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Abstract 

Next-generation advancements in molten salt-based technologies demand structural properties for which 

materials do not yet exist, lacking the necessary corrosion resistance for these applications, such as in 

molten salt nuclear reactors. Compositionally Complex Alloys (CCAs), sometimes also called High-

Entropy Alloys (HEAs), are a novel class of structural materials that promises to yield alloys with the 

necessary corrosion resistance in the molten salt environment at high temperature, but the compositional 

space is quasi-infinite, and the corrosion mechanism unclear. This thesis presents a parametric 

experimental investigation of the corrosion in molten LiCl-KCl of novel CCAs in the CrFeMnNi 

composition space, as well as methods for high-throughput corrosion testing of novel CCAs, chemical 

analysis and quantification of corrosion products. This thesis also presents a methodology for 

implementing machine learning and materials informatics techniques to gain mechanistic insights of 

material degradation of CCAs in molten salts. 
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3 Background 

3.1 The Importance of Gen IV Molten Salt Reactors 

 

If you are not reading this thesis on a screen, you most certainly printed it with an electric-powered 

printer. Such is the utter ubiquity of energy as a commodity in modern life. We need this commodity from 

the moment we wake up to check our phones, brew our coffee and travel to work, to the moment we lay 

our heads down in bed and check our phones again before dropping off to sleep - energy commodity 

consumption has permeated our every waking second. 

 

Global consumption of energy by source is shown in Figure 1. It is evident that nuclear 

power (green) is not a large part of it. Evidently, fossil fuels (purple, pink, red) remain an overwhelmingly 

large part of it. We cannot assume this is a stable state of affairs for the decades to come - quite the 

opposite in fact, over-reliance on fossil fuel has become untenable for the following reasons: 

A) fossil fuels are a primary source of anthropogenic climate change as well as environmental pollution 

[1]–[3] and the need to slow the degradation of our planet earth should be self-evident,  

B) its global supply is dependent on an oligopoly of suppliers called the Organization of Petroleum 

Exporting Countries (OPEC). Their price-fixing decisions are a constant source of socio-political anxiety 

for every country dependent on the product, including the United States, since energy is a significant 

component of the Consumer Price Index. These price flutterings in the winds of global politics might be 

less of a problem if fossil fuels were not as energy-inefficient as they are, so any country that would 

emancipate itself from dependency on petroleum as a primary source of energy would undeniably be 

taking a step towards economic stability.  
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Figure 1: Global primary energy consumption by source, primary energy calculated by ‘substitution 

method [4] 

The figure shows that nuclear power does not constitute a huge part of the global energy 

consumption portfolio. A coordinated and focused national policy is necessary for a country to shift away 

from legacy fossil fuel systems in the power grid to install newer nuclear-powered systems on it. France 

leads with 70% of its national power production coming from nuclear power. The US only has 20% of its 

national power production coming from nuclear power.  

 

Nuclear power is poised to grow in its assumption of the global energy consumption burden. 

A 6g pellet of reactor grade uranium produces the same amount of energy as 126 gallons of oil [5]the  
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Chicago Reactor Pile led by Enrico Fermi in 1942 [6] as the proof-of-concept for nuclear power as a 

viable source for civil consumption, it has been 80 years of tireless technological development supported 

by governments of the wealthiest and most populous nations, both in cooperation with and in parallel to 

one another. The result in the burgeoning of nuclear reactors into the mature technology of the present 

day. 

 

At the time of this writing in 2023, the nuclear industry is currently embarking on the 4th 

generation of nuclear reactor designs. The simplified schematic of a generalized 3rd generation reactor 

based on light water reactors (LWR) system which are the most common type of nuclear reactor (~80% 

of all reactors in the world) currently in commercial use for civilian energy production Figure 2 illustrates 

that a nuclear reactor functions by generating heat via controlled fission reactions in the (usually uranium) 

fuel elements within the core (red, yellow). In correctly-operating conditions, core temperature reaches 

about 700-800 oC. Water is used as a medium of heat transfer from the core to a steam generator where 

the heat energy is converted into kinetic energy which is in turn converted into electric energy via a 

turbine. For a quick reference, the thermal-to-electric conversion efficiency is generally 3:1.  
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Figure 2: Basic schematic of LWR design concept [7] 

With this simplified illustration we can already see two obvious aspects in which the nuclear 

reactor design can be improved. Firstly, there is much room for improvement for thermal-to-electric 

energy conversion efficiency at ~33%. .  

On average 2.4 neutrons are born per fission reaction, generally at faster-than-thermal 

speeds (aka “fast neutrons”). A sufficient flux of thermal neutrons is necessary to perpetuate enough 

fission reactions for self-sustaining power generation. Neutron moderation entails slowing the neutron to 

thermal speeds via inelastic scattering and the high density of hydrogen atoms present in water also makes 

it an effective neutron moderator. Core reactivity is directly impacted by moderator temperature, 

measured as reactivity feedback coefficient with respect to moderator temperature. NRC 10 CFR 50 

mandates that all reactors must be designed to operate with negative core reactivity feedback coefficient 

with respect to moderator temperature.  
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Two significant nuclear reactor accidents in history highlight the significant vulnerabilities 

in relying on water as coolant and moderator in a nuclear reactor, one at Three Mile Island, USA and the 

other at Fukushima Daiichi, Japan. 

In the case of Three Mile Island, the root cause of the accident was a leakage on one of the 

valves controlling flow in the heat transfer system and water entering air lines, causing a series of 

interconnected valves to malfunction and mistakenly trip the turbine, resulting in a Loss of Coolant 

Accident (LOCA). The nuclear reactor core was emergency-shut down ( “safety control rod activation 

mechanism”, known colloquially in industry as a “scram”) automatically as it was designed to, however 

the loss of coolant meant that residual heat from the reactor could not be removed at the rate necessary to 

prevent buildup of heat in the reactor core, resulting in a reactor core meltdown.  

In the case of Fukushima Daiichi, the tsunami damaged the active pumps necessary to 

remove residual heat from the scrammed reactor core which also resulted in a partial meltdown of the 

core. More details on the play-by-play of both accidents are included in the supplemental materials of this 

chapter. The primary concerns with a meltdown are the escape of high-dosage radiation from containment 

and shielding which are hazardous to human health and the environment. 

The cases of Three Mile Island and Fukushima Daiichi serve as evidence that the stability of 

water-mediated heat transfer systems is inherently not robust which brings us to the second aspect in 

which a design update for the next generation of nuclear reactors is necessary: alternative media of heat 

transfer systems. 

The Molten Salt Reactor (MSR) is a 4th generation nuclear reactor design concept poised to 

solve the problems mentioned. Table 1 summarizes some pertinent thermophysical properties of 

particular salts of interest, with the properties of water included for comparison to LWR systems.  
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The MSR design concept is attractive because molten halide salts are feasible as coolant for 

MSR applications since they possess [8]: 

I. high heat capacity, which makes them efficient as heat transfer media; 

II. low viscosity, which means they can be pumped in a coolant loop with minimal power input; 

III. low vapor pressure at reactor operating temperatures and high boiling point, which eliminates the 

need for pressure-containing systems which only add to the instability of the overall system; 

 

Molten salts show promise to replace water as heat transfer medium because they are liquid 

in the reactor operating temperature range of interest (500-800 oC) but they are solid at room temperature 

and atmospheric pressure (rtp). Therefore one could conceive that if there were a leakage in a coolant 

line, the salt is expected to quickly freeze at rtp, forming a plug to avoid immediate escalation of damage 

before a permanent solution can be found. In this way, the MSR concept has some inherent safety features 

by design [9], [10] 

Another attractive point of the MSR design concept is that fluoride and chloride salts are 

mostly radiolytically and thermally stable to over 1000oC [11] which qualifies them as candidates for fuel 

salt in the MSR design. Extensive studies have shown generally inhomogeneous power generation across 

solid-pin fuel cores of currently-operating Gen III nuclear reactor designs, indicating high burnup in the 

center but low burnup towards the edges [12].The MSR concept proposes FLiBe (67mol% LiF, 33mol% 

BeF2 ) as a candidate salt for the primary coolant loop in thermal MSR for its favorable neutronic 

properties, as Be is fairly transparent to neutrons [13], [14] in addition to its favorable thermophysical 

properties. A molten salt core with dissolved uranium or thorium [15]–[17] has the potential to improve 

fuel burnup efficiency over the traditional solid oxide fuel-pin core designs of LWRs because it would be 

self-homogenizing, thereby improving the total end-of-fuel cycle burnup efficiency.   

  An example of a salt mixture considered for coolant is FLiNaK, a eutectic mixture of NaF, 
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LiF and KF (46.5mol% LiF-11.5mol% NaF-42 mol% KF). In addition, chloride eutectics (such as 

59mol% LiCl- 41mol% KCl) [18], [19] are of interest as coolants in low temperature process loops. 

Chlorides in particular also present favorable characteristics because: i) they have lower melting points (< 

200 oC) and higher boiling points (> 800 oC) , ii) chlorides have higher abundance in nature)[8], and iii) 

comparatively low production cost [8]. Some of their favorable thermophysical properties of these 

eutectics of interest are summarized in Table 1.  

Table 1: Some examples of salt eutectic compositions of interest for the Gen IV Molten Salt Reactor 

concept [19] 

Table 1: Some examples of salt eutectic compositions of interest for the Gen IV Molten Salt Reactor 

concept [19] 

Molten Salt 

Coolant 

Composition 

(mol %) 

Melting 

Point (oC) 

Vaporization 

point 

(oC) 

Specific heat 

capacity 

(Jkg-1K-1) 

Reference 

FLiBe 67% LiF, 33% 

BeF2 

459 1430  (boiling) 2414.17 

 

[19] 

FLiNaK 46.5% LiF, -

11.5% NaF - 

42% KF 

454 1570 (boiling) 1882.8 

 

[19] 

LiCl-KCl 41% KCl, 59% 

LiCl 

357 >1400 (boiling) 1340 [8], [20], [21] 

H2O @ 20oC - 0 100 4184 - 
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As described in this section, LOCAs are especially dangerous scenarios for nuclear reactor cores. 

Even under emergency shutdown scenarios, the system must be able to remove residual heat quickly to 

avoid a reactor core meltdown. Ideally this system would be a passive one. While the MSR is 

theoretically less susceptible to LOCAs as previously described, under expected reactor operating 

conditions in the absence of natural disasters or hostile agents, the primary risk of LOCAs can still come 

from material degradation. The Silver Bridge Collapse of 1967 is a testament that a crack due to material 

degradation on the order of millimeters due to exposure to environmental corrodants can propagate to a 

million times its length in a matter of seconds resulting in complete structural failure [22]. This serves to 

illustrate the importance of having suitable structural materials that are resistant to degradation under the 

operating conditions for the entire planned lifetime of the reactor. The primary sources of concern for 

degradation of structural materials in an MSR are irradiation [23]and corrosion in the molten halide.  

The viability of the MSR concept has been demonstrated by the success of the Aircraft Reactor 

Experiment (AER) [24]and the Molten Salt Breeder Reactor (MSBR) [11] with no detectable degradation 

of the salts by radiolysis and thermolysis.  

Despite the demonstrated viability, there are still major obstacles to the scale-up commercialization 

of MSRs, chief of which is corrosion [19], [25]. There are presently scant viable options for suitable 

structural materials for MSRs, which hinders its commercial-scale deployability. Current ASME Sec III 

Div 5 code certified alloys up to 700°C (Alloy 800H, 316SS, IN 617) are not well-suited for molten salts 

because they contain high Cr content (>15%). This is because corrosion occurs primarily by elemental 

dissolution because any corrosion products formed in the form of mainly metal oxides and fluorides are 

highly soluble in the salt [26].  

This thesis is primarily concerned with addressing alloy design to optimize corrosion resistance in 

molten halides. The next section discusses in detail the current understanding of the molten salt chemistry 

behind corrosion mechanisms of alloys in molten salts. This understanding of the chemistry forms the 
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basis for the work demonstrated in this thesis to probe these corrosion mechanisms in depth in order to 

inform a recommendation for alloy design bases.  

3.2  Complex Compositional Alloys (CCAs) as structural materials of 

interest  

In Molten Salt Reactor Experiment (MSRE) was a test reactor run from 1965-1969 to demonstrate 

the feasibility of the molten salt reactor design concept [27], [28]. As part of this experiment, Ni-based 

candidate alloys (Table 2 [29]) were experimental alloys proposed and tested for feasibility as structural 

materials for the MSRE.  

Ni was considered as the foremost candidate as an alloy base for its high temperature strength and 

thermodynamic unfavourability to forming stable halides. Mo was considered as the second major 

component because of its impartation of solid-solution strengthening at high temperatures as well as its 

thermodynamic nobility against forming stable halides. W was considered as a minor additive for the 

same reasons as Mo. Despite the fact that the formation of Cr(II) and Cr(III) fluorides is relatively 

favorable thermodynamically (Figure 1), the inclusion of Cr in the alloy compositions at concentrations of 

5-7 at% is necessary to maintain oxidation resistance in ambient conditions [30]. At the time Ti and Nb 

were considered as additives to mitigate the formation of embrittling tellurides in the structural material 

which form as a result of the migration of the fission product tellurium [29]. 

 

  



10 

 

Table 2: Compositions of alloys tested for MSRE, balance is Ni [29] 

Alloy Mo Cr Fe  Ti Al Nb W 

INOR-1 30       

INOR-2 16 5      

INOR-3 16   1.5 1   

INOR-4 16   1.5 2   

INOR-5 15     2 2 

INOR-6 16 5  1.5 1   

INOR-7 16 6   1 1  

INOR-8 16 6 5     

INOR-9 17  5   3  

 

INOR-9, presently rebranded by Haynes as Hastelloy-N emerged as the prime candidate 

from this matrix of 9 alloys that were investigated for the MSRE. It exhibited satisfactory corrosion 

resistance during the MSRE [29], [31] it still possesses some weaknesses that might present challenges to 

its application in the MSR: firstly, it lacks sufficient creep rupture strength at the required conditions [32]; 

secondly irradiation-induced embrittlement by a) He bubble formation by the reaction 59Ni(n,α)56Fe [33] 

and b) deposition of the fission product tellurium at the sample surface leading to telluride formation at 

grain boundaries [34]  

In addition, another limitation to the application of Ni-rich alloys in scaled-up MSR 
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deployment is supply-side scarcity due to the prohibitively high cost of production [29].  

Therefore, since the Hastelloy-N leaves some properties to be desired, there remains a berth 

for the introduction of novel alloys that have the potential to surpass its performance as an MSR structural 

material.  

Commercially available alloys proposed as structural materials for MSRs consist primarily 

of the elements Ni, Mo, Cr, Fe, Mn, Ti, Nb and W. These form an 8-dimensional space in which 8 alloy 

compositions have been proposed in the original MSRE and tested [29] .This implies that beyond these 8 

alloys there is a quasi-infinite 8-dimensional space of which a mere 8 points have been studied at all.  

How can we know for sure that there does not exist a composition within this space that 

exceeds the 8 tested ones in corrosion resistance? In a quasi-infinite space, is there an efficient way to 

search the space in order to find out?  

It becomes apparent then that a significant subspace within this elemental hyperspace 

comprises compositions that do not consist of any one particular element as a base. This space, “the 

central region of the multicomponent alloy phase space” was termed by Miracle & Senkov as the space of 

Compositionally Complex Alloys (CCAs) [35]. This is an alloy composition space of immense scientific 

interest in recent years for their potential practical applications, and it is of interest in this thesis for their 

potential as MSR structural materials.  

Multiprincipal component alloys were first introduced in 2004 independently by Yeh et al  

[36], [37] and Cantor et al [38] when they demonstrated metallurgical preparations of equiatomic 

CrCoFeMnNi and CrCuFeMnNi respectively with simple crystal structures among other equiatomic or 

near-equiatomic compositions in their respective studies. The atoms of each element were found to be 

randomly distributed throughout the lattice with no single matrix element. These demonstrations 

pioneered a new class of alloys known variously in the field as Multiprincipal Component Alloys 
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(MPEAs), Compositionally Complex Alloys (CCAs) or High Entropy Alloys (HEAs), where previously it 

was believed that a single matrix element as a base was necessary to stabilize a homogeneous 

composition and structure throughout the bulk.  

In this thesis we refer to the space of interest, “the central region of the multicomponent 

alloy phase space” termed by Miracle & Senkov as Compositionally Complex Alloy (CCA). This 

definition is adopted as most inclusive since it is not overly constraining unlike definitions according to 

entropy or single-phase-space [35] 

Within the last 20 years, research interest in CCAs for their potential practical applications 

has grown rapidly, with their metallurgy [39]–[41] and their microstructures [42], [43] investigated in 

detail.  

CCAs have been explored for their electromagnetic properties [44]–[46] hardness [42], [47] 

irradiation resistance [23], [48]–[52].  

Atomistic effects unique to CCAs have been studied for their impact on macro-properties such as 

the contribution of lattice distortion in CCAs to solid solution strengthening [53]–[56] the impact of 

electronic structure on bond strength [57] the impact of chemical disorder on heat and electrical 

conductivity [58], [59]. The impact of configurational entropy on solid solution phase stability has been 

extensively studied [60]–[63] generally found not to contribute significantly to microstructural 

stabilization of an alloy as a single phase [35], [63], [64]. Therefore, by extension, configurational entropy 

is not expected to contribute significantly to material properties that depend on microstructure, such as 

corrosion. The findings of this thesis work are consistent with that observation. In general elevated 

configurational entropy in an alloy is balanced by a correspondingly weaker (less negative) enthalpy [35] 

which is an additional reason the term CCAs is preferred in this thesis to refer to the class of alloys 

studied.  
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Corrosion behavior of CCAs in harsh aqueous media (elevated temperature & strongly oxidizing 

environment) have been extensively investigated [65], [66], [75]–[78], [67]–[74] with results being as 

varied as the compositions of the CCAs studied. It is difficult to compare results across a corpus of 

literature to glean coherent macro-trends if the data are not standardized in solvent condition and CCA 

class (eg. 3d transition metal alloys, refractory metal alloys, etc)[35]. 

3.3 Theory of Corrosion of Alloys in Molten Salts 

Corrosion in fluorides and chlorides occurs primarily by elemental dissolution at the alloy-salt 

interface, assuming the salts are fairly pure enough [79] that the thermodynamic favorability of oxidation 

and dissolution of the element into salt dictates how fast the element depletes at the surface, and the 

kinetics of its diffusion from the bulk to the surface dictates how fast the element replenishes at the 

surface dictates how much of it is available to be continuously lost over the corrosion period. Since metal 

oxides are generally soluble in molten fluorides [80], any passivating oxide layer (for example Cr2O3 or 

Al2O3) preexisting on the alloy surface due to prior exposure in air or high-temperature water would 

quickly dissolve in the molten halide shortly upon initial exposure to the salt [81].  

Corrosion in molten chlorides largely results from the formation of alloy-element chlorides [79] , 

which are soluble [80]. These elements are then dissolved from the alloy into the salt. It is generally assumed 

that carbide and oxide precipitation on the surface of the alloy is insufficient to form a continuous or even 

substantially detectable layer between the alloy and the salt, in fact, so far studies have shown that these are 

generally soluble in molten halides [26], [80]. Assuming no solute saturation and corrosion kinetics 

controlled by surface reactions, the mass of metal corroded from an alloy, WM is given by Faraday’s Law: 

 

 

(1) 
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Where  is the total charge exchanged over the corrosion period t [s], MA is the 

atomic weight of the element, F is the faraday constant [C·mol-1] and n is the number of equivalents 

electrons transferred during the oxidation reaction of metal. The total mass loss W is converted to units of 

total concentration of elements corroded in [ppm] into the salt as a standard metric to quantify the extent of 

corrosion in the alloys tested in our study. 

Assuming constant vapor pressure of Cl2(g) in thermodynamic equilibrium with dissolved 

Cl2
 in the salt, the net reaction describing the dissolution of an element M from the surface of the alloy can 

be expressed by the Nernst equation: 

 

 

(2) 

Where - is the standard reduction potential of corrosion reaction of metal M (by 

formation of soluble MCl2) from the alloy. T is the temperature in K, R is the ideal gas constant in [J·K-

1·mol-1],  is the activity of M at the surface, and  is the partial pressure of chlorine in the 

atmosphere.  

In a well-controlled system the standard value of  is assumed to be constant.  is 

the activity of MCl2 dissolved in the molten salt before the reaction initiates. Since the thermodynamic 

favorability of initial onset of elemental dissolution into pure salt is of interest, a nominally dilute 

concentration of corrosion product MCl2 is often assumed of  = 10-6 [mol/cm3]. The reduction 

potential of this corrosion reaction can be converted to the free energy of the same reaction by the relation: 
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(3) 

Like  the free energy of a reaction indicates the thermodynamic favorability of the 

corrosion reaction; the more negative the ΔG value of a reaction, the more thermodynamically favorable it 

is. The thermodynamics of the corrosion mechanism can then be parametrized by the Gibbs free energies 

of the product formation  and the activities of the alloying elements aM,surf at the interface. The 

Gibbs free energy of formation of the alloy also provides an indicator of corrosion resistance.  

The Ellingham Diagram (Figure 3) shows the standard reduction potentials of the corrosion 

reaction in fluoride for several common elements of interest (Fe, Cr, Mn, Ni, Mo, Al, Ti, Co, Mo, W) for 

their respective reactions expressed in Equation (1). The more negative the Eo value is, the less noble the 

metal in the fluoride media and the more stable the metal fluoride. Evidently, the thermodynamic 

favorability of dissolution varies widely across different elements.  
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Figure 3 Ellingham diagram [82] showing standard reduction potentials of various common alloying 

elements of interest as a function of temperature in fluoride salts, assuming activity of metal fluoride = 

10-6 [mol/cm3].. The more negative the reduction potential of a metal is, the more stable the fluoride and 

therefore the less noble it is in fluoride media. 

The development of a corrosion model begins by considering mass transport along the depth 

of the alloy for each element from the interface, described by Fick’s Second Law:  
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(4) 

Where CSS,M(x,t) is the local instantaneous concentration of the element M (aka the analyte) in solid 

solution of the alloy [moles/m3] as a function of depth from the metal alloy interface into the alloy, x [m] 

and time, t in [s]. DSS,M is the effective solid solution diffusion coefficient of the element M in the lattice 

in [m2/s]. Applying the following to Equation (4), 

i)  Dirichlet boundary conditions: 

a) CSS,M (x -∞, t) = 0, ie. The concentration of the analyte at the alloy surface is 0; Applying 

this boundary condition assumes a volume of molten salt which is large enough that it 

does not become saturated with the analyte within the corrosion period, and that, once 

dissolved, the diffusion of the analyte away from the surface into the bulk is extremely 

fast. A comparison of solid solution diffusion coefficient for Fe in Table 2 with its 

diffusion coefficient in molten chloride in Table 9 shows that the diffusion of Fe in 

molten salt is 7 orders of magnitude faster than in solid solution, so this assumption is 

valid; 

b) CSS,M (x  ∞, t) = C0 (alloy bulk concentration of the element), ie the concentration of the 

analyte in the bulk alloy is equal to the original concentration; 

ii) Initial Condition: CSS,M (x , t = 0) = C0; 

iii) Dimensional scaling: ; and  

iv) The similarity transformation:  

The concentration profile of the element along the depth into the alloy from the molten salt/alloy 
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interface, x [m] at time t [s] can therefore be given by the analytical solution to Equation (4): 

 

; 0 < t < τ (5) 

This concentration profile can be used to estimate elemental depletion depth. An example of 

the concentration profile as a result of this corrosion model is shown in Figure 2. The elemental depletion 

depth can indicate the extent to which corrosion has altered the alloy chemistry at subsurface regions: 

higher depletion depths can imply greater effects of corrosion attack. 

 

 

Figure 4 An illustration of the elemental depletion profile due to dissolution based on the analytical 

solution to the diffusion equation found in Equation (8) assuming surface concentration of analyte at 

molten salt/alloy interface = 0, and temperature T = 500oC where solid solution diffusion coefficient, 

DSS,M = 10-15[m2/s]. 

Surface corrosion rate (indicated by I in equation (1) of an element M) affects the value of 
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C0 in the initial condition as well as the left boundary condition in the Model, and solid state diffusion 

coefficient DSS,M determine the concentration gradients that result in a shift in local composition of the 

alloy near the surface region. Diffusion coefficients of alloying elements can determine the steepness of 

their concentration gradients at any point in time during the corrosion period, as illustrated in Figure 4. It 

is therefore apparent how these kinetic parameters IM and DSS,M affect corrosion. It was observed by 

Elbakhshwan et al [83] that at high temperatures, the combination of fast diffusion to the surface and 

favorable thermodynamics of corrosion at the surface resulted in Mn corroding rapidly enough to 

apparently suppress the corrosion of Cr, demonstrating how a combination of particular kinetic and 

thermodynamic parameters can give rise to novel phenomenon. As an example of the order of magnitude 

for diffusion coefficients in Ni-based alloys at high temperature some values for Hastelloy N are 

provided:  

The rate at which an element M participates in a corrosion reaction at the surface depends on 

the abundance of element M at the surface. The depletion of M at the surface sets up concentration gradients 

which initiate the diffusion of M to the surface from the bulk. Diffusion of M through the bulk to the surface 

is described by Fick’s Second Law:  

 

 

(6) 

Where  is the local concentration of the element M in solid solution in the alloy 

[moles/m3] at a given exposure time and depth from the metal alloy interface.  is the chemical 

diffusion coefficient of a specific element in the lattice in [m2/s] (in the case of multiple phases being 

present, an effective chemical diffusion coefficient was defined as the phase fraction weighted sum). In an 

alloy under corrosion in molten salt, the chemical diffusion coefficients  may be more relevant than 

tracer diffusion coefficient .  
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The diffusion coefficient represents the speed at which M diffuses in the bulk, and it 

is dependent on the energetic favorability of the migration of one atom of M to a vacancy site 

within the bulk, as described mathematically by the Einstein Diffusion Equation: 

 

 

(7) 

 

Where DSS,M is the diffusion coefficient of a species M in the solid, r is the “jump” radius 

(distance) of an atom between sites (~0.3 nm), ν is the vibrational frequency of the diffusing atom (~ 1013 

Hz), Z is the number of available neighboring sites, Q is the activation energy for the diffusion in [J/mol] 

(as an example, the Q-value for Ni in FeCoCrMn0.5Ni HEA is ~315 [kJ/mol] [84], R is the ideal gas 

constant in [J∙K-1∙mol-1], and T is the temperature in [K]. It is therefore apparent from the Z term in the 

equation how processes that increase the number of neighboring sites, such as the injection of vacancies 

by surface corrosion, can affect the diffusion constant in the bulk of the alloy. It is also apparent that 

migration activation energy Q and temperature T can affect the rate at which a species diffuses within the 

bulk of the alloy.  

Table 3: Examples of solid solution diffusion coefficients of analytes of interest  

Element Temperature (oC) Diffusion Coefficient 

[cm2/s] 

Ref 

Cr 700 8.72 x 10-15 [85] 

Cr 850 2.31 x 10-12 [79] 

Fe 850 5.56 x 10-12 [86] 

These values are useful benchmarks to know what rate of corrosion to expect.  
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We can therefore see how kinetic parameters can impact the mechanisms of corrosion : 

elements with faster dissolution kinetics at the interface but insufficiently quick solid state diffusion 

kinetics within the alloy deplete more quickly in the near-surface regions and the depletion of some 

elements results in the relative localized enrichment of others, giving rise to phase instabilities which can 

affect corrosion.  

The chemical model described provides the basis for commonly-used quantitative methods 

of evaluating corrosion extent and corrosion rate: weight loss from alloy as in Eqn (1), elemental 

depletion depth and quantity of element lost from the surface which can be derived from the integration of 

eqn 7. In addition, the kinetics of the surface reaction rate can be measured by potentiodynamic 

polarization which will be discussed in more detail in the later section on theory of analytical techniques 

for quantifying corrosion products.  

However quantitative metrics for measuring extent of corrosion are insufficient to 

completely describe material degradation these materials undergo. It is possible for a material to have lost 

a comparatively small amount of weight, but if all this weight loss was due to a crack that had formed at 

the material grain boundary, this can propagate leading to rapid structural failure. Therefore qualitative 

analysis of corrosion is often necessary. The following corrosion-related modalities of material 

degradation have been codified as distinct in literature, distinguished from one another by the specific 

interplay between thermodynamics/kinetics of the surface interaction of constituent elements of the 

structural alloy and the kinetics of their diffusion to the surface that give rise to the distinct degradation 

phenomenologies:  

The mechanism of galvanic corrosion can occur where there is enough local potential 

difference present between two regions on the surface of an alloy for the more positive region to act as a 

local anode where the oxidation reaction occurs and the more negative region to function as the local 
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cathode where the reduction reaction occurs . This pair of local anode/cathode can be separated by 

distances as small as 2.5 um [75]. Local potential differences can observed in mixed phase regions where 

one phase is at a higher potential than the other, attributed to the higher-potential phase having a relatively 

elevated enrichment of a more noble element than the lower-potential phase [65], [75].  

Where a galvanic couple arises, there also arises the possibility for anodic dissolution [87] 

where elements oxidized at the anode dissolve into the molten salt. This can occur even with elements 

considered noble [88] in that environment. Fundamentally, galvanic corrosion is limited by 

thermodynamic parameters. 

Pitting is the phenomenon where microscopic depressions spontaneously initiate on the 

alloy surface due to local dissolution. As mentioned earlier, local corrosion by dissolution can occur on 

the spatial order of a few microns, but pitting occurs without the need of local potential differences. These 

pits become sites for local concentration of chemically-attacking species, thus exacerbating corrosion. 

Pitting is a significant phenomenon in corrosion of alloys in molten salts [89]. Fundamentally, pitting is a 

thermodynamic phenomenon limited by the morphological availability of pitting initiation sites.  

Intergranular corrosion is where particularly corrodible elements are preferentially corroded 

at sites between grains at the alloy-salt interface [90], [91] . This phenomenon is more pronounced in 

systems where there are driving forces to accelerate the diffusion of elements from the grain bulk to the 

grain boundary [92] where diffusion tends to be faster, facilitating the exposure of the element to the 

alloy-salt interface. A related phenomenon is grain boundary corrosion – defined as faster diffusion 

coefficient along the grain boundaries - which, if significant, can cause premature failures even at low 

weight loss values [8] by mechanisms such as accelerated stress corrosion cracking at the grain 

boundaries [93], [94]. Fundamentally, intergranular corrosion is limited by kinetics of thermo-

dynamically corrodible elements; it is a corrosion modality which accelerates stress corrosion cracking. 
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Dealloying [95] is the phenomenon where a more thermodynamically corrodible element is 

continuously dissolved from the alloy leaving the more thermodynamically noble element behind 

resulting in a distinctively nano-porous structure. This resulting morphology distinguishes the process of 

dealloying from intergranular corrosion. Two of the three major mechanisms of dealloying rely on a 

sufficient abundance of the noble element in the alloy (expressed by the “parting limit" which is the 

minimum fraction in the alloy of less noble elements which is required for dealloying to be observed at a 

particular temp [96] balanced by sufficiently quick diffusion kinetics of the noble element to 

competitively fill vacancies injected by the departure of corrodible element atoms [97], [98]. These two 

mechanisms are distinguished from one another by the subtle differences in the resulting morphologies - 

3D bicontinuous vs negative dendrite porous morphology. The third major mechanism of 

dissolution/redeposition [98] in which the alloying elements are generally both noble and their 

thermodynamics of dissolution are close together. Molten Salt Dealloying (MSD) has been demonstrated 

for binary NiCr alloys [90], [99] and even ternary NiCrFe alloys [100]. In general, dealloying 

mechanisms are limited by the solid state mobility of the thermodynamically more noble element. 

Those previously mentioned mechanisms are of primary concern if the salt is absolutely free 

of impurities. However, since even the most aggressive purification processes such as the bubbling of 

halide-acid gas through the halide salt to react away any oxygen bearing impurities [101] rely on 

L’Hopital’s equilibrium rule, absolute purity is impossible to achieve and therefore most salt will contain 

even miniscule amounts of impurities, even if it is close to or below the detectable limits of the most 

sensitive state-of-the-art analytical techniques. Therefore impurity driven corrosion cannot be completely 

eliminated from consideration. Oxide (O2-), water (H2O), sulfate (SO4
2-) and phosphate (PO4

3-) are the 

primary anionic culprits of impurity-driven corrosion. Under the Lux-Flood model of acids/bases oxygen-

bearing impurities spontaneously release the O2- anion into the molten salt under most conditions where 

they attack metal elements on the surface of the alloy to form soluble metal cations [102]–[104] . On the 
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other hand, metal oxides formed which are insoluble in the melt can precipitate on the alloy surface. 

Carbides and Tellurides are other notable insoluble impurities whose precipitation on the alloy surface 

accelerates degradation. The grain growth of these insoluble impurity precipitates can cause intergranular 

cracking on the alloy [91], [105]. Metal cations in the salt that are not the base cations can alter the 

surface activity of the alloy elements and thus impact corrosion mechanisms. While impurity-driven 

corrosion is a legitimate engineering concern, the primary task at hand is to understand the processes of 

material degradation of alloys by the primary anion in the solvent environment - halides. 

Investigating the interplay between these mechanisms is the primary focus of this thesis, and 

the question of whether one process in particular predominates the degradation of alloys in molten halides 

is the central line of inquiry herein.
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3.4 Analytical Techniques for Quantifying Corrosion Products in MS 

 

In order to study corrosion mechanisms, it is necessary to determine the rate at which the various 

alloy constituent elements corrode differentially into the salt. The suitability of the chemical analysis 

technique to quantify corrosion products is highly dependent on a) the state of matter of the analytes 

(solid/liquid/gas), b) the chemical form of the analytes expected, c) the expected concentration of the 

analytes within the sample. The next chapter includes a comparative study of common chemical analysis 

techniques employed in the molten salt research community. This study serves to highlight the 

importance of correctly estimating the correct chemical form of corrosion products/  

This section provides a brief overview of the theory behind chemical analysis techniques used to 

quantify corrosion products in molten salts used in this thesis, as well as the framework for the 

quantification analysis. These techniques are commonly used by the molten salt corrosion community.  

3.4.1 Inductively Coupled Plasma Mass Spectrometry & various techniques in 

Optical Emissions Spectroscopy 

 

Several chemical analysis techniques used in this thesis used to quantify corrosion products such 

as Inductively-Coupled Plasma Optical Emissions Spectroscopy (ICPOES), Laser Induced Breakdown 

Spectroscopy (LIBS) and Glow Discharge Optical Emission Spectroscopy (GDOES) have in common 

that they are all destructive techniques in which a small amount of sample on the order of mg is atomized 

by a plasma (thousands of degrees K) which also serves to energetically excite the electrons in the analyte 

such that upon relaxation, they emit light usually in the optical spectrum that can be quantified by a 

detector. Quantifying the intensity of the emitted light allows the analyst to infer the concentration of 

analyte in the atomized sample by a calibration curve. A schematic of the commonalities between 

ICPOES, LIBS and GDOES is shown in Figure 5. 
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Plasma Atomization 

 

 

Figure 5 Infographic from Chapter 20 of [106]. Emission, absorption and fluorescence by atoms in a 

flame or plasma. In atomic absorption, atoms absorb part of the light from the source and the remainder 

of the light reaches the detector. Atomic emission comes from atoms that are in an excited state because 

of the high thermal energy of the flame. To observe atomic fluorescence, atoms are excited by an external 

lamp or laser. An excited atom can fall to a lower state and emit radiation. 

