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Chapter 1 Metabolic engineering for chemical productions at a system 

level 

 

1.1 Systems metabolic engineering 

Metabolic engineering emerged as an independent discipline over a decade ago.  In the 

first book of this field, metabolic engineering was defined as “directed improvement of product 

formation or cellular properties through the modification of specific biochemical reactions or 

the introduction of new genes with the use of recombinant DNA technology”[1]. While 

recombinant DNA technology is still widely used to introduce genetic changes, many advanced 

techniques have been developed which have expedited our understanding of bacterial 

metabolism and strain development. Engineering via evolution has often been used to improve 

product yield or select desired cellular phenotype (i.e. stress-tolerant strains) [2]. The data 

collected from high-throughput measurement technologies (transcriptomics, proteomics, 

metabolomics) have been used for strain engineering by deciphering cellular control 

mechanisms, identifying metabolic bottlenecks and identifying gene targets to improve strain 

performance [3,4]. Novel genetic tools facilitated by synthetic biology have allowed researchers 

to design and precisely control metabolic pathways and cellular phenotypes [5,6]. The quantity 

and scale of omics data sets has led to the development of computational analysis tools. One of 

the most influential computational tools in metabolic engineering is genome-scale metabolic 

models. These models can efficiently predict cellular phenotypes and suggest beneficial gene 

targets to improve chemical production [7,8]. Genome-scale metabolic models have guided 

most of the experiments described in this dissertation. Metabolic engineering has traditionally 
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focused on studying the properties of individual metabolic pathways, enzyme and metabolite 

interactions and genetic regulatory circuits. Computational models allow one to predict how 

local pathway changes may affect global network properties, and vice versa. The development 

of these new computational and experimental techniques provides unprecedented 

opportunities in metabolic engineering to improve product yield and cellular performance at a 

systems-level.   

 

1.2 Branched-chain amino acids and biofuels 

L-valine, L-leucine and L-isoleucine are three branched-chain amino acids (BAA). They 

have been used for various applications including ingredients for cosmetics and 

pharmaceuticals, additives in diet supplements and animal feeds [3], and building blocks for the 

synthesis of herbicides [9]. Increasing attention to branched-chain amino acids is due to the 

discovery of how the BAA biosynthetic pathways can be used to produce α-keto acid 

intermediates which can be converted into branched-chain alcohols (e.g. 1-propanol, 

isobutanol, 1-butanol, 2-methyl-1-butanol) [10]. Considered as substitutes for gasoline, 

branched-chain alcohols have significant advantages over ethanol, with their higher energy 

content, lower volatility and decreased hygroscopicity. BAA producing strains with high yields 

could possibly meet demands not only for industrial applications, but also for the increasing 

global energy consumption. The branched-chain amino acid producing strains have been 

generated using Brevibacterium lactofermentum and Corynebacterium glutamicum mutants 

[9,11-13]. An efficient L-valine production strain in E. coli was also developed [3]. In this study, 

we evaluated two different approaches to develop E. coli strains for BAA production by 
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combining directed evolution and gene knockout simulations using genome-scale metabolic 

models.  

 

1.3 Summary for this work 

The first approach we used was to construct and evolve a synthetic mutualistic 

community consisting of leucine and lysine auxotrophs of E. coli. The two mutants can only 

grow in glucose minimal medium when they exchange leucine (or its precursors) and lysine. We 

hypothesized that the lysine auxotroph would be forced to produce extra leucine and secrete it 

into medium if the co-culture improved its growth rate. Although the evolved lysine auxotroph 

turned out not to secrete leucine when grown in isolation, the establishment and evolution of 

the co-culture system and the population dynamics were studied in details described in Chapter 

2. We found a viable co-culture using these two auxotrophs could be established and adaptively 

evolved to increase growth rates (by ~3 fold) and optical densities (by ~2.5 fold). While evolved 

isolates had increased fitness in co-culture, they exhibited significantly decreased fitness in 

mono-culture (when supplemented with leucine or lysine). When the estimated leucine and 

lysine secretion rates were used, the model simulation results agreed well with experimental 

data and suggested a better exchange of leucine (or its precursors) and/or lysine improved the 

growth phenotype of the co-cultures. This study will contribute more knowledge for future 

utilization of co-culture in metabolic engineering.    

The second approach was to first build a pyruvate (the BAA precursor) producing strain 

with high yields, and then produce BAA in the pyruvate strains by increasing the BAA synthesis 

fluxes. In order to maximize the pyruvate production yield, we designed gene deletion strains 
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using a genome-scale metabolic model of E. coli. The computationally designed mutant strains 

were constructed, characterized and one of them achieved yields of more than 0.92 g pyruvate 

per g of glucose (95% of theoretical yield) under aerobic conditions, which was more than the 

yield of the strain previously reported: 0.76 g of pyruvate per g of glucose (78% of theoretical 

yield) [14]. This project was described in Chapter 3. The BAA production strains based on the 

pyruvate producing strains will be developed in near future. 

Pyruvate is a precursor to BAA and many other fine chemicals, commodity chemicals 

and high-value pharmaceutical ingredients. The pyruvate overproducing strains could be used 

as platform strains to produce other important chemicals. In Chapter 3, we demonstrated the 

usage of pyruvate strains by genetically modifying them to produce ethanol. The re-engineered 

strains achieved yields up to 0.43 g ethanol per g of glucose (~85% of theoretical yield) in batch 

fermentation. In Chapter 4, we computationally explored what additional chemicals could be 

derived from pyruvate. A comprehensive investigation of the production capabilities of E. coli as 

a background host to produce non-native products was performed. We found 1,793 non-native 

products could be produced in E. coli, confirmed that 284 of them had commercial value and 

identified 64 valuable non-native products within 5 reaction steps of pyruvate. The 64 valuable 

non-native products would be good targets for re-engineering the pyruvate strains (described 

in Chapter 3) to produce other important chemicals.    
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Chapter 2: Adaptive evolution of synthetic mutualistic communities 

improves growth performance 

 

2.1 Introduction 

Microbes are affected by their physical and chemical environment, and they naturally 

encounter other species that can also influence their behaviors. Symbiotic interactions between 

microbes and higher organisms can lead to stable interactions and microbial communities. 

Mutualism is one type of symbiotic interaction, where both species benefit from the interaction. 

The existence of cooperation between members of a community appears to violate 

evolutionary theory that natural selection favors selfish behaviors, and therefore different 

theories have been proposed to explain how cooperation arises and evolves [15-19]. While 

symbiotic interactions are important, most of our knowledge of bacterial metabolism has been 

gathered from studies of individual strains in pure cultures. However, more than 99 percent of 

microbes cannot be cultured nor studied in mono-culture, since their growth depends on the 

presence of other species [20]. Additionally, the phenotypes of cultivatable strains may 

drastically change when grown in a mixed community as compared to mono-culture [21,22]. 

Therefore, studies are needed on how bacterial metabolism is influenced by interactions with 

other organisms.  

In the last decade, experimental efforts have been made to build and study controlled 

multispecies systems [23-26]. Hosada et al. used amino acid Escherichia coli auxotrophs to 

investigate requirements for nascent mutualism, including how initial cell concentrations affect 
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co-culture dynamics [25]. Wintermute and Silver screened 1,035 combinations of E. coli 

auxotrophs to identify pairs of strains that could grow in co-culture and estimated cooperation 

levels and costs associated with cooperation between strains grown in co-culture [24]. Kerner 

et al. created a tunable system using tyrosine and tryptophan E. coli auxotrophs containing 

inducible genetic circuits that control production of tyrosine and tryptophan, and thus growth 

rates and strain ratios [23]. Recently, Pande et al. studied co-cultures of cross-feeding E. coli 

mutants which consumed (due to an amino acid auxotrophy) and produced amino acids. 

Surprisingly, they showed that most co-cultures with cross-feeders had faster growth rates than 

the wild-type strains and were stable in the presence of non-cooperators [26].  

While these studies investigated initial stages of mutualism in co-culture, other studies 

have also investigated how adaptive evolution alters community behaviors. Harcombe used co-

cultures of a methionine E. coli auxotroph and a methionine secreting Salmonella typhimurium 

to select for improved methionine secretion [27]. Harcombe showed that adaptive evolution of 

co-cultures, made up of three strains, selected for cooperators (methionine secreting S. 

typhimurium) over non-cooperators (wild-type S. typhimurium) and that loss of spatial structure 

(by using flasks rather than agar plates) led to a loss of cooperators over time. Hillesland et al. 

adaptively evolved co-cultures of a sulfate reducing bacterium and a methanogenic archae and 

found growth rates and biomass yields improved significantly (by 80% and 30%, respectively). 

When evolved populations were co-cultured with their ancestral partner, antagonistic 

interactions were found between the two evolved populations [28].  

Mathematical models have also been used to explore natural and synthetic co-cultures 

of microbes. Using parameters measured in co-cultures of two auxotrophic yeast strains, Shou 
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et al. delineated requirements for initial cell densities and cell numbers needed to achieve an 

initial viable co-culture [29]. Bull and Harcombe used a model of two cross-feeding species to 

show how population dynamics affected the fitness of the microbial community [30]. 

Constraint-based metabolic models have also been used to study natural and synthetic 

microbial communities. These models have be used to identify strains capable of cooperating 

[24] [26], predict intra- and extra-cellular flux distributions in co-cultures [31,32], and evaluate 

which co-culture objective (e.g. individual or community growth) best matches experimental 

data[31,33].  

The idea of using microbial consortia to solve multiple tasks in complex environments 

has also drawn tremendous attention [34-36], and successful examples have illustrated the use 

of consortia for industrial applications [37-39]. In addition to these studies, many new tools 

have been developed to create novel microbial cross-feeding interactions, structured consortia, 

as well as, quorum-sensing communication. Creating novel interacting systems allows 

hypotheses to be tested and reveals ecological principles [40]. 

Despite these promising findings, the study of microbial consortia has just recently 

begun and many questions remain. How do species first establish a mutualistic community? 

Does cooperation persist during evolution? When does community or strain fitness increase 

and what mechanisms drive such improvements? How does the population structure change 

over time? How do phenotypes of individual strains change during evolution?  

To answer these questions, we constructed a synthetic mutualistic community of two 

auxotrophic E. coli mutant strains to study how adaptive evolution influences community 

phenotypes and structure, as well as, individual strain behaviors. In our synthetic community, 
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strain L (which is unable to catalyze an intermediate step in leucine biosynthesis) and strain K 

(which is unable to catalyze the last step in lysine biosynthesis) can only grow in glucose 

minimal medium if they exchange leucine (or its precursors) and lysine. The community was 

adaptively evolved and its growth rate improved by almost three-fold. Monitoring the 

population dynamics during evolution showed a decrease in the ratio of lysine to leucine 

auxotrophs over time. Isolates from evolved co-cultures showed improved growth when co-

cultured with their un-evolved partner strain compared to the un-evolved K and L co-culture. 

We additionally used a genome-scale metabolic model of the co-culture to investigate how 

uptake and release of essential amino acids would influence co-culture fitness and composition, 

and suggest mechanisms for observed adaptive evolutionary changes. This study provides 

insights into the evolution of mutualistic communities and how microbial phenotypes are 

altered during adaptive evolution in a co-culture environment. In addition, this study for the 

first time investigates how individual isolates in the evolved community influence community 

fitness and composition. 

 

2.2 Materials and methods  

2.2.1 Strains and plasmids 

E. coli BW25113 and the plasmids pKD46, pCP20, and pKD13 were obtained from E. coli 

genetic stock center. The pKD3 plasmid was provided by Dr. Brian Pfleger (UW, Madison). The  

E. coli knockout strains ∆leuA::kan, ∆lysA::kan, and ∆recA::kan mutants were obtained from the 

Keio collection (Open Biosystems). An E. coli BW25113 ∆recA::cat strain was constructed using 

a PCR-based method [41]. A PCR product was generated that contains the chloramphenicol 
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resistance cassette (cat) from pKD3 and has homology to the upstream and downstream 

sequences of recA. The following primers were used in the PCR reaction with pKD3 as a 

template, 5’-ATGCGACCCTTGTGTATCAAACAAGACGATTAAAAATCTTCGTTAGTTTCGTGTAGGCTG 

GAGCTGCTTC-3’ and 5’-CAGAACATATTGACTATCCGGTATTACCCGGCATGACAGGAGTAAAAATGC 

ATATGAATATCCTCCTTAG-3’. E. coli BW25113 containing pKD46 was transformed with the PCR 

product using electroporation. Cells were added into 1mL SOC medium (Fisher Scientific) with 

addition of 5mM L-arabinose, incubated at 37°C for 2 hours, and plated on a LB agar plate 

containing 34 g/L chloramphenicol. To generate the double E. coli mutants used in the co-

cultures, ∆leuA recA::cat (referred to as strain L since it is a leucine auxotroph) and ∆lysA 

recA::kan (referred to as strain K since it is a lysine auxotroph), the temperature-sensitive 

plasmid pCP20 was used to remove the kan gene from the BW25113 ∆leuA::kan and ∆lysA::kan 

mutants. The recA::kan and recA::cat mutations were then moved into these two kanamycin 

sensitive strains by P1 transduction [42] and selected on LB agar plates with kanamycin (50 g/L) 

or chloramphenicol (34 g/L).  

 

2.2.2 Media and culture conditions 

Most liquid co-cultures were grown at 37°C in M9 minimal medium (pH 7.0, 100 µM 

CaCl2, 2 mM MgSO4, 6.4 g/L Na2HPO4•7 H2O, 1.5g/L KH2PO4, 0.25g/L NaCl, 0.5g/L NH4Cl) 

supplemented with 2g/L glucose. For some mono-culture experiments, L-lysine or L-leucine was 

added into the medium at different concentrations. A concentration of 10 mg/L leucine or 

lysine was used for the un-evolved strains, since this allowed for significant growth while still 

ensuring that the amino acid was the limiting nutrient. Higher (16 mg/L) and lower (1.6 mg/L) 
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lysine and leucine concentrations were used to evaluate the evolved isolates in mono-culture, 

so that growth rates could be measured (for concentrations below 1 mg/L, the change in optical 

density (OD) during growth was too small to estimate growth rates accurately). For mono-

culture experiments, cells were inoculated on LB agar plates with kanamycin (50 g/L) or 

chloramphenicol (34 g/L) for 24 hours and resuspended in glucose minimal media. The 

starting OD600 was 0.01 and 0.05 for un-evolved and evolved strains, respectively. For co-

culture experiments, cells from frozen stock were first grown separately in glucose M9 minimal 

media with 10% (v/v) luria broth (LB) for 24 hours at 37°C, and then pelleted and washed twice 

using minimal medium without glucose, to remove any residual nutrients from the preculture. 

Strains were then combined into a co-culture in glucose minimal media.  

 

2.2.3 Adaptive evolution 

Multiple parallel co-cultures of K (lysine auxotroph) and L (leucine auxotroph) strains 

were each started with a 1:1 ratio based on OD600 values. Co-cultures were started with an 

initial OD600 of 0.0065 and were grown in 250 mL flasks containing 100 mL glucose minimal 

medium. Co-cultures were grown aerobically in a shaking incubator at 37°C. The OD600 of the 

co-culture was monitored and when it reached ~0.2 the co-culture was transferred to fresh 

media (resulting in an OD600 between 0.001 and 0.01) and 3 mL of culture was stored at -80°C. 

The growth rate of adaptively evolved co-cultures at each passage was approximated using the 

duration and the change in OD600 value of the passage. The percent of dead cells for the first 5 

passages was determined using SYTOX Green nucleic Acid Stain (Molecular Probes, Invitrogen, 

cat. no. S7020). Frozen co-cultures were later recovered by growing them in 2 mL glucose 
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minimal medium and transferring them into 200 L of fresh medium (such that the starting 

OD600 was 0.01) in a 96 well plate and grown at 37°C for 4 days. OD600 values were measured 

in a Tecan microplate reader and the changes in OD600 values and growth rates for the co-

culture were calculated.  

 

2.2.4 Mono-culture and hybrid co-culture of evolved strains 

Evolved isolates from the frozen co-culture samples were obtained by selecting colonies 

from LB+kanamycin (50 g/L) and LB+chloramphenicol (34 g/L) agar plates. For mono-culture 

and hybrid co-culture experiments (consisting of evolved isolates [Lev or Kev] and their un-

evolved partner strain [K or L]), evolved isolates were grown on LB+kanamycin (50 g/L) or 

LB+chloramphenicol (34 g/L) plates and a single colony was used to inoculate cells into 

glucose M9 minimal medium with (for mono-culture experiments) or without (for hybrid co-

culture experiments) leucine or lysine. Mono-cultures and hybrid co-cultures were started with 

an initial OD600 of 0.05 and 0.01, respectively. Each evolved isolate mono-culture was repeated 

in triplicate in 384 well plates and grown for 48 hours at 37°C, where OD600 values were 

measured every 15 minutes. Growth rates were determined by searching for the maximum 

growth rate in a 3 hour window during exponential growth. A 3 hour window was used because 

this was less than the exponential growth period for the different cultures and it had enough 

data points (>10) to get a good estimate for the growth rate. Hybrid co-cultures containing a 1:1 

mixture of evolved isolates and un-evolved K or L strains were carried out in 96 well plates. 

Hybrid co-cultures were grown in glucose medium at 37°C for 72 hours. A total of four 

https://www.google.com/setprefs?fheit=0&sig=0_iYnE8xRcgFAw8RWzTznA5McPhgw=&prev=https://www.google.com/%23hl%3Den%26rlz%3D1G1GGLQ_ENUS371%26sclient%3Dpsy-ab%26q%3Dtemperature%26oq%3Dtemperature%26gs_l%3Dserp.3..0l4.1114469.1118174.1.1118301.15.9.3.3.3.0.104.488.5j1.9.0...0.0...1c.B-u4kNvcKYQ%26pbx%3D1%26bav%3Don.2,or.r_gc.r_pw.r_cp.r_qf.%26fp%3D2733a454e9585cf4%26biw%3D1216%26bih%3D639%26tch%3D1%26ech%3D1%26psi%3DosQRUN3kI8SkrQH10IDQCA.1343341733670.5&sa=X&ei=FMkRUKzEO4q9rQGK3IHACQ&ved=0CG8QwwQ
https://www.google.com/setprefs?fheit=0&sig=0_iYnE8xRcgFAw8RWzTznA5McPhgw=&prev=https://www.google.com/%23hl%3Den%26rlz%3D1G1GGLQ_ENUS371%26sclient%3Dpsy-ab%26q%3Dtemperature%26oq%3Dtemperature%26gs_l%3Dserp.3..0l4.1114469.1118174.1.1118301.15.9.3.3.3.0.104.488.5j1.9.0...0.0...1c.B-u4kNvcKYQ%26pbx%3D1%26bav%3Don.2,or.r_gc.r_pw.r_cp.r_qf.%26fp%3D2733a454e9585cf4%26biw%3D1216%26bih%3D639%26tch%3D1%26ech%3D1%26psi%3DosQRUN3kI8SkrQH10IDQCA.1343341733670.5&sa=X&ei=FMkRUKzEO4q9rQGK3IHACQ&ved=0CG8QwwQ
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replicates were done, two each on different plates. The OD600 values were monitored every 4 

to 6 hours and used to estimate the growth rates.  

 

2.2.5 Concentration measurements 

A bioassay was used to measure the concentration of amino acids. A standard curve for 

converting a change in OD600 values of strain K to lysine concentrations was generated by 

growing the K strain (lysA recA::kan) to stationary phase in glucose minimal medium with 

various concentrations of lysine for 48 hours. The change in OD600 was proportional to the 

concentration of lysine, with a proportionality constant of 25.91 mg/L lysine per OD (Figure 

2.1B). To measure the concentration of lysine in the culture medium, we passed the culture 

medium through a 0.2 m nylon membrane to remove cells. The filtrate was then mixed with 

an equal volume of glucose minimal medium, inoculated with the K mutant and grown at 37°C 

for 48 hours. The concentration of lysine present in the filtrate was then estimated from the 

change in OD600 and the proportionality constant.  

To estimate the levels of leucine, Lactobacillus casei 12A (provided by James L. Steele, 

UW Madison) was used as a leucine biosensor, since it is incapable of synthesizing leucine. A 

standard curve was generated using the same method described above, but the growth 

medium was comprised of equal parts by volume, 2 g/L glucose M9 minimal media with various 

concentrations of leucine and CDM medium without leucine [43]. The proportionality constant 

was 20.45 mg/L leucine per OD (Figure 2.1A). To quantify the amount of leucine in the culture 

medium the same procedure described above was used, except L. casei was used instead of 

strain K and the filtrate was mixed with an equal volume of CDM medium without leucine.  
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Figure 2.1. Standard curves for amino acid bioassays. 

