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Abstract

We develop new approximation algorithms for three graph-theoretic optimization problems.

Two of these problems arise in communication networks and the third comes up in the

context of classification and labeling. Below we describe these problems and present an

overview of our main results.

Information Network Design: We develop a model for information networks with a

cost structure that captures savings obtained by redundant-data elimination. This model

presents an expressive and algorithmically interesting framework as it allows us to represent

information flow and still maintain the tractable nature of classical network-design. We

consider two problems within this framework and develop algorithms that achieve logarithmic

and constant-factor approximation for them.

Multi-Route Cuts: A fundamental problem in combinatorial optimization is to find a

low-cost cut which disconnects the underlying graph. A natural generalization of finding

small cuts is the multi-route cut problem where the goal is to determine a low-cost set of

edges or nodes whose removal reduces the connectivity of the graph to below a certain

threshold. This problem arises in the context of reliability of service in networks. We provide

the first non-trivial approximations for variants of the problem. When the connectivity

thresholds are either two or infinity, we obtain polylogarithmic approximations to cost.

For arbitrary thresholds, we develop bicriteria approximation algorithms; in particular, we

obtain approximations to cost while ensuring that the connectivity drops below a constant

times the threshold.

Packing Multiway Cuts: Problems involving classification and labeling of interconnected

objects arise in many contexts such as machine learning and computational biology. An

important class of labeling problems reduces to packing cuts in a graph where the goal is to



x

determine nearly-disjoint cuts that satisfy containment constraints. We develop constant-

factor approximation algorithms for the multiway cut packing problem; where, given a

collection of subsets of vertices, the objective is to produce separating cuts (one for each

subset) that are as edge disjoint as possible.
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1 Introduction

Graph-theoretic optimization problems are ubiquitous and their algorithms play a prominent

role in computer science. Given a graph the general goal is to determine a discrete set of

objects (edges/vertices) that satisfy some constraints and have minimum cost or maximum

value. Historically, these problems were formulated to study transshipment, flow, assignment,

and transportation of physical objects. These problems arise in numerous other areas

including physical sciences, engineering, and economics. See [Sch03] and [Sch05] for a

comprehensive treatment of the subject.

Many natural and practically-relevant instances of graph-theoretic optimization are

NP-Hard. Therefore, it is unlikely that efficient methods exist that find exact solutions

for them. This drives us to explore algorithms that efficiently determine provably-good

approximate solutions. This area of study is called approximation algorithms. An algorithm

is said to achieve an approximation ratio of α ≥ 1 if, for any input instance of the problem,

it produces a solution of cost no more than α times the optimal. The study of algorithms

for graph-theoretic problems has successfully generated many practical techniques and

significantly influenced algorithm design in other fields such as online computation, learning

theory, and algorithmic game theory.

Despite notable advances in approximation algorithms for graph-theoretic problems,

our understanding of optimization in the digital realm is far from complete. Classical

graph-theoretic models do not represent computational systems that deal with data and

information in their entirety. We find stark examples of this limitation when considering

design of information networks. For instance, in a network design problem we are given a

graph with cost on edges and the goal is to determine a minimum cost subgraph that satisfies

certain connectivity constraints (see [GK11] for a survey on algorithms for network design).

A common class of network design problems involves multiple source-sink pairs with demands
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and the objective of determining a minimum cost subgraph which can route the specified

demands. We can use classical flow models if the network design problem is formulated to

represent a physical network, like incompressible fluids in pipes. In particular, an optimal

solution of the multiple source-sink network design problem with physical flow is simply a

collection of shortest paths connecting each source to the corresponding sink. On the other

hand, for network design over information networks, we need to address completely different

problems. Consider the case in which we can simultaneously transmit the demand of different

source-sink pairs along any edge, i.e. an edge of unit capacity can satisfy multiple source-sink

pairs each with unit demand. This telecommunication inspired network design problem is

called the Steiner network or survivable network design problem [WGMV95, GGP+94, Jai01]

and, unlike the physical flow version, is NP-Hard. Jain [Jai01] developed an approximation

algorithm for this problem that uses novel techniques and achieves an approximation ratio

of two.

Recent past has seen the development of such novel algorithms in multiple areas of

graph-theoretic optimization, including in online [MSVV07], stochastic [GKR09], and

economic [RT02] settings. The overarching objective of these results is to obtain insights

into the vast collection of optimization problems that arise in computational systems. In

this dissertation we move towards this goal and develop new approximation algorithms for

three graph-theoretic optimization problems that come up in communication networks and

data classification.

In Sections 1.2, 1.3, and 1.4 we outline the three problems. The body of the dissertation

presents a detailed description of the problems and formally proves our results.
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1.1 Approximation Algorithms

The problems considered in this dissertation are NP-Hard. Efficient algorithms that exactly

solve NP-Hard problems do not exist unless P = NP, hence we must consider alternatives.

One formal and well-established approach to dealing with NP-Hardness is to develop

algorithms that determine provably-good approximate solutions in polynomial time; that is,

we relax optimality in order to achieve efficiency. Such algorithms are called approximation

algorithms and the guarantee they provide on the quality of solution is specified in terms of

an approximation ratio. Specifically, we consider worst-case bounds for the ratio between

the cost/value of the solution generated by the algorithm and the optimal. Write OPT

as the optimal value of a minimization problem with objective function c and the feasible

set (implicitly specified by the input in most cases) F . That is, OPT is the minimum cost

attained by the following program:

minimize c(S)

subject to S ∈ F

An algorithm achieves an approximation ratio of α ≥ 1 if, for any instance, it generates a

solution in F of cost no more than α OPT. Along these lines, an α-approximation algorithm

for a value-maximization problem is one which always generates a feasible solution of value

no less than 1
α

OPT.

Some NP-Hard problems have high approximation thresholds; for example, independent

set cannot be approximated within a factor of nc, for some constant c, unless P = NP. In

addition, there are problems for which standard relaxations and approaches do not yield

good approximations. A natural course of action in such situations is to relax the feasibility

constraint or augment the algorithm with extra resources while keeping the benchmark
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as an optimal solution without augmentation. Specifically, say we have a minimization

problem and one of its constraints is of the form f(S) ≤ k, for some function f() and value

k. An algorithm is said to achieve an (β, α)-bicriteria approximation if for any instance of

the minimization problem it produces a solution A that satisfies f(A) ≤ βk and has cost

no more than αOPT. Appropriate changes are made to this definition for maximization

problems and constraints of the form f(S) ≥ k.

1.2 Information Network Design

We develop a combinatorial model which captures data flow in information networks.

In particular, we consider a cost structure in which the data-redundancy in traffic can

be leveraged to save on routing costs. Within this framework we develop algorithms

with strong approximation guarantees for network design and facility location problems.

This cost structure models information flow and still maintains the tractable nature of

commodity (physical-flow carrying) network design; therefore, it presents an expressive and

algorithmically interesting class of problems.

The first problem we study is the redundancy aware network design (RAND) problem.

We are given an edge-weighted graph containing a single server and many clients. The server

owns a number of different data packets and each client desires a subset of the packets.

Our goal is to connect every client to the server via a single path, such that the collective

cost of the resulting network is minimized. Here the transmission cost over an edge is its

weight times times the number of distinct packets that it carries. For example, if the edge

belongs to two paths that each carry the same packet, then the edge only needs to route the

packet once rather than twice. RAND arises in networks that face a lot of data duplication.

Anand et al. [AGA+08] show that this kind of traffic redundancy is highly prevalent in

the Internet, and it can be eliminated across individual links by routers employing packet
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caches. We consider instances where the demand sets form a laminar family, i.e., any two

demand sets in the family are either disjoint or one is contained in the other. We develop

a combinatorial algorithm that achieves an O(logP ) approximation for RAND, where P

is the total number of distinct packets. We note that P is always at most the number of

different demand sets desired or the number of clients, and is generally much smaller.

The second problem we study is a facility location problem that we call RAFL (redun-

dancy aware facility location). Here the goal is to find an assignment from clients to facilities

such that the total cost of routing packets from the facilities to clients plus the total cost

of “producing” one copy of each desired packet at each facility is minimized. Note that in

RAFL data redundancy is leveraged at the facilities and not in routing. This problem is

motivated by the data allocation requirements of content distribution networks (CDNs) in

the Internet. For RAFL, with laminar demands, we presents a multi-phase LP rounding

algorithm that achieves a constant approximation ratio.

This is joint work with Shuchi Chawla and appeared in the Symposium on Discrete

Algorithms (SODA), 2012 [BC12].

1.3 Multi-Route Cuts

A fundamental problem in combinatorial optimization is to find a low-cost cut which

disconnects the underlying graph. A natural generalization of finding small cuts is the

multi-route cut problem where the goal is to determine a low-cost set of edges or vertices

whose removal reduces the connectivity of the graph to below a certain threshold. This

problem arises in the context of reliability of service in networks. Specifically, given a graph

G = (V,E) and connectivity thresholds k(u,v) on pairs of nodes, the goal of the minimum

multi-route cut problem is to find a minimum cost set of edges or vertices whose removal

reduces the connectivity between every pair (u, v) to strictly below its given threshold.
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Note that in traditional minimum cut problems the thresholds are either one (we want to

completely separate the pair) or ∞ (we do not care about the connectivity for the pair).

We propose a new linear programming formulation for this problem and provide the first

non-trivial approximations to several versions of the problem. A main contribution of our

work is an extension of the region growing technique for approximating minimum multicuts

to the multi-route setting. When the connectivity thresholds are either two or ∞ (the

“2-route cut” case), we obtain an O(log2 h) approximation, where h is the number source-sink

pairs. For arbitrary connectivity thresholds, we present a number of bicriteria-approximation

algorithms that achieve different cost-connectivity tradeoffs.

This is joint work with Shuchi Chawla and appeared in the Symposium on Discrete

Algorithms (SODA), 2010 [BC10].

1.4 Packing Multiway Cuts

Problems involving classification and labeling of interconnected objects arise in many

contexts such as machine learning and computational biology. A common instance is one

where we are given a partial labeling of a set of items along with a neighborhood structure

over them and the objective is to complete the labeling in the most consistent way possible.

These problems naturally translate into a graph-theoretic setting. Finding a consistent

labeling is reduces to packing cuts in a graph where the goal is to determine nearly-disjoint

subsets (of graph vertices) that satisfy containment constraints.

We consider the multiway cut packing (MCP) problem. In MCP we are given an

undirected graph G = (V,E) and k commodities, each corresponding to a set of terminals

located at different vertices in the graph; our goal is to produce a collection of cuts

{C1, · · · , Ck} such that Ci is a multiway cut for commodity i (that is, Ci separates all pairs

of terminals in commodity i) and the maximum load on any edge is minimized. The load
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on an edge is defined to be the number of cuts in the solution crossing the edge. In the

capacitated version of the problem edges have capacities ce and the goal is to minimize the

maximum relative load on any edge – the ratio of the edge’s load to its capacity.

MCP is NP-Hard and we present a constant-factor approximation for it. We consider a

linear programming relaxation for the problem and show that every instance of the problem

admits a near-optimal fraction solution in which no pair of cuts cross, i.e., the cuts are

laminar. We use this insight to develop a rounding algorithm which guarantees a maximum

edge load of at most 8OPT + 4. For the special case where each commodity has only two

terminals and all commodities share a common sink (the “common sink s-t cut packing”

problem) we guarantee a maximum load of OPT + 2. Since the special case is also NP-hard

this is nearly the best possible approximation unless P = NP.

This is joint work with Shuchi Chawla and appeared in the Symposium on Discrete

Algorithms (SODA), 2009 [BC09].
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2 Information Network Design

2.1 Introduction

We consider network design problems for information networks where edges can replicate

data but cannot otherwise alter it. In this setting our goal is to exploit the redundancy

in the given traffic matrix to save on routing costs. Formally, we are given a graph over a

single server and many clients. The server has a universe of data packets available, and

each client desires a subset of the packets. The goal is to determine a collection of paths,

one from the source to each client, such that the total cost of routing is minimized. Here

the cost of routing on an edge is proportional to the total size of the distinct packets that

the edge carries. For example, if the edge belongs to two paths that each carry the same

packet, then the edge only needs to route the packet once and not twice. We call this the

traffic-redundancy aware network design problem, or RAND for short.

RAND arises in networks that face a lot of data duplication. Consider for example a

Netflix server serving movies to a large and varied clientele. Each client desires a certain

subset of the movies. What routing paths should the server use to send the data to the

clients so as to minimize its total bandwidth usage? If different movie streams involve

disjoint sets of packets this boils down to setting up a single multicast tree, or solving the

minimum Steiner tree problem, once per movie. However, the server may want to set up

a single routing path for each client regardless of how many different movies the client

desires. Moreover, clients desiring the same movie may desire it at different rates or qualities

depending on their location or the device they are using. For example, a desktop user with

a broadband connection may desire a high definition video, whereas a mobile phone user

may be content with a much lower resolution. Then, the data sent to these clients is not

identical but has some amount of overlap. The server can exploit this redundancy in traffic
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by using common paths for clients with similar demands, thereby saving on the actual

amount of traffic routed. Redundancy in data can arise even across different movies when

data streams are broken down into small enough packets. Anand et al. [AGA+08] show that

this kind of traffic redundancy is highly prevalent in the Internet, and it can be eliminated

across individual links by routers employing packet caches.

Given the cost structure that this redundancy generates, it makes sense to try to route

the demands of clients desiring similar sets along overlapping paths. An extreme example of

the benefit of merging paths is when all clients desire the same set of packets. In this case,

the problem becomes equivalent to finding the minimum-cost Steiner tree over the clients

and the server. At the other extreme, if all the clients desire disjoint sets of packets, then

merging does not help at all, and it is optimal to pick the shortest path from every client to

the source. There is thus a trade-off between routing demands along shortest paths and

trying to merge the paths of clients with similar demands.

We also study a facility location version of the problem that we call traffic-redundancy

aware facility location or RAFL. This problem is motivated by the prevalence of content

distribution networks (CDNs) in the Internet. Netflix servers, instead of connecting to

clients directly, cache their data at multiple servers spread around the network that are

hosted by a CDN such as Akamai; each client then connects to a CDN server individually to

obtain its data. The savings in this case comes from assigning clients with similar demand

sets to the same CDN server and sending a single copy of the multiply desired packets to

the server. Formally we are given a network over potential facilities and clients. Each client,

as before, desires a subset of the available packets. Our goal is to assign each client to a

facility and route to each facility the union of the demand sets desired by clients assigned

to it. The cost of such a solution is the sum of the cost of routing packets from facilities to

clients (that are proportional to the size of the respective client’s demand set), and the cost

of routing packets to facilities (that is proportional to the total size of the distinct packets
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being routed to the facility). The savings from redundancy in this case are realized in the

facility opening costs where we assign multiple clients with similar demand sets to the same

facility and pay for each of the common packets only once.

RAND and RAFL model information networks as opposed to commodity networks in

traditional network design problems. They can therefore be considered as intermediate

models between traditional network design and network coding. In the latter the information

network is allowed to use coding to increase its capacity. In our context the network can

eliminate redundant information but cannot otherwise alter the information. See [nwc] and

references therein for work on network coding.

2.1.1 Results and Techniques

We study the RAND and RAFL under a laminar demands assumption. In particular, we

assume that the sets of packets demanded by clients form a laminar set family. In other

words, every pair of demanded packet sets is either disjoint or one is a subset of the other.

Such a structure arises, for example, in the Netflix problem described above when layered

coding is used; the packets for a lower encoding rate are a subset of the packets for a higher

encoding rate.

RAND generalizes the minimum Steiner tree problem and RAFL generalizes metric

uncapacitated facility location (MUFL); therefore both problems are NP-hard. We study

approximations.

We develop a constant factor approximation for the RAFL based on the natural LP-

relaxation of the problem. Our algorithm follows the filtering approach developed by Lin

and Vitter [LV92] and later exploited by Shmoys et al. [STA97] in the context of MUFL. In

the MUFL setting, in the filtered solution, each client t is associated with a set of facilities,

say F(t), such that the routing cost of any of those facilities is comparable to the routing
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cost that the client pays in the LP solution. It is then sufficient to open a set of facilities in

such a way that each can be charged to a client with a distinct set of associated facilities.

Clients t that are not charged (a.k.a. free riders) are rerouted to the facilities opened for

other charged clients t′ such that F(t) and F(t′) overlap, and furthermore the routing cost

for t′ is smaller than that for t. Then, using the triangle inequality, the cost of rerouting

can be bounded and this gives a constant factor approximation. In our setting, it is not

sufficient to ensure that the routing cost of t′ is smaller than that of t. In addition, we must

ensure that the facility opened by t′ can support the demand of t, otherwise every time

we reroute a client we incur extra facility costs. Ensuring these two properties is tricky

because clients with low routing costs may also have small demand sets; so essentially, these

properties require us to consider clients according to two distinct and potentially conflicting

orderings.

In order to deal with this issue, our algorithm is run in two phases. In the first phase

we consider clients in order of increasing routing costs, in order to determine which clients

will pay for their facilities and which ones are free riders. In the second phase, we consider

free riders in decreasing order of the sizes of their demand sets. Each free rider is associated

with a set of paying clients that pay for the facility that this client opens. Every time a free

rider opens a facility, we reroute to it all of the other clients whose paying neighbors overlap

with those of this facility. In this manner we can ensure that whenever a client is rerouted,

it is routed to a facility that already produces the packets it needs. Unfortunately, our

algorithm charges each paying client multiple times for different facilities opened. We ensure

that the costs that a client pays each time it is charged form a geometrically decreasing

sequence, and can therefore be bounded in terms of the LP solution. Overall we obtain a

27-approximation.

For RAND an O(log n) randomized approximation can be obtained via tree embed-

dings [FRT03] because the problem is trivially solvable on trees; here n is the number of
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nodes in the network. We give a simple deterministic combinatorial O(logP ) approximation,

where P is the number of distinct packets to be routed. Note that if two or more packets

are essentially identical in that they are desired by exactly the same set of clients, then we

can combine them into a single packet (albeit with a larger size). Then, under the laminar

demands assumption, P is always at most the number of distinct demand sets or clients,

which is at most n, the total number of nodes in the network. In fact in applications such

as the Netflix multicast problem described above, we expect n to be much larger than P .

Furthermore, our O(logP ) approximation algorithm is a natural combinatorial algorithm

that is simple and fast to implement. It is convenient to represent the laminar family of

demand sets in the form of a tree where the demand set at any node is a proper subset of that

at its parent and disjoint from those at its siblings. Our algorithm begins with some minor

preprocessing of the demand tree to ensure that the tree has small (logarithmic) height. It

then traverses the demand tree in a top-down fashion, and at each node of the tree constructs

a (approximately optimal) Steiner tree over all the terminals with the corresponding demand

set connecting them to the source. We show that the cost of the Steiner trees constructed

at every level of the demand tree is bounded by a constant times the cost of the optimal

solution, and therefore obtain an overall approximation factor proportional to the height of

the tree. The height of the tree can however be much larger than logP because packets

have different sizes. In order to prove an approximation factor of O(logP ) we need to do

a more careful bounding of the total cost spent on long chains of degree 2 in the demand

tree. Using the Steiner tree algorithm of Robins and Zelikovsky [RZ00] as a subroutine we

obtain a (6.2 logP )-approximation.
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2.1.2 Related Work

RAND is closely related to single-source uniform buy-at-bulk network design (BaBND) [AA97,

GKR03, MMP08] in that both problems involve a trade-off between picking short paths

between the source and the clients and trying to merge different paths to avail of volume

discounts. However the actual cost structure of the two problems is very different. In

BaBND the cost on an edge is a concave function of the total load on the edge; in our setting

the cost is a submodular function of the clients using that edge. Neither of the problems is

a special case of the other. BaBND admits a constant approximation in the single-source

version [GKR03, Tal02] and an O(log n) approximation is known for the general multi-source

multi-sink problem [AA97].

One way of thinking about RAND is to break-up the problem and solution packet-wise:

each packet p defines a subset of the terminals, say Tp, that desire that packet; the solution

restricted to these terminals is essentially solving a Steiner tree problem over the set Tp∪{s}.
Our goal is to pick a single collection of paths such that the sum over packets of the costs

of these Steiner trees is minimized. In this respect, the problem is related to variants of the

Steiner tree problem where the set of terminals is not precisely known before hand. This

includes the maybecast problem of Karger and Minkoff [KM00] for which a constant factor

approximation is known, as well as the universal Steiner tree problem [JLN+05] for which a

randomized logarithmic approximation can again be obtained through tree embeddings and

this is the best possible [BCK10].

Facility location has been extensively studied under various models. The models most

closely related to RAFL are the service installation costs model of Shmoys et al. [SSL04]

and the heirarchical costs model of Svitkina and Tardos [ST06]. In the former, each client

has a production cost associated with it; the cost of opening a facility is equal to a fixed

cost associated with the facility plus the production costs of all the clients assigned to that
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facility. One way of representing these costs is in the form of a two-level tree for each facility

with the fixed cost for the facility at the root of the tree and the client-specific production

costs at the next level nodes. The cost of assigning a set of clients to the facility is the total

cost of the subtree formed by the unique paths connecting the client nodes to the root of the

tree. Svitkina and Tardos generalize this cost model to a tree of arbitrary depth, although

in their setting the trees for different facilities are identical. Both the works present constant

factor approximations for the respective versions, based on a primal-dual approach and

local search respectively. Our model is similar to these models in that our facility costs are

also submodular in the set of clients connecting to a facility. In our setting, the costs can

again be modeled by a tree in which each node is associated with one or more clients; the

cost of a collection of clients is given by the total cost of the union of subtrees rooted at

those clients (as opposed to the portion of the tree “above” the clients). Therefore, neither

of the two settings generalize the other. Moreover, facility costs in our setting are different

for different facilities, although they are related through a multiplier per facility. Finally,

while in Shmoys et al. and Svitkina et al. routing costs are given merely by the metric over

facilities and clients, in our setting they are given by the distances times the total demand

routed.

For modeling information flow, Hayrapetyan et al. [HST05] have studied a single-source

network design problem with monotone submodular costs on edges, and a group facility

location problem. The network design setting generalizes ours in that edge costs can be

arbitrary submodular functions of the clients using the edges; they note that an O(log n)

approximation can be achieved via tree embeddings. In contrast, we obtain an O(logP )

approximation, where P , the number of distinct packets in the system, is always at most n

and generally much smaller. In the group facility location problem, edge costs are identical

to those in RAND, but neither of the problems subsumes the other: the former assumes

there are multiple facilities (sources) with fixed opening costs, but also limits the number of
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distinct packets per client to at most one.

In Section 2.2 we formally define the problems and develop notation. We describe our

logarithmic-approximation algorithm for RAND in Section 2.4 and our constant-factor

approximation for RAFL in Section 2.3. Finally, we conclude with some open questions in

Section 2.5.

2.2 Problem Definition and Preliminaries

The traffic-redundancy aware network design (RAND) problem is defined as follows. We

are given a graph G = (V,E) with weights ce ∈ <+ on edges e ∈ E, and a special node

s called the source. In addition, we are given a set T of clients or terminals located at

different nodes in the graph. The source carries a set Π of packets with |Π| = P . Each

packet p ∈ Π is associated with a weight wp; we assume that the weights are integral. Each

terminal t ∈ T desires some subset of the packets; this is called the terminal’s demand and

is denoted by D(t). We use the convention D(s) = Π. Also let w(S) =
∑

p∈S wp denote the

total weight of a set S of packets.

We assume that the collection of demand sets D = {D(t)}t∈T forms a laminar family of

sets. In particular, for any two terminals t1, t2 ∈ T , D(t1) ∩D(t2) 6= ∅ implies that either

D(t1) ⊆ D(t2) or D(t2) ⊆ D(t1). We use a tree τ to represent the containment relationship

between sets in the laminar family. The nodes of τ are sets in D. A demand set X is a

parent of another set Y if Y ⊂ X and there is no set Z ∈ D with Y ⊂ Z ⊂ X. At the root

of the tree is the universe Π of packets. For a demand set X in the tree τ , we use TX to

denote the terminals t ∈ T with D(t) = X.

We denote an instance of RAND by the tuple (G, T,D, τ).

The solution to RAND is a collection of paths P = {Pt}t∈T , with Pt connecting the

terminal t to the source s. Given this solution, an edge e ∈ E carries the set SP(e) =
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∪t∈T :Pt3eD(t) of packets. The load on the edge is wP(e) = w(SP(e)). We drop the subscript

P when it is clear from the context. The cost of the solution P is cost(P) =
∑

e∈E cewP(e).

Our goal is to find a solution of minimum cost.

Let OPT = argminfeasible P cost(P) be an optimal solution. For a subset W of terminals,

we use OPT(W ) to denote the restriction of OPT to W , that is, the collection of paths

{Pt ∈ OPT}t∈W .

In the traffic-redundancy aware facility location problem (RAFL), we are given a set F
of facilities, and a graph over T ∪ F with edge weights ce. Let c(u, v) denote the shortest

path distance between nodes u and v in the graph under the metric c. Furthermore, each

facility f ∈ F has a cost λf associated with it.