Inductively-Coupled Plasma (ICP) is a conventional technique used to atomize samples in 

order to analyze the constituent elements in the sample. For atomization by ICP, a sample must first be 

completely digested by acid (generally about ~1g amounts are digested) such that all of it dissolves into 

aqueous solution thereby homogenizing it. Sample masses of milligrams may be used if the analyte of 

interest to be quantified constitutes the bulk of the sample. Otherwise, if the analyte of interest is in trace 
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amounts (1-1000ppm) in the sample, at least 1g of sample is required for analysis.  

It is then volumetrically diluted [107] before the aqueous digest is loaded onto the ICP 

instrument. The aqueous digest needs to be volumetrically diluted such that the anticipated analyte 

concentration is within the dynamic range of the detector (ie. The range of detector sensitivity). This is 

generally ~0.1-10,000ppm [108] for detectors coupled to ICP. With this understanding, it then becomes 

clear why samples ~5g or greater become difficult to analyze by ICP-related methods - they have to be 

diluted by >5000x at which point uncertainties compounded by serial dilution become non-negligible.  

The sample chamber of an ICP instrument only has room for a volume of ~10mL of 

aqueous sample [108]. The aqueous sample is aspirated into an inductively coupled plasma produced by 

applying high voltage across a chamber of argon gas. The ionization energy of Ar is 15.8eV, which 

exceeds the ionization energy of most elements except He, Ne and F [106], so most elements are ionized 

with the Ar. Analyte elements can be ionized by collisions with Ar+ or energetic electrons [102]. A 

plasma torch in a typical Agilent instrument is about 8cm in length, 1cm in diameter. The plasma, 

reaching temperatures as high as 5500 - 6500 K [109], atomizes the sample digest.  

Another possible method of atomization of the sample is by Laser Induced Breakdown in 

which a laser of spot size ~0.5mm [110] is pulsed directly onto a sample, usually a solid, and a very 

localized plasma is produced such that the local temperature on the sample can go as high as 10,000-

20,000K[102] and the surface atoms on the sample in proximity are thereby atomized (Figure 6.) The 

laser is produced directly on the solid sample, laborious sample preparation is eschewed. Method 

development for LIBS to replace ICP-MS/OES in quantifying corrosion product ex-situ for the 

accelerated quantification of high-throughput CCA corrosion tests was performed as part of this thesis  

In the case of Glow Discharge, the sample functions as a cathode and is placed opposite an 

anode. A high voltage and a steady supply of Ar is placed between them. The plasma is formed locally on 

the sample by the ionization of the Ar atoms. Sputtering of the sample occurs, which is the ejection of 

sample atoms following the impact of energetic ions (and neutral atoms) in the plasma on the surface. An 

incoming ion suffers a binary collision with a target atom. This is illustrated in Figure 7.   
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In the case of solid samples, depth profiling can be performed by successive pulses probing increasingly 

deeper to measure elemental concentrations as a function of depth [102]. 

 

After the sample has been atomized, it is quantified according to the coupled detection method. 
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Figure 6: Schematic of plasma formation for Laser Induced Breakdown analysis adapted from [111] 

 

Figure 7: Schematic of plasma formation for Glow Discharge Optical Emission Spectroscopy, adapted 

from [112] 
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Mass Spectrometry 

 

The plasma produced by ICP can be directed into a mass spectrometer. Atoms are generally singly-

ionized in a plasma. The hardware of a mass spectrometer (eg. Magnetic sector or alternating current 

quadrupoles are common ones) enables the separation of analytes by mass-to-charge ratio to be 

discriminated by Faraday cup detectors [102]. The analytes are thereby identified by mass number. The 

mass spectrum of a sample is essentially an histogram of the elements in the sample detected over the 

analysis period. The height of the histogram corresponds to analyte concentration in the sample according 

to a linear calibration curve of the form H = bC 

Where H is the element intensity on the mass spectrum, C is the concentration of the analyte in the sample 

and b is the linear calibration constant dependent on ionization efficiency and detector efficiency of the 

mass spectrometer. 

 

(Optical Emissions) Spectroscopy 

 

Electrons on the atoms within the plasma get energetically excited. Upon their de-excitation, they emit 

photons at wavelengths characteristic to their element. The series emission wavelengths (λ) can be 

predicted by eqn (8) for m =3,4,5… and each element with proton number Z and Lseries is an empirical 

constant depending on the region of electromagnetic spectrum of interest: Lseries = 3645.6A for the Balmer 

series in the visible spectrum. As m—> infinity, the series converges to the value Lseries indicating that 

Lseries =  1/Z2 is the lowest wavelength theoretically observable from an element, which corresponds to its 

first ionization energy.  

      (8) 

An illustration electronic transitions resulting in optical emission is provided [113].  
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Many elements heavier than Hydrogen with multiple valence and tightly-bound core electrons will exhibit 

deviations from their expected emission lines based on this analytic formula, due to the mutual 

interactions of their electrons. 

Quantum selection rules determine the probabilities with which each transition and its associated 

emission can occur.  

 

The emission rate density at a particular wavelength I(λ) is linearly related to the number of analyte atoms 

n0 in the plasma:   

I(λ) = Cno 

Where I = detected emission intensity, no is concentration of analyte atoms in the matrix and C is a 

constant determined by: 

I. The transition probability of an electron between energy levels 

II. The energy of the upper level 

III. The partition function 

IV. Signal transmission efficiency of the detector 

V. Temperature 

VI. Matrix effects 
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Figure 8 Illustration of electronic transitions resulting in optical emission of the hydrogen atom [109] 
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The selection rules governing the emission energies and their expected intensities of each element are 

more complex than can be discussed by the scope of this thesis. In practice, only a small subset of 

emission wavelengths (aka “lines”) has sufficient intensity to enable adequate instrument sensitivity for 

quantifying the analyte. For more details on the quantum mechanical theory governing optical emissions 

spectra the reader is directed to Chapter 2 of [113]. For more details on considerations regarding the 

quantification precision by OES such as a)peak width, b) background correction, c)determining detection 

limits for a particular sample-matrix pair, d) how to address spectral interference, the reader is directed to 

Chapter 20 of [102].Moreover, depending on atomization technique (ICP vs. GD vs. LIB), analyte atoms 

may or may not be in local thermodynamic equilibrium, so the best emission lines for a particular analyte 

in one atomization technique may not be the best emission lines for the same analyte with a different 

analytical technique. Due to all these considerations, generally in practice it is necessary to establish a 

calibration curve for the dynamic range of one’s samples for every optical emissions technique and 

matrix-analyte pair.  

 

A direct comparison of analytical performance between OES techniques (represented by 

ICP-OES) and ICP-MS is provided in Table 4. Example figures for the analyte Ni+ ion at 231nm is 

provided for illustration [114] . For Ni, we note that these values are generally in the ppb range meaning 

they are sensitive to incredibly minute concentrations of Ni+, and by extension, common alloying cations 

in alloy corrosion experiments.  
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Table 4 Comparison of analytical figures of merit for ICPOES and ICPMS [102]. 

 ICP-OES ICP-MS 

Detection limits (ng/g) 0.1-10 

(eg. 3-50 [ng/g] for Ni+ 

@231nm  [114] 

10-5 – 10-4 

(eg. 0.001-0.2 [ng/g] for Ni+ @231nm  

[114]) 

Linear range 105 108 

Precision, short term 

(5-10min) 

0.1-2% 0.5-2% 

Precision, long term 

(hours) 

1-5% <5% 

Sources of interference Many spectral interferences, 

few chemical interferences 

Some chemical interference, many 

mass interferences, especially isotopic 

interference 

Sample throughput 6-60 elements/min All elements in 2-5min 

 

ICP-MS and ICP-OES are common analytical techniques used to quantify ex-situ metal corrosion 

products dissolved into salt in the molten salt community. They have the disadvantage of being 

destructive techniques which require a comparatively elaborate sample preparation procedure. In addition 

they are ex-situ techniques so they preclude the capability to obtain time-resolved analyte quantification 

data. In this thesis, ICP-OES/MS, GDOES and LIBS are critically evaluated and implemented with 

awareness of their limitations in Chapter 2.  

 



35 

 

3.4.2 Theory behind Some Commonly-used Electrochemical Techniques to study 

corrosion in molten salts 

Beyond showing results consistent to those from traditional gravimetric experiments, 

polarization studies of alloys in molten salts can also be used to probe element-wise reaction kinetics. Ai 

et al [115] have used polarization studies of W and Mo in FLiNaK at 800oC to observe that the icorr of Mo 

is twice that of W in the molten salt. They made further observations with corrosion tests of Ni-based Mo 

& W-bearing alloys that are consistent with Mo diffusing more rapidly through the Ni matrix relative to 

W. This suggests we can expect the corrosion kinetics of Mo to be higher than W. This finding is 

significant because the thermodynamic nobility of both Mo and W against corrosion have made it 

difficult to study their corrosion kinetics with ex-situ analytical methods, but with in-situ electrochemical 

methods, this has now become a possibility. This is a major advantage of electrochemical methods over 

gravimetry. 

Within the last 10 years, in-situ electrochemical techniques to study the corrosion performance of 

alloys in molten salts have been favored because they present the following benefits [116], [117]: 

i) instantaneous corrosion rate can be obtained in minutes in a polarization study;  

ii) instantaneous corrosion rates at intermediate time steps across the corrosion period;  

iii) corrosion conditions can be well-controlled in a polarization experiment;  

iv) the in-situ nature of the electrochemical measurements has the potential for scaling up to 

handle a high-throughput experimental process or in-reactor online monitoring.  

An example of a setup to perform polarization studies on an alloy is shown below in Figure 9 [118]. The 

alloy to be studied is connected to the working electrode (WE).   
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Figure 9 An example of a setup to perform polarization studies on an alloy [118]. The salt medium is 

NaCl-KCl-ZnCl2. The alloy to be studied is connected to the working electrode (WE). The reference 

electrode (RE) is the Ag/AgCl couple. A counter electrode (CE) is present as a source of electrons. 

Quartz is used as insulation and containment material such that the salt bath provides the only route of 

electrical conductivity between all electrodes. Parstat-2273 refers to the potentiostat.  

With the setup, the potentiostat is used to electrically polarize the alloy sample over a range of values and 

the current crossing the WE is measured. The polarization window is selected such that the following 

Tafel plot (Figure 8) can be obtained:   
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Figure 10: An example of a Tafel plot with parameters of interest marked out [118]. Ecorr: corrosion 

potential, icorr: corrosion current density, Passivation area indicates a range of potentials in which a 

protective film (often consisting of oxide) has formed over the alloy to prevent continual dissolution of 

metal, ipass is the current density in the passivation area , Epit : critical pitting potential.   

Ecorr indicates the overall nobility of the alloy with respect to the RE, and the value for an 

alloy is typically in between the Ecorr of its most noble and least noble elements. Potentiodynamic 

polarization experiment can provide both kinetic (icorr ) and thermodynamic (Ecorr ) information about the 

system. The corrosion current density can be converted to corrosion rate in [mm/yr] by the Stearn-Geary 

Equation [119] 

 

 

(9) 

 

Where K is a conversion constant 3272 [mmA-1cm-1year-1], EW is the Equivalent Weight of the alloy in 

[g mole-1 e-1], calculated by the following relationship [120]: 
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(10) 

Where fi is the weight fraction of the ith alloy constituent, ni is the number of electrons being transferred in 

the oxidation of the ith species, and MWi is the atomic weight of the ith
  alloy constituent.   

Tafel plots from Keny et al [117] (Figure 10) show that icorr of alloys of interest is lowest for 

Hastelloy N and Incoloy 800HT, compared to the Inconels studied and Incoloy 800. This corroborates the 

large volume of experimental support, obtained from gravimetric measurements, for Hastelloy N as a 

prime candidate structural material for MSR among commercial alloys in Table 3 and Table 4 , and lends 

support for the efficacy of potentiodynamic polarization over gravimetry. 

In order to accelerate the throughput of corrosion product quantification, in-situ 

electrochemical probe to quantify dissolved cations of interest, in particular Fe and Mn was developed. 

Cyclic voltammetry-based electrochemical probes in molten salts have been demonstrated as a robust 

concept in the literature spanning decades.  

The setup to perform CV in a salt to determine the concentration of dissolved analyte (for 

example Fe2+) is shown in Figure 11:  

 

Figure 11: A typical cyclic voltammetry setup to measure the concentration of a dissolved cationic 

analyte in molten salt at >500oC [121]. The Reference Electrode (RE) and Counter Electrode (CE) 

material is usually a noble metal like Pt whose potential remains stable in the salt over the course of the 
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study. The Working Electrode (WE) material selected to be a noble metal like Pt or W which is more 

noble than the analyte to be studied (ie. When the potential is swept in the positive direction the analyte 

will oxidize much more quickly than the electrode material does). All three electrodes are controlled by 

the potentiostat. All electrodes must be electrically insulated from one another and the crucible material. 

The crucible material is usually chosen to be a material that is impervious to corrosion by the molten salt 

media to be studied to avoid corrosion effects such as dissimilar materials corrosion from complicating 

the system. The major difference between the CV setup shown here and the Polarization study setup 

shown in Figure 9 is that in the Polarization study, the alloy to be studied is connected to the WE, 

however, in a CV study, the WE is in direct contact with the salt to study the bulk analyte concentration 

in the salt.  

A potential is applied by the potentiostat at the WE, and swept from one end of a potential 

widow to the other while the current density (I) crossing the WE is measured by the potentiostat. When 

the potential at the WE crosses the apparent reduction potential of a species during the cathodic scan, 

reduction of the analyte at the WE initiates. When the potential at the WE passes the apparent reduction 

potential of a species during the anodic scan, oxidation of the analyte at the WE initiates. The apparent 

reduction potential of an analyte (for example Cr) in a particular cell, ECr,cell is given by  

 
- 

(11) 

 

Where Eref is the half-cell reduction potential of the RE and the half-cell reduction potential of a metallic 

analyte Cr, ECr0/Cr2+, is given by the Nernst equation for the reduction of a pure metal:  

 
- 

(12) 

 

(recalling that in ideal solutions, activity coefficient can be assumed to be constant such that the change in 
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the activity of an analyte in solution is approximated by the change in concentration in solution).  

For dissolved metallic cations in molten fluorides, charge transport due to 

oxidizing/reducing analyte at the surface of the electrode for a Nernstian, soluble-insoluble reaction takes 

the form derived by Berzins & Delahay [122] 

  

(13) 

 

Where iBD, M (t) is the Berzins-Delahay solution for current density crossing the surface of the electrode 

for the metal M in [A/cm2] at overpotential, η (the difference between the measured potential at the WE 

and the half-cell potential of the reaction of interest ie. η = Emeasured
 – EM0/M2+) ; Cbulk,M is the bulk 

concentration in [mol/cm3] of the metal analyte M dissolved in the molten salt; n is the number of 

electrons exchanged in the reaction, F is the Faraday constant in [C/mol]; A is the electrode surface area 

in [cm2] ; Do is the diffusion coefficient of the dissolved oxidized species in the molten salt [cm2/s] ; v is 

the potential scan rate in [V/s]; R is the ideal gas constant in [J∙K-1∙mol-1]; T is the absolute temperature in 

[K]. An example of a CV curve is shown in Figure 1  

The directly proportional relationship of the redox peaks to the bulk concentration of the 

analyte is therefore derived (8]: 

 

- 

(14) 

 

An example of a calibration study to use CV as a quantification technique for dissolved Cr 

in FLiBe at 500-700oC is shown in Figure 12, illustrating how if one has knowledge of the Do value, with 

a constant potential sweep rate , one can determine the Cbulk in a system using CV.  
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Figure 12 From [123] (a,left) Cyclic Voltammetry to quantify dissolved Cr in molten FLiBe at 700oC with 

a series of calibration concentrations of dissolved Cr: 0ppm, 88ppm, 156ppm, 285ppm. The higher the 

dissolved concentration, the larger the amplitudes of the redox scan peaks; (b,right) the directly 

proportional relationship between the cathodic peak potentials of the Cr/Cr2+ couple with respect to the 

log of concentration at 500-700 °C.  

Diffusion coefficients for common analytes in molten fluorides and chlorides have been widely studied 

using electrochemical techniques, and some representative values of analytes of interest are summarized 

in Table 5:  

Table 5 Examples of diffusion coefficients of analytes of interest in molten halides. 

Analyte System Diffusion coefficient 

[cm2/s] 

Reference 

Cr2+ FLiBe, 600oC 1.2 x 10-5 [123] 

Fe2+ LiCl-KCl, 500oC 1.5 x 10-4 [124]  

Co2+ LiCl-KCl, 500oC 1.16 x 10-4 [124]  
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CV-based sensors for quantifying metallic analytes in molten FLiBe [123]  FLiNaK  

[121], [125] and LiCl-KCl [126] have been developed with some success in recent years. 

The development and testing of a miniaturized CV-based Fe probe in molten halides as well as data 

reduction tools for the automated CV analysis was developed as part of this thesis.  

3.4.3 Synchrotron X-ray Absorption Analysis 

 

The electronic structure and chemical environment of an analyte can be probed by X-ray 

Absorption Spectroscopy (XAS); information regarding the site symmetry, chemical bonding, oxidation 

state, interatomic distance, and coordination number can be obtained [127] Our samples of diameter 6mm 

are each exposed to a monochromatic X-ray beam a few microns (~3um) in diameter.  

Depending on the analyte of interest, an incident X-ray beam is scanned in energy in the 

neighborhood of the excitation energy (E0) of a core electron (K denotes a 1s electron and L3 denotes a 

2p electron, illustrated in Figure 13) for the analyte (eg. Cr, K= 5989 eV, Ni, K=8340 eV, Eu, L3~6970 

eV). The core electron is excited to an unoccupied energetic state of the atom (aka “quasi-bound” state) , 

leaving a hole in its place [127] .The absorption spectrum is obtained from a measurement is a 

superposition various photon absorption events that are characteristic of analyte (for example Cr, Ni or 

Eu), oxidation state, orbitals of transition, and chemical coordination (eg. Ligands) in the vicinity of the 

analyte atom [128]. Even though theoretically the species present in the analyte can thereby be identified 

on an X-ray Absorption Near Edge Structural (XANES) spectrum, due to the complexity of the of 

absorption/transmission/emission events allowed by selection rules, definitive identification of the 

chemistry of the analyte studied based on its XANES spectrum often needs to be accompanied by 

computational modeling of the expected spectrum.  
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Figure 13 Absorption transitions illustrated by [129] 

Synchrotron XAS have been identified as a powerful method for measuring the elemental 

concentration and chemical state of reaction products at micro- and nanoscale at low ppm-level 

concentrations, which can reveal the type of chemical reaction and the corrosion mechanism [130]. 

Feasibility studies to analyze the Cr2+ ion in molten chloride [131] and Ni2+ in molten FLiNaK [132] 

provide benchmark XANES spectra for what can be expected from in-situ analysis of Cr or Ni-bearing 

alloys corroding in molten halides.  
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3.5 Literature review: Corrosion Studies of Commercially Available Alloys 

& CCAs in Molten Salt 

Commercially available Fe-based alloys and Ni-based alloys have been extensively investigated for 

their corrosion performance in molten halides. This research goes as far back as the 1950s [24]. The 

interest has only accelerated in the last 20 years. This provides a wide base of benchmark metrics and 

qualitative understanding for the corrosion performance of molten salts the state-of-the-art in commercial 

alloys, to direct the research and development in advanced structural alloys. Corrosion rate of Hastelloy N 

and Incoloy 800HT have shown lower corrosion rates than Inconels 600, 617, 625 and Incoloy 800 

(compositions provided in Table 7) via potentiodynamic polarization [117]  
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Table 6: Weight % compositions of “conventional” Fe-based alloys, in decreasing order of Fe content 

Material Fe C Mn Si Cr Ni Mo Nb Ta Ref 

T91 90.06 0.105 0 0.43 8.26 0.13 0.74 0.075 0  

 

[31] 

SS 347 67.096 0.08 2 1 18 11 0 0.8 0.024 

SS 304 65.92 0.08 2 1 20 11 0 0 0 

SS 316L 65.638 0.002 1.8 0.46 17.5 12.3 2.3 0 0 

SS 310 50.75 0.25 2 1.5 25 20.5 0 0 0 

  

Table 7 : Weight % compositions of Ni-based considered as candidates for MSR applications, in decreasing order of Ni content.   

Material Fe C Mn Si Cr Ni Mo Al W Nb Ti  Co Ta Ref 

Nimonic 80A 0.12 0 0.23 <0.01 19.0 76.60 <0.01 1.42 <0.01 <0.05 2.44 0.024 0 [133] 

Alloy 600 6 0.15 1 0.5 17 75.35 0 0 0 0 0 0 0 [31] 

Hastelloy N 6 0.8 0 0 8 68.2 17 0 0.1 0 0 0 0 

Hastelloy B3 1.5 0.01 3 0.1 1.5 65 28.5 0.5 3 0 0 3 0 [134] 

Haynes 242 2 0.03 0.8 0 8 65 25 0.5 0 0 0 2.5 0 

Haynes-230 1.8 0.1 0.5 0 22.5 59 1.2 0.3 14.1 0 0 0.3 0 [135] 
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Haynes-263 0.6 0.05 0 0 20 52 6 0.6 0.6 0 0 2.5 0 [134] 

Inconel 625 5 0 0 0 21.5 58 9 0.46 0 0 0 0 3.55 [119] 

Hastelloy C-

276 

3 0.01 1 0.08 16 57 16 0 4 0 0 1 0 [118] 

Alloy 690 11 0.05 0.5 0.5 31 56.95 0 0 0 0 0 0 0 [31] 

Hastelloy C-

22 

5 0.01 0.5 0.08 22 56 13 0 3 0 0 2.5 0 

Inconel 718 11.47 0.08 0.35 0.35 21 55 3.3 0.8 0 5.5 1.15 1 0 

Inconel 617 1.1 0.1 0.1 0 22.1 52.9 9.6 1.1 0 0 0.4 12.4 0 [135] 

Hastelloy X 19.3 0.1 0.5 0 21.3 47.5 8.8 0 0.4 0 0 1.4 0 

Incoloy 800H 41.3 0.1 0 0 23 35 0 0 0 0 0.6 0 0 [31] 
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The next two subsections summarize findings from a survey of literature on the current 

frontier of knowledge on the corrosion performance of candidate alloys, first by the conventional method 

of gravimetry that measures the total ions lost to solution during corrosion over a fixed corrosion period, 

and second by electrochemical techniques to determine an alloy’s nobility and the kinetics of the surface 

reaction. The body of literature consistently finds that the greater the alloy content of (Ni + Mo + W), 

especially over 70%, the more corrosion-resistant the alloy is in molten halides. Conversely, a consistent 

finding is that Cr is the primary corrosion product corroded from the alloy into molten halides. These 

findings suggest that designing an optimally corrosion-resistant alloy would involve maximizing (Ni + 

Mo + W) content and minimizing Cr content.  

 

Measurements of corrosion performance of commercially-available Fe-based and 

Ni-based alloys in molten salts by gravimetry 

A large volume of literature in the field comparing the corrosion performance of 

commercially-available Fe-based and Ni-based alloys’ corrosion performance in chlorides and fluorides 

by gravimetry generally point to Hastelloy-N being most suitable among them for MSR applications. A 

selection of representative data from the literature is summarized in Table 8 and Table 9.  

Table 8 summarizes the corrosion performance of commercially available Fe-based alloys in molten 

fluorides, chlorides and HITEC. The thickness loss rate is at best 10 μm/yr for SS 316L in FLiBe, and at 

worst 7.5 mm/yr for SS 347 in chloride.  
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Table 8: A summary of studies on corrosion performance of commercially available Fe-based alloys in 

descending order of Fe content, in molten salt systems of interest. 

 

Table 9 summarizes the corrosion performance of commercially available Ni-based alloys, 

generally showing that thickness loss in Ni-based alloys is far less than in Fe-based alloys. However, 

there is a notable zone of Cr depletion in the subsurface region of alloys with Cr as a constituent. This is 

expected, considering the thermodynamic favorability of chromium fluoride formation as shown in the 

Ellingham Diagram (Figure 3). 

  

Material Thickness loss rate (mm/yr) condition ref 

SS 347 

7.49  ± 0.32 NaCl-LiCl, 650  oC [119] 

0.12 HITEC at 538  oC [136] 

316L 

0.01 FLiBe, 700 oC [89] 

0.015 FLIBe, 650 oC [137] 

2 LiF-LiCl-LiBr, 530 oC [137] 

0.34 HITEC 570  oC [136] 

SS 310 

6.427  ± 0.40 NaCl-LiCl, 650  oC [119] 

0.36 HITEC 570  oC [136] 
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Table 9: A summary of studies on corrosion performance of commercially available Ni-based alloys of 

interest in descending order of Ni content, in molten salt systems of interest.  

* - extrapolated 

It is the general consensus that Fe-based alloys suffer rapid elemental dissolution in molten 

fluorides that disqualifies them for MSR applications, an expected conclusion given the comparatively 

high thermodynamic stability of Fe fluorides in fluoride media according to the Ellingham Diagram 

(Figure 3). It is also generally understood that the presence of Ni and Mo in the Hastelloy N impart 

Material Thickness loss rate (mm/yr) condition ref 

Hastelloy N 

 

negligible, with Cr depletion ingress of 0.020 mm/yr* FLiBe, 700 oC [89] 

negligible, with Cr depletion ingress of 0.050 mm/yr* 

FLiNaK, 850 

oC 

[135] 

IN 625 2.80  ± 0.38 

NaCl-LiCl, 

650  oC 

[119] 

IN 800H 5.947  ± 0.33 

NaCl-LiCl, 

650 oC 

[119] 

Haynes-230 Negligible 

FLiNaK, 850 

oC 

[135] 

Inconel 600 0.2 FLiBe, 650 oC [138] 

Inconel 617 negligible, with Cr depletion ingress of 0.100 mm/yr* 

FLiNaK, 850 

oC 

[135] 

Hastelloy C-276 0.01 NaCl–KCl–

ZnCl2 , 500oC 

[118] 

Hastelloy C-22 0.03 

Hastelloy X 

negligible, with grain boundary attack primarily 

associated with Cr depletion ingress of 0.300 mm/yr* 

FLiNaK, 850 

oC 

[135] 



50 

 

corrosion resistance to it by 1) the low thermodynamic stability of their fluorides in fluoride media and 2) 

forming diffusion barriers within the alloy that prevent more active elements such as Fe and Cr from 

diffusing to the surface; such diffusion barriers form in Ni-Fe alloys where the surface concentration of Fe 

depletes and Ni becomes relatively enriched at the surface [89], [135].  

Thickness loss rate must be reported with microstructural analysis to give a comprehensive 

understanding of the corrosion incurred by an alloy exposed to molten salt because intergranular 

corrosion can cause premature failures even at low weight loss values [8] by mechanisms such as 

accelerated stress corrosion cracking at the grain boundaries[93], [94]. In terms of microstructural 

changes incurred by alloys upon corrosion by FLiNaK at 850 oC,. Hastelloy X, Inconel 617, Haynes 230 

and Incoloy 800H show significant Cr depletion at depths of ~100 μm throughout the grains but more 

severely at the grain boundaries. It is expected that these four alloys would suffer more significant Cr 

mass transport (dissolution and solid-state diffusion) than Hastelloy N because they contain ~20% Cr 

content, which is 2.5x higher than the 8% Cr content in Hastelloy N. The significant Cr mass transport 

was also seen with 60-75%Ni, ~20% Cr alloys in FLiNaK at 580 oC  [133].  

These recent detailed studies into the corrosion resistance of Hastelloy N in molten fluorides 

are consistent with the finding from the MSRE which deemed Hastelloy N to be adequate over the 

duration of the experiment [29], although post-decommission examination revealed significant surface 

cracking [139], suggesting that there is room for improvement in performance in terms of irradiation-

induced embrittlement.  

In general, fluoride salts are more corrosive than chloride salts [140]. To compare the 

corrosion performances of these commercially available alloys in fluoride to their performance in chloride 

[140], [141], Hastelloy-N, Hastelloy-X, Haynes-230, and Inconel-617 and Incoloy-800H in KCl-MgCl2 at 

850oC had less intergranular void formation [140], [142], less surface pitting, less intergranular attack, 

less Cr depletion and shallower Cr depletion depth in chlorides than in fluorides. As with fluorides, Cr 
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depletion by corrosion in chlorides increases with increasing Cr content in the alloy [143].  

The top performers in corrosion resistance according to the data summarized in Table 9 in 

decreasing order, Hastelloy N, Inconel 617 and Hastelloy X, are also in order of decreasing (Ni + Mo + 

W) content. This observation is expected from the thermodynamic perspective since these three elements 

form the least stable fluorides (Figure 3). Hastelloy N has much less Cr content at 8% than does Inconel 

617 and Hastelloy X at ~22%, therefore the elevated activity of Cr in the latter two alloys can account for 

the fact that they suffer higher depletion depths of Cr than Hastelloy N after the corrosion period.  

However, there are three major challenges with gravimetry: first, it is difficult to determine 

from gravimetric measurements alone whether an alloy’s corrosion resistance is due to the 

thermodynamic properties of its elements, or whether it is due to surface reaction kinetics of the alloy 

constituents. Second, the corrosion period required to perform gravimetric measurements is constrained 

by the need to have sufficient mass loss to obtain precise measurements which means instantaneous 

corrosion rates at short time intervals cannot be measured by this method. Third, gravimetry is an ex-situ 

technique, requiring down-time to transfer the sample from the experiment apparatus to the measurement 

apparatus.  

High-temperature potentiodynamic polarization of the alloy samples in molten salt is an in-

situ electrochemical technique that is able to indicate the nobility of the alloy to corrosion by measuring 

the corrosion potential Ecorr
 [V] and the overall kinetics of corrosion of the alloy by measuring the 

corrosion current density icorr [A/cm2]. High-temperature cyclic voltammetry in molten salt is an in-situ 

electrochemical technique that allows us to measure the dissolved concentration in the molten salt of 

elements corroded from the alloy, facilitating a time-resolved study of elements as they corrode from the 

alloy into the molten salt over the corrosion period.  

The following section summarizes the state-of-the-art in polarization and cyclic 

voltammetry to study corrosion of alloys in molten salts.  
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An effort was made to summarize as best as possible the broad trends observed over the 

large body of literature investigating corrosion performance of molten salts in Table 8, Table 9. One 

quickly finds that the corpus of literature is very unstandardized [144]with studies on an average of 3-4 

alloys being performed in various different salt mixtures (common anions are fluorides, chlorides, 

nitrates, carbonates, sulfates; common cations are Li, Na, K, Be, Mg), temperature conditions, presence of 

inert cover gas. Furthermore, the literature do not all use the same techniques for chemically quantifying 

corrosion products. Several commonly used analytical techniques for chemically quantifying corrosion 

products are detailed in the section on Analytical Techniques for Quantifying Corrosion Products. In 

addition, the majority of the content each of these corrosion investigation studies is a qualitative analysis 

of the corrosion modalities, often through microscopy images ( with Scanning Electron Microscopy, 

SEM, or Transmission Electron Microscopy, TEM) coupled to elemental distribution maps from Electron 

Dispersive X-Ray Spectroscopy (EDS). 

All these factors make it quite impossible to understand large-scale trends in corrosion 

behavior of alloys as a function of composition simply from collating and comparing all the data in the 

body of literature. The literature collated in Table 8, Table 9 are static corrosion studies in molten halides 

at 500-800 oC, they were selected for their quantitative corrosion analysis to highlight macro-trends 

consistent throughout the entire body of literature.  

The most obvious macro-trend observable from Table 8, Table 9 is that Ni-based alloys 

have 1 order of magnitude lower corrosion in mm/year compared to Fe-based alloys. This is expected 

because Ni is far more thermodynamically noble against halide formation than Fe is in molten halides. 

Another obvious macro-trend is that corrosion is generally higher in the same salt for the same alloy at 

higher temperatures. This is also expected from a thermodynamic perspective as the Ellingham diagram 

shows that the halide-forming side of the equilibrium is favored with increased temperature. The third 

most obvious macro-trend is that increasing more noble additives to the alloy composition at the expense 
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of the less-noble base element - in Table 11 W is increased at the expense of Ni - serves to decrease 

corrosion rate, as expected [117]–[119], [133]. Overall the body of literature generally tends to use 

thermodynamics to justify most of the quantitative corrosion data.  

However thermodynamics does not explain everything. Table 10 shows that Hastelloy C-22 

was observed to exceed Hastelloy N in corrosion performance because while they both have (Mo+W) 

~16-17%, Hastelloy C-22 contains a larger proportion of the less noble element W at 3% than Hastelloy-

N at 0.1%. Nevertheless, the reason behind the superior corrosion performance of Hastelloy C-22 over 

Hastelloy-N can be explained from the kinetics standpoint, as it was noted by [115] that the surface 

reaction kinetics of Mo are 3x faster than W. From this comparison we can see that either 

thermodynamics (Hastelloy C-276) or kinetics (Hastelloy C-22) can be just as much responsible for the 

thickness loss rate in [mm/yr] observed by gravimetry 

Table 10: Comparison of some Ni-based alloys in their corrosion performance in FLiNaK at 680oC as 

determined by potentiodynamic polarization [133] 

Alloy Salt Condition Icorr (μA/cm2) Ecorr (vs. 

ref) 

Ref 

Nimonic 80A (< 1% Mo, W) FLiNaK 680oC 660 -0.278 [133] 

Inconel 718 (3.3% Mo, 0% W) 680 oC 140 -0.303 

Hastelloy C-276 (16% Mo, 4% W) 680 oC 2.9 -0.206 
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Table 11: Comparison of some Ni-based alloys in their corrosion performance in chloride salts at high 

temperatures as determined by potentiodynamic polarization. 

Alloy Salt Condition Icorr 

(uA/cm2) 

Ecorr 

(vs. ref) 

Corrosion 

Rate [mm/yr] 

Ref 

HEA Na2SO4- 45 NaCl 

(mol%) 

700 oC 

 

388 -1.34 3.85 [145] 

 
Inconel 600 191 -1.03 3.1 

Inconel 718 150 -0.98 2.525 

SS 447 34% NaCl, 66% 

LiCl 

 

650 oC 

 

710 -0.85 7.5 [119] 

SS 310 630 -0.9 6.4 

Incoloy 800H 570 -0.91 5.9 

Inconel 625 230 -0.86 2.8 

SS 310 700 oC 1200 -0.57 12 

Incoloy 800H 1400 -0.474 14 

Hastelloy C276 

(16% Mo, 4% W) 

NaCl–KCl–

ZnCl2 halide 

 

250 oC 1.4 -0.2 0.01 [118] 

Hastelloy C-22 

(17% Mo, 3% W) 

2.0 -0.26 0.02 

Hastelloy N  4.4 -0.35 0.04 

Hastelloy C276 

(16% Mo, 4% W) 

500 oC 

 

4.1 0.05 0.04 

Hastelloy C-22 

(17% Mo, 3% W) 

4.35 -0.14 0.04 

Hastelloy N 16.9 -0.2 0.15 
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By contrast, corrosion behavior of CCAs in molten salts at high temperatures have not been 

as thoroughly investigated but this avenue of inquiry is promising. Refractory equimolar TaTiVWZr and 

HfTaTiVZr have been demonstrated by [146], [147] to be more corrosion resistant than their benchmark 

commercially available alloys Table 12. Conversely, some CCAs such as equiatomic AlCoCrFeNi [145], 

[147] is more easily corroded than their commercially available alloy benchmarks (Table 12).These 

results are consistent with an understanding of thermodynamic nobility-driven corrosion resistance. 

However, it has been demonstrated by [83] using Fe27.5Cr18Mn27Ni27.5 CCA - consisting of fairly 

corrodible elements from the thermodynamic perspective - that it formed Cr-precipitates that hindered the 

corrosion of Cr. Other studies have also noted complex interactions that either curtail or exacerbate 

corrosion [85], [117], [135].  

