limitedmammography screening resources tomaximize the benefits ofmammography screening.

We aim to find a screening policy that maximizes a patient’s QALYs given that there is a limit on

the available number of mammography screenings. This screening policy determines the set of

actions to be taken at each decision epoch. The decisions are made at every 6 months starting

from age 40 (the earliest recommended starting age for screening) until 90. Therefore, the set of

decision epochs is T = {0, 1, 2, . . . , N − 1}, where N = 100.

The state space of the POMDP model consists of the health status of the patients. We use

st ∈ S to represent the core states (i.e., underlying true health status of a patient at time t), where

S = {healthy, in situ, invasive, post-in situ, post-invasive, death}. Note that in situ state corre-

sponds to an early stage cancer, whereas invasive state corresponds to a more advanced stage can-

cer. Furthermore, as mammography screening is not perfectly accurate, a patient’s actual disease
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state is only partially observed. Therefore, we partition the core states as partially observable and

fully observable, and denote the partially observable states by S̄ = {healthy, in situ, invasive}.

For the brevity of notation, we match each state swith an integer, i ∈ {0, 1, ..., 5}, to represent

the states in analytical expressions.

Our model optimizes the mammography screening decisions based on patients’ personal

risk of breast cancer. The personal risk of breast cancer corresponds to the decision maker’s

assessment of the patient’s disease state and is summarized by a belief state, b, that is defined over

the partially observable states. Because the core state of the patient is not always fully observable

(i.e., when st ∈ S̄), belief state b represents a probability distribution over S̄ and the belief space

consisting of all such probability distributions is defined as

B(S̄) =

{
b ∈ [0, 1]|S̄| :

∑
s∈S̄

b(s) = 1

}
, (4.1)

where b(s) corresponds to the probability of being in core state s ∈ S̄ .

At each decision epoch, depending on the patient’s health state, the decision maker can take

one of the two types of actions: recommend that the patient undergo mammography screening

(M ) or do nothing (DN ) and the patient waits until the next decision epoch. Hence, the action

at decision epoch t is denoted by at ∈ A = {DN,M}.

4.2.1 Observation Probabilities

As a result of the action taken, an observation is made about the patient’s health state. If the

action taken is DN , there can be a self-detection (DN+), which is the case when the patient

and/or her physician feels a lump in the breast, or no self-detection (DN−). Similarly, if the

action taken isM , the outcome of the mammography is either positive (M+) or negative (M−).

Hence, we define the observation space as O = ODN ∪ OM , where ODN = {DN−, DN+} and

OM = {M−,M+}.
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We use zt(ot|st, at) to represent the probability of observing ot when the patient’s health

state is st and the action taken is at. Observation probabilities are obtained from the sensitivity

and specificity of the associated action. For instance, mammography screening can detect in

situ (s = 1) or invasive (s = 2) cancer with probabilities equal to its sensitivity, denoted as τ sM .

Similarly, the patient can make a self-detection with probability τ sDN , if she is in state s. On the

other hand, if the patient does not have cancer, each action may lead to a false-positive diagnosis

with probability 1− wat , where wat is the specificity of the action taken. Table A.2 summarizes

observation probabilities for different core state-observation pairs. Note that while sensitivity

and specificity of each action is dependent on the patient’s age, we drop the time index for

notational clarity.

s\o DN− DN+ M− M+

s = 0 wDN 1− wDN wM 1− wM
s ∈ {1, 2} 1− τ sDN τ sDN 1− τ sM τ sM

Table 4.1: Observation probabilities zt(ot|st,at)

4.2.2 Transition Probabilities

The probability pt(st+1|st, at) denotes the health state transition probability from state st to st+1

given that the patient takes action at at decision epoch t. That is,

pt(st+1|st, at) =
∑

ot∈Oat

pt(st+1|st, at, ot)zt(ot|st, at),

where pt(st+1|st, at, ot) corresponds to the transition probability when ot is observed as a result

of action at. Note that the probability of a change in health state in the next decision epoch is

the same for women who have a negative or false-positive mammogram, and those who do not

receive a mammogram. The relations between transition probabilities for different actions and
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observations are as follows:

pt(st+1|st, DN,DN−) = pt(st+1|st, DN,DN+) = pt(st+1|st,M,M−),

pt(st+1|0,M,M−) = pt(st+1|0,M,M+).

4.2.3 Rewards

The immediate rewards for ourmodel correspond to the QALYs accrued in a decision epoch. QALY

is a measure of expected difference between the lifetime and the disutility of the associated action

and is commonly used in designing health policies [Gray et al., 2010]. More specifically, if the

patient is in state st, takes action at and makes observation ot, she accrues an immediate reward

rt(st, at, ot). We use half-cycle correction method to calculate the immediate reward associated

with the DN action [Gray et al., 2010]. That is, we assume half decision interval length for the

expected life in the case of death and full decision interval length when the patient survives until

the next decision epoch. Then, rt(st, DN, ·) is calculated as the weighted average of expected life

by weighing life years until the subsequent decision epoch according to the probability of death

during that time frame, that is,

rt(st, DN, ·) = 0.5×P (alive in period t|current state is st)+0.25×P (dies in period t|current state is st).

We subtract the disutility of undergoing a mammography screening from rt(st, DN, ·) to

calculate the immediate reward for the mammography action. That is,

rt(st,M, ot) = rt(st, DN, ·)− γM (st, ot), ∀st ∈ S̄,

where γM (st, ot) be the disutility associated with mammography screening when the patient’s

health state is st and the patient observes ot ∈ OM . Note that γM (st,M−), st ∈ S̄ , corresponds
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to disutility of negative mammogram, γM (0,M+) corresponds to the disutility of a false-positive

(FP) mammogram and γM (st,M+), st ∈ {1, 2}, corresponds to the disutility of a true positive

(TP) mammogram. Furthermore, we can calculate the immediate rewards for each action and

state as follows:

rt(st, at) =
∑

ot∈Oat

rt(st, at, ot)zt(ot|st, at).

If the patient is in state st ∈ {1, 2} and receives a positive mammography result, she starts

treatment, quits the decision process, and accrues a lump-sum reward Rt(st). Also, at the final

decision epoch, no action is taken and the patient accrues a terminal reward RN (s), if she is in

state s. Finally, we can calculate the expected immediate reward the patient accrues for taking

action at in belief state bt as

rt(bt, at) =
∑
st∈S̄

bt(st)rt(st, at), and Rt(bt) =
∑
st∈S̄

bt(st)Rt(st).

4.2.4 Optimality Equations

The optimal policy for the unconstrained breast cancer screening problem yields the set of actions

that maximize a patient’s total QALYs through the planning horizon. We obtain the optimal

policy by dynamically solving the corresponding optimality equations. We formulate these

optimality equations using the belief state, which preserves the Markovian property and also

is a sufficient statistic for the entire history of the process [Smallwood and Sondik, 1973]. Let

Q∗t (bt) be the maximum total expected QALYs that the patient attains when she is in belief state
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bt at time t. Then, the optimality equations can be written as

Q∗t (bt) = max
{
rt(bt, DN) +

∑
st∈S̄

bt(st)

[ ∑
ot∈ODN

zt(ot|st, DN)
∑

st+1∈S̄

pt(st+1|st, DN, ot)Q∗t+1(bt+1)

]
,

rt(bt,M) +
∑
st∈S̄

bt(st)

[
zt(M − |st,M)

∑
st+1∈S̄

pt(st+1|st,M,M−)Q∗t+1(bt+1)

]

+ bt(0)zt(M + |0,M)pt(st+1|0,M,M+)Q∗t+1(bt+1) +
∑

st∈{1,2}

bt(st)zt(M + |st,M)Rt(st)

}
,

∀t ∈ T , ∀bt ∈ B(S̄),

(4.2a)

Q∗N (b) = RN (b), ∀b ∈ B(S̄). (4.2b)

We refer to the POMDP model formulated by the equations (4.2a) - (4.2b) as the Unconstrained

Partially Observable Breast Cancer Screening Model (UPOBCS).

As the patient gets older, she may make a transition to another belief state as a result of

the selected actions and corresponding observations. We use Bayesian updating to specify the

transitions between belief states. More specifically, given that the patient has a belief state bt at

time t, takes action at ∈ A and observes ot ∈ Oat , the patient’s updated belief state bt+1 ∈ B(S̄)

is computed as follows:

bt+1(st+1) =

∑
st∈S̄

bt(st) zt(ot|st, at) pt(st+1|st, at, ot)∑
st∈S̄

bt(st) zt(ot|st, at)
, ∀st+1 ∈ S̄. (4.3)

4.2.5 Constrained POMDPModel

We aim to obtain a mammography screening policy, π ∈ Π, that satisfies the constraints on the

expected number of total mammography screenings, where Π represents the set of all policies.

Let ct(bt, at) denote the cost of choosing action at at time t when the patient’s belief state is bt
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and C0 denote the total number of available mammography screenings from decision epoch

0 onwards. We formulate the following constrained POMDP (CoPOMDP) model to explicitly

account for mammography screening limit constraints:

CoPOMDP: max
π∈Π

Eπδ
[N−1∑
t=0

rt(bt, at) +RN (bN )
]

(4.4a)

s.t. Eπδ
[N−1∑
t=0

ct(bt, at)
]
6 C0, (4.4b)

where δ is the probability distribution for the patient’s belief states at the first decision epoch,

i.e., δ(b) satisfies
∑

b∈B(S̄) δ(b) = 1 and δ(b) ≥ 0, ∀b ∈ B(S̄). As the constraint (4.4b) restricts the

expected number of total mammography screenings, we use ct(bt, DN) = 0 and ct(bt,M) = 1 as

the cost values. We impose the limits on the expected number of total mammography screenings

instead of the actual number of total exams as we would like to take into account all the possible

scenarios for the patient in terms of her screening history.

Note that the limit on the number of mammography screenings is not a hard limit and

the number of screenings recommended depends on the patient’s screening history (i.e., the

system history {(a0, o0), . . . , (at, ot)}, t ∈ T ). More specifically, the patient has a stochastic

process governing the screening outcomes and she might follow different paths (or scenarios),

{(a0, o0), . . . , (aN−1, oN−1)}, throughout the decision process. As such, the number of mammog-

raphy screenings recommended to the patient might be different for different paths. For instance,

if the patient always makes negative observations as a result of the actions taken, then she

may be recommended fewer screenings than the available number of screenings. On the other

hand, the screening limit may be exceeded for the scenario where the patient makes multiple

positive observations throughout the decision process. However, constraint (4.4b) ensures that

the expected value of the number of screenings over these scenarios does not exceed the imposed

limit.

The optimality equations given in (4.2a) - (4.2b) equivalently represent the objective function
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(4.4a) and any solution algorithm for solving the optimality equations for POMDPs such as

Monahan’s algorithm [Monahan, 1982] and Sondik’s algorithm [Smallwood and Sondik, 1973]

can be used to find the optimal solution for the unconstrained problem formulated by only (4.4a).

However, there is no efficient exact solution algorithm for the constrained POMDP model given

by (4.4a) - (4.4b). We use grid-based approximations to solve CoPOMDP, which we describe in

the next section.

4.3 Solution Methodology

Several studies in the literature that consider resource constraints in optimizingmedical decisions

convert all QALY values to monetary terms using a value for willingness-to-pay per QALY and

focus on the resulting single-objective model [Erenay, 2010, Lee et al., 2009]. This approach

is generally useful for reducing model complexity as it avoids modeling resource constraints

directly. However, it is difficult to justify the use of willingness-to-pay (i.e., putting a dollar value

for life years) from an ethical standpoint when the objective is to optimize the patients’ well being

[Neumann and Weinstein, 2010]. Furthermore, determination of a reasonable willingness-to-pay

value is controversial even when the ethical issues are left aside. Therefore, we aim to explore the

trade-off between health care costs and population health, and propose a modeling framework

that explicitly incorporates the resource constraints.

Our solution methodology is based on a grid-based approximation for POMDP models. We

first develop a grid-based approximation for UPOBCS where the mammography limit constraint

is ignored. Then, we reformulate the approximation as a linear program (LP) and discuss how to

augment the LP model with the mammography screening limit constraint. Finally, we introduce

a set of constraints and binary variables to this model to ensure that we obtain deterministic and

control-limit policies.
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4.3.1 Grid-based Approximation for POMDPs

POMDP models are usually computationally intractable and state-of-the-art exact solution

algorithms can only solve unconstrained problems with few core states to optimality. Therefore,

several approximation methods are developed for POMDPs and grid-based approaches are

frequently usedmethodologies to solve unconstrained POMDPmodels [Lovejoy, 1991b, Sandikci

et al., 2013]. More specifically, we can find an approximate solution to the value functions (4.2a) -

(4.2b) by discretizing the belief space into a finite set of grid points. Let G = {g1, . . . , gK} be the

grid set and K = {1, . . . ,K} be the index set of G. Given that G includes all corner points of the

belief simplex, any updated belief state bt+1 /∈ G can be expressed as a convex combination of

the points in G, that is,

bt+1 =
∑
k∈K

βkgk,

where
∑

k∈K βk = 1 and βk ≥ 0, for all k ∈ K. Assuming that Q̂t+1(·) represents the approximate

value functions, we obtain an approximation for the UPOBCS by replacing Q∗t+1(bt+1) with∑
k∈K βk Q̂t+1(gk) in the optimality equations (4.2a).

There may be more than one set of βk values that span the updated belief state bt+1 and

choosing a combination that yields better approximate values for Q∗(bt+1) is important to find

good approximations for the optimal value functions. Sandikci et al. [2013] show that, βk values

obtained by solving the following linear program give the tightest approximation for the optimal

value functions for the given grid set G:

Beta_M:min

{ ∑
k∈K

βkQ̂t+1(gk) :
∑
k∈K

βkgk = bt+1,
∑
k∈K

βk = 1, and βk ≥ 0 ∀k ∈ K
}
. (4.5)

Observe that, to find the correct β-weights, this LP must be solved at every decision epoch, for

each action, observation and grid point, as they all contribute to the value of the updated belief

state. Therefore, we represent the interpolation weights with the vector β(gi,at,ot)
tk which specifies

the weight assigned to the kth grid point in G, if the updated belief state is gi, the action taken is



53

at and the observation is ot. As in Section 3.3.2, we can speed up the calculation of the β values

by focusing on the close grid points, instead of calculating the β values iteratively during the

backward induction. However, our state space and the grid set is much smaller than the ones in

Chapter 3. Similarly, size of the LP (Beta_M) is also much smaller. As such, we carry out the

computation of the β values using the iterative approach. In our base-case setting, obtaining the

β-values takes approximately 30 minutes.

