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abstract

Energy dissipation in turbulent plasmas is highly intermittent, which has widespread

consequences for laboratory, space, and astrophysical systems. In this thesis, the

intermittency of energy dissipation in numerical simulations of driven magnetohydro-

dynamic turbulence is investigated. A methodology is developed for identifying and

characterizing intermittent dissipative structures and spatiotemporal processes. A

statistical analysis is then performed on the resulting population. At any given time,

the energy dissipation of the system is found to be evenly spread among current sheets

with energy dissipation rates, lengths, and widths in the inertial range, and thicknesses

localized within the dissipation range. These current sheets are involved in complex,

time-asymmetric spatiotemporal processes that have durations up to several large

eddy turnover times. The largest and most intense dissipative processes dominate

the energy dissipation of the system. The scalings of the statistical properties with

Reynolds number are estimated. These results are then compared with the observed

statistical properties of solar flares.



1

1 introduction

1.1 Toward understanding turbulence

Turbulence is the complex spatiotemporal behavior of a dynamical field, characterized

by irregular and irreversible dynamics, fluctuations across many scales, and energy

exchange between many scales. It is commonly observed in three of the four classical

states of matter: liquids, gases, and plasmas; it also exists in more exotic forms

of matter including various types of quantum fluids (Paoletti and Lathrop, 2011)

and gravitational fields (Yang et al., 2015; Green et al., 2014; Adams et al., 2014).

Despite its ubiquitous presence in the Universe, decades of extensive experimental

and theoretical research, and tantalizing hints of universality, much remains to be

discovered about the nature of turbulence in all of these systems.

This thesis is concerned with one of the fundamental aspects of turbulence which

eludes a complete, unified understanding: the intermittency of energy dissipation.

Intermittency, caused by the stochastic disposition of the turbulent energy cascade

as it proceeds from large scales to small scales, is a hallmark of turbulence. It leads

to dynamics that are inhomogeneous in space and in time, with different regions

exhibiting varying degrees of irregularity. This inhomogeneity is marked by the

presence of coherent structures and sporadic temporal activity. A testament to the

adversity of intermittency is the fact that although many phenomenological models

have been constructed over several decades in attempts to describe it, controversy

remains to this day over the appropriate description.

More narrowly, this thesis is concerned with intermittency in large-scale turbulent

plasmas. Intermittency takes an elevated role in plasmas, forming sites for magnetic

reconnection, particle heating, and particle acceleration, while also affecting processes

such as particle diffusion and the dynamo. Intense dissipative events produced by

intermittency lead to the localized emission of energetic particles and radiation, which

are ideal for experimental and astrophysical observations. Intermittency plays a

central role in, for example, instabilities in fusion devices (Carbone et al., 2000; Antar

et al., 2003; D’Ippolito et al., 2004), the heating of the solar corona and the solar
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wind (Cranmer et al., 2007; Osman et al., 2011; Uritsky et al., 2007), granulation

in the solar photosphere (Cattaneo, 1999; Bushby and Houghton, 2005; Stein and

Nordlund, 2006), star formation in the interstellar medium (Boldyrev et al., 2002;

Pan et al., 2009; Kritsuk et al., 2011; Falgarone et al., 2015), and flares from accreting

systems (Di Matteo et al., 1999; Eckart et al., 2009; Albert et al., 2007) and pulsar

wind nebulae (Tavani et al., 2011; Abdo et al., 2011).

The goal of this thesis is to systematically assess the properties and dynamical role

of intermittent dissipative structures, i.e., current sheets, in magnetohydrodynamic

(MHD) turbulence. To accomplish this, we develop a methodology for identifying and

characterizing dissipative structures in both space and time. This methodology is

then applied to numerical simulations of MHD turbulence, and a statistical analysis

of the dissipative structures is performed.

The primary motivation for this work is to advance the theoretical understanding

of intermittency in turbulent plasmas. Until recently, the established knowledge of

intermittency in plasmas was relatively limited compared to hydrodynamic turbulence.

However, this is now changing due to the advent of increasingly powerful numerical

simulations, capable of reliably reproducing the turbulent dynamics. These simulations

offer an enticing opportunity to probe turbulence and guide theoretical models. A

secondary motivation for this work is to better comprehend the potential observable

consequences of intermittency in experimental, space, and astrophysical plasmas. In

particular, the methodology developed in this work may be valuable for addressing

the possible role of turbulence in the heating of the solar corona and solar wind. The

remainder of this chapter expounds on these motivations and gives an overview of

this thesis.

1.2 What is intermittency?

To illustrate the phenomenon of intermittency, consider the prototypical turbulence:

the flow of an incompressible hydrodynamic fluid with relatively small viscosity,

or equivalently, with large Reynolds numbers, Re = v0L/ν � 1, where v0 is the

characteristic velocity of the flow, L is the characteristic scale of the flow (e.g.,



3

system size), and ν is the kinematic viscosity. The turbulence is described by the

Navier-Stokes equation,

∂tv + v · ∇v = −∇p+ ν∇2v

∇ · v = 0 , (1.1)

where v(x, t) is the velocity field and p(x, t) is the pressure. For a well-posed problem,

the initial conditions and boundary conditions must also be specified. It is also

common to add a forcing term which acts at large scales, so that energy lost by the

dissipative term ν∇2v is replenished and a statistical steady-state can be reached.

The resulting dynamics are characterized by a single dimensionless parameter, the

Reynolds number, which encapsulates the ratio of the nonlinear term to the dissipative

term, Re = v0L/ν ∼ |v · ∇v|/|ν∇2v|. The onset of turbulence occurs at Re ∼ 103;

for lower Re, the viscosity damps fluctuations toward a stable (laminar) state.

At the present time, the existence and uniqueness of solutions to the 3D Navier-

Stokes equation remains a challenging, high-profile, unsolved mathematical problem

(Fefferman, 2000). It remains uncertain whether a complete statistical theory of

Navier-Stokes turbulence based on first principles (Eq. 1.1) can be obtained. Despite

this, there is an extensive partial understanding of turbulence based on phenomenology.

For details on the following discussion, see, for example, Frisch (1995) and Biskamp

(2003).

The first major phenomenological framework for turbulence was presented by

Kolmogorov (1941) (hereafter, K41), based on the assumption of scale invariance.

Specifically, K41 exploited the fact that, when the dissipative term can be neglected,

the Navier-Stokes equations have no characteristic scale. Turbulence in this regime

can be described as a self-similar heirarchy of eddies. The continuum of scales in which

the dynamics exhibit this scale invariance is the known as the inertial range. K41

assumed that the statistical properties of the inertial-range of turbulence are entirely

described by the average rate of energy transfer to smaller scales, or equivalently, the

mean rate of energy dissipation, 〈ε〉.
Mathematically, K41 put forward a prediction for the scaling of the structure
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functions S(n)(l), which characterize the statistical properties of turbulence. Given

the velocity increment between two points separated by l, δvl(x) = v(x + l)− v(x),

the nth order longitudinal structure function is defined by

S(n)(l) = 〈(δvl · l/l)n〉 , (1.2)

where the angled brackets denote an ensemble average. By exploiting dimensional

analysis, it is inferred that the typical velocity increments must scale as δvl ∼ (〈ε〉l)1/3,
and so the structure functions are given by

S(n)(l) = cn(〈ε〉l)n/3 ∼ ln/3 , (1.3)

where cn are universal constants. Several remarkable results are contained in Eq. 1.3.

For n = 2, one can perform a Fourier transform to obtain the famous inertial-range

energy spectrum,

E(k) ∼ k−5/3 , (1.4)

which agrees extremely well with experiments and numerical simulations. For n = 3,

Eq. 1.3 is an exact analytical result for inertial-range turbulence, known as Kol-

mogorov’s four-fifths law, since it can be shown that c3 = −4/5. Since c3 < 0, energy

is transferred from large scales to small scales on average.

The inertial range in K41 extends from large scales down to the Kolmogorov

dissipation scale, λν = (ν3/〈ε〉)1/4. This scale is derived by equating the dissipative

term, |ν∇2v| ∼ νδvν/λ
2
ν , to the nonlinear term, |v · ∇v| ∼ δv2ν/λν , where δvν ∼

(〈ε〉λν)1/3 is the velocity increment at the dissipation scale. The scales smaller than

λν are collectively known as the dissipation range. Scale invariance is broken in the

dissipation range, making it nontrivial to describe.

Although the K41 phenomenology was a landmark result in turbulence, it is

now known to be incomplete. The predicted energy spectrum and energy flux in

Fourier space agree very well with observations, but deviations from Eq. 1.3 are

clearly observed for structure functions with n > 3. The problem is due to the fact
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that, as energy cascades from large scales to small scales, it is distributed unevenly in

space, making it inappropriate to use the mean energy dissipation rate 〈ε〉 in Eq. 1.3.

This inherent inhomogeneity of turbulence is known as intermittency.

Intermittency remains one of the most challenging aspects of turbulence to describe

theoretically. Nevertheless, there does exist a basic phenomenological framework used

to describe intermittency in hydrodynamic turbulence, based on the idea of a random

cascade. Obukhov (1962) suggested that the scaling of structure functions given

by K41 in Eq. 1.3 can be corrected by using the local value of energy dissipation,

which has a scale-dependent distribution. Kolmogorov (1962) (hereafter, K62) then

proposed a correction to K41 based on the refined similarity hypothesis,

S(n)(l) = dn〈εn/3l 〉l
n/3 , (1.5)

where dn are universal constants and the local coarse-grained energy dissipation rate

is defined by

εl =
1

Vl

∫
Vl

d3rε(r) , (1.6)

where ε = ν(∂ivj + ∂jvi)
2/2 is the local energy dissipation rate (where indices are to

be summed over, and ∂i denotes the ith component of the gradient), and integration

is performed across a region of linear size l and volume Vl. The shape of Vl is

unimportant, but usually taken to be a ball (in theoretical studies) or a line (in

experimental studies). It is then assumed that the moments of the local energy

dissipation rate scale as power laws, 〈εnl 〉 ∼ l−τn . By the refined similarity hypothesis

(Eq. 1.5), this is equivalent to the power-law scaling of the velocity structure functions,

S(n)(l) ∼ lζn , (1.7)

with scaling exponents ζn = n/3− τn/3. In general, ζn deviates from the linear scaling

of K41. This is taken as an indication of intermittency, with the specific scaling

depending on the probability density function P (εl).
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K62 proposed that the stochastic fragmentation of the energy cascade causes P (εl)

to approach a log-normal distribution at small scales. The fragmentation process can

be described by a single free parameter, the intermittency parameter µ, which describes

how the variance of P (εl) increases as l decreases1. The predicted scaling exponents

are given by τn = µn(n− 1)/2 for the moments of εl, and ζn = n/3− µn(n− 3)/18

for the velocity structure functions. The predicted scaling of ζn, in particular, agrees

with both experimental and numerical observations up to roughly n ≈ 10 (Naert

et al., 1998; Arneodo et al., 1998, 1999; Molchan, 1997; Mouri et al., 2009).

Much like K41, the K62 phenomenology is a landmark result in the field of

turbulence. However, its overall validity remains contested since deviations from the

log-normal predictions are observed for n > 10, and theoretical shortcomings of the log-

normal model have been found for incompressible fluids (Novikov, 1971; Mandelbrot,

1974; Kraichnan, 1974; Schertzer et al., 1997). This led to the development of a

number of other random cascade models, culminating in the log-Poisson model (She

and Waymire, 1995; Dubrulle, 1994) and the associated She-Lévêque formula (She

and Leveque, 1994). These random cascade models generally predict P (εl), the

scaling of its moments, or related quantities, and link it to velocity structure functions

by applying the refined similarity hypothesis. Although these models successfully

describe numerical and experimental observations of hydrodynamic turbulence, it is

often difficult to distinguish between them in observations (e.g., Nelkin, 1995).

In principle, structure functions form a simple and mathematically robust basis

for studying intermittency. However, there are several major challenges associated

with structure functions. First of all, it is difficult, if not practically impossible, to

accurately measure structure functions of high order. Since higher-order structure

functions probe the noisy and unreliable tail of the distribution of velocity gradients,

it can be nearly impossible to meaningfully assess structure functions for orders as

low as 5 or 6 (Tennekes and Wyngaard, 1972; De Wit, 2004). Furthermore, structure

1The scale-dependence of P (εl) means that intermittency breaks scale invariance. This does not,
however, imply non-universality; on the contrary, the small-scale structure is anticipated to be the
most likely aspect of turbulence to be universal (e.g., Sreenivasan and Antonia, 1997). Intermittency
is an inherent property of turbulence, with any residual effects from forcing or boundary conditions
being wiped out by the fragmentation of the energy cascade across the inertial range.
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functions may not exist for all orders, if the distribution declines algebraically rather

than exponentially (Frisch, 1995). It is also unclear to what extent the refined

similarity hypothesis and assumed power-law scaling for each moment (Eq. 1.7) are

valid (Hosokawa and Yamamoto, 1992; Thoroddsen, 1995); indeed, these scalings are

often not particularly robust in experimental and numerical observations, although

extended self-similarity has been applied to extract improved an scaling (Benzi et al.,

1993). Finally, structure functions do not contain all information about the cascade

process, missing information about the morphology of dissipative sites, which makes it

difficult to predict some effects of intermittency relevant for observations. These issues

motivate the development of alternative, more robust and informative approaches to

describing intermittency.

1.3 Statistical analysis of structures as a route

forward

One remarkable consequence of intermittency is the formation of coherent structures

in which energy dissipation is concentrated. In 3D hydrodynamic turbulence, these

dissipative structures take the form of quasi-1D vorticity filaments, whereas in

magneto-fluids, they take the form of quasi-2D (i.e., ribbon-like) vorticity sheets

and current sheets (e.g., Politano et al., 1995; Müller and Biskamp, 2000; Müller

et al., 2003; Biskamp, 2003). These coherent structures are often thought to play a

central role in the dynamics, although this is sometimes disputed (Tsinober, 1998).

In any case, they are observationally important for their roles in heating and particle

acceleration, and serve as useful objects for testing models of intermittency. The

presence of intermittent structures can be inferred visually from images of quantities

such as the vorticity or local energy dissipation rate in numerical simulations, and

related surrogates such as low-pressure regions in experiments. Some examples of

intermittent vorticity filaments are shown in Fig. 1.1. Coherent structures can also be

inferred from non-Gaussian distributions of quantities such as velocity field increments,

where the extended tails indicate traversals across the structures.
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Figure 1.1: Examples of intermittent vorticity filaments in hydrodynamic turbulence.
The first image shows the formation of a vorticity filament (5 cm long, 0.1 mm
diameter) in a Re ≈ 8 × 104 turbulent flow created by Douady et al. (1991) (this
visualization is possible due to cavitation in low-pressure regions). The second image
shows the destabilization of the same filament, 0.02 s later. The third image shows
vorticity filaments in a numerical simulation from Kida and Miura (1998).
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Due to the close connection between them, it is reasonable to study coherent

structures to learn about intermittency. It is convenient, for both practical and

theoretical purposes, to treat intermittent structures as discrete objects due to their

localized nature and their key dynamical role. The statistical properties of these

structures then gives insight into the underlying dynamics. In particular, their

sizes, morphology, and energetics can reveal the characteristic dynamical scales, local

anisotropies, and overall inhomogeneity. The analysis of structures is well suited

not only for theoretical and numerical applications, but also for a large class of

experimental and observational problems where dissipative structures and events can

be directly identified.

The analysis of intermittent structures is complementary to and distinct from

more conventional approaches such as structure functions. In particular, the focus

is shifted from the statistics of averages of energy dissipation to the clustering of

the energy dissipation, as defined by isosurfaces, thresholds, or other means. This

allows a better characterization of dissipative sites, and can give a more transparent,

intuitive picture of intermittency.

Statistical analyses of dissipative structures were performed in a number of previous

numerical studies of turbulence. Most notably, there are many papers that investigate

the statistical properties of dissipative vorticity filaments in hydrodynamic turbulence

(e.g., Jiménez et al., 1993; Jimenez and Wray, 1998; Moisy and Jiménez, 2004; Leung

et al., 2012). These studies reveal, for example, that the majority of the vorticity is

concentrated in filaments whose radii scale with the Kolmogorov microscale while

lengths occupy large scales. More recently, attention has been drawn to the statistical

properties of dissipative current sheets and vorticity sheets in turbulent plasmas, with

investigations in MHD turbulence (Servidio et al., 2009, 2010; Uritsky et al., 2010),

the kinematic dynamo (Wilkin et al., 2007), ambipolar diffusion MHD (Momferratos

et al., 2014), boundary-driven MHD (Wan et al., 2014), and collisionless turbulence

(Makwana et al., 2015). This thesis is based on, and extends the work described in, a

series of papers applied to turbulence in reduced MHD simulations (Zhdankin et al.,

2013, 2014, 2015c,b).



10

1.4 Value of temporal information

As with any dynamical physics problem, a complete phenomenological solution of

intermittency cannot be claimed unless the dynamics are described in both the

spatial and the temporal dimensions. In this respect, most of the previous numerical

analyses of intermittent structures have been extremely limited, being based solely on

spatial information. The analysis of spatial structures is appropriate for determining

the morphology, scaling properties, and instantaneous energetics of the structures,

but cannot directly describe the evolution of structures in time. Hence, studies of

spatial structures are unable to measure the characteristic timescales, time-integrated

energetics, stability, interactions, motion, and impulsiveness of dissipative structures.

In order to understand these temporal characteristics, the metholodogy must be

extended into the temporal realm.

A temporal analysis of dissipative structures can address several fundamental

questions regarding intermittency. One key question is whether, in the limit of high

Reynolds number, the overall energy dissipation is dominated by a few intense, long-

lasting events residing at large scales, or by many weak, short-lived events residing

near the dissipation scale. Another question is whether the spatial and temporal

aspects of intermittency are related, e.g., whether larger structures better retain

their coherency in time. A third question is whether the dissipative events show any

characteristic temporal asymmetry, e.g., an impulsive onset followed by a slow decay,

or in contrast, slow growth followed by rapid instability.

Information on temporal intermittency is particularly valuable for space and

astrophysical applications, including the heating of the solar corona, since these

observations are often very well resolved in time but not in space. Indeed, one usually

wants to explain the shape of light curves and the distribution of temporal parameters

of flares, such as durations and waiting times. Furthermore, flares in astrophysical

systems are often very asymmetric in time, originating from the impulsive onset

of an instability or magnetic reconnection (e.g., Bhattacharjee, 2004). Temporal

information can therefore be used to constrain models and infer the underlying

physical processes.
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A major objective of the work described in this thesis is to develop a methodology

for the temporal analysis of intermittent dissipative structures. As will be seen, this

new framework is based on 4D spatiotemporal objects which represent structures

evolving in time. These dissipative processes, analogous to flares in astrophysical

systems, may involve many interacting coherent structures. We consider various

aspects of processes, including their total dissipated energy, peak energy dissipation

rate, duration, and geometric scales; measures of complexity such as the number

of interacting structures and types of interactions (mergers and divisions); and the

temporal evolution of individual processes. This temporal analysis gives a more

complete and informative picture of dissipative structures in turbulence.

1.5 Intermittency in plasmas and astrophysical

systems

Plasma, the state of matter described as an ionized gas, is pervasive in the Universe.

On the Earth, it is artificially created in laboratory experiments, fusion devices, and

some industrial applications. In space, it endures as a natural state of matter. In

the solar system, it is a major component of the Sun and its corona, the solar wind,

planetary magnetospheres, and the outer heliosphere. Beyond the heliosphere, it is

present in the interstellar medium, accretion disks, jets, stars, pulsar wind nebulae,

and galaxy clusters. It is also believed to have been ubiquitous in the early Universe

(e.g., Brandenburg et al., 1996).

Turbulence is the generic dynamical state of these astrophysical environments

due to their large scales. Plasma turbulence is considerably more complex than

hydrodynamic turbulence due to electromagnetic effects and, for many systems,

the increased importance of kinetic effects. It is therefore not surprising that the

present theoretical knowledge of intermittency in plasma turbulence is relatively

limited. Despite this, intermittency arguably plays a richer and more significant

role in plasmas than in hydrodynamic fluids, due to its extreme experimental and

observational consequences.
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Turbulent plasmas are often associated with complex, tangled magnetic fields

spanning a wide range of scales. This leads to rich dynamics including the occurrence

of magnetic reconnection, the release of stored magnetic energy into the kinetic

energy of particles via the topological reconfiguration of the large-scale magnetic field.

Magnetic reconnection is thought to be the source of energetic particles and radiation

observed in a variety of phenomena, including solar and stellar flares, magnetospheric

substorms, accretion disk flares, and gamma-ray bursts (e.g., Zweibel and Yamada,

2009).

Magnetic reconnection has a close and subtle relationship with turbulence. In

most natural astrophysical systems, both magnetic reconnection and turbulence

occur simultaneously with complex, nontrivial interactions between them. Turbulent

magnetic reconnection is thought to be ubiquitous in the solar system, occurring in

the solar corona (Georgoulis, 2005; Knizhnik et al., 2011; Uritsky et al., 2007, 2013),

solar wind (Gosling, 2007; Phan et al., 2010), planetary magnetospheres (Retinò et al.,

2007), and outer heliosphere (Drake et al., 2010; Swisdak et al., 2010; Opher et al.,

2011; Swisdak et al., 2013). The presence of turbulence in the background ambient

plasma before or during magnetic reconnection may invalidate laminar models for

reconnection of the large-scale magnetic fields (Parker, 1957; Sweet, 1958; Petschek,

1964), requiring turbulent models of magnetic reconnection (Matthaeus and Lamkin,

1986; Lazarian and Vishniac, 1999; Kim and Diamond, 2001; Kowal et al., 2009;

Loureiro et al., 2009) or non-stationary models such as the secondary tearing/plasmoid

unstable reconnection (Loureiro et al., 2007; Uzdensky et al., 2010; Baalrud et al.,

2012; Huang and Bhattacharjee, 2012; Loureiro et al., 2013). Large-scale turbulence

may also continuously drive magnetic reconnection at the bottom of the turbulent

cascade; intermittent current sheets can then serve as sites for local reconnection

(Servidio et al., 2009, 2010; Zhdankin et al., 2013; Wan et al., 2014).

Intermittent energy dissipation has important consequences in astrophysical sys-

tems, regardless of its relationship to magnetic reconnection. For example, in high-

energy astrophysical systems, intermittent temperature profiles may occur if strong

prompt radiation removes energy from localized dissipation sites faster than it can

be conducted through the medium. This can alter the thermodynamics of such
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systems, possibly being relevant for the solar corona (Dahlburg et al., 2012), quasars

(Goodman and Uzdensky, 2008), accretion disks and flows (Pariev et al., 2003; Blaes,

2013), and hot gas in galaxy clusters. As another example, in collisionless and weakly

collisional plasmas, intermittency sets the coherence lengths of electric fields, which

accelerate particles to high energies. This may produce a nonthermal population

of particles in systems such as the solar wind, radiatively-inefficient accretion flows,

galaxy clusters, and molecular clouds. Finally, intermittency may govern the transfer

of energy from coronal magnetic fields into heat, which may be relevant for explaining

the observed temperatures and flares in solar, stellar, and accretion disk coronae

(Uzdensky and Goodman, 2008). In particular, intermittency may play a major role

in the long-standing coronal heating problem, as described in the next section.

