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Abstract 

Recreational fisheries are social ecological systems, where aquatic ecosystems, fish 

populations, anglers, and governing bodies interact across scales in complex and often 

unexpected ways. In the context of fisheries management, many of fishery systems’ relevant 

dynamics occur at the level of human users. Recreational anglers are decentralized, mobile, and 

have different preferences and drivers for their behavior. The efficacy of fisheries management 

decisions frequently depend on the response of anglers to social, regulatory, and ecological 

change. In this dissertation, I investigate human behavior in two distinct recreational fishery 

systems: the Wisconsin inland lake fishery and the New Jersey bottom fishery. In Chapter 1 I 

develop and validate a method for estimating fishing effort across many lakes with limited data. 

Wisconsin is highly lake rich. This landscape provides a bounty of opportunities for recreational 

anglers, but their activities are difficult to monitor. I used generalized linear mixed effects 

models to share observations across lakes to estimate overall fishing effort. I was able to produce 

total summer fishing effort estimates for 44 lakes that were within 11% of the mean value of 

traditional data rich estimates. This result shows that existing intensive data collection could 

instead be spread across many lakes to achieve landscape-scale monitoring of inland lake 

fisheries.  

 In Chapter 2, I applied this model-based method to test the effect of the COVID-19 

pandemic on fishing effort. Because I had collected observations of vehicle traffic at lake access 

points in 2018 and 2019, I was able to compare these values to a socially distanced roving count 

of vehicles at lake access sites in the summer of 2020. The pandemic was associated with 

increased interest in outdoor recreation, and I showed that this interest extended to recreational 
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fishing on northern inland lakes of Wisconsin. On average, vehicle counts at the same lakes were 

29% higher during the pandemic than in previous years. These changes in vehicle counts 

corresponded with a surge in fishing license sales, particularly among first-time-buyers. Lake-

specific differences in the effect of a pandemic year highlighted “hotspot” lakes that may require 

additional monitoring.  

 Chapter 3 shifts to New Jersey marine recreational fisheries to investigate anglers’ 

responses to regulatory changes. Popular bottomfish species have experienced increasingly strict 

regulation since 2001. Stakeholder groups, including private anglers, tackle shop owners, and 

for-hire vessel operators expressed deep concern regarding the social and economic effects of 

these changes in focus groups. By analyzing changes in fishing effort reported by vessel trip 

reports, I found that fishing effort was declining in response to reduced possession limits, but 

only among angler aboard large party boats. These results show that anglers engaged in different 

sectors of the for-hire fishery engage in different degrees of substitution behavior when harvest 

of preferred species is restricted.   

 Chapter 4 looks towards the future of the Wisconsin inland lake fishery. These lakes are 

undergoing a shift in species composition as walleye production declines and warmwater species 

thrive. Using a stated preference method, I investigated how anglers would trade off travel time 

with catch rates and maximum sizes of walleye, largemouth bass, and bluegill. Respondents were 

motivated to travel considerable distances for walleye, but also for other species. Maintaining 

high-quality warmwater assemblages may therefore present greater net benefits to anglers than 

intensified walleye stocking.  

 Together, these chapters evaluate the response of human resource users to change in a 

complex social ecological system in a fisheries management context. Substitution behavior of 
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anglers emerged as a key dynamic to understand and anticipate for effective fisheries 

management under social and ecological change. 
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Introduction 

Recreational fisheries are socially and economically important (Tufts, Holden, and 

DeMille 2015), globally widespread (Arlinghaus, Tillner, and Bork 2015), and responsible for 

considerable fishing mortality (Cooke and Cowx 2004; Ihde et al. 2011). Because recreational 

fisheries are decentralized and often dispersed across landscapes, monitoring fishing effort and 

harvest is costly (Pereira and Hansen 2003). Recreational fisheries managers therefore typically 

rely on limited data to achieve benefits to human resource users across complex social ecological 

systems. The social ecological system (SES) framework describes integrated resource, user, and 

governance systems interacting across scales to produce emergent outcomes (Ostrom 2007). 

Management actions therefore result in feedbacks and nonlinear effects that vary across systems, 

resulting in considerable uncertainty regarding outcomes. One key source of uncertainty is the 

response of users to changes in resource availability, management actions, and environmental 

change (Ward et al. 2016).    

 Because recreational fishers are motivated by the fishing experience rather than by only 

catching fish (Birdsong, Hunt, and Arlinghaus 2021), monitoring and predicting changes in 

recreational fishing effort is an important goal for managers to enact landscape-scale active 

adaptive management (van Poorten and Camp 2019; Olsson, Folke, and Berkes 2004). Fishing 

effort dynamics are one driver of feedbacks in fishery systems, responding to fishing quality 

(Askey and Johnston 2013), regulations (Beard, Cox, and Carpenter 2003), fishing site 

accessibility (Wilson et al. 2020), site congestion (Timmins and Murdock 2007), among other 

characteristics (Birdsong, Hunt, and Arlinghaus 2021). However, the actual responses of anglers 

to these changes are often unexpected. Catch rates, for example, are frequently subject to 

hyperstability, masking declines in fish density (Dassow et al. 2019; Erisman et al. 2011; Feiner, 
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Wolter, and Latzka 2020). In addition, recreational fishers are motivated to fish by factors other 

than catch (Hunt et al. 2019). Fishing effort may therefore not respond to declines in catch rate, 

putting recreational fisheries at risk of collapse (Hunt et al. 2011; Post 2013; Golden, van 

Poorten, and Jensen in review). Regulations such as season closures and bag limits are frequently 

used as levers to manage fishing effort and harvest. However, these actions can also have 

unintended consequences. For example, lower possession limits in the Wisconsin walleye 

(Sander vitreus) recreational fishery signaled to experienced anglers that walleye populations 

were robust enough to be targeted by Indigenous spearfishers (Beard, Cox, and Carpenter 2003), 

muddling the regulations’ intended effects. As another example, where fishing seasons lengths 

have been severely reduced in the Gulf of Mexico, intensified fishing effort has reduced 

regulations’ effectiveness at controlling fishing mortality (Powers and Anson 2018). Social 

ecological outcomes of fisheries undergoing change therefore pivot on the response of human 

resource users. Successful fisheries management requires effective monitoring of fishing effort 

across landscapes and proactive consideration of how angler behavior could respond to ongoing 

environmental and regulatory change. 

 This dissertation contributes to this knowledge gap by investigating fishing effort 

dynamics in two fisheries: the inland lake fishery of Wisconsin and the marine bottom fishery of 

New Jersey.  Both fisheries include a variety of target species distributed across a large spatial 

area. In both of these fisheries, fishing opportunity has changed over time because of changes in 

species distribution, environmental change, and regulations (Bell et al. 2015; Hansen et al. 2017). 

In both of these systems, the future success of fisheries management decisions depends on 

understanding the response of human resource users, specifically recreational anglers, as these 

changes take place. Both systems have a long and complex history of contentious fisheries 
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management processes (Nesper 2002; Terceiro 2018). Conflicting values and goals between 

different resource users with different levels of institutional power have led to ongoing fractious 

debates about the efficacy of data collection on recreational fisheries, fish population 

assessments, and local and federal agency management decisions.  

The lake-rich glacial landscape of northern Wisconsin was ceded to the United States 

through treaties with Ojibwe tribes in 1837, 1842, and 1854. The inland lake fishery of northern 

Wisconsin became a popular fishing tourism destination starting at the end of World War I. By 

1996, Wisconsin was one of the top 5 destination states for fishing tourism in the US (Ditton 

2002). Management of the state’s recreational fisheries is overshadowed by a history of a 

disregard for Tribal treaty rights to hunt, fish, and gather, and this history has frequently left 

Ojibwe subsistence fishers, recreational anglers, and management agencies at odds (Nesper 

2002). Because the sustainable co-management of walleye populations is federally mandated, 

walleye lakes are centered in fisheries data collection (Staggs 1989). As climate change 

progresses, however, walleye populations are declining (Hansen et al. 2017). Continued 

successful management of warmwater species is therefore an important goal for future angler 

satisfaction. Fishing effort, catch rates, and harvest data are collected through annual creel 

surveys on select lakes each year. Enormous numbers of person-hours are spent on these surveys, 

but due to the intensive nature of the data collection, relatively few lakes each year are surveyed. 

For example, although Vilas County, one of 24 counties in the Ceded Territory, has 175 

publically accessible lakes. Since 1996, the Wisconsin Department of Natural Resources 

(WDNR) has surveyed 65 of them. These surveys yielded high-quality data, but they left 

substantial data vacuums for non-walleye lakes. Estimation methods that rely on lower volumes 
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of data collected from a broader selection of lakes are therefore a valuable step towards applying 

active adaptive management to a wider range of lakes, species, and anglers.  

New Jersey is home to another socioeconomically important recreational fishery, 

generating nearly $750 million of income for state residents in 2016 (National Marine Fisheries 

Service 2018). A source of conflict among fishery stakeholders in NJ is the allocation of safe 

harvest limits between recreational and commercial harvesters. New Jersey marine fisheries 

support numerous coastal businesses, including for-hire vessels, marinas, and tackle shops. 

Summer flounder (Paralichthys dentatus) is among the most sought-after species for marine 

recreational fishers, and strict regulations on recreational harvest has led to a strong sense of 

frustration among stakeholders (Terceiro 2001; 2011; 2018). Season lengths and possession 

limits have decreased, and minimum length limits have increased over time, leading to 

widespread concern about the social and economic effects that tight regulations will have on 

coastal communities. Understanding regulations’ effects on recreational fishing effort will assist 

managers in balancing biological, social, and economic outcomes as they continue to maintain 

sustainable fish populations. 

In this dissertation I first develop, validate, and field-test a model-based method for 

estimating fishing effort across a lake-rich fishery landscape in northern Wisconsin. I then 

leverage an underutilized source of data to infer angler response to regulations in the recreational 

bottomfish fishery of New Jersey. Last, I develop a stated preference method that predicts angler 

responses to ongoing tradeoffs in availability of walleye, largemouth bass (Micropterus 

salmoides), and bluegill (Lepomis macrochirus) in Wisconsin.  
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In Chapter 1, I developed and validated a method of estimating fishing effort at many 

lakes using extensive data collected through boat-based and aerial counts of anglers in Vilas 

County, WI. Traditional creel methods require full-time creel clerks stationed at one lake ten 

months of the year to generate precise estimates of fishing effort through mean expansion 

(Newman, Rasmussen, and Andrews 1997). We distributed our survey across many more lakes 

to collect counts of fishing effort at different times of day and throughout the summer fishing 

season. By sharing data across lakes, we could estimate seasonal and daily dynamics that stayed 

the same across the county. By collecting additional observations at similar times of day through 

aerial surveys, we were then able to improve estimates of lake-specific mean fishing effort. A 

generalized linear mixed effects model (GLMM) could then account for seasonal, daily, and 

weekend effects on fishing effort using fixed effects that did not vary by lake, and lake-specific 

mean effort was incorporated using random effects. I fit these models to our observations, 

predicted a summer of fishing effort, and then compared our model-based estimates to traditional 

mean expansion. I found that model-based estimates using limited data produced estimates 

within, on average, 11% of traditional data rich estimates. With modest tradeoffs of precision, 

more estimates of fishing effort can therefore be produced per year across a lake-rich landscape 

using extensive (rather than intensive) data collection.  

For Chapter 2 I used this model-based method to compare vehicle counts at public lake 

access points between years to test the effect of the COVID-19 pandemic on fishing effort in 

Wisconsin. The pandemic has had far-reaching social, economic, and ecological effects globally 

(Searle, Turnbull, and Lorimer 2021). One effect of the widespread shutdowns and restrictions 

on indoor gatherings was increased participation in outdoor activities (Derks, Giessen, and 

Winkel 2020; Landry et al. 2020; Morse et al. 2020). Sustained increased participation in 
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recreational fishing would increase WDNR revenue from license sales but could also lead to 

increased harvest of freshwater species. Because we had collected counts of vehicles at lake 

access points in 2018 and 2019, we were able to complete a socially distanced bus route survey 

of the same lakes to compare vehicle traffic before and during the pandemic. Using the GLMM 

fixed effects to account for differences in time of day and day of year, we inferred that vehicle 

numbers at lakes entirely surrounded by public lands increased by 103% on average in 2020 

compared to the previous two years. However, no significant effect of the COVID year on all 

lakes was detected. Rather, lakes with more public shoreline were more likely to experience 

increased vehicle numbers in 2020, suggesting that these “hotspots” should be subject to 

increased monitoring if this surge in participation continues.  

In Chapter 3, I evaluated changes in angler behavior in a different system: the 

recreational marine bottom fishery of New Jersey. Since 2001, regulations for summer flounder 

(Paralichthys dentatsu), black sea bass (Centropristis striata), tautog (Tautoga onitis), and scup 

(Stenotomus chrysops) have become increasingly restrictive. Fishery stakeholders, including 

private anglers, for-hire vessel operators, and tackle shop owners are concerned about the 

negative economic effects of these restrictions if they reduce fishing effort. Revealed preference 

methods are useful for evaluating the tradeoffs of changes in fishing effort versus reductions in 

harvest. I used vessel trip reports (VTRs) submitted by for-hire vessels between 2001 and 2017 

to construct a time series of angler trips during each week of the year. I de-trended the seasonal 

patterns through dynamic harmonic regression (Young, Pedregal, and Tych 1999), which 

allowed me to then infer how the remaining changes in weekly fishing effort corresponded to 

changes in possession limit, the number of species open for harvest, and season lengths. I did not 

find any evidence of intensified fishing effort corresponding to shorter seasons. I did, however, 
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detect differences in substitution behavior between anglers aboard large party boats and anglers 

renting smaller charter boats. As long as at least one species was open for harvest, fishing effort 

in the charter sector stayed about the same regardless of possession limits for all species. Party 

boat anglers, in contrast, showed less willingness to switch species. Fishing effort declined in 

weeks with lower possession limits for summer flounder and black sea bass. Fisheries managers 

should therefore account for the economic effects of possession limits and season length 

reductions when developing new regulations to limit mortality to safe harvest thresholds.  

Instead of examining previous changes in angler behavior, Chapter 4 attempts to predict 

angler behavioral response to future changes in species composition in an experimental context. 

By mid-century, Wisconsin is predicted to lose around 46% of its naturally recruiting walleye 

populations (Hansen et al. 2017). Simultaneously, warmwater species such as largemouth bass 

and bluegill are expected to flourish. Wisconsin supports a diverse array of species targeted by 

recreational anglers, which is a strong predictor of angler satisfaction (Beardmore et al. 2015). 

Walleye anglers could therefore target alternative species in the face of these declines. It is also, 

however, possible that committed walleye anglers would instead travel greater distances to 

maintain their catch rates at remaining walleye lakes. This behavior could result in an 

intensification of fishing effort per lake as the number of walleye-producing lakes declines. We 

investigated these potential responses using a stated preference approach, where WI resident 

anglers choose hypothetical fishing sites that varied in travel time, catch rates, and maximum 

sizes for walleye, largemouth bass, and bluegill. We did not find evidence that anglers would 

travel greater distances to maintain walleye catch rates. Nor, however, did we find that anglers 

were substituting bluegill and largemouth bass as second-best species when walleye was 

unavailable. Instead, anglers were inclined to fish for a variety of species, particularly when 
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catch rates and maximum sizes were high. This result suggests that anglers may be willing to 

adapt their fishing behavior to the new reality of dominance by warmwater assemblages. Instead 

of only increasing stocking of walleye to resist this change in species composition, additionally 

prioritizing high quality centrarchid fisheries may result in greater net benefits to anglers.  

Although monitoring the response of human resource users to system change presents a 

number of challenges, this dissertation demonstrates that landscape-scale monitoring of 

recreational fishery systems is feasible. Incorporating multiple data sources, including the local 

knowledge of resource users, is an effective approach for both monitoring changes in resource 

use and quantifying socioeconomic tradeoffs of social, ecological, and regulatory change. 

Finally, understanding and anticipating substitution behavior of anglers in response to these 

changes emerged as a key strategy for effective management of fisheries undergoing change.  
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Abstract 

Measuring fishing effort is one important element for effective management of 

recreational fisheries. Traditional intensive angler intercept survey methods collect many 

observations on a few water bodies per year to produce highly accurate estimates of fishing 

effort. However, scaling up this approach to understand landscapes with many systems, such as 

lake districts, is problematic. In these situations, spatially extensive sampling might be preferable 

to the traditional intensive sampling method. Here we validate a model-based approach that uses 

a smaller number of observations collected using multiple methods from many fishing sites to 

estimate total fishing effort across a fisheries landscape. We distributed on-site and aerial 

observations of fishing effort across 44 lakes in Vilas County, Wisconsin and then used 

generalized linear mixed models (GLMMs) to account for seasonal and daily trends as well as 

lake-specific differences in mean fishing effort. Estimates of total summer fishing effort 

predicted by GLMMs were on average within 11% of those produced by traditional mean 

expansion. These estimates required less sampling effort per lake and can be produced for many 

more lakes per year. In spite of the higher uncertainty associated with model-based estimates 
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from fewer observations, the improvements associated with the addition of only three aerial 

observations per lake highlighted the potential for improved precision with relatively few 

additional observations. Thus, the combination of GLMMs and extensive data collection from 

multiple sources could be used to estimate fishing effort in regions where intensive data 

collection for all fishing sites is infeasible, such as lake-rich landscapes. By using these methods 

of extensive data collection and model-based analysis, managers can produce frequently updated 

assessments of system states, which are important in developing proactive and dynamic 

management policies.   

 

Introduction  

Recreational fisheries are widespread and socioeconomically important, with about 118 

million estimated participants in North America, Europe, and Oceania (Arlinghaus et al., 2015; 

Tufts et al., 2015). Inland and marine recreational fisheries are responsible for substantial 

removal of biomass, but in many systems, insufficient data are available to make proactive 

management decisions with the goal of maintaining sustainable harvest (Cooke and Cowx, 2004; 

Ihde et al., 2011). In addition, these fisheries are frequently open-access, leaving them 

particularly vulnerable to overfishing (Cooke and Cowx, 2004; Cox et al., 2002; Post and 

Parkinson, 2012). Anglers exhibit heterogeneous preferences, which leads them to adjust the 

location and intensity of their fishing effort in response to changing conditions. This complicates 

managers’ ability to predict fish population dynamics (Carruthers et al., 2018; Wilson et al., 

2020). Successful management of recreational fisheries therefore requires understanding fishing 

effort dynamics across different spatial and temporal scales.  
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Recreational fisheries are diverse in their spatial extent; their distribution across the 

landscape; and their availability of catch, effort, and harvest data (FAO, 2012; Kaemingk et al., 

2019). Different systems therefore rely on different methods for quantifying fishing effort 

dynamics, which can include intensive and/or extensive observations of water bodies or access 

points. The number of water bodies surveyed depends on the abundance of water bodies present 

in the region as well as the budget limitations of the managing agency (e.g. Cass-Calay and 

Schmidt, 2009; Chizinski et al., 2014; Malvestuto et al., 1978). Intensive data collection on 

relatively few locations permits more in-depth sampling of these locations over a wide range of 

conditions. For example, access point creel surveys assign clerks to select water bodies or access 

points for stratified-random shifts over much of the year. During these shifts, clerks interview 

anglers and collect instantaneous counts of angler effort (Newman et al., 1997; Pollock, 1994). 

For landscapes where water bodies are relatively scarce, intensive data collection satisfactorily 

balances costs of data collection with accuracy of fishing effort and catch rate estimates. 

However, intensive data collection regimens can also leave many water bodies with no available 

data describing fishing effort, catch rates or harvest (Post et al., 2002). Many fisheries landscapes 

could therefore benefit from extensive data collection, where fewer observations are collected 

per site, but more water bodies or access points are surveyed (Beard et al., 2011). Fisheries 

already applying these methods tend to rely on multiple data sources to find the right balance 

between collecting sufficient observations per site while also surveying as many sites as possible 

(e.g. Steffe et al., 2008). In contrast, many fisheries that have historically been classified as 

“small scale” are surveyed through intensive methods in spite of their large spatial extent and/or 

their high number of access points or fishing sites, such as lake districts (Deroba et al., 2007) and 

river systems (West and Gordon, 1994). The pool of harvesters within a recreational fisheries 
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landscape is mobile and heterogeneous, and their fishing effort dynamics cannot always be 

understood by treating small water bodies and fishing sites as independent fisheries (Matsumura 

et al., 2017; Martin et al., 2017). Many of these fisheries landscapes therefore benefit from a 

more extensive form of data collection and the integration of multiple data sources (e.g. 

Smallwood et al., 2012, Askey et al., 2018).  

Redistributing data collection to sample all water bodies or access points is not a trivial 

issue, particularly in lake-rich landscapes or for very large water bodies. For large water bodies 

with many access points, roving creel survey methods are used to cover more area (Roop et al., 

2018; West and Gordon, 1994). Additional extensive survey methods include the use of aerial 

surveys (Askey et al., 2018; Smucker et al., 2010), cameras (van Poorten et al., 2015), and 

vehicle counters (Simpson, 2018; van Poorten and Brydle, 2018), often in combination with 

intensive creel methods (Hartill et al., 2016; van Poorten and MacKenzie 2020). However, when 

adapting these mixed methods for a particular system, it will not always be possible to produce 

data compatible with design-based estimates of fishing effort. Traditional methods of estimating 

fishing effort rely on specific creel designs intended to accommodate variation in fishing effort 

by temporal strata, such as month or day of the week. Mean effort of a stratum is a mean of 

means: the mean of daily total effort means within the stratum (Newman et al., 1997). This mean 

expansion process leverages the central limit theorem to allow Gaussian error propagation to 

estimate confidence intervals around total fishing effort estimates (Särndal et al., 1978). 

Disparate systems use different creel designs to achieve this goal (e.g. Chizinski et al., 2014; 

Lockwood and Rakoczy, 2005; Smallwood et al., 2012), and they are difficult to adapt to non-

standard data from supplemental sources.  
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In contrast, model-based estimation of fishing effort can more easily accommodate 

multiple data sources and is flexible to system-specific sampling methods. An example of earlier 

model-based approaches includes a regression method predicting on-site estimates of total 

fishing effort from instantaneous observations collected by aerial surveys in British Columbia 

(Tredger, 1992). Askey et al. (2018) demonstrated that the previously employed regression 

method produced biased estimates and rigorously demonstrated the effectiveness of a 

generalized linear mixed model-based estimation approach using aerial surveys and on-site data 

collection from time-lapse cameras. Model-based approaches to estimating fishing effort across 

multiple fishing sites or water bodies are therefore not new methods, but they have generally 

been applied to test for differences in fishing effort dynamics among groups (Merten et al., 

2018), or to understand ecological and fishery influences on fish growth and productivity 

(Varkey et al., 2018). Similar models could instead be applied to extensively collected data from 

multiple sources to estimate waterbody-specific fishing effort over many potential fishing sites. 

 Despite the availability of multiple data sources for estimating fishing effort, it is not 

always feasible to survey all fishing sites across a landscape. Models used to estimate total 

fishing effort could therefore be extended to predict angling effort based on empirical 

relationships between fishing effort and abiotic and biotic lake variables. Studies of stated and 

revealed angler preferences have already identified lake characteristics that are particularly 

attractive to anglers. For example, large lakes that are easily accessible and present high-quality 

fishing opportunities are more likely to be chosen as angling sites (Hunt, 2005; Reed-Andersen 

et al., 2000; Hunt and Dyck, 2011). However, anglers have heterogeneous preferences, so it is 

not immediately clear whether these differences in characteristics among lakes may influence the 

overall distribution of angling effort (Beardmore et al., 2013; Breffle and Morey, 2000; Curtis 
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and Breen, 2016, Kane et al., 2020). Lake-specific predictors could include some of the many 

lake morphometric and landscape variables known to influence fishing effort either directly or 

indirectly through their influence on fish community composition and abundance. In a study 

estimating total harvest across Wisconsin, Embke et al. (2020) used generalized linear mixed 

models (GLMMs) with lake characteristics as predictors to estimate harvest on unobserved lakes. 

If lake characteristics as well as the confounding effects of weather, time of day, and seasonality 

are also consistent predictors of fishing effort among lakes (i.e. Deroba et al., 2007), at least 

coarse estimates of fishing effort at unobserved lakes can be produced based on observed lake 

characteristics.  

 We tested a model-based approach to estimating fishing effort using extensive data 

collected in Vilas County, Wisconsin. To accomplish this goal, we examined annual summer 

fishing effort predictions of GLMMs fit to three datasets. These datasets were collected using 

different methods that demonstrated tradeoffs between the number of observations per lake and 

the number of lakes surveyed (Table 1). One dataset was classified as intensive because it 

included many observations of fewer lakes per year. The second and third datasets were 

extensive because they contained fewer observations per lake, but many more lakes were 

surveyed each year. The third dataset additionally included aerial survey observations of the 

same lakes to test for the value of including a supplemental data source. We completed a series 

of tests using these datasets to address the following questions: 1) When fit to extensive data, can 

models detect annual, seasonal, and daily changes in fishing effort? 2) How do fishing effort 

estimates derived from extensive observations compare to those derived from intensive 

observations? 3) How well can models fit to extensive data predict total fishing effort on 
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unobserved lakes? 4) How can these model-based methods be applied to predict fishing effort 

across a fisheries landscape?  

Methods 

Study area 

All observations of angling effort took place in Vilas County, Wisconsin. Vilas County is 

part of the Northern Highlands Lake District (NHLD), a highly forested, lake-rich region known 

for its fishing tourism (Peterson et al., 2003). With increasing shoreline residential development 

and the continued effects of global climate change, the NHLD lake fisheries have shown marked 

changes in species composition and size structure (Christensen et al., 1996; Sass et al., 2006; G. 

J. A. Hansen et al., 2015; J. F. Hansen et al., 2015; Embke et al., 2019). The high density of lakes 

in this region means that intensive creel data are collected infrequently for each surveyed lake. If 

accurate estimates of fishing effort could instead be derived from extensive data collected over 

more lakes, managers’ understanding of effort dynamics at many lakes of interest could be 

updated more frequently. Vilas County has 1318 lakes, of which 175 have public access points 

maintained by the WDNR (Wisconsin Department of Natural Resources, 2009). Since 1995, the 

Wisconsin Department of Natural Resources (WDNR) has conducted intensive creel surveys on 

65 Vilas county lakes (Figure 1, Table 1). Intensive data collection on lakes inhabited by walleye 

(Sander vitreus) in the Ceded Territory (the northern third of Wisconsin) was initiated by the 

WDNR and the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) in 1987 after the 

US Seventh Circuit Court of Appeals affirmed the off-reservation hunting, fishing, and gathering 

rights of Ojibwe tribal members. The WDNR annually selects among all lakes containing 

walleye using a stratified random design to complete adult walleye population estimates, age-0 

walleye relative abundance surveys, and nine-month creel surveys. In addition, each year four 
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“trend” lakes are selected, which are sampled every three years, and most other lakes are 

surveyed about once every ten years (Cichosz, 2019). The data collected from these surveys are 

used to manage the joint tribal spearing and recreational angling fishery for walleye in the Ceded 

Territory of Wisconsin (Hansen et al., 1991).  

Data collection 

Intensive observations of instantaneous boat counts were collected by the WDNR during 

1995-2019 across 65 lakes using a stratified random survey design. On average, five Vilas 

County lakes were surveyed per year (Tables 1 and A1), and only lakes containing walleye were 

surveyed (Cichosz, 2019). Survey dates and times were stratified by month, weekend, and 

mornings and evenings. A creel clerk’s 40-hour workweek was randomly assigned to days and 

times based on these strata. In general, lakes were surveyed for nine months each and visited for 

about 20 creel shifts per month. November, March, and April were usually omitted from 

sampling due to perilous ice conditions. Instantaneous counts were completed at two randomly 

selected times during each shift. Creel clerks circled the lake by boat, counting the number of 

anglers that were either actively fishing or known to be moving between fishing locations 

(Gilbert et al., 2013; Rasmussen et al., 1998).  

For our extensive experimental creel survey, we completed on-site, instantaneous counts 

of fishing activity at 38 lakes in Vilas County, WI from mid-May to mid-August of 2018 and 

2019 (Figure 1, Supplementary Material A1). Sixty creel shifts in 2018 and 120 shifts in 2019 

were stratified by weekends and weekdays as well as by morning (5:30 to 13:30) and evening 

(13:30 to 21:30) shifts. We randomly assigned at least four of these shifts to each lake, with the 

restriction that each lake needed to be surveyed at least once on a weekend or holiday. In 

addition, morning and evening shifts were required to take place at each lake. During each creel 
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shift, we completed three instantaneous boat counts at randomly selected times. If randomly 

selected count times were less than one hour apart, count times were re-drawn until this criterion 

was met. If a count was selected to take place before sunrise or after dark, the count was instead 

completed at sunrise or sunset, respectively, and the new count time was recorded. On average, 

13 instantaneous counts were completed per lake during the 6 months total of experimental creel 

surveys from 2018 and 2019 (Tables A1 and A2). We completed on-site instantaneous counts of 

fishing effort from a boat, counting the number of fishing boats and shore anglers who were 

actively fishing at the count time. For each boat or shore angler observed, we recorded whether 

or not they were angling, the number of passengers, and whether the boats were moving or 

stationary. Because we counted fishing vessels while the intensive creel survey counted anglers, 

we converted the intensive raw counts to an approximate number of fishing boats based on the 

mean number of passengers per boat observed during our extensive on-site counts (µ=2.04, 

σ=0.95).  

In addition, we completed three aerial surveys of the same 38 lakes (plus 6 others) on 

June 6, July 10, and July 27, 2019. Flights were scheduled based on pilot availability and 

weather conditions. Volunteer pilots flew a pre-planned flight path in low-wing, single-engine 

aircraft. The pilot circled each of the target lakes at an altitude of 760 m while the counts took 

place. Two passengers were present for data collection: one identifying lakes and recording 

counts and the second locating and counting boats. When conditions allowed, we used binoculars 

to identify boats containing anglers. We could not always visually identify fishing boats, so 

unassigned stationary or slow-moving boats were therefore probabilistically classified as fishing 

or non-fishing based on the proportion of fishing boats among all stationary and slow-moving 

boats observed during on-site counts. We observed 62% of stationary boats and 80% of slow-
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moving boats to be fishing during our on-site counts, so each unassigned stationary and slow-

moving boat was randomly assigned a classification with a 0.62 or 0.80 probability, respectively, 

of being classified as a fishing boat.  

Traditional mean expansion estimates of fishing effort 

Mean expansion estimates of total fishing effort from intensive data compute the sum of 

mean fishing effort over several strata. Every month of observations makes up one level, and 

then each month is subdivided into weekday and weekend/holiday strata. Two counts of fishing 

effort were collected every shift, and these were averaged to estimate each day’s mean effort. 

Daily mean effort was multiplied by the number of daylight hours to estimate that day’s total 

boat hours. The mean of this daily mean total effort was then calculated separately by month and 

weekday strata, and the sum of these grand means estimated the lake year’s total fishing effort. 

The standard deviation (SD) of angler counts within a stratum was completed according to 

Rasmussen et al., (1998), and summer fishing effort SD for each lake was calculated as the 

square root of the summed variance of all strata. This protocol of mean expansion has been 

demonstrated to accurately estimate total annual fishing effort relative to a census count 

(Newman et al., 1997). We calculated fishing effort from intensive data only for summer months 

between May and August. Seven lakes were surveyed intensively and extensively on different 

years. This overlap allowed us to compare the accuracy and precision of mean-expansion total 

summer fishing effort estimates with our model-based estimates from extensive data.  

When fit to extensive data, can models detect annual, seasonal, and daily changes in fishing 

effort?  

We modeled instantaneous boat counts as a response to the effects of lake, year, day of 

year, and time of day using GLMMs. We tested the fit of different distributions to our count data 
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using the R package “fitdistrplus”(Delignette-Muller and Dutang, 2015) in R version 3.6.1 (R 

Core Team, 2019). Because the count data were overdispersed, we fit negative binomial 

regressions with a log link function. We used autocorrelation function (ACF) plots of 

standardized residuals to detect significant temporal autocorrelation. Random intercepts 

incorporated variation due to lake identity that was not accounted for in the explanatory variables 

(Zuur et al., 2009). By including random intercepts to accommodate lake-specific variation in 

fishing effort, we allowed the model to pool information across lakes in order to detect general 

patterns in seasonal and daily fishing effort dynamics. This model was then used to predict 

hourly instantaneous counts across a summer for each lake. The area under the curve of these 

predictions then provide estimates of annual summer fishing effort that can be compared to 

estimates obtained by mean expansion of intensive data. 

We used two datasets, the intensive WDNR observations and the extensive experimental 

data, and compared the ability of GLMMs to detect changes in fishing effort on three subsets of 

this data: (1) the intensive observations, (2) the extensive on-site observations, and (3) our 

combined extensive on-site and aerial survey observations. We completed forward model 

selection of a pre-specified set of increasingly specific predictors by comparing Akaike 

Information Criterion (AIC) of candidate models. We used a ΔAIC cutoff of -2 for selecting the 

best-fitting model. The simplest model consisted of only a random intercept by lake. We 

sequentially added in effects for year, day of year, and hour of day. Seasonality and time of day 

are already well known predictors of fishing effort (e.g. Mann and Mann-Lang, 2020; Powers 

and Anson, 2016). By completing forward-selection of nested models, we were able to compare 

the ability of different datasets to detect increasingly granular dynamics of fishing effort. For the 

models fit to intensive observations, the year effect was a second random intercept. For the two 
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extensive datasets conducted only over two years, we included a year fixed effect using a dummy 

variable. To aid convergence, all continuous predictor variables were centered and scaled. We fit 

these models using the lme4 package version 1.21 (Bates et al., 2015, p. 4). Validity of the 

models was assessed using the DHARMa package v.0.2.6 (Hartig, 2019), and marginal and 

conditional 𝑟ଶ were estimated using the trigamma method with the MuMIn package v.1.43.15 

(Barton, 2019). 

How do fishing effort estimates derived from extensive observations compare to those 

derived from intensive observations? 

Before comparing model-based to mean expansion predictions, we first validated that 

generalized linear models fit separately to each lake year of intensive data produced total fishing 

effort estimates comparable with those produced through mean expansion (Appendix A2, 

Figures A1 and A2, Tables A3 and A4). After this validation, we then tested the accuracy and 

precision of total summer fishing effort estimates derived from each of the candidate GLMMs fit 

in section 2.4. We compared predictions generated by each GLMM with the estimates calculated 

by mean expansion for the seven lakes surveyed in both datasets. Hourly predictions of 

instantaneous boat counts from May 1 to August 31 for these lakes were obtained by predicting 

boat counts at each daylight hour of each day. Continuous prediction variables were centered and 

scaled according to the mean and standard deviation of the original fit data. Predictions for all 

models and datasets were produced for all daylight hours of summer, conditional on a mean year 

effect using the merTools v.0.5.0 R package (Knowles and Frederick, 2019). The area under the 

curve of each lake’s summer predictions was then calculated using the trapezoidal rule, which 

produced an estimate of total summer fishing effort for each lake. By bootstrapping the model 

predictions for 5,000 iterations, we obtained a mean estimate of total fishing effort as well as 
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upper and lower 95% prediction intervals. This process was repeated for each of the candidate 

models. These prediction intervals of model-based estimates of fishing effort were then 

compared to fishing effort estimates calculated through mean expansion of intensive data. To 

summarize correspondence between predicted and observed fishing effort for each dataset and 

model, we compared indices of relative accuracy and precision (𝐼ோ஺ and 𝐼ோ௉, defined below) of 

each model’s predicted total summer fishing effort versus expanded mean estimates as in Steffe 

et al. (2008). Some lakes were intensively surveyed over several years. For these lakes, we 

compared model-based total effort estimates to the mean of all years’ mean expansion estimates. 

