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Chapter 1 Metabolic engineering for chemical productions at a system

level

1.1 Systems metabolic engineering

Metabolic engineering emerged as an independent discipline over a decade ago. In the
first book of this field, metabolic engineering was defined as “directed improvement of product
formation or cellular properties through the modification of specific biochemical reactions or
the introduction of new genes with the use of recombinant DNA technology”’[1]. While
recombinant DNA technology is still widely used to introduce genetic changes, many advanced
techniques have been developed which have expedited our understanding of bacterial
metabolism and strain development. Engineering via evolution has often been used to improve
product yield or select desired cellular phenotype (i.e. stress-tolerant strains) [2]. The data
collected from high-throughput measurement technologies (transcriptomics, proteomics,
metabolomics) have been used for strain engineering by deciphering cellular control
mechanisms, identifying metabolic bottlenecks and identifying gene targets to improve strain
performance [3,4]. Novel genetic tools facilitated by synthetic biology have allowed researchers
to design and precisely control metabolic pathways and cellular phenotypes [5,6]. The quantity
and scale of omics data sets has led to the development of computational analysis tools. One of
the most influential computational tools in metabolic engineering is genome-scale metabolic
models. These models can efficiently predict cellular phenotypes and suggest beneficial gene
targets to improve chemical production [7,8]. Genome-scale metabolic models have guided

most of the experiments described in this dissertation. Metabolic engineering has traditionally



focused on studying the properties of individual metabolic pathways, enzyme and metabolite
interactions and genetic regulatory circuits. Computational models allow one to predict how
local pathway changes may affect global network properties, and vice versa. The development
of these new computational and experimental techniques provides unprecedented
opportunities in metabolic engineering to improve product yield and cellular performance at a

systems-level.

1.2 Branched-chain amino acids and biofuels

L-valine, L-leucine and L-isoleucine are three branched-chain amino acids (BAA). They
have been used for various applications including ingredients for cosmetics and
pharmaceuticals, additives in diet supplements and animal feeds [3], and building blocks for the
synthesis of herbicides [9]. Increasing attention to branched-chain amino acids is due to the
discovery of how the BAA biosynthetic pathways can be used to produce a-keto acid
intermediates which can be converted into branched-chain alcohols (e.g. 1-propanoal,
isobutanol, 1-butanol, 2-methyl-1-butanol) [10]. Considered as substitutes for gasoline,
branched-chain alcohols have significant advantages over ethanol, with their higher energy
content, lower volatility and decreased hygroscopicity. BAA producing strains with high yields
could possibly meet demands not only for industrial applications, but also for the increasing
global energy consumption. The branched-chain amino acid producing strains have been
generated using Brevibacterium lactofermentum and Corynebacterium glutamicum mutants
[9,11-13]. An efficient L-valine production strain in E. coli was also developed [3]. In this study,

we evaluated two different approaches to develop E. coli strains for BAA production by



combining directed evolution and gene knockout simulations using genome-scale metabolic

models.

1.3 Summary for this work

The first approach we used was to construct and evolve a synthetic mutualistic
community consisting of leucine and lysine auxotrophs of E. coli. The two mutants can only
grow in glucose minimal medium when they exchange leucine (or its precursors) and lysine. We
hypothesized that the lysine auxotroph would be forced to produce extra leucine and secrete it
into medium if the co-culture improved its growth rate. Although the evolved lysine auxotroph
turned out not to secrete leucine when grown in isolation, the establishment and evolution of
the co-culture system and the population dynamics were studied in details described in Chapter
2. We found a viable co-culture using these two auxotrophs could be established and adaptively
evolved to increase growth rates (by ~3 fold) and optical densities (by ~2.5 fold). While evolved
isolates had increased fitness in co-culture, they exhibited significantly decreased fitness in
mono-culture (when supplemented with leucine or lysine). When the estimated leucine and
lysine secretion rates were used, the model simulation results agreed well with experimental
data and suggested a better exchange of leucine (or its precursors) and/or lysine improved the
growth phenotype of the co-cultures. This study will contribute more knowledge for future
utilization of co-culture in metabolic engineering.

The second approach was to first build a pyruvate (the BAA precursor) producing strain
with high yields, and then produce BAA in the pyruvate strains by increasing the BAA synthesis

fluxes. In order to maximize the pyruvate production yield, we designed gene deletion strains



using a genome-scale metabolic model of E. coli. The computationally designed mutant strains
were constructed, characterized and one of them achieved yields of more than 0.92 g pyruvate
per g of glucose (95% of theoretical yield) under aerobic conditions, which was more than the
yield of the strain previously reported: 0.76 g of pyruvate per g of glucose (78% of theoretical
yield) [14]. This project was described in Chapter 3. The BAA production strains based on the
pyruvate producing strains will be developed in near future.

Pyruvate is a precursor to BAA and many other fine chemicals, commodity chemicals
and high-value pharmaceutical ingredients. The pyruvate overproducing strains could be used
as platform strains to produce other important chemicals. In Chapter 3, we demonstrated the
usage of pyruvate strains by genetically modifying them to produce ethanol. The re-engineered
strains achieved yields up to 0.43 g ethanol per g of glucose (~¥85% of theoretical yield) in batch
fermentation. In Chapter 4, we computationally explored what additional chemicals could be
derived from pyruvate. A comprehensive investigation of the production capabilities of E. coli as
a background host to produce non-native products was performed. We found 1,793 non-native
products could be produced in E. coli, confirmed that 284 of them had commercial value and
identified 64 valuable non-native products within 5 reaction steps of pyruvate. The 64 valuable
non-native products would be good targets for re-engineering the pyruvate strains (described

in Chapter 3) to produce other important chemicals.



Chapter 2: Adaptive evolution of synthetic mutualistic communities

improves growth performance

2.1 Introduction

Microbes are affected by their physical and chemical environment, and they naturally
encounter other species that can also influence their behaviors. Symbiotic interactions between
microbes and higher organisms can lead to stable interactions and microbial communities.
Mutualism is one type of symbiotic interaction, where both species benefit from the interaction.
The existence of cooperation between members of a community appears to violate
evolutionary theory that natural selection favors selfish behaviors, and therefore different
theories have been proposed to explain how cooperation arises and evolves [15-19]. While
symbiotic interactions are important, most of our knowledge of bacterial metabolism has been
gathered from studies of individual strains in pure cultures. However, more than 99 percent of
microbes cannot be cultured nor studied in mono-culture, since their growth depends on the
presence of other species [20]. Additionally, the phenotypes of cultivatable strains may
drastically change when grown in a mixed community as compared to mono-culture [21,22].
Therefore, studies are needed on how bacterial metabolism is influenced by interactions with
other organisms.

In the last decade, experimental efforts have been made to build and study controlled
multispecies systems [23-26]. Hosada et al. used amino acid Escherichia coli auxotrophs to

investigate requirements for nascent mutualism, including how initial cell concentrations affect



co-culture dynamics [25]. Wintermute and Silver screened 1,035 combinations of E. coli
auxotrophs to identify pairs of strains that could grow in co-culture and estimated cooperation
levels and costs associated with cooperation between strains grown in co-culture [24]. Kerner
et al. created a tunable system using tyrosine and tryptophan E. coli auxotrophs containing
inducible genetic circuits that control production of tyrosine and tryptophan, and thus growth
rates and strain ratios [23]. Recently, Pande et al. studied co-cultures of cross-feeding E. coli
mutants which consumed (due to an amino acid auxotrophy) and produced amino acids.
Surprisingly, they showed that most co-cultures with cross-feeders had faster growth rates than
the wild-type strains and were stable in the presence of non-cooperators [26].

While these studies investigated initial stages of mutualism in co-culture, other studies
have also investigated how adaptive evolution alters community behaviors. Harcombe used co-
cultures of a methionine E. coli auxotroph and a methionine secreting Salmonella typhimurium
to select for improved methionine secretion [27]. Harcombe showed that adaptive evolution of
co-cultures, made up of three strains, selected for cooperators (methionine secreting S.
typhimurium) over non-cooperators (wild-type S. typhimurium) and that loss of spatial structure
(by using flasks rather than agar plates) led to a loss of cooperators over time. Hillesland et al.
adaptively evolved co-cultures of a sulfate reducing bacterium and a methanogenic archae and
found growth rates and biomass yields improved significantly (by 80% and 30%, respectively).
When evolved populations were co-cultured with their ancestral partner, antagonistic
interactions were found between the two evolved populations [28].

Mathematical models have also been used to explore natural and synthetic co-cultures

of microbes. Using parameters measured in co-cultures of two auxotrophic yeast strains, Shou



et al. delineated requirements for initial cell densities and cell numbers needed to achieve an
initial viable co-culture [29]. Bull and Harcombe used a model of two cross-feeding species to
show how population dynamics affected the fitness of the microbial community [30].
Constraint-based metabolic models have also been used to study natural and synthetic
microbial communities. These models have be used to identify strains capable of cooperating
[24] [26], predict intra- and extra-cellular flux distributions in co-cultures [31,32], and evaluate
which co-culture objective (e.g. individual or community growth) best matches experimental
data[31,33].

The idea of using microbial consortia to solve multiple tasks in complex environments
has also drawn tremendous attention [34-36], and successful examples have illustrated the use
of consortia for industrial applications [37-39]. In addition to these studies, many new tools
have been developed to create novel microbial cross-feeding interactions, structured consortia,
as well as, quorum-sensing communication. Creating novel interacting systems allows
hypotheses to be tested and reveals ecological principles [40].

Despite these promising findings, the study of microbial consortia has just recently
begun and many questions remain. How do species first establish a mutualistic community?
Does cooperation persist during evolution? When does community or strain fitness increase
and what mechanisms drive such improvements? How does the population structure change
over time? How do phenotypes of individual strains change during evolution?

To answer these questions, we constructed a synthetic mutualistic community of two
auxotrophic E. coli mutant strains to study how adaptive evolution influences community

phenotypes and structure, as well as, individual strain behaviors. In our synthetic community,



strain L (which is unable to catalyze an intermediate step in leucine biosynthesis) and strain K
(which is unable to catalyze the last step in lysine biosynthesis) can only grow in glucose
minimal medium if they exchange leucine (or its precursors) and lysine. The community was
adaptively evolved and its growth rate improved by almost three-fold. Monitoring the
population dynamics during evolution showed a decrease in the ratio of lysine to leucine
auxotrophs over time. Isolates from evolved co-cultures showed improved growth when co-
cultured with their un-evolved partner strain compared to the un-evolved K and L co-culture.
We additionally used a genome-scale metabolic model of the co-culture to investigate how
uptake and release of essential amino acids would influence co-culture fitness and composition,
and suggest mechanisms for observed adaptive evolutionary changes. This study provides
insights into the evolution of mutualistic communities and how microbial phenotypes are
altered during adaptive evolution in a co-culture environment. In addition, this study for the
first time investigates how individual isolates in the evolved community influence community

fitness and composition.

2.2 Materials and methods
2.2.1 Strains and plasmids

E. coli BW25113 and the plasmids pKD46, pCP20, and pKD13 were obtained from E. coli
genetic stock center. The pKD3 plasmid was provided by Dr. Brian Pfleger (UW, Madison). The
E. coli knockout strains AleuA::kan, AlysA::kan, and ArecA::kan mutants were obtained from the
Keio collection (Open Biosystems). An E. coli BW25113 ArecA::cat strain was constructed using

a PCR-based method [41]. A PCR product was generated that contains the chloramphenicol



resistance cassette (cat) from pKD3 and has homology to the upstream and downstream
sequences of recA. The following primers were used in the PCR reaction with pKD3 as a
template, 5’-ATGCGACCCTTGTGTATCAAACAAGACGATTAAAAATCTTCGTTAGTTTCGTGTAGGCTG

GAGCTGCTTC-3’ and 5’-CAGAACATATTGACTATCCGGTATTACCCGGCATGACAGGAGTAAAAATGC

ATATGAATATCCTCCTTAG-3'. E. coli BW25113 containing pKD46 was transformed with the PCR
product using electroporation. Cells were added into 1ImL SOC medium (Fisher Scientific) with
addition of 5mM L-arabinose, incubated at 37°C for 2 hours, and plated on a LB agar plate
containing 34 pg/L chloramphenicol. To generate the double E. coli mutants used in the co-
cultures, AleuA recA::cat (referred to as strain L since it is a leucine auxotroph) and AlysA
recA::kan (referred to as strain K since it is a lysine auxotroph), the temperature-sensitive
plasmid pCP20 was used to remove the kan gene from the BW25113 AleuA::kan and AlysA::kan
mutants. The ArecA::kan and ArecA::cat mutations were then moved into these two kanamycin
sensitive strains by P1 transduction [42] and selected on LB agar plates with kanamycin (50 pg/L)

or chloramphenicol (34 ug/L).

2.2.2 Media and culture conditions

Most liquid co-cultures were grown at 37°C in M9 minimal medium (pH 7.0, 100 uM
CaCl,, 2 mM MgSO,, 6.4 g/L Na,HPO4e7 H,0, 1.5g/L KH,PO4, 0.25g/L NaCl, 0.5g/L NH4CI)
supplemented with 2g/L glucose. For some mono-culture experiments, L-lysine or L-leucine was
added into the medium at different concentrations. A concentration of 10 mg/L leucine or
lysine was used for the un-evolved strains, since this allowed for significant growth while still

ensuring that the amino acid was the limiting nutrient. Higher (16 mg/L) and lower (1.6 mg/L)
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lysine and leucine concentrations were used to evaluate the evolved isolates in mono-culture,
so that growth rates could be measured (for concentrations below 1 mg/L, the change in optical
density (OD) during growth was too small to estimate growth rates accurately). For mono-
culture experiments, cells were inoculated on LB agar plates with kanamycin (50 ug/L) or
chloramphenicol (34 pg/L) for 24 hours and resuspended in glucose minimal media. The
starting OD600 was 0.01 and 0.05 for un-evolved and evolved strains, respectively. For co-
culture experiments, cells from frozen stock were first grown separately in glucose M9 minimal
media with 10% (v/v) luria broth (LB) for 24 hours at 37°C, and then pelleted and washed twice
using minimal medium without glucose, to remove any residual nutrients from the preculture.

Strains were then combined into a co-culture in glucose minimal media.

2.2.3 Adaptive evolution

Multiple parallel co-cultures of K (lysine auxotroph) and L (leucine auxotroph) strains
were each started with a 1:1 ratio based on OD600 values. Co-cultures were started with an
initial OD600 of 0.0065 and were grown in 250 mL flasks containing 100 mL glucose minimal
medium. Co-cultures were grown aerobically in a shaking incubator at 37°C. The OD600 of the
co-culture was monitored and when it reached ~0.2 the co-culture was transferred to fresh
media (resulting in an OD600 between 0.001 and 0.01) and 3 mL of culture was stored at -80°C.
The growth rate of adaptively evolved co-cultures at each passage was approximated using the
duration and the change in OD600 value of the passage. The percent of dead cells for the first 5
passages was determined using SYTOX Green nucleic Acid Stain (Molecular Probes, Invitrogen,

cat. no. S7020). Frozen co-cultures were later recovered by growing them in 2 mL glucose
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minimal medium and transferring them into 200 uL of fresh medium (such that the starting
OD600 was 0.01) in a 96 well plate and grown at 37°C for 4 days. OD600 values were measured
in a Tecan microplate reader and the changes in OD600 values and growth rates for the co-

culture were calculated.

2.2.4 Mono-culture and hybrid co-culture of evolved strains

Evolved isolates from the frozen co-culture samples were obtained by selecting colonies
from LB+kanamycin (50 ug/L) and LB+chloramphenicol (34 ug/L) agar plates. For mono-culture
and hybrid co-culture experiments (consisting of evolved isolates [L* or K*'] and their un-
evolved partner strain [K or L]), evolved isolates were grown on LB+kanamycin (50 pg/L) or
LB+chloramphenicol (34 ug/L) plates and a single colony was used to inoculate cells into
glucose M9 minimal medium with (for mono-culture experiments) or without (for hybrid co-
culture experiments) leucine or lysine. Mono-cultures and hybrid co-cultures were started with
an initial OD600 of 0.05 and 0.01, respectively. Each evolved isolate mono-culture was repeated
in triplicate in 384 well plates and grown for 48 hours at 37°C, where OD600 values were
measured every 15 minutes. Growth rates were determined by searching for the maximum
growth rate in a 3 hour window during exponential growth. A 3 hour window was used because
this was less than the exponential growth period for the different cultures and it had enough
data points (>10) to get a good estimate for the growth rate. Hybrid co-cultures containing a 1:1
mixture of evolved isolates and un-evolved K or L strains were carried out in 96 well plates.

Hybrid co-cultures were grown in glucose medium at 37°C for 72 hours. A total of four
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replicates were done, two each on different plates. The OD600 values were monitored every 4

to 6 hours and used to estimate the growth rates.

2.2.5 Concentration measurements

A bioassay was used to measure the concentration of amino acids. A standard curve for
converting a change in OD600 values of strain K to lysine concentrations was generated by
growing the K strain (4lysA recA::kan) to stationary phase in glucose minimal medium with
various concentrations of lysine for 48 hours. The change in OD600 was proportional to the
concentration of lysine, with a proportionality constant of 25.91 mg/L lysine per OD (Figure
2.1B). To measure the concentration of lysine in the culture medium, we passed the culture
medium through a 0.2 um nylon membrane to remove cells. The filtrate was then mixed with
an equal volume of glucose minimal medium, inoculated with the K mutant and grown at 37°C
for 48 hours. The concentration of lysine present in the filtrate was then estimated from the
change in OD600 and the proportionality constant.

To estimate the levels of leucine, Lactobacillus casei 12A (provided by James L. Steele,
UW Madison) was used as a leucine biosensor, since it is incapable of synthesizing leucine. A
standard curve was generated using the same method described above, but the growth
medium was comprised of equal parts by volume, 2 g/L glucose M9 minimal media with various
concentrations of leucine and CDM medium without leucine [43]. The proportionality constant
was 20.45 mg/L leucine per OD (Figure 2.1A). To quantify the amount of leucine in the culture
medium the same procedure described above was used, except L. casei was used instead of

strain K and the filtrate was mixed with an equal volume of CDM medium without leucine.
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Figure 2.1. Standard curves for amino acid bioassays.

(A) The standard curve for leucine concentration versus OD600 values for L. casei. (B) The standard
curve for lysine concentrations versus OD600 values for strain K. Tests were performed in 96 well plates
and OD600 values were monitored every 15 minutes in microplate reader. The OD values were then
converted to OD600 values in a standard spectrophotometer with 1cm pathlength using a standard
curve (not shown). Each dot shows the amino acid concentration versus the converted OD600 value
minus the OD600 value when the strains were grown in medium without amino acids.

The lower limit of detection for leucine and lysine that can be measured accurately
using the bioassays was ~3.5 uM. One limitation of the bioassay is that the filtrate could contain
chemicals that inhibit or enhance cell growth causing the bioassay to underestimate or
overestimate the amino acid concentrations. To minimize the effects of other chemicals the
filtrate was diluted two fold.

Glucose concentrations were measured using a glucose assay from Sigma (GAGO020)

after cells were removed using a 0.2 um nylon filter.

2.2.6 Estimation of growth and uptake rates
The growth rate and biomass requirements in mono-cultures were estimated from
concentration measurements. First, the growth rate (u) during exponential growth was

calculated from the slope of a linear fit between In(OD) and time (given by InOD = p-t+constant).
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To estimate the biomass requirements (mmol substrate/gDW) for glucose, lysine, or leucine
(Yoie, Yiys and Yiey), the OD600 values were converted to biomass concentration (g dry weight/L;
gDW/L) using a conversion factor of 0.415 gDW/(L-OD) [44]. A linear regression between the
substrate concentrations (glucose, leucine or lysine) and biomass concentrations (X or X;) was
performed, and the resulting slopes corresponded to the biomass requirements (e.g., [lysine] =
-Yis- Xk+constant). Substrate uptake rates (mmol/gDW/hour) for glucose, lysine and leucine
(Usie, Uiys and Uyey) in mono-cultures and co-cultures were then estimated by multiplying the
measured biomass requirements by the growth rate (Equation 2.1). Release rates
(mmol/gDW/hour) for lysine (Ry.s) and leucine (R.e,) in co-cultures were estimated by equating
the amount of amino acid produced by one strain to the amount consumed by the other strain

(Equations 2.2 and 2.3).

U =Y u Vi= {Glc,Lys, Leu} (2.1)
RLys = ULys - (Xk /X1) (2.2)
Rieu = Upen/(Xk/XL) (2.3)

2.2.7 Quantifying relative populations in the co-culture

Standard plating methods measuring the colony forming units (CFUs) on LB,
LB+kanamycin (50 pg/L) and LB+chloramphenicol (34 pg/L) agar plates were initially used to
guantify the relative abundance of strains K and L in the co-culture. However, the adaptively
evolved strains grew poorer on LB plates and the CFUs/(mL-OD) decreased (data not shown).
Thus, we decided to use quantitative PCR (qPCR) to determine the relative abundance of the

two populations in co-culture based on genomic DNA abundance rather than CFUs. The
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genomic DNA of 500 ul of the frozen co-cultures was extracted using the Qiagen DNeasy Blood
and Tissue Kit (cat. no. 69504). Fragments of the kan and cat genes were amplified from
genomic DNA using qPCR with primers, gkan-L (5-CTCGTCCTGCAGTTCATTCA-3’), gkan-R (5'-
AGACAATCGGCTGCTCTGAT-3’), qcat-L (5’-CGTAATTCCGGATGAGCATT-3’), and qcat-R (5'-
TCCGGCCTTTATTCACATTC-3’). Each 20 pL PCR reaction contained 10 uL SsoAdvanced SyBR
Green supermix (Bio-Rad), 500 nM forward primers, 500 nM reverse primers and 20 ng
genomic DNA. Each assay included triplicates for each co-culture, duplicate no DNA control, and
positive controls of 0.1 ng, 1 ng, 10 ng, 100 ng of a 1:1 mixture containing genomic DNA from
the parental K and L strains. The positive controls were used to generate a standard curve. The
uncertainty for the estimated DNA concentration using the standard curve was calculated
based on the error propagation method as following [45]:

Quantitative PCR requires using a standard curve (Equation 2.4) generated from samples
with a known DNA concentration. For the standard curve, the logl0 transformed DNA
concentration is the independent variable (denoted as x), while the measured quantification
cycle (Cg) is the dependent variable (y). Parameters m and b are determined from a linear least
squares estimate. The standard deviations for y and m are denoted as s,, and s, respectively.

For a sample of unknown DNA concentration, its log 10 transformed concentration (x)
can be estimated using the standard curve and the unknown sample’s C; number. The
uncertainty in x (s,) is calculated using Equations 2.5-2.7, where n is the number of data points
used to generate the standard curve and k is the number of measurements for the unknown
sample. The standard deviation for the unknown non-transformed DNA concentration (s,) is

calculated from s, using Equation 2.8.
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2.2.8 Dynamic metabolic model of co-culture

A dynamic co-culture model was constructed which uses a stoichiometric matrix for
each strain (based on the previously published stoichiometric matrix for the iAF1260 model
[46]). The fluxes through reactions associated with the deleted genes in the K and L strain were
constrained to be zero in the corresponding network. The amount of leucine or lysine
consumed by one cell type in the co-culture was constrained to be equal to the amount
released by the other cell type. The concentration of glucose, amino acids and biomass were
calculated at 0.1 hour intervals using dynamic flux balance analysis (dFBA) [47]. At each time
step in dFBA model, the metabolic model(s) were assumed to be at steady state and flux
balance analysis (FBA) was used to predict the fluxes in that time step with the objective
function of the combined growth rate of the two strains. Here, a FBA problem was formulated
and solved to find the flux distributions in strain K (vX), strain L (v%), and media concentration

rate of change (v"¢4¢). The units for the fluxes (vX and v*) are mmol/gDW/hour (except for
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the biomass flux which is 1/hour) and the units for the concentration rate changes (v"¢44) are

mmol/L/hour. The FBA problem is shown below in Equations 2.9-2.17.

max cK - vK bt
such that s vk =0
S-vl=0

LBX < vX < UBX
LBY < v* < UB*

pMedia _ _ZSi'f (vK X vk xb) fori € Iy, and j € Jpy
j

LBMedia < vMedia < UBMedia
K L _
Vpappc Vipps = 0

Media ,,Media __
17l(:‘u(e)Jvlys(e) =0

(2.9)
(2.10)
(2.11)
(2.12)
(2.13)

(2.14)

(2.15)
(2.16)

(2.17)

Here S is the stoichiometric matrix reported in the iAF1260 model and contains all metabolic,

transport and exchange reactions. Steady-state mass balance constraints are imposed for each

strain (Equations 2.10 and 2.11). The lower bounds (LB) and upper bounds (UB) are used to

constrain the flux distributions (Equations 2.12 and 2.13) and concentration rate changes

(Equation 2.15). For metabolic and transport reactions the upper limits on fluxes were set to

1000 mmol/gDW/hour, and the lower limits were set to 0 or -1000 mmol/gDW/hour for

irreversible and reversible reactions, respectively. The upper and lower limits for the ATPM

(ATP maintenance) reaction were set to 8.39 mmol/gDW/hour. The upper and lower bounds

for the set of exchange fluxes (set Jzx) and concentration rate changes used in the simulations

are shown in Table 2.1 in page 19.
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The media concentration rate change (¥€%¢) was calculated using Equation 2.14 from
the exchange fluxes for each strain and the cell concentration of strain at time step t (xX or x*
with units of gDW/L). Here Jgx is the set of exchange fluxes and I, is the set of extracellular
metabolites. Fluxes through reactions associated with LeuA in strain L and LysA in strain K were
set to zero to reflect deletions in these two strains (Equation 2.16). The concentration rate
changes for lysine and leucine were set to zero to ensure all the lysine produced by strain L is

consumed by strain K, and leucine produced by stain K is consumed by strain L (Equation 2.17).

The objective function (Equation 2.9) in the FBA problem was first set to maximize the
sum of the fluxes through the two biomass equations (by setting cX,mass ad c5iomass €qual to
1 and all other ¢ values equal to 0). The biomass fluxes (Va;,mass ad Vhiomass) Were then fixed
to their optimal values and then the objective function was changed to minimize glucose
uptake rates (by maximizing flux through glucose exchange reactions) needed to achieve these

growth rates (by setting cgx gic . and cgx gic . €qual to 1 and all other ¢ values equal to 0).

These two optimizations were done for each time step (t) and the results used to
calculate the glucose (CE4€°5¢) and cell (xX,, and x}, ) concentrations in the next time step
(Equations 2.18-2.20) of the dFBA problem. This process was repeated until the total cell
concentration reached 0.083 gDW/L (corresponding to an OD600 value of 0.2). At this point the
K:L ratio and average biomass flux (i.e. growth rate) was calculated and used in Figures 2.13 and

2.14.

The ratio of the FBA predicted growth rates (V5 ) mass @anNd Vh;omass) and glucose uptake

rates (—vgxﬂlc(e) and 'UéX_glc(e)) is the the biomass yield and used in Equation 2.20. The



starting concentrations of glucose (Co*"**

mmol/L and 0.0026975 gDW/L). The time step used (At) was 0.1 hour.

K

xﬁ_l = xg( . e (VBiomass'At) (2.18)
L

xé‘_l_l = x%‘ . e(vBiomass'At) (219)

K L
v v (2.20)
Glucose _ ,Glucose EX_glc(e) . k K EX_glc(e) . | L
Cetq =(; S (Xt — Xp41) — I (xct — X£41)

VUBiomass Biomass

Table 2.1: Upper and lower bounds for fluxes.
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) and each cell type (xo" and xo') were set to 11.96

( LBX, UBX,LBand UB" with units of mmol/gDW/hour) and concentration rate changes (LBMedia,
UBMedia with units of mmol/L/hour).

Metabolite LBX UBX LBt UBL | LBMedia | ypMedia

Glucose -10 1000 -10 1000 -20 1000

Oxygen -15 1000 -15 1000 -30 1000

lons (ca2,cl,cobalt2,cu2,fe2,k, -1000 1000 -1000 1000 -2000 1000

mg2,mn2,mobd,nal,tungs,zn2)

fe3 -1000 0 -1000 0 -2000 0

Other (nh4,pi,so4,h,h20,cbl1) -1000 1000 -1000 1000 -2000 1000
Leucine value® | value® | value® | value® 0 0
Lysine value® | value® | value® | value® 0 0

All other external metabolites 0 1000 0 1000 0 1000

® for uptake rate simulations the LB and UB for lysine were set to negative the specified value and for
leucine were set to 0 and 1000, respectively; for release rate simulations the LB and UB for leucine were
set to positive the specified value and for lysine were set to -1000 and 1000, respectively.

® for uptake rate simulations the LB and UB for leucine were set to negative the specified value and for
lysine were set to 0 and 1000, respectively; for release rate simulations the LB and UB for lysine were set

to positive the specified value and for leucine were set to -1000 and 1000, respectively.
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2.3 Results
2.3.1 Characterization of individual auxotrophs in mono-culture

Lysine (strain K) and leucine (strain L) E. coli auxotrophs were used in this work to study
microbial interactions in co-culture. To reduce the chance of horizontal gene transfer between
the two auxotrophs, we deleted recA from AlysA and AleuA mutants and replaced it with an
antibiotic resistance marker to generate strain K (AlysA recA::kan) and strain L (AleuA recA::cat).
Strain K requires lysine for growth, while strain L requires leucine. The additional deletion of
recA did not reduce the mutant growth rates compared to the recA positive AlysA and AleuA
mutants (in LB the growth rates were ~1.32 h™' and ~ 1.36 h™ for the recA negative and positive
strains, respectively).

Both the K and L strains were characterized individually in mono-culture during growth
in glucose minimal medium when supplemented with lysine and leucine, respectively. When
grown in mono-culture where the essential amino acid (lysine or leucine) is limiting, the strains
exhibited constant amino acid consumption rates and growth rates (Figure 2.2A and 2.2B),
which were estimated from the concentration data. In mono-culture, strains K and L had similar
growth rates; however, strain K had a lower essential amino acid uptake rate than strain L,
indicating that E. coli needs more leucine than lysine for biomass production. The amino acid
requirements were also estimated from the biomass and concentration measurements (Table

2.2, see Methods for details), and they represent the amount of amino acid needed to produce
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Figure 2.2: Characterization of mutant growth in mono-culture.
(A and B): Un-evolved K and L strains were grown in mono-culture in glucose minimal medium
supplemented with 10 mg/L lysine or leucine, respectively. Concentrations of strain K (blue circles),
strain L (red diamonds), leucine (orange triangles), lysine (green squares), and glucose (black x) in mono-
cultures of strains K and L are shown. (C and D): Survival of strains K (panel C) and L (panel D), in mono-
culture in glucose minimal medium without amino acid supplementation. The error bars represent
standard deviations across three replicate measurements.

Table 2.2. Mutant phenotypes during growth in mono-culture.

AlysA mutant
estimated value

AleuA mutant
estimated value

Growth rate (hour™) 0.461 0.465
Amino acid requirement (mmol/gDW)* 0.350 0.473
Amino acid uptake rate (mmol/gDW/hour)# 0.161 0.220

*The amino acid requirements represent the amount of leucine or lysine required for production of 1

gDW of cells.

$The uptake rates are estimated as the product of the growth rate and amino acid requirements.
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1 gDW of cells. Specifically, 0.350 mmol of lysine was needed for the formation of 1 gDW of
strain K and 0.473 mmol leucine for 1 gDW of strain L. These values are close to the reported
biomass composition of E. coli B/r, which contains 0.326 mmol lysine and 0.428 mmol leucine
per gDW of cells [48]. Accordingly, if these strains have the same growth rate, the leucine
uptake rate by L will be higher than the lysine uptake rate by K.

Since co-cultures of K and L would be carried out without supplementation of leucine
and lysine, we also evaluated the survival of strains in mono-culture in glucose minimal medium
without addition of amino acids. Cell viability was monitored over time by quantifying the
number of colony forming units (CFU) per mL (Figure 2.2C and 2.2D) and percent of dead cells
using Sytox green nucleic acid stain (Figure 2.3). Interestingly, the two strains showed different
resistances to starvation, which has been reported for other amino acid auxotrophs [25,29]. For
the K strain, the number of CFUs/mL decreased within 10 hours, while the L strain did not show

a large drop in CFUs/mL over 80 hours.
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Figure 2.3. Survival of mutants in starvation.

The percent of dead cells in the mono-culture in minimal glucose medium without supply of amino acids
was measured using Sytox green nucleic acid stain. The error bars indicate standard deviations.
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2.3.2 Characterization of un-evolved co-cultures

We next explored the behavior of a co-culture of K and L when grown in glucose
minimal media (without amino acid supplementation). Both mutants were inoculated with the
same initial density in glucose minimal medium and growth of the co-culture was monitored
over 70 hours. One surprising feature of the co-culture was that there was no lag phase at the
beginning of the co-culture, even though the strains were precultured separately. The co-
culture had an exponential growth rate equal to 0.056 h™ (Figure 2.4B), which was around ~12%
of the mono-culture growth rates (Table 2.2 in page 21). The glucose uptake rate for the co-
culture was estimated to be 2.42 mmol/gDW/hour. We also quantified the relative size of the
two mutant populations at different time points of the co-culture by extracting genomic DNA
and amplifying the kan and cat genes using qPCR. In the co-culture, the K and L strains
proliferated at very similar rates with L growing slightly slower than K (Figure 2.4C). An equal
mixture of K and L (based on OD600 values) corresponds to a K:L ratio (based on genomic DNA
levels) of 1.59+0.18, and the average K:L ratio determined by genomic DNA levels during
exponential growth of the co-culture was 1.6 (Figure 2.4D). These results indicate that an
exchange of leucine (or its precursors) and lysine happened immediately when the two mutants

were grown together and was enough to support stable exponential growth.

2.3.3 Evolution of co-culture
To improve growth of the co-culture and establish a more cooperative artificial
microbial community, we adaptively evolved the co-culture for short (one week) and

exponential growth rate that was 88% lower than the strains grown in mono-culture
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Figure 2.4: The un-evolved co-culture of strains K and L.

(A) Nutrient exchange and dependence in co-culture of two E. coli strains L and K. Strain L is incapable of
synthesizing leucine, while strain K is unable to synthesize lysine. In the co-culture, if exchange of leucine
and lysine occurs then both strains can grow in glucose minimal medium. Panel (B) shows the
concentration profiles of glucose (red x) and optical density (black squares) during batch growth of the
co-culture. The error bars indicate the standard deviations across replicates. (C) Genomic DNA from the
two mutants were extracted from the co-culture at several time points during batch growth of the co-
culture and analyzed by gPCR. Blue circles and red diamonds represent the K and L strains, respectively.
The error bars were calculated by the error propagation method described in method. (D) The ratio of K
to L was calculated from the gPCR results. The K to L ratio measured using gPCR was 1.59+0.18 for a 1:1
mixture of un-evolved cells based on OD600. The error bars indicate standard deviations.

supplemented with amino acids, so there was significant room for improving the fitness of the
co-culture. We first adaptively evolved three replicate co-cultures for five passages starting with
equal amounts (based on OD) of strains K and L in glucose minimal medium. The co-cultures
were maintained in prolonged exponential growth by serially transferring cells into fresh
medium, and the OD was monitored over the five passages (Figure 2.5A). In all three

independent co-cultures, the growth rate was constant over the first two passages (u~0.05 h™')
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and improved by 3-fold during the third passage and then stabilized (u~0.14 h™, Figure 2.5B).
Interestingly, just like in the initial co-culture the cells did not appear to have any lag phase
during the later passages. The average percent of dead cells across the three co-cultures
decreased over the first five passages (Spearman Rank Correlation, R? = 1, p=0.016), ranging

between ~5% and ~2% at mid-exponential growth (Figure 2.6).
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Figure 2.5. Changes in growth behavior over short adaptive evolutionary time frames.

(A) Natural log of the OD over time for three parallel co-cultures (co-cultures 1, 2, and 3) for five
passages. Cultures were passed to fresh medium at OD600 = 0.2 (marked as dashed line). The open
diamond, open circle and solid diamond denote co-culturel, 2, and 3, respectively. (B) Average growth
rates of each passage across the three independently evolved co-cultures. The error bars represent the
standard deviations of the growth rate over the three co-cultures.
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Figure 2.6. Percent of dead cells in co-cultures.

Percent of dead cells in five different passages from co-cultures 1, 2, 3 were measured when OD=0.2.
Each column represents the average percent of dead cells from the three co-cultures. The error bars
indicate standard deviations.
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After the short-term evolution experiments, we performed three parallel long-term
adaptive evolutionary experiments of the co-culture using the same serial transfer process. The
adaptive evolution lasted between 30 and 40 days, and included over 20 passages and 160
generations. Periodically, a small amount of co-culture was spread on LB agar plates and
subsequently transferred to glucose, LB+kanamycin and LB+chloramphenicol agar plates, to
check that one strain did not become independent of the other and take over the culture. For
these co-cultures, we did not observe any isolates that were able to grow on glucose plates.
The growth rate for each passage was estimated from the change in OD values and duration of
each passage (Figure 2.7A). Similar to our short-term adaptive evolution results, the growth
rate increased around day six in these independent co-culture experiments. After 10 days (5
passages), the growth rates oscillated around the same value. The three parallel co-cultures

showed similar endpoint growth rates, which has been observed during evolution of individual
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Figure 2.7: Adaptive evolution of the co-culture.

Three parallel co-cultures were performed, represented as a purple solid line (co-culture 4), a green
short dashed line (co-culture 5), and a black dotted line (co-culture 6). (A) Growth rates were calculated
based on the starting and ending OD values for each passage. (B) Genomic DNA was extracted from
frozen samples of the co-culture taken at the end of each passage (OD= 0.2). Relative populations of K
and L were estimated using gPCR and used to calculate the ratio of K to L. The error bars represent
standard deviations calculated using the error propagation method.
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strains [49]; however, the evolutionary trajectories of the co-cultures were different, indicated
by different growth rates on the same day of evolution.

At the end of each passage, a sample of each co-culture was frozen and stored at -80°C.
These frozen co-culture samples were later recovered and further evaluated to study the
population dynamics of the co-culture and monitor the evolution of each strain. We monitored
the relative abundance of the two strains over adaptive evolution. To estimate the relative
abundance of the two strains at the end of each passage, genomic DNA from the frozen co-
culture was extracted and qPCR was used to estimate the cell ratios (Figure 2.7B). The ratio of K
to L decreased in all three evolved co-cultures and the final K:L ratios varied across the different
parallel co-cultures between 0.93 and 0.29. The lower K:L ratio indicates that a smaller
population of K cells can maintain a larger population of L strains. This could be due to a higher
release rate of leucine (or its precursors) via secretion or cell lysis compared to lysine or a
higher uptake rate of leucine compared to lysine. Since we did not detect any leucine or lysine
in the co-culture medium, we cannot exclude either possibility.

While the growth rates of the co-culture were higher after evolution, it was unclear if
the biomass yields of the evolved co-culture increased in the same fashion since the strains
were transferred before reaching stationary phase. When frozen co-cultures were transferred
directly into glucose minimal media, the frozen co-cultures tended to grow faster than the fresh
co-cultures, which could be due to cell lysis caused by the freeze-thaw process. So we first
recovered frozen co-cultures in glucose minimal medium and then passed the exponentially
growing culture into fresh medium. Cells were then grown to stationary phase in a microplate

reader, allowing growth rates and changes in OD600 values to be quantified (Figure 2.8).
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Figure 2.8. The change in OD600 and growth rates of evolved co-cultures 4, 5 and 6.

Frozen co-cultures were recovered and then grown in glucose minimal medium to stationary phase in 96
well plates. The change in OD600 shown in the figure was maximum OD600 value minus the initial value.
The unevolved co-culture had a growth rate ~0.05 (hour™) and OD600 change ~ 0.26 in 96 well plates.
Co-cultures 4, 5 and 6 are denoted by solid line, dashed line and dotted lines, respectively. The error
bars indicate standard deviations.

In microplates, the change in OD600 of the un-evolved co-culture was 0.26 and all
evolved co-cultures showed higher changes in OD600 than the un-evolved co-culture. The
growth rate of the un-evolved co-culture was ~0.05 h™* (similar to the value observed in flask

experiments), while the growth rates of evolved co-cultures were 2- to 3-fold faster (Figure 2.8).

2.3.4 Characterization of evolved strains in mono-culture

During adaptive evolution, co-cultures of K and L strains achieved higher growth rates
and biomass yields. However, these experiments were done with a heterogeneous population
and not using individual isolates. To further investigate how adaptive evolution affected

individual strain behaviors we isolated strains from different passages of the co-culture and first
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evaluated their growth in mono-culture. We randomly selected colonies of evolved K (or L)
strains from different passages in co-culture 4 and 6 (since these co-cultures were the most
different), and grew individual evolved isolates (K* and L*') in mono-culture in glucose minimal
medium with different concentrations of lysine or leucine.

We first selected 3 colonies of K* (or L*') from late passages of co-cultures 4 and 6 and
inoculated them in medium with increasing amounts of lysine or leucine. Surprisingly, the K*
and L' strains had lower growth rates and changes in OD600 values compared to the un-
evolved K and L strains, except for some K* isolates in co-culture 6 which had higher changes in
0OD600 values (Figure 2.9). We subsequently evaluated 10 isolates from different passages of
co-cultures 4 and 6 for growth in mono-culture in the presence of high (16mg/L) and low (1.6
mg/L) concentrations of lysine or leucine. In general, we found that some isolates from earlier
passages did show improved growth phenotypes in high and low concentrations of amino acids,
but that most isolates from later passages had decreased growth rates and changes in OD600

values than the un-evolved K and L strains (Figure 2.10).

In addition to growing individual isolates in mono-culture with exogenous amino acid
supplementation, we also evaluated the survival of isolates in mono-culture without exogenous
lysine and leucine by measuring the percent of dead cells after 24 hours in glucose minimal
medium. Compared to the un-evolved K strain, the evolved K*' isolates from co-culture 4 and 6
had a lower percentage of dead cells (Figure 2.11). On the other hand, the evolved L* isolates
from both co-cultures had a higher percentage of dead cells compared to the un-evolved L
strain. These data indicate that possible mechanisms for improving growth of the co-culture

could be due to a decreased viability of the L strain and/or increased viability of strain K.
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Figure 2.9: Mono-culture of K*' and L*".

Three randomly selected colonies of K (or L*') from passage 19 of co-culture 4 and passage 18 of co-
culture 6 were inoculated in glucose minimal medium with various amounts of lysine (for K*' strains,
panel A and C) or leucine (for L*' strains, panel B and D). Each colony was tested in three replicate mono-
cultures. The growth rates and change in OD600 were calculated for the evolved and un-evolved
parental strains (control). The error bars represent the standard deviations across biological replicates.
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Figure 2.10. Growth phenotypes of K* and L* isolates grown in mono-culture with high and low levels
of amino acids.

Ten randomly selected K* (or L*) isolates from different passages were inoculated in glucose minimal
medium supplemented with Lys (or Leu) at high (16 mg/L, panels A, B, E and F) and low (1.6g/L, panels
C,D, G and H) concentrations. Each isolate was tested in three replicate mono-cultures in 384 well
plates. The growth rates and changes in OD600 were calculated for evolved isolates and normalized to
the values for their respective un-evolved parental strains (K or L). The mean of the growth rate ratios
and change in OD600 ratios are shown as blue diamond (K*'/K) and red square (L*'/L), respectively, in
panels A-D (Co-culture 4) and E- H (Co-culture 6). The error bars indicate standard deviations.
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Figure 2.11. The percent of dead cells in mono-culture.

Three evolved K*' (panel A) or L*' (panel B) isolates from different passages were grown in mono-culture

in glucose minimal medium. The number of dead cells was measured using Sytox green nucleic acid stain
at 24 hour. The control is the percent of dead cells in mono-culture containing un-evolved K or L strains.

The bar indicates the standard deviation across replicates.

2.3.5 Properties of evolved isolates in hybrid co-culture

Since the strains were evolved in co-culture and not mono-culture we also sought to
evaluate changes in growth phenotypes of individual isolates when grown in co-culture with
their un-evolved partner strains (referred to here as a hybrid co-culture). To find out how
evolved isolates derived from each strain affect growth of the co-culture, we evaluated hybrid
co-cultures containing evolved isolates (K®' or L*Y) with their un-evolved partner strains (L or K)
in glucose minimal media. The growth rates and biomass yields of L*'+K (or L+K*') hybrid co-
cultures were then compared to those of the initial un-evolved co-culture (L+K).

In co-culture 4, the growth rates of L+K* and L*'+K hybrid co-cultures containing isolates
from the first five passages were similar to the initial co-culture (K+L) (Figure 2.12A), while
increased growth rates were observed in hybrid L+K* and L*'+K co-cultures containing isolates

from later passages. Growth rate improvements in the hybrid co-cultures were slightly delayed
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compared to our earlier analysis of the evolved co-culture (Figure 2.5B), where the biggest
growth rate improvements happened after three passages. This delayed improvement in
growth rate could be due to the fact that only single evolved isolates were evaluated (rather
than a mixed population) and that evolved isolates were tested in combination with un-evolved
partner strains (rather than evolved partner strains). Compared to co-culture 4, isolates from
co-culture 6 (Figure 2.12D) had larger variations across isolates from the same passage and
earlier increases in growth rates. Interestingly, none of the evolved isolates co-cultured with
their un-evolved partner strains led to a three-fold improvement in growth rate as observed in
the evolved co-culture, indicating that synergistic effects between evolved isolates may exist in
the co-culture. In both co-culture 4 and 6, the growth rate of L*+K hybrid co-cultures increased
faster than the corresponding L+K®' co-cultures, indicating that the L strains adapt more quickly
to enhance co-culture growth. Hybrid co-cultures containing evolved isolates from co-culture 4
and 6 also exhibited higher biomass yields (measured by changes in OD600, Figure 2.12B and
2.12E).

Since each hybrid co-culture contains at least one of the un-evolved parental strains, if
the L+K* (or L*"+K) co-culture grows better than L+K co-culture, then the evolved isolates likely
have increased uptake and/or release of leucine (or its precursors) or lysine. An improved
uptake rate would increase the abundance of the evolved strain in the co-culture while a higher
release rate would benefit its partner strain. The ratio of K:L in the hybrid co-cultures during
exponential growth was also measured using qPCR of genomic DNA, and compared to the K:L

ratio in the un-evolved co-culture. These ratio measurements allowed us to find out which
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Figure 2.12: Comparisons between un-evolved co-cultures L+K and hybrid co-cultures containing L+K*'
or L'+K.

Cells from 10 colonies of K* (or L*') at each selected passage were grown individually in co-culture with
the un-evolved partner strain (L or K). The growth rate and change in OD600 for each hybrid co-culture
was normalized to the growth rate and change in OD600 of the un-evolved co-culture grown on the
same microplate. The resulting growth rate ratios and change in OD600 ratios are shown as blue
diamonds (L+K*') and red squares (L*'+K), respectively, in panels A and B (isolates from co-culture 4) and
panels D and E (isolates from co-culture 6). The error bars indicate the standard deviations based on 10
separate hybrid co-cultures each with four replicates (n=40). The dashed lines indicate the behavior of
the un-evolved co-culture (L+K). Panels C and F shows the K:L ratio in L+K® and L*'+K in hybrid co-
cultures and the un-evolved co-culture. The hybrid co-cultures contained evolved isolates from co-
culture 4 (panel C) or co-culture 6 (panel F). The error bars indicate the standard deviations based on
hybrid co-cultures using three different isolates and three measurements for each passage (n=9). The
shaded bands in C and F show the mean = the standard deviation for the K:L ratio in the un-evolved co-
culture at an OD600 of 0.2 when grown in 96 well plates (1.62 +0.14).
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strain if any dominated the hybrid co-culture. Three hybrid co-cultures at five different
passages were selected for this analysis. They represent the slowest, medium and fastest
growing hybrid co-cultures within a given passage. For comparison, the co-culture of un-
evolved strains (L+K) was measured and had a K:L ratio 1.62+0.14. With isolates from co-culture
6, the K:L ratio of L+K® hybrid co-cultures at mid-exponential growth were all less than 1.6
(except for passage 3) indicating that the K* strains improved growth of the L strain more than
the original K strain (Figure 2.12F). In addition, the K:L ratios in L*'+K hybrid co-cultures also
showed a decreasing trend, implying that the L* strains became dominant in the hybrid co-
cultures. These results suggest that the K® strains may increase release of leucine (or its
precursors) and/or the L*' strains increase uptake rates of leucine. The hybrid co-culture with
isolates from co-culture 4 showed a very different pattern. The K:L ratio initially increased for
both of L+K* and L®'+K hybrid co-cultures compared to the L+K un-evolved co-culture,
suggesting possible better exchange of lysine, while the K:L ratio decreased at later passages,

suggesting a better exchange of leucine (or its precursors) (Figure 2.12C).

2.3.6 Simulation of batch co-cultures

A number of possible mechanisms associated with amino acid exchange could explain
the improvements in growth of the co-culture over adaptive evolution. These include increased
uptake or release rates of leucine (or its precursors) or lysine, or combinations of these. Direct
measurements of cross-feeding rates could not be made, so metabolic modeling was used to
gain additional insights. To further evaluate the co-culture evolution, we developed a

computational model of the co-culture using a genome-scale metabolic model of E. coli [46].
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Dynamic flux balance analysis (dFBA) simulations were performed where the uptake/release of
leucine and lysine were varied and the growth rates and K:L ratios were predicted at an OD600
of 0.2. At each time step in dFBA, metabolism was assumed to be at a steady-state and a flux
distribution maximizing the combined growth rate was found. Since we did not detect any
leucine or lysine in the co-culture media, we additionally constrained the dFBA model to ensure
that there was no net accumulation of leucine or lysine in the media.

As expected, changing the uptake and release rates of the essential amino acids affected
the community composition and the average growth rate (Figure 2.13). The model predicted
that higher uptake or release rates of lysine will result in a larger K:L ratio, while larger rates of
leucine uptake or release will decrease the ratio (Figure 2.13A and 2.13B). What we did not
anticipate is that the strain ratio was predicted to be more sensitive to the uptake rates than
release rates. The strain ratio ranged between 0.04 and 17.54 when consumption rates were
constrained, compared to 0.26 and 2.5 when release rates were constrained to the same range
of values. The growth rate of the co-culture was predicted to improve by increasing uptake
and/or release of leucine or lysine (Figure 2.13C and 2.13D).

A major obstacle in studying the co-culture is an inability to directly measure the real-
time uptake and release rates of the exchanged amino acids. We estimated the uptake and
release rates of leucine (or its precursors) and lysine for the evolved K (or L) strains using the
measured growth rates, biomass requirements and K:L ratios (assuming amino acid
requirements did not change, see Methods for details). These estimated uptake and release
rates (Table 2.3 in page 40) were used to project the evolutionary trajectories for co-cultures 4

(Figure 2.13) and co-cultures 6 (Figure 2.14). The estimated uptake and release rates of leucine
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and lysine both increased in co-culture 4, while only leucine exchange increased dramatically in
co-culture 6. Using the estimated uptake or release rates as inputs, the model was then used to
predict the K:L ratio and average co-culture growth rate. The experimentally measured K:L
ratios and growth rates in the evolved co-culture were highly correlated to model predictions
when release rates were constrained, but not uptake rates (Figure 2.13E). Since the uptake rate
was estimated by multiplying the growth rate with the lysine (or leucine) requirement per gDW
cells (Table 2.2), constraining the uptake rates effectively constrains the model growth rates to

be close to the measured values, resulting in a K:L ratio always close to 1.
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Figure 2.13: Computational model predictions of co-culture composition and growth rates.
The model was constrained using either amino acid uptake (panels A and C) or release rates (panels B
and D). Panels A and B display the predicted K:L ratio at a co-culture OD=0.2. The color map indicates
the value of K:L ratio. Panels C and D show the predicted average growth rate of co-culture, indicated by
the color map. The evolutionary trajectory of co-culture 4 is shown on panels A through D, where the
open circles indicate passages 1,4,7,10,12,15,19 and 21. The estimated uptake or release rates for
evolved K* and L* strains in each passage were then used to constrain the model. Panel E compares the
model predicted K:L ratio and average growth rate of the co-culture near 0D600=0.2 to the estimated
experimental values. Blue diamonds and red triangles denote the predictions when the model was
constrained by the estimated uptake rates for co-culture 4 and 6, respectively. Green squares and
purple circles denote the predictions when the model was constrained by the estimated release rates
for the two co-cultures for co-culture 4 and 6, respectively.



39

Ratioof Kto L Co-culture growth rate (hour")
A Cc
0.1 0.1
__ 008 __ 008
L5 L5
@ O @ O
oS oS
3 % 0.06 3 % 0.06
a o a o
=] % = %
@ [0}
c E c E
= 0.04 = 0.04
ZE TE
0.02 0.02
0.02 0.04 0.06 0.08 01 0.02 0.04 0.06 0.08 01
leucine uptake rate leucine uptake rate
(mmol/gDW/hour) (mmol/gDW/hour)
B D
01 01
0.09 0.09 04
0.08 0.08 0.35
e _ &
S5 007 S5 007 03
o 0 o o
& £ 0086 &£ 008 0.25
o % @ %
g 5 0.05 ﬁ % 0.05 02
£ Z 0.04 £ Z 004 0.15
» E a E
> — > =
- 0.03 - 0.03 0.1
00276005 01 045 02 0 00275005 01 015 02 >o®5 03
leucine release rate leucine release rate
(mmol/gDW/hour) (mmol/gDW/hour)

Figure 2.14. Computational model predictions of co-culture composition and growth rates.

The model was constrained using either amino acid uptake (panels A and C) or release rates (panels B
and D). Panels A and B display the predicted K:L ratio at a co-culture OD=0.2. The color map indicates
the predicted K:L ratio. Panels C and D show the predicted average growth rate of co-culture, indicated
by the color map. The evolutionary trajectory of co-culture 6 is shown on panels A through D, where the
open circles indicate passages 1,4,7,10,13, 16 and 18.
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Table 2.3. Estimated uptake and release rates of lysine and leucine during adaptive evolution.

Passage

Lysine uptake rate

Leucine uptake rate

Lysine release rate

Leucine release rate

(mmol/gDW/hour) | (mmol/gDW/hour) | (mmol/gDW/hour) | (mmol/gDW/hour)
Un-evolved Co-culture
Un-evolved 0.020 0.027 0.020 0.027
Co-culture 4
1 0.022 0.030 0.032 0.021
4 0.041 0.055 0.047 0.048
7 0.044 0.060 0.039 0.069
10 0.044 0.060 0.032 0.085
12 0.046 0.061 0.052 0.054
15 0.054 0.072 0.063 0.062
19 0.051 0.069 0.040 0.089
21 0.060 0.080 0.056 0.086
Co-culture 6
1 0.020 0.027 0.016 0.035
4 0.056 0.076 0.030 0.142
7 0.043 0.058 0.013 0.197
10 0.049 0.066 0.014 0.229
13 0.055 0.074 0.018 0.226
16 0.054 0.072 0.018 0.215
18 0.056 0.075 0.017 0.245

The uptake and release rates of lysine and leucine were estimated using equations 2.1-2.3 in methods

section.

2.4 Discussion

We built a synthetic mutualism system with two E. coli auxotrophs (AlysA recA::kan and

AleuA recA::cat) and adaptively evolved the co-culture. In their initial encounter, both strains

exchanged leucine (or its precursors) and lysine cooperatively to support the partner’s growth.
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Replicate co-cultures all maintained persistent cooperation during adaptive evolution and
achieved similar growth rates but resulted in different population compositions and
evolutionary trajectories. The experimental data and computational model predictions were
combined to analyze mechanisms for improving cooperation during evolution and suggested
that one evolved co-culture benefited from a better exchange of leucine (or its precursors),
while another evolved co-culture experienced better exchange of both amino acids. Interesting,
the timing needed to improve co-culture growth rates (~10 days) was similar to a previous
study on evolving individual strains [50]. Based on our results, adaptive evolution of the co-
culture led to: (1) improved exchange of essential metabolites between strains, (2) altered

survival during starvation, and (3) fitness tradeoffs.

2.4.1 Metabolite exchange between strains

E. coli does not normally secrete amino acids, and amino acid synthesis is well
controlled by regulatory mechanisms so that the cellular inputs are best used for growth. In
previous studies of auxotrophs, starvation led to cell death and release of some metabolites
(amino acids and nucleic acids) [25,29]. In lysine-limiting media, a AlysA E. coli mutant (lacking
diaminopimelate decarboxylase) has been shown to secrete various metabolites, including
diaminopimelate (DAP), an important cell wall constituent [51,52]. In our study, we observed
that in mono-culture without amino acid supplementation, the L and K strains showed different
death rates. Given the different death rates of the two strains we expected to see an initial one-
way cross-feeding from K to L (not cooperative) and a lag phase prior to exponential growth in

co-culture. However, we found reproducible growth of both strains in co-culture and an
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absence of a lag phase in replicate co-cultures, indicating consistent two-way cross-feeding of
leucine (or its precursors) and/or lysine.

During adaptive evolution the estimated uptake rates of leucine and lysine increased
(Figure 2.13), making this one possible mechanism for improvements in the co-culture. We did
not detect any leucine (or its precursors) or lysine in the co-culture media, indicating that the
levels of these essential metabolites are below our bioassay detection limit (~3.5 uM) and are
quickly consumed. Based on the co-culture growth rates and amino acid requirements, we
estimated the possible uptake rates for lysine and leucine (or its precursors) to be ~0.02 and
~0.03 mmol/gDW/hour, respectively, for un-evolved co-cultures and ~0.06 and ~0.08 for
evolved co-cultures. These values are close to the reported transport rates ~0.048
mmol/gDW/hour for leucine with a concentration of ~2 puM and ~0.011 to 0.044
mmol/gDW/hour for lysine with a concentration ranging from 0.2 uM to 10uM [53,54].

We used a genome-scale metabolic model to get a better understanding of how
metabolite uptake/release rates affect the fitness landscape (Figures 2.13 and 2.14). In general,
increases in both release and uptake rates will enhance proliferation of strains and alter
community composition. A prior study by Wintermute and Silver developed models to evaluate
invested benefits and cooperation levels in E. coli co-cultures [24,55]. They found that when
one strain overshares (i.e., is highly cooperative), the other strain becomes dominant in the co-
culture. The oversharing strain can only improve its growth if its partner cooperates. Our
computational results (Figure 2.13B and 2.13D) are consistent with these findings. When

leucine (or lysine) release is higher in strain K (or L), its corresponding partner strain L (or K)
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dominates. When its partner strain produces more lysine (or leucine), K (or L) will begin to

increase its relative population in the community.

2.4.2 Altered viability during starvation

Un-evolved K and L strains exhibited different survival rates during lysine and leucine
starvation (Figure 2.2). We observed that the un-evolved K strain (AlysA recA::kan) quickly
underwent cell death in the absence of lysine. Cell death and lysis were also observed in a yeast
lysA mutant [29]. In a previous study of E. coli co-cultures, a AlysA mutant behaved as a
universal cooperator, supporting growth of a variety of other auxotrophs in co-culture, while
other strains (including AleuB, AleuC, and AleuD mutants) grew with a smaller number of
partner strains [24]. Based on our results, cell death could explain how universal cooperators
enable co-culture growth through the release of many different metabolites by cell lysis.
Another previous study suggests that evolution of cooperative cross-feeding requires an initial
one-way cross-feeding by one species [30]. The stability of our K and L cooperative system
could be due to strain K’s ability to cross-feed metabolites due to cell death.

We additionally observed that the evolved K® and L*" isolates displayed altered survival
during amino acid starvation. The K®' strains adapted to reduce their death rates during lysine
starvation, while evolved L' strains died more quickly during leucine starvation. Increased cell
death by L® strains and decreased cell death by K strains could contribute to better

metabolite exchange and improvement of the co-culture.



44

2.4.3 Fitness tradeoffs

In single species evolution, evolved strains often gain fitness in one environment at the
expense of reduced fitness in another environment. Populations evolved in glucose media can
lose fitness in the presence of other carbon sources [56]. Mutants adapted to low temperatures
may have reduced fitness at higher temperatures [57]. The environment in the co-culture is
complex, and strains adapted to the co-culture might gain fitness in the co-culture but lose
fitness in mono-culture. Our experiments demonstrated that evolved L*' and K* isolates were
able to improve growth of co-cultures (Figure 2.12), but had reduced fitness in mono-culture
when supplemented with their essential amino acids (Figures 2.9 and 2.10). Assimilation of
amino acids is important for improving co-culture growth and the reduced growth in mono-
culture was unexpected. It may imply that strains in evolved co-cultures become dependent on
other strains and/or that additional metabolites are being exchanged. Growth in mono-culture
could decrease due to a downregulation or loss of essential genes, whose biological roles are
fulfilled by the other strain in co-culture. This has been recently referred to as the black queen
hypothesis [17]. Further investigation of these evolved strains using gene expression analysis
and genomic sequencing could potentially identify genetic reasons for the observed changes in
co-culture and mono-culture phenotypes.

In this study, we performed a series of experiments to investigate the behaviors of un-
evolved and evolved co-cultures and how individual evolved isolates contribute towards
improving co-culture fitness. Metabolite (lysine and leucine or its precursors) cross-feeding is
essential for co-culture growth but unfortunately could not be quantified directly. Estimated

uptake and release rates of essential metabolites increased over adaptive evolution, except for
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lysine release rates in co-culture 6. In addition to genome and mRNA sequencing, future
experimental approaches enabling the direct measurement of nutrient exchange rates in co-
cultures would aide in pinpointing the mechanism(s) for the observed growth rate
improvements. While this study and others [23-27,29] have focused on mutualistic interactions,
the adaptive evolution of communities with other types of symbiotic interactions (e.g.,

commensalism, amensalism or parasitism) would be of interest as well [38].
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Chapter 3: Metabolic engineering of Escherichia coli for production of

pyruvate

3.1 Introduction

Microbes can produce diverse useful chemicals [58]. However, microbes have not
evolved to just produce a specific product of interest. Metabolic engineering of microbes aims
to improve production rates, yields, and titers, generating microbial factories for cost-effective
production of desired chemicals [1,59]. A broad range of products have been successfully
produced by engineered strains, such as transportation fuels (ethanol, butanol and diesel)
[10,60-63], pharmaceuticals (alkeloids, polyketides, nonribosomal peptides and isoprenoids)
[64-69], and bulk and fine chemicals (amino acids, organic acids, industrial solvents and
polymer precursors) [3,70-73]. Some chemicals are starting points (or precursors) for other
important materials, and engineered strains which overproduce these precursors can be further
modified to produce other important chemicals. This strategy has been used previously, since
one of the first steps to produce a desired end-product is to increase the supply of its
precursor(s). For example, a strain with elevated malonyl-CoA levels was used to produce an
important polyketide, phloroglcinol [74]. Pyruvate overproducing strains have also been altered
to produce L-alanine and diacetyl [75]. Similarly, strains with higher levels of oxaloacetate

showed increased succinate, threonine and lysine in the production strains [76].

Pyruvate is a key metabolite in central metabolism and is a precursor for acetyl-CoA,

acetaldehyde and several amino acids (including alanine, lysine, valine, isoleucine, and leucine).
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Commodity chemicals (e.g., ethanol, acetic acid, lactic acid, and acrylic acid), as well as active
pharmaceutical ingredients (e.g., polyketides and isoprenoids) can also be derived from
pyruvate. Furthermore, pyruvate itself has various applications as a food addictive, nutriceutical,
weight loss agent, and anti-ageing skin treatment. Pyruvate is commercially manufactured by a
chemical method involving dehydration and decarboxylation of tartaric acid. The process is not
cost-effective and requires the use of toxic solvents [77]. Therefore, microbial production of
pyruvate is an attractive alternative to a chemical process. A number of strains have been
genetically modified to improve pyruvate production in Escherichia coli, yeast and

Corynebacterium glutamicum [14,78-82]; however, high yields have not been achieved.

The metabolic engineering strategies applied previously to E. coli strains mainly focused
on blocking pyruvate consuming pathways which produce phosphoenolpyruvate (PEP), acetyl-
CoA, ethanol, acetate, lactate and formate. Other strategies prevented the conversion of PEP to
oxaloacetate by deleting PEP synthase, and increasing glycolytic flux by disrupting oxidative
phosphorylation using a F;-ATPase-defective mutant or reducing the NADH availability
[14,78,79]. Pyruvate production was also improved by reducing CO, formation by the TCA cycle

through deletion of a-ketoglutarate decarboxylase [14].

A primary goal for developing a pyruvate overproducer is of course high yield. Until now,
the highest yield (0.75 g/g) reported is 78% of theoretical maximum yield [14]. In order to push
the pyruvate production towards higher vyields, it is important to understand the impact of

metabolic engineering interventions on metabolism at a systems-level. Given the scale and
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complexity of the metabolic and gene networks, predicting systems-level impacts on

metabolism can be facilitated through computational modeling.

Genome-scale metabolic models and their associated analytical tools are useful for
predicting cellular phenotypes in response to genetic perturbations and suggesting gene target
modifications to improving chemical production [8]. A bi-level optimization algorithm
(OptKnock) has been successfully used to design strains for overproducting of succinate, lactate,
1,3-propanediol, and 1,4-butanediol [70,83,84]. OptKnock identifies reaction deletions that
couple cellular growth and chemical production. When growth rate is used as a selection
pressure, OptKnock designed strains should increase production of the target chemical through
adaptive evolution. OptKnock only considers the reaction network and does not account for
gene to reaction associations. Another algorithm (OptORF) was developed based on OptKnock,

but searches for gene deletions instead of reaction deletions [85].

In this study, we sought to design and construct pyruvate overproduction strains using
OptORF and a genome-scale metabolic model of E. coli. Four computationally designed mutant
strains were constructed and characterized for growth and pyruvate production under aerobic
conditions. Two strains were adaptively evolved, which increased growth rates and pyruvate
production. Finally, the pyruvate strains were used as platform strains to develop other
chemical production strains. This was demonstrated by modifying the pyruvate strains to

produce ethanol.

3.2. Materials and methods
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3.2.1 Strains and plasmids

The parental strain, E. coli BW25113, and pCP20 plasmid were obtained from the E. coli
genetic stock center (CGSC, Yale University). The E. coli single gene deletion strains AaceE::kan,
AcyoA::kan, OApta::kan, AldhA::kan, AaceA::kan, AlpdA::kan, Agnd::kan, AsdhA::kan, ApoxB::kan,
AgdhA::kan, and ApfIB::kan mutants were obtained from the Keio collection (Open Biosystems).
To generate mutants (listed in Table 3.1) with multiple gene deletions, the kanamycin
resistance gene (kan) was removed using the pCP20 plasmid [41]. An additional gene was
deleted (and kan re-inserted) using P1 transduction [86] with selection on LB agar plates with
50 pg/mL kanamycin. This process was repeated for each additional knockout and the gene

deletions were verified by PCR after each round.

The pJGG2 plasmid and its corresponding empty vector, pBBR1-MSC5, were obtained
from Robert Landick (University of Wisconsin-Madison). The pJGG2 plasmid is a low copy
number plasmid with a lac promoter that controls the expression of the Zymomonas mobilis
PET cassette genes (pdc and adhB), which are responsible for ethanol synthesis. The E. coli K-12
ethanologen, GLBRCE1, was obtained from Robert Landick and is missing IdhA, pfIB and ackA
[87]. GLBRCE1 also contains pJGG2 and a chromosomal copy of the PET cassette inserted in the

pflB locus.

3.2.2 Media and culture conditions

M9 minimal medium (pH 7.0, 100 puM CaCl,, 2 mM MgS0,, 6.4 g/L NaHPO4¢7H,0, 1.5

g/L KH,POy4, 0.25 g/L NaCl, 0.5 g/L NH4Cl) supplemented with glucose and acetate (at varying



50

concentrations) was used throughout the study. For pyruvate and ethanol production
experiments, wild-type and mutant strains were precultured at 37°C overnight in Luria Broth
(LB) and then pelleted and washed twice with M9 minimal medium to remove any residual
nutrients from the preculture. For aerobic experiments, cultures were started with an initial
OD600 of 0.01 and then grown aerobically in 250 mL flasks containing 100 mL glucose minimal
media. Ethanol fermentation experiments were performed anaerobically in hungate culture
tubes containing 10 mL of medium with an initial OD600 of 0.01. The pJGG2 and pBBR1-MSC5
plasmids confer gentamicin resistance and 15 pg/mL gentamicin was used in the ethanol
experiments. IPTG was added to a final concentration of 200 uM to induce the expression of
PET cassette in the ethanol experiments. To remove oxygen, the hungate tubes were vacuumed
and flushed with argon three times. All experiments were carried out at 37°C in a shaking
incubator with a shaking speed of 150 rpm and performed with three replicates. Samples were

periodically taken for further analysis and cells were removed using 0.2 um nylon filter.

3.2.3 Metabolite uptake and secretion rate measurements

The concentration of glucose in the medium was determined using an enzyme assay
from Sigma (GAGO20). The concentrations of pyruvate, lactate, acetate, succinate, formate and
ethanol in the medium were measured by HPLC using an Aminex HPX-87H with Cation-H guard
column (Bio-Rad, cat# 125-0140). The mobile phase contained 0.02N H,SO,4 and was run at a
flow rate of 0.5 mL/min at 50°C. The products were detected and quantified (from standard

curves) based on their refractive index. The uptake/secretion rates were determined from the
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metabolite and biomass concentration data from the exponential growth phase. The biomass
concentration (gram of cell dry weight per liter) was calculated using the measured OD600
values and a conversion factor 1 OD600 = 0.415 gDW/L [44]. The maximal yield per glucose is

0.51 gDW cell/g glucose [88].

3.2.4 Adaptive evolution

Adaptive evolution of two mutant strains was performed for 20 passages. The initial
cultures were inoculated at an OD600 of 0.01 and grown at 37°C in 100 mL of M9 minimal
medium supplemented with 1.6 g/L glucose and 0.4 g/L acetate. When cells reached an OD600
~ 0.2 OD600, the cells were transferred to fresh medium (such that starting OD600 = 0.01).
During adaptive evolution, the amount of acetate in the minimal medium was gradually
reduced, while the glucose concentration was increased so that the total carbon source
concentration was maintained at 2 g/L. After 15 passages, the medium contained 1.98 g/L

glucose and 0.02 g/L acetate. Cultures from each passage were frozen and stored at -80°C.

3.2.5 In silico computations

The optimization algorithm OptORF was used to identify genetic strategies which couple
growth and pyruvate production [85]. This method finds solutions that ensure pyruvate is
produced when cells are at their highest biomass yield. Thus, selection for increased growth
rates will subsequently select for increased pyruvate production. The OptORF algorithm was

run using a tilted inner objective function (growth rate — 0.001 epyruvate production rate) that
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finds the minimum pyruvate production at the maximum growth rate [89]. A penalty equal to 1
for gene deletions was used in OptORFs outer objective function. All simulations were done for
glucose aerobic conditions using the iJR904 E. coli genome-scale metabolic network [90], where
the maximum glucose uptake rate was set to 10 mmol/gDW/hour and the maximum oxygen

uptake was unlimited.

3.3. Results
3.3.1 Insilico strain design for pyruvate production

Four different strain design strategies for pyruvate production were selected from those
suggested by OptORF: (1) aceE, cyoA, cydB, pta, eutl, IdhA, did, (2) IpdA, gnd, sdhA, poxB, pflB,
pfID, tdcE, purU, (3) aceE, gdhA, poxB, IdhA, dld, atpE, pflB, pfID, tdcE, and (4) aceE, gnd poxB,
IdhA, did, atpE, pflB, pfID, tdcE. Given the large number (7-9) of gene deletions suggested, we
sought to prioritize the gene targets. Gene targets that might be inactive under glucose aerobic
conditions (e.g. due to regulation) were first excluded. PfIB is expressed under microaerobic
and anaerobic conditions [91] and a PfID (encoding a putative pyruvate formate lyase) deletion
mutant had a similar fermentation pattern as its parent strain [91,92]. In addition, eut/, d/d and
tdcE encode minor isozymes for Pta, LdhA and PfIB, respectively [93-96]. PurU hydrolyzes 10-
formyltetrahydrofolate into formate for use in purine biosynthesis by PurT. A PurU deletion
mutant grows well aerobically in glucose, since another enzyme (PurN) can be used instead of
PurT [97,98]. These genes (pfIB, pfID, eutl, did, tdcE and purU) were not selected for deletion

since they were thought to have low (if any) activity and would thus have weaker metabolic
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effects. Additionally, the cydB and atpE deletions were lethal in combination with other gene
deletions (data not shown) and could not be included in the constructed strains. The remaining

genes identified by OptORF were deleted in the engineered strains (Figure 3.1).

The resulting engineered strains each involved deletions that impacted metabolism and
pyruvate production differently. Deletion of aceE, pta, poxB and IdhA will reduce the conversion
of pyruvate into acetyl-CoA, acetate and lactate. Deletion of cyoA or sdhA serves to slow down
the citric acid (TCA) cycle which would otherwise divert flux away from pyruvate. The rationale
for deleting gdhA and gnd is less obvious. E. coli has two primary pathways for glutamate
synthesis from NADPH, ammonia and a-ketoglutarate. The GDH pathway (encoded by gdhA)
does not require ATP, while the other GS-GOGAT pathway consumes one ATP per glutamate
produced. Deleting gdhA will force the GS-GOGAT pathway to be used, increasing ATP
consumption and decreasing growth rate. Similarly, deleting gnd prevents NADPH production
by the pentose phosphate pathway and increases NADPH production from NADH via pyridine
nucleotide transhydrogenases. The transhydrogenase consumes energy, thereby lowering the
maximum growth rate. In both cases, lowering the maximum growth rate (via gdhA or gnd
deletions) increases the pyruvate production rates (since both pyruvate and biomass compete
for carbon). The gene deletions suggested by OptORF either prevent pyruvate consumption or
reduce growth, and both synergistically enhance pyruvate production. Based on the
computational results, four strains (PYRO01-PYR004) were constructed and tested

experimentally. Each strain contained four gene deletions and is listed in Table 3.1.



PEP

ptsGHI-crr

PYR

NADP*

zwf pgl gnd.
Glucose —L» G6P +—> PGL——> 6PG $5-84 RbusP

rpiB
2.8
rred 3.0

5.8 5.8

54

NADPH

rpiA

pai 4.0
cop X5p . RSP
tktB
PfkA
5.7 0
o7 100 =
13 Y thtA <7p G3P
F-1,6-P thtB talA
fbaA talB
5.7
‘_/ foab 16
DHAP ——
6.8 tpia G3P E4P F6P
NAD‘d gapA 15.5
NADH
3PG
gpmA
155
i |
2PG
eno l 13.8 PYR
——————5 PEP l 1
pykA ! d
pkul Y2 NabH , naD el
TS L
PYR e Lactate 7 y 02
poe| lock  yunpe A NAD
sl o Acetaldehyde
1. 9 gggg ofiB 0 poxB NADH ! - NADH
i Cc0o2 ¥
Formate adhE | o ladhs
NADH " * NAD
ACCOA —— ACP 7-?4'9 Acetate v
pta ackA Ethanol
/_A’_*.ADP ATP
y gltA
OAA CIT
NADH
1§mdh acnB l 1.4
NAD*
MAL ICIT NADP* NH, NADPH  gg  NADP*
13 T fumABC icd ga
NADPH gdhA
FUM AKG — AKG GLU

SUCAB +
%hABCD sucDC IpdA NAD
0.8 SUCC <— SuccCoA 0.5

0.1 NADH

NADH

NAD*

gltBD
0
NADPH NADP*
GL

GLU
glnA

ADP 1 ATP  NH,

Figure 3.1. Central metabolic pathway of wild-type E. coli.

Genes associated with each reaction in the central metabolic network are shown. The metabolic flux
distribution for wild-type strain under aerobic condition was predicted by flux balance analysis and flux
values were labeled. Glucose uptake rate was set as 10 mmol/gDW/hour. The dash line represents the
ethanol synthesis pathway (PET operon) from Zymomonas mobilis.



Table 3.1 Strains and plasmids used in this study.
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Strains/plasmid Relevant characteristics Reference
E. coli strains
BW25113 lacl® rrnBT14 AlacZWJ16 hsdR514 AaraBADAH33 ArhaBADLD78 [41]
PYROO1 BW25113 AaceE::kan AcyoA Apta AldhA AaceA This study
PYR002 BW25113 AlpdA::kan Agnd ApoxB AsdhA This study
PYROO3 BW25113 AaceE::kan AgdhA ApoxB AldhA This study
PYR0O04 BW25113 AaceE::kan Agnd ApoxB AldhA This study
PYRO10 Evolved strain of PYR001 This study
PYR020 Evolved strain of PYR002 This study
GLBRCE1 MG1655 AackA AldhA ApfiB::PET crl(70insIS1) y/IbE(253insG) g/tB(G3384A) | [87]
yodD(A85T) glpR(150delG) gatC(916insCC) / pJGG2
EHO10 PYR010 / pJGG2 This study
EHO020 PYR020 / pJGG2 This study
EHO010-pfIB PYR010 derivative with kan removed and addition of ApfIB::kan/ pJGG2 This study
EHO020-pflB PYR020 derivative with kan removed and addition of ApfiB::kan / pJGG2 This study
EHO30-pfIB PYROO03 derivative with kan removed and addition of ApfiB::kan [/ pJGG2 This study
EHO040-pfIB PYR004 derivative with kan removed and addition of ApfIB::kan / pJGG2 This study
WT_empty BW25113 / pBBR1-MSC5 This study
WT_pJGG2 BW25113 / pJGG2 This study
Plasmids
pJGG2 pBBR1-MSC5 with adhB and pdc (PET cassette) from pLOI295; Gent" [87]
pBBR1-MSC5 pBBR oriT; Pj,; Gent®? [87]

Abbreviations: kan, kanamycin resistance gene; Gent", gentamicin resistance.

3.3.2 Pyruvate production

Parental and mutant strains PYR0O01, PYR002, PYRO03 and PYR004 were characterized

for pyruvate production in 100 mL glucose minimal medium for 60 hours (Figure 3.2A). Due to

the aceE and IpdA deletions (subunits of pyruvate dehydrogenase) the synthesis of acetyl-CoA

from pyruvate was prevented and the mutants were unable to grow with glucose as a sole

carbon. To allow growth, acetate was added to the media to generate acetyl-CoA by acetyl-CoA

synthetase (Table 3.2). The four mutants grew significantly slower than the parental strain, but
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produced pyruvate as predicted (Figure 3.2A). The parental strain did not secrete any pyruvate.
Strain PYR0O1 grew the slowest and consumed only ~40% of the glucose (~4.0 mM) within 60
hours; however, PYRO01 converted most of the glucose consumed to pyruvate with a yield of
80% of the theoretical yield (Table 3.2). Strains PYRO03 and PYR004 completed growth within
20 hours and produced 17.0 and 19.4 mM pyruvate, respectively (79% and 87% of theoretical
yield). Among the four mutants, PYR0O02 had the lowest pyruvate yield (46% of theoretical yield)

and also exhibited a low growth rate.

The final pyruvate titers were proportional to the pyruvate yields, except for strain
PYRO001, which did not consume all the glucose (Figure 3.2A). The volumetric production rate of
pyruvate depends on the pyruvate titers and growth rates of the mutants. Strain PYR003 and
PYR004 had the best volumetric production rates among the four mutants because of their high
yields and growth rates. On the contrary, PYROO1 only reached 13% of the volumetric
production rate of PYR003, as a result of its poor growth and low titer. The production rate per
cell dry weight was also calculated. PYRO01 and PYR002 both had low production rates, ~30% of

that of PYR0O03.

The secretion of by-products from strains, such as succinate, formate, acetate, lactate
and ethanol, was analyzed by HPLC. Acetate was the main byproduct of the parental strain.
PYRO0O1 and PYR002 formed 1-2 mM acetate (even though acetate was required for growth),
while the other mutants consumed acetate, presumably for acetyl-CoA generation (Figure 3.3).
Only one strain PYR002 produced lactate with a concentration 9.8 mM, which could explain its

low pyruvate yield and low production per gram of cell dry weight. Concentrations of succinate,
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Figure 3.2. Cellular phenotype of wild-type and mutant strains designed in silico.

(A) Growth and production of pyruvate by wild-type, PYRO01, PYR002, PYR0O03, and PYR004 strains is
represented by blue diamond, red square, green triangle, purple solid circle and orange open circle. The
medium is M9 minimal medium containing glucose with/without acetate. (B) The growth and production
phenotype by evolved strains PYR010 and PYR020 is represented by open red square and open green triangle.

formate and ethanol secreted by all strains were too low to be detected by HPLC. A carbon
balance was calculated for each strain. In the parental strain, 61% of carbon was used for
biomass and acetate formation, and the remainder was presumably oxidized to CO,. On the
contrary, the four mutants used 90-111% of the carbon for biomass and pyruvate with less
carbon for CO, formation. This was consistent with the predictions from flux balance analysis
using the genome-scale metabolic model. The reported yields and carbon balances being higher
than 100% is likely due to evaporation in the shake flasks (estimated to be ~0.13 mL per hour)

which would concentrate the media.
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Figure 3.3: Lactate and acetate secretion for wild-type and mutant strains in aerobic condition.

The concentration is the maximum acid produced within 60 hour. Acetate accumulation in the culture of
wild-type, PYRO01 and PYR0OO2 strains was observed by HPLC analysis. * indicates the concentrations of
acetate and lactate were below the detection level of HPLC.

3.3.3 Adaptive evolution

Strain PYR0O03 and PYR004 produced large amounts of pyruvate. To improve pyruvate
production by strain PYR0O01 and PYR002, adaptive evolution was conducted under aerobic
conditions for 20 passages at 37°C in glucose+acetate minimal medium. Acetate was added to
the medium to enable the cell growth, but the concentration added was reduced over the
different passages (Table 3.2). The pyruvate strains were designed such that growth rate and
pyruvate production would increase simultaneously. Therefore, adaptive evolution could select
for faster growing strains with enhanced pyruvate yields. The evolved strains PYR010 and
PYR020, progenies of PYR0O01 and PYR0O02 from the last passage, were characterized and their
performance is shown in Table 3.2 and Figure 3.2B. The evolved strains had a 10- and 3- fold

increase in growth rate and an almost 2-fold increase in pyruvate titers. In terms of pyruvate



Table 3.2 Production of pyruvate from the wild-type and mutant strains.

Strains Medium Growth rate Pyruvate yield Pyruvate concentration Pyruvate production rate Carbon balance |
Glucose | Acetate (hour'l) % theoretical ° | conversion © (g/L) g (mmol/gDW) 41 Volumetric Specific %
(s/L) (g/L) (s/g) (g/L/hour) | (mmol/gDW/
hour)

Wild-type(WT) 2 0 0.59+0.01 0 0 0 0 0 0 60.83+0.78
PYROO1 1.9 0.1 0.021£0.00 80.241+4.63 0.78+0.05 0.621£0.04 194.0+£11.2 0.01x0.00 6.04+0.24 111.0+6.03
PYR002 1.8 0.2° 0.12+0.01 46.24+2.89 0.43£0.03 0.9110.06 65.56£4.09 0.02+0.00 5.4710.04 103.7+4.27
PYR0O03 1.9 0.1 0.451£0.03 79.051£0.63 0.75£0.00 1.50+0.01 75.10£0.60 0.08+0.00 20.361£0.47 99.24+1.00
PYRO0O4 1.9 0.1 0.30+0.00 86.9714.12 0.82+0.04 1.71+£0.08 83.63+£3.97 0.07+£0.01 19.11+0.25 110.9+4.71
PYRO10 1.98 0.02 0.20+0.04 69.34+7.81 0.67+0.08 1.3940.16 80.7119.09 0.06+0.00 14.91+1.68 90.51+10.7
PYR020 1.98 0.02 0.34+0.00 95.16%3.12 0.92+0.03 1.95+0.06 212.3+6.96 0.05+0.00 23.73+0.88 110.6+3.72

® This mutant requires more acetate than others to start growth within 48 hour.

® Percent of theoretical yield is calculated as the pyruvate concentration is divided by the theoretical maximum production of pyruvate (2 mmol
of pyruvate per mmol of glucose). Acetate is also taken account for calculating the theoretical maximum production (0.5 mmol of pyruvate per
mmol of acetate). The yield is adjusted by the culture volume loss due to the liquid evaporation in aerobic condition.

 The conversion is expressed as the gram of pyruvate produced per gram of total carbon source. It is adjusted by the culture volume loss due to
the liquid evaporation in aerobic condition.

4The concentration is the value reported from HPLC analysis.

®The specific production rate is the pyruvate production rate per gram of cell dry weight (gDW) during exponential growth.

" The carbon balance is calculated as the percent of carbon used for the biomass formation, pyruvate production and byproduct formations.
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yield, PYRO10 had a 10% lower yield than its unevolved strain while PYR020 had ~2- fold
increase. The combination of improved growth rate and pyruvate vyields increased the
volumetric pyruvate production rate of PYR0O10 and PYR020 compared to their unevolved
strains. Interestingly, both evolved strains both needed less acetate (5-fold and 10-fold
decrease) in the medium to support their growth.

Among the four designed strains and two evolved strains, PYR020 performed best with
respect to yield, titer and volumetric productivity, followed by PYR0O04. To account for the
slower growth rates of engineered strains, the pyruvate specific production rate (normalized by
gram per cell dry weight instead of volume) was calculated. PYR003 and PYR004 had 3-4 fold
higher specific production rates than PYR0O01 and PYR002 (Table 3.2). The difference was
caused by the different gene knockout strategies for the four strains. PYRO03 and PYR004 had
deletions which affected the NADPH and ATP supply to decrease growth rates, while deletions

in PYROO1 and PYR002 affected the TCA cycle to reduce the biomass yield.

3.3.4 Production of ethanol in the altered pyruvate producing strains

Pyruvate is a precursor for many metabolites. To test the idea of using the engineered
pyruvate strains to produce other chemicals, we further altered the strains to enhance ethanol
production by expressing the Z. mobilis PET cassette. The pJGG2 plasmid included the PET
cassette containing pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) under the

control of an IPTG inducible lac promoter.
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NADH is converted back into NAD using oxidative phosphylation or by secreting
fermentation byproducts, such as ethanol and lactate. Since ethanol was the desired product,
the strains were fermented in hungate tubes with 1.98 g/L glucose minimal medium
supplemented with 0.02 g/L acetate. Ethanol production was analyzed after 48 hours. Three
controls were included: the parental strain with empty vector (WT_empty), the parental strain
with pJGG2 plasmid (WT_pJGG2) and an ethanol production strain (GLBRCE1, which lacks ackA,
pflB, and IdhA and expresses the PET cassette from the chromosome and pJGG2 plasmid) [87].
Pyruvate formate lyase (PfIAB) is active under anaerobic conditions but not aerobic conditions,
converting pyruvate to acetyl-CoA and formate. Since the OptORF strategies deleted reactions
converting pyruvate into acetyl-CoA, pfIB was deleted from the four pyruvate mutants to make
ethanol production strains EH010-pfIB, EH020-pfIB, EHO30-pfIB and EHO40-pfIB. The WT_empty
strain (containing the empty vector) had a lower growth rate compared to WT_pJGG2
(containing the PET cassette on pJGG2) (Table 3.3). Moreover, WT_pJGG2 strain had around a
2- fold higher ethanol yield, ethanol titer and ethanol production rate compared to WT_empty.
The improved growth and ethanol production is likely a result of enhanced NADH recycling.
Aerobically, the pyruvate mutants had growth rates between 37 and 77% of the growth rate of
parental strain, while anaerobically the mutants (EHO010-pflB, EH020-pfIB, EHO30-pflIB and
EHO040-pfIB) derived from the pyruvate mutants exhibited growth rates between 64 and 136%
of the growth rate of WT_empty. Three mutants (EH020-pfIB, EHO30-pfIB and EH040-pfIB) had
1.3-fold higher ethanol yields compared to WT_pJGG2 strain, and had higher specific
production rates than GLBRCE1, even though the yields were similar. The EHO10 and EH020

strains (both pf/B*) had lower ethanol yields and higher production of other byproducts—
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succinate, acetate and formate (Figure 3.4 blue color). Surprisingly, EHO10-pfIB did not show

increased ethanol yield compared to WT_pJGG2 but did have a higher specific production rate.

During the 48 hour fermentations about half the culture volume was removed for HPLC
analysis, which doubled the headspace in the hungate tube. Since ethanol is highly volatile,
ethanol could enter the headspace and escape from the hungate tube during sampling, leading
to an underestimation of ethanol concentrations. The fermentation experiments were repeated
taking fewer samples (at 16, 20 and 24 hours). All strains consumed glucose completely within
24 hours (data not shown). Four of the nine strains re-tested (EH010, EH020-pfIB, EHO30-pfIB
and EHO040-pfIB) showed significantly higher ethanol yields when fewer samples were taken
(Figure 3.4 red color). Three of the engineered ethanol production strains from this study
(EHO20-pfIB, EHO30-pfIB and EHO040-pflB) had higher ethanol yields and lower succinate

production than GLBRCE1.

The ethanol strains were grown with 0.02 g/L acetate in the medium and it was unclear
how acetate concentrations would affect ethanol yields. Additional fermentation experiments
were performed using medium with 0.1g/L acetate and 1.9 g/L glucose. The ethanol yields and
byproduct concentrations did not appear to differ when a higher concentration of acetate was

used (Figure 3.4 green color).



Table 3.3 Production of ethanol from the wild-type and mutant strains.

Strains® Growth rate Ethanol yield Ethanol concentration Production rate Carbon balance *
(hour™) % theoretical ° | Conversion © (g/L) (mmol/gDW) Volumetric Specific d %
(/) (8/L/hour) | (mmol/gDW/
hour)

WT_empty 0.28+0.00 38.04+1.70 0.19+0.01 0.39+0.02 39.15+1.75 0.02+0.00 6.2610.10 91.57+5.21
WT_pJGG2 0.37+0.02 63.06+2.59 0.32+0.01 0.64+0.03 56.71+2.33 0.04+0.00 11.7141.09 114.3+9.91
GLBRCE1 0.16+0.02 82.21+0.91 0.42+0.01 0.83+0.01 128.8+1.43 0.03+0.00 16.08+0.78 92.42+1.90
EHO10 0.25+0.01 62.45+2.54 0.32+0.01 0.63+0.03 80.12+3.25 0.03%0.00 17.9142.96 87.00+4.50
EHO010-pflB 0.18+0.01 61.81+6.77 0.31+0.03 0.6210.07 88.96+9.75 0.02+0.00 16.61+1.15 80.70+7.75
EHO020 0.38+0.00 58.05+5.06 0.29+0.03 0.59+0.05 59.29+5.17 0.04+0.00 19.75+2.03 97.15+8.65
EHO020-pflB 0.25%+0.02 80.23+4.84 0.41+0.02 0.81+0.05 134.0+8.09 0.04+0.00 23.10+1.48 95.90+4.64
EHO030-pflB 0.19+0.05 79.47+7.12 0.40+0.04 0.80+0.07 122.4+11.0 0.02+0.00 19.29+1.12 90.13+4.26
EHO040-pflB 0.22+0.03 84.59+7.03 0.431+0.04 0.85+0.07 107.6+8.94 0.04+0.00 22.37+2.28 100.2+2.93

*WT_empty, WT_pJGG2 and GLBRCE1 were grown in M9 minimal medium with 2 g/L glucose. The rest strains were grown in minimal medium
with 0.02 g/L acetate and 1.98 g/L glucose.

® Percent of theoretical yield is calculated as the ethanol concentration divided by the theoretical maximum production of ethanol (2 mmol of
ethanol per mmol of glucose). Acetate is also taken account for calculating the theoretical maximum production (0.67 mmol of ethanol per
mmol of glucose).

“ The conversion is expressed as the gram of ethanol produced per gram of carbon.
The specific production rate is the ethanol production rate per gram of cell dry weight during exponential growth.

® The carbon balance is calculated as the percent of carbon used for the biomass formation and fermentation byproduct productions including
succinate, lactate, formate, acetate and ethanol.

€9



64

Ethanol yield
Acetate (mM)

24 07
= 06 -
z s
E E 05
Q —
8 Q0.4
s 3
§ lt‘“os-
—
w 0.2
01
0 . . . ‘
A 2 N S 2 ) & 2 @
& F ¢SS &S
LENPS S R T A A
& & & & &
25 .
20
=
_§_15
[
10
£
e
[=]
< o5
0

Figure 3.4: The byproducts secretion in anaerobic condition.

The blue columns represent the fermentation conducted in M9 minimal medium containing glucose and
0.02 g/L acetate for 48 hours and multiple samples (about half the culture volume) were removed for
HPLC analysis. The red columns represent the fermentation in the same medium for 24 hours and three
samples were taken at 16, 20 and 24hours. The green columns denote the fermentation in the minimal
medium with more acetate (0.1 g/L) for 24 hours, and three samples were taken as well. Error bars
represent standard errors among three replicates. Percent of theoretical yield is calculated as the
ethanol concentration divided by the theoretical maximum production of ethanol (2 mmol of ethanol
per mmol of glucose). Acetate is also taken account for calculating the theoretical maximum production
(0.67 mmol of ethanol per mmol of glucose). The difference of product concentrations in 48 hour and 24
hour fermetnation (blue and red columns) were analyzed by t-test, and the same was done for the 24
hour fermentions containing different acetate concentrations in the medium (red and green columns). *
and ** indicate p-value is between 0.01 and 0.05 or less than 0.01, respectively.
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3.4 Discussion

Optimizing production of a specific metabolite usually involves increasing synthesis of its
precursors in bacteria. Pyruvate is a starting compound for synthesizing a variety of biofuels
(e.g., ethanol, 1-butanol and isobutanol) and chemicals. A high-yield pyruvate producing strain
has great potential for creating strains to produce valuable chemicals. In this study, a genome-
scale metabolic model of E. coli and OptORF were used to identify gene deletion targets to
improve pyruvate production. Strains constructed based on the computational predictions
produced high levels of pyruvate and adaptive evolution of two strains increased pyruvate
yields, titers and volumetric and specific production rates. Further engineering of these

platform pyruvate strains resulted in strains with high ethanol production.

3.4.1 Similar flux distribution patterns shared by in silico designed strains

All computationally designed strains over-produced pyruvate. The gene targets
suggested by OptORF prevented pyruvate consumption by removing competing pathways and
reduced growth by eliminating more energetically efficient routes for NADPH and glutamate
production. The mutations involved shutting down the pentose phosphate pathway, reducing
TCA cycle flux, and lowering biomass production (Figure 3.5). All of the computationally
designed mutants were predicted to have increased glycolytic fluxes and coupling between
growth and pyruvate production. Two of the strains immediately exhibited high pyruvate yields,

while two other strains were adaptively evolved to improve production rates and/or yields.
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3.4.2 The resource for synthesis of acetyl-CoA

All the pyruvate strains have pyruvate dehydrogenase subunits deleted (either aceE or
IpdA). The model predicted that other pathways (besides pyruvate-formate lyase) could be
used to produce acetyl-CoA. Acetyl-CoA could be made from acetaldehyde via acetaldehyde
dehydrogenase (MhpF), where acetaldehyde is produced by threonine degradation and other
reactions. Acetyl-CoA could also be produced by 2-amino-3-ketobutyrate CoA ligase (Kbl) from
threonine degradation. However, all of the mutants were unable to grow in the absence of
acetate, suggesting that these other pathways are not active at high enough levels. Acetate was
consumed by all the pyruvate strains, except PYRO01, presumably to generate acetyl-CoA by
acetyl-CoA synthetase. The amount of acetate available (0.34 — 3.4 mM) was greater than or
close to the amount acetyl-CoA needed for biomass (estimated the product of the biomass
concentration and biomass requirement for 3.7 mmol acetyl-CoA per gDW)[99]. In ethanol
production study, the mutants with increased fluxes of ethanol synthesis were observed to
grow faster, which is also probably caused by the generation of acetaldehyde and then

converted to acetyl-CoA, while another possibility is the balancing of NADH.

3.4.3 Reduced ethanol yield in one evolved strain

When the resulting pyruvate strains were re-engineered for ethanol production, three
of the resulting strains achieved high ethanol yields (EH020-pfIB, EHO30-pflB and EH040-pflB)
during fermentation. Deleting pfIB and expressing the PET cassette increased ethanol as

expected, except for EHO10-pfIB. EHO10-pfIB (derived from PYR010), had the lowest yield of the
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mutants with pfIB deleted and PET added. Among all the strains tested, EHO10-pfIB is closest
genetically to GLBRCE1. Both EH010-pfIB and GLBRCE1 have I/dhA, pta and pfIB deletions. Even
though EHO010-pflIB has two additional deletions, aceE and cyoA, neither gene would be
expected to be expressed anaerobically [100]. Thus, the significantly lower ethanol yield in
EHO10-pflIB compared with GLBRCE1 was unexpected. GLBRCE1 was derived from a closely-
related background strain (MG1655, compared to BW25113) and has an extra chromosomal
copy of the PET cassette. This additional copy of the PET cassette could lead to higher PET
expression levels and ethanol production in GLBRCE1. When compared to EH010, EHO10-pfIB
should have reduced formate production (which it does, see Figure 3.4) and increased
availability of pyruvate; however, EH010-pfIB and EHO10 exhibited similar ethanol yields. For
the EHO010-pfIB strain, only 80% of the carbon was recovered in the biomass and measured
products (which is lower than the other strains) and so it is possible that some other metabolite

(not detected by HPLC) was secreted by EH010-pfIB.

3.4.4 Survey of available pyruvate strains

Yeast and bacterial strains have previously been engineered for pyruvate production.
Performance metrics for pyruvate producing strains reported over the last decade are
compared to metrics for PYR020 in Table 3.4. Previous strains had volumetric production rates
up to 1.2 g/L/hour with yields between 24% and 78% of the maximum theoretical production.
The strains usually require additional nutrients besides glucose (e.g., yeast extract, tryptone,
thiamine) which will increase the cost for commercial production. While PYR020 requires

acetate for growth, acetate is commonly found in lignocellulosic hydrolysates. Currently, E. coli
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TC44 has the best performance considering the pyruvate yields, production rate, and titer. Our
strain, PYR020, uses only mineral salt medium and reaches significantly higher yield, but had
lower titers and volumetric production rate because of the lower glucose concentrations used
in the media. The next step is to investigate pyruvate productivity of these engineered strains in
minimal medium with higher concentrations of glucose, or in cheaper hydrolysate feedstock

under batch or fed batch process.



Figure 3.5 A: Strain PYR0O01, designed as AaceE, AcyoA, AcydB, Apta, Aeutl, AldhA and Adid
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Figure 3.5 B: Strain PYR002, designed as AlpdA, Agnd, AsdhA, ApoxB, ApfiB, ApfID, AtdcE and ApurU
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Figure 3.5 C: Strain PYR003, designed as AaceE, AgdhA, ApoxB, AldhA, Adld, AatpE, ApfiB, ApfiD, AtdcE
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Figure 3.5 D: Strain PYR004, designed as AaceE, Agnd, ApoxB, AldhA, Adld, AatpE, ApfiB, ApfiD, AtdcE
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Figure 3.5. Central metabolic pathway of designed mutant strains for pyruvate production.

Genes associated with each reaction in the central metabolic network are shown. The reactions marked

by red bars correspond to the deletion targets calculated by computational method. The labeled

metabolic flux distribution for each strain was predicted by flux balance analysis. Glucose uptake was
limited by 10 mmol/gDW/hour. Oxygen uptake was unlimited for strain PYR002, PYR003 and PYR0O04,

but limited to 3 mmol/gDW/hour for strain PYR0O1.



Table 3.4 Existing engineered strains for pyruvate production.

Strains Carbon and Genotype Pyruvate yield | Pyruvate titer | Volumetric production | Fermentation | Reference
nitrogen Source (g/g) (g/L) rate (g/L/hour) time (hour)
E. coliTC44 60 g/L Glucose ApfiIB AfrdBC AldhA 0.76 52 1.2 43 [14]
(NH,),HPO4 AadhE AsucA AackA
ApoxB AatpFH
S. cerevisiae 35 g/L Glucose MATa leu2-3, 112 0.23 8.21 0.09 96 [80]
FMME-002ATHI2 NH,CI ura3-52 his3-A1 trp1-
Thiamine 289 ATHI2
E. coli CGSC791 40 g/L Glucose AaceF AfadR AadhE 0.65 35 0.97 36 [79]
3 g/L Acetate Appc
Tryptone
(NH,4),HPO4
C. glutamincum 30 g/L Glucose AaceE Apgo AldhA 0.59 17.6 0.32 55 [82]
10 g/L Acetate AalaT AavtA C-T ilvN
L-alanine
(NH,),HPO4
S. cerevisiae 150 g/l Glucose Apdc udhA+ 0.63 75.1 0.63 120 [81]
G2U1-A, Yeast extract
Tryptone
E. coli 1.98 g/L Glucose | AlpdA AsdhA ApoxB 0.92 1.95 0.05 27 This study
PYR020 0.02 g/L Acetate Agnd

NH,CI

€L
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Chapter 4 Discovery of non-native products produced from pyruvate and

their synthesis pathways

4.1 Introduction

The goal of metabolic engineering is to manufacture chemicals in a cost-effective
manner using living organisms. Identifying which metabolites are capable of being produced by
microbes and what biosynthesis pathways are required to enable metabolite production are
fundamental questions. E. coli is the most widely used host for metabolic engineering, since it is
one of the best-studied microbes and it has a variety of advanced genetic, synthetic biology,
and systems biology tools available. Currently, it is unknown how many non-native products
E. coli could potentially produce by introducing heterologous enzymes and reactions. Metabolic
databases, such as KEGG[101], provide a listing of known biochemical enzymes and their
associated reactions and metabolites. Previously, heterologous KEGG reactions have been
integrated with genome-scale metabolic network models of E. coli to identify missing E. coli
metabolic reactions [102,103] and to identify a small set of heterologous reactions that need to
be added to the E. coli network to optimize production of a desired native or non-native
product [104,105]. While some analysis has been done for individual products, a broader
characterization of the non-native metabolites that could be produced, including the pathways
and central metabolic precursors needed to produce them, has not been done.

Approaches for finding pathways use either a known set of reactions (e.g., reactions

from KEGG or a genome-scale reconstruction) or propose novel reactions. The BNICE
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framework generates pathways using a set of enzyme reaction rules based on the enzyme
classification system [106]. Since BNICE takes into account the chemical structure of reactants
and products, it can suggest novel biosynthesis pathways for known and novel biological
compounds. BNICE and related algorithms have been successfully applied to enable production
of 1,4-butanediol and 1,2,4-trichlorobenzene [107,108]. Although BNICE is a well developed
tool for producing novel biosynthesis pathways, it generates a large number of possible
pathways that use novel biochemical reactions for which enzymes must be engineered.

Different approaches can be used to find a synthesis pathway(s) for products using a set
of reactions. These approaches use optimization-based or graphical-based searches on a
collection of known or hypothesized biochemical reactions. A pathway search specifies a
starting and ending metabolite, such as a central metabolic precursor and a desired non-native
product. Several metabolites are centrally located in metabolism, have high degrees of
connection, and can be converted into a variety of other chemicals. Thirteen central metabolic
precursors (including glucose-6-phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate,
pyruvate, oxaloacetate, and a-ketoglutarate) are used in E. coli to make all cellular components
(lipids, proteins, RNA and DNA) [99]. These metabolic precursors can be considered as the
starting points for synthesis pathways for most metabolites [107,109]. Usually many different
pathways can convert a starting metabolite to a desired end-product, and enumerating
alternative pathways is useful for comparing them to determine which would be best to
produce a desired target molecule.

Graph-based methods have been used to find pathways from a starting metabolite to

the target product. These graph-based methods represent metabolites as nodes and reactions
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as edges, and the results will be sensitive to which edges are included in the network (e.g.
edges between all reactants and products for a given reaction versus edges only between
reactants and products that share carbon atoms). Unfortunately, these graph-based methods
can identify paths which cannot be mass-balanced by the cell. In this case, the paths proposed
produce (or consume) metabolites that cannot be consumed (or produced) by other parts of
the network.

An alternative to graphical-based approaches is to use an optimization-based method.
Optimization-based methods can incorporate network stoichiometry and rule out pathways
that cannot satisfy mass balance constraints under steady state conditions [110]. More recently,
another optimization based method, PathTracer, was developed [111]. PathTracer uses
reaction stoichiometry to identify feasible pathways, but also eliminates undesired pathways
with internal cycles. Optimization-based methods [110,111] can also only use connections
between a reactant and a product if they share carbon atoms, so that the pathways that are
proposed follow carbon through the network. .

In this study, we used the genomic-scale metabolic model of E. coli to identify all non-
native products that could be produced in E. coli. For the subset of non-native products with
commercial applications, we also identified pathways for producing these products from
different central metabolic precursors. We were particularly interested in compounds that
could be derived from pyruvate, since we have previously developed pyruvate overproducing
strains which could serve as platforms to generate other chemical producing strains. The

synthesis pathways from pyruvate to those non-native products were searched by PathTracer
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algorithm. The pathways solutions provide a valuable resource for selecting pathways and

target products for metabolic engineering.

4.2 Materials and methods
4.2.1 Maximum yield calculations

Reactions in the KEGG database that were not in the E. coli metabolic network were
classified as heterologous reactions [101,112]. All 4,740 heterologous reactions utilized in this
study were elementally balanced (by adding H and water as reactants or products), and
represented 56% of the 8,452 reactions in the KEGG database. The heterologous reactions
involve 4,725 metabolites, and 694 of these metabolites also participate in reactions included in
the genome-scale metabolic model of E. coli iJ01366 which has a total of 1136 metabolites
[112]. The heterologous metabolic reactions were combined with the E. coli metabolic
reactions, to generate an integrated metabolic network with 5,167 unique metabolites and
6991 reactions. The maximal yield of each metabolite from glucose minimal medium under
aerobic conditions by this integrated network was calculated using flux balance analysis (FBA)
[47]. To calculate the maximum vyield for a target metabolite using FBA, flux through a sink
variable (y;) was maximized, where production by the network reactions resulted in a positive
sink variable. A steady-state mass balance constraint was imposed (Equation 4.1), which
accounted for flux in the E. coli (defined as set Rxn), heterologous (defined as set KEGG) and
sink reactions.

Sii-v)—y;=0 Vi€ Met,j € Rxn U KEGG (4.1)
E Lj Y i~
J
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Here S; ; was the stoichiometric matrix representing the reaction stoichiometry for all
metabolic reactions (j) in the Rxn and KEGG sets. The set Met contained all metabolites (i)
used in the E. coli and heterologous KEGG reactions. The v; variable was the flux through a
reaction (j). In addition to the mass balance constraint (Equation 4.1), enzyme capacity and

thermodynamic constraints were also included in FBA:

0 < ¥i < Vmax Vi € Target (4.3)
yi=0 Vi € Met\Target (4.4)

where Vj pin and vj a0, Were the lower and upper bounds imposed on the fluxes. v; 4, Was
set to 1000 mmol/gDW/hour and vj ;i Was set to 0 or -1000 mmol/gDW/hour for irreversible
and reversible reactions, respectively. The lower limit for the ATP maintenance (ATPM) reaction
was 3.15 mmol/gDW/hour. The maximum glucose uptake rate was set to 10 mmol/gDW/hour
and oxygen uptake was unlimited. The set Target contains the metabolite of interest whose
maximum yield was being calculated. Metabolite production (}}; y;) was maximized subject to

the constraints in Equations 4.1-4.4,

4.2.2 Minimal number of heterologous reactions required

For the metabolites that could be produced aerobically from glucose using the
integrated metabolic network, the minimal number of heterologous reactions required to
produce at least 50% of the maximal yield was calculated. First, flux through the sink variable

was constrained to be at least 50% of its maximal value found by FBA:
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y; = 0.5+ M; Vi € Target (4.5)

where M; was a parameter corresponding to the maximal production rate for metabolite i
calculated by FBA (Equations. 4.1-4.4). A binary variable z; was used to indicate the flux status
of the heterologous reactions. If the heterologous reaction j was active then z; was equal to 1;
however, if z; was 0 then the heterologous reaction j was inactivated (Equation 4.6):

Vj € KEGG (4.6)

vj’min . Zj < vj < v;

jmax " Z

j
A constraint on the maximum number of heterologous reactions that could be used was

imposed:

sz <N Vj € KEGG (4.7)
J

where N was set to 20 in this study. The minimum number of heterologous reactions required
to produce a target metabolite was found using the constraints shown in Equations 4.1, 4.4-4.7,

while minimizing the objective (Obj) shown in Equation 4.8.

Obj = Z 7 Vj € KEGG (4.8)
j

4.2.3 Finding paths between precursors and targets (PathTracer)

Synthesis pathways (involving heterologous and E. coli reactions) for non-native
products from central metabolic precursors (e.g. pyruvate, oxaloacetate, a-ketoglutarate,
glyceraldehyde-3-phosphate, and glucose-6-phosphate) were determined using the PathTracer

algorithm [111]. First, the MapMaker algorithm was used to identify all the elemental transfers
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between reactants and products of a reaction based on the metabolites’ molecular formula. For
example, a carbon transfer indicates how many carbon atoms are transferred between a
reactant-product pair. The MapMaker results were used to create carbon transfer mappings
between reactants and products only if carbon atoms are transferred between them.
MapMaker was run for all E. coli and heterologous reactions included in the integrated
metabolic network. Carbon maps involving currency metabolites (e.g. CO, and ATP) were
omitted (see Appendix 1 for complete listing).

The carbon maps generated by MapMaker were used by the PathTracer algorithm to
identify pathways connecting precursor metabolites to non-native products. PathTracer was
formulated as a network flow problem where the metabolites were nodes connected through
edges corresponding to the carbon maps generated by MapMaker. PathTracer determined the
shortest path from a specified precursor to the target metabolite using E. coli and/or the
heterologous reactions from KEGG database. Alternative paths connecting the two metabolites
were also found using integer cut constraints (either reaction or path cuts) [111].

Importantly, the PathTracer algorithm guaranteed a path was feasible by applying mass
balance (Equation 4.1), enzyme capacity and directionality constraints (Equation 4.2), and the

following constraints (Equations 4.9-4.12):

Vj 2 Vmin V j € Path U Forward (4.9)
Vj S —VUnin V j € Path U Reverse (4.10)
v; =0 vV j € KEGG\Path (4.11)

u =001 (4.12)
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where v,,;, Was a parameter, set to 0.001 in this study. The set Path contained the reactions
(from Rxn and KEGG) in a proposed path. The reactions moving in forward and reverse
directions in a proposed path were included in sets Forward and Reverse, respectively.
Equations 4.9-4.11 ensured that all reactions in a selected path were active (i.e., have non-zero
flux) and that heterologous reactions not included in the path were inactive (i.e., have zero flux).
Equation 4.12 imposed a minimal growth rate (u).

The net reaction for a path was determined from the stoichiometric coefficients of the
reactions in the path (Equation 4.13). The net reaction coefficient for the starting precursor
metabolite was constrained to be negative (Equation 14), in order to prevent paths from being
proposed where the precursor started the path but was later produced by the path. These two

additional constraints were formulated as:

4.13

Sinet = Z Si,j ( )
jEPath

Stet <0 Vi € StartMet (4.14)

where S]** was the coefficients for the metabolites in the net reaction. The set StartMet
referred to the starting precursor metabolite. To ensure that a reaction or metabolite was only
used once in a path, PathTracer was run using reaction blocking and loop killing constraints (see
[111] for details).

A variation of the PathTracer algorithm was implemented by including the constraints
described above (Equations 4.1, 4.2, 4.4, 4.5, 4.9-4.14) and reaction blocking and loop killing
constraints, into the basic algorithm (see [111] for details). PathTracer found the shortest and

alternative paths from a starting precursor metabolite to a desired product. PathTracer was
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implemented in GAMS (GAMS Development Corporation, Washington, DC) and solved with the
CPLEX solver with a default CPU-time limit of 1000 s. The results were subsequently filtered to
ensure that reactants in the heterologous reactions used in a path were available (i.e.,

reactants were part of iJO1366 or produced by other reactions in the path).

4.3. Results
4.3.1 Non-native products that could be produced by E. coli

The maximal yields for 5,167 unique metabolites were calculated using FBA for an
integrated metabolic network containing E. coli reactions and 4,740 heterologous reactions
from KEGG. Under glucose aerobic conditions, 2,510 metabolites (49% of total metabolites)
could be produced by the integrated network. The integrated model could not produce all the
metabolites (including 265 out of 1,136 E. coli metabolites and 2,392 out of 4,031 non-native
metabolites), which could be due to network gaps (e.g., unknown routes for precursor synthesis
or by-product degradation), reaction directionality, or medium conditions (e.g., only produced
from carbon/nitrogen sources).

Among the 2,510 metabolites that could be produced, 871 participated in E. coli
reactions (77% of iJO1366 metabolites) and the remaining 1,639 participated only in
heterologous reactions from the KEGG database. For each producible metabolite, the minimum
number of heterologous reactions needed to achieve at least 50% of the maximal yield (for the
given producible metabolite) was determined. Metabolites that required heterologous
reactions for production were classified as non-native products, while metabolites that did not

require any heterologous reactions were classified as native products. Of the 871 producible
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E. coli metabolites, 716 were made using only E. coli metabolic reactions (i.e. native products),
while 155 required heterologous reactions indicating they were non-native products. A total of
1,793 non-native products (including 155 E. coli metabolites and 1,638 KEGG metabolites)
needed a minimum of 1 to 16 heterologous reactions to allow their production (Figure 4.1); one
additional non-native product (sinapine) required more than 20 heterologous reactions to be
produced. This set of 1,793 metabolites will be referred to as the set of non-native products. Of
the non-native products, 29% of them (522 metabolites) needed only one heterologous
reaction to enable production, and 35% (631 metabolites) required only two or three
heterologous reactions. On the contrary, very few non-native products (<4%) required more
than ten heterologous reactions. These results indicate that the E. coli metabolic network is suit

to make many non-native metabolites with only few additional non-native reactions.
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Figure 4.1: Minimal heterologous reaction requirements for the non-native products.

The minimal number of heterologous reactions needed to produce each product at 50% of its maximum
theoretical yeild was calcualted. The minimal number of heterologous reactions required for producting
1,793 non-native products ranged between 1 and 16. One additional non-native product required over
20 heterologous reactions.

The 1,793 non-native products include many metabolic intermediates which do not
have any commercial value. Before identifying paths between precursors and desired targets,
which is a time-consuming process, we first identified how many of the 1,793 non-native
products had commercial applications. Five databases were queried, including CAS (Chemical
Abstracts Service), WikiPedia, DrugBank, Sigma-Aldrich and KEGG, to gather information of
commercial availability, general usage, drug data, retail price and chemical structure. Of the
1,793 non-native products, 284 were manually confirmed to have applications in a variety of
industries, including pharmaceuticals, food industry, cosmetic and perfume, agriculture,
manufacture and others (Figure 4.2A). According to the CAS database, 279 of the 284
metabolites are commercially available. The 284 valuable non-native products could be made

using E. coli by expressing enzymes to catalyze 1 to 16 heterologous KEGG reactions. About 27%
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Figure 4.2: Commerical applications for non-native products and the non-native reaction requirements
for produciton.

(A) The primary applications for the 284 non-native products. (B) The minimal number of heterologous
reactions required for producing the valuable non-native products.
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of these valuable non-native products required only one heterologous reaction, while 33%
needed two or three reactions (Figure 4.2B). Additional details about the 284 valuable non-

native products can be found in Appendix 2.

4.3.2 Paths to valuable non-native products from pyruvate

After identifying commercial applications for 284 non-native products, paths containing
E. coli and heterologous reactions from pyruvate to these valuable compounds were found
using PathTracer. Pyruvate was chosen as a precursor since it is part of central metabolism and
over-producing strains have been developed (Chapter 3). Out of the 284 non-native products,
64 were found to be within 5 reactions of pyruvate. The shortest path and alternative paths
(with equal or greater length) were identified, and the number of different PathTracer solutions
for the 64 metabolites varied between 1 and 72 (Figure 4.3). Fourteen of the 64 metabolites
(~22%) had 5 or fewer paths from pyruvate, and ~69% had fewer than 20 different paths from
pyruvate. The small number of paths for most metabolites made it easy to evaluate the
individual solutions. Some of the 64 metabolites have been produced previously using E. coli.
The following sections compares the PathTracer identified paths to the strategies used

previously for engineering E. coli to produce 2,3-butanediol, 1-propanol and acrylic acid.
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Figure 4.3: The number of alternative paths to valuable non-native products from pyruvate.

PathTracer algorithm identified numerous paths with less than or equal to 5 reactions for producing 64
non-native products from pyruvate. The metabolites were divided into groups based on how many
alternative paths were found.

4.3.3 Pathways for 2,3-butanediol synthesis

2,3-butanediol (2,3-BD) is a bulk fuel and industrial solvent, and is also used in
manufacturing plasticizers, inks and explosives. Yeast, E. coli, cyanobacteria and Klebsiella
pneumoniae have been metabolically engineered to produce 2,3-BD [113-118] using similar
synthesis routes for 2,3-BD (Figure 4.4A). One approach converted two molecules of pyruvate
into a-acetolactate which was decarboxylated to produce R-acetoin, which was converted into
(R,R)-2,3-BD. a-acetolactate can also be spontaneously converted into diacetyl. Another
approach used diacetyl reductase to convert diacetyl into R-acetoin or S-acetoin, which were
then converted into (R,R)-2,3-BD or (S,S)-2,3-BD, respectively. The necessary enzymes (a-
acetolactate decarboxylase, (R,R)-butanediol dehydrogenase, diacetyl reductase and (S,S)-

butanediol dehydrogenase) are found in many organisms including vyeast,
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Enterobacter aerogenes, Klebsiella pneumoniae and Bacillus subtilis, but not in E. coli.
PathTracer found all of the enzymatic reactions that have been used previously for 2,3-BD
synthesis (Figure 4.4B). The spontaneous (non-enzymatic) reaction from a-acetolactate to
diacetyl was not included in the model and thus not found as a pathway solution. In addition,
PathTracer found two alternative reactions using different co-factors (NAD* or NADP®) for
converting R-acetoin to diacetyl, and an additional reaction from R-acetoin to S-acetoin, which
could participate in additional routes for (S,S)-2,3-BD. All predicted paths had the same maximal
yield (1.08 mol/mol glucose). No other pathways involving known enzymes were discovered for

synthesizing 2,3-BD.

A B
Pyruvate Pyruvate
a-Acetolactate ——  Diacetyl o-Acetolactate Diacetyl
R-Acetoin S-Acetoin R-Acetoin — S-Acetoin
(R,R)-2,3-Butanediol (S,S)-2,3-Butanediol (R,R)-2,3-Butanediol (S,5)-2,3-Butanediol
TMP: 1.08 TMP: 1.08 TMP: 1.08 TMP: 1.08
EXP: 25% EXP: 25%

Figure 4.4: Synthesis pathways for 2,3-Butanediol.

The pathways that have been implemented in different species are in grey area, shown in (A). The black
and red arrows mean E. coli and heterologous reactions, respectively. The green arrow indicates the
reaction is spontaneous and not included in the integrated metabolic model. The predicted pathways for
the production of 2,3-BD are shown in (B). The number above a reaction indicates the number of
reactions that can connect two metabolites. The theoretical maximum vyield using each pathway was
calculated and labeled at the bottom. TMP: theoretical maximum yield; EXP: reported experimental
yield.
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4.3.4 Pathways for 1-propanol synthesis

1-propanol is used as a liquid fuel and industrial solvent, and is used for manufacturing
drugs and cosmetics. Microbial production of 1-propanol has been engineered in E. coli,
Propionibacterium freudenreichii and Thermobifida fusca using three pathways [119-124]. The
first route, converts pyruvate into a-ketobutyrate (by the branched-chain amino acid
biosynthesis pathway), and the a-ketobutyrate is converted to 1-propanol using an a-keto-acid
decarboxylase and an alcohol dehydrogenase (Figure 4.5A, path @) [119,120]. The engineered
E. coli strain with this first route has the highest reported vyield for 1-propanol [120].
Unfortunately, the a-keto-acid decarboxylase reaction is not included in KEGG database and so
PathTracer was unable to find this solution.

The second route starts by forming a-ketobutyrate as well (Figure 4.5A, path @) [121].
Propionyl-phosphate is produced from a-ketobutyrate spontaneously and converted to
propionate by a propionate kinase (encoded by tdcD). Then acetyl-CoA synthetase produces
propionyl-CoA, and the propionyl-CoA is converted into propionyl-aldehyde and then 1-
propanol. The enzymes needed for this pathway are all present in E. coli; however PathTracer
only found the connections between propionate to 1-propanol (Figure 4.5B, path @), because
the spontaneous reaction from a-ketobutyrate to propionyl-phosphate was not part of the
integrated model. PathTracer identified several other sets of reactions to generate propionate
and propionyl-CoA from pyruvate.

The third route for producing 1-propanol uses methylglyoxal synthase to convert

dihydroxyacetone-phosphate into methylglyoxal (Figure 4.5A, path @). Methylglyoxal is then
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Figure 4.5: Synthesis pathways for 1-propanol.

The pathways that have been implemented in different species are in grey area, shown in (A). The black
and red arrows mean E. coli and heterologous reactions, respectively. The green arrow indicates the
reaction is either spontaneous or recently found occurring E. coli, but not updated in the integrated
metabolic model. The predicted pathways for the production of 1-propanol are shown in (B). The
number above a reaction indicates the number of reactions that can connect two metabolites. The
theoretical maximum yield using each pathway was calculated and labeled at the bottom. TMP:
theoretical maximum yield; EXP: reported experimental yield.
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converted into 1,2-propanediol, using either hydroxyacetone or lactaldehyde as an
intermediate, 1,2-propanediol is then be converted into propionyl-aldehyde, and the propionyl-
aldehyde is used to make 1-propanol. Similar routes were predicted by the PathTracer
algorithm (Figure 4.5B, path @), except methylglyoxal was produced from pyruvate using two
heterologous reactions and more alternative reactions could convert methylglyoxal to
lactaldehyde and then to 1,2-propanediol.

The maximum theoretical yields and experimental yields for 1-propanol using the three
experimentally implemented pathways were calculated (Figure 4.5). Surprisingly, the second
route which uses only E. coli reactions to make 1-propanol from a-ketobutyrate showed the

highest theoretical yield, but had a lower experimental yield than the first route.

4.3.5 Pathways for acrylic acid synthesis

Acrylic acid is a commodity chemical with a global production of 4.7 million tons in 2012
[125]. Acrylic acid and its esters are widely used for manufacturing plastics, coatings, paints and
adhesives. Several Clostridium propionicum strains have been engineered to produce acrylic
acid, however the yield is very low [126-128]. To date, two pathways have been used to make
acrylic acid, one via lactate and the other via 3-hydroxypropanoate (3-HP). Both pathways were
found by the PathTracer algorithm (Figure 4.6). A variety of E. coli and heterologous reactions
can be used to produce lactate from pyruvate and lactate can be converted to acrylic acid in
three steps using heterologous reactions. The overall reaction consumes one pyruvate and one

NADH to generate acrylic acid and one molecule of NAD".
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Figure 4.6: Synthesis pathways for acrylic acid.
Four pathways were predicted by model and two of them have been implemented in different species,

shown in the grey area. The black and red arrows mean E. coli and heterologous reactions, respectively.
The green arrows indicate the reactions have to be changed to forward direction, in order to find this
pathway. The number above a reaction indicates the number of reactions that can connect two
metabolites. The theoretical maximum yield (TMP) using each pathway was calculated and labeled at
the bottom.

The second pathway that has been used experimentally starts by converting pyruvate
into 3-oxopropanoate using an additional reactant, B-alanine (which can also derived from
pyruvate). 3-oxopropanoate is reduced to 3-HP and then converted to acrylic acid in three

additional steps. The two pathways have the same maximal yield; however the 3-HP pathway

required more reactants in the overall reaction, including pyruvate, acetate, B-alanine, ATP,



93

NADH and CoA. Thus, it may take more engineering effort to increase flux through the 3-HP
pathway as compared to the lactate pathway.

A third pathway using methylcitrate as an intermediate has been proposed previously
(Figure 4.6) [129]; however, PathTracer did not find it because three reactions would need to
go in the thermodynamically opposite direction. When the three reactions were changed to
reversible reactions in the integrated model then a path involving 6 reactions was found, where
the overall reaction was: pyruvate + succinate + CoA + NADP'+ acetate = oxaloacetate +
NADPH + acetyl-CoA + acrylic acid. Allowing the reaction from propionyl-CoA to acryloyl-CoA to
be reversible in the model, allowed another pathway to be found. This last pathway resembled
one of the 1-propanol synthesis pathways (Figure 4.5B), where propionyl-CoA was converted
into propenoyl-CoA and then acrylic acid. These last two pathways involve thermodynamically
unfavorable reactions, and detailed experiments of studying the thermodynamic parameters

need to do before utilizing the pathways for the acrylic acid production.

4.3.6 The properties of pathway solutions for producing valuable non-native products
The paths for generating valuable non-native products from pyruvate were further
analyzed to (1) evaluate their dependence on heterologous reactions and (2) assess where in
the paths alternative reactions can be used. If strains were developed that could make
precursors at high rates and yields, then these could be modified to make specific chemicals of
interest. While shorter synthesis pathways might be desirable since there are fewer parts to
control, it is also important to consider the number of heterologous genes that would need to

be introduced in the host (which can have advantages and disadvantages). To find out which
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products might be the easiest to make, the length of the shortest pathway to non-native
products from pyruvate was plotted against the number of heterologous reactions required by
the pathway (Figure 4.7). For this analysis only the 64 non-native products that could be
produced from pyruvate using 5 or less reactions were considered. The closest non-native
product to pyruvate was 2-butynedioic acid, which was produced in one step and with one
heterologous reaction. The furthest non-native product was 1,3-propanediol, which was made
from pyruvate in 5 steps using all heterologous reactions. The majorities of non-native products
were within 3-4 steps of pyruvate and required 1-3 heterologous reactions to enable their

production.
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Figure 4.7: The number of heterologous reactions vs the shortest synthesis pathway.

The 64 metabolites able to be produced from pyruvate in 5 steps were grouped by the length of their
shortest pathway and the number of heterologous reactions present in the shortest pathway. The size
of the bubble reflects the number of metabolites. The number of metabolites in each group was labeled
in the center.
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Figure 4.8: The pattern of alternative relations in all pathway solutions within 5 steps.
(A) For a product in the list of 64 valuable non-native products produced from pyruvate, the number of

different reactions (E. coli or heterologous) appearing in each step of its synthesis pathway was
normalized by the number of pathway solutions. (B) The number of alternative heterologous reactions
present in each step of its synthesis pathway was calculated. The black color indicates no reaction
(heterologous and/or E. coli) in that position.

Expressing a heterologous enzyme in a host organism can be problematic. Correct
expression and maturation is not always guaranteed and heterologous enzymes could be toxic

to the host. Reducing the number of heterologous reactions needed would help avoid some of

these problems, as well as using reactions with alternatives that could be used instead if
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enzymes for part of the pathway are difficult to express. For each of the 64 valuable non-native
products, the number of alternative heterologous reactions that could be used at each reaction
step of the synthesis pathways was determined (Figure 4.8B). The non-native products shown
at the top had the most alternative reactions, which included oxalate, ethylene oxide, and
mesaconate.

We also investigated how many alternative reactions exist in each step across all
identified pathways for synthesizing a product of interest. For each of the 64 non-native
products within 5 steps of pyruvate, the number of different reactions (Figure 4.8A) used at
each step was normalized by the number of paths found. For all products evaluated, the first
several steps in the pathways had multiple equivalent reactions and the number of alternative
reactions in the last step was less than that in at least one of other steps. It is not surprising,
because the 64 metabolites are not essential metabolites, only existing in several organisms

and certainly have fewer production reactions.

4.3.7 Alternative precursors for producing valuable non-native products

Of the 284 valuable non-native products, only 64 could be produced from pyruvate
within 5 reactions. The remaining non-native products required longer pathways for their
production and might be better produced from other central metabolic precursors. In order to
discover pathways for producing other valuable non-native products additional central
metabolic precursors were considered, including glucose-6-phosphate, glycerate-3-phosphate,
glyceraldehyde-3-phosphate, oxaloacetate, and o-ketoglutarate. These precursors are the hubs

in the metabolic networks of many different organisms [109]. Paths for producing a non-native
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product from each precursor were found and a total of 81 valuable non-native products were
found to be within 5 steps of the 6 different precursors considered (Figure 4.9). The 6
precursors could be converted into each, and thus many non-native products could be
produced from several precursors. Pyruvate, oxaloacetate and a-ketoglutarate were the most
common precursors for which non-native products could be made within 5 steps. They showed
a highly overlapping profile of metabolites that could be produced within 5 steps from any of
the three (Figure 4.10). For a given non-native product, the shortest pathways from each of the
6 starting precursors were compared to identify the closest precursor. The precursor that could
produce the non-native product with the fewest reactions was considered as the closest
precursor. Pyruvate was shown to be the closest precursor for 40 of the 64 non-native
metabolites that could be synthesized from it. While oxaloacetate could produce more non-
native products in 5 steps than any of the other precursors tested, it was only the closest
precursor for 27 of the 68 non-native products that could be produced from oxaloacetate in 5
steps. Glyceraldehyde 3-phosphate uniquely supported the production of one non-native
product and was that product’s closest precursor. Additional metabolite hubs should be
explored as potential precursors (e.g., succinate, L-glutamate, L-aspartate [109]), as well as top

value building blocks (e.g., glycerol [130]).
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Figure 4.9: Alternative precursors for the production of valuable non-native products.

Number of non-native
products with commercial
values

The number of products able to be produced from the precursors within 5 steps is indicated by blue
column. The red columns indicate that synthesis from that precursor is shortest among the six
precursors. Seventeen products could be produced from two or more precursors with fewest reactions.
Metabolite abbreviations: G6P: glucose-6-phosphate; 3PG: D-glycerate-3-phophate; G3P:
D-glyceraldehyde 3-phosphate; Pyr: pyruvate; OAA: oxaloacetate; AKG: a-ketoglutarate.
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Figure 4.10: Six precursors for the synthesis of metabolites.
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(A) The six precursors are in the central metabolism. The number of reactions converting two precursor
metabolites was predicted using the integrated metabolic model of E. coli and heterologous reactions.
(B) shows the number of valuable non-native products produced from any of the three precursors.
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4.4 Discussion

This study was motivated by two practical questions regarding metabolic strain
engineering: (1) what valuable non-native biochemicals can be produced from a given
metabolic precursor, and (2) what precursors should be produced to synthesize a variety of
non-native products. To answer these questions, a comprehensive investigation of the
production capabilities of E. coli as a background host was performed. Considering all the
heterologous reactions in KEGG, E. coli could be engineered (by adding up to 16 heterologous
reactions) to produce 1,793 non-native products (more than double the number of native
products). Of these 1,793 non-native products, 284 were confirmed to have commercial value.
Using pyruvate as a starting precursor, we used PathTracer to identify 64 valuable non-native
products within 5 reaction steps. Pyruvate production strains have been engineered previously
(described in Chapter 3), and these 64 non-native products would be good targets for re-
engineering these pyruvate strains to produce other valuable chemicals. By identifying
alternative paths for synthesizing non-native products, potential engineering strategies can be
compared based on requirements for non-native reactions, length of pathways from central
metabolic intermediates, maximal theoretical yields, and pathway requirements with regard to
reactants and co-products in the overall reactions.

Comparisons between predicted pathways and experimentally implemented pathways
showed that, while substantial overlap exists, more pathway variations are possible and
expanded reaction databases are needed. PathTracer found many alternative reactions for
connecting pathway intermediates that could be used to improve experimental yields. The

PathTracer results depend on the completeness and accuracy of the heterologous reaction
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database and host metabolic network being considered. PathTracer missed some
experimentally used pathways that involved spontaneous and recently characterized reactions.
Recent efforts to build larger and more comprehensive reaction databases [131], as well as
tools to identify novel putative reactions [106,132,133], will expand the number of non-native
products that could be potentially produced as well as the number of different pathways that
can be used to generate these products.

Besides pyruvate, five other central metabolites were considered as starting precursors
to synthesize 284 non-native products with commercial value. When only 5 reaction steps were
allowed, 81 out of the 284 products could be produced from at least one of the precursors
considered, while the rest 203 products could not be produced. One possible reason is that
their biosynthesis pathways have more than 5 reaction steps from the selected starting
precursors, and thus no solution was found. Another possibility is that the 6 precursors
considered are not the closest E. coli metabolite, and so more E. coli reactions were needed
extending the length of the pathway. From looking at the minimum path lengths between
products and precursors, it appears that pyruvate, oxaloacetate and o-ketoglutarate are the
closest precursors to 69 out of the 81 non-native products considered. Strains capable of
producing these precursors at high rates and vyields (e.g. pyruvate overproducing strains
described in Chapter 3) would be good background strains to produce these 69 products.

The results presented here focused on analyzing connections between a select number
of precursors to a wide variety of non-native products. Future work should also evaluate which
native metabolites (not just the 6 precursors considered) are closest to non-native products,

and should also consider putative reactions. The current results provide guidance as to what
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precursors are most important to make and what non-native products should be made using

these strains.
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Chapter 5 Conclusions and future directions

In this work, we combined genetic tools, adaptive evolution techniques and in silico
simulations to explore different metabolic engineering strategies for strain development and
product optimization. First, we investigated the phenotypes of un-evolved and evolved co-
cultures consisting of two E. coli auxotrophs cross-feeding leucine (or its precursors) and lysine,
found the improved community phenotype was attributed to a better exchange of the two
amino acids (or precursors) and also found fitness tradeoffs occurred in individual strains.
Though the isolated strains did not show an overproduction of leucine or lysine when grown in
isolation, the co-culture studies will contribute more knowledge to utilizing microbial consortia
in metabolic engineering. Second, aided by the genome-scale metabolic model of E. coli, we
constructed gene deletion strains capable of producing pyruvate at high yields. Pyruvate is a
starting material for synthesizing many important chemicals. We successfully converted the
pyruvate strains to produce ethanol and anticipated that the developed strains would serve as
a platform to produce other valuable chemicals. Last, to explore all possible chemicals that
could be made from pyruvate, we did a comprehensive study of the production capability of
E .coli for known biochemical and identified numerous valuable non-native products able to be
made in E. coli and their synthesis pathways from different precursors, including pyruvate. The
data generated from this work will contribute to expedite the productions of non-native

products in microbes and the pathway engineering.

5.1 Future directions

5.1.1 Produce other native products in designed pyruvate producing strains
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Pyruvate is the precursor for native metabolites such as branched-chain amino acids, L-
alanine and ethanol. We have used pyruvate strains to produce ethanol and reached 58 to 85%
of theoretical yield. One ethanol molecule formation costs one pyruvate and two NADH
molecules. In a similar fashion, L-alanine synthesis by Bacillus sphaericus alanine
dehydrogenase requires one molecule pyruvate and one molecule NADH. This Bacillus gene
alaD encoding the alanine dehydrogenase has been successfully expressed in E. coli and
produced L-alanine [134]. We will try to express alaD in the pyruvate producing strains and
evaluate the L-alanine production, which we expect to be similar to the yield of ethanol (up to
~85% of the theoretical maximum yield) produced in the modified pyruvate producing strains.

The three branched-chain amino acid synthesis pathways are interconnected. Pyruvate
is the sole precursor for L-valine synthesis, and L-leucine is made from intermediates of L-valine.
Thus we should first develop a L-valine producing strain by overexpressing genes (ilvBNCDE)
involving the synthesis in the pyruvate overproducing strains and then convert it into a leucine
producing strain by overexpressing more genes (leuABCD). The synthesis of the third BAA,
L-isoleucine, requires L-threonine and pyruvate as precursors, and it could be studied last, since

additional pathways leading to threonine production would need to be manipulated.

5.1.2 Produce non-native products based on pyruvate producing strains

Pyruvate can be used to produce 64 non-native products within 5 reactions, and the
synthesis pathways were also identified in this study (Chapter 4). Eighteen of non-native
products only require one heterologous reaction and would thus be good targets for producing

in the E. coli pyruvate producing strains. The priority of the target products can be evaluated by
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multiple criteria such as: the availability and number of genes required for the heterologous
reaction, the catalytic activity of the heterologous enzymes (which could be searched in
BRENDA database), toxicity of intermediates and end products, the expression and maturation
of heterologous enzymes in E. coli and the cost of the target product. The downstream
guantification method for the target product should also be available. After the target is
decided, the heterologous gene can be cloned or synthesized by company, and then introduced

into pyruvate producing strains.

5.2 Concluding remarks

Bacteria, the smallest living organisms, provide many benefits to us. After working on
metabolic engineering for the past six years, | am amazed by the metabolic and phenotypic
plasticity of bacteria and have seen they can produce useful chemicals that may impact the lives
of everyone. | am glad that | learned optimization skills to analyze genomic-scale models to
better understand bacterial metabolism and to apply the models for strain development. From
my experimental and computational experience, | believe that experiments are the foundation
to provide information, to validate hypotheses, and to control the bacteria in the way we want.
| also believe that computational methods can dramatically expedite the discovery of complex
mechanism, the design of strains at a system level, and the optimization of product yields and
the development process. The combination of both will create new products, pathways and
functions. | expect more exciting discoveries in this field and more efficient microbial factories

developed to manufacture the products used in our life.
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Appendix 1: Currency metabolites removed from the carbon transfer map

Common Common
KEGG ID | name Formula KEGG ID | name Formula
C00237 co Cco C01367 3'-AMP C10H14N507P
C00011 CO2 CO2 C00286 dGTP C10H16N5013P3
C01353 Carbonic acid | H2CO3 C00044 GTP C10H16N5014P3
C00288 HCO3- HCO3 C00361 dGDP C10H15N5010P2
C00365 dUMP C9H13N208P C00035 GDP C10H15N5011P2
C00105 UMP CO9H13N209P C00362 dGMP C10H14N507P
C01368 3'-UMP CO9H13N209P C00144 GMP C10H14N508P
C01346 dUDP C9H14N2011P2 C00459 dTTP C10H17N2014P3
C00015 UDP C9H14N2012P2 C00363 dTDP C10H16N2011P2
C00460 duTP C9H15N2014P3 C00364 dTMP C10H15N208P
C00075 UTP CO9H15N2015P3 C01345 dITP C10H15N4013P3
C00239 dCMP C9H14N307P C00081 ITP C10H15N4014P3
C00055 CMP CO9H14N308P C01344 dIDP C10H14N4010P2
C05822 3'-CMP C9H14N308P C00104 IDP C10H14N4011P2
C00458 dCTP C9H16N3013P3 C00130 IMP C10H13N408P

acyl carrier

C00063 CTP C9H16N3014P3 C00229 protein C11H22N20O7PRS
C00705 dCDP CO9H15N3010P2 C00390 Ubiquinol C14H2004
C00112 CDP C9H15N3011P2 C00003 NAD+ C21H28N7014P2
C00131 dATP C10H16N5012P3 | CO0004 NADH C21H29N7014P2
C00002 ATP C10H16N5013P3 | CO0006 NADP+ C21H29N7017P3
C00008 ADP C10H15N5010P2 | CO0005 NADPH C21H30N7017P3
C00206 dADP C10H15N509P2 C00010 CoA C21H36N7016P3S
C00360 dAMP C10H14N506P C00016 FAD C27H33N9015P2
C00020 AMP C10H14N507P C01352 FADH2 C27H35N9015P2
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Appendix 2: The 284 non-native products in E. coli that have commerical

value
. Minimal number
KEGG Formula Common name Ma.xmlal of heterologous | Application'
ID yield . .
reaction required
1 C00067 | CH20 Formaldehyde 6 1 Pha
2 C00114 | C5H14NO Choline 1.2 6 Pha
3 C00146 | C6HEO Phenol 1 1 Pha
4 C00230 | C7H604 Protocatechuate 0.85714 1 Pha
5 C00243 | C12H22011 Lactose 0.5 1 Pha
6 C00245 | C2H7NO3S Taurine 3 2 Pha
7 C00272 | CO9H15N503 Tetrahydrobiopterin 0.66667 2 Pha
8 C00300 | C4HSN302 Creatine 1.5 3 Pha
9 C00315 | C7H19N3 Spermidine 0.85714 1 Pha
10 | c00329 | C6H13NO5 D-Glucosamine 1 1 Pha
11 | co0355 | C9H11NO4 Levodopa 0.66667 1 Pha
12 | c00378 | C12H17N40S | Thiamine 0.5 2 Pha
13 | C00386 | C9H14N403 Carnosine 0.66667 1 Pha
14 | c00389 | C15H1007 Quercetin 0.4 7 Pha
15 | Cc00392 | C6H1406 Mannitol 1 1 Pha
16 | C00398 | C10H12N2 Tryptamine 0.6 1 Pha
17 | C00402 | CAH7NO4 D-Aspartate 1.5 1 Pha
18 | Cc00483 | C8H11NO Tyramine 0.75 1 Pha
19 | co0504 | C19H19N706 Folate 0.31579 1 Pha
20 | C00509 | C15H1205 Naringenin 0.4 4 Pha
21 | C00519 | C2H7NO2S Hypotaurine 3 3 Pha
22 | C00547 | C8H11NO3 L-Noradrenaline 0.75 4 Pha
23 | C00552 | C4H606 meso-Tartaric acid 1.5 2 Pha
24 | C00556 | C7H8O Benzyl alcohol 0.85714 6 Pha
25 | C00628 | C7H604 2,5-Dihydroxybenzoate 0.85714 2 Pha
26 | C00643 | C11H12N203 | 5-Hydroxy-L-tryptophan 0.54545 2 Pha
27 | C00745 | C10H14N2 Nicotine 0.6 4 Pha
28 | C00757 | C20H18NO4 Berberine 0.3 13 Pha
29 | C00780 | C10H12N20 Serotonin 0.6 3 Pha
30 | c00788 | C9H13NO3 L-Adrenaline 0.66667 5 Pha
31 | C00794 | C6H1406 D-Sorbitol 1 1 Pha
32 | C00795 | C6H1206 D-Tagatose 1 2 Pha
33 | C00805 | C7H603 Salicylate 0.85714 1 Pha
34 | C00808 | C10H160 (+)-Camphor 0.6 3 Pha
35 | C00811 | C9H8O3 4-Coumarate 0.66667 2 Pha
36 | C00814 | C16H1205 Biochanin A 0.375 8 Pha