A solution to this problem is an assignment A from terminals to facilities. The assignment

specifies the set of packets that a facility f needs to produce in order to serve all the terminals

connected to it: SA(f) = ∪t∈T :A(t)=fD(t). The load on the facility is wA(f) = w(SA(f)).

We drop the subscript A when it is clear from the context. The cost of the solution A

is cost(A) =
∑

f∈F λfwA(f) +
∑

t∈T w(D(t))c(t, A(t)). The first component of the cost is

called the facility opening cost Cf (A), and the second the routing cost Cr(A) of the solution.

Once again our goal is to find a solution of minimum cost.

Both RAND and RAFL are NP-hard because they generalize Steiner tree and metric

uncapacitated facility location respectively. Our goal is to find approximation algorithms.

2.3 A Constant Factor Approximation for RAFL

In this section we present a constant factor approximation for the RAFL. For ease of

exposition we assume that all packets have unit weight, and write |S| for the total size or

weight of a set S of packets. This assumption is without loss of generality. We further

assume without loss of generality that minf∈F λf = 1.
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The following is a natural LP-relaxation of RAFL. Here xt,f is an indicator for whether

terminal t is assigned to facility f , and yf,p denotes the extent to which facility f produces

packet p.

minimize
∑
f∈F

∑
p∈Π

λfyf,p +
∑
t∈T

∑
f∈F

|D(t)|xt,fc(t, f)

subject to
∑
f∈F

xt,f ≥ 1 ∀t ∈ T

yf,p ≥ xt,f ∀t, f, p ∈ D(t)

Our approach begins along the lines of the filtering approach developed by Lin and

Vitter [LV92] and employs some of the rounding ideas of Shmoys et al. [STA97] developed

for metric uncapacitated facility location. In particular, given an optimal solution to the LP,

we preprocess the solution at a constant factor loss in performance such that each terminal

is assigned to a non-zero extent only to facilities for which the terminal’s routing cost is

within a small constant factor of the corresponding average amount in the LP. At this point,

each terminal can be assigned to any facility to which it is fractionally assigned by the

filtered solution, at a low routing cost. The key part of the analysis is bounding the cost for

producing packets at facilities.

Let F(t) denote the set of facilities to which t is assigned fractionally by the filtered

solution. In Shmoys et al.’s setting, in order to bound the cost of opening facilities, it is

sufficient to find a “paying” terminal for each open facility such that the sets F(t) for paying

terminals are mutually disjoint. For each terminal t that is not paying, there exists at least

one representative paying terminal t′ such that F(t) and F(t′) overlap; any such terminal

t is assigned to the facility opened by its representative terminal t′ at a slight increase in

routing cost as long as the average routing cost of t′ is no more than that of t. In order to



18

accomplish this, we process terminals in order of increasing average routing cost.

In our setting, this approach has a basic flaw. The terminal t′ may have a much smaller

demand set compared to the terminal t. Then, if we assign t to the facility opened by t′,

the facility needs to produce many more packets and its new larger opening cost can no

longer be charged to t′. Unfortunately, it is not possible to ensure that t′ has both a small

average routing cost than t as well as a larger demand set. Instead, we divide the process

of opening facilities into two parts. First we determine which terminals are paying and

which ones are not by processing facilities in order of increasing average routing cost. Then

we decide which facilities to open by processing the non-paying terminals in the order of

decreasing demand set sizes.

The algorithm is described formally below. We first introduce some notation. Let (x∗, y∗)

denote the optimal solution to the RAFL LP given above. Let C∗r (t) =
∑

f∈F x
∗
t,fc(t, f) and

C∗f (t) =
∑

f∈F x
∗
t,fλf denote the average routing and facility opening costs respectively under

the solution (x∗, y∗) associated with a terminal t. The total routing and facility opening

costs of the solution are given by C∗r =
∑

t∈T |D(t)|C∗r (t) and C∗f =
∑

f∈F
∑

p∈Π y
∗
f,pλf

respectively. Likewise, for a feasible solution (x, y), we use C
(x,y)
r (t) and C

(x,y)
f (t) to denote

the average routing and facility opening costs associated with a terminal t respectively. We

drop the superscript (x, y) when it is clear from context. Also let Cr(x, y) and Cf(x, y)

denote the total routing and facility opening costs of the solution (x, y).

Our algorithm proceeds in three stages. The first is a filtering stage in which we convert

the solution (x∗, y∗) into a fractional solution (x, y) which satisfies the following property:

for all t, f with xt,f > 0, c(t, f) ≤ αC∗r (t). Here α is a parameter that we fix later. For a

terminal t, we use F(t) to denote all the facilities f that are fractionally assigned to t in

(x, y), that is, have xt,f > 0.

In the second stage of the algorithm, we classify terminals into paying terminals T p and

free terminals T f . Essentially, a terminal t becomes a free terminal if any of the facilities in
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Algorithm 1 Rounding algorithm for RAFL

Given: LP solution (x∗, y∗); Return: Assignment A from terminals to facilities
Phase 1: Filtering

1: for all t ∈ T
2: Let C∗r (t) =

∑
f∈F x

∗
t,fc(t, f) and C∗f (t) =

∑
f∈F x

∗
t,fλf

3: For all f ∈ F , if c(t, f) > αC∗r (t) set xt,f = 0 else xt,f = x∗t,f .
4: Renormalize xt,f so that

∑
f xt,f = 1.

5: Let F(t) = {f : xt,f > 0}, Cf (t) =
∑

f∈F xt,fλf , and Cr(t) =
∑

f∈F xt,fc(t, f).
6: For all f ∈ F and p ∈ Π, set yf,p = maxt∈T :D(t)3p xt,f .

Phase 2: Classification of terminals into paying and free

7: Initialize paying and free terminal sets: T p = ∅ and T f = ∅.
8: For all t ∈ T initialize temporary assignment Ã(t) = ∅, permanent assignment A(t) = ∅,

and cover Cov(t) = ∅.
9: For all f ∈ F initialize paying terminal set Pay(f) = ∅ and final paying set FPay(f) = ∅.

10: case T \ (T p ∪ T f) 6= ∅
11: Let t = argminj∈T\(T p∪T f ) C

∗
r (j). {Select terminal with least connection cost}

12: if there exists f ∈ F(t) such that Pay(f) covers t then
13: T f = T f ∪ {t} {t is a free terminal}
14: Ã(t) = f
15: Assign covering set for t: Cov(t) = {j ∈ Pay(f) | D(j) ∩D(t) 6= ∅}
16: else
17: T p = T p ∪ {t} {t is a paying terminal}
18: For all f ∈ F(t) update Pay(f) = Pay(f) ∪ {t}

Phase 3: Opening facilities

19: For all t ∈ T p assign level `(t) = dlog2Cf (t)e; for all t ∈ T f assign `(t) = minj∈Cov(t) `(j).

20: Initialize T fd = {t ∈ T f | `(t) = d} and for all t ∈ T fd set Γd(t) = {t′ ∈ T fd |
Cov(t) ∩ Cov(t′) 6= ∅}.

21: for d = 0 to maxj∈T p `(j)

22: Initialize W = T fd {Repeat till all terminals in T fd have been assigned a permanent
facility}.

23: case W 6= ∅
24: Let t ∈ argmaxj∈W |D(j)| {Select any terminal with the largest demand set}.
25: Let t̄ ∈ argminj∈Γd(t) C

∗
r (j).

26: Let facility φ(t̄) ∈ argminf∈∪j∈Cov(t̄)F(j) λf .

27: Let A(t) = φ(t̄){We say that t opens the facility φ(t̄).}
28: For all t′ ∈ Γd(t), assign A(t′) = A(t). Update W = W \ (Γd(t) + {t}).
29: Assign final paying set for facility A(t): FPay(A(t)) = Cov(t).
30: for all t ∈ T p
31: Let A(t) ∈ argminf∈F(t) λf .
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F(t) is already expected to produce a large fraction of t’s demand. We record this facility

as t’s temporary assignment Ã(t). To this end, we say that a set of terminals W covers

a terminal t if |D(t) \ (∪t′∈WD(t′))| < 1
2
|D(t)|. If a terminal t is not covered at any of the

facilities in F(t), then it becomes a paying terminal and can potentially pay for any of the

facilities in F(t). Pay(f) tracks the set of terminals paying for a facility f .

Finally, in the third stage of the algorithm, we pick a permanent assignment from

terminals to facilities by considering facilities in decreasing order of the sizes of their demand

sets. As a first cut approach, suppose that we assign a free terminal t to the facility at which

it is covered (Ã(t)), and pay for that facility using the paying terminals associated with it.

To ensure that no paying terminal t′ ends up paying for two or more opened facilities, we

consider all the free terminals that this paying terminal covers and assign those also to the

first facility that the paying terminal pays for. The order in which we assign free terminals

to facilities ensures that in this last step we do not increase the facility opening cost of the

solution. Here is the catch: which facility is actually opened is decided by the free terminal

t that starts this process and may be one of the more expensive facilities in the paying

terminal t′’s set F(t′). In this case, the paying terminal does not have enough charge in the

LP solution to pay for this facility. In order to avoid this situation, we consider all of the

facilities that are “close” to t or to other free terminals covered by the paying terminals that

cover t. Of these we open the facility with minimum cost and pay for it using the paying

terminals associated with f .

While in our algorithm a paying terminal can end up paying for multiple opened facilities,

in Lemma 2.4 below we argue that the costs of those facilities decrease geometrically and so

the sum can be bounded.

We now formalize this argument. We begin by showing that the fractional solution (x, y)

is not too expensive.
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Lemma 2.1. The solution (x, y) is feasible for the RAFL LP. Moreover Cf (x, y) ≤ α
α−1

C∗f .

Proof. (x, y) is feasible by construction. Note that for all t ∈ T ,
∑

f x
∗
f,t = 1, otherwise the

cost of the solution can be improved. Therefore, by Markov’s inequality,
∑

f :c(f,t)>αC∗r
x∗f,t ≤

1/α. Then, in the renormalization step (Step 4) we set xt,f to be no more than α/(α−1)x∗t,f .

For all f ∈ F and p ∈ Π we set yf,p to be maxt∈T :D(t)3p xt,f . Hence yf,p is no more than

maxt∈T :D(t)3p
α
α−1

x∗t,f , which is no more than α/(α− 1)y∗f,p. This in turn implies the second

part of the claim.

Next we bound the routing cost of the assignment A.

Lemma 2.2. For all i ∈ T , c(i, A(i)) ≤ 9αC∗r (i).

Proof. Let i be a paying terminal that is assigned a facility f in Step 31 of the algorithm.

Then, f ∈ F(i) and therefore, by the definition of x and F(i), c(i, f) ≤ αC∗r (i).

Now, let i be a free terminal which is assigned a facility f in Step 27 or Step 28 of

the algorithm. Say level `(i) = d and let t be the terminal that opened f . Then there

are two possibilities: either i = t or i ∈ Γd(t). In the former case, Ã(t) ∈ F(i) and so

c(i, Ã(t)) ≤ αC∗r (i).

Next we show that if terminal t opens a facility (in Step 27) then for all t′ ∈ Γd(t) we

have c(t′, Ã(t)) ≤ 3αC∗r (t′). Note that Cov(t′) ∩ Cov(t) 6= ∅ and let j be a paying terminal

in Cov(t′) ∩ Cov(t). We have Ã(t) ∈ F(j) and Ã(t′) ∈ F(j). Since terminal j was selected

in the second phase before t′ we have C∗r (j) ≤ C∗r (t′). By triangle inequality we get that

c(t′, Ã(t)) ≤ c(t′, Ã(t′)) + c(Ã(t′), j) + c(j, Ã(t)) ≤ αC∗r (t′) + 2αC∗r (j) ≤ 3αC∗r (t′).

In Step 27 the opened facility, say f , is selected to be φ(t̄) for the terminal t̄ ∈ Γd(t)

with minimum C∗r value. Since f ∈ F(j′) for some j′ ∈ Cov(t̄) we have c(f, t̄) ≤ 3αC∗r (t̄).

Also t̄ is contained in Γd(t), which implies that c(t̄, Ã(t)) ≤ 3αC∗r (t̄).
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Again using triangle inequality we get the desired result: c(i, f) ≤ c(i, Ã(t)) + c(Ã(t), t̄) +

c(t̄, f) ≤ 3αC∗r (i) + 6αC∗r (t̄) ≤ 9αC∗r (i). Here the last inequality follows from the definition

of t̄.

Finally we account for the facility opening cost of the solution. Recall that SA(f) denotes

the set of packets produced at f under the assignment A. We note that a facility f may be

“opened” multiple times by different free terminals in Step 27 of the algorithm. In this case,

we treat each subsequent opening as opening a new copy of f and designate a distinct set

of terminals, FPay(f), to pay for all of the packets to be produced at the new copy freshly

(even though some of them may already be assigned to the facility).

Henceforth, for ease of exposition we will assume that each facility is opened at most

once.

The following lemma notes that |SA(f)| can be bounded in terms of the demand sets of

the terminals finally paying for this facility.

Lemma 2.3. Let f be a facility opened by a free terminal t. Then SA(f) = D(t) ∪
∪j∈Cov(t)D(j). Furthermore, |SA(f)| ≤ 2| ∪j∈Cov(t) D(j)|.

Proof. Let t ∈ T fd and consider a terminal t′ ∈ Γd(t). We claim that D(t′) ⊆ D(t) ∪
∪j∈Cov(t)D(j), and this implies the first part of the lemma. Let j ∈ Cov(t) ∩ Cov(t′). Then,

by the definition of a covering set, D(t′) ∩D(j) 6= ∅. By laminarity, either D(j) ⊃ D(t′) in

which case our claim holds, or D(j) ⊂ D(t′). In the latter case, D(t) ∩ D(j) 6= ∅ implies

D(t) ∩D(t′) 6= ∅. Once again by laminarity, either D(t′) ⊆ D(t), or D(t′) ⊃ D(t). The latter

case cannot hold because t is considered before t′ in phase 3 and therefore |D(t′)| ≤ |D(t)|.
In the former case our claim holds.

The second part of the lemma follows from the definition of covering.
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Using this lemma we can bound the facility opening cost of the assignment A in terms

of the average facility opening costs Cf (t) for the paying terminals t ∈ T p in the fractional

solution (x, y).

Lemma 2.4.
∑

f |SA(f)|λf ≤ 9
∑

t∈T p |D(t)|Cf (t).

Proof. First we bound the opening cost of facilities that were opened by free terminals.

Lemma 2.3 implies that |SA(f)| ≤ 2| ∪j∈FPay(f) D(j)| ≤ 2
∑

j∈FPay(f) |D(j)|. For facility f

write `(f) = d iff the terminal opening it has level d. Note that for facility f with `(f) = d

we have λf ≤ 2d.

Fix a terminal i ∈ T p, and write Cov−1(i) = {j ∈ T f | i ∈ Cov(j)}. Say `(i) = `. Then

Cf (i) ∈ (2`−1, 2`]. By definition, for all j ∈ Cov−1(i) we have `(j) ≤ `.

We claim that i pays for at most one facility at level d for d ≤ `, and does not pay for

any facilities at level d > `. We prove the first part by contradiction. Say there exits f 6= f ′

such that `(f) = `(f ′) = d and i ∈ FPay(f) ∩ FPay(f ′). Write t as the terminal that opens

f and t′ as the terminal that opens f ′. Both t and t′ are in Cov−1(i) and have level equal

to d. Without loss of generality assume t was processed before t′ by the algorithm. Then

t′ ∈ Γd(t) and we would have A(t′) = A(t), contradicting the assumption that they are

assigned to different facilities.

For the second part of the claim, suppose that i ∈ FPay(f) for some facility f . Then f

is opened by a terminal t ∈ Cov−1(i). As stated above, the level of such a terminal t must

be no more than the level of i, hence `(f) ≤ `(i).

For a level d facility f we have λf ≤ 2d and hence
∑

f :FPay(f)3i λf ≤
∑`

d=1 2d ≤ 4Cf(i).
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We therefore get the following chain of inequalities.

∑
f

λf |SA(f)| ≤ 2
∑
f

λf
∑

j∈FPay(f)

|D(j)|

= 2
∑
j∈T p

|D(j)|
∑

f : FPay(f)3j

λf

≤ 8
∑
j∈T p

Cf (j) |D(j)|

Here the first inequality follows from Lemma 2.3 and the second inequality follows from the

bound
∑

f :FPay(f)3i λf ≤ 4Cf (i).

To account for facilities that were opened by paying terminals in Step 31 of the algorithm

we note that for any such facility h, the set SA(h) = D(t) where t is the paying terminal that

opened h. Moreover λh ≤
∑

f xt,fλf and hence the opening cost incurred by the algorithm is

no more than the fractional value, λh|D(t)| ≤ Cf (t) |D(t)|. Hence the total facility opening

cost incurred by the algorithm is no more than 9
∑

t∈T p |D(t)|Cf (t).

To complete the argument, we relate the costs Cf (t) to the total cost Cf (x, y).

Lemma 2.5.
∑

t∈T p |D(t)|Cf (t) ≤ 2Cf (x, y).

Proof. When a terminal t is added to T p (Step 17 of the algorithm) it is not covered at

any of the facilities in F(t). For f ∈ F let L(t, f) = D(t) \ ∪t′∈Pay(f)D(t′) denote the set

of packets in D(t) that is not covered at f at the time that t is considered. Here, Pay(f)

denotes the set of terminals that is paying for f at the time that t is considered. Note

that |L(t, f)| ≥ 1/2|D(t)| for f ∈ F(t). For any facility f the sets L(t, f) are disjoint and

partition the support of yf,p and hence the following chain of inequalities hold:
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∑
p

yf,p ≥
∑
t∈T p

∑
p∈L(t,f)

yf,p

≥
∑
t∈T p

∑
p∈L(t,f)

xt,f

=
∑
t∈T p

|L(t, f)|xt,f (2.1)

We can now derive the desired bound:

Cf (x, y) =
∑
f

∑
p

λfyf,p

=
∑
f

λf
∑
p

yf,p

≥
∑
f

λf
∑
t∈T p

|L(t, f)| xt,f

≥
∑
f

∑
t∈T p

1

2
|D(t)| λfxt,f

=
∑
t∈T p

1

2
|D(t)|

∑
f

λfxt,f

=
1

2

∑
t∈T p

|D(t)|C(x,y)
f (t)

Here the third step follows from inequality (2.1) and the fourth step holds because for any

t ∈ T p and f ∈ F , either xt,f = 0 or f ∈ F(t) and the size of the set L(t, f) is at least half

its demand: |L(t, f)| ≥ 1/2|D(t)|.

Putting together the above lemmas we obtain the following theorem:

Theorem 2.1. Algorithm 1 gives a 27-approximation to the RAFL.

Proof. Lemma 2.2 implies that for any terminal the routing cost is no more than 9α times

the optimal. Also from Lemma 2.4 and Lemma 2.5 we get that the total facility opening
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cost is no more than 18 times the total facility opening cost of the filtered solution Cf (x, y).

Finally from Lemma 2.1 we have Cf(x, y) ≤ α/(α− 1) C∗f , so the facility opening cost of

the generated solution is no more than 18α/(α− 1) times the optimal. Hence the algorithm

achieves an approximation factor of max{9α, 18α
α−1
}, which is minimized at α = 3 to give us

a 27-approximation.

2.4 An O(logP ) Approximation for RAND

In this section we develop an O(logP )-approximation algorithm for the RAND where

P = |Π|. The basic observation that our algorithm hinges on is that if every pair of demand

sets in D is either identical or disjoint, that is, the tree τ is a two-level tree, then the problem

becomes easy and can be approximated to within a small constant factor. In particular,

then the problem becomes one of finding optimal Steiner trees connecting the terminals in

TX to s for every set X ∈ D. The cost of these Steiner trees is purely additive because the

different sets in D are disjoint.

In particular, this implies that for any collection X containing disjoint sets of packets,

we can construct a partial solution over terminals in ∪X∈XTX at a cost of constant times the

cost of the optimal solution. This immediately suggests an algorithm with approximation

ratio a constant times the depth of the tree τ : define the level of a node in τ as its distance

from the root Π; for every level k, consider the collection Xk of sets at level k and construct

a constant factor approximation over terminals in ∪X∈Xk
TX .

In order to obtain a small approximation ratio through this approach, our algorithm

first performs a preprocessing of the demand tree τ to ensure, at small cost, that for any

pair of demand sets in the tree where one is a parent of the other, the total weight of the

parent is at least twice as large as the total weight of the child. Since the weight of every

packet is integral, this implies that the depth of the preprocessed tree is at most logw(Π),
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and gives us an O(logw(Π)) approximation.

To obtain an O(logP ) approximation, we need to do a more clever analysis. As discussed

in the introduction, P denotes the number of effectively distinct packets in the instance.

In particular, we can assume without loss of generality that P is equal to the number of

nodes in the tree τ . Our next key observation is that we can collectively bound the total

cost of Steiner trees for nodes in a long root to leaf chain of nodes by a constant times

the cost of the optimal solution (rather than by the length of the chain times the optimal

cost). Here we crucially use the fact that each subsequent node in the chain has a weight at

most half that of the preceding node, a fact that is ensured through our preprocessing step.

Given this, we break up the demand tree into logP collections of chains, each of which

corresponds to disjoint packet sets. The total cost of Steiner trees over each collection of

chains can then be bounded to within a constant factor of the optimal cost, and we get an

overall O(logP ) approximation.

We now present our algorithm and analysis formally.

Preprocessing the tree τ . Our preprocessing phase is described in Algorithm 2 below. The

preprocessing phase makes two changes to the given instance. First, it changes the demand

sets of some terminals to supersets of their original demands. Second, after these changes to

demand sets, if there are nodes in τ that do not have any terminals associated with them,

it merges these nodes with their parents.

Algorithm 2 Preprocessing algorithm

Given: Instance (G, T,D, τ); Return: New instance (G, T,D′, τ ′)
1: Perform depth first search over the tree τ .
2: for all nodes X ∈ D encountered during DFS
3: Let Y be the parent of X in τ
4: if w(X) > 1

2
w(Y ) then

5: For all t ∈ TX , set D′(t) = Y .
6: Merge X with Y . That is, set TY = TY ∪ TX , remove X from τ , and reattach the

children of X in τ as the children of Y in the modified tree.
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We obtain the following lemma.

Lemma 2.6. Consider an instance (G, T,D, τ) of RAND. Then Algorithm 2 returns an

instance (G, T,D′, τ ′) with the following properties:

1. For every t ∈ T , D′(t) ⊇ D(t) and w(D′(t)) ≤ 2w(D(t)).

2. D′ is a laminar family.

3. For every pair of sets X, Y ∈ D′ such that X is a child of Y in τ ′, w(Y ) ≥ 2w(X).

4. The cost of the optimal solution over (G, T,D′, τ ′) is at most twice that of the optimal

solution over (G, T,D, τ).

5. Any feasible solution to (G, T,D′, τ ′) is also feasible for (G, T,D, τ).

Proof. We first remark that the demand of any terminal t is modified at most once, when its

original node D(t) is encountered in the DFS over τ ; after this, the new node D′(t) is never

processed again by DFS. Then, it is easy to see that the first property holds. The second

property holds because τ ′ is a tree over sets in D′ and therefore any two sets in D′ are either

disjoint or one is an ancestor of another. The third property holds by construction: when

the node X is encountered by the DFS, if the node survives the preprocessing, then it holds

that w(X) ≤ 1
2
w(Y ). The fifth property follows immediately from the first.

To prove the fourth property, we note that for any two terminals t1 and t2, D(t1) ⊂ D(t2)

implies D′(t1) ⊆ D′(t2). Now consider any optimal solution P = {Pt}t∈T to (G, T,D, τ).

We will show that the cost of the solution P for the new instance (G, T,D′, τ ′) is no more

than twice its cost for (G, T,D, τ). For every edge e ∈ E consider the set of terminals,

say T (e), that use e: T (e) = {t : Pt 3 e}. Let T ′(e) be the subset of T (e) of terminals

whose demand is not contained inside the demand of any other terminals in T (e); that

is T ′(e) denotes the terminals with the maximal demand sets. Then, in the instance
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(G, T,D, τ), w(SP(e)) =
∑

t∈T ′(e) w(D(t)). Moreover by our observation above, in the

new instance (G, T,D′, τ ′), terminals in T ′(e) are still the maximal demand terminals and

w(SP(e)) =
∑

t∈T ′(e) w(D′(t)). The claim now follows from the first property.

Main algorithm.

We now proceed to describe the main algorithm. Henceforth we will assume that the

given instance of RAND satisfies the properties listed in Lemma 2.6, in particular, property

3.

Algorithm 3 A logarithmic approximation for RAND

Given: Instance (G, T,D, τ) satisfying the properties in Lemma 2.6; Return: Collection of
paths from each terminal to the source s.

1: Perform depth first search over the tree τ .
2: for all nodes X ∈ D encountered during DFS
3: Construct an approximately optimal Steiner tree S(X) in G over TX ∪ {s}.
4: For every t ∈ TX , return the unique path in S(X) from t to s.