The 𝐼ோ஺ specifies the similarity of two estimates relative to the magnitude of the estimate of 

interest. A positive 𝐼ோ஺ indicates that the model-based estimate is higher than that of the mean 

expansion by some proportion of its overall value, while a negative value indicates a lower 

estimate.  

 

𝐼ோ஺ =
𝐺𝐿𝑀𝑀 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑀𝑒𝑎𝑛 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑀𝑒𝑎𝑛 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
× 100 

 

The 𝐼ோ௉ describes the similarity of each estimates’ relative standard error (RSE) as a percentage 

of the RSE of the estimate of interest. A positive 𝐼ோ௉ value indicates that the model-based 

estimate is more precise than that of the mean expansion, or in other words, its standard error is a 

smaller proportion of its estimate.  

 

𝑅𝑆𝐸 =
𝑆𝐸ா௦௧௜௠௔௧௘

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒
× 100 
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𝐼ோ௉ =
𝑅𝑆𝐸ெ௘௔௡ ௘௫௣௔௡௦௜௢௡ − 𝑅𝑆𝐸ீ௅ெெ ௘௦௧௜௠௔௧௘

𝑅𝑆𝐸ெ௘௔௡ ௘௫௣௔௡௦௜௢௡
× 100 

 

Mean 𝐼ோ஺ and 𝐼ோ௉ were then calculated for all lakes surveyed intensively and extensively.  

How well can models fit to extensive data predict total fishing effort on unobserved lakes?  

We chose the most accurate predictive model from section 2.5 and added covariates 

describing lake characteristics. We chose variables representing landscape predictors of boating 

density as described by Hunt et al. (2019). Hunt et al. (2019) modeled the distribution of boating 

activity in Ontario, Canada as a function of lake surface area, accessibility, human development, 

and fishing quality. We restricted ourselves to data that were easily obtained for all lakes in a 

fisheries landscape. Lake surface area is a well-established predictor of fishing effort (e.g. Hunt, 

2005), and it is available for all Wisconsin lakes. We also had access to lake-specific availability 

of public boat ramps and presence of walleye, a popular target species. Each of these variables 

were obtained from the WDNR lake database. Distance from a resident pool of anglers, either 

from a nearby urban center or from lake residents, has also been demonstrated to predict fishing 

effort (Hunt et al., 2011; Wilson et al., 2020). However, given the low and relatively 

homogeneous population density of Vilas County (Peterson et al., 2003; U.S. Census Bureau, 

2010), we judged housing density of the lakeshore to be a more influential source of nearby 

anglers. We calculated building density (buildings per km shoreline) within 200 m of each lake’s 

shoreline using GIS data obtained from the WDNR and Vilas County. As an additional measure 

of accessibility, distance to the nearest secondary road was calculated as Euclidean distance from 

the centroid of a lake to the closest point of the road. Latitude and longitude of each lake was 

obtained from the WDNR 24K Hydro Geodatabase (“24K Hydro Full Geodatabase for 

Download,” 2017), and road data came from the United States Geological Survey National 
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Transportation Dataset for Wisconsin (“USGS National Transportation Dataset Downloadable 

Data Collection,” 2017). Continuous variables were scaled and centered. These models were fit 

as described in section 2.4, and p-values were estimated based on Wald tests with the null 

hypothesis that the predictors have no effect on fishing effort and an alpha=0.05. 

Models’ ability to predict total effort on unobserved lakes was tested using leave-one-

group-out (LOGO) cross validation for models fit to intensive and extensive datasets. All 

observations from each lake were iteratively removed from the dataset, the models were refit, 

and the missing values predicted. These predictions were bootstrapped for 5000 iterations to 

obtain upper and lower 95% prediction intervals for the effort estimates. The 𝐼ோ஺ and 𝐼ோ௉ of these 

estimates were then estimated relative to those produced by mean expansion of intensive data.    

How can these methods be applied to predict fishing effort across a fisheries landscape?  

 The best-performing predictive GLMM was used to estimate total summer fishing effort 

across all lakes and years surveyed either intensively or extensively in Vilas County. We fit the 

model to the combined intensive and extensive datasets, including random lake and year effects 

and fixed effects of weekend, day of year, and a dummy variable indicating the survey method. 

A full summer of fishing effort was then predicted for each lake over each year represented in 

the full combined dataset. We obtained 95% prediction intervals by bootstrapping the model 

predictions for 5000 iterations. Predictions were completed for 100 lakes over 25 years.   

Results 

When fit to extensive data, models detect presence and shape of annual, seasonal, and daily 

changes in fishing effort, but underestimate their magnitude. 

The best-fit models included a year effect and quadratic effects of day of year and hour of 

day, which suggests that seasonal and daily patterns of fishing effort were detected by models fit 
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even with few observations per lake (Table 2). The quadratic effect of time of day was the best 

fitting of all of the functional forms tested for this variable (Tables A5-A7). Weekends and 

holidays had a consistently positive effect on fishing effort for all datasets. However, the models 

fit to the intensive dataset were the only models to detect significant quadratic effects of day of 

year and hour of day on fishing effort (Tables A8-A10). Therefore, while including annual, daily, 

and hourly effects improved model fit for all of the data sets, it was only the annual and weekend 

effects that were detectable in the models fit to extensive data. Fixed effects such as day of year, 

weekend/weekday, and hour of day, explained very little variance in fishing effort (Table 3). 

Although lake and year random effects consistently explained around 40% of the variance in 

fishing effort, marginal 𝑟ଶ values for hourly and daily fixed effects were very low, indicating that 

they explained < 5% of the variance in instantaneous fishing effort.  

Models fit to extensive data produce similar estimates to mean expansion of intensive data, 

with some reduction in accuracy and precision.   

With the exception of Irving Lake (IV), all models fit to the extensive data produced 

fishing effort estimates with prediction intervals that overlapped with those produced by mean 

expansion of intensive data (Figure 2). These models all produced mean estimates of fishing 

effort within 20% of the value of those produced by mean expansion of intensive data (Table 4). 

The best performing model for the extensive dataset, which included day of year and weekend 

fixed effects, produced estimates that were, on average, within 11% of the mean expansion 

estimate. As expected, when the models were fit to intensive data, they produced estimates of 

fishing effort that were nearly identical to those produced by mean expansion (Table 4, Figure 

2). 
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On an individual lake basis, the effects on accuracy of increasing model complexity were 

relatively subtle and depended on lake identity. Fishing effort on Irving Lake (IV), for example, 

was continuously underestimated by all models fit to extensive data. Estimates for Little Arbor 

Vitae Lake (LV), however, were quite accurate for simple models but became more negatively 

biased as more parameters were added. Note the differences in total fishing effort predictions for 

this lake between Figures 2A and 2D. The addition of aerial survey data tended to marginally 

improve the mean accuracy of predictions for all lakes. More notably, aerial survey data on 

average improved the precision of fishing effort estimates as measured by IRP (Table 4). 

Prediction intervals of model estimates based only on on-site extensive observations tended to 

be, on average, 7 to 10 times wider than the confidence intervals associated with mean 

expansion. Adding only 3 aerial observations per lake reduced the average width of estimate 

prediction intervals by nearly half. This improvement in precision suggests that a moderate 

number of additional samples could result in a substantial reduction in uncertainty associated 

with these estimates of fishing effort. An exaggerated version of this change can be seen in the 

predictions for Oxbow Lake (OB), on which fewer on-site observations were recorded. When 

three aerial observations were added for this lake, the span of the estimate’s prediction interval 

decreased from a width of 16,147 boat hours to 7,724 boat hours, or over 50% (Figure 2C). 

Intensive and extensive datasets were collected on different years, potentially limiting our 

ability to compare estimates of fishing effort. To investigate the influence of year effects on our 

estimates, we calculated estimates of total fishing effort for each year surveyed using our best-

performing model. Fishing effort estimates varied substantially between years, especially for 

Little Arbor Vitae and Oxbow lakes (Figure 3). These two lakes had produced the least accurate 

model-based predictions conditional on a mean year effect, but for each of these lakes, the total 
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effort prediction produced for one year was substantially closer to the mean expansion estimates. 

Much of the difference between mean expansion and model-based fishing effort estimates could 

therefore be a result of the mismatch in years between intensive and extensive sampling.  

Model-based predictions of fishing effort on out-of-sample lakes showed mixed 

performance. 

Predicting fishing effort for specific unobserved lakes required adding covariates 

describing lake characteristics that may influence fishing effort. Adding these lake variables 

caused marked changes to the model’s conditional and marginal 𝑟ଶ values (Table 5). Although 

the fixed effects in GLMMs predicting fishing effort from year, seasonal, and daily effects 

explained only around 5% of the variance in fishing effort, fixed effects in models containing 

lake variables explained between 20 and 30%. Because these lake variables took over some of 

the explanatory ability previously held by the random effects, these models could predict at least 

a portion of the variation in out-of-sample lakes, i.e. lakes without their own random intercept.   

The effect size and significance of these lake variables depended on the dataset to which 

the model was fit (Table 5). Lake area had a significant positive effect on instantaneous fishing 

effort in models fit to all three datasets. Distance from lake to the nearest secondary road had no 

significant effect in any models. In the model fit to intensive data, all lake variables with the 

exception of distance to road and walleye presence have a significant effect on fishing effort. In 

the model fit to extensive data, however, lake area and walleye presence were the only 

significant predictors.  

The accuracy of the total fishing effort predictions produced during LOGO cross 

validation were mixed (Figure 4). On average, the model fit to the extensive dataset containing 

aerial survey data produced estimates of fishing effort within 11% of those produced by mean 
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expansion (Table 6). However, this small IRA value was largely due to the very high predictions 

for Black Oak Lake (BK) and the very low predictions for Little Arbor Vitae (LV) offsetting 

each other. Model-based predictions of fishing effort were similar to the mean expansion 

estimates for Irving (IV), Birch (BH), Oxbow (OB), and White Birch (WB) lakes. However, this 

model produced much less accurate predictions for Allequash (AQ), Black Oak, and Little Arbor 

Vitae lakes. These results could have stemmed from two problems: 1) no lake-specific random 

intercept was available for the out-of-sample lakes, or 2) the selected lake variables were 

inconsistent predictors of fishing effort. 

To evaluate these two options, the LOGO cross validation process was repeated while 

retaining the aerial survey observations for the “out-of-sample” lake. This process simulated the 

scenario of predicting fishing effort based on limited observations as well as lake variable 

predictors. Retaining these observations, however, did not substantially improve the predictions 

of total fishing effort (Figure S4). The models fit to the intensive dataset had to be simplified due 

to an upper limit on computation time. Rather than including both year and daily covariates, the 

model included only a year random effect, in addition to the lake random effect and lake 

characteristics that were included in the other models. Out-of-sample predictions of models fit to 

intensive data tended to reflect those produced by extensive data, with the exception of Irving 

Lake (IV), where these predictions were much closer to the mean expansion value.   

Model-based methods can integrate multiple data sources to predict fishing effort across a 

fisheries landscape. 

 By fitting a GLMM to the combined intensive and extensive datasets, we could fit a 

random intercept to each lake and year surveyed and then predict total summer fishing effort 

across all lakes for each of the years represented in the datasets. Average hourly fishing effort is 
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highly heterogeneous across the county (Figure 5A, Table S11). Several lakes stood out as 

having exceptionally high mean hourly fishing effort. For example, Lac Vieux Desert and Little 

Saint Germain Lake had 603% and 518% higher effort, respectively, than the mean. In addition, 

while fishing effort varied by year, no trend in overall fishing effort was evident (Figure 5B). 

Fishing effort in 1995, however, was very high compared to other years.  

Discussion 

 Extensive data collection from multiple data sources is an effective tool for managers to 

understand fishing effort dynamics across a fisheries landscape. A model-based approach to 

analyzing this data allows managers to leverage multiple sources of extensive fishing effort data 

available within their system. By relying on extensively collected data, managers can estimate 

total fishing effort for many more fishing sites or water bodies than would be possible under an 

intensive sampling regimen. Further coverage of fisheries landscapes by spatially extensive 

approaches could be achieved through supplemental data sources such as aerial surveys, camera 

traps, and drones. With further understanding of predictors of lake use, out-of-sample estimates 

of fishing effort can further improve landscape coverage.  

Evaluating the success of extensive data collection for model-based estimates 

On average within the seven lakes evaluated, a model incorporating the effects of lake 

identity, year, day of year, and weekends predicted total summer fishing effort estimate values 

within 11% of the value of those obtained by mean expansion. Because the extensive dataset 

contained fewer observations per lake, some reduction in accuracy was expected. Further, the 

intensive and extensive observations took place on different years. We therefore remain 

encouraged that estimation methods using much less data produced similar results to data-rich 

mean expansion. Mean differences in accuracy among the seven lakes surveyed intensively and 
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extensively were primarily driven by a tendency to underestimate fishing effort on Irving and 

Little Arbor Vitae lakes and to overestimate fishing effort on Oxbow Lake. The underestimation 

of fishing effort for Irving Lake highlighted an important consideration for the use of extensively 

collected data. By chance, two out of four of our experimental creel survey shifts at this lake 

took place during inclement weather. As a result, the mean instantaneous boat counts collected 

for this site were not representative of typical fishing effort, and these predictions showed no 

overlap of prediction intervals with those of mean expansion. When fishing effort estimates were 

based only on aerial survey data, which by necessity took place during fair weather, predictions 

of a simple GLMM were very similar to those of mean expansion of intensive data (Figure S3). 

The effects of poor weather could be accounted for in future applications by including a 

covariate for severe weather effects in the GLMM. Weather conditions did not obviously 

influence observations on Little Arbor Vitae, but a higher variation in total annual effort for this 

large, busy lake may have contributed to the reduced accuracy and precision of its model-based 

total fishing effort estimates.  

Oxbow Lake produced fishing effort estimates with extremely wide prediction intervals. 

Only 6 instantaneous counts of fishing effort (3 on-site, 3 aerial) took place on this lake, less than 

half the number of observations collected for other lakes, which likely explains the discrepancy 

in total effort estimates. Although it was only possible to evaluate predictions for a small number 

of lakes, these examples demonstrate some of the strengths and limitations of our spatially 

extensive, model-based method. An extensive data collection scheme can produce reasonably 

accurate estimates of total fishing effort, but lake specific fishery characteristics and chance 

conditions during the survey will influence the optimal distribution of observations. 
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Our results highlight the tradeoffs that managers face in designing surveys to estimate 

lake-specific fishing effort. For landscapes where potential fishing sites are numerous, 

conducting extensive rather than intensive surveys may allow improved understanding of fishery 

dynamics across a broader scale. If, for example, an agency is limited to 500 observations for 

one summer, there are tradeoffs to consider when deciding how many lakes over which to spread 

those observations. These data could be used to obtain a highly accurate estimate for three lakes 

by following the traditional mean expansion protocol. In this case, each of the three lakes would 

be surveyed on 80 days of the summer with 2 instantaneous boat counts on each day (i.e., 3 lakes 

x 80 days x 2 observations per day = 480 observations). Alternatively, the agency could survey 

31 lakes, spending 8 days surveying each one and completing two instantaneous fishing effort 

counts per day (i.e. 31 lakes x 8 days x 2 observations per day = 496 observations). Based on our 

results, transitioning from an intensive sampling regime to extensive sampling should result in, 

on average, a 3x increase in the width of the prediction intervals, but, in this example, a more 

than order of magnitude increase in the total number of lakes for which effort estimates are 

available. The acceptability of these tradeoffs in accuracy and precision associated with greater 

water body coverage will depend on the management priorities for the region in question.  

Some limitations exist in our ability to compare our estimates of fishing effort from 

extensive data collection to traditional mean expansion of intensive data. When evaluating the 

accuracy of model-based total fishing effort predictions, we compared prediction intervals for an 

average survey year with the confidence intervals of the expanded mean total effort calculations. 

There was no way to account for the effect of the year of the intensive survey when calculating 

indices of relative abundance and precision, and year effects appear to be the reason for much of 

the difference in total fishing effort estimates. An additional design-related limitation is the 
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relatively small number of lakes available for comparison of model-based with mean-expansion 

total effort estimates. Our summary statistics of 𝐼ோ஺ and 𝐼ோ௉ generalize the accuracy and 

precision of estimates within the seven lakes surveyed intensively and extensively, but we have 

no way of knowing the accuracy and precision of total fishing effort estimates for the other 31 

lakes that were extensively surveyed. We can, however, compare our methods and results with 

those of Askey et al. (2018). Askey et al. (2018) rigorously validated the use of GLMM-based 

estimates of fishing effort with different sample sizes selected from a large dataset collected by 

aerial surveys and time-lapse cameras. The smallest sample sizes tested in their article were 10 

and 20 observations. Within our limited selection of lakes with extensive and intensive data 

available, we found similar mean percent inaccuracies for our total effort estimates.  

Opportunities for further landscape coverage 

Total fishing effort estimates can be improved by integrating supplemental data sources, 

such as aerial surveys. By including only three additional aerial observations per lake, we 

substantially improved the accuracy and precision of our estimates. Even without including on-

site observations, a small number of aerial observations per lake produced reasonably accurate, if 

coarse, estimates of total fishing effort (Figure S3). Aerial surveys are ideal for measuring the 

distribution of fishing effort across many lakes. This method is particularly useful for surveying 

fisheries with a large spatial extent, such as lake districts (Askey et al., 2018; Hunt et al., 2019; 

Tredger, 1992), major river systems, (Sindt, 2012) and marine and Great Lakes fisheries 

(Lockwood and Rakoczy, 2005; Zellmer et al., 2018). Despite its strengths, this method may be 

too expensive to implement consistently in many fisheries systems and can be limited by severe 

weather conditions.  
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Traffic counters and boat launch cameras have also been used to quantify fishing effort 

and boat traffic (Hunt and Dyck, 2011; Simpson, 2018; van Poorten et al., 2015; van Poorten and 

Brydle, 2018). These methods can passively collect effort data without the need for creel clerks, 

but cameras and counters are still expensive and prone to vandalism (van Poorten et al., 2015). 

The use of drones in fisheries science has been advocated (Kopaska, 2014), and they have been 

successfully used for identifying derelict or illegal fishing gear (Bloom et al., 2019), counting 

fish in shallow rivers (Tyler et al., 2018), and monitoring marine protected areas (Miller et al., 

2013). Privacy concerns and aviation laws, however, complicate their use in monitoring angling 

activity for inland fisheries (Duncan, 2016; Lally et al., 2019). Although each of these methods 

has costs and benefits, they are all potentially fruitful supplemental data sources for model-based 

estimates of angler effort for different fishery systems.  

As we demonstrated, fishing effort data collected through an extensive sampling scheme 

from multiple sources can be used to understand differences in fishing effort across a broad 

spatial and temporal scale. Through two years of extensive data collection using on-site and 

aerial observations, we added coverage of 44 lakes to the combined intensive and extensive 

fishing effort dataset describing Vilas County. Based on the year effects estimated from 25 years 

of intensive data, we were able to predict total fishing effort for all lake-year combinations. 

Although the empirical data does not exist to validate these estimates, this analysis remains a 

useful demonstration for the potential of extensive data collection and GLMM-based analysis for 

estimating fishing effort across a lake-rich landscape. Further annual extensive data collection 

would quickly expand this coverage, as well as allow for the direct comparison of fishing effort 

between years on a broader scale. These data also have promise for detecting seasonal and daily 
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patterns in fishing effort, which can assist fisheries managers in choosing optimal times for 

management interventions.  

As we found, however, a granular understanding of shifts in angler effort dynamics 

requires more data than we collected in our extensive sampling scheme. By allowing partial 

pooling of observations between lakes using lake random intercepts, some generalizable patterns 

were observed, but more observations per year may be needed to estimate the magnitude of 

seasonal and daily effects. Alternatively, different lakes may have different diel and seasonal 

fishing effort patterns. Although the extensive creel survey included fewer lakes than the 

intensive survey, a wider variety of lakes were surveyed, including lakes with no walleye 

population, no boat ramp, and lakes with smaller surface areas. Because of this greater variation 

in lake characteristics, concurrent differences in diel and seasonal fishing effort patterns may 

have been washed out to non-significance when the GLMMs were fit. In this case, more 

intensive data collection with more observations per lake may be required to understand lake-

specific seasonal and daily patterns. A hypothetical fisheries manager is therefore left to decide 

whether their goals are best served by investing their limited resources in extensive data 

collection over a wider spatial extent or intensive data collection within a limited number of 

systems.  

This question of appropriate tradeoffs could be sidestepped if managers could effectively 

predict fishing effort for unobserved lakes based on lake characteristics. We attempted to predict 

unobserved fishing effort using easily obtained data, with mixed results. Model predictions 

overlapped with mean expansion estimates for five out of the seven lakes tested, but total fishing 

effort for the other two were substantially over- or underestimated. Lakes associated with 

inaccurate predictions did not have any obvious characteristics in common that could explain this 
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discrepancy. These results could be explained by our use of only easily obtained predictor 

variables, or they could be an indication that lake characteristics are not consistent, linear 

predictors of lake-specific fishing effort. We chose lake variables that aligned with 

characteristics found to predict recreational boating density by Hunt et al. (2019), including lake 

surface area, walleye presence, and indices of human development and accessibility. Differences 

in sampling frame between our intensive and extensive data collection resulted in differences in 

parameter values between models fit to different datasets. For example, intensive data collection 

in Wisconsin takes place only on lakes containing walleye. Because no contrast was available for 

this parameter, no walleye effect could be tested. In summer, walleye are also almost exclusively 

available to boat anglers, potentially explaining the presence of a boat ramp effect in the 

intensive but not the extensive dataset. Distance to secondary road had no effect on instantaneous 

fishing effort in any dataset. Most likely, this result stems from measuring distance to road from 

the centroid of each lake. This metric does not account for the location of boat launches, so the 

nearest secondary road as measured here may still be inconveniently far away from any access 

points. Potential explanations for the absence of a building density effect in the extensive data 

are less clear. The lakes surveyed for both datasets had a similar range in building density values 

(0-70 buildings per km in the intensive data and 0-80 buildings in the extensive data). It is 

possible that, similar to diel and seasonal patterns, housing density has a different effect on 

fishing effort for different lakes. Not all lake residents are interested in fishing, and the presence 

of some building types such as resorts may be a better predictor of resident fishing effort than the 

presence of family homes. 

Indicators of fishing quality such as angler catch rates or fish population estimates, rather 

than indirect measurements of accessibility, may improve the predictive ability of these models, 
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but these data are labor-intensive to produce and therefore did not exist for every lake in our 

extensive dataset. By applying model-based fishing effort predictions over every lake- year 

combination in the combined intensive and extensive datasets, we identified a handful of 

extremely high fishing effort lakes, which allowed us to explore potential commonalities 

between them. The primary characteristic these lakes had in common was their surface area; the 

lakes with highest mean fishing effort ranged from 350 to over 1600 ha in surface area (Table 

S11). In contrast, no obvious correlation was found between fishing effort and population 

abundance or catch rates of popular target species. However, very high fishing effort lakes all 

tended to have moderate, rather than high or low, catch rates for panfish and muskellunge 

(Figures A5-A8). Most likely, predicting fishing effort based on lake characteristics would 

require accounting for nonlinear responses and interactions of lake characteristics, potentially 

using nonparametric methods such as random forests (e.g. van Poorten et al, 2013). Although 

out-of-sample predictions of fishing effort were not consistently accurate, we argue that 

extensive data collection for GLMM-based estimates of total fishing effort is a promising 

approach for understanding effort dynamics in highly distributed and/or data poor fisheries. 

Applications to fisheries management 

Our modeling approach proved effective for predicting angler effort across a fisheries 

landscape; however, other metrics derived from traditional angler intercept surveys, such as 

angler catch rates and estimates of total catch, are also important for fisheries management.  That 

said, our approach could compliment existing efforts to address these important, additional 

aspects of fisheries. For example, recent research by Embke et al., (2020) used GLMMs to 

produce recreational harvest estimates for 267 lakes that were surveyed intensively as well as all 

unobserved inland lakes across Wisconsin based on abiotic variables and an angler access metric. 
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Coarse estimates of fishing effort based on spatially extensive observations could further refine 

harvest estimates on these otherwise unobserved lakes. Additional catch and harvest data can 

also be collected during spatially extensive sampling of fishing effort through angler intercept 

interviews (Iwicki et al., in prep). Perhaps most importantly, the different levels of variability 

associated with fishing effort and harvest estimates based on extensively collected data can 

identify lakes of greater uncertainty where additional sampling resources should be directed. For 

example, high-effort and high-variance lakes such as Little Arbor Vitae likely need to be 

allocated more sampling effort than lakes such as White Birch (Fig. 3).  

In addition to its applicability to data-poor fisheries, a model-based approach to 

generating fishing effort estimates from fewer observations at more fishing sites could be a 

practical tool for managers who want to implement ecosystem-based management strategies that 

can respond to fast and slow changes across a fisheries landscape (sensu Walker et al., 2012). A 

transition from a one-size-fits-all management policy to a more diverse set of policies may 

contribute to a more persistent and resilient fisheries system (Carpenter and Brock, 2004; van 

Poorten and Camp, 2019). These policies would ideally be dynamic across space and time, 

which requires faster feedback from data collection describing how interventions have affected 

fishing effort, catch, and harvest. Although implementing highly dynamic and lake-specific 

policies is probably an unrealistic goal in lake-rich fisheries, tailored management of different 

categories of lakes may simultaneously improve system resilience and angler satisfaction by 

accommodating the preferences of heterogeneous groups of anglers. Strategic collection of 

fishing effort data over many lakes may therefore be an effective bridge between one-size-fits all 

policy and model-based implementation of diverse and dynamic policies.  
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Tables 

Table 1: Characteristics of the three datasets we evaluated when estimating lake-specific total 
fishing effort.  

 Intensive dataset Extensive dataset 
Extensive dataset 
with aerial surveys 

Sampling methods On-site observations On-site observations On-site observations 
Aerial surveys 

Number of years 
surveyed 

25 2 2 

Number of lakes 
surveyed 

65 38 44 

Mean number of 
lakes surveyed per 
year (SD) 

4.9 (2.6) 21 (7.1) 29.5 (19.1) 
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Table 2: AIC values for each model fit to each dataset. Each model contains its listed 
predictors as well as all predictors listed for the models above it. Values for ΔAIC are the 
difference between that model’s AIC and that of the model containing only a random lake 
effect. The best fit model for all datasets is in bold. 

Model Intensive data On-site extensive data 
On-site and aerial 
survey extensive data 

 AIC ΔAIC AIC ΔAIC AIC ΔAIC 
 (1|𝐿𝑎𝑘𝑒) 90206  1360.1  1725.8  
 + 𝑌𝑒𝑎𝑟 89883 -323 1350.2 -9.9 1713.3 -12.5 
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

88766 -1440 1346.6 -13.5 1708.5 -17.3 

+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚
+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚𝟐 

87948 -2258 1338.9 -21.2 1700.0 -25.8 
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Table 3: Marginal and conditional 𝑟ଶ values for each model fit to each dataset. Each model 
contains its listed predictors as well as all predictors listed for the models above it.  

Model Intensive data On-site extensive data 
On-site and aerial 
extensive data 

 Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

 (1|𝐿𝑎𝑘𝑒)  0.36  0.38  0.39 
 + 𝑌𝑒𝑎𝑟  0.39 0.035 0.46 0.021 0.43 
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

0.023 0.43 0.047 0.50 0.031 0.45 

 
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

0.044 0.46 0.065 0.52 0.044 0.46 
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Table 4: Mean indices of accuracy and precision for model-based estimates of total summer 
fishing boat hours relative to mean expansion estimates. (N=7) Each model contains its listed 
predictors as well as all predictors listed for the models above it.  

Model Intensive data On-site extensive data 
On-site and aerial 
extensive data 

 Mean 
𝐼ோ஺(SD) 

Mean 𝐼ோ௉ 
(SD) 

Mean 
𝐼ோ஺(SD) 

Mean 𝐼ோ௉ 
(SD) 

Mean 
𝐼ோ஺(SD) 

Mean 𝐼ோ௉ 
(SD) 

 (1|𝐿𝑎𝑘𝑒) 8.06 
(6.48) 

73.95 
(5.51) 

-5.50 
(43.68) 

-48.82 
(61.24) 

1.93 
(42.57) 

-7.67 
(25.70) 

 + 𝑌𝑒𝑎𝑟 4.80 
(12.03) 

67.27 
(7.44) 

18.28 
(58.46) 

-51.57 
(63.67) 

11.98 
(48.60) 

-9.15 
(25.46) 

+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

-0.91 
(11.73) 

67.67 
(7.24) 

-8.13 
(51.55) 

-72.46 
(67.02) 

-10.86 
(39.35) 

-23.25 
(24.22) 

 
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

-4.58 
(12.35) 

69.79 
(8.93) 

-11.31 
(46.68) 

-74.82 
(61.75) 

-13.71 
(36.11) 

-26.86 
(24.88) 
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Table 5: Parameters of a GLMM predicting fishing effort from seasonality and lake variables 
as fit to each dataset. Parameters with significant effects are in bold.  

Model parameters Intensive data On-site extensive data 
On-site and aerial 
extensive data 

 Coefficient 
(SE) 

P value Coefficient 
(SE) 

P value Coefficient 
(SE) 

P value 

Intercept 
-0.66 (0.55) 0.23 -1.51 

(0.39) 
0.0001 -1.35 

(0.31) 
<0.0001 

Lake area (ha) 0.56 (0.12) <0.0001 0.47 (0.13) 0.0002 0.50 (0.10) <0.0001 
Building density 0.25 (0.10) 0.01 0.09 (0.13) 0.50 0.06 (0.10) 0.55 
Boat ramp present 0.71 (0.22) 0.001 0.14 (0.42) 0.74 0.19 (0.33) 0.56 
Walleye present 0.72 (0.54) 0.18 1.40 (0.34) <0.0001 1.23 (0.26) <0.0001 

Distance to road 
-0.02 (0.09) 0.78 -0.06 

(0.11) 
0.61 -0.10 

(0.09) 
0.25 

Year 2018   
-0.25 
(0.09) 

0.006 -0.21 
(0.06) 

0.0009 

Day of year 1.21 (0.09) <0.0001 1.06 (0.78) 0.17 0.75 (0.58) 0.27 

Day of year2 -1.22 (0.09) <0.0001 
-1.13 
(0.77) 

0.14 -0.85 
(0.67) 

0.21 

Weekend 0.47 (0.01) <0.0001 0.21 (0.11) 0.05 0.18 (0.09) 0.04 
Marginal 𝑟ଶ 0.23 0.26 0.28 
Conditional 𝑟ଶ 0.43 0.34 0.35 
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Table 6: Mean indices of relative accuracy and precision of out-of-sample model predictions 
relative to mean expansion estimates of intensive data. (N=7) 

Model Intensive data 
On-site extensive 
data 

On-site and aerial 
extensive data 

 Mean 
𝐼ோ஺(SD) 

Mean 𝐼ோ௉ 
(SD) 

Mean 
𝐼ோ஺(SD) 

Mean 𝐼ோ௉ 
(SD) 

Mean 
𝐼ோ஺(SD) 

Mean 𝐼ோ௉ 
(SD) 

(1|𝐿𝑎𝑘𝑒) + 𝑌𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑
+  𝐿𝑎𝑘𝑒 𝑎𝑟𝑒𝑎
+ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
+ 𝐵𝑜𝑎𝑡 𝑟𝑎𝑚𝑝
+ 𝑊𝑎𝑙𝑙𝑒𝑦𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
+ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑟𝑜𝑎𝑑 

-26.17 
(76.46) 

987.31 
(400.09) 

-16.16 
(64.71) 

42.28 
(63.90) 

-10.66 
(58.99)  

88.11 
(76.00) 
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Figures 

 

 

 

Figure 1: Map of Vilas County, WI showing location of lakes intensively surveyed by WDNR (green), 
extensively surveyed by our experimental creel survey (blue), and surveyed by both (red). 
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Figure 2: Comparison of total summer fishing effort estimates between mean expansion (black), and area 
under the curve of GLMM predictions fit to extensive data (colors). Parameters added to each model are 
indicated by the labels on the right. Points are mean estimates, and bars show 95% prediction intervals. 
Lakes that were intensively surveyed multiple years by the WDNR have multiple estimates depicted along 
with their 95% prediction intervals. 
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Figure 3: Total summer fishing effort estimates from mean expansion (black) and GLMM predictions  
incorporating lake, year, day of year, and weekend effects (colors) for every year the lake was surveyed. 
GLMM predictions from extensive data were always produced for the summers of 2018 and 2019, and 
mean-expansion estimates and GLMM predictions from intensive data are depicted for the years 
intensively surveyed. Points are mean estimates for each year observed by the dataset, and bars show 
95% prediction intervals.  
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Figure 4: Out-of-sample total summer fishing effort predictions for lakes that were surveyed both 
extensively and intensively. Lakes that were intensively surveyed multiple years by the WDNR have 
multiple estimates depicted along with their 95% prediction intervals.  Estimates were predicted based on 
lake characteristics, seasonality, and the grand mean random lake intercept through LOGO cross 
validation.  
 
 
 
 
 
 
 
 
 



56 
 

 
Figure 5: Lake-specific values of the random intercept for each of the 100 lakes surveyed either 
intensively or extensively in Vilas County, WI (A), and a time series of total annual summer fishing effort 
across each of these lakes for every year of observations (B). 
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Supplementary materials 
 
Table S1: Summary of the observations collected intensively and extensively in Vilas county, 
WI. Standard deviation given in parentheses.  

 Intensive dataset Extensive dataset 

Extensive 
dataset with 
aerial surveys 

Number of lakes surveyed 65 38 44 
Number of years surveyed 25 2 2 
Mean number of observations per 
lake 

337 (252) 12.4 (4.06) 13.3 (5.8) 

Mean number of observations per 
year 

374 (479) 235 (84.9) 294 (168) 

Mean number of lakes per year 4.9 (2.6) 21 (7.1) 29.5 (19.1) 
Mean number of observations per 
lake per year 

182 (67.5) 11.2 (1.93) 10.5 (4.7) 
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Table S2: Years surveyed and number of observations for lakes surveyed by both intensively 
and extensively. Oxbow Lake only received 1 on-site visit (3 instantaneous counts) in 2018 for 
administrative reasons.  

Lake name 

Water body 
identification 
code 
(WBIC) 

Lake 
ID 

Years 
surveyed 
intensively 

Number of 
instantaneous 
boat counts 

Years 
surveyed 
extensively 

Number of 
instantaneous 
boat counts 
(on-site 
and/or aerial) 

Birch Lake 2311100 BH 1997 170 2018 10 
    2019 2 

Oxbow Lake 2954800 OB 2008 174 2018 3 
  2018 170 2019 3 

Allequash 
Lake 

2332400 AQ 2010 176 2018 10 
    2019 14 

Black Oak 
Lake 

1630100 BK 2011 168 2018 12 
    2019 3 

Irving Lake 2340900 IV 2001 169 2019 17 
  2011 168   

Little Arbor 
Vitae Lake 

1545300 
 

LV 1996 172 2019 14 

  2007 170   
   2017 168   
White Birch 
Lake 

2340500 
 

WB 2001 170 2019 14 

   2011 168   
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A1: Lake selection process 

Lakes were selected as part of a larger, multi-objective study of lakes in this region. Initially, 

fifty lakes were randomly selected from all Vilas County lakes, 35 of which had lake 

associations, and 15 with no lake associations. All lakes fulfilled the following criteria based on 

WIDNR data:  

- Lakes located completely within Vilas county, not crossing any county or state 

boundaries 

- Have a public launch 

- Contain largemouth bass 

- Not directly connected to other lakes, so limited connectivity for fish and anglers (No 

“chained” lakes) 

- Surface area less than 500 acres 

Distributions of chemical, biological, and morphometric variables across lakes were visually 

checked using histograms comparing distributions of selected lakes with those of all Vilas 

county lakes.  

