
Minimizing Data Movement in Machine Learning Systems

by

Saurabh Agarwal

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024
Date of final oral examination: 08/23/2024

The dissertation is approved by the following members of the Final Oral Committee:
Dimitris Papailiopoulos, Associate Professor, Electrical Engineering
Shivaram Venkataraman, Assistant Professor, Computer Sciences
Stephen J. Wright, Professor, Computer Sciences
Remzi Arpaci-Dusseau, Professor, Computer Sciences
Kangwook Lee, Assistant Professor, Electrical and Computer Engineering

© Copyright by Saurabh Agarwal 2024
All Rights Reserved

i

To my family, friends and the kindness of strangers

ii

acknowledgments

First and foremost I will like to thank my advisors - Dimitris Papailiopoulos
and Shivaram Venkataraman. They spent countless hours, teaching me
how to ask questions and than converting those questions into research.
Beyond just research, they have spent incredible amount of time and energy
painstakingly providing feedback and editing manuscripts, presentations
and posters. Further, they have always provided me freedom to pursue
research directions of my own and have been more than benevolent when
those directions returned no results. Any good I do in future will have
very strong imprints of my advisors.

I am also greatful to Stephen Wright, Remzi Arpaci-Dusseau and Kang-
wook Lee for serving on my commitee and helping with completing this
dissertation. I will also like to thank Theo Rekatsinas for several insightful
conversations and often providing me research directions.

At Madison I had pleasure collaborating with several researchers both
in Shivaram’s and Dimitris’s group: Song Bian, Rutwik Jain, Nayong
Lee, Shashank Ranjput, Hongyi Wang, Minghao Yan, Liu Yang I would
also like to thank the systems research group at UW-Madison to put up
with preliminary versions of my conference talks and provide extremely
valuable feedback.

I will like to thank several collaborators I had the pleasure to work
outside of UW-Madison. During the summer of 2019, I spent the summer
working at Apple with Yucheng Low and Sri Krishna Sridhar. I am really
greatful for insightful conversation with Yucheng and the time he took to
teach me about system design for Machine Learning.

During Summer of 2021 I interned at Microsoft working with Amar
Phanishayee. Amar will always be a very strong influence on my research
and my research style. Amar taught me several invaluable lessons on
managing and approaching research.

iii

I also spent Summer of 2023 working with SysML group at Meta FAIR,
working with Bilge Acun. The group consists of some the smartest and
kindest individuals I have met.

Apart from research I had a lot of fun living in Madison and made some
great friends. I will especially like to thank Christina Healy, who truly
transformed me as a person and forced me to pick hobbies and explore
the world beyond my desk. I would also like to thank Neydis Moreno
for invaluable friendship and company and for always being ready to
accompany me on unplanned adventures. Beyond this I will really like
to thank the several friends I made skiing at Granite Peak and Cascade
Mountain who always provided great ski lift conversations. I will also
like to thank several friends I made while learning, teaching and racing
keelboats at Hoofer Sailing Club. Their company has been invaluable,
without them, I probably would have graduated a year earlier but very
likely at the cost of my happiness. I especially will like to thank Keith,
Dana and Lisa and others who crew during races on Scurvy Dog.

Finally, I will like to thank my parents and sister who have been source
of constant support.

iv

contents

Contents iv

List of Tables vi

List of Figures vii

Abstract xv

I Introduction 1

1 Introduction 2
1.1 List of Papers 5

2 Bottlenecks in Machine Learning Systems 6
2.1 Input Data bottlenecks 6
2.2 Model Parameter bottlenecks 7
2.3 Intermediate Activation bottlenecks. 8

II Reducing Data Movement in Distributed Training 11

3 Adaptive gradient compression 12
3.1 Preliminaries 12
3.2 Accordion 14
3.3 Evaluation 20
3.4 Conclusion 23

4 Utility of Gradient Compression 25
4.1 Preliminaries 25
4.2 Evaluating Gradient Compression 32

v

4.3 Conclusion 44

IIIReducing Data Movement in Recommendation Model
Training 45

5 Accelerating Recommendation Model Training 46
5.1 Preliminaries 46
5.2 Design 51
5.3 Implementation 62
5.4 Evaluation 63
5.5 Conclusion 77

IVReducing Memory Bandwidth Requirement for LLM
Inference. 78

6 Clustered Head Attention 79
6.1 Preliminaries 79
6.2 CHAI 84
6.3 Evaluation 90
6.4 Conclusion 97

V Conclusion and Future Work 98

7 Conclusion 99
7.1 Summary and Contributions 99
7.2 Learnings100

Bibliography102

vi

list of tables

3.1 Accordion with PowerSGD on Cifar-10 22
3.2 Accordion with PowerSGD on Cifar-100 22

4.1 Encode-Decode of gradient compression methods for ResNet-50 on
V100 GPUs. 26

4.2 Comparing aggregation schemes: We show how latency and band-
width term scale for different aggregation strategies. α is the latency,
β is the inverse of bandwidth, and n is the size of vector communi-
cated. p is the number of machines 27

5.1 Dataset and their embedding tables 47
5.2 Model Descriptions: For DLRM, W&D, D&C the numbers indi-

cate the structure of the different Fully Connected (FC) layers. For
DeepFM, Linear Features represent a linear layer that is used to store
feature interactions. For all the models, we used the standard archi-
tectures as suggested by original authors. 47

5.3 Effect of increasing L: With increase in L the cache size required
increases but improves throughput till L of 100. 70

6.1 Accuracy on OPT-66B . 90
6.2 Accuracy on LLaMa-7B . 92
6.3 Accuracy on LLaMa-33B . 92
6.4 CHAI with Quantization . 96
6.5 CHAI with GQA . 97
6.6 Pruning Both Q,K,V . 97

vii

list of figures

3.1 Effect of gradient compression in Critical Regimes when Training
ResNet-18 on Cifar-100: (a) Critical regimes in Cifar-100, ResNet-18
(b, Left) Accuracy vs Epochs. Show the significance of critical regimes
in training, using low compression(Rank 2) in critical regimes is
enough to get similar accuracy as using low compression through-
out . (b, Right) Accuracy vs Floats Communicated, Even when we
use uncompressed (Full Rank) gradients everywhere but use high
compression (Rank 1) in critical regimes it is not possible to bridge
accuracy gap. 14

3.2 Comparison of Critical Regimes found using Analysis of eigen-
values of Hessian vs Using the Norm of the Gradient: The experi-
ment is performed on ResNet-18, for Cifar-10. We show that Critical
Regimes detected by rapid decay in top eigenvalues of Hessian can
also be detected using decay in gradient norm. 16

3.3 Effect of batch size (ResNet-18 on Cifar-10): (a) We show that
there is significant overlap among the Top10% coordinates. (b, left)
Shows that using small batches only in critical regimes is enough
to get performance similar to using small batches everywhere. We
scale learning rate linearly with batch size as in [55], at steps 150 and
250 we decay the learning rate by 10 and 100 respectively. (b, right)
accuracy vs communication. 19

3.4 Accordion using PowerSGD with ℓlow = rank 4 and ℓhigh = rank 1
on VGG-19bn: We show Accordion being able to bridge more that
25% of accuracy difference with 2.3× less communication 22

viii

3.5 Comparison with AdaQS: We compareAccordion against AdaQS [59]
on Cifar-10 and Cifar-100. We use PowerSGDas the Gradient Com-
pressor. Even though AdaQS communicates more that Accordion it
still looses accuracy compared to low compression. Accordion on
other hand with less communication is able reach the accuracy of
low compression. 23

3.6 Using Extremely Large Batch Size: We observe that Accordion
looses around 1.6% accuracy when we use batch size of 16,384. Show-
ing Accordion can often prevent large accuracy losses while provid-
ing massive gains. 24

4.1 Illustration of how overlapping can reduce the total iteration time.
(Above) Gradient computation and communication done serially.
(Below) Gradient computation and communication being overlapped,
i.e. when the gradient of a layer is computed, it is communicated
right after the gradient of the previous layer. 28

4.2 Effect of Overlap: We plot the iteration time for computation and
gradient synchronization for 64 GPUs, both with and without overlap.
In case of Resnet-50 we observe that overlapping reduces iteration
time by upto 46%. 28

4.3 Overlapping Gradient Compression with Computation: Overlap-
ping compression leads to requiring more time per iteration than
performing it sequentially, due to resource contention for compute
resources. The results are for 64 GPUs. 33

4.4 Scalability of PowerSGD: When compared against an optimized
implementation of syncSGD, PowerSGD provides speedups only in
case of BERTBASE when using Rank-4 and Rank-8 above 32 GPUs. In
other cases it has a high per iteration time. 34

ix

4.5 Scalability of MSTop-K: Comparing MSTop-K against syncSGD we
observe due to lack of compatibility with all-reduce MSTop-K performs
slower than or comparable to syncSGD . For ResNet-101 and BERT
we could not scale TopK beyond 16 and 32 GPUs respectively, due to
running out of memory as memory requirement increasing linearly
with number of machines. 34

4.6 Scalability of signSGD: Due to lack of support for all-reduce and
linearly increasing decode time, across all three models, signSGD
performs considerably slower than syncSGD. For BERTBASE we were
not able to scale signSGD beyond 32 GPUs because we ran out of
memory on a V100 GPU. This is due to the memory requirement
increasing linearly with number of machines. 35

4.7 Effect of varying batch size: Here we compare PowerSGD against
ResNet-101 on different batch sizes. We observe that large batch sizes
provide more opportunity to syncSGD to hide the communication
time, meanwhile at small batch sizes due to reduced computation
time this overlap is not possible. Therefore gradient compression
methods become more useful at small batch sizes. 35

4.8 Required gradient compression for near linear speedups (simu-
lated): Above figure is for ResNet-101 simulated for 64 machines.
We observe that the required gradient compression for near linear
scaling at 10 Gbps even for quite small batch sizes is around 4×. . . 38

4.9 Verifying performance model for syncSGD: Our performance
model matches the actual performance for all three models across
wide range of GPUs. The median difference between predictions and
actual runtime is 1.8%. 39

4.10 Evaluating effect of network bandwidth (simulated): Above curve
is for Resnet-101, batch size 64 on 64 GPUs. We observe that at band-
width lower than 8.2 Gbps, PowerSGD Rank-4 can provide speedups
but above that syncSGD performs better. 40

x

4.11 Required gradient compression for near optimal speedups (simu-
lated): We observe that the required gradient compression for near
optimal scaling is quite small. At 10 Gbps even for quite small batch
sizes we need less than 4× gradient compression, which is quite small
compared to what popular gradient compression methods. 40

4.12 Evaluating effect of network bandwidth on training (simulated):
We vary bandwidth availability and analyse the performance of syn-
chronous SGD vs PowerSGD Rank 4. We observe that as bandwidth
increase significantly it helps synchronous SGD since it has a larger
communication overhead. Moreover we observe the PowerSGD pro-
vides massive gains at extremely low bandwidth (1Gbps) but as
bandwidth scales we see PowerSGD gets bounded by compute avail-
ability. The markers are values from actual experiments, this also
shows how close our performance model is to actual measurement. 41

4.13 Evaluating effect of compute speedup on training time (simu-
lated):Assuming network capacity remains at 10Gigabit but compute
capabilities go up, we observe in that case PowerSGD will end up pro-
viding significant benefit, meanwhile synchronous SGD will end up
being communication bound and will not be able to utilize increased
compute. Showing that if compute capabilities increase drastically
but network bandwidth remains stagnant, gradient compression
methods will become useful. 42

4.14 Varying encoding-decoding time and compression (simulated)
: We observe that reducing encode-decode time even if it leads to
reduced gradient compression is very useful and can make methods
like PowerSGD more viable. 43

5.1 Architecture of a recommendation model: Model parameters in-
clude top, bottom NNs and embedding tables. 48

xi

5.3 Training Time Breakdown: Average time spent in various stages
of training when using 8 p3.2xlarge instances with TorchRec [118]
(left) and Bagpipe (right) on DLRM and DeepFM models (Table 5.2).
For large models like DeepFM, we observe that TorchRec spends
75% of each iteration on embedding access, while Bagpipe can bring
it down to 10%. 50

5.4 Bagpipe setup: All the components of Bagpipe can be individually
scaled. The dashed arrows signify async RPCs while solid ones
signify sync RPCs. 52

5.5 Lookahead Algorithm: The above figure shows an illustration at
different batch steps of how the lookahead algorithm functions. In
the above example, the lookahead value is 2 and the batch size is also 2. 53

5.6 Comparing cache designs:We observe that LRPP provides best per-
formance among all other cache options. 58

5.7 Effect of Delayed Synchronization:Delayed Sync can reduce time
for cache synchronization by up to 44%. 58

5.8 Compare Bagpipe with Existing Systems: We compare per itera-
tion time of Bagpipe against existing FAE [8], FB-Research training
system [141], TorchRec [118] and HET [119]. Bagpipe provides
speedups betwen 1.2× and 5.6×. 73

5.9 Compare Bagpipe with different models: We compare Bagpipe and
TorchRec on four different models, DLRM [129], W&D [30], D&C [192],
and DeepFM [58]. We observe speedups between 1.2× and 3.7×. . . 73

5.10 Compare Bagpipe on different Hardware: Speedup provided by
Bagpipe over TorchRec on p3.2xlarge decreases from 3.7× to 2.5×
on g5.8xlarge (high bandwidth) depicting that TorchRec is more
constrained by bandwidth. 73

5.11 Compare with Different Datasets: Bagpipe consistently provides
speedups between 1.9× to 2.4× across datasets. 73

xii

5.12 Loss convergence for Bagpipe and TorchRec: Convergence of Bag-
pipe and TorchRec is very similar, with slight differences due to
random initialization. 73

5.13 Recovery from trainer failure: Bagpipe requires less than 60 sec-
onds to recover from a trainer failure compared to 13 minutes for
FB-Research System. 73

5.14 Comparing with Ideal: Comparing Bagpipe with an ideal system
which has no overhead for embedding fetch, we observe that system
comes within 10% of time per iteration for large models where there
is potential to overlap embedding accesses. 74

5.15 Scalability of Bagpipe: (left) we increase the number of trainers such
that batch size per machine is constant; Bagpipe provides sublinear
scalability due to increasing communication bottlenecks. (right)
Increasing batch size with 8 trainers results in better throughput as
we are able to better overlap communication. 74

5.16 Latency of Oracle Cacher: We observe that overall Oracle Cacher
scales very well, it increases sub-linearly with the increase in the
number of features and batch size. However, training time will always
hide the latency of Oracle Cacher. 75

5.17 Effect of change in skew: Comparing when 1% of embeddings per-
form 90% of embedding accesses to just 1% of embedding access
(no skew). Unlike FAE, Bagpipe’s time only increases from 60.9ms to
69.7ms showing resistance to change in skew. 75

5.18 Effect of change in skew using Zipf Distribution: Varying the α

parameter in Zipf distribution; a higher α indicates higher skew. Even
with drastic increase in the skew, the time taken by Bagpipe remains
almost constant. 76

xiii

6.1 Activations for OPT-66B and LLaMa-7B for an exemplary sentence:
We observe that OPT-66B has several heads which give uniform
attention scores to tokens whereas LLaMa-7B does not. However,
both models have redundancies across heads, i.e. groups of heads
are give similar attention to each token. 83

6.2 CHAI Flow: In the offline phase, we run clustering and perform
elbow plot analysis for each new model. Then, for each new inference
request we only perform cluster membership identification based on
online performance. 83

6.3 Average Correlation for 1024 Samples of C4 on LLaMa-7B: The
above figure shows two interesting observations. First, there exists
high amount of correlation across several heads of attention. Sec-
ond, the correlation is not uniform across layers, with later layers
having higher correlation, i.e., first layer has very little correlation
but correlation increases in later layers. 84

6.4 Correlation on a randomly selected single sample of LLaMa-7B. . 84
6.5 Clustering Error: We plot the clustering error on 1024 samples of

C4-dataset. The markers represent the number of clusters we choose
for a layer. 85

6.6 Cluster Membership Evaluation: We evaluate the number of times
the cluster membership changes for performing next token prediction.
We observed that if clustering is performed beyond the fifth token
the number of times cluster membership changes is quite small. . . 86

6.7 Schematic of CHAI detailing three phases of the system. 87
6.8 Memory Savings: We observed that for LLaMa-7B CHAI provides

memory savings of up to 21.4%. 93
6.9 Latency Analysis: We observe that the speedups provided by CHAI

increases as the sequence length becomes larger. Even for a compar-
atively small model like LLaMa-7B we observe speedups of up to
1.73× for a large sequence length. 94

xiv

6.10 Cluster Distribution: We observe that number of heads within the
cluster is quite skewed. We often observe one or two large clusters,
while the remaining heads in the cluster. 96

xv

abstract

Rapid deployment of Machine Learning (ML) applications like recom-
mendation engines, chat-bots and image synthesis application have made
them a dominant workload. These applications are being powered by
ML models of increasingly expansive scale, with models comprising of
trillions of parameters becoming quite common.

Due to massive compute requirements, ML models are exclusively
trained on specialized accelerators and often in a distributed setting. How-
ever, a closer analysis of compute utilization shows that ML models are not
fully utilizing the compute available on these accelerators. The primary
reason for this poor compute utilization is data movement bottlenecks.
In this dissertation we primarily focus on data movement bottlenecks
associated with intermediate activations.

First, we study Gradient Compression, an approach to minimize the
amount of synchronization. In Accordion we retrofit existing compression
algorithms to automatically vary the amount of compression to reduce
the communication during training. Next, we study lack of wall clock
speedups when using gradient compression algorithms in On the utility of
Gradient Compression and propose several guidelines which can be used to
design new gradient compression algorithms.

The second part of this dissertation studies distributed training of rec-
ommendation models, where we introduce Bagpipe a system to minimize
embedding access overhead in distributed training.

Finally, we introduce Clustered Head Attention, in which we aim to
reduce the memory bandwidth bottlenecks of multi-head attention by
identifying attention heads with similar output at inference time.

1

Part I

Introduction

2

1 introduction

Modern Machine Learning (ML) has ushered an era of a completely new
set of applications. From ubiquitous tasks like suggesting products which
a user might buy [129] to incredibly challenging tasks such as performing
image editing [112] and generating new images from text description [159]
all depend on some underlying ML models. However, in conjunction with
increase in modelling complexity and dataset sizes, the model sizes have
increased rapidly.

Training complex machine learning models to state-of-the-art accuracy
levels on large datasets [41, 101] is performed on specialized accelerators
and often in distributed setting. However, upon close observation prior
works have observed that these specialized accelerator have utilization of
less than 50% [82, 200]. On of the primary reasons for this poor utilization
is data movement and synchronization overheads. There are primarily
three different types of data movement - (i) Training data, where training
data needs to be pre-processed and moved to the GPU, (ii) Model Parame-
ters, requires moving model parameters from storage or main memory to
the GPU, (iii) Intermediate activation, requires moving intermediate acti-
vations from GPU memory to registers and in case of distributed training
the activations need to be synchronized. In this dissertation we primarily
focus on data movement bottlenecks associated with intermediate activa-
tions and model parameters.

In the first part we study Gradient compression, a popular approach to
reduce synchronization overhead in distributed training in distributed data
parallel setting. Distributed data parallel SGD is one of the most common
approach for distributed computing, one iteration of distributed data
parallel SGD (DDP) comprises two main phases: gradient computation
and gradient aggregation. During the computation phase, the gradient of
the model is typically computed using backpropagation. This is followed

3

by an aggregation phase, where gradients are synchronously averaged
among all participating nodes [75, 55]. During this second phase, for
state-of-the-art neural network models, millions to billions of parameters
are communicated among nodes [24], which has been shown to lead
to communication bottlenecks [40, 149, 132, 57, 16]. Alleviating these
communication bottlenecks has been an active area of research in recent
years. One extremely popular approach to reduce the communication
bottleneck is to perform lossy gradient compression [150, 16, 199, 20, 5].
All the lossy gradient compression methods require users to specify an
additional hyper-parameter that determines the degree of compression or
sparsification before training begins. In this dissertation we first present
Accordion [9]. Accordion adaptively chooses compression parameters,
by determining critical periods of ML training. It keeps low compression
ratio (high accuracy) during critical periods and high compression ratio
otherwise. This allows Accordion to balance both accuracy and amount of
communication.

Concurrent to the work on gradient compression,a number of system-
level optimizations have been proposed to speed up distributed data-
parallel synchronous SGD (syncSGD). Techniques like ring-reduce [172]
and tree-reduce [144] have been implemented in several high performance
communication libraries (e.g. NCCL and Gloo) which in turn are tightly
integrated into popular deep learning libraries like PyTorch [130, 105]
and Tensorflow [4]. Both ring-reduce and tree-reduce, are bandwidth
efficient and have a constant, and logarithmic dependence on the number
of nodes, respectively, i.e. the total number of bytes communicated remains
sublinear in the number of machines used for training. During the process
of evaluating Accordion [9], we observed that no prior work studies the
utility of gradient compression in distributed training and compares it to
optimized system level implementations. This led us to perform a detailed
study to understand the utility of gradient compression in distributed

4

training systems. We first compared state-of-the-art compression systems
against optimized system implementations. In the study we show, existing
gradient compression methods do not provide significant speedups over.
Further, with the aid of a performance model we show how gradient
compression methods can be improved and under what setups existing
gradient compression methods can be utilized. This study leads to the
second contribution in this thesis [10], where we perform a detailed study
on existing gradient compression methods and compare them with system
based optimization techniques.

Gradient Compression is only applicable in case of data-parallel train-
ing, i.e. models fit in one GPU. To further study bottlenecks due to data
movement we looked at models which can not fit in single GPU. This led
us to study some of the largest models at scale. Recommendation models
are distributed as a mix of model and data-parallel approaches, where
weights associated with embeddings are partitioned using model paral-
lelism and the weights associated with neural networks are partitioned
in data-parallel mode. Recommendation model training is heavily bottle
necked by remote embedding accesses. To reduce embedding access over-
head we introduce Bagpipe [11]. The main insight in Bagpipe is that in
offline large batch training, one can look beyond the current training batch
and decide to keep certain embeddings on the trainer ma- chine (caching)
and fetch other embeddings out of order (prefetch). We observe that
Bagpipe can provide speedups of more than 3.7× over highly optimized
existing systems like TorchRec [118].

Next, we shift our focus Large Language Models (LLMs) and par-
ticularly to Multi-head attention [183]. Multi-head attention is the core
component of LLMs, and is responsible for around 50-60% of time spent
during inference [114, 54]. One of the primary reason for poor GPU
utilization is the memory bandwidth requirements of multi-head atten-
tion [183]. This highlights that for certain operators the data movement

5

bottleneck can be within a single GPU even in distributed setting. To
overcome the memory bottleneck we propose an approximation based
approach, where we show that several attention heads in multi-head atten-
tion are performing are providing similar attention score. In [12] we show
that these redundant heads can be efficiently identified at run-time and can
be used to minimize the memory bandwidth and compute requirements
of attention based architectures.

1.1 List of Papers

This dissertation is primarily composed of following papers -

1. Accordion: Adaptive gradient compression via critical regime identification
[9], MLSys’21

2. On the utility of Gradient Compression [10], MLSys’22

3. Bagpipe: Accelerating Deep Recommendation model training [11], SOSP’23

4. CHAI: Clustered Head Attention for efficient LLM inference [12], ICML’24

Apart from the topics and papers presented in this dissertation, the
author has also worked on Deep Learning Cluster scheduling [13], ad-
versarial attacks in federated learning [188], and zero overhead gradient
compression [191].

6

2 bottlenecks in machine learning systems

Next we provide background on the types of data movement typically ob-
served in machine learning systems and discuss corresponding approaches
in reducing those bottlenecks. In Machine learning systems we primarily
observe three different types of data movement bottlenecks - (i) Input
Data movement related bottlenecks, (ii) Model Parameter related bottle-
necks and (iii) Intermediate Activations related bottlenecks. Depending
on training setup like model, distribution strategy and infrastructure setup
one or several of these bottlenecks appear. In the following subsection we
discuss each of these bottlenecks and provide brief overview of different
strategies used to alleviate these bottlenecks.