We first define some notation. For a demand set Y , let S∗(Y ) denote the optimal

Steiner tree over TY ∪ {s}. The cost of this Steiner tree is cost(S∗(Y )) = w(Y )
∑

e∈S∗(Y ) ce.

Analogously we define the cost of an arbitrary Steiner tree S(Y ) over TY ∪{s} as cost(S(Y )).

In our analysis, we sometimes need to consider sets of nodes in τ and bound their

cost collectively. To this end, we define a chain Y to be a set Y = {Y0, Y1, · · · , Yk} where

for every i < k, Yi is a parent of Yi+1. Recall that this implies Y0 ⊃ Y1 ⊃ · · · ⊃ Yk and

w(Yi) ≥ 2w(Yi+1) for all i < k. We call the node Y0 the start of the chain Y . We say that

two chains Y1 and Y2 are disjoint if (∪Y ∈Y1
Y ) ∩ (∪Y ∈Y2

Y ) = ∅.
The following is the main lemma of this section and allows us to bound the cost of large

collections of nodes in τ .

Lemma 2.7. Let Y = {Y 1, Y 2, · · · } be a collection of mutually disjoint chains. That is,

for any Y i, Y j ∈ Y, Y i and Y j are disjoint. Then
∑

Y ∈Y
∑

Y ∈Y cost(S∗(Y )) is at most

2cost(OPT).
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Proof. For Y ∈ Y , let OPT(Y ) denote OPT(∪Y ∈Y TY ), the restriction of the optimal solution

to the terminals associated with sets in Y . Note that because the chains in Y are disjoint,∑
Y ∈Y cost(OPT(Y )) ≤ cost(OPT). Therefore, for the rest of the proof we will argue that

for any Y ∈ Y ,
∑

Y ∈Y cost(S∗(Y )) ≤ 2cost(OPT(Y )), and this will imply the lemma.

To prove the claim, fix a chain Y ∈ Y, and let Y = {Y0, Y1, · · · , Yk} where Y0 ⊃ Y1 ⊃
· · · ⊃ Yk, and w(Yi) ≥ 2w(Yi+1) for all i < k. Recall that OPT(Y ) contains a path for every

terminal in ∪Y ∈Y TY . Let PY denote the collection of paths for terminals in TY . We say

that e ∈ PY if e ∈ ∪t∈TY
Pt. Let S(Y ) denote the Steiner tree over TY ∪ {s} defined by PY

and note that cost(S∗(Y )) ≤ cost(S(Y )) = w(Y )
∑

e∈PY
ce. Then,

∑
Y ∈Y

cost(S∗(Y )) ≤
∑
e∈E

ce
∑

Y ∈Y :PY 3e

w(Y )

On the other hand, because of the containment structure of sets in Y ,

cost(OPT(Y )) =
∑
e∈E

ce max
Y ∈Y :PY 3e

w(Y )

To conclude the proof we claim that for every edge e,
∑

Y ∈Y :PY 3ew(Y ) ≤ 2 maxY ∈Y :PY 3ew(Y ).

But this is easy to see because weights of sets Y ∈ Y are geometrically decreasing by a

factor of at least two.

Next we show that the tree τ can be decomposed into at most logP different collections

of mutually disjoint chains. This along with Lemma 2.7 will allow us to prove our desired

approximation.

Lemma 2.8. Any demand tree τ can be decomposed into at most logP different collections

of mutually disjoint chains Y1,Y2, · · · ,Yk, such that each node in τ belongs to exactly one

collection. Here P is the number of nodes in τ .
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Proof. We decompose the tree by finding a long chain, removing it from the tree, and then

recursing on the remaining subtrees. Given a tree τ with root Y0, we start at Y0 and follow

a path down to a leaf. Let m denote the number of nodes in τ . At any node, we consider

the sizes of the subtrees rooted at the node in terms of the number of nodes in the tree;

the path then moves to the child corresponding to the largest subtree. Note that all of the

other remaining subtrees rooted at the node have at most m/2 nodes.

Let Y = {Y0, Y1, · · · , Yk} be the path obtained. This collection of nodes is a chain by

definition. Consider removing the nodes in Y from τ . We then note the following properties:

(1) Every remaining connected component of the tree is of size at most m/2; (2) Let τ1 and

τ2 denote any two connected components. Then (∪X∈τ1X) ∩ (∪X∈τ2X) = ∅, that is, the

connected components are mutually disjoint.

The second property can be proved by contradiction. If two of the components are not

disjoint, then by laminarity, they contain nodes X1 and X2 respectively such that X1 is an

ancestor of X2 in τ . Since X1 and X2 belong to different connected components, there must

be a node on the path between them in τ that is in the chain Y . Then, all ancestors of

this node are in Y including X1 which contradicts the fact that X1 belongs to a connected

component left after removing the chain.

We output {Y } as the first collection of mutually disjoint chains. (Note that this first

collection has only one chain in it.) Now let τ1, τ2, · · · be the connected components left over

in τ after removing the nodes in Y . We recursively find collections of mutually disjoint chains

in each of the components. Call these Yi1,Yi2, · · · etc. for the ith connected component.

Then, we output the collections ∪iYij for each j. Since the connected components are

mutually disjoint, the collections we output are also mutually disjoint. Furthermore, since

the sizes of the connected components decrease by a factor of 2 each time we go down a

level of recursion, it is easy to argue that the number of collections we output are bounded

by logP where P is the number of nodes in the tree τ that we started out with.
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We now present the main theorem for this section:

Theorem 2.2. Let (G, T,D, τ) be an instance of RAND that satisfies the conditions in

Lemma 2.6. Then Algorithm 3 obtains a (2α logP )-approximation for the RAND over this

instance where P is the number of effectively distinct packets in the instance, and α is the

approximation factor of the Steiner tree algorithm used in Step 3 of the algorithm.

Proof. For every set X ∈ D, let S(X) denote the Steiner tree built by our algorithm over

TX ∪{s}. Then we have cost(S(X)) ≤ αcost(S∗(X)). We first use Lemma 2.8 to decompose

the tree τ into at most logP collections of mutually disjoint chains. Call these collections

Y1,Y2, · · · ,Yk.
The total cost of our solution can now be written as

∑
Y ∈D

cost(S(Y )) =
∑
i≤k

∑
Y ∈Yi

∑
Y ∈Y

cost(S(Y ))

≤ α
∑
i≤k

∑
Y ∈Yi

∑
Y ∈Y

cost(S∗(Y ))

≤ α
∑
i≤k

2cost(OPT)

= 2αk cost(OPT)

Here the second inequality follows by applying Lemma 2.7. The theorem now follows by

noting that k ≤ logP .

Combining Theorem 2.2 with Lemma 2.6 we get the following result.

Corollary 2.1. Algorithms 2 and 3 together obtain a (4α logP )-approximation for the

RAND where α is the approximation factor of the Steiner tree algorithm used in the

algorithm.
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We conclude this section by noting that Algorithm 3 can be implemented in a simple

combinatorial fashion in O(n3) time as a generalization of Prim’s algorithm for the minimum

spanning tree problem as follows. This version of the algorithm obtains an (8 logP )-

approximation.

1. Let anc(t) denote the set of ancestors of t (those with demands that are strict supersets

of D(t)), and peer(t) denote the set of its peers (those with demands identical to that

of t).

2. At any step call a terminal t eligible if all of its ancestors are already connected to

the root.

3. Initialize W = {s}.

4. Let ∆(t) denote the distance in G from t to its closest node in W ∩ (anc(t) ∪ peer(t)).

5. While W 6= T , pick the eligible terminal with the smallest ∆(t) and connect it to its

closest node in W ∩ (anc(t) ∪ peer(t)). Update W = W ∪ {t} and update ∆.

2.5 Conclusion and Open Questions

In this chapter we consider network design and facility location problems with a cost structure

that captures economy of scale. As mentioned in Section 2.1.2, both RAND and buy-at-bulk

network design (BaBND) involve a tradeoff between connecting the source to the clients

via short paths and trying to merge different paths to avail volume discounts. Therefore,

even though the cost structures in BaBND and RAND are different, the fact that the sink-

source multiple-sink version of BaBND has constant-factor approximations [Tal06, GKR+07]

suggests that we might be able to improve on the logarithmic approximation for RAND.
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One possible approach towards a constant-factor approximation for RAND, with laminar

demands, is to generalize the framework of Gupta et al. [GKR+07]. In the context of

BaBND, they address the aforementioned tradeoff by merging the paths of a randomly

selected subset of terminals and individually connecting the remaining terminals to the

source via short paths. At a high-level, this framework gives us an approach for RAND

where a solution is constructed in multiple sample-augment phases. That is, in each phase

first we select a random subset of unassigned terminals and then connect them to the source

by constructing a low-cost Steiner tree that spans this subset. We satisfy the demands

of the terminals selected in a phase by routing a sufficiently large set of packets through

the constructed Steiner tree. In first phase we route all of Π through the constructed tree

and in successive phase we route demand sets present at intermediate levels of τ . The idea

is to ensure that the demands of the terminals are satisfied and the expected cost of the

constructed solution is comparable to the optimal.

The question of eliminating the laminarity assumption requires further study. New

ideas are required to tackle this problem, since it likely that there are no approximation

preserving reductions from arbitrary instances to the ones that have laminar demands. A

naive approach of modifying each demand set, say by adding or removing few packets, to

generate a laminar family does not work.

Considering submodular load functions on edges gives us an important generalization of

RAND and RAFL. In this setting the routing cost on an edge e is proportional to fe(Te),

where fe is a submodular function and Te is the set of terminals that are connected to the

source through e. The class of problems in which the submodular functions across edges

are different cannot be approximated within a factor of (1 − o(1)) log n, under standard

complexity theoretic assumptions. This inapproximability result can be established by

reducing set cover to the nonuniform version of the problem. Note that the reduction

at hand does not apply to the uniform version in which function fe is the same for all
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edges. In fact, a logarithmic approximation for the uniform version can be directly achieved

via randomized tree embedding [FRT03]. Hence, determining if the uniform version has

sublogarithmic approximations remains an interesting open question.
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3 Multi-Route Cuts

3.1 Introduction

Finding small cuts in graphs is one of the most fundamental combinatorial optimization

problems and there is a large literature on exact and approximate algorithms for various

versions of this problem. Cut problems have numerous applications; One of the foremost

among these is finding bottlenecks in communication networks. For example, the celebrated

max-flow min-cut theorem states that the size of the minimum s-t cut in a network is equal

to the maximum flow that can be routed between s and t. Similar (but weaker) duality

theorems hold for more general communication patterns, for example, relating the maximum

multicommodity flow to the minimum multicut.

From the point of view of reliability of service in the face of edge or node failures, a

natural extension to finding the maximum flow in a network is to find a large flow that is

spread out across multiple disjoint paths. Such a flow is called a multi-route flow. Multi-

route flows can be related back to cuts via Menger’s theorem [men]: a pair of terminals

in a network admits a k-route flow (i.e. is k-edge-connected) if and only if the minimum

cut between the terminals contains at least k edges. This suggests the following natural

question: what is the minimum cost set of edges or vertices the removal of which reduces

the connectivity of terminal pairs in the network to below a certain threshold? This is the

minimum multi-route cut problem.

We provide approximation algorithms for multi-route cut problems. Like traditional

cut problems, multi-route cut problems come in multiple flavors depending on whether we

are allowed to remove edges or vertices, the desired connectivity (s-t cut, multiway cut,

multicut, etc.), or whether the connectivity is in terms of edge-disjoint or node-disjoint

paths. We provide constant and logarithmic approximations to several of these variants.
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It is easy to see that multi-route cut problems are at least as hard as their 1-route

counterparts, but they can sometimes be much harder. For example, as noted in [CK08],

a reduction from (1-route) multiway cut shows that single-source multi-sink 2-route cut

is APX-hard, whereas the corresponding 1-route version is equivalent to minimum s-t cut

and is poly-time solvable. Likewise, we show in Section 3.5.1 that the following “red-blue”

version of s-t k-route cut is NP-hard for large k.1 In the red-blue s-t cut problem, the edge

set is divided into red edges and blue edges; The red edges are associated with certain

connectivities and the blue edges with certain costs; The goal is to find an s-t with total

connectivity below a certain threshold and total cost minimized. This version is equivalent

to k-route s-t cut when all the edge connectivities are polynomially bounded.

Multi-route flows were introduced by Kishimoto [Kis96], and have found a number

of applications in communication networks [ACKN07, BCK05, BCSK07]. In a series of

papers Kishimoto and others [Kis96, KT93, AO02] developed efficient algorithms for finding

multi-route flows, as well as explored approximate max-flow min-cut theorems in this setting.

For example, Bagchi et al. [BCKS04] showed a strong duality theorem for multi-route

flows and cuts in the single-source single-sink case under a non-standard definition of the

cost of a cut. More recently, Bruhn et al. [BČHK07] considered the single-source uniform

costs version of the problem, that is where each edge has a cost of 1. They showed that

the gap between a maximum k-route flow and a traditional (1-route) maximum flow is

at most a factor of 2(1− 1/k). This in turn implies a simple 2(k − 1) approximation for

the single-source k-route cut problem. Bruhn et al. left open the question of designing

sub-polynomial approximation algorithms for multi-route cut problems. Note that unlike for

1-route cut problems, in the multi-route case, the uniform cost assumption is not without

loss of generality. In particular, replacing an edge of cost c with c parallel edges of cost 1

each can potentially change connectivity between terminal pairs. Therefore Bruhn et al.’s

1The problem is polynomial time solvable for constant k.
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approximation does not extend to a general single-source multi-route cut problem.

The first non-trivial approximations for general multi-route cut problems were developed

by Chekuri and Khanna [CK08]. Chekuri et al. gave LP-rounding based polylogarithmic

approximations for the special case of 2-route cuts. In addition to improving upon their

approximation factors we solve the two main open problems mentioned in their work—

obtaining a polylogarithmic approximation for the 2-route node-disjoint multicut problem,

as well as the first non-trivial approximations for k-route cuts with k ≥ 3. Moreover, while

Chekuri and Khanna’s algorithms are based on a specialized rounding scheme, a main

contribution of our work is to develop a general approach based on region growing to solve

multi-route cut problems.

3.1.1 Results and Techniques

We consider a natural LP relaxation for multi-route cut problems and extend the “region

growing” technique of Garg, Vazirani, and Yannakakis [GVY96] (see also [Shm97]) to this

case, providing improved approximations for several versions of the 2-route cut problem

and the first non-trivial approximations for k-route cut problems.

In a traditional multicut problem the region growing technique guarantees the existence

of a cut around every terminal of cost no more than a logarithmic factor larger than the

total contribution to the LP objective of edges strictly inside the cut; a logarithmic bound

on the approximation then follows from the disjointness of the cuts constructed. Consider a

version of the multi-route cut problem in which every edge has cost either 1 or ∞.2 Then

our region growing lemma guarantees the existence of a cut around every terminal that has

few infinity-cost edges crossing it, while having cost at most a logarithmic factor larger than

the contribution to the LP objective of the 1-cost edges inside the cut.

2This version in fact captures arbitrary cost multi-route cut problems without loss of generality.
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In a traditional multicut setting, an approximation can be obtained by applying region

growing successively at each terminal until all terminal pairs are disconnected; In particular,

every region has diameter less than 1 and therefore cannot contain more than one terminal

belonging to the same terminal pair. In the multi-route setting there are two problems

with this approach. First, our LP relaxation defines h different metrics over the graph, one

for each terminal pair. Regions are grown with respect to the metric corresponding to the

terminal under consideration. Therefore, we can no longer ensure that no terminal pairs

survive within a region, and are forced to recurse within regions. This leads to a further

logarithmic loss in the approximation factor. Second, as we remove successive regions from

the graph, since we do not remove all the boundary edges (specifically, the infinite cost

ones), some paths through these regions survive and it becomes tricky to analyze the final

connectivity between terminal pairs.

We are able to overcome all of these difficulties for the case of 2-route cuts, and provide

O(log2 h) approximations to 2-route multicut and multiway cut, where the previous best

known approximations due to Chekuri et al. [CK08] were O(log2 n log h) and O(log n log h)

respectively. Here h is the number of terminals, and n is the number of vertices in the graph.

Furthermore, while Chekuri et al.’s technique does not extend to the node-disjoint version of

2-route multicut, ours extends easily and naturally giving the same approximation factors.

While our region growing lemma extends to the case of k-route problems with arbitrary

k, overcoming the difficulties outlined above appears to require significantly new techinques.

In fact, for general connectivity thresholds k > 2, the integrality gap of our LP relaxation

can be as large as k (see Section 3.5.2). We therefore explore bicriteria approximations.

Straightforward applications of region growing lead to a (2, 2h) and a (2h, 2) bicriteria

approximation, where the first factor refers to the approximation in thresholds, and the

second to the approximation in cost. By avoiding overlap between successive cuts more

carefully, we show how to obtain a (6, O(
√
h log h)) approximation. These are the first
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non-trivial approximations in the k-route cut case, for k ≥ 3. We also consider some special

cases of the problem. When h is constant or when all the edges have equal cost, we can

obtain a (4, 4) and a (2, 4) approximation respectively. The last result holds even when

different terminals have different connectivity thresholds.

While we focus on edge-weighted multi-edge-disjoint-route cuts, all of our algorithms

and analyses extend with little effort to the node weighted and node-disjoint versions as well.

We detail the changes required for the node-weighted node-disjoint version in Section 3.3.2;

The other two combinations are identical.

We summarize our main results in Table 3.1 below. See Section 3.2 for precise definitions

of the various instances of multi-route cut.

Problem Previous best result Our result
SS-2-EDRC, SS-2-NDRC O(log n) [CK08] O(log h)
MW-2-EDRC, MW-2-NDRC O(log n log h) [CK08] O(log2 h)
MC-2-EDRC O(log2 n log h) [CK08] O(log2 h)
MC-2-NDRC – O(log2 h)
SS-k-EDRC – (6, O(

√
h lnh))

SS-k-EDRC-Uniform – (2, 4)
SS-k-EDRC (constant h) – (4, 4)

Table 3.1: A summary of our main results.

We consider several versions of the multi-cut problem and they are formally defined in

Section 3.2. This section also describes the notation and presents a new linear programming

relaxation for the problem. Our main technical tool, a region growing lemma, for approxi-

mating multi-route cuts is developed in Section 3.3. Using the lemma, in Section 3.4 we

design approximation algorithms for the special case in which the connectivity thresholds

are equal to two. For single-source multiple-sink cut instances with arbitrary connectiv-

ity requirements, Section 3.5 presents bicriteria approximations where the connectivity

requirement is violated by a constant factor. We conclude and discuss subsequent results in

Section 3.6.
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3.2 Problem Definition and Preliminaries

Given a graph G = (V,E), a pair of nodes u, v ∈ V are called k-edge-connected if there are

k edge-disjoint paths between u and v in G, and are called k-node-connected if there are

k node-disjoint paths between u and v in G. In multi-route cut problems our goal is to

remove a small number (or more generally a low cost set) of edges or nodes from a given

graph so as to reduce the connectivity of given pairs of nodes to below certain thresholds.

Like traditional cut problems multi-route cut problems come in different flavors. We

begin by formally defining the most general versions we consider. The input to the multicut

version of the edge-disjoint-route-cut problem (MC-EDRC) is a graph G with costs ce on

edges, h pairs of vertices called terminals, {(s1, t1), (s2, t2), · · · , (sh, th)}, and connectivity

thresholds, ki for pair (si, ti). The goal is to produce a minimum cost set of edges E ′ ⊆ E,

such that for each i, si and ti are at most (ki − 1)-edge-connected in the graph (V,E \ E ′).
Note that in the traditional multicut problem ki = 1 for all i. In the node-disjoint-route

multicut (MC-NDRC) problem the goal is to produce a set of edges E ′ ⊆ E, such that for

each i, si and ti are at most (ki − 1)-node-connected in the graph (V,E \ E ′). Note that

although we will mostly talk about edge weighted versions of the problem, our techniques

and analyses extend to the node weighted versions as well.

We further study the following special cases:

• k-EDRC or k-NDRC: here all the connectivity thresholds are equal to a common value

k.

• 2-EDRC or 2-NDRC: a special case of the above with k = 2.

• MW-EDRC or MW-NDRC (MultiWay multi-route cut): we are given a set T =

{t1, · · · , th} of terminals with a common connectivity threshold k for every pair

(ti, tj) ∈ T × T .
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• SS-EDRC or SS-NDRC (Single Source multiple sink multi-route cut): we are given a

single source s and a set T = {t1, · · · , th} of terminals with connectivity thresholds ki

for the pair (s, ti).

• SS-EDRC-Uniform: the version of SS-EDRC where every edge has a cost of 1.

LP Relaxation

The following LP is a relaxation of the MC-EDRC. Other edge-disjoint cut problems have

similar LP relaxations. In any integral solution to this LP, edges with xe = 1 are cut, and

the (at most) (ki − 1) edges with yie = 1 represent an si-ti cut of size at most (ki − 1) in the

residual graph. Note that the LP defines h different shortest path metrics on the graph.

z̃ = min
∑
e∈E

xece (ED-LP)

subject to
∑
e∈E

yie ≤ ki − 1 ∀i ∈ [h]

di(u, v) = xe + yie ∀i ∈ [h], e = (u, v) ∈ E

di is a metric ∀i ∈ [h]

di(si, ti) ≥ 1 ∀i ∈ [h]

We remark that the algorithms developed by Chekuri et al. [CK08] were based on a

similar but weaker LP.

The LP relaxation for the node-disjoint version MC-NDRC is similar (see Section 3.3.2).

Notation

We now develop some notation useful in our analysis.
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• For a given subset of vertices, S ⊆ V , G[S] denotes the subgraph induced by S.

• d` denotes the shortest path metric obtained when edge lengths are given by `e. We

use di as short-hand for the metric dx+yi

.

• Bd(u, r) = {v | d(u, v) ≤ r} denotes a ball of radius r around u under metric d. We

use Bi as short-hand for Bdi
.

• For a set S ⊂ V , δ(S) = {(u, v) | (u, v) ∈ E, |S ∩ {u, v}| = 1} is the set of boundary

edges of S.

• For S ⊂ V , E(S) = {(u, v) | (u, v) ∈ E, |S ∩ {u, v}| ≥ 1} is the set of all edges

incident on S. We use Ei(u, r) as short-hand for E(Bi(u, r)).

• For a set S, the “k-cost” of S, denoted Γk(S), is the total cost of all but the k − 1

most expensive edges in δ(S): Γk(S) = minF⊆δ(S);|F |≤k−1

∑
e∈δ(S)\F ce.

• Finally, for β > 0, the “(β, x)-volume” of a set S measures the total contribution of all

the edges incident on the set to the objective function: Vβ,x(S) = β +
∑

e∈E(S) xece.

3.3 Region Growing for Multi-Route Cuts

Our main tool for constructing approximations to multi-route cut problems is a region

growing lemma. The lemma states that given a feasible solution to the program (ED-LP)

above, we can find a cut with low 2k cost.

We begin by presenting the lemma for the edge-disjoint version of the problem. The

following subsection shows the modifications necesary to obtain a version of the lemma for

the node-disjoint case.
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3.3.1 The Edge-Disjoint Case

Lemma 3.1. Let G = (V,E) be a graph with costs ce on edges and terminals s and t, and

x and y be vectors of lengths on edges, such that dx+y(s, t) ≥ 1 and
∑

e ye ≤ k − 1. Then

there exists a radius r < 1 such that for S = Bx+y(s, r), the 2(k − 1)-cost of S, Γ2(k−1)(S),

is no more than αVβ,x(S), where α = 2 ln
(Vβ,x(V )/β

)
.

Proof. For ease of exposition, we assume without loss of generality that there exists a small

constant ε such that for every edge e, xe and ye are multiples of ε, and M = 1/ε is an

integer. We first modify the graph G such that for every edge e, xe + ye = ε and only one

of these values is non-zero. Specifically we break every edge e into (xe + ye)/ε parts with

costs ce each; We assign an x value of ε and a y value of 0 to xe/ε of these parts, and assign

a y value of ε and x value of 0 to the remaining parts. It is clear that the new instance still

satisfies the constraints in the theorem statement. Also note that while costs Γ2(k−1) stay

the same as before, volumes decrease, and so it suffices to prove the lemma for this new

fragmented version of the graph.

We will consider M balls centered at s and show that one of these satisfies the criteria

in the theorem. For 0 ≤ i ≤M , let Bi = Bx+y(s, iε), Vxi = Vβ,x(Bi), and Γi = Γ2(k−1)(Bi).

We also define the “change in volume”, ∆Vxi , for the ith ball as ∆Vxi =
∑

e∈δ(Bi)
xece, with

∆Vx0 = β. Note that Vxi ≥
∑i

a=0 ∆Vxa . Also the sets δ(Bi) are disjoint.

We now prove a few statements about how the change in volume relates to the 2(k − 1)-

cost of a ball. Let index set Ω be defined as follows: Ω = {i | i ∈ [M ], εΓi ≤ ∆Vxi }. The

following lemmas show that Ω is large.

Lemma 3.2. For any i ∈ [M ], εΓi > ∆Vxi implies
∑

e∈δ(Bi)
ye ≥ 2(k − 1)ε.

Proof. We prove the contrapositive statement. Say we have
∑

e∈δ(Bi)
ye < 2(k − 1)ε, thus

edges e in δ(Bi) with ye = ε is strictly less than 2(k − 1). Let Ey be the set of such edges.
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For the rest of the edges in δ(Bi) the x value in turn is ε. Therefore ∆Vxi = ε
∑

e∈δ(Bi)\Ey
ce.

Since |Ey| < 2(k − 1) and therefore
∑

e∈δ(Bi)\Ey
ce ≥ Γi , we have ∆Vxi ≥ εΓi.

Lemma 3.3. |Ω| ≥M/2.

Proof. Recall that
∑

e ye ≤ k − 1. Now consider an index i ∈ [M ] \ Ω. Lemma 3.2 shows

that for such an index
∑

e∈δ(Bi)
ye ≥ 2(k− 1)ε. If the number of indices in [M ] \Ω is strictly

more than M/2, we would have

∑
e

ye ≥
∑

i∈[M ]\Ω

∑
e∈δ(Bi)

ye >
M

2
2(k − 1)ε = k − 1

which gives us a contradiction.

We also require the following inequality for the cost analysis below.

Fact 3.1. For any sequence of positive numbers: a0, a1, ..aN , the following bound holds

a1

a0 + a1

+
a2

a0 + a1 + a2

+ ....+
aN

a0 + a1 + ....+ aN−1 + aN
≤ ln

(
a0 + a1 + ...+ aN−1 + aN

a0

)

Before proving the fact we show how it leads to the theorem. We focus on the set

Ω. Let σ(1), · · · , σ(N) be the sequence of indices in Ω with N = |Ω|. For σ(i) ∈ Ω, let

Ṽxσ(i) =
∑i

a=0 ∆Vxσ(a). Note that Ṽxσ(i) ≤ Vxσ(i) for all i.

Recall that for all σ(i) ∈ Ω we have εΓσ(i) ≤ ∆Vxσ(i). Suppose there does not exist an

index satisfying the required property, that is, ∀i ∈ Ω we have Γi > αVxi ≥ αṼxi . Thus for

all i ∈ Ω we have 1
ε
∆Vxi ≥ αṼxi , or

∆Vxi
Ṽxi

> αε
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Summing the above inequality for all the indices in Ω we get

∆Vx1
Ṽx1

+
∆Vx2
Ṽx2

+ ...+
∆VxN
ṼxN

> αεN =
α

2

Here the last statement follows from Lemma 3.3 by noting that N ≥M/2.

On the other hand, setting a0 = Ṽx0 = β and ai = ∆Vxi , we can apply Fact 3.1 to get the

following which gives us a contradiction.

∆Vx1
Ṽx1

+
∆Vx2
Ṽx2

+ ...+
∆VxN
ṼxN

≤ ln

(
ṼxN
Ṽx0

)
≤ ln

(Vβ,x(V )

β

)
=
α

2

It remains to prove Fact 3.1.

Proof of Fact 3.1 We prove the fact by induction over N . For the base case, with positive

integers it is true that a1

a0+a1
≤ ln

(
a0+a1

a0

)
. This follows from the fact that for positive x we

have ln(1 + x) ≥ x
1+x

(the function values are equal at x = 0 and rate of growth of ln(1 + x)

is more than the other). We set x = a1/a0 here.

By induction hypothesis we assume the inequality to fold for N − 1. Denoting by Sk the

sum
∑k

i=0 ak, we have

a1

S1

+
a2

S2

+ ...+
aN−1

SN−1

≤ ln

(
SN−1

a0

)
Now using the fact that ln(1 + x) ≥ x

1+x
again with x = aN/SN−1 we have ln

(
SN

SN−1

)
=

ln
(
aN +SN−1

SN−1

)
≥ aN

SN
. Adding the two inequalities we get,

ln

(
SN
SN−1

)
+ ln

(
SN−1

a0

)
≥ a1

S1

+
a2

S2

+ ...+
aN−1

SN−1

+
aN
SN

And hence the claim follows,

a1

S1

+
a2

S2

+ ...+
aN−1

SN−1

+
aN
SN
≤ ln

(
SN
a0

)
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This concludes the proof of the region growing lemma.

Note that in the special case of k = 2, the above lemma gives a bound on the 2-cost of

the region, which is equivalent to leaving out exactly one edge. Therefore we incur no loss

in the connectivity threshold in this case.

While the above lemma suffices to construct approximate solutions to the SS-EDRC, for

the multicut version we require additional properties from cuts in our algorithms and so

need to consider cuts around both si and ti for a terminal pair (si, ti). We therefore develop

the following “two-sided” region growing lemma which shows that we can simultaneously

find good disjoint cuts for both si and ti.

Lemma 3.4. Let G = (V,E) be a graph with costs ce on edges and terminals s and t, and

x and y be vectors of lengths on edges, such that dx+y(s, t) ≥ 1 and
∑

e ye ≤ k − 1. Then

there exist radii r1 < 1 and r2 > r1 such that for S1 = Bx+y(s, r1), and S2 = V \ Bx+y(s, r2),

we have for α = 2 lnVβ,x(V )/β:

• Γ2(k−1)(S1) ≤ 2αVβ,x(S1), and,

• Γ2(k−1)(S2) ≤ 2αVβ,x(S2).

Proof. The proof is nearly identical to that of Lemma 3.1. Once again we consider balls

with radii εi centered at s, and let Ω denote the index set of balls with few (< 2(k − 1))

“y-edges”. As before, the cardinality of this set, N , is at least M/2. Consider the balls

corresponding to the first N/2 indices in Ω. A volume argument identical to the one used

previously shows that for one of these balls, say Bi, we must have Γi ≤ 2αVxi , so r1 = iε.

In order to find r2 we consider the remaining N/2 balls in reverse order. That is, set

B′1 = V \BN , B′2 = V \BN−1 and so on. We can again reapply the volume argument to get

a set B′j satisfying the required properties; r2 would then be (N − j + 1)ε. In particular the
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2(k− 1) cost of the set is no more than (β, x)-volume inside it (or outside the corresponding

ball BN−j+1). By construction r2 > r1, so we are done.

Finally, we note that if we are allowed to charge the cost of a cut to the volume of the

entire graph and not just of the cut itself, then we can obtain a stronger version of the

region growing lemma:

Lemma 3.5. Let G = (V,E) be a graph with costs ce on edges and terminals s and t, and

x and y be vectors of lengths on edges, such that dx+y(s, t) ≥ 1 and
∑

e ye ≤ k − 1. Then

there exists a radius r < 1 such that for S = Bx+y(t, r), the 2(k − 1)-cost of S, Γ2(k−1)(S),

is no more than 2Vβ,x(Bx+y(t, 1)).

Proof. The proof is similar to that of Lemma 3.1. Again we consider balls with radii εi

centered at t, and let Ω denote the index set of balls with few (< 2(k − 1)) “y-edges”. As

before, the cardinality of this set, N , is at least M/2, with M = 1/ε.

We continue to use the same notation. Thus for 0 ≤ i ≤M , we have Bi = Bx+y(s, iε),

Γi = Γ2(k−1)(Bi) and change in volume, ∆Vxi , for the ith ball as ∆Vxi =
∑

e∈δ(Bi)
xece.

Note that by disjointness of successive balls we have the following inequality

M∑
a=1

∆Vxa ≤ Vβ,x(Bx+y(t, 1))

Let σ(1), · · · , σ(N) be the sequence of indices in Ω. We have established that for all σ(i) ∈ Ω,

εΓσ(i) ≤ ∆Vxσ(i). Combining the last two inequalities we have
∑N

i=1 εΓσ(i) ≤ Vβ,x(Bx+y(t, 1)).

Since ε = 1/M and N ≥ M/2 by averaging argument there exists an index j such that

Γj ≤ 2Vβ,x(Bx+y(t, 1)) and so the claim follows.
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3.3.2 Region Growing for Node-Weighted Node-Disjoint-Route

Cuts

We next consider the version of multi-route cut where we are required to produce minimum

weight node cuts, and satisfy thresholds on node-disjoint paths. The LP relaxation for the

node-disjoint version MC-NDRC is very similar to program (ED-LP). Here Pi is the set of

all paths between si and ti. Although this LP is exponential in size, it has an equivalent

polynomial-size formulation as above.

z̃ = min
∑
v∈V

xvcv (ND-LP)

subject to
∑
v∈V

yiv ≤ ki − 1 ∀i ∈ [h]

∑
v∈P

(xv + yiv) ≥ 1 ∀P ∈ Pi, ∀i ∈ [h]

Region growing works almost in the same way for node-disjoint-route cuts as for edge-

disjoint-route cuts. Most importantly, we define volumes and volume increments in terms

of the boundary vertices of a set rather than in terms of boundary edges. We sketch below

the differences in our definitions and argument to incorporate node-disjointness as well as

node costs:

• dx+yi

is the shortest path metric where the length of a path is the sum of the xv and

yiv values of vertices present in it (both end points included). As before we use di as

short-hand for the metric dx+yi

.

• As before Bd(u, r) denotes a ball of radius r around u under metric d, and Bi is

short-hand for Bdi
.
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• For a set S ⊂ V , the set of boundary vertices of S, ∆(S) is defined as {v ∈ S | ∃(u, v) ∈
δ(S)} where δ(S) are the boundary edges of S.

• For a set S, Γk(S) denotes the total cost of all but the k − 1 most expensive vertices

in ∆(S): Γk(S) = minF⊆∆(S);|F |≤k−1

∑
v∈∆(S)\F cv.

• For β > 0, we define the “(β, x)-volume” of a set S to be the total contribution of all

the vertices in the set to the objective function: Vβ,x(S) = β +
∑

v∈S xvcv.

• As in the proof of Lemma 3.1 we pick an ε > 0 that divides all the x and y values,

and fragment the graph by breaking each vertex v into nv = (xv + yv)/ε vertices

v(0), · · · , v(nv), each with a cost of cv, and with edges (v(a), v(a+1)) for all a ∈ [nv]. We

replace an edge (u, v) in the original graph by edge (u(nu), v(0)) if dx+y(s, u) ≤ dx+y(s, v)

and by (v(nv), u(0)) otherwise. Again it is easy to see that this transformation preserves

the costs Γ2(k−1) of balls around s, but decreases volumes.

• We define Bi to be the ball Bx+y(s, iε).

• Finally we set the incremental volumes ∆Vxi to be
∑

v∈∆(Bi)
xvcv and Vxi = Vβ,x(Bi).

As before we have Vxi =
∑i

k=0 ∆Vxk .

We therefore get the following node-disjoint analog of Lemma 3.4. The other two lemmas

have similar analogues.

Lemma 3.6. Let G = (V,E) be a graph with costs cv on vertices and terminals s and t, and

x and y be vectors of weights on vertices, such that dx+y(s, t) ≥ 1 and
∑

v yv ≤ k− 1. Then

there exist radii r1 < 1 and r2 > r1 such that for S1 = Bx+y(s, r1), and S2 = V \ Bx+y(s, r2),

we have for α = 2 lnVβ,x(V )/β:

• Γ2(k−1)(S1) ≤ 2αVβ,x(S1), and,

• Γ2(k−1)(S2) ≤ 2αVβ,x(S2).
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3.4 2-Route Cuts

We now apply the region growing technique to 2-route cut problems. A key difference from

how the technique is used to find (1-route) multicuts is that we are now working with h

different metrics and grow successive regions under different metrics. Nevertheless, in the

single-source multi-sink case we can use region growing in much the same way as it is used

to find (1-route) multicuts: we successively find small cuts around terminals, remove them

from the graph, and recurse on the remaining graph. Unfortunately this simple approach

does not work for the more general multicut version of the problem. In particular, while for

a traditional multicut no region contains two terminals belonging to the same pair, in our

setting it can. We therefore cannot simply remove subgraphs and ignore them; we must

recursively produce cuts within each subgraph. We show how to do this repeated cutting at

most log h times in each subgraph, leading to a final approximation factor of O(log2 h).

3.4.1 Single-Source Multiple-Sink 2-Route Cuts

Once again we will focus on the edge-disjoint case; our algorithm and analysis for the

node-disjoint case is identical. Recall that program (ED-LP) provides a fractional solution

(x, y) to the problem with cost
∑

e cexe, and
∑

e y
i
e ≤ 1 for all i ∈ [h]. This fractional

solution defines h different shortest-path metrics di with di(e) = xe + yie for all i ∈ [h] and

e ∈ E.

Our algorithm for SS-2-EDRC is given in Figure 3.1. The algorithm starts with an

optimal fractional solution to the program (ED-LP). At every step it picks an arbitrary

terminal still connected to the source, uses the region growing lemma to find an appropriate

cut around the terminal, and removes the entire cut from the graph. It continues until no

terminals are left. Then for every cut found, it puts back in the graph the most expensive

edge in the cut.
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Input: Graph G = (V,E) with costs ce, source s, terminals T = {t1, · · · , th}, fractional solution
(x, y) with

∑
e y

i
e ≤ 1 for all i ∈ [h] and dx+yi

(s, ti) ≥ 1 for all i ∈ [h]. z̃ =
∑

e xece and
α = 2 ln(h+ 1).
Output: A set of edges E′ of cost at most αz̃ such that for all i ∈ [h] s and ti are at most
1-edge-connected in (V,E \ E′).

1. Initialize T ′ ← T and V ′ ← V .

2. Pick an arbitrary terminal ti from T ′. For the rest of the iteration we consider lengths of
edges only under metric di and the ball Bi(ti, r) is defined over G[V ′].

3. Let β = z̃/h. Pick a radius ri ∈ [0, 1) such that Γ2(Bi(ti, ri)) is no more than αVβ,x(Bi(ti, ri)).
4. Set Si ← Bi(ti, ri) and update V ′ ← V ′ \ Si.
5. Let T ′ be the set of terminals that are connected to s in G[V ′].

6. Repeat steps (2) to (5) until T ′ = ∅.
7. Let the partitions generated in the previous steps be S1 through Sl. Let δ′(Si) the set of

edges crossing Si and present in G[V \ ∪i−1
j=1Sj ]. Return the set E′ =

⋃l
i=1 (δ′(Si) \ {emaxi }),

where emaxi is the maximum cost edge in δ′(Si).

Figure 3.1: Algorithm SS-2EDRC—Algorithm for single-source multi-sink 2-EDRC

To analyze the algorithm we first note that for all i ∈ [h] the vectors (x, yi) together satisfy

the conditions in Lemma 3.1 with k = 2, and moreover, 2 ln
(Vβ,x(V )/β

) ≤ 2 ln((β+ z̃)/β) =

2 ln(h + 1) = α. Therefore, we can always find a radius satisfying the conditions of step

(3) in the algorithm and the algorithm terminates. It remains to prove that the set E ′

generated by the algorithm is a legitimate 2-route cut, and analyze its cost. We do this

next.

Lemma 3.7. Given a graph G = (V,E) with terminal set T let E ′ be the set of edges

selected by algorithm SS-2EDRC then in the graph H = (V,E \E ′) the universal source s is

at most 1-edge-connected to any terminal present in T .
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Proof. We claim that in graph H = (V,E \E ′), for any a, a path from the sink s to a vertex

v, contained in partition Sa, must cross emaxa .

The proof is by induction over a. For the base case we consider a vertex v in S1. S1

is a cut separating v and s, so any path from v to s must intersect δ(S1) = δ′(S1). But

δ′(S1) \ E ′ = {emax1 }, therefore our claim holds.

By the induction hypothesis we assume that the claim is true for all vertices in all

partitions S1 to Sa−1. Now consider a vertex v in Sa. Consider any path P in H = (V,E\E ′)
from v to s, and let e′ be the first edge (starting from v) on P that is contained in δ(Sa). For

the sake of contradiction assume that P does not contain emaxa , so e′ 6= emaxa . This implies

e′ 6∈ δ′(Sa) because δ′(Sa) \ E ′ = {emaxa }. Therefore, e′ ∈ δ(Sa) \ δ′(Sa). This means that e′

got removed from consideration when some partition Sj was removed with j < a. One of

the vertices of e′ survived to be included in Sa thus e′ ∈ δ′(Sj). But the only edge of δ′(Sj)

present in E \ E ′ (that is in H) is emaxj , so e′ = emaxj and P must now go from a vertex

inside Sj to s without recrossing emaxj . This is contradicted by the induction hypothesis.

To prove the lemma first note that the above claim immediately implies that any

terminal contained in some partition Sj is at most 1-connected to s in H. Finally we

consider terminals t in the final subgraph G[V \ ∪lj=1Sj ] disconnected from s. Consider any

path from such a terminal to s in H, say e is the first edge (starting at t) on P which has

exactly one of its vertices in some partition Si. Since t is disconnected from s in the final

subgraph such an edge must exist. Note that e ∈ δ′(Si). The only way that e is not in E ′ is

that it is emaxi but for the rest of the path to be in H, P must connect a vertex contained

in Si to s without crossing emaxi which by our claim is not possible. Thus terminals which

are present in the final subgraph G[V \ ∪lj=1Sj] disconnected from s remain disconnected

from s in H.

Finally we can analyze the cost of the solution. Note that by construction the l edge sets
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E(S1), E(S2), · · · , E(Sl) are pairwise disjoint. Therefore,
∑l

i=1 Vβ,x(Si) ≤ βl+
∑

e∈E xece ≤
βh+ z̃ = 2z̃. The cost of the final set E ′ generated by the algorithm is exactly

∑
i Γ

2(Si),

which is at most α
∑

i Vβ,x(Si) ≤ 2αz̃ by construction. The theorem below now follows

from noting that z̃ is no more than the cost of the optimal 2-route cut.

Theorem 3.1. Algorithm SS-2EDRC generates a 2-edge-route cut of cost no more than

4 ln(h+ 1) times the optimal.

3.4.2 2-Route Multicuts

We now consider the multicut version of 2-EDRC. As before our algorithm successively uses

region growing to construct cuts around terminals. However, instead of recursing only on

the remaining graph as in the single-source case, this time we need to recurse on both the

components in the graph. We show below that by constructing the cuts appropriately, the

depth of recursion is at most log h, and therefore we can find a 2-route cut of cost no more

than O(log2 h) times the optimal.

The algorithm for 2-EDRC multicut is given in Figure 3.2.

We first note that the vectors (x, yi) satisfy the conditions of Lemma 3.4 for terminals

(si, ti) and therefore we can always find radii r1 and r2 satisfying the conditions in Step (3).

Next we show that the cost of the final set E ′ is not too large. Let S = {S1, S2, · · · , Sl},
where l is the total number of cuts formed. We claim that every cut in S is contained in no

more than log h other cuts in S. This follows by noting that, by construction, for any two

sets Sa ⊂ Sb in S, the number of terminal pairs in G[Sa] is no more than half the number

of terminal pairs in G[Sb]. We therefore have the following lemma.

Lemma 3.8. For a given edge e ∈ E there are at most log h cuts in S such that e ∈ E(Si).

Proof. Note that cuts in S form a laminar family that is for Si, Sj ∈ S either one is contained

in the other or they do not intersect at all. Now consider the following collection of cuts
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Input: Graph G = (V,E) with costs ce, a set of source-sink pairs T = {(si, ti)} along with metric
weights on edges: xe and yie (one for each source sink pair in T ). z̃ =

∑
e xece, β = z̃/h, and

α = 2 ln(h+ 1). Also given are global variables p and E′. (Initially p = 0 and E′ = ∅.)
Output: A set of edges E′ such that for all (si, ti) ∈ T , si and ti are at most 1-edge-connected in
(V,E \ E′).

1. If T is empty, stop.

2. Pick a source-sink pair (sj , tj) from T .

3. Find radii r1 ∈ [0, 1) and r2 ∈ (r1, 1] such that Γ2(Bj(sj , r1)) ≤ 2αVβ,x(Bj(sj , r1)) and
Γ2(Bj(sj , r2)) ≤ 2αVβ,x(V \ Bj(sj , r2)). Note that Bj(sj , r1) and V \ Bj(sj , r2) do not
intersect.

4. Increment the global index count: p← p+ 1.

5. If the number of connected source-sink pairs in G[Bj(sj , r1)] is less than the number of
connected source-sink pairs in G[V \Bj(sj , r2)] then the pth cut, Sp, is chosen to be Bj(sj , r1),
otherwise it is chosen to be V \ Bj(sj , r2).

6. Let emaxp = argmaxe∈δ′(Sp)ce, where δ′(Sp) is defined to be the set of boundary edges of Sp
present in the graph in the current recursive call.

7. Update the global set of edges, E′ ← E′ ∪ (δ′(Sp) \ {emaxp }).
8. Recurse on G[Sp] with terminal set being the source-sink pairs connected in G[Sp] and on

G[V \ Sp] with terminal set being the of source-sink pairs connected in it.

Figure 3.2: Algorithm MC-2EDRC—Algorithm for 2-EDRC Multicut

Se = {S | S ∈ S, e ∈ E(S)} also write le = |Se|. Since all the cuts in Se intersect we have

the following chain of containments over them: Sπ(le) ⊆ Sπ(le−1)... ⊆ Sπ(1), where π(i) is the

cut index of the ith cut. By our earlier argument the length of such a containment chain

can be no more than log h.

Finally, in order to bound the cost, as before we have
∑

p Γ2(Sp) ≤ 2α
∑

p Vβ,x(Sp) =

2α(βh+
∑

p

∑
e∈E(Sp) xece). Unlike in the single-source case, the edges sets E(Sp) are not

disjoint, however, by Lemma 3.8 we have
∑

p Vβ,x(Sp) ≤ βh+log h
∑

e∈E xece ≤ (log h+1)z̃.
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Therefore, the cost of our cut is bounded by O(log2 h) times z̃.

It remains to prove that we obtain the desired connectivity among terminal pairs; For

this we establish the following useful lemma. We say that a pair of vertices u, v are first

separated by a cut Si ∈ S, if |Si ∩ {u, v}| = 1 and for all j < i, |Sj ∩ {u, v}| 6= 1.

Lemma 3.9. Given Si ∈ S, let u, v be a pair of vertices first separated by Si. Then any

u-v path P in H = (V,E \ E ′) must contain emaxi .

Proof. The proof is by induction over the cut index i. For the base case suppose that u ∈ S1

and v /∈ S1. Now any path P from u to v must contain an edge from δ(S1), say e is the

first such edge (starting from u). When S1 is constructed by MC-2EDRC, the subgraph

under consideration is G itself, so δ′(S1) = δ(S1). The only edge of δ′(S1) present in E \ E ′

is emax1 so e must be emax1 .

Next we prove the claim for Si. Let u, v be a pair of vertices first separated by Si such

that u ∈ Si and v /∈ Si. Now for contradiction assume that there exists a path P from u

to v in H = (V,E \ E ′) such that emaxi /∈ P . Now P must contain an edge in δ(Si); Say

e = (u′, v′) is the first such edge in P (starting from u), with u′ ∈ Si and v′ /∈ Si. Again it

is easy to see that e ∈ δ(Si) \ δ′(Si). This implies that by the time Si was constructed e′

had been removed from the graph. Thus e ∈ δ′(Sj) for some j < i. Since P is in H we have

e = emaxj .

Next we show that Sj first separates v′ and v but by (strong) induction hypothesis there

is no path from v′ to v that does not contain emaxj , which implies that P can not proceed from

v′ to v in H. Say we label the vertices in P as follows P = u→ u1 → u2 → ...u′ → v′ → ....v.

Here u through u′ are in Si and v′ /∈ Si. Now consider the point of time at which the algorithm

constructed Sj . The graph under consideration at that time wasG = (V,E\(∪j−1
k=1δ

′(Sk)). We

know that e = (u′, v′) ∈ E\(∪j−1
k=1δ

′(Sk)) since it is in δ′(Sj). Also the path u→ u1 → ...→ u′

is present in G; This follows from the fact that all cuts in S constructed before Si either
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contain no vertex of Si or contain all the vertices in Si. Moreover there is a path between

u and v until Si is constructed (it is the lowest index cut separating u and v), so there is

path from v′ to v in G. In other words no cut before j separates v′ and v. Moreover until

we get to the construction of Si the path between u′ and v is intact. But e ∈ δ′(Sj), so Sj

separates u′ and v′. Thus Sj separates v′ and v. This implies that Sj first separates v′ and

v, and we are done.

Corollary 3.1. All source-sink pairs (si, ti) in T at most 1-connected in H = (V,E \ E ′).

Proof. If we have some cut in S separating source-sink pair (si, ti), then we consider the

lowest index cut separating si and ti; Say it is Sj , that is, Sj first separates si and ti. Then

by the previous lemma any path from si to ti must pass through emaxj . This by Menger’s

Theorem implies that si and ti are 1-connected.