There are several approaches to construct the grid set G [Lovejoy, 1991b]. For instance, if

we use a fixed-resolution uniform grid approach, total number of grid points is |G| =
(|S̄|+u−1
S̄−1

)
,

where u is the resolution parameter that specifies the increments between grid points. We have

three partially observable states, i.e., |S̄| = 3, and if we use a resolution value of two, we obtain

the following six grid points:

[1, 0, 0], [1/2, 1/2, 0], [1/2, 0, 1/2], [0, 1, 0], [0, 1/2, 1/2], [0, 0, 1],

where the grid point [1, 0, 0] corresponds to a perfectly healthy patient with no risks of in situ or

invasive cancers. We generally need the resolution value to be as high as possible so thatwe obtain

more accurate approximations for the POMDP model. However, increasing the resolution value

may lead to very large grid sets that are computationally challenging to use in an approximation

scheme. For instance, in a uniform grid, the resolution value should be at least 500 to differentiate

the cancer risk between grid points by 0.2%, and we need 125,751 grid points to obtain such

accuracy.

While the belief space B(S̄) contains every possible belief state, the majority of those belief

states are not reflective of realistic breast cancer risks. For instance, no patients would have a

belief state corresponding to zero probability of being healthy, unless they are diagnosed with

breast cancer. Therefore, we use a variable-resolution uniform grid approach to generate grid

points, which helps us focus on specific parts of the belief space rather than generating equally-

spaced grid points. For this purpose, we partition the belief space into n regions according to
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the first dimension of the belief states. As the first dimension of a belief state corresponds to the

probability of patient being healthy and the summation of other two dimensions corresponds to

the probability of patient having cancer, this approach leads to a natural partitioning of the belief

space. Let ρi represent the ith region in the belief space and ui represent the resolution value

used for region i. Then, the belief state b occupies ρi if b(0) ∈ [φi−1, φi), where 0 ≤ φi−1 < φi ≤ 1.

Thus, we construct the regions so that ρ1 consists of the belief states that represent the patients

with lowest breast cancer risk and ρn consists of the belief states that represent the patients with

highest breast cancer risk.

Our numerical analysis indicates that the likelihood of a patient’s belief state occupying a

specific region decreases as we move away from ρ1 to ρn. As a result, we use higher resolution

values to sample grid points from ρ1. Total number of grid points obtained using the variable

resolution uniform grid approach can be calculated as follows:

|G| =
(
|S̄|+ b(1− φ1)u1c − 1

|S̄| − 1

)
+

n∑
i=2

[(
|S̄|+ b(1− φi)uic − 1

|S̄| − 1

)
−
(
|S̄|+ b(1− φi−1)uic − 1

|S̄| − 1

)]
.

Figure 4.1 shows an example resolution setting with n = 4 regions, where the grid set G consists

of 315 grid points. This resolution setting helps us separate the grid points by 0.002 in region

one and the separation between grid points increases as the grid points approach region four.

After constructing the grid set G and calculating the convex combination weights, β, we can

approximate the optimal value function of the POMDPmodel by formulating anMDPmodel over

the grid set G. Transition probabilities of the MDP model are Ft(gi|gk, a) =
∑
o∈Oa

Ft(gi|gk, a, o),

where

Ft(gi|gk, a, o) =



β
(gk,a,o)
ti

∑
st∈S̄

gk(st)zt(o|st, a)
∑

st+1∈S̄

pt(st+1|st, a, o), if a = DN, o ∈ ODN ,

or a = M, o = M−,

β
(gk,a,o)
ti gk(0)zt(o|0, a)

∑
st+1∈S̄

pt(st+1|0, a, o), if a = M and o = M+.
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b(0)

b(1) + b(2)

φ0 = 1φ2 = 0.9φ3 = 0.6φ4 = 0

1

u1 = 500
u2 = 100

u3 = 20

u4 = 10

φ1 = 0.96

Figure 4.1: An example resolution setting with n = 4 regions

A more detailed description of the MDP model is provided in Appendix B.1.

4.3.2 Linear Programming Model Formulation

We can use the following linear program to find an approximate solution for UPOBCS [Kallenberg

and Cornelis, 1994]:

BCS-LP: max h(x) (4.7a)

s.t.
∑
a∈A

x0(gi, a) = δi, i ∈ K, (4.7b)

∑
a∈A

xt(gi, a)−
∑
a∈A

∑
k∈K

Ft−1(gi|gk, a)xt−1(gk, a) = 0, i ∈ K, 0 < t < N, (4.7c)

xN (gi)−
∑
a∈A

∑
k∈K

FN−1(gi|gk, a)xN−1(gk, a) = 0, i ∈ K, (4.7d)

xN (gi) ≥ 0, i ∈ K, xt(gi, a) ≥ 0, a ∈ A, i ∈ K, t < N, (4.7e)

where h(x) corresponds to the expected total QALYs of a patient for a given solution x and is
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defined as

h(x) =
∑
t<N

∑
a∈A

∑
k∈K

rt(gk, a)xt(gk, a)

+
∑
t<N

∑
k∈K

∑
s∈{1,2}

gk(s)zt(M + |s,M)Rt(s)xt(gk,M) +
∑
k∈K

RN (gk)xN (gk).

The continuous variables xt(gk, a) correspond to the probability of occupying belief state gk at

time t and taking action a. Similarly, xN (gk) denotes the probability of occupying the belief state

gk at the final decision epoch. Also, Ft(gi|gk, a) specifies the transition probabilities at time t,

given the belief state gk and action a.

The objective function of BCS-LP maximizes the expected total QALYs of the patient. Con-

straints (4.7b) guarantee that the fraction of time a patient occupies belief state gi at decision

epoch 0 is equal to the initial probability value, δi, assigned to the corresponding belief state.

Constraints (4.7c) and (4.7d) balance the flow in and out of each belief state at a given decision

epoch. Finally, constraints (4.7e) state bound and logical restrictions on the variables.

The probability measure described by continuous x variables in BCS-LP provides a natural

way to model the resource restrictions. We introduce the constraint

∑
t∈T

∑
k∈K

xt(gk,M) ≤ C0 (4.8)

to limit the expected number of total mammography screenings. We refer to the linear program-

ming formulation obtained by combining BCS-LP and constraint (4.8) as CoBCS-LP.

4.3.2.1 Deterministic Mammography Screening Policies

One issue with CoBCS-LP is that its optimal solution does not necessarily correspond to a

deterministic optimal policy (see Appendix B.2). Instead, we may obtain a randomized decision

rule for any belief state gk, which is impractical in a clinical context. To overcome this issue, we
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introduce binary variable θt(gk), which equals 1 if mammography screening is recommended

for the patient in belief state gk and decision epoch t and 0 otherwise. We add the following

constraints to BCS-LP to ensure that the optimal policies are deterministic:

xt(gk,M) ≤ θt(gk), ∀t ∈ T , ∀k ∈ K,

xt(gk, DN) ≤ 1− θt(gk), ∀t ∈ T , ∀k ∈ K, (4.9)

θt(gk) ∈ {0, 1} ∀t ∈ T , ∀k ∈ K,

where θ-variables guarantee that only one of the DN andM actions can be chosen for a belief

state gk at time t. Note that if θt(gk) = 1, then xt(gk,M) can take any value between 0 and 1,

and there could be multiple optimal solutions when both xt(gk, DN) and xt(gk,M) are equal

to 0. However, we can disregard the values of x-variables to determine screening policies as

θ-variables provide the resulting screening policy.

4.3.2.2 Control-limit Type Mammography Screening Policies

Similar to the deterministic policies, control-limit type policies are also desirable from a clinical

perspective as they are easier for interpretation and implementation. A control-limit type policy

is a policy for which there exists a belief state b∗, called the control-limit, such that one of

the actions is prescribed for all belief states b ≤ b∗ and the other action for all belief states

b > b∗. We use first-order stochastic dominance for probability distributions to compare the

belief states. That is, a belief state b̄ is stochastically larger than the belief state b, denoted as b ≤s b̄,

if
∑|S̄|

i=j b(i) ≤
∑|S̄|

i=j b̄(i) for any j ∈ {1, . . . , |S̄|}. Therefore, we assume that the belief state b̄ is

worse than the belief state b, i.e., b̄ corresponds to a patient with higher risk of developing breast

cancer. We add the following constraints to the BCS-LP to obtain control-limit type policies:

θt(gi) ≤ θt(gk), t < N, i ∈ K, k ∈ K(i) = {k̂ ∈ K : gi ≤s gk̂}. (4.10)
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Constraint (4.10) states that whenever the mammography action is chosen for the belief state

gi, the same action should also be chosen for the belief states that are worse than gk. Note that

the number of such constraints can be as large as |N ||G|2. However, we can reduce the number of

constraints needed to ensure control-limit type policies by using the stochastic ordering hierarchy

between the grid points. For instance, if g0 ≤s g1 ≤s g2, we use following inequalities to ensure

control-limit policies: θ(g0) ≤ θ(g1), θ(g0) ≤ θ(g2), and θ(g1) ≤ θ(g2). However, second

inequality is redundant as it is already implied by first and third inequalities, and therefore need

not to be included in our linear programming formulation.

We construct a directed graph,D = (V (D), A(D)), that shows the stochastic ordering between

grid points (see Figure 4.2). Nodes of the graph corresponds to grid points and there is an arc

from gi to gk if gi ≤s gk and 6 ∃ gj such that gi ≤s gj ≤s gk (see Appendix B.3 for an algorithm

to construct D). For example, in Figure 4.2, there is no arc between g0 and g2 as g1 satisfies the

relation g0 ≤s g1 ≤s g2. Then, we can describe the control-limit policy constraints as follows:

θt(gi) ≤ θt(gk), t < N, (i, k) ∈ A(D). (4.11)

As such, we only need O(N |G|) inequalities of type (4.11) compared to O(N |G|2) of type (4.10)

to enforce control-limit policies.

We refer to the formulation obtained by combining the equations (4.7a) - (4.9), and (4.11) as

Constrained Breast Cancer Screening Problem - Mixed-Integer Linear Programming formulation

(CoBCS-MIP)

4.4 Mixed-Integer Programming Model For Resource Allocation

We extend CoBCS-MIP to devise a resource allocation scheme between patients with different

risk characteristics. In this model, each subpopulation follows their own progression and patients

shareC0 mammography screenings. We denote the set of patient types byL and each patient type
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(1, 0, 0)g0

(0.998, 0.002, 0)g1

(0.998, 0, 0.002)g2 (0.996, 0.004, 0) g3

(0.996, 0.002, 0.002)g4 (0.996, 0.004, 0) g6

(0.996, 0, 0.004)g5 (0.994, 0.004, 0.002) g7

(0.994, 0.002, 0.004) g8

(0.994, 0, 0.006) g9

... . . .

Figure 4.2: Graph of stochastic orderings between grid points

is assigned a weight of α`, representing the proportion of type ` patient in a given population,

where
∑

`∈L α` = 1. We formulate the resource allocation problem as follows:

ExtCoBCS-MIP: max
∑
`∈L

α`h(x`) (4.12a)

s.t.
∑
`∈L

∑
t∈T

∑
k∈K

α`x
`
t(gk,M) ≤ C0, (4.12b)

(x`, θ`) ∈ Y `, ∀` ∈ L, (4.12c)
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where Y ` is defined as

Y ` =

{
(x, θ) :

∑
a∈A

x0(gi, a) = δ`i , i ∈ K,

∑
a∈A

xt(gi, a)−
∑
a∈A

∑
k∈K

F`t−1(gi|gk, a) xt−1(gk, a) = 0, t < N, i ∈ K,

xN (gi)−
∑
a∈A

∑
k∈K

F`N−1(gi|gk, a) xN−1(gk, a) = 0, i ∈ K,

θt(gi) ≤ θt(gk), t < N, (i, k) ∈ A(D),

xt(gi,M) ≤ θt(gi), t < N, i ∈ K,

xt(gi, DN) ≤ 1− θt(gi), t < N, i ∈ K,

θt(gi) ∈ {0, 1}, t < N, i ∈ K,

xN (gi) ≥ 0, i ∈ K, xt(gi, a) ≥ 0, a ∈ A, i ∈ K, t < N

}
.

The objective of the ExtCoBCS-MIP model maximizes the weighted QALYs of the patients

and constraint (4.12b) ensures that the resource limits are satisfied. Note that, as we scale the

x-variables using α values, C0 corresponds to the per patient screening limit assigned to a given

population. Finally, constraints (4.12c) enforce the condition that each subpopulation follow their

own progression under a deterministic control-limit policy throughout the decision process.

4.5 Parameter Estimation

Our constrained POMDP models are informed by validated data sources. The validity of our

model and policy recommendations are based on these data sources and our comparisons with

the closely related studies in the literature (see Appendix B.4). In particular, we estimate the
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following parameters to implement our method described in Sections 4.2 and 4.4:

• Health state transition probabilities. We use the University of Wisconsin Breast Cancer Sim-

ulation (UWBCS), a validated microsimulation model of breast cancer epidemiology to

estimate the probability of making transitions between health states. The UWBCS is able

to replicate breast cancer incidence and mortality rates observed in the U.S. population

between 1975 and 2010. The UWBCSwas developed as part of the National Cancer Institute

(NCI)-funded Cancer Intervention and Surveillance Modeling Network (CISNET) and has

been used by policy makers such as United States Preventive Services Task Force (USPSTF

2009). More information about UWBCS can be found elsewhere [Fryback et al., 2006].