Feedback from team members was solicited, and their suggestions were incorporated into an 

updated lake list based on availability of new data and consideration of logistical constraints. 

All prior filtering criteria were retained, the maximum lake size was increased to 618 acres (250 

hectares) to accommodate the largest sized lakes we could effectively electrofish. 

The list of selected lakes was sent to colleagues affliated with the WIDNR for consideration of a 

Scientific Collectors Permit. They provided feedback on this list indicating areas for revision. 

Potentially problematic lakes were labeled for the following reasons:  

- All smallmouth rather than largemouth bass 
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- No history of largemouth bass catches in creel data 

- Extremely low fish populations 

- Difficult to access by shock boat 

- Connectivity to other lakes allowing movement of fish and anglers 

- Negative encounters with residents 

Because of this feedback, 19 lakes were removed from the previous selection. These lakes were 

replaced with lakes suggested by WIDNR colleagues. The final lake list therefore contained 22 

lakes that were randomly selected and 19 lakes suggested as replacements because of their 

largemouth bass populations,  

Note: Low density largemouth bass lakes were retained to achieve a continuum of bass densities 

and to retain representative low-bass lakes.  

A2. Model validation 

We needed to establish that, given the same intensive dataset, a generalized linear model-

based estimate of total fishing effort is functionally equivalent to an expanded mean estimate. 

We therefore first compared the total summer fishing effort estimates derived from mean 

expansion to estimates of total summer fishing effort predicted by negative binomial generalized 

linear models (GLMs) fit separately to each lake year.  

An equivalent model-based estimation approach to mean expansion was developed by 

fitting a negative binomial generalized linear model (GLM) separately to each lake year of 

intensive count data with the following parameterization: 

𝐶𝑜𝑢𝑛𝑡 ~ 𝐽𝑢𝑛𝑒 + 𝐽𝑢𝑙𝑦 + 𝐴𝑢𝑔𝑢𝑠𝑡 + 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 +  𝐽𝑢𝑛𝑒 ∗ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 + 𝐽𝑢𝑙𝑦 ∗ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑

+ 𝐴𝑢𝑔𝑢𝑠𝑡 ∗ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 
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Instantaneous fishing effort was predicted by dummy variables categorizing the day as 

belonging to month and weekday strata, as in the mean expansion protocol. By including 

interaction effects between month and weekend, different weekend effects were estimated for 

each month. To estimate total summer fishing effort, counts of fishing effort were then predicted 

for each daylight hour between May 1 and August 31. By calculating the area under the curves of 

the predictions using the trapezoidal rule, we could then estimate total boat hours for the summer 

on a particular lake and year as well as upper and lower 95% prediction intervals. Because both 

sets of estimates were based on the same data and predictors, and because effort on all lakes was 

estimated separately, total summer fishing effort should be comparable as estimated by both 

methods.  

 A more efficient modeling approach may instead fit a quadratic effect of day of year and 

hour of day to estimate seasonal and daily changes in fishing effort. It would use fewer degrees 

of freedom than monthly dummy variables and would therefore be a more effective approach to 

modeling fishing effort using extensive data. Therefore, we additionally fit a negative binomial 

GLM to each lake year of intensive data with the following form:  

𝐶𝑜𝑢𝑛𝑡 ~ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟 + 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ + 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 + 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦 + 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

Each of these model-based estimates were compared to expanded mean estimates by calculating 

an index of relative accuracy (𝐼ோ஺) and an index of relative precision (𝐼ோ௉). 

When fit to intensively sampled observations, model-based approaches produced very 

similar results to the standard approach of mean expansion. Negative binomial GLMs were fit to 

each lake-year of intensive observations, and the area under the curve of the predictions 

successfully matched the stratified mean total estimates for summer fishing effort (Figure S2). 

As expected, the model parameterization that more closely matched the stratification of the mean 
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expansion protocol generated nearly identical estimates (Figure S2A). When the monthly dummy 

variables were replaced by a quadratic effects of day of year and hour of day, some minor 

deviations from the mean expansion estimates were evident (Figure S2B). For the seven lakes 

that were surveyed both intensively and extensively, all estimates of total summer fishing effort 

were effectively the same, with some differences in the width of their confidence intervals 

(Figure S3).  

Model-based estimates of total fishing effort that included month effects of a dummy 

variable produced estimates that were equally as accurate and precise relative to the expanded 

mean estimates (Table S3). When models instead included a quadratic effect of day of year, 

estimates of total effort tended to be lower but more precise than those produced by mean 

expansion (Table S4).   
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Figure S1: Comparison of model-based estimates of total fishing effort with WIDNR stratified mean 
estimates for all lake years. 
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Figure S2: Comparison of total estimated fishing effort and 95% confidence intervals for expanded mean 
estimates and for two functional forms of a GLM. Lakes that were surveyed multiple years by the WIDNR 
have multiple estimates depicted along with their 95% confidence intervals. Confidence intervals are 
wider for GLM estimates, even though they used the same data as the expanded mean estimates. 
Including the quadratic effect somewhat reduces the width of the GLM confidence intervals.  
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Table S3: Indices of relative accuracy (𝐼ோ஺) and precision (𝐼ோ௉) for GLM predictions of total 
summer fishing boat hours day effects relative to expanded mean estimates.  

Lake year 
Expanded mean 
total estimate (SD) 

GLM prediction 
(SE) 

𝐼ோ஺ of GLM 
prediction 

𝐼ோ௉ of GLM 
prediction 

AQ 2010 5830.1 (284.5) 5828.8 (1551.5) -0.02 -81.6667 
BH 1997 4253.2 (239.8) 4247.6 (1089.5) -0.13 -78.0189 
BK 2011 2163.5 (111.1) 2142.5 (816.5) -0.98 -86.5234 
IV 2001 3886.6 (163.7) 3783.7 (1294.4) -2.72 -87.6843 
IV 2011 3470.4 (160.2) 3474.3 (1094.4) 0.11 -85.3432 
LV 1996 12035.2 (340.0) 12032.5 (1926.1) -0.02 -82.3508 
LV 2007 8383.6 (341.3) 8389.5 (1777.8) 0.07 -80.7875 
LV 2017 10118.0 (417.6) 10129.9 (2200.6) 0.12 -80.9993 
OB 2008 4610.6 (208.5) 4585.8 (1107.6) -0.54 -81.2776 
OB 2018 3073.9 (169.7) 3077.5 (965.0) 0.12 -82.3964 
WB 2001 1439.2 (76.5) 1439.8 (476.0) 0.05 -83.922 
WB 2011 981.6 (80.4) 996.6 (513.0) 1.50 -84.0815 
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Table S4: Indices of relative accuracy (𝐼ோ஺) and precision (𝐼ோ௉) for GLM predictions of total 
summer fishing boat hours with quadratic day and hour of day effects relative to expanded 
mean estimates. 

Lake year 

Expanded mean 
total estimate 
(SD) 

GLM quadratic 
prediction (SE) 

𝐼ோ஺ of GLM 
quadratic 
prediction 

𝐼ோ௉ of GLM 
quadratic 
prediction 

AQ 2010 5830.1 (284.5) 6078.2 (1013.9) 4.08 -70.75 
BH 1997 4253.2 (239.8) 4034.2 (601.2) -5.43 -62.16 
BK 2011 2163.5 (111.1) 2250.7 (523.3) 3.88 -77.91 
IV 2001 3886.6 (163.7) 4088.6 (946.6) 4.94 -81.80 
IV 2011 3470.4 (160.2) 3611.3 (708.7) 3.90 -76.47 
LV 1996 

12035.2 (340.0) 
12351.6 
(1275.7) 2.56 -72.65 

LV 2007 8383.6 (341.3) 8852.3 (1208.4) 5.29 -70.18 
LV 2017 

10118.0 (417.6) 
10568.6 
(1439.5) 4.26 -69.70 

OB 2008 4610.6 (208.5) 4591.0 (679.7) -0.43 -69.46 
OB 2018 3073.9 (169.7) 3054.0 (546.7) -0.65 -69.16 
WB 2001 1439.2 (76.5) 1489.4 (304.0) 3.37 -73.96 
WB 2011 981.6 (80.4) 1006.9 (316.7) 2.51 -73.94 
     
  Mean (SD) 2.36 (3.09) -72.35 (5.04) 
  Mean (SD) 0.02 (0.004) -82.9 (2.71) 
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Table S5: Goodness-of-fit diagnostics for models fit to intensive fishing effort count data as 
additional parameters are added. Values of ΔAIC for alternate specifications for time of day 
are the difference between that model’s AIC and that of model 3. The best-fit model is in bold.  

 Predictors AIC ΔAIC BIC logLik Deviance df 
Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

1 (1|𝐿𝑎𝑘𝑒) 90206  90230 -45100 90200 21873  0.36 

2 + (1|𝑌𝑒𝑎𝑟) 89883 -323 89914 -44937 89875 21872  0.39 

3 + 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

88766 -1440 88822 -44376 88752 21869 0.023 0.43 

Alternate specifications for time of day: 
4 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜

/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘ଶ

+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

88393 -1813 88473 -44186 88373 21866 0.032 0.45 

5 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

88399 -1807 88471 -44190 88381 21867 0.032 0.45 

6 + 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚
+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚𝟐

87948 -2258 88020 -43965 87930 21867 0.044 0.46 
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Table S6: Goodness-of-fit diagnostics for models fit to extensive fishing effort count data. 
Values of ΔAIC for alternate specifications for time of day are the difference between that 
model’s AIC and that of model 3. The best-fit model is in bold. 

Model Predictors AIC ΔAIC BIC logLik deviance df 
Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

1 (1|𝐿𝑎𝑘𝑒) 1360.1  1372.5 -677.0 1354.1 467  0.38 

2 + 𝑦𝑒𝑎𝑟 2018 1350.2 -9.9 1366.8 -671.1 1342.2 466 0.035 0.46 

3 + 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

1346.6 -13.5 1375.7 -666.3 1332.6 463 0.047 0.50 

Alternate specifications for time of day: 
4 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜

/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘ଶ

+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

1345.5 -14.6 1387.0 -662.8 1325.5 460 0.055 0.50 

5 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

1344.3 -15.8 1381.7 -663.2 1326.3 461 0.055 0.50 

6 + 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚
+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚𝟐

1338.9 -21.2 1376.3 -660.4 1320.9 461 0.065 0.52 
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Table S7: Goodness-of-fit diagnostics for models fit to extensive creel and aerial survey effort 
count data. Values for ΔAIC for alternate specifications of time of day are the difference 
between that model’s AIC and that of model 3. The best-fit model is in bold. 

Model Predictors AIC ΔAIC BIC logLik deviance df 
Marginal 
𝑟ଶ 

Conditional 
𝑟ଶ 

1 (1|𝐿𝑎𝑘𝑒) 1725.8  1739.0 -859.9 1719.8 588  0.39 
2 + 𝑦𝑒𝑎𝑟 2018 1713.3 -12.5 1730.9 -852.7 1705.3 587 0.021 0.43 
3 + 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟

+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 

1708.5 -17.3 1739.2 -847.3 1694.5 584 0.031 0.45 

Alternate specifications for time of day: 
4 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜

/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘ଶ

+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

1708.9 -16.9 1752.7 -844.4 1688.9 581 0.038 0.45 

5 + 𝐻𝑜𝑢𝑟𝑠 𝑡𝑜
/𝑓𝑟𝑜𝑚 𝑑𝑎𝑟𝑘
+ 𝑀𝑜𝑟𝑛𝑖𝑛𝑔 

1707.0 -18.8 1746.5 -844.5 1689.0 582 0.037 0.45 

6 + 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚
+ 𝑯𝒐𝒖𝒓 𝒐𝒇 𝒅𝒂𝒚𝟐

1700.0 -25.8 1739.4 -841 1682.0 582 0.044 0.46 
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Table S8: Parameter estimates for the best-fit model to intensive fishing effort count data.  

Model 
Random 
effects 

Variance 
of 

random 
intercept 

(SD) Fixed effects 

Fixed effect 
coefficients 
(SE) 

Z 
value P value 

(1|𝐿𝑎𝑘𝑒)
+ (1|𝑦𝑒𝑎𝑟)
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑
+  𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

𝐿𝑎𝑘𝑒 1.06 
(1.03) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.43 (0.14) 3.11 0.0019* 

𝑌𝑒𝑎𝑟 0.065 
(0.25) 

𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟 1.25 (0.086) 14.44 <0.0001* 

  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ -1.25 (0.086) -14.48 <0.0001* 

   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦 1.42 (0.05) 26.75 <0.0001* 
   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ -1.31 (0.052) -24.94 <0.0001* 
   𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑜𝑟 ℎ𝑜𝑙𝑖𝑑𝑎𝑦 0.48 (0.015) 32.63 <0.0001* 
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Table S9: Parameter estimates for the best-fit model to extensive fishing effort count data.  

Model 
Random 
effects 

Variance 
of random 
intercept 
(SD) Fixed effects 

Fixed effect 
coefficients 
(SE) 

Z 
value P value 

(1|𝐿𝑎𝑘𝑒)
+ 𝑦𝑒𝑎𝑟 2018
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑
+  𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

𝐿𝑎𝑘𝑒 1.271 
(1.127) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -0.41 (0.21) -1.99 0.047* 

  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟 1.24 (0.78) 1.58 0.11 
  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ -1.32 (0.77) -1.71 0.087 

   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦 0.55 (0.37) 1.50 0.13 
   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ -0.37 (0.36) -1.04 0.30 
   𝑌𝑒𝑎𝑟 2018 -0.36 (0.10) -3.74 0.0002* 
   𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑜𝑟 ℎ𝑜𝑙𝑖𝑑𝑎𝑦 0.27 (0.11) 2.52 0.012* 
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Table S10: Parameter estimates for best-fit model to extensive creel and aerial survey fishing 
effort count data.  

Model 
Random 
effects 

Variance 
of 
random 
intercept 
(SD) Fixed effects 

Fixed effect 
coefficients 
(SE) 

Z 
value P value 

(1|𝐿𝑎𝑘𝑒)
+ 𝑦𝑒𝑎𝑟 2018
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟
+ 𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ

+ 𝑊𝑒𝑒𝑘𝑒𝑛𝑑
+  𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦
+ 𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ 

𝐿𝑎𝑘𝑒 0.98 
(0.98) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 -0.31 (0.17) -1.80 0.072 

  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟 0.74 (0.69) 1.07 0.28 
  𝐷𝑎𝑦 𝑜𝑓 𝑦𝑒𝑎𝑟ଶ -0.86 (0.68) -1.26 0.21 

   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦 0.48 (0.31) 1.52 0.13 
   𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦ଶ -0.32 (0.31) -1.06 0.29 
   𝑌𝑒𝑎𝑟 2018 -0.26 (0.07) -3.91 <0.0001* 
   𝑊𝑒𝑒𝑘𝑒𝑛𝑑 𝑜𝑟 ℎ𝑜𝑙𝑖𝑑𝑎𝑦 0.20 

(0.088) 
2.217 0.027* 
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Figure S3: Comparison of total summer fishing effort estimates between traditional mean expansion of 
intensive data (black), and GLMM-based estimates (colors). Lakes that were intensively surveyed 
multiple years by the WDNR have multiple estimates depicted along with their 95% confidence intervals. 
Each dataset was fit to a simple GLMM containing only a lake-specific random intercept. Aerial survey 
data alone produced similar fishing effort estimates as larger datasets.  
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Figure S4: Total fishing effort estimates for out-of-sample lakes obtained by LOGO cross validation. 
Fishing effort estimates labeled “Aerial survey data retained” were obtained by leaving out on-site 
observations from the model fit but retaining three aerial survey observations.  
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Table S11: Random intercept values for all lake year combinations from a GLMM fit to the 
combined intensive and extensive datasets.  

Lake name WBIC 
Random intercept: 
Mean hourly 
fishing effort  

Surface area 
(hectares) 

Years 
surveyed 

Lac Vieux Desert 1631900 12.36316 1626.885 2013, 2006 
Little Saint Germain 
Lake 

1596300 10.61531 393.66 1997, 2015 

Kentuck Lake 716800 10.05069 405.405 1998 

Big Arbor Vitae Lake 
1545600 9.223575 433.35 

2008, 1998, 
2005, 2011, 
2014, 2017 

Twin Lakes 
1623800 8.957309 1162.755 

2007, 1996, 
2017 

Big Saint Germain 
Lake 

1591100 7.693141 656.91 2011 

Catfish Lake 1603700 5.212021 396.09 2000, 2013 
Upper Gresham Lake 2330800 5.078966 146.61 2019, 2015 
Big Lake 2963800 5.056214 315.9 2008 

Little Arbor Vitae 
Lake 

1545300 5.03757 194.4 
2019, 2015, 
1996, 2007, 

2017 
Upper Buckatabon 
Lake 

1621800 4.004153 199.665 2010 

Lost Lake 1593400 3.95955 218.295 2019, 2015 

Trout Lake 

2331600 3.804271 1564.92 

2001, 2004, 
2007, 2010, 
2013, 2016, 

2019 

Plum Lake 

1592400 3.498538 428.085 

1995, 2003, 
2006, 2009, 
2012, 2015, 

2018 
Eagle Lake 1600200 3.280705 232.875 2000, 2013 
Star Lake 1593100 3.073703 493.695 1997, 2005 
Big Muskellunge Lake 1835300 3.013383 363.285 1996 
Palmer Lake 2962900 2.740117 260.82 2019, 2009 

Found Lake 
1593800 2.629966 136.08 

2018, 2019, 
2015 

Allequash Lake 
2332400 2.565629 164.43 

2018, 2019, 
2015, 2010 

Spectacle Lake 717400 2.544978 67.23 2019, 2015 
Clear Lake 2329000 2.415536 208.575 1999, 2004 

Ballard Lake 
2340700 2.318722 203.715 

2019, 2015, 
2001, 2011 
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Crab Lake 2953500 2.209385 368.145 2000, 2002 
Gunlock Lake 1539700 2.20889 106.92 2002 
Lower Buckatabon 
Lake 

1621000 2.201147 153.09 2010 

Island Lake 2334400 2.161185 350.325 1999, 2004 
Scattering Rice Lake 1600300 2.145238 106.515 2000, 2013 
Yellow Birch Lake 1599600 2.097776 77.76 2000, 2013 
Pioneer Lake 1623400 2.026316 173.745 2019, 2015 
Tenderfoot Lake 2962400 1.952217 183.465 2009 
South Turtle Lake 2310200 1.905668 188.73 2010 

Wildcat Lake 
2336800 1.901813 118.665 

2018, 2019, 
2015 

Oxbow Lake 
2954800 1.863795 211.815 

2018, 2019, 
2015, 2008 

Pickerel Lake 1619700 1.854283 109.35 2019, 2015 
Boot Lake 1619100 1.828323 115.83 2019, 2015 
Van Vliet Lake 2956800 1.821236 93.15 2015, 2012 
Voyageur Lake 1603400 1.813109 57.915 2013 

Amik Lake 
2268600 1.799903 57.105 

1998, 2005, 
2018 

Duck Lake 1599900 1.724904 42.93 2000, 2013 

Muskellunge Lake 
1595600 1.70102 116.235 

2018, 2019, 
2015 

Anvil Lake 968800 1.649552 152.685 2019, 2015 
Big Lake 2334700 1.631623 334.935 1995 

Birch Lake 
2311100 1.620301 204.93 

2018, 2019, 
2015, 1997 

Little Spider Lake 
1540400 1.551719 90.315 

2018, 2019, 
2015 

Little John Lake 2332300 1.477845 61.155 2019 
Wild Rice Lake 2329800 1.472612 155.52 1999, 2004 
Rest Lake 2327500 1.471456 265.275 1999, 2004 
Stone Lake 2328800 1.435453 55.89 2004, 1999 
Big Portage Lake 1629500 1.407541 237.33 2006 
Deerskin Lake 1601300 1.401943 121.905 2019, 2015 

Manitowish Lake 
2329400 1.386719 200.88 

2016, 1999, 
2004 

Otter Lake 1600100 1.365467 70.47 2000, 2013 
Harris Lake 2958500 1.312162 216.27 1997, 2019 

Towanda Lake 
1022900 1.2963 56.295 

2018, 2019, 
2015 

Mamie Lake 2964100 1.288534 136.485 2008 
Landing Lake 1630700 1.285178 82.215 2019 
Presque Isle Lake 2956500 1.276282 471.825 2012 
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Fawn Lake 2328900 1.258813 28.35 2004 

Irving Lake 
2340900 1.235148 169.695 

2019, 2015, 
2001, 2011 

Lynx Lake 2954500 1.174211 124.335 1998 
Brandy Lake 1541300 1.144568 45.765 2019, 2015 

Little Crooked Lake 
2335500 1.046359 62.37 

2018, 2019, 
2015 

Arrowhead Lake 
1541500 1.011037 38.88 

2018, 2019, 
2015 

Rainbow Lake 2310800 1.000412 59.94 2019, 2015 
Big Kitten Lake 2336700 0.972799 20.25 2019 

Black Oak Lake 
1630100 0.969767 228.42 

2018, 2019, 
2015, 2011 

Papoose Lake 2328700 0.969182 170.91 1997, 2012 
North Turtle Lake 2310400 0.939383 145.395 2010 

Johnson Lake 
1541100 0.898655 34.425 

2018, 2019, 
2015 

Lake Laura 995200 0.897062 254.34 1998 
Alder Lake 2329600 0.853639 106.92 1999, 2004 
Lynx Lake 1600000 0.821144 12.555 2000, 2013 
Boulder Lake 2338300 0.794834 208.98 1999, 1995 
Spider Lake 2329300 0.781624 112.59 1999, 2004 
Silver Lake 1599800 0.681033 23.085 2019, 2015 
Stormy Lake 1020300 0.671659 211.815 2019, 2015 
Erickson Lake 983600 0.642838 44.55 2019, 2015 
Partridge Lake 2341500 0.587026 95.175 2019, 2015 
Annabelle Lake 2953800 0.577419 78.57 1996, 2019 

Hunter Lake 
991700 0.52965 70.875 

2018, 2019, 
2015 

Snipe Lake 

1018500 0.529036 87.48 

1995, 2000, 
2003, 2006, 
2009, 2012, 
2015, 2018 

Rock Lake 2311700 0.504688 48.6 2010 

White Birch Lake 
2340500 0.486677 45.765 

2019, 2015, 
2001, 2011 

Day Lake 1843500 0.483598 44.55 2019, 2015 
Lone Tree Lake 1000400 0.437012 52.65 2019, 2015 
Street Lake 1884200 0.404973 18.63 2019, 2015 

Camp Lake 
1839100 0.390038 15.39 

2018, 2019, 
2015 

Lake of the Hills 
1620500 0.385468 24.705 

2018, 2019, 
2015 

Little Star Lake 2334300 0.331636 105.3 1999, 2004 
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Sparkling Lake 1881900 0.302415 63.585 1996, 2006 
Dead Pike Lake 2316600 0.279634 125.145 2016, 2005 
Nichols Lake 1870400 0.246555 14.985 2019, 2015 
Lost Canoe Lake 2339800 0.242777 112.995 2015, 1995 
Wabasso Lake 2045000 0.232163 21.06 2018, 2016 
Indian Lake 2764400 0.209596 32.4 2019, 2015 
Whitney Lake 2338100 0.203369 91.53 2019, 2015 
Lake Adelaide 1831700 0.199687 23.085 2019, 2015 

Little Rock Lake 
1862100 0.08288 15.795 

2019, 2015, 
2008 

Averill Lake 2956700 0.075635 27.54 2012 
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Figure S5: Lake-specific random intercepts estimated for all lakes surveyed versus electrofishing catch 
per unit effort of adult walleye.  
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Figure S6: Lake-specific random intercepts estimated for all lakes surveyed versus angling catch per unit 
effort of walleye.  
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Figure S7: Lake-specific random intercepts estimated for all lakes surveyed versus angling catch per unit 
effort of panfish, including yellow perch, bluegill, pumpkinseed, and black crappie.  
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Figure S8: Lake-specific random intercepts estimated for all lakes surveyed versus angling catch per unit 
effort of largemouth bass.  
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Figure S9: Lake-specific random intercepts estimated for all lakes surveyed versus angling catch per unit 
effort of muskellunge.  
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Abstract 

 The first year of the COVID-19 pandemic in 2020 was associated with an “anthropause” 

in many industries, initially reducing greenhouse gas emissions and other negative anthropogenic 

influences. Outdoor recreation, however, has exploded in popularity in response to closures of 

indoor recreation options, increased free time, and/or increased levels of stress. We tested for the 

effects of the COVID-19 pandemic on the sale of fishing licenses in Wisconsin and on vehicle 

counts observed at public lake access points in Vilas County, Wisconsin in 2020. In the summer 

of 2020, fishing license sales in Wisconsin, USA increased, particularly among first-time license 

purchasers for whom cumulative sales in 2020 increased by 71% and 35% compared to the 

previous five-year average for WI residents and nonresidents, respectively. Changes in vehicle 

counts at lake access points in the summer of 2020 varied considerably by lake. However, lakes 

with greater proportions of public shoreline experienced increases in lake visitors associated with 

the pandemic. Our results suggest that the distribution of recreational fishing effort in Wisconsin 

changed during the pandemic, potentially placing additional harvest pressures on “hotspot” 

inland lakes. 
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Introduction 

One of the early side effects of the COVID-19 pandemic has been the “anthropause” in the 

summer of 2020 (Rutz et al., 2020). Reduced movement and activity of humans within many 

industries has resulted in varied social, ecological, and economic responses globally (Searle et 

al., 2021). Given the vulnerability of inland waters to human influences (e.g. Dudgeon et al., 

2006), the effects of the pandemic on inland fisheries have been of particular research interest 

(Cooke et al., 2020; Stokes et al., 2020). Pandemic-related reductions in polluting industries and 

commercial fishing effort may have temporarily released many fish stocks from a variety of 

anthropogenic pressures in mid/late 2020. However, the direction of global changes in these 

pressures are most likely mixed (Cooke et al., 2020). Economic hardship and food insecurity, for 

example, have also resulted in increased subsistence harvest of some fishes (Stokes et al., 2020). 

In addition, commercial fishers have implemented a variety of adaptation strategies (e.g. 

switching species or direct sales to customers) in response to the first year of the pandemic, often 

maintaining their overall landings in spite of decreased market prices and supply chain 

disruptions (Smith et al., 2020). Globally, the effects of the early pandemic on inland stocks in 

mid/late 2020 have varied depending in part on a country’s economic development (Stokes et al., 

2020). Within countries classified as “developed,” the primary or sole consumptive use of inland 

waters is recreational fishing (FAO, 2012).  

As lockdown orders have reduced travel opportunities and limited indoor recreation 

options, demand for fishing and many other outdoor activities has increased (Derks et al., 2020; 

Landry et al., 2020; Morse et al., 2020). Closures of public parks, travel restrictions, and fear of 

contracting or spreading disease resulted in decreases in outdoor recreation towards the 

beginning of the pandemic in March 2020, particularly among urban residents (O’Connell et al., 
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2020, p. 19; Rice et al., 2020). As the relative safety of outdoor activities became apparent, 

however, increases in free time associated with stay-at-home orders, unemployment, and the lack 

of indoor recreational activities resulted in an influx of new participants into outdoor recreation 

in the US and Europe (Derks et al., 2020; Leeuwen et al., 2020). New participants also tended to 

choose outdoor recreational sites close to home, particularly urban residents (Landry et al., 2020; 

Rice et al., 2020).   Recreational fisheries have largely remained open within the United States 

during the pandemic (Paradis et al., 2021). Anglers were therefore limited more by their 

willingness or ability to travel to fishing sites than by any top-down restrictions on fishing.  

To test whether these broader trends in outdoor recreation during the first summer of the 

pandemic manifested at a local scale in Wisconsin, we compared fishing license sales, vehicle 

counts at lake access points, and proportions of boats observed fishing in summer, 2020 to 

previous years (2018 and 2019). Given the observed reductions in travel distance by outdoor 

recreationists (Rice et al., 2020), we hypothesized that reduced numbers of out-of-state anglers 

would be associated with changes in vehicle numbers at lake access points, a proxy for fishing 

effort. Because lakes vary widely in their accessibility, size, and other characteristics, we 

anticipated that the effects of the pandemic on fishing effort may vary by lake. We hypothesized 

that larger lakes or lakes with lower building densities would be attractive to anglers wishing to 

avoid crowds. Due to the popularity of lakeside camping, we also expected lakes associated with 

public campgrounds to attract more visitors during the pandemic. Finally, lakes surrounded by 

more public lands were expected to have a more pristine appearance and potentially attract more 

visitors wishing to experience nature. Although numerous survey-based studies have evaluated 

the effects of the pandemic on recreational anglers (Howarth et al., 2021; Midway et al., 2021; 

Pita et al., 2021), pandemic-related restrictions precluded collecting many empirical observations 
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(Bunt and Jacobson, 2022; Gundelund and Skov, 2021; but see Ryan et al., 2021). A reduction in 

fishing effort associated with pandemic-related reductions in out-of-state tourism would result in 

reduced revenue from license sales and reduced spending in counties that rely on recreational 

fishing tourism. Conversely, increased fishing effort during the pandemic could increase revenue 

and potentially the exploitation rates of fish populations. By 1) understanding the overall effect 

of the pandemic on fishing effort and 2) identifying potential “hotspots” of additional fishing 

effort, fisheries managers can account for the numbers and preferences of new anglers to the 

fishery in their decision-making and lake monitoring.   

Methods 

Study site 

Wisconsin contains about 15,000 lakes, most of which are concentrated in the northern 

and eastern glaciated regions (Wisconsin Department of Natural Resources, 2009). These lakes 

vary greatly in surface area, ranging from 0.5 to 53,394 hectares, and support a variety of 

coolwater and warmwater species that are popular with anglers, including Walleye (Sander 

vitreus), Bluegill (Lepomis macrochirus) and other sunfishes (Lepomis spp.), Black Crappie 

(Pomoxis nigromaculatus), Largemouth (Micropterus salmoides) and Smallmouth Bass (M. 

dolomieu), Yellow Perch (Perca flavescens), Northern Pike (Esox lucius), and Muskellunge 

(Esox masquinongy). The Ceded Territory (the northern third of the state), was ceded to the 

United States by the Lake Superior Chippewa (Ojibwe) Tribes in the treaties of 1837 and 1842. 

Fisheries in the Ceded Territory are co-managed by state and Tribal governments. Vilas County 

lies within the Ceded Territory and the glaciated Northern Highlands Lake District (NHLD). 

Although the county is less densely populated than much of the state, it is an economically 

important destination for fishing tourism (Peterson et al., 2003; Shapiro, 2006). Over 40% of 
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Vilas County is comprised of public lands, which are largely undeveloped and open to 

recreation, including the Northern Highland American Legion State Forest, the Chequamegon-

Nicolet National Forest, and the Vilas County Forest. Of the 1318 natural lakes in the county, 

175 have public access. These lake vary widely in surface area, accessibility, and fish species 

composition (Wisconsin Department of Natural Resources, 2009) as well as in the fishing effort 

that these characteristics attract (Trudeau et al., 2021). It is therefore essential to account for 

lake-specific differences in mean fishing effort as well as potential variation in the response of 

fishing effort to the COVID-19 pandemic in summer, 2020.  

 License sales 

 The Wisconsin Department of Natural Resources (WDNR) collects data on fishing 

license sales to WI residents, nonresidents, and first-time buyers in both of these groups. Fishing 

licenses are required for anglers 16 years and older. For WI residents, an annual general fishing 

license is $20, and a nonresident annual fishing license costs $50. Reduced price first-time buyer 

licenses are available for those who have never fished in WI and those who have not held a WI 

fishing license for 10 years or more. First time buyer annual licenses cost $5 for WI residents and 

$25.75 for nonresidents. Daily cumulative license sales between March 1 and September 24, 

2020 were compared to the same date range in 2018, 2019, and to the average of cumulative 

sales in the past five years (2015-2019). License sales for resident and nonresident regular and 

first-time buyer licenses were compared to test for changes associated with the COVID-19 

pandemic.   

 Boat landing vehicle counts 

 Instantaneous counts of vehicles at 38 lake access points in Vilas County, WI were 

collected in the summers of 2018, 2019, and 2020. Counts in the summers of 2018 and 2019 took 
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place hourly during 8-hour access point angler-intercept creel survey shifts as part of another 

study (Trudeau et al., 2021). Creel survey shifts were randomly distributed among lakes and 

stratified by weekends/weekdays and mornings/evenings. Thirty-eight lakes were selected as part 

of a multi-objective study of the NHLD region. Selection criteria included a requirement that 

lakes did not cross county or state borders, spanned a gradient of Largemouth Bass populations, 

had conductivity values that allowed electrofishing, and had a maximum size of 250 hectares. In 

2018, 16 of the selected lakes were surveyed. In 2019, the 22 remaining lakes were surveyed as 

well as five that had also been surveyed in 2018.  

 To maintain social distancing in the summer of 2020, a bus-route survey design was used 

to collect vehicle counts. An efficient route was planned between all 38 previously surveyed 

lakes. During a survey shift, a random starting lake was selected. Instantaneous counts of 

vehicles at lake access points were then collected at each stop on the route until the end of the 

shift. Bus route surveys took place as schedules allowed, and each lake on the route was 

observed between 9 and 20 times between June 7 and August 14, 2020. No COVID-related 

restrictions on outdoor activities were in place during this time in Wisconsin. Two sets of outlier 

counts were removed prior to our analysis: on July 4, 2020, an unusually high number of 

vehicles (23) was observed at Black Oak Lake. Black Oak Lake is a popular swimming and 

recreational boating lake with a public beach, and it is located close to the town of Land 

O’Lakes, WI. July 4 is a highly popular day for recreational boating and swimming at this lake. 

To avoid an outsized effect on mean vehicle counts in 2020, and because ten July 4, 2018 

observations at the same lake were completed improperly (only fishing boats were counted, not 

recreational boaters or swimmers), all July 4 observations (11 in total, 10 hourly counts and 1 

bus-route count) were removed from the analysis.  



90 
 

Observations of fishing boats 

Vehicle counts did not differentiate between anglers, other recreational boat users, or 

other non-boating lake visitors, so it would be unclear whether any observed changes in vehicle 

counts reflected a change in fishing effort. We therefore compared the proportion of boats 

observed fishing during boat-based counts of fishing effort in 2018 and 2019 with dock-based 

observations of the proportions of boats observed fishing in 2020. In 2018 and 2019, boat-based 

counts of fishing effort took place at two randomly-selected times during eight hour creel shifts 

randomly assigned to the morning (5:30 AM-1:30 PM) or evening (1:30 PM-9:30 PM). During 

these counts, the number of boats on the lake was recorded and each boat was described as 

fishing or not fishing. In the summer of 2020, these boat-based counts were not possible. Instead, 

to estimate the proportion of boats on the lake that were fishing, a count of fishing (defined as 

boats with fishing equipment, such as rods, visible) and non-fishing boats was taken at the boat 

launch dock. Only boats visible from the boat launch dock were therefore included in this count. 

