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Abstract 

This research develops a dynamic analysis of the role of risk and learning in technology 

adoption, with an empirical focus on the adoption of Genetically Modified (GM) corn in the U.S. 

Corn Belt. A conceptual structural dynamic programming (DP) model is developed to capture 

the relative roles of individual and social learning under uncertain profitability for both 

conventional and GM technology.   

The DP model involves solving Bellman equation under imperfect state information. It 

relies on sufficient statistics given by the mean and variance of profit under normality 

assumption. Farmers’ learning process is given by the evolution of the mean and variance of 

profit and represented by the Kalman filter algorithm, where degrees of individual learning and 

social learning are parameterized. And farmers’ risk aversion is specified using an additive 

mean-variance utility function under normality and Constant Absolute Risk Aversion (CARA). 

Parameters are estimated by nesting the DP problem (Bellman equation with the Kalman filter) 

within a minimum-distance estimator. 

 The model is applied to a unique panel dataset of U.S. corn farmers collected by 

dmrkynetic (DMR). Four models of farmers’ adoption pattern are developed. First, an aggregate 

model of a representative farmer is applied, covering the whole DMR panel dataset (a 

benchmark case). Second, three disaggregate models are applied to three sub-groups of farmers: 

the early-, the intermediate-, and the late- adopters of GM technology. The disaggregate models 

allow the investigation of parameter heterogeneity across groups of farmers.  

For each model, parameter estimates indicate that farmers are risk-averse, and that both 

individual learning and social learning affect the adoption of GM technology. The analysis 

shows that the effects of individual learning are greater than the effects of social learning. 
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Hypothesis testing is conducted on selected key parameters. Our results indicate that risk 

aversion, individual learning, and social learning have significant impacts on adoption decisions. 

Sensitivity analysis is also implemented to evaluate the effects of risk aversion and social 

learning. At a high level of risk aversion, risk aversion is found to have a negative effect on GM 

adoption rates for all models. However, at low levels of risk aversion, higher risk aversion can 

sometimes increase GM adoption, reflecting the presence of diversification in portfolio selection. 

Social learning is found to contribute to lower GM adoption rates, reflecting the presence of 

information externalities: farmers have incentives to delay adoption and wait to observe what 

their neighbors do. Welfare analysis shows that in the case of GM adoption risk aversion makes 

farmers worse off. And while social learning can have either positive or negative effects on 

farmers’ welfare, the empirical results show that farmers’ actual social learning is close to the 

social optimum, implying that farmers seem to internalize the information externalities 

efficiently. Finally, there is evidence of heterogeneity across farm types, as estimated parameters 

vary across the disaggregate models. The analysis shows that the early adopters are less risk 

averse and they tend to rely less on social learning. Alternatively, late adopters tend to be more 

risk averse and to rely more on social learning. 
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Chapter 1 : Introduction 
 

1.1.Background: the Advent of GM Technology 

The diffusion of new technologies in the agricultural sector has been an important contributor to 

increases in farm productivity. For example, during the Green Revolution, high-yielding crops 

have had large positive effects on agricultural productivity and on the ability of the earth to feed 

a growing world population. The use of pesticide and herbicide also increased farm productivity. 

The introduction of modernized techniques (irrigation, tillage, and mechanization) has changed 

the paradigm of traditional agriculture, providing higher farm profit. That is, rapid technological 

progress has made important contributions to agriculture and to society (Feder et al., 1985; 

Griliches, 1995; Solow, 1994). 

Since the mid 1990’s, the advent of Genetically Modified (GM) seeds has provided 

farmers with new options to improve productivity and farm profit. Currently, the adoption rates 

of GM crops (corn, cotton, and soybean) amount to 91% on average in 2011 (USDA/NASS, 

2011). As illustrated in Figure 1.1, the adoption rates of GM cotton have been increased from 

61% in 2000 to 90% in 2011. The adoption rates of GM soybean have also increased from 54% 

in 2000 to 94% in 2011. The impact of GM corn has been even more dramatic: the adoption rates 

of GM corn went from 25% in 2000 but reaches 88% in 2011, showing the average growth rate 

of 252% while the average growth rates of GM cotton and GM soybean are 48% and 74% during 

the same period, respectively.  

Such a rapid diffusion of GM crops is explained in part by their productivity effects. GM 

crops tend to have higher yield compared to conventional crops, along with improved weed and 

pest control, reductions in pesticide and herbicide usage, and reductions in operational costs of 

mechanic usage and energy associated with tillage or spraying pesticides and herbicides 
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(Brookes and Barfoot, 2011; Fernandez-Cornejo and Caswell, 2006). Both higher productivity 

and lower cost have provided farmers with higher profitability, and thus a strong incentive to 

adopt GM technology. However, not all farmers have adopted GM technology at the same time 

in spite of its technological advantages. This raises questions about the process of adoption and 

diffusion of a new technology: What are the factors that have played a role affecting GM 

technology adoption among farmers? 

 

Figure 1.1: Adoption of GM Crops in the United States, 2000-2011 

 
Source: USDA/NASS Acreage Survey (USDA, 2011).  

 

    

1.2.Research Motivation 

The adoption of GM technology comes with a question about which determinants have 

influenced farmers’ adoption behaviors. This question has been raised and answered by 
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(1957) demonstrated that economic variables are major factors of adoption, observable farm 

characteristics have been analyzed in previous literature, such as farm size (Feder and O’Mara, 

1981; Just et al., 1980), credit constraints (El-Osta and Morehart, 1999), location factors (Green 

et al., 1996; Thrikawala et al., 1999), education level or operator age (Barry et al., 1995; Batte 

and Johnson, 1993). The role of farmers’ risk preferences has received special attention as most 

farmers are risk averse, and adopting a new technology typically contributes to increases in 

farmers’ risk exposure (Feder and O’Mara, 1982; Feder et al., 1985; Hiebert, 1974; Mansfield, 

1966).  

Another branch of studies for technology adoption counts on information and 

externalities. First, adopters can learn about a new technology through their own experience, 

which is characterized as individual learning (Arrow, 1962; Lidner et al., 1979; Stoneman, 

1981). But they can also learn from others (social learning), which constitutes a case of 

information externalities described in Belsey and Case (1993) (Bardhan and Udry, 1999; Besley 

and Case, 1994; Foster and Rosenzweig, 1995). However, the empirical analysis of individual 

learning and social learning is difficult due in large part to the lack of available empirical data, 

being less highlighted than empirical analyses of observable farm characteristics and risk 

preferences.   

 Though the adoption of a new agricultural technology has been highlighted from the 

various perspectives by researchers, GM technology adoption has received relatively less 

attention for several reasons. First, many studies of agricultural technology adoption have 

focused on case studies in developing countries in Africa (Batz et al., 1999; Conley and Udry, 

2010), India (Besley and Case, 1994; Binswagner et al., 1980; Foster and Rosenzweig, 1995; 

Munshi, 2004), and Southeast Asia (Hiebert, 1974). But so far, GM technology has been less 
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widely adopted in developing countries. It means the presence of a mismatch between observed 

GM adoption and data availability. Second, the history of GM technology is relatively short as it 

was first commercialized in 1996 in the U.S. Inadequate adoption observations in a short history 

prevent researchers from conducting empirical analyses on GM technology adoption, especially 

in case dynamic analyses are involved. Third, GM technology is rather different from other 

agricultural technologies: GM genes are typically patented by biotech-companies. Though most 

new innovations are patented, GM patents seem to limit farmers’ choices more than most other 

input technologies. The large role played by private firms in the development and diffusion of 

GM technology has made it more difficult to acquire good farm-level data on GM adoption rates.   

 Few empirical studies both about the role of individual/social learning in agricultural 

technology adoption and about determinants affecting GM technology adoption motivate our 

empirical research. That is, there is a need for research examining the factors affecting GM 

technology adoption, especially in terms of the role of learning. As mentioned above, this need 

results from the situation that empirical analyses concerning the role of information externalities 

are rarely conducted due to lack of good data. In addition, any learning process inevitably 

involves dynamics, but understanding micro-level dynamics requires panel data collected over 

time for selected individuals. Unfortunately, such data are rather rare, which makes the empirical 

analysis of technology adoption and learning rather challenging. This argument applies to 

technology adoption in general, and to GM adoption by farmers in particular. Thus, our analysis 

focuses on GM technology adoption and the role of individual/social learning (information 

externalities) and risk preferences, with an application to GM corn in the U.S.   

 

1.3.Research Object and Direction 
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This research examines the role of risk and learning in technology adoption, with an empirical 

focus on GM corn in the U.S. It includes studying the impacts of risk and risk aversion on GM 

technology adoption. Also, learning is evaluated as a process of improving farmers’ assessment 

of a new technology and of allowing them to make better decisions. Though learning has been 

understood as playing an important role in technology diffusion (Feder and O’Mara, 1982; 

Hilbert, 1974), its empirical analyses have been challenging due to lack of good data as 

discussed above. The use of a unique extensive survey data collected by dmrkynetic (hereafter 

DMR)
1
 enables us to conduct this empirical research as it addresses farm level information 

concerning adoption choices for both conventional and GM corn varieties.  

The purpose of this research in this dissertation is to investigate learning process and risk 

preferences in an empirical model to explore how individual/social learning and risk preferences 

affect adoption decisions.
2
 Farmers are assumed to learn about the profitability of conventional 

seed and GM seed from their own experiences and from observing neighboring famers’ planting 

choices. Farmers’ accumulated information affect whether and how much they adopt GM seeds 

for the next period. Such learning process takes place sequentially over time, and farmers make 

decisions with forward-looking behaviors. We specify the learning process using the dynamic 

programming (DP) model.  

For this study, we develop a conceptual DP model of GM technology adoption capturing 

the joint role of individual and social learning. We apply the model to a unique panel data set of 

U.S. corn farmers (the DMR data). The DMR data includes farm-level adoption decisions for 

conventional and GM corn from 2000 through 2007 in the U.S. Corn Belt. We assume farmers’ 

                                                           
1
 http://www.gfk.com/gfk-kynetec/ 

2
 Some papers term individual learning as learning-by-doing, and social learning as learning from others (Bardhan 

and Udry, 1999; Foster and Rosenzweig, 1995). Throughout this paper, we use the term “individual learning” and 

“social learning.” 
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reward function is represented by a mean-variance utility function. The analysis examines 

acreage decisions made at planting time, choosing between two technologies: conventional seed 

versus GM seed. At planting time, the profitability of each seed is not known, but its probability 

distribution can be assessed. Thus, this is a decision involving two risky choices of conventional 

seed and GM seed. Their state variables are characterized by the first and second moments of the 

distribution of the profitability for each technology. Learning is represented by the evolution of 

the assessed distribution of profit for each technology. The decision making is represented by a 

DP problem under imperfect state information as state variables (profitability for each 

technology) are unobservable. Learning is captured by observing variables that are correlated 

with farm profit for each technology. This includes both individual learning where each farmer 

observes their own past yields and social learning where each farmer observes his/her neighbors’ 

behavior. To simplify the problem, we assume the unobservable state variables have a normal 

distribution. The normality assumption allows us to rely on a set of sufficient statistics - the first 

two moments of unobservable state variables. The evolution of mean and variance over time are 

given by the Kalman filter, which is a representation of learning.  

Further, we nest the DP within a minimum-distance estimator and conduct hypothesis 

testing on the relative role of individual versus social learning. To do so, we devise a combined 

algorithm implementing a joint analysis of dynamic optimization and model estimation. 

Focusing on the role of risk preferences and the effects of social learning, we conduct sensitivity 

analysis of how the adoption of GM technology changes as those factors vary. In addition, 

welfare implications are also evaluated, capturing how farmers’ welfare can vary with risk 

preferences and learning effects. In terms of social learning, we examine the impacts of 

information externalities, with a focus on both farmers’ adoption behavior and farm welfare. For 
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example, we document how information externalities inhibit technology adoption: farmers have 

an incentive to wait and delay their adoption decisions as they wait to obtain additional 

information from their adopting neighbors. Additionally, we study the presence of heterogeneity 

in adoption behavior across farmers. While our analysis starts with a representative farmer 

(his/her behavior representing aggregate behavior), we also examine adoption decisions made by 

different types of farmers. The results document the presence of heterogeneity across types of 

farmers, each type exhibiting different parameters. For example, we show that early adopters 

tend to be less risk averse and that they rely less on social learning in GM adoption decisions 

compared to late adopters.  

This dissertation extends the analysis of GM technology adoption in several directions: 

First, we apply the structural approach instead of the reduced-form approach such as a logistic 

model previous adoption literature has used due to its relative ease (Fernandez-Cornejo et al., 

2002). Second, we construct a conceptual structural model using the DP paradigm reflecting the 

underlying dynamic process essential in technology adoption (learning). Third, we incorporate 

learning processes into the adoption model using the Kalman filter algorithm, providing a 

convenient and flexible parameterized structure capturing relative roles of individual and social 

learning. Fourth, we analyze how individual/social learning and risk preferences affect adoption 

behavior by estimating corresponding parameters in the DP model with their econometric 

evidence through hypothesis testing. Fifth, we evaluate the sensitivity analysis and the welfare 

implications through simulations in terms of risk aversion and information externalities. Sixth, 

we model a continuous adoption choice problem rather than a discrete choice problem, providing 

a broader interpretation of the process of GM adoption on farms. Seventh, we devise an 

econometric process combining dynamic optimization nesting in model estimation. Finally, we 
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analyze heterogeneity across farm types by conducting analysis both at the aggregate model and 

at disaggregate models.   

The remainder of this dissertation is organized as follows. Chapter 2 reviews previous 

literature associated with GM technology adoption and the role of learning. Chapter 3 describes 

farmers’ learning process for the profitability of GM corn. Also, it develops a conceptual 

dynamic model framework under imperfect state information, using the Kalman filter algorithm. 

Sufficient statistics are also introduced. Chapter 4 discusses the data used in the analysis and 

presents an algorithm implementing both dynamic optimization and model estimation. That is, 

the algorithm presents a solution method for the Bellman equation using the collocation method. 

And we propose an estimation strategy for the empirical DP model nested within a minimum 

distance estimator. Chapter 5 reports parameter estimation results for the aggregate model. 

Further, it presents hypothesis testing results, sensitivity analysis, and welfare analysis with a 

focus on the role of risk aversion and individual/social learning. Chapter 6 reports results for 

three types of disaggregate models reflecting the presence of heterogeneity across the early-, the 

intermediate-, and the late- adopters. Finally, Chapter 7 concludes the paper with a summary of 

the key findings and suggestions for future research. 

  



9 
 

 

Chapter 2 : Literature Review 
 

This chapter reviews previous literature on the economics of technology adoption. Since the 

early work of Griliches (1957) on technology adoption, the literature has studied the many 

factors affecting technology adoption in agriculture. One of the main streams of research 

examines the impacts of farm characteristics, such as farm structure and size (Just et al., 1980), 

human capital (Barry et al., 1995; Batte and Johnson, 1993), credit constraints (El-Osta and 

Morehart, 1999), and location factors (Green et al., 1996; Thrikawala et al., 1999). The 

characteristics of technologies are also considered as determinants (Batz et al., 1999; Rogers, 

1995). Another line of inquiry evaluates the role of risk preferences and their effects on farmers’ 

technology adoption behavior (Feder et al., 1985; Feder and O’Mara, 1981; 1982; Hiebert, 1974; 

Mansfield, 1966). In addition to observable farm characteristics, the role of information in 

adoption behavior has also been examined (Arrow, 1962; Foster and Rosenzweig, 1995; 

Jovanovic and Nyarko, 1996), with special attention given to information and network 

externalities (Allen, 1982; An and Kiefer, 1995; Manski, 2000).  

 Many papers have investigated empirically the adoption of agricultural technologies in 

the context of developing countries. The adoption of GM technology has received less attention 

due in part to its short history and lack of empirical data. Previous literature on GM technology 

adoption examines the role of observable farm level characteristics (Fernandez-Cornezo and 

McBride, 2000) or risk preferences (Alexander et al., 2000; Liu, 2008; Qaim and Janvry, 2003), 

whereas information externalities or learning effects are seldom analyzed.  

The first section reviews previous literature, both theoretical and empirical, on 

agricultural technology adoption with a focus on its determinants: farm characteristics, 

technology attributes, risk preferences, and externalities (neighborhood effects and learning 
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effects). The following section reviews previous literature focusing on GM technology adoption. 

It helps situate this research and identify its contribution to the literature.   

 

2.1.Determinants of Technology Adoption 

In general, technology adoption in agriculture is influenced by farm characteristics, technology 

attributes, and externalities. Feder et al. (1985) summarize both theoretical and empirical 

literature on agricultural technology adoption, providing an extensive review of the observable 

farm characteristics affecting technology adoption. They classify farm characteristics as farm 

size, risk and uncertainty, human capital, labor availability, credit constraint, tenure, and supply 

constraints. Rogers (1995) and Batz et al. (1999) describe how the attributes of a new technology 

affect a farmer’s adoption behavior. Besley and Case (1993) pay attention to externalities and 

their role in farmers’ technology adoption decisions. They classify externalities into three 

categories: network externality, market power externality, and learning externality.  

 This section reviews previous literature concerning determinants of technology adoption 

under the following five categories: 1) observable farm characteristics described in Feder et al. 

(1985), 2) the attributes of agricultural technologies, 3) farmers’ risk preferences and their effects 

on adoption, 4) neighborhood effects represented as network externalities as described in Besley 

and Case (1993), and 5) learning effects represented as information externalities in Besley and 

Case with distinction made between learning by doing and learning from others according to the 

origin of information (Foster and Rosenzweig, 1995).  

 

2.1.1. Farm Characteristics 
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Early adoption literature focuses on the influences of farm level economic variables on 

technology adoption. Just et al. (1980) emphasize farm size, farm risk attitudes, and production 

technologies as determinants affecting the diffusion of new technologies. In terms of farm size, 

they show that a new technology is adopted earlier on larger farms than smaller farms, providing 

a critical lower bound on farm size where adoption becomes available given uncertainty and 

production cost. In addition, they show that the critical point of farm size increases with 

increments in production cost associated a new technology.  

 Farmers’ ability to adopt technology depends on human capital, including operator age, 

education level, and years of farming experience. Generally, new technologies are expected to be 

adopted earlier by highly educated, more experienced, or younger farmers (Barry et al., 1995; 

Batte and Johnson, 1993). Fernandez-Cornejo et al. (1994) take operator labor and unpaid family 

labor into consideration as explanatory variables affecting the adoption of Integrated Pest 

Management (IPM), showing the probability of IPM adoption is higher as both the quantity and 

the quality of labor increase.  

 When a new technology requires a large initial investment, farmers’ ability to use or 

borrow capital plays an important role in adopting that technology. In addition to typical farm 

characteristics described above, El-Osta and Morehart (1999) introduce credit constraints to 

analyze the adoption of both capital- and management- intensive dairy technology. Using 

USDA’s 1993 Farm Costs and Returns Survey, they show that credit reserves positively affect 

the adoption of advanced milking parlors and a Dairy Herd Improvement (DHI) program.  

 Location factor can also be a crucial determinant of technology adoption. Across 

different locations, access to information and agro-ecological conditions (such as soil fertility, 

pest infestations, and weather conditions) are typically heterogeneous. Griliches (1957) finds that 
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the diffusion of hybrid corn takes place at different rates across geographical regions due to the 

spatial heterogeneity of profitability. Green et al. (1996) emphasize the importance of agronomic 

characteristics in irrigation technology adoption. Thrikawala et al. (1999) show that the adoption 

of fertilizer management technology is affected more by the distribution of fertility than by the 

cost of fertilizer.  

 

2.1.2. Technology Attributes 

Farmers decide to adopt a new technology if it is profitable given farm-specific conditions (Feder 

et al., 1985; Rogers, 1995; Sunding and Zilberman, 2001). Then, the attributes of the new 

technology can affect its profitability directly. Rogers (1995) conceptualizes technology 

attributes from the viewpoints of relative advantage, compatibility, complexity, trialability, and 

observability. Relative advantage indicates benefits from technology adoption, including 

improved profitability, labor-time saving, and cost reduction. Compatibility is understood as 

similarity with previous technologies. Complexity means the degree of difficulty in experiencing 

and using the new technology. Trialability relates to how easy experimentation is, and 

observability corresponds to the degree to which the payoff from the new technology are visible. 

Empirical analyses of technology attributes are relatively few compared to the analyses of 

farm characteristics. Technology attributes relates to the demand for product/technology 

characteristics, and the relationship between perceptions of different product/technology 

attributes and the corresponding demand (Ackerberg and Rysman, 2005; Berry, 1994; Nevo, 

2001).  

Batz et al. (1999) consider relative complexity, relative risk, and relative investment of 

technologies as attributes affecting adoption and diffusion of a new technology. They conduct an 
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empirical analysis of 17 dairy technologies at the Meru district in Kenya. They survey extension 

workers to assess relative complexity, risk, and investment for each technology. Results show 

that relative complexity and risk dominate relative investment of technologies, the speed of 

adoption being slower as technologies are relatively more complex and relatively more risky.    

Most recently, Useche et al. (2009) examine the effect of GM technology attributes, such 

as herbicide savings, insecticide savings, labor savings, and yield improvements, on the adoption 

of GM corn varieties with the focus on relative advantage or profitability. Using survey data 

from corn farmers in the U.S. upper Midwest, they estimate shadow prices for each attribute, 

analyzing how each attribute affects demand of GM corn varieties.   

 

2.1.3. Risk Preferences 

As described above, risk and risk preferences have received some attention by adoption 

researchers with the perception that innovative technologies may be more risky than traditional 

technologies (Feder et al., 1985). For example, farmers may perceive a new technology to be 

risky, being uncertain about the profitability. Potential adopters may view its use as experimental 

(Mansfield, 1966).  

Early literature on farm risk relies on survey data obtained from interviews asking 

farmers how they perceive their risky environment. Binswanger et al. (1980) measure farmers’ 

risk aversion by conducting experiments with a sample of farmers in India, evaluating risk 

aversion and showing that risk and risk aversion have a negative impact of the adoption of 

fertilizer. O’Mara (1980) estimates a sample of Mexican farmers’ subjective yield distribution 

for high-yield seed varieties (HYVs), showing how farm risk affects the adoption of HYVs.   
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Roumasset (1976) argues that HYVs are not fully adopted by farmers in spite of their 

higher yield performance. He concludes that the consideration of risk leads farmers to diversify 

and allocate land to both HYV and traditional technologies, thus slowing down the adoption of 

HYV. 

In addition to risk and risk preferences, the importance of learning or experience is often 

emphasized. Hiebert (1974) argues learning plays a key role in reducing uncertainty, providing 

empirical evidence that learning increases the likelihood of adopting high yielding varieties of 

rice in the Philippines. Feder and O’Mara (1981) show that risk aversion inhibits the adoption of 

HYVs in the presence of significant fixed costs in learning. The role of learning is discussed in 

more details in the Section 2.1.5.  

 

2.1.4. Neighborhood Effects 

At a given time period, a new and profitable technology could be considered as a public good to 

the extent that it is available to a large number of farmers (Dybvig and Spatt, 1983). In this 

context, farmers can obtain information about the new technology by observing their neighbors’ 

adoption decisions. This is a case of network externalities described in Besley and Case (1993), 

also termed neighborhood effects or peer-group effects. Such neighborhood effects are 

externalities since a farmer’s behavior is affected by his/her neighbors’ behaviors in a cohort 

defined as a neighborhood group. 

 As neighborhood effects take place through social interaction with neighbors, they need 

to be identified separately from other forms of learning (Foster and Rosenzweig, 1995). 

Following Baerenklau (2005), neighborhood effects are defined as situations where a farmer’s 

adoption choice is affected by contemporaneous neighbors’ choices. This does not rule out the 
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possibility that farmers obtain other information from their neighbors. Thus, neighborhood 

effects occur when a farmer adopts a new technology by viewing neighbors’ adoption decisions 

themselves.  

Neighborhood effects have not been studied extensively by economists. More research on 

this topic has conducted by social scientists in sociology, education, and geography (Durlauf, 

2004; Jencks and Mayer, 1990). The applications of neighborhood effects in economic models 

are discussed by Manski (2000) and Brock and Durlauf (2001a, 2001b, 2002). Such models often 

suffer from an identification problem in econometric methodologies (Manski, 1993).  

Allen (1982) examines adoption behaviors under network externalities from local 

neighborhoods, using statistical mechanics models. Kiefer (1995) evaluates the speed of 

technology adoption and its relationship with the number of neighboring adopters. Case (1992) 

analyzes a case study of sickle adoption in rural Indonesia, presenting an estimation method that 

is robust to the presence of neighborhood effects. Baerenklau (2005) incorporates neighborhood 

effects into a strategic dynamic model with risk preferences and learning. Using survey data 

from Wisconsin dairy farms, he analyzes the adoption of Management Intensive Rotational 

Grazing (MIRG) technology. He shows how to incorporate neighborhood effects in the 

estimation of factors affecting adoption decisions.   

 

2.1.5. Learning Effects 

Learning is the process of obtaining information, often in the context of making better decisions. 

This is relevant to technology adoption since little information may be initially available about a 

new technology. Bardhan and Udry (1999) categorize learning process as learning-by-doing and 

learning from others according to the source of information.  
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Learning-by-doing identifies an individual’s own information acquisition in an isolated 

situation (Arrow, 1962; Lidner et al., 1979). Bayesian learning is often applied in investigating a 

typical sigmoid adoption and diffusion curve for a new technology (Stoneman, 1981). Then, the 

learning process is consistent with Bayes’ theorem applied to subjective probabilities and the 

updating of prior belief into posterior beliefs as new information becomes available. In terms of 

agricultural technology, learning-by-doing occurs when farmers conduct their own experiments 

on their farm, such as testing new seeds, spraying new agrichemicals, or purchasing new 

combines. 

Learning from others involves social interactions with other farmers. It can affect 

technology adoption jointly with farmers’ learning-by-doing (Bardhan and Udry, 1999). As 

learning from others implies that other agents’ behavior affect one’s decision making, it 

introduces strategic behavior among agents. Strategic behavior reflects the presence of 

externalities across agents. Learning from others may affect adoption decisions. Indeed, if 

individuals decide to wait and see what their neighbors are doing before adopting a new 

technology, then learning from others would tend to slow down the adoption process. This kind 

of strategic delay corresponds to a free-rider problem (Kapur, 1995; McFadden and Train, 1996; 

Vives, 1997).  

Both learning-by-doing and learning from others have been studied in the adoption 

literature. One line of inquiry is to apply the target-input model developed by Prescott (1972) and 

Jovanovic and Nyarko (1994). Foster and Rosenzweig (1995) analyze social learning relevant to 

adoption decision of HYV cotton in India by using survey data from the International Crops 

Research Institute for the Semi-Arid Tropics (ICRISAT). They assume that a farmer’s profit 

decreases with the square of the distance between his/her actual input level and the unknown 
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optimal input level called as target, explaining information acquisition as a process of deducing 

what the target input level must have been after the output is realized through learning by doing 

and learning from others. They show that imperfect knowledge inhibits adoption of HYVs, and 

that both own experience and neighbors’ experience increase HYV profitability. They assume 

that a new technology is always superior and known with certainty when a farmer makes his/her 

input decision.  

While Foster and Rosenzweig (1995) assume that uncertainty arises only in a farmer’s 

input management, Besley and Case (1994) propose that a new technology is risky and that its 

profitability is uncertain and exogenous. In contrast with Foster and Rosenzweig, as farmers are 

uncertain about whether a new technology is profitable or not, the technology is not always 

adopted. Using data from ICRISAT surveys in India, they focus on the impacts of the adopter’s 

own experience and learning from others’ behaviors on the adoption of HYV cotton varieties. 

Their results show that an individual farmer’s adoption of HYV cotton is correlated with his/her 

neighbors’ adoption decisions through social learning. Similarly to Besley and Case, Baerenklau 

(2005) assumes MIRG technology is risky and uncertain, incorporating both learning-by-doing 

and learning from others with risk preferences and neighborhood effects described in previous 

sections. He examines the potential of free-riding on neighbors’ experience as farmers may wait 

and see what happens to neighbors in the presence of information or network externalities.  

Using HYV wheat and rice data from the Indian Green Revolution, Munshi (2004) 

evaluates the intensity of social learning across technologies. HYV rice technology is more 

sensitive to unobserved farm characteristics with greater heterogeneity in growing condition than 

HYV wheat technology. Empirical results show that the effect of social learning is weaker in 

adopting HYV rice than in adopting HYV wheat. Conley and Udry (2010) pay attention to the 
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role of spatial correlation in profitability shocks. Using data from pineapple farmers in the 

Akwapim South district of Ghana, they show farmers adopt the fertilizer technology following 

neighbors when neighbors face a favorable shock.  

 

2.2.Literature on GM Technology Adoption 

As described in the previous section, various agricultural technologies have been analyzed in 

previous literature. This section focuses on the case of GM technology adoption.  

As most of adoption literature has focused on farm attributes following Griliches (1957), 

studies concerning GM technology adoption also have emphasized the significance of observable 

farm characteristics. Considering farm size and farmers’ education level as crucial determinants, 

Fernandez-Cornezo et al. (2001) examine the adoption of HT soybeans, HT corn, and Bt-corn in 

the U.S. Using data from USDA’s 1998 Agricultural Resource Management Study (ARMS), 

they show that the impact of farm size on adoption differs across technologies according to the 

adoption stage. For example, the adoption of HT soybeans is invariant by farm size, but the 

adoption of HT corn increases with farm size. This seems to reflect that HT corn technology is 

still at the innovator stage while HT soybeans technology has been around longer (Rogers, 

1995). In addition, results show that higher education level lead to higher adoption rates of HT 

corn and Bt-corn.  

Like other agricultural technology adoption literature, risk preferences are considered as 

key factors accounting for the adoption of GM technology. Using survey data from the Iowa 

Farm Bureau Federation, Alexander et al. (2003) analyze the impact of risk preferences on the 

adoption of GM corn and GM soybean by farmers in Iowa. They show that risk preferences 

influence the decision to plant GM corn but not GM soybeans. Qaim and Janvry (2003) analyze 
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Bt-cotton adoption in Argentina under a monopoly pricing regime. After gathering farmers’ 

willingness to pay data, they find that farmers’ average willingness to pay for Bt-cotton is less 

than the actual technology cost, reflecting that farmers are risk averse to GM technology. 

Recently, Liu (2008) conducted experiments to see how farmers’ risk preferences affect adoption 

timing. Using survey data and field experiment data from Bt-cotton farmers in China, she shows 

that more risk-averse farmers adopt Bt-cotton later and that less risk-averse farmers are early 

adopters.  

As discussed in Section 2.1.2, technology attributes affect GM technology adoption. 

Classifying corn varieties as non-GM corn, HT corn, Bt-corn, stacked (HT/Bt) corn, Useche et 

al. (2009) develop a trait-based adoption model incorporating technology attributes (traits), such 

as herbicide savings, insecticide savings, labor savings, and yield improvements, with other farm 

characteristics for each corn variety. Applying a mixed multinomial logit model, they measure 

the extent to which each trait impacts farmers’ GM corn adoption decisions in the upper Midwest 

of the U.S. Their results show that technology attributes affect the adoption of GM corn varieties. 

For example, labor saving technologies have a wide potential for adoption.   

 

2.3.Looking Ahead 

Compared with previous literature on other agricultural technologies, literature on GM 

technology adoption remains incomplete. First, the empirical significance of learning needs to be 

refined. Second, with learning process, the underlying dynamics remains poorly understood. 

Referring to Section 2.1.5, investigating the role of learning in GM technology in agriculture 

could benefit from both theoretic and empirical studies. With the understanding that technology 

adoption is a decision problem under uncertainty, learning is understood as a process that 
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reduces uncertainty (Hiebert, 1974). Previous literature has relied on Bayes theorem in empirical 

adoption models (Feder and O’Mara, 1982; Lindner et al., 1979; Stoneman, 1981). This paper 

characterizes the learning process using the Kalman filter algorithm (Kalman, 1960). The use of 

the Kalman filter algorithm facilitates the analysis of general and flexible learning processes. As 

discussed in Section 2.1.5, learning is classified as learning-by-doing (hereafter, individual 

learning) and learning from others (hereafter, social learning), depending on whether information 

is acquired by an individual or by interactions with others. This paper focuses on the relative 

roles of individual learning and social learning in the context of GM technology adoption. Thus, 

as discussed in more details in Chapter 3, the Kalman filter algorithm is used to evaluate the role 

of both individual learning and social learning.  

With the sense that learning affects adoption behavior sequentially over time, empirical 

models incorporating learning process should be constructed using the dynamic programming 

(DP) model, where farmers are assumed to make decisions with forward-looking behavior. 

However, previous literature on GM technology has not developed adoption models using the 

DP, in part due to lack of accumulated data. Indeed, early GM technology adoption literature has 

been presented using static cross-sectional analyses, such as a Tobit model (Alexander et al., 

2003; Fernandez-Cornezo et al., 2001) or a mixed multinomial logit model (Useche et al., 2009). 

Accumulated data up to the mid 2000’s enable researchers to rely on time-series studies, such as 

the classic diffusion model developed by Griliches (1957). For example, Fernandez-Cornejo et 

al. (2002) evaluate determinants of the diffusion rates of GM corn, soybean, and cotton using a 

logistic model. But they do not analyze the role of learning. The current challenge is to combine 

cross-sectional and time-series models to study GM technology adoption with learning effects.  
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Developing a conceptual DP model for GM adoption can build on the work of Manski 

(1993), specifying social learning in a dynamic choice model accounting for decision makers’ 

strategic behavior. Besley and Case (1994) and Baerenklau (2005) are also useful references for 

this paper as they develop a structural dynamic model incorporating strategic interdependence of 

farmers and their neighbors. But models in Manski and Besley and Case are discrete choice 

models about whether to adopt a new technology or not. This paper extends this approach to a 

continuous choice model examining adoption rates. In addition, previous GM adoption literature 

examining the role of risk preferences has depended upon survey data or field experimental data 

(Alexander et al., 2003; Liu, 2008; Qaim and Janvry, 2003). This paper will evaluate the role of 

risk aversion empirically by specifying and estimating a risk aversion parameter within a 

conceptual adoption model.  
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Chapter 3 : Conceptual Model of GM Technology Adoption 
 

This chapter develops a conceptual structural dynamic programming (DP) model of the GM 

technology adoption including both individual learning and social learning. Model development 

begins with considering a general DP model providing a basic representation of the underlying 

dynamic process for GM technology adoption. It involves a problem of imperfect state 

information (Berteskas, 1976) due to the unobservable distribution of profitability for GM and 

non-GM technologies. The learning process is specified using the Kalman filter algorithm, 

capturing both individual learning and social learning. The model will be applied relying on the 

DMR panel data set of corn farmers in the U.S. Corn Belt. 

 In the general DP model, the analysis of technology adoption focuses on a given farmer 

in a specific region. The region involves a Crop Reporting District (CRD) defined by USDA as a 

zone facing similar agro-climatic conditions. Farmers in a given region constitute the relevant 

neighbor group. For each planting year t , farmer i  makes an adoption decision of how many 

acres he/she would sow using the k -technology. In our case, technology corresponds to the 

choice of seed types: k  =  ,CONV GM , where CONV  represents the old technology of 

conventional (non-GM) seed, and GM  corresponds to the new technology of GM seed.
3
 Farmer 

i ’s total acreage at year t  is denoted by itJ , and acreage sown to the k -seed by k

itJ . Farmer i ’s 

neighbors’ total acreage is denoted as itG , and k

itG  is the acreage planted to the k -technology by 

farmer i ’ s neighbors.  