2.1 Input Data bottlenecks

The input data pipeline forms a crucial component of each machine learn-
ing training jobs. Input data-pipelines are responsible for reading data
often from remote blob storage, applying stochastic transformations and
then moving this data to the accelerator memory for training. As the
dataset sizes have been increasing where datasets with tens of trillions of
data-points are becoming a norm and thousand of accelerators are concur-
rently being used, the input data throughput requirements has grown at
immense rate [219, 123, 220, 221]. To avoid the input training bottlenecks
large jobs have been increasing the amount of CPU resources to speed up
data-processing, in some cases using upto 5000 workers for a single train-
ing workers [127]. There have been several prior works which have looked
at different approaches to alleviate input data movement bottlenecks-

Enhanced Parallelism [220, 221, 181, 127] provide an interface for paral-
lelization and large scale distribution of data pre-processing. The primary

7

idea is to enable users to efficiently launch several hundreds of workers
and perform distributed data pre-processing. However, these methods do
not reduce the amount of actual compute required, or provide efficient
implementation of underlying operators.

Caching A common approach to minimize input data bottlenecks is to
cache intermediate and reusable data on the training nodes. Prior works
[181, 28, 56, 77, 90, 97, 222] have successfully applied caching to alleviate
input data bottlenecks.

Operator Fusion and Inter Job Coordination Another common ap-
proach to minimize the overhead of data movement is by fusing several
operators into a single operation [127]. Another approach several prior
works [56] have taken is merging the data processing pipelines for several
different jobs by identifying the shared components. This approach allows
reuse of processed data.

2.2 Model Parameter bottlenecks

As the model sizes have increased and newer embedding based workloads
are becoming common, model parameters have also become major bot-
tlenecks. Model parameter access bottlenecks can be classified into two
parts - (i) Offloading based bottlenecks (ii) Remote access bottlenecks.

Offloading based bottlenecks. As the model size has been increasing,
several works have proposed offloading parts of neural network to main
memory. The core idea is that neural networks are inherently layer based
thus only a small part of total parameter count is mandatory to perform
compute. Several prior works have looked at offload based mechanisms for
enabling training of models which are larger than GPU memory available.

8

The challenge in offloading is to minimize the overhead on the critical
path. Several prior works [71, 153, 139, 92] propose policies to alleviate
this bottleneck. Several specialized systems like Marius [124] for learning
graph embeddings, Marius++ [186] have been proposed, which offload
a portion of the graph and data to disk to overcome the limited memory
available on the accelerators.

Remote Access bottlenecks. Another case of bottlenecks with model
parameters is the remote access bottleneck. In cases where a model does
not fit even in the main memory, it needs to be stored in a remote ma-
chine. This has become increasingly common in recommendation models
where embedding tables are of terabyte sizes [129]. In this cases the
embedding tables need to fetched from remote machines, leading to re-
mote access bottlenecks. There have been several ways which have been
introduced to minimize the embedding access overhead, systems like
TorchRec [118],Zeus [126] try to hide embedding access latency by over-
lapping it with different components.

2.3 Intermediate Activation bottlenecks.

Intermediate activation are a big source of data bottlenecks machine learn-
ing systems. These bottlenecks primarily manifest in two forms - (i) Mem-
ory access bottlenecks and (ii) Activation synchronization bottlenecks.

Memory access bottlenecks. Memory access bottlenecks, several opera-
tors in machine learning have a very low compute densite, e.g., multi-head
attention, fully connected layers, non-linearity operations. These operators
read a large amount of data but compute performed is quite small, which
leads to poor utilization of memory. Several high performance comput-
ing based libraries [39, 38] and deep learning compilers [26, 223, 175]

9

target this space, by performing operator fusion, tiling and intermediate
computation.

Activation synchronization bottlenecks. When performing distributed
training, intermediate activation need to synchronized. There has been a
plethora of work in reducing these synchronization bottlenecks. Inspired
by the fact that SGD can make good progress even with approximate
gradients,various Gradient Compression methods have been proposed
in recent literature. They can be broadly grouped into quantization, spar-
sification and low rank aproximations. For quantization, [150, 20] re-
place each weight with just the sign values. While [15, 110, 154, 155]
use the largest few co-ordinates to create a sparse gradient. Wangni
et al. [197] randomly drop coordinates in the gradient update to create
sparse gradient updates. For quantization [16, 199] quantize each gra-
dient coordinate. In [187, 184] authors show that extremely low rank
updates can achieve good compression without loss in accuracy. Yu
et al. [212] utilize correlation between gradients for linear compression.
Several works have looked at improving communication efficiency by
use of Gossip based protocols [108, 169, 96, 95]. Other methods have
looked into improving efficiency of distributed training by enabling use
of large batch sizes [211, 210, 158, 44] or lower precision [121] without
accuracy loss. Other works have also looked at different forms of paral-
lelism [84, 83, 72, 157, 128, 138] for speeding up distributed training.

Similarly there have been system advances in minimizing activation
synchronization bottlenecks. Gradients for DNNs are calculated layerwise,
therefore, gradients of later layers are available before initial layers. Instead
of waiting for the availability of all the gradients, popular deep learning
frameworks [105, 130, 4] start gradient communication when some of the
gradients are available. This leads to overlapping gradient computation
with communication, hiding the time spent in communication.

10

In this dissertation, we primarily target Activation related bottlenecks
in Part II and IV and Model parameter bottlenecks in Part III.

11

Part II

Reducing Data Movement in
Distributed Training

12

3 adaptive gradient compression

One of the most widely adopted approach for distributed training is Syn-
chronous Data Parallel SGD. One iteration of distributed data parallel SGD
(DDP) comprises two main phases: gradient computation and gradient
aggregation. During the computation phase, the gradient of the model
is typically computed using backpropagation. This is followed by an ag-
gregation phase, where gradients are synchronously averaged among all
participating nodes [75, 55]. During this second phase, for state-of-the-art
neural network models, millions to billions of parameters are communi-
cated among nodes [24], which has been shown to lead to communication
bottlenecks [40, 149, 132, 57, 16]. Alleviating these communication bottle-
necks has been an active area of research in recent years. One extremely
popular approach to reduce the communication bottleneck is to perform
lossy gradient compression [150, 16, 199, 20, 5]. All the lossy gradient com-
pression methods require users to specify an additional hyper-parameter
that determines the degree of compression or sparsification before train-
ing begins. Choosing compression ratios presents a seemingly inherent
trade-off between final model accuracy and the per-iteration communi-
cation overhead. With Accordion we automate this process of choosing
compression ratios.

3.1 Preliminaries

First we formally describe the distributed SGD setting.
Consider the standard synchronous distributed SGD setting with N dis-

tributed workers [151]. For simplicity, we assume that each worker stores
n data points, giving us a total of N× n data points, say {(xi,yi)}

Nn
i=1. The

goal is finding parameter w that minimizes f(w) = 1
Nn

∑Nn
i=1 ℓ(w; xi,yi)

where (xi,yi) is the i-th example. In particular, we minimize f(w) using

13

distributed SGD that operates as follows: wk+1 = wk − γk
1
N

∑N
i=1 ĝi(wk)

for k ∈ {0, 1, 2, . . .}, where w0 is the initial model, γk is the step size, and
ĝi(w) is a gradient computed at worker i for a minibatch (of size B, with
B < n).

Distributed SGD with adaptive gradient compression Vanilla distributed
SGD incurs a huge communication cost per iteration that is proportional
to the number of workers N and the size of the gradient. To reduce this
communication overhead, we consider a gradient compression strategy,
say C(·, ℓ), where ℓ is the parameter that determines the compression level
used. With such a gradient compression strategy, the update equation
becomes wk+1 = wk − γk

1
N

∑N
i=1 C(ĝi(wk), ℓk) for k ∈ {0, 1, 2, . . .}, where

communicating C(ĝi(wk), ℓk) requires much fewer bits than communicat-
ing the original gradients.

Distributed SGD with adaptive batch size The number of communica-
tion rounds in a given epoch also depend on the batch size. For example a
batch size Bhigh > Blow will communicate

⌊
Bhigh

Blow

⌋
times less than using

batch size Blow in a given epoch. Although the update equation remains
the same wk+1 = wk − γk

1
N

∑N
i=1 ĝi(wk) for k ∈ {0, 1, 2, . . .}, the number

of steps k, taken by a model decreases by
⌊
Bhigh

Blow

⌋
times for a fixed number

of epochs.

Goals Our goal is to design an algorithm that automatically adapts
the compression rate {ℓk} or batch size Bk while training. Although the
interplay between batch size and compression ratio is interesting, we don’t
explore these together, i.e. we don’t vary batch size when training with
gradient compression. Here, we consider a centralized algorithm, i.e., one
of the participating node decides ℓk+1 or Bk+1 based on all the information
available up till step k. This communication rate is then shared with all the

14

N workers so that they can adapt either their compression ratio or batch
size.

3.2 Accordion

0 50 100 150 200 250 300
Epochs

0
1
2
3
4
5
6

G
ra

di
en

t N
or

m Layer #4

Gradient Norm Critical Regimes

(a) Critical Regimes

0 50 100 150 200 250 300
0.3

0.4

0.5

0.6

0.7

Rank 2 throughout
Rank 1 throughout

Rank 1 in critical regimes else Full Rank
Rank 2 in critical regimes else Rank 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Floats Communicated 1e11

(b) Accuracy vs Epochs and Floats Communicated

Figure 3.1: Effect of gradient compression in Critical Regimes when Training
ResNet-18 on Cifar-100: (a) Critical regimes in Cifar-100, ResNet-18 (b, Left)
Accuracy vs Epochs. Show the significance of critical regimes in training, using
low compression(Rank 2) in critical regimes is enough to get similar accuracy
as using low compression throughout . (b, Right) Accuracy vs Floats Commu-
nicated, Even when we use uncompressed (Full Rank) gradients everywhere
but use high compression (Rank 1) in critical regimes it is not possible to bridge
accuracy gap.

We first explain why adaptive gradient communication can help main-
tain high generalization performance while minimizing the communica-
tion cost. We study this first with gradient compression techniques and
then based on these insights we propose Accordion a gradient communi-
cation scheduling algorithm. Finally, we show that there is a connection
between batch size and gradient compression, and thus Accordion can
also be used to enable large batch training without accuracy loss.

3.2.1 Adaptive communication using critical regimes

Recent work by [6] has identified critical regimes or phases of training that
are important for training a high quality model. In particular, [6] show that

15

the early phase of training is critical. They setup an experiment where the
first few epochs have corrupted training data and then continue training
the DNN with clean training data for the rest of the epochs. Surprisingly,
the DNN trained this way showed a significantly impaired generalization
performance no matter how long it was trained with the clean data after
the critical regime.

We extend these ideas to aid in the design of an adaptive commu-
nication schedule and first study this using PowerSGD as the gradient
compression scheme. We begin by observing how the gradient norm for
each layer behaves while training. When training ResNet-18 on Cifar-100,
in Figure 3.1a we see two regions where gradient norm decreases rapidly;
during the first 20 epochs and the 10 epochs right after the 150-th epoch,
i.e., the point at which learning rate decay occurs. We experimentally
verify that these two regions are critical by considering the following com-
pression schedule ℓ = low for the first 20 epochs and for 10 epochs after
the 150 epoch, and ℓ = high elsewhere. Under this scheme the gradients
will not be over-compressed in the critical regimes, but at the same time
the overall communication will be close to high compression. Figure 3.1b
shows the experimental results with ResNet-18 on Cifar-100 for the above
scheme. It can be observed that just using low compression (rank 2) in
these critical regimes and high compression (rank 1) elsewhere is suffi-
cient to get the same accuracy as using low compression throughout while
reducing communication significantly.

Interestingly we also observe in Figure 3.1b that any loss in accuracy by
using high compression in critical regimes is not recoverable by using low
compression elsewhere. For instance, consider the following compression
schedule: ℓ = high compression rate for first 20 epochs and for 10 epochs
after the 150 epoch, and ℓ = no compression elsewhere. Under this sched-
ule, gradients will be over-compressed in the critical regimes, but will be
uncompressed elsewhere. We see that for ResNet-18 on Cifar-100 even with

16

0 25 50 75 100 125 150 175 200
Epochs

0

20

40

60

80

100

120

140

Ei
ge

n
Va

lu
es

Top 3 Eigen Values of the Hessian

Eigen Values Critical Regimes

(a) Critical Regimes based on Hessian

0 50 100 150 200 250 300
Epochs

0

2

4

6

8

G
ra

di
en

t N
or

m

Layer #4

Gradient Norm Critical Regimes

0 50 100 150 200 250 300
Epochs

Layer #10

(b) Critical Regimes based of Gradient
Norm

Figure 3.2: Comparison of Critical Regimes found using Analysis of eigenval-
ues of Hessian vs Using the Norm of the Gradient: The experiment is performed
on ResNet-18, for Cifar-10. We show that Critical Regimes detected by rapid
decay in top eigenvalues of Hessian can also be detected using decay in gradient
norm.
significantly higher communication one can not overcome the damage
done to training by over compressing in critical regimes. We hypothesize
that in critical regimes, SGD is navigating to the steeper parts of the loss
surface and if we use over-compressed gradients in these regimes, then the
training algorithm might take a different trajectory than what SGD would
have taken originally. This might cause training to reach a sub-optimal
minima leading to degradation in final test accuracy.
Detecting Critical Regimes: Prior work for detecting critical regimes [80]
used the change in eigenvalues of the Hessian as an indicator. We next
compare the critical regimes identified by the gradient norm approach
described above with the approach used in [80]. In Figure 3.2, we show
that these two approaches yield similar results for ResNet-18 on Cifar-10,
with the latter having an advantage of being orders of magnitude faster to
compute.

Thus, we can see that finding an effective communication schedule is
akin to finding critical regimes in neural network training and these critical
regimes can be identified by measuring the change in gradient norm.

17

3.2.2 Accordion’s Design

We now provide a description of Accordion, our proposed algorithm that
automatically switches between lower and higher communication levels
by detecting critical regimes. Accordion’s first goal is to identify critical
regimes efficiently. Our experiments, as discussed previously (Figure 3.2),
reveal that critical regimes can be identified by detecting the rate of change
in gradient norms without using the computationally expensive technique
of [89, 80, 81], where eigenvalues of the Hessian are used to detect critical
regimes. This leads us to propose the following simple way to detect
critical regimes: ∣∣ ∥∆old∥− ∥∆curr∥

∣∣
∥∆old∥

⩾ η,

where ∆curr and ∆prev, denotes the accumulated gradient in the current
epoch and some previous epoch respectively, and η is the threshold used
to declare critical regimes. We set η = 0.5 in all of our experiments.

We depict Accordion for gradient compression in Algorithm 1. For
simplicity and usability, Accordion only switches between two levels of
compression levels: ℓlow and ℓhigh. Once Accordion detects critical regimes,
it sets the compression level as ℓlow to avoid an undesirable drop in accuracy.
Based on our observation, critical regimes also almost always occur after
learning rate decay, therefore we let Accordion declare critical regime
after every learning rate decay. If Accordion detects that the critical phase
ends, it changes the compression level to ℓhigh to save communication cost.
For batch size we use the same algorithm, except instead of switching
between ℓlow and ℓhigh we switch between Blow and Bhigh.

We remark that Accordion operates at the granularity of the gradient
compressor being used. For instance, PowerSGD approximates the gradi-
ents of each layer independently, so Accordion will also operate at each
layer independently and provide a suitable compression ratio for each
layer in an adaptive manner during training. While batch size scheduling

18

Algorithm 1: Accordion for Gradient Compression
HyperParameters:compression levels {ℓlow, ℓhigh} and detection
threshold η

Input: accumulated gradients in the current epoch (∆curr) and in the
previous epoch (∆prev)
Input: learning rate of the current epoch (γcurr) and of the next epoch
(γnext)
Output: compression ratio to use ℓ

if |
∥∥∆prev

∥∥− ∥∆curr∥|/
∥∥∆prev

∥∥ ⩾ η or γnext < γcurr then
return ℓlow

else
return ℓhigh

end if

operates at the whole model so Accordion looks at the gradient of whole
model and chooses a suitable batch size.
Computational and memory overhead: Accordion accumulates gradients
of each layer during the backward pass. After each epoch, norms are
calculated, creating ∥∇curr∥. Once the compression ratio is chosen ∥∇curr∥
becomes ∥∇old∥. Thus requiring only size of the model(47 MB in ResNet-
18) and a few float values worth of storage. Also Accordion only uses
the ratio between previous and current gradient norms to detect critical
regimes. This allows Accordion to be easily integrated in a training job
where gradients are already calculated, thus making the computational
overhead negligible.

3.2.3 Relationship between gradient compression and
adaptive batch-size

We first evaluate the effect of batch size on neural network training through
the lens of critical regimes, which suggests using small batch sizes in critical
regimes and large batch size outside critical regimes should not hurt test

19

0 25 50 75 100 125 150 175
Epochs

91.25

91.50

91.75

92.00

92.25

92.50

92.75

93.00

%
 C

oo
rd

in
at

e
O

ve
rla

p Ovelap among TopK10% coordinates
 in a Epoch

(a) Overlap in coordinates

0 50 100 150 200 250 300
Epochs

0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95

A
cc

ur
ac

y

LR-0.4, BS-512
LR-3.2, BS-4096

LR-3.2 BS-4096 in critical regimes else LR-0.4 BS-512
 LR-0.4 BS-512 in critical regimes else LR-3.2 BS-4096

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Floats Communicated 1e11

(b) Effect of Different Batch sizes in critical regimes

Figure 3.3: Effect of batch size (ResNet-18 on Cifar-10): (a) We show that
there is significant overlap among the Top10% coordinates. (b, left) Shows that
using small batches only in critical regimes is enough to get performance similar
to using small batches everywhere. We scale learning rate linearly with batch
size as in [55], at steps 150 and 250 we decay the learning rate by 10 and 100
respectively. (b, right) accuracy vs communication.

accuracy. We empirically show in Figure 3.3b that this is indeed true.
Next, the connection between compression and batch size tuning can

be made more formal under the following assumption: “each stochastic
gradient is the sum of a sparse mean and a dense noise”, i.e.,

∇wℓ(w; xi,yi) = Ej∇wℓ(w; xj,yj)︸ ︷︷ ︸
sparse, large magnitudes

+ (∇wℓ(w; xi,yi) − Ej∇wℓ(w; xj,yj))︸ ︷︷ ︸
dense, small magnitudes

(3.1)

Under this assumption, we can see that “large batch gradient ≈ highly
compressed gradient”, as a large batch gradient will be close toEj∇wℓ(w; xj,yj)

by the law of large numbers, a highly compressed gradient will also pick
up the same sparse components. Similarly, a small batch gradient is equiv-
alent to weakly compressed gradient. We will like to point out that this
assumption is not general and is not applicable on all data or models. It
will only hold for models trained with sparsity inducing norms.

20

We also conduct a simple experiment to support our intuition. We
collect all stochastic gradients in an epoch and compute the overlap in
coordinates of Top10% entries to find how much their supports overlap.
Figure 3.3a shows that > 90% of the top-K entries are common between a
pair of stochastic gradients, thereby justifying the above gradient model-
ing.

Thus, our findings along with prior work in literature can be summa-
rized as high gradient compression, noisy training data, or large batch size
in the critical regimes of training hurts generalization. This connection
also suggests that Accordion can also be used to schedule batch size.

3.3 Evaluation

We experimentally verify the performance of Accordion when paired
with two SOTA gradient compressors, i.e., (i) PowerSGD [184], which
performs low-rank gradient factorization via a computationally efficient
approach, and (ii) TopK sparsification [15], which sparsifies the gradients
by choosing the K entries with largest absolute values. Further we also
use Accordion to schedule batch size switching between batch size 512
and 4096 for Cifar-100and Cifar-10.

Evaluation Setup We implement Accordion in PyTorch [130]. All exper-
iments were conducted on a cluster that consists of 4 p3.2xlarge instances
on Amazon EC2. Our implementation used NCCL an optimized commu-
nication library for use with NVIDIA GPUs. For PowerSGD and Batch
Size experiments we used the all-reduce collective in NCCL and for TopK
we used the all-gather collective. We fix η to be 0.5 and run Accordion
every 10 epochs i.e. Accordion detects critical regimes by calculating rate
of change between gradients accumulated in current epoch and the gra-
dients accumulated 10 epochs back. We empirically observe that these

21

choices of hyper-parameters lead to good results and have not tuned them.
One of our primary goal was to design Accordion such that it should not
require signifcant amount of hyper-parameter tuning. Therefore for all of
our experiments we didn’t perform any hyper-parameter tuning and used
the same hyper-parameters as suggested by authors of previous compres-
sion methods, e.g. For PowerSGD we used the same setting as suggested
by Vogels et al. [184]. For large batch size experiments we use the same
hyper-parameters as used for regular training. For all our experiments on
batch size we performed LR Warmup of 5 epochs as suggested by Goyal
et al. [55], i.e. for batch size 512 we linearly increase the learning rate from
0.1 to 0.4 in five epochs where 0.1 is learning rate for batch size 128. Due
to relationship shown between batch Size and learning rate by Smith et al.
[158], Devarakonda et al. [44] when Accordion shifts to large batch it
also correspondingly increases the learning in the same ratio, i.e. when
switching between Batch Size 512 to Batch size 4096, Accordion also scales
the learning rate by 8×.

For image classification tasks we evaluated Accordion on Cifar-10
and Cifar-100. Cifar-10 consists of 50,000 train images and 10,000 test
images for 10 classes. Cifar-100 has similar number of samples but for
100 classes. For language modeling we used WikiText which has around 2
million train tokens and around 245k testing tokens. To show the wide
applicability of Accordion we consider a number of model architectures.
For CNNs, we study networks both with and without skip connections.
VGG-19 and GoogleNet are two networks without skip connections. While
ResNet-18, Densenet, and Squeeze-and -Excitation are networks with skip
connections. For language tasks we used a two layer LSTM.

Accordion on PowerSGD PowerSGD [184] shows that using extremely
low rank updates (Rank-2 or Rank-4) with error-feedback [161] can lead
to the the same accuracy as syncSGD. In Table 3.1 and 3.2 we show that

22

Table 3.1: Accordion with PowerSGD
on Cifar-10
Network Rank Accuracy Data Sent

(Million Floats)
Time
(Seconds)

Resnet-18
Rank 2 94.5% 2418.4 (1×) 3509 (1×)
Rank 1 94.1% 1350.4 (1.7×) 3386 (1.03×)
Accordion 94.5% 1571.8 (1.5×) 3398 (1.03×)

VGG-19bn
Rank 4 93.4% 6752.0 (1×) 3613 (1×)
Rank 1 68.6% 2074.9 (3.25×) 3158 (1.14×)
Accordion 92.9% 2945.1 (2.3×) 3220 (1.12×)

Senet
Rank 4 94.5% 4361.3 (1×) 4689 (1×)
Rank 1 94.2% 1392.6 (3.1×) 4134 (1.13×)
Accordion 94.5% 2264.4 (1.9×) 4298 (1.09×)

Table 3.2: Accordion with PowerSGD
on Cifar-100
Network Rank Accuracy Data Sent

(Million Floats)
Time
(Seconds)

Resnet-18
Rank 2 71.7% 2426.3 (1×) 3521 (1×)
Rank 1 70.0% 1355.7 (1.8×) 3388 (1.04×)
Accordion 71.8% 1566.3 (1.6×) 3419 (1.03×)

DenseNet
Rank 2 72.0% 3387.4 (1×) 13613 (1×)
Rank 1 71.6% 2155.6 (1.6×) 12977 (1.04×)
Accordion 72.5% 2284.9 (1.5×) 13173 (1.03×)

Senet
Rank 2 72.5% 2878.1 (1×) 5217 (1×)
Rank 1 71.5% 1683.1 (1.7×) 4994 (1.04×)
Accordion 72.4% 2175.6 (1.3×) 5074 (1.03×)

0 50 100 150 200 250 300
Epochs

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

K=4 K=1 Accordion

109 3×109 5×109 7×109

Floats Communicated

2.3x
 reduction

5×102 1.5×103 2.5×103 3.5×103

Time (seconds)

1.12x
 reduction

Figure 3.4: Accordion using PowerSGD with ℓlow = rank 4 and ℓhigh = rank 1
on VGG-19bn: We show Accordion being able to bridge more that 25% of
accuracy difference with 2.3× less communication .

Accordion by performing adaptive switching between Rank-1 and Rank-
2,4 reaches similar accuracy but with significantly less communication.
For e.g. in Table 3.2 with ResNet-18 on Cifar-100 using ℓlow = Rank 2 leads
to accuracy of 72.4% while ℓhigh = Rank 1 achieves 71.3%. Accordion
switching between Rank 2 and Rank 1 achieves an accuracy of 72.3%.
Figure 3.4 shows the result for VGG-19bn trained with Cifar-10, in this
case Accordion almost bridges accuracy gap of 25% while saving almost
2.3× in communication. Results on more compression schemes can be
found in Section 5 of our original paper [9].