Although the shore-based counts potentially observed only a fraction of the boats on the lake, the 

visible proportion of boats fishing should be comparable to the proportions observed during the 

full-lake counts.  

Lake characteristics 

 We obtained lake surface areas from the WDNR lake database (Wisconsin Department of 

Natural Resources, 2009). We calculated building density (buildings per km shoreline) within 

200 m of each lake’s shoreline using GIS data obtained from the WDNR and Vilas County. 

Campgrounds located on lakes were identified using the WDNR website describing camping 

opportunities in the Northern Highland American Legion State Forest (“Camping | Wisconsin 

DNR,” n.d.). We used the Vilas County Owner Listings MapApp 
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(https://maps.vilascountywi.gov/) to estimate the proportion of lake shorelines made up of public 

lands. Public lands were defined as lands owned by federal, state, county, or municipal 

governments or agencies.  

Data analysis 

We used a hypothesis-driven model selection approach to test for the effects of the first 

summer of the COVID-19 pandemic on instantaneous vehicle counts. We fit negative binomial 

generalized linear mixed models (GLMM) with a log link to the vehicle counts using the lme4 

package in R version 4.1.0 (Bates et al., 2015, p. 4; R Core Team, 2021). Each model included 

the quadratic effect of hour of day as a fixed effect. Hour of day was centered and scaled to aid 

convergence. In addition, indicator variables describing month, weekends or holidays, and the 

occurrence of adverse weather (i.e. heavy rain, storm clouds, or heavy wind) were included as 

fixed effects in all models. All models also included lake-specific random intercepts. A null 

candidate model representing the hypothesis that no changes in vehicle counts occurred in the 

summer of 2020 contained no additional predictors. Two additional candidate models tested for 

the influence of the COVID-19 pandemic. The first of these two models included a COVID-19 

indicator variable as a fixed effect, which would predict a consistent mean effect of summer 

2020 on vehicle counts across all lakes. The second model included COVID year observations as 

a random slope, meaning that the value of the lake-specific random intercept was allowed to vary 

between COVID and non-COVID years. With this random effect structure, the pandemic was 

allowed to have different effects on vehicle counts at different lakes. Because vehicle counts 

were collected using different methods in different years, direct comparisons of counts between 

years would be misleading. Mean changes in vehicle numbers between COVID and non-COVID 
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years by lake were therefore produced through GLMM predictions for weekday counts in May at 

13:37 (the mean time of day in our observations) under normal weather conditions.  

Model assumptions were tested with the DHARMa package (Hartig, 2019). Two outlier 

values from 2020 with an excess effect on model estimates were detected with the package’s 

testOutliers function. Because these observations were both from 2020 and would therefore 

positively bias the estimated COVID year effect, they were removed from the analysis. We 

compared candidate models using corrected Akaike Information Criterion scores and weights, 

with a cutoff of ΔAICc > 2 indicating a worse model fit than the model with the minimum AICc 

value (Burnham and Anderson, 2002). We estimated P values for parameter estimates using log 

likelihood ratio (LLR) testing of nested models. Marginal and conditional pseudo r2 values were 

calculated using the trigamma method (Bartoń, 2020).  

Further explaining the effects of a COVID year on fishing effort on different lakes is 

relevant to fisheries managers. We therefore fit an additional GLMM with the same random 

effects structure and additional fixed effects describing lake characteristics: lake surface area 

(ha), the presence of public campgrounds, building density within 200 m of the lake shore, and 

the proportion of public lands making up the shoreline. Interactions of these predictors with the 

COVID year indicator variable tested whether these characteristics influenced the changes in 

vehicle traffic associated with the COVID-19 pandemic in summer, 2020 (i.e. whether larger 

lakes, for example, experienced higher vehicle traffic in 2020 than in previous years).   

COVID year effects on probability of fishing 

We used a binomial generalized linear mixed effects model to test for any change in the 

log odds that an observed boat was engaged in fishing in the summer of 2020. Similar to the 

models fit to observations of vehicle counts, fixed effects accounted for differences in fishing 
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probability associated with time of day and seasonality. Monthly indicator variables and a 

quadratic time of day effect were included as fixed effects. A COVID year indicator was 

included as a fixed effect to test the overall effect of summer, 2020 on fishing probability across 

lakes. Random intercepts by lake accounted for mean differences in fishing probability between 

lakes, and a random slope by COVID year allowed the change in fishing probability associated 

with 2020 to vary by year. This maximal random effects structure was verified by comparing 

AICc scores of the random slopes model with an otherwise-identical random intercept model. 

Pseudo r2 values were estimated using the delta method (Bartoń, 2020).  

Results 

Fishing license sales 

 Beginning in April 2020, fishing license sales to WI residents were higher than in 

previous years (Fig. 1A). By September 30, 2020, cumulative resident license sales had 

increased by 8% in comparison to the average cumulative sales of the previous five years (2015-

2019). Contrary to expectations, nonresident annual fishing license sales also increased by a 

similar margin of 7.5%. Both sales of resident and nonresident licenses, however, were within 

the 95% confidence interval of the past five years’ average sales.   

 Although total annual license sales showed modest growth, sales of first-time buyer 

(FTB) fishing licenses boomed in 2020. The WDNR offers a reduced-price license to purchasers 

who have not held a WI fishing license for at least ten years. Cumulative sales of this license to 

WI residents in 2020 increased by 71% compared to the previous five-year average (Fig. 1C), 

well outside the bounds of sales in the previous five years. Among nonresidents, FTB license 

sales rose by 35%. Notably, 87% of the increase in annual nonresident sales illustrated in Fig 1B 
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came from this increase in FTB licenses.  For resident license sales, 47% of the increase in sales 

came from FTB licenses. 

 Boat landing vehicle counts 

 The change in raw vehicle counts associated with the summer of 2020 varied 

considerably by lake (Fig. 2). Notable increases in mean vehicle counts occurred at Allequash 

(AQ), Black Oak (BK), Day (DY), Irving (IV), and Little Arbor Vitae (LV) lakes. Estimating the 

effects of the COVID-19 year, however, required accounting for differences in time of day and 

seasonality among lake-specific observations. The best fitting candidate model that did not 

include lake characteristics as predictors included a fixed effect indicating the COVID year 

(2020), a lake-specific random intercept accounting for mean differences in visitor counts among 

lakes, and a random slope allowing lake intercepts to vary by the COVID year (Table 1). This 

result confirms that the effect of the COVID year on the number of lake visitors varied by lake. 

No significant effect of the COVID year on mean vehicle counts was detected (P = 0.06, Table 

2). Mean vehicle counts were highest in June, where they were 60% higher than mean vehicle 

counts in May (P < 0.0001, Table 2). Vehicle counts peaked mid-day, and counts were 39% 

higher on weekends and holidays (P < 0.0001, Table 2). During poor weather conditions, 51% 

fewer vehicles were observed (P < 0.0001, Table 2). 

 Lakes showed considerable variation in mean vehicle counts (i.e., lake-specific random 

intercept values, σ = 1.17) and the effects of the COVID-19 year (i.e., the lakes’ random slope 

values, σ = 0.57). Lakes that experienced increased vehicle numbers in 2020 appeared to be 

clustered in the north-central part of the county (Fig. 3). Percent changes in mean vehicle counts 

varied widely among lakes, ranging from a 257% increase in vehicles at Partridge Lake to a 66% 
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decrease at Oxbow Lake. The largest changes in absolute mean vehicle counts were observed at 

Irving Lake (+ 2.2 vehicles) and Oxbow Lake (- 1.04 vehicles). 

 Because the effect of the COVID year on vehicle counts varied greatly by lake, lake 

characteristics were introduced to the GLMM to test for explanations for these different 

responses. Although no significant main effect of the COVID year was detected, we found a 

positive interaction effect with the proportion of public shoreline. Lakes with entirely public 

shoreline attracted 103% more vehicles in 2020 compared to the previous two years (P = 0.03, 

Table 3). Larger lakes (P <0.0001) and lakes with campgrounds (P = 0.03, Table 3) also 

experienced significantly higher vehicle traffic in all years of the survey.  

Proportion of boats angling 

Recreational anglers made up 48.4%, 64.2%, and 64.3% of all observed boats in 2018, 

2019, and 2020, respectively (Fig. S1). We detected no significant effect of the COVID year on 

the probability of an observed boat engaging in fishing. However, during the COVID year, boats 

on larger lakes were more likely to be observed fishing than in previous years (P = 0.01, Table 

4). In all years, boats were less likely to be fishing on lakes with greater building densities on and 

near their shoreline (P = 0.03). The log odds of fishing showed a quadratic response to time of 

day; boats were more likely to be fishing in the morning and evening. The probability of fishing 

also declined over the summer: boats in July and August were 34% and 43% less likely to be 

fishing than boats in May, respectively.  

Discussion 

 During the first summer of the COVID-19 pandemic, fishing license sales in Wisconsin 

substantially increased, particularly among first-time buyers. Contrary to our expectations that 

the pandemic would decrease visits by out-of-state anglers, both resident and nonresident license 
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sales increased in 2020. Much of the increase in nonresident fishing license sales came from 

first-time buyers, suggesting that angling tourism in Wisconsin attracted new groups of anglers 

in 2020. According to a survey conducted by the WDNR, these first time buyers were younger, 

more likely identify as an underrepresented gender among anglers (i.e., women or 

nonbinary/other), and somewhat more racially diverse than previously existing license holders 

(Beardmore, 2021). Similar influxes of new anglers associated with COVID-19 have also been 

documented elsewhere in the US (Midway et al., 2021), Canada (Howarth et al., 2021), and 

Denmark (Gundelund and Skov, 2021). However, not all the new license holders in Wisconsin 

were new anglers. Based on the same WDNR survey, 28% of first-time license buyers were 

experienced anglers who were fishing in Wisconsin for the first time (Beardmore, 2021). In open 

ended survey responses, these out-of-state anglers stated that they previously traveled to Canada 

to fish. In 2020, the US-Canada border was closed due to the pandemic, which prevented these 

sorts of fishing trips (Paradis et al., 2021). Wisconsin may therefore have presented an 

alternative fishing location for anglers who would typically travel to Canada.  

Not everyone who purchases a fishing license goes fishing. We therefore used 

previously-collected instantaneous counts of vehicles at lake access points to investigate 

empirical changes in vehicle counts in 2020 as a proxy for fishing effort. Different lakes showed 

different pandemic-related responses of lake visitors. These among-lake differences suggest that, 

at least in Vilas County, new anglers may have been most attracted to a subset of the lakes that 

we surveyed. When we incorporated several lake characteristics into our analysis, we found that 

vehicle counts tended to increase in 2020 primarily among lakes surrounded by more public 

lands. Public lands on lake shorelines in Vilas County tend to be forested, which may influence 

water quality or the availability of littoral habitat for fish populations (Christensen et al., 1996). 
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However, no effect of shoreline building density was detected, suggesting that the inverse 

proportion of natural shoreline did not influence the lake-specific changes in fishing effort. 

Instead, anglers may enjoy easier access to lakes that are not surrounded by private properties. 

Maintaining public ownership of these shorelines and/or public access to lakes may therefore be 

an important step towards retaining this new group of anglers. As potential new “hotspots” of 

fishing effort, lakes surrounded by more public lands should also be monitored for the potential 

effects of increased fishing effort on fish populations.  

 Although we could not distinguish between vehicles that had traveled to the lake to fish 

from vehicles carrying recreational boaters and other lake visitors, the similarity in proportions 

of boats that were observed fishing among years suggests that a similar proportion of vehicles 

were associated with fishing in 2020 compared to the previous two years. For lakes surrounded 

by a greater proportion of public lands, an increase in vehicles would then most likely 

correspond to an increase in fishing boats, assuming that the proportions of boats observed 

fishing were not influenced by our shore-based counts in 2020. In addition, although larger lakes 

did not experience any significant change in vehicle counts among years, the higher proportion 

of boats observed fishing in 2020 may also suggest increased fishing effort at larger lakes. 

Therefore, the increase in vehicle counts may have reflected a corresponding increase in fishing 

effort, particularly at larger lakes and lakes with more natural shoreline. This potential increase 

in fishing effort that we observed in Vilas County, WI corresponded with similar increases in 

fishing effort that have been detected through surveys (Midway et al., 2021) and, where 

available, empirical observations (Bunt and Jacobson, 2022; Ryan et al., 2021). 

 Although our results corresponded to a potential pulse in fishing effort on lakes 

surrounded by public lands in Vilas County during the first summer of the pandemic, several 
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caveats remain. Vehicle count surveys took place for only two summers prior to the pandemic 

and one summer during the pandemic. Differences in vehicle traffic that were attributed to the 

COVID year could instead be attributed to inter-annual variation in vehicle traffic to these lakes. 

We also excluded lakes from our sampling framework that were too large for a previous 

project’s survey methodology (i.e. larger than 250 hectares). Several larger lakes are located near 

population centers outside of public lands and were likely popular angling destinations. The 

omission of these lakes may therefore have overemphasized the importance of public lands in 

predicting the distribution of fishing effort across the landscape and underemphasized the 

importance of lake size and accessibility.  

The agreement between fishing license sales data at the state level and our vehicle count 

data within Vilas County suggests that the first summer of the pandemic was associated with 

increased fishing activity on northern Wisconsin inland lakes. Vilas County, however, represents 

only a subset of Wisconsin’s inland lake fishing opportunities. Among respondents to the 

WDNR’s survey of first-time license buyers, notable differences in destination counties were 

present among new anglers, reactivated anglers, and active anglers who were fishing in 

Wisconsin for the first time (Beardmore, 2021). When asked about their favorite fishing 

experiences in 2020, new anglers more frequently described trips to Dane and Door Counties 

than Vilas County. Dane County is largely urban, featuring the state capital as well as the Yahara 

Chain of lakes. Door County is a sparsely populated peninsula surrounded by Lake Michigan and 

a popular destination for Great Lakes fishing and other forms of outdoor recreation. Reactivated 

and active anglers, in contrast, more frequently described Vilas County as a location of their best 

fishing trips. Our observations of lake visitors therefore represents a limited snapshot of the pulse 



99 
 

of anglers that entered the WI inland lake fishery during the first year of the COVID-19 

pandemic.  

 We found that the COVID-19 pandemic was associated with increased purchases of 

fishing licenses in Wisconsin, and in Vilas County, potentially increased fishing effort. In 

addition, a considerable number of first-time anglers purchased fishing licenses in the summer of 

2020. This increase in first-time license buyers represents an opportunity for Wisconsin’s 

Recruitment, Reactivation, and Retention (RRR) program. First-time license buyers were more 

likely to be women and under 30 years old compared to return license buyers (Beardmore, 2021). 

If these anglers are retained, a “silver lining” of the COVID-19 pandemic may be a 

diversification of fisheries stakeholders and their values. Increased investment in the state’s 

fisheries resources by a greater diversity of stakeholders could present an opportunity for 

increased public engagement in ecosystem-based management of inland lakes.    

Conclusion 

 Continued monitoring of fishing effort will reveal whether this pulse of participation 

related to the pandemic will continue and how the entrance of new anglers to the fishery could 

change the distribution of fishing effort across inland lakes. Collecting observations of fishing 

effort from remote sensing data (e.g. Provost et al., 2021) using machine learning techniques 

(e.g. Sasamal and Mallenahalli, 2019) is one promising approach to increasing the spatial and 

temporal resolution of lake monitoring. In particular, expanding this monitoring across more 

counties and a greater size distribution of lakes could aid managers in detecting and responding 

to similar pulses of recreational fishing effort associated with future crises, such as an economic 

recession. Of the new anglers surveyed by the WDNR, 44% reported spending less than $25 to 

begin fishing. In addition to their economic importance for fishing destinations, recreational 
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fisheries can also be important sources of food (Embke et al., 2020; Nyboer et al., 2022). In a 

potential future recession, where unemployment rises and income inequality accelerates, 

fisheries with a lower barrier to entry such as Wisconsin Bluegill fishing may constitute an 

important supplemental food source. Social and economic incentives therefore exist for 

maintaining public ownership of shorelines around hotspots of recreational fishing effort for 

maintaining fishing effort and supporting robust fish populations.  
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Tables 

 

Table 1: Model selection results for GLMMs testing for the effect of the COVID year on 
vehicle counts at 38 Vilas County, WI lake access points. Bold font indicates the best fit 
model.  
Model random effects structure Degrees of 

freedom 
AICc ΔAICc Weight 

Random lake intercept only 10 5860.7  0 
COVID year + random lake intercept 11 5845.1  0 
COVID year + random lake 
intercept and slope 

13 5797.1 0 1 
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Table 2: Parameter estimates for the best-fit negative binomial GLMM estimating the effect of 
the COVID year on vehicle counts at lake access points. Bold font indicates significant 
parameters at p<0.05.  
Parameter Estimate (SE) Chi squ P value 
Intercept -0.862 (0.216)   
June  0.472 (0.104)*** 21.279 <0.0001 
July 0.269 (0.103)** 6.887 0.009 
August 0.265 (0.115)* 5.333 0.021 
Hour of day 2.357 (0.169)*** 212.529 <0.0001 
Hour of day2 -2.369 (0.170)*** 213.480 <0.0001 
Weekend or holiday 0.331 (0.053)*** 38.448 <0.0001 
Adverse weather -0.722 (0.134)*** 31.825 <0.0001 
COVID-19 year 0.235 (0.121) 3.620 0.057 
Log likelihood -2885.4   
σ Lake random intercept 1.169   
σ COVID year:Lake random slope 0.565   
Correlation of Lake intercept and COVID year -0.31   
Marginal r2 0.079   
Conditional r2 0.497   
* P <0.05 ** P <0.01 *** P <0.001 
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Table 3: Parameter estimates for the best-fit negative binomial GLMM estimating the effects 
of lake characteristics and the COVID year on vehicle counts at lake access points. Bold font 
indicates statistically significant parameters at P < 0.05.  
Parameter Estimate (SE) Chi squ P value 
Intercept -0.813 (0.222)   
June 0.480 (0.104)*** 22.096 <0.0001 
July 0.270 (0.103)** 6.987 0.008 
August 0.266 (0.115)* 5.427 0.020 
Hour of day (scaled) 2.354 (0.169)*** 212.185 <0.0001 
Hour of day2 (scaled) -2.365 (0.170)*** 212.887 <0.0001 
Weekend or holiday 0.332 (0.053)*** 38.659 <0.0001 
Adverse weather -0.723 (0.134)*** 31.982 <0.0001 
COVID year -0.055 (0.158) 0.122 0.727 
Lake surface area (ha) (scaled) 0.711 (0.141)*** 19.493 <0.0001 
Proportion shoreline public lands -0.531 (0.555) 0.904 0.342 
Building density within 200 m (scaled) -0.056 (0.184) 0.093 0.761 
Campground presence 1.088 (0.509)* 4.358 0.037 
COVID year * Lake surface area (scaled) -0.002 (0.103) 0.000 0.987 
COVID year * Proportion shoreline public 0.941 (0.423)* 4.835 0.028 
COVID year * Building density (scaled) 0.157 (0.134) 1.381 0.240 
COVID year * Campground presence 0.229 (0.364) 0.390 0.532 
Log likelihood -2867.9   
σ Lake random intercept 0.820   
σ COVID year:Lake random slope 0.485   
Correlation of Lake intercept and COVID 
year 

-0.42   

Marginal r2 0.215   
Conditional r2 0.378   
* P <0.05 ** P <0.01 *** P <0.001 
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Table 4: Binomial GLMM predicting the effects of seasonality, time of day, lake 
characteristics, and the COVID year on the probability of an observed boat engaging in fishing 
activities. Adverse weather is not included as a predictor because the occurrence of adverse 
weather precluded boat-based counts and bus route surveys. Bold font indicates statistically 
significant parameters at P < 0.05.   
Parameter Estimate (SE) Chi Sq P value 
Intercept 1.469 (0.367)   
June  -0.536 (0.347) 2.486 0.115 
July -1.376 (0.334)*** 18.575 <0.0001 
August -1.196 (0.354)*** 12.168 0.0005 
Hour of day -3.614 (0.478)*** 62.551 <0.0001 
Hour of day2 3.543 (0.475)*** 59.851 <0.0001 
Weekend or holiday -0.125 (0.128) 0.914 0.339 
COVID-19 year 0.194 (0.300) 0.404 0.525 
Lake surface area (ha) (scaled) -0.125 (0.143) 0.753 0.385 
Proportion shoreline public lands -0.046 (0.621) 0.005 0.942 
Building density within 200 m (scaled) -0.423 (0.194)* 4.546 0.033 
Campground presence 0.321 (0.535) 0.353 0.553 
COVID year * Lake surface area (scaled) 0.447 (0.183)* 4.546 0.012 
COVID year * Proportion shoreline public 0.883 (0.826) 1.169 0.280 
COVID year * Building density (scaled) 0.366 (0.252) 2.141 0.143 
COVID year * Campground presence -1.077 (0.669) 2.587 0.108 
Log likelihood -976.6   
σ Lake random intercept 0.624   
σ COVID year:Lake random slope 0.607   
Correlation of Lake intercept and COVID year -0.08   
Marginal r2 0.13   
Conditional r2 0.23   
* P <0.05 ** P <0.01 *** P <0.001 
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Figures 

 
Figure 1: Cumulative sales of A) all Wisconsin resident licenses, B) All nonresident licenses, C) 
Wisconsin resident first-time buyer licenses, and D) nonresident first-time buyer licenses in 2020 
compared to 2018, 2019, and the previous five year average. Gray ribbons indicate 95% 
confidence intervals around the five year average of license sales between 2015 and 2019. Note 
the differences in scale of the y axis between plots.  
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Figure 2: Distribution of vehicle count values in 2018, 2019, and 2020 at 38 Vilas County, WI 
lakes. Note that 13 outlier values at Black Oak (BK) and Silver (SV) Lakes have been removed 
from this visualization.  
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Figure 3: Changes in mean vehicle counts in the COVID year for each lake surveyed in Vilas 
County, WI. These mean counts are derived from GLMM predictions for an average weekday in 
May assuming mean time of day.   
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Supplementary materials 
 

 

Figure S1: Stacked bar chart of all boats observed fishing (top) and not fishing (bottom) in each 
year of the survey. Boats were observed during boat-based counts of fishing effort in 2018 and 
2019, and boats were observed from shore in 2020. A smaller proportion of boats were observed 
fishing in 2018, but no change in observed boats’ probability of fishing was observed in 2020.  
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Abstract 

Managers of recreational fisheries often rely on implicit and rarely-tested assumptions 

regarding how fishing effort will change in response to regulations. For instance, they assume 

that reduced seasons will directly reduce fishing effort without producing angler behavioral 

adaptations to maintain fishing opportunities and harvest. Vessel trip reports from a multispecies 

for-hire fishery in New Jersey, USA allowed us to empirically evaluate changes in fishing effort 

as overlapping seasons for four species became shorter and as possession limits decreased. We 

conducted focus groups with fishery stakeholders and then developed statistical models to 

evaluate hypotheses describing how anglers aboard for-hire vessels adapted to regulations. 

Fishing effort aboard charter boats remained consistent and primarily responded to the 

availability of “something” to harvest, suggesting that their customers are willing to substitute 

target species. Party boat anglers, in contrast, responded to the possession limits of black sea bass 

(Centropristis striata), and summer flounder (Paralichthys dentatus). Because party anglers were 
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less willing to substitute target species, party vessel operators are likely particularly vulnerable to 

reductions in fishing opportunity and harvest potential. 

 

Introduction 

 Recreational fisheries management worldwide struggles to limit harvest while 

concurrently meeting biological and socioeconomic objectives (Cox et al. 2002; Post et al. 2002; 

Abbott et al. 2018). Fisheries managers set and tune regulations such as season length, 

possession limits, and size limits to meet recreational harvest quotas, but angler response to these 

management changes is poorly understood. Anglers may adjust their behavior to compensate for 

new restrictions (e.g. Beaudreau et al. 2018; Gentner 2004; Powers and Anson 2018), or they 

may choose to leave the fishery (e.g. Holzer and McConnell 2017; Mackay et al. 2020; 

Whitehead et al. 2015). Restrictive regulations may not result in the expected reduction in 

harvest in the presence of compensatory behavior. Conversely, declining participation in the 

fishery can harm coastal communities that rely on income from the recreational fishing industry 

(Chan et al. 2018; Murray et al. 2010; NMFS 2018). Further complicating this calculation, in 

multispecies fisheries, anglers may switch targets when regulations are no longer acceptable to 

them (Beaudreau et al. 2018). This may be a desirable outcome if it relieves pressure on 

threatened stocks, but these alternative targets may then be subject to enough harvest pressure to 

become depleted (Abbott et al. 2018). Whereas fisheries managers can frequently monitor 

commercial harvest throughout the season (e.g. Gerritsen and Lordan 2011; Lee et al. 2010), 

recreational fisheries managers generally have few options for monitoring harvest or making 

changes mid-season (Pereira and Hansen 2003). An empirical understanding of the link between 
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fishing regulations and resulting fishing effort is therefore needed to better inform fisheries 

management choices.  

Regulations have the potential to reduce the utility that anglers receive from fishing, but 

their effects depend on individual preferences. Recreational anglers place value on catch (i.e. the 

number of fish kept and released), harvest (i.e. the number of fish kept), and the overall fishing 

experience (Hunt et al. 2019). Throughout this paper, we will use “catch” to indicate all fish 

caught, including those kept and released, while “harvest” refers only to fish that are caught and 

kept. In a utility-maximizing approach to understanding angler decisions, the choice of whether 

or not to fish will depend on whether the expected fishing experience, catch, and harvest provide 

enough utility to outweigh the cost in time and money incurred by taking the trip (e.g. McFadden 

1974). Reductions in season length do not necessarily reduce the value of fishing trips, but they 

narrow the window of opportunity for anglers to schedule their fishing trips. This loss of 

opportunity potentially results in the loss of benefits related to the overall fishing experience if, 

for instance, inclement weather cancellations are proportionally more common. Reduced 

possession limits, in contrast, may reduce the benefits anglers receive from harvest itself. 

Anglers may still catch a lot of fish, which may still be satisfying to individuals who are highly 

catch-oriented (e.g. Schroeder and Fulton 2013). However, the lower possession limit places a 

ceiling on the harvest that anglers can take home, meaning that anglers who primarily fish for 

food may no longer decide to take the trip. Since the experience of the fishing trip is still valued 

by many anglers regardless of catch, however, fishing effort can remain highly elastic to 

regulations, depending on angler preferences (e.g. Beardmore et al. 2011a). When anglers do 

leave the fishery as a result of benefit loss associated with restrictive regulations, coastal 

communities experience negative economic effects as vessel operators and other businesses 
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associated with the recreational fishery lose revenue (NMFS 2018). Understanding these 

potential angler responses therefore allows fisheries managers to weigh tradeoffs in the 

biological, social, and economic outcomes of their decisions.    

Much uncertainty therefore exists when predicting how recreational fishing effort, and 

therefore harvest, will respond to changes in regulations. This uncertainty arises in part from 

unknowns associated with angler behavior, motivations, and preferences (e.g. Brinson and 

Wallmo 2017; Johnston et al. 2010). While anglers tend to express preferences for longer open 

seasons (Holzer and McConnell 2017; Young et al. 2019; Melnychuk et al. 2021), shorter 

seasons do not necessarily cause anglers to reduce their fishing effort. For example, during 

extreme reductions in season length for the red snapper (Lutjanus campechanus) fishery in the 

Gulf of Mexico, daily angler effort substantially increased, leading to a “derby style” fishery 

where private anglers, who own or rent their own boats, attempted to fish as much possible 

during their allotted time (Powers and Anson 2018, 2016). Shorter seasons therefore still 

corresponded to lower harvest across the season, but not in proportion to the change in season 

length. Because the functional response of fishing effort to shorter seasons is not often quantified 

and likely varies widely by fishery, this “effort compression” effect complicates managers’ 

predictions of the response of harvest to changes in regulations. Further, reductions in possession 

limits can reduce the attractiveness of fishing opportunities to anglers (Whitehead et al. 2015), 

but angling effort in different fisheries may show different degrees of elasticity to changes in 

these regulations (Beard et al. 2003; Beardmore et al. 2011a) and may therefore not substantially 

affect overall harvest (van Poorten et al. 2013). In fisheries where open seasons overlap for 

multiple species, predicting angler response is further complicated. For example, in the 

multispecies for-hire recreational fisheries in Alaska, increased restrictions on harvest of Pacific 



116 
 

halibut (Hippoglossus stenolepis) has been associated with increased harvest of less restricted 

species (Beaudreau et al. 2018). This substitution behavior can lead to a continuous “spiraling” 

effect of regulations where managers implement increasingly strict limits on an increasing 

variety of species, and anglers continue to adapt by diversifying their targets in order to maintain 

their harvest (Abbott et al. 2018; Beaudreau et al. 2018). The effects of regulations on fishing 

effort may therefore depend on how anglers and operators of for-hire vessels respond to fishing 

opportunity (i.e. season length), harvest potential per trip (i.e. possession limit or variety of 

species available), and preferences for specific species (e.g. the popularity of species among 

harvest- or trophy-oriented anglers). 

Because of this uncertainty in angler response to regulation, managers of open-access 

fisheries have not always successfully kept removals below sustainable harvest limits (Coleman 

et al. 2004; Cooke and Cowx 2004; Cox et al. 2002; Post et al. 2002; NEFSC 2019). This 

inconsistency in constraining recreational harvest points to a need for empirically understanding 

the effects of regulations on fishing effort in a multispecies context. Forecasting and 

“nowcasting” techniques have already been successfully used to predict landings in the Gulf of 

Mexico recreational fishery for individual species (Carter et al. 2015; Farmer and Froeschke 

2015), but not to infer the effects of multiple species’ regulations on fishing effort. By 

understanding the dynamics of both catch and effort in response to regulations, managers can 

reduce the uncertainty around how changes in season length of multiple (or individual) seasons 

in multi-species fisheries will affect fishing effort.  

The Marine Recreational Information Program (MRIP) produces estimates of recreational 

catch and effort for most coastal states. Estimates are aggregated by two-month “waves” or by 

year. More granular estimates of fishing effort, however can be difficult and expensive to obtain 
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in recreational fisheries (McCluskey and Lewison 2008), but Vessel Trip Report (VTR) data 

provide a daily census count of recreational fishing effort aboard federally-permitted for-hire 

vessels in the Greater Atlantic Region. We then empirically evaluated the response of weekly 

fishing effort to changes in possession limits, season length, and season overlap in the New 

Jersey (NJ), USA, for-hire sector of the bottom fishery using this VTR data. To do this, we fit 

statistical models incorporating effects of four species’ overlapping open seasons, their season 

lengths, and the number of “blackout” days during which none of the four species are available 

to harvest to a time series of weekly fishing effort. Guided by hypotheses formulated through 

focus-group interviews with stakeholders, a model selection process allowed us to infer the 

dominant mechanisms by which changes in possession limits, season length, and species 

availability could have influenced overall fishing effort in the NJ for-hire bottom fishery. 

Differences in overall preferences between anglers participating in the charter and party boat 

fisheries were inferred by fitting these models to time series separately for each sector.  

The New Jersey bottom fishery is primarily harvest-motivated (e.g. Bochenek et al. 

2012), so we hypothesized that lower possession limits for popular species would be associated 

with a reduction in angler trips in a given week. While lower possession limits reduce the harvest 

potential of single fishing trips, shorter and more fragmented fishing seasons instead limit angler 

access to the fishery. During closed seasons, no targeting of any affected species is permitted, 

even for catch and release angling. Shorter seasons therefore leave fewer days available to fish 

for a given species each year, and reduced overlap of these seasons may limit the variety of fish 

that an angler is allowed to catch and harvest. Reductions in fishery access through shortened 

seasons has historically been assumed to have a direct effect on fishing effort, where angling 

trips that would have taken place during the now-closed season simply do not occur. We 
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hypothesized that reductions in fishing effort associated with shorter seasons may instead be 

lower or higher than expected depending on whether anglers tended to respond to benefit loss 

associated with regulatory change by either 1) compensating for reduced fishing opportunity or 

2) reducing their participation in the fishery. Of course, angler response to these changes in 

regulations will be heterogeneous because their responses depend on motivations and 

preferences that vary among anglers (e.g. Beardmore et al. 2011b). If particular responses 

dominate angler effort dynamics, however, the overall effect on all angler effort will be useful in 

a broad-scale policymaking context. We conducted a time series analysis of weekly total angler 

trips from the recreational for-hire sector in NJ to test the following hypotheses derived from 

focus group data describing how anglers may have adapted to changes in fishing opportunity:   

1) Species availability hypothesis: Anglers switch between preferred species to maintain their 

opportunities to go fishing.  

2) Season length hypothesis: Anglers intensify their fishing effort during shorter open seasons to 

maintain their preferred harvest levels.  

3) Blackout effect hypothesis: In response to an increasing number of “blackout” days, where 

neither of these four bottomfish are available for harvest, anglers will either a.) increase their 

fishing effort during the remaining open seasons or b.) begin to exit the fishery.  

Methods 

Study system 

The NJ marine recreational fishery is socioeconomically important, ranking fourth in the 

nation in state sales revenue generated by the recreational fishing industry (NMFS 2018). NJ 

anglers are also responsible for substantial removals, ranking second among US states in pounds 

of recreational harvest and fourth in release numbers (NMFS 2020). The for-hire sector makes 
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up between 5 and 20% of total recreational catch, depending on the species, while the remaining 

catch is made up by shore-based anglers and private anglers who own or rent their own boats 

(ASMFC 2017; MAFMC and ASMFC 2020). The for-hire fleet is made up of party boats (also 

called head boats), where anglers pay between $30 and $90 “per head” for a 4-8 hour guided trip 

shared with up to 100 other anglers, and charter boats, where a smaller group of anglers 

(typically 6 or fewer) pays more, currently between $400 and $1000, for a more personalized 

guided fishing trip on a smaller vessel (Steinback and Brinson, 2013). For-hire fishing vessels 

are highly accessible. Anglers may borrow or rent fishing gear, and no additional licensing or 

registration is required to participate. Spending by out-of-state anglers is particularly impactful in 

the for-hire fishing industry, and fishing effort by these anglers in this sector is sensitive to 

changes in fares (Li et al. 2019; Steinback 1999). As overhead costs (e.g. fuel, bait, boat 

maintenance) increase among for-hire operators as a result of fuel prices and reduced season 

lengths, businesses and communities relying on revenue from this sector are increasingly 

vulnerable to volatility in angler numbers which could result from regulatory changes (Murray et 

al. 2010). 

As fisheries managers have struggled to limit harvest in order to maintain or rebuild fish 

stocks, the NJ marine recreational fishery has experienced marked changes in possession limits 

and season lengths for summer flounder (Paralichthys dentatus), black sea bass (Centropristis 

striata), scup (Stenotomus chrisops), and tautog (Tautoga onitis) (Fig. 1, Tables S1-S4). In spite 

of these changes, black sea bass recreational harvest in recent years (2013-2017) has exceeded 

harvest limits by an average of 41% (MAFMC 2018), and tautog continues to be classified as 

overfished (ASMFC 2007; ASMFC 2017). Although summer flounder was not overfished as of 

the latest stock assessment (NEFSC 2019), changes in distribution, reductions in recruitment, 
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upward corrections of previous years’ harvest estimates, and a strict fisheries management plan 

have led to the continuation of stringent harvest regulations (ASMFC 2018; Terceiro 2018). 