                                                           
3
 Traits of GM corn seed can be itemized as follows: herbicide-tolerant (HT), insect-resistant for the European corn 

borer (IR-ECB), and insect-resistant for rootworms (IR-RW) for a single GM trait seed; double-, triple-, and 

quadruple- stacked seed by combinations of HT, IR-ECB, and IR-RW. For simplicity, this paper considers a simple 

choice between non-GM (conventional) vs. GM. Analyses of multiple choices of various GM traits are good topics 

for further research.   
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 The rest of this chapter is organized as follows. The first section provides the theoretical 

background for the analysis, with a focus on the profitability of conventional seed and GM seed 

and the economic rationale for the adoption of GM technology. Under uncertainty about 

profitability, a model of learning process is described, and the farm level utility is specified. The 

second section develops a general DP model of GM technology adoption under imperfect state 

information. It relies on sufficient statistics for empirical tractability. The third section specifies 

the general DP model and discusses its empirical application to the U.S. corn farmers’ GM seed 

adoption. The learning process is represented using the Kalman filter. Model specification is 

implemented both at the aggregate model and at the disaggregate models according to three farm 

types: early, intermediate, and late adopters.  

 

3.1.Theoretical Model 

3.1.1. Profitability under Uncertainty 

Farmers adopt GM technology when they experience higher profit from planting GM seeds than 

from sowing conventional seeds (Rogers, 1995). As stressed by Besley and Case (1994) and 

Baerenklau (2005), profit from a new technology is uncertain, and GM seed is understood as a 

risky choice with uncertain profitability. Thus, the DP involves decision making under 

uncertainty.  

In many models of adoption decisions under uncertainty, the payoff from old 

technology/products is assumed to be certain. For example, Besley and Case (1994) assume that 

the return from the traditional cotton seeds is known with certainty through farmers’ historical 

experience while they assume that the return from HYV cotton seed is uncertain. Erdem and 

Keane (1996) assume that consumers’ utility from traditional brand choices involves no risk and 
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no learning. In our analysis, we suppose that both conventional seeds and GM seeds generate 

uncertain payoff and that both are subject to learning. Thus, we consider the case where both the 

new technology and the old technology give uncertain payoff. This introduces a role of learning 

for both technologies in the adoption choice.  

Adopting and planting the k -technology seeds at time t  provide farmers with 

information concerning the actual per-acre gross income k

it . Under uncertainty, gross income is 

not known ahead of time to farmers. At planting time, each farmer i  perceives k

it
 
as a random 

variable with a given subjective probability distribution. Thus, k

it
 

is considered as an 

unobservable latent variable.  

The latent variable k

it  must be estimated by the i-th farmer based on the information 

available. Define seed cost as k

itp
 
for the k -technology. Following Goldberger (1972), Zellner 

(1970), and others, the perceived per-acre profitability k

it
 
is represented as follows: 

 ˆ , ;k k k k

it it it it ite A p  q  for  ,k CONV GM , (3.1) 

where  ˆ k

it 
 
is a function of the vector itq , a vector of random disturbances k

ite , and a vector of 

associated parameters A . The vector itq
 
includes all observable factors affecting gross income 

k

it  (e.g., farm size and farm location). The random disturbance k

ite
 
includes all unpredictable 

factors such as weather effects, pest damages, and weed conditions. Finally, k

ite
 
also includes 

aspects of productivity of the k-th technology not known to the i-th farmer at time t.   

The presence of imperfect knowledge about the profitability k

it  implies a need to assess 

its distribution function and its evolution over time. This is done by introducing observable 

measurements related to k

it , as discussed below in Section 3.2.2 and Section 3.3.2.  
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3.1.2. Theoretic Basis of Learning Process 

Learning means updating farmers’ information. When applied to technology, learning involves 

accumulated experience over time. Information acquired by farmers in any year affects their 

adoption decisions for the following year. At the same time, information is revised and updated 

from one year to the next. This process takes place recursively.  

Noting that profitability k

it
 
is not known ahead of time and thus uncertain (Baerenklau, 

2005; Besley and Case, 1994), it can be treated as a random variable. Denote k

it  as the mean of 

the perceived per-acre profitability for the k-th technology at time t. Then, k

it  can be written as 

k k k

it it ite      for  ,k CONV GM , (3.2) 

where the error term k

ite
 
is a random variable with zero mean and variance 2

,it k . Throughout this 

paper, information acquired from adopting the k -technology is represented by farmers’ 

subjective beliefs given by the mean k

it  and variance 2

,it k  for the k -th technology at time t.  

Figure 3.1 illustrates how the mean and variance of profitability can vary from one period 

to the next. The change reflects learning. For example, if farmer i  experiences greater profit 

from sowing GM seeds than from planting conventional seeds at time t , he/she may expect the 

mean profitability level for GM seed GM

it  to increase in the next period. Further, he/she may 

expect a reduction in uncertainty on GM seeds in the next period (as represented by the variance 

2

,it GM ).  
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Figure 3.1: Subjective Beliefs at the Adoption Case 

 
 

Most previous literature on learning has employed a Bayesian approach (Baerenklau, 

2005; Besley and Case, 1994; Feder and O’Mara, 1982; Foster and Rosenzweig, 1995; Hiebert, 

1974). Under the assumption that profit is normally distributed, they construct updating rules of 

k

it
 
and 

2

,it k
 
using Bayes theorem. This is particularly convenient under normality as the normal 

distribution belongs to the class of conjugate distributions (DeGroot, 1970).   

Below, we rely on the Kalman filter algorithm (Kalman, 1960) as a representation of 

learning. We do it for the following reasons. First, the Kalman filter algorithm provides a 

convenient parameterized structure for updating mean and variance as new information becomes 

available. Second, by assuming normality for the distribution of profitability, we can take 

advantage of its conjugacy property in the parameterized evolution of the mean and variance. 

Third, the Kalman filter is flexible and provides a basis to examine the relative roles of 

Subjective beliefs at t + 1: 

Subjective beliefs at t: 

Mean of the perceived per-acre profitability for the k-technology 

Probability density 

Increased mean & 
Decreased variance 
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individual learning and social learning. More details on the analytical derivation of the Kalman 

filter under alternative learning processes are described in Section 3.3.1 and in the Appendix. 

  

3.1.3. Risk Preferences: A Mean-Variance Approach  

Under the expected utility model, assume that farmer i ’s risk preferences are represented by the 

von Neumann-Morgenstern utility function  it itu  , where it  denotes uncertain farm profit. 

Then the i-th farmer makes decisions that maximize expected utility  it itE u    , where  E   is 

the expectation operator over the distribution function of profit it .  

GM technology takes time to diffuse fully because farmers are uncertain about its 

profitability. The latest adoption rate for GM corn amounts to 88% in 2011 (USDA/NASS, 

2011). Yet, over the last 15 years, many farmers have sown both conventional seed and GM seed 

on their fields. This experimentation has provided new and useful information to farmers about 

the profitability of GM technology. As discussed above, we assume that both conventional seed 

and GM seed are risky choices giving uncertain payoff. When farmers face two risky 

technologies, they can choose mixture of both technologies in order to reduce risk exposure 

(variance), reflecting that farmers’ technology adoption is a portfolio selection problem 

(Anderson et al., 1977). With farmers’ diversification strategy under uncertain profitability, 

farmers’ profit can be represented as a combination of partial adoptions over technologies. That 

is, farmer i ’s total profit it
 
is obtained by taking summation over all acres and all technologies 

at time t  as follows 

 
 ,

k k

it it it

k CONV GM

x 


  ,    (3.3) 
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where /k k

it it itx J J  indicates adoption rates of acres sown to the k -technology ( k

itJ  ) relative to 

total acreage ( itJ  ), and  0,1k

itx  .
4
 

Under the expected utility model, we assume that farmer i ’s risk preferences are given 

by a mean-variance utility function. Such an approach has been broadly used in applied risk 

analysis (e.g., Anderson et al., 1977). In the mean-variance approach, we have only to estimate 

the first two moments of the distribution of it  to analyze farm utility from technology adoption 

under uncertain payoff (Chavas, 2004). Under normality, the mean and variance are sufficient 

statistics for the underlying distribution. In addition, we assume that farmer i ’s risk preferences 

exhibit Constant Absolute Risk Aversion (CARA) (Pratt, 1964). Under the assumptions of 

normality and CARA, maximizing farmer i ’s expected utility is equivalent to maximizing the 

additive mean-variance utility function represented as  

     
1

var
2

it it it itE u E r               

1

2

T T

it it it it itr      x μ x x ,    (3.4) 

where r  is the Arrow-Pratt absolute risk-aversion coefficient, measuring farmer i ’s degree of 

risk aversion.  

The mean component  itE   is specified using (3.3). For each technology k , we denote 

the mean of the perceived per-acre profitability k

it  by k

it .
5
 Then, itμ  = 

T
CONV GM

it it     denotes 

                                                           
4
 (3.3) is derived by  

 

  
 

 
 , , ,

/k k k k k k

it it it it it it it it it it

k CONV GM k CONV GM k CONV GM

J J J J J x   
  

          , 

where itJ  is farmer i ’s total acreage at year t , and 
k

itJ
 
is acreage sown to the k -seed. For simplicity, we assume 

constant returns to scale (CRS). Under CRS technology, farm size or scale doesn’t matter. Thus, itJ
 
is dropped 

from the derivation.  
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a vector of mean profitability. And 
T

CONV GM

it it itx x   x  represents a vector of adoption rates for 

each technology. By taking the expectation operator  E   to (3.3), we get 

  T

CONV

CONV GM it

it it it it itGM

it

E x x





 
     

 
x μ .   (3.5) 

The variance component  var it  is also specified using (3.3).
 

it
 
is defined as the 

variance-covariance matrix of the per-acre profitability over technologies  

 

 

2

,

2

,

cov ,

cov ,

CONV GM

it CONV it it

it GM CONV

it it it GM

  

  

 
  
 
 

,   (3.6) 

where 2

, var k

it k it     . By using the variance operator  var   along with (3.3) and (3.6), the 

variance of farmer i ’s profit,  var it  is represented as 

 
 

 

2

,

2

,

cov ,
var

cov ,

CONV GM
CONV

it CONV it itCONV GM it

it it it GMGM CONV
itit it it GM

x
x x

x

  


  

   
            

   

T

it it it  x x .       (3.7) 

The additive mean-variance utility function in (3.4) is used as a reward function in the DP 

model discussed in the following sections. Though the additive form holds only under restrictive 

assumptions of normality and CARA, this provides a convenient way to analyze farm utility 

under uncertain profit for the following reasons. First, CARA means the absence of wealth 

effects. In this context, a farmer’s risk preferences are summarized by the absolute risk-aversion 

coefficient r  (Chavas, 2004). Second, in the context of the DP, normality assumption enables us 

                                                                                                                                                                                           
5
 Taking the expectation operator  to (3.2), we obtain , where  

and  = 0.     

 E 
k k k

it it itE E E e            
k k

it itE    
k

itE e  
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to consider only the mean and variance of the distribution of k

it  as sufficient statistics, which 

can reduce the high dimensionality of the imperfect state space in solving the Bellman equation, 

as discussed below in Section 3.2.3 (Berteskas, 1976).
6
 

 

3.2.Conceptual Dynamic Model: A General Form 

3.2.1. Basic Problem 

We begin with considering a basic DP model for farmers’ GM technology adoption. Suppose 

farmer i  makes adoption decisions of how many acres to plant with k -technology seeds at each 

time period t , denoted by adoption rates 
T

CONV GM

it it itx x   x . In the context of dynamic 

optimization problem, adoption rates correspond to choice variables.  

At time t , farmer i  faces uncertainty about the profitability of using conventional seeds 

versus GM seeds. The uncertain profits are represented by the per-acre perceived profitability 

T
CONV GM

it it it    π . Then, his/her adoption choices are affected by the k

it ’s for each 

technology k  at time t . Thereby, k

it ’s correspond to state variables farmer i  face at time t . We 

assume that k

it  evolves over time and that there exists a transition equation between k

it  and 

1

k

it   for each technology k .
7
 Choosing adoption rates k

itx  under uncertain profitability k

it  for 

each technology k , farmer i  receives payoffs represented as his/her expected utility  it itE u     

                                                           
6
 Meyer (1987) presents a general case for mean variance analysis, without imposing normality assumption or 

CARA. In this context, the learning process could still be represented by the Kalman filter and our analysis would 

apply without assuming normality for the distribution of the unobservable state variables. However, Meyer’s 

arguments are presented in a static context without any learning. In a dynamic context, there would be a need to 

identify non-normal conjugate distributions whose sufficient statistics can be summarized by the mean and variance 

only. Investigating this issue appears to be a good topic for future study.  

7
 This is an intuitive assumption to set up a basic sequence problem. The underlying dynamics is explained by 

farmers’ learning process, which is discussed in the following sections.  
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at time t , where 
it  is given by equation (3.3). Assuming that farmer i ’s behavior is forward-

looking, he/she makes adoption decisions to maximize his/her present expected value of future 

utilities. Then, the basic optimization problem can be represented as 

 
  

0 0

max
T

itit t

T
t

it it it

t

V E E u 
 

 
     

 


vx
      

 
  

0 0

max
T

itit t

T
t

it it it

t

E E u
 

 
     

 


vx

x π
T

,    (3.8) 

s. t.  1 , ,it it it it it π g π x v   (the system equation), (3.9) 

where   indicates a discount factor,  0,1  . In equation (3.9), 
T

CONV GM

it it itv v   v
 
is a 

vector of random disturbances for each technology k  = {CONV , GM }. Equations (3.8)-(3.9) 

constitute a stochastic DP model, with state equation (3.9) representing the evolution of state 

variables over time.  

As this paper focuses on learning, the role of learning needs to be made explicit in (3.8)-

(3.9). When the state variables are not observed at planting time, learning is characterized by the 

evolution of the assessed probability distribution of the state variables. In this case, we face a DP 

problem with imperfect state information (Berteskas, 1976). As further discussed below, our 

analysis will proceed assuming that farmers’ subjective beliefs are characterized by the mean and 

variance of the profitability k

it  for each technology k , learning being represented by the 

evolution of the mean and variance over time.  

 

3.2.2. Bellman Equation under Imperfect State Information 
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In the presence of unobservable state variables k

it ’s under uncertainty, the basic sequence 

problem in the previous section is transformed to the DP problem with imperfect state 

information (Berteskas, 1976).  

In addition to the system equation, we introduce a measurement equation in the DP 

model. When the state variables are not observed at planting time, farmers get information from 

observable measurements related to the unobservable states and use them to learn. At time t , let 

itz  be a vector of observable measurements providing information about the unobservable state 

variables k

it ’s. In general, farmer i ’s available information set at time t  is defined as 

 0 1 1, ,..., ,it t t it itI z z z z .     (3.10) 

Given the information set itI  at time period t , introducing the measurement equation 

involved with the vector of observable measurements itz  into the basic sequence problem in 

(3.8)-(3.9), the DP problem with imperfect state information is formulated as 

 
  

0 0

max |
T

itit t

T
t

it it it it

t

V E E u I 
 

 
     

 


vx
    

 
 

  
0 0

max |T

T
itit t

T
t

it it it it

t

E E u I
 

 
     

 


vx

x π ,    (3.11) 

s. t.  1 , ,it it it it it π g π x v   (the system equation), (3.12) 

 ,it it it itz  h π w                 (the measurement equation). (3.13) 

With wit being a random variable, the measurement equation (3.13) provides a general 

representation of the stochastic relationship between the unobservable state variables k

it ’s and 

the vector of observable measurements itz  at time t .   



33 
 

 

In addition to the measurement equation (3.13), note that the information set It has also 

been introduced in (3.11), reflecting that decisions made at time t are conditional on this state. 

Applying the state augmentation device (Berteskas, 1976, Chapter 2), the evolution of 

information over time can be written in general as  

 1 1,it it tI I z  ,    (3.14) 

which follows directly from the definition of information set itI  in (3.10). Equation (3.14) states 

how the information set expands over time as new observations on z are obtained each time 

period. When correlated with the unobserved states, these new observations are used to update 

the assessed probability distribution of the unobserved states. Then, the above DP problem 

becomes  

      
1

1 1max | |
itit

it it it it it it it it
z

V I E u I E V I I 


         x
,  (3.15) 

where farmer i ’s expected utility is now represented in terms of the conditional expectation 

operator given information set itI ,  | itE I . This indicates that farmer i ’s reward function 

involves the vector of observable measurements itz  via the information set itI . In this context, 

dynamics of learning is represented by the evolution of the information set composed of 

observable measurements itz  farmer i  receives every time period t . The remaining issue is to 

make the representation of the learning process empirically tractable in the DP problem. 

As discussed in Section 3.1, we will assume that farmers’ subjective beliefs for uncertain 

profitability k

it  for each technology k  are characterized by the first two moments of the 

distribution of k

it , the pair of the mean and variance ( k

it , 2

,it k ). This mean-variance 

representation will prove very convenient: it means that the learning process can be characterized 

entirely by the evolution of mean and variance over time. This will greatly simplify our analysis 
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on the role of learning in technology adoption. Given the information set itI , we can infer the 

conditional mean and variance of k

it  for each technology, and they can be specified through the 

conditional expected utility   |T

it it it itE u I 
 

x π . Learning about the distributions of k

it  for each 

technology indicates that farmers update their beliefs ( k

it , 2

,it k ) given itI . Thereby, the 

evolution of itI  generates the updating of ( k

it , 2

,it k ) implicitly. This updating is discussed in 

details in the following sections. 

 

3.2.3. Bellman Equation with Sufficient Statistics 

Solving the Bellman equation in (3.15) suffers from large computational burden as the 

information set itI
 
stores all measurements vectors itz ’s for every period. Such complexity of the 

information set can be reduced by employing sufficient statistics, which are quantities of smaller 

dimension than the original information set without loss of information necessary for solving the 

DP (Striebel, 1965). Sufficient statistics are defined as functions mapping the information set 

into the metric space such as the probability measures: 

 
|k

it it

k

it it I
S I P


 ,     (3.16) 

where  k

itS 
 
indicates a sufficient statistic, and 

|k
it itI

P
  

is its corresponding conditional probability 

measure associated with the imperfect state variable k

it  for each technology k .  

In a way similar to the discussion in (3.14), the system equation can be modified and 

simplified in Bellman equation by making use of sufficient statistics. Letting  k

it 
 

as a 

function available from given data for each technology k , the new system equation is expressed 

as the evolution of the probability measure as follows: 
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 
1 1

1| |
, ,k k

it it it it

k

it it itI I
P P z
  

 x ,     (3.17) 

where the next period measurements vector 1itz   
is considered as a random variable as it is in 

(3.14).  

Note that equation (3.17) involves the evolution of the distribution of k

it  instead of the 

values of k

it . This can be connected to farmers’ learning process. Farmers learn about the 

distribution of k

it  not the values of unobservable k

it . Also, learning process is represented as 

farmers’ updating their subjective beliefs about the distribution of k

it . Thereby, equation (3.17) 

based on conditional probability measures reflects farmer i ’s learning process.  Then, using 

sufficient statistics in (3.17), the Bellman equation becomes: 

       
1

| 1 | 1max | , ,
it it it it

itit

it I it it it it it I it it it
z

V E u I E V z I 


 
        π π

x
P Φ P x , (3.18) 

where |it itIπP  is a vector of the conditional probability measures 
|k

it itI
P


, and  | 1, ,
it itit I it itz πΦ P x  

denotes a vector of new system equations  k

it   for all k  in (3.17).     

The next step is to look for sufficient statistics in (3.17)-(3.18) that would reduce the 

dimension of the state space. This is important to help reduce the computational burden involved 

in solving the DP problem. Indeed, if 
|k

it itI
P


 has high dimensionality, solving Bellman equation 

would remain empirically difficult. In our case, assuming a Normal distribution helps. Then,
 

|k
it itI

P
  

can be characterized by only its mean and variance-covariance matrix, so that we can solve 

the relevant Bellman equation with relative ease over the smaller space of 
|k

it itI
P


by relying on its 

first two moments (Berteskas, 1976).  
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By the assumption of normal distribution on 
|k

it itI
P


for each technology k , the new system 

equation based on conditional probability measures in (3.17) accounts for updating rules in terms 

of farmers’ technology adoption. Then, farmer i ’s subjective beliefs for each technology k  are 

summarized by ( k

it , 2

,it k ). Under normality, the first two moments (the conditional mean 

denoted by 
|

k

it t  and the conditional variance denoted by 2

| ,it t k )
8
 are sufficient statistics for the 

conditional distributions of k

it  given itI , 
|k

it itI
P


.  

Note that farmer i ’s expected utility is reformulated into the conditional expected utility 

given itI  as is in (3.15), involving the observable measurements to receive signals about 

unobservable state variables k

it  for each technology k . Under normality and the additive mean-

variance utility function in (3.4), we have  

     
1

| | var |
2

it it it it it it itE u I E I r I            

| |

1

2

T T

it it t it it t itr      x μ x x .     (3.19) 

In (3.19), the conditional mean  |it itE I  and the conditional variance  var |it itI   are used 

instead of the mean  itE   and variance  var it  in (3.4) when the information set is itI  at time 

t . In the second equality in (3.19), corresponding components |it tμ  and |it t  are also substituted 

                                                           
8
 The conditional moments given itI  are distinguished from the unconditional moments according to whether the 

information set itI  is considered or not at time t : for the distribution of unobservable 
k

it , if itI  is considered at 

time t , | |k k

it t it itE I      and 
2

| , var |k

it t k it itI     . Otherwise, 
k k

it itE      and 
2

, var k

it k it      for 

each technology  ,k CONV GM . 
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for itμ
 
and it . The subscript |t t  indicates the conditional mean and variance are measured 

given information set itI  at time t . 

Distinguishing from the unconditional moments described in Section 3.1.3, the 

conditional mean and variance of k

it  given itI  for each technology k  are denoted by  

| | |

CONV GM

it t it t it t    μ
T

 ,    (3.20) 

 

 

2

| ,

| 2

| ,

cov , |

cov , |

CONV GM

it t CONV it it it

it t GM CONV

it it it it t GM

I

I

  

  

 
  
 
 

 ,  (3.21) 

where | |k k

it t it itE I      and 
2

| , var |k

it t k it itI      for each technology  ,k CONV GM . Then, 

farmer i ’s subjective beliefs given by ( k

it , 2

,it k ) for the distribution of k

it  can be analyzed 

through the conditional mean and variance of k

it  given itI  (
|

k

it t , 2

| ,it t k ) for each technology k .  

Using (3.19)-(3.21) along with the assumption of normal distribution on conditional 

probabilities 
|k

it itI
P


 for each technology k , Bellman equation in (3.18) becomes  

   
1

| | | | 1 1| 1 1| 1

1
, max ,

2

T T

itit

it it t it t it it t it it t it it it t it t it
z

V r E V I


    

                    x
μ x μ x x μ . 

(3.22) 

Note that we have only to consider two components of the mean |it tμ  and the variance-

covariance matrix |it t  as for evolving state variables in the context of sufficient statistics with 

the assumption of normal distribution. The transition equations between the current period pair (

|it tμ , |it t )  and its consecutive pair ( 1| 1it t μ , 1| 1it t  ) can be obtained by applying the Kalman 

filter algorithm, as discussed in the following section and in the Appendix.   
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3.3.Model Specification: Empirical Application to the GM Technology Adoption in the U.S. 

Corn Belt 

This section specifies the Bellman equation with sufficient statistics for our empirical analysis on 

GM corn adoption in the U.S. Corn Belt using the DMR panel dataset. Model specification 

requires combining dynamic optimization with econometric analysis of model estimation. 

Focusing on the effects of learning on GM technology adoption, the learning process is modeled 

using a measurement equation which is parameterized with coefficients capturing both individual 

and social learning. Noting that the process of information acquisition (learning) is represented 

by the updating of subjective beliefs about the distribution of the unobservable per-acre 

profitability for each technology, we rely on the Kalman filter algorithm to represent the 

evolution of the conditional mean and variance of the corresponding distribution over time.     

A general form of the Bellman equation represented in (3.22) is specified at two models: 

at the aggregate model; and at a more disaggregate model, allowing for heterogeneity among 

farmers. The aggregate model is applied to the U.S. Corn Belt farmers from the whole DMR 

panel dataset, where we suppose there is a representative farmer whose GM corn adoption rates 

from 2000 to 2007 represent the average level of adoption during the same period. The 

disaggregate models applied to sub-groups drawn from the DMR panel dataset, classified by 

farm type in terms of adoption pattern. We divide farmers into three sub-groups depending on 

their adoption patterns: early adopters, intermediate adopters, and late adopters (Rogers, 1995). 

For simplicity, within each group, we assume that farmers have the same policy function, 

i.e. that they would make the same decision when facing a given state. Note that this still allows 

differences in observed adoption to the extent that different farmers face different states. For 

example, even with the aggregate model, it remains possible to explain why some farmers are 
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early adopters (late adopters) if they are in a state of being very well informed (poorly informed). 

In this case, heterogeneity of adoption across farmers would be due to differences in the initial 

conditions of the state space.  

Thus, a single DP model is developed for each group both at the aggregate model (a 

representative farmer at average levels) and at the disaggregate models (a selected early-, 

intermediate-, and late- adopter). Solving a single DP problem for each analysis group helps us 

reduce the computational burden. Note that the disaggregate model being applied one group at a 

time, it will allow for heterogeneity across groups that are unrelated to initial conditions. This 

heterogeneity can come from differences in the reward function, in the system equation, and in 

the measurement equation across groups. This will provide a basis for us to investigate how risk 

preferences and social learning can affect adoption behavior across groups.  

The DP model for the GM corn adoption is considered as an infinite time horizon 

problem though the DMR panel data is collected just for 8 years. The DMR panel dataset shows 

GM corn adoption rates increased dramatically from 33.01% in 2000 to 74.96% in 2007, but we 

can’t say the adoption of GM seeds is at the steady state due to the possibility of increasing 

beyond the analysis period. For example, USDA/NASS (2011) shows the adoption rates of GM 

corn reach 88% in 2011. In addition, GM seeds don’t always guarantee higher profit than 

conventional seed, reflecting that GM technology is not adopted fully. Thus, we assume farmers 

make adoption decisions of GM seeds under a long planning horizon and stationary conditions. 

Under an infinite horizon problem, this implies that the value function in Bellman equation 

doesn’t depend on time t . Indeed, under the Contraction Mapping Theorem, Bellman equation is 

a functional fixed-point equation whose unknown is the common value function without time 

subscript.   
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3.3.1. Empirical Dynamic GM Adoption Model – Aggregate Model 

3.3.1.1.System Equation and Measurement Equation 

The general DP model developed in Section 3.2 is empirically specified so that it is applied to 

the GM technology adoption by corn farmers in the U.S. Corn Belt. The relevant Bellman 

equation in (3.22) is specified for the aggregate GM technology adoption model, where a 

representative farmer is assumed to make adoption decisions at the average levels of economic 

variables in the DMR panel dataset.  

As we solve a single representative farmer’s adoption problem, farmer index i  is omitted 

from the DP model hereafter. Specifying the aggregate DP adoption model begins with 

parameterizing the equations in the DP system with associated parameters. With a focus on 

relative roles of individual and social learning, learning process is modeled in the measurement 

equation with distinctive parameters capturing individual learning and social learning. The 

underlying dynamics representing learning process is modeled applying the Kalman filter 

algorithm. Assuming tg
 
in (3.12) and th

 
in (3.13) are linear for simplicity, the system equation 

is represented as 

1t t t t   π απ βx v      (3.23) 

11 12 11 121

21 22 21 221

CONV CONV CONV CONV

t t t t

GM GM GM GM

t t t t

x v

x v

    

    





          
             

          
    

for  ,k CONV GM , where tπ  
is a vector of state variables CONV

t  and GM

t  representing the 

per-acre profitability of conventional seed and GM seed at time period t , respectively. tx  is a 

vector of adoption rates CONV

tx  for conventional seed and GM

tx  for GM seed. tv
 
is a random 

disturbance vector whose component k

tv
 
is assumed to be normally distributed with zero mean 
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and a finite variance for each technology. α  and β  are 2-by-2 matrices of parameters connecting 

the profitability and adoption choices at the current time period t  with the values in the 

following period 1t  . 

In the system equation, the per-acre profitability for each technology is assumed to be 

stationary over time. Then, α  is assumed to be an identity matrix. 11  stands for the effect of 

adoption of conventional technology on the average change in the next period per-acre 

profitability of conventional seed 
1

CONV

t 
. If 11  > 0, adopting conventional seed would improve 

the profitability level of conventional seed at the next period. Symmetrically, 22  measures the 

effect of adoption of GM technology on the average change in the next period per-acre 

profitability of GM seed 1

GM

t  . If 22  > 0, the adoption of GM seed would improve the 

profitability for GM seed. Also, comparison between 11  and 22  can provide knowledge about 

which seed is more profitable. For example, if 11  < 22 , farmers may perceive GM seed is more 

profitable on average than conventional seed. The cross parameter 12  is the effect of adoption of 

GM technology on the average change in 1

CONV

t  , reflecting the effect of area-wide suppression of 

pest population. For example, if 12 0  , the adoption of GM technology in this year would lead 

to higher 1

CONV

t   when planted GM corn seeds (e.g., IR-ECB or IR-RW corn varieties) suppress 

pest population not only on areas sown with GM seeds but also on their adjacent areas sown with 

conventional seeds (Hutchison et al., 2010). The other cross term 21  is the effect of adoption of 

conventional technology on the average change in 1

GM

t  . It can reflect the effect of weed control. 

For example, if 21 0  , the weed control effect can be related to tillage and its impact on soil 

organic matter (Carter, 1992). On areas sown with conventional seeds at any year, tillage is 
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necessary for weed control but tends to reduce organic matter during a cultivation period. If GM 

seeds are sown on the same areas in the following year, the profitability of GM seeds 1

GM

t   may 

be lower due to lower soil quality. On the contrary, sowing GM seeds, such as HT corn variety, 

instead of conventional seeds may slow down the decay of organic matter by reducing tillage and 

preserving soil quality. 

Next, the measurement equation is represented as 

t t tz  γπ w       (3.24) 

11 121

21 221

31 321

41 421

CONV

CONV

GM

GM

q
CONV

t
t

yCONV CONV
tt t

GM GM q
t t t
GM

yt
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wq

wy

q w

y
w

 

  

  

 









 
     
                     
         

 

      

for  ,k CONV GM , where 
1 1 1 1, , ,

T
CONV CONV GM GM

t t t t tz q y q y   
     is the measurement vector 

composed of four elements capturing both individual learning and social learning jointly for each 

technology. 

First, 1

CONV

tq   
and

 1

GM

tq   indicate yield information of conventional and GM seeds at the 

previous crop year 1t  , respectively. We propose a farmer acquires information for the 

profitability referring to last year’s yield data from his/her own experience at the adoption 

decision point t . In this case, 1

CONV

tq   
( 1

GM

tq  ) is used as a proxy variable capturing individual 

learning for conventional (GM) technology. Thereby, the previous year’s yield information for 

each technology is an observable measurement involved with individual learning. 
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Second, 
1

CONV

ty 
 and 

1

GM

ty 
 indicate neighbors’ adoption rates for conventional and GM 

technology at the previous year 1t  , respectively.
9
 At time period t , a farmer is assumed to 

observe what his/her neighbors did for the adoption of each technology in the previous year 

1t  . He/she obtains information about the profitability for each technology through social 

interactions, so that the previous year’s neighbors’ adoption rates for each technology are 

observable measurements involved with social learning.  

Then, γ  is a 4-by-2 matrix of corresponding parameters accounting for the relation 

between the per-acre profitability and observable measurements across technologies in the 

measurement equation. That is, γ  reflects the degree of correlation between observation vector 

tz  and unobservable state variables CONV

t  and GM

t . Specifically, 11  ( 32 ) indicates the effect 

of individual learning for conventional (GM) technology on the per-acre profitability CONV

t  (

GM

t ). On the other hand, 21  ( 42 ) captures the effect of social learning for conventional (GM) 

technology on the per-acre profitability CONV

t  ( GM

t ). In short, the relative roles of individual 

learning and social learning are measured by comparing 11  and 21  for conventional 

technology. A similar interpretation applies to the parameters 32  and 42  for GM technology. 

Especially, the social learning parameter for GM technology 42  reflects the strength of 

information externalities, where farmers may have an incentive to delay adopting GM 

                                                           
9
 In the aggregate model, the neighborhood group is assumed to be the whole panel dataset for the U.S. Corn Belt, 

and 1

k

ty   is given by taking average on 1 1 1/k k

it it ity G G    for all farmers before we drop the subscript i , where 

1

k

itG   denotes acreage k -technology seed is planted to by farmer i ’s neighbors at time period 1t   in the group. 

1itG   is neighbors’ total acreage at 1t   in the group.  
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technology as 42  is greater. This is discussed in more detail through sensitivity analysis in 

Chapter 5.    

Other parameters 12 , 22 , 31 , and 41  can be considered as cross-technology effects of 

individual learning and social learning. They can affect a farmer’s diversification strategy in 

adopting multiple technologies. Especially, 31  is associated with the effect of higher yield of 

GM on CONV

t ; GM corn varieties can be considered as joint products of conventional and GM 

technologies as biotech companies insert specific GM traits into conventional seeds. For 

example, 31 0   could occur when GM traits are inserted into better conventional seeds in order 

to improve yield of GM seeds.    

tw
 
is a vector of observation noises for each component of tz , being assumed to follow 

Normal distribution with zero mean and a finite variance. For simplicity, we assume that random 

disturbance vectors tv
 
and tw

 
are independent with given probability distributions. With the 

system equation (3.23) and the measurement equation (3.24), their distributions are assumed to 

be as follows: 

   0, 0, ,T T

t t t t t t t tE E M E N E         v w v v w w   (3.25)  
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where tM
 

and tN
 

are 2-by-2 and 4-by-4 variance-covariance matrices for tv
 

and tw , 

respectively. We assume that tM
 
and tN

 
are positive definite matrices for every time period t . 

 

3.3.1.2.The Kalman Filter Algorithm 

As discussed in the previous sections, for each technology k , a farmer’s beliefs for the per-acre 

perceived profitability k

t  are characterized by the mean and the variance, k

t  and 2

,t k  along 

with t . Also, under the Normal distribution assumption, sufficient statistics for the adoption 

model are summarized by the conditional mean and variance of the probabilities associated with 

state variables, 
|

k

t t  and 2

| ,t t k  along with |t t . They are also used as state variables in Bellman 

equation with sufficient statistics in (3.22). Then, the learning process is constructed in a 

recursive way by means of the Klaman filter algorithm (Berteskas, 1976; Ljungqvist and 

Sargent, 2004).  