Appendix 2, continued

107

KEGG Maximal | “inimal number oy
D Formula Common name yield’ of ht?terolog9us Application
reaction required
37 | C00836 | C18H39NO2 Sphinganine 0.33333 2 Pha
38 | C00880 | C6H1207 D-Galactonate 1 1 Pha
39 | C00884 | C10H16N403 | Homocarnosine 0.6 1 Pha
40 | C00916 | C16H21N308S | Cephalosporin C 0.375 7 Pha
41 | C00954 | C10H9NO2 Indole-3-acetate 0.6 3 Pha
42 | C00955 | C10H11NO Indole-3-ethanol 0.6 3 Pha
43 | C01026 | C4HINO2 N,N-Dimethylglycine 1.5 3 Pha
44 | C01157 | C5H9NO3 trans-4-Hydroxy-L-proline | 1.2 1 Pha
45 | C01197 | C9H804 Caffeate 0.66667 6 Pha
46 | C01262 | C10H16N403 | Anserine 0.6 2 Pha
47 | C01424 | C7H605 Gallate 0.85714 5 Pha
48 | C01441 | C12H26N406 | Neamine 0.5 9 Pha
49 | C01467 | C7H80 3-Cresol 0.85714 2 Pha
50 | Cc01477 | C15H1005 Apigenin 04 6 Pha
51 | C01494 | C10H1004 Ferulate 0.6 9 Pha
52 | C01514 | C15H1006 Luteolin 04 6 Pha
53 | C01537 | C3H7NO2 Urethane 2 2 Pha
54 | C01598 | C13H16N202 | Melatonin 0.46154 5 Pha
55 | C01617 | C15H1207 Taxifolin 0.4 7 Pha
56 | C01678 | C2H7NS Cysteamine 3 4 Pha
57 | 01701 | C20H1805 (-)-Glyceollin | 0.3 12 Pha
58 | C01717 | C10H7NO3 Kynurenate 0.6 4 Pha
59 | €01737 | C23H46N6013 | Neomycin B 0.26087 16 Pha
60 | C01759 | C17H34N4010 | Ribostamycin 0.35294 11 Pha
61 | C01765 | C10H180 (+)-Borneol 0.6 2 Pha
62 | C01850 | C18H1608 Rosmarinate 0.33333 10 Pha
63 | C01983 | C8H8O3 (R)-Mandelate 0.75 4 Pha
64 | C01984 | C8H803 (S)-Mandelate 0.75 3 Pha
65 | C02105 | C19H23NO4 (S)-Reticuline 0.31579 8 Pha
66 | C02107 | C4H606 (S,S)-Tartaric acid 1.5 1 Pha
67 | C02378 | C6H13NO2 6-Aminohexanoate 1 5 Pha
68 | C02442 | C9H13NO N-Methyltyramine 0.66667 2 Pha
69 | C02670 | C6H8O6 D-Glucuronolactone 1 4 Pha
70 | C02890 | C21H25N0O4 Tetrahydropalmatine 0.28571 12 Pha
71 | C02906 | C15H1208 Dihydromyricetin 0.4 6 Pha
72 | C02993 | C15H23N504 | Kyotorphin 0.4 1 Pha
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KEGG

Maximal

Minimal number

D Formula Common name yield" of h?terolog?us Application’
reaction required

73 | C03329 | C20H21NO4 (S)-Canadine 0.3 12 Pha
74 | C03375 | C6H17N3 Norspermidine 1 3 Pha
75 | C03582 | C14H1203 Resveratrol 0.42857 3 Pha
76 | C03758 | C8H11NO2 Dopamine 0.75 2 Pha
77 | C03761 | C6H1005 Meglutol 1 2 Pha
78 3,7,4'-Tri-O-

C04444 | C18H1607 methylquercetin 0.33333 12 Pha
79 | C04548 | C9H13NO2 Synephrine 0.66667 4 Pha
80 | C04858 | C26H28014 Apiin 0.23077 8 Pha
81 | c05178 | C19H23NO4 (R)-Reticuline 0.31579 11 Pha
82 | C05332 | C8H11IN Phenethylamine 0.75 1 Pha
83 | C05335 | C5H11NO2Se | L-Selenomethionine 1.2 4 Pha
84 | C05422 | C6H606 Dehydroascorbate 1 6 Pha
85 | C05551 | C16H18N204S | Penicillin G 0.375 4 Pha
86 | C05587 | C9H13NO2 3-Methoxytyramine 0.66667 3 Pha
87 | C05623 | C21H20012 Quercetin 3-O-glucoside 0.28571 8 Pha
88 | C05625 | C27H30016 Rutin 0.22222 11 Pha
89 | C05627 | C8HSO Phenylacetaldehyde 0.75 3 Pha
90 | C05670 | C3H6N2 3-Aminopropiononitrile 2 2 Pha
91 | C05829 | C6H10N205 N-Carbamyl-L-glutamate | 1 5 Pha
92 | Cc05853 | C8H100 Phenylethyl alcohol 0.75 2 Pha
93 | C05903 | C15H1006 Kaempferol 0.4 6 Pha
94 | C05905 | C15H1106 Cyanidin 0.4 9 Pha
95 | C05908 | C15H1107 Delphinidin 0.4 8 Pha
96 | C05984 | C4H803 4-Hydroxybutanoic acid 1.5 1 Pha
97 | C06044 | C8H1002 4-Hydroxyphenylethanol 0.75 2 Pha
98 | C06046 | C14H2007 Salidroside 0.42857 3 Pha
99 | C06051 | C8HINO3 Isopyridoxal 0.75 1 Pha
100 | c06124 | C18H38NO5P | Sphingosine 1-phosphate | 0.33333 4 Pha
101 | co6142 | C4H100 1-Butanol 1.5 2 Pha
102 | c06173 | C19H21NO3 Thebaine 0.31579 15 Pha
103 | c06186 | C12H1607 Arbutin 0.5 2 Pha
104 | c06199 | C10H15NO Hordenine 0.6 4 Pha
105 | C06213 | C11H14N2 N-Methyltryptamine 0.54545 2 Pha
106 | C06308 | C10H16 (-)-alpha-Pinene 0.6 1 Pha
107 | co6562 | C15H1406 (+)-Catechin 0.4 8 Pha
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KEGG

Maximal

Minimal number

Formula Common name g of heterologous Application’
b yield reaction required
108 | c06563 | C15H1005 Genistein 0.4 6 Pha
109 | C07130 | C7H8N402 Theophylline 0.85714 |2 Pha
110 | c08299 | C12H16N20 Bufotenine 0.5 6 Pha
111 | c08615 | C30H500 alpha-Amyrin 0.2 3 Pha
112 | co8616 | C30H500 beta-Amyrin 0.2 3 Pha
113 | c08628 | C30H500 Lupeol 0.2 3 Pha
114 | c08650 | C15H1204 Isoliquiritigenin 0.4 3 Pha
115 | C09094 | C20H340 Geranylgeraniol 0.3 2 Pha
116 | 09126 | C21H20010 Genistein 0.28571 7 Pha
117 | Cc09629 | C15H24 beta-Caryophyllene 0.4 1 Pha
118 | C09684 | C15H24 Humulene 0.4 1 Pha
119 | c09762 | C15H1204 Liquiritigenin 0.4 4 Pha
120 | c09789 | C27H32014 Naringin 0.22222 8 Pha
121 | c09826 | C15H1205 Pinobanksin 0.4 6 Pha
122 | c09827 | C15H1204 Pinocembrin 0.4 5 Pha
123 | 10028 | C15H1004 Chrysin 0.4 6 Pha
124 | 10044 | C15H1005 Galangin 0.4 7 Pha
125 | C10107 | C15H1008 Myricetin 0.4 7 Pha
126 | C10192 | C15H1007 Tricetin 0.4 6 Pha
127 | c10208 | C15H1004 Daidzein 0.4 6 Pha
128 | 10216 | C21H2009 Daidzin 0.28571 7 Pha
129 | C10443 | C21H2006 Curcumin 0.28571 9 Pha
130 | c10509 | C22H2209 Ononin 0.27273 8 Pha
131 | C10520 | C16H1206 Pratensein 0.375 9 Pha
132 | c10521 | C16H1205 Prunetin 0.375 9 Pha
133 | c12127 | C15H1407 (+)-Gallocatechin 0.4 8 Pha
134 | C12138 | C21H21012 Delphinidin 3-O-glucoside | 0.28571 9 Pha
135 | c15511 | C20H1805 Glyceollin 11l 0.3 12 Pha
136 | C15652 | C23H46N6013 | Neomycin C 0.26087 15 Pha
137 | C16829 | C15H24 gamma-Humulene 0.4 1 Pha
138 | c17742 | C20H1805 Demethoxycurcumin 0.3 9 Pha
139 | C17743 | C19H1604 Bisdemethoxycurcumin 0.31579 4 Pha
140 | c18023 | C20H2005 Sophoraflavanone B 0.3 5 Pha
141 | Co0423 | C9H8O2 trans-Cinnamate 0.66667 2 Per and Cos
142 | C00466 | C4H802 Acetoin 1.5 3 Per and Cos
143 | c00521 | C10H16 (-)-Limonene 0.6 1 Per and Cos
144 | c00823 | C16H340 1-Hexadecanol 0.375 2 Per and Cos
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KEGG

Maximal

Minimal number

Formula Common name g of heterologous Application’
b yield reaction required

145 | co0964 | C10H160 (-)-trans-Carveol 0.6 2 Per and Cos
146 | c01126 | C15H260 trans-Farnesol 0.4 1 Per and Cos
147 | Cc01389 | C20H400 Phytol 0.3 4 Per and Cos
148 | C01499 | C10H160 Geranial 0.6 2 Per and Cos
149 | C01724 | C30H500 Lanosterol 0.2 3 Per and Cos
150 | c01769 | C4H802 (S)-Acetoin 1.5 2 Per and Cos
151 | c01879 | C5H7NO3 5-Oxoproline 1.2 1 Per and Cos
152 | c02237 | C5H7NO3 5-Oxo-D-proline 1.2 1 Per and Cos
153 | C02344 | C10H180 (-)-endo-Fenchol 0.6 1 Per and Cos
154 | 02348 | C4AH6N403 (R)(-)-Allantoin 1.5 4 Per and Cos
155 | C02350 | C4H6N403 (S)(+)-Allantoin 1.5 3 Per and Cos
156 | C02394 | C9H100 Cinnamyl alcohol 0.66667 5 Per and Cos
157 | c02576 | C10H140 Perillyl aldehyde 0.6 3 Per and Cos
158 | C03220 | C15H260 2-cis,6-trans-Farnesol 0.4 2 Per and Cos
159 | C05413 | C40H64 Phytoene 0.15 2 Per and Cos
160 | c05421 | C40H64 15-cis-Phytoene 0.15 3 Per and Cos
161 | C06074 | C10H16 Myrcene 0.6 1 Per and Cos
162 | C06099 | C10H16 (+)-Limonene 0.6 1 Per and Cos
163 | C06231 | C6H10N202 Ectoine 1 3 Per and Cos
164 | Cc06358 | C10H1002 Methyl cinnamate 0.6 6 Per and Cos
165 | C06359 | C11H1202 Ethyl cinnamate 0.54545 4 Per and Cos
166 | C06394 | C15H24 (+)-delta-Cadinene 0.4 1 Per and Cos
167 | c07086 | C8H802 Phenylacetic acid 0.75 1 Per and Cos
168 | C09183 | C20H3602 Sclareol 0.3 2 Per and Cos
169 | 09621 | C15H260 (-)-alpha-Bisabolol 0.4 1 Per and Cos
170 | 09704 | C15H260 Nerolidol 0.4 1 Per and Cos
171 | c09847 | C10H160 cis-Citral 0.6 3 Per and Cos
172 | c09871 | C10H180 Nerol 0.6 4 Per and Cos
173 | c09893 | C10H160 Pulegone 0.6 5 Per and Cos
174 | C11388 | C10H180 (-)-Linalool 0.6 1 Per and Cos
175 | Cc11389 | C10H180 (+)-Linalool 0.6 1 Per and Cos
176 | C11409 | C10H160 (+)-trans-Carveol 0.6 2 Per and Cos
177 | 00090 | C6H602 Catechol 1 1 Bui
178 | c00132 | CH40 Methanol 6 2 Bui
179 | 00180 | C7H602 Benzoate 0.85714 6 Bui
180 | c00207 | C3H60 Acetone 2 2 Bui
181 | c00218 | CH5N Methylamine 6 3 Bui
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KEGG Formula Common name Ma_xinlal of heterologous | Application'
ID yield . .
reaction required
182 | C00246 | C4H802 Butanoic acid 1.5 1 Bui
183 | c00261 | C7H60 Benzaldehyde 0.85714 4 Bui
184 | c00292 | C6H7N Aniline 1 1 Bui
185 | C00409 | CH4S Methanethiol 6 2 Bui
186 | C00472 | C6H402 p-Benzoquinone 1 2 Bui
187 | C00479 | C3H60 Propanal 2 1 Bui
188 | C00490 | C5H604 Itaconate 1.2 1 Bui
189 | C00511 | C3H402 Propenoate 2 3 Bui
190 | co0804 | C3H202 Propynoate 2 1 Bui
191 | co0818 | C6H1008 Glucarate 1 5 Bui
192 | c00870 | C6H5NO3 4-Nitrophenol 1 4 Bui
193 | c00898 | C4H606 (R,R)-Tartaric acid 1.5 1 Bui
194 | c00903 | C9H8O Cinnamaldehyde 0.66667 4 Bui
195 | c00986 | C3H10N2 1,3-Diaminopropane 2 2 Bui
196 | C01089 | C4H803 (R)-3-Hydroxybutanoate 1.5 2 Bui
197 | C01147 |  C6H1002 Z'Hydroxy?r']‘:"hexa”'l' 1 6 Bui
198 | 01263 | C15H1205 (-)-Glycinol 0.4 11 Bui
199 | c01326 | CHN Hydrogen cyanide 6 2 Bui
200 | C01380 | C2H602 Ethylene glycol 3 2 Bui
201 | C01384 | C4H404 Maleic acid 1.5 1 Bui
202 | 01403 | C7H80 Anisole 0.85714 2 Bui
203 | C01408 | C14H1202 Benzoin 0.42857 5 Bui
204 | c01502 | C7H802 o-Methoxyphenol 0.85714 2 Bui
205 | c01837 | C2H5NO2 Nitroethane 3 3 Bui
206 | C01845 | C3H8O Propan-2-ol 2 3 Bui
207 | C01902 | C30H500 Cycloartenol 0.2 3 Bui
208 | C01987 | C6H7NO 2-Aminophenol 1 3 Bui
209 | C01998 | C3H3N Acrylonitrile 2 5 Bui
210 | c02372 | C6H7NO 4-Hydroxyaniline 1 1 Bui
211 | c02457 | C3H802 Propane-1,3-diol 2 2 Bui
212 | C02505 | C8HINO 2-Phenylacetamide 0.75 1 Bui
213 | C02752 | C6H603 Triacetate lactone 1 1 Bui
214 | c02912 | C3H802 (R)-Propane-1,2-diol 2 1 Bui
215 | c02917 | C3H802 (S)-Propane-1,2-diol 2 1 Bui
216 | C02954 | C8H12N203S | 6-Aminopenicillanate 0.75 4 Bui
217 | C03194 | C3HINO (R)-1-Aminopropan-2-ol 2 1 Bui
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Minimal number

KEGG Formula Common name Ma_xinlal of heterologous Application’
b yield reaction required
218 | C03248 | C4H204 Acetylenedicarboxylate 1.5 1 Bui
219 | C05380 | C8H8N203 Nicotinurate 0.75 1 Bui
220 | c05986 | C3H40 2-Propyn-1-ol 2 4 Bui
221 | C06104 | C6H1004 Adipate 1 3 Bui
222 | C06202 | C7H602 Salicylaldehyde 0.85714 2 Bui
223 | C06425 | C20H4002 Icosanoic acid 0.3 2 Bui
224 | C06547 | C2H4 Ethylene 3 3 Bui
225 | C06548 | C2H40 Ethylene oxide 3 1 Bui
226 | C06593 | C6H11NO epsilon-Caprolactam 1 6 Bui
227 | C06813 | C6H5NO2 Nitrobenzene 1 6 Bui
228 | C08063 | C6H802 1,4-Cyclohexanedione 1 4 Bui
229 | 10833 | C9H1005 Syringic acid 0.66667 7 Bui
230 | C11506 | C3H60 (R)-1,2-Epoxypropane 2 4 Bui
231 | C11507 | C3H60 (S)-1,2-Epoxypropane 2 4 Bui
232 | c16028 | C15H24 Amorpha-4,11-diene 0.4 1 Bui
233 | C16074 | C8H7N Phenylacetonitrile 0.75 2 Bui
234 | C16521 | C5HS8 Isoprene 1.2 1 Bui
235 | C17277 | C15H24 (+)-Valencene 0.4 1 Bui
236 | C00072 | C6H806 Ascorbate 1 5 Fod
237 | C00741 | C4H602 Diacetyl 1.5 2 Fod
238 | C00755 | C8H803 Vanillin 0.75 9 Fod
239 | C00810 | C4H802 (R)-Acetoin 1.5 1 Fod
240 | c00852 | C16H1809 Chlorogenate 0.375 4 Fod
241 | C01613 | C24H42021 Stachyose 0.25 3 Fod
242 | c01767 | C10H140 (-)-Carvone 0.6 3 Fod
243 | C02477 | C29H5002 alpha-Tocopherol 0.2069 7 Fod
244 | C02483 | C28H4802 gamma-Tocopherol 0.21429 6 Fod
245 | C05629 | C9H1002 Phenylpropanoate 0.66667 3 Fod
246 | C06672 | C8H804 Vanillate 0.75 12 Fod
247 | C08604 | C21H21011 Chrysanthemin 0.28571 9 Fod
248 | C14151 | C27H4602 delta-Tocopherol 0.22222 5 Fod
249 | 01500 | C10H180 Geraniol 0.6 1 Agr
250 | C01566 | CH2N2 Cyanamide 3 1 Agr
251 | C04720 | C9HINOS DIMBOA 0.66667 8 Agr
252 | 05851 | C9H602 Coumarin 0.66667 7 Agr
253 | C11383 | C10H140 (+)-(S)-Carvone 0.6 3 Agr
254 | C16141 | C15H24 (+)-Germacrene A 0.4 1 Agr
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KEGG

Maximal

Minimal number

D Formula Common name yield" of h?terolog?us Application’
reaction required

255 | C16142 | C15H24 (-)-Germacrene D 0.4 1 Agr

256 | C00209 | C2H204 Oxalate 3 1 Others
257 | C00488 | CH3NO Formamide 6 2 Others
558 | C00492 | C18H32016 Raffinose 0.33333 2 Others
259 | C00530 | C6H602 p-Benzenediol 1 1 Others
260 | C00751 | C30H50 Squalene 0.2 1 Others
261 | c01108 | C6H603 1,2,3-Trihydroxybenzene |1 6 Others
262 | C01412 | C4H8O Butanal 1.5 1 Others
263 | C01438 | CH4 Methane 6 6 Others
264 | C01548 | C2H2 Acetylene 3 1 Others
265 | C01659 | C3H5NO Acrylamide 2 5 Others
266 | C01732 | C5H604 Mesaconate 1.2 2 Others
267 | C01750 | C21H20011 Quercitrin 0.28571 10 Others
268 | C02048 | C12H22011 Laminaribiose 0.5 1 Others
269 | C03044 | C4H1002 (R,R)-Butane-2,3-diol 1.5 2 Others
270 | C03046 | C4H1002 (S,S)-Butane-2,3-diol 1.5 3 Others
271 | C05552 | C16H28N404S | Biocytin 0.19355 1 Others
272 | C05688 | C3H7NO2Se L-Selenocysteine 2 1 Others
273 | C05979 | C3H8O Propane-1-ol 2 2 Others
274 | C06771 | C6H15NO3 Triethanolamine 1 2 Others
275 | C06772 | C4H11NO2 Diethanolamine 1.5 1 Others
276 | C07565 | C8HONO Acetanilide 0.75 2 Others
277 | C08620 | C27H31015 Cyanidin 3-O-rutinoside 0.22222 14 Others
278 | C08639 | C27H31016 Cyanin 0.22222 10 Others
279 | C09665 | C15H24 alpha-Farnesene 0.4 Others
280 | C09666 | C15H24 beta-Farnesene 0.4 Others
281 | C09699 | C15H24 Longifolene 0.4 Others
282 | C09814 | C7H5N Benzonitrile 0.85714 Others
283 | C12627 | C27H30014 Rhoifolin 0.22222 10 Others
284 | C16315 | C27H31016 Tulipanin 0.22222 12 Others

"The maximal yield is expressed as mmol of a target metabolite produced per mmol glucose.

' Application abreviations are Pharmeceuticals: Pha; Perfume and Cosmetics: Per and Cos; Building
blocks: Bui; Food industry: Fod; Agriculture: Agr.
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