1.6 The coronal heating problem

The solar corona is arguably the best-observed natural instance of inhomogeneous

energy dissipation in a large-scale magnetized plasma. Despite this, the physical

processes which govern the coronal dynamics and energetics remain shrouded in

mystery. Indeed, the overall theoretical knowledge of energy dissipation in the corona

is relatively rudimentary, arguably far behind the observational knowledge. This has

led to a major unsolved physics puzzle known as the coronal heating problem (see,

e.g., Klimchuk, 2006; Parnell and De Moortel, 2012, for recent reviews). In essence,

the question is why the solar corona (at temperatures exceeding 106 K) is so much

hotter than the solar surface (at temperatures 6× 103 K), when one would expect

the reverse from thermodynamics. Evidently, the strong coronal magnetic fields must

be efficiently dissipating energy into heat, but the mechanism by which it does so is

unclear. There are two major (but non-exclusive) candidate explanations for coronal

heating: wave heating and magnetic reconnection. In both pictures, turbulence may

play an important role (e.g., Heyvaerts and Priest, 1992; Asgari-Targhi et al., 2013;

Liu et al., 2014; Cranmer et al., 2015).

One particularly attractive solution to the coronal heating problem, based on

magnetic reconnection, was proposed and developed by Parker (Parker, 1972, 1983,
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1988). In this model, coronal magnetic field lines, which are anchored into and

slowly driven by the photosphere, become increasingly tangled until a myriad of

small-scale magnetic reconnection events intermittently release the stored energy.

These small-scale dissipative events are known as nanoflares, and are conjectured to

give the background coronal emission a spiky character at small temporal and spatial

scales. In the context of coronal heating, nanoflares have energy scales in the range of

1024 − 1027 ergs, much weaker than the typical observed solar flares with energies up

to and exceeding 1030 ergs (Hudson, 1991). Hence, nanoflares are often unresolved or

difficult to discern even in present-day measurements of coronal emissions. Flares

below these energies are expected to not contribute to heating (Aschwanden et al.,

2000).

The statistical analysis of dissipative events can help shed light on whether

nanoflares are a significant source of heating. This methodology has been extensively

applied in observational studies of solar flares (Crosby et al., 1993; Shimizu, 1995;

Boffetta et al., 1999; Parnell and Jupp, 2000; Hannah et al., 2008; Aschwanden

et al., 2000; Uritsky et al., 2013, 2007; Veronig et al., 2002; Aschwanden et al., 2014)

and stellar flares (Benz and Güdel, 1994; Audard et al., 1999; Collura et al., 1988;

Pallavicini et al., 1990; Güdel et al., 2003; Telleschi et al., 2005). In these studies,

the time-series of extreme UV, soft X-ray, and hard X-ray emissions from the Sun

are used to characterize solar flares and to quantify their contribution to the coronal

heating. Measured quantities include the size, duration, peak intensity, and fluence

of the flares, from which the dissipated energy is inferred. These quantities are ideal

for probing the underlying dynamics and constraining potential theoretical models.

A measurement of central importance for Parker’s nanoflare model is the prob-

ability distribution for the dissipated energy of a flare, P (E). The index of this

distribution, in effect, determines whether nanoflares provide a significant contribu-

tion to the overall heating. Assuming that dissipative events are well-defined and

that the distribution for their dissipated energy is a power law, P (E) ∼ E−α, the
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total energy dissipation (for α 6= 2) scales as

Etot ∼
∫ Emax

Emin

EP (E)dE ∼
∫ Emax

Emin

E1−αdE ∼ E2−α
max − E2−α

min

2− α
, (1.8)

where Emin and Emax are arbitrary lower and upper cutoffs, respectively. Assuming

that Emin � Emax, three distinct scenarios can occur. If α > 2, then the term with

Emax is negligible and Etot scales with Emin; thus, in this case, the overall energy

dissipation is dominated by an enormous number of weak events, i.e., nanoflares,

giving the emissions a spiky character at small temporal and spatial scales. If, on

the other hand, α < 2, then the term with Emin is negligible and Etot scales with

Emax; in this case, the overall energy dissipation is dominated by the rarest, strongest

dissipative events, which will generally have relatively large temporal and spatial

scales. The third possibility, α = 2, represents a remarkable special case in which

dissipative events of all sizes contribute equally to the overall energy dissipation.

The distribution of solar flare energies is observed to obey a power law across eight

orders of magnitude, with an index generally close to −1.8 (Aschwanden et al., 2000),

although the precise value varies significantly between different studies depending

on the time period, region, type of emission, and methods used to identify the flares.

Most importantly, this index is consistently shallower than the critical value of −2,

which implies that nanoflares do not have a major contribution to the overall heating

of the solar corona. Hence, the viability of the nanoflare picture of coronal heating is

presently in doubt.

In addition to the observational evidence against nanoflares, there were a number

of theoretical and numerical studies of Parker’s nanoflare model. The system is

often modeled in the framework of MHD with line-tied boundary conditions and

slow driving at these boundaries. Numerical simulations of this system show the

production of current sheets with power-law scaling relations (e.g., Longcope and

Sudan, 1994; Dmitruk and Gómez, 1999; Einaudi and Velli, 1999; Rappazzo et al.,

2008, 2010) and power-law distributions of flare intensities (e.g., Dmitruk and Gómez,

1997; Georgoulis et al., 1998; Einaudi and Velli, 1999; Nigro et al., 2004; Buchlin and

Velli, 2007; Ng and Lin, 2012). Generally, these studies also find an index shallower
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than the critical value.

This brings to our attention another major question about the solar corona:

what physical process governs the intermittent release of large-scale magnetic energy

observed in solar flares, microflares, and nanoflares? There currently exist two major

candidates for the answer: self-organized criticality and turbulence (e.g., Georgoulis,

2005; Uritsky et al., 2007, 2013). Although the predictions for the statistical properties

of dissipative events due to self-organized criticality are clearly presented in the

literature (Aschwanden, 2012b; Aschwanden, 2014), the equivalent has not yet been

concretely established for turbulence.

The methodology developed in this thesis for MHD turbulence has many similari-

ties with, and is partly inspired by, the investigations of solar flares and nanoflares. A

comparison between the dissipative events in both systems will help address whether

MHD turbulence can explain the intermittent heating of the solar corona. More

broadly, the questions regarding intermittency in the solar corona are equally impor-

tant questions for MHD turbulence itself (Einaudi and Velli, 1999). One key question

is whether, in the limit of high Reynolds number, the overall energy dissipation is

dominated by a few intense, long-lasting events residing at large scales (i.e., coherent

structures), or by many weak, short-lived events residing at the dissipation scale

(i.e., nanoflares). Qualitatively, the question is whether intermittency is coherently

self-organized in both space and time, or spiky in space and bursty in time. Despite

its simplicity, this question appears to be unanswered in the previous literature on

MHD turbulence.

1.7 Overview of thesis

The primary goal of this thesis is to gain a basic understanding of the intermittency of

energy dissipation in MHD turbulence. Although intermittency was long recognized to

form intense dissipative current sheets and vorticity sheets, their statistical properties

and scalings with Reynolds number have not been previously investigated in a

systematic and quantitative manner. To address this, we develop a methodology for

investigating intermittent dissipative structures. We develop methods for identifying



17

dissipative structures and for measuring their spatial and temporal characteristics.

We then apply these methods to a series of numerical simulations of reduced MHD to

investigate the statistical properties of dissipative current sheets in MHD turbulence

with varying Reynolds numbers.

From this statistical analysis, we uncover the distributions and scaling relations

that describe the dissipative current sheets. The main results of this thesis are as

follows. First, we verify that energy dissipation is dominated by thin current sheets

with thicknesses that are inside the dissipation range. We additionally find that

these current sheets have lengths and widths that span the inertial range. We find

that, instantaneously, the energy dissipation is distributed evenly amongst structures

of all energy dissipation rates, lengths, and widths in the inertial range. As the

Reynolds number is increased, the structures become thinner and more numerous,

while their lengths and widths continue to occupy a continuum of inertial-range scales

up to the system size. We find that these current sheets participate in complex

spatiotemporal processes with durations proportional to the maximum length of

the constituent structures. We find that these dissipative processes exhibit a slight

but consistent asymmetry in time, evidently due to the turbulent cascade. Upon

accounting for the temporal profile of dissipative structures, we find that the overall

energy dissipation is dominated by the largest and most intense dissipative events.

In this sense, intermittent energy dissipation in MHD turbulence is concentrated in

large-scale coherent structures rather than nanoflares.

A secondary goal for this thesis is to provide a preliminary assessment of whether

intermittent energy dissipation in the solar corona may be consistent with MHD

turbulence. To this end, we compare our numerical results for the dissipative events

with the previously observed statistical properties of solar flares. This comparison is

necessarily limited, since our numerical simulations are not applicable for describing

all aspects of the coronal dynamics, due to differences in boundary conditions and

driving mechanisms, and the exclusion of numerous physical effects. Regardless, we

find several nontrivial similarities with the statistics of solar flares, including similar

indices in both cases for the distribution of dissipated energy, motivating a more

detailed comparison in the future.
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This thesis is organized as follows. Chapter 2 is an overview of the present-day

phenomenology of MHD turbulence and intermittency, which includes some remarks

on dissipative structures in reduced MHD. Chapter 3 describes the methodology

developed for the statistical analysis of dissipative structures and spatiotemporal

processes. This includes descriptions of the methods and numerical algorithms used

for identifying structures, measuring their morphology, and tracking them in time.

The presentation of the results begins in Chapter 4, which describes the numerical

simulations and the distribution of local energy dissipation rates. This chapter also

shows that the coarse-grained energy dissipation rate is relatively well described as a

log-normal random cascade. Chapter 5 contains our statistical analysis of dissipative

current sheets, including the distributions and scaling properties of their energy

dissipation rates and geometric scales. Chapter 6 follows with our statistical analysis

of time-evolving current sheets, i.e., dissipative processes. This chapter also compares

the statistical properties of dissipative processes in our simulations with observations

of solar flares. Finally, Chapter 7 summarizes the results, discusses implications, and

outlines directions for future work.
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2 background

2.1 Magnetohydrodynamics

This chapter describes the idealized system which is the focus of this thesis: driven

incompressible magnetohydrodynamic (MHD) turbulence. Specifically, this section

describes the MHD equations, Sec. 2.2 describes the inertial-range phenomenology

and some aspects of intermittency, and Sec. 2.3 includes some remarks on dissipative

structures in reduced MHD.

Kinetic theory provides the most fundamental description of a plasma. It is based

on the Maxwell-Vlasov equations, which describe the evolution of the distribution

function of ion and electron positions and velocities, as well as the evolution of the

electric and magnetic fields (see, e.g., Gurnett and Bhattacharjee, 2005). A major

drawback of kinetic theory is that the equations are computationally expensive,

having a large phase space including the position and velocity information for all

particle species. There are a number of simpler models which approximate the

plasma dynamics in certain parameter regimes. In particular, for a collisional plasma

with scales much larger than the ion gyroradius and frequencies lower than the ion

gyrofrequency, MHD is derived by taking moments of the Maxwell-Vlasov equation.

MHD turbulence, rather than kinetic turbulence, will be the focus of this thesis

for the following reasons. First, it is the most tractable model of a plasma, both

theoretically and computationally. Second, it shares many conceptual similarities

with hydrodynamic turbulence, including well-defined inertial ranges and dissipation

ranges. Characterizing turbulence in the kinetic regime, on the other hand, requires

a broader framework (e.g., Schekochihin et al., 2009; Servidio et al., 2014). Third,

many astrophysical plasmas are thought to be well approximated by MHD, although

one must be cautious because the derivation of MHD assumes a collisional plasma,

whereas astrophysical systems are often collisionless.

MHD describes the large-scale, low-frequency dynamics of an electrically con-

ductive fluid, including plasmas and liquid metals (e.g., Biskamp, 2003). In MHD

turbulence, turbulent motions amplify the magnetic field B via the dynamo effect
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until it becomes dynamically relevant. The incompressible MHD equations can be

written out as

∂tv + v · ∇v −B · ∇B = −∇P + ν∇2v + f v

∂tB + v · ∇B −B · ∇v = η∇2B + f b

∇ · v = ∇ ·B = 0 , (2.1)

where P is the total (magnetic and plasma) pressure, ν is the viscosity, η is the

magnetic diffusivity, and B = B0 + b, where B0 = 〈B〉 is a uniform background field

and b is the fluctuating part satisfying 〈b〉 = 0. The units are such that B is scaled

by
√

4πρ0, where ρ0 is uniform plasma density, giving it the same units as velocity.

The equations are also supplemented with arbitrary forcing terms, f v and f b, which

describe the input of energy at large scales. The first line in Eq 2.1 is essentially the

Navier-Stokes equation while the second line comes from Maxwell’s equations. The

MHD equations take a more symmetric form when recast in terms of the Elsässer

variables, z± = v ± b, which gives

(∂t ∓B0 · ∇) z± +
(
z∓ · ∇

)
z± = −∇P + ν∇2z± + f±

∇ · z± = 0 . (2.2)

For simplicity, we have assumed that η = ν (i.e., a magnetic Prandtl number of

Pm = 1), which is the case for all numerical simulations considered in this thesis.

Hence, the Reynolds number Re = v0L/ν is equal to the magnetic Reynolds numbers

Rm = v0L/η.

Energy loss from the above system is governed by resistive dissipation and viscous

dissipation, with respective contributions to the average energy dissipation rate per

unit volume given by εη = ηj2 and εν = νω2, where j = ∇×B is the current density

and ω = ∇× v is the vorticity. By contrast, in many natural plasmas, the energy

dissipation is governed by more complex kinetic physics which, in general, is not

directly associated with the current density and vorticity. Although the mechanism

of energy dissipation used here is therefore idealized, the large-scale dynamics of a
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turbulent plasma, including its intermittency, are thought to be insensitive to the

specific mechanism of dissipation.

There are several things that make MHD turbulence significantly more complex

and richer than hydrodynamic turbulence. First of all, the system is described by two

vector fields, v and b, which may be nontrivially correlated. Second, the dynamics

are anisotropic due to the presence of the large-scale magnetic field, which becomes

increasingly important at small scales. Third, unlike incompressible Navier-Stokes

turbulence, MHD has Alfvén waves in addition to nonlinear eddies, which is encapsu-

lated in the linear term proportional to B0. This necessitates a distinction between

weak turbulence, i.e., turbulence dominated by linear waves (Galtier et al., 2000),

and strong turbulence, i.e., turbulence in which the nonlinear term is comparable to

the linear term. For the remainder of thesis, we focus on strong turbulence.

In this thesis, we further focus on an approximation of the MHD equations known

as reduced MHD (RMHD) (Kadomtsev and Kantorovich, 1974; Strauss, 1976). RMHD

assumes a uniform background magnetic field B0 = B0ẑ that is strong relative to

turbulent fluctuations (i.e., B0 � brms), and that typical gradients along B0 are much

smaller than those perpendicular to B0. In this limit, the fluctuating component

along B0 can be ignored, so that Eq. 2.2 can be written as

(
∂t ∓B0 · ∇‖

)
z± +

(
z∓ · ∇⊥

)
z± = −∇⊥P + ν∇2

⊥z
± + f±⊥

∇⊥ · z± = 0 , (2.3)

where ∇‖ = ẑ∂z and ∇⊥ = x̂∂x + ŷ∂y. In this case, the fields z± (and also v,

b) all have directions strictly perpendicular to B0. Hence, in RMHD, only the

z-component of current density and vorticity are nonvanishing, so that j = ẑ · ∇⊥× b

and ω = ẑ · ∇⊥ × v; these two scalar fields contain complete information to describe

the dynamics as well as energetics.

An alternative form of the RMHD equations can be obtained in terms of the

scalar potentials: the magnetic flux function ψ and stream function φ. The RMHD
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equations are then

∂tψ + v · ∇ψ = B0∂zφ+ η∇2ψ

∂tω + v · ∇ω − b · ∇j = B0∂zj + ν∇2ω , (2.4)

where b = ẑ ×∇ψ, v = ẑ ×∇φ, ω = ∇2
⊥φ, and j = ∇2

⊥ψ.

RMHD is of significant practical and theoretical utility. In most natural systems, a

strong background field is present when attention is drawn to scales small compared to

the system size, due to the large-scale magnetic fields acting as an effective background

field at small scales, so that B0 � brms. Likewise, the dynamics naturally develop

steeper gradients in the directions perpendicular to the guide field than parallel to it.

Hence, the central assumptions of RMHD are often satisfied at small scales. RMHD

is more analytically tractable than the full MHD equations because there are only

two unknown scalar fields, ψ and φ, or equivalently, j and ω. Another attractive

feature of RMHD is its applicability to collisionless plasmas, which is not a-priori

true for the full MHD equations (Schekochihin et al., 2009).

The RMHD equations represent the “first principles” upon which this work is

based on. They impose constraints on the statistical properties and morphology

of intermittent structures, although it is generally very difficult to extract this

information directly from the equations.

2.2 Phenomenology of MHD turbulence

Inertial-range phenomenology

This section sets the stage for the subsequent numerical analysis in this thesis by

briefly reviewing the present phenomenological theories of MHD turbulence. These

models are idealized in the sense that they assume infinitely large Reynolds numbers,

and hence cannot reliably describe dynamics near the dissipation scale. Although

these theories do not account for intermittency, they are still valuable for providing

estimates for the dissipation scale and anisotropy of typical turbulent eddies.



23

Recall that in the K41 phenomenology for hydrodynamic turbulence (described in

Sec. 1.2), dimensional analysis requires that the velocity increments across a given

scale are related to the energy cascade rate by δvl ∼ (〈ε〉l)1/3, which implies an energy

spectrum of E(k) ∼ k−5/3. This argument, however, cannot be applied directly to

MHD turbulence, due to the fact that the additional quantities, namely, B0 and the

possible correlations between the two independent fields, prevent dimensional analysis

from giving a unique result. In order to develop a more suitable phenomenological

framework, the MHD dynamics must be considered more carefully.

There are two major qualitative differences between incompressible MHD turbu-

lence (described by Eq. 2.2) and Navier-Stokes turbulence. The first difference is the

presence of a linear term in the equations due to the background field B0, or more

generally, a local background field is created by large-scale turbulent fluctuations.

This background field creates an inherent anisotropy and plays an essential dynamical

role since, in the limit of small fluctuations, linear Alfvén waves can propagate along

it with dispersion relation ω±(k) = ±k‖vA, where ω±(k) is the frequency of the mode

(not to be confused with vorticity), k‖ is the wavenumber parallel to the background

magnetic field, and vA is the Alfvén velocity (equal to B0 in the given units). The

presence of these linear waves sets an additional characteristic timescale, the Alfvén

time τA = l‖/vA, where l‖ is the given scale along the local guide field. The second

difference between MHD turbulence and Navier-Stokes turbulence is the presence

of two independent fields z±, which in general are nontrivially correlated through

interactions mediated by the nonlinearity.

A phenomenological picture that convincingly accounted for anisotropy in MHD

turbulence was proposed by Goldreich and Sridhar (1995) (henceforth, GS95). The

GS95 phenomenology was based on the conjecture that the timescale for the linear

Alfvén waves traveling along the background field, τA = l‖/vA, equals the timescale

for the nonlinear cascade transverse to the background field, τNL = l⊥/δvl. Hence,

turbulent eddies are anisotropic, with scales related by

l‖/l⊥ ∼ vA/δvl . (2.5)
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This is known as critical balance, and is based on the following insight. When

τA � τNL, the dynamics are in the regime of weak turbulence. When Re is large

enough, the theory of weak turbulence implies that there is a scale below which

it transitions into strong turbulence, which occurs at τA ∼ τNL. When τA � τNL,

motions along the background field become decorrelated and naturally evolve toward

τA ∼ τNL. Hence, the dynamics are attracted toward the critical balanced state.

Under critical balance, the equality of the linear and nonlinear timescales removes

the ambiguity in dimensional analysis caused by B0. By the same reasoning as K41,

it is found that

δvl ∼ (〈ε〉l⊥)1/3 , (2.6)

giving an energy spectrum E(k⊥) ∼ k
−5/3
⊥ in the direction perpendicular to the

background field. In contrast, eddies tend to be elongated in the parallel direction,

with the scaling given by

l‖ ∼
vA
δvl

l⊥ ∼ vA〈ε〉−1/3l2/3⊥ ∼ l
2/3
⊥ . (2.7)

Hence, the anisotropy of structures (i.e., l‖/l⊥) increases with decreasing scale. These

arguments also imply that the dissipation scale in the perpendicular direction is the

same as in K41, l⊥,η ∼ η3/4, while in the parallel direction it scales as l‖,η ∼ η1/2.

The GS95 phenomenology is a landmark result in MHD turbulence, with some

aspects of it, such as critical balance, supported by numerical simulations (Cho et al.,

2002; Beresnyak, 2011), solar wind measurements (Podesta, 2009; Wicks et al., 2010;

Chen et al., 2011), and observations of electron density fluctuations in the interstellar

medium (Armstrong et al., 1995). However, there are also indications that it may

not be completely correct. In particular, numerical simulations often tend to exhibit

a spectrum closer to E(k⊥) ∼ k
−3/2
⊥ (e.g., Mason et al., 2008; Perez et al., 2012).

On more theoretical grounds, although the notion of critical balance seems to be

reasonable, GS95 does not take into account the possible correlations between b and

v.
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Building off of GS95, a more general phenomenology developed by Boldyrev (2005,

2006) takes into account these correlations by allowing for a scale-dependent alignment

between b and v. Referred to as scale-dependent dynamic alignment, this model

obtains an energy spectrum of E(k⊥) = k
−3/2
⊥ by assuming that the alignment angle

between fluctuating magnetic and velocity field, θλ = cos−1 (bλ · vλ/(bλvλ)), scales

as θλ ∼ λ1/4. This dynamic alignment causes inertial-range turbulent eddies to be

anisotropic in three directions, rather than the two directions in GS95. The typical

eddy is characterized by the length l in the field-parallel direction, the width ξ along

the fluctuating velocity vλ and fluctuating magnetic field bλ, and the thickness λ in

the field-perpendicular direction but transverse to vλ and bλ. These quantities are

found to scale as

ξ ∼ λ3/4 ,

l ∼ ξ2/3 ∼ λ1/2 . (2.8)

Accordingly, the typical velocity and magnetic field fluctuations in the inertial range

scale as

vλ ∼ bλ ∼ λ1/4 . (2.9)

The dissipation scale for MHD turbulence with dynamic alignment can be obtained

by equating the resistive diffusion time, τη = λ2η/η, to the characteristic nonlinear

timescale (the eddy turnover time), τλ = ξλ/vλ ∼ λ1/2, to obtain

λη ∼ η2/3 . (2.10)

Most notably, this differs from the GS95 prediction of λη ∼ η3/4. The dissipation

scale in the other directions is given by

ξη ∼ η1/2

lη ∼ η1/3 . (2.11)



26

Scale-dependent dynamic alignment therefore naturally predicts the creation of ribbon-

like turbulent eddies, which may be associated with the observed intermittent current

sheets. However, the exact connection is unclear since scale-dependent dynamic

alignment is based on non-intermittent, inertial-range phenomenology.