Note that the conditional mean and variance given an observable measurement tz 10
, 

|

k

t t  

and 2

| ,t t k  along with |t t  correspond to the linear least-squares estimation and its corresponding 

error covariance matrix of k

t  in the context of the Kalman filter. Given the system equation 

(3.23) and the measurement equation (3.24), the evolution of 
| | |

T
CONV GM

t t t t t t    μ  is derived as 

the following recursive formula
11

: 

1 1

1| 1 1| 1 1 | 1| 1 1 1

T T

t t t t t t t t t t t tI N N z 

        
        μ γ γ μ βx γ ,  (3.26) 

                                                           
10

 Note that information set tI  is equivalent to the vector of observable measurements tz  in the specified DP model 

because tI  in Section 3.2 is reduced to a lower dimensional tz  using sufficient statistics. 

11
 Further details are described in the Appendix. 
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where I  is a 2-by-2 identity matrix. 1| 1t t   is the conditional variance-covariance matrix of 
1

k

t 
 

given 1tz  , whose dimension is 2-by-2. Accordingly, the evolution of |t t  is constructed as 

1

1| 1 | | | 1 |

T T

t t t t t t t t t t t t t t tM M M N M


  
                       γ γ γ γ .  (3.27) 

In addition to the evolutions of 2

| ,t t CONV  and 2

| ,t t GM , (3.27) provides the evolutions of 

covariance terms through the relation between |t t  and 1| 1t t  . In order to focus on the evolutions 

of 
|

k

t t  and 
|

k

t t , we assume that the covariance terms are decided by 
|

k

t t  for each technology k .
12

 

First, we assume that the covariance between CONV

t  and GM

t  is proportional to the correlation 

coefficient between yield of conventional seed and yield of GM seed, , ,CONV GM t  at time t . Then, 

the covariance term is calculated from the estimated , ,CONV GM t  with 2

| ,t t CONV  and 2

| ,t t GM  

evaluated from the Kalman filter as follows
13

 

   2 2

, , | , | ,cov , |CONV GM

t t t CONV GM t t t CONV t t GMz       .  (3.28) 

Then, given a constant , ,CONV GM t , the covariance terms evolve automatically by evolutions in 

2

| ,t t CONV  and 2

| ,t t GM  obtained from the Kalman filter rather than they evolve through Equations 

(3.26) and (3.27). Using these discussions, |t t  is represented as 

2 2 2

| , , , | , | ,

|
2 2 2

, , | , | , | ,

t t CONV CONV GM t t t CONV t t GM

t t

GM CONV t t t GM t t CONV t t GM

   

   

  
  
   

.   (3.29) 

                                                           
12

 The simplest way is to make the covariance terms zero, but it would ignore the existing correlation between 

conventional and GM technologies. 

13
 Numerical details for , ,CONV GM t  are discussed in Chapter 4 
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In sum, the evolutions of |t tμ  in (3.26) and |t t  in (3.27) constitute the Kalman filter 

algorithm, representing a farmer’s learning process concerning the distribution of the per-acre 

profitability k

t  for the k -technology. Denoting tS  as the new state space under sufficient 

statistics, the state space associated with Bellman equation in (3.29) is summarized as 

 2 2

| | , | | ,, , ,CONV GM

t t t t t CONV t t t t GMS     . 

 

3.3.1.3.Bellman Equation for the Aggregate GM Technology Adoption Model 

As assumed above, the DP adoption model is specified as an infinite time horizon problem. 

Then, the subscript indexing time t  is omitted from the model, so that the value functions in the 

Bellman equation don’t depend on time t  any more. The next period terms indexed 1t   are 

simply denoted by subscript ‘  ’. In the infinite horizon case, the value functions are same as 

   tV V    for all t  under stationarity. Then, the relevant Bellman equation in (3.22) is 

represented as the functional fixed-point equation whose unknown is the common time-invariant 

value function  V  .  

Now, we consider combining econometric analysis of the DP adoption model (parameter 

estimation) with the given dynamic optimization problem. The system equation and the 

measurement equation (or equations in the Kalman filter) involve parameters to be estimated 

through the model simultaneously. All the parameters to be estimated are included in the 

parameter space denoted by  , ,r  β γ , where r  is the Arrow-Pratt measure of absolute risk-

aversion coefficient from the reward function, β  is a 2-by-2 parameter matrix in the system 

equation, and γ  is a 4-by-2 parameter matrix capturing individual and social learning in the 

measurement equation as discussed above. Now, our dynamic optimization problem is combined 
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with a multivariate regression problem to estimate parameters in the system. Given the parameter 

space   and the state space denoted by S , the time-invariant value function is denoted as 

 |V S   under stationarity. Combined with the parameter space  , Bellman equation under 

sufficient statistics in (3.22) is specified as 

   
1

, | max ,
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,  (3.30) 

where S  is the state space composed of the mean and the variance of the distribution of the k -th 

technology profitability k ,  ,S  μ  =  2 2, , ,CONV GM

CONV GM    . Then, the next period state 

space is represented as    2 2

, ,, , , ,CONV GM

CONV GMS            μ , whose elements satisfy the 

following Kalman filter algorithm: 

1 1T T

CONV CONV CONV

GM GM GM

x
I N N z

x

 

 

 
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

      
               

       

γ γ β γ , (3.31) 

     
1

T TM M M N M


 
         γ γ γ γ ,       (3.32) 

where the variance-covariance matrix for the current period is  

2 2 2

,

2 2 2

,

CONV CONV GM CONV GM

GM CONV GM CONV GM
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and the variance-covariance matrix for the next period is 

 

2 2 2

, , , , ,

2 2 2

, , , , ,

CONV CONV GM CONV GM

GM CONV GM CONV GM

   

   

   



   

  
  
   

.   

In addition, their corresponding random disturbances are  

2

2

0

0
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v

v

M




 
  
  

,       
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2

2

2
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0 0 0
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q

y

q

y

N









 
 
 

  
 
 
  

, and 

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

CONV

CONV

GM

GM

q

y

q

y

N



















 
 
 

  
 
 
  

.   

As discussed in Section 3.2.2, 
T

CONV CONV GM GMz q y q y
     plays a role of random 

disturbance as the yield information and neighbors’ adoption rates are not observed by farmers at 

the same period.  They can be observed in the following period.  

Note that   indicates a discount factor,  0,1   and that the reward function is 

represented by the additive mean-variance utility function, which is bounded for the k -th 

technology adoption choice  0,1kx  . As long as   is less than 1, and the reward function is 

bounded, the mapping in Bellman equation is a contraction on the space of bounded continuous 

function, being solved by the Contraction Mapping Theorem (Stokey et al., 1989). Then, a 

representative farmer’s optimal adoption choices      * * *| | |
T

CONV GMS x S x S     x
 
are 

also obtained by solving (3.30) given the parameter space  . Under stationarity of the infinite 

time horizon problem, the optimal policy function is also stationary. In the aggregate model, the 

parameter space   is assumed to be constant for all farmers. However, the initial condition of 
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state space can reflect heterogeneity by changing initial values in any combination of elements in 

S , which can be implemented by simulations with different combinations in S .  

The above dynamic optimization problem is expanded with the problem of estimation for 

the parameter space  . We count on a minimum-distance estimator (MDE) (Manski, 1988). The 

outline of algorithm is as follows: first, given any  , we solve the DP adoption model, obtaining 

optimal value functions and optimal policy functions given all possible state space. Second, we 

perform dynamic-path analysis (Miranda and Fackler, 2002). Using the optimal solutions, we 

simulate the adoption path over 8 years from 2000 to 2007. Third, we compare simulated 

adoption path with observed adoption path from the DMR panel dataset. We examine the 

discrepancies (distances) between observed adoption rates and simulated (predicted) adoption 

rates. Finally, using MDE, we estimate the parameter space   so as to minimize the distance. 

Further details are described in Chapter 4, where solution algorithm for dynamic optimization 

and estimation strategy are discussed.   

 

3.3.2. Empirical Dynamic GM Adoption Model  - Disaggregate Model 

The aggregate model can provide a broad-brush understanding of the roles of risk preference and 

individual/social learning in GM technology adoption in a big picture. Considering an arbitrary 

representative farmer in the DMR panel dataset, it parameterizes the reward function, the system 

equation, and the measurement equation in the DP system to analyze how an average level 

farmer is affected in the adoption of GM technology by changes in key determinants such as risk 

preferences or individual/social learning. Technically, it reduces computational burdens by 

solving a single DP problem for a representative farmer rather than solving multiple DP 



51 
 

 

problems for every farmer. Solution of a single DP is available by assuming that all farmers’ 

policy functions are same and that heterogeneity exists only in initial conditions.   

However, the aggregate model inevitably involves a potential aggregation bias problem 

by overlooking heterogeneity present at the more disaggregate model. First, the optimal policy 

function obtained from solving the aggregate adoption model is constant across farmers. Under 

the same policy function, simulated GM adoption rates can differ depending on the initial 

conditions facing each farmer. Indeed, even if the optimal policy function from the aggregate 

model holds for any individual farmer, different initial conditions (e.g., different initial quality of 

information) can imply different observed path of adoption across farmers. Yet, there remains 

the possibility that farmers can differ from each other for reasons unrelated to initial conditions. 

In this case, different farmers would have different decision rules which would in turn affect 

their observed adoption decisions. In this case, the aggregate model would suffer from 

heterogeneity bias. This issue is addressed in our analysis of DP models applied at the 

disaggregate models.   

Second, our DP model implements both dynamic optimization solution and parameter 

estimation done jointly. As just mentioned, the presence of parameter heterogeneity across 

farmers can imply heterogeneity bias. If so, estimated parameters from the aggregate model may 

be biased and provide an inappropriate representation of an individual farmers’ adoption 

behavior. This would occur if differences in the parameterization of the model affect the decision 

rules obtained from the DP problem.   

Third, heterogeneity in reaction for externality (mainly, information externalities in terms 

of social learning) can occur across individual farmers. As our model captures information 

externalities through parameterization of the measurement equation, the strength of information 
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externalities estimated at the aggregate model could be different across individual farms. This is 

similar to the above heterogeneity in the parameter space, but with a special focus on the role of 

social interactions and their effects on individual behavior.   

Since ignoring heterogeneity across farmers can lead to biased results, we develop 

disaggregate DP models that can capture differences across groups. Investigating 136 farmers in 

the DMR panel dataset, we classify farmers into three types according to their adoption patterns. 

Referring to the typical s-shape adoption curve (Rogers, 1995), we identify early adopters as 

those whose GM corn adoption rates reach at a relatively high level in early 2000’s (70% in 

2002), late adopters as those whose adoption rates reach at a relatively high level between 2005 

and 2007, and intermediate adopters as those situated between early adopters and late adopters. 

The motivation for this grouping is to explore whether there are significant differences in 

adoption behavior across groups, differences that are unrelated to initial conditions. We will 

focus our attention on the effects of two factors: the degree of risk aversion and the extent of 

social learning.  

As in the aggregate model, the empirical DP models are solved once for each farm type. 

This assumes that farmers within each type use the same decision rules. But this greatly reduces 

computational burden of solving multiple DP models. As noted above, our analysis considers 

three farmer types: the early-, the intermediate-, and the late- adopter. Using the DMR data, 

Figure 3.2 illustrates observed adoption rates by each farmer type, the aggregate GM corn 

adoption rates from USDA/NASS are also drawn for comparison.  
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Figure 3.2: GM Corn Adoption Rates by the Selected Farm Type Farmers 

 

Source: The DMR survey data and USDA/NASS (2011) 

Note: Y-axis indicates adoption rates of planted acres to GM seed  
 

In the analysis of farm heterogeneity, we want to explore whether the ability to access 

information about the profitability of GM technology differs across farm types. Intuitively, we 

expect early adopters to be better informed about the profitability of GM seed and late adopters 

to be less-well informed. While our three groups of farmers clearly exhibit different adoption 

patterns, we want to explore how much of the differences can be attributed to heterogeneity in 

initial conditions. Alternatively, we want to examine whether adoption behavior varies across 

farms types for reasons unrelated to initial conditions. In particular, we are interested in studying 

the role of social learning and answering the question of whether there is significant 

heterogeneity in information externalities across farm types. We also investigate whether there is 
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heterogeneity in risk preferences across farm types. Addressing these issues requires solving a 

DP model for each type of farmer.  

Let the set of farm types be  , ,EARLY INTER LATE , where a selected farmer’s farm 

type is represented as EARLY  for an early adopter, INTER  for an intermediate adopter, and 

LATE  for a late adopter. Assumptions for the disaggregate adoption model are the same as those 

of the aggregate adoption model (normality, infinite time-horizon problem, and stationarity). The 

differences between the aggregate model and the l -type of disaggregate model involve initial 

conditions in the state space, observable measurements, and parameters to be estimated for each 

group. Given  , ,l EARLY INTER LATE  and using (3.23), the system equation for the l -type 

adopter is rewritten as 

1

l l l l l l

t t t t   π α π β x v      (3.33) 

, , , ,

1 11 12 11 12

, , , ,

1 21 22 21 22

CONV l CONV l CONV l CONV ll l l l

t t t t

GM l GM l GM l GM ll l l l

t t t t

x v

x v

    

    





          
             

          
.   

And, the measurement equation for the l -type adopter is rewritten from (3.24) as follows: 

l l l l

t t tz  γ w       (3.34) 

,

,

,

,

,

1 11 12

, ,

1 21 22

, ,

1 31 32

,

1 41 42

CONV l

CONV l

GM l

GM l

q
CONV l l l

t
t

yCONV l CONV ll l
tt t

GM l GM ll l q
t t t
GM l l l

yt
t

wq

wy

q w

y
w

 

 

 

 









 
   

 
   

                 
   

      
 

.     

Then, using (3.30), the disaggregate DP model for the l -type farmer’s GM technology adoption 

is represented as the following Bellman equation:  

   
1

, | max ,
2

T T

ll

l l l l l l l l l l l l l l l

z
V r E V z



 

                      x

μ x μ x x μ    
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 
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CONV l
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  
 

 
 

  
     


 

 
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l
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l l l
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E V S z




 
 
 
 
 
  

  
 
 
 

 
   

   

, (3.35) 

where  , 2 , 2

, ,, , ,l CONV l GM l

CONV l GM lS      is the state space at the current period for each farm 

type l . The state space at the next period is  , 2 , 2

, , , ,, , ,l CONV l GM l

CONV l GM lS         . Then, 

elements in lS  and lS  are such that satisfy the following Kalman filter algorithm: 

       
, , ,

1 1

, , ,

T T
CONV l CONV l CONV l

l l l l l l l l l

GM l GM l GM l

x
I N N z

x

 

 

 


    



                                  

γ γ β γ , (3.36) 

   
1

T T
l l l l l l l l l l l l l lM M M N M



 
                             

γ γ γ γ . (3.37) 

The variance-covariance matrices for each farm type  , ,l EARLY INTER LATE are 
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at the next period. In addition, we have  
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.  

For each farm type l , the parameter space  , ,l l l lr  β γ  includes the Arrow-Pratt measure of 

absolute risk-aversion coefficient lr  from the reward function, a 2-by-2 matrix parameter l
β  

form the system equation, and a 4-by-2 parameter matrix l
γ  from the measurement equation of 

the disaggregate DP model.  

Denoting the value function given the state space lS  under the given l  as  |l l lV S   , 

the l -type adopter’s optimal policy functions are obtained from solving Bellman equation in 

(3.35), being presented as      * , * , *| | |l l l CONV l l l GM l l lS x S x S    
 

x
T

 
given l  for each 

farm type l . The overall algorithm for dynamic optimization and estimation strategy is basically 

the same as for the aggregate model, as discussed in the previous section. Further details are 

provided in Chapter 4.  
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Chapter 4 : Data and Methods 
 

This chapter is composed of two major sections. The first section presents data used for 

empirical research applying the conceptual structural DP adoption model developed in Chapter 

3. Data used for the aggregate model is introduced first and followed by data used for the 

disaggregate model. The second section discusses numerical methods used for solving the DP 

models conditional on a set of parameters and provides estimation strategy for the parameters of 

the DP adoption model. An algorithm is devised for considering both dynamic optimization and 

parameter estimation. The collocation method is used to obtain a numerical solution for the DP 

adoption model. And a minimum distance estimator is used for estimation.  

 

4.1.Data 

4.1.1. Data for the Aggregate Model 

For the empirical application of the conceptual model of GM corn seed adoption, this study relies 

on various data sources on the U.S. corn seed market. The majority of information comes from 

an extensive survey data collected by DMR. The DMR data are annual survey data from a 

sample of U.S. corn farmers between 2000 and 2007 across 279 Crop Reporting Districts 

(CRDs) in 48 states.
14

 First of all, the DMR data provides farm-level information on purchased 

corn hybrids with information on associated GM technologies including herbicide tolerance 

(HT), insect resistance (IR), and stacked versions of HT and IR. For each GM technology, farm-

level information on seed costs and planted acreage are provided with other farm attributes such 

as farm size and location (longitude and latitude). 

                                                           
14

 The raw data has 168,862 observations at the plot level on a total of 38,617 farmers.  
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The DMR dataset is a rotating panel data, where a part of the sampled farmers is replaced 

every year. As such, it provides an unbalanced panel data. As our conceptual structural DP 

model concerns GM adoption over time, it will be convenient to focus on a balanced panel data 

to investigate farmers’ sequential adoption behavior. But 175 farmers among 38,617 are 

surveyed every year in the DMR data. Using observations on these 175 farmers constitutes a 

panel data. These farmers are all located in the U.S. Corn Belt (as are 84.07% of all farmers 

surveyed by DMR). 

The Corn Belt covers 51 CRDs in 11 states: Illinois, Indiana, Iowa, Kentucky, Michigan, 

Minnesota, Missouri, Nebraska, Ohio, South Dakota, and Wisconsin. Finally, eliminating 

farmers that have missing or inconsistent data, the panel data reduces form 175 farmers to 136 

farmers. The first question is: Are the GM adoption rates among these farmers similar to the 

adoption rates observed among other farmers?  

Figure 4.1 compares adoption statistics from the DMR panel data versus USDA data 

(obtained from USDA/NASS). GM corn adoption rates of planted acres in the U.S. Corn Belt 

from USDA/NASS (2011) is used to check whether there may exist a selectivity bias between 

the DMR population/panel data and national survey data provided by USDA/NASS. Figure 4.1 

shows how the pattern of GM corn adoption from each source differs across data sources.  

Adoption rates from the DMR population/panel data are a little higher than rates from 

USDA/NASS (by about 10 percent), but the overall patterns are similar during the same survey 

period. Thus, Figure 4.1 indicates that farmers surveyed by the DMR represent the typical GM 

adoption pattern observed by USDA/NASS and that there is no strong selectivity bias in using 

the DMR panel data in the analysis of GM adoption. 
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Figure 4.1: Selectivity Bias between the DMR and USDA/NASS 

 
Source: The DMR survey data and USDA/NASS (2011) 

Note: Y-axis indicates adoption rates of planted acres to GM seed  

 

Table 4.1 reports descriptive statistics on GM adoption rates and other variables from the 

DMR panel dataset composed of 136 farmers in the U.S. Corn Belt, which includes farm-level 

information on acreage planted with conventional seeds and GM seeds, neighbors’ acreage 
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Table 4.1: Descriptive Statistics of the DMR Panel Data, 2000-2007, the U.S. Corn Belt 

Variable Description 
Number 

of Obs.
a/ Mean S. D.  Min. Max. 

Acreage (unit: acres in thousands)
 

     

itJ  Farmer i 's total acreage in year t  1,088 15.7 17.8 0.8 249.9 

CONV

itJ  
Farmer i 's acreage sown to conventional 

seed in year t  
1,088 8.3 14.1 0.0 184.6 

GM

itJ  
Farmer i 's acreage sown to GM seed in 

year t  
1,088 7.4 13.1 0.0 249.9 

itG  
Farmer i 's neighbors' total acreage in year

t  
1,088 1,161.6 555.2 24.3 2,245.0 

CONV

itG  
Farmer i 's neighbors' acreage sown to 

conventional seed in year t  
1,088 572.4 333.3 17.9 1,425.8 

GM

itG  
Farmer i 's neighbors' acreage sown to 

GM seed in year t  
1,088 589.2 459.0 4.1 2,135.4 

Adoption Rate (unit: %) 
     

CONV

itx  
Farmer i 's conventional seed adoption 

rate in year t  
1,088 52.50 40.92 0.00 100.00 

GM

itx  
Farmer i 's GM seed adoption rate in year
t  

1,088 47.50 40.92 0.00 100.00 

1

CONV

itx 
 

Farmer i 's conventional seed adoption 

rate in year 1t   
952 56.42 40.21 0.00 100.00 

1

GM

itx 
 

Farmer i 's GM seed adoption rate in year

1t   
952 43.58 40.21 0.00 100.00 

CONV

ity  
Farmer i 's neighbors' conventional seed 

adoption rate in year t  
1,088 53.00 22.12 4.17 95.70 

GM

ity  
Farmer i 's neighbors' GM seed adoption 

rate in year t  
1,088 47.00 22.12 4.30 95.83 

1

CONV

ity 
 

Farmer i 's neighbors' conventional seed 

adoption rate in year 1t   
952 57.13 19.96 6.63 95.70 

1

GM

ity 
 

Farmer i 's neighbors' GM seed adoption 

rate in year 1t   
952 42.87 19.96 4.30 93.37 

Seed price (unit: $/acre)
b/ 

     
CONV

itp  
Conventional seed price paid by farmer i
in year t  

808 32.0 5.4 11.9 47.7 

GM

itp  GM seed price paid by farmer i in year t  737 39.9 7.0 14.1 57.8 

Note: 
a/
 The DMR balanced panel data has observations of 1,088 (136 farmers times 8 years from 2000 through 

2007). As for lagged variables 
1

CONV

itx 
, 

1

GM

itx 
, 

1

CONV

ity 
, and 

1

GM

ity 
, the number is 952 (136 farmers times 7 years). 

b/
 The original unit in the DMR dataset is $/80,000 kernel bag. The unit is converted into $/acre

 
assuming 80,000 

kernel bag corresponds to 2.7 acre following Lamkey (2010).  
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Note that our DP model involves imperfect state information where state variables are 

unobservable. That is, farmer i ’s perceived per-acre profitability k

it  for each technology k  = {

CONV ,GM } is not known for sure at planting time (when farmers choose the seed type). 

However, it is necessary to quantify them in order to solve Bellman equations numerically. To 

quantify farmer i ’s per-acre profitability k

it  for each technology  ,k CONV GM at time 

period  2000,...,2007t  , we first specify the state equation:   

k k k k

it it it it itRP q p CS     ,     (4.1) 

where k

it  ($/acre) denotes farmer i ’s per-acre farm profit from planting the k -technology corn 

seed in year t . itRP  ($/bushel) stands for corn price in year t . k

itq  is yield (bushels per acre) for 

the k -technology seed. And k

itp  ($/acre) is the seed cost for the k -technology seed.  Finally, 

k

itCS  ($/acre) denotes the cost associated with planting the k -technology seed. In our analysis, 

we consider k

itCS  as measuring variable cost. This means that fixed costs (e.g., associated with 

land or capital) are treated as constant and that k

it  in (4.1) denotes profit over variable cost.   

 While the DMR data covers seed cost k

itp , it does not provide information about other 

costs of production. Thus, we have to rely on other sources of information to evaluate these other 

costs. For corn price, itRP , we use annual corn price received by farmers, as reported by 

USDA/NASS.
15

  

As noted, we need data on variable cost ( k

itCS ) for our analysis. Importantly, this cost can 

vary across technologies. Indeed, GM technologies are associated with lowered usage of 

herbicide or insecticide and reduced uses of labor and fuel (e.g., when farmers plant GM corn 

                                                           
15

 http://quickstats.nass.usda.gov/ 
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using minimum or zero tillage). To estimate these costs, we use data provided by the National 

Center for Food and Agricultural Policy (NCFAP); Carpenter and Gianessi (2002), Sankala and 

Blumenthal (2003; 2006), and Johnson et al. (2008).
16

  

Yields for conventional and GM corn seed, CONV

itq  and GM

itq  are obtained from field 

experiment data conducted at Agricultural Research Stations (ARS) in the state of Wisconsin by 

the University of Wisconsin-Madison. We rely on data from Arlington, WI, located at the 

Northern part of the Corn Belt. These data provide annual yield information for conventional 

seed and for GM seed between 1990 and 2010. We assume yield information for conventional 

seed and GM seed in Arlington, WI represent yield information for each technology in the Corn 

Belt.
17

 And as discussed in Chapter 3, we will use the lagged-one-year yield for technology k , 

1

k

itq 
, as the observable measurement associated with individual learning for the k-th technology.  

We combine data from the DMR panel dataset and other sources to generate information 

about profit k

it  in (4.1) for each year and region (at the CRD level when possible or at the state 

level when CRD data are unavailable). Table 4.2 summarizes the results on farm profit for each 

technology  ,k CONV GM  between 2000 and 2007. The mean and variance of profit for each 

technology k  are used for quantifying the state space composed of four sufficient statistics (the 

mean and variance of the distribution of k

it ) given the information set itI  using the Kalman 

filter, as discussed in Chapter 3: 
CONV , 2

CONV , 
GM , and 2

GM . 

                                                           
16

 Annual summary can be found on Brookes and Barfoot (2011).  

17
 This may be a strong assumption as the agro-climatic conditions are not same across CRDs in the U.S. Corn-Belt. 

However, no sources provide yield information for conventional seed and GM seed with extensive observations; for 

example, USDA/NASS provide yield information for each year at the county levels (http://quickstats.nass.usda.gov), 

but there are no distinctions between conventional seed and GM seed. The experimental data provided by UW-

Madison is the only available source providing GM trait-specific yield information with large scale data.  
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Table 4.2: Summary of Variables for the Per-acre Profitability by Technology, 2000-2007 

Variable Description unit Data Source
 

Number 

of Obs. 

Mean S. D. Min. Max. 

CONV

it  Farm profit from CONV seed ($/acre) 

 

808 455.66 143.93 307.31 930.89 

GM

it  Farm profit from GM seed ($/acre) 

 

737 529.81 188.37 312.86 966.88 

itRP a/ 
Received Price of Corn, Grain ($/bushel) USDA/NASS

b/ 
1,088 2.47 0.76 1.61 4.39 

CONV

itq
 Yield for CONV seed (bushel/acre) UW-Madison

c/ 
1,088 208.29 12.56 185.76 220.65 

GM

itq  Yield for GM seed (bushel/acre) UW-Madison
c/ 

1,088 213.46 12.42 189.69 228.70 

CONV

itp  Seed price for CONV seed ($/acre) DMR
d/ 

808 31.96 5.35 11.85 47.67 

GM

itp  Seed price for GM seed ($/acre) DMR
d/ 

737 39.95 6.98 14.07 57.78 

CONV

itCS
f/ 

Cost saving by CONV seed ($/acre) NCFAP
e/ 

808 0.00 0.00 0.00 0.00 

GM

itCS  Cost saving by GM seed ($/acre) NCFAP
e/
 737 21.52 12.05 7.00 48.22 

Note: i  is farmer index and t  is year index between 2000 and 2007.  
a/
 itRP  is assumed to be same for conventional seed and for GM seed.  

b/
 DMR: the DMR panel dataset (136 farmers at the U.S. Corn Belt), 

c/ 
USDA/NASS: Quick Stats 2.0 survey data available from: http://quickstats.nass.usda.gov/  

d/ 
UW-Madison: Field experiments at the UW-Madison, 

e/ 
NCFAP: National Center for Food and Agricultural Policy, Brookes and Barfoot (2011). 

f/
 CONV

itCS  = 0. 

http://quickstats.nass.usda.gov/
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In addition, we estimate the correlation coefficient between yield of conventional seed 

and yield of GM seed 
, ,CONV GM t  from 1999 to 2007. This is used to evaluate the covariance term 

used in the Kalman filter in Section 3.3.1 and the distribution of farmers’ payoff in Chapter 5 and 

Chapter 6.  

Estimation of the moments of yield is done as follows. We consider a simple ordinary 

least-squares (OLS) regression model as follows: 

k k k kYield Year e     ,     (4.2) 

where kYield  is the yield information for the k -technology seed, Year  denotes a time-trend 

variable reflecting technological progress, k  is the parameter to be estimated for each 

technology k , k  is an intercept, and ke  is an error term with zero mean and a variance 2

ke  for 

 ,k CONV GM . By regressing kYield on Year  and intercept, we get estimates ˆ
k  and ˆ

k . 

Residuals are calculated as ˆ ˆ
k̂ k k ke Yield Year      for each technology k . Then, the variance 

and covariance for the k -seed yield are obtained for each year t  by 

 ,var CONV tYield 2

,
ˆ
CONV tE e    ,    (4.3) 

 ,var GM tYield 2

,
ˆ
GM tE e    ,     (4.4) 

 , ,cov ,CONV t GM tYield Yield  , ,
ˆ ˆ
CONV t GM tE e e    .   (4.5) 

In (4.5), there can be mismatches in dimensions between 
,

ˆ
CONV te  and 

,
ˆ
GM te  as the number of 

observations for conventional seed and for GM seed are not identical for each year t . We match 

dimensions between conventional seeds and GM seeds by sampling residuals at the smaller 

number between two seeds. Then, we simulate 10,000 times so as to calculate the covariance at 
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all possible combinations of sampling. Finally, using (4.3)-(4.5), we obtain the correlation 

coefficient between yield of conventional seed and yield of GM seed as follows 

 

   
, ,

, ,

, ,

cov ,

var var

CONV t GM t

CONV GM t

CONV t GM t

Yield Yield

Yield Yield
 


.   (4.6)  

The estimated correlation, 
, ,CONV GM t , is then used in evaluating the covariance component in the 

Kalman filter algorithm as discussed in Section 3.3.1.2. Table 4.3 reports estimated conditional 

moments. 

 

Table 4.3: Moments Estimation of Corn Yield, 1999–2007, Arlington, WI 

Variable Description 

Estimate 

on Avg. 

 ,var CONV tYield  Variance of CONV yield 381.39 

 ,var GM tYield  Variance of GM yield 375.06 

 , ,cov ,CONV t GM tYield Yield  Covariance between CONV yield and  GM yield 140.47 

, ,CONV GM t  Corr. Coefficient between CONV yield and  GM yield 0.2948 

Source: Field experiments, 1990-2010 at University of Wisconsin-Madison. 

Note: The unit of corn yield is (bushel/acre). 

 

The DP model for the GM technology adoption is solved at the aggregate model first, 

where we assume that a representative farmer makes the adoption decisions. Table 4.4 reports 

descriptive statistics of variables associated with the aggregate adoption model.  
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Table 4.4: Descriptive Statistics of Variables for the Aggregate GM Adoption Model, 2000-2007 

Variable Description unit 
Number 

of Obs. 
Mean S. D. Min. Max. 

Reward Function 
      

CONV

itx  
Own adoption rates for 

CONV  
1,088 0.52 0.41 0.00 1.00 

GM

itx  Own adoption rates for GM 
 

1,088 0.48 0.41 0.00 1.00 

, ,CONV GM t  Correlation coefficient 

between CONV and GM  
1,088 0.29 0.23 0.00 0.71 

System Equation             

CONV

it  
Approximated per-acre 

profitability for CONV  
($/acre) 808 455.66 143.93 307.31 930.89 

GM

it  
Approximated per-acre 

profitability for GM 
($/acre) 737 529.81 188.37 312.86 966.88 

Measurement Equation: itz              

1

CONV

itq 
 Yield of CONV at t-1 (Bushel/acre) 1,088 208.78 13.00 185.76 221.96 

1

CONV

ity 
 

Neighbors' adoption rates 

for CONV at t-1  
952 0.57 0.20 0.07 0.96 

1

GM

itq 
 Yield of GM at t-1 (Bushel/acre) 1,088 214.08 12.82 189.69 228.70 

1

GM

ity 
 

Neighbors' adoption rates 

for GM at t-1  
952 0.43 0.20 0.04 0.93 

Role of Random Shock: 1itz               

CONV

itq  Yield of CONV at t (Bushel/acre) 1,088 208.29 12.56 185.76 220.65 

CONV

ity  
Neighbors' adoption rates 

for CONV at t 

 

1,088 0.53 0.22 0.04 0.96 

GM

itq  Yield of GM at t (Bushel/acre) 1,088 213.46 12.42 189.69 228.70 

GM

ity  
Neighbors' adoption rates 

for GM at t   
1,088 0.47 0.22 0.04 0.96 
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4.1.2. Data for the Disaggregate Model 

At the disaggregate model, farmers in the DMR panel dataset are classified into three sub-groups 

according to their observed adoption patterns. Denoting farm type by l  = { EARLY , INTER , 

LATE }, data are obtained for the three sub-groups from the 136 farmers in the DMR panel 

dataset. 

In our disaggregate analysis, we assume that farmers are homogeneous within each 

group, although they can differ across groups. In principle, we can allow for any heterogeneity 

across groups. We will focus our attention on two issues: heterogeneity in social learning and 

heterogeneity in risk preferences. For example, we will investigate whether the reliance on social 

learning varies across farm types. This is a relevant issue since early adopters have few 

neighbors they can use to learn about GM technology. Alternatively, late adopters have many 

neighbors they can learn from. This indicates that the prospects for social learning would vary 

between early and late adopters. But our investigation goes one step further: it asks whether there 

may be heterogeneity among farmers on how much they rely on social learning (versus 

individual learning) in their GM adoption decisions. Could it be that farmers who rely less on 

social learning tend to self-select into being early adopters? Alternatively, could it that farmers 

who rely more on social interactions tend to self-select into being late adopters? In these cases, 

heterogeneity in preferences toward information externalities would affect adoption rates both at 

the disaggregate models and at the aggregate model. And note that the same comments would 

apply to heterogeneity in risk preferences.  

Descriptive statistics of each sub-group for the early-, the intermediate-, and the late- 

adopter are in Table 4.5, in Table 4.6, and in Table 4.7, respectively. 
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Table 4.5: Descriptive Statistics of the Sub-Group for the Early Adopter’s GM Adoption Model, 2000-2007 

Variable 

 l EARLY  Description unit 
Number 

of Obs. 
Mean S. D. Min. Max. 

Reward Function 
      

,CONV l

itx  
Own adoption rates for 

CONV  
240 0.18 0.25 0.00 1.00 

,GM l

itx  
Own adoption rates for 

GM  
240 0.82 0.25 0.00 1.00 

, ,CONV GM t

l  
Correlation coefficient 

between CONV and GM  
240 0.29 0.23 0.00 0.71 

System Equation             

,CONV l

it  
Approximated per-acre 

profitability for CONV  
($/acre) 113 448.36 142.17 310.92 915.56 

,GM l

it  
Approximated per-acre 

profitability for GM 
($/acre) 230 512.18 175.65 325.65 966.88 

Measurement Equation: l

itz              

,

1

CONV l

itq 
 Yield of CONV at t-1 (Bushel/acre) 240 208.78 13.02 185.76 221.96 

,

1

CONV l

ity 
 

Neighbors' adoption rates 

for CONV at t-1  
210 0.51 0.19 0.08 0.93 

,

1

GM l

itq 
 Yield of GM at t-1 (Bushel/acre) 240 214.08 12.84 189.69 228.70 

,

1

GM l

ity 
 

Neighbors' adoption rates 

for GM at t-1  
210 0.49 0.19 0.07 0.92 

Role of Random Variables: 
1

l

itz 
             

,CONV l

itq  Yield of CONV at t (Bushel/acre) 240 208.29 12.59 185.76 220.65 

,CONV l

ity  
Neighbors' adoption rates 

for CONV at t 

 

232 0.19 0.10 0.07 0.40 

,GM l

itq  Yield of GM at t (Bushel/acre) 240 213.46 12.44 189.69 228.70 

,GM l

ity  
Neighbors' adoption rates 

for GM at t   
232 0.81 0.10 0.60 0.93 



 
 

 

6
9 

Table 4.6: Descriptive Statistics of the Sub-Group for the Intermediate Adopter’s GM Adoption Model, 2000-2007 

Variable 

 l INTER  Description unit 
Number 

of Obs. 
Mean S. D. Min. Max. 