• Personal breast cancer risk. We use a modified version of the Gail model, a validated

personal breast cancer risk prediction tool, to estimate the breast cancer risk of in situ

and invasive cancer at age 40 [Gail et al., 1999], which is available on the NCI’s website

(http://www.cancer.gov/bcrisktool/). The estimated risks of in situ and invasive cancers

are used to calculate the initial belief states for the patients. In particular, at age 40, we

estimate the invasive cancer risk as 0.2%, 0.3% and 1.2% for low-risk, average-risk and

high-risk patients, respectively. The risks at later ages are calculated by using the Bayesian

belief update formula given in Equation (4.3).

• Performance of mammography screening and self-detection. We obtain age-specific sensitivity

and specificity of the mammography from Kerlikowske et al. [2000]. We use Barton et al.

[1999]’s study and Baxter et al. [2001]’s study to estimate sensitivity and specificity of the

clinical breast exams and breast self exam respectively. Finally, we obtain the proportion

of clinical breast exam and breast self exam from Elmore et al. [2005] and Messina et al.

[2004] to calculate the sensitivity and specificity of self-detection by a patient.

• Post-cancer life expectancies. We use the Surveillance, Epidemiology, and End Results (SEER)

data [Siegel et al., 2014], the most comprehensive data source on cancer outcomes in the
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U.S., and the method developed by Arias [2014] to estimate the age-specific post-cancer

life expectancies for patients who are receiving cancer treatment.

• Quality of life adjustments for reward function. An important input for our model is the

disutility of the patient towards various screening and diagnostic procedures associated

with mammography. While we use the best available evidence to estimate the quality

of life scores representing society’s preferences, we recognize that these parameters are

subjective and may change from one patient to another. Therefore, we conducted an

extensive sensitivity analysis by using various disutility values. For our base case analysis,

we use the following disutility values in our reward function:

– 0.5 days for a negative mammogram [Mandelblatt et al., 1992];

– 2 weeks for a true-positive (TP) mammogram [Velanovich, 1995];

– 4 weeks for a false-positive (FP) mammogram, which is noted to be higher than TP

mammogram [Earle et al., 2000].

Our explicit modeling of imposing constraints on the number of mammography screenings

also allows us to ignore the quality-of-life scores and focus only on the life-years associated

with a particular policy under various mammography screening limits. Hence, in each of

our numerical results, we include an experiment assuming that all disutilities are equal to

zero and estimate the outcomes of various policies in terms of life years (LYs).

• Distribution of breast cancer risk groups in the population. Graubard et al. [2010] report that

7.5% (95% CI = 6.2% to 9%) of the U.S. population is in the high-risk group for breast cancer

and recommended for chemo-preventive interventions. We estimate the distribution of

low-risk and average-risk women in the U.S. population from Weisstock et al. [2013]. As a

result, in our experiments with the ExtCoBCS-MIP model, we estimate the percentages of

low-risk, average-risk, and high-risk patients as 51.5%, 41%, and 7.5%, respectively.
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4.6 Numerical Results

In this section, we present empirical results on CoBCS-MIP and ExtCoBCS-MIP models. We

first investigate the computational performance of the grid-based approximation in Section

4.6.1. Then, we analyze the effects of mammography screening limits at the individual patient

level. We demonstrate the changes in screening recommendations under different mammogra-

phy screening limits in Section 4.6.2 and discuss the cost-effectiveness of allocating additional

mammography screenings in Section 4.6.3. Next, we consider a resource sharing mechanism

between patients with different risk profiles. In Section 4.6.4, we present the results on efficient

allocation of mammography screenings between patients from different risk groups. Finally,

in Section 4.6.5, we compare the proposed dynamic screening policies to the population-based

fixed-interval screening guidelines.

Implementation details. We implement our models in C++ and solve them using Cplex12.4

on a Linux workstation with 24, 2.67 GHz Intel Xeon CPUs and 132 GB memory. In our base

case grid settings, we partition the belief space into four regions. More specifically, we take

φ0 = 1, φ1 = 0.96, φ2 = 0.9, φ3 = 0.7, and φ4 = 0. We use the resolution values u1 = 1000,

u2 = 200, u3 = 25, and u4 = 10 to sample from regions one, two, three, and four, respectively,

yielding 1083 grid points. This resolution setting implies that we can attain at most 0.001 accuracy

between the grid points that span the belief space and the level of accuracy decreases as we move

away from region one, which is the most focused region in the belief space. The solution times

for CoBCS-MIP and ExtCoBCS-MIP, using default Cplex settings, vary significantly depending

on the number of grid points and the constraints on mammography screenings. For instance,

for the given grid resolution setting, CPU time varies between 2 hours to 20 hours for different

mammography screening limits. Also note that solving CoBCS-LP is fairly easy compared to

solving MIP formulations, as incorporations of the constraints (4.9)-(4.10) lead to a significant

increase in model complexity. We observe that CoBCS-LP can be solved under four minutes for

the base case resolution setting.
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4.6.1 Analysis of algorithmic performance

We observe that the Gail model’s breast cancer risk estimates always lead to the belief states that

fall into region one. Therefore, we set the area of region one as large as possible and use the

highest resolution values to sample from this region. We remark that while expanding region

one increases the number of grid points significantly, our results remain insensitive to further

expansion of this region. We make similar observations for the resolution values as well. In

particular, although higher resolution values tend to yield more accurate results, we do not

observe significant changes in our policy findings with further increases in the resolution values.

Table 4.2 shows the QALY values obtained for average-risk (AR) and high-risk (HR) patients

when different resolution values are used to construct the grid set. These results show that the

QALY values converge as we use higher resolution values to sample from belief space. However,

as it is the case for the resolution setting 2000_200_25_10, CoBCS-MIP becomes computationally

intractable for larger grid sets.

no limit mammo limit: 8 mammo limit: 4
resolution setting |G| AR HR AR HR AR HR
250_100_10_5 129 40.220 39.128 40.209 38.997 40.178 38.876
500_100_25_10 345 40.200 39.114 40.195 38.987 40.176 38.855
1000_200_25_10 1083 40.194 39.110 40.192 38.983 40.174 38.855
2000_200_25_10 3504 40.192 39.110 - - - -

Table 4.2: Comparison of grid resolutions

We also compare the grid-based approximation with the Monahan’s algorithm [Monahan,

1982] for optimally solving the unconstrained POMDP. We observe that the grid-based model

(grBased) well approximates the optimal solution for the unconstrained breast cancer screen-

ing problem in terms of QALY values and average number of screenings recommended (see

Table 4.3). To our knowledge, there is no efficient exact solution algorithm for the constrained

POMDPs. Therefore, we can only assess the performance of the grid-based approximation for

the unconstrained problem.



65

AR HR
method QALY avg. # mammo. QALY avg. # mammo.
Monahan 40.191 10.19 39.110 22.50
grBased 40.194 10.19 39.110 22.81

Table 4.3: Comparison of Monahan’s algorithm with grid-based approximation

Figures 4.3 and 4.4 show the optimal breast cancer screening policies obtained by Monahan’s

algorithm and the grid-based approximation, respectively. The dark-colored areas show the risk

combinations for which it is optimal to undergo mammography screening, and the light-colored

areas show those for which it is optimal to wait. These results indicate that the grid-based model

successfully replicates the optimal policies. However, it is important to note that Monahan’s

algorithm generally leads to more precise policies in terms of the screening thresholds as the

grid-based approximation can only differentiate the belief states by 0.001.

4.6.2 Allocation of Limited Mammography Resources to Different Age Groups

An important policy question for policy makers is that for a given cohort of women, what ages

are optimal to allocate the limited mammography screening capacity. This question was also

investigated by the CISNET models, which provided evidence for the most recent USPSTF policy

recommendation in the U.S. [Mandelblatt et al., 2016]. We simulate a single patient’s lifetime

using the policy obtained by solving the CoBCS-MIP model and determine the mammography

screening ages under different scenarios. In particular, we consider two different scenarios for

an individual patient: Always make a negative observation as a result of an action taken in any

period (scenario-1), and make positive observations every 10 years, starting at age 45, as a result

of do nothing actions (scenario-2).

As it is also noted in Section 4.2.5, CoBCS-MIP implicitly models the possible scenarios for

the patient. Note that the limit is imposed on the expected number of total mammography

screenings, not on the actual number of exams. Therefore, policy obtained by CoBCS-MIP
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Figure 4.3: Optimal screening decisions obtained by Monahan’s algorithm for different ages

Figure 4.4: Screening decisions obtained by grid-based approximation for different ages

might yield number of mammography screenings exceeding the imposed limits when evaluated

under a particular scenario. Such scenarios usually include do nothing actions with positive

observations, where these observations elevate the breast cancer risk of the patient significantly.

Figure 4.5 shows how the breast cancer risk of an average-risk patient changes until age 80

when she does not receive any screening. This figure shows that whenever the patient makes

a positive observation, it leads to a significant increase in the patient’s breast cancer risk and

the magnitude of the increase depends on the patient’s age. As such, the patient is usually

recommended less mammography screenings than the imposed limits when she does not make

positive observations and more mammography screenings are reserved for the cases in which
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she makes positive observations. This behavior is more prevalently observed when the available

mammography screenings are more limited.

Figure 4.5: Evolution of the breast cancer risk for an average-risk patient under no screening case

We next investigate the policy recommendations for scenario-1. Table 4.4a provides results

on how this patient’s in situ and invasive cancer risks change over time and when she is recom-

mended to undergo screening under different mammography screening limits. When there is

no limit on the number of screenings, the patient undergoes mammography screenings starting

at age 40 and the total number of mammography screenings is nine. The disutility of mammog-

raphy and the risk of getting false-positive mammograms prevent the patient from undergoing

more mammography screenings. If the mammography screening limit is eight, then this patient

is assigned six mammography screenings throughout her life time. Similar trends are observed

for other mammography screening limits as well. In particular, if the mammography screening

limit is tight, (e.g., four) then the patient is not recommended any mammography screenings

throughout her lifetime given that she always makes negative observations.

Table 4.4b presents the results for scenario-2, where the patient makes positive observations

every 10 years, starting at age 45. As the breast cancer risk for the patient significantly increases

with positive observations, she is usually recommended a screening at the next period. For
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no limit mammo limit:8 mammo limit:4
age insitu risk invasive risk action age insitu risk invasive risk action age insitu risk invasive risk action
40 0.0016 0.003 M 40 0.0016 0.003 M 40 0.0016 0.003 DN
48 0.0027 0.0017 M 50.5 0.0032 0.002 M 80 0.0097 0.0052 DN
53 0.0033 0.002 M 58 0.0048 0.0028 M
57 0.0042 0.0025 M 62 0.0055 0.0031 M
60.5 0.0049 0.0028 M 66.5 0.0067 0.0038 M
64 0.0058 0.0032 M 71.5 0.0085 0.0046 M
67 0.0063 0.0034 M 80 0.0096 0.005 DN
70.5 0.0076 0.004 M
74 0.0081 0.0043 M
80 0.0094 0.0049 DN
# of mammo screenings: 9 6 0

(a) All-negative observations

no limit mammo limit:8 mammo limit:4
age insitu risk invasive risk action age insitu risk invasive risk action age insitu risk invasive risk action
40 0.0016 0.003 M 40 0.0016 0.003 M 40 0.0016 0.003 DN
45.5 0.0124 0.0088 M 45.5 0.0124 0.0088 M 45.5 0.0141 0.01 M
46 0.0037 0.0031 M 46.5 0.0035 0.0028 M 46.5 0.0038 0.0032 M
49 0.0027 0.0018 M 55.5 0.0227 0.0148 M 55.5 0.0227 0.0148 M
54.5 0.0037 0.0022 M 56 0.0059 0.0038 M 56 0.0059 0.0038 M
55.5 0.0112 0.0066 M 60.5 0.0052 0.003 M 65.5 0.0382 0.0235 M
57.5 0.0042 0.0025 M 65 0.0064 0.0036 M 66 0.007 0.0046 M
60.5 0.0047 0.0027 M 70 0.0079 0.0044 M 75.5 0.0526 0.0299 M
64 0.0058 0.0032 M 75 0.0088 0.0048 M 80 0.0097 0.0053 DN
65.5 0.0218 0.0122 M 80 0.0091 0.0046 DN
67.5 0.0065 0.0036 M
71 0.0077 0.0041 M
75 0.0085 0.0045 M
80 0.0091 0.0046 DN
# of mammo screenings: 13 9 7

(b) Positive observations due to self-detection once in every 10 years starting at age 45

Table 4.4: Mammography allocation ages for a patient with initial belief distribution
[0.994,0.0016,0.003] (i.e., she has a 0.16% risk of in situ cancer and 0.3% risk of invasive
cancer)

instance, when there are no limits on available number of screenings, while the patient’s in situ

and invasive cancer risks are 0.37% and 0.22% at age 54.5, these values increase to 1.12% and

0.66%, respectively, after she makes a positive observation at age 55. As a result, the patient is

assigned a mammography screening at age 55.5. Note that the patient might be recommended

even more screenings than the imposed limits. In particular, when the limit is four, she is

recommended seven mammography screenings, and these screenings come after the positive
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observations (at age 45, 55, 65, and 75), except for the screening at age 40.

We next simulate one million average-risk patients and another one million high-risk patients

and observe the screening allocation patterns for different ages to assess what ages are allocated

the most mammography exams. Each patient enters the simulation at age 40 with an initial belief

state selected according to the initial risk distribution of the patients and leaves the simulation

either when she is diagnosed with cancer or when she dies. Figure 4.6 shows the average

number of mammography screenings assigned to the patients between ages 40 and 80. Note

that we report the average number of mammography screenings for two-year intervals, so the

maximum number of mammography screenings recommended in this interval can be at most

four, considering the 6-month decision epochs.

Figure 4.6: Average number of mammography screenings received by patients at different ages
and risk levels

The simulation results show that, even when there is a limited number of available screenings,

high-risk patients tend to receive screenings at earlier ages. On the other hand, immediate ages



70

for eliminating mammography screenings for average-risk patients are the ages between 40

and 50. More specifically, when there are no limits on the number of screenings, patients are

allocated mammography screenings with no discernible pattern. However, if the available

number of mammography screenings is eight per patient, then all the patients are recommended

to undergo mammography screenings at age 40 and only patients making positive observations

due to self-detection are recommended screenings until age 50. Note that if the mammography

screening limit is four, only high-risk patients are recommended mammography screenings at

age 40.