Summer flounder is a highly popular target species in the NJ marine recreational fishery, and the 

resulting short and fragmented seasons in the face of perceived improvement in the summer 

flounder stock have led to widespread frustration among stakeholders (Terceiro 2018). Tautog 

season lengths were reduced in 2008 in response to overfishing in the recreational sector 

(ASMFC 2007). In spite of the rebuilding plan implemented at this time, tautog spawning stock 

biomass remains low, and the stock is classified as overfished (ASMFC 2017). In contrast, a 

fisheries management plan for scup that was implemented in 1998 and amended in 2007 was 

successful in reducing harvest, and the stock was declared recovered in 2009 (MAFMC and 

NMFS 2007; Northeast Data Poor Stocks Working Group 2009).  

Focus groups 

Four focus groups were conducted across a north-south transect of the NJ coast in the 

towns of Atlantic Highlands, Toms River, Tuckerton, and Cape May in the winter and spring of 

2019. Participants were identified through purposive sampling in which researchers consulted 

with NJ state agency staff, extension agents, and industry representatives to identify 

knowledgeable, experienced, and collaborative recreational fishing industry stakeholders. Two to 

four stakeholders from each of four industry segments (party boats, charter boats, private anglers 

who own their own boats or fish from shore, and associated businesses) in each of the four 

regions were identified, for a potential maximum of 16 participants per focus group. Of these, 44 

stakeholders were successfully contacted and invited, and 37 attended. The focus groups ranged 

from 8 to 11 participants, plus two note takers and a moderator, and they lasted between two and 

two and a half hours. Focus group participants were asked open-ended questions about their 
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process for choosing bottomfish target species and how those decisions are influenced by 

management regulations and their clients’ or their own personal preferences. All focus groups 

were audio recorded, transcribed, and coded for common themes, following the standard analysis 

guidelines for qualitative research in Creswell and Poth (2016) and Roller and Lavrakas (2015). 

The focus group procedure was approved by the Rutgers Institutional Review Board (Protocol 

#E18-112).  

 Results from the focus groups were used to develop alternative hypotheses to be tested in 

the analysis of VTR data. Overall, recreational industry representatives expressed strong 

dissatisfaction with current regulations, especially season length and timing. As one focus group 

participant said, “What I’ve observed here is just absolute, total frustration, bordering on anger. 

And I keep saying to myself, these regulations are going to turn a lot of local fishermen to 

pirates.” Of particular concern to stakeholders were the partitioning of open seasons into shorter 

periods and the loss of overlapping seasons for different species (Table S5). A common point 

that stakeholders discussed was that the loss of overlap between different species’ open seasons 

was leading anglers to intensively harvest whatever species remained open at a given time. Two 

possible mechanisms for this change in behavior were incorporated into the hypotheses for our 

model selection: 1) anglers maintain harvest potential by compressing fishing effort into shorter 

seasons to maintain harvest of particular species or 2) anglers switch target species in order to 

continue fishing on a consistent basis.   

Effort, catch, and management data  

Vessel Trip Report (VTR) data from for-hire vessels between 2001 and 2017 were 

obtained from the NOAA VTR database for the Greater Atlantic region. VTRs are a census of 

vessels with federal permits for black sea bass, summer flounder, or scup where operators report 
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the number of anglers aboard and enumerate their catch and harvest. VTR data from 2018 and 

2019 were not included in the analysis because the 2018 switch to mandated electronic reporting 

may have resulted in a systematic change in reporting compliance. VTRs do not report target 

species, so data were filtered according to the vessels’ port state and the species they reported 

catching in order to capture NJ bottom fishing effort. Reports listing capture of bottom fish 

(defined in Table S6) and a port of departure in NJ were retained. Many more angler trips were 

reported aboard party vessels, so fishing effort was evaluated separately for party and charter 

vessels to avoid dominance of fishing effort dynamics by party operators. We first investigated 

how the for-hire fleet changed during this time period. To do this, we compiled annual counts of 

reporting vessels, the mean number of anglers per trip, and the mean number of trips per week 

for party and charter vessels. Next, to build our time series for testing our hypotheses of angler 

response to regulations, we compiled a weekly time series of fishing effort by summing the total 

number of angler trips reported by all vessels for each week. This process produced two time 

series of weekly counts of angler trips on charter and party boats.  

Fishing effort can also respond to fishing quality (e.g. Wilson et al. 2020), so we included 

species-specific catch rates as predictors in our models. Although catch by species is reported in 

VTRs, reports of catch (number of fish caught) and harvest (number of fish retained, i.e., catch 

minus fish caught and released) after a trip are prone to recall bias (Bochenek et al., 2012). Catch 

rates to be used as predictor variables were therefore obtained instead from Marine Recreational 

Information Program (MRIP) access point intercept survey data (NOAA Fisheries 2021). These 

surveys take place at ocean access points that are selected within a stratified random sampling 

regimen. Among other data, respondents report their total species-specific catch, which includes 

both kept and released fish. Using the procedure described in the MRIP Survey Design and 
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Statistical Methods documentation (Papacostas and Foster, 2021), we calculated the mean catch 

per trip for each of our four focal species for each two month survey “wave” in our time series 

(Fig. S1). Missing values were imputed using linear interpolation for black sea bass and tautog 

catch rates. Scup catch rates were not included as predictors because of the high number of 

missing values. Summer flounder missing values occurred in winter months when the stock has 

migrated off-shore. These missing values were therefore replaced with zero. Average catch rates, 

rather than spawning stock biomass (SSB), were used to estimate the effects of fishing quality 

because fish species associated with bottom structure likely exhibit catch rate hyperstability (e.g. 

Dassow et al. 2019; Erisman et al. 2011). In addition, these catch rates could be calculated for 

every two months of the time series, while SSB estimates are only available on an annual basis. 

 NJ fishing regulations for summer flounder, black sea bass, tautog, and scup were 

collected for the years between 2001 and 2017. Open seasons and possession limits were 

obtained from annual releases of NJ recreational fishing regulations. Mid-season closures were 

found by searching the Federal and NJ Registers for rule changes impacting fisheries of the 

Northeastern United States. State and Federal Registers document rule changes for the federal and NJ 

state government. The Federal Register can be accessed at https://www.federalregister.gov/ and 

the NJ Register at https://www.state.nj.us/oal/rules/accessp/. In cases where changes to 

regulations occurred mid-season, we included only the final regulations in the analysis.  

Statistical Analysis 

Base ARMA model  

We used autoregressive-moving average (ARMA) models to quantify how implementing 

or changing a management measure affected fishing effort while accounting for autocorrelation 

and seasonal trends. Fitting a time series model at this granular scale allowed us to detect 
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average effects of changes in regulations within and between years using external regressors. 

Simultaneously, additional unexplained variation (i.e. variation in angler trips attributable to 

weather, changes in trip price, etc) is accounted for implicitly by seasonal and ARMA 

components. ARMA models account for short-term temporal autocorrelation in time series data 

by fitting autoregressive (AR) terms to lagged observations and moving average (MA) terms to 

lagged residuals (Box et al. 2008; Box and Jenkins 1970). Weekly time series have a long and 

non-integer period (52.14 weeks/year), but seasonal models are periodic, being at the same state 

as one year pervious and repeating. To better align these weekly data with the model’s seasonal 

component, a dynamic harmonic regression approach (Hyndman and Athanasopoulos 2018; 

Young et al. 1999) was used to fit an appropriate number of Fourier sine-cosine pairs to each 

time series of fishing effort data. Open seasons for our focal species are highly correlated with 

seasonality (Fig. 1), so by fitting an identical seasonal trend to each year, we were able to 

examine how differences in possession limits and season length (e.g. the loss of early and late 

summer for the summer flounder fishing season) influenced weekly fishing effort in the weeks 

that did experience differences in regulations among years. Following this approach, increasing 

numbers of sine-cosine pairs were generated using the forecast package in R v.4.1.0 (Hyndman 

et al. 2020; R Core Team 2021), and for each of these model fits, the auto.arima function of the 

forecast package was used to find the best fitting ARMA components. The best fitting 

combination of ARMA components and Fourier sine-cosine pairs was then chosen based on its 

AICc score. We tested for serial autocorrelation using the Breusch-Godfrey test.  

Candidate model construction 

In addition to the aforementioned ARMA and seasonality components, we included as 

predictors the regulations and catch rate variables relevant to the candidate model’s hypothesis 
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(Table 1, Appendix 1). Considerable variation in catch rates both within and between years were 

evident (Fig. S1). To indicate possession limits and closed seasons for summer flounder, black 

sea bass, and tautog, an integer predictor indicated the possession limit in that week. A 

possession limit of 0 indicated a week where targeting the species was not permitted. Scup 

possession limits during open season remained at 50 for the entire time series, so an indicator 

variable was used instead to indicate whether week was open (1) or closed (0) for scup fishing 

(Table 1). An additional dummy variable (‘Something open’) was used to indicate whether at 

least one of the four bottomfish species was available for harvest during the week (i.e. a 0 during 

a blackout period, 1 otherwise).  

The models did not include year as a covariate but instead attempted to explain annual 

variation in fishing effort through six co-variates that described fishing opportunities in each 

year. Four continuous variables specified the length of each species’ season in days for each 

year. Two additional continuous variables indicated the total number of blackout days in each 

year as well as the number of open species available each week. In most years, regulations are 

announced in late spring of their effective year (i.e. shortly before the start of peak summer 

season). In 2010, 2011, and 2013, however, season lengths were adjusted mid-season for summer 

flounder and/or black sea bass. In years when regulations were changed mid-season, the final 

effective season length was used as a predictor. To correspond with the approximate date of the 

release of new regulations, annual variables, which included season lengths and annual harvest 

days, were updated annually on May 1.  

The null model incorporated the assumption that anglers do not compensate for changes 

in season length and overlap by changing their behavior. This model therefore included only the 

focal species’ possession limits and their catch rates (Table 1). The other three candidate models 
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included additional predictor variables and interaction effects that tested three hypotheses for 

how anglers may compensate for regulatory changes (Tables 1 and 2). The blackout effect model 

added the ‘Something open’ predictor to test the hypothesis that open seasons for any of the four 

focal species would attract fishing effort, regardless of which species were open. In addition, the 

annual number of blackout days and its interaction with ‘Something open’ was included to test 

for anglers’ response to an increasing number of blackout days on the calendar (Table 2). A 

positive interaction effect would suggest that anglers increased their fishing effort during the 

remaining open days in response to a higher number of blackout days, and a negative interaction 

effect would indicate that anglers instead tended to stop fishing in response to these changes. To 

illustrate, as the number of blackout days in a year increases from 0 to 30, an intensification of 

fishing effort during the open season would be indicated by a positive parameter value for the 

two-way interaction of the number of blackout days and the ‘Something open’ indicator. A week 

where at least one species is open during a year with 30 blackout days would then have a higher 

predicted fishing effort than that of a week in a year with 0 blackout days. On a blackout week, 

however, the ‘Something open’ indicator is zero, negating the interaction effect. 

The season length model, in contrast, allowed anglers to display different responses to 

changes in the season length of different species. The model incorporated this behavior by 

including season length as a predictor conditional on the corresponding species’ open season (i.e. 

the possession limit is greater than 0). Our hypothesis that anglers would compensate by 

increasing their fishing effort during the remaining open season would be supported by a 

negative interaction effect between species-specific season length and the corresponding open 

season indicator. The species availability model accounted for specific substitution patterns used 

by anglers to maintain their fishing opportunities as the overlap between different species’ open 
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seasons was reduced. A negative interaction effect between species-specific open seasons and 

the number of species that were available would indicate a non-additive response of fishing 

effort to new open seasons. In other words, adding an additional open species to a given week 

would result in a lower increase in fishing effort than expected because many of those anglers 

were already fishing.  

Model selection 

We evaluated the ability of our four candidate models to explain weekly natural log-

transformed total fishing effort for party boats and charter boats. Angler trip counts were log-

transformed to account for the greater variance in fishing effort during peak fishing season. The 

fit of the competing models was compared using the corrected Akaike Information Criterion 

(AICc) and their associated Akaike weights calculated using the MuMIn package (Bartoń 2020).  

To evaluate the relative effects of changes in black sea bass and summer flounder 

possession limits and season length, we produced annual predictions of angler trips for 

hypothetical years under different regulations. Tautog regulations were not evaluated in this way 

because possession limits primarily changed within rather than between years in order to protect 

tautog from excessive harvest during their summer spawning season (Table S3). For each of 

these predictions, the fishing effort associated with each week of an average year (i.e. the 

average value of each week’s sine-cosine coefficient pairs across all years of the time series) at 

average catch rates (i.e. the average value of each week’s CPUE for summer flounder, black sea 

bass, and tautog) were forecast using the best fitting ARMA model with the predict.Arima 

function (R Core Team, 2021). Only the species of interest was “opened” for the hypothetical 

forecasted year. A year of weekly predictions were forecasted for each combination of 

possession limits and season lengths. We then applied a bias correction to these predictions 
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based on a non-parametric smearing adjustment (Duan, 1983), and annual fishing effort was 

summed for each forecasted year. These predictions produced estimates of the annual fishing 

effort associated with different combinations of season length and possession limits for specific 

species. These forecasts are intended to illustrate the relative effects of possession limit and 

season length changes for different species on angler trips in past years. They are not intended to 

forecast out-of-sample future changes in fishing effort.  

Results 

Fleet changes 

 The NJ for-hire bottom fishing fleet has experienced a number of changes since 2001. 

The decline in charter vessels reporting each year since 2010 is particularly distinctive, declining 

from 119 to 57 reporting vessels (Fig. 2A). In spite of the decline in charter vessels, the number 

of charter boat anglers and the mean number of anglers per charter trip have remained largely 

constant (Fig. 2B and 2C). This consistency in angler numbers is explained by a near-doubling in 

the average number of trips taken per charter vessel between 2010 and 2015, from 17.6 to 28.6 

charter trips per year. In contrast, the number of party boats has shown a less extreme overall 

decline, with the exception of a period between 2001 and 2005, where the number of reporting 

party boats dropped by nearly half (Fig. 2A). This change in party boat numbers corresponds 

with simultaneous decline in party boat angler trips (Fig. 2B) and a reduction in the average 

number of trips taken by each vessel (Fig. 2D). Both party boat numbers and angler numbers 

largely recovered by 2010, but they remained lower than in the early 2000s.  

Model selection 

Charter boat fishing effort 
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 The time series of charter boat and party boat fishing effort differed in their best fitting 

models (Tables 3 and 5), indicating that charter and party boat anglers responded differently to 

changes in regulations. The blackout effect model was unambiguously the best fit to charter boat 

fishing effort, receiving 100% of the Akaike weight (Table 3). The ARMA and seasonal 

components of the model effectively removed serial autocorrelation of the residuals according to 

the Breusch-Godfrey test (Table S7). Total fishing effort on charter boats was relatively 

consistent between years (Fig. 2B), and variation in weekly effort was driven mainly by 

seasonality rather than by open seasons of specific species (Tables 4 and S8). In spite of these 

species’ popularity, neither black sea bass, summer flounder, or tautog possession limits, nor 

scup open seasons were associated with significant changes in fishing effort on their own (Table 

4). All else being equal, the opening of at least one of the four species was associated with an 

over 6-fold increase in angler trips (i.e. exp(1.954)=7.06), suggesting that charter anglers are 

flexible in their species preferences (p=0.008, Table 4). All else being equal, the availability of at 

least one of the four focal species was associated with an over 600% increase in fishing effort 

compared to a “blackout” day. The interaction of the ‘Something open’ indicator with the annual 

number of blackout days, however, was not significant (p=0.143, Table 4). Charter boat anglers 

therefore did not appear to leave the fishery in response to increasing numbers of blackout days, 

which would have been evident by a negative interaction. Nor did they appear to compensate for 

blackout days by increasing fishing effort, which would have been evident by a positive 

interaction. Fishing effort of charter angler trips also did not appear to respond to summer 

flounder, black sea bass, or tautog catch rates when aggregated at the two-month level.  

Party boat fishing effort 
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 The species availability model was unambiguously the best fit to the time series of party 

boat angler trips (Table 5). Summer flounder, tautog, and black sea bass possession limits were 

significant predictors of fishing effort, where an increase in limit of 1 fish was respectively 

associated with a 26%, 15%, and 5% increase in angler trips. The opening of multiple species 

simultaneously, however, did not have an additive effect on fishing trips. The negative 

interaction between summer flounder, tautog, and black sea bass open seasons and the number of 

open species suggests that a subset of the anglers fishing for summer flounder, for example, were 

already previously fishing for black sea bass or tautog before the flounder season opened. Weeks 

where all three species are open for harvest therefore experienced fewer angler trips than would 

be predicted by only the species-specific possession limits. Scup open seasons, in contrast, were 

associated with increased angler trips in combination with the availability of additional target 

species. In our dataset, scup only occurred in combination with at least one other species (N 

species=2). During these combined seasons of two species (usually tautog and scup), scup is 

associated with only a small decrease in mean angler trips (i.e. exp(-0.944+1*0.99)=0.996, or a 

0.4% decrease in angler trips). In combination with two or three other species, however, scup 

season is respectively associated with a 63% or 268% increase in fishing trips. These overlaps 

typically occurred in the peak summer season, when scup is available inshore. During the rest of 

its winter open season, scup has migrated offshore to deeper water, where it is more difficult to 

target (NMFS 1999). Fishing effort did not obviously respond to black sea bass or summer 

flounder catch rates, but angler trips did increase by 3% in correspondence with an increase in 

tautog catch rates of 1 fish per trip (p = 0.015, Table 6).  

 Multicollinearity was detected between certain predictor variables for the species 

availability model, with variance inflation factors (VIF) as high as 9.9 (Table S11). To test the 
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sensitivity of the parameter estimates to this collinearity, we completed a supplemental analysis 

by re-fitting the model without the most highly correlated predictors (i.e. summer flounder 

possession limits and catch rates). Coefficient estimates were effectively the same, except for the 

interaction effect of tautog possession limits with the number of open species (Tables S12 and 

S13). When summer flounder-associated predictors were removed from the model, this 

interaction was no longer significant.  

 Black sea bass seasons experienced substantial variation in both possession limits and 

season lengths among years (Fig. 3). Only modest increases in annual angler trips relative to 

closed season were associated with the possession limits of two or three fish that were 

implemented in peak summer fishing seasons starting in 2014 (Fig. 1). Higher possession limits, 

in contrast, were associated with tens of thousands more angler trips per year. Summer flounder 

season lengths experienced less change among years in our analysis (Fig. 4A). In spite of this 

limited variation of season lengths, distinct changes in annual fishing effort were detected. As 

possession limits were lowered, however, the response of annual fishing effort to season length 

became less distinct (Fig 4B).  

Discussion  

 Previous survey-based studies of recreational anglers’ stated preferences have highlighted 

the importance of preserving fishing opportunities in the form of open fishing seasons in order to 

maintain angler satisfaction (Brinson and Wallmo 2017; Young et al. 2019). The use of VTR 

data allowed us to investigate the empirical response of anglers aboard for-hire vessels to 

reduced fishing opportunity. We found evidence of substantial reductions in annual fishing effort 

within the party and charter boat fisheries as a result of reduced possession limits and, to a lesser 

extent, contracting season lengths. These results support the concerns expressed by focus group 
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participants regarding reduced profitability of for-hire fishing vessels in the face of these 

increased restrictions. Fishing effort dynamics within the charter boat fishery were best 

explained by the blackout effect model, where the ability to harvest any one of the four species 

was a more important predictor of fishing effort than the availability of any specific species. 

Fishing effort in the party boat fishery, in contrast, was best explained by the species availability 

model, and angler trips specifically responded positively to summer flounder and black sea bass 

open seasons. The non-additive effects of additional open seasons suggested a significant degree 

of substitution behavior occurring among party boat angler trips as species open and close 

throughout the season. The interaction effect of tautog open season with species availability was 

non-significant in the sensitivity model fit that eliminated summer flounder predictors. 

Substitution behavior may therefore be less common among tautog anglers. Among charter boat 

anglers, however, substitution behavior appears to be even more prevalent, as indicated by the 

strong positive effect of the “Something open” predictor.  

Although substitution behavior appears to vary between charter and party boat anglers, 

our ability to infer specific angler behaviors is limited because the number of angler trips in a 

week also depends on the availability of trips for hire. Responses of angler trips to regulations 

may therefore indicate differences in operator behavior rather than angler preferences. The 

corresponding decline in federally permitted charter vessels and increase in annual trips per 

vessel, for example, suggest that the demand for charter trips may exceed the supply. If the 

remaining operators are allowed to target bottom fish on a given day, they will most likely be 

able to reserve enough customers to fill their vessel. The response of charter angler trips to the 

availability of “something” may therefore be an indication of operator behaviors. Angler trips 

aboard party vessels, however, appeared to show more room for variation. Similar to charter 
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trips, the number of weekly party angler trips can be limited by the availability of spots aboard 

party vessels. Conversely, at very low demand, party vessels will cancel trips if the number of 

spots sold do not recoup costs. However, considerably more variation is possible in the number 

of anglers aboard large party boats once this threshold of profitability is reached, suggesting to us 

that party boat fishing effort dynamics primarily reflect angler preferences. In particular, the 

large negative effects of reduced possession limits on the number of weekly angler trips suggest 

that many anglers have quit bottom fishing on party vessels in response to these changes. 

Because substitution behaviors do not appear to be as strong in the party fishery as in the charter 

sector, party vessel operators probably could not rely on angler substitution of less popular 

bottom species to maintain their profits. Party vessel operators may therefore be particularly 

vulnerable to the negative economic effects of increased restrictions on bottomfish harvest.  

 Considerable additional variation existed in angler trips that was not explained by 

changes in regulations. For example, a nearly 50% drop in angler trips occurred between 2005 

and 2010 (Fig. 5), which did not correspond to any specific changes in regulations. This time 

period does, however, roughly correspond with a period of conflict over reductions in the 

acceptable biological catch (ABC) for summer flounder, the implementation of conservation 

equivalency among states, and the stock assessment methods used by fisheries scientists 

(Terceiro 2011). The rebound in party boat angler numbers in 2010 is also coincident with a new 

stock assessment indicating that the summer flounder stock was not overfished and did not 

experience overfishing between 2008 and 2010 (Terceiro 2018). As a new control rule was 

implemented after the 2011 season, however, the ABC was reduced, leading to another round of 

conflict between scientists, managers, and stakeholders (Terceiro 2018). At the seasonal level, 

these changes in annual fishing effort stem from a reduction in “peak” fishing effort for summer 



134 
 

flounder during the summer months of May through August (Fig. 5A). Although black sea bass 

availability is also associated with higher fishing effort aboard party boats, similar patterns in 

monthly fishing effort are evident during years with and without year-round black sea bass 

seasons (Fig. 5B). Therefore, although fishing regulations influenced the number of angler trips 

each week, we speculate that trust in management and public perceptions of summer flounder 

stock health are potentially important predictors of fishing effort.  

 Vessel Trip Report data represent a large and mostly untapped resource for studying 

marine recreational fishing effort dynamics. However, they also present several challenges. First, 

only vessels with federal permits are required to submit VTRs. Federal permit are required for 

summer flounder, black sea bass, and scup fishers, but not for tautog. Charter vessels in 

particular may be underreported in the VTR data if they do not target either of these three 

species. In addition, VTRs report catch but not target species. We therefore defined 

bottomfishing trips based on the reported capture of at least one of nine bottom-associated 

species, which may have excluded some bottomfishing trips where nothing was caught. 

However, fishing trips with no reported catch made up only 1.5% of all fishing reports, so we 

believe that any effects of their elimination should be minimal. By filtering data by catch, we 

may also have included some trips targeting non-bottomfish species, such as striped bass 

(Morone saxttilis) or bluefish (Pomatomus saltatrix), during which bottomfish were caught 

incidentally. Both of these species remained open during the “blackout” periods recorded in our 

time series. The distinctively reduced weekly effort aboard charter vessels evident during these 

blackout periods suggests, however, that our filtering was largely successful at removing these 

trips. In addition, minimum length limits are important issues for fishery stakeholders (Table S5), 

but they were not included as predictor variables because of excessive collinearity with 
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possession limits. Minimum length limits tended to increase as possession limits decreased, so 

some of the effects of minimum length limits on fishing effort were explained in our model fits 

by changes in possession limits. Lastly, although VTRs provide a census count of anglers aboard 

federally permitted for-hire vessels, operators targeting tautog are not required to acquire a 

federal permit. We expected that operators targeting tautog would also target other highly 

popular bottomfish that do require federal permits, but we may have missed vessels specializing 

in tautog fishing, particularly among charter vessels. 

The apparent willingness of anglers to substitute target species aboard charter boats, and 

to a lesser extent aboard party boats, has a number of implications for management of marine 

recreational fisheries. In particular, the relatively stable fishing effort in the charter sector 

regardless of individual species’ closures suggests that discards may be high for closed species 

that are caught incidentally when anglers target other bottom fish. In other fisheries where 

anglers show high willingness to substitute target species, discard mortality has been 

demonstrated to reduce the effectiveness of seasonal closures (Chagaris et al., 2019). This 

phenomenon highlights the importance of understanding angler motivations for maintaining 

fishing opportunities and/or harvest. The relative importance of preserving fishing opportunity 

versus harvest capacity has been investigated in a variety of systems (e.g. Melnychuk et al., 

2021; Young et al., 2019) and angler response to these changes appears to depend in part on 

anglers’ willingness to re-allocate fishing effort to other time periods or alternative species. In 

other harvest-oriented fisheries, anglers express strong preferences for higher possession limits 

(e.g. Mackay et al. 2020). Reductions in possession limits and complete closures reduce anglers’ 

harvest capacity and therefore their expected satisfaction, resulting in reduced fishing effort 

overall if anglers are unwilling to substitute less-restricted species (Powell et al., 2010). 
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Redirected fishing effort can lead to increased harvest of substitute species (Beaudreau et al., 

2018) or increased discard mortality when closed or restricted species are caught and released 

(Chagaris et al., 2019). Although we investigated only the response of for-hire recreational 

fishing effort, the effect of regulation change on total recreational fishing effort also depends on 

the response of private boat anglers. These anglers do not rely on the availability of spots aboard 

for-hire vessels, suggesting that they have more ability to respond to closures by re-allocating 

fishing effort to different times of year. This response was observed in the Gulf of Mexico red 

snapper fishery when season length was drastically reduced (Chagaris et al., 2019; Powers and 

Anson, 2018, 2016). In less extreme instances of season reductions, however, private anglers 

may instead target alternative species to maintain their level of harvest or opportunities to fish, 

leading to a more stable pattern of fishing effort similar to our observations of charter vessels. 

Alternatively, the costs of maintaining a private vessel may drive some private anglers to leave 

the fishery when regulations become more stringent. If this choice is widespread, fishing effort, 

harvest, and discards would decline, but coastal communities would also experience the negative 

economic impacts associated with reduced angler participation. Responses to regulations among 

both private and for-hire anglers are therefore important to understand when evaluating the 

effects of new regulations on fishing effort, harvest, and discard mortality. An ongoing project 

by this team is using stated preference methods to investigate these potential responses among 

private and for-hire anglers. 

 Fisheries managers constantly consider tradeoffs in ecological, social, and economic 

objectives with the goal of maintaining stocks above safe harvest limits, maintaining public 

access to the fishery, and supporting the economies of coastal communities (e.g. Punt 2017). In 

addition to wrestling with uncertainties in population dynamics of important stocks, considerable 
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uncertainty surrounds the response of fishers to changes in regulations and ecological conditions 

(Fulton et al. 2011). Accounting for the responses of human stakeholders with heterogeneous and 

often competing preferences is vital for enacting proactive management decisions (Johnston et 

al. 2010). For-hire vessels make up one of these heterogeneous stakeholder groups and provide 

relatively low-cost access to fish stocks for recreational anglers globally. Recreational fisheries 

are also a major source of fishing mortality (Coleman et al. 2004; Cooke and Cowx 2004), and 

many of the costs of reduced harvest are borne by for-hire vessels, their customers, and the 

coastal communities relying on their economic contributions. In recent years, for example, fleet 

diversity of the recreational fishery in the Mid-Atlantic has declined as more anglers switch to 

shore-based modes of fishing and away from for-hire vessels (NEFSC 2021). Between 

uncertainty surrounding new regulations each year and reduced participation of anglers in the 

for-hire sector, for-hire operators are left in a precarious economic position. Illustrating this 

concern, one focus group participant stated, “Name me one industry besides fishing […] where 

we can’t go year to year and we can’t budget, we can’t forecast, we can’t predict. And you show 

me one industry where you have that every year, year after year, and still stay in business.” 

Fisheries managers are therefore left in the difficult position of being accountable for keeping 

recreational harvest within imposed limits while also balancing the biological, social, and 

economic objectives of stakeholders, including these for-hire operators. Uncertainty associated 

with angler responses to changes in fishing regulations is an important limitation in managers’ 

ability to constrain recreational harvest. Further investigations of angler behavioral responses to 

regulation should continue to help managers to enact regulations that prevent overharvest while 

meeting the economic needs of coastal communities.  
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Table 3: Model fit and Akaike weights of all candidate models for the time series of charter 
boat fishing effort. Bolded values indicate the lowest AICc and highest weight.  
Model AICc AICc weight Log Likelihood # Parameters 
Null model 2192.76 0 -1052.24 42 
Blackout effect model 2173.31 1 -1063.02 23 
Season length model 2189.84 0 -1044.11 48 
Species availability model 2193.47 0 -1048.16 46 
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Table 4: Coefficients of blackout effect model fit to charter boat fishing effort time series. 
Coefficients of the autoregressive, moving average, and seasonal component can be found 
in Table S8. Species-specific regulations and catch rates are indicated by the following 
abbreviations: black sea bass (BSB), summer flounder (SMF), tautog (TOG), and scup 
(SCP). Bolded values are significant at the p<0.05 level.  DF=870 
Coefficient Estimate Standard error T value P value 
Intercept 2.203 0.760 2.897 0.004 
BSB PL 0.004 0.005 0.733 0.464 
SMF PL 0.018 0.022 0.852 0.394 
TOG PL 0.032 0.025 1.307 0.192 
SCP Open 0.229 0.152 1.507 0.132 
Something open 1.954 0.740 2.641 0.008 
N blackout days 0.024 0.017 1.465 0.143 
Something open * N blackout days -0.019 0.017 -1.170 0.242 
SMF CPUE 0.010 0.029 0.350 0.727 
BSB CPUE 0.007 0.006 1.069 0.285 
TOG CPUE -0.017 0.019 -0.902 0.367 
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Table 5: Model fit and Akaike weights of all candidate models for the time series of party boat 
fishing effort. Bolded values indicate the lowest AICc and highest weight.  
Model AICc AICc weight Log Likelihood # Parameters 
Null model 1517.43 0 -726.55 31 
Blackout effect model 1502.68 0 -715.94 34 
Season length model 1510.27 0 -710.29 39 
Species availability 
model 

1482.59 1 -704.82 35 
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Table 6: Coefficients of species availability model fit to party boat fishing effort time series. 
Coefficients of the autoregressive, moving average, and seasonal component can be found in 
Table S10. Species-specific regulations and catch rates are indicated by the following 
abbreviations: black sea bass (BSB), summer flounder (SMF), tautog (TOG), and scup (SCP). 
Bolded values are significant at the p<0.05 level.  DF=855 
Coefficient Estimate Standard error T value P value 
Intercept 5.745 0.168 34.228 <0.0001 
BSB PL 0.050 0.010 5.050 <0.0001 
SMF PL 0.227 0.045 5.089 <0.0001 
TOG PL 0.141 0.033 4.283 <0.0001 
SCP Open -0.994 0.268 -3.712 0.0002 
BSB PL x N species available -0.014 0.004 -3.880 0.0001 
SMF PL x N species available -0.047 0.014 -3.474 0.001 
TOG PL x N species available -0.034 0.013 -2.506 0.012 
SCP Open x N species available 0.495 0.095 5.185 <0.0001 
SMF CPUE 0.005 0.023 0.219 0.827 
BSB CPUE 0.004 0.004 0.923 0.356 
TOG CPUE 0.030 0.012 2.444 0.015 
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Figures 

 

Figure 1: Changes in New Jersey season length and overlap for tautog (top, green), summer 
flounder( blue), scup (yellow), and black sea bass (bottom, black) between 2001 and 2017. 
Colored bars delineate open seasons for each of the four species. Light green bars for tautog 
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indicate 1 fish possession limits during the summer and fall months. Gray bars starting in 2014 
illustrate black sea bass summer seasons with 2 or 3 fish possession limits.  
 

 

 
 

 
Figure 2: Changes in the annual number of vessels reporting from the for-hire bottom-fishing 
fleet (A), the number of angler trips reported (B), the mean number of anglers per trip reported 
(C), and the mean number of trips per vessel reported (D) between 2001 and 2017 in the NJ 
charter and party boat fleets. 
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Figure 3: Annual party boat angler trips predicted across a range of season lengths and 
possession limits for black sea bass. In these model predictions forecasting effort from 
hypothetical regulations, only black sea bass season is open. The area between the two dashed 
lines indicates season lengths that are represented in the data.  
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Figure 4: Annual party boat angler trips predicted across a full range of possession limits, 
hypothetical season lengths (A), and the season lengths represented in the data (B) for summer 
flounder (i.e. B is a subset of A). The area between the two dashed lines indicates season lengths 
that are represented in the data. In these model predictions forecasting effort from hypothetical 
regulations, only summer flounder season is open.  
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Figure 5: Monthly fishing effort in the party boat sector of the NJ for-hire recreational fishery. 
Summer flounder open seasons are highlighted in blue on plot A, and black sea bass seasons are 
in gray on plot B. 
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Appendix 

Candidate models take the following form for the best fit number of sine-cosine pairs, k, 

autoregressive coefficients p, and moving average coefficients q at time t. Sine-cosine pairs are 

fit to observations at time t through the ω coefficients. Error terms are indicated by ε.  Catch per 

unit effort (CPUE) and regulation covariates are included for black sea bass (BSB), summer 

flounder (SMF), tautog (TOG), and scup (SCP).  

Null model 

 

𝐿𝑛(1 + 𝑁 𝑎𝑛𝑔𝑙𝑒𝑟 𝑡𝑟𝑖𝑝𝑠௧)

=  ෍ൣ𝛼ଵ,௞ cos(𝜔ଵ௞𝑡) +  𝛼ଶ,௞ sin (𝜔ଶ௞𝑡)൧

௄

௞ୀଵ

+  ෍ 𝜙௣ ln(𝑁 𝑎𝑛𝑔𝑙𝑒𝑟𝑠)௧ି௣

௉

௣ୀଵ

+ ෍ 𝜃௤𝜀௧ି௤                                                                                                                      

ொ

௤ୀଵ

+ 𝛽଴ + 𝛽ଵ 𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑆𝑀𝐹 ௧ + 𝛽ଶ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝐵𝑆𝐵௧

+ 𝛽ଷ𝑇𝑂𝐺 𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡௧ + 𝛽ସ𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑆𝐶𝑃௧ + 𝛽ହ𝐶𝑃𝑈𝐸 𝑆𝑀𝐹௧

+ 𝛽଺ 𝐶𝑃𝑈𝐸 𝐵𝑆𝐵௧ + 𝛽଻𝐶𝑃𝑈𝐸 𝑇𝑂𝐺௧ +  𝜀௧ 

𝜀௧~𝑁(0, 𝜎ଶ) 
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Blackout effect model 

 

𝐿𝑛(1 + 𝑁 𝑎𝑛𝑔𝑙𝑒𝑟 𝑡𝑟𝑖𝑝𝑠௧)

=  ෍ൣ𝛼ଵ,௞ cos(𝜔௞𝑡) +  𝛼ଶ,௞ sin (𝜔௞𝑡)൧

௄

௞ୀଵ

+  ෍ 𝜙௣ ln(𝑁 𝑎𝑛𝑔𝑙𝑒𝑟𝑠)௧ି௣

௉

௣ୀଵ

+ ෍ 𝜃௤𝜀௧ି௤                                                                                                                         

ொ

௤ୀଵ

+ 𝛽଴ + 𝛽ଵ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑆𝑀𝐹௧ + 𝛽ଶ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝐵𝑆𝐵௧

+ 𝛽ଷ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑇𝑂𝐺௧ + 𝛽ସ𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑆𝐶𝑃௧ + 𝛽ହ𝐶𝑃𝑈𝐸 𝑆𝑀𝐹௧

+ 𝛽଺ 𝐶𝑃𝑈𝐸 𝐵𝑆𝐵௧ + 𝛽଻𝐶𝑃𝑈𝐸 𝑇𝑂𝐺௧ + 𝛽଼ 𝑆𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 𝑜𝑝𝑒𝑛௧

+ 𝛽ଽ 𝑁 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡 𝑑𝑎𝑦𝑠௧ + 𝛽ଵ଴ 𝑆𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 𝑜𝑝𝑒𝑛௧  ∗ 𝑁 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡 𝑑𝑎𝑦𝑠௧ +  𝜀௧ 

𝜀௧~𝑁(0, 𝜎ଶ) 

 

 

 

 

 

 

 

 

 



159 
 

Season length model 

 

𝐿𝑛(1 + 𝑁 𝑎𝑛𝑔𝑙𝑒𝑟 𝑡𝑟𝑖𝑝𝑠௧)

=  ෍ൣ𝛼ଵ,௞ cos(𝜔௞𝑡) +  𝛼ଶ,௞ sin (𝜔௞𝑡)൧

௄

௞ୀଵ

+  ෍ 𝜙௣ ln(𝑁 𝑎𝑛𝑔𝑙𝑒𝑟𝑠)௧ି௣

௉

௣ୀଵ

+ ෍ 𝜃௤𝜀௧ି௤                                                                                                                         

ொ

௤ୀଵ

+ 𝛽଴ + 𝛽ଵ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑆𝑀𝐹௧ + 𝛽ଶ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝐵𝑆𝐵௧

+ 𝛽ଷ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑇𝑂𝐺௧ + 𝛽ସ𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑆𝐶𝑃௧ + 𝛽ହ𝐶𝑃𝑈𝐸 𝑆𝑀𝐹௧

+ 𝛽଺ 𝐶𝑃𝑈𝐸 𝐵𝑆𝐵௧ + 𝛽଻𝐶𝑃𝑈𝐸 𝑇𝑂𝐺௧ + 𝛽଼ 𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑆𝑀𝐹௧

+ 𝛽ଽ 𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝐵𝑆𝐵௧ + 𝛽ଵ଴𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑇𝑂𝐺௧

+ 𝛽ଵଵ 𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑆𝐶𝑃௧ + 𝛽ଵଶ 𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑆𝑀𝐹௧ ∗ 𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑆𝑀𝐹௧

+ 𝛽ଵଷ𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝐵𝑆𝐵௧ ∗ 𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝐵𝑆𝐵௧

+ 𝛽ଵସ𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑇𝑂𝐺௧ ∗ 𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑇𝑂𝐺௧

+ 𝛽ଵହ 𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑆𝐶𝑃௧ ∗ 𝑆𝑒𝑎𝑠𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑆𝐶𝑃௧ +  𝜀௧ 

𝜀௧~𝑁(0, 𝜎ଶ) 
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Species availability model 

 

𝐿𝑛(1 + 𝑁 𝑎𝑛𝑔𝑙𝑒𝑟 𝑡𝑟𝑖𝑝𝑠௧)

=  ෍ൣ𝛼ଵ,௞ cos(𝜔௞𝑡) +  𝛼ଶ,௞ sin (𝜔௞𝑡)൧

௄

௞ୀଵ

+  ෍ 𝜙௣ ln(𝑁 𝑎𝑛𝑔𝑙𝑒𝑟𝑠)௧ି௣

௉

௣ୀଵ

+ ෍ 𝜃௤𝜀௧ି௤                                                                                                                         

ொ

௤ୀଵ

+ 𝛽଴ + 𝛽ଵ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑆𝑀𝐹௧ + 𝛽ଶ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝐵𝑆𝐵௧

+ 𝛽ଷ𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑇𝑂𝐺௧ + 𝛽ସ𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑆𝐶𝑃௧ + 𝛽ହ𝐶𝑃𝑈𝐸 𝑆𝑀𝐹௧

+ 𝛽଺ 𝐶𝑃𝑈𝐸 𝐵𝑆𝐵௧ + 𝛽଻𝐶𝑃𝑈𝐸 𝑇𝑂𝐺௧                                               

+ 𝛽଼𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑆𝑀𝐹௧ ∗ 𝑁 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑝𝑒𝑛௧                         

+ 𝛽ଽ 𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝐵𝑆𝐵௧ ∗ 𝑁 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑝𝑒𝑛௧                      

+ 𝛽ଵ଴ 𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 𝑇𝑂𝐺௧ ∗ 𝑁 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑝𝑒𝑛௧                   

+ 𝛽ଵଵ 𝑂𝑝𝑒𝑛 𝑠𝑒𝑎𝑠𝑜𝑛 𝑆𝐶𝑃௧ ∗ 𝑁 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑝𝑒𝑛௧ +  𝜀௧ 

𝜀௧~𝑁(0, 𝜎ଶ) 
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Supplementary materials 

Table S1: Black sea bass seasons, possession limits, and minimum length limits from 
2001 to 2017. 

Season open Season close Possession limit 
Minimum length limit 
(inches) 

5/10/2001 12/31/2001 25 11 
1/1/2002 2/28/2002 25 11 
3/1/2002 12/31/2002 25 11.5 
1/1/2003 9/1/2003 25 12 

9/16/2003 11/30/2003 25 12 
1/1/2004 9/7/2004 25 12 

9/22/2004 11/30/2004 25 12 
1/1/2005 12/31/2005 25 12 
1/1/2006 12/31/2006 25 12 
1/1/2007 12/31/2007 25 12 
1/1/2008 12/31/2008 25 12 
1/1/2009 10/4/2009 25 12.5 

5/22/2010 10/11/2010 25 12.5 
11/1/2010 12/31/2010 25 12.5 
5/28/2011 9/11/2011 25 12.5 
11/1/2011 12/31/2011 25 12.5 
5/19/2012 9/3/2012 25 12.5 
9/23/2012 10/14/2012 25 12.5 

1/1/2013 2/28/2013 15 12.5 
5/19/2013 8/8/2013 20 12.5 
9/27/2013 10/14/2013 20 12.5 
11/1/2013 12/31/2013 20 12.5 
5/19/2014 6/30/2014 15 12.5 

7/1/2014 8/31/2014 3 12.5 
9/1/2014 9/6/2014 15 12.5 

10/18/2014 12/31/2014 15 12.5 
5/27/2015 6/30/2015 15 12.5 

7/1/2015 7/31/2015 2 12.5 
10/22/2015 12/31/2015 15 12.5 

5/23/2016 6/19/2016 10 12.5 
7/1/2016 8/31/2016 2 12.5 

10/22/2016 12/31/2016 15 13 
5/26/2017 6/18/2017 10 12.5 

7/1/2017 8/31/2017 2 12.5 
10/22/2017 12/31/2017 15 12.5 
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Table S2: Season lengths, possession limits, and minimum length limits for summer 
flounder between 2001 and 2017. Differences in regulations between marine and 
Delaware Bay regulations were implemented starting in 2016.  

Season open 
Season 
close 

Possession 
limit 
marine 

Possession 
limit Del. Bay 
and tributaries 

Minimum 
length 
limit 
marine 
(inches) 

Minimum 
length limit 
Del. Bay and 
tributaries 
(inches) 

5/15/1999 10/11/1999 8 8 15.5 15.5 
5/6/2000 10/20/2000 8 8 15.5 15.5 

5/12/2001 9/11/2001 8 8 16 16 
5/18/2002 9/24/2002 8 8 16.5 16.5 

5/3/2003 10/13/2003 8 8 16.5 16.5 
5/8/2004 10/11/2004 8 8 16.5 16.5 
5/7/2005 10/10/2005 8 8 16.5 16.5 
5/6/2006 10/9/2006 8 8 16.5 16.5 

5/26/2007 9/10/2007 8 8 17 17 
5/24/2008 9/7/2008 8 8 18 18 
5/23/2009 9/4/2009 6 6 18 18 
5/29/2010 9/6/2010 6 6 18 18 

5/7/2011 9/25/2011 8 8 18 18 
5/5/2012 9/28/2012 5 5 17.5 17.5 

5/18/2013 9/24/2013 5 5 17.5 17.5 
5/23/2014 9/27/2014 5 5 18 18 
5/22/2015 9/26/2015 5 5 18 18 
5/21/2016 9/25/2016 5 4 18 17 
5/25/2017 9/5/2017 3 3 18 17 
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Table S3: Season lengths, possession limits, and minimum length limits for 
tautog between 2001 and 2017. 

Season open Season close 
Possession 
limit 

Minimum length 
limit (inches) 

1/1/2001 5/31/2001 10 14 
6/1/2001 10/9/2001 1 14 

10/10/2001 12/31/2001 10 14 
1/1/2002 5/31/2002 10 14 
6/1/2002 10/9/2002 1 14 
1/1/2003 5/31/2003 4 14 
6/1/2003 11/14/2003 1 14 

11/15/2003 12/31/2003 8 14 
1/1/2004 5/31/2004 4 14 
6/1/2004 11/14/2004 1 14 

11/15/2004 12/31/2004 8 14 
1/1/2005 5/31/2005 4 14 
6/1/2005 11/14/2005 1 14 

11/15/2005 12/31/2005 6 14 
1/1/2006 5/31/2006 4 14 
6/1/2006 11/14/2006 1 14 

11/15/2006 12/31/2006 8 14 
1/1/2007 5/31/2007 4 14 
6/1/2007 11/14/2007 1 14 

11/15/2007 12/31/2007 8 14 
1/1/2008 4/30/2008 4 14 

7/16/2008 11/15/2008 1 14 
11/16/2008 12/31/2008 6 14 

1/1/2009 4/30/2009 4 14 
7/16/2009 11/15/2009 1 14 

11/16/2009 12/31/2009 6 14 
1/1/2010 4/30/2010 4 14 

7/16/2010 11/15/2010 1 14 
11/16/2010 12/31/2010 6 13 

1/1/2011 4/30/2011 4 14 
7/16/2011 11/15/2011 1 14 

11/16/2011 12/31/2011 6 14 
1/1/2012 2/28/2012 4 15 
4/1/2012 4/30/2012 4 15 

7/17/2012 11/15/2012 1 15 
11/16/2012 12/31/2012 6 15 

1/1/2013 2/28/2013 4 15 
4/1/2013 4/30/2013 4 15 

7/17/2013 11/15/2013 1 15 
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11/16/2013 12/31/2013 6 15 
1/1/2014 2/28/2014 4 15 
4/1/2014 4/30/2014 4 15 

7/17/2014 11/15/2014 1 15 
11/16/2014 12/31/2014 6 15 

1/1/2015 2/28/2015 4 15 
4/1/2015 4/30/2015 4 15 

7/17/2015 11/15/2015 1 15 
11/16/2015 12/31/2015 6 15 

1/1/2016 2/28/2016 4 15 
4/1/2016 4/30/2016 4 15 

7/17/2016 11/15/2016 1 15 
11/16/2016 12/31/2016 6 15 

1/1/2017 2/28/2017 4 15 
4/1/2017 4/30/2017 4 15 

7/17/2017 11/15/2017 1 15 
11/16/2017 12/31/2017 6 15 
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Table S4: Season lengths, minimum length limits, and possession limits for 
scup between 2001 and 2017.  

Season open Season close 
Possession 
limit 

Minimum length 
limit (inches) 

7/4/2001 12/31/2001 50 9 
7/1/2002 10/31/2002 50 10 
7/1/2003 12/31/2003 50 10 
1/1/2004 2/28/2004 50 10 
7/1/2004 12/31/2004 50 10 
1/1/2005 2/28/2005 50 9 
7/1/2005 12/31/2005 50 9 
1/1/2006 2/28/2006 50 9 
7/1/2006 12/31/2006 50 9 
1/1/2007 2/28/2007 50 9 
7/1/2007 12/31/2007 50 9 
1/1/2008 2/28/2008 50 9 
7/1/2008 12/31/2008 50 9 
1/1/2009 2/28/2009 50 9 
7/1/2009 12/31/2009 50 9 
1/1/2010 2/28/2010 50 9 
7/1/2010 12/31/2010 50 9 
1/1/2011 2/28/2011 50 9 
7/1/2011 12/31/2011 50 9 
1/1/2012 2/28/2012 50 9 
7/1/2012 12/31/2012 50 9 
1/1/2013 2/28/2013 50 9 
7/1/2013 12/31/2013 50 9 
1/1/2014 2/28/2014 50 9 
7/1/2014 12/31/2014 50 9 
1/1/2015 2/28/2015 50 9 
7/1/2015 12/31/2015 50 9 
1/1/2016 2/28/2016 50 9 
7/1/2016 12/31/2016 50 9 
1/1/2017 2/28/2017 50 9 
7/1/2017 12/31/2017 50 9 

 
 
 
 
 
 
 
 



166 
 

Table S5. Frequency table showing the number of focus group participants in each of four 
stakeholder groups who referred to five aspects of New Jersey recreational fishing regulations: 
bag limits, minimum length limits, gaps between seasons or “blackout periods,” season length, 
season timing, and slot limits. The “associated businesses” stakeholder group includes tackle 
shops and marinas, members of the fishing media, and other industry representatives. 

Stakeholder group 
Bag 
limits 

Minimum 
length 
limits 

Season 
gaps 

Season 
length 

Season 
timing 

Slot 
limit* 

Associated businesses 5 4 5 4 5 2 
Charter boat sector 5 4 2 5 6 3 
Party boat sector 2 6 4 3 4 1 
Private angler 3 3 2 1 3 0 
Total 18 24 18 17 23 7 
* Slot limits define an intermediate size range allowable for harvest. A slot limit for summer 
flounder is a popular management proposal that was spontaneously brought up during several 
of the focus groups. Slots limits are not, however, part of the current slate of regulatory 
options.  
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Table S6: Species used to define bottomfish trips in the VTR data. Reports listing capture of at 
least one of these species were retained for analysis.    
Bottom fish common name Scientific name 
Atlantic cod Gadus morhua 
Black sea bass Centropristis striata 
Conger eel Conger oceanicus 
Oyster toadfish Opsanus tau 
Red hake Urophycis chuss 
Scup Stenotomus chrysops 
Sea robin Prionotus carolinus 
Summer flounder Paralichthys dentatus 
Tautog Tautoga onitis 
Triggerfish Balistes capriscus 
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Figure S1: Mean catch per trip for each of the four focal species based on MRIP access point intercept 
data. Catch rates are estimated by two-month wave of sampling. Empty circles indicate imputed values. 
Because the scup catch rates contained so many imputed values, they were not included as predictors in 
the ARMA models.  
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Table S7: Breusch-Godfrey test results for serial autocorrelation of residuals up to lag 105 for 
all best-fitting models.  
Model Chi Squared value P value 
Blackout effect--charter 
anglers 

95.265 0.7413 

Species availability--party 
anglers 

109.25 0.3687 
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Table S8: Coefficients of best-fitting model (blackout effect) to charter boat fishing effort time 
series, including the model’s seasonal component. Species-specific regulations and catch rates are 
indicated by the following abbreviations: black sea bass (BSB), summer flounder (SMF), tautog 
(TOG), and scup (SCP). DF=870 
Coefficient Estimate Standard error T value P value 
AR1 0.834 0.182 4.590 <0.0001 
AR2 -0.021 0.071 -0.297 0.766 
AR3 -0.157 0.050 -3.126 0.002 
AR4 0.132 0.035 3.794 0.0002 
MA1 -0.508 0.182 -2.797 0.005 
Intercept 2.203 0.760 2.897 0.004 
BSB PL 0.004 0.005 0.733 0.464 
SMF PL 0.018 0.022 0.852 0.394 
TOG PL 0.032 0.025 1.307 0.192 
SCP Open 0.229 0.152 1.507 0.132 
Something open 1.954 0.740 2.641 0.008 
N blackout days 0.024 0.017 1.465 0.143 
Something open * N blackout days -0.019 0.017 -1.170 0.242 
SMF CPUE 0.010 0.029 0.350 0.727 
BSB CPUE 0.007 0.006 1.069 0.285 
TOG CPUE -0.017 0.019 -0.902 0.367 
Sine 1 -1.733 0.125 -13.880 <0.0001 
Cosine 1 -1.783 0.152 -11.723 <0.0001 
Sine 2 -0.832 0.079 -10.495 <0.0001 
Cosine 2 0.662 0.070 9.406 <0.0001 
Sine 3 -0.155 0.059 -2.612 0.009 
Cosine 3 0.469 0.057 8.297 <0.0001 
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Table S9: Variance inflation factors for the main effect predictors of the blackout effect model 
for the charter boat time series. Species-specific regulations and catch rates are indicated by 
the following abbreviations: black sea bass (BSB), summer flounder (SMF), tautog (TOG), 
and scup (SCP). 
Predictor main effects VIF 
Sine 1 4.45 
Cosine 1 7.94 
Sine 2 1.75 
Cosine 2 1.42 
Sine 3 1.24 
Cosine 3 1.11 
BSB PL 1.91 
SMF PL 4.20 
TOG PL 2.56 
SCP Open 3.99 
Something Open 1.39 
N blackout days 2.01 
SMF CPUE 5.13 
BSB CPUE 1.23 
TOG CPUE 1.35 
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Table S10: Coefficients of best-fitting model (species availability) to party boat fishing effort 
time series, including the model’s ARMA and seasonal components. Species-specific 
regulations and catch rates are indicated by the following abbreviations: black sea bass 
(BSB), summer flounder (SMF), tautog (TOG), and scup (SCP). DF=870 

Coefficient Estimate 
Standard 
error T value P value 

AR1 0.772 0.060 12.794 <0.0001 
MA1 -0.537 0.079 -6.761 <0.0001 
Intercept 5.745 0.168 34.228 <0.0001 
BSB PL 0.050 0.010 5.050 <0.0001 
SMF PL 0.227 0.045 5.089 <0.0001 
TOG PL 0.141 0.033 4.283 <0.0001 
SCP Open -0.994 0.268 -3.712 0.0002 
BSB PL x N species available -0.014 0.004 -3.880 0.0001 
SMF PL x N species available -0.047 0.014 -3.474 0.001 
TOG PL x N species available -0.034 0.013 -2.506 0.012 
SCP PL x N species available 0.495 0.095 5.185 <0.0001 
SMF CPUE 0.005 0.023 0.219 0.827 
BSB CPUE 0.004 0.004 0.923 0.356 
TOG CPUE 0.030 0.012 2.444 0.015 
Sine 1 -0.899 0.087 -10.334 <0.0001 
Cosine 1 -1.003 0.110 -9.141 <0.0001 
Sine 2 0.080 0.058 1.370 0.171 
Cosine 2 0.370 0.048 7.630 <0.0001 
Sine 3 -0.087 0.044 -1.987 0.047 
Cosine 3 0.006 0.040 0.153 0.878 
Sine 4 -0.006 0.037 -0.158 0.875 
Cosine 4 0.019 0.033 0.585 0.559 
Sine 5 0.074 0.033 2.255 0.024 
Cosine 5 0.050 0.033 1.479 0.140 
Sine 6 -0.065 0.028 -2.360 0.018 
Cosine 6 0.065 0.028 2.327 0.020 
Sine 7 0.062 0.027 2.295 0.022 
Cosine 7 -0.003 0.028 -0.094 0.925 
Sine 8 0.078 0.026 2.977 0.003 
Cosine 8 -0.037 0.025 -1.449 0.148 
Sine 9 -0.049 0.025 -1.985 0.047 
Cosine 9 0.009 0.025 0.363 0.717 
Sine 10 0.038 0.024 1.562 0.119 
Cosine 10 0.042 0.024 1.724 0.085 
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Table S11: Variance inflation factors for the main effect predictors of the species availability 
model for the party boat time series. Species-specific regulations and catch rates are indicated 
by the following abbreviations: black sea bass (BSB), summer flounder (SMF), tautog (TOG), 
and scup (SCP). 
Predictor main effects VIF 
Sine 1 5.03 
Cosine 1 9.91 
Sine 2 1.83 
Cosine 2 1.46 
Sine 3 1.24 
Cosine 3 1.11 
Sine 4 1.23 
Cosine 4 1.07 
Sine 5 1.20 
Cosine 5 1.24 
Sine 6 1.01 
Cosine 6 1.03 
Sine 7 1.06 
Cosine 7 1.07 
Sine 8 1.06 
Cosine 8 1.01 
Sine 9 1.01 
Cosine 9 1.01 
Sine 10 1.01 
Cosine 10 1.01 
BSB PL 1.23 
SMF PL 4.73 
TOG PL 2.28 
SCP Open 5.27 
SMF CPUE 6.46 
BSB CPUE 1.24 
TOG CPUE 1.37 
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Table S12: Coefficients of the species availability model fit to the party boat fishing effort 
time series. The summer flounder-associated regulations were removed as predictors to detect 
bias in coefficient values associated with multicollinearity. Most coefficients were 
unchanged, but no significant effect between tautog possession limit and the number of 
species open was found in this model fit.  Species-specific regulations and catch rates are 
indicated by the following abbreviations: black sea bass (BSB), tautog (TOG), and scup 
(SCP). 

Coefficient Estimate 
Standard 
error T value P value 

AR1 0.722 0.074 9.722 <0.0001 
MA1 -0.474 0.096 -4.935 <0.0001 
Intercept 6.092 0.141 43.330 <0.0001 
BSB PL 0.038 0.009 4.463 <0.0001 
TOG PL 0.096 0.032 2.965 0.003 
SCP Open -0.973 0.264 -3.692 0.000 
BSB PL x N species available -0.010 0.003 -3.366 0.001 
TOG PL x N species available -0.013 0.013 -0.991 0.322 
SCP PL x N species available 0.405 0.093 4.333 <0.0001 
BSB CPUE 0.003 0.004 0.705 0.481 
TOG CPUE 0.034 0.012 2.750 0.006 
Sine 1 -1.001 0.078 -12.851 <0.0001 
Cosine 1 -1.266 0.070 -18.121 <0.0001 
Sine 2 0.098 0.057 1.731 0.084 
Cosine 2 0.477 0.045 10.519 <0.0001 
Sine 3 0.004 0.042 0.089 0.929 
Cosine 3 -0.022 0.041 -0.531 0.596 
Sine 4 -0.076 0.037 -2.051 0.041 
Cosine 4 0.026 0.034 0.776 0.438 
Sine 5 0.098 0.034 2.883 0.004 
Cosine 5 0.043 0.031 1.373 0.170 
Sine 6 -0.063 0.029 -2.185 0.029 
Cosine 6 0.057 0.029 1.952 0.051 
Sine 7 0.056 0.027 2.039 0.042 
Cosine 7 0.017 0.027 0.633 0.527 
Sine 8 0.082 0.027 3.041 0.002 
Cosine 8 -0.032 0.026 -1.217 0.224 
Sine 9 -0.056 0.025 -2.220 0.027 
Cosine 9 -0.006 0.025 -0.217 0.828 
Sine 10 0.043 0.025 1.734 0.083 
Cosine 10 0.035 0.025 1.400 0.162 
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Table S13: Variance inflation factors for the main effect predictors of the species availability 
model for the party boat time series with summer flounder season predictors removed from the 
analysis. Species-specific regulations and catch rates are indicated by the following 
abbreviations: black sea bass (BSB), tautog (TOG), and scup (SCP). 
Predictor main effects VIF 
Sine 1 3.75 
Cosine 1 2.49 
Sine 2 1.68 
Cosine 2 1.20 
Sine 3 1.09 
Cosine 3 1.11 
Sine 4 1.10 
Cosine 4 1.04 
Sine 5 1.19 
Cosine 5 1.03 
Sine 6 1.01 
Cosine 6 1.02 
Sine 7 1.02 
Cosine 7 1.02 
Sine 8 1.06 
Cosine 8 1.01 
Sine 9 1.01 
Cosine 9 1.01 
Sine 10 1.01 
Cosine 10 1.01 
BSB PL 1.13 
TOG PL 2.23 
SCP Open 5.23 
BSB CPUE 1.23 
TOG CPUE 1.35 
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Abstract 

Populations of walleye (Sander vitreus), a popular target species and cornerstone of the 

recreational fishing economy, are losing their ability to naturally reproduce in most Wisconsin 

lakes. At the same time centrarchids such as largemouth bass (Micropterus salmoides) and 

bluegill (Lepomis macrochirus) have flourished. As fewer lakes support naturally recruiting 

walleye populations in the future, managers will face the choice of whether to invest in 

maintaining more walleye lakes through stocking of extended-growth fingerlings. The success of 

these interventions would depend in part on angler response to changes in walleye availability, 

including their willingness to travel greater distances and/or substitute alternative target species. 

As the number of quality walleye lakes continues to decline, anglers targeting this species may 

leave the fishery, switch target species, or concentrate their fishing effort on the remaining 

walleye lakes. Stated preference methods such as choice experiments allow respondents with 

different preferences to weigh hypothetical fishing trips that vary systematically in their 

properties, including travel time and catch rates. We distributed an online discrete choice 

experiment and survey to holders of WI resident fishing licenses. Three latent classes of anglers 

varied in their willingness to travel to achieve increased walleye and largemouth bass catch rates, 

but we found no evidence that anglers would concentrate their fishing effort on distant lakes as 

walleye populations declined. Neither did we find evidence that largemouth bass and bluegill 
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were “second choice” species to walleye. Rather, most respondents were motivated by quality 

fishing sites for multiple species that were listed. The most committed class of anglers was also 

motivated to fish for species that were not included in the choice experiment, including black 

crappie (Pomoxis nigromaculatus), yellow perch (Perca flavescens), and trout (Salvelinus 

namaycush and Oncorhynchus mykiss). These results suggest that many Wisconsin anglers may 

be satisfied by quality fishing for other species in the future in spite of ongoing walleye declines.  
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Introduction 

The recreational fishery of northern Wisconsin is approaching a tipping point. 

Populations of walleye (Sander vitreus), a popular target species and cornerstone of the 

recreational fishing economy (Tingley et al. 2019; Holsman and Scott 2021), are losing their 

ability to naturally reproduce in most Wisconsin lakes (Rypel et al. 2018). The contribution of 

different possible mechanisms driving this change remain unclear, but direct effects of water 

temperature and precipitation (Fayram et al. 2014; Hansen et al. 2015a, 2017), food web changes 

(Fayram et al. 2005; Kelling et al. 2016), and increased residential development (Scheuerell and 

Schindler 2004; Anthony and Jorgensen 2011) are all possible explanations for loss of walleye 

recruitment. Because harvest of walleye has remained steady as their production has declined, 

walleye in Wisconsin are overharvested (Embke et al. 2019). Simultaneously, warmwater fish 

populations such as largemouth bass (Micropterus salmoides) have flourished (Hansen et al. 

2015b). Fisheries managers have resisted this shift in species composition by increasingly 

relying on stocking to supplement natural walleye recruitment (WDNR 2020; Lawson et al. 

2022). However, in the face of a continuing trend of walleye losses, maintaining sustainable 

walleye fisheries will only become more difficult (Hansen et al. 2017).  

The state of Wisconsin has invested heavily in stocking walleye fingerlings between 175 

and 200 mm in length into lakes that are most likely to support self-sustaining walleye 

populations (Hansen et al. 2015a). Although stocking these larger individuals does improve 

survival by reducing predation (Grausgruber and Weber 2020), stocking failures remain 

relatively common, and average rates of survival for stocked walleye are declining over time as 

lake habitats become less suitable (Lawson et al. 2022). In addition, stocked walleye are skewed 

female, which may be leading to sex imbalances in walleye population and further limiting 
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natural reproduction (Sass et al. 2022). Stocking events in low walleye density lakes may also 

attract increased fishing effort, further straining the walleye population (Fayram et al. 2006).  

These mixed results therefore raise the question: to what extent will continued stocking of 

walleye benefit Wisconsin anglers? The answer to this question will depend in part on whether 

improved walleye catch rates or size structure drive increased fishing effort as the number of 

quality walleye lakes decline.  

Future strategies for walleye management will depend on whether dedicated walleye 

anglers are willing to fish for alternative species or whether they would rather travel greater 

distances to continue fishing for walleye. Walleye is a highly popular target species among WI 

anglers, but bluegill (Lepomis macrochirus) is actually the number one target species in terms of 

fishing effort (Holsman and Scott 2021). As walleye production continues to decline and 

warmwater species thrive, anglers may reallocate their walleye fishing effort to warmwater 

species such as bluegill and largemouth bass. Anglers have heterogeneous preferences and vary 

in their degree of specialization to particular species (Arlinghaus et al. 2019). Maintaining 

diverse fishing opportunities is therefore an important strategy for achieving high angler 

satisfaction (Beardmore et al. 2015; van Poorten and Camp 2019). Anglers in a variety of 

systems have demonstrated willingness to switch target species when their first choice is 

depleted (Ditton and Sutton 2004; Askey and Johnston 2013) or when its harvest is restricted by 

regulations (Beaudreau et al. 2018; Chagaris et al. 2019; Trudeau et al. 2022). If suitable target 

species are available nearby, these anglers are unlikely to travel great distances to target walleye.  

Diversity in target species provides redundancy to a fishery system (i.e. the water bodies, 

fish species, and anglers within a particular region), resulting in greater resilience and reduced 

probability of stock collapse (Kotschy et al. 2015). For example, the species diversity of Kenyan 
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artisanal reef fisheries have avoided collapse in spite of high fishing pressure in part because 

fishers can substitute smaller bodied target species when larger fish are depleted (McClanahan et 

al. 2008). In addition, targeting a variety of species has been associated with shorter travel 

distances in marine commercial fisheries (Young et al. 2019). As Mid-Atlantic stocks shifted 

north, large vessels with limited harvest portfolios traveled greater distances to harvest the same 

species while vessels that harvested a variety of species fished closer to their home ports. As 

coldwater species assemblages in Wisconsin shift towards centrarchid-dominated communities, 

the success of stocking efforts to supplement walleye recruitment could be counteracted by 

intensified fishing effort if, similar to commercial vessels with limited harvest portfolios, 

dedicated walleye anglers are willing to travel greater distances to maintain their walleye catch. 

The recreational walleye fishery in Wisconsin, however, is driven by different motivations than 

those of artisanal or commercial fisheries. Although both recreational and commercial fishers 

may need to change gears and fishing strategies to switch target species, the costs to recreational 

anglers are lower, no change in fish processing is required, and there is no requirement among 

recreational anglers to maintain or reduce profits in order to justify these investments of time 

and/or money. Angler populations have therefore shown that they are generally willing to 

substitute target species, as long as the costs of access are not substantially higher for the 

alternative species (Fisher and Ditton 1993)and the alternative species provides a similar type of 

experience to the angler, e.g. the opportunity to catch a trophy fish (Sutton and Ditton 2005).  

Travel time is a common metric of costs when evaluating site choice behavior among 

recreational anglers (Hunt et al. 2019). Participants weigh sites’ distances versus their expected 

benefits, choosing the site providing the greatest net utility (e.g. McConnell and Strand 1981). As 

preferred sites become unavailable or less beneficial, participants are expected to substitute less 
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preferred sites that may be further away (Carpenter and Brock 2004). In the case of the 

Wisconsin walleye fishery, for anglers who are unwilling to substitute nearby sites that do not 

support quality walleye populations, their only remaining choice would be to substitute greater 

travel distances. If fishing effort follows an ideal free distribution (IFD) (Fretwell and Lucas 

1969), fish population densities and catch rates are expected to decline and homogenize as 

fishing effort and population densities approach equilibrium. The IFD hypothesizes, however, 

that fishing quality will decline and homogenize only among sites with similar access costs 

(Parkinson et al. 2004). The limits of anglers’ willingness to travel when anglers are centrally 

located have been demonstrated as a “halo of depletion” of fishing quality around population 

centers in simulation models (Post et al. 2008; Carruthers et al. 2018) and empirically (Wilson et 

al. 2020). Among more dispersed angler populations, spatial fishing effort dynamics are more 

difficult to predict, as they depend on emergent effects of complex interactions between fish 

population dynamics, angler behavior, and management interventions such as stocking 

(Carruthers et al. 2018), where ecological and social heterogeneity significant alter outcomes 

(Matsumura et al. 2019). Among WI walleye anglers, changes in the distribution of fishing effort 

across the state as walleye populations decline will likely depend on individual tradeoffs between 

travel times and catch rates. If the utility of quality walleye fishing is high enough to outweigh 

greater travel times, a pattern of sequential collapse of walleye populations could arise as fewer 

naturally reproducing walleye populations persist. The success of stocking interventions to 

prevent these collapses will also depend on efficient allocation of limited hatchery-raised walleye 

to achieve equitable benefits among anglers (Askey et al. 2013). This optimization relies on 

understanding heterogeneity in angler willingness to travel across the state.   
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In this study we use a stated preference method to evaluate how heterogeneous 

Wisconsin recreational anglers trade off travel time and species availability in their site choice 

behavior.  By accounting for preference heterogeneity in our choice model, we inferred potential 

compensation behaviors for different groups of anglers as they weighed hypothetical tradeoffs 

between travel time, catch rates, and maximum sizes for walleye, largemouth bass, and bluegill. 

We hypothesized that walleye specialists would be willing to travel greater distances to achieve 

greater walleye catch rates, which would emerge as a positive interaction effect between travel 

time and walleye catch rates. In contrast, we predicted that non-walleye specialist anglers would 

be willing to substitute centrarchid species rather than travel greater distances to target walleye.  

Methods 

Statistical framework 

We evaluated the choice behavior of anglers with heterogeneous preferences using the 

framework of random utility theory. Within this framework, anglers are assumed to make 

choices that maximize their expected utility, or benefit, based on an unobserved internal utility 

function (McFadden 1974). Utility is expressed as a linear function of observable characteristics 

(A) of potential fishing sites (𝑥௔௝), their estimated coefficients (𝛽௔), and unobserved factors that 

are characterized by the error term 𝜀. A utility function of site j for individual i is therefore 

written: 

𝑈௜௝ = ෍ 𝛽௔𝑥௔௝ + 𝜀௜௝

஺

௔ୀଵ

 

 

for a number of site attributes A, where the error term ε is independently and identically 

distributed following a Gumbel distribution (Train 2009). The probability of individual i 
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choosing site j out of all available sites J (𝑃௜௝) can then be modeled as the multinomial logit 

model: 

𝑃௜௝ =
𝑒ఉబା∑ ఉೌ௫ೌೕ

ಲ
ೌసభ

∑ 𝑒ఉబା∑ ఉೌ௫ೌೕ
ಲ
ೌసభ

௃
௝ୀଵ

 

 

Where the vector 𝛽଴ indicate alternative specific constants representing the choice to go 

fishing at one of the three sites (fixed to zero), to fish elsewhere for another species, and to not 

go fishing. Coefficients of site characteristics are represented as the vector 𝛽௔, which are all set 

to 0 for the opt-out choices.  

Individual heterogeneity can be accommodated by specifying beta coefficients as random 

parameters and allowing differences among preferences by individual, such as in a mixed 

multinomial logit model (MMNL or MXL) (McFadden and Train 2000). Groups can also be 

defined a priori by individual characteristics in order to estimate different choice parameters for 

each group (e.g. Gensch and Javalgi 1987). Alternatively, latent class membership probabilities 

can be estimated for individuals based on their preferences and individual characteristics, such as 

in a latent class multinomial logit model (LC-MNL) (Kamakura and Russell 1989). A strength of 

the latent class approach is the ability to associate membership in maximally different groups, 

and therefore differences in preferences, with respondent characteristics such as avidity and 

specialization (e.g. Beardmore et al. 2013). Latent class membership and preferences for site 

attributes are estimated jointly, where individual characteristics C (represented by the vector 

𝑥௜௖ for individual i) and their coefficients 𝛾௦ predict the probability of individual i belonging to 

latent class S with intercept constant 𝛿௜௦.  
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𝜋௜௦ =
𝑒ఋ೔ೞା∑ ఊೞ೎௫೔೎

಴
೎సభ

∑ 𝑒ఋ೔ೞା∑ ఊೞ೎௫೔೎
಴
೎సభௌ

௦ୀଵ

 

 

Each latent class then has its own set of parameter values (𝛽௦) predicting the choice 

probability of individuals within its class. The probability of individual i choosing site j for a 

given choice scenario is therefore the product of their class membership multiplied by their 

choice probability for that class, summed over all classes. 

 

𝑃௜௝ = ෍
𝑒ఋ೔ೞା∑ ఊೞ೎௫೔೎

಴
೎సభ

∑ 𝑒ఋ೔ೞା∑ ఊೞ೎௫೔೎
಴
೎సభௌ

௦ୀଵ

∗
𝑒ఉబା∑ ఉೞೌ௫ೌೕ

ಲ
ೌసభ

∑ 𝑒ఉబା∑ ఉೞೌ௫ೌೕ
ಲ
ೌసభ

௃
௝ୀଵ

ௌ

௦ୀଵ

 

 

To maximize the information gathered from each respondent, and to more closely 

resemble the reality of how anglers choose fishing sites, we asked respondents to allocate 10 

days of fishing across five options: three hypothetical fishing sites, the option to go fishing 

elsewhere for an unlisted species, and the option to not go fishing at all. This allocation approach 

required the use of a model that could accommodate a response between 0 and 1 (i.e. between 0 

and 100% of the 10 days) rather than a discrete response.  

A latent class fractional multinomial logit model (LC-FMNL) extends on the LC-MNL 

framework to allow choices made by allocation (i.e. non-discrete choices) and accounts for 

repeated choices by individual respondents (Papke and Wooldridge 1996; Hess and Palma 2022). 

The probability of individual i choosing site j in choice scenario t dependent on a vector of utility 

parameters β is represented by 𝑃௜௝௧(𝛽). 
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The likelihood of a series of repeated choices made by individual i in latent class s across 

T tasks (𝑠௜௝௧) with fishing sites J is then:  

 

𝐿௜(𝛽) = ෑ ෑ 𝑃
௜௦௝௧

௦೔ೕ೟(𝛽)

௃

௝ୀଵ

்೔

௧ୀଵ

 

 

Where 0 ≤ 𝑠௜௝௧ ≤ 1 and ∑ 𝑠௜௝௧ = 1. In our case 𝑠௜௝௧ is the proportion of days allocated to each 

fishing site. By substituting the multinomial logit choice probability for 𝑃௜௝௧, we have the 

likelihood function for latent class S: 

 

𝐿௜(𝛽௦) = ෑ
𝑒ఉబା∑ ௦೔ೕ೟ఉೞೌ௫ೌೕ

ಲ
ೌసభ

∑ 𝑒ఉబା∑ ఉೞೌ௫ೌೕ
ಲ
ೌసభ

௃
௝ୀଵ
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Choice experiment design 

The choice experiment was designed to elicit tradeoffs between travel time, catch rates, 

and maximum sizes for walleye, bluegill, and largemouth bass (Fig. 1). Rather than a single 

discrete choice, respondents were asked to allocate ten hypothetical fishing days between three 

potential fishing sites, the choice to fish elsewhere for a different species, and a choice to not go 

fishing at all. A preliminary design of the discrete choice experimented was pre-tested at five 

focus groups of Wisconsin walleye anglers. Participants were recruited from a list of anglers who 

had participated in public meetings for the Wisconsin Walleye Management Plan and had 

provided their contact information for future involvement in WI fisheries management. Focus 

groups took place between October 4 and 11, 2021. A total of 21 participants were shown the 



186 
 

discrete choice experiment and asked to provide feedback on the prompt, the importance of the 

attributes in their decision-making, and the attribute levels. We finalized the choice attributes and 

their levels based on focus group feedback (Table 1). 

 Attribute levels were based on two sets of creel survey data. To choose levels for catch 

rates and maximum fish sizes, we referenced creel data collected by the WDNR between 1990 

and 2020. We chose travel time levels based on anglers’ reported travel times to their fishing site 

from a creel survey conducted in 2018 and 2019 in Vilas County (Trudeau et al. 2021). Attribute 

levels initially corresponded to 5, 25, 50, 75, and 95% quantiles of creel survey responses. We 

pooled all data across lakes to estimate catch rate quantiles. For maximum fish sizes, we instead 

found maximum sizes reported within lakes before calculating their quantiles across all lakes.  

These preliminary levels were then adjusted to account for biases associated with the survey 

method (i.e. that size data represented only fish that were harvested) and feedback from focus 

group participants. We therefore included lower maximum sizes and higher travel times than 

those represented strictly within the 95% quantiles of the creel survey data. In addition, because 

we expected that avid, experienced anglers would respond to our survey in higher numbers than 

casual anglers, we included higher levels of catch rates and maximum sizes to ensure that skilled 

anglers would be presented with acceptable options in the choice experiment (Hilborn 1985) 

(Table S1). Lastly, the large number of choice attributes and the lack of any regulatory attributes 

were critiqued by focus group participants. To accommodate this feedback, we first removed a 

preliminary attribute that described typical (median) sizes for the species of interest to reduce the 

cognitive load on respondents (Hoyos 2010). Second, rather than introducing an additional 

choice attribute for fishing regulations, we changed our walleye maximum sizes to include sizes 

that were one inch shorter and longer than the most common minimum length limit of 15 inches 
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for walleye in Wisconsin. The lower two maximum sizes (12 and 14 inches) were therefore 

likely to be perceived as unharvestable by WI anglers. Similarly, the 24 inch maximum sized 

walleye is unharvestable under the most common restricted slot limit of 20 to 28 inches but may 

be desirable to anglers wishing to catch and release large walleye.  

We generated a D-efficient (Ferrini and Scarpa 2007) fractional factorial design using the 

modified Federov algorithm (Cook and Nachtrheim 1980) in Ngene version 1.2 (ChoiceMetrics 

2018). The design consisted of 100 versions of 5 choice tasks, each of which presented three 

hypothetical fishing trips that varied in travel time, catch rates, and maximum fish sizes (D error 

= 0.0035). We used a token allocation approach, in which respondents were asked to allocate 10 

hypothetical fishing days within each choice task. These fishing days could be allocated across 

three fishing trips and two opt-out options: to go fishing elsewhere for another species and to not 

go fishing that day. Participants were randomly assigned one version of the choice experiment, 

consisting of 5 choice tasks.  

Travel time and catch rates were included as linear effects, and maximum fish sizes were 

included as categorical effects. Dummy coding for maximum fish sizes included a “zero” 

baseline level corresponding to zero expected catch rates. No zero catch rates were included for 

bluegill in the design, so the baseline maximum size was instead the lowest value of 6 inches. 

Dummy coding of maximum sizes was used to accommodate the “zero” value associated with 

zero catch rates and to investigate nonlinear responses of utility to maximum fish sizes. Linear 

catch rates were used to avoid an excessive number of parameters in the model. Constraints on 

the design prevented non-zero catch rates from corresponding with this “zero” maximum size, 

and vice versa. The design avoided repetition of alternatives within a choice task as well as 

dominant choices based on the sign of the specified prior values of the parameters. We did not 
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have prior knowledge of the number of latent classes to expect, so we chose conservative prior 

values for MNL (rather than LC-MNL) parameters, e.g. low negative values for travel time and 

low positive values for catch rates and high maximum sizes (Table S2). The signs of interaction 

effects were unknown, so prior values of zero were used to generate the design.   

Additional survey questions 

In addition to the five choice scenarios, respondents were asked a series of survey 

questions to characterize differences in their fishing behaviors and preferences. First, to ensure 

that only active anglers (and not, for example, Wisconsin residents that had purchased a license 

but had never gone fishing), respondents were asked to record the number of years they had 

fished in Wisconsin. Anyone answering “0” was then directed to the end of the survey. Similarly, 

a question asking if respondents planned to continue fishing in Wisconsin in the future filtered 

out any respondents who would no longer be active anglers after 2021. The final filtering 

question asked respondents to indicate how often they target a variety of fish species on a five 

point Likert scale (never, seldom, half the time, usually, always), including walleye, largemouth 

bass, and bluegill. If respondents indicated that they never targeted either of these three species, 

they were directed to the end of the survey. Anglers who did not ever target bluegill, largemouth 

bass, or walleye therefore did not complete the choice experiment. 

After completing the five choice scenarios, respondents were asked to rate their 

agreement on a five point Likert scale with a series of statements describing their catch-related 

attitudes based on a subset the statements used by Anderson et al., (2007) (Table 2). We used a 

subset rather than the full set of statements to reduce the length of our survey. In addition, 

respondents were asked to respond to a series of semantic differential (i.e. slider) questions rating 

the centrality of fishing to their lifestyle, catch and release behavior, and self-described fishing 
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skill on a scale from 1 to 100 (Table 3). These responses were divided by 20 prior to analysis to 

rescale them to match the statements eliciting catch-related attitudes. These questions were 

obtained from a survey of first-time license buyers conducted by the WDNR (Beardmore 2021). 

Last, respondents were asked to select their household annual income bracket, while other 

demographic information (age and gender) were available from the sampling frame. Respondents 

were also asked to indicate the number of days they had fished in the past year.  

Sampling 

We obtained a sample of 10,000 WI resident fishing license purchasers from 2021. Of 

this full sample, 9,000 were selected from among all license purchasers over 18 who also 

provided an email address. These residents were contacted by email. Sampling of license records 

was initially stratified by the proportion of the state’s population residing in each region (Table 

S3). Walleye are a particularly important fishery in Northern Wisconsin, which is primarily rural. 

Sampling weights were therefore decreased in Dane and Milwaukee Counties and increased in 

the Northern WI region. Based on census data, 17% of the WI population is over 60. Because 

28% of WI resident fishing license holders are over 60 (Table S4), we allocated 25% of our 

samples within each region to license purchasers in this age group (Table S5).  

The remaining 1,000 were selected from among all license purchasers, regardless of 

whether they provided an email address. This sample was stratified by region as described above, 

but not by age. A push-to-online version of the survey was mailed to this subsample of anglers as 

a postcard in order to reach anglers that cannot be contacted by email.  

Survey Distribution 

We hosted the online discrete choice experiment and survey through Sawtooth Studios, 

and we distributed the survey and choice experiment to 9000 holders of WI residential fishing 
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license through Qualtrics by email. Each participant was contacted three times: one initial 

contact and two follow-up reminders.  

For the 1000 participants contacted by mail, we sent one initial postcard and one follow-

up. The postcard directed respondents to follow a QR code or copy a URL in order to reach the 

online survey. The follow-up contact additionally included a tear-away return postcard to opt out 

of the survey. This postcard asked participants to indicate the number of years they have fished 

in Wisconsin, whether or not they plan to fish in the future, how many days of the past year they 

went fishing, and how often they fish for walleye. This reduced survey was used to assess 

nonresponse bias.  

Analysis 

We tested for response bias by age, gender, and urban vs rural primary residence. 

Participants were classified as living in an urban county based on classifications made by the 

Wisconsin Office of Rural Health (Office of Management and Budget 2010). We compared ages 

of respondents and nonrespondents using the Kruskal Wallis test (Kruskal and Wallis 1952). We 

compared gender and urban vs rural primary residence between respondents and nonrespondents 

using Pearson’s Chi Squared test (Pearson 1900). In addition, we tested for differences between 

respondents and nonrespondents in fishing experience, avidity, and frequency of walleye fishing 

using the opt-out responses to the mail survey.  All analyses were completed in R v.4.1.0 (R 

Core Team 2021). 

In addition to site attributes, our choice model included individual covariates predicting 

membership within latent classes with similar preferences for fishing sites. We used 

confirmatory factor analysis (CFA) to produce scores for four factors adapted from Kyle et al., 

(2007) and Beardmore et al (2013) describing catch orientation, consumptive orientation, trophy 
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seeking behavior, self-described skill at angling, and centrality of fishing to an angler’s lifestyle. 

Catch orientation describes the importance of catching fish to an angler in order to achieve a 

satisfying fishing experience, and consumptive orientation describes an anglers’ tendency to 

harvest fish rather than release them (Kyle et al. 2007). Trophy seeking behavior describes the 

importance to an angler of catching larger fish. Finally, centrality to lifestyle indicates the 

commitment of an individual to fishing and their tendency to specialize, i.e. to target particular 

species rather than “whatever bites” (Beardmore et al. 2013). We completed this analysis using 

the lavaan R package (Rosseel 2012). Comparative Fit Index (CFI) and root mean square error of 

approximation (RMSEA) were calculated to assess model fit (Table 4). A CFI of greater than 0.9 

and an RMSEA of less than 0.1 indicate acceptable model fits (Brown 2015). The skill and 

centrality to lifestyle factors were strongly correlated (σ = 0.813), so to reduce model 

complexity, the skill factor was not included as a covariate predicting latent class membership. 

Factor scores for centrality to lifestyle, trophy orientation, consumptive orientation, and catch 

orientation were produced for each respondent.  

We fitted latent class fractional multinomial choice models using the Apollo R package 

v.0.2.7 (Hess and Palma 2019). To assist convergence, continuous predictor variables were 

normalized (i.e. centered around 0 and scaled to a standard deviation of 1). A baseline alternative 

specific constant was specified for the three potential fishing sites and fixed to zero as an 

intercept for the site choice utility functions (Fishing ASC). Two additional alternative specific 

constants were specified for the “fish elsewhere for another species” (Fish elsewhere ASC) and 

“do not go fishing” (Do not fish ASC) opt-out options.  Travel time and walleye, bluegill, and 

largemouth bass catch rates were fit as continuous predictors of utility. Maximum sizes were 

included as categorical variables. For walleye and largemouth bass, the “0” maximum length 
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corresponding to zero catch rates was the baseline level, and for bluegill the smallest maximum 

length of 6 inches was the baseline. Interactions between the catch rate for each species and 

maximum sizes were included to account for an expected additional effect on utility of a site 

with both high catch rates and large maximum sizes. To aid convergence, the second-lowest 

maximum size was not included as an interaction effect. An interaction between walleye catch 

rate and travel time was included to test the hypothesis that anglers would travel greater 

distances to achieve higher walleye catch rates. Interactions between walleye and largemouth 

bass catch rates as well as walleye and bluegill catch rates were included to test the hypothesis 

that anglers would substitute centrarchids for walleye. Robust standard errors were estimated to 

account for the panel (i.e. repeated choice) nature of the data.  

We compared Akaike Information Criterion (AIC) values of models containing between 

1 and 5 latent classes. We accepted a ΔAIC>2 as evidence that a model had a worse fit than the 

model with a lower AIC value (Burnham and Anderson 2002). Individual covariates were then 

added to the best fitting latent class model. These covariates were CFA factor scores 

summarizing individuals’ centrality of fishing to their lifestyle, trophy orientation, noncatch 

orientation, and consumptive orientation. Each combination of these four covariates were 

included in 14 candidate models, and we compared their AIC scores to choose the best fitting 

model.  

Parameters of site attributes were rescaled into willingness to travel (WTT) estimates by 

dividing their value by the negative of the travel time cost attribute. Because travel time was 

centered and scaled for the model fit, WTT estimates were then converted into minutes of travel. 

Standard errors were obtained by the Delta method (Daly et al. 2012). Interactions of catch rates 

and travel time could not produce WTT estimates, so the effect sizes of these interactions were 
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evaluated by predicting choice probabilities given different combinations of travel time and catch 

rates. Walleye catch rates and travel times were varied across all levels included in the choice 

experiment, and the rest of the attributes were held at their median value. Choice probability was 

predicted relative to a baseline option where all attributes were held at their median value as well 

as the two opt-out options. These choice probability predictions were produced for both median 

walleye maximum size (16 inches) and the largest maximum size value (24 inches).  

Post hoc comparison of latent classes 

 We classified individual respondents into latent classes according to their largest 

conditional probability of class membership. We used the Kruskal Wallis test to evaluate 

differences among groups in the number and types of species they reported targeting. We then 

used Bonferroni corrected Mann Whitney-Wilcoxon tests to complete post-hoc comparisons of 

classes.  

Results 

Out of 10000 survey links distributed, 728 participants followed the link, and 600 

participants completed the survey, resulting in a 6.0% response rate for completed surveys. Of 

the 9000 surveys distributed by email, 649 responses were received. In comparison, 79 responses 

were received out of the 1000 surveys distributed by mail. Of the 1000 of these participants 

contacted by mail, 59 returned the abbreviated opt-out mail survey.  Responses to the full survey 

were then filtered for quality, removing 20 respondents who had allocated all fishing days to the 

same choice for each of the 5 choice scenarios regardless of attribute levels and a further 7 

responses for incomplete survey questions.  

Men responded to the survey at a greater rate than women with a response rate of 7.0% 

compared to a female response rate of 4.7% 𝜒ଶ(1, N = 10000) = 13.81, p = 0.0002. Responses 
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were also more likely from residents of urban counties, with a response rate of 6.8% compared to 

a rural response rate of 5.7% 𝜒ଶ(1, N = 10000) = 13.89, p = 0.049. Survey respondents also 

tended to be younger, with a median age of 57 (σ=16.5) years compared to 61 (σ=16.6) years for 

nonrespondents (W = 121.09, N=10000, p<0.0001). Anglers who completed the opt-out 

abbreviated survey reported more years of fishing experience in WI (median = 50 years, σ = 

21.69) than respondents to the full online survey (median = 40 years, σ = 18.42) (W = 6.55, 

N=657, p = 0.01). However, these anglers who opted out of the survey also reported fewer days 

fishing in the past year (median = 15 days, σ =31.65) than full survey respondents (median = 21 

days, σ = 45.92) (W = 7.51, N=657, p = 0.006) and were less likely to target walleye (median = 

‘seldom’ (ordinal level 2), σ = 1.16) compared to full survey respondents (median = ‘half the 

time’ (ordinal level 3), σ = 1.17) (W = 5.81, N = 657, p = 0.02). Respondents to the survey 

therefore over-represented younger and more frequent anglers. Survey results will reflect avidity 

bias (Lewin et al. 2021) and therefore may not represent the preferences of the more numerous 

casual anglers in WI.   

 A 3 class LC-FMNL model emerged as the best fit to the choice data (Table 5). When 

models testing the fit of individual covariates were compared, two sets of covariates emerged as 

the best fit (Table 6). Both models included centrality to lifestyle and non-consumptive 

orientation. The only covariate that differed was the noncatch orientation variable in the lowest-

AIC model, which was replaced by the trophy orientation in the second-lowest AIC model. The 

parameter values of the second-best model (Tables S6-S8) had very similar values for shared 

coefficients. When individuals were classified according to their great latent class probability, 

latent classes A, B, and C made up 4%, 78%, and 18% of the sample, respectively. Respondents 

of different classes showed different preferences for fishing site characteristics (Tables 7-9).  
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Class A was the smallest latent class, containing only 20 respondents.  Because of the 

class’s limited sample size, estimated parameters had higher standard errors (Table 7). 

Respondents in this class placed a high positive utility value on the non-fishing opt-out choice (p 

= 0.01). The utility of travel time was the most negative for this class compared to the other two 

latent classes. Of the non-cost attributes, only bluegill catch rates (p=0.04) and the largest 

bluegill maximum size of 10 inches (p = 0.01) emerged as significant predictors of site choice. 

On average, these anglers were willing to travel 93 minutes to achieve a 1 SD increase in bluegill 

catch rate and 134 minutes to fish in lakes with 10 inch bluegill. A 1 SD increase in catch rate 

was equal to 7.51 fish per 4 hours in the choice survey design, meaning that individuals of this 

class were on average willing to travel an additional 12.4 minutes for an increase in catch rate of 

1 fish per 4 hours. No individual covariates emerged as significant predictors of class A 

membership. 

Class B respondents were motivated to choose the fishing sites that were presented rather 

than opt out, exhibiting a negative utility for not going fishing (p < 0.0001) (Table 8). Anglers of 

class B were on average more willing to travel than those of class A or C, but travel time still had 

a negative utility (p<0.0001). Their choices were motivated by a broader range of the listed 

species, with walleye, largemouth, and bluegill catch rates as positive predictors of site choice. 

Respondents were willing to travel 54 minutes to increase their walleye catch rate by 1 fish per 4 

hours (62.42 minutes / 1.16 walleye). They were willing to travel 24 and 9.73 minutes to increase 

their largemouth bass and bluegill catch rates, respectively, by 1 fish per 4 hours. Class B 

respondents’ choice probabilities increased with increasing maximum size of walleye, reaching 

significant positive values once maximum walleye size reached the range that is typically 

harvestable in WI (>15 inches, < 20 inches). Their willingness to travel for larger walleye was 



196 
 

the greatest of all classes, estimated at 93 minutes for 16 inch, 90 minutes for 20 inch, and 114 

minutes for 24 inch maximum sizes. Respondents also showed a high willingness to travel for 8 

and 10 inch maximum bluegill (63 and 87 minutes, respectively) and 16 and 20 inch largemouth 

bass (73 and 77 minutes, respectively). No individual covariates were significant predictors of 

class membership. The only significant interaction effect found for class B was a positive 

interaction between walleye catch rate and the second-largest maximum size of 20 inches (p = 

0.05).    

Class C members placed a high positive utility value on the choice to fish elsewhere for a 

different species (p < 0.0001) (Table 9). Travel time had a significant negative utility (p < 

0.0001). Catch rates of walleye, largemouth bass, and bluegill were not significant predictors of 

site choice for this class. Rather, they were willing to travel 100 minutes to fish at lakes with 24 

inch walleye and 98 minutes to fish at lakes with 10 inch bluegill. Respondents with a high 

centrality of fishing to their lifestyle (p = 0.01) and a non-consumptive fishing orientation (p = 

0.03) were more likely to be assigned to this latent class. In addition, significant additional 

positive effects of large maximum sizes of walleye (16, 20, and 24 inch) and largemouth bass (20 

inch) were present as interaction effects with walleye and largemouth bass catch rates, 

suggesting that these respondents preferentially chose sites with both high catch rates and high 

maximum sizes. Finally, a significant positive interaction effect between walleye catch rates and 

travel times was detected (p = 0.02), suggesting that these anglers were willing to travel greater 

distances to achieve higher walleye catch rates. 

Although the interaction effect of walleye catch and travel time for class C was positive 

and significant (p = 0.02), model predictions suggest that the interaction’s effect on choice 

probability is limited (Fig. 2C). Even when the maximum size of walleye was raised from the 
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median value of 16 inches to the maximum value of 24, the probability of class C choosing to 

fish for walleye was still lower than 25% at all travel times and catch rates (Fig. 3C). Although 

class C did exhibit a preference for simultaneously high catch rates and maximum sizes of 

walleye, largemouth bass, and bluegill, respondents of this class were most likely to choose to 

fish for alternative species, especially in comparison to the much higher site choice probability of 

latent class B under nearly all site characteristics (Fig. 1B and 2B).  

Latent class characteristics 

Based on individual covariates in the latent class model, anglers belonging to class C 

were more avid and specialized anglers, but they did not prefer to fish for walleye, largemouth 

bass, or bluegill, at least at the catch rates and maximum sizes specified in the choice 

experiment. The question therefore remained; what species do these anglers tend to target on 

their actual fishing trips? When we compared the self-reported frequency of targeting a variety of 

species between respondents of different latent classes, the profile of target species across classes 

were remarkably similar (Fig. 4). We detected only one significant difference among these 

groups: the frequency of targeting bluegill. Latent class A was more likely than classes B or C to 

target bluegill (H(2) = 8.713, p = 0.0012) (Fig. 5). Latent class A also tended to target fewer 

species at least “seldom” than classes B or C (H(2) = 9.267, N=563, p = 0.0097) (Fig. 6A). When 

the threshold for targeting a species was raised to at least “occasionally,” however, both classes 

A and C targeted significantly fewer species than class B (H2) = 13.177, p = 0.0014) (Fig. 6B).  

Discussion 

 We detected three distinct groups of anglers in the responses to our choice experiment. 

Class C was composed of dedicated, skilled anglers. These respondents tended to be most 

selective about fish sizes, but they also demonstrated a willingness and desire to target species 
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other than walleye, largemouth bass, and bluegill. Although class C was the only class to 

demonstrate a willingness to travel greater distances to achieve the highest walleye catch rates, 

their lower willingness to travel for walleye catch relative to class B suggested that these 

respondents are unlikely to concentrate their fishing effort on the fewer remaining walleye lakes 

in great numbers. Class B, in contrast, was willing to travel greater distances for walleye than for 

the other two species, but we found no evidence that they switched from a first choice of walleye 

to less-preferred centrarchid fishing when walleye catch rates were low. These class B anglers 

may be less discerning about their target species, tending to target a greater number of species at 

least “occasionally” than classes A and C (Fig. 6B). In combination, these two points suggest 

that, on average, class B may willing to continue fishing for a variety of warmwater species 

rather than travel great distance for walleye. Anglers of class C were more likely to be 

nonconsumptive anglers than those of class A. Class A anglers, in contrast, were more likely to 

both target bluegill and harvest fish, if they were going to go fishing at all. No specialized group 

of walleye anglers emerged from this analysis, and we did not find evidence that anglers would 

concentrate their fishing effort at distant walleye lakes. However, considerable unexplained 

heterogeneity exists within the latent classes. Of the respondents specifying that they “always” 

targeted walleye, 91% of them (40 out of 44) were members of class B. Based on the size of 

class B and the heterogeneity evident in their survey responses, within-class preference 

heterogeneity should be the next step for predicting behavioral responses to walleye decline.  

 Angler preferences for bluegill, walleye, and largemouth bass in Wisconsin were 

previously evaluated by Tingley et al. (2019), primarily focusing on tradeoffs between size and 

catch rates for each species. This study found that bluegill were the most important species 

predicting site choice for resident anglers, particularly sites with moderate sizes and catch rates 
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(i.e. “quality” fisheries rather than “action” or “trophy”). We built on this analysis by evaluating 

how WI resident anglers traded off travel costs and independently varying catch rates and 

maximum sizes for the same species. Similar to Tingley et al., we found that respondents 

responded most positively to optimistic scenarios, in this case simultaneously high catch rates 

and maximum sizes. As a result of density dependent growth, fish length tends to shrink as catch 

rates increase (Parkinson et al. 2004), making some of our choice options, e.g. 3 walleye in 4 

hours with a maximum size of 24 inches, a potentially unrealistic expectation. In addition, even 

among angler reporting walleye as their primary target species, bluegill and largemouth bass 

attributes still contributed to site choice, corresponding to Tingley et al.’s findings. The patterns 

in angler preferences found in our study may also reflect broader patterns angler preferences in 

multispecies fisheries. In a choice experiment targeting German freshwater anglers, Arlinghaus 

et al., (2019) also detected three latent classes of anglers, including a group of committed anglers 

who benefited most from fish size, casual anglers who were more likely to harvest fish (in 

agreement with the specialization framework proposed by Bryan, (1977)), and an intermediate 

group who valued both catch and size.  

 Our results suggest that future management of walleye populations should combine 

stocking walleye as well as maintaining diverse, quality warmwater fisheries as walleye declines 

continue. Walleye stocking is already strategically allocated to lakes most likely to support 

naturally reproducing walleye populations (Hansen et al. 2015a), but success of future stocking 

may additionally rely on strategies prioritizing equity of angler access to quality walleye fishing. 

Economic models have previously been developed to maximize aggregate fishing effort for 

rainbow trout across a lake-rich landscape in British Columbia (Askey et al. 2013). In that 

fishery, however, rainbow trout were functioning in part as a substitute species for kokanee 
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salmon (Oncorhynchus nerka), which were undergoing declines (Askey and Johnston 2013). The 

strong willingness to substitute target species evident among Wisconsin anglers suggests that a 

walleye-focused management strategy would be insufficient for maintaining diverse, quality 

inland fisheries in the state. For example, fishing effort that is displaced from walleye onto other 

species could drive declines at popular fishing sites (Abbott and Fenichel 2013; Beaudreau et al. 

2018; Abbott et al. 2018).  

Although centrarchid populations are resilient to removals (Embke et al. 2022), 

centrarchid size structures can become truncated as a result of intense harvest pressure (Coble 

1988), resulting in reduced benefits to anglers. Limiting harvest of highly exploited species such 

as bluegill through reduced bag limits, however, can restore larger sizes (Rypel 2015) and 

achieve the quality bluegill fisheries attractive to anglers in WI (Tingley et al. 2019). 

Largemouth bass in the state, in contrast, have the opposite problem. As largemouth bass 

populations have increased in density, average sizes have shrunk, resulting in high catch rates but 

less opportunity for trophy sizes (Hansen et al. 2015b). Incentivizing harvest of smaller 

largemouth bass may simultaneously benefit centrarchid populations by improving largemouth 

bass size structures and displacing fishing effort off of more popular harvest species like bluegill, 

but the success of these interventions would depend strongly on angler behavior and lake-

specific factors (Sullivan et al. 2019). Social norms against harvesting largemouth bass, however, 

are deeply entrenched (Gaeta et al. 2013; Sass and Shaw 2019), suggesting that additional 

outreach beyond relaxed harvest regulations would be required to shift social norms.  Anglers’ 

stated willingness to travel for a variety of species could mean that there is room for this sort of 

shift in social norms, potentially paving the way for management actions directing inland 

fisheries to different but still beneficial states for Wisconsin anglers (Feiner et al. 2022). 
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Projections of future behavior based on these stated preferences, however, must be interpreted 

with caution given the hypothetical nature of the choice scenarios.  

 Stated preference models provide an opportunity to design choice sets that increase 

efficiency (reducing the number of required respondents) and orthogonality (reducing correlation 

between attributes) in order to produce precise parameter estimates quantifying respondent 

preferences (Huber and Zwerina, 1996). However, because respondents are presented with only 

hypothetical choices, they are subject to price discounting (e.g. Whitehead and Lew 2020). The 

WTT estimates presented here may therefore overstate anglers’ true behavior as walleye fishing 

quality in their nearby lakes declines. In addition, participants that responded to this choice 

scenario represent a biased selection of all Wisconsin anglers. As opposed to revealed preference 

data collection, stated preference methods that rely on participants opting in to the survey are not 

collecting an exogenous, random sample of the population (Thill and Horowitz 1991). The low 

representation of casual anglers in our sample, for example, is most likely caused by response 

bias (Tarrant et al. 1993). Finally, considerable unexplained heterogeneity remains within our 

three latent classes of anglers, potentially obscuring committed walleye specialists. Further 

iterations of this analysis should include random parameters accounting for individual 

heterogeneity within classes. No significant differences existed between latent classes in our 

analysis. However, by integrating individual characteristics and individual heterogeneity into this 

model fit (Greene and Hensher 2013), we may also be better equipped to simulate aggregate 

changes in angler behavior based on demographic strata.  

 Given the importance of species diversity to angler satisfaction (Beardmore et al. 2015), 

empirical evidence of species substitution among anglers (Beaudreau et al. 2018; Trudeau et al. 

2022), and the role of functional diversity in resilience of social-ecological systems (SES) 
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(Kotschy et al. 2015), accounting for substitution behavior among anglers and species 

interactions among fish are important steps towards improving SES  models used to assist 

management decisions. The development of single species SES models of inland recreational 

fisheries have resulted in great strides in understanding landscape patterns of fishing effort and 

harvest (e.g. Parkinson et al. 2004; Post et al. 2008; Askey et al. 2013; Carruthers et al. 2018; 

Matsumura et al. 2019), and incorporating species interactions (e.g. Innes-Gold et al. 2021) and 

angler substitution behavior as landscapes undergo environmental change is an exciting next 

step. SES models incorporating multispecies dynamics of the Chesapeake Bay (Townsend 2014) 

and Australian coral reef recreational fisheries have been successfully developed (e.g. Gao and 

Hailu 2011, 2012, 2013), but multispecies models of inland fisheries are rare (but see Lupi et al. 

2003; Carpenter and Brock 2004; Biggs et al. 2009; Fielder et al. 2016). By linking a model of 

angler behavior to currently existing models predicting species distribution (Hansen et al. 2017), 

empirical models of catch rate hyperstability (Dassow et al. 2019; Feiner et al. 2020), as well as 

incorporating centrarchid interspecific interactions (Seekell et al. 2013) and population dynamics 

under climate change, a Wisconsin-specific SES model could be developed to develop equitable 

and sustainable fisheries management strategies.  
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Tables 

Table 1: All attribute levels represented in the choice experiment distributed to WI resident 
anglers. Travel time and catch rates were included as linear predictors, and maximum sizes 
were included as categorical variables. The baseline level for walleye and largemouth bass 
maximum sizes was a “zero” size associated with 0 catch rates. The baseline level for bluegill 
was 6 inches. Attributes that were coded as continuous variables in the model fit were centered 
and scaled around zero. Their normalized values are reported here under ‘scaled levels.’ 
Attribute Levels Scaled levels 
Daily one-way travel to fishing 
site 

5 minutes 
15 minutes 
30 minutes 
60 minutes 
120 minutes 
180 minutes 

-0.604 
-0.432 
-0.172 
0.346 
1.38 
2.42 

Expected walleye catch in 4 
hours 

0 
1 
2 
3 

-0.957 
-0.0926 
0.772 
1.64 

Largest possible walleye in 
catch 

10 inches 
14 inches 
16 inches 
20 inches 
24 inches 

 

Expected bluegill catch in 4 
hours 

5 
10 
15 
20 

-0.333 
0.332 
0.997 
1.66 

Largest possible bluegill in 
catch 

6 inches 
7 inches 
8 inches 
10 inches 

 

Expected largemouth bass catch 
in 4 hours 

0 
1 
2 
4 
6 

-0.824 
-0.351 
0.122 
1.07 
2.01 

Largest possible largemouth 
bass in catch 

12 inches 
16 inches 
20 inches 
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Table 2: Statements eliciting catch-related attitudes from Anderson et al., (2007). The same 
response scale was used for each of these statements. 
Factor Statements Response scale 
Catch big fish I would rather catch 1 or 

2 big fish than 10 smaller 
fish. 

1—Strongly disagree 
2—Somewhat disagree 
3—Neither agree nor 
disagree 
4—Somewhat agree 
5—Strongly agree 

I like to fish where I 
know I have a chance to 
catch a trophy fish. 
The bigger the fish I 
catch, the better the 
fishing trip.  

Keep fish I go fishing for my 
personal consumption 
I release most of the fish 
that I catch. 

