
TASK-AWARE MATERIALIZATION FOR FAST DATA ANALYTICS

by

Shaleen Deep

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2021

Date of final oral examination: 22 November, 2021

The dissertation is approved by the following members of the Final Oral Committee:

Paraschos Koutris, Assistant Professor, Computer Sciences

Jignesh Patel, Professor, Computer Sciences

Theodoros Rekatsinas, Assistant Professor, Computer Sciences

Dimitris Papailiopoulos, Assistant Professor, Electrical and Computer Engineering

© Copyright by Shaleen Deep 2021

All Rights Reserved

i

ACKNOWLEDGMENTS

Undertaking this Ph.D. was a life-changing experience for me and it would not have been

possible without the support of so many people that I have relied upon. I would like to take

this opportunity to thank everyone who helped me in this journey.

First and foremost, I would like to express my gratitude to my advisor Paris Koutris.

Without his belief in me, guidance, support, and advice over the years, I would not have

made it. I cannot thank him enough for being so generous with his time, countless hours

of brainstorming on the whiteboard, his brilliant and creative ideas, endless patience when

I made mistakes, and long walks discussing research that was a great source of happiness

for me. I am constantly in awe of how effortlessly he can generate such sharp insights to do

research of the highest quality. I will forever be grateful to him for teaching me everything

that I now know and shaping me as a researcher. It was an honor to be advised by Paris

and as I start my career after graduation, I will do everything I can to make him a proud

advisor.

I also thank the other members of my committee, Jignesh Patel, Theodoros Rekatsinas,

and Dimitris Papailiopoulos for their feedback and thought provoking questions. Jignesh’s

advice and suggestions on my work have been instrumental in shaping my thinking on how to

approach research. I thank him for making the time to meet me, despite his busy schedule,

whenever I was in need of help. I am also very grateful to Xiao Hu for the opportunity to

collaborate, her constant encouragement, and for her help whenever I was stuck.

I am grateful to Computer Sciences staff Angela Thorp, Hilar Heffley, and Patricia Rent-

ner for their help in administrative matters over the years. I am extremely fortunate to have

my undergraduate (in India) and graduate education fully paid for in the form of scholar-

ships, fellowships, and grant money from NSF. This money primarily comes from the taxes

paid by the hardworking men and women in India and America, and subsidies from the

ii

government. I have always kept this fact in mind and worked hard to ensure that every

rupee and dollar spent on me is fully utilized and produces some value to society.

Graduate school would not have been so much fun if not for the friends in the Wisconsin

DB group. An incomplete list includes Bruhathi Sundarmurthy, Pradap Konda, Paul Sug-

anthan, Adel Ardalan, Kevin Gaffney, Yannis Chronis, Zhihan Guo, Aarati Kakaraparthy,

Han Li, Navneet Potti, Rogers Jeffrey Leo John, Zifan Liu, Ankur Goswami, and Adalbert

Gerald Soosai Raj. In particular, I thank Yash Govind and Harshad Deshmukh for being

such amazing friends and their brotherly advice whenever I needed it. I also thank Xiating

Ouyang and Zhiwei Fan for being such wonderful officemates over the years.

I am also very fortunate to have met some great friends over the years in graduate

school. An incomplete list includes Ali Hussain Hitwala, Mushahid Alam, Mohit Verma,

Ashish Shenoy, Srinivas Tunuguntla, Shruthi Racha, Shreya Kamath, Ekta Sardana, Anshul

Purohit, Nivetha Singara Vadivelu, Atasi Panda, Aayushi Jain (batchmates from 2015);

Kausik Subramanian, Arjun Singhvi, Ayon Sen, Arjun Balasubramium (badminton group);

Swapnil Haria, Sukriti Singh1, Kshiteej Mahajan, Neha Godwal, Akhil Guliani, and other

Winter Soldiers; Ramanathan Alagappan (for his advice and the countless hours of tennis);

Rex Fernando, Yifeng Teng, Mark Mansi, Aishwarya Ganesan, Supriya Hirukar. Vinayak

Sood, my close friend from undergraduate, helped a lot by listening to me vent. I thank

Junaid Khalid and Shoban Chandrabose for being such great friends and helping me when

things got tough. Lastly, I thank Amrita Roy Chowdhury for being a close confidant and

for her friendship over the years.

I would be remiss if I failed to express my gratitude towards Anja Gruenheid and Stratis

Viglas, with whom I had the privilege of working during my internships at Google. I thor-

oughly enjoyed working with them and learned a lot. I cannot be thankful enough for their

help in my job search and for being such great mentors. I would also like to thank Jeff

Naughton for the opportunity to work with Google Madison. Jeff was very kind, generous

with his time, plentiful in his wisdom, and provided a gentle guiding hand.

Before coming to graduate school, I had the opportunity to work at Goldman Sachs,

Bangalore. My learning in the two years I worked there was beneficial in many ways. In

1and their beautiful cat Pixie

iii

particular, I thank Ira Patra, Shaurya Vardhan, and Sriraman Seshadri who invested a lot

of their time and energy to teach me valuable technical and non-technical skills.

Lastly, I cannot thank enough my parents - Pradeep and Manju Chaudhary; and my

sister Anamika Avni. My parents ensured that both I and my sister received the absolute

best possible education. Being educators themselves, they provided me with a top-notch

academic environment at home that fostered my inquisitiveness and love for learning. They

always believed in my decisions and supported me in moments of self-doubt. All of my

achievements are a testament to their strong foundational values. I hope I continue to make

them proud.

iv

TABLE OF CONTENTS

Page

ABSTRACT . viii

1 Introduction . 1

1.1 Motivation . 4

1.2 Contributions . 6

1.3 Organization . 10

2 Background . 11

2.1 Data Model and Queries . 11

2.2 Computational Model . 13

2.3 Fast Matrix Multiplication . 14

2.4 General Framework . 15

3 Compressed Representations of Conjunctive Query Results 16

3.1 Related Work . 18

3.2 Problem Statement . 20

3.2.1 Some Basic Results . 21

3.3 First Main Result . 22

3.3.1 The Basic Structure . 31

3.3.2 Answering a Query . 36

3.4 Second Main Result . 39

3.4.1 Constant Delay Enumeration . 42

3.4.2 Beyond Constant Delay . 43

3.4.2.1 Comparing width notions . 48

3.5 The Complexity of Minimizing Delay . 48

v

Page

4 Space-Time Tradeoffs for Answering Boolean Conjunctive Queries . . . 51

4.1 Problem Statement . 53

4.2 General Space-Time Tradeoffs . 53

4.3 Space-Time Tradeoffs via Tree Decompositions 55

4.4 Extension to CQs with Negation . 57

4.5 Path Queries . 58

4.5.1 Length-4 Path . 58

4.5.2 General Path Queries . 59

4.6 Lower Bounds . 60

5 Unranked Enumeration of Conjunctive Queries with Projections 63

5.1 Related Work . 67

5.2 Main Result . 68

5.2.1 Helper Lemmas . 69

5.2.2 Star Queries . 72

5.2.3 Comparison with Prior Work . 73

5.2.4 Warm-up: Two-Path Query . 75

5.2.5 Proof of Main Theorem . 78

5.2.6 Interleaving with Join Computation 80

5.3 Left-Deep Hierarchical Queries . 83

5.4 Path Queries . 84

6 Join-Project Query Evaluation using Fast Matrix Multiplication 87

6.1 Computing Join-Project . 89

6.1.1 The 2-Path Query . 90

6.1.2 The Star Query . 94

6.1.3 Boolean Set Intersection . 96

6.2 Speeding Up SSJ and SCJ . 97

vi

Page

6.3 Cost-Based Optimization . 100

6.4 System Implementation . 103

6.5 Experimental Evaluation . 105

6.5.1 Datasets . 105

6.5.2 Simple Join Processing . 106

6.5.3 Set Similarity . 108

6.5.4 Set Containment . 109

6.5.5 Boolean Set Intersection . 110

7 Ranked Enumeration of Conjunctive Query Results 111

7.1 Related Work . 113

7.2 Ranking Functions . 115

7.2.1 Problem Parameters . 118

7.3 Main Result . 119

7.3.1 Applications . 119

7.3.2 The Algorithm for the Main Theorem 122

7.4 Extensions . 131

7.4.1 Ranked Enumeration of UCQs . 131

7.4.2 Improving The Main Result . 132

7.5 Lower Bounds . 134

7.5.1 The Choice of Ranking Function . 134

7.5.2 Beyond Logarithmic Delay . 138

8 Ranked Enumeration of Conjunctive Queries with Projections 139

8.1 Related Work . 143

8.2 Preliminaries . 144

8.2.1 Ranking Functions . 145

8.2.2 Problem Parameters . 146

vii

Page

8.3 General acyclic queries . 147

8.3.1 General Algorithm . 148

8.3.2 Improvement for Lexicographic Ranking 155

8.4 Star Queries . 157

8.4.1 The Algorithm . 157

8.4.2 Tradeoff Optimality . 159

8.5 General queries . 160

8.6 Experimental Evaluation . 162

8.6.1 Experimental Setup . 162

8.6.1.1 Small-Scale Datasets . 163

8.6.1.2 Large-Scale Datasets . 164

8.6.2 Small Scale Experiments . 165

8.6.2.1 Enumeration with Preprocessing 168

8.6.2.2 Cyclic Queries . 168

8.6.3 Large Scale Experiments and Scalability 169

9 Conclusions . 170

9.1 Future Work . 171

LIST OF REFERENCES . 174

viii

ABSTRACT

The big data era has fundamentally changed the landscape of data management over

the last few years. To process the large amounts of data available to users in both industry

and science, many modern data science tools create data analysis pipelines that comprises of

several independent tasks where the output of one task becomes the input of another task. In

such cases, it is often useful to materialize a subset of the output if some downstream process

in the pipeline plans to repeatedly access it. However, current state-of-the-art solutions only

perform materialization to optimize each task in isolation, without taking advantage of the

higher-level logical structure of these chained components in the pipeline. In this dissertation,

we fundamentally rethink how materialization should be done for data management tasks by

taking advantage of the information about the access pattern of how the materialized data

is used by the downstream tasks, enabling us to make fine-grained decisions.

In the first part of this dissertation, we study the construction of space-efficient com-

pressed representations of the output of conjunctive query (select-project-join queries) re-

sults, with the goal of supporting the efficient access of the intermediate compressed result for

a given access pattern. In particular, we study an important trade-off: minimizing the space

necessary to store the compressed result, versus minimizing the delay (time difference be-

tween any two consecutive answers) for an access request over the result, and consequently

the total answer time. We construct a novel parameterized data structure, which can be

tuned to trade-off space for answer time. The trade-off allows us to control the space re-

quirement of the data structure precisely and depends both on the structure of the query

and the access pattern. Among our results, we also refute two popular conjectures made

in the existing literature by constructing unexpectedly better algorithms for popular data

structure problems.

ix

In most real-world applications, join queries almost always come with projections in

the query. This makes query execution challenging because multiple join answers in the

absence of a projection operator may map to the same output tuple after the projection

operator is applied under set semantics. In the second part of this dissertation, we undertake

the challenge of building efficient data structures with low materialization overhead and

novel enumeration algorithms for two important classes of join-project queries, star and

path queries. Further, we also show how fast matrix multiplication can be used to improve

the join processing time for these queries, both in theory and practice.

Join query tasks may also have an ordering imposed on the output. For interactive use-

cases, users may also be interested in only the first few results. In the last part of this

dissertation, we show that for join queries (possibly with projections) and a large class of

ranking functions frequently used in practice, there exist efficient algorithms that require

only linear time preprocessing and minimal materialization before they start enumerating

the result with a small delay. We also complement our algorithms with nearly matching

lower bounds. This thoroughly resolves an open problem stated in Dagstuhl Seminar 19211

on ranked enumeration. Finally, a comprehensive experimental evaluation demonstrates that

the idea of using a delay-based formulation for join processing can lead to orders of magnitude

performance improvement, both in terms of execution time and space requirement, over

popular relational and graph processing engines.

1

Chapter 1

Introduction

Our society today is becoming increasingly data-driven. Decades of progress and break-

throughs in the database community have led to data processing, storage, and analysis at

an astonishing scale. This has fundamentally transformed scientific research across a variety

of fields (ranging from astronomy and economics to biology and oceanography), business

analytics, social networks, journalism, and electronic commerce. In order to extract value

from the large amounts of data available to users in both industry and science, the collected

data is typically moved through a pipeline of several independent data processing tasks. For

example, consider a practical visualization pipeline [PW18] as shown in Figure 1.1a that

takes in relational tables, performs a join task whose output is fed into an annotator to per-

form labeling of tuples for recording provenance, and finally, a plotting library generates two

visualizations. As the user interacts via brushing with the chart V1 (on top), the highlighted

points in box X are then highlighted in chart V2. Relational data management systems and

more recently, data science workflow tools, have become the de-facto workhorse for perform-

ing these data processing tasks at scale. Thanks to the declarative power of DBMS, the user

only needs to specify the task in a high-level language such as SQL without worrying about

how the task will be accomplished. The actual execution is a resource allocation problem for

the engine which will decide how to use resources available to it or provision more resources

for itself as is common in cloud environments.

However, the growth in data and its processing needs is at a point where it is no

longer enough to throw more resources – it is critical to design optimizations that make

data processing faster and resource-efficient. This goal was also identified by database

practitioners where systems such as Quickstep [PDZ+18, ZDP19, DSP20, SDKN20] and

HyPer [KNF+12] aim to extract the maximum performance out of each core. One such

2

fundamental optimization that is used in database management systems is that of mate-

rialization1. Materialization (also referred to as intermediate results) is a natural embodi-

ment of the ideas of precomputation and caching in databases. The ability of materialized

views to speed up queries benefits nearly all database applications [CY+11]. Because of

their wide applicability, materialized views are a well-studied topic with both a rich re-

search literature and mature commercial implementations. Indeed, selective materializa-

tion of data for analytics applications has been intensely studied by the database commu-

nity [HSK98, CYZ+08, PKZT01, LDH+08, SHK00, LPH02, ZLXH11, LHG04]. However,

most of the materialization techniques known so far (even in modern data management tools

like Weld [PTS+17] and Spark [ZCF+10]) operate at a low level and fail to exploit the higher-

level logical structure of the tasks. In the OLAP setting, materialization of data cubes over

large datasets may require TBs of main memory, and even materializing small sub-cubes

can exhaust the main memory very quickly. If the working set is too large, then expensive

I/O operations are involved, which in turn negatively impacts the runtime performance.

Different applications in the real world have different requirements for space and runtime.

For space-bound applications such as graph analytics and pattern retrieval, the objective

is to minimize space, while for interactive applications (e.g., visualization) it is critical to

optimize for the answer time of each request. As an example, when the user highlights points

in chart V1 in Figure 1.1a, it is necessary to perform a fast backward trace that identifies the

contributing tuples (using the provenance) to all points in X and then send this information

to chart V2 for highlighting. Hence, materialization algorithms should allow for a smooth

trade-off space and preprocessing time for answer time to achieve optimal performance.

The motivating question of this dissertation is the following: Can we develop context-

aware optimal materialization algorithms that can achieve optimal performance for data an-

alytics applications even under space budget constraints? We hypothesize that just as how

indexes built on base relations are useful for optimized access to service data access patterns

(such as equality, range, or band predicates) in join query processing, lifting the same prin-

ciple to materialization and building indexes optimized for its specific access pattern should

also be beneficial. In this dissertation, we confirm this hypothesis by designing, implement-

ing, and evaluating new materialization techniques using three novel ideas: (i) task-aware

materialization, i.e., taking into account the context of how the materialized output will be

used, (ii) fine-grained decisions on what and how to materialize, and (iii) multiple design

points that trade-off space for time for optimal performance of data analytics pipelines. We

design novel algorithms and techniques for query processing by making use of limited space,

with a particular focus on the task of join processing, both ranked and unranked. Existing

1While materialization is also used in optimizing the performance of queries by exploiting intra-
query parallelism, this dissertation solely focuses on the benefit of materialization across multiple join
queries (i.e. the inter-query aspect).

3

R

S

T

backward_trace(V1,X)

forward_trace(V2,X)

V1

V2

Xjoin

join

annotate

plotting

plotting

(a) Example pipeline that processes a relational

dataset and generates a visualization (adapted

from [PW18]).

materialize
subexpressions

preprocessing cost (time and space)

query time

lazy evaluation

factorization eager materialization

(b) Comparison of existing tech-

niques (solid dots) and our pro-

posal (dashed line)

Figure 1.1: Data analysis pipeline example (left); comparing our proposal with prior work

(right)

solutions [XD17a, XKD15, XSD17] follow a more coarse-grained approach, where the whole

output (or a set of subqueries in the query plan) is fully materialized. We set ourselves

apart from prior works by constructing materializations that are controlled in a fine-grained

manner – we decide what part of the output we materialize and how we materialize by ex-

amining the downstream access pattern. For example, for the problem of linked brushing

in Figure 1.1a, the downstream access pattern is fast identification of contributing tuples in

charts. In this case, it would be beneficial to create an index on top of the join result that

allows us to perform fast provenance computation. Building upon the foundation of how to

do fine-grained materialization, we make significant progress in furthering our understand-

ing of efficient enumeration algorithms (both ranked and unranked) for important classes of

queries that are commonly seen in practice: star and path queries which have widespread

applications in problems such as similarity search [YSN+12], citation graph analysis [RT05],

and network analysis [EL05, Bir08]. For certain join queries, it is the case that improved

running time guarantees are only achievable by building a more expensive data structure

ahead of time. Our ideas from fine-grained materialization are directly applicable here and

are instrumental to the discovery of improved algorithms.

In the following sections of this chapter, we will delve deeper into the need for rethinking

materialization in join query processing, followed by the contributions made in this disser-

tation.

4

1.1 Motivation

Central to this era of big data is the data-to-knowledge pipeline, which consumes data in

raw format, and then cleans, transforms, integrates, stores, processes, and analyzes the data

to extract knowledge in a usable and easily digestible format. Data analytics pipelines are

complex, and their workflows typically consist of several simpler tasks – such as relational

queries, graph algorithms, learning and inference tasks, visualizations, user inputs – chained

together. To speed up such a pipeline, in addition to optimizing each component separately,

it is critical to apply optimizations that span multiple tasks.

A ubiquitous optimization technique is to materialize the intermediate result of a task

(typically a relational query), so that downstream tasks in the pipeline can access the in-

termediate data efficiently. This is critical when the downstream task needs to access the

result multiple times. This pattern occurs in a wide spectrum of applications spanning graph

analytics [XD17a], visualization [PW18], and statistical inference [NZRS]. For example, a

feature generation query will materialize all feature vectors for a learning or inference task; in

data mining applications on social networks, the full graph is materialized before any graph

algorithm is executed. Let us now look at a simple running example that will be useful for

illustration.

Example 1. Consider a data scientist Alice who wants to perform analysis on the co-authors

in the DBLP dataset. The dataset contains information about which authors write which pa-

pers through a table R(author, paper) of size N , where a tuple (a, b) denotes that author a has

written paper b. To analyze the relationships between co-authors, the pipeline first extracts

the co-author graph, which can be expressed as the query Q1(x, y, p) = R(x, p), R(y, p). Then,

we can run any graph algorithm on the extracted graph; such algorithms typically access the

graph through an API. Once the graph is extracted, multiple tasks can now be accomplished.

For instance, Alice may ask to find all papers that David DeWitt and Mike Stonebreaker have

co-authored together using the query Q1(“David Dewitt”, “Mike Stonebreaker”, p). Alice can

now change the values of x and y to other authors and create a workload of queries that need

to be answered.

Eagerly materializing and indexing the full result of a query has several drawbacks for

data analytics applications. First, the output result can be extremely large, and thus mate-

rialization can be prohibitively expensive in terms of storage. Even when the input data is

in the order of GBs, the memory overhead of full materialization can be in the order of TBs.

Second, materialization can be inefficient in terms of runtime, which would be prohibitive

in applications that require interactive responses from the system (e.g., in interactive visu-

alization). Third, part of the materialized data may never be used by the downstream task,

resulting in unnecessary computation and space.

5

Alternative to eager materialization, we can serve each request of the downstream task by

being lazy, and executing the pipeline only for the particular part of the data that we may be

interested in. This solution is at the other end of the spectrum, since it materializes nothing

(so it is space-efficient), but can lead to runtime inefficiencies when the same computation has

to be repeated multiple times. A third approach uses factorization techniques [OZ15a, OS16]

to compress the full result, but in many cases offers no benefit to näıve materialization (or

even if it does, the space requirement is still prohibitively large). These existing solutions

are highlighted in Figure 1.1b.

Example 2. Continuing Example 1, it is easy to see that eager materialization of the

view Q1(x, y, p) may take as much as Ω(N2) space since a large subset of authors could

be on a single paper. On the other hand, lazy materialization does nothing and in this

case, Q1(“David Dewitt”, “Mike Stonebreaker”, p) can take as much as Ω(N) time to find

out whether the answer is true or false. For this query, factorization will use the variable

order x, y, p and materialize the view V (x, y, p) = R(x, y), R(y, p) which is as expensive as

eager materialization. Observe that the number of possible queries that Alice could ask here

is N2. If the space is limited, OLAP approaches perform selective materialization of the out-

put of some of these queries using knapsack style algorithms by taking into account the most

popular queries in the workload. However, even in this approach, the worst-case running

time Ω(N) for some queries remains a bottleneck as there is not enough space to store the

answer for all possible queries.

The right materialization strategy also depends on the task at hand. For example, a join

query containing ORDER BY requires a different set of indexes to be built for optimal evaluation

compared to the same join query without any ordering condition imposed. Similarly, the

structure of the query, as well as the data, plays a crucial role in characterizing which tasks

can admit efficient evaluation.

Since we analyze the problem from a theoretical angle as well, let us look at the metric

for what constitutes an efficient algorithm. Enumeration complexity is used as a yardstick

to identify whether the answers produced by evaluating a query can be done efficiently or

not. When it comes to query answering, it is common to use data complexity. We treat

every query as fixed, and we identify it with the following enumeration problem: given a

database and query as input, create a data structure in a preprocessing phase, and find all

answers to the query over the given database in the enumeration phase using the built data

structure. The best time guarantee we can hope for is to output all answers with a constant

delay between consecutive answers after a linear preprocessing phase. This is the time it

takes to read the database and then write the answers one by one.

The most commonly studied class of queries is the Conjunctive Queries (CQs) which

consist of join queries followed by projection. Introducing projection increases the difficulty

6

of answering queries in constant delay. Two different join answers may become identical

after projection. Since we do not allow to output duplicates, this reduces the total number

of answers, and so we allow the algorithm less time in total to perform the join. In practice,

it is often required that the output of a CQ is also ranked in a particular order rather than

being enumerated in some arbitrary ordering. For interactive applications, a user may also

specify that they are only interested in, say, top 100 tuples. As we saw before, SQL allows

expressing these constraints using ORDER BY and LIMIT clause. Once again, the challenge in

this setting is to identify how to construct data structures with low materialization overhead

in the preprocessing phase and achieve a small delay when enumeration begins. As we will

see in the chapters that follow, achieving small delay is not only theoretically interesting but

also practically relevant. Let us look at a concrete example in this setting.

Example 3. Consider the same setting as Example 1 with DBLP relation R(A,P), suppose

that given an author a, the function h-index(a) returns the h-index of a. Alice wishes to find

all co-authors pairs who have authored at least one paper together. This task can be expressed

in SQL by the following query.

Q2 = SELECT DISTINCT R1.A,R2.A FROM R AS R1, R AS R2 WHERE

R1.P = R2.P;

Suppose that Alice also wants the pairs of authors returned in decreasing order of the sum

of their h-indexes, since she is only interested in the top-100 most influential answers. The

following SQL query captures this task.

Q3 = SELECT DISTINCT R1.A,R2.A FROM R AS R1, R AS R2 WHERE

R1.P = R2.P ORDER BY h_index(R1.A) + h_index(R2.A) LIMIT 100;

The state-of-the-art algorithm can evaluate Q2 with linear delay after linear preprocess-

ing [KNOZ20a] and Q3 with delay O(logN) after O(N2) preprocessing.

1.2 Contributions

In this section, we give an overview of the different settings considered in this dissertation

and discuss our contribution in each setting.

Compressed Representations and Space-time trade-offs. A join query Q over a

database D can be accessed by assigning attribute values to certain attributes in the query.

Such attributes are called bound attributes. The remaining attributes in the query are free

and the goal is to evaluate the query after specifying the bindings. This concept of bound

and free attributes can be used to model access patterns over any query.

7

Example 4. The task of finding all co-authors of a given author from Example 1 can be

formalized through an adorned query Qbbf
1 (x, y, p) = R(x, p), R(y, p). The above formalism

says that the query Q1 will be accessed as follows: given values for the bound (b) attributes

x, y, we have to return the values for the free (f) attribute p such that the tuple is in the

query Q. The sequence bbf is called the access pattern for the adorned query.

Given an adorned query Qη, database D, we show that it is possible to develop a data

structure that can trade-off the delay guarantees and total running time of a query with

the space usage of the data structure. The space usage is parameterized by a quantity τ

that can be used as a knob and choose any point in the full continuum of space usage of

lazy materialization O(|D|) to eager materialization O(|D|fhw) where fhw is the fractional

hypertree width of the query. The delay guarantee obtained by the algorithm is O(τ log |D|).
In conjunction with tree decompositions [BDG07a], the space usage of the data structure

can be shown to be conditionally optimal for several queries of practical interest. Figure 1.1b

shows this proposal as a dashed line that recovers the existing approaches as special cases.

Example 5. Using our results, it can be shown that for any 1 ≤ τ ≤ N , there exists a data

structure of size S = O(N2 logN/τ2) that can answer Qbbf
1 (x, y, p) in time O(τ log |D|), a

tunable trade-off in sharp contrast to all strategies outlined in Example 2.

Next, using the framework introduced, we show that it is possible to go one step further.

An important class of queries that are commonly seen in practice is that of Boolean adorned

CQs. For example, consider the 2-Set Disjointness problem: given a universe of elements U

and a collection of m sets C1, . . . , Cm ⊆ U , we want to create a data structure such that

for any pair of integers 1 ≤ i, j ≤ m, we can efficiently decide whether Ci ∩ Cj is empty

or not. Previous work [CP10b, GKLP17] has shown that the space-time trade-off for 2-Set

Disjointness is captured by the equation S · T 2 = N2, where N is the total size of all sets.

The data structure obtained is conjectured to be optimal [GKLP17], and its optimality was

used to develop conditional lower bounds for other problems, such as approximate distance

oracles [AGHP11, Aga14]. Similar trade-offs have been independently established for other

data structure problems as well (k-Reachability [GKLP17, CP10a] and edge triangle detection

problem [GKLP17]). We show that a unified framework can capture several widely-studied

data structure problems in the algorithmic community and recover prior results using a single

algorithm. Remarkably, we also explicitly improve the best-known space-time trade-off for

the k-Reachability problem for k ≥ 4. To the best of our knowledge, this is the first non-

trivial improvement for the k-Reachability problem. We also refute a lower bound conjecture

for the edge triangles detection problem established by [GKLP17].

Enumeration of Join-Project Queries. There has been a long line of work that has

studied the problem of obtaining optimal delay guarantees using minimal preprocessing.

8

While the story for enumerating full acyclic CQ results is relatively complete, the same is

not true for general CQs, even for acyclic CQs with projections. For instance, consider

the non self-join version of query Q2 from Example 3: Qtwo-path = πx,z(R(x, y)1S(y, z)),

which joins two binary relations and then projects out the join attribute. For this query,

[BDG07a] ruled out a constant delay algorithm with linear time preprocessing unless the

boolean matrix multiplication exponent is ω = 2. However, we can obtain O(|D|) delay with

O(|D|) preprocessing time. We can also obtain O(1) delay with O(|D|2) preprocessing by

computing and storing the full result.

We show that for the important class of star queries and path queries, there exist output-

sensitive enumeration algorithms that require only linear time preprocessing. Seminal work

by Kara et al. [KNOZ20a] showed that for any hierarchical CQ (hierarchical CQs are a strict

subset of acyclic CQs), possibly with projections, there always exists a smooth trade-off

between preprocessing time and delay. This is the first improvement over the results of

Bagan et al. [BDG07a] in over a decade for queries involving projections. Applied to the

query Qtwo-path, the main result of of [KNOZ20a] shows that for any ε ∈ [0, 1], we can obtain

O(|D|1−ε) delay with O(|D|1+ε) preprocessing time. Our results show that this trade-off is

redundant for star queries – either we have enough preprocessing time to materialize the

output of the query and achieve constant delay, or we can achieve the desirable delay with

only linear preprocessing time. We show that there exists an algorithm that can always match

the linear delay guarantee of linear preprocessing. However, depending on the database

instance, it is possible to obtain a sub-linear delay guarantee after only linear preprocessing

but the result of [KNOZ20a] can only provide Ω(|D|) delay. We also identify another subset

of hierarchical queries that we call left-deep where we can get improved delay guarantees in

linear time, but only for certain values of delay. Finally, using fast matrix multiplication, we

show how we can improve the trade-off between preprocessing time and delay when compared

to [KNOZ20a].

Traditionally, fast matrix multiplication has been thought of as a technique only of theo-

retical interest due to the large constant involved in the algorithm. However, recent advance-

ment in processor architecture and the advent of GPUs has enabled the development of fast

math-kernel libraries that have dramatically improved the performance of matrix multiplica-

tion. One could view this improvement as a potentially smaller ω, the matrix multiplication

exponent. We investigate how matrix multiplication can be used to improve the big Oh

running time complexity of star queries. We do this by fixing an error and generalizing the

analysis from prior work [AP09], and show how fast matrix multiplication can be applied

to important problems such as set similarity and set containment. Finally, we also under-

take an experimental investigation to understand the practical benefits. Our experiments

indicate that using the math-kernel libraries, orders of magnitude performance improvement

9

is possible when the input dataset contains a dense component, a condition that is easy to

identify by examining the dataset.

Ranked Enumeration of Full and Join-Project Queries. For many data processing

applications, enumerating query results according to an order given by a ranking function is

a fundamental task. For example, [YAG+18, CLZ+15] consider a setting where users want

to extract the top patterns from an edge-weighted graph, where the rank of each pattern is

the sum of the weights of the edges in the pattern. Ranked enumeration also occurs in SQL

queries with an ORDER BY clause [QCS07, ISA+04]. In the above scenarios, the user often

wants to see the first k results in the query as quickly as possible, but the value of k may not

be predetermined. Hence, it is critical to construct algorithms that can output the first tuple

of the result as fast as possible, and then output the next tuple in the order with a very small

delay. Our main contribution is a novel algorithm that uses query decomposition techniques

in conjunction with the structure of the ranking function. The preprocessing phase sets up

priority queues that maintain partial tuples at each node of the decomposition. During the

enumeration phase, the algorithm materializes the output of the subquery formed by the

subtree rooted at each node of the decomposition on-the-fly, in sorted order according to

the ranking function. To define the rank of the partial tuples, we require that the ranking

function can be decomposed with respect to the particular decomposition at hand. We show

that with O(|D|fhw) preprocessing time, we can enumerate with delay O(log |D|). We then

discuss how to apply our main result to commonly used classes of ranking functions. Our

work thoroughly resolves an open problem stated at the Dagstuhl Seminar 19211 [BKPS19]

on ranked enumeration (see Question 4.6). We also show how to extend our algorithm can be

applied to enumerating full UCQs and complement our upper bounds with nearly matching

lower bounds.

Extending our results to join-project queries is a challenging task. As we discussed

before, adding projections can lead to two different join answers obtained without using

projections map to the same result, which makes obtaining delay guarantees difficult. In

fact, as prior work [TGR21a, TGR20] remarked, only projections that form a free-connex

structure [BDG07a] can be handled; if any other projection is involved, the algorithm de-

generates to the trivial strategy of materializing the full result and then sorting. However,

this conversion requires an expensive materialization step. On the practical side, all RDBMS

and graph processing engines evaluate join-project queries in the presence of ranking func-

tions by performing three operations in serial order: (i) materializing the result of the full

join query, (ii) de-duplicating the query result (since the query has DISTINCT clause), and

(iii) sorting the de-duplicated result according to the ranking function. The first step in

this process is a show-stopper due to the prohibitive cost of materialization. Further, even

if the user is interested in the top-ranked tuple (LIMIT 1), the engines would still perform

10

the entire materialization. Our first main result shows that for any acyclic query (the most

common fragment of queries in practice [BMT20]) with arbitrary projection attributes, it

is possible to develop efficient enumeration algorithms. Specifically, it is possible to obtain

O(|D| log |D|) delay after only O(|D|) preprocessing. This implies that query Q3 from Ex-

ample 3 can be enumerated with near-linear delay after linear preprocessing. For the class

of star queries, we show that there exists a smooth trade-off between preprocessing time and

delay guarantees. Finally, we compare the practical performance of our algorithm against

state-of-the-art relational and graph processing engines. We observe that our algorithms

have orders of magnitude smaller memory footprint and execution time. Even for queries

containing unions and cycles, we still maintain a performance improvement over the existing

engines. Our results demonstrate that delay-based algorithms are not only optimal in theory

but also in practice, an observation that we hope leads to delay being a first-class citizen in

all data processing engines.

1.3 Organization

We begin this dissertation by providing some background and terminology, along with

the exposition of some technical tools, in Chapter 2. In Chapter 3, we present our results

on how to construct a space-efficient representation of the output of CQ results. Building

on those results, we show in Chapter 4 how multiple data structure problems can be cast as

answering CQs over relational databases. We also show new results and prove lower bounds

for some of those problems. Chapter 5 is dedicated to the study of unranked enumeration

of star and path queries containing projections. Using fast matrix multiplication, we show

in Chapter 6 how the improved execution time for join query processing can also benefit

important problems such as set similarity and set containment. Chapter 7 and Chapter 8

study the problem of ranked enumeration for full and non-full CQs. We finally conclude in

Chapter 9.

11

Chapter 2

Background

In this chapter, we present the basic notions and terminology that are necessary for the

reader to follow this dissertation. We present in detail the class of conjunctive queries, which

are the queries that this dissertation focuses on. We then lay some notation and definitions

that are common across all the chapters to follow.

2.1 Data Model and Queries

Data Model. A schema x = (x1, . . . , xn) is a non-empty ordered set of distinct variables.

Each variable xi has a discrete domain dom(xi). A tuple t over schema x is an element

from dom(x) = dom(x1) × · · · × dom(xn). A relation R over schema x (denoted R(x)) is

a function R : dom(x) → Z such that the multiplicity R(t) is non-zero for finitely many

t. A tuple t exists in R, denoted by t ∈ R, if R(t) > 0. The size of relation R, denoted

as |R|, is the size of set {t | t ∈ R}. A database D is a set of relations and the size of the

database |D| is the sum of sizes of all its relations. Given a tuple t over schema x and a set

of variables s ⊆ x, t[s] denotes the restriction of t to s and the values of t[s] follows the same

variable ordering as s. We also define the selection operator σs=t(R) = {u ∈ R | u[s] = t}
and projection operator πs(R) = {u[s] | u ∈ R}.

Queries. In this dissertation, we focus on the class of conjunctive queries (CQs), which are

expressed as

Q(y) = R1(x1), R2(x2), . . . , Rn(xn)

Here, the symbols y,x1, . . . ,xn are vectors that contain variables or constants, the atom

Q(y) is the head of the query, and the atoms R1(x1), R2(x2), . . . , Rn(xn) form the body. The

variables in the head are a subset of the variables that appear in the body. A CQ is full if

every variable in the body appears also in the head, and it is boolean if the head contains

no variables, i.e. it is of the form Q(). We typically use the symbols x, y, z, . . . to denote

variables, and a, b, c, . . . to denote constants. We use vars(Q) to denote the set of all variables

in Q, i.e., y ∪ x1 ∪ · · · ∪ xn. If D is an input database, we denote by Q(D) the result of

12

running Q over D. A CQ with negation, denoted as CQ¬, is a CQ where some of the atoms

can be negative, i.e., ¬Ri(xi) is allowed. For ϕ ∈ CQ¬, we denote by ϕ+ the conjunction

of the positive atoms in ϕ. A CQ¬ is said to be safe if every variable appears in at least

some positive atom. In this dissertation, we restrict our scope to the class of safe CQ¬, a

standard assumption [WL03, NL04] ensuring that query results are well-defined and do not

depend on domains.

We are particularly interested in two families of CQs that are fundamental in query

processing, star and path queries. The star query with k relations is expressed as:

Q∗k = R1(x1,y) 1 R2(x2,y) 1 · · · 1 Rk(xk,y)

where x1, . . . ,xk have disjoint sets of variables. The path query with k (binary) relations is

expressed as:

Pk = R1(x1, x2) 1 R2(x2, x3) 1 · · · 1 Rk(xk, xk+1)

In Q∗k, variables in each relation Ri are partitioned into two sets: variables xi that are

present only in Ri and a common set of join variables y present in every relation.

A Union of Conjunctive Queries ϕ =
⋃
i∈{1,...,`} ϕi is a set of CQs where head(ϕi1) =

head(ϕi2) for all 1 ≤ i1, i2 ≤ `. Semantically, ϕ(D) =
⋃
i∈{1,...,`} ϕi(D). A UCQ is said to be

full if each ϕi is full.

Hierarchical Queries. A CQ Q is hierarchical if for any two of its variables, either the

sets of atoms in which they occur are disjoint or one is contained in the other [SORK11].

For example, Q∗k is hierarchical for any k, while Pk is hierarchical only when k ≤ 2.

Natural Joins. If a CQ is full, has no constants and no repeated variables in the same

atom, then we say it is a natural join query. For instance, the triangle query ∆(x, y, z) =

R(x, y), S(y, z), T (z, x) is a natural join query. A natural join can be represented equivalently

as a hypergraph H = (V, E), where V is the set of variables, and for each hyperedge F ∈ E
there exists a relation RF with variables F . We write the join as 1F∈E RF . The size of

relation RF is denoted by |RF |. Given a set of variables I ⊆ V, we define EI = {F ∈ E |
F ∩ I 6= ∅}.
Valuations. A valuation v over a subset V of the variables is a total function that maps each

variable x ∈ V to a value v(x) ∈ dom(xi). Given a valuation v of the variables (xi1 , . . . , xi`),

we denote RF (v) = RF n {v(xi1 , . . . , xi`)}.
Query Evaluation. An answer is a tuple t(vars(Q)) which is a mapping from vars(Q) to

dom such that t[xi] ∈ Ri. Q(D) is defined as the set of all answers. Evaluating a query Q

means computing the set of answers Q(D) given a database instance D.

CQ Hypergraph. We associate a hypergraph H = (V, E) to a CQ Q where the vertices are

the variables of Q, and every hyperedge is a set of variables occurring in a single atom of Q.

In other words, E = {{v1, . . . , vn} | Ri(v1, . . . , vn) ∈ atoms(Q)}.

13

Join Size Bounds. Let H = (V, E) be a hypergraph, and S ⊆ V. A weight assignment

u = (uF)F∈E is called a fractional edge cover of S if (i) for every F ∈ E , uF ≥ 0 and (ii) for

every x ∈ S,∑F :x∈F uF ≥ 1. The fractional edge cover number of S, denoted by ρ∗H(S) is

the minimum of
∑

F∈E uF over all fractional edge covers of S. We write ρ∗(H) = ρ∗H(V).

In a celebrated result, Atserias, Grohe,To and Marx [AGM13] proved that for every frac-

tional edge cover u of V, the size of a natural join is bounded using the following inequality,

known as the AGM inequality:

| 1F∈E RF | ≤
∏
F∈E
|RF |uF (2.1)

The above bound is constructive [NRR13, NPRR12]: there exist worst-case algorithms that

compute the join 1F∈E RF in time O(
∏
F∈E |RF |uF) for every fractional edge cover u of V.

Tree Decompositions. Let H = (V, E) be a hypergraph of a natural join query Q. A tree

decomposition of H is a tuple (T, (Bt)t∈V (T)) where T is a tree, and every Bt is a subset of

V, called the bag of t, such that

1. each edge in E is contained in some bag Bt; and

2. for each x ∈ V, the set of nodes {t | x ∈ Bt} is connected in T.

The fractional hypertree width of a tree decomposition is defined as maxt∈V (T) ρ
∗(Bt),

where ρ∗(Bt) is the minimum fractional edge cover of the vertices in Bt. The fractional

hypertree width of a query Q, denoted fhw(Q), is the minimum fractional hypertree width

among all tree decompositions of its hypergraph. A query Q is called acyclic if and only if

it has fhw(Q) = 1.

Submodular Width. Submodular width, subw(Q), of a query allows us to find data-

dependent tree decompositions. The notion of submodular width was introduced in [Mar13].

To present its definition, we need the following terminology. A function g : 2vars(Q) →
R≥0 is (i) monotone, if g(U) ≤ g(V) for all U ⊆ V ⊆ vars(Q), (ii) edge-dominated, if

g(vars(α)) ≤ 1 for every α ∈ atoms(Q), (iii) submodular, if g(U) + g(V) ≥ g(U ∩ V) +

g(U ∪ V) for every U, V ⊆ vars(Q). We denote by s(Q) the set of all edge-dominated,

submodular functions g : 2vars(Q) → R≥0 that satisfy g(∅) = 0, and by T the set of all

tree decompositions of Q. The submodular width of a conjunctive query Q is subw(Q) =

supg∈s(Q) sup(T,Bt)∈T (Q) maxt∈V (T) g(Bt). It is known that subw(Q) ≤ fhw(Q) for every CQ

Q.

2.2 Computational Model

Input. Using data complexity for most of our problems, the input is measured only by the

size of the database instance D (the query and the schema are treated as fixed). We assume

14

the input database is given by the reasonable encoding suggested by Flum et al. [FFG02].

When we say linear time, we mean that the number of operations is O(|D|).
Cost Measure. We consider the RAM model of computation. In particular, adding,

multiplying, and comparing integers that are polynomial in the cardinality of the input can

be done in constant time. RAM model with uniform-cost measure can retrieve the content

of any register via its unique address in constant time.

Hash Tables. Each relation (or materialized view) R is implemented by a data structure

that stores key-value entries (x, R(x)) for each tuple x, R(x) 6= 0 and needs O(|R|) space.

This data structure can: (1) look up, insert, and delete entries in constant time, (2) enumerate

all stored entries in R with constant delay, and (3) report |R| in constant time.

2.3 Fast Matrix Multiplication

Let A be a U1 × U3 matrix and C be a U3 × U2 matrix over any field F . Ai,j is the

shorthand notation for entry of A located in row i and column j. The matrix product is

given by (AC)i,j =
∑U3

k=1Ai,kCk,j . Algorithms for fast matrix multiplication are of extreme

theoretical interest given its fundamental importance. The following folklore lemma about

matrix multiplication is frequently used in the chapters that follow.

Lemma 1. Let ω be the smallest constant such that an algorithm to multiply two n × n

matrices that runs in time O(nω) is known. Let β = min{U, V,W}. Then fast matrix

multiplication of matrices of size U × V and V ×W can be done in time O(UVWβω−3).

Observe that in Lemma 1, matrix multiplication cost dominates the time required to

construct the input matrices (if they have not been constructed already) for all ω ≥ 2.

Fixing ω = 2, rectangular matrix multiplication can be done in time O(UVW/β). A long

line of research on fast square matrix multiplication has dropped the complexity to O(nω),

where 2 ≤ ω < 3. The current best known value is ω = 2.3729 [GU18], but it is believed

that the actual value is 2.

Adorned Views. In order to model access patterns over a view Q defined over the input

database, we use the concept of adorned views [Ull85]. In an adorned view, each variable in

the head of the view definition is associated with a binding type, which can be either bound

(b) or free (f). A view Q(x1, . . . , xk) is then written as Qη(x1, . . . , xk), where η ∈ {b, f}k

is called the access pattern. We denote by Vb (resp. Vf) the set of bound (resp. free)

variables from {x1, . . . , xk}. We can interpret an adorned view as a function that maps

a valuation over the bound variables Vb to a relation over the free variables Vf . In other

words, for each valuation v over Vb, the adorned view returns the answer for the query

Qη[v] = {Vf | Q(x1, . . . , xk) ∧ ∀xi ∈ Vb : xi = v(xi)}, which we also refer to as an access

request.

15

Example 6. ∆bbf(x, y, z) = R(x, y), S(y, z), T (z, x) captures the following access pattern:

given values x = a, y = b, list all the z-values that form a triangle with the edge R(a, b).

As another example, ∆fff(x, y, z) = R(x, y), S(y, z), T (z, x) simply captures the case where

we want to perform a full enumeration of all the triangles in the result. Finally, ∆b(x) =

R(x, y), S(y, z), T (z, x) expresses the access pattern where given a node with x = a, we want

to know whether there exists a triangle that contains it or not.

An adorned view Qη(x1, . . . , xk) is boolean if every head variable is bound, it is non-

parametric if every head variable is free, and it is full if the CQ if full (i.e., every variable

in the body also appears in the head). Of particular interest is the adorned view that is full

and non-parametric, which we call the full enumeration view, and simply asks to output the

whole result.

2.4 General Framework

Throughout this dissertation, we study multiple problems in the enumeration framework

similar to that of [Seg15a] where the algorithm can be decomposed into two phases:

1. Preprocessing Phase: This phase takes Tp time to compute the data structure CQ(D)

during the preprocessing phase.

2. Enumeration Phase: This phase outputs Q(D) (possibly in some specific order)

with no repetitions. The enumeration phase has full access to data structure CQ(D)

constructed in the preprocessing phase and can also use additional space, if necessary.

The goal is to minimize the answering time of the query. We measure the answer time

in two different ways.

(a) delay (δ): the maximum time to output any two consecutive tuples (and also the

time to output the first tuple, and the time to notify that the enumeration has

completed).

(b) total answer time (TA): the total time to output the result.

We now discuss the rationale for why such a framework is useful. Computing the first

answer requires at least linear time (to read the input and decide whether an answer exists),

but sometimes we can achieve a smaller delay between the subsequent answers. For this

reason, we separate the requirement regarding the time before the first answer from that of

the following answers. An enumeration algorithm A is given an input D and Q, and it may

build data structures during the preprocessing phase. During the enumeration phase, A can

access the data structures built during preprocessing, and it emits the answers Q(D), one by

one, without repetitions. Note that we do not impose a restriction on the memory used. In

particular, such an algorithm may use additional constant memory for writing between two

consecutive answers.

16

Chapter 3

Compressed Representations of Conjunctive
Query Results

In this chapter, we study the problem of constructing space-efficient compressed repre-

sentations of the output of conjunctive query results, with the goal of efficiently supporting

a given access pattern directly over the compressed result, instead of the original input

database. In many data management tasks, the data processing pipeline repeatedly accesses

the result of a conjunctive query (CQ) using a particular access pattern. In the simplest case,

this access pattern can be to enumerate the full result (e.g., in a multi-query optimization

context). Generally, the access pattern can specify, or bound, the values of some variables,

and ask to enumerate the values of the remaining variables that satisfy the query.

Currently, there are two extremal solutions for this problem. In one extreme, we can

materialize the full result of the CQ and index the result according to the access pattern.

However, since the output result can often be extremely large, storing this index can be

prohibitively expensive. In the other extreme, we can service each access request by executing

the CQ directly over the input database every time. This solution does not need extra storage

but can lead to inefficiencies since computation has to be done from scratch and maybe

redundant. In this work, we explore the design space between these two extremes. In other

words, we want to compress the query output such that it can be stored in a space-efficient

way, while we can support a given access pattern over the output as fast as possible.

Example 7. Suppose we want to perform an analysis about mutual friends of users in

a social network. The friend relation is represented by a symmetric binary relation R of

size N , where a tuple R(a, b) denotes that user a is a friend of user b. The data analysis

involves accessing the database through the following pattern: given any two users x and z

who are friends, return all mutual friends y. We formalize this task through an adorned view

V bfb(x, y, z) = R(x, y), R(y, z), R(z, x). The above formalism says that the view V of the

database will be accessed as follows: given values for the bound (b) variables x, z, we have to

return the values for the free (f) variable y such that the tuple is in the view V. The sequence

bfb is called the access pattern for the adorned view.

17

One option to solve this problem is to satisfy each access by evaluating a query on the

input database. This approach is space-efficient since we work directly on the input and need

space O(N). However, we may potentially have to wait Ω(N) time to even learn whether there

is any returned value for y. A second option is to materialize the view V (x, y, z) and build

a hash index with key (x, z): in this case, we can satisfy any access optimally with constant

delay Õ(1).1 On the other hand, the space needed for storing the view can be Ω(N3/2).

In this scenario, we would like to construct representations that trade-off between space

and delay (or answer time). As we will show later, for this particular example we can

construct a data structure for any parameter τ that needs space O(N3/2/τ), and can answer

any access request with delay Õ(τ).

The idea of efficiently compressing query results has recently gained considerable atten-

tion, both in the context of factorized databases [OZ15b], as well as constant-delay enumer-

ation [Seg15b, BDG07b]. In these settings, the focus is to construct compressed representa-

tions that allow for enumeration of the full result with constant delay: this means that the

time between outputting two consecutive tuples is O(1), independent of the size of the data.

Using factorization techniques, for any input database D, we can construct a compressed data

structure for any CQ without projections, called a d-representation, using space O(|D|fhw),

where fhw is the fractional hypertree width of the query [OZ15b]. Such a d-representation

guarantees constant delay enumeration of the full result. In [Seg13a, BDG07b], the com-

pression of CQs with projections is also studied, but the setting is restricted to O(|D|) time

preprocessing –which also restricts the size of the compressed representation to O(|D|).
In this chapter, we show that we can dramatically decrease the space for the compressed

representation by both (i) taking advantage of the access pattern, and (ii) tolerating a

possibly increased delay. For instance, a d-representation for the query in Example 7 needs

O(N3/2) space, while no linear-time preprocessing can support constant delay enumeration

(under reasonable complexity assumptions [BDG07b]). However, we show that if we are

willing to tolerate a delay of Õ(N1/2), we can support the access pattern of Example 7 using

only Õ(N) space, linear in the input size.

Our Contribution. In this chapter, we study the design space for compressed representa-

tions of conjunctive queries in the full continuum between optimal space and optimal runtime,

when our goal is to optimize for a specific access pattern.

Our main contribution is a novel data structure that (i) can compress the result for every

CQ without projections according to the access pattern given by an adorned view, and (ii)

can be tuned to trade-off space for the delay and answer time. At the one extreme, the data

structure achieves constant delay O(1); At the other extreme, it uses linear space O(|D|),
1the Õ notation includes a poly-logarithmic dependence on N .

18

but provides a worst delay guarantee. Our proposed data structure includes as a special case

the data structure developed in [CP10a] for the fast set intersection problem.

To construct our data structure, we need two technical ingredients. The first ingredient

(Theorem 1) is a data structure that trades space with delay with respect to the worst-case

size bound of the query result. As an example of the type of trade-offs that can be achieved,

for any CQ Q without projections and any access pattern, the data structure needs space

Õ(|D|ρ∗/τ) to achieve delay Õ(τ), where ρ∗ is the fractional edge cover number of Q, and

|D| the size of the input database. In many cases and for specific access patterns, the data

structure can substantially improve upon this trade-off. To prove Theorem 1, we develop

novel techniques on how to encode information about expensive sub-instances of the problem

in a balanced way.

However, Theorem 1 by its own gives suboptimal trade-offs, since it ignores structural

properties of the query (for example, for constant delay it materializes the full result). Our

second ingredient (Theorem 2) combines the data structure of Theorem 1 with a type of tree

decomposition called connex tree decomposition [BDG07b]. This tree decomposition has the

property of restricting the tree structure such that the bound variables in the adorned view

always forms a connected component at the top of the tree.

Finally, we discuss the complexity of choosing the optimal parameters for our two main

theorems, when we want to optimize for delay given a space constraint, or vice versa.

Organization. In Section 3.1, we discuss related work followed by the formal problem

statement in Section 3.2. Section 3.3 we provide the detailed algorithm and the proof of

the first main result that shows how to trade-off space usage of the materialization and the

answering time of the query. A direct application of the main theorem may sometimes lead

to suboptimal trade-offs. We remedy that in Section 3.4.

3.1 Related Work

There has been a significant amount of literature on data compression; a common applica-

tion is to apply compression in column-stores [AMF06]. However, such compression methods

typically ignore the logical structure that governs data that is a result of a relational query.

The key observation is that we can take advantage of the underlying logical structure to

design algorithms that can compress the data effectively. This idea has been explored before

in the context of factorized databases [OZ15b], which can be viewed as a form of logical com-

pression. Our approach builds upon the idea of using query decompositions as a factorized

representation, and we show that for certain access patterns it is possible to go below |D|fhw

space for constant delay enumeration. In addition, our results also allow trading off delay for

smaller space requirements of the data structure. A long line of work has also investigated the

application of a broader set of queries with projections and aggregations [BOZ12, BKOZ13],

19

as well as learning linear regression models over factorized databases [SOC16, OS16]. Closely

related to our setting is the investigation of join-at-a-time query plans, where at each step,

a join over one variable is computed [CO15]. The intermediate results of these plans are

partial factorized representations that compress only a part of the query result. Thus, they

can be used to trade-off space with delay, albeit in a non-tunable manner.

Our work is also connected to the problem of constant-delay enumeration [Seg13a, Seg15b,

BDG07b]: in this case, we want to enumerate a query result with constant delay after a

linear time preprocessing step. We can view the linear time preprocessing step as a com-

pression algorithm, which needs space only O(|D|). It has been shown that the class of

connex-free acyclic conjunctive queries can be enumerated with constant delay after a linear-

time preprocessing. Hence, in the case of connex-free acyclic CQs, there exists an optimal

compression/decompression algorithm. However, many classes of widely used queries are

not factorizable to linear size, and also can not be enumerated with constant delay af-

ter linear-time preprocessing. Examples in this case are the triangle query ∆fff(x, y, z) =

R(x, y), R(y, z), R(z, x), or the 2-path query P ff
2 (x, y) = R(x, y), R(y, z).

Beyond CQs, related work has also focussed on evaluating signed conjunctive queries [BB13,

BB12]. CQs that contain both positive and negative atoms allow for tractable enumera-

tion algorithms when they are free-connex signed-acyclic [BB13]. Nearby problems include

counting the output size |Q(D)| using index structures for enumeration [DM14, DM15], and

enumerating more expressive queries over restricted class of databases [KS13].

The problem of finding a class of queries that can be maintained in constant time un-

der updates and admit constant delay enumeration is also of considerable interest. Recent

work [BKS17a] considered this particular problem and obtained a dichotomy for self-join free

and boolean CQs. Our work is also related to this problem in that the class of such queries

has a specific structure that allows constant delay enumeration.

Query compression is also a central problem in graph analytics. Many applications involve

extracting insights from relational databases using graph queries. In such situations, most

systems load the relational data in-memory and expand it into a graph representation which

can become very dense. Analysis of such graphs is infeasible, as the graph size blows up

quickly. Recent work [XKD15, XD17b, XSD17] introduced the idea of controlled graph

expansion by storing information about high-degree nodes and evaluating acyclic CQs over

light sub-instances. However, this work is restricted only to binary views (i.e., graphs), and

does not offer any formal guarantees on delay or answer time. It also does not allow the

compressed representation to grow more than linear in the size of the input.

Finally, we also present a connection to the problem of set intersection. Set intersec-

tion has applications in problems related to document indexing [CP10a, AN16] and proving

hardness and bounds for space/approximation trade-off of distance oracles for graphs [PR10,

20

database

D
CQ(D)

...

q2(D)

q1(D)
input query

Q

preprocessing time

TC

space (S)

...

q2

q1

Enumeration phase

Figure 3.1: Depiction of the enumeration framework along with the parameters.

CP10b]. Previous work [CP10a] has looked at creating a data structure for fast set intersec-

tion reporting and the corresponding boolean version. Our main data structure is a strict

generalization of the one from [CP10a].

3.2 Problem Statement

Given an adorned view Qη(x1, . . . , xk) and an input database D, our goal is to answer

any access request Qη[v] that conforms to the access pattern η. The view Q can be expressed

through any type of query, but in this work, we will focus on the case where Q is a conjunctive

query.

There are two extremal approaches to handle this problem. The first solution is to answer

any such query directly on the input database D, without materializing Q(D). This solution

is efficient in terms of space, but it can lead to inefficient query answering. For instance,

consider the adorned view ∆bbf(x, y, z) = R(x, y), S(y, z), T (z, x). Then, every time we are

given new values x = a, y = b, we would have to compute all the nodes c that form a triangle

with a, b, which can be very expensive.

The second solution is to materialize the view Q(D), and then answer any incoming query

over the materialized result. For example, we could choose to materialize all triangles, and

then create an appropriate index over the output result. The drawback of this approach is

that it requires a lot of space, which may not be available.

We propose to study the solution space between these two extremal solutions, that is,

instead of materializing all of Q(D), we would like to store a compressed representation

CQ(D) of Q(D). The compression function CQ must guarantee that the compression is

lossless, i.e., there exists a decompression function DQ such that for every database D, it

holds that DQ(CQ(D)) = Q(D). We compute the compressed representation CQ(D) during

a preprocessing phase, and then answer any access request in an online phase.

21

Parameters. Our goal is to construct a compression that is as space-efficient as possible,

while it guarantees that we can efficiently answer any access query. In particular, we are in-

terested in measuring the trade-off between the following parameters, which are also depicted

in Figure 3.1:

Compression Time (TC): the time to compute CQ(D) during the preprocessing phase.

Space (S): the size of CQ(D).

Answer Time: this parameter measures the time to enumerate a query result, where the

query is of the form Qη[v]. The enumeration algorithm must (i) enumerate the query

result without any repetitions of tuples, and (ii) use only O(log |D|) extra memory2.

We will measure answer time in two different ways.

1. delay (δ): the maximum time to output any two consecutive tuples (and also the

time to output the first tuple, and the time to notify that the enumeration has

completed).

2. total answer time (TA): the total time to output the result.

In the case of a boolean adorned view, the delay and the total answer time coincide. In

an ideal situation, both the compression time and the space are linear to the input size and

any query can be answered with constant delay O(1). As we will see later, this is achievable

in certain cases, but in most cases, we have to trade-off space and preprocessing time for

delay and total answer time.

3.2.1 Some Basic Results

We present here some basic results that set up a baseline for our framework. We will

study the case where the given view definition Q is a conjunctive query.

Our first observation is that if we allow the compression time to be at least Ω(|D|), we

can assume without loss of generality that the adorned view Qη has no constants or repeated

variables in a single atom. Indeed, we can first do a linear time computation to rewrite the

adorned view Qη to a new view where constants and repeated variables are removed, and

then compute the compressed representation for this new view (with the same adornment).