4.6.3 Effects of Mammography Screening Limit Constraints on Total Life-years

and QALYs

By solving the CoBCS-MIP for a sequence of mammography screening limits, we determine

incremental QALY gains attributable to consecutive levels of resources. Table 4.5 shows average

QALY (avg. QALY) values obtained for different mammography screening limits as well as the

QALY gains (gain (day)) per average-risk and high-risk patients. We repeat this experiment for

different disutility values, namely, “base-case disutility”, “low disutility” and “no disutility”.

We observe that although the first four screenings increase the QALY values considerably for

average-risk patients, QALY gains become smaller for the subsequent mammography screenings.

However, as the disutilities associated with mammography screenings decrease, QALY gains

due to the additional screenings increase. On the other hand, high-risk patients benefit from

increased number of screenings even when the highest disutility values are assumed for the

screening.

We also conduct a cost-effectiveness analysis to demonstrate the benefits of additional mam-

mography screenings allocated to the patients, summarized by the “Cost/QALY” columns in

Table 4.5. We use the estimates reported in a recent study by Sprague et al. [2014] for various costs

of mammography, false-positives, and cancer treatment. More specifically, Sprague et al. [2014]
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base case disutility low disutility no disutility
limit avg. QALY gain (day) Cost/QALY avg. QALY gain (day) Cost/QALY avg. LY gain (day) Cost/LY

0 39.430 - - 39.430 - - 39.430 - -
2 40.123 253.4 $2,968 40.128 255.3 $2,944 40.146 261.6 $2,879
4 40.174 18.6 $10,414 40.183 20.1 $9,290 40.215 25.3 $7,423
6 40.185 3.7 $32,109 40.200 6.1 $22,360 40.245 11.2 $11,969
8 40.192 2.9 $50,389 40.212 4.2 $30,432 40.271 9.3 $13,835
10 40.194 0.7 $175,136 40.219 2.8 $45,514 40.292 7.8 $16,388
12 40.194 0.0 - 40.224 1.6 $81,327 40.310 6.6 $19,371
16 40.194 0.0 - 40.225 0.5 $271,975 40.338 10.2 $24,753
20 40.194 0.0 - 40.225 0.0 - 40.358 7.5 $33,109
24 40.194 0.0 - 40.225 0.0 - 40.374 5.8 $43,467

(a) Average-risk patient

base case disutility low disutility no disutility
limit avg. QALY gain (day) Cost/QALY avg. QALY gain (day) Cost/QALY avg. LY gain (day) Cost/LY

0 36.677 - - 36.677 - - 36.677 - -
2 38.667 727.3 $2,432 38.671 728.9 $2,427 38.694 737.2 $2,411
4 38.855 68.9 $4,119 38.864 70.5 $4,034 38.902 76.0 $3,669
6 38.930 27.4 $6,393 38.945 29.7 $5,881 38.997 34.8 $5,008
8 38.983 19.4 $7,904 39.003 21.1 $7,165 39.069 26.2 $5,699
10 39.022 14.1 $10,042 39.048 16.3 $8,809 39.127 21.4 $6,735
12 39.051 10.7 $12,904 39.083 12.7 $10,783 39.176 17.8 $7,682
16 39.090 14.2 $19,029 39.132 18.2 $14,891 39.253 28.3 $9,572
20 39.107 6.3 $41,929 39.160 10.2 $25,631 39.309 20.3 $12,905
24 39.110 1.1 $160,401 39.174 5.0 $51,889 39.350 15.0 $17,262

(b) High-risk patient

Table 4.5: QALY values and cost-effectiveness analysis for different mammography screening
limits. Base case disutility: FP-disutility = 4 weeks, TP-disutility = 2 weeks, negative mammogra-
phy disutility = 0.5 days. Low disutility: FP-disutility = 3 weeks, TP-disutility = 2 weeks, and
negative mammography disutility = 0.25 days

report that the cost of mammography is $140, cost of diagnostic screening after mammography

is $105, and cost of biopsy is $940. Also, treatment costs for patients with in situ and invasive

cancers are reported as $12,000 and $22,000, respectively. Although QALY gains decrease as the

patients are allocated more screenings, these additional mammography screenings may still be

cost-effective. For example, for the average-risk patient, limiting the number of mammography

screenings to six per patient has an incremental cost per QALY value of $32, 109 (over a mam-

mography limit of four per patient) for the base case disutility values and $22, 360 for the low

disutility values indicating that allowing two more mammography screenings per patient over
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four mammography screenings is cost-effective (based on the well-accepted cost-effectiveness

threshold of $50,000/QALY [Drummond, 2005]).

4.6.4 Allocation of Mammography Resources Among Patients from Different Risk

Groups

Wenext estimate the allocation of limitedmammography screenings to the patients with different

risk levels using the ExtCoBCS-MIP model. We use the proportion of women in each risk group

as given in Section 4.5. Table 4.6 provides the average number of mammography screenings

assigned to 40-year-old patients from different risk groups, namely, low-risk (LR), average-risk

(AR) and high-risk (HR), for different mammography screening limits. We also present the

QALY values for each risk group and compare these QALY values with the case where each

risk group is allocated equal number of mammography screenings. For instance, if the available

number of screenings is four per patient (e.g., there are four million available mammography

screenings when there are one million patients in the population), then LR, AR, and HR patients

are allocated 2.88, 3.69, and 14.05 screenings, respectively. Note that we consider a per patient

screening limit assigned to a given population and weighted average of the number of screenings

assigned to each risk group with the ratio of each risk group in the population satisfies the

imposed screening limit.

Number of mammo. QALY by risk group (years)
mammo. limit LR AR HR LR AR HR avg. QALY

4 2.88 3.69 14.05 40.389 (-2.1 d) 40.170 (-1.5 d) 39.077 (+80.1 d) 40.201 (+4.3 d)
6 3.73 6.61 18.31 40.394 (-2.0 d) 40.187 (+0.9 d) 39.102 (+62.7 d) 40.212 (+4.0 d)
8 5.47 8.89 20.58 40.398 (-0.7 d) 40.194 (+0.6 d) 39.108 (+45.7 d) 40.218 (+3.3 d)

10 7.53 10.77 22.81 40.400 (+0.0 d) 40.194 (+0.0 d) 39.109 (+31.9 d) 40.219 (+2.4 d)
no limit 7.56 10.82 23.00 40.400 (+0.0 d) 40.194 (+0.0 d) 39.110 (+0.0 d) 40.219 (+0.0 d)

Table 4.6: Mammography allocation between patients with different risk levels

Compared to the case where each risk group receives four mammography screenings, our

resource allocation scheme leads to 2.1 and 1.5 days of QALY loss for LR and HR patients,
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respectively, and 81 days of QALY gain forHRpatients. Overall, theQALY gain for the population

is 4.3 days. Note that, because the proportion of HR patients is much lower compared to other risk

groups, it is possible to achieve significant QALY gains for HR patients by efficient distribution

of the mammography screenings even when the screening resources are very limited.

The proportion of the mammography screenings assigned to the high-risk patients increases

as the imposed limits become tighter. Figure 4.7 shows that while high-risk patients are allocated

16.9% of available resources when there are 10 screenings available per patient, they are allocated

26% of the resources when the limit is four. These results show that even when available

resources are very limited, low-risk patients should still be allocated a non-negligible portion of

the screening capacity.

Figure 4.7: Percentage of mammography screenings allocated to each risk group for different
screening limits

4.6.5 Comparison to the Population-based Screening Guidelines

As our last numerical experiment, we compare the dynamic screening policies obtained by solving

ExtCoBCS-MIP with the fixed-interval screening policies recommended by several agencies such

as USPSTF and ACR. Table 4.7 compares the performance of these population-based screening

guidelines to that of our proposed policies when the same number of per patient mammography

screenings is allowed (ECPOMDP-n represents the case where the mammography limit is n per
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patient). For each policy, we present the average QALYs (avg. QALY), QALY gains over the no

screening policy (gain (day)) and average number of mammography screenings (num. mammo.),

and we repeat this experiment for different disutility values. Note that patients generally do not

utilize all the mammography screenings that are assigned in fixed intervals as some patients are

diagnosed with cancer at earlier ages or die before reaching age 90.

base case disutility low disutility no disutility
policy avg. QALY gain (day) num. mammo. avg. QALY gain (day) num. mammo. avg. LY gain (day) num. mammo.

no screening 39.456 - 0 39.456 - 0 39.456 - 0
50-70 triennial 39.975 189.4 6.25 39.992 195.5 6.25 40.036 211.8 6.25
ECPOMDP-7 40.216 277.4 7.00 40.235 284.1 7.00 40.286 303.0 7.00

50-69 biennial 39.985 193.1 8.90 40.009 201.6 8.90 40.071 224.5 8.90
ECPOMDP-10 40.219 278.5 10.00 40.247 288.5 10.00 40.319 315.1 10.00

40-74 biennial 40.131 246.4 15.94 40.174 262.0 15.94 40.287 303.1 15.94
ECPOMDP-18 40.219 278.5 10.05 40.252 290.3 13.76 40.376 335.6 18.00

50-69 annual 39.959 183.6 17.62 40.007 201.0 17.62 40.129 245.4 17.62
ECPOMDP-20 40.219 278.5 10.05 40.252 290.3 13.76 40.385 339.1 20.00

40-74 annual 40.049 216.4 30.95 40.134 247.4 30.95 40.350 326.1 30.95
ECPOMDP-35 40.219 278.5 10.05 40.252 290.3 13.76 40.427 354.4 35.00

Table 4.7: Comparison of dynamic screening strategies with population-based screening guide-
lines. Base case disutility: FP-disutility = 4 weeks, TP-disutility = 2 weeks, negative mammogra-
phy disutility = 0.5 days. Low disutility: FP-disutility = 3 weeks, TP-disutility = 2 weeks, and
negative mammography disutility = 0.25 days

These results indicate that our proposed dynamic screening policies provide significant

QALY gains over the population-based screening guidelines. For example, for the base-case

disutility values, patients gain 85.4 days of more QALYs on average (39.985 years vs. 40.219

years) compared to 50-69 biennial screening, when they undergo 10 mammography screenings

that are dynamically allocated. As the disutility values associated with mammography screen-

ing decrease, QALY gains of dynamic screening policies over the population-based screening

guidelines decrease as well. However, an increase in the number of mammography screenings

still has adverse effects on the patients in the form of unnecessary mammography exams and

false-positive mammograms. In summary, this experiment shows that using our modeling ap-

proach to allocate limited resources instead of population-based screening policies has significant

benefits in terms of both QALYs and LYs.
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4.7 Concluding Remarks

We consider the problem of allocating limited breast cancer screening capacity to a target popu-

lation to maximize the benefit of screening. For this purpose, we suggest a constrained POMDP

model and we develop a variable-resolution grid-based approximation method to convert the

constrained POMDP into a mixed-integer linear program. We introduce additional constraints

to the mixed-integer linear programming formulation to ensure that the optimal policies are

practical and clinically acceptable (i.e., deterministic and control-limit type). We use breast cancer

epidemiology data from the U.S. to test how the allocation of screening capacity is affected as

the mammography limit changes.

Our work could help to plan for mammography screenings in developing countries with

limited screening resources as well as in various not-for-profit programs in developed countries

that are targeting low-income population and are faced with budget restrictions. By using the

proposed modeling scheme, policymakers could evaluate QALY and resource implications of

different screening policies and make resource allocation decisions to maximize the effect of

screening. According to the WHO, only a few countries have established breast cancer screening

guidelines. Interestingly, even the least aggressive fixed-interval screening policy that is used

in practice by developed countries (50-70 triennial screening) requires seven mammography

screenings per patient, which may discourage other countries that are planning to implement

breast cancer screening programs. In that regard, our findings suggest that allocating even a few

mammography screenings per patient could result in significant QALY gains and such countries

should consider implementing breast cancer screening programs based on their screening

capacity.

One major benefit of our modeling approach over traditional POMDP applications in health

care is the ability to explicitly model various constraints while optimizing a health outcome

such as QALYs and LYs. In fact, many researchers and policymakers prefer optimizing over LYs

as opposed to the QALYs, since the estimation of disutility values associated with screening
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tests and treatments is very controversial. On the other hand, most studies that aim to optimize

health outcomes need to use QALYs to consider the tradeoff between LYs and disutility values.

For instance, if we ignore the various disutilities associated with mammography screening, the

optimal policy will always recommend screening every 6 months for the unconstrained breast

cancer screening problem. However, our modeling framework allows evaluating different mam-

mography screening limits to find the one that balances different aspects of the mammography

screenings such as LY gains and risk of getting a false-positive mammogram. Thus, our study

eliminates themodel dependence onQALYs and allows one to focus only on LYs as demonstrated

in Section 4.6.

This work comes with some limitations. First, although the grid-based solution we offer is

the best solution that can be obtained for a given set of grid points, we cannot assess the quality

of this solution compared with the true optimum as there is no efficient exact solution methods

for constrained POMDPs. However, considering that grid-based solution approach successfully

approximates the optimal solution generated by Monahan’s algorithm for the unconstrained

POMDPmodel [Monahan, 1982], we believe that our solutions are not far from the true optimum.

Second, we only consider three types of patients in a population especially due to limited data

and computational resources. We acknowledge that finer categorization of the patients could

lead to improved policy recommendations. Finally, we use the U.S.-specific data in our numerical

experiments and recommendations for other countries may require country-specific breast cancer

data. On the other hand, we expect our main policy insights such as high-risk patients should

receive mammography at age 40 even when the resources are very limited to be valid in general.
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5 using simulation modeling to investigate the impact of racial

disparities on breast cancer mortality

5.1 Problem definition

In U.S., black women have lower breast cancer incidence than white women. However, breast

cancer mortality rates have been consistently higher among black women and the disparity in

breast cancer mortality between these race groups grows over the years. In particular, the breast

cancer mortality among white women steadily decreased from 1990 onward with an average

annual rate of 2.4%, while the rate of decrease among black women was only 1.1% over the same

period [Smigal et al., 2006]. Figure 5.1 shows U.S.-observed breast cancer incidence and mortality

trends for each race group.