Intermittency phenomenology

There are a number of different methods conventionally employed to describe inter-

mittency in plasmas, including structure functions (Horbury and Balogh, 1997; Müller

et al., 2003; Chen et al., 2010, 2011; Podesta, 2011), topological methods (Servidio

et al., 2009, 2010; Wan et al., 2014), and statistics of discontinuities (Greco et al.,

2009a,b; Servidio et al., 2011; Wan et al., 2012b; Zhdankin et al., 2012b,a). However,

phenomenological models for intermittency are largely limited to the random cascade

models originating in hydrodynamic turbulence. In particular, the log-Poisson model

was often used to describe the scaling of structure functions in MHD turbulence

(Grauer et al., 1994; Politano and Pouquet, 1998; Müller and Biskamp, 2000; Müller

et al., 2003; ?). For example, Müller and Biskamp (2000) proposed using the log-

Poisson model with assumptions of 2D structures and Kolmogorov scaling; they

found good agreement with numerical simulations (Müller et al., 2003). However, the

connection between structure functions and the energy cascade rate is nontrivial, due

to the necessity of formulating a refined similarity hypothesis for MHD.

A more direct and transparent route to understanding intermittency is to investi-

gate the statistics of energy dissipation rather than structure functions. The energy

dissipation rate is more closely related to the previous phenomenological ideas of

intermittency, being essentially equivalent to the energy cascade rate. Biskamp (1995,

2003) noted that the log-normal model is a good approximation to the distribution

of coarse-grained energy dissipation rates in the inertial range for 2D numerical

simulations of MHD turbulence, while later studies found the distribution moments to

be consistent with the log-Poisson model (Bershadskii, 2003; Merrifield et al., 2005).

We will revisit these phenomenological models in Chapter 4.
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2.3 Remarks on intermittent structures

In this section, we describe some properties of intermittent structures that can be

inferred from the RMHD equations. Although we mainly deal with structures in

the current density j in this thesis, it is mathematically more tangible to work with

structures in the Elsässer vorticities, ω±. Hence, it is apt and instructive to consider

the properties of Elsässer vorticity structures. Although intermittency in ω± is not

necessarily identical to that in j and ω, the overall statistical features are similar in

both cases.

The RMHD equation for ψ (from Eq. 2.4) can be rewritten for j by using the

identity (where indices are to be summed over perpendicular components, and

(x, y, z) = (x1, x2, x3))

∇2
⊥(v · ∇ψ) = εij3∂k∂k(∂iφ∂jψ)

= εij3∂k(∂i∂kφ∂jψ + ∂iφ∂j∂kψ)

= εij3(∂i∂k∂kφ∂jψ + 2∂i∂kφ∂j∂kψ + ∂iφ∂j∂k∂kψ)

= v · ∇j − b · ∇ω + 2εij3∂i∂kφ∂j∂kψ , (2.12)

which leads to the RMHD equations for current density and vorticity,

∂tj + v · ∇j − b · ∇ω + 2εij3∂i∂kφ∂j∂kψ = B0∂zω + η∇2j

∂tω + v · ∇ω − b · ∇j = B0∂zj + ν∇2ω . (2.13)

The RMHD equations for Elsässer vorticities, ω± = ω ± j, are then

∂tω
± + εij3∂i∂kφ

∓∂j∂kφ
± + εij3∂iφ

∓∂jω
± = ±B0∂3ω

± + η∂k∂kω
± , (2.14)

where we assumed that η = ν. We use this form of the equations to show several

properties of structures below.

Consider structures defined by isosurfaces at ω+ = ωthr, with corresponding

normal vector n̂ = −∇ω+/|∇ω+|. Integration of Eq. 2.14 across the enclosed volume
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V (containing ω+ > ωthr) eliminates the advective terms (via the divergence theorem),

giving ∫
V
dV
(
∂tω

+ + εij3∂i∂kφ
−∂j∂kφ

+ − η∂k∂kω+
)

= 0 . (2.15)

The first term here describes the overall growth or decay of the structure, the second

term describes the nonlinear interactions with the opposite field (which can contribute

either to growth or decay), and the third term describes the decay due to dissipation.

An analogous equation for structures in ω− (i.e., volumes bounded by an isosurface

at ω− = ωthr) is obtained by interchanging φ+ and φ− in Eq. 2.15.

Symmetries

Before moving on, we note that the RMHD equations have the following basic

symmetries:

• (x1, x2, x3, t)→ (hx1, hx2, h
2x3, h

2t) and φ± → φ± (scaling)

• x1 → −x1 (or x2 → −x2) and φ± → −φ± (parity)

• x3 → −x3 and φ± → φ∓ (orientation)

• t→ −t and φ± → −φ∓ if η = 0 (time-reversal)

• t↔ x3/B0 and φ− → −φ− if η = 0

• t↔ −x3/B0 and φ+ → −φ+ if η = 0

where h is an arbitrary constant. Spatial symmetry is therefore associated with

the exchange of the Elsässer populations or the simultaneous reversal of their signs.

Temporal symmetry is associated with the combination of these operations, but is

broken by dissipation.

The last two symmetries indicate a subtle relationship between the temporal

dynamics and the spatial variation along B0. In essence, if the dissipation is ignored,

then the dynamics are equivalent in both of these dimensions after either population
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is individually reversed in sign. Reversing the sign of one population, however, affects

the correlations between the two populations; thus the symmetry is spontaneously

broken. Regardless, since the correlations are observed to be relatively weak (as will

be shown in Sec. 4.3), the temporal evolution of structures is roughly similar the

spatial variation along B0. This statement appears to be related to critical balance

(τNL ∼ τA = l‖/vA), which is thought to be a robust property of reduced MHD at all

scales (Mallet et al., 2015). The linear relationship between timescales and parallel

length scales in critical balance implies that the lifetimes of structures should be

proportional to their maximum lengths.

Correlations

A qualitative argument for correlations between ω+ and ω− can be made as follows.

Since the nonlinear term acts with opposite sign on ω− (at any given point) than

on ω+, the structures interact in such a way that if the nonlinearity causes ω+ to

increase, then ω− will decrease by a corresponding amount. Hence, one would expect

a tendency for structures with ω+ > 0 to be correlated with structures with ω− < 0,

and for ω+ < 0 to be correlated with ω− > 0. This implies that fluctuations in j will

tend to have a larger amplitude than in ω.

Morphology

Although the advective terms in Eq. 2.15 vanish upon integration across a structure,

they may still influence its morphology. In particular, advection causes the structure

to be stretched along z− and B0, giving it a sheet-like morphology. One may estimate

the advective terms inside the structure from Eq. 2.14, roughly as

|B0∂3ω
+| ∼ B0ωthr

L∗

|εij3∂iφ−∂jω+| ∼ z0ωthr

W ∗ , (2.16)
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where the length L∗ and width W ∗ are the characteristic scales along B0 and along

z−, respectively, and z0 is the typical magnitude of the background z−. If these

terms are of comparable magnitude, then W ∗ ∼ (z0/B0)L
∗. If we take the large-scale

Elsässer field as a reference value, z0 ∼ zrms, then W ∗ ∼ L∗; in general, however, z0

may be correlated with L∗ in a nontrivial way.

Motion

The typical motion of Elsässer vorticity structures can be inferred as follows. Partition

the volume V into a top part Vt and bottom part Vb (Vt ∪ Vb = V, Vt ∩ Vb = ∅),
defined as regions with ∂3ω

+ < 0 and ∂3ω
+ > 0 respectively. Then the four integrals

are equal:∫
Vb
dV
(
∂tω

+ + εij3∂k∂iφ
−∂k∂jφ

+ − η∂k∂kω+
)

=

∫
Vb
dV B0∂3ω

+

= −
∫
Vt
dV
(
∂tω

+ + εij3∂k∂iφ
−∂k∂jφ

+ − η∂k∂kω+
)

= −
∫
Vt
dV B0∂3ω

+ ≥ 0 . (2.17)

Now consider a quasi-stationary structure, so that
∫
V dV ∂tω

+ = 0. By virtue of

Eq. 2.15, the nonlinear term and dissipative term cancel out after integration across

V. It is then reasonable to assume that the structure is relatively symmetric, so

that both Vt and Vb are comparable in size and the nonlinear term and dissipative

term cancel out separately in both halves. In this symmetric case, Eq. 2.17 requires

that
∫
Vt dV ∂tω

+ < 0 and
∫
Vb
dV ∂tω

+ > 0, i.e., the structure is decaying in the top

half and growing in the bottom half, implying that it moves counter to the guide

field. If we instead consider structures of negative amplitude, ω+ < −ωthr, then the

structure is also found to move counter to the guide field. Therefore, any structures

in ω+, regardless of sign, tend to move counter to the guide field. For structures in

ω−, the B0 term is flipped and so structures will tend to move in the direction of the

guide field. Assuming a symmetric and quasi-stationary structure, the characteristic
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velocity v∗ for motion along the guide field is estimated by

v∗ ∼
∫
Vb
dV ∂tω

+∫
Vb
dV ∂3ω+

= B0 . (2.18)

Hence, Elsässer vorticity structures propogate along the background field at the

Alfvén velocity. Since structures in j and ω are superpositions of ω± structures, they

will correspondingly have Alfvénic growth, although with no net motion (on average).
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3 methodology: statistical analysis of

structures

3.1 Identification of spatial structures

In this chapter, we describe the framework for our statistical analysis of intermittent

structures and spatiotemporal processes. We first describe the methodology and

measurements for the analysis of spatial structures, which is later applied for the spatial

analysis of current sheets in numerical simulations of MHD turbulence in Chapter 5.

We then extend this methodology for the analysis of intermittent spatiotemporal

processes, which is applied for the temporal analysis in Chapter 6.

For simplicity, we focus on the identification of structures in numerical simulations.

In contrast, for most experimental and observational scenarios, the available informa-

tion is necessarily limited, either having reduced dimensionality (e.g., 1D temporal

measurements from spacecraft in the solar wind, or 2D spatial emission profiles from

images of the solar corona) or lacking direct measurements of key quantities (e.g.,

the local energy dissipation rate in the solar corona, which must instead be inferred

from emissions). This makes it challenging, if not impossible, to infer full information

about the structures from observations. Simulations, on the other hand, have a

decisive advantage in that all information is, in principle, immediately available.

The identification and characterization of coherent structures is a significant

industry in the hydrodynamic community, being applied mainly to transient vortices

in 2D turbulence (McWilliams, 1990; Carnevale et al., 1991; McWilliams et al., 1999;

Pasquero et al., 2002; Whitcher et al., 2008) and intermittent vorticity filaments in

3D turbulence (Jiménez et al., 1993; Jimenez and Wray, 1998; Moisy and Jiménez,

2004; Leung et al., 2012). The general consensus is that there is no unique, ideal way

to identify vorticity filaments (Kida and Miura, 1998; Kolář, 2007). However, some

criteria for a robust statistical analysis include:

• Large sample size of well-defined (smooth, localized, coherent) structures.
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• Insensitivity to threshold parameters (or other methodological parameters).

• Insensitivity to specific methods for identification and characterization of struc-

tures.

• Computational efficiency of numerical algorithms.

We employ one of the simplest conceivable methods for identifying structures,

being based on isosurfaces of the field. For concreteness, we consider structures in

the current density j(x), although other fields such as the vorticity ω(x) can be

used as well. We define structures in the current density to be contiguous regions

with points satisfying |j| > jthr, where jthr is an imposed threshold, which is the

only free methodological parameter. Ideally, the threshold should be relatively large,

e.g., jthr � jrms, so that structures occupy well-defined regions and do not percolate

through the system. Hence, a robust statistical analysis requires that the probability

density function of field values, P (j), extends to large values, which is satisfied by

the non-Gaussian distributions associated with intermittent fields. Each structure is

bounded by a closed isosurface at |j| = jthr, which can be used to characterize its

morphology. Information about j(x) across the interior volume is used to characterize

other properties of the structures, including its energetics.

Formally, this framework for identifying structures is mathematically well-defined

and suitably characterizes the morphological properties of the field, including implicit

information about higher-order correlations (Mecke, 2000). However, some caution is

required in interpretation of the results. Specifically, isosurfaces have some drawbacks,

including:

• The threshold is an arbitrary parameter.

• Overlapping structures cannot be individually distinguished.

• There exists some threshold below which structures cannot be meaningfully

probed.

• Other dynamical information, e.g., vector aspects of the field and correlations

with other fields, is generally ignored.
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On the other hand, constructing a more complex and informative method for iden-

tifying structures must typically be designed with some ad-hoc decisions. Since

there is always some ambiguity in the concept of a coherent structure, especially in

turbulence, it is not clear that investing in a more complex identification scheme will

pay off. In this thesis, we prefer a simple and straightforward, rather than elaborate,

methodology.

The identification scheme may affect the measured characteristics for any given

structure. It may determine, for example, whether two nearby, partially-overlapping

structures are resolved as a single structure or as two separate structures. Likewise,

the threshold may have a similar effect. Moreover, in general, different methods

for measuring the properties of the structure, such as its characteristic scales, may

give conflicting answers. However, the statistical conclusions should be, and in our

experience are found to be, broadly consistent regardless of the identification scheme,

threshold, and measurement techniques. Consistency is an important condition

for any successful statistical analysis of structures. As long as the structures are

well-defined objects, and the methods are reasonably constructed, we conjecture that

different methods will give consistent results.

One drawback of this identification method is the fact that the threshold parameter

must be arbitrarily specified. Some structures may not be well-resolved at the given

threshold; indeed, in practice, a large fraction of the identified structures are under-

resolved, due to their peaks being near the threshold. These structures do not exhibit

robust scaling relations and should be carefully ignored. Fortunately, they only appear

as noise in the low-amplitude, small-scale regime of parameter space and generally

have a negligible contribution to the total energy dissipated and volume occupied

by the structures. To some extent, under-resolved structures are inevitable since

there will always be a population of small, short-lived structures that barely cross

the detection criteria. Filtering procedures can be applied to remove the population

of under-resolved structures, but for simplicity we do not apply any filtering for most

of the analysis.

Another drawback is that the threshold methodology does not easily distinguish

between overlapping (i.e., superimposed) structures. This does not seem to be a
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serious issue, however, since overlapping structures may be rather rare, and it is

unclear to what extent they should be treated as separate structures in any case, due

to their mutual interactions.

A notable alternative identification scheme for current sheets was used in Zhdankin

et al. (2013). In this alternative scheme, structures were identified by finding local

peaks in current density and then taking a threshold (separately for each individual

structure) to be half of that local peak current density. In many ways, this alternative

scheme is more appropriate than the fixed-threshold one adopted in this thesis, since

it better represents the structures that would otherwise barely exceed the threshold.

However, there are some shortcomings with this alternative scheme. One issue is

that it is unclear how to treat overlapping structures, i.e., peaks that are in the

vicinity of larger peaks and give coinciding volumes. A second issue is that the local

peak current density may be sensitive to chaotic fluctuations. A third issue is that

it is nontrivial to efficiently extend this methodology to spatiotemporal structures.

Regardless, the statistical results previously presented in Zhdankin et al. (2013) are

very similar to the results discussed in this thesis, supporting the conjecture that the

statistical analysis methodology is insensitive to methods.

Numerical algorithm for identification

To identify structures on the lattice of a 3D simulation, we find sets of spatially-

connected points (i.e., clusters) satisfying |j| > jthr, where two points on the lattice

are considered spatially-connected if they are separated by strictly less than 2 lattice

spacings, i.e., one is contained in the other’s 26 nearest neighbors. The numerical

algorithm scans the lattice for points with |j| > jthr. For each such point found, an

array is constructed to store the constituent points of the structure. The neighboring

points satisfying |j| > jthr are identified and its coordinates are added to this array;

this is then repeated for neighbors of those neighboring points, and so on, until no

more points remain. The array containing the coordinates of all constituent points of

the stucture is then stored for later use, and then the rest of the lattice is scanned

for any additional structures (while ignoring the points already found to belong to
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a structure). Each structure is therefore associated with an array containing the

coordinates of its constituent points. Once every structure in a snapshot is identified,

measurements are performed (as described in the next section) and stored for later

use.

3.2 Measurements for dissipative current sheets

Energy dissipation rate

Once each structure in the current density is identified, we can immediately measure

its volume, V , by counting the number of constituent points and multiplying it by

the lattice volume element. We can also measure its resistive energy dissipation rate,

E =

∫
dV ηj2 , (3.1)

where integration is performed across the volume of the given structure.

Discrete quantities

Although not the focus of this work, structures can be characterized by some discrete

properties. Perhaps the most important example is the number of topological features

such as magnetic X-points or O-points, due their role in magnetic reconnection and

particle acceleration. Indeed, X-points were the focus of several numerical studies

of turbulence in 2D MHD and RMHD (Servidio et al., 2009, 2010; Zhdankin et al.,

2013; Wan et al., 2014). These studies found that current sheets in RMHD do not, in

general, coincide with X-points (and vice-versa). However, the strongest current sheets

have a higher tendency to contain X-points and may therefore be associated with

reconnection. It is, however, unclear how to best characterize magnetic reconnection

in a fully 3D system, since magnetic nulls are not required for reconnection (e.g.,

Priest and Démoulin, 1995; Parnell et al., 2010; Haynes and Parnell, 2010; Pontin,

2011). Other examples of discrete properties include the direction of the current flow
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and the Euler characteristic (i.e., genus). For the present work, we do not consider

these discrete properties, although they are potential topics for future research.

Characteristic scales

We now describe the methods used for determining the morphology, i.e., characteristic

scales, of structures. Ignoring the finer features, each structure can be characterized

by three scales. These are the length L, width W , and thickness T , with L ≥ W ≥ T .

For current sheets in MHD turbulence, the length is generally aligned with the

guide field, while the width and thickness are associated with the anisotropy in the

perpendicular plane. This fact was exploited in Zhdankin et al. (2013) to measure

the scales of current sheets in RMHD. In that work, the length was taken to be

the distance between the constituent points with the smallest and the largest z

coordinates, while the thickness and width were measured in the xy plane containing

the point of peak current density in the structure. Width was taken to be the largest

distance between constituent points in this plane, while thickness was measured in

the direction of steepest descent from the peak (determined from the eigenvectors of

the Hessian matrix). In this thesis, we use more general methods which do not rely

on the anisotropy of RMHD, and hence, can be applied to a broader class of systems.

As a consistency check, we use two different methods based on distinct definitions

for the characteristic scales. The first method is based on the direct measurement of

distance across the structure in three orthogonal directions, while the second method

is based on the ratios of the Minkowski functionals (Kerscher, 2000). We refer to

these as the Euclidean scales and the Minkowski scales, respectively.

Euclidean method

We first describe the Euclidean method. The Euclidean scales are intuitive, direct

measurements of the scale across certain parts of the structure, which may be

misleading for irregular morphologies. For example, structures with an S-shaped

cross-section may be inaccurately described, since, as we will see, the thickness would

be measured along the elongated part of the S.
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For length Le, we take the maximum distance between any two points in the

structure. Although very straightforward to measure, this can be computationally

inefficient for large structures, scaling as O(n2), where n is the number of points in

the structure. A quicker estimate is obtained by finding the point in the structure

which is furthest from the point of peak amplitude (i.e., the location of the local

current density maximum), and then identifying the largest distance between this

point and any other point in the structure. This second method scales as O(n), and

will be used to obtain most of the results.

For width We, we consider the plane orthogonal to the length and coinciding

with the point of peak amplitude. We then take the maximum distance between any

two points of the structure in this plane (with allowed offset of less than the lattice

spacing from the plane) to be the width. The direction for thickness Te is then set to

be orthogonal to length and width. We take the thickness to be the distance across

the structure in this direction through the point of peak amplitude. Since typical

thicknesses may be comparable to the lattice spacing, we use a linear interpolation

scheme to obtain finer measurements.

Minkowski method

We now describe the Minkowski method, which has previously been applied to study

the morphology of large-scale structures in the universe (Schmalzing et al., 1999),

coherent structures in the kinematic dynamo (Wilkin et al., 2007), and vorticity

filaments in hydrodynamic turbulence (Leung et al., 2012). The Minkowski scales are

mathematically rigorous measurements which take into account information about

the entire structure. Hence, the Minkowsi scales may be well suited for complex

morphologies, but often elude a straightforward physical interpretation.

By Hadwiger’s theorem, the morphology of an object in d-dimensional space

is completely characterized by the set of d + 1 numbers known as the Minkowski

functionals (Mecke, 2000)1. In 3D space, the first three Minkowski functionals are

1However, the much larger set of Minkowski tensors is required to fully describe the orientation
and anisotropy of objects (Schröder-Turk et al., 2013)
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given by

V0 = V =

∫
dV

V1 =
A

6
=

1

6

∫
dS

V2 =
H

3π
= − 1

6π

∫
dS∇ · n̂ , (3.2)

where V is volume, A is surface area, and H is the mean curvature on the surface (and

n̂ = −∇j/|∇j| is the surface normal, assuming structures in the current density). The

fourth Minkowski functional is V3 = χ, the Euler characteristic (obtained from the

mean Gaussian curvature), which will not be used here since it is dimensionless. Three

quantities with the dimensions of length are formed from ratios of these functionals,

Lm =
3V2
4

Wm =
2V1
πV2

Tm =
V0
2V1

. (3.3)

These scales are normalized such that when applied to a sphere, all scales equal the

radius. The Minkowski functionals satisfy the isoperimetric inequalities (Schmalzing

et al., 1999):

S2 ≥ 3V H

H2 ≥ 4πSχ , (3.4)

from which Lm > Wm > Tm follows. For simple convex objects, these three scales

have the usual interpretation of length, width, and thickness.

To compute the Minkowski functionals on the simulation lattice, we employ

Crofton’s formula, which is a numerical approximation for the Minkowski functionals

based on counting the number of lattice points N0, lattice edges N1, lattice faces N2,

and lattice cubes N3 that constitute the structure (see, e.g., Schmalzing and Buchert,



40

1997, for details). Explicitly, Crofton’s formula for an isotropic lattice, with lattice

spacing h, is:

V0 = h3N3

V1 = h2
(
−2

3
N3 +

2

9
N2

)
V2 = h

(
2

3
N3 −

4

9
N2 +

2

9
N1

)
V3 = −N3 +N2 −N1 +N0 . (3.5)

In order to apply Crofton’s formula on the elongated lattice in our RMHD simulations,

we treat each lattice element as a composite of isotropic lattice elements. Accuracy of

the Crofton method was established on low-resolution (5123) simulations by comparing

it with another numerical method, based on Koenderink invariants, also discussed in

Schmalzing and Buchert (1997).

3.3 Extension to temporal realm: dissipative

processes

General remarks

We now describe the methodology for the temporal analysis of intermittent structures,

i.e., for the statistical analysis of spatiotemporal dissipative processes. In essence,

this methodology extends the identification scheme used for 3D spatial dissipative

structures (current sheets) to 4D spatiotemporal dissipative processes (flare events).