Comparison with Prior Work We compare Accordion with prior work
in adaptive gradient compression and adaptive batch size tuning. For

23

0 50 100 150 200 250 300
0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5
Floats Communicated 1e9

0.94

0.95
A

cc
ur

ac
y

Rank-2 Rank-1 Accordion AdaQS

(a) ResNet-18 trained on Cifar-10

0 50 100 150 200 250 300
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

Rank-2 Rank-1 Accordion AdaQS

0.0 0.5 1.0 1.5 2.0 2.5
Floats Communicated 1e9

(b) ResNet-18 trained of Cifar-100
Figure 3.5: Comparison with AdaQS: We compare Accordion against
AdaQS [59] on Cifar-10 and Cifar-100. We use PowerSGDas the Gradient Com-
pressor. Even though AdaQS communicates more that Accordion it still looses
accuracy compared to low compression. Accordion on other hand with less
communication is able reach the accuracy of low compression.
adaptive gradient compression we consider recent work by [59] that uses
the mean to standard deviation ratio (MSDR) of the gradients. If they
observe that MSDR has reduced by a certain amount(a hyper-parameter),
they correspondingly reduce the compression ratio by half (i.e., switch
to a more accurate gradient). We use this approach with PowerSGD and
our experiments in Figure 3.5 suggest that their switching scheme ends up
requiring more communication and also leads to some loss in accuracy.

Accordion on extremely large batch sizes To push the limits of Batch
Size scaling further we tried using Accordion for scaling Cifar-10 on
ResNet-18 to batch size of 16,384.We observed that using Accordion looses
around (1.6%) accuracy compared to using batch size 512. Interestingly
we also observe that when Accordion first switches the batch size there is
a rapid drop, but then training immediately recovers.

3.4 Conclusion

We propose Accordion, an adaptive gradient compression method that
can automatically switch between low and high compression. Accordion
works by choosing low compression in critical regimes of training and
high compression elsewhere. We show that such regimes can be efficiently

24

0 50 100 150 200 250 300
Epochs

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y

BS512 BS16384 Accordion

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Floats Communicated 1e11

Figure 3.6: Using Extremely Large Batch Size: We observe that Accordion
looses around 1.6% accuracy when we use batch size of 16,384. Showing Accor-
dion can often prevent large accuracy losses while providing massive gains.

identified using the rate of change of the gradient norm and that our
method matches critical regimes identified by prior work. We also dis-
cuss connections between the compression ratio and batch size used for
training and show that the insights used in Accordion are supported
by prior work in adaptive batch size tuning. Finally, we show that Ac-
cordion is effective in practice and can save upto 3.7× communication
compared to using low compression without affecting generalization per-
formance. Overall, our work provides a new principled approach for
building adaptive-hyperparameter tuning algorithms, and we believe that
further understanding of critical regimes in neural network training can
help us design better hyperparameter tuning algorithms in the future.

25

4 utility of gradient compression

A rich body of prior work has highlighted the existence of communica-
tion bottlenecks in synchronous data-parallel training. To alleviate these
bottlenecks, a long line of recent research proposes gradient and model
compression methods. In this work, we evaluate the efficacy of gradient
compression methods and compare their scalability with optimized im-
plementations of synchronous data-parallel SGD across more than 200
realistic distributed setups. Surprisingly, we observe that only in 6 cases
out of more than 200, gradient compression methods provide speedup over
optimized synchronous data-parallel training in the typical data-center
setting. We conduct an extensive investigation to identify the root causes
of this phenomenon, and offer a performance model that can be used
to identify the benefits of gradient compression for a variety of system
setups. Based on our analysis, we propose a list of desirable properties
that gradient compression methods should satisfy, in order for them to
provide meaningful utility.

4.1 Preliminaries

We first provide a brief background of several different threads of prior
work that aim at enabling faster distributed machine learning. Several
lossy gradient compression methods based on quantization [16, 20, 88,
42, 149, 199, 21, 213, 106, 69, 170, 45, 163, 53, 224, 215, 201, 168], sparsifi-
cation [162, 111, 15, 17, 111, 154, 155, 50, 115, 156, 197, 168, 147, 148], low
rank decomposition [187, 184, 189], and other approaches [5, 165, 79]
have been proposed in literature. Recent surveys [204, 171] describe these
methods in detail.

In this work, we benchmark several popular gradient compression
schemes (Table 4.1), and we then pick three gradient compression schemes

26

Table 4.1: Encode-Decode of gradient compression methods for ResNet-50 on
V100 GPUs.

Type Method Tencode_decode(ms) All-Reduce

Sparsification MS-TopK - 1% 103 ✗

DGC - 1% 221 ✗

TopK - 1% 273 ✗

RandomK - 1% 163 ✓

Quantization SignSGD 16 ✗

QSGD-2bit 39 ✗

TernGrad 94 ✗

Low Rank PowerSGD-Rank 4 45 ✓

ATOMO-Rank 4 1586 ✗

which have the least compression overheads and high compression ratios
for detailed analysis. We chose, quantization based signSGD [20, 21],
low-rank decomposition based PowerSGD [184] and sparsification based
MSTop-K [156]. We compare and evaluate these schemes to see if they
provide any benefit over off-the-shelf implementation of syncSGD, i.e.
PyTorch DDP [105].

4.1.1 System Advances

Next, we provide a brief overview of several system advances which have
been applied to syncSGD to improve the performance of distributed train-
ing.

All-reduce. In recent years, systems have shifted from using a parameter
server based topology to an all-reduce topology for gradient synchroniza-
tion. For example, we observe that all submissions to DawnBench [34] use
all-reduce for performing distributed training. Communication costs can
be typically modeled using a cost model [146] where cost of sending/re-

27

Table 4.2: Comparing aggregation schemes: We show how latency and band-
width term scale for different aggregation strategies. α is the latency, β is the
inverse of bandwidth, and n is the size of vector communicated. p is the number
of machines

Algorithm Latency Bandwidth
Ring Reduce 2(p− 1)α 2β (p−1)

p
n

Tree Reduce 2α log p 2β(log p)n

Parameter Server 2α 2β(p− 1)n

ceiving a vector of size n is computed as the sum of latency and bandwidth
requirements. There are several optimizations [134, 172, 66, 144] for all-
reduce based collectives like ring-reduce [19], tree-reduce [144], recursive
doubling [180], 2D-Torus [122, 86], and etc. These optimizations explore
the trade-off between the latency and bandwidth terms. We list latency
and bandwidth terms for a few aggregation strategies in Table 4.2 for
synchronizing a vector of size n among p machines. In Table 4.2, α rep-
resents the latency term (typically between 0.5 to 1ms in public clouds)
and β represents bandwidth term. We would like to point out that the
bandwidth requirement for ring reduce stays almost constant even with
increase in number of machines p. High performance implementations
like NVIDIA-NCCL [1] dynamically chooses between tree and ring reduce
based on several factors like number of machines, bandwidth, interconnect,
communication size to list a few. In this work for simplicity, we analyze
our results with the communication model of ring-reduce.

Communication and Computation Overlap. Gradients for DNNs are
calculated layerwise, therefore, gradients of later layers are available be-
fore initial layers. Instead of waiting for the availability of all the gradients,
popular deep learning frameworks [105, 130, 4] start gradient communi-
cation when some of the gradients are available. This leads to overlapping

28

Layer 2Layer 3 Layer 1
Gradient

Computation

Gradient
Communication

Time

Communication
Overhead

Layer 2Layer 3 Layer 1
Gradient

Computation

Gradient
Communication

Time

Communication
Overhead

Figure 4.1: Illustration of how overlapping can reduce the
total iteration time. (Above) Gradient computation and com-
munication done serially. (Below) Gradient computation and
communication being overlapped, i.e. when the gradient of a
layer is computed, it is communicated right after the gradient of
the previous layer.

0 100 200 300 400 500 600 700 800
Time per iteration (ms)

Resnet-50

Resnet-101

BERT

With overlap Compute Communicate

Figure 4.2: Effect of Overlap: We plot the iteration time for
computation and gradient synchronization for 64 GPUs, both
with and without overlap. In case of Resnet-50 we observe that
overlapping reduces iteration time by upto 46%.

gradient computation with communication, hiding the time spent in com-
munication. Figure 4.1 illustrates how overlap can provide speedups. In
Figure 4.2, we observe that overlapping can provide speedups of almost
46% for ResNet-50.

29

Bucketing Gradients. Calling the all-reduce collective per layer can often
lead to large overheads. To amortize the overhead of calling all-reduce,
optimized implementation of syncSGD [105, 151] create fixed size buckets.
Once the gradients for a bucket are calculated then all-reduce is called on
the entire bucket. Bucket sizes are typically large (25 MB by default in
PyTorch).

In this work, we benchmark the runtime of the systems with the afore-
mentioned optimizations to compare against gradient compression meth-
ods on real-world computer vision and natural language processing tasks.

4.1.2 Evaluating utility of gradient compression

In this section, we perform a detailed experimental evaluation comparing
the scalability of gradient compression methods with an optimized sync-
SGD implementation. We start by analyzing the effects of overlapping
gradient compression with gradient computation. Next we run large scale
experiments to study how gradient compression methods scale across a
range of models.

Methodology. We begin by comparing the overhead of compression
methods which have been reported to scale well. Upon comparing nine
different gradient compression methods using ResNet-50 on 64 V100
GPUs. We observe that most gradient compression methods take around
100ms for compressing and decompressing gradients of ResNet-50 on 64
GPUs. However, there are some methods which are considerably faster,
e.g. signSGD takes only 16ms for encoding-decoding. Among low-rank
methods we find that PowerSGD is around 45× faster than ATOMO (an-
other low rank method) [187]. Based on this comparison, we choose the
most scalable method in each category. Among quantization based meth-
ods we choose signSGD [20, 21] which achieves 32× compression ratio by
only communicating the sign of the gradient. Among sparsification based

30

methods we choose MSTop-K [156], a scalable TopK method and among
low rank methods we choose PowerSGD, a low overhead method with
compression ratios of around 100×. For syncSGD we use PyTorch-DDP
module [105].

We would like to point out that we use optimistic compression ratios,
e.g. for PowerSGD we use Rank-4, 8, and 16. Such high compression
ratios have been shown to work [184] for small datasets like CIFAR-10
and WikiText-2 but can lead to accuracy loss for large datasets [184, 137].
While for MSTop-K we are again being optimistic and consider dropping
99.9% gradients and assuming that it will have no loss in accuracy. We
chose these since we wanted to consider a best case scenario for gradient
compression methods.

We use ResNet-50 (97MB), ResNet-101 (170MB) and BERTBASE (418MB)
as the models to study given their disparate communication and compu-
tation requirements. Similar models were used by prior works [184, 205]
in gradient compression to compare the performance of gradient com-
pression schemes and our code can be easily used to benchmark other
models as well. For timing measurements on vision models we use the
ImageNet dataset [41] and we fine-tune the BERTBASE model on Sogou
News dataset [164]. For the timing measurements, we run 60 iterations
for each setup and discard the first 10. We plot the mean of the remaining
50. The error bars in the figure correspond to minimum and maximum
values.

Our experiments are conducted over p3.8xlarge instances on Amazon
EC2. Each instance is equipped with 4 V100 GPUs and provides around
10Gpbs of bandwidth. We scale our experiments up to 96 GPUs (24
p3.8xlarge instances) and consider weak scaling, i.e. the number of inputs
per worker is kept constant as the number of workers increase. This is a
commonly used scenario for evaluating the scalability of deep learning
training [34, 128]. Thus, when we refer to a particular batch size, it is the

31

batch size at each worker.

Using Per Iteration Time as A Metric Instead of Accuracy. We consis-
tently use time per iteration as the metric for evaluation. It is well known
from prior works that gradient compression methods can lead to some
final model accuracy loss [205] when used for training. Our main goal in
this work is to study the scalability of distributed training and compare per
iteration time of syncSGD against state-of-the-art gradient compression
methods. Though important, the final model accuracy that the gradient
compression methods achieve is not the main focus of this work. The per-
iteration speedup is a more critical question as if there is limited speedup
from using gradient compression then there is no incentive to deploy such
methods irrespective of the accuracy. Another reason for not performing
an accuracy based study is that gradient compression methods often intro-
duce new hyper-parameters while also requiring modifications to existing
hyper-parameters like the learning rate schedule. It is often non-trivial to
find optimal hyper-parameters which balance compression and accuracy
loss and we plan to study this in future work.

4.1.3 Other Related Work

Several works have looked at improving communication efficiency by
use of Gossip based protocols [108, 169, 96, 95]. Other methods have
looked into improving efficiency of distributed training by enabling use
of large batch sizes [211, 210, 158, 44] or lower precision [121] without
accuracy loss. Other works have also looked at different forms of par-
allelism [84, 83, 72, 157, 128, 138] for speeding up distributed training.
MLPerf [116] and DawnBench [34] are two well known industry sup-
ported efforts to perform periodic benchmarking on training and inference
speed at scale. Our findings about scalability of all-reduce based compres-
sion scheme has also been reported by prior works [184, 31]. A recent

32

survey [204] quantitatively compares several gradient compression meth-
ods. However unlike our work it does not account for systems optimization
like overlap of communication and computation. Zhang et al. [217] study
whether network is the bottleneck in distributed training. Unlike [217] and
other listed works, our study focuses on the utility of gradient compression
methods in several different settings and analyzes others aspects beyond
network bandwidth like compute availability, batch size, model size, sys-
tem advances etc. Further, our performance model allows to reason about
performance of distributed training and to predict the performance gains
without running large scale experiments.

4.2 Evaluating Gradient Compression

4.2.1 Overlapping Compression and Computation

We observe that when gradient compression is performed in parallel with
the backward computation it is slower than performing gradient compres-
sion after completing backward pass. Figure 4.3 depicts this phenomenon
on ResNet-50 using PowerSGD Rank-4, MSTop-K-1%, and signSGD. Since
both gradient compression and gradient computation are compute-heavy
steps, when performed in parallel they end up competing for compute
resources on the GPU leading to an overall slow down. On the other
hand, syncSGD only performs all-reduce operation which is communi-
cation heavy with very little compute, thus efficiently utilizing the com-
munication resources on the GPU without affecting the backward pass.
Since we consistently observe that compression schemes perform better
when not overlapped, for the next set of experiments we use non-overlapped
versions of compression.

33

0 100 200 300 400 500 600
Time (ms)

syncSGD

PowerSGD
 Rank-4

MSTopK
K-1%

signSGD

With overlap Without overlap

Figure 4.3: Overlapping Gradient Compression with Computation: Overlap-
ping compression leads to requiring more time per iteration than performing it
sequentially, due to resource contention for compute resources. The results are
for 64 GPUs.

4.2.2 Comparing Gradient Compression with Optimized
Sync SGD

We next analyse the performance of gradient compression methods against
syncSGD.

PowerSGD. We first study the scalability of PowerSGD when compared
to syncSGD for ResNet-50, ResNet-101 , and BERTBASE. We use Rank-4, 8
and 16 as discussed previously. As shown in Figure 4.4 we can see that
PowerSGD with Rank 4, 8, and, 16 is slower than syncSGD for ResNet-50
and ResNet-101 with batch size 64. This is primarily because syncSGD
does not incur any overheads from compression and is able to overlap com-
munication with computation. On the other hand, for BERTBASE, which
is a much larger model (490MB), we see that for 96 GPUs, Rank-4 and

34

PowerSGD,Rank-4 PowerSGD,Rank-8 PowerSGD,Rank-16 syncSGD

8 16 32 64 96
Number of GPUs

0

50

100

150

200

250

Ti
m

e
(m

s)

(a) ResNet-50: BSize 64

8 16 32 64 96
Number of GPUs

0

100

200

300

400

Ti
m

e
(m

s)
(b) ResNet-101: BSize 64

8 16 32 64 96
Number of GPUs

0

100

200

300

400

500

Ti
m

e
(m

s)

(c) BERTBASE: BSize 12

Figure 4.4: Scalability of PowerSGD: When compared against an optimized
implementation of syncSGD, PowerSGD provides speedups only in case of
BERTBASE when using Rank-4 and Rank-8 above 32 GPUs. In other cases it has a
high per iteration time.

MSTop-K 0.1% MSTop-K 1% syncSGD

8 16 32 64 96
Number of GPUs

0

100

200

300

400

500

Ti
m

e
(m

s)

(a) ResNet-50: BSize 64

8 16 32 64 96
Number of GPUs

0

100

200

300

400

500

Ti
m

e
(m

s)

(b) ResNet-101: BSize 64

8 16 32 64 96
Number of GPUs

0
100
200
300
400
500
600
700
800

Ti
m

e
(m

s)

(c) BERTBASE: BSize 12

Figure 4.5: Scalability of MSTop-K: Comparing MSTop-K against syncSGD we
observe due to lack of compatibility with all-reduce MSTop-K performs slower
than or comparable to syncSGD . For ResNet-101 and BERT we could not scale
TopK beyond 16 and 32 GPUs respectively, due to running out of memory as
memory requirement increasing linearly with number of machines.
Rank-8 are faster than syncSGD by around 18.8% and 11.3% respectively,
while Rank-16 still takes longer than syncSGD.

MSTop-K. Since the MSTop-K [156] operator is incompatible with all-
reduce we use all-gather for communication. As shown in Figure 4.5, only
in 2 out of 15 different setups we observe a minuscule speedup (around
1.3%) when compared against syncSGD. These speedups are achieved
when using MSTop-K-0.1%, i.e., when 99.9% of the entries in the gradient

35

signSGD syncSGD

8 16 32 64 96
Number of GPUs

0

100

200

300

400

500

600
Ti

m
e

(m
s)

(a) ResNet-50: BSize 64

8 16 32 64 96
Number of GPUs

0

200

400

600

800

1000

1200

Ti
m

e
(m

s)

(b) ResNet-101: BSize 64

8 16 32 64 96
Number of GPUs

0

200

400

600

800

1000

1200

1400

Ti
m

e
(m

s)

(c) BERTBASE: BSize 12

Figure 4.6: Scalability of signSGD: Due to lack of support for all-reduce and
linearly increasing decode time, across all three models, signSGD performs con-
siderably slower than syncSGD. For BERTBASE we were not able to scale signSGD
beyond 32 GPUs because we ran out of memory on a V100 GPU. This is due to
the memory requirement increasing linearly with number of machines.

PowerSGD,Rank-4 PowerSGD,Rank-8 PowerSGD,Rank-16 syncSGD

8 16 32 64 96
Number of GPUs

0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

(a) ResNet-101: BSize 16

8 16 32 64 96
Number of GPUs

0
50

100
150
200
250
300
350

Ti
m

e
(m

s)

(b) ResNet-101: BSize 32

8 16 32 64 96
Number of GPUs

0

100

200

300

400

Ti
m

e
(m

s)

(c) ResNet-101: BSize 64

Figure 4.7: Effect of varying batch size: Here we compare PowerSGD against
ResNet-101 on different batch sizes. We observe that large batch sizes provide
more opportunity to syncSGD to hide the communication time, meanwhile at
small batch sizes due to reduced computation time this overlap is not possible.
Therefore gradient compression methods become more useful at small batch
sizes.
are dropped. Also, due to high memory requirements for creating buffers
for the all-gather primitive MSTop-K does not scale beyond 32 GPUs for
ResNet-101 and 16 GPUs for BERT on a V100 GPU.

signSGD. We study signSGD with majority vote, where 1 bit is sent for
each float (32 bit) leading to 32× compression. Majority vote operation
is not associative thus requiring use of all-gather. Figure 4.6, shows that

36

despite signSGD being extremely quick to encode and decode, due to
lack of compatibility with all reduce, communication time scales linearly.
Further, due to overheads in creating buffers for the all-gather primitive
we can not scale signSGD on BERTBASE beyond 32 GPUs.

4.2.3 Effect of Batch Size on Scalability

For analysing the effect of varying batch sizes, we compare PowerSGD
against syncSGD since it is the most scalable method we encounter. In
Figure 4.7, for ResNet-101, we find that the benefits of using PowerSGD
with Rank-4 drops as the batch size increases. For instance, when using 96
GPUs, PowerSGD Rank-4 provides almost 42.5% speedup when training
using batch size 16. This speedup drops to 25.7% for batch size 32 and with
batch size 64, we observe that PowerSGD Rank-4 is around 6.3% slower
than synSGD. In general, increasing batch size leads to an increase in the
compute time which in turn provides more opportunity for syncSGD to
overlap computation and communication.

4.2.4 Exploring utility of gradient compression in
additional setups

In the previous section we looked at the performance of distributed train-
ing and gradient compression of popular models on existing hardware.
Next we try to identify regimes, in terms of hardware or model character-
istics, where gradient compression can provide significant gains i.e. how
will our above results change if we had 100Gbps bandwidth or an 8× faster
GPU. To answer such questions, we develop a performance model that
can be used to reason about expected performance under different setups.

37

4.2.4.1 Performance Model for Distributed Data Parallel.

Based on optimizations listed for syncSGD in [105] we build an analytical
performance model. We assume the model can be partitioned into k

buckets, where the first k− 1 buckets are of size b and the last bucket is of
size b̂, where b̂ ⩽ b. The time observed for backward pass and gradient
synchronization for synSGD becomes:

Tobs ≈ max(γTcomp, (k− 1)× Tcomm(b,p,BW))+

Tcomm(b̂,p,BW)

where Tobs is the total time observed for backward pass and synchro-
nization, Tcomp is the compute time for the backward pass on single ma-
chine, (k − 1) × Tcomm(b,p,BW) is the time required to communicate
k − 1 gradient buckets of size b across p GPUs at BW bandwidth, and
Tcomm(b̂,p,BW) is the time to communicate the last bucket of size b̂,
which can not be overlapped with computation. Finally, γ represents the
factor of slowdown in backward pass due to overlap with communication.
We observe γ to between 1.04 to 1.1. In case of syncSGD when using
ring-reduce, Tcomm(b,p,BW) becomes

Tcomm(b,p,BW) = 2α× (p− 1) + 2 × b× (p− 1)
p× BW

(4.1)

where α is the latency coefficient, b is the bucket size, p is the number of
GPUs and BW is the bandwidth available.

Verifying Performance Model. We empirically verify our performance
model using the same experimental setup as mention in Section 4.1.2.
As shown in Figure 4.9 we observe that our model very closely tracks
the actual performance in all cases. The median difference between our
prediction and actual runtime is 1.8% and the maximum is 13.7%.

38

0 5 10 15 20 25 30
Bandwidth(Gbps)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

C
om

pr
es

si
on

 R
at

io

ResNet-101,64 Machines
Batch Size=64
Batch Size=32
Batch Size=16

Figure 4.8: Required gradient compression for near linear speedups (simu-
lated): Above figure is for ResNet-101 simulated for 64 machines. We observe
that the required gradient compression for near linear scaling at 10 Gbps even
for quite small batch sizes is around 4×.
4.2.5 Insights from the Performance Model
How Much Should We Compress? Using the performance model we
investigate how much compression is required for linear scalability. Fig-
ure 4.8 shows that even at small batch-sizes for ResNet-101 we need around
4× compression for linear scalability, which is significantly smaller than
what most compression methods offer. Our analysis shows that for linear
scaling we do not need extremely high compression ratios.

Effect of Network Bandwidth on Gradient Compression. Figure 4.10
shows comparison between speedups for ResNet-101 when using sync-
SGD and PowerSGD Rank-4 at different network bandwidths. In addition
to estimating time taken with our performance model, we also use the
TC command [2] to limit bandwidth on a real cluster, thereby verifying
our performance model (the markers represent measurements on hard-
ware). The figure shows that gradient compression is very useful in low
bandwidth settings (⩽ 8 Gbps). Although low bandwidths are uncom-

39

8 GPUs 16 GPUs 32 GPUs 64 GPUs 96 GPUs0

100

200

300

400
Ti

m
e

Pe
r I

te
ra

tio
n

(m
s)

Actual
Predicted

ResNet 50 ResNet 101 BERT

Figure 4.9: Verifying performance model for syncSGD: Our performance
model matches the actual performance for all three models across wide range of
GPUs. The median difference between predictions and actual runtime is 1.8%.

mon in data centers (10 Gbps is minimum with a V100 GPU on Amazon
EC2), this shows that in certain cases like wide-area learning [23] gradient
compression methods can be extremely useful.