Figure 5.1: Comparison of SEER incidence and mortality rates between black and white women

There are several factors contributing to the racial disparities between black andwhite women.

In particular, differences in mammography screening uptake, mammography effectiveness and

treatment utilization have long been considered as the main factors contributing to the racial

disparities. In addition, differences in disease natural history between black and white women
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have also been recognized as an important factor.

Many cancer simulation studies model the disease natural history using natural history

parameters. These parameters are referred as the unobservable parameters in a simulation

model (e.g., tumor growth rate and ratio of benign tumors) that cannot be informed by the

general data sources. In a recent study, Batina et al. [2013] use University of Wisconsin Breast

Cancer Simulation Model (UWBCS) to evaluate the contribution of racial differences in tumor

natural history to observed disparities in breast cancer incidence and find that mean tumor

growth rate is 63.6% higher, and percentage of highly aggressive tumors are 2.2 times greater for

black women.

In this study, we extend Batina et al. [2013]’s study to investigate the contributing factors

for the differences in breast cancer mortality between black and white women. In our analysis,

we use UWBCS of the Cancer Intervention and Surveillance Modelling Network (CISNET) to

replicate U.S.-observed breast cancer incidence and mortality rates for both races. As UWBCS

includes many natural history parameters, a lengthy calibration process is required to generate

race-specific breast cancer simulationmodels. To this end, we propose a novel approach based on

machine learning methods to speed up the calibration process and provide detailed numerical

experiments to demonstrate the efficiency of our calibration method.

5.2 Methods

5.2.1 Overview

We modify the original UWBCS to obtain race-specific breast cancer simulation models for black

and white women. Although we generally maintain the original model structure, we induce

race-specific inputs for key components such as mammography screening uptake and treatment

dissemination. The critical part of UWBCS in replicating observed breast cancer outcomes is

the calibration of natural history parameters, which generally requires evaluation of millions of
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parameter combinations via simulation. In this study, we propose a novel approach for speeding

up the calibration process using machine learning techniques. We perform the calibration

separately for black and white women and estimate the best fitting natural history parameters

by calibrating to the observed 1975-2010 race-specific incidence data from the Surveillance,

Epidemiology and End Results (SEER) program of the National Cancer Institute.

5.2.2 UWBCS model overview

UWBCS is a discrete-event, stochastic simulation model of breast cancer epidemiology in the

U.S. female population and has been used to address a variety of breast cancer screening policy

questions. The model is designed to match age and stage-specific breast cancer incidence rates

and age-specific mortality rates in the U.S. female population between 1975 and 2010. The

UWBCS incorporates observed age-specific U.S. screening patterns, secular trends in cancer

risk, and dissemination of adjuvant treatment. The model outputs age-specific breast cancer

incidence rates by stage and age-specific breast cancer mortality rates.

UWBCS has four core components: breast cancer natural history, breast cancer detection,

breast cancer treatment and non-breast-cancer mortality among the U.S. women. While most

of the parameters such as those used in treatment and mortality derived directly from the

published studies, several parameters such as those used in natural history are unobservable

and cannot be directly estimated from available data sources. Therefore, the UWBCS calibrates

these natural history parameters to replicate the observed breast cancer incidence and mortality.

More information about UWBCS can be found elsewhere [Fryback et al., 2006].

5.2.3 Race-specific adjustments in model parameters

In order to obtain race-specific breast cancer simulation models, namely, UWBCS-black for black

women population and UWBCS-white for white women population, we modify the following

input parameters of UWBCS:



80

• Population age structure. We use the race-specific population age structure from Census

data [Census, 2016] to modify the population age structure of UWBCS to account for race.

• Non-breast cancer mortality. We estimate the cohort specificmortality from non-breast cancer

causes using Berkeley Mortality Database [Berkeley, 2016] and the National Center for

Health Statistics [CDC, 2016].

• Mammography dissemination. Weuse race-specific screeningdata fromBreast Cancer Surveil-

lance Consortium (BCSC) to generate race-specific mammography dissemination parame-

ters [Cronin et al., 2009].

• Breast cancer incidence. We estimate seperate breast cancer incidence rates in the absence of

screening for black and white women. More specifically, we adjust Holford et al. [2006]’s

age-period-cohort (APC) model (the statistical model used by UWBCS to generate breast

cancer incidence rates) for each race by using SEER-reported race-, sex- and age-specific

breast cancer incidence rates.

• ER/HER2 proportions. Treatment type recommended to the patients are greatly affected by

the tumor characteristics. Some tumor cells growwith the help of estrogen and progestrone

hormones. Estrogen-receptor (ER) positive or progestrone-receptor (PR) positive tumors

are more likely to respond to hormone therapy. Human epidermal growth factor receptor

2 (HER2) proteins are also important in cell growth and lead to aggressive tumor growth.

On the other hand, HER2-positive tumors respond to anti-HER2 drugs such as Herceptin,

and therefore have higher cure rates. Parise and Caggiano [2014] report that the ratio of

triple negative tumors (ER-, PR-, HER2-) is significantly higher in black women compared

to white women (25.4% vs 11.4%). As UWBCS does not consider PR-status, we only adjust

the ER and HER2 proportions for each race using Parise and Caggiano [2014].

• Treatment dissemination. We use Mariotto et al. [2002, 2006] to estimate the use of adjuvant

therapy for each race. Overall, we note that black women are 22% less likely to receive
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multiagent chemotherapy and 15% less likely to receive hormonal therapy compared to

white women.

Apart from the race-specific inputs, several other parameters are assumed to be identical

for each race. In particular, we assume that chemotherapy and hormonal therapies are equally

effective for black and white women [Newman, 2005, Vicini et al., 2010]. Also, sensitivity of

mammography screening is assumed to be equal for each race group [Yankaskas and Gill, 2005].

5.2.4 Model calibration for natural history parameters

We calibrate the eight of ten natural history parameters of the original UWBCS to determine

the race-specific values for which UWBCS successfully replicate U.S.-observed incidence and

mortality rates. Table 5.1 summarizes these natural history parameters as well as the range of

values assigned to each parameter during calibration. Among the natural history parameters,

maximum size of in situ tumors and maximum size of limited malignant potential (LMP) tumors

does not change by race. However, several other parameters such as proportion of LMP tumors,

maximum sojourn time for LMP tumors after which LMP tumors regress and APCmodel related

parameters (Onset proportion and APC model lag) that govern the breast cancer incidence can

be different for black and white women. As such, determining the differences in percentage of

aggressive tumors and the tumor growth rate could be especially useful in explaining the racial

disparities in breast cancer mortality (see Fryback et al. [2006] for more details about UWBCS

natural history parameters).

The calibration process of the race-specific UWBCS requires evaluation of 378,000 parameter

combinations for each race. Therefore, it is crucial to use accelerated approaches for the calibration

[Kong et al., 2009]. We refer to the calibrated versions of the UWBCS that replicates the observed

outcomes for black and white women as UWBCS-black and UWBCS-white, respectively.



82

Parameter Name Best fit in the
original
combined

race
UWBCS

Sampled parameter
values for the
calibration of

race-specific model

Number of
Parameter
Values

LB UB Increments
Fraction of LMP tumors 0.42 0.00 0.60 0.10 7
In situ tumor boundary 0.95 0.95 0.95 - 1
Max LMP size 2.00 2.00 2.00 - 1
LMP dwell time 0.50 1.00 3.00 1.00 3
Onset proportion 0.90 0.80 1.00 0.05 5
APC model lag 3.00 1.00 7.00 2.00 4
Percentage of aggressive tumors 0.01 0.00 0.20 0.05 5
Percentage of highly aggressive tumors 0.02 0.00 0.10 0.025 5
Mean tumor growth 0.12 0.00 0.05 0.01 6
Variance tumor growth 0.01 0.00 0.05 0.01 6

Table 5.1: UWBCS natural history parameters.

5.2.5 Using active learning to speed-up the calibration process

The evaluation of a large number of parameter combinations can be avoided by identifying

smaller subsets of the combinations that are more likely to produce desired outputs. Often

evaluating only a small subset of input parameter combinations is sufficient for calibration,

and the determination of such subsets is of key importance for the identification of natural

history parameters. To this end, statistical models such as linear regression or machine learning

methods such as artificial neural networks (ANNs) can be used as predictionmodels to determine

promising subsets from the parameter space. For our problem, we use ANNs to expedite the

calibration process. We develop an active learning algorithm that guides the ANN model to

choose which parameter combinations to evaluate during the calibration.

5.2.5.1 Using a prediction model for calibration

We summarize the usage of a prediction model in the calibration process in five steps (see

Figure 5.2). We start with identifying the set of parameter combinations from the parameter
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space of unobservable parameters. Then, we randomly select a small subset of these possible

parameter combinations and evaluate them via simulation to obtain a numerical score, which

indicates how closely the output of each parameter combination matches target outcomes. We

note that the choice of scoring approach is problem-specific and a generic prediction model

performs independently of the scoring scheme. By using this small set of evaluated parameter

combinations as our training set, we build a machine learning prediction model, such as an ANN,

that predicts the numerical score associated with a given parameter combination. Then, we use

this prediction model to find those combinations that have acceptable predicted scores. We refer

to a score associated with a parameter combination as an acceptable score only if it falls into a

predetermined range for the scores. Those parameter combinations with acceptable predicted

scores are more likely to produce desired outputs from the simulation. Finally, we evaluate the

parameter combinations with acceptable predicted scores using the simulation and identify the

parameter combinations that best correspond to the values of the unobservable parameters.

Figure 5.2: Overview of the use of a prediction model in simulation calibration.

5.2.5.2 Scores for parameter combinations

Scoring the parameter combinations is an important step of the calibration process. The score

of a parameter combination is a measure of the difference between the simulation result and

target outcome. A scoring scheme is typically model-specific and is affected by how modelers

value different targets. A general method to determine the score of a parameter combination is

to assign weights to each target and multiply those weights by the absolute or mean squared
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error between the simulation result and the target outcome. For the simulation models that aim

to capture the trends in the observed outcome (e.g., cancer incidence by calendar year or age),

an alternative method is to identify acceptance envelopes around these outcomes and determine

the scores using these envelopes. Whenever the simulation result corresponding to a target year

or age falls outside of the envelope, it is a violation of the closeness measure and the score of the

parameter combination is increased by one. Therefore, smaller scores represent better parameter

combinations. Note that acceptance envelopes are usually formed by determining error margins

around the target outcome and can be modified to better capture the trends in a given year or

age group.

In order to assess the closeness of the output incidence generated by a given natural history

parameter combination to the observed breast cancer incidence in the U.S., we generate envelopes

around the observed incidence, which provide an acceptable error margin. Note that the error

margins are determined according to expert opinion and they allow focusing on specific calendar

years to capture the trends better for those years. We then count the number of times the

output incidence falls outside of these envelopes for each breast cancer stage to assign a score

representing the goodness of the output incidence. Because there are 4 incidence values for

each cancer stage (in situ, localized, regional, distant), mortality values, and 36 years between

1975-2010, the worst score for an input parameter is 180. As the smaller scores indicate a better

fit to the observed data, the best score is 0, which is obtained when all output incidence values

are within the envelopes. We assume that a score less than 20 is an acceptable match.

5.2.5.3 ANNs as a prediction model

One way to build a prediction model is to use a linear regression model, which has the following

functional form:

f(x) = β0 + β1X1 + β2X2 + · · ·+ βnXn, (5.1)
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where X1, . . . , Xn denote n predictor variables (e.g., calibrated natural history parameters of the

UWBCS), f(X) denotes the estimated score of a given parameter combination, β0 is a constant

and β1, . . . , βn are the regression coefficients of the predictor variables X1, . . . , Xn. While linear

regression is an easy-to-use prediction method, it will not be able to represent the underlying

function accurately if the latter is nonlinear. Therefore, we consider artificial neural networks as

a more expressive prediction model that is able to represent nonlinear relationships between

the predictor variables. Note that there are also several other nonlinear regression models that

consider the interactions between the predictor variables and we use the simple linear regression

solely as a benchmark for the performance of other approaches presented in our study.

Artificial neural networks are information processing structures inspired by the function

of biological neural networks. They consist of a set of interconnected units where each unit

has a transfer function that computes and outputs a function of the values provided by the

units that connect to it [Russell and Norvig, 2003]. Instead of the linear function used in the

linear regression for the estimation of scores, ANNs also employ nonlinear functions as transfer

functions at some units. The most commonly used transfer functions are sigmoid (logistic)

functions, which can be given as g(x) = 1
1+e−X . Alternatively, hyperbolic tangent functions

or Gaussian functions can be used as transfer functions. Note that single layer ANNs with a

linear transfer function f(X) given in equation 5.1 are equivalent to linear regression models.

A graphical representation of a three layer neural network with two inputs and one output is

shown in Figure 5.3.

ANNs vary in the way neurons are connected and inputs are processed. In this study, we

use a 3-layer feed-forward ANN trained using a backpropagation learning algorithm with a

learning rate 0.3 and momentum 0.2 [Russell and Norvig, 2003]. The layers include an input

layer representing the natural history parameters, a hidden layer with 21 hidden units, and an

output layer with a single unit generating an estimate for the score. Our ANNmodel aims to

minimize the sum of squared errors between predicted scores and actual scores and it uses the
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Figure 5.3: An illustrative graph showing a feed-forward ANNwith an input layer with 2 inputs,
a hidden layer with 3 hidden units, and one output unit.

sigmoid function as the transfer function in the hidden units and a linear transfer function in

the output unit. Note that there are no exact rules in determining an ANN model’s parameters.

For instance, learning rate and momentum parameters controls the speed of convergence of the

backpropagation algorithm and both parameters can take any value between 0 and 1. Choosing

higher values for these parameters may lead to divergence of the algorithm, whereas smaller

values usually cause a slow convergence. We obtain the final values for such parameters by

experimenting with the most commonly used values in the literature.