(A) The standard curve for leucine concentration versus OD600 values for L. casei. (B) The standard 
curve for lysine concentrations versus OD600 values for strain K. Tests were performed in 96 well plates 
and OD600 values were monitored every 15 minutes in microplate reader. The OD values were then 
converted to OD600 values in a standard spectrophotometer with 1cm pathlength using a standard 
curve (not shown). Each dot shows the amino acid concentration versus the converted OD600 value 
minus the OD600 value when the strains were grown in medium without amino acids.  

 

The lower limit of detection for leucine and lysine that can be measured accurately 

using the bioassays was ~3.5 M. One limitation of the bioassay is that the filtrate could contain 

chemicals that inhibit or enhance cell growth causing the bioassay to underestimate or 

overestimate the amino acid concentrations. To minimize the effects of other chemicals the 

filtrate was diluted two fold.  

Glucose concentrations were measured using a glucose assay from Sigma (GAGO20) 

after cells were removed using a 0.2 μm nylon filter.  

 

2.2.6 Estimation of growth and uptake rates  

The growth rate and biomass requirements in mono-cultures were estimated from 

concentration measurements. First, the growth rate (μ) during exponential growth was 

calculated from the slope of a linear fit between ln(OD) and time (given by lnOD = μt+constant). 
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To estimate the biomass requirements (mmol substrate/gDW) for glucose, lysine, or leucine 

(YGlc, YLys and YLeu), the OD600 values were converted to biomass concentration (g dry weight/L; 

gDW/L) using a conversion factor of 0.415 gDW/(LOD) [44]. A linear regression between the 

substrate concentrations (glucose, leucine or lysine) and biomass concentrations (XK or XL) was 

performed, and the resulting slopes corresponded to the biomass requirements (e.g., [lysine] = 

-YLysXK+constant). Substrate uptake rates (mmol/gDW/hour) for glucose, lysine and leucine 

(UGlc, ULys and ULeu) in mono-cultures and co-cultures were then estimated by multiplying the 

measured biomass requirements by the growth rate (Equation 2.1). Release rates 

(mmol/gDW/hour) for lysine (RLys) and leucine (RLeu) in co-cultures were estimated by equating 

the amount of amino acid produced by one strain to the amount consumed by the other strain 

(Equations 2.2 and 2.3). 

             {           } (2.1) 

                 ⁄   (2.2) 

              ⁄  ⁄   (2.3) 

2.2.7 Quantifying relative populations in the co-culture 

Standard plating methods measuring the colony forming units (CFUs) on LB, 

LB+kanamycin (50 g/L) and LB+chloramphenicol (34 g/L) agar plates were initially used to 

quantify the relative abundance of strains K and L in the co-culture. However, the adaptively 

evolved strains grew poorer on LB plates and the CFUs/(mLOD) decreased (data not shown). 

Thus, we decided to use quantitative PCR (qPCR) to determine the relative abundance of the 

two populations in co-culture based on genomic DNA abundance rather than CFUs. The 
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genomic DNA of 500 l of the frozen co-cultures was extracted using the Qiagen DNeasy Blood 

and Tissue Kit (cat. no. 69504). Fragments of the kan and cat genes were amplified from 

genomic DNA using qPCR with primers, qkan-L (5’-CTCGTCCTGCAGTTCATTCA-3’), qkan-R (5’-

AGACAATCGGCTGCTCTGAT-3’), qcat-L (5’-CGTAATTCCGGATGAGCATT-3’), and qcat-R (5’-

TCCGGCCTTTATTCACATTC-3’). Each 20 L PCR reaction contained 10 L SsoAdvanced SyBR 

Green supermix (Bio-Rad), 500 nM forward primers, 500 nM reverse primers and 20 ng 

genomic DNA. Each assay included triplicates for each co-culture, duplicate no DNA control, and 

positive controls of 0.1 ng, 1 ng, 10 ng, 100 ng of a 1:1 mixture containing genomic DNA from 

the parental K and L strains. The positive controls were used to generate a standard curve. The 

uncertainty for the estimated DNA concentration using the standard curve was calculated 

based on the error propagation method as following [45]: 

Quantitative PCR requires using a standard curve (Equation 2.4) generated from samples 

with a known DNA concentration. For the standard curve, the log10 transformed DNA 

concentration is the independent variable (denoted as  ), while the measured quantification 

cycle (Cq) is the dependent variable ( ). Parameters   and   are determined from a linear least 

squares estimate. The standard deviations for   and   are denoted as    and   , respectively.  

For a sample of unknown DNA concentration, its log 10 transformed concentration ( ) 

can be estimated using the standard curve and the unknown sample’s Cq number. The 

uncertainty in   (  ) is calculated using Equations 2.5-2.7, where   is the number of data points 

used to generate the standard curve and   is the number of measurements for the unknown 

sample. The standard deviation for the unknown non-transformed DNA concentration (  ) is 

calculated from sx using Equation 2.8.  
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2.2.8 Dynamic metabolic model of co-culture 

A dynamic co-culture model was constructed which uses a stoichiometric matrix for 

each strain (based on the previously published stoichiometric matrix for the iAF1260 model 

[46]). The fluxes through reactions associated with the deleted genes in the K and L strain were 

constrained to be zero in the corresponding network. The amount of leucine or lysine 

consumed by one cell type in the co-culture was constrained to be equal to the amount 

released by the other cell type. The concentration of glucose, amino acids and biomass were 

calculated at 0.1 hour intervals using dynamic flux balance analysis (dFBA) [47]. At each time 

step in dFBA model, the metabolic model(s) were assumed to be at steady state and flux 

balance analysis (FBA) was used to predict the fluxes in that time step with the objective 

function of the combined growth rate of the two strains. Here, a FBA problem was formulated 

and solved to find the flux distributions in strain K (  ), strain L (  ), and media concentration 

rate of change (      ). The units for the fluxes (   and   ) are mmol/gDW/hour (except for 
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the biomass flux which is 1/hour) and the units for the concentration rate changes (      ) are 

mmol/L/hour. The FBA problem is shown below in Equations 2.9-2.17. 

max              (2.9) 

such that         (2.10) 

         (2.11) 

             (2.12) 

             (2.13) 

   
       ∑    

 

 (  
    

    
    

 )                     (2.14) 

                         (2.15) 

       
       

     (2.16) 

         
             

         (2.17) 

Here   is the stoichiometric matrix reported in the iAF1260 model and contains all metabolic, 

transport and exchange reactions. Steady-state mass balance constraints are imposed for each 

strain (Equations 2.10 and 2.11). The lower bounds (  ) and upper bounds (  ) are used to 

constrain the flux distributions (Equations 2.12 and 2.13) and concentration rate changes 

(Equation 2.15). For metabolic and transport reactions the upper limits on fluxes were set to 

1000 mmol/gDW/hour, and the lower limits were set to 0 or -1000 mmol/gDW/hour for 

irreversible and reversible reactions, respectively.  The upper and lower limits for the ATPM 

(ATP maintenance) reaction were set to 8.39 mmol/gDW/hour.  The upper and lower bounds 

for the set of exchange fluxes (set    ) and concentration rate changes used in the simulations 

are shown in Table 2.1 in page 19. 
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The media concentration rate change (      ) was calculated using Equation 2.14 from 

the exchange fluxes for each strain and the cell concentration of strain at time step t (  
  or   

  

with units of gDW/L). Here     is the set of exchange fluxes and     is the set of extracellular 

metabolites. Fluxes through reactions associated with LeuA in strain L and LysA in strain K were 

set to zero to reflect deletions in these two strains (Equation 2.16). The concentration rate 

changes for lysine and leucine were set to zero to ensure all the lysine produced by strain L is 

consumed by strain K, and leucine produced by stain K is consumed by strain L (Equation 2.17). 

The objective function (Equation 2.9) in the FBA problem was first set to maximize the 

sum of the fluxes through the two biomass equations (by setting         
  and         

  equal to 

1 and all other c values equal to 0). The biomass fluxes (        
  and         

 ) were then fixed 

to their optimal values and then the objective function was changed to minimize glucose 

uptake rates (by maximizing flux through glucose exchange reactions) needed to achieve these 

growth rates (by setting          
  and          

  equal to 1 and all other c values equal to 0).  

These two optimizations were done for each time step (t) and the results used to 

calculate the glucose (    
       ) and cell (    

  and     
 ) concentrations in the next time step 

(Equations 2.18-2.20) of the dFBA problem. This process was repeated until the total cell 

concentration reached 0.083 gDW/L (corresponding to an OD600 value of 0.2). At this point the 

K:L ratio and average biomass flux (i.e. growth rate) was calculated and used in Figures 2.13 and 

2.14. 

The ratio of the FBA predicted growth rates (        
   and         

 ) and glucose uptake 

rates (-          
  and -          

 ) is the the biomass yield and used in Equation 2.20. The 
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starting concentrations of glucose (C0
Glucose) and each cell type (x0

K and x0
L) were set to 11.96 

mmol/L and 0.0026975 gDW/L). The time step used (t) was 0.1 hour. 
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Table 2.1: Upper and lower bounds for fluxes. 

 (    ,    ,   and     with units of mmol/gDW/hour) and concentration rate changes (       , 

        with units of mmol/L/hour). 

Metabolite                                 

Glucose -10 1000 -10 1000 -20 1000 

Oxygen -15 1000 -15 1000 -30 1000 

Ions (ca2,cl,cobalt2,cu2,fe2,k, 
mg2,mn2,mobd,na1,tungs,zn2) 

-1000 1000 -1000 1000 -2000 1000 

fe3 -1000 0 -1000 0 -2000 0 

Other (nh4,pi,so4,h,h2o,cbl1) -1000 1000 -1000 1000 -2000 1000 

Leucine valuea valuea valueb valueb 0 0 

Lysine valuea valuea valueb valueb 0 0 

All other external metabolites 0 1000 0 1000 0 1000 

a for uptake rate simulations the LB and UB for lysine were set to negative the specified value and for 
leucine were set to 0 and 1000, respectively; for release rate simulations the LB and UB for leucine were 
set to positive the specified value and for lysine were set to -1000 and 1000, respectively. 

b for uptake rate simulations the LB and UB for leucine were set to negative the specified value and for 
lysine were set to 0 and 1000, respectively; for release rate simulations the LB and UB for lysine were set 
to positive the specified value and for leucine were set to -1000 and 1000, respectively. 
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2.3 Results  

2.3.1 Characterization of individual auxotrophs in mono-culture 

Lysine (strain K) and leucine (strain L) E. coli auxotrophs were used in this work to study 

microbial interactions in co-culture. To reduce the chance of horizontal gene transfer between 

the two auxotrophs, we deleted recA from ∆lysA and ∆leuA mutants and replaced it with an 

antibiotic resistance marker to generate strain K (∆lysA recA::kan) and strain L (∆leuA recA::cat). 

Strain K requires lysine for growth, while strain L requires leucine. The additional deletion of 

recA did not reduce the mutant growth rates compared to the recA positive ∆lysA and ∆leuA 

mutants (in LB the growth rates were ~1.32 h-1 and ~ 1.36 h-1 for the recA negative and positive 

strains, respectively).  

Both the K and L strains were characterized individually in mono-culture during growth 

in glucose minimal medium when supplemented with lysine and leucine, respectively. When 

grown in mono-culture where the essential amino acid (lysine or leucine) is limiting, the strains 

exhibited constant amino acid consumption rates and growth rates (Figure 2.2A and 2.2B), 

which were estimated from the concentration data. In mono-culture, strains K and L had similar 

growth rates; however, strain K had a lower essential amino acid uptake rate than strain L, 

indicating that E. coli needs more leucine than lysine for biomass production. The amino acid 

requirements were also estimated from the biomass and concentration measurements (Table 

2.2, see Methods for details), and they represent the amount of amino acid needed to produce
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Figure 2.2: Characterization of mutant growth in mono-culture.  
(A and B): Un-evolved K and L strains were grown in mono-culture in glucose minimal medium 
supplemented with 10 mg/L lysine or leucine, respectively. Concentrations of strain K (blue circles), 
strain L (red diamonds), leucine (orange triangles), lysine (green squares), and glucose (black x) in mono-
cultures of strains K and L are shown. (C and D): Survival of strains K (panel C) and L (panel D), in mono-
culture in glucose minimal medium without amino acid supplementation. The error bars represent 
standard deviations across three replicate measurements.  
 

Table 2.2. Mutant phenotypes during growth in mono-culture.  

 

*The amino acid requirements represent the amount of leucine or lysine required for production of 1 
gDW of cells.  

ⱡThe uptake rates are estimated as the product of the growth rate and amino acid requirements.  

 

 ∆lysA mutant 
estimated value 

∆leuA mutant 
estimated value 

Growth rate (hour-1) 0.461 0.465 

Amino acid requirement (mmol/gDW)* 0.350 0.473 

Amino acid uptake rate (mmol/gDW/hour)ⱡ 0.161 0.220 
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1 gDW of cells. Specifically, 0.350 mmol of lysine was needed for the formation of 1 gDW of 

strain K and 0.473 mmol leucine for 1 gDW of strain L. These values are close to the reported 

biomass composition of E. coli B/r, which contains 0.326 mmol lysine and 0.428 mmol leucine 

per gDW of cells [48]. Accordingly, if these strains have the same growth rate, the leucine 

uptake rate by L will be higher than the lysine uptake rate by K. 

Since co-cultures of K and L would be carried out without supplementation of leucine 

and lysine, we also evaluated the survival of strains in mono-culture in glucose minimal medium 

without addition of amino acids. Cell viability was monitored over time by quantifying the 

number of colony forming units (CFU) per mL (Figure 2.2C and 2.2D) and percent of dead cells 

using Sytox green nucleic acid stain (Figure 2.3). Interestingly, the two strains showed different 

resistances to starvation, which has been reported for other amino acid auxotrophs [25,29]. For 

the K strain, the number of CFUs/mL decreased within 10 hours, while the L strain did not show 

a large drop in CFUs/mL over 80 hours.  

 

 

Figure 2.3. Survival of mutants in starvation. 

The percent of dead cells in the mono-culture in minimal glucose medium without supply of amino acids 
was measured using Sytox green nucleic acid stain. The error bars indicate standard deviations. 
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2.3.2 Characterization of un-evolved co-cultures 

We next explored the behavior of a co-culture of K and L when grown in glucose 

minimal media (without amino acid supplementation). Both mutants were inoculated with the 

same initial density in glucose minimal medium and growth of the co-culture was monitored 

over 70 hours. One surprising feature of the co-culture was that there was no lag phase at the 

beginning of the co-culture, even though the strains were precultured separately. The co-

culture had an exponential growth rate equal to 0.056 h-1 (Figure 2.4B), which was around ~12% 

of the mono-culture growth rates (Table 2.2 in page 21). The glucose uptake rate for the co-

culture was estimated to be 2.42 mmol/gDW/hour. We also quantified the relative size of the 

two mutant populations at different time points of the co-culture by extracting genomic DNA 

and amplifying the kan and cat genes using qPCR. In the co-culture, the K and L strains 

proliferated at very similar rates with L growing slightly slower than K (Figure 2.4C). An equal 

mixture of K and L (based on OD600 values) corresponds to a K:L ratio (based on genomic DNA 

levels) of 1.59±0.18, and the average K:L ratio determined by genomic DNA levels during 

exponential growth of the co-culture was 1.6 (Figure 2.4D). These results indicate that an 

exchange of leucine (or its precursors) and lysine happened immediately when the two mutants 

were grown together and was enough to support stable exponential growth. 

 

2.3.3 Evolution of co-culture 

To improve growth of the co-culture and establish a more cooperative artificial 

microbial community, we adaptively evolved the co-culture for short (one week) and 

exponential growth rate that was 88% lower than the strains grown in mono-culture  
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Figure 2.4: The un-evolved co-culture of strains K and L. 
(A) Nutrient exchange and dependence in co-culture of two E. coli strains L and K. Strain L is incapable of 
synthesizing leucine, while strain K is unable to synthesize lysine. In the co-culture, if exchange of leucine 
and lysine occurs then both strains can grow in glucose minimal medium. Panel (B) shows the 
concentration profiles of glucose (red x) and optical density (black squares) during batch growth of the 
co-culture. The error bars indicate the standard deviations across replicates. (C) Genomic DNA from the 
two mutants were extracted from the co-culture at several time points during batch growth of the co-
culture and analyzed by qPCR. Blue circles and red diamonds represent the K and L strains, respectively. 
The error bars were calculated by the error propagation method described in method. (D) The ratio of K 
to L was calculated from the qPCR results. The K to L ratio measured using qPCR was 1.59±0.18 for a 1:1 
mixture of un-evolved cells based on OD600. The error bars indicate standard deviations.  

 

supplemented with amino acids, so there was significant room for improving the fitness of the 

co-culture. We first adaptively evolved three replicate co-cultures for five passages starting with 

equal amounts (based on OD) of strains K and L in glucose minimal medium. The co-cultures 

were maintained in prolonged exponential growth by serially transferring cells into fresh 

medium, and the OD was monitored over the five passages (Figure 2.5A). In all three 

independent co-cultures, the growth rate was constant over the first two passages (μ~0.05 h-1) 
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and improved by 3-fold during the third passage and then stabilized (μ~0.14 h-1, Figure 2.5B). 

Interestingly, just like in the initial co-culture the cells did not appear to have any lag phase 

during the later passages. The average percent of dead cells across the three co-cultures 

decreased over the first five passages (Spearman Rank Correlation, R2 = 1, p=0.016), ranging 

between ~5% and ~2% at mid-exponential growth (Figure 2.6).  

 

Figure 2.5. Changes in growth behavior over short adaptive evolutionary time frames.  

(A) Natural log of the OD over time for three parallel co-cultures (co-cultures 1, 2, and 3) for five 
passages. Cultures were passed to fresh medium at OD600 ≈ 0.2 (marked as dashed line). The open 
diamond, open circle and solid diamond denote co-culture1, 2, and 3, respectively. (B) Average growth 
rates of each passage across the three independently evolved co-cultures. The error bars represent the 
standard deviations of the growth rate over the three co-cultures. 

 

Figure 2.6. Percent of dead cells in co-cultures.  

Percent of dead cells in five different passages from co-cultures 1, 2, 3 were measured when OD≈0.2. 
Each column represents the average percent of dead cells from the three co-cultures. The error bars 
indicate standard deviations.    
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After the short-term evolution experiments, we performed three parallel long-term 

adaptive evolutionary experiments of the co-culture using the same serial transfer process. The 

adaptive evolution lasted between 30 and 40 days, and included over 20 passages and 160 

generations. Periodically, a small amount of co-culture was spread on LB agar plates and 

subsequently transferred to glucose, LB+kanamycin and LB+chloramphenicol agar plates, to 

check that one strain did not become independent of the other and take over the culture. For 

these co-cultures, we did not observe any isolates that were able to grow on glucose plates. 

The growth rate for each passage was estimated from the change in OD values and duration of 

each passage (Figure 2.7A). Similar to our short-term adaptive evolution results, the growth 

rate increased around day six in these independent co-culture experiments. After 10 days (5 

passages), the growth rates oscillated around the same value. The three parallel co-cultures 

showed similar endpoint growth rates, which has been observed during evolution of individual  

 

 

Figure 2.7: Adaptive evolution of the co-culture.  
Three parallel co-cultures were performed, represented as a purple solid line (co-culture 4), a green 
short dashed line (co-culture 5), and a black dotted line (co-culture 6). (A) Growth rates were calculated 
based on the starting and ending OD values for each passage. (B) Genomic DNA was extracted from 
frozen samples of the co-culture taken at the end of each passage (OD≈ 0.2). Relative populations of K 
and L were estimated using qPCR and used to calculate the ratio of K to L. The error bars represent 
standard deviations calculated using the error propagation method. 
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strains [49]; however, the evolutionary trajectories of the co-cultures were different, indicated 

by different growth rates on the same day of evolution. 

At the end of each passage, a sample of each co-culture was frozen and stored at -80°C. 

These frozen co-culture samples were later recovered and further evaluated to study the 

population dynamics of the co-culture and monitor the evolution of each strain. We monitored 

the relative abundance of the two strains over adaptive evolution. To estimate the relative 

abundance of the two strains at the end of each passage, genomic DNA from the frozen co-

culture was extracted and qPCR was used to estimate the cell ratios (Figure 2.7B). The ratio of K 

to L decreased in all three evolved co-cultures and the final K:L ratios varied across the different 

parallel co-cultures between 0.93 and 0.29. The lower K:L ratio indicates that a smaller 

population of K cells can maintain a larger population of L strains. This could be due to a higher 

release rate of leucine (or its precursors) via secretion or cell lysis compared to lysine or a 

higher uptake rate of leucine compared to lysine. Since we did not detect any leucine or lysine 

in the co-culture medium, we cannot exclude either possibility. 

While the growth rates of the co-culture were higher after evolution, it was unclear if 

the biomass yields of the evolved co-culture increased in the same fashion since the strains 

were transferred before reaching stationary phase. When frozen co-cultures were transferred 

directly into glucose minimal media, the frozen co-cultures tended to grow faster than the fresh 

co-cultures, which could be due to cell lysis caused by the freeze-thaw process. So we first 

recovered frozen co-cultures in glucose minimal medium and then passed the exponentially 

growing culture into fresh medium. Cells were then grown to stationary phase in a microplate 

reader, allowing growth rates and changes in OD600 values to be quantified (Figure 2.8). 
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Figure 2.8. The change in OD600 and growth rates of evolved co-cultures 4, 5 and 6.  