Reward Function 
      

,CONV l

itx  
Own adoption rates for 

CONV  
784 0.43 0.38 0.00 1.00 

,GM l

itx  
Own adoption rates for 

GM  
784 0.57 0.38 0.00 1.00 

, ,CONV GM t

l  
Correlation coefficient 

between CONV and GM  
784 0.29 0.23 0.00 0.71 

System Equation             

,CONV l

it  
Approximated per-acre 

profitability for CONV  
($/acre) 544 455.22 148.36 307.31 926.07 

,GM l

it  
Approximated per-acre 

profitability for GM 
($/acre) 624 516.84 180.88 312.86 966.88 

Measurement Equation: l

itz              

,

1

CONV l

itq 
 Yield of CONV at t-1 (Bushel/acre) 784 208.78 13.00 185.76 221.96 

,

1

CONV l

ity 
 

Neighbors' adoption rates 

for CONV at t-1  
686 0.53 0.20 0.07 0.93 

,

1

GM l

itq 
 Yield of GM at t-1 (Bushel/acre) 784 214.08 12.82 189.69 228.70 

,

1

GM l

ity 
 

Neighbors' adoption rates 

for GM at t-1  
686 0.47 0.20 0.07 0.93 

Role of Random Variables: 
1

l

itz 
             

,CONV l

itq  Yield of CONV at t (Bushel/acre) 784 208.29 12.57 185.76 220.65 

,CONV l

ity  
Neighbors' adoption rates 

for CONV at t 

 

768 0.43 0.10 0.23 0.57 

,GM l

itq  Yield of GM at t (Bushel/acre) 784 213.46 12.42 189.69 228.70 

,GM l

ity  
Neighbors' adoption rates 

for GM at t   
768 0.57 0.10 0.43 0.77 
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Table 4.7: Descriptive Statistics of the Sub-Group for the Late Adopter’s GM Adoption Model, 2000-2007 

Variable 

 l LATE  Description unit 
Number 

of Obs. 
Mean S. D. Min. Max. 

Reward Function 
      

,CONV l

itx  
Own adoption rates for 

CONV  
1,088 0.52 0.41 0.00 1.00 

,GM l

itx  
Own adoption rates for 

GM  
1,088 0.48 0.41 0.00 1.00 

, ,CONV GM t

l  
Correlation coefficient 

between CONV and GM  
1,088 0.29 0.23 0.00 0.71 

System Equation             

,CONV l

it  
Approximated per-acre 

profitability for CONV  
($/acre) 808 455.66 143.93 307.31 930.89 

,GM l

it  
Approximated per-acre 

profitability for GM 
($/acre) 737 529.81 188.37 312.86 966.88 

Measurement Equation: l

itz              

,

1

CONV l

itq 
 Yield of CONV at t-1 (Bushel/acre) 1,088 208.78 13.00 185.76 221.96 

,

1

CONV l

ity 
 

Neighbors' adoption rates 

for CONV at t-1  
952 0.57 0.20 0.07 0.96 

,

1

GM l

itq 
 Yield of GM at t-1 (Bushel/acre) 1,088 214.08 12.82 189.69 228.70 

,

1

GM l

ity 
 

Neighbors' adoption rates 

for GM at t-1  
952 0.43 0.20 0.04 0.93 

Role of Random Variables: 
1

l

itz 
             

,CONV l

itq  Yield of CONV at t (Bushel/acre) 1,088 208.29 12.56 185.76 220.65 

,CONV l

ity  
Neighbors' adoption rates 

for CONV at t 

 

1,064 0.53 0.13 0.25 0.66 

,GM l

itq  Yield of GM at t (Bushel/acre) 1,088 213.46 12.42 189.69 228.70 

,GM l

ity  
Neighbors' adoption rates 

for GM at t   
1,064 0.47 0.13 0.34 0.75 
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From Table 4.4 and Table 4.7, the selected late adopter’s sub-group is almost identical with the 

group for the representative farmer at the aggregate adoption model except for the statistics of 

neighbors’ adoption rates for GM technology at t , GM

ity . The DP model is applied for a farmer in 

each of the l -type disaggregate model. Summary statistics for each l -type farmer’s economic 

variables are presented in Table 4.8.  

 

Table 4.8: Summary for Selected Adopters at the Disaggregate models 

Variable Description EARLY INTER LATE 

lN  Number of Farmers in the l sub-group  30 98 136 

Reward Function 
   

,CONV l

itx  Own adoption rates for CONV 0.17 0.57 0.83 

,GM l

itx  Own adoption rates for GM 0.83 0.43 0.17 

, ,CONV GM t

l a/ 
Correlation coefficient between CONV and GM 0.29 0.29 0.29 

System Equation       

,CONV l

it  
Approximated per-acre profitability for CONV 

seed
f/ 390.05 396.25 499.08 

,GM l

it  Approximated per-acre profitability for GM seed
f/ 

549.13 529.44 676.92 

Measurement Equation: l

itz      

,

1

CONV l

itq 

b/ 
Yield of CONV seed at t-1

g/ 
208.78 208.78 208.78 

,

1

CONV l

ity 
 Neighbors' adoption rates for CONV seed at t-1 0.84 0.64 0.74 

,

1

GM l

itq 

c/ 
Yield of GM seed at t-1

 g/
 214.08 214.08 214.08 

,

1

GM l

ity 
 Neighbors' adoption rates for GM seed at t-1 0.16 0.36 0.26 

Role of Random Variables: 
1

l

itz 
       

,CONV l

itq
d/ 

Yield of CONV seed at t
 g/

 208.29 208.29 208.29 

,CONV l

ity  Neighbors' adoption rates for CONV seed at t 0.79 0.59 0.70 

,GM l

itq
e/ 

Yield of GM seed at t
 g/

 213.46 213.46 213.46 

,GM l

ity  Neighbors' adoption rates for GM seed at t 0.21 0.41 0.30 

Note:  , ,l EARLY INTER LATE  

a/ b/ c/ d/ e/
 Yield information are same across l sub-groups as the information in Arlington, WI is commonly used. 

Unit: 
f/ 

($/acre) and 
g/ 

(Bushel/acre)  
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4.2.Methods for the DP Solution and the Model Estimation 

4.2.1. Algorithm 

An empirical application of the DP adoption model to the DMR data requires to combine a 

dynamic optimization problem and an econometric estimation problem. This integration of 

optimization and econometric estimation can be challenging. This section introduces an 

algorithm that solves the DP adoption model as a nested problem within an econometric model 

used for parameter estimation.  

 As illustrated in Figure 4.2, the algorithm is composed of two major loops. The first loop 

is termed as the Minimum Distance Estimation (MDE) loop, where parameters in the DP system 

are estimated using a nonlinear minimum distance estimator (Greene, 2003; Manski, 1988). The 

second loop is the Dynamic Programming (DP) loop, where the DP adoption models are 

numerically solved relying on the collocation method (Miranda and Fackler, 2002). Our 

algorithm implements solving Bellman equations nested within the model estimation.   

For each DP adoption model - the aggregate model and the three l -type disaggregate 

models for  , ,l EARLY INTER LATE , the MDE loop begins with considering the parameter 

space  , ,l l l lr  β γ , whose dimension is 8 for the aggregate model and for the intermediate 

adopter’s model and is 5 for the early adopter’s model and for the late adopter’s model.
18

 

Starting with initial guesses about the parameters, Bellman equation is solved conditional on 

these parameter values, as developed in Chapter 3.  

  

                                                           
18

 Number 8 comes from  11 22 11 21 31 32 42, , , , , , ,r         for the aggregate model and for the intermediate-type 

model, and number 5 comes from  11 21 32 42, , , ,r     for the early- and the late- type disaggregate models. This 

issue is discussed in Section 4.2.3. 
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Figure 4.2: The Flow Chart of the Algorithm 
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The DP solution gives information about adoption rates that are then matched with observable 

adoption data, and a goodness-of-fit statistic is obtained: sum of squared deviations denoted by 

 ld  .  

For given parameters l , the DP loop nested in the MDE loop is implemented. The DP 

models are constructed as infinite time-horizon problems over the continuous state space. Under 

stationarity, the DP model is a functional equation whose unknowns are the value functions. In 

the absence of analytical closed form solution, numerical methods are considered to solve 

Bellman equations. The DP loop uses the collocation method to obtain numerical solutions 

(Miranda and Fackler, 2002).   

 Following Miranda and Fackler (2002), the DP loop itself consists of three sub-processes. 

The first sub-process is to transform the infinite dimensional functional equation problem 

(Bellman equation) into a simpler finite dimensional root-finding problem using the collocation 

method. For empirical tractability, the stochastic part of the Bellman equation is replaced by the 

multivariate Gaussian quadrature scheme. The DP loop chooses Chebychev polynomial as the 

basis function, being used for approximating the functional equation. Then, each dimension in 

the continuous state space (composed of the conditional mean and variance of the unobservable 

per-acre profitability as given by the Kalman filter), is discretized using the collocation nodes. 

Initial guesses for the collocation function  |l lV c   and optimal choices lx  are selected in 

order to solve collocation equations in terms of collocation coefficients lc s. The DP loop uses 

values at the certainty-equivalent steady state as initial guesses.  

Using the collocation method, the second sub-process is to solve a n -degree nonlinear 

system equations (Miranda and Fackler, 2002). In our DP models, reward function is represented 

by the additive mean-variance utility function, and the transition equation for the state space is 
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constructed as the non-linear recursive equations by the Kalman filter. Further, the Chebychev 

polynomial is non-linear by its structure. This introduces nonlinearity in the DP system. In this 

context, it is useful to apply the method of policy function iteration using derivatives (e.g., 

Jacobian matrix of the collocation function). Thus, Newton’s method is used for solving the 

nonlinear collocation equations approximately in the context of root-finding problems. The 

procedure by Newton’s method is iterated until the condition for convergence is met.
19

  

The third sub-process implements the dynamic path analysis as a postoptimality analysis 

(Miranda and Fackler, 2002). The DP models for GM technology adoption are stochastic 

Bellman equations with the random components on future measurements z  and on initial 

conditions of the state space. Thus, optimal solutions can be affected by changes in initial 

conditions or the random variables from future observations. Based on optimal approximated 

value functions and optimal policy functions obtained from Newton’s method, the third sub-

process evaluates how optimal policy functions (GM adoption rates) evolve over time by given 

initial conditions. Simple Monte Carlo Simulation is implemented in this process. Based on 

optimal results from the second sub-process, a sequence of pseudorandom shocks are generated, 

being applied to the transition equations represented as the Kalman filter. In turn, different 

adoption rates are obtained in the changed environment, being simulated 10,000 times to get a 

representative dynamic path for 8 years between 2000 and 2007.  

Once solved, the DP results are used in the MDE loop. The simulated (predicted) GM 

adoption rates are compared with observed adoption rates from the DMR panel dataset. The 

difference between the simulated GM adoption rates and observed GM adoption rates is 

calculated from 2000 to 2007. Then, the sum of squared differences is obtained over 8 years, 

                                                           
19

 In our programming, convergence tolerance is  = 1.4901e-08. 
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 ld  . This provides a measure of distance between the model and the data and a useful 

goodness-of-fit statistic. When  ld   is minimized with respect to l , then the algorithm 

ends.
20

 Otherwise, the MDE loop restarts with new l  and goes through the DP loop with 

updated values for the parameters l . This procedure is performed using the gird search. 

 

4.2.2. Methods for the DP Solution: The Collocation Method  

The DP adoption models both at the aggregate and at the disaggregate models are given by 

Bellman equations (using with sufficient statistics under normality and stationarity, as discussed 

in Chapter 3). Under stationarity, the infinite time-horizon adoption problems involve solutions 

of the functional equations whose unknowns are time-invariant value functions. Under 

normality, the state space is composed of the mean and variance of the unobservable state 

variables, allowing Bellman equations to be solved under a continuous state space. 

 In the absence of analytical closed-form solutions for the functional equations, Bellman 

equations need to be solved numerically. This paper uses the collocation method. The method is 

known to be flexible and numerically more efficient than other methods such as the linear-

quadratic approximation (Miranda and Fackler, 2002). In our paper, the aggregate model and the 

l -type disaggregate model are identical in its structure. For simplicity, this section explains our 

numerical methods with a focus on the aggregate model. Bellman equation for the aggregate GM 

adoption model is described in (3.30), being expressed as 

      | max , |
z

V S f S E V S z


     x
x ,   (4.7) 

                                                           
20

 Our model sets up  0,0.06    
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where  2 2, , ,CONV GM

CONV GMS      denotes the state space composed of the mean and variance 

of the unobservable profitability k  for  ,k CONV GM . The next period state space is 

denoted by  2 2

, ,, , ,CONV GM

CONV GMS         , and the transition equations between S  and S  

are specified by the Kalman filter algorithm as the evolutionary equations between the current 

conditional moments and their consecutive conditional moments given observable measurements 

vector z . Adoption rates for each technology k  (choice variables) are denoted by a vector 

T
CONV GMx x   x . The additive mean-variance utility function is given by a reward function 

 ,f S x , which is affected both by the state vector S  and by the choice vector x . The parameter 

space is denoted by  , ,r  β γ .  

 The solution of Bellman equation using the collocation method is implemented as 

follows. First, assuming that the continuous state space S  has bounded intervals for each factor 

in S , the unknown value function under given  ,  |V S   is approximated as the following 

linear combination of basis function 
j  and its corresponding coefficient 

jc  

   
1

| |
n

j j

j

V S c S


   ,    (4.8) 

where n  indicates the degree of interpolation. The basis function  .j  is selected as a known 

function and plays a role of the approximant for the value function. All the aggregate model and 

the disaggregate models choose the Chebychev polynomial as a basis function because of its 

ability to fit any smooth curve well over the continuous state space globally.  
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By taking the Chebychev polynomial as the basis function 
j , the unknowns to solve are 

not  |V S   but the basis function coefficients 
jc , j  = 1, 2, …, n , involving n -nonlinear 

equation system represented by 

 
 

   
1 1 1

| max ,
i

n M n

j j i i m j j i
S

j m j

c S f S c S    

  

  
    

  
 

x
x ,  (4.9) 

where iS  is the i -th collocation node among n  collocation nodes { 1S , 2S , …, nS }   S in the 

state space. This means that the value function approximant is solved not over all the possible 

states but over n  selected collocation nodes in the discretized state space with function values 

interpolated by the given basis function. The DP adoption models choose the Chebychev nodes 

because the Chebychev basis coefficients can be calculated fast at Chebychev nodes (Miranda 

and Fackler, 2002, p. 122). For numerical tractability, the expected operator in terms of z , 

 zE

  in the stochastic Bellman equation is replaced by a discrete approximant 

1

M

m

m




 , where 1

, 2 , …, M  indicate assumed probabilities for 
,1z , 

,2z , …, 
,Mz , respectively, being used as 

quadrature points.   

 The n -nonlinear equation system is expressed as the following collocation equation 

 ˆ |c V c   ,    (4.10) 

where   denotes the n  by n  collocation matrix whose i - j  element indicates the j -th basis 

function at the i -th collocation node, representing  |ij j iS   . Distinguished from the value 

function  |V S  ,  |V c   denotes the collocation function evaluated at the collocation node c

, and its i -th element is represented by  
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 
 

   
1 1

| max ,
i

M n

i i m j j i
S

m j

V c f S c S   

 

  
    

  


x
x .   (4.11) 

Through this process, the collocation equation is represented by a non-linear system of 

equations being solved numerically. We consider the collocation equation in (4.10) as a root-

finding problem of  ˆ | 0c V c     and solve it using Newton’s method with the following 

iterative updating rule 

 
 

1

|

ˆ |
V c

c c J c V c




        
  

,   (4.12) 

where 
 |V c

J


 indicates the n -by- n  Jacobian of the collocation function  |V c   at the 

collocation nodes c . 

The algorithm combining the DP loop and the MDE loop provides an advanced and 

refined way to solve dynamic optimization problem with parameter estimation simultaneously. 

However, it suffers from a significant computational cost. First, in the MDE loop, the dimension 

of parameters to be estimated amounts to 5 or 8, indicating that at least 5 or 8 loops are 

programmed in the algorithm. Second, the DP loop nested within the MDE loop also involves a 

large computational cost. Though the dimension of the state space is moderate to be 4 (the 

conditional mean and variance of the profitability for each technology), the evaluation points are 

increased exponentially according to the degree of interpolation n . For example, when n  = 10 

for each factor in 4-dimensional state space, the number of all possible combinations of nodes is 

10
4
 for each dimension, being its corresponding collocation grid becomes 10

4
-by-4. In addition, 

the Gaussian quadrature scheme, which is used for discretizing the shock space, also increases 
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the computational cost by involving more loops. As Newton’s method is implemented over all 

enumerated collocation node grid, increments in n  will slow down the speed of computation.
21

 

Table 4.9 reports initial conditions and numerical assumptions for solving Bellman 

equations for GM technology adoption using the collocation method. Associated values with the 

aggregate and the l -type disaggregate adoption models are reported together. The following 

variables are relevant
22

: farm profitability ,k l

it , the previous year’s neighbors adoption rates ,

1

k l

ity 
, 

the previous year’s k -seed yield information ,

1

k l

itq 
, the correlation coefficient among k -seeds 

, ,CONV GM t , and the conditional variance of the k -seed yield  ,var |k tYield Year , for each 

technology k  and group l .   

Then, solving the DP loop generates the optimal adoption decisions. For each group (the 

aggregate model or the l -type disaggregate model), the dimension of the state space and of the 

action space is identified as 4 and 2, respectively. Initial values necessary for making initial 

conditions of the state space are assumed to be average values in the starting point 2000. Given 

guessed initial values for parameters, the state space is approximated using Chebychev nodes. 

Assuming the state space is bounded, the lower bound and the upper bound for each dimension 

are assigned by considering minimum and maximum values of the mean and variance of ,k l

it . 

For the degree of interpolation n , we choose n  = 3, making (3
4
)-by-4 grid  points. Then 3-nodes 

Chebychev polynomial interpolation is used as a basis function for our model.  

                                                           
21

 We used MATLAB R2012a (64bit). Though we run the code with the latest version, it took 5,874 seconds (almost 

1 hour and 40 minutes) on average just a single simulation using the algorithm.   

22
 Note that values in Table 4.9 are downsized. Except for one’s own and neighbors’ adoption rates, we divide all 

values by 100 to get down-sized values.  This partially helps speed up the running the DP loop.  
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Table 4.9: Initial Conditions for the DP Loop 

Variable Description Used variables & Assumptions AGG EARLY INTER LATE 

Definition of dimensions 
     

       

ds Dimension of the state space  , 2 , 2

| | , , | | , ,, , ,l CONV l GM l

it it t it t CONV l it t it t GM lS      4 4 4 4 

dx Dimension of the action space 
T

, ,l CONV l GM l

it it itx x   x  2 2 2 2 

       
Initial Values             

       
,

2000

CONV l

ity 
 Neighbors' CONV adoption rates in 2000 Average of ,

2000

CONV l

ity 
in 2000 0.69 0.40 0.57 0.66 

,

2000

GM l

ity 
 Neighbors' GM adoption rates in 2000 Average of ,

2000

GM l

ity 
 in 2000 0.31 0.60 0.43 0.34 

,

1999

CONV l

itq 
 CONV yield in 1999 Average of ,

1999

CONV l

itq 
 in 2000 2.22 2.22 2.22 2.22 

,

1999

CONV l

ity 
 Neighbors' CONV adoption rates in 1999 

N/A in DMR, approximants less than rates 

in 2000 
0.70 0.50 0.67 0.76 

,

1999

GM l

itq 
 GM yield in 1999 Average of ,

1999

GM l

itq 
 in 2000 2.24 2.24 2.24 2.24 

,

1999

GM l

ity 
 Neighbors' GM adoption rates in 1999 

N/A in DMR, approximants less than rates 

in 2000 
0.30 0.50 0.33 0.24 

, , 2000

l

CONV GM t 
 

Correlation coefficient between CONV 

yield and GM yield 
Average of 

, , 2000

l

CONV GM t 
 in 2000 0.34 0.34 0.34 0.34 
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Table 4.9: Initial Conditions for the DP Loop (Cont.) 

Variable Description Used variables & Assumptions AGG EARLY INTER LATE 

Discretization of future measurements distribution: 
1

l

itz 
           

n_shock Number of shocks for Gausisian quadrature scheme 2 2 2 2 

mu [1 x ds] Mean vector 
     

,

1

CONV l

itq 
 Mean of CONV yield Average of ,

1

CONV l

itq 
, 2000-2007 2.08 2.08 2.08 2.08 

,

1

CONV l

ity 
 Mean of neighbors' CONV adoption rates Average of ,

1

CONV l

ity 
, 2000-2007 0.53 0.19 0.43 0.53 

,

1

GM l

itq 
 Mean of GM yield Average of ,

1

GM l

itq 
, 2000-2007 2.13 2.13 2.13 2.13 

,

1

GM l

ity 
 Mean of neighbors' GM adoption rates Average of ,

1

GM l

ity 
, 2000-2007 0.47 0.81 0.57 0.47 

var [ds x ds] Positive definite covariance matrix 
     

 ,var CONV tYield  Variance of CONV yield Average of  ,var CONV tYield , 2000-2007 0.04 0.04 0.04 0.04 

,

1

CONV l

ity 
 

Variance of neighbors' CONV adoption 

rates 
Variance of ,

1

CONV l

ity 
, 2000-2007 0.05 0.01 0.01 0.02 

 ,var GM tYield  Variance of GM yield Average of  ,var GM tYield , 2000-2007 0.04 0.04 0.04 0.04 

,

1

GM l

ity 
 Variance of neighbors' GM adoption rates Variance of ,

1

GM l

ity 
, 2000-2007 0.05 0.01 0.01 0.02 

       
Approximated State Space - Collocation Node         

n Degree of collocation nodes  
     

ssmin Lower bound of the state space: [1 x ds] Approximants of minimum values 
    

,CONV l

it  Minimum value of farm profit for CONV Minimum of ,CONV l

it , 2000-2007 3.07 3.11 3.07 3.07 

 ,var CONV l

it a/ Minimum value of farm profit variance for 

CONV 
Minimum of  ,var CONV l

it , 2000-2007 0.04 0.04 0.04 0.04 

,GM l

it  Minimum value of farm profit for CONV Minimum of ,GM l

it , 2000-2007 3.13 3.26 3.13 3.13 

 ,var GM l

it b/ Minimum value of farm profit variance for 

GM 
Minimum of  ,var GM l

it , 2000-2007 0.04 0.56 0.56 0.56 

Note: 
a/    , , 2var varCONV l CONV l

it it itYield RP    

b/
    , , 2var varGM l GM l

it it itYield RP    
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Table 4.9: Initial Conditions for the DP Loop (Cont.) 

Variable Description Used variables & Assumptions AGG EARLY INTER LATE 

ssmax Upper bound of the state space: [1 x ds] Approximants of maximum values 
    

,CONV l

it  Maximum value of farm profit for CONV Maximum of ,CONV l

it , 2000-2007 9.31 9.16 9.26 9.31 

 ,var CONV l

it  
Maximum value of farm profit variance for 

CONV 
Maximum of  ,var CONV l

it , 2000-2007 0.56 0.04 0.04 0.04 

,GM l

it  Maximum value of farm profit for GM Maximum of  ,GM l

it , 2000-2007 9.67 9.67 9.67 9.67 

 ,var GM l

it  
Maximum value of farm profit variance for 

GM 
Maximum of  ,var GM l

it , 2000-2007 0.61 0.61 0.61 0.61 

Certainty-Equivalent Steady State - initial values for optimal value functions and optimal policies          

Shock (
1

l

itz 
) at steady state 

     
, *

1

CONV l

itq 
 CONV yield at steady state Average values of ,

1

CONV l

itq 
, 2000-2007 2.08 2.08 2.08 2.08 

, *

1

CONV l

ity 
 

Neighbors' CONV adoption rates at steady 

state 
Average values of ,

1

CONV l

ity 
, 2000-2007 0.53 0.19 0.43 0.53 

, *

1

GM l

itq 
 GM yield at steady state Average values of ,

1

GM l

itq 
, 2000-2007 2.13 2.13 2.13 2.13 

, *

1

GM l

ity 
 

Neighbors' GM adoption rates at steady 

state 
Average values of ,

1

GM l

ity 
, 2000-2007 0.47 0.81 0.57 0.47 

State space at steady state           

, *CONV l

it  
Mean of approximate profitability for 

CONV at steady state 
Average values of ,CONV l

it , 2000-2007 4.56 4.48 4.55 4.56 

 
*

,var CONV l

it  
Variance of approximate profitability for 

CONV at steady state 

Average values of  ,var CONV l

it , 2000-

2007 
0.23 0.23 0.23 0.23 

, *GM l

it  
Mean of approximate profitability for GM 

at steady state 
Average values of ,GM l

it , 2000-2007 5.30 5.12 5.17 5.30 

 
*

,var GM l

it  
Variance of approximate profitability for 

GM at steady state 
Average values of  

*
,var GM l

it , 2000-

2007 
0.23 0.23 0.23 0.23 

Adoption rates t steady state           
, *CONV l

itx  CONV adoption rates at steady state Assumption of zero adoption for CONV 0.00 0.00 0.00 0.00 

, *GM l

itx  GM adoption rates at steady state Assumption of full adoption for GM 1.00 1.00 1.00 1.00 
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Also, using the Gaussian quadrature scheme, we discretize the random shock by assigning 

collocation nodes weights for multivariate normal distribution. Finally, we consider values at the 

Certainty-Equivalent steady state for initial values for optimal value functions and policy 

functions in the DP loop.  

Following the above schemes, we solve the DP adoption models using Newton’s method 

in the DP loop. As explained in Section 4.2.1, iteration is done until converge tolerance is less 

than   = 1.4901e-08. The DP loop ends with simulating GM adoption path over 8 years 10,000 

times for the postoptimaliy analysis. We use those simulated adoption paths in estimating 

parameters.   

 

4.2.3. Methods for Model Estimation: Minimum Distance Estimator 

The MDE loop is implemented over the DP loop solving the nonlinear system functional 

equations. Given l  for each farm type  , ,l EARLY INTER LATE , the DP loop provides 

optimal policy function concerning GM technology adoption rates  , * |GM l l lx S   and simulates 

corresponding GM adoption rates from 2000 through 2007, denoted by ,ˆGM l

tx  for t  = 2000, 

2001, …, 2007. The basic strategy for parameter estimation is to compare the simulated 

(predicted) adoption rates ,ˆGM l

tx  with observed GM adoption rates ,GM l

tx  from the DMR panel 

dataset. Then, the parameters in l  are estimated by minimizing the distance between the 

observed adoption path and the simulated adoption path during the same period. This estimation 

process relies on a minimum-distance estimator (MDE) (Manski, 1988).  
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Due to the non-linear structure in the reward function as the additive mean-variance 

utility function and in the transition equation by the Kalman filter, the MDE involves the non-

liner regression model as follows (Greene, 2003) 

 
,

, ,
GM l

GM l l l
tt tx h x    ,     (4.13) 

for t  = {2000, 2001, …, 2007}.  h   is a nonlinear function evaluated numerically from the DP 

loop following Greene (2003)’s definition for the nonlinear model
23

, the derivative of the 

nonlinear function with respect to the parameter space is assumed to exist. Involving nonlinear 

structure in the DP system, the MDE (or the nonlinear least squares) is denoted by ,l MDE . Then, 

it is defined as l  such that minimizes the following criterion function 

   
2007 2007,

, 2

2000 2000

1 1
,

2 2

GM l
l GM l l

tt t

t t

G x h x 
 

     
  

  .  (4.14) 

The first-order conditions for the minimum ,l MDE  are 

   
 

,
,

2007 ,
, , ,

,
2000

,

, 0

GM l
l MDE

tT GM l
l MDE GM l l MDE

tt l MDE
t

h x

g x h x




 
       
   

 . (4.15) 

Then, ,l MDE  is an estimator that is consistent and asymptotically normal (Greene, 2003, p.167-

168). These show how econometric parameter estimation can be incorporated with the DP 

models. In particular, the asymptotic normality will be useful to implement hypothesis testing on 

the estimated parameters. It will support the use of a F-test in our empirical testing for the role of 

risk aversion and individual/social learning in GM adoption, as discussed in the following 

chapters.  

 More generally, we can define ,l MDE  as follows 

                                                           
23

 A nonlinear regression model is the model, where the first order conditions (F.O.C.) for least squares estimation 

of the parameters are nonlinear functions of the parameters (Green, 2003, p.165).  
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 
22007 ,

, ,

2000

arg min |
l

T GM l
l MDE GM l l l

tt

t

x x S


 

    
  

 ,  (4.16) 

where the nonlinear function  h   is substituted for the optimal policy function  , * |GM l l l

tx S  , 

which is evaluated at the simulated GM adoption rates 
,GM l

tx  in the DP loop. Also, we define the 

goodness-of-fit statistic as the sum of squared residuals: 

   
22007 ,

,

2000

|
T GM l

l GM l l l
tt

t

d x x S




    
  

 .   (4.17) 

That is, for every DP adoption model, ,l MDE  is the parameter vector obtained when the distance 

between simulated and observed adoption path is minimized or the goodness-of-fit statistic 

 ld   is minimized.  

The parameter space l  is composed of coefficients from the reward function, system 

equation, and measurement equation in the DP system. They are also part of the Kalman filter 

algorithm representing state transition equations.
24

 The total number of parameters in the 

parameter space l  amounts to 13, which is too high-dimensional and computationally 

intractable for estimation purpose (given the “curse of dimensionality” of the DP problem). 

Consequently, efforts to reduce dimension of l  are considered. 

For a lower dimension of l , cross-technology effects are ignored through the model 

estimation. First, 
12

l  is assumed to be zero (see Chapter 3 for the definition of parameters). It 

means that area-wide suppression of pest population is not addressed in this paper. Second, 
21

l  

is also assumed to be zero as weed control effects through tillage are considered only at the same 

locations over years. In the context of the aggregate adoption model, it is not possible to identify 

                                                           
24

 For simplicity, this paper focuses on the system and measurement equations rather than the Kalman filter 

algorithm (which is discussed in Chapter 3). 
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planted areas for an individual farmer. Third, 
12

l , 
22

l , and 
41

l  in the measurement equation 

(3.24) are assumed to be zero to avoid computational burden; but 
31

l  is allowed to be non-zero 

as estimation results deteriorate when 
31

l  is set equals to zero in the DP model. With those 

assumptions, the total number of parameters to be estimated reduces to 8, and the parameter 

space l  is 

 11 22 11 21 31 32 42, , , , , , ,l l l l l l l l lr              (4.18) 

Note that lr  in the reward function is the Arrow-Pratt measure of absolute risk-aversion 

coefficient. Both 
11

l  and 
22

l  are parts of the system equation (3.23), 
11

l  (
22

l ) being the effect 

of adoption of conventional (GM) technology on the average change in the next period per-acre 

net profitability of conventional (GM) seed ,

1

CONV l

t 
 ( ,

1

GM l

t 
). All 

l ‘s are components of the 

measurement equation (3.24). 
11

l  (
32

l ) is the individual learning parameter for conventional 

(GM) technology, and 
21

l  (
42

l ) is the social learning parameter for conventional (GM) 

technology. 
31

l  is a cross-technology effect reflecting that GM traits are inserted into better 

conventional seed for higher yield performance.  

 As mentioned in Section 4.2.1, the dimension of l could be 5 (for the early adopter’s 

model and for the late adopter’s model) or 8 (for the aggregate model and for the intermediate 

adopter’s model). To simplify our analysis, we focus our attention on just a few parameters: the 

parameter measuring risk preferences lr  and the parameters capturing individual and social 

learning, 
11

l , 
12

l , 
32

l , and 
42

l . That is, for each farm type  , ,l EARLY INTER LATE , 
11

l  and 

22

l  in the system equation and 
31

l  in the measurement equation are assumed to be same across 

different types of disaggregate model as 
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11 11 11

EARLY INTER LATE    ,     (4.19) 

22 22 22

EARLY INTER LATE    ,      (4.20) 

31 31 31

EARLY INTER LATE    .      (4.21) 

The above parameters are not necessarily same as parameter estimates in the aggregate adoption 

model. That is, 
11 11

l  , 
22 22

l  , and 
31 31

l  , where parameters without the superscript 

index l  indicate parameters in the aggregate model.  

In practice, 
11

l , 
22

l , and 
31

l  are estimated together with other parameters only at the DP 

model for the intermediate adopter because the intermediate adopter’s model is expected to be 

closer to the aggregate model rather than other extreme DP models such as the early- and the 

late- adopter’s models. In the same way as the aggregate model is estimated, the intermediate 

adopter’s model is estimated on the parameter space INTER  composed of 8 parameters in total. 

The parameters 
11

l , 
22

l , and 
31

l  are then treated as given constants for the other disaggregate 

models (the early- and the late- adopter’s models). Then, the number of parameters in EARLY  

and in LATE  reduces to 5 as 
11

l , 
22

l , and 
31

l  are considered as constants.  

This assumption simplifies the computational burden and helps improve empirical 

tractability. First, lower dimension of EARLY  and  LATE  reduce the computational cost in the 

DP solution by focusing only on the parameters of risk aversion and individual/social learning. 

Second, degrees of freedom for the denominator are increased by reducing the number of 

parameters. This is particularly important given the small number of observations used in our 

econometric analysis. The increased number of degrees of freedom leads to more reliable 

hypothesis testing (as further discussed in Chapter 6). Third, with a focus on the effects of risk 

aversion and individual/social learning on GM adoption, holding irrelevant parameters constant 
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makes it more convenient to evaluate associated parameters across farm types. This will be 

discussed in more details in Section 6.4.  

  



90 
 

 

Chapter 5 : Results and Discussions of the Aggregate GM 

Technology Adoption Model 
 

This chapter presents the empirical results from the structural dynamic GM adoption model 

applied at the aggregate model. A model of corn farmer’s GM technology adoption is presented. 

The model involves the estimation of parameters associated with reward function and state 

transition equations using the Kalman filter algorithm representing learning in Bellman equation. 

In addition, economic implications of the model are discussed and evaluated. This includes the 

analyses of selected scenarios with a focus on the rate of GM technology adoption and welfare 

effects.  

The first section reports parameter estimates obtained from the DP model estimation 

using a minimum distance estimator, along with a discussion of implications for GM technology 

adoption and learning. The analysis focuses on the role played by risk preferences and 

individual/social learning. The second section presents selected scenarios evaluating the effects 

of risk aversion and social learning. For each scenario, hypothesis testing is conducted to 

examine the statistical significance of the corresponding parameter. The third section does 

sensitivity analysis on how adoption behavior varies according to changes in each parameter. 