We also use ensemble methods, more specifically bagging [Breiman, 1996], to improve the

predictive accuracy of the ANN model (see Appendix C.1 for more details about ensemble
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methods). We refer to the ensemble of ANN models constructed using bagging as bagANN.

Also, in keeping with the machine learning terminology, we refer a parameter combination as

an instance, and individual input parameters as features. We refer to a parameter combination

with an unknown score as an unscored instance.

5.2.5.4 Active learning for calibration

Supervised learning methods such as ANNs use randomly selected instances as training sets to

build a prediction model. However, it is often possible to achieve a higher level of predictive

accuracy by having the learning method actively sample instances to be included in the training

set. The process that interactively samples the instances is known as active learning [Settles,

2012]. The difficulty of obtaining scores via simulation for every parameter combination makes

active learning attractive for the calibration problem. Therefore, to increase the prediction power

of the bagANNmodel and to decrease the total number of simulation runs required, we develop

an active learning algorithm that iteratively selects promising parameter combinations from the

set of all combinations and evaluates only these parameter combinations using the simulation

model.

Figure 5.4 summarizes the active learning approach that is used in this study. First, we train

the bagANNmodel using a small number of evaluated parameter combinations. Then, we use

this bagANNmodel to select a batch of instances with low predicted scores from a large pool

of unscored instances and evaluate these instances via the simulation model. If the stopping

criterion is not met, we retrain the bagANNmodel with the selected instances and repeat the

process. We use a clustering approach to select the batch of instances with low predicted scores

to ensure that the putatively low-scoring instances in the batch represent the different regions of

the parameter space. For clustering the instances, we use hierarchical clustering with Euclidean

distance and single linkage measures. Moreover, we augment the batch that is used to update

the bagANN model with a set of randomly selected parameter combinations. This step further
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assures that the parameter space is broadly sampled to train the bagANNmodel. We present a

more detailed version of our active learning algorithm in the appendix (see Appendix C.2).

Figure 5.4: Flowchart of the simulation model calibration process using active learning.

An important element of the active learning algorithm is the stopping criterion [Vlachos,

2008]. For our method, we use a stopping criterion that detects when the active learning process

is providing diminishing returns in identifying acceptable parameter combinations. We first

determine a warm-up period for the active learning algorithm, which is the minimum number

of iterations required to stop sampling. Then, we stop the active learning algorithm when

no acceptable instance is added to the training set in k consecutive iterations, where k is a

user-defined parameter.

5.2.5.5 Estimating the number of simulation runs

After training the bagANNmodel on a randomly selected subset of parameter combinations,

we can test the accuracy of the bagANN model on an independently selected test set. This

predictive accuracy information serves as a performance measure for our prediction model. In

addition, the test set can be used to estimate the total number of simulation runs needed to

obtain a reasonably high portion of all good parameter combinations. Algorithm 5.1 summarizes

this simple procedure to estimate the average number of simulation runs to perform using the

prediction model.
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Algorithm 5.1: Calculate Expected Number of Runs

Input: test instances T , all instances S, threshold score δ

1. T ′ ← {i ∈ T : `(i) ≤ δ}

2. ∆← max i ∈ T ′ {f(i)}

3. ENRuns←
∑
i∈S

I{f(i)≤δ}

In this algorithm, `(i) represents the score of each instance in set T , f(i) represents the

predicted value for instance i ∈ T , and I{·} is the indicator function. Here, we first form a

subset of test instances T ′ from the instances in the test set T that have scores lower than the

predetermined threshold score δ. Then, we find the maximum predicted score ∆ for those

instances in the set T ′. Finally, we count the number of instances with a predicted score lower

than ∆ in the set S, which is the set consisting of all instances.

5.3 Results

5.3.1 Performance of prediction models for the calibration

We only use the calibration process for the UWBCS-black to test the performance of the prediction

models, as the two calibration processes are very similar. We assume that all of the features

(individual parameters of a parameter combination) have nominal values in our experiments. We

observe that changing the nominal features to numeric features does not lead to more accurate

prediction models, which is also observed in several other studies [Maslove et al., 2013].

In our computational experiments, we first demonstrate the performance of the prediction

models in predicting the scores of parameter combinations and then examine the additional

benefits of using a prediction model in the active learning setting. Therefore, we first compare

the bagANNmodel with a simple linear regression model and a single ANNmodel. For this

experiment, we start with evaluating 30,000 parameter combinations using the simulation model
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and use those as our training and test sets according to a 60/40 ratio (i.e. 60% of 30,000 are used

for training and 40% of 30,000 are used for testing). As comparison measures, we use mean

absolute error and root mean squared error values of the prediction models. We also report

the predictive accuracy of the trained models on the instances with low actual scores by only

considering the instances in the test set that have actual scores lower than some predetermined

value. We use 30 as a threshold score to determine such instances and refer to these instances as

low-scored instances.

In our experiments with the active learning algorithm, we start by evaluating 1000 parameter

combinations and include these instances in a set L. At each iteration of the algorithm, we

add 200 new instances to L. Half of those instances are selected based on predicted scores and

hierarchical clustering, and the rest were randomly selected to minimize bias in the prediction

model. In order to obtain an estimate of the number of acceptable parameter combinations

identified after each iteration of the active learning algorithm, we count the number of acceptable

parameter combinations that are in set L and among the set of 1000 instances selected from

unscored instances based on their predicted scores. As a stopping criterion in the active learning

experiments, we either use a bound on the number of instances in L or use 5 iterations for the

warm-up period and k = 3 for the number of consecutive iterations without new acceptable

instances added to the training set.

We carry out our experiments with the prediction models using the WEKA (version 3.6.5)

JAVA library. Experiments are run on Intel Xeon 2.27 GHz processor with 12GB RAM running

Windows 7.

5.3.1.1 Comparison of the prediction models

Table 1 reports the performance of the prediction models in a standard supervised learning

setting where we use a single training set to train a model, and then make predictions based on

this model. We also report the estimates on the additional number of evaluations required for
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various prediction models, which are obtained using Algorithm 1. Our results show that the

ANNs have significantly better predictive accuracy than linear regression (LinR) as observed in

mean absolute error (MAE) and root mean squared error (RMSE) values as well as the number

of additional runs required by each model. Besides, improvements in the predictive accuracy are

more apparent in MAE and RMSE values obtained for the low-scored instances. We recognize

that the simple linear regression model does not account for the interactions between different

features. However, ANNs use nonlinear activation functions to overcome this limitation, which

also helps ANNs to achieve better predictive accuracy for our problem.

Using bagging to construct ensembles of ANNs further improves predictive accuracy espe-

cially in terms of the additional number of runs required by each model. While the ANN model

alone suggested that an additional 4626 simulation evaluations would generate all the acceptable

parameter combinations, bagANNmodel achieves the same level of performance through the

evaluation of only 2741 additional parameter combinations. An experiment regarding how

bagANN performance varies as a function of the training set size is available in Appendix C.3.

Training Method MAE RMSE MAE-low RMSE-low ENRuns (δ = 15) Time (in sec)
LinR 8.16 10.97 33.45 34.08 78754(99%) 1
ANN 3.26 4.36 7.00 8.42 4626(100%) 290
bagANN 2.26 2.97 5.41 6.46 2741(100%) 2547

Table 5.2: Comparison of the different prediction models for the UWBCS calibration problem.

5.3.1.2 Benefits of using active learning

Our next experiment tests the benefit of using an active learning framework to select the instances

that are provided to the bagANN for training. In this experiment, we compare our active learning

algorithm to a method that randomly selects the instances that are added to the training set.

For both cases, we repeat the algorithm for 30 different initial training sets each including

2000 parameter combinations and stop the algorithm when our training set reaches to 5000
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instances. Figure 5.5 shows that the active learning algorithm can locate all acceptable parameter

combinations by evaluating only a fraction of all instances whereas the random selection method

needs to evaluate significantly more instances to achieve similar performance. In fact, random

selection method does not achieve the same level of performance with the active learning

algorithm even if we continue sampling instances until the training set reaches 10,000 instances.

Error bars in Figure 5.5 indicate that active learning results are slightly more variable with respect

to the initial training set compared to random selection. We provide one-way sensitivity analysis

for the several model parameters in the appendix (see Appendix C.4).

Figure 5.5: Learning curves showing the number of acceptable parameter combinations found as
a function of the number of training instances: active learning compared with random selection.

5.3.2 Model fit to the U.S.-observed breast cancer incidence and mortality rates

We use the calibrated natural history parameters to obtain race-specific UWBCS, namely UWBCS-

black and UWBCS-white. Figure 5.6a shows the comparison of UWBCS-black with the U.S.-

observed incidence and mortality rates. While UWBCS-black successfully replicates the breast
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cancer incidence for each cancer stage, the fit for the U.S.-observed mortality rates is not as

good. However, the simulation model successfully captures the general trends in breast cancer

mortality for black women. UWBCS-white performs better compared to UWBCS-white in terms

of fit to the U.S.-observed rates (see Figure 5.6b).

(a) Model fit for black women

(b) Model fit for white women

Figure 5.6: Comparison of UWBCS results with U.S.-observed breast cancer incidence and
mortality rates

5.3.3 Factors leading to higher mortality rates in black women

Table 5.3 compares age-adjusted breast cancer mortality in 1975 to 2010 among white women

and black women to predictions from series of models with UWBCS-white parameter values

sequentially replaced by black values. Note that we also provide the results from two other

simulation models (MISCAN and SPECTRUM) that have been used byvan Ravesteyn et al. [2011]
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and compare their findings with UWBCS. Of the difference between observed mortality and

predicted mortality after taking into account lower incidence between among blacks, natural

history explained 65.9%, screening use 3.9%, and use of adjuvant treatment therapy 20.7%,

leaving 9% unexplained in UWBCS. In explaining the mortality difference, UWBCS attributes

more weight to natural history parameters compared toMISCAN and SPECTRUM.However, van

Ravesteyn et al. [2011] note that MISCAN and SPECTRUM fail to replicate observed breast cancer

mortality rates for black women and significant proportion of differences cannot be explained

by their models (38-46%). As a result, UWBCS does a better job in quantifying the impact of

each factor on explaining the higher mortality rates in black women.

natural
history

natural
history and
screening

natural
history,

screening,
and

treatment

all (UWBCS-
black)

unexplained

MISCAN 26.0% 8.0% 19.0% 54.0% 46.0%
SPECTRUM 44.0% 7.0% 11.0% 62.0% 38.0%
UWBCS 65.9% 3.9% 20.7% 91.0% 9.0%

Table 5.3: Effect of sequential replacement of parameters for black women in the UWBCS-white
on the breast cancer mortality rate for black women.

5.4 Concluding Remarks

We use UWBCS, a previously validated discrete-event stochastic simulation model of breast

cancer, to evaluate the differences in breast cancer incidence and mortality between black and

white women. Model parameters are estimated for the two racial groups while accounting for

differences in mammography uptake and treatment dissemination, and the resulting models,

UWBCS-black and UWBCS-white, closely replicates the observed breast cancer outcomes by

SEER [SEER, 2008a,b]. We observe that breast cancer natural history parameters are a major

driver for race-specific differences in mortality, which is also noted by Batina et al. [2013] and van
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Ravesteyn et al. [2011]. Therefore, targeted prevention and detection strategies that go beyond

equalizing access to mammography may be needed to eliminate racial disparities. Furthermore,

our results show that diminished use of adjuvant treatment is much more impactful on increased

breast cancer mortality among black women compared to inadequate mammography utilization.

We also provide a novel framework to speed up the simulation calibration. In this study,

we provide a method to determine the most promising input values so that calibration can be

completed by evaluating only a small subset of all parameter combinations. For this purpose,

we use several machine learning approaches and provide several key statistics on the predictive

accuracy of each method. Our results show that the computational burden of the calibration

may be reduced significantly and the calibration is feasible even for complex simulation models

such as UWBCS.

To the best of our knowledge, the study by Kong et al. [2009] is the only calibration work

that described a framework to reduce the number of parameter combinations to be evaluated.

More specifically, Kong et al. [2009] use metaheuristics such as simulated annealing and genetic

algorithms to search the parameter space to find the best parameter combination for a lung

cancer simulation model. They also provide a method for measuring the closeness of the

actual calibration targets and simulation outcomes. While their approach effectively avoids

evaluating all parameter combinations, it is able to identify only one (or a small number of)

acceptable parameter combination that matches the target outcome without actually assessing

the quality of the outputs for other parameter combinations. On the other hand, identifying all

or a big portion of acceptable parameter combinations can help guard against non-identifiability

problems in calibration. As our approach provides estimations on outcomes of any parameter

combination, one can take advantage of all parameter combinations to better understand the

effects of parameter uncertainty on model conclusions.

Our active learning algorithm and bagANN prediction model do not guarantee finding

every acceptable parameter combination and we are able to report the percentage of acceptable
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parameter combinations found by our method only because we have actually evaluated all the

parameter combinations beforehand. In addition, because the active learning algorithm stops

when there are no new acceptable parameter combinations found in k consecutive iterations, the

number of acceptable parameter combinations obtained by the active learning algorithm can be

used as an estimate on the total number of acceptable parameter combinations in the parameter

space. Note that there are no exact procedures for the selection of the warm-up period and the k

value and these parameters may significantly affect the performance of the prediction model.

For instance, if we increase the length of warm-up period (or k ), we expect our bagANN model

to predict scores more accurately. However, increased values for these parameters also lead to

more simulation runs. Therefore, it is important to find the right balance between the prediction

model’s predictive accuracy and the total number of simulation runs required to obtain this

accuracy. We perform a one-way sensitivity analysis to demonstrate the impact of stopping

criteria parameters on the performance of active learning algorithm.