This behavior opens the question of whether high-temperature precipitation is a mechanism 

which may be leveraged to design corrosion-resistant alloys for MSR conditions. The observation of the 

phenomenon also opens the question as to what alloy compositions and conditions are necessary for the 

optimization of this mechanism in such a way that it confers corrosion resistance on the alloy.  

Juxtaposing the elevated corrosion resistance of the near-equiatomic CCA of [83] with the depressed 

corrosion resistance of [145], [146], [148]’s equiatomic CCA serves to illustrate that being in the central 

region of the composition space is not enough to predict whether a CCA is more corrodible than 

commercially available alloys - corrosion resistance is dependent on many factors and it is a research goal 

of this thesis to find out what these factors are by systematic, parametric analysis.  

We must qualify that this quick comparison of corrosion from the thermodynamic 

perspective between these different studies is not completely straightforward because the occurred in 

differing salt media, temperature and impurity conditions. The comparison was made simply to highlight 

the potential of CCAs to exhibit novel mechanisms that may confer corrosion protection. As mentioned in 

the earlier section the corpus of literature on corrosion of commercially available alloys in molten salts is 
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highly unstandardized [144] and this issue only compounds when we desire to compare novel CCAs’ 

corrosion performance to what is known in the community.  

Table 12 serves to illustrate that it is incredibly difficult to observe meaningful macro-trends 

by collating and comparing the existing corpus of literature on CCA corrosion performance in molten 

salts because: 

A) inert atmosphere is necessary. Only the minority of studies summarized here used inert atmosphere 

[83], [148].  The rest did so in air. This is problematic because air introduces O2- ions into the salt which 

tends to form a multitude of oxide corrosion products. For MSR applications, a large amount of dissolved 

O2- cannot be tolerated by the flow system because these can form precipitates that clog lines which can 

lead to reactor failure modes (see supplemental material A ). Therefore this already disqualifies many of 

the existing studies of CCAs in molten salts from a comparison of their validity as MSR structural alloys. 

The CCA needs to be corroded in an environment where the impact of O2- is negligible or at least 

minimal.  

B) on average, 1-2 CCAs are studied and compared to 1-2 commercially available alloys and a qualitative 

binary evaluation is made on which corroded more. This is not very useful to give an overall picture of 

macro-trends on the impact of perturbations to the CCA composition on its corrosion resistance in molten 

salt. As demonstrated in the previous section, the body of literature on commercial alloys corrosion 

performance in molten salt is itself not standardized, so there is not a single widely consistent basis for 

comparison of one CCA in isolation. Therefore there is a gap in the corpus of knowledge ready to be 

filled by a broad study with many samples distributed over the same composition space in the same 

corrosion conditions ie. a large standardized experimental dataset.  

C) these studies are not standardized in total corrosion period with one another, therefore a comparison 

between different studies is made difficult by the need to consider whether the relevant studies were 
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performed in the linear-approximate region of corrosion rate or close to the plateau-region ie. Saturation  

region of corrosion.  

D) material degradation modes beyond thermodynamics and kinetics are in general not systematically 

studied in these collated studies. An isolated study on pitting potential (Epit) has been determined for a 

few CCAs in molten salts by [149] was done, but this is insufficient to draw macro trends about the 

susceptibility of CCAs to pitting corrosion.  

There are also other physical parameters hypothesized to be predictors of corrosion 

resistance which have yet to be systematically studied, for example, elemental solid solution mobility, as 

hypothesized by Elbakhshwan et al [83]. In the preliminary studies for this project, low surface energy 

and high work function of an alloy were also hypothesized to be predictors of elevated corrosion 

resistance. Knowing the strongest predictor of corrosion resistance amongst an alloy’s physical 

parameters is undoubtedly the most efficient way to optimize the corrosion resistance of an alloy 

designed. Therefore a primary goal of this project’s approach to designing corrosion-resistant alloys is 

to determine the primary predictor of corrosion resistance in an alloy. 
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Table 12 A summary of corrosion performance of CCAs evaluated in MS.  

Alloy Salt Temp Corrosion performance compared to 

commercially available alloys 

Reference 

AlCoCrFeNi2.1 NaCl-KCl-

MgCl2  

450 °C 

and 

650 °C 

CCA exhibited lower corrosion than 

stainless steel 2205 (DS2205). 

[147] 

Fe65.7Ni11.7Ti1Mo6

.6Co15 

NaCl and 

Na2SO4   

650 °C N/A [150] 

near-equimolar 

CrCoFeMnNi 

in pure NaCl 

and 

Na2SO4+NaC 

800 °C 

and 1000 

◦C 

N/A [81] 

equimolar 

TaTiVWZr and 

HfTaTiVZr 

33NaCl–

22KCl–

45MgCl2 

(wt. %) 

eutectic salt 

at 

450 °C 

and 

600 °C 

corrosion rates for HEAs generally one 

order of magnitude lower than SS304 

measured by potentiodynamic 

polarization 

[148] 

equimolar 

TaTiVWZr and 

HfTaTiVZr 

FLINAK 650 °C corrosion rates for CCAs one order of 

magnitude lower compared with 

Inconel 718 and SS316, measured by 

potentiodynamic polarization and EIS 

[146] 
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Y, Hf-codoped 

AlxCoCrFeNi 

(Alx, x = 0.7, 1.0, 

and 1.3) high-

entropy alloys 

(HEAs) 

under 

Na2SO4 + 

25 % NaCl 

molten salts 

at 900 ◦C  

900 °C N/A [76] 

equimolar 

CoCrFeMnNi 

NaNO3-

KNO3 

500 °C higher passive  current density 

compared with Inconel 718, 800H and 

SS316, measured by potentiodynamic 

polarization, attributed to the presence 

of Cr and Mn 

[151] 

Fe27.5Cr18Mn27Ni2

7.5 

FLIBe 700 °C more weight loss than SS316, due to 

high Mn content, but was surprising 

that not much Cr was lost 

[83]  

equiatomic 

AlCoCrFeNi 

(HEA), UNS 

N06600 and UNS 

N07718 in a  

molten NaCl-

Na2SO4 

eutectic 

 700 °C HEA was less noble and exhibited a 

higher corrosion rate than UNS N07718 

and UNS N06600. Aluminum 

[145] 

Ni–16Mo–7Cr–

4Fe superalloy 

FLiNaK 850C N/A [152] 
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In order to observe meaningful macro-trends in CCA corrosion performance in molten salts 

that will inform corrosion-resistant CCA alloy design, a parametric study is necessary in a salt under 

standardized conditions.  

The work of Wang et al [153] an example of a small-scale parametric study in the effects of 

Cr content on the corrosion performance of an Ni-Cr (Table 13). Their results show generally that alloy 

corrosion kinetics, indicated by icorr, increase with Cr content, and alloy nobility, indicated by Ecorr, 

decrease with increasing Cr content. This finding is consistent with the body of literature on commercial 

alloys, which observe that when two alloy components are considered, the higher the content of the less 

noble element the less noble the alloy will be to corrosion. Parametric studies such as this one by Wang et 

al [153] are informative, but unfortunately are exceedingly rare in the body of literature, perhaps hindered 

by the laborious and time-consuming process of producing novel alloys for corrosion-testing. This thesis 

will demonstrate a parametric study expanded from 2 into 4-element composition space with the use of 

additive manufacturing techniques to overcome the obstacle of long downtimes for alloy fabrication in 

order to perform parametric corrosion studies.     

Table 13:Summary of parametric polarization studies on binary Ni-Cr in various compositions [153] 

Alloy Salt Condition Icorr 

(μA/cm2) 

Ecorr 

(vs. ref) 

Ref 

Ni FLINAK 

 

700 

 

19 -0.77 [153] 

Ni 5-Cr (binary) 89 -0.155 

Ni-10Cr (binary) 115 -0.175 

Ni-15Cr (binary) 245 -0.287 

Cr 494 -0.507 

 

  



61 

 

3.5.1 Project Goal & Approach  

This thesis presents a platform that couples high-throughput parametric alloy testing coupled to 

machine learning to narrow the search space of interest in such a way as to simultaneously address the 4 

major technological advancement needs highlighted by [154]. 

1) “the biggest challenge in the field of exploring the enormous number of HEA and CCA compositions 

and their microstructures” - in this project 110 alloys are printed, heat treated, polished and corrosion 

tested in 3 weeks’ worth of man-hours. As part of the project they are microstructurally characterized.  

2) “New high throughput experiments are needed, especially for structural materials.” - a process for 

testing 25 alloys simultaneously each in mutually isolated environments in a footprint of 10cm x 10cm is 

presented 

3) “new strategies are needed to quickly navigate the winding, narrow path between properties that 

depend on composition, and those that depend sensitively on both composition and exquisitely designed 

microstructures” - each alloy is featurized by kinetic, thermodynamic and microstructural properties to 

train a machine learning model. This thesis will demonstrate the ML model can be interpreted to glean 

physical meaning so that the winding path to understanding physical mechanisms of CCA properties can 

be straightened out.  

4) “Acquiring new fundamental data is also essential because the current lack of data for new physical 

models and new predictive capabilities in CCAs is a barrier to future scientific progress and collecting 

this data is expected to lead to new scientific discoveries.” - these studies were designed to be parametric 

to facilitate acquiring new fundamental data.  

The investigation of the viability of CCAs as MSR structural materials will take a 

parametric approach, so the scope was bounded to a quaternary alloy space. Based on the experience from 
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the INOR series, prime elements considered for the parametric study would be Fe, Cr, Ni and Mo - it is 

expected that the quaternary space of CrFeMoNi would be the intuitive domain to search for halide-

corrosion resistant alloys. However Mo presents the disadvantages of being a refractory metal which is  

difficult to process metallurgically in concert with the other alloying elements Fe, Cr and Ni. Mo is also 

expensive. A limited set of ~25 CCAs in the CrFeMoNi space were printed for feasibility testing and it 

was found that tuning parameters were difficult to scale up for a large number of compositions. It was 

concluded that a study in which, say 100 Mo-containing alloys were processed and corrosion-tested 

would be beyond the financial and time resources bounding this project.  

Mn was chosen to replace Mo in the composition space for its potential to contribute high 

temperature hardness, despite the thermodynamic favorability of Mn to form stable halides. 

It was mentioned in the preceding section that even a crack not a few microns in length in a 

nuclear reactor structural material has the potential to have a multitude of catastrophic implications which 

could result in millions of dollars in damage and loss of life. Therefore it is of paramount importance to 

develop structural alloys with sufficient degradation resistance under the conditions of the nuclear reactor 

operating environment.  

  Table 14 summarizes some properties justifying the inclusion of the elements in the search 

(advantages) and some properties that are disadvantages to its inclusion. This space has been explored in 

the last 10 years, with studies generally focusing on comparing single CCA compositions to 

commercially-available alloys.  
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Table 14: Summary of advantages and disadvantages of some elements of interest to the development of 

structural materials for MSR.  

Element Advantages Disadvantages 

Fe inexpensive forms stable halide that is soluble in 

molten salt 

Cr imparts corrosion-resistance in air by formation of 

passivating oxide on the surface 

forms stable halide that is soluble in 

molten salt 

Mn imparts high-temperature hardness to the alloy forms stable halide that is soluble in 

molten salt 

Ni noble against corrosion by halides, imparts high-

temperature strength to the alloy 

expensive, susceptible to irradiation-

induced embrittlement 

Mo noble against corrosion by halides, high temperature 

hardness, solid solution strengthening 

expensive, refractory metal 

W noble against corrosion by halides, high temperature 

hardness 

expensive, refractory metal 

 

With this conventional intuition that corrosion kinetics and thermodynamics can be superficially 

predicted using composition as demonstrated by the binary parametric studies of Wang et al [153] it is 

desired to expand the parametric search to a quaternary elemental space (CrFeMnNii ) in search of 

corrosion-resistant compositions. 
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3.6 Accelerating the search through Compositionally Complex Alloys in 

Molten Salts 

3.6.1 Literature Review: Accelerated Electrochemical methods to study corrosion 

phenomena in molten salts  

 

This section comprises content from the following journal articles co-authored by the PhD candidate, 

 

Y Wang, B Goh, M Moorehead, J Hattrick-Simpers, A Couet, High-Throughput Electrochemistry to 

Study Materials Degradation in Extreme Environments, Anal Chem, (2022), 94, 48, 16528-16537 

 

Abstract 

Electrochemistry has been used for decades to study materials’ degradation in-situ in corrosive environments, whether 

it is in room temperature chemically aggressive solutions containing halide ions or in high-temperature oxidizing 

media such as pressurized water, liquid metals, or molten salts. Thus, following the recent surge in high-throughput 

techniques in materials science, it seems quite natural that high-throughput electrochemistry is being considered to 

study materials’ degradation in extreme environment, with the objective to reduce corrosion resistant alloy 

development time by orders of magnitude and identify complex degradation mechanisms. However, while there has 

been considerable interest in the development of high-throughput methods for accelerating the discovery of corrosion 

resistant materials in different environments, these extreme environments propose formidable and exciting challenges 

for high-throughput electrochemical instrumentation, characterization, and data analysis. It is the objective of this 

paper to highlight those challenges, to present relatively new efforts to tackle them, and to develop research 

perspectives on the future of this exciting field. This perspective paper is articulated around four main inter-connected 

topics, which must be conjointly considered to enable corrosion resistant alloys design using high-throughput 
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electrochemical methods: (1) high-throughput processing methods to develop material libraries, (2) high-throughput 

electrochemical methods for corrosion testing and evaluation, (3) high-throughput machine-learning augmented 

electrochemical data analysis and (4) high-throughput autonomous electrochemistry representing the future of 

accelerated electrochemistry research. 

1. Introduction and motivation 

The term, “high-throughput,” (HTP) is inherently a relative and contemporary term much like “high-speed” or 

“advanced” in that it compares the throughput of a proposed process to a current standard. What is considered HTP 

today may not be tomorrow. However, in addition to the comparative function, the term also connotes parallelization, 

automation, and often major gains in speed and efficiency, potentially at the cost of fidelity or completeness. HTP 

methodologies also tend to embody the Pareto principle, whereby 80 % of the problem can be solved with 20% of the 

total required effort while the remaining 20% of the problem will consume 80% of the total required effort. As such, 

HTP methodologies are best suited for screening applications where a large array of samples can be quickly examined 

to determine macroscopic trends and be able to make informed down-selections before more labor-intensive and time-

consuming techniques are applied. The prototypical example of the HTP methodology in action is the high-throughput 

screening (HTS) technique developed by the pharmaceutical industry to search for potentially effective drug 

candidates. Beginning in the 1980s, automated screening techniques were developed using 96-well plates, each 

containing a mixture of human cells and unique chemical compound to test the interactions between them.[155] Initial 

HTS techniques were limited to less than 10,000 test a day, were prone to robotics/automation reliability issues, and 

their output datasets still required substantial human involvement to process. Shortly after the turn of the century, the 

HTS process had become fully automated, was able to screen millions of compounds with little to no human oversight, 

to produce dozens of leads, and to bring multiple drugs to market.[156] As such, it became a fully industrialized 

process. Automated research will always remain imperfect, but the many orders of magnitude increase in speed and 

efficiency is generally seen to outweigh the marginal gains in accuracy or reductions in false positives/negatives 

afforded by more meticulous testing performed by humans – who are also imperfect.  

The success of the HTP methodology championed by the pharmaceutical industry has caught the attention of 

other industries and communities who also wish to accelerate their processing and screening techniques, including the 
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electrochemistry community. Indeed, and as will be discussed later, electrochemical techniques are now quite mature 

and standardized such that HTP instrumentation and electrochemical data analysis are relatively trivial. For instance, 

HTP electrochemistry is now used for HTP materials synthesis (i.e. electrosynthesis) to develop combinatorial arrays 

of materials[157]. As will be detailed later, there has also been an increased interest in HTP materials’ characterization 

using electrochemical methods. Indeed, HTP characterization techniques can significantly decrease the material 

design and optimization timeline (see for instance the Materials Genome Initiative)[158]. Thus, as highlighted in the 

rest of this study, HTP electrochemical processing and characterization methods have the potential to significantly 

shorten the materials design timeline, as well as improving our understanding of complex degradation mechanisms.  

Electrochemistry has been used for decades to study materials’ degradation in-situ in corrosive environments, 

whether it is in room temperature chemically aggressive solutions containing halide ions or in high-temperature 

oxidizing media such as pressurized water, liquid metals, or molten salts. Thus, following the recent surge in HTP 

techniques in materials science, it seems quite natural that HTP electrochemistry is being considered to study 

materials’ degradation in extreme environment, with the objective to reduce corrosion resistant alloy development 

time by orders of magnitude. However, while there has been considerable interest in the development of HTP methods 

for accelerating the discovery of corrosion resistant materials in different environments, these extreme environments 

propose formidable and exciting challenges for HTP electrochemical instrumentation, characterization, and data 

analysis. It is the objective of this paper to highlight those challenges, to present relatively new efforts to tackle them, 

and to develop research perspectives on the future of this exciting field. The rest of the paper will be articulated around 

four main inter-connected topics, which must be conjointly considered to enable corrosion resistant alloys design 

using HTP electrochemical methods: (1) HTP processing methods to develop material libraries, (2) HTP 

electrochemical methods for corrosion testing and evaluation, (3) HTP electrochemical data analysis and (4) HTP 

autonomous electrochemistry. 

2. High-Throughput Alloy Processing Methods 

In extreme environments, such as gas turbines or liquid metal and molten salt cooled systems, structural materials 

are primarily concerned by corrosion issues. Thus, HTP methods for metal alloy synthesis will be mainly discussed 

in this section. HTP electrochemical techniques are closely correlated to HTP alloy processing, since the latter 
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inherently sets boundary conditions on the shape and morphologies of the alloys to be studied using the former. To 

date, HTP alloy synthesis techniques have mostly relied on producing compositional gradients, such that a wide range 

of alloy compositions can be processed rapidly. Among those, diffusion multiples are likely the most used.[159], [160] 

This technique uses an assembly of three or more different metal blocks in interfacial contact and subjects this system 

to relatively high temperature in an inert atmosphere to allow for thermal interdiffusion, which results in solute 

gradients and intermetallic compounds nucleation and growth. Diffusion multiples originates from the traditional 

diffusion couples and diffusion triples.[161] As an example, Figure 14(a) shows a diffusion multiple schematics of 

five different metal elements A, B, C, D, and E. The diffusion multiple was made of a base metal disk, E, with a slot 

cut in the center for the placement of another 4 different metal foils which are arranged in a bricklaying geometry. 

The arrangement allows for the formation of different diffusion couples, triples, and quadruples. Through exposing 

the diffusion multiple to high temperature, the thermal interdiffusion occurs and a wide range of solute gradients and 

intermetallic compositions consisting of elements A, B, C, D, and E can be created. While scanning micropipette 

contact methods by electrochemical techniques can be utilized to study the corrosion behaviors of different 

compositions in diffusion multiples[162], the composition and microstructure dictated by thermodynamics and 

kinetics processes are out of control, and the surface is often in metastable conditions. Consequently, this technique is 

of limited use in HTP corrosion studies, especially for high-temperature applications. Combinatorial gradients can 

also be obtained with thin film deposition from multiple magnetron sputter sources as shown in Figure 14(b).[163], 

[164] The co-sputtering from different sputter sources on a wafer substrate creates a two-dimensional gradient in the 

compositional ratio of alloy system of interest. This technique has the advantage of allowing a very precise 

compositional control across the wafer. However, the microstructure is often composed of nano-grains, which is not 

quite representative of structural materials, and can have significant repercussions on the electrochemical 

response.[165] In addition, the films are usually a couple micrometers thick at most, which make them very susceptible 

to internal stresses (such as the ones induced by oxide volume expansion, or differential thermal expansion) and 

spallation. Additive manufacturing is another promising HTP method to generate compositional gradients. For 

instance, by employing laser engineered net shaping (LENS) approach[166], premixed powder blends can be directed 

into the focal point of a laser beam with the help of a carrier gas. The laser focal point is located at the build surface, 

and a compositional gradient can be obtained by varying the powder feeding rates, as shown in Figure 14(c). This 
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HTP synthesis technique has led to significant decrease in the time necessary to explore various alloy systems. 

However, like the diffusion multiples, a single composition of interest typically only exists in a vanishingly thin 1D 

line or 2D plane, limiting the capability to characterize the electrochemical response as function of well controlled 

composition/microstructure features. At the same time, the utility of the produced material for high temperatures has 

been limited because of the element diffusion resulting from the thermodynamically unstable phases of the chemically 

graded structures. To solve those challenges, the LENS system has been recently used to print multiple arrays of 

compositionally homogenous bulk alloys by in-situ alloying as shown in Figure 14(d).[167], [168] In this approach, 

the ratios of elemental powders can be varied from one alloy build to another by controlling the RPM of the augers 

on each powder hopper containing elemental or pre-mixed powders. This technique is particularly attractive since it 

produces homogeneous alloys across length scales conducive to the use of HTP electrochemical techniques, such as 

a scanning droplet cell. In addition, the processing time is orders of magnitude faster than traditional approaches such 

as rapid alloy prototyping using arc-melting[169]. Finally, any heterogeneities in the build, such as un-melted 

powders, can be removed using surface laser re-glazing, without the powder flowing, between each path. Rapid 

cooling rate associated with metal printing creates dendritic microstructures, quite different from typical 

microstructure used in structural materials. Heat treatment at high temperature in inert atmosphere can be performed 

to remove the dendritic compositional segregation and possible residual stresses to obtain a thermodynamically stable 

alloy surface suitable for further HTP electrochemical characterization. On the other hand, another challenge exists in 

alloy additive manufacturing with the formation of pores during the printing process because of keyholes or entrapped 

gas. It is well known that surface defects, such as pores, are often preferred sites for significant electrochemical 

reactivity resulting in well-known phenomena such as pitting. It is quite challenging to eliminate pores in printed parts 

by post processing and further efforts are needed in the future to unveil the dynamics and mechanisms of pore 

evolution and elimination. For instance, the use of in-situ diagnosis, such as synchrotron X-Ray imaging, are 

promising techniques to understand the parameters of importance in pore formation during printing.[168] 
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Figure 14. Schematic of different high throughput alloy synthesis technologies. (a) Diffusion multiple 

synthesis technique[159], (b) thin film deposition technique[163], (c) compositional gradient alloy 

produced by LENS[166], and (d) in-situ alloying of bulk alloys by LENS[167]. 

3. Hight-Throughput Electrochemical Methods for Corrosion Testing and Evaluation 

Using the above HTP synthesis techniques, it is possible to study the corrosion of a large array of samples, 

enabling the use of electrochemistry in HTP alloy design, with large multi-dimensional features space. However, HTP 

corrosion testing, and monitoring can be somewhat challenging too. For instance, all the systems developed via the 

HTP synthesis techniques detailed above will suffer from galvanic corrosion if immersed in the same conductive 

electrolyte. In addition, if the system is only homogeneous and stable across small length scale (such as in the case of 

compositional gradients), monitoring the corrosion process in-situ requires local techniques, such that micro-

electrochemical probe development is necessary.[170] On the other hand, one could also study the effect of electrolyte 

composition on alloy corrosion, but this requires the manufacturing of many independent corrosion cells and a proper 

sampling of electrolyte composition to vary redox potential, basicity, impurity content, etc. Thus, we will use “HTP” 
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to identify any methods that are significantly increasing the throughput relative to conventional approaches, where a 

single alloy is studied in a single electrolyte.  

HTS can be designed through reducing the time per experiment or increasing the number of 

experiments per unit time, or both. In addition, one can either use the HTP approach to sample different electrolytes 

or to sample different alloy compositions, or both. As a first approach, rapid corrosion testing can be performed 

without any in-situ monitoring. For instance, Gateman et al utilized the scanning micropipette contact method, an 

electrochemical technique using a micropipette working electrode, to study the corrosion behaviors of different 

compositions in diffusion multiples.[162] As a tentative corrosion examination on compositionally homogenous bulk 

alloys, Muster et al incorporated nine pairs of different metallic wires of interest into a single multi-electrode assembly 

and immersed it into different inhibitor solutions, through which the corrosion resistances of the nine different metallic 

wires were evaluated by potentiodynamic scans simultaneously.[171] However, cross-contamination of the electrodes 

is likely during the electrochemical measurements. To solve this issue, HTP corrosion study of aluminum alloy 

exposed to multiple aqueous electrolytes was achieved based on the HTP corrosion test design (Figure 15(a)) by White 

et al.[172] Chambers et al designed a similar system (Figure 15(c)), consisting of 96 aluminum alloy 2024-T3 wires 

suspended into one of the reaction frame wells containing different electrolytes.[173] The corrosion of each cell can 

be evaluated independently using electrochemical techniques, such as potentiodynamic polarization scan and open 

circuit potential (OCP). Of course, in-situ corrosion monitoring can also be achieved through measuring the 

concentration of dissolved corrosion products by performing electrochemical tests such as cyclic voltammetry (CV) 

at different corrosion time. Relatively recently, Azmat et al. performed HTP corrosion study on zinc through 

depositing aqueous droplets of various chemistries and sizes on top of the sample.[174] In their design, a mini three-

electrode (working, counter, and reference electrodes) assembly can be inserted into the salt droplet for the HTP in-

situ corrosion monitoring through the quantification of dissolved corrosion products using electrochemical techniques. 

A more advanced design was reported by Joress et al by using a scanning droplet cell (SDC) as shown in Figure 

15(d).[175] In their design, the SDC comprises a peristaltic pump, a fluid reservoir, and a scan head. During the 

experiments, the pump pushes the electrolyte into an isolated volume between the cell and substrate. The fluid passes 

by a counter and reference electrodes when the fluid enters and exits this volume, while the sample itself serves as the 

working electrode. Combined with a computer numerical control (CNC) system, the designed SDC can achieve HTP 
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in-situ corrosion monitoring. In addition to HTP approach to sample different electrolytes, or to sample different alloy 

compositions, HTP corrosion study on redox potentials were also recently performed. For instance, bipolar 

electrochemistry was selected for HTP corrosion testing, in which the corrosion behavior of one alloy was examined 

through a wide potential range in a single experiment.[176], [177] 

HTP corrosion studies at high temperature in extreme environments are quite challenging. Wang et 

al.[178] followed the SDC approach and pelletized small LiCl-KCl-2wt% EuCl3 salt pills. HTP corrosion testing was 

performed on a broad range of additively manufactured bulk alloys (using the LENS technique above) by melting salt 

pills into molten salt droplets on top of each printed alloy at 500 ℃ as shown in Figure 15(b), in an inert glovebox to 

prevent any salt contamination. The molten pill in contact with the bulk alloy surface creates a mini-corrosion cell and 

many of those cells can be studied simultaneously, without the risk of galvanic corrosion or mass transport induced 

by dissimilar materials. To the authors’ knowledge, this is the first time that corrosion of bulk alloys in high-

temperature electrolytes is achieved through HTS. A series of automated material characterization techniques were 

utilized in their study such as glow-discharge optical emission spectroscopy (GDOES) to study the depletion depth of 

the post-corroded alloys and inductively coupled plasma mass spectrometry (ICP-MS) to analyze the concentrations 

of dissolved corrosion products in the post-corrosion molten salt solutions. Another strategy for HTS in high-

temperature molten salts proposed by Hoyt et al uses small crucibles manufactured from the alloys of interests and 

perform automated electrochemical techniques such as cyclic voltammetry to in-situ monitor the dissolved corrosion 

products.[179] Another possibility is using a micro-electrochemical probe suspended into the molten salt droplet 

placed on top of each alloy as designed in the ex-situ corrosion experiments shown in Figure 15(d).[180] This type of 

automated SDC techniques are seen as a very promising tool for electrochemical HTS of alloys for applications in 

extreme environments. 
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Figure 15. Schematic of different high throughput corrosion testing: a) HTP corrosion study of aluminum 

alloy exposed to multiple aqueous electrolytes, b) additively manufactured bulk alloys to perform HTP 

high-temperature corrosion testing, c) 96 aluminum alloy 2024-T3 wires suspended into one of the reaction 

frame wells containing different electrolytes, and d) scanning droplet cell design. 

4. Successes and Opportunities in High-Throughput Corrosion Data Analysis 

Motivation 

It is understood that HTP methods enumerated in the previous section are the key to discovering high-

performance alloys within a near-term time horizon. At the same time it is widely recognized that development of 

HTP experimentation and characterization gives rise to a bottleneck in the need to interpret/analyze large data sets on 

the order of hundreds [181]–[183]: given the scale of efforts in the collation and codification of materials databases, 

automation of experiments, and implementation of machine learning (ML) tools to accelerate detection of patterns in 

the processed data, efforts to automate the processing of raw data from HTP experiments, or even automating routine 

tasks of data interpretation are still sparse by comparison. Automating data reduction tasks frees the investigator to 

perform more high-level analysis tasks, and therefore the development of automated data reduction platforms in 

tandem with HTP experimentation is essential.  

Successes 

In the analysis of post-corrosion samples by Scanning Electron Microscopy (SEM) or Transmission 

(a) (c)
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Electron Microscopy (TEM), computer vision has been demonstrated to quantify material porosity [184] with some 

success, as well as to identify and classify material defects [185]. Another major strategy for data reduction from 

SEM/TEM images is to use convolutional neural networks (CNN) to identify, classify and quantify such features 

[186]. In determining the phase-fractions of combinatorially-processed alloy samples by HTP X-Ray Diffraction, the 

implementation of CNN either on its own [187]–[192] or coupled to heuristic MATLAB scripts [193], [194] has 

proliferated in recent years. These serve to advance our understanding of the non-trivial problem of generating phase 

diagrams for novel materials generated by combinatorial methodologies. Compared to other ML algorithms, CNN 

were demonstrated to have the highest accuracy [195]. CNN have also been demonstrated to facilitate analysis [196]–

[198] and even data reduction[199] from raw Electron BackScatter Diffraction (EBSD) data. To the end of storing 

and organizing large volumes of data generated by HTP methods[200], the National Institute of Standards Technology 

(NIST) has set up the Materials Resource Registry (MRR) to facilitate access to existing materials characterization 

data to end users [201], and the Materials Data Curation System (MDCS) to provide a customizable database indexing 

format for standardized organization of materials data of varied formats[202]. 

Challenges, Opportunities & Aspirational Perspectives 

The attraction of ML methods is apparent: developing heuristic-based tools for data reduction often reveals some 

unspoken subjective liberties taken by the analyst, as will be highlighted in the next section of which ML 

methodologies tend to be far more forgiving. Indeed, the exercise of developing heuristic-based data reduction tools 

could ostensibly lead to deeper insights within the data. Regardless of whether data reduction is accelerated by ML-

based or heuristic-based tools, the scale-up of data reduction processes is instrumental to HTP implementation 

capabilities to accelerate materials discovery. At the time of writing, there appears to be no published database for the 

collation of electrochemical (or other) data. This is likely due to the lack of standardized format for such a database 

but also the lack of standardized way of comparing pre-corrosion with post-corrosion changes to assess degradation 

performance. Despite the latter aspect being nontrivial, we recommend that the development of such a database include 

the following data of each alloy obtained from experiment to facilitate a comprehensive assessment of its degradation 

performance in extreme environments: pre/post-corrosion microstructure (phase fractions, texture, grain size, etc…) 

and microchemistry (surface composition, elemental depth profile in the substrate, etc…), oxide thickness and/or 

elemental dissolution, and information on thermodynamic/kinetic/of electrochemical reactions that can be gleaned 
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from electrochemical methods as discussed in greater detail in the following section. To combine data from various 

disparate characterization techniques to give a comprehensive representation of the degradation performance of a 

material, data reduction into a standardized, sparse format for storage, indexing and retrieval is essential.  

5. Successes and Opportunities in High-Throughput Electrochemical Data Analysis 

Motivation 

Probing surface reactions by electrochemical methods provide invaluable information required to 

understand the rate and mechanism at which an alloy corrodes in a given medium. Information on the thermodynamic 

favorability of corrosion by dissolution (Ecorr), the kinetics of surface corrosion (Icorr), behavior in passivation regions 

(Epass, Ipass), and ease of pitting (Epit), can be gleaned from potentiodynamic polarization studies of the alloy. 

Information on the time-resolved dissolved quantities of corrosion products in a corrosion medium (related to peak 

current Ip) can be gleaned from CV. Interfacial mass and charge transfer mechanisms between the environment and 

the alloy can be probed by EIS to generate an equivalent-circuit model. It is anticipated that every alloy-environment 

combination will have a matrix of characteristic values [Ecorr, Icorr, Epass, Ipass, Epit] from potentiodynamic polarization, 

[t, Canalyte] from CV, [Rct, Cdl, Zw CPE] from EIS, where Rct is the charge transfer resistance in the equivalent circuit 

system, Cdl, is the capacitance of a double-layer element, Zw is impedence of the Warburg element and CPE is a 

constant phase element, to provide an electrochemical dataset that comprehensively describes the degradation 

performance of the alloy in the medium of interest. A map of the pathway of advancement from the current state-of-

the art to the aspired scenario in HTP polarization and CV is presented in Figure 16. Automating the repetitive steps 

in data analysis will facilitate data reduction and in turn speed up database-building toward the critical capacity that 

enables the analyst to gain insights into any overarching patterns in degradation behavior of the novel alloys, which 

is ultimately the goal.  
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Figure 16: Schematic representing the pipeline through which potentiodynamic polarization and CV data 

is passed in order for it to be useful for material informatics: HTP experiments generating high volumes of 

Tafel plots and CV present a domain of opportunity to develop automated data reduction platforms to 

efficiently extract high volumes of desired parameters indicating alloy corrosion performance in the 

medium in a short period of time. It is expected that each alloy would be vectorized by the respective 

parameters extracted from its polarization and CV study results. These vectors representing each sample 

can then be applied to material informatics processing to glean high-level insights.  

Successes 

To the end of HTP electrochemical data analysis, batch analysis of CV peak-search (output peak value 

and centroid), as well as automating Tafel slope fits and corrosion current calculation are possible with, for instance, 

Nova® software from Autolab [203]. Parameters of interest for CV can be extracted automatically via least-squares 

fitting of a selected model using DigiElch® 8 software on individual CV. EIS and CV data can be automated for batch 

analysis using superimposition of modeled data onto experiment for ease of comparison using pyEIA[204]. As another 

example, Joress et. al. reported several useful scripts for automating the analysis of OCP, LPR, and Tafel 



76 

 

experiments.[205], [206] Polarization curves are more complex to model, as a good theoretical or empirical model 

that captures the nuances of the passivation process do not exist. Joress et. al. reported a relatively simple method for 

fitting polarization curves, assuming flat passivation plateaus, but the method is not robust to handle “plateaus” that 

curve, as is often observed experimentally[175], [207]. Bellezze et. al. provided an interesting method for attacking 

such types of curves, however, their code was not provided.[208] The autonomous fitting of EIS data is much more 

challenging, owing to both to there being an infinite number of equivalent circuits that could be used to fit the data 

and a lack of accepted best-practices that span multiple sub-fields. There are several interesting (semi-)automated 

pipelines currently available including EquivalentCircuits.jl and EISART.[209] The former is particularly interesting 

as it uses Gene Expression Programming to automatically generate potential equivalent circuits, performs the standard 

least squares fitting, and then iterates until it arrives at the optimal configuration. In our experience, this tends to 

generate an entire zoo of potential equivalent circuits which then require user intervention to narrow down to a 

physically reasonable subset of circuits for final human analysis. 