Our performance model also allows us to consider several what-if
scenarios. To understand how and where gradient compression methods
will be useful, we can vary several factors like compute availability, encode-
decode time, network bandwidth etc. Based on our results in Section 4.2.2
which show that PowerSGD Rank-4 is the most scalable compression
scheme, we use PowerSGD with Rank-4 as the baseline for these what-if
analyses.

Required Compression for linear scaling. Existing gradient compres-
sion methods provide massive amount of compression which often leads
to poor accuracy. Using our performance model we study the amount
of gradient compression required for linear scaling. Figure 4.11 shows

40

0 5 10 15 20 25 30
Bandwidth (Gbps)

102

103

Ti
m

e
(m

s)

Typical Datacenter Bandwidth

PowerSGD, Rank-4, Simulated
syncSGD, Simulated
Ideal Scaling
syncSGD, Actual
PowerSGD, Rank-4, Actual

Figure 4.10: Evaluating effect of network bandwidth (simulated): Above curve
is for Resnet-101, batch size 64 on 64 GPUs. We observe that at bandwidth lower
than 8.2 Gbps, PowerSGD Rank-4 can provide speedups but above that syncSGD
performs better.

0 5 10 15 20 25 30
Bandwidth(Gbps)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

C
om

pr
es

si
on

 R
at

io

ResNet-50,64 Machines
Batch Size=64
Batch Size=32
Batch Size=16

(a) ResNet50: 64 GPUs

0 5 10 15 20 25 30
Bandwidth(Gbps)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

C
om

pr
es

si
on

 R
at

io

ResNet-101,64 Machines
Batch Size=64
Batch Size=32
Batch Size=16

(b) ResNet101: 64 GPUs

0 5 10 15 20 25 30
Bandwidth(Gbps)

0

2

4

6

8

10

12
C

om
pr

es
si

on
 R

at
io

BERT, 64 Machines
Batch Size=12
Batch Size=10
Batch Size=8

(c) BERT: 64 GPUs

Figure 4.11: Required gradient compression for near optimal speedups (sim-
ulated): We observe that the required gradient compression for near optimal
scaling is quite small. At 10 Gbps even for quite small batch sizes we need less
than 4× gradient compression, which is quite small compared to what popular
gradient compression methods.

that in most common models at 10 Gbps we do not need compression
greater than 4×. This shows that focus of gradient compression should be
to reduce the overheads of compression rather than providing very high
compression rates.

41

PowerSGD, Rank 4, Simulated syncSGD, Simulated Ideal Scaling, Actual syncSGD, Actual PowerSGD, Rank-4, Actual

0 5 10 15 20 25 30
Bandwidth (Gbps)

10
2

10
3

Ti
m

e
(m

s)

(a) ResNet50: BSize 64

0 5 10 15 20 25 30
Bandwidth (Gbps)

10
2

10
3

Ti
m

e
(m

s)
(b) ResNet101: BSize 64

0 5 10 15 20 25 30
Bandwidth (Gbps)

10
2

10
3

Ti
m

e
(m

s)

(c) BERT: BSize 12

Figure 4.12: Evaluating effect of network bandwidth on training (simulated):
We vary bandwidth availability and analyse the performance of synchronous
SGD vs PowerSGD Rank 4. We observe that as bandwidth increase significantly it
helps synchronous SGD since it has a larger communication overhead. Moreover
we observe the PowerSGD provides massive gains at extremely low bandwidth
(1Gbps) but as bandwidth scales we see PowerSGD gets bounded by compute
availability. The markers are values from actual experiments, this also shows how
close our performance model is to actual measurement.

Effect of Network Bandwidth In Figure 4.12 we vary network bandwidth
available from 1Gbps to 30Gbps and see how this changes the speedup
offered by PowerSGD. We see that, for example, in the case of Resnet-50,
PowerSGD offers considerable speedup at low network bandwidths (1-
7 Gbps) but becomes slower than synchronous SGD when bandwidth
available becomes > 9Gbps. This is due to the fact that syncSGD bene-
fits more from availability of higher bandwidth since it communicates
significantly more while PowerSGD is still limited by extra time spent
in the encode-decode step. For BERT which is a communication heavy
network, PowerSGD becomes slower than syncSGD at around 15Gbps.
In Figure 4.12 the markers represent values from actual experiments. To
perform these experiments we used the tc command in linux to modify the
available bandwidth. For experiments with bandwidth less than 10Gbps
we used p3.8xlarge instances which provide a maximum of 10Gbps band-
width. And for 20 Gbps experiment we used p3.16xlarge instance which
provides 25 Gbps bandwidth. The markers are extremely close to the

42

PowerSGD, Rank 4 syncSGD

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Compute speedup

0
25
50
75

100
125
150
175

Ti
m

e
(m

s)

(a) ResNet50: BSize 64

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Compute speedup

0
50

100
150
200
250
300
350

Ti
m

e
(m

s)
(b) ResNet101: BSize 64

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Compute speedup

0

100

200

300

400

500

600

Ti
m

e
(m

s)

(c) BERT: BSize 12

Figure 4.13: Evaluating effect of compute speedup on training time (simu-
lated):Assuming network capacity remains at 10Gigabit but compute capabilities
go up, we observe in that case PowerSGD will end up providing significant bene-
fit, meanwhile synchronous SGD will end up being communication bound and
will not be able to utilize increased compute. Showing that if compute capa-
bilities increase drastically but network bandwidth remains stagnant, gradient
compression methods will become useful.

values from our analytical performance model thus verifying that our
performance model can indeed be useful in several settings.

Effect of faster compute. Next we analyze how the effect of gradient com-
pression changes when newer hardware with higher compute capabilities
arrive in future.

In Figure 4.13, we plot the effect of compute capabilities improving by
up to 4×, while network bandwidth remains constant at 10 Gbps. We can
see that for Resnet-50, PowerSGD with Rank-4 can provide 1.75x speedup
if the compute becomes around 3.5x faster.

There are two reasons for this, (i) As compute gets faster, the encode-
decode time also reduces by the same factor, (ii) with a faster backward
pass, there is less opportunity for synchronous SGD to overlap computa-
tion with communication, making it communication bound.

Tradeoff between encode-decode time and compression ratio. Finally,
we explore the tradeoff between the effect of reducing encode-decode

43

−8 −6 −4 −2 0
Change in Time(%)

K=1

K=2

K=3

K=4

K=5

l=1 l=2 l=3

(a) ResNet50: BSize 64

−14 −12 −10 −8 −6 −4 −2 0 2
Change in Time(%)

K=1

K=2

K=3

K=4

K=5

l=1 l=2 l=3

(b) ResNet101: BSize 64

−6 −4 −2 0 2 4
Change in Time(%)

K=1

K=2

K=3

K=4

K=5

l=1 l=2 l=3

(c) BERT: BSize 12

Figure 4.14: Varying encoding-decoding time and compression (simulated) :
We observe that reducing encode-decode time even if it leads to reduced gradient
compression is very useful and can make methods like PowerSGD more viable.

time, while simultaneously decreasing the compression ratios by similar
proportions. For this we consider a hypothetical gradient compression
scheme in which if we decrease encode-decode time by a factor k the size
of gradients communicated increases by lk. For example, if say k = 2 and
l = 2 then a 2x decrease in encode-decode time would be accompanied
by a 4x increase in size of gradients. This setup is to study what would
happen if we had compression schemes that offered a variety of trade-off
points. We vary k from 1 to 4 in increments of 1 and try 1,2 and 3 as values
of l. Using PowerSGD with Rank-4 as the baseline, we see in Figure 4.14
that any reduction in encode-decode time even at the expense of increased
communication helps.

4.2.6 Key Takeaways

Here we summarize the key takeaways from our experiments and perfor-
mance model-

• In Section 4.2.1 we show gradient Compression methods are not
good candidates for overlap with gradient computations on popular
GPUs like V100s since both gradient compression and computation
are compute heavy processes leading to an overall slowdown.

44

• In Section 4.2.2we show existing gradient compression methods
provide limited benefits either due to encoding overheads or due to
lack of compatibility with all-reduce across a range of models.

• In Section 4.2.3 we observe that using large batch sizes often provides
enough opportunity for syncSGD to overlap communication with
communication thus reducing the extent of benefits achieved from
using gradient compression.

• In Section 4.2.5, with the aid of our performance model we show that
even at small batch sizes we do not need extremely high amount of
compression as proposed by several works.

4.3 Conclusion

In this work, we study several gradient compression methods used to
accelerate distributed ML training. We discover that existing gradient
compression methods provide marginal speedups in a datacenter setup
due to the overheads in compression. We develop a performance model
that can help algorithm designers build scalable gradient compression
algorithms. Our performance model also allows users to conduct what-
if analyses and determine how much compression they need given a
hardware setup. We believe this analysis provides the community clarity
on the desirable properties for gradient compression and will lead to
methods that can provide improved scalability in the future.

45

Part III

Reducing Data Movement in
Recommendation Model Training

46

5 accelerating recommendation model training

In this chapter we focus on improving recommendation model throughput
by reducing the embedding access overhead.

5.1 Preliminaries

Recommendation models power widely used large-scale internet services.
Recently deep learning is being used to improve the accuracy of recom-
mendations [129, 30, 78]. All deep recommendation models consist of
two types of components (i) a memory-intensive embedding layer that
stores a mapping between the categorical features and their numerical
representations (ii) a compute-intensive neural network-based modeling
layer which models interactions between numerical features and vector
representations of categorical features. Across models, the structure of em-
bedding tables typically remains the same. The number of rows (elements
in the table) usually depends on the dataset, i.e. the number of categories,
while machine learning engineers vary the dimension of embedding i.e.
the size of the vector to represent a categorical feature. Common dimen-
sions of embeddings are 16, 32, 48, and 64 but sometimes can be as large
as 384 [126]. However, the rows in embedding tables vary widely and
can be as small as 3 elements or as big as a few billion elements depend-
ing on the dataset [209, 60]. Neural network layers have more diversity,
and the type of neural network usually depends on the modeling task
at hand. DLRM [129], a recommendation model popular at Meta uses
fully connected layers for both bottom and top neural networks. While,
DeepFM [58] uses a factorization module that learns up to two-order fea-
ture interactions between sparse and dense features (Table 5.2 summarizes
other models we consider in this paper). The forward pass of training
involves looking up embedding vectors corresponding to the data items.

47

Table 5.1: Dataset and their embedding tables
Training Input Embedding Tables

Datasets Datapoints Categorical
Features

Num
Features

Num
Emb

Embedding
Dimension

Table
Size

Kaggle Criteo 39.2 Million 26 13 33.76 Million 48 6 GB
Avazu 40.4 Million 21 1 9.4 Million 48 1.7 GB
Terabyte 4.37 Billion 26 13 882.77 Million 16 157 GB

Table 5.2: Model Descriptions: For DLRM, W&D, D&C the numbers indicate
the structure of the different Fully Connected (FC) layers. For DeepFM, Linear
Features represent a linear layer that is used to store feature interactions. For all
the models, we used the standard architectures as suggested by original authors.

Model Architecture of Dense Parameters Number of
Dense Parameters

DLRM [129] FC - 13-512- 256-64-48
FC - 1024-1024-1024-256-128-1 2962289

W&D [30] FC - 13-256-256-256 136673

D&C [192] FC - 1024-512-256-64-48
FC - 1024-512-256-1 2718609

DeepFM [58] Linear Features - 33762577-1
FC - 1248-64-64-64 33851283

All deep learning based recommendation models [193, 198, 195, 182, 35]
use this step to handle categorical features such as location, product type,
gender, etc. Our focus is to reduce data access overheads that arise from
performing embedding lookups and thus speed up the training of all
recommendation models which use embedding tables.

Training Recommendation models Next, we discuss the state-of-the-art
systems used for training recommendation models.
Offline Training vs Online Training. Recommendation models are trained
in both online and offline mode. Offline training involves training the
model on large amounts of historical data with emphasis on throughput.
Alternatively, online training is performed only on the recently acquired
data to account for latest user preferences and is latency sensitive. To boost

48

Top Neural
Network

Embedding
Table 1

Embedding
Table 2

Numerical
 Feature 1

Numerical
 Feature M

Categorical
Feature 1

Categorical
Feature N

Pairwise Interaction

Concatenate

Bottom
Neural

Network

Prediction

Figure 5.1: Architecture of a recommendation model: Model parameters in-
clude top, bottom NNs and embedding tables.

performance and prevent catastrophic forgetting [52, 98], researchers ac-
tively perform offline training, even for models in production. According
to a study by Meta [7] offline training is responsible for more than 50%
cycles of all ML model training cycles. This shows that offline training
of recommendation models is an important workload. In this work our
primary focus is on offline training of recommendation models.
Training Setup. Recommendation models are extremely large and are
currently among the largest ML models used in enterprises. Meta recently
released a 12 Trillion parameter recommendation model [126]; in compar-
ison GPT-3 has 175 Billion parameters. However, embedding tables with
sparse access patterns account for more than 99% of parameters.

The combination of extremely large model sizes with the sparse ac-

49

cess pattern introduces several new challenges in distributed training.
Figure 5.1 shows a schematic of a deep learning based recommendation
model. In a typical DLRM training setup, dense neural network (NN)
parameters are replicated and stored on the GPUs and trained in data-
parallel fashion, where gradients are synchronized using the all-reduce
communication collective. However, embedding tables are extremely large
to hold in the GPU memory and are usually partitioned.
Existing Systems. Several systems have been designed to perform offline
recommendation model training due to it’s popularity. Training systems
like TorchRec [118], FB-Research’s DLRM [141] and HugeCTR [74] par-
tition the embedding table across different GPUs and train them in a
model-parallel fashion. Embeddings are fetched using all-to-all collec-
tive [125]. While, TorchRec tries to overlap embedding-related operations,
like remote embedding reads and writebacks, with the compute-intensive
portion of the neural network, the amount of embedding data that needs to
be fetched still adds significant overhead during training. Figure 5.3 shows
a breakdown of the time taken for one iteration of training when using
TorchRec [118]. We observe that when using 8 training machines (AWS
p3.2xlarge instances), the overheads when compared to an ideal baseline
that does not perform any embedding lookups, is around 70% for the
DLRM [129] and 75% for DeepFM [58].

Beyond spending a majority of time in embedding lookups, existing
systems also couple storage and compute resources, e.g. if the embedding
tables for a model are extremely large but the compute requirements are
small, one still has to use a large number of GPU machines to store the
embedding tables. This often leads to sub-optimal use of resources.

To alleviate the embedding access overhead and improve resource
utilization, FAE [8] performed an analysis of embedding accesses and
observed a similar skew in embedding access patterns. However, FAE uses
a reordering approach by dividing examples into hot and cold batches

50

Forward Backward+MLP GetEmb Embedding Sync

TorchRec Bagpipe0

20

40

60

80

100

120

140
Ti

m
e

(m
s)

(a) DLRM

TorchRec Bagpipe0

200

400

600

800

Ti
m

e
(m

s)

(b) DeepFM
Figure 5.3: Training Time Breakdown: Average time spent in various stages
of training when using 8 p3.2xlarge instances with TorchRec [118] (left) and
Bagpipe (right) on DLRM and DeepFM models (Table 5.2). For large models like
DeepFM, we observe that TorchRec spends 75% of each iteration on embedding
access, while Bagpipe can bring it down to 10%.

based on their embedding accesses, this impacts the statistical efficiency
as training continuously with hot batches changes the order of the training
examples and can affect convergence [8]. Further, it is not always possi-
ble to create batches that only access cached embeddings, because some
models [107, 103] use features like Unique User ID (UUID) or Session
ID [178, 167, 179] that are unlikely to be repeated and thus requiring at
least one cache miss per example.

Several other prior works [73, 7, 61, 119, 109] have proposed using
asynchronous training to reduce embedding access overhead. With asyn-
chronous training, embedding fetches can happen in the background, e.g.
in HET trainers can use embeddings that are stale up to a certain number
of iterations. If embeddings are stale beyond the bound HET synchronizes
those embeddings with the embedding server before a training iteration.
However, similar to other ML models, recent works [73, 126] have ob-
served that asynchronous training can lead to degradation in accuracy for
recommendation models. Accuracy degradation is unacceptable to large en-
terprises as it often directly leads to a loss in revenue [126]. Asynchronous

51

training is also avoided due to the lack of reproducibility, which is nec-
essary to reason about and compare different model versions. Therefore,
in this work we focus on designing a system for synchronous distributed
training.

5.2 Design

We begin by providing an overview of our design.

5.2.1 Design Overview

Bagpipe consists of four components that collectively perform training as
shown in Figure 5.4. Each iteration of training begins with sampling a
batch of examples, the DataProcessors pre-process the examples and send
them to the Oracle Cacher. Based on the examples, Oracle Cacher runs a
lookahead algorithm to determine embeddings to prefetch and to cache, and
dispatches this information to the Trainers. The trainers typically run
on GPU machines and perform gradient computation. Trainers hold the
dense parameters of the model and Bagpipe’s cache in the GPU memory.
Also, trainers fetch necessary embeddings from the EmbeddingServers.
Embedding servers hold the embedding tables of the recommendation
model. This design introduces the following contributions:

• Bagpipe utilizes both caching and prefetching to reduce embedding
access overhead. Given an offline training regime, we introduce the
concept of lookahead, where we can look beyond the current batch
and decide which elements to cache and prefetch (§5.2.2).

• We extend our scheme to the distributed setting and introduce a
logically replicated, physically partitioned cache design (§5.2.3) to
minimize communication overheads. To further reduce synchro-
nization overheads we use CPA, to selectively synchronize parts of

52

Data Processors - 1

Data Processors - N

Data Storage service

O
ra

cl
e

C
ac

he
r -

1

Embedding Server - Partition 1

Embedding Server - Partition N

Trainer 1

Trainer N

Dense NN
Parameters

O
ra

cl
e

C
ac

he
r-N

Local
Caches

Figure 5.4: Bagpipe setup: All the components of Bagpipe can be individually
scaled. The dashed arrows signify async RPCs while solid ones signify sync
RPCs.

the cache that are immediately needed on the critical path while
synchronizing the rest in the background.

• Finally, we discuss how Bagpipe’s dis-aggregated design can help
improve efficiency, by scaling components depending on the prop-
erties of the dataset and the model, and enable low-overhead fault
tolerance (§5.2.4).

5.2.2 Caching and Prefetching in Bagpipe

In Bagpipe, we introduce the idea of each trainer having a local cache. When
designing a system with caching, we need to design a cache insertion policy
(what to cache?) and a cache eviction policy (what to evict?) so as to
maximize the hit rate. However, offline batch training of machine learning
jobs like recommendation model training has additional structure: in offline
batch training future batches and their contents are predictable, i.e. in context
of recommendation models we can look beyond the current batch and
infer which embeddings will be accessed in future batches. This insight
helps us create a perfect or oracular cache. To utilize this insight, we design
a lookahead algorithm. For ease of explanation, the discussion in this
section assumes there is only one trainer (only one cache). We extend this
to the distributed setting in §5.2.3.
Lookahead Algorithm. To decide what to cache and what to evict we
develop a low overhead lookahead algorithm which also ensures consistent

53

3943
Batch 1Batch 2

EMB ID TTL

Oracle
Cacher

3, 9
Prefetch

(3,2) (Cache EMB ID, TTL Val)

3 2

43
Batch 2

Oracle
Cacher

4
Prefetch

(3,3)

3 3

36
Batch 3

36
Batch 3

Oracle
Cacher

6
Prefetch

(6,4)

61
Batch 4

Batch 1 Batch 2 Batch 3

61
Batch 4

Oracle
Cacher

1
Prefetch

6

97
Batch 5

4
EMB ID TTL EMB ID TTL

3 3
6 4

EMB ID TTL

Batch 4

Dynamic
Cache

Dynamic
Cache

Dynamic
Cache

Dynamic
Cache

(Cache EMB ID, TTL Val) (Cache EMB ID, TTL Val)

Figure 5.5: Lookahead Algorithm: The above figure shows an illustration at
different batch steps of how the lookahead algorithm functions. In the above
example, the lookahead value is 2 and the batch size is also 2.

access to embeddings. We denote the lookahead value (L), as the number
of batches beyond the current batch, which will be analyzed to determine
what to cache, e.g. if the current batch is x, we consider embedding accesses
in batches from x to x+L, to determine which elements in batch x should
be cached. The lookahead algorithm takes three inputs: the current batch,
future batches (next L number of batches), and current state of the cache
on the trainer.

The lookahead algorithm outputs two pieces of information. First, for
the current batch, it generates the list of embeddings that will not be found
in the cache on the trainer’s GPUs. This allows Bagpipe to prefetch these
embeddings out of order before the current batch is used for training.
Prefetching allows Bagpipe to hide the data access latency for the long tail
of embeddings that are not frequently accessed. Second, the lookahead
algorithm determines which embeddings from the current batch will be used
in future batches, and the last iteration they will be accessed in the current
lookahead window. Any embeddings from the current batch that will be
used by future batches in the lookahead window will be marked for caching,
so they can be accessed from the GPU memory in the future. The last
iteration an embedding is used within the lookahead range and serves as
time-to-live (TTL) for the embedding in the cache.
Next we describe an example of how lookahead algorithm processes
batches (Figure 5.5), with lookahead value (L) as 2:

• Batch 1 Embedding 3 and 9 are in the batch. For both embeddings
we launch prefetches. However, embedding 3, is accessed again, and
the last occurrence in the window is at Batch 2, so we cache it with

54

the TTL set to 2.

• Batch 2 Embedding 3 is in the cache so we do not send a prefetch
request. But the last occurrence for 3 in the window is now in Batch
3. Therefore, a TTL update is sent for 3. We will prefetch 4 since it is
not in the cache.

• Batch 3 We prefetch embedding 6 and cache it with a TTL of 4 since
it will be reused in Batch 4. At this point in our lookahead window
Embedding 3 has no future occurrence so it will be evicted after
batch 3. However, if embedding 3 was being used by batch 4, we
would have kept it in the cache and sent a TTL update with eviction
batch as 4.

• Batch 4 We prefetch 1 since it is not in the cache. We do not send
any TTL updates for 6 as it is absent in future batches and will be
evicted after this batch.

Consistency with the Lookahead algorithm. Our consistency goal is to
avoid staleness and ensure that trainers do not prefetch an embedding from
the embedding servers while it has updates that have not yet been written
back. Despite pre-fetching embeddings out of order, our formulation of
what to cache and what to prefetch , provides an extremely important
guarantee that allows us to maintain consistency and match the execution
of synchronous training. When the trainer is processing batch number x,
an embedding used by the batch will either be available in the cache with
it’s most recent value or no preceding batch in the lookahead range (any
batch number in [x− L, x)) would have updated that specific embedding.
That is, if an embedding was needed by a batch in batch number in range
[x − L, x) it will be in the cache; if an embedding is not in the cache it
means no batch in range of [x− L, x) has updated it. Therefore, as long as
the prefetch request for batch x is issued after updates from training batch

55

number x− L have been written back, we can guarantee that we will not
see stale embeddings.

5.2.3 Distributed Cache Design in Bagpipe

First we discuss the requirements for the distributed cache design and our
goals. Next, we discuss the design space for cache design and finally we
compare these designs both quantitatively and qualitatively.
Distributed Cache Requirements. When extending the caching scheme
described above to a distributed setting, Bagpipe can provide consistency
as long as the following two requirements are satisfied (i) Each trainer
sends prefetch requests for batch number x only when cache eviction and
updates have been performed by all the trainers on x− L batch. (ii) Each
trainer’s cache should contain the latest value of the embedding. The
first requirement is a direct extension of our prior discussion and can be
satisfied by synchronizing the iteration number that each trainer has pro-
cessed. The second condition, however, creates additional communication
overheads and we next discuss the design space and techniques to reduce
these overheads.
Goals of distributed cache design. The primary objective of our dis-
tributed cache design is to minimize the time spent on cache synchro-
nization on the critical path. Thus our objective includes, accounting for
the number of bytes transferred (bandwidth) and connection overheads
(latency) [172].