While we demonstrate our new calibration method using only UWBCS, it can easily be

applied to other simulation models that require the evaluation of a large number of parameter

combinations for the calibration. In general, calibration processes of the simulation models

require going through similar steps. After deciding on model-specific scoring scheme and

determining the set of parameter combinations, modelers can use one of the two approaches

presented in his study. The first approach is summarized in Figure 5.2 and involves constructing

a prediction model using the initial simulation evaluations and estimating the scores of the

remaining parameter combinations. While this approach is easier to implement, it is difficult

to determine ideal training set size and threshold score δ, which is used to determine which

parameter combinations to evaluate. The second approach is to use an active learning algorithm,

which starts with a prediction model that is constructed using a very small training set and

reconstructs this model by iteratively adding more instances to the training set as shown in

Figure 5.4. As we start with a very small training set and only add those instances to the
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training set that lead to a better prediction model, active learning approach generally requires

significantly less simulation evaluations and also includes a natural stopping criterion. Modelers

may choose between these two approaches according to the complexity of their model and

available computational resources. In addition, because of the similarities in the calibration

processes, we expect our approaches to perform well for other simulation models. However,

model-specific features such as the number of unobservable parameters and scoring scheme

may affect some parameters of our algorithms (e.g., initial training set size and stopping criteria

parameters of the active learning algorithm) as well as the type of themachine learning algorithm

used as the prediction model.

Several parameters related to prediction models and the active learning algorithm are deter-

mined based on expert opinions and empirical analysis. We conduct numerical experiments to

show the effects of some of these parameters such as initial training set size and threshold score δ

on model performance. On the other hand, we rely on the most commonly used methods in the

literature and our preliminary analysis for the selection of many other parameters such as type

of the activation function used in the ANN and type of the clustering approach employed in the

active learning algorithm. In addition, we recognize that other prediction models, including

different types of regression models and ensemble methods, may perform better than bagANN

for a general simulation model.
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a appendix for Chapter 3

A.1 Relative breast cancer risk by breast density

density Age < 65 Age ≥ 65
d0 0.48 0.66
d1 1.00 1.00
d2 1.55 1.39
d3 2.01 1.45

Table A.1: Relative breast cancer risk associated with each density category.

A.2 Observation probabilities

h\o (η0, ξ
−) (η0, ξ

+) (η1, ξ
−) (η1, ξ

+) (η2, ξ
−) (η2, ξ

+) (η3, ξ
−) (η3, ξ

+) (ηno, ξ−) (ηno, ξ+)
s0 = (d0, h0) νd0a 1− νd0a 0 0 0 0 0 0 0 0
s1 = (d0, h1) 1− τ s1a τ s1a 0 0 0 0 0 0 0 0
s2 = (d0, h2) 1− τ s2a τ s2a 0 0 0 0 0 0 0 0
s3 = (d1, h0) 0 0 νd1a 1− νd1a 0 0 0 0 0 0
s4 = (d1, h1) 0 0 1− τ s4a τ s4a 0 0 0 0 0 0
s5 = (d1, h2) 0 0 1− τ s5a τ s5a 0 0 0 0 0 0
s6 = (d2, h0) 0 0 0 0 νd2a 1− νd2a 0 0 0 0
s7 = (d2, h1) 0 0 0 0 1− τ s7a τ s7a 0 0 0 0
s8 = (d2, h2) 0 0 0 0 1− τ s8a τ s8a 0 0 0 0
s9 = (d3, h0) 0 0 0 0 0 0 νd3a 1− νd3a 0 0
s10 = (d3, h1) 0 0 0 0 0 0 1− τ s10a τ s10a 0 0
s11 = (d3, h2) 0 0 0 0 0 0 1− τ s11a τ s11a 0 0

Table A.2: Observation probabilities fa(η, ξ|(d, h)), a ∈ AScr.
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h\o (η0, ξ
−) (η0, ξ

+) (η1, ξ
−) (η1, ξ

+) (η2, ξ
−) (η2, ξ

+) (η3, ξ
−) (η3, ξ

+) (ηno, ξ−) (ηno, ξ+)
s0 = (d0, h0) 0 0 0 0 0 0 0 0 νd0a 1− νd0a
s1 = (d0, h1) 0 0 0 0 0 0 0 0 1− τ s1a τ s1a
s2 = (d0, h2) 0 0 0 0 0 0 0 0 1− τ s2a τ s2a
s3 = (d1, h0) 0 0 0 0 0 0 0 0 νd1a 1− νd1a
s4 = (d1, h1) 0 0 0 0 0 0 0 0 1− τ s4a τ s4a
s5 = (d1, h2) 0 0 0 0 0 0 0 0 1− τ s5a τ s5a
s6 = (d2, h0) 0 0 0 0 0 0 0 0 νd2a 1− νd2a
s7 = (d2, h1) 0 0 0 0 0 0 0 0 1− τ s7a τ s7a
s8 = (d2, h2) 0 0 0 0 0 0 0 0 1− τ s8a τ s8a
s9 = (d3, h0) 0 0 0 0 0 0 0 0 νd3a 1− νd3a
s10 = (d3, h1) 0 0 0 0 0 0 0 0 1− τ s10a τ s10a

s11 = (d3, h2) 0 0 0 0 0 0 0 0 1− τ s11a τ s11a

Table A.3: Observation probabilities fW (η, ξ|(d, h)).

A.3 Performance of the proposed solution approach

Lovejoy [1991b] proposes a lower-bounding scheme using piecewise linear convex representation

of the value functions. By using a more general value function definition (i.e., not specific to

breast cancer screening problem), we can obtain a piece-wise linear convex representation as

follows:

v∗t (π) = max{πα : α ∈ Γt} = max
a∈A

{∑
i∈S̄

π(i)

[
wt(i) +

∑
j∈S̄

∑
k∈Ω

pat (j|i)fat (k|i)αι(π,a,k)(j)

]}
(A.1)

where Γt is the set of α-vectors that represent the coefficients of one of the linear pieces of v∗t

and ι(π, a, k) is the index of α ∈ Γt+1 that maximizes
∑

i∈S̄
∑

j∈S̄
∑

k∈Ω π(i)pat (j|i, k)fat (k|i)α(j).

Note that the inner bracketed term in (A.1) evaluated for the optimal action is a subgradient of v∗t

at π, denoted by α(π), and the set Γt = {α(π) : π ∈ Π(S̄)} is sufficient to completely represent v∗t

[Smallwood and Sondik, 1973]. Lovejoy [1991b] notes that, given G be any set of points in Π(S̄),

and Γ̂t = {α(π) : π ∈ G}, v̂t(π) = max{πα : α ∈ Γ̂t} provides a lower bound on the optimal

value function, i.e., v̂t(π) ≤ v∗t (π), ∀π ∈ Π(S̄). Figure A.1 shows a sample piecewise linear value

function for |S̄| = 2 and Figure A.2 shows construction of an approximate value function for the
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same value function using five grid points.

Figure A.1: Piecewise linear value function with four α−vectors when |S̄| = 2

Figure A.2: Approximating the value function with grid points `0, . . . , `4 when |S̄| = 2

As an alternative to Lovejoy [1991b]’s lower bounding approach, we use Eagle’s variant of

Monahan’s algorithm [Monahan, 1982] to devise a lower bounding scheme. Monahan’s algorithm

exhaustively enumerates all possible α-vectors for a given decision epoch, then eliminates the

ones that are dominated by other vectors. Let Γt+1 = {α1
t+1, . . . , α

|Γt+1|
t+1 } be the optimal set of

α-vectors at decision epoch t+ 1. All α-vectors at decision epoch t can be enumerated as follows:

αt(i) = wt(i) +
∑
j∈S̄

∑
k∈Ω

pat (j|i) fat (k|i) αm(k)
t+1 (j), ∀i ∈ S̄, ∀a ∈ A, ∀m ∈Mt+1

whereMt+1 is a collection of tuples of {1, . . . , |Γt+1|} of size |Ω| (e.g., for |Ω| = 4 and |Γt+1| =

n, Mt+1 = {[1, 1, 1, 1], [1, 1, 1, 2], . . . , [n, n, n, n]}). Note that |Γt| = |A| |Γt+1||Ω| and it is usually

not feasible to enumerate all α-vectors when |Ω| > 2.

Elimination of the dominated vectors is done in two steps. First, α-vectors are compared
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component-wise and α-vectors whose components are completely dominated by other α-vectors

are eliminated. That is, αj ∈ Γt is dominated if the following condition holds:

∃ αk s.t. αk(s)− αj(s) ≥ ε1, ∀s ∈ S̄,

where ε1 is a precision value. In the second step, a linear programming model is solved for each

of the remaining α-vectors to check whether there exists any π ∈ Π(S̄) such that the chosen

vector dominates every other vector. Monahan’s LP is formulated as follows:

max σ

s.t.
∑
s∈S̄

π(s)(αjt (s)− αkt (s)) ≥ σ, ∀αk ∈ Γt \ {αj},

∑
s∈S̄

π(s) = 1,

π(s) ≥ 0, ∀s ∈ S̄.

If above LP is infeasible or σ ≤ ε2, then αj is removed from Γt. We use the precision values

ε1 and ε2 to obtain a lower bounding scheme. In particular, we set ε1 = −10−4 and ε2 = 10−4,

which may lead to some of the optimal vectors to be eliminated from Γt. However, this yields Γt

with a more tractable size, and provides a lower bound on the optimal solution. Our preliminary

analysis indicate that the proposed lower bounding scheme performs comparably to Lovejoy

[1991b]’s approach.

Table A.4 shows that grid-based model provides good upper bounds on the optimal solution

for several problem instances, as the QALY differences and optimality gaps are very small. We

also compare the policies obtained by Monahan’s algorithm and grid-based model by simulating

the lives of 100,000 women between ages 40 and 80. These results indicate that average number

of mammographies, MRIs and ultrasounds (E[M], E[R], and E[U], respectively) recommended

are generally similar.
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Monohan (LB) grBased (UB) QALY
difference
(months)

gap
(%)

model patient type QALY E[M] E[R] E[U] QALY E[M] E[R] E[U]
pomdp_nss AR 40.316 21.56 0.00 0.00 40.331 17.44 0.00 0.00 0.18 0.04%

HR 39.898 33.10 0.00 0.00 39.905 31.21 0.00 0.00 0.08 0.02%
vHR 38.680 38.02 0.00 0.00 38.680 37.88 0.00 0.00 0.00 0.00%

pomdp AR 40.317 20.85 0.00 0.24 40.331 17.26 0.00 0.41 0.17 0.03%
HR 39.899 32.53 0.00 0.51 39.906 30.86 0.00 0.60 0.08 0.02%
vHR 38.687 38.02 0.00 4.42 38.689 37.68 0.00 3.76 0.01 0.00%

Table A.4: Comparison of Monahan’s algorithm with grid-based approximation

We also empirically analyze the impact of the resolution settings on solution quality. Table A.5

summarizes the QALY values for a very-high risk patient (vHR) with unknown breast density at

age 40 under different resolution settings for health states (he_ress) and density states (den_ress).

We observe marginal QALY gains as the resolution improves. For instance, the difference in

QALY values is 0.013 months for y1 and y4 resolutions. However, y4 generates significantly more

grid points, which leads to increased difficulty in solving the problem.

he_ress den_ress numGrids QALY QALY diff. (mo.)
y1 = (250, 100, 10, 5) 1 508 38.689 -
y2 = (500, 100, 10, 5) 1 1128 38.689 0.007
y3 = (1000, 200, 20, 10) 1 4328 38.688 0.011
y4 = (2000, 200, 20, 10) 1 14012 38.688 0.013

Table A.5: Impact of grid resolution on QALY values of vHR patient with unknown breast
density

A.4 Value of modeling breast density and supplemental screenings

for average-risk and high-risk patients
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avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 40.137 -
tri_50_70 6.99 0.47 40.387 3.00
bi_50_70 10.58 0.71 40.415 3.34
bi_40_74 17.19 1.19 40.515 4.54
an_40_74 32.61 2.35 40.486 4.18
pomdp_nss 13.20 0.91 40.573 5.23
pomdp 13.20 0.91 40.573 5.23

(a) Breast density: d0

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 39.667 -
tri_50_70 7.47 0.69 40.150 5.79
bi_50_70 10.98 1.06 40.193 6.30
bi_40_74 17.67 1.80 40.332 7.97
an_40_74 32.90 3.48 40.297 7.55
pomdp_nss 15.11 1.49 40.397 8.75
pomdp 15.13 1.49 40.397 8.75

(b) Breast density: d1

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 39.250 -
tri_50_70 7.74 0.79 39.921 8.05
bi_50_70 11.30 1.21 39.982 8.78
bi_40_74 17.97 2.08 40.153 10.83
an_40_74 33.00 4.07 40.130 10.56
pomdp_nss 16.05 1.83 40.228 11.74
pomdp 16.41 1.82 40.229 11.75

(c) Breast density: d2

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 38.933 -
tri_50_70 8.16 0.75 39.759 9.91
bi_50_70 11.68 1.18 39.834 10.81
bi_40_74 18.28 1.98 40.040 13.28
an_40_74 33.11 3.81 40.039 13.27
pomdp_nss 19.92 2.12 40.126 14.31
pomdp 20.34 2.13 40.126 14.32

(d) Breast density: d3

Table A.6: Evaluation of screening strategies for average-risk patients

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 39.381 -
tri_50_70 7.44 0.45 39.898 6.21
bi_50_70 11.04 0.71 39.968 7.04
bi_40_74 17.74 1.17 40.191 9.72
an_40_74 32.86 2.29 40.197 9.79
pomdp_nss 27.13 1.88 40.294 10.96
pomdp 27.49 1.91 40.296 10.98

(a) Breast density: d0

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 38.504 -
tri_50_70 8.37 0.65 39.474 11.64
bi_50_70 11.84 1.00 39.573 12.82
bi_40_74 18.63 1.70 39.878 16.48
an_40_74 33.45 3.35 39.891 16.64
pomdp_nss 25.59 2.46 40.004 18.00
pomdp 25.67 2.48 40.004 18.00

(b) Breast density: d1

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 37.746 -
tri_50_70 8.87 0.74 39.071 15.90
bi_50_70 12.33 1.13 39.203 17.48
bi_40_74 19.26 1.98 39.572 21.90
an_40_74 33.69 3.88 39.620 22.48
pomdp_nss 31.88 3.62 39.740 23.93
pomdp 32.49 3.64 39.741 23.94

(c) Breast density: d2

avg. Scr avg. FP QALY QALY gain
(months)

noScr 0.00 0.00 37.180 -
tri_50_70 9.53 0.70 38.788 19.30
bi_50_70 12.86 1.08 38.943 21.16
bi_40_74 19.68 1.84 39.372 26.31
an_40_74 33.94 3.55 39.456 27.32
pomdp_nss 35.78 3.77 39.582 28.83
pomdp 35.72 3.76 39.582 28.83

(d) Breast density: d3

Table A.7: Evaluation of screening strategies for high-risk patients
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b appendix for Chapter 4

B.1 MDPModel to Approximate POMDP

We describe the components of the MDP model that is used to approximate the POMDP model

as follows:

• Decision epochs: t ∈ {0, 1, . . . , N}

• States: gi ∈ S ≡ G

• Actions: a ∈ A = {DN,M}

• Transition probabilities: Ft(gk|gi, a)

• Rewards:

ωt(gi,W ) = rt(gi,W )

ωt(gi,M) = rt(gi,M) +
∑

s∈{1,2}

gi(s)zt(M + |s,M)Rt(s)

• Optimality equations:

Q̂∗t (gi) = max
{
Q̂DNt (gi), Q̂

M
t (gi)

}
, t < N, gi ∈ S,

Q̂∗N (gi) =
∑
s∈S̄

gi(s)RN (s), gi ∈ S,

Q̂at (gi) = ωt(gi, a) +
∑
gk∈S

Ft(gk|gi, a) Q̂∗t+1(gk).