Finally, the fourth section reports a welfare analysis investigating the effects of risk aversion and 

social learning on farm welfare. This is done using the farmer’s value function from the optimal 

DP solution obtained in each scenario. 

 

5.1.Parameter Estimates 

5.1.1. Parameter Estimates 
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Using a minimum distance estimator, Table 5.1 reports parameter estimates from the aggregate 

GM adoption model. The goodness-of-fit of the estimated model is defined as the sum of squared 

residuals; it is 0.0303 for the aggregate GM adoption model. The goodness-of-fit statistic is used 

in doing hypothesis testing, as discussed in the following section.  

 

Table 5.1: Parameter Estimates of the Aggregate GM Adoption Model 

Parameter Implication Estimate 

Reward Function   

r   
The Arrow-Pratt measure of absolute risk-aversion 

coefficient 
0.54 

r   
The Arrow-Pratt measure of relative risk-aversion 

coefficient 
4.12

 

   
System Equation   

11   
The effect of adoption of conventional technology on the 

average change in CONV    
2.20 

22   
The effect of adoption of GM technology on the average 

change in GM  
2.50 

   
Measurement Equation   

11   
The effect of individual learning for conventional 

technology 
1.21 

21   The effect of social learning for conventional technology 1.01 

31   The effect of yield for GM seed to CONV   1.25 

32   The effect of individual learning for GM technology 1.80 

42   The effect of social learning for GM technology 0.80 

Note: Goodness of fit is 0.0303.  

 

The only parameter to be estimated in the reward function is r , the Arrow-Pratt measure 

of absolute risk-aversion coefficient. It is estimated to be 0.54. The sign of r is positive, which 

reflects that farmers are risk averse. When a new technology is treated as a risky asset, this risk 

exposure affects technology adoption as discussed in previous studies (Besley and Case, 1994; 

Baerenklau, 2005). The Arrow-Pratt measure of relative risk aversion coefficient r  is reported 
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together with r . r  provides a more convenient measure of risk aversion than r . Indeed, while r  

depends on the units of monetary measurements, r  is a unit-free measurement as it measures the 

elasticity of the marginal utility of income (Chavas, 2004). r  is obtained by multiplying 

expected profit by r . At the aggregate model, a representative farmer’s expected profit is 

estimated as $7.63 million from planting both conventional and GM seeds.
25

 Then, r  is 

estimated as 4.12, which indicates that his/her risk aversion seems to be in the medium range as 

1 5r  .
26

    

Estimated parameters in the system equation 11
 
and 22  are all positive, indicating that 

the adoptions of both conventional technology and GM technology improve profitability for each 

technology. The effect of GM technology adoption on the profitability of GM 22  is found to be 

greater than that of conventional technology 11 . Thus, farmers see GM technology as more 

profitable on average compared to conventional technology. However, the difference between 

11  and 22  is not large. This can help explain why the adoption of GM technology is slow.     

Note that the  ‘s in the measurement equation reflect the degree of correlation between 

observed signals and the unobservable states. Non-negative  ’s indicate a positive correlation 

between observations in the measurement equation and unobservable state variables. 11  or 32  

being zero would imply that farmers don’t learn anything from their own experience in adopting 

any technology. And 21  or 42  being zero would imply that farmers don’t learn from their 

                                                           
25

 As described in Chapter 4, throughout this paper, a representative farmer is understood to represent the whole 

famers only in terms of adoption rates not farm size; sub-sample farmers of the DMR panel data are considerably 

large farmers as their average total profit $7.63 million is very large compared with USDA-ERS sources (Ifft and 

Morehar, 2012).  

26
 The level of risk aversion is classified as ‘very low’ ( 1r  ), ‘medium’ (1 5r  ), and ‘very high’ ( 5r  ) 

(Gollier, 2001, p. 31).    
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neighbors (no social learning). Thus, if there exist effects of individual and social learning,  ’s 

would be positive values. According to Table 5.1, all parameter estimates for  ’s are positive, 

which means that both individual learning and social learning influence the profitability for each 

technology in positive directions. In addition, 31  is positive, indicating a positive relationship 

between the yield of GM seeds and the performance of conventional seeds. 

The relative role of individual vs. social learning is analyzed by comparing degrees of 11  

and 21  for conventional technology and degrees of 32  and 42  for GM technology. For 

conventional technology, the individual learning parameter 11  is greater than the social learning 

parameter 21 . Similarly for GM technology, the individual learning parameter 32  is greater 

than the social learning parameter 42 . This finding is consistent with the empirical results 

obtained by Munshi (2004), Baerenklau (2005), and Conley and Udry (2010); they show that 

new technology is adopted more effectively through self-experiment (individual learning) than 

neighborhood effects (social learning). 

Note that the social learning parameter is higher for conventional seeds ( 21 ) than for GM 

seeds ( 42 ). This indicates that farmers acquire relatively more knowledge about the profitability 

from their neighbors (social learning) for conventional technology than for GM technology. This 

is intuitive to the extent that conventional seeds are not new, reflecting the short history of new 

technology (GM varieties) and the presence of fewer neighbors who already adopted GM 

technology in the early introduction period. Importantly, 21  and 42  being both positive indicate 

the presence of social learning.  

As further discussed below, social learning for GM technology involves an information 

externality. If a farmer waits for his/her neighbors to adopt GM technology so that he/she can 
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learn from neighbors, this will provide an incentive to delay adoption. This issue will be 

evaluated in more details in Section 5.3.     

 

5.1.2. Adoption Curve 

Based on the parameter estimates reported in the previous section, the predicted adoption rates of 

GM technology are obtained from the DP model. These predicted values are compared with 

actual adoption rates in Figure 5.1.  

 

Figure 5.1: Observed and Predicted GM Adoption Rates at the Aggregate Model, 2000-

2007 

 
Note: GM adoption rates are percentage of planted acres to GM seed. 

 

The observed GM adoption rates are drawn from the DMR panel data set. The aggregate 

adoption curve represents the average adoption rates of 136 farmers in and around the U.S. Corn 
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Belt from 2000 through 2007. The shape of the observed path is similar to a typical logistic 

adoption curve. However, the aggregate adoption curve doesn’t reflect the early phase as the 

analysis period of this paper starts in 2000 while GM corn was commercially introduced in 1996. 

 The predicted GM adoption rates are generated by doing Monte Carlo simulation 10,000 

times over an 8-year period from 2000 through 2007 after solving the infinite time horizon DP 

problem for the aggregate GM adoption model with estimated parameters given in Table 5.1. 

Table 5.2 presents the predicted and observed GM adoption rates in Figure 5.1 with terms of 

squared residuals. As described in Section 5.1.1, the goodness-of-fit of the estimated model is 

0.0303; the aggregate GM adoption model has a good predicted power. Overall, the estimated 

model fits data fairly well throughout the analysis period, although it underestimates observed 

GM adoption rates by 9% in 2000 and by 10% in 2007. 

 

Table 5.2: Observed and Predicted GM Adoption Rates at the Aggregate Model, 2000-2007 

Year 
Observed GM 

Adoption Rates
a/
 

Predicted GM 

Adoption Rates
b/

 
Squared Residual

c/
 

2000 33.01% 24.03% 0.0081 

2001 36.30% 34.53% 0.0003 

2002 37.90% 40.73% 0.0008 

2003 39.52% 46.28% 0.0046 

2004 43.74% 51.57% 0.0061 

2005 55.40% 56.51% 0.0001 

2006 59.18% 60.80% 0.0003 

2007 74.96% 64.92% 0.0101 

Sum of Squared Residuals (Goodness-of-fit statistic) 0.0303 

Note: 
a/  b/ 

GM adoption rates are percentage of planted acres to GM seed. 
c/
 Squared residual c/ = (a/ – b/)

2 

 

Discrepancies between observed and predicted rates can come from several sources. 

First, the aggregate model applies to a representative farm and doesn’t capture farm level 

heterogeneity. Second, the analysis considers a simplified choice problem between conventional 
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and GM technology. It ignores issues of adoption of multiple GM traits. While HT and IR-ECB 

traits were introduced in the mid 1990’s during the earlier phase of GM technology innovation, 

the adoption of IR-RW trait and stacked seeds started in the later phase and accelerated the speed 

of diffusion in the late 2000’s. Issues related to farm level heterogeneity will be evaluated in 

Chapter 6.  

 

5.2.Hypothesis Testing 

5.2.1. Hypothetical Scenarios 

Section 5.1 discussed the economic implications of parameter estimates. This section evaluates 

the statistical significance of parameter estimates from an econometric viewpoint. This involves 

hypothesis testing for selected parameters. This is done by simulating the DP model for the 

aggregate GM adoption under alternative hypotheses.  

Hypothesis testing focuses on farm risk preferences r  in the reward function and on the 

parameters  ‘s associated with learning in the measurement equation. This provides an 

econometric basis to analyze the impacts of risk aversion and individual vs. social learning on 

technology adoption. Table 5.3 presents the null hypotheses investigated in this Chapter.  

The null hypothesis in Scenario 1 involves a counterfactual case where a farmer’s risk 

preferences exhibit risk neutrality. Scenario 2 and Scenario 3 bring in situations where social 

learning doesn’t play any role in adopting conventional and GM technology, respectively. 

Further, Scenario 4 considers the case where the farmer learns about profitability of both 

conventional and GM technology using only his/her own experience (i.e., without any social 

interaction). In addition, Scenario 5 and Scenario 6 investigate whether the social learning 

parameter is the same across technologies (1.01 for Scenario 5 and 0.80 for Scenario 6).  
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Table 5.3: Null Hypotheses for Hypothetical Scenarios at the Aggregate Model 

Scenario 

sc  
Null Hypothesis Implication 

1 0 : 0H r   Risk neutral vs. risk aversion 

2 0 21: 0H    No social learning for non-GM technology adoption only 

3 0 42: 0H    No social learning for GM technology adoption only 

4 0 21 42: 0& 0H      
No social learning both for non-GM and for GM 

technologies 

5 0 21 42: 1.01H      
Size comparison of the degree of social learning across 

technologies at the level of non-GM technology 

6  0 21 42: 0.80H     
Size comparison of the degree of social learning across 

technologies at the level of GM technology 

 

 These scenarios are used to conduct hypothesis testing. For each scenario, marginal 

impacts of zero vs. non-zero parameter on goodness-of-fit are evaluated. In this context, Scenario 

1 and Scenario 3 provide useful information on the role of risk preference and of social learning 

in GM technology adoption.  

 

5.2.2. Hypothesis Testing across Scenarios 

Note that the model is nonlinear (due to the nonlinear structure of the Kalman filter algorithm). 

Thus, hypothesis testing relies on a testing procedure applied to nonlinear regression models. It 

can include the Wald, the likelihood ratio, and the Langrage multiplier test statistics. In the 

nonlinear case, the Wald statistic is asymptotically equivalent to the F statistic times the number 

of restrictions denoted as restrictionsN . In case of small sample, the F-test is preferred to the Wald 

test (Greene, 2003). As the GM adoption curve is simulated over only 8 years, the sample size 
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for this paper is small, and the F-test appears more appropriate to do the hypothesis testing 

reported in this paper.  

 Though the F-test is helpful in dealing with the small sample size, there still exist 

obstacles to do hypothesis testing. Clearly, the number of degrees of freedom must be positive. 

Given 8observationsN  , this limits our hypothesis testing to consider just a few parameters. Our 

analysis focuses on parameters for risk preference and individual vs. social learning. This 

involves 
parametersN  = 6. 

   indicates the parameter space of the unrestricted nonlinear minimum distance 

estimator, being considered as the baseline parameter space in Table 5.1. Indexing sc  as a 

selected scenario in Table 5.3, 
*

sc  indicates the parameter space of the estimator under the null 

hypothesis of scenario sc . For each sc  = {Scenario 1, Scenario 2, …, Scenario 6}, the F-statistic 

is defined as 

 

   

 

 

*

,
restrictions

sc

sc

restrictions
sc sc

observations parameters

observations parameters

SSR SSR

N
F N N N

SSR

N N

    
 
   
  
 

  

,  (5.2) 

where  SSR   and  *

scSSR   are the sum of squared residuals (goodness-of-fit statistic) under 

  and 
*

sc , respectively. Under each scenario sc  in Section 5.2.1, the DP model for the 

aggregate GM adoption is simulated under   and 
*

sc . Then, the goodness-of-fit statistics 

 SSR   and  *

scSSR   are calculated and used for evaluating the F-test statistic in (5.2). This 

provides a basis for a statistical test of selected hypotheses. 
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For example, under Scenario 1, the null hypothesis is 0 : 0H r  , testing whether farm 

risk preferences exhibit risk aversion versus risk neutrality. Then,   is composed of r = 0.54 

and other parameter estimates given in Table 5.1, but  1
*

sc Scenario
  has r  = 0 holding other 

parameters constant at their estimated values in Table 5.1. The sum of squared residuals between 

observed data and simulated rates (goodness-of-fit statistic) is calculated as  SSR  = 0.0303 

given   and   1

*

sc Scenario
SSR


  = 1.7816 given  1

*

sc Scenario
 . Using (5.2) with  1sc Scenario

restrictionsN
  = 1, 

observationsN  = 8, and 
parametersN  = 6, the F-static is calculated as 

   1
1,2

sc Scenario
F


 = 115.43, being 

larger than 98.80, the critical value of the 99
th

 percentiles of the F-distribution with (1, 2) degrees 

of freedom under the null hypothesis. Thus, the null hypothesis 0 : 0H r   is rejected at the 1% 

significance level, implying farm risk preferences exhibit risk aversion. Therefore, this testing 

result strongly supports that farmers are risk averse and that their risk preferences affect GM 

technology adoption. Table 5.4 presents results of hypothesis testing for each scenario. 

 

Table 5.4: Results of Hypothesis Testing across Scenarios at the Aggregate Model 

Scenario 
sc   

Null Hypothesis SSR( )
a/ SSR(

*

sc )
b/ 

df1
c/ 

df2
d/ F

sc
(df1, df2)

e/ 

1 0 : 0H r   0.0303 1.7816 1 2 115.43
*** 

2 0 21: 0H    0.0303 0.0621 1 2 2.09 

3 0 42: 0H    0.0303 1.5191 1 2 98.13
** 

4 0 21 42: 0& 0H     0.0303 1.9509 2 2 63.29
** 

5 0 21 42: 1.01H     0.0303 0.3416 2 2 10.26
* 

6 0 21 42: 0.80H     0.0303 1.4665 2 2 47.33
** 

Note Statistical significance is denoted as *** at the 1% level, ** at the 5% level, and * at the 10% level. 
a/
 Goodness-of-fit statistic under  

b/
 Goodness-of-fit statistic under

*

sc  
c/
 Degrees of freedom for the numerator 

d/
 Degrees of freedom for the denominator 

e/
 F-statistic 
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Null hypotheses are rejected at the 1% significance level for Scenario 1, at the 5% 

significance level for Scenario 3, Scenario 4, and Scenario 6, and at the 10% significance level 

for Scenario 5. Especially, the F-statistics under Scenario 1 and Scenario 3 are shown to be the 

highest and the second highest across scenarios. Those results mean that the impacts of risk 

aversion and social interaction on GM technology adoption are highly significant. Note that the 

null hypothesis is not rejected for Scenario 2. 

The effect of social interaction is shown to be somehow different according to the 

technology. For non-GM technology, we fail to reject the null hypothesis of 0 21: 0H   , which 

means the impact of social learning for non-GM technology is not statistically significant in 

accounting for farmers’ GM technology adoption behavior. On the contrary, for GM technology, 

null hypotheses of no social learning under Scenario 3 and Scenario 4 are strongly rejected at the 

5% significance level. Especially, the F-statistic for Scenario 4, 98.13 is marginally close to the 

critical value of the 99
th

 percentiles of the F distribution with F(1,2), 98.50. So, the null 

hypothesis of Scenario 4 can be rejected almost at the 1% significance level. This provides 

evidence that social interaction plays a key role in GM technology adoption.   

Finally, null hypotheses of similar impacts of social interaction between non-GM and 

GM technology are rejected as shown in Scenario 5 and Scenario 6. Those test results show that 

the magnitudes of social learning effects are different across technologies.
27

 As presented in 

Table 5.1, social interaction for non-GM technology 21  = 1.01 is larger than that for GM 

technology 42  = 0.80. As discussed in Section 5.1.1, the case of 21 42   may be explained by 

the difference in history for each technology; farmers learn about the profitability of 

                                                           
27

 The marginal impact by changes in 42
 
is discussed in the following section in terms of sensitivity analysis. 
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conventional seed more from neighbors as the old technology (conventional seed) has a longer 

history compared to the new GM technology which has a shorter history.  

 

5.3.Sensitivity Analysis 

Hypothesis testing in the previous section provides useful econometric evidence on the role of 

selected parameters affecting GM technology adoption. This section expands the evaluation of 

the results by conducting sensitivity analysis. Specifically, this section explores how the 

aggregate GM adoption curve varies as selected parameters change. The emphasis is on 

analyzing impacts of risk aversion and social learning on GM technology adoption.   

 

5.3.1. Sensitivity Analysis of Risk Aversion 

The Arrow-Pratt coefficient of absolute risk-aversion r  can be expected to affect the speed of 

GM technology adoption. To document the nature and magnitude of this effect, the DP model of 

the aggregate GM adoption is simulated at different levels of r  holding other parameters 

constant at their estimated value. Figure 5.2 illustrates selected simulations of GM technology 

adoption over 8 years, with r  starting from the minimum distance estimates 0.54 to a 

considerably high level r  = 3.51. Specific values are provided in Table 5.5. 

The estimated GM adoption with r  = 0.54 is used as a benchmark curve represented as a 

dashed line in Figure 5.2. Movements of GM adoption curves are not monotonic in terms of risk 

aversion; simulated GM adoption curves move upward ranging from r  = 0.54 to r  = 2.16, 

whereas they move downward beyond r  = 2.16 up to r  = 3.51.  
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Figure 5.2: Simulation of the GM Technology Adoption by Changes in Risk Aversion at the 

Aggregate Model 

 

 

Table 5.5: Simulations of GM Technology Adoption by Changes in Risk Aversion at the 

Aggregate Model 

Risk 

Aversion 

Simulated GM Adoption Rates at the Aggregate Model 
Goodness-

of-fit 

r    2000 2001 2002 2003 2004 2005 2006 2007   

0.54 24.10% 34.76% 41.00% 46.76% 51.93% 56.51% 60.96% 65.13% 0.03 

1.35 30.37% 40.90% 48.09% 54.54% 60.51% 65.86% 70.37% 74.45% 0.09 

2.16 32.69% 43.73% 51.57% 58.61% 64.78% 70.19% 74.81% 78.65% 0.15 

2.97 29.91% 37.80% 42.91% 47.32% 51.34% 54.94% 57.91% 60.74% 0.04 

3.51 28.03% 33.17% 36.02% 38.39% 40.22% 41.62% 43.03% 44.36% 0.14 

 

To evaluate this non-monotonicity, simulated adoption rates in a fixed time period 2007 are 

drawn in Figure 5.3 with r  ranging from 0.10 to 3.50 and segmented by 0.10. Simulated 
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adoption rate in 2007 increases gradually from 57.60% at the starting point r  = 0.10 and reaches 

a peak of 78.82% at r  = 2.20. However, it falls from its peak as r  increases over 2.20 and 

declines rapidly to 44.54% at r  = 3.50. 

 

Figure 5.3: Simulated GM Adoption Rates in 2007 by Changes in Risk Aversion at the 

Aggregate Model 

 

 

Simulation results show that increments in risk aversion accelerate the speed of GM 

technology adoption up to a certain level of r  ( r 2.20) but decelerates the adoption speed at a 

higher level of r  ( r  2.20). Such a non-monotonic effect can be explained as follows: first, at a 

relatively higher level of r  2.20, risk-averse farmers delay GM technology adoption as they see 

the new technology as a risky asset (Besley and Case, 1994; Baerenklau, 2005). In this case, the 

more risk-averse farmers are, the later they adopt a new technology (e.g., Liu, 2008). Second, a 
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different impact of risk aversion on GM adoption can arise in the context of farmers’ portfolio 

selection. As discussed in Chapter 3, this paper assumes that both GM technology and 

conventional technology are risky, with uncertain profitability and learning for both. That 

assumption is distinctive from Besley and Case (1994) and Baerenklau (2005), where an old 

technology is considered to be risk-free. In the case where both technologies are risky, farmers 

may want to diversify their adoption choices. 

Under expected utility maximization, diversification can help lower risk (variance). A 

mixture of two risky technologies can reduce risk exposure when the correlation coefficient 

between conventional and GM profitability 
,CONV GM  is small or negative (Anderson et al., 

1977). In the model, 
,CONV GM

 
is calculated as 0.2948 on average, which may be small enough to 

provide a risk averse farmer with an incentive to diversify. In this case, the diversification motive 

can possibly speed up the adoption of GM technology. This occurs in our simulations for r  < 

2.20.
28

 

In sum, the impact of risk aversion on GM technology adoption is non-monotonic. 

Increment in risk aversion enhances the speed of GM technology adoption for 2.20r   due to 

farmers’ portfolio selection but slows down the adoption speed as the level of risk aversion is 

high, 2.20r  . 

 

5.3.2. Sensitivity Analysis of Social Learning for GM Technology Adoption 

The impact of the social interaction parameter for GM technology 42  is investigated through 

sensitivity analysis. Similar to the procedure in Section 5.3.1, the DP model is simulated at 

                                                           
28

 In solving the DP model, the correlation coefficient in 2000 
,CONV GM

 
= 0.3363 is used for composing a 

variance-covariance matrix in the Kalman filter algorithm.  
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increasing levels of 42  holding other parameters constant at their estimated value. Figure 5.4 

and Table 5.6 present changes in simulated GM technology adoption curves according to 

increases in 42 .   

 

Figure 5.4: Simulation of the GM Technology Adoption by Changes in the Social Learning 

Parameter at the Aggregate Model 

 

 

The dashed line indicates the benchmark GM adoption curve when goodness-of-fit is 

best. Ranging from 42 0   to 42 1.10  , the simulated GM adoption curves at the aggregate 

model show a steady downward movement as 42  increases. Unlike the case of risk aversion, the 

impact of social interaction on the adoption speed is monotonic: social learning provides an 

incentive to delay GM adoption. 
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Table 5.6: Simulation of the GM Technology Adoption by Changes in the Social Learning 

Parameter at the Aggregate Model 

  Social 

Learning 
Simulated GM Adoption Rates at the Aggregate Model 

Goodness-

of-fit 

 42  2000 2001 2002 2003 2004 2005 2006 2007   

0.00 55.57% 77.25% 89.90% 96.26% 98.71% 99.54% 99.78% 99.86% 1.53 

0.10 52.86% 75.63% 88.91% 95.72% 98.50% 99.48% 99.77% 99.87% 1.49 

0.20 48.66% 72.59% 86.88% 94.55% 97.85% 99.11% 99.57% 99.74% 1.41 

0.30 46.77% 69.96% 84.63% 92.87% 96.69% 98.28% 99.00% 99.28% 1.32 

0.40 44.72% 66.85% 81.62% 90.77% 95.47% 97.63% 98.53% 98.95% 1.22 

0.50 40.97% 61.28% 75.81% 86.13% 92.36% 95.80% 97.57% 98.49% 1.03 

0.60 36.57% 54.60% 67.45% 77.85% 85.48% 90.65% 93.94% 95.96% 0.73 

0.70 30.97% 45.35% 55.44% 64.40% 72.04% 78.48% 83.53% 87.39% 0.31 

0.80 24.03% 34.53% 40.73% 46.28% 51.57% 56.51% 60.80% 64.92% 0.03 

0.90 15.76% 22.18% 24.58% 26.40% 27.87% 29.30% 30.58% 31.82% 0.45 

1.00 8.21% 9.90% 9.20% 8.38% 7.77% 7.43% 7.14% 6.88% 1.40 

1.10 9.39% 9.88% 8.50% 7.48% 6.58% 5.93% 5.65% 5.58% 1.47 

 

 

Starting from the extreme case of no social interaction ( 42 0  ), simulated GM adoption 

rate curves keep decreasing as 42  increases by 0.10 up to 42 1.10  . Fixing a time period at a 

particular year 2007, the trend of simulated GM adoption rates due to changes in 42  is 

illustrated in Figure 5.5.  

For instance, a simulated GM adoption rate in 2007 falls to 5.58% for 42 1.10   

(compared to a full adoption of 99.87% for 42 0.10  ). In addition, adoption of GM technology 

is slower as 42  increases. Define the saturation time point as the year GM technology is almost 

fully adopted with percentage of over 95%. In the absence of social interaction, GM adoption 

rate would reach 96.26% very early during the analysis period, the saturation time point being 
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2003. However, the saturation time point moves downward to 2004 for 42 0.40  , 2005 for 

42 0.50  , and 2007 for 42 0.60  .  

 

Figure 5.5: Simulated GM Adoption Rates in 2007 by Changes in the Social Learning 

Parameter at the Aggregate Model 

 

 

 From those empirical results, we find that more intensive social interactions for GM 

technology slow down the speed of GM adoption at the aggregate model. This reflects the 

presence of information externality, where acquisition of information from neighbors impedes 

one’s GM technology adoption.
29

 This situation occurs when farmers take wait-and-see attitudes 

until they find what their neighbors are actually doing in adopting GM technology. As a result, 

                                                           
29

 From the viewpoints of adoption rates, social learning is interpreted as ‘negative information externality.’ 
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there is an incentive to delay GM adoption through social interaction under information 

externality. 

 

5.4.Welfare Analysis 

This section analyzes the welfare effects associated with risk aversion and social learning of corn 

farmers. Both cost of risk and cost of social learning are calculated by comparing welfare 

measures at different levels of selected parameters.  

In a way similar to the previous section, welfare analysis is done by investigating the 

impacts of parameters r  and 42  on welfare measure. The certainty equivalent is used for 

measuring welfare (Chavas, 2004). The reward function in the DP model in Chapter 3 is 

represented by an additive mean-variance function, which is a certainty equivalent itself with its 

variance component interpreted as a measure of the risk premium. In dynamic models, the value 

function of the Bellman equation gives the present value of all future risk-adjusted benefits. 

Thus, the value function is interpreted as a certainty equivalent measure and is used in a welfare 

indicator.   

This section focuses on analyzing value functions in the DP simulations under alternative 

hypothetical situations. The first sub-section investigates value functions at different levels of 

risk aversion r  and evaluates the associated cost of risk. The second sub-section goes through a 

similar exercise to evaluate the welfare effects of social learning.  

 

5.4.1. Welfare Analysis of Risk Aversion 

The parameter estimates space using a minimum distance estimator is expressed as MDE , and 

the state space is denoted as S , where S  is composed of sufficient statistics – mean and 



109 
 

 

variance of the proftability for conventional and GM technology,  2 2, , ,CONV GM

CONV GMS     . 

The optimal value function given a state space under the minimum distance estimator is 

represented as  | MDEV S  . This section considers the effects of selected parameters on the 

value function  |V S  . This involves evaluating  |V S 
 
at every possible combination on the 

state space. But the dimension of the state space is very high: the total number of combinations is 

15
4
 = 50,625 in the DP model.

30
 To simplify the discussion, this section considers the optimal 

value function evaluated at points as close as possible to average values in the staring year 2000,

S = {3.57, 0.06, 3.57, 0.11}.
31

 

 Referring to Scenario 1 in Section 5.2.2, the value function under risk-neutrality 

 0| rV S   can be understood as a welfare measure reflecting only the mean effect (since the 

variance-covariance term is eliminated from the model under risk neutrality when r  = 0). On the 

contrary, the baseline value function  0.54| rV S   or  | MDEV S   corresponds to a welfare 

measure considering both mean- and variance- effects under risk aversion. Then, the difference 

between  0| rV S   and  0.54| rV S   can be interpreted as measuring the (absolute) cost of 

risk under risk aversion. Thus, the absolute cost of risk aversion is defined as 

   0| |r r

risk aversionC V S V S

     ,    (5.3) 

                                                           
30

 We discretized each state variable (mean and variance for each technology) with 15 evaluation points between 

given lower bounds and upper bounds.  

31
 The expected values in 2000 are 3.56 for

CONV , 0.09 for
2

CONV , 3.64 for
GM , and 0.12 for

2

GM . 
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where risk aversionC   ≥ 0. risk aversionC   
is the amount a farmer is willing to pay in order to eliminate 

risk (variance). Define 
risk aversionC   

as the relative cost of risk aversion, obtained by dividing the 

absolute cost of risk aversion risk aversionC   by the optimal value function given r :  

   
 

0| |
100

|

r r

risk aversion r

V S V S
C

V S





  
 


,   (5.4)  

where 
risk aversionC 

 ≥ 0. Note that 
risk aversionC   

is a percentage and is independent of the units of 

monetary measurements. 

At the given evaluation points, 
risk aversionC 

 between  0| rV S   and  0.54| rV S   is 

3.90%, which is positive and corresponds to the relative cost of risk aversion. It means that a 

risk-averse farmer would pay 3.90% of the value function to eliminate all risk faced in the 

baseline case. In short, under production risk (involving both conventional and GM technology), 

the farmer is worse off compared to the counterfactual case of risk-neutrality. This is consistent 

with risk aversion.  

The next concern is to experiment how farm welfare changes with risk aversion. Figure 

5.6 illustrates the changes of the optimal value functions at different levels of risk aversion. 

Starting from the risk neutral case, the optimal value functions are obtained from the DP 

simulations with risk aversion ranging from r  = 0 to r  = 3.50. According to Figure 5.6, welfare 

measures decline monotonically as the level of risk aversion increases. Table 5.7 provides 

associated variables with the relative cost of risk aversion.  
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Figure 5.6: Welfare Measures for GM Technology Adoption by Changes in Risk Aversion 

at the Aggregate Model 

 

 

Table 5.7: Welfare Measures and Costs of Risk Aversion at the Aggregate Model 

Risk Aversion 

(Absolute) 

The Optimal Value 

Function
a/ 

Absolute Cost of Risk 

Aversion
b/ 

Relative Cost of Risk 

Aversion (percent)
 

r   | rV S 
 risk aversionC    

risk aversionC 
  

0.00 39.44 0.00 0.00% 

0.30 39.26 0.18 0.45% 

0.54
c/ 

37.96
 c/

 1.48
 c/

 3.90%
 c/

 

0.60 37.63 1.81 4.80% 

0.90 35.97 3.47 9.66% 

1.20 34.17 5.27 15.42% 

1.50 32.33 7.11 21.98% 

1.80 30.70 8.74 28.46% 

2.10 29.08 10.36 35.64% 

2.40 27.53 11.91 43.28% 

2.70 26.05 13.39 51.43% 

3.00 25.78 13.66 52.97% 

3.30 24.54 14.90 60.69% 

3.50 23.57 15.87 67.33% 

Note: 
a/ b/

 Unit - $ hundred / acre 
c/
 The baseline case at the minimum distance estimator 
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The relative cost of risk aversion 
risk premiumC 

 increases with the level of risk aversion, 

ranging from 0% to 67.33%. For example, if farm risk aversion is very high with r  = 2.40, a risk 

averse farmer would pay 43.28% of the value function to eliminate risk. That is, he/she has to 

pay much more in bearing his/her risk rather than just 3.90% of the value function in the baseline 

case. That is, highly risk-averse farmers would pay more to eliminate their risk exposure. As 

expected, under production risk, farmers are made worse off when they become more risk 

averse. 

 

5.4.2. Welfare Analysis of Social Learning for GM Technology Adoption 

Following the discussion presented in Section 5.4.1, the optimal value function in terms of social 

interaction 42  is denoted as  42|V S


 . Given the social learning parameter 42 , *

42  is termed 

as “socially optimal” when *

42  is such that it maximizes  42|V S


 . That is, social optimum 

*

42  is defined as  

  42

42

*

42 |arg max V S




   .     (5.5) 

Then, the difference between  
*
42|V S


  and  42|V S


  given 42  is defined as the (absolute) 

cost of social learning, denoted as 
social learningC 

: 

   
*
42 42| |social learningC V S V S
 

     .    (5.6) 

social learningC 
reflects the farmer’s cost associated with social learning. Alternatively, define the 

relative cost of social learning as 
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   

 

*
42 42

42

| |
100

|
social learning

V S V S
C

V S

 



  
 


    (5.7)   

That is, 
social learningC 

 represents the percentage change in the value function associated with social 

learning.  

Figure 5.7 illustrates changes of the welfare measures with the social learning parameter 

42  ranging from the extreme case of no social learning ( 42 = 0) to 42 = 1.10.  

 

Figure 5.7: Welfare Measures for GM Technology Adoption by Changes in the Social 

Learning Parameter at the Aggregate Model 

 

   

Unlike the relationship between welfare measures and risk aversion in Figure 5.6, the changes of 

the optimal value functions don’t show monotonicity with respect to 42 ;  42|V S

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from the starting point 42  = 0 and reaches a peak when 42  = 0.80. And the value function drops 

from its peak to the endpoint 42  = 1.10. 

The evolution of value function as 42  changes is presented in Table 5.8, which also 

reports the relative cost of social learning 
social learningC 

. 

 

Table 5.8: Welfare Measures and Costs of Social Learning at the Aggregate Model 

Social Learning for 

GM Technology 

The Optimal Value 

Function
 a/

 

Absolute Cost of 

Social Learning
 b/

 

Relative Cost of 

Social Learning 

(percent) 

42    42|V S


   social learningC 
  

social learningC 
  

0.00 35.62 2.33 6.55% 

0.10 36.18 1.78 4.91% 

0.20 36.66 1.29 3.53% 

0.30 37.07 0.89 2.40% 

0.40 37.39 0.56 1.51% 

0.50 37.64 0.32 0.85% 

0.60 37.81 0.15 0.39% 

0.70 37.91 0.04 0.11% 

0.80
c/d/ 

37.96
c/ 

0.00
c/ 

0.00%
c/ 

0.90 37.95 0.01 0.02% 

1.00 37.89 0.06 0.17% 

1.10 37.80 0.15 0.41% 

Note: 
a/ b/

 Unit - $ hundred / acre 
c/
 The baseline case at the minimum distance estimator 

d/
 Social optimum

*

42    

 

In the absence of social learning ( 42 = 0), 
social learningC 

 amounts to 6.55%, indicating that farmers 

would pay 6.55% of the present value of their payoff to be able to learn from their neighbors in 

adopting GM technology. 
social learningC 

 decreases gradually with increments of 42 , with a 

minimum of 0% (social optimum) obtained at *

42  = 0.80. Then, 
social learningC 

 rises slightly 

beyond this social optimum, indicating a range where farm welfare would start declining beyond 
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that point. This identifies a region where social learning would be deemed “excessive” from a 

social viewpoint. These results also indicate that the amount of social learning used by farmers 

adopting GM technology is close to its optimum.  

We have seen that the speed of GM technology adoption is monotonically reduced by 

increments in levels of social learning parameter 42 . This was interpreted as an information 

externality in Section 5.3.2 (as free-riding on neighbors’ information provides a farmer an 

incentive to delay GM adoption). Our welfare results are qualitatively different. First, we find 

that, while increasing social learning from zero slows down GM adoption, it also tends to make 

the farmer better off. This reflects the fact that, by free-riding on the information provided by 

neighbors, the farmer can reduce its learning cost. Second, finding that the actual social learning 

is close to its optimum indicates that the farmers appear to have efficiently internalized the 

information externality associated with social learning. In other words, farmers have found a 

proper trade-off between individual learning and social learning in the process of adopting GM 

technology.  
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Chapter 6 : Results and Discussions of the Disaggregate GM 

Technology Adoption Models 
 

This chapter presents the empirical results across three types of disaggregate models classified 

by farm type in terms of adoption pattern: the early-, the intermediate-, and the late- adopter. 

Considering heterogeneity ignored at the aggregate model (heterogeneity unrelated to initial 

conditions), the disaggregate DP models are presented to analyze heterogeneity in parameters 

across different sub-groups by farm type. With a focus on risk preferences and the relative role 

of individual/social learning, estimated parameters are reported for each type of adopter and 

compared across farm types. In addition, economic implications of models are discussed and 

evaluated together with sensitivity analyses on adoption path and welfare effects for each type of 

corn farmer.   

Assuming that heterogeneity by farm type is attributed to different parameters across the 

disaggregate models, three sub-groups are classified from the DMR panel dataset according to 

adoption pattern: the early-, the intermediate-, and the late- adopter for GM corn as mentioned 

above. For each sub-group, parameter estimates obtained from the disaggregate model estimation 

are reported with a discussion of economic implications. In a way similar to the aggregate model 

in Chapter 5, the following analyses are done at the disaggregate model for each sub-group. First, 

hypothesis testing is implemented to examine selected scenarios evaluating the effects of risk 

aversion and social learning. Second, a sensitivity analysis is done investigating how adoption 

path changes with risk aversion and social learning. Third, a welfare analysis is conducted for 

evaluating the impacts of risk aversion and social learning on farm welfare. The following three 

sections present results and discussions of these analyses for the early adopter, the intermediate 

adopter, and the late adopter, in sequence. The last section compares results across farm types, 
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discussing the presence of monotonicity in the effects of risk aversion and social learning for 

each type farmer’s adoption patterns. 

 

6.1.Early Adopter 

6.1.1. Parameter Estimates and Adoption Curve 

Following the discussion presented in Section 4.2.3, the parameter space of the early adopter’s 

GM technology adoption model is represented as 

 11 21 32 42, , , ,EARLY EARLY EARLY EARLY EARLY EARLYr      .   (6.1) 

With a focus on the effects of risk aversion and individual/social learning on technology 

adoption, other parameters (besides the ones representing risk aversion and learning) are taken as 

given (
11

EARLY , 
22

EARLY , and 
31

EARLY ). In practice, parameter estimates from the intermediate 

adopter’s DP model are used as the fixed values for the early adopter’s DP model. That is, 

11 11

EARLY INTER   , 
22 22

EARLY INTER   , and 
31 31

EARLY INTER  ,   (6.2).  

where 
11

INTER  , 
22

INTER , and 
31

INTER  are estimates obtained from the intermediate adopter’s DP 

model using the minimum distance estimator. Then, the total number of parameters to be 

estimated in the early adopter’s DP model reduces to 5 compared to the aggregate adoption 

model with 8 parameters. Parameter estimates are reported in Table 6.1.  

The Arrow-Pratt absolute risk-aversion coefficient EARLYr  is estimated to be 0.08. Its 

positive sign reflects that the early adopter’s risk preferences exhibit risk aversion; he/she 

perceives a new technology (GM seed) as a risky choice with uncertain profitability as average 

farmers do at the aggregate model. The analysis shows that early adopter’s expected profit is 

estimated as $8.59 million. And the Arrow-Pratt relative risk aversion coefficient EARLYr  is 
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estimated as 0.69, which implies that his/her risk aversion seems to be low as EARLYr < 1 (Gollier, 

2001, p. 31). Compared with r  = 4.12 at the aggregate model, early adopters seem to be much 

less risk-averse in adopting GM seeds than average farmers. That is, early adopters exhibit lower 

risk aversion, which contributes to increasing their willingness to adopt GM technology.  

 

Table 6.1: Parameter Estimates of the Early Adopter’s GM Adoption Model 

Parameter Implication Estimate 

Reward Function   

EARLYr   
The Arrow-Pratt measure of absolute risk-aversion 

coefficient 
0.08 

EARLYr   
The Arrow-Pratt measure of relative risk-aversion 

coefficient 
0.69

 

   
System Equation   

11

EARLY
a/
  

The effect of adoption of conventional technology on the 

average change in ,CONV EARLY    
0.11 

22

EARLY
b/

  
The effect of adoption of GM technology on the average 

change in ,GM EARLY  
2.50 

   
Measurement Equation   

11

EARLY   
The effect of individual learning for conventional 

technology 
1.26 

21

EARLY   The effect of social learning for conventional technology 0.85 

31

EARLY  
c/ 

The effect of yield for GM seed to ,CONV EARLY   1.12 

32

EARLY   The effect of individual learning for GM technology 1.52 

42

EARLY   The effect of social learning for GM technology 0.17 

Note: Goodness of fit is 0.0059. 
a/ b/ c/

 Given from 
11

INTER
  , 

22

INTER
 , and 

31

INTER
  

 

As described above, parameters in the system equation 
11

EARLY  and 
22

EARLY  are taken as 

given from the estimates in the intermediate adopter’s DP model. They are all positive, reflecting 

that the adoption of conventional (GM) seeds improves profitability for the conventional (GM) 
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technology. In addition, 
22

EARLY  = 2.50 is greater than 
11

EARLY  = 0.11, implying farmers perceive 

GM seed as more profitable on average than conventional seed. Compared with the result of the 

aggregate model ( 11  = 2.20 and 22  = 2.50), the difference between 
11

l  and 
22

l  for each farm 

type l  is shown to be rather large, reflecting that individual farmers at the disaggregate model 

may be more pessimistic about the old technology (conventional seed) compared to the new 

technology (GM seed).  

Parameter estimates in the measurement equation are all positive as they are in the 

aggregate model. This means that there are positive impacts of both individual learning and 

social learning on the profitability for each technology. Estimated ’s are not so different 

from ’s estimated in the aggregate model except for the social learning parameter for GM 

technology  = 0.17, which is considerably smaller than  = 0.80 at the aggregate model. 

This indicates that early adopters don’t rely on their neighbors as much as average farmers do. In 

terms of information externalities, early adopters’ incentive to delay adoption is thus weaker 

compared to average farmers’ incentive, implying that early adopters tend to adopt GM 

technology more aggressively than average farmers. 

Other findings are consistent with estimation results of the aggregate model reported in 

Section 5.1.1. The early adopter’s individual learning parameter is also found to be greater than 

his/her social learning parameter for conventional technology ( ) and for GM 

technology ( ) (Conley and Udry, 2010; Munshi, 2004). Also, the early adopter’s 

social learning parameter for conventional technology,  is higher than his/her social 

learning parameter for GM technology, , reflecting that early adopters’ knowledge also 

relies relatively more on social learning for conventional seeds than for GM seeds due to the 

EARLY



42

EARLY 42

11 21

EARLY EARLY 

32 42

EARLY EARLY 

21

EARLY

42

EARLY
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shorter history of GM varieties and fewer neighbors who already adopted GM seeds in the early 

period of GM technology diffusion.  

The predicted adoption rates of GM technology based on the parameter estimates in 

Table 6.1 are compared with selected early adopter’s observed adoption rates from the DMR 

data as illustrated in Figure 6.1. Specific values for the goodness-of-fit (measured by squared 

discrepancies) for predicted adoption rates are presented in Table 6.2.  

 

Figure 6.1: Observed and Predicted GM Adoption Rates for the Early Adopter, 2000-2007 

 
Note: GM adoption rates are percentage of planted acres to GM seed. 

 

The goodness-of-fit is close to zero as 0.0059, so that the early adopter’s DP model for 

GM technology adoption fits the data very well. The only discrepancy occurs in 2000, when the 

DP model overestimates GM adoption rate by 7.03%. Against the aggregate model with a 

goodness-of-fit of 0.0303, the early adopter’s DP model provides a better fit to the actual 
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adoption rates of GM varieties. This result shows that, if different parameters from the aggregate 

model are applied, an alternative DP model (the disaggregate model for the early adopter) can fit 

the early adopter’s adoption pattern much better than the aggregate model does. This provides 

some evidence supporting the presence of heterogeneity in parameters across groups.  

 

Table 6.2: Observed and Predicted GM Adoption Rates for the Early Adopter, 2000-2007 

Year 
Observed GM 

Adoption Rates
a/
 

Predicted GM 

Adoption Rates
b/

 

Squared 

Discepancies
c/
 

2000 0.00% 7.03% 0.0049 

2001 67.10% 64.43% 0.0007 

2002 100.00% 98.55% 0.0002 

2003 100.00% 99.99% 0.0000 

2004 100.00% 100.00% 0.0000 

2005 100.00% 100.00% 0.0000 

2006 100.00% 100.00% 0.0000 

2007 100.00% 100.00% 0.0000 

Sum of Squared Residuals (Goodness-of-fit statistic) 0.0059 

Note: 
a/  b/ 

GM adoption rates are percentage of planted acres to GM seed. 
c/
 Squared residual c/ = (a/ – b/)

2 

 

6.1.2. Hypothesis Testing 

Focusing on the early adopter’s risk preferences and individual/social learning, selected 

parameters are used to evaluate the statistical significance of the estimates. Hypothesis testing is 

done by simulating the early adopter’s DP adoption model under alternative hypotheses. 

Scenario is denoted by sc , being hypothesized in the same way as done for the aggregate model 

in Section 5.2.1.
32

 

                                                           
32

 Full descriptions of each scenario are referred to Table 5.3 in Section 5.2.1. 
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Instead of investigating all scenarios, this section focuses on risk-aversion EARLYr  

(Scenario 1) and the social learning parameter for GM technology adoption 
42

EARLY  (Scenario 3). 

The null hypothesis under Scenario 1 involves a counterfactual case where the early adopter’s 

risk preferences exhibit risk neutrality (
0 : 0EARLYH r  ), with risk aversion as an alternative 

hypothesis. Also, the null hypothesis under Scenario 3 brings in a situation where social learning 

doesn’t play any role in adopting GM technology for the early adopter (
0 42: 0EARLYH   ).  

 As discussed in Section 5.2.2, hypothesis testing relies on the F-test. We consider the 

case where 
parametersN  = 5 as we focus on the parameters for risk preferences and individual/social 

learning ( EARLYr , 
11

EARLY , 
21

EARLY , 
32

EARLY , and 
42

EARLY ). Compared with the aggregate model with 

parametersN  = 6, we have smaller number of parameters as other parameters (
11

EARLY , 
22

EARLY , and 

31

EARLY ) are treated as constants for early adopters.  

Denoting EARLY  by the parameter space of the unrestricted nonlinear minimum distance 

estimator in Table 6.1, ,

*

EARLY sc  indicates the parameter space of the estimator under the null 

hypothesis for each scenario.  EARLYSSR   and  ,

*

EARLY scSSR   are the sum of squared residuals 

(goodness-of-fit statistic) under EARLY  and ,

*

EARLY sc , respectively. Table 6.3 presents results of 

hypothesis testing for each scenario. 

Due to increased degrees of freedom for the denominator, the statistical significance is 

improved compared with the aggregate model. All the null hypotheses are rejected at the 1% or 

at the 5% significance level. Calculated F-statistics show different trends from the results of the 

aggregate model; the F-statistics under Scenario 2 and Scenario 4 are much higher than the F-

statistics under any other scenarios, so that the effect of social learning for conventional 
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technology 
21

EARLY  seems to be more important for the early adopter’s GM adoption model 

compared to the aggregate adoption model. Also, rejections of null hypotheses for Scenario 5 

and Scenario 6 indicate that the social learning parameter for conventional technology is 

different from the social learning parameter for GM technology.   

  

Table 6.3: Results of Hypothesis Testing across Scenarios for the Early Adopter 

Scenario 

sc   
Null Hypothesis SSR(

l

 )
a/ SSR( ,

*

l sc

 )
b/ 

df1
c/ 

df2
d/ 

F
sc

(df1, df2)
e/ 

1 
0 : 0EARLYH r   

0.0059 0.0279 1 3 11.26
** 

2 
0 21: 0EARLYH    

0.0059 0.5823 1 3 295.11
***

 

3 
0 42: 0EARLYH    

0.0059 0.0300 1 3 12.36
** 

4 0 21 42: 0& 0EARLY EARLYH      0.0059 2.5896 2 3 661.41
*** 

5 
0 21 42: 0.85EARLY EARLYH     

0.0059 0.0993 2 3 23.91
** 

6  
0 21 42: 0.17EARLY EARLYH     0.0059 0.5788 2 3 146.65

*** 

Note: Statistical significance is denoted as *** at the 1% level, ** at the 5% level, and * at the 10% level. 
a/
: Goodness-of-fit statistic under

l ,  l EARLY  

b/
: Goodness-of-fit statistic under

,

*

l sc ,  l EARLY  

c/
: Degrees of freedom for the numerator 

d/
: Degrees of freedom for the denominator 

e/
: F-statistic 

 

The null hypothesis 
0 : 0EARLYH r   is rejected at the 5% significance level under 

Scenario 1, implying the early adopter’s risk preferences exhibit risk aversion like average 

farmers in the aggregate model. For the social learning parameter for GM technology, the null 

hypothesis 
0 42: 0EARLYH    is rejected at the 5% significance level under Scenario 3, providing 

evidence that social learning plays an important role in the early adopter’s GM technology 

adoption. From these results, hypothesis testing gives econometric evidence on the role of both 

risk aversion and social learning in GM technology adoption decisions.  
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6.1.3. Sensitivity Analysis on Adoption Path 

The evaluation of the hypothesis testing results is expanded by conducting sensitivity analysis 

with a focus on impacts of risk aversion and social learning on GM technology adoption. We 

investigate how the early adopter’s GM adoption curve varies with changes in two parameters: 

the risk aversion coefficient  EARLYr  and the social learning parameter for GM technology 
42

EARLY . 

Comparison with the aggregate model is also made to investigate farm heterogeneity reflecting 

how an early adopter’s adoption pattern differs from average farmers’ patterns.  

We explore how the Arrow-Pratt absolute risk-aversion coefficient EARLYr  affects the 

speed of GM technology adoption for an early adopter. The early adopter’s DP model for GM 

technology adoption is simulated at different levels of EARLYr  holding other parameters constant 

at their estimated values presented in Table 6.1. Figure 6.2 illustrates selected simulations of GM 

technology adoption over 8 years, with EARLYr  starting from risk neutrality EARLYr  = 0 to a high 

level of risk aversion, EARLYr  = 3.20. Specific values are presented in Table 6.4.  

The early adopter’s GM adoption at EARLYr  = 0.08 (the minimum distance estimates) is 

used as a benchmark curve represented as a dashed line in Figure 6.2. The figure shows that the 

GM adoption curves for early adopter are monotonically decreasing as the degree of risk 

aversion increases. That is, simulated GM adoption curves move downward as EARLYr  increases. 

Under risk neutrality, the GM adoption curve simulated with EARLYr  = 0 is at the most upper left 

among all simulated curves illustrated in Figure 6.2. This reflects that early adopters would adopt 

a new technology (GM corn varieties) very fast if their risk preferences exhibit risk neutrality. 

This documents how risk and risk aversion tend to slow down the adoption of GM technology on 

the U.S. corn grain farms. 



125 
 

 

 

Figure 6.2: Simulation of the GM Technology Adoption by Changes in Risk Aversion for 

the Early Adopter 

 

 

Table 6.4: Simulations of GM Technology Adoption by Changes in Risk Aversion for the 

Early Adopter 

Risk 

Aversion 
Simulated GM Adoption Rates for the Early Adopter 

Goodness-

of-fit 

 
EARLYr  2000 2001 2002 2003 2004 2005 2006 2007 

  

0.00 16.36% 70.18% 98.81% 100% 100% 100% 100% 100% 0.03 

0.08 7.03% 64.43% 98.55% 99.99% 100% 100% 100% 100% 0.01 

0.80 9.42% 51.47% 87.61% 98.68% 99.97% 100% 100% 100% 0.05 

1.60 8.97% 46.76% 83.01% 97.57% 99.91% 100% 100% 100% 0.08 

2.40 13.33% 48.68% 82.49% 97.42% 99.91% 100% 100% 100% 0.08 

3.20 15.46% 47.61% 79.23% 95.78% 99.67% 99.98% 100% 100% 0.11 

 

To evaluate further these effects, simulated adoption rates in the year 2002 are drawn in 

Figure 6.3 with EARLYr  ranging from 0.00 to 3.12 with increment of 0.08. The simulated GM 
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adoption rate in 2002 decreases gradually from 98.80% under risk neutrality when EARLYr  = 0 to 

79.82% when EARLYr  = 3.12. This finding is consistent with Liu (2008) stating that the more risk-

averse farmers are, the slower they adopt a new technology.  

 

Figure 6.3: Simulated GM Adoption Rates in 2002 by Changes in Risk Aversion for the 

Early Adopter 

 

 

Farmers’ heterogeneity is examined by comparing adoption patterns between early 

adopters and average farmers from the aggregate model. First, increases in risk aversion are 

found to reduce the adoption speed of GM technology monotonically for the early adopter. 

However, the effects of risk aversion on the adoption speed are not monotonic at the aggregate 

model; as discussed in Section 5.3.1, increments in risk aversion decrease adoption at a relatively 

higher level of r  > 2.20 but increase adoption for lower levels of risk aversion (when r  < 2.20). 
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Such different adoption patterns between the disaggregate model and the aggregate model 

provide evidence of significant heterogeneity among farmers. Unlike average farmers, early 

adopters may not consider diversifying strategies as a significant means of reducing uncertainty 

from risky technologies. Second, changes in adoption rates due to changes in risk aversion are 

smaller for the early adopter than for average farmers. In a similar range of risk aversion (for 

example, 0 < r , EARLYr  < 3.5), movements of adoption curves for the early adopter in Figure 6.2 

are not as wide as movements of average farmer’s adoption curves in Figure 5.2. For example, at 

a fixed year 2003, the early adopter’s simulated GM adoption rates change by at most 4.22% 

between EARLYr  = 0 and EARLYr  = 3.20 (Table 6.4). But GM adoption rates simulated at the 

aggregate model change by at most 20.22% between r  = 0.54 and r  = 3.51 in the same year 

(Table 5.5). This result shows that the early adopter is relatively insensitive to risk aversion in 

adopting GM technology compared to an average farmer in the aggregate model.  

In sum, farmers’ adoption behaviors and the effects of risk aversion show heterogeneity 

across farmers as follows. First, the impacts of risk aversion on GM adoption speed show a 

decreasing monotonicity for the early adopter but non-monotonicity for average farmers. Second, 

the role of portfolio selection in adopting risky technologies may not be as important for early 

adopters compared to average farmers. Third, early adopters are relatively less sensitive to risk 

aversion than average farmers.  

Figure 6.4 and Table 6.5 present changes in simulated GM technology adoption curves 

by increases in the social learning parameter 
42

EARLY , holding other parameters constant at their 

estimated value. The dashed line indicates the benchmark GM adoption curve for the early 

adopter when goodness-of-fit is best, with  = 0.17.  

 

42

EARLY
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Figure 6.4: Simulation of the GM Technology Adoption by Changes in the Social Learning 

Parameter for the Early Adopter 

 

 

Table 6.5: Simulation of the GM Technology Adoption by Changes in the Social Learning 

Parameter for the Early Adopter 

  Social 

Learning 
Simulated GM Adoption Rates for the Early Adopter 

Goodness-

of-fit 

 
42

EARLY  2000 2001 2002 2003 2004 2005 2006 2007   

0.00 6.39% 52.59% 93.30% 99.86% 100% 100% 100% 100% 0.03 

0.17 7.03% 64.43% 98.55% 99.99% 100% 100% 100% 100% 0.01 

0.34 23.65% 64.94% 93.43% 99.62% 100% 100% 100% 100% 0.06 

0.51 32.27% 80.32% 96.90% 99.90% 100% 100% 100% 100% 0.12 

0.68 36.24% 94.85% 100% 100% 100% 100% 100% 100% 0.21 

0.85 23.07% 88.47% 99.58% 99.97% 100% 100% 100% 100% 0.10 

1.02 2.24% 36.09% 66.70% 86.31% 95.46% 98.62% 99.46% 99.70% 0.23 

1.19 0.40% 14.48% 30.52% 46.36% 61.03% 73.22% 82.29% 88.33% 1.32 

1.36 0.38% 13.01% 26.10% 37.80% 48.16% 57.40% 64.73% 70.72% 1.89 

1.53 0.34% 11.46% 22.03% 30.19% 36.80% 42.44% 46.99% 50.73% 2.66 
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But this effect is not monotonic: a smaller upward movement arises as 
42

EARLY  increases from 

zero. The smaller upward movement occurs only in the early period before 2002 at a relatively 

lower level of 
42

EARLY  < 0.85. 

Overall, the impact of social interaction on the adoption speed is decreasing similar to 

average farmers’ case at the aggregate model. This can be shown by evaluating the trend of 

simulated GM adoption rates in a particular year. Figure 6.5 illustrate how simulated GM 

adoption rates change as  increases in 2004. 

 

Figure 6.5: Simulated GM Adoption Rates in 2004 by Changes in the Social Learning 

Parameter for the Early Adopter 
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For example, a simulated GM adoption rate in 2004 falls to 36.80% for 
42

EARLY  = 1.53, compared 

with a full adoption of 99.99% for 
42

EARLY  = 0.17. Like the aggregate model, more intensive 

social learning for GM technology tends to slow down the speed of GM adoption for the early 

adopter, reflecting the presence of information externality (free-riding behavior). Thereby, early 

adopters also have an incentive to delay GM adoption.  

The magnitude of incentive to delay (the strength of information externality) differs 

across farmers due to heterogeneity. Results show that this effect is smaller for the early adopter 

than for average farmers in the aggregate model. For example, in year 2004, simulated GM 

adoption rates for the early adopter change by at most 4.54% between 
42

EARLY  = 0 and 
42

EARLY  = 

1.02 (Table 6.5). However, in the same year, simulated GM adoption rates for the representative 

farmer at the aggregate model change by at most 90.94% between 42  = 0 and 42  = 1.00 (Table 

5.6). That is, early adopters are relatively less sensitive to the strength of information externality 

than average farmers in the aggregate model. This may occur because early adopters have fewer 

neighbors to learn from compared to average farmers and because they tend to rely relatively less 

on social learning. This provides evidence of heterogeneity in access and use of information 

among farmers.  

 

6.1.4. Welfare Analysis 

Value functions in the early adopter’s DP simulations are analyzed under alternative scenarios 

related to risk aversion and social learning for GM technology. Following definitions in Section 

5.4, a subscript or a superscript indexed by l  is added to notations, where  l EARLY . It 

distinguishes the early adopter from the representative farmer in the aggregate model. In order to 
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investigate the early adopter’s value function,  |l l lV S   is evaluated at the points where each 

factor of lS  is closest to its average value in the starting year 2000, lS = {3.57, 0.11, .3.57, 

0.11}.
33

 Figure 6.6 illustrates the changes of the optimal value functions at different levels of risk 

aversion for the early adopter. 

 

Figure 6.6: Welfare Measures for GM Technology Adoption by Changes in Risk Aversion 

for the Early Adopter 

 

                                                           
33
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Let the early adopter’s value function under risk-neutrality be  0|
ll l rV S  . His/her 

baseline value function is represented as  0.08|
ll l rV S   at the minimum distance estimator. 

Using (5.4), the early adopter’s relative cost of risk aversion EARLY

risk aversionC 
 is 6.90%, meaning that a 

risk-averse early adopter would pay 6.90% of the value function to eliminate all risk faced in the 

baseline case. Like the case at the aggregate model, the early adopter is made worse off 

compared to the case of risk-neutrality. This is consistent with the intuition that, under risk 

aversion, risk exposure has adverse impact on individual welfare. Table 6.6 provides EARLY

risk aversionC 
 

for simulated value functions (see Figure 6.6). 

 

Table 6.6: Welfare Measures and Costs of Risk Aversion for the Early Adopter 

Risk Aversion 

(Absolute) 

The Optimal Value 

Function
a/ 

Absolute Cost of Risk 

Aversion
b/ 

Relative Cost of Risk 

Aversion (percent)
 

EARLYr   |
ll l rV S   

EARLY

risk aversionC 
  EARLY

risk aversionC 
  

0.00 49.86 0.00 0.00% 

0.08
c/ 

46.64
c/ 

3.22
c/ 

6.90%
c/ 

0.32
 

44.94 4.92 10.96% 

0.56 43.23 6.63 15.34% 

0.64 42.66 7.20 16.87% 

0.88 40.94 8.92 21.78% 

1.20 38.55 11.31 29.34% 

1.52 36.12 13.74 38.05% 

1.84 33.86 16.00 47.25% 

2.08 32.38 17.48 53.99% 

2.40 30.61 19.25 62.88% 

2.72 28.84 21.02 72.87% 

3.04 27.18 22.68 83.43% 

3.12 26.77 23.09 86.23% 

Note:  l EARLY    
a/  b/

 Unit - $ hundred / acre 
c/
 The baseline case at the minimum distance estimator 
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Results show a similar trend with simulation in the aggregate model. As discussed in Section 

5.4.1, the early adopter’s welfare declines monotonically as the level of risk aversion increases. 

Similarly, the cost of risk EARLY

risk aversionC 
 increases monotonically with increments in EARLYr , which 

means highly risk-averse early adopters would pay more to eliminate risk. In sum, like average 

farmers, early adopters are also made worse off if they are more risk averse. 

Figure 6.7 illustrates how welfare measure changes with the social learning parameter 

42

EARLY  ranging from the extreme case of no social learning (
42

EARLY = 0) to 
42

EARLY = 1.53. 

 

Figure 6.7: Welfare Measures for GM Technology Adoption by Changes in the Social 

Learning Parameter for the Early Adopter 
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It shows that the relationship between welfare and 
42

EARLY  is non-monotonic. This trend is 

consistent with the welfare effects of 42  in the aggregate adoption model as illustrated in Figure 

5.7.  

 Let 
42

EARLY  be the minimum distance estimator for 
42

EARLY  in the early adopter’s DP 

model. Table 6.7 reports value functions obtained from simulations for different levels of 
42

EARLY  

along with the relative cost of social learning EARLY

social learningC 
.  

 

Table 6.7: Welfare Measures and Costs of Social Learning for the Early Adopter 

Social Learning for 

GM Technology 

The Optimal Value 

Function
 a/

 

Absolute Cost of 

Social Learning
 b/

 

Relative Cost of Social 

Learning (percent) 

42

EARLY    42|
l

l lV S


   EARLY

social learningC 
 

EARLY

social learningC 
  

0.00 46.45 0.27 0.58% 

0.09 46.57 0.15 0.31% 

0.17
c/ 

46.64
 c/

 0.07
 c/

 0.16%
 c/

 

0.26 46.69 0.02 0.05% 

0.34 46.72 0.00 0.00% 

0.43
d/ 

46.72
 d/

 0.00
 d/

 0.00%
 d/

 

0.51 46.69 0.03 0.06% 

0.60 46.62 0.10 0.21% 

0.68
 

46.51
 

0.20
 

0.44%
 

0.77 46.34 0.38 0.81% 

0.85 46.14 0.58 1.25% 

0.94 45.86 0.85 1.86% 

1.02 45.57 1.14 2.51% 

1.11 45.20 1.52 3.35% 

1.19 44.84 1.88 4.19% 

1.28 44.40 2.31 5.21% 

1.36 44.00 2.72 6.18% 

1.45 43.53 3.19 7.33% 

1.53 43.10 3.62 8.39% 

Note:  l EARLY  
a/  b/ 

 Unit - $ hundred / acre 
c/ 

 The baseline case at the minimum distance estimator 
42

EARLY   

d 
: Social optimum

*

42

EARLY    
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The trend of EARLY

social learningC 
 is consistent with the result obtained from the aggregate model 

presented in Table 5.8. When there is no social learning (
42

EARLY  = 0), the early adopter would 

pay 0.58% of the present value of his/her payoff to be able to learn from their neighbors in 

adopting GM seeds.  

Note that this amount is much less than the corresponding amount obtained from the 

aggregate model, 
social learningC 

 = 6.55%. Thus, compared with average farmers, the early 

adopter’s relative willingness to pay for social learning is much less. This seems to be associated 

with the result that the early adopter’s social learning parameter 
42

EARLY  = 0.17 is much less than 

the representative farmer’s 42  = 0.80 at the minimum distance estimates. Intuitively, this 

indicates that early adopters tend to rely relatively less on social learning.  

Results are similar to findings from the aggregate model. As 
42

EARLY  increases EARLY

social learningC 
 

decreases gradually, reaching a minimum of 0% (social optimum) at *

42

EARLY  = 0.43. And 

EARLY

social learningC 
 rises beyond *

42

EARLY , indicating that the early adopter’s farm welfare would decline 

when social learning goes beyond the social optimum. As discussed in Section 5.4.2, excessive 

social learning could occur and make the early adopter worse off if reliance on social learning 

were to become “very large”.  In the aggregate model, the estimated social learning parameter 

42  is identical to the representative farmer’s social optimum *

42 . Whereas, in the early 

adopter’s model, the estimated social learning parameter 
42

EARLY  is not the same as the social 

optimum *

42

EARLY . But it is close to the social optimum: the early adopter would pay just 0.16% of 

his/her value function to reach the social optimum. 
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 In sum, results indicate that the early adopter’s welfare changes show similar trends to 

average farmers’ welfare changes at the aggregate model. Increases in 
42

EARLY  slow down the 

adoption speed overall but make the early adopter better off due to the benefits of information 

externality – free-riding behavior. On the other hand, results show a few differences. First, in the 

absence of social learning, the early adopter’s relative cost of social learning is much less than 

what average farmers pay at the aggregate model. This reflects that the magnitude and 

cost/benefit of social learning for the early adopter is relatively small compared to average 

farmers. Second, the early adopter’s actual social learning is not the social optimum while the 

average farmer’s social learning is consistent with social optimum. This indicates the potential 

for welfare gains from social learning by early adopters. But the magnitude of these gains is 

estimated to be small as only 0.16% of his/her welfare.  

 

6.2.Intermediate Adopter 

6.2.1. Parameter Estimates and Adoption Curve 

The intermediate adopter’s DP model involves 8 parameters including the effects of conventional 

(GM) technology on the average change in the profitability for conventional (GM) seed, 
11

INTER  

(
22

INTER ) and the effects of yield performance of GM seed on the profitability for conventional 

seed 
31

INTER  like the aggregate model. As described in the previous section, MDE estimates 

11

INTER , 
22

INTER , and 
31

INTER  are treated as constant for the early- and the late- adopter’s DP 

models. Estimation results are presented in Table 6.8. 

Absolute risk-aversion coefficient  is estimated to be 0.35, indicating an 

intermediate adopter is risk averse. With his/her average profit level $8.32 million for 8 years, 

the relative risk-aversion coefficient  is calculated to be 2.91. This shows that the 

INTERr

INTERr
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intermediate adopter’s magnitude of risk-aversion is at a medium level as it is less than 5 

(Gollier, 2001, p. 31). Estimated  and  are all positive, indicating that adoption of 

each seed at the current year improves the profitability for each seed in the following year. 

Compared with the aggregate model, the effect of GM adoption on its profitability  is 

estimated to be the same as the corresponding parameter at the aggregate model  = 2.50.  

 

Table 6.8: Parameter Estimates of the Intermediate Adopter’s GM Adoption Model 

Parameter Implication Estimate 

Reward Function   

  
The Arrow-Pratt measure of absolute risk-aversion 

coefficient 
0.35 

  
The Arrow-Pratt measure of relative risk-aversion 

coefficient 
2.91

 

   
System Equation   

  
The effect of adoption of conventional technology on the 

average change in    
0.11 

  
The effect of adoption of GM technology on the average 

change in  
2.50 

   
Measurement Equation   

  
The effect of individual learning for conventional 

technology 
0.72 

  The effect of social learning for conventional technology 0.55 

 
 

The effect of yield for GM seed to   1.12 

  The effect of individual learning for GM technology 1.35 

  The effect of social learning for GM technology 0.94 

Note: Goodness of fit is 0.0523.  

 

However, the effect of conventional seed adoption on its profitability  = 0.11 is much less 

than that of the aggregate model  = 2.20. This reflects that the selected intermediate adopter is 

more pessimistic about the profitability of conventional seed than average farmers in the 

aggregate model.  

11

INTER 22

INTER

22

INTER

22

INTERr

INTERr

11

INTER ,CONV INTER

22

INTER ,GM INTER

11

INTER

21

INTER

31

INTER ,CONV INTER

32

INTER

42

INTER

11

INTER

11
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All the signs of ’s are estimated to be positive, implying that both individual learning 

and social learning positively affect profitability for each technology. Especially, the social 

learning parameter  is related to the strength of information externalities. It is estimated to 

be 0.94, which is much larger than  = 0.17 at the early adopter’s model and slightly larger 

than  = 0.80 for average farmers at the aggregate model. Intuitively, we can infer that the 

intermediate adopter is affected more by social interaction than the early adopter. This will be 

further discussed in Section 6.4. Comparing the relative roles of learning, the effects of 

individual learning are shown to be greater than the effects of social learning for each technology 

(  >  for conventional technology and  >  for GM technology) as the 

previous literature has shown. The positive value of  indicates that GM traits may be 

incorporated in “high quality” conventional seed to improve yield.  

The goodness-of-fit of the model is reported as 0.0523. As shown in Table 6.9 and Figure 

6.8, the model fits the intermediate farmer’s observed adoption path moderately well.  

 

Table 6.9: Observed and Predicted GM Adoption Rates for the Intermediate Adopter, 

2000-2007 

Year 
Observed GM 

Adoption Rates
a/
 

Predicted GM 

Adoption Rates
b/

 
Squared Residual

c/
 

2000 14.71% 0.00% 0.0216 

2001 0.00% 0.76% 0.0001 

2002 0.00% 10.79% 0.0116 

2003 22.22% 24.36% 0.0005 

2004 40.00% 43.33% 0.0011 

2005 64.62% 67.46% 0.0008 

2006 100.00% 87.49% 0.0157 

2007 100.00% 96.93% 0.0009 

Sum of Squared Residuals (Goodness-of-fit statistic) 0.0523 

Note: 
a/  b/ 

GM adoption rates are percentage of planted acres to GM seed. 
c/
 Squared residual c/ = (a/ – b/)

2 



42

INTER

42

EARLY

42

11

INTER 21

INTER 32

INTER 42

INTER

31

INTER
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Figure 6.8: Observed and Predicted GM Adoption Rates for the Intermediate Adopter, 

2000-2007 

 
Note: GM adoption rates are percentage of planted acres to GM seed. 

 

6.2.2. Hypothesis Testing 

We focus on the effects of risk aversion and the social learning parameter for GM technology. 

Table 6.10 presents results of the hypothesis testing using F-tests. Except for Scenario 5, all the 

null hypotheses are rejected at the 5% level (Scenario 1, Scenario 2, Scenario 4, and Scenario 6) 

and at the 1% level (Scenario 3). The null hypothesis for the intermediate farmer’s risk aversion 

 under Scenario 1 is rejected at the 5% level. By rejecting risk neutrality strongly, 

this provides econometric evidence that the intermediate adopter’s risk preferences exhibit risk 

aversion. The null hypothesis for the social learning parameter  under Scenario 3 

corresponds to a situation where social learning doesn’t play any role in GM technology 
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adoption. Testing result shows that  is rejected at the 1% level. Thus, the presence 

of social learning effects on GM adoption is also strongly supported for the intermediate adopter 

with high statistical significance. 

 

Table 6.10: Results of Hypothesis Testing across Scenarios for the Intermediate Adopter 

Scenario 
sc   

Null Hypothesis SSR(
l

 )
a/ SSR( ,

*

l sc

 )
b/ 

df1
c/ 

df2
d/ 

F sc (df1, df2)
e/ 

1 0 : 0INTERH r  0.0523 0.6935 1 2 24.52
** 

2 0 21: 0 INTERH  0.0523 1.9210 1 2 71.45
** 

3 0 42: 0 INTERH  0.0523 2.6594 1 2 99.68
*** 

4 0 21 42: 0& 0  INTER INTERH   0.0523 3.8177 2 2 71.98
** 

5 0 21 42: 0.55  INTER INTERH  0.0523 0.1115 2 2 1.13
 

6  
0 21 42: 0.94  INTER INTERH  0.0523 1.8401 2 2 34.18

** 

Note: Statistical significance is denoted as *** at the 1% level, ** at the 5% level, and * at the 10% level. 
a/
: Goodness-of-fit statistic under

l ,  l INTER  

b/
: Goodness-of-fit statistic under

,

*

l sc ,  l INTER  
c/
: Degrees of freedom for the numerator 

d/
: Degrees of freedom for the denominator 

e/
: F-statistic 

 

6.2.3. Sensitivity Analysis on Adoption Path 

As mentioned in the previous section, the presence of risk-aversion is statistically significant for 

intermediate adopters. This raises the question: how is the speed of GM technology adoption 

affected by increments in the absolute risk-aversion coefficient INTERr ? Figure 6.9 and Table 6.11 

report simulated adoption rates of GM technology under alternative risk aversion parameters 

INTERr , holding other parameters constant.  

The simulation at the minimum distance estimator (benchmark case) is drawn with a 

dashed line in Figure 6.9. Starting from the benchmark case  = 0.35, the adoption curve 

moves to the upper-left up to  = 1.05 and then moves to the down-right beyond that level 

up to  = 3.55.  

0 42: 0 INTERH

INTERr

INTERr

INTERr
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Figure 6.9: Simulation of the GM Technology Adoption by Changes in Risk Aversion for 

the Intermediate Adopter 

 

 

Table 6.11: Simulations of GM Technology Adoption by Changes in Risk Aversion for the 

Intermediate Adopter 

Risk 

Aversion 
Simulated GM Adoption Rates for the Intermediate Adopter 

Goodness-

of-fit 

  2000 2001 2002 2003 2004 2005 2006 2007   

0.35 0.00% 0.63% 10.66% 24.07% 42.73% 66.94% 87.13% 96.76% 0.06 

0.65 0.00% 0.51% 12.50% 28.72% 50.75% 75.78% 92.64% 98.58% 0.09 

1.05 0.00% 0.26% 13.71% 31.93% 56.02% 80.81% 95.08% 99.21% 0.12 

1.45 0.00% 0.23% 14.04% 32.27% 55.38% 78.88% 93.12% 98.22% 0.12 

1.85 0.00% 2.22% 16.63% 34.95% 56.72% 77.53% 90.93% 96.79% 0.13 

2.25 0.00% 2.42% 15.30% 30.81% 48.62% 67.12% 82.32% 91.72% 0.10 

2.65 0.00% 3.18% 15.48% 29.80% 45.67% 62.29% 77.04% 87.62% 0.12 

3.05 1.75% 5.86% 17.88% 32.05% 47.20% 62.48% 76.18% 86.52% 0.14 

 

 

This movement indicates changes in GM seed adoption are non-monotonic as the magnitude of 

risk aversion varies in the intermediate adopter’s DP model. The adoption of GM seed increases 
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with risk aversion  up to 1.05 and decreases beyond that point. This trend is similar to the 

result obtained from the aggregate model, reflecting that the intermediate adopter tries to reduce 

risk by diversifying adoption choices when he/she perceives both conventional and GM 

technologies are risky choices (Anderson et al., 1977). 

 Figure 6.10 illustrates changes of GM adoption rates in 2007 as INTERr  increases from a 

very low level 0.03 to a considerably high level 3.05.  

 

Figure 6.10: Simulated GM Adoption Rates in 2007 by Changes in Risk Aversion for the 

Intermediate Adopter 

 
 

Though the changes are small within the interval, the trend reflects the potential role of farm 

portfolio selection. Note that the early adopter’s DP model is monotonically decreasing by 

increments in risk aversion . Thereby, empirical results show that there exists 

heterogeneity in risk preferences across groups. That is, adoption pattern and the role of risk and 
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risk-aversion appear to be different across farm types between the early adopter and the 

intermediate adopter. 

Though the adoption pattern in terms of INTERr  in the intermediate adopter’s model is 

similar to that in the aggregate model, there are differences. In 2007, given changes in INTERr  

ranging from 0 to 3.50, the induced changes of adoption rates in Table 6.11 for the intermediate 

adopter are relatively small compared to the ones in Table 5.5. For example, in year 2007, the 

largest induced change in adoption rates is just 12.69% in Table 6.11, which is much less than 

the change of 34.29% in Table 5.5.  

As illustrated in Figure 6.11, the movements of simulated adoption curves are 

monotonically decreasing in 
42

INTER  unlike the case of risk aversion. 

 

Figure 6.11: Simulation of the GM Technology Adoption by Changes in the Social 

Learning Parameter for the Intermediate Adopter 
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As  increases from an extreme case of no social learning (  = 0) to the same level as 

for individual learning  =  = 1.35, Figure 6.11 shows the same trends as the 

aggregate model and the early adopter’s model; simulated adoption curves move from the upper-

left to the down-right as  increases, indicating increments in  slow down the GM 

adoption. 

Figure 6.12 illustrates an intuitive relation between the social learning parameter and GM 

adoption rates in 2007. It shows that relying more on social learning slows down GM adoption, 

reflecting the presence of information externalities. The intermediate adopter has an incentive to 

delay the GM adoption by free-riding on the information provided by his/her neighbors. 

 

Figure 6.12: Simulated GM Adoption Rates in 2007 by Changes in the Social Learning 

Parameter for the Intermediate Adopter 
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6.2.4. Welfare Analysis 

To evaluate how farm welfare changes with risk aversion, the optimal value functions are 

simulated in the intermediate adopter’s DP model by changing the risk-aversion coefficient 

INTERr , holding other parameters constant. Figure 6.13 illustrates that increasing risk aversion 

decreases welfare. This is intuitive and reflects that risk and risk aversion tend to reduce the 

intermediate adopter’s welfare. 

 

Figure 6.13: Welfare Measures for GM Technology Adoption by Changes in Risk Aversion 

for the Intermediate Adopter 

 

 

Table 6.13 reports the relative cost of risk aversion INTER

risk aversionC 
 measuring the relative 

amount a farmer is willing to pay to eliminate his/her risk exposure. At the baseline case (  

= 0.35), the intermediate adopter would pay 6.05% of his/her expected payoff. The relative 
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amount he/she would pay increases as  increases. That is, the intermediate adopter is made 

worse off as he/she is more risk averse. 

 

Table 6.12: Welfare Measures and Costs of Risk Aversion for the Intermediate Adopter 

Risk Aversion 

(Absolute) 

The Optimal Value 

Function
a/ 

Absolute Cost of Risk 

Aversion
b/ 

Relative Cost of Risk 

Aversion (percent)
 

INTERr   |
ll l rV S   

INTER

risk aversionC 
  INTER

risk aversionC 
  

0.00 47.58 0.00 0.00% 

0.20
 

46.14
 

1.44
 

3.13%
 

0.35
c/ 

44.87
 c/

 2.72
 c/

 6.05%
 c/

 

0.65 42.32 5.26 12.43% 

0.95 39.80 7.78 19.54% 

1.25 37.36 10.22 27.34% 

1.55 34.96 12.63 36.12% 

1.85 32.79 14.79 45.11% 

2.15 30.74 16.84 54.78% 

2.45 28.79 18.79 65.24% 

2.75 26.92 20.66 76.78% 

3.05 25.08 22.50 89.74% 

Note:  l INTER    
a/  b/

 Unit - $ hundred / acre 
c/
 The baseline case at the minimum distance estimator 

 

Welfare changes by increments in 
42

INTER  show a different pattern from the case of risk 

aversion. Figure 6.14 illustrates changes of welfare associated with increases in 
42

INTER . Though 

the effects are not globally monotonic (between no social learning (  = 0.00) and  = 

0.25), the overall trend is fairly similar to results obtained from the aggregate model and the 

early adopter’s model. The optimal value function  increases as  

rises up to 0.75, and then decreases beyond the social optimum  = 0.75. Increments in 

 decelerate the adoption of GM technology as is illustrated in Figure 6.11 and Figure 6.12. 

Note that there exist situations where farm welfare increases, as represented by regions up to the 

INTERr
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
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social optimum  = 0.75 in Figure 6.14. This result shows the intermediate adopter may 

benefit from information externalities up to social optimum by saving his/her cost of social 

learning. This result reflects that the intermediate adopter exhibits free-riding behaviors in the 

presence of information externalities. Beyond social optimum, farmers would be willing to pay a 

positive amount of money as they are made worse off. Note that farmers’ actual social learning, 

represented as the minimum distance estimator  = 0.94, occurs near the social optimum 

point for intermediate adopters. 

 

Figure 6.14: Welfare Measures for GM Technology Adoption by Changes in the Social 

Learning Parameter for the Intermediate Adopter 

 

 

According to Table 6.14, the intermediate adopter would be willing to pay only 0.38% of 

his/her present value of future payoffs to internalize information externalities in GM adoption. 
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Recall that social optimum was found consistent with the representative farmer’s actual social 

learning (as = 0.80 in the aggregate model). Compared with the aggregate model, the 

intermediate adopter may adopt GM technology slightly inefficiently by generating an estimated 

loss of 0.38% from his/her payoffs. However, this loss implies a relatively small welfare cost. 

This indicates that intermediate adopters are reasonably efficient in relying on social learning 

and that they come close to internalizing information externalities in GM adoption. 

 

Table 6.13: Welfare Measures and Costs of Social Learning for the Intermediate Adopter 

Social Learning for 

GM Technology 

The Optimal Value 

Function
 a/

 

Absolute Cost of 

Social Learning
 b/

 

Relative Cost of Social 

Learning (percent) 

42

INTER    42|
l

l lV S


   INTER

social learningC 
 

INTER

social learningC 
  

0.00 41.80 3.23 7.74% 

0.15 41.54 3.50 8.42% 

0.25
 

41.63 3.41 8.18% 

0.35 42.60 2.43 5.71% 

0.45 43.48 1.56 3.58% 

0.55
 

44.25 0.78 1.77% 

0.65 44.78 0.25 0.56% 

0.75
c/ 

45.04
 c/

 0.00
 c/

 0.00%
 c/

 

0.94
d/ 

44.87
 d/ 

0.17
 d/ 

0.38%
 d/ 

1.05 44.50 0.54 1.21% 

1.15 44.07 0.97 2.19% 

1.25 43.59 1.45 3.32% 

1.35 43.08 1.95 4.53% 

Note:  l INTER  
a/  b/ 

 Unit - $ hundred / acre 
c/ 

 Social optimum 
*

42

INTER

   
 

d/
 The baseline case at the minimum distance estimator 

*

42

INTER

   

 

6.3.Late Adopter 

6.3.1. Parameter Estimates and Adoption Curve 
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Given constants 
11

LATE , 
22

LATE , and 
31

LATE , results of the late adopter’s model estimation are 

presented in Table 6.15.  

 

Table 6.14: Parameter Estimates of the Late Adopter’s GM Adoption Model 

Parameter Implication Estimate 

Reward Function   

LATEr   
The Arrow-Pratt measure of absolute risk-aversion 

coefficient 
1.34 

LATEr   
The Arrow-Pratt measure of relative risk-aversion 

coefficient 
5.36

 

   
System Equation   

11

LATE
a/
  

The effect of adoption of conventional technology on the 

average change in ,CONV LATE    
0.11 

22

LATE
b/

  
The effect of adoption of GM technology on the average 

change in ,GM LATE  
2.50 

   
Measurement Equation   

11

LATE   
The effect of individual learning for conventional 

technology 
0.65 

21

LATE   The effect of social learning for conventional technology 0.51 

31

LATE  
c/ 

The effect of yield for GM seed to ,CONV LATE   1.12 

32

LATE   The effect of individual learning for GM technology 1.28 

42

LATE   The effect of social learning for GM technology 1.03 

Note: Goodness of fit is 0.0340. 
a/ b/ c/

 Given from 
11

INTER
  , 

22

INTER
 , and 

31

INTER
  

 

The late adopter’s absolute risk aversion coefficient is 1.34 with its corresponding relative risk 

aversion coefficient LATEr  being 5.36.
34

 This shows the late adopter exhibits a high level of risk 

aversion as LATEr  is greater than 5 (Gollier, 2001, p. 31). All the parameters in the measurement 

equation ’s are estimated to be positive, indicating that both individual and social learning 

                                                           
34

 The selected late adopter’s expected total profit during the analysis period is estimated as $4.00 million. 

 

LATE
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improve the profitability for each technology. Like other models, the effects of individual 

learning are estimated to be higher than the effects of social learning,  >  for 

conventional seed and  >  for GM seed. Compared with the early- and the 

intermediate- adopter’s models, the social learning parameter  is estimated to be largest 

among parameters ’s across -type models.  

The goodness-of-fit is calculated to be 0.0340, showing the late adopter’s DP model fits 

the selected late adopter’s GM adoption pattern very well. Figure 6.15 provides comparison 

between the observed and simulated adoption rates from the late adopter’s DP model. 

 

Figure 6.15: Observed and Predicted GM Adoption Rates for the Late Adopter, 2000-2007 

 Note: GM adoption rates are percentage of planted acres to GM seed. 
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Also, Table 6.16 provides specific values concerning adoption rates. Except for adoption 

rates in 2003 and 2004, the overall estimation results fit the data quite well.   

 

Table 6.15: Observed and Predicted GM Adoption Rates for the Late Adopter, 2000-2007 

Year 
Observed GM 

Adoption Rates
a/
 

Predicted GM 

Adoption Rates
b/

 
Squared Residual

c/
 

2000 0.00% 0.00% 0.0000 

2001 0.00% 0.00% 0.0000 

2002 0.00% 0.00% 0.0000 

2003 0.00% 6.73% 0.0045 

2004 0.00% 16.53% 0.0273 

2005 28.86% 29.09% 0.0000 

2006 45.49% 44.45% 0.0001 

2007 65.20% 60.76% 0.0020 

Sum of Squared Residuals (Goodness-of-fit statistic) 0.0340 

Note: 
a/  b/ 

GM adoption rates are percentage of planted acres to GM seed. 
c/
 Squared residual c/ = (a/ – b/)

2 

 

6.3.2. Hypothesis Testing 

We focus on the role of risk aversion and the social learning parameter in GM technology 

adoption. For the late adopter’s DP model, all the relevant null hypotheses are rejected at the 1% 

level (Scenario 1, Scenario 3, Scenario 5, and Scenario 6) or at the 5% level (Scenario 2 and 

Scenario 4). 

The null hypothesis of risk neutrality  is rejected at the 1% level, indicating 

the late adopter’s risk preferences exhibit risk aversion with strong statistical significance. For 

the social learning parameter , the rejection of null hypothesis  provides the 

0 : 0LATEH r

42

LATE 0 42: 0 LATEH
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econometric evidence that social learning plays a key role and affects the adoption of GM 

technology.   

 

Table 6.16: Results of Hypothesis Testing across Scenarios for the Late Adopter 

Scenario 

sc   
Null Hypothesis SSR(

l

 )
a/ SSR( ,

*

l sc

 )
b/ 

df1
c/ 

df2
d/ 

F sc (df1, df2)
e/ 

1 
0 : 0LATEH r  

0.0340 0.5849 1 3 48.68
*** 

2 
0 21: 0 LATEH  

0.0340 0.3868 1 3 31.18
** 

3 
0 42: 0 LATEH  

0.0340 5.9243 1 3 520.48
*** 

4 0 21 42: 0& 0  LATE LATEH   0.0340 0.7153 2 3 30.10
** 

5 
0 21 42: 0.51LATE LATEH     

0.0340 1.6129 2 3 69.76
*** 

6  
0 21 42: 1.03LATE LATEH     0.0340 3.3396 2 3 146.05

*** 

Note: Statistical significance is denoted as *** at the 1% level, ** at the 5% level, and * at the 10% level. 
a/
: Goodness-of-fit statistic under

l ,  l LATE  

b/
: Goodness-of-fit statistic under

,

*

l sc ,  l LATE  
c/
: Degrees of freedom for the numerator 

d/
: Degrees of freedom for the denominator 

e/
: F-statistic 

 

6.3.3. Sensitivity Analysis on Adoption Path 

Following the hypothesis testing, sensitivity analysis is conducted to investigate how GM 

technology adoption pattern changes with risk aversion or the strength of the social learning 

parameter. Figure 6.16 illustrates how the late adopter’s simulated GM adoption curves change 

with the level of risk aversion LATEr . The benchmark case simulated at the minimum distance 

estimator is drawn as a dashed line. At the lower level of , changes in GM adoption rates 

are ambiguous. The overall trend shows small upward movements at low levels of , 

reflecting the potential role of portfolio selection. But the adoption rates decrease as  

increases at higher level of  > 1.50.  

LATEr

LATEr

LATEr

LATEr
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Figure 6.16: Simulation of the GM Technology Adoption by Changes in Risk Aversion for 

the Late Adopter 

 

 

 

Table 6.17: Simulations of GM Technology Adoption by Changes in Risk Aversion for the 

Late Adopter 

Risk 

Aversion 
Simulated GM Adoption Rates for the Early Adopter 

Goodness-

of-fit 

 LATEr  2000 2001 2002 2003 2004 2005 2006 2007   

0.50 0% 0% 0% 6.92% 16.96% 29.70% 45.27% 61.74% 0.04 

1.00 0% 0% 0% 6.96% 17.22% 30.29% 46.14% 62.55% 0.04 

1.34 0% 0% 0% 6.73% 16.53% 29.09% 44.45% 60.76% 0.03 

1.50 0% 0% 0% 7.79% 17.97% 30.66% 46.04% 62.15% 0.05 

1.80 0% 0% 0% 7.05% 15.70% 26.05% 38.63% 52.70% 0.06 

2.00 0% 0% 0.14% 6.77% 14.58% 23.73% 34.50% 46.69% 0.08 

2.20 0% 0% 0.30% 6.64% 13.99% 22.41% 32.13% 42.94% 0.10 

2.50 0% 0% 0.76% 6.93% 13.93% 21.71% 30.43% 39.95% 0.12 
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Figure 6.17 illustrates changes of simulated adoption rates in 2007. For the late adopter, 

the overall changes of adoption rates are somewhat similar to the trend shown in the intermediate 

adopter’s DP model. 

 

Figure 6.17: Simulated GM Adoption Rates in 2007 by Changes in Risk Aversion for the 

Late Adopter 

 

 

While changes of simulated adoption rates are non-monotonic by changes in risk 

aversion, the movements of GM adoption curve show obvious decreasing monotonicity with 

respect to the social learning parameter 
42

LATE . With the benchmark case drawn as a dashed line, 

Figure 6.18 illustrates how the speed of GM technology adoption is affected by changes in 

42

LATE . 
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Figure 6.18: Simulation of the GM Technology Adoption by Changes in the Social 

Learning Parameter for the Late Adopter 

 

 

Starting from a counterfactual case of no social learning (
42

LATE  = 0), GM adoption curves shift 

downwards in the late adopter’s DP model. This result indicates the late adopter has an incentive 

to delay GM adoption. As 
42

LATE  rises, the late adopter relies more on social learning and has a 

stronger incentive to delay his/her GM adoption, waiting for his/her neighbors to adopt so that it 

can benefit from the information externality. Table 6.19 provides specific values, and Figure 

6.19 illustrates how the simulated adoption rates of GM technology change in 2007 as 
42

LATE  

changes. 

 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2000 2001 2002 2003 2004 2005 2006 2007

G
M

 A
d

o
p

ti
o

n
 R

a
te

s 

Year 

0.00

0.10

0.35

0.60

0.85

0.90

0.95

1.03

1.25



156 
 

 

Table 6.18: Simulation of the GM Technology Adoption by Changes in the Social Learning 

Parameter for the Late Adopter 

Social 

Learning 
Simulated GM Adoption Rates for the Early Adopter 

Good

ness-

of-fit 

 
42

LATE  2000 2001 2002 2003 2004 2005 2006 2007 

  

0.00 100% 100% 100% 100% 100% 100% 100% 100% 5.92 

0.10 45.10% 80.99% 97.42% 100% 100% 100% 100% 100% 4.73 

0.35 5.61% 35.24% 61.34% 86.33% 98.81% 99.99% 100% 100% 3.15 

0.60 0.00% 21.50% 48.40% 76.50% 95.01% 99.68% 100% 100% 2.69 

0.85 0.00% 0.00% 10.67% 26.85% 47.69% 70.60% 88.48% 96.97% 0.78 

0.90 0.00% 0.00% 6.30% 19.16% 36.41% 57.32% 77.39% 90.87% 0.43 

0.95 0.00% 0.00% 0.56% 9.86% 22.37% 38.35% 56.74% 73.72% 0.10 

1.03 0.00% 0.00% 0.00% 6.73% 16.53% 29.09% 44.45% 60.76% 0.04 

1.25 0.00% 0.00% 4.83% 10.92% 17.20% 23.72% 31.10% 39.59% 0.13 

 

Figure 6.19: Simulated GM Adoption Rates in 2007 by Changes in the Social Learning 

Parameter for the Late Adopter 
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As shown in the previous sections, results from the late adopter’s DP model provide strong 

evidence of information externalities. Farmers delay their GM technology adoption as 
42

LATE  

increases, reflecting that late adopters free ride on the information provided by their neighbors.  

 

6.3.4. Welfare Analysis 

As is illustrated in Figure 6.20, the late adopter’s simulated optimal value functions are 

monotonically decreasing as the level of risk aversion LATEr  increases.  

 

Figure 6.20: Welfare Measures for GM Technology Adoption by Changes in Risk Aversion 

for the Late Adopter 
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Table 6.20 provides the associated relative cost of risk aversion . We can 

compare  for 
 

with the baseline case of each farm type’s 

simulation using the minimum distance estimator. The late adopter’s relative cost of risk 

aversion is found to be relatively high ( EARLY

risk aversionC   = 6.90% in Table 6.6, INTER

risk aversionC    = 6.05% in 

Table 6.13, and LATE

risk aversionC   = 30.19% in Table 6.20). This result reflects that late adopters exhibit 

stronger aversion to risk than early or intermediate adopters. This documents heterogeneity in 

risk preferences across farm types. 

 

Table 6.19: Welfare Measures and Costs of Risk Aversion for the Late Adopter 

Risk Aversion 

(Absolute) 

The Optimal Value 

Function
a/ 

Absolute Cost of 

Risk Aversion
b/ 

Relative Cost of Risk 

Aversion (percent)
 

LATEr   |
ll l rV S   

LATE

risk aversionC 
  LATE

risk aversionC 
  

0.00 47.13 0.00 0.00% 

0.50
 

43.10
 

4.03
 

9.35%
 

1.00
 

38.91 8.23 21.15% 

1.34
c/ 

36.20
c/ 

10.93
c/ 

30.19%
c/ 

1.50 35.02 12.12 34.61% 

2.00 31.59 15.54 49.20% 

2.50 28.38 18.76 66.09% 

Note:  l LATE    
a/  b/

 Unit - $ hundred / acre 
c/
 The baseline case at the minimum distance estimator 

 

In the late adopter’s DP model, the effects of the social learning parameter 
42

LATE  show a 

similar pattern as other farm type models. As is illustrated in Figure 6.21, the late adopter can 

increase his/her welfare measures by delaying the adoption of GM seed as the strength of 

information externalities represented by 
42

LATE  increases.  

 

LATE

risk aversionC 

l

risk aversionC   ,l EARLY INTER
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Figure 6.21: Welfare Measures for GM Technology Adoption by Changes in the Social 

Learning Parameter for the Late Adopter 

 

 

Table 6.20: Welfare Measures and Costs of Social Learning for the Late Adopter 

Social Learning for 

GM Technology 

The Optimal Value 

Function
 a/

 

Absolute Cost of 

Social Learning
 b/

 

Relative Cost of Social 

Learning (percent) 

42

LATE    42|
l

l lV S


   LATE

social learningC 
 LATE

social learningC 
  

0.00 30.49 5.96 19.54% 

0.20
 

31.87 4.58 14.38% 

0.45 34.10 2.35 6.88% 

0.65 36.09 0.36 1.01% 

0.85
c/ 

36.45
c/ 

0.00
c/ 

0.00%
c/ 

1.03
d/ 

36.20
d/ 

0.25
d/ 

0.68%
d/ 

1.15 35.89 0.56 1.56% 

Note:  l LATE  
a/  b/ 

Unit - $ hundred / acre 
c/ 

Social optimum
*

42

LATE    

d/ 
The baseline case at the minimum distance estimator 

42

LATE   
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The late adopter’s estimated social learning occurs at the level of 
42

LATE  = 1.03 (as given 

by the minimum distance estimate), which is slightly higher than his/her social optimum *

42

LATE . 

We find that the late adopter would be willing to pay 0.68% of his/her present value of future 

payoffs to obtain the optimum social learning. This is a relatively small welfare effect. Thus, 

actual social learning seems close to the social optimum, indicating that the late adopter is 

reasonably efficient at internalizing the information externalities in GM adoption. 

 

6.4.Comparison of the Disaggregate Adoption Models by Farm Type 

The aggregate model and the l -type adopter’s disaggregate model for l  = { EARLY , INTER , 

LATE } assume farmers’ optimal policy functions are the same within each group. But by 

allowing parameters to change across groups, each l -type adopter’s DP model introduces the 

potential for farm heterogeneity that was neglected in the aggregate model. Such heterogeneity is 

captured by differentiating parameters in the DP system across l -type models. Thus, comparing 

parameters l  across l -type farmers provides evidence on how farmers differ across farm 

groups (classified as early, intermediate, and late adopters) and how these differences affect 

adoption patterns and welfare. 

 Heterogeneity in parameters is examined with a focus on the degrees of risk aversion lr  

and the extent of social learning for GM technology 
42

l  for each farm type l  = { EARLY , 

INTER , LATE }. Table 6.22 summarizes estimated parameters for each l -type adopter’s 

disaggregate model. For the benchmark case, the estimation results from the aggregate model are 

also reported, denoted by  l AGG  hereafter. Differences in a specific parameter across l -

groups provide information on the nature of farmers’ heterogeneity and their implications for 

GM adoption.  
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Table 6.21: Parameter Estimates across the Disaggregate Adoption Models 

Parameter Implication EARLY INTER LATE AGG 

Reward Function 

    
lr   

The Arrow-Pratt measure of absolute 

risk-aversion coefficient 0.08 0.35 1.34 0.54 

lr
a/
  

The Arrow-Pratt measure of relative 

risk-aversion coefficient 0.69 2.91 5.36 4.12 

     

System Equation         

11

l
b/

  

The effect of adoption of conventional 

technology on the average change in
,CONV l    0.11 0.11 0.11 2.20 

22

l
c/
  

The effect of adoption of GM 

technology on the average change in
,GM l  2.50 2.50 2.50 2.50 

     

Measurement Equation 

    
11

l   
The effect of individual learning for 

conventional technology 1.26 0.72 0.65 1.21 

21

l   
The effect of social learning for 

conventional technology 0.85 0.55 0.51 1.01 

31

l
d/

 
The effect of yield for GM seed to

,CONV l   1.12 1.12 1.12 1.25 

32

l   
The effect of individual learning for GM 

technology 1.52 1.35 1.28 1.80 

42

l   
The effect of social learning for GM 

technology 0.17 0.94 1.03 0.80 

Goodness-of-fit 0.0059 0.0523 0.0340 0.0303 

Note:  , ,l EARLY INTER LATE
 
indicates farm type at the disaggregate models, where EARLY , INTER  , and 

LATE  stand for the early-, the intermediate-, and the late- adopter, respectively. AGG indicates a representative 

farmer at the aggregate adoption model.  
a/
  lr r (expected total profit for l -farmer). The expected total profit estimates are $8.59 million for the early 

adopter, $8.32 million for the intermediate adopter, $4 million for the late adopter, and $7.63 million for the 

representative farmer at the aggregate model.  
b/ c/ d/

 Parameter estimates from the late adopter’s DP model are used as given constants in the early- and the late- 

adopter’s DP models. 
11

INTER
  = 

11

EARLY
  = 

11

LATE
 , 

22

INTER
  = 

22

EARLY
  = 

22

LATE
 , and 

31

INTER
  = 

31

EARLY
  = 

31

LATE
 .

  

 

Being a unit-free measurement, the Arrow-Pratt measure of relative risk-aversion 

coefficient lr  is used for evaluating risk aversion for each farm type. lr  is found to affect GM 

technology adoption. As discussed above, a higher degree of risk aversion often (but not always) 
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contributes to slowing down adoption rates. Importantly, the degree of risk aversion also varies 

across farm types. In the late adopter’s model, LATEr  is the largest as 5.36, followed by the 

intermediate adopter’s INTERr  = 2.91 and the early adopter’s EARLYr  = 0.69. Following Gollier 

(2001, p.31), the late adopter exhibits a high level of risk aversion as LATEr  > 5, and the early 

adopter exhibits a low level of risk aversion as EARLYr  < 1. The intermediate adopter exhibits a 

medium level of risk aversion by 1 < INTERr  < 5. 

Thus, we find evidence of heterogeneity in risk preferences across farm types. According 

to the adoption timing or adoption pattern, the late adopter is featured to exhibit relatively higher 

level of risk aversion ( lr  > 5), and the early adopter is featured to exhibit relatively lower level 

of risk aversion ( lr  < 1). The intermediate adopter’s risk aversion may be between those two 

extreme points with the degree of medium level (1 < lr  < 5). Finding a monotonic relationship 

between risk aversion and adoption timing seems important. The more risk-averse a farmer is, 

the later he/she would adopt a new technology (GM seeds). This is consistent with findings from 

the previous literature such as Liu (2008).  

The sensitivity analysis in terms of lr  in the aggregate model shows that the speed of 

GM technology adoption is faster up to some level of lr  ( r  < 2.20 in the aggregate model) and 

slower beyond that level, reflecting the presence of farmers’ diversification strategy. This trend 

appears to be present in the intermediate- and the late- adopter’s DP model, but not in the early 

adopter’s model. Though direct comparison across the disaggregate models is not available, a 

qualitative comparison of the effects of risk preferences across farm types is instructive. While 

the early adopter doesn’t seem to exhibit diversification patterns associated with portfolio 

selection, the intermediate- and the late- adopter do show patterns of diversification in their 

adoption choices between conventional and GM seeds.   
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The social learning parameter for GM technology 
42

l  represents the strength of 

information externalities. Information externalities are shown to slow down the speed of GM 

technology adoption, impeding its diffusion. That is, the larger the social learning parameter 
42

l , 

the later a farmer would adopt GM technology. This relation reflects farmers’ free-riding 

behaviors in the presence of information externalities. Table 6.22 suggests a monotonic 

relationship between 
42

l  and adoption timing across l -farm types. Importantly, the extent of 

reliance on external information also seems to vary across farm types. Estimated 
42

l ’s are shown 

to be highest for the late adopter (
42

LATE = 1.03), followed by the intermediate adopter (
42

INTER  = 

0.94) and the early adopter (
42

EARLY  = 0.17). This reflects that farmers relying more on social 

interactions tend to be late adopter. That is, the higher the strength of information externalities is 

(or the more social interaction is), the later farmers would adopt GM technology.  

As discussed in the previous sections, the changes in 
42

l  affect farmers’ adoption 

behaviors in two different ways. First, it affects the speed of GM technology adoption: increasing 

level of information externalities 
42

l  slows down adoption by providing farmers incentives to 

wait for information for their adopting neighbors. Second, increasing 
42

l  makes farmers better 

off up to some level of 
42

l  (social optimum), where famers can save the cost of individual 

learning by free riding on their neighbors. Alternatively, excessive social learning can occur and 

make farmers worse off if social learning goes beyond its social optimum, implying that free-

riding would be socially inefficient.   

Our analysis shows the incremental effects of 
42

l  across l -type models. It finds some 

small degree of inefficiency in 
42

l  around its social optimum across l -type adopters. This can be 

seen by looking at the relative cost of social learning across l -type DP models. Compared to 
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zero cost at the social optimum, the early adopter would pay 0.16% of his/her welfare before 

social optimum (Table 6.7), the intermediate adopter would pay 0.38% of his/her welfare beyond 

social optimum (Table 6.14), and the late adopter would pay 0.68% of his/her welfare beyond 

social optimum (Table 6.21). This indicates that the later farmers adopt GM seeds, the more 

inefficiently they internalize information externalities. That is, laggards are less effective in 

capturing the benefits from social learning. Finally, note that, while non-zero, these welfare 

effects are relatively small. This indicates that, while there is heterogeneity in the reliance on 

social learning across farm types, farmers within each type may be reasonably efficient in 

managing the information externalities they obtain from their neighbors.  
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Chapter 7 : Conclusion 
 

7.1.Summary & Conclusion 

This dissertation has analyzed the behaviors of U.S. corn farmers and their decisions to adopt 

Genetically Modified (GM) technology. The investigation has been done in a dynamic context, 

with a focus on risk and learning effects. We consider farmers’ risk preferences and their 

individual and social learning as key determinants affecting the adoption of GM technology. We 

analyze the role of risk and risk aversion in farmers’ adoption decisions and highlight the relative 

roles of individual learning and social learning, identifying how they affect GM technology 

adoption.  

 For this research, we develop a conceptual structural dynamic programming (DP) model 

capturing both individual and social learning and risk preferences in a parameterized structure. 

Assuming both conventional and GM technologies are risky choices with uncertain profitability, 

we consider that forward-looking farmers make adoption decisions of how many acres to plant 

using conventional seed and GM seed so as to maximize their present value of all future payoffs, 

with the learning process as underlying dynamics. Then, farmers’ learning process implies 

updating their information about the uncertain profitability for each technology. Acquired 

information by farmers is represented by their subjective beliefs given by the mean and variance 

of the distribution of uncertain profitability.  

Each year, farmers decide whether or not to adopt GM technology and how many acres to 

plant in GM seeds. The choices between conventional technology and GM technology are made 

at planting time before actual profits are known. Thus, our DP problem involves imperfect state 

information as the state variables (profits) are unobservable. This is handled by adding 

measurement equations, which provide information about related variables correlated with 
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profits and allow an updating of the assessed distribution of profit for each technology. In the 

measurement equations, farmers’ previous year’s yield information for each technology is used 

to capture individual learning as it represents farmers’ own experience about the profitability for 

each technology. Similarly, neighboring farmers’ adoption rates for each technology are used to 

capture social learning. That is, farmers’ learning processes are parameterized in terms of 

individual learning and social learning. The degrees of individual learning and social learning for 

each technology (conventional seed and GM seed) are thus represented by specific parameters. 

In this context, the social learning parameter reflects the strength of information externalities in 

adoption decisions.  

Our DP model under imperfect state information is given by Bellman equation where 

sufficient statistics are used under the assumption of normality on the distribution of profit. 

Under normality, sufficient statistics reduce to the mean and the variance of the distribution. In 

terms of learning, the evolution of mean and variance is given by the Kalman filter, which 

provides a convenient parameterized structure for updating mean and variance given new 

observations. Through parameters in the measurement equations, it also provides a basis to 

examine the relative roles of individual learning and social learning. That is, Bellman equation 

with sufficient statistics is specified under normal distribution.  

Under the expected utility model, we represent risk preferences by an additive mean-

variance utility function. This is consistent with the assumptions of normal distribution and 

Constant Absolute Risk Aversion (CARA). Then, the reward function includes the Arrow-Pratt 

measure of absolute risk aversion coefficient in its functional form. In addition, under 

stationarity, the relevant Bellman equation is a time-invariant functional equation whose 

unknowns are its value function. Then, Bellman equation can be numerically solved using the 
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collocation method. In our paper, dynamic optimization is combined with parameter estimation. 

An algorithm is devised so that dynamic optimization is nested within a minimum distance 

estimator procedure.  

Then, we apply Bellman equation with the Kalman filter to the DMR panel dataset. The 

data is composed of 136 corn farmers in and around the U.S. Corn Belt. Considering 

heterogeneity across farmers, we develop four models of farmers’ adoption pattern. The first 

model is for a representative farmer, i.e. a farmer that represents aggregate behavior, whose 

economic variables are at average levels of the whole group. It is used as a benchmark case and 

covers the whole DMR panel dataset. The other models are for disaggregate models applied to 

three sub-groups of farmers classified by farm type in terms of adoption timing: the early- , the 

intermediate-, and the late- adopters of GM technology. This classification allows for 

heterogeneity in parameters across groups, which are independent to initial conditions.    

For each type of DP model, we identify and estimate parameters using a minimum 

distance estimator. Our results show that the risk-aversion coefficient in the reward function and 

all learning parameters in the measurement equation are estimated to be positive, indicating 

farmers are risk-averse, and both individual and social learning play roles in GM technology 

adoption. Especially, the effects of individual learning on adoption are shown to be greater than 

the effects of social learning for each technology. This is consistent with findings from previous 

literature demonstrating a new technology is adopted more effectively through individual 

learning than through social learning (Baerenklau, 2005; Conley and Udry, 2010; Munshi, 2004).  

From the econometric viewpoints, hypothesis testing is implemented for selected 

parameters. Using an F-test, the null hypotheses of risk neutrality and of no social learning are 

rejected with high statistical significance, implying that risk aversion and social learning have 
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significant impacts on adoption decisions. Sensitivity analysis of the effects of these parameters 

on adoption behavior is also implemented. Results provide important information: First, a higher 

level of risk aversion tends to reduce adoption rates (as farmers adopt later). However, there are 

also situations where increments in risk aversion increase the adoption of GM seed. These 

situations reflect that farmers exhibit behavior consistent with portfolio selection as 

diversification is used to reduce risk when both conventional seed and GM seed are risky 

choices. That is, our model captures farmers’ diversification strategy by considering both new 

and old technologies are risky. Second, increases in the social learning parameter for GM 

technology impede the adoption of GM technology. This reflects the presence of information 

externalities in terms of free-riding behavior. Farmers have incentive to wait and delay their GM 

adoption in an attempt to learn more from their adopting neighbors. In sum, our paper provides 

evidence of the presence of information externalities and their impacts on GM technology 

adoption. 

Welfare analysis shows that risk aversion makes farmers worse off. This is an expected 

result: risk-averse farmers are willing to pay to avoid risk. As the degree of risk aversion 

increases, the cost of risk (as measured by the willingness-to-pay to eliminate risk) also 

increases, and welfare declines. The impacts of the social learning parameters on welfare 

measures reflect the effects of information externalities. As noted above, increments in the social 

learning parameter slow down adoption rates. But the impact of information externalities on 

welfare can be either positive or negative. We find that actual social learning is close to social 

optimum, which implies that farmers are reasonably efficient at internalizing the information 

externalities in GM adoption.  
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Heterogeneity across farm type is investigated by comparing parameters across the 

disaggregate models. Results show two key features. First, relative risk aversion coefficient is 

higher for the late adopter and lower for the early adopter. This reflects that farmers’ adoption 

timing is related to their degree of risk aversion: the more risk-averse farmers are, the later they 

adopt GM technology. Second, the social learning parameter, representing the strength of 

information externalities, is higher for the late adopter and lower for the early adopter, indicating 

that early adopters rely less on information externalities, while late adopters rely more on 

information from their neighbors. These different parameter estimates across models document 

the presence of heterogeneity in learning across farm types. 

 

7.2.Contributions 

To our knowledge, empirical analyses of joint roles of risk and learning on GM technology 

adoption are quite rare due to lack of available empirical data. Moreover, dynamic analysis using 

DP has been difficult to conduct because of inadequate good panel data in a relatively short 

history of GM technology. Thus, this dissertation makes the following contributions to the 

literature.  

First, our research addresses the challenges of conducting an empirical analysis of 

unobservable factors on GM technology adoption – risk preferences and learning effects with 

information externalities. While observable farm characteristics such as farm size, credit 

constraints, and human resources have been investigated by the previous literature, the roles of 

learning are rarely highlighted due to lack of empirical data. Using an unique farm-level 

adoption data (the DMR data), our research provides a refined analysis of the role of individual 

learning versus social learning in technology adoption by relying on the Kalman filter for 
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updating mean and variance, along with a parameterized structure representing the nature of the 

learning process. In addition, though risk and risk preferences have received lots of concerns by 

researchers, most of literature has counted on field experiments and survey data where 

establishing linkages between risk exposure and risk aversion is often difficult. However, our 

study investigates directly the impact of risk aversion on observed behavior by parameterizing 

risk aversion coefficient in the structural model. In short, our research contributes in providing 

empirical analysis of risk preferences and individual/social learning in the GM technology 

adoption literature remaining few.   

Second, this dissertation makes a contribution by developing a structural dynamic model 

of GM technology adoption, which allows us to conduct a joint empirical analysis of dynamics, 

risk preferences, individual learning, and social learning (information externalities). It evaluates 

the joint impact on behavior of risk preferences and learning using the structural approach 

instead of the reduced-form approach. The reduced-form approach has been widely used by the 

previous adoption literature due to its relative ease but could not explain the roles of risk 

preferences and learning explicitly in a dynamic environment (e.g., a logistic model). Moreover, 

our structural adoption model involves a continuous choice DP problem, making the solution of 

relevant Bellman equation more complicated than most of previous literature counting on a 

discrete choice DP problem (Berry, 1994; Erdem and Keane, 1996; Manski, 1993). Thereby, our 

analysis contributes in expanding the literature on dynamic GM technology adoption and in 

specifying the joint roles of risk, learning, and information externalities in the context of 

dynamics.  

Third, our research makes contributions to providing an empirical analysis incorporating 

model estimation into the DP model. While combining a dynamic optimization problem with 
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model estimation is not new, empirical applications remain few due to the corresponding 

computational burden. This dissertation explores ways to make this analysis empirically 

tractable. It estimates model parameters by nesting a dynamic optimization problem within a 

minimum distance estimator. Specifically, we devise an algorithm to solve corresponding 

Bellman equation for GM technology adoption so as to minimize the distance between the model 

and observed data, estimating parameters associated with risk preferences, individual learning, 

and social learning simultaneously. The analysis is also used to conduct hypothesis testing, 

sensitivity analysis, and welfare analysis on key structural parameters of risk aversion and the 

social learning parameter. As such, this research proposes new ways to integrate econometric 

estimation and dynamic optimization.   

Finally, our empirical analysis provides new and useful information on the role of risk, 

risk aversion, and social learning in GM technology adoption. Our results confirm the 

followings: First, farmers are risk averse in adopting new technologies (GM seeds). Second, both 

individual and social learning play a key role in adopting GM technology in positive directions 

with high statistical significance. Third, the impacts of individual learning are shown to be larger 

than the impacts of social learning. Further, our empirical results across farm types demonstrate 

that farmers adopt GM technology later as they are more risk-averse and rely more on social 

interactions (as information externalities are stronger).  

 

7.3.Limitation & Future Research 

While our research contributes to both methodological developments and empirical findings, it is 

limited for the followings: First, our hypothesis testing is conducted based on small samples. 

This was done trying to reduce the computational burden for our empirical analysis and to secure 
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positive degree of freedoms for conducting F-tests. Thereby, econometric evidences may not be 

powerful due to small samples. In the context of parameterized DP models nested within 

econometric estimation, it would be useful to explore ways of conducting hypothesis testing 

based on larger sample. Second, we solve a single Bellman equation for each model assuming 

that all individual farmers are homogeneous within each group. We analyze three types of 

farmers and find evidence of parameter heterogeneity across groups. But additional 

heterogeneity may also exist across farmers within each group. Third, we analyze the roles of 

individual vs. social learning by parameterizing social interaction in the model. A more explicit 

analysis of strategic interactions would be helpful but remains with the issue of curse of 

dimensionality in the context of dynamics.  

Future research is needed to extend our analysis in several directions. First, further 

refinements in numerical methods and the development of faster computer algorithms can help 

bridge the gap between dynamic optimization models and the empirical analysis of behavioral 

rules. By reducing the high computational burden we faced in this research, this would create 

new opportunities for advancements in our field of inquiries. Second, our analysis focuses on 

adoption choices involving just two technologies: conventional seed and GM seed. It would be 

useful to expand the choice set and to distinguish between several GM technologies (such as HT, 

IR-CB, and Stacked seed). Third, our analysis conveniently relied on the normality assumption. 

Noting that the Kalman filter can be applied to any distribution, it would be valuable to explore 

adoption and learning under broader distributional assumptions. These appear to be good topics 

for future research. 
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Appendix: Learning Process by the Kalman Filter Algorithm 

 

The Kalman filter algorithm provides a useful tool to find the linear least-squares estimate of the 

unobservable state vector (e. g., the profitability k

t ) given the previous estimate 
| 1

k

t t 
 or 

| 1t t  

and the new measurement tz  without history of measurements such as 0 1 1, ,..., tz z z   (Berteskas, 

1976).  

It applies in general, providing a convenient representation of the evolving mean and 

variance associated with any distribution. For simplicity, we assume normality for the 

distribution of the unobservable states. By that assumption, the representation of learning process 

using the Kalman filter is consistent with the Bayesian updating rule utilizing conjugacy property 

of normal distribution (DeGroot, 1970).  

Based on basic definitions of variables and parameters described in Chapter 3, we 

provide a generalized form of the Kalman filter algorithm. Assuming all the parameters are time 

invariant, the system equation and the measurement equation are considered as the following 

linear system of equations.   

1t t t t t    π απ βx χy v   (the system equation) (A.1) 
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t t tz  γπ w   (the measurement equation) (A.2) 
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where 
T

CONV GM

t t ty y   y indicates a farmer’s neighbors’ adoption rates for each technology, 

and χ  is a 2-by-2 vector of corresponding parameters.
35

 The vector of random disturbance tv  

and the vector of observation noises tw  are assumed to be mutually independent. Also, both tv  

and tw  are distributed with zero mean. The variance-covariance matrix in terms of tv  and tw is 

described as 

           

           

0

0

T T
T T

T TT

t t t t t t t t tt t t t

tt t t t
t t t t t t t t

E E E E M
E E

NE E E E

                      

v v v v v v w w v v v w

w v w ww w w w w w w w

.  

The first equality results from zero means of all the random disturbances, and the second equality 

is due to the assumption of mutual independence. Then, assumptions for tv  and tw  are 

summarized as 

   0, 0, ,T T

t t t t t t t tE E M E N E         v w v v w w   (A.3)  
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For each technology k , 
| | |

T
CONV GM

t t t t t t    μ  denotes the vector of the conditional 

means of the net profitability k

t  given tz . Also, 
|t t  denotes the conditional variance-

                                                           
35

 For a more general derivation, the term capturing neighbors’ adoption rates tχy  is added, but it is omitted in 

Chapter 3 for simplicity.  
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covariance matrix of the net profitability k

t  given tz  with the conditional variance 2

| ,t t k . The 

conditional mean and variance are regarded as the linear least-squares estimate of the 

unobservable state variables tπ  given observable measurements 0 1 1, ,..., ,t tz z z z . Note that the 

subscript |t t  implies the conditional moments at time period t  are estimated given information 

up to time period t . If the subscript is represented as 1|t t , it implies that the conditional 

moments at time period 1t   are estimated given information up to time period t . Similarly, 

| 1t t   indicates the conditional moments at t  are estimated given information up to 1t  .  

Suppose the linear system of equations (A.1) and (A.2) starts up at t  = 0. The state vector 

of the net profitability for each technology at t  = 0, 0π is regarded as a random vector with the 

mean  0 0E π μ  and the variance-covariance matrix 0 . The pair ( 0μ , 0 ) plays a role of the 

mean and variance-covariance matrix for a Bayesian prior distribution on 0π  (Ljungqvist and 

Sargent, 2004, p. 1023). For simplicity, we assume that ( 0μ , 0 ) is given from the empirical 

data.  

At each time period t , researchers are assumed to receive observable measurements tz   

addressing information of the unobservable state vector tπ . We define the history of previous 

measurements up to time period 1t   as 

 1 0 1 1, ,...,t tZ z z z  .     (A.4) 

Using the above definition, the relation between the history of measurements and a new 

measurement at time period t  is derived as follows 

   0 1 1 1, ,..., , ,t t t t tZ z z z z Z z   .    (A.5) 
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At time period t , the previous estimate 
| 1t tμ  are supposed to be calculated with its 

corresponding matrix 
| 1t t  defined as  

  | 1 | 1 | 1

T

t t t t t t t tE  
    
  
π μ π μ .    (A.6) 

Also, researchers are assumed to observe a new measurement tz  in addition to the previous 

measurements 1tZ   up to time period 1t  . Then, our object is to compute the linear least-squares 

estimate of tπ  given  1 0 1 1, ,...,t tZ z z z   and tz ; that is, 
|t tμ  and its corresponding variance-

covariance matrix 
|t t . For this object, we employ useful theorems from Berteskas (1976).

36
 

 

 Theorem A.1.
37

 Consider A  and B  be random vectors whose mean and variance-

covariance matrices are denoted as 

 E A  and  E B       (mean)  

       var
T

E A E A A E A A   
 

 and        var
T

E B E B B E B B   
 

   (variance) 

       cov ,
T

E A E A B E B A B   
 

 and     

          cov , cov ,
T T

E B E B A E A B A A B    
 

.   (covariance) 

Let’s denote  ˆ |E X Y as the linear least-squares estimate of X  given Y . Then, the linear least-

squares estimate of A  given B  is represented as 

          
1ˆ | cov , varE A B E A A B B B E B


     .  (A.7)  

And, its corresponding error covariance matrix is 

                                                           
36

 Further details are referred to Berteskas (1976, p. 158).   

37
 See Berteskas (1976, p. 162) or Ljungqvist and Sargent (2004, p. 1039) for the proof of Theorem A.1. 
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              
1

,

ˆ ˆ| | var cov , var cov ,
T

A B
E A E A B A E A B A A B B B A

    
  

. (A.8) 

 

 Theorem A.2.
38

 In addition to random vectors A  and B  in Theorem A.1, let C  be an 

additional random vector correlated with B . That is,  

       cov , 0
T

E B E B C E C B C    
 

.     

Then, the linear least-squares estimate of A  given B  and C  in terms of the conditional mean is  

       ˆ ˆ ˆ ˆ| , | | |E A B C E A B E A C E C B E A    
 

.   (A.9)         

Further, its corresponding variance-covariance matrix is 

     
     

     
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A B C

B C A B C

A E A B A E A B

E A E A B C A E A B C E

E A E A C E C B

E C E C B C E C B E C E C B A E A



  
              

   

        
      

. (A.10) 

 

Note that 
|t tμ  indicates the linear least-squares estimate of tπ  given information at time period t . 

Information at t  includes the given initial value 0π , the history of past measurements 

( 0 1 1, ,..., tz z z  ), and a newly added measurement tz . Applying notations in Theorem A.1 and 

Theorem A.2, 
|t tμ  can be represented as 

   | 0 0 1 1 0 1
ˆ ˆ| , , ,..., , | , ,t t t t t t t tE z z z z E Z z  μ π π π π     (A.11) 

Then, using (A.9) in Theorem A.2, 
|t tμ  can be described as 

                                                           
38

 Ljungqvist and Sargent (2004) call this theorem as Orthogonal regressors. For the proof of Theorem A.2, readers 

can also refer to Berteskas (1976, p. 166) or Ljungqvist and Sargent (2004, p. 1040). 
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       | 0 1 0 1 0 1
ˆ ˆ ˆ ˆ| , , | , | | ,t t t t t t t t t t t tE Z z E Z E z E z Z E  

     
 

μ π π π π π π π
  

     0 1
ˆ ˆ| , |t t t t tE Z E z E  π π π π      

   | 1
ˆ |t t t t tE z E  μ π π .       (A.12) 

In the third equality, we define  | 1 0 1
ˆ | ,t t t tE Z μ π π . In order to construct equations more 

conveniently, we apply a Gram-Schmidt orthogonalization procedure to the first equality of 

(A.12) (Ljungqvist and Sargent, 2004, p. 1024). Then, tz  in the second equality is defined as 

 0 1
ˆ | ,t t t tz z E z Z   π .    (A.13) 

Taking the linear least-squares estimator operator  ˆ |E    to the measurement equation in 

(A.2) directly, we get the following equation of 

     0 1 0 1 0 1
ˆ ˆ| , | , | ,t t t t t tE z Z E Z E Z   π γ π π w π      

 0 1
ˆ | , 0t tE Z  γ π π        

| 1t t γμ .         (A.14) 

The second equality is valid due to the zero mean assumption of tw  in (A.3). Introducing (A.14) 

into (A.13), tz  is represented as 

| 1t t t tz z   γμ .      (A.15) 

Using (A.7) in Theorem A.1 with (A.15), the second term of the last equality in (A.12) 

can be described as 

          
1ˆ | cov , vart t t t t t t tE z E z z z E z


    π π π      

      
1

cov , vart t t t tE z z z


 π π .    (A.16) 
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The last component of the first equality in (A.16),    0 1
ˆ | ,t t t tE z E z E z Z 

  
 

π  becomes zero 

by the unbiased property of linear least-squares estimates when one of the regressors is a 

constant (Ljungqvist and Sargent, 2004, p. 1026).  That is, 

   0 1
ˆ | , 0t t t tE z E z E z Z 

   
 

π .     (A.17) 

Using (A.15), the variance term in (A.16),  var tz  can be rewritten as follows: 

       var
T

t t t t tz E z E z z E z   
 

      

  0 0
T

t tE z z   
 

       

T

t tE z z             

     0 1 0 1
ˆ ˆ| , | ,

T

t t t t t tE z E z Z z E z Z 

   
  

π π .     (A.18) 

The second equality results from (A.17), and the last equality comes from (A.13). Using the 

measurement equation (A.2) and results from (A.14), the variance term in (A.18) can be 

represented as  

    | 1 | 1var
T

t t t t t t t t tz E  
     
  
γπ w γμ γπ w γμ     

     | 1 | 1

T

t t t t t t t tE  
     
  
γ π μ w γ π μ w .     (A.19) 

Again, we apply a Gram-Schmidt orthogonalization procedure for tπ . Then the difference 

between tπ  and its least-squares estimate given information at 1t  , 
| 1t tμ  is defined as 

 | 1 0 1
ˆ | ,t t t t t t tE Z    π π μ π π π .    (A.20)  

In addition, the unbiased property of linear least-squares estimates leads to 

   | 1 0 1
ˆ | , 0t t t t t t tE E E E Z 

         
π π μ π π π .   (A.21)  
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Applying (A.20) with   0tE w  and 
T

t t tE N   w w  in (A.3) to Equation (A.19), the variance 

term is rewritten as  

    var
T

t t t t tz E    
 
γπ w γπ w

      

T T T

t t t tE E       γπ π γ w w       

T T

t t tE N   γ π π γ .        (A.22) 

The first component of the last equality in (A.22) indicates the linear least-squares estimate 

| 1t tμ ’s corresponding error covariance matrix defined as 

     | 1 0 1 0 1
ˆ ˆ| , | ,

T

t t t t t t t tE E Z E Z  

    
  
π π π π π π

T

t tE    π π .  (A.23) 

From (A.22) and (A.23), the variance matrix of tz  is summarized as 

  | 1var T

t t t tz N  γ γ .    (A.24) 

Next, the covariance term in (A.16),  cov ,t tzπ  can be considered as 

       cov ,
T

t t t t t tz E E z E z   
 

π π π      

   0
T

t t tE E z   
 
π π         

   T

t t tE E z    π π       

      0 1
ˆ | ,

T

t t t t tE E z E z Z 

   
  
π π π .     (A.25) 

Using the measurement equation (A.2) and the definition of tz  in (A.15), the covariance term 

(A.25) is represented as 

      | 1cov ,
T

t t t t t t t tz E E 
     
  

π π π γπ w γμ        
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       | 1 | 1

T T
T T

t t t t t t t t t t t tE E E 
                   
π γ π μ π γ π μ π w π w    

       
T T T T

t t t t t t t tE E E         
 
π γ π π γ π π w π w      

     
T T T T

t t t t t t t tE E E E E E                     
π γ π π γ π π w π w     

  0 0 0
T

t tE       
 
π γ π          

 | 1

T

t t t tE 
        
π γ π μ          

 | 1

T T

t t t tE 
    
  
π π μ γ          

   | 1 | 1 | 1

T T

t t t t t t t tE   
      
  
π μ μ π μ γ        

     | 1 | 1 | 1 | 1

T TT T

t t t t t t t t t t tE E   
           
      
π μ π μ γ μ π μ γ     

   | 1 | 1 0
T T

t t t t t tE  
      
  
π μ π μ γ        

T T

t tE    π π γ .         (A.26) 

The fifth equality results from  tE π = 0 in (A.21) and assumptions concerning tw  in (A.3) 

(   0tE w  and 
T

t t tE N   w w ). A trick of adding and subtracting 
| 1t tμ  is used in the eighth 

equality so as to derive the ninth equality. Using the definition of tπ  in (A.20) and  tE π = 0 in 

(A.21), the tenth equality and the eleventh equality are derived. Using the definition of 
| 1t t  in 

(A.23), the covariance term in (A.26) can be represented as 

  | 1cov , T

t t t tz   π γ .    (A.27) 
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Now, we replace  cov ,t tzπ  in (A.16) by the result of (A.24) and  var tz  in (A.16) by the 

result of (A.27). Then, Equation (A.16) is rewritten as 

     
1

| 1 | 1
ˆ | T T

t t t t t t t t tE z E N z


      π π γ γ γ .   (A.28) 

 The first component of the last equality in (A.12),  | 1 0 1
ˆ | ,t t t tE Z μ π π  can be expressed 

in terms of components in the system equation as follows: first, we consider the one-step lagged 

system equation from (A.1) 

1 1 1 1t t t t t      π απ βx χy v .   (A.29) 

Second, we take the linear least-squares estimator operator  ˆ |E    to (A.29) directly. That is,  

       0 1 1 0 1 1 1 0 1 1 0 1
ˆ ˆ ˆ ˆ| , | , | , | ,t t t t t t t t tE Z E Z E Z E Z          π π α π π βx χy π v π

 
 

 1 0 1 1 1
ˆ | , 0t t t tE Z      α π π βx χy

      

 1 0 1 1 1
ˆ | ,t t t tE Z     α π π βx χy .       (A.30) 

The second equality holds as 1tβx  and 1tχy  are not random vectors, and   0tE v  in (A.3). 

Using simpler notations, (A.30) can be expressed as 

| 1 1| 1 1 1t t t t t t      μ αμ βx χy .     (A.31) 

 Then, we incorporate results from (A.28) and (A.31) into Equation (A.12) as follows: 

     
1

| 1| 1 1 1 | 1 | 1

T T

t t t t t t t t t t t t t tE N z E


              μ αμ βx χy π γ γ γ π    

 
1

1| 1 1 1 | 1 | 1

T T

t t t t t t t t t tN z


            αμ βx χy γ γ γ     

   
1

1| 1 1 1 | 1 | 1 | 1

T T

t t t t t t t t t t t tN z


               αμ βx χy γ γ γ γμ    

 1| 1 1 1 | 1t t t t t t t tK z         αμ βx χy γμ ,       (A.32) 



183 
 

 

where  
1

| 1 | 1

T T

t t t t t tK N


      γ γ γ , being called as the “Kalman-gain coefficient” 

(Ljungqvist and Sargent, 2004, p. 1028). In order to handle 
| 1t tμ , we substitute the result of 

(A.31) for 
| 1t tμ  in (A.32). That is, 

  | 1| 1 1 1 1| 1 1 1t t t t t t t t t t t tK z              μ αμ βx χy γ αμ βx χy     

 1| 1 1 1 1| 1 1 1t t t t t t t t t t tK z K             αμ βx χy γ αμ βx χy     

1| 1 1 1 1| 1 1 1t t t t t t t t t t t t tK z K K K             αμ βx χy γαμ γβx γχy    

     1| 1 1 1t t t t t t t t tI K I K I K K z         γ αμ γ βx γ χy ,     (A.33) 

where  
1

| 1 | 1

T T

t t t t t tK N


      γ γ γ .    (A.34) 

I  indicates an identity matrix. Then, the one-step forward equation of (A.33) is represented as 

     1| 1 1 | 1 1 1 1t t t t t t t t t t tI K I K I K K z            μ γ αμ γ βx γ χy ,  (A.35) 

where  
1

1 1| 1| 1

T T

t t t t t tK N


        γ γ γ .     (A.36) 

Thereby, Equation (A.35) and Equation (A.36) generate the linear least-squares estimates 
|t tμ  

recursively together with the associated error covariance matrix 
1|t t . 

For our empirical research, it is preferred to consider 
|t t  (

1| 1t t  ) rather than 
| 1t t  

(
1|t t ). Thus, our next step is to obtain 

|t t  from Equation (A.36) expressed in terms of 
1|t t . 

First, we obtain the one-step forward equation of (A.31) as 

1| |t t t t t t   μ αμ βx χy .    (A.37) 

Then, the corresponding error covariance matrix 
1|t t  is represented as 
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  1| 1 1| 1 1|

T

t t t t t t t tE    
    
  
π μ π μ       

 
  

  

|

|

T

t t t t t t t t

t t t t t t t t

E

      
 
 
        

απ βx χy v αμ βx χy

απ βx χy v αμ βx χy

     

  | |

T

t t t t t t t tE      
  
απ αμ v απ αμ v       

|

| | | | |

T T T T T T T T

T T T T T T T

t t t t t t t t t t t

t t t t t t t t t t t t t

E
    

  
     

απ π α v π α αμ π α απ v v v

αμ v απ μ α v μ α αμ μ α
     

|

| | | | |

T T T T T T T T

T T T T T T T

t t t t t t t t t t t

t t t t t t t t t t t t t

E E E E E

E E E E

                      

                 

απ π α v π α αμ π α απ v v v

αμ v απ μ α v μ α αμ μ α
  

| |

| |

0 0 0

0

T T T T T T

T T

t t t t t t t t t

t t t t

E E M E

E

                

    

απ π α αμ π α απ μ α

αμ μ α
   

| | | |

T T T T T

t t t t t t t t t t t t tE M      α π π μ π π μ μ μ α       

   | | |

T T T

t t t t t t t t t tE M      α π μ π π μ μ α       

  | |

T T T

t t t t t t tE M    
 

α π μ π μ α        

  | |

T T

t t t t t t tE M    
  

α π μ π μ α        

T T

t t tE M   α π π α          

|

T

t t tM  α α .          (A.38) 

The first equality results from the definition of the error covariance matrix. The second equality 

is obtained by substituting (A.1) for 1tπ  and (A.37) for 
1|t tμ  in the first equality.  Zeros in the 

sixth equality are from the orthogonality between tv  and tπ  (i. e.,     0t t t tE E v π π v ) and 
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the zero mean assumption in (A.3),   0tE v . The eleventh equality results from the definition 

of tπ  in (A.20).  

Using (A.10) of Theorem A.2, the error covariance matrix 
|t t  is represented as 

  | | |

T

t t t t t t t tE     
  
π μ π μ      

  | 1 | 1

T

t t t t t tE  
   
  
π μ π μ      0 1

ˆ | ,
T

t t t t tE E z E z Z 

   
  
π π π

  

 
      

1

0 1 0 1
ˆ ˆ| , | ,

T

t t t t t tE z E z Z z E z Z



 

  
      

π π

  

 
     0 1

ˆ | ,
T

t t t t tE z E z Z E
   
 

π π π .   (A.39) 

The first component of (A.39) is described as follows by its definition: 

  | 1 | 1 | 1

T

t t t t t t t tE  
    
  
π μ π μ .    (A.40) 

Using the result of (A.27), the second component of (A.39) can be rewritten as follows 

        0 1
ˆ | ,

T
T

t t t t t t t tE E z E z Z E E z

         
π π π π π     

   0
T

t t tE E z   
 
π π        

     
T

t t t tE E z E z   
 
π π       

 cov ,t tz π          

| 1

T

t t  γ .          (A.41) 

Also, using the result of (A.24), the third component of (A.39) is represented as 

      0 1 0 1
ˆ ˆ| , | ,

T
T

t t t t t t t tE z E z Z z E z Z E z z 

         
π π      
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  0 0
T

t tE z z   
 

       

     
T

t t t tE z E z z E z   
 

      

 var tz          

| 1

T

t t tN  γ γ .         (A.42) 

Using the result of (A.27), the last component of (A.39) is represented as 

            0 1 0 1
ˆ ˆ| , | ,

TTT

t t t t t t t t t tE z E z Z E E E z E z Z 

          
π π π π π π   

     0 1
ˆ | ,

T
T

t t t t tE E z E z Z 

    
    

π π π    

 cov ,
T

t tz          

| 1

T
T

t t
   γ        

| 1

T

t t γ        

| 1t t γ .        (A.43) 

The last equation holds as 
| 1 | 1

T

t t t t     through Theorem A.1 (    cov , cov ,
T

A B B A ). Finally, 

results of (A.40), (A.41), (A.42), and (A.43) are incorporated into (A.39), giving the following 

equation 

 
1

| | 1 | 1 | 1 | 1

T T

t t t t t t t t t t tN


         γ γ γ γ  .   (A.44) 

The one-step forward equation of (A.44) is 

 
1

1| 1 1| 1| 1| 1 1|

T T

t t t t t t t t t t tN


            γ γ γ γ .  (A.45) 

Substituting (A.38) for 
1|t t  in (A.45) gives 
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1

1| 1 | | | 1 |

T T T T T T

t t t t t t t t t t t t t t tM M M N M


  
                       

α α α α γ γ α α γ γ α α . (A.46) 

Given 
|t t , Equation (A.46) generates 

1| 1t t   recursively. Thus, Equation (A.46) reflects the 

evolution between the variance-covariance matrix at the current period t ,
|t t  and the variance-

covariance matrix at the next period 1t  , 
1| 1t t  , which is described as the transition equation 

for the variance of the net profitability for each technology in Chapter 3.   

 We have already derived the evolution of the mean of the net profitability in (A.35) and 

(A.36), but those equations have a component whose subscript is represented as 1|t t , 
1|t t . As 

discussed above, it is necessary to consider 
|t t  (

1| 1t t  ) rather than 
| 1t t  (

1|t t ) for simplicity. 

Thereby, we try to obtain the evolution between the subscript |t t  and the subscript 1| 1t t  . 

First, we multiply 1T

tN 
γ  to both sides of the Equation (A.44).  

 
1

1 1

| | 1 | 1 | 1 | 1

T T T T

t t t t t t t t t t t t tN N N


 

   
         
  

γ γ γ γ γ γ    

 
1

1 1

| 1 | 1 | 1 | 1

T T T T

t t t t t t t t t t tN N N


 

        γ γ γ γ γ γ     

 
1

1 1

| 1 | 1 | 1

T T T

t t t t t t t t tN N N


 

  
      
  

γ γ γ γ γ .   (A.47) 

Second, the inverse matrix of tN , 1

tN   can be considered as follows: 

1 1

t tN I N            

1
1

| 1 | 1

T T

t t t t t t tN N N




 
          γ γ γ γ      

1
1 1

| 1 | 1

T T

t t t t t t t tN N N N


 

 
          γ γ γ γ      

1
1

| 1 | 1

T T

t t t t t tN N I




 
          γ γ γ γ .      (A.48) 

Substituting (A.48) for the first 1

tN   in (A.47) results in 
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 
11

1 1 1

| | 1 | 1 | 1 | 1 | 1

T T T T T T

t t t t t t t t t t t t t t t t tN N N I N N


  

    
                   

γ γ γ γ γ γ γ γ γ γ   

1
1 1

| 1 | 1 | 1 | 1

T T T T

t t t t t t t t t t tN N I N


 

   
                  

γ γ γ γ γ γ γ    

1

| 1 | 1

T T

t t t t tN I


 
         

γ γ γ        

 
1

| 1 | 1

T T

t t t t tN


 
     γ γ γ .         (A.49) 

Finally, (A.49) is introduced into (A.34) in terms of the Kalman-gain coefficient tK  

 
1

| 1 | 1

T T

t t t t t tK N


      γ γ γ      

1

|

T

t t tN   γ .      (A.50) 

Substituting (A.50) for tK  in (A.33) gives 

     | 1| 1 1 1t t t t t t t t t t tI K I K I K K z         μ γ αμ γ βx γ χy      

     1 1 1 1

| 1| 1 | 1 | 1 |

T T T T

t t t t t t t t t t t t t t t t tI N I N I N N z   

         γ γ αμ γ γ βx γ γ χy γ   

1 1

| 1| 1 1 1 |

T T

t t t t t t t t t t tI N N z 

   
         γ γ αμ βx χy γ .      (A.51) 

The one-step forward equation of (A.51) is  

1 1

1| 1 1| 1 1 | 1| 1 1 1

T T

t t t t t t t t t t t t tI N N z 

        
         μ γ γ αμ βx χy γ .   (A.52) 

Equation (A.52) reflects the evolution of the conditional mean of the net profitability given tz  

for each technology as discussed in Chapter 3.
39

  

 In sum, given the system equation (A.1) and the measurement equation (A.2), both 

Equation (A.52) and Equation (A.46) constitute the Kalman filter algorithm, generating the 

                                                           
39

 Note that Chapter 3 doesn’t consider farmers’ strategic behavior with neighbors. Thereby tχy  is dropped in 

Chapter 3. 
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linear least-squares estimates 
|t tμ  and its corresponding error covariance matrix 

|t t  together in a 

recursive way. The Kalman filter algorithm reflects learning process of sufficient statistics (the 

mean and the variance of the net profitability given tz  for each technology) as discussed in 

Chapter 3. Note that individual learning and social learning are captured by the parameter vector 

γ .  
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