Frozen co-cultures were recovered and then grown in glucose minimal medium to stationary phase in 96 
well plates. The change in OD600 shown in the figure was maximum OD600 value minus the initial value. 
The unevolved co-culture had a growth rate ~0.05 (hour-1) and OD600 change ~ 0.26 in 96 well plates. 
Co-cultures 4, 5 and 6 are denoted by solid line, dashed line and dotted lines, respectively. The error 
bars indicate standard deviations. 
 

In microplates, the change in OD600 of the un-evolved co-culture was 0.26 and all 

evolved co-cultures showed higher changes in OD600 than the un-evolved co-culture. The 

growth rate of the un-evolved co-culture was ~0.05 h-1 (similar to the value observed in flask 

experiments), while the growth rates of evolved co-cultures were 2- to 3-fold faster (Figure 2.8). 

 

2.3.4 Characterization of evolved strains in mono-culture  

During adaptive evolution, co-cultures of K and L strains achieved higher growth rates 

and biomass yields. However, these experiments were done with a heterogeneous population 

and not using individual isolates. To further investigate how adaptive evolution affected 

individual strain behaviors we isolated strains from different passages of the co-culture and first 
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evaluated their growth in mono-culture. We randomly selected colonies of evolved K (or L) 

strains from different passages in co-culture 4 and 6 (since these co-cultures were the most 

different), and grew individual evolved isolates (Kev and Lev) in mono-culture in glucose minimal 

medium with different concentrations of lysine or leucine.  

We first selected 3 colonies of Kev (or Lev) from late passages of co-cultures 4 and 6 and 

inoculated them in medium with increasing amounts of lysine or leucine. Surprisingly, the Kev 

and Lev strains had lower growth rates and changes in OD600 values compared to the un-

evolved K and L strains, except for some Kev isolates in co-culture 6 which had higher changes in 

OD600 values (Figure 2.9). We subsequently evaluated 10 isolates from different passages of 

co-cultures 4 and 6 for growth in mono-culture in the presence of high (16mg/L) and low (1.6 

mg/L) concentrations of lysine or leucine. In general, we found that some isolates from earlier 

passages did show improved growth phenotypes in high and low concentrations of amino acids, 

but that most isolates from later passages had decreased growth rates and changes in OD600 

values than the un-evolved K and L strains (Figure 2.10). 

In addition to growing individual isolates in mono-culture with exogenous amino acid 

supplementation, we also evaluated the survival of isolates in mono-culture without exogenous 

lysine and leucine by measuring the percent of dead cells after 24 hours in glucose minimal 

medium. Compared to the un-evolved K strain, the evolved Kev isolates from co-culture 4 and 6 

had a lower percentage of dead cells (Figure 2.11). On the other hand, the evolved Lev isolates 

from both co-cultures had a higher percentage of dead cells compared to the un-evolved L 

strain. These data indicate that possible mechanisms for improving growth of the co-culture 

could be due to a decreased viability of the L strain and/or increased viability of strain K. 
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Figure 2.9: Mono-culture of Kev and Lev.  
Three randomly selected colonies of Kev (or Lev) from passage 19 of co-culture 4 and passage 18 of co-
culture 6 were inoculated in glucose minimal medium with various amounts of lysine (for Kev strains, 

panel A and C) or leucine (for Lev strains, panel B and D). Each colony was tested in three replicate mono-
cultures. The growth rates and change in OD600 were calculated for the evolved and un-evolved 
parental strains (control). The error bars represent the standard deviations across biological replicates.
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Figure 2.10. Growth phenotypes of Kev and Lev isolates grown in mono-culture with high and low levels 

of amino acids.  

Ten randomly selected Kev (or Lev) isolates from different passages were inoculated in glucose minimal 
medium supplemented with Lys (or Leu) at high (16 mg/L, panels A, B, E and F) and low (1.6g/L, panels 
C,D, G and H) concentrations.  Each isolate was tested in three replicate mono-cultures in 384 well 
plates. The growth rates and changes in OD600 were calculated for evolved isolates and normalized to 
the values for their respective un-evolved parental strains (K or L). The mean of the growth rate ratios 
and change in OD600 ratios are shown as blue diamond (Kev/K) and red square (Lev/L), respectively, in 
panels A-D (Co-culture 4) and E- H (Co-culture 6). The error bars indicate standard deviations.



    32 

 

Figure 2.11. The percent of dead cells in mono-culture.  

Three evolved Kev (panel A) or Lev (panel B) isolates from different passages were grown in mono-culture 
in glucose minimal medium. The number of dead cells was measured using Sytox green nucleic acid stain 
at 24 hour. The control is the percent of dead cells in mono-culture containing un-evolved K or L strains. 
The bar indicates the standard deviation across replicates.  

 

2.3.5 Properties of evolved isolates in hybrid co-culture 

Since the strains were evolved in co-culture and not mono-culture we also sought to 

evaluate changes in growth phenotypes of individual isolates when grown in co-culture with 

their un-evolved partner strains (referred to here as a hybrid co-culture). To find out how 

evolved isolates derived from each strain affect growth of the co-culture, we evaluated hybrid 

co-cultures containing evolved isolates (Kev or Lev) with their un-evolved partner strains (L or K) 

in glucose minimal media. The growth rates and biomass yields of Lev+K (or L+Kev) hybrid co-

cultures were then compared to those of the initial un-evolved co-culture (L+K).  

In co-culture 4, the growth rates of L+Kev and Lev+K hybrid co-cultures containing isolates 

from the first five passages were similar to the initial co-culture (K+L) (Figure 2.12A), while 

increased growth rates were observed in hybrid L+Kev and Lev+K co-cultures containing isolates 

from later passages. Growth rate improvements in the hybrid co-cultures were slightly delayed 
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compared to our earlier analysis of the evolved co-culture (Figure 2.5B), where the biggest 

growth rate improvements happened after three passages. This delayed improvement in 

growth rate could be due to the fact that only single evolved isolates were evaluated (rather 

than a mixed population) and that evolved isolates were tested in combination with un-evolved 

partner strains (rather than evolved partner strains). Compared to co-culture 4, isolates from 

co-culture 6 (Figure 2.12D) had larger variations across isolates from the same passage and 

earlier increases in growth rates. Interestingly, none of the evolved isolates co-cultured with 

their un-evolved partner strains led to a three-fold improvement in growth rate as observed in 

the evolved co-culture, indicating that synergistic effects between evolved isolates may exist in 

the co-culture. In both co-culture 4 and 6, the growth rate of Lev+K hybrid co-cultures increased 

faster than the corresponding L+Kev co-cultures, indicating that the L strains adapt more quickly 

to enhance co-culture growth. Hybrid co-cultures containing evolved isolates from co-culture 4 

and 6 also exhibited higher biomass yields (measured by changes in OD600, Figure 2.12B and 

2.12E). 

Since each hybrid co-culture contains at least one of the un-evolved parental strains, if 

the L+Kev (or Lev+K) co-culture grows better than L+K co-culture, then the evolved isolates likely 

have increased uptake and/or release of leucine (or its precursors) or lysine. An improved 

uptake rate would increase the abundance of the evolved strain in the co-culture while a higher 

release rate would benefit its partner strain. The ratio of K:L in the hybrid co-cultures during 

exponential growth was also measured using qPCR of genomic DNA, and compared to the K:L 

ratio in the un-evolved co-culture. These ratio measurements allowed us to find out which  
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Figure 2.12: Comparisons between un-evolved co-cultures L+K and hybrid co-cultures containing L+Kev 
or Lev+K.  
Cells from 10 colonies of Kev (or Lev) at each selected passage were grown individually in co-culture with 
the un-evolved partner strain (L or K). The growth rate and change in OD600 for each hybrid co-culture 
was normalized to the growth rate and change in OD600 of the un-evolved co-culture grown on the 
same microplate. The resulting growth rate ratios and change in OD600 ratios are shown as blue 
diamonds (L+Kev) and red squares (Lev+K), respectively, in panels A and B (isolates from co-culture 4) and 
panels D and E (isolates from co-culture 6). The error bars indicate the standard deviations based on 10 
separate hybrid co-cultures each with four replicates (n=40). The dashed lines indicate the behavior of 
the un-evolved co-culture (L+K). Panels C and F shows the K:L ratio in L+Kev and Lev+K in hybrid co-
cultures and the un-evolved co-culture. The hybrid co-cultures contained evolved isolates from co-
culture 4 (panel C) or co-culture 6 (panel F). The error bars indicate the standard deviations based on 
hybrid co-cultures using three different isolates and three measurements for each passage (n=9). The 

shaded bands in C and F show the mean  the standard deviation for the K:L ratio in the un-evolved co-

culture at an OD600 of 0.2 when grown in 96 well plates (1.62  0.14).     
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strain if any dominated the hybrid co-culture. Three hybrid co-cultures at five different 

passages were selected for this analysis. They represent the slowest, medium and fastest 

growing hybrid co-cultures within a given passage. For comparison, the co-culture of un-

evolved strains (L+K) was measured and had a K:L ratio 1.62±0.14. With isolates from co-culture 

6, the K:L ratio of L+Kev hybrid co-cultures at mid-exponential growth were all less than 1.6 

(except for passage 3) indicating that the Kev strains improved growth of the L strain more than 

the original K strain (Figure 2.12F). In addition, the K:L ratios in Lev+K hybrid co-cultures also 

showed a decreasing trend, implying that the Lev strains became dominant in the hybrid co-

cultures. These results suggest that the Kev strains may increase release of leucine (or its 

precursors) and/or the Lev strains increase uptake rates of leucine. The hybrid co-culture with 

isolates from co-culture 4 showed a very different pattern. The K:L ratio initially increased for 

both of L+Kev and Lev+K hybrid co-cultures compared to the L+K un-evolved co-culture, 

suggesting possible better exchange of lysine, while the K:L ratio decreased at later passages, 

suggesting a better exchange of leucine (or its precursors) (Figure 2.12C).  

 

2.3.6 Simulation of batch co-cultures  

A number of possible mechanisms associated with amino acid exchange could explain 

the improvements in growth of the co-culture over adaptive evolution. These include increased 

uptake or release rates of leucine (or its precursors) or lysine, or combinations of these. Direct 

measurements of cross-feeding rates could not be made, so metabolic modeling was used to 

gain additional insights. To further evaluate the co-culture evolution, we developed a 

computational model of the co-culture using a genome-scale metabolic model of E. coli [46]. 
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Dynamic flux balance analysis (dFBA) simulations were performed where the uptake/release of 

leucine and lysine were varied and the growth rates and K:L ratios were predicted at an OD600 

of 0.2. At each time step in dFBA, metabolism was assumed to be at a steady-state and a flux 

distribution maximizing the combined growth rate was found. Since we did not detect any 

leucine or lysine in the co-culture media, we additionally constrained the dFBA model to ensure 

that there was no net accumulation of leucine or lysine in the media. 

As expected, changing the uptake and release rates of the essential amino acids affected 

the community composition and the average growth rate (Figure 2.13). The model predicted 

that higher uptake or release rates of lysine will result in a larger K:L ratio, while larger rates of 

leucine uptake or release will decrease the ratio (Figure 2.13A and 2.13B). What we did not 

anticipate is that the strain ratio was predicted to be more sensitive to the uptake rates than 

release rates. The strain ratio ranged between 0.04 and 17.54 when consumption rates were 

constrained, compared to 0.26 and 2.5 when release rates were constrained to the same range 

of values. The growth rate of the co-culture was predicted to improve by increasing uptake 

and/or release of leucine or lysine (Figure 2.13C and 2.13D).  

 A major obstacle in studying the co-culture is an inability to directly measure the real-

time uptake and release rates of the exchanged amino acids. We estimated the uptake and 

release rates of leucine (or its precursors) and lysine for the evolved K (or L) strains using the 

measured growth rates, biomass requirements and K:L ratios (assuming amino acid 

requirements did not change, see Methods for details). These estimated uptake and release 

rates (Table 2.3 in page 40) were used to project the evolutionary trajectories for co-cultures 4 

(Figure 2.13) and co-cultures 6 (Figure 2.14). The estimated uptake and release rates of leucine 



    37 

and lysine both increased in co-culture 4, while only leucine exchange increased dramatically in 

co-culture 6. Using the estimated uptake or release rates as inputs, the model was then used to 

predict the K:L ratio and average co-culture growth rate. The experimentally measured K:L 

ratios and growth rates in the evolved co-culture were highly correlated to model predictions 

when release rates were constrained, but not uptake rates (Figure 2.13E). Since the uptake rate 

was estimated by multiplying the growth rate with the lysine (or leucine) requirement per gDW 

cells (Table 2.2), constraining the uptake rates effectively constrains the model growth rates to 

be close to the measured values, resulting in a K:L ratio always close to 1.  
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Figure 2.13: Computational model predictions of co-culture composition and growth rates.  
The model was constrained using either amino acid uptake (panels A and C) or release rates (panels B 
and D). Panels A and B display the predicted K:L ratio at a co-culture OD≈0.2. The color map indicates 
the value of K:L ratio. Panels C and D show the predicted average growth rate of co-culture, indicated by 
the color map. The evolutionary trajectory of co-culture 4 is shown on panels A through D, where the 
open circles indicate passages 1,4,7,10,12,15,19 and 21. The estimated uptake or release rates for 
evolved Kev and Lev strains in each passage were then used to constrain the model. Panel E compares the 
model predicted K:L ratio and average growth rate of the co-culture near OD600≈0.2 to the estimated 
experimental values. Blue diamonds and red triangles denote the predictions when the model was 
constrained by the estimated uptake rates for co-culture 4 and 6, respectively. Green squares and 
purple circles denote the predictions when the model was constrained by the estimated release rates 
for the two co-cultures for co-culture 4 and 6, respectively. 
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Figure 2.14. Computational model predictions of co-culture composition and growth rates.  

The model was constrained using either amino acid uptake (panels A and C) or release rates (panels B 
and D). Panels A and B display the predicted K:L ratio at a co-culture OD≈0.2. The color map indicates 
the predicted K:L ratio. Panels C and D show the predicted average growth rate of co-culture, indicated 
by the color map. The evolutionary trajectory of co-culture 6 is shown on panels A through D, where the 
open circles indicate passages 1,4,7,10,13, 16 and 18. 
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Table 2.3. Estimated uptake and release rates of lysine and leucine during adaptive evolution. 

Passage 
Lysine uptake rate 
(mmol/gDW/hour) 

Leucine uptake rate 
(mmol/gDW/hour) 

Lysine release rate 
(mmol/gDW/hour) 

Leucine release rate 
(mmol/gDW/hour) 

Un-evolved Co-culture 

Un-evolved 0.020 0.027 0.020 0.027 

Co-culture 4 

1 0.022 0.030 0.032 0.021 

4 0.041 0.055 0.047 0.048 

7 0.044 0.060 0.039 0.069 

10 0.044 0.060 0.032 0.085 

12 0.046 0.061 0.052 0.054 

15 0.054 0.072 0.063 0.062 

19 0.051 0.069 0.040 0.089 

21 0.060 0.080 0.056 0.086 

Co-culture 6 

1 0.020 0.027 0.016 0.035 

4 0.056 0.076 0.030 0.142 

7 0.043 0.058 0.013 0.197 

10 0.049 0.066 0.014 0.229 

13 0.055 0.074 0.018 0.226 

16 0.054 0.072 0.018 0.215 

18 0.056 0.075 0.017 0.245 

The uptake and release rates of lysine and leucine were estimated using equations 2.1-2.3 in methods 
section.   

 

2.4 Discussion 

We built a synthetic mutualism system with two E. coli auxotrophs (∆lysA recA::kan and 

∆leuA recA::cat) and adaptively evolved the co-culture. In their initial encounter, both strains 

exchanged leucine (or its precursors) and lysine cooperatively to support the partner’s growth. 
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Replicate co-cultures all maintained persistent cooperation during adaptive evolution and 

achieved similar growth rates but resulted in different population compositions and 

evolutionary trajectories. The experimental data and computational model predictions were 

combined to analyze mechanisms for improving cooperation during evolution and suggested 

that one evolved co-culture benefited from a better exchange of leucine (or its precursors), 

while another evolved co-culture experienced better exchange of both amino acids. Interesting, 

the timing needed to improve co-culture growth rates (~10 days) was similar to a previous 

study on evolving individual strains [50]. Based on our results, adaptive evolution of the co-

culture led to: (1) improved exchange of essential metabolites between strains, (2) altered 

survival during starvation, and (3) fitness tradeoffs. 

 

2.4.1 Metabolite exchange between strains 

E. coli does not normally secrete amino acids, and amino acid synthesis is well 

controlled by regulatory mechanisms so that the cellular inputs are best used for growth. In 

previous studies of auxotrophs, starvation led to cell death and release of some metabolites 

(amino acids and nucleic acids) [25,29]. In lysine-limiting media, a ∆lysA E. coli mutant (lacking 

diaminopimelate decarboxylase) has been shown to secrete various metabolites, including 

diaminopimelate (DAP), an important cell wall constituent [51,52]. In our study, we observed 

that in mono-culture without amino acid supplementation, the L and K strains showed different 

death rates. Given the different death rates of the two strains we expected to see an initial one-

way cross-feeding from K to L (not cooperative) and a lag phase prior to exponential growth in 

co-culture. However, we found reproducible growth of both strains in co-culture and an 
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absence of a lag phase in replicate co-cultures, indicating consistent two-way cross-feeding of 

leucine (or its precursors) and/or lysine.  

During adaptive evolution the estimated uptake rates of leucine and lysine increased 

(Figure 2.13), making this one possible mechanism for improvements in the co-culture. We did 

not detect any leucine (or its precursors) or lysine in the co-culture media, indicating that the 

levels of these essential metabolites are below our bioassay detection limit (~3.5 M) and are 

quickly consumed. Based on the co-culture growth rates and amino acid requirements, we 

estimated the possible uptake rates for lysine and leucine (or its precursors) to be ~0.02 and 

~0.03 mmol/gDW/hour, respectively, for un-evolved co-cultures and ~0.06 and ~0.08 for 

evolved co-cultures. These values are close to the reported transport rates ~0.048 

mmol/gDW/hour for leucine with a concentration of ~2 µM and ~0.011 to 0.044 

mmol/gDW/hour for lysine with a concentration ranging from 0.2 µM to 10µM [53,54].  

We used a genome-scale metabolic model to get a better understanding of how 

metabolite uptake/release rates affect the fitness landscape (Figures 2.13 and 2.14). In general, 

increases in both release and uptake rates will enhance proliferation of strains and alter 

community composition. A prior study by Wintermute and Silver developed models to evaluate 

invested benefits and cooperation levels in E. coli co-cultures [24,55]. They found that when 

one strain overshares (i.e., is highly cooperative), the other strain becomes dominant in the co-

culture. The oversharing strain can only improve its growth if its partner cooperates. Our 

computational results (Figure 2.13B and 2.13D) are consistent with these findings. When 

leucine (or lysine) release is higher in strain K (or L), its corresponding partner strain L (or K) 
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dominates. When its partner strain produces more lysine (or leucine), K (or L) will begin to 

increase its relative population in the community.  

 

2.4.2 Altered viability during starvation  

Un-evolved K and L strains exhibited different survival rates during lysine and leucine 

starvation (Figure 2.2). We observed that the un-evolved K strain (∆lysA recA::kan) quickly 

underwent cell death in the absence of lysine. Cell death and lysis were also observed in a yeast 

lysA mutant [29]. In a previous study of E. coli co-cultures, a ∆lysA mutant behaved as a 

universal cooperator, supporting growth of a variety of other auxotrophs in co-culture, while 

other strains (including ∆leuB, ∆leuC, and ∆leuD mutants) grew with a smaller number of 

partner strains [24]. Based on our results, cell death could explain how universal cooperators 

enable co-culture growth through the release of many different metabolites by cell lysis. 

Another previous study suggests that evolution of cooperative cross-feeding requires an initial 

one-way cross-feeding by one species [30]. The stability of our K and L cooperative system 

could be due to strain K’s ability to cross-feed metabolites due to cell death.   

We additionally observed that the evolved Kev and Lev isolates displayed altered survival 

during amino acid starvation. The Kev strains adapted to reduce their death rates during lysine 

starvation, while evolved Lev strains died more quickly during leucine starvation. Increased cell 

death by Lev strains and decreased cell death by Kev strains could contribute to better 

metabolite exchange and improvement of the co-culture. 
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2.4.3 Fitness tradeoffs  

In single species evolution, evolved strains often gain fitness in one environment at the 

expense of reduced fitness in another environment. Populations evolved in glucose media can 

lose fitness in the presence of other carbon sources [56]. Mutants adapted to low temperatures 

may have reduced fitness at higher temperatures [57]. The environment in the co-culture is 

complex, and strains adapted to the co-culture might gain fitness in the co-culture but lose 

fitness in mono-culture. Our experiments demonstrated that evolved Lev and Kev isolates were 

able to improve growth of co-cultures (Figure 2.12), but had reduced fitness in mono-culture 

when supplemented with their essential amino acids (Figures 2.9 and 2.10). Assimilation of 

amino acids is important for improving co-culture growth and the reduced growth in mono-

culture was unexpected. It may imply that strains in evolved co-cultures become dependent on 

other strains and/or that additional metabolites are being exchanged. Growth in mono-culture 

could decrease due to a downregulation or loss of essential genes, whose biological roles are 

fulfilled by the other strain in co-culture. This has been recently referred to as the black queen 

hypothesis [17]. Further investigation of these evolved strains using gene expression analysis 

and genomic sequencing could potentially identify genetic reasons for the observed changes in 

co-culture and mono-culture phenotypes.  

In this study, we performed a series of experiments to investigate the behaviors of un-

evolved and evolved co-cultures and how individual evolved isolates contribute towards 

improving co-culture fitness. Metabolite (lysine and leucine or its precursors) cross-feeding is 

essential for co-culture growth but unfortunately could not be quantified directly. Estimated 

uptake and release rates of essential metabolites increased over adaptive evolution, except for 
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lysine release rates in co-culture 6. In addition to genome and mRNA sequencing, future 

experimental approaches enabling the direct measurement of nutrient exchange rates in co-

cultures would aide in pinpointing the mechanism(s) for the observed growth rate 

improvements. While this study and others [23-27,29] have focused on mutualistic interactions, 

the adaptive evolution of communities with other types of symbiotic interactions (e.g., 

commensalism, amensalism or parasitism) would be of interest as well [38].  
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Chapter 3: Metabolic engineering of Escherichia coli for production of 

pyruvate  

 

3.1 Introduction 

Microbes can produce diverse useful chemicals [58]. However, microbes have not 

evolved to just produce a specific product of interest. Metabolic engineering of microbes aims 

to improve production rates, yields, and titers, generating microbial factories for cost-effective 

production of desired chemicals [1,59]. A broad range of products have been successfully 

produced by engineered strains, such as transportation fuels (ethanol, butanol and diesel) 

[10,60-63], pharmaceuticals (alkeloids, polyketides, nonribosomal peptides and isoprenoids) 

[64-69], and bulk and fine chemicals (amino acids, organic acids, industrial solvents and 

polymer precursors) [3,70-73]. Some chemicals are starting points (or precursors) for other 

important materials, and engineered strains which overproduce these precursors can be further 

modified to produce other important chemicals. This strategy has been used previously, since 

one of the first steps to produce a desired end-product is to increase the supply of its 

precursor(s). For example, a strain with elevated malonyl-CoA levels was used to produce an 

important polyketide, phloroglcinol [74]. Pyruvate overproducing strains have also been altered 

to produce L-alanine and diacetyl [75]. Similarly, strains with higher levels of oxaloacetate 

showed increased succinate, threonine and lysine in the production strains [76].   

Pyruvate is a key metabolite in central metabolism and is a precursor for acetyl-CoA, 

acetaldehyde and several amino acids (including alanine, lysine, valine, isoleucine, and leucine). 



    47 

Commodity chemicals (e.g., ethanol, acetic acid, lactic acid, and acrylic acid), as well as active 

pharmaceutical ingredients (e.g., polyketides and isoprenoids) can also be derived from 

pyruvate. Furthermore, pyruvate itself has various applications as a food addictive, nutriceutical, 

weight loss agent, and anti-ageing skin treatment. Pyruvate is commercially manufactured by a 

chemical method involving dehydration and decarboxylation of tartaric acid. The process is not 

cost-effective and requires the use of toxic solvents [77]. Therefore, microbial production of 

pyruvate is an attractive alternative to a chemical process. A number of strains have been 

genetically modified to improve pyruvate production in Escherichia coli, yeast and 

Corynebacterium glutamicum [14,78-82]; however, high yields have not been achieved.  

The metabolic engineering strategies applied previously to E. coli strains mainly focused 

on blocking pyruvate consuming pathways which produce phosphoenolpyruvate (PEP), acetyl-

CoA, ethanol, acetate, lactate and formate. Other strategies prevented the conversion of PEP to 

oxaloacetate by deleting PEP synthase, and increasing glycolytic flux by disrupting oxidative 

phosphorylation using a F1-ATPase-defective mutant or reducing the NADH availability 

[14,78,79]. Pyruvate production was also improved by reducing CO2 formation by the TCA cycle 

through deletion of α-ketoglutarate decarboxylase [14].  

A primary goal for developing a pyruvate overproducer is of course high yield. Until now, 

the highest yield (0.75 g/g) reported is 78% of theoretical maximum yield [14]. In order to push 

the pyruvate production towards higher yields, it is important to understand the impact of 

metabolic engineering interventions on metabolism at a systems-level. Given the scale and 



    48 

complexity of the metabolic and gene networks, predicting systems-level impacts on 

metabolism can be facilitated through computational modeling.  

Genome-scale metabolic models and their associated analytical tools are useful for 

predicting cellular phenotypes in response to genetic perturbations and suggesting gene target 

modifications to improving chemical production [8]. A bi-level optimization algorithm 

(OptKnock) has been successfully used to design strains for overproducting of succinate, lactate, 

1,3-propanediol, and 1,4-butanediol [70,83,84]. OptKnock identifies reaction deletions that 

couple cellular growth and chemical production. When growth rate is used as a selection 

pressure, OptKnock designed strains should increase production of the target chemical through 

adaptive evolution. OptKnock only considers the reaction network and does not account for 

gene to reaction associations. Another algorithm (OptORF) was developed based on OptKnock, 

but searches for gene deletions instead of reaction deletions [85].  

In this study, we sought to design and construct pyruvate overproduction strains using 

OptORF and a genome-scale metabolic model of E. coli. Four computationally designed mutant 

strains were constructed and characterized for growth and pyruvate production under aerobic 

conditions. Two strains were adaptively evolved, which increased growth rates and pyruvate 

production. Finally, the pyruvate strains were used as platform strains to develop other 

chemical production strains. This was demonstrated by modifying the pyruvate strains to 

produce ethanol.  

 

3.2. Materials and methods 
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3.2.1 Strains and plasmids  

The parental strain, E. coli BW25113, and pCP20 plasmid were obtained from the E. coli 

genetic stock center (CGSC, Yale University). The E. coli single gene deletion strains ∆aceE::kan, 

∆cyoA::kan, ∆pta::kan, ∆ldhA::kan, ∆aceA::kan, ∆lpdA::kan, ∆gnd::kan, ∆sdhA::kan, ∆poxB::kan, 

∆gdhA::kan, and ∆pflB::kan mutants were obtained from the Keio collection (Open Biosystems). 

To generate mutants (listed in Table 3.1) with multiple gene deletions, the kanamycin 

resistance gene (kan) was removed using the pCP20 plasmid [41]. An additional gene was 

deleted (and kan re-inserted) using P1 transduction [86] with selection on LB agar plates with 

50 µg/mL kanamycin. This process was repeated for each additional knockout and the gene 

deletions were verified by PCR after each round.  

The pJGG2 plasmid and its corresponding empty vector, pBBR1-MSC5, were obtained 

from Robert Landick (University of Wisconsin-Madison). The pJGG2 plasmid is a low copy 

number plasmid with a lac promoter that controls the expression of the Zymomonas mobilis 

PET cassette genes (pdc and adhB), which are responsible for ethanol synthesis. The E. coli K-12 

ethanologen, GLBRCE1, was obtained from Robert Landick and is missing ldhA, pflB and ackA 

[87]. GLBRCE1 also contains pJGG2 and a chromosomal copy of the PET cassette inserted in the 

pflB locus. 

 

3.2.2 Media and culture conditions 

M9 minimal medium (pH 7.0, 100 µM CaCl2, 2 mM MgSO4, 6.4 g/L Na2HPO4•7H2O, 1.5 

g/L KH2PO4, 0.25 g/L NaCl, 0.5 g/L NH4Cl) supplemented with glucose and acetate (at varying 
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concentrations) was used throughout the study. For pyruvate and ethanol production 

experiments, wild-type and mutant strains were precultured at 37°C overnight in Luria Broth 

(LB) and then pelleted and washed twice with M9 minimal medium to remove any residual 

nutrients from the preculture. For aerobic experiments, cultures were started with an initial 

OD600 of 0.01 and then grown aerobically in 250 mL flasks containing 100 mL glucose minimal 

media. Ethanol fermentation experiments were performed anaerobically in hungate culture 

tubes containing 10 mL of medium with an initial OD600 of 0.01. The pJGG2 and pBBR1-MSC5 

plasmids confer gentamicin resistance and 15 µg/mL gentamicin was used in the ethanol 

experiments. IPTG was added to a final concentration of 200 μM to induce the expression of 

PET cassette in the ethanol experiments. To remove oxygen, the hungate tubes were vacuumed 

and flushed with argon three times. All experiments were carried out at 37°C in a shaking 

incubator with a shaking speed of 150 rpm and performed with three replicates. Samples were 

periodically taken for further analysis and cells were removed using 0.2 μm nylon filter.  

 

3.2.3 Metabolite uptake and secretion rate measurements 

The concentration of glucose in the medium was determined using an enzyme assay 

from Sigma (GAGO20). The concentrations of pyruvate, lactate, acetate, succinate, formate and 

ethanol in the medium were measured by HPLC using an Aminex HPX-87H with Cation-H guard 

column (Bio-Rad, cat# 125-0140). The mobile phase contained 0.02N H2SO4 and was run at a 

flow rate of 0.5 mL/min at 50°C. The products were detected and quantified (from standard 

curves) based on their refractive index. The uptake/secretion rates were determined from the 
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metabolite and biomass concentration data from the exponential growth phase. The biomass 

concentration (gram of cell dry weight per liter) was calculated using the measured OD600 

values and a conversion factor 1 OD600 = 0.415 gDW/L [44]. The maximal yield per glucose is 

0.51 gDW cell/g glucose [88].   

 

3.2.4 Adaptive evolution 

Adaptive evolution of two mutant strains was performed for 20 passages. The initial 

cultures were inoculated at an OD600 of 0.01 and grown at 37°C in 100 mL of M9 minimal 

medium supplemented with 1.6 g/L glucose and 0.4 g/L acetate. When cells reached an OD600 

~ 0.2 OD600, the cells were transferred to fresh medium (such that starting OD600 = 0.01). 

During adaptive evolution, the amount of acetate in the minimal medium was gradually 

reduced, while the glucose concentration was increased so that the total carbon source 

concentration was maintained at 2 g/L. After 15 passages, the medium contained 1.98 g/L 

glucose and 0.02 g/L acetate. Cultures from each passage were frozen and stored at -80°C. 

 

3.2.5 In silico computations 

The optimization algorithm OptORF was used to identify genetic strategies which couple 

growth and pyruvate production [85]. This method finds solutions that ensure pyruvate is 

produced when cells are at their highest biomass yield. Thus, selection for increased growth 

rates will subsequently select for increased pyruvate production. The OptORF algorithm was 

run using a tilted inner objective function (growth rate – 0.001 •pyruvate production rate) that 
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finds the minimum pyruvate production at the maximum growth rate [89]. A penalty equal to 1 

for gene deletions was used in OptORFs outer objective function. All simulations were done for 

glucose aerobic conditions using the iJR904 E. coli genome-scale metabolic network [90], where 

the maximum glucose uptake rate was set to 10 mmol/gDW/hour and the maximum oxygen 

uptake was unlimited.  

 

3.3. Results 

3.3.1 In silico strain design for pyruvate production 

Four different strain design strategies for pyruvate production were selected from those 

suggested by OptORF: (1) aceE, cyoA, cydB, pta, eutI, ldhA, dld, (2) lpdA, gnd, sdhA, poxB, pflB, 

pflD, tdcE, purU, (3) aceE, gdhA, poxB, ldhA, dld, atpE, pflB, pflD, tdcE, and (4) aceE, gnd poxB, 

ldhA, dld, atpE, pflB, pflD, tdcE. Given the large number (7-9) of gene deletions suggested, we 

sought to prioritize the gene targets. Gene targets that might be inactive under glucose aerobic 

conditions (e.g. due to regulation) were first excluded. PflB is expressed under microaerobic 

and anaerobic conditions [91] and a PflD (encoding a putative pyruvate formate lyase) deletion 

mutant had a similar fermentation pattern as its parent strain [91,92]. In addition, eutI, dld and 

tdcE encode minor isozymes for Pta, LdhA and PflB, respectively [93-96]. PurU hydrolyzes 10-

formyltetrahydrofolate into formate for use in purine biosynthesis by PurT. A PurU deletion 

mutant grows well aerobically in glucose, since another enzyme (PurN) can be used instead of 

PurT [97,98]. These genes (pflB, pflD, eutI, dld, tdcE and purU) were not selected for deletion 

since they were thought to have low (if any) activity and would thus have weaker metabolic 
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effects. Additionally, the cydB and atpE deletions were lethal in combination with other gene 

deletions (data not shown) and could not be included in the constructed strains. The remaining 

genes identified by OptORF were deleted in the engineered strains (Figure 3.1).  

The resulting engineered strains each involved deletions that impacted metabolism and 

pyruvate production differently. Deletion of aceE, pta, poxB and ldhA will reduce the conversion 

of pyruvate into acetyl-CoA, acetate and lactate. Deletion of cyoA or sdhA serves to slow down 

the citric acid (TCA) cycle which would otherwise divert flux away from pyruvate. The rationale 

for deleting gdhA and gnd is less obvious. E. coli has two primary pathways for glutamate 

synthesis from NADPH, ammonia and -ketoglutarate. The GDH pathway (encoded by gdhA) 

does not require ATP, while the other GS-GOGAT pathway consumes one ATP per glutamate 

produced. Deleting gdhA will force the GS-GOGAT pathway to be used, increasing ATP 

consumption and decreasing growth rate. Similarly, deleting gnd prevents NADPH production 

by the pentose phosphate pathway and increases NADPH production from NADH via pyridine 

nucleotide transhydrogenases. The transhydrogenase consumes energy, thereby lowering the 

maximum growth rate. In both cases, lowering the maximum growth rate (via gdhA or gnd 

deletions) increases the pyruvate production rates (since both pyruvate and biomass compete 

for carbon). The gene deletions suggested by OptORF either prevent pyruvate consumption or 

reduce growth, and both synergistically enhance pyruvate production. Based on the 

computational results, four strains (PYR001-PYR004) were constructed and tested 

experimentally. Each strain contained four gene deletions and is listed in Table 3.1.        
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Figure 3.1. Central metabolic pathway of wild-type E. coli.  

Genes associated with each reaction in the central metabolic network are shown. The metabolic flux 

distribution for wild-type strain under aerobic condition was predicted by flux balance analysis and flux 

values were labeled. Glucose uptake rate was set as 10 mmol/gDW/hour. The dash line represents the 

ethanol synthesis pathway (PET operon) from Zymomonas mobilis. 

 



    55 

Table 3.1 Strains and plasmids used in this study.   

Strains/plasmid  Relevant characteristics Reference 

E. coli strains   

BW25113 lacIq rrnBT14 ∆lacZWJ16 hsdR514 ∆araBADAH33 ∆rhaBADLD78 [41] 

PYR001 BW25113 ∆aceE::kan ∆cyoA ∆pta ∆ldhA ∆aceA This study 

PYR002 BW25113 ∆lpdA::kan ∆gnd ∆poxB ∆sdhA This study 

PYR003 BW25113 ∆aceE::kan ∆gdhA ∆poxB ∆ldhA This study 

PYR004 BW25113 ∆aceE::kan ∆gnd ∆poxB ∆ldhA This study 

PYR010 Evolved strain of PYR001 This study 

PYR020 Evolved strain of PYR002 This study 

   

GLBRCE1 MG1655 ∆ackA ∆ldhA ∆pflB::PET crl(70insIS1) ylbE(253insG) gltB(G3384A) 
yodD(A85T) glpR(150delG) gatC(916insCC) / pJGG2 

[87] 

EH010 PYR010 / pJGG2 This study 

EH020 PYR020 / pJGG2 This study 

EH010-pflB PYR010 derivative with kan removed and addition of ∆pflB::kan / pJGG2 This study 

EH020-pflB PYR020 derivative with kan removed and addition of ∆pflB::kan / pJGG2 This study 

EH030-pflB PYR003 derivative with kan removed and addition of ∆pflB::kan / pJGG2 This study 

EH040-pflB PYR004 derivative with kan removed and addition of ∆pflB::kan / pJGG2 This study 

WT_empty BW25113 / pBBR1-MSC5 This study 

WT_pJGG2 BW25113 / pJGG2 This study 

   

Plasmids   

pJGG2 pBBR1-MSC5 with adhB and pdc (PET cassette) from pLOI295; GentR [87] 

pBBR1-MSC5 pBBR oriT; Plac; GentR [87] 

Abbreviations: kan, kanamycin resistance gene; GentR, gentamicin resistance.  

 

 

3.3.2 Pyruvate production 

Parental and mutant strains PYR001, PYR002, PYR003 and PYR004 were characterized 

for pyruvate production in 100 mL glucose minimal medium for 60 hours (Figure 3.2A). Due to 

the aceE and lpdA deletions (subunits of pyruvate dehydrogenase) the synthesis of acetyl-CoA 

from pyruvate was prevented and the mutants were unable to grow with glucose as a sole 

carbon. To allow growth, acetate was added to the media to generate acetyl-CoA by acetyl-CoA 

synthetase (Table 3.2). The four mutants grew significantly slower than the parental strain, but 
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produced pyruvate as predicted (Figure 3.2A). The parental strain did not secrete any pyruvate. 

Strain PYR001 grew the slowest and consumed only ~40% of the glucose (~4.0 mM) within 60 

hours; however, PYR001 converted most of the glucose consumed to pyruvate with a yield of 

80% of the theoretical yield (Table 3.2). Strains PYR003 and PYR004 completed growth within 

20 hours and produced 17.0 and 19.4 mM pyruvate, respectively (79% and 87% of theoretical 

yield). Among the four mutants, PYR002 had the lowest pyruvate yield (46% of theoretical yield) 

and also exhibited a low growth rate.  

The final pyruvate titers were proportional to the pyruvate yields, except for strain 

PYR001, which did not consume all the glucose (Figure 3.2A). The volumetric production rate of 

pyruvate depends on the pyruvate titers and growth rates of the mutants. Strain PYR003 and 

PYR004 had the best volumetric production rates among the four mutants because of their high 

yields and growth rates. On the contrary, PYR001 only reached 13% of the volumetric 

production rate of PYR003, as a result of its poor growth and low titer. The production rate per 

cell dry weight was also calculated. PYR001 and PYR002 both had low production rates, ~30% of 

that of PYR003.       

The secretion of by-products from strains, such as succinate, formate, acetate, lactate 

and ethanol, was analyzed by HPLC. Acetate was the main byproduct of the parental strain. 

PYR001 and PYR002 formed 1-2 mM acetate (even though acetate was required for growth), 

while the other mutants consumed acetate, presumably for acetyl-CoA generation (Figure 3.3). 

Only one strain PYR002 produced lactate with a concentration 9.8 mM, which could explain its 

low pyruvate yield and low production per gram of cell dry weight. Concentrations of succinate,  
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Figure 3.2. Cellular phenotype of wild-type and mutant strains designed in silico.  

(A) Growth and production of pyruvate by wild-type, PYR001, PYR002, PYR003, and PYR004 strains is 
represented by blue diamond, red square, green triangle, purple solid circle and  orange open circle. The 
medium is M9 minimal medium containing glucose with/without acetate. (B) The growth and production 
phenotype by evolved strains PYR010 and PYR020 is represented by open red square and open green triangle.   

 

 formate and ethanol secreted by all strains were too low to be detected by HPLC. A carbon 

balance was calculated for each strain. In the parental strain, 61% of carbon was used for 

biomass and acetate formation, and the remainder was presumably oxidized to CO2. On the 

contrary, the four mutants used 90-111% of the carbon for biomass and pyruvate with less 

carbon for CO2 formation. This was consistent with the predictions from flux balance analysis 

using the genome-scale metabolic model. The reported yields and carbon balances being higher 

than 100% is likely due to evaporation in the shake flasks (estimated to be ~0.13 mL per hour) 

which would concentrate the media. 
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Figure 3.3: Lactate and acetate secretion for wild-type and mutant strains in aerobic condition.  

The concentration is the maximum acid produced within 60 hour. Acetate accumulation in the culture of 

wild-type, PYR001 and PYR002 strains was observed by HPLC analysis. * indicates the concentrations of 

acetate and lactate were below the detection level of HPLC.  

 

3.3.3 Adaptive evolution 

Strain PYR003 and PYR004 produced large amounts of pyruvate. To improve pyruvate 

production by strain PYR001 and PYR002, adaptive evolution was conducted under aerobic 

conditions for 20 passages at 37°C in glucose+acetate minimal medium. Acetate was added to 

the medium to enable the cell growth, but the concentration added was reduced over the 

different passages (Table 3.2). The pyruvate strains were designed such that growth rate and 

pyruvate production would increase simultaneously. Therefore, adaptive evolution could select 

for faster growing strains with enhanced pyruvate yields. The evolved strains PYR010 and 

PYR020, progenies of PYR001 and PYR002 from the last passage, were characterized and their 

performance is shown in Table 3.2 and Figure 3.2B. The evolved strains had a 10- and 3- fold 

increase in growth rate and an almost 2-fold increase in pyruvate titers. In terms of pyruvate  
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Table 3.2 Production of pyruvate from the wild-type and mutant strains.  

Strains Medium Growth rate 
(hour

-1
) 

Pyruvate yield Pyruvate concentration Pyruvate production rate Carbon balance 
f 

% Glucose 
(g/L) 

Acetate  
(g/L) 

% theoretical 
b
 conversion 

c
 

(g/g) 
 (g/L)

 d 

 
(mmol/gDW) 

d
 Volumetric 

(g/L/hour) 
Specific 

e
 

(mmol/gDW/ 
hour) 

Wild-type(WT) 2 0 0.59±0.01 0 0 0 0 0 0 60.83±0.78 

PYR001 1.9 0.1 0.02±0.00 80.24±4.63 0.78±0.05 0.62±0.04 194.0±11.2 0.01±0.00 6.04±0.24 111.0±6.03 

PYR002 1.8  0.2
 a

 0.12±0.01 46.24±2.89 0.43±0.03 0.91±0.06 65.56±4.09 0.02±0.00  5.47±0.04 103.7±4.27 

PYR003 1.9 0.1 0.45±0.03 79.05±0.63 0.75±0.00 1.50±0.01 75.10±0.60 0.08±0.00 20.36±0.47 99.24±1.00 

PYR004 1.9 0.1 0.30±0.00 86.97±4.12 0.82±0.04 1.71±0.08 83.63±3.97 0.07±0.01 19.11±0.25 110.9±4.71 

PYR010 1.98 0.02 0.20±0.04 69.34±7.81 0.67±0.08 1.39±0.16 80.71±9.09 0.06±0.00 14.91±1.68 90.51±10.7 

PYR020 1.98 0.02 0.34±0.00 95.16±3.12 0.92±0.03 1.95±0.06 212.3±6.96 0.05±0.00 23.73±0.88 110.6±3.72 
a This mutant requires more acetate than others to start growth within 48 hour. 

b Percent of theoretical yield is calculated as the pyruvate concentration is divided by the theoretical maximum production of pyruvate (2 mmol 
of pyruvate per mmol of glucose). Acetate is also taken account for calculating the theoretical maximum production (0.5 mmol of pyruvate per 
mmol of acetate). The yield is adjusted by the culture volume loss due to the liquid evaporation in aerobic condition.  

c The conversion is expressed as the gram of pyruvate produced per gram of total carbon source. It is adjusted by the culture volume loss due to 
the liquid evaporation in aerobic condition.  

d The concentration is the value reported from HPLC analysis.    

e The specific production rate is the pyruvate production rate per gram of cell dry weight (gDW) during exponential growth.  

f The carbon balance is calculated as the percent of carbon used for the biomass formation, pyruvate production and byproduct formations.  
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yield, PYR010 had a 10% lower yield than its unevolved strain while PYR020 had ~2- fold 

increase. The combination of improved growth rate and pyruvate yields increased the 

volumetric pyruvate production rate of PYR010 and PYR020 compared to their unevolved 

strains. Interestingly, both evolved strains both needed less acetate (5-fold and 10-fold 

decrease) in the medium to support their growth.  

Among the four designed strains and two evolved strains, PYR020 performed best with 

respect to yield, titer and volumetric productivity, followed by PYR004. To account for the 

slower growth rates of engineered strains, the pyruvate specific production rate (normalized by 

gram per cell dry weight instead of volume) was calculated. PYR003 and PYR004 had 3-4 fold 

higher specific production rates than PYR001 and PYR002 (Table 3.2). The difference was 

caused by the different gene knockout strategies for the four strains. PYR003 and PYR004 had 

deletions which affected the NADPH and ATP supply to decrease growth rates, while deletions 

in PYR001 and PYR002 affected the TCA cycle to reduce the biomass yield.  

 

3.3.4 Production of ethanol in the altered pyruvate producing strains 

Pyruvate is a precursor for many metabolites. To test the idea of using the engineered 

pyruvate strains to produce other chemicals, we further altered the strains to enhance ethanol 

production by expressing the Z. mobilis PET cassette. The pJGG2 plasmid included the PET 

cassette containing pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) under the 

control of an IPTG inducible lac promoter.  
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NADH is converted back into NAD using oxidative phosphylation or by secreting 

fermentation byproducts, such as ethanol and lactate. Since ethanol was the desired product, 

the strains were fermented in hungate tubes with 1.98 g/L glucose minimal medium 

supplemented with 0.02 g/L acetate. Ethanol production was analyzed after 48 hours. Three 

controls were included: the parental strain with empty vector (WT_empty), the parental strain 

with pJGG2 plasmid (WT_pJGG2) and an ethanol production strain (GLBRCE1, which lacks ackA, 

pflB, and ldhA and expresses the PET cassette from the chromosome and pJGG2 plasmid) [87]. 

Pyruvate formate lyase (PflAB) is active under anaerobic conditions but not aerobic conditions, 

converting pyruvate to acetyl-CoA and formate. Since the OptORF strategies deleted reactions 

converting pyruvate into acetyl-CoA, pflB was deleted from the four pyruvate mutants to make 

ethanol production strains EH010-pflB, EH020-pflB, EH030-pflB and EH040-pflB. The WT_empty 

strain (containing the empty vector) had a lower growth rate compared to WT_pJGG2 

(containing the PET cassette on pJGG2) (Table 3.3). Moreover, WT_pJGG2 strain had around a 

2- fold higher ethanol yield, ethanol titer and ethanol production rate compared to WT_empty. 

The improved growth and ethanol production is likely a result of enhanced NADH recycling. 

Aerobically, the pyruvate mutants had growth rates between 37 and 77% of the growth rate of 

parental strain, while anaerobically the mutants (EH010-pflB, EH020-pflB, EH030-pflB and 

EH040-pflB) derived from the pyruvate mutants exhibited growth rates between 64 and 136% 

of the growth rate of WT_empty. Three mutants (EH020-pflB, EH030-pflB and EH040-pflB) had 

1.3-fold higher ethanol yields compared to WT_pJGG2 strain, and had higher specific 

production rates than GLBRCE1, even though the yields were similar. The EH010 and EH020 

strains (both pflB+) had lower ethanol yields and higher production of other byproducts— 
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succinate, acetate and formate (Figure 3.4 blue color). Surprisingly, EH010-pflB did not show 

increased ethanol yield compared to WT_pJGG2 but did have a higher specific production rate.   

During the 48 hour fermentations about half the culture volume was removed for HPLC 

analysis, which doubled the headspace in the hungate tube. Since ethanol is highly volatile, 

ethanol could enter the headspace and escape from the hungate tube during sampling, leading 

to an underestimation of ethanol concentrations. The fermentation experiments were repeated 

taking fewer samples (at 16, 20 and 24 hours). All strains consumed glucose completely within 

24 hours (data not shown). Four of the nine strains re-tested (EH010, EH020-pflB, EH030-pflB 

and EH040-pflB) showed significantly higher ethanol yields when fewer samples were taken 

(Figure 3.4 red color). Three of the engineered ethanol production strains from this study 

(EH020-pflB, EH030-pflB and EH040-pflB) had higher ethanol yields and lower succinate 

production than GLBRCE1.           

The ethanol strains were grown with 0.02 g/L acetate in the medium and it was unclear 

how acetate concentrations would affect ethanol yields. Additional fermentation experiments 

were performed using medium with 0.1g/L acetate and 1.9 g/L glucose. The ethanol yields and 

byproduct concentrations did not appear to differ when a higher concentration of acetate was 

used (Figure 3.4 green color). 
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Table 3.3 Production of ethanol from the wild-type and mutant strains.  

Strains
a
 Growth rate 

(hour
-1

) 
Ethanol yield Ethanol concentration Production rate Carbon balance 

e
 

% % theoretical 
b
 Conversion 

c
 

(g/g) 
(g/L) (mmol/gDW) Volumetric 

(g/L/hour) 
Specific 

d
 

(mmol/gDW/
hour) 

WT_empty 0.28±0.00 38.04±1.70 0.19±0.01 0.39±0.02 39.15±1.75 0.02±0.00 6.26±0.10 91.57+5.21 

WT_pJGG2 0.37±0.02 63.06±2.59 0.32±0.01 0.64±0.03 56.71±2.33 0.04±0.00 11.71±1.09 114.3+9.91 

GLBRCE1 0.16±0.02 82.21±0.91 0.42±0.01 0.83±0.01 128.8±1.43 0.03±0.00 16.08±0.78 92.42+1.90 

EH010 0.25±0.01 62.45±2.54 0.32±0.01 0.63±0.03 80.12±3.25 0.03±0.00 17.91±2.96 87.00+4.50 

EH010-pflB 0.18±0.01 61.81±6.77 0.31±0.03 0.62±0.07 88.96±9.75 0.02±0.00 16.61±1.15 80.70+7.75 

EH020 0.38±0.00 58.05±5.06 0.29±0.03 0.59±0.05 59.29±5.17 0.04±0.00 19.75±2.03 97.15+8.65 

EH020-pflB 0.25±0.02 80.23±4.84 0.41±0.02 0.81±0.05 134.0±8.09 0.04±0.00 23.10±1.48 95.90+4.64 

EH030-pflB 0.19±0.05 79.47±7.12 0.40±0.04 0.80±0.07 122.4±11.0 0.02±0.00 19.29±1.12 90.13+4.26 

EH040-pflB 0.22±0.03 84.59±7.03 0.43±0.04 0.85±0.07 107.6±8.94 0.04±0.00 22.37±2.28 100.2+2.93 
a WT_empty, WT_pJGG2 and GLBRCE1 were grown in M9 minimal medium with 2 g/L glucose. The rest strains were grown in minimal medium 
with 0.02 g/L acetate and 1.98 g/L glucose.  

b Percent of theoretical yield is calculated as the ethanol concentration divided by the theoretical maximum production of ethanol (2 mmol of 
ethanol per mmol of glucose). Acetate is also taken account for calculating the theoretical maximum production (0.67 mmol of ethanol per 
mmol of glucose).   

c The conversion is expressed as the gram of ethanol produced per gram of carbon.  

d The specific production rate is the ethanol production rate per gram of cell dry weight during exponential growth.  

e The carbon balance is calculated as the percent of carbon used for the biomass formation and fermentation byproduct productions including 
succinate, lactate, formate, acetate and ethanol.   
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Figure 3.4: The byproducts secretion in anaerobic condition.  

The blue columns represent the fermentation conducted in M9 minimal medium containing glucose and 

0.02 g/L acetate for 48 hours and multiple samples (about half the culture volume) were removed for 

HPLC analysis. The red columns represent the fermentation in the same medium for 24 hours and three 

samples were taken at 16, 20 and 24hours. The green columns denote the fermentation in the minimal 

medium with more acetate (0.1 g/L) for 24 hours, and three samples were taken as well. Error bars 

represent standard errors among three replicates. Percent of theoretical yield is calculated as the 

ethanol concentration divided by the theoretical maximum production of ethanol (2 mmol of ethanol 

per mmol of glucose). Acetate is also taken account for calculating the theoretical maximum production 

(0.67 mmol of ethanol per mmol of glucose). The difference of product concentrations in 48 hour and 24 

hour fermetnation (blue and red columns) were analyzed by t-test, and the same was done for the 24 

hour fermentions containing different acetate concentrations in the medium (red and green columns). * 

and ** indicate p-value is between 0.01 and 0.05 or less than 0.01, respectively.  
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3.4 Discussion  

Optimizing production of a specific metabolite usually involves increasing synthesis of its 

precursors in bacteria. Pyruvate is a starting compound for synthesizing a variety of biofuels 

(e.g., ethanol, 1-butanol and isobutanol) and chemicals. A high-yield pyruvate producing strain 

has great potential for creating strains to produce valuable chemicals. In this study, a genome-

scale metabolic model of E. coli and OptORF were used to identify gene deletion targets to 

improve pyruvate production. Strains constructed based on the computational predictions 

produced high levels of pyruvate and adaptive evolution of two strains increased pyruvate 

yields, titers and volumetric and specific production rates. Further engineering of these 

platform pyruvate strains resulted in strains with high ethanol production. 

  

3.4.1 Similar flux distribution patterns shared by in silico designed strains  

All computationally designed strains over-produced pyruvate. The gene targets 

suggested by OptORF prevented pyruvate consumption by removing competing pathways and 

reduced growth by eliminating more energetically efficient routes for NADPH and glutamate 

production. The mutations involved shutting down the pentose phosphate pathway, reducing 

TCA cycle flux, and lowering biomass production (Figure 3.5). All of the computationally 

designed mutants were predicted to have increased glycolytic fluxes and coupling between 

growth and pyruvate production. Two of the strains immediately exhibited high pyruvate yields, 

while two other strains were adaptively evolved to improve production rates and/or yields.   
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3.4.2 The resource for synthesis of acetyl-CoA   

All the pyruvate strains have pyruvate dehydrogenase subunits deleted (either aceE or 

lpdA). The model predicted that other pathways (besides pyruvate-formate lyase) could be 

used to produce acetyl-CoA. Acetyl-CoA could be made from acetaldehyde via acetaldehyde 

dehydrogenase (MhpF), where acetaldehyde is produced by threonine degradation and other 

reactions. Acetyl-CoA could also be produced by 2-amino-3-ketobutyrate CoA ligase (Kbl) from 

threonine degradation. However, all of the mutants were unable to grow in the absence of 

acetate, suggesting that these other pathways are not active at high enough levels. Acetate was 

consumed by all the pyruvate strains, except PYR001, presumably to generate acetyl-CoA by 

acetyl-CoA synthetase. The amount of acetate available (0.34 – 3.4 mM) was greater than or 

close to the amount acetyl-CoA needed for biomass (estimated the product of the biomass 

concentration and biomass requirement for 3.7 mmol acetyl-CoA per gDW)[99]. In ethanol 

production study, the mutants with increased fluxes of ethanol synthesis were observed to 

grow faster, which is also probably caused by the generation of acetaldehyde and then 

converted to acetyl-CoA, while another possibility is the balancing of NADH. 

 

3.4.3 Reduced ethanol yield in one evolved strain 

When the resulting pyruvate strains were re-engineered for ethanol production, three 

of the resulting strains achieved high ethanol yields (EH020-pflB, EH030-pflB and EH040-pflB) 

during fermentation. Deleting pflB and expressing the PET cassette increased ethanol as 

expected, except for EH010-pflB. EH010-pflB (derived from PYR010), had the lowest yield of the 
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mutants with pflB deleted and PET added. Among all the strains tested, EH010-pflB is closest 

genetically to GLBRCE1. Both EH010-pflB and GLBRCE1 have ldhA, pta and pflB deletions. Even 

though EH010-pflB has two additional deletions, aceE and cyoA, neither gene would be 

expected to be expressed anaerobically [100]. Thus, the significantly lower ethanol yield in 

EH010-pflB compared with GLBRCE1 was unexpected. GLBRCE1 was derived from a closely-

related background strain (MG1655, compared to BW25113) and has an extra chromosomal 

copy of the PET cassette. This additional copy of the PET cassette could lead to higher PET 

expression levels and ethanol production in GLBRCE1. When compared to EH010, EH010-pflB 

should have reduced formate production (which it does, see Figure 3.4) and increased 

availability of pyruvate; however, EH010-pflB and EH010 exhibited similar ethanol yields. For 

the EH010-pflB strain, only 80% of the carbon was recovered in the biomass and measured 

products (which is lower than the other strains) and so it is possible that some other metabolite 

(not detected by HPLC) was secreted by EH010-pflB.  

 

3.4.4 Survey of available pyruvate strains 

Yeast and bacterial strains have previously been engineered for pyruvate production. 

Performance metrics for pyruvate producing strains reported over the last decade are 

compared to metrics for PYR020 in Table 3.4. Previous strains had volumetric production rates 

up to 1.2 g/L/hour with yields between 24% and 78% of the maximum theoretical production. 

The strains usually require additional nutrients besides glucose (e.g., yeast extract, tryptone, 

thiamine) which will increase the cost for commercial production. While PYR020 requires 

acetate for growth, acetate is commonly found in lignocellulosic hydrolysates. Currently, E. coli 
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TC44 has the best performance considering the pyruvate yields, production rate, and titer. Our 

strain, PYR020, uses only mineral salt medium and reaches significantly higher yield, but had 

lower titers and volumetric production rate because of the lower glucose concentrations used 

in the media. The next step is to investigate pyruvate productivity of these engineered strains in 

minimal medium with higher concentrations of glucose, or in cheaper hydrolysate feedstock 

under batch or fed batch process. 
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Figure 3.5 A: Strain PYR001, designed as ∆aceE, ∆cyoA, ∆cydB, ∆pta, ∆eutI, ∆ldhA and ∆dld  
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Figure 3.5 B: Strain PYR002, designed as ∆lpdA, ∆gnd, ∆sdhA, ∆poxB, ∆pflB, ∆pflD, ∆tdcE and ∆purU  
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Figure 3.5 C: Strain PYR003, designed as ∆aceE, ∆gdhA, ∆poxB, ∆ldhA, ∆dld, ∆atpE, ∆pflB, ∆pflD, ∆tdcE 
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Figure 3.5 D: Strain PYR004, designed as ∆aceE, ∆gnd, ∆poxB, ∆ldhA, ∆dld, ∆atpE, ∆pflB, ∆pflD, ∆tdcE      

 

Figure 3.5. Central metabolic pathway of designed mutant strains for pyruvate production.  

Genes associated with each reaction in the central metabolic network are shown. The reactions marked 

by red bars correspond to the deletion targets calculated by computational method. The labeled 

metabolic flux distribution for each strain was predicted by flux balance analysis. Glucose uptake was 

limited by 10 mmol/gDW/hour. Oxygen uptake was unlimited for strain PYR002, PYR003 and PYR004, 

but limited to 3 mmol/gDW/hour for strain PYR001.  



     

 

7
3 

Table 3.4 Existing engineered strains for pyruvate production.  

Strains Carbon and 
nitrogen Source 

Genotype Pyruvate yield 
(g/g) 

Pyruvate titer 
(g/L) 

Volumetric production 
rate (g/L/hour) 

Fermentation 
time (hour) 

Reference 

E. coli TC44 60 g/L Glucose 
(NH4)2HPO4 

∆pflB ∆frdBC ∆ldhA 
∆adhE ∆sucA ∆ackA 

∆poxB ∆atpFH 

0.76 52 1.2 43 [14] 

S. cerevisiae 
FMME-002∆THI2 

35 g/L Glucose 
NH4Cl 

Thiamine 

MATa leu2-3, 112 
ura3-52 his3-Δ1 trp1-

289 ∆THI2 

0.23 8.21 0.09 96 [80] 

E. coli CGSC791 40 g/L Glucose 
3 g/L Acetate 

Tryptone 
(NH4)2HPO4 

∆aceF ∆fadR ∆adhE 
∆ppc 

0.65 35 0.97 36 [79] 

C. glutamincum 30 g/L Glucose 
10 g/L Acetate 

L-alanine 
(NH4)2HPO4 

∆aceE ∆pqo ∆ldhA 
∆alaT ∆avtA C-T ilvN 

0.59 
 

17.6 0.32 55 [82] 

S. cerevisiae 
G2U1-A0 

150 g/l Glucose 
Yeast extract 

Tryptone 

∆pdc udhA+ 0.63 
 

75.1 0.63 120 [81] 

E. coli 
PYR020 

1.98 g/L Glucose 
0.02 g/L Acetate 

NH4Cl 

∆lpdA ∆sdhA ∆poxB 
∆gnd 

0.92 1.95 0.05 27 This study 
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Chapter 4 Discovery of non-native products produced from pyruvate and 

their synthesis pathways  

 

4.1 Introduction 

The goal of metabolic engineering is to manufacture chemicals in a cost-effective 

manner using living organisms. Identifying which metabolites are capable of being produced by 

microbes and what biosynthesis pathways are required to enable metabolite production are 

fundamental questions. E. coli is the most widely used host for metabolic engineering, since it is 

one of the best-studied microbes and it has a variety of advanced genetic, synthetic biology, 

and systems biology tools available. Currently, it is unknown how many non-native products 

E. coli could potentially produce by introducing heterologous enzymes and reactions. Metabolic 

databases, such as KEGG[101], provide a listing of known biochemical enzymes and their 

associated reactions and metabolites. Previously, heterologous KEGG reactions have been 

integrated with genome-scale metabolic network models of E. coli to identify missing E. coli 

metabolic reactions [102,103] and to identify a small set of heterologous reactions that need to 

be added to the E. coli network to optimize production of a desired native or non-native 

product [104,105]. While some analysis has been done for individual products, a broader 

characterization of the non-native metabolites that could be produced, including the pathways 

and central metabolic precursors needed to produce them, has not been done. 

Approaches for finding pathways use either a known set of reactions (e.g., reactions 

from KEGG or a genome-scale reconstruction) or propose novel reactions. The BNICE 
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framework generates pathways using a set of enzyme reaction rules based on the enzyme 

classification system [106]. Since BNICE takes into account the chemical structure of reactants 

and products, it can suggest novel biosynthesis pathways for known and novel biological 

compounds. BNICE and related algorithms have been successfully applied to enable production 

of 1,4-butanediol and 1,2,4-trichlorobenzene [107,108]. Although BNICE is a well developed 

tool for producing novel biosynthesis pathways, it generates a large number of possible 

pathways that use novel biochemical reactions for which enzymes must be engineered.  

Different approaches can be used to find a synthesis pathway(s) for products using a set 

of reactions. These approaches use optimization-based or graphical-based searches on a 

collection of known or hypothesized biochemical reactions. A pathway search specifies a 

starting and ending metabolite, such as a central metabolic precursor and a desired non-native 

product. Several metabolites are centrally located in metabolism, have high degrees of 

connection, and can be converted into a variety of other chemicals. Thirteen central metabolic 

precursors (including glucose-6-phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate, 

pyruvate, oxaloacetate, and -ketoglutarate) are used in E. coli to make all cellular components 

(lipids, proteins, RNA and DNA) [99]. These metabolic precursors can be considered as the 

starting points for synthesis pathways for most metabolites [107,109]. Usually many different 

pathways can convert a starting metabolite to a desired end-product, and enumerating 

alternative pathways is useful for comparing them to determine which would be best to 

produce a desired target molecule.  

Graph-based methods have been used to find pathways from a starting metabolite to 

the target product. These graph-based methods represent metabolites as nodes and reactions 



    76 

 

as edges, and the results will be sensitive to which edges are included in the network (e.g. 

edges between all reactants and products for a given reaction versus edges only between 

reactants and products that share carbon atoms). Unfortunately, these graph-based methods 

can identify paths which cannot be mass-balanced by the cell. In this case, the paths proposed 

produce (or consume) metabolites that cannot be consumed (or produced) by other parts of 

the network. 

An alternative to graphical-based approaches is to use an optimization-based method. 

Optimization-based methods can incorporate network stoichiometry and rule out pathways 

that cannot satisfy mass balance constraints under steady state conditions [110]. More recently, 

another optimization based method, PathTracer, was developed [111]. PathTracer uses 

reaction stoichiometry to identify feasible pathways, but also eliminates undesired pathways 

with internal cycles. Optimization-based methods [110,111] can also only use connections 

between a reactant and a product if they share carbon atoms, so that the pathways that are 

proposed follow carbon through the network. . 

In this study, we used the genomic-scale metabolic model of E. coli to identify all non-

native products that could be produced in E. coli. For the subset of non-native products with 

commercial applications, we also identified pathways for producing these products from 

different central metabolic precursors. We were particularly interested in compounds that 

could be derived from pyruvate, since we have previously developed pyruvate overproducing 

strains which could serve as platforms to generate other chemical producing strains. The 

synthesis pathways from pyruvate to those non-native products were searched by PathTracer 
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algorithm. The pathways solutions provide a valuable resource for selecting pathways and 

target products for metabolic engineering.  

 

4.2 Materials and methods 

4.2.1 Maximum yield calculations 

Reactions in the KEGG database that were not in the E. coli metabolic network were 

classified as heterologous reactions [101,112]. All 4,740 heterologous reactions utilized in this 

study were elementally balanced (by adding H and water as reactants or products), and 

represented 56% of the 8,452 reactions in the KEGG database. The heterologous reactions 

involve 4,725 metabolites, and 694 of these metabolites also participate in reactions included in 

the genome-scale metabolic model of E. coli iJO1366 which has a total of 1136 metabolites 

[112]. The heterologous metabolic reactions were combined with the E. coli metabolic 

reactions, to generate an integrated metabolic network with 5,167 unique metabolites and 

6991 reactions. The maximal yield of each metabolite from glucose minimal medium under 

aerobic conditions by this integrated network was calculated using flux balance analysis (FBA) 

[47]. To calculate the maximum yield for a target metabolite using FBA, flux through a sink 

variable (  ) was maximized, where production by the network reactions resulted in a positive 

sink variable. A steady-state mass balance constraint was imposed (Equation 4.1), which 

accounted for flux in the E. coli (defined as set    ), heterologous (defined as set     ) and 

sink reactions.  

∑     

 

                             (4.1) 
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Here      was the stoichiometric matrix representing the reaction stoichiometry for all 

metabolic reactions     in the     and      sets. The set     contained all metabolites ( ) 

used in the E. coli and heterologous KEGG reactions. The    variable was the flux through a 

reaction ( ). In addition to the mass balance constraint (Equation 4.1), enzyme capacity and 

thermodynamic constraints were also included in FBA:  

                              (4.2) 

                        (4.3) 

                     (4.4) 

where        and        were the lower and upper bounds imposed on the fluxes.        was 

set to 1000 mmol/gDW/hour and        was set to 0 or -1000 mmol/gDW/hour for irreversible 

and reversible reactions, respectively. The lower limit for the ATP maintenance (ATPM) reaction 

was 3.15 mmol/gDW/hour. The maximum glucose uptake rate was set to 10 mmol/gDW/hour 

and oxygen uptake was unlimited. The set        contains the metabolite of interest whose 

maximum yield was being calculated. Metabolite production (∑    ) was maximized subject to 

the constraints in Equations 4.1-4.4.  

 

4.2.2 Minimal number of heterologous reactions required 

For the metabolites that could be produced aerobically from glucose using the 

integrated metabolic network, the minimal number of heterologous reactions required to 

produce at least 50% of the maximal yield was calculated. First, flux through the sink variable 

was constrained to be at least 50% of its maximal value found by FBA: 
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                      (4.5) 

where    was a parameter corresponding to the maximal production rate for metabolite   

calculated by FBA (Equations. 4.1-4.4). A binary variable    was used to indicate the flux status 

of the heterologous reactions. If the heterologous reaction   was active then    was equal to 1; 

however, if    was 0 then the heterologous reaction   was inactivated (Equation 4.6): 

                                (4.6) 

A constraint on the maximum number of heterologous reactions that could be used was 

imposed: 

∑  
 

            (4.7) 

where   was set to 20 in this study. The minimum number of heterologous reactions required 

to produce a target metabolite was found using the constraints shown in Equations 4.1, 4.4-4.7, 

while minimizing the objective (   ) shown in Equation 4.8.  

     ∑  
 

          (4.8) 

 

4.2.3 Finding paths between precursors and targets (PathTracer) 

Synthesis pathways (involving heterologous and E. coli reactions) for non-native 

products from central metabolic precursors (e.g. pyruvate, oxaloacetate, α-ketoglutarate, 

glyceraldehyde-3-phosphate, and glucose-6-phosphate) were determined using the PathTracer 

algorithm [111]. First, the MapMaker algorithm was used to identify all the elemental transfers 
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between reactants and products of a reaction based on the metabolites’ molecular formula. For 

example, a carbon transfer indicates how many carbon atoms are transferred between a 

reactant-product pair. The MapMaker results were used to create carbon transfer mappings 

between reactants and products only if carbon atoms are transferred between them. 

MapMaker was run for all E. coli and heterologous reactions included in the integrated 

metabolic network. Carbon maps involving currency metabolites (e.g. CO2 and ATP) were 

omitted (see Appendix 1 for complete listing).  

The carbon maps generated by MapMaker were used by the PathTracer algorithm to 

identify pathways connecting precursor metabolites to non-native products. PathTracer was 

formulated as a network flow problem where the metabolites were nodes connected through 

edges corresponding to the carbon maps generated by MapMaker. PathTracer determined the 

shortest path from a specified precursor to the target metabolite using E. coli and/or the 

heterologous reactions from KEGG database. Alternative paths connecting the two metabolites 

were also found using integer cut constraints (either reaction or path cuts) [111]. 

Importantly, the PathTracer algorithm guaranteed a path was feasible by applying mass 

balance (Equation 4.1), enzyme capacity and directionality constraints (Equation 4.2), and the 

following constraints (Equations 4.9-4.12): 

                          (4.9) 

                           (4.10) 

                   (4.11) 

         (4.12) 
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where      was a parameter, set to 0.001 in this study. The set      contained the reactions 

(from     and     ) in a proposed path. The reactions moving in forward and reverse 

directions in a proposed path were included in sets         and        , respectively. 

Equations 4.9-4.11 ensured that all reactions in a selected path were active (i.e., have non-zero 

flux) and that heterologous reactions not included in the path were inactive (i.e., have zero flux). 

Equation 4.12 imposed a minimal growth rate ( ). 

The net reaction for a path was determined from the stoichiometric coefficients of the 

reactions in the path (Equation 4.13). The net reaction coefficient for the starting precursor 

metabolite was constrained to be negative (Equation 14), in order to prevent paths from being 

proposed where the precursor started the path but was later produced by the path. These two 

additional constraints were formulated as: 

  
    ∑     

      

  (4.13) 

  
                    (4.14) 

where   
    was the coefficients for the metabolites in the net reaction. The set          

referred to the starting precursor metabolite. To ensure that a reaction or metabolite was only 

used once in a path, PathTracer was run using reaction blocking and loop killing constraints (see 

[111] for details). 

A variation of the PathTracer algorithm was implemented by including the constraints 

described above (Equations 4.1, 4.2, 4.4, 4.5, 4.9-4.14) and reaction blocking and loop killing 

constraints, into the basic algorithm (see [111] for details). PathTracer found the shortest and 

alternative paths from a starting precursor metabolite to a desired product. PathTracer was 
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implemented in GAMS (GAMS Development Corporation, Washington, DC) and solved with the 

CPLEX solver with a default CPU-time limit of 1000 s. The results were subsequently filtered to 

ensure that reactants in the heterologous reactions used in a path were available (i.e., 

reactants were part of iJO1366 or produced by other reactions in the path). 

 

4.3. Results 

4.3.1 Non-native products that could be produced by E. coli 

The maximal yields for 5,167 unique metabolites were calculated using FBA for an 

integrated metabolic network containing E. coli reactions and 4,740 heterologous reactions 

from KEGG. Under glucose aerobic conditions, 2,510 metabolites (49% of total metabolites) 

could be produced by the integrated network. The integrated model could not produce all the 

metabolites (including 265 out of 1,136 E. coli metabolites and 2,392 out of 4,031 non-native 

metabolites), which could be due to network gaps (e.g., unknown routes for precursor synthesis 

or by-product degradation), reaction directionality, or medium conditions (e.g., only produced 

from carbon/nitrogen sources).  

Among the 2,510 metabolites that could be produced, 871 participated in E. coli 

reactions (77% of iJO1366 metabolites) and the remaining 1,639 participated only in 

heterologous reactions from the KEGG database. For each producible metabolite, the minimum 

number of heterologous reactions needed to achieve at least 50% of the maximal yield (for the 

given producible metabolite) was determined. Metabolites that required heterologous 

reactions for production were classified as non-native products, while metabolites that did not 

require any heterologous reactions were classified as native products. Of the 871 producible  
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E. coli metabolites, 716 were made using only E. coli metabolic reactions (i.e. native products), 

while 155 required heterologous reactions indicating they were non-native products. A total of 

1,793 non-native products (including 155 E. coli metabolites and 1,638 KEGG metabolites) 

needed a minimum of 1 to 16 heterologous reactions to allow their production (Figure 4.1); one 

additional non-native product (sinapine) required more than 20 heterologous reactions to be 

produced. This set of 1,793 metabolites will be referred to as the set of non-native products. Of 

the non-native products, 29% of them (522 metabolites) needed only one heterologous 

reaction to enable production, and 35% (631 metabolites) required only two or three 

heterologous reactions. On the contrary, very few non-native products (<4%) required more 

than ten heterologous reactions. These results indicate that the E. coli metabolic network is suit 

to make many non-native metabolites with only few additional non-native reactions.  
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Figure 4.1: Minimal heterologous reaction requirements for the non-native products.  

The minimal number of heterologous reactions needed to produce each product at 50% of its maximum 
theoretical yeild was calcualted. The minimal number of heterologous reactions required for producting 
1,793 non-native products ranged between 1 and 16. One additional non-native product required over 
20 heterologous reactions.  

 

The 1,793 non-native products include many metabolic intermediates which do not 

have any commercial value. Before identifying paths between precursors and desired targets, 

which is a time-consuming process, we first identified how many of the 1,793 non-native 

products had commercial applications. Five databases were queried, including CAS (Chemical 

Abstracts Service), WikiPedia, DrugBank, Sigma-Aldrich and KEGG, to gather information of 

commercial availability, general usage, drug data, retail price and chemical structure. Of the 

1,793 non-native products, 284 were manually confirmed to have applications in a variety of 

industries, including pharmaceuticals, food industry, cosmetic and perfume, agriculture, 

manufacture and others (Figure 4.2A). According to the CAS database, 279 of the 284 

metabolites are commercially available. The 284 valuable non-native products could be made 

using E. coli by expressing enzymes to catalyze 1 to 16 heterologous KEGG reactions. About 27% 
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A  

 

B 

 

Figure 4.2: Commerical applications for non-native products and the non-native reaction requirements 

for produciton.  

(A) The primary applications for the 284 non-native products. (B) The minimal number of heterologous 
reactions required for producing the valuable non-native products.  
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of these valuable non-native products required only one heterologous reaction, while 33% 

needed two or three reactions (Figure 4.2B). Additional details about the 284 valuable non-

native products can be found in Appendix 2. 

 

4.3.2 Paths to valuable non-native products from pyruvate 

After identifying commercial applications for 284 non-native products, paths containing 

E. coli and heterologous reactions from pyruvate to these valuable compounds were found 

using PathTracer. Pyruvate was chosen as a precursor since it is part of central metabolism and 

over-producing strains have been developed (Chapter 3). Out of the 284 non-native products, 

64 were found to be within 5 reactions of pyruvate. The shortest path and alternative paths 

(with equal or greater length) were identified, and the number of different PathTracer solutions 

for the 64 metabolites varied between 1 and 72 (Figure 4.3). Fourteen of the 64 metabolites 

(~22%) had 5 or fewer paths from pyruvate, and ~69% had fewer than 20 different paths from 

pyruvate. The small number of paths for most metabolites made it easy to evaluate the 

individual solutions. Some of the 64 metabolites have been produced previously using E. coli. 

The following sections compares the PathTracer identified paths to the strategies used 

previously for engineering E. coli to produce 2,3-butanediol, 1-propanol and acrylic acid. 
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Figure 4.3: The number of alternative paths to valuable non-native products from pyruvate.  

PathTracer algorithm identified numerous paths with less than or equal to 5 reactions for producing 64 
non-native products from pyruvate. The metabolites were divided into groups based on how many 
alternative paths were found.  

 

4.3.3 Pathways for 2,3-butanediol synthesis 

2,3-butanediol (2,3-BD) is a bulk fuel and industrial solvent, and is also used in 

manufacturing plasticizers, inks and explosives. Yeast, E. coli, cyanobacteria and Klebsiella 

pneumoniae have been metabolically engineered to produce 2,3-BD [113-118] using similar 

synthesis routes for 2,3-BD (Figure 4.4A). One approach converted two molecules of pyruvate 

into α-acetolactate which was decarboxylated to produce R-acetoin, which was converted into 

(R,R)-2,3-BD. α-acetolactate can also be spontaneously converted into diacetyl. Another 

approach used diacetyl reductase to convert diacetyl into R-acetoin or S-acetoin, which were 

then converted into (R,R)-2,3-BD or (S,S)-2,3-BD, respectively. The necessary enzymes (α-

acetolactate decarboxylase, (R,R)-butanediol dehydrogenase, diacetyl reductase and (S,S)-

butanediol dehydrogenase) are found in many organisms including yeast,
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Enterobacter aerogenes, Klebsiella pneumoniae and Bacillus subtilis, but not in E. coli. 

PathTracer found all of the enzymatic reactions that have been used previously for 2,3-BD 

synthesis (Figure 4.4B). The spontaneous (non-enzymatic) reaction from α-acetolactate to 

diacetyl was not included in the model and thus not found as a pathway solution. In addition, 

PathTracer found two alternative reactions using different co-factors (NAD+ or NADP+) for 

converting R-acetoin to diacetyl, and an additional reaction from R-acetoin to S-acetoin, which 

could participate in additional routes for (S,S)-2,3-BD. All predicted paths had the same maximal 

yield (1.08 mol/mol glucose). No other pathways involving known enzymes were discovered for 

synthesizing 2,3-BD.  

 

Figure 4.4: Synthesis pathways for 2,3-Butanediol.  

The pathways that have been implemented in different species are in grey area, shown in (A). The black 
and red arrows mean E. coli and heterologous reactions, respectively. The green arrow indicates the 
reaction is spontaneous and not included in the integrated metabolic model. The predicted pathways for 
the production of 2,3-BD are shown in (B). The number above a reaction indicates the number of 
reactions that can connect two metabolites. The theoretical maximum yield using each pathway was 
calculated and labeled at the bottom. TMP: theoretical maximum yield; EXP: reported experimental 
yield.   
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4.3.4 Pathways for 1-propanol synthesis 

1-propanol is used as a liquid fuel and industrial solvent, and is used for manufacturing 

drugs and cosmetics. Microbial production of 1-propanol has been engineered in E. coli, 

Propionibacterium freudenreichii and Thermobifida fusca using three pathways [119-124]. The 

first route, converts pyruvate into α-ketobutyrate (by the branched-chain amino acid 

biosynthesis pathway), and the α-ketobutyrate is converted to 1-propanol using an α-keto-acid 

decarboxylase and an alcohol dehydrogenase (Figure 4.5A, path ①) [119,120]. The engineered 

E. coli strain with this first route has the highest reported yield for 1-propanol [120]. 

Unfortunately, the α-keto-acid decarboxylase reaction is not included in KEGG database and so 

PathTracer was unable to find this solution.  

The second route starts by forming α-ketobutyrate as well (Figure 4.5A, path ②) [121]. 

Propionyl-phosphate is produced from α-ketobutyrate spontaneously and converted to 

propionate by a propionate kinase (encoded by tdcD). Then acetyl-CoA synthetase produces 

propionyl-CoA, and the propionyl-CoA is converted into propionyl-aldehyde and then 1-

propanol. The enzymes needed for this pathway are all present in E. coli; however PathTracer 

only found the connections between propionate to 1-propanol (Figure 4.5B, path ④), because 

the spontaneous reaction from α-ketobutyrate to propionyl-phosphate was not part of the 

integrated model. PathTracer identified several other sets of reactions to generate propionate 

and propionyl-CoA from pyruvate.  

The third route for producing 1-propanol uses methylglyoxal synthase to convert 

dihydroxyacetone-phosphate into methylglyoxal (Figure 4.5A, path ③). Methylglyoxal is then 
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Figure 4.5: Synthesis pathways for 1-propanol.  

The pathways that have been implemented in different species are in grey area, shown in (A). The black 
and red arrows mean E. coli and heterologous reactions, respectively. The green arrow indicates the 
reaction is either spontaneous or recently found occurring E. coli, but not updated in the integrated 
metabolic model. The predicted pathways for the production of 1-propanol are shown in (B). The 
number above a reaction indicates the number of reactions that can connect two metabolites. The 
theoretical maximum yield using each pathway was calculated and labeled at the bottom. TMP: 
theoretical maximum yield; EXP: reported experimental yield.   
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converted into 1,2-propanediol, using either hydroxyacetone or lactaldehyde as an 

intermediate, 1,2-propanediol is then be converted into propionyl-aldehyde, and the propionyl-

aldehyde is used to make 1-propanol. Similar routes were predicted by the PathTracer 

algorithm (Figure 4.5B, path ⑤), except methylglyoxal was produced from pyruvate using two 

heterologous reactions and more alternative reactions could convert methylglyoxal to 

lactaldehyde and then to 1,2-propanediol.  

The maximum theoretical yields and experimental yields for 1-propanol using the three 

experimentally implemented pathways were calculated (Figure 4.5). Surprisingly, the second 

route which uses only E. coli reactions to make 1-propanol from α-ketobutyrate showed the 

highest theoretical yield, but had a lower experimental yield than the first route. 

 

4.3.5 Pathways for acrylic acid synthesis 

Acrylic acid is a commodity chemical with a global production of 4.7 million tons in 2012 

[125]. Acrylic acid and its esters are widely used for manufacturing plastics, coatings, paints and 

adhesives. Several Clostridium propionicum strains have been engineered to produce acrylic 

acid, however the yield is very low [126-128]. To date, two pathways have been used to make 

acrylic acid, one via lactate and the other via 3-hydroxypropanoate (3-HP). Both pathways were 

found by the PathTracer algorithm (Figure 4.6). A variety of E. coli and heterologous reactions 

can be used to produce lactate from pyruvate and lactate can be converted to acrylic acid in 

three steps using heterologous reactions. The overall reaction consumes one pyruvate and one 

NADH to generate acrylic acid and one molecule of NAD+. 

 



    92 

 

 

Figure 4.6: Synthesis pathways for acrylic acid.  

Four pathways were predicted by model and two of them have been implemented in different species, 
shown in the grey area. The black and red arrows mean E. coli and heterologous reactions, respectively. 
The green arrows indicate the reactions have to be changed to forward direction, in order to find this 
pathway. The number above a reaction indicates the number of reactions that can connect two 
metabolites. The theoretical maximum yield (TMP) using each pathway was calculated and labeled at 
the bottom.  

 

The second pathway that has been used experimentally starts by converting pyruvate 

into 3-oxopropanoate using an additional reactant, β-alanine (which can also derived from 

pyruvate). 3-oxopropanoate is reduced to 3-HP and then converted to acrylic acid in three 

additional steps. The two pathways have the same maximal yield; however the 3-HP pathway 

required more reactants in the overall reaction, including pyruvate, acetate, β-alanine, ATP, 
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NADH and CoA. Thus, it may take more engineering effort to increase flux through the 3-HP 

pathway as compared to the lactate pathway.  

A third pathway using methylcitrate as an intermediate has been proposed previously 

(Figure 4.6) [129]; however, PathTracer did not find it because three reactions would need to 

go in the thermodynamically opposite direction. When the three reactions were changed to 

reversible reactions in the integrated model then a path involving 6 reactions was found, where 

the overall reaction was: pyruvate + succinate + CoA + NADP++ acetate  oxaloacetate + 

NADPH + acetyl-CoA + acrylic acid. Allowing the reaction from propionyl-CoA to acryloyl-CoA to 

be reversible in the model, allowed another pathway to be found. This last pathway resembled 

one of the 1-propanol synthesis pathways (Figure 4.5B), where propionyl-CoA was converted 

into propenoyl-CoA and then acrylic acid. These last two pathways involve thermodynamically 

unfavorable reactions, and detailed experiments of studying the thermodynamic parameters 

need to do before utilizing the pathways for the acrylic acid production.  

 

4.3.6 The properties of pathway solutions for producing valuable non-native products 

The paths for generating valuable non-native products from pyruvate were further 

analyzed to (1) evaluate their dependence on heterologous reactions and (2) assess where in 

the paths alternative reactions can be used. If strains were developed that could make 

precursors at high rates and yields, then these could be modified to make specific chemicals of 

interest. While shorter synthesis pathways might be desirable since there are fewer parts to 

control, it is also important to consider the number of heterologous genes that would need to 

be introduced in the host (which can have advantages and disadvantages). To find out which 
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products might be the easiest to make, the length of the shortest pathway to non-native 

products from pyruvate was plotted against the number of heterologous reactions required by 

the pathway (Figure 4.7). For this analysis only the 64 non-native products that could be 

produced from pyruvate using 5 or less reactions were considered. The closest non-native 

product to pyruvate was 2-butynedioic acid, which was produced in one step and with one 

heterologous reaction. The furthest non-native product was 1,3-propanediol, which was made 

from pyruvate in 5 steps using all heterologous reactions. The majorities of non-native products 

were within 3-4 steps of pyruvate and required 1-3 heterologous reactions to enable their 

production.  

 

Figure 4.7: The number of heterologous reactions vs the shortest synthesis pathway.  

The 64 metabolites able to be produced from pyruvate in 5 steps were grouped by the length of their 
shortest pathway and the number of heterologous reactions present in the shortest pathway. The size 
of the bubble reflects the number of metabolites. The number of metabolites in each group was labeled 
in the center.    
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Figure 4.8: The pattern of alternative relations in all pathway solutions within 5 steps.  

(A) For a product in the list of 64 valuable non-native products produced from pyruvate, the number of 
different reactions (E. coli or heterologous) appearing in each step of its synthesis pathway was 
normalized by the number of pathway solutions. (B) The number of alternative heterologous reactions 
present in each step of its synthesis pathway was calculated. The black color indicates no reaction 
(heterologous and/or E. coli) in that position.  

 

Expressing a heterologous enzyme in a host organism can be problematic. Correct 

expression and maturation is not always guaranteed and heterologous enzymes could be toxic 

to the host. Reducing the number of heterologous reactions needed would help avoid some of 

these problems, as well as using reactions with alternatives that could be used instead if
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enzymes for part of the pathway are difficult to express. For each of the 64 valuable non-native 

products, the number of alternative heterologous reactions that could be used at each reaction 

step of the synthesis pathways was determined (Figure 4.8B). The non-native products shown 

at the top had the most alternative reactions, which included oxalate, ethylene oxide, and 

mesaconate.  

We also investigated how many alternative reactions exist in each step across all 

identified pathways for synthesizing a product of interest. For each of the 64 non-native 

products within 5 steps of pyruvate, the number of different reactions (Figure 4.8A) used at 

each step was normalized by the number of paths found. For all products evaluated, the first 

several steps in the pathways had multiple equivalent reactions and the number of alternative 

reactions in the last step was less than that in at least one of other steps. It is not surprising, 

because the 64 metabolites are not essential metabolites, only existing in several organisms 

and certainly have fewer production reactions.  

 

4.3.7 Alternative precursors for producing valuable non-native products  

Of the 284 valuable non-native products, only 64 could be produced from pyruvate 

within 5 reactions. The remaining non-native products required longer pathways for their 

production and might be better produced from other central metabolic precursors. In order to 

discover pathways for producing other valuable non-native products additional central 

metabolic precursors were considered, including glucose-6-phosphate, glycerate-3-phosphate, 

glyceraldehyde-3-phosphate, oxaloacetate, and -ketoglutarate. These precursors are the hubs 

in the metabolic networks of many different organisms [109]. Paths for producing a non-native 
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product from each precursor were found and a total of 81 valuable non-native products were 

found to be within 5 steps of the 6 different precursors considered (Figure 4.9). The 6 

precursors could be converted into each, and thus many non-native products could be 

produced from several precursors. Pyruvate, oxaloacetate and α-ketoglutarate were the most 

common precursors for which non-native products could be made within 5 steps. They showed 

a highly overlapping profile of metabolites that could be produced within 5 steps from any of 

the three (Figure 4.10). For a given non-native product, the shortest pathways from each of the 

6 starting precursors were compared to identify the closest precursor. The precursor that could 

produce the non-native product with the fewest reactions was considered as the closest 

precursor. Pyruvate was shown to be the closest precursor for 40 of the 64 non-native 

metabolites that could be synthesized from it. While oxaloacetate could produce more non-

native products in 5 steps than any of the other precursors tested, it was only the closest 

precursor for 27 of the 68 non-native products that could be produced from oxaloacetate in 5 

steps. Glyceraldehyde 3-phosphate uniquely supported the production of one non-native 

product and was that product’s closest precursor. Additional metabolite hubs should be 

explored as potential precursors (e.g., succinate, L-glutamate, L-aspartate [109]), as well as top 

value building blocks (e.g., glycerol [130]).  
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Figure 4.9: Alternative precursors for the production of valuable non-native products.  

The number of products able to be produced from the precursors within 5 steps is indicated by blue 
column. The red columns indicate that synthesis from that precursor is shortest among the six 
precursors. Seventeen products could be produced from two or more precursors with fewest reactions. 
Metabolite abbreviations: G6P: glucose-6-phosphate; 3PG: D-glycerate-3-phophate; G3P:  
D-glyceraldehyde 3-phosphate; Pyr: pyruvate; OAA: oxaloacetate; AKG: α-ketoglutarate. 

 

 

Figure 4.10: Six precursors for the synthesis of metabolites.  

(A) The six precursors are in the central metabolism. The number of reactions converting two precursor 
metabolites was predicted using the integrated metabolic model of E. coli and heterologous reactions. 
(B) shows the number of valuable non-native products produced from any of the three precursors.   
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4.4 Discussion 

This study was motivated by two practical questions regarding metabolic strain 

engineering: (1) what valuable non-native biochemicals can be produced from a given 

metabolic precursor, and (2) what precursors should be produced to synthesize a variety of 

non-native products. To answer these questions, a comprehensive investigation of the 

production capabilities of E. coli as a background host was performed. Considering all the 

heterologous reactions in KEGG, E. coli could be engineered (by adding up to 16 heterologous 

reactions) to produce 1,793 non-native products (more than double the number of native 

products). Of these 1,793 non-native products, 284 were confirmed to have commercial value. 

Using pyruvate as a starting precursor, we used PathTracer to identify 64 valuable non-native 

products within 5 reaction steps. Pyruvate production strains have been engineered previously 

(described in Chapter 3), and these 64 non-native products would be good targets for re-

engineering these pyruvate strains to produce other valuable chemicals. By identifying 

alternative paths for synthesizing non-native products, potential engineering strategies can be 

compared based on requirements for non-native reactions, length of pathways from central 

metabolic intermediates, maximal theoretical yields, and pathway requirements with regard to 

reactants and co-products in the overall reactions.  

Comparisons between predicted pathways and experimentally implemented pathways 

showed that, while substantial overlap exists, more pathway variations are possible and 

expanded reaction databases are needed. PathTracer found many alternative reactions for 

connecting pathway intermediates that could be used to improve experimental yields. The 

PathTracer results depend on the completeness and accuracy of the heterologous reaction 
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database and host metabolic network being considered. PathTracer missed some 

experimentally used pathways that involved spontaneous and recently characterized reactions. 

Recent efforts to build larger and more comprehensive reaction databases [131], as well as 

tools to identify novel putative reactions [106,132,133], will expand the number of non-native 

products that could be potentially produced as well as the number of different pathways that 

can be used to generate these products. 

Besides pyruvate, five other central metabolites were considered as starting precursors 

to synthesize 284 non-native products with commercial value. When only 5 reaction steps were 

allowed, 81 out of the 284 products could be produced from at least one of the precursors 

considered, while the rest 203 products could not be produced. One possible reason is that 

their biosynthesis pathways have more than 5 reaction steps from the selected starting 

precursors, and thus no solution was found. Another possibility is that the 6 precursors 

considered are not the closest E. coli metabolite, and so more E. coli reactions were needed 

extending the length of the pathway. From looking at the minimum path lengths between 

products and precursors, it appears that pyruvate, oxaloacetate and -ketoglutarate are the 

closest precursors to 69 out of the 81 non-native products considered. Strains capable of 

producing these precursors at high rates and yields (e.g. pyruvate overproducing strains 

described in Chapter 3) would be good background strains to produce these 69 products.  

The results presented here focused on analyzing connections between a select number 

of precursors to a wide variety of non-native products. Future work should also evaluate which 

native metabolites (not just the 6 precursors considered) are closest to non-native products, 

and should also consider putative reactions. The current results provide guidance as to what 
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precursors are most important to make and what non-native products should be made using 

these strains. 
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Chapter 5 Conclusions and future directions 

In this work, we combined genetic tools, adaptive evolution techniques and in silico 

simulations to explore different metabolic engineering strategies for strain development and 

product optimization. First, we investigated the phenotypes of un-evolved and evolved co-

cultures consisting of two E. coli auxotrophs cross-feeding leucine (or its precursors) and lysine, 

found the improved community phenotype was attributed to a better exchange of the two 

amino acids (or precursors) and also found fitness tradeoffs occurred in individual strains. 

Though the isolated strains did not show an overproduction of leucine or lysine when grown in 

isolation, the co-culture studies will contribute more knowledge to utilizing microbial consortia 

in metabolic engineering. Second, aided by the genome-scale metabolic model of E. coli, we 

constructed gene deletion strains capable of producing pyruvate at high yields. Pyruvate is a 

starting material for synthesizing many important chemicals. We successfully converted the 

pyruvate strains to produce ethanol and anticipated that the developed strains would serve as 

a platform to produce other valuable chemicals. Last, to explore all possible chemicals that 

could be made from pyruvate, we did a comprehensive study of the production capability of 

E .coli for known biochemical and identified numerous valuable non-native products able to be 

made in E. coli and their synthesis pathways from different precursors, including pyruvate. The 

data generated from this work will contribute to expedite the productions of non-native 

products in microbes and the pathway engineering.  

 

5.1 Future directions 

5.1.1 Produce other native products in designed pyruvate producing strains  
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Pyruvate is the precursor for native metabolites such as branched-chain amino acids, L-

alanine and ethanol. We have used pyruvate strains to produce ethanol and reached 58 to 85% 

of theoretical yield. One ethanol molecule formation costs one pyruvate and two NADH 

molecules. In a similar fashion, L-alanine synthesis by Bacillus sphaericus alanine 

dehydrogenase requires one molecule pyruvate and one molecule NADH. This Bacillus gene 

alaD encoding the alanine dehydrogenase has been successfully expressed in E. coli and 

produced L-alanine [134]. We will try to express alaD in the pyruvate producing strains and 

evaluate the L-alanine production, which we expect to be similar to the yield of ethanol (up to 

~85% of the theoretical maximum yield) produced in the modified pyruvate producing strains.  

The three branched-chain amino acid synthesis pathways are interconnected. Pyruvate 

is the sole precursor for L-valine synthesis, and L-leucine is made from intermediates of L-valine. 

Thus we should first develop a L-valine producing strain by overexpressing genes (ilvBNCDE) 

involving the synthesis in the pyruvate overproducing strains and then convert it into a leucine 

producing strain by overexpressing more genes (leuABCD). The synthesis of the third BAA, 

L-isoleucine, requires L-threonine and pyruvate as precursors, and it could be studied last, since 

additional pathways leading to threonine production would need to be manipulated.       

 

5.1.2 Produce non-native products based on pyruvate producing strains 

Pyruvate can be used to produce 64 non-native products within 5 reactions, and the 

synthesis pathways were also identified in this study (Chapter 4). Eighteen of non-native 

products only require one heterologous reaction and would thus be good targets for producing 

in the E. coli pyruvate producing strains. The priority of the target products can be evaluated by 
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multiple criteria such as: the availability and number of genes required for the heterologous 

reaction, the catalytic activity of the heterologous enzymes (which could be searched in 

BRENDA database), toxicity of intermediates and end products, the expression and maturation 

of heterologous enzymes in E. coli and the cost of the target product. The downstream 

quantification method for the target product should also be available. After the target is 

decided, the heterologous gene can be cloned or synthesized by company, and then introduced 

into pyruvate producing strains.  

 

5.2 Concluding remarks     

 Bacteria, the smallest living organisms, provide many benefits to us. After working on 

metabolic engineering for the past six years, I am amazed by the metabolic and phenotypic 

plasticity of bacteria and have seen they can produce useful chemicals that may impact the lives 

of everyone. I am glad that I learned optimization skills to analyze genomic-scale models to 

better understand bacterial metabolism and to apply the models for strain development. From 

my experimental and computational experience, I believe that experiments are the foundation 

to provide information, to validate hypotheses, and to control the bacteria in the way we want. 

I also believe that computational methods can dramatically expedite the discovery of complex 

mechanism, the design of strains at a system level, and the optimization of product yields and 

the development process. The combination of both will create new products, pathways and 

functions. I expect more exciting discoveries in this field and more efficient microbial factories 

developed to manufacture the products used in our life.      
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Appendix 1: Currency metabolites removed from the carbon transfer map  

KEGG ID 
Common 
name Formula KEGG ID 

Common 
name Formula 

C00237 CO CO C01367 3'-AMP C10H14N5O7P 

C00011 CO2 CO2 C00286 dGTP C10H16N5O13P3 

C01353 Carbonic acid H2CO3 C00044 GTP C10H16N5O14P3 

C00288 HCO3- HCO3 C00361 dGDP C10H15N5O10P2 

C00365 dUMP C9H13N2O8P C00035 GDP C10H15N5O11P2 

C00105 UMP C9H13N2O9P C00362 dGMP C10H14N5O7P 

C01368 3'-UMP C9H13N2O9P C00144 GMP C10H14N5O8P 

C01346 dUDP C9H14N2O11P2 C00459 dTTP C10H17N2O14P3 

C00015 UDP C9H14N2O12P2 C00363 dTDP C10H16N2O11P2 

C00460 dUTP C9H15N2O14P3 C00364 dTMP C10H15N2O8P 

C00075 UTP C9H15N2O15P3 C01345 dITP C10H15N4O13P3 

C00239 dCMP C9H14N3O7P C00081 ITP C10H15N4O14P3 

C00055 CMP C9H14N3O8P C01344 dIDP C10H14N4O10P2 

C05822 3'-CMP C9H14N3O8P C00104 IDP C10H14N4O11P2 

C00458 dCTP C9H16N3O13P3 C00130 IMP C10H13N4O8P 

C00063 CTP C9H16N3O14P3 C00229 
acyl carrier 
protein C11H22N2O7PRS 

C00705 dCDP C9H15N3O10P2 C00390 Ubiquinol C14H20O4 

C00112 CDP C9H15N3O11P2 C00003 NAD+ C21H28N7O14P2 

C00131 dATP C10H16N5O12P3 C00004 NADH C21H29N7O14P2 

C00002 ATP C10H16N5O13P3 C00006 NADP+ C21H29N7O17P3 

C00008 ADP C10H15N5O10P2 C00005 NADPH C21H30N7O17P3 

C00206 dADP C10H15N5O9P2 C00010 CoA C21H36N7O16P3S 

C00360 dAMP C10H14N5O6P C00016 FAD C27H33N9O15P2 

C00020 AMP C10H14N5O7P C01352 FADH2 C27H35N9O15P2 
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Appendix 2: The 284 non-native products in E. coli that have commerical 
value 

 
KEGG 

ID 
Formula Common name 

Maximal 
yield* 

Minimal number 
of heterologous 

reaction required 
Applicationⱡ 

1 C00067 CH2O Formaldehyde 6 1 Pha 

2 C00114 C5H14NO Choline 1.2 6 Pha 

3 C00146 C6H6O Phenol 1 1 Pha 

4 C00230 C7H6O4 Protocatechuate 0.85714 1 Pha 

5 C00243 C12H22O11 Lactose 0.5 1 Pha 

6 C00245 C2H7NO3S Taurine 3 2 Pha 

7 C00272 C9H15N5O3 Tetrahydrobiopterin 0.66667 2 Pha 

8 C00300 C4H9N3O2 Creatine 1.5 3 Pha 

9 C00315 C7H19N3 Spermidine 0.85714 1 Pha 

10 C00329 C6H13NO5 D-Glucosamine 1 1 Pha 

11 C00355 C9H11NO4 Levodopa 0.66667 1 Pha 

12 C00378 C12H17N4OS Thiamine 0.5 2 Pha 

13 C00386 C9H14N4O3 Carnosine 0.66667 1 Pha 

14 C00389 C15H10O7 Quercetin 0.4 7 Pha 

15 C00392 C6H14O6 Mannitol 1 1 Pha 

16 C00398 C10H12N2 Tryptamine 0.6 1 Pha 

17 C00402 C4H7NO4 D-Aspartate 1.5 1 Pha 

18 C00483 C8H11NO Tyramine 0.75 1 Pha 

19 C00504 C19H19N7O6 Folate 0.31579 1 Pha 

20 C00509 C15H12O5 Naringenin 0.4 4 Pha 

21 C00519 C2H7NO2S Hypotaurine 3 3 Pha 

22 C00547 C8H11NO3 L-Noradrenaline 0.75 4 Pha 

23 C00552 C4H6O6 meso-Tartaric acid 1.5 2 Pha 

24 C00556 C7H8O Benzyl alcohol 0.85714 6 Pha 

25 C00628 C7H6O4 2,5-Dihydroxybenzoate 0.85714 2 Pha 

26 C00643 C11H12N2O3 5-Hydroxy-L-tryptophan 0.54545 2 Pha 

27 C00745 C10H14N2 Nicotine 0.6 4 Pha 

28 C00757 C20H18NO4 Berberine 0.3 13 Pha 

29 C00780 C10H12N2O Serotonin 0.6 3 Pha 

30 C00788 C9H13NO3 L-Adrenaline 0.66667 5 Pha 

31 C00794 C6H14O6 D-Sorbitol 1 1 Pha 

32 C00795 C6H12O6 D-Tagatose 1 2 Pha 

33 C00805 C7H6O3 Salicylate 0.85714 1 Pha 

34 C00808 C10H16O (+)-Camphor 0.6 3 Pha 

35 C00811 C9H8O3 4-Coumarate 0.66667 2 Pha 

36 C00814 C16H12O5 Biochanin A 0.375 8 Pha 
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Appendix 2, continued 

 
KEGG 

ID 
Formula Common name 

Maximal 
yield* 

Minimal number 
of heterologous 

reaction required 
Applicationⱡ 

37 C00836 C18H39NO2 Sphinganine 0.33333 2 Pha 

38 C00880 C6H12O7 D-Galactonate 1 1 Pha 

39 C00884 C10H16N4O3 Homocarnosine 0.6 1 Pha 

40 C00916 C16H21N3O8S Cephalosporin C 0.375 7 Pha 

41 C00954 C10H9NO2 Indole-3-acetate 0.6 3 Pha 

42 C00955 C10H11NO Indole-3-ethanol 0.6 3 Pha 

43 C01026 C4H9NO2 N,N-Dimethylglycine 1.5 3 Pha 

44 C01157 C5H9NO3 trans-4-Hydroxy-L-proline 1.2 1 Pha 

45 C01197 C9H8O4 Caffeate 0.66667 6 Pha 

46 C01262 C10H16N4O3 Anserine 0.6 2 Pha 

47 C01424 C7H6O5 Gallate 0.85714 5 Pha 

48 C01441 C12H26N4O6 Neamine 0.5 9 Pha 

49 C01467 C7H8O 3-Cresol 0.85714 2 Pha 

50 C01477 C15H10O5 Apigenin 0.4 6 Pha 

51 C01494 C10H10O4 Ferulate 0.6 9 Pha 

52 C01514 C15H10O6 Luteolin 0.4 6 Pha 

53 C01537 C3H7NO2 Urethane 2 2 Pha 

54 C01598 C13H16N2O2 Melatonin 0.46154 5 Pha 

55 C01617 C15H12O7 Taxifolin 0.4 7 Pha 

56 C01678 C2H7NS Cysteamine 3 4 Pha 

57 C01701 C20H18O5 (-)-Glyceollin I 0.3 12 Pha 

58 C01717 C10H7NO3 Kynurenate 0.6 4 Pha 

59 C01737 C23H46N6O13 Neomycin B 0.26087 16 Pha 

60 C01759 C17H34N4O10 Ribostamycin 0.35294 11 Pha 

61 C01765 C10H18O (+)-Borneol 0.6 2 Pha 

62 C01850 C18H16O8 Rosmarinate 0.33333 10 Pha 

63 C01983 C8H8O3 (R)-Mandelate 0.75 4 Pha 

64 C01984 C8H8O3 (S)-Mandelate 0.75 3 Pha 

65 C02105 C19H23NO4 (S)-Reticuline 0.31579 8 Pha 

66 C02107 C4H6O6 (S,S)-Tartaric acid 1.5 1 Pha 

67 C02378 C6H13NO2 6-Aminohexanoate 1 5 Pha 

68 C02442 C9H13NO N-Methyltyramine 0.66667 2 Pha 

69 C02670 C6H8O6 D-Glucuronolactone 1 4 Pha 

70 C02890 C21H25NO4 Tetrahydropalmatine 0.28571 12 Pha 

71 C02906 C15H12O8 Dihydromyricetin 0.4 6 Pha 

72 C02993 C15H23N5O4 Kyotorphin 0.4 1 Pha 
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Appendix 2, continued 

 
KEGG 

ID 
Formula Common name 

Maximal 
yield* 

Minimal number 
of heterologous 

reaction required 
Applicationⱡ 

73 C03329 C20H21NO4 (S)-Canadine 0.3 12 Pha 

74 C03375 C6H17N3 Norspermidine 1 3 Pha 

75 C03582 C14H12O3 Resveratrol 0.42857 3 Pha 

76 C03758 C8H11NO2 Dopamine 0.75 2 Pha 

77 C03761 C6H10O5 Meglutol 1 2 Pha 

78 
C04444 C18H16O7 

3,7,4'-Tri-O-
methylquercetin 0.33333 12 Pha 

79 C04548 C9H13NO2 Synephrine 0.66667 4 Pha 

80 C04858 C26H28O14 Apiin 0.23077 8 Pha 

81 C05178 C19H23NO4 (R)-Reticuline 0.31579 11 Pha 

82 C05332 C8H11N Phenethylamine 0.75 1 Pha 

83 C05335 C5H11NO2Se L-Selenomethionine 1.2 4 Pha 

84 C05422 C6H6O6 Dehydroascorbate 1 6 Pha 

85 C05551 C16H18N2O4S Penicillin G 0.375 4 Pha 

86 C05587 C9H13NO2 3-Methoxytyramine 0.66667 3 Pha 

87 C05623 C21H20O12 Quercetin 3-O-glucoside 0.28571 8 Pha 

88 C05625 C27H30O16 Rutin 0.22222 11 Pha 

89 C05627 C8H8O Phenylacetaldehyde 0.75 3 Pha 

90 C05670 C3H6N2 3-Aminopropiononitrile 2 2 Pha 

91 C05829 C6H10N2O5 N-Carbamyl-L-glutamate 1 5 Pha 

92 C05853 C8H10O Phenylethyl alcohol 0.75 2 Pha 

93 C05903 C15H10O6 Kaempferol 0.4 6 Pha 

94 C05905 C15H11O6 Cyanidin 0.4 9 Pha 

95 C05908 C15H11O7 Delphinidin 0.4 8 Pha 

96 C05984 C4H8O3 4-Hydroxybutanoic acid 1.5 1 Pha 

97 C06044 C8H10O2 4-Hydroxyphenylethanol 0.75 2 Pha 

98 C06046 C14H20O7 Salidroside 0.42857 3 Pha 

99 C06051 C8H9NO3 Isopyridoxal 0.75 1 Pha 

100 C06124 C18H38NO5P Sphingosine 1-phosphate 0.33333 4 Pha 

101 C06142 C4H10O 1-Butanol 1.5 2 Pha 

102 C06173 C19H21NO3 Thebaine 0.31579 15 Pha 

103 C06186 C12H16O7 Arbutin 0.5 2 Pha 

104 C06199 C10H15NO Hordenine 0.6 4 Pha 

105 C06213 C11H14N2 N-Methyltryptamine 0.54545 2 Pha 

106 C06308 C10H16 (-)-alpha-Pinene 0.6 1 Pha 

107 C06562 C15H14O6 (+)-Catechin 0.4 8 Pha 
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Appendix 2, continued 

 
KEGG 

ID 
Formula Common name 

Maximal 
yield* 

Minimal number 
of heterologous 

reaction required 
Applicationⱡ 

108 C06563 C15H10O5 Genistein 0.4 6 Pha 

109 C07130 C7H8N4O2 Theophylline 0.85714 2 Pha 

110 C08299 C12H16N2O Bufotenine 0.5 6 Pha 

111 C08615 C30H50O alpha-Amyrin 0.2 3 Pha 

112 C08616 C30H50O beta-Amyrin 0.2 3 Pha 

113 C08628 C30H50O Lupeol 0.2 3 Pha 

114 C08650 C15H12O4 Isoliquiritigenin 0.4 3 Pha 

115 C09094 C20H34O Geranylgeraniol 0.3 2 Pha 

116 C09126 C21H20O10 Genistein 0.28571 7 Pha 

117 C09629 C15H24 beta-Caryophyllene 0.4 1 Pha 

118 C09684 C15H24 Humulene 0.4 1 Pha 

119 C09762 C15H12O4 Liquiritigenin 0.4 4 Pha 

120 C09789 C27H32O14 Naringin 0.22222 8 Pha 

121 C09826 C15H12O5 Pinobanksin 0.4 6 Pha 

122 C09827 C15H12O4 Pinocembrin 0.4 5 Pha 

123 C10028 C15H10O4 Chrysin 0.4 6 Pha 

124 C10044 C15H10O5 Galangin 0.4 7 Pha 

125 C10107 C15H10O8 Myricetin 0.4 7 Pha 

126 C10192 C15H10O7 Tricetin 0.4 6 Pha 

127 C10208 C15H10O4 Daidzein 0.4 6 Pha 

128 C10216 C21H20O9 Daidzin 0.28571 7 Pha 

129 C10443 C21H20O6 Curcumin 0.28571 9 Pha 

130 C10509 C22H22O9 Ononin 0.27273 8 Pha 

131 C10520 C16H12O6 Pratensein 0.375 9 Pha 

132 C10521 C16H12O5 Prunetin 0.375 9 Pha 

133 C12127 C15H14O7 (+)-Gallocatechin 0.4 8 Pha 

134 C12138 C21H21O12 Delphinidin 3-O-glucoside 0.28571 9 Pha 

135 C15511 C20H18O5 Glyceollin III 0.3 12 Pha 

136 C15652 C23H46N6O13 Neomycin C 0.26087 15 Pha 

137 C16829 C15H24 gamma-Humulene 0.4 1 Pha 

138 C17742 C20H18O5 Demethoxycurcumin 0.3 9 Pha 

139 C17743 C19H16O4 Bisdemethoxycurcumin 0.31579 4 Pha 

140 C18023 C20H20O5 Sophoraflavanone B 0.3 5 Pha 

141 C00423 C9H8O2 trans-Cinnamate 0.66667 2 Per and Cos 

142 C00466 C4H8O2 Acetoin 1.5 3 Per and Cos 

143 C00521 C10H16 (-)-Limonene 0.6 1 Per and Cos 

144 C00823 C16H34O 1-Hexadecanol 0.375 2 Per and Cos 
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Appendix 2, continued 

 
KEGG 

ID 
Formula Common name 

Maximal 
yield* 

Minimal number 
of heterologous 

reaction required 
Applicationⱡ 

145 C00964 C10H16O (-)-trans-Carveol 0.6 2 Per and Cos 

146 C01126 C15H26O trans-Farnesol 0.4 1 Per and Cos 

147 C01389 C20H40O Phytol 0.3 4 Per and Cos 

148 C01499 C10H16O Geranial 0.6 2 Per and Cos 

149 C01724 C30H50O Lanosterol 0.2 3 Per and Cos 

150 C01769 C4H8O2 (S)-Acetoin 1.5 2 Per and Cos 

151 C01879 C5H7NO3 5-Oxoproline 1.2 1 Per and Cos 

152 C02237 C5H7NO3 5-Oxo-D-proline 1.2 1 Per and Cos 

153 C02344 C10H18O (-)-endo-Fenchol 0.6 1 Per and Cos 

154 C02348 C4H6N4O3 (R)(-)-Allantoin 1.5 4 Per and Cos 

155 C02350 C4H6N4O3 (S)(+)-Allantoin 1.5 3 Per and Cos 

156 C02394 C9H10O Cinnamyl alcohol 0.66667 5 Per and Cos 

157 C02576 C10H14O Perillyl aldehyde 0.6 3 Per and Cos 

158 C03220 C15H26O 2-cis,6-trans-Farnesol 0.4 2 Per and Cos 

159 C05413 C40H64 Phytoene 0.15 2 Per and Cos 

160 C05421 C40H64 15-cis-Phytoene 0.15 3 Per and Cos 

161 C06074 C10H16 Myrcene 0.6 1 Per and Cos 

162 C06099 C10H16 (+)-Limonene 0.6 1 Per and Cos 

163 C06231 C6H10N2O2 Ectoine 1 3 Per and Cos 

164 C06358 C10H10O2 Methyl cinnamate 0.6 6 Per and Cos 

165 C06359 C11H12O2 Ethyl cinnamate 0.54545 4 Per and Cos 

166 C06394 C15H24 (+)-delta-Cadinene 0.4 1 Per and Cos 

167 C07086 C8H8O2 Phenylacetic acid 0.75 1 Per and Cos 

168 C09183 C20H36O2 Sclareol 0.3 2 Per and Cos 

169 C09621 C15H26O (-)-alpha-Bisabolol 0.4 1 Per and Cos 

170 C09704 C15H26O Nerolidol 0.4 1 Per and Cos 

171 C09847 C10H16O cis-Citral 0.6 3 Per and Cos 

172 C09871 C10H18O Nerol 0.6 4 Per and Cos 

173 C09893 C10H16O Pulegone 0.6 5 Per and Cos 

174 C11388 C10H18O (-)-Linalool 0.6 1 Per and Cos 

175 C11389 C10H18O (+)-Linalool 0.6 1 Per and Cos 

176 C11409 C10H16O (+)-trans-Carveol 0.6 2 Per and Cos 

177 C00090 C6H6O2 Catechol 1 1 Bui 

178 C00132 CH4O Methanol 6 2 Bui 

179 C00180 C7H6O2 Benzoate 0.85714 6 Bui 

180 C00207 C3H6O Acetone 2 2 Bui 

181 C00218 CH5N Methylamine 6 3 Bui 
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Appendix 2, continued 

 
KEGG 

ID 
Formula Common name 

Maximal 
yield* 

Minimal number 
of heterologous 

reaction required 
Applicationⱡ 

182 C00246 C4H8O2 Butanoic acid 1.5 1 Bui 

183 C00261 C7H6O Benzaldehyde 0.85714 4 Bui 

184 C00292 C6H7N Aniline 1 1 Bui 

185 C00409 CH4S Methanethiol 6 2 Bui 

186 C00472 C6H4O2 p-Benzoquinone 1 2 Bui 

187 C00479 C3H6O Propanal 2 1 Bui 

188 C00490 C5H6O4 Itaconate 1.2 1 Bui 

189 C00511 C3H4O2 Propenoate 2 3 Bui 

190 C00804 C3H2O2 Propynoate 2 1 Bui 

191 C00818 C6H10O8 Glucarate 1 5 Bui 

192 C00870 C6H5NO3 4-Nitrophenol 1 4 Bui 

193 C00898 C4H6O6 (R,R)-Tartaric acid 1.5 1 Bui 

194 C00903 C9H8O Cinnamaldehyde 0.66667 4 Bui 

195 C00986 C3H10N2 1,3-Diaminopropane 2 2 Bui 

196 C01089 C4H8O3 (R)-3-Hydroxybutanoate 1.5 2 Bui 

197 C01147 C6H10O2 
2-Hydroxycyclohexan-1-

one 
1 6 Bui 

198 C01263 C15H12O5 (-)-Glycinol 0.4 11 Bui 

199 C01326 CHN Hydrogen cyanide 6 2 Bui 

200 C01380 C2H6O2 Ethylene glycol 3 2 Bui 

201 C01384 C4H4O4 Maleic acid 1.5 1 Bui 

202 C01403 C7H8O Anisole 0.85714 2 Bui 

203 C01408 C14H12O2 Benzoin 0.42857 5 Bui 

204 C01502 C7H8O2 o-Methoxyphenol 0.85714 2 Bui 

205 C01837 C2H5NO2 Nitroethane 3 3 Bui 

206 C01845 C3H8O Propan-2-ol 2 3 Bui 

207 C01902 C30H50O Cycloartenol 0.2 3 Bui 

208 C01987 C6H7NO 2-Aminophenol 1 3 Bui 

209 C01998 C3H3N Acrylonitrile 2 5 Bui 

210 C02372 C6H7NO 4-Hydroxyaniline 1 1 Bui 

211 C02457 C3H8O2 Propane-1,3-diol 2 2 Bui 

212 C02505 C8H9NO 2-Phenylacetamide 0.75 1 Bui 

213 C02752 C6H6O3 Triacetate lactone 1 1 Bui 

214 C02912 C3H8O2 (R)-Propane-1,2-diol 2 1 Bui 

215 C02917 C3H8O2 (S)-Propane-1,2-diol 2 1 Bui 

216 C02954 C8H12N2O3S 6-Aminopenicillanate 0.75 4 Bui 

217 C03194 C3H9NO (R)-1-Aminopropan-2-ol 2 1 Bui 
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yield* 

Minimal number 
of heterologous 

reaction required 
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218 C03248 C4H2O4 Acetylenedicarboxylate 1.5 1 Bui 

219 C05380 C8H8N2O3 Nicotinurate 0.75 1 Bui 

220 C05986 C3H4O 2-Propyn-1-ol 2 4 Bui 

221 C06104 C6H10O4 Adipate 1 3 Bui 

222 C06202 C7H6O2 Salicylaldehyde 0.85714 2 Bui 

223 C06425 C20H40O2 Icosanoic acid 0.3 2 Bui 

224 C06547 C2H4 Ethylene 3 3 Bui 

225 C06548 C2H4O Ethylene oxide 3 1 Bui 

226 C06593 C6H11NO epsilon-Caprolactam 1 6 Bui 

227 C06813 C6H5NO2 Nitrobenzene 1 6 Bui 

228 C08063 C6H8O2 1,4-Cyclohexanedione 1 4 Bui 

229 C10833 C9H10O5 Syringic acid 0.66667 7 Bui 

230 C11506 C3H6O (R)-1,2-Epoxypropane 2 4 Bui 

231 C11507 C3H6O (S)-1,2-Epoxypropane 2 4 Bui 

232 C16028 C15H24 Amorpha-4,11-diene 0.4 1 Bui 

233 C16074 C8H7N Phenylacetonitrile 0.75 2 Bui 

234 C16521 C5H8 Isoprene 1.2 1 Bui 

235 C17277 C15H24 (+)-Valencene 0.4 1 Bui 

236 C00072 C6H8O6 Ascorbate 1 5 Fod 

237 C00741 C4H6O2 Diacetyl 1.5 2 Fod 

238 C00755 C8H8O3 Vanillin 0.75 9 Fod 

239 C00810 C4H8O2 (R)-Acetoin 1.5 1 Fod 

240 C00852 C16H18O9 Chlorogenate 0.375 4 Fod 

241 C01613 C24H42O21 Stachyose 0.25 3 Fod 

242 C01767 C10H14O (-)-Carvone 0.6 3 Fod 

243 C02477 C29H50O2 alpha-Tocopherol 0.2069 7 Fod 

244 C02483 C28H48O2 gamma-Tocopherol 0.21429 6 Fod 

245 C05629 C9H10O2 Phenylpropanoate 0.66667 3 Fod 

246 C06672 C8H8O4 Vanillate 0.75 12 Fod 

247 C08604 C21H21O11 Chrysanthemin 0.28571 9 Fod 

248 C14151 C27H46O2 delta-Tocopherol 0.22222 5 Fod 

249 C01500 C10H18O Geraniol 0.6 1 Agr 

250 C01566 CH2N2 Cyanamide 3 1 Agr 

251 C04720 C9H9NO5 DIMBOA 0.66667 8 Agr 

252 C05851 C9H6O2 Coumarin 0.66667 7 Agr 

253 C11383 C10H14O (+)-(S)-Carvone 0.6 3 Agr 

254 C16141 C15H24 (+)-Germacrene A 0.4 1 Agr 
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255 C16142 C15H24 (-)-Germacrene D 0.4 1 Agr 

256 C00209 C2H2O4 Oxalate 3 1 Others 

257 C00488 CH3NO Formamide 6 2 Others 

558 C00492 C18H32O16 Raffinose 0.33333 2 Others 

259 C00530 C6H6O2 p-Benzenediol 1 1 Others 

260 C00751 C30H50 Squalene 0.2 1 Others 

261 C01108 C6H6O3 1,2,3-Trihydroxybenzene 1 6 Others 

262 C01412 C4H8O Butanal 1.5 1 Others 

263 C01438 CH4 Methane 6 6 Others 

264 C01548 C2H2 Acetylene 3 1 Others 

265 C01659 C3H5NO Acrylamide 2 5 Others 

266 C01732 C5H6O4 Mesaconate 1.2 2 Others 

267 C01750 C21H20O11 Quercitrin 0.28571 10 Others 

268 C02048 C12H22O11 Laminaribiose 0.5 1 Others 

269 C03044 C4H10O2 (R,R)-Butane-2,3-diol 1.5 2 Others 

270 C03046 C4H10O2 (S,S)-Butane-2,3-diol 1.5 3 Others 

271 C05552 C16H28N4O4S Biocytin 0.19355 1 Others 

272 C05688 C3H7NO2Se L-Selenocysteine 2 1 Others 

273 C05979 C3H8O Propane-1-ol 2 2 Others 

274 C06771 C6H15NO3 Triethanolamine 1 2 Others 

275 C06772 C4H11NO2 Diethanolamine 1.5 1 Others 

276 C07565 C8H9NO Acetanilide 0.75 2 Others 

277 C08620 C27H31O15 Cyanidin 3-O-rutinoside 0.22222 14 Others 

278 C08639 C27H31O16 Cyanin 0.22222 10 Others 

279 C09665 C15H24 alpha-Farnesene 0.4 1 Others 

280 C09666 C15H24 beta-Farnesene 0.4 1 Others 

281 C09699 C15H24 Longifolene 0.4 1 Others 

282 C09814 C7H5N Benzonitrile 0.85714 3 Others 

283 C12627 C27H30O14 Rhoifolin 0.22222 10 Others 

284 C16315 C27H31O16 Tulipanin 0.22222 12 Others 
* The maximal yield is expressed as mmol of a target metabolite produced per mmol glucose.  

ⱡ Application abreviations are Pharmeceuticals: Pha; Perfume and Cosmetics: Per and Cos; Building 
blocks: Bui; Food industry: Fod; Agriculture: Agr.  
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