Note that there might be a source-sink pair (si, ti) that gets disconnected (MC-2EDRC

continues till all the source-sink pair get disconnected) but no cut in S separates them. We

show that such a pair remains disconnected in H hence proving the corollary.

For contradiction assume there is a path P from si to ti in H. Since si and ti are

disconnected at the end of algorithm’s execution, P must contain an edge from δ′(Sj) for

some j ∈ [l]. Say ẽ = (ũ, ṽ) is the first edge (starting from si) on P such that ẽ ∈ δ′(Sj). P
is in H so for ẽ to be in E \E ′ we must have ẽ = emaxj . Next we show that Sj first separates

ṽ and ti so by the previous lemma, P can not proceed from ṽ to ti without crossing emaxj

again, giving rise to a contradiction.

Say we label the path as follows P = si → w1 → w2 → ...→ ũ→ ṽ → ..ti. Note that

all the edges on P before ẽ = (ũ, ṽ) are present in H. Thus none of these edges belong to

any δ′(Si) for i ∈ [l]. Since ẽ ∈ δ′(Sj) and all edges on P between si and ũ are present in H

we have that Sj separates si and ṽ. Then since no cut in S separates si and ti, we have that

Sj separates ṽ and ti. Moreover we claim that no cut with a smaller index separates ṽ and
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ti. To see this, suppose that Sk for k < j separates ṽ and ti. Since Sk does not separate si

and ti (no cut does) we have that Sk separates si and ṽ. But this implies that we must have

an edge of δ(Sk) on every path between si and ṽ; In particular the segment of P connecting

si to ṽ must contain an edge from δ′(Sk). But this contradicts the assumption that ẽ was

the first edge on P contained in some δ′(). Thus no path in H connects si and ti.

From the cost analysis and Corollary 3.1 we get the following theorem.

Theorem 3.2. Algorithm MC-2EDRC generates a 2-edge-disjoint-route multicut of cost

no more that O(log2 h) times the optimal.

3.5 k-Route Cuts

We now consider the EDRC and NDRC with larger connectivity thresholds. In Subsec-

tion 3.5.2 it is shown that (ED-LP) has a polynomial integrality gap even for the simple

case of an s-t k-EDRC. A similar example can be constructed for (ND-LP). Given this

large integrality gap, we investigate bicriteria approximations to the EDRC. An (α, β)

approximation for the k-EDRC is a cut of cost at most β times the optimal and the removal

of which reduces the connectivity between the terminal pair (si, ti) to α(ki − 1), for every i.

3.5.1 NP-Hardness of k-Route s-t Cut

Unlike MW-EDRC and MC-EDRC, the k = 1 case of k-Route s-t cut is not NP-Hard.

In fact, for any constant k, we can solve k-route s-t cut optimally in polynomial time.

Specifically, we can guess a set E ′ of k− 1 “witness” edges and find the minimum s-t cut in

G \ E ′. However, in this section we show it is unlikely that the problem is easy for large k

by proving that a capacitated version of k-route s-t cut is NP-hard. We call this version

the red-blue k-route s-t cut and defined as follows. We are given a graph G = (V,E) with a
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source s and sink t, and a connectivity threshold k. The edge set E is partitioned into red

edges, ER and blue edges, EB. Edges e in ER have connectivities ke associated with them

and edges in EB have cost ce associated with them. The problem is to find an s-t cut C

such that
∑

e∈δ(C)∩ER
ke ≤ k − 1 and the cost

∑
e∈EB∩δ(C) ce is minimized.

We reduce the knapsack problem to the red-blue k route cut problem. In an instance

of the knapsack problem we are given a universe of n items along with a size bound B.

Here item i has value vi and size zi. The objective is to find a subset S of items such

that
∑

i∈S zi ≤ B and the value
∑

i∈S vi is maximized. We construct the graph G with n

intermediate vertices numbered 1 to n, one for each item, along with a source s and a sink

t. We connect the source s to each of the n intermediate vertices with a red edge (that

is, ER = {(s, i)}ni=1). Edge (s, i) is associated with connectivity k(s,i) = zi. Similarly we

connect the sink t to the intermediate vertices with blue edges with costs c(i,t) = vi.

It follows that finding a B-size bounded set S of items that achieves maximum value is

equivalent to finding a min-cost (B + 1)-route cut in the constructed graph. In particular

consider a cut C with t ∈ C and s /∈ C. Then it is easy to see that the set C \ {t} is a

valid solution to the Knapsack problem. Furthermore the value achieved by this solution is

exactly
∑

i vi minus the cost of the cut C. Therefore, minimizing the cost of C is equivalent

to maximizing the value of a feasible knapsack solution, and we get the following theorem.

Theorem 3.3. Red-blue k-route s-t cut is NP-hard.

We note that red-blue k-route s-t cut is equivalent to k-route s-t cut when the connec-

tivities k(u,v) on edges are polynomially bounded. However, the algorithms developed by us

apply to this more general version even with arbitrary edge connectivities. In particular, we

can formulate a linear program (ED-LP-RB) for the red-blue version, that is similar to

the one developed for the k-route cut problem in Section 3.2. Primarily here we ensure that

only blue edges have non zero xe values and only red edges have non zero ye values.
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z̃ = min
∑
e∈EB

xece (ED-LP-RB)

subject to
∑
e∈ER

yeke ≤ k − 1

xe = 0 ∀e ∈ ER
ye = 0 ∀e ∈ EB
d(u, v) = xe + ye ∀e = (u, v) ∈ E

d is a metric

d(s, t) ≥ 1

The following lemma is a counter-part to Lemma 3.5 and shows that we can obtain a

(2, 2)-bicriteria approximation for the red-blue k-route s-t cut problem. As before we use

dx+y to denote the shortest-path metric defined by lengths xe and ye on edges.

Lemma 3.10. Let G = (V,EB ∪ ER) be a graph with cost ce and connectivity ke values

associated with edges in EB and ER respectively. Also let x be vectors of lengths on edges

in EB and y be vectors of lengths on edges in ER, such that dx+y(s, t) ≥ 1. Then there

exists a radius r < 1 such that for S = Bx+y(s, r) we have
∑

e∈δ(S)∩ER
ke ≤ 2(k − 1) and∑

e∈δ(S)∩EB
ce ≤ 2

∑
e∈EB

xece.

Proof. We argue along the lines of the proof of Lemma 3.5. For simplicity, we assume

without loss of generality that there exists a small constant ε such that for every edge e, xe

or ye, as the case may be, is a multiple of ε, and M = 1/ε is an integer. We first modify

the graph G such that for every edge e, xe = ε if the edge is blue or ye = ε if the edge is

red. Specifically we break every edge e ∈ EB into xe/ε parts with costs ce each and every

edge e ∈ ER into ye/ε parts with connectivity ke each. As before we maintain that only
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blue edges have non-zero x values and only red edges have non-zero y values. It is clear

that the new instance still satisfies the constraints in the lemma statement.

We will consider M balls centered at s and show that one of these satisfies the criteria in

the lemma. For 0 ≤ i ≤M , let Bi = Bx+y(s, iε). Note that the edge sets δ(Bi) are disjoint.

Consider index set Ω of cuts Bi for which connectivity factor is maintained within a factor

of two, that is, Ω = {i | i ∈ [M ],
∑

e∈ER∩δ(Bi)
ke ≤ 2(k − 1)}.

We claim that |Ω| ≥ M/2. To see this, note that for all indices j in [M ] \ Ω we have∑
e∈ER∩δ(Bj) ke > 2(k − 1). Then for such indices,

∑
e∈ER∩δ(Bj) yeke > 2(k − 1)ε. Noting

that the edges sets δ(Bi) are disjoint, we get the following sequence of inequalities.

k − 1 ≥
∑
e∈ER

yeke ≥
∑

j∈[M ]\Ω

∑
e∈ER∩δ(Bj)

yeke > 2(k − 1)ε|[M ] \ Ω|

That is, |[M ] \ Ω| < M/2, and therefore, |Ω| ≥M/2.

Next, denote the cost of edges crossing Bi as Γi =
∑

e∈δ(Bi)∩EB
ce. Recall that xe = ε for

all edges e ∈ δ(Bi) ∩ EB, for all i ∈ [M ]. Hence
∑

e∈δ(Bi)∩EB
xece = εΓi. Just considering

indices in Ω we have ∑
i∈Ω

εΓi ≤ z̃

As shown above, the cardinality of Ω is at least M/2. So by an averaging argument

there exists an index i∗ in Ω such that Γi∗ ≤ 2z̃. As i∗ ∈ Ω we also have
∑

e∈ER∩δ(Bi∗ ) ke ≤
2(k − 1).

3.5.2 Integrality Gap for LP

We present a graph where the optimal integral solution has cost Ω(k) times the optimal

fractional solution. Consider the chain graph in Figure 3.3 and suppose that we wish to

find a k + 1-route cut separating source s from sink t. The graph has k + 1 parallel edges
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s

u1 u2 uk

t

Figure 3.3: Integrality Gap example

between ui and ui+1 for all i ∈ [k − 1], each such edge has infinite cost. Also there are k + 1

infinite cost edges between s and u1. Finally we have 2k unit cost edges between uk and

t. A feasible fractional solution with cost no more than 2 is obtained as follows: for every

edge of infinite cost set ye = 1
k+1

and xe = 0, and, for all edges with unit cost, that is edges

between uk and t, we set xe = 1
k+1

and ye = 0. Note that
∑

e ye is no more than k and∑
e xece is less than 2. Also under the specified edge lengths distance between s and ti is 1.

Hence we have a feasible fractional solution with cost no more than 2. However any integral

solution, with finite cost, in order to ensure that the number of edge disjoint paths between

s and t is no more than k can only remove k edges between uk and t. Hence an optimal

integral cut has cost k, giving us an integrality gap of Ω(k).

3.5.3 The Difficulty of Applying Some Näıve Approximations

As mentioned earlier, although the region growing lemma works in the k ≥ 3 case as

well, applying it successively for different terminals leads to the connectivity thresholds

being violated by a large factor. Consider, for example, the following algorithm for the

single-source k-EDRC. We solve ED-LP; then for each i, we successively apply region

growing to the pair (s, ti) and remove the resulting cut Ci from the graph; our final cut is

the collection of all but the k most expensive edges in each Ci. The cost of this cut can be

bounded by O(log h z̃) using Lemma 3.1. However, in the final graph, for any terminal tj

with cut Cj there may be several paths to s through cuts Ci for i < j that do not cross Cj.
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Therefore, the best bound we can obtain on the connectivity between s and tj using this

approach is (k − 1)h/2. In other words, we get an (O(h), O(log h)) approximation.

This approach can be modified slightly to obtain an (O(h), 2) approximation. In

particular, we solve the ED-LP and combine all the h metrics into a single metric. That

is, set ye to be
∑h

i=1 y
i
e. The metric d, defined by setting d(u, v) = xe + ye for all edges

e = (u, v), separates the source s from all the h terminals — d(s, ti) ≥ 1 for all i ∈ [h].

Moreover we have
∑

e∈E ye ≤ kh. Thus by Lemma 3.5 we can find a cut S which 2kh− 1

separates s from all the terminals and has cost no more than 2z̃. This gives us a (2h, 2)

approximation.

One way of avoiding this increase in connectivity is to find successive cuts in the

original graph itself, instead of throwing away the previously found cuts. This ensures

that connectivity thresholds are maintained to within a factor of 2. However, the cost

of the solution can blow up to O(hz̃), implying a (2, 2h) approximation. Specifically,

the (2, 2h) approximation is obtained by solving ED-LP and applying region growing

separately to each pair (s, ti). Lemma 3.5 implies that for each terminal ti we can find

a cut Si which 2(k − 1) separates the terminal from the source and for which we have

Γ2(k−1)(Si) ≤ 2Vβ,x(Bx+y(ti, 1)). Note that Vβ,x(Bx+y(ti, 1)) is no more than z̃ and so the

total cost of the all such cuts is no more than 2hz̃. This gives us a (2, 2h) approximation.

3.5.4 Single-Source Multiple-Sink k-Route Cuts

In the remainder of this section, we focus on the single-source case and present a number of

different algorithms. The first is a general (6, O(
√
h lnh)) approximation that relies on a

stronger LP (ED-LP+) defined below (see Equation (3.1)). We then consider two special

cases — in the first the number of terminals is constant, and in the second all edges in the

graph have equal cost. We present a (4, 4) and a (2, 4) approximation for these respectively.
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These are the first non-trivial approximations for any variant of the k-route cut problem

with k ≥ 3.

A key observation that we use for each of these algorithms is that the integral solution to

SS-EDRC forms a family of laminar cuts. In particular, let E ′ be the set of edges removed in

an integral solution. By Menger’s Theorem we know that for each terminal ti there exists a

set of at most ki− 1 edges whose removal disconnects ti from s in (V,E \E ′). Consider any

such set of edges, and let Ci be the set of vertices in the connected component containing ti

after these edges have been removed. We call this set a witness for ti. The following lemma

shows that for any integral feasible solution we can find a collection of witness sets that are

laminar, that is, no two of the sets cross.

Lemma 3.11. For any integral feasible solution to the SS-EDRC there exists a collection

of witness sets that is laminar. When all terminals have equal connectivity thresholds, there

exists a family of witness sets such that each pair of sets is either identical or disjoint.

Proof. Let E ′ be an integral solution for the given SS-EDRC. Recall the definition of a

witness set. By Menger’s Theorem we know that for each terminal ti there exists a set of at

most ki − 1 edges whose removal disconnects ti from s in (V,E \ E ′). A witness set for ti

is the connected component containing ti that is formed when we remove any such set of

edges from E \ E ′.
Let H = (V,E \ E ′), and note that by definition for any i ∈ [h] the edge connectivity of

ti and s in H is no more than ki − 1. Of the witness sets for ti that have the fewest edges

crossing them, let Ci be a smallest set in terms of cardinality. We now show that no two

smallest witness sets Ci and Cj can cross. Suppose for the sake of contradiction that Ci

and Cj cross each other, that is, all three sets Ci ∩ Cj, Ci \ Cj and Cj \ Ci are non-empty.

We define the following mutually disjoint sets of edges, here we have δH(S) = {(u, v) ∈
E \ E ′ | |{u, v} ∩ S| = 1}
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• Oi = {(u, v) ∈ δH(Ci) | {u, v} ∩ Cj = φ}

• Oj = {(u, v) ∈ δH(Cj) | {u, v} ∩ Ci = φ}

• Ii = {(u, v) ∈ δH(Ci) | |{u, v} ∩ Cj| = 2}

• Ij = {(u, v) ∈ δH(Cj) | |{u, v} ∩ Ci| = 2}

There are three possible cases:

• Suppose that ti ∈ Ci \ Cj and tj ∈ Cj \ Ci. Then, if |Ij| < |Ii|, then Ci \ Cj forms a

smaller ti-s cut than Ci, contradicting the fact that Ci is a witness for ti. Likewise

we cannot have |Ii| < |Ij|. Therefore |Ii| = |Ij|, but then Ci \ Cj is a strictly smaller

witness set for ti, again contradicting our choice of Ci.

• Suppose that ti ∈ Ci \ Cj and tj ∈ Cj ∩ Ci. This time we must have |Ii| = |Oj| but

then Ci ∩ Cj forms a strictly smaller witness set for tj.

• Finally, suppose that ti, tj ∈ Ci ∩Cj . As before we have |Ii| = |Oj| and |Ij| = |Oi| but

then Ci ∩ Cj forms a strictly smaller witness set for both ti and tj.

Therefore the witness sets form a laminar family of cuts.

Note that when all the connectivity thresholds are equal, if there are witness sets Ci

and Cj with Ci ( Cj, Cj also forms a witness set for ti. Therefore the lemma holds.

3.5.4.1 A (6, O(
√
h log h)) Bicriteria Approximation for Single-Source Cuts

In Figure 3.4 we present a
(

6, O(
√
h lnh)

)
bicriteria approximation algorithm for SS-

kEDRC with general edge costs. The algorithm requires an optimal solution an augmented

version of ED-LP. In particular, we add the following constraint to the LP.

di(u, ti) + dj(u, tj) ≥ di(ti, tj) ∀i, j ∈ [h], u ∈ V (3.1)
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Input: Graph G = (V,E) with costs ce, source s, terminals T = {t1, · · · , th}, fractional solution
(x, y) that is feasible for ED-LP+ with connectivity thresholds ki = k ∀i ∈ [h]. z̃ =

∑
e xece and

α = 2 ln(h+ 1).
Output: A set of edges E′ of cost at most O(α

√
h)z̃ such that for all i ∈ [h], s and ti are at most

6(k − 1)-edge-connected in (V,E \ E′).

1. Initialize E′ ← ∅. Let β = z̃/h. Set T ′ ← T .

2. If there is a terminal ti ∈ T ′ such that |T ′ ∩ Bi(ti, 2/3)| ≥√|T ′|, do:

a) Pick a radius ri ∈ [2/3, 1) with S = Bi(ti, ri) such that Γ6(k−1)(S) ≤ 3αVβ,x(S).

b) Let F (S) be the 6(k − 1) most expensive edges in δ(S). Set E′ ← E′ ∪ (δ(S) \ F (S));
T ← T \ S; T ′ ← T ′ \ S.

3. Otherwise, while T ′ 6= ∅, do:

a) Pick a terminal ti ∈ T ′, and a radius ri ∈ [0, 1/3) with S = Bi(ti, ri) such that
Γ6(k−1)(S) ≤ 3αVβ,x(S).

b) Let F (S) be the 6(k − 1) most expensive edges in δ(S). Set E′ ← E′ ∪ (δ(S) \ F (S));
T ← T \ S; T ′ ← T ′ \ Bi(ti, 3/4).

4. If T 6= ∅, set T ′ ← T and go to Step 2, otherwise return the cut E′.

Figure 3.4: Algorithm SS-kEDRC—Algorithm for single-source multi-sink k-EDRC

The augmented program is denoted ED-LP+. It is easy to see from Lemma 3.11 that

ED-LP+ is a valid relaxation of the SS-k-EDRC. We note that the integrality gap instance

of subsection 3.5.2 applies to this new LP as well. The new constraint is primarily required

in Lemma 3.13 to show that the sets S found in Step 3 (that are constructed under different

metrics) are disjoint.

Let us now analyze the algorithm. We first note that we can always find the cuts

required for Steps 2a and 3a. For the first, note that if we set xe and yie to be zero inside

Bi(ti, 2/3) and scale them up by a factor of 3 outside the ball, then the pair (s, ti) satisfies

the requirements of Lemma 3.1, and so we can find the desired cut. For the second, if we
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scale xe and yie by a factor of 3 inside Bi(ti, 1/3) and set them to 0 outside the ball, then

again the pair (s, ti) satisfies the requirements of Lemma 3.1, and we can find the desired

cut.

Next we claim that the connectivity thresholds are satisfied to within a factor of 6. To

see this, consider for any terminal ti the iteration in which ti is removed from T and let S

be the corresponding cut found. Then, S separates ti from s and we remove all but 6(k− 1)

edges from δ(S). Therefore our claim follows. Finally, we present a cost analysis. We first

show that the algorithm has few iterations.

Lemma 3.12. In each iteration of Steps 2 to 3 the size of T decreases by an additive
√
T .

Proof. If Step 2 is executed the lemma follows immediately. Otherwise, note that in each

inner loop of Step 3 we remove at most
√
T ′ terminals from T ′. So the loop gets executed

at least
√
T ′ times. Each time we decrease the size of T by at least 1. Therefore the lemma

follows.

A simple consequence of this lemma is that the algorithm has at most O(
√
h) iterations.

The following lemma bounds the cost of a single iteration and completes the analysis.

Lemma 3.13. In any execution of Step 2 or Step 3 of the algorithm the total cost of the

edges included in E ′ is no more than 6αz̃, where z̃ is the value of the ED-LP+.

Proof. If Step 2 is executed then the total cost of the edges included is Γ6(k−1)(S) which is

no more than 3αVβ,x(S), which in turn is bounded by 3αz̃.

Next consider Step 3, and let S1, · · · , Sh′ be the collection of cuts constructed in a

single execution of this step. Then we have that the cost of the edges removed in this

step is at most 3α
∑

j Vβ,x(Sj). We claim that the sets Sj are disjoint which implies that∑
j Vβ,x(Sj) ≤ 2z̃, and the total cost for this step is bounded by 6αz̃.
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Input: Graph G = (V,E) with costs ce, source s, terminals T = {t1, · · · , th}, a partition P with l
sets over terminals along with fractional solution (x, y) satisfying ED-LP-Part.
Output: A set of edges E′ of cost at most 4z̃ such that for all i ∈ [h] s and ti are at most
4(k − 1)-edge-connected in (V,E \ E′).

1. Double the value of xe and yie for all edges and for all i ∈ [l].

2. Repeat for all 1 ≤ i ≤ l:
a) Construct meta node vi by merging all terminals in partition set Pi.

b) Find a cut S separating vi from s contained in Bi(vi, 1) that satisfies Γ4(k−1)(S) ≤
2Vβ,x(Bi(vi, 1)). Here di() is the metric associated with Pi.

c) Set F (S) to be the set of 4(k − 1) most expensive edges in δ(S). Update E′ ←
E′ ∪ (δ(S) \ F (S)).

Figure 3.5: Algorithm SS-kEDRC-const—Algorithm for single-source multi-sink k-EDRC
with a constant number of terminals.

To prove the claim, suppose that there are two sets S1 and S2, corresponding to terminals

t1 and t2, picked in Step 3 such that S1∩S2 6= ∅. Then for some u ∈ S1∩S2, d1(u, t1) ≤ 1/3,

and d2(u, t2) ≤ 1/3, but d1(t1, t2) > 2/3. This directly contradicts constraint (3.1) in

ED-LP+.

We therefore get the following theorem.

Theorem 3.4. Algorithm SS-kEDRC gives a
(

6, O(
√
h lnh)

)
bicriteria approximation for

the SS-k-EDRC.

3.5.4.2 The Constant h Case

Recall from Lemma 3.11 that the witness sets for terminals in the SS-k-EDRC are disjoint.

When the number of terminals is constant, we can guess the “correct” partition of terminals

into groups with identical witness sets. Incorporating this information into the linear
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program, and finding a good s-t k-route cut for every group gives us a (4, 4) approximation

for the SS-k-EDRC.

We know from Lemma 3.11 that for the SS-kEDRC the witness sets of terminals

corresponding to any integral solution are laminar. In fact the collection forms a partition,

that is there is a collection of l mutually disjoint witness sets: {C1, . . . , Cl}, such that each

terminal is contained in one of them. The collection imposes a partition on the terminals.

Also, in any integral solution, if terminals ta and tb are contained in the same witness

set, we have da(ta, tb) = db(ta, tb) = 0; On the other hand if they are in different cuts

we have da(ta, tb) = db(ta, tb) = 1. We denote by P the induced partition over terminals:

P = {P1, P2, . . . , Pl}, where Pj is the set of terminals contained in Cj.

Next we present a linear program and the associated algorithm (see Figure 3.5) which if

given the partition P imposed by an integral solution produces a set of edges that 4(k − 1)

separates every terminal from the source and has cost no more than four times the integral

solution. When h is constant we can apply the algorithm over all possible partitions and

thus achieve a (4, 4) approximation. The linear program essentially determines l metrics,

one for each partition in P and imposes the corresponding separation requirements.

z̃ = min
∑
e∈E

xece (ED-LP-Part)

subject to
∑
e∈E

yie ≤ k − 1 ∀i ∈ [l]

di(u, v) = xe + yie ∀i ∈ [l], e = (u, v) ∈ E

di is a metric ∀i ∈ [l]

di(s, ta) ≥ 1 ∀i ∈ [l],∀ta ∈ Pi
di(ta, tb) ≥ 1 ∀i ∈ [l],∀ta ∈ Pi,∀tb /∈ Pi
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The algorithm is similar to the algorithm for single-source multi-sink 2-EDRC in Sec-

tion 3.4.1 but in addition exploits the fact that each of the partitions have a distance of 1

between them in the optimal LP solution. In particular, we employ the improved region

growing lemma (Lemma 3.5) to argue that the total cost is small.

In order to analyze the algorithm, note that by doubling the xe and ye values we

have ensured that balls centered at different meta nodes vi constructed in step (3) of the

algorithm are disjoint. Since the xe values are scaled up by two we have the following:∑l
i=1 Vβ,x(Bi(vi, 1)) ≤ 2z̃. By Lemma 3.5 we can find a cut S for each meta node vi,

separating the terminals in set Pi from s. This ensures that E ′ is a legitimate 4(k − 1)

route cut for all the terminals. Finally we have Γ4(k−1)(S) ≤ 2Vβ,x(Bi(vi, 1)) for all i ∈ [l].

Combining the last two inequalities we get that the total cost of E ′ is no more than 4z̃.

Hence the algorithm achieves a (4, 4) bicriteria approximation.