Challenges, Opportunities & Aspirational perspectives 

At this juncture it is important to draw a distinction between analysis by ‘simulation’ and analysis by 

‘modeling’: where ‘modeling’ can be broadly applied to predicting the behavior of system mathematically, 

‘simulation’ can be thought of as a subset of modeling in which the system is understood to have stochastic properties 

(eg. atomic-scale interactions in Molecular Dynamic Simulations, neutron-target interactions in Monte Carlo N-

Particle Simulations) and it is necessary to address statistical metrics of reported results. Drawing such a distinction 

provides clarity when comparing results from various modes of analysis. By this distinction, strictly speaking, the 

analytical capabilities provided by, for instance, DigiElch® 8, is more accurately referred to as ‘modeling’ rather than 

‘simulation’ per se. At the time of writing, Bongiorno et al have determined that the state-of-the-art in using ML 

methods to extract parameter values from an EIS system for which the model is known is on par with, but not 

exceeding, the accuracy of conventional heuristic (“hard-coded”) fitting software [210]. By association, it is 

conceivable that this conclusion also extends to the efficacy of using ML to extract parameter values for potentiometric 

polarization or CV data for which a model is known.  

Considering this, a primary challenge for batch analysis of large volumes of CV and EIS data (hereafter 

referred to as HTP analysis) is model selection. Conventionally the model is pre-selected for a given system. Making 
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the search for CV and EIS models autonomous or even quasi-autonomous is essential for the acceleration of CV and 

EIS data reduction. Generating optimal equivalent-circuit models (ECM) for EIS spectra, or EIS inversion, is a limiting 

factor in the speed with which EIS systems are analyzed. Bongiorno et al explored the obvious application of ML to 

solve EIS inversion by testing the effectiveness of a deep neural net classifier to sort a population of simulated EIS 

spectra into 3 ECMs, observing that classification accuracy suffers when differing models produce similar-looking 

spectra [210]. Such an outcome indicates that while naïve ML classifiers cannot yet exceed the accuracy of manual 

ECM identification, it can improve processing rate of EIS spectra if the objective is to know the representation 

proportion from a small set of possible ECMs of a large population of EIS spectra. However, the obvious limitation 

of naïve classifiers with EIS inversion is that they cannot suggest ECMs beyond those included in the training set. A 

technical advancement on the performance of the deep neural net classifier for EIS inversion would need to 

demonstrate the capability to suggest ECMs that are hitherto unknown. 

That said, when considering or evaluating EIS inversion techniques that generate proposed ECMs 

without a priori knowledge from a bag of possible models to choose from, one must keep in mind it is often the case 

that the optimal ECMs are neither unique nor physically meaningful. To circumvent the need for ECMs to gain insight 

into the EIS data, functional fitting for distribution of relaxation times [211]–[213] and distribution of diffusion times 

[214], [215] are methods of interest, although determining these distribution functions is non-trivial. To this end, 

hierarchical Bayesian inference (HBI)[216] is a regression-like approach to determining underlying relaxation time 

distributions of an EIS spectrum without a priori knowledge of the system. In this approach, the experimentally 

measured impedance Zexp is expressed as a discrete sum of Gaussian Radial Basis Functions (RBF) in ln(τ) where τ is 

a time constant representing relaxation times and τk are basis time constants (typically equi-spaced), for each angular 

frequency ωn measured (see Eq (1)). 
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Eq (1) 

 

Here, “𝑖” in this context is the imaginary number, R∞ is the infinite resistance term, L is the inductance and μ is the 

inverse length scale of the RBF. The goal of the transform method is to obtain the values of weights x i which can be 

used to fit the data for τ. The distribution of relaxation times is thereby obtainable. For this HBI methodology to be 
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made applicable for automated analysis of HTP electrochemical data, it is desired for HBI to be developed to the point 

where it is independent of a priori tuning. A schematic is drawn (Figure 17) codify all the components involved that 

make the development of HTP analysis of EIS a very non-trivial problem indeed.  

 

 

Figure 17: Schematic representing the pipeline through which EIS data passes for the experimenter to 

glean mechanistic insights into a system that lacks satisfactory understanding and thereafter to obtain the 

parameters representing various aspects of the mechanism. The simplistic equivalent circuit model (ECM) 

is shown for purposes of illustration, where the element labeled R represents a resistance element, but it is 

expected that unfamiliar systems would have a far more complex ECM. The data, once obtained, faces a 

process bottleneck to achieving mechanistic understanding which is the search for a satisfactory 

mechanistic model. Methodologies exist for EIS inversion to facilitate the discovery of plausible models, 

but the potential exists for these methodologies to be implemented in an automated process. The parameters 

anticipated in a complex ECM are represented by the following terms: R – resistance, C – double-layer 
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capacitance (ideal), Q – capacitance (non-ideal), W – circuit Warburg element, mechanistically 

representing diffusion processes, L – inductor, G – circuit Gerischer element, mechanistically representing 

an electrochemical chemical reaction with an irreversible component. It is expected that each alloy would 

be vectorized by the respective parameters extracted from its EIS results. These vectors representing each 

sample can then be applied to material informatics processing to glean high-level insights. 

In the study of alloy corrosion by quantifying the time-resolved concentration of dissolved corrosion products in 

the corrosion medium using CVs measured in HTP fashion, chemometric analysis appears to be an appropriate 

analysis tool. However, chemometric methods still exhibit some obstacles to their application to material informatics: 

firstly, the chemometric model must first be calibrated for alloys in a particular element space, with the number of 

calibration curves equivalent to Σn
i 
nCi , where n is the number of elements present in the alloy including any impurities. 

This means implementing a chemometric model necessarily adds a laborious step of calibration in the data reduction 

process; the larger the element space and the non-negligible impurity species considered, the more laborious would 

be the calibration campaign. A cost-benefit consideration must be made as to whether the number of samples to be 

analyzed by CV in a sample space justifies the effort invested to calibrate the chemometric model. Secondly, the rigor 

and completeness of the chemometric model must be well-established before it can be applied to analyze HTP data as 

a routine; one has to consider that chemometric models are limited only to what is known about the system as there 

are no known ‘smart chemometric’ analysis routines at the time of writing capable of generating fitting parameters 

without a priori knowledge of the number and centroid values of the peaks of interest for the specific medium system 

of interest. This results in the third and final significant limitation of chemometric models as a basis for HTP analysis 

of HTP-generated CV data: the primary figure of merit to assess a chemometric model is the coefficient of 

determination (R2), but this is no guarantee for the uniqueness or accuracy of the model – it is possible for different 

chemometric models to produce the same R2 for the data. Therefore, the amount of effort invested into the calibration 

campaign for a compositionally complex alloy space may prove to introduce a new bottleneck in the HTP analysis 

process. The development of agnostic or automated chemometric calibration tools would be ideal for chemometric 

models to be efficiently used in the HTP electrochemistry space. A possible path forward in this regard is using 

generalized regressor neural networks (GRNN) and least absolute shrinkage and selection operator (LASSO) 
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techniques: Harefa et al have demonstrated an improvement in the quantitation accuracy of dissolved cations in 

aqueous media over the performance of conventional univariate regression of one emission spectral line by using 

active learning techniques to determine the most important lines from amongst all the emission lines for the analytes 

of interest[217]. Their work demonstrates that active learning techniques exhibit potential to overcome the need for a 

priori parametric tuning of multivariate linear regressors presented by chemometric methods to fit CV data. 

6. Toward high-Throughput Autonomous Electrochemical Systems 

Methods for automating electrochemical material synthesis and characterization are developed in parallel with 

the development of sophisticated AI/ML platforms for extracting knowledge and planning experiments. As an 

example, the use of HTP electrochemistry is being currently used to accelerate structural materials development for 

high-temperature molten salt technologies. As shown in Figure 18, HTP electrochemistry is inserted into the HTP 

processing/characterization/testing framework (i.e., all the steps interconnected in this study) detailed in [178], [218] 

using an automated mini-electrochemical probe.  

 

Figure 18: Schematic describing all the interconnected steps composing the HTP framework used to 

accelerate structural materials development for high-temperature molten salt technologies. In this case, 

HTP electrochemistry is used to obtain in-situ kinetics information of the corrosion process. This results 
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in an exceptionally rich output data set adding to the ex-situ post-corrosion metrics such as ICP and 

GDOES.  

With these recent advancements, an opportunity for the development of autonomous platforms is 

presented. In these systems, a fully automated robot is responsible for planning experimental campaigns, performing 

the experiments recommended, and analyzing the results in a closed loop manner. Human scientists continue to engage 

with the scientific process at the outset by defining objectives, specifying constraints, and providing prior knowledge 

and heuristics to improve overall AI/ML exploration of complex spaces. Post hoc analysis and the generation of new 

knowledge is optimally performed via human-AI teaming using interactive data dashboards, identification of 

potentially interesting outliers, and flagging of unexpected correlations. For a review of the state of the art in 

autonomous materials science the interested reader is referred to a recent report by Stach et. al[157] and Ju et al[219].  

To date, the field of autonomous electrochemistry is relatively unexplored with few demonstrated 

systems in the literature, as reviewed below. Dave et. al. demonstrated an autonomous platform for mixing and 

electrochemically testing different electrolyte compositions for battery applications.[220] The tool uses flow through 

mixing of different electrolyte compositions and measures the electrical conductivity and stability range of each 

mixture. One of the greatest challenges for effective autonomous experimentation is the effective orchestration of a 

hierarchical experimental loop. Rahmanian et. al. recently demonstrated hierarchical experimental laboratory 

automation and orchestration (HELAO) framework for performing autonomous electrochemistry[221] and have 

provided the software for the orchestrator online at GitHub[207]. DeCost et. al. recently demonstrated the first 

autonomous system capable of performing autonomous electrodeposition and corrosion measurements.[222] The tool 

is based off the established scanning droplet cell tool demonstrated by Kollender et. al.,[223] which has been reviewed 

earlier. They found that although automated characterization of the electrochemical corrosion was straightforward, 

effective evaluation of the success of an individual synthesis step was more complicated. Successful synthesis 

potentially requires a large number of additional observations including: deposition uniformity (thickness, coverage, 

and composition), capturing the appropriate phase (diffraction), and surface finish. Such measurements are typical in 

HTP pipelines but are typically delocalized from the synthesis platform and/or require human evaluation of a 

reasonable coating prior to being performed. Frankly, the concerns for successful synthesis span all conceivable 
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synthesis routes and thus careful selection of auxiliary measurement that can be co-located to provide at a minimum 

a pass-fail on the synthesis process is essential. In this context imaging can be a useful approach to estimate the 

density/success of a coating, the uniformity of an electrodeposited sample, or to identify spallation in a film deposited 

via physical vapor deposition.  

In addition to the standard synthesis problems, extracting information from electrochemical data can vary from being 

relatively trivial to incredibly challenging, as detailed earlier. One of the most challenging aspects of these 

measurements is that during a HTP experiment, where experiments are optimally performed over a period of minutes 

rather than hours, the electrochemical response, such as the OCP, can drift as the electrolyte and material surface 

equilibrate. This can result in errors during further automated electrochemical analysis (LPR, Tafel, EIS), which in a 

truly intelligent autonomous agent would be flagged and the measurement re-preformed prior to truly destructive 

measurements. Consequently, the successful development of autonomous platform for non-steady-state systems, 

which are quite common in electrochemistry, is perceived as a formidable challenge for the next decade. 

Conclusion 

A relatively detailed overview of the motivation, successes, and opportunities in applying HTP 

electrochemical techniques to materials science, and in particular to the field of high-temperature alloy design, has 

been provided. A recent surge in HTP processing and testing methods development has been observed, resulting in 

unprecedented opportunities for HTP electrochemical techniques to benefit from/to this emerging field. While 

opportunities exist, significant new challenges are being offered to the scientific community. For instance, HTP 

electrochemical testing in extreme environments would provide an enormous amount of data needed to train ML 

models, but automated and reliable test methods are not yet developed for such aggressive environments. Accelerated 

electrochemical data analysis using ML methods still require significant research to properly identify and simulate the 

degradation mechanisms, accurately predict materials’ behavior, and identify features of importance in materials’ 

response. Nonetheless, in recent years, the scientific community has realized the needs to use ML-augmented HTP 

data analysis methods and an increase in scientific contributions on this topic is observed, as shown in this manuscript 

with the example of molten salt technologies. This is ultimately deemed necessary if autonomous research using 

electrochemical techniques are to be developed in the future.  
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3.6.2 Machine Learning Methods 

Since the combinatorial space of a quaternary system is quasi-infinite, a systematic testing of 

alloys spanning a coarse-mesh representation of the space coupled to a predictive machine-learning model 

to accelerate the refinement of the mesh at each iteration of corrosion testing promises to be the most 

efficient approach to alloy composition discovery. High throughput computational screening has been 

demonstrated to be a viable strategy for exploring the space of hypothetical alloys [224], [225] 

What defines a Machine Learning Method?  

Machine Learning (ML) has been defined by Russell & Norvig in their 1995 textbook as the 

capability of a computer to a) react to new circumstances, b) detect and c) extrapolate patterns. The implied 

boundaries of this definition are “new circumstances” and “patterns” insofar as the scope boundaries are for the 

problem at hand for the computer to solve. Therefore the adaptability of the ML method to “new circumstances” 

heavily relies on how the problem is framed for implementation of the ML method. In other words, whether or not a 

problem can be solved by ML methods is limited only by the creativity of the analyst in engineering data structures 

to feed into the ML such that the outputs thereof can be interpreted to be meaningful.  

As this thesis is multi-disciplinary, it is necessary to disambiguate the term “machine 

learning” from “artificial intelligence” from one another for the benefit of non-computer science 

practitioners among the scientific community. The term “artificial intelligence” as commonly invoked in 

mass media reflects the definition of “machines whose thought processes mimic human intelligence” by 

McCarthy [226] updated from Turing’s original definition. We immediately find this definition difficult 

to adopt in this thesis since “human intelligence” does not have a globally standardized definition. Russell 

& Norvig’s definition of ML, while quite open ended, has better-drawn parameters to qualify the various 

techniques that were feasibility-tested in this thesis work, therefore the usage of the term is adopted here.  

It becomes evident during the literature review of ML methods applied to problems in 

Material Science that some methods commonly applied to solve Material Science problems do not qualify 
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as ML techniques by Russell & Norvig’s definition. Linear regressions and their related models are one 

class of such methods commonly used to model behavior of materials if there exists no known functional 

relationship between the independent and dependent variables studied. Since modeling the system of 

interest as a linear combination imposes this functional form on the analysis framework, the method 

cannot be said to “detect” patterns, because the pattern of linear combination is assumed. Such an 

analytical framework is more accurately referred to as “Material Informatics” (MI) which has been 

defined as the application of data analytics methods to problems in Materials Science [225]. Material 

Informatics methods can often be found in the literature [227], [228] juxtaposed with ML methods to 

study similar/related problems. In this thesis, both ML methods and MI methods were utilized to study 

alloy corrosion in molten salts and their results were compared.  

The following sections summarize several commonly utilized ML and MI techniques in 

contemporary literature used to analyze open questions in Materials Science. For the sake of convenience 

in this thesis, let us consider a sample population of size N (eg alloys). Each sample is defined by a vector 

of values (x1, …, xn ) where each xi denotes a sample “feature” (eg. “Mole fraction of Cr”, “mole fraction 

Fe”, “mole fraction Mn”, “mole fraction Ni”, etc) and n denotes the number of features used to describe a 

single sample. When samples are arrayed such that each row contains the feature values for a single 

sample, each column, Xi denotes a vector containing the values of a single feature over the whole sample 

population. Let Y represent the vector containing the target variable values of the sample population (eg. 

“Total corrosion concentration of Cr+Fe+Mn+Ni” in salt). Models are mathematical functions or 

algorithms relating the X’s to the Y, for example the linear regression.  

Definitions and Disambiguation of terms 

At this juncture it is necessary to clarify that the term “model” as it is used in the field of 

ML is fundamentally different in nature to a mathematical model that describes a physical phenomenon. 

A mathematical model in general can be expressed as one or more series of related equations whereas by 
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contrast, under the hood, an ML model is generally expressed as a sorting routine governed by a series of 

“if…then” statements (or “rubrics”). Even regression-type ML algorithms are fundamentally a series of 

classification rubrics, they are simply a longer series such that continuous inputs/output variables can be 

approximated by very finely-subdivided discrete variables. In this regard, ML models perhaps have this 

characteristic in common with Monte-Carlo (MC)-type first-principles/ab initio particle simulation 

models. The central difference between a MC-type particle simulation model is that the rubrics are 

provided by the human programmer, whereas by contrast no rubrics are provided by the human 

programmer for ML at the start. The human programmer only provides a training set of data to the ML 

algorithm in which the inputs are matched to their respective outputs, and the ML algorithm produces the 

set of rubrics (aka “the model”) upon completing the training. This contrast between MC and ML models 

highlights the potential of ML models to facilitate us to fill in knowledge gaps by producing models with 

the potential to reveal underpinning patterns in the data which were hitherto unobserved with 

conventional analysis; this is something MC simulations cannot do.  

As a point of reference, we benchmark the performance of our ML methods against the 

Naive Mean, which is the average experimental result of our dataset. The “naive mean” approach assumes 

an out of bag sample will yield the same corrosion result as the average of all the experimental corrosion 

results in the trained dataset. 

The concept of a “regressor” forms the basis of a major class of ML algorithms. In this 

section we describe the ML regressors’ predecessors - the linear regressor. The standard form of a linear 

equation is shown in Eqn(1), which expresses output y as a linear combination of feature values (x1, …, 

xn), scaled by coefficients (a1, …, an ).  

It assumes every feature is linearly independent. If two or more features are interdependent 

(for example the mole fraction of an element in the alloy is functionally related thermodynamics activity 

in the alloy), or if they are even spuriously correlated - they must be eliminated for the linear model to be 
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valid.  

When using linear regression to analyze a dataset, it is necessary to ensure that all input 

variables (xi…xn) are norm-scaled; this way the relative magnitudes of the coefficient a_i can be 

indicators of impact/importance of feature xi assuming xi is linearly related to y.  

 A fitted linear regression model takes the form:  

   

In other words, for given matrices Y and X defined by the data, the underlying “pattern” we desire to 

uncover from the data is matrix a.  

 Y = aX  

Solving for a entails minimizing the sum of errors squared ( aka Ordinary Least Squares method) 

   

In theory, linear regression is able to incorporate new data into the model as it becomes 

available by refitting the coefficients (a0, …, an) iteratively with successive additions to the sample 

population. In spite of this the linear regression does not technically qualify as an ML technique because a 

pre-existing pattern - the linear relationship between inputs and output - cannot be varied on-the-fly as 

additional data is incorporated into the data set.  

The basic linear regressor is the simplest model assumed if the data analyst is agnostic of 

the functional relationships between the input variables (the x’s) and the output variable (the y). The size 

of the weight ai on a variable xi reflects the relative importance of a variable to the outcome, assuming all 

input variables are norm-scaled for the regression fit. It is commonly used in public medicine and social 

sciences to model impacts of social factors to the population. However, for more complex systems, the 

basic linear regressor is inadequate for accurate modeling or for understanding of mechanistic nuances.  

For a linear regression model to be valid, the data needs to satisfy the following 

assumptions:  
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I. there exists a linear relationship between X and Y 

II. the residuals (each element of ||aX-Y||) 

i) are uncorrelated to one another 

ii) have constant variance for all x in domain of study 

iii) are normally distributed for all x in domain of study 

 

Based on the theory provided in the previous section, it is clear that corrosion cannot be 

modeled as a linear system. What follows in this section describes models commonly used in MI based on 

the linear regression in increasing levels of relaxing the above mathematical criteria for a simple linear 

regressor to accommodate the corrosion problem. Experimental corrosion data was modeled using these 

various MI methods to compare to ML methods to demonstrate that ML methods surpass these MI 

methods in modeling the system and a selection was made based on modeling figures of merit.  

If the number of exogenous features is fewer than the number of samples, the problem is 

underdefined and the matrix a will have infinitely many solutions. This can occur if the domain 

knowledge of the problem is incomplete, or if there is muti-collinearity between input variables. Further 

constraints need to be placed on the least-squares optimization problem to limit the number of solutions - 

this is regularized least squares (RLS).  

A simple form of is Tikhonov’s regularization more popularly known as Ridge regression. It is named 

for the shape it takes along the along the diagonal of the matrix [229],. It takes the form of the beta 

parameter like so:  

   

 

RLS is also useful if the fitted model otherwise is not generalizable - that is, it performs well 

only for samples on which it was fitted, but it inaccurately predicts results for samples outside of the 
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training set (aka “out-of-bag” samples). Figure 19 shows that with larger beta, the values of the weights 

(a) are prevented from exponentiating, thereby maintaining the interpretability of the weights relative to 

one another.  

 

Figure 19: Ridge Coefficients as a function of regularization, image from [230] 

In the opposite case where the problem is possibly over-defined, ie it is suspected that from 

the set of input variables only a small subset are significant to the output, Lasso is a linear model which 

estimates sparse coefficients [231], [232].  

Mathematically, it is a linear model with an additional regularization term. The objective 

function to minimize is: 

  

Least Angle Regression LARS is based on forward stepwise regression [233] in which a 

model is built by adding variables and successively testing the fit with each variable added, in descending 

order of correlation coefficient. If two variables are equally correlated according to the optimization 

criteria, the variables are incorporated to the model at equi-angles to the two variables, hence the name 
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“least angles regressor”. When the latest variable added results in no statistical improvement to the fit, the 

model is considered optimized.  

One significant advantage of this model-building scheme is that it is robust against over-

fitting because of its piecewise path, but a significant disadvantage is that it can also be over-sensitive to 

noise. 

A numerically accurate model is one which returns exact values to ground truth. A 

numerically precise model is one where the uncertainty of the model prediction approaches zero. Any 

useful model is necessarily both accurate and precise to a satisfactory level. The uncertainty of the model 

can be thought of as a probability that the ground truth lies within the model’s uncertainty bounds. From 

this perspective, the determination of a model’s uncertainty bounds can be framed as a calculation of 

probabilities.  

There are 2 broad paradigms to determine the probabilities associated with a model’s 

output: frequentist and Bayesian [234] Assuming the model chosen to fit the problem at hand is known to 

be the most appropriate function (let’s say linear regression, for argument’s sake), a frequentist paradigm 

holds that the probabilities that the model’s parameters (the model weights) are equal to ground truth 

approaches unity as the sample population on which the model is fitted approaches infinity [234]. The 

frequentist paradigm is so named because it is predicated on the frequency of observation.  

The Bayesian paradigm contrasts to the frequentist paradigm in that given a finite sample 

population of size N with observations D, it is understood that D is in fact observed as a posterior 

distribution (D|w) of the maximum likelihood function w. In other words, the probabilities that the 

weights in the linear regression model at hand  with values {a1, …,an}  are in fact ground truth are given 

by p(w|D). A Bayesian approach would then be to solve for w in order to determine the uncertainties on 

the weights {{a1, …,an}. Solving for w using D entails knowing the form the function w takes and 

determining the values of the parameters of the function w (parameters of w are also known as 
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hyperparameters of the linear model).  

𝑝 (𝑤|𝐷) =  
𝑝(𝐷|𝑤)𝑝(𝑤)

𝑝(𝐷)
 

 

Notice that the application of a Bayesian approach is meant to improve upon the precision 

of a model’s parameters when its form is already known (or at least established with a high level of 

certainty). For our corrosion problem at hand, we have yet to establish what form the prediction model 

will take, so delving into Bayesian methods for estimating parameters is premature at this juncture. The 

frequentist approach to determine model parameters is a necessary starting point at the stage of surveying 

the various models for their appropriateness. An overview of the Bayesian approach was included here 

simply because Bayesian methods are used in Material Informatics with sufficient prevalence as to 

warrant a mention that these methods have been considered.  

For cases where there are multiple correlations between input variables, and we wish to 

recognize the importance of all those variables equally. Elastic net regressor provides a way to do this in 

a way that Lasso does not since lasso will only identify a single member of the correlated subset. Elastic 

net achieves this by combining L1 and L2 regularization. The objective function to minimize is then: 

 

Python implementations of all these methods were obtained from sci-kit learn [235]. The 

various regressors described above are simply linear models with different regularization parameters. 

Ultimately a linear model is imposed on the data. To reiterate Russell & Norvig’s definition, linear 

regressions and their regularization methods Ridge, LARS, Lasso and Bayesian Ridge cannot properly be 

called “ML” methods because their ability to “detect patterns” is severely constrained by the fact that they 

are inflexible if the data is ill-fitted to some linear combination of the input variables. However these 

methods are commonly applied in data analytics and therefore fall under the MI category. MI methods are 
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often applied as “first pass models” as a quick check as to whether the data can be conveniently fit to a 

linear model that is straightforward to interpret before resorting to more sophisticated bona fide ML 

techniques, which require some finesse to interpret.  

Like the linear regressor, the “regressor class” of ML is the class of ML techniques that 

maps inputs to outputs which both take the form of continuous variables. That is the extent of their 

commonality as “regressors”. The following section discusses several regressor ML methods which are 

commonly implemented to solve open questions in Materials Science. In general, linear models are not 

suited to predicting corrosion problems because corrosion problems are time-series problems [236] 

 

A Decision Tree Regressor [237] is a model which predicts a continuous dependent 

variable “y” based on a vector of input features (x1…xn) by building a series of sorting decisions. The tree 

begins with the universal set of the training population. At every juncture (“node”) a feature is randomly 

selected from the feature set to bifurcate into subsets (“branches”). An illustration of a decision tree is 

shown in the schematic of Figure 20 Schematic of a hypothetical decision tree.Figure 20 

 

Figure 20 Schematic of a hypothetical decision tree.  
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During the construction of a decision tree, the bifurcation threshold is the value of that 

feature that minimizes the Gini impurity value for the populations in each branch. For a regressor, the 

Gini impurity is the variance of y-values in the branch [238] :  

 

 

(15) 

Where N is the total number of samples in the branch, yi is the target variable value of the ith 

sample and μ is the mean branch target variable value. During the training of each tree, the impurity 

decrease between branches for each feature is recorded.   

Impurity decrease values determine Importance Scores for features: those features that yield 

consistently high Impurity decreases will have high importance scores. Bifurcation continues since no 

minimum tree depth is specified, until there is only one sample per terminal node (“leaf”). After the 

model is built, it is tested on the test samples, and the y-values the model assigns to these test samples 

based on their (xi) values are the “predicted” values of the test samples. A predictive model is one whose 

predicted values show a low mean percentage error (m%e), with formula 

 

(16) 

Where N is the total number of samples, yexpt is the true y-value of the sample, and ypred is the predicted y-

value. Since the feature on which the node is split is determined randomly, it becomes apparent that a 

single decision tree may not represent the most optimum model for a given training set.  

The Random Forest Regressor (RFR) [239] is a model in which many (~1000) decision 

trees (aka “estimators”) are constructed for a given training set and their results are bootstrap aggregated 

(aka “BAgged”) [240] in which M bootstrap training sets are generated from the universal training to 
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generate M bootstrap models. The expected error of the bootstrap model is proven to be lower than the 

expected error of the non-bootstrap model by M-fold [234]. An added benefit of bagging is that it ensures 

the prediction values from the model reflect a statistically reproducible pattern given the finite sample 

population, and to do so within a bounded number of trees to limit computational times to reasonable 

periods. “Bootstrapping” [241] is a statistical method designed to circumvent the need for a minimum 

critical sample size to apply normal distribution theory to the analyzed population by treating the original 

sample population as the universal set and two-thirds of the universal set are randomly selected with 

replacement for the building of each tree [239]. The predictions from regressor trees constructed from 

bootstrapped sample sets tend towards normal distribution in a smaller number of trees than without 

[241]. The final forest prediction of a sample’s value is the aggregation of the predictions of all the trees 

in the forest, in the case of regressor trees, it is the mean prediction. The implication is that the forest’s 

aggregated prediction for a sample’s value is an unbiased estimator of the true mean of that sample’s 

predictions from all possible trees constructed from an infinite number of samples. Therefore, bagging 

justifies the results from an RFR model in this thesis trained on a sample population where the logistics of 

physically processing and corrosion testing novel alloys limits the population size to ~100.  

Gradient boosting is a meta-algorithm that can be used to reduce the bias and variance of 

ensemble models by iteratively estimating the bias of individual models within the ensemble and inserting 

a correction term into the ensemble [242] . Bias of a model can be thought of as the imposition of an ill-

fitted pattern onto the data [243] for example imposing a linear model to fit data that shows a visibly more 

parabolic shape; greater bias often results in underfitting. The opposite problem, overfitting is where the 

model is overspecified to particularities in the training dataset to the point where it does not generalize 

well to out-of-training-set samples (aka “out-of-bag” samples). An example of an overfitted model is one 

in which “sample ID#” is used to fit the model among other variables and a correlation imposed where 

there is exists none. The best way to tell if a model is overfitted is to determine prediction errors for a test 
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set composed of entirely out-of-bag samples. A model is overfit when it shows extremely small prediction 

errors when the training set samples are used to test the model, but extremely large prediction errors when 

out-of-bag are used to test the model.  

The obvious measures to avoid overfitting before the training stage are to 1) make sure to 

the best of one’s knowledge, the inputs contain exclusively variables with deterministic relationships to 

the output and 2) make sure the training set samples are statistically well-distributed (as uniformly as 

possible) throughout the desired prediction domain. The first measure is difficult to achieve without 

complete a priori knowledge of the problem’s defining parameters their bounds. Indeed, if domain 

knowledge is complete, the ML model would be unnecessary. The second measure is difficult to achieve 

with small training sets since obtaining large sample populations for the training dataset is difficult for 

ML models trained with experimental data since acquiring large datasets is limited by the logistics and 

lead times of preparing samples, performing experiments and post-experiment analysis/data reduction.  

While it is clear that models with low average m%e are desirable as “predictive” or even 

“accurate”, there is no consensus in the literature as to an acceptable threshold for m%e . Generally, a 

Gaussian distribution of the percentage errors about a mean of 0% is indicative that the model does not 

contain inherent biases.  

In addition to these analysis tools to determine the robustness of an RFR model, the 

Isolated Tree Regressor is a method to determine whether out-of-bag samples are “in-model”, that is 

they are statistically represented by the training set samples, or they are “out-of-model”.  

An Isolated Tree Regressor is a routine in which a regressor tree is constructed from each out-of-bag 

sample. It has been noted that out-of-model samples consistently produce trees with very short tree depths 

(generally two levels of branches) [244] whereas in-model samples consistently produce trees with 

maximum depths according to the training set. Samples are thereby sorted into binary classification of 
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“in-model” or “out-of-model”. 

After pruning the predictions to retain only those statistically supported by the training set 

representation, we now turn our attention to assessing the accuracy of the RFR model. In particular, the 

RFR method has demonstrated both high predictive power and interpretability in predicting material 

properties based on composition and microstructural features. The RFR has been mathematically proven 

to be suitable for ranking a large number of input variables in terms of importance [245]. RFR are suited 

to “tabular-style datasets where features are individually meaningful” [246].  Properties predicted with 

some success by RFR include superconducting properties [247] the onset of void swelling in irradiated 

metals [52] glass-forming ability [248] and elastic modulus [227] 

The K-nearest-neighbors (K-NN) is a supervised learning technique predicated on the 

assumption that samples that are close to one another in feature space (x1,…,xn) will be close to one 

another in target variable space (“y”) [249]. In other words, it assumes continuous variation of the target 

variable in n-dimensional feature hyperspace. In a fundamental sense, the algorithm maps the 

multidimensional inputs to the outputs and computes the predicted value for an out-of-bag sample by 

finding the closest y-instance in feature space distance.  

Kernel methods are supervised learning techniques that leverage the solution techniques of 

linear classifiers to solve nonlinear problems. They do this by assuming that for any problem in which the 

data are distributed in finite n-dimensional space (x1…xn) , there exists some hyperspace of n’ dimensions 

(x’1,…,x’n,…,x’n’) in which samples can be clustered into groups of “like” samples, and the boundaries 

between these clusters in the form of hyperplanes are the desired solutions to the problem Figure 21. 

Generally n’ > n. The bounded sub-volumes in n’-dimensional hyperspace thereby each map to a value in 

target variable space (“y”). A kernel is therefore the  mapping function of x—> x’ that facilitates this 

kind of solution. 
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Figure 21: Illustration of “The Kernel Trick” transformation [250] 

Support Vector Machine (SVM) is one of the higher profile of the kernel methods. It is 

useful in cases where the variables in the original problem are not linearly variable-separable, but an 

appropriate transformation into higher dimensional space can facilitate the problem to be variable 

separable. Support vectors define data points close to the hyperplane and they can strongly influence the 

position and orientation of the hyperplane. The optimum solution for the hyperplanes are the ones that 

maximize the distance between training data points the planes. In this way, confidence is maximized that 

an out-of-bag sample will have predicted values close to training samples that are “like it” [251].  

Artificial Neural Networks (NNs) are perhaps the highest profile of the ML techniques in 

public consciousness, with the term “deep learning” being popularly used as synonymous with “machine 

learning”, despite being unwarranted since there are many other ML techniques around. It is perhaps the 

fact that the structure of the algorithm most closely mimics the electrical network of the human brain, 

inspiring the hope that it will similarly most closely mimic human intelligence according to the Turing-

McCarthy definition.  
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Consider the schematic of the algorithm shown in Figure 24: X is the matrix of inputs, fed 

directly into the first layer of neurons. At the first layer of neuron is an activation function, with the 

superscript denoting the layer, and the subscript denoting the index of the neuron in the layer. At each 

neuron, the ith element(s) of x are are operated on by activation function h(1)(i). The simplest form of 

activation function g(x) is the step function, defined thus: 

 

 

 

 

Figure 22: Illustration of a step function, [252] 

Each node and activation function pair outputs a value of the form 

 

In the case of a single layer neural network (aka “single layer perceptron”), the outputs of the activation 

function from h(1) are sufficient to map to output y (Figure 23).  
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Figure 23: Schematic of single-layer perceptron, adapted from [252] 

If inputs x1 and x2 are binary, the single layer perceptron reduces to a simple logic OR gate.  

In the case of a deep network, there is more than one layer of neurons, so the output from the first layer 

are fed as inputs into the second layer of neurons.  

In the case where the input x and output y are both scalars, a deep neural network with two hidden layers 

can then be written as 

 

 

where g is the activation function, W is the weight at that node, and b is the bias. The activation 

function g need not be a step function. It can theoretically be any non-linear function but common ones 

are sigmoidal, ReLU or PreLU[252]. A neural network in which the activation function is simply the 

identity function h(x) = x reduces to a linear regression. Tuning the NN entails tuning the weights and 

biases on the nodes.  

In the case of a convolutional neural network (CNN), as illustrated in Figure 24, the output 

of h(1)
(0) does not necessarily only get fed into h(2)

(0) but it can be used as input into other neurons in the 2nd 

layer as well. CNNs have shown especial effectiveness in material science problems in which there is a 

strong spatial component such as with reconstructions of microscope/tomography imaging [253],  

texture and phase mapping [194], [196]. NN generally need training sets of size ~1000 for robust training 

statistics, so data in the form of images comprising thousands of pixels are deemed more suitable. ML 
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predictions of ~2% error have been demonstrated for problems in which NNs are trained on thousands of 

datapoints generated by computational simulations [254]–[258]. By contrast, cases which have “tabular-

style datasets where features are individually meaningful and do not have strong multi-scale temporal or 

spatial structures” where RFRs are more suited [246].  

 

 

Figure 24: Schematic of deep convolutional neural network, adapted from [252] 

It is important to establish whether or not the problem at hand has the following 

characteristics in order to select the appropriate ML technique to apply.  