It is straightforward in principle to extend the previous procedures into the

temporal realm by applying the same threshold criterion to the 4D spatiotemporal

field j(x, t). However, although simple in principle, it is challenging in practice to

analyze a high-resolution 4D data set in this way. Assuming that the analysis is

applied to post-processed data from well-resolved simulations stored on a computer

system, the data storage conditions limit the total number of available snapshots,
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negatively affecting the possible time cadence of snapshots and size of the overall

time interval. Hence, the time resolution of post-processed data must generally be

worse than the internal time resolution of the simulation. This is a serious issue since

the data must be well-resolved in all dimensions in order to properly resolve and

track structures across a wide range of scales.

A related problem is that the primary memory limits the amount of data that

can be loaded by the analysis program at any given time, requiring the numerical

procedures to work with small pieces of the overall data set at a time. Therefore, a

feasible temporal analysis should be based on first identifying the structures in the

spatial dimensions of a given snapshot, and then tracking them through time, from

their formation to their destruction. The algorithms required to perform this task are

rather complex, and must be designed in a robust and efficient manner. In particular,

there needs to be an algorithm that accurately associates structures in one snapshot

with their time-evolved counterparts in subsequent snapshots. A fundamental chal-

lenge here lies in the fact that there may not be a unique correspondence between a

structure in one snapshot and a structure in the adjacent snapshot, due to mergers

and divisions.

The interactions between structures cause the notion of a coherent time-evolving

structure to be ambiguous. Instead, the objects of central importance are the

processes involving structures. These processes can be variously thought of as sets of

interacting structures, as dissipative events, or as flares (if we equate the dissipated

energy with outgoing radiation). More generally, they can be thought of as branched

spatiotemporal structures.

Classification of processes

In order to build an intuition and facilitate the subsequent discussion of processes, we

now describe a convenient classification scheme for processes. This allows processes

to be visualized diagrammatically, which has some superficial similarities to Feynman

diagrams for quantum mechanical scattering processes (Feynman, 1948); however,

none of the mathematical symmetries characterized by the Feynman rules carry
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Figure 3.1: Diagrams of some simple processes, where formation is represented by
O, interaction by a vertex, and destruction by X. An isolated structure is a process
with no vertices. Division and merger processes are the next simplest case, with a
single vertex each. Higher-order processes such as loops and scatterings have a larger
number of vertices or vertices with more paths.

over, since, to the best of our knowledge, isosurfaces in the current density described

by the MHD equations contain no conserved quantities. Regardless, the following

classification scheme is a simple way to describe processes and their complexity.

We first introduce some terminology. We define a state to be an individual spatial

structure at fixed time, which represents the basic building block of processes. We

assume that the states are given at times spaced by an infinitesimal increment dt. We

also assume that there exists a map between all states at any time t to other states

at time t − dt and t + dt, which represents the instantaneous temporal evolution

of structures from one state to another state. We define a path segment to be a

bijective (i.e., one-to-one) sequence of states under this map, which represents the

coherent temporal evolution of an individual structure while it does not interact with
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any other structures. We then define a path to be a path segment with bijectivity

breaking down only at the initial and final states in the sequence. A process is then

described as a set of paths that are (non-bijectively) connected at their endpoints,

which represents a set of interacting structures.

Diagrams of some simple conceivable processes are shown in Fig. 3.1. Here, we

represent paths schematically as lines with an arrow marking the direction of time. If

the path begins by spontaneous formation, i.e., from a peak that grows to exceed

the detection threshold, then we mark the beginning of the path with an O. If the

path ends by spontaneous destruction, i.e., from a structure that recedes below the

detection threshold, then we mark the end of the path with an X. The third possibility

is for the path to start or end with an interaction. Interactions between structures

are represented by vertices connecting sets of three (or more) paths. A process

schematically consists of a set of paths connected by a set of vertices.

The simplest process is the evolution of an isolated structure, i.e., a structure that

is formed and then destroyed without interactions. Isolated structures are described

by a single path and have well-defined histories with well-defined properties. Other

structures undergo at least one interaction. The two simplest processes involving an

interaction are the division of one structure into two structures and the merger of

two structures into one structure. Since an interaction is non-bijective, the structures

in these processes do not have completely well-defined histories, so many of the

quantities used to describe isolated structures are ambiguous. However, we will see

that a meaningful set of more general characteristics can be introduced.

We claim that the most logical approach for a temporal analysis is to study

processes rather than individual spatially-coherent structures, i.e., paths, which lose

their identity upon interacting. This is also the most conservative approach, as it

requires no fundamental changes to the methodology used for the statistical analysis

of spatial structures at fixed time, and requires no ad-hoc assumptions to treat the

interactions. We also find that the statistical trends are more robust for processes

rather than paths.
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Figure 3.2: A schematic of structures evolving in time, highlighted in green (shown
in one-dimensional space for clarity). Structures from the initial and final states are
marked in red.

3.4 Methods for temporal analysis

Outline of procedure

In this section, we describe our algorithms for the temporal analysis. Since the

procedure in its entirety is rather complicated, we include a brief outline in this

subsection. A more detailed description is presented in the rest of this section. The

procedure rests on a hierarchy of steps: first, we find sets of contiguous points (above

the threshold) in each snapshot to obtain the spatial structures; next, we find sets of

bijectively-connected states to obtain the paths; finally, we find sets of connected paths

to obtain the processes. A schematic of the final result is shown in Fig. 3.2, where

processes (colored in green) of varying complexity are identified on the space-time

lattice.

1. Identify all states (i.e., spatial structures) in each snapshot, and represent tem-

poral connectivity by constructing a map between states in adjacent snapshots.

a) Load initial snapshot and determine states (by using threshold algorithm).

• Store constituent points of each state in a temporary array;
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• Perform measurements on states and store in a permanent array;

b) For i = 2, . . . , Nsnap, do following:

• Load ith snapshot, determine states, and store constituent points and

measurements;

• Construct the evolution map, which associates states in snapshot i− 1

with temporally-connected states in snapshot i, and vice-versa (do

this by comparing constituent points of structures in both snapshots);

remove temporary array for snapshot i− 1;

2. Identify paths.

a) Obtain paths from states that form a bijective sequence under the evolution

maps.

b) Perform measurements on paths by referencing the constituent states.

c) For each path, construct (non-bijective) map that identifies other paths

connected to it.

3. Identify processes.

a) Obtain processes from sets of connected paths.

b) Perform measurements on processes by referencing the constituent paths.

c) Treat processes that exist during the initial snapshot or final snapshot as

special cases (incomplete processes).

Identification of states (spatial structures)

The first step of our procedure is to identify the states in each snapshot, i.e., the

spatial structures at fixed times. As before, states are defined as spatially-connected

sets of points with current density magnitudes exceeding a fixed threshold, jthr. Since

our algorithm for identifying states is the same as in the spatial analysis, we defer

the reader to Sec. 3.1 for details. Once every state in a snapshot is identified, the

constituent points and other measurements are stored for later use.
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Temporal association between states in adjacent snapshots

In this subsection, we describe the algorithm for identifying the time-evolved counter-

parts of a state, i.e., the states in the adjacent snapshots that represent the evolved

structure. The result is a (non-bijective) map associating the set of states in one

snapshot with the set of states in an adjacent snapshot, representing the instantaneous

temporal evolution of structures.

Consider a given state in the kth snapshot. To find the future counterparts of the

given state, we iterate through all states in the subsequent snapshot and determine

which ones have any constituent points that are spatially-connected to the given state.

In other words, we look for states with points that coincide with or neighbor any of

the given state’s points (using the 26 nearest neighbor criterion). Any such states are

identified as future counterparts of the given state.

We suppose that the states in each snapshot are identified by an index i ∈
{1, 2, . . . , Nk}, where Nk is the number of states in the snapshot. We construct an

array that stores the indices of the corresponding future states in the (k + 1)th

snapshot, which we call the forward evolution map T+
k (i) where i = 1, 2, . . . , Nk.

Thus, if the ith state in snapshot k is associated with the jth state in snapshot k + 1,

then T+
k (i) = j. If the ith state has no future counterparts, then we assign T+

k (i) = 0,

representing the null state. If the ith state is associated to multiple future states (i.e.

it divides), then we assign T+
k (i) multiple values containing all of these future states.

We perform a similar procedure to find the past counterparts of the given state.

In this case, we iterate through all states in the preceding snapshot to determine

which ones have points that are spatially-connected to the given state. Any such

states are identified as past counterparts of the given state. Likewise, we construct a

backward evolution map, T−k (i), which identifies state i in the kth snapshot with its

corresponding past counterparts in the (k−1)th snapshot. If the ith state has no past

counterpart, then we assign T−k (i) = 0. If the ith state is associated to multiple past

states (i.e. it results from a merger), then we assign T−k (i) multiple values containing

all of these past states.

The entire set of evolution maps T±k where k = 1, . . . , Nsnap is constructed by



47

Figure 3.3: Schematic of structure evolution, shown in 2D space for clarity. The
procedure stores the constituent points of the present state, checks the future snapshot
for any states with points that are spatially-connected to the present state’s points,
and then identifies these states as future counterparts of the present state. In the left
panel, a structure evolves without interacting. In the right panel, a structure divides,
having multiple future counterparts. This procedure is reversed in time to determine
past counterparts, with a merger occuring for multiple past counterparts.

iterating through the snapshots and applying the above procedure immediately after

identifying the states in pairs of consecutive snapshots. After T±k is constructed for

all Nk states in a given snapshot k, the array containing the constituent points of the

states is deleted to free up memory before loading the next snapshot.

Identification of paths (tracking algorithm)

In this subsection, we describe the algorithm for identifying paths across multiple

snapshots, which is an important intermediate step before processes themselves can

be identified. A path is abstractly defined as a sequence of states that is bijectively-

connected under the evolution maps (see Sec. 3.3). From the algorithms in the

preceding subsections, we have a sequence of Nsnap snapshots (denoted by index k),

each with a set of Nk states, along with the evolution maps T±k associating the states

in each snapshot with their time-evolved counterparts in adjacent snapshots. To

identify paths, we must find the bijective sequences in {T±k }.
Consider the ith state in snapshot k. Bijectivity of the forward evolution map is

satisfied if there exists a unique state j in snapshot k + 1 such that T+
k (i) = j and

T−k+1(j) = i. Any two states satisfying this condition form a path segment. If this
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condition fails, however, then state i is the endpoint of a path. This happens either

when the structure is destroyed (T+
k (i) = 0) or when it interacts (either T+

k (i) or

T−k+1(j) is multi-valued). Likewise, if there exists a unique state l in snapshot k − 1

such that T−k (i) = l and T+
k−1(l) = i, then these two states form a path segment;

otherwise state i is the beginning of a path due to either formation (T−k (i) = 0) or an

interaction (either T−k (i) or T+
k−1(l) is multi-valued). Using these conditions, we can

track the state of any given structure along a path through a sequence of snapshots,

until an interaction is encountered.

We iterate through the states in all Nsnap snapshots and use the above tracking

procedure to identify the associated path and its constituent states, marking those

states so that they are ignored in the remaining iterations. As a result, we obtain a

set of Npath paths. For each path, we construct an array which contains the indices

of the constituent states, which is referenced to perform measurements on the path.

We also construct an array containing the indices of the predecessors, which are

the other paths connecting to it from the beginning of the path. The predecessors

are determined by operating with T− on the first state of the path to obtain all of

the past states, and finding the paths that contain these past states. In a separate

array, we store the indices of successors, which are the other paths connecting to the

end of the path, obtained by operating with T+ on the final state of the path. The

predecessors and successors of paths characterize the vertices between paths. Note

that if the number of predecessors is zero, then the path is formed spontaneously. If

the number of successors is zero, then the path is destroyed spontaneously.

Identification of processes

Finally, we describe how to identify processes from the set of paths and their prede-

cessors and successors. Recall that processes are described as sets of connected paths.

Therefore, we first iterate through the set of paths. For each path, iterate through

the predecessors and successors of the path, and then through the predecessors and

successors of those, and so on, until no new paths can be obtained. The set of paths

acquired in this way constitute a single process, and their indices are stored in an
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array corresponding to that process. The paths that have already been identified as

belonging to a process are ignored in the remaining iterations of paths.

Some processes will contain states from the initial snapshot or in the final snapshot

of the dataset, which we call initial processes or final processes, respectively. These

processes must be treated as special cases, since our information about them is

incomplete. The simplest treatments of these processes are either to ignore them or

to treat them as normal processes undergoing formation or destruction in the initial

or final snapshots. For most of our analysis, we will ignore initial and final processes.

However, they are included in the probability distributions for better statistics at

long durations. Due to the relatively long interval of time in our simulations, the

initial and final processes are a very minor contribution to the statistics, unless low

thresholds are used.

This concludes our discussion of the algorithms used to identify processes. We

now have a sample of Nproc processes, each including an array of constituent paths.

The paths contain all of the information necessary to perform measurements on the

processes. These measurements are described in the next section.

3.5 Measurements for temporal analysis

Measurements for paths

In this subsection, we describe measurements for paths, which are conceptually simpler

than those for processes due to the bijectivity condition. These measurements will be

used and generalized in the next subsection to characterize processes.

The evolution of a path can be described by the time-series E(t), V (t), L(t),

W (t), and T (t) of instantaneous characteristics defined for the constituent states.

For simplicity, we use the Euclidean method to measure the spatial scales of states.

Consider a path given by a sequence of states at times tk, where k ∈ {1, . . . , Ns} and

Ns is the number of constituent states. Assuming a fixed cadence of snapshots, the

states are separated by a fixed time interval ∆t. The kth state has characteristics

denoted by Ek, Vk, Lk, Wk, and Tk.
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One of the most basic properties of a path is its duration (or lifetime) τ , defined

as

τ = tNs − t1 = (Ns − 1)∆t . (3.6)

The energy dissipation rate of states generalizes to the dissipated energy,

E =

∫
dtE(t) =

Ns∑
k=1

Ek∆t , (3.7)

where time integration is performed over the duration of the path. We also define the

peak volume, peak energy dissipation rate, maximum length, maximum width, and

maximum thickness as

Vmax = max(V (t)) = max({Vk})

Emax = max(E(t)) = max({Ek})

Lmax = max (L(t)) = max({Lk})

Wmax = max (W (t)) = max({Wk})

Tmax = max (T (t)) = max({Tk}) . (3.8)

Note that as an alternative to these local quantities, we can consider time-averaged

quantities; these are, however, less easily generalized for processes.

Measurements for processes

We now describe how to generalize the quantities defined for paths in the previous

section to processes, i.e., sets of interacting structures. We characterize each process

by the number of constituent paths, Np. Processes with a single path, Np = 1,

are isolated structures. Processes with three paths, Np = 3, are division or merger

processes. Processes consisting of more than three paths, Np > 3, are higher-order

processes, containing either more than one vertex or vertices joining more than three

paths. Other related measures of the complexity of a process include the number of
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vertices Nv, the number of constituent states Ns, the number of internal paths Nint

(i.e. paths that begin and end in vertices), and the number of incoming paths Nin or

outgoing paths Nout.

Consider a process with constituent paths enumerated by index n = 1, . . . , Np,

extending from initial times tn to final times t′n. Let En, Vmax,n, Emax,n, Lmax,n, Wmax,n,

and Lmax,n be the characteristics of the nth path as defined in the previous subsection.

We define the process duration by

τ = max({t′n})−min({tn}) , (3.9)

which is simply the time interval from the formation of the first existing constituent

path to the destruction of the last existing constituent path. The dissipated energy

E of a process is defined by integrating ηj2 across the enclosed 4D spacetime region.

This is given by

E =

Np∑
n=1

En . (3.10)

Likewise, we can define the peak volume and peak energy dissipation rate as the

maximum of the peaks corresponding to the constituent paths,

Vmax = max({Vmax,n})

Emax = max({Emax,n}) . (3.11)

Note that an alternative definition for Vmax (Emax) can be based on the maximum of

the volume (energy dissipation rate) summed for all states belonging to the process

at any given time. These two definitions may differ for processes with a large

number of paths, but will otherwise give similar results; we use the first definition

only for simplicity. The most difficult quantities to generalize for a process are the

characteristic spatial scales. There appears to be no universally satisfactory way to

obtain average characteristic scales for a general configuration with many paths. If

we apply an average across all paths (or all states) constituting the process, then
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the result may be skewed toward unphysical short-lived paths (or states). A simpler

alternative is to take the maximum scale corresponding to any path in the process,

Lmax = max({Lmax,n})

Wmax = max({Wmax,n})

Tmax = max({Tmax,n}) . (3.12)

One alternative possible definition for the spatial scales, which gives results consistent

with the definition that we apply, is to take the spatial scales from the largest state

at the moment of the peak energy dissipation rate.

This concludes the discussion of the methods for our statistical analysis of in-

termittent structures. In the next three chapters, we will describe the results from

applying this methodology to MHD turbulence.
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4 statistics of local energy dissipation

This chapter is a prelude to our statistical analysis of intermittent dissipative struc-

tures, setting the stage by establishing the statistics of the local energy dissipation

rate in MHD turbulence. We first describe our numerical simulations in Sec. 4.1. We

then describe the cumulative distribution of the energy dissipation, and the volume

filling fraction of structures, in Sec. 4.2, the correlations between current density and

vorticity in Sec. 4.3, and finally, the statistics of coarse-grained energy dissipation in

Sec. 4.4, which is found to be well approximated by the log-normal model.

4.1 Numerical simulations

The analysis in this thesis is performed on numerical simulations of strong MHD

turbulence in the RMHD approximation (see Sec. 2.1 for the relevant equations).

Thus, a strong uniform background field B0 = B0ẑ is assumed; specifically, we

take B0/brms ≈ 5, where brms is the root-mean-square average of the fluctuating

component1. As is conventional, turbulence is driven at large scales in a periodic

box; the energy then cascades through a relatively short inertial range until it is lost

in the dissipation range. The reader may refer to (Perez and Boldyrev, 2010; Perez

et al., 2012) for additional details on simulations.

The RMHD equations are solved in a periodic, rectangular domain of size L⊥ = 2π

perpendicular to the guide field and size L‖ = 6L⊥ parallel to the guide field. The

turbulence is driven at the largest scales by colliding Alfvén modes, excited by

statistically independent random forces f+ and f− in Fourier space at low wave-

numbers 2π/L⊥ ≤ kx,y ≤ 2(2π/L⊥), kz = 2π/L‖. The Fourier coefficients of f± in this

range are Gaussian random numbers with amplitudes chosen so that brms ∼ vrms ∼ 1.

The forcing is solenoidal in the perpendicular plane and has no component along B0.

The random values of the different Fourier components of the forces are refreshed

1The RMHD equations have a scaling symmetry such that if B0 and the z coordinates are
rescaled so that B0/L‖ is fixed, then the dynamics are unchanged. Hence, the magnitude of the
guide field is actually arbitrary in this sense.
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Figure 4.1: Top: Energy spectrum for perpendicular fluctuations in the magnetic field,
compensated by k

3/2
⊥ , for Re = 1000 (magenta), Re = 1800 (blue), Re = 3200 (red),

and Re = 9000 (green). Center: Same spectrum compensated by k2⊥, representing the
current density fluctuations. Bottom: Energy spectrum for magnetic field fluctuations
in the z direction, compensated by k

3/2
z .
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independently on average about 10 times per eddy turnover time. To perform the

spatial discretization, a fully dealiased 3D pseudo-spectral algorithm is used.

The Reynolds number is given by Re = vrms(L⊥/2π)/ν, which is equal to the

magnetic Reynolds number, Rm = vrms(L⊥/2π)/η. Timescales are measured in terms

of large-scale eddy turnover times of the turbulence, given by τeddy = L⊥/(2πvrms) ≈ 1.

The analysis in this chapter and Chapter 5 is performed for roughly 15 snapshots

(spaced at intervals of one eddy-turnover time during statistical steady state) for

independent runs with Re = 1000, Re = 1800, and Re = 3200 on 10243 lattices, and

also for 9 snapshots with Re = 9000 on a 20483 lattice. These simulations are listed

in Table 4.1. In addition, analysis was performed on lower-resolution 5123 simulations

to establish numerical convergence of the simulations and the methods at Re = 1800.

Simulations for the temporal analysis, which require hundreds of snapshots dumped

at high cadence, are described separately in Sec. 6.2.

Table 4.1: Numerical simulations for spatial analysis

Case Resolution Re Number of snapshots
1 10243 1000 14
2 10243 1800 15
3 10243 3200 15
4 20483 9000 9

For reference, in Fig. 4.1 we show the magnetic energy spectra for the given

simulations. The first panel shows the perpendicular magnetic energy spectrum

averaged over the given snapshots, compensated by k
3/2
⊥ expected from dynamic

alignment (Boldyrev, 2005, 2006). The magnetic energy spectrum clearly exhibits

an inertial range which increases in size with Re. By compensating by an additional

factor of k
1/2
⊥ , as shown in the second panel of Fig. 4.1, the energy spectrum for the

current density is obtained, which is maximized at wavenumbers in the dissipation

range. Hence, the energy spectra show that the bulk of energy dissipation occurs

in smaller and smaller scales as Re increases, which is consistent with dissipation

occurring in thin, intermittent structures. However, the energy spectra cannot be

used to infer the morphology or overall size of the structures. We also show in Fig. 4.1
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the magnetic energy spectrum in the z direction, compensated by k
3/2
z . As noted in

previous studies, the energy spectrum along the global mean field better represents

the perpendicular cascade rather than the parallel cascade, due to the bending of

field lines causing the local mean field to deviate from the global mean field (Maron

and Goldreich, 2001).

4.2 Distribution of energy dissipation rates

In this section, we describe the pointwise statistics of the energy dissipation rate. To

compare the intermittency of energy dissipation between different simulations with

varying parameters such as Re, we take the total resistive energy dissipation rate in

the system as a reference value,

Etot =

∫
d3xηj2 = Vtotηj

2
rms , (4.1)

where Vtot is the system volume. Note that Etot is fixed in the simulations. Hence, the

rms current density, jrms =
√
〈j2〉, increases with Re as jrms =

√
Etot/ηVtot ∝ Re1/2.

In order to study the statistics of energy dissipation in a universal manner, it is

natural to rescale the current density to the rms value, i.e., to use a fixed threshold

jthr/jrms when comparing structures in simulations with different Re.

To get a better sense of the concentration of dissipative structures in the simula-

tions, we consider the cumulative resistive energy dissipation rate Ecum(jthr/jrms) and

cumulative volume Vcum(jthr/jrms) conditioned on the threshold jthr/jrms. In terms of

probability density function for j, P (j), these are defined by

Ecum(jthr/jrms)

Etot
=

∫∞
jthr

djP (j)ηj2∫∞
0
djP (j)ηj2

Vcum(jthr/jrms)

Vtot
=

∫ ∞
jthr

djP (j) . (4.2)

In essence, these quantities represent the energy dissipated and volume occupied by

structures above a given threshold, i.e., at points with current densities |j| > jthr.
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Figure 4.2: The fraction of overall resistive energy dissipation (solid lines) and fraction
of total volume (dashed lines) accounted for by structures with current densities
|j| > jthr. The colors correspond to Re = 1000 (magenta), Re = 1800 (blue),
Re = 3200 (red), and Re = 9000 (green).