Most commonly used method for solving the recursive value functions for finite horizon

MDPs is to use a backward induction type algorithm. However, an LP formulation can also

be used to solve the MDP models. In order to solve above optimality equations, we use the
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following linear programming formulation:

min
∑
gi∈S

δi Q0(gi)

s.t. Qt(gi) ≥ ωt(gi, a) +
∑
gk∈S

Ft(gk|gi, a) Qt+1(gk), gi ∈ S, t < N,

QN (gi) =
∑
s∈S̄

gi(s)RN (s), gi ∈ S,

Qt(gi) free, gi ∈ S, t ≤ N,

where δi specifies an initial distribution over the state space.

B.2 A Counterexample for Obtaining Deterministic Policies from

Constrained MDPs

It is easy to see that we can always find a deterministic policy for the unconstrained problem

using the grid-based approximation, as we can solve the approximate model using a backward

induction algorithm [Puterman, 2014]. However, when we add constraints to the model, we may

not always get a deterministic policy as a solution. Model having multiple optimum solutions

might be a reason for getting randomized policies, but there could be cases where there are

no equivalent optimal deterministic policies for the constrained problem. Example 6.9.1 in

Puterman [2014]’s book shows that there is no deterministic equivalent optimal policy for the

infinite-horizon constrained MDPs. Below we provide a counter example for the finite horizon

MDPs using a toy problem given by Puterman [2014].

Consider a two-state MDP example given in Figure B.1, where we aim to find an optimal

policy over N = 3 horizon. Formal description of the problem is given as follows:
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• States: S = {s1, s2}

• Actions: As1 = {a1,1, a1,2}, As2 = {a2,1}

• Immediate rewards: rt(s1, a1,1) = 5, rt(s1, a1,2) = 10, rt(s2, a2,1) = −1

• Terminal rewards: rN (s1) = 0, rN (s2) = 0

• Transition probabilities:

pt(s1|s1, a1,1) = 0.5, pt(s2|s1, a1,1) = 0.5

pt(s1|s1, a1,2) = 0, pt(s2|s1, a1,2) = 1

pt(s1|s2, a2,1) = 0, pt(s2|s2, a2,1) = 1

Figure B.1: MDP example

This problem can be solved using a backward induction algorithm. Alternatively, we can use

the following linear programming formulation to find an optimal policy for this problem:
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MDP-dual: max
N−1∑
t=1

∑
s∈S

∑
a∈As

rt(s, a)xt(s, a) +
∑
s∈S

rN (s)xN (s)

s.t.
∑
a∈As

x1(s, a) = α(s), ∀s ∈ S

∑
a∈As

xt(s, a)−
∑
s′∈S

∑
a∈As′

pt(s|s′, a)xt−1(s′, a) = 0, ∀t ∈ {2, .., N − 1}, ∀s ∈ S

xN (s)−
∑
s′∈S

∑
a∈As′

pN−1(s|s′, a)xN−1(s′, a) = 0, ∀s ∈ S

xt(s, a) ≥ 0, ∀s ∈ S, a ∈ As, xN (s) ≥ 0, ∀s ∈ S

where we arbitrarily choose initial probabilities for occupying each state as α(s1) = α(s2) = 0.5.

Solving MDP-dual, we find an optimal objective value of 3.75, and the solution x∗1(s1, a1,1) =

0.5, x∗1(s1, a1,2) = 0, x∗1(s2, a2,1) = 0.5, x∗2(s1, a1,1) = 0, x∗2(s1, a1,2) = 0.25, x∗2(s2, a2,1) =

0.75, x3(s1) = 0, x3(s2) = 1. The optimal policy is d∗1(s1) = a1,1, d
∗
1(s2) = a2,1, d

∗
2(s1) =

a1,2, and d∗2(s2) = a2,1.

Suppose we solve MDP-dual together with the extra constraint

N−1∑
t=1

∑
a∈As1

xt(s1, a) ≤ 0.6.

We refer to this new formulation as CMDP-dual. Optimal objective value of CMDP-dual is 3.6

and the solution of the model leads to randomized decision rule d̄∗1 for the first decision epoch,

in which

qd̄∗1(s1)(a1,1) = 0.4, qd̄∗1(s1)(a1,2) = 0.6.

That is, if we are in state s1 at the first decision epoch, we should select action a1,1 with probability

0.4 and action a1,2 with probability 0.6.

By enforcing deterministic policy constraints as in Section 4.2.1 of the revised paper, we can
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obtain the best deterministic policy for the CMDP-dual with an optimal objective value of 3.5.

For this example, none of the optimal solutions leads to deterministic policies. Noting that the

objective value of best deterministic policy for CMDP-dual is worse than the objective value

obtained by the randomized policy (3.6 vs 3.5), these results show that it is not guaranteed to

obtain a deterministic policy as a solution of the finite-horizon constrained MDP models. We

provide this counter example in the Appendix of the revised manuscript.

B.3 Graph of Stochastic Orderings

Algorithm B.1: Construct graph of stochastic orderings between grid points

Input: D = (V (D), A(D))

Sort the grid points in increasing order of first components†.

V (D).add(g0)

for k = 1, . . . , |G| − 1

V (D).add(gk)

L = ∅

for j = 1, . . . , k − 1

if gj ≤s gk

for i ∈ L

if gi ≤s gj

L.remove(i)

L.add(j)

for ` ∈ L

A(D).add(`, k)

† Break ties in favor of higher second components.
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B.4 Model Validation

We use several previously validated data sources to estimate the parameters of our models.

Among the parameters, the most crucial ones are post-cancer life expectancies and health state

transition probabilities. In order to estimate the post-cancer life expectancies, we use National

Cancer Institute (NCI)’s Surveillance Epidemiology and End Results (SEER) data book, the most

comprehensive database on cancer outcomes available in the world. We estimate the transition

probabilities, the most critical input of our model, using the University of Wisconsin Breast

Cancer Simulation Model (UWBCS).

The UWBCS is a validated microsimulation model of breast cancer epidemiology in United

States. The UWBCSwas validated using several approaches: First, the UWBCSmodel projections

of incidence, mortality, and stage distribution have been compared to those reported by the SEER

program for the period 1975-2010 and it was observed that the UWBCS replicated the patterns

of observed US incidence and mortality over time. Second, the UK AGE screening trial was

approximated using UWBCS, assuming perfect adherence to invitations for annual screening

with 13-year follow-up of women between ages 40 to 49 and it was observed that the model

projections closely matched current stage distribution and the AGE trial results. Third, UWBCS

was independently cross-validated against incidence and mortality data from Wisconsin cancer

registry system, which were not used in the development of the UWBCS. More details about the

validation of the UWBCS are available elsewhere [Fryback et al., 2006, Mandelblatt et al., 2016].

We compare the results of our models that are informed by these validated data sources with

the findings of Ayer et al. [2012] and observe that we obtain similar results for the unconstrained

breast cancer screening problem.
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c appendix for Chapter 5

C.1 Ensembles of ANNs

Ensemble methods construct a set of models from the training data where predictions for the

new instances are made by using a weight function that combines individual predictions. Boot-

strap aggregating (bagging), boosting and stacking are well known approaches for generating

ensembles of the prediction models [Dietterich, 2000]. In addition, some other studies focus

on optimal aggregation of the prediction models [Tsybakov, 2004, Wegkamp, 2003]. There are

several successful applications of ensemble learning in healthcare literature. In particular, super

learning, a generalization of stacking method where another prediction model is employed to

combine the individual predictions, has been used for mortality risk prediction in elderly people

and mortality prediction in intensive care units [Rose, 2013, Pirracchio et al., 2015].

We observe that using ensembles of ANNs often improve on the performance of a single ANN

[Granitto et al., 2005]. Our preliminary experiments with frequently-used ensemble methods

such as bagging, stacking, and additive regression indicate that using bagging to obtain an

ensemble of ANNs leads to a prediction model with high predictive accuracy. Different than

other ensemble methods, bagging forms several replicates of the training data set by sampling

with replacement from the original set and a separate learning model is constructed for each of

the replicate samples. Bagging may provide substantial gains in accuracy for unstable learning

methods such as ANNs where the learning method is significantly affected by the changes in

the training set [Breiman, 1996].
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C.2 Active Learning Algorithm

Algorithm C.1: Active Learning for Simulation Calibration

Input: Scored instances set L, unscored instances set U , random sample size B′

average number of instances in a cluster k, query batch size B, query strategy ϕ(·)

M = train(L) // learn a model using L

repeat

S = ∅

for b = 1 to kB

x∗b = arg minx∈U\S ϕ(x) // select the lowest scored instance

S = S ∪ x∗b

end

{C1, . . . , CB} = cluster(S)

for b = 1 to B

x∗b = arg minx∈Cb
ϕ(x) // select the lowest scored instance in cluster Cb

evaluate(x∗b ) // evaluate instance to obtain its score

L = L ∪ x∗b

U = U − x∗b

end

S′ = select(U,B′) // select a random sample of size B′ from L

// evaluate instances to obtain their scores

for b′ = 1 to B′

evaluate(xb′)

end

L = L ∪ S′

U = U \ S′

M = train(L)

until some stopping criteria;
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C.3 Impact of Training Set Size on Performance of Prediction

Models

Wedemonstrate how bagANNperformance varies as a function of the training set size and report

the estimates on the additional number of runs required for different threshold values in Table

C.1. We compare different training sets consisting of 10,000 to 50,000 instances to demonstrate the

effect of the training set size. Again, we use a 60/40 ratio to separate these sets into training and

test sets. For this experiment, we sample 30 different training sets for each training set size and

provide the average values for the performance measures. As the training set size increases, MAE

and RMSE improve overall and for the low-scored instances. However, because we randomly

select the initial training sets, there exist discrepancies in the reported results. For instance, while

training set size of 50,000 leads to the best MAE and RMSE values for the low-scored instances,

MAE and RMSE values for the overall instances are worse compared to the training set size of

40,000. Despite these inconsistencies, our results indicate that, as the training set size increases,

bagANNmodel?s predictive accuracy increases at a higher rate for low-scored instances and

the number of additional evaluations decreases considerably. On the other hand, increasing the

size of the training set beyond 30,000 instances do not lead to significant performance gains. For

example, when the training set size is 30,000, by setting the threshold value δ = 15, we obtain

97% of all acceptable instances by performing 1903 additional simulation evaluations, whereas

when the training set size is 40,000 and δ = 15, we obtain 99% of all acceptable instances by

evaluating 1936 additional parameter combinations.

C.4 Sensitivity Analysis for Active Learning Parameters

We conduct a one-way sensitivity analysis on initial training set size and batch size parameters

of the active learning algorithm. Figure C.1 shows that the active learning algorithm performs

better for the initial training sets with 1500-2000 instances. In addition, Figure C.2 shows that
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Training
Set Size

MAE RMSE MAE-
low

RMSE-
low

ENRuns
(δ = 10)

ENRuns
(δ = 15)

ENRuns
(δ = 20)

10000 2.70 3.71 6.38 7.57 729(39%) 2504(88%) 6624(99%)
20000 2.26 3.05 5.13 6.14 754(64%) 1983(95%) 4443(100%)
30000 2.20 2.94 4.60 5.51 614(76%) 1903(97%) 4086(100%)
40000 2.12 2.85 4.54 5.45 764(81%) 1936(99%) 4136(100%)
50000 2.19 2.88 4.53 5.39 677(84%) 2061(100%) 4079(100%)

Table C.1: Performance of the bagANN for different training set sizes.

although performance of the active learning algorithm is not significantly affected by the choice

of the batch size, smaller batch sizes should be more preferable.

Figure C.1: Learning curves for different initial training set sizes.

In our final experiment, we use the stopping condition based on warm-up period and con-

secutive number of iterations without new acceptable instances in the training set. We find that,

on average, the active learning algorithm stops when the total number of evaluated parameter

combinations reaches 5620. These 5620 instances contain all 69 acceptable parameter combina-
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Figure C.2: Learning curves for different batch sizes used in the active learning algorithm.

tions, which implies that evaluating only 1.49% of all 378,000 instances would be sufficient to

obtain all acceptable parameter combinations. We also perform a one-way sensitivity analysis

on the stopping condition parameters of the active learning algorithm. Table C.2 shows that

while increasing the k value leads to more simulation evaluations, it does not lead to a significant

improvement in the number of acceptable parameter combinations. Similar analysis on the

length of warm-up period shows that our active learning algorithm is not sensitive to the changes

in warm-up period. However, using a limit on the length of warm-up period ensures that active

learning algorithm does not terminate prematurely.

k = 2 k = 3 k = 4 k = 5 k = 6

avg. # Instances 5340 5620 5820 6200 6640
avg. # Acceptable 65.6 65.6 65.6 66.7 67.9

Table C.2: Performance of the active learning algorithm for different stopping criterion parameters
(k).
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