 I am just as happy if I 
release the fish that I 
catch 

Catching fish The more fish I catch the 
happier I am 
I am just as happy if I 
don’t catch any fish 
A fishing trip can be 
successful even if no fish 
are caught.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3: Semantic differential questions rating centrality to lifestyle, catch and release 
behavior, and self-described fishing skill. For these questions, response scales varied in the 
meaning of the anchor values (1, 50, 100).  



211 
 

Factor Question  Response scale (1-
100) 

Centrality In general, how important is 
fishing to your quality of 
life?  

 1—Very unimportant 
50—Neither 
100—Very important 

 When given some leisure 
time, how often would you 
choose to go fishing rather 
than some other recreational 
activity? 

 1—NEVER go fishing 
50—Go fishing about 
half the time 
100—ALWAYS go 
fishing 

 When you go fishing, how 
often do you target a 
particular type of fish versus 
targeting “whatever bites”?  

 1—Always “whatever 
bites” 
50—Both about 
equally 
100—Always a 
particular type 

Keep fish In general, how often do you 
tend to release fish that you 
could otherwise legally 
harvest?  

 1—Always 
HARVEST them 
50—Harvest or release 
about equally 
100—Always 
RELEASE them 

Skill To what extent do you 
believe that fishing success is 
due to one’s skill at fishing or 
luck?  

 1—Entirely LUCK 
50—Equal mix of luck 
and skill 
100—Entirely SKILL 

 How would you judge your 
fishing skills compared to the 
average angler?  

 1—My skills are much 
lower 
50—My skills are 
about average 
100—My skills are 
much higher 

 
 
 
 
 
 
 
 
 
Table 4: Confirmatory factor analysis fit to survey questions assessing trophy orientation 
(catching big fish), consumptive orientation (keeping fish), noncatch orientation (valuing 
experience of fishing more than catch), and centrality to lifestyle.  
Factor and statements Standardized coefficient (SE) Z value 
Trophy orientation   
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I would rather catch 1 or 2 big 
fish than 10 smaller fish. 

0.694 (0.032)*** 21.734 

I like to fish where I know I 
have a chance to catch a trophy 

fish. 

0.691 (0.032) *** 21.589 

The bigger the fish I catch, the 
better the fishing trip.  

0.676 (0.032) *** 20.867 

Consumptive orientation   
I go fishing for my personal 

consumption 
0.539 (0.033) *** 16.565 

I release most of the fish that I 
catch. 

-0.846 (0.018) *** -46.877 

I am just as happy if I release 
the fish that I catch 

-0.754 (0.022) *** -34.136 

In general, how often do you 
tend to release fish that you 

could otherwise legally 
harvest? 

-0.817 (0.019) *** -42.537 

Noncatch orientation   
I am just as happy if I don’t 

catch any fish 
0.819 (0.047) *** -6.150 

A fishing trip can be successful 
even if no fish are caught. 

0.670 (0.044) *** 17.282 

The more fish I catch, the 
happier I am. 

-0.276 (0.045) *** 15.323 

Centrality to lifestyle   
In general, how important is 

fishing to your quality of life?  
0.678 (0.031) *** 22.235 

When given some leisure time, 
how often would you choose to 

go fishing rather than some 
other recreational activity? 

0.735 (0.029) *** 25.482 

When you go fishing, how 
often do you target a particular 

type of fish versus targeting 
“whatever bites”?  

0.514 (0.037) *** 14.014 

Self-described skill   
To what extent do you believe 

that fishing success is due to 
one’s skill at fishing or luck?  

0.571 (0.035) *** 16.531 

How would you judge your 
fishing skills compared to the 

average angler?  

0.871 (0.033) *** 26.384 

CFI: 0.904 
TLI: 0.874 
RMSEA: 0.073 
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Table 5: Model selection results for increasing numbers of latent classes in the latent class 
fractional multinomial logit (LC FMNL) model fit to choice experiment selections. The bolded 
model is the best fit according to Akaike Information Criterion (AIC) scores. 
Model Number of 

parameters 
AIC Model 

1 LC 29 8190.84 1 LC 
2 LC 59 7883.41 2 LC 
3 LC 89 7811.83 3 LC 
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4 LC 119 7858.6 4 LC 
5 LC 149 7876.77 5 LC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6: Model selection results for 3-LC models including each combination of individual 
covariates predicting latent class membership.  
Model Number of parameters AIC 
Trophy + Noncatch + Consumptive + Central 97 7617.93 
Trophy + Noncatch + Consumptive 95 7633.35 
Noncatch + Non-consumptive + Central 95 7616.17 
Trophy + Non-consumptive + Central 95 7617.04 
Trophy + Noncatch + Central 95 7622.02 
Trophy + Noncatch 93 7635.40 
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Trophy + Consumptive 93 7633.60 
Trophy + Central 93 7751.31 
Noncatch + Consumptive 93 7641.69 
Noncatch + Central 93 7631.27 
Trophy 91 7641.47 
Noncatch 91 7658.43 
Consumptive 91 7641.43 
Central  7763.32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7: Parameter estimates, robust standard errors, and willingness to travel (WTT) 
estimates for latent class A. The second set of WTT estimates are converted into minutes of 
travel from the original scaled estimates. WTT in minutes therefore describes the mean 
willingness to travel to achieve a 1 SD increase in catch rates or to achieve an increase from 
baseline maximum sizes to the maximum size described. An increase of 1 SD in catch rates is 
1.16 fish per 4 hours for walleye, 2.11 fish for largemouth bass, and 7.51 fish for bluegill.  
Parameter Estimate (SE) T statistic P value WTT (SE) WTT 

(minutes) 
Delta a 0 (fixed)     
Fishing ASC 0 (fixed)     
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Fish elsewhere ASC -1.06 (1.67) -0.64 0.52   
Do not fish ASC 3.05 (1.21) 2.51 0.01   
Centrality to lifestyle 0 (fixed)     
Noncatch orientation 0 (fixed)     
Consumptive 
orientation 0 (fixed)  

 
  

Travel time -1.35 (0.37) -3.67 <0.0001   
Walleye catch 0.53 (1.1) 0.48 0.63 0.394 (0.47) 62.76 
Largemouth bass 
catch 0.28 (0.37) 0.74 0.46 0.205 (0.68) 51.83 
Bluegill catch 1.22 (0.58) 2.09 0.04 0.909 (2.4) 92.56 
Walleye size max 10 
in -0.52 (1.18) -0.44 0.66 -0.384 (-0.43) 17.75 
Walleye size max 14 
in 0.32 (0.99) 0.33 0.75 0.238 (0.34) 53.74 
Walleye size max 16 
in 0.39 (1.18) 0.33 0.74 0.287 (0.33) 56.57 
Walleye size max 20 
in 0.21 (0.87) 0.24 0.81 0.154 (0.24) 48.88 
Walleye size max 24 
in -0.27 (1.14) -0.24 0.81 -0.202 (-0.24) 28.28 
Bluegill size max 7 in 2.02 (1.09) 1.86 0.06 1.501 (1.94) 126.81 
Bluegill size max 8 in 1.39 (0.92) 1.51 0.13 1.036 (1.5) 99.91 
Bluegill size max 10 
in 2.19 (0.82) 2.67 0.01 1.626 (2.81) 134.04 
Largemouth bass size 
max 12 in -0.36 (1.12) -0.33 0.75 -0.27 (-0.33) 24.35 
Largemouth bass size 
max 16 in -1.54 (1.31) -1.18 0.24 -1.142 (-1.36) -26.1 
Largemouth bass size 
max 20 in -0.59 (1.13) -0.52 0.60 -0.436 (-0.54) 14.74 
Walleye catch x max 
size 14 in -1.27 (1.01) -1.25 0.21 -0.944 (-1.28) -14.65 
Walleye catch x max 
size 16 in -0.93 (1.02) -0.91 0.36 -0.694 (-0.91) -0.18 
Walleye catch x max 
size 20 in -0.4 (0.93) -0.43 0.67 -0.3 (-0.43) 22.61 
Walleye catch x max 
size 24 in 0.25 (1.62) 0.15 0.88 0.184 (0.15) 50.61 
Bass catch x max size 
16 in 0.45 (0.52) 0.87 0.38 0.337 (0.99) 59.46 
Bass catch x max size 
20 in 0.06 (0.53) 0.12 0.91 0.046 (0.12) 42.63 
Bluegill catch x max 
size 7 in -1.09 (0.89) -1.23 0.22 -0.811 (-1.44) -6.95 
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Bluegill catch x max 
size 8 in -0.41 (0.66) -0.62 0.53 -0.305 (-0.63) 22.32 
Bluegill catch x max 
size 10 in -0.74 (0.59) -1.25 0.21 -0.55 (-1.36) 8.15 
Walleye catch x travel 0.55 (0.33) 1.67 0.09   
Walleye catch x bass 
catch -0.14 (0.14) -1.01 0.31 -0.105 (-0.97) 33.89 
Walleye catch x 
bluegill catch -0.19 (0.35) -0.55 0.58 -0.144 (-0.55) 31.64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 8: Parameter estimates, robust standard errors, and willingness to travel (WTT) 
estimates for latent class B. The second set of WTT estimates are converted into minutes of 
travel from the original scaled estimates. WTT in minutes therefore describes the mean 
willingness to travel to achieve a 1 SD increase in catch rates or to achieve an increase from 
baseline maximum sizes to the maximum size described. An increase of 1 SD in catch rates is 
1.16 fish per 4 hours for walleye, 2.11 fish for largemouth bass, and 7.51 fish for bluegill. 
Parameter Estimate (SE) T 

statistic 
P value WTT (SE) WTT 

(minutes) 
Delta b 4.04 (1.15) 3.50 <0.0001   
Fishing ASC 0 (fixed)     
Fish elsewhere ASC -0.36 (0.2) -0.64 0.52   
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Do not fish ASC -1.14 (0.24) 2.51 0.01   
Centrality to lifestyle 0.49 (0.43) 1.14 0.25   
Noncatch orientation 0.57 (0.54) 1.07 0.28   
Consumptive orientation -1.17 (0.6) -1.95 0.052   
Travel time -0.48 (0.04) -12.49 <0.0001   
Walleye catch 0.18 (0.08) 2.35 0.02 0.388 (2.3) 62.42 
Largemouth bass 
catch 0.09 (0.04) 2.23 0.03 0.193 (2.16) 51.13 
Bluegill catch 0.27 (0.06) 4.27 <0.0001 0.573 (4.21) 73.12 
Walleye size max 10 in -0.19 (0.15) -1.28 0.20 -0.404 (-1.28) 16.59 
Walleye size max 14 in 0.15 (0.12) 1.23 0.22 0.314 (1.21) 58.13 
Walleye size max 16 in 0.44 (0.13) 3.31 0.001 0.918 (3.14) 93.08 
Walleye size max 20 in 0.41 (0.13) 3.18 0.001 0.861 (3.04) 89.78 
Walleye size max 24 in 0.61 (0.12) 4.88 <0.0001 1.281 (4.58) 114.08 
Bluegill size max 7 in 0.09 (0.08) 1.17 0.24 0.192 (1.18) 51.08 
Bluegill size max 8 in 0.19 (0.08) 2.41 0.02 0.397 (2.35) 62.94 
Bluegill size max 10 in 0.38 (0.08) 4.64 <0.0001 0.809 (4.36) 86.77 
Largemouth bass size 
max 12 in 0.02 (0.1) 0.21 0.83 0.043 (0.21) 42.46 
Largemouth bass size 
max 16 in 0.27 (0.09) 3.07 0.002 0.57 (3) 72.95 
Largemouth bass size 
max 20 in 0.31 (0.09) 3.43 0.001 0.645 (3.36) 77.28 
Walleye catch x max 
size 14 in 0.13 (0.09) 1.42 0.16 0.272 (1.4) 55.7 
Walleye catch x max 
size 16 in -0.02 (0.09) -0.20 0.84 -0.037 (-0.2) 37.83 
Walleye catch x max 
size 20 in 0.19 (0.1) 1.96 0.05 0.396 (1.94) 62.88 
Walleye catch x max 
size 24 in 0.18 (0.1) 1.81 0.07 0.387 (1.8) 62.36 
Bass catch x max size 
16 in 0.05 (0.06) 0.83 0.41 0.098 (0.83) 45.64 
Bass catch x max size 
20 in 0.1 (0.05) 1.88 0.06 0.214 (1.89) 52.35 
Bluegill catch x max 
size 7 in 0.04 (0.08) 0.48 0.63 0.077 (0.47) 44.42 
Bluegill catch x max 
size 8 in -0.03 (0.08) -0.34 0.73 -0.055 (-0.34) 36.79 
Bluegill catch x max 
size 10 in 0.02 (0.08) 0.21 0.83 0.033 (0.21) 41.88 
Walleye catch x travel 0.03 (0.03) 1.14 0.26   
Walleye catch x bass 
catch -0.03 (0.03) -1.03 0.30 -0.058 (-1.02) 36.61 
Walleye catch x bluegill 
catch 0.01 (0.03) 0.33 0.74 0.024 (0.33) 41.36 
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Table 9: Parameter estimates, robust standard errors, and willingness to travel (WTT) 
estimates for latent class C. The second set of WTT estimates are converted into minutes of 
travel from the original scaled estimates. WTT in minutes therefore describes the mean 
willingness to travel to achieve a 1 SD increase in catch rates or to achieve an increase from 
baseline maximum sizes to the maximum size described. An increase of 1 SD in catch rates is 
1.16 fish per 4 hours for walleye, 2.11 fish for largemouth bass, and 7.51 fish for bluegill. 
Parameter Estimate (SE) T statistic P value WTT (SE) WTT 

(minutes) 
Delta c 2.44 (1.12) 2.17 0.03   
Fishing ASC 0 (fixed)     
Fish elsewhere ASC 3.05 (0.44) 6.99 <0.0001   
Do not fish ASC -0.5 (0.63) -0.80 0.43   
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Centrality to lifestyle 1.33 (0.48) 2.74 0.01   
Noncatch orientation 0.52 (0.55) 0.94 0.35   
Consumptive 
orientation -1.39 (0.63) -2.21 0.03   
Travel time -0.69 (0.1) -6.68 <0.0001   
Walleye catch -0.02 (0.17) -0.12 0.90 -0.03 (-0.12) 38.23 
Largemouth bass catch -0.1 (0.1) -1.09 0.28 -0.151 (-1.12) 31.23 
Bluegill catch 0.16 (0.16) 0.98 0.33 0.23 (0.97) 53.27 
Walleye size max 10 in -0.12 (0.36) -0.33 0.74 -0.17 (-0.32) 30.13 
Walleye size max 14 in 0.08 (0.34) 0.24 0.81 0.119 (0.25) 46.85 
Walleye size max 16 in 0.22 (0.35) 0.64 0.52 0.324 (0.65) 58.71 
Walleye size max 20 in 0.5 (0.34) 1.48 0.14 0.726 (1.54) 81.97 
Walleye size max 24 
in 0.72 (0.31) 2.31 0.02 1.036 (2.37) 99.91 
Bluegill size max 7 in 0.27 (0.19) 1.44 0.15 0.397 (1.39) 62.94 
Bluegill size max 8 in 0.36 (0.19) 1.86 0.06 0.524 (1.78) 70.28 
Bluegill size max 10 in 0.69 (0.21) 3.33 0.001 0.998 (2.86) 97.71 
Largemouth bass size 
max 12 in 0.16 (0.26) 0.64 0.52 0.238 (0.65) 53.74 
Largemouth bass size 
max 16 in 0.35 (0.2) 1.71 0.09 0.501 (1.73) 68.95 
Largemouth bass size 
max 20 in 0.44 (0.24) 1.87 0.06 0.637 (1.82) 76.82 
Walleye catch x max 
size 14 in 0.37 (0.2) 1.83 0.07 0.533 (1.79) 70.8 
Walleye catch x max 
size 16 in 0.46 (0.22) 2.09 0.04 0.67 (2.15) 78.73 
Walleye catch x max 
size 20 in 0.45 (0.22) 2.01 0.04 0.648 (1.99) 77.46 
Walleye catch x max 
size 24 in 0.52 (0.2) 2.60 0.01 0.748 (2.64) 83.24 
Bass catch x max size 
16 in 0.19 (0.12) 1.66 0.10 0.281 (1.61) 56.22 
Bass catch x max size 
20 in 0.39 (0.13) 3.02 0.003 0.558 (3.02) 72.25 
Bluegill catch x max 
size 7 in 0.05 (0.2) 0.22 0.82 0.066 (0.22) 43.79 
Bluegill catch x max 
size 8 in 0.05 (0.19) 0.25 0.80 0.069 (0.25) 43.96 
Bluegill catch x max 
size 10 in 0.01 (0.19) 0.03 0.98 0.008 (0.03) 40.43 
Walleye catch x travel 0.18 (0.07) 2.43 0.02   
Walleye catch x bass 
catch 0.03 (0.05) 0.48 0.63 0.038 (0.48) 42.17 
Walleye catch x 
bluegill catch -0.01 (0.07) -0.11 0.91 -0.012 (-0.11) 39.27 
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Figures 
 

 
Figure 6: Completed sample choice scenario, where ten hypothetical fishing days have been 
allocated between three potential fishing sites and two opt-out options.  
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Figure 7: Site choice predictions for each latent class under identical conditions. Simulated 
choices took place between a site with varying travel times and walleye catch rates, two opt out 
options, a baseline site with an expected walleye catch rate of 0, and median values for all other 
site attributes.  
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Figure 8: Site choice predictions for each latent class under identical conditions. Simulated 
choices took place between a site with varying travel times and walleye catch rates, two opt out 
options, and a baseline site with an expected catch rate of 0. Contrasting with Figure 2, the 
maximum walleye size for the site with a walleye catch rate > 0 is fixed at its maximum level of 
24 inches. Probability of this site choice increased slightly for latent class C but remained less 
than 25% at all catch rates and travel times.   
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Figure 9: Proportions of self-reported frequency of fishing for each listed target species by each 
latent class. In spite of differences in class size (A, n=20; B, n=441; C, n=102), targeting 
behavior was reported as largely similar between latent classes.  
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Figure 10: Out of the species listed, only targeting frequency of bluegill was significantly 
different among latent classes. Class A members targeted bluegill significantly more often than 
members of class B and C. 
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Figure 11: Comparing the number of species targeted at least “seldom” (A) and at least 
“occasionally” (B) on a 5 point Likert scale among the three latent classes.  
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Supplementary materials 
Table S1: Preliminary attributes and levels for the discrete choice experiment presented to 
focus group participants compared to attributes and levels included in the final design. Note 
that typical (median) sizes were not included in the final choice experiment design, and the 
“panfish” attributes were changed to represent bluegill only.  
Attribute Quantiles from creel 

surveys  
All levels 
(preliminary) 

All levels (final) 

Travel time 5%: 0 
25%: 5 
50%: 10 
75%: 20 
90%: 40 
95%: 120 

5 minutes 
15 minutes 
30 minutes 
45 minutes 
60 minutes 
75 minutes 
90 minutes 

5 minutes 
15 minutes 
30 minutes 
60 minutes 
120 minutes 
180 minutes 

Walleye catch per 4 
hours 

5%: 0 
25%: 0 
50%: 0 
75%: 1.2 
90%: 3.69 
95%: 6.4 

0 
0.5 (1 every other trip) 
1 
2 

0 
1 
2 
3 

Walleye typical size Median size by lake 
5%: 12.2 inches 
25%: 14.1 inches 
50%: 16.2 inches 
75%: 18 inches 
95%: 21.7 inches 

8 inches 
10 inches 
12 inches 
14 inches 

 

Largest possible walleye 
size 

5%: 15.6 inches 
25%: 20.5 inches 
50%: 23.5 inches 
75%: 26.5 inches 
95%: 29 inches 

10 inches 
12 inches 
14 inches 
16 inches 

10 inches 
14 inches 
16 inches 
20 inches 
24 inches 

Panfish catch per 4 hours (Based on bluegill 
catch rates) 
5%: 0 
25%: 0.42 
50%: 4.8 
75%: 14.5 
90%: 30 
95%: 45.1 

5 
10 
15 
20 
25 

Bluegill catch per 
4 hours 
5 
10 
15 
20 

Panfish typical size (Based on quantiles 
of bluegill median 
size by lake) 
5%: 6.1 inches 
25%: 6.95 inches 
50%: 7.3 inches 
75%: 7.6 inches 

3 inches 
4 inches 
5 inches 
6 inches 
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95%: 8.1 inches 

Largest possible panfish 
size 

(Based on quantiles 
of bluegill 
maximum size by 
lake) 
5%: 7.3 inches 
25%: 8.5 inches 
50%: 9.3 inches 
75%: 9.8 inches 
95%: 10.5 inches 

6 inches 
8 inches 
10 inches 

Bluegill max size 
6 inches 
7 inches 
8 inches 
10 inches 

Largemouth bass catch 
per 4 hours 

5%: 0 
25%: 0 
50%: 1 
75%: 3.67 
90%: 8.57 
95%: 33.6 

0 
1 
2 
4 

0 
1 
2 
4 
6 

Largemouth bass typical 
size 

5%: 12.4 inches 
25%: 14.5 inches 
50%: 15.1 inches 
75%: 16 inches 
95%: 16.8 inches 

6 inches 
8 inches 
10 inches 
14 inches 

 

Largemouth bass max 
size 

5%: 14.7 inches 
25%: 16.3 inches 
50%: 18 inches 
75%: 19.2 inches 
95%: 21 inches 

10 inches 
12 inches 
14 inches 
16 inches 
18 inches 

12 inches 
16 inches 
20 inches 
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Table S2: Prior coefficient parameters used to produce the choice experiment design. The sign 
of these values was used to avoid dominant choices when the modified Federov algorithm 
produced candidate D efficient fractional factorial designs.  
Parameter Prior parameter value for survey design 
Travel time -0.02 
Walleye catch per 4 hours 0.02 
Walleye maximum size: 10 inches 0.02 
Walleye maximum size: 14 inches 0.03 
Walleye maximum size: 16 inches 0.04 
Walleye maximum size: 20 inches 0.05 
Walleye maximum size: 24 inches 0.06 
Bluegill catch per 4 hours 0.02 
Bluegill maximum size: 7 inches  0.03 
Bluegill maximum size: 8 inches 0.04 
Bluegill maximum size: 10 inches 0.05 
Largemouth bass catch per 4 hours 0.02 
Largemouth bass maximum size: 12 inches 0.02 
Largemouth bass maximum size: 16 inches 0.04 
Largemouth bass maximum size: 20 inches 0.06 
Walleye catch * max size 0 
Bluegill catch * max size 0 
Largemouth bass catch * max size 0 
Walleye catch * largemouth bass catch 0 
Walleye catch * bluegill catch 0 
Walleye catch * travel 0 
Walleye size * travel 0 
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Table S3: Wisconsin sampling regions for fishing license sales data. Note that highly urban 
regions (Dane and Milwaukee counties) were down-sampled in order to up-sample Northern 
Wisconsin counties.  
Region Population Proportion 

population 
Proportion 
sample 

Counties 

Dane 
County 

536078 0.093 0.074 Dane 

Milwaukee 
County 

951226 0.164 0.099 Milwaukee 

Northeast 1130044 0.195 0.195 Brown, Calumet, Door, Fond du 
Lac, Green Lake, Kewaunee, 
Manitowoc, Marinette, Marquette, 
Menominee, Oconto, Outagamie, 
Shawano, Waupaca, Waushara, 
Winnebago 

Northern 380839 0.066 0.150 Ashland, Barron, Bayfield, Burnett, 
Douglas, Florence, Forest, Iron, 
Langlade, Lincoln, Oneida, Polk, 
Price Rusk, Sawyer, Taylor, Vilas, 
Washburn 

South 
Central 

602044 0.104 0.104 Columbia, Dodge, Grant, Green, 
Iowa, Jefferson, Lafayette, Richland, 
Rock, Sauk 

Southeast 1206375 0.208 0.208 Kenosha, Ozaukee, Racine, 
Sheboygan, Walworth, Washington, 
Waukesha 

West 
Central 

984110 0.170 0.170 Adams, Buffalo, Chippewa, Clark, 
Crawford, Dunn, Eau Claire, 
Jackson, Juneau, La Crosse, 
Marathon, Monroe, Pepin, Pierce, 
Portage, St. Croix, Trempealeau, 
Vernon, Wood  
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Table S4: Licenses held by WI residents in each WI region. License data was provided by the 
WDNR. Proportions of state-wide licenses held by individuals in each region were not known 
prior to the requested sample of fishing licenses in Tables S3 and S5. Sampling proportions by 
region were therefore chosen to up-sample known regions with high-density angler 
populations rather than based on these exact proportions.  
Region Total licenses 

held 
Proportion 
licenses (18-59 
years) 

Proportion 
licenses (60+ 
years) 

Proportion of 
licenses in the 
state 

Dane County 73635 0.722 0.278 0.059 
Milwaukee 
County 

82644 0.713 0.287 0.066 

Northeast 313065 0.683 0.317 0.249 
Northern 160845 0.599 0.401 0.128 
South Central 134982 0.696 0.304 0.108 
Southeast 229204 0.689 0.311 0.183 
West Central 260600 0.694 0.306 0.208 
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Table S5: Sample numbers stratified by age category for surveys distributed by email. Note 
that, due to their high population density, Dane and Milwaukee counties constituted their 
own regions.  
Region Age Category Sample size (email) 
Dane County over 60 166  

under 60 500 
Milwaukee County over 60 222  

under 60 666 
Northeast over 60 439  

under 60 1317 
Northern over 60 337  

under 60 1012 
South Central over 60 234  

under 60 702 
Southeast over 60 469  

under 60 1406 
West Central over 60 382  

under 60 1148 
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Table S6: Parameter estimates and robust standard errors for latent class A in the second-
best fitting model. Rather than non-catch orientation, trophy orientation is included as an 
individual covariate predicting latent class membership. In this model fit, the bluegill 
maximum size of 7 inches is a significant positive predictor of site choice for class A.  
Parameter Estimate (SE) T statistic P value 
Delta a 0 (fixed)   
Fishing ASC 0 (fixed)   
Fish elsewhere ASC -0.95 (2.2) -0.60 0.55 
Do not fish ASC 2.97 (1.85) 2.66 0.01 
Centrality to lifestyle 0 (fixed)   
Trophy orientation 0 (fixed)   
Consumptive orientation 0 (fixed)   
Travel time -1.3 (0.45) -3.77 <0.0001 
Walleye catch 0.49 (0.89) 0.54 0.59 
Largemouth bass catch 0.27 (0.39) 0.81 0.42 
Bluegill catch 1.15 (0.94) 2.16 0.03 
Walleye size max 10 in -0.58 (1.72) -0.56 0.57 
Walleye size max 14 in 0.21 (1.2) 0.23 0.82 
Walleye size max 16 in 0.36 (1.32) 0.34 0.73 
Walleye size max 20 in 0.12 (1.23) 0.15 0.88 
Walleye size max 24 in -0.21 (1.28) -0.21 0.83 
Bluegill size max 7 in 1.95 (1.42) 2.04 0.04 
Bluegill size max 8 in 1.33 (1.43) 1.63 0.10 
Bluegill size max 10 in 2.12 (1.39) 3.03 <0.0001 
Largemouth bass size max 12 in -0.31 (1.02) -0.28 0.78 
Largemouth bass size max 16 in -1.29 (1.23) -0.87 0.38 
Largemouth bass size max 20 in -0.51 (1.04) -0.42 0.67 
Walleye catch x max size 14 in -1.15 (1.08) -1.26 0.21 
Walleye catch x max size 16 in -0.92 (1.06) -1.09 0.27 
Walleye catch x max size 20 in -0.37 (0.99) -0.48 0.63 
Walleye catch x max size 24 in 0.16 (1.16) 0.12 0.90 
Bass catch x max size 16 in 0.4 (0.62) 0.78 0.44 
Bass catch x max size 20 in 0.04 (0.59) 0.07 0.94 
Bluegill catch x max size 7 in -0.97 (1.08) -1.19 0.24 
Bluegill catch x max size 8 in -0.36 (1.08) -0.58 0.56 
Bluegill catch x max size 10 in -0.67 (1.04) -1.24 0.22 
Walleye catch x travel 0.51 (0.37) 1.78 0.07 
Walleye catch x bass catch -0.13 (0.26) -0.88 0.38 
Walleye catch x bluegill catch -0.17 (0.33) -0.60 0.55 
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Table S7: Parameter estimates and robust standard errors for latent class B in the second-best 
fitting model. Rather than non-catch orientation, trophy orientation is included as an individual 
covariate predicting latent class membership. In this model fit, consumptive orientation is a 
negative predictor of latent class B membership.  
Parameter Estimate (SE) T statistic P value 
Delta b 3.87 (0.57) 4.31 <0.0001 
Fishing ASC 0 (fixed)   
Fish elsewhere ASC -0.35 (0.24) -1.81 0.07 
Do not fish ASC -1.16 (0.25) -5.45 0.000 
Centrality to lifestyle 0.53 (0.31) 1.22 0.22 
Trophy orientation -0.01 (0.4) -0.03 0.98 
Consumptive orientation -1.29 (0.41) -2.24 0.03 
Travel time -0.47 (0.04) -12.60 <0.0001 
Walleye catch 0.18 (0.11) 2.36 0.02 
Largemouth bass catch 0.09 (0.06) 2.23 0.03 
Bluegill catch 0.27 (0.09) 4.29 <0.0001 
Walleye size max 10 in -0.19 (0.22) -1.27 0.20 
Walleye size max 14 in 0.15 (0.18) 1.23 0.22 
Walleye size max 16 in 0.43 (0.19) 3.30 <0.0001 
Walleye size max 20 in 0.41 (0.19) 3.17 <0.0001 
Walleye size max 24 in 0.61 (0.18) 4.88 <0.0001 
Bluegill size max 7 in 0.09 (0.12) 1.20 0.23 
Bluegill size max 8 in 0.19 (0.12) 2.46 0.01 
Bluegill size max 10 in 0.39 (0.12) 4.66 0.00 
Largemouth bass size max 12 in 0.02 (0.14) 0.20 0.84 
Largemouth bass size max 16 in 0.27 (0.13) 3.09 <0.0001 
Largemouth bass size max 20 in 0.31 (0.13) 3.43 <0.0001 
Walleye catch x max size 14 in 0.13 (0.14) 1.42 0.16 
Walleye catch x max size 16 in -0.02 (0.14) -0.20 0.84 
Walleye catch x max size 20 in 0.19 (0.14) 1.97 0.05 
Walleye catch x max size 24 in 0.18 (0.14) 1.84 0.07 
Bass catch x max size 16 in 0.04 (0.08) 0.80 0.42 
Bass catch x max size 20 in 0.1 (0.08) 1.9 0.06 
Bluegill catch x max size 7 in 0.03 (0.12) 0.45 0.65 
Bluegill catch x max size 8 in -0.03 (0.11) -0.38 0.70 
Bluegill catch x max size 10 in 0.01 (0.11) 0.17 0.87 
Walleye catch x travel 0.03 (0.04) 1.13 0.26 
Walleye catch x bass catch -0.03 (0.04) -1.03 0.30 
Walleye catch x bluegill catch 0.01 (0.05) 0.33 0.74 
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Table S8: Parameter estimates and robust standard errors for latent class C in the second-best 
fitting model. Rather than non-catch orientation, trophy orientation is included as an 
individual covariate predicting latent class membership. 
Parameter Estimate (SE) T statistic P value 
Delta c 2.26 (0.58) 2.56 0.01 
Fishing ASC 0 (fixed)   
Fish elsewhere ASC 3.07 (0.7) 7.05 <0.0001 
Do not fish ASC -0.45 (0.79) -0.76 0.45 
Centrality to lifestyle 1.26 (0.36) 2.61 0.01 
Trophy orientation 0.23 (0.43) 0.42 0.67 
Consumptive orientation -1.4 (0.43) -2.30 0.02 
Travel time -0.69 (0.17) -6.58 <0.0001 
Walleye catch -0.02 (0.36) -0.12 0.90 
Largemouth bass catch -0.11 (0.21) -1.13 0.26 
Bluegill catch 0.15 (0.32) 0.93 0.35 
Walleye size max 10 in -0.1 (0.75) -0.27 0.79 
Walleye size max 14 in 0.09 (0.64) 0.25 0.80 
Walleye size max 16 in 0.24 (0.64) 0.68 0.50 
Walleye size max 20 in 0.52 (0.64) 1.51 0.13 
Walleye size max 24 in 0.73 (0.62) 2.34 0.02 
Bluegill size max 7 in 0.27 (0.38) 1.39 0.16 
Bluegill size max 8 in 0.35 (0.37) 1.77 0.08 
Bluegill size max 10 in 0.68 (0.37) 3.29 <0.0001 
Largemouth bass size max 12 in 0.17 (0.46) 0.67 0.51 
Largemouth bass size max 16 in 0.34 (0.42) 1.68 0.09 
Largemouth bass size max 20 in 0.43 (0.42) 1.83 0.07 
Walleye catch x max size 14 in 0.38 (0.44) 1.89 0.06 
Walleye catch x max size 16 in 0.47 (0.46) 2.12 0.03 
Walleye catch x max size 20 in 0.45 (0.42) 2.03 0.04 
Walleye catch x max size 24 in 0.52 (0.42) 2.64 0.01 
Bass catch x max size 16 in 0.2 (0.25) 1.70 0.09 
Bass catch x max size 20 in 0.39 (0.25) 3.08 <0.0001 
Bluegill catch x max size 7 in 0.06 (0.39) 0.29 0.77 
Bluegill catch x max size 8 in 0.05 (0.37) 0.29 0.78 
Bluegill catch x max size 10 in 0.01 (0.37) 0.07 0.94 
Walleye catch x travel 0.17 (0.14) 2.35 0.02 
Walleye catch x bass catch 0.02 (0.12) 0.46 0.65 
Walleye catch x bluegill catch -0.01 (0.15) -0.12 0.90 
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Conclusion 

Human behavior is a key source of uncertainty when managing sustainable recreational 

fisheries. Although predicting and controlling the behavior of recreational anglers is unlikely, 

effective monitoring of changes across a fishery landscape can improve biological, social, and 

economic outcomes of management decisions. In this dissertation, I demonstrated that 

landscape-scale monitoring of fishing effort is achievable by combining multiple sources of data 

within a statistical modeling framework. I then successfully applied this method to detect 

changes in vehicle traffic at lakes surrounded by public lands during the COVID-19 pandemic. 

Local knowledge and other underutilized data sources such as vessel trip reports emerged as 

promising avenues for hypothesizing and quantifying socioeconomic tradeoffs resulting from 

management decisions. By evaluating human response to social and ecological change using 

these data sources and an experimental method, I found support for the importance of 

understanding and anticipating substitution behavior in recreational fisheries in order to make 

effective management decisions. Quantitative analysis of angler populations’ behavior is an 

effective method to understand scale and effects of these changes in behavior, but further 

integration of qualitative methods will continue to be important for understanding the 

motivations underlying these changes. Engagement in recreational fishing emerges from diverse 

and often conflicting personal values (e.g. Fulton et al., 1996; Jerry J. Vaske, 2001; Teisl & 

O’Brien, 2003). Explicitly engaging with these conflicts in values through participatory active 

adaptive management (e.g. Fujitani et al., 2017) and post-normal science (e.g. Funtowicz & 

Ravetz, 1993) essential for maintaining socioecological resilience in human-natural systems as 

social norms, economic incentives, and ecosystem states continue to shift over time.   
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