We show Ecum(jthr/jrms)/Etot and Vcum(jthr/jrms)/Vtot in Fig. 4.2. These cumulative

distributions show very little sensitivity to Re, suggesting that they may be universal.

The fraction of volume occupied by structures with |j| > jthr is always much smaller

than the fraction of energy dissipated; for example, 40% of energy is dissipated in

approximately 2% of the volume. Both quantities decay approximately exponentially

at large jthr/jrms.

It is interesting to note that half of the resistive energy dissipation occurs in

regions with current densities above jthr/jrms ≈ 2.2, at which current sheets are still

visibly very well-defined and occupy about 3% of the volume. Therefore, one can

conclude that the majority of energy dissipation occurs in intermittent structures.

In fact, structures can be discerned at thresholds all the way down to jthr ∼ jrms
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Figure 4.3: The fraction of overall resistive energy dissipation occurring at current
densities |j| > jthr (blue) and the fraction of overall viscous energy dissipation
occurring at vorticities |ω| > ωthr (red), with exponential fits (black). For comparison,
the magnetic energy b2 occurring at magnetic fields |b| > bthr is also shown (green).

(where they fill 20% of the volume and account for over 80% of the dissipation). Since

a larger threshold is better suited for a statistical analysis of structures, most of

the analysis in this thesis is performed at jthr/jrms ∼ 4, which focuses on the most

intense and well-defined dissipative structures, contributing around 30% of the overall

resistive energy dissipation. This threshold is low enough to get a large sample of

structures while being high enough to avoid many structures percolating through the

domain and to avoid large numbers of overlapping structures.

The cumulative resistive energy dissipation can be fit rather well by an exponential,

exp (−jthr/3.2jrms), as shown in Fig. 4.3. For comparison, we perform an analogous

procedure on the vorticity ω, and find that the cumulative viscous energy dissipation

decays more steeply with threshold ωthr/ωrms than the resistive case, roughly as

exp (−ωthr/1.8ωrms). Hence, the resistive energy dissipation exceeds the viscous
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energy dissipation on average (despite η = ν), and current sheets are generally more

intense than vorticity sheets. We also repeat the same procedure for the magnitude

of the fluctuating magnetic field |b| to find the cumulative magnetic energy |b|2 at

magnetic fields |b| > bthr. The cumulative distribution decreases very rapidly in this

case, and can be fit by a Gaussian, exp [−(bthr/1.5brms)
2]. This is consistent with the

fact that the magnetic field is much less intermittent than the current density.

4.3 Relationship between current density and

vorticity

Although vorticity structures are not the focus of this thesis, we make some re-

marks here on the correlation between current density and vorticity in MHD tur-
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bulence. The correlations can be seen in the 2D distribution of Elsässer vorticities,

P (ω+/ω+
rms, ω

−/ω−rms), which is equivalent to P (j, ω) rotated clockwise by 45 degrees.

We show the contours of P (ω+/ω+
rms, ω

−/ω−rms) for the Re = 3200 simulation in

Fig. 4.4. As required by the symmetries of the MHD equations, this distribution is

symmetric about the (diagonal) ω and j axes. It is, however, not symmetric about

the ω− and ω+ axes, instead showing that ω− and ω+ have a small tendency to have

opposite signs rather than identical signs. This asymmetry is due to the nonlinear

term acting with opposite signs on the two populations, skewing ω+ and ω− toward

opposite signs (as described in Sec. 2.3). As a consequence, j extends to larger values

than ω, implying that the resistive energy dissipation will generally be larger than

the viscous energy dissipation (despite η = ν).

The tendency of j to have a larger amplitude than ω can also be inferred by

comparing the total resistive dissipation Eηtot =
∫
d3xηj2 (simply denoted Etot above)

to the total viscous dissipation, Eνtot =
∫
d3xνω2. We find that Eηtot/Eνtot varies from

approximately 1.67 at Re = 1000 to 1.42 at Re = 9000, indicating a sizeable mismatch

between the two types of dissipation which possibly decreases with Re.

Another important relationship is that between dissipation rates in the different

fields. To understand this, we show the contours of P (ω2/ω2
rms, j

2/j2rms) (i.e., the distri-

bution for the local viscous and resistive dissipation rates) and P [(ω−/ω−rms)
2, (ω+/ω−rms)

2]

(i.e., the distribution for the local Elsässer dissipation rates) in Fig. 4.5. There is a

clear anti-correlation between the different local dissipation rates, i.e., large values of

j2 tend to be associated with small values of ω2, and vice-versa. This implies that

intermittent structures in one field are offset from structures in the other field, which

may be expected from the quadrupolar structure of vorticity around current sheets

(e.g., Matthaeus, 1982; Politano et al., 1995).

4.4 Test of log-normal random cascade

In this section, we consider the statistics of coarse-grained energy dissipation rates,

which are the quantities conventionally described by random cascade models. In

particular, we perform a careful test of the log-normal model proposed by K62
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and described in Section 1.2. By considering the energy dissipation rate rather

than structure functions, we bypass the ambiguity associated with formulating the

refined similarity hypothesis for MHD. This analysis leads us to conclude that the

log-normal model can provide a remarkably good description of the intermittency in

incompressible MHD turbulence, although we do not rule out other random cascade

models.

It is reasonable to investigate to what extent the log-normal model can describe

intermittency in MHD turbulence for several reasons. The first reason is its simplicity;

the log-normal model does not make any assumption about the specific form of the

dynamical equations, so one may anticipate that it applies to MHD turbulence at

least as well as it does to hydrodynamic turbulence. A second reason is that there

appears to be a lack of previous numerical tests of the log-normal model in modern

high-resolution simulations of MHD turbulence, despite favorable agreement noted in

early numerical studies (Biskamp, 1995, 2003). Finally, it can be used to approximate

the distribution of local energy dissipation rates, which is linked to the filling fraction

of structures.

Following the notation in Biskamp (2003), we subdivide the simulation lattice into

regions of size ln = 2−nL⊥, where n is referred to as the level. The coarse-grained

resistive and viscous energy dissipation rates at point x, averaged at the nth level,

are respectively defined as2,

εηn(x) =
1

Vn

∫
Vn(x)

d3x′ηj2(x + x′),

ενn(x) =
1

Vn

∫
Vn(x)

d3x′νω2(x + x′) . (4.3)

where integration is performed across a region centered at x with volume Vn. The

total coarse-grained energy dissipation rate at x is therefore εn(x) = εηn(x) + ενn(x).

2Strictly speaking, the local viscous energy dissipation rate should be defined by using ν(∂ivj +
∂jvi)

2/2 instead of νω2 in the integral, which makes the quantity rotationally invariant. By the
divergence theorem, these two quantities are equal upon averaging over space. For simplicity, we
use νω2 for the majority of the analysis. We find that using ν(∂ivj + ∂jvi)

2/2 gives similar results
for averages across large and intermediate scales, differing only near lattice scales.
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Figure 4.6: The probability distributions for coarse-grained energy dissipation rate,
εn/ε0, for Re = 9000 and n ∈ {4, 7, 10} (in green, red, and blue, respectively). Best-fit
log-normals are shown in black.

There is some freedom in choosing the shape of the averaging region. As will be

seen, the results are largely insensitive to this shape (i.e., cubes, squares, or lines);

we focus mainly on square averages. The averaging regions are taken perpendicular

to the guide field, since this is the preferential direction for nonlinear energy transfer.

The probability distribution P (εn/ε0) for n ∈ {4, 7, 10} from the Re = 9000

simulation are shown in Fig. 6.4. We find that P (εn/ε0) is fit remarkably well by a

log-normal distribution,

P (εn/ε0) =
1√

2πσ2
n

ε0
εn

exp

[
− 1

2σ2
n

(
log

εn
ε0
− µn

)2
]
, (4.4)

where µn and σn are the location parameter and scale parameter, respectively. The

log-normal distribution provides a reasonable fit to the bulk and tails of P (εn/ε0) for

all scales in all of the given simulations.

We now consider the scaling properties of the log-normal fits. Since the variables

are normalized to the mean, the parameters must satisfy µn = −σ2
n/2, leaving one free
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parameter for each level. The log-normal model predicts that σ2
n/2 ∼ cn, where the

constant c is related to the intermittency parameter m (denoted by µ in Section 1.2)

by m = 2c/ log 2; for reference, m ≈ 0.2 in hydrodynamic turbulence (e.g., Biskamp,

2003; Sreenivasan and Kailasnath, 1993).

The scaling of σ2
n/2, obtained from the best-fit log-normal distributions, are

shown in Fig. 4.7 for εn/ε0, ε
η
n/ε

η
0 and ενn/ε

ν
0. For this case, we took Re = 1800 and

square averaging. Focusing on the total dissipation rate, εn/ε0, we identify a range of

intermediate scales where σ2
n/2 ≈ c(n− 1), with c ≈ 0.16, implying an intermittency

parameter of m ≈ 0.46. These scales are mainly in the dissipation range. If we focus

only on the inertial range, the scaling is shallower, with c ≈ 0.12 (m ≈ 0.35); however,

this limited inertial range is not as robustly fit by a linear scaling. The resistive

contribution alone, εηn/ε
η
0, has a significantly steeper scaling, which may be due to the

anti-correlation of j2 and ω2 in the dissipation range, causing them to individually

have a larger scatter of values.

The scaling of σ2
n/2 in the linear region is insensitive to the shape of the averaging
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regions, the numerical resolution, and Re, as shown in Fig. 4.8, although these factors

may shift the curve. Averages performed across lattice cubes (i.e., rectangles with

aspect ratio L‖/L⊥) and squares give nearly identical results, whereas line averages

have notably larger variances. Increasing Re decreases the variance and shifts the

curve to higher n, as expected from a decreasing dissipation scale. This implies that

most of the scaling takes place in the dissipation range, with the inertial range scaling

being barely discernable (going from n ≈ 1 to n ≈ 4.

The above results are consistent with a log-normal random cascade, but do not

rule out other models such as the log-Poisson model. To get a sense of how well

the log-Poisson model compares, we next consider the moments of the distributions.

The pth moment of the coarse-grained energy dissipation rate is expected to scale as

〈εpl 〉 ∼ l−τp . For the log-normal model, the scaling exponents are given by

τ (LN)
p =

1

2
mp(p− 1) . (4.5)

For the log-Poisson model, the scaling exponents are instead given by

τ (LP )
p = C(1− β)p− C(1− βp) , (4.6)

where C is the co-dimension of the most intermittent structure and β is the efficiency

of energy transfer. In particular, Müller and Biskamp (2000) proposed that C = 1

and β = 1/3 for MHD turbulence, representing ribbon-like dissipative structures and

hydrodynamic scaling.

We show 〈εpl 〉 for p ∈ {2, 3, 4, 5}, compensated by the predicted scalings for each

model, in Figs. 4.9 and 4.10 for Re = 1800 and Re = 9000, respectively. We find that

both Eq. 4.5 and Eq. 4.6 can fit the results reasonably well for p = 2 and p = 3, but

then deviate for higher orders. We find that, overall, the log-normal model (with

m = 0.35, somewhat smaller than the scaling inferred from σ2
n/2 in the dissipation

range) may describe the results somewhat better than the log-Poisson model for

the given parameters, especially for the more reliable data at low p. The predicted

log-normal scaling works well for p = 2 to p = 4, but then shows large deviations



67

Figure 4.9: Moments of the coarse-grained energy dissipation rate, 〈εpl 〉, versus l,
for p ∈ {2, 3, 4, 5}, compensated by expected power-law scaling for the log-normal
model with m = 0.35 (top panel) and for the log-Poisson model (with Müller-Biskamp
parameters) (bottom panel). Measured from square averages in the Re = 1800 case.

beyond p = 5, consistent with the expected accuracy limits due to finite statistics

(De Wit, 2004). The log-Poisson model shows deviations at p = 4, but may possibly

be fined-tuned with other values of C and β to give an improved fit.

4.5 Connecting log-normal statistics with current

sheets

The results in the previous section suggest that the log-normal model provides a

reasonable approximation of intermittency in MHD turbulence. Although the log-
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Figure 4.10: Same as Fig. 4.9, but for Re = 9000.

normal model best describes the energy dissipation rates averaged at intermediate

scales, we can also use it to estimate the current density on the lattice. In particular,

we can estimate that

P (j̃2) ∼ 1√
2πσ2

1

j̃2
exp

[
− 1

2σ2

(
log j̃2 − µ

)2]
, (4.7)
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where j̃ = j/jrms and σ2/2 = −µ. We can then obtain the cumulative distribution of

energy dissipation rates,

Ecum(j̃thr)

Etot
=

∫ ∞
j̃2thr

dj̃2j̃2P
(
j̃2
)

=
1√

2πσ2

∫ ∞
j̃2thr

dj̃2 exp

[
− 1

2σ2

(
log j̃2 − µ

)2]
=

1

2

[
1− erf

(
log j̃2thr − σ2/2√

2σ

)]
, (4.8)

and the filling fraction,

Vcum(j̃thr)

Vtot
=

∫ ∞
j̃2thr

dj̃2P (j̃2) =
1

2

[
1− erf

(
log j̃2thr + σ2/2√

2σ

)]
. (4.9)

The cumulative energy dissipation from the log-normal distribution (Eq. 4.8) is

compared with the direct measurements from the simulations in Fig. 4.11. The

model works well up to jthr/jrms ≈ 10, beyond which it overestimates the observed

result. This deviation is likely due to the fact that a log-normal distribution does not

adequately describe the resistive energy dissipation at the lattice scale.

We note, in passing, that if a random cascade model describes the distribution of

local resistive energy dissipation rates, then Ecum(jthr/jrms) cannot be universal, due

to the increasing variance of P (j/jrms) with Re. If this is the case, then the apparent

universality seen in Fig. 4.2 must be violated for well-resolved simulations with higher

Reynolds numbers.

4.6 Discussion

In this chapter, we showed that the log-normal model provides a reasonable description

of the distribution of the coarse-grained energy dissipation rates in the RMHD

simulations. We measured the intermittency parameter to be m ≈ 0.45 at intermediate

scales, and possibly closer to m ≈ 0.35 in the inertial range. This implies that RMHD
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Figure 4.11: The fraction of overall resistive energy dissipation versus threshold (for
Re = 1800) fit by the integrated log-normal distribution (black dashed line) and fit
by the exponential function (red dashed line).

is significantly more intermittent than hydrodynamic turbulence, as noted in previous

numerical studies using structure functions (e.g., Müller and Biskamp, 2000; ?).

Due to the challenges in testing and distinguishing between the various models,

however, we cannot rule out a log-Poisson or other random cascade process. We

also note that, while log-normal model provides an estimate of the energy dissipated

and volume occupied by structures at various thresholds, it does not give any direct

insight into the morphology of intermittent structures. These issues motivate other

approaches to studying intermittency, including the analysis of current sheets and

dissipative processes in the next two chapters.

Although we considered the log-normal model for intermittency in the MHD

regime, a similar process may describe turbulent plasmas with more realistic, kinetic

mechanisms of energy dissipation. Indeed, random cascade models take the inertial-
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range energy cascade rate as the fundamental quantity, which should be insensitive to

the mechanism of energy dissipation. This allows the log-normal model to be tested

in the solar wind by using magnetic field gradients as a proxy for current density,

which itself is a proxy for energy dissipation (as used in, e.g., Makwana et al., 2015).

A comparison of the coarse-grained energy dissipation rates in MHD simulations

with a weak guide field and in solar wind measurements is currently in preparation

(Zhdankin et al., 2015a). Log-normal distributions were previously measured in the

solar wind for related quantities such as the magnetic field fluctuations (Burlaga,

2001; Bruno et al., 2004) and rotational discontinuities (Zhdankin et al., 2012b,a),

which may also serve as indirect surrogates for energy dissipation.
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5 spatial analysis

5.1 Overview of spatial analysis

This chapter describes the results from our statistical analysis of intermittent, dissipa-

tive current sheets at fixed time in numerical simulations of MHD turbulence, using

the methodology described in the first part of Chapter 3, including measurements of

the characteristic scales defined in Sec. 3.2. The scalings and probability distributions

for current sheet characteristics are described in Sec. 5.2 and Sec. 5.3, respectively.

Some remarks on the population size are presented in Sec. 5.4. The main results are

summarized in Sec. 5.5. For most of the analysis in this chapter, unless otherwise

noted, we fix the threshold to jthr/jrms ≈ 3.75.

Before proceeding, we show some visual examples of current sheets in the reduced

MHD simulations (described in Sec. 4.1). Fig. 5.1 shows regions of intense current

density (exceeding the threshold) in a 3D slab which extends a quarter of the box

in the z direction of the Re = 1800 simulation. There is evidently a large sample

of filamentary or ribbon-like structures in the box, aligned with the guide field.

Fig. 5.2 shows two large current sheets (and additional nearby small current sheets)

in part of the simulation domain, spanning roughly a third of the simulation box in

length. Each structure is shown from two different orientations, demonstrating the

overall ribbon-like shape, although it is clear that the structures are very irregular

as well, showing curvature, twisting, and branching. Fig. 5.3 shows contours of

current density in an arbitrary plane perpendicular to the guide field. The three

panels show increasing Reynolds number, in the order Re = 1000, Re = 3200, and

Re = 9000. These contour plots reveal that when Re increases, the structures become

finer and more morphologically complex. Although these visual examples qualitatively

show nontrivial structure at all scales, a statistical analysis is necessary in order to

quantitatively determine which structures are dominant.
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Figure 5.1: Regions of intense current density (exceeding the threshold) in a 3D
slab of the reduced MHD simulation with Re = 1800. The slab extends in the full
horizontal scale of the simulation, but only a quarter of the vertical scale. For clarity,
colors indicate the z coordinate of points.

5.2 Current sheet scalings

We first discuss the scaling properties of the current sheets. These scalings can be

inferred from scatterplots of the measurements, but for clarity, we instead show 2D

probability distributions P (X, Y ), where P (X, Y )dXdY is the probability of finding

a structure with values between X and X + dX for the first measured quantity and

between Y and Y + dY for the second measured quantity.

We begin by comparing the characteristic scales measured by the Euclidean method

with the corresponding scales measured by the Minkowski method. The correlations

are shown in the 2D distributions P (Lm, Le), P (Wm,We), and P (Tm, Te) in Fig. 5.4.

We find that the two methods agree very well at small and intermediate scales, while
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Figure 5.2: Samples of typical large current sheets in part of the simulation domain,
surrounded by several smaller structures (red/blue indicates sign of current density).
The left panel shows two orientations of one structure, while the right panel shows
two orientations of a different structure. These samples are taken from the Re = 1800
simulation with a threshold of jthr/jrms ≈ 6.5.
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Figure 5.3: Contours of current density in an arbitrary plane perpendicular to the
guide field. Contours are taken at jthr/jrms = 2 (blue) and jthr/jrms = 3 (red) for
increasing Reynolds number (clockwise from top left, Re = 1000, 3200, and 9000).
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there is noticeable deviation between the two methods at large scales. In particular,

Lm is skewed toward larger scales than Le, while Wm is skewed toward smaller scales

than We. This is evidently due to the increasing morphological complexity of the

structures, which is captured by the Minkowski method but not by the Euclidean

method. The thicknesses generally agree well, although there is a significant fraction

of measurements in which Te greatly exceeds Tm. These spurious measurements

can occur when Te is measured in a poorly chosen direction (for example, Te is

overestimated for a current sheet with an S-shaped cross-section).

We next consider the correlations between the different scales. For economy, we

take the Euclidean length as a reference scale, since it is arguably the best-measured

scale. The 2D distributions showing the various scalings with Le are shown in Fig. 5.5.

We find robust scalings between Euclidean length and width, going as Le ∼ We. As

mentioned previously, Wm and Lm deviate from their the Euclidean counterparts,

although we can fit Le ∼ W 1.2
m . The scaling for thickness is much more difficult to

determine, mainly because it is spread over a very small range of values and shows

a large amount of scatter in Le for any given thickness. We find scalings consistent

with Le ∼ T 2
e ∼ T 2

m for Re = 1800, although this scaling is not as clear in the cases

with higher Re. A more precise measurement of the scaling for thickness requires

numerical simulations which are both well-resolved in the dissipation range and have

a large separation of scales, which may be difficult to obtain in the near future.

Finally, we consider the scaling of the volume and energy dissipation rate. As

shown in Fig. 5.6, the scaling of energy dissipation rate E with Le is somewhat steeper

than the scaling of volume V with Le. Specifically, the distributions are well fit

by E ∼ L2.4
e while V ∼ L2.2

e . The correlation can be more clearly seen by plotting

E versus V , which reveals that E ∼ V 1.1. Thus, the energy dissipation rate is not

strictly proportional to volume, meaning that the amplitude of the structure (i.e.,

〈j2〉 averaged in the structure) has a small dependence on the size of the structure.

This is reasonable since larger structures can accommodate higher current densities

than weaker structures. In other words, on average, the local peak is higher relative

to the threshold for larger structures than for smaller structures.

We next consider the dependence of some of these scalings on threshold. As shown
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Figure 5.4: Contours of 2D probability distributions comparing the Euclidean method
to the Minkowski method for measurements of current sheet lengths, widths, and
thicknesses (for Re = 1800). The first panel compares Le to Lm, the second panel
compares We to Wm, and the third panel compares Te to Tm.
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Figure 5.5: Contours of 2D probability distributions comparing Euclidean length Le
with other scales of current sheets (for Re = 1800). Clockwise from top left, the
panels show P (We, Le), P (Wm, Le), P (Tm, Le), and P (Te, Le).

in Fig. 5.7, the scaling of V versus Le shows very little sensitivity over a large range

of thresholds, 1 < jthr/jrms < 9. The scaling of E versus V does not substantially

change either, although the constant multiplier does change. We find that one the

threshold dependence is account for, the scaling is approximated by E ≈ 5ηj2thrV
1.1.

5.3 Current sheet distributions

We now consider the probability distributions for the quantities measured in the given

population of current sheets. We begin with the distribution for energy dissipation
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Figure 5.6: Contours of 2D probability distributions comparing Euclidean length Le,
volume V , and energy dissipation rate E of current sheets (for Re = 1800). Clockwise
from top left, the panels show P (Le, E), P (Le, V ), and P (V, E).

rates. Let P (E)dE denote the number of structures with energy dissipation rate

between E and E + dE , normalized to total number. As shown in Fig. 5.8, the

distribution has a power-law tail P (E) ∼ E−β with an index between β = 1.8 and

β = 2.0 for all cases. From the compensated distribution P (E)E2, it is clear that

with increasing Re, the distribution approaches a value of β = 2.0. This index is

insensitive to the threshold, as demonstrated for the Re = 9000 case in the final

panel of Fig. 5.8. In the regime of small E , P (E) becomes shallower with no evident

universal behavior. The structures in this regime are a combination of structures
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Figure 5.7: Contours of 2D probability distributions P (Le, V ) (top) and P (V, E)
(bottom) at thresholds jthr/jrms ∈ {1.1, 4.3, 9.1} (blue, red, and green contours,
respectively) for Re = 1800.
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Figure 5.8: Top panel: the probability distribution P (E) for energy dissipation rate
of structures, with colors corresponding to Re = 1000 (magenta), Re = 1800 (blue),
Re = 3200 (red), and Re = 9000 (green). The index for the power-law tail appears
to converge to the critical value of −2 as Re increases. Middle panel: the same
distribution compensated by E2, better showing the convergence with Re. Bottom
panel: the compensated distribution for Re = 9000 with several different thresholds,
jthr/jrms = 3.6 (blue), 4.8 (red), 6.0 (green), and 7.2 (magenta).
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near the threshold and structures with scales completely within the dissipation range.