In general, MI and ML techniques are developed by inductive mathematical proof, so, 

strictly speaking, if the Material Science problem meets the prerequisite mathematical criteria, the 

solution produced by the technique can be considered mathematically validated. Unfortunately applied 

science is not as clear cut as pure mathematics or pure computer science. It is very often the case that 

despite every attempt to completely define the problem mathematically, some aspects of the problem can 

often defy mathematical definition. An example of such an aspect is the relationship between 
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microstructure and corrosion: the microstructure of an alloy can be described as an ordered data pair 

(phase category, phase fraction) but this data structure cannot be tested against the provided algorithm 

criteria. Additionally, in some cases of material science problems domain knowledge is incomplete. This 

limits the ability to select ML/MI techniques based on their meeting the mathematical criteria as 

originally laid out by the developers of the respective techniques.  A survey of the literature of ML for 

materials science or material informatics finds that the lack of justification by satisfaction of mathematical 

criteria has not posed an insurmountable obstacle to utilizing MI or ML methods to find solutions to 

materials science problems.  Justification in the literature generally comes by appeal to precedent and 

demonstration by figures of merit.  

Despite this being common practice in the field, here I discuss the problem definition as 

pertains to common prerequisite mathematical criteria necessary for the application of ML/MI techniques: 

Are all the features linearly independent in theory and practice?  

As stated earlier, many MI methods are derived from the linear regressor. The applicability 

of a linear regression depends on all features being linearly independent in order for there to exist a 

unique solution to the coefficient matrix. As explained before, if this criterion is not met by the dataset, it 

is necessary to apply regularization techniques to determine/approximate a unique solution. If the features 

are even partially linearly dependent on one another, this can result in feature dilution in the model where 

the several independent features/variables in the model essentially represent the same one 

feature/variable.  

Feature dilution in the model is of especial concern when some features may contain 

theoretical relationships to one another. For example, in our case, the activity of Ni in the alloy is often 

expressed as a linear function of mole fraction of Ni in the alloy for constant activity coefficient gamma:  

  (17) 

Non-linear functional relationships may exist between features, such as the Nernst Equation 
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that relates the activity of Ni in the alloy (and therefore its concentration) to the Gibbs Free Energy (GFE) 

of Ni corrosion product (NiCl2) formation:  

 

 

(18) 

Non-linear relationships will be reflected in linear & related regressions as “low-impact” 

features by small coefficient magnitudes simply because the relationship is not linear. This scenario 

presents a false negative situation in which a feature such as GFE of a species falsely deemed to be 

unimpactful in predicting corrosion outcome despite there being a physical basis for there being so.  

The propensity of linear & related regressions toward false negatives of this nature perfectly 

illustrates the crux of the problem we seek to solve with ML: if we do not know whether or not there 

exists a functional relationship between an input and an output, can the ML reveal to us a) whether this 

relationship exists, and b) the nature of this relationship (linear, square, log, exponential etc.)? Without 

turning to ML, a naive method to find a solution might be to iterate through all possible combinations of 

subsets of features S within the universal feature set F and all possible combinations of functions between 

them and determine the one with the highest coefficient of determination R2. Even if the number of 

features n is small, this method is an inefficient use of computational resources. If an ML can help us sift 

through large numbers of hypothetical features and determine ones (or combinations of ones) with 

hitherto unknown relationships to the output at a decimal of the computation time, determining the 

functional relationship becomes trivial.  

Even if there is no theoretical relationship between two features, the vectors of X1 and X2 

may happen to be spuriously numerically correlated as a result of the logistics of performing the 

experiment. For example, there is no direct theoretical relationship between the tracer diffusion 

coefficient of Ni and the mole fraction of Ni in an alloy. However, as tracer diffusion is phase-dependent 

(Ni diffuses about 5 orders of magnitude faster in an FCC lattice than a BCC lattice) and high-Ni alloys 
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tend to form solid phases with high FCC fraction, therefore it is unavoidable in the dataset that Ni tracer 

diffusion is correlated to Ni mole fraction but only transitively due to FCC fraction.  

If features are linearly related to one another or if these spurious correlations exist 

unavoidably within the dataset but the analyst desires for them to be represented within the ML model as 

distinct entities, then an appropriate ML technique must be selected which is able to handle the 

collinearity. As we have seen in this section, many ML models rely on the distribution of feature values in 

that dimension to relate the feature’s impact on the target variable, so our choices are limited. 

Alternatively an appropriate method of dimensional reduction must be implemented as a 

pre-training data processing step.  

Principal Component Analysis (PCA) is a well-known method of dimensional reduction 

by orthogonalization of the basis feature vectors . PCA entails imposing a transformation on the 

datapoints in feature space of n dimensions to an orthogonal space also of n dimensions. The result is that 

the feature values in orthogonal space are assured to be linearly independent from other features, however 

each dimension contains the sum of components from several (or perhaps many) otherwise physically 

unrelated features. While PCA enables the implementation of regression methods which require linearly 

independent features, PCA sacrifices the physical interpretability of such a model by collapsing the 

parallel components of multiple physically-distinct features into a single orthogonal dimension. 

An alternative method of dimensional reduction was developed as part of this dissertation: 

grouping numerically correlated features together according to the presence of a physically-established 

functional relationship. In this way, features groups are numerically independent from one another as far 

as the ML can discriminate, but the analyst is aware that a single feature group represents the impact of 

several physically related features with high collinearity.  

Is the problem NP-complete?  

As mentioned earlier, since the correctness of each possible solution to the most likely 



103 

 

corrosion mechanism at play with the CCAs cannot be easily verified by a brute force approach, this is a 

strong indication that our problem at hand is not NP-complete (Non-deterministic Polynomial-time 

complete). This means that some popular algorithms such as single Decision Trees will be unsuitable to 

solve this problem [259]. 

Does the problem call for supervised or unsupervised learning? 

Since we desire to determine which features are most effective at predicting outputs, it calls for a 

supervised learning method to train the model on what the outcomes should be. That said, unsupervised 

learning techniques such as K-means clustering can still assist to search for patterns within the data 

irrespective of any consideration of a “correct answer” by grouping samples with other “like” samples in 

ways that may be unexpected.  

We frame the corrosion problem thus: 

I. features are unlikely to be linearly related to the target variable, either as individuals or linear 

combinations 

II. the feature set contains many collinear features 

III. our problem is NP-incomplete.  

Corrosion events are time-series dependent, so motivating questions are what is the 

initiating event, and what are the propagated processes. Therefore it would be shrewd to incorporate a 

feature that reflects whether a process is slow or fast, whether it is rate-limiting, or some kind of 

indication of whether it happens first, second, etc in the sequence of events. It proved difficult to engineer 

a data structure which allowed the ML to distinguish the time scale at which the processes happen. 

Nonetheless, through shrewd ML interpretation methodologies in this thesis work, a feature that 

represented the rate-limiting step in the mechanism could emerge. Some features also have a timescale 

built in - for example, potentiodynamic experiments have told us that the corrosion current of Fe is faster 

than that of Cr in the same halide at the same temperature [126] and that the corrosion current of Mo is 
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faster than that of W in the same halide at the same temperature [115] therefore if it is found that the 

corrosion is dominated by thermodynamics Cr over all other features, we can infer that the timescale of 

the corrosion current of Cr, and all other processes are happening either too fast or too slow to matter.  

 

1.6.4 Literature Review: Machine Learning in Material Science to predict hypothetical materials 

and their properties.  

Applications of Machine Learning to Materials Science in General 

In the last 10 years, MI and ML have facilitated the understanding of open questions in the 

field of Materials Science [260], [261], facilitating the prediction of the following properties for large sets 

of theoretical materials: ductile to brittle transition temperature [262], microstructure [190], [263]–[266] 

Surface morphology [267], [268], polymer dielectric constant [269], [270], superconductivity [247], [271] 

Amorphous Glass forming ability [248], discovering new catalyst materials [272], [273], mechanical 

properties [274]–[276], irradiation resistance [52], corrosion [236]. 

Of the ML methods, NNs in particular have been investigated for their feasibility in being 

computationally cheaper replacements for density functional theory (DFT) [255], [277]–[279] which is 

sometimes coupled to molecular dynamics (MD) simulations [280]–[283]. Using ML in this way results 

in no new knowledge gained, representing a missed opportunity to leverage the potential of ML methods 

to facilitate filling gaps in our understanding of structure-function-property relationships [261], [284]. 

Therefore a more effective way to exploit the potential of NNs is to use them to search for patterns that 

draw links between ab initio atomic simulations and surface characterization data as was done by [285], 

[286] for example, or association rule mining of NN model trained on DFT simulations to predict elastic 

modulus of materials [280]. By extension, other ML algorithms can theoretically be similarly leveraged.  
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Applications of Machine Learning to predict material properties of hypothetical Compositionally 

Complex Alloys 

By now it should become clear that the predictive power of ML can be leveraged by training 

a model on material properties of interest for CCAs that have been studied in order to predict the material 

properties for hypothetical CCAs, or even to suggest CCAs that should be explored that are predicted to 

optimize the property of interest.  

ML has been used to predict the phrases of theoretical CCAs [287]–[289] their phase 

transitions [266]. These implementations of ML methods are computationally cheaper replacements for 

DFT but lamentably do not add to scientific understanding. CALPHAD is already able to perform this 

task.  

ML models have been developed by training on experimental data to predict mechanical 

properties of CCAs such as yield strength[56], hardness [276] and elastic modulus [280]. 

In addition to CCA investigation strategies in which the investigator defines the scope of the 

alloys (in terms of composition, microstructure etc.) for ML, the Genetic Algorithm [290] and Cuckoo 

Search are algorithms work by generating new hypothetical materials based on the inputs and iteratively 

testing them against the optimization criteria for down-selection [225]. The genetic algorithm has been 

used to find hypothetical CCAs with high hardness, whose performance was later verified by experiment 

[225]. Cuckoo Search, has been coupled to MD simulations to find CCAs that optimize tensile strength 

[291].  

Of particular note is the study in which high temperature oxidation of CCAs in air, 

supercritical carbon dioxide, steam and water was modeled with ML by [227] using a standardized 

database from the existing literature as input. A similar study on high temperature oxidation on NiCr in 

atmospheric and aqueous environments was done by [292] with a standardized experimental dataset. The 
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target variable for prediction both cases was the parabolic rate constant of oxide growth. In addition, both 

publications had in common that the dataset was trained on multiple MI and ML models were trained 

including Linear Regression, Bayesian Regression, Support Vector Machine, Random Forest, as well as 

Neural Nets, and their predictive performance compared using the figures of merit R2 and MSE. These 

works are the closest in scope to this thesis found in the literature. However, since the corrosion 

environment studied are oxygen-rich, the theoretical model of corrosion concerned is dominated by oxide 

thickness growth as opposed to one dominated by elemental dissolution as is the case with a molten 

halide corrosion environment. The practice of evaluating multiple ML methods was adopted in this thesis, 

but the methodology of interpreting the ML model to glean physical insight must consider the disparity in 

theoretical frameworks.  

ML models to predict CCA properties are generally trained only on composition and 

thermodynamic data at most [56], [227], [292]. This presents a missed opportunity to test hypotheses 

linking physical parameters other than thermodynamics - such as kinetics, microstructure and surface 

energetics - to determine the desired property. Such a study needs to have a mechanism in place to rank 

the relative importance of input features to provide the basis for sifting through a large field of features to 

determine the most impactful one.  

It is concluded from this survey of the literature that this work is the first of its kind to embark on 

a large standardized dataset of experimental corrosion test data in molten salts of CCAs in a quaternary 

element space to develop a validated ML model for corrosion prediction. Therefore this thesis represents 

an original contribution to the body of knowledge in materials science and informatics as well as molten 

salt corrosion chemistry.  
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3.6.3 Interpretation of ML methods 

“Interpretability is the degree to which a human can understand the cause of a decision.” 

 Tim Miller, Explanation in Artificial Intelligence: Insights from the Social Science 

 

“Interpretability is the degree to which a human can consistently predict the model’s result.” 

  Been et al, Advances in Neural Information Processing Systems, 2016 

 

This section contains some content from the following article first-authored by the PhD candidate:  

 

Bonita Goh, Yafei Wang,Phalgun Nelaturu, Michael Moorehead, Thien Duong, Pikee Priya, 

Moorehead, Dan J. Thoma, Santanu Chaudhuri, Jason Hattrick-Simpers, Kumar Sridharan, 

Adrien Couet, Nobility vs Mobility: Unlocking New Insights into Molten Salt Corrosion 

Mechanisms of High Entropy Alloys with High-Throughput Experiments and Machine 

Learning-enabled Analysis 

 

A model with a high coefficient of determination R2 value close to unity is not sufficient 

proof that it can be trusted to a) correctly evaluate new samples outside of the training set (aka generalize 

to out of bag samples), and b) provide physically meaningful interpretation [293] 

It is possible for a model to fit the data to a high R2 by having learned overly specific but 

ultimately meaningless rules; the model may fit the training samples very well but return wildly 

inaccurate results on out-of-bag samples. In such a scenario, the model is said to be overfitted and it 

generalizes poorly [234] 
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There is the matter of how to define the accuracy of an ML model in Materials Science.  

“Accuracy” is generally understood as “how far away” the ML predictions are from their ground truth 

values, yet the Material Informatics community has yet to come to a consensus on how to measure 

distance between the ML predictions and their ground truth values. A critical evaluation of the various 

model validation metrics in common use will be made in the following section and the case will be made 

for Mean Absolute Percentage Error (MAPE) as singularly superior compared to the others. 

Cross-Validation (X-Val, abbreviation chosen to avoid acronym confusion with “Cyclic 

Voltammetry”) is a step that can be added to the training step such that the evaluated accuracy of the 

trained ML model with X-val provides a better indication of how well the model will generalize to out-of-

bag samples than the trained ML model without X-val.  

To build a 5-fold X-val ML model, the entire sample set is divided into 5 subsets where 4 

subsets are used to train the model and the last one is used to test per fold. This procedure is repeated for 

each of the 5 sets so that all samples are used to test exactly once. In this way, the average of fitting errors 

for every sample over the folds is anticipated to reflect the fitting error of a sample just like it if it were an 

out-of-bag sample. By randomizing the samples within each subset and using each subset as a test set at 

least once, every sample is treated as an out-of-bag sample at least once during the x-val process. The 

accuracy of the x-val ML model thus reflects the expected generalization accuracy by utilizing all training 

samples were out-of-bag samples during the x-val process. Another benefit of randomizing the samples 

within each subset is that the training population for each fold is less likely to contain sufficient 

frequencies of incident patterns - any patterns that consistently appear over the x-val manifold can be 

deemed substantial patterns worth exploring for interpretation  
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3.6.3.1 Dimensional reduction that preserves physical interpretability using 

Spearman Pruning 

Dimensional reduction is an essential step towards developing an interpretable ML model. A 

common in multivariate materials science problems to determine the most impactful variable to the 

observed phenomenology - hence the need for methods in dimensional reduction. Principal Component 

Analysis (PCA) is a common way to perform dimensional reduction in materials science problems , 

which entails orthogonalizing the n-dimensional feature space by defining the new bases vectors as linear 

combinations of the collinear components in each of the original variables [294]  

The Pearson’s correlation coefficient between two variables x1 and x2 is defined as the 

normalization of the covariance of x1 and x2 (cov (x1,x2) ) by the product of their standard deviations σ1 

and σ2  : 

 

 

(19) 

Pearson’s value of 1 indicates perfect collinearity, -1 indicates perfect counter-collinearity 

and 0 indicates complete non-linearity. Since the Pearson’s correlation coefficient is an indicator of the 

degree of collinearity between two variables, it can be expected that variables with high magnitude of 

Pearson’s correlation with one another will be conflated to a high degree with one another during the 

PCA transformation.  

While PCA is effective at attributing explained variance in the model to orthogonal 

components [228], [295], it tends to obscure the interpretability of an MI/ML model for the fact the 

dimensional transformation conflates multiple physical features into the same dimension regardless of 

whether or not they are physically related to one another, rendering them mathematically convoluted. An 

interpretable model seeks to increase the degree of deconvolution/linear separability of features rather 
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than the opposite.  

With this philosophy, this thesis work adopts an alternative method of dimensional 

reduction, here referred to as Spearman Pruning.  

In the same spirit as Pearson coefficient, the Spearman correlation coefficient rR is a useful 

metric for expressing the degree of monotonic correlation between two variables, where a pair of 

variables that are perfectly monotonic to one another will have a value of unity whereas a pair of variables 

with no monotonicity whatsoever will have a value of 0. A pair of variables that are perfectly anti-

correlated will have a value of -1. The formula for the Spearman coefficient is: 

 

 

  

(20) 

 

Where n is the number of data points and di is the difference in ranks of the ith element. We 

use the Spearman coefficient throughout our paper to indicate the degree to which two variables are 

functionally related. For dimensional reduction, features with a high Spearman coefficient which did 

possess physical interrelationships with one another were grouped as a single feature and input into the 

model as a “single feature”. In this way, the model treats the correlated features as a single entity 

mathematically, and they can be interpreted as a group of features linked by thermodynamics (eg. The 

Nernst equation) or kinetics etc.  

3.6.4 Critical evaluation on validation metrics for ML in Materials Science. 

It has also recently become more common among the machine learning community to use 

coefficient of determination R2 [55], [56], [299], [300], [227], [228], [247], [274], [292], [296]–[298] to 

validate an ML model. Excellent R2 values of >0.9 are often accompanied by magnitude of prediction 
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errors (eg. mean square error, MSE and absolute error, MAE) [56], [227], [302], [228], [247], [273], 

[274], [280], [299]–[301] as metrics to measure the accuracy of an ML’s prediction in regression-type 

problems.  Despite their common usage, MSE and MAE do not represent the relative distance of a 

prediction value from the parity line well, whereas Mean Absolute Percentage Error (MAPE) is a metric 

that is better able to represent the scatter of data about the parity line. 

The comparison between the performance of various ML methods to solve corrosion 

problems by [236] (Figure 25a) finds R2 to be >0.9 for NN and tree-based methods, justifying the choice 

of method used in this thesis. They find that R2 of the model to be higher if the corrosion problem is 

treated as a time-series problem than (green) if the time-series component was ignored (red). MAPE is 

recommended here as a metric that is singularly superior to R2 in unambiguously reflecting how tightly 

the predictions are scattered around the prediction-experiment parity line, and better than MSE at 

reflecting the relative accuracy of predictions. When data spans many orders of magnitude, it is possible 

for a relatively accurately predictive model to reflect an unfairly high MSE if the set contains one or two 

outliers in the high-magnitude domain that are inaccurately predicted. When R2 and RMSE for multiple 

different ML models are tabulated and compared [227], it is not immediately clear which ML model is the 

most accurate because of the wide variance in R2 and RMSE in different directions. It was also mentioned 

in the previous section that a high R2 is no guarantee that a model is generalizable [293], RMSE is a 

flawed metric because it is possible to present it with a low value by a clever choice of units. In other 

words, a survey of the literature finds reports of R2>0.9 and low RMSE to be overly flattering 

representations of the data since visual inspection finds data often exhibits more scatter around the parity 

line than one would expect based on the metrics.  

Pearson’s R is occasionally used as a substantiation of ML prediction accuracy [52], [254], 

[303] but since it is only a measure of linearity between two variables, it is not a singularly convenient 

indicator of how close the slope of linearity is to unity. A reader’s inspection reveals the references cited 
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herein generally indicate MAPE values of ~40%, suggesting that ML prediction accuracy for material 

properties with MAPE ~40% for sample sets of hundreds of datapoints is considered acceptable to the 

community at the time of this writing  for ML applied to materials science in general [299] and to 

corrosion problems in particular [236]Figure 25b. 

 

 

Figure 25: [236] (a)  The Mean R2 as a function of the “Type of ML model”, depending on whether 

time-series was accounted for or ignored in the problem (b) the mean MAPE as a function of dataset size. 

3.6.4.1 A general mathematical framework for the interpretation of ML 

results and the Shapley approach in particular  

 

Having established that ML models are different in nature from conventionally understood 

mathematical models and MC simulation models, a different paradigm is needed to gain physically 

meaningful insights from ML models than the intuition applied to mathematical or MC simulation 

models.  

This paradigm shift in mindset begins by accepting that we need a surrogate mathematical 

(a)                                    (b) 
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function to express the interpretability of the ML model f(x’) where x represents the physical feature 

values. Let us call this surrogate “explainer function” [304] g(z’), where z’ denotes the feature value x’ 

mapped into “explainer space”. In an intuitively understandable model, f and g are equivalent and feature 

value x’ maps directly onto z’. We therefore express the explainer function as a linear equation:  

 

(21) 

 

Where each φi is simply an arbitrary quantization of the impact of the ith feature x’—> z’ to 

the model; φi are normalized to the scale of the output distribution. The key to understanding the model is 

to determine the φ values for the various features. (the term “impact” tis used o avoid confusion with 

“Gini importance” on account of their mathematical distinctness from one another).  

For linear models with a feature set containing multi-collinearity, it is efficacious to use 

Shapley regression to define values of 𝜑i in such a way that 𝜑i represents numerical impact on the model 

prediction for the inclusion of this feature. To calculate 𝜑i, a model using the universal set of all features 

fsU{i} is trained, and another model excluding feature i, fS, is trained. The difference between the results 

of the two models is the impact of withholding feature i from subset S. The aggregate impact of feature i 

on the model, 𝜑i , is computed by taking the aggregate impact of i over all possible feature subsets that 

exclude it.  

 

(22) 

 

S denotes the number all permutations of proper subsets within the universal set of F features. 
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This is the basis for the computation of SHapley Additive exPlanation (SHAP) values adopted in this 

thesis for analyzing any ML results. The larger the magnitude of the SHAP for a particular feature, the 

more impactful to the model it is.  
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4 Development of HTP platform for corrosion analysis 

This chapter features direct content form the following article first-authored by the PhD candidate:  

 

Bonita Goh, Yafei Wang,Phalgun Nelaturu, Michael Moorehead, Thien Duong, Pikee Priya, 

Moorehead, Dan J. Thoma, Santanu Chaudhuri, Jason Hattrick-Simpers, Kumar Sridharan, 

Adrien Couet, Nobility vs Mobility: Unlocking New Insights into Molten Salt Corrosion 

Mechanisms of High Entropy Alloys with High-Throughput Experiments and Machine 

Learning-enabled Analysis 

 

It also contains some content from the following journal article co-authored by the PhD Candidate: 

Yafei Wang, Bonita Goh, Phalgun Nelaturu, Thien Duong, Najlaa Hassan, Raphaelle David, 

Michael Moorehead, Santanu Chaudhuri, Adam Creuziger, Jason Hattrick-Simpers, Dan J. 

Thoma, Kumar Sridharan, Adrien Couet, ,Integrated High-Throughput and Machine Learning 

Methods to Accelerate Discovery of Molten Salt Corrosion -Resistant Alloys, Advanced 

Science, 2022, 9, 20  

4.1 Sample Production: In Situ Alloying  

110 alloys, 100 of which lie within the single phase FCC and FCC+BCC dual-phase fields of the 

CrFeMnNi CCAs, were successfully additively printed on a Laser Engineered Net Shaping (LENS) 

instrument, homogenized, aged, mirror-polished and corroded in molten salts following the method 

outlined in [178]. As shown in Figure 1, an Optomec LENS MR-7 system equipped with four hoppers 

filled with individual Cr, Fe, Mn, and Ni powders was utilized for the additive manufacturing fabrication 
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of the 110 CrFeMnNi alloys. During the alloy fabrication, flowing Ar gas carried the powder from the 

hoppers into the laser beam path. Following calibration, the printed alloy composition was controlled by 

the hoppers’ auger RPM. The nominal printed alloy dimensions were 11mm x 11mm x 2mm with 25 

alloys printed on each SS316 build plate. Each printed alloy comprised five print layers, with two 

remelting passes after each print layer to minimize unmelted powder fraction [167].The hatch spacing 

was 0.381 mm for the print layers and 0.19 mm for the remelting layers, with a 90° rotation of the hatch 

pattern between each subsequent print/remelt layer. Detailed description regarding the additive 

manufacturing process can be found in [178]. The 25 alloys on a build plate were simultaneously 

homogenized at 1000°C for 24 hours in a vacuum furnace, and heat treated at 700 °C for 24 hours to 

obtain a thermodynamically stable microstructure. Figure 26a 

 

Prior to corrosion testing, printed alloys were ground with SiC abrasive papers from 400-1200 grit 

following which they were polished with polishing pads and 3μm, 1μm diamond suspensions, as well as 

0.04μmcolloidal silica suspension. Finally they were cleaned by ultrasonication with water, ethanol, and 

acetone in succession [178]. 

4.2 The Experimental Platform 

4.2.1 Standardized Pill Testing Procedure 

 

As illustrated in Figure 1, a high throughput molten salt corrosion experiment was used as 

detailed in [178]. LiCl-KCl eutectic salt (in ratio 59:41 wt%) with 2 wt% EuCl3 addition was used. To 

perform the corrosion experiment, small salt pills, about 0.37 g in mass, were pelletized in a custom-

fabricated tungsten carbide die and compacted using a manual hydraulic press at a constant load of 2.5 

tons for 2 minutes. The salt pellets were placed on the surface of each printed alloy. Then the entire plate 
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was heated on a heating plate at 500°C resulting in a molten salt droplet on each printed alloy. While the 

entire printed alloy surface was wetted by the salt, the salt droplet remained on the surface of each printed 

alloy due to surface tension. About 5% of the test set experienced salt spillage and in these cases the 

corrosion tests were redone. The inclusion of 2wt% EuCl3 served to maintain a relatively high and 

constant chloride potential in each salt pill during the exposure [305]–[307]. The corrosion experiment 

was performed for 96 hours after which the heating plate was shut down, the salt droplet solidified, and 

the salt removed from the surface of each alloy for ICP-MS analysis at the Wisconsin State Hygiene 

Laboratory, following procedure detailed in [107].  

 

 

(a)                            (b)                               (c)           

Figure 26 (a) Build plate with alloys after printing and heat treatment using the processes developed by 

(b) Standardized salt pills arranged on build plate prior to start of corrosion experiment. (c) Post 

corrosion salt pills. Photo credit: Dr Yafei wang [178] 

4.2.2 Maintaining chlorine potential of each pill corrosion environment 

 

The chlorine potential of the salt is controlled by the equilibrium of the Eu3+/Eu2+: 

  EuCl3 (m) ⇌ EuCl2 (m) + Cl- (m) ΔEo
 Eu3+/Eu2+ (23) 
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The Nernst equation for this reaction can therefore be used as a proxy to determine chlorine potential:  

 
- 

(24) 

 

Where ΔEo
 Eu3+/Eu2+ is the standard reduction potential of Eu3+ to Eu2+, T is the temperature in K, R is the 

ideal gas constant in [J·K-1·mol-1], aEuCl2 is the activity of EuCl2 in the salt, aEuCl3 is the activity of EuCl3 in 

the salt, and aCl- is the activity of chloride anion in the salt. The chlorine potential for every salt pill at the 

start of the experiment is uniform since they were prepared from the same large batch of LiCl-KCl-

2%EuCl3 eutectic.  

With a conservative assumption that the corrosion of Cr, Fe, Mn, Ni all occurs as oxidation to the divalent 

state, balanced by monovalent reduction of Eu3+ according to equation (23), the chlorine potential at the 

end of the corrosion period was calculated for each salt pill by:  

 

 
- 

(25) 

 

Where ctot is the total corrosion concentration of analytes (Cr+Fe+Mn+Ni). As shown in the results 

section, the total corrosion concentration of analytes in the salt determined by ICP-MS is on the order of 

0.1%, therefore the 2nd term in equation (7) is very small, and the calculated perturbation to the chlorine 

potential across all corrosion samples is ± 0.05 V.  

4.2.3 Verifying the Repeatability of the Pill Corrosion Experiments 

The repeatability of the pill corrosion tests was verified by experiment. Six replicates of the molten 

salt droplet corrosion experiments were performed using SS316 coupons purchased from McMaster-Carr. 

These SS316 coupons were prepared for the corrosion experiment as detailed above. The objective of the 
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replicate experiment was to estimate the experimental variance in the corrosion tests by measuring the total 

concentration of corrosion products in the replicates.  

The average total concentration of (Cr+Fe+Mn+Ni) corrosion products measured in post-corrosion 

salt by ICPMS from the SS316 samples was found to be (1194 ± 163) ppm giving an experimental standard 

deviation of about 13.7%. Pre-corrosion and post-corrosion XRD were compared, and the microstructure 

did not change after corrosion with only a slight lattice parameter extension. The typical post-corrosion 

surface morphology can be seen in the SEM in Figure 27 

Method development was done by the PhD candidate. Acknowledgment for performing the pill corrosion 

repeatability experiments goes to lab intern Isabelle Baggenstoss.  

 

 

Figure 27 SEM of post-corrosion SS316 taken by Dr Yafei Wang. 
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4.3 Collation of the ML input matrix 

4.3.1 Data sourced from databases: CALPHAD: MS-CRADLE, PANDAT & HSC. 

Each of the alloys printed is featurized by quantified thermodynamic, kinetic, surface energetic  

parameters derived from their composition. These features were organized in a matrix. This data was 

sourced from various databases: MS-Cradle which is owned and maintained by Dr Santanu Chaudhuri, 

Pan HEA)v. 2021, both of which are CALPHAD-based databases, and HSC v.6. 

CALculation of PHAse Diagrams (CALPHAD) utilizes a  computational method of 

extrapolating thermodynamic and kinetic parameters of higher order alloy systems based on experimental 

data for binary and ternary alloy systems [308] The database contains sufficient data on thermophysical 

and thermochemical properties and their phase equilibria on relevant binary and ternary alloys to the one 

of interest. The calculation scheme then entails determining phase equilibria for the higher-order - CCA- 

composition of interest from which the thermophysical or thermochemical properties of interest can be 

derived using a model with built-in adjustable parameters. Further details can be found in [308].  

The following thermophysical/thermochemical features were obtained for each alloy from the 

PanHEA database at 500 oC: solid solution phase fraction, elemental surface activity, Gibbs Free Energy 

of alloy formation, Enthalpy of formation of alloy, elemental chemical diffusion, and tracer diffusion 

coefficients. Diffusion coefficients are specified by phases, so they are strongly influenced by phase 

fraction.  

Texture-specific surface energy and work function for the planes (100), (110), (111) were 

obtained for each alloy from the MS-Cradle database. MS-Cradle couples CALPHAD to DFT for first-

principles derivation of parameters of interest [309] and ML to decrease computational cost of performing 

the prediction [bokeh plot].  

Gibbs Free Energy (GFE) of formation for the corrosion products of interest, CrCl2, FeCl2, MnCl2 
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and NiCl2 were calculated using standard free energy of formation  ΔGo for these products obtained from 

HSC v.6 and the Nernst equation. This represents the thermodynamic favorability of an alloy to form 

corrosion products in Cr, Fe, Mn and Ni, and it is strongly influenced by the activity of the metal on the 

surface eqn (2)  

 

 

(2) 

It was hypothesized [178]that a possible sacrificial corrosion relationship may occur between pairs of 

elements if their ratio meets some threshold value. In this vein, mole fractions of the reactive alloying 

elements were calculated and included as features.  

Since some particular mechanical properties observed in CCAs have been attributed to 

entropy of mixing Smix [39], [310], it was also desired to study whether Smix had any impact on corrosion 

performance. ΔSmix was estimated for each alloy by Σ xlnxi where xI is the mole fraction of the ith element 

in the alloy, for inclusion in the input matrix.  

The entire list of features is included in the next section for convenient reference. 

4.3.2 Contribution of EBSD endearments to the input matrix 

The texture fraction of (100), (110) and (111) planes were measured for 7 of the alloys in the total 

dataset by Electron Backscatter Diffraction (EBSD) on a Zeiss LEO 1530-1 FESEM. The EBSD data was 

collected using an accelerating voltage of 20 kV and a current of 51 nA. A step size of 3 µm was used to 

scan a nominal area of 700 µm × 900 µm on the sample surface. The EBSD data was analyzed using the 

Crystal Direction function on OIM Analysis Software v.8. Color-coded texture fractions for (100) in red, 

(110) in yellow and (111) in blue are shown in Figure 27, representative of the data from 7 samples. The 

average texture fractions are found to be (0.17 ± 0.06) for (100), (0.50 ± 0.11) for (110), (0.23 ± 0.06) for 

(111). Texture fractions have a fairly low variance between samples and the (110) fraction is the most 
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prevalent, even visibly so. These texture fractions are used to calculate the texture-fraction weighted surface 

energy γ and work function φ for each sample.     

 

Figure 28: EBSD analysis on the alloy samples was performed by Dr Phalgun Nelaturu. Data reduction 

for this section was performed by the PhD candidate. 
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4.3.3 Complete list of features for ML input 

Table 15: Complete list of features for ML input 

 Feature index 

no 

Feature 

1 No of Measured phases 

2 (100) Surface Energy 

3 (110) Surface Energy 

4 (111) Surface Energy 

5 (100)Work Function 

6 (110)Work Function 

7 (111)Work Function 

8 Sample Surface Energy (texture-fraction weighted surface energy of the alloy) 

9 Sample Work Function (texture fraction weighted work function of the alloy) 

10 atomic fraction (Cr) 

11 atomic fraction (Fe) 

12 atomic fraction (Mn) 

13 atomic fraction (Ni) 

14 atomic fraction (Cr+Fe+Mn) 

15 atomic fraction (Cr+Fe) 

16 ratio Fe:Mn 

17 ratio Cr:Mn 

18 ratio Fe:Cr 
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19 ratio (Cr+Fe):Mn 

20 ratio Fe:Ni 

21 mixing entropy 

22 bond probability(Cr-Cr) 

23 bond probability(Cr-Fe) 

24 bond probability(Cr-Mn) 

25 bond probability(Cr-Ni) 

26 bond probability(Fe-Fe) 

27 bond probability(Fe-Mn) 

28 bond probability(Fe-Ni) 

29 bond probability(Mn-Mn) 

30 bond probability(Mn-Ni) 

31 bond probability(Ni-Ni) 

32 activity(Cr) 

33 activity(Fe) 

47 activity(Mn) 

35 activity(Ni) 

36 GFE_formation of alloy 

37 GFE_formation of corr pdt(CrCl2) 

38 GFE_formation of corr pdt(FeCl2) 

39 GFE_formation of corr pdt(MnCl2) 

40 GFE_formation of corr pdt(NiCl2) 

41 phase fraction (Bcc) 
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42 phase fraction (Fcc) 

43 phase fraction (L12-FCC) 

44 phase fraction (H-L21) 

45 phase fraction (Sigma) 

46 Enthalpy of alloy formation 

47 Tracer Diffusion coefficient of Cr in the BCC phase  

48 Tracer Diffusion coefficient of Cr in the FCC phase 

49 Phase-weighted Tracer Diffusion coefficient of Cr  

50 Tracer Diffusion coefficient of Fe in the BCC phase  

51 Tracer Diffusion coefficient of Fe in the FCC phase  

52 Phase-weighted Tracer Diffusion coefficient of Fe 

53 Tracer Diffusion coefficient of Mn in the BCC phase  

54 Tracer Diffusion coefficient of Mn in the FCC phase  

55 Phase-weighted Tracer Diffusion coefficient of Mn  

56 Tracer Diffusion coefficient of Ni in the BCC phase  

57 Tracer Diffusion coefficient of Ni in the FCC phase 

58 Phase-weighted Tracer Diffusion coefficient of Ni 

59 Mean Electronegativity of alloy 

60 Chemical diffusion coefficient of Cr in FCC & BCC phase 

61 Cross-diffusion coefficient of Cr vs Fe in FCC & BCC phase 

62 Cross-diffusion coefficient of Cr vs Mn in FCC & BCC phase 

63 Cross-diffusion coefficient of Cr vs Ni in FCC & BCC phase 

64 Chemical diffusion coefficient of Fe in FCC & BCC phase 
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65 Cross-diffusion coefficient of Fe vs Cr in FCC & BCC phase 

66 Cross-diffusion coefficient of Fe vs Mn in FCC & BCC phase 

67 Cross-diffusion coefficient of Fe vs Ni in FCC & BCC phase 

68 Chemical diffusion coefficient of Mn in FCC & BCC phase 

69 Cross-diffusion coefficient of Mn vs Cr in FCC & BCC phase 

70 Cross-diffusion coefficient of Mn vs Fe in FCC & BCC phase 

71 Cross-diffusion coefficient of Mn vs Ni in FCC & BCC phase 

72 Chemical diffusion coefficient of Ni in FCC & BCC phase 

73 Cross-diffusion coefficient of Ni vs Cr in FCC & BCC phase 

74 Cross-diffusion coefficient of Ni vs Fe in FCC & BCC phase 

75 Cross-diffusion coefficient of Ni vs Mn in FCC & BCC phase 
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Figure 29. Schematic of the process from additive manufacturing of CrFeMnNi alloys, then corrosion 

testing of the alloys with molten salt droplets in individually isolated corrosion environment and, in 

parallel, featurization of each alloy by thermodynamic, kinetic and otherwise physical parameters for 

organization into a matrix for training/testing machine learning model.  
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4.3.4 A critical comparison of ICPMS and GDOES for quantifying molten salt 

corrosion products 

 

This section contains direct content from the following articles first-authored by the PhD candidate: 

 

Investigation of Alloy’s Surface Recession in Molten Salt Corrosion by the comparative assessment 

of GDOES and ICPMS analyses 

Bonita Goh1, Yafei Wang1, Phalgun Nelaturu1, Michael Moorehead1, Louis Bailly-Salins, Raphaelle 

David1, Kumar Sridharan1,2, Adrien Couet1,2 

1Department of Engineering Physics, University of Wisconsin-Madison, WI 53706, USA 

2Department of Materials Science and Engineering, University of Wisconsin-Madison, WI 53706, USA 

 

1. Introduction 

 

Nuclear power is an indispensable component of the global energy production portfolio. This paradigm 

becomes ever truer as the pressures of anthropogenic climate change mount for the world to replace fossil 

fuels as its primary energy source. As of 2021, 2,500 TW[4] of the 170 000 TW total global energy burden 

[311] is shouldered by nuclear power, primarily utilizing Gen III light water reactors (LWR)[312]. For the 

next generation of reactor designs, the Gen IV Molten Salt Reactor (MSR) concept aims to improve upon 

reactor fuel utilization and reactor efficiencies as well as inherent safety by employing molten alkali-

metal/halide eutectic salts as fuel media and/or coolant media[312]. Unfortunately, despite their favorable 

heat transfer and hydraulic properties, molten halides are notoriously harsh corrosive environments to 

structural alloys. Therefore, understanding the basic science governing corrosion resistance against molten 

halides at high temperature [313]–[316] is imperative to the development of structural materials suitable to 
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be licensed for MSRs. 

Corrosion modes are largely understood from the perspective of thermodynamically favorable species for 

forming corrosion products. In the case of molten halide salts, where the oxide layers are not stable, the 

main corrosion mode is dissolution. Preferential dissolution of the most susceptible element results in a 

depletion profile in the substrate. This understanding generally holds until about 53% of the alloy is made 

of one main noble element (i.e., known as the room temperature parting limit), below which de-alloying 

can occur. In addition, Fe, and even Ni, may not be stable in molten salt environments of MSRs due to the 

presence of oxidizing impurities or fission products, causing alloy surface recession. The recent increase in 

interest in High-Entropy Alloys (HEAs)[70], [317] as promising MSR structural materials [42], [52], [115], 

[120], [145], [152], [318] renders the former paradigm of analyzing corrosion mode from a single base 

element obsolete. Novel approaches are required to systematically study HEAs to understand the primary 

drivers behind their corrosion modes.  

 

The first critical question to be answered relative to corrosion modes is if these alloys systematically 

experience significant and observable surface recession. If surface recession occurs at a relatively high rate 

in a particular alloy, all other corrosion modes (relative elemental depletion, grain boundary corrosion, 

phase separation, etc.) can be understood as secondary processes, that further degrade the material beyond 

uniform thinning of the material thickness. 

Several characterization methods are commonly applied to study material degradation in molten salts: 

• Energy Dispersive Spectroscopy (EDS) is used in the analysis of differential elemental depletion [91], 

[315], [319]; however it has several shortcomings, such as i) difficult to obtain quantitative data, ii) 

difficult to do a systematic comparison with large datasets due to time consuming sample preparation, 

and iii) analysis limited to a localized area; 

• Inductively-Coupled Plasma Mass Spectrometry / Optical Emissions Spectroscopy (ICPMS/OES) are 
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prevalently used in the community to determine total loss by element [320], [321] but also have several 

shortcomings, such as i) heterogeneous analyte sampling on the order of 1g salt aliquots chiseled off 

bulk frozen salt from corrosion experiments, b) does not account for certain species of salt-impurity 

driven corrosion - in particular Cr2O3 - that are notoriously difficult to completely digest by common 

acid preparations such as concentrated HNO3 and HCl or even aqua regia; 

• Glow Discharge Optical Emissions Spectroscopy (GDOES) is a technique with the capability to 

analyze alloy samples post-corrosion in molten salts [322]–[327] resulting in differential elemental 

depletion, but its shortcomings are i) it is not a high throughput (HTP) method, and more importantly 

ii) GDOES analysis does not account for the effects of surface recession. 

To this end, this study investigates the corrosion results of 90 unique HEAs in the CrFeMnNi quaternary 

compositional space. The dissolved Fe, Cr and Mn into the salt from each alloy was quantified by 

standardized ICPMS analysis. The results are compared to the integration of diffusion depletion profiles 

determined by a standardized GDOES analysis of the post-corrosion alloy surfaces. The purpose of this 

study is twofold. It aims at demonstrating that surface recession is broadly observed in 90 unique CrFeMnNi 

alloys mostly distributed over the FCC phase space, and that common digestion procedures for salt 

elemental analysis for ICPMS/OES comprising HCl and HNO3 leave some corrosion products undigested; 

instead, samples must be digested by concentrated H2SO4 to completely digest all possible chemical forms 

of corrosion species of alloy components.  

 

2. Methods 

 

2.1. Sample preparation and corrosion experiments 

90 unique alloy compositions within the CrFeMnNi quaternary composition space were additively 

manufactured on a Laser Engineering Net Shaping (LENS) system, each as 1cmx1cmx2mm samples on a 
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316 stainless steel buildplate. This was performed on an Optomec LENS MR-7 system using gas-atomized 

elemental powders of Cr, Fe, Mn, and Ni with a size distribution of 45-150um. Detailed description on the 

manufacturing process can be found in [167]. Before the corrosion experiment, the top surface of each alloy 

was leveled and polished with SiC abrasive papers up to 1200 grit and then with polishing pads using 3 µm, 

1 µm diamond suspensions and 0.04 colloidal silica suspension. Based on the high-throughput corrosion 

experimental method outlined in our previous study [178], each of these 90 unique alloys was corroded by 

a ~0.37g droplet of LiCl-KCl eutectic salt, with 2wt% EuCl3 added, at 500 oC. LiCl-KCl was purchased as 

anhydrous from Sigma Aldrich at 99.9% purity and only opened and used in glovebox for the corrosion 

experiments in an inert environment with O2<1ppm and H2O<0.1ppm [178]. During the corrosion testing, 

the top surface of each alloy sample was completely covered by the molten salt droplet as evidenced by 

post corrosion examination. After a corrosion period of 96 hours, the molten salt droplet was allowed to 

refreeze at room temperature, and was then removed from the top surface of each alloy.  

 

2.2. ICPMS analysis 

 

Pre-corrosion LiCl-KCl was analyzed by ICPMS for 55 elements for baseline concentrations. Table 16 

shows the results of this analysis for specific elements of interest: 

 

Table 16: Analysis of pre-corrosion salt by ICP-MS for analytes of interest in [μg of analyte / g of salt] 

Analyte Cr Fe Mn Ni P S 

Concentration [μg/g] 0.161 0.88 0.035 0.08 0.18 8.31 

Uncertainty [μg/g] 0.008 0.28 0.006 0.02 0.04 0.26 

 

The pre- and post-corrosion LiCl-KCl salt pills are prepared for ICP-MS analysis [328] by dissolving the 
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entire salt pill in 2.00mL of 12M aqueous HCl with the addition of 0.50 mL of 16M aqueous HNO3. They 

are then refluxed at 95oC for 4 hours on a hot block. Afterwards each sample digest is volumetrically diluted 

with deionized (DI) water up to 50.0mL. Prior to loading on the ICP-MS instrument (Thermo-Finnegan 

2XR Magnetic Sector ICP-MS), each sample’s aqueous solution is further diluted in 1:20 ratio, which 

enables the analytes’ concentration of interest to fall within the mass detector’s dynamic range for 

quantification according to the instrument’s maximum precision. Results are corrected by subtracting 

sample preparation method blanks prior to reporting. The calibration of the ICP-MS was performed by 

measuring series of multi-element calibration standards containing Cr, Mn and Ni at (0, 0.4, 2, 20)ppb and 

Fe at (0, 80, 400, 5000)ppb and ascertaining an R2> 0.995, according to the procedure in [107].  

Due to the sample preparation procedure, which entails dissolution in aqueous media where there is an 

abundance of H and O, baseline H and O impurities in the anhydrous salt cannot be accurately and directly 

measured by ICP-MS. This is a significant disadvantage of the technique, as it does not allow the 

investigation of moisture and oxide driven corrosion mechanisms. Instead, P and S impurities may be used 

a proxy indication of the presence of O in the salt as PO4
- and SO4

2- [329], [330]. From the results in Table 

16, it may be inferred that the O concentration from O-bearing P and S impurities has an upper limit of 33 

[μg/g]; This concentration of S impurities is low enough such that its impact on sample weight loss is 

negligible [331]. Furthermore stoichiometrically this suggests an upper limit of 132ppm of elemental O 

present in the salt from phosphate and sulphate anions. Of course this does not account for impurities due 

to oxides or other oxygen containing species.   

The mass of each post-corrosion salt droplet was measured such that the total quantity of each element 

dissolved in salt can be precisely calculated from the ICP-MS analysis results. Assuming all corrosion 

products dissolved in the salt are soluble in the acidic aqueous solution required for ICP-MS analysis, the 

total quantity of each element dissolved in the salt can be obtained by simply multiplying the concentration 

of the dissolved elements of interest from the ICP-MS by the mass of each salt droplet. The quantification 
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uncertainty for ICP-MS is taken as the Root Sum Square (RSS) of standard deviations for i) instrumental 

sensitivity for the analyte; ii) measurement uncertainty for analytical and digestion dilution factors; iii) 

quadruplicate method blank measurements; and iv) triplicate measurements for each sample. In general, 

the quantification uncertainty for ICP-MS measurements of each analyte is ~5%.  

 

2.3. GDOES analysis 

 

By contrast to ICP-MS, elemental analysis by GDOES needs no sample preparation. The post-corrosion 

sample is loaded directly onto the instrument with the surface to be analyzed facing a cylindrical copper 

anode; the sample acts as the cathode. A pulsed radiofrequency is applied between the anode and cathode, 

forming a plasma. The plasma sputters the atoms off the sample and the plasma characteristic elemental 

photon emissions plasma are quantified by polychromators. The depth-resolved elemental concentrations 

of Cr, Fe, Mn, and Ni is analyzed through a depth of 40μm (as measured by profilometry) with a circular 

sputtered area of 4mm diameter. The spatial resolution of the depth profile is 9x10-3 μm. To study the 

present set of samples, the flushing time was 80s, preintegration time 200s, background 5s, pressure 550 

Pa, RF power was 40W, with module 7V and phase 4V. 

The GDOES instrument used in this study is a Horiba GD-Profiler 2 located at the Nanoscale Imaging and 

Analysis Center at the University of Wisconsin - Madison. Calibration was performed by determining the 

values of the constants 𝑘𝑖 , 𝑒𝑖 , and 𝑞𝑟𝑒𝑙  relating light intensity 𝐼𝑖  detected (number of photons) for 

element i to the amount of the element (number of atoms) 𝑐𝑖 , as shown in Equation 1 [332]: 

 𝐼𝑖 =  𝑘𝑖𝑒𝑖𝑞𝑟𝑒𝑙𝑐𝑖 + 𝑏𝑖 (26) 

where 𝑘𝑖 is the instrumental detection efficiency for the element 𝑖 and 𝑒𝑖 is the emission efficiency for 

the element 𝑖, defined by the number of photons at characteristic energies emitted per mole of element. As 

a general rule, 𝑘𝑖 and 𝑒𝑖 are element dependent but not material dependent. 
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𝑞𝑟𝑒𝑙 is the relative sputtering rate in mg/m2/s of material compared to a reference and is assumed to be 

constant between elements in the same sample. It is as defined as: 

  𝑞𝑟𝑒𝑙 =  
𝑞

𝑞𝑟𝑒𝑓
 (27) 

where 𝑞 is the absolute (measured) sputtering rate determined by measuring crater depth with a Zygo New 

View 9000 Profilometer, and 𝑞𝑟𝑒𝑓 is the sputtering rate of a reference sample. 

The measured intensity 𝐼𝑚 must be drift-corrected prior to plugging into equation (26) to determine 𝑐𝑖. 

The drift correction accounts for the drift in emission intensity detected by the instrument due to changes 

in conditions (spectrometer drift over time, plasma instability) over time between calibration measurement 

and sample measurement. The relationship between 𝐼𝑚  and the drift-corrected intensity 𝐼𝑐  can be 

expressed as: 

𝐼𝑐 =  𝛼𝐼𝑚 +  𝛽 (28) 

where the correction coefficients 𝛼 and 𝛽 are calculated from the intensities of a sample with relatively 

high intensity (IH), and relatively low intensity (IL), at the moment of calibration (I0
H and I0

L) and at the 

moment of drift correction (I’0
H and I’0

L) [332]: 

𝛼 =  
𝐼𝐻

0 − 𝐼𝐿
0

𝐼′𝐻 −  𝐼′𝐿

  
(29) 

𝛽 =  
𝐼𝐿

0𝐼′𝐿 − 𝐼𝐻
0 𝐼′𝐿

𝐼′𝐻 −  𝐼′𝐿

  
(30) 

The multi-element calibration was performed with calibration standards that included Ni 200, Ni201, 

SS315H, Hastelloy-N, Inconel-625, Cr15Fe35Mn15Ni35, and Cr18Fe27Mn27Ni28 alloys to determine the 

constants in the calibration curve in equation (26). Using this approach, the uncertainty for the depth-

resolved concentration of element M, σM (x), at distance x from the surface is determined using an error-

propagation of the uncertainties in:  
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- elemental concentration in the calibration standard σc; 

- calculation of the relative sputtering rate σqrel; 

- the measured intensity of the element σI; 

- the detection limit of the element σDL. 

Calibration uncertainties are automatically performed in the instrument software (QUANTUM) to report 

goodness-of-fit metrics. For an in-depth discussion on the GDOES quantification and the calculation of 

uncertainties performed in this study, the reader is referred to [332]. Figure 30(a) shows a representative 

example of the depth-resolved concentrations of the alloying elementss for one sample using the 

quantification approach detailed above. A shaded area representing the respective uncertainty based on the 

error propagation calculation is also added. Specific plots were generated for each of the 90 samples 

analyzed using an in-house batch analysis algorithm. 

Based on the depletion profiles for each of the 90 samples (see Figure 30(a)) the total number of moles per 

element depleted was calculated for each sample by numerical integration. Figure 30 (b) illustrates the 

depletion depth 𝑋𝑑
𝑀 for elements 𝑀 (Cr, Fe, Mn) in the alloy for the same sample shown in Figure 30 

(a). 𝑋𝑑
𝑀  is determined as the distance from the surface at which the elemental concentration has 

asymptotically approached the bulk concentration. The uncertainty in quantity of depleted element 𝑀, 𝜎𝑑
𝑀, 

was determined by: 

 
𝜎𝑑

𝑀 = ∫ 𝜎𝑀(𝑥)
0

𝑋𝑑
𝑀

𝑑𝑥 
(31) 
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(a)                                (b) 

Figure 30 (a) Example of elemental depletion depth profile for one sample Cr2Fe1-Mn15Ni73 with associated 

instrumental quantification uncertainty at each point (shaded region), red (Mn), black (Cr), blue (Fe), 

green (Ni). As-printed alloy compositions of alloys independently verified for all samples by x-ray 

fluorescence and electron dispersive x-ray spectroscopy).(b) Example of elemental depletion depth profile 

(solid line) for the same sample with a focus on Mn, Fe and Cr (note that the word “depletion” is 

generically used although Fe shows a relative enrichment). The integration region used to estimate 

elemental depletion quantity is represented by the shaded areas: purple (Mn), green (Cr), blue (Fe). Ni has 

been omitted due to negligible dissolution. 

 

2.4. Data analysis 

 

If the alloy surface recession is negligible the total integrated elemental depletion depth from GDOES 

should equal the total amount of the element corroded into the salt as soluble corrosion product as measured 

by ICPMS. Figure 31(a) shows the quantification comparison for Fe in sample with composition Cr0.2-

Fe70Mn6.2Ni23.6 where it is evident that there is no statistical difference present between the quantification 

result by GDOES (red) and ICPMS(blue) since their ±2SD intervals (96% confidence intervals) overlap. 

Figure 31 (b) shows the quantification comparison for Fe in sample with composition Cr12.5Fe8Mn0.5-
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Ni79where there is evidently a statistical difference between the quantification result by GDOES (red) and 

ICPMS(blue) since their ±2SD intervals do not overlap. These two samples were chosen to highlight the 

two cases where elemental quantification by ICPMS and GDOES agree or disagree.  

 

Figure 31: (left, a) Quantification comparison for Fe in sample with composition Cr0.2Fe70Mn6.2Ni23.6 

where it is evident that there is no statistical difference present between the quantification result by 

GDOES (red) and ICPMS(blue) since their ±2SD intervals (96% confidence intervals) overlap. (right, b) 

Quantification comparison for Fe in sample with composition Cr12.5Fe8Mn0.5Ni79, where it is evidently a 

statistical difference between the quantification result by GDOES (red) and ICPMS(blue) since their 

±2SD intervals (96% confidence intervals) do not overlap. 

 

Results & Discussion 

The elemental corrosion is thereby determined independently by ICPMS and GDOES with the methods 

outlined above for each of the 90 samples. Figure 30(b) illustrates the case where Mn and Fe dissolution 

strongly dominate the total corrosion compared to Cr and Ni. This was generally observed for all 90 samples 
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in the dataset. While it is expected that Ni corrosion into the salt is generally minimal because of Ni 

thermodynamic nobility, Cr depletion in the alloys in this dataset was not observed to be as dominant 

compared to Fe even though it is comparably thermodynamically active: for the 90 samples, ΔGf for CrF2 

was calculated to be in the range (-374, -337)kJ/mol and ΔGf for FeF2 was calculated to be in the range (-

367,-328)kJ/mol so there is significant overlap in the ΔGf of the respective corrosion products. This is 

because the alloy compositions were primarily confined to the single phase FCC, meaning that almost all 

compositions had a Cr concentration lower than 10%. 

 

The ICPMS and GDOES results are shown in Figure 32 under the form of a parity plot of measured (a) Cr, 

(b) Fe, (c) Mn by ICPMS on the x-axis and GDOES on the y-axis. The double-log scale was used for clarity 

because quantities span 5 orders of magnitude. Uncertainty bars shown are ±2SD as illustrated in Figure 

31, for each of the respective analytical techniques on its respective axis. The mole fraction of alloying 

element composition in the alloy is indicated in the accompanying color bar to each plot: blue points have 

lower mole fraction and pink points have higher mole fraction of the respective element. It is immediately 

clear from Figure 32(a) and (c) that, overall, the corroded amounts of Cr and Mn tend to increase as function 

of their mole fraction in the alloy. This is generally expected from thermodynamics Mn and Cr chlorides in 

molten salt are thermodynamically stable relative to the other elements in the alloy. In light of this, the 

corrosion behavior of Fe indicated in Figure 32(b) is more complex as alloys spanning a large Fe 

composition range experience a large variety of corrosion rate, without clear trends. This is surprising 

because according to the Ellingham diagram [82], Fe and Cr redox potentials are relatively close, so the 

corrosion behavior of Cr is expected to closely mirror that of Fe.  

Since this study was mostly confined to alloys in the single FCC region (with a few in the single BCC and 

BCC+FCC regions), all samples in this dataset can be loosely considered “Fe-based” (Fe composition 

greater than 50% with any balance of Cr, Mn and Ni) or “Ni-based” (Ni composition greater than 50% with 
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any balance of Cr, Fe, Mn). If surface recession was prevalent among the Fe based alloys in this dataset, 

Figure 32 would unambiguously show the quantification of corroded Cr, Mn and Fe by GDOES as under-

quantified compared to ICPMS, i.e., the majority of the points should lie below the parity line. Indeed in 

Figure 32(b) and (c), most data points lie below the parity line, suggesting that surface recession could 

represent a main corrosion degradation mechanism in CrFeMnNi HEAs.  

The parity plot in Figure 32a shows that Cr is mostly overquantified by GDOES compared to ICPMS. An 

investigation of the ICPMS samples indicated that during acidic digestion of the post-corrosion salt, 

undigested residue was observed in the bottom of the majority of the sample digests.  

 

Figure 32: Parity plot of corroded (a) Cr, (b) Fe, (c)Mn quantified by ICPMS (x-axis) vs. that quantified 

by GDOES (y-axis). Log-log scale was used for clarity because quantities span 5 orders of magnitude. 

Uncertainty bars shown are ±2SD each in the respective analytical techniques for the respective axis. 

Error bars that result in negative values were omitted due to log scale. By inspection of the numerical 

data, all Fe points that lie above the parity line possess negative uncertainty bars in the y-direction that 
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cross the parity line, indicating that all Fe (blue) points that lie above the parity line show no statistical 

difference between ICPMS and GDOES analysis values at 96% confidence.   

The residue was recovered by vacuum filtration followed by overnight desiccation of the filter paper, 

pictured in Figure 33. An estimation by gravimetry found the solid recovered from the digest of a single 

salt pill to weigh about 5 ± 2.5 mg. The undigested residue is of green color as shown in Figure 33 and is 

hypothesized to be Cr2O3, which is notoriously resistant to dissolution in aqueous media, having a Ksp of 

~10-31 .at rtp. This is consistent with the wide body of literature indicating that oxygen-bearing impurities 

such as oxides and sulphates exacerbate corrosion to alloy constituents [333]. Assuming the 5mg of 

undigested residue was 100% Cr2O3, this translates to about 30 µmol of Cr that was missed by the first 

ICPMS analysis. A procedure to fully dissolved Cr2O3 was developed and consist in further dissolving the 

sample with 8mL concentrated H2SO4 and microwaving at 550W for 2h was found to completely digest the 

residue. Unfortunately, the new digestion procedure could not be scaled up to incorporate vacuum filtration 

of the Cr-bearing residue and re-digestion with H2SO4 for ICPMS analysis of 90 samples. Nevertheless, if 

one adds this Cr2O3 amount to the ICPMS analysis the ICPMS results become much larger compared to 

GDOES. With this consideration, the corrosion data for Cr is also consistent with evidence that surface 

recession is occurring.  
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Figure 33: Photograph of vacuum filtered solid residue from acidic digest of post-corrosion salt pills. 

Sample 1 (B2318-24): Cr14Fe27Mn8Ni51, Sample 2 (B2339-09): Cr13Fe59Mn24Ni4 

 

Conclusion 

 

     Total element depletion by corrosion in molten LiCl-KCl at 500 oC of Cr, Fe, Mn from 90 alloys in 

the quaternary CrFeMnNi composition space was determined by two independent analytical techniques: 

GDOES and ICPMS, and compared for parity. ICPMS is demonstrated to be a precise method to quantify 

total Fe and Mn corroded into salt when the entire sample can be digested for analysis. Based on the 

corrosion results form 90 alloys, it is concluded that surface recession is a significant effect in high-Ni 

alloys in molten halide environments. Deviation from parity for quantification of Fe and Mn between the 

two techniques was observed , with ICPMS being the more precise technique between the two compared. 

Regarding analyzing Cr corrosion products by analytical techniques that rely on aqueous acid digestion 

sample preparation steps (ICPMS), care must be taken that the acid digestion completely dissolves the 

highly resistant Cr2O3. We have found that concentration H2SO4, microwaved at 550W for 2h is sufficient 

for the purpose.  
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Overall, comparison of the quantification precision by ICPMS and GDOES generally indicates that 

total dissolution of the sample salt and analysis of the digest by ICPMS is a more precise analytical 

technique to quantify total Fe and Mn loss from the alloy by corrosion.  

Visual inspection of the representative sample shown in Figure 30 reflects that GDOES does not 

accurately reflect the bulk elemental compositions in the alloys as-printed, independently verified by x-ray 

fluorescence and electron dispersive x-ray spectroscopy. The low precision of GDOES measurements 

suggest that its primary utility is to indicate qualitative relative surface compositional changes to anticipate 

surface microstructural changes as a result of local compositional changes. 

It must also be noted that separate from instrumental uncertainty inherent in GDOES quantification, an 

additional source of uncertainty in quantification of elemental depletion by GDOES is that the GDOES 

measurement indicates the relative depletion of the elements, therefore an apparent non-deviation from 

bulk elemental concentration is no indication of non-depletion, rather it is possible to arise due to 

simultaneous depletion coupled to relative enrichment compared to another element. This is an inherent 

weakness of using GDOES to determine total elemental depletion by depletion profile integration. The low 

precision of GDOES measurements suggest that its primary utility is to indicate the extent of relative 

preferential dissolution mode of corrosion. GDOES analysis also does not reflect effects of re-deposition 

that may occur according to some identified molten salt corrosion mechanisms [95], [98]. Additionally, 

GDOES still has value as a high-throughput analytical technique.      

 

GDOES is an analytical technique better suited for the analysis of compositional changes induced at the 

alloy surface as a result of corrosion attack to anticipate corollary corrosion effects such as associated 

microstructure destabilizations, rather than quantification of elemental corrosion. We intend for this study 

to shed light on the specific challenges associated with interpreting element-specific mass-loss data in 
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corrosion analysis, having demonstrated that it is crucial to implement analytical techniques that decouple 

the chemical species of corrosion products for quantification in order to accurately study corrosion 

mechanisms (say impurity-driven corrosion versus chemical attack by solvating species) of alloys in high-

temperature molten salt systems.    
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5 Methods to Accelerate the Acquisition of element-resolved molten 

salt corrosion products 

5.1 Cyclic Voltammetry-based mini-electrochemical probe 

 

This section contains direct content from the following journal article co-first-authored by the PhD 

candidate: 

 

Yafei Wan†, Bonita Goh1†, Kumar Sridhara2, Adrien Couet, In-situ Corrosion Monitoring of T91 alloy in Molten 

Chloride Salt using miniaturized electrochemical probe for High Throughput Applications, Anal. 

Chem. 2022, 94, 9, 4012–4020 († These two authors contributed equally to this work) 

 

Abstract 

Corrosion sensing is essential to monitor and safeguard the materials’ health in molten salts. The present study 

developed a three-electrode array mini sensor for the high temperature molten salt corrosion monitoring. By using the 

developed sensor, the impurity driven corrosion of T91 by a fission product, europium, in LiCl-KCl eutectic molten 

salt has been studied. The developed mini sensor was validated to be an ideal probe for in-situ corrosion monitoring 

in high temperature molten salt via the comparisons on concentrations of the dissolved corrosion products detected by 

this device and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). To analyze the large-volume of data 

measured by the mini sensor during in-situ corrosion experiments, an algorithm has been developed to achieve the 

high-throughput data analysis. The well designed mini sensor can be potentially used for high-throughput corrosion 

experiments. Combined with the developed algorithm for high-throughput analysis, this study provided a platform to 

explore the application of electrochemical sensor for the in-situ corrosion monitoring of materials in high-throughput 

molten salt corrosion experiments. 
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1. Introduction 

Because of their atmospheric pressure operation at high temperatures, high thermal conductivity, large heat capacity, 

and compositional stability, molten salts are being considered for a wide range of applications for clean energy 

production, for example as coolants and solvent for fuel in advanced nuclear reactors [334] extraction media for 

pyroprocessing of spent nuclear fuel [335] thermal energy storage and heat transfer fluid of concentrated solar power 

[336], [337] ], and battery electrolytes [338]. However, the corrosion of structural materials in molten salts continues 

to present a challenge [82], [339]. The protective oxide films relied upon for reducing the corrosion in most aqueous 

solutions or oxidative environments are readily dissolved in molten salt environment [340]Structural alloy corrosion 

has been recognized as one of the main concerns in the deployment of molten salt technologies, and, as a result, 

corrosion studies of structural alloys in molten salts have been performed extensively in recent years [82], [341], [342].  

Although molten salt-based technologies are recognized and expected to play a crucial, transformative role in energy 

and industrial applications in the future, the developments and selections of corrosion-resistant structural materials, as 

well as producing pure and non-corrosive salts, have lagged behind, which has prevented the fast development and 

deployment of these technologies. Consequently, there is a need to develop high-throughput techniques to accelerate 

material testing for molten salt technologies. A key to the accelerated development of alloy design for molten salt 

applications is the ability to continually monitor in-situ the compositional changes and corrosion potential of the 

molten salt. Unlike the corrosion of alloy occurring in aqueous solutions or oxidative environments, the constituent 

elements of the alloy typically get oxidized and dissolve into molten salt in the form of ions (e.g., Cr2+, Fe2+, etc.) 

during the exposure to molten salt environments. At the same time, the molten salt itself is an ionic conductor. Hence, 

electrochemical methods, such as cyclic voltammetry (CV), hold promise to achieve in-situ measurements of the 

dissolved alloy constituents and the corrosion of alloys themselves in molten salts can be monitored as a function of 

time.  

In the present study, a three-electrode array mini sensor for the high temperature molten salt corrosion monitoring has 

been developed. As the extraction media for pyroprocessing of spent nuclear fuel [335] , LiCl-KCl eutectic molten 

salt (44 wt% LiCl-56 wt% KCl) was selected to demonstrate the feasibility of the developed mini sensor on the 

corrosion monitoring. Using the developed mini sensor, the impurity driven corrosion of T91 ferritic steel by 
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europium, a fission product present in spent nuclear fuel, was evaluated. Considering the small dimensions of the 

designed mini sensor, it can be potentially applied for the high-throughput in-situ corrosion monitoring of molten salt 

droplet test on small samples, such as arrays of additively manufactured alloys [178]. At the same time, to handle the 

large volume of electrochemical data obtained by the mini sensor during the in-situ corrosion experiments, an 

algorithm has been developed to fit the experimental data to an electrochemical model, and the automated data analysis 

has been achieved. This study could form the basis to explore the application of electrochemical sensor for in-situ 

corrosion monitoring of materials in high-throughput experiments.  

2. Experimental Methods 

2.1. Mini sensor development 

The mini sensor developed in this study (Figure 34) is based on a three-electrode system consisting of one tungsten 

working electrode (WE) (1.0 mm diameter, 99.95% impurity, Alfa Aesar), one platinum counter electrode (CE), and 

one platinum reference electrode (RE) (1.0 mm diameter, 99.95% impurity, Surepure Chemetals LLC). The Pt counter 

electrode is shaped into a coil as shown in Figure 34 to increase the surface area when immersed into molten salt. An 

8.0 mm diameter alumina tube with three bores in the center was used to hold the three electrodes. The size of the 

bore is slightly larger than that of electrodes such that the three electrodes can be sealed tightly in the alumina tube at 

high temperature due to thermal expansions.  

 

Figure 34. Schematic illustration of the mini sensor developed in this study. 
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2.2. Material preparations and corrosion experiments  

The LiCl-KCl eutectic salt used in this study was prepared by 44 wt% of anhydrous LiCl salt powder (≥ 99% purity, 

Sigma Aldrich) and 56 wt% of anhydrous KCl salt powder (≥ 99% purity, Sigma Aldrich). Given that the oxidizing 

products generated from the nuclear fission reaction may cause severe structural material degradation. For instance, 

based on the calculation from the thermodynamic database, such as HSC Chemistry 6.0 ® [343] the standard potential 

of Eu3+/Eu2+ at 500 ℃ is -0.40 V (vs Cl2/Cl-), which is found to be much higher than that of Cr2+/Cr (-1.48 V vs Cl2/Cl-

) and Fe2+/Fe (-1.44 V vs Cl2/Cl-). At the same time, the high corrosiveness of Eu3+ in chloride salts was also reported 

in a previous study [344] Therefore, to simulate fission product driven corrosion, 2 wt% EuCl3 of anhydrous EuCl3 

(99.99% purity, Sigma Aldrich) was added into the LiCl-KCl eutectic molten salt in this study. The impurities of the 

salt mixture were identified by ICP-MS test, the main impurity elements and their concentrations are listed in Table 

17. As a mature structural material that is widely used in advanced power plants [345] but is also known to be 

susceptible to molten salt corrosion, T91 ferritic steel was selected and procured from American Alloy Steel Inc and 

sectioned into the dimension of 12.5 mm×12.5 mm×1mm. The nominal chemical composition of T91 is shown in 

Table 18. 

Table 17. Main impurity elements and their concentrations in LiCl-KCl-2wt% EuCl3 salt mixture 

identified by ICP-MS. 

Na Mg Al P S Ca Cr Fe Mn Ni 

16.5 7.5 1.1 3.8 11.2 32.3 0.2 1.0 0.02 0.1 

 

Table 18. Nominal chemical composition of T91 (in wt%, bal. Fe). 

C Mn P S Si Ni Cr Mo Cu N Cb Al V 

0.1 0.45 0.009 0.003 0.28 0.21 8.37 0.90 0.17 0.048 0.076 0.022 0.216 

 

Before the corrosion experiments, the T91 steel sample was ground with silicon carbide abrasive papers of different 

grit sizes up to 1200 grit followed by ultrasonic cleaning with deionized water and ethanol. The in-situ corrosion 
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experiment was performed inside a glovebox filled with argon atmosphere (O2<3ppm, H2O<0.1ppm) at 500 ℃ using 

a muffle furnace, as shown in Figure 35. The salt mixture used in this study was baked at 200 ℃ for 15 hours to purge 

out moisture and oxygen before heating up to 500 ℃. In the corrosion experiment, the T91 steel sample was suspended 

through a 316 stainless steel wire and partially immersed in 100 g LiCl-KCl-EuCl3 molten salt contained in a glassy 

carbon crucible (SPI supplies). The 316 stainless steel wire was electrically isolated through the quartz tube on the top 

of the muffle furnace. Based on the measured distance between the molten salt surface and muffle furnace, the 

immersion depth of the T91 sample in molten salt was fixed by using an alligator clamp. A schematic illustration of 

the experimental system used for electrochemical tests is shown in Figure 35. The muffle furnace was fixtured with 

quartz tubes on the top to allow the mini sensor to pass through the lid. The electrode parts between the tip of the mini 

sensor and the tip of the alumina sheath were partially immersed into molten salt to avoid salt creeping-up into 

potential tiny gap between the alumina bore and electrodes, although the tight design made such a gap quite unlikely. 

To verify the validity of the data acquired by the designed mini sensor, a classic three-electrode system with the same 

material as used in the mini sensor was also installed in the test cell. All the electrodes used in this study were well 

polished and ultrasonically cleaned before the test. The mini sensor and the equipped three-electrode system were 

connected to a VersaSTAT 3F potentiostat to obtain the electrochemical signal. Electrochemical measurements were 

conducted at different time intervals to monitor the concentration variations of ionic corrosion products in molten salt 

during the corrosion test. Before the electrochemical measurements were performed, a small oxidation current of 5 

mA was applied on the working electrode for 10 s to remove the potential pre-contamination on the electrode. 

 

Figure 35. Schematic illustration of the in-situ corrosion test cell used in this study. 
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3. Results 

3.1. Mini sensor validation  

Before performing the corrosion experiment, the data acquired by the developed mini sensor needs to be validated. 

First, open circuit potential (OCP) measurements were carried out for about 10 hours as shown in Figure 36(a). A 

stable OCP value can be observed as function of time with a steady state being reached after about 10,000s. That 

initial transient may be due to the homogenization and equilibria process of the molten salt solution at the beginning 

of the experiment. The OCP measurement shows that the mini sensor is quite stable during electrochemical 

measurements. CV scans were also conducted using the mini sensor and the obtained cyclic voltammogram is shown 

in Figure 36(b) in which the cathodic/anodic limits at the left of the electrochemical window are attributed to the redox 

reaction of Li+/Li [346] while the ones at the right side result from the redox reaction of Eu3+/Eu2+. The cyclic 

voltammogram obtained on the mini sensor is substantially similar to those obtained in studies using the well-

established three-electrode system with Ag/AgCl reference equipped [347], [348] . It is also found that the potential 

differences between Li+/Li and Eu3+/Eu2+ measured by the mini sensor and those observed in references [347], [348] 

are both about 2.8 V. This demonstrates that the developed mini sensor is an effective tool for the electrochemical 

measurements in LiCl-KCl-EuCl3 molten salt.  

 

Figure 36. Electrochemical tests performed on the mini sensor: (a) OCP and (b) CV. Scan rate for CV is 0.1V/s. 
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3.2. In-situ corrosion monitoring  

During the corrosion in molten chloride salt, alloys typically will suffer from active dissolution. Therefore, the 

measurement of the concentrations of the dissolved ions by CV at different time intervals provides an ideal way to 

monitor the corrosion of alloy in-situ in LiCl-KCl-2wt% EuCl3 molten salt. The corrosion test of T91 in LiCl-KCl-

2wt% EuCl3 molten salt was performed for 96 hours and the CV measurements were taken throughout this whole 

exposure period. Only one extra CV redox peak appeared after the immersion of T91 sample in LiCl-KCl-2wt% EuCl3 

molten salt, and the intensity of the reduction peak increases with time, as shown in Figure 37. There was a slight 

potential shift among different CV scans which probably resulted from the Pt quasi-reference electrode potential drift. 

For direct comparison, all the cyclic voltammogram scans were corrected to the same potential as the one measured 

at the 4-hour exposure. In Figure 37,  the anodic peak was also observed to shift for different scans, which is due to 

the different switching potential set in the CV scans [349].. Considering that T91 sample mainly consists of two 

elements: Fe and Cr, the extra redox peak should be attributed to the redox reaction of Cr2+/Cr or Fe2+/Fe. Based on 

previous studies [124], [350] the equilibrium potential of Cr2+/Cr is about 0.3 V lower than that of Fe2+/Fe in LiCl-

KCl eutectic molten salt. However, this difference between the two equilibrium potentials was based on the conditions 

of equal concentrations of Cr2+ and Fe2+ in molten salt and equal activity of Cr and Fe on the inert electrode (activity 

is unity, assuming pure metals). During the corrosion of T91, there is likely a significant discrepancy between the 

dissolved concentrations (and activities) of Cr and Fe in molten salt. The activity of Cr and Fe in T91 are also different. 

For instance, if extracting the activity of Cr and Fe in T91 using the PanHEA database of Pandat software (version 

2020) [351] , the values are 0.599 and 0.921 respectively, and assuming the activity of Cr2+ and Fe2+ in molten salt is 

10-6 (i.e. dilute solution approximation) [352], the equilibrium potentials of Cr2+/Cr and Fe2+/Fe calculated by equation 

(1) are -1.92 V and -1.90 V (vs Cl2/Cl-), respectively. 

𝐸𝑒𝑞 = 𝐸𝑀𝐶𝑙2/𝑀
𝑜 +

𝑅𝑇

𝑛𝐹
ln (

𝛼𝑀𝐶𝑙2

𝛼𝑀
) (1) 

where M represents Cr, and Fe, 𝑀𝐶𝑙2 is the metal chloride formed in molten salt during corrosion, 𝐸𝑀𝐶𝑙2/𝑀
𝑜  is the 

standard potential which can be compiled from the thermodynamic database, such as HSC Chemistry 6.0 ® [343] 𝑛 

is the electron transfer number, 𝐹 is the Faraday constant, 𝑅 is the gas constant, 𝑇 is the temperature, 𝛼𝑀𝐶𝑙2
 is the 
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activity of metal chloride in molten salt, and 𝛼𝑀 is the activity of 𝑀 in T91. 

Overall, the equilibrium potentials of Cr2+/Cr and Fe2+/Fe are quite close to each other. Therefore, the thermodynamic 

driving force for Cr and Fe depletion into molten salt should also be close. To further identify the extra redox reaction 

observed in CV scans, the ICP-MS analysis on the post-corrosion molten salt after 96 hours corrosion test was 

conducted, and the results are shown in Table 19. It can be seen Fe is the main depleted element and its concentration 

is more than ten times higher than that of Cr. In a cyclic voltammogram [349] the reduction peak is linearly related to 

the concentration of the dissolved species in the electrolyte. Under this scenario, the only significant redox peak 

detected by the mini sensor should be from the redox reaction of Fe2+/Fe instead of Cr2+/Cr, since the low concentration 

of Cr, and the extreme close equilibrium potentials of Cr2+/Cr and Fe2+/Fe, likely result in a negligible Cr2+/Cr redox 

peak convoluted to the Fe2+/Fe peak. 

 

Figure 37. Cyclic voltammograms obtained from the mini sensor during the corrosion of T91 steel in 

LiCl-KCl-EuCl3 molten salt, electrode area=0.4789 cm2, scan rate=0.1V/s.  

Table 19. Concentrations of Cr and Fe in the post-corrosion molten salt. 

Test ID Cr (ppm) Fe (ppm) 

#1 97.6±0.6 1282±14 

#2 99.1±1.3 1248±21 

#3 109±2.0 1438±30 
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The reversibility of the electrochemical reaction of FeCl2/Fe in LiCl-KCl eutectic molten salt has been confirmed by 

the linear regression of the cathodic peak current changes with the square root of the scan rate as reported by Park et 

al [124] If assuming the redox peak shown in Figure 37 is only attributed to the redox reaction of Fe2+/Fe 

(soluble/insoluble), the concentration of the dissolved Fe during the corrosion of T91 can be calculated from the 

Berzins-Delahay equation [122] below, based on the reduction peak obtained from CV. 

 

𝑖𝑝,𝑐 = −0.6105𝑠𝐶 (
𝑛3𝐹3𝐷𝑣

𝑅𝑇
)

1/2

 (2) 

 

where 𝑖𝑝,𝑐 is the reduction peak in A, 𝐶 is the concentration in mol/cm3, 𝑛 is the number of electrons exchanged 

in the redox couple, 𝐹 is the Faraday constant of 96500 C/mol, 𝐷 is the diffusion coefficient in cm2/s, 𝑣 is the scan 

rate in V/s, 𝑠 is the electrode area in cm2. 

The diffusion coefficient of Fe2+ ions in LiCl-KCl eutectic molten salt at 500 ℃ has been reported in previous studies, 

and is equal to 1.5×10-5 cm2/s using the CV technique [124] and 2.08~2.26×10-5 cm2/s using the chronopotentiometry 

technique [353] The reported smallest diffusion coefficient, 1.5×10-5 cm2/s, and the largest diffusion coefficient, 

2.26×10-5 cm2/s, were chosen in this study to calculate the range of possible concentration of Fe2+ in the molten salt 

using equation (2). The calculated concentration of Fe2+ at different exposure periods is plotted in Figure 38. The ICP-

MS results obtained on the post-corrosion salt (i.e. after the 96-hour corrosion test) are also plotted. The concentration 

of Fe2+ ions in the molten salt for the corrosion test of T91 increases gradually with the exposure time and approaches 

a steady value after about 24 hours. The concentration of Fe2+ ions at steady state measured by the mini sensor agrees 

quite well with the results measured for the post-corrosion salt after the 96-hour corrosion test. This is quite remarkable 

since both the electrochemical and spectroscopy measurements are totally independent from one another.  
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Figure 38. Concentration of Fe2+ ion in molten salt at different time intervals during the corrosion of T91 

steel. D1 represents the diffusion coefficient of 1.5×10-5 cm2/s reported by [124] D2 represents the diffusion 

coefficient of 2.26×10-5 cm2/s reported by [353]. 

To further validate the results obtained with the developed mini sensor, a three-electrode system consisting of platinum 

reference electrode, platinum counter electrode, and tungsten working electrode (surface area is around 0.35 cm2) was 

also used to perform the in-situ CV test at different interval times during the corrosion of T91. The calculated 

concentrations of Fe2+ ions in LiCl-KCl molten salt based on the measured reduction peak of CV were compared with 

the ones obtained by the developed mini sensor as shown in Figure 38. The results show excellent consistency between 

the two setups. This further validates that the effectiveness of the mini sensor to be a probe for in-situ corrosion 

monitoring in high temperature molten salt corrosion experiments. 

3.3. Material characterization  

After the 96-hour corrosion test, the T91 sample was removed and ultrasonically cleaned for Scanning Electron 

Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) analysis. Figure 39 shows the typical SEM 

image of the T91 surface after 96 hours of exposure in LiCl-KCl-2wt% EuCl3 molten salt. A dramatic uniform 

corrosion damage can be observed, along with some shallow pitting corrosion which is rarely observed in the corrosion 

of other alloys in molten salts [82].   
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Figure 39. SEM image of the T91 surface after 96 h corrosion test in LiCl-KCl-2wt% EuCl3 molten salt at 

500 ℃.  

To study the cross-sectional microstructure of the post-corrosion T91 steel, the corroded sample was cut through the 

center, mounted, and then polished for SEM and EDS compositional mapping. As can be seen from Figure 40, the 

post corroded interface is quite rough and severe corrosion attacks had occurred. However, no grain boundary 

corrosion, and/or depletion, was observed. The EDS mapping shows that there is a homogenous dissolution during 

the corrosion process, which results from the relatively close equilibrium potentials of Fe2+/Fe and Cr2+/Cr for T91 

steel in molten chloride salts. It should be noted that although both Fe and Cr dissolved into molten salt during the 

corrosion process, the concentration of Cr2+ (see Table 19) in the post-corrosion salt is small because of the relatively 

low composition of Cr in T91 alloy. This also explains why only one pair of redox peaks were identified in the CV 

tests. The pits observed in Figure 6 were not observed in Figure 7 because of the difference in scale. Additional pit 

characterization using surface SEM/EDS did not reveal a different chemistry at the bottom of the pit. Comparing the 

characterization data to the CV results in Figure 5, it appears that dissolution kinetics should be linear as function of 

time (not diffusion limited since Fe is readily available at the surface). The fact that the dissolution rate decreases 

significantly after 24 hours would mean that the activity of Fe2+ in the salt is high enough that the electrochemical 

reaction would stop, because of the higher Fe equilibrium potential in the salt (Equation (1)). In addition, T91 corrosion 
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consumes Eu3+ such that the salt potential decreases as well. When both potentials are equal, the Fe electrochemical 

reaction will stop.  

 

Figure 40. Cross sectional SEM image of the post-corrosion T91 alloy and the corresponding EDS maps.  

3.4. CV automated fitting for high-throughput applications 

To handle a relatively large volume of CV data anticipated from the in-situ corrosion experiment using the designed 

mini sensor, an algorithm, named Cyclic Voltammetry Automated Analysis (CVAA), was developed to automate the 

routine extraction of parameters of interest in a CV scan. An example of the different stages of processing a CV by 

the CVAA algorithm is shown in Figure 41. Considering that the oxidation peak will be affected by the reversal 

potential set in CV test [349]. and the concentration of the dissolved cation in electrolyte is more relevant to cathodic 

peak in cyclic voltammogram, the cathodic scan of CV is the focus of the CVAA code to save computational time. In 

Figure 41, dash line indicates the experimental CV data points acquired in LiCl-KCl-2wt% EuCl3 molten salt at 500oC 

for the dissolved corrosion products from T91. To process the data, first, the CVAA algorithm locates the peak current 

value of the cathodic scan as the marked “X” shown in Figure 41 and the ip,c value is recorded. The background 
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charging current for cathodic scan in CV is normally determined by drawing a linear fit extrapolation line from the 

pre-peak of the cathodic scan to the edge of the cathodic peak [349]. In conventional CV analysis, the choice of the 

data points covering the pre-peak is rather arbitrary and can bring significant uncertainties in the peak fitting. To 

remove any subjectivity, in CVAA, the segment of the CV cathodic scan denoting the redox peaks, sectioned off (dark 

shaded area) as shown in Figure 41, is determined by one full width at half-maximum (FWHM) on either side of the 

peak marked “X”. The data between the beginning of CV scan, far away from the peak, and the start of the peak, as 

defined above, is designated as the background charging current (grey shaded area) and a linear fit is used to 

approximate it.  

 

In the CVAA algorithm, the Berzins & Delahay analytical solution [122].for charge transport at the electrode surface 

for soluble-insoluble reaction was developed in equation (3) to fit the cathodic scan of the CV obtained from 

experiment using non-linear least square fitting method. 

𝑖(𝜂) = −
2

√𝜋
𝐶𝑛3/2𝐹3/2𝑠 (

𝐷𝑣

𝑅𝑇
)

1
2

𝑒𝑥𝑝 (−
𝑛𝐹

𝑅𝑇
∙ 𝜂) ∫ exp(𝑧2) dz

(
𝑛𝐹
𝑅𝑇

∙𝜂)

1
2

0

 
(3) 

 

where 𝑖(𝑡) is the current at time 𝑡 during the CV scan in A, 𝐶 is the bulk concentration of the dissolved cation in 

mol/cm3, 𝐷 is the diffusion coefficient in cm2/s, 𝑠 is the electrode surface area in cm2,  𝜂 is the overpotential in V, 

𝑣 is the scan rate in V/s.  

Equation (2) is derived from Equation (3) by rewriting Equation (3) as: 

𝑖𝑝,𝑐 = 𝛷(𝑛, 𝐹, 𝑇, 𝑣)𝐶𝑛3/2𝐹3/2𝑠 (
𝐷𝑣

𝑅𝑇
)

1
2
 (4) 

 

where  
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Strictly speaking, 𝛷(𝑛, 𝐹, 𝑇, 𝑣) is defined for electrons exchanged per reaction 𝑛, temperature 𝑇 and scan rate 𝑣 

[122]. Numerically, 𝛷(𝑛, 𝐹, 𝑇, 𝑣) evaluates to 0.61 as stated in Equation (2), and it was observed to vary by 0.1% by 

perturbing arguments within the range of 𝑣 = (0.01,1) V/s, 𝑇 = (298,773) K, 𝑛 = (1,2). Therefore, 0.61 is a widely 

applicable conversion factor to calculate 𝑖𝑝,𝑐 for commonly studied systems where 𝑛, 𝐶 and 𝐷 are known. The 

CVAA methodology serves to reinforce the theoretical basis of the existing literature on high-temperature molten salt 

cyclic voltammetry [124], [346] and provides improved precision and accuracy. To eliminate uncertainty with regard 

to 𝛷(𝑛, 𝐹, 𝑇, 𝑣) for a particular system, CVAA calculates 𝛷(𝑛, 𝐹, 𝑇, 𝑣) using the arguments provided for each 

analysis.  

 

Based on the extracted background charging current as discussed above and the parameters n = 2, T = 773K, v = 0.1 

V/s input by the experimenter, if taking the diffusion coefficient, 𝐷𝐹𝑒2+,𝐿𝑖𝐶𝑙−𝐾𝐶𝑙=2.26×10-5 cm2/s for instance, as 

reported from the literature [353] , the Equation (3) developed in the CVAA algorithm can be used to fit the 

experimental CV data. An example of the simulated CV cathodic scan with the experimental cyclic voltammogram is 

shown in Figure 41. The R2 for this model is calculated in CVAA, found in this example to be 0.87. It provides a 

metric for the goodness-of-fit as an indicator of the appropriateness of a particular model for analyzing experimental 

data.  

 

In high-throughput application of CVAA for analyzing multiple CV scans, with the previous reported 𝐷𝐹𝑒2+,𝐿𝑖𝐶𝑙−𝐾𝐶𝑙 

of 2.26×10-5 cm2/s from the literature  [353]  the concentration of Fe2+ at different exposure periods during the 

corrosion experiment was extracted out through fitting equation (3) with the CV captured at intermediate timestamps 

during the 96-hour corrosion period. 
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Figure 41. CVAA processed cyclic voltammogram obtained from in-situ corrosion experiment. Dash line 

indicates experimental CV data. The cathodic peak range of interest (ROI) is highlighted with grey shaded 

area while the charging current segment is highlighted with dark shaded area. The straight red dot line is 

the charging current estimation based on linear fit extrapolations using the charging current segments on 

the reduction reaction. The cathodic peak current is marked with ‘X’. Solid line indicates the modeled CV 

cathodic scan. Potential shift correction was not performed in the CVAA. The R2
 for this modeled CV to 

the experimental data is 0.87.  

CVAA is used to extract data for the CVs obtained by both the three-electrode control setup and the mini sensor at 

every timestamp up to the full corrosion period of 96 hours and generate simulated CV cathodic scans for each of 

them. These simulated CV cathodic scans with the experimental cyclic voltammogram are provided in the 

Supplementary Document. CVAA processes every CV in about 5 seconds, which is much faster than analyzing it 

manually and does not require dedicated attention, and eliminates sources of subjectivity in charging current 

estimation from an analyst. The CVAA estimated Fe concentration dissolved in LiCl-KCl as a function of time is 

shown in Figure 42 along with the manual estimation already shown in Figure 5. The results obtained by CVAA are 

very close to the ones obtained by the conventional CV analysis method. This means the developed CVAA algorithm 

could be used for the quick and accurate analysis of a large volume of experimental CV data. This open-source 
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software [354] will greatly accelerate CV data analysis especially in for high throughput applications [355] CVAA 

code architecture is modularized so that it is an easily generalizable, computationally inexpensive, automated analysis 

tool for any CV mathematical model [356] has either a closed-form solution or can be approximated by numerical 

methods.  

 

Figure 42. Concentration of Fe2+ ion in molten salt at different time intervals during the corrosion of T91steel 

obtained by different analysis methods. 

3.5. Applications of mini sensor in high throughput tests 

Compared with the regular three-electrode, the designed electrochemical mini sensor is more compact and convenient 

to use in electrochemical measurements, especially when small corrosion cells are considered, such as the high-

throughput corrosion monitoring of different arrays of alloys in high-temperature molten salt droplets. Indeed, by 

suspending the mini senor into a molten salt droplet placed on each alloy surface, as designed in our previous 

study[178], the in-situ corrosion monitoring of a broad range of alloys in molten salts can be performed 

simultaneously. Coupling the sensor to an automated XYZ motion controller, such as a computer numerical control 

(CNC), as shown in the schematic in Figure 43, the high-throughput in-situ corrosion monitoring of tens of alloys in 

high-temperature molten salts can be performed automatically. To confirm that the self-designed mini sensor can be 

used for the high-throughput in-situ corrosion monitoring as sketched in Figure 43, an in-situ corrosion test was 
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performed on a T91 coupon (12.5 mm×12.5 mm×1mm) using a molten salt droplet. Before the corrosion experiment, 

0.53 g of LiCl-KCl-2wt% EuCl3 salt mixture, similar to the molten salt used in the corrosion experiment discussed 

above, was weighed and then pelletized as a solid salt pill with a diameter of 5 mm and a height of about 5 mm. The 

salt pill was pelletized inside the glovebox by placing the salt mixture powder into a custom-fabricated tungsten 

carbide die and then compacting using a Pike Pixie Manual Hydraulic Press at a constant load of 2.5 tons for 2 minutes. 

The pelletized solid salt pill was placed on top of the mirror polished T91 coupon. The salt pill was melted at 500 ℃ 

inside the glove box and remained as a droplet. The contact angle of the molten salt droplet on T91 alloy surface is 

found to be larger than 90° during the test, guaranteeing the non-spillage of salt droplet [357] After inserting the mini 

sensor into the molten salt droplet, CV scans were performed at different time intervals. Figure 44 shows the CV scans 

obtained. The reduction peak increases steadily over the first hour and remains relatively stable afterwards This means 

the Fe corrosion in T91 achieves equilibrium relatively quickly during the molten salt droplet experiment, the 

equilibrium concentration of Fe2+ in the salt was analyzed to be 4.3×10-5 mol/cm3 if using Berzins & Delahay analytical 

solution and the previous reported diffusion coefficient 𝐷𝐹𝑒2+,𝐿𝑖𝐶𝑙−𝐾𝐶𝑙=1.5×10-5 cm2/s [353]. At the same time, this 

demonstrates that the designed mini sensor can be used for the high-throughput in-situ corrosion monitoring of 

different alloys in molten salt to accelerate the discovery of molten salt corrosion-resistant alloys, as highlighted in 

[218] 
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Figure 43. Schematic of automatic high-throughput in-situ corrosion monitoring.  

 

 

Figure 44. Cyclic voltammograms obtained on mini sensor in the molten salt droplet corrosion test of T91 

coupon, electrode area=0.1335 cm2, scan rate=0.1V/s. 
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4. Conclusions 

In this study, a mini sensor was designed which could be used for the in-situ corrosion monitoring of different alloys 

in molten chloride salts. The feasibility of the designed mini sensor for the in-situ corrosion monitoring was validated 

by comparison with a well-accepted three-electrode system for high-temperature molten salt cyclic voltammetry. 

Based on the designed mini sensor, the impurity driven corrosion on T91 steel by a fission product, europium, in LiCl-

KCl eutectic molten salt has been studied. It was observed that Fe is the elemental constituent that most predominantly 

dissolves into molten salt during the corrosion of T91. The concentration of Fe2+ in the salt increased gradually with 

the immersion time and approached a steady value after about 24 hours which indicates the corrosion of T91 steel 

reaches saturation thereafter. Characterization of the post-corroded T91 steel showed that shallow pitting corrosion 

occurred in the corrosion of T91 in LiCl-KCl molten salt, which was typically not observed in the corrosion of other 

alloys in molten salts. The designed mini sensor can also be used for the high throughput corrosion experiments and 

its feasibility has been demonstrated in this study through the salt droplet corrosion test on a T91 stud. To analyze the 

large-volume of data measured by the mini sensor during in-situ corrosion experiments, an algorithm based on an 

electrochemical model has been developed to achieve the high-throughput data analysis. The results obtained by the 

automated algorithm are in excellent agreement with the ones calculated by more conventional, manual, and 

potentially subjective, methods. This algorithm will greatly accelerate the data analysis process for the experimental 

CV. The present study could help support a platform to explore the application of electrochemical sensors for in-situ 

high-throughput corrosion monitoring and accelerate the material development for molten salt technologies. 
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5.2 High throughput LIBS 

A series of calibration samples is made by weighing out~0.3g of LiCl-KCl eutectic composition in a 

glovebox with Ar atmosphere. The salt is inserted into a tiny glassy carbon crucible (Figure 45) spiked 

separately with ~5000 [wt ppm] of Mn, Fe, Cr chloride, determined by gravimetry. The crucible is 

inserted into muffle furnace for salt to melt & analyte to homogenize over 30min and refreeze.  

 

Figure 45: Tiny glassy carbon crucible in which calibration samples are melted to improve homogeneity 

of sample distribution.  

Sample is loaded onto analysis cell to analyze on a TX 1000 LIBS instrument from Iumtek. Laser energy 

of 7mJ and delay time of 200ns was used. These parameters were determined as optimal by calibrating 

the instrument on the sample in the calibration series with the highest concentration of analyte from which 

the most intense signals could be expected. 

After each sample is analyzed, it is returned to the glovebox, broken in approximately half and melted 

with an equivalent mass of clean LiCl-KCl eutectic. The process of serial dilution and sequential analysis 

on the LIBS is performed until the analyte signals fall below the limit of detection. In total there were 15 

samples analyzed, 5 per analyte series for Cr, Fe, Mn. Each sample is analyzed by LIBS in a 10x10 grid 

of points (Figure 46a). One is generated per point (Figure 46b) 
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Figure 46: (a) Photo of sample in LIBS analysis cell. Sample was prepared by melting 0.3g LiCl-KCl 

eutectic in tiny glassy carbon crucible spiked with ~5000ppm of MnCl2 as determined by gravimetry Red 

spot grid is a representation of that traced by the laser for spot-analysis. Green spot is the laser cursor. 

(b) Spectrum obtained from single spot analysis on sample. Red lines denote Mn peaks expected by NIST 

database, length is proportional to expected relative intensity .[358] 

Each spectrum is identified by (x,y) coordinate relative to green spot pointer. Each x-/y- value differs 

from its neighbor by 0.5mm in each direction Figure 46a.  

A Python code was written to plot (x,y,Intensityλ) as a heatmap directly from the excel sheet (Figure 47). 

Heat maps were generated for each of the 15 samples.  
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Figure 47 Heat map of signal intensity. Heat map demonstrates LIBS capability to spatially map the 

distribution of elements in solid salt. Total grid background-corrected signal intensity: 1.18 x 106 

Heat map demonstrates LIBS capability to spatially map the distribution of elements in solid salt.  

4 emission lines for Mn, 9 lines for Fe, 7 lines from Cr were selected from the NIST database for their 

intensity coefficient C. A linear model was determined for each line per analyte to determine the linearity 

over the desired dynamic range (100,5000)ppm. A chemometric model (linear regression) for each 

analyte was generated using its selected emission lines. Chemometric model was found to be equivalent 

to the linear model for a single selected line of each element (Figure 48 - Figure 50) ie. Other lines were 

rejected by the chemometric model. 
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Figure 48 Mn Chemometric curve. 
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Figure 49 Fe Chemometric curve. 
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Figure 50 Cr Chemometric curve. 

Mn and Cr show good linearity in the range (400,5500)ppm for their respective optimal 

emission lines (404nm for Mn and 520nm for Cr), determined independently by individual linear fit and 

chemometric linear regression. 

It is demonstrated that even with chemometric modeling, results are consistent with single-emission line 

linear models shown for Mn by [359], [360]and for Cr by [361], [362]. Fe lines have yet to be fitted in a 

satisfactory manner[362]. 

It is concluded from this study that chemometric models developed for optical emission 

lines of Mn and Cr by LIBS are equivalent to the single-line linear model. Optical emission lines of Fe 

remain obstinate to a first-pass attempt at chemometric modeling; continued efforts in progress. LIBS is a 



169 

 

promising avenue to increase turnaround rate of analysis of molten salt corrosion products to serve 

structural alloy development.   

Method development was done by the PhD candidate. Acknowledgment for performing the 

repetitive sample preparation and analysis on the instrument goes to lab intern Isabelle Baggenstoss. 

5.3 High Throughput Synchrotron XAS  

Synchrotron X-Ray Analysis techniques have been identified as an underutilized technique for 

studying alloy corrosion in molten salt [130], but the HTE platform developed as part of this thesis work 

can be leveraged to accelerate the analysis of alloy corrosion in molten halides by developing a process 

for high-throughput analysis of samples. The high-throughput corrosion experiments described in this 

section were designed in such a way as to enrich the body of literature in the field with a parametric study 

on the impact of salt basicity, Eu concentration and corrosion period on an Ni-based alloy in molten 

chloride. 

64 Pill corrosion experiments were performed on Ni-20Cr plates and brought to the Brookhaven 

National Laboratory (BNL) synchrotron for X-Ray Fluorescence (XRF) and X-Ray Absorption Near 

Edge (XANES) analysis.  

Circular wells each measuring 9mm in diameter and 1.5mm in depth were milled in a 4x4 grid 

formation into 10cm x 10cm square Ni-20Cr plates. The alloy surface inside each well was corroded by 

an LiCl-KCl salt pill of 0.2g. Every 16 of these well-corrosion experiments on a single plate is isolated 

from one another. The pills were varied in the x-direction by LiCl-KCl composition in the range 

(30,35,40,50)at%, and the pills were varied in the y-direction by spiking with EuCl3 in the range (0, 

0.6,1.25, 2)wt%. This gives 16 combinations of LiCl-KCl-EuCl3 compositions on a single plate. Each 

plate was corroded for varying periods of time at 500 oC: (for t = 0h Temperature was raised to 500 oC 

and the heater was immediately shut off. This plate is the corrosion period control plate. Other plates were 
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corroded for (6, 12, 48)h in an Ar atmosphere with <1ppm O2, H2O. This 3D experiment matrix is 

represented in an infographic, Figure 51a. After the corrosion period is concluded and the plate is cooled 

to room temperature, post-corrosion salt adheres to their respective milled wells (Figure 51b).  

 

 

(a)                                            (b) 

Figure 51:(a)Infographic of the experimental matrix; (b) Photograph of the pill corrosion experiments.  

 

An airtight X-ray analysis chamber was designed and constructed to hold the sample-

bearing NiCr plates upright and maintained in an inert Ar atmosphere during exposure to the X-Ray 

beam. This is necessary to avoid exposure to atmosphere which contains oxygen and water vapor ingress 

into the chloride salt that can alter the  

At the BNL synchrotron, for each sample, the K-edge was analyzed for Cr and Ni, and the L3 edge was 

analyzed for Eu. Within the allotted beamtime, we were able to acquire data for all samples in the 48h 

plate as well as samples on the 6h plate with KCl=35,40at% for all values of EuCl3, 24 samples in total.  
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6 Interpretable Machine Learning for Mechanistic Insights into 

CCA corrosion phenomenon in Molten Salts  
 

This chapter features direct content form the following article first-authored by the PhD candidate:  

 

Bonita Goh, Yafei Wang, Phalgun Nelaturu, Michael Moorehead, Thien Duong, Pikee Priya, 

Moorehead, Dan J. Thoma, Santanu Chaudhuri, Jason Hattrick-Simpers, Kumar Sridharan, 

Adrien Couet, Nobility vs Mobility: Unlocking New Insights into Molten Salt Corrosion 

Mechanisms of High Entropy Alloys with High-Throughput Experiments and Machine 

Learning-enabled Analysis 

 

Visual Abstract 
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6.1 Critical Evaluation of ML algorithms & Model Selection 

Machine Learning Model  

A representative set of top Spearman correlation coefficients of physical features for each element in an 

alloy with the corrosion product concentration of that element into the salt have been calculated, Table 20 

Table 20 Spearman Coefficient between single feature and corrosion outcome. 

Pair of variables Spearman Coefficient 

Activity of Cr, Corrosion Concentration of Cr 0.650 

Activity of Fe, Corrosion Concentration of Fe 0.303 

Activity of Mn, Corrosion Concentration of Mn 0.534 

Activity of Ni, Corrosion Concentration of Ni 0.512 

Gibbs free energy of formation of corrosion product CrCl2,  Corrosion 

Concentration of Cr 

-0.651 

Gibbs free energy of formation of corrosion product FeCl2,  Corrosion 

Concentration of Fe 

-0.303 

Gibbs free energy of formation of corrosion product MnCl2,  Corrosion 

Concentration of Mn 

-0.534 

Gibbs free energy of formation of corrosion product NiCl2,  Corrosion 

Concentration of Ni 

-0.513 

Tracer Diffusion coefficient (Cr), Corrosion Concentration of Cr -0.454 

Tracer Diffusion coefficient (Fe), Corrosion Concentration of Fe -0.440 

Tracer Diffusion coefficient (Mn), Corrosion Concentration of Mn 0.611 

Tracer Diffusion coefficient (Ni), Corrosion Concentration of Ni -0.093 
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As expected, it is evident that not one feature exhibits a monotonic relationship with corrosion product 

concentration in the salt, suggesting that multiple features, and their coupling, are driving the corrosion 

response. This further demonstrates the usefulness of scientifically guided ML models to develop prediction 

and interpretability.  

Algorithm Selection 

Several ML techniques were assessed for suitability for the purposes of this study. The corrosion data of 

88 samples each parametrized by 75 features were used to train the model with target variable being the 

total corrosion product concentration in salt (Cr+Fe+Mn+Ni) in ppm measured by ICP-MS. All input 

features were norm-scaled to allow for ML algorithm comparison. Scaled features are also crucial for K-

means clustering to analyze for interpretability of the model [363]. Target variables were left unscaled. 5-

fold cross-validated (x-val) predictions [364] for the target variable for each of the samples was obtained. 

The Mean Absolute Percentage Error (MAPE) of the sample predictions for each of these models was 

calculated and used as a metric to assess which model is expected to have the lowest error for an out-of-

bag sample. A comparison of the MAPE from multiple ML algorithms was performed and compared to a 

naïve mean. The results (Figure 52) show the Random Forest Regressor (RFR) [239], [365] is promising 

with one of the lowest MAPE only bested by the Bayesian Ridge. In addition, the RFR has been 

demonstrated to accurately predict material properties based on multivariate input of parametrized physical 

features [247], [248], [366] and is also known to be physically interpretable. Consequently, RFR was used 

as the ML algorithm in this study. 
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Figure 52 Comparison of training MAPE between popular ML methods for the current dataset. 

6.2 Training on 80% of experimental dataset and Validation by testing on 

remaining 20% of dataset.  

The Random Forest Regressor Model 

Using the code package from sci-kit learn [367] the RFR model was trained on 88 samples using 1000 

estimators, with no restriction on tree depth, 2 minimum samples per split and 1 maximum sample per leaf. 

Branch impurity was measured by branch population variance. All samples were assigned equal weighing. 

The MAPE of the 5-fold cross validated fitted values for the training set was used to estimate the expected 

error for an out-of-bag sample without overfitting. The trained RFR model was then tested on a set of 22 

out-of-bag alloys featurized in the same format as the training set. The predicted corrosion values of the 
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test set were then compared with experiment. To improve ML-guided interpretability, it is necessary to 

orthogonalize the features as much as possible. The Spearman coefficient is a useful metric for expressing 

the degree of monotonic correlation between two variables, where a pair of variables that are perfectly 

monotonic to one another will have a value of unity whereas a pair of variables with no monotonicity 

whatsoever will have a value of 0. A pair of variables that are perfectly anti-correlated will have a value of 

-1. We use the Spearman coefficient throughout this study to indicate the degree to which two sets of values 

are numerically correlated. After the Spearman pruning of the feature set, random seed perturbation was 

performed by training 100 RFR models, and in each instance the random seed was varied. A random number 

was inserted as a benchmark “extra feature” to the Spearman-pruned feature set. The ranking order of these 

features by RFR Gini importance score was recorded in each instance of RFR The ordinal rank of each 

feature and standard deviation was recorded. Only features that consistently ranked above the random 

number in the random seed perturbation study were deemed meaningful to the model [368].  

6.3 Evaluation of the RFR model.  

The parity plot in Figure 53a shows the fitted values of the 88 samples from the training set to the RFR 

model versus their experimental values. The 5-fold cross-validated MAPE for the fitted values of the 

training set is ~75% over 3 orders of magnitude. The shaded area represents the 95% confidence interval 

of the predicted values of the RFR model. A probability density histogram of the fitting errors in the training 

set is shown in blue in Figure 53c. Clearly, the majority of samples have an error lower than 75% and 

outliers (~21.6% of the trained data set) have errors greater than 100%. While one could reduce the overall 

MAPE of the RFR model by sample pruning, such pruning can only be justified by physical considerations. 

K-means clustering analysis indicated that none of the outliers belong to a specific features’ cluster, 

preventing physically based sample pruning to lower the MAPE on a subset of samples. The 22 out-of-bag 

samples from the test set, spanning three orders of magnitude in their corrosion response, are also shown 

scrivcmt://0246F246-90F7-40F6-8BBC-3A8B6C5D06C1/
scrivcmt://0246F246-90F7-40F6-8BBC-3A8B6C5D06C1/
scrivcmt://0246F246-90F7-40F6-8BBC-3A8B6C5D06C1/
scrivcmt://0246F246-90F7-40F6-8BBC-3A8B6C5D06C1/
scrivcmt://0246F246-90F7-40F6-8BBC-3A8B6C5D06C1/
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on the parity plot in Figure 53b. The MAPE of the test set predictions is ~56%, which is lower than the 

expected error for an out-of-bag sample of the trained model. Overall, this indicates that the test set was 

statistically well-represented by the training set. The probability density histogram in Figure 53c shows that 

the bin containing the lowest error (<20%) emerges with the highest probability density. A lower MAPE of 

the testing set shows that the RFR model prediction accuracy can be improved by adding more samples to 

the library. Therefore, it is expected that by doing so the RFR model MAPE will approach the experimental 

error of ~14% as determined by the repeatability study. 

CCA comparison to 316SS and confusion matrix 

Samples predicted by the RFR model to have a better corrosion resistance, on average, than SS316 are 

marked in red in Figure 53d. Samples rejected as predicted to have poorer corrosion resistance than SS316 

are marked in black. The confusion matrix is also superimposed. The stark minority of false positives or 

negatives show that the model is conservative toward 316SS. The alloy selection accuracy from the 

confusion matrix is (91±7) %. 
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Figure 53 (a) Random Forest Regressor training set fitted values (y-axis) vs their experimental total 

corrosion concentration values measured by ICPMS (x-axis) on 88 samples in green, parity line in blue. 

Mean average percentage error of the model estimated by 5-fold cross-validation to be 74.3%; (b) trained 
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Random Forest Regressor model’s predictions of 22 out-of-bag test samples vs. their experimentally 

measured total corrosion concentration values by ICPMS in orange. Mean Average Percent Error of the 

prediction for the test set is 57.5%; (c) Histogram of probability density for RFR absolute % fitting errors 

for training set (blue) & prediction errors of test set (orange); (d) Parity plot of training fit and test 

predictions superimposed with confusion matrix of sorting function with criterion placed that test samples 

predicted to have less corrosion than SS316 performance in the same experiment at 1194ppm (blue dotted 

line) are selected (red). If corrosion is predicted to be >1194ppm they are rejected (black) by the sorting 

function. The experimental uncertainty band (orange) of width 163ppm was determined by an experimental 

repeatability study on SS316 pill corrosion tests as outlined in the methodology by [178]   

 To our knowledge, the present work is the first attempt to predict the high-temperature corrosion rate 

of CCAs across a large compositional field. While a MAPE of ~56% may seem relatively high to predict 

materials’ physical response relative to the accepted 40%, the improvement of the MAPE from ~75% to 

~56% by the addition of only ~25% data is an encouraging sign that the model’s predictability can be further 

improved. More importantly, the ML model can be used to determine compositional space of interest to 

design alloys with predicted low corrosion rate relative to commercial alloys, such as SS316. However, it 

is well known that ML models extrapolate poorly. To analyze the ML model performance, an Isolated Tree 

Regressor [244], [369] was used to highlight test samples that fell outside of the statistically well-

represented trained ML model domain. These samples are circled in purple in the parity plot in Figure 54a 

and their corresponding location in Gibbs tetrahedron are shown in Figure 54b. As expected, model outliers 

from the test set lie in the high-Fe region, since it is more sparsely represented in the training set. Using 

Isolated Tree Regressor, the composition fields where domain knowledge is lacking can be identified, 

paving the way for autonomous uncertainty reduction [370], [371]. 
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 Figure 54(a) parity plot from Figure 53c but with model outliers marked in purple, as determined by 

Isolated Tree Regressor; (b) model outliers are circled in purple in composition space.  

6.4 Dimensional Reduction to improve interpretability 

 To date, corrosion phenomena in CCAs are primarily understood case-by-case often relying on relative 

concentrations of reactive vs. noble elements [83]. Knowledge gained from this paradigm of analysis is not 

conducive to elucidation of mechanisms whose principles may or may not be extensible to systems 

involving other compositions. Having established that the RFR model robustly predicts corrosion 

performance for out-of-bag samples within a statistically reliable compositional field, the RFR model is 

interrogated for the patterns underpinning the prediction. To improve interpretability, features were grouped 

together based on Spearman coefficients. The grouping was performed by reducing the Spearman 

coefficient until non-physical correlations appeared between features (Table 21), and a Spearman 

coefficient threshold of 0.94 was selected. Features that did not have a wide distribution in values over the 

training set population were also eliminated. With this “Spearman pruning”, feature dimensionality was 

decreased from 75 to 62. This method of dimensional reduction preserves physical interpretability of the 

RFR model in a way that Principal Component Analysis [228], [294] does not. In this way, we can better 
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decouple the features’ mathematical impact from one another on the ML model for interpretability. After 

Spearman pruning, the RFR model was re-trained with the same 88 samples of the training set, but with a 

reduced parametrization with 62 feature groups and no change in MAPE was observed, confirming that this 

set of 62 feature groups describes the training set to the same degree as the original set of 75 individual 

features. In addition, all members of the pruned set of features survived random seed perturbation pruning 

process, as detailed in Methods, thereby lending confidence that the RFR corrosion model is robustly 

interpretable. The reduced feature set is shown in Table 21, (where g denotes a feature group).  

 

Table 21 Spearman-Pruned feature set 

Feature Index Spearman-pruned features/ groups Label 

1 Phase fraction of FCC 

No. of measured phases 

f(FCC)g 

2  (100) Surface Energy γ100 

3  (111) Surface Energy γ111 

4  (100)Work Function φ100  

5  (111)Work Function φ111 

6  Sample Surface Energy 

(110) Surface Energy 

γsample
 g 

7 Sample Work Function  

(110) Work Function 

φsample
 g 

8 atomic fraction (Cr) 

Bond probability (Cr-Cr) 

XCr
 g 

9 atomic fraction (Fe) XFe
 g 
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10 atomic fraction (Mn) g XMn
 g 

11 ratio Fe/Mn Fe:Mn 

12 ratio Cr/Mn Cr:Mn 

13 ratio Fe/Cr Fe:Cr 

14 ratio (Cr+Fe)/Mn (Cr+Fe):Mn 

15 ratio Fe/Ni Fe:Ni 

16 mixing entropy S mix 

17 bond probability(Cr-Fe) Pbond (Cr-Fe) 

18 bond probability(Cr-Mn) Pbond (Cr-Mn) 

19 bond probability(Cr-Ni) Pbond (Cr-Ni) 

20 bond probability(Fe-Mn) Pbond (Fe-Mn) 

21 bond probability(Fe-Ni) Pbond (Fe-Ni) 

22 bond probability(Mn-Ni) Pbond (Mn-Ni) 

23 Activity(Cr) 

Gibbs free energy of formation of corrosion product CrCl2 

α(Cr) g 

24 Activity(Fe) 

Mole fraction of Fe 

Bond probability (Fe-Fe) 

Ratio of Fe/Ni 

Gibbs free energy of formation of corrosion product FeCl2 

α (Fe) g 

25 Activity(Mn) 

Gibbs free energy of corrosion product formation MnCl2 

α (Mn) g 

26 Activity(Ni) α (Ni) g 
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Mole fraction of Ni 

Mole fraction of (Cr+Fe+Mn) 

Bond probability (Ni-Ni) 

Gibbs free energy of formation of corrosion product NiCl2 

Mole fraction of (Cr+Fe) 

27 Gibbs Free Energy of formation of alloy ΔGform 

28 Gibbs free energy of formation of corrosion product, CrCl-2 

(CrCl2) 

ΔGf,CrCl2 

29 Enthalpy of alloy formation ΔHform 

30 Tracer Diffusion coeff(Cr) Dt
,Cr 

31 Tracer Diffusion coeff(Fe) Dt
Fe 

32 Tracer Diffusion coeff(Mn) Dt
Mn 

33 Tracer Diffusion coeff(Ni) Dt
Ni 

47 Mean Electronegativity of alloy  (capital Greek letter 

‘chi’) 

48 Chemical diffusion coefficient of Cr in FCC & BCC phase DC
Cr 

49 Cross-diffusion coefficient of Cr vs Fe in FCC & BCC phase DC
Cr,Fe 

50 Cross-diffusion coefficient of Cr vs Mn in FCC & BCC phase DC
Cr,Mn 

51 Cross-diffusion coefficient of Cr vs Ni in FCC & BCC phase DC
Cr,Ni 

52 Chemical diffusion coefficient of Fe in FCC & BCC phase DC
Fe 

53 Cross-diffusion coefficient of Fe vs Cr in FCC & BCC phase DC
,Fe,Cr 

54 Cross-diffusion coefficient of Fe vs Mn in FCC & BCC phase DC
Fe,Mn 

55 Cross-diffusion coefficient of Fe vs Ni in FCC & BCC phase DC
Fe,Ni 
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56 Cross-diffusion coefficient of Mn vs Cr in FCC & BCC phase DC
,Mn,Cr 

57 Cross-diffusion coefficient of Mn vs Fe in FCC & BCC phase DC
Mn,Fe 

58 Cross-diffusion coefficient of Mn vs Ni in FCC & BCC phase DC
Mn,Ni 

59 Chemical diffusion coefficient of Ni in FCC & BCC phase DC
Ni 

60 Cross-diffusion coefficient of Ni vs Cr in FCC & BCC phase DC
,Ni,Cr 

61 Cross-diffusion coefficient of Ni vs Fe in FCC & BCC phase DC
Ni,Fe 

62 Cross-diffusion coefficient of Ni vs Mn in FCC & BCC phase DC
Ni,Mn 

 

6.5 Prediction of corrosion performance of CrFeMnNi for FCC+BCC phase 

field of composition space & Evaluation of model according to current 

understanding of corrosion phenomena 

 

The RFR model was then used to predict the corrosion performance of ~360 theoretical quaternary 

compositions within the FCC, BCC, and BCC+FCC, quadrants of the (Cr,Fe,Mn,Ni) composition space (at 

500oC) at a mesh size of 5at%. Isolation Forest confirmed that 95% of these compositions fell within the 

statistical representation of the trained RFR model. The 360 in-model predictions are shown in the Gibbs 

tetrahedron in Figure 55a. The projections of the compositions of Hastelloy N (in high-Ni quadrant) and 

SS316 (in high-Fe quadrant) are provided for reference. The ML model predicts relatively low corrosion 

rate close to the Ni apex of the quadrant and higher corrosion rate toward Mn apex of the tetrahedron, as 

expected by their relative thermodynamic favorability of corrosion. However, it is notable that the model 

predicts high corrosion resistance close to the CrFeNi ternary plane, which is not expected due to the 

stability of Fe and Cr chlorides. This may suggest corrosion-resistant phenomena that are more complex 
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such as those observed in low temperature aqueous systems [70], [372], which is of interest for further 

investigation as detailed later. For alloy design perspective, it is interesting to note that a composition field 

close to the CrFeNi composition space (Mn not exceeding 10%) is predicted to exceed the corrosion 

performance of SS316 by a margin of 2 standard deviations (Figure 55b), meaning, as expected, that the 

model rejects Mn for best corrosion performance. This space is shown as a projection in the FeCrNi ternary 

diagram in  Figure 55c. The space is roughly delimited by a minimum of 25% Ni, and a maximum of 

55%Cr and 30% Fe, although the interdependence of the alloying element concentrations is more complex. 

A marker on Figure 55c indicates the projection of the SS316 composition. The CCA compositions 

predicted by the RFR to exceed the corrosion resistance of SS316 with 96% confidence are not within 

proximity to SS316 in composition space. It is important to note here that the redox potential of Cr2+/Cr 

and Fe2+/Fe are quite close in steels immersed in molten chlorides [180] resulting in a similar 

thermodynamic driving force for Cr and Fe. Using the ASME Section III Division 5 of the BPVC code 

qualified SS316H as an industry standard, the RFR model thus demonstrates the ability to predict CCA 

compositions that exhibit relatively high level of confidence of being worth exploring for molten salt 

technology industrial applicability and commercial viability. In the next section we describe analyses used 

to interrogate the model for important features which suggest mechanisms of corrosion-resistant 

phenomena unique to CCAs. 
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Figure 55(a) RFR prediction for compositions within statistically representative space of 4D CrFeMnNi 

tetrahedron; (b) RFR prediction for compositions within statistically representative space of 4D CrFeMnNi 

tetrahedron reflecting corrosion <2sd below that of SS316 with points marking projections of SS316 and 

Hastelloy-N compositions for reference. These compositions are expected to exceed SS316 performance 

with 95% confidence interval; (c) Blue patch represents on ternary grid shows compositions predicted by 

the RFR to have superior corrosion resistance than SS316 by 2 standard deviations. Mn content for all 

compositions within blue patch does not exceed 10%. The dark point shown at Fe~70% is the projection of 

the composition of SS316.  
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6.6 SHAP analysis to glean underpinning patters behind ML predictions 

 The RFR model was interrogated using Shapley Additive exPlanation (SHAP) analysis python package 

[373] for interpretability. Figure 56a lists the features in descending order of average SHAP magnitude, 

with the features or groups with average SHAP magnitudes lower than 10 omitted as least impactful. The 

magnitude of average SHAP value (Figure 56b in decreasing order of average SHAP magnitude) indicates 

the impact of a feature on the final prediction value according to the model [246], [304]; the larger the 

impact of a feature, the larger the magnitude of its SHAP values. From (Figure 56a and Figure 56b, we note 

that several of the expected features are shown to have a consistent and expected influence on the CCAs’ 

corrosion resistance. For instance, alloys with higher Cr-Mn bond (𝑃𝑏𝑜𝑛𝑑(Cr − Mn)) probabilities (both of 

which form the most stable chlorides) exhibit higher corrosion rates. Similarly, alloys with higher (111) 

surface energy (𝛾111) also exhibit higher corrosion rates because of their less thermodynamically stable 

surfaces. Alloys with lower mean electronegativity (𝜒) have a higher driving force for electron exchange 

resulting in higher corrosion rates. On the other hand, electron exchange is facilitated on alloys with lower 

work functions also resulting in higher corrosion rates. These observations are consistent with expectations 

based on current fundamental understanding of corrosion mechanism in molten salts. The fact that the ML 

model interprets these features correctly brings confidence in how ML can isolate the effect of Spearman 

pruned features. What is indeed surprising though is these features are not quite as impactful to corrosion 

according to the RFR model, as evidenced by their mean |SHAP| magnitudes being ~10 (eg. mean |SHAP| 

for 𝜒 = 12). The sum of mean |SHAP| of those features account for a mere 10% of the impact on corrosion 

according to the RFR model. Figure 56b shows the spider-beeswarm plot of the top 18 most influential 

features on the model, and the distribution of the samples’ SHAP values. The trends for the top 2 most 

influential features are consistent and clear: high 𝐷Ni
t  and 𝐷Ni

c  values (red) strongly correlate with high 
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SHAP, which means higher corrosion rate predicted by the model. 

Figure 56c shows the spider-beeswarm plot of the top 18 most influential features groups on the model, and 

the samples’ distribution in feature group space, with the redness of hue indicating average SHAP 

magnitude per feature group. We can see that most of the samples are well-distributed in each of the 

respective feature spaces. This means that their SHAP values obtained are meaningful because they were 

obtained from a well-distributed sampling of the feature group space. By contrast, the feature groups 𝐷Fe
c , 

𝐷Cr
c , 𝐷Cr,Fe

c , 𝐷Cr,Ni
c , and Fe:Mn, are not very well distributed throughout the feature space, so one should 

remain careful in interpreting their SHAP values. With such a large 62-dimensional feature group 

hyperspace, it is inevitable that some features cannot be well-represented, especially with constraints in 

confining the study to CrFeMnNi elements and FCC, BCC, and (FCC+BCC) solid phase space. 
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Figure 56(a) Waterfall plot of top 18 features with the average SHAP magnitude across samples. All of 

these features also exhibit >0.5 in Spearman coefficient between SHAP and feature value. By this 

quantitative criteria, the impact of these features values on the RFR model are deemed consistent over the 

feature domain. These 18 features account for 75% of each sample’s ML prediction value. (b) Spider-

Beeswarm plot to show the distribution of feature values in 18-dimensional feature hyperspace. Color 
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indicates the magnitude of average SHAP value: features which are more red have higher SHAP value than 

features that are more blue. Ideally, all features are distributed uniformly throughout the feature space 

with a high standard deviation for the SHAP value to be meaningful. (c)Spider-Beeswarm plot to show the 

SHAP values of the samples for each of their 18 most-important values. Color indicates feature values: 

more red indicates higher feature value and more blue indicates lower feature value.  

Bulk diffusion coefficients (both tracer diffusion and chemical diffusion) of the most noble element Ni are 

not only the most dramatic Figure 56a) but also the most consistent (Figure 56b) predictors of corrosion 

performance in the FeCrMnNi CCA space explored in this study. By mean |SHAP| magnitude, these two 

features alone account for 42% of the impact on corrosion according to the RFR model, outstripping the 

combined impact of the expected features mentioned above by fourfold. As further confirmation of the 

importance of these top 18 features, the RFR model was retrained with data from all samples featurized by 

only the top 18 features in Figure 56b, resulting in a 5-fold cross-validation MAPE of 64%, which is only 

slightly higher than the original MAPE. This implies that the feature space dimensionality can be 

significantly decreased (in this case from 62 to 18) using SHAP scores without losing in RFR model’s 

prediction accuracy over the 110 samples. A close numerical inspection of the data reflected in Figure 56a 

reveals that the corrosion performance gradient predicted by the RFR model is guided by the gradient in Ni 

bulk diffusion.  

Since 𝐷Ni
t  and 𝐷Ni

c  features have such importance in the corrosion model’s predictions, it is important to 

investigate if alloys with feature values at opposite ends of the dimension spectrum exhibit markedly 

different post-corrosion surface morphologies. The SEM images in Figure 57are shown in descending order 

of total ion corrosion. Figure 57c and Figure 57d show SEM surface morphology of samples with high 

𝐷Ni
𝑡 , and high total corrosion. Surface coarsening morphologies, as evidenced by ligaments that are isotropic 

in direction, which could either be isotropically contiguous (Figure 57c , total ion corrosion equals to 

2300ppm) or unidirectionally contiguous (Figure 57d, total ion corrosion equals to 1400ppm), are clearly 
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observed. Both these morphologies have recently been associated with surface-diffusion-mediated 

dealloying in molten salt [100]. These two samples are Ni-rich compositions. Surprisingly, they incurred 

more quantifiably severe corrosion than the ones shown in Figure 57a (total ion corrosion equals to 

762ppm) and  Figure 57b (total ion corrosion equals to 620ppm), which were both Fe-rich compositions 

and have low 𝐷Ni
𝑡 . These two Fe-rich alloys exhibited lower corrosion product formation than SS316 

(Figure 27, total ion corrosion equals to 1194 ± 163 ppm) by more than two standard deviations. The surface 

morphologies in Figure 57a and Figure 57b exhibit a lack of clear ligand formation. Varying degrees of 

surface and grain faceting which is commonly associated with intergranular attack [96] are observed. Our 

results suggest that the bulk diffusion coefficients of noble element Ni, in a majority of CCAs, rather than 

the reactive elements Mn, Cr, and Fe, strongly impact the corrosion rate. The RFR model can therefore be 

interpreted as implying that the formation of ligament morphology is associated with high Ni bulk diffusion, 

and that samples with low Ni bulk diffusion exhibit noticeably different faceted surface and grain 

morphology. Element-wise analysis of corrosion products indicated that dissolved Fe and Mn generally 

made up more than 98% of the total corrosion of Ni-based compositions in the set. Coupling this to the 

RFR interpretation, the corrosion mechanism would be driven by the ease with which Ni bulk diffusion 

facilitates the exposure of Fe and Mn to corrosion attack. 

The occurrence of faceting corrosion and dealloying mechanisms are not mutually exclusive. We postulate 

that faceting corrosion is present from low levels of corrosion attack through high levels, but it is only 

morphologically apparent at low levels of corrosion attack simply due to the absence of visible dealloying-

mediated ligand formation. Conversely for samples with higher levels of corrosion attack, which also 

happen to be samples with higher Ni bulk diffusion, ligand-bearing morphologies characteristic of the 

dealloying mechanism predominate over any faceted morphology. This assessment draws a link between 

the findings of Bawane et al [90] and the findings of Liu et al [99]. In both studies, synchrotron X-ray 

nanotomography was used to monitor the morphology evolution of Ni-20Cr in binary KCl-MgCl2. In the 
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former study, the alloy was corroded at 500oC and intergranular corrosion leading to faceted morphology 

was observed as predominant, and in the latter study the alloy was corroded at 800oC and dealloying leading 

to ligament morphology was observed as predominant. Increasing temperature increases Ni bulk diffusion 

which “switches on” the Ni-bulk diffusion-mediated dealloying. However, bulk diffusion of all species is 

expected to rise with temperature, therefore this simple conclusion is an incomplete description of the 

mechanism. Our systematic HTE approach indicates that the differential bulk diffusion of Ni compared to 

other species predicts the corrosion rate, and that whether faceting morphology is observed as opposed to 

ligament morphology is a matter of corrosion extent rather than a differentiation in corrosion mechanisms. 

Further supporting this case is the observation that SS316 (Figure 27) corroded under the same conditions 

exhibits not only total ion corrosion intermediate between  Figure 57a and d but the morphology of post 

corrosion SS316 also appears intermediate between Figure 57a and d: the SS316 shows clear surface 

faceting akin to that observed in  Figure 57a but these facets are much smaller scale than those in Figure 

57c, and it also exhibits the beginnings of ligand-like morphology akin to  Figure 57d. 

A possible explanation for the significant effect of Ni diffusion coefficient on corrosion is that bulk tracer 

diffusion coefficient is a proxy for surface diffusion coefficient, since they are related by a first-order 

approximation [374], [375]. Indeed, a high Ni surface diffusion could facilitate exposure of more salt 

corrodible elements in the atomic layers underneath the surface, such as Fe and Mn. Higher surface 

diffusivity results in a higher probability for active elements underneath the noble atomic layers to be 

exposed to, and react with, the electrolyte. Thus, reducing the surface diffusion of noble elements in CCAs 

is likely a promising path forward to reduce corrosion rates in high-temperature molten salts, a discovery 

that was facilitated by the utilization of HTE and modeling coupled to ML techniques. Another possible 

interpretation is that a high 𝐷Ni
𝑡  would result in more Ni-vacancy exchange probability, such that the 

corrosion induced vacancy flux into the alloy bulk would result in a relatively higher Ni flux toward the 

alloy surface. This would ultimately lead to a lower corrosion rate as the surface becomes enriched in more 
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noble elements, but it is unclear how this latter mechanism would lead to the ligament surface morphology. 

While our approach using HTE coupled to ML highlight the features of importance, physics-based 

simulations, such as phase-field modeling, are now critically needed to connect these features to surface 

morphology evolutions [376]. 

 

Figure 57(a) Surface SEM of Cr1μFe54 Mn28 Ni6 corrosion 762ppm (b) Surface SEM of Cr13 Fe60 Mn17 Ni10 , 

corrosion 620ppm (c) Surface SEM of Cr0.5 Fe27 Mn17 Ni55, corrosion 2300ppm (d) Surface SEM of Cr0.5 

Fe26 Mn15 Ni59.5, corrosion 1400ppm  

Conclusion 

We have presented a study in which 110 alloys were processed, corrosion tested and analyzed in a 

high-throughput standardized platform. To our knowledge it is the largest single body of standardized 

corrosion data in high-temperature extreme environment presented to date. We tested a field of ML 

algorithms and found the RFR provides an optimal balance of prediction accuracy and interpretability for 

our dataset. Anticipating the interpretation of our ML model to yield scientifically meaningful insights, 

alloys were parametrized such that each feature represented specific mechanisms of interest; care was taken 
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to decouple the spurious correlations between features so that the features and their represented mechanisms 

could be compared for their impact on the model without feature endogeneity convoluting the analysis. We 

have used this standardized body of experimental data to train an RFR model and on the basis of MAPE 

~40%, determined that our model is predictive to the current state-of-the-art within the ML for materials 

science community. In addition, we have presented a case for the community to adopt MAPE as an 

appropriate single metric for quickly assessing the accuracy of an ML model for materials science 

applications.  

It was demonstrated that our RFR model would approach a MAPE of ~14%, the value on par with the 

experimental uncertainty of the corrosion testing platform, with a practically finite number of samples 

added to the training population. Having demonstrated that the model was generalizable and conservative, 

showing 95% alloy selection accuracy, it was then used to find alloy compositions promising to exceed the 

corrosion performance of SS316H under the same conditions with 96% confidence. This method of using 

ML to accelerate the search for materials with desirable properties is widely applicable. SHAP analysis was 

used to interpret the RFR model and while it showed some expected features on the energetics of the alloy 

to be impactful in predicting corrosion such as the bond probability of Cr-Mn, the surface energy and work 

function, it was surprising that the most dramatically impactful features were the kinetics of the noble 

element, Ni. Prompted by these features highlighted by the RFR, we selectively identified representative 

samples of interest for SEM and found them to exhibit morphologies consistent with noble-element-

diffusion-mediated processes, namely surface diffusion driven dealloying and/or  driven vacancy 

injection. These results are by recent research in the community as primary drivers of corrosion in selected 

alloys in molten halides. Our investigation has demonstrated that despite the emergence of machine 

learning, the human intellect is indispensable in scientific inquiry. Nevertheless, the benefits of ML of 

should not be overlooked. By leveraging the complementary strengths of human intuition and machine 

speed and accuracy, we have unlocked new insights on the high-temperature corrosion mechanism of 
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CCAs. 
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7 Future Push towards HTP Data Acquisition in Corrosion Testing 

of CCAs in Molten Salts 

7.1 In-Situ Electrochemistry 

 

The feasibility of a mini-probe on the molten salt pill corrosion experiments was demonstrated in. The 

possibility remains for the further miniaturization of the electrochemical-based probe via nanowires. In 

addition, development of high-temperature  in-situ auto-sampling capability for the pill corrosion 

experiments will enable time-series corrosion data to be acquired in order to study element-resolved 

interfacial corrosion reaction kinetics. 

7.2 In-Situ Sampling for LIBS 

In-situ quantification of oxygen in molten halides remains a frontier of molten salt technology research 

[377]. Even accurate quantification of oxygen in halide salts ex-situ remains relatively inaccessible 

because the capability is confined to the LECO oxide detector instrument [377]. In this vein, it is desired 

to develop methods for quantifying oxygen in halides by LIBS.  

It was observed during the LIBS method development for this thesis that O experiences spectral 

interference with Ar in the inert cell environment, but it is expected that calibrating the laser power & 

delay time settings can overcome this issue. In addition, multi-element (Cr, Fe, Mn, O) calibration matrix 

in development.  

7.3 Further Optimization of the Machine Learning Model  

The RFR model in this work predicted corrosion is expected to decrease in the direction of the Cr corner 
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of the CrFeMnNi compositional domain studied. This prediction runs counter to thermodynamic intuition 

which suggests that corrosion should decrease and be minimized in the Ni corner of the CrFeMnNi 

domain because Ni is the most thermodynamically noble element in the space. Inference from SHAP 

analysis implies that the ML model prioritizes minimizing Ni diffusion as an alloy design parameter for 

minimizing corrosion in the CrFeMnNi composition space. Further experimental work is needed to verify 

whether Ni diffusion indeed supersedes Cr corrodibility in predicting total corrodibility of CrFeMnNi 

alloys. 

 

7.4 Analysis of Ex-Situ Synchrotron XAS data and Method development for 

In-Situ Synchrotron XAS analysis of an actively corroding alloy sample 

 

Ex-situ synchrotron XAS analysis was performed on Ni-20Cr corrosion in 16 different LiCl-KCl salt 

compositions varying in KCl=(30,35,40,50)at% and EuCl3= (0,0.6,1.25, 2)wt% for corrosion periods 

(6,12,48)h.  

In-situ synchrotron XAS analysis was performed on Ni-20Cr corrosion in eutectic composition LiCl-KCl 

salt compositions (LiCl: KCl= 60:40at%) and EuCl3= (0,0.6,1.25, 2)wt% at about 30-min intervals from 

0-8h, until a plateau in corrosion products (Ni,Cr) was observed by in-situ XRF.   

Corrosion products Cr and Ni are currently being analyzed for oxidation state. Eu spike is currently being 

analyzed for oxidation state in relation to the role of Eu3+ as a corrosion mediator and the extent of its 

disproportionation in-situ. Comparisons are drawn between oxidation states ex-situ and in-situ.  

Future work entails the conclusion of this analysis for timely publication.   
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9 Supplemental Material A: Summary of the Three Mile Island 

Nuclear Accident, 1979 

 

The order of events in the Tree Mile Island Accident of 1979 were are summarized below, as reported by 

Collier and Davies.  

 

 Prior to the accident-initiating turbine trip, the reactor was operating under automatic 

control at 97% of rated output of 2772 MWt. There was an existing leakage from either the PROV or the 

ASME code safety valve on the pressurizer.  Attempts to transfer clogged resins from an isolated 

condensate water system to a regeneration tank caused water to get into the service air system. Some 

water from the service air line entered the instrument air line, causing the condensate polishing isolation 

valves to shut and the condensate booster pump to trip because of the loss of suction pressure. The main 

feedwater pumps in the secondary circuit tripped, resulting in an instantaneous trip of the main turbine.  

 

 The turbine trip was the initiating event to the accident, which caused an interruption in the 

flow of feedwater to the steam generators and this led to a reduction in the heat removal from the primary 

system. The RCS pressure reached the PORV set point to 15.5 MPa and the valve opened to relieve the 

pressure but this was insufficient to reduce the pressure immediately and the RCS pressure continued to 

rise. Such undesirable operating conditions initiated a scram, after which residual heat needed to be 

removed. The reducing RCS pressure reached the point which called for automatic PROV closure but that 

failed.  This failure of the PORV to close (ie. It was stuck open) was the crux of the course of events in 

the TMI accident, because it caused a loss of coolant accident.  
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 RCS water was being lost through the open PORV. All the auxiliary feedwater pumps were 

running but the water level in the steam generators was continuing to fall and they were drying out. No 

water was being injected into the steam generators because of the closed valved between the pumps and 

the steam generators. The valves had been closed sometime before the incident for routine testing and had 

been inadvertently left in that position. This is the first of human errors that exacerbated accident 

conditions, additionally to that, status tags on other valves obscured some of the status lights. 

During the first crucial period, the reactor coolant circuit was deprived of effective means of heat removal 

and could dispose of the energy only by blowing off water and steam. The temperature gradient between 

hot and cold legs was approaching zero with the steam generators drying out. RCS pressure was falling 

and the liquid level in the pressurizer rose rapidly.  

 

 The coolant loop continued to depressurize. In response to the observed conditions, the RC 

pumps in loops B and A were tripped to prevent damage to the pipes and pipework. However this caused 

steam and water phases in the circuit to separate in loop B, blocking the circulation in the loop. The core 

began a heat-up transient and eventually leading to core damage.  

 

 The events during the heat-up transient 2-6h after initiating events further exacerbated the 

severity of the accident. During this time, the PROV blocking valve was closed by operators but the 

indications as to its position were ambiguous to the operators. The high temperature in the pipework 

downstream of the valve was mistaken as being caused by the preexisting leak though the PORV or 

another code valve. Had the repressurization of the RCS using the HPIS been implemented at this point, 

the accident conditions could probably have been terminated. Closure of the PORV was achieved and 

RCS pressure rose, however at this point a significant fraction of the reactor core was uncovered and had 

sustained high temperatures, which could lead to fuel damage, release of volatile fission products into the 
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RCS and generation of hydrogen from a zirconium-steam reaction. (Incidentally this condition was the 

same condition faced with Fukushima Daiichi when the diesel-powered cooling pumps lost power and 

could not remove residual heat from the reactor after scram. Indeed the zirconium-steam reaction in the 

clad released large amounts of hydrogen which caused the secondary containment to explode. Because of 

this there was fear that volatile fission products would be released into the surrounding environment.) 

 

Attempts were made to restart the RC pumps. One pump tripped again due to vapor binding and vibration 

alarms. Radiation monitor readings were rising throughout the reactor, auxiliary and fuel handling 

buildings.  

  

Operators attempted to activate the core flooding system and establish heat removal through the low 

pressure heat removal system. The PORV blocking valve was opened and the RCS reached pressure level 

that was nominal in the core flood tank systems. The core flooding system was activated but only a small 

amount of water was injected into the reactor pressure vessel. Ultimately depressurization was 

unsuccessful, as all attempts to do so failed so the decay heat removal system could not be brought into 

operation. The PORV block valve was closed again.  

 

After the accident the removal of hydrogen bubble and ultimate establishment of stable cooling mode 

were achieved. The void in the pressure vessel was due mainly to incondensible hydrogen and this was 

decreased by degassing with the PORV and the letdown system and operating recombiners. At this point, 

the decay heat was far below 1 MWt.  
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10 Supplemental Material B: Summary of Root Cause Analysis for 

the Nuclear Reactor Accident at Fukushima, 2011 

 

Here follows a summary of the events leading to the accident at TEPCO's Fukushima Nuclear Power 

Stations (NPS), according to the Japanese Government's Nuclear Emergency Response Headquarters 

 

 With the arrival of the tsunami >10m (exceeding 10m seawall) a total of 561 km sq of land 

was inundated. There was infrastructure damage: gas supply shortages, electricity and 

telecommunications cutoff across the island, and damage to seawalls and harbor installations was 

sustained.  

  

 The ground around the bases of tidal embankments and seawalls were scoured by runups 

and rundowns and many of the bases were observed to have suffered collapses, lining of embankments 

and seawalls (concrete portions that cover rocks and ground inside embankments) suffered boring from 

the lower edge of bases and failed to play a role of lining. Given the situation, it was possible that the 

sand embankments would collapse through by scouring due to runups and rundowns and breakwater 

walls would be scoured or collapse if tsunamis breach the sand embankments when these are used as 

coastal defenses.  

 

 As evidenced by the above description, there great destructive force in the natural disaster of 

the earthquake and tsunami that hit Fukushima. Seizmic groundmotion: maximum horizontal motion was 

550 Gal and vertical motion was 302 Gal at Unit 2 ( 1 Gal is equal to 0.01 m/s² ) causes automatic 

shutdown of all 3 reactors in operation (scram). 
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 The design basis of the precautionary/protective infrastructure for pre-empted for tsunami 

water level of 3.1m. The highest water level of each Unit was set at 5.4-5.7m, suggesting that this 

qualifies as Beyond Design Basis Accident.  

 

 Earthquake caused damage to the breakers of the switchyards of Units 1 and 2. Cables were 

damaged too by undetermined causes.  

 

 The seismic intensity of the main shock caused disruption of power transmission from the 2 

lines of 275kV systems and one line of the 66 kV system. Of the equipment receiving power on the MPS 

site, a startup transformer of Unit 1 failed.  The power was switched to the external regular supply (275 

kV) and the normal power supply system was returned. The result of all this power being knocked out and 

the fuel for the diesel generators being washed away is that the emergency pumps and cooling systems 

could not work to remove residual heat after scram from the reactor.  

 

 The water rose in the seawater pump room due to the tsunami and the water level in the 

underground intake pit also rose, caused by siphon phenomenon. This resulted in seawater overflowing 

through the opening of the tide gauge into the seawater pump room. Then the seawater flowed from the 

pump room, via the trench into the basement floors of the reactor buildings, causing the heat exchanger 

room of the CCWS in the second basement to be submerged. Additionally, the CCW pump of Unit 2 was 

submerged. Cooling function of the emergency diesel generators was lost, with 2/3 units stopped.  

 

 