3.5.4.3 The Uniform Costs Case

Next we consider single-source instances with general connectivity requirements (that is,

different terminals are associated with different ki), but where every edge has a cost of 1. We

give a (2, 4) bicriteria approximation. Our approach is simple: we ignore terminals that are

already less than 2(ki − 1) connected to the source; for the rest we use the characterization

in Lemma 3.11 to argue that cost of a minimum (1-route) cut separating each terminal

from the source is no more than 4 times that of the minimum multi-route cut. We therefore

find and output the minimum 1-route cut. Figure 3.6 presents the details.

Theorem 3.5. Algorithm SS-EDRC-Uniform returns a set of edges E ′ of cost at most

4OPT such that for all i ∈ [h], s and ti are at most 2(ki − 1)-edge-connected in (V,E \ E ′).

Proof. Terminals with less than 2(ki− 1) edge connectivity do not influence the correctness,

while terminals that are more than 2(ki − 1) connected to s are totally disconnected from s.
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Input: Graph G = (V,E), set of terminals T = {t1, t2, ..th} with connectivity requirements ki,
and a source vertex s.
Output: A set of edges E′ of cost at most 4OPT such that for all i ∈ [h] s and ti are at most
2(ki − 1)-edge-connected in (V,E \ E′).

1. Remove all terminals ti from T that are at most 2(ki − 1) edge connected to s in G.

2. Using a standard mincut algorithm find a set of edges E′ that disconnects s from every
terminal in T .

Figure 3.6: Algorithm SS-EDRC-Uniform—Algorithm for single-source multi-sink EDRC
with uniform costs

So the claim about connectivity follows.

Now consider an optimal solution EOPT for the problem, and let C = {Ci} be the

collection of witness sets guaranteed by Lemma3.11. Let C ′ be the subcollection of sets Ci

such that for all Cj ∈ C, Ci 6⊂ Cj. We claim that ∪Ci∈C′δ(Ci) is a multicut for T of cost

no more than 4OPT. The first part of the claim follows immediately by noting that each

terminal in T is contained in some set Ci ∈ C ′ whereas s 6∈ ∪iCi.
For the second part of the claim, consider any Ci ∈ C ′; ti is the terminal associated

with this set. Let E∗i = EOPT ∩ δ(Ci). Since ti is at least 2(ki − 1) connected to s in

G, |δ(Ci)| ≥ 2(ki − 1). On the other hand, by the feasibility of EOPT, |δ(Ci) \ EOPT| ≤
ki − 1 ≤ 1/2|δ(Ci)|. Therefore, |E∗i | ≥ 1/2|δ(Ci)|. Now, since any two sets Ci and Cj in C ′

are disjoint (Lemma 3.11), any edge e belongs to at most two of the sets δ(Ci). Therefore,

| ∪ E∗i | ≥ 1/2
∑

i |E∗i | ≥ 1/4
∑

i |δ(Ci)|, or |EOPT| ≥ 1/4| ∪Ci∈C′ δ(Ci)|.

Multiway Cut and Multicut with Uniform Costs

Finally we note that the approach taken in Algorithm SS-EDRC-Uniform does not work in

the case of multiway EDRC or multicut EDRC. In particular, there is a family of instances
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of the multiway EDRC parameterized by k, containing
√
k terminals, such that each pair of

terminals is 2k + 1 connected, and yet the size of the minimum multiway cut is a factor of
√
k larger than the size of the minimum multiway k-EDRC.

The family is described as follows. Let t0, · · · , th−1 be the terminals with h =
√
k. There

are k parallel edges between ti and ti+1 mod h for all i ∈ [h], and an additional edge for each

pair of terminals, for a total of Θ(k3/2) edges. Then any multiway cut must remove all the

Θ(k3/2) edges, whereas in order to obtain a multiway k-EDRC, it suffices to remove all

parallel edges between t0 and th−1, as well as the O(h2) additional edges, (leaving a “path”

from t0 to th−1,) at a cost of O(k).

3.6 Conclusion and Subsequent Results

In this chapter we formulate a new linear-programming relaxation for the multi-route cut

problem and extend the region growing lemma to develop polylogarithmic approximations

for the 2-route case. In addition, we develop the first non-trivial bicriteria approximations

for the single-source multiple-sink case with arbitrary connectivity thresholds.

After the initial publication of this work, improved approximations and inapproximability

results have been developed for the multi-route cut problem. Kolman et al. [KS11] achieved

an O(log3 h) approximation for the 3-route cut (k = 3) case by rounding our LP-relaxation

via a multi-level ball growing method. The best known approximation and hardness results

for multi-route cuts are obtained by Chuzhoy et al. [CMVZ12]. For arbitrary thresholds, they

gave a
(
2, O(log2.5 h log log h)

)
-bicriteria approximation algorithm with running time nO(k)

and a polynomial-time
(
O(log r), O(log3 r)

)
-bicriteria approximation. Instead of relying

on a LP-relaxation, the overall approach in [CMVZ12] is to iteratively reduce the the

connectivity between terminals by finding sparse cuts in the graph. In addition, they

establish Ω(kε)-hardness for the vertex-connectivity version of the multi-route cut problem,
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where ε > 0 is some constant.

Finding a polynomial time algorithm that violates the connectivity requirement by a

constant factor and achieves a polylogarithmic approximation to cost remains an important

open question.
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4 Packing Multiway Cuts

4.1 Introduction

We study the multiway cut packing problem (MCP) introduced by Rabani, Schulman and

Swamy [RSS08]. In this problem, we are given k instances of the multiway cut problem in

a common graph, each instance being a set of terminals at different locations in the graph.

Informally, our goal is to compute nearly-disjoint multiway cuts for each of the instances.

More precisely, we aim to minimize the maximum number of cuts that any single edge in

the graph belongs to. In the weighted version of this problem, different edges have different

capacities; the goal is to minimize the maximum relative load of any edge, where the relative

load of an edge is the ratio of the number of cuts it belongs to and its capacity.

The multiway cut packing problem belongs to the following class of graph labeling

problems. We are given a partially labeled set of n items along with a weighted graph

over them that encodes similarity information among them. An item’s label is a string

of length k where each coordinate of the string is either drawn from an alphabet Σ, or is

undetermined. Roughly speaking, the goal is to complete the partial labeling in the most

consistent possible way. Note that completing a single specific entry (coordinate) of each

item label is like finding what we call a “set multiway cut”—for σ ∈ Σ let Siσ denote the set

of nodes for which the ith coordinate is labeled σ in the partial labeling, then a complete

and consistent labeling for this coordinate is a partition of the items into |Σ| parts such

that the σth part contains the entire set Siσ. The cost of the labeling for a single pair of

neighboring items in the graph is measured by the Hamming distance between the labels

assigned to them. The overall cost of the labeling can then be formalized as a certain norm

of the vector of (weighted) edge costs.

Different choices of norms for the overall cost give rise to different objectives. Minimizing
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the `1 norm, for example, is the same as minimizing the sum of the edge costs. This problem

decomposes into finding k minimum set multiway cuts. Each set multiway cut instance

can be reduced to a minimum multiway cut instance by simply merging all the items in

the same set Sσ into a single node in the graph, and can therefore be approximated to

within a factor of 1.5 [CKR00]. On the other hand, minimizing the `∞ norm of edge costs

(equivalently, the maximum edge cost) becomes the set multiway cut packing problem.

Formally, in this problem, we are given k set multiway cut instances S1, · · · , Sk, where each

Si = Si1 × Si2 × · · · × Si|Σ|. The goal is to find k cuts, with the ith cut separating every pair

of terminals that belong to sets Sij1 and Sij2 with j1 6= j2, such that the maximum (weighted)

cost of any edge is minimized. When |Sij| = 1 for all i ∈ [k] and j ∈ Σ, this is the multiway

cut packing problem.

Note that, unlike the `1-norm-minimization case, we do not get an approximation

preserving reduction from set multiway cut packing to multiway cut packing by merging

nodes with the same attribute values. Roughly speaking, if nodes u and v have the same

ith attribute, and nodes v and w have the same jth attribute, then this approach merges all

three nodes, although an optimal solution may end up separating u from w in some of the

cuts. We are not aware of any other approximation preserving reduction between the two

problems; therefore finding constant-factor approximation algorithms for the set multiway

cut packing problem remains an interesting open question.

To our knowledge Rabani et al. [RSS08] were the first to consider the multiway cut

packing problem and provide approximation algorithms for it. They used a linear program-

ming relaxation of the problem along with randomized rounding to obtain an O( logn
log logn

)

approximation, where n is the number of nodes in the given graph. This approximation

ratio arises from an application of the Chernoff bounds to the randomized rounding process,

and improves to an O(1) factor when the optimal load is Ω(log n). When the underlying

graph is a tree, Rabani et al. use a more careful deterministic rounding technique to obtain
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an improved O(log2 k) approximation. The latter approximation factor holds also for a

more general multicut packing problem (described in more detail below). One nice property

of the O(log2 k) approximation by Rabani et al. [RSS08] over trees is that it is independent

of the size of the graph, and remains small as the graph grows but k remains fixed. Then, a

natural open problem related to their work is whether a similar approximation guarantee

independent of n can be obtained even for general graphs.

4.1.1 Results and Techniques

We answer this question in the positive. We employ the same linear programming relaxation

for this problem as Rabani et al., but develop a very different rounding algorithm. In order

to produce a good integral solution our rounding algorithm requires a fractional collection

of cuts that is not only feasible for the linear program but also satisfies an additional good

property—the cut collection is laminar. In other words, when interpreted appropriately as

subsets of nodes, no two cuts in the collection “cross” each other. Given such an input the

rounding process only incurs a small additive loss in performance—the final (absolute) load

on any edge is at most 3 more than the load on that edge of the fractional solution that we

started out with. Of course the laminarity condition comes at a cost – not every fractional

solution to the cut packing LP can be interpreted as a laminar collection of cuts (see, e.g.,

Figure 4.10). We show that for the multiway cut problem any fractional collection of cuts

can be converted into a laminar one while losing only a multiplicative factor of 8 and an

additive o(1) amount in edge loads. Therefore, for every edge e we obtain a final edge load

of 8`OPT
e + 4, where `OPT

e is the optimal load on the edge. We only load edges with ce ≥ 1

and since the optimal cost is at least 1 our algorithm also obtains a purely multiplicative 12

approximation.

Our laminarity based approach proves even more powerful in the special case of common-
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sink s-t cut packing problem or CSCP. In this special case every multiway cut instance has

only two terminals and all the instances share a common sink t. We use these properties to

improve both the rounding and laminarity transformation algorithms, and ensure a final

load of at most `OPT
e + 1 for every edge e. The CSCP is NP-Hard (see Section 4.3) and so

our guarantee for this special case is the best possible.

In converting a fractional laminar solution to an integral one we use an iterative rounding

approach, assigning an integral cut at each iteration to an appropriate “innermost” terminal.

Throughout the algorithm we maintain a partial integral cut collection and a partial

fractional one and ensure that these collections together are feasible for the given multiway

cut instances. As we round cuts, we “shift” or modify other fractional cuts so as to maintain

bounds on edge loads. Maintaining feasibility and edge loads simultaneously turns out to

be relatively straightforward in the case of common-sink s-t cut packing – we only need to

ensure that none of the cuts in the fractional or the integral collection contain the common

sink t. However in the general case we must ensure that new fractional cuts assigned to any

terminal must exclude all other terminals of the same multiway cut instance. This requires

a more careful reassignment of cuts.

4.1.2 Related Work

Problems falling under the general framework of graph labeling as described above have been

studied in various guises. The most extensively studied special case, called label extension,

involves partial labelings in which every item is either completely labeled or not labeled at

all. When the objective is to minimize the `1 norm of edge costs, this becomes a special case

of the metric labeling and 0-extension problems [KT02, CKR04, CKNZ04, Kar98]. (The

main difference between 0-extension and the label extension problem as described above is

that the cost of the labeling in the former arises from an arbitrary metric over the labels,
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while in the latter it arises from the Hamming metric.)

When the underlying graph is a tree and edge costs are given by the edit distance between

the corresponding labels, this is known as the tree alignment problem. The tree alignment

problem has been studied widely in the computational biology literature and arises in the

context of labeling phylogenies and evolutionary trees. This version is also NP-Hard, and

there are several PTASes known [WJL96, WJG00, WG97]. Ravi and Kececioglu [RJ98]

also introduced and studied the `∞ version of this problem, calling it the bottleneck tree

alignment problem. They presented an O(log n) approximation for this problem. A further

special case of the label extension problem under the `∞ objective, where the underlying

tree is a star with labeled leaves, is known as the closest string problem. This problem is

also NP-Hard but admits a PTAS [LMW02].

As mentioned above, the multiway cut packing problem was introduced by Rabani,

Schulman and Swamy [RSS08]. Rabani et al. also studied the more general multicut packing

problem (where the goal is to pack multicuts so as to minimize the maximum edge load)

as well as the label extension problem with the `∞ objective. Rabani et al. developed an

O(log2 k) approximation for multicut packing in trees, and an O(logM logn
log logn

) in general

graphs. Here M is the maximum number of terminals in any one multicut instance. For

the label extension problem they presented a constant factor approximation in trees, which

holds even when edge costs are given by a fairly general class of metrics over the label set

(including Hamming distance as well as edit distance).

Another line of research loosely related to the cut packing problems described here

considers the problem of finding the largest collection of edge-disjoint cuts (not corresponding

to any specific terminals) in a given graph. While this problem can be solved exactly in

polynomial time in directed graphs [LY78], it is NP-Hard in undirected graphs, and Caprara,

Panconesi and Rizzi [CPR04] presented a 2 approximation for it. In terms of approximability,

this problem is very different from the one we study—in the former, the goal is to find as
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many cuts as possible, such that the load on any edge is at most 1, whereas in our setting,

the goal is to find cuts for all the commodities, so that the maximum edge load is minimized.

We give formal definitions and statements of our results along with a linear programming

relaxation for the cut packing problem in Section 4.2. Section 4.4 presents a rounding

algorithm which transforms a fractional collection of cuts (i.e, cuts with fractional weights

associated with them) that is feasible for the linear programming relaxation into a feasible

integral collection of cuts. The algorithm incurs a small additive loss in performance,

but requires that no two cuts in the given fractional collection “cross” each other. That

is, the input to the rounding algorithm should be a laminar cut family. In Section 4.5

we complete the approximation scheme by developing an algorithm which converts any

fractional collection of multiway cuts into a laminar one, while losing only a constant factor

in edge loads.

4.2 Problem Definitions and Results

Given a graph G = (V,E), a cut in G is a subset of edges E ′, the removal of which

disconnects the graph into multiple connected components. A vertex partition of G is a

pair (C, V \ C) with ∅ ( C ( V . For a set C with ∅ ( C ( V , we use δ(C) to denote

the cut defined by C, that is, δ(C) = {(u, v) ∈ E : |C ∩ {u, v}| = 1}. We say that a cut

E ′ ⊆ E separates vertices u and v if u and v lie in different connected components in

(V,E \ E ′). The vertex partition defined by set C separates u and v if the two vertices are

separated by the cut δ(C). Given a collection of cuts E = {E1, · · · , Ek} and capacities ce

on edges, the load `E
e on an edge e is defined as the number of cuts that contain e, that is,

`E
e = |{Ei ∈ E|e ∈ Ei}|. Likewise, given a collection of vertex partitions C = {C1, · · · , Ck},

the load `Ce on an edge e is defined to be the load of the cut collection {δ(C1), · · · , δ(Ck)}
on e.
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The input to a multiway cut packing problem (MCP) is a graph G = (V,E) with non-zero

integral capacities ce on edges, and k sets S1, · · · , Sk of terminals (called “commodities”);

each terminal i ∈ Sa resides at a vertex ri in V . The goal is to produce a collection of cuts

E = {E1, · · · , Ek}, such that (1) for all a ∈ [k], and for all pairs of terminals i, j ∈ Sa, the

cut Ea separates ri and rj, and (2) the maximum “relative load” on any edge, maxe `
E
e /ce,

is minimized.

In a special case of this problem called the common-sink s-t cut packing problem (CSCP),

the graph G contains a special node t called the sink and each commodity set has exactly

two terminals, one of which resides at t. Again the goal is to produce a collection of cuts,

one for each commodity such that the maximum relative edge load is minimized.

Both of these problems are NP-Hard to solve optimally (see Section 4.3), and we present

LP-rounding based approximation algorithms for them. We assume without loss of generality

that the optimal solution has a relative load of 1. The integer program MCP-IP below

encodes the set of solutions to the MCP with relative load 1.

Here Pa denotes the set of all paths between any two vertices ri, rj with i, j ∈ Sa,

i 6= j. In order to be able to solve this program efficiently, we relax the final constraint

to xa,e ∈ [0, 1] for all a ∈ [k] and e ∈ E. Although the resulting linear program has an

exponential number of constraints, it can be solved efficiently; in particular, the polynomial-

size program MCP-LP below is equivalent to it. Given a feasible solution to this linear

program, our algorithms round it into a feasible integral solution with small load.
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∑
e∈P

xa,e ≥ 1 ∀a ∈ [k], P ∈ Pa (MCP-IP)

∑
a

xa,e ≤ ce ∀e ∈ E

xa,e ∈ {0, 1} ∀a ∈ [k], e ∈ E

da(u, v) ≤ da(u,w) + da(w, v) ∀a ∈ [k], u, v, w ∈ V (MCP-LP)

da(ri, rj) ≥ 1 ∀a ∈ [k], i, j ∈ Sa∑
a

da(e) ≤ ce ∀e ∈ E

da(e) ∈ [0, 1] ∀a ∈ [k], e ∈ E

In the remainder of this chapter we focus exclusively on solutions to the MCP and CSCP

that are collections of vertex partitions. This is without loss of generality (up to a factor of

2 in edge loads for the MCP) and allows us to exploit structural properties of vertex sets

such as laminarity that help in constructing a good approximation. Accordingly, in the rest

of the chapter we use the term “cut” to denote a subset of the vertices that defines a vertex

partition.

A pair of cuts C1, C2 ⊂ V is said to “cross” if all of the sets C1∩C2, C1 \C2, and C2 \C1

are non-empty. A collection C = {C1, · · · , Ck} of cuts is said to be laminar if no pair of

cuts Ci, Cj ∈ C crosses. All of our algorithms are based on the observation that both the

MCP and the CSCP admit near-optimal solutions that are laminar. Specifically, there is a

polynomial-time algorithm that given a fractional feasible solution to MCP or CSCP (i.e. a
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feasible solution to MCP-LP) produces a laminar family of fractional cuts that is feasible

for the respective problem and has small load. This is formalized in Lemmas 4.1 and 4.2

below. We first introduce the notion of a fractional laminar family of cuts.

Definition 4.1. A fractional laminar cut family C for terminal set T with weight function

w is a collection of cuts with the following properties:

• The collection is laminar

• Each cut C in the family is associated with a unique terminal in T . We use Ci to

denote the sub-collection of sets associated with terminal i ∈ T . Every C ∈ Ci contains

the node ri.

• For all i ∈ T , the total weight of cuts in Ci,
∑

C∈Ci w(C), is 1.

Next we define what it means for a fractional laminar family to be feasible for the

MCP or the CSCP. Note that for a terminal pair i 6= j belonging to the same commodity,

condition (2) below is weaker than requiring cuts in both Ci and Cj to separate ri from rj.

Definition 4.2. A fractional laminar family of cuts C for terminal set T with weight

function w is feasible for the MCP on a graph G with edge capacities ce and commodities

S1, · · · , Sk if (1) T = ∪a∈[k]Sa, (2) for all a ∈ [k] and i, j ∈ Sa, i 6= j, either rj 6∈ ∪C∈CiC,

or ri 6∈ ∪C∈CjC, and (3) for every edge e ∈ E, `Ce ≤ ce.

The family is feasible for the CSCP on a graph G with edge capacities ce and commodities

S1, · · · , Sk if (1) T = ∪a∈[k]Sa \ {t}, (2) t 6∈ ∪C∈CC, and (3) for every e ∈ E, `Ce ≤ ce.

Lemma 4.1. Consider an instance of the CSCP with graph G = (V,E), common sink t,

edge capacities ce, and commodities S1, · · · , Sk. Given a feasible solution d to MCP-LP,

algorithm Lam-1 produces a fractional laminar cut family C that is feasible for the CSCP

on G with edge capacities ce + o(1).
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Lemma 4.2. Consider an instance of the MCP with graph G = (V,E), edge capacities ce,

and commodities S1, · · · , Sk. Given a feasible solution d to MCP-LP, algorithm Lam-2

produces a fractional laminar cut family C that is feasible for the MCP on G with edge

capacities 8ce + o(1).

Lemmas 4.1 and 4.2 are proven in Section 4.5. In Section 4.4 we show how to determinis-

tically round a fractional laminar solution to the CSCP and MCP into an integral one while

increasing the load on every edge by no more than a small additive amount. These rounding

algorithms are the main contributions of our work, and crucially use the laminarity of the

fractional solution.

Lemma 4.3. Given a fractional laminar cut family C feasible for the CSCP on a graph G

with integral edge capacities ce, the algorithm Round-1 produces an integral family of cuts

A that is feasible for the CSCP on G with edge capacities ce + 1.

For the MCP, the rounding algorithm loses an additive factor of 3 in edge load.

Lemma 4.4. Given a fractional laminar cut family C feasible for the MCP on a graph G

with integral edge capacities ce, the algorithm Round-2 produces an integral family of cuts

A that is feasible for the MCP on G with edge capacities ce + 3.

Combining these lemmas together we obtain the following theorem.

Theorem 4.1. There exists a polynomial-time algorithm that given an instance of the MCP

with graph G = (V,E), edge capacities ce, and commodities S1, · · · , Sk, produces a family A
of multiway cuts, one for each commodity, such that for each e ∈ E, `Ae ≤ 8ce + 4.

There exists a polynomial-time algorithm that given an instance of the CSCP with graph

G = (V,E), edge capacities ce, and commodities S1, · · · , Sk, produces a family A of multiway

cuts, one for each commodity, such that for each e ∈ E, `Ae ≤ ce + 2.
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4.3 NP-Hardness

We will now prove that CSCP and MCP are NP-Hard. Since edge loads for any feasible

solution to these problems are integral, the result of Theorem 4.1 is optimal for the CSCP

assuming P 6=NP. The reduction in this theorem also gives us an integrality gap instance for

the CSCP.

Theorem 4.2. CSCP and MCP are NP-Hard. Furthermore the integrality gap of MCP-LP

is at least 2 for both the problems.

Proof. We reduce independent set to CSCP. In particular, given a graph G and a target k,

we produce an instance of CSCP such that the load on every edge is at most 1 if and only

if G contains an independent set of size at least k. Let n be the number of vertices in G.

We construct G′ by adding a chain of n− k + 1 new vertices to G. Let the first vertex in

this chain be t (the common sink) and the last be v. We connect every vertex of G to the

new vertex v, and place a terminal i at every vertex ri in G (therefore, there are a total

of n sources). We claim that there is a collection of n edge-disjoint ri − t cuts in this new

graph G′ if and only if G contains an independent set of size k.

One direction of the proof is straightforward: if G contains an independent set of size k,

say S, then for each vertex ri ∈ S, consider the cut {ri}, and for each of the n− k source

not in S, consider the cuts obtained by removing one of the n− k chain edges in G′. Then

all of these n cuts are edge-disjoint.

Next suppose that G′ contains a collection of edge-disjoint cuts Ci, with ri ∈ Ci and

t 6∈ Ci for all i. Note that the number of cuts Ci containing any chain vertex is at most

n− k because each of them cuts at least one chain edge. Next consider the cuts that do

not contain any chain vertex, specifically v, and let T ′ be the collection of terminals for

such cuts. These are at least k in number. Note that any cut Ci, i ∈ T ′, cuts the edges

(u, v) for u ∈ Ci. Therefore, in order for these cuts to be edge-disjoint, it must be the case
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that Ci ∩ Cj = ∅ for i, j ∈ T ′, i 6= j. Finally, for two such cuts Ci and Cj, edge-disjointness

again implies that ri and rj are not connected. Therefore the vertices ri for i ∈ T ′ form an

independent set in G of size at least k.

For the integrality gap, let G be the complete graph and k be n/2. Then, there is no

integral solution with load 1 in G′. However, the following fractional solution is feasible and

has a load of 1: let the chain of vertices added to G be v = v1, v2, · · · , vn/2+1 = t; assign to

every terminal i, i ∈ [n], the cut {ri} with weight 1/2, and the cut V ∪ {v0, · · · , vbi/2c} with

weight 1/2.

4.4 Rounding Fractional Laminar Cut Families

In this section we develop algorithms for rounding feasible fractional laminar solutions to

the MCP and the CSCP to integral ones while increasing edge loads by a small additive

amount. We first demonstrate some key ideas behind the algorithm and the analysis for the

CSCP, and then extend them to the more general case of multiway cuts. Throughout the

section we assume that the edge capacities ce are integral.

4.4.1 The Common Sink Case (proof of Lemma 4.3)

Our rounding algorithm for the CSCP rounds fractional cuts roughly in the order of

innermost cuts first. The notion of an innermost terminal is defined with respect to the

fractional solution. After each iteration we ensure that the remaining fractional solution

continues to be feasible for the unassigned terminals and has small edge loads. We use C
to denote the fractional laminar cut family that we start out with and A to denote the

integral family that we construct. Recall that for an edge e ∈ E, `Ce denotes the load of the

fractional cut family C on e, and `Ae denotes the load of the integral cut family A on e. We

call the former the fractional load on the edge, and the latter its integral load.
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We now formalize what we mean by an “innermost” terminal. For every vertex v ∈ V ,

let Kv denote the set of cuts in C that contain v. The “depth” of a vertex v is the total

weight of all cuts in Kv: dv =
∑

C∈Kv
w(C). The depth of a terminal is defined as the depth

of the vertex at which it resides. Terminals are picked in order of decreasing depth.

Before we describe the algorithm we need some more notation. At any point during the

algorithm we use Se to denote the set of cuts crossing an edge e. As the algorithm proceeds,

the integral loads on edges increase while their fractional loads decrease. Whenever the

fractional load of an edge becomes 0, we merge its end-points to form “meta-nodes”. At

any point of time, we use M(v) to denote the meta-node containing a node v ∈ V .

Finally, for a set of fractional cuts L = {L1, · · · , Ll} with L1 ⊆ L2 ⊆ · · · ⊆ Ll and

weight function w, we use Lx to denote the subset of L containing the innermost cuts with

weight exactly x. That is, let l′ be such that
∑

a<l′ w(La) < x and
∑

a≤l′ w(La) ≥ x. Then

Lx is the set {L1, · · · , Ll′} with weight function w′ such that w′(La) = w(La) for a < l′ and

w′(Ll′) = x−∑a<l′ w(La).

The algorithm Round-1 is given in Figure 4.1. At every step, the algorithm picks a

terminal, say i, with the maximum depth and assigns an integral cut to it. This potentially

frees up capacity used up by the fractional cuts of i, but may use up extra capacity on some

edges that was previously occupied by fractional cuts belonging to other terminals. In order

to avoid increasing edge loads, we reassign to terminals in the latter set, fractional cuts of i

that have been freed up.

Our analysis has two parts. Lemma 4.5 shows that the family C continues to remain

feasible, that is it always satisfy the first two conditions in Definition 4.2 for the unassigned

terminals. Lemma 4.6 analyzes the total load of the fractional and integral families as the

algorithm progresses.

Lemma 4.5. Throughout the algorithm, the cut family C is a fractional laminar family for
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Input: Graph G = (V,E) with capacities ce, terminals T with a fractional laminar cut family C,
common sink t with t 6∈ ∪C∈CC.
Output: A collection of cuts A, one for each terminal in T .

1. Initialize T ′ = T , A = ∅, and M(v) = {v} for all v ∈ V . Compute the depths of vertices
and terminals.

2. While there are terminals in T ′ do:

a) Let i be a terminal with the maximum depth in T ′. Let Ai = M(ri). Add Ai to A
and remove i from T ′.

b) Let K = K1
ri . Remove cuts in K ∩ Ci from K, Ci and C. While there exists a terminal

j ∈ T ′ with a cut C ∈ K ∩ Cj , do the following: let w = w(C); remove C from K, Cj
and C; remove cuts in Cwi from Ci and add them to Cj (that is, these cuts are reassigned
from terminal i to terminal j).

c) If there exists an edge e = (u, v) with `Ce = 0, merge the meta-nodes M(u) and M(v)
(we say that the edge e has been “contracted”).

d) Recompute the depths of vertices and terminals.

Figure 4.1: Algorithm Round-1—Rounding algorithm for common-sink s-t cut packing

terminals in T ′ with t 6∈ ∪C∈CC.

Proof. We prove this by induction over the iterations of the algorithm. The claim obviously

holds at the beginning of the algorithm. Consider a step at which some terminal i is assigned

an integral cut. The algorithm removes all the cuts in K = K1
ri

from C. Some of these cuts

belong to other terminals; those terminals are reassigned new cuts. Specifically, we first

remove cuts in K ∩ Ci from the cut family. The total weight of the remaining cuts in K as

well as the total weight of those in Ci is equal at this time. Subsequently, we successively

consider terminals j with a cut C ∈ K ∩ Cj, and let w = w(C). Then we remove C from

the cut family, and reassign cuts of total weight w in Cwi to j. Therefore, the total weight of

cuts assigned to j remains 1. Furthermore, the newly reassigned cuts contain the cut C,

and therefore the vertex rj, but do not contain the sink t. Therefore, C continues to be a
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fractional laminar family for terminals in T ′.

Lemma 4.6. At any point of time for every edge e ∈ E, `Ae ≤ ce − 1 implies `Ae + `Ce ≤ ce,

`Ae = ce implies `Ce ≤ 1, and `Ae = ce + 1 implies `Ce = 0. Furthermore, for e = (u, v), `Ae = ce

implies that either Ku ∩ Se or Kv ∩ Se is empty.

Proof. Let e = (u, v). We prove the lemma by induction over time. Note that in the

beginning of the algorithm, we have for all edges `Ce ≤ ce and `Ae = 0, so the inequality

`Ae + `Ce ≤ ce holds.

Let us now consider a single iteration of the algorithm and suppose that the integral load

of the edge increases during this iteration. (If it doesn’t increase, since `Ce only decreases

over time, the claim continues to hold.) Let i be the commodity picked by the algorithm in

this iteration, then M(ri) is the same as either M(u) or M(v). Without loss of generality

assume that ri ∈M(u). Let α denote the total weight of cuts in Ku ∩ Se and β denote the

total weight of cuts in Kv ∩ Se prior to this iteration. Then, α + β = `Ce . Moreover, all cuts

in C \ Se either contain both or neither of u and v. So we can relate the depths of v and u

in the following way: dv = du − α + β. Since i is the terminal picked during this iteration,

we must have du ≥ dv, and therefore, α ≥ β.

We analyze the final edge load depending on the value of α. Two cases arise: suppose

first that α ≥ 1. Then K1
u ⊆ Ku ∩ Se, and the fractional weight of e reduces by exactly

1. On the other hand, the integral load on the edge increases by 1, and so the total load

continues to be the same as before. On the other hand, if α ≤ 1, then Ku ∩ Se ⊆ K1
u, and

all the cuts in Ku ∩ Se get removed from Se in this iteration. Therefore the final fractional

load is at most β ≤ α ≤ 1, and at the end of the iteration, Ku ∩ Se = ∅. If `Ae ≤ ce − 1, we

immediately get that the total load on the edge is at most ce.

If `Ae = ce, then prior to this iteration `Ae = ce − 1, and so `Ce ≤ 1 by the induction

hypothesis. Then, as we argued above, α ≤ `Ce ≤ 1 implies that the new fractional load on
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the edge is at most 1 and at the end of the iteration, Ku ∩ Se = ∅.
Finally, if `Ae = ce + 1, then prior to this iteration, `Ae = ce and by the induction

hypothesis, β is zero (as α ≥ β and either Ku∩Se or Kv ∩Se is empty). Along with the fact

that α ≤ 1 (by the inductive hypothesis), the final fractional load on the edge is β = 0.

The two lemmas together give us a proof of Lemma 4.3. We restate the lemma for

completeness.

Lemma 4.3. Given a fractional laminar cut family C feasible for the CSCP on a graph G

with integral edge capacities ce, the algorithm Round-1 produces an integral family of cuts

A that is feasible for the CSCP on G with edge capacities ce + 1.

Proof. First note that for every i, Ai is set to be the meta-node of ri at some point during

the algorithm, which is a subset of every cut in Ci at that point of time. Then ri ∈ Ai, and

by Lemma 4.5, t 6∈ Ai. Second, for any edge e, its integral load `Ae starts out at being 0

and gradually increases by at most an additive 1 at every step, while its fractional load

decreases. Once the fractional load of an edge becomes zero, both its end points belong to

the same meta-node, and so the edge never gets loaded again. Therefore, by Lemma 4.6,

the maximum integral load on any edge e is at most ce + 1.

4.4.2 The General Case (proof of Lemma 4.4)

As in the common-sink case, the rounding algorithm for the MCP proceeds by picking

terminals according to an order suggested by the fractional solution and assigning the

smallest cuts possible to them subject to the availability of capacity on the edges. In the

algorithm Round-1, we reassign cuts among terminals at every iteration so as to maintain the

feasibility of the remaining fractional solution. In the case of MCP, this is not sufficient—a

simple reassignment of cuts as in the case of algorithm Round-1 may not ensure separation
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among terminals belonging to the same commodity. We use two ideas to overcome this

difficulty: first, among terminals of equal depth, we use a different ordering to pick the next

terminal to minimize the need for reassigning cuts; second, instead of reassigning cuts, we

modify the existing fractional cuts for unassigned terminals so as to remain feasible while

paying a small extra cost in edge load.

We now define the “cut-inclusion” ordering over terminals. For every terminal i ∈ T , let

Oi denote the largest (outermost) cut in Ci, that is, ∀C ∈ Ci, C ⊆ Oi. We say that terminal i

dominates (or precedes) terminal j in the cut-inclusion ordering, written i >CI j, if Oi ⊂ Oj

(if Oi = Oj we break ties arbitrarily but consistently). Cut-inclusion defines a partial order

on terminals. Note that we can pre-process the cut family C by reassigning cuts among

terminals, such that for all pairs of terminals i, j ∈ T with i >CI j, and for all cuts Ci ∈ Ci
and Cj ∈ Cj with ri, rj ∈ Ci ∩ Cj, we have Ci ⊆ Cj. We call this property the “inclusion

invariant”. Ensuring this invariant requires a straightforward pairwise reassignment of cuts

among the terminals, and we omit the details. Note that following this reassignment, for

every terminal i, the new outermost cut of i, Oi, is the same as or a subset of its original

outermost cut.

As the algorithm proceeds we modify the collection C as well as build up the collection

A of integral cuts Ai for i ∈ T . For example, we may split a cut C into two cuts containing

the same nodes as C and with weights summing to that of C. As cuts in C are modified,

their ownership by terminals remains unchanged, and we therefore continue using the same

notation for them. Furthermore, if for two cuts C1 and C2, we have (for example) C1 ⊆ C2 at

the beginning of the algorithm, this relationship continues to hold throughout the algorithm.

This implies that the inclusion invariant continues to hold throughout the algorithm. We

ensure that throughout the execution of the algorithm the cut family C continues to be

a fractional laminar family for terminals T ′. At any point of time, the depth of a vertex

or a terminal, as well as the cut-inclusion ordering is defined with respect to the current
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cuts in Kri
\ Ci

cuts in Kri
∩ Ci

Ai

M(ri)

Figure 4.2: An iteration of algorithm Round-2 (Steps 3b & 3d)

fractional family C.
As before, let Se denote the set of cuts in C that cross e — Se = {C ∈ C|e ∈ δ(C)}.

Recall that Kv denotes the set of cuts in C containing the vertex v, and of these K1
v denotes

the inner-most cuts with total weight exactly 1.

The rounding algorithm is given in Figure 4.3. Roughly speaking, at every step, the

algorithm picks a maximum depth terminal i and assigns the cut M(ri) to it (recall that

M(ri) is the meta-node of the vertex ri where terminal i resides). It “pays” for this cut

using fractional cuts in K1
ri

. Of course some of the cuts in K1
ri

belong to other commodities,

and need to be replaced with new fractional cuts. The cut-inclusion invariant ensures that

these other commodities reside at meta-nodes other than M(ri), so we modify each cut in

K1
ri
\ Ci by removing M(ri) from it (see Figure 4.2). This process potentially increases the

total loads on edges incident on M(ri) by small amounts, but on no other edges. Step 3c of

the algorithm deals with the case in which edges incident on M(ri) are already overloaded;

In this case we avoid loading those edges further by assigning to i some subset of the

meta-node M(ri). Lemmas 4.11 and 4.12 show that this case does not arise too often.

For a terminal i and edge e, if at the time that i is picked in Step 3a of the algorithm e

is in δ(M(ri)), we say that i accesses e. If e ∈ Ei, we say that i defaults on e, and if e is in
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δ(Ai) after this iteration, then we say that i loads e.

During the course of the algorithm integral loads on edges increase, but fractional loads

may increase or decrease. To study how these edge loads change during the course of the

algorithm, we divide edges into five sets. Let X−1 denote the set of edges with `Ae ≤ ce − 1

and `Ce > 0. For a ∈ {0, 1}, let Xa denote the set of edges with `Ae = ce + a and `Ce > 0. Y

denotes the set of edges with `Ae ≥ ce + 2 and `Ce > 0, and Z denotes the set of edges with

`Ce = 0. Every edge starts out with a zero integral load. As the algorithm proceeds, the edge

goes through one or more of the Xas, may enter the set Y , and eventually ends up in the

set Z. As for the CSCP, when an edge enters Z, we merge the end-points of the edge into a

single meta-node. However, unlike for the CSCP, edges may get loaded even after entering

Z. When an edge enters Y , we avoid loading it further (Step 3c), and instead load some

edges in Z. Nevertheless, we ensure that edges in Z are loaded no more than once.

As before our analysis has two components. First we show (Lemma 4.7) that the cuts

produced by the algorithm are feasible. The following lemmas give the desired guarantees on

the edges’ final loads: Lemmas 4.8 and 4.9 analyze the loads of edges in Xa for a ∈ {−1, 0, 1};
Lemma 4.10 analyzes edges in Y and Lemmas 4.11 and 4.12 analyze edges in Z. We put

everything together in the proof of Lemma 4.4 at the end of this section.

Lemma 4.7. For all i, ri ∈ Ai ⊆ Oi.

Proof. Each cut Ai is set equal to the meta-node of ri at some stage of the algorithm.

Therefore, ri ∈ Ai for all i. Furthermore, at the time that i is assigned an integral cut,

Ai ⊆M(ri) ⊆ Oi.

Next we prove some facts about the fractional and integral loads as an edge goes through

the sets Xa. The proofs of the following two lemmas are similar to that of Lemma 4.6.

Lemma 4.8. At any point of time, for every edge e ∈ X−1, `Ae + `Ce ≤ ce.
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Input: Graph G = (V,E) with capacities ce on edges, a set of terminals T with a fractional
laminar cut family C.
Output: A collection of cuts A, one for each terminal in T .

1. Preprocess the family C so that it satisfies the inclusion invariant.

2. Initialize T ′ = T , A = ∅, Y,Z = ∅, and M(v) = {v} for all v ∈ V .

3. While there are terminals in T ′ do:

a) Consider the set of unassigned terminals with the maximum depth, and of these
let i ∈ T ′ be a terminal that is undominated in the cut inclusion ordering. Let
Ei = Y ∩ δ(M(ri)).

b) If Ei = ∅, let Ai = M(ri).

c) If Ei 6= ∅ (we say that the terminal has “defaulted” on edges in Ei), let Ui denote the
set of end-points of edges in Ei that lie in M(ri). If ri ∈ Ui, abort and return error.
Otherwise, consider the vertex in Ui that entered M(ri) first during the algorithm’s
execution, call this vertex ui. Set Ai to be the meta-node of ri just prior to the iteration
where M(ui) becomes equal to M(ri).

d) Add Ai to A. Remove Ci from C and i from T ′. For every j ∈ T ′ and C ∈ K1
ri ∩ Cj , let

C = C \ {M(ri)}.
e) If for some edge e, `Ae = ce+ 2 and `Ce > 0, add e to Y . If there exists an edge e = (u, v)

with `Ce = 0, merge the meta-nodes M(u) and M(v) (we say that the edge e has been
“contracted”.) Add all edges e with `Ce = 0 to Z and remove them from Y .

f) Recompute the depths of vertices and terminals.

Figure 4.3: Algorithm Round-2—Rounding algorithm for multiway cut packing

Proof. We prove the claim by induction over time. Note that in the beginning of the

algorithm, we have for all edges `Ce ≤ ce and `Ae = 0, so the inequality `Ae + `Ce ≤ ce holds.

Let us now consider a single iteration of the algorithm and suppose that the edge e

remains in the set X−1 after this step. There are three events that influence the load of the

edge e = (u, v): (1) a terminal at some vertex in M(u) accesses e; (2) a terminal at M(v)

accesses e; and, (3) a terminal at some other meta-node M 6= M(u),M(v) is assigned an

integral cut. Let us consider the third case first, and suppose that a terminal i is assigned.



94

Since Ai ⊆M and therefore e /∈ δ(Ai) its integral load does not increase. However, in the

event that Se ∩ Ci is non-empty, the fractional load on e may decrease (because cuts in Ci
are removed from C). Therefore, the inequality continues to hold.

Next we consider the case where a terminal, say i, with ri ∈M(u) accesses e (the second

case is similar). Note that M(ri) = M(u). In this case the integral load of the edge e

potentially increases by 1 (if the terminal loads the edge). By the definition of X−1, the

new integral load on this edge is no more than ce − 1. The fractional load on e changes in

three ways:

• Cuts in Ci ∩ Se are removed from C, decreasing `Ce .

• Some of the cuts in (K1
ri
\ Ci) \ Se get “shifted” on to e increasing `Ce (we remove the

meta-node M(ri) from these cuts, and they may continue to contain M(v)).

• Cuts in (K1
ri
\ Ci) ∩ Se get shifted off from e decreasing `Ce (these cuts initially contain

M(ri) but not M(v), and during this step we remove M(ri) from these cuts).

So the decrease in `Ce is at least the total weight of K1
ri
∩Se = K1

u ∩Se, whereas the increase

is at most the total weight of K1
ri
\ Se = K1

u \ Se.
In order to account for the two terms, let α denote the total weight of cuts in Ku ∩ Se,

and β denote the total weight of cuts in Kv ∩ Se. Then, α + β = `Ce . As in the proof of

Lemma 4.6, we have dv = du − α + β, and therefore du ≥ dv implies α ≥ β. Now, suppose

that α ≥ 1. Then K1
u ⊆ Se. Therefore, the decrease in `Ce due to the sets K1

u ∩ Se = K1
u is

at least 1, and there is no corresponding increase, so the sum `Ae + `Ce remains at most ce.

Finally, suppose that α < 1. Then K1
u contains all the cuts in Ku ∩ Se, the weight of

K1
u ∩ Se is exactly α, and so the decrease in `Ce is at least α. Moreover, the total weight of

K1
u \ Se is 1− α, therefore, the increase in `Ce due to the sets in K1

u \ Se is at most 1− α.
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Since `Ce starts out as being equal to α+ β, its final value after this step is 1− α+ β ≤ 1 as

β ≤ α. Noting that `Ae is at most ce − 1 after the step, we get the desired inequality.

Lemma 4.9. For any edge e = (u, v), from the time that e enters X0 to the time that it

exits X1, `Ce ≤ 1. Furthermore suppose (without loss of generality) that during this time in

some iteration e is accessed by a terminal i with ri ∈ M(u), then following this iteration

until the next time that e is accessed, we have Se ∩Ku = ∅, and the next access to e (if any)

is from a terminal in M(v).

Proof. First we note that if the lemma holds the first time an edge e = (u, v) enters a set

Xa, a ∈ {0, 1}, then it continues to hold while the edge remains in Xa. This is because

during this time the integral load on the edge does not increase, and therefore throughout

this time we assign integral cuts to terminals at meta-nodes different from M(u) and M(v)

— this only reduces the fractional load on the edge e and shrinks the set Se.

Consider the first time that an edge e = (u, v) moves from the set X−1 to X0. Suppose

that at this step we assign an integral cut to a terminal i residing at node ri ∈M(u). Prior

to this step, `Ae = ce − 1, and so by Lemma 4.8, `Ce ≤ 1. As before define α to be the total

weight of cuts Ku ∩ Se, and β to be the total weight of cuts Kv ∩ Se. Then following the

same argument as in the proof of Lemma 4.8, we conclude that the final fractional weight

on e is at most β + 1− α ≤ 1. Furthermore, since Ku ∩ Se ⊆ K1
u, we either remove all these

cuts from C or shift them off of edge e. Moreover, any new cuts that we shift on to e do

not contain the meta-node M(ri) = M(u), and in particular do not contain the vertex u.

Therefore at the end of this step, Se∩Ku = ∅. This also implies that following this iteration

terminals in M(v) have depth larger than terminals in M(u), and so the next access to e

must be from a terminal in M(v).

The same argument works when an edge moves from X0 to X1. We again make use of

the fact that prior to the step the fractional load on the edge is at most 1.
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Lemma 4.10. During any iteration of the algorithm, for any edge e ∈ Y , the following are

satisfied:

• `Ce ≤ 1

• If the edge e = (u, v) is accessed by a terminal i with ri ∈M(u), then following this

iteration until the next time that e is accessed, we have Se ∩Ku = ∅, and the next

access to e (if any) is from a terminal in M(v).

• If a terminal i with ri ∈M(u) accesses e = (u, v), then ri 6= u, Ai ∩ {u, v} = ∅, and

so i does not load e. Also, consider any previous access to the edge by a terminal in

M(u); then prior to this access, ri 6∈M(u).

Proof. The first two parts of this lemma extend Lemma 4.9 to the case of e ∈ Y , and are

otherwise identical to that lemma. The proof for these claims is analogous to the proof of

Lemma 4.9. The only difference is that terminals accessing an edge e ∈ Y default on this

edge. However, this does not affect the argument: when a terminal defaults on the edge,

the edge’s fractional load changes in the same way as if the terminal did not default; the

only change is in the way an integral cut is assigned to the terminal. Since these claims

depend only on how the fractional load on the edge changes, they continue to hold while

the edge is in Y .

For the third part of the lemma, since Ai ⊆ M(ri) = M(u) and v 6∈ M(u), v 6∈ Ai.

Next we show that u 6∈ Ai. Consider the iterations of the algorithm during which `Ce ≤ 1.

During this time the edge was accessed at least twice prior to being accessed by i (once

when e moved from X0 to X1, once when e moved from X1 to Y , and possibly multiple

times while e ∈ Y ). Let the last two accesses be by the terminals j1 and j2, at iterations

t1 and t2, t1 ≤ t2. For a ∈ {0, 1}, let Ma(u) and Ma(v) denote the meta-nodes of u and v

respectively just prior to iteration ta, and M(u) and M(v) denote the respective meta-nodes
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just prior to the current iteration. Then by Lemma 4.9 and the second part of this lemma,

we have rj1 ∈ M1(u) and rj2 ∈ M2(v). We claim that i >CI j2 >CI j1. Given this claim,

if ri ∈ M1(u) = M1(rj1), then since i and j1 have the same depth at iteration t1, we get

a contradiction to the fact that the algorithm picks j1 before i in Step 3a. Therefore,

ri 6∈M(u) at any iteration prior to t1, and in particular, ri 6= u. Finally, since u ∈ Ui and

Ui ∩ Ai = ∅, this also implies that u 6∈ Ai.
It remains to prove the claim. We will prove that j2 >CI j1. The proof for i >CI j2

is analogous. In fact we will prove a stronger statement: between iterations t1 and t2,

all terminals with cuts in Se dominate j1 in the cut-inclusion ordering. We prove this by

induction. By Lemma 4.9, prior to iteration t1, Se does not contain any cuts belonging to

terminals at M(v). Following the iteration, Se only contains fractional cuts in K1
u that got

shifted on to the edge e. Prior to shifting, these cuts contain M1(u), and therefore rj1 , but

do not belong to j1. Then, these cuts are subsets of Oj1 , and so by the inclusion invariant,

they belong to terminals dominating j1 in the cut-inclusion ordering. Therefore, the claim

holds right after the iteration t1. Finally, following the iteration until the next time that e

is accessed (by j2), the set Se only shrinks, and so the claim continues to hold.

In order to analyze the loading of edges in Z, we need some more notation. Let M
denote the collection of sets of vertices that were meta-nodes at some point during the

algorithm. For any edge e ∈ Z, let Me denote the meta-node formed when e enters Z; then

Me is the smallest set in M containing both the end points of e. Note that the collection

A ∪M is laminar.

Lemma 4.11. An edge e ∈ Z is loaded only if after the formation of Me a terminal residing

at a vertex in Me defaults on an edge in δ(Me). (Note that this may happen after Me has

merged with some other meta-nodes.)
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Proof. Let i be a defaulting terminal that loads the edge e ∈ Z. Then e ∈ δ(Ai), and

therefore, Ai ( Me and ri ∈Me. Furthermore, since Ai is a strict subset of Me, Ui∩Me 6= ∅,
and therefore, i defaults on an edge e′ ∈ Y with at least one end-point in Me. But if both

the end-points of e′ are in Me, then we must have `Ce′ = 0 contradicting the fact that e′ is in

Y . Therefore, e′ ∈ δ(Me).

Lemma 4.12. For any meta-node M ∈ M, after its formation, at most one terminal

residing at a vertex in M can default on edges in δ(M) (even after M has merged with other

meta-nodes).

Proof. For the sake of contradiction, suppose that two terminals i and j, both residing at

vertices in M default on edges in δ(M) after the formation of M , with i defaulting before

j. Let M1 (M2) denote the meta-node containing M just before i (j) defaulted. Note that

M ⊆M1 ⊆M2. Consider an edge e ∈ Ej ∩ δ(M) (recall that Ej is the set of edges that j

defaults on, so this set is non-empty by our assumption). Then e ∈ δ(M) ∩ δ(M2) ⊆ δ(M1).