As mentioned previously (see Eq. 1.8), a power-law distribution with the critical

value of −2 for the index has an expected value which is marginally divergent at

both limits. In the case of P (E), the critical index implies that the instantaneous

energy dissipation rate is equally partitioned across structures of all intensities, with

no preference toward strong structures or weak structures.

We next consider the probability distributions for the spatial scales of the current

sheets, as shown in Fig. 5.9. We find that Le, Lm, and We have robust power-law

distributions, with corresponding indices near −3.3, −2.5, and −3.3. This confirms

that Le ∼ We, with both being inertial-range quantities; Lm is also an inertial-range

quantity, but apparently scales with the volume. On the other hand, the distributions

for Wm, Te, and Tm decrease very rapidly and are not clear power laws. These scales

are in the dissipation range for most structures.

One may expect that the shifts in the distributions for Wm, Te, and Tm with Re

are related to the dissipation scale. As shown in Fig. 5.10, the measured scales can

all be rescaled by different powers of Re to make the distributions align for all of

the given simulations. From this rescaling, we infer that Wm ∼ Re−3/4 (which is the

dissipation scale in K41 and GS95), Tm ∼ Re−3/5, and Te ∼ Re−1/2. The thickness

scalings, however, may be sensitive to resolution.

We note, in passing, that since the observed scalings imply that Wm decreases

faster than Tm with increasing Re, the two scales will apparently become comparable

at large Re. Taking as a reference value Wm ∼ 10−2 and Tm ∼ 3×10−3 at Re = 1000,

the two scales are projected to coincide when Re ∼ 106, if the observed power-law

scalings are assumed to continue holding. Since Wm > Tm cannot be violated due

to the isoperimetric inequalities, this implies that the structures either undergo a

morphological transition or become unstable at some value of Re. This is reasonable

since high aspect-ratio current sheets are known to be unstable to the tearing instability

(at Rm ∼ 104 for 2D laminar current sheets (e.g., Uzdensky et al., 2010)), and similar

instabilities affect intermittent vorticity filaments in numerical simulations of Navier-

Stokes turbulence at high Reynolds numbers (Ishihara et al., 2009). Alternatively, it

is possible that the scaling of Tm is affected by resolution and should in fact be closer
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Figure 5.9: The probability distributions for spatial scales of current sheets, for
Re = 1000 (magenta), Re = 1800 (blue), Re = 3200 (red), and Re = 9000 (green).
Euclidean scales Le, We, and Te are shown in descending order on the left column,
and Minkowski scales Lm, Wm, and Tm are shown in descending order on the right
column.
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Figure 5.10: The probability distributions for rescaled spatial scales of current sheets,
for Re = 1000 (magenta), Re = 1800 (blue), Re = 3200 (red), and Re = 9000 (green).
Distributions for TeRe
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3/5, and WmRe
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to that of Wm.

In order to ascertain which scales are energetically most relevant, we next con-

sider the dissipation-weighted distributions E(X), defined such that E(X)dX is the

combined energy dissipation rate for structures with the measured scale between X

and X + dX. The maximum of the compensated dissipation-weighted distribution,

E(X)X, indicates the scale of the structures which give the dominant contribution

to the overall energy dissipation rate. These distributions are related to P (E) in the

sense that, if we assume that P (E) ∼ E−β and that E ∼ Xλ for arbitrary β and λ,

then energy dissipation will be distributed uniformly across all X if and only if β = 2.

This follows from the conservation of probability,

E(X)X ∼ E(X)P (X)X ∼ E(X)
dE
dX

P (E)X

∼ XλXλ−1(Xλ)−βX

∼ Xλ(2−β) . (5.1)

Hence, if power-law scaling is assumed, then a distribution of energy dissipation rates

with the critical index is equivalent to energy dissipation being distributed evenly

across structures of all scales.

We first discuss the dissipation-weighted distributions for the Euclidean scales.

E(Le)Le, E(We)We and E(Te)Te are shown in Fig. 5.11. We find that energy dis-

sipation is spread nearly uniformly amongst structures with Le and We spanning

intermediate to large scales. For We, this regime corresponds to inertial-range scales

associated with the perpendicular energy cascade; for Le, the scales are similar but

amplified by B0/brms. The energy dissipated in the large scales does not change

significantly with increasing Re, although additional small scales are accessed due to a

longer inertial range. In contrast to length and width, the energy dissipation is peaked

at very small Te, deep within the dissipation range. This small thickness accounts for

energy dissipation at the bottom of the energy cascade. Energy dissipation peaks at

smaller Te as Re is increased, consistent with a decreasing dissipation scale.

We now compare this to the dissipation-weighted distributions for the Minkowski

scales. E(Lm)Lm, E(Wm)Wm and E(Tm)Tm are shown in Fig. 5.12. As with the
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Figure 5.11: The compensated dissipation-weighted distributions E(X)X for Eu-
clidean scales X ∈ {Le,We, Te} (normalized to total energy dissipation rate Etot), for
Re = 1000 (magenta), Re = 1800 (blue), Re = 3200 (red), and Re = 9000 (green).
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Figure 5.12: The compensated dissipation-weighted distributions E(X)X for
Minkowski scales X ∈ {Lm,Wm, Tm} (normalized to total energy dissipation rate
Etot), for Re = 1000 (magenta), Re = 1800 (blue), Re = 3200 (red), and Re = 9000
(green). Comparing with the Euclidean scales in Fig. 5.11, the length and thickness
distributions agree for both methods, but the widths show qualitatively different
distributions.
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Euclidean case, energy dissipation occurs mainly in structures with Lm spread through-

out the inertial range and Tm sharply peaked at small scales. However, unlike the

Euclidean case where We takes a continuum of inertial-range values, Wm is strongly

peaked at a scale between the intertial range and dissipation range. In fact, it appears

that Wm is representative of the dissipation scale.

The pronounced qualitative difference between We and Wm suggests that the

two methods are capturing different aspects of the structure. The differences likely

stem from the fact that the Minkowski method is more sensitive to the curvature

and overall morphology of the structure than the Euclidean method. The Euclidean

width, by its simple definition, is a strong upper bound on the perpendicular scale at

broadest part of the structure. The fact that it lies in the inertial-range is strongly

indicative of the central part of the structure spanning inertial-range scales in the

perpendicular direction. There are several effects that could cause the Minkowski

method to differ from this interpretation. First, the structure may have an extended

dissipation-scale tail which is captured by Wm. Second, there may be dissipation-scale

fluctuations along structure, so that Wm represents the characteristic scale for ripples

or irregularities. Third, the structure may have several branches, each with widths

near the dissipation scale. In any case, it seems reasonable that the fine morphological

features of the structure are tied to the dissipation scale, since that is the scale at

which current density from the energy cascade accumulates.

The dissipation-weighted distributions in Fig. 5.11 and Fig. 5.12 exhibit unam-

biguous scaling behavior with Reynolds number, with the lower characteristic scales

decreasing with Re. However, it is difficult to get a definitive quantitative mea-

surement for these scalings due to the limited range in Re, uncertainty into how to

best normalize the broad distributions for proper comparison, and possible effects of

resolution on the scalings (in particular, for the thicknesses). Regardless, we estimate

these scalings in Fig. 5.13 by considering the dissipation-weighted distributions for

the scales rescaled by powers of Re. We verify the dissipation-range scalings inferred

from the unweighted distributions in Fig 5.10: Wm ∼ Re−3/4, Tm ∼ Re−3/5, and

Te ∼ Re−1/2. We also identify new scalings corresponding to the small-scale cutoff for

the inertial-range scales. We find that these cutoff scales (denoted by superscript c)
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Figure 5.13: Compensated dissipation-weighted distributions for rescaled scales. In
descending order in the left column are L′e = Le(Re/Re0)

3/5, W ′
e = We(Re/Re0)

3/5,
and T ′e = Te(Re/Re0)

1/2; in the right column are L′m = Lm(Re/Re0)
1/2, W ′

m =
Wm(Re/Re0)

3/4, and T ′m = Tm(Re/Re0)
3/5, where Re0 = 1000 is the reference

Reynolds number.
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go as Lce ∼ W c
e ∼ Re−3/5 and Lcm ∼ Re−1/2. In particular, the scalings of Wm and the

Lcm are consistent with the GS95 prediction of parallel and perpendicular dissipation

scales, l⊥,η ∼ η3/4 and l‖,η ∼ η1/2. The shallower scaling of Tm is more uncertain due

to resolution effects, and we cannot rule out a scaling closer to Re−3/4.

5.4 Scaling of population size

Finally, we remark on the scaling of the population size, i.e., the number of dissipative

current sheets per snapshot. The simplest approach is to directly count the unfiltered

number of structures in the population. However, this result strongly over-represents

the under-resolved structures near the threshold, which significantly contribute to the

population size even though they represent a negligible contribution to the energy

dissipation. For a more reasonable estimate, we count only the structures with energy

dissipation rates greater than a minimum value Ch3ηj2thr, where h3 is the lattice

volume element and C ≥ 1 is some fixed number. This criterion removes many of

the under-resolved, unphysical structures consisting of a few points near the lattice

scale. We find that this filtered number of structures, N , strongly increases with Re,

as shown in Fig. 5.14 for C = 8. This trend is similar for other values of C (including

the unfiltered case of C = 1), and also for other filtering methods, e.g., volumetric

filtering of structures or Fourier space filtering of the fields.

Potentially more meaningful than the total population size is the number of inertial-

range structures, Ninertial. To determine this quantity, we count only structures in

the flat region of the energy distributions in Fig. 5.11 and Fig. 5.12, i.e., with either

Le > Lce, Lm > Lcm, or We > W c
e , where Lce, L

c
m, and W c

e are the Reynolds-number

dependent lower cutoff for the inertial-range in E(Le)Le, E(Lm)Lm, and E(We)We,

with scalings as implied by Fig. 5.13. As shown in Fig. 5.15, we find that Ninertial ∼ Re2

for the inertial-range populations measured from all three distributions.



91

Figure 5.14: The filtered number of structures N per snapshot as a function of the
rescaled threshold for Re = 1000 (magenta), Re = 1800 (blue), Re = 3200 (red),
and Re = 9000 (green). The number of structures at any given threshold increases
strongly with Re.

Figure 5.15: Number of inertial-range structures versus Re for the given threshold
of jthr/jrms ≈ 3.75. We find that Ninertial ∼ Re2 using inertial-range populations for
three different quantities: Le (green), Lm (blue), and We (red).
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5.5 Summary of spatial analysis

The statistical analysis of dissipative current sheets drives us to conclude that as

resistivity of the system is decreased (or equivalently, Re increased), the following

scenario occurs. Energy dissipation takes place in a large number of thin, broad, and

tightly-packed current sheets spanning a wide range of scales. Since the distribution

of energy dissipation rates has a power-law distribution with index very close to, if

not exactly equal to, the critical index of −2.0, populations of weak (small) structures

and strong (large) structures both contribute equally to the overall energy dissipation.

The lengths (and Euclidean widths) of the dissipative structures occupy a continuum

of inertial-range scales spanning from the dissipation scale up to the system size.

The thicknesses (and Minkowski widths) of the structures decrease in tandem with

the dissipation scale, making room for a larger number of structures. The spatial

dissipative structures in driven MHD turbulence therefore instantaneously exhibit

features of both nanoflares and large-scale coherent structures. However, as we will

see in the following chapter, the picture changes once the temporal dynamics of

structures are considered.
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6 temporal analysis

6.1 Overview of temporal analysis

In this chapter, we perform a statistical analysis of spatiotemporal dissipative struc-

tures (i.e., flare events) in MHD turbulence, based on the procedure and methods

described in Sections 3.3, 3.4, and 3.5. We describe the probability distributions,

scalings, and evolution of dissipative processes. We compare our results to the ob-

served statistical properties of solar flares in Sec. 6.8, and summarize our conclusions

in Sec. 6.9.

6.2 Simulations for temporal analysis

We first describe the numerical simulations on which the temporal analysis is per-

formed. We consider hundreds of snapshots from four simulations, with the same

conditions as described in Section 4.1, and parameters shown in Table 6.1. Durations

(and other timescales) are measured in terms of large-scale eddy turnover times of

the turbulence, given by τeddy = L⊥/(2πvrms) ≈ 1. The analysis is performed on time

intervals of durations τtot, all of which begin after the simulations reach statistical

steady state. Case 1 is a lower-resolution (2563) run used to establish convergence of

the results with resolution. Three independent runs with resolution 5123 are chosen

to study scalings with Re, although the relatively limited range (Re = 800− 1800)

inhibits precise measurements of the scalings. Of these runs, Case 3 with Re = 1250

is the most robust data set, having the highest cadence, being nominally well-resolved

dynamically, and having the longest time interval (τtot = 15.6).

We analyze snapshots dumped at a cadence (∆t)−1, with ∆t being larger than

the internal time step in the simulation. For reference, we now estimate the minimum

cadence required to properly track structures between two adjacent snapshots. This

is estimated by requiring that the distance advected by the flow during ∆t is less

than the typical current sheet thickness. Estimating the former as vrms∆t and the

latter as brms/jthr, we require ∆t < brms/(vrmsjthr) ≈ 1/jthr. For the four cases in
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Figure 6.1: Left panel: the total energy dissipation rate in the system for the analyzed
interval of time in the four simulations. Right panel: the power spectrum of this
time series, showing a power law index near -2. The colors correspond to cases 1
(magneta), 2 (red), 3 (blue), and 4 (green) from Table 6.1.

Table 6.1, we have jrms ∈ {12.1, 11.8, 14.6, 17.4}, which gives the condition ∆t <

{1/12.1, 1/11.8, 1/14.6, 1/17.4}jrms/jthr. The cadences given in Table 6.1 fall short of

satisfying this condition for thresholds more than three or four times larger than the

rms fluctuations. However, this condition is somewhat alleviated in practice because

associations are made for states that do not fully overlap (since displacements of one

lattice spacing satisfy spatial connectivity) and the condition is applied to all of the

points in the (generally large) structure. Most of the results show robust convergence

with, or only weak sensitivity to, cadence.

Table 6.1: Numerical simulations for temporal analysis

Case Resolution Re ∆t τtot
1 2563 800 1/64 10.0
2 5123 800 1/32 12.2
3 5123 1250 1/64 15.6
4 5123 1800 1/32 12.2
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Figure 6.2: The fractions of total energy dissipation (left) and volume (right) in
structures with |j| > jthr. The curves correspond to cases 1 (magenta), 2 (red), 3
(blue), and 4 (green) from Table 6.1. Cases 2 and 3 are most consistent with the
result from fully-resolved simulations used in the spatial analysis (see Fig. 4.2).

6.3 Global results

We first describe the global features of energy dissipation in the simulations. In the

first panel of Fig. 6.1, we show the total ohmic energy dissipation rate in the system,

Etot(t), during the given time intervals for all of the simulations in Table 6.1. If we

associate the dissipated energy with prompt optically-thin emission, i.e., if we assume

that all dissipated energy is converted immediately into radiation in an optically-thin

environment, then this represents a light curve for the system. The mean of Etot(t) is

very close to 1.0, in agreement with the energy input from the large-scale forcing. The

rms fluctuation about this mean is approximately 0.15 for all cases. In the second

panel of Fig. 6.1, we show the power spectra of Etot(t), which exhibits a power law

with index close to −2.0 for all cases.

For reference, we show cumulative distributions of the energy dissipation and

volume conditioned on the threshold, as described in Sec. 4.2 for the spatial analysis.

The fraction of total energy dissipation occurring in structures with |j| > jthr, i.e.,

Ecum(jthr/jrms)/Etot, is shown in Fig. 6.2. We find that this function has a wide tail

characteristic of intermittency, declining exponentially at large jthr. We also show

the fraction of total volume occupied by the same structures, in the second panel
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Figure 6.3: An example of a typical process with duration τ ≈ 0.5, shown in green
on the simulation lattice. A schematic diagram of the process is also shown, with the
snapshot times marked by a red line.

of Fig. 6.2. The fraction of energy dissipation always greatly exceeds the occupied

volume, with, for example, about 30% of the energy dissipation occurring in 1% of the

volume at jthr/jrms ≈ 3. As discussed in Sec. 4.2, the fractions of energy dissipation

and occupied volume may both be universal for sufficiently well-resolved, high-Re

simulations. Cases 2 and 3 closely match these previous results. Since significant

deviations occur at large jthr/jrms for the other cases, they may not be completely

well-resolved.

Before proceeding to the quantitative analysis of processes in the simulations, we

show an example of a relatively simple process in Fig. 6.3. This process has a duration

τ ≈ 0.5 with 31 distinct paths. Snapshots of a few representative states (in green) are

shown on a subdomain of the simulation lattice (with size 0.10× 0.14× 0.90). These

images do not account for the elongation of the lattice along the (vertical) guide field,

which would emphasize the ribbon-like character of the structures. The broadest part

of the structure is shown from the given perspective. In addition to these snapshots,

we also show the schematic diagram of the process (as established in Sec. 3.3), with
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the snapshot times marked in red. It is evident that this process is highlighted by

a major division which occurs after the structure is stretched. A disproportionally

large number of paths in this case are produced at the final stages of the process, as

it decays toward the threshold.

6.4 Aggregate quantities

We now consider some aggregate quantities for the sample of processes in our simu-

lations. Note that occurrence rates are generally not a very robust statistic, since

they can be strongly affected by structures near the threshold, which in turn are

strongly affected by resolution and cadence. A more robust analysis would filter out

the small-scale and under-resolved structures to circumvent these numerical issues.

We use no filtering in the present analysis, both for simplicity and because we are

only interested in broad trends.

Table 6.2: Aggregate quantities in all cases (jthr/jrms ≈ 6.8, ∆t = 1/32)

Quantity 2563, Re = 800 5123, Re = 800 5123, Re = 1250 5123, Re = 1800
〈Nstate〉 194 288 657 1328
Nproc 914 1271 4272 11608

Nproc/Npath 0.218 0.240 0.278 0.339
Nint/Nisol 0.278 0.329 0.187 0.115
Nmer/Ndiv 0.839 0.776 0.800 0.823
Nform/Ndes 0.871 0.853 0.886 0.911
Nn-vert/N3-vert 0.341 0.353 0.485 0.523

Some general results are shown in Table 6.2 for all of the simulations with

fixed threshold jthr/jrms ≈ 6.8 and cadence ∆t−1 = 32. Here, Nproc is the number

of processes, Npath is the number of paths, Nint is the number of processes with

interactions (i.e., processes consisting of more than one path), Nisol is the number

of isolated structures (i.e., processes consisting of one path), Nmer is the number of

merger events (where a vertex with n ingoing paths counts as n− 1 mergers), Ndiv is

the number of division events (where a vertex with n outgoing paths counts as n− 1

divisions), Nform is the number of formation events (i.e., the number of paths with no
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predecessors), Ndes is the number of destruction events (i.e., the number of paths with

no successors), N3-vert is the number of three-point vertices, and Nn-vert is the number

of n-point vertices with n > 3. All of these preceding quantities are normalized to

the number per eddy turnover time. We also show the mean number of states per

snapshot, 〈Nstate〉. Table 6.2 mainly shows the ratios of these various quantites; see

the much more detailed Table A.1 in the Appendix for actual occurrence rates.

We now make several remarks about Table 6.2. First, 〈Nstate〉 and Nproc in Case

1 are smaller than the corresponding values for the higher-resolution Case 2, with

a discrepancy of about 30%. In fact, there is a similar discrepancy in the number

of occurrences for all measured quantities (see Table A.1 in Appendix). This can

be attributed to the fact that Case 1 is somewhat under-resolved and therefore

misses some of the small-scale dynamics present in Case 2. Second, 〈Nstate〉 and

Nproc both strongly increase with Re, obeying estimated scalings of 〈Nstate〉 ∼ Re1.9

and Nproc ∼ Re2.7. Third, three-point vertices are more common than higher-order

vertices, although the higher-order vertices still occur in significant numbers. Higher-

order vertices appear to be an unavoidable consequence of time discretization. Indeed,

the ratio Nn-vert/N3-vert increases with Re, implying that interactions occur over

smaller timescales for higher Re. Fourth, although there are fewer processes with

interactions than processes with no interactions, they contain the majority of the

paths (i.e., Nproc/Npath < 1/2). Fifth, divisions are somewhat more common than

mergers, implying a time asymmetry in the interactions. Equivalently, there are more

destructions than formations. This asymmetry is reasonable since the time-reversal

symmetry of the ideal MHD equations is broken by resistive and viscous dissipation.

The preference for divisions over mergers may be a manifestation of the direct cascade

of energy from large scales to small scales.

We next consider the effect of cadence, ∆t−1, on the above quantities. We

show the various quantities from Case 3 for 1/64 ≤ ∆t ≤ 1/4 in Table 6.3. Most

quantities monotonically increase when the cadence is increased, or equivalently, ∆t

is decreased (see Table A.2 and Table A.3 in the Appendix). However, Nproc first

increases then decreases with cadence, showing a local maximum near ∆t ≈ 1/16.

This unintuitive result may be explained as follows. Although the number of paths
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always increases with cadence, the connectivity of paths changes. For low cadence,

paths tend to be isolated structures. This may be a sign that the cadence is insufficient

to properly track structures - in particular, in the limit of very large ∆t, snapshots

become completely uncorrelated, so most processes appear as single states, therefore

Nproc ∼ (τtot/∆t)〈Nstate〉. For intermediate cadence (i.e., once structures are properly

tracked), the paths interact more often when cadence increases, eventually decreasing

Nproc due to the combining of isolated structures. The transition between these two

regimes can be expected when Nproc/Npath ≈ 1/2, which is close to the local peak in

Nproc near ∆t ≈ 1/16 for this case. For very high cadence, Nproc either saturates or

increases once again. The latter scenario may occur if additional isolated structures

appear at the shortest time-scales, or if the processes are fractal. This trend is

observed for Case 1 (see Table A.2 in the Appendix).