Next, we explore the distributed cache design space and discuss syn-
chronization costs with each design.
Replicated Cache. In a replicated cache, each trainer will pre-fetch all the
embeddings which are required by the whole batch (not just a worker’s
partition of the batch). After performing the backward pass we synchro-
nize all the elements which have updated gradients across all the workers,
such that embeddings in the caches are synchronized at the end of each

56

iteration using all-reduce. This trivially ensures that each trainer’s cache
has the latest version of the embedding. A replicated design results in
high bandwidth cost due to synchronization of all the elements across
all trainers even if the element’s updated value would not be required in
future by other trainers, i.e. it will be evicted from the cache. However,
there is very small control (latency) overhead because all elements are
synchronized.
Partitioned Cache. A partitioned cache is on the other end of the design
spectrum where each trainer is assigned an exclusive portion of the cache.
Before the forward pass of training, each trainer fetches the embeddings
not available locally from their peer trainers. Post backward pass, each
trainer writes back the gradients to the respective peer trainer which has
ownership of the embedding. These steps are required to ensure we
always use the latest version of the embedding. Unlike the replicated
cache, where all the embeddings are synchronized irrespective of whether
a trainer needs it, in the case of a partitioned cache, trainers only fetch and
write back the embeddings they utilize. Further, partitioned caches are
more space efficient as there is only one copy of each embedding in the
distributed cache.

The number of bytes communicated when using a partitioned cache
depends on how batches are partitioned across trainers. To study the
scenario where batch partitioning is communication aware, i.e. batches
are partitioned so as to minimize bytes communicated across trainers,
we formulate a mixed integer linear program (MILP). Given the cache
state on all trainers, the MILP computes a partitioning of examples which
minimizes the amount of inter-node communication. Given a batch of
examples (b) and p trainers, we introduce b × p variables in our MILP.
Each variable is denoted by xi,j where if xi,j = 1, then example i will be
assigned to trainer j. We then compute a cost matrix C, where given the
cache state, Ci,j represents the cost of inter-node communication that will

57

be required to fetch embeddings for example i to location j. Our objective
is to minimize the amount of inter-node communication. We formulate it
using our variables and cost matrix as:

Minimize
∑
i∈I

∑
j∈J

Ci,j · xi,j

Where I and J represent the set of examples and trainers respectively.
Further, we include two constraints to ensure that the solution is feasible
and avoids load imbalance:

(i) Each example must be placed on one trainer and all examples need
to be placed on at least one trainer node. ∀i ∈ I

∑
j∈J xi,j = 1. (ii) We

add another constraint to make sure the batch is equally distributed across
machines to prevent load imbalance. The optimization problem can be
solved using existing MILP solvers like Gurobi [62].

However, using communication aware partitioned caches has two dis-
advantages: first solving the MILP takes around 2.36s on a 16-core machine
making it infeasible when iteration times are around 100ms (Figure 5.3).
Secondly, sync time does not solely depend on bytes communicated, as
overheads from maintaining data-structures and establishing connections
also play a role. With partitioned caches we would need to introduce addi-
tional data structures to keep track of embedding locations and establish
multiple connections.
Logically Replicate Physically Partitioned Cache. Ideally, we would like
to design a cache that does not perform unnecessary synchronization of
embeddings but does not introduce additional overheads due to state
tracking. To achieve this goal, we propose using Logically Replicated,
Physically Partitioned (LRPP) caches. By logically replicated we mean that
from the view of Oracle Cacher all caches have all data and are fully
replicated but by being physically partitioned, the trainers decide which
elements need synchronization and which elements can be evicted without

58

Replicated Partitioned
 Random

Partitioned
Communication Aware

LRPP0

50

100

150

200

250

300
Ti

m
e

Pe
r I

te
ra

tio
n

(m
s)

Figure 5.6: Comparing cache de-
signs:We observe that LRPP provides
best performance among all other
cache options.

DLRM DeepFM0

10

20

30

40

50

60

C
ac

he
 S

yn
c

Ti
m

e
(m

s)

Immediate Synchronization
Delayed Synchronization

Figure 5.7: Effect of Delayed Syn-
chronization:Delayed Sync can re-
duce time for cache synchronization
by up to 44%.

synchronization. The primary insight behind our idea comes from the
observation that for the Criteo dataset, around 25% of the embeddings are
used by only one of the examples in batch. Therefore, these embeddings
are updated at only one trainer before being evicted. Thus, fetching or
synchronizing them across all trainers is a waste of network bandwidth.
We design a new protocol that modifies the replicated cache based on this
insight.

With LRPP caches, the Oracle Cacher marks embeddings which are
only used by a single trainer. Given this metadata, these embeddings are
only fetched by the trainer which needs them and are ignored by other
trainers. After the forward and backward pass completes, the trainers skip
synchronization for these embeddings and use all-reduce to synchronize
the other embeddings. In the background, the trainer which made the only
update to the marked embedding evicts it back to the Embedding Server.
This optimization is able to reduce the volume of embeddings prefetched
and synchronize with very minimal control logic. LRPP can be further
extended with more fine-grained partitioning, i.e. we can synchronize em-
beddings updated by two workers using a separate communication group
containing just those workers. However, further fine-grained partitioning
will create additional control logic, which in turn would add additional

59

latency and thus yield diminishing returns.
There are parallels between design of LRPP to [207] a concurrent work

which only caches elements which are going to be utilized more than once
with a FIFO eviction policy. This is analogous to LRPP only synchronizing
elements which are going to be used in future. We plan to study extensions
of LRPP in future work.
Comparing cache design choices. For Kaggle critieo dataset with batch
size 16,384 and 8 trainer machines (p3.2xlarge) we observe that Replicated
Cache communicates around 65K embeddings per iteration, while Com-
munication Aware-Partitioned Cache communicates 21K embeddings per
iteration and LRPP communicates around 48K embeddings. Further, we
implement all these in Bagpipe and evaluate them in terms of per-iteration
training time using the same setup. To consider the best case scenario
for partitioned caches, we ignore the time taken by the Gurboi solver. In
Figure 5.6, we observe that LRPP outperforms replicated by 22.8% and
communication aware partitioned by 59.8%. Our analysis shows that de-
spite synchronizing fewer embeddings partitioned caches do not perform
well due to hotspots and additional control logic. Since some embeddings
are accessed extremely frequently, the trainers that own those embeddings
become a bottleneck. Further, in partitioned caches, the overhead of per-
forming multiple collective communication calls, creating memory buffers
for each collective communication call and tracking which peer to access
embeddings from, leads to an additional overhead of 80-90ms for a batch
size of 16K with 8 trainers. Therefore, we configure Bagpipe to use LRPP
cache synchronization scheme due to it’s superior performance.
Delayed Synchronization. To further optimize the LRPP protocol we use
Critical Path Analysis [206]. In this scenario, CPA implies that as long as
the embeddings are synchronized before being critically required it can
suffice. However, directly using CPA in context of embedding synchro-
nizations for recommendation models will lead to network contention

60

with other competing synchronizations. Therefore, we introduce delayed
synchronization, where we only synchronize the embeddings which will
be required in the next iteration on the critical path. The embeddings
which are not needed immediately are synchronized in the background.
To, avoid network contention due to background synchronization we en-
sure that all background synchronizations are completed before we launch
other critical path synchronizations for future iterations. On Kaggle Criteo
dataset with 8 trainers and batch size 16K, we see that only 22.7K em-
beddings out of 48K embeddings (47.3%) need to be synchronized on
the critical path, the rest can be overlapped with the forward pass of the
next iteration. For two models on Criteo dataset, Figure 5.7 shows that
delayed synchronization can further reduce cache synchronization time
by up to 44% (in addition to LRPP) by overlapping synchronization with
forward pass. We also observe that LRPP and delayed synchornization
can together reduce bytes communicated on critical path by around 70%.

5.2.4 Disaggregated Design and Fault Tolerance

Existing recommendation model training systems [141, 126, 118] couple
storage and compute resources, i.e. it is not possible to scale the number of
embedding table partitions without increasing the number of trainers. This
affects fault tolerance and resource utilization. For fault tolerance, given
the extremely large embedding table sizes, checkpointing a trainer can
take several minutes [46] during which the compute resources stay idle.
The lack of disaggregation also leads to poor resource utilization [36, 18],
e.g. when embedding tables are extremely large but the dense neural
network parameters are small, an optimal configuration would be to use
more servers for embedding tables but have fewer trainers. Thus, we
design a disaggregated architecture for Bagpipe (Figure 5.4) with four
major components: (i) Data Processors (ii) Oracle Cacher (iii) Distributed
Trainer (iv) Embedding Servers.

61

Data Processor. Data processors read and batch training data which is
resource intensive. Similar to prior designs [220] we offload data process-
ing to reduce trainer overheads. Data processors are stateless and can be
restarted on failure.
Oracle Cacher. Oracle Cacher is a centralized service that inspects all the
training batches using the lookahead algorithm . Oracle Cacher decides
which elements to prefetch for the current batch and the TTL for eviction
of elements being cached. Oracle Cacher sends the training data as well
as the embedding ids that need to be cached/prefetched using async RPC
calls to the trainers. Oracle Cacher is designed such that all the necessary
internal state is also present on the trainers. Therefore, whenever Oracle
Cacher has to be restarted we only need to fetch the last iteration number
processed by the trainers and the embedding IDs present on them.
Trainer. Trainers hold the dense neural network portion of the recom-
mendation model and the LRPP cache in the GPU memory. The trainers
perform forward and backward passes in a synchronous fashion. Train-
ers also: (i) prefetch the embeddings based on requests sent by Oracle
Cacher (ii) perform cache maintenance including addition and eviction of
embeddings. When a trainer fails, Oracle Cacher makes an RPC call to ask
existing trainers to checkpoint their state (model parameters and cache
contents) and then copies this state to the newly started trainer. Each of
the trainers then discard their gradients and Oracle Cacher starts from the
previous iteration. With delayed synchronization and LRPP enabled we
might loose updates of at most one iteration, which is unlikely to affect
model convergence [160].
Embedding Server. Embedding servers store all the embedding tables
and act as a sharded parameter server, handling the prefetch and update
requests from the trainers. We use the techniques presented in prior
work [46] to checkpoint embedding servers periodically.

62

5.2.5 Discussion

Next, we discuss some benefits and limitations of our design.

Generalizing across skew patterns. Unlike prior work [8], Bagpipe’s
optimizations are resistant to embedding access skew changes (evaluated
in §5.4.3). This is because Bagpipe does not just rely on caching of a fixed
set of hot embeddings, it speeds up access to cold embeddings using pre-
fetching. So if there exists datasets that do not display a high degree of
skew, Bagpipe will still outperform prior work.
Applicability in online training. Bagpipe’s optimizations are applica-
ble to offline setup, as it relies on the ability to look at future batches to
build a cache. In case of online training examples arrive sporadically thus
restricting lookahead.
Scalability of Oracle Cacher. The overhead of Oracle Cacher is extremely
small even for extremely large batch sizes and lookahead values. In §5.4.3
we find that Oracle Cacher, even for large batch size of 131K, can dispatch
3.27 Million samples per second. Further, Oracle Cacher only needs to
be faster than the time taken by trainers for the forward and backward
pass. However, if required, Oracle Cacher can be partitioned to increase
scalability for datasets with a large number of embedding tables. To
split the work done by Oracle Cacher, we can partition the embedding
tables such that each partition of the Oracle Cacher can work on a different
embedding table. For instance, if there are 1000 categorical features and we
launch 10 Oracle Cacher; for each example, each Oracle Cacher generates
caching decisions for their subset of 100 categorical features.

5.3 Implementation

Bagpipe is implemented in around 5000 lines of Python. Async RPC’s are
used to communicate across different components. For synchronization of

63

dense parameters and caches we use collective communication primitives
present in NCCL [1]. Bagpipe is completely integrated with PyTorch and
existing model training code can use it with 4 to 5 lines of changes. API
details will be present in our open source version.
Overlapping cache management with training. We perform, all cache
management operations in a separate thread thus not affecting the training
process. Our caching data structure can operate completely lock free, be-
cause in our Oracle Cacher’s lookahead formulation, we guarantee that the
training thread and cache maintenance thread will operate on completely
separate indices of the cache. This ensures that cache management has
minimal overhead on training.
Automatically Calculating Lookahead. Bagpipe uses two configuration
parameters: max cache size and lookahead value (L). Providing the max
cache size is mandatory, it can be determined by computing amount of
free memory available after allocating space for the dense neural network
parameters. L can be automatically calculated if it is missing. To calculate
L, at startup Bagpipe keeps prefetching until it detects the cache is full.
On detecting that the cache is full, Bagpipe selects the number of batches
prefetched so far as the L. Further, Bagpipe can also handle scenarios
where the configuration variables are incompatible. Since Oracle Cacher
always has a consistent view of the cache, if it observes that the cache is
going to be full it can reduce the L. We perform a sensitivity analysis on
L in §5.4.3.

5.4 Evaluation

We evaluate Bagpipe by measuring improvements in per iteration time
against four baselines, observing a speedup of 2.1× to 5.6× for the DLRM
model. Further, we vary the recommendation model architecture and
compare Bagpipe against the best-performing baseline with four differ-

64

ent models and observe a speedup of up to 3.7×. We also analyze the
performance of Bagpipe on different hardware and datasets and evaluate
other aspects of Bagpipe like fault tolerance (§5.4.2) and sensitivity to
configuration parameters (§5.4.3).
Baseline Systems. To compare Bagpipe we use four open source baselines
discussed in §5.1. We compare Bagpipe with FAE [8], FB-Research’s train-
ing system [141], TorchRec [118] and HET [119]. We discuss additional
details of these systems when comparing them with Bagpipe in §5.4.1.
Models and Datasets. We use four different recommendation models,
Facebook’s DLRM [129], Google’s Wide&Deep [30], Deep&Cross Net-
works [192], and Huawei’s DeepFM [58]. Table 5.2 describes the models
used to evaluate Bagpipe. The models differ markedly in terms of the dense
parameters, e.g. the largest model has 33.8 Million parameters while the
smallest one only has 136K parameters. For datasets, we use the Kaggle
Criteo [100], Avazu [76] and Criteo Terabyte dataset [101] (largest pub-
licly available dataset). Table 5.1 describes the embedding table size for
each dataset.
Cluster Setup. We run all our experiments on Amazon Web Services(AWS).
For trainers, we use p3.2xlarge instances while Embedding Server and Or-
acle Cacher run on a c5.18xlarge instance each. Each p3.2xlarge instance
contains a Nvidia V100 GPU, 8 CPU cores and 64 GB of memory with
inter-node bandwidth of up to 10 Gbps. Each c5.18xlarge has 72 CPU
cores and 144 GB of memory. For Bagpipe we launched dataloaders on
the same c5.18xlarge as Oracle Cacher since the machine had ample com-
pute. To study the performance of Bagpipe in a setting with different
amounts of compute and bandwidth we also run some experiments on
g5.8xlarge where each machine has an Nvidia A10G GPU,32 CPU cores
with inter-node bandwidth of 25 Gbps.
Bagpipe Configuration. Unless otherwise stated, for all our experiments
we set the cache size to enable lookahead of up to 200 batches. We study

65

the sensitivity of these parameters and their effect on throughput in §5.4.3.
We run all our experiments for 2000 iterations, which roughly translates
to 1 epoch of Criteo Kaggle Dataset with batch size of 16,384.
Metrics. For all our experiments we plot average per-iteration time with
error bars representing standard deviation. This directly translates to
the time taken to train a fixed number of epochs. As Bagpipe guarantees
consistent access to embeddings, the accuracy after each iteration exactly
matches other synchronous training baselines (validated in §5.4.1).

5.4.1 Comparing Bagpipe

We first evaluate Bagpipe by comparing it against a number of existing sys-
tems and study how our benefits change as we vary the models, datasets,
and hardware.
Comparing Bagpipe with existing systems. In Figure 5.8, we compare
Bagpipe with four existing systems, FAE [8], FB-Research training sys-
tem [141], TorchRec [118] and HET [119]. We use Criteo Kaggle dataset
with batch size 16,384 (a common batch size among MLPerf [117] entries)
and two popular recommendation models DLRM [129] and W&D [30].

FAE performs pre-processing on training data to classify embeddings
as either hot or cold. To evaluate the best case scenario for FAE, we do not
account for the additional time FAE spends in partitioning batches and
deciding the placement of embeddings. As shown in Figure 5.8, Bagpipe
achieves 3.4× speedups for the DLRM model and 3.7× speedups for W&D.
As discussed in §5.1, during hot batch training FAE has similar cache
synchronization overheads as Bagpipe, but when it switches to cold batches,
it suffers additional embedding access overheads due to no prefetching.

Next, we compare Bagpipe with open source FB-Research training sys-
tem [141], built over PyTorch and Caffe-2, is designed for DLRM mod-
els [129] but can be easily modified to support other embedding-based
deep recommendation models like W&D [30]. Bagpipe provides 5.6× and

66

4.2× speedups over FB-Research training system. FB-Research system is
slow due to spending almost 60% of the time on data loading, which has
also been observed by prior works [220, 140] as well, leading to worse
throughput compared to Bagpipe which offloads data-preprocessing to
remote machines.

When compared against TorchRec, a recent open source system built
over PyTorch [105] and FBGEMM [142] to facilitate training of recom-
mendation of models, we observe that Bagpipe is around 2.1× faster for
DLRM models and around 1.3× faster for W&D models. Unlike Bagpipe,
TorchRec does not perform any caching or pre-fetching, and therefore
fetches and writes back a large number of embeddings on the critical
path. Bagpipe reduces and overlaps the amount of embedding-related
communication on the critical path.

To compare with HET [119], a system that performs bounded asyn-
chronous training as described in §5.1, we use the author-provided code im-
plemented in C++ with Python bindings to evaluate HET and set the asyn-
chrony bound to 100, as suggested by the authors for maximum speedup.
We find that Bagpipe is around 2.3× faster than HET for DLRM and 1.6×
faster for W&D. We observe that, despite performing asynchronous train-
ing, HET needs to fetch embeddings that are not available in the local
cache from the parameter server on the critical path. With increase in
batch size the number of cache misses increases as well, due to the long
tail of accesses (discussed in . We also verify that our performance closely
matches with those reported in the paper [119].

As the speedup of Bagpipe varies across models, we perform a detailed
investigation to understand this. We observe TorchRec to be the best
performing baseline as it efficiently overlaps different parts of the training
pipeline and make better use of network bandwidth using the all2all
primitive for embedding fetches. Thus, for the next set of experiments we
compare Bagpipe with TorchRec.

67

Comparing Bagpipe on other models. In addition to W&D and DLRM,
we also train the Deep&Cross Network (D&C) [192] and DeepFM mod-
els [58] with Bagpipe and TorchRec. D&C models contain an additional
Cross Network component, which performs explicit feature crossing of
sparse features to learn predictive features of bounded degree without
manual feature engineering. DeepFM introduces a factorization module
that learns up to 2-order feature interactions between sparse and dense
features. Details of these models are available in Table 5.2. In Figure 5.9
we observe that performance gains provided by Bagpipe over TorchRec
depends on the size and computation requirements of the dense portion
of recommendation models, e.g. for W&D which only has around 131,000
dense parameters we observe that Bagpipe provides only a 1.2× speedup,
while for DeepFM which has 33.8 million parameters Bagpipe provides a
speedup of over 3.7×. We believe that this is due to the pipelining mech-
anism present in TorchRec where the authors overlap the embedding
write-back with the synchronization of the dense model. As the model size
increases, the bandwidth requirement for synchronization also increases
and the synchronization of dense model and embedding write-backs ends
up competing for the same set of network resources. Meanwhile, Bagpipe
significantly reduces the amount of embedding synchronization due to
caching. Further, delayed synchronization allows Bagpipe overlap forward
pass of the next iteration. Thus, our analysis indicates that TorchRec, un-
like Bagpipe, is heavily bottlenecked by the network bandwidth available.
To verify this, we next run experiments on a different hardware.
Comparing Bagpipe on different hardware. To understand the perfor-
mance of Bagpipe on different hardware setups, especially in terms of
network bandwidth, we evaluate Bagpipe on g5.8xlarge (A10G GPU and
25 Gbps bandwidth) instances. In terms of compute, A10G performs
similar to V100, but the bandwidth on g5.8xlarge is 25 Gbps compared
to 10 Gbps on p3.2xlarge. We use the same hyper-parameters and model

68

configurations as in previous sections. Figure 5.10 shows a comparison
of per-iteration time between DLRM and DeepFM, for both Bagpipe and
TorchRec. We observe that Bagpipe with DLRM model on g5.8xlarge train-
ers is around 1.9× faster than p3.2xlarge trainers. On other hand, the
DLRM model with TorchRec on g5.8xlarge trainers is around 2.4× faster
than p3.2xlarge trainers. Similarly for DeepFM, time for TorchRec reduces
by 2.4× (1015ms to 414ms) when we switch from p3.2xlarge instances to
g5.8xlarge. This confirms our hypothesis that for larger models TorchRec
is bounded by bandwidth, while Bagpipe, because of caching and efficient
pipelining of communication, makes better use of network resources. How-
ever, it is unclear yet, what fraction of the iteration time in Bagpipe is spent
on network-bound embedding access and to understand this, we next
compare Bagpipe to an ideal system which has no overhead of embedding
accesses.
Comparing Bagpipe with an ideal system. Comparing Bagpipe to an
ideal system will show how far Bagpipe is from completely alleviating
embedding access overheads. To create such an ideal system, we prefetch
all necessary embeddings to the GPU memory before starting training and
switch off prefetch, cache sync, and cache eviction modules of Bagpipe. In
Figure 5.14, we perform this comparison for DLRM and DeepFM models
on both p3.2xlarge and g5.8xlarge. DLRM model on p3.2xlarge instance on
ideal system takes around 30ms while, Bagpipe takes around 56ms. DLRM
model on g5.8xlarge on the ideal system takes around 19ms while Bagpipe
takes around 30ms. This shows that at lower bandwidths for DLRM, there
are periods in the pipeline when model training is blocked on embedding
operations. We also study the same effect with DeepFM, a larger model
that provides more opportunities for Bagpipe to overlap embedding-related
operations. For DeepFM we observe that on p3.2xlarge instances ideal takes
around 236ms while Bagpipe takes around 253ms (overhead 17ms). On the
high bandwidth g5.8xlarge instance ideal system takes around 116ms while

69

Bagpipe takes around 128ms (overhead of 12ms). These results indicate
that Bagpipe gets within 10% of an ideal system with deeper models and
has almost constant overhead for providing embeddings (around 12 to 20
ms) even at lower bandwidths.
Comparison on Different Datasets. We also analyse performance of
Bagpipe on Avazu [76] and Criteo Terabyte [101] (largest publicly available
dataset). Using eight p3.2xlarge instances as trainers, in Figure 5.11 we see
that compared to TorchRec on DLRM model, Bagpipe is 1.9× to 2.4× faster.
This shows that irrespective of the dataset Bagpipe provides a significant
speedup over the best-performing baseline.
Convergence Comparison. Since Bagpipe ensures that embedding reads
are not stale, it should have the same convergence properties as syn-
chronous training using TorchRec. We verify this in Figure 5.12 where
we see that Bagpipe’s convergence is very close to TorchRec with minor
differences arising from random initialization. For HET we observed that
the convergence depends on the model complexity; for DLRM, HET’s open
source code [65] did not converge to the same loss as TorchRec, while
we observed similar convergence as TorchRec for W&D, a smaller model
(We have reported this issue to the HET authors). Overall, we see that
Bagpipe retains the convergence of synchronous training while providing
per-iteration speedups.

5.4.2 Scalability and Fault Tolerance

Scalability. In Figure 5.15a, we scale batch size and number of machines
(up to 32 GPUs and batch size of 65,536). With increase in batch size
the number of embeddings to fetch and synchronize increases. Despite
increase in communication, Bagpipe scales around 1.4× for 2× increase in
resources and work (320K samples/sec for 16 trainers vs 446K samples/sec
for 32 trainers). In Figure 5.15b we scale just batch size, we observe that
batch size 65,536 takes a very similar time as batch size 131,072. Because

70

Table 5.3: Effect of increasing L: With increase in L the cache size required
increases but improves throughput till L of 100.

Lookahead Cache Size (MB) Avg Time per Iteration (ms)
5 39.6 535.6
10 66.7 289.3
50 235.2 85.7

100 410.5 67.3
200 720.6 65.1
300 1003.3 65.6

with a higher batch size Bagpipe is able to overlap a bigger proportion of
cache synchronization with the longer forward pass.
Fault Tolerance. In Figure 5.13 we observe that trainer in Bagpipe recover
in less than a minute, compared to FB-research system which is close to 13
minutes. For the FB-Research system we make a best-case assumption that
the framework can checkpoint the iteration just before failure, to avoid
checkpointing at every iteration. Even in this case, FB-Research system
takes around 13 minutes to recover since the amount of state on each
trainer includes a large shard of the embeddings. Meanwhile, trainers
in Bagpipe are able to recover in less than a minute and do not require
checkpointing at every iteration (§5.2.4). Other systems do not discuss
fault tolerance.

5.4.3 Sensitivity Analysis of Bagpipe

Next, we study the performance of Bagpipe with different configurations
and also micro-benchmark components of Bagpipe. Unless stated other-
wise, we use the same setup described §6.3, with a batch size of 16,384 on
Criteo Kaggle dataset.
Overhead of Oracle Cacher. In Figure 5.16a, 5.16b we observe Oracle
Cacher’s overhead increases sub-linearly with increase in categorical fea-
tures and batch size. However, the time per iteration is still significantly
higher than the time taken to perform lookahead by Oracle Cacher. Since
Oracle Cacher is overlaped with training, it only becomes a bottleneck if

71

it’s time exceeds that of trainer. Overall, we find that Oracle Cacher can
almost dispatch 3.27 Million examples per second. We find that this is suf-
ficient to power the most optimized systems reported in prior work (e.g.,
8 ZionEx nodes (128 A100 GPUs) processing up to 1.6 Million samples
per second [126]). We benchmarked Oracle Cacher for other parameters
like different L and observe constant throughput, i.e. complexity of Oracle
Cacher does not depend on L.
Effect of L. In Table 5.3 we study how cache size required and throughout
changes for different L. As L increases, cache size required increases
sub-linearly. This sub-linear behavior due to reuse of embeddings found
in the previous batches during lookahead process. We also observe that
throughput benefits from increasing L start plateauing beyond 100. This
is because as the lookahead value goes over 200, we are keeping all the
popular elements in the cache, and increasing L at this point does not
affect communication much.
Effect of Access Pattern Skew. Unlike some prior systems [8], Bagpipe is
designed to handle skew pattern changes. To study performance of Bagpipe
when the skew pattern changes, we create an artificial dataset similar to
Criteo Kaggle dataset with the same number of features and samples
but with different skew patterns. We choose top 1% of embeddings and
then create an exponential function such that cumulative probability of
sampling from top 1% embeddings is equivalent to the chosen skew, e.g.
top 1% of embeddings are responsible for 40% accesses. The remaining
embeddings are sampled uniformly such that they lead to the remaining
60% of accesses. In Figure 5.17 we study how the iteration time changes as
the embedding reuse of top 1% embeddings changes between 90% and 1%;
e.g. the 40% bar reflects the runtime when 1% of embeddings are reused
40% of the time. We observe that due to optimizations present in Bagpipe
like pre-fetching, LRPP and delayed synchronization even when the degree
of skew changes from 90% skew to no skew, Bagpipe’s per iteration time

72

changes at most by 13%. On the other hand, FAE [8], which relies only
on caching degrades by 7.2×. Next we vary the skew of embedding
accesses using the popular Zipf [93] distribution. The α parameter in
Zipf distribution determines the skew, with a higher α denoting higher
skew. In Figure 5.18 we observe that even with a large change in skew
(varying Zipf’s parameter between 1 and 5), Bagpipe’s throughput does
not vary significantly. This shows Bagpipe is resistant to changes in skew.

73

Bagpipe FAE FB-Research TorchRec HET0

50

100

150

200

250

300

350

400
Pe

r I
te

ra
tio

n
Ti

m
e

(m
s)

DLRM
W&D

Figure 5.8: Compare Bagpipe with
Existing Systems: We compare per
iteration time of Bagpipe against ex-
isting FAE [8], FB-Research train-
ing system [141], TorchRec [118]
and HET [119]. Bagpipe provides
speedups betwen 1.2× and 5.6×.

DLRM W&D D&C DeepFM0

200

400

600

800

1000

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

Bagpipe
TorchRec

Figure 5.9: Compare Bagpipe with
different models: We compare Bag-
pipe and TorchRec on four differ-
ent models, DLRM [129], W&D [30],
D&C [192], and DeepFM [58]. We
observe speedups between 1.2× and
3.7×.

p3.2xlarge g5.8xlarge0

200

400

600

800

1000

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

DLRM-Bagpipe
DLRM-TorchRec
DeepFM-Bagpipe
DeepFM-TorchRec

Figure 5.10: Compare Bagpipe on
different Hardware: Speedup pro-
vided by Bagpipe over TorchRec on
p3.2xlarge decreases from 3.7× to
2.5× on g5.8xlarge (high bandwidth)
depicting that TorchRec is more con-
strained by bandwidth.

Criteo Kaggle Avazu Criteo Terabyte0

25

50

75

100

125

150

175

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

Bagpipe
TorchRec

Figure 5.11: Compare with Differ-
ent Datasets: Bagpipe consistently
provides speedups between 1.9× to
2.4× across datasets.

0 250 500 750 1000 1250 1500 1750 2000

0.55

0.60

0.65

0.70

0.75

Bagpipe
TorchRec

Figure 5.12: Loss convergence for
Bagpipe and TorchRec: Conver-
gence of Bagpipe and TorchRec is
very similar, with slight differences
due to random initialization.

0 200 400 600 800
Time(s)

0

20000

40000

60000

80000

100000

Th
ro

ug
hp

ut
 (E

xa
m

pl
es

/s
ec

)

New Machine is available

Trainer shut down signal
Throughput Bagpipe
Throughput FB-Research

Figure 5.13: Recovery from trainer
failure: Bagpipe requires less than 60
seconds to recover from a trainer fail-
ure compared to 13 minutes for FB-
Research System.

74

Forward-Bagpipe Forward-Ideal Backward+MLPsync-Bagpipe Backward+MLPsync-Ideal Get-Embedding Bagpipe Get-Embedding Ideal Cache Synchronization

Bagpipe Ideal
0

10

20

30

40

50

60

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

(a) DLRM: p3.2xlarge
Bagpipe Ideal

0

50

100

150

200

250

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

(b) DeepFM: p3.2xlarge

Bagpipe Ideal
0

5

10

15

20

25

30

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

(c) DLRM: g5.8xlarge
Bagpipe Ideal

0

20

40

60

80

100

120

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

(d) DeepFM: g5.8xlarge
Figure 5.14: Comparing with Ideal: Comparing Bagpipe with an ideal system
which has no overhead for embedding fetch, we observe that system comes within
10% of time per iteration for large models where there is potential to overlap
embedding accesses.

4-trainer
BS-8192

8-trainer
BS-16384

16-trainer
BS-32768

32-trainer
BS-65536

0

50

100

150

200

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

(a) Increasing Trainers

16384 32768 65536 131072
Batch Size

0

25

50

75

100

125

150

175

200

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

(b) Increasing Batch Size

Figure 5.15: Scalability of Bagpipe: (left) we increase the number of trainers
such that batch size per machine is constant; Bagpipe provides sublinear scala-
bility due to increasing communication bottlenecks. (right) Increasing batch
size with 8 trainers results in better throughput as we are able to better overlap
communication.

75

30 40 50 60 70 80 90 100
Number of Features

0

50

100

150

200

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s) Oracle Cacher
Trainer

Batch Size-16384, Lookahead Value-200

(a) Categorical Features

16384 32768 65536 131072
Batch Size

0
25
50
75

100
125
150
175
200

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s) Oracle Cacher
Trainer

Lookahead Value-200, Num Features-26

(b) Batch Size

Figure 5.16: Latency of Oracle Cacher: We observe that overall Oracle Cacher
scales very well, it increases sub-linearly with the increase in the number of
features and batch size. However, training time will always hide the latency of
Oracle Cacher.

90% 40% 20% 10% 1%
% of access by top 1% embeddings

0
250
500
750

1000
1250
1500
1750
2000

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

60.9 61.8 63.1 63.7 69.7

Bagpipe
FAE

Figure 5.17: Effect of change in skew: Comparing when 1% of embeddings
perform 90% of embedding accesses to just 1% of embedding access (no skew).
Unlike FAE, Bagpipe’s time only increases from 60.9ms to 69.7ms showing resis-
tance to change in skew.

76

1 2 3 4 5
Zipf Parameter

0
100
200
300
400
500
600
700
800

Pe
r I

te
ra

tio
n

Ti
m

e
(m

s)

64.4 64.1 63.4 61.4 61.1

Bagpipe
FAE

Figure 5.18: Effect of change in skew using Zipf Distribution: Varying the
α parameter in Zipf distribution; a higher α indicates higher skew. Even with
drastic increase in the skew, the time taken by Bagpipe remains almost constant.

77

5.5 Conclusion

We presented Bagpipe, a new system that can accelerate the training of
deep learning based recommendation models. Our gains are derived
from better resource utilization and by overlapping computation with
data movement. Our disaggregated architecture also allows independent
scaling of resources and better fault tolerance, while retaining synchronous
training semantics. Our experiments show that Bagpipe provides an end-
to-end speedup of up to 5.6× over state-of-the-art baselines.

78

Part IV

Reducing Memory Bandwidth
Requirement for LLM Inference.

79

6 clustered head attention

In this chapter we introduce Clustered Head Attention a variant of Multi-
Head Attention which reduces both memory bandwidth and compute
requirement for Multi-Head Attention.

6.1 Preliminaries

LLMs have demonstrated remarkable performance on language mod-
elling tasks ranging from question answering, text summarizing, language
translation. However, such performance has been achieved by scaling
models to trillions of parameters, and existing works [67, 176, 87] show
that increasing the model size may lead to even higher model quality.

Inference on LLMs introduce several new challenges. Beyond just the
quadratic computation cost of self-attention [183] with increasing context
and large model sizes, LLMs also store intermediate Key (K) and Value (V)
pairs for subsequent next word prediction. This K,V caching introduces
additional memory related challenges as K,V cache size increases with
increase in sequence length. The architecture of widely used LLMs like
GPT [25] and LLaMa [176, 177] use Multi-Head Attention (MHA) [183].
MHA uses several attention heads to look at a sequence. As models grow
bigger, the number of heads increases as well. For example, LLaMa-7B
uses 32 attention heads in each layer, while LLaMa-65B uses 64 attention
heads per layer [176]. The use of MHA exacerbates bottlenecks for serving
LLMs. First, it increases compute pressure due to repeated application
of the attention operation. Second, it increases the memory pressure due
to requiring storage of Key (K), Value (V) caches that comes with the
additional attention heads.

80

6.1.1 Inference in Decoder only Transformer

We first provide background on inference process for decoder only trans-
formers like GPT [135, 25], LLaMa [176, 177] and the bottlenecks in per-
forming inference. Further, we discussed several prior lines of work which
have tried to tackle the inference bottlenecks for transformer based model.

A decoder-only transformer forms the building block of popular LLMs.
A single decoder block consists of a self attention layer and a MLP. An input
token is fed into the decoder block, to perform next-word prediction. The
self attention block uses prior query (Q), key (K) and value (V) vectors
associated with current token. These tokens are extracted by performing
a linear projection with query, key and value weight matrices associated
with a transformer.

To precisely define Multi-Head Attention (MHA), letH, T , d be positive
integers, where H denotes number of heads, T denotes sequence length,
d denotes model dimension. Let x ∈T×d be input to the MHA layer. For
a single head h, then Kh = xWh

K, Qh = xWh
Q and Vh = xWh

V denote the
corresponding key, query and value vector. The attention matrix for head
h is calculated as follows:

Ah = σ(
1√
d
QhKhT)

Output of MHA is denoted by:

y = A0V0 ⊕A1V1 ⊕A2V2 ⊕ · · · ⊕AHVH

For performing inference, self attention needs access to the query, key and
values associated with prior tokens. In order to avoid re-computation,
inference serving systems cache the prior tokens in a sequence.

Compute cost required for multiple attention heads and memory ca-
pacity required for storing key and value vectors associated with each

81

head during inference form two primary bottlenecks for LLM inference. In
this work, we focus on reducing both memory and compute requirements
via clustering multiple attention heads with similar output.

6.1.2 Related Work

Building Efficient Transformers. Improving efficiency of transformer
models has been of major focus in recent years. Prior work can be broadly
categorized in the following fields - (i) Hardware-software co-design [39,
38, 63, 64, 166, 49, 133, 190], (ii) Knowledge distillation [70, 85, 145, 194]
(iii) Neural Architecture Search (NAS) [225, 94, 102] and (iv) Prun-
ing [185, 114] and Quantization [51, 203, 91, 152? , 42, 43]. In this work
our focus is on pruning , which we discuss next.

LLM Quantization. Recently several methods have been proposed to
perform post training quantization allowing models to be quantized to
a lower precision [51, 203, 43]. The goal of these methods is to perform
quantization so as to minimize the error, CHAI is orthogonal to quantiza-
tion based mechanisms as it depends on the insight of several attention
heads focusing on the same tokens. The goal of quantization methods is
to keep the same properties of original models, therefore we believe CHAI
can be used to further accelerate post training quantized neural networks.

LLM Pruning. Pruning is a widely studied method to improve infer-
ence time by removing unused weights post training. Several prior works
have looked at pruning for language models [29, 131, 27]. For example,
oBERT is a second order method to reduce the number of weights [99].
Although these approaches can compress a model, they rarely yield in-
ference speedups due to lack of hardware support for sparse operations
on modern GPUs. To overcome the challenges, low rank decomposition
methods [191, 189, 196], attention head pruning [120, 185], layer drop-
ping [143, 48, 37] were proposed. However, these methods are infeasible
for LLMs due to the use of iterative gradient calculations or fine-tuning

82

leading to high resource requirements.
To overcome these issues, a recently proposed method, DejaVu [114],

identifies portions of the model which are unused for a given context.
To reduce the overhead of self-attention, DejaVu prunes attention heads
which give uniform weight across tokens. We plot the activations for an
exemplary sentence used by DejaVu for both OPT-66B and LLaMa-7B in
Figure 6.1. We observe that while there are heads which give uniform
weight to each token in OPT-66B model, there are no such heads in more
parameter efficient models like LLaMa-7B, indicating that for smaller
parameter efficient models like LLaMa DejaVu might not be applicable.
The primary difference between OPT andLLaMa activation patterns could
be attributed to the fact that LLaMa models are trained significantly longer
and with more data.

We observe that CHAI’s insight about redundancy in the output of
multiple heads in the attention holds across both OPT and LLaMa fam-
ily of models. In our evaluation , we perform quantitative comparison
between CHAI and DejaVu.

K,V Cache Compression. Prior works which have tried to reduce the
K,V cache size [113, 218] by storing the K,V cache values for the most recent
important tokens. However, they can not directly improve the latency
of generating the next token, as they still perform the full transformer
compute before finally deciding which K,V pairs should be stored. On
the other hand, CHAI reduces not just the K,V cache size, it is also able to
reduce the latency of next word prediction.

Speculative Decoding. Speculative decoding [104, 208, 202] is a popu-
lar method where a draft model is used to cheaply generate a sequence of
draft tokens which can be efficiently verified by a target LLM. Speculative
decoding can significantly reduce the latency of LLM serving, however it
further exacerbates the compute and memory requirements as it requires
additional resources to run both the draft and target model. CHAI on the

83

0 1 2 3 4 5 6 7 8 9 10 11
Token ID

0
10

20
30

40
50

60
70

H
ea

d
ID

Layer 21

0.0

0.2

0.4

0.6

0.8

1.0

(a) OPT-66B: For several heads the
activation scores are uniform, i.e. the
heads given close to equal impor-
tance to each input token.

0 1 2 3 4 5 6 7 8 9 10 11 12
Token ID

0
3

6
9

12
15

18
21

24
27

30
H

ea
d

ID

Layer 21

0.2

0.4

0.6

0.8

(b) LLaMa-7B: Heads in LLaMa-7B
specifically pay attention to a specific
token. However, multiple heads are
attending to same token, in this case
the first token.

Figure 6.1: Activations for OPT-66B and LLaMa-7B for an exemplary sentence:
We observe that OPT-66B has several heads which give uniform attention scores
to tokens whereas LLaMa-7B does not. However, both models have redundancies
across heads, i.e. groups of heads are give similar attention to each token.

New Model

Offline Cluster
Identification

Num Clusters
per layer

New Inference
Request

Cluster Membership
Identification

Inference with CHAI

Offline Online

Figure 6.2: CHAI Flow: In the offline phase, we run clustering and perform
elbow plot analysis for each new model. Then, for each new inference request we
only perform cluster membership identification based on online performance.
other hand is focused on reducing the resource required for inference.

84

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Head ID

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

He
ad

 ID

Layer 1

0.2

0.4

0.6

0.8

1.0

(a) Layer 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Head ID

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

He
ad

 ID

Layer 5

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(b) Layer 5
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Head ID

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

He
ad

 ID

Layer 17

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(c) Layer 17
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Head ID

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

He
ad

 ID

Layer 30

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Layer 30
Figure 6.3: Average Correlation for 1024 Samples of C4 on LLaMa-7B: The
above figure shows two interesting observations. First, there exists high amount
of correlation across several heads of attention. Second, the correlation is not
uniform across layers, with later layers having higher correlation, i.e., first layer
has very little correlation but correlation increases in later layers.

0 3 6 9 12 15 18 21 24 27 30
Head ID

0
3

6
9

12
15

18
21

24
27

30
H

ea
d

ID

Layer 1

0.00

0.25

0.50

0.75

1.00

(a) Layer 1
0 3 6 9 12 15 18 21 24 27 30

Head ID

0
3

6
9

12
15

18
21

24
27

30
H

ea
d

ID

Layer 5

0.92

0.94

0.96

0.98

1.00

(b) Layer 5
0 3 6 9 12 15 18 21 24 27 30

Head ID

0
3

6
9

12
15

18
21

24
27

30
H

ea
d

ID

Layer 17

0.92

0.94

0.96

0.98

1.00

(c) Layer 17
0 3 6 9 12 15 18 21 24 27 30

Head ID

0
3

6
9

12
15

18
21

24
27

30
H

ea
d

ID

Layer 30

0.6

0.7

0.8

0.9

1.0

(d) Layer 30

Figure 6.4: Correlation on a randomly selected single sample of LLaMa-7B.

6.2 CHAI

Next, we describeCHAI. We first describe the key insights which have been
used to build CHAI. Then, we detail CHAI’s runtime pruning algorithm
which is inspired by our insights and discuss how we perform inference
using CHAI. Figure 6.2 provides a high level overview of inference using
CHAI, which includes offline and online components.

6.2.1 Observations

Our primary insight stems from the observation that there is a high amount
of correlation across the output of various attention heads in MHA, i.e. the
output of several attention heads focuses on the same tokens. In Figure 6.3,
we plot the average correlation across the 32 heads of LLaMa-7B for 1024
samples of the C4 [136] dataset for different layers and in Figure 6.4,

85

0 5 10 15 20 25 30
Number of Clusters

0

20

40

60

80
C

lu
st

er
in

g
Er

ro
r

Layer 3
Layer 5
Layer 17
Layer 30

Figure 6.5: Clustering Error: We plot the clustering error on 1024 samples of
C4-dataset. The markers represent the number of clusters we choose for a layer.
we plot correlation for a single sample of the dataset. These show us
two insights - (i) Several heads output similar attention scores for each
example and (ii) The amount of correlation increases in later layers, with
heads in later layers with having higher correlation. This indicates that
there is an opportunity to cluster attention heads with similar output and
only run the self-attention operation for one of the representative attention
heads within each cluster, thus reducing the amount of computation as
well as the size of K,V cache.

Problem Formulation. Next, we formally define the problem of finding
heads whose attention score is similar. Let H be the total number of
attention heads, let S = {⟨K1,Q1⟩, ⟨K2,Q2⟩, ⟨K3,Q3⟩, · · ·, ⟨KH,VH⟩} be the
set of Q,K pairs associated with each head h. Our goal is to find k subsets,
S1 ⊂ S,S2 ⊂ S,S3 ⊂ S, · · ·Sk ⊂ S such that < Q,K > pairs in each
subset Si produce similar output under function f. Where function f is
the self attention operation, where f(Q,K) = σ(QKT). Further, we want
∪k

i=1Si = S.

86

0 1 3 5 7 9 11
Token ID for Membership Determination

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

 A
vg

 C
lu

st
er

 M
em

be
rs

hi
p

C
ha

ng
es Layer 0

Layer 5
Layer 17
Layer 30

Figure 6.6: Cluster Membership Evaluation: We evaluate the number of times
the cluster membership changes for performing next token prediction. We ob-
served that if clustering is performed beyond the fifth token the number of times
cluster membership changes is quite small.

Formally, we want to find Si,

∀ < Kn,Qn >,< Km,Qm >∈ Si,

s.t.
f(Kn,Qn) ≈ f(Km,Qm)

Informally, we want subset of heads, where within each subset the self
attention operation gives similar outcome.

In order to solve this problem we need to determine k which represents
the number of such subsets, and the membership of such subset Si. Our
observations empirically demonstrate the existence of such a solution.
We can potentially solve this problem using clustering, where determin-
ing the number of subsets translates to determining number of clusters
and determining cluster membership becomes determination of cluster
membership.

To observe memory and compute savings, we need an accurate and

87

MHA

MHA

MHA

MHA

Head 1 Head 2 Head 3 Head 4 Head 5

Head 1 Head 2 Head 3 Head 4 Head 5

Head 1 Head 2 Head 3 Head 4 Head 5

MHA

Layer N

Num Cluster
Identification

Num Cluster
Identification

Num Cluster
Identification

Layer 1

Layer 2

MHA

(a) Offline Cluster
Identification: For
each new model we
run an offline cluster
identification phase. We
collect the activations
and perform Elbow-plot
analysis to decide
number of clusters.

Head
1,2,3,4,5

Layer 1

Layer 2

Layer N

Cluster Member
Identification

Cluster Member
Identification

Cluster Member
Identification

Head
2,4,5

Head
1,3

Head
1,3,5

Head
4

Head
2

MHAHead 1 Head 2 Head 3 Head 4 Head 5

MHAHead 1 Head 2 Head 3 Head 4 Head 5

MHAHead 1 Head 2 Head 3 Head 4 Head 5

MHA

MHA

MHA

(b) Cluster Member-
ship Identification: For
each new request, we ini-
tial run with multi-head
attention for first five to-
kens. Using this we de-
termine the number of
clusters in each layer.

Head 1

Layer 1

Layer 2

Layer N

Head 1

Head 1 Head 4 Head 2

Head 2

CHA

CHA

CHA

(c) CHAI
Inference:
Post cluster
membership
identification
we substitute
MHA with
Clustered Head
Attention.

Figure 6.7: Schematic of CHAI detailing three phases of the system.

efficient method to determine the number of clusters and their membership
without having access to activations. Solving this forms a core contribution
of our work.

6.2.2 Determination of Number of Clusters

Challenges. Figure 6.3 and Figure 6.4 indicate that the number of clusters
varies widely per layer in a LLM. Specifically, the last few layers in the
LLM exhibit a very low number of clusters (high redundancy), whereas
the early layers demonstrate a high degree of variance across the output of
heads resulting in large number of clusters. This observation suggests that
the method used to determine number of clusters needs to make decisions
for each layer independently. Additionally, widely used methods such as
Elbow plot method [174] for determining number of clusters entail manual

88

effort making cluster number determination impractical at inference time.
Design. To determine the number of clusters, we propose an offline

strategy we run once for each model. In our case, we sample a small
number of samples (1024) from the C4 [136] dataset and perform elbow-
plot analysis by plotting clustering error (i.e. sum of squared distance
from the closest cluster) as a function of number of clusters. Figure 6.5
shows the clustering error for LLaMa-7B for the samples selected. Based
on the Elbow-plot analysis we choose the number of clusters when the
error plateaus.

The offline analysis is performed once for each network by using the
C4 [136] dataset. We do not change the number of clusters determined
for a new dataset.

6.2.3 Determination of Cluster Membership

Challenges. Having determined number of clusters, we need to determine
the membership of these clusters, i.e. which heads belong to which cluster
in each layer. For Figure 6.3, 6.4 and 6.5, we perform clustering based
on activations obtained by performing the forward pass. However, for
each decoding step, performing clustering on output of self attention post
forward pass will not yield any performance benefit as we will still be
performing the original compute and using the full K,V cache. In order to
utilize the insights observed in Section 6.2.1, we will need to decide the
cluster members without having access to the output of the self attention.

Design. A simple strategy would have been keeping the cluster mem-
bership static across the tokens and independent of input context, e.g. we
use the same cluster membership found during offline analysis with C4
data in the previous section. For evaluation purposes, we call this version
of head selection CHAI-static.

However, we observed that the cluster membership does not remain
static and varies based on context. When comparing Figure 6.4, which plots

89

correlation for a single example, with Figure 6.3, which plots correlation
for 1024 samples, we observe that the correlation across heads varies
with varying context. Therefore, the correlation across the output of the
heads depends on the context (input prompt), i.e. a solution to determine the
membership of each cluster has to account for context. To understand the effects
of accounting for context while clustering heads, we analysed the change
in cluster membership changes and clustering with different context. In
Figure 6.6, we observed an interesting phenomenon, after determining
cluster membership by accounting for five tokens, the cluster membership
does not change frequently. A direct outcome of this observation is that
for each new sequence we can perform clustering based on the output of
self-attention after the first five tokens. We observe that activation from
first five tokens of a new sequence are enough to accurately predict the cluster
membership. This dynamic version of head selection further allows us to
improve accuracy over CHAI-static. Figure 6.7b shows an illustration of
the membership identification step. Furthermore, evaluation results in
Section 6.3 compare CHAI-static and CHAI performance.

6.2.4 Clustered Head Attention

Once we have decided which heads have similar attention output, we can
than use Clustered Head Attention to combine key and query vectors for
the heads.

6.2.5 Inference using CHAI

Next we, discuss the inference flow of CHAI, illustrated in detail in Fig-
ure 6.7. For each new model we first perform offline cluster identification
(Figure 6.7a). Then for each new request, we determine the cluster mem-
bership using K-Means clustering once we have processed five tokens,

90

Table 6.1: Accuracy on OPT-66B

Method PIQA Hellaswag Arc-Challenge Arc-Easy Boolq
MHA 78.4 71.1 41.6 64.7 65.4
DejaVu-50% -0.25 -0.7 -0.6 -0.2 -4.0
CHAI-static -1.35 -1.7 -0.7 -0.7 -0.7
CHAI -0.15 0.1 0.1 -0.1 -0.6

using the observed activations (Figure 6.7b). After this step, we keep the
clustered heads same throughout inference (Figure 6.7c).

There are two direct outcomes of CHAI’s design. First, we directly
reduce the amount of computation by removing redundant heads. Sec-
ondly, after a pre-determined token we fix the heads which are going to
be pruned, this also allows us to remove the corresponding Key tokens as-
sociated, which significantly reduces the K,V cache size. Therefore, CHAI
allows us to reduce both the inference compute as well as the size of the
K,V cache required.

6.3 Evaluation

We experimentally verify the performance of CHAI and compare it to
DejaVu [114] and SpAtten [190] on three different models of various
sizes LLaMa-7B [176], LLaMa-33B and OPT-66B [216]. We evaluate the
models on five commonly used NLP tasks: PIQA [22], HellaSwag [214],
Arc-Challenge and Arc-Easy [33] and BoolQA [32].

6.3.1 Experimental Setup

All our experiments are performed on servers with NVIDIA V100 GPUs.
For OPT-66B we used eight GPUs on a single node, for LLaMa-33B we
used four GPUs, and for LLaMa-7B, we used a single GPU for inference.
CHAI is built on top of Meta’s xFormers [47].

91

6.3.2 Accuracy Evaluation

In our evaluation, we compare CHAI with Multi-Head Attention as base-
line, static version of CHAI, as well two other state-of-the-art prior prun-
ing methods; DejaVu and SpAtten. For DejaVu, we try different sparsity
ratios, in order to try to match the accuracy number to MHA. We also
compare CHAI to SpAtten, a method which removes unimportant tokens
and heads.

In Table 6.1, we first verify that we are able to reproduce the perfor-
mance numbers reported by DejaVu. To perform this, we took the OPT-
66B and evaluated both DejaVu, CHAI and CHAI-static. We used DejaVu
with 50% sparsity as reported by the authors. We used the author provided
code to train their MLP predictor layers and incorporate their scheme in
our setup. In Table 6.1, we observe that we were able to replicate results
for OPT-66B. Furthermore, CHAI is also able to match the accuracy of
MHA for OPT-66B.

Next, we compare CHAI, CHAI-static and DejaVu with the pre-trained
MHA network, using LLaMa-7B on 5 different datasets. For DejaVu we
used three configurations, 50% sparsity, 30% sparsity and 10% sparsity. In
Table 6.2, we observe that when we use DejaVu with more 10% sparsity
we see significant decrease in accuracy (by 18.6% for DejaVu-30%). On
the other hand, our method based on our close analysis of the behaviour
of layers of LLaMa-7B is able to recover accuracy. We observe a maximum
accuracy degradation of 3.7% for CHAI. Similarly for LLaMa-33B using
sparsity for more than 10% leads to significant accuracy drop, meanwhile
CHAI closely matches the accuracy of the pre-trained model using MHA
with maximum degradation in accuracy by 0.14%. This shows that CHAI
is widely applicable across multiple datasets and models. We also want to
highlight that we do not perform any dataset specific tuning.

92

Table 6.2: Accuracy on LLaMa-7B

Method PIQA HellaSwag Arc-Challenge Arc-Easy BoolQ
MHA 79.8 76.1 47.5 72.8 76.0
DejaVu-10% -3.9 -4.7 -5.78 -3.18 -7.4
DejaVu-30% -13.3 -18.6 -18.75 -4.2 -20.2
DejaVu-50% -24.6 -50.7 -19.35 -46.3 -21.6
SpAtten -41.4 -42.5 -18.0 -40.2 -27.1
CHAI-static -4.0 -4.3 -3.7 -2.5 -0.8
CHAI -2.0 -3.2 -0.5 0.3 0.1

Table 6.3: Accuracy on LLaMa-33B

Method PIQA HellaSwag Arc-Challenge Arc-Easy BoolQ
MHA 82.1 82.8 57.8 80.0 83.1
DejaVu-10% -0.7 0.1 -0.2 -0.6 -0.2
DejaVu-30% -9.3 -24.4 -17.91 -12.4 -12.2
DejaVu-50% -27.6 -43.2 -24.6 -37.6 -21.2
SpAtten -31.9 -44.1 -26.4 -40.3 -34.55
CHAI-static -0.5 -0.2 -1.3 -3.7 -1.5
CHAI 0 -0.14 -0.21 0.9 -0.04

6.3.3 Memory Capacity Evaluation

CHAI reduces memory capacity requirements due to reduction in K,V
cache size and minimal additional storage required to store the cluster
map. In Figure 6.8, we show that for LLaMa-7B CHAI reduces the size
of K,V cache by up to 21.4% compared to MHA. Even for comparatively
small models like LLaMa-7B, the size of the K,V cache for a sequence
length of 2048 is around 1.2 GB, while around 12 GB is used for the model
weights. A reduction in K,V cache size can enable use of larger context
length or serving more requests. We would also like to note that CHAI
only removes the keys associated with redundant heads and keeps all the

93

128 256 512 1024 2048

Sequence Length
0

100

200

300

400

500
K

,V
 C

ac
he

 S
iz

e
(M

B
)

CHAI
CHAI-static
MHA

Figure 6.8: Memory Savings: We observed that for LLaMa-7B CHAI provides
memory savings of up to 21.4%.

value vectors.

Memory overhead of CHAI. The only additional storage CHAI requires
is storing the cluster map. Size of the map can be determined byn_layers×
(n_heads+n_clusters), for LLama7B the number of layers is 32, and num-
ber of heads is 32 and number of clusters vary from 28 in early layers to
4 in most of the later layers. Thus storing this map only requires a few
hundreds of bytes. We would like to point out that similar methods like
DejaVu require training MLP classifiers per layer to learn the sparsity
pattern which need to be stored.

6.3.4 End-to-End Latency Evaluation

Next, we evaluate time to first token and time to next token comparing it
with MHA. These are two standard metrics used for evaluation of an LLM.
Time to first token evaluates the time for generating a first token given a
new context. Time to first token accounts for generating K,V caches for all

94

128 256 512 1024 2048
Sequence Length

10
2

10
3

Ti
m

e(
m

s)

Time CHAI
Time MHA

(a) Time to first token: We ob-
serve speedups of up to 1.73×
for sequence length of 2048.

128 256 512 1024 2048
Sequence Length

10
2

10
3

Ti
m

e(
m

s)

Time CHAI
Time MHA

(b) Time to next token: We ob-
serve a speedup of up to 5× for
sequence length of 2048.

Figure 6.9: Latency Analysis: We observe that the speedups provided by CHAI
increases as the sequence length becomes larger. Even for a comparatively small
model like LLaMa-7B we observe speedups of up to 1.73× for a large sequence
length.

the tokens in the context. Whereas time to next token evaluates the time
for generating the next token, assuming the K,V caches for all internal
tokens is available.

Time to first token. Next, in our experiments we compare the speedups
provided by CHAI. In Figure 6.9-(a) for LLaMa-7B we show that our
method provides speedup of up to 1.72× on a sequence length of 2048.
The execution times represented in this figure accounts for the overhead
of clustering in CHAI.

Time to next token. Another metric for evaluation of LLMs is time to
next token. We do not account for the overhead of clustering in the case of
time to next token. Our primary wins come from reducing compute and
reducing memory bandwidth requirement for performing time to next
token. Figure 6.9-(b) shows time to predict the next token for different
sequence lengths. We observe that CHAI provides a speedup of over 5×
for a sequence length of 2048.

Unfortunately, we are not able to compare times with DejaVu as the
authors have not released the specialized kernels used for realizing the
speedups on hardware [3], thus inhibiting a runtime comparison. How-

95

ever, we believe it is unlikely that at less than 10% sparsity which is
needed by DejaVu to get comparable accuracy to MHA, it will yield high
speedups [68]. We would like to highlight that because of performing
dense computations, unlike DejaVu, CHAI does not need custom GPU
kernels. Further, CHAI’s speedup benefits are independent of the frame-
work used, because irrespective of implementation, CHAI directly reduces
the complexity of MHA.

Compute overhead of CHAI. Existing efficiency enhancing methods
require some fine-tuning or modification to the architecture. While De-
jaVu [114] and SpAtten [190] are runtime methods they still require ad-
ditional compute, e.g. DejaVu requires running MLP classifiers during
inference. CHAI on the other hand only adds the computation overhead
for determining the cluster membership. In our experiments we observed
that clustering takes only 0.6 ms per request, which is about 0.008% of the
inference latency.

6.3.5 Additional Experiments

Next we perform additional studies on our algorithm.
CHAI with Quantization. Next, we run experiments to understand how
CHAI performs in conjunction with quantization. To perform this exper-
iment we take an open source GPTQ [51] quantized model from Hug-
gingFace [173] and run CHAI on the model. In Table 6.4, we show the
performance of CHAI on a LLaMa-7B on the 4-bit quantized model. We
observe that the maximum deviation from accuracy for the quantized
model is 0.1%.
CHAI with Grouped Query Attention.

Grouped Query Attention [14] is a widely used method which shares
single Key and Value vectors across multiple queries. This effectively
reduces the K,V cache size. We perform preliminary studies to understand

96

1 2 3 4

Cluster ID
0

5

10

15

20

25
N

um
be

r o
f M

em
be

rs

Figure 6.10: Cluster Distribution: We observe that number of heads within the
cluster is quite skewed. We often observe one or two large clusters, while the
remaining heads in the cluster.

Table 6.4: CHAI with Quantization
HellaSwag PIQA BoolQ Arc-Challenge Arc-Easy

LLama-7B 76.1 79.8 76.0 47.5 72.8
LLama-7B-4bit-GPTQ 67.97 71.34 66.73 41.23 64.8
CHAI-LLama-7B-4bit-GPTQ 67.91 72.05 66.48 41.19 64.7

how CHAI can be used in conjunction with GQA. For these experiments
we used models like LLama 2 - 70B that are pre-trained with GQA, we ran
some preliminary experiments where we used CHAI to further reduce
the number of K,Q pairs in grouped query attention. LLama-70B uses
grouping factor of 8, i.e., 8 queries map to single key vector, we were able
to reduce the number of K vectors on average by 1.8x and Q vectors by
3.7x. In Table 6.5. We show this reduction leads to negligible degradation
in accuracy. This indicates that it is possible to use CHAI with GQA.
Pruning K, Q and V. In CHAI, we prune only the Key and Query portion
of an attention head leaving the Value vector intact. Next, we study how
accuracy changes if we remove the value vector as well. To perform this

97

Table 6.5: CHAI with GQA

Hellaswag PIQA BoolQ
LLama2-70B-GQA 85.3 82.8 85.0
CHAI-LLama2-70B-GQA 85.2 82.73 85.0

Table 6.6: Pruning Both Q,K,V

CHAI CHAI-QKV MHA
Arc-Challenge 47.0 41.29 47.5
PIQA 77.8 61.93 79.8

experiment we chose to reuse the value vector generated by the chosen
head. In Table 6.6, we show how reusing the full head (Query, Key and
Value vector) lead to additional loss in accuracy. This shows that for
smaller networks like LLaMa it might be hard to remove the whole head
in Multi-Head Attention.
Cluster Distribution. Figure 6.10 shows the distribution across clusters
for Layer-18 on LLaMa-7B for different 1024 samples of C4 dataset. We
observe that typically for LLMs majority of heads can be grouped into a
single head.

6.4 Conclusion

In this work, we present CHAI, an efficient runtime method which identi-
fies attention heads giving similar scores. Using this method we reduce
overhead of Multi-Head Attention by clustering the correlated heads and
computing attention scores only for heads which lead to disparate atten-
tion scores. Our evaluation shows that with minor accuracy loss system
can speedup inference by up to 1.73×.

98

Part V

Conclusion and Future Work

99

7 conclusion

This chapter reviews key contributions made in this dissertation. We first
highlight the key problems studied in this dissertation. Next, we elucidate
our findings and insights derived from our work. Next, we highlight
learning from works presented in this dissertation and speculate how it
can guide future works.

7.1 Summary and Contributions

The primary goal of this dissertation has been to study how data move-
ment and synchronization bottlenecks lead to degraded performance. In
this dissertation we looked at Gradient Compression in Part II. We studied
how gradient compression can be further improved by varying the amount
of compression during training. Next, we study several existing gradient
compression methods. We observe that a majority of gradient compres-
sion methods do not provide any wall clock speedups despite massive
reduction in amount of communication. We also provide a performance
model which can help designers to come up with a compression scheme
for a new deployment environment.

In Part III we propose Bagpipe, a large scale recommendation model
training system. A key challenge in prior recommendation model training
systems has been the remote embedding access overhead. Bagpipe uses the
idea of lookahead and where it can look beyond the current training and
figure out embedding access patterns. Based on this, it can overlap embed-
ding access overheads with remote accesses. In Bagpipe we also introduce
Logically Replicated and Physically Partitioned Caches, such caches from
a logical point of view are replicated but have different contents in them.
This allows us to minimize the control overhead as we do not have to care
about partitioning and also reduces the amount of communication.

100

Finally in Part IV we study multi-head attention. Multi-head attention
is a crucial component of Large Language Model. However, multi-head
attention is heavily memory bandwidth bottleneck. We show that several
heads in multi-head attention often produce redundant activations. Based
on this observation we introduce Clustered Head Attention, which deter-
mines the redundant heads and clusters them to reduce both compute
and memory bandwidth requirement.

7.2 Learnings

The projects presented in this dissertation highlight a few underlying
themes which can be used to tackle problems in the area of machine
learning systems. With Accordion [9], we observed that when building
approximation algorithms we can further improve them by accounting
for neural network training dynamics. Based on the insights in Accordion
we have worked on additional gradient compression algorithms like in
Pufferfish [189]. Next, the utility of gradient compression highlights
that when working on system optimizations, we need to also focus on
how it effects other parts of the application. We observed that several
Gradient Compression algorithms by compressing gradients were actually
making it incompatible with efficient communication primitives leading
to suboptimal performance. When building new optimization we should
always be mindful of how those optimizations can effect compatibility
with other components of the application.

With Bagpipe [11] we highlight that in ML Systems there are often
avenues to extract additional information. Using this additional informa-
tion we can reformulate the data flow to allow us to efficiently overlap
communication with computation thus improve hardware utilization.

We believe that these findings with minor modification can be used
with newer upcoming models. For ex, we are using an extension of looka-

101

head to improve state management while serving LLMs.

102

bibliography

[1] Massively scale your deep learning training with nccl 2.4. https:
//bit.ly/341nGfs. Accessed: August 31, 2023.

[2] tc - show / manipulate traffic control settings. https://man7.org/
linux/man-pages/man8/tc.8.html, 2020. Accessed: May 25, 2021.

[3] Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time.
https://github.com/FMInference/DejaVu, 2024.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467, 2016.

[5] J. Acharya, C. De Sa, D. Foster, and K. Sridharan. Distributed learn-
ing with sublinear communication. In International Conference on
Machine Learning, pages 40–50. PMLR, 2019.

[6] A. Achille, M. Rovere, and S. Soatto. Critical learning periods in
deep networks. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=BkeStsCcKQ.

[7] B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood.
Understanding training efficiency of deep learning recommendation
models at scale. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 802–814. IEEE,
2021.

[8] M. Adnan, Y. E. Maboud, D. Mahajan, and P. J. Nair. High-
performance training by exploiting hot-embeddings in recommen-
dation systems. arXiv preprint arXiv:2103.00686, 2021.

[9] S. Agarwal, H. Wang, K. Lee, S. Venkataraman, and D. Papailiopou-
los. Adaptive gradient communication via critical learning regime
identification. Proceedings of Machine Learning and Systems, 3:55–80,
2021.

https://bit.ly/341nGfs
https://bit.ly/341nGfs
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://github.com/FMInference/DejaVu
https://openreview.net/forum?id=BkeStsCcKQ

103

[10] S. Agarwal, H. Wang, S. Venkataraman, and D. Papailiopoulos. On
the utility of gradient compression in distributed training systems.
Proceedings of Machine Learning and Systems, 4:652–672, 2022.

[11] S. Agarwal, Z. Zhang, and S. Venkataraman. Bagpipe: Accel-
erating deep recommendation model training. arXiv preprint
arXiv:2202.12429, 2022.

[12] S. Agarwal, B. Acun, B. Homer, M. Elhoushi, Y. Lee, S. Venkatara-
man, D. Papailiopoulos, and C.-J. Wu. Chai: Clustered head at-
tention for efficient llm inference. arXiv preprint arXiv:2403.08058,
2024.

[13] S. Agarwal, A. Phanishayee, and S. Venkataraman. Blox: A modular
toolkit for deep learning schedulers. In Proceedings of the Nineteenth
European Conference on Computer Systems, pages 1093–1109, 2024.

[14] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón,
and S. Sanghai. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

[15] A. F. Aji and K. Heafield. Sparse communication for distributed
gradient descent. arXiv preprint arXiv:1704.05021, 2017.

[16] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encod-
ing. In Advances in Neural Information Processing Systems, pages
1709–1720, 2017.

[17] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli. The convergence of sparsified gradient methods.
In NeurIPS, 2018.

[18] M. Armbrust, A. Ghodsi, R. Xin, and M. Zaharia. Lakehouse: a
new generation of open platforms that unify data warehousing and
advanced analytics. In Proceedings of CIDR, 2021.

[19] M. Barnett, L. Shuler, R. van De Geijn, S. Gupta, D. G. Payne, and
J. Watts. Interprocessor collective communication library (inter-
com). In Proceedings of IEEE Scalable High Performance Computing
Conference, pages 357–364. IEEE, 1994.

104

[20] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar.
signsgd: Compressed optimisation for non-convex problems. arXiv
preprint arXiv:1802.04434, 2018.

[21] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar.
signsgd with majority vote is communication efficient and fault
tolerant. In International Conference on Learning Representations, 2018.

[22] Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piqa: Reasoning about
physical commonsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pages 7432–7439,
2020.

[23] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan,
et al. Towards federated learning at scale: System design. arXiv
preprint arXiv:1902.01046, 2019.

[24] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language models are few-shot learn-
ers. In Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901, 2020.

[25] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language mod-
els are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[26] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, et al. {TVM}: An automated {End-to-End}
optimizing compiler for deep learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages
578–594, 2018.

105

[27] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and
M. Carbin. The lottery ticket hypothesis for pre-trained bert net-
works. Advances in neural information processing systems, 33:15834–
15846, 2020.

[28] W. Chen, S. He, Y. Xu, X. Zhang, S. Yang, S. Hu, X.-H. Sun, and
G. Chen. icache: An importance-sampling-informed cache for ac-
celerating i/o-bound dnn model training. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
220–232. IEEE, 2023.

[29] X. Chen, Y. Cheng, S. Wang, Z. Gan, Z. Wang, and J. Liu. Earlybert:
Efficient bert training via early-bird lottery tickets. arXiv preprint
arXiv:2101.00063, 2020.

[30] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, et al. Wide & deep
learning for recommender systems. In Proceedings of the 1st workshop
on deep learning for recommender systems, pages 7–10, 2016.

[31] M. Cho, V. Muthusamy, B. Nemanich, and R. Puri. Gradzip: Gra-
dient compression using alternating matrix factorization for large-
scale deep learning.

[32] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and
K. Toutanova. Boolq: Exploring the surprising difficulty of natural
yes/no questions. arXiv preprint arXiv:1905.10044, 2019.

[33] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick,
and O. Tafjord. Think you have solved question answering? try arc,
the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018.

[34] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao, J. Zhang,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia. Analysis of dawn-
bench, a time-to-accuracy machine learning performance bench-
mark. ACM SIGOPS Operating Systems Review, 53(1):14–25, 2019.

[35] P. Covington, J. Adams, and E. Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM conference
on recommender systems, pages 191–198, 2016.

106

[36] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, et al.
The snowflake elastic data warehouse. In Proceedings of the 2016
International Conference on Management of Data, pages 215–226, 2016.

[37] S. Dai, H. Genc, R. Venkatesan, and B. Khailany. Efficient trans-
former inference with statically structured sparse attention. In 2023
60th ACM/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2023.

[38] T. Dao. Flashattention-2: Faster attention with better parallelism
and work partitioning. arXiv preprint arXiv:2307.08691, 2023.

[39] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems, 35:16344–16359, 2022.

[40] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang, et al. Large scale distributed
deep networks. In Advances in neural information processing systems,
pages 1223–1231, 2012.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[42] T. Dettmers. 8-bit approximations for parallelism in deep learning.
arXiv preprint arXiv:1511.04561, 2015.

[43] T. Dettmers and L. Zettlemoyer. The case for 4-bit precision: k-
bit inference scaling laws. In International Conference on Machine
Learning, pages 7750–7774. PMLR, 2023.

[44] A. Devarakonda, M. Naumov, and M. Garland. Adabatch: Adap-
tive batch sizes for training deep neural networks. arXiv preprint
arXiv:1712.02029, 2017.

[45] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen. Communication
quantization for data-parallel training of deep neural networks.
In 2016 2nd Workshop on Machine Learning in HPC Environments
(MLHPC), pages 1–8. IEEE, 2016.

107

[46] A. Eisenman, K. K. Matam, S. Ingram, D. Mudigere, R. Krishnamoor-
thi, K. Nair, M. Smelyanskiy, and M. Annavaram. {Check-N-Run}: a
checkpointing system for training deep learning recommendation
models. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 929–943, 2022.

[47] facebookresearch. xformers - toolbox to accelerate research on
transformers. https://github.com/facebookresearch/xformers,
2023. Accessed: December 12, 2023.

[48] A. Fan, E. Grave, and A. Joulin. Reducing transformer depth on
demand with structured dropout. arXiv preprint arXiv:1909.11556,
2019.

[49] C. Fang, A. Zhou, and Z. Wang. An algorithm–hardware co-
optimized framework for accelerating n: M sparse transformers.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 30
(11):1573–1586, 2022.

[50] J. Fang, H. Fu, G. Yang, and C.-J. Hsieh. Redsync: reducing synchro-
nization bandwidth for distributed deep learning training system.
Journal of Parallel and Distributed Computing, 133:30–39, 2019.

[51] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate
post-training quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323, 2022.

[52] R. M. French. Catastrophic forgetting in connectionist networks.
Trends in cognitive sciences, 3(4):128–135, 1999.

[53] V. Gandikota, D. Kane, R. K. Maity, and A. Mazumdar. vqsgd: Vec-
tor quantized stochastic gradient descent. In International Conference
on Artificial Intelligence and Statistics, pages 2197–2205. PMLR, 2021.

[54] A. Golden, S. Hsia, F. Sun, B. Acun, B. Hosmer, Y. Lee, Z. DeVito,
J. Johnson, G.-Y. Wei, D. Brooks, et al. Generative ai beyond llms:
system implications of multi-modal generation. In 2024 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 257–267. IEEE, 2024.

https://github.com/facebookresearch/xformers

108

[55] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Ky-
rola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch sgd:
Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[56] D. Graur, D. Aymon, D. Kluser, T. Albrici, C. A. Thekkath, and
A. Klimovic. Cachew: Machine learning input data processing as a
service. In 2022 USENIX Annual Technical Conference (USENIX ATC
22), pages 689–706, 2022.

[57] D. Grubic, L. Tam, D. Alistarh, and C. Zhang. Synchronous multi-
GPU deep learning with low-precision communication: An experi-
mental study. 2018.

[58] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: A factorization-
machine based neural network for ctr prediction. In IJCAI, 2017.

[59] J. Guo, W. Liu, W. Wang, J. Han, R. Li, Y. Lu, and S. Hu. Accelerating
distributed deep learning by adaptive gradient quantization. In
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1603–1607, 2020.

[60] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-
H. S. Lee, D. Brooks, and C.-J. Wu. Deeprecsys: A system for
optimizing end-to-end at-scale neural recommendation inference.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 982–995. IEEE, 2020.

[61] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, et al. The architec-
tural implications of facebook’s dnn-based personalized recommen-
dation. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 488–501. IEEE, 2020.

[62] gurobi. Gurobi optimization. https://www.gurobi.com/.
[63] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H. Park,

S. Lee, K. Park, J. W. Lee, et al. Aˆ 3: Accelerating attention mecha-
nisms in neural networks with approximation. In 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pages 328–341. IEEE, 2020.

https://www.gurobi.com/

109

[64] T. J. Ham, Y. Lee, S. H. Seo, S. Kim, H. Choi, S. J. Jung, and J. W.
Lee. Elsa: Hardware-software co-design for efficient, lightweight
self-attention mechanism in neural networks. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
pages 692–705. IEEE, 2021.

[65] hetu. Source code for het. https://github.com/Hsword/Hetu/
tree/ef1959.

[66] T. Hoefler, W. Gropp, W. Kramer, and M. Snir. Performance model-
ing for systematic performance tuning. In SC’11: Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12. IEEE, 2011.

[67] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, et al.
Training compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

[68] S. Hooker. The hardware lottery. Communications of the ACM, 64
(12):58–65, 2021.

[69] S. Horvath, C.-Y. Ho, L. Horvath, A. N. Sahu, M. Canini, and
P. Richtarik. Natural compression for distributed deep learning.
arXiv preprint arXiv:1905.10988, 2019.

[70] C.-Y. Hsieh, C.-L. Li, C.-K. Yeh, H. Nakhost, Y. Fujii, A. Ratner,
R. Krishna, C.-Y. Lee, and T. Pfister. Distilling step-by-step! outper-
forming larger language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301, 2023.

[71] C.-C. Huang, G. Jin, and J. Li. Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 1341–1355,
2020.

[72] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, et al. Gpipe: Efficient training of gi-
ant neural networks using pipeline parallelism. Advances in neural
information processing systems, 32, 2019.

https://github.com/Hsword/Hetu/tree/ef1959
https://github.com/Hsword/Hetu/tree/ef1959

110

[73] Y. Huang, X. Wei, X. Wang, J. Yang, B.-Y. Su, S. Bharuka, D. Choud-
hary, Z. Jiang, H. Zheng, and J. Langman. Hierarchical training:
Scaling deep recommendation models on large cpu clusters. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining, KDD ’21, page 3050–3058, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450383325.
doi: 10.1145/3447548.3467084. URL https://doi.org/10.1145/
3447548.3467084.

[74] hugectr. NVIDIA Merlin HugeCTR Framework. https://
developer.nvidia.com/nvidia-merlin/hugectr.

[75] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer. Firecaffe:
near-linear acceleration of deep neural network training on compute
clusters. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2592–2600, 2016.

[76] A. Inc. Avazu click logs. https://www.kaggle.com/c/
avazu-ctr-prediction/data, 2013. Accessed: December 10, 2020.

[77] A. Isenko, R. Mayer, J. Jedele, and H.-A. Jacobsen. Where is my
training bottleneck? hidden trade-offs in deep learning preprocess-
ing pipelines. In Proceedings of the 2022 International Conference on
Management of Data, pages 1825–1839, 2022.

[78] T. Ishkhanov, M. Naumov, X. Chen, Y. Zhu, Y. Zhong, A. G. Azzolini,
C. Sun, F. Jiang, A. Malevich, and L. Xiong. Time-based sequence
model for personalization and recommendation systems. arXiv
preprint arXiv:2008.11922, 2020.

[79] N. Ivkin, D. Rothchild, E. Ullah, I. Stoica, R. Arora, et al.
Communication-efficient distributed sgd with sketching. In
NeurIPS, 2019.

[80] S. Jastrzebski, Z. Kenton, N. Ballas, A. Fischer, Y. Bengio, and
A. Storkey. On the relation between the sharpest directions of DNN
loss and the SGD step length. In International Conference on Learn-
ing Representations, 2019. URL https://openreview.net/forum?
id=SkgEaj05t7.

https://doi.org/10.1145/3447548.3467084
https://doi.org/10.1145/3447548.3467084
https://developer.nvidia.com/nvidia-merlin/hugectr
https://developer.nvidia.com/nvidia-merlin/hugectr
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data
https://openreview.net/forum?id=SkgEaj05t7
https://openreview.net/forum?id=SkgEaj05t7

111

[81] S. Jastrzebski, M. Szymczak, S. Fort, D. Arpit, J. Tabor, K. Cho*,
and K. Geras*. The break-even point on optimization trajectories
of deep neural networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=
r1g87C4KwB.

[82] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang. Analysis of {Large-Scale}{Multi-Tenant}{GPU} clusters for
{DNN} training workloads. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19), pages 947–960, 2019.

[83] Z. Jia, S. Lin, C. R. Qi, and A. Aiken. Exploring hidden dimen-
sions in parallelizing convolutional neural networks. arXiv preprint
arXiv:1802.04924, 2018.

[84] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and model parallelism
for deep neural networks. arXiv preprint arXiv:1807.05358, 2018.

[85] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu.
Tinybert: Distilling bert for natural language understanding. arXiv
preprint arXiv:1909.10351, 2019.

[86] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter per-
formance analysis of a tensor processing unit. In Proceedings of the
44th annual international symposium on computer architecture, pages
1–12, 2017.

[87] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling laws
for neural language models. arXiv preprint arXiv:2001.08361, 2020.

[88] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feed-
back fixes signsgd and other gradient compression schemes. In
International Conference on Machine Learning, pages 3252–3261, 2019.

[89] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

https://openreview.net/forum?id=r1g87C4KwB
https://openreview.net/forum?id=r1g87C4KwB

112

[90] R. I. S. Khan, A. H. Yazdani, Y. Fu, A. K. Paul, B. Ji, X. Jian, Y. Cheng,
and A. R. Butt. {SHADE}: Enable fundamental cacheability for
distributed deep learning training. In 21st USENIX Conference on
File and Storage Technologies (FAST 23), pages 135–152, 2023.

[91] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer. I-bert:
Integer-only bert quantization. In International conference on machine
learning, pages 5506–5518. PMLR, 2021.

[92] T. Kim, H. Kim, G.-I. Yu, and B.-G. Chun. Bpipe: memory-balanced
pipeline parallelism for training large language models. In Inter-
national Conference on Machine Learning, pages 16639–16653. PMLR,
2023.

[93] G. Kingsley Zipf. Selected studies of the principle of relative frequency
in language. Harvard university press, 1932.

[94] N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451, 2020.

[95] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi. Decentralized deep
learning with arbitrary communication compression. arXiv preprint
arXiv:1907.09356, 2019.

[96] A. Koloskova, S. Stich, and M. Jaggi. Decentralized stochastic opti-
mization and gossip algorithms with compressed communication.
In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pages 3478–3487. PMLR, 09–15 Jun
2019. URL http://proceedings.mlr.press/v97/koloskova19a.
html.

[97] A. V. Kumar and M. Sivathanu. Quiver: An informed storage cache
for deep learning. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 283–296, 2020.

[98] D. Kumaran, D. Hassabis, and J. L. McClelland. What learning sys-
tems do intelligent agents need? complementary learning systems
theory updated. Trends in cognitive sciences, 20(7):512–534, 2016.

http://proceedings.mlr.press/v97/koloskova19a.html
http://proceedings.mlr.press/v97/koloskova19a.html

113

[99] E. Kurtic, D. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran,
M. Goin, and D. Alistarh. The optimal bert surgeon: Scalable and
accurate second-order pruning for large language models. arXiv
preprint arXiv:2203.07259, 2022.

[100] C. Labs. Criteo kaggle logs. https://labs.criteo.com/2014/02/
kaggle-display-advertising-challenge-dataset/, 2013. Ac-
cessed: December 10, 2020.

[101] C. Labs. Terabyte click logs. https://labs.criteo.com/2014/02/
kaggle-display-advertising-challenge-dataset/, 2013. Ac-
cessed: December 10, 2020.

[102] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush. Block pruning for
faster transformers. arXiv preprint arXiv:2109.04838, 2021.

[103] J. Lee, S. Abu-El-Haija, B. Varadarajan, and A. Natsev. Collaborative
deep metric learning for video understanding. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 481–490, 2018.

[104] Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from trans-
formers via speculative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR, 2023.

[105] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, et al. Pytorch distributed: ex-
periences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020.

[106] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. Schwing,
H. Esmaeilzadeh, and N. S. Kim. A network-centric hardware/al-
gorithm co-design to accelerate distributed training of deep neural
networks. In 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 175–188. IEEE, 2018.

[107] Z. Li, H. Zhao, Q. Liu, Z. Huang, T. Mei, and E. Chen. Learning
from history and present: Next-item recommendation via discrimi-
natively exploiting user behaviors. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, pages 1734–1743, 2018.

https://labs.criteo.com/2014/02/ kaggle-display-advertising-challenge- dataset/
https://labs.criteo.com/2014/02/ kaggle-display-advertising-challenge- dataset/
https://labs.criteo.com/2014/02/ kaggle-display-advertising-challenge- dataset/
https://labs.criteo.com/2014/02/ kaggle-display-advertising-challenge- dataset/

114

[108] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can
decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent. arXiv
preprint arXiv:1705.09056, 2017.

[109] X. Lian, B. Yuan, X. Zhu, Y. Wang, Y. He, H. Wu, L. Sun, H. Lyu,
C. Liu, X. Dong, et al. Persia: A hybrid system scaling deep learning
based recommenders up to 100 trillion parameters. arXiv preprint
arXiv:2111.05897, 2021.

[110] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep gradient com-
pression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887, 2017.

[111] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally. Deep gradient com-
pression: Reducing the communication bandwidth for distributed
training. In International Conference on Learning Representations, 2018.

[112] H. Ling, K. Kreis, D. Li, S. W. Kim, A. Torralba, and S. Fidler. Ed-
itgan: High-precision semantic image editing. Advances in Neural
Information Processing Systems, 34:16331–16345, 2021.

[113] Z. Liu, A. Desai, F. Liao, W. Wang, V. Xie, Z. Xu, A. Kyrillidis, and
A. Shrivastava. Scissorhands: Exploiting the persistence of impor-
tance hypothesis for llm kv cache compression at test time. arXiv
preprint arXiv:2305.17118, 2023.

[114] Z. Liu, J. Wang, T. Dao, T. Zhou, B. Yuan, Z. Song, A. Shrivastava,
C. Zhang, Y. Tian, C. Re, et al. Deja vu: Contextual sparsity for
efficient llms at inference time. In International Conference on Machine
Learning, pages 22137–22176. PMLR, 2023.

[115] A. M Abdelmoniem, A. Elzanaty, M.-S. Alouini, and M. Canini.
An efficient statistical-based gradient compression technique for
distributed training systems. Proceedings of Machine Learning and
Systems, 3, 2021.

[116] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, et al. Mlperf
training benchmark. arXiv preprint arXiv:1910.01500, 2019.

115

[117] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, et al. Mlperf
training benchmark. Proceedings of Machine Learning and Systems, 2:
336–349, 2020.

[118] Meta. Torchrec. https://github.com/pytorch/torchrec/, 2022.
Accessed: August 21, 2022.

[119] X. Miao, H. Zhang, Y. Shi, X. Nie, Z. Yang, Y. Tao, and B. Cui. Het:
Scaling out huge embedding model training via cache-enabled dis-
tributed framework. Proc. VLDB Endow., 15(2):312–320, 2022.

[120] P. Michel, O. Levy, and G. Neubig. Are sixteen heads really better
than one? Advances in neural information processing systems, 32, 2019.

[121] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, et al. Mixed
precision training. arXiv preprint arXiv:1710.03740, 2017.

[122] H. Mikami, H. Suganuma, Y. Tanaka, Y. Kageyama, et al. Mas-
sively distributed sgd: Imagenet/resnet-50 training in a flash. arXiv
preprint arXiv:1811.05233, 2018.

[123] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram. An-
alyzing and mitigating data stalls in dnn training. arXiv preprint
arXiv:2007.06775, 2020.

[124] J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, and S. Venkataraman.
Marius: Learning massive graph embeddings on a single machine.
In 15th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 21), pages 533–549, 2021.

[125] mpi. Mpi all to all. https://www.rookiehpc.com/mpi/docs/mpi_
alltoall.php, 2019. Accessed: December 12, 2022.

[126] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X. Liu,
M. Ozdal, J. Nie, J. Park, et al. Software-hardware co-design for
fast and scalable training of deep learning recommendation models.
arXiv preprint arXiv:2104.05158, 2021.

https://github.com/pytorch/torchrec/
https://www.rookiehpc.com/mpi/docs/mpi_alltoall.php
https://www.rookiehpc.com/mpi/docs/mpi_alltoall.php

116

[127] D. G. Murray, J. Simsa, A. Klimovic, and I. Indyk. tf. data:
A machine learning data processing framework. arXiv preprint
arXiv:2101.12127, 2021.

[128] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. De-
vanur, G. R. Ganger, P. B. Gibbons, and M. Zaharia. Pipedream:
generalized pipeline parallelism for dnn training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pages 1–15,
2019.

[129] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini, et al. Deep
learning recommendation model for personalization and recom-
mendation systems. arXiv preprint arXiv:1906.00091, 2019.

[130] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Advances
in neural information processing systems, pages 8026–8037, 2019.

[131] S. Prasanna, A. Rogers, and A. Rumshisky. When bert plays the
lottery, all tickets are winning. arXiv preprint arXiv:2005.00561, 2020.

[132] H. Qi, E. R. Sparks, and A. Talwalkar. Paleo: A performance model
for deep neural networks. In Proceedings of the International Confer-
ence on Learning Representations, 2017.

[133] Y. Qin, Y. Wang, D. Deng, Z. Zhao, X. Yang, L. Liu, S. Wei, Y. Hu, and
S. Yin. Fact: Ffn-attention co-optimized transformer architecture
with eager correlation prediction. In Proceedings of the 50th Annual
International Symposium on Computer Architecture, pages 1–14, 2023.

[134] R. Rabenseifner. Optimization of collective reduction operations. In
International Conference on Computational Science, pages 1–9. Springer,
2004.

[135] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

117

[136] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485–5551, 2020.

[137] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever. Zero-shot text-to-image generation, 2021.

[138] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He. Deepspeed: System
optimizations enable training deep learning models with over 100
billion parameters. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pages
3505–3506, 2020.

[139] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang,
M. Zhang, D. Li, and Y. He. {Zero-offload}: Democratizing {billion-
scale} model training. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 551–564, 2021.

[140] F. Research. Facebook research dlrm. https://github.com/
facebookresearch/dlrm/issues/206, 2019. Accessed: December
10, 2021.

[141] F. Research. Facebook research dlrm. https://github.com/
facebookresearch/dlrm, 2019. Accessed: December 10, 2021.

[142] F. Research. Fbgemm. http://github.com/facebookresearch/
fbgemm, 2019. Accessed: August 31, 2023.

[143] H. Sajjad, F. Dalvi, N. Durrani, and P. Nakov. On the effect of
dropping layers of pre-trained transformer models. Computer Speech
& Language, 77:101429, 2023.

[144] P. Sanders, J. Speck, and J. L. Träff. Two-tree algorithms for full
bandwidth broadcast, reduction and scan. Parallel Computing, 35
(12):581–594, 2009.

[145] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

https://github.com/facebookresearch/dlrm/issues/206
https://github.com/facebookresearch/dlrm/issues/206
https://github.com/facebookresearch/dlrm
https://github.com/facebookresearch/dlrm
http://github.com/facebookresearch/fbgemm
http://github.com/facebookresearch/fbgemm

118

[146] S. Sarvotham, R. Riedi, and R. Baraniuk. Connection-level analysis
and modeling of network traffic. In Proceedings of the 1st ACM
SIGCOMM Workshop on Internet Measurement, pages 99–103, 2001.

[147] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. Robust and
communication-efficient federated learning from non-iid data. IEEE
transactions on neural networks and learning systems, 31(9):3400–3413,
2019.

[148] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. Sparse binary
compression: Towards distributed deep learning with minimal
communication. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2019.

[149] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient
descent and its application to data-parallel distributed training of
speech dnns. In Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[150] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient
descent and its application to data-parallel distributed training of
speech dnns. In Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[151] A. Sergeev and M. Del Balso. Horovod: fast and easy distributed
deep learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[152] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney,
and K. Keutzer. Q-bert: Hessian based ultra low precision quan-
tization of bert. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8815–8821, 2020.

[153] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang,
C. Ré, I. Stoica, and C. Zhang. Flexgen: High-throughput generative
inference of large language models with a single gpu. In Interna-
tional Conference on Machine Learning, pages 31094–31116. PMLR,
2023.

[154] S. Shi, X. Chu, K. C. Cheung, and S. See. Understanding top-k sparsi-
fication in distributed deep learning. arXiv preprint arXiv:1911.08772,
2019.

119

[155] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu.
A distributed synchronous sgd algorithm with global top-k sparsifi-
cation for low bandwidth networks. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pages 2238–
2247. IEEE, 2019.

[156] S. Shi, X. Zhou, S. Song, X. Wang, Z. Zhu, X. Huang, X. Jiang, F. Zhou,
Z. Guo, L. Xie, et al. Towards scalable distributed training of deep
learning on public cloud clusters. Proceedings of Machine Learning
and Systems, 3, 2021.

[157] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro. Megatron-lm: Training multi-billion parame-
ter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[158] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le. Don’t decay the
learning rate, increase the batch size. arXiv preprint arXiv:1711.00489,
2017.

[159] Y. Song and D. P. Kingma. How to train your energy-based models.
arXiv preprint arXiv:2101.03288, 2021.

[160] S. U. Stich. Local sgd converges fast and communicates little. arXiv
preprint arXiv:1805.09767, 2018.

[161] S. U. Stich and S. P. Karimireddy. The error-feedback framework:
Better rates for sgd with delayed gradients and compressed com-
munication. arXiv preprint arXiv:1909.05350, 2019.

[162] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd with
memory. In Advances in Neural Information Processing Systems, pages
4447–4458, 2018.

[163] N. Strom. Scalable distributed DNN training using commodity gpu
cloud computing. In Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[164] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune bert for text
classification? In China National Conference on Chinese Computational
Linguistics, pages 194–206. Springer, 2019.

120

[165] A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan. Distributed
mean estimation with limited communication. In International Con-
ference on Machine Learning, pages 3329–3337. PMLR, 2017.

[166] T. Tambe, C. Hooper, L. Pentecost, T. Jia, E.-Y. Yang, M. Donato,
V. Sanh, P. Whatmough, A. M. Rush, D. Brooks, et al. Edgebert:
Sentence-level energy optimizations for latency-aware multi-task
nlp inference. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 830–844, 2021.

[167] Y. K. Tan, X. Xu, and Y. Liu. Improved recurrent neural networks for
session-based recommendations. In Proceedings of the 1st workshop
on deep learning for recommender systems, pages 17–22, 2016.

[168] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu. Communication
compression for decentralized training. In NeurIPS, 2018.

[169] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu. d2: Decentralized
training over decentralized data. In International Conference on Ma-
chine Learning, pages 4848–4856. PMLR, 2018.

[170] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu. Doublesqueeze: Paral-
lel stochastic gradient descent with double-pass error-compensated
compression. In International Conference on Machine Learning, pages
6155–6165. PMLR, 2019.

[171] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li. Communication-efficient
distributed deep learning: A comprehensive survey. arXiv preprint
arXiv:2003.06307, 2020.

[172] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collec-
tive communication operations in mpich. The International Journal
of High Performance Computing Applications, 19(1):49–66, 2005.

[173] TheBloke. Llama-7b gptq. https://huggingface.co/TheBloke/
LLaMa-7B-GPTQ, 2023. Accessed: December 12, 2023.

[174] R. L. Thorndike. Who belongs in the family? Psychometrika, 18(4):
267–276, 1953.

https://huggingface.co/TheBloke/LLaMa-7B-GPTQ
https://huggingface.co/TheBloke/LLaMa-7B-GPTQ

121

[175] P. Tillet, H.-T. Kung, and D. Cox. Triton: an intermediate language
and compiler for tiled neural network computations. In Proceedings
of the 3rd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, pages 10–19, 2019.

[176] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama:
Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[177] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al. Llama
2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

[178] T. X. Tuan and T. M. Phuong. 3d convolutional networks for session-
based recommendation with content features. In Proceedings of the
eleventh ACM conference on recommender systems, pages 138–146, 2017.

[179] B. Twardowski. Modelling contextual information in session-aware
recommender systems with neural networks. In Proceedings of the
10th ACM Conference on Recommender Systems, pages 273–276, 2016.

[180] Y. Ueno and R. Yokota. Exhaustive study of hierarchical allreduce
patterns for large messages between gpus. In 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 430–439, 2019. doi: 10.1109/CCGRID.2019.00057.

[181] T. Um, B. Oh, B. Seo, M. Kweun, G. Kim, and W.-Y. Lee. Fastflow:
Accelerating deep learning model training with smart offloading
of input data pipeline. Proceedings of the VLDB Endowment, 16(5):
1086–1099, 2023.

[182] A. Van Den Oord, S. Dieleman, and B. Schrauwen. Deep content-
based music recommendation. In Neural Information Processing
Systems Conference (NIPS 2013), volume 26. Neural Information
Processing Systems Foundation (NIPS), 2013.

[183] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

122

[184] T. Vogels, S. P. Karimireddy, and M. Jaggi. Powersgd: Practical low-
rank gradient compression for distributed optimization. In Advances
in Neural Information Processing Systems, pages 14236–14245, 2019.

[185] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. Analyzing
multi-head self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. arXiv preprint arXiv:1905.09418, 2019.

[186] R. Waleffe, J. Mohoney, T. Rekatsinas, and S. Venkataraman. Mar-
iusgnn: Resource-efficient out-of-core training of graph neural net-
works. In Proceedings of the Eighteenth European Conference on Com-
puter Systems, pages 144–161, 2023.

[187] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and
S. Wright. Atomo: Communication-efficient learning via atomic
sparsification. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 31, pages 9850–9861. Curran Associates, Inc.,
2018.

[188] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal,
J.-y. Sohn, K. Lee, and D. Papailiopoulos. Attack of the tails: Yes,
you really can backdoor federated learning. Advances in Neural
Information Processing Systems, 33:16070–16084, 2020.

[189] H. Wang, S. Agarwal, and D. Papailiopoulos. Pufferfish:
Communication-efficient models at no extra cost. Proceedings of
Machine Learning and Systems, 3, 2021.

[190] H. Wang, Z. Zhang, and S. Han. Spatten: Efficient sparse attention
architecture with cascade token and head pruning. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 97–110. IEEE, 2021.

[191] H. Wang, S. Agarwal, Y. Tanaka, E. Xing, D. Papailiopoulos, et al.
Cuttlefish: Low-rank model training without all the tuning. Pro-
ceedings of Machine Learning and Systems, 5, 2023.

[192] R. Wang, B. Fu, G. Fu, and M. Wang. Deep & cross network for ad
click predictions. In Proceedings of the ