
Designing Efficient Solvers for Large Scale Elliptic PDEs

by

Haixiang Liu

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2019

Date of final oral examination: Jan/10th/2019

The dissertation is approved by the following members of the Final Oral Committee:
Eftychios Sifakis, Associate Professor, Computer Sciences
Dan Negrut, Professor, Mechanical Engineering
Michael Gleicher, Professor, Computer Sciences
Matthew Sinclair, Assistant Professor, Computer Sciences

i

For all of my wonderful family, friends, and mentors, who have borne with me in
the past six years.

ii

acknowledgments

I want to thank my advisor Prof. Sifakis for the guidance and instructions,
and for giving me the freedom to experiment in my own ways. Besides
my advisor, I would like to thank the rest of my thesis committee: Prof.
Negrut, Prof. Gleicher, and Prof. Sinclair, for their time and engagement.
Also, I would like to thank Mridul Aanjaneya, Nathan Mitchell, Bo Zhu,
and Yuanming Hu for their contributions to the projects presented in this
thesis.

Last but not least, I want to thank my family for supporting me studying
oversea. Hope that I can see you soon.

This work was generously supported by the following grants and fund-
ing sources: NSF grants IIS-1253598, CCF-1533885, CCF-1423064, IIS-
1407282, CMMI-1644558, CCF-1533753, CCF-1533885, IIS-1763638, CCF-
1812944.

iii

contents

contents iii

list of tables vi

list of figures vii

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis . 3
1.3 Scope of the Study . 3
1.4 Main Contributions . 4
1.5 Related Technologies . 6
1.6 Outline . 9

2 Numerical Solvers in Physics Based Simulation 11
2.1 Multigrid Method Overview 12
2.2 Construction of the Multigrid Hierarchy 13
2.3 Geometric Coarsening . 14
2.4 Garlerkin Coarsening . 16
2.5 Multigrid V-cycle . 19
2.6 Choices of Smoother . 21
2.7 Convergence Metrics . 23

3 A Schur-complement Domain Decomposition Solver for Multi-
accelerator Equipped Platform 29
3.1 Features of Multi-accelerator Equipped Platforms 29
3.2 Related Work . 31
3.3 Domain Decomposition as Divide-and-Conquer 33

iv

3.4 The Classic Schur Complement Method 35
3.5 A Schur-Complement Preconditioner 39
3.6 The interface Schur-complement system 42
3.7 Implementation Details . 50
3.8 Application in Incompressible Free Surface Flow 53
3.9 Examples and performance benchmarks 54
3.10 Discussion . 55

4 Narrow-Band Topology Optimization on a Sparsely Populated
Grid 61
4.1 Related Work . 61
4.2 Topology Optimization Overview 65
4.3 Main Contributions . 66
4.4 Method Overview . 68
4.5 Sparsely Populated Grid Structure 68
4.6 Multigrid Solver . 69
4.7 Multigrid Solver Validation . 80

5 Stencil Aware Galerkin Coarsened Multigrid for Linear Elasticity 83
5.1 Related Work . 83
5.2 Selection of Coarse Grid Nodes and Prolongation Operator Sparsity 85
5.3 Building the Prolongation Operators Using Local Problems . . . 88
5.4 Multigrid Method with Augmented Variables 92
5.5 Rotational Degrees of Freedom in 3D 97
5.6 Construction of the Multigrid Hierarchy 102
5.7 Prolongation at Coarse Level 102
5.8 Building Prolongation Operator using Stencil Collapse 103
5.9 Dirichlet Condition Coarsening 106
5.10 Choice of Smoother . 107
5.11 Stencil Aware Multigrid as Preconditioner 108
5.12 Solver Convergence Analysis 108

v

5.13 Limitations and Future Work 113

6 Discussion 114
6.1 Modern Hardware Features . 114
6.2 Program Design Consideration 115
6.3 Tuning Numerical Elliptic PDE Solvers for Modern Hardware . 116
6.4 Challenges of Large Scale Simulation 120
6.5 Limitations and Future Work 122

References 124

vi

list of tables

4.1 Comparison of the final residuals using different precision
schemes . 82

vii

list of figures

1.1 Illustration of a divide-and-conquer algorithm using multiple
GPUs . 4

1.2 A cross section of the interior of a wing structure generated by
topology optimization . 5

1.3 The complex density field of a bird beak created by topology
optimization . 5

2.1 A finite difference Poisson stencil on the domain boundary . . 15
2.2 Geometric coarsening of a simulation domain 16
2.3 Multilinear prolongation operator in 1D 17

3.1 High resolution simulation examples created using the domain
decomposition method . 30

3.2 Illustration of the domain decomposition method 35
3.3 An smoke simulation example in which smoke is injected from

the bottom of a cylinder, and forced through a twisted bundle
of cylindrical holes . 43

3.4 Illustration of uniform discretization and our adaptive approx-
imation . 48

3.5 Free-surface simulation of water through a snake-shaped channel 50
3.6 Convergence profiles comparison of DDPCG 53
3.7 Simulation of water poured in a pool with multiple immersed

objects . 54
3.8 Simulation of smoke flow in a network of interconnected vessels 58
3.9 Timing information for domain decomposition examples . . . 60

4.2 An bridge structure generated by topology optimization . . . 62
4.1 1.04 billion topology optimized bird beak 64
4.3 Illustration of VectorGet operation on SPGrid 73

viii

4.4 Illustration of two successive prolongation operations on a
Kronecker delta function . 74

4.5 Reordering of the SPGrid during colored Gauss-Seidel iterations 77
4.6 An topology optimized wing structure 79
4.7 Convergence plot at different topology optimization iterations

at different resolutions . 80

5.1 Illustration of the prolongation stencil sparsity in 2D 87
5.2 Illustration of the neighborhood of a given fine node for the

local problem . 89
5.3 A 2D illustration of a linearized rotational degree of freedom . 94
5.4 Illustration of interpolating a fine node that is centered at a

coarse cell . 96
5.5 Illustration of a face centered fine node and the classification

of its one-ring neighbors . 101
5.6 An illustration of the synthetic testing domain in 2D 109
5.7 Convergence plot of two level multigrid 110
5.8 Convergence plot for the bird beak example 111
5.9 Convergence plot for the 40M bird beak example using the 4

different methods. 112

ix

abstract

Numerical simulation of physical phenomena has long been of interest in
the area of mechanical engineering, physics, and in recent years, computer
graphics. Recent advances of computation hardware have opened up
new opportunities for improving numerical simulations in terms of both
scale and performance. However, the heterogeneity of modern hardware
has imposed unique challenges that limit the utilization of computation
hardware using the traditional programming paradigm. This dissertation
investigates the design of efficient Poisson and linear elasticity solvers
for modern hardware to demonstrate design practices and principles for
utilizing modern hardware in the context of numerical solvers.

1

1 introduction

1.1 Motivation

Physics based simulation originated in the field of engineering. For ex-
ample, aerodynamic simulation has been wildly used in aircraft design.
In addition, the simulation of elasticity has been employed for designs
of large scale structures, such as bridge or skyscrapers. In recent years,
physics based simulation, which we will simply refer to as simulation in
this document, has also been applied in the field of computer graphics.
The simulation of smoke and water has been ubiquitous in the field of spe-
cial effects. Soft body simulations have been integrated into the standard
animation pipelines.

Simulation with billions of active degrees of freedom marks a special
milestone. It is not merely an artificial milestone in terms of magnitude,
but it also has implications for the fields of visual effects and engineering.
For the field of visual effects, billions of active voxels, with the dominating
axis’ resolution in the order of thousands, allow the capture of pixel level
details in feature films. On the engineering front, the recent emergence of
commercial 3D printers has rekindled interest in topology optimization,
as accessible printers allow the manufacturing of the optimized structures.
Billion active voxels topology optimization creates details that are at the
same level at the commercial printer resolution.

Until recently, simulations of active voxels in the order of billions had
only been achieved using clusters. In the feature film The Good Dinosaur,
Reisch et al. (2016) simulated the river in sections, each assigned to a
cluster, with the largest sections of the resolution 80000× 10000× 3000.
In earlier work by Henderson (2012), a simulation of a tornado at the
resolution 300× 300× 1200 was achieved using a shared memory system.
For engineering applications, giga-voxel topology optimization has been

2

recently achieved by Aage et al. (2017), utilizing 8000 cores.
Resolution is an important factor for simulations. What is the strategy

for maximizing the simulation resolution using a single-chassis computa-
tion platform? This document aims to tackle this question. Maximizing
the simulation resolution extends beyond minimizing memory footprint.
With the resolution scaling, domains with more complex boundary condi-
tions and higher variance of material distribution emerge. The problems
of fluid simulation with complex boundaries, and of elasticity simulation
with highly varying material properties, are examined in this document.
As the complexity of the domain increases with the resolution, the exist-
ing solvers face the challenge of solving the equation with good accuracy
within a reasonable time frame. One of the major issues this dissertation
aims to address is the poor solver convergence rate for high complexity
problems. Before we venture into more details of how this is achieved, we
will first cover the features of modern hardware.

In recent years, available computational power in workstations has
greatly advanced. This has been achieved not by increasing core speed,
but raising core count, widening SIMD (same instruction multiple data)
width (SSE to AVX2, to AVX512), deepening the level of memory hierar-
chy (MCDRAM in Knights Landing), and bus interconnected accelerators
(Xeon Phis and GPUs). These changes of hardware have opened up new
opportunities in re-designing algorithms for numerical simulations that
adapt to these paradigms.

This document presents a set of techniques and algorithms for solving
large scale elliptic linear equations that emerge from the simulations of
physical phenomena targeted for modern hardware. They are demon-
strated by adapting and redesigning solvers for two specific problems:
homogeneous Poisson and heterogeneous linear elasticity, both discretized
on a Cartesian grid. The solvers presented in this thesis has enabled simu-
lations using billions of voxels on a single workstation. Such scale not only

3

provides a stunning level of visual detail and higher accuracy in solution,
but also exposes the limitations of the existing iterative solvers.

Targeting these discoveries from the first two projects presented in the
thesis, the last part of this thesis proposes a novel geometric multigrid
method with augmented rotational degrees of freedom for linear elasticity
that address the slow convergence issue of standard multigrid precondi-
tioned conjugate gradient solvers on domains with complex geometry.

1.2 Thesis

The progression of computation power of modern processors has shifted
towards the direction of more parallelism and more heterogeneity. In
pursuit of higher resolution simulations, new paradigms for designing
solvers are needed to take advantage of this change. This document uses
concrete designs of two solvers to demonstrate how to adapt to these new
paradigms. The solvers are benchmarked and compared with the peak
theoretical throughput of the platform to illustrate their efficiencies.

With the achievement of higher resolutions, the limitations of existing
numerical methods are also explored. This document also proposes new
algorithms that address these limitations and extend the boundaries of
existing capabilities. As a mark of success, throughout this thesis, we
evaluated the convergence and performance properties of the proposed
solvers using domains with billions of degrees of freedom.

1.3 Scope of the Study

For large scale numerical simulations, the most time consuming step is
commonly solving linear systems. This thesis work focus on techniques
on solving large linear systems that emerge from numerical simulations.
We evaluate and compare our proposed techniques based on their perfor-

4

mance, complexity, and convergence rate with well established existing
method multigrid to demonstrate our advantage.

1.4 Main Contributions

In this part, an overview of the three major contributions in this thesis will
be presented.

fedcba

Figure 1.1: Illustration of a divide-and-conquer algorithm for solving
imcompressible flow problem on a heterogenous server

An Algorithm for Utilizing the Computational Power of Multiple GPUs
on A Large Memory System Large scale simulations that require mem-
ory exceeding the aggregate capacity of the GPUs are challenging for
heterogeneous platform based numerical solvers. They typically need
frequent global synchronization and access to non-local memory if the
data does not fit on the GPUs. A novel divide-and-conquer algorithm
for solving homogeneous Poisson problems is presented. It targets the
minimization of frequency and amount of data that is communicated
across GPUs. This algorithm not only has a lower solve time, but also
significantly improves on the convergence rate on large irregular domains.

5

Figure 1.2: A cross section of the in-
terior of a wing structure generated
by topology optimization

An Efficient Vectorized Linear
Elasticity Solver With a Mixed-
Precision Scheme for Topology
Optimization Driven by the scale
demanded by topology optimiza-
tion workload, we designed an ef-
ficient linear elasticity solver. With
resolution scaling as the main ob-
jective, the solver is designed to be
minimal in memory footprint and
also fully utilized AVX-512 instructions that are featured in modern CPUs
for performance. The key piece of the puzzle is a collection of techniques
that allows the usage of aligned vector operation on the sparse data struc-
ture, SPGrid. For high resolution simulation, single-precision is insuf-
ficient in accuracy while double-precision takes twice the memory and
computational time. We designed a mix-precision scheme that only re-
quires a friction of the storage of double-precision while maintaining its
accuracy.

Figure 1.3: The complex density field
of a bird beak created by topology
optimization

A Stencil-Aware Geometric Multi-
grid Algorithm For Linear Elas-
ticity One of the advantage of
high resolution simulations is the
amount of detail that they are capa-
ble of capturing. But those complex
geometrical details can severely im-
pair the convergence rate of the ex-
isting multi-linearly interpolated
multigrid solver. To address this
convergence problem for high res-

6

olution linear elasticity simulation, a stencil-aware geometric multigrid
algorithm is proposed. This new method can reduce residual by approxi-
mately half every iteration even with the most irregular domains.

1.5 Related Technologies

Several existing technologies are the main building blocks for the projects
presented in this thesis, namely: Sparse Paged Grid(SPGrid), Matrix Free
Design of Linear Operators, Multigrid(MG), and Domain Decomposition
Method. In this sections, I will give a brief introduction about those
concepts.

Sparse Paged Grid

The simulation domains we targeted in this thesis are sparse. In one of the
examples, the simulation domain is of the size 81922×4096 with 1.2 billion
active cells, a mere 4% occupancy. Sparse Paged Grid, or SPGrid, has the
capability of representing sparse domain while maintaining computational
efficiency. This is the key reason for which it was chosen as the main data
structure through out this thesis.

Sparse Paged Grid, or SPGrid, was introduced by Setaluri et al. (2014).
It is a sparse data structure that stores data on a Cartesian grid using the
unit of blocks. A common block size is 4× 4× 8. Each block is associated
with one or multiple physical memory page(s). If a block is active, i.e. one
of the cell of the block is an active voxel in the simulation domain, the
corresponding memory page(s) will be allocated in the physical memory.
Otherwise, it will only occupy virtual memory without any physical foot-
print. SPGrid utilizes the virtual memory for its sparsity management,
which eliminates additional memory address look up which are needed
for traditional tree like sparse data structure. This makes its access cost
close to a cache optimized dense uniform grid. The biggest drawback

7

of using a Cartesian grid discretization such as SPGrid is its inability in
accurately capturing of the boundary of a domain. Though this document
itself does not deal with this inaccuracy. There are many previous works
that target this limitation in both the field of elasticity [Zhu et al. (2012)],
and fluid simulation [Sethian and Smereka (2003)].

Matrix Free Design of Linear Operators

The targeted resolution is in the order of billions of active voxels. High
end PCs nowadays usually have less than 512GB of memory. We can
not afford to store the system matrix of the linear system created by the
discretization. As an illustration of the memory footprint of the system
matrix, for a Poisson problem, the number of non-zero entries in the matrix
is 7 times the total degrees of freedom(4 if we only store the symmetric
part). For linear elasticity problem that number is drastically increased to
81 times the total degrees of freedom (42 if we only store the symmetric
part). Therefore, we use the technique of matrix free operations, to emulate
the matrix multiplication without storing it by assembling the matrix on
the fly.

Besides the memory saving benefit, matrix free operations can also
improve performance. When a matrix is given and stored, matrix-vector
multiply usually requires only one multiplication and one addition per
memory access. This creates functions that are heavily bound by memory
access. When using matrix free operations, the functions are no longer
bounded by reading matrix entries from memory. In turn, we can greatly
improve performance(see Chapter 3 and Chapter 4).

Of course, the performance gain from using matrix free operation is
not free. To implement matrix free operations, it requires special design
of our computation kernels for each imposing problem.

8

Multigrid

The goal of upscaling simulation can be hindered if the solve stage be-
came more expensive as the resolution increases. Therefore, we want to
select solvers that have approximatelyO(N) complexity as we go to higher
resolutions.

Multigrid was introduced by Brandt (1977) to solve linear systems
discretized from elliptic partial differential equations. It may seem to be a
narrow target. The good news is many equations emerged from physical
phenomena are from this category. Unlike conjugate gradient, multigrid
is not a fixed algorithm, but a principle for designing efficient solver for
elliptic PDEs. More thorough overview of multigrid will be given in
Chapter 2. Here I will just highlight some key features of multigrid:

• An ideal multigrid is proven to be able to reduce error a constant
rate. With each iteration of cost ofO(N), multigrid has the potential
to be a O(N) complexity solver. However, in reality, multigrid can
not always achieve this, or worse, in most cases it can not.

• Each component of a multigrid grid solver is relatively light-weight.
They often do very small amount of computation for each memory
access. It makes them very efficient for hardware has a lot of memory
bandwidth such as GPUs, but it also makes them extremely inef-
ficient to offload each stage to multiple GPUs if the GPUs would
require constant access of remote memory and global synchroniza-
tions without much computation.

• Multgrid can be used as a preconditioner for conjugate gradient.
It can further improve its convergence rate. This is referred to as
MultiGrid Preconditioned Conjugate Gradient or MGPCG for short.

• Multigrid is a design principle. Each implementation of multigrid
differs with the different continuous equation, discretization and

9

data structure chosen, and various components of the multigrid we
select (smoothers, prolongations, coarsening operators, see Chap-
ter 2). For optimal performance, in each project we have to re-design
and re-implement the multigrid solvers based on all the criteria
above.

Domain Decomposition Method

Based on multigrid theory we can design solvers with the potential of linear
complexity. But as multigrid solvers require frequent synchronization
and global memory access, it is difficult for them to utilize heterogeneous
platform, for instance a multi-GPU equipped computer. In contrast, the
domain decomposition method also has the potential of linear complexity.
By dividing the simulation domains into smaller parts, either overlapping
or non-overlapping, each parts can be solved in isolation. Therefore if we
partition the domain into small pieces with each piece fitting on a single
GPU, we can eliminate the need for frequent synchronizations.

But to retain domain decomposition’s linear complexity and conver-
gence rate, there are many complex pieces need to be considered. Those
details will be presented in Chapter 3.

1.6 Outline

The remaining chapters of the documents are divided as the following.
Chapter 2 provides an overview of state of the art numerical solvers for
simulation, specifically the class of solvers named multigrid methods.
Chapter 3 presents a novel domain decomposition method that utilizes
multi-accelerator equipped platform for solving Poisson equations. Chap-
ter 4 presents a SIMD optimized solver for linear elasticity that is designed
for minimizing memory footprint and maximizing computational through-
put of modern hardware. Chapter 5 presents an stencil aware multigrid

10

method that overcomes the slow convergence issue when solving linear
elasticity problems with complex domain using traditional solvers. Chap-
ter 6 concludes this thesis by revisiting the contributions brought by this
dissertation and looks into the future work suggested by the limitations
of the methods presented.

11

2 numerical solvers in physics based simulation

In the pipeline of physics based simulation, the complexity of the majority
of the stages is O(N), where N is the number of unknowns, while the
complexity of the solve stage can be as high as O(N2). For high resolution
simulation, the solve stage can often take over 90% of the simulation time.
There are two major categories of numerical solvers: direct solvers and
iterative solvers.

Direct solvers provide solutions that approach the accuracy of ma-
chine precision, and they generally operate in sparse matrix format (for
instance, Compressed Sparse Column). Therefore, they can be used for
arbitrary discretization and problems. However, they have the minimal
computational cost of O(N2) and memory footprint of O(N 4

3) or higher.
This super-linear cost makes direct solvers unfeasible for high resolution
simulations. But for small scale simulations, direct solver algorithms such
as Cholesky factorization are attractive for their accuracy and robustness.

Iterative solvers, on the other hand, as the name suggests, provide a
solution that converges to the exact solution with each iteration. Some
iterative solvers, such as Conjugate Gradient Method [Nocedal and Wright
(2006)] and Generalized Minimal Residual algorithm [Saad and Schultz
(1986)], mathematically speaking, can achieve the exact solution at theNth
iteration. At the cost of O(N) per iteration, it will give the exact solution
with O(N2) cost. But in practice, due to numerical drift, these algorithms
will require restarts for large problems, and only achieve the solution
asymptotically.

For large problems, an iterative solver is preferred over direct solver for
two major reasons: 1. the memory footprint of an iterative solver is usually
O(N), which allows larger problems to fit into memory. 2. Though iterative
solve can potentially takes longer to achieve solution at numerical limit,
the option to terminate early for an approximate solution is attractable

12

when computation time is limited. But at higher and higher resolution,
iterative solvers can take considerably longer to converge and sometimes
even stagnate (See results in Chapter 4). If terminated too early, the poorly
approximated solution can lead to nonphysical results, due to that the
solution does not satisfy the governing equation.

2.1 Multigrid Method Overview

Multigrid method was proposed by Brandt (1977). The multigrid funda-
mental idea lies as follows: we start with a set of gridsG0,G1,...,GM, which
are all discretizations of the same domain Ω. Each higher level consists of
coarser elements. In our uniform grid discretization, in 1D, if the nodes in
G0 lie on points (0,h, 2h, 3h, 4h...). We can construct the next level G1 as
nodes on points (0, 2h, 4h, 6h, 8h...).

Let our continuous PDE of the boundary value problem take the form:

LU(x) = F(x), inΩ,ΛU(x) = Φ(x), on the boundary ∂Ω (2.1)

Here, L and Λ are the differential operators that are on the interior of the
domain and the boundary respectively. U(x) is the solution we seek. F(x)
andΦ(x) are the loading condition that are given. We can now write the
discretized PDE at each level k as:

LkUk(x) = Fk(x), forx ∈ Gk,ΛkUk(x) = Φk(x), forx ∈ ∂Gk (2.2)

Now, Lk and Λk are linear operators and can be perceived as matrices.
We are interested in acquiring the solution at the finest level. The main
idea is, if at kth level, the solution Uk(x) is a good approximation to the
continuous U(x). We can use the kth level solution as a potential guess
for the k− 1 level. Then apply a correction routine called smoother that is
O(|Gk−1|) cost to bring the guess close to solution. This process, sometimes

13

referred to as V-cycle or W-cycle, is repeated untilU0(x) is considered close
enough to the solution.

Multigrid has the property that each iteration can reduce the error
by at least a constant factor W. That is, |ei+1|

|ei|
< W. Here we take |e| as

the L∞ norm of e. What the value ofW is depends on the PDE, how the
discretization of each level is constructed, and how potent the smoother
is. The convergence property of multigrid will be elaborated on the later
section. But we can see that if we seek to reduce the error by 6 orders
of magnitude, we will need − logW 106 iterations to converge, that is a
constant. For instance, ifW = 0.5, multigrid will take at most 20 iterations
to converge. But, of course, in worse cases, for example, whenW = 0.99,
it will take about 1400 iterations.

Now that I have introduced some fundamental multigrid concepts, let
us take a deeper look at multigrid constructions.

2.2 Construction of the Multigrid Hierarchy

To construct the discretized hierarchical operators in Equations 2.2, there
are two common schemes, geometric coarsening and Galerkin coarsen-
ing. In work of Zhu et al. (2010b) and McAdams et al. (2010), geometric
coarsening was used to construct hierarchical operators. For the domain
decomposition solver, geometric coarsening based multigrid is used as its
building block, see Chapter 3.

But in many cases, only the top level operator is provided to the solver,
and the underlying PDE is inaccessible, re-discretization of the PDE with
a coarser grid(or mesh) is not an option. In those cases, Galerkin coars-
ening is usually used for constructing the hierarchy, such as in Dendy
(1982), Brezina et al. (2001), Dohrmann (2007). This is also our method
for the multigrid construction in our SIMD-optimized solver presented in
Chapter 4.

14

When the underlying PDE is unavailable, there is the possibility of
acquiring the geometric coarsened operator through homogenization of
Galerkin coarsened operator which is demonstrated in previous work
by Moulton et al. (1998). But this aspect is not the focus of this work.
Therefore, I will leave out the discussion of homogenization.

2.3 Geometric Coarsening

Geometric coarsening refers to the method of constructing the Multigrid
hierarchy through re-discretization with different grid size. It has been
proven effective for both homogeneous Poisson [McAdams et al. (2010)]
and homogeneous elasticity [Zhu et al. (2010b)]. Here, we will take fi-
nite difference Poisson discretization as an example to demonstrates the
geometric coarsening principles and its limitation. For more details, we
would refer the reader to McAdams et al. (2010).

The continuous PDE of homogeneous Poisson can be written as:

∆p(x) = f(x) inΩ ∈ R3 (2.3)

p(x) = α(x) on ΓD, pn(x) = β(x) on ΓN

For a finite difference discretization on a uniform grid of size h, we de-
note the sampling points as {i, j,k} ∈ N3. The sampling point corresponds
to geometric location {ih, jh,kh} ∈ Ω. The finite difference discretized
operator for the interior can be written as:

∑
i ′,j ′,k ′∈N[i,j,k]

p[i ′,j ′,k ′] − p[i,j,k]

h2 = f[i,j,k] (2.4)

N[i,j,k] = {(i± 1, j,k), (i, j,k± 1), (i, j,k± 1)}

15

Figure 2.1: A finite difference Poisson stencil on the boundary. White cells
are interior cells, i.e. they are degrees of freedom. Blue cells are Dirichlet
conditions, or essential conditions, that their value are prescribed. Grey
cells are exterior cells that are not part of the domainΩ. The face between
gray and white cell describes a Nuemann condition, or a natural boundary.

It is a 2nd order accurate discretization. To show this, we can write in 1D:

∂2p

∂x2 (x0) =
(p(x0 + h) − p(x0)) − (p(x0) − p(x0 − h))

h2 +O(h2)

As for boundary conditions, either Nuemann/nature boundary or Dirich-
let/essential boundary, we can discretize the operator as shown in Figure
2.1. It is only 2nd order accurate, if the boundary condition is perfectly
aligned with cell. But generally multigrid is used as preconditioner. For
that purpose, this discretization is proven to be sufficient for precondition-
ing even with non-cell align boundaries by Aanjaneya et al. (2017).

But even though we may assume that the boundary conditions are
cell aligned at the finest level, this may not hold true for the coarse levels,
when the cell size doubles with each level. Figure 2.2 demonstrates the
heuristic for coarsening boundary conditions. Note that after coarsening,
the coarse level discretization may not be of the same order of accuracy to
the continuous PDE as the finest level at the boundaries. These inconsistent
boundary conditions break the principle that the each level of the multigrid
hierarchy should be the discretization of the same continuous PDE. To

16

Figure 2.2: Geometric coarsening of the simulation domain. Left: if one of
the cells is Dirichlet cell, we will coarsen it as Dirichlet cell at the coarse
level, Right: otherwise if one of the cells is interior cell, it is coarsened as
an interior cell at the coarse level.

compensate this discrepancy, additional boundary smoothing iterations
need to be introduced to stabilize the multigrid.

2.4 Garlerkin Coarsening

Galerkin coarsening, also sometimes referred to as algebraic coarsening, is
usually the preferred method for handling complex geometries or hetero-
geneous domains. It was summarized by Brandt (1986). Many algebraic
algorithms assume only the top level linear operator is available in matrix
form. In such case, the first step of the algorithm is to select the coarse
grid DOF based on the matrix given. In this dissertation, we choose the
coarsened DOF the same way as in geometric multigrid, that is, coarse
DOF coincide with every other fine DOF in each dimension. If readers
are interested in the coarse grid selection, we direct them to Brandt (1986),
Vaněk et al. (1996), and Griebel et al. (2003).

After the coarse grid selection, a prolongation operator is constructed.
It is a linear operator that interpolates fine DOF values from coarse DOF.
The most common prolongation operator is multi-linear interpolation. In
1D, it can be illustrated as Figure 2.3.

17

Figure 2.3: Multilinear prolongation operator in 1D. Top is the fine grid,
on the bottom is the corresponding coarse grid. The value from corre-
sponding fine nodes is copied from the coarse node, if they coincide in
the domain. Otherwise the fine node value is interpolated from the two
closest coarse nodes each with a weight of 0.5.

We can also write this in matrix form:

P =


1 0 0

0.5 0.5 0
0 1 0
0 0.5 0.5
0 0 1


The interpolation process is then:

uf = Puc (2.5)

Here xf is the fine grid value and xc is the coarse grid value. In the case of
multi-level hierarchy, we can denote the prolongation operator from level
k+ 1 to level k as Pk. Therefore:

uk = Pkuk+1 (2.6)

Here, P is a rank deficient matrix, which means when prolongating from a
coarse level to a fine level, the vector at fine level has a higher dimensional-
ity and is in general not the correct solution of the fine level discretization.

18

Therefore, smoothers are used to correct this error. This implies that the
smoother should be selected based on error that is invisible to coarse grid,
and vice versa, coarse grid should correct error modes that are hard to re-
duce by the smoother. In the next section we will discuss more this duality.
Multilinear interpolation has proven to be effective prolongation operator
for homogeneous and isotropic PDEs [McAdams et al. (2010); Aanjaneya
et al. (2017); Zhu et al. (2010b)]. It is also the standard interpolation scheme
for geometric multigrid.

Now we have defined the prolongation operator Pk. The Galerkin
coarsening process construct the k+ 1 operator Lk+1 as follows:

Lk+1 = (Pk)TLkPk (2.7)

The coarse level correction can be written as(for solving Lu = f):

r = b − Lu0

bc = PT r

uc = (Lc)−1bc

u∗ = u0 + Puc

Here, superscript c indicates unknowns and matrices from the coarse grid,
u0 is the current guess of the fine level solution, and u∗ is the new guess
of the fine level solution after the coarse correction.

Lemma 2.1. The coarse grid correction of a Galerkin coarsened hierarchy is a
projection.

Proof. This lemma states that when applying coarse correction twice, the
second correction process will create the same result as first one.

19

Let us start with u∗ = u0 + Puc.

r∗ = b − Lu∗

b∗c = PT r∗

= PT (b − Lu∗)

= PT (b − L(u0 + Puc))

= PT (b − Lu0) − PTLPuc

= PT r − Lcuc

= bc − bc

= 0

We can see that the second correction process will have 0 as right hand
side. Therefore no correction will be produced.

In general, we have rank(Lk+1) < rank(Lk). Lemma 2.1 implies that
the coarse grid correction is projecting the fine solution onto a subspace
and it is solved within the subspace. All the fine error modes e that has
the property PTLe = 0 will be invisible to the coarse level, and rely on the
smoother for correction.

2.5 Multigrid V-cycle

Now we have constructed the hierarchy, let’s take a look at a multigrid
V-cycle.

20

Algorithm 2.1 Multigrid V-cycle
u0 = 0
r0 = b0 − L0u0

while |r0| < threshold || max_iteration has been reached do
for i := 0 to k - 2 do

smooth(ui, Li, bi);
ri = bi − Liui
bi+1 = (Pi)T ri

end for
uk−1 = (Lk−1)Tbk−1

for i := k - 2 to 0 do
ui+ = Piui+1

smooth(ui, Li, bi);
end for
r0 = b0 − L0u0

end while

The process of rather straight forward: at each level, first, we reduce
errors that are (hopefully) invisible to the coarse grid using a smoother.
Then the residual of the remaining error is computed and restricted to
the coarse level. This process is repeated until the bottom level is reached
where the problem is small enough to be solved using a direct solver. This
coarse level correction is than prolongated to each finer levels, then the
smoother is applied again until this process reaches the top. The multigrid
V-cycle can be repeated until satisfactory convergence is reached or the
max number of iterations has reached.

This multigrid iteration has an asymptotic convergence, that is, after
enough iterations, the ratio between the residual norm at iteration k and
iteration k+1 will converge to a constant [Brandt (1977)]. After introducing
the smoother in the next section, I will give more concrete examples of the
metrics that are used for evaluating the asymptotic convergence rate.

21

2.6 Choices of Smoother

The term smoother generally refers to a class of iterative solvers that use
only local information. The cost of each smoother application is compa-
rable to a matrix multiplication. Common smoothers include (but not
restricted to) Jacobi method, Gauss-Seidel method, Richardson iteration,
and successive over-relaxation(SOR) method. As the simplest, I will take
Richardson iteration as example. Richardson iteration can be written as
(using notations from before):

r = b − Luk
uk+1 = uk + r

Here uk is the solution at iteration k. If we define u∗ the solution, that is

Lu∗ = b

We can write the error of the current solution as

ek = u∗ − uk

And the residual is then
rk = Lek

Assuming L is symmetric positive definite. We write the eigenvectors of
L as vi, that are orthogonal to each other. Then we can write the error as
combination of the eigenvectors:

ek =
∑
i

γki vi

22

Here γki are the length when project ek onto vi. We can rewrite the smooth-
ing iteration as:

uk+1 = uk + Lek
uk+1 − uk = Lek

(u∗ − uk) − (u∗ − uk+1) = Lek

ek − ek+1 = L
∑
i

γki vi

ek − ek+1 =
∑
i

γki Lvi

We have Lvi = λivi, where λi is the eigenvalue associated with eigenvector
vi. Substitute it in:

ek − ek+1 =
∑
i

γki λivi

ek+1 = ek −
∑
i

γki λivi

=
∑
i

γki vi −
∑
i

γki λivi

=
∑
i

γki (1 − λi)vi

We can write in the eigenspace components:

γk+1
i = γki (1 − λi) (2.8)

That is, this smoother scales the error by each eigenspace component
with a factor of 1 − λi. That is, Richardson iteration can only converge
if λi < 1,∀ eigenvalues λi. The closer λi is to 1, faster that error mode is
reduced. Other smoothers suppress eigenmodes differently, but in general,
they follow the same principle: They are more effective in reducing error

23

modes associated with larger eigenvalues. Therefore, the error modes with
smaller eigenvalues should be captured by the coarse grid. Intuitively, the
smallest eigenvector that is not projected onto the coarse grid will be the
bottleneck of the convergence, and dictates the asymptotic convergence
rate. But the relation is not trivial. Given the coarse grid operator Lc is a
subspace of the fine grid operator Lf. If we can decompose an error vector
ef into two parts efc, such that ∃ec, satisfies Pec = efc, and the remainder
eff = ef − efc. i.e.:

ef = efc + eff

A good smoother in this case, would be able to effectively reduce error
mode eff, even it may potentially increase error efc.

2.7 Convergence Metrics

To better quantify multigrid’s convergence property, mathematically, it
can be measured by two metrics, summarized in Brezina et al. (2001):

M1(Q, e) :=
< (I − Q)e, (I − Q)e >

< Le, e >
(2.9)

M2(Q, e) :=
< L(I − Q)e, (I − Q)e >

< Le, e >
(2.10)

M2 is used by McCormick (1984); McCormick and Ruge (1982); McCormick
(1985). M1 is introduced by Brandt (1986). The metric measures how well
the prolongation operator is for a given error e. Q is a projection operator
that projects a fine vector ef onto a subspace that can be resolved by the
coarse grid, efc.

efc = Qef

24

Here is the formal definition of Q:

Q = PR (2.11)

P is the prolongation operator defined in the previous sections. R is a
restriction operator that computes a coarse vector ec from a fine vecotor
ef. In the context of Galerkin coarsening, if our fine grid solution is u∗

with initial guess of u0 = 0. The coarse grid vector uc can be computed as
follows:

rf = Lfu∗

bc = PT rf

uc = (Lc)−1bc

= (PTLfP)−1bc

= (PTLfP)−1PT rf

= (PTLfP)−1PTLfu∗

uc = Ru∗

So we can derive:
R = (PTLfP)−1PTLf (2.12)

By using this definition of R, we have RP = Ic. Ic is the identity matrix
of the same dimension of number of DOF in the coarse grid. That is, for
error modes that can be resolved in the coarse grid, i.e. error modes can

25

be written as ef = Pec. We have:

Qef = PRef

= PRPec

= P(PTLfP)−1PTLfPec

= P(Lc)−1Lcec

= PIec

= Pec

= ef

We can see that

(I − Q)ef = 0, if ∃ ec, s.t. ef = Pec (2.13)

But unfortunately, using this definition of R for analysis often is far too
computationally expensive as it requires the inversion of the coarse level
operator (Lc)−1. Therefore, in work by Brezina et al. (2001), an alternative
definition of R is used:

Rij =

{
1, if Xfj = Xci
0, otherwise

(2.14)

There, R is a simple injection. That is with value 1, where the coarse node
and fine node coincide in space, i.e. Xfj = Xci , where Xfj is the spacial
location of fine node j and Xci is the spacial location of coarse node i.

Lemma 2.2. The injection based R creates a valid projection Q that satisfies
Equation 2.13.

Proof. We can rearrange the fine DOFs such that fine DOFs that does not
spatially coincide with any coarse node come first, then those that coincide

26

with coarse node come after. We can write the fine vector e as:

e =

[
eff
efc

]

Accordingly, R and P can be written as:

P =

[
Pcf
Ic

]
R =

[
0 Ic

]

Q therefore become:

Q = PR

=

[
0 Pcf
0 Ic

]

Plugging into Equation 2.13:

(I − Q)e =

[
I −Pcf
0 0

][
eff
efc

]
= eff − Pcfefc (2.15)

27

If ∃ec s.t. e = Pec:

Pec =

[
Pcf
Ic

]
ec

=

[
Pcfec

ec

]
= e

=

[
eff
efc

]

Therefore:

eff = Pcfec
efc = ec

Plug into Equation 2.15:

(I − Q)e = eff − Pcfefc
= Pcfec − Pcfefc
= 0

This concludes the proof.

Lemma 2.2 states that though the Q defined above does not reflect the
real process of acquiring the coarse grid correction, it is still a valid operator
that projects a fine vector e onto the range of the prolongation operator P.
Then, in the metricsM1 andM2, the inner products< (I−Q)e, (I−Q)e >
and < L(I − Q)e, (I − Q)e >measure how well the prolongation operator
captures a given vector e, either in terms of L2 norm or the energy norm
uTLu. Note that if e can be captured exactly by the coarse grid, bothM1

andM2 are zero. On the denominator, < Le, e >measures effectiveness

28

of the smoother. In general, the larger the energy norm of an error vector
is, the more effective the smoother is. A simple example here: if e is one
of the eigenvector, the energy norm is square of the eigenvalue associated
with the eigenvector. Therefore smallerM1 andM2 are, better the quality
of prolongation is. So we can write the prolongation as a minimization
problem:

argmin
P

max
e
Mi(P, e), subject to ||e||2 = 1 (2.16)

Here i can be either 1 or 2 depends on which metric is used. But in reality
other constraints will need to be imposed on P to limit its sparsity and
the sparsity of a coarse level operator. In Chapter 5, the construction of
the prolongation P operator will be explored under the context of FEM
discretized linear elasticity. But let us first examine how can we deploy
multigrid algorithms utilizing heterogeneous platforms.

29

3 a schur-complement domain decomposition
solver for multi-accelerator equipped platform

3.1 Features of Multi-accelerator Equipped
Platforms

Modern compute platforms for scientific computing are evaluated based
on their compute power in FLOPS(FLoating Operation Per Second) and
memory bandwidth in GB/s (GibaByte Per Second). A single CPU equipped
machine, Intel® Xeon® Gold 6150 Processor for example, have 1.3 TFLOP
compute power and 120 GB/s memory bandwidth with maximum of
768GB of memory. A multi-GPU equipped machine, with 4 GTX 1080TI
for instance, can have an aggregately 44 TFLOP compute power and 1936
GB/s memory bandwidth, but only 44 GB of total memory at the same
cost. This 33x compute power and 8x memory bandwidth difference does
not come without any trade offs. Each accelerator can only operate at peak
performance for the data allocated at its local memory. Cross GPU data
access and inter CPU/GPU data access are significantly slower not only in
terms of bandwidth but also in terms of latency. PCI-E 3.0 16x bus has a
bandwidth of 16GB/s, NVLink 1.0 has a bandwidth 80 GB/s, NVLink 2.0
has 150 GB/s bandwidth. A heterogeneous platform often refers to those
type of machines in which not all resources can be accessed at the same
cost across the platform. For instance, a GPU (GTX 1080TI as an example)
may be able to access data allocated on its local memory at 484GB/s, but
when accessing data allocated on CPU, it would require communication
across PCI-E at maximum speed 16GB/s with couple of microseconds
latency.

When designing algorithms for a heterogeneous platform, the locality
of data needs to be kept in mind for best utilization of the computing

30

Figure 3.1: Left: Smoke injected into a model of the bronchi. Color il-
lustrates vorticity magnitude. Simulation contains 1.8 billion active cells,
sparsely occupying a 81922×4096 background grid. Right: Smoke injected
from the bottom of a cylinder, and forced through a metal gasket (rendered
semi-transparent) with a twisted bundle of cylindrical holes. Total of 1.2
billion active cells, in a 10242×2048 background grid.

resources. Otherwise, it will be limited by the interconnecting bus. In
such case, the single CPU platform with 140 GB/s memory bandwidth
may outperform this multi-GPU equipped machine that is limited by
its 16GB/s PCI-E bus. It should be noted that this non-uniformity of
bandwidth is not an aberration of hardware design that is likely going
away; in fact it is consistent with the fact that memory hierarchies, and
physical proximity of memory to computational units, have long given
rise to differentiation in latency and bandwidth between different parts of
the computational platform.

Unfortunately, some of the best performing solvers (in terms of conver-
gence efficiency) such as multigrid are the cases of the worst scenarios. The
building blocks of a multigrid solver, namely the smoothing routine and
transfer operators, require global synchronization after their execution
while carrying out only a very modest amount of useful computation in
between synchronization points. In particular, a Jacobi or Gauss-Seidel

31

style smoother requires no more than two passes over the data in memory,
which completes in a very small fraction of the cost incurred for transfer-
ring the data to the GPU card, or out of it upon completion. Of course, one
could take the opportunity to carry out several smoothing iterations per of-
fload operation; however, without synchronization at partition boundaries
this extra effort will hardly translate to worthwhile gains in convergence.
As a result, the benefit of the GPU offload is negated, and such large prob-
lems are better off being solved homogeneously on the CPU. Although
there might be room for implementation refinements and adaptation of
multigrid paradigms to curb this overhead, we are not aware of prior work
that has demonstrated viability of a GPU-offload paradigm for multigrid
solvers, when the problem size exceeds the memory capacity of the GPU
card(s), compare to a well-optimized CPU implementation. Our proposed
approach directly addresses this challenge: instead of executing just a
few iterations of a smoother routine, we run an entire solver routine on
the GPU for each independent subdomain we offload to it. In our case,
that extra effort does translate to accelerated convergence, and the GPU
computation is long enough to absorb the transfer cost.

In this chapter, we will examine a domain decomposition solver for
fluid simulation, that is specifically designed for heterogeneous platform
by minimizing the need for cross accelerator communication.

3.2 Related Work

Fluid simulation has been an active area of research within computer
graphics since the early work of Stam (1999); Foster and Fedkiw (2001).
Since the memory overhead associated with uniform grids quickly esca-
lates in three spatial dimensions, several adaptive techniques have been
proposed, including adaptive Cartesian grids Losasso et al. (2004); Zhu
et al. (2013); Ferstl et al. (2014a); Setaluri et al. (2014), adaptive tetrahe-

32

dral meshes Klingner et al. (2006); Chentanez et al. (2007); Ando et al.
(2013), RLE-based schemes Houston et al. (2006); Irving et al. (2006); Chen-
tanez and Müller (2011), adaptive mesh refinement (AMR) and chimera
grid schemes Dobashi et al. (2008); Tan et al. (2008); Cohen et al. (2010);
English et al. (2013a). Lagrangian methods present an interesting alter-
native because they avoid many of the numerical dissipation issues char-
acteristic of Eulerian methods. Several methods have been proposed,
including smoothed particle hydrodynamics (SPH) Solenthaler and Gross
(2011); Ihmsen et al. (2014); Bender and Koschier (2015), particle-based
schemes Adams et al. (2007); de Goes et al. (2015), position-based flu-
ids Macklin and Müller (2013), triangle meshes Wojtan et al. (2010); Thürey
et al. (2010); Da et al. (2015) and simplicial complexes Zhu et al. (2014).
However, due to their unstructured nature, these methods are unable
to leverage the regularity and parallelism potential of uniform grids. To
circumvent this issue to some extent, hybrid methods have also been pro-
posed Foster and Metaxas (1996); Zhu and Bridson (2005); Losasso et al.
(2008); Zhu et al. (2010a); Raveendran et al. (2011); Jiang et al. (2015); Chen
et al. (2015). Authors have also investigated the use of Fast Fourier trans-
forms Stam (2002), which was later extended to handle slip boundary
conditions Long and Reinhard (2009), model reduction Liu et al. (2015),
and regression forests Ladický et al. (2015).

The pressure projection step is widely accepted to be the computation-
ally dominating step in fluid simulations, and researchers have investi-
gated the design of fast solvers using coarse grids Lentine et al. (2010),
multigrid methods McAdams et al. (2010); Chentanez and Müller (2011);
Setaluri et al. (2014); Dick et al. (2016), iterated orthogonal projection Mole-
maker et al. (2008), dimension reduction Ando et al. (2015b), fast summa-
tion methods Zhang and Bridson (2014), and stream functions Ando et al.
(2015a). The concept of warm starts was recently explored in Hecht et al.
(2012)by exploiting sparsity patterns in the Cholesky factorization in ways

33

analogous to our method, albeit in the context of elasticity simulations. An
increasing number of researchers have also adopted the use of GPUs for
better computational performance since efficient solvers such as multigrid
tend to be memory-bound Ament et al. (2010); Dick et al. (2011b); Zhang
and Bridson (2014); Chen et al. (2015); Wu et al. (2016a).

Unlike previous approaches where the goal was to increase perfor-
mance on homogeneous platforms, we use domain decomposition tech-
niques to develop an efficient Krylov preconditioner whose design is tai-
lored towards maximizing performance on heterogeneous computing plat-
forms. One earlier investigation that does address heterogeneity is Jung
et al. (2013), which proposed a wavelet-based method that used GPUs
for increasing the performance of a multigrid solver hosted on the CPU.
While researchers have proposed methods classified as domain decom-
position Golas et al. (2012); Edwards and Bridson (2015), these are quite
different from ours because we work specifically in the context of Schur
complement methods Smith et al. (1996). Methods based on Schur com-
plements have been used for virtual surgery simulations Bro-nielsen and
Cotin (1996), skinning Gao et al. (2014), and subspace deformable body
simulations Teng et al. (2015); Wu et al. (2015), or fluid control Raveendran
et al. (2012).

3.3 Domain Decomposition as
Divide-and-Conquer

In this chapter, a Schur Complement domain decomposition method is
presented, the objective is to demonstrate an effective, and hopefully inspir-
ing adaptation to fluids simulation of a class of numerical techniques that
has received much more exposure in scientific computing than graphics
research. We note, however, that Schur Complement methods provide a
general framework, and not just a singular algorithm; in fact, similar to

34

multigrid methods, careful variations from the general algebraic theme
make all the difference between a given scheme being highly effective or
underwhelming for a specific application. In this vein, we consciously
restricted the scope of our investigation to just uniform discretizations of
fluids, specifically targeted the Poisson equation (although our formula-
tions should readily extend to elasticity, or other elliptic problems see, for
example, Chapter 4 and Chapter 5), and did not emphasize the implica-
tions of heterogeneous computing to other parts of the fluid simulation
pipeline.

The classical divide-and-conquer paradigm encountered in combina-
torial algorithms often presumes building blocks that accurately solve
subsets of the overall problem. In our numerical context, one of the key
opportunities we will exploit is the option to design what is not an exact
solver, but an excellent approximation of one, and subsequently use it as
a preconditioner. In this context, we will adopt a slightly different stan-
dard which we will design our “inaccurate” divide-and-conquer scheme
to satisfy. Our building block will be an inexact solver for the Poisson
equation on independent partitions of our domain, which is however
of good enough quality to be used as an excellent Conjugate Gradients
preconditioner (i.e. it would lead to convergence in a small number of
iterations, that does not significantly increase as the subdomain size grows
larger). Subsequently, our objective would be to combine such “nearly
accurate” building blocks into a global approximate solver that meets the
same benchmark, i.e. it can be used as a highly effective preconditioner
that allows CG to converge in a comparably small number of iterations
as its individual constituents. We note that,short of this standard, using
divide-and-conquer tricks can be a slippery slope and result is significantly
degraded performance.

35

fedcba

Figure 3.2: Illustration of the core concept of our method: (b) We split the
computational grid into subdomains, and independently solve them on
the GPU(s), using zero Dirichlet conditions on subdomain boundaries. (c)
Fluxes of the subdomain solutions are computed and sent to the CPU. (d)
A specially formulated system is solved on the interface, using the CPU.
This produces the exact value of the interface variables. (e) Those values
are sent to the subdomains, and set as Dirichlet conditions. (e) A final
subdomain solve on the GPU yields the global solution.

3.4 The Classic Schur Complement Method

We introduce the basic principles of the Schur complement method [Quar-
teroni and Valli (1999)] by explaining how an aggregate solver for the
pressure Poisson equation can be assembled using as subroutines two
independent solvers for two non-overlapping partitions of the entire com-
putational domain. After covering the basic theory we will detail how this
construction extends to multiple partitions, and derive a preconditioner
based on this concept in later sections.

The two-subdomain case

Ω1

Ω2

Γ

Consider a domainΩ that has been partitioned into
two subdomainsΩ1 andΩ2 through an interface re-
gion Γ . Let us assume we have a finite-difference dis-
cretization of the pressure Poisson equation onΩ, and
that the interfacial region Γ is thick enough to shield
any stencil in Ω1 from including a point in Ω2 (and
vice-versa). In practice, when using the standard 7-
point stencil in a Cartesian discretization, the interface layer Γ can simply

36

be one-node thick as long as it cleanly decouplesΩ into two distinct sub-
domains (although Γ could also be made wider, if desired). For simplicity
of notation we will write the Poisson equation as Ax = b, with the under-
standing that the vector x contains the unknown pressure values and b
contains the respective divergence values of the velocity field. We then
reorder degrees of freedom as:

x =

x1

x2

xΓ

 , b =

b1

b2

bΓ

 (3.1)

where xi,bi correspond to values inΩi, for i ∈ {1, 2} (and similarly xΓ ,bΓ
correspond to degrees of freedom in Γ). Under this reordering, the matrix
A assumes the following block form:

A =

A11 A1Γ

A22 A2Γ

AΓ1 AΓ2 AΓΓ

 (3.2)

Note that due to symmetry of A, we have ATΓ1=A1Γ and ATΓ2=A2Γ for the
off-diagonal blocks. Using this block form of A it is possible to write the
following factorization of the inverse matrix A−1:

A-1=

 I -A-1
11A1Γ

I -A-1
22A2Γ

I


A

-1
11

A-1
22

Σ-1


 I

I

-AΓ1A
-1
11 -AΓ2A

-1
22 I


U D UTwhere
Σ = AΓΓ −AΓ1A

-1
11A1Γ −AΓ2A

-1
22A2Γ

is the Schur complement of the block AΓΓ in equation (3.2). The validity of
this factorization can be verified via a direct substitution into the identity

37

A·A−1 = I. Finally, since A (and its inverse) is a symmetric positive def-
inite(SPD) matrix, this factorization implies that the Schur complement
is also symmetric and positive definite (the matrix D is equal to the sym-
metric conjugation of the symmetric positive definite matrix A−1 with the
matrix U−1; hence its diagonal sub-block Σ−1 is symmetric definite, too).

A-1 =


I -A-1

11A1Γ
. . .

...
I -A-1

kkAkΓ
I



A-1

11
. . .

A-1
kk

Σ-1




I

. . .
I

-AΓ1A
-1
11 . . . -AΓkA-1

kk I

 (3.3)

=


A-1

11
. . .

A-1
kk

I



I -A1Γ

. . .
...

I -AkΓ
I



A11

. . .
Akk

Σ-1



I

. . .
I

-AΓ1 . . . -AΓk I



A-1

11
. . .

A-1
kk

I


(3.4)

≈


A
†
11

. . .
A
†
kk

I



I -A1Γ

. . .
...

I -AkΓ
I



I

. . .
I

Σ†


I+


-AΓ1 . . . -AΓk I



A
†
11

. . .
A
†
kk

I




(3.5)

The multiple subdomain solver

This formulation extends naturally to an arbitrary number of k subdomain
partitionsΩ1, . . . ,Ωk separated by an interface set Γ (figure 3.2 depicts such
a partitioning into four subdomains, with the interface Γ highlighted as the
magenta-colored separator surface). The corresponding factorization of
A−1 in this case is given in equation (3.3). In order to translate this algebraic
expression into a solver algorithm, we first re-factor this into the five-matrix
product of equation (3.4), which has every subdomain inverse A-1

ii appear
only twice (as opposed to three inversions per subdomain, in equation
3.3). The last algebraic manipulation, as given in equation (3.5) further
avoids the appearance of the subdomain Laplacian Aii, requiring only
the inverses of such matrices. In this expression we have also substituted

38

the symbol M† ≈ M−1 for approximate inverses of Aii and Σ. If the exact
inverse of these matrices was used, equation (3.5) becomes identically
equal to the five-factor expression of equation (3.4). We will later engage
in such approximations; for now, we may assume that all these inverses
are exact.

The Schur complement method effectively solves the equation Ax = b
by multiplying the right hand side b with the factorized equivalent of
A−1 from equation (3.5). The key observation is that we can apply this
multiplication indirectly, without explicitly constructing the matrix in this
factorization. We do this as follows:

1. Solve k subproblems: A11x̂1 = b1, …, Akkx̂k = bk.

2. Solve ΣxΓ = bΓ −AΓ1x̂1 −AΓ2x̂2 − . . . −AΓkx̂k.

3. Solve the k new subproblems
A11δx1 = −A1ΓxΓ , …, Akkδxk = −AkΓxΓ .

4. Update x1 ← x̂1 + δx1, …, xk ← x̂k + δxk.

Observe that steps (1) and (3) require the solution of fully decoupled
systems for each subdomainΩi, and this can easily be performed in par-
allel without any need for communication or synchronization. Step (2)
requires the solution of a symmetric and positive definite system (with
the Schur complement Σ as the coefficient matrix). Traditionally, solvers
based on this method attempt to solve this interface system using a pre-
conditioned Krylov subspace method such as Conjugate Gradients. We
will deviate from this practice, and use equation (3.5) instead, to design a
preconditioner for the global (coupled) system.

It is important to examine the algebraic structure of Σ, and assess the
performance implications of attempting to solve the system in step (2)
directly. For a volumetric domain Ω with N total degrees of freedom,
the dimensionality of Γ would be O(

√
N) in 2D, and O(N2/3) in 3D. Note,

39

however, that in contrast to the sparse Laplace matrix A, the Schur com-
plement is a dense matrix, thus having O(N4/3) entries and requiring at
least as much computation to solve. Asymptotically, this would make
step (2) above by far the bottleneck of the solver, if Σwas to be explicitly
constructed. Furthermore, the construction of the matrix alone would
likely require even more computation, as it would need to account for
computing the subdomain inverses A-1

ii. Using Conjugate Gradients as
the solver in step (2) opens up an interesting possibility: the CG algo-
rithm does not need an explicitly constructed matrix Σ, as long as we
have a way to compute matrix-vector products ΣxΓ . In turn, this would
require computing products of the form AΓiA

-1
iiAiΓxΓ as efficiently as pos-

sible. Although the factors AΓi, AiΓ are sparse enough to allow efficient
multiplication, multiplying with A-1

ii (i.e. solving a subdomain Poisson
problem) requires at least linear cost relative to the size of the subdomain
(assuming a linear-complexity solver, like an extremely well built multi-
grid scheme, iterated to full convergence). There would be opportunity
for parallelization across subdomains, but we would be still confronted
with a linear complexity cost for each CG iteration, and we would have
to rely on constructing an extremely efficient preconditioner to ensure
that only a small finite number of iterations would suffice, independent
of resolution. Nevertheless, this is the path followed by many derivative
techniques of the Schur complement method (often referred to as iterative
substructuring; an excellent synopsis of such options is given in the classic
book by Quarteroni and Valli (1999)).

3.5 A Schur-Complement Preconditioner

In light of the challenges detailed in section 3.4 we propose certain strategic
simplifications that would make the Schur complement method yield an
approximate solver of the Poisson equation, rather than a strictly accurate

40

one. Our intent would be to use this approximation as a preconditioner
for the Conjugate Gradients method, applied to the full-scale Poisson
problem. Our last transformation of the factorized form for A−1, captured
in equation (3.5) was precisely intended to facilitate this process. We
can easily show that any nonsingular approximation A†ii ≈ A−1

ii of the
subdomain inverses, combined with a symmetric positive definite (SPD)
approximation Σ† ≈ Σ−1 will produce, after substitution in equation (3.5),
a symmetric and positive definite matrix approximation to A−1. Thus
multiplication with this expression can be used as a preconditioner for
the Conjugate Gradients method.

From an implementation standpoint, we map the application of this
preconditioner to a heterogeneous platform by assigning the interior de-
grees of freedom of each subdomain Ωi to a single GPU or Many-Core
accelerator card, while the interface degrees of freedom (Γ) will be main-
tained on the CPU. We design the approximate subdomain inverses A†ii
so that they can be multiplied with respective vectors exclusively on the
GPU, local to the accelerator that owns the subdomain Ωi. Multiplication
with the matrix blocks AΓi will coincide with data transfer from the card
that owns Ωi to the CPU, while multiplication with the transpose AiΓ
will relay data from the CPU to the respective accelerator in the opposite
direction. Multiplication with the approximate inverse of the Schur com-
plement, i.e. Σ†, will be handled fully on the CPU. The application of this
preconditioner is formalized in pseudocode in Algorithm 1.

Multigrid subdomain solver

For approximating A†ii in the formulation described above, we use a sim-
ple, voxel-accurate multigrid solver in the spirit similar to prior works
McAdams et al. (2010); Molemaker et al. (2008), with some embellishments
to support sparsely populated domains as discussed in section 3.7. Multi-
grid solver is selected for its linear cost of each iteration, and its ability

41

Algorithm 3.1 Preconditioner application z = A†r, from eqn. (3.5)
1: for i = 1 . . .k do
2: {In parallel, on GPU}
3: Get ri ← CPU
4: Solve qi ← A†iiri

5: Compute s(i)Γ ← −AΓiqi
6: Send s(i)Γ → CPU
7: Send qi → CPU
8: end for
9: Compute fΓ = rΓ + s(1)

Γ + . . . + s(k)Γ {on CPU}
10: Solve zΓ ← Σ†fΓ
11: for i = 1 . . .k do
12: {In parallel, on GPU}
13: Get qi ← CPU
14: Get zΓ ← CPU
15: Compute fi ← −AiΓzΓ
16: Solve zi ← A†iifi
17: Add zi+ = qi
18: Send zi → CPU
19: end for

to be implemented in a matrix-free fashion to save memory. This is also
the reason that sparse linear system solvers such as cuSparse by Nvidia
(2014) was not used. The multigrid hierarchy is constructed by classifying
every grid cell as “interior”, “exterior” (to the active domain) or “Dirich-
let”, and coarsening this classification to voxels of lower resolution grids.
Trilinear transfer operators and a damped Jacobi smoother are employed,
with an additional smoothing effort devoted to a narrow band around the
boundary (3-7 iterations) for each interior smoothing pass.

42

3.6 The interface Schur-complement system

The last remaining piece for generating our preconditioner is the design
of the approximation Σ† and the application of its effective numerical
solution which is hosted exclusively on the CPU. As previously stated, our
objective is to arrive at an algorithm that is sublinear in complexity relative
to the size of the overall boundary and yields a good approximation to the
exact matrix Σ = AΓΓ −

∑k
i=1AΓiA

-1
iiAiΓ . We will solve the approximate

system Σ†xΓ = bΓ using a multigrid method, which will avoid forming
the dense matrix Σ† explicitly. Furthermore, we will leverage adaptive
coarsening of the subdomains to reduce the dimensionality of the direct
algebra involved in our manipulations.

Multigrid solver for the interface

The Schur complement matrix Σ is not only symmetric and positive def-
inite, but it can further be shown that it is an elliptic operator, as it is a
discretization of the continuous and elliptic Steklov-Poincaré operator for
the Poisson equation [Smith et al. (1996)]. This suggests that a multigrid
solver (on the interface variables; separate from the multigrid cycles used
to approximate the subdomain inverses) could be applicable. The simplest
technique for building the multigrid hierarchy is to use Galerkin coars-
ening to construct the operator at each resolution level. However, we do
not pursue this option as it requires explicitly computing the matrix Σ at
the finest level, which is a computationally expensive proposition. We
propose a different conceptual construction of the operator hierarchy, and
design a smoother that can use them indirectly without assembling their
explicit matrix form.

We construct the coarser level operators in the following fashion, Σ2h =

A2h
ΓΓ−
∑k
i=1A

2h
Γi (A

2h
ii)

-1A2h
iΓ , where the entire matrixAh has first been coars-

ened down to A2h using trilinear interpolation, and then the individual

43

Figure 3.3: Smoke injected from the bottom of a cylinder, and forced
through a twisted bundle of cylindrical holes. Color corresponds to vor-
ticity magnitude. Total 1.2B active cells, in a 10242×2048 grid.

building blocks are harvested and reassembled for computing Σ2h. While
this may appear a plausible choice for the multigrid hierarchy, and indeed
our experiments show that this gives good convergence, the intuition be-
hind it comes from the following observation. Suppose we constructed
a multigrid hierarchy for the full problem Ax = b, where the right hand
side b has non-zero entries only on the interface Γ , i.e., we are solving the

44

following equation via multigrid:A11 A1Γ

A22 A2Γ

AΓ1 AΓ2 AΓΓ


x1

x2

xΓ

 =

 0
0
bΓ

 (3.6)

then the solution can be shown to satisfy xΓ = Σ-1bΓ . Let us further
assume that our smoother routine was designed such that it completely
eliminated any residual of equations interior to the subdomains, leaving
nonzero residuals only on interface degrees of freedom. We can then
interpret our proposed multigrid procedure, which operates solely on the
interface, as algebraically equivalent to a full-domain multigrid scheme
used with a right hand side that is zero anywhere outside the boundary,
as in equation (3.6), combined with a smoother that annihilates residuals
on subdomain interiors.

The terms
∑k
i=1AΓiA

-1
iiAiΓ in the formula of Σ correspond directly to

this concept of subdomain-interior equations being solved exactly, and
used to eliminate those degrees of freedom from the dimensionality of
Σ. A smoother that can operate on Σ directly, implicitly ensures that all
equations in the interior of each subdomain are satisfied at all times. Fi-
nally, the restriction and prolongation operators for the interface-based
multigrid solver can be inferred from the transfer operators of the global
problem. Note that, for the purposes of this section we depart from the
cell-centered perspective of grid values, as employed for example in the
hierarchy construction by McAdams et al. (2010), and switch to viewing
unknowns as stored in the nodes of the dual of the typical MAC grid used
for the Navier-Stokes discretization (i.e. pressure values stored on nodes
of this new grid). We then coarsen the cells in the typical 8-to-1 fashion,
using trilinear interpolation. This ensures that interface degrees of free-
dom remain fully aligned across levels of the multigrid hierarchy, and that
trilinear prolongation of a finer level’s interface variables will only need

45

coarse interface variables as input. Although restriction into coarse inter-
face values technically touches interior values as well, the residuals of all
such interior equations will be zero (since the Schur complement operator
assumes those equations fully satisfied). Thus the transfer operators we
ultimately use in our cycle are bilinear interpolation along the aligned 2D
interface surfaces at each level of the hierarchy.

Smoothing the Schur-complement system

As previously shown, Σ is a symmetric and positive definite matrix. Thus,
in principle, damped Jacobi or Gauss-Seidel would have been convergent
smoothers. However, since we do not have access to the explicit matrix
form of Σ, operations that would be required (for example, the diagonal
elements of Σ) are not readily available. Thus, we take a different approach
of designing a smoother that can be iterated without an explicit construc-
tion of the matrix. Using the definition of Σ, the system ΣxΓ = bΓ can be
rewritten as:

AΓΓxΓ = bΓ +

k∑
i=1

AΓiA
-1
iiAiΓxΓ (3.7)

We can use equation (3.7) to design a fixed-point iteration as follows:

AΓΓx
(n+1)
Γ = bΓ +

k∑
i=1

AΓiA
-1
iiAiΓx

(n)
Γ (3.8)

One may recognize the similarity of equation (3.8) with the analogous
matrix formDx

(n+1)
Γ = bΓ +(L+U)x

(n)
Γ of the Jacobi iteration based on the

decomposition Σ = D−L−U, should that have been explicitly available.
Instead of isolating just the diagonal part of Σ, our decomposition employs
the entire AΓΓ term. In the next section we provide a proof that this
iterative scheme will always converge.

46

The iterative scheme in equation (3.8) requires two basic blocks. First,
given an already computed right hand side, solving for xΓ requires solving
a sparse symmetric and positive definite system. Since the matrix AΓΓ is
very sparse and structured, we use a sparse Cholesky factorization using
the Intel MKL PARDISO library, which we have found to be very well-
performing especially due to the fact that the interface is highly structured
and admits a very effective nested bisection for reordering its degrees of
freedom to maximize sparsity. Second, the right hand side requires the
inverse operatorA-1

ii for each subdomain. Again, our approach would be to
use a Cholesky factorization of Aii (with appropriate reordering) to solve
the inversion problem using forward/backward substitution. Pseudocode
for the smoother routine is given below:

Algorithm 3.2 Application of smoother routine. Input: bΓ , x(n)Γ

1: for i = 1 . . .k do
2: Compute yi ← AiΓx

(t)
Γ {sparse; fast}

3: Solve zi ← A-1
iiyi{PARDISO}

4: Compute w(i)
Γ ← AΓizi{sparse; fast}

5: end for
6: Compute fΓ = bΓ +w(1)

Γ + . . . +w(k)
Γ

7: Solve x(n+1)
Γ ← A-1

ΓΓfΓ {PARDISO}

The matrixAΓΓ in step 7 hasO(N2/3) nonzero entries, and we observed
that with appropriate reordering (using PARDISO) the nonzero entries
in the Cholesky factors remain asymptotically well below O(N). The
subdomain matrices Aii, however (step 3) contain on the aggregate O(N)

nonzero entries, which will yield a strictly superlinear number of nonzero
entries in their Cholesky factors, even with excellent reordering. We thus
proceed to make one last approximation, in the interest of reducing the
dimensionality of these factors, as explained in the following section.

47

Proof of convergence of the interface smoother

Consider the fixed-point iteration

AΓΓxΓ
(n+1) = bΓ +

∑k
i=1AΓiA

-1
iiAiΓxΓ

(n)

⇒ S1xΓ
(n+1) = bΓ + S2xΓ

(n)
(3.9)

where S1 = AΓΓ and S2 =
∑k
i=1AΓiA

-1
iiAiΓ . Let x? be the exact solution of

this iterative scheme, i.e., x? satisfies the equation

S1x? = bΓ + S2x? (3.10)

Subtracting equation (3.10) from equation (3.9) gives

S1e
(n+1) = S2e

(n) ⇒ e(n+1) = S-1
1 S2e

(n)

where e(n) = xΓ
(n) − x? is the error in the n-th iteration. In order to show

convergence of the iterative scheme in equation (3.9), we need to show
that the spectral radius of S-1

1 S2 is less than 1. Now,

Σ = S1 − S2 ⇒ S1 = Σ+ S2

Since S2 is symmetric and positive definite (SPD), S1/2
2 is well-defined.

Noting that the two matrices S-1
1 S2 and S1/2

2 S-1
1 S

1/2
2 are related by a similarity

transform (via S1/2
2), it follows that

ρ(S-1
1 S2) = ρ(S

1/2
2 S-1

1 S
1/2
2) = ρ

[
(S-1/2

2 S1S
-1/2
2)-1]

= ρ
[
(S-1/2

2 (Σ+ S2)S
-1/2
2)-1] = ρ [(I+ S-1/2

2 ΣS-1/2
2)-1]

= 1
λmin(I+S-1/2

2 ΣS-1/2
2)

= 1
1+λmin(S-1/2

2 ΣS-1/2
2)

Since Σ is SPD and S-1/2
2 is symmetric, the matrix S-1/2

2 ΣS-1/2
2 is SPD, so

λmin
(
S-1/2

2 ΣS-1/2
2
)
> 0. Thus, ρ(S-1

1 S2) < 1.

48

(a) (b)

Figure 3.4: Comparison of (a) a uniform discretization of a subdomain
interior and (b) our adaptive approximation in Section 3.6.

Adaptive approximation of subdomains

Another opportunity for a dimensionality-saving approximation can be
exposed by analyzing the action of the operator AΓiA-1

iiAiΓ on a vector
xΓ (as used in equation 3.8). This matrix-vector multiplication can be
equivalently interpreted as the following process:

1. The value xΓ is used as a Dirichlet boundary condition in a Laplace
problem Aiix̂ii = AiΓxΓ , that computes a harmonic interpolant x̂ii
of xΓ in the interior ofΩi.

2. A global scalar field x̂ is assembled by combining the values xΓ on the
interface, with the harmonic interpolants x̂ii from each subdomain.

3. The Laplacian y = Ax̂ of this interpolated result is computed. Natu-
rally ywill be zero in the interior of each subdomain, as x̂was built as
a harmonic interpolant in those locations. Nonzero values will occur
along the interface, however. It can be shown that the restriction yΓ

49

of y on the interface degrees of freedom is exactly what the Schur
complement operator yΓ = ΣxΓ computes. The contribution of each
subdomainΩi to this result is exactly equal to −AΓix̂ii.

Based on this interpretation, we observe that the harmonic interpolant x̂ii
in this process could be very well approximated by an adaptive tessellation
of the subdomain interior, as shown in figure 3.4. Starting from the uniform
grid spanning each subdomain (figure 3.4a), we aggressively coarsen as we
transition to regions farther towards the subdomain interior (figure 3.4b).
All our experiments have indicated that the quality of this approximation
is excellent; remember that even if small errors might be observed in the
actual interpolants, deep inside the subdomains, only the Laplacian of the
resulting interpolant on the interface is ultimately relevant.

The performance implications of this approximation are substantial.
When adaptively approximated using our aggressive coarsening in figure
3.4, the actual degrees of freedom of the (octree-type) adaptive subdo-
main discretization enumerate in the same order of magnitude as the
interface variables in Γ ∩Ωi. In practical terms, this adaptive subdomain
approximation translates to matrices AiΓ , Aii, AΓi in Algorithm 2 being
replaced by lower dimensionality, adaptive variants A∗iΓ , A∗ii, and A∗Γi.
Matrix A∗iΓ will is simply constructed from AiΓ by removing rows that
correspond to interior nodes that have been coarsened away (or have be-
come T-junctions); all such rows would have been full of zeros in AiΓ ,
since our coarsening scheme preserves the layer of nodes immediately
adjacent to the interface at full resolution (and those are the only interior
nodes touched by the stencils of interface equations). Likewise for the
transposes AΓi, A∗Γi of those matrices. Combined, all adapted interior
matrices A∗ii have O(N2/3) nonzero entries, and we observed that with
proper reordering their Cholesky factors remain clearly sublinear in their
aggregate size, allowing us to run step 3 of Algorithm 2 (and the entire
smoother) with asymptotic cost safely below the O(N) mark.

50

Figure 3.5: Free-surface simulation of water poured in a container with
multiple interior walls causing the flow to meander around them. The
frame shown in the right-most illustration corresponds to 114 million
active cells, in a 1024× 1024× 1024 background grid.

3.7 Implementation Details

Assignment of Subdomains If the domain can fit into the aggregate mem-
ory of the accelerators, the subdomains are assigned in a round robin
scheme. The cost of each subdomain solve is proportional to the number
of active cells within that subdomain. In the algorithm, the subdomains
are shaped as perfect cubes of the same size for best adaptation saving.
Given this constraint, our resulting number of subdomains are in general
far more than the number of accelerators. Even though other schemes
may provide better load balancing. In practice, round robin is simple and
produces assignment that each accelerator can finish approximately the
same time especially when the number of subdomains are significantly
larger than the number of accelerators. When the simulation domain
does not fit the aggregate memory of the accelerators, the subdomains
have to be swapped in and out accelerators’ memory. In these cases, the
subdomains are assigned to the accelerator with the shortest queue. The
assignment will halt until one of accelerator finishes with the subdomain
at the top of the queue and freed up its memory.

Construction of adaptive operators We construct the adaptively coars-
ened discretization of section 3.6 based on a Galerkin process. Let us con-
sider the example of the finest level of the multigrid hierarchy. We define an

51

interpolation operator P∗h that “prolongates” the adaptive degrees of free-
dom x∗ into their trilinearly interpolated uniform counterparts x = P∗hx∗

(this interpolation is conscious of any T-junctions). Thus, the adaptive
discretization of the Laplacian is simply computed as A∗h = (P∗h)

TAhP
∗
h.

In fact, we never explicitly build the uniform matrix Ah, but rewrite this
equation as

A∗h =
∑
aij 6=0

aijpipTj

where aij = [Ah]ij, and pTk denotes the k-th row of P∗h. This formulation
allows us to construct the adaptive discretization directly (by iterating
over the uniform grid, and processing every spoke aij of any stencil we
encounter), without ever building the uniform matrix. Since our smoother
(Algorithm 2) never needs to use the uniform subdomain discretization, we
construct the adaptive discretizations of coarser levels of the hierarchy A∗h,
A∗2h, A∗4h, etc. by selective (Galerkin) coarsening of the immediately finer
adaptive discretization, rather than coarsening the corresponding uniform
discretization at that level into an octree.

Avoiding nullspace issues Global nullspace components (pockets of
fluid with purely Neumann boundary conditions) are handled at the top-
level PCG algorithm via projection, as usual. In our smoother subroutine,
we generally have the guarantee that the left-hand-side matrix AΓΓ will be
positive definite (it is always symmetric), if the global matrix A is definite
too. However, it is possible for nullspace components to appear in the
coarsened version of this matrix A2h

ΓΓ , A4h
ΓΓ , as a result of the Galerkin

procedure, in the vicinity of Neumann domain boundaries. To avoid this,
we slightly shift the eigenvalues of every coarsened discretization, sayA∗2h
by adding a minute multiple of the identity. The shifted matrix A∗2h + εI
is practically spectrally equivalent to the original, and fully appropriate
as a substitute in a multigrid hierarchy. Since we use direct solvers to
invert AΓΓ in the smoother, conditioning is not an issue. Effectively, this

52

eigenvalue shift will penalize solution components that lie in the nullspace
to be effectively equal to zero.

Boosting accuracy We use a high-order defect correction technique
Trottenberg et al. (2001) to allow our approximate inverse of a first-order
discretization to be used as a CG preconditioner for a higher order scheme.
We structure our top-level PCG solver to implement matrix-vector multi-
ply operations in accordance with a second order accurate discretization
of the Laplace operator Enright et al. (2003). Upon invocation of the pre-
conditioner, however, we perform the following steps: (i) We execute a
few iterations of a Jacobi smoother, using the 2nd order operator, (ii) we
then compute the residual, and multiply this with our first-order precon-
ditioner, and finally (iii) we again compute the residual r, write the error
equation Ae = −r using the second order operator, which we solve using
the same number of Jacobi iterations. We finally add the correction back
to the result returned by the preconditioner. This operation, as described,
preserves the symmetry and definiteness of the preconditioner, and al-
lows the first order method to be used as an effective preconditioner for
the second-order problem (at the comparably minimal expense of some
additional smoothing effort near the high-order interface).

Sparse grid storage We used an ad-hoc sparse grid data structure to
hold our grid data, for all our examples which utilized highly irregular,
sparsely populated grids. Our data structure partitions a virtual enclosing
grid into rectangular blocks (of typical size 83 voxels, in our examples),
and stores them in a linearized array, maintaining explicit pointers to the
26 neighboring blocks to facilitate traversal during kernel invocation. This
representation is reflected in both our CPU and GPU/Xeon Phi implemen-
tations of all performance-sensitive kernels.

53

0

1

2

3

4

5

1 2 4 8 16 20

Ti
m

e(
s)

Number of Threads

Interface Scalability

Serial Code Parallel Code

0

10

20

30

40

50

1 2 4 8 16 32 56

Sp
ee

d
Up

Number of Threads

Subdomain Scalability

Figure 3.6: Convergence profiles for ICPCG, MGPCG (1 V-cycle, 3 bound-
ary and 1 interior smoothing iteration), MGPCG (1 V-cycle, 7 boundary
and 1 interior smoothing iteration), DDPCG (2 V-cycles per subdomain, 3
boundary and 1 interior smoothing iteration), and DDPCG (3 V-cycles per
subdomain, 7 boundary and 1 interior smoothing iteration).

3.8 Application in Incompressible Free Surface
Flow

We solve the incompressible Euler equations

~ut + (~u · ∇)~u+
∇p
ρ

= ~f, ∇ · ~u = 0

using the splitting scheme as described in Stam (1999). Here, ~u = (u, v,w)
is the velocity field vector, ρ is the fluid density, p is the scalar pressure
field, and~f denotes external forces (such as gravity). We discretize these
equations on a MAC grid, where we first explicitly update the advection
terms

~u? − ~un

∆t
+ (~u · ∇)~u = ~f

54

Figure 3.7: Water poured in a pool with multiple immersed objects. Second
figure from the right shows 70M active cells, in a 10242×512 grid.

using a semi-Lagrangian scheme Selle et al. (2008) and then solve for the
pressure via a Poisson equation

∇ · ∇p
ρ

=
∇ · ~u?

∆t

in order to update the intermediate velocity as follows

~un+1 − ~u?

∆t
+
∇p
ρ

= 0

For tracking the free surface, we generally follow Enright et al. (2002b)
using the level set advection of Enright et al. (2005), the reinitialization
scheme of Losasso et al. (2005), velocity extrapolation method of Adal-
steinsson and Sethian (1999), and a second order accurate pressure dis-
cretization of Enright et al. (2003).

3.9 Examples and performance benchmarks

We demonstrate the effectiveness of our preconditioner through several
examples. Figure 3.1 illustrates two smoke simulations with more than one
billion of active degrees of freedom, each. Figure 3.8 shows a network of
interconnected vessels where smoke enters from the lower left corner and
exists from the upper right corner. Our solver is able to capture the correct

55

incompressible behavior in relatively few iterations with four subdomains.
Figure 3.7 shows an example where water is poured in a pool with multiple
immersed objects, creating complex Neumann interfaces. Figure 3.5 shows
an example where water flows in a channel with multiple interior walls,
which cause the flow to meander around them. Figure 3.9 provides a
breakdown of individual kernels of our Schur Complement solver for all
these examples, along with timings for alternative solvers, detailed in the
following section. We note that no vorticity confinement was used in our
smoke examples. Finally, in the interest of efficiency we used as high of a
CFL number as our examples could tolerate – sometimes leading to minor
loss of detail.

3.10 Discussion

Evaluation of convergence and scaling In our benchmarks, we com-
pared the convergence behavior of our Schur-Complement Domain De-
composition preconditioned CG (“DDPCG”) with a standard Incomplete
Cholesky preconditioner (“ICPCG”) Foster and Fedkiw (2001), and a stan-
dard Multigrid-Preconditioned CG algorithm (“MGPCG”) McAdams et al.
(2010). For the multigrid option, specifically, we note that although we did
not experiment with improved CPU-based versions of MGPCG that take
extra steps to better capture the topology of the domain on coarser levels of
the multigrid hierarchy Ferstl et al. (2014a), we invested a significant effort
to optimize the stock MGPCG to the absolute best of our capacity, both on
the CPU as well as on the accelerator cards – this was a natural step to take,
as the multigrid kernels used in MGPCG are re-used in the subdomain
solver of our own DDPCG method. We produced two, heavily optimized
MGPCG implementations: One designed to run exclusively on the CPU,
and one designed to run homogeneously on just a single GPU, for problems
that are small enough to fit entirely in GPU memory. There is only one

56

algorithmic difference between the two implementations: The pure-CPU
MGPCG was set up to solve the coarsest level of the multigrid hierarchy
using ICPCG – this was done to improve the convergence behavior at the
bottom of the multigrid cycle, which was crucial in obtaining acceptable
performance at our examples with more than a billion degrees of free-
dom (without requiring an extremely deep, and occasionally inaccurate
V-cycle). The GPU-native implementation of MGPCG used a large number
of smoother applications at the bottom of the V-cycle (which was effective
for its smaller problem size), to avoid using Incomplete Cholesky on the
GPU. We benchmarked the pure-CPU MGPCG solver on the faster (dual
socket) of our two test platforms.

In all our examples, the ICPCG solver exhibited dramatically slower
convergence performance than both MGPCG, and our proposed DDPCG
method, often needing more than an order of magnitude of iterations
higher than DDPCG to reach comparable performance. We were unable to
use ICPCG for our largest of examples with billions of cells, as the footprint
of the explicitly constructed matrices would cause it to run out of mem-
ory. For our smallest examples, even each iteration of our heterogeneous
DDPCG actually required less time than one CPU-based ICPCG iteration.
As a consequence, we did not find ICPCG to be a competitive alternative.

On the other hand, the convergence behavior of MGPCG remained
competitive in several of our smaller-size examples. We should point
out that the behavior of DDPCG is tunable; investing more V-cycles in
the independent subdomain solves, or additional multigrid iterations in
the interface solve can boost its convergence efficiency. We found MG-
PCG to be most competitive with our DDPCG technique in the context
of our smaller examples, especially the free-surface water simulations.
This is attributed to the prominence of Dirichlet boundary conditions in
those scenarios, which dramatically improves the efficacy of smoothing
boundary regions, which is essential for multigrid to behave favorably as

57

a preconditioner McAdams et al. (2010). On average, across the various
frames of the water simulations (Figures 3.5,3.7) MGPCG would converge
in no more than 1.5x-3x the number of iterations required by our tuned
DDPCG, while in the smoke simulation of Figure 3.8, MGPCG required
approximately 2x-2.5x more iterations than DDPCG. In terms of run time,
however, the findings paint a quite different picture. The smaller two of
our examples (Figures 3.8, 3.7) were compact enough to fit on just a single
GPU card, where a single iteration of MGPCG was between 5x-8x times
faster than a DDPCG iteration. Thus, in spite of the moderately slower
convergence of MGPCG, its faster per-iteration cost on the homogeneous,
single-GPU implementation makes it preferable to DDPCG by a factor of
3x-5x. Incidentally, the geometry of the smoke example in Figure 3.8 led
to another interesting observation: Although the narrow cylindrical con-
nectors between the glass spheres allowed for a small interface between
subdomains used in our solver (and a reduction in CPU computation
cost), the same geometry traits increased the approximation error induced
by our adaptive coarsening of the subdomain interiors, increasing the
required iterations for PCG convergence.

The situation is dramatically different for our larger simulation exam-
ples, which cannot be solved with MGPCG on a single accelerator card.
For those examples, the only practical alternative was to run MGPCG
homogeneously on the CPU. In this context, we observed that each iter-
ation of our DDPCG method was within 20% of the cost of a CPU-only
MGPCG iteration. However, for the large-scale examples, dominated by
Neumann boundary conditions, we observed MGPCG requiring up to 5x
more iterations for convergence, leading to a 3.5x-4.5x performance benefit
of DDPCG versus the CPU-only MGPCG. We conclude that for small prob-
lem sizes, in the order of 100M degrees of freedom or less, a homogeneous
GPU implementation of MGPCG is the preferred solver, provided that the
problem can fully fit in GPU memory. For problem sizes that do not fit

58

Figure 3.8: Smoke flow in a network of interconnected vessels simulated
using a 10242 × 512 background grid and 42 million active cells. The
computational domain was divided into four subdomains. The proper
flux is observed both in the inlet and the outlet of the flow.

completely in GPU memory, DDPCG appears to be consistently superior
to CPU-based MGPCG, with the performance gap becoming larger as the
resolution increases.

Limitations and future work The most fundamental limitation of our
proposed method is that, in order for its scaling benefits to take effect, it
needs to be applied to a problem of adequately large size. In designing our
(GPU-hosted) multigrid cycle for the solution of the subdomain problems,
we made a conscious choice to keep the design of this solver as simple
as possible, approximating the domain at voxel-accuracy at every level,
and not enacting any remedies for topological inconsistencies, such as
regions merging or small Neumann gaps disappearing after coarsening.
This was done in the interest of simplicity, to facilitate low-level optimiza-
tions of the solver components. It is quite likely that topology-conscious
coarsening schemes Ferstl et al. (2014a) could further improve the conver-
gence properties of this component, and the balance between enacting such
improvements and retaining opportunities for aggressive optimization cer-
tainly merits investigation. Finally, one should not discount the software
engineering challenges that are still associated with developing numerical
software that is as inherently heterogeneous as our solver. The established
programming paradigms that are available for homogeneous thread-based

59

parallel development (e.g. OpenMP) are arguably much more accessible to
the non-expert developer. Given the precedent of CUDA, and the growing
presence of heterogeneity in modern systems, we hope that programming
abstractions for these platforms will continue to evolve.

The scope of our work was specifically restricted to the design and
optimization of the pressure Poisson solver on a heterogeneous computer.
We also specifically targeted fluid simulation on uniform grids in the devel-
opment of our solver. Although extending the concepts of our solver to an
adaptive discretization is certainly possible from an algebraic perspective,
we feel that a careful investigation is warranted to make sure that the
complexity of work that needs to happen on the interface region remains
comparatively lower. This aspect, as well as practices for efficient dynamic
partitioning of temporally changing adaptive grids would be an exciting
topic for continued investigation.

A very interesting venue for future work might focus on extending
our technique to deeper hierarchies of heterogeneous platforms, using
for example clusters of network-interconnected GPU-accelerated nodes.
The key challenge of using this algorithm directly on a cluster is that
the current interface solver is not designed as a salable operation. With
more computation units inside a cluster, more subdomains will need to be
created. This inevitably creates a larger interface problem as well. As the
interface problem is solved on a single CPU, it will became the bottleneck
of the whole process. There are two ways to mitigate this issue. The first
is to redesign the interface solver to be scalable. The schur-compliment
operator requires solving the adapted subdomain operators. They can be
solved in parallel and in isolation. The second way to make the algorithm
more scalable, is to using a hierarchy of subdomains. The same way that
we used a multigrid cycle to approximate a subdomain solver, one could
envision using our entire preconditioner as the approximate solver for a
subdomain assigned to each cluster node, which is internally subdivided

60

Smoke
(Fig. 1; right)

Smoke
(Fig. 1; left)

1.2G DOFs 1.8G DOFs

16 40
512 x 512 x 512 1536 x 1536 x 1920

51.894 44.532 61.446 42.882 38.472 25.704 1790.11 4247.98
5.766 4.948 4.389 3.063 1.603 1.071 100.49 193.09
4.291 4.314 3.657 2.769 0.999 0.843 88.9341 183.9
1.362 1.249 1.046 0.865 0.457 0.351 26.4284 152.79
0.378 0.311 0.311 0.218 0.115 0.079 2.68 21.83
0.158 0.309 0.084 0.169 0.103 0.105 7.6252 16.002
1.392 1.539 1.214 1.096 0.029 0.032 33.042 14.3918
0.413 0.349 0.314 0.215 0.006 0.003 7.864 3.741
0.008 0.012 0.008 0.007 0.00013 0.0002 0.145 0.094

4.16 2.82 1.32 N/A N/A
0.424 0.316 0.1736 N/A N/A

10.1838 17.679 7.983 N/A N/A
5.55 3.135 4.489 67.28 175.4

127.65 153.5933 218.64 3902.8062 16742

Water (Fig. 3) Water (Fig. 9) Smoke (Fig. 4)
Active DOFs: 114M Active DOFs: 70M Active DOFs: 42M

GPU Phi GPU Phi GPU Phi GPU Phi
Number of subdomains 16 16 4
Subdomain resolution 128 x 128 x 768 128 x 128 x 768 512 x 512 x 512
DDPCG total solve time
DDPCG iteration cost
Preconditioner Application

Subdomain Solve (3 V-cycles)
Each MG V-cycle
Data transfer from/to CPU

Interface Solve (1 V-cycle)
Smoothing (Top-Level)
Restriction/Prolongation

ICPCG iteration cost (CPU only)
MGPCG iteration cost (GPU only)
MGPCG solve time (GPU only)
MGPCG iteration cost (CPU only)
MGPCG solve time (CPU only)

Figure 3.9: Timing information for four examples. All run times cited
are in seconds. Our “GPU” platform is an Intel Xeon E5-1650v3 CPU
equipped with two NVidia GTX Titan X GPUs and 128GB RAM, while
our “Phi” platform is an Intel Xeon E5-2650v3 CPU equipped with six
Intel Xeon Phi 31S1P cards.

to use GPU accelerations as we currently do. Although bandwidths of
network interconnects would be even slower than that of PCIe, due to
economy of scale the relevant asymptotics (relative size of interfaces vs.
entire grid) could remain favorable. Finally, emerging GPU architectures
and technologies (stacked memory, integration of CPU and GPU) might
facilitate programming in a homogeneous model (using capabilities such
as unified memory spaces), but non-homogeneity in memory bandwidth
is almost certain to persist in some form (cores having significantly higher
bandwidth to their “local” region of memory). We feel that the adaptation
of solver concepts to such architectural traits is an exciting research thread.

61

4 narrow-band topology optimization on a
sparsely populated grid

In the context of designing efficient solvers, topology optimization as an
application creates very interesting challenges to the numerical solvers. It
desires high resolution, for many interesting details only emerge in high
resolution simulation. It generates sparse domain, as in many scenarios
only a fraction(< 5%) of domain is filled in the final solution. It also creates
high contrast (1 : 10−9) material distributions.

In this chapter, I present a design of an efficient linear elasticity solver
that is tailored for high resolution and sparse domain. Regarding the high
contrast material distribution, I will demonstrate how it impairs the multi-
linear multigrid solver’s convergence rate, which inspired a design of
stencil-aware interpolation scheme that drastically improves convergence
rate in those situations.

4.1 Related Work

Uniform and adaptive grids Among the various kinds of data struc-
tures that have been developed by researchers in computational science
and computer graphics, uniform grids play a central role in the vast ma-
jority of topology optimization applications for their multiple advantages
in computation. These advantages include cache-coherent memory ac-
cess, regular subdivisions for parallelization, simple data layout, and, in
particular, the existence of efficient numerical PDE solvers. A multigrid
FEM solver discretized on a uniform grid has been established as one
of the standard solutions for elastic solids Zhu et al. (2010b), character
skinning McAdams et al. (2011), and topology optimization (e.g. Sig-
mund and Torquato (1999)). One of the main challenges of uniform grids
lies in their lack of adaptivity. Due to their uniformly distributed and

62

Figure 4.2: An optimized bridge structure is obtained on a 271×540×1081
grid (157 M voxels) with mirror boundary conditions applied on the X and
Z axes. The left figure shows a solid render, and the right three figures
show the visualization of the density field from different camera views.
The middle sub-image illustrates the boundary conditions, including fixed
boundaries on the sides and a load applied on the bottom plane.

axis-aligned grid lines, it is difficult to dynamically allocate fine grid cells
around the regions of interest while still preserving all the computational
advantages. To overcome this limitation, researchers have been devoting
efforts to create multiple levels of resolutions by dynamically refining
grid cells, which lead to the invention of a variety of hierarchical data
structures, e.g., the octree grid Losasso et al. (2004) and the AMR grid
Donea et al. (1982). These adaptive data structures have been integrated
with high-performance solvers for computing large-scale systems. For
example, Ferstl et al. (2014b) combined an octree grid with a multigrid-
preconditioned conjugate gradients (MGPCG) solver for Poisson problems
in large-scale liquid simulation. In addition, new dynamic structures have
been proposed to obtain adaptivity without breaking the topology of a
uniform grid, e.g., by overlapping grids with different resolutions English
et al. (2013b) or anisotropically stretching grid cellsZhu et al. (2013).

Lagrangian approaches An unstructured Lagrangian mesh inherently
exhibits adaptivity. It is natural to allocate degrees of freedom on a La-

63

grangian mesh adaptively, according to some local meshing criteria, e.g.,
the distance to structures of interest. Further, Lagrangian approaches are
capable of tracking the structure interface by explicitly maintaining the
boundary mesh. These two main advantages allow Lagrangian meshes
to be widely used in topology optimization (see Eschenauer et al. (1994),
Sokolowski and Zochowski (1999), Christiansen et al. (2014), Christiansen
et al. (2015) for examples). The main limitation of Lagrangian approaches
lies in their inefficiency in solving large-scale linear systems. The unstruc-
tured nature of a Lagrangian mesh makes it difficult to build an efficient
preconditioner for iterative solvers.

Sparse representations In contrast to uniform grids, sparse data struc-
tures reduce the computational cost of a volumetric discretization by main-
taining active elements selectively. The key idea for sparse data structures
is to establish a mapping from a grid cell index in the real, sparse space to
an index in the virtual, compact storage, enabling the allocation of compu-
tational resources only to grid cells occupied by or near the real structures.
This mapping can be implemented by a standard hash table (e.g., local
level set Brun et al. (2012)), an octree (e.g., adaptive distance field Frisken
et al. (2000), OpenVDB Museth (2013)), or via a Virtual Memory Page
Table and the Translation Lookaside Buffer (TLB) (e.g., SPGrid Setaluri
et al. (2014)) for fast access to grid cells. In addition to using a single type
of discretization, researchers have also invented a variety of hybrid data
structures to model thin phenomena embedded in a high-dimensional
space. One example is the particle level set Enright et al. (2002a), which
maintains a narrow band of particles around an implicit interface dis-
cretized on a background grid. The coupling of the two representations
enables an accurate computation for the signed distance function. Similar
concepts can be seen in the narrow-band FLIP method Ferstl et al. (2016)
and the hybrid grid-mesh approach Zheng et al. (2015), where a thin layer

64

of Lagrangian elements are hybridized with a Eulerian discretization to
efficiently capture the features around the interface.

Figure 4.1: The interior structures
supporting the shell of a bird
beak generated using our narrow-
band topology optimization algo-
rithm with 1, 040, 875, 347 (1.04
billion) active FEM voxels. The
resolution of the background
grid is 3000 × 2400 × 1600. The
three figures show the volumetric
rendering of the same structure
from different views.

Hardware acceleration At the heart
of a high-resolution topology optimiza-
tion algorithm is a highly efficient nu-
merical solver for FEM discretized lin-
ear elasticity. Hardware acceleration is
essential to boost the performance of
these solvers. GPU-based approaches
have been widely used in speeding
up topology optimization algorithms.
For example, Wu et al. (2016b) have
proposed a high-performance multi-
grid FEM solver with deep integra-
tion of GPU hardware to achieve good
convergence, low memory consump-
tion, and reduced bandwidth require-
ments. More related work on GPU-
based topology optimization can be
seen in Wadbro and Berggren (2009)
Schmidt and Schulz (2011), Challis et al.
(2014), and Yadav and Suresh (2014).
The power of supercomputing has also
been explored. In Aage et al. (2015), a
parallel topology optimization frame-
work was proposed using the Portable
and Extendable Toolkit for Scientific
Computing (PETSc). A variety of me-
chanical designs with intricate thin features was obtained by running

65

high-resolution simulations (with up to 83 million elements) on a super-
computer. This computational framework was further used in Aage et al.
(2017) to explore the optimal design of airplane wings at the level of one
billion voxels. Besides GPU and supercomputer, multi-accelerator het-
erogeneous computing has also been explored. For example, a scalable
parallel solver on a workstation fitted with GPUs or many-core accelera-
tors has been proposed in Liu et al. (2016) to solve systems in the order
of a billion degrees of freedom. The proposed Schur-complement nu-
merical technique allows to benefit from the high memory and compute
bandwidth of GPUs for large-scale problems.

4.2 Topology Optimization Overview

Topology optimization aims to solve the problem of distributing materials
in a given domain that minimizing the structural compliance or other
objectives to given load(s). It has demonstrated its efficacy in creating
mechanical designs with complex structures and extreme properties in
various engineering problems (see Rozvany (2009), Sigmund and Maute
(2013), Deaton and Grandhi (2014) for surveys). Starting from a volumet-
ric domain that is uniformly filled with material, a standard topology
optimization algorithm iteratively removes and redistributes material to
develop a structure that minimizes a design objective (e.g., structural com-
pliance), given the prescribed target volume and boundary conditions.

However, due to the limitations of the previous computational frame-
works, it is challenging to perform a standard topology optimization algo-
rithm to emerge and evolve these thin and sparse features. For example, to
model the evolution of a thin sheet at the length scale of ten micrometers
within a centimeter cube, it requires an FEM solver discretized on a 10003

Cartesian grid. This grid resolution amounts to the order of magnitude of
one billion active elements.

66

Recent advances in supercomputing provide some solutions that over-
come this challenge. For example, Aage et al. (2017) ran a parallel topology
optimization program on a cluster with 8000 cores for days and obtained
the structure of an airplane wing with the computational domain filled
with 1.1 billion voxels. A variety of novel, intricate, and multi-scale struc-
tures naturally emerge from the super-resolution computations. This
result is impressive, yet the limited accessibility and high cost of the su-
percomputing resources impede the use of such numerical approaches in
a broader range of research and engineering applications. New compu-
tational tools, which are easy to access, efficient to run, and able to solve
super-resolution systems, are needed in the scientific community.

4.3 Main Contributions

We propose a new computation framework that combines a sparse repre-
sentation in conjunction with a highly optimized elastic multigrid solver
for topology optimization, which delivers a significant leap in solving
super-resolution problems from the prior state-of-the-art results. Our
framework has enabled the simulation of a sparsely populated computa-
tional domain on the level of billion active grid voxels on a single worksta-
tion. By examining the simulation results at such scale, we identify and
analyze new challenges that have not been addressed, or even observed,
in the previous research on elastic deformation simulation and topology
optimization, such as poor asymptotic convergence of standard Galerkin-
coarsened multigrid algorithm and the algorithmic limits of floating-point
precision.

To address these scale-dependent challenges, we combined design
practices and algorithmic interventions on data structures, numerical
methods, and parallel solver implementations. First, our framework is
centered around a sparsely populated grid data structure, which allows

67

the dynamic allocation of the degrees of freedom within a narrow band
around the structure. This data structure combines the benefits of sparse
storage, implicit topology representation, and the performance potential of
high-throughput stream processing. We have observed and demonstrated
numerically that the elements with high structural sensitivities, which are
essential for developing the structure towards its optimal topology, tend
to bundle within a narrow band around the structure during evolution. In
contrast, the vast bulk of void regions far from the structure contribute little
to the total structural compliance, but they are the primary source of the
computational cost in a dense discretization. Therefore, the computation
can be dramatically reduced by using a dynamically allocated sparse
discretization, i.e the narrow-band representation.

In addition to the narrow-band representation, we developed a novel
mixed-precision multigrid solver that is capable of solving FEM discretized
linear elasticity in the order of billion elements on a single workstation.
By proposing an SPGrid-optimized matrix-free formulation for data stor-
age and a novel mixed-precision computation, the solver can meet the
memory storage and bandwidth demands of a multiprocessor workstation
while maintaining high accuracy. Also, our vectorized multigrid solver
takes advantage of the AVX512 instruction set on the Intel Skylake-X/SP
architecture in order to further enhance performance.

We summarize the main contributions of our work as follows:

• We demonstrate an ensemble of data structures, numerical schemes,
and implementation best practices to perform topology optimiza-
tion with the highest resolution (over one billion voxels) on a single
shared-memory multiprocessor.

• We propose a sparse, adaptive topology optimization framework
where simulation of elastic deformation is restricted to a narrow
band surrounding the high-density region.

68

• We demonstrate the capacity of our framework to obtain a variety
of complex thin and codimensional features, such as thin films and
beams, that previous approaches might suppress.

4.4 Method Overview

Our sparse topology optimization framework consists of three key com-
ponents: a sparse grid structure, a high-resolution multigrid FEM solver,
and a narrow-band and unbounded structure optimizer. First, we briefly
introduce the sparse paged structure (SPGrid) Setaluri et al. (2014) as the
base data structure to track the optimizing structures (Section 4.5). Next,
we discuss our multigrid FEM solver for computing large-scale elastic sys-
tems on SPGrid in Section 4.6. Finally, in Section 4.7, we provide method
validations with respect to both the multigrid solver.

4.5 Sparsely Populated Grid Structure

The Sparsely Populated Grid (SPGrid) data structure Setaluri et al. (2014),
in comparison to other sparse data structures, leverages the virtual mem-
ory system to allocate a very large virtual memory address span, corre-
sponding to a sparsely populated background grid, while only materializ-
ing in physical memory the parts of this grid that are active. The allocation
unit in SPGrid is a block, a rectangular region of the Cartesian grid that
is made contiguous in memory address space by virtue of a space-filling
traversal scheme; The size of SPGrid blocks is chosen to be a multiple of
a 4KB, i.e. the size of a physical memory page. SPGrid stores a number
of data channels, which have similar sparsity pattern and corresponding
indexing, in the same allocation block. Using the SPGrid data structure
enables us to compute effectively on a sparsely populated domain with
effective bandwidth comparable to a cache-optimized, dense uniform grid.

69

In our multigrid FEM solver, we utilized the flexibility of SPGrid’s block
size, and chose a block size of 4 × 4 × 8, tailored for vectorization as
described in Section 4.6.

4.6 Multigrid Solver

Our topology optimization framework utilizes a numerical solver for a
lattice-based Finite Element Method (FEM) discretization of linear elastic-
ity, with spatially varying material parameters. In order to accommodate
the large resolutions targeted by our method, we employ a solver based
on the Multigrid-Preconditioned Conjugate Gradients (MGPCG) algo-
rithm. Algebraically, our methodology is similar to prior formulations of
multigrid-preconditioned solvers [Wu et al. (2016c); Dick et al. (2011a)],
in employing a hexahedral discretization of the linear elasticity operator,
leveraging Galerkin coarsening to generate coarse level operators, and
using a symmetric V-cycle as a preconditioner for Conjugate Gradients.
We deviate from standard practices as documented in prior work by way
of design choices, data structures, and parallelization practices including:

• A matrix-free implementation of the finest-level elasticity operator
tailored for the SPGrid sparse storage structure.

• A bandwidth-saving construction of the Galerkin coarsened oper-
ator at each level, which avoids streaming through explicitly-built
matrices as input any only relies on material properties at the finest
level.

• Storage of the explicitly formed coarse grid operators in a novel,
SPGrid-specific banded sparse matrix format.

• A modified eight-color Gauss-Seidel smoother designed to optimize
memory bandwidth utilization and SIMD efficiency.

70

• A mixed-precision implementation of MGPCG, which combines the
accuracy of double-precision arithmetic with the storage saving of
single-precision representations.

Matrix-free design of finest level operator. Due to the size of the sim-
ulation domains we target, economy in memory footprint is essential to
our approach. An explicit matrix storage at any level of the discretization
would necessitate 243 scalar coefficients per lattice node, consisting of 27
spokes of 3×3 matrices. This number excludes any compaction afforded by
storing only the symmetric half of the operator, but also does not account
for any additional storage of matrix indices (e.g. in compressed sparse
row format), or explicit topology storage of the computational domain
(e.g. explicit hexahedral mesh).

The SPGrid data structure provides the abstraction of a sparsely pop-
ulated grid, without the need to explicitly encode the connectivity of
hexahedral simulation elements (e.g. as in an explicit mesh structure),
as it is implied by the background uniform grid topology. Although our
computational domain is embedded in a large background regular grid
(up to the resolution of 3000×2400×1600), its active cells in our simulation
are only a sparse subset (up to 1.04 billion active cells, in our tests). The
SPGrid structure allows us to directly store these active cells, their material
parameters as well as their nodal forces and displacements in a sparsely
populated grid.

At the finest level, we implemented a numerical kernel that computes
the elastic forces resulting from the elasticity operator, for all nodes of a
given 4× 4× 8 block of the SPGrid structure; this kernel is designed to be
free of write-dependencies, hence all blocks can be processed in parallel
on different threads.

Consider a single grid cell with nodal displacements {ui}8i=1. We denote
by {fi}8i=1 the nodal forces produced by the elastic response of the same cell,

71

which can be expressed as fi =
∑8
j=1 Kij · uj. Each Kij in this expression

is a 3 × 3 matrix; we store these coefficients in a 8 × 8 × 3 × 3 tensor K,
whose elements are given by Kijvw = [Kij]vw. This tensor is given as
a linear combination of two canonical tensors Kµ and Kλ based on the
Lamé coefficients, corresponding to the stiffness matrices computed for
(µ, λ) = (1, 0) and (µ, λ) = (0, 1) respectively. They can be computed either
by analytic integration of the linear elastic trilinear element, or an eight-
point Gauss quadrature rule. Ultimately, the elemental stiffness tensor
is expressed as K = µKµ + λKλ. We use the notation C(i) for the set of
eight cells incident to node i, while V(c) denotes the eight vertices at the
corners of cell c. We can then express the total force on node i as:

fi =
∑
c∈C(i)

∑
j∈V(c)

(µ(c) ·Kµ + λ(c) ·Kλ)i(c)j(c) · uj

where µ(c), λ(c) are the parameters of cell c, and 1 6 i(c), j(c) 6 8 are the
local indices of nodes i, j as vertices of cell c. This operation can be trivially
vectorized; let f := (f(p,q,r), f(p,q,r+1), . . . , f(p,q,r+7)) be a SIMD vector of
eight forces on nodes that are sequential along the z-axis, while µ(c), λ(c)

are the parameters of a cell neighbor for each of the eight sequential grid
indices, and finally, uj the set of eight sequential nodal neighbors at a
specific offset direction. The previous operation is then expressed as:

f =
∑
c∈C(i)

∑
j∈V(c)

(µ(c) ·Kµ + λ(c) ·Kλ)i(c)j(c) · uj. (4.1)

We note that a SIMD line need not be structured strictly along a sequence
of nodes aligned along the z-axis (or any other single axis); a rectangular
arrangement, e.g. eight nodes straddling a 2 × 4 rectangle along the y-
and z-axes would work in exactly the same fashion. From a programming
standpoint, equation (4.1) indicates that SIMD vectors of each Lamé pa-
rameter are scaled with a constant coefficient (a single multiply instruction,

72

with embedded broadcast, in the AVX2 and AVX512 instruction sets), and
multiply the respective neighboring displacements uj (a fused multiply-
add operation) to compute a term contributing to the nodal force f. With
the increased number (32) of available registers in AVX512, we have veri-
fied that the entire stencil application can be executed with 2×242 multiply
and 2× 242 fused multiply-add instructions (FMA) without any register
spilling, and enough distance between operation dependencies to allow
the full throughput of two FMA instructions per cycle in Skylake-X/SP1

(approximately 1200 cycles for the stencil application on one 16-wide SIMD
line).

Modifications to the SPGrid structure In order to accommodate the
SIMD-heavy stencil computations in our elasticity operator, we enacted
two crucial modifications/enhancements of the baseline implementation
(http://www.cs.wisc.edu/˜sifakis/SPGrid.html) of the SPGrid structure of
Setaluri et al. (2014). The first of those, is a vectorized load routine, with a
compile-time stencil offset, as in:

template <int di,int dj,int dk,class SPG_array>
__m512 VectorGet<di,dj,dk>(SPG_Array a,int64_t offset)

where a 16-entry SIMD width in single-precision has been used, as an
AVX512 example. The offset given as argument is presumed aligned at
SIMD-width granularity, while a stencil offset (di,dj,dk) is given as a
compile-time argument. For this specific application di,dj,dk only takes
value of (-1,0,1). Using these semantics, grid data at a given stencil
“spoke” (from an aligned baseline vector address) can be loaded for an
entire SIMD line, as illustrated in Figure 4.3. Even though the stencil shift
might cause data to originate from different SPGrid blocks, the fact that

1Intel Xeon Gold 6140 processor (18 cores at 2.30 GHz) with 192 GB memory.

73

Figure 4.3: The offset passed to VectorGet points to an sequence of
SPGrid entries with SIMD-width alignment (light blue box). Using a
stencil offset, e.g., shifts the region to be loaded by VectorGet, as shown
in the dark blue box. The data of this shifted box may originate in several
distinct SPGrid blocks (indicated by different node colors).

such shift is known at compile time allows significant optimizations that
avoid expensive gather operations and minimize address translations.

The second SPGrid modification was the relaxation of the design re-
striction in Setaluri et al. (2014) that each SPGrid block be sized to exactly
4KB (the size of a virtual memory page). Our solver used a total of 128
bytes for all variables stored at each grid index, leaving the block size to
just 2× 4× 4 when a 4KB block size is used. We found it more effective to
be able to use a larger block size, namely 4× 4× 8 in order to (a) minimize
the number of SIMD stencil accesses that straddle multiple blocks, and
simplify implementation of VectorGet, and (b) allow an adequate number
of nodes to be present per-block, to ensure that even after eight-coloring
(as required by our smoother, described later in this section), the nodes
on each color are a multiple of the SIMD width, even on AVX512 systems.
We include source code for both proposed SPGrid modifications, as a sup-
plement to our paper. As an indication of performance, we have achieved
an effective bandwidth of 17.45 GB/s for our multiply kernel.

Efficient Galerkin Coarsening. In the construction of the multigrid hi-
erarchy, we used the Galerkin coarsening method, computing the coarse

74

grid operator as Kc = PT ·Kf · P, where P is the prolongation matrix and
Kf the fine grid operator. At all but the two finest levels, we can afford to
store the coarsened operator explicitly, as the reduced dimensionality of
the coarse grid allows us to do so at one-eighth of the memory footprint
that such matrix would have occupied at the finer level. Our construction
of Kc is tailored around the following implementation objectives:

• Neither Kf or P are presumed available in matrix form.

• The rows of Kc should be computed independently, to avoid write
hazards. †

• We seek the flexibility to compute Kc at any coarse level directly
from the material parameters at the finest level, without depending
on operators at intermediate levels.

1 0

0

1 1/2 0

0

01/41/2

1 1/23/4 1/4 0

3/4 3/89/16 3/16 0

1/2 1/43/8 1/8 0

1/4 1/81/16 1/16 0

0 00 0 0

Figure 4.4: Two succes-
sive prolongation opera-
tions on a Kronecker delta
function during Galerkin
coarsening of a coarse cell,
illustrated in 2D.

Let us consider the specific example of con-
structing the operator K4h at two levels coarser
from the finest grid:

K4h = PT4h→2hPT2h→hKhP2h→hP4h→2h (4.2)

The coefficients of the i-th row of this matrix
(or equivalently, the i-th column, due to sym-
metry) are given by the action K4hei of this
operator on the basis vector ei. Equation (4.2)
suggests that this action can be computed by
successively prolongating ei to the finest level,
applying the fine-grid operator Kh, and restricting the result back to the
coarse grid. We perform this operation separately on each of the eight cells
(at level 4h) incident on node i, as illustrated in Figure 4.4. The input to
this process is a discrete Kronecker delta, shown as the input coefficients
to the coarsest level. We can use an eight-wide SIMD register to store all

75

eight nodal values of this coarse cell. We have implemented a routine
ProlongateCell() that interpolates this eight-value SIMD register into eight
more eight-wide registers corresponding to the nodal values of the child
cells at the immediate finer level. This routine is called recursively to pro-
longate all the way to the finest level. At that point, a routine CellMultiply()
is used to compute the force response of each individual fine cell to these
prolongated nodal displacements (using the material properties at the
finest level). A routine RestrictCell() implements the adjoint of the prolon-
gation operation by collecting force contributions from fine child cells to
their coarser parent. Since these routines are called recursively, all SIMD
vectors are stack-allocated and can be effectively cached. As an indicator of
performance, the construction of the entire operator hierarchy in our 1.04
billion-voxel example (Figure 4.1) requires 113.9 seconds using AVX512
instructions, which is a very small fraction of the MGPCG cost at this
resolution.

Sparse Matrix Storage The storage of the Galerkin-coarsened matrix
needs to be handled as to exploit sparsity, facilitate the application of
the smoother routine, and allow a direct solver (in our case, Intel MKL
PARDISO) to be used for solving the problem at the coarsest level of the hi-
erarchy. Given that the topology of the background is a regular Cartesian
lattice, we use a band-storage approach, where the 243 nonzero coefficients
associated with the stencil each node (a 3× 3 matrix for every spoke of a
27-connected 3×3×3 stencil) are stored into a secondary SPGrid structure.
We supplement these 243 scalars with a bit field, indicating whether each
stencil spoke is structurally present in our discretization. This representa-
tion allows straightforward implementation of the smoother routine, and
can be easily converted to compressed sparse row (CSR) format for usage
in direct solvers like PARDISO. In this conversion, the only serial operation
is the calculation of linearized indices, and the necessary allocated length

76

of each compressed row; the data transfer into the CSR coefficient buffer
is performed in parallel over SPGrid blocks.

Optimization of the relaxation routine In order to balance convergence
efficiency with parallelization potential, we employ an eight-color Gauss-
Seidel (GS) routine, as other authors have similarly adopted in prior work
Wu et al. (2016c), with the slight modification that we collectively update
all three collocated degrees of freedom at each grid node, by inverting the
3× 3 diagonal block of the stiffness matrix corresponding to that node. A
drawback of combining the eight-color GS smoother with a SIMD imple-
mentation is the suboptimal utilization of memory bandwidth, as each
SIMD vector will require data that is consistently discontinuous in memory
(Figure 4.5, left). Such scattered memory assess is particularly wasteful for
modern hardware which always performs load operation from memory at
cache-line granularity. In order to circumvent the need for such scattered
data access, we preemptively transpose the data in each SPGrid block as
to reorder the indices of each color to be consecutive in memory (Figure
4.5, right/bottom). We observe that applying the same stencil offset to the
nodes of one color always leads to nodes of a different yet consistent color
(e.g., in Figure 4.5, applying a (+1,+1) offset to a yellow node always leads
to a red node). As a consequence, after the described transposition, apply-
ing the colored GS smoother on each individual color can be performed
by a straightforward application of the VectorGet routine to the trans-
posed data. Each SPGrid block is transposed back to the original ordering
at the end of the application of the relaxation routine. The reordering
operation is a streaming memory operation and is required only twice
(one transpose into the colored layout and one transpose back) for each
sequence of smoother application. The transposition cost is negligible in
comparison to the smoother. We have observed an effective bandwidth of
up to 68 GB/s (out of maximum 128 GB/s) on a Skylake-SP platform for

77

Figure 4.5: Left: a SPGrid block of 4x8 in which the nodes are ordered
lexicographically, Right: the transposed colored storage enables efficient
vectorization for Gauss-Seidel iteration. Bottom: Transposition operation
of a SPGrid block illustrated in a linear memory layout.

the eight-color GS routine. This is computed by assuming perfect caching
behaviour and all data is read from/write to the main memory exactly
once.

A mixed-precision MGPCG solver The linear systems arising from the
equations of elasticity in our large-scale topology optimization tasks im-
pose a unique set of challenges to the numerical algorithms used. Due to
both the sheer size of the computational domains we seek to accommodate,
and the large contrast of material stiffness values used in different regions
of the simulated domain, we often encounter situations where an MG-
PCG solver using single-precision (32-bit) floating-point arithmetic cannot
sustain satisfactory convergence, or even instances where the solver will
plainly diverge. There are also scenarios where single precision will have
catastrophic consequences on our solver, when Galerkin-coarsened matri-
ces will be reported as effectively “singular” by direct solvers (i.e. MKL
PARDISO) if constructed to single precision. We note that the frequency
of incidence of such issues was dramatically increased, in our experience,
when dealing with domains in excess of 108 voxels, while lower-resolution
problems would be significantly more resilient.

An MGPCG solver implemented natively in double precision was
fully effective for all the examples in our paper. However, using double
precision would double our memory footprint, which was a significant

78

concession given our pursuit of exceptionally high-resolution domains. We
thus designed a variant of such solver that used a carefully crafted mix of
single- and double-precision arithmetic, which we have found to produce
results of effectively identical accuracy as a native double-precision solver.
Consider the main loop of a preconditioned conjugate gradients algorithm,
as captured in the following pseudocode: Our modifications which yield

for k = 1 : N

qk ← Apk (4.3)
αk ← rkTzk/pkTqk

xk+1 ← xk+αkpk (4.4)
rk+1 ← rk−αkqk

zk ←M−1rk (4.5)
βk ← zk+1

T rk+1/zkT rk
pk+1 ← zk+1+βkpk

a mixed-precision implementation are summarized as follows:

• Vectors r, q, z and p (colored blue, above) are persistently stored in
single-precision floating-point variables.

• The solution x is stored in double precision. The accumulation oper-
ation in (4.4) is also performed in double precision.

• The operator application in line (4.3) is performed in double precision
(the single-precision input p is up-cast to double precision prior to
the multiplication). The result of the operator application is then
truncated to single precision and stored into q.

• The multigrid V-cycle used as the preconditioner M−1 in line (4.5)
is modified as follows: The smoother at the finest level uses double
precision for the application of the operator, just as in line (4.3), al-
though inputs and outputs are stored in single-precision. Every level

79

Figure 4.6: An optimized interior supporting structure of part of a wing is
generated using our algorithm on a 1696× 342× 1971 grid (402 M active
voxels).

of the V-Cycle other than the finest uses double-precision arithmetic
entirely.

Using this mixed-precision approach, the memory footprint of our solver
is further reduced, providing a significant boost in the maximum resolu-
tion we can accommodate for a given amount of physical memory (128
bytes/node suffice to store all variables necessary for the MGPCG solver
as well as the minimum compliance optimizer. Using full double preci-
sion, it would require 256 bytes/node for MGPCG solver and minimum
compliance optimizer). Our results and validation section provides ex-
perimental evidence indicating that this mixed-precision approach yields
almost identical accuracy of final results in all our tests.

80

Figure 4.7: (Left) Convergence comparison of the bird beak example of
different resolutions at the last topology optimization iteration. (Right)
Convergence comparison of the one-billion-voxel bird beak example at
different topology optimization iterations. All residuals reported in this
work are L∞ norm across all active cells, normalized relative to the L∞
norm of the load.

4.7 Multigrid Solver Validation

Algorithmically, our implementation of the solver is a standard multi-
linearly interpolated Garlerkin-coarsened Multigrid preconditioned conju-
gate gradient method. At early topology optimization iterations or small
domains, such method proves to have fast asymptotic convergence. But
in our examples, especially the bird beak Figure 4.1 and the wing Figure
4.6, the high variation of material spatial distribution has challenged the
convergence of the multigrid solver as shown by Figure 4.7 (left). Thiner
features resulted from Higher resolution, can significantly impact the
convergence of multigrid as indicated in Figure 4.7 (right).

Besides convergence, the high resolution has also pushed the numerical
limited of floating point. To validate our mixed precision scheme, we
have conducted the following tests, both on analytical structures and
the structures naturally emerged from topology optimization: 1. The last
iteration of the bird beak example; 2. The last iteration of the wing example;
3-8. Homogeneous and isotropic cantilever beams of different length with

81

one side fixed and the other side loaded with a uniform downward force.
Table 4.1 shows the final residual of five different precision schemes:

1. Full double precision; 2. Only solution vector and computation are
in double precision, the mix precision scheme we used in our topology
optimization; 3. Only solution vector is in double precision; 4. Only
computation is in double precision; 5. All in float precision. The results
shows that under all examples our proposed mix precision scheme(column
2) can reduce the residual to an order of magnitude close to the double
precision. Due to the fact that at high resolutions, cells that are far from
Dirichlet boundaries have large displacements but yet only small strains.
This loss of precision leaves it insufficient to use single precision for the
solution vector. As shown in (column 4 and 5), using single precision for
solution can result in inaccurate computation of strain and final residual.
Similarly, using single-precision multiply will not be able to compute
search direction to sufficient accuracy, conjugate gradient, in this case, will
halt due to a detected singularity (column 3 and 5).

82

Table 4.1: The final residuals of different precision schemes after the same
number of iterations. Test cases include bird beak, plane wing, and can-
tilever beam (CB) with different resolutions. The final residuals are re-
computed based on solution vectors. All tests are scaled to initial residual
infinity norm of 1. From the left to right, the 5 schemes are: 1. Full double
precision; 2. Only solution vector and computation are in double precision;
3. Only solution vector is in double precision; 4. Only computation is in
double precision; 5. All in float precision. SINGULAR indicates conjugate
gradients have halted due to detected singularity.

Example Double Precision Mix Preci-
sion
(double
multiply)

Mix Preci-
sion
(single mul-
tiply)

Single Preci-
sion
(double mul-
tiply)

Single Preci-
sion
(single multi-
ply)

Bird beak 9.192e-5 9.063e-5 1.969e-4 6.846e+0 7.611e+0
Wing 8.968e-5 1.815e-4 SINGULAR 1.850e+1 SINGULAR
CB (32x32x32) 7.942e-6 7.942e-6 5.827e-5 2.259e-5 5.827e-5
CB (32x32x64) 8.217e-6 8.218e-6 5.773e-5 4.905e-5 6.019e-5
CB (32x32x128) 8.207e-6 8.208e-6 1.041e-3 1.018e-4 1.041e-3
CB (32x32x256) 9.322e-6 9.321e-6 6.295e-3 1.934e-4 6.295e-3
CB (32x32x512) 4.506e-6 4.508e-6 SINGULAR 3.990e-4 SINGULAR
CB (32x32x1024) 5.237e-6 5.242e-6 SINGULAR 7.043e-4 SINGULAR

83

5 stencil aware galerkin coarsened multigrid
for linear elasticity

In Chapter 4, we examined an efficient implementation of a standard mul-
tilinear, Galerkin coarsened multigrid preconditioned conjugate gradient
algorithm for linear elasticity. In Figure 4.7, we have observed that with
increasing resolution (left), and domain complexity(right) the MGPCG
convergence is severely impaired. In this chapter, as a continuation to
Chapter 2, we will examine the design of a stencil-aware Galerkin coars-
ened multigrid and its efficacy when solving complex domains in com-
parison to the multigrid method whose hierarchy is constructed using
multilinear interpolation and Galerkin coarsening.

5.1 Related Work

Multigrid solvers have been one of the most potent types of solvers for
large scale elliptic PDEs. In Chapter 2, we saw two classes of coarsening
strategies: geometric coarsening and Galerkin coarsening. Geometric
coarsening is fast and has been used in many applications, such as Zhu
et al. (2010b), McAdams et al. (2011) and McAdams et al. (2010). It can,
however, be unstable when the simulation domain has complex boundary
conditions or highly varying material properties.

Galerkin coarsening, on the other hand, is significantly more expensive
but has much stronger stability properties. It also gives the solver the
freedom of choosing both the coarse grid degrees of freedom and the
prolongation operator. Many works have been dedicated to discovering
the optimal strategy to find coarse grid degrees of freedom. Smoothed
aggregation(SA), introduced by Vaněk et al. (1996), has been the most
popular method to accomplish this. BoomerAMG by Yang et al. (2002) is a
commercial algebraic multigrid solver that uses the smoothed aggregation

84

method. The main issue with the smoothed aggregation method is that
instead of creating a regular mesh, like a 2-dimensional quad mesh, at
each level of the multigrid hierarchy, it may create meshes with mixed
elements of connectivity. In 2D, instead of each node being shared by
4 quad elements, some nodes at coarse levels may be shared by an arbi-
trary number of elements, which include both quads and triangles. Such
irregularity causes many issues for optimization on modern hardware.
Therefore, for better regularity at coarse levels, throughout this work, we
always choose to geometrically coarsen the degrees of freedom, while
retaining the freedom to choose the prolongation operator. For selecting
the prolongation operator, Dendy (1982) introduced the blackbox multi-
grid for Poisson problems which geometrically coarsens the degrees of
freedom, but constructs a constraint-local problem for computing the pro-
longation operator. It has been proven to be extremely efficient for solving
Poisson problems with domains of highly varying density fields. In the
field of elasticity, the most commonly used interpolation scheme is still,
however, multilinear (see Chapter 4, Wu et al. (2016c), Wu et al. (2016b)).
The main reason multilinear interpolation is the best interpolation for
regularly coarsened hierarchies in 3D, is due to rank deficiency of the
local problem. I will provide the proof for this statement in Section 5.4. In
work by Brezina et al. (2001), vigorous proofs were given on what is the
optimal criteria in selecting the prolongation operator. The AMGe method
introduced in this work can give the optimal prolongation operator with
its local optimal criteria. But AMGe requires the storage of the element
matrices, which is prohibitively expensive. For a 128× 128× 128 domain,
the storage requirement of the element matrices is approximately 87GB.
In work by Henson and Vassilevski (2001), an approximate method using
harmonic extensions was proposed to enable the use of AMGe without
storing the element matrices. In work by Dohrmann (2007), augmented
degrees of freedom were introduced to overcome the rank deficiency of

85

the local problem in 3D, but the work assumes the knowledge of the local
null space, which is not always easily accessible.

In this Chapter, a new Stencil Aware MultiGrid (SAMG) for linear
elasticity will be introduced. It is based on the works by Brezina et al.
(2001) and Dohrmann (2007), with the following improvements:

• We designed a method for computing the prolongation operator
using matrix free operations that can compute the exact optimal
prolongation operator based on the local optimal criteria given by
Brezina et al. (2001). This provides significant memory savings,
especially AMGe requires not only store the system matrix, but also,
element matrices.

• The first level coarsening strategy combines Dohrmann (2007) and
Brezina et al. (2001). However, at coarser levels, we propose an easy
and inexpensive scheme to compute the prolongation operator that
does not requires any local matrix analysis and guarantees the correct
interpolation of rigid body motion.

• For the selection of smoothers, we provide insights into why we
choose a box smoother over others. We also provide experimental
evidence that the combination of the box smoother and the stencil
aware coarsening strategy provides excellent convergence over other
options.

5.2 Selection of Coarse Grid Nodes and
Prolongation Operator Sparsity

In this chapter, we will examine linear elasticity problems discretized with
3D eight-node cube element on a Cartesian grid. Therefore, the position

86

of node (i, j,k) in undeformed space X, can be written as:

X(i, j,k) = (i · h, j · h,k · h), (i, j,k) ∈ G0

Here, h is the element length and G0 is the finest level of discretization.
Since we wish to maintain regularity across all levels, we always choose to
geometrically coarsen the grid. We can write the position of node (i, j,k)
in undeformed space X at level 1 as:

X(i, j,k) = (i · 2h, j · 2h,k · 2h), (i, j,k) ∈ G1

The nodal positions for the coarser levels can be selected similarly. After
we have selected the coarse grid degrees of freedom, a proper prolongation
operator is required for building the multigrid hierarchy. Given that the
finest level operator L0 has a regular 27 point stencil sparsity, we desire
all coarse level operators Lc to share the same sparsity. Here we propose
a sparsity pattern for the prolongation operator that guarantees such a
property. This matches the sparsity pattern of standard multilinearly-
interpolated prolongation operators in Chapter 4. Although it is not the
only operator that satisfies, this is the most commonly used, and fits well
with the methods for computing the prolongation operator in the next
sections.

1. If a fine node f coincides with a coarse node c in undeformed space,
the prolongation stencil only includes that one coarse node, i.e.
Pfc∗ = 0, if c∗ 6= c. Figure 5.1 left.

2. If a fine node f lies on the center of a coarse-element edge in unde-
formed space, the prolongation stencil includes the coarse nodes on
the two ends of the edge. Let coarse node c1 and c2 define this edge,
Pfc∗ = 0, if c∗ 6= c1 and c∗ 6= c2, Figure 5.1 middle.

3. If a fine node f lies on the center of a coarse element face in unde-

87

Figure 5.1: Illustration of the prolongation stencil sparsity in 2D. Top is the
fine grid, bottom is the coarse grid. On the left, is a fine node coinciding
with a coarse node. The prolongation stencil is a single injection. In the
middle, the fine node lies on the edge of a coarse cell. The prolongation
stencil consists of two spokes connecting to the two ends of the edge.
On the right, the fine node lies on the center of the coarse node. The
prolongation stencil includes spokes to all the nodes of the coarse cell.

formed space, the prolongation stencil includes the coarse nodes at
the four corners of the face. If coarse node c1, c2, c3, and c4 define
this face and, Pfc∗ = 0, then c∗ 6= cp, ∀cp ∈ {c1, c2, c3, c4}.

4. If a fine node f lies in the center of a coarse element in undeformed
space, the prolongation stencil includes all eight nodes of the coarse
element. If coarse node c1, c2, c3, c4, c5, c6, c7, and c8 define this
coarse element, Pfc∗ = 0, if c∗ 6= cp, ∀cp ∈ {c1, c2, c3, c4, c5, c6, c7, c8}.
Figure 5.1 right.

88

5.3 Building the Prolongation Operators Using
Local Problems

Defining the Local Matrix

In section 2.7, we stated that the quality of the prolongation operator can
be measured by two metrics:

M1(Q, e) :=
< (I − Q)e, (I − Q)e >

< Le, e >
(5.1)

M2(Q, e) :=
< L(I − Q)e, (I − Q)e >

< Le, e >
(5.2)

Here we take Q as:

Q =

[
0 Pcf
0 Ic

]
Both measurements require the global operator L. In work presented by
Brezina et al. (2001), an alternative local operator Li was proposed. Li is
the sum of the element stiffness matrix adjacent to a given fine node i.

Li =
∑
α∈Ti

Lα (5.3)

Lα is the elemental stiffness matrix of element α, T is the collection of cells
that are adjacent to the fine node f (called the fine node’s ring neighbor-
hood), illustrated in Figure 5.2. The localized measurementMi,1 andMi,2

can then be defined as:

Mi,1(Q, e) :=
< εiε

T
i (I − Q)e, εiεTi (I − Q)e >

< Lie, e >
(5.4)

Mi,2(Q, e) :=
< LiεiεTi (I − Q)e, εiεTi (I − Q)e >

< Lie, e >
(5.5)

89

Figure 5.2: A neighborhood of a given fine node that aligns with a coarse
cell edge, shaded in blue, in a Cartesian discretization. The neighboring
cells of the given node are shaded in gray. In this case, we are interpolating
the fine node values from the given coarse nodes, shaded in yellow.

Here εi is a vector, whose entries satisfy:

εi(j) = δij

where δ is the Kronecker delta. If we denote the set of projection operators
Q that satisfy the sparsity conditions stated in Section 5.2 as Zi, the ith
row if Q is then:

qTi = εTi Q

and finding the prolongation operator for a given fine node i can be ex-
pressed by the following min-max problem:

Ki,p = min
qi∈Zi

max
e⊥Null(Li)

Mi,p(qi, e)

subject to (εi − qi)Te = 0, ∀e ∈ Null(Li) (5.6)

The condition in Equation 5.6 states that the prolongation operator must
correctly interpolate local null space. For Poisson problems, the null space
dimension of the local matrix is only 1, but for elasticity problems, the
null space dimension of the local matrix is drastically raised to 6 in 3D:
three for displacements and three for linearized rotations.

90

Computation of the Prolongation Operator

For the local problem defined above with fine node i, we denote the set
of nodes included in this local problem as Ni. We write c as the coarse
nodes that fine node i is interpolated from. f as the fine nodes from Ni.
nc is the size of the set c, and nf is the size of the set f. We can, therefore,
express the local matrix Li as:

Li =

[
L(1)
ff L(1)

fc

L(1)
cf L(1)

cc

]

for metricMi,1, and:

L2
i =

[
L(2)
ff L(2)

fc

L(2)
cf L(2)

cc

]
for metric Mi,2. If we place node i as the first of all the nodes f. We can
replace εi with ε1 in the two local metrics.

Lemma 5.1. There exits qi ∈ Zi, such that ε1 − qi ∈ Range(Lpi) if and only if

ε̂1 ∈ Range(L(p)
ff)

ε̂1 is the first canonical basis vector of length nf. p = 1 or 2.

For a more special case, if L(p)
ff is invertible, then there always exists an

interpolation that correctly prolongates error vectors that are in the null
space of the local problem. In our application, L(p)

ff is, in general, invertible,
therefore, at least the constructed prolongation operator can prolongate
null space correctly.

Theorem 5.1. If ε̂1 6∈ Range(L(p)
ff), then Ki,p =∞. If ε̂1 = L(p)

ff δ̂1, and the
unique solution of equation 5.6 is given by

q∗i =

(
0

−L(p)
cf δ̂1

)
∈ Z (5.7)

91

and Ki,p =< ε̂1, δ̂1 >, for p = 1 or 2.

The first part of Theorem 5.1 states that if no solution exists, multigrid
cannot converge for the error mode containing node i.

The second part of Theorem 5.1 states that if the solution exists, we can
compute the prolongation operator using the following formula:

ε̂1 = L(p)
ff δ̂1

δ̂1 = (L(p)
ff)(−1)ε̂1

q∗i = (eTi Q)T

= QTεi

=

(
0

PTfcεi

)

=

(
0

−L(p)
cf δ̂1

)
PTfcεi = −L(p)

cf δ̂1

= −L(p)
cf (L

(p)
ff)−1ε̂1 (5.8)

PTfcεi is a row of the prolongation operator. Here we require the inverse
of L(p)

ff . If the inverse exists, from From Lemma 5.1, there exists prolon-
gation operators that can correctly interpolate null space. Furthermore,
Equation 5.8 is a prolongation operator that can correctly interpolate null
space.

A practical way for computing PTfcεi when using metricMi,1, is to set
the coarse nodes in the local problem as Dirichlet. Then we set each degree
of freedom jwith value of 1, i.e. a Kronecker delta, one by one. For each
Kronecker delta imposed boundary problem, the value(s) of the DOF of
fine node i in the solution vector is then the entry εTi Pfcεj. Each row of
the prolongation operator is the harmonic extension of a canonical basis
vector.

92

If the reader is interested in the proof of Lemma 5.1 and Theorem 5.1,
we refer to Brezina et al. (2001). Here, we will only use the results and view
the implications. Furthermore, it is worth noting that in work Henson
and Vassilevski (2001), an alternative formulation of Equation 5.6 in the
perspective of energy minimization was proposed, upon which Dohrmann
(2007) was based. As it is not essential for the derivation of our method,
we will omit that formulation here.

5.4 Multigrid Method with Augmented
Variables

The condition of Equation 5.6, states that the prolongation operator must
correctly interpolate error vectors e that are in the null space of the local
matrix Ai. Here we will give without prove that standard multi-linear
interpolation satisfies this condition for both linear elasticity and Pois-
son problems, as it is used for homogeneous problems and proven to be
effective for those problem. In Section 5.2, a sparsity condition for the pro-
longation operator was proposed to guarantee the sparsity of the coarse
level operators. Considering Figure 5.2, the fine node is interpolated from
the edge adjacent two coarse nodes. For 3D elasticity, in the cases that
the fine node lies on the center of a coarse cell edge, the two coarse nodes
provide 6 equations for solving the local prolongation operator. Note
that the null space dimension of Ai is also 6. Which means there is only
one prolongation operator satisfies the condition of Equation 5.6, and we
know that the standard multi-linear interpolation satisfies this condition.
Therefore:

Lemma 5.2. Multi-linear interpolation is the only interpolation that can cap-
ture error vectors in the null space of local matrix Li for fine nodes that are inter-
polated from only two coarse nodes in 3D linear elasticity problems.

93

Given that the largestMi,p is the upper bound for the multigrid con-
vergence rate, which means it is very difficult to improve the convergence
over multi-linear interpolated multigrid while maintaining our sparsity
constraints for the prolongation operator. Dohrmann (2007) has made
similar observations. To overcome this limitation, he has proposed that,
by introducing additional degrees of freedom in the coarse grids, better
solutions to Equation 5.6 can be achieved.

Introducing Linearized Rotational Degrees of Freedom

Similar to Dohrmann (2007), we introduced linearized rotational degrees
of freedom to the coarse grid to improve the quality of the prolongation
operator. Given that our top level operator is matrix free as stated in
Chapter 4, we can easily compute the element matrix on the top level
and, therefore, we can avoid the local null space analysis suggested by
Dohrmann (2007). First, we will introduce the additional linearized rota-
tional DOF and their physical interpretation. Then an algorithm will be
proposed for computing the prolongation operator given by Theorem 5.1
with the expanded DOF. Figure 5.3 illustrates the deformation created by
the linearized rotation DOF θL of node L in 2D. The rotational degrees of
freedom associated with node L, namely θL, is viewed to influence the
horizontal, and only the horizontal, displacement of nodes LT and LB. If
we write the the coarse DOF of node L, displacements and rotation, we
can denote the total fine DOF ucL as:

ucL =

 ucL(x)

ucL(y)

ucL(θ)



94

Figure 5.3: A 2D illustration of a rotational degree of freedom θ and its
physical interpretation. In this case, the fine node, marked blue, is aligned
with a coarse cell edge. The fine node is interpolated from the two adjacent
coarse nodes, marked yellow. Letters are the associated names for the
nodes. The solid lines indicates the deformed cells after applying the given
rotation θ. The doted lines illustrated the undeformed cells.

The superscript c indicates the DOF live on the coarse grid. Accordingly,
the fine DOF of nodes LT, L, and LB, then can be computed:

ufLT =

(
ucL(x) − u

c
L(θ)h

∗

)

ufL =

(
ucL(x)

ucL(y)

)

ufLB =

(
ucL(x) + u

c
L(θ)h

∗

)

95

h is the cell width. The symbol ∗ indicates that this DOF is not fixed for
the local problem. Similarly we can write the right side nodal values as:

ufRT =

(
ucR(x) − u

c
R(θ)h

∗

)

ufR =

(
ucR(x)

ucR(y)

)

ufRB =

(
ucR(x) + u

c
R(θ)h

∗

)

So if we rearrange the local matrix in Equation 5.3, so that the nodal value
ufC comes first, then the other undetermined(or free) nodal values, and
last, the eight determined nodal values. We can write the DOF of local
problem as vector ufD:

ufD =
(
ufLT (x), ufLT (x), ufLT (y), ufLB(y), ufRT (x), ufRT (x), ufRT (y), ufRB(y)

)T
Similarly we can rearrange the local matrix and denote it as:

Li =

[
Lff Lfd
Ldf Ldd

]
(5.9)

Here, Ldd is a 8×8 matrix, Lff is of dimension 10×10. Based on theorem 5.1,
the free fine nodal DOF vector uf of size 10 can than be computed as:

uf = −(Lff)−1LfcufD (5.10)

Given that each component in vector ufD can be computed from ucL and ucR
using a linear transformation. We can construct a transformation matrix
T , s.t.:

ufD = Tuc (5.11)

96

Figure 5.4: Interpolation of a fine node, blue, that is at the center of a
coarse cell. The coarse nodes are shaded in yellow. Each node is given a
name.

The local prolongation operator is therefore:

Pi = −(Lff)−1LfdT (5.12)

The first two rows of Pi are the prolongation stencils of the fine node i. By
using Li instead of L2

i, our local convergence metric here isM1,q.

Interpolation of Cell Centered Nodes in 2D

Now that we have interpolated the fine nodes that are aligned with the
coarse cell edges, the next step is to interpolate the fine nodes that are
located at the center of the coarse cells, Figure 5.4 Notice that here node CT
can be interpolated from node LT and RT. Similarly to node L, R, and CB.
As a matter of facts, that all the 8 neighbors of node C can be interpolated
from the given coarse nodes. Therefore, we can prolongate the node C so
that it has zero residual at the fine level. If i is the index of node C, and Ni

is the set of nodes that are adjacent to node i, i.e.:

Ni = {LB, CB, RB, L, R, LT, CT, RT}

97

We can solve for the nodal value of node i, denoted as ufi using the follow-
ing equation:

Liiufi +
∑
j∈Ni

LijPjuc = 0 (5.13)

Here Pj is the jth rows of the prolongation operator that computes the
nodal values of j. In 2D, it is two rows, and in 3D, it is three rows. Pjuc

computes the nodal value vector ufj . Lij is the stencil coefficient coupling
node j and i. It is a 2× 2 matrix in 2D and 3× 3 matrix in 3D. We can write
the solution of ufi as:

ufi = −
∑
j∈Ni

(Lii)−1LijPjuc (5.14)

Then, the prolongation operator for node i, Pi is:

Pi = −
∑
j∈Ni

(Lii)−1LijPj (5.15)

Interpolation of Fine Nodes that Coincide with a Coarse
node in 2D

This is the simplest case, same as a standard multi-linear interpolation.
The fine node displacement are injected from the corresponding coarse
node. The rotational DOF are ignored as they do not exist in the finest
level.

5.5 Rotational Degrees of Freedom in 3D

Fine nodes in 3D can be categorized into 4 types as stated in section 5.2:

1. coinciding with a coarse node

2. laying on a coarse cell edge center

98

3. laying on a coarse cell face center

4. laying on a coarse cell cell center

For case 1 and case 4, the expressions for computing the prolongation
operator are almost identical for 2D and 3D. This section will focus on case
2 and 3, and although they are similar to the 2D case, they still require
special treatment.

Interpolating Fine Nodes that Lay on a Coarse Cell Edge
Center

The prolongation operator can be computed with the same formula as
Equation 5.12 as in the 2D case, but the arrangement of the local matrix
is different. Consider a one ring neighborhood of a fine node i, Ni that
contains 26 nodes. Without loss of generality, we assume node i lies on
a coarse node edge aligned with the x axis. Therefore if the node i has
geometric index (xi,yi, zi) in the Cartesian grid. We are interpolating
its value from node cL with geometric (xi − 1,yi, zi) and node cr with
geometric (xi + 1,yi, zi). If we denote the DOF of the coarse nodes as:

uc =



ux

uy

uz

rx

ry

rz


uc1 is the vector of nodal values for node cL and ucR is the vector of nodal
values for node cR. The fine node DOF at geometric index (xi − 1,yi, zi)

99

and (xi + 1,yi, zi) is computed using injection:

uf(xi − 1,yi, zi) =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

ucL (5.16)

Similarly uf(xi + 1,yi, zi) can be computed. With regards to the rotation
DOF of a given coarse node, it is important to note that they influence
only the fine nodes in Ni that are connected to the coarse node through
an edge and not through the center fine node i. For instance, rotational
DOF of node located at coarse node cL with geometric index (xi−1,yi, zi),
influence the following 4 fine nodes in Ni.

RL = {(xi−1,yi+1, zi), (xi−1,yi−1, zi), (xi−1,yi, zi+1), (xi−1,yi, zi−1)}
(5.17)

RL is the set of nodes influenced by rotational DOF of node cL. Similarly,
we can define RR. As an example, take node (xi − 1,yi − 1, zi). Because
of symmetry and without loosing generality, we can set this nodes nodal
value in the local problem as the vector between the node (xi − 1,yi, zi)
and (xi − 1,yi − 1, zi) is (0,−h, 0). Again h here is the cell size. If the
rotational DOF are (rx, ry, rz). Then we can write the linearized rotational
matrix as:

RcL =

 0 −rz ry

rz 0 −rx

−ry rx rz

 (5.18)

Then displacement of node (xi−1,yi−1, zi) caused by the rotation around
the coarse node is then:

RcL

 0
−h

0

 =

 hrz

0
−hrx

 (5.19)

100

Here the 2nd dimension of the displacement is not influenced by the
rotation of the coarse node. Therefore we set it as a free variable. Now we
can write the displacement of node (xi − 1,yi − 1, zi) on the fine grid as:

uf(xi − 1,yi, zi) =

1 0 0 0 h 0
∗ ∗ ∗ ∗ ∗ ∗
0 0 1 0 −h 0

ucL (5.20)

The symbol ∗ here indicates that the DOF associated with the row is set
to be a free variable in the local problem. Now that we have prescribed a
selection of fine node DOF in the local problem, we can rearrange the local
matrix Li similar to equation 5.9, and compute the prolongation operator
similarly to equation 5.12.

Interpolating Fine Nodes that Lay on a Coarse Cell Face
Center

A face center fine node i, Figure 5.5, assuming its geometric index is
(xi,yi, zi), is adjacent with 4 nodes that coincide with a coarse node and 4
nodes that lie on a coarse cell edge and can be prolongated by the 4 coarse
node within the one ring neighbor hood of i. We call them dependent nodes.
Without loss of generality, assume the fine node lies on a xy aligned face.
The adjacent coarse node set is then:

C = {(xi−1,yi−1, zi), (xi−1,yi+1, zi), (xi+1,yi−1, zi), (xi+1,yi+1, zi)}
(5.21)

The set of the dependent nodes that can be prolongated from nodes in C

is then:

D = {(xi − 1,yi, zi), (xi + 1,yi, zi), (xi,yi − 1, zi), (xi,yi + 1, zi)} (5.22)

101

Figure 5.5: A face centered fine node, shaded blue; surrounded by 4 coarse
nodes, shaded yellow; 4 dependent nodes, shaded red; 16 edge nodes that
rotate along the coarse nodes and dependent nodes, shaded black; and 2
free nodes in the center of the coarse cells, shaded green.

We define the set of fine nodes that is influenced by the rotational DOF of
each nodes in C as:

R1 = {(xi − 1,yi − 1, zi − 1), (xi − 1,yi − 1, zi + 1)} (5.23)

R2 = {(xi − 1,yi + 1, zi − 1), (xi − 1,yi + 1, zi + 1)} (5.24)

R3 = {(xi + 1,yi − 1, zi − 1), (xi + 1,yi − 1, zi + 1)} (5.25)

R4 = {(xi + 1,yi + 1, zi − 1), (xi + 1,yi + 1, zi + 1)} (5.26)

Those are the nodes with prescribed displacement in the local problem.
With this we can again arrange the local matrix Li similarly to equation 5.9,
and compute the prolongation operator similarly to equation 5.12.

If we define SP
c,j, j ∈ D the prolongation stencil, a 3× 3 matrix, from

node j to the center node c. Similarly, define SP
j,k, j ∈ D or j = c and

K ∈ C the prolongation stencil, a 3 × 6 matrix, from coarse node k to a

102

embedded node j. The final prolongation stencil from coarse node k to
the center node c, denoted as Pc,k, can therefore be written as:

Pc,k = SP
c,k +

∑
j∈D

SP
c,jSP

j,k,k ∈ C (5.27)

5.6 Construction of the Multigrid Hierarchy

Now with the computation of the prolongation operator P, which is a
27 point stencil in 3D with each spoke a 3× 6 matrix. We can construct
a two-level multigrid using a standard Galerkin coarsening process. The
multigrid solver is same as Algorithm 2.1.

5.7 Prolongation at Coarse Level

At coarse level, the building of the prolongation operator is quite different
from the top level for three main reasons: first, the number of DOF per
node has changed from 2 to 3 in 2D, and 3 to 6 in 3D. Second, the element
cell matrix is no longer easily accessible, they can be computed using
Galerkin coarsening of the cell matrices, but when building the local
problems, same cell matrix may be reused up to 8 times. Storing them can
void the overhead of recomputing the cell stiffness repeatedly but it would
require 8× 8× 6× 6 = 2304 doubles per element, which is prohibitively
expensive. Third and most importantly, the local problems sometimes
can has a nullity as many as 12, which is significant higher than the local
problem at the finest level. But also, L(p)

ff may always be invertible in
Equation 5.8. Or worse, ε̂1 may not be ∈ Range(L(p)

ff) for Theorem 5.1. It is
worth noting that based on Theorem 5.1, for some of the nodes Ki,p =∞.
It implies a point based smoother, Gauss-Seidel or Jacobi, can potentially

103

stagnate. Therefore, a smoother of a larger radius should be used. Now, to
reconcile the three problems, and to build the prolongation matrix, here
are two possible remedies:

1. Still using the local problem created by combining cell matrices, but
project ε̂1 onto Range(L(p)

ff), and use a psudo-inverse of L(p)
ff , while

still maintains the orthogonality condition in Equation 5.6.

2. Redefining the local problem so that ε̂1 ∈ Range(L(p)
ff) and L(p)

ff is
invertible.

Using remedy 1, not only requires either store or compute the cell matrix
on the fly, it also requires the singular value decomposition of the local
matrix to compute the psudo-inverse of L(p)

ff and correct project prolon-
gation operator so that it can correct prolongate null energy modes. The
potential high cost of remedy 1 made it very impracticable. Alternatively,
we adopted remedy 2 that similar to Dendy (1982), in which the name
black box multigrid is used. But here I refer the construction of the pro-
longation operator as stencil collapse, the reason will be obvious in the
following section.

5.8 Building Prolongation Operator using
Stencil Collapse

I want start to clarify that the method introduced in this section, though
can correctly interpolate rigid body motion, it imposes significantly more
artificial boundary condition in the local problem and can potentially
creates prolongation operator that is worse than remedy 1. But it is signif-
icantly cheaper and in our examples has demonstrated that it is sufficient
to have a good convergence behavior when paired with a good smoother.

104

The 2D Case

Let’s consider 2D first. If the fine node is coincided with a coarse node
geometrically in the undeformed space, the prolongation operator is a
simple injection. If the fine node lies in the center of the coarse node, the
expression for the prolongation operator is identical to Equation 5.15. The
case that is different, is when the fine node lies on a coarse cell edge center,
see Figure 5.3. In such case, we will assume that node LT, L, and LB are
undergoing the same rigid body motion. So is CT, C, and CB. And RT, R,
and RB. Therefore we can write:

uf∗T =

 uc∗(x) − u
c
∗(θ)h

uc∗(y)

uc∗(θ)



uf∗ =

 uc∗(x)

uc∗(y)

uc∗(θ)



uf∗B =

 uc∗(x) + u
c
∗(θ)h

uc∗(y)

uc∗(θ)


* here can be L, C, or R. h is the length of the cell element, which doubles
with each multigrid level. We can see that each is a linear transformation
from the center node. Therefore alternatively, we can write it as:

uf∗T = T∗Tuf∗
uf∗ = T∗uf∗

uf∗B = T∗Buf∗

T is the linear transformation that transforms each node based on the rigid
body defined by the central node. T∗ is just the identity matrix. Now if

105

we define Li(j) is the stencil between node i and j, i as the output node.
Therefore, we may write the equilibrium local problem as:∑
j∈{LT ,L,LB}

Li(j)TjufL +
∑

j∈{RT ,R,RB}

Li(j)TjufR +
∑

j∈{CT ,C,CB}

Li(j)TjufC = 0

(5.28)
If we collapse the stencils and define:

SL =
∑

j∈{LT ,L,LB}

Li(j)Tj

SC =
∑

j∈{CT ,C,CB}

Li(j)Tj

SR =
∑

j∈{RT ,R,RB}

Li(j)Tj

Otherwise, we can write it as:

ufC = −S−1
C SLufL − S−1

C SRufR (5.29)

the prolongation stencil of the left node to the center node i is then:

Pi(L) = −S−1
C SL (5.30)

Similarly the right side:
Pi(R) = −S−1

C SR (5.31)

The 3D Case

For the 3D case, we can classify the fine node to the 4 different categories:

1. If the fine node is coincided with a coarse node geometrically in the
undeformed space, the prolongation operator is a simple injection.

2. If the fine nodes lies on a coarse cell edge center, the derivation is

106

extremely similar to the 2D case. We collapse the stencils of the three
faces. Each face consider to have the same rigid body motion defined
by the the face center DOF.

3. If the fine nodes lies on the coarse cell face center, due to that the four
dependent nodes can be correctly interpolated from the surrounding
coarse nodes, see Equation 5.22, we consider the nine edges, per-
pendicular to the faces, each has its own rigid body motion defined
be the center node of the edge. Then, the same stencil collapsing
method can be applied.

4. If the fine node lies on the coarse cell center, the expression for the
prolongation operator is identical to Equation 5.15.

Prolongation of Rigid Body Motion

Lemma 5.3. If the center collapsed stencil SC is invertible, the prolongation
operator created by Equation 5.30 can correctly prolongate rigid body motion.

Proof. If SC is invertible, Equation 5.29 is the unique solution to Equa-
tion 5.28. rigid body motion is a null energy mode. Therefore a rigid body
motion will also satisfies Equation 5.28. Given that the solution is unique,
solution provided by Equation 5.29 is rigid body motion, if ufL and ufR is
prescribed with the same rigid body motion.

5.9 Dirichlet Condition Coarsening

To coarsening Dirichlet conditions, we choice the geometric coarsening
strategy introduced in Section 2.3, with some modifications. Dirichlet
condition are imposed at cell granularity. At top level Dirichlet cells are
marked X Dirichlet, Y Dirichlet, Z Dirichlet, or any combination of the three

107

based on which degrees of freedom are fixed. If a cell is marked Dirichlet,
all of its nodes are marked Dirichlet as well.

For the coarse level, the additional rotational degrees of freedom also
needs to be marked as Dirichlet. For 2D, if a cell is fixed, either in X or Y,
it will not be able to rotate, therefore the rotational degrees of freedom at
the coarse level will also be marked as Dirichlet. For 3D, if a cell is fixed
in X dimension, the cell would not be able to rotate in Y and Z axis, but
still allows to rotate in X axis. Therefore, in this case, only the rotational
degrees of freedom associated with Y axis rotation and Z axis rotation are
marked as Dirichlet, the X axis rotation remains free.

5.10 Choice of Smoother

In Section 5.7, a defect of the method was noted, that the coarse level, ε̂1

may not be in Range(L(p)
ff) for Theorem 5.1. This implies that for some

nodes, the local convergence metric can be Ki,p =∞. In such cases, a point
based smoother may not sufficient. Therefore, for all the coarse levels, a
colored box smoother of radius 2 is used. This problem does not exist at
the finest level, therefore, an eight-colored Guass-Seidel smoother is used
at the finest level that is the same as presented in Section 4.6.

Because of that our Dirichlet condition is geometrically coarsened, to
ensure the multigrid is stable, we will need extra boundary smoothing
iterations. The boundary nodes are defined as: within 3 stencil distance
from a Dirichlet node. For box smoother, we use boundary cells, defined
as: within 2 cell radius in either axis of a Dirichlet cell. When using this
stencil aware multigrid scheme as a preconditioner for conjugate gradient,
we found a standard 3-1-3 scheme: 3 boundary smoothing, 1 interior
smoothing, and 3 boundary smoothing again, is enough to produce good
convergence. In practice, we also found that for boundary smoothing,
Gauss-Seidel smoother is sufficient. While for interior smoothing, box

108

smoother is needed for better convergence.

5.11 Stencil Aware Multigrid as Preconditioner

For better convergence behavior, instead of using the stencil aware multi-
grid as a standalone solver, we used a symmetric implementation of it to
use it as a preconditioner for conjugate gradient.

To improve convergence and avoid null space issues in the local prob-
lems, we also choose to pad the domain at the finest level with cells with
minimal stiffness (1e-9) , but only for the preconditioner, so that all finest
cells contained within the coarse cells at the lowest level has a none-zero
stiffness.

5.12 Solver Convergence Analysis

To test the solver convergence in comparison to standard multilinear inter-
polated multigrid, we conducted tests that some are synthetic and some
are naturally emerged from the topology optimization process.

Two Level Convergence Test

The two level convergence test is conducted on a synthetic domain of size
323. Figure 5.6 is a 2D demonstration the the synthetic domain. Figure 5.7
shows the convergence rate of different methods for the synthetic domain.
We can see that multi-linear multigrid (MLMG), convergence rate has
drastically slowed down after 10 iterations, while stencil aware multigrid
(SAMG) maintained the convergence rate of 0.5, i.e. the residual reduces by
half every iteration. Using stencil aware multigrid as a preconditioner for
conjugate gradient (SAMGPCG), can even further improves convergence
rate.

109

Figure 5.6: An illustration of the synthetic testing domain of 322 in 2D. The
left side is fixed as Dirichlet condition. Black region are solid materials,
the white space in between are soft material of 10−9 stiffness. Material
properties are: µ = 100 and λ = 200. A uniform downward force is applied
to the right face.

Multi-level Convergence Test

The convergence tests conducted were aimed to support the following
hypothesis:

1. The convergence rate of multi-linear multigrid (MLMG) precondi-
tioned conjugate gradient combined with a colored Gauss-Seidel smoother,
slows down with the increasing resolution as more complex topology
emerges.

2. The convergence rate of multi-linear multigrid (MLMG) precondi-
tioned conjugate gradient combined with a colored box smoother, slows
down with the increasing resolution as more complex topology
emerges.

3. The convergence rate of stencil aware multigrid (SAMG) precondi-
tioned conjugate gradient combining with a colored Gauss-Seidel smoother,

110

Figure 5.7: Two level convergence rate of multilinear multigrid(MLMG),
stencil aware multigrid(SAMG), and stencil aware multigrid precondi-
tioned conjugate gradient(SAMGPCG) on the 323 synthetic domain.

slows down with the increasing resolution as more complex topology
emerges.

4. The convergence rate of stencil aware multigrid (SAMG) precondi-
tioned conjugate gradient combining with a colored box smoother is
more consistent across different resolutions.

The test is conducted using the bird beak topology optimization example,
Figure 4.1, at resolution 500×400×300, 750×600×450, and 1000×800×600.
The numbers of active voxels are 5M, 14M, and 40M. The last iteration of
topology optimization is used.

Resolution Scale Test

Figure 5.8, top left plot, illustrates is the convergence rate of the MLMGPCG
proposed in Chapter 4. The convergence rate of the algorithm decays with
the increasing of the resolution. For 5M active voxels, the algorithm takes
120 iterations to reduce the initial residual by 5 orders of magnitude. While

111

Figure 5.8: Convergence plot for the bird beak example. In all cases
multigrid hierarchy contains 4 levels, and 3-1-3 smoothing iterations
were applied. Top left: MLMGPCG with Gauss-Seidel smoother with
40M/14M/5M active voxels.Top right: MLMGPCG with box smoother
with 40M/14M/5M active voxels.Top left: SAMGPCG with Gauss-Seidel
smoother with 40M/14M/5M active voxels.Top right: SAMGPCG with
box smoother with 40M/14M/5M active voxels.

with 40M active voxels, it takes about 200 iterations to reduce the initial
residual by 5 orders of magnitude.

Figure 5.8, top right plot, shows that by using a box smoother, the
total number of iterations for convergence has reduced by 30%. But with
increment of resolution, we still observes a slow down in convergence.

Figure 5.8, bottom left plot, using the the SAMGPCG, even with just
Gauss-Seidel smoothing, the highest resolution example was able to con-
verge in 70 iterations with the 40M example. But the convergence rate has
slowed down from 14M to 40M.

Figure 5.8, bottom right plot, using the the SAMGPCG, with a box

112

Figure 5.9: Convergence plot for the 40M bird beak example using the 4
different methods.

smoother, the 40M example and 14M example both converged in approxi-
mately 30 iterations. The 5M example converged in 22 iterations.

Conclusion

Our new multigrid solver, stencil aware multigrid preconditioned conju-
gate gradient(SAMGPCG) has proven to be able to drastically improve
convergence rate for complex domains, Figure 5.9. But due to the memory
constraint, it is difficult to test larger examples given the total amount
of memory on our testing system, while small examples are unable to
represent the complexity of the domain. It remains to be further validate
that SAMGPCG can maintain its convergence rate with resolution scaling.

113

5.13 Limitations and Future Work

Though the solver presented in this chapter, SAMGPCG, has proven to
have an exceptionally fast convergence rate, it requires significant more
memory in comparison to standard multi-linear MGPCG, as it requires
explicit storage of not only the coarse grid matrix but also the transfer
operator. In practice, SAMGPCG has 3 times larger memory footprint in
comparison to multi-linear MGPCG.

Further more, the derivation of the rotational degrees of freedom in
this work is restricted to Cartesian grid discretization. It is possible to
extend the method to compensate irregular mesh, but the interpretation of
the rotational degrees of freedom will be much different. How this method
applies to general mesh discretization requires further investigation.

114

6 discussion

In this last chapter, I will conclude this document by revisiting the chal-
lenges of designing numerical solvers in the context of the modern hard-
ware, and how these challenges have inspired this thesis work.

6.1 Modern Hardware Features

The direction at which modern hardware advances has shifted. The CPU
frequency scaling has slowed down, while other features, such as SIMD
and accelerated hardware, have been expanded. The works presented in
the thesis were inspired by the following three key features:

• Increased number of computation cores The scaling of CPU core
speed in recent years has slowed down, while more computational
cores were added to single CPUs. AMD Ryzen Threadripper series
feature CPUs with maximally 32 cores, and Intel Skylake-SP series
feature CPUs with 28 cores.

• Wider SIMD Width Same Instruction Multiple Data (SIMD) or vec-
torization, is the method of increasing the computation throughput
without increasing the core count. GPUs usually feature a vector
width of 32. CPUs, on the other hand, have evolved from SSE (vector
width of 4), to AVX (vector width of 8), and recently AVX-512 (vector
width of 16).

• Heterogeneous Memory Hierarchy In recent years, deeper memory
hierarchies, such as L3 caches, were introduced to compensate for
the gap between memory latency and CPU speed. There are also
configurations, such as non-uniform memory access (NUMA) or
multi-GPU compute platforms, that feature more computational

115

power in terms of FLOPS and aggregate memory bandwidth. But
not all memory can be accessed with the same speed by the different
compute units.

6.2 Program Design Consideration

Inspired by the hardware features, the solvers presented in this thesis are
influenced by the following design considerations:

• Parallel Computing Designing algorithms that minimize read and
write hazards is the first step in utilizing modern hardware. For a
well designed compute bound parallel algorithm, its performance
can scale linearly with the number of cores, for it is difficult to saturate
the memory bandwidth without vectorization on CPUs.

• Vectorization Vectorization utilizes the SIMD feature in modern
hardware. It drastically increases the number of floating point op-
erations performed per second. For algorithms that are compute
bound, for instance the matrix-free Galerkin coarsening introduced
in Chapter 4, vectorization can greatly boost performance.

• Heterogeneous Computing To best utilize the full computational
power of a heterogeneous platform the algorithms, especially mem-
ory bound operations, need to be made aware of the different levels
of the memory hierarchy, and the fact that not all can be accessed at
the same rate. This is done so that performance will not be bounded
by the slowest data path in the hierarchy. In Chapter 3, this was
achieved by increasing the localized work load and reducing the
communication need between the heterogeneous components.

116

6.3 Tuning Numerical Elliptic PDE Solvers for
Modern Hardware

Given these design considerations, this thesis has presented three solvers
that are tailored to the new programming paradigms. Now we will state
in detail, the design process of those solvers.

Analyze Algorithmic Performance Bound

When designing numerical algorithms, it always requires reading some
amount of data, doing some amount work, then write something back. The
ratio between the the amount of data to read/write, and the computations
operated on the data dictates the bottleneck of the algorithm on a given
platform, given that the data can be reasonably cached. As an example,
a Skylake-SP Gold 6140 system, using AVX-512 instructions, has about
2.3 TFLOPS computation power and 128GB/s memory bandwidth. This
creates a ratio of 67 FLOPS/Float. It means that we can perform 67 floating
point operations for each float we read, before saturating the memory
bandwidth. Without vectorization, this ratio is reduced to 5 FLOPS/Float
(the CPU runs at a higher clock rate without vectorization). For GPUs,
GTX 1080ti for instance, features 11.3 TFLOPs and 484 GB/s memory
bandwidth. That creates a ratio of 93 FLOPS/Float. This ratio provides a
good guidance in optimization as it not only indicates the upper bound of
the best performance that can be achieved on a platform, but also helps us
to understand when an algorithm is memory bound or compute bound.

For the Poisson problem targeted in Chapter 3, the Jacobi smoother,
requires 7 fused multiply adds (FMA) for one float read and one float
write. This operation is clearly bound by memory bandwidth therefore,
even without vectorization, Setaluri et al. (2014) have achieved very good
performance. As for the linear elasticity problem in Chapter 4, the multiply
kernel requires 1152 fused multiply adds for three float reads and three

117

float writes. This high ratio between computation and memory access
implies that this kernel is compute bound and using vectorization can
drastically increase the performance.

The ideal computation power of a platform gives the theoretical upper
bound of the best performance an algorithm can hope to achieve. But in
reality, many other aspects will influence the final performance of the algo-
rithm. For instance, we assumed perfect caching in our analysis. In reality,
caching behavior depends on the memory access pattern and the data
layout. It is extremely difficult to achieve a perfect caching performance.
Another example of factors that can limit the algorithms from achieving
ideal performance is latency. A modern Intel CPU can issue two FMA per
cycle, and yet FMA will take 5 cycles to finish. If one of the FMA instruc-
tions has dependency on the results that is within 12 instruction before,
the execution would stall to wait for result. Another source of latency
is when data is not immediately available from L1 cache, the execution
will stall to wait for the data to be fetched, either from L2 or L3 cache, or
from the main memory. For GPUs, they can hide latency through massive
multi-threading (up to 32 warps a compute unit (SM), each warp is a 32
wide SIMD vector). While for CPUs, hyper-threading can levitate this
issue a little, but it will also increase the pressure on the caches. Instead
of hiding latency, optimization for CPU prefers reducing latency through
compiler optimization that reduces instruction dependency, out of order
issuing that reduces instruction stall, and pre-fetching that predicts and
fetch data into cache before it is requested.

Although the theoretical upper bound of a platform is a unrealistic
goal, it can be used as a very good metric when evaluating the performance
of a numerical kernel. It provides a good confidence that a kernel is very
close to optimal, as it was used in Chapter 3 and Chapter 4.

118

Choosing Data Structures

The choice of data structure can not only influence the complexity of an
algorithm. When tailored towards hardware, it can also influence cache
performance, instruction latency, and many other aspects of optimization.
In this thesis, SPGrid has been chosen as the primary data structure for
the following reasons:

1. SPGrid can represent sparse and adaptive geometry. For large scale
simulations, in many cases, the simulation domain is only filled with
a small fraction of materials. Sparse data structure allows higher
resolution by eliminating the need for storing inactive regions.

2. In comparison to other sparse data structure, OpenVDB for instance,
SPGrid does not require maintain a tree structure that needs to be
traversed when accessing the data. Instead, SPGrid utilized hard-
ware translation lookaside buffer (TLB) for data lookup. This feature
made SPGrid data structure more friendly to SIMD optimization
and CPU pre-fetcher.

3. SPGrid organize data into Morton encoded blocks, which ensures
that if data is geometrically close, they are more likely to be close
in memory as well. It helps improving cache hit rate when using
stencil operations that only requires data from geometric neighbors.

These features of SPGrid have enabled the optimization and algorithmic
design presented throughout the thesis.

Vectorizing Computation Kernels

Vectorization is an effective way to achieve higher computation throughput
on modern hardware. GPU programs require to be designed with full
SIMD support. While for CPUs or Xeon Phi processors, they allow mixture

119

of SIMD instructions and scalar instructions. This flexibility makes it a lot
easier to adopt existing algorithms using SIMD instructions on CPUs than
on GPUs. To achieve a good performance gain with SIMD, developers
need to be aware of the data layout and its access pattern.

Aligned Memory Access SIMD instructions operate on vectors of data.
As hardware always reads data in the unit of cache lines. If the data of the
same vector is aligned and consecutive in memory, loading a vector from
memory is trivia. When the data is scattered, gathering of a vector can
be rather expensive. In Section 4.6, we rearranged the data layout for the
colored Gauss-Seidel smoother to compensate the data alignment for this
reason.

Minimizing Memory Access SIMD instructions, in general, require more
data for operation than scalar instructions. This can often cause more pres-
sure on the cache. For memory bound operations, good performance relies
on good caching behavior. Therefore, it is important not to increase cache
pressure when using SIMD. For this reason, in Section 4.6, we designed
the Galerkin Coarsening algorithm by using a SIMD vector representing
the 8 nodal degrees of freedom instead of coarsening 8 cells at ones.

With the considerations above, choosing a data structure that can effi-
ciently support SIMD operations is essential to optimization. In Chapter 4,
we expended SPGrid to support larger blocks for better memory align-
ment, and added VectorGet operations to avoid the need for gathering
instructions.

Algorithm for Multi-Accelerator Equipped Platform

Having multiple accelerators is an easy way to increase the performance
throughput of a system. But accessing memories from other accelerators
and the main system memory from a accelerator is slow and has a higher

120

latency. In many cases, it also requires to copy the data to the accelerator’s
local memory first. Even with the promotion of NVLink, which features
80GB/s to 150GB/s shared bandwidth across GPUs, it is still significantly
slower than the GPU’s local memory, which can feature over 500GB/s
bandwidth. When designing algorithms for a heterogeneous system,
minimizing communication between accelerators is the key to avoid been
limited by the low bandwidth and high latency of the communication
channel.

In Chapter 3, we presented a divide-and-conquer method that divides
the simulation domain into isolated pieces. It allows the accelerators
to solve each domain separately without the need for communication.
Then an interface solve of reduced problem sized is used to merge the
results from the subdomain solvers. By diminishing the need of constant
communication, our solver has proven to be effective both in terms of
increased convergence rate and improved performance.

6.4 Challenges of Large Scale Simulation

This thesis has presented techniques that enable large scale simulation
on a single work station. It is also the first time that we are able to easily
examine how resolution may influence the solver performance at a large
scale. As the domain complexity increases, we observed the degradation
of the solver convergence rate, multigrid method specifically, due to two
main reasons: numerical cancellation, and poor coarse grid representation
that were constructed from an inappropriate prolongation operator. Our
numerical solvers aim to solve a discretized partial differential equation.
At heart, the discrete operator is a differential operator. For large scale sim-
ulation, as the discretized solution converges to the continuous solution,
the difference between the displacements of each adjacent samples be-
comes smaller. With a second order accurate discretization, the difference

121

between samples reduces at O(h2) speed, while the force at each sample
point reduces at O(h) speed. h here is the cell length. This discrepancy
between force and displacement demands higher numerical precision
with increased simulation resolution. Second consideration, with the res-
olution scaling, it is important for the numerical solver to maintain an
approximately linear complexity. Standard multilinear based multigrid
method is proven a linear complexity solver only for cubic domains. At
higher resolution, thinner features, varying material distribution, and
more complex domains impose significant challenges to the convergence
of standard multigrid method.

Mixed Precision Solver Higher floating point precision can be used to
mitigate the issue of numerical cancellation. For our application and
targeted size, double precision has proven to be sufficient for reducing
residual by 4 orders of magnitude. But double precision computation
requires twice the memory footprint as well as twice the computation time.
We developed a mix precision scheme that achieved the same accuracy as
using double precision but only a fraction of the variables were stored in
double.

Improved Multigrid Method To overcome the convergence issue of
the standard multigrid method, we developed a stencil aware multigrid
method. This multigrid method leverage a local smoothness metric to
maximize the quality of coarse grid correction and drastically improved
convergence for complex domains.

122

6.5 Limitations and Future Work

Unified Computational Framework

This thesis presents methods that specifically tailored to utilizing modern
hardware solving elliptic PDEs. It has demonstrated the potential of the
compute platforms and provided some guidelines regarding how to design
efficient numerical algorithms for those computational platforms. But
to achieve the performance we have demonstrated, we have to perform
very detailed optimization that is specially optimized for each platform.
There has been efforts in recent years to use a unified memory to abstract
out the memory hierarchy from the programmer, such as CUDA unified
memory and XEON Phi kight’s landing series HBM memory in cache
mode. Though that those design are convenient and provide reasonable
performance for some algorithms. It is difficult to achieve close to hardware
optimal in the general cases. The question of whether there is a generic
framework that is capable of utilizing the modern hardware without the
need of special optimization remains an open problem.

Scaling to Cluster

In work by Aage et al. (2017), 8000 cores were utilized to solve a giga-voxel
topology optimization problem. In this thesis, we demonstrated that we
can solve the same amount of degrees of freedom in a single machine.
When scaling the solver to a cluster, the algorithm needs to take into the
consideration that remote memory is very expensive to access. For I/O
bound algorithms or compute bound algorithms, it is less of an issue,
but designing numerical solvers that is memory bound in many cases
for cluster, without significantly compromising performance remains a
challenge.

123

Numerical Stability

For the problems we have targeted, double precision was sufficient. But
with the increasing of scale, there will be a point at which double pre-
cision will be proved to be insufficient. Deriving a numerically stable
discretization and algorithm can be important in the future.

Second Order Accurate Discretization

The work presented here were specially designed for Cartesian grid dis-
cretization benefiting from its regularity. Such regularity was exploited for
our efficient SIMD implementation and construction of the stencil aware
multigrid hierarchy. The major drawback of a Cartesian grid discretiza-
tion is that it often fails to capture the domain boundaries to second order
accuracy. The most common way to achieve this accuracy is using conform-
ing mesh, that introduces highly irregular pointer based data structures
that are unfriendly to modern hardware. But there has been works that
achieved second order accuracy on a Cartesian grid. Zhu et al. (2012) used
a virtual node method that captured the second order accuracy along
domain boundaries on a Cartesian grid discretization. Aanjaneya et al.
(2017) achieved second order accuracy around free surface boundaries by
utilizing a power diagram. The numerical solvers presented in these works
feature a first order preconditioner paired with an second order accurate
operator. But all those methods introduce auxiliary data structures that
breaks the regularity of the discretization. How to incorporate higher
order discretization into the modern age of the hardware evolution still
remains an open question.

124

references

Aage, Niels, Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. 2017.
Giga-voxel computational morphogenesis for structural design. Nature
550 7674:84–86.

Aage, Niels, Erik Andreassen, and Boyan Stefanov Lazarov. 2015. Topol-
ogy optimization using petsc: An easy-to-use, fully parallel, open source
topology optimization framework. Structural and Multidisciplinary Opti-
mization 51(3):565–572.

Aanjaneya, Mridul, Ming Gao, Haixiang Liu, Christopher Batty, and
Eftychios Sifakis. 2017. Power diagrams and sparse paged grids for high
resolution adaptive liquids. ACM Transactions on Graphics (TOG) 36(4):
140.

Adalsteinsson, D, and J.A Sethian. 1999. The fast construction of extension
velocities in level set methods. Journal of Computational Physics 148(1):2 –
22.

Adams, Bart, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. 2007.
Adaptively sampled particle fluids. In Acm siggraph 2007 papers. SIG-
GRAPH ’07, New York, NY, USA: ACM.

Ament, Marco, Günter Knittel, Danviel Weiskopf, and Wolfgang Straßer.
2010. A parallel preconditioned conjugate gradient solver for the poisson
problem on a multi-gpu platform. In Proceedings of the 18th euromicro
conference on parallel, distributed and network-based processing, 583–592.

Ando, Ryoichi, Nils Thuerey, and Chris Wojtan. 2015a. A stream function
solver for liquid simulations. ACM Trans. Graph. 34(4):53:1–53:9.

125

Ando, Ryoichi, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive
liquid simulations on tetrahedral meshes. ACM Trans. Graph. 32(4):103:1–
103:10.

Ando, Ryoichi, Nils Thürey, and Chris Wojtan. 2015b. A dimension-
reduced pressure solver for liquid simulations. EUROGRAPHICS 2015.

Bender, Jan, and Dan Koschier. 2015. Divergence-free smoothed particle
hydrodynamics. 147–155. SCA ’15.

Brandt, Achi. 1977. Multi-level adaptive solutions to boundary-value
problems. Mathematics of computation 31(138):333–390.

———. 1986. Algebraic multigrid theory: The symmetric case. Applied
mathematics and computation 19(1-4):23–56.

Brezina, Marian, Andrew J Cleary, Robert D Falgout, Van Enden Henson,
Jim E Jones, Thomas A Manteuffel, Stephen F McCormick, and John W
Ruge. 2001. Algebraic multigrid based on element interpolation (amge).
SIAM Journal on Scientific Computing 22(5):1570–1592.

Bro-nielsen, Morten, and Stephane Cotin. 1996. Real-time volumetric
deformable models for surgery simulation using finite elements and
condensation. In Computer graphics forum, 57–66.

Brun, Emmanuel, Arthur Guittet, and Frédéric Gibou. 2012. A local level-
set method using a hash table data structure. Journal of Computational
Physics 231(6):2528–2536.

Challis, Vivien J, Anthony P Roberts, and Joseph F Grotowski. 2014. High
resolution topology optimization using graphics processing units (gpus).
Structural and Multidisciplinary Optimization 49(2):315–325.

126

Chen, Zhili, Byungmoon Kim, Daichi Ito, and Huamin Wang. 2015. Wet-
brush: Gpu-based 3d painting simulation at the bristle level. ACM Trans.
Graph. 34(6):200:1–200:11.

Chentanez, Nuttapong, Bryan E. Feldman, François Labelle, James F.
O’Brien, and Jonathan R. Shewchuk. 2007. Liquid simulation on lattice-
based tetrahedral meshes. 219–228. SCA ’07, Switzerland.

Chentanez, Nuttapong, and Matthias Müller. 2011. Real-time Eulerian
water simulation using a restricted tall cell grid. 82:1–82:10. SIGGRAPH
’11.

Christiansen, Asger Nyman, J Andreas Bærentzen, Morten Nobel-
Jørgensen, Niels Aage, and Ole Sigmund. 2015. Combined shape and
topology optimization of 3d structures. Computers & Graphics 46:25–35.

Christiansen, Asger Nyman, Morten Nobel-Jørgensen, Niels Aage, Ole
Sigmund, and Jakob Andreas Bærentzen. 2014. Topology optimization
using an explicit interface representation. Structural and Multidisciplinary
Optimization 49(3):387–399.

Cohen, Jonathan, Sarah Tariq, and Simon Green. 2010. Interactive fluid-
particle simulation using translating Eulerian grids. In Acm siggraph
symp. on interactive 3d graphics and games, 15–22.

Da, Fang, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015.
Double bubbles sans toil and trouble: Discrete circulation-preserving
vortex sheets for soap films and foams. ACM Trans. Graph. 34(4):149:1–
149:9.

Deaton, Joshua D, and Ramana V Grandhi. 2014. A survey of struc-
tural and multidisciplinary continuum topology optimization: post 2000.
Structural and Multidisciplinary Optimization 49(1):1–38.

127

Dendy, JE. 1982. Black box multigrid. Journal of Computational Physics
48(3):366–386.

Dick, Christian, Joachim Georgii, and Rüdiger Westermann. 2011a. A
real-time multigrid finite hexahedra method for elasticity simulation
using cuda. Simulation Modelling Practice and Theory 19(2).

Dick, Christian, Joachim Georgii, and RÃ¼diger Westermann. 2011b. A
real-time multigrid finite hexahedra method for elasticity simulation
using CUDA. Simulation Modelling Practice and Theory 19(2):801 – 816.

Dick, Christian, Marcus Rogowsky, and Rüdiger Westermann. 2016. Solv-
ing the fluid pressure poisson equation using multigrid – evaluation and
improvements. IEEE Trans. Visualization & Computer Graphics.

Dobashi, Yoshinori, Yasuhiro Matsuda, Tsuyoshi Yamamoto, and To-
moyuki Nishita. 2008. A fast simulation method using overlapping grids
for interactions between smoke and rigid objects. Computer Graphics
Forum 27(2):477–486.

Dohrmann, Clark R. 2007. Interpolation operators for algebraic multigrid
by local optimization. SIAM Journal on Scientific Computing 29(5):2045–
2058.

Donea, Jean, S Giuliani, and Jean-Pierre Halleux. 1982. An arbitrary
lagrangian-eulerian finite element method for transient dynamic fluid-
structure interactions. Computer methods in applied mechanics and engineer-
ing 33(1-3):689–723.

Edwards, Essex, and Robert Bridson. 2015. The discretely-discontinuous
Galerkin coarse grid for domain decomposition. CoRR abs/1504.00907.

English, R. Elliot, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013a. Chimera
grids for water simulation. 85–94. SCA ’13.

128

English, R Elliot, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013b. Chimera
grids for water simulation. In Proceedings of the 12th acm siggraph/euro-
graphics symposium on computer animation, 85–94. ACM.

Enright, D., D. Nguyen, F. Gibou, and R. Fedkiw. 2003. Using the par-
ticle level set method and a second order accurate pressure boundary
condition for free surface flows. In Proc. 4th asme-jsme joint fluids eng. conf.

Enright, Douglas, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. 2002a. A
hybrid particle level set method for improved interface capturing. Journal
of Computational Physics 183(1):83–116.

Enright, Douglas, Frank Losasso, and Ronald Fedkiw. 2005. A fast and
accurate semi-Lagrangian particle level set method. Comput. Struct. 83(6-
7):479–490.

Enright, Douglas, Stephen Marschner, and Ronald Fedkiw. 2002b. An-
imation and rendering of complex water surfaces. ACM Trans. Graph.
21(3):736–744.

Eschenauer, H. A., V. V. Kobelev, and A. Schumacher. 1994. Bubble
method for topology and shape optimization of structures. Structural
optimization 8(1).

Ferstl, Florian, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and
Nils Thuerey. 2016. Narrow band flip for liquid simulations. In Computer
graphics forum, vol. 35, 225–232. Wiley Online Library.

Ferstl, Florian, Rüdiger Westermann, and Christian Dick. 2014a. Large-
scale liquid simulation on adaptive hexahedral grids. IEEE Trans. Visual-
ization & Computer Graphics 20(10):1405–1417.

Ferstl, Florian, Rüdiger Westermann, and Christian Dick. 2014b. Large-
scale liquid simulation on adaptive hexahedral grids. IEEE transactions
on visualization and computer graphics 20(10):1405–1417.

129

Foster, N., and R. Fedkiw. 2001. Practical animation of liquids. In Proc. of
acm siggraph 2001, 23–30.

Foster, Nick, and Dimitri Metaxas. 1996. Realistic animation of liquids.
Graph. Models Image Process. 58(5):471–483.

Frisken, Sarah F., Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones.
2000. Adaptively sampled distance fields: A general representation of
shape for computer graphics. In Proceedings of the 27th annual conference
on computer graphics and interactive techniques, 249–254. SIGGRAPH ’00.

Gao, Ming, Nathan Mitchell, and Eftychios Sifakis. 2014. Steklov-poincaré
skinning. 139–148. SCA ’14.

de Goes, Fernando, Corentin Wallez, Jin Huang, Dmitry Pavlov, and
Mathieu Desbrun. 2015. Power particles: An incompressible fluid solver
based on power diagrams. ACM Trans. Graph. 34(4):50:1–50:11.

Golas, Abhinav, Rahul Narain, Jason Sewall, Pavel Krajcevski, Pradeep
Dubey, and Ming Lin. 2012. Large-scale fluid simulation using velocity-
vorticity domain decomposition. ACM Trans. Graph. 31(6):148:1–148:9.

Griebel, Michael, Daniel Oeltz, and Marc Alexander Schweitzer. 2003. An
algebraic multigrid method for linear elasticity. SIAM Journal on Scientific
Computing 25(2):385–407.

Hecht, Florian, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien.
2012. Updated sparse cholesky factors for corotational elastodynamics.
ACM Trans. Graph. 31(5):123:1–123:13.

Henderson, Ronald D. 2012. Scalable fluid simulation in linear time on
shared memory multiprocessors. In Proceedings of the digital production
symposium, 43–52. ACM.

130

Henson, Van Emden, and Panayot S Vassilevski. 2001. Element-free amge:
General algorithms for computing interpolation weights in amg. SIAM
Journal on Scientific Computing 23(2):629–650.

Houston, Ben, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and
Ken Museth. 2006. Hierarchical RLE level set: A compact and versatile
deformable surface representation. ACM Trans. Graph. 25(1):151–175.

Ihmsen, Markus, Jens Cornelis, Barbara Solenthaler, Christopher Hor-
vath, and Matthias Teschner. 2014. Implicit incompressible SPH. IEEE
Transactions on Visualization and Computer Graphics 20(3):426–435.

Irving, Geoffrey, Eran Guendelman, Frank Losasso, and Ronald Fedkiw.
2006. Efficient simulation of large bodies of water by coupling two and
three dimensional techniques. 805–811. SIGGRAPH ’06.

Jiang, Chenfanfu, Craig Schroeder, Andrew Selle, Joseph Teran, and
Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Trans.
Graph. 34(4):51:1–51:10.

Jung, Hwi-Ryong, Sun-Tae Kim, Junyong Noh, and Jeong-Mo Hong. 2013.
A heterogeneous CPU-GPU parallel approach to a multigrid poisson
solver for incompressible fluid simulation. Computer Animation and Vir-
tual Worlds 24(3-4):185–193.

Klingner, Bryan, Bryan Feldman, Nuttapong Chentanez, and James
O’Brien. 2006. Fluid animation with dynamic meshes. 820–825. SIG-
GRAPH ’06.

Ladický, L’ubor, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys,
and Markus Gross. 2015. Data-driven fluid simulations using regression
forests. ACM Trans. Graph. 34(6):199:1–199:9.

131

Lentine, Michael, Wen Zheng, and Ronald Fedkiw. 2010. A novel algo-
rithm for incompressible flow using only a coarse grid projection. ACM
Trans. Graph. 29(4):114:1–114:9.

Liu, Beibei, Gemma Mason, Julian Hodgson, Yiying Tong, and Mathieu
Desbrun. 2015. Model-reduced variational fluid simulation. ACM Trans.
Graph. 34(6):244:1–244:12.

Liu, Haixiang, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis.
2016. A scalable schur-complement fluids solver for heterogeneous com-
pute platforms. ACM Transactions on Graphics (TOG) 35(6):201.

Long, Benjamin, and Erik Reinhard. 2009. Real-time fluid simulation us-
ing discrete sine/cosine transforms. In Proceedings of the 2009 symposium
on interactive 3d graphics and games, 99–106. I3D ’09.

Losasso, Frank, Ronald Fedkiw, and Stanley Osher. 2005. Spatially adap-
tive techniques for level set methods and incompressible flow. Computers
and Fluids 35:2006.

Losasso, Frank, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water
and smoke with an octree data structure. In Acm transactions on graphics
(tog), vol. 23, 457–462. ACM.

Losasso, Frank, Jerry Talton, Nipun Kwatra, and Ronald Fedkiw. 2008.
Two-way coupled SPH and particle level set fluid simulation. IEEE Trans-
actions on Visualization and Computer Graphics 14(4):797–804.

Macklin, Miles, and Matthias Müller. 2013. Position based fluids. ACM
Trans. Graph. 32(4):104:1–104:12.

McAdams, Aleka, Eftychios Sifakis, and Joseph Teran. 2010. A parallel
multigrid poisson solver for fluids simulation on large grids. In Proceed-
ings of the 2010 acm siggraph/eurographics symposium on computer animation,
65–74. Eurographics Association.

132

McAdams, Aleka, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus
Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Transactions on
Graphics (TOG) 30(4):37.

McCormick, SF. 1984. Multigrid methods for variational problems: fur-
ther results. SIAM journal on numerical analysis 21(2):255–263.

———. 1985. Multigrid methods for variational problems: general theory
for the v-cycle. SIAM Journal on Numerical Analysis 22(4):634–643.

McCormick, SF, and JW Ruge. 1982. Multigrid methods for variational
problems. SIAM Journal on Numerical Analysis 19(5):924–929.

Molemaker, Jeroen, Jonathan M. Cohen, Sanjit Patel, and Jonyong Noh.
2008. Low viscosity flow simulations for animation. In Proceedings of
the 2008 acm siggraph/eurographics symposium on computer animation, 9–18.
SCA ’08, Aire-la-Ville, Switzerland: Eurographics Association.

Moulton, J David, Joel E Dendy Jr, and James M Hyman. 1998. The
black box multigrid numerical homogenization algorithm. Journal of
Computational Physics 142(1):80–108.

Museth, Ken. 2013. Vdb: High-resolution sparse volumes with dynamic
topology. ACM Transactions on Graphics (TOG) 32(3):27.

Nocedal, Jorge, and Stephen J Wright. 2006. Conjugate gradient methods.
Numerical optimization 101–134.

Nvidia, CUDA. 2014. Cusparse library. NVIDIA Corporation, Santa Clara,
California.

Quarteroni, A., and A. Valli. 1999. Domain decomposition methods for partial
differential equations, vol. 10. Clarendon Press.

133

Raveendran, Karthik, Nils Thuerey, Chris Wojtan, and Greg Turk. 2012.
Controlling liquids using meshes. 255–264. SCA ’12.

Raveendran, Karthik, Chris Wojtan, and Greg Turk. 2011. Hybrid
smoothed particle hydrodynamics. 33–42. SCA ’11.

Reisch, Jon, Stephen Marshall, Magnus Wrenninge, Tolga Göktekin,
Michael Hall, Michael O’Brien, Jason Johnston, Jordan Rempel, and Andy
Lin. 2016. Simulating rivers in the good dinosaur. In Acm siggraph 2016
talks, 40. ACM.

Rozvany, George IN. 2009. A critical review of established methods of
structural topology optimization. Structural and multidisciplinary opti-
mization 37(3):217–237.

Saad, Youcef, and Martin H Schultz. 1986. Gmres: A generalized mini-
mal residual algorithm for solving nonsymmetric linear systems. SIAM
Journal on scientific and statistical computing 7(3):856–869.

Schmidt, Stephan, and Volker Schulz. 2011. A 2589 line topology opti-
mization code written for the graphics card. Computing and Visualization
in Science 1–8.

Selle, Andrew, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek
Rossignac. 2008. An unconditionally stable MacCormack method. J. Sci.
Comput. 35(2-3):350–371.

Setaluri, Rajsekhar, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis.
2014. Spgrid: A sparse paged grid structure applied to adaptive smoke
simulation. ACM Transactions on Graphics (TOG) 33(6):205.

Sethian, James A, and Peter Smereka. 2003. Level set methods for fluid
interfaces. Annual review of fluid mechanics 35(1):341–372.

134

Sigmund, Ole, and Kurt Maute. 2013. Topology optimization approaches.
Structural and Multidisciplinary Optimization 48(6):1031–1055.

Sigmund, Ole, and S Torquato. 1999. Design of smart composite materials
using topology optimization. Smart Materials and Structures 8(3):365.

Smith, Barry F., Petter E. Bjørstad, and William D. Gropp. 1996. Do-
main decomposition: Parallel multilevel methods for elliptic partial differential
equations. Cambridge University Press.

Sokolowski, J., and A. Zochowski. 1999. On the topological derivative in
shape optimization. SIAM Journal on Control and Optimization 37(4).

Solenthaler, Barbara, and Markus Gross. 2011. Two-scale particle simula-
tion. 81:1–81:8. SIGGRAPH ’11.

Stam, Jos. 1999. Stable fluids. In Proceedings of the 26th annual conference on
computer graphics and interactive techniques, 121–128. ACM Press/Addison-
Wesley Publishing Co.

———. 2002. A simple fluid solver based on the FFT. J. Graph. Tools 6(2):
43–52.

Tan, Jie, Xubo Yang, Xin Zhao, and Zhanxin Yang. 2008. Fluid animation
with multi-layer grids. In Sca ’08 posters.

Teng, Yun, Mark Meyer, Tony DeRose, and Theodore Kim. 2015. Subspace
condensation: Full space adaptivity for subspace deformations. ACM
Trans. Graph. 34(4):76:1–76:9.

Thürey, Nils, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A multi-
scale approach to mesh-based surface tension flows. ACM Trans. Graph.
29(4):48:1–48:10.

Trottenberg, Ulrich, Cornelius W. Oosterlee, and Anton Schuller. 2001.
Multigrid. Academic Press.

135

Vaněk, Petr, Jan Mandel, and Marian Brezina. 1996. Algebraic multigrid
by smoothed aggregation for second and fourth order elliptic problems.
Computing 56(3):179–196.

Wadbro, Eddie, and Martin Berggren. 2009. Megapixel topology opti-
mization on a graphics processing unit. SIAM review 51(4):707–721.

Wojtan, Chris, Nils Thürey, Markus Gross, and Greg Turk. 2010. Physics-
inspired topology changes for thin fluid features. ACM Trans. Graph.
29(4):1–8.

Wu, Jun, Christian Dick, and Rudiger Westermann. 2016a. A system for
high-resolution topology optimization. IEEE Transactions on Visualization
and Computer Graphics 22(3):1195–1208.

Wu, Jun, Christian Dick, and Rüdiger Westermann. 2016b. A system for
high-resolution topology optimization. IEEE transactions on visualization
and computer graphics 22(3):1195–1208.

———. 2016c. A system for high-resolution topology optimization. IEEE
transactions on visualization and computer graphics 22(3):1195–1208.

Wu, Xiaofeng, Rajaditya Mukherjee, and Huamin Wang. 2015. A uni-
fied approach for subspace simulation of deformable bodies in multiple
domains. ACM Trans. Graph. 34(6):241:1–241:9.

Yadav, Praveen, and Krishnan Suresh. 2014. Large scale finite element
analysis via assembly-free deflated conjugate gradient. Journal of Com-
puting and Information Science in Engineering 14(4):041008.

Yang, Ulrike Meier, et al. 2002. Boomeramg: a parallel algebraic multigrid
solver and preconditioner. Applied Numerical Mathematics 41(1):155–177.

Zhang, Xinxin, and Robert Bridson. 2014. A PPPM fast summation
method for fluids and beyond. ACM Trans. Graph. 33(6):206:1–206:11.

136

Zheng, Wen, Bo Zhu, Byungmoon Kim, and Ronald Fedkiw. 2015. A
new incompressibility discretization for a hybrid particle mac grid rep-
resentation with surface tension. Journal of Computational Physics 280:
96–142.

Zhu, Bo, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fed-
kiw. 2013. A new grid structure for domain extension. ACM Transactions
on Graphics (TOG) 32(4):63.

Zhu, Bo, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw.
2014. Codimensional surface tension flow on simplicial complexes. ACM
Trans. Graph. 33(4):111:1–111:11.

Zhu, Bo, Xubo Yang, and Ye Fan. 2010a. Creating and Preserving Vortical
Details in SPH Fluid. Computer Graphics Forum.

Zhu, Yongning, and Robert Bridson. 2005. Animating sand as a fluid.
965–972. SIGGRAPH ’05.

Zhu, Yongning, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010b.
An efficient multigrid method for the simulation of high-resolution elastic
solids. ACM Transactions on Graphics (TOG) 29(2):16.

Zhu, Yongning, Yuting Wang, Jeffrey Hellrung, Alejandro Cantarero,
Eftychios Sifakis, and Joseph M Teran. 2012. A second-order virtual node
algorithm for nearly incompressible linear elasticity in irregular domains.
Journal of Computational Physics 231(21):7092–7117.

	contents
	list of tables
	list of figures
	Abstract
	Introduction
	Motivation
	Thesis
	Scope of the Study
	Main Contributions
	Related Technologies
	Outline

	Numerical Solvers in Physics Based Simulation
	Multigrid Method Overview
	Construction of the Multigrid Hierarchy
	Geometric Coarsening
	Garlerkin Coarsening
	Multigrid V-cycle
	Choices of Smoother
	Convergence Metrics

	A Schur-complement Domain Decomposition Solver for Multi-accelerator Equipped Platform
	Features of Multi-accelerator Equipped Platforms
	Related Work
	Domain Decomposition as Divide-and-Conquer
	The Classic Schur Complement Method
	A Schur-Complement Preconditioner
	The interface Schur-complement system
	Implementation Details
	Application in Incompressible Free Surface Flow
	Examples and performance benchmarks
	Discussion

	Narrow-Band Topology Optimization on a Sparsely Populated Grid
	Related Work
	Topology Optimization Overview
	Main Contributions
	Method Overview
	Sparsely Populated Grid Structure
	Multigrid Solver
	Multigrid Solver Validation

	Stencil Aware Galerkin Coarsened Multigrid for Linear Elasticity
	Related Work
	Selection of Coarse Grid Nodes and Prolongation Operator Sparsity
	Building the Prolongation Operators Using Local Problems
	Multigrid Method with Augmented Variables
	Rotational Degrees of Freedom in 3D
	Construction of the Multigrid Hierarchy
	Prolongation at Coarse Level
	Building Prolongation Operator using Stencil Collapse
	Dirichlet Condition Coarsening
	Choice of Smoother
	Stencil Aware Multigrid as Preconditioner
	Solver Convergence Analysis
	Limitations and Future Work

	Discussion
	Modern Hardware Features
	Program Design Consideration
	Tuning Numerical Elliptic PDE Solvers for Modern Hardware
	Challenges of Large Scale Simulation
	Limitations and Future Work

	References