Table 6.3: Variation of aggregate quantities with cadence (Case 3: 5123, Re =
1250, jthr/jrms ≈ 6.8)

Quantity ∆t = 1/64 ∆t = 1/32 ∆t = 1/16 ∆t = 1/8 ∆t = 1/4
Nproc 3311 4272 4908 3704 2197

Nproc/Npath 0.120 0.278 0.562 0.780 0.895
Nint/Nisol 0.429 0.176 0.067 0.030 0.016
Nmer/Ndiv 0.845 0.799 0.797 0.771 0.778
Nform/Ndes 0.831 0.886 0.953 0.978 0.992
Nn-vert/N3-vert 0.367 0.485 0.607 0.697 0.772

Finally, we consider the effect of the threshold, jthr, on the above quantities. We

show the various quantities from Case 3 for 5.5 ≤ jthr/jrms ≤ 9.6 in Table 6.4. For

these relatively high thresholds, the occurrence rates for all quantities increase as jthr

decreases, due to the larger sample size of paths (see Table A.4 in the Appendix). In

particular, we estimate that 〈Nstate〉 ∼ j−3.5thr and Npath ∼ j−3.1thr , although these must

deviate from a power law as jthr → jrms. In contrast, the ratios of the occurrence rates

change relatively little. The asymmetry of interactions decreases and the relative

proportion of isolated structures increases as jthr decreases, likely due to a larger

sample of small structures near the threshold.
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The onset of percolation occurs near jthr/jrms ≈ 6.8 for structures through space

(in the periodic domain along the guide field, when max {L} → L‖/(2π)), and near

jthr/jrms ≈ 5.5 for processes through the given time interval (when max {τ} → τtot).

We call this latter quantity the percolation threshold, which, in the limit τtot →∞, is a

fundamental characteristic current density of the system. For jthr below the percolation

threshold, the initial processes and final processes (defined in Sec. 3.4) contain a large

fraction of the dissipated energy, as can be seen in Table 6.4 from Einterior/Eall, which

is the ratio of energy dissipated by interior processes (i.e., processes that contain no

states from the initial or final snapshots), Einterior, to energy dissipated by all processes

(including initial and final processes), Eall. This ratio is large (i.e., Einterior/Eall > 0.7)

until the percolation threshold is approached near jthr/jrms ≈ 5.5, where the ratio

quickly becomes small (Einterior/Eall ∼ 0.29). The percolation threshold sets a practical

limit on the smallest threshold for a reliable temporal analysis, since percolation

otherwise interferes with the statistics of structures at the largest scales.

Table 6.4: Variation of aggregate quantities with threshold (Case 3: 5123, Re = 1250,
∆t = 1/64)

Quantity jthr/jrms ≈ 9.6 jthr/jrms ≈ 8.2 jthr/jrms ≈ 6.8 jthr/jrms ≈ 5.5
〈Nstate〉 190 343 657 1287
Nproc 1105 1777 3311 6314

Nproc/Npath 0.139 0.125 0.120 0.116
Nint/Nisol 0.491 0.481 0.429 0.383
Nmer/Ndiv 0.825 0.832 0.845 0.863
Nform/Ndes 0.820 0.820 0.831 0.869
Nn-vert/N3-vert 0.313 0.331 0.367 0.400
Einterior/Eall 0.88 0.86 0.70 0.29

max {L} 2.6 3.3 6.0 6.0
max {W} 0.32 0.33 0.44 0.55
max {τ} 3.3 3.9 8.5 13.8
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6.5 Probability distributions and scaling

relations

We now describe the probability distributions for the process characteristics, defined

in Sec. 3.5. For clarity, we focus on Cases 2-4, which have resolution 5123 and varying

Re. We choose a relatively high threshold of jthr/jrms ≈ 6.8, which is well above

the percolation threshold. We retain initial and final processes for better statistics.

The distributions are converged with respect to cadence and resolution (based on a

comparison between Case 1 and Case 2 in Table 6.1), although it is possible that

they have not fully converged with Re.

We begin with the distribution for dissipated energy, P (E), shown in the first

panel of Fig. 6.4. We find that P (E) has a power law tail with index near −1.75± 0.1.

The power law region extends across approximately three orders of magnitude in E,

from E ≈ 10−5 up to about E ≈ 10−2. For smaller E, the distribution is shallower

and appears to be non-universal, likely due to a combination of dissipation-range

effects and threshold effects. With increasing Re, the power law extends to smaller

E, consistent with a longer inertial range. If we instead consider the distribution for

dissipated energy in isolated structures or in paths alone, then there is no clear power

law.

The distribution for the peak energy dissipation rate, P (Emax), is shown in the

second panel of Fig. 6.4. We find that P (Emax) has a power law with index close

to −2.0 ± 0.1 in the range Emax ≈ 10−4 to Emax ≈ 10−2. Incidentally, this index is

also observed in the distribution for energy dissipation rates, P (E), obtained from the

analysis of spatial structures, i.e. states, shown in the third panel of Fig. 6.4. The

power law index of −2.0 for P (E) is in agreement with the results from the spatial

analysis (shown in Fig. 5.8). As will be shown analytically in Sec. 6.7, if one assumes

that all processes are single paths that evolve with identical, self-similar functional

forms, then the indices for P (Emax) and P (E) must be equal.

The distribution for process duration τ is shown in the first panel of Fig. 6.5.

The durations extend to well above an eddy turnover time, sometimes comparable

to τtot. The distribution from τ ≈ 0.2 to τ ≈ 8 can be fit by a power law with
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Figure 6.4: The distributions for dissipated energy E, peak energy dissipation rate
Emax, and energy dissipation rate (of states) E . These have power laws with index
close to −1.75 for P (E) and −2.0 for P (Emax) and P (E). The curves correspond to
Re = 800 (red), Re = 1250 (blue), and Re = 1800 (green).
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Figure 6.5: The distributions for duration τ , maximum length Lmax, and maximum
width Wmax, all showing power laws with index near −3.2. The curves correspond to
Re = 800 (red), Re = 1250 (blue), and Re = 1800 (green).

index near −3.2 ± 0.2. Likewise, the distributions for maximum length Lmax and

maximum width Wmax have power laws with indices near −3.2, also shown in Fig. 6.5.

The distributions for all of these geometric quantities are related due to the strong

correlations, described later in this section.

We now remark on the distribution for maximum thickness. As shown in the

first panel of Fig. 6.6, P (Tmax) peaks at the lattice scale, h = 1/512 ≈ 0.002 (in

units of system size, L⊥). This is mainly due to the large population of under-

resolved structures near the threshold. It is therefore more transparent to consider

the dissipation-weighted distribution, i.e., the distribution weighted by the dissipated
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Figure 6.6: Left panel: the distribution for maximum thickness Tmax, which peaks at
the lattice scale, h ≈ 0.02. Right panel: the same distribution weighted by dissipated
energy and compensated by Tmax, showing that energy dissipation is dominated by
processes with thicknesses a few times larger than the lattice scale. The curves
correspond to Re = 800 (red), Re = 1250 (blue), and Re = 1800 (green).

energy of the processes, which we denote Etot(Tmax). As shown in Fig 6.6, the

compensated dissipation-weighted distribution Etot(Tmax)Tmax is strongly peaked at

Tmax a few times larger than the grid scale by (peaking at 2 to 3 times h, depending

on Re). In agreement with the analysis in Chapter 5, the thickness shows a very

small spread of values.

Finally, we consider the distribution for the number of paths per process, Npath,

which is shown in Fig. 6.7. We find that P (Npath) shows a robust power law with

index near −2.0±0.2. The most complex processes have ∼ 103 paths. It is remarkable

that P (Npath) shows such a robust power law across nearly the entire range of values

(roughly 1 < Npath < 4× 103), since, a priori, it is not clear that the number of paths

is a robust physical quantity.

All of the distributions described above are insensitive to the threshold for large

enough thresholds. As an example, we show P (E) and P (τ) for 4.1 ≤ jthr/jrms ≤ 9.6

in Fig. 6.8. The distributions are similar in all cases with thresholds above the

percolation threshold jthr/jrms ≈ 5.5. Deviations in the tails of both distributions

are discernable when jthr/jrms = 5.5 and are more evident when jthr/jrms = 4.1, well

below the percolation threshold. The percolation of processes steepens the tails of
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Figure 6.7: The probability distribution for the number of paths per process, which
is well fit by a power law with index −2.0. The most complex processes contain
thousands of paths. The curves correspond to Re = 800 (red), Re = 1250 (blue), and
Re = 1800 (green).

Figure 6.8: The probability distributions P (E) (left) and P (τ) (right) at various
jthr/jrms. The distributions are affected by percolation through the time interval
for thresholds below jthr/jrms = 5.5 (green), visible in the curve for jthr/jrms = 4.1
(magenta).
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the distributions, consistent with undercounting the large-scale processes.

We now describe the scaling relations between the various process characteristics.

We show scatter plots of the different quantities versus process duration τ in Fig. 6.9.

For clarity, these are only shown for Case 3, with similar scalings for all other cases.

We find that Lmax ≈ 6Wmax ≈ 0.6τ , Emax ∼ Vmax ∼ τ 2, and E ≈ (3×10−4)τ 3. We find

that Tmax exhibits no evident correlation with τ or other quantities. Therefore, to a

good approximation, the thickness is constant. These scalings are then consistent with

the simple geometric estimates, Vmax ∼ LmaxWmaxTmax ∼ τ 2, Emax ∼ Vmaxηj
2
thr ∼ τ 2,

and E =
∫
dt
∫
dV ηj2 ≈ τVmaxηj

2
thr ∼ τ 3 based on the other correlations, assuming

that the thickness and typical current densities are constant.

A constraint between the indices of the distributions can be derived analytically if

all processes are assumed to be single paths evolving with identical, rescaled functional

forms. In this case, E ∼ Emaxτ is an exact relation; this is described later in Sec. 6.7

for a derivation of this result. In addition, the distributions and scaling relations

can be checked for self-consistency by using the conservation of probability. For

example, one may suppose that P (Emax) ∼ E−2max, which implies that the distribution

for peak energy dissipation rates is not dominated by weak or strong events. Then

the measured scaling relations, Emax ∼ τ 2 and E ∼ τ 3 ∼ E3/2max, fix the indices of

the other distributions. In this case, P (E) = P (Emax) dEmax/dE ∼ E−5/3, which is

relatively close to our measured index near −1.75. The scalings then also imply

that P (τ) ∼ τ−3, consistent with our measured index of −3.2. In general, it is clear

that P (E) should be somewhat shallower than P (Emax) due to integration across the

duration, which increases with Emax.

6.6 Process evolution

We now present results on the temporal evolution of individual processes. The

following information is based on the time-series of instantaneous characteristics for

each process, obtained from the constituent states at each snapshot. In general, the

evolution of a given process is irregular and chaotic - in particular, long-lived processes

are marked by frequent interactions and various phases of growth and decline. For
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Figure 6.9: Scatter plots of maximum length Lmax, maximum width Wmax, peak
energy dissipation rate Emax, peak volume Vmax (relative to the system volume), and
dissipated energy E versus the process duration τ .
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Figure 6.10: The evolution of several characteristics for the two longest processes
for the Re = 1250 case. The curves correspond to energy dissipation rate E (black),
volume V (blue), length L (red), width W (green), and thickness T (magenta).
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Figure 6.11: Energy dissipation rate versus time, averaged for all processes of given
durations (left) and all processes in given intervals of durations (right). Also shown
in black is the fit by a sine function.

example, the evolution of several characteristics for the two longest processes in Case

3 (at jthr/jrms = 6.8), which have durations of τ ≈ 7.1 and 5.7, are shown in Fig. 6.10.

These processes begin by rapid growth, followed by a relatively steady phase that

is randomly kicked via interactions, and end by rapid decay toward the threshold.

We investigate the evolution of a typical process by averaging over all processes of a

given duration.

To be concrete, we focus on the evolution of energy dissipation rate, E(t) for

0 < t < τ . Shown in the left panel of Fig. 6.11 is the averaged energy dissipation

rate normalized to peak energy dissipation rate, E(t/τ)/Emax, versus time normalized

to duration, t/τ , for processes of durations τ ∈ {0.125, 0.25, 0.5, 0.75} in Case 3.

The evolution is well approximated by a single sine mode, E(t/τ)/Emax ≈ sin (πt/τ),

independent of τ . Since the long-lived processes have a similar evolution as short-lived

processes (with time normalized to duration and energy dissipation rate normalized

to the corresponding peak value), it is reasonable to average the statistics over

structures with varying τ . This type of average is shown in the right panel of Fig. 6.11

for all processes with τ in the intervals {(0.25, 0.5), (0.5, 1), (1, 2)}. The averaged

E(t/τ)/Emax continues to follow the same form up to τ ≈ 2, above which the statistical

sample becomes limited.
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Figure 6.12: Left panel: the evolution of energy dissipation rate 〈E(t/τ)/Emax〉 versus
time t/τ , with the average performed across processes of all durations. The fit by
sin (πt/τ) (shown in black) works very well. The colors correspond to Re = 800
(red), Re = 1250 (blue), and Re = 1800 (green). Right panel: the power spectrum of
〈E(t/τ)/Emax〉 for the Re = 1250 case, showing a very steep descent as a power law
with index near −5.0 at low ω.

We next perform an average over processes of all durations to obtain 〈E(t/τ)/Emax〉,
shown for Cases 2-4 in Fig. 6.12. It is clear that 〈E(t/τ)/Emax〉 ≈ sin (πt/τ) holds to

a very good approximation. For a more quantitative analysis, we show the power

spectrum of 〈E(t/τ)/Emax〉 for Case 3 in the right panel of Fig. 6.12, which has a

very steep decline in power going approximately as ω−5 at low ω, confirming that the

ω = 1 mode strongly dominates. The geometric characteristics V , L, W , and T show

a similar temporal evolution as E , consistent with the strong correlations.

Next we consider the temporal evolution of the instantaneous number of states

involved in the process, Nstates(t/τ). This is shown for Case 3 in Fig. 6.13, with averages

performed across durations in the four intervals {(0, 0.5), (0.5, 1), (1, 1.5), (1.5, 2)}
(left panel) and across all durations (right panel). The functional form of Nstates(t)

exhibits clear qualitative differences from E(t) and the geometric characteristics. The

average across all durations can be approximated as a triangle function, i.e., linearly

increasing in time and then linearly decreasing in time.

Although E(t) and Nstates(t) are symmetric to a good approximation, a small

asymmetric component can be discerned from Figs. 6.12 and 6.13. This asymmetry
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Figure 6.13: The instantaneous number of states in the process, Nstates(t/τ), across
the duration of the process, averaged for processes with durations in given intervals
(left) and for processes with all durations (right).

Figure 6.14: Left panel: the symmetric part of 〈E(t/τ)/Emax〉, averaged across
processes with τ < 1. The fit by sin (πt/τ) (shown in black) and 1−[(t−0.5τ)/(0.5τ)]1.8

(shown in red) both work very well. Right panel: the corresponding antisymmetric
part, fit by 0.036 sin (2πt/τ) (shown in black).
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can be seen more clearly by decomposing the curve into symmetric and anti-symmetric

parts,

fsym(t) =
f(t) + f(τ − t)

2

fasym(t) =
f(t)− f(τ − t)

2
, (6.1)

where f(t) is the given function on 0 < t < τ . Taking f(t) = 〈E(t/τ)/Emax〉, we

show the symmetric and anti-symmetric parts in Fig. 6.14. As noted before, the

symmetric part is well fit by sin (πt/τ). We also find that it can be equally well fit

by 1− [(t− 0.5τ)/(0.5τ)]1.8, which is nearly indistinguishable from the sine peak. We

find that the anti-symmetric part of 〈E(t/τ)/Emax〉 can be very well fit by sin (2πt/τ),

with an amplitude of 0.036. To investigate the asymmetry more precisely, we consider

the first moments of the evolution curves,

〈t/τ〉f =

∫ τ
0

(t/τ)f(t)dt∫ τ
0
f(t)dt

, (6.2)

where deviation from 0.5 is indicative of temporal asymmetry. We show 〈t/τ〉E and

〈t/τ〉Nstates for τ < 1 in Fig. 6.15. We find that 〈t/τ〉E is very close to but slightly

below 0.5, while 〈t/τ〉Nstates is very close to but slightly above 0.5. At small τ , the

displacement from 0.5 initially grows with increasing τ , but then asymptotes and

becomes dominated by scatter at large τ . Upon averaging over all durations, we find

that for Re = {800, 1250, 1800}, 〈t/τ〉E = {0.483, 0.483, 0.476} while 〈t/τ〉Nstates =

{0.517, 0.517, 0.522}. Incidentally, the degree of asymmetry is comparable for both

types of measurements, although in opposite directions.

6.7 Constraints between indices of distributions

Throughout our statistical analysis, we have considered several different measurements

for the energetics: E (for spatial structures), Emax, and E. One may wonder whether

these quantities are actually independent. In fact, some constraints between these
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Figure 6.15: The first moment, 〈t/τ〉, of the evolution of energy dissipation rate
E(t/τ)/Emax (left) and number of states Nstates(t/τ) (right), versus process duration
τ for Re = 800 (red), Re = 1250 (blue), and Re = 1800 (green). The curves are
smoothed for clarity.

quantities can be made under simple assumptions. If we suppose that all processes

are single paths that evolve with identical (but rescaled) functional forms for the

energy dissipation rate, which is consistent with the numerical results, then we can

derive several constraints between the indices of the distributions given in Sec. 6.5.

Specifically, for simplicity, assume that all processes of duration τ consist of a

single path with the energy dissipation rate Eτ (t) = Emax(τ)f(t/τ) for 0 < t < τ ,

where the universal shape function f(x) satisfies f(0) = f(1) = 0, 0 ≤ f(x) ≤ 1 and

sup {f(x)} = 1 for 0 < x < 1. If we assume power-law distributions for all quantities,

then they are given by

P (E) ∼ E−α

P (E) ∼ E−β

P (Emax) ∼ E−βmax

P (τ) ∼ τ−γ , (6.3)
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with the constraint

(β − 1)(γ − α) = (γ − 1)(α− 1) . (6.4)

The corresponding scaling relations are given by

E ∼ τ (γ−1)/(α−1)

Emax ∼ τ (γ−α)/(α−1) . (6.5)

Normalizable distributions require γ > α. For the measured value of β = 2, γ =

1/(2− α) is required, so that 1 < α < 2. In particular, an example set of parameters

satisfying this constraint are β = 2, γ = 3, and α = 5/3, along with scalings E ∼ τ 3

and Emax ∼ τ 2, all of which are consistent with the numerical results.

The derivation is as follows. We first relate the distribution of instantaneous

energy dissipation rates, P (E), measured from states at random, to the distribution of

peak energy dissipation rates, P (Emax), measured from processes. Assuming that one

samples a random value E from Eτ (t) = Emax(τ)f(t/τ) with uniform time sampling,

so P (t) = 1/τ , we obtain the distribution of energy dissipation rates from a process

of duration τ ,

P (E|τ) =

∣∣∣∣ dtdE
∣∣∣∣P (t) =

1

Emax(τ)

n∑
i=1

∣∣∣∣ dx

df(x)

∣∣∣∣
x=xi

≡ 1

Emax(τ)
g

(
Emax(τ)

E

)
, (6.6)

where xi (i = 1, . . . , n) are the n roots of f(xi)− E/Emax(τ), and we have defined the

function g(y). The total distribution of energy dissipation rates is then

P (E) =

∫ ∞
τmin

dτP (τ)P (E|τ)

=

∫ ∞
τmin

dτP (τ)
1

Emax(τ)
g

(
Emax(τ)

E

)
=

∫ ∞
E

dEmax
P (Emax)

Emax

g

(
Emax

E

)
, (6.7)
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where τmin is defined such that Emax(τmin) = E . The lower bound of the integral is

required since processes with durations τ < τmin do not reach high enough energy

dissipation rates to contribute to the distribution. Now assume that P (Emax) ∼ E−βmax.

Then Eq. 6.7 becomes

P (E) ∼
∫ ∞
E

dEmaxE−β−1max g

(
Emax

E

)
∼ E−β

∫ ∞
1

dyy−β−1g(y)

∼ E−β, (6.8)

where y = Emax/E . Therefore, assuming the integral in Eq. 6.8 converges, P (E) has

the same index as P (Emax). More broadly, the same argument shows that the index

of the distribution for maximum spatial scales in processes must equal the index of

the distribution for instantaneous spatial scales in structures. To relate this to other

indices, note that the dissipated energy E(τ) per process is given by

E(τ) =

∫ τ

0

dtEτ (t) = Emax(τ)τ

∫ 1

0

dxf (x) ∼ Emax(τ)τ , (6.9)

where x = t/τ , and the integral
∫ 1

0
dxf (x) evaluates to a constant of order unity;

hence, E ∼ Emaxτ is exactly satisfied. Assuming P (τ) ∼ τ−γ and P (E) ∼ E−α, we

can find the exponent λ for E ∼ τλ,

dE

dτ
=
P (τ)

P (E)
=⇒ τλ−1 =

τ−γ

τ−λα
=⇒ λ =

γ − 1

α− 1
. (6.10)

Hence, Emax ∼ E/τ ∼ τ−1+(γ−1)/(α−1) ∼ τ (γ−α)/(α−1) and

P (Emax) ∼
dτ

dEmax

P (τ) ∼ τ 1−(γ−α)/(α−1)−γ ∼ E−1−(γ−1)(α−1)/(γ−α)max . (6.11)

Therefore we have β = 1 + (γ − 1)(α− 1)/(γ − α), as required.
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6.8 Comparison to solar flare observations

In this section, we compare our statistical results for dissipative processes in MHD

turbulence with the statistical properties of solar flares, taken from a number of

observational studies. This comparison is not intended to draw any direct conclusions

about solar flares, since our simulations are physically inadequate for describing the

overall dynamics of the solar corona, although they may describe the turbulence that

develops at small scales. Instead, the present comparison is motivated by the fact that

solar flares are the best-observed natural example of intermittent energy dissipation

in large-scale magnetized plasmas. For a more direct comparison, simulations of

line-tied MHD (Galsgaard and Nordlund, 1997; Ng and Bhattacharjee, 1998; Ng et al.,

2012; Wan et al., 2014) or other numerical models of the corona (Bingert and Peter,

2011, 2013) may be investigated.

The properties of solar flares are obtained from observations of extreme UV

(EUV), soft X-ray, and hard X-ray emissions by applying a methodology similar to

the one used here. However, there are several important, unavoidable methodological

differences that may affect the comparison. First, the emission may not be in direct

association with the dissipation, making it nontrivial to infer the dissipation from the

spectral amplitude. Indeed, although hard X-rays are thought to be promptly powered

by dissipative magnetic reconnection events, soft X-rays and EUV can originate from

aftereffects including chromospheric evaporation and cooling. Second, images of

solar flares are projected onto a 2D plane, reducing the available information. In

addition, there are several physical differences between driven, incompressible MHD

turbulence and the solar corona. In contrast to volumetrically-driven turbulence in

a periodic box, flares in the solar corona are generally modeled by force-free MHD

with slowly-driven, line-tied boundary conditions. Additional plasma physics arising

from kinetic and two-fluid effects may be important during magnetic reconnection.

Following the reconnection event, other physical processes including chromospheric

evaporation, radiative cooling, and thermal conduction may affect the decay of the

solar flare. Nevertheless, we proceed with the comparison.

In order to make a tangible comparison, we focus on a handful of studies which
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are methodologically most similar to our present work. These are the papers by

Uritsky et al. (2007) (U07), Uritsky et al. (2013) (U13), and Aschwanden et al. (2014)

(A14). These studies take extreme UV images of the corona and magnetograms of the

photosphere to identify 3D spatiotemporal dissipative processes. The range of indices

for the distributions and scalings from these studies, along with our results, are shown

in Table 6.5. The statistics for dissipated energy and length agree favorably with our

results, whereas they appear to differ for durations. The sub-diffusive growth of solar

flares (Aschwanden, 2012a; Aschwanden et al., 2013), which has been modeled in the

framework of self-organized criticality (Aschwanden, 2012b), also appears to be at

odds with the evolution of processes measured in our work.