Example 8. Consider Qfb(x, z) = R(x, y, a), S(y, y, z). We can first compute in linear

time R′(x, y) = R(x, y, a) and S′(y, z) = S(y, y, z), and then rewrite the adorned view as

Qfb(x, z) = R′(x, y), S′(y, z).

2Memory requirement also depends on the memory required for executing the join algorithm.
Note that worst-case optimal join algorithms such as NPRR [NPRR12] can be executed using log |D|
memory assuming query size is constant and all relations are sorted and indexed.

22

Hence, whenever the adorned view is a full CQ, we can w.l.o.g. assume that it is a natural

join query. We now state a simple result for the case where the adorned view is full and

every variable is bound.

Proposition 1. Suppose that the adorned view is a natural join query with head Qb···b(x1, . . . , xk).

Then, in time TC = O(|D|), we can construct a data structure with space S = O(|D|), such

that we can answer any access request over D with constant delay δ = O(1).

Next, consider the full enumeration view Qf···f(x1, . . . , xk). A first observation is that

if we store the materialized view, we can enumerate the result in constant delay. From

the AGM bound, to achieve this we need space |D|ρ∗(H), where H is the hypergraph of Q.

However, it is possible to improve upon this naive solution using the concept of a factorized

representation [OZ15b]. Let fhw(Q) denote the fractional hypertree width of Q. Then, the

result from [OZ15b] can be translated in our terminology as follows.

Proposition 2 ([OZ15b]). Suppose that the adorned view is a natural join query with head

Qf···f(x1, . . . , xk). Then, in compression time TC = Õ(|D|fhw(Q)), we can construct a data

structure with space S = O(|D|fhw(Q)), such that we can answer any access request over D

with constant delay δ = O(1).

Since every acyclic query has fhw(Q) = 1, for acyclic CQs without projections both the

compression time and space become linear, O(|D|). In the next section, we will see how we

can generalize the above result to an arbitrary adorned view that is full.

3.3 First Main Result

Consider a full adorned view Qη(x1, . . . , xk), where Q is a natural join query expressed by

the hypergraph H = (V, E). Recall that Vb,Vf are the bound and free variables respectively.

Since the query is a natural join and there are no projections, we have Vb ∪ Vf = V. We will

denote by µ = |Vf | the number of free variables. We also impose a lexicographic order on

the enumeration order of the output tuples. Specifically, we equip the domain dom with a

total order ≤, and then extend this to a total order for output tuples in domµ using some

order x1
f , x

2
f , . . . , x

µ
f of the free variables.3

Example 9. As a running example, consider

Qfffbbb(x, y, z, w1, w2, w3) =R1(w1, x, y), R2(w2, y, z),

R3(w3, x, z).

We have Vf = {x, y, z} and Vb = {w1, w2, w3}. To keep the exposition simple, assume that

|R1| = |R2| = |R3| = N .

3There is no restriction imposed on the lexicographic ordering of the free variables.

23

If we materialize the result and create an index with composite key (w1, w2, w3), then in

the worst-case, we need space S = O(N3), but we will be able to enumerate the output for

every access request with constant delay. On the other hand, if we create three indexes, one

for each Ri with key wi, we can compute each access request with worst-case running time

and delay of O(N3/2). Indeed, once we fix the bound variables to constants c1, c2, c3, we need

to compute the join R1(c1, x, y) 1 R2(c2, y, z) 1 R3(c3, x, z), which needs time O(N3/2) using

any worst-case optimal join algorithm.

For any fractional edge cover u of V, and S ⊆ V, we define the slack of u for S as:

α(S) = min
x∈S

(∑
F :x∈F

uF

)
(3.1)

Intuitively, the slack is the maximum positive quantity such that (uF /α(S))F∈E is still a

fractional edge cover of S . By construction, the slack is always at least one, α(S) ≥ 1. For

our running example, suppose that we pick a fractional edge cover for V with uR1
= uR3

=

uR3
= 1. Then, the slack of u for Vf is α(Vf) = 2.

Theorem 1. Let Qη be an adorned view over a natural join query with hypergraph (V, E).

Let u be any fractional edge cover of V. Then, for any input database D and parameter

τ > 0 we can construct a data structure with

compression time TC = Õ(|D|+
∏
F∈E
|RF |uF)

space S = Õ(|D|+
∏
F∈E
|RF |uF /τα(Vf))

such that for any access request q = Qη[v], we can enumerate its result q(D) in lexicographic

order with

delay δ = Õ(τ)

answer time TA = Õ(|q(D)|+ τ · |q(D)|1/α(Vf))

Example 10. Let us apply Theorem 1 to our running example for u = (1, 1, 1) and τ = N1/2.

The slack for the free variables is α(Vf) = 2. The theorem tells us that we can construct in

time Õ(N3) a data structure with space Õ(N2), such that every access request q can be

answered with delay Õ(N1/2) and answer time Õ(|q(D)|+
√
N · |q(D)|).

Next, we show an example application of the theorem.

Example 11. Consider the adorned view over the star join

Sb···bf
n (x1, . . . , xn, z) = R1(x1, z), R2(x2, z), . . . , Rn(xn, z)

24

The star join is acyclic, which means that the d-representation of the full result takes only

linear space. This d-representation [OZ15a] can be used for any adornment of Sn where

z is a bound variable; hence, in all these cases we can guarantee O(1) delay using linear

compression space. However, we cannot get any guarantees when z is free, as is in the

adornment used above. Note that for the fractional edge cover where u1 = · · · = un = 1, the

slack is α(Vf) = n. Hence, Theorem 1 tells us that with space Õ(|D|n/τn) we get delay Õ(τ)

and answer time Õ(|Q(D)|+ τ · |Q(D)|1/n).

We should note here that our data structure strictly generalizes the data structure pro-

posed in [CP10a] for the problem of fast set intersection. Given a family of sets S1, . . . , Sn,

the goal in this problem is to construct a space-efficient data structure, such that given any

two sets Si, Sj we can compute their intersection Si ∩ Sj as fast as possible. It is easy to see

that this problem is captured by the adorned view Sbbf
2 (x1, x2, z) = R(x1, z), R(x2, z), where

R is a relation that describes set membership (R(Si, a) means that a ∈ Si).
We will now describe the detailed construction of the data structure for Theorem 1.

Before we present the compression procedure, we first introduce two important concepts in

our construction, f-intervals and f-boxes, both of which describe subspaces of the space of

all possible tuples in the output.

Intervals. The active domain D[x] of each variable x is equipped with a total order ≤
induced from the order of dom. We will use ⊥,> to denote the smallest and largest element

of the active domain respectively (these will always exist, since we assume finite databases).

An interval for variable x is any subset of D[x] of the form {u ∈ D[x] | a ≤ u ≤ b}, where

a, b ∈ D[x], denoted by [a, b]. We adopt the standard notation for closed and open intervals

and write [a, b) = {u ∈ D[x] | a ≤ u < b}, and (a, b] = {u ∈ D[x] | a < u ≤ b}. The interval

[a, a] is called the unit interval and represents a single value. We will often write a for the

interval [a, a], and the symbol � for the interval D[x].

By lifting the order from a single domain to the lexicographic order of tuples in Df =

D[x1
f] × · · · × D[xµf], we can also define intervals over Df , which we call f-intervals. For

instance, if a = 〈a1, . . . , aµ〉 and b = 〈b1, . . . , bµ〉, the f-interval I = [a,b) represents all

valuations vf over Vf that are lexicographically at least a, but strictly smaller than b.

Boxes. It will be useful to consider another type of subset of Df , which we call f-boxes.

Definition 1 (f-box). An f-box is defined as a tuple of intervals B = 〈I1, . . . , Iµ〉, where Ii

is an interval of D[xif]. The f-box represents all valuations vf over Vf , such that vf(x
i
f) ∈ Ii

for every i = 1, . . . , µ.

We say that a f-box is canonical if whenever Ii 6= �, then every Ij with j < i is a

unit interval. A canonical f-box is always of the form 〈a1, . . . , ai−1, Ii,�, . . .〉. For ease of

25

notation, we will omit the � intervals in the end of a canonical f-box, and simply write

〈a1, . . . , ai−1, Ii〉.
A f-box satisfies the following important property:

Proposition 3. For every f-box B, (1F∈E RF) n B =1F∈E (RF n B).

Proof. Suppose that the f-box is B = 〈I1, . . . , Iµ〉. Consider some valuation v over V that

belongs in (1F∈E RF) n B. Then, for every F ∈ E we have v(F) ∈ RF , and also for every

variable xif we have v(xif) ∈ Ii. Since for every variable in F ∩ Vf we have v(xif) ∈ Ii as well,

we conclude that v(F) ∈ (RF n B). Thus, v belongs in 1F∈E (RF n B) as well.

For the opposite direction, consider some valuation v over V that belongs in 1F∈E (RF n
B). Since (RF n B) ⊆ RF , we have that for every F ∈ E , v(F) ∈ RF . Thus, in order to

show the desired result, it suffices to show that for every xif we have v(xif) ∈ Ii. Indeed, take

any hyperdge F such that xif ∈ F : then, v(F) ∈ (RF n B) implies that v(xif) ∈ Ii.

In other words, if we want to compute the restriction of output to tuples in B, it suffices

to first restrict each relation to B and then perform the join. We denote this restriction of the

relation as RF (B) = RF n B. Unfortunately, Proposition 3 does not extend to f-intervals.

As we show in the example below, it is generally not possible to first restrict each relation

to RF n I and then perform the join.

Example 12. Consider the adorned view V fbff(x, y, z, w) = R1(x, y), R2(y, z), R3(z, w), R4(w, x).

Assume that the active domain is D[x] = D[y] = D[z] = D[w] = {1, 2}. Since Vf = {x, z, w},
consider the f-interval I = [a,b] where a = 〈1, 2, 1〉 and b = 〈2, 1, 2〉. In other words, inter-

val I contains the following valuations for Vf : (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2). It is easy to

verify that RinI = Ri for every i = 1, 2, 3, 4 and that (1, 1, 1, 1) is an output tuple. However,

(1F∈E RF) n I filters out (1, 1, 1, 1) as (1, 1, 1) does not lie in the interval I.

As we will see next, we can partition each f-interval to a set of f-boxes of constant size.

Box Decomposition. It will be useful to represent a f-interval I = (a,b) as a union of

canonical f-boxes. Let j be the first position such that aj 6= bj . Then, we define the box

decomposition of I, denoted B(I), as the following set of canonical f-boxes:

B`
µ = 〈a1, . . . , aµ−1, (aµ,>]〉
. . .

B`
j+1 = 〈a1, . . . , aj , (aj+1,>]〉
Bj = 〈a1, . . . , aj−1, (aj , bj)〉

Br
j+1 = 〈b1, . . . , bj , [⊥, bj+1)〉

. . .

26

Br
µ = 〈b1, . . . , bµ−1, [⊥, bµ)〉

Intuitively, a box decomposition divides an interval into a set of disjoint, lexicographically

ordered intervals. We give next an example of an f-interval and its decomposition into

canonical f-boxes.

Example 13. For our running example (Example 9), let the active domain be D[wi] =

{1, 2, . . . , 1000} for i = 1, 2, 3. Consider an open f-interval I = (〈10, 50, 100〉, 〈20, 10, 50〉).
The box decomposition of I consists of the following 5 canonical f-boxes:

B`
3 = 〈10, 50, (100,>]〉, B`

2 = 〈10, (50,>]〉
B1 = 〈(10, 20)〉,
Br

2 = 〈20, [⊥, 10)〉 Br
3 = 〈20, 10, [⊥, 50)〉

For another f-interval I′ = [〈10, 50, 100〉, 〈10, 50, 200〉), where the first two positions coincide,

the box decomposition consists of one f-box: B3 = 〈10, 50, [100, 200)〉.

The following lemma summarizes several important properties of the box decomposition:

Lemma 2. Let I be an f-interval and B(I) be its box decomposition. Then:

1. The f-boxes in B(I) form an order, B`
µ ≤ · · · ≤ B`

j+1 ≤ Bj ≤ Br
j+1 ≤ · · · ≤ Br

µ, such

that two tuples from different f-boxes are ordered according to the order of their f-boxes.

2. The non-empty f-boxes of B(I) form a partition of I.

3. |B(I)| ≤ 2µ− 1, where µ = |Vf |.

Proof. To show item (1), we begin by considering two consecutive f-boxes of the form B`
i .

Consider the largest element a> ∈ B`
i and the smallest element a< ∈ B`

i−1, for any i =

j + 2, . . . , µ. Note that a> has value ai−1 in the (i− 1)-th position and a> has a value from

(ai−1,>] in its (i− 1)-th position. Since ai−1 appears before any element in the set (ai−1,>]

and both boxes agree on the first i − 2 positions, it follows that a> < a< (notice that the

inequality here is strict). A similar argument applies to all other consecutive f-boxes in the

decomposition.

We next show item (2). We have already shown that the f-boxes in the decomposition

are all disjoint. It is also easy to observe that every f-box in B(I) is a subset of I. Thus, in

order to show that the non-empty f-boxes form a partition of I, it suffices to show that every

c ∈ I belongs in some f-box of B(I). Let I = (a,b) and c = 〈c1, . . . , cµ〉 such that c ∈ I.

We start by looking at the value of cj where j is the first position such that aj 6= bj . We

distinguish three cases. If aj < cj < bj , then we have that c ∈ Bj and we are done. Suppose

27

now that cj = aj , and consider the first position k such that ck 6= ak. (Note that such a k

always exists, otherwise c = a 6∈ I.) Then it is easy to see that c ∈ B`
k. If cj = bj , then we

symmetrically consider the first position k such that ck 6= bk; then one can see that c ∈ Br
k.

To prove item (3), observe that |B(I)| = (µ− j) + 1 + (µ− j) = 2µ+ (1− 2j) ≤ 2µ− 1,

where the last inequality follows because j ≥ 1.

The above lemma implies the following corollary:

Corollary 1. Let I be an f-interval and B(I) be its box decomposition.Then:⋃
B∈B(I)

1F∈E (RF n B) = (1F∈E RF) n I

We describe here the intuition behind the compression representation. Our data structure

is parametrized by an integer τ ≥ 0, which can be viewed as a threshold parameter that

works as a knob. We seek to compute the result (1F∈E RF (vb)) n I, where I is initially the

f-interval that represents all possible valuations. We can upper bound the running time for

this instance using the AGM bound. If the bound is less than τ , we can compute the answer

in time and delay at most τ .

Otherwise, we do two things: (i) we store a bit (1 if the answer is nonempty, and 0 if it

is empty), and (ii) we split the f-interval into two smaller f-intervals. Then, we recursively

apply the same idea for each of the two f-intervals. Since we need to store one bit for

every valuation that exceeds the given threshold for a given f-interval, we need to bound

the number of such valuations: this bound will be our first ingredient. Second, we split

each f-interval in the same way for every valuation; we do it such that we can balance the

information we need to store for each smaller f-interval. The method to split the f-intervals

in a balanced way is our second key ingredient.

Bounding the Heavy Valuations. Given a valuation vb for the bound variables, suppose

we are asked to compute the result restricted in some f-interval I, in other words (1F∈E

RF (vb)) n I. Let RF (v,B) = RF (v) n B = (RF n v) n B. For an f-box B and valuation v

over any variables, we define:

T (B) =
∏
F∈E
|RF (B)|ûF , T (v,B) =

∏
F∈E
|RF (v,B)|ûF

We overload T to apply to an f-interval I and valuation v over any variables as follows:

T (I) =
∑

B∈B(I)

T (B), T (v, I) =
∑

B∈B(I)

T (v,B)

Proposition 4. The output (1F∈E RF (vb)) n I can be computed in time O(T (vb, I)).

28

Proof. Consider the box decomposition B(I). First, observe that for any B ∈ B(I) the join

(1F∈E RF (vb,B)) is over the variables Vf . Since every variable in Vf is covered by û, we

can use any worst-case optimal algorithm to compute the join in time at most T (vb,B). By

Corollary 1, we can now compute the join over every B and union the (disjoint) results to

obtain the desired result. The time needed for this is at most T (vb, I) =
∑

B∈B(I) T (vb,B).

We will use the above bound on the running time as a threshold of when it means that

a particular interval is expensive to compute.

Definition 2. A pair (vb, I) is τ -heavy for a fractional edge cover u if T (vb, I) > τ .

Observe that if a pair is not τ -heavy, this means that we can compute the corresponding

sub instance over I in time at most O(τ). The following proposition provides an upper bound

for the number of such τ -heavy pairs.

Proposition 5. Given a f-interval I and integer τ , let H(I, τ) be the valuations vb such that

the pair (vb, I) is τ -heavy for u. Then,

|H(I, τ)| ≤
(
T (I)

τ

)α
Proof. For the sake of simplicity, we will write H instead of H(I, τ). We can now write:

τ |H| ≤
∑
vb∈H

∑
B∈B(I)

∏
F∈E
|RF (vb,B)|ûF

=
∑

B∈B(I)

∑
vb∈H

11−1/α ·
(∏
F∈E
|RF (vb,B)|uF

)1/α

≤
∑

B∈B(I)

(∑
vb∈H

1

)1−1/α(∑
vb∈H

∏
F∈E
|RF (vb,B)|uF

)1/α

= |H|1−1/α ·
∑

B∈B(I)

(∑
vb∈H

∏
F∈E
|RF (B) n vb|uF

)1/α

≤ |H|1−1/α ·
∑

B∈B(I)

(∏
F∈E
|RF (B)|uF

)1/α

= |H|1−1/α
∑

B∈B(I)

T (B)

The first inequality comes directly from the definition of a τ -heavy pair. The second in-

equality is an application of Hölder’s inequality. The third inequality is an application of the

Query Decomposition Lemma from [NRR13].

29

Example 14. Consider the following instance for our running example.

w1 x y

1 1 1

1 1 2

1 2 1

2 1 1

3 1 1

R1

w2 y z

1 1 2

1 2 1

1 2 2

2 1 1

2 1 2

R2

w3 x z

1 1 1

1 1 2

1 2 1

2 1 1

2 1 2

R3
We will use u = (1, 1, 1) as the fractional edge cover for V. Recall that the slack is α = 2,

and thus û = (1/2, 1/2, 1/2). Observe that D[x] = D[y] = D[z] = {1, 2}, D[w1] = {1, 2, 3},
D[w2] = {1, 2}, D[w3] = {1, 2, 3}. Consider the root interval I(r) = [〈1, 1, 1〉, 〈2, 2, 2〉]. The

box decomposition B(I(r)) is:

B`
3 = 〈1, 1, [1, 2]〉, B`

2 = 〈1, (1, 2]〉
Br

2 = 〈2, [1, 2)〉 Br
3 = 〈2, 2, [1, 2]〉

We can then compute T (I(r)) =
√
|3||3||4| +

√
|1||2||4| +

√
|1||3||1| + 0 ≈ 10.56. Consider

vb(w1, w2, w3) = (1, 1, 1). One can compute T (vb, I(r)) =
√

2 + 2 + 1 = 4.414. If we pick

τ = 4, then (vb, I(r)) is τ -heavy.

Splitting an Interval. We next discuss how we perform a balanced splitting of an f-interval

I.

Lemma 3. Let B = 〈I1, . . . , Ii, . . .〉 be an f-box, and J1, . . . , Jp a partition of the interval Ii.

Denote Bk = 〈I1, . . . , Jk, . . .〉. Then,
∑p

k=1 T (Bk) ≤ T (B).

Proof. Let F be the hyperedges that include the variable xif . Notice that if F /∈ F , then

RF (Bk) = RF (B) for every k = 1, . . . , p. Moreover, observe that for every F ∈ F , we have∑p
k=1 |RF (Bk)| = |RF (B)|. Thus, to prove the lemma it suffices to show that

p∑
k=1

∏
F∈F
|RF (Bk)|ûF ≤

∏
F∈F

(
p∑

k=1

|RF (Bk)|
)ûF

The above inequality is an application of Friedgut’s inequality [Fri04] called the generalized

Hölder inequality, which we can apply because
∑

F∈F ûF ≥ 1.

Lemma 4. Consider the canonical f-box

B = 〈a1, . . . , ai−1, [βL, βU]〉.

Then, for any t ≥ 0, there exists β ∈ D[xif] such that

30

1. T (〈a1, . . . , ai−1, [βL, β)〉 ≤ t
2. T (〈a1, . . . , ai−1, (β, βU]〉) ≤ max{0, T (B)− t}.

Moreover, we can compute β in time Õ(1).

Proof. Let βL = b1, . . . , bn = βU be the elements of the interval [βL, βU] in sorted order.

Define vi = T (〈a1, . . . , ai−1, [βL, bi]〉) for i = 1, . . . , n. Observe that we have v1 ≤ v2 ≤
. . . vn = T (B). Hence, we can view the elements bi as being sorted in increasing order w.r.t.

to the value vi. We now perform binary search to find β = mini{vi ≥ min(T (B), t)}; such

an element always exists since vi is increasing and vn = T (B). We can create an index that

returns the count |RF (B)| in logarithmic time, hence the running time to find β is Õ(1).

By construction, we have T (〈a1, . . . , ai−1, [βL, β)〉) ≤ min(T (B), t) ≤ t. Finally, since the

intervals [βL, β], [β, β] and and (β, βU] form a partition of [βL, βU], we can apply Lemma 3

to obtain that T (〈a1, . . . , ai−1, (β, βU]〉) ≤ T (B)−min(T (B), t) = max(0, T (B)− t).

We now present Algorithm 1, an algorithm that allows for balanced splitting of an f-

interval I.

Algorithm 1: Splitting an f-interval I

1 B(I) = {B1, . . . ,Bk} in lexicographic order

2 T ←∑k
i=1 T (Bi)

3 s← arg minj{
∑j

i=1 T (Bi) > T/2}

/* let Bs = 〈c1, . . . , ck−1, Ik, . . . , Iµ〉 */

4 γk−1 ←
∑s−1

i=1 T (Bi), ∆k−1 ← T (Bs)

5 for j=k to µ do

6 find min cj s.t. T (〈c1, . . . , cj−1, Ij ∩ [⊥, cj]〉) ≥ min{∆j−1, T/2− γj−1}
7 ∆j ← T (〈c1, . . . , cj〉)
8 γj ← γj−1 + T (〈c1, . . . , cj−1, Ij ∩ [⊥, cj)〉
9 return (c1, . . . , cµ)

Proposition 6. Let I = [a,b] be an f-interval. Then, Algorithm 1 returns c ∈ Df that splits

I into I≺ = [a, c) and I� = (c,b] such that T (I≺) ≤ T (I)/2 and T (I�) ≤ T (I)/2. Moreover,

it terminates in time Õ(1).

Proof. Notice first that line (6) of the algorithm always finds a cj , following Lemma 4. Hence,

the algorithm always returns a split point c = (c1, . . . , cµ).

Define B≺j = 〈c1, . . . , cj−1, Ij ∩ [⊥, cj)〉 and B�j = 〈c1, . . . , cj−1, Ij ∩ (cj ,>]〉 for j =

k, . . . , µ. Similarly to γj , define γ̄k−1 =
∑µ

i=s+1 T (Bi), and for j = k, . . . , µ, γ̄j = γ̄j−1 +

T (B�j).

31

Now, consider the following sets of canonical f-boxes:

B≺ = B1, . . . ,Bs−1,B
≺
k , . . . ,B

≺
µ

B� = B1, . . . ,Bs−1,B
�
k , . . . ,B

�
µ

The key observation is that B≺ = B(I≺) and B� = B(I�). Moreover, by construction

γµ =
∑

B∈B≺ T (B) and also γ̄µ =
∑

B∈B� T (B). Thus, to prove the statement, it suffices to

show that γµ, γ̄µ ≤ T/2.

We will first show that for any j = k − 1, . . . , µ : γj ≤ T/2. For γk−1 this follows by our

choice of s. For some j ≥ k, we have γj = γj−1 + T (B≺j) ≤ γj−1 + min{∆j−1, T/2− γj−1} ≤
T/2, where the first inequality follows from the choice of cj .

Second, we will show by induction that for j = k − 1, . . . , µ : γ̄j ≤ T/2. For γ̄k−1, we

have γ̄k−1 = T −∑s
i=1 T (Bi) ≤ T − T/2 = T/2. Now, let j ≥ k. We can write:

γ̄j = γ̄j−1 + T (B�j)

≤ γ̄j−1 + max{0,∆j−1 − (T/2− γj−1)}
= max{γ̄j−1, (∆j−1 + γ̄j−1 + γj−1)− T/2}

The first inequality follows from item (2) of Lemma 4. By the inductive hypothesis we have

γ̄j−1 ≤ T/2. We next show that γ̄j + γj ≤ T − ∆j . From Lemma 3, it holds for every

j = k, . . . , µ:

T (B≺j) + T (B�j) ≤ ∆j−1 −∆j

Using the above inequality, we can write:

γ̄j + γj =
∑
i 6=s

T (Bi) +

j∑
i=k

(T (B≺i) + T (B�i))

≤
∑
i 6=s

T (Bi) +

j∑
i=k

(∆j−1 −∆j)

=
∑
i 6=s

T (Bi) + ∆k−1 −∆j

= T −∆j

The runtime bound of Õ(1) follows from Lemma 4, which tells us that we can compute

each cj (line (6)) in time Õ(1).

3.3.1 The Basic Structure

We now have all the necessary pieces to describe how we construct the compressed repre-

sentation. Recall that our data structure is parametrized by a threshold parameter τ , and by

32

a weight assignment u = (uF)F∈E that covers the variables in V. The construction consists

of two steps.

1) The Delay-Balanced Tree. In the first step, we construct an annotated binary tree T .

Each node w ∈ V (T) is annotated with an f-interval I(w) and a value β(w) ∈ Df , which is

chosen according to Algorithm 1. The tree is constructed recursively.

Initially, we create a root r with interval I(r) = Df . Let w be a node at level ` with

interval I(w) = [a, c], and define the threshold at level ` to be τ` = τ/2`(1−1/α). In the case

where T (I(w)) < τ`, w is a leaf of the tree. Otherwise, using β(w) as a splitting point, we

construct two sub-intervals of I:

I≺ = [a, β(w)) and I� = (β(w), c].

If I≺ 6= ∅, we create a new node wl as the left child of w, with interval I(wl) = I≺. Similarly,

if I� 6= ∅, we create a new node wr as the right child of w, with interval I(wr) = I�. We call

the resulting tree T a delay-balanced tree.

Lemma 5. Let T be a delay-balanced tree. Then:

1. For every node w ∈ V (T) at level `, we have T (I(w)) ≤ T (I(r))/2`.

2. The depth of T is at most O(log T) and its size at most O(T), where T =
∏
F∈E |RF |uF /τα.

Proof. If w1 is a child of w2, then we have that T (I(w1)) ≤ T (I(w2))/2 by Proposition 6.

Item (1) follows by a simple induction on the depth of the tree.

Suppose that w is a node at level `. From the condition that we use to stop expanding a

node, we have:

τ` ≤ T (I(w)) ≤ T (I(r))/2`

≤ (2µ− 1) ·
∏
F∈E
|RF |ûF /2`

The bound on the size follows from the fact that the tree is binary.

Example 15. Continuing our running example, we will construct the delay-balanced tree.

Since ` = 0 for root node, τ` = τ . We begin by finding the split point β(r) for root node.

We start with unit interval I(r)≺ = [〈1, 1, 1〉, 〈1, 1, 1〉] and keep increasing the interval range

until the join evaluation cost T (I(r)≺) > T (I(r))/2. For interval I(r)≺ = [〈1, 1, 1〉, 〈1, 1, 1〉],
the box decomposition is B(I(r)≺) = B`

3 = 〈1, 1, 1〉.
The reader can verify that T (I(r)≺) =

√
|3||1||2| ≈ 2.44 units and changing the interval to

I′(r)≺ = [〈1, 1, 1〉, 〈1, 1, 2〉] gives T (I′(r)≺) =
√
|3||3||4| > T (I(r))/2. Thus, β(r) = (1, 1, 2)

and I(r)� = [〈1, 2, 1〉, 〈2, 2, 2〉] with T (I(r)�) =
√
|1||2||4|+

√
|1||3||1| ≈ 4.56 .

33

I(r) = [〈1, 1, 1〉, 〈2, 2, 2〉]
β(r) = (1, 1, 2)

node r

I(rl) = [〈1, 1, 1〉, 〈1, 1, 1〉]

node rl
I(rr) = [〈1, 2, 1〉, 〈2, 2, 2〉]

β(rr) = (1, 2, 2)

node rr

[〈1, 2, 1〉, 〈1, 2, 1〉]

node rrl

[〈2, 1, 1〉, 〈2, 2, 2〉]

node rrr

Figure 3.2: Delay balanced tree for running example

For the next level ` = 1, the threshold τ` = τ/
√

2 ≈ 2.82. Since T (I(r)≺) ≤ 2.82, it is

a leaf node. We recursively split I(rr) = I�(r) = [〈1, 2, 1〉, 〈2, 2, 2〉] into I≺(rr) and I�(rr).

Fixing β(rr) = (1, 2, 2), we get T (I≺(rr)) =
√
|1||2||1| ≈ 1.414 and I�(rr) = [〈2, 1, 1〉,

〈2, 2, 2〉], T (I�(rr)) =
√

3. Since both worst case running times are smaller than τ2 = τ/2 =

2, our tree construction is complete. We demonstrate the final delay-balanced tree T in

Figure 3.2.

2) Storing Auxiliary Information. The second step is to store auxiliary information

for the heavy valuations at each node of the tree T . Recall that the threshold for a heavy

valuation at a node in level ` is τ` = τ/2`(1−1/α). We will construct a dictionary D that takes

as arguments a node w ∈ V (T) at level ` and a valuation vb such that (vb, I(w)) is τ`-heavy

and returns in constant time:

D(w, vb) =

0, if (1F∈E RF (vb)) n I(w) = ∅,
1, otherwise.

If (vb, I(w)) is not τ`-heavy, then there is no entry for this pair in the dictionary and it simply

returns ⊥. In other words, D remembers for the pairs that are heavy whether the answer is

empty or not for the restriction of the result to the f-interval I(w).

We next provide an upper bound on the size of D.

Lemma 6. |D| = Õ(
∏
F∈E |RF |uF /τα).

Proof. We first bound the number of (w, vb) pairs that are stored in the dictionary for a

node w at level `. Notice that for node w we will store an entry for at most the τ`-heavy

valuations. By Proposition 5, these are at most

|H(I(w), τ`)| ≤
(
T (I(w))

τ`

)α
≤
(
T (I(r))

2`τ`

)α
≤ (2µ− 1)α2−`ατ−α`

∏
F∈E
|RF |uF

34

= c · 2−`τ−α
∏
F∈E
|RF |uF

where c = (2µ − 1)α is a constant. At level ` we have at most 2` nodes. Hence, the total

number of nodes if the tree has L levels is at most:

L∑
`=0

2`

(
τ−α2−`

∏
F∈E
|RF |uF

)
≤ log |D| · τ−α

∏
F∈E
|RF |uF

This concludes the proof.

The final compressed representation consists of the pair (T ,D), along with the necessary

indexes on the base relations (that need only linear space).

Example 16. The last step for our running example is to construct the dictionary for all

τ`-heavy valuations. Consider the valuation vb(w1, w2, w3) = (1, 1, 1), which we have shown

to be τ -heavy. Next, we store a bit in the dictionary at each node for vb denoting if the join

output is non-empty for the restriction of result to interval I. The reader can verify that

(vb, I(r)) and (vb, I(rr)) are τ0- and τ1-heavy respectively. Thus, the dictionary will store

two entries for vb: D(I(r), vb) = 1,D(I(rr), vb) = 1.

Lastly, we now show a detailed construction that allows us to build the dictionary D in

time Õ(
∏
F∈E |RF |uF), using at most Õ(

∏
F∈E |RF |uF /τα) space, i.e. no more space than

the size of the dictionary.

Lemma 7. The dictionary D can be constructed in time Õ(
∏
F∈E |RF |uF), using at most

Õ(
∏
F∈E |RF |uF /τα) space.

We construct the dictionary D as follows:

a) Find Heavy Valuations. The first step of the algorithm is to compute the list of heavy

valuations vb for any interval I.

Proposition 7. Let LI denote the sorted list of all valuations of Vb such that (vb, I) is τ -

heavy. Then, LI can be constructed in time Õ(
∑

B∈B(I)

∏
F∈EVb

|RF nB|uF) and using space

at most O((T (I)/τ)α).

Proof. The first observation is that for all heavy (vb, I) valuations, since T (vb, I) > τ , there

exists a B ∈ B(I) such that RF (vb) n B is non-empty for each F ∈ EVb
. This implies that

πF∩Vb
(vb) ∈ πF∩Vb

(RF n B) (otherwise the relation will be empty and T (vb, I) = 0). Thus,

it is sufficient to compute πVb
((1F∈EVb

RF) n I) to find all heavy valuations.

We can construct the list LI by running a worst case join algorithm in time

O(
∑

B∈B(I)

∏
F∈EVb

|RF nB|uF). Additionally, as soon as the worst case join algorithm gen-

erates an output vb, we check if vb is τ -heavy in Õ(1) time. This can be done by using linear

35

sized indexes on base relations to count the number of tuples in each relation RF∈E(vb, I)

and using u as cover to check whether the execution time is greater than the threshold τ .

Since we need only heavy valuations, we only retain those in memory. Proposition 5 bounds

the space requirement of LI to at most O((T (I)/τ)α). Sorting LI introduces at most an

additional O(log |D|) factor.

b) Using join output to create D. Consider the delay balanced tree T as constructed in

the first step. Without loss of generality, assume that the tree is full. We bound the time

taken to create D(w, vb) for all nodes wL at some level L (applying the same steps to other

levels introduces at most log |D| factor). The detailed algorithm is presented below.

Algorithm 2: Create Dictionary D(w, vb) for level L nodes in T
input : tree T
output: D(w, vb) for all leaf nodes

1 forall w in wL do

/* Run NPRR on (1F∈EVb
RF) n I(w) to compute LI(w) */

2 forall vb ∈ LI(w) do

3 D(w, vb) = 0 /* initializing D with all heavy pairs */

/* Run NPRR on (1F∈E RF) n I(w) */

4 forall j ← output tuple from NPRR /* requires log |D| main memory */

5 do

6 vb ← ΠVb
(j)

7 if vb ∈ LI(w) then /* binary search over LI(w) */

8 D(w, vb) = 1

Algorithm Analysis. We first bound the running time of the algorithm.

Proposition 8. Algorithm 2 runs in time Õ(
∏
F∈E |RF |uF).

Proof. We will first compute the time needed to construct the list LI(w) for all nodes w

at level L. Proposition 7 tells us that to find the heavy valuations for an interval I(w)

we need time Õ(
∑

B∈B(I(w))

∏
F∈EVb

|RF n B|uF). We will apply Lemma 3 to show that∑
w∈wL

∑
B∈B(I(w))

∏
F∈E |RF n B|uF = O(

∏
F∈E |RF |uF). Consider all the f-boxes in the

box decomposition of I(w), ∀w ∈ wL. All f-boxes that have the first µ− 1 variables fixed are

of the form Bk
µ = 〈a1, . . . , aµ−1, (a

k
µ, b

k
µ)〉. We apply Lemma 3 with i = µ to all such boxes.

Thus,
∑

k T (Bk
µ) ≤ T (〈a1, . . . , aµ−1,�〉).

After this step, all f-boxes have unit interval prefix of length at most µ− 1 and have the

domain of xf
µ as �. Now, we repeatedly apply lemma 3 to all boxes with i = µ−1, µ−2, . . . , 1

36

sequentially. Each application merges the boxes and fixes the domain of xif = �. The last

step merges all f-boxes of the form 〈a〉 to I(r) = 〈�, . . . ,�〉. This gives us,

∑
w∈wL

∑
B∈B(I(w))

∏
F∈E
|RF n B|uF ≤

∏
F∈E
|RF n I(r)|uF

= O(
∏
F∈E
|RF |uF)

The second step is to bound the running time of the worst case join optimal algorithm to

compute (1F∈E RF) n I(w) in line 4. Observe that this join can also be computed in worst

case time
∑

w∈wL
∑

B∈B(I(w))

∏
F∈E |RF n B|uF = O(

∏
F∈E |RF |uF).

Finally, note that all steps in line 6-line 8 are Õ(1) operations.

Next, we analyze the space requirement of Algorithm 2.

Proposition 9. Algorithm 2 requires space O(
∏
F∈E |RF |uF /τα)

Proof. Lines 2-3 take |D| amount of space. The NPRR algorithm requires log |D| amount of

memory to keep track of pointers 4. Since we are only streaming through the join output,

there is no additional memory overhead in this step. Thus, the bound on memory required

follows from Proposition 7 (bounding the size of LI(r)) and Lemma 6.

3.3.2 Answering a Query

We now explain how we can use the data structure to answer an access request q = Qη[v]

given by a valuation v. The detailed algorithm is depicted in Algorithm 3.

We start traversing the tree starting from the root r. For a node w, if D(w, vb) = ⊥, we

compute the corresponding sub instance using a worst-case optimal algorithm for every box

in the box decomposition. If D(w, vb) = 0, we do nothing. If D(w, vb) = 1, we recursively

traverse the left child (if it exists), compute the instance for the unit interval [β(w), β(w)],

then recursively traverse the right child (if it exists). This traversal order guarantees that

the tuples are output in lexicographic order.

Algorithm Analysis. We now analyze the performance of Algorithm 3. Let Tv be the

subtree of T that contains the nodes visited by Algorithm 3. The algorithm stops traversing

down the tree only when it finds a node w ∈ V (T) such that D(w, vb) 6= 1. (The leaf nodes

of T have all ⊥ entries since by construction they contain no heavy pairs.) Thus, the leaves

of Tv have D(w, vb) ∈ {0,⊥} and the internal nodes have D(w, vb) = 1. Figure 3.3 depicts

an instance of such an incomplete binary tree.

4If we have at least |D| memory, i.e, all relations can fit in memory, then we require no subsequent
I/O’s

37

Algorithm 3: Answering a query q = Qη[vb]

input : tree T , dictionary D, valuation v

output: query answer q(D)

1 eval(r, vb) /* start from the root */

2 return

3 procedure eval(w, vb)

4 if D(w, vb) = ⊥ then

5 forall B ∈ B(I(w)) do

6 output 1F∈E RF (vb,B)

7 else if D(w, vb) = 1 then

8 if w has left child w` then

9 eval(w`, vb)

10 output 1F∈E RF (vb, [β(w), β(w)])

11 if w has right child wr then

12 eval(wr, vb)

13 return

Lemma 8. Let w be a node in Tv. Algorithm 3 spends O(1) time at w if D(w, vb) 6= ⊥;

otherwise it spends time O(τ`), where ` is the level of node w.

Proof. It takes constant time to retrieve the value D(w, vb) from the dictionary. If the result

is 0, we do nothing more on node w. If the result is 1, we also need to evaluate the subinstance

1F∈E RF (vb, [β(w), β(w)]). But this can be done in constant time, since [β(w), β(w)] is a

unit interval, and thus the evaluation can be done by checking a constant number of hash

tables.

If D(w, vb) = ⊥ and w is at level `, the algorithm will evaluate the subinstance with

interval I(w), which by definition takes time O(τ`).

Proposition 10. Algorithm 3 enumerates q(D) in lexicographic order with delay δ = Õ(τ).

Proof. Suppose that Algorithm 3 outputs t ∈ q(D), and the lexicographically next tuple

exists and is t′. We will show that the time to output t′ after t is Õ(τ).

If t, t′ are output while Algorithm 3 is at the same node w, it must be that D(w, vb) = ⊥,

in which case the delay will be trivially bounded by O(τ). Otherwise let w be the node

where t is output, and w′ the node where t′ is output. Notice that t will be the last tuple

from w that is output, and t′ the first tuple from w′. Now, let P be the unique path in Tv

that connects w with w′, with nodes w = w1, w2, . . . , wk = w′. An example of P is depicted

in Figure 3.3. All the nodes in the path, except possibly the endpoints w1, wk are internal

38

1

1

1

1

0⊥

0

1

1

⊥
(w′)

0

1

01

⊥⊥
(w)

Figure 3.3: An example subtree Tv traversed by Algorithm 3 to answer q = Qη[v]. Each

node w is annotated by the dictionary entry D(w, vb). The dashed edges show the path from

node w that outputs tuple t, to node w′ that outputs the lexicographically next tuple t′.

nodes and thus we have D(wi, vb) = 1 for i = 2, . . . , k − 1. Moreover, there must exist some

q = 1, . . . , k such that: (i) if j ≤ q, then wj−1 is a child of wj , and (ii) if j > q, then wj is a

child of wj−1.

Let us consider the first segment of the path, where j ≤ q. If wj−1 is the right child of

wj , then the algorithm will exit wj and visit the next node in the path. If it is the left child,

then the algorithm will visit the subtree rooted at its right child first. However, the subtree

can only have a single node w′′ with D(w′′i , vb) 6= 1, since otherwise t′ would not have been

the next tuple to be output. Thus, after at most O(τ) time, the algorithm will visit the next

node in the path. By a symmetric argument, the algorithm will take at most O(τ) time to

visit the next node in the path for the second segment, where j ≥ q. Since the length of P

is at most 2 times the depth of the tree, which is O(log |D|), the algorithm will visit w′ (and

thus output t′) in time O(τ log |D|).
In the case where there is no next tuple after t, it is easy to see that there exists again a

path P that ends at the root node r. A similar argument can be done to bound the time to

output the first tuple.

We now proceed to bound the time to answer the query. The next lemma relates the

output size |q(D)| to the size of the tree Tv.

Lemma 9. The number of nodes in Tv is Õ(|q(D)|).

Proof. Let F be the set of internal nodes of Tv, such that there is no child with entry 1.

The key observation is that |q(D)| ≥ |F |, since the intervals of the nodes in F do not

overlap, and each interval will produce at least one output tuple. We can easily also see that

|V (Tv)| ≤ |F | · log |D|. Hence, |V (Tv)| = O(|q(D)| · log |D|).

39

Proposition 11. Algorithm 3 enumerates q(D) in lexicographic order in TA = Õ(|q(D)| +
τ · |q(D)|1/α) time.

Proof. We first bound the time needed to visit the nodes w in Tv with entry 6= ⊥. Since

every such node requires constant time to visit, and by Lemma 9 the total number of nodes

in tree is Õ(|q(D)|), we need Õ(|q(D)|) time. Second, we bound the time to visit the nodes

with entry = ⊥. Let V be the set of such nodes. Every node in V is a leaf in Tv. For a node

w, let `w be its level. The answer time can be bounded by:∑
w∈V

τ`w =
∑
w∈V

τ · 2−`w(1−1/α)

= τ ·
∑
w∈V

11/α(2−`w)1−1/α

≤ τ |V |1/α
(∑
w∈V

2−`w

)1−1/α

≤ Õ(τ · |q(D)|1/α)

The first inequality is an application of Hölders inequality. The second inequality is an

application of Kraft’s inequality [McM56], which states that for a binary tree we have∑
w leaf 2−depth(w) ≤ 1.

3.4 Second Main Result

The direct application of Theorem 1 can lead to suboptimal trade-offs between space and

time/delay, since it ignores the structural properties of the query. In this section, we show

how to overcome this problem by combining Theorem 1 with tree decompositions. We first

need to introduce a variant of a tree decomposition of a hypergraph H = (V, E), defined with

respect to a given subset C ⊆ V.

Definition 3 (Connex Tree Decomposition [BDG07b]). Let H = (V, E) be a hypergraph,

and C ⊆ V. A C-connex tree decomposition of H is a tuple (T , A), where:

1. T = (T, (Bt)t∈V (T)) is a tree decomposition of H; and

2. A is a connected subset of V (T) such that
⋃
t∈ABt = C.

In a C-connex tree decomposition, the existence of the set A forces the set of nodes that

contain some variable from C to be connected in the tree.

Example 17. Consider the hypergraph H in Figure 3.4. The decomposition depicted on the

left is a C-connex tree decomposition for C = ∅. The C-connex tree decomposition on the

right is for C = {v1, v5, v6}. In both cases, A consists of a single bag (colored grey) which

contains exactly the variables in C.

40

In [BDG07b], C-connex decompositions were used to obtain compressed representations

of CQs with projections (where C is the set of the head variables). In our setting, we will

choose C to be the set of bound variables in the adorned view, i.e., C = Vb. Additionally,

we will use a novel notion of width, which we introduce next. Given a Vb-connex tree

decomposition (T , A), we orient the tree T from some node in A. For any node t ∈ V (T)\A,

we denote by anc(t) the union of all the bags for the nodes that are the ancestors of t. Define

Vtb = Bt ∩ anc(t) and Vtf = Bt \ Vtb. Intuitively, Vtb (resp. Vtf) are the bound (resp. free)

variables for the bag t as we traverse the tree top-down. Figure 3.4 depicts each bag Bt as

Vtf | Vtb.

Given a Vb-connex tree decomposition, a delay assignment is a function δ : V (T)→ [0,∞)

that maps each bag to a non-negative number, such that δ(t) = 0 for t ∈ A. Intuitively, this

assignment means that we want to achieve a delay of |D|δ(t) for traversing this particular

bag. For a bag t, define

ρ+
t = min

u

(∑
F

uF − δ(t) · α(Vtf)

)
(3.2)

where u is a fractional edge cover of the bag Bt. The Vb-connex fractional hypertree δ-width

of (T , A) is defined as maxt∈V (T)\A ρ
+
t . It is critical that we ignore the bags in the set A in

the max computation. We also define u+
t =

∑
F u
′
F where u′ is the fractional edge cover of

bag Bt that minimizes ρ+
t .

When δ(t) = 0 for every bag t, the δ-width of any Vb-connex tree decomposition becomes

maxt∈V (T)\A ρ
∗(Bt), where ρ∗(Bt) is the fractional edge cover number of Bt. Define fhw(H |

Vb) as the smallest such quantity among all Vb-connex tree decompositions of H. When

Vb = ∅, then fhw(H | Vb) = fhw(H), thus recovering the notion of fractional hypertree width.

Appendex 3.4.2.1 shows the relationship between fhw(H | Vb) and other hypergraph related

parameters.

Finally, we define the δ-height of a Vb-connex tree decomposition to be the maximum

weight root-to-leaf path, where the weight of a path P is defined as
∑

t∈P δ(t).

Example 18. Consider the decomposition on the right in Figure 3.4, and a delay as-

signment δ that assigns 1/3 to node t1 with Bt1 = {v2, v4, v1, v5}, 1/6 to the bag t2 with

Bt2 = {v2, v3, v4}, and 0 to the node t3 with Bt3 = t3 = {v6, v7}. The δ-height of the tree

is h = max{1/3 + 1/6, 0} = 1/2. To compute the fractional hypertree δ-width, observe that

we can cover the bag {v2, v4, v1, v5} by assigning weight of 1 to the edges {v1, v2}, {v4, v5}, in

which case ρ+
t1 = (1 + 1) − 1/3 · 1 = 5/3. We also have ρ+

t2 = (1 + 1) − 1/6 · 2 = 5/3, and

ρ+
t3 = 1. Hence, the fractional hypertree δ-width is 5/3. Also, observe that u+

t1 = u+
t2 = 2 and

u+
t3 = 1.

41

v1 v2 v3 v4 v5 v6 v7

v2, v1 |

v3 | v2

v4 | v3

v5 | v4

v6 | v5

v7 | v6

v1, v5, v6

v2, v4 | v1, v5

v3 | v2, v4

v7 | v6

Figure 3.4: The hypergraph H for a path query of length 6, along with two C-connex tree

decompositions. The decomposition on the left has C = ∅, and the decomposition on the

right C = {v1, v5, v6}. The variables in C are colored red, and the grey nodes are the ones

in the set A.

Theorem 2. Let q = Qη be an adorned view over a natural join query with hypergraph H =

(V, E). Suppose that H admits a Vb-connex tree decomposition. Fix any delay assignment δ,

and let f be the Vb-connex fractional hypertree δ-width, h the δ-height of the decomposition,

and u∗ = maxt∈V (T)\A u
+
t .

Then, for any input database D, we can construct a data structure in compression time

TC = Õ(|D| + |D|u∗+maxt δ(t)) with space S = Õ(|D| + |D|f), such that we can answer any

access request with delay Õ(|D|h).

If we write the delay in the above result as Õ(
∏
t∈P |D|δ(t)), where P is the maximum-

weight path, Theorem 2 tells us that the delay is essentially multiplicative in the same branch

of the tree, but additive across branches. Unlike Theorem 1, the lexicographic ordering of

the result q(D) for Theorem 2 now depends on the tree decomposition.

For our running example, Theorem 2 implies a data structure with space Õ(|D|+ |D|5/3)

and delay Õ(|D|1/2). This data structure can be computed in time Õ(|D|+ |D|7/3). Notice

that this is much smaller than the O(|D|4) time required to compute the worst case output.

Consider an adorned view over a natural join query (with hypergraph H), with bound

variables Vb. Fix a Vb-connex tree decomposition (T , A). Observe that, since the bags in

A do not play any role in the width or height, we can assume w.l.o.g. that A consists of a

single bag tb. We consider as the running example in this section the one in Figure 3.4.

42

3.4.1 Constant Delay Enumeration

Suppose now that our goal is to achieve constant delay. From Theorem 2, to do this

we have to choose the delay assignment to be 0 everywhere. In this case, we have the

following result (which slightly strengthens Theorem 2 in this special case by dropping the

polylogarithmic dependence).

Proposition 12. Let Qη be a full adorned view over a hypergraph H = (V, E). Then, for

any input database D, we can construct a data structure in compression time and space

S = O(|D|fhw(H|Vb)), such that we can answer any access request with delay O(1).

Observe that when all variables are free, then Vb = ∅, in which case fhw(H | Vb) = fhw(H),

thus recovering the compression result of a d-representation. Moreover, since the delay

assignment is 0 for all bags, the compression time TC = Õ(|D| + |D|fhw(H|Vb)). Further, we

can take any optimal tree decomposition with fractional hypertree width fhw(H) (so a Vb-

connex decomposition), materialize the tuples in each bag by running the query restricted

on the vertices of the bag, and finally apply a sequence of semi-joins in a bottom-up order

to remove any tuples from the bags that do not participate in the final result. Additionally,

for each node t ∈ V (T), we construct a hash index over the materialized result with key

Vtb = Bt ∩ anc(t), and output values for the variables in Vtf = Bt \ Vtb. For example, the node

with bag {v2, v3} constructs an index with key v2 that returns all the matching values of v3.

Given such indexes, we can perform a full enumeration in constant delay starting from

the root (which will be the empty bag), and visiting the nodes of the tree T in a pre-order

fashion by following the indexes at each bag. This construction uses the same idea as d-

representations [OZ15b], and requires space O(|D|fhw(H)).

When Vb 6= ∅, the standard tree decomposition may not be useful to achieve constant

delay enumeration. For instance, for the example hypergraph of Figure 3.4, if the adorned

view has Vb = {v1, v5, v6}, then the pre-order traversal of the decomposition on the left will

fail to achieve constant delay. However, we can use a Vb-connex decomposition to successfully

answer any access request (e.g., the right decomposition in Figure 3.4). We first materialize

all the bags, except for the bag of tb. Then, we run a sequence of semi-joins in a bottom-up

manner, where we stop right before the node tb (since it is not materialized). For each node

t ∈ V (T) \ {tb}, we construct a hash index over the materialized result with key Vtb. Finally,

for the root node tb, we construct a hash index that tests membership for every hyperedge

of H that is contained in Vb. For the example in Figure 3.4, we construct one such index for

the hyperedge {v5, v6}.
Given a valuation vb over Vb, we answer the access request as follows. We start by

checking in constant time whether vb(v5, v6) is in the input. Then, we use the hash index

of the node {v2, v4, v1, v5} to find the matching values for v2, v4 (since v1, v5 are bound by

43

vb), and subsequently use the hash index of {v3, v2, v4} to find the matching values for v3;

similarly, we also traverse the right subtree starting of the root node to find the matching

values of v7. We keep doing this traversal until all tuples are enumerated. We describe next

how this algorithm generalizes for any adorned view and beyond constant delay.

3.4.2 Beyond Constant Delay

We will now sketch the construction and query answering for the general case. Along

with the tree decomposition, let us fix a delay assignment δ.

Construction Sketch. The first step is to apply for each node t in T (except tb) the

construction of the data structure from Theorem 1, with the following parameters: (i) hy-

pergraph H′ = (V ′, E ′) where V ′ = Bt and E ′ = EBt
, (ii) bound variables V ′b = Vtb, (iii)

τ = |D|δ(t), and (iv) u the fractional edge cover that minimizes ρ+
t . For the root node tb,

we simply construct a hash index that tests membership for every hyperedge of H that is

contained in Vb. This construction uses for each bag space Õ(|D| + |D|ρ+t −δ(t)·α(Vtf)), which

means that the compressed representation has size Õ(|D|+ |D|f).

The second step is to set run a sequence of semi-joins in a bottom-up fashion. However,

since the bags are not fully materialized anymore, this operation is not straightforward.

Instead, we set any entry of the dictionary Dt(w, vb) of the data structure at node t that is

1 to 0 if no valuation in the interval I(w) joins with its child bag. This step is necessary to

guarantee that if we visit an interval in the delay-balanced tree with entry 1, we are certain

to produce an output for the full query (and not only the particular bag). To perform this

check, we do not materialize the bag of the child, but we simply use its dictionary (hence

costing an extra factor of maxt δ(t) during preprocessing time).

Detailed Construction. Let us now look at the detailed construction of data structure.

Without loss of generality, we assume that all bound variables are present in a single bag tb

in the Vb-connex tree decomposition of the hypergraph H. This can be achieved by simply

merging all the bags t with Bt ⊆ Vb into tb which is also designated as the root. Note that the

delay assignment for root node is δtb
= 0. Let λ(T) denote the set of all root to leaf paths in T,

h be the δ-height of the decomposition and f be the Vb-connex fractional hypertree δ-width

of the decomposition. We also define the quantity u∗ = maxt∈V (T)\tb
(
∑

F uF) where u is the

fractional edge cover for bag Bt. We will show that in time TC = Õ(|D|+ |D|u∗+maxt δt), we

can construct required data structure using space S = Õ(|D|+ |D|f) for a given Vb-connex

tree decomposition T of δ-width f . The construction will proceed in two steps:

(i) Apply Theorem 1 to decomposition. We apply theorem 1 to each bag (except tb)

in the decomposition with the following parameters: (i)Ht = (Vt, E t) where Vt = Bt and

E t = EBt
, (ii)Vtb = anc(t)∩Bt and Vtf = Bt \ anc(t), and (iii) the edge cover u is the cover of

the node t in the decomposition corresponding to ρ+
t . Thus, in time Õ(|D|+ |D|u∗) we can

44

the construct delay-balanced tree Tt and the corresponding dictionary Dt for each bag other

than the root. The space requirement for each bag is no more than Õ(|D|+ |D|f).

However, the dictionary Dt needs to be modified for each bag since there can be dangling

tuples in a bag that may participate only in the join output of the bag but not in the join

output of the branch containing t. In the following description, we will use the notation vtb

to denote a valuation over variables Vtb. Note that vb is the valuation over Vb.

Algorithm 4: Modifying (D)t∈V (T)

input : Vb-bound decomposition T, (T ,D)t∈V (T)

1 forall t ∈ T \ {tb ∪ children of tb} in post-order fashion do

2 parent ← parent of t

3 forall w ∈ wL of Tparent /* wL represents all nodes at level L in Tparent */

4 do

5 forall heavy vparent
b ∈ w and Dparent(w, v

parent
b) = 1 do

6 forall k ← Qparent(v
parent
b , D) n I(w) /* computing (1F∈EVt RF) via box

decomposition */

7 do

8 if Algorithm 3 on t with vtb = πBparent∩Bt
(k) is empty for all k then

9 Dt(w, πVparent
b

(k)) = 0

(ii) Modify Dt using semijoins. Algorithm 4 shows the construction of the modified

dictionary Dt to incorporate the semijoin result. The goal of this step is to ensure that

if Dt(w, vtb) = 1, then there exists a set of valid valuations for all variables in the subtree

rooted at t. We will apply a sequence of semijoin operations in a bottom-up fashion which

we describe next.

Bottom Up Semijoin. In this phase, the bags are processed according to post-order

traversal of the tree in bottom-up fashion. The key idea is to stream over all heavy valuations

of a node in Tt and ensure that they join with some tuple in the child bags. Let Qt(v
t
b, D)

denote the NPRR join instance on the relations covering variables Vt where bound variables

are fixed to vtb. When processing a non-root (or non-child of root) node tj , a semijoin is

performed with its parent ti to flip all dictionary entries of ti from 1 to 0 if the entry does

not join with any tuple in tj on their common attributes Bti∩Btj . To perform this operation,

we stream over all tuples k ← Qti(v
ti
b , D) and check if πBti

∩Btj
(k) is present in the join output

of relations covering tj . This check in bag tj can be performed by invoking Algorithm 3 with

bound valuation πBti
∩Btj

(k) in time Õ(|D|δtj).
Algorithm Analysis. We will show that Algorithm 4 can be executed in time Õ(|D|u∗+maxt δt).

Proposition 13. Algorithm 4 executes in time Õ(|D|u∗+maxt δt).

45

Algorithm 5: Query Answering using Vb-connex decomposition

input : tree T, (T ,D)t∈V (T), vb

output: query answer Q(D)

1 Initialize tvisited ← 0 for all nodes, v ← vb, t← left child of tb, parent(t)← t

2 Check if RF (vb) 6= ∅, F ∈ E , F ⊆ C
3 forall nodes in pre-order traversal starting from t do

4 v ← πVtpred
(v)

5 vtf ← nextt(πVtb (v))

6 if vtf is empty and tvisited = 0 then

7 t← parent(t)

8 continue

9 if vtf is empty and tvisited = 1 then

10 tvisited ← 0

11 t← predecessor(t)

12 continue

13 tvisited ← 1

14 v ← (v, vtf)

15 if t is last node in the tree then

16 if RF (v) 6= ∅, F ∈ E then

17 emit v

18 go to line 4 /* If t is last node in tree, find next valuation for Vtf */

Proof. The main observation is that the join Qparent(v
t
b, D) n I(w) for all nodes at level L

in Tparent can be computed in time at most O(|D|u∗) as shown in Proposition 8. Since the

operation in Line 8 can be performed in time Õ(|D|δt) for each k and Tparent has at most

logarithmic number of levels, the total overhead of the procedure is dominated by the semijoin

operation where delay for bag t is largest. This gives us the running time of Õ(|D|u∗+maxt δt)

for the procedure.

Proposition 14. If Dt(w, vtb) = 1, then there exists a set of valuations for all variables in

the subtree rooted at t for vtb.

Proof. Consider a valuation such that Dt(w, vtb) = 1. If vtb does not join with the relations

of any child bag c, then Line 8 would be true, and Algorithm 4 would have flipped the

dictionary entry to 0. Thus, there exists a valuation for Vcf . Applying the same reasoning

inductively to each child bag c till we reach the leaf nodes gives us the desired result.

The modified dictionary, along with the enumeration algorithm, will guarantee that the

valuation of free variables that is output by Algorithm 3 for a particular bag will also produce

46

an output for the entire query. Note that the main memory requirement of Algorithm 4 is

only O(1) pointers and the data structures for each bag which takes Õ(|D|+ |D|f) space.

Query Answering Sketch. To answer an access query with valuation vb, we start from

the root node tb of the decomposition and check using the indexes of the node whether vb

belongs to all relations RF such that F ⊆ Vb. Then, we invoke Algorithm 3 on the leftmost

child t0 of tb, which outputs a new valuation in time at most Õ(|D|δ(t0)), or returns nothing.

As soon as we obtain a new output, we recursively proceed to the next bag in pre-order

traversal of T, and find valuations for the (still free) variables in the bag. If there are no

such valuations returned by Algorithm 3 for the node under consideration, this means that

the last valuation outputted by the parent node does not lead to any output. In this case,

we resume the enumeration for the parent node. Finally, when Algorithm 3 finishes the

enumeration procedure, then we resume the enumeration for the pre-order predecessor of

the current node (and not the parent). Intuitively, we go to the predecessor to fix our next

valuation, to enumerate the cartesian product of all free variables in the subtree rooted at

the least common ancestor of the current node and predecessor node.

The delay guarantee of Õ(|D|h) comes from the fact that, at every node t in the tree,

we will output in time Õ(|D|δ(t)) at most Õ(|D|δ(t)) valuations, one of which will produce a

final output tuple. Moreover, when a node has multiple children, then for a fixed valuation

of the node, the traversal of each child is independent of the other children: if one subtree

produces no result, then we can safely exit all subtrees and continue the enumeration of the

node.

Detailed Algorithm. We present the detailed query answering algorithm for the given Vb-

connex decomposition. We will first add some metadata to each bag in the decomposition

and then invoke algorithm 3 for each bag in a pre-order fashion.

Adding pointers for each bag. Consider the decomposition T along with (T ,D)t∈V (T)\tb

for each bag. We will modify T as follows: for each node of the tree, we fix a pointer

predecessor(t), that will point to the pre-order predecessor of the node. Intuitively, a pre-

order predecessor of a node is the last node where valuation for a free variable will be fixed

in the pre-order traversal of the tree just before visiting the current node. Figure 3.5 shows

an example of a modified decomposition. This transformation can be done in O(1) time.

For ease of description of the algorithm, we assume that the Algorithm 3 answering

Qη[vtb] for any bag t is accessible using the procedure nextt(v
t
b). Let Vtpred represent all bound

variables encountered in the pre-order traversal of the tree from tb to t (including bound

variables of t).

Algorithm Description. The algorithm begins from the root node and fixes the valuation

for all free variables in the root bag. Then, it proceeds to the next bag recursively considering

all ancestor variables as bound variables and finds a valuation for Bt \ anc(t). At the first

47

v1, v2

v3 | v1, v2

v4 | v3

v5 | v4 v6 | v4

v7 | v3

Figure 3.5: Example of the modified tree decomposition: the arrows in color are the prede-

cessor pointers

v5

v1 v2W

V

U T

RS

v3 v4

v1, v2, v3, v4

tb

v5 | v1, v2

Figure 3.6: Query hypergraph and corresponding C-bound tree decomposition with C =

{v1, v2, v3, v4}

visit to any bag, if the bound variables vtb do not produce an output in delay Õ(|D|δt), then

we proceed to the next valuation in the parent bag. However, if the enumeration for some

vtb did produce output tuples but the procedure nextt(v
t
b) has finished, we proceed to the

predecessor of the bag to fix the next valuation for variables in predecessor bag. In other

words, the ancestor variables remain fixed and we enumerate the cartesian product of the

remaining variables.

Lemma 10. Algorithm 5 enumerates the answers with delay at most Õ(|D|h) where h is the

δ-height of the decomposition tree. Moreover, it requires at most O(log |D|) memory

Proof. Since the size of the decomposition is a constant, we require at most O(1) pointers for

predecessors and O(1) pointers for storing the valuations of each free variable. Let n` be the

set of nodes at depth `. We will express the delay of the algorithm in terms of the delay of the

subtrees of every node. The delay at the root tb after checking whether valuation vb is in the

base relations is dtb
= O(

∑
t∈n1

dt). This is because the enumeration of each subtree rooted

48

at depth ` = 1 depends only on its ancestor variables and is thus independent of the other

subtrees at that depth. Since each node in the tree can produce at most |D|δt valuations

in Õ(|D|δt) time, the recursive expansion of δtb
gives δtb

= O(
∑

p∈λ(T) Õ(|D|
∑
t∈p δt)). The

largest term over all root to leaf paths is Õ(|D|h) which gives us the desired delay guarantee.

3.4.2.1 Comparing width notions

We briefly discuss the connection of fhw(H | Vb) for a Vb-connex decomposition with

other related hypergraph notions. The first observation is that the minimum edge cover

number ρ∗ is always an upper bound on fhw(H | Vb). On the other hand, the fhw(H | Vb) is

incomparable with fhw(H). Indeed, Example 20 shows that fhw(H | Vb) < fhw(H), and the

example below shows that the inverse situation can happen as well.

Example 19. The query R(x, y), S(y, z) is acyclic and has fhw(H) = 1. Let Vb = {x, z}.
The only valid Vb-bound decomposition is the one with two bags, {x, z}, {x, y, z}, and hence

fhw(H | Vb) = 2. In this scenario, fhw(H | Vb) > fhw(H).

Example 20. Figure 3.6 shows an example hypergraph and a Vb-bound tree decomposition

(the variables in Vb are colored red). For this example, fhw(H) = 2, but fhw(H | Vb) = 3/2.

Indeed, observe that we can cover the lower bag of the tree decomposition with a fractional

edge cover of value only 3/2.

3.5 The Complexity of Minimizing Delay

In this section, we study the computational complexity of choosing the optimal param-

eters for Theorem 1 and Theorem 2. We identify two objectives that guide the parameter

choice: (i) given a space constraint, minimize the delay, and (ii) given a delay constraint,

minimize the necessary space.

We start with the following computational task, which we call MinDelayCover. We

are given as input a full adorned view Qη over a CQ, the sizes |RF | of each relation F , and

a positive integer Σ as a space constraint. The size of Qη, denoted |Qη|, is defined as the

length of Qη when viewed as a word over alphabet that consists of a variable set V, dom

and atoms in the body of the query. The goal is to output a fractional edge cover u that

minimizes the delay in Theorem 1, subject to the space constraint S ≤ Σ.

We observe that we can express MinDelayCover as a linear fractional program with a

bounded and non-empty feasible region. Such a program can always be transformed to an

equivalent linear program [CC62], which means that the problem can be solved in polynomial

time.

49

minimize τ

subject to ρ log |D| ≤ log |Σ|+ α log τ

ρ =
∑

F∈E uF

∀x ∈ Vf :
∑

F :x∈F uF ≥ α
∀x ∈ V :

∑
F :x∈F uF ≥ 1

∀F ∈ E : 0 ≤ uF ≤ 1

α ≥ 1

(a) Linear program with bilinear con-

straint

minimize τ̂ /α

subject to ρ log |D| ≤ log |Σ|+ τ̂

ρ =
∑

F∈E uF

∀x ∈ Vf :
∑

F :x∈F uF ≥ α
∀x ∈ V :

∑
F :x∈F uF ≥ 1

∀F ∈ E : 0 ≤ uF ≤ 1

α, τ̂ ≥ 1

(b) Transformed linear fractional

program

Figure 3.7: Left to right: Bilinear program to minimize delay; Equivalent linear fractional

program

Proposition 15. MinDelayCover can be solved in polynomial time in the size of the

adorned view, the relation sizes, and the space constraint.

Proof. Consider the bilinear program in Figure 3.7a. Without loss of generality, assume that

all relations are of the same size. The first constraint ensures that |D|
∑
uF /τα ≤ Σ, while

the fourth constraint encodes the fractional edge covers. However, the program is not an

LP as α log τ is a bilinear constraint. We can easily transform it into a linear fractional

program as shown in Figure 3.7b where τ̂ = α log τ . Notice that we can replace the objective

in program 3.7a from τ to log τ without changing the optimal solution. The key idea is that

we can convert the linear fractional program to a linear program using the Charnes-Cooper

transformation [CC62] provided that the feasible region is bounded and non-empty. Our

claim follows from the observation that the region is indeed bounded since uF ≤ 1, α ≤
|Q|, τ̂ ≤ |Q|2 log |D| and non-empty as uF = 1, α = 1, τ = |D||Q| is a valid solution.

We also consider the inverse task, called MinSpaceCover: given as input a full adorned

view Qη over a CQ, the sizes |RF | of each relation F , and a positive integer ∆ as a delay

constraint, we want to output a fractional edge cover u that minimizes the space S in

Theorem 1, subject to the delay constraint τ ≤ ∆.

To solve MinSpaceCover, observe that we can simply perform a binary search over the

space parameter S, from |D| to |D|k, where k is the number of atoms in Q. For each space,

we then run MinDelayCover and check whether the minimum delay returned satisfies the

delay constraint.

Proposition 16. MinSpaceCover can be solved in polynomial time in the size of the

adorned view, the relation sizes, and the delay constraint.

50

We next turn our attention to how to optimize for the parameters in Theorem 2.

Suppose we are given a full adorned view Qη over a CQ, the database size |D|, and a

space constraint Σ, and we want to minimize the delay. If we are given a fixed Vb-connex tree

decomposition, then we can compute the optimal delay assignment δ and optimal fractional

edge cover for each bag as follows: we iterate over every bag in the tree decomposition, and

then solve MinDelayCover for each bag using the space constraint. It is easy to see that

the delay that we obtain in each bag must be the delay of an optimal delay assignment. For

the inverse task where we are given a Vb-connex tree decomposition, a delay constraint and

our goal is to minimize the space, we can apply the same binary search technique as in the

case of MinSpaceCover (observe the that δ-height is also easily computable in polynomial

time). In other words, we can compute the optimal parameters for our given objective in

polynomial time, as long as we are provided with a tree decomposition.

In the case where the tree decomposition is not given, then the problem of finding the

optimal data structure according to Theorem 2 becomes intractable. Indeed, we have already

seen that if we want to achieve constant delay τ = 1, then the tree decomposition that

minimizes the space S is the one that achieves the Vb-connex fractional hypertree width,

fhw(H | Vb). Since for Vb = ∅ we have fhw(H | Vb) = fhw(H), and finding the optimal

fractional hypertree width is NP-hard [GGS14], finding the optimal tree decomposition for

our setting is also NP-hard.

51

Chapter 4

Space-Time Tradeoffs for Answering Boolean
Conjunctive Queries

Recent work has made remarkable progress in developing data structures and algorithms

for answering set intersection problems [GKLP17], reachability oracles and directed reacha-

bility [AGHP11, Aga14, CP10b], histogram indexing [CL15, KRR13], and problems related

to document retrieval [AN16, LMNT15]. A fundamental algorithmic question related to

these problems is the trade-off between the space S necessary for data structures and the

answering time T for requests.

For example, consider the 2-Set Disjointness problem: given a universe of elements U

and a collection of m sets C1, . . . , Cm ⊆ U , we want to create a data structure such that

for any pair of integers 1 ≤ i, j ≤ m, we can efficiently decide whether Ci ∩ Cj is empty

or not. Previous work [CP10b, GKLP17] has shown that the space-time trade-off for 2-Set

Disjointness is captured by the equation S · T 2 = N2, where N is the total size of all sets.

The data structure obtained is conjectured to be optimal [GKLP17], and its optimality was

used to develop conditional lower bounds for other problems, such as approximate distance

oracles [AGHP11, Aga14]. Similar trade-offs have been independently established for other

data structure problems as well. In the k-Reachability problem [GKLP17, CP10a] we are

given as an input a directed graph G = (V,E), an arbitrary pair of vertices u, v, and the goal

is to decide whether there exists a path of length k between u and v. In the edge triangle

detection problem [GKLP17], we are given an input undirected graph G = (V,E), the goal

is to develop a data structure that takes space S and can answer in time T whether a given

edge e ∈ E participates in a triangle or not. Each of these problems has been studied in

isolation and, as a result, the algorithmic solutions are not generalizable due to a lack of a

comprehensive framework.

In this chapter, we cast many of the above problems into answering CQs over a relational

database. CQs are a powerful class of relational queries with widespread applications in data

analytics and graph exploration [XKD15, XD17b, DK18]. For example, by using the relation

R(x, y) to encode that element x belongs to set y, 2-Set Disjointness can be captured by the

52

following CQ: Q(y1, y2) = R(x, y1), R(x, y2). As we will see later, k-Reachability can also be

naturally captured by a CQ.

The insight of casting data structure problems into CQs over a database allows for a

unified treatment for developing algorithms within the same framework, which in turn al-

lows for improved algorithms and data structures. In particular, we can leverage the tech-

niques developed by the data management community through a long line of research on

efficient join evaluation [Yan81, NRR13, NPRR12], including worst-case optimal join algo-

rithms [NPRR12] and tree decompositions [GGS14, RS86]. The use of these techniques has

been a subject of previous work [AKKNS20, GS13, DK18, OS16, KNOZ20a, KNN+19] for

enumerating query results under static and dynamic settings. In this chapter, we build upon

the aforementioned techniques to develop a framework that allows us to obtain general space-

time tradeoffs for any Boolean CQ (a Boolean CQ is one that outputs only true or false). As

a consequence, we recover state-of-the-art tradeoffs for several existing problems (e.g., 2-Set

Disjointness as well as its generalization k-Set Disjointness and k-Reachability) as special cases

of the general trade-off. We can even obtain improved tradeoffs for some specific problems,

such as edge triangles detection, thus falsifying existing conjectures.

Our Contribution. We summarize our main technical contributions below.

1. A Comprehensive Framework. We propose a unified framework that captures

several widely-studied data structure problems. More specifically, we resort to the

formalism of CQs and the notion of Boolean adorned queries, where the values of some

variables in the query are fixed by the user (denoted as an access pattern) and aim

to evaluate the Boolean query. We then show how this framework captures the 2-

Set Disjointness and k-Reachability problems. Our first main result (Theorem 3) is an

algorithm that builds a data structure to answer any Boolean CQ under a specific access

pattern. Importantly, the data structure can be tuned to trade off space for answering

time, thus capturing the full continuum between optimal space and answering time. At

one extreme, the data structure achieves constant answering time by explicitly storing

all possible answers. At the other extreme, the data structure stores nothing, but we

execute each request from scratch. We show how to recover existing and new tradeoffs

using this general framework. The first main result may sometimes lead to suboptimal

tradeoffs since it does not take into account the structural properties of the query. Our

second main result (Theorem 4) combines tree decompositions of the query structure

with access patterns to improve space efficiency. We then show how this algorithm can

handle Boolean CQs with negation.

2. Improved Algorithms. In addition to the main result above, we explicitly improve

the best-known space-time trade-off for the k-Reachability problem for k ≥ 4. For

any k ≥ 2, the trade-off of S · T 2/(k−1) = O(|E|2) was conjectured to be optimal

53

by [GKLP17], where |E| is the number of edges in the graph and was used to condi-

tionally prove other lower bounds on space-time tradeoffs. We show that for a regime

of answer time T , it can be improved to S ·T 2/(k−2) = O(|E|2), thus breaking the con-

jecture. To the best of our knowledge, this is the first non-trivial improvement for the

k-Reachability problem. We also refute a lower bound conjecture for the edge triangles

detection problem established by [GKLP17].

3. Conditional Lower Bounds. Finally, we show a reduction between lower bounds

for the problem of k-Set Disjointness for different values of k, which generalizes the

2-Set Disjointness to computing the intersection between k given sets, for k ≥ 2.

Organization. In the next section, we will formally describe the problem statement. Sec-

tion 4.2 describes the general algorithm applicable for any boolean CQ. This trade-off can

be further improved using tree decompositions in Section 4.3. Using the ideas introduced

in these two sections the children’s, we show how existing conjectures can be disproved in

Section 4.5. Lastly, we present some new lower bounds in Section 4.6.

4.1 Problem Statement

We say that an adorned query is Boolean if every head variable is bound. In this case, the

answer for every access request is also Boolean, i.e., true or false. We will use the concept of

adorned queries introduced in the previous chapter.

Given a Boolean adorned query Qη and an input database D, our goal is to construct

a data structure, such that we can answer any access request that conforms to the access

pattern η as fast as possible. Our goal is to study the relationship between the space of the

data structure S and the answering time T for a given adorned query Qη.

4.2 General Space-Time Tradeoffs

We can now state our first main theorem.

Theorem 3. Let Qη be a Boolean adorned query with hypergraph (V, E). Let u be any

fractional edge cover of V. Then, for any input database D, we can construct a data structure

that answers any access request in time O(T) and takes space

S = O

(
|D|+

∏
F∈E
|RF |uF /Tα

)

Proof. Let Vb = {x1, . . . , xk}. Recall that an access request a = (a1, . . . , ak) corresponds

to the query Q[a1/x1, . . . , ak/xk]; in other words, we substitute each occurrence of a bound

variable xi with the constant ai. Define the hypergraph Hb = (Vb, Eb), where Eb = {F ∩Vb |

54

F ∈ E}. We say that an access request a is valid if it is an answer for the query Qb

corresponding to Hb, i.e. a ∈ Qb(D). We can construct hash indexes of linear size O(|D|)
during the preprocessing phase so that we can check whether any access request is valid in

constant time O(1).

For every relation RF in the query, let RF (a) = σxi=ai|xi∈Vb∩F (RF). In other words,

RF (a) is the subrelation that we obtain once we filter out the tuples that satisfy the selection

condition implied by the access request.

If α is the slack for the fractional edge cover u, define ûF = uF /α for every F ∈
E . As we have discussed earlier, û = {ûF }F∈E is a fractional edge cover for the query

Q[a1/x1, . . . , ak/xk]: indeed, it is necessary to cover only the non-bound variables, since all

bound variables are replaced by constants in the query. Hence, using a worst-case optimal

join algorithm, we can compute the access request Q[a1/x1, . . . , ak/xk] with running time

T (a) =
∏
F∈E
|RF (a)|uF /α.

We can now describe the preprocessing phase and the data structure we build. The data

structure simply creates a hash index. Let J be the set of valid access requests such that

T (a) > T . For every a ∈ J , we add to the hash index a key-value entry, where the key is a

and the value the (boolean) answer to the access request Q[a1/x1, . . . , ak/xk].

We claim that the answer time using the above data structure is at most O(T). Indeed,

we first check whether a is valid, which we can do in constant time. If it is not valid, we

simply output no. If it is valid, we probe the hash index. If a exists in the hash index, we

obtain the answer in time O(1) by reading the value of the corresponding entry. Otherwise,

we know that T (a) < T and hence we can compute the answer to the access request in time

O(T).

It remains to bound the size of the data structure we constructed during the preprocessing

phase. Since the size is O(|J |), we will bound the size of J . Indeed, we have:

T · |J | ≤
∑
a∈J

T (a) =
∑
a∈J

∏
F∈E
|RF (a)|uF /α

=
∑
a∈J

11−1/α ·
(∏
F∈E
|RF (a)|uF

)1/α

≤
(∑

a∈J
1

)1−1/α

·
(∑

a∈J

∏
F∈E
|RF (a)|uF

)1/α

≤ |J |1−1/α ·
∏
F∈E
|RF |uF /α

55

Here, the first inequality follows directly from the definition of the set J . The second

inequality is Hölders inequality. The third inequality is an application of the query decom-

position lemma from [NRR13]. By rearranging the terms, we can now obtain the desired

bound.

We should note that Theorem 3 applies when the relation sizes are different; this gives

us sharper upper bounds compared to the case where each relation is bounded by the total

size of the input. Indeed, if using |D| as an upper bound on each relation, we obtain a space

requirement of O(|D|ρ∗/Tα) for achieving answering time O(T), where ρ∗ is the fractional

edge cover number. Since α ≥ 1, this gives us at worst a linear trade-off between space and

time, i.e., S · T = O(|D|ρ∗). For cases where α ≥ 1, we can obtain much better trade-off.

Example 21. Consider the query Qb...b(y1, . . . , yk) = R1(x, y1), R2(x, y2), . . . , Rk(x, yk). We

obtain an improved trade-off: S ·T k = O(|D|k). Note that this result matches the best-known

space-time trade-off for the k-Set Disjointness problem [GKLP17]. (Note that all atoms use

the same relation symbol R, so |Ri| = |D| for every i = 1, . . . , k.)

4.3 Space-Time Tradeoffs via Tree Decompositions

Theorem 3 does not always give us the optimal trade-off. For the k-reachability problem

with the adorned query Qbb(x1, xk+1) = R1(x1, x2), . . . , Rk(xk, xk+1), Theorem 3 gives a

trade-off S · T = |D|d(k+1)/2e, by taking the optimal fractional edge covering number ρ∗ =

d(k + 1)/2e and slack α = 1, which is far from efficient. In this section, we will show how to

leverage tree decompositions to further improve the space-time trade-off in Theorem 3.

Theorem 4. Let Qη be a Boolean adorned query with hypergraph H = (V, E). Consider any

Vb-connex tree decomposition of H. For some parametrization δ of the decomposition, let f

be its δ-width, and h be its δ-height. Then, for any input database D, we can construct a data

structure that answers any access request in time T = O(|D|h) in space S = O(|D|+ |D|f).

Proof. We recall some of the notation from Section 3.4. Let T = (T, A) denote the Vb-connex

tree decomposition with f as its δ-width, and h as its δ-height. For each node t ∈ T \ A,

we denote by anc(t) the union of all the bags for the nodes that are the ancestors of t,

Vtb = Bt ∩ anc(t) and Vtf = Bt \ Vtb. Intuitively, Vtb(Vtf) are the bound (resp. free) variables

for the bag t as we traverse the tree top-down.

Data Structure Construction We apply Theorem 3 to each bag (except the root bag)

in T with the following parameters: (i)Ht = (Vt, E t) where Vt = Bt and E t = EBt ; (ii) bound

variables are Vtb = anc(t)∩Bt; and (iii) fractional edge cover u corresponding to bag Bt. The

space requirement for the data structure corresponding to bag Bt is S = O(|D|+ |D|ρt(δ)) ≤

56

x1, x6

x2, x3, x4, x5 | x1, x6

| x2, x3 | x4, x5

Figure 4.1: C-connex decomposition for Example 22.

O(|D| + |D|f). This follows directly from the definition of δ(t) width of bag t which is

assumed to be at most f . Recall that the data structure stores a list of all access requests a

defined over the schema Vtb such that answering time T > O(|D|f). Let us call this stored

list as L(t).

Query Answering We now describe the query answering algorithm. Let C = {x1, . . . , xk}
and access request a = (a1, . . . , ak). We first need to check whether a is valid. If the request

is not valid, we can simply output no. This can be done in constant time after creating

hash indexes of size O(|D|) during the preprocessing phase. If the access request is valid,

the second step is to check whether Q(a) is true or false. Let P denote the set of bags that

are children of root bag. Then, for each bag Bt ∈ P, we check whether πVtb (a) ∈ L(t). If it is

stored, it means that that running time of πVtb (a) is greater than O(|D|δ(t)). If the entry for

πVtb (a) is false in the data structure, we can output false immediately since we know that no

output tuple can be formed by the subtree rooted at bag Bt.
If there is no entry for πVtb (a) in L(t), this means that answering time of evaluating the

join at node t is T ≤ O(|D|δ(t)). Thus, we can evaluate the join for the bag by fixing Vtb as

πVtb (a) using any worst-case optimal join algorithm, which guarantees that the total running

time is at most O(|D|δ(t)). If no output is generated, the algorithm outputs false since no

output tuple can be formed by subtree rooted at Bt. If there is output generated, then there

can be at most O(|D|δ(t)) tuples. For each of these tuples, we recursively proceed to the

children of bag Bt and repeat the algorithm. Each fixing of variables at bag t acts as the

bound variables for the children’s bag. In the worst case, all bags in T may require join

processing. Since the query size is a constant, it implies that the number of root to leaf

paths is also constant. Thus, the answering time is dominated by the longest root to leaf

path, i.e the δ-height of the decomposition. Thus, T = O(|D|
∑
t∈P δ(t)) = O(|D|h).

57

4.4 Extension to CQs with Negation

In this section, we present a simple but powerful extension of our result to adorned

Boolean CQs with negation. Given a query Q ∈ CQ¬, we build the data structure from The-

orem 4 for Q+ but impose two constraints on the decomposition: (i) no leaf node(s) contains

any free variable, (ii) for every negated relation R−, all variables of R− must appear together

as bound variables in some leaf node(s). In other words, there exists a leaf node such that

vars(R−) are present in it. It is easy to see that such a decomposition always exists. Indeed,

we can fix the root bag to be C = Vb, its child bag with free variables as vars(Q+) \ C
and bound variables as C, and the leaf bag, which is connected to the child of the root,

with bound variables as vars(Q−) without free variables. Observe that the bag containing

vars(Q+) free variables can be covered by only using the positive atoms since Q is safe. The

intuition is the following: during the query answering phase, we wish to find the join result

overall variables Vf before reaching the leaf nodes; and then, we can check whether there

the tuples satisfy the negated atoms or not, in O(1) time. The next example shows the

application of the algorithm to adorned path queries containing negation.

Example 22. Consider the query Qbb(x1, x6) = R(x1, x2),¬S(x2, x3), T (x3, x4),¬U(x4, x5),

V (x5, x6). Using the decomposition in Figure 4.1, we can now apply Theorem 4 to obtain

the trade-off S = O(|D|3/τ) and T = O(τ). Both leaf nodes only require linear space since a

single atom covers the variables. Given an access request x1 ← a, x6 ← b, we check whether

the answer for this request has been materialized or not. If not, we proceed to the query

answering phase and find at most O(τ) answers after evaluating the join in the middle bag.

For each of these answers, we can now check in constant time whether the tuples formed by

values for x2, x3 and x4, x5 are not present in relations S and U respectively.

For adorned queries where Vb ⊆ vars(Q−), we can further simplify the algorithm. In this

case, we no longer need to create a constrained decomposition since the check to see if the

negated relations are satisfied or not can be done in constant time at the root bag itself.

Thus, we can directly build the data structure from Theorem 4 using the query Q+.

Example 23 (Open Triangle Detection). Consider the query Qbb(x2, x3) = R1(x1, x2),

¬R2(x2, x3), R3(x1, x3), where Q− is ¬R2(x2, x3) and Q+ is R1(x1, x2), R3(x1, x3) with the

adorned view as Q+bb(x2, x3) = R1(x1, x2), R3(x1, x3). Observe that {x2, x3} ⊆ vars(Q−).

We apply Theorem 4 to obtain the trade-off S = O(|E|2/τ2) and T = O(τ) with root bag

C = {x2, x3}, its child bag with Vb = C and Vf = {x1}, and the leaf bag to be Vb = C and

Vf = ∅. Given an access request x2 ← a, x3 ← b, we check whether the answer for this request

has been materialized or not. If not, we traverse the decomposition and evaluating the join

to find if there exists a connecting value for x1. For the last bag, we simply check whether

(a, b) exists in R2 or not in O(1) time.

58

A note on optimality. It is easy to see that the algorithm obtained for Boolean CQs

with negation is conditionally optimal assuming the optimality of Theorem 4. Indeed, if

all negated relations are empty, the join query is equivalent to Q+, and the algorithm now

simply applies Theorem 4 to Q+. In example Example 23, assuming relation R2 is empty,

the query is equivalent to set intersection whose tradeoffs are conjectured to be optimal.

4.5 Path Queries

In this section, we present an algorithm for the adorned query P bb
k (x1, xk+1) =

R1(x1, x2), . . . , Rk(xk, xk+1) that improves upon the conjectured optimal solution. Before

diving into the details, we first state the upper bound on the trade-off between space and

query time.

Theorem 5 (due to [GKLP17]). There exists a data structure for solving P bb
k (x1, xk+1) with

space S and answering time T such that S · T 2/(k−1) = O(|D|2).

Note that for k = 2, the problem is equivalent to SetDisjointness with the space/time

trade-off as S · T 2 = O(N2). [GKLP17] also conjectured that the trade-off is essentially

optimal.

Conjecture 1 (due to [GKLP17]). Any data structure for P bb
k (x1, xk+1) with answering

time T must use space S = Ω̃(|D|2/T 2/(k−1)).

If k is not a constant, Conjecture 1 implies that Θ(|D|2) space is needed for achieving

O(1) answering time. Building upon Conjecture 1, [GKLP17] also showed a result on the

optimality of approximate distance oracles. Our results implies that Theorem 5 can be

improved further, thus refuting Conjecture 1. The first observation is that the trade-off

in Theorem 5 is only useful when T ≤ |D|. Indeed, we can always answer any boolean

path query in linear time using breadth-first search. Surprisingly, it is also possible to

improve Theorem 5 for the regime of small answering time as well. In what follows, we will

show the improvement for paths of length 4; we will generalize the algorithm for any length

in the next section.

4.5.1 Length-4 Path

Lemma 11. There exists a parameterized data structure for solving P bb
4 (x1, x5) that uses

space S and answering time T ≤
√
|D| that satisfies the trade-off S · T = O(|D|2).

For k = 4, Theorem 5 gives us the trade-off S · T 2/3 = O(|D|2) which is always worse

than the trade-off in Lemma 11. We next present our algorithm in detail.

Preprocessing Phase. Consider P bb
4 (x1, x5) = R(x1, x2), S(x2, x3), T (x3, x4), U(x4, x5).

Let ∆ be a degree threshold. We say that a constant a is heavy if its frequency on attribute

59

x3 is greater than ∆ in both relations S and T ; otherwise, it is light. In other words, a is

heavy if |σx3=a(S)| > ∆ and |σx3=a(T)| > ∆. We distinguish two cases based on whether

a constant for x3 is heavy or light. Let Lheavy(x3) denote the unary relation that contains

all heavy values, and Llight(x3) the one that contains all light values. Observe that we can

compute both of these relations in time O(|D|) by simply iterating over the active domain

of variable x3 and checking the degree in relations S and T . We compute two views:

V1(x1, x3) = R(x1, x2) ∧ S(x2, x3) ∧ Lheavy(x3)

V2(x3, x5) = Lheavy(x3) ∧ T (x3, x4) ∧ U(x4, x5)

We store the views as a hash index that, given a value of x1 (or x5), returns all matching

values of x3. Both views take space O(|D|2/∆). Indeed, |Lheavy| ≤ |D|/∆. Since we can

construct a fractional edge cover for V1 by assigning a weight of 1 to R and Lheavy, this gives

us an upper bound of |D|·(|D|/∆) for the query output. The same argument holds for V2. We

also compute the following view for light values: V3(x2, x4) = S(x2, x3),Llight(x3), T (x3, x4).

This view requires space O(|D| ·∆), since the degree of the light constants is at most ∆. We

can now rewrite the original query as P bb
4 (x1, x5) = R(x1, x2), V3(x2, x4), U(x4, x5).

The rewritten query is a three path query. Hence, we can apply Theorem 4 to create a data

structure with answering time T = O(|D|/∆) and space S = O(|D|2/(|D|/∆)) = O(|D| ·∆).

Query Answering. Given an access request, we first check whether there exists a 4-path

that goes through some heavy value in Lheavy(x3). This can be done in time O(|D|/∆) using

the views V1 and V2. Indeed, we obtain at most O(|D|/∆) values for x3 using the index for

V1, and O(|D|/∆) values for x3 using the index for V3. We then intersect the results in time

O(|D|/∆) by iterating over the O(|D|/∆) values for x3 and checking if the bound values for

x1 and x5 from a tuple in V1 and V2 respectively. If we find no such 4-path, we check for a

4-path that uses a light value for x3. From the data structure we have constructed in the

preprocessing phase, we can do this in time O(|D|/∆).

Tradeoff Analysis. From the above, we can compute the answer in time T = O(|D|/∆).

From the analysis in the preprocessing phase, the space needed is S = O(|D|2/∆ + |D| ·∆).

Thus, whenever ∆ ≥
√
|D|, the space becomes S = O(|D| ·∆), completing our analysis.

4.5.2 General Path Queries

We can now use the algorithm for the 4-path query to improve the space-time trade-off

for general path queries of length greater than four.

Theorem 6. Let D be an input instance. For k ≥ 4, there is a data structure for P bb
k (x1, xk+1)

with space S = O(|D| ·∆) and answer time T = O
(

(|D|∆)
k−2

2

)
for ∆ ≥

√
|D|.

Proof. Fix some ∆ ≥
√
|D|. We construct the data structure for a path of length k recur-

sively. The base case is when k = 4, with answer time T4 = |D|/∆ and space S4 = |D| ·∆.

60

In the recursive step, similar to the previous section, we set

√
|D|
∆ as the degree threshold

for any constant that variables x1 and xk+1 can take. Let L1
heavy,Lk+1

heavy be unary relations

that store the heavy values for x1, xk+1 respectively. We compute and store the result of

V (x1, xk+1) = L1
heavy(x1), R1(x1, x2), . . . , Rk(xk, xk+1),Lk+1

heavy(xk+1).

This view has size bounded by
(
|D| ·

√
∆
|D|

)2
= |D| ·∆. We consider the following queries:

V bb
1 (x2, xk+1) = R2(x2, x3), . . . , Rk(xk, xk+1).

V bb
2 (x1, xk) = R1(x1, x2), . . . , Rk−1(xk−1, xk).

both of which correspond to the (k− 1)-path, so we can recursively apply the data structure

here. Let Sk, Tk be the space and time for k-path. For space, we have following observation:

Sk = |D| ·∆ + Sk−1

As S4 = |D| ·∆, we obtain Sk = O(|D| ·∆).

Given an access request, we answer it by distinguishing two cases. If x1, xk+1 is heavy,

we probe the stored view V (x1, xk+1) in time O(1). If one of them is light (say w.l.o.g. x1),

we call recursively the data structure V1 for every one of the ≤
√
|D|/∆ values connected

with x1. This gives us the following recurrence formula for answer time:

Tk = (|D|/∆)1/2 · Tk−1

Solving the recursive formula gives us Tk = (|D|/∆)(k−2)/2.

The space-time trade-off obtained from Theorem 5 is S · T 2/(k−2) = O(|D|2), but only

for T ≤ |D|(k−2)/4. To compare it with the trade-off of S · T 2/(k−1) = O(|D|2) obtained

from Theorem 5, it is instructive to look at Figures 4.2a and 4.2b, which plot the space-time

tradeoffs for k = 4 and k = 6 respectively. For k = 4, we can see that the new trade-off

is better for T ≤ |D|1/2. Once T exceeds |D|1/2, it is still better to use the data structure

from Theorem 6 until Theorem 5 takes over. For k = 6, the switch point also happens at

T = |D|1/2 but requires more space. In general, as k grows, the new trade-off line becomes

flatter and approaches Theorem 5.

4.6 Lower Bounds

In this section, we study the lower bounds for adorned star and path queries. We first

present conditional lower bounds for the k-Set Disjointness problem using the conditional op-

timality of `-Set Disjointness where ` < k. First, we review the known results from [GKLP17]

starting with the conjecture for k-Set Disjointness .

61

0 1 3/2

Answering time log|D| T

1

2

Sp
ac

e
lo

g
|D
|S

Theorem 18
Theorem 21
BFS

(a) Tradeoff for P bb
4 (x1, x5)

0 1 5/2

Answering time log|D| T

1

2

Sp
ac

e
lo

g
|D
|S

Theorem 18
Theorem 21
BFS

(b) Tradeoff for P bb
6 (x1, x7)

Figure 4.2: Space/time tradeoffs for path query of length k = 4, 6. The line in blue (dashed)

shows the trade-off obtained from Theorem 5. The highlighted portion in brown shows the

improved trade-off using BFS. The red curve is the new trade-off obtained using Theorem 6.

The green portion of the original curve is still the best possible when Theorem 6 is not

applicable.

Conjecture 2 (due to [GKLP17]). Any data structure for k-Set Disjointness problem that

answers queries in time T must use space S = Ω(|D|k/T k).

Conjecture 2 was shown to be conditionally optimal based on conjectured lower bound

for the (k+1)-Sum Indexing problem, however, it was subsequently shown to be false [KP19],

which implies that Conjecture 2 is still an open problem. Conjecture 2 can be further

generalized to the case when input relations are of unequal sizes as follows.

Conjecture 3. Any data structure for Qb...b
∗ (y1, . . . , yk) = R1(x, y1), . . . , Rk(x, yk) that an-

swers queries in time T must use space S = Ω(Πk
i=1|Ri|/T k).

We now state the main result for star queries.

Theorem 7. Suppose that any data structure for Qb...b
∗ (y1, . . . , yk) with answering time T

must use space S = Ω(Πk
i=1|Ri|/T k). Then, any data structure for Qb...b

∗ (y1, . . . , y`) with

answering time T must use space S = Ω(Π`
i=1|Ri|/T `), for 2 ≤ ` < k.

Proof. Let ∆ = T be the degree threshold for the k bound variables y1, . . . yk. If any of the

k variables is light (i.e |σyi=a[yi]Ri(yi, x)| ≤ ∆), then we can check whether the intersection

between k sets is empty or not in time O(T) by indexing all relations in a linear time

preprocessing phase. The remaining case is when all k variables are heavy. We now create

` views V1, . . . V` by arbitrarily partitioning the k relations into the ` views followed by

materializing the join of all relations in each view. Let view Vi contain the join of ki relations.

Then, |Vi| = O((ΠR∈Ji |R|/T ki−1)) where Ji is the set of all relations assigned to view Vi.

We have now reduced the k-star query where all k variables are heavy into an instance

of `-star query where the input relations are V1, . . . , V`. Suppose that there exists a data

62

structure that can answer queries in time T using space S = o(Π`
i=1|Vi|/T `). Then, we can

use such a data structure for answering the original query where all variables are heavy. The

space used by this oracle is

S = o(Π`
i=1|Vi|/T `) = o((Π`

i=1ΠR∈Ji |R|/T ki−1) · (1/T `))
= o((Πk

i=1|Ri|/T k−`) · (1/T `)) = o(Πk
i=1|Ri|/T k)

which contradicts the space lower bound for k-star.

Theorem 7 creates a hierarchy for k-Set Disjointness , where the optimality of smaller set

disjointness instances depends on larger set disjointness instances. Next, we show conditional

lower bounds on the space requirement of path queries. We begin by proving a simple result

for optimality of P bb
2 (equivalent to 2-Set Disjointness) assuming the optimality of P bb

3 query.

Theorem 8. Suppose that any data structure for P bb
3 that answers queries in time T , uses

space S such that S ·T = Ω(|D|2). Then, for P bb
2 , it must be the case that any data structure

that uses space S = O(|D|2/T 2), the answering time is Ω(T).

Proof. Let ∆ = T be the degree threshold for all vertices. If both bound variables in

P bb
3 are heavy, then we can answer the query in constant time using space Θ(|D|2/T 2) by

materializing the answers to all heavy-heavy queries. In the remaining cases, at least one of

the bound valuations is light. Without loss of generality, suppose x1 is light. Then, we can

make ∆ calls to the oracle for query P bb
2 (x2, x4) = R2(x2, x3), R3(x3, x4).

Suppose that there exists a data structure with space O(|D|2/T 2) for P bb
2 (x2, x4) and

answering time o(T). Then, we can answer P bb
3 with light x1 in time o(T 2). This improves

the trade-off for P bb
3 since the product of space usage and answering time is o(|D|2) for any

non-constant T , coming to a contradiction.

Using a similar argument, it can be shown that the conditional optimality of Theorem 6

for k = 4 implies that S · T = Ω(|D|2) trade-off for P bb
3 is also optimal (but only for the

range T ≤
√
|D| when the result is applicable).

63

Chapter 5

Unranked Enumeration of Conjunctive Queries
with Projections

The efficient evaluation of join queries over static databases is a fundamental problem

in data management. There has been a long line of research on the design and analysis of

algorithms that minimize the total runtime of query execution in terms of the input and

output size [Yan81, NRR13, NPRR12]. However, in many data processing scenarios it is

beneficial to split query execution into two phases: the preprocessing phase, which computes

a space-efficient intermediate data structure, and the enumeration phase, which uses the data

structure to enumerate the query results as fast as possible, with the goal of minimizing the

delay between outputting two consecutive tuples in the result. This distinction is beneficial

for several reasons. For instance, in many scenarios, the user wants to see one (or a few)

results of the query as fast as possible: in this case, we want to minimize the time of the

preprocessing phase, such that we can output the first results quickly. On the other hand,

a data processing pipeline may require that the result of a query is accessed multiple times

by a downstream task: in this case, it is better to spend more time during the preprocessing

phase, to guarantee a faster enumeration with smaller delay.

Previous work in the database literature has focused on finding the class of queries that

can be computed with O(|D|) preprocessing time (where D is the input database instance)

and constant delay during the enumeration phase. The main result in this line of work

shows that full (i.e., without projections) acyclic Conjunctive Queries (CQs) admit linear

preprocessing time and constant delay [BDG07a]. If the CQ is not full but its free variables

satisfy the free-connex property, the same preprocessing time and delay guarantees can still

be achieved. It is also known that for any (possibly non-full) acyclic CQ, it is possible to

achieve linear delay after linear preprocessing time [BDG07a]. Prior work that uses structural

decomposition methods [GS13] generalized these results to arbitrary CQs with free variables

and showed that the projected solutions can be enumerated with O(|D|fhw) delay. Moreover,

a dichotomy about the classes of conjunctive queries with fixed arities where such answers

can be computed with polynomial delay (WPD) is also shown. When the CQ is full but not

64

acyclic, factorized databases uses O(|D|fhw) preprocessing time to achieve constant delay,

where fhw is the fractional hypertree width [GGS14] of the query. We should note here

that we can always compute and materialize the result of the query during preprocessing to

achieve constant delay enumeration but at the cost of using exponential amount of space in

general.

The aforementioned prior work investigates specific points in the preprocessing time-delay

trade-off space. While the story for full acyclic CQs is relatively complete, the same is not true

for general CQs, even for acyclic CQs with projections. For instance, consider the simplest

such query: Qtwo-path = πx,z(R(x, y)1S(y, z)), which joins two binary relations and then

projects out the join attribute. For this query, [BDG07a] ruled out a constant delay algorithm

with linear time preprocessing unless the boolean matrix multiplication exponent is ω = 2.

However, we can obtain O(|D|) delay with O(|D|) preprocessing time. We can also obtain

O(1) delay with O(|D|2) preprocessing by computing and storing the full result. It is worth

asking whether there are other interesting points in this trade-off between preprocessing

time and delay. Towards this end, seminal work by Kara et al. [KNOZ20a] showed that

for any hierarchical CQ1 (possibly with projections), there always exists a smooth trade-off

between preprocessing time and delay. This is the first improvement over the results of

Bagan et al. [BDG07a] in over a decade for queries involving projections. Applied to the

query Qtwo-path, the main result of of [KNOZ20a] shows that for any ε ∈ [0, 1], we can obtain

O(|D|1−ε) delay with O(|D|1+ε) preprocessing time.

In this chapter, we continue the investigation of the trade-off between preprocessing time

and delay for CQs with projections. We focus on two classes of CQs: star queries, which are

a popular subset of hierarchical queries, and a useful subset of non-hierarchical queries known

as path queries. We focus narrowly on these two classes for two reasons. First, star queries are

of immense practical interest given their connections to set intersection, set similarity joins

and applications to entity matching (we refer the reader to [DHK20] for an overview). The

most common star query seen in practice is Qtwo-path [BMT20]. The same holds true for path

queries, which are fundamental in graph processing. Second, as we will see in this chapter,

even for the simple class of star queries, the trade-off landscape is complex and requires the

development of novel techniques. We also present a result on another subset of hierarchical

CQs that we call left-deep. Our key insight is to design enumeration algorithms that depend

not only on the input size |D|, but are also aware of other data-specific parameters such as

the output size. To give a flavor of our results, consider the query Qtwo-path, and denote by

OUT1 the output of the corresponding query without projections, R(x, y)1S(y, z). We can

show the following result.

1Hierarchical CQs are a strict subset of acyclic CQs.

65

Theorem 9. Given a database instance D, we can enumerate the output of Qtwo-path =

πx,z(R(x, y)1S(y, z)) with preprocessing time O(|D|) and delay O(|D|2/|OUT1|).

At this point, the reader may wonder about the improvement obtained from the above

result. [KNOZ20a] implies that with preprocessing time O(|D|), the delay guarantee in the

worst-case is O(|D|). This raises the question whether the delay from Theorem 9 is truly

an algorithmic improvement rather than an improved analysis of [KNOZ20a]. We answer

the question positively. Specifically, we show that there exists a database instance where

the delay obtained from Theorem 9 is a polynomial improvement over the actual guaran-

tee [KNOZ20a] and not just the worst-case. When the preprocessing time is linear, the delay

implied by our result is dependent on the size of the full join. For the worst-case output size

where |OUT1| = Θ(|D|2), we actually obtain the best possible delay, which will be constant.

Compare this to the result of [KNOZ20a], which would require nearly O(|D|2) preprocessing

time to achieve the same guarantee. On the other hand, if |OUT1| = Θ(|D|), we obtain only

a linear delay guarantee of O(|D|)2. The reader may wonder how our result compares in

general with the trade-off in [KNOZ20a] in the worst-case; we will show that we can always

get at least as good of a trade-off point as the one in [KNOZ20a]. Figure 5.1 summarizes the

prior work and the results present in this chapter.

Our Contribution. In this chapter, we improve the state-of-the-art on the preprocessing

time-delay trade-off for a subset of CQs with projections. We summarize our main technical

contributions below (highlighted in Figure 5.1):

1. Our main contribution consists of a novel algorithm (Theorem 11) that achieves output-

dependent delay guarantees for star queries after linear preprocessing time. Specifically,

we show that for the query πx1,...,xk(R1(x1, y) 1 · · · 1 Rk(xk, y)) we can achieve delay

O(|D|k/(k−1)/|OUT1|1/k−1) with linear preprocessing. Our key idea is to identify an

appropriate degree threshold to split a relation into partitions of heavy and light, which

allows us to perform efficient enumeration. For star queries, our result implies that

there exists no smooth trade-off between preprocessing time and delay guarantees as

stated in [KNOZ20a] for the general class of hierarchical queries.

2. We introduce the novel idea of interleaving join query computation in the context of

enumeration algorithms which forms the foundation for our algorithms, and may be

of independent interest. Specifically, we show that it is possible to union the output

of two algorithms A and A′ with δ delay guarantee where A enumerates query results

with δ delay guarantees but A′ does not. This technique allows us to compute a subset

of a query on-the-fly when enumeration with good delay guarantees is impossible.

2We do not need to consider the case where |OUT1| ≤ |D|, since then we can simply materialize
the full result during the preprocessing time using constant delay enumeration for queries without
projections [OZ15a].

66

Queries Preprocessing Delay Source

Arbitrary acyclic CQ O(|D|) O(|D|) [BDG07a]

Free-connex CQ (projections) O(|D|) O(1) [BDG07a]

Full CQ O(|D|fhw) O(1) [OS16]

Full CQ O(|D|subw log |D|) O(1) [AKNS17]

Hierarchical CQ

(with projections)
O(|D|1+(w−1)ε) O(|D|1−ε), ε ∈ [0, 1] [KNOZ20a]

Star query with k relations

(with projections)
O(|D|) O(|D|

k/(k−1)

|OUT1|1/(k−1)) this thesis

Path query with k relations

(with projections)
O(|D|2−ε/(k−1)) O(|D|ε), ε ∈ [0, 1) this thesis

Left-deep hierarchical CQ

(with projections)
O(|D|) O(|D|k/|OUT1|) this thesis

Two path query

(with projections)
O(|D|ω·ε) O(|D|1−ε), ε ∈ [2

ω+1 , 1] this thesis

Figure 5.1: Preprocessing time and delay guarantees for different queries. |OUT1| denotes

the size of join query under consideration but without any projections. subw denotes the

submodular width of the query. For each class of query, the total running time is O(min{|D| ·
|OUTπ|, |D|subw log |D|+ |OUTπ|}) where |OUTπ| denotes the size of the query result.

3. We show how fast matrix multiplication can be used to obtain a trade-off between

preprocessing time and delay that further improves upon the trade-off in [KNOZ20a].

We also present an algorithm for left-deep hierarchical queries with linear preprocessing

time and output-dependent delay guarantees.

4. Finally, we present new results on preprocessing time-delay trade-off for a non-hierarchical

query with projections, for the class of path queries. A path query has the form

πx1,xk+1
(R1(x1, x2) 1 · · · 1 Rk(xk, xk+1)). Our results show that we can achieve delay

O(|D|ε) with preprocessing time O(|D|2−ε/(k−1)) for any ε ∈ [0, 1).

Organization. Section 5.1 overviews the prior done for join-project queries. Section 5.2

presents we present useful lemmas that are used frequently throughout the chapter and the

main result for star queries. Towards the end of the section, we also discuss how matrix

multiplication can be useful. Section 5.3 is dedicated to the study of a class of hierarchical

67

queries that we call left-deep. Finally, Section 5.4 presents a novel trade-off for the important

class of path queries.

5.1 Related Work

We overview prior work on static query evaluation for acyclic join-project queries. The

result of any acyclic conjunctive query can be enumerated with constant delay after linear-

time preprocessing if and only if it is free-connex [BDG07a]. This is based on the conjecture

that Boolean multiplication of n × n matrices cannot be done in O(n2) time. Acyclic-

ity itself is necessary for having constant delay enumeration: A conjunctive query admits

constant delay enumeration after linear-time preprocessing if and only if it is free-connex

acyclic [BB13]. This is based on a stronger hypothesis that the existence of a triangle in

a hypergraph of n vertices cannot be tested in time O(n2) and that for any k, testing the

presence of a k-dimensional tetrahedron cannot be tested in linear time. We refer the reader

to an overview of pre-2015 for problems and progress related to constant delay enumera-

tion [Seg15a]. Prior work also exhibits a dependency between the space and enumeration

delay for conjunctive queries with access patterns [DK18]. It constructs a succinct rep-

resentation of the query result that allows for enumeration of tuples over some variables

under value bindings for all other variables. As noted by [KNOZ20a], it does not support

enumeration for queries with free variables, which is also its main contribution. Our work

demonstrates that for a subset of hierarchical queries, the trade-off shown in [KNOZ20a] is

not optimal. Our work introduces fundamentally new ideas that may be useful in improving

the trade-off for arbitrary hierarchical queries and enumeration of UCQs. There has also

been some experimental work by the database community on problems related to enumerat-

ing join-project query results efficiently but without any formal delay guarantees. Seminal

work [XKD15, XD17b, XSD17, DK21] has studied how compressed representations can be

created apriori that allow for faster enumeration of query results. For the two path query, the

fastest evaluation algorithm (with no delay guarantees) evaluates the projection join output

in time O(|D| · |OUTπ|
(ω−1)

(ω+1) + |D|
2(ω−1)

(ω+1) · |OUTπ|
2

(ω+1)) [DHK20, AP09]. For star queries, there

is no closed form expression but fast matrix multiplication can be used to obtain instance

dependent bounds on running time. Also related is the problem of dynamic evaluation of

hierarchical queries. Recent work [KNN+19, KNOZ20a, BKS17b, BKS18] has studied the

trade-off between amortized update time and delay guarantees. Some of our techniques may

also lead to new insights and improvements in existing algorithms. Prior work in differ-

ential privacy [RCWH+20, LCFK21, CCW+21, MCCJ21, ACFR20, CCC+20, RCGvDMJ],

directed graphical models [CRJ20], and consistent query answering [KOW21] may also ben-

efit from some of our techniques.

68

In practice, most of the previous work has considered join-project query evaluation by

pushing down the projection operator in the query plan [GHQ95a, BGI97, GHQ95b, CG85].

LevelHeaded [ALOR18] and EmptyHeaded [ALT+17] are general linear algebra systems that

use highly optimzed set intersections to speed up evaluation of cyclic joins, counting queries

and support projections over them. Since Intel MKL is also a linear algebra library, one can

also use EmptyHeaded as the underlying framework for performing matrix multiplication.

For group-by aggregate queries, [XD19] also used worst-case optimal join algorithms to avoid

evaluating binary joins at a time and materializing the intermediate results. However, the

running time of their algorithm is not output sensitive with respect to the final projected

result.

5.2 Main Result

In this work, our goal is to study the relationship between the preprocessing time Tp

and delay δ for a given CQ Q. Ideally, we would like to achieve constant delay in linear

preprocessing time. As Table 5.1 shows, when Q is full, with Tp = O(|D|fhw), we can

enumerate the results with constant delay [OS16]. In the particular case where Q is acyclic

i.e. fhw = 1, we can achieve constant delay with only linear preprocessing time. On the

other hand, [BDG07a] shows that for every acyclic CQ, we can achieve linear delay O(|D|)
with linear preprocessing time O(|D|).

Recently, [KNOZ20a] showed that it is possible to get a trade-off between the two ex-

tremes, for the class of hierarchical queries. Note that hierarchical queries are acyclic but

not necessarily free-connex. This is the first non-trivial result that improves upon the linear

delay guarantees given by [BDG07a] for queries with projections.

Theorem 10 ([KNOZ20a]). Consider a hierarchical CQ Q with factorization width w, and

an input instance D. Then, for any ε ∈ [0, 1] there exists an algorithm that can preprocess

D in time Tp = O(|D|1+(w−1)ε) and space Sp = O(|D|1+(w−1)ε) such that we can enumerate

the query output with

delay δ = O(|D|1−ε) space Se = O(1).

The factorization width w of a query, originally introduced as s↑ [OZ15a], is a generaliza-

tion of the fractional hypertree width from boolean to arbitrary CQs. For πx1,...,xk(Q
∗
k), the

factorization width is w = k. Observe that preprocessing time Tp must always be smaller

than the time required to evaluate the full join result. This is because if Tp = Θ(|OUT1|), we

can evaluate the full join and deduplicate the projection output, allowing us to obtain con-

stant delay in the enumeration phase. Therefore, the trade-off is more meaningful when ε can

only take values between 0 and (log|D| |OUT1| − 1)/(w− 1). In the worst-case, |OUT1| = |D|w

69

and ε can take any value between 0 and 1 (both inclusive), which is captured by the general

result above.

5.2.1 Helper Lemmas

Before we present the proof of our main results, we discuss three useful lemmas which

will be used frequently, and may be of independent interest for enumeration algorithms. The

first two lemmas are based on the key idea of interleaving query results which we describe

next. We note that idea of interleaving computation has been explored in the past to develop

dynamic algorithms with good worst-case bounds using static data structures [OVL81].

We say that an algorithm A provides no delay guarantees to mean that its delay guarantee

can be as large as its total execution time. In other words, if an algorithm requires time T

to complete, its delay guarantee is upper bounded by T . Since we are using the uniform-cost

RAM model, each operation takes one unit of time.

Lemma 12. Consider two algorithms A,A′ and two positive integers T and T ′ provided as

a part of the input such that

1. A enumerates query results in total time at most T with no delay guarantees.

2. A′ enumerates query results with delay δ and runs in total time at least T ′.

3. The outputs of A and A′ are disjoint.

Then, the union of the outputs of A and A′ can be enumerated with delay c · δ ·max{1, T/T ′}
for some constant c.

Proof. Let η and γ denote two positive values to be fixed upon later. Note that after δ time

has passed, we can emit one output result from A′. But since we also want to compute

the output from A that takes overall time T , we need to slow down the enumeration of A′

sufficiently so that we do not run out of output from A′. This can be done by interleaving

the two algorithms in the following way: we run A′ for γ operations, pause A′, then run A
for η operations, pause A and resume A′ for γ operations, and so on. The pause and resume

takes constant time (say cpause and cresume) in RAM model where the state of registers and

program counter can be stored and retrieved enabling pause and resume of any algorithm.

Our goal is to find a value of η and γ such that A′ does not terminate until A has finished.

This condition is satisfied when the number of iterations of A′ is equal to the number of

iterations of A. This gives us the condition that,

T ′/γ ≤ (Time taken by A′)/γ = (Time taken by A)/η ≤ T/η

Thus, any value of η ≤ T · γ/T ′ is acceptable. We fix η to be any positive integer

constant and then set γ to be the smallest positive integer that satisfies the condition. The

70

delay is bounded by the product of worst-case number of iterations between two answers of

A′ and the work done between each iteration which is (δ/γ) · (γ + η + cpause + cresume) ≤
δ · (1 + T/T ′ + (cpause + cresume)/γ) = O(δ ·max{1, T/T ′}).

Lemma 12 tells us that as long as T = O(T ′), the output of A and A′ can be combined

without giving up on delay guarantees by pacing the output of A′. Note that we need to

know the exact values of T and T ′. This can be accomplished by calculating the number

of operations in the algorithms A and A′ to bound their running time. The next lemma

introduces our second key idea of interleaving stored output result with on-the-fly query

computation. Algorithm 6 describes the detailed algorithm for Lemma 13.

Lemma 13. Consider an algorithm A that enumerates query results in total time at most T

with no delay guarantees, where T is known in advance. Suppose that J output tuples have

been stored apriori with no duplicate tuples, where J ≤ T . Then, there exists an algorithm

that enumerates the output with delay guarantee δ = O(T/J).

Proof. Let δ be a parameter to be fixed later. Suppose the J output results are already

stored in a hash set and create an empty hash set H that will be used for deduplication.

Using a similar interleaving strategy as above, we emit one result from J and allow algorithm

A to run for δ time. Whenever A wants to emit an output tuple, it probes the hash set H

and J , emits t only if t does not appear in H and J , followed by inserting t in H. Inserting

t in H will ensure that A does not output duplicates3. Each probe takes O(1) time, so the

total running time of A is O(T). Our goal is to choose δ such that A terminates before the

materialized output J runs out. This condition is satisfied when δ ·J ≥ O(T) which gives us

δ = O(T/J). It can be easily checked that no duplicated result is emitted and O(δ) delay

is guaranteed between every pair of consecutive results. Again, observe that we need the

algorithm A to be pausable, which means that we should be able to resume the execution

from where we left off. This can be achieved by storing the contents of all registers in the

memory and loading it when required to resume execution.

The final helping lemma allows us to enumerate the union of (possibly overlapping) results

of m different algorithms where each algorithm outputs its result according to a total order

�, such that the union is also enumerated in sorted order according to �. This lemma is

based on the idea presented as Fact 3.1.4 in [Kaz13].

Lemma 14. Consider m algorithms A1,A2, · · · ,Am such that each Ai enumerates its output

Li with delay O(δ) according to the total order �. Then, the union of their output can be

enumerated (without duplicates) with O(m · δ) delay and in sorted order according to �.

3If A guarantees that it will generate results with no duplicates, then there is no need to use H.

71

Algorithm 6: Deduplicate(J,A)

Input : Materialized output list J , Algorithm A with known completion time T

Output: Deduplicated result of A
1 δ ← O(T/J), ptr← 0, dedup← 0

2 H ← ∅ /* empty hash-set */

3 while ptr < |J | do

4 output J [ptr] /* output result from J to maintain delay guarantee */

5 ptr← ptr + 1, counter← 0

6 while counter ≤ δ do

7 if A has not completed then

8 Execute A for c time /* c is a constant */

9 foreach t ∈ t /* let t be the output tuples generated (if any) */

10 do

11 if t 6∈ J and t 6∈ H then

12 output t

13 insert t in H

14 counter← counter + c;

Proof. We describe algorithm 7. For simplicity of exposition, we assume that Ai outputs a

null value when it finishes enumeration. Note that results enumerated by one algorithm are

in order, thus it always outputs the locally minimum result (ei) over the remaining result to

be enumerated. algorithm 7 goes over all locally minimum results over all algorithms and

outputs the smallest one (denoted w) as globally minimum result (line 5). Once a result

is enumerated, each Ai needs to check whether its ei matches w. If yes, then Ai needs to

update its locally minimum result by finding the next one. Then, algorithm 7 just repeats

this loop until all algorithms finish enumeration.

Observe that one distinct result is enumerated in each iteration of the while loop. It takes

O(m) time to find the globally minimum result and O(m · δ) to update all local minimum

results (line 7-line 9). Thus, Algorithm 7 has a delay guarantee of O(m · δ).

Directly implied by Lemma 14 is the fact that the list merge problem can be enumer-

ated with delay guarantees: Given m lists L1, L2, · · · , Lm whose elements are drawn from

a common domain, if elements in Li are distinct (i.e. no duplicates) and ordered according

to �, then the union of all lists
⋃m
i=1 Li can be enumerated in sorted order given by � with

delay O(m). Note that the enumeration algorithm Ai degenerates to going over elements one

by one in list Li, which has O(1) delay guarantee as long as indexes/pointers within Li are

well-built. Throughout the chapter, we use this primitive as ListMerge(L1, L2, · · · , Lm).

72

Algorithm 7: Merge(A1,A2, · · · ,Am)

1 S ← {1, 2, · · · ,m};
2 foreach i ∈ S do

3 ei ← Ai.first() ;

4 while S 6= ∅ do

5 w ← mini∈S ei ; /* finds the smallest output (using �) over all algorithms */

6 output w ;

7 foreach i ∈ S do

8 if ei = w then

9 ei ← Ai.next() ;

10 if ei = null then

11 S ← S − {i} /* the algorithm completes its output */

log|D| |OUT./|
0.81.01.21.41.61.82.0

log|D| Tp

0.8
1.0

1.2
1.4

1.6
1.8

2.0

lo
g
|D
|δ

0.0

0.2

0.4

0.6

0.8

1.0

log|D| |OUT./|
0.81.01.21.41.61.82.0

log|D| Tp

0.8
1.0

1.2
1.4

1.6
1.8

2.0

lo
g
|D
|δ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: Worst-case trade-off given by Theorem 10 without (left) and with (right) taking

|OUT1| into consideration.

5.2.2 Star Queries

In this section, we study enumeration algorithms for the star query πr(Q
∗
k) where r ⊆⋃

i∈{1,2,··· ,k} xi. Our main result is Theorem 11 that we present below. We first present

a detailed discussion on how our result is an improvement over prior work in Section 5.1.

Then, we present a warm-up proof for πr(Q
∗
k) in Section 5.2.4, followed by the proof for the

general result in Section 5.2.5.

Theorem 11. Consider the star query4 with projection πr(Q
∗
k) where r ⊆ ⋃i∈{1,2,··· ,k} xi

and an instance D. There exists an algorithm with preprocessing time Tp = O(|D|) and

4We assume that r contains at least one variable from each xi. Otherwise, we can remove relations
with no projection variables after the preprocessing phase.

73

log|D| |OUT./|
0.81.01.21.41.61.82.0

log|D| Tp

0.8
1.0

1.2
1.4

1.6
1.8

2.0

lo
g
|D
|δ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Theorem 11 for k = 2.

0 1 log|D| |OUT./| w = k

Preprocessing time log|D| Tp

0

ε?

1

D
el

ay
lo

g
|D
|δ

Theorem 3
Conjunctive
α-acyclic
free-connex
Theorem 7

Figure 5.4: Trade-off in the worst-case for

star query.

preprocessing space Sp = O(|D|), such that we can enumerate Q∗k(D) with

delay δ = O

(|D|k/k−1

|OUT1|1/k−1

)
and space Se = O(|D|).

In the above theorem, the delay depends on the full join result size |OUT1| = |Q∗k(D)|.
As the join size increases, the algorithm can obtain better delay guarantees. In the extreme

case when |OUT1| = Θ(|D|k), it achieves constant delay with linear time preprocessing. In

the other extreme, when |OUT1| = Θ(|D|), it achieves linear delay.

When |OUT1| has linear size, we can compute and materialize the result of the query

in linear preprocessing time and achieve constant delay enumeration. Generalizing this

observation, when Tp is sufficient to evaluate the full join result, we can always achieve

constant delay.

5.2.3 Comparison with Prior Work

It is instructive now to compare the worst-case delay guarantee obtained by Theorem 10

for Q∗k(D) with Theorem 11. Suppose that we want to achieve delay δ = O(|D|1−ε) for some

ε ∈ [0, (log|D| |OUT1| − 1)/(k − 1)]. Theorem 10 tells us that this requires O(|D|1+ε(k−1))

preprocessing time. Then, it holds that:

|D|1−ε ≥ |D|1−
(log|D| |OUT1|−1)

k−1 = |D|
k−log|D| |OUT1|

k−1 = |D|k/k−1/|OUT1|1/k−1

In other words, either we have enough preprocessing time to materialize the output and

achieve constant delay, or we can achieve the desirable delay with linear preprocessing time.

Figure 5.2, 5.3 and 5.4 show the existing and new trade-off results. Figure 5.2 shows

the trade-off curve obtained from Theorem 10 by adding |OUT1| as a third dimension, and

adding the optimization for constant delay when Tp ≥ O(|OUT1|). Figure 5.3 shows the

trade-off obtained from our result, while Figure 5.4 shows other existing results for a fixed

74

R(x, y) S(y, z)

d2 e1 f2

d1 f1

...
...

dN fN

(a) Database D0 with full join size N2.

R(x, y) S(y, z)

a2 b2 c2

a1 b1 c1

...
...

...

a√N b√N c√N

(b) Database D1 with full join size N3/2.

Figure 5.5: D0 ∪ D1 forms a database where Theorem 11 improves the delay guarantee of

Theorem 10.

value of |OUT1|. For a fixed value of |OUT1|, the delay guarantee does not change in Figure 5.3

as we increase Tp from |D| to |OUT1|. It remains an open question to further decrease the

delay if we allow more preprocessing time. Such an algorithm would correspond to a curve

connecting the red point(•) and the green triangle() in Figure 5.4.

Our results thus imply that, depending on |OUT1|, one must choose a different algorithm

to achieve the optimal trade-off between preprocessing time and delay. Since |OUT1| can be

computed in linear time (using a simple adaptation of Yannakakis algorithm [Yan81, PP06]),

this can be done without affecting the preprocessing bounds.

Next, we show how our result provides an algorithmic improvement over Theorem 10.

Consider the instances D0, D1 depicted in Figure 5.5a and Figure 5.5b respectively, and

assume we want to use linear preprocessing time.

For D1, the algorithm of Theorem 10 materializes nothing, since no y valuation has a

degree of O(|D|0), and the delay will be Θ(
√
N). No materialization also occurs for D0, but

here the delay will be O(1). It is easy to check that our algorithm matches the delay on both

instances. Now, consider the instance D = D0∪D1. The input size for D is Θ(N), while the

full join size is N3/2 +N2 = Θ(N2). The algorithm of Theorem 10 will again achieve only a

Θ(
√
N) delay, since after the linear time preprocessing no y valuations can be materialized.

In contrast, our algorithm still guarantees a constant delay. This algorithmic improvement

is a result of the careful overlapping of the constant-delay computation for instance D0 with

the computation for D1.

The above construction can be generalized as follows. Let α ∈ (0, 1) be some constant.

D0 remains the same. For D1, we construct R to be the cross product of Nα x-values and

N1−α y-values, and S to be the cross product of Nα z-values and N1−α y-values. As before,

let D = D0∪D1. The input size for D is Θ(N), while the full join size is N2−α+N2 = Θ(N2).

Hence, our algorithm achieves constant delay with linear preprocessing time. In contrast, the

algorithm of Theorem 10 achieves Θ(N1−α) delay with linear preprocessing time. In fact, the

75

Θ(N1−α) delay occurs even if we allow O(N1+ε) preprocessing time for any ε < α. We can

now use the same idea to show that there also exists an instance where achieving constant

delay using Theorem 10 requires near quadratic preprocessing time as shown Example 24

below.

Example 24. We construct an instance where achieving constant delay with Theorem 10

would require close to Θ(|D|2) computation. Let us fix N to be a power of 2. We will fix

|dom(x)| = |dom(z)| = N logN . Let Di be the database constructed by setting Nα = 2i

for i ∈ {1, 2, . . . , logN} where relation R is the cross product of Nα x-values and N1−α

y-values, and S is the cross product of Nα z-values and N1−α y-values.. We also construct

a database D∗ which consists of a single y that is connected to all x and z values. Let

D = D∗ ∪ D1 ∪ D2 ∪ · · · ∪ DlogN . It is now easy to see that |D| = N · logN, |dom(y)| =∑
αN

1−α ≤ 2N = Θ(|D|/ log |D|) and |OUT1| =
∑

αN
1+α + N2 log2N = Θ(|D|2). On this

instance, Theorem 10 achieves Θ(|D|/ log |D|) after linear time preprocessing. Suppose we

wish to achieve constant delay enumeration. Let us fix this constant to be c∗ (which is also a

power of 2, for simplicity). Then, we need enough preprocessing time to materialize the join

result of all database instances Di where i ∈ {1, 2, . . . , log(N/c∗)} to ensure that the number of

heavy y values that remain is at most c∗. This requires time Tp >
∑

i∈{1,2,...,log(N/c∗)}N ·2i >
N2/c∗ = Θ(|D|2/ log |D|). This example shows that Theorem 10 requires near quadratic

computation to achieve constant delay enumeration.

In the rest of this section, for simplicity of exposition, we assume that all variable vectors

xi,y in Q∗k are singletons (i.e, all the relations are binary) and r = {x1, x2, . . . , xk}. The

proof for the general query is a straightforward extension of the binary case.

5.2.4 Warm-up: Two-Path Query

As a warm-up step, we will present an algorithm for the queryQtwo-path = πx,z(R(x, y)1S(y, z))

that achieves O(|D|2/|OUT1|) delay with linear preprocessing time.

At a high level, we will decompose the join into two subqueries with disjoint outputs.

The subqueries will be generated based on whether a valuation for x is light or not based on

its degree in relation R. For all light valuations of x (degree at most δ), we will show that

their enumeration is achievable with delay δ. For the heavy x valuations, we will show that

they also can be computed on-the-fly while maintaining the delay guarantees.

Preprocessing Phase. We first process the input relations such that we remove any dan-

gling tuples. During the preprocessing phase, we will store the input relations as a hash

map and sort the valuations for x in increasing order of their degree. Using any comparison

based sorting technique requires Ω(|D| log |D|) time in general. Thus, if we wish to remove

the log |D| factor, we must use non-comparison based sorting algorithms. In this chapter,

76

we will use count sort [CLRS09a] which has complexity O(|D| + r) where r is the range of

the non-negative key values. However, we need to ensure that all relations in the database

D satisfy the bounded range requirement. This can be easily accomplished by introducing

a bijective function f : dom(D)→ {1, 2, . . . , |D|} that maps all values in the active domain

of the database to some integer between 1 and |D| (both inclusive). Both f and its inverse

f−1 can be stored as hash tables as follows: suppose there is a counter c← 1. We perform a

linear pass over the database and check if some value v ∈ dom(D) has been mapped or not

(by checking if there exists an entry f(v)). If not, we set f(v) = c, f−1(c) = v and increment

c. Once the hash tables f and f−1 have been created, we modify the input relation R (and S

similarly) by replacing every tuple t ∈ R with tuple t′ = f(t). Since the mapping is a relabel-

ing scheme, such a transformation preserves the degree of all the values. The codomain of f

is also equipped with a total order � (we will use ≤). Note that f is not an order-preserving

transformation in general but this property is not required in any of our algorithms.

Next, for every tuple t ∈ R(x, y), we create a hash map with key πx(t) and the value is a

list to which πy(t) is appended; and for every tuple t ∈ S(y, z), we create a hash map with

key πy(t) and the value is a list to which πz(t) is appended. For the second hash map, we sort

the value list using sort order � for each key, once each tuple t ∈ S(y, z) has been processed.

Finally, we sort all values in πx(R) in increasing order of their degree in R (i.e |σx=viR(x, y)|
is the sort key). Let L = {v1, . . . , vn} denote the ordered set of these values sorted by their

degree and let d1, . . . , dn be their respective degrees. Creating the sorted list L takes O(|D|)
time since the degrees di satisfy the bounded range requirement (i.e 1 ≤ di ≤ |D|). Next, we

identify the smallest index i∗ such that∑
v:{v1,v2,...,vi∗}

|R(v, y) 1 S(y, z)| ≥
∑

v:{vi∗+1,...,vn}

|R(v, y) 1 S(y, z)| (5.1)

This can be computed by doing a linear pass on L using a simple adaptation of Yannakakis

algorithm [Yan81, PP06]. This entire phase takes time O(|D|).

Enumeration Phase. The enumeration algorithm interleaves the following two loops using

the construction in Lemma 12. Specifically, it will spend an equal amount of time (a constant)

before switching to the computation of the other loop.

The algorithm alternates between low-degree and high-degree values in L. The main idea

is that, for a given vi ∈ L, we can enumerate the result of the subquery σx=vi(Qtwo-path)

with delay O(di). This can be accomplished by observing that the subquery is equivalent to

list merging and so we can use Algorithm 7.

Example 25. Consider relations R and S as shown in Figure 5.6a and Figure 5.6b. Fig-

ure 5.6c shows the sorted valuations a2 and a1 by their degree and the valuations for Z as

sorted lists S[b1], S[b2] and S[b3]. For both a1 and a2, the pointers point to the head of the

77

Algorithm 8: EnumTwoPath

1 for i = 1, . . . , i∗ do

2 Let πy(σx=vi(R)) = {u1, u2, · · · , u`};
3 output (vi, f

−1(ListMerge(πzσy=u1
S, πzσy=u2

S, · · · , πzσy=u`S)))5

4

run for O(1) time
then switch

run for O(1) time
then switch

for i = i∗ + 1, . . . , n do

5 Let πy(σx=vi(R)) = {u1, u2, · · · , u`};
6 output (vi, f

−1(ListMerge(πzσy=u1
S, πzσy=u2

S, · · · , πzσy=u`S)))

X Y

a1 b1

a1 b2

a1 b3

a2 b1

(a) Table R

Y Z

b1 c1

b1 c2

b2 c2

b3 c3

(b) Table S

a2 b1

a1 b2

b3

[c1, c2] S[b1]

[c2] S[b2]

[c3] S[b3]

↓↓

↓

↓

(c) output (a1, c1)

b1

a1 b2

b3

[c1, c2]

[c2]

[c3]

↓

↓

↓

(d) output (a1, c2)

b1

a1 b2

b3

[c1, c2]

[c2]

[c3]

↓

↓

↓

(e) output(a1, c3)

Figure 5.6: Example for two path query enumeration

lists. We will now show how ListMerge(S[b1], S[b2], S[b3]) is executed for a1. Since there

are three sorted lists that need to be merged, the algorithm finds the smallest valuation across

the three lists. c1 is the smallest valuation and the algorithm outputs (a1, c1). Then, we need

to increment pointers of all lists which are pointing to c1 (S[b1] is the only list containing

c1). Figure 5.6d shows the state of pointers after this step. The pointer for S[b1] points to

c2 and all other pointers are still pointing to the head of the lists. Next, we continue the list

merging by again finding the smallest valuation from each list. Both S[b1] and S[b2] pointers

are pointing to c2 and the algorithm outputs (a1, c2). The pointers for both S[b1] and S[b2]

are incremented and the enumeration for both the lists is complete as shown in Figure 5.6e.

In the last step, only S[b3] list remains and we output (a1, c3) and increment the pointer for

S[b3]. All pointers are now past the end of the lists and the enumeration is now complete.

Theorem 12. For the query Qtwo-path and an instance D, we can enumerate Qtwo-path(D)

with delay δ = O(|D|2/|OUT1|) and Se = O(|D|).

Proof. To prove this result, we will apply Lemma 12, where A′ is the first loop (the one with

light-degree values), and A is the second loop (the one with high-degree values).

Let δ denote the degree of the valuation vi∗ . First, we claim that the delay of A′ will

be O(δ). Indeed, ListMerge will output a result every O(δ) time since the degree of

each valuation in the first loop is at most δ. Let Jh =
∑

i>i∗ |R(vi, y)1S(y, z)| and J` =

78

∑
i≤i∗ |R(vi, y)1S(y, z)|. Then, A′ runs in time at least J`, andA in time at most c?·Jh. Here,

c? is an upper bound on the number operations in each iteration of the loop in Algorithm 8.

Since by construction J` ≥ Jh, Lemma 12 obtains a total delay of O(δ).

It now remains to bound δ. First, observe that, since i∗ is the smallest index that

satisfies Equation 5.1, it must be that J`−Jh ≤ |D| (if not, shifting the smallest index by one

decreases the LHS by at most |D| and increases the RHS by at most |D| while still satisfying

the condition that J` ≥ Jh). Combined with the observation that J` + Jh = |OUT1|, we get

that Jh ≥ |OUT1|/2 − |D|/2 ≥ 1/4 · |OUT1| assuming |OUT1| ≥ 2 · |D|. The final observation

is that Jh ≤ |D|2/δ since there are most |D|/δ heavy values, and each heavy value can join

with at most |D| tuples for the full join. Combining the two inequalities gives us the claimed

delay guarantee.

The reader should note that the delay of δ = O(|D|2/|OUT1|) is only an upper bound.

Depending on the skew present in the database instance, it is possible that Algorithm 8

achieves much better delay guarantees in practice as shown in Example 26 below.

Example 26. Consider a relation R(x, y) of size O(N) that contains values v1, . . . , vN for

attribute x. Suppose that each of v1, . . . , vN−1 have degree exactly 1, and each one is connected

to a unique value of y. Also, vN has degree N − 1 and is connected to all N − 1 values of y.

Suppose we want to compute Qtwo-path. It is easy to see that OUT1 = Θ(N). Thus, applying

the bound of δ = O(N2/|OUT1|) gives us O(N) delay. However, Algorithm 8 will achieve a

delay guarantee of O(1). This is because all of v1, . . . , vN−1 are processed by the left pointer

in O(1) delay as they produce exactly one output result, while the right pointer processes vN

on-the-fly in O(N) time.

5.2.5 Proof of Main Theorem

We now generalize Algorithm 8 for any star query. At a high level, we will decompose

the join query πx1,...,xk(Q
∗
k) into a union of k + 1 subqueries whose output is a partition of

the result of original query. These subqueries will be generated based on whether a value

for some xi is light or not. We will show if any of the values for xi is light, the enumeration

delay is small. The (k+ 1)-th subquery will contain heavy values for all attributes. Our key

idea again is to interleave the join computation of the heavy subquery with the remaining

light subqueries.

Preprocessing Phase. Assume all relations are reduced without dangling tuples, which

can be achieved in linear time [Yan81]. The full join size |OUT1| can also be computed in

linear time. Similar to the preprocessing phase in the previous section, we construct the

hash tables f, f−1 to perform the domain compression and modify all the input relations by

replacing tuple t with f(t). Set ∆ = (2 · |D|k/|OUT1|)
1

k−1 . For each relation Ri, a value v for

79

attribute xi is heavy if its degree (i.e |πyσxi=vR(xi, y)|) is greater than ∆, and light otherwise.

Moreover, a tuple t ∈ Ri is identified as heavy or light depending on whether πxi(t) is heavy

or light. In this way, each relation R is divided into two relations Rh and R`, containing

heavy and light tuples respectively in time O(|D|). The original query can be decomposed

into subqueries of the following form:

πx1,x2,··· ,xk(R
?
1 1 R?

2 1 · · · 1 R?
k)

where ? can be either h, ` or ?. Here, R?i simply denotes the original relation Ri. However,

care must be taken to generate the subqueries in a way so that there is no overlap between

the output of any subquery. In order to do so, we create k subqueries of the form

Qi = πx1,...,xk(R
h
1 1 · · · 1 Rhi−1 1 R`i 1 R?i+1 1 · · · 1 R?k)

In subquery Qi, relation Ri has superscript `, all relations R1, . . . , Ri−1 have superscript h

and relations Ri+1, . . . , Rk have superscript ?. The (k+1)-th query with all ? as h is denoted

by QH . Note that each output tuple t is generated by exactly one of the Qi and thus the

output of all subqueries is disjoint. This implies that each f−1(t) is also generated by exactly

one subquery. Similar to the preprocessing phase of two path query, we store all R`i and Rhi

in hashmaps where the values in the maps are lists sorted in lexicographic order.

Enumeration Phase. We next describe how enumeration is performed. The key idea

is the following: We will show that for QL = Q1 ∪ · · · ∪ Qk, we can enumerate the result

with delay O(∆). Since QH contains all heavy valuations from all relations, we compute

its join on-the-fly by alternating between some subquery in QL and QH . This will ensure

that we can give some output to the user with delay guarantees and also make progress on

computing the full join of QH . Our goal is to reason about the running time of enumerating

QL (denoted by TL) and the running time of QH (denoted by TH) and make sure that while

we compute QH , we do not run out of the output from QL.

Next, we introduce the algorithm that enumerates output for any specific valuation v

of attribute xi, which is described in Lemma 15. This algorithm can be viewed as another

instantiation of Algorithm 7.

Lemma 15. Consider an arbitrary value v ∈ dom(xi) with degree d in relation Ri(xi, y).

Then, its query result πx1,x2,··· ,xkσxi=vR
h
1(x1, y) 1 Rh2(x2, y) 1 · · · 1 Ri(xi, y) 1 · · · 1

R?k(xk, y) can be enumerated with O(d) delay guarantee.

Proof. Consider some tuple (vi, u) ∈ Ri. Each u is associated with a list of valuations

over attributes (x1, · · · , xi−1, xi+1, · · · , xk), which is a cartesian product of k − 1 sub-lists

σy=uRj(xj , y). Note that such a list is not materialized as that for two-path query, but

present in a factorized form.

80

We next define the enumeration algorithm Au for each u ∈ πyσxi=vRi(xi, y), with lex-

icographical ordering of attributes (x1, · · · , xi−1, xi+1, · · · , xk). Note that elements in each

list πxjσy=uR
?
j(xj , y) can be enumerated with O(1) delay. Then, Au enumerates all re-

sults in ×j 6=i:j∈{1,2··· ,k}σy=uR
?
j(xj , y) by k − 1 level of nested loops in lexicographic order

(x1, · · · , xi−1, xi+1, · · · , xk), which has O(k − 1) = O(1) delay. After applying Algorithm 7,

we can obtain an enumeration algorithm that enumerates the union of query results over all

neighbors with O(d) delay guarantee. For each output tuple t generated by Algorithm 7, we

return f−1(t) to the user.

Let c? be an upper bound on the number of operations in each iteration of ListMerge.

This can be calculated by counting the number of operations in the exact implementation

of the algorithm. Directly implied by Lemma 15, the result of any subquery in QL can be

enumerated with delay O(∆). Let Q∗H denote the corresponding full query of QH , i.e, the

head of Q∗H also includes the variable y (Q∗L is defined similarly). Then, Q∗H can be evaluated

in time TH ≤ c? · |Q∗H | ≤ c? · |OUT1|/2 by using ListMerge on subquery QH . This follows

from the bound |Q∗H | ≤ |D| · (|D|/∆)k−1 and our choice of ∆ = (2 · |D|k/|OUT1|)
1

k−1 . Since

|Q∗H |+ |Q∗L| = |OUT1|, it holds that |Q∗L| ≥ |OUT1|/2 given our choice of ∆. Also, the running

time TL is lower bounded by |Q∗L| (since we need at least one operation for every result).

Thus, TL ≥ |OUT1|/2.

We are now ready to apply Lemma 12 with the following parameters:

1. A is the full join computation of QH and T = c? · |OUT1|/2.

2. A′ is the enumeration algorithm applied to QL with delay guarantee δ = O(∆) and

T ′ = |OUT1|/2.

3. T and T ′ are fixed once |OUT1|,∆, and the constant c? are known.

By construction, the outputs of QH and QL are also disjoint. Thus, the conditions of

Lemma 12 apply and we obtain a delay of O(∆).

5.2.6 Interleaving with Join Computation

Theorem 11 obtains poor delay guarantees when the full join size |OUT1| is close to in-

put size |D|. In this section, we present an alternate algorithm that provides good delay

guarantees in this case. The algorithm is an instantiation of Lemma 13 on the star query,

which degenerates to computing as many distinct output results as possible in limited pre-

processing time. An observation is that for each valuation u of attribute y, the cartesian

product ×i∈{1,2,··· ,k}πxiσy=uRi(xi, y) is a subset of output results without duplication. Thus,

this subset of output result is readily available since no deduplication needs to be performed.

Similarly, after all relations are reduced, it is also guaranteed that each valuation of attribute

81

xi of relation Ri generates at least one output result. Thus, maxki=1 |dom(xi)| results are

also readily available that do not require deduplication. We define J as the larger of the two

quantities, i.e, J = max
{

maxki=1 |dom(xi)|,maxu∈dom(y)

∏k
i=1 |σy=uRi(xi, y)|

}
. Together

with these observations, we can achieve the following theorem.

Theorem 13. Consider star query πx1,...,xk(Q
∗
k) and an input database instance D. There

exists an algorithm with preprocessing time O(|D|) and space O(|D|), such that πx1,...,xk(Q
∗
k)

can be enumerated with delay δ = O

(
|OUT1|/|OUTπ|1/k

)
and space Se = O(|D|)

In the above theorem, we obtain delay guarantees that depend on both the size of the

full join result OUT1 and the projection output size OUTπ.

However, one does not need to know |OUT1| or |OUTπ| to apply the result. We first compare

the result with Theorem 11. First, observe that both Theorem 13 and Theorem 11 require

O(|D|) preprocessing time. Second, the delay guarantee provided by Theorem 13 can be

better than Theorem 11. This happens when |OUT1| ≤ |D| · J1−1/k, a condition that can be

easily checked in linear time.

We now proceed to describe the algorithm. First, we compute all the statistics for com-

puting J in linear time. If J = |dom(xj)| for some integer j ∈ {1, 2, · · · , k}, we just

materialize one result for each valuation of xj . Otherwise, J =
∏k
i=1 |σy=uRi(xi, y)| for some

valuation u in attribute y. Note that we do not need to explicitly materialize the carte-

sian product but only need to store the tuples in
⋃
i∈{1,2,··· ,k} σy=uRi(xi, y). As mentioned

before, each output in ×ki=1 (πxiσy=uRi(xi, y)) can be enumerated with O(1) delay. This

preprocessing phase takes O(|D|) time and O(|D|) space. We can now invoke Lemma 13 to

achieve the claimed delay. The final observation is to express J in terms of |OUTπ|. Note that

|OUTπ| ≤ Πi∈[k]|dom(xi)| which implies that maxi∈[k] |dom(xi)| ≥ |OUTπ|1/k. Thus, it holds

that J ≥ |OUTπ|1/k which gives us the desired bound on the delay guarantee.

Dynamic Setting. Remarkably, it is also possible to do a simple adaptation of the algorithm

for the dynamic setting but only in the case of self-joins, where R1 = R2 = . . . Rk = R. In

this setting, single tuple updates are allowed to the underlying relation, i.e., a tuple t over

variables x, y can be either inserted or deleted from the relation R(x, y) (note that a relation

does not allow duplicates). The preprocessing phase in this case simply stores R(x, y) is

stored as bidirectional hash map (one map with key as y valuation and the value as the

sorted list of xi valuations connected to it and other map with key as xi valuation and the

value as the sorted list of y valuations). This hash map can be maintained in amortized

constant time under single-tuple updates. We also store a hash set called J containing (a, a)

for all a ∈ dom(x). J can also be maintained under updates in amortized constant time.

Indeed, whenever the degree of some x valuation becomes zero and it is removed from the

hash maps of R, we can also remove it from J . Similarly, whenever a new domain value is

added for the first time to R, we can update insert it into J .

82

For the enumeration phase, we simply apply Lemma 13 with stored hash set J . Applying

the same reasoning as above, we can delay δ = O(|OUT1|/|OUTπ|1/k). We can now state the

result formally.

Theorem 14. Consider a self-join star query πx1,...,xk(Q
∗
k) over a single relation R(x, y) and

an input database instance D. There exists an algorithm with preprocessing time O(|D|) and

space O(|D|), such that πx1,...,xk(Q
∗
k) can be enumerated with delay δ = O

(
|OUT1|/|OUTπ|1/k

)
and space Se = O(|D|) with O(1) amortized update time for single-tuple updates.

To achieve constant amortized update time, the main result that applies to all hierar-

chical queries (including self-joins) from [KNOZ20a] requires linear preprocessing time and

achieves worst-case linear delay. Since |OUT1|/|OUTπ|1/k ≤ |D| [AP09], our strategy provides

an alternate algorithm that achieves the same worst-case linear delay but may perform better

on certain database instances. Modifying our algorithm for the non self-join case is a non-

trivial problem and likely requires development of new technical machinery that we leave as

a problem for future work.

Fast Matrix Multiplication. Both Theorem 11 and Theorem 10 are combinatorial algo-

rithms. In this section, we will show how fast matrix multiplication can be used to obtain

a trade-off between preprocessing time and delay that is better than Theorem 10 for some

values of delay.

Theorem 15. Consider the star query πx1,...,xk(Q
∗
k) and an input database instance D.

Then, there exists an algorithm that requires preprocessing Tp = O((|D|/δ)ω+k−2) and can

enumerate the query result with delay O(δ) for 1 ≤ δ ≤ |D|(ω+k−3)/(ω+2·k−3).

Proof. We sketch the proof for k = 2. Let δ be the degree threshold for deciding whether a

valuation is heavy or light. We can partition the original query into the following subqueries:

πx,z(R1(x?, y?)1R2(y?, z?)) where ? can be either h, ` or ?. The input tuples can also be

partitioned into four different cases (which can be done in linear time since δ is fixed). We

handle each subquery separately.

• x has ? = `, y has ? = ? and z has ? = ?. In this case, we can just invoke ListMerge(vi)

for each valuation vi of attribute x and enumerate the output.

• x has ? = h, y has ? = ? and z has ? = `. In this case, we can invoke ListMerge(vi)

for each valuation vi of attribute z and enumerate the output. Note that there is no

overlap of output between this case and the previous case.

• both x, z have ? = h. We compute the output of πx,zR(xh, y?) 1 S(y?, zh) in prepro-

cessing phase and obtain O(1)-delay enumeration. In the following, we say that y has

? = ` to mean that the join considers all y valuations that have degree at most δ in

both R and S.

83

– y has ? = `. We compute the full join R(xh, y`) 1 S(y`, zh) and materialize all

distinct output results, which takes O(|D| · δ) time.

– y has ? = h. There are at most |D|/δ valuations in all attributes. We now have

a square matrix multiplication instance where all dimensions have size O(|D|/δ).
Using Lemma 1, we can evaluate the join in time O((|D|/δ)ω).

Overall, the preprocessing time is Tp = O((|D|/δ)ω + |D| · δ). The matrix multiplication

term dominates whenever δ ≤ O(|D|(ω−1)/(ω+1)) which gives us the desired time-delay trade-

off.

For the two-path query and the current best value of ω = 2.373, we get the trade-off as

Tp = O((|D|/δ)2.373) and a delay guarantee of O(δ) for |D|0.15 < δ ≤ |D|0.40. If we choose

δ = |D|0.40, the worst-case preprocessing time is Tp = O(|D|1.422). In contrast, Theorem 10

requires a worst-case preprocessing time of Tp = O(|D|1.6), which is suboptimal compared

to the above theorem. On the other hand, since Tp = O(|D|1.422), we can safely assume that

|OUT1| > |D|1.422, otherwise one can simply compute the full join in time c? · |D|1.422 using

ListMerge, deduplicate and get constant delay enumeration. Applying Theorem 11 with

|OUT1| > |D|1.422 tells us that we can obtain delay as O(|D|2/|OUT1|) = O(|D|0.58). Thus,

we can offer the user both choices and the user can decide which enumeration algorithm to

use.

5.3 Left-Deep Hierarchical Queries

In this section, we will apply our techniques to another subset of hierarchical queries,

which we call left-deep. A left-deep hierarchical query is of the following form:

Qkleftdeep = R1(w1, x1)1R2(w2, x1, x2)1 . . .1Rk−1(wk−1, x1, . . . , xk−1)1Rk(wk, x1, . . . , xk)

It is easy to see that Qkleftdeep is a hierarchical query for any k ≥ 1. Note that for k = 2,

we get the two-path query. For k = 3, we get R(w1, x1) 1 S(w2, x1, x2) 1 T (w3, x1, x2). We

will be interested in computing the query πw1,...,wk(Q
k
leftdeep), where we project out all the

join variables. We show that the following result holds:

Theorem 16. Consider the query πw1,...,wk(Q
k
leftdeep) and any input database D. Then,

there exists an algorithm that enumerates the query after preprocessing time Tp = O(|D|)
with delay O(|D|k/|OUT1|).

Proof. Once again, we will use the same steps of the preprocessing phase as in Lemma 12.

We index all the input relations in a hash table where the values are sorted lists after applying

the domain compression trick using f and f−1. Thus, count sort now runs in O(|D|) time.

We also compute |OUT1| using Yannakakis algorithm.

84

The algorithm is based on ListMerge subroutine from Lemma 14. We distinguish

two cases based on the degree of valuations of variable wk. If some valuation of wk (say

v) is light (degree is at most δ), then we can enumerate the join result with delay O(δ).

Since there are at most δ tuples U = σwk=vRk, each u ∈ U is associated with a list of

valuations over attributes (w1, w2, . . . , wk−1), which is a cartesian product of k − 1 sorted

sub-lists πwiσx1=u[x1],...,xi=u[xi]Ri. The elements of each list can be enumerated in O(1) delay

in lexicographic order. Thus, we only need to merge the δ sublists which can be accomplished

in O(δ) time using Lemma 14. Let TL denote the total time required to enumerate the query

result for all light wk valuations.

We now describe how to process all wk valuations that are heavy. The key observation

here is that the full-join result with no projections for this case can be upper bounded by

|D|k/δ since there are at most |D|/δ heavy wk valuations. The full-join result of the heavy

subquery can be done in time TH ≤ c? · |D|k/δ using ListMerge. Fixing δ = 2 · |D|k/|OUT1|
gives us TH ≤ c? · |OUT1|/2. Since |Q∗L| + |Q∗H | = |OUT1|, our choice of δ ensures that

TL ≥ |Q∗L| ≥ |OUT1|/2.

We can now apply Lemma 12 with (i) A′ is the list-merging algorithm for the light case

with T ′ = |OUT1|/2; (ii) A is the worst-case optimal join algorithm for the heavy case with

T = c? · |OUT1|/2; (iii) T, T ′ are fixed once |OUT1|, δ, c? have been computed.Once again, in

order to know the exact values of T, T ′, we need to analyze the exact constant that is used

in the join algorithm for ListMerge. By construction, the output of A and A′ is different.

Note that for each output tuple t generated, we return f−1(t) to the the user, a constant

time operation.

In the above theorem, OUT1 is the full join result of the query Qkleftdeep without projec-

tions. The AGM exponent for Qkleftdeep is ρ∗ = k. Observe that Theorem 16 is of interest

when |OUT1| > |D|k−1 to ensure that the delay is smaller than O(|D|). When the condition

|OUT1| > |D|k−1 holds, the delay obtained by Theorem 16 is also better than the one given by

the trade-off in Theorem 10. In the worst-case when |OUT1| = Θ(|D|k), we can achieve con-

stant delay enumeration after linear preprocessing time, compared to Theorem 10 that would

require Θ(|D|k) preprocessing time to achieve the same delay. The decision of when to apply

Theorem 16 or Theorem 10 can be made in linear time by checking whether |D|k/|OUT1| is

smaller or larger than the actual delay guarantee obtained by the algorithm of Theorem 10

after linear time preprocessing.

5.4 Path Queries

In this section, we will study path queries. In particular, we will present an algorithm

that enumerates the result of the query πx1,xk+1
(Pk), i.e., the CQ that projects the two

endpoints of a path query of length k. Recall that for k ≥ 3, Pk is not a hierarchical query,

85

and hence the trade-off from [KNOZ20a] does not apply. A subset of path queries, namely

3-path and 4-path counting queries were considered in [KNN+19]. The algorithm used for

counting the answers of 3-path and 4-path queries under updates constructed a set of views

that can be used for the task of enumerating the query results under the static setting. Our

result extends the same idea to apply to arbitrary length path queries, which we state next.

Theorem 17. Consider the query πx1,xk+1
(Pk) with k ≥ 2. For any input instance D and

parameter ε ∈ [0, 1) there exists an algorithm that enumerates the query with preprocessing

time (and space) Tp = O(|D|2−ε/(k−1)) and delay O(|D|ε).

Proof. Let ∆ be a parameter that we will fix later. In the preprocessing phase, we first

perform a full reducer pass to remove dangling tuples, apply the domain transformation

technique by creating f and f−1 and then create a hash map for each relation Ri(xi, xi+1)

with key xi, and all its corresponding xi+1 values sorted for each key entry. (We also store

the degree of each value.) Next, for every i = 1, . . . , k, and every heavy value a of xi in Ri

(with degree > ∆), we compute the query πxk+1
(Ri(a, xi+1) 1 · · · 1 Rk(xk, xk+1)), and store

its result sorted in a hash map with key a. Note that each such query can be computed

in time O(|D|) through a sequence of semijoins and projections, and sorting in linear time

using count sort. Since there are at most |D|/∆ heavy values for each xi, the total running

time (and space necessary) for this step is O(|D|2/∆).

We will present the enumeration algorithm using induction. In particular, we will show

that for each i = k, . . . , 1 and for every value a of xi, the subquery πxk+1
(Ri(a, xi+1) 1 · · · 1

Rk(xk, xk+1)) can be enumerated (using the same order) with delay O(∆k−i). This implies

that our target path query can be enumerated with delay O(∆k−1), by simply iterating

through all values of x1 in R1. Finally we can obtain the desired result by choosing ∆ =

|D|ε/(k−1).

Indeed, for the base case (i = k) it is trivial to see that we can enumerate πxk+1
(Rk(a, xk+1))

in constant time O(1) using the stored hash map. For the inductive step, consider some i,

and a value a for xi in Ri. If the value a is heavy, then we can enumerate all the xk+1’s with

constant delay by probing the hash map we computed during the preprocessing phase. If the

value is light, then there are at most ∆ values of xi+1. For each such value b, the inductive

step provides an algorithm that enumerates all xk+1 with delay O(∆k−i−1). Observe that

the order across all b’s will be the same. Thus, we can apply Lemma 14 to obtain that we

can enumerate the union of the results with delay O(∆ · ∆k−i−1) = O(∆k−i). Finally, For

each output tuple t generated, we return f−1(t) to the the user.

We should note here that for ε = 1, we can obtain a delay O(|D|) using only linear

preprocessing time O(|D|) using the result of [BDG07a] since the query is acyclic, while for

ε → 1 the above theorem would give preprocessing time O(|D|2−1/(k−1)). Hence, for k ≥ 3,

86

we observe a discontinuity in the time-delay trade-off. A second observation following from

Theorem 17 is that as k →∞, the trade-off collapses to only two extremal points: one where

we get constant delay with Tp = O(|D|2), and the other where we get linear delay with

Tp = O(|D|).

87

Chapter 6

Join-Project Query Evaluation using Fast
Matrix Multiplication

In this chapter, we study the problem of evaluating join queries where the join result does

not contain all the variables in the body of the query. In other words, some of the variables

have been projected out of the join result. The simplest way to evaluate such a query is to

first compute the full join, and then make a linear pass over the result, project each tuple

and remove the duplicates. While this approach is conceptually simple, it relies on efficient

worst-case optimal join algorithms for full queries, which have recently been developed in a

series of papers [AGM13, NRR13, NPRR12, Vel]. The main result in this line of work is a

class of algorithms that run in time O(|D|ρ∗ + |OUT|), where D is the database instance and

ρ∗ is the optimal fractional edge cover of the query [AGM13]. In the worst case, there exists

a database D such that |OUT| = |D|ρ∗ . In practice, most query optimizers create a query

plan by pushing down projections in the join tree.

Example 27. Consider relation R(x, y) of size N that represents a social network graph

where an edge between two users x and y denotes that x and y are friends. We wish to

enumerate all users pairs who have at least one friend in common [MBO12]. This task is

equivalent to the query Q̈(x, z) = R(x, y), R(z, y), which corresponds to the following SQL

query:

SELECT DISTINCT R1.x, R2.x FROM R AS R1, R AS R2 WHERE

R1.y = R2.y;

Suppose that the graph contains a small (constant) number of communities and the users

are spread evenly across them. Each community has O(
√
N) users, and there exists an edge

between most user pairs within the same community. In this case, the full join result is

Θ(N3/2) but |Q̈(D)| = Θ(N).

As the above example demonstrates, using worst-case optimal join algorithms can lead

to an intermediate output that can be much larger than the final result after projection,

especially if there are many duplicate tuples. Thus, we ask whether it is possible to design

88

faster algorithms that can skip the construction of the full result when this is large and as a

result speed up the evaluation. Ideally, we would like to have algorithms that run faster than

worst-case optimal join algorithms, are sensitive to the size of the output of the projected

result, and do not require large main memory during execution.

In this chapter, we show how to achieve the above goal for a fundamental class of join

queries called star joins. Star joins are join queries where every relation is joined on the

same variable. The motivation to build faster algorithms for star joins with projection is

not limited to faster query execution in DBMS systems. We present next a list of three

applications that benefit from these faster algorithms.

Set Similarity. Set similarity is a fundamental operation in many applications such as

entity matching and recommender systems. Here, the goal is to return all pairs of sets

such that have contain at least c common elements. Recent work [DTL18] gave the first

output-sensitive algorithm that enumerates all similar sets in time O(|D|2− 1

c · |OUT| 1

2c). As

the value of c increases, the running time tends to O(|D|2). The algorithm also requires

O(|D|2− 1

c · |OUT| 1

2c) space. We improve the running time and the space requirement of the

algorithm for a large set of values that |OUT| can take, for all c.

Set Containment. Efficient computation of set containment joins over set-valued attributes

has been extensively studied in the literature. A long line of research [JP05, YZY+18,

KRS+16, LFHDB15] has developed a trie-based join method where the algorithm performs

an efficient blocking step that prunes away most of the set verifications. However, the

verification step is a simple set merging-based method that checks if set t ⊆ u, which can be

expensive. We show that for certain datasets, our algorithm can identify set containment

relationships much faster than state-of-the-art techniques.

Graph Analytics. In the context of graph analytics, the graph to be analyzed is often de-

fined as a declarative query over a relational schema [XD17b, XKD15, XSD17, AHS+15]. For

instance, consider the DBLP dataset, which stores which authors write which papers through

a table R(author, paper). To analyze the relationships between co-authors, we can extract

the co-author graph, which we can express as the view V (x, y) = R(x, p), R(y, p). Recent

work [XD17b] has proposed compression techniques where a preprocessing step generates a

succinct representation of V (x, y). However, these techniques require a very expensive pre-

processing step, rely on heuristics, and do not provide any formal guarantees on the running

time. In the context of querying data through APIs, suppose that we want to support an

API where a user checks whether authors a1 and a2 have co-authored a paper. This is an

example of a boolean query. In this scenario, the view R(x, p), R(y, p) is implicit and not

materialized. Since such an API may handle thousands of requests per second, it is beneficial

to batch B queries together and evaluate them at once. We show that our algorithms can

lead to improved performance by minimizing user latency and resource usage.

89

Our contribution. In this chapter, we show how to evaluate star join queries with projec-

tion using output-sensitive algorithms. We summarize our technical contribution below.

1. Our main contribution is an output-sensitive algorithm that evaluates star join queries

with projection . We use worst-case optimal joins and matrix multiplication as two

fundamental building blocks to split the join into multiple subjoin queries which are

evaluated separately. This technique was initially introduced in [AP09], but their

runtime analysis is incorrect for certain regimes of the output size. We improve and

generalize the results via a more careful application of (fast) matrix multiplication.

2. We show how to exploit the join query algorithms for the problems of set similarity,

set containment, join processing, and boolean set intersection. Our algorithms also im-

prove the best known preprocessing time bounds for creating offline data structures for

set intersection problems [DK17] and compressing large graphs [XD17b]. In addition,

we can show that our approach is much more amenable to parallelization.

3. We develop a series of optimization techniques that address the practical challenges of

incorporating matrix multiplication algorithms into join processing.

4. We implement our solution as an in-memory prototype and perform a comprehensive

benchmarking to demonstrate the usefulness of our approach. We show that our algo-

rithms can be used to improve the running time for set similarity, set containment, join

processing, and boolean query answering over various datasets for both single-threaded

and multithreaded settings. Our experiments indicate that matrix multiplication can

achieve an order of magnitude speedup on average and up to 50× speedup over the

best-known baselines for datasets containing a dense component.

Organization. Section 6.1 contains the main algorithm for two-path and star queries. The

algorithm uses the idea from [AP09] combined with an improved analysis. Section 6.2 shows

how to use the algorithm for the problems of set similarity and set containment. Section 6.3

and Section 6.4 address the challenges of making the algorithm practical. Lastly, Section 6.5

describes the experimental evaluation.

6.1 Computing Join-Project

In this section, we describe our main technique and its theoretical analysis. Ideally, we

would like to compute Q∗k in time linear to the size of the input and output. However,

[BDG07b] showed that Q̈ cannot be evaluated in time O(|OUT|) assuming that exponent ω

in matrix multiplication is greater than two. A straightforward way to compute any query

that is a join followed by a projection is to compute the join using any worst-case optimal

90

algorithm, and then deduplicate to find the projection. This gives the following baseline

result.

Proposition 17 ([NRR13, NPRR12]). Any CQ Q with optimal fractional edge cover ρ∗ can

be computed in time O(|D|ρ∗).

Proposition 17 implies that we can compute the star query Q∗k in time O(|D|k), where k

is the number of joins. However, the algorithm is oblivious of the actual output OUT and will

have the same worst-case running time even if OUT is much smaller than |D|k – as it happens

often in practice. To circumvent this issue, [AP09] showed the following output sensitive

bound that uses only combinatorial techniques:

Lemma 16 ([AP09]). Q∗k can be computed in time O(|D| · |OUT|1− 1

k).

For k = 2, the authors also make use of fast matrix multiplication to improve the running

time to Õ(N0.862 · |OUT|0.408 + |D|2/3 · |OUT|2/3). Later in the section, we will discuss the flaws

in the proof of this result in detail.

6.1.1 The 2-Path Query

Consider the query Q̈(x, z) = R(x, y), S(z, y). Let NR and NS denote the cardinality of

relations R and S respectively. Without loss of generality, assume that NS ≤ NR. For now,

assume that we know the output size |OUT|; we will show how to drop this assumption later.

We will also assume that we have removed any tuples that do not contribute to the query

result, which we can do during a linear time preprocessing step.

Algorithm. Our algorithm follows the idea of partitioning the input tuples based on their

degree as introduced in [AP09], but it differs on the choice of threshold parameters. It is

parameterized by two integer constants ∆1,∆2 ≥ 1. It first partitions each relation into two

parts, R−, R+ and S−, S+:

R− = {R(a, b) | |σx=aR(x, y)| ≤ ∆2 or |σy=bS(z, y)| ≤ ∆1}
S− = {S(c, b) | |σz=cS(z, y)| ≤ ∆2 or |σy=bS(z, y)| ≤ ∆1}

In other words, R−, S− include the tuples that contain at least one value with a low

degree. R+, S+ contain the remaining tuples from R,S respectively. Algorithm 9 describes

the detailed steps for computing the join. It proceeds by performing a (disjoint) union of

the following results:

1. Compute R− 1 S and R 1 S− using any worst-case optimal join algorithm, then

project.

2. Materialize R+, S+ as two rectangular matrices and use matrix multiplication to com-

pute their product.

91

Algorithm 9: Computing πxzR(x, y) 1 S(z, y)

1 R− ← {R(a, b) | |σx=aR(x, y)| ≤ ∆2 or |σy=bS(z, y)| ≤ ∆1}, R+ ← R \R−

2 S− ← {S(c, b) | |σz=cS(z, y)| ≤ ∆2 or |σy=bS(z, y)| ≤ ∆1}, S+ ← S \ S+

3 T ← (R− 1 S) ∪ (R 1 S−) /* use wcoj */

4 M1(x, y)← R+ adj matrix,M2(y, z)← S+ adj matrix

5 M ←M1 ×M2 /* matrix multiplication */

6 T ← T ∪ {(a, c) |Mac > 0}
7 return T

Intuitively, the ”light” values are handled by standard join techniques, since they will

not result in a large intermediate result before the projection. On the other hand, since the

”heavy” values will cause a large output, it is better to compute their result directly using

(fast) matrix multiplication.

Example 28. Consider relation R and S as shown below.
Relation R

x y

1

2

3

4

5

6

1

2

3

4

5

6

Relation S
z y

1

2

3

4

5

6

1

2

3

4

5

6

4 5 6

4 1 0 1

5 1 1 1

6 1 1 0

matrix M1

×

4 5 6

4 1 1 0

5 1 1 1

6 0 1 1

matrix M2

=

4 5 6

4 1 2 1

5 2 3 2

6 2 2 3

matrix M

Suppose ∆1 = ∆2 = 2. Then, all the edges marked in red (green) form relation R−(S−).

R− 1 S and R 1 S− can now be evaluated using any worst-case optimal algorithm. The

remaining edges consist of heavy values. Thus, we construct matrices M1 and M2 encoding

all heavy tuples. The resulting matrix product M shows all the heavy output tuples with their

corresponding counts.

Correctness. Consider an output tuple (a, c). If there exists no b such that (a, b) ∈ R

and (c, b) ∈ S, then such a pair cannot occur in the output since it will not occur in R− 1

S,R 1 S− or M . Now suppose that (a, c) has at least one witness b such that (a, b) ∈ R and

(c, b) ∈ S. If b is light in relation R or S, then at least one of (a, b) or (c, b) will be included

in R− or S− and the output tuples will be discovered in the join of R− 1 S or R 1 S−.

Similarly, if the degree of a or c is at most ∆2 in relation R or S respectively, the output

tuple will be found in R− 1 S or R 1 S−. Otherwise, a, b, c are heavy values so M1 and M2

matrix will contain an entry for (a, b) and (b, c) respectively.

Analysis. We now provide a runtime analysis of the above algorithmTo and discuss how to

optimally choose ∆1,∆2.

We first bound the running time of the first step. To compute the full join result (before

projection), a worst-case optimal algorithm needs time O(NR +NS + |OUT1|), where |OUT1|

92

is the size of the join. The main observation is that the size of the join is bounded by

NS ·∆1 + |OUT| ·∆2. Hence, the running time of the first step is O(NR+NS ·∆1 + |OUT| ·∆2).

To bound the running time of the second step, we need to bound appropriately the

dimensions of the two rectangular matrices that correspond to the subrelations R+, S+.

Indeed, the heavy x-values for R+ are at most NR/∆2, while the heavy y-values are at most

NS/∆1. This is because |dom(y)| ≤ NS . Hence, the dimensions of the matrix for R+ are

(NR/∆2)×(NS/∆1). Similarly, the dimensions of the matrix for S+ are (NS/∆1)×(NS/∆2).

The matrices are represented as two-dimensional arrays and can be constructed in time

C = max{NR/∆2 ·NS/∆1, NS/∆1 ·NS/∆2} by simply iterating over all possible heavy pairs

and checking whether they form a tuple in the input relations. Thus, from Lemma 1 the

running time of the matrix multiplication step is M(NR∆2
, NS∆1

, NS∆2
). Summing up the two steps,

the cost of the algorithm is in the order of:

NR +NS ∆1 + |OUT|∆2 +M
(NR

∆2
,
NS

∆1
,
NS

∆2

)
+ C (6.1)

Using the above formula, one can plug in the formula for the matrix multiplication cost

and solve to find the optimal values for ∆1,∆2. We show how to do this in Section 6.3.

In the next part, we provide a theoretical analysis for the case where matrix multiplication

is achievable with the theoretically optimal ω = 2 for the case where NR = NS = N . Observe

that the matrix construction cost C is of the same order as M(NR∆2
, NS∆1

, NS∆2
) even when ω = 2,

since β is the smallest of the three terms NR/∆2, NS/∆1, NS/∆2. Thus, it is sufficient to

minimize the expression

f(∆1,∆2) = N +N ·∆1 + |OUT| ·∆2 +
N2

∆2 min{∆1,∆2}

while ensuring 1 ≤ ∆1,∆2 ≤ N .

The first observation is that for any feasible solution f(x, y) where x > y, we can always

improve the solution by decreasing the value of ∆1 from x to y. Thus, w.l.o.g. we can impose

the constraint 1 ≤ ∆1 ≤ ∆2 ≤ N .

Case 1. |OUT| ≤ N . Since ∆1 ≤ ∆2, we have f(∆1,∆2) = N ·∆1 + |OUT| ·∆2 +N2/∆2 ·∆1.

To minimize the running time we equate ∂f/∂∆1 = N − N2/(∆2∆2
1) = 0 and ∂f/∂∆2 =

OUT − N2/(∆1∆2
2) = 0. Solving this system of equations gives that the critical point has

∆1 = |OUT|1/3, ∆2 = N/|OUT|2/3. Since |OUT| ≤ N , this solution is feasible, and it can be

verified that it is the minimizer of the running time, which becomes

N +N · |OUT|1/3

Case 2. |OUT| > N . For this case, there is no critical point inside the feasible region, so

we will look for a minimizer at the border, where ∆1 = ∆2 = ∆. This condition gives us

93

f(∆) = (N + |OUT|) ·∆ +N2/∆2, with minimizer ∆ =
(
2N2/(N + |OUT|)

)1/3
. The runtime

then becomes

O(N2/3 · |OUT|2/3)

We can summarize the two cases with the following result.

Lemma 17. Assuming that the exponent in matrix multiplication is ω = 2, the query Q̈ can

be computed in time

O(|D|+ |D|2/3 · |OUT|1/3 ·max{|D|, |OUT|}1/3)

Lemma 16 implies a running time of O(|D| · |OUT|1/2) for Q̈, which is strictly worse

compared to the running time of the above lemma for every output size |OUT|.
Remark. For the currently best known value of ω = 2.37, the running time is O(|D|0.83 ·
|OUT|0.589 + |D| · |OUT|0.41).

Optimality. The algorithm is worst-case optimal (up to constant factor) for |OUT| = Θ(N2).

The running time becomes O(N2) which matches the lower bound |OUT|, since we require at

least that much time to enumerate the output.

Comparing with previous results. We now discuss the result in [AP09], which uses

matrix multiplication to give a running time of Õ(|D|0.862 · |OUT|0.408 + |D|2/3 · |OUT|2/3). We

point out an error in their analysis that renders their claim incorrect for the regime where

|OUT| < N .

In order to obtain their result, the authors make a split of tuples into light and heavy,

and obtain a formula for running time in the order of N∆b + |OUT|∆ac + M
(
N

∆ac
, N∆b

, N
∆ac

)
,

where ∆b,∆ac are suitable degree thresholds. Then, they use the formula from [HP98] for

the cost of matrix multiplication, where M(x, y, x) = x1.84 · y0.533 + x2. However, this result

can be applied only when x ≥ y, while the authors apply it for regimes where x < y. (Indeed,

if say x = N0.3 and y = N0.9, then we would have M(x, y, x) = N1.03, which is smaller than

the input size N1.2.) Hence, the running time analysis is valid only when N/∆ac ≥ N/∆b,

or equivalently ∆b ≥ ∆c. Since the thresholds are chosen such that N∆b = |OUT|∆ac, it

means that the result is correct only in the regime where |OUT| ≥ N . In other words, when

the output size is smaller than the input size, the running time formula from [AP09] is not

applicable.

In the case where ω = 2, the cost formula from [HP98] becomes M(x, y, x) = x2, and

[AP09] gives an improved running time of Õ(N2/3 · |OUT|2/3). Again, this is applicable only

when |OUT| ≥ N , in which case it matches the bound from Lemma 17. Notice that for

|OUT| < N1/2 the formula would imply a deterministic sublinear time algorithm.

94

6.1.2 The Star Query

We now generalize the result to the star query Q∗k. As before, we assume that all tuples

that do not contribute to the join output have already been removed.

Algorithm. The algorithm is parametrized by two integer constants ∆1,∆2 ≥ 1. We

partition each relation Ri into three parts, R+
i , R

−
i and R�i :

R−i = {Ri(a, b) | |σxi=aRi(xi, y)| ≤ ∆2}
R�i = {Ri(a, b) | |σy=bRj(xj , y)| ≤ ∆1, for each j ∈ [k] \ i}
R+
i = Ri \ (R−i ∪R�i)

In other words, R−i contains all tuples with light x, R�i contains all tuples with y values that

are light in all other relations, and R+
i the remaining tuples. The algorithm now proceeds

by computing the following result:

1. Compute R1 1 . . . R−j 1 . . . Rk using any worst-case optimal join algorithm, then

project for each j ∈ [k].

2. Compute R1 1 . . . R�j 1 . . . Rk using any worst-case optimal join algorithm, then

project for each j ∈ [k].

3. Materialize R+
1 , . . . , R

+
k as rectangular matrices and use matrix multiplication to com-

pute their product.

Analysis. We assume that all relation sizes are bounded by N . The running time of the

first step is O(|OUT| ·∆2) since each light value of variable xi in relation Ri contributes to at

least one output result.

For the second step, the key observation is that since y is light in all relations (except

possibly Ri), the worst-case join size before projection is bounded by O(N ·∆k−1
1), and hence

the running time is also bounded by the same quantity.

The last step is more involved than simply running matrix multiplication. This is because

for each output result formed by heavy xi values in R+
i (say t = (a1, a2, . . . ak)), we need

to count the number of y values that connect with each ai in t. However, running matrix

multiplication one at a time between two matrices only tells about the number of connection

y values for any two pair of ai and not all of t. In order to count the y values for all of t

together, we divide variables x1, . . . xk into two groups of size dk/2e and bk/2c followed by

creating two adjacency matrices. Matrix V is of size
(
N
∆2

)dk/2e × N
∆1

such that

V(a1,a2,...adk/2e),b =

1, (a1, b) ∈ R1, . . . , (adk/2e, b) ∈ Rdk/2e
0, otherwise

95

Similarly, matrix W is of size
(
N
∆2

)bk/2c × N
∆1

such that

W(adk/2e+1...ak),b =

1, (adk/2e+1, b) ∈ Rdk/2e+1, . . . , (ak, b) ∈ Rk
0, otherwise

Example 29. Consider the relations R(x, y) and S(z, y) from previous example and consider

relation T (p, y) and U(q, y) as shown below.

Relation T
p y

1

2

3

4

5

6

1

2

3

4

5

6

Relation U
q y

1

2

3

4

5

6

1

2

3

4

5

6

4 5 6

4,

4

1 1 1

4,

5

1 0 1

.

6,

6

0 1 0

matrix M1

×

4,

4

4,

5

. . . 6,

64 1 1 . . . 0

5 1 1 . . . 1

6 1 1 . . . 1

matrix M2

Suppose that we wish to compute the result of star query Q?4 = R(x, y), S(z, y), T (p, y), U(q, y).

Similar to the previous example, we fix ∆1 = ∆2 = 2. It is easy to verify for this example

R− = R� and similarly for all other relations. We can now evaluate the join as mentioned

in step (1) and (2). Next, we construct the matrices V and W . We divide the variables

x, z, p, q into groups, x, z and p, q. V will consist of all heavy (x, z) pairs (9 in total) as one

dimension and y as the second dimension. Similarly, W consists of all heavy (p, q) pairs (9

in total) as one dimension and y as the other.

Matrix construction takes time (N/∆2)dk/2e ·N/∆1 time in total. We have now reduced

step three in computing the matrix product V ×W T . Summing up the cost of all three steps,

the total cost is in the order of

N ·∆k−1
1 + |OUT| ·∆2 +M

((N
∆2

)dk/2e
,
N

∆1
,
(N

∆2

)bk/2c)
Similar to the two-path query, we can find the exact value of ∆1 and ∆2 that minimizes

the total running cost given a cost formula for matrix multiplication. We conclude this

subsection with an illustrative example to show the benefit of matrix multiplication over the

combinatorial algorithm.

Example 30. Let k = 3 and |OUT| = N3/2. The running time is minimized when

N ·∆2
1 = |OUT| ·∆2 = M

((N
∆2

)2
,
N

∆1
,
N

∆2

)
The first equality gives us ∆2

1 =
√
N · ∆2. We will choose the thresholds such that,

∆2 < ∆1. This means β = N/∆1. From the second equality, we get |OUT| ·∆2 =
(
N
∆2

)3
. The

running time is minimized when ∆2 = N
6

16 ,∆1 = N
7

16 , in which case it is O(N
15

8) which is

sub-quadratic (assuming ω = 2). In contrast, Lemma 16 has a worse running time O(N 2).

96

6.1.3 Boolean Set Intersection

In this setting, we are presented with a workload W containing boolean set intersection

(BSI) queries of the form Qab() = R(a, y), S(b, y) parametrized by the constants a, b. The

queries come at a rate of B queries/time unit. In order to service these requests, we can use

multiple machines. Our goal is twofold: minimize the number of machines we use, while at

the same time minimizing the average latency, defined as the average time to answer each

query.

Example 31. The simplest strategy is to answer each request using a separate machine.

Computing a single BSI query takes worst-case time O(N), where N is the input size. Hence,

the average latency is O(N). At the same time, since queries come at a rate of B queries

per time unit, we need ρ = B ·N machines to keep up with the workload.

Our key observation is that, instead of servicing each request separately, we can batch

requests and compute them all at once. To see why this can be beneficial, suppose that we

batch together C queries. Then, we can group all pairs of constants (a, b) to a single binary

relation T (x, z) of size C, and compute the following conjunctive query:

Qbatch(x, z) = R(x, y), S(z, y), T (x, z).

Here, R,S have size N , and T has size C. The resulting output will give the subset of the

pairs of sets that indeed intersect. The above query can be computed by applying a worst-

case optimal algorithm and then performing the projection: this will take O(N ·C1/2) time.

Hence, the average latency for a request will be C
B + N

C1/2 .

To get even lower latency, we can apply a variant of the AYZ algorithm [AYZ97] that uses

fast matrix multiplication. The algorithm works as follows. For x, y, z values with degrees

less than some threshold ∆ ≥ 1, we perform the standard join with running time O(N ·∆).

For the remaining values, we express relations R,S as rectangular matrices of dimensions
C
∆ × N

∆ and N
∆ × C

∆ respectively. We compute the matrix product, and then intersect the

result with T to obtain the final output. The running time for this step is M(C∆ ,
N
∆ ,

C
∆),

which for ω = 2 becomes O(S · N/∆2). To minimize the running time for both steps, we

choose ∆ = C1/3, and thus the running time becomes O(N · C1/3).

Using the above algorithm, we can show the following.

Proposition 18. Let W be a workload of queries of the form Qab() = R(a, y), S(b, y) at the

rate of B access requests per second. Then, assuming the exponent of matrix multiplication

is ω = 2, we can achieve an average latency of O(N3/5/B2/5) using ρ = (B ·N)3/5 machines.

Proof. Using batch size C, we can process C queries in time O(N ·C1/3). Hence, the average

latency in this case is O
(

N
C2/3 + C

B

)
. To minimize the latency, we choose C = (B ·N)3/5, in

97

Algorithm 10: SizeAware [DTL18]

Input: Indexed sets R = {R1, . . . , Rm} and c

Output: Unordered SSJ result

1 degree threshold x = GetSizeBoundary(R, c),L ← ∅
2 R = Rl ∪Rh /* partition sets into light and heavy */

3 Evaluate R 1 Rh and enumerate result

4 foreach r ∈ Rl do

5 foreach c-subset rc of r do

6 L[rc] = L[rc] ∪ r
7 foreach l ∈ L[rc] do

8 enumerate every set pair in l if not output already

which case we obtain an average latency of O(N3/5/B2/5). Then, the number of machines

needed to service the workload is (B ·N)/C2/3 = (B ·N)3/5.

Observe that the above proposition strictly improves the number of machines compared

to the baseline approach of Example 31. However, the average latency is smaller only for

B ≤ N3/2, otherwise, it is larger.

In our experiments, we use the requests in the batch to filter the relations R and S, and

then compute the 2-path query using Algorithm 9.

6.2 Speeding Up SSJ and SCJ

In this section, we will see how to use Algorithm 9 to speed up SSJ and SCJ.

Unordered SSJ. We will first briefly review the state-of-the-art algorithm from [DTL18]

called SizeAware. Algorithm 10 describes the size-aware set similarity join algorithm. The

key insight is to identify the degree threshold x and partition the input sets into light and

heavy. All heavy sets that form an output pair are enumerated by a sort-merge join. All light

sets are processed by generating all possible c-sized subsets and then building an inverted

index over it that allows for enumerating all light output pairs. x is chosen such that the

cost of processing heavy and light sets is equal to each other.

We propose three key modifications that give us the new algorithm called SizeAware++.

First, observe that JH = R 1 Rh (line 3) is a natural join and requires N · N/x opera-

tions (recall that |Rh| = N/x in the worst-case) even if the join output is smaller. Thus,

Algorithm 9 is applicable here directly. This strictly improves the theoretical worst-case

complexity of Algorithm 10 whenever |JH | < N2/x for all c.

98

A1 b1 b2 b3

C1

C2

C3

C4

C1

C2

C3

C3

C5

A2 b1 b2 b4

C1

C2

C3

C4

C1

C2

C3

C4

C6

Figure 6.1: Example instance showing inverted lists

b1

b2

b3

A1

b4

A2

b5

b7

A3

A4

U1 U2

U1 = ∅
U2 = ∅

(a) Before materialization

b1

b2

b3

A1

b4

A2

b5

b7

A3

A4

U1 U2

U1 = {C4}
U2 = {C1, C2}

(b) After materialization

Figure 6.2: Materialization in prefix tree

The second modification is to deal with high duplication when enumerating all light pairs

using the inverted index L[rc]. The key observation is that line 8 is also performing a brute-

force operation by going over all possible pairs and generating the full join result. This step

takes |JL| =
∑

rc
|L[rc]|2 time. If the final output is smaller than |JL|, then we can do better

by using a matrix multiplication based algorithm.

The final observation relates to optimizing the expansion of light nodes (line 3 in Algo-

rithm 9). Recall that the algorithm expands all light y values. Suppose we have R(x, y)

and S(z, y) relations indexed and sorted according to variable order in the schema. Let

L[b] = {c | (c, b) ∈ S(z, y)} denote the inverted index for relation S. The time required to

perform the deduplication for a fixed value for x (say a) is T =
∑

b:(a,b)∈R |L[b]|. This is

unavoidable for overlap c = 1 in the worst case. However, it is possible that for c > 1, the

output size is much smaller than T . In other words, deduplication step is expensive when

the overlap between L[b] for different b is high. The key idea is to reuse computation across

multiple a if there is a shared prefix and high overlap. We illustrate the key idea with the

following example.

Example 32. Consider the instance shown in Figure 6.1 with {b1, . . . , b7} as the possible

keys for inverted index L[b] and sets A1, . . . A4 as shown in the prefix tree. We use the length

of inverted list L[b] as the key for sorting the input sets descending order. Suppose overlap

c = 2. After merging inverted list for b1, b2, we know that C1, C2, C3 are present at least two

times across all of the lists. At this point, we materialize two things: (i) O1 = {C1, C2, C3}

99

as output and, (ii) U1 = L[b1] ∪ L[b2] \ O1 at the node b2 in the tree. We then continue

with merging the other lists. When we start the enumeration for A2, we know that the lists

b1, b2 have already been processed and we can simply use the stored output. For b4, we can

go over its content and check whether the value is present in U1. Similarly, for sets A3

and A4 that share b1, b5 as a prefix, U2 stores the union of L[b1] and L[b5] after removing

the sets that have appeared at least two times. For A1, A2, simply performing a merge step

requires 9 + 9 = 18 operations in total. However, if reusing the computation, we require only

9 operations: 7 for A1 (merging b1 and b2) and 2 for merging inverted list of b4 with stored

U1.

The global sort order for all b is the length of the inverted list L[b]. This encourages more

computation reuse since bigger lists will give larger output and merging those repeatedly is

expensive. Since a global sort order has been defined, we can construct a prefix tree and

store the output and list union in the prefix tree. This technique will provide the largest

gain when input sets Ai have a significant overlap. There also exists a tradeoff between

the space requirement and computation reuse. Storing the output and list union at every

node in the prefix tree increases the materialization requirement. The space usage can be

controlled by limiting the depth at which the output and list union is stored. This can avoid

excessive materialization when space is limited. The three optimizations in SizeAware++

together can deliver speedups up to an order of magnitude over SizeAware for single-threaded

implementation. Next, we highlight the important aspects regarding parallelization of SSJ

and why SizeAware is not as amenable to parallelization as we would it to be. Partitioning

joins JH is straightforward since all parallel tasks require no synchronization and access

the input data in a read-only manner. Parallelizing JL in SizeAware is harder because of

two reasons: (i) generating the c-sized subsets requires coordination since a given subset

can be generated by multiple small sets; (ii) once the subsets have been generated, a given

output pair (r, s) can be connected to multiple c-subsets. This means that each parallel task

needs to coordinate to deduplicate multiple results across different c-subsets. On the other

hand, using matrix multiplication allows for coordination-free parallelism as the matrix can

be partitioned easily and each parallel task requires no interaction with each other. We

show how this is achieved in Section 6.4. Note that SizeAware++ also suffers from the same

drawback as it is also generating the c-sized subsets which can be expensive. For dense

datasets, using matrix multiplication and filtering the join result to find the similar set pairs

is the fastest technique and also benefits the most from parallelization.

Ordered SSJ. In this part, we look at the problem of enumerating SSJ in decreasing order of

set similarity. Ordered enumeration of output pairs can be done by first generating the output

and then sorting it. Note that the processing of light sets in Algorithm 10 (and consequently

SizeAware++) is not amenable to finding the set pair with the largest intersection. Once

100

an output pair has been identified, we still need to enumerate over elements in the sets to

identify the exact intersection size. On the other hand, our matrix multiplication based join

provides a count that can be used for sorting.

SCJ. SCJ algorithms [BMGT16] typically prune away most of the set pairs that are surely

not contained within each other. This acts as a blocking filter. For the remaining set pairs,

the verification step performs a sort-merge join to verify if containment holds for either of

the sets i.e we perform a merge join for all set pairs that need to be verified. However, the

verification step can be slow if the overlap between sets is high (because of multiple replicas)

or the average inverted index size is large. For these cases, we can get a significant speedup

by simply evaluating the join-project result. This approach is most beneficial when the set

containment join result is close to the join-project result. Further, the majority of SCJ

algorithms do not use the power of parallel computation. PIEJoin [KRS+16] is the first and

the only algorithm that addresses parallel SCJ. Since join processing is highly parallelizable,

computing SCJ via join-project output benefits from parallel computation as well.

6.3 Cost-Based Optimization

In this section, we deep dive into the challenges of making our framework practical and

how we can fine-tune the knobs to minimize the running time.

Estimating output size. So far, we have not discussed how to estimate for |OUT|. We

derive an estimate in the following manner. First, it is simple to show that the following

holds for Q̈: |dom(x)| ≤ |OUT| ≤ min{|dom(x)|2|, |OUT1|}| and |OUT1| ≤ N ·
√
|OUT|. Thus,

a reasonable estimate for |OUT| is the geometric mean of max{|dom(x)|, (|OUT1|/N)2} and

min{|dom(x)|2|, |OUT1|}|. If |OUT1| is not much larger than N, then the full join size is also

reasonable estimate. We return to this point later in the discussion of the optimizer.

Indexing relations. Join processing by applying worst-case optimal join algorithms is

possible only if all relations are indexed over the variables. This means each relation will be

stored once for every index order that is required. For a binary relation R(x, y), this would

mean storing the relation indexed by all values of x as key and a sorted list of values for y

and vice-versa. This can be accomplished in O(|D| log |D|) time after removing all tuples

that do not join. During this pass, it is also straightforward to compute the size of the full

join result (i.e., before the projection). Additionally, we create the following indexes:

1. For variable x and degree threshold δ, an index that tells us the deduplication effort

when performing set union (i.e
∑

light a

∑
b:(a,b)∈R |L[b]|) for all values of x with degree

≤ δ. We call this index sum(xδ). Similarly for all values of y with degree ≤ δ,

sum(yδ) =
∑

light b |L[b]|2.

101

2 4 6 8 10
matrix dimension (×103)

0

5

10

15

20

25

R
un

ni
ng

ti
m

e
in

se
c

Matrix Multiplication

(a) Single core scalabil-

ity

1 2 3 4 5
number of cores

0

50

100

150

R
un

ni
ng

ti
m

e
in

se
c

Matrix Multiplication 20000× 20000

matrix construction
matrix multiplication

(b) Multi core scalabil-

ity

Figure 6.3: Matrix Multiplication Running Time

2. For the projected out variable y and degree threshold δ, an index that counts the

number of x connected to all y values with degree ≤ δ. We call this index cdfx(yδ).

3. For each variable (say w), an index that tells us the number of values for w with degree

≤ δ. We call this index count(wδ).

All indexes can be built in linear time by storing the sorted vector containing the true

distribution of values present in the relation. Then, given a δ, we can binary search over the

vector to find the exact count (sum).

Matrix multiplication cost. A key component of all our techniques is matrix multipli-

cation. Lemma 1 states the complexity of performing multiplication and also includes the

cost of creating the matrices. However, in practice, this could be a significant overhead

both in terms of memory consumption and time required. Further, the scalability of matrix

multiplication implementation itself is subject to matrix size, the underlying linear algebra

framework, and hardware support (vectorization, SIMD instructions, multithreading sup-

port, etc.) To minimize the running time, we need to take into consideration all system

parameters to estimate the optimal threshold ∆ values.

Symbol Description

Ts avg time for sequential access in std::vector
Tm avg time for allocating 32 bytes of memory

co number of cores available

M̂(u, v, w, co)estimate of time required to multiply matrices of dimension u × v
and v × w using co cores

TI avg time for random access and insert in std::vector

Table 6.1: Symbol definitions.

102

Algorithm 11: Cost Based Optimizer

Output: degree threshold ∆1,∆2

1 Estimate full join result |OUT1| and |OUT|
2 if |OUT1| ≤ 20 ·N then

3 use worst-case optimal join algorithm

4 tlight ← |OUT1|, theavy ← 0, prevlight ←∞, prevheavy ← 0,∆1 = N

5 while true do

6 prevlight ← tlight, prevheavy ← theavy

7 prev∆1
← ∆1, prev∆2

← ∆2

8 ∆1 ← (1− ε)∆1

9 ∆2 ← N ·∆1/|OUT|
10 tlight ← TI · sum(y∆1

) + ·TI · sum(x∆2
)+

11 Tm · |dom(x)|+ Ts · cdfx(y∆1
) · |dom(x)|

12 u, v, w ← #heavy x, y, z values using count(wδ)

13 theavy ← M̂(u, v, w, co) + Tm · (u · v + u · w)

14 if prevlight + prevheavy ≤ tlight + theavy then

15 return prev∆1
, prev∆2

Algorithm 11 describes the cost-based optimizer used to find the best degree thresholds

to minimize the running time. To simplify the description, we describe the details for the

case of Q̈ where R = S (i.e., a self join). If the full join result is not much larger than the size

of the input relation, then we can simply use any worst-casethe optimal join algorithm. For

our experiments, we set the upper bound for |OUT1| to be at most 20 ·N . Beyond this point,

we begin to see the benefit of using matrix multiplication for join-project computation.

To find the best possible estimates for ∆1,∆2, we employ binary search over the value

of ∆2. In each iteration, we increase or decrease its value by a factor of (1 − ε) where

ε is a constant 1. Once we fix the value of ∆1 and ∆2, we can query our precomputed

index structure to find the exact number of operations that will be performed for all light

y values and all light x values. Then, we find the number of heavy remaining values and

get the estimate for time required to compute the matrix product. At the beginning of the

next iteration, we compare the new time estimates with the previous iteration. If the new

total time is larger than that of the previous iteration, we stop the process and use the

last computed values as the degree thresholds. The entire process terminates in worst-case

O(log2N) steps.

So far, we have not discussed how to estimate M̂(u, v, w, co). Since this quantity is

system-dependent, we precompute a table that stores the time required for different values of

1We fix ε = 0.95 for our experiments

103

u, v, w, co. As a brute-force computation for all possible values is very expensive to store and

compute, we store the time estimate for M̂(p, p, p, co) for p ∈ {1000, 2000, . . . , 20000}, co ∈
[5]. Then, given an arbitrary u, v, w, co, we can extrapolate from the nearest estimate avail-

able from the table. This works well since Eigen implements the naive O(n3) (with opti-

mizations) algorithm that offers predictable running time. Figure 6.3a shows scalability of

Eigen as the input matrix size increases. Since Eigen makes heavy use of SIMD instructions

and vectorization, the running time displays a near quadratic growth rather than cubic for

dimensions up to 5000× 5000, beyond which the running time growth becomes cubic.

6.4 System Implementation

We implement our techniques in C++ as a standalone library. To perform matrix mul-

tiplication, we use Eigen [GJ+10] with Intel MKL [int09] as the underlying linear algebra

framework. We choose Eigen for its ease of use and its seamless support for parallelization,

even though other frameworks such as MATLAB are faster. Intel MKL offers two different

functions for performing matrix operations: SGEMM and DGEMM. SGEMM allows low precision

real arithmetic while DGEMM is for high precision arithmetic. This also makes DGEMM 3x

slower than SGEMM for the same operation being performed. We use floating point matrices

everywhere rather than double precision or integer matrices for better performance.

At this point, we also wish to draw the attention of the reader towards some low-level

details of the SSJ and SCJ implementation. Since the goal is to output the result in arbi-

trary order, both implementations enumerate the result without storing any of the output.

Enumerating the result in (say) decreasing order of similarity size or containment size will

require storing the output and sorting it before providing the user with a pointer to the

result. We implement this in the straightforward way by sorting std::vector containing

the output. Next, we describe the details of deduplication in our implementation for the

case of unordered enumeration.

Deduplication. Since matrix multiplication deduplicates the output for all heavy values,

we only need to handle deduplication for the remaining output tuples. The straightforward

way to deduplicate is to use a hashmap. However, this has two disadvantages: (i) The

memory for hashmap needs to be reserved upfront. This is critical to ensure that there is no

resizing (and rehashing of the keys already present) of the hashmap at any point; (ii) upfront

reservation would require |OUT| amount of memory for deduplication, which is expensive both

in terms of time and memory.

1 std::vector <int > y_light; // all light y values

2 std:: unordered_map <int , set > R_xy; // indexed relation

3 std:: unordered_map <int , set > R_yx; // indexed relation

4 std::vector <int > dedup(N); // reserving N memory

5 for(auto x : [N]) {

6 dedup.assign(N,0);

104

RoadNet DBLP Jokes Words Protein Image
Datasets

10−1

100

101

102

103

104

105

R
un

ni
ng

ti
m

e
in

se
c

Two Path Join

MMJoin

Non-MMJoin

Postgres
MySQL

EmptyHeaded
System X

(a) Two path query - single

core

RoadNet DBLP Jokes Words Protein Image
Datasets

100

101

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Star Join

MMJoin

Non-MMJoin

(b) Three star query - single

core

RoadNet DBLP Jokes Words Protein Image
Datasets

10−1

100

101

102

103

104

105

R
un

ni
ng

ti
m

e
in

se
c

SCJ

MMJoin

PIEJoin
PRETTI
LIMIT+

(c) SCJ Running Time

2 4 6 8 10
Number of cores

10−1

100

101

102

103

R
un

ni
ng

ti
m

e
in

se
c

2-path Join - Parallel

MMJoin

Non-MMJoin

(d) Jokes - multi

core

2 4 6 8 10
Number of cores

101

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

2-path Join - Parallel

MMJoin

Non-MMJoin

(e) Words - multi

core

2 4 6 8 10
Numer of cores

100

101

102

103

R
un

ni
ng

ti
m

e
in

se
c

Star Join - Parallel

MMJoin

Non-MMJoin

(f) Jokes - multi

core

2 4 6 8 10
Numer of cores

100

101

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Star Join - Parallel

MMJoin

Non-MMJoin

(g) Words - multi

core

Figure 6.4: Join Processing for two path and star query

7 for(auto y : y_light) {

8 if(R_xy[x].find(y) != R_xy[x].end ()) {

9 for(auto z : R_yx[y]) {

10 dedup.at(z) += 1;

11 if (dedup.at(z) == 1) {

12 std::cout << x << z;

13 }

14 }

15 }

16 }

17 }

The code snippet above shows the join for all light y values, which is the estimate used

in line 11 of Algorithm 11. Line 4 reuses the dedup vector to check that a given z values has

already been output or not. This is possible because we have fixed an x value and then merge

all the z values reachable from y that are connected to x. Since the above approach involves

random access over the dedup vector, it can be easily an order of magnitude more expensive

than serial access if the vector does not fit in the L1 cache. An alternative approach is to

deduplicate by appending all reachable z values, followed by sorting to deduplicate. For our

experiments, we choose the best of the two strategies, depending on the number of elements

that need to be deduplicated and the domain size of variables.

105

Parallelization. The single-threaded execution of all algorithms easily reaches several hours

when faced with gigabyte-sized data sets and thus, parallel processing becomes necessary.

Eigen parallelizes the matrix multiplication part in a coordination-free way, allowing both

parts of our implementation to be highly parallelizable. Figure 6.3b shows the running time

of matrix multiplication as the number of cores increases. The speedup obtained is near-

linear as the resources available increase. This is possible because each core calculates the

matrix product of a partition of data and requires no interaction with the other tasks.

6.5 Experimental Evaluation

In this section, we empirically evaluate the performance of our algorithms. The main

goal of the section is fourfold:

1. Empirically verify the speed-up obtained for the 2-path and star queries using the

algorithm from Section 6.1 compared to Postgres, MySQL, EmptyHeaded [ALT+17]

and Commercial database X.

2. Evaluate the performance of the two-path query against SizeAware and SizeAware++

for unordered and ordered SSJ.

3. Evaluate the performance of the 2-path query against three state-of-the-art algorithms,

namely PIEJoin [KRS+16], LIMIT+ [BMGT16], PRETTI for SCJ.

4. Validate the batching technique for boolean set intersection.

All experiments are performed on a machine with Intel Xeon CPU E5-2660@2.6GHz, 20

cores, and 150 GB RAM. Unless specified, all experiments are single-threaded implementa-

tions. We use the open-source implementation of each algorithm. For all experiments, we

focus on self-join i.e all relations are identical. All C++ code is compiled using clang 8.0

with -Ofast flag and all matrix multiplication related code is additionally compiled with

-mavx -mfma -fopenmp flags for multicore support. Each experiment is run 5 times and we

report the running time by averaging three values after excluding the slowest and the fastest

runtime.

6.5.1 Datasets

We conduct experiments on six real-world datasets from different domains. DBLP [dbl]

is a bibliography dataset from DBLP representing authors and papers. RoadNet [roa] is

road network of Pennsylvania. Jokes [jok] is a dataset scraped from Reddit where each set

is a joke and there is an edge between a joke and a word if the work is present in the joke.

Words [wor] is a bipartite graph between documents and the lexical tokens present in them.

106

2 3 4 5 6
overlap value c

10−1

100

101

102

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ

MMJoin

SizeAware++
SizeAware

(a) DBLP - single

core

2 3 4 5 6
overlap value c

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ

MMJoin

SizeAware++
SizeAware

(b) Jokes - single

core

2 3 4 5 6
overlap value c

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ

MMJoin

SizeAware++
SizeAware

(c) Image - single

core

2 3 4 5 6
number of cores

10−1

100

101

102

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ c = 2 - Parallel
MMJoin

SizeAware++
SizeAware

(d) DBLP - multi

core

2 3 4 5 6
overlap value c

10−1

100

101

102

R
un

ni
ng

ti
m

e
in

se
c

Ordered SSJ

MMJoin

SizeAware++
SizeAware

(e) DBLP - single

core

2 3 4 5 6
overlap value c

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Ordered SSJ

MMJoin

SizeAware++
SizeAware

(f) Jokes - single

core

2 3 4 5 6
number of cores

101

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ c = 2 - Parallel
MMJoin

SizeAware++
SizeAware

(g) Jokes - multi

core

2 3 4 5 6
number of cores

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ c = 2 - Parallel
MMJoin

SizeAware++
SizeAware

(h) Image - multi

core

Figure 6.5: Unordered and Ordered SSJ

Image [ima] dataset is a graph where each image is connected to a feature attribute if the

image contains the corresponding attribute and Protein [pro] refers to a bipartite graph where

an edge signifies interaction between two proteins. Table 6.2 shows the main characteristics

of the datasets. DBLP and RoadNet are examples of sparse datasets whereas the other four

are dense datasets.

6.5.2 Simple Join Processing

In this part, we evaluate the running time for the two queries: Q̈ and Q?3. To extract

the maximum performance from Postgres, we use PGTune to set the best configuration

parameters. This is important to ensure that the query plan does not perform nested loop

inner joins. For all datasets, we create a hash index over each variable to ensure that the

optimizer can choose the best query plan. We manually verify that the query plan generated

by PostgreSQL (and MySQL) when running these queries chooses HashJoin or MergeJoin.

For X, we allow up to 1TB of disk space and supply query hints to make sure that all of the

CPU, RAM is available for query execution.

Figure 6.4a shows the run time for different algorithms on a single core. MySQL and

Postgres have the slowest running time since they evaluate the full query join result and

107

Dataset |R| No. of sets |dom| Avg set size Min set size Max set size

DBLP 10M 1.5M 3M 6.6 1 500

RoadNet 1.5M 1M 1M 1.5 1 20

Jokes 400M 70K 50K 5.7K 130 10K

Words 500M 1M 150K 500 1 10K

Protein 900M 60K 60K 15K 50 50K

Image 800M 70K 50K 11.4K 10K 50K

Table 6.2: Dataset Characteristics

then deduplicate. DBMS X performs marginally better than MySQL and Postgres. Non-

matrix multiplication (denoted Non-MMJoin) join based on Lemma 16 is the second-best

algorithm. Matrix multiplication based join (denoted MMJoin) is the fastest on all datasets

except RoadNet and DBLP, where the optimizer chooses to compute the full join. A key

reason for the huge performance difference between MMJoin and other algorithms is that

deduplication by computing the full join result requires either sorting the data or using hash

tables, both of which are expensive operations. In particular, using hash tables requires

rehashing of entires every time the hash table increases. Similarly, sorting the full join result

is expensive since the full join result can be orders of magnitude larger than the projection

query result. Matrix multiplication avoids this since worst-case optimal joins can efficiently

process the light part of the input and matrix multiplication is space-efficient due to its

implicit factorization of the output formed by heavy values. Remarkably, EmptyHeaded

performs comparably to MMJoin for Jokes dataset and outperforms MMJoin slightly on the

Image dataset. This is because the Image dataset exclusively contains a dense component

where every output is close to a clique. Since EmptyHeaded is designed as a linear algebra

engine like Intel MKL, the performance is very similar. Figure 6.4d and 6.4e show the

performance of the combinatorial and non-combinatorial algorithm as the number of cores

increases. Both algorithms show a speed-up. We omit MySQL and Postgres since they do

not allow for multicore processing of single queries.

Next, we turn to the star query on three relations. For this experiment, we take the

largest sample of each relation so that the result can fit in the main memory and the join

finishes in a reasonable time. Figure 6.4b shows the performance of the combinatorial and

non-combinatorial join on a single core. All other engines (except EmptyHeaded) failed to

finish in 15000 seconds except on RoadNet and DBLP. EmptyHeaded performed similarly to

MMJoin on Protein and Image datasets but not on other datasets. Figure 6.4f and 6.4g show

the performance in a multicore setting for Jokes and Words datasets. Once again, matrix

multiplication performs better than its combinatorial version across all experiments.

108

2 3 4 5 6
overlap value c

103

104

105

R
un

ni
ng

ti
m

e
in

se
c

Ordered SSJ

MMJoin

SizeAware++
SizeAware

(a) Image - single

core

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
Batch size (×103)

100

101

102

A
ve

ra
ge

de
la

y
in

se
c

Average Delay

MMJoin

Non-MMJoin

(b) Jokes

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
Batch size (×103)

0

1

2

3

4

5

A
ve

ra
ge

de
la

y
in

se
c

Average Delay

MMJoin

Non-MMJoin

(c) Words

1 1.5 2 2.5 3 3.5 4 4.5
Batch size (×103)

10−1

100

101

102

103

A
ve

ra
ge

de
la

y
in

se
c

Average Delay

MMJoin

Non-MMJoin

(d) Image

Figure 6.6: Ordered SSJ and minimizing average delay

6.5.3 Set Similarity

In this section, we look at set similarity (SSJ). For both settings below, we materialize

the output at all nodes in the prefix tree. We will compare the performance of MMJoin,

SizeAware and SizeAware++. We begin with the unordered setting.

Unordered SSJ. Figure 6.5a, 6.5b and 6.5c show the running time of MMJoin, SizeAware

and SizeAware++ on a single core for DBLP, Jokes and Image dataset respectively. Since

DBLP is a sparse dataset with small set sizes, MMJoin is the fastest and both SizeAware

and SizeAware++ are marginally slower due to the optimizer cost. For Jokes and Image

datasets, SizeAware is the slowest algorithm. This is because both the light and heavy

processing have a lot of deduplication to perform. SizeAware++ is an order of magnitude

faster than SizeAware since it uses matrix multiplication but is slower than MMJoin because

it still needs to enumerate the c-subsets before using matrix multiplication. MMJoin is the

fastest as it is output sensitive and performs the best in a setting with many duplicates.

Next, we look at the parallel version of unordered SSJ. Figure 6.5d, 6.5g and 6.5h show the

results for multi core settings. For each experiment, we fix the overlap to c = 2. Observe that

MMJoin join and SizeAware++ are more scalable than SizeAware. This is because the light

sets processing of SizeAware cannot be done in parallel while matrix multiplication based

deduplication can be performed in parallel.

Ordered SSJ. Recall that for ordered SSJ, our goal is to enumerate the set pairs in de-

scending order of set similarity. Thus, once the set pairs and their overlap is known, we

need to sort the result using overlap as the key. Figure 6.5e and 6.5f show the running time

for single-threaded implementation of ordered set similarity. Compared to the unordered

setting, the extra overhead of materializing the output and sorting the result increases the

running time for all algorithms. For SizeAware, there is an additional overhead of finding the

overlap for all light sets as well. Both MMJoin and SizeAware++ maintain their advantage

similar to the unordered setting.

109

2 3 4 5 6
number of cores

101

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

SCJ - Parallel

MMJoin PIEJoin

(a) Jokes dataset

2 3 4 5 6
number of cores

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

SCJ - Parallel

MMJoin PIEJoin

(b) Words - multi

core

2 3 4 5 6
number of cores

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

SCJ - Parallel

MMJoin PIEJoin

(c) Protein - multi

core

2 3 4 5 6
number of cores

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

SCJ - Parallel

MMJoin PIEJoin

(d) Image - multi

core

Figure 6.7: Unordered Parallel SCJ

Impact of optimizations. Recall that SizeAware++ contains three main optimizations -

processing heavy sets using MMJoin, processing light sets via MMJoin and using prefix based

materialization for computation sharing. Figure 6.8 shows the effect of switching on various

optimizations. NO-OP denotes all optimizations switched off. The running time is shown as

a percentage of the NO-OP running time (100%). Light denotes using two-path join on only

light sets identified by SizeAware but not using the prefix optimizations. Heavy includes the

Light optimizations switched on plus two-path join processing on the heavy sets but prefix

based optimization is still switched off. Finally, Prefix switches on materialization of the

output in prefix tree on top of Light and Heavy. As the figure shows, both Light and Heavy

optimizations together improve the running time by an order of magnitude and Prefix further

improves by a factor of 5×.

Prefix Heavy Light NO-OP

Optimizations

100

101

102

T
im

e
pe

rc
en

ta
ge

(%
)

Optimizations in SizeAware++ on Words dataset

Prefix

Heavy

Light

NO-OP

Figure 6.8: SSJ - Impact of optimizations on Words

6.5.4 Set Containment

In this section, we evaluate the performance of different set containment join algo-

rithms. Figure 6.4c shows the running time of PIEJoin, PRETTI and LIMIT+. For all

SCJ algorithms, we use the infrequent sort order, choose a limit value of two for LIMIT+

and run the variant where the output is materialized (instead of just simply counting its size).

110

Once again join processing yields the fastest running time since the join output is a superset

of the set containment join result and except RoadNet and DBLP, the join-project result

and SCJ result is close to each other. Since the average set size is large for most datasets,

SCJ algorithms need to perform expensive verification operations. For the parallel setting,

Figure 6.7a, 6.7b, 6.7c and 6.7d show the performance of PIEJoin vs. MMJoin. PIEJoin does

not scale as well as MMJoin as it is sensitive to data distribution and choice of partitions

chosen by the heuristic in the algorithm.

6.5.5 Boolean Set Intersection

In this part of the experiment, we look at the boolean set intersection scenario where

queries are arriving in an online fashion. The arrival rate of queries is set to B = 1000 queries

per second and our goal is to minimize the average delay metric as defined in Section 6.1.3.

The workload is generated by sampling each set pair uniformly at random. We run this

experiment for 300 seconds for each batch size and report the mean average delay metric

value. Figure 6.6b, 6.6c and 6.6d show the average delay for the three datasets at different

batch sizes. Recall that the smaller batch size we choose, the more processing units are

required. For the Jokes dataset, Non-MMJoin has the smallest average delay of ≈ 1s when

S = 10. In that time, we collect a further 1000 requests, which means that there is a need

for 100 parallel processing units. On the other hand, MMJoin achieves a delay of ≈ 2s at

batch size 900. Thus, we need only 3 parallel processing units in total to keep up with the

workload while sacrificing only a small penalty in latency. For the Image dataset, MMJoin

can achieve average delay of 1s at S = 1000 queries while Non-MMJoin achieves 50s at the

same batch size. This shows that matrix multiplication is useful for achieving a smaller

latency using fewer resources, in line with the theoretical prediction. For the Words dataset,

most of the sets have a small degree. Thus, the optimizer chooses to evaluate the join via

the combinatorial algorithm. This explains the in-sync behavior of average delay for both

algorithms. Note that MMJoin is marginally slower because of the overhead of the optimizer

(≤ 2s).

111

Chapter 7

Ranked Enumeration of Conjunctive Query
Results

In this chapter, we will focus on join processing for queries in the presence of ranking

functions. For many data processing applications, enumerating query results according to an

order given by a ranking function is a fundamental task. For example, [YAG+18, CLZ+15]

consider a setting where users want to extract the top patterns from an edge-weighted graph,

where the rank of each pattern is the sum of the weights of the edges in the pattern. Ranked

enumeration also occurs in SQL queries with an ORDER BY clause [QCS07, ISA+04]. In the

above scenarios, the user often wants to see the first k results in the query as quickly as

possible, but the value of k may not be predetermined. Hence, it is critical to construct

algorithms that can output the first tuple of the result as fast as possible, and then output

the next tuple in the order with a very small delay. In this article, we study the algorithmic

problem of enumerating the result of a Conjunctive Query (CQ, for short) against a relational

database where the tuples must be output in the order given by a ranking function.

The simplest way to enumerate the output is to materialize the result OUT and sort the

tuples based on the score of each tuple. Although this approach is conceptually simple, it

requires that |OUT| tuples are materialized; moreover, the time from when the user submits

the query to when she receives the first output tuples is Ω(|OUT| · log |OUT|). Further, the

space and delay guarantees do not depend on the number of tuples that the user wants to see.

More sophisticated approaches to this problem construct optimizers that exploit properties

such as the monotonicity of the ranking function, allowing for join evaluation on a subset of

the input relations (see [IBS08] and references within). Despite the significant progress, all

of the known techniques suffer from large worst-case space requirements, no dependence on

k, and provide no formal guarantees on the delay during enumeration, with the exception of

a few cases where the ranking function is of a special form. Fagin et al. [FLN03] initiated a

long line of study related to aggregation over sorted lists. However, [FLN03] and subsequent

works also suffer from the above-mentioned limitations as we do not have the materialized

output Q(D) that can be used as sorted lists.

112

In this chapter, we construct algorithms that remedy some of these issues. We present

novel algorithms in the same framework as described in section 2.4: the preprocessing phase,

where the system constructs a data structure that can be used later and the enumeration

phase when the results are generated. The additional constraint imposed on the enumeration

phase is that the results generated must be sorted according to a given ranking function.

All of our algorithms aim to minimize the time of the preprocessing phase and guarantee

a logarithmic delay O(log |D|) during enumeration. Although we cannot hope to perform

efficient ranked enumeration for an arbitrary ranking function, we show that our techniques

apply for most ranking functions of practical interest, including lexicographic ordering, and

sum (also product or max) of weights of input tuples among others.

Example 33. Consider a weighted graph G, where an edge (a, b) with weight w is represented

by the relation R(a, b, w). Suppose that the user is interested in finding the (directed) paths of

length 3 in the graph with the lowest score, where the score is a (weighted) sum of the weights

of the edges. The user query in this case can be specified as: Q(x, y, z, u, w1, w2, w3,) =

R(x, y, w1), R(y, z, w2), R(z, u, w3) where the ranking of the output tuples is specified for ex-

ample by the score 5w1 + 2w2 + 4w3. If the graph has N edges, the näıve algorithm that

computes and ranks all tuples needs Ω(N2 logN) preprocessing time. We show that it is

possible to design an algorithm with O(N) preprocessing time, such that the delay during

enumeration is O(logN). This algorithm outputs the first k tuples by materializing O(N+k)

data, even if the full output is much larger.

The problem of ranked enumeration for CQs has been studied both theoretically [KS06,

CS07, OZ15b] and practically [YAG+18, CLZ+15, BOZ12]. Theoretically, [KS06] establishes

the tractability of enumerating answers in sorted order with polynomial delay (combined

complexity), albeit with suboptimal space and delay factors for two classes of ranking func-

tions. [YAG+18] presents an anytime enumeration algorithm restricted to acyclic queries

on graphs that uses Θ(|OUT| + |D|) space in the worst case, has a Θ(|D|) delay guarantee,

and supports only simple ranking functions. As we will see, both of these guarantees are

suboptimal and can be improved upon.

Ranked enumeration has also been studied for the class of lexicographic orderings. In [BDG07a],

the authors show that free-connex acyclic CQs can be enumerated in constant delay after

only linear time preprocessing. Here, the lexicographic order is chosen by the algorithm and

not the user. Factorized databases [BOZ12, OZ15b] can also support constant delay ranked

enumeration, but only when the lexicographic ordering agrees with the order of the query

decomposition. In contrast, our results imply that we can achieve a logarithmic delay with

the same preprocessing time for any lexicographic order.

113

Our Contribution. For ranking results of full (projection free) CQs, we show how to obtain

logarithmic delay guarantees with small preprocessing time. We summarize our technical

contributions below:

1. Novel Algorithms for Full CQs. Our main contribution (Theorem 19) is a novel

algorithm that uses query decomposition techniques in conjunction with the structure of

the ranking function. The preprocessing phase sets up priority queues that maintain partial

tuples at each node of the decomposition. During the enumeration phase, the algorithm

materializes the output of the subquery formed by the subtree rooted at each node of the

decomposition on-the-fly, in sorted order according to the ranking function. To define the

rank of the partial tuples, we require that the ranking function can be decomposed with

respect to the particular decomposition at hand. Theorem 19 then shows that with O(|D|fhw)
preprocessing time, where fhw is the fractional hypertree width of the decomposition, we can

enumerate with delay O(log |D|). We then discuss how to apply our main result to commonly

used classes of ranking functions. Our work thoroughly resolves an open problem stated at

the Dagstuhl Seminar 19211 [BKPS19] on ranked enumeration (see Question 4.6).

2. Extending results to UCQs. We propose two extensions of Theorem 19 that improve

the preprocessing time to O(|D|subw), a polynomial improvement over Theorem 19 where

subw is the submodular width of the query Q. The result is based on a simple but powerful

application of the main result that can be applied to any full UCQ Q combined with the

PANDA algorithm proposed by Abo Khamis et al. [AKNS17].

3. Nearly-Tight Lower Bounds. Finally, we show lower bounds (conditional and un-

conditional) for our algorithmic results. In particular, we show that subject to a popular

conjecture, the logarithmic factor in delay cannot be removed. Additionally, we show that

for two particular classes of ranking functions, we can characterize for which acyclic queries

it is possible to achieve logarithmic delay with linear preprocessing time, and for which it is

not.

Organization. We overview the prior work in the space of ranked enumeration in Sec-

tion 7.1. Section 7.3 contains the algorithm and the proofs for our main result. We study

the extension of the algorithm to UCQs in Section 7.4. We conclude this chapter with lower

bounds in Section 7.5.

7.1 Related Work

Top-k ranked enumeration of join queries has been studied extensively by the database

community for both certain [LCIS05, QCS07, ISA+04, LSCI05] and uncertain databases [RDS07,

ZLGZ10]. Most of these works exploit the monotonicity property of scoring functions, build-

ing offline indexes and integrate the function into the cost model of the query optimizer to

114

bound the number of operations required per answer tuple. We refer the reader to [IBS08] for

a comprehensive survey of top-k processing techniques discovered before 2008. More recent

work [CLZ+15, GGY+14] has focused on enumerating twig-pattern queries over graphs. Our

work departs from this line of work in two aspects: (i) use of novel techniques that use query

decompositions and clever tricks to achieve strictly better space requirement and formal de-

lay guarantees; (ii) our algorithms apply to arbitrary hypergraphs as compared to simple

graph patterns over binary relations. Most closely related to our setting is [KS06] and a line

of work initiated by [YAG+18]. [KS06] uses an adaptation of Lawler-Murty’s procedure to

incrementally compute ordered answers of full acyclic CQs. However, that work was mainly

focused on studying the combined complexity of the problem. Further, since the goal was to

obtain polynomial delay guarantees, the authors did not attempt to obtain the best possible

delay guarantees. This line of work was further extended to parallel setting [GKS11] and

also when the data is incomplete [KS07].

The other line of work was initiated by Yang et al. [YAG+18] who presented a novel

anytime algorithm, called KARPET, for enumerating homomorphic tree patterns with worst-

case delay and space guarantees where the ranking function is the sum of weights of input

tuples that contribute to an output tuple. KARPET is an any-time algorithm that gener-

ates candidate output tuples with different scores and sorts them incremental via a priority

queue. However, the candidate generation phase is expensive (which translates to linear

delay guarantees) and can be improved substantially, as we show in this article. [YRLG18]

made the further connection that KARPET can be extended to arbitrary full CQs (includ-

ing cycles) by considering different tree decompositions. This connection was concretely

established in concurrent work [TAG+] that built upon [YAG+18, YRLG18] to obtain log-

arithmic delay guarantees using a dynamic programming approach combined with Lawler’s

procedure [Law72]. Moreover, [TAG+] also conducted an extensive empirical evaluation to

demonstrate the benefit of improved delay guarantees in practice. Very recently, the au-

thors were also able to extend their results to theta-joins as well [TGR21a]. For a more

detailed overview of the prior work on the topic of ranked enumeration, we refer the reader

to [TGR20, TAG+].

Rank aggregation algorithms. Top-k processing over ranked lists of objects has a rich

history. The problem was first studied by Fagin et al. [Fag02, FLN03] where the database

consists of N objects and m ranked streams, each containing a ranking of the N objects

to find the top-k results for coordinate monotone functions. The authors proposed Fagin’s

algorithm (FA) and Threshold algorithm (TA), both of which were shown to be instance

optimal for database access cost under sorted list access and random access model. This

model would apply to our setting only if Q(D) is already computed and materialized. More

importantly, TA can only give O(N) delay guarantee using O(N) space. [NCS+01] extended

115

the problem setting to the case where we want to enumerate top-k answers for t-path query.

The first proposed algorithm J∗ uses an iterative deepening mechanism that pushes the

most promising candidates into a priority queue. Unfortunately, even though the algorithm

is instance optimal with respect to number of sorted access over each list, the delay guarantee

is Ω(|OUT|) with space requirement S = Ω(|OUT|). A second proposed algorithm J∗PA allows

random access over each sorted list. J∗PA uses a dynamic threshold to decide when to use

random access over other lists to find joining tuples versus sorted access but does not improve

formal guarantees.

Query enumeration. The notion of constant delay query enumeration was introduced by

Bagan, Durand, and Grandjean in [BDG07a]. In this setting, preprocessing time is supposed

to be much smaller than the time needed to evaluate the query (usually, linear in the size of

the database), and the delay between two output tuples may depend on the query, but not

on the database. This notion captures the intrinsic hardness of the query structure. For an

introduction to this topic and an overview of the state-of-the-art, we refer the reader to the

survey [Seg13b, Seg15a]. Most of the results in existing works focus only on lexicographic

enumeration of query results where the ordering of variables cannot be arbitrarily chosen.

Transferring the static setting enumeration results to under updates has also been a subject

of recent interest [BKS18, BKS17b].

Factorized databases. Following the landmark result of [OZ15b] which introduced the

notion of using the logical structure of the query for efficient join evaluation, a long line

of research has benefited from its application to learning problems and broader classes of

queries [BOZ12, BKOZ13, OS16, DK18, KNOZ20b, DHK20, DHK21]. The core idea of

factorized databases is to convert an arbitrary query into an acyclic query by finding a query

decomposition of small width. This width parameter controls the space and pre-processing

time required to build indexes allowing for constant delay enumeration. We build on top

of factorized representations and integrate ranking functions in the framework to enable

enumeration beyond lexicographic orders.

7.2 Ranking Functions

Consider a natural join query Q and a database D. Our goal is to enumerate all the

tuples of Q(D) according to an order that is specified by a ranking function. In practice,

this ordering could be specified, for instance, in the ORDER BY clause of a SQL query.

Formally, we assume a total order � of the valuations θ over the variables of Q. The

total order is induced by a ranking function rank that maps each valuation θ to a number

rank(θ) ∈ R. In particular, for two valuations θ1, θ2, we have θ1 � θ2 if and only if rank(θ1) ≥
rank(θ2). Throughout the article, we will assume that rank is a computable function that

116

takes times linear in the input size to the function. We present below two concrete examples

of ranking functions.

Example 34. For every constant c ∈ dom, we associate a weight w(c) ∈ R. Then, for each

valuation θ, we can define rank(θ) :=
∑

x∈V w(θ(x)). This ranking function sums the weights

of each value in the tuple.

Example 35. For every input tuple t ∈ RF , we associate a weight wF (t) ∈ R. Then, each

valuation θ, we can define rank(θ) =
∑

F∈E wF (θ[xF]) where xF is the set of variables in F .

In this case, the ranking function sums the weights of each contributing input tuple to the

output tuple t (we can extend the ranking function to all valuations by associating a weight

of 0 to tuples that are not contained in a relation).

Decomposable Rankings. As we will see later, not all ranking functions are amenable to

efficient evaluation. Intuitively, an arbitrary ranking function will require that we look across

all tuples to even find the smallest or largest element. We next present several restrictions

which are satisfied by ranking functions seen in practical settings.

Definition 4 (Decomposable Ranking). Let rank be a ranking function over V and S ⊆ V.

We say that rank is S-decomposable if there exists a total order for all valuations over S,

such that for every valuation ϕ over V \ S, and any two valuations θ1, θ2 over S we have:

θ1 � θ2 ⇒ rank(ϕ ◦ θ1) ≥ rank(ϕ ◦ θ2).

We say that a ranking function is totally decomposable if it is S-decomposable for every

subset S ⊆ V, and that it is coordinate decomposable if it is S-decomposable for any singleton

set. Additionally, we say that it is edge decomposable for a query Q if it is S-decomposable

for every set S that is a hyperedge in the query hypergraph. We point out here that totally

decomposable functions are equivalent to monotonic orders as defined in [KS06].

Example 36. The ranking function rank(θ) =
∑

x∈V w(θ(x)) defined in Example 34 is

totally decomposable, and hence also coordinate decomposable. Indeed, pick any set S ⊆ V.

We construct a total order on valuations θ over S by using the value
∑

x∈S w(θ(x)). Now,

consider valuations θ1, θ2 over S such that
∑

x∈S w(θ1(x)) ≥∑x∈S w(θ2(x)). Then, for any

valuation ϕ over V \ S we have:

rank(ϕ ◦ θ1) =
∑
x∈V\S

w(ϕ(x)) +
∑
x∈S

w(θ1(x)) ≥
∑
x∈V\S

w(ϕ(x)) +
∑
x∈S

w(θ2(x)) = rank(ϕ ◦ θ2)

Next, we construct a function that is coordinate-decomposable but it is not totally decompos-

able. Consider the query

Q(x1 . . . , xd, y1, . . . , yd) = R(x1, . . . , xd), S(y1, . . . , yd)

117

where dom = {−1, 1}, and define rank(θ) :=
∑d

i=1 θ(xi) · θ(yi). This ranking function

corresponds to taking the inner product of the input tuples if viewed as vectors. The total

order for dom is −1 ≺ 1. It can be shown that for d = 2, the function is not {x1, x2}-
decomposable. For instance, if we define θ1 = (1,−1) � θ2 = (1, 1), then for ϕ = (−1,−1)

we get rank(1,−1,−1,−1) = rank(θ1 ◦ ϕ) > rank(1, 1,−1,−1) = rank(θ2 ◦ ϕ) but if we define

ϕ = (1,−1), then we get rank(1, 1, 1,−1) = rank(θ1 ◦ ϕ) < rank(1,−1, 1,−1) = rank(θ2 ◦ ϕ).

This demonstrates that the ranking function is not independent of valuations over {y1, y2}
and thus, the function does not satisfy the definition of decomposability.

Definition 5. Let rank be a ranking function over a set of variables V, and S, T ⊆ V such

that S∩T = ∅. We say that rank is T -decomposable conditioned on S if for every valuation

θ over S, the function rankθ(ϕ) := rank(θ ◦ ϕ) defined over V \ S is T -decomposable.

The next lemma connects the notion of conditioned decomposability with decomposabil-

ity.

Lemma 18. Let rank be a ranking function over a set of variables V, and T ⊆ V. If rank

is T -decomposable, then it is also T -decomposable conditioned on S for any S ⊆ V \ T .

Proof. We need to show that for every valuation π over S, rank(π ◦Φ◦θ) is T -decomposable

where Φ is defined over U = V \ (S ∪ T) and θ is defined over T . We use the same total

order for θ as used for T -decomposability. Let θ1 � θ2, and consider any valuation Φ over

U . Define the valuation ϕ over V \ T such that ϕ[S] = π and ϕ[U] = Φ. Then,

θ1 � θ2 ⇒ rank(ϕ ◦ θ1) ≥ rank(ϕ ◦ θ2)

⇔ rank(ϕ[S] ◦ ϕ[U] ◦ θ1) ≥ rank(ϕ[S] ◦ ϕ[U] ◦ θ2)

⇔ rank(π ◦ Φ ◦ θ1) ≥ rank(π ◦ Φ ◦ θ2)

Step 1 follows from the definition of T -decomposable. Step 2 and 3 compute the restriction

of ϕ to S and U .

It is also easy to check that if a function is (S ∪ T)-decomposable, then it is also T -

decomposable conditioned on S.

Definition 6 (Compatible Ranking). Let T be a rooted tree decomposition of hypergraph H
of a natural join query. We say that a ranking function is compatible with T if for every

node t it is (B≺t \ key(t))-decomposable conditioned on key(t).

Example 37. Consider the join query Q(x, y, z) = R(x, y), S(y, z), and the ranking function

from Example 35, rank(θ) = wR(θ(x), θ(y)) + wS(θ(y), θ(z)). This function is not {z}-
decomposable, but it is {z}-decomposable conditioned on {y}.

118

Consider a decomposition of the hypergraph of Q that has two nodes: the root node r

with Br = {x, y}, and its child t with Bt = {y, z}. Since B≺t = {y, z} and key(t) = {y},
the condition of compatibility holds for node t. Similarly, for the root node B≺t = {x, y, z}
and key(t) = {}, hence the condition is trivially true as well. Thus, the ranking function is

compatible with the decomposition.

7.2.1 Problem Parameters

Given a natural join query Q and a database D, we want to enumerate the tuples of Q(D)

according to the order specified by rank. We will study this problem in the enumeration

framework similar to that of [Seg15b], where an algorithm can be decomposed into two

phases:

• a preprocessing phase that takes time Tp and computes a data structure of size Sp,

• an enumeration phase that outputs Q(D) with no repetitions. The enumeration

phase has full access to any data structures constructed in the preprocessing phase and

can also use additional space of size Se. The delay δ is defined as the maximum time

to output any two consecutive tuples (and also the time to output the first tuple, and

the time to notify that the enumeration has been completed).

It is straightforward to perform ranked enumeration for any ranking function by com-

puting Q(D), storing the tuples in an ordered list, and finally enumerating by scanning the

ordered list with constant delay. This simple strategy implies the following result.

Proposition 19. Let Q be a natural join query with hypergraph H = (V, E). Let T be a tree

decomposition with fractional hypertree-width fhw, and rank be a ranking function. Then,

for any input database D, we can preprocess D in time Tp = O(log |D| · |D|fhw + |Q(D)|) and

space Sp = O(|Q(D)|), such that for any k, we can enumerate the top-k results of Q(D) with

delay δ = O(1) and space Se = O(1)

The drawback of Proposition 19 is that the user will have to wait for Ω(|Q(D)|·log |Q(D)|)
time to even obtain the first tuple in the output. Moreover, even when we are interested

in a few tuples, the whole output result will have to be materialized. Instead, we want

to design algorithms that minimize the preprocessing time and space, while guaranteeing a

small delay δ. Interestingly, as we will see in Section 7.5, the above result is essentially the

best we can do if the ranking function is completely arbitrary; thus, we need to consider

reasonable restrictions of rank.

To see what it is possible to achieve in this framework, it will be useful to keep in mind

what we can do in the case where there is no ordering of the output.

119

Theorem 18 (due to [OZ15b]). Let Q be a natural join query with hypergraph H = (V, E).

Let T be a tree decomposition with fractional hypertree-width fhw. Then, for any input

database D, we can pre-process D in time Tp = O(|D|fhw) and space Sp = O(|D|fhw) such

that we can enumerate the results of Q(D) with delay δ = O(1) and space Se = O(1)

For acyclic queries, fhw = 1, and hence the preprocessing phase takes only linear time

and space in the size of the input.

7.3 Main Result

In this section, we present our first main result.

Theorem 19 (Main Theorem). Let Q be a natural join query with hypergraph H = (V, E).

Let T be a fixed tree decomposition with fractional hypertree-width fhw, and rank be a ranking

function that is compatible with T. Then, for any database D, we can preprocess D with

Tp = O(|D|fhw) Sp = O(|D|fhw)

such that for any k, we can enumerate the top-k tuples of Q(D) with

delay δ = O(log |D|) space Se = O(min{k, |Q(D)|})

In the above theorem, the preprocessing step is independent of the value of k: we perform

the same preprocessing if the user only wants to obtain the first tuple or all tuples in the

result. However, if the user decides to stop after having obtained the first k results, the

space used during enumeration will be bound by O(k). We should also note that all of our

algorithms work in the case where the ordering of the tuples/valuations is instead expressed

through a comparable function that, given two valuations, returns the larger.

It is instructive to compare Theorem 19 with Theorem 18, where no ranking is used when

enumerating the results. There are two major differences. First, the delay δ has an additional

logarithmic factor. As we will discuss later in Section 7.5, this logarithmic factor is a result

of doing ranked enumeration, and it is most likely unavoidable. The second difference is

that the space Se used during enumeration blows up from constant O(1) to O(|Q(D)|) in the

worst case (when all results are enumerated).

In the remainder of this section, we will present a few applications of Theorem 19, and

then prove the theorem.

7.3.1 Applications

We show here how to apply Theorem 19 to obtain algorithms for different ranking func-

tions.

120

Vertex-Based Ranking. A vertex-based ranking function over V is of the form: rank(θ) :=⊕
x∈V fx(θ(x)) where fx maps values from dom to some set U ⊆ R, and 〈U,⊕〉 forms a

commutative monoid. Recall that this means that ⊕ is a binary operator that is commutative,

associative, and has an identity element in U . We say that the function is monotone if a ≥ b
implies that a⊕ c ≥ b⊕ c for every c. Such examples are 〈R,+〉, 〈R, ∗〉, and 〈U,max〉, where

U is bounded.

Lemma 19. Let rank be a monotone vertex-based ranking function over V. Then, rank is

totally decomposable, and hence compatible with any tree decomposition of a hypergraph with

vertices V.

Proof. Pick any set S ⊆ V and let θ? be the valuation over V \ S such that for every x,

fx(θ?(x)) = e, where e is the identity element of the monoid. Suppose that rank(θ? ◦ θ1) ≥
rank(θ? ◦ θ2) for valuations θ1, θ2 over S establishing a total order θ1 � θ2. This implies that

⊕x∈Sfx(θ1(x)) ≥ ⊕x∈Sfx(θ2(x)).

Then, for any valuation θ over V \ S we have:

rank(θ ◦ θ1) = ⊕x∈V\Sfx(θ(x))
⊕
⊕x∈Sfx(θ1(x))

≥ ⊕x∈V\Sfx(θ(x))
⊕
⊕x∈Sfx(θ2(x))

= rank(θ ◦ θ2)

The inequality holds because of the monotonicity of the binary operator.

Tuple-Based Ranking. Given a query hypergraph H, a tuple-based ranking function

assigns for every valuation θ over the variables xF of relation RF a weight wF (θ) ∈ U ⊆
R. Then, it takes the following form: rank(θ) :=

⊕
F∈E wF (θ[xF]) where 〈U,⊕〉 forms a

commutative monoid. In other words, a tuple-based ranking function assigns a weight to

each input tuple, and then combines the weights through ⊕.

Lemma 20. Let rank be a monotone tuple-based ranking function over V. Then, rank is

compatible with any tree decomposition of a hypergraph with vertices V.

Since both monotone tuple-based and vertex-based ranking functions are compatible with

any tree decomposition we choose, the following result is immediate.

Proposition 20. Let Q be a natural join query with optimal fractional hypertree-width fhw.

Let rank be a ranking function that can be either (i) monotone vertex-based, (ii) monotone

tuple-based. Then, for any input D, we can pre-process D in time Tp = O(|D|fhw) and

space Sp = O(|D|fhw) such that for any k, we can enumerate the top-k results of Q(D) with

δ = O(log |D|) and Se = O(min{k, |Q(D)|})

121

For instance, if the query is acyclic, hence fhw = 1, the above theorem gives an algorithm

with linear preprocessing time O(|D|) and O(log |D|) delay.

Lexicographic Ranking. A typical ordering of the output valuations is according to a

lexicographic order. In this case, each dom(x) is equipped with a total order. If V =

{x1, . . . , xk}, a lexicographic order 〈xi1 , . . . , xi`〉 for ` ≤ k means that two valuations θ1, θ2

are first ranked on xi1 , and if they have the same rank on xi1 , then they are ranked on xi2 , and

so on. This ordering can be naturally encoded by first taking a function fx : dom(x) → R
that captures the total order for variable x, and then defining rank(θ) :=

∑
xwxfx(θ(x)),

where wx are appropriately chosen constants. Since this ranking function is a monotone

vertex-based ranking, Proposition 20 applies here as well.

We should note here that lexicographic ordering has been previously considered in the

context of factorized databases.

Proposition 21 (due to [OZ15b, BOZ12]). Let Q be a natural join query with hypergraph

H = (V, E), and 〈xi1 , . . . , xi`〉 a lexicographic ordering of the variables in V. Let T be a

tree decomposition with fractional hypertree-width fhw-lex such that 〈xi1 , . . . , xi`〉 forms a

prefix in the topological ordering of the variables in the decomposition. Then, for any input

database D, we can pre-process D with Tp = O(|D|fhw-lex) and Sp = O(|D|fhw-lex) such that

results of Q(D) can be enumerated with delay δ = O(1) and space Se = O(1).

In other words, if the lexicographic order ”agrees” with the tree decomposition (in the

sense that whenever xi is before xj in the lexicographic order, xj can never be in a bag higher

than the bag where xi is), then it is possible to get an even better result than Theorem 19, by

achieving constant delay O(1), and constant space Se. However, given a tree decomposition,

Theorem 19 applies for any lexicographic ordering - in contrast to Theorem 21. As an

example, consider the join query Q(x, y, z) = R(x, y), S(y, z) and the lexicographic ordering

〈z, x, y〉. Since fhw = 1, our result implies that we can achieve O(|D|) time preprocessing with

delay O(log |D|). On the other hand, the optimal width of a tree decomposition that agrees

with 〈z, x, y〉 is fhw-lex = 2; hence, Theorem 21 implies O(|D|2) preprocessing time and

space. Thus, variable orderings in a decomposition fail to capture the additional challenge

of user-chosen lexicographic orderings. It is also not clear whether further restrictions on

variable orderings in Theorem 21 are sufficient to capture ordered enumeration for other

ranking functions (such as sum).

Bounded Ranking. A ranking function is c-bounded if there exists a subset S ⊆ V of size

|S| = c, such that the value of rank depends only on the variables from S. A c-bounded

ranking is related to c-determined ranking functions [KS06]: c-determined implies c-bounded,

but not vice versa. For c-bounded ranking functions, we can show the following result:

122

Proposition 22. Let Q be a natural join query with optimal fractional hypertree-width fhw.

If rank is a c-bounded ranking function, then for any input D, we can pre-process D in time

Tp = O(|D|fhw+c) and space Sp = O(|D|fhw+c) such that for any k, we can enumerate the

top-k results of Q(D) with δ = O(log |D|) and Se = O(min{k, |Q(D)|})

Proof. Let T by the optimal decomposition of Q with fractional hypertree-width fhw. We

create a new decomposition T′ by simply adding the variables S that determine the ranking

functions in all the bags of T. By doing this, the width of the decomposition will grow by at

most an additive factor of c. To complete the proof, we need to show that rank is compatible

with the new decomposition.

Indeed, for any node in T′ (with the exception of the root node) we have that S ⊆ key(t).

Hence, if we fix a valuation over key(t), the ranking function will output the same score,

independent of what values the other variables take.

7.3.2 The Algorithm for the Main Theorem

At a high level, each node t in the tree decomposition will materialize incrementally all

valuations over B≺t that satisfies the query that corresponds to the subtree rooted at t. We

do not store explicitly each valuation θ over B≺t at every node t, but instead we use a simple

recursive structure C(v) that we call a cell. If t is a leaf, then C(θ) = 〈θ, [],⊥〉, where ⊥
is used to denote a null pointer. Otherwise, suppose that t has n children t1, . . . , tn. Then,

C(θ) = 〈θ[Bt], [p1, . . . , pn], q〉, where pi is a pointer to the cell C(θ[B≺ti]) stored at node ti,

and q is a pointer to a cell stored at node t (intuitively representing the ”next” valuation in

the order). It is easy to see that, given a cell C(θ), one can reconstruct θ in constant time

(dependent only on the query). Additionally, each node t maintains one hash map Qt, which

maps each valuation u over key(Bt) to a priority queue Qt[u]. The elements of Qt are cells

C(θ), where θ is a valuation over B≺t such that u = θ[key(Bt)]. The priority queues will be

the data structure that performs the comparison and ordering between different tuples. We

will use an implementation of a priority queue (e.g., a Fibonacci heap [CLRS09b]) with the

following properties: (i) we can insert an element in constant time O(1), (ii) we can obtain

the min element (top) in time O(1), and (iii) we can delete the min element (pop) in time

O(log n).

Notice that it is not straightforward to rank the cells according to the valuationsbottom-

upsince the ranking function is defined over all variables V. However, here we can use the

fact that the ranking function is compatible with the decomposition at hand. For each

variable x ∈ V, we designate some value from dom(x) as v?(x). Given a fixed valuation

u over key(Bt), we will order the valuations θ over B≺t that agree with u according to the

score: rank(v?t ◦ θ) where v?t = (v?(x1), v?(x2), . . . , v?(xp)) is a valuation over the variables

S = V \ B≺t with size p. The key intuition is that the compatibility of the ranking function

123

with the decomposition implies that the ordering of the tuples implied by the cells in the

priority queue Qt[u] will not change if we replace v?t with any other valuation. Thus, the

comparator can use v?t to calculate the score which is used by the priority queue internally.

We next discuss the preprocessing and enumeration phase of the algorithm.

Algorithm 12: Preprocessing Phase

1 foreach t ∈ V (T) do

2 materialize the bag Bt
3 full reducer pass on materialized bags in T

4 forall t ∈ V (T) in post-order traversal do

5 foreach valuation θ in bag Bt do

6 u← θ[key(Bt)]
7 if Qt[u] is NULL then

8 Qt[u]← new priority queue /* ranking function uses v?t */

9 `← []

/* ` is a list of pointers */

10 foreach child s of t do

11 `.insert(Qs[θ[key(Bs)]].top())

12 Qt[u].insert(〈θ, `,⊥〉) /* ranking function uses θ, `, v?t to calculate score used

by priority queue */

Preprocessing. Algorithm 12 consists of two steps. The first step works exactly as in the

case where there is no ranking function: each bag Bt is computed and materialized, and then

we apply a full reducer pass to remove all tuples from the materialized bags that will not

join in the final result. The second step initializes the hash map with the priority queues

for every bag in the tree. We traverse the decomposition in a bottom up fashion (post-order

traversal), and do the following. For a leaf node t, notice that the algorithm does not enter

the loop in line 10, so each valuation θ over Bt is added to the corresponding queue as

the triple 〈θ, [],⊥〉. For each non-leaf node t, we take each valuation v over Bt and form a

valuation (in the form of a cell) over B≺t by using the valuations with the largest rank from

its children (we do this by accessing the top of the corresponding queues in line 10). The cell

is then added to the corresponding priority queue of the bag. Observe that the root node r

has only one priority queue, since key(r) = {}.

Example 38. As a running example, we consider the natural join query Q(x, y, z, p) =

R1(x, y), R2(y, z), R3(z, p), R4(z, u) where the ranking function is the sum of the weights of

each input tuple. Consider the following instance D and decomposition T for our running

example.

124

id w1 x y

1 1 1 1

2 2 2 1

R1

id w2 y z

1 1 1 1

2 1 3 1

R2

id w3 z p

1 1 1 1

2 4 1 2

R3

id w3 z u

1 1 1 1

2 5 1 2

R4
x, y

y, z

z, p z, u

Broot = B1

B2

B3 B4

For the instance shown above and the query decomposition that we have fixed, relation

Ri covers bag Bi, i ∈ [4]. Each relation has size N = 2. Since the relations are already

materialized, we only need to perform a full reducer pass, which can be done in linear time.

This step removes tuple (3, 1) from relation R2 as it does not join with any tuple in R1.

Figure 7.1a shows the state of priority queues after the pre-processing step. For conve-

nience, θ in each cell 〈θ, [p1, . . . , pk], next〉 is shown using the primary key of the tuple and

pointers pi and next are shown using the address of the cell it points to. The cell in a mem-

ory location is followed by the partial aggregated score of the tuple formed by creating the

tuple from the pointers in the cell recursively. For instance, the score of the tuple formed

by joining (y = 1, z = 1) ∈ R2 with (z = 1, p = 1) from R3 and (z = 1, u = 1) in R4 is

1 + 1 + 1 = 31 (shown as 〈1, [30, 40],⊥〉 3 in the figure). The pointer addresses 30 and 40

refer to the topmost cell in the priority queue for B3 and B4. Each cell in every priority

queue points to the top element of the priority queue of child nodes that it joins with. Note

that since both tuples in R1 join with the sole tuple from R2, they point to the same cell.

Lemma 21. The runtime of Algorithm 12 is O(|D|fhw). Moreover, at the end of the algo-

rithm, the resulting data structure has size O(|D|fhw).

Proof. It is known that the materialization of each bag can be done in time O(|D|fhw), and

the full reducer pass is linear in the size of the bags [Yan81]. For the second step of the

preprocessing algorithm, observe that for each valuation in a bag, the algorithm performs

only a constant number of operations (the number of children in the tree plus one), where

each operation takes a constant time (since insert and top can be done in O(1) time for the

priority queue). Hence, the second step needs O(|D|fhw) time as well.

Regarding the space requirements, it is easy to see that the data structure uses only

constant space for every valuation in each bag, hence the space is bounded by O(|D|fhw).

1Note that since our ranking function is sum, we use v?(x) = 0 for each variable. This allows us
to only look at the partial score of tuples that join in a particular subtree.

125

x, y

y, z

z, p z, u

〈1, [],⊥〉 1

〈2, [],⊥〉 5

〈1, [],⊥〉 1

〈2, [],⊥〉 4

〈1, [30, 40],⊥〉 3

〈1, [10],⊥〉 4

〈2, [10],⊥〉 5

QB4
[1]QB3

[1]
30

31

40

41

10 QB2
[1]

QB1
[()]

(a) Priority queue state (mirroring the decomposition) after preprocessing phase.

first popped tuple

〈1, [30, 40], 11〉 3

〈1, [10],⊥〉 4

10

〈1, [], 41〉 1

〈2, [],⊥〉 5

〈1, [], 31〉 1

〈2, [],⊥〉 4

〈1, [31, 40],⊥〉 6

〈1, [30, 41],⊥〉 7

〈2, [10],⊥〉 5

〈1, [11],⊥〉 7

QB4
[1]

40

41
QB3

[1]
30

31

QB2
[1]

11

12

QB1
[()]

(b) Priority queue state after one iteration of loop in procedure ENUM().

〈1, [30, 40], 11〉 3

10

〈1, [31, 40], 12〉 6

11

〈1, [30, 41], 13〉 7

12

〈1, [31, 41],⊥〉 10

13

〈1, [], 41〉 1

〈2, [],⊥〉 5

40

41

〈1, [], 31〉 1

〈2, [],⊥〉 4

30

31

(c) The materialized output stored at subtree rooted at B2 after enumeration is complete

(OUT(B≺2))

Figure 7.1: Preprocessing and enumeration phase for Example 7. Each cell is assigned

a memory addressed (written next to the cell). Pointers in cells are populated with the

memory address of the cell they are pointing to. Cells are color coded according to the bag

(white for root bag, blue for B2, orange for B3 and olive for B4.)

126

Algorithm 13: Enumeration Phase

1 procedure enum()

2 while Qr[()] is not empty do

3 output Qr[()].top()

4 topdown(Qr[()].top(), r)

5 procedure topdown(c, t)

6 /* c = 〈θ, [p1, . . . , pk], next〉 */

7 u← θ[key(Bt)]
8 if next == ⊥ then

9 b← Qt[u].pop()

10 while b == Qt[u].top() do

11 Qt[u].pop() /* remove duplicate cells (at most a constant) */

12 foreach child ti of t do

13 p′i ←topdown(∗pi, ti)
14 if p′i 6= ⊥ then

15 Qt[u].insert(〈θ, [p1, . . . , p
′
i, . . . pk],⊥〉) /* insert new candidate(s);

priority queue uses ranking function and θ, `, v?t to calculate the score */

16 if t is not the root then

17 next← address of(Qt[u].top())

18 return next

Enumeration. Algorithm 13 presents the algorithm for the enumeration phase. The heart

of the algorithm is the procedure TOPDOWN(c, t). The key idea of the procedure is that

whenever we want to output a new tuple, we can simply obtain it from the top of the

priority queue in the root node (node r is the root node of the tree decomposition). Once we

do that, we need to update the priority queue by popping the top, and inserting (if necessary)

new valuations in the priority queue. This will be recursively propagated in the tree until

it reaches the leaf nodes. Observe that as the new candidates are being inserted, the next

pointer of cells c at some node of the decomposition are being updated by pointing to the

topmost element in the priority queue of its children. This chaining materializes the answers

for the particular bag that can be reused.

Example 39. Figure 7.1b shows the state of the data structure after one iteration in ENUM().

The first answer returned to the user is the topmost tuple from QB1
[()] (shown in top left of

the figure). Cell 〈1, [10],⊥〉 4 is popped from QB1
[()] (after satisfying if condition on line 5

since next is ⊥). We recursively call TOPDOWN for child node B2 and cell 〈1, [30, 40],⊥〉 3 as

the function argument (since that is the cell at memory address 10). The next for this cell

127

is also ⊥ and we pop it from QB2
[1]. At this point, QB2

[1] is empty. The next recursive call

is for B3 with 〈1, [],⊥〉 1 (cell at memory adress 30). The least ranked tuple but larger

than 〈1, [],⊥〉 1 in QB3
[1] is the cell at address 31 . Thus, next for 〈1, [],⊥〉 1 is updated

to 31 and cell at memory address 31 (〈2, [],⊥〉 4) is returned which leads to creation

and insertion of 〈1, [31, 40],⊥〉 6 cell in QB2
[1]. Similarly, we get the other cell in QB2

[1] by

recursive call for B4. After both the calls are over for node B2, the topmost cell at QB2
[1]

is cell at memory address 11 ,which is set as the next for 〈1, [30, 40],⊥〉 3 (changing into

〈1, [30, 40], 11〉 3), terminating one full iteration.

Let us now look at the second iteration of ENUM(). The tuple returned is top element of

QB1
[()] which is 〈2, [10],⊥〉 5 . However, the function TOPDOWN() with 〈2, [10],⊥〉 5

does not recursively go all the way down to leaf nodes. Since 〈1, [30, 40], 11〉 3 already has

next populated, we insert 〈2, [11],⊥〉 5 in QB1
[()] completing the iteration. This demonstrates

the benefit of materializing ranked answers at each node in the tree. As the enumeration

continues, we are materializing the output of each subtree on-the-fly that can be reused by

other tuples in the root bag.

New candidates are inserted into the priority queue using the logic on line 15 of Algo-

rithm 13. Given a bag s with k children s1, . . . , sk and a cell c, the algorithm increments

the pointers p1, . . . pk one at a time while keeping the remaining pointers fixed. Observe

that for the tuple c.θ, the candidate generation logic will enumerate the cartesian prod-

uct ×i∈[k](σkey(Bsi)=c.θ[key(Bsi)]OUT(B≺si)). Here, OUT(B≺j) is the ranked materialized output

of subtree rooted at Bj , and the selection condition filters only those tuples that agree

with c.θ on the key variables of the children bags. Indeed as Figure 7.1b shows, initially,

only 〈1, [30, 40],⊥〉 3 was present in QB2
[1] but it generated two cells 〈1, [31, 40],⊥〉 6 and

〈1, [30, 41],⊥〉 7 . When these two cells are popped, they will increment pointers and both of

them will generate 〈1, [31, 41],⊥〉 10 . Thus, cartesian product of R3 and R4 is enumerated.

This also shows that while each cell can generate k new candidates, in the worst-case, each

cell may also be generated k times and inserted into the priority queue. These duplicates are

removed by the procedure in the while loop on line 112. Since the query size is a constant,

we may only need to pop a constant number of times in the worst-case and thus affects the

delay guarantee only by a constant factor.

Lemma 22. Algorithm 13 enumerates Q(D) with delay δ = O(log |D|).

Proof. To show the delay guarantee, it suffices to prove that procedure topdown takes

O(log |D|) time when called from the root node, since getting the top element from the

priority queue at the root node takes only O(1) time.

2One could also avoid adding duplicates by storing all inserted tuples in a parallel hash set and
checking against it before insertion.

128

Indeed, topdown traverses the tree decomposition recursively. The key observation is that

it visits each node in T exactly once. For each node, if next is not ⊥, the processing takes

time O(1). If next == ⊥, it will perform a constant number of pops – with cost O(log |D|) –

and a number of inserts equal to the number of children. Thus, in either case the total time

per node is O(log |D|). Summing up over all nodes in the tree, the total time until the next

element is output will be O(log |D|) · |V (T)| = O(log |D|).

We next bound the space Se needed by the algorithm during the enumeration phase.

Lemma 23. After Algorithm 13 has enumerated k tuples, the additional space used by the

algorithm is Se = O(min{k, |Q(D)|}).

Proof. The space requirement of the algorithm during enumeration comes from the size of

the priority queues at every bag in the decomposition. Since we have performed a full reducer

pass over all bags during the preprocessing phase, and each bag t stores in its priority queues

all valuations over B≺t , it is straightforward to see that the sum of the sizes of the priorities

queues in each bag is bounded by O(|Q(D)|).
To obtain the bound of O(k), we observe that for each tuple that we output, the topdown

procedure adds at every node in the decomposition a constant number of new tuples in one

of the priority queues in this node (equal to the number of children). Hence, at most O(1)

amount of data will be added in the data structure between two consecutive tuples are output.

Thus, if we enumerate k tuples from Q(D), the increase in space will be k ·O(1) = O(k).

Chaining of cells. Observe that as TOPDOWN is called recursively, the next is continuously

being updated. This chaining is critical to achieving good delay guarantees. Intuitively,

chaining of cells at a bag allows materialization of the join result of the subquery rooted

at that bag in sorted order (previously referred to as OUT(B≺j)). This implies that repeated

computation is not being performed and cells at the parent of a bag can re-use the sorted

materialization. For example, figure 7.1c shows the eventual sequence of pointers at node B2

which is the ranked materialized output of the subtree rooted at B2. The pointers between

cells are added to emphasize the chained order. The reader can observe that the score for

the cells highlighted in blue is also in increasing order.

Finally, we show that the algorithm correctly enumerates all tuples in Q(D) in increasing

order according to the ranking function.

Lemma 24. Algorithm 13 enumerates Q(D) in order according to rank.

Proof. We will prove our claim by induction on post-order traversal of the decomposition

and use the compatibility property of the ranking function with the decomposition at hand.

We will show that the priority queue for each node s gives the output in the correct order

which in turn populates OUT(B≺s) correctly. Recall that OUT(B≺s) is the ranked materialized

129

output of subtree rooted at Bs. Since OUT(B≺s) is a linked list, we will frequently use the

notation OUT(B≺s)[`] to find the cell at `th location in the list. Given a cell c created at node

s we will use output(c) to denote the tuple formed over B≺Bs by traversing all the pointers

recursively and finding all valuations for the variables.

Base Case. Correctness for ranked output of OUT(Bs) for leaf node s is trivial as the leaf

node tuples are already materialized and do not require any join processing. Let φ? be the

valuation over V \ Bs according to definition of decomposability. We insert each valuation

θ over node s with score rank(φ? ◦ θ). Since rank is compatible with the decomposition, it

follows that if rank(φ? ◦ θ2) ≥ rank(φ? ◦ θ1) such that θ1[key(s)] = θ1[key(s)], then θ2 � θ1,

thus recovering the correct ordering for tuple in s. Since leaf nodes are the base relations

and each tuple is inserted into the priority queue, the pop operation will arrange them in

order and also chain the materialization correctly.

Inductive Case. Consider some node s in post-order traversal with children s1, . . . sm.

By the induction hypothesis, the ordering of OUT(B≺si) for each value of key(si) is correctly

generated. Let θ be a fixed tuple materialized in the relation at node s and let u = θ[Bs].
Observe that the preprocessing phase creates a cell for θ whose pointer list [p1, . . . pm] is the

cell at location 0 of the materialized list of all m children OUT(B≺si). We claim that this is the

least ranked tuple that can be formed over B≺s . Indeed, if any pointer pi points to any other

cell (say c′i) at some location greater than 0 in the list OUT(B≺si), we can create a smaller

ranked tuple by changing pi to point to the first cell in the list (denoted c0
i). This is directly

a consequence of the compatibility of the ranking function and the induction hypothesis

which tells us that output(c0
i) � output(c′i) since OUT(Bsi) is generated correctly. Let φ? be a

valuation over V \ B≺s . Then,

rank(θ ◦ φ? ◦ output(c′1) ◦ . . . output(c′i) · · · ◦ output(c′m)) ≥
rank(θ ◦ φ? ◦ output(c′1) ◦ . . . output(c0

i) · · · ◦ output(c′m))

because rank(output(c′i)) ≥ rank(output(c0
i)) and rank is B≺si \ key(si)-decomposable

conditioned on key(si). Note that no sibling of si has any common variables other than the

key variables which have already been fixed. This proves that the first tuple returned by the

priority queue at node s will be correct.

Next, we proceed to show that the correctness for an arbitrary step in the execution.

Suppose c is the last cell popped at line 9. From line 12-14, one may observe that a new

candidate is pushed into priority queue for key by incrementing pointers to OUT(B≺si) one

at a time for each child bag Bsi , while keeping the remainder of tuple (including key(si))

fixed (line 14). Let c.pi point to cell OUT(B≺si)[`i] which will be denoted by ci. Then, the m

candidates generated by the logic will contain pointers that point to the following locations

130

L = `1 + 1, `2, `3, . . . , `m,

`1, `2 + 1, `3, . . . , `m,

`1, `2, `3 + 1, . . . , `m,

. . .

`1, `2, `3, . . . , `m + 1

Suppose that the next smallest cell that must be popped is c� and has pointer list that

points to `�i location in OUT(B≺si). We need to show that c� is one of the cells with pointer

locations as shown in L or is already in the priority queue. For the sake of contradiction,

suppose there is a cell c′ with c′.pi = address of(OUT(B≺si)[`′i]), i ∈ [m] that is the next smallest

but is neither in L, nor present in the priority queue. In other words, rankφ(output(c′)) <

rankφ(output(c�)) for any valuation φ over V \ B≺s . We will show that such a scenario

will violate compatibility of ranking function. There are three possible scenarios regarding

domination of `�i and `′i.

1. `�i < `′i for each i ∈ [m]. This scenario implies that rank(φ ◦ output(c�)) ≤ rank(φ ◦
output(c′)). Indeed, we have that

rank(φ ◦ θ ◦ output(c�1) ◦ . . .output(c�m))

≤ rank(φ ◦ θ ◦ output(c′1) ◦ output(c�2) ◦ . . . output(c�m))

≤ rank(φ ◦ θ ◦ output(c′1) ◦ output(c′2) ◦ . . . output(c�m))

. . .

≤ rank(φ ◦ θ ◦ output(c′1) ◦ output(c′2) ◦ . . . output(c′m))

Each inequality is a successive application of (B≺si \ key(si))-decomposability since

output(c′i) � output(c�i) from the ordering correctness of each bag si.

2. `�i > `′i for each i ∈ [m]. This scenario would mean that c′ was generated before c

given our candidate generation logic (line 9-12), violating our assumption that c′ has

not been enumerated yet or inserted into the priority queue. Observe that each can-

didate in L dominates the pointer locations of the cell that generated them. Thus,

successive applications of the logic on c′ will generate c� eventually. Since the pre-

processing phase creates a cell with pointer locations 0, generating c� must happen

131

after c′ because the pointers are advanced one at a time and thus cannot go directly

from `′i−1 to `′i+1 (thus skipping `′i) without violating the correctness of priority queue.

3. `′i and ` are incomparable. It is easy to see that all candidates in L dominate pointer

locations of c but are incomparable to each other. Also, the only way to generate new

candidate tuples is line 12-14. Thus, if c′ is not in the priority queue, there are two

possibilities. Either there is some cell c′′ in the priority queue that is dominated by

c′ and thus, rankϕ(output(c′′)) ≤ rankϕ(output(c′)). c′′ will eventually generate c′ via

a chain of cells that successively dominate each other. As c was popped before c′′,

it follows that rankϕ(output(c)) ≤ rankϕ(output(c′′)) ≤ rankϕ(output(c′)), a contra-

diction to our assumption that c′ has a smaller rank than c. The second possibility

is that there is no such c′′, which will mean that c and c′ are generated in the same

for loop line 12. But this would again mean that c′ is in the priority queue. Thus,

both these cases violate one of our assumptions made. Since the priority queue in the

preprocessing phase is initialize with a cell with pointers to location 0 of all OUT(B≺si),
every answer tuple in the cartesian product ×i∈[m](σkey(Bsi)=c.θ[key(Bsi)]OUT(B≺si)) will

be enumerated by successive pointer increments.

Therefore, it cannot be the case that rankϕ(output(c′)) < rankϕ(output(c)) which proves

the ordering correctness for node s. Since the output OUT(B≺s) is populated using this ordering

form priority queue, it is also materialized (chaining of cells at line 17) in ranked order.

7.4 Extensions

In this section, we describe two extensions of Theorem 19 and how it can be used to

further improve the main result.

7.4.1 Ranked Enumeration of UCQs

We begin by discussing how ranked enumeration of full UCQs can be done. The first

observation is that given a full UCQ ϕ = ϕ1 ∪ . . . ϕ`, if the ranked enumeration of each

ϕi can be performed efficiently, then we can perform ranked enumeration for the union of

query results. This can be achieved by applying Theorem 19 to each ϕi and introducing

another priority queue that compares the score of the answer tuples of each ϕi, pops the

smallest result, and fetches the next smallest tuple from the data structure of ϕi accordingly.

Although each ϕi(D) does not contain duplicates, it may be the case that the same tuple

is generated by multiple ϕi. Thus, we need to introduce a mechanism to ensure that all

tuples with the same weight are enumerated in a specific order. Fortunately, this is easy

132

to accomplish by modifying Algorithm 13 to enumerate all tuples with the same score in

lexicographic increasing order. The choice of lexicographic ordering as a tie-breaking crite-

rionThe comparison is not the only valid choice. As long as the ties are broken consistently,

other ranking functions can also be used. This ensures that tuples from each ϕi also arrive

in the same order. Since each ϕi is enumerable in ranked order with delay O(log |D|) and

the overhead of the priority queue is O(`) (priority queue contains at most one tuple from

each ϕi), the total delay guarantee is bounded by O(` · log |D|) = O(log |D|) as the query

size is a constant. The space usage is determined by the largest fractional hypertree-width

across all decompositions of subqueries in ϕ. This immediately leads to the following result.

Theorem 20. Let ϕ = ϕ1∪. . . ϕ` be a full UCQ. Let fhw denote the fractional hypertree-width

of all decompositions across all CQs ϕi, and rank be a ranking function that is compatible

with the decomposition of each ϕi. Then, for any input database D, we can pre-process D in

time and space,

Tp = O(|D|fhw) Sp = O(|D|fhw)

such that for any k, we can enumerate the top-k tuples of ϕ(D) with

delay δ = O(log |D|) space Se = O(min{k, |ϕ(D)|})

Algorithm 14 shows the enumeration algorithm. It outputs one output tuple t in every

iteration and line 12-line 13 pop out all duplicates of t in the queue. Recall that since

Q = Q1 ∪ . . . Q`, there can be at most ` duplicates for some constant `. ENUMi() is the

invocation of ENUM() procedure from Algorithm 13 on query Qi.

The comparison function for priority queues in Algorithm 13 for each subquery Qi of Q

is modified in the following way. Consider two tuples t1 and t2 with schema (x1, x2, . . . , xn)

and scores rank(t1) and rank(t2) respectively.

Comparison function in Algorithm 15 compares t1 and t2 based on the ranking function

and tie breaks by using the lexicographic ordering of the two tuples. This ensures that all

tuples with the same score arrive in a fixed from ENUMi() procedure of each subquery Qi.

7.4.2 Improving The Main Result

Although Theorem 20 is a straightforward extension of Theorem 19, it is powerful enough

to improve the pre-processing time and space of Theorem 19 by using Theorem 20 in con-

junction with data-dependent tree decompositions. It is well known that the query result

for any CQ can be answered in time O(|D|fhw + |Q(D)|) time and this is asymptotically

tight [AGM13]. However, there exists another notion of width known as the submodular

width (denoted subw) [Mar13]. It is also known that for any CQ, it holds that subw ≤ fhw.

Recent work by Abo Khamis et al. [AKNS17] presented an elegant algorithm called PANDA

133

Algorithm 14: Preprocessing and Enumeration Phase

1 procedure preprocess

2 Apply Algorithm 12 to all Qi

3 Queue← ∅
4 for i ∈ {1, . . . , `} do

5 Queue.push(enumi()) /* Initialize Queue with smallest candidate for each Qi */

6 procedure enum()

7 while Queue is not empty do

8 t← Queue.pop()

9 output t /* Suppose t came from subquery Qi */

10 Queue.push(enumi()) /* Push the next candidate for Qi */

11 while Queue.top() == t do

12 Queue.pop() /* drain the queue of duplicate t */

/* Suppose duplicate t came from subquery Qj */

13 Queue.push(enumj()) /* Push the next candidate for Qj */

Algorithm 15: Comparison function for priority queues

/* Returns the smaller ranked tuple of t1 and t2; break ties in lexicographic ordering */

1 procedure compare (t1, t2)

2 if rank(t1) < rank(t2) then

3 return t1

4 if rank(t2) < rank(t1) then

5 return t2

6 foreach i ∈ {n, n− 1, . . . , 1} do

7 if πxi(t1) < πxi(t2) then

8 return t1

9 if πxi(t2) < πxi(t1) then

10 return t2

that constructs multiple decompositions by partitioning the input database to minimize

the intermediate join size result. PANDA computes the output of any full CQ in time

O(|D|subw · log |D| + |OUT|). In other words, PANDA takes a CQ query Q and a database

D as input and produces multiple tree decompositions in time O(|D|subw · log |D|) such that

each answer tuple is generated by at least one decomposition. The number of decomposi-

tions depends only on the size of the query and not on D. Thus, when the query size is a

constant, the number of decompositions constructed is also a constant. We can now apply

134

Theorem 20 by setting ϕi as the tree decompositions produced by PANDA to get the follow-

ing result. [DK21] describes the details of the enumeration algorithm and the tie-breaking

comparison function.

Theorem 21. Let ϕ be a natural join query with hypergraph H = (V, E), submodular width

subw, and rank be a ranking function that is compatible with each tree decomposition of ϕ.

Then, for any input database D, we can pre-process D in time and space,

Tp = O(|D|subw · log |D|) Sp = O(|D|subw)

such that for any k, we can enumerate the top-k tuples of ϕ(D) with

delay δ = O(log |D|) space Se = O(min{k, |ϕ(D)|})

7.5 Lower Bounds

In this section, we provide evidence for the near optimality of our results.

7.5.1 The Choice of Ranking Function

We first consider the impact of the ranking function on the performance of ranked enu-

meration. We start with a simple observation that deals with the case where rank has no

structure and can be accessed only through a black box that, given a tuple/valuation, returns

its score: we call this a black box 3 ranking function. Note that all of our algorithms work

under the black box assumption.

Proposition 23. Let Q be a natural join query, and rank a black box ranking function.

Then, any enumeration algorithm on a database D needs Ω(|Q(D)|) calls to rank– and

worst case Ω(|D|ρ∗) calls – in order to output the smallest tuple.

Indeed, if the algorithm does not examine the rank of an output tuple, then we can always

assign a value to the ranking function such that the tuple is the smallest one. Hence, in the

case where there is no restriction on the ranking function, the simple result in Proposition 19

that materializes and sorts the output is essentially optimal. Thus, it is necessary to exploit

the properties of the ranking function to construct better algorithms. Unfortunately, even

for natural restrictions of ranking functions, it is not possible to do much better than the

|D|ρ∗ bound for certain queries.

Such a natural restriction is that of coordinate decomposable functions, where we can

show the following lower bound result:

3Black box implies that the score rank(θ) is revealed only upon querying the function.

135

Lemma 25. Consider the query Q(x1, y1, x2, y2) = R(x1, y1), S(x2, y2) and let rank be a

black box coordinate decomposable ranking function. Then, there exists an instance of size

N such that the time required to find the smallest tuple is Ω(N2).

Proof. We construct an instance D as follows. For every variable we use the domain

{a1, . . . , aN}, which we equip with the order a1 < a2 < · · · < aN . Then, every tuple in

R and S is of the form (ai, aN−i+1) for i = 1, . . . , N . Similarly, every tuple in S is of the

form (ai, aN−i+1). The result of the query Q on D has size N2.

To construct a family of coordinate decomposable ranking functions, we consider all

ranking functions that are monotone w.r.t. the order of the domain {a1, . . . , aN} for every

variable.

We will show that any two tuples in Q(D) are incomparable, in the sense that nei-

ther tuple dominates the other in all variables. Indeed, consider two distinct tuples t1 =

(ai, aN−i+1, aj , aN−j+1), and t2 = (ak, aN−k+1, a`, aN−`+1). For the sake of contradiction,

suppose t1 dominates t2. Then, we must have i ≥ k and N − i+ 1 ≥ N − k+ 1, giving i = k.

Similarly, j = `. But this contradicts our assumption that t1 6= t2.

Therefore, a ranking function from our family can assign an arbitrary score to the N2

tuples without violating the coordinate decomposability. This is because coordinate decom-

posability only imposes a condition on the ranking of tuples where one dominates the other.

For any non-dominating tuple pair, the ranking function is free to assign any value as the

score. Thus, any algorithm that does not examine all N2 tuples can miss the smallest, which

gives us the desired lower bound.

Lemma 25 shows that for coordinate decomposable functions, there exist queries where

obtaining constant (or almost constant) delay requires the algorithm to spend superlinear

time during the preprocessing step. Given this result, the immediate question is to see

whether we can extend the lower bound to other CQs.

Dichotomy for coordinate decomposable. We first show a dichotomy result for coordi-

nate decomposable functions.

Theorem 22. Consider a full acyclic query Q and a coordinate decomposable black box

ranking function. There exists an algorithm that enumerates the result of Q in ranked order

with O(log |D|) delay guarantee and Tp = O(|D|) preprocessing time if and only if there are

no atoms R and S in Q such that vars(R) \ vars(S) ≥ 2 and vars(S) \ vars(R) ≥ 2.

Proof. Suppose that Q does not satisfy the condition of the theorem. Then, there are atoms

R and S in Q with vars(R) \ vars(S) ≥ 2 and vars(S) \ vars(R) ≥ 2. This means that we

can apply the same construction as Lemma 25 to show that the preprocessing time must be

Ω(|D|2) in order to achieve O(log |D|) delay.

136

For the other direction, we will construct a compatible decomposition T for a Q that

satisfies the condition. Pick the relation with the largest number of variables as the root of

the decomposition. Each remaining relation forms a single bag that is connected to the root.

The main observation is that each child bag of the root contains at most one variable

that is not in the root. Indeed, suppose that there exists one child bag with at least two

variables not present in the root. But the root bag must also contain at least two variables

in addition to the common variables. This would violate the condition of the theorem, which

is a contradiction.

Equipped with this observation, we can see that the constructed tree is indeed a valid

decomposition of fhw = 1. Additionally, we can show the compatibility of T. The root bag

is Br-decomposable by definition since key(Br) = {}. Let ui be the unique variable in bag

Bi. Then, T is ui-decomposable conditioned on key(Bi). This follows from the definition of

coordinate decomposable. Thus, Theorem 19 is applicable.

For example, the query Q(x, y, z) = R(x, y), S(y, z) satisfies the condition of Theorem 22,

while the Cartesian product query defined in Lemma 25 does not.

Dichotomy for edge decomposable. We will show a dichotomy result for edge decom-

posable ranking functions: these are functions that are S-decomposable for any S that is a

hyperedge in the query hypergraph. Before we present the result, we need to formally define

the notion of path and diameter in a hypergraph.

Definition 7. Given a connected hypergraph H = (V, E), a path P in H from vertex x1 to

xs+1 is a vertex-edge alternate set x1E1x2E2 . . . xsEsxs+1 such that {xi, xi+1} ⊆ Ei(i ∈ [s])

and xi 6= xj , Ei 6= Ej for i 6= j. Here, s is the length of the path P . The distance between any

two vertices u and v, denoted d(u, v), is the length of the shortest path connecting u and v.

The diameter of a hypergraph, dia(H), is the maximum distance between all pairs of vertices.

Theorem 23. Consider a full connected acyclic join query Q and a black box edge decom-

posable ranking function. Then, there exists an algorithm that enumerates the result of Q

in ranked order with O(log |D|) delay and Tp = O(|D|) preprocessing time if and only if

dia(Q) ≤ 3.

Proof. To prove the hardness result, suppose that dia(Q) ≥ 4. We construct a database

instance D and a family of edge decomposable ranking functions such that any algorithm

must make Ω(|D|2) calls to the ranking function to output the first tuple in Q(D). Indeed,

since dia(Q) ≥ 4, there exists a path x1R1y1S1zS2y2R2x2 in the hypergraph of Q. Since

this path cannot be made shorter, this implies that x1 /∈ S1, S2, R2; y1 /∈ S2, R2; z /∈ R1, R2;

y2 /∈ R1, S1 and x2 /∈ R1, S1, S2.

Figure 7.3 shows how the construction for the database instance D; all variables not

depicted take the same constant value. For the family of ranking functions, we consider all

137

x1, . . . , xn

y1, . . . , ym

z1, . . . , zk

w1, . . . , w`

Broot = B1

B2

B3

B4

Figure 7.2: Query decomposition example with depth 2

R1(x1, y1, . . .) S1(y1, z, . . .) S2(y2, z, . . .) R2(x2, y2, . . .)

a1 b1

a2 b2
...

an bn

c

d1 e1

d2 e2

...

dn en

1

2

n

1

2

n

n
n− 1

1

n
n− 1

1

Figure 7.3: Database instance D for Theorem 23. Each edge is color-coded by the relation

it belongs to. Values over the edges denote the weight assigned to each tuple.

functions that are monotone with respect to the order of the tuples as depicted in Figure 7.3.

Using the same argument as in Lemma 25, it is easy to see that any correct algorithm must

examine the rank of Ω(n2) tuples tocolor-codeda find the smallest one.

For the other direction, we first show that if dia(Q) ≤ 3, then we can construct a tree

decomposition with fhw = 1 and depth at most one. Indeed, any such decomposition is

compatible with any edge decomposable function, and hence Theorem 19 is applicable with

fhw = 1. In the remainder of the proof, we will show how to find such a decomposition.

Among all tree decompositions with fhw = 1 (there exists at least one), let T be the one

with the smallest depth. We will show that it has depth one. Suppose not; then, there is at

least one bag that is not a child of the root bag. Figure 7.2 shows an example of a query

decomposition where bag B3 is not a neighbor of B1. Note that B3 6⊆ B2,B2 6⊆ B3,B2 6⊆
B1,B1 6⊆ B2,B4 6⊆ B1,B1 6⊆ B4 (otherwise, bags can be merged without changing the fhw and

there will be a decomposition of depth one, a contradiction). Thus, there must exist at least

one variable in B3 (say u) that does not exist in B2, and hence not in any of B1,B4 since this

is a valid decomposition; similarly there exists one variable in B4 (say v) that is unique to

it. This implies that the distance between u and v is at least 4, which is a contradiction to

the fact that dia(Q) ≤ 3.

138

For example, Q(x, y, z, w) = R(x, y), S(y, z), T (z, w) has diameter 3, and thus we can

enumerate the result with linear preprocessing time and logarithmic delay for any edge

decomposable ranking function. On the other hand, for the 4-path query Q(x, y, z, w, t) =

R(x, y), S(y, z), T (z, w), U(w, t), it is not possible to achieve this.

When the query is not connected, the characterization must be slightly modified: an

acyclic query can be enumerated with O(log |D|) delay and Tp = O(|D|) if and only if each

connected subquery has diameter at most 3.

7.5.2 Beyond Logarithmic Delay

Next, we examine whether the logarithmic factor that we obtain in the delay of Theo-

rem 19 can be removed for ranked enumeration. In other words, is it possible to achieve

constant delay enumeration while keeping the preprocessing time small, even for simple

ranking functions? To reason about this, we need to describe the X + Y sorting problem.

Given two lists of n numbers, X = 〈x1, x2, . . . , xn〉 and Y = 〈y1, y2, . . . , yn〉, we want to

enumerate all n2 pairs (xi, yj) in ascending order of their sum xi + yj . This classic problem

has a trivial O(n2 log n) algorithm that materializes all n2 pairs and sorts them. However,

it remains an open problem whether the pairs can be enumerated faster in the RAM model.

Fredman [Fre76] showed that O(n2) comparisons suffice in the nonuniform linear decision

tree model, but it remains open whether this can be converted into an O(n2)-time algorithm

in the real RAM model. Steiger and Streinu [SS95] gave a simple algorithm that takes

O(n2 log n) time while using only O(n2) comparisons.

Conjecture 4 ([BCD+06, DO05]). X +Y sorting does not admit an O(n2) time algorithm.

In our setting, X+Y sorting can be expressed as enumerating the output of the cartesian

product Q(x, y) = R(x), S(y), where relations R and S correspond to the sets X and Y

respectively. The ranking function is rank(x, y) = x + y. Conjecture 4 implies that it is

not possible to achieve constant delay for the cartesian product query and the sum ranking

function; otherwise, a full enumeration would produce a sorted order in time O(n2).

139

Chapter 8

Ranked Enumeration of Conjunctive Queries
with Projections

Join processing is one of the most fundamental problems in database research with ap-

plications in many areas such as anomaly and community detection in social media, fraud

detection in finance, and health monitoring. In many data analytics tasks, it is also required

to rank the query results in a specific order. This functionality is supported by the ORDER

BY clause in SQL, Cypher and SPARQL. We demonstrate a practical example use-case.

Example 40. Consider the DBLP dataset as a single relation R(A,B), indicating that A is

an author of paper B. Given an author a, the function h-index(a) returns the h-index of a.

A popular analytical task asks to find all co-authors who authored at least one paper together.

Additionally, the pairs of authors should be returned in decreasing order of the sum of their

h-indexes, since users are only interested in the top-100 results. The following SQL query

captures this task.

SELECT DISTINCT R1.A,R2.A FROM R AS R1, R AS R2 WHERE

R1.B = R2.B ORDER BY h_index(R1.A) + h_index(R2.A) LIMIT 100;

The above task is an example of a join query with projections (join-project queries)

because attribute B has been projected out (i.e. it is not present in the selection clause).

The DISTINCT clause ensures that there are no duplicate results.

Importance of joins with projections. Join queries containing projections appear in

several practical applications such as recommendation systems [FLLQ19, LFZ19], similarity

search [YSN+12], and network reachability analysis [EL05, Bir08]. In fact, as Manegold et

al. [MKB09] remarked, joins in real-life queries almost always come with projections over

certain attributes. Matrix multiplication [AP09], path queries (equivalent to sparse matrix

multiplication), and reachability queries [GHL+13] are all examples of join-project queries

that have widespread applications in linear and relational algebra. Other data models such

as SPARQL [PAG09] also support the projection operator and evaluation of join-project

queries has been a subject of research, both theoretically [AG11] and practically [CFZ07].

140

In fact, as SPARQL supports ORDER BY/LIMIT operator, ranked enumeration for queries

(that include projections) and top-k over knowledge bases in the SPARQL model has also

been explicitly studied recently [LBBA16, CRW21]. As many practical SPARQL evaluation

systems [HS05, SM13] evaluate queries using RDBMS, it is important to develop efficient

algorithms for such queries in the relational model. Similarly, [XD17b] argued that since a

large fraction of the data of interest resides in RDBMS, efficient execution of graph queries

(such as path and reachability queries that contain projections and ranking) using RDBMS

as the backend is immensely useful. In the relational setting, join-project queries also appear

in the context of probabilistic databases (see Section 2.3 in [DS07]). This motivates us

to develop efficient algorithms, both in theory and practice, that address the challenge of

incorporating the ranked enumeration paradigm for join-project queries.

Prior Work. Efficient evaluation of join queries in the presence of ranking functions has

been a subject of intense research in the database community. Recent work [TGR20, DK21,

YAG+18, CLZ+15, TGR21b] has made significant progress in identifying optimal algorithms

for enumerating query results in ranked order. In each of these works, the key idea is to

perform on-the-fly sorting of the output via the use of priority queues by taking into account

the query structure. [CLZ+15] considered the problem of top-k tree matching in graphs

and proposed optimal algorithms by combining Lawler’s procedure [Law72] with the ranking

function. [TGR20] introduced multiple dynamic programming algorithms that lazily populate

the priority queues. [YAG+18] took a different approach where all possible candidates were

eagerly inserted into the priority queues and [DK21] generalized these ideas to present a

unified theory of ranked enumeration for full join queries. Very recently, [TGR21b] was

able to extend some of these results to non-equi-joins as well. The performance metric for

enumerating query results is the delay [BDG07a], defined as the time difference between any

two consecutive answers. Prior work was able to obtain logarithmic delay guarantees, which

were shown to be optimal. However, all prior work in this space suffers from one fundamental

limitation: it assumes that the join query is full, i.e. there are no projections involved. In

fact, [TGR21b] explicitly remarks that in presence of projections, the strong guarantees

obtained for full queries do not hold anymore. Their suggestion to handle this limitation is

to convert the query with projections into a projection-free result, i.e., they materialize the

join query result, apply the projection filter, and then rank the resulting output. However,

this conversion requires an expensive materialization step. For instance, Example 40 requires

worst-case Ω(|D|2) time and space (here |D| is the size of the database) to materialize the

join result of the query (without any ordering) before providing it as input for sorting. An

alternate approach is to modify the weights of the tuples/attribute values to allow re-use

of existing algorithms. As we show later, this approach also does not fare any better and

141

requires enumerating the full output of the join query, which can be polynomially slower

than the optimal solution.

On the practical side, all RDBMS and graph processing engines evaluate join-project

queries in the presence of ranking functions by performing three operations in serial order:

(i) materializing the result of the full join query, (ii) de-duplicating the query result (since

the query has DISTINCT clause), and (iii) sorting the de-duplicated result according to the

ranking function. The first step in this process is a show-stopper. Indeed, the size of the full

join query result can be orders of magnitude larger than the size of the final output after

applying projections and de-duplicating it. Thus, the materialization and the de-duplication

step introduce significant overhead since they are blocking operators. Further, if the user is

interested in only a small fraction of the ordered output (top-k with small k1), the user still

has to wait until the entire query completes even to see the top-ranked result.

Our Contribution and Key Ideas. In this paper, we initiate the study of ranked enu-

meration over join-project queries. We focus on two important ranking functions: SUM

(f(x, z) = x + z) and LEXICOGRAPHIC (f(x, z) = x, z) for two reasons. First, both of these

functions are very useful in practice [IBS08]. Second, extending the algorithmic ideas to

other functions, such as MIN, MAX, AVG and circuits that use sum and products, is quite

straightforward. More specifically, we make three contributions.

1. Enumeration with Formal Delay Guarantees. Our first main result shows that for

any acyclic query (the most common fragment of queries in practice [BMT20]) with arbitrary

projection attributes, it is possible to develop efficient enumeration algorithms.

Theorem 24. For an acyclic join-project query Q, an instance D and a ranking function

rank ∈ {SUM, LEXICOGRAPHIC}, the query result Q(D) can be enumerated according to rank

with worst-case delay O(|D| log |D|), after O(|D|) preprocessing time.

This result implies that top-k results in Q(D) can be enumerated in O(k|D| log |D|)
time. Theorem 24 is able to recover the prior results [TGR20] for ranked enumeration of full

queries as well. We are also able to generalize it to arbitrary join-project queries which may

contain cycles using the idea of generalized query decompositions, as well as union of queries,

which is a strictly more expressive class of queries. The key idea of our algorithm is to

develop multiway join plans [NPRR12] by exploiting the properties of join trees. Embedding

the priority queues in the join tree strategically allows us to generate the sorted output

on-the-fly and avoid the binary join plans that all state-of-the-art systems use. Further,

since we formulate the problem in terms of delay guarantees, it allows our techniques to be

limit-aware: for small k, the answering time is also small.

1the value of k in the LIMIT clause is not known until the user submits the query.

142

2. Faster Enumeration with More Preprocessing. Our second contribution is an

algorithm that allows for a smooth trade-off between preprocessing time and delay guarantee

for a subset of join-project queries known as star queries over binary relations of the form

Ri(Ai, B) (denoted as Q?m):

SELECT DISTINCT A1, . . . , Am FROM R1, . . . , Rm WHERE R1.B = · · · = Rm.B ORDER

BY A1 + · · ·+Am LIMIT k;

Note that Q?m = πr(Q
∗
A1,...,Am

). Analysis of query logs has shown that star queries (both

ranked and unranked) are the most important class of queries seen in practice that form

over 90% of all non-trivial queries in real-world settings [BMT20]. The main motivation

of studying this setting is as follows: for many data analysis pipelines, queries are asked

repeatedly by users or accessed by some downstream tasks. In this case, it is desirable to

spend some time preprocessing the input database to ensure that the repeated executions

of the query are as fast as possible. The goal of the preprocessing phase is to compute a

space-efficient intermediate data structure, which is used by the query answering algorithm

to enumerate the query results according to an order given by a ranking function as fast as

possible, and ideally, with delay guarantees.

Theorem 25. For a star join-project query Q?m, an instance D, and a ranking func-

tion rank ∈ {SUM, LEXICOGRAPHIC}, the query result Q(D) can be enumerated according to

rank with worst-case delay O
(
|D|1−ε log |D|

)
, using O

(
|D|1+(m−1)ε

)
preprocessing time and

O
(
|D|m(1−ε)) space, for any 0 ≤ ε ≤ 1.

Theorem 25 enables users to carefully control the space usage, preprocessing time, and

delay. For both Theorem 24 and Theorem 25, we can show that the delay guarantee is

optimal subject to a conjecture about the running time of star join-project queries.

3. Experimental Evaluation. Our final contribution is an extensive experimental evalu-

ation for practical join-project queries on real-world datasets. To the best of our knowledge,

this is the first comprehensive evaluation of how existing state-of-the-art relational and graph

engines execute join-project queries in the presence of ranking. We choose MariaDB, Post-

greSQL, two popular open-source RDBMS, and Neo4j, the most popular graph query engine,

as our baselines. We highlight two key results. First, our experimental evaluation demon-

strates the bottleneck of serially performing materialization, de-duplicating, and sorting.

Even with LIMIT 10 (i.e. return the top-10 ranked results), the engines are orders of mag-

nitude slower than our algorithm. For some queries, they cannot finish the execution in a

reasonable time since they run out of main memory. On the other hand, our algorithm has

orders of magnitude smaller memory footprint that allows for faster execution. The second

key result is that all baseline engines are agnostic of the ranking function. The execution time

of the queries is identical for both the sum and lexicographic ranking functions. However, our

143

algorithm uses the additional structure of lexicographical ordering and can execute queries

2 − 3× faster than the sum function. For queries with unions and cycles, our algorithm

maintains its performance improvement over the baselines.

Organization. We overview the prior work for our problem in Section 8.1. Section 8.2

recalls some of the useful notation from previous chapters. The algorithm for acyclic CQs

is presented in Section 8.3 which is extended to incorporate a trade-off for star queries in

Section 8.4. We show how to handle cyclic queries in Section 8.5. Finally, we conclude the

chapter with a comprehensive experimental evaluation in Section 8.6.

8.1 Related Work

Top-k. Top-k ranked enumeration of full join queries has been studied extensively by the

database community for both certain [LCIS05, QCS07, ISA+04, LSCI05, APV11, IBS08,

BMS+06, TPK+03] and uncertain databases [RDS07, ZLGZ10]. Most of these works exploit

the monotonicity property of scoring functions, building offline indexes and integrating the

function into the cost model of the query optimizer to bound the number of operations

required per answer tuple. We refer the reader to [IBS08] for a comprehensive survey. We

note that none of these works consider join-project queries. While many algorithms have

used the idea of priority queues for efficient sorting, none of them allow for projections,

which was an open problem. Ours is the first work to consider the ranked enumeration of

join-project queries.

Rank aggregation algorithms. Top-k processing over ranked lists of objects has a rich

history. The problem was first studied by Fagin et al. [Fag02, FLN03] where the database

consists ofN objects andm ranked streams, each containing a ranking of theN objects to find

the top-k results for coordinate monotone functions. The authors proposed Fagin’s algorithm

(FA) and Threshold algorithm (TA), both of which were shown to be instance optimal for

database access cost under sorted list access and random access model. A key limitation

of these works is that it expects the input to be materialized, i.e., Q(D) must already be

computed and stored for the algorithm to perform random access. This is prohibitively

expensive since the space requirement is huge.

Unranked enumeration of query results. Recent work by Kara et al. [KNOZ20a] showed

that for a small but important fragment of CQs known as hierarchical queries, it is possible

to obtain a trade-off between preprocessing and delay guarantees. Importantly, this result

is applicable even in the presence of arbitrary projects. However, the authors did not inves-

tigate how to add ranking because adding priority queues at a different location in the join

tree leads to different complexities. In fact, a follow-up work [DHK21] showed that the same

unranked enumeration could be performed with better delay guarantees under certain set-

tings. Our work considers the class of CQs with arbitrary projections and we are also able to

144

extend the main result to UCQs, an even broader class of queries. Naturally, our algorithm

automatically recovers the existing results for full CQs as well [DK21, TAG+], in addition to

the first extensive empirical evidence on how ranked enumeration can be performed for CQs

containing projections beyond free-connex queries. Acyclic Boolean queries can be evaluated

optimally in linear time (data complexity) by the Yannakakis algorithm [Yan81].

Factorization and Aggregation. Factorized databases [BOZ12, OZ15a, CO15] exploit the

distributivity of product over union to represent query results compactly and generalize the

results on bounded fhwto the non-Boolean case [OZ15a]. [AKNR16] captures a wide range

of aggregation problems over semirings. Factorized representations can also enumerate the

query results with constant delay according to lexicographic orders of the variables [BKOZ13].

For that to work, the lexicographic order must ”agree” with the factorization order. However,

it was shown in [DK21] that the algorithm for lexicographic ordering is not optimal. Further,

since all prior work in this space uses the concept of a variable ordering, adding projections

to the query forces the building of a GHD that can materialize the entire join query result,

which is expensive and an unavoidable drawback.

Ranked enumeration. Both Chang et al. [CLZ+15] and Yang et al. [YAG+18] provide

any-k algorithms for graph queries instead of the more general CQs; Kimelfeld and Sagiv

[KS06] give an any-k algorithm for acyclic queries with polynomial delay. Recent work on

ranked enumeration of MSO logic over words is also of particular interest [BGJR21]. None

of these existing works give any non-trivial guarantees for CQs with projections. Ours is the

first work in this space that provides non-trivial guarantees.

8.2 Preliminaries

In this section, we will present our results for queries containing projections. First, for

the benefit of the reader, we recall some of the definitions from Section 2 that will be used

extensively. We will focus on the class of join-project queries, which are defined as

Q = πA(R1(A1) 1 R2(A2) 1 . . . 1 Rm(Am))

Here, each relation has schema Ri(Ai), where Ai is an ordered set of attributes. Let

A = A1 ∪A2 ∪ · · · ∪Am. The projection operator πA only keeps a subset of the attributes

from A. The join we consider is natural join, where tuples from two relations can be joined if

they share the same value on the common attributes. A join-project query is full if A = A.

Unlike prior work on ranked enumeration, we place no restriction on the set of attributes in

the projection operator. For simplicity of presentation, we do not consider selections; these

can be easily incorporated into our algorithms. As an example, the SQL query in Example 40

corresponds to the following query: πA,B(R1(A,C) 1 R2(B,C)). For tuple t, we will use the

shorthand t[A] to denote πA(t).

145

R3(C, D)

R1(A, B)

<latexit sha1_base64="BrzSS3Lz3UuFFBUYT7teZw6qUh0=">AAAAAHicbVBNSwMxEJ31s9avqkcvwSJUkLIrBT3WevFYxX5Au5Rsmm1Ds8maZIWy9E948aCIV/+ON/+NabsHbX0w8Hhvhpl5QcyZNq777aysrq1vbOa28ts7u3v7hYPDppaJIrRBJJeqHWBNORO0YZjhtB0riqOA01Ywupn6rSeqNJPiwYxj6kd4IFjICDZWat/3vNL1ee2sVyi6ZXcGtEy8jBQhQ71X+Or2JUkiKgzhWOuO58bGT7EyjHA6yXcTTWNMRnhAO5YKHFHtp7N7J+jUKn0USmVLGDRTf0+kONJ6HAW2M8JmqBe9qfif10lMeOWnTMSJoYLMF4UJR0ai6fOozxQlho8twUQxeysiQ6wwMTaivA3BW3x5mTQvyl6l7N5VitVaFkcOjuEESuDBJVThFurQAAIcnuEV3pxH58V5dz7mrStONnMEf+B8/gAV646v</latexit>

R2(B, C)

<latexit sha1_base64="Nw1KcEUJM4iJRGxb/g7ZN6n4W3o=">AAAAAHicbVBNSwMxEJ2tX7V+VT16CRahgpTdUtBjaS8eq9gPaZeSTdM2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF0ScaeO6305mY3Nreye7m9vbPzg8yh+ftHQYK0KbJOSh6gRYU84kbRpmOO1EimIRcNoOJvW5336iSrNQPphpRH2BR5INGcHGSo/3/XKxdoXql/18wS25C6B14qWkACka/fxXbxCSWFBpCMdadz03Mn6ClWGE01muF2saYTLBI9q1VGJBtZ8sDp6hC6sM0DBUtqRBC/X3RIKF1lMR2E6BzVivenPxP68bm+GNnzAZxYZKslw0jDkyIZp/jwZMUWL41BJMFLO3IjLGChNjM8rZELzVl9dJq1zyKiX3rlKo1tI4snAG51AED66hCrfQgCYQEPAMr/DmKOfFeXc+lq0ZJ505hT9wPn8AcauO3A==</latexit>

R4(D, E)

<latexit sha1_base64="FFVLGczOWV3xFDHFahPUzZQCUyo=">AAAAAHicbVDLSgNBEOz1GeMr6tHLYBAiSNiVgB6DD/AYxTwkWcLsZDYZMjO7zMwKYclXePGgiFc/x5t/4yTZgyYWNBRV3XR3BTFn2rjut7O0vLK6tp7byG9ube/sFvb2GzpKFKF1EvFItQKsKWeS1g0znLZiRbEIOG0Gw6uJ33yiSrNIPphRTH2B+5KFjGBjpcf7bqV0fYpuTrqFolt2p0CLxMtIETLUuoWvTi8iiaDSEI61bntubPwUK8MIp+N8J9E0xmSI+7RtqcSCaj+dHjxGx1bpoTBStqRBU/X3RIqF1iMR2E6BzUDPexPxP6+dmPDCT5mME0MlmS0KE45MhCbfox5TlBg+sgQTxeytiAywwsTYjPI2BG/+5UXSOCt7lbJ7VylWL7M4cnAIR1ACD86hCrdQgzoQEPAMr/DmKOfFeXc+Zq1LTjZzAH/gfP4AetmO4g==</latexit>

root

<latexit sha1_base64="u+UddLRVWHmSLFVNU4x6p93Rb8A=">AAAAAHicbVDLSgNBEJyNrxhfUY9eBoPgKexKwBwDXjxGMA9IljA7mU2GzGOZ6RXCkl/w4kERr/6QN//G2WQPmljQUFR1090VJYJb8P1vr7S1vbO7V96vHBweHZ9UT8+6VqeGsg7VQpt+RCwTXLEOcBCsnxhGZCRYL5rd5X7viRnLtXqEecJCSSaKx5wSyCWjNYyqNb/uL4E3SVCQGirQHlW/hmNNU8kUUEGsHQR+AmFGDHAq2KIyTC1LCJ2RCRs4qohkNsyWty7wlVPGONbGlQK8VH9PZERaO5eR65QEpnbdy8X/vEEKcTPMuEpSYIquFsWpwKBx/jgec8MoiLkjhBrubsV0Sgyh4OKpuBCC9Zc3SfemHjTq/kOj1moWcZTRBbpE1yhAt6iF7lEbdRBFU/SMXtGbJ70X7937WLWWvGLmHP2B9/kDTOeOXw==</latexit>

anchor(R1) = {B}
A⇡

1 = {A}

<latexit sha1_base64="JlU1hzRA0/LqZ6jg69/jvBSoBG4=">AAAAAHicbVC7SgNBFJ31GeNr1dJmMBhiE3YloI2QaGMZxTwgsy6zk9lkyOzsMjMrhCW/YOOv2FgoYmtn5984eRSaeODC4Zx7ufeeIOFMacf5tpaWV1bX1nMb+c2t7Z1de2+/qeJUEtogMY9lO8CKciZoQzPNaTuRFEcBp61gcDX2Ww9UKhaLOz1MqBfhnmAhI1gbybdLRSxIP5alW989gRcQZZdoBBHKF2u+e48SNtFqaOTbBafsTAAXiTsjBTBD3be/UDcmaUSFJhwr1XGdRHsZlpoRTkd5lCqaYDLAPdoxVOCIKi+bfDSCx0bpwjCWpoSGE/X3RIYjpYZRYDojrPtq3huL/3mdVIfnXsZEkmoqyHRRmHKoYziOB3aZpETzoSGYSGZuhaSPJSbahJg3IbjzLy+S5mnZrZSdm0qhWpnFkQOH4AiUgAvOQBVcgzpoAAIewTN4BW/Wk/VivVsf09YlazZzAP7A+vwBlO6aTQ==</latexit>

node 1

<latexit sha1_base64="u+Qic9bdnuJp1tEIz+NIYXpTs0o=">AAAAAHicbVDLSgNBEOz1GeMr6tHLYCJ4CrshoMeAF48RzAOSJczO9iZDZmfXmVkhLPkJLx4U8ervePNvnDwOmljQUFR1090VpIJr47rfzsbm1vbObmGvuH9weHRcOjlt6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVbqyiREUvEqg1LZrbpzkHXiLUkZlmgOSl/9MGFZjNIwQbXueW5q/Jwqw5nAabGfaUwpG9Mh9iyVNEbt5/N7p+TSKiGJEmVLGjJXf0/kNNZ6Ege2M6ZmpFe9mfif18tMdOPnXKaZQckWi6JMEJOQ2fMk5AqZERNLKFPc3krYiCrKjI2oaEPwVl9eJ+1a1atX3ftauVFfxlGAc7iAK/DgGhpwB01oAQMBz/AKb86j8+K8Ox+L1g1nOXMGf+B8/gCgnI78</latexit>

node 2

<latexit sha1_base64="FuimkqwYcF0Xp96BXSwLDRxO9GQ=">AAAAAHicbVDLSgNBEOz1GeMr6tHLYCJ4CrshoMeAF48RzAOSJczO9iZDZmfXmVkhLPkJLx4U8ervePNvnDwOmljQUFR1090VpIJr47rfzsbm1vbObmGvuH9weHRcOjlt6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVbqyiREUqlVBqWyW3XnIOvEW5IyLNEclL76YcKyGKVhgmrd89zU+DlVhjOB02I/05hSNqZD7FkqaYzaz+f3TsmlVUISJcqWNGSu/p7Iaaz1JA5sZ0zNSK96M/E/r5eZ6MbPuUwzg5ItFkWZICYhs+dJyBUyIyaWUKa4vZWwEVWUGRtR0Ybgrb68Ttq1qlevuve1cqO+jKMA53ABV+DBNTTgDprQAgYCnuEV3pxH58V5dz4WrRvOcuYM/sD5/AGiIY79</latexit>

node 3 =

<latexit sha1_base64="EwZK1Qh3Di/v/MDWpPgo25GDuUg=">AAAAAHicbVBNSwMxEJ2tX7V+VT16CbaCp7JbC3oRCl48VrC10i4lm822odlkSbJCWforvHhQxKs/x5v/xrTdg7Y+GHi8N8PMvCDhTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKNlqghtE8ml6gZYU84EbRtmOO0miuI44PQhGN/M/IcnqjST4t5MEurHeChYxAg2VnoUMqSoenFdHZQrbs2dA60SLycVyNEalL/6oSRpTIUhHGvd89zE+BlWhhFOp6V+qmmCyRgPac9SgWOq/Wx+8BSdWSVEkVS2hEFz9fdEhmOtJ3FgO2NsRnrZm4n/eb3URFd+xkSSGirIYlGUcmQkmn2PQqYoMXxiCSaK2VsRGWGFibEZlWwI3vLLq6RTr3mNmntXrzQbeRxFOIFTOAcPLqEJt9CCNhCI4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gAndY9F</latexit>

node 4

<latexit sha1_base64="+QK8YlkPDHvi8W3Pm7P60pNz2Mk=">AAAAAHicbVDLSgNBEOz1GeMr6tHLYCJ4CrshoMeAF48RzAOSJczO9iZDZmfXmVkhLPkJLx4U8ervePNvnDwOmljQUFR1090VpIJr47rfzsbm1vbObmGvuH9weHRcOjlt6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVbqyiREUqlXBqWyW3XnIOvEW5IyLNEclL76YcKyGKVhgmrd89zU+DlVhjOB02I/05hSNqZD7FkqaYzaz+f3TsmlVUISJcqWNGSu/p7Iaaz1JA5sZ0zNSK96M/E/r5eZ6MbPuUwzg5ItFkWZICYhs+dJyBUyIyaWUKa4vZWwEVWUGRtR0Ybgrb68Ttq1qlevuve1cqO+jKMA53ABV+DBNTTgDprQAgYCnuEV3pxH58V5dz4WrRvOcuYM/sD5/AGlK47/</latexit>

anchor(R2) = {C}
A⇡

2 = {A}

<latexit sha1_base64="eZmZH/42tyKZ2anqiSCYaQTVpVI=">AAAAAHicbVC7SgNBFJ2NrxhfUUubwWCITdgNAW2EhDSWUcwDMusyO5lNhszOLjOzQljyCzb+io2FIrZ2dv6Nk0ehiQcuHM65l3vv8WPOlLbtbyuztr6xuZXdzu3s7u0f5A+P2ipKJKEtEvFIdn2sKGeCtjTTnHZjSXHoc9rxR42p33mgUrFI3OlxTN0QDwQLGMHaSF6+VMSCDCNZuvUq5/AKorSBJhChXLHuVe5RzGZaHU28fMEu2zPAVeIsSAEs0PTyX6gfkSSkQhOOleo5dqzdFEvNCKeTHEoUjTEZ4QHtGSpwSJWbzj6awDOj9GEQSVNCw5n6eyLFoVLj0DedIdZDtexNxf+8XqKDSzdlIk40FWS+KEg41BGcxgP7TFKi+dgQTCQzt0IyxBITbULMmRCc5ZdXSbtSdqpl+6ZaqFUXcWTBCTgFJeCAC1AD16AJWoCAR/AMXsGb9WS9WO/Wx7w1Yy1mjsEfWJ8/mbmaUA==</latexit>

anchor(R4) = {D}
A⇡

4 = {E}

<latexit sha1_base64="DkfTbK5cVNGxXNYhcRLzNDtzdRc=">AAAAAHicbVDLSgMxFM34rPU16tJNsFjqpszIgG6Eigouq9gHNHXIpGkbmskMSUYoQ3/Bjb/ixoUibt25829Mp11o64ELh3Pu5d57gpgzpR3n21pYXFpeWc2t5dc3Nre27Z3duooSSWiNRDySzQArypmgNc00p81YUhwGnDaCwcXYbzxQqVgk7vQwpu0Q9wTrMoK1kXy7VMSC9CNZuvW9I3gGUXqJRhChfPHc9+5RzDLtCo18u+CUnQxwnrhTUgBTVH37C3UikoRUaMKxUi3XiXU7xVIzwukojxJFY0wGuEdbhgocUtVOs49G8NAoHdiNpCmhYab+nkhxqNQwDExniHVfzXpj8T+vlejuaTtlIk40FWSyqJtwqCM4jgd2mKRE86EhmEhmboWkjyUm2oSYNyG4sy/Pk/px2fXKzo1XqHjTOHJgHxyAEnDBCaiAa1AFNUDAI3gGr+DNerJerHfrY9K6YE1n9sAfWJ8/p82aWQ==</latexit>

Figure 8.1: Illustration of join tree for a join-project query Q = πA,E(R1(A,B) 1 R2(B,C) 1

R3(C,D) 1 R4(D,E)).

Acyclic Queries and Join Trees. A join-project query Q is acyclic if and only if it admits

a join tree T . In a join tree, each relation is a node, and for each attribute A, all nodes in

the tree containing A form a connected subtree. For simplicity, we will use node i to refer

to the node corresponding to relation Ri in T . Given a join tree T , pick any node to be the

root, and then orient each edge towards the root. Let Ti be the subtree rooted at node Ri.

Let p(Ri) be the (unique) parent of Ri, and key(Ri) = Ri∩p(Ri) to be the anchor attributes

between Ri and its parent. Let child(Ri) be the set of children nodes of Ri. Finally, we

fix the ordering of the projection attributes in A to be the order of visiting them in the

in-order traversal of T . Finally, we define Aπ
i as the ordered set of projection attributes in

subtree rooted at node i (including projection attributes of node i). As a convention, we

define key(r) = ∅, Aπr = ∅ for the root r and child(Ri) = ∅ for a leaf node Ri.

Example 41. Consider a join-project query Q = πA,E(R1(A,B) 1 R2(B,C) 1 R3(C,D) 1

R4(D,E)) under the ranking function SUM defined over attributes A,E. In other words, for

every output tuple t, the score of the tuple is t[A] + t[E]. Figure 8.1 shows the join tree for

the query. We fix R3 as the root with R2 as the left child and R4 (a leaf node) as the right

child. R1, as a leaf node, is also the only child of R2.

8.2.1 Ranking Functions

The ordering of query results in Q(D) can be specified by a ranking function, or through

the ORDER BY clause of a SQL query in practice. Formally, a total order � on the tuples in

Q(D) defined over the attributes A, is induced by a ranking function rank that maps each

tuple t ∈ Q(D) to a real number rank(t) ∈ R. In particular, for two tuples t1, t2, we have

t1 � t2 if and only if rank(t1) ≥ rank(t2). We assume that dom(A) for any A ∈ A is also

equipped with a total order �. We present an example of a ranking function below.

146

Example 42. Consider a function w : dom(A) → R for any attribute A ∈ A. For each

query result t, we define its rank as rank(t) =
∑

A∈Aw(t[A]), the total sum of the weights

over all attributes in A.

We will focus on SUM and LEXICOGRAPHIC in this paper. We note that both functions are

instantiations of a more general class of decomposable functions [DK21]. The ideas introduced

for SUM and LEXICOGRAPHIC are readily applicable to more complicated functions including

products, a combination of sum and products, etc.

8.2.2 Problem Parameters

Given a join-project query Q and a database D, an enumeration query asks to enumerate

the tuples of Q(D) according to some specific ordering defined by rank. We study this

problem in a similar framework as [Seg15b], where an algorithm is decomposed into:

• a preprocessing phase that takes time Tp and computes a data structure of size Sp,

and

• an enumeration phase (i.e. the online query phase) that outputs Q(D) without

duplicates under the specified ordering whenever a user query is issued. This phase has

full access to any data structures constructed in the preprocessing phase and additional

space of size Se. The time between outputting any two consecutive tuples (and also

the time to output the first tuple, and the time to notify that the enumeration has

completed after the last tuple) is at most δ.

Prior work [DK21] has shown that for acyclic joins without projections, there exists an

algorithm with Tp = Sp = O(|D|) that can achieve δ = O(log |D|) delay under ranking.

However, the problem of ranked enumeration when projections are involved is wide open.

Using Existing Algorithms. One possible solution to the problem is to set the weights

of non-projection attributes to 0. This will ensure that for SUM function, only the projection

attributes are considered in the ranking and existing algorithms for full join queries could be

used. However, this proposal gives poor delay guarantees and is as expensive as enumerating

the full join result. For example, for the four path query in Example 41, the output of

the query could be constant in size but the full join can be as large as Ω(|D|2) which is

prohibitively expensive, but our algorithm would only require O(|D|) in this case. In general,

a join with ` relations may require as much as Ω(|D|`−1) time to output the smallest tuple.

Given a black box algorithm A for ranked enumeration of full join queries, we can obtain

an algorithm for ranked enumeration of join-project queries. algorithm 16 shows how A can

be used for enumeration of join-project queries. The key idea here is that A can assign a

weight of zero to all values of non-projection attributes. This will guarantee that tuples

enumerated by A will be sorted only over the sum of attribute values of A. The while

147

Algorithm 16: UseExistingAlgorithm

Input : Join-project query Q, ranking function SUM and database D

Output: Q(D) in ranked order

1 Q′ ← full query obtained by dropping the projection operator from Q

2 Provide Q′, ranking function SUM that assigns weight zero to all values of attributes

A \A, and D to A for pre-processing;

3 last← ∅
4 while A.hasNext() do

5 o← A.getNext() /* enumerate the answer from A */

6 if last 6= o[A] then

7 output o[A], last← o[A]

8 return /* Enumeration complete */

loop contains a variable that stores the last tuple output A. This helps in ensuring that

no duplicates are output for the join-project query. Intuitively, algorithm 16 is performing

a ranked group by over the attributes A and outputs an answer when the grouping value

changes. We now show that there exist queries where the dealy for this algorithm could be

large. Consider the query

Q = πX1
(1i∈[`] Ri(Xi, Y))

.

Suppose that each relation Ri has N attribute value for Xi that is connected one Y

attribute value y? for each i ∈ {1, . . . , `}. Then, the smallest answer of QD) will be output

N `−1 times by A on line 5. This is because the join of R2 1 · · · 1 R` has a size of N `−1.

This directly implies that the delay guarantee is Ω(N `−1).

8.3 General acyclic queries

We first describe the main algorithm of enumerating acyclic join-project queries for SUM

ordering in subsection 8.3.1, followed by a specialized algorithm for LEXICOGRAPHIC ordering

in subsection 8.3.2. Before we describe the algorithm, we introduce two key data structures

that will be used: cell and priority queues.

Definition 8. A cell, denoted as c = 〈t, [p1, . . . , pk], q〉, is a vector consisting of three values:

(i) a tuple t ∈ Ri for node i in the join tree T , (ii) an array of pointers [p1, . . . , pk] where

the `th pointer points to a cell defined for `th child of node i in T , (iii) a pointer q that can

only point to another cell defined for node i.

Given a cell c defined for node i, one can reconstruct the tuple over Aπ
i in constant time

(dependent only on the query size, which is a constant) by traversing the pointers recursively.

148

We will use output(c) to denote the utility method that performs this task. Note that the time

and space complexity of creating a cell is O(1) since the size of the query and the database

schema are assumed to be constant. This implies that we only need to insert/access a

constant number of entries in the vector representing a cell. Similarly, output(c) also takes

O(1) time since the join tree size is a constant.

Priority queue. A priority queue is a data structure for maintaining a set S of elements,

each with an associated value called a key. The space complexity of a priority queue con-

taining |S| elements is O(|S|). We will use an implementation of a priority queue (e.g., a

Fibonacci heap [FT87]) with the following properties: (i) an element can be inserted in O(1)

time, (ii) the min element can be obtained in O(1) time, and (iii) the min element can be

popped and deleted in O(log |D|) time. We will use the priority queue in conjunction with

a cell in the following way: for two cells c1 and c2, the priority queue uses rank(output(c1))

and rank(output(c2)) in the comparator function to determine the relative ordering of c1

and c2. If rank(output(c1)) = rank(output(c2)), then we break ties according to the lexi-

cographic order of output(c1) and output(c2). The choice of lexicographic ordering is not

driven by any specific consideration; as long as the ties are broken consistently, we can use

other tie-breaking criteria too. Once again, the comparator function only takes a O(1) time

to compare since the ranking function rank(output(c)) can be evaluated in constant time.

8.3.1 General Algorithm

Algorithm 17: PreprocessAcyclic

Input : Input query Q, database instance D; join tree T ; ranking function rank.

Output: Priority Queues PQ

1 foreach Ri ∈ T in post order traversal do

2 foreach t ∈ Ri do

3 u← πkey(Ri)(t);

4 if PQi[u] does not exist then

5 PQi[u]← ∅; /* Initialize a priority queue */

6 L← ∅;
7 foreach Rj is the child of Ri do

8 L.insert(PQj [πkey(Rj)(u)].top());

9 PQi[u].insert(〈t, L,⊥〉);

In this section, we present the algorithm for Theorem 24. At a high level, each node i in

the join tree will materialize, in an incremental fashion, all tuples over the attributes Aπ
i ∪

key(Ri) in sorted order. To efficiently store the materialized output, we will use the cell data

structure. Since we need to sort the materialized output, each node in the join tree maintains

149

a set of priority queues indexed by πkey(Ri)(u), u ∈ Ri. The values of the priority queue are

the cells of node i. For example, given the join tree from Example 41, node 2 containing R2

will incrementally materialize the sorted result of the subquery πC,A(R2(B,C) 1 R1(A,B))

that is indexed by the values πC(R2(B,C)) since Aπ
2 = {A} and key(R2) = {C}. Note that

there may be multiple possible join trees for a given acyclic query. Our algorithm applies

to all join trees. In fact, any node in the join tree can be chosen as the root without any

impact on the time and space complexity.

Preprocessing Phase. We begin by describing the algorithm for preprocessing in algo-

rithm 17. We assume that a join tree has been fixed and the input instance D does not

contain any dangling tuples, i.e., tuples that will not contribute to the join; otherwise, we

can invoke the Yannakakis algorithm [Yan81] to remove all dangling tuples. We initialize

a set of empty priority queues for every node in the join tree. We proceed in a bottom-up

fashion and perform the following steps. For each leaf relation Ri ∈ T , we create a cell

〈t, [],⊥〉 for each tuple t ∈ Ri and insert it into PQi[πkey(Ri)(t)]. For each non-leaf relation

Rj ∈ T , we create a cell for t ∈ Rj , which points to the top of the priority queue in each

child node of Rj that can be joined with t. This cell is then added to the priority queue

PQi[πkey(Ri)(t)]. Note that we only have one priority queue for the root relation r since

key(r) = {} by definition.

h(1, 1), [],?i 1

h(2, 1), [],?i 2

h(1, 2), [],?i 1

h(1, 1), [100],?i 1
h(2, 1), [200],?i 1

100

101

200

201

300

301

400

401

h(1, 1), [],?i 1
h(1, 2), [],?i 2

h(3, 2), [],?i 3

h(1, 1), [300, 400],?i 2 500R3(C, D)

R2(B, C)

R1(A, B)

R4(D, E)

PQ3[]

PQ4[1]

PQ2[1]

PQ1[1]

PQ1[2]

(a) Data structure state after the prepro-

cessing phase. Each memory location has

a cell and the partial score of the partial

answer

R3(C, D)

R2(B, C)

R1(A, B)

R4(D, E)

h(2, 1), [],?i 2

100

101

200

201h(3, 2), [],?i 3

h(1, 1), [], 101i 1

h(1, 2), [], 201i 1

h(2, 1), [200],?i 1

h(1, 1), [101],?i 2

h(2, 1), [201],?i 3

300

301

h(1, 1), [100], 302i 1

h(2, 1), [200], 303i 1

302

303
400

401h(1, 2), [],?i 2

h(1, 1), [], 401i 1

h(1, 1), [302, 400],?i 3

h(1, 1), [300, 401],?i 3

500

501

502

h(1, 1), [300, 400],?i 2

PQ3[]

PQ4[1]

PQ2[1]

PQ1[1]

PQ1[2]

(b) Data structure after one iteration of

procedure Enum()

Figure 8.2: Example to demonstrate the preprocessing and enumeration phase of the general

algorithm

Example 43. Continuing with the 4-path query running example, consider the following

instance D as shown below.

150

Algorithm 18: EnumAcyclic

Input : Input query Q, database instance D; join tree T ; ranking function rank;

Priority queues PQ

Output: Q(D) in ranked order

1 procedure Enum()

2 last← ∅;
3 while PQr[∅] 6= ∅ do

4 o← PQr[∅].top();

5 if is equal(o, last) = false then

6 print output(o), last← o; /* new output found */

7 Topdown (o, r);

8 procedure Topdown(c, j) /* c = 〈t, [p1, . . . , pk], next〉 */

9 u← πkey(Rj)(c.t);

10 if c.next = ⊥ then

11 while true do

12 temp← pop(PQj [u]);

13 foreach Ri is a child of Rj do

14 p′i ← Topdown(c.pi, i) ;

15 if p′i 6= ⊥ then

16 PQj [u].insert(〈t, [c.p1, . . . , p
′
i, . . . c.pk],⊥〉)

17 if Rj is not the root then

18 c.next← addressof(PQj [u].top());

19 if is equal(temp,PQj [u].top()) = false then break

20 return c.next;

21 procedure is equal(c1, c2)

22 if rank(output(c1)) 6= rank(output(c2)) then return false;

23 foreach A ∈ A do

24 if output(c1)[A] < output(c2)[A] then return false;

25 return true;

A B

1 1

2 1

1 2

3 2

R1

B C

1 1

2 1

R2

C D

1 1

1 2

R3

D E

1 1

1 2

R4

As we saw before, Figure 8.1 shows the join tree along with the anchor attributes in each

relation. Figure 8.2a shows the state of priority queues after the preprocessing step. After the

151

full reducer pass, tuple (1, 2) is removed from R3 because no join tuple can be formed using

it. Then, we start constructing the cells for each node starting with the leaf nodes. Since B

is the anchor for relation R1, we create two priority queues PQ1[1] and PQ1[2]. For PQ1[1],

we create the cells for tuples (1, 1) and (2, 1). For convenience, the cells are followed by the

partially aggregated score. Consider relation R2(B,C). The cell for tuple (1, 1) in PQ2[1]

points to the top of PQ1[1] (shown as pointer with address 100). The root bag consists of a

single tuple entry that points to the cells at locations 300 and 400. The output tuple that can

be formed by the root bag is (A = 1, E = 1).

Enumeration Phase. We describe the enumeration procedure in algorithm 18. The high-

level idea is to output answers by repeatedly popping elements from the root priority queue.

It may be possible that multiple tuples of the root priority queue output the same final result.

To deduplicate answers, we compare the answer at the current top of the priority queue with

the previous answer (line 5) and output it only if they are different. Then, we invoke the

procedure Topdown to insert new candidates into the priority queue. This procedure will

be recursively propagated over the join tree until it reaches the leaf nodes. Observe that

once the new candidates have been inserted, the next pointer of a cell is updated by pointing

to the topmost element in the priority queue. This chaining materializes the answers for a

particular node that can be reused and is key to avoiding repeated computation.

Example 44. Continuing our running example, Figure 8.2b shows the state of the priority

queues after one complete iteration of procedure Enum(). We first pop the only element

in the root priority queue and note that the output tuple (A = 1, E = 1) is enumerated.

Then we call TOPDOWN with cell at memory 500 and root (node 3) as arguments (denoted as

TOPDOWN(∗500, 3)). The next for the cell is ⊥ so we pop the cell at 500 from the priority

queue (shown as greyed out in the figure) and recursively call TOPDOWN(∗300, 2). The cell at

memory location 300 has next = ⊥. Therefore, we enter the while loop, pop the cell and

recursively call TOPDOWN(∗100, 1). We have now reached the leaf node. The anchor attribute

value for cell at 100 is u = 1, so we pop the current cell from PQ1[1] (greyed out cell at 100),

find the next candidate at the top of PQ1[1] (which is cell at 101), chain it to the cell at 100

by assigning next = 101 and return the cell at 101 to the parent. When the program control

returns from the recursive call back to node 2, we create a new cell (at memory address 302)

that points to 101 and insert it into the priority queue. However, observe that the cell at

memory location 301 also generates A = 1, a duplicate since cell at 300 also generated it.

This is where the equality check at line 19 comes in. Since both cells at 300 and 301 generate

the same value, we also pop off the cell at 301 in the subsequent while loop iteration, find its

next candidate, and create the cell at 303, and insert it into the priority queue. This ensures

that all elements in PQ2[1] generating the same A value are removed, ensuring no duplicates

at the root level. Finally, the control returns to the root level TOPDOWN call. The recursive call

152

to the right child (node 4) create a new cell 401 and we insert two cells at the root priority

queue, cell 501 and 502 that correspond to output tuple (A = 2, E = 1) and (A = 1, E = 2)

respectively.

We are now ready to formally prove Theorem 24.

Lemma 26. The delay guarantee of EnumAcyclic is at most O(|D| log |D|).

Proof. To prove the delay guarantee, we analyze the worst-case running time that can happen

in each iteration. Without loss of generality, we assume that there exists at least one non-

anchor projection attribute in all leaf nodes (otherwise, we can simply remove the node from

the join tree after the full reducer pass).

Let us first analyze the procedure ENUM. The root priority queue (denoted PQr) can

contain at most |D| entries for each output result. Indeed, in the worst-case, the output

tuple emitted to the user on line 6 may join with every tuple in the root node relation.

Therefore, in the worst-case, for every tuple outputted to the user, we invoke the TOPDOWN

procedure |D| times.

We now argue that TOPDOWN takes at most O(|D| log |D|) time. There are two key observa-

tions to be made. First, TOPDOWN takes O(1) time if c.next is already populated. Intuitively,

this means that in a previous iteration, there was a recursive call made to TOPDOWN that

populated the next and we are now simply reusing the computation. Thus, for every tu-

ple output to the user, it suffices to count how many times TOPDOWN is invoked in total,

such that next is not empty. We say that such invocations of TOPDOWN are non-trivial. Our

claim is that the number of non-trivial TOPDOWN calls is at most O(|D|). Consider the set

of all anchor attribute values for some node j (denoted LRj). We fix some u ∈ LRj . In the

worst-case, TOPDOWN(c, j) such that u = πkey(Rj)(c.t) is invoked by all tuples t′ in the parent

relation of node j such that πkey(Rj)(t
′) = u but only the first call will be non-trivial since

the first call populates the c.next. Therefore, it follows that for each u ∈ LRj , there is at

most one non-trivial call to TOPDOWN(c,Rj) for a fixed node Rj . Since the size of the join

tree is at most O(1), the total number of non-trivial calls over all nodes in the join tree is∑
j

∑
u∈LRj

1 =
∑

j |D| = O(|D|). Finally, we perform one pop operation and a constant

number of inserts into the priority queue in every non-trivial invocation which adds another

log |D| factor in the running time, giving us the claimed delay guarantee of O(|D| log |D|).

Lemma 27. PreprocessAcyclic running in O(|D| log |D|) time, generates a data struc-

ture of size O(|D|).

Proof. For a node Ri ∈ T , we initialize an empty priority queue for each possible value

in key(Ri). The for loop on line 7 takes O(1) time as each node has O(1) children in the

decomposition and all operations on line 8-12 also take O(log |D|) time. Overall, since each

node has at most O(|D|) tuples, the claim readily follows.

153

Lemma 28. EnumAcyclic enumerates the query result Q(D) in ranked order correctly.

Proof. We will prove our claim by induction on height of the tree. We will show that at each

relation R, the priority queue PQR[u] correctly computes the answers over all projection

attributes in the subtree rooted at R (denoted Aπ
R) in ranked order.

Base Case. Correctness for ranked output of leaf relations is trivial. For all tuples t in the

relation at a leaf node with the same anchor attribute value u, PQR[u] contains all tuples t

and the priority queue (whose implementation is assumed to be correct) will pop out t[Aπ
R] in

the correct order since the score rank(t[Aπ
R]) is used as the priority queue comparator function

and all projection attributes Aπ
R are present in t already. It also follows that R[Aπ

R] will

be materialized by chaining the cells popped from the priority queue since the leaf relation

already contains all the attributes in Aπ
R.

Inductive Case. Consider a relation R with children relations R1, . . . Rs. Let c be the cell

that was input to the TopDown procedure call under consideration. Let u = c.t[key(R)]

and ui = c.t[key(Ri)]. Let tπ = output(cnext) be the next tuple and let cnext be the cell that

is to be returned to the parent of R by the recursive call to R. Our goal is to show that

tπ is generated correctly and cnext is inserted in PQR[u]. This will guarantee the correct

ordering of the tuples over attribute set Aπ
R. From the induction hypothesis, we have that

the ranked output, over the attributes Aπ
i , from each Ri is generated correctly. For the sake

of contradiction, suppose that t′π is the next smallest candidate, i.e. rank(t′π) < rank(tπ).

Lines 13-16 in algorithm 18 generates s possible candidate cells (and is the only way

to generate new candidates) that could generate tπ. Let ĉi be the cell returned from the

recursive call to TopDown for relation Ri. Then, there are s possible cells that are generated

by TopDown for relation R whose array of pointers will be one of:

ĉ1, c2, c3, . . . , cs,

c1, ĉ2, c3, . . . , cs,

. . . ,

c1, c2, c3, . . . , ĉs

Here, ci is ith pointer in the pointer array of c and rank(output(ĉi)) ≥ rank(output(ci))

since the priority queue of the Ri will generate answers in increasing order (from the induction

hypothesis). Assume for the sake of contradiction that c′next = 〈c.t, [c′1, c′2, . . . , c′s],⊥〉 is the

cell such that t′π = output(c′next) and is not one of the s candidate cells generated above.

Since t′π has a smaller score than tπ, it follows that c′next has not been inserted in the priority

queue yet (otherwise the priority queue will return c′next correctly). We will show that such

a scenario will violate the monotonicity property of the sum ranking function.

154

Case 1. rank(output(ci)) ≥ rank(output(c′i)) for i ∈ [s]. This scenario implies that

t′π has been generated before tπ, which would violate our assumption that t′π has not been

inserted in the priority queue. Indeed, since rank(output(ci)) ≥ rank(output(c′i)) and lines 13-

16 in algorithm 18 generate cells that are monotonically increasing, there exists a sequence

of generations that generate cnext from c′next which would mean that c′next was present in the

priority queue at some point.

Case 2. rank(output(ci)) < rank(output(c′i)) for i ∈ [s]. This scenario implies that∑
i rank(output(ci)) = rank(tπ) <

∑
i rank(output(c′i)) = rank(t′π) which contradicts our as-

sumption that t′π has a smaller score than tπ.

Case 3. rank(output(ci)) and rank(output(c′i)) are incomparable. If c′next has not been

inserted in the priority queue yet, there are two possible scenarios. Either c′next will be gen-

erated by some cell c′′next that is already in the priority queue. Clearly, rank(output(c′next)) >

rank(output(c′′next)) > rank(output(cnext)) using the same reasoning as Case 1 which contra-

dicts our assumption. The second possibility is that c′next and cnext are generated in the same

loop. But this would again imply that c′next is in the priority queue, a contradiction to our

assumption.

Therefore, it cannot be the case that rank(t′π) < rank(tπ) which proves that for relation

R, all tuples generated over the attributes Aπ
R are in the correct order and consequently, the

claim holds for all relations in the join tree, including the root.

In the second part of the proof, we will show that every result enumerated must belong

to Q(D). This is a direct consequence of the properties of the join tree. Indeed, if some tuple

t 6∈ Q(D) is enumerated, that would violate the join condition on some attribute X ∈ A.

Next, we will show that every query result in Q(D) will be enumerated using induction on

the join tree. In the base case, for some leaf node R in T , every query result over attributes

Aπ
R will be enumerated from Topdown because the relation is materialized. By the induction

hypothesis, for each i ∈ [s],

Qi = (1j∈ nodes in subtree rooted at i Rj)[A
π
i]

is enumerated completely. For each tuple t in R, lines 13-16 guarantees that,

((×i∈[s]Qi) 1 t)[Aπ
R]

must be inserted into PQ[πkey(R)(t)], and thus enumerated. In other words, the projection

of cartesian product between each subquery rooted at Ri (i.e. Qi as defined above) and t

over Aπ
R is generated. This implies that the subquery induced by the subtree rooted at R

enumerates all join result over Aπ
R. In the preprocessing phase, all tuples in R are put into the

entries of PQ[πkey(R)(t)], thus every query result in Q(D) will necessarily be enumerated.

155

Together, the above lemmas establish Theorem 24. We also now outline how we can

recover prior results for full queries from [TGR20]. The key observation is that when the

query is full, the while loop always terminates after a constant number of operations. This

is because no two answer tuples over Aπ
R are the same, i.e., the attribute values for any two

answer tuples cannot be identical. Further, any answer tuple at R is inserted at most a

constant number of times. This guarantees that IS EQUAL procedure will return false after

popping an answer a constant number of times and the while loop terminates. Thus, in the

worst-case, TOPDOWN visits each relation of the join tree at most once and each iteration takes

only O(log |D|) time due to the priority queue operations.

Free-connex queries. A join query Q is said to be free-connex if Q is acyclic and the

hypergraph containing edges of Q and a new edge containing only the projection variables

is also acyclic. Free-connex is an interesting class of queries that allows constant delay

enumeration for a variety of problems [BDG07a, CK19]. If a join-project query is free-connex,

then our algorithm achieves O(log |D|) delay enumeration after linear time preprocessing. It

can be shown that for free-connex queries, all projection attributes are connected and must

be at the top of the tree and all non-projection attributes are connected and at the bottom of

the tree. This observation allows us to remove all relations that do not contain any projection

attributes or relations where only anchor attributes are projection attributes, transforming

the free-connex query into a full join query.

8.3.2 Improvement for Lexicographic Ranking

The algorithm from last section is also applicable to LEXICOGRAPHIC ranking function.

In fact, we can transform LEXICOGRAPHIC with an attribute ordering of A1, A2, · · · , Am,

into SUM by defining a ranking function rank(t) =
∑m

i=1 |Dm−i| · w(πAi(t)) for tuple t, while

preserving the LEXICOGRAPHIC ordering. In this section, we present an alternative algorithm

by exploiting the special structural properties of LEXICOGRAPHIC, that the global ranking

also implies local ranking over every output attribute. Moreover, it admits to enumerate

query results not only in lexicographic order as given by ORDER BY A1, A2, · · · , Am but also

arbitrary ordering on each attribute (for instance, ORDER BY A1 ASC, A2 DESC . . .).

Preprocessing Phase. In this phase, we perform the full reducer pass to remove all dan-

gling tuples and create hash indexes for the base relations in sorted order. We also sort

dom(Ai).

Enumeration Phase. Given an attribute order of output attributes A = {A1, A2, · · · , Am},
we start by fixing the minimum value in dom(A1) as a1. Then, we perform the two-phase

semi-joins to remove tuples that cannot be joined with value a1, and find the values in

dom(A2) that survive after semi-joins, denoted as LA2
(a1). Similarly, we fix the mini-

mum value in LA2
(a1) as a2, and perform the two-phase semi-joins for finding the values in

156

dom(A3) that can be joined with both a1, a2. We continue this process until all attributes

in A have been fixed, and end up with enumerating such a query result (with fixed values).

Then, we backtrack and continue the process until all values in attribute A1 are exhausted.

Algorithm 19: EnumAcyclicLexi(t, L, i)

Input : Input query Q, database D

Output: Q(D) n t in lexicographic order of Ai, · · · , Am
1 if i = m then output t and return;

2 foreach a ∈ L do

3 L′ ← πAi+1
(σAi=a(Ri+1 n t)) ; /* by semi-joins */

4 t′ ← (t, a); /* create new tuple */

5 EnumAcyclicLexi(t′,L′, i+ 1);

Algorithm 19 takes as input an acyclic query Q, an database D, an integer i ∈ {1, · · · ,m},
a tuple t defined over attributes A1, · · · , Ai−1, and a set of values L ⊆ dom(Ai) that can be

joined with t in D. The original problem can be solved by invoking

EnumAcyclicLexi(∅,dom(A1), 1) for sorted dom(A1).

Lemma 29. EnumAcyclicLexi enumerates Q(D) correctly in lexicographic order with

delay guarantee O(|D|) after preprocessing time Tp = O(|D| log |D|) and space complexity

O(|D|).

Proof. We will prove that the algorithm enumerates the query result in the correct lexico-

graphic order using induction on the parameter i in algorithm 19.

Base case. i = 1. Note that since dom(A1) is sorted t′, will be initialized with

a ∈ dom(A1) in sorted order which guarantees that all output tuples with a as the attribute

value for A1 will be enumerated before tuples with a′ as the attribute value for A1 if a ≤ a′,
thus respecting the lexicographic order for A1.

Inductive case. i = k. From the induction hypothesis, we get that the algorithm will

enumerate correctly for the first k−1 attributes including Ak−1. From the previous iteration,

L′ is set to be the sorted list of attribute values for Ak that join with Rk(Ak, Ak+1). Therefore,

it follows that for the recursive call where i = k, t′ will have a attribute values set in sorted

order for Ak, ensuring that all answers containing a = πAk(t
′) will be enumerated before

answers containing a′ as attribute value for Ak for all a ≤ a′. Thus, the argument holds for

i = m as well, concluding the proof.

Next, we analyze the time complexity. The preprocessing phase takes O(|D| log |D|) time

in total for sorting and building hashing tables for each relation. Observe that after fixing

a value in dom(Ai), it takes at most O(|D|) time to perform the semi-joins and find the

set of candidate values in dom(Ai+1). Whenever i reaches m, a valid query result will be

157

Algorithm 20: PreprocessStar

Input : Input star query Q?m, ranking function rank and database D; degree

threshold δ ≥ 1

Output: Heavy output OH and priority queue PQ

1 foreach i ∈ {1, 2, · · · ,m} do

2 RHi ← {t ∈ Ri : |σAi=πAi (t)| ≥ δ};
3 RLi ← {t ∈ Ri : |σAi=πAi (t)| < δ};
4 Compute OH ← πA

(
RH1 1 · · · 1 RHm

)
;

5 Sort OH by rank;

6 for i ∈ {0, 1, . . . ,m− 1} do

7 Qi ← RH1 1 · · · 1 RHm−1 1 RLi 1 Ri+1 1 · · · 1 Rm;

8 Ti ← a join tree for Q with Ri as root and all other relations as children of Ri;

9 PreprocessAcyclic(Qi, Ti);
10 next←EnumAcyclic(Qi, Ti);
11 PQ.insert(next); /* insert the smallest tuple into PQ */

enumerated. As the query size, as well as m, is a constant, the delay between two consecutive

query results is at most O(|D|), which improves Lemma 26 by a log factor.

8.4 Star Queries

In this section, we present a specialized data structure for the star query, which is repre-

sented as: Q?m = πA(R1(A1, B) 1 R(A2, B) 1 · · · 1 Rm(Am, B)). where A = {A1, · · · , Am}.
All relations in a star query join on exactly the same attribute(s). In this following, we

present a specialized data structure on ranked enumeration for Q?m in Section 8.4.1, and

prove the optimality in Section 8.4.2.

8.4.1 The Algorithm

Consider the star query Q?m, a database D and a ranking function rank. Now we present

a data structure for Theorem 25.

Preprocessing Phase. Without loss of generality, assume that there is no dangling tuples

in D. Moreover, if A does not include an attribute A, we can remove efficiently Ri using a

semi-join. We first fix a degree threshold δ ≥ 1 (whose value will be determined later). For

each i ∈ {1, 2, · · · ,m}, a value ai ∈ dom(A) is heavy if it has degree larger than δ in Ri, i.e.,

|σA=ai(Ri)| ≥ δ, and light otherwise. A tuple t = (ai, b) ∈ Ri is heavy if ai is heavy. For Ri, let

RHi , R
L
i be the set of heavy and light tuples in Ri. An output t = (a1, a2, . . . , am) ∈ Q?m(D)

is heavy if ai is heavy in Ri for each i ∈ {1, 2, · · · ,m}, and light otherwise. In this way,

158

Algorithm 21: EnumStar

Input : Star query Q?m, ranking function rank and database D; Output of OH and

priority queue PQ

Output: Q?m(D) in ranked order

1 while PQ 6= ∅ do

2 t← PQ.pop();

3 output t; /* enumerate the result */

4 if t /∈ OH then

5 i← smallest positive index such that πAj (t) is heavy for all j < i and πAi(t)

is light;

6 next← EnumAcyclic(Qi, Ti);
7 PQ.insert(next);

8 else PQ.insert(OH .pop());

we can divide the output Q?m(D) into OH and OL, containing all heavy and light output

tuples separately. In the preprocessing phase, our goal is to materialize all heavy output

tuples (OH) ordered by rank. Details are described in algorithm 20. We compute OH =

πA
(
RH1 1 RH2 1 · · · 1 RHm

)
by invoking the Yannakakis algorithm [Yan81], and then sort OH

by rank. Next, we insert the smallest query result from OH into the priority queue. Then,

we define m different subqueries as Qi = πA
(
RH1 1 · · · 1 RHi−1 1 RLi 1 Ri+1 1 · · · 1 Rm

)
where tuples in relation Rj are heavy for any j < i and tuples in relation Ri are light. For

such Qi, we consider a join tree Ti in which Ri is the root and all other relations are children

of Ri. We preprocess a data structure for Qi with Ti, by invoking Algorithm 17.

Enumeration Phase. As described in algorithm 21, the high-level idea in the enumeration

is to perform a (m + 1)-way merge over OH and Qi’s. Specifically, we maintain a priority

queue PQ with one entry for each subquery Qi and one entry for OH . Once the smallest

element is extracted from PQ (say t generated by Qi), we extract the next smallest candidate

from Qi (if there is any) and insert it into PQ. Moreover, finding the smallest candidate

output result from OH is trivial since OH has been materialized in a sorted way in the

preprocessing phase. We conclude this subsection with the formal statement of the result.

Lemma 30. algorithm 20 runs in time T = O(|D| · (|D|/δ)m−1) and requires space S =

O((|D|/δ)m). algorithm 21 correctly enumerates the result of the query in ranked order with

delay O(|D| log |D|/δ).

Proof. Time and Space complexity. First, we analyze its time complexity. Computing

data statistics for each relation Ri takes O(|D|) time. As the degree threshold is δ, there are

at most O(|D|δ) heavy values for each Ai. The size of OH can be bounded by O(|D|·(|D|δ)m−1),

159

as well as the time cost for computing OH by the Yannakakis algorithm. At last, initializing

data structures for each Qi takes linear time in terms of O(|D|). As the number of such

queries is O(m), the time cost for line 3-6 is O(|D| · m). Overall, the time complexity of

Algorithm 20 is O(|D| · (|D|δ)m−1). For the space usage, storing OH takes O((|D|δ)m) space

since its size can be bounded by O((|D|δ)m) using the AGM bound.

Delay guarantee. Note that min-extraction and update of the priority queue takesO(log |D|)
time. The expensive part is the invocation of EnumAcyclic for each Qi. In the join tree

Ti, each node contains at least one projection attribute. Plugging in Lemma 26 and the

observation that each y value has bounded degree, the delay of enumerating query result

from Qi is at most the degree of values of attribute Ai, i.e., δ, since tuples in Ri are light

in this case, by construction of Qi. Together, the delay of algorithm 21 is O(δ log |D|). By

setting δ = |D|1−ε for arbitrary constant 0 < ε < 1, we can achieve the result in Theorem 25.

Correctness. Recall that OH is already materialized and sorted order and since the enu-

meration of each subquery Qi is performed using EnumAcyclic (which enumerated the

query result correctly), the output of each Qi is enumerated in the correct order. It remains

to be shown that EnumStar can also combine the answers from OH and Qi correctly. Sup-

pose that t was the last answer output to the user. If t was generated by some Qi (which can

be checked in constant time), then we find the next smallest candidate from Qi and insert it

into PQ. Otherwise, if t ∈ OH , we find the next tuple in the materialized output and insert

it into PQ. Thus, since the smallest candidates for each Qi and OH are present in the PQ,

the smallest answer that must be output to the user necessarily has to be from the priority

queue. Thus, the priority queue performs the m + 1-way merge correctly. This concludes

the proof.

8.4.2 Tradeoff Optimality

We next present conditional optimality for our trade-off achieved in Theorem 25. Before

showing the proof, we first revisit a result on unranked evaluation for Q?m in [AP09]:

Lemma 31 ([AP09]). There exists a combinatorial2 algorithm that can evaluate Q?m on any

database D in time O
(
|D| · |Q?m(D)|1− 1

m

)
.

which was presented over a decade ago without any improvement since then. Thus, it is not

unreasonable to conjecture that Lemma 31 is optimal. Based on the conjectured optimality

of Lemma 31, we can show the following result for unranked enumeration.

2An algorithm is called combinatorial if it does not use algebraic techniques such as fast matrix
multiplication.

160

Lemma 32. Consider star query Q?m, database D and some constant ε ∈ [0, 1]. If there ex-

ists an algorithm that supports O(|D|1−ε log |D|)-delay enumeration after O(|D|1+(m−1)ε−ε′)

preprocessing time for some constant ε′ > 0, the optimality of Lemma 31 will be broken.

Proof. For a star query Q?m and database D, assume there is an algorithm that supports

O(|D|1−ε log |D|)-delay enumeration after O(|D|1+(m−1)ε−ε′) preprocessing time. Then, there

is an algorithm evaluating Q?m(D) in (big-Oh of)

|D|1+(m−1)ε−ε′ + |D|1−ε log |D| · |Q?m(D)|

time. Let α = mε− ε′ for some constant ε′ < ε. Consider an instance D′ for Q?m with output

size Nα/ logN . The running time of the algorithm is (big-Oh of)

|D′|1+(m−1)ε−ε′ + |Q?m(D′)| · (|D′|1−ε log |D′|)

=|D′|1− ε′
m · |Q?m(D′)|(1− 1

m
)

which breaks the optimality of Lemma 31.

The lower bound holds for any ranking function. Lemma 32 implies that for star queries,

both Theorem 24 and Theorem 25 are optimal. Before concluding this section, we also remark

on the question of whether the logarithmic factor that we obtain in the delay guarantee is

removable. Prior work [DK21] showed that for the following simple join query Q = R(x) 1

S(y) over SUM, there exists no algorithm supporting constant-delay enumeration after linear

preprocessing time. Note that this does not rule out a sub-logarithmic delay guarantee,

which remains an open problem.

8.5 General queries

In this section, we will describe how to extend the algorithm for acyclic queries to handle

cyclic queries. The key idea is to transform the cyclic query into an acyclic one, by con-

structing a GHD as defined in chapter 2. A GHD automatically implies an algorithm for

cyclic joins. After materializing the results of the subquery induced by each node in the

decomposition, the residual query becomes acyclic. Hence, we can apply our algorithm for

acyclic queries directly obtaining the following:

Theorem 26. For a join-project query Q, a database instance D and a ranking function

rank ∈ {SUM, LEXICOGRAPHIC}, the query results Q(D) can be enumerated according to rank

with O(|D|fhw log |D|) delay, after O(|D|fhw log |D|) preprocessing time.

We now go one step further and extend our algorithm to queries that are unions of

join-project queries (UCQs) using an idea introduced by [DK21]. A UCQ query is of the

161

form Q = Q1 ∪Q2 ∪ · · · ∪Qm, where each Qi is a join-project query defined over the same

projection attributes A. Semantically, Q(D) =
⋃
iQi(D). Recent work by Abo Khamis et

al. [AKNS17] presents an improved algorithm (called PANDA) that constructs multiple GHDs

by partitioning the input database into disjoint pieces and build a GHD for each piece. In

this way, the size of materialized subquery can be bounded by O(|D|subw), where subw is

the submodular width [Mar13] of input query Q. Moreover, subw ≤ fhw holds generally for

query Q, thus improving the previous result on fhw. By using Theorem 24 in conjunction

with data-dependent decompositions from PANDA we can immediately obtain the following

result:

Theorem 27. For a join-project query Q, a database instance D and a ranking function

rank ∈ {SUM, LEXICOGRAPHIC}, the query results Q(D) can be enumerated according to rank

with O(|D|subw log |D|) delay, after O(|D|subw log |D|) preprocessing time.

Example 45. Consider the 4-cycle (butterfly) query πA,C(R1(A,B) 1 R2(B,C) 1 R3(C,D) 1

R4(D,A)) with ranking function rank(t) = πA(t) + πC(t). With fhw = 2, Theorem 27 im-

plies that the query results can be enumerated according to rank with O(|D|2 log |D|) delay,

after O(|D|2) preprocessing time. With subw = 3
2 , Theorem 27 implies that query results

can be enumerated according to rank with delay O(|D|3/2 log |D|), after O(|D|3/2 log |D|)
preprocessing time.

A note on optimality. The reader may wonder whether the exponent of fhw and subw

in Theorem 26 and Theorem 27 are truly necessary. For the triangle query Q4(x, y) =

R(x, y) 1 S(y, z) 1 T (z, x) which is the simplest cyclic query, fhw = subw = 3/2 and

even after 30 years, the original AYZ algorithm [AYZ94] that detects the existence of a

triangle in O(|D|3/2) time still remains the best known combinatorial algorithm. It is widely

conjectured [Mar21, AW14, AWY18, KPP16] that there exists no better algorithm. As

noted in [AKNS17], the notion of submodular width was suggested as the yardstick for

optimality. Indeed, the groundbreaking results by Marx [Mar13] rule out algorithms with

better dependence than subw in the exponent for a small class of queries but a general

unconditional lower bound still remains out of reach. Thus, any improvement in the exponent

would automatically imply a better algorithm for cycle detection since ranked enumeration

is at least as hard.

Abboud, Backurs and, Vassilevska Williams presented the Combinatorial k−Clique Hy-

pothesis [ABW18].

Definition 9. Let C be the smallest constant such that a combinatorial algorithm running in

O(nCk/3) time exists for detecting a k−clique in a n node O(n2) edge graph, for all sufficiently

large constants k. The Combinatorial k−Clique Hypothesis states that C = 3.

162

Next, we recall a cycle detection hypothesis from [LWW18] that depends on the combi-

natorial k−clique hypothesis.

Theorem 28 (Combinatorial Sparse k-Cycle Lower Bound). Detecting a directed odd k−cycle

in a graph with n nodes and m = n(k+1)/(k−1) in time O(m(1−ε)2k/(k+1)) for any constant

ε > 0 violates the Combinatorial k−Clique Hypothesis.

Consider an odd k− cycle CQ over binary relations of the form Q�(x1, x2) = R1(x1, x2) 1

R2(x2, x3) 1 · · · 1 Rk(xk, x1). Then, we can show the following straightforward result.

Lemma 33. For some odd k cycle query Q� with k ≥ 3, an algorithm that enumerates

the query result with delay O(|D|2k/(k+1)−ε) after O(|D|2k/(k+1)−ε) preprocessing violates the

Combinatorial Sparse k−Cycle Lower Bound.

Proof. If the algorithm has delay guarantee δ = O(|D|2k/(k+1)−ε), then in δ time, we can de-

cide whether there exists a cycle or not since the preprocessing time is also O(|D|2k/(k+1)−ε),

a contradiction.

Note that the submodular width for the odd k−cycle query is subw = 2 − 2/(k + 1) =

2k/(k+ 1). Thus, there exists queries for which the exponential dependence of subw in The-

orem 27 cannot be avoided assuming the Combinatorial k−Clique Hypothesis.

8.6 Experimental Evaluation

In this section, we perform an extensive evaluation of our proposed algorithm. Our

goal is to evaluate three aspects: (a) how fast our algorithm is compared to state-of-the-art

implementations for both SUM and LEXICOGRAPHIC ranking functions on various queries and

datasets, (b) test the empirical performance of the space-time trade-off in Theorem 25, (c)

investigate the performance of our algorithm on various cyclic queries based on different

shapes and (d) test the scalability behavior of our algorithm.

8.6.1 Experimental Setup

We use Neo4j 4.2.3 community edition, MariaDB 10.1.473 and PostgreSQL 11.12 for

our experiments. All experiments are performed on a Cloudlab machine [DRM+19] running

Ubuntu 18.04 equipped with two Intel E5-2630 v3 8-core CPUs@2.40 GHz and 128 GB RAM.

We focus only on the main memory setting and all experiments run on a single core. Since

the join queries are memory intensive, we take special care to ensure that only one DBMS

engine is running at a time, restart the session for each query to ensure temp tables in main

3Compared with MySQL, MariaDB performed better in our experiments, hence we report the
results for MariaDB

163

1 DBLP2hop = SELECT DISTINCT A1.name,A2.name FROM Author AS A1, Author AS

A2, AuthorPapers AS AP1, AuthorPapers as AP2, Paper AS P WHERE

AP1.pid = AP2.pid AND AP1.aid = A1.aid AND AP2.aid = A2.aid AND

P.is research =true ORDER BY A1.weight + A2.weight LIMIT k

2

3 DBLP3hop = SELECT DISTINCT A.name,P.name FROM Author AS A, Paper AS P,

AuthorPapers AS AP1, AuthorPapers as AP2, AuthorPapers as AP3 WHERE

AP1.pid = AP2.pid AND AP2.aid = AP3.aid AND AP1.aid = A.aid AND

AP3.pid = P.pid AND P.is research =true ORDER BY A.weight + P.weight LIMIT k

4

5 DBLP4hop = SELECT DISTINCT A1.name,A2.name FROM Author AS A1, Author AS

A2, AuthorPapers AS AP1, AuthorPapers as AP2, AuthorPapers as AP3,

AuthorPapers as AP4, Paper AS P1, Paper AS P2 WHERE AP1.pid = AP2.pid

AND AP2.aid = AP3.aid AND AP3.pid = AP4.pid AND AP3.pid = P2.pid AND

AP1.pid = P1.pid AND AP1.aid = A1.aid AND AP4.aid = A2.aid AND P1.is research =

true AND P2.is research =true ORDER BY A1.weight + A2.weight LIMIT k

6

7 DBLP3star = SELECT DISTINCT A1.name,A2.name,A3.name FROM Author AS A1,

Author AS A2, Author AS A3, AuthorPapers AS AP1, AuthorPapers as AP2,

AuthorPapers as AP3, Paper AS P WHERE AP1.pid = AP2.pid = AP3.pid AND

AP1.aid = A1.aid AND AP2.aid = A2.aid AND AP3.aid = A3.aid AND AP3.pid = P.pid

AND P.is research =true ORDER BY A1.weight + A2.weight + A3.weight LIMIT k

Figure 8.3: Network analysis queries for DBLP. Queries for IMDB are defined similarly.

memory are flushed out to avoid any interference, and also monitor that no temp tables are

created on the disk. We only keep one database containing a single relation when performing

experiments. We switch off all logging to avoid any performance impact. For PostgreSQL

and MariaDB, we allow the engines to use the full main memory to ensure all temp tables

are resident in the RAM and sorting (if any) happens without any disk IOs by increasing the

sort buffer limit. For Neo4j, we allow the JVM heap to use the full main memory at the time

of start-up. We also build bidirectional B-tree indexes for each relation ahead of time and

create named indexes in Neo4j. All of our algorithms are implemented in C++ and compiled

using the GNU C++ 7.5.0 compiler that ships with Ubuntu 18.04. Each experiment is run

5 times and we report the median after removing the slowest and the fastest run.

8.6.1.1 Small-Scale Datasets

We use two real-world small scale datasets for our experiments: the DBLP dataset, con-

taining the relationship between authors and papers, and the IMDB dataset, containing the

164

relationship between actors, directors, and movies. We use these datasets for two reasons:

(i) both datasets are useful and studied extensively in practical problems such as similarity

search [YSN+12], citation graph analysis [RT05], and network analysis [EL05, Bir08]. (ii)

small-scale datasets allow experiments to finish for all systems allowing us to make a fair

comparison and develop a fine-grained understanding. In line with prior work [KGS+20], for

each tuple we assign the weight attribute (and add it to the table schema) in two ways: first,

we assign a randomly chosen value, and second, logarithmic weights in which the weight of

the entity (author and paper in DBLP) v is log2(1 + degv), where degv denotes its degree

in the relation. The schema for both datasets is as shown below (underlined attributes are

primary keys for the relation):

1. DBLP: AuthorPapers(aid, pid), Author(aid, name,weight),

Paper(aid, title, venue, year, weight, is research).

2. IMDB: PersonMovie(pid,mid), Person(aid, name, role, weight),

Movie(aid, name, year, genre, cid, weight), Company(cid, name, nation)

Queries. We consider 4 acyclic join queries as shown in Figure 8.3 for the small-scale

datasets, which are commonly seen in practice [SH13, BMT20]. Intuitively, the first three

queries find all the top-k weighted 2-hops, 3-hops, and 4-hops reachable attribute pairs

within the DBLP network. As remarked by in [SH13, CLYZ18, KSKÇ12], these queries

are of immense practical interest (e.g., see Table 4 in [SH13]). Queries for IMDB dataset

are defined similarly. In Subsection 8.6.2.2, we also investigate the performance for cyclic

queries.

8.6.1.2 Large-Scale Datasets

We also perform experiments on two real-world large-scale relational datasets and one re-

lational benchmark. The first dataset is from the Friendster [LK14] online social network that

contains 1.8B tuples. In the social network each, the user is associated with multiple groups.

The second dataset is the Memetracker [LK14] dataset which describes user generated memes

and which users have interacted with the meme. The dataset contains 418M tuples. For

both Friendster and Memetracker, we use weights for users as the number of groups they

belong to and the number of memes they create respectively. Finally, we also use the queries

containing a ranking function from the LDBC Social Network Benchmark [EALP+15] with

scale factor SF = 10, a publicly available benchmark, to perform scalability experiments.

Queries. For Friendster and Memetracker, we use two popular queries that are used in

network analysis. Similar to the DBLP queries, we identify the ranked user pairs in the

two-hop and three-hop neighborhoods for all users. The ranking is the sum of the weights

of the user pair. These queries have a widespread application in understanding information

165

flow in a network [MSGL14] and are used in recommendation systems [FLLQ19, LFZ19].

For the LDBC benchmark, we use the multi-source version of Q3, Q10 and Q11. Each of

these queries is a variant of the neighborhood analysis and contains UNION.

8.6.2 Small Scale Experiments

In this section, we compare the empirical performance of the algorithm given by Theo-

rem 24 (labeled as LinDelay in all figures) against the baselines for each query. To perform

a fair comparison, we materialize the top-k answers in-memory since other engines also do

it. However, a strength of our system is that if a downstream task only requires the output

as a stream, we can enumerate the result instead of materializing it, which is not possible

with other engines.

Sum ordering. Figure 8.4 shows the main results for the DBLP and IMDB datasets when

the ranking function is the sum function and the weights are chosen randomly. Let us first

review the results for the DBLP dataset. Figure 8.4a shows the running time for different

values of k in the limit clause. The first observation is that all engines materialize the join

result, followed by deduplicating and sorting according to the ranking function which leads

to poor performance for all baselines. This is because all engines treat sorting and distinct

clause as blocking operators, verified by examining the query plan. On the other hand, our

approach is limit-aware. For small values of k, we are up to two orders of magnitude faster

and as the value of k increases, the total running time of our algorithm increases linearly.

Even when our algorithm has to enumerate and materialize the entire result, it is still faster

than asking the engines for the top-10 results. This is a direct benefit of generating the

output in deduplicated and ranked order. As the path length increases from two to three

and four paths (Figure 8.4b and Figure 8.4c), the performance gap between existing engines

and our approach also becomes larger. We also point out that all engines require a large

amount of main memory for query execution. For example, MariaDB requires about 40GB

of memory for executing DBLP4hop. In contrast, the space overhead of our algorithm is

dominated by the size of the priority queue. For DBLP dataset, our approach requires a

measly 1.3GB, 4GB, 3GB and 2.7GB total space for DBLP2hop,DBLP3hop,DBLP4hop and

DBLP3star respectively. For DBLP3hop,DBLP4hop and DBLP3star, we also implement breadth-

first search (BFS) followed by a sorting step using the idea of algorithm 19. As it can be

seen from the figures, BFS and sort provide an intermediate strategy which is faster than

our algorithm for large values of k but at the cost of expensive materialization of the entire

result, which may not be always possible (and is the case for IMDB dataset). However,

deciding to use BFS and sort requires knowledge of the output result size, which is unknown

apriori and difficult to estimate. For the IMDB dataset, we observe a similar trend of our

algorithm displaying superior performance compared to all other baselines. In this case, BFS

166

and sorting even for DBLP4hop is not possible since the result is almost 0.5 trillion items.

For DBLP3star, none of the engines were able to compute the result after running for 5 hours

when main memory ran out. BFS and sort also failed due to the size being larger than the

main memory limit. Lastly, Neo4j was consistently the best performing (albeit marginally)

engine among all baselines. While there is little scope for rewriting the SQL queries to

try to obtain better performance, Neo4j has graph-specific operators such as variable-length

expansion. We tested multiple rewritings of the query, which leads to different query plans,

to obtain the best performance (although this is the job of the query optimizer), which is

finally reported in the figures. Regardless of the rewritings, Neo4j still treats materializing

and sorting as a blocking operator which is a fundamental bottleneck.

101 102 103 104 105 106 3.3 · 107

k in limit clause

10−1

100

101

T
im

e
in

se
c.

(a) DBLP2hop

101 102 103 104 105 106 5 · 107

k in limit clause

100

101

102

T
im

e
in

se
c.

MariaDB PostgreSQL Neo4J LINDELAY BFS and sort

(b) DBLP3hop

102 103 104 105 106 107 1.5 · 108

k in limit clause

100

101

102

103

T
im

e
in

se
c.

(c) DBLP4hop

101 102 103 104 105 106 6 · 107

k in limit clause

10−1

100

101

102

T
im

e
in

se
c.

(d) DBLP3star

102 103 104 105 106 107 1.8 · 108

k in limit clause

100

101

102

T
im

e
in

se
c.

(e) IMDB2hop

102 103 104 105 106 107 7.6 · 108

k in limit clause

101

102

103

T
im

e
in

se
c.

(f) IMDB3hop

102 103 104 105 106 107 108

k in limit clause

101

102

T
im

e
in

se
c.

(g) IMDB4hop

102 103 104 105 106

k in limit clause

100

101

102

T
im

e
in

se
c.

(h) IMDB3star

Figure 8.4: Comparing our algorithm with state-of-the-art engines for sum function

101 102 103 104 105 106 3.3 · 107

k in limit clause

10−1

100

101

T
im

e
in

se
c.

(a) DBLP2hop

101 102 103 104 105 106 5 · 107

k in limit clause

10−1

100

101

102

T
im

e
in

se
c.

(b) DBLP3hop

102 103 104 105 106 107 1.5 · 108

k in limit clause

100

101

102

103

T
im

e
in

se
c.

(c) DBLP4hop

101 102 103 104 105 106 6 · 107

k in limit clause

100

101

T
im

e
in

se
c.

(d) DBLP3star

Figure 8.5: Comparing our linear delay algorithm with state-of-the-art engines for lexico-

graphic function.

Lexicographic ordering. Figures 8.5a, 8.5b, 8.5c and 8.5d show the running time for

different values of k in the limit clause for lexicographic ranking function on DBLP (i.e. we

replace A1.weight + A2.weight with A1.weight,A2.weight in the ORDER BY clause) for random

weights. The first striking observation here is that the running time for all baseline engines

is identical to that of the sum function. This demonstrates that existing engines are also

167

101 102 103 104

k in limit clause

30
35
40
45
50
55
60
65
70

T
im

e
in

se
c.

(a) Memetracker 2-

neighborhood

101 102 103 104

k in limit clause

102

103

T
im

e
in

se
c.

(b) Memetracker 3-

neighborhood

101 102 103 104

k in limit clause

50

60

70

80

90

100

T
im

e
in

se
c.

(c) Friendster 2-

neighborhood

101 102 103 104

k in limit clause

101

102

103

T
im

e
in

se
c.

(d) Friendster 3-

neighborhood

Figure 8.6: LinDelay performance on large-scale datasets

agnostic to the ranking function in the query and fail to take advantage of the additional

structure. However, lexicographic functions are easier to handle in practice than the sum

because we can avoid the use of a priority queue altogether. This in turn leads to faster

running time since the push and pops from the priority queue are expensive due to the

logarithmic overhead and need for re-balancing of the tree structure. Thus, we obtain a 2×
improvement for lexicographic ordering as compared to the sum function.

Join ordering. At this point, the reader may wonder what is the impact of different join

orderings on the query execution time for DBMS engines in the presence of ORDER BY. To

investigate this, we supply join order hints to each of the engines. We run the queries on

all possible join order hints to find the best possible running time. We found that the join

order hints had virtually no impact on execution time. For instance, DBLP4hop on Neo4J

takes 5521.61s without any join hints and the best possible join ordering reduces the time to

5418.23s, a mere 1.8% reduction. This is not surprising since the bottleneck for all engines is

the materialization of the unsorted output, which is orders of magnitude larger than the final

output and ends up being the dominant cost. In fact, for queries containing only self-joins,

join order hints do not have any impact on the query plan because all relations are identical.

For instance, all join orderings for the query Q(x1, x2, x3) = R(x1, y) 1 R(x2, y) 1 R(x3, y)

will lead to identical query plans. Further, the number of possible join orderings that may

need to be explored is exponential in the number of relations. On the other hand, our

algorithm has the advantage of bypassing the materialization due to the delay-based problem

formulation and use of multi-way joins.

Logarithmic weights. Instead of choosing the weights randomly, we also investigate the

behavior when the weights scale logarithmically w.r.t. to the degree. We observed that

all systems as well as our algorithm had identical execution times. This is not surprising

considering that no algorithm takes into account the actual distribution of the weights. This

observation points to an additional opportunity for optimization where one could use the

weight distribution to allow for fine-grained, data-dependent processing. We leave the study

of this problem for future work.

168

39619341730.1
Extra Space used in MB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
in

se
c.

(a) DBLP2hop

0.01 0.10 1.00 10.00
Extra Space used in GB

0

20

40

60

80

100

120

T
im

e
in

se
c.

Preprocessing Time Enumeration Time Total Time

(b) IMDB2hop

530019666779410.1
Extra Space used in MB

0

20

40

60

80

100

120

T
im

e
in

se
c.

(c) DBLP3star

9650251050
Extra Space used in GB

0

200

400

600

800

1000

1200

T
im

e
in

se
c.

(d) IMDB3star

Figure 8.7: Comparing the preprocessing and enumeration trade-off for sum function when

enumerating the entire result

8.6.2.1 Enumeration with Preprocessing

We next investigate the empirical performance of the preprocessing step and its impact

on the result enumeration as described by Theorem 25. For all experiments in this section,

we fix k to be large enough to enumerate the entire result (which is equivalent to having no

limit clause at all).

Sum ordering. Figure 8.7a and Figure 8.7b show the trade-off between space used by the

data structure constructed in the preprocessing phase and running time of the enumeration

algorithm for DBLP2hop and IMDB2hop respectively. We show the trade-off for 6 different

space budgets but the user is free to choose any space budget in the entire spectrum. As ex-

pected, the time required to enumerate the result is large when there is no preprocessing and

it gradually drops as more and more results are materialized in the preprocessing phase. The

sum of preprocessing time and enumeration time is not a flat line: this is because as an op-

timization, we do not use priority queues in the preprocessing phase. Instead, we can simply

use the BFS and sort algorithm for all chosen nodes which need to be materialized. This is a

faster approach in practice as we avoid the use of priority queues but priority queues cannot

be avoided for the enumeration phase. We observe similar trend for DBLP3star, IMDB3star on

both datasets as well.

8.6.2.2 Cyclic Queries

We also compare the performance of our algorithm to other systems for cyclic queries.

We choose four cyclic queries found commonly in practice inspired by [TGR20]: four-cycle,

six-cycle, eight-cycle, and bowtie query (two four cycles joined at a common attribute). Fig-

ure 8.8a shows the performance of our algorithm on the DBLP dataset for the sum function.

As the table shows, our algorithm can process all queries within 200 seconds, with the bowtie

query being the most computationally intensive. In contrast, for k = 10 the fastest perform-

ing engine Neo4J required 240s (450s) for four-cycle (six cycle). It did not finish execution

for eight cycle and bowtie queries due to an out-of-memory error. For the IMDB dataset,

169

our algorithm was able to process all queries, while Neo4J was not able to process any query

(except four-cycle) due to its large memory requirement..

k = 10 k = 102 k = 103 k = 104

four cycle 0.85s 0.95s 1.2s 1.8s

six cycle 13.1s 17.7s 25.6s 38.2s

eight cycle 33.4s 48.7s 63.9s 77.8s

bowtie 112s 125s 156s 192s

(a) Cyclic query performance on the

DBLP dataset for different values of k in

the LIMIT clause.

SF = 10 SF = 20 SF = 30 SF = 40 SF = 40

Q3 5.91s 9.63s 13.47s 18.23s 22.18s

Q10 2.82s 3.47s 4.65s 5.23s 6.46s

Q11 0.78s 1.07s 1.56s 1.82s 2.36s

(b) Scalability for different scale factors

(SF) in LDBC

Figure 8.8: Cyclic query performance and scalability for LDBC

8.6.3 Large Scale Experiments and Scalability

In this section, we investigate the performance of our techniques on large-scale datasets.

Figure 8.6a and 8.6b shows the time to find the top-k answers for the Memetracker dataset on

two neighborhood and three neighborhood queries. Compared to the small-scale datasets,

the execution time increases rapidly even for low values of k. This is attributed to the

high duplication of answers, which leads to a rapidly increasing priority queue size. None of

MariaDB, Postgres, and Neo4J were able to finish, or even to find the top-10 answers, within

5 hours in our experiments. The same trend is also observed for the Friendster dataset as

shown in Figure 8.6d and 8.6c. Similar to the small-scale datasets, lexicographic functions

were faster than the sum function for our algorithm but DBMS engines were unable to finish

query execution.

Scalability. We also conduct scalability experiments on LDBC benchmark queries that

contain the ORDER BY clause. Figure 8.8b shows the scalability of our algorithm for finding

answers of queries Q3, Q10, Q11. As the scale factor of the dataset increases, the execution

time also increases linearly. For each of these queries, all engines require more than 3 hours

to compute the result even for SF = 10 and k = 10. This is because of the serial execution

plan generated by the engines, which forces the materialization of the unsorted result before

sorting and filtering for top-k.

170

Chapter 9

Conclusions

We conclude the dissertation with a summary of the main results and point at some open

problems following our work.

The overall goal of the dissertation is to understand how the structure of the database

and query, along with the task at hand, can be used to identify fine-grained materialization

strategies to speed up data analytics. In particular, we studied all problems in the setting

where we have preprocessing phase that allows us to develop a sophisticated data structure

and an enumeration phase that uses the data structure to efficiently complete the task.

We first introduced the novel notion of adorned queries over arbitrary full CQs and de-

veloped a data structure that allowed us to tradeoff the space usage with the answering

time/delay guarantee of the query. Then, we combined the data structure with tree decom-

positions to obtain optimal (conjectured) space usage.

Next, using the formalism of adorned queries over Boolean CQs, we showed how existing

problems studied in the algorithmic community can be cast into our framework. The ad-

vantage of doing so is twofold. First, this insight allows us to recover state-of-the-art results

for many problems into a single unified framework. Second, viewing the problems as CQs

enables us to apply the results already established in the database community, allowing us to

falsify proposed conjectures in the literature by identifying unexpectedly better algorithms.

Further, new lower bounds were established for star queries and path queries.

We then pivoted our attention to the more traditional task of join query evaluation.

Very few prior works studied the problem of join query evaluation that takes the projection

attributes into account. For star and path queries, an important class of queries often seen in

practice, we proposed novel algorithms that are sensitive to the output using the novel idea

of interleaved query processing. Remarkably, this idea is powerful enough to improve upon

state-of-the-art tradeoffs that were recently proposed in the literature. Using fast matrix

multiplication, we were further able to push the boundaries and improve the established

tradeoffs.

171

Traditionally, fast matrix multiplication has been thought of as a technique only of theo-

retical interest due to the large constant involved in the algorithm. However, recent advance-

ment in processor architecture has enabled the development of incredibly fast libraries that

have dramatically improved the performance of matrix multiplication. One could view this

improvement as a potentially smaller ω, the matrix multiplication exponent. We investigate

how matrix multiplication can be used to improve the big Oh running time complexity of

star queries. In doing so, we identify two errors in prior work that lead to incorrect results.

We fix and generalize the analysis, and show how fast matrix multiplication can be applied

to important problems such as set similarity and set containment. Finally, we also undertake

an experimental investigation to understand the practical benefits. Our experiments indi-

cate that orders of magnitude performance improvement are possible when the input dataset

contains a dense component, a condition that is easy to identify.

The last part of this dissertation is dedicated to the study of ranked enumeration for

arbitrary CQs. For full CQs, we thoroughly resolve an open problem stated at the Dagshtuhl

Seminar 19211 on ranked enumeration. We obtain logarithmic delay guarantees for a large

practical class of ranking functions and provide evidence for the near optimality of our results.

Remarkably, we were able to adapt the algorithm to also include arbitrary CQs that may

contain projections. Lastly, an extensive experimental evaluation shows that our approach

is an order of magnitude faster while using lesser space than state-of-the-art engines. This

demonstrates that delay-based problem formulation is not only theoretically appealing but

also the optimal solution in practice.

9.1 Future Work

We describe some directions for future work next.

Unconditional lower bounds. Throughout the dissertation, most of our lower bounds are

conditional. For space-time tradeoffs, can we develop unconditional lower bounds, even if for

the more restrictive pointer machine model? For ranked enumeration of full and join-project

CQs, are there lower bounds that can be obtained for a broader set of ranking functions?

Can we prove that the logarithmic and linear delay guarantee for full and join-project CQs

respectively, cannot be improved? Is it possible to rule out constant answering time for 2-Set

Disjointness using subquadratic space?

More general space-time bounds. The first question is to study the tradeoff between

space vs answering time (and delay guarantees) for arbitrary non-boolean hierarchical queries

and path queries. Using some of our techniques, it may be possible to smartly materialize

a certain subset of joins that could be used to achieve better answering time guarantees. It

172

would be interesting to investigate whether our ideas can be applied to existing algorithms

for constructing distance oracles to improve their space requirement.

Ranked Enumeration. There remain several open questions regarding how the structure

of ranking functions influences the efficiency of the algorithms. In particular, it would be

interesting to find fine-grained classes of ranking functions that are more expressive than

totally decomposable, but less expressive than coordinate decomposable. For instance, the

ranking function f(x, y) = |x− y| is not coordinate decomposable, but it is piecewise coordi-

nate decomposable on either side of the global minimum critical point for each x valuation.

Finally, recent work has made considerable progress in query evaluation under updates. In

this setting, the goal is to minimize the update time of the data structure as well as minimize

the delay. A simple application of our algorithm is useful here. For any full acyclic query, one

can maintain the relations under updates in constant time by updating the hash maps and

then applying the preprocessing and enumeration phase of our algorithm. This algorithm

gives a linear delay guarantee since the preprocessing phase takes linear time. One could

also apply the preprocessing phase of our algorithm after each update to reset all priority

queues which makes the update time linear but the enumeration delay can now be O(log |D|).
For join-project queries, the first important problem is to extend our results from the main

memory setting to the distributed setting. A key challenge here is to theoretically analyze

how to achieve optimal load balancing to minimize the communication cost. Since the cost

of I/O must also be taken into account, it becomes important to identify the optimal priority

queue storage layout to ensure that access cost is low. It would also be interesting to develop

output-balanced algorithms. The second exciting challenge is to incorporate approximation

into the ranking. For some applications, it may be sufficient to get an approximately ordered

output which could lead to improved running time guarantees. Finally, it would be useful to

re-rank the query results when the ranking function is changed by the user and extend our

ideas to non-monotone ranking functions.

Reducing Space Requirements. For ranked enumeration, as the number of enumerated

answers grows, so does the priority queue size. An interesting question is whether we can

improve upon the large use of memory while achieving the same time bounds.

Performance in practice. This dissertation consists of a mix of theoretical and empirical

research. We saw in Section 6.5 how matrix multiplication can be useful in practice and Sec-

tion 8.6 shows the performance improvement over database engines for ranked enumeration

of join-project queries. Yet, there is still much room to perform extensive practical research.

We would like to convert the space-time tradeoffs developed in Chapter 3 into a practical

algorithm that can autotune its space usage on-the-fly based on the changing distribution of

the query workload. There likely exists several research challenges that include translating

173

the theoretical data structure into an efficient one that uses bit manipulation to minimize

its memory footprint, tightly integrating it with set intersection algorithms, and combining

it with known techniques such as bitmap indexes.

174

LIST OF REFERENCES

[ABW18] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the cur-

rent clique algorithms are optimal, so is valiant’s parser. SIAM Journal on

Computing, 47(6):2527–2555, 2018.

[ACFR20] Shimaa Ahmed, Amrita Roy Chowdhury, Kassem Fawaz, and Parmesh Ra-

manathan. Preech: a system for privacy-preserving speech transcription. In

29th {USENIX} Security Symposium ({USENIX} Security 20), pages 2703–

2720, 2020.

[AG11] Renzo Angles and Claudio Gutierrez. Subqueries in sparql. AMW, 749:12,

2011.

[Aga14] Rachit Agarwal. The space-stretch-time tradeoff in distance oracles. In ESA,

pages 49–60. Springer, 2014.

[AGHP11] Rachit Agarwal, P Brighten Godfrey, and Sariel Har-Peled. Approximate dis-

tance queries and compact routing in sparse graphs. In INFOCOM, pages

1754–1762. IEEE, 2011.

[AGM13] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans

for relational joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

[AHS+15] Ibrahim Abdelaziz, Razen Harbi, Semih Salihoglu, Panos Kalnis, and Nikos

Mamoulis. Spartex: A vertex-centric framework for rdf data analytics. Pro-

ceedings of the VLDB Endowment, 8(12):1880–1883, 2015.

[AKKNS20] Mahmoud Abo Khamis, Phokion G Kolaitis, Hung Q Ngo, and Dan Suciu.

Decision problems in information theory. In ICALP, 2020.

[AKNR16] Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked

frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sym-

posium on Principles of Database Systems, pages 13–28, 2016.

[AKNS17] Mahmoud Abo Khamis, Hung Q Ngo, and Dan Suciu. What do shannon-type

inequalities, submodular width, and disjunctive datalog have to do with one an-

other? In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems, pages 429–444. ACM, 2017.

175

[ALOR18] Christopher Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Ré.

Levelheaded: A unified engine for business intelligence and linear algebra query-

ing. In 2018 IEEE 34th International Conference on Data Engineering (ICDE),

pages 449–460. IEEE, 2018.

[ALT+17] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Oluko-

tun, and Christopher Ré. Emptyheaded: A relational engine for graph process-

ing. ACM Transactions on Database Systems (TODS), 42(4):20, 2017.

[AMF06] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression

and execution in column-oriented database systems. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, Chicago, Illinois,

USA, June 27-29, 2006, pages 671–682, 2006.

[AN16] Peyman Afshani and Jesper Asbjørn Sindahl Nielsen. Data structure lower

bounds for document indexing problems. In ICALP 2016Automata, Languages

and Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik GmbH,

2016.

[AP09] Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and sparse

matrix multiplications. In Proceedings of the 12th International Conference on

Database Theory, pages 121–126. ACM, 2009.

[APV11] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Best position algo-

rithms for efficient top-k query processing. Information Systems, 36(6):973–

989, 2011.

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply

strong lower bounds for dynamic problems. In 2014 IEEE 55th Annual Sym-

posium on Foundations of Computer Science, pages 434–443. IEEE, 2014.

[AWY18] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching tri-

angles and basing hardness on an extremely popular conjecture. SIAM Journal

on Computing, 47(3):1098–1122, 2018.

[AYZ94] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length

cycles. In European Symposium on Algorithms, pages 354–364. Springer, 1994.

[AYZ97] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length

cycles. Algorithmica, 17(3):209–223, 1997.

[BB12] Johann Brault-Baron. A negative conjunctive query is easy if and only if it is

beta-acyclic. Computer Science Logic 2012, page 137, 2012.

[BB13] Johann Brault-Baron. De la pertinence de l’énumération: complexité en

logiques propositionnelle et du premier ordre. PhD thesis, Université de Caen,

2013.

176

[BCD+06] David Bremner, Timothy M Chan, Erik D Demaine, Jeff Erickson, Ferran

Hurtado, John Iacono, Stefan Langerman, and Perouz Taslakian. Necklaces,

convolutions, and x+ y. In European Symposium on Algorithms, pages 160–171.

Springer, 2006.

[BDG07a] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic con-

junctive queries and constant delay enumeration. In International Workshop

on Computer Science Logic, pages 208–222. Springer, 2007.

[BDG07b] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic

conjunctive queries and constant delay enumeration. In Computer Science

Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the

EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, pages

208–222, 2007.

[BGI97] Gautam Bhargava, Piyush Goel, and Balakrishna Ragmavendra Iyer. Enu-

merating projections in sql queries containing outer and full outer joins in the

presence of inner joins, November 11 1997. US Patent 5,687,362.

[BGJR21] Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros. Ranked

enumeration of mso logic on words. ICDT, 2021.

[Bir08] Maria Biryukov. Co-author network analysis in dblp: Classifying personal

names. In International Conference on Modelling, Computation and Opti-

mization in Information Systems and Management Sciences, pages 399–408.

Springer, 2008.

[BKOZ13] Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. Ag-

gregation and ordering in factorised databases. Proceedings of the VLDB En-

dowment, 6(14):1990–2001, 2013.

[BKPS19] Endre Boros, Benny Kimelfeld, Reinhard Pichler, and Nicole Schweikardt. Enu-

meration in Data Management (Dagstuhl Seminar 19211). Dagstuhl Reports,

9(5):89–109, 2019.

[BKS17a] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering con-

junctive queries under updates. In proceedings of the 36th ACM SIGMOD-

SIGACT-SIGAI symposium on Principles of database systems, pages 303–318.

ACM, 2017.

[BKS17b] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering con-

junctive queries under updates. In proceedings of the 36th ACM SIGMOD-

SIGACT-SIGAI symposium on Principles of database systems, pages 303–318.

ACM, 2017.

[BKS18] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering fo+

mod queries under updates on bounded degree databases. ACM Transactions

on Database Systems (TODS), 43(2):7, 2018.

177

[BMGT16] Panagiotis Bouros, Nikos Mamoulis, Shen Ge, and Manolis Terrovitis. Set

containment join revisited. Knowledge and Information Systems, 49(1):375–

402, 2016.

[BMS+06] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Christian Theobalt, and

Gerhard Weikum. Io-top-k: Index-access optimized top-k query processing.

2006.

[BMT20] Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of

large sparql query logs. The VLDB Journal, 29(2):655–679, 2020.

[BOZ12] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodnỳ. Fdb: A query en-

gine for factorised relational databases. Proceedings of the VLDB Endowment,

5(11):1232–1243, 2012.

[CC62] Abraham Charnes and William W Cooper. Programming with linear fractional

functionals. Naval Research Logistics (NRL), 9(3-4):181–186, 1962.

[CCC+20] Prasad Chalasani, Jiefeng Chen, Amrita Roy Chowdhury, Xi Wu, and Somesh

Jha. Concise explanations of neural networks using adversarial training. In

International Conference on Machine Learning, pages 1383–1391. PMLR, 2020.

[CCW+21] Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei Sabelfeld, Rahul

Chatterjee, and Earlence Fernandes. Data privacy in trigger-action systems.

In 2021 IEEE Symposium on Security and Privacy (SP), pages 501–518, 2021.

[CFZ07] Olivier Corby and Catherine Faron-Zucker. Implementation of sparql query

language based on graph homomorphism. In International Conference on Con-

ceptual Structures, pages 472–475. Springer, 2007.

[CG85] Stefano Ceri and Georg Gottlob. Translating sql into relational algebra: Op-

timization, semantics, and equivalence of sql queries. IEEE Transactions on

software engineering, (4):324–345, 1985.

[CK19] Nofar Carmeli and Markus Kröll. On the enumeration complexity of unions

of conjunctive queries. In Proceedings of the 38th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, pages 134–148, 2019.

[CL15] Timothy M Chan and Moshe Lewenstein. Clustered integer 3sum via additive

combinatorics. In STOC, pages 31–40, 2015.

[CLRS09a] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Chapter 8.2, Introduction to algorithms. MIT press, 2009.

[CLRS09b] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[CLYZ18] Jinpeng Chen, Yu Liu, Guang Yang, and Ming Zou. Inferring tag co-occurrence

relationship across heterogeneous social networks. Applied Soft Computing,

66:512–524, 2018.

178

[CLZ+15] Lijun Chang, Xuemin Lin, Wenjie Zhang, Jeffrey Xu Yu, Ying Zhang, and

Lu Qin. Optimal enumeration: Efficient top-k tree matching. Proceedings of

the VLDB Endowment, 8(5):533–544, 2015.

[CO15] Radu Ciucanu and Dan Olteanu. Worst-case optimal join at a time. Technical

report, Technical report, Oxford, 2015.

[CP10a] Hagai Cohen and Ely Porat. Fast set intersection and two-patterns matching.

Theoretical Computer Science, 411(40-42):3795–3800, 2010.

[CP10b] Hagai Cohen and Ely Porat. On the hardness of distance oracle for sparse

graph. arXiv preprint arXiv:1006.1117, 2010.

[CRJ20] Amrita Roy Chowdhury, Theodoros Rekatsinas, and Somesh Jha. Data-

dependent differentially private parameter learning for directed graphical mod-

els. In International Conference on Machine Learning, pages 1939–1951.

PMLR, 2020.

[CRW21] Philipp Christmann, Rishiraj Saha Roy, and Gerhard Weikum. Efficient con-

textualization using top-k operators for question answering over knowledge

graphs. arXiv preprint arXiv:2108.08597, 2021.

[CS07] Sara Cohen and Yehoshua Sagiv. An incremental algorithm for computing

ranked full disjunctions. Journal of Computer and System Sciences, 73(4):648–

668, 2007.

[CY+11] Rada Chirkova, Jun Yang, et al. Materialized views. Foundations and Trends

in Databases, 4(4):295–405, 2011.

[CYZ+08] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and S Yu Philip. Graph

olap: Towards online analytical processing on graphs. In 2008 eighth IEEE

international conference on data mining, pages 103–112. IEEE, 2008.

[dbl] DBLP. https://dblp.uni-trier.de/.

[DHK20] Shaleen Deep, Xiao Hu, and Paraschos Koutris. Fast join project query evalu-

ation using matrix multiplication. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, pages 1213–1223, 2020.

[DHK21] Shaleen Deep, Xiao Hu, and Paraschos Koutris. Enumeration algorithms

for conjunctive queries with projection. In 24th International Conference on

Database Theory (ICDT 2021). Schloss Dagstuhl-Leibniz-Zentrum für Infor-

matik, 2021.

[DK17] Shaleen Deep and Paraschos Koutris. Compressed representations of conjunc-

tive query results. arXiv preprint arXiv:1709.06186, 2017.

[DK18] Shaleen Deep and Paraschos Koutris. Compressed representations of conjunc-

tive query results. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, pages 307–322. ACM, 2018.

https://dblp.uni-trier.de/

179

[DK21] Shaleen Deep and Paraschos Koutris. Ranked enumeration of conjunctive

query results. To appear in Joint 2021 EDBT/ICDT Conferences, ICDT ’21

Proceedings, 2021.

[DM14] Arnaud Durand and Stefan Mengel. The complexity of weighted counting

for acyclic conjunctive queries. Journal of Computer and System Sciences,

80(1):277–296, 2014.

[DM15] Arnaud Durand and Stefan Mengel. Structural tractability of counting of solu-

tions to conjunctive queries. Theory of Computing Systems, 57(4):1202–1249,

2015.

[DO05] Erik D Demaine and Joseph O’Rourke. Open problems from cccg 2005. In

Canadian Conference on Computational Geometry, pages 75–80, 2005.

[DRM+19] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.

The design and operation of cloudlab. In 2019 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 19), pages 1–14, 2019.

[DS07] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic

databases. The VLDB Journal, 16(4):523–544, 2007.

[DSP20] Harshad Deshmukh, Bruhathi Sundarmurthy, and Jignesh M Patel. To pipeline

or not to pipeline, that is the question. arXiv preprint arXiv:2002.00866, 2020.

[DTL18] Dong Deng, Yufei Tao, and Guoliang Li. Overlap set similarity joins with

theoretical guarantees. In Proceedings of the 2018 International Conference on

Management of Data, pages 905–920. ACM, 2018.

[EALP+15] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gu-

bichev, Arnau Prat, Minh-Duc Pham, and Peter Boncz. The ldbc social net-

work benchmark: Interactive workload. In Proceedings of the 2015 ACM SIG-

MOD International Conference on Management of Data, pages 619–630, 2015.

[EL05] Ergin Elmacioglu and Dongwon Lee. On six degrees of separation in dblp-db

and more. ACM SIGMOD Record, 34(2):33–40, 2005.

[Fag02] Ronald Fagin. Combining fuzzy information: an overview. ACM SIGMOD

Record, 31(2):109–118, 2002.

[FFG02] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-

decompositions. Journal of the ACM (JACM), 49(6):716–752, 2002.

[FLLQ19] Chenyuan Feng, Zuozhu Liu, Shaowei Lin, and Tony QS Quek. Attention-

based graph convolutional network for recommendation system. In ICASSP

2019-2019 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 7560–7564. IEEE, 2019.

180

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms

for middleware. Journal of computer and system sciences, 66(4):614–656, 2003.

[Fre76] Michael L Fredman. How good is the information theory bound in sorting?

Theoretical Computer Science, 1(4):355–361, 1976.

[Fri04] Ehud Friedgut. Hypergraphs, entropy, and inequalities. The American Math-

ematical Monthly, 111(9):749–760, 2004.

[FT87] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses

in improved network optimization algorithms. Journal of the ACM (JACM),

34(3):596–615, 1987.

[GGS14] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Treewidth and hy-

pertree width. Tractability: Practical Approaches to Hard Problems, 1, 2014.

[GGY+14] Manish Gupta, Jing Gao, Xifeng Yan, Hasan Cam, and Jiawei Han. Top-k

interesting subgraph discovery in information networks. In Data Engineering

(ICDE), 2014 IEEE 30th International Conference on, pages 820–831. IEEE,

2014.

[GHL+13] Todd J Green, Shan Shan Huang, Boon Thau Loo, Wenchao Zhou, et al.

Datalog and recursive query processing. Now Publishers, 2013.

[GHQ95a] Ashish Gupta, Venkatesh Harinarayan, and Dallan Quass. Generalized projec-

tions: a powerful approach to aggregation. Technical report, Stanford InfoLab,

1995.

[GHQ95b] Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query pro-

cessing in data warehousing environments. 1995.

[GJ+10] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,

2010.

[GKLP17] Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Condi-

tional lower bounds for space/time tradeoffs. In Workshop on Algorithms and

Data Structures, pages 421–436. Springer, 2017.

[GKS11] Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Optimizing

and parallelizing ranked enumeration. Proceedings of the VLDB Endowment,

4(11):1028–1039, 2011.

[GS13] Gianluigi Greco and Francesco Scarcello. Structural tractability of enumerating

csp solutions. Constraints, 18(1):38–74, 2013.

[GU18] François Le Gall and Florent Urrutia. Improved rectangular matrix multipli-

cation using powers of the coppersmith-winograd tensor. In Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1029–1046. SIAM, 2018.

181

[HP98] Xiaohan Huang and Victor Y Pan. Fast rectangular matrix multiplication and

applications. Journal of complexity, 14(2):257–299, 1998.

[HS05] Stephen Harris and Nigel Shadbolt. Sparql query processing with conventional

relational database systems. In International Conference on Web Information

Systems Engineering, pages 235–244. Springer, 2005.

[HSK98] Jiawei Han, Nebojsa Stefanovic, and Krzysztof Koperski. Selective material-

ization: An efficient method for spatial data cube construction. In Pacific-Asia

conference on knowledge discovery and data mining, pages 144–158. Springer,

1998.

[IBS08] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. A survey of top-k

query processing techniques in relational database systems. ACM Computing

Surveys (CSUR), 40(4):11, 2008.

[ima] image. https://cs.stanford.edu/~acoates/stl10/.

[int09] Intel Math Kernel Library. Reference Manual. Intel Corporation, Santa Clara,

USA, 2009. ISBN 630813-054US.

[ISA+04] Ihab F Ilyas, Rahul Shah, Walid G Aref, Jeffrey Scott Vitter, and Ahmed K

Elmagarmid. Rank-aware query optimization. In Proceedings of the 2004 ACM

SIGMOD international conference on Management of data, pages 203–214.

ACM, 2004.

[jok] Jokes. https://goldberg.berkeley.edu/jester-data/.

[JP05] Ravindranath Jampani and Vikram Pudi. Using prefix-trees for efficiently

computing set joins. In International Conference on Database Systems for

Advanced Applications, pages 761–772. Springer, 2005.

[Kaz13] Wojciech Kazana. Query evaluation with constant delay. PhD thesis, 2013.

[KGS+20] Mehdi Kargar, Lukasz Golab, Divesh Srivastava, Jaroslaw Szlichta, and

Morteza Zihayat. Effective keyword search over weighted graphs. IEEE Trans-

actions on Knowledge and Data Engineering, 2020.

[KNF+12] Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, and Henrik

Mühe. Hyper: Adapting columnar main-memory data management for trans-

actional and query processing. IEEE Data Eng. Bull., 35(1):46–51, 2012.

[KNN+19] Ahmet Kara, Hung Q Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang.

Counting triangles under updates in worst-case optimal time. In 22nd Inter-

national Conference on Database Theory, 2019.

[KNOZ20a] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in

static and dynamic evaluation of hierarchical queries. In Proceedings of the

39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems, pages 375–392, 2020.

https://cs.stanford.edu/~acoates/stl10/
https://goldberg.berkeley.edu/jester-data/

182

[KNOZ20b] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in

static and dynamic evaluation of hierarchical queries. In Proceedings of the

39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems, pages 375–392, 2020.

[KOW21] Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. Consistent query an-

swering for primary keys on path queries. In Proceedings of the 40th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,

PODS’21, page 215–232, New York, NY, USA, 2021. Association for Com-

puting Machinery.

[KP19] Tsvi Kopelowitz and Ely Porat. The strong 3sum-indexing conjecture is false.

arXiv preprint arXiv:1907.11206, 2019.

[KPP16] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the

3sum conjecture. In Proceedings of the twenty-seventh annual ACM-SIAM

symposium on Discrete algorithms, pages 1272–1287. SIAM, 2016.

[KRR13] Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter. Efficient in-

dexes for jumbled pattern matching with constant-sized alphabet. In ESA,

pages 625–636. Springer, 2013.

[KRS+16] Anja Kunkel, Astrid Rheinländer, Christopher Schiefer, Sven Helmer, Panagi-

otis Bouros, and Ulf Leser. Piejoin: towards parallel set containment joins. In

Proceedings of the 28th International Conference on Scientific and Statistical

Database Management, page 11. ACM, 2016.

[KS06] Benny Kimelfeld and Yehoshua Sagiv. Incrementally computing ordered an-

swers of acyclic conjunctive queries. In International Workshop on Next Gen-

eration Information Technologies and Systems, pages 141–152. Springer, 2006.

[KS07] Benny Kimelfeld and Yehoshua Sagiv. Combining incompleteness and ranking

in tree queries. In International Conference on Database Theory, pages 329–

343. Springer, 2007.

[KS13] Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on

classes of structures with bounded expansion. In Proceedings of the 32nd ACM

SIGMOD-SIGACT-SIGAI symposium on Principles of database systems, pages

297–308. ACM, 2013.

[KSKÇ12] Onur Küçüktunç, Erik Saule, Kamer Kaya, and Ümit V Çatalyürek. Recom-

mendation on academic networks using direction aware citation analysis. arXiv

preprint arXiv:1205.1143, 2012.

[Law72] Eugene L Lawler. A procedure for computing the k best solutions to discrete

optimization problems and its application to the shortest path problem. Man-

agement science, 18(7):401–405, 1972.

183

[LBBA16] Jyoti Leeka, Srikanta Bedathur, Debajyoti Bera, and Medha Atre. Quark-x:

An efficient top-k processing framework for rdf quad stores. In Proceedings

of the 25th ACM International on Conference on Information and Knowledge

Management, pages 831–840, 2016.

[LCFK21] Jingjie Li, Amrita Roy Chowdhury, Kassem Fawaz, and Younghyun Kim.

Kalεido: Real-time privacy control for eye-tracking systems. In 30th

{USENIX} Security Symposium ({USENIX} Security 21), 2021.

[LCIS05] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F Ilyas, and Sumin Song.

Ranksql: query algebra and optimization for relational top-k queries. In Pro-

ceedings of the 2005 ACM SIGMOD international conference on Management

of data, pages 131–142. ACM, 2005.

[LDH+08] Cindy Xide Lin, Bolin Ding, Jiawei Han, Feida Zhu, and Bo Zhao. Text cube:

Computing ir measures for multidimensional text database analysis. In 2008

Eighth IEEE International Conference on Data Mining, pages 905–910. IEEE,

2008.

[LFHDB15] Yongming Luo, George HL Fletcher, Jan Hidders, and Paul De Bra. Efficient

and scalable trie-based algorithms for computing set containment relations. In

2015 IEEE 31st International Conference on Data Engineering, pages 303–314.

IEEE, 2015.

[LFZ19] Xiaoming Li, Hui Fang, and Jie Zhang. Supervised user ranking in signed social

networks. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 184–191, 2019.

[LHG04] Xiaolei Li, Jiawei Han, and Hector Gonzalez. High-dimensional olap: A mini-

mal cubing approach. In Proceedings of the Thirtieth international conference

on Very large data bases-Volume 30, pages 528–539, 2004.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

[LMNT15] Kasper Green Larsen, J Ian Munro, Jesper Sindahl Nielsen, and Sharma V

Thankachan. On hardness of several string indexing problems. Theoretical

Computer Science, 582:74–82, 2015.

[LPH02] Laks VS Lakshmanan, Jian Pei, and Jiawei Han. Quotient cube: How to

summarize the semantics of a data cube. In VLDB’02: Proceedings of the 28th

International Conference on Very Large Databases, pages 778–789. Elsevier,

2002.

[LSCI05] Chengkai Li, Mohamed A Soliman, Kevin Chen-Chuan Chang, and Ihab F

Ilyas. Ranksql: supporting ranking queries in relational database management

systems. In Proceedings of the 31st international conference on Very large data

bases, pages 1342–1345. VLDB Endowment, 2005.

http://snap.stanford.edu/data

184

[LWW18] Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight

hardness for shortest cycles and paths in sparse graphs. In Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1236–1252. SIAM, 2018.

[Mar13] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and

conjunctive queries. Journal of the ACM (JACM), 60(6):42, 2013.

[Mar21] Dániel Marx. Modern lower bound techniques in database theory and con-

straint satisfaction. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, pages 19–29, 2021.

[MBO12] Sudip Misra, Romil Barthwal, and Mohammad S Obaidat. Community de-

tection in an integrated internet of things and social network architecture. In

2012 IEEE Global Communications Conference (GLOBECOM), pages 1647–

1652. IEEE, 2012.

[MCCJ21] Casey Meehan, Amrita Roy Chowdhury, Kamalika Chaudhuri, and Somesh

Jha. A shuffling framework for local differential privacy. arXiv preprint

arXiv:2106.06603, 2021.

[McM56] B. McMillan. Two inequalities implied by unique decipherability. IRE Trans-

actions on Information Theory, 2(4):115–116, December 1956.

[MKB09] Stefan Manegold, Martin L Kersten, and Peter Boncz. Database architecture

evolution: Mammals flourished long before dinosaurs became extinct. Proceed-

ings of the VLDB Endowment, 2(2):1648–1653, 2009.

[MSGL14] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Information

network or social network? the structure of the twitter follow graph. In Pro-

ceedings of the 23rd International Conference on World Wide Web, pages 493–

498, 2014.

[NCS+01] Apostol Natsev, Yuan-Chi Chang, John R Smith, Chung-Sheng Li, and Jef-

frey Scott Vitter. Supporting incremental join queries on ranked inputs. In

VLDB, volume 1, pages 281–290, 2001.

[NL04] Alan Nash and Bertram Ludäscher. Processing unions of conjunctive queries

with negation under limited access patterns. In EDBT, pages 422–440.

Springer, 2004.

[NPRR12] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal

join algorithms. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI

symposium on Principles of Database Systems, pages 37–48. ACM, 2012.

[NRR13] Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new devel-

opments in the theory of join algorithms. SIGMOD Record, 42(4):5–16, 2013.

[NZRS] Feng Niu, Ce Zhang, Chris Ré, and Jude Shavlik. Felix: Exploiting specialized

subtasks in markov logic networks for higher efficiency and quality.

185

[OS16] Dan Olteanu and Maximilian Schleich. Factorized databases. ACM SIGMOD

Record, 45(2):5–16, 2016.

[OVL81] Mark H Overmars and Jan Van Leeuwen. Dynamization of decomposable

searching problems yielding good worst-case bounds. In Theoretical Computer

Science, pages 224–233. Springer, 1981.

[OZ15a] Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of

query results. ACM Transactions on Database Systems (TODS), 40(1):1–44,

2015.

[OZ15b] Dan Olteanu and Jakub Závodný. Size bounds for factorised representations

of query results. ACM Trans. Database Syst., 40(1):2, 2015.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complex-

ity of sparql. ACM Transactions on Database Systems (TODS), 34(3):1–45,

2009.

[PDZ+18] Jignesh M Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu

Zhang, Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quickstep:

A data platform based on the scaling-up approach. Proceedings of the VLDB

Endowment, 11(6):663–676, 2018.

[PKZT01] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient olap

operations in spatial data warehouses. In International Symposium on Spatial

and Temporal Databases, pages 443–459. Springer, 2001.

[PP06] Anna Pagh and Rasmus Pagh. Scalable computation of acyclic joins. In Pro-

ceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 225–232, 2006.

[PR10] Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick

bound. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE

Symposium on, pages 815–823. IEEE, 2010.

[pro] protein. https://string-db.org/cgi/download.pl?sessionId=

IBdaKPtZGbl2.

[PTS+17] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger

Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford

InfoLab. Weld: A common runtime for high performance data analytics. In

Conference on Innovative Data Systems Research (CIDR), volume 19, 2017.

[PW18] Fotis Psallidas and Eugene Wu. Smoke: fine-grained lineage at interactive

speed. Proceedings of the VLDB Endowment, 11(6):719–732, 2018.

[QCS07] Yan Qi, K Selçuk Candan, and Maria Luisa Sapino. Sum-max monotonic

ranked joins for evaluating top-k twig queries on weighted data graphs. In

Proceedings of the 33rd international conference on Very large data bases, pages

507–518. VLDB Endowment, 2007.

https://string-db.org/cgi/download.pl?sessionId=IBdaKPtZGbl2
https://string-db.org/cgi/download.pl?sessionId=IBdaKPtZGbl2

186

[RCGvDMJ] Amrita Roy Chowdhury, Chuan Guo, Laurens van Der Maaten, and Somesh

Jha. Eiffel: Ensuring integrity for federated learning.

[RCWH+20] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,

and Somesh Jha. Crypte: Crypto-assisted differential privacy on untrusted

servers. In Proceedings of the 2020 ACM SIGMOD International Conference

on Management of Data, pages 603–619, 2020.

[RDS07] Christopher Re, Nilesh Dalvi, and Dan Suciu. Efficient top-k query evaluation

on probabilistic data. In Data Engineering, 2007. ICDE 2007. IEEE 23rd

International Conference on, pages 886–895. IEEE, 2007.

[roa] RoadNet. https://snap.stanford.edu/data/roadNet-PA.html.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of

tree-width. Journal of algorithms, 7(3):309–322, 1986.

[RT05] Erhard Rahm and Andreas Thor. Citation analysis of database publications.

ACM Sigmod Record, 34(4):48–53, 2005.

[SDKN20] Bruhathi Sundarmurthy, Harshad Deshmukh, Paris Koutris, and Jeffrey

Naughton. Providing insights for queries affected by failures and stragglers.

arXiv preprint arXiv:2002.01531, 2020.

[Seg13a] Luc Segoufin. Enumerating with constant delay the answers to a query. In

Joint 2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa, Italy,

March 18-22, 2013, pages 10–20, 2013.

[Seg13b] Luc Segoufin. Enumerating with constant delay the answers to a query. In

Proceedings of the 16th International Conference on Database Theory, pages

10–20. ACM, 2013.

[Seg15a] Luc Segoufin. Constant delay enumeration for conjunctive queries. ACM SIG-

MOD Record, 44(1):10–17, 2015.

[Seg15b] Luc Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD

Record, 44(1):10–17, 2015.

[SH13] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks: a

structural analysis approach. Acm Sigkdd Explorations Newsletter, 14(2):20–

28, 2013.

[SHK00] Nebojsa Stefanovic, Jiawei Han, and Krzysztof Koperski. Object-based selec-

tive materialization for efficient implementation of spatial data cubes. IEEE

Transactions on knowledge and Data Engineering, 12(6):938–958, 2000.

[SM13] Juan F Sequeda and Daniel P Miranker. Ultrawrap: Sparql execution on

relational data. Journal of Web Semantics, 22:19–39, 2013.

https://snap.stanford.edu/data/roadNet-PA.html

187

[SOC16] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear re-

gression models over factorized joins. In Proceedings of the 2016 International

Conference on Management of Data, pages 3–18. ACM, 2016.

[SORK11] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic

databases, synthesis lectures on data management. Morgan & Claypool, 2011.

[SS95] William L Steiger and Ileana Streinu. A pseudo-algorithmic separation of lines

from pseudo-lines. Inf. Process. Lett., 53(5):295–299, 1995.

[TAG+] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald,

and Xiaofeng Yang. Optimal algorithms for ranked enumeration of answers to

full conjunctive queries. Proceedings of the VLDB Endowment, 13(9).

[TGR20] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Optimal join

algorithms meet top-k. In Proceedings of the 2020 ACM SIGMOD Interna-

tional Conference on Management of Data, volume 13, pages 2659–2665. NIH

Public Access, 2020.

[TGR21a] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Beyond

equi-joins: Ranking, enumeration and factorization. Proc. VLDB Endow.,

14(11):2599–2612, 2021.

[TGR21b] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Be-

yond equi-joins: Ranking, enumeration and factorization. arXiv preprint

arXiv:2101.12158, 2021.

[TPK+03] Panayiotis Tsaparas, Themistoklis Palpanas, Yannis Kotidis, Nick Koudas,

and Divesh Srivastava. Ranked join indices. In Proceedings 19th International

Conference on Data Engineering (Cat. No. 03CH37405), pages 277–288. IEEE,

2003.

[Ull85] Jeffrey D. Ullman. Implementation of logical query languages for databases.

ACM Trans. Database Syst., 10(3):289–321, September 1985.

[Vel] TL Veldhuizen. Leapfrog triejoin: a worst-case optimal join algorithm,

icdt,(2014).

[WL03] Fang Wei and Georg Lausen. Containment of conjunctive queries with safe

negeuration. In ICDT, pages 346–360. Springer, 2003.

[wor] words. https://archive.ics.uci.edu/ml/datasets/bag+of+words.

[XD17a] Konstantinos Xirogiannopoulos and Amol Deshpande. Extracting and analyz-

ing hidden graphs from relational databases. In Proceedings of the 2017 ACM

International Conference on Management of Data, pages 897–912. ACM, 2017.

[XD17b] Konstantinos Xirogiannopoulos and Amol Deshpande. Extracting and analyz-

ing hidden graphs from relational databases. In Proceedings of the 2017 ACM

International Conference on Management of Data, pages 897–912. ACM, 2017.

https://archive.ics.uci.edu/ml/datasets/bag+of+words

188

[XD19] Konstantinos Xirogiannopoulos and Amol Deshpande. Memory-efficient group-

by aggregates over multi-way joins. arXiv preprint arXiv:1906.05745, 2019.

[XKD15] Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Deshpande.

Graphgen: Exploring interesting graphs in relational data. Proceedings of the

VLDB Endowment, 8(12):2032–2035, 2015.

[XSD17] Konstantinos Xirogiannopoulos, Virinchi Srinivas, and Amol Deshpande.

Graphgen: Adaptive graph processing using relational databases. In Proceed-

ings of the Fifth International Workshop on Graph Data-management Expe-

riences & Systems, GRADES’17, pages 9:1–9:7, New York, NY, USA, 2017.

ACM.

[YAG+18] Xiaofeng Yang, Deepak Ajwani, Wolfgang Gatterbauer, Patrick K Nicholson,

Mirek Riedewald, and Alessandra Sala. Any-k: Anytime top-k tree pattern

retrieval in labeled graphs. In Proceedings of the 2018 World Wide Web Con-

ference on World Wide Web, pages 489–498. International World Wide Web

Conferences Steering Committee, 2018.

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, vol-

ume 81, pages 82–94, 1981.

[YRLG18] Xiaofeng Yang, Mirek Riedewald, Rundong Li, and Wolfgang Gatterbauer.

Any-k algorithms for exploratory analysis with conjunctive queries. In Pro-

ceedings of the 5th International Workshop on Exploratory Search in Databases

and the Web, pages 1–3, 2018.

[YSN+12] Xiao Yu, Yizhou Sun, Brandon Norick, Tiancheng Mao, and Jiawei Han. User

guided entity similarity search using meta-path selection in heterogeneous in-

formation networks. In Proceedings of the 21st ACM international conference

on Information and knowledge management, pages 2025–2029, 2012.

[YZY+18] Jianye Yang, Wenjie Zhang, Shiyu Yang, Ying Zhang, Xuemin Lin, and Long

Yuan. Efficient set containment join. The VLDB Journal—The International

Journal on Very Large Data Bases, 27(4):471–495, 2018.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion

Stoica, et al. Spark: Cluster computing with working sets. HotCloud, 10(10-

10):95, 2010.

[ZDP19] Zuyu Zhang, Harshad Deshmukh, and Jignesh M Patel. Data partitioning for

in-memory systems: Myths, challenges, and opportunities. In CIDR, 2019.

[ZLGZ10] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Finding top-k max-

imal cliques in an uncertain graph. 2010.

[ZLXH11] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. Graph cube: on ware-

housing and olap multidimensional networks. In Proceedings of the 2011 ACM

SIGMOD International Conference on Management of data, pages 853–864,

2011.

	ABSTRACT
	 Introduction
	Motivation
	Contributions
	Organization

	 Background
	Data Model and Queries
	Computational Model
	Fast Matrix Multiplication
	General Framework

	 Compressed Representations of Conjunctive Query Results
	Related Work
	Problem Statement
	Some Basic Results

	First Main Result
	The Basic Structure
	Answering a Query

	Second Main Result
	Constant Delay Enumeration
	Beyond Constant Delay
	Comparing width notions

	The Complexity of Minimizing Delay

	 Space-Time Tradeoffs for Answering Boolean Conjunctive Queries
	Problem Statement
	General Space-Time Tradeoffs
	Space-Time Tradeoffs via Tree Decompositions
	Extension to CQs with Negation
	Path Queries
	Length-4 Path
	General Path Queries

	Lower Bounds

	 Unranked Enumeration of Conjunctive Queries with Projections
	Related Work
	Main Result
	Helper Lemmas
	Star Queries
	Comparison with Prior Work
	Warm-up: Two-Path Query
	Proof of Main Theorem
	Interleaving with Join Computation

	Left-Deep Hierarchical Queries
	Path Queries

	 Join-Project Query Evaluation using Fast Matrix Multiplication
	Computing Join-Project
	The 2-Path Query
	The Star Query
	Boolean Set Intersection

	Speeding Up SSJ and SCJ
	Cost-Based Optimization
	System Implementation
	Experimental Evaluation
	Datasets
	Simple Join Processing
	Set Similarity
	Set Containment
	Boolean Set Intersection

	 Ranked Enumeration of Conjunctive Query Results
	Related Work
	Ranking Functions
	Problem Parameters

	Main Result
	Applications
	The Algorithm for the Main Theorem

	Extensions
	Ranked Enumeration of UCQs
	Improving The Main Result

	Lower Bounds
	The Choice of Ranking Function
	Beyond Logarithmic Delay

	 Ranked Enumeration of Conjunctive Queries with Projections
	Related Work
	Preliminaries
	Ranking Functions
	Problem Parameters

	General acyclic queries
	General Algorithm
	Improvement for Lexicographic Ranking

	Star Queries
	The Algorithm
	Tradeoff Optimality

	General queries
	Experimental Evaluation
	Experimental Setup
	Small-Scale Datasets
	Large-Scale Datasets

	Small Scale Experiments
	Enumeration with Preprocessing
	Cyclic Queries

	Large Scale Experiments and Scalability

	 Conclusions
	Future Work

	LIST OF REFERENCES