Therefore, at the time that i defaulted, e was accessed by i, and by the third claim in

Lemma 4.10, rj 6∈M1. This contradicts the fact that rj ∈M .

Finally we can put all these lemmas together to prove our main result on algorithm

Round-2.

Lemma 4.13. Given a fractional laminar cut family C feasible for the MCP on a graph G

with integral edge capacities ce, the algorithm Round-2 produces an integral family of cuts

A that is feasible for the MCP on G with edge capacities ce + 3.

Proof. We first note that the third part of Lemma 4.10 implies that for all i, ri 6∈ Ui, and

therefore the algorithm never aborts. Then Lemma 4.7 implies that we get a feasible cut

packing. Finally, note that every edge starts out in the set X−1, goes through one or more

of the Xa’s, a ∈ {0, 1}, potentially goes through Y , and ends up in Z. An edge e enters
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Input: Graph G = (V,E) with edge capacities ce, commodities S1, · · · , Sk, common sink t, a
feasible solution d to the program MCP-LP.
Output: A fractional laminar family of cuts C that is feasible for G with edge capacities ce + o(1).

1. For every a ∈ [k] and terminal i ∈ Sa do the following: Order the vertices in G in increasing
order of their distance under da from ri. Let this ordering be v0 = ri, v1, · · · , vn. Let Ci
be the collection of cuts {v0, v1, · · · , vb}, one for each b ∈ [n], da(ri, vb) < 1, with weights
w({v0, · · · , vb}) = da(ri, vb+1)− da(ri, vb). Let C denote the collection {Ci}i∈∪aSa .

2. Let N = nk. Round up the weights of all the cuts in C to multiples of 1/N2, and truncate
the collection so that the total weight of every sub-collection Ci is exactly 1. Also split every
cut with weight more than 1/N2 into multiple cuts of weight exactly 1/N2 each, assigned to
the same commodity.

3. While there are pairs of cuts in C that cross, consider any pair of cuts Ci, Cj ∈ C belonging
to terminals i 6= j that cross each other. Transform these cuts into new cuts for i and j
according to Figure 4.5.

Figure 4.4: Algorithm Lam-1—Algorithm to convert an LP solution for the CSCP into a
feasible fractional laminar family

Y when its integral load becomes ce + 2. Lemma 4.10 implies that edges in Y never get

loaded, and so at the time that an edge e enters Z, `Ae ≤ ce + 2. After this point the edge

stays in Z, and Lemmas 4.11 and 4.12 imply that it gets loaded at most once. Therefore,

the final load on the edge is at most ce + 3.

4.5 Constructing Fractional Laminar Cut Packings

We now show that fractional solutions to the program MCP-LP can be converted in

polynomial time into fractional laminar cut families while losing only a small factor in edge

load. We begin with the common sink case.



100

(c)

i

i

j

j

(a)

i j

i j

(b)

i

i j

j

Figure 4.5: Rules for transforming an arbitrary cut family into a laminar one for the CSCP.
The dark cuts in this figure correspond to the terminal i, and the light cuts to terminal j; t
lies outside all the cuts.

4.5.1 Obtaining Laminarity in the Common Sink Case

We prove Lemma 4.1 in this section. Our algorithm involves starting with a solution to

MCP-LP, converting it into a feasible fractional non-laminar family of cuts, and then

resolving pairs of crossing cuts one at a time by applying the rules in Figure 4.5. The

algorithm is given in Figure 4.5.

Lemma 4.14. Consider an instance of the CSCP with graph G = (V,E), common sink t,

edge capacities ce, and commodities S1, · · · , Sk. Given a feasible solution d to MCP-LP,

algorithm Lam-1 produces in polynomial time a fractional laminar cut family C that is

feasible for the CSCP on G with edge capacities ce + o(1).

Proof. We first note that the family C is feasible for the given instance of CSCP at the end

of Step 2, but is not necessarily laminar. Since the number of distinct cuts in C after Step 1

is at most nk = N , at the end of Step 2, edge loads are at most ce + 1/N . As we tranform

the cuts in Step 3, we maintain the property that no cut C ∈ C contains the sink t, but

every cut C ∈ Ci contains the node ri for terminal i. It is also easy to see from Figure 4.5

that the load on every edge stays the same. Finally, in every iteration of this step, the



101

number of pairs of crossing cuts strictly decreases. Therefore, the algorithm ends after a

polynomial number of iterations.

4.5.2 Obtaining Laminarity in the General Case

Obtaining laminarity in the general case involves a more careful selection and ordering

of rules of the form given in Figure 4.5. The key complication in this case is that we

must maintain separation of every terminal from every other terminal in its commodity

set. We first show how to convert an integral collection of cuts feasible for the MCP into

a feasible integral laminar collection of cuts. We lose a factor of 2 in edge loads in this

process (see Lemma 4.15 below). Obtaining laminarity for an arbitrary fractional solution

requires converting it first into an integral solution for a related cut-packing problem and

then applying Lemma 4.15 (see algorithm Lam-2 in Figure 4.9 and the proof of Lemma 4.2

following it).

Lemma 4.15. Consider an instance of the MCP with graph G = (V,E)and commodities

S1, · · · , Sk, and let C1 = {C1
i }i∈Sa,a∈[k] be a family of cuts such that for each a ∈ [k] and

i ∈ Sa, C1
i contains i but no other j ∈ Sa. Then algorithm Integer-Lam-2 produces a laminar

cut collection C2 = {C2
i }i∈Sa,a∈[k] such that for each a ∈ [k] and i 6= j ∈ Sa, either C2

i or C2
j

separates i from j, and `C
1

e ≤ 2`C
2

e for every edge e ∈ E.

In the remainder of this section we interpret cuts as sets of vertices as well as sets of

terminals residing at those vertices. The algorithm for laminarity in the integral case is

given in Figure 4.6.

As in the common sink case, the algorithm starts by applying a series of simple rules to

pairs of crossing cuts while maintaining the invariant that pairs of terminals belonging to

the same commodity are always separated by at least one of the two cuts assigned to them.

Certain kinds of crossings of cuts are easy to resolve while maintaining this invariant (Step 1
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Input: Graph G = (V,E) with edge capacities ce, commodities S1, · · · , Sk, a family of cuts C
with one cut for every terminal in ∪aSa, such that the cut for terminal i ∈ Sa does not contain
any terminal j 6= i in Sa.
Output: A laminar collection of cuts, one for each terminal in ∪aSa, such that for all a and for
all i, j ∈ Sa, i 6= j, either the cut for i or the cut for j separates i from j.

1. While there are pairs of cuts in C that cross, do (see Figure 4.8):

a) Consider any pair of cuts Ci, Cj ∈ C belonging to terminals i 6= j that cross each other,
such that ri ∈ Ci \ Cj and rj ∈ Cj \ Ci. Reassign Ci = Ci \ Cj and Cj = Cj \ Ci.
Return to Step 1.

b) Consider any three terminals i1, i2, i3 with cuts C1, C2 and C3 such that ri1 ∈ C1 ∩
C2 \ C3, ri2 ∈ C2 ∩ C3 \ C1, and ri3 ∈ C3 ∩ C1 \ C2. Then, reassign these respective
intersections to the three terminals. Return to Step 1.

c) Consider any pair of cuts Ci, Cj ∈ C belonging to terminals i, j ∈ Sa for some a that
cross each other, such that ri ∈ Ci ∩ Cj and rj ∈ Cj \ Ci. Reassign Ci = Ci ∩ Cj and
Cj = Ci ∪ Cj . Return to Step 1.

d) Consider any pair of cuts Ci, Cj ∈ C belonging to terminals i 6= j that cross each other,
such that ri, rj ∈ Ci ∩ Cj , i ∈ Sa and j ∈ Sb with a 6= b.

• Suppose that there is no i′ ∈ Sa ∩ Cj with Ci ⊂ Ci′ . Then, reassign Ci = Ci ∪ Cj
and Cj = Ci ∩ Cj ; return to Step 1. Conversely, if there is no j′ ∈ Sb ∩ Ci with
Cj ⊂ Cj′ . Then, reassign Cj = Ci ∪ Cj and Ci = Ci ∩ Cj ; return to Step 1. (This
transformation is similar to Step 1c.)

• If neither of those cases hold, let i0 = i, and let i1, · · · , ix denote the terminals
in Sa ∩ Cj with Ci ⊂ Ci1 ⊂ Ci2 ⊂ · · · ⊂ Cix . For x′ ≤ x − 2, reassign Cix′ =
(Cix′+1

\ Cj) ∪ Cix′ , Cix−1 = Cix ∪ Cj , and Cix = Cix ∩ Cj \ Cix−1 . Reassign cuts
to j and terminals in Sb ∩ Ci likewise. Return to Step 1.

e) If none of the above rules match, then go to Step 2.

Figure 4.6: Part 1 of Algorithm Integer-Lam-2—Algorithm to convert an integral family of
multiway cuts into a laminar one
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2. Let G be a directed graph on the vertex set ∪aSa, with edges colored red or blue, defined as
follows: for terminals i 6= j, G contains a red edge from i to j if and only if Cj ⊂ Ci, and
contains a blue edge from i to j if and only if rj ∈ Ci, ri 6∈ Cj , and Cj \ Ci 6= ∅. We note
that since no pair of terminals i and j matches the rules in Step 1, whenever Ci and Cj
intersect G contains an edge between i and j.

While there is a directed blue cycle in G, consider the shortest such cycle i1 → i2 → · · · →
ix → i1. For x′ ≤ x, x′ 6= 1, assign to ix′ the cut Cix′ ∩ Cix′−1

, and assign to i1 the cut
Ci1 ∩ Cix .

3. We show in Lemma 4.16 that at this step G is acyclic. For every connected component in G
do:

a) Let T be the set of terminals in the component and A be the set of corresponding cuts.
Assign capacities pe = 2`Ae to edges in G. Let Gp be the graph obtained by merging all
pairs of vertices that have an edge e with pe = 0 between them. We call the vertices of
Gp “meta-nodes” (note that these are sets of vertices in the original graph). At any
point of time, let Ri denote the meta-node at which a terminal i resides.

b) While there are terminals in T , pick any “leaf” terminal i (that is, a terminal with
no outgoing red or blue edges in G). Reassign to i the cut Ri. Reduce the capacity
of every edge e ∈ δ(Ri) by 1. Remove i from T ; remove i and all edges incident on it
from G. Recompute the graph Gp based on the new capacities.

Figure 4.7: Part 2 of Algorithm Integer-Lam-2—Algorithm to convert an integral family of
multiway cuts into a laminar one

of the algorithm resolves these crossings; see also Figure 4.8). In Steps 2 and 3, we ignore

the commodities that each terminal belongs to, and assign new laminar cuts to terminals

while ensuring that the new cut of each terminal lies within its previous cut (and therefore,

separation continues to be maintained). These steps incur a penalty of 2 in edge loads.

The rough idea behind Steps 2 and 3 is to consider the set of all “conflicting” terminals,

call it F . Then we can assign to each terminal i ∈ F the cut ∩j∈F Ĉj where Ĉj is either

the cut of terminal j or its complement depending on which of the two contains ri. These

intersections are clearly laminar, and are subsets of the original cuts assigned to terminals.

Furthermore, if each terminal gets a unique intersection, then edge loads increase by a factor
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Figure 4.8: Some simple rules for resolving crossing cuts. See algorithm Integer-Lam-2 in
Figure 4.6 for formal descriptions.

of at most 2. Unfortunately, some groups of terminals may share the same intersections.

In order to get around this, we assign cuts to terminals in a particular order suggested

by the structure of the conflict graph on terminals (graph G in the algorithm) and assign

appropriate intersections to them while explicitly ensuring that edge loads increase by a

factor of no more than 2.

Throughout the algorithm, every terminal in ∪aSa has an integral cut assigned to it. The

proof of Lemma 4.15 is established in three parts: Lemma 4.16 establishes the laminarity of

the output cut family, Lemma 4.18 argues separation, and Lemma 4.19 analyzes edge loads.

Lemma 4.16. Algorithm Integer-Lam-2 runs in polynomial time and produces a laminar

cut collection.

Proof. As in the previous section define the crossing number of a family of cuts to be the

number of pairs of cuts that cross each other. We first note that in every iteration of Steps 1

and 2 of the algorithm, the crossing number of the cut family C strictly decreases: no new

crossings are created in these steps, while the crossings of the two or more cuts involved in

each transformation are resolved (see Figure 4.8). Therefore, after a polynomial number of

steps, we exit Steps 1 and 2 and go to Step 3.

Next, we claim that during Step 3 of the algorithm the graph G is acyclic. This implies
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that while G is non-empty, we can always find a leaf terminal in Step 3; therefore every

terminal in G gets assigned a new cut. It is immediate that the graph does not contain any

directed blue cycles or any directed red cycles (the latter follows because red edges define a

partial order over terminals). Suppose the graph contains three terminals i1, i2 and i3 with

a red edge from i1 to i2, and a red or blue edge from i2 to i3, then it is easy to see that

there must be a red or blue edge from i1 to i3. Therefore, any multi-colored directed cycle

must reduce to either a smaller blue cycle or a cycle of length 2. Neither of these cases is

possible (the latter is ruled out by definition), and therefore the graph cannot contain any

multi-colored cycles.

Now consider cuts assigned during Step 3. Let T be the set of terminals corresponding

to some component in G and j 6∈ T . Then before T is processed, j’s cut is laminar with

respect to all the cuts in AT , and is therefore a subset of some meta-node in GpT . So the

new cuts assigned to terminals in T are also laminar with respect to j’s cut.

Finally, consider any two cuts assigned during Step 3 of the algorithm and belonging to

two terminals in the same component of G. Consider the set of all meta-nodes created during

this iteration of Step 3. This set is laminar, and the cuts assigned during this iteration are

a subset of this laminar family. Therefore, they are laminar.

Lemma 4.17. For a commodity i assigned a cut in Step 3 of algorithm Integer-Lam-2, let

C1
i be its cut before this step, and C2

i be the new cut assigned to it. Then C2
i ⊆ C1

i .

Proof. We assume without loss of generality that prior to Step 3 each edge load is at most

one; this can be achieved by splitting a multiply-loaded edge into many edges. We focus

on the behavior of the algorithm for a single component T of G and prove the lemma by

induction over time.

Consider an iteration of Step 3b during which some terminal i ∈ T is assigned and let

Ci be its original cut. Consider any vertex v 6∈ Ci and let P be a shortest simple path from
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ri to v in GpT (where the length of an edge e is given by pTe just prior to when i is assigned

a new cut). It is easy to see that there is one such shortest path that crosses each new cut

assigned prior to this iteration in Step 3b at most twice – suppose there are multiple entries

and exits for some cut, we can “short-cut” the path by connecting the first point on the

path inside the cut to the last point on the path inside the cut via a simple path of length 0

lying entirely inside the cut. We pick P to be such a path. We will prove that P ’s length is

at least 2. So the meta-node containing i must lie inside the cut Ci, and the lemma holds.

Let T1 (resp. T2) be the set of terminals in T \ Ci (resp. T ∩ Ci) that are assigned new

cuts before i in this iteration. We first note that for any j in T1, prior to this step, there

is no edge from j to i (as j is assigned before i), so ri 6∈ Cj, and this along with rj 6∈ Ci
implies that Ci and Cj are disjoint. This implies that the new cut of j (which is a subset

of Cj by induction) is also disjoint from Ci, and therefore cannot load any edge with an

end-point in Ci. So the only new cuts assigned this far in Step 3b that load edges in P

belong to terminals in T2.

Now we will analyze P ’s length by accounting for all the newly assigned cuts that load

its edges. Let SP be the set of terminals in T2 that load an edge in P , and j ∈ SP . Since

the new cut of j intersects P , by the induction hypothesis, Cj should either intersect P or

contain the entire path inside it. If Cj contains P entirely, then Cj \Ci 6= ∅, and furthermore

ri, rj ∈ Ci ∩ Cj . This implies that either Ci ⊂ Cj and there is a directed red edge from j to

i, or Ci \ Cj 6= ∅, that is, Ci and Cj cross and should have matched the rule in Step 1d of

the algorithm. Both possibilities lead to a contradiction. Therefore, Cj must intersect P .

Finally, the original total length of the path is at least 2|SP |+ 2, because each terminal

in SP contributes two units towards its length, and another two units is contributed by Ci.

Out of these up to 2|SP | units of length is consumed by terminals in SP . Therefore, at the

time that i is assigned a cut, at least 2 units remain.
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Lemma 4.18. When algorithm Integer-Lam-2 terminates, for every a ∈ [k] and i 6= j ∈ Sa,
either Ci or Cj separates i from j.

Proof. We claim that for every a ∈ [k] and i 6= j ∈ Sa, at every time step during the

execution of the algorithm, |Ci ∩ Cj ∩ {ri, rj}| ≤ 1. Then since by Lemma 4.16 the final

solution is laminar, the lemma follows. We prove this claim by induction over time. First, if

during any iteration of the algorithm, we “shrink” the cut of any terminal (that is, reassign

to the terminal a cut that is a strict subset of its original cut), then the claim continues

to hold for that terminal, because intersections of the terminal’s cut only shrink in that

step. Note that cuts of terminals expand only in Steps 1c and 1d of the algorithm (by

construction and by Lemma 4.17).

Suppose that during some iteration we apply the transformation in Step 1c to terminals

i and j, reassigning Cj = Ci ∪ Cj, and the claim fails to hold for terminal j. Specifically,

suppose that for some j′ ∈ Sa, after the iteration we have rj, rj′ ∈ Cj ∩ Cj′ . Then, rj ∈ Cj′ ,
and therefore Cj′ intersected Cj prior to the iteration, and by the induction hypothesis

rj′ ∈ Ci \ Cj prior to the iteration. If ri ∈ Cj′ , then prior to the iteration, i and j′

contradicted the induction hypothesis. Otherwise, i, j and j′ satisfy the conditions in

Step 1b of the algorithm, and this contradicts the fact that we apply the transformation in

Step 1c at this iteration.

Next suppose that during some iteration we apply the transformation in the first part

of Step 1d to terminals i and j, reassigning Cj = Ci ∪ Cj, and the claim fails to hold for

terminal j; in particular, for some j′ ∈ Sa, after the iteration we have rj, rj′ ∈ Cj ∩ Cj′ .
Then, since rj ∈ Cj′ and the pair of terminals did not match the criteria in Step 1c, it must

be the case that Cj ⊂ Cj′ prior to the iteration. Furthermore, rj′ ∈ Ci prior to the iteration

and this contradicts the fact that we applied the transformation in the first part of Step 1d.

Finally, suppose that during some iteration we apply the transformation in the second
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part of Step 1d. Then the cut assigned to every ix′ for x′ ≤ x− 2 is a subset of the previous

cut of ix′+1, but does not contain the latter terminal, and so by the arguments presented for

the previous cases, once again the induction hypothesis continues to hold for those terminals.

Furthermore, the cut assigned to ix is a subset of its original cut and ix−1 does not belong

to any of the new cuts except its own. The same argument holds for the jy′ terminals.

Lemma 4.19. For the cut collection produced by algorithm Integer-Lam-2 the load on every

edge is no more than twice the load of the integral family of cuts input to the algorithm.

Proof. We first claim that edge loads are preserved throughout Steps 1 and 2 of the algorithm.

This can be established via a case-by-case analysis by noting that in every transformation

of these steps, the number of new cuts that an edge crosses is no more than the number of

old cuts that the edge crosses prior to the transformation. It remains to analyze Step 3 of

the algorithm. We claim that we only lose a factor of 2 in edge loads during this step of

the algorithm. This is easy to see. Note that for every edge e,
∑

T p
T
e ≤ 2`C∪T

e , where C∪T
is the family of cuts belonging to terminals in any non-singleton component of G prior to

Step 3. Moreover, in each iteration of the step, we only load an edge e to the extent of pTe .

Therefore the lemma follows.

Proof of Lemma 4.15 The proof follows immediately from Lemmas 4.16, 4.18 and 4.19.

Given this lemma, algorithm Lam-2 in Figure 4.9 converts an arbitrary feasible solution

for MCP-LP into a feasible fractional laminar family.

Lemma 4.20. Consider an instance of the MCP with graph G = (V,E), edge capacities ce,

and commodities S1, · · · , Sk. Given a feasible solution d to MCP-LP, algorithm Lam-2

produces a fractional laminar cut family C that is feasible for the MCP on G with edge

capacities 8ce + o(1).
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Input: Graph G = (V,E) with edge capacities ce, commodities S1, · · · , Sk, a feasible solution d
to the program MCP-LP.
Output: A fractional laminar family of cuts C that is feasible for G with edge capacities 8ce+o(1).

1. For every a ∈ [k] and every terminal i ∈ Sa do the following: Order the vertices in G in
increasing order of their distance under da from ri. Let this ordering be v0 = ri, v1, · · · , vn.
Let C1

i be the collection of cuts {v0, v1, · · · , vb}, one for each b ∈ [n] with da(ri, vb) < 0.5,
with weights w1({v0, · · · , vb}) = 2(min{da(ri, vb+1), 0.5} − da(ri, vb)). Let C1 denote the
collection {C1

i }i∈∪aSa .

2. Let N = n
∑

a |Sa|. Round up the weights of all the cuts in C1 to multiples of 1/N2,
and truncate the collection so that the total weight of every sub-collection C1

i is exactly
1. Furthermore, split every cut with weight more than 1/N2 into multiple cuts of weight
exactly 1/N2 each, assigned to the same commodity. Call this new collection C2 with weight
function w2. Note that every cut in this collection has weight exactly 1/N2.

3. Construct a new instance of MCP in the same graph G as follows. For each a ∈ [k], construct
N2 new commodities with terminal sets identical to that of Sa (that is the terminals reside
at the same nodes). For every new terminal corresponding to an older terminal i, assign to
the new terminal a unique cut from C2

i with weight 1. Call this new collection C3, and the
new instance I.

4. Apply algorithm Integer-Lam-2 from Figure 4.6 to the family C3 to obtain family C4.

5. For every a ∈ [k] and every i ∈ Sa, let C5
i be the set of N2/2 innermost cuts in C4 assigned

to terminals in the new instance I that correspond to terminal i. (Note that these cuts are
concentric as they belong to a laminar family and all contain ri. Therefore “innermost” cuts
are well defined.) Assign a weight of 2/N2 to every cut in this set. Output the collection C5.

Figure 4.9: Algorithm Lam-2—Algorithm to convert an LP solution into a feasible fractional
laminar family

Proof. Note first that the cut collection C1 satisfies the following properties: (1) For every

a ∈ [k] and i ∈ Sa, every cut in C1
i contains ri, but not rj for j ∈ Sa, j 6= i; (2) The total

weight of cuts in C1
i is 1; (3) For every edge e, `C

1

e ≤ 2
∑

a da(e) ≤ 2ce. The family C2

also satisfies the first two properties, however loads the edges slightly more than C1. Any

edge belongs to at most N cuts, and therefore the load on the edge goes up by an additive

amount of at most 1/N . Therefore, for every e, `C
2

e ≤ 2ce + 1/N . Next, the collection C3
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is a feasible integral family of cuts for the new instance I with `C
3

e = N2`C
2

e . Therefore,

applying Lemma 4.15, we get that C4 is a feasible laminar integral family of cuts for I

with `C
4

e ≤ 2N2(2ce + 1/N). Finally, in family C5, every terminal i ∈ Sa gets assigned

N2/2 fractional cuts, each with weight 2/N2. Therefore, the total weight of cuts in C5
i is

1. Now consider any two terminals i, j ∈ Sa with i 6= j. Then, in all the N2 commodities

corresponding to Sa in instance I, either the cut assigned to i’s counterpart, or that assigned

to j’s counterpart separates i from j. Say that among at least N2/2 of the commodities

in I ′, the cut assigned to i’s counterpart separates i from j. Then, the innermost N2/2

cuts assigned to i in C5 separate i from j. Therefore, the family C5 satisfies the first two

conditions of feasibility as given in Definition 4.2. Finally, it is easy to see that on every

edge e, `C
5

e ≤ 2/N2`C
4

e ≤ 4(2ce + 1/N).

4.6 Concluding Remarks

Given that our algorithms rely heavily on the existence of good laminar solutions, a natural

question is whether every feasible solution to the MCP can be converted into a laminar

one with the same load. Figure 4.10 shows that this is not true. The figure displays one

integral solution to the MCP where the solid edges represent the cut for commodity a, and

the dotted edges represent the cut for commodity b. It is easy to see that this instance

admits no fractional laminar solution with load 1 on every edge.

Is the “laminarity gap” small for the more general set multiway cut packing and multicut

packing problems as well? We believe that this is not the case and there exist instances for

both of those problems with a non-constant laminarity gap.
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a0, b0

a1

b1a2

b2

Figure 4.10: Each edge has capacity 1. There are two commodities with terminal sets
{a0, a1, a2} and {b0, b1, b2}.
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