Table 6.5: Comparison of distributions and scalings with solar flare statistics

Quantity MHD turbulence U07 U13 A14
Index for P (E) 1.75 1.6− 1.7 1.5 1.8− 2.2

Index for P (Emax) 2.0 − − 2.1− 2.5
Index for P (L) 3.2 − 2.5− 2.9 3.5− 4.1
Index for P (τ) 3.2 1.9− 2.1 2.0− 2.2 2.2− 2.6

logE/ logL 3.0 3.0− 3.6 3.0− 3.1 2.5− 2.6
log τ/ logL 1.0 1.8− 2.3 1.2− 1.4 −

Comparing to more general studies of solar flares, our distribution for dissipated

energy, with index near −1.75± 0.1, is close to the analogous measurements for total

energy released in solar flares identified from hard X-rays, generally having an index

quoted to be between −1.7 and −1.8 (e.g., Aschwanden et al., 2000; Bromund et al.,

1995; Christe et al., 2008). Similarly, our distribution for peak energy dissipation

rate Emax with index −2.0 ± 0.1 is close to observations of peak hard X-ray flux

(e.g., Bromund et al., 1995) and soft X-ray flux (e.g., Aschwanden and Freeland,

2012). Our distribution for duration with index near −3.2± 0.2 is somewhat steeper

than the indices ranging between −2.2 and −3.0 for solar flare durations (Crosby

et al., 1993; Bromund et al., 1995; Veronig et al., 2002), although it is closer to the

index for rise times, given as −3.4 in Christe et al. (2008) and −3.2 (during solar

maximum; shallower otherwise) in Aschwanden and Freeland (2012). One final point
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of comparison is the asymmetry of processes, recalling that in our case, a process tends

to dissipate slightly more energy at early times than late times. This is qualitatively

in agreement with observations of solar and stellar flares, although the asymmetry

appears to be much more pronounced in flares. The asymmetry can be defined

from the rise time trise and decay time tdecay as Aev = (tdecay − trise)/(tdecay + trise);

this is found to be 0.2 for X-ray flares, giving a peak at approximately 40% of the

flare duration (Christe et al., 2008). In contrast, the asymmetry of processes in our

simulations, based on this definition, is 0.034.

In summary, the energetic and geometric statistical properties of dissipative events

in MHD turbulence are consistent with solar flare observations, whereas the durations

and temporal asymmetries present a noticeable discrepancy. The differences may be

due to the Neupert effect, in which the chromospheric evaporation prolongs the decay

of a flare observed in soft X-rays relative to hard X-rays (Neupert, 1968; Dennis and

Zarro, 1993). This would explain why the distribution of process durations in our

present work matches the distribution of solar flare rise times better than their total

durations.

The nontrivial similarities in the statistical properties between dissipative events

in MHD turbulence and in the solar corona leaves open the possibility that MHD

turbulence plays a governing role in the intermittency of the coronal energetics.

This possibility has been advocated in numerous past studies (e.g., Georgoulis, 2005;

Uritsky et al., 2007, 2013) as an alternative to self-organized criticality. A more

careful three-way comparison of the temporal statistics of dissipative events in MHD

turbulence, self-organized criticality, and observations of the solar corona is left for

future consideration.

6.9 Summary of temporal analysis

In this chapter, we demonstrated that the statistical analysis of spatiotemporal

dissipative structures, i.e., time-evolving current sheets/dissipative processes/flare

events, can lead to concrete physical insights about intermittency. We found the

following basic conclusions to hold in numerical simulations of MHD turbulence. The



119

resistive energy dissipation occurs in current sheets that participate in intense, complex,

long-lived processes with durations that may span several large eddy turnover times.

These processes are analogous to flares in the solar corona and other astrophysical

systems. The durations of these processes are directly proportional to their maximum

lengths, providing a strong link between the spatial and temporal behavior. The

energy dissipated in these intense processes is distributed as a power law with index

near −1.75, implying the dominance of large, intense flares. Incidentally, this index

is consistent with observed energy distributions of solar flares. Processes are weakly

asymmetric in time, dividing more often than merging, and dissipating slightly more

energy at early times in their evolution than at later times. The averaged temporal

evolution for the energy dissipation rate (and geometric properties) of the processes

exhibits a nearly time-symmetric, sine-like form that is applicable to processes of all

durations that were robustly sampled.
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7 conclusion

7.1 Summary of results

In this thesis, we investigated the intermittency of energy dissipation in MHD

turbulence by considering the statistical properties of dissipative current sheets in

both space and time. We developed a methodology for identifying and tracking

these structures, and developed methods for characterizing their spatial and temporal

characteristics. We then applied these methods to a series of numerical simulations

of driven MHD turbulence (in the strong guide field limit) to perform a statistical

analysis on the given population of structures and the corresponding spatiotemporal

processes.

A summary of the results is as follows. One must make the distinction between the

statistics for structures at any given time (the spatial analysis) and for spatiotemporal

structures (the temporal analysis). From the spatial analysis, we find that the energy

dissipation takes place mainly in current sheets with (Euclidean) lengths L and widths

W distributed in the inertial range, related by L ∼ W . Along with energy dissipation

rates E , these have the following power-law distributions:

P (E) ∼ E−β

P (L) ∼ L−γ

P (W ) ∼ W−γ , (7.1)

where γ ≈ 3.3 and β ≈ 2.0. Notably, the measured scaling for P (E) implies a critical

case in which the energy dissipation rate is evenly partitioned between both weak

(small) and strong (large) structures. The thicknesses T , on the other hand, are

localized in the dissipation range and do not exhibit any robust scaling.

From the temporal analysis, we find that dissipative processes have maximum

lengths Lmax, maximum widths Wmax, and durations τ distributed in the inertial

range, related by Lmax ∼ Wmax ∼ τ . Along with the peak energy dissipation rates
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Emax and dissipated energies E, these have power-law distributions consistent with

P (Lmax) ∼ L−γmax

P (Wmax) ∼ W−γ
max

P (τ) ∼ τ−γ

P (Emax) ∼ E−βmax

P (E) ∼ E−α , (7.2)

with γ, β in agreement with the above given values, and α ≈ 1.75, implying that

the strongest (largest) dissipative processes dominate the overall energy dissipation.

The apparent equivalence between the distributions of the instantaneous properties

of current sheets (i.e., L, W , and E) and the maximum corresponding values for

processes (i.e., Lmax, Wmax, and Emax) appears to be due to the self-similar evolution

of processes (as argued in Sec. 6.7).

Other notable results are as follows. We found that the log-normal random

cascade model provides a reasonable approximation for the distribution of local

energy dissipation rates, and can be used to approximate the energy dissipated and

volume occupied by intermittent structures. We found that two methods for measuring

the characteristic scales of structures, called the Euclidean method and Minkowski

method, give differing scalings and distributions for the large structures, which is

attributed to the Minkowski method capturing more morphological information about

the structures. We found that dissipative processes can involve many interacting

current sheets, which have a small tendency to divide rather than to merge. The

typical evolution of a process also shows a slight tendency for dissipating more energy

at early times than at late times in the process; this evolution is otherwise well fit by

a sine function.
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7.2 Implications for MHD turbulence

The methodology described in this thesis is an important addition to the tools conven-

tionally used to probing turbulence and its intermittency. It has several advantages

over the other methods, despite the relatively complex numerical implementation

and, for the temporal analysis, the necessity of a large data set. We find remarkably

robust power-law distributions and scalings, implying that the methods are accurately

extracting information about the turbulence. For example, given a relatively meager

Re = 800, the distribution for dissipated energy per process shows a power law across

nearly three decades in energy, whereas the inertial range is barely discernable in the

corresponding energy spectrum at the same Re. This large separation of scales may be

attributed to the cumulative information given by the combined spatial and temporal

properties of the turbulence. The analysis of structures also naturally describes the

anisotropy and inhomogeneity of the dynamics, which is often challenging for other

methods.

In this work, we found that the distribution for the energy dissipation rates of

spatial structures, as well as the distribution for the peak energy dissipation rates of

spatiotemporal structures, has an index close to the critical index of −2 (Zhdankin

et al., 2014). This suggests that, at any given time, inertial-range structures of all

energy dissipation rates contribute equally to the overall energy dissipation rate. This

may be a manifestation of the scale-invariance of inertial-range turbulence, since a

distribution for energy dissipation rates with the critical index is equivalent to the

energy dissipation being evenly spread across structures of all lengths, if power-law

scaling is assumed (see Eq. 5.1).

Furthermore, the temporal analysis allows us to establish that the dissipated

energy in evolving structures (processes) has a power law distribution with index

shallower than the critical index, namely, with an index near −1.75±0.1. This implies

that intense dissipative events, i.e., large-scale and long-lived coherent structures,

dominate the overall energy dissipation. This is a consequence of the linear scaling of

duration with maximum length, which causes the distribution of dissipated energy to

be shallower than the distribution of energy dissipation rates.
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The distributions, scalings, and evolution of processes appear to be insensitive to

the Reynolds numbers sampled in our simulations. At face value, this suggests that

these statistics may be valid for the asymptotically large Re in space and astrophysical

turbulence. This also implies that the results may be universal, i.e., insensitive to

the mechanisms of energy input and dissipation, although this should be verified in

the future by varying the boundary conditions, forcing mechanisms, and dissipation

mechanisms. Examples of astrophysically-relevant driving mechanisms include the

magnetorotational instability for accretion disks (Balbus and Hawley, 1991) and

line-tied driving for the force-free solar corona. Indeed, line-tied boundary conditions

are thought to strongly affect current sheet formation (Ng and Bhattacharjee, 1998;

Cowley et al., 1997; Zweibel and Li, 1987) and magnetic tearing modes (Huang and

Zweibel, 2009; Delzanno and Finn, 2008), particularly at global scales. It is also

possible for the nature of intermittency to undergo a transition at sufficiently large Re,

due to instabilities for large and morphologically complex structures. Therefore, it is

important to verify our results in future simulations of MHD turbulence with larger

Re, where more precise power-law fits can be obtained and a systematic study of the

Re dependence can be investigated. It is challenging to apply our methodology for

the temporal analysis, in its present form, to direct numerical simulations with larger

Re, since both the spatial resolution and time cadence must be increased, making

it impractical to store the full sequence of data snapshots. It may be necessary to

perform the bulk of the analysis in parallel with the simulations, rather than analyzing

post-processed snapshots as was done in this work. Alternatively, the amount of

information used for the analysis may be reduced by, e.g., filtering out large-scale or

small-scale modes. This is left for future consideration.

The methodology for the temporal analysis provides a new avenue to investigating

temporal asymmetry, which was previously inferred in studies of MHD turbulence

through the third-order moment or rate of energy flux (e.g., MacBride et al., 2008;

Podesta, 2008; Wan et al., 2010) and field-line diffusion (Beresnyak, 2014). The

temporal asymmetry in this case is measured in the larger number of divisions than

mergers, the tendency of the number of states in a process to be larger at late times

than early times, and the tendency of the energy dissipation rate and geometric
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characteristics to be larger at early times than late times. Temporal asymmetry may

occur from the onset of an instability, such as the tearing instability in resistive MHD

or avalanches in critically self-organized systems. However, the asymmetry measured

in our simulations is relatively negligible and does not significantly increase for larger

structures that may cross an instability threshold. Furthermore, the processes do

not exhibit the impulsiveness expected when an instability is triggered. Therefore,

we find it unlikely that the instability of structures plays a role in our simulations,

although it will be an important signature to search for in future studies. Indeed,

the tearing instability is expected to occur for laminar, 2D current sheets when they

become sufficiently thin, which may occur at Rm ∼ 104 (e.g., Bhattacharjee et al.,

2009; Uzdensky et al., 2010; Loureiro et al., 2007). It is conceivable that 3D current

sheets in a turbulent medium become unstable at different (possibly lower) Rm than

naively expected (Loureiro et al., 2009); it is also possible that the instability is

entirely absent.

In our case, the temporal asymmetry may be linked to the turbulent energy

cascade. Specifically, the inertial range of 3D MHD turbulence is characterized by a

direct energy cascade from large scales to small scales. Therefore, turbulent eddies

cause large structures with inertial-range lengths and widths to be broken into smaller

structures, leading to a surplus of divisions over mergers, as well as more states at

late times in a process. This can also explain why the energy dissipation rate and

geometric characteristics are larger at early times in a process, since a single large

state may accomodate a higher current density than many individual states. Since the

dynamics are otherwise time-symmetric in the inertial range, this asymmetry can be

relatively weak (e.g., Coburn et al., 2015). We note that another distinct contribution

to the asymmetry can be from the dissipative term directly (rather than the cascade

through the inertial range), relevant for states with lengths and widths that are near

the dissipation scale. It is left to future work to better quantify the asymmetry and

its origins, and to relate the measured quantities to the energy cascade rate.
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7.3 Implications for solar flares and

self-organized criticality

In our temporal analysis, we found that the energetics and length scales of dissipative

processes in MHD turbulence are remarkably consistent with observations of solar

flares (see Sec. 6.8). However, the statistics of durations and temporal asymmetries

appear to disagree. There are three potential reasons for this observed difference

between the two systems.

Firstly, the numerical results and solar flare observations may not be properly

measuring the same quantity. In particular, while we directly measure the energy

dissipation rate in 3D MHD turbulence, studies of solar flares must rely on inferring

the energy dissipation indirectly from 2D emissions. These emissions may originate

from other effects not directly related to the dissipative event. In particular, the

afterglow of the flare due to chromospheric evaporation can extend the duration

and amplify the asymmetry. Future observational studies may better account for

this effect, as attempted by Aschwanden et al. (2014). Alternatively, a more careful

comparison with observations in hard X-rays, which are more directly associated with

the dissipative event, can be performed.

Secondly, the discrepancy may be caused by the RMHD simulations missing some

essential physics. For example, compressibility, kinetic effects, and line-tying may be

important for describing the solar corona. These factors may cause dissipative events

to become more impulsive, affecting their temporal statistics (Bhattacharjee, 2004).

To address this possibility, a similar statistical analysis of dissipative processes can

be applied to numerical simulations which include those effects.

Thirdly, it may be possible that turbulence is not the governing physical process

behind the intermittency in the solar corona. The major alternative, although not

necessarily exclusive, statistical model for solar flares is self-organized criticality

(Uritsky et al., 2007). It is therefore important to concoct future predictions that

can definitively distinguish between turbulence and self-organized criticality. This

may be nontrivial to do, since models based on self-organized criticality have a

number of free parameters (e.g., the dimensionality of the dissipative event and the
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diffusion exponent) (Aschwanden, 2012b; Aschwanden, 2014), and generally give

similar constraints to those presented by statistical arguments in Sec. 6.7. A more

careful theoretical and numerical comparison between dynamics in self-organized

criticality and turbulence is left to future work.

7.4 Future directions

The success of our methodology applied to driven incompressible MHD turbulence

prompts us to consider further applications to MHD and beyond. In this section, we

discuss several promising future directions of this research.

Vorticity and viscous dissipation

In addition to our statistical analysis on dissipative structures in the current density,

we applied our methodology to perform a cursory analysis of vorticity structures, and

the associated viscous dissipation, in the same RMHD simulations. Although not

presented, we found the results to be qualitatively very similar to those presented for

dissipative current sheets. In particular, vorticity structures have similar energetics

and a ribbon-like morphology. The main difference is that the total viscous energy

dissipation is somewhat less than the resistive energy dissipation, as shown by the

cumulative distributions in Sec. 4.2 and theoretical arguments in Sec. 2.3. This

difference may be related to residual energy, the observed excess of magnetic energy

over kinetic energy (Wang et al., 2011; Boldyrev et al., 2012b,a). In the future, the

relationships and correlations between current sheets and vorticity sheets can be

considered in more detail.

Clustering of structures

In addition to energy dissipation being localized in intermittent structures, the

intermittent structures themselves tend to be spatially localized in clusters (e.g., Moisy

and Jiménez, 2004). Numerical simulations of Navier-Stokes turbulence indicate that
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intermittent structures at high Reynolds numbers organize in large-scale cloud-like

structures (Ishihara et al., 2009). Therefore, the clustering characteristics of structures

may be as important to consider as the structures themselves. This is especially true

if the structures become unstable or lose their coherence at high Reynolds numbers.

The best methodology for such an analysis is unclear and left for future consideration.

Conditional statistics

The analysis in this thesis is, by and large, limited to dissipative structures. This is

done because energy dissipation, being related to the energy cascade rate, is one of

the central concepts in turbulence. However, to fully understand the dynamics, one

must know how the energy dissipation is connected with other quantities, including

the magnetic field, velocity field, and their gradients. These quantities play a role in

determining the morphology and dynamics of intermittent structures. Conditional

statistics may be used to better ascertain the correlations between the various

dynamical quantities.

Particle acceleration

Magnetic reconnection is believed to produce energetic particles in many space

and astrophysical environments, including in solar flares (Hudson and Ryan, 1995;

Aschwanden, 2002), the ambient solar wind (Fisk and Gloeckler, 2006; Tessein et al.,

2013), and the Earth’s magnetotail (Øieroset et al., 2002; Egedal et al., 2005). However,

the mechanisms of particle acceleration remain poorly understood for realistic plasmas.

It is now recognized that in order to properly describe fast magnetic reconnection

in most natural systems, the effects of turbulence (Matthaeus and Lamkin, 1986;

Lazarian and Vishniac, 1999; Kim and Diamond, 2001), instabilities (Loureiro et al.,

2007; Uzdensky et al., 2010; Bhattacharjee et al., 2009; Huang and Bhattacharjee,

2010), or kinetic physics (Daughton and Roytershteyn, 2012) must be included. In

particular, a kinetic model is essential for a consistent explanation of how the released

magnetic energy is partitioned among particles.
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The advent of particle-in-cell (PIC) simulations spurred progress in understanding

magnetic reconnection at the kinetic level. There is now strong numerical evidence

for the production of energetic particles (Drake et al., 2006, 2013; Oka et al., 2010b,a;

Sironi and Spitkovsky, 2014; Guo et al., 2014). Recent studies investigated mech-

anisms of particle acceleration by identifying the locations and times where the

energetic particles gained the most energy. These studies found that magnetic flux

islands produced by the tearing instability may contribute to particle acceleration;

phenomenological models based on contracting islands (Drake et al., 2006, 2013),

trapped electrons (Egedal et al., 2008, 2010, 2012), coalescing islands (Oka et al.,

2010b), island surfing (Hoshino, 2005; Oka et al., 2010a), and curvature drift (Hoshino

et al., 2001; Guo et al., 2014) were constructed to describe the numerical observations.

In general, acceleration processes evidently involve a number of diverse, competing

mechanisms.

The statistical analysis of structures can give insight into the mechanisms of

particle acceleration (see, e.g., Uzdensky et al., 2010; Huang and Bhattacharjee, 2012;

Fermo et al., 2010; Drake et al., 2013, for some statistical models). In particular,

this methodology can be applied to directly measure the contribution to particle

acceleration from structures such as current sheets and magnetic flux tubes. The

methodology developed in this thesis provides a foundation for such an analysis.

Other systems

The methodology developed in this thesis, and in particular, the novel methods for the

temporal analysis, may prove useful for understanding intermittency in the following

problems:

• Hydrodynamic turbulence

• MHD turbulence with a weak guide field

• Compressible MHD turbulence

• Magnetoconvection (Cattaneo et al., 2003)
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• Kinematic dynamo (Wilkin et al., 2007)

• Magnetorotational instability (Balbus and Hawley, 1991)

• Line-tied MHD

• Turbulence in the kinetic regime (Wan et al., 2012a; Leonardis et al., 2013;

Karimabadi et al., 2013; TenBarge and Howes, 2013; Pueschel et al., 2014)

• Gravitational clustering

• Self-organized criticality

It is evident that many applications of these methods exist, and that much remains

to be discovered in this area of research. We look forward to exploring some of these

other problems in the future.
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a appendix 1

The following tables show occurrence rates from the temporal analysis used to compute

ratios in Subsection 6.4. Table A.1 compares all runs, Tables A.2 and A.3 show

varying cadence for Cases 1 and 3, and Table A.4 shows varying threshold for Case 3.

Table A.1: Aggregate quantities in all cases (jthr/jrms ≈ 6.8, ∆t = 1/32)

Quantity (per τeddy) 2563, Re = 800 5123, Re = 800 5123, Re = 1250 5123, Re = 1800
Npath 4202 5295 15392 34275
Nproc 914 1271 4272 11608
Nisol 715 956 3600 10416
Nint 199 315 672 1193
Ndiv 1494 1663 5352 11585
Nmer 1253 1290 4276 9540
Ndes 1746 2458 7088 17312
Nform 1520 2096 6283 15766
N3-vert 1449 1527 3886 7745
Nn-vert 494 539 1884 4051
〈Nstate〉 194 288 657 1328

Table A.2: Variation of aggregate quantities with cadence (Case 1: 2563, Re =
800, jthr/jrms ≈ 6.8)

Quantity ∆t = 1/64 ∆t = 1/32 ∆t = 1/16 ∆t = 1/8 ∆t = 1/4
Npath 6852 4202 2426 1360 720
Nproc 1136 914 959 921 629
Nisol 894 715 834 867 613
Nint 241 199 126 54 16
Ndiv 2614 1494 666 199 39
Nmer 2277 1253 514 141 27
Ndes 2295 1746 1418 1078 663
Nform 1984 1520 1276 1022 651
N3-vert 2953 1449 512 125 24
Nn-vert 775 494 235 71 14
〈Nstate〉 194 194 193 192 189



131

Table A.3: Variation of aggregate quantities with cadence (Case 3: 5123, Re =
1250, jthr/jrms ≈ 6.8)

Quantity ∆t = 1/64 ∆t = 1/32 ∆t = 1/16 ∆t = 1/8 ∆t = 1/4
Npath 27500 15390 8731 4748 2454
Nproc 3311 4272 4908 3704 2197
Nisol 2316 3600 4600 3595 2163
Nint 994 672 308 109 34
Ndiv 11900 5352 1816 495 116
Nmer 10060 4276 1447 382 90
Ndes 8364 7088 5964 4031 2283
Nform 6954 6283 5685 3942 2264
N3-vert 10750 3886 1099 261 57
Nn-vert 3949 1884 667 182 44

Table A.4: Variation of aggregate quantities with threshold (Case 3: 5123, Re = 1250)

Quantity jthr/jrms ≈ 9.6 jthr/jrms ≈ 8.2 jthr/jrms ≈ 6.8 jthr/jrms ≈ 5.5
Npath 7975 14270 27500 54630
Nproc 1105 1777 3311 6314
Nisol 694 1200 2316 4565
Nint 341 577 994 1749
Ndiv 3077 5757 11900 26390
Nmer 2539 4788 10060 22785
Ndes 2694 4705 8364 12540
Nform 2210 3858 6954 10900
N3-vert 3081 5557 10750 22120
Nn-vert 964 1837 3949 8854
〈Nstate〉 190 343 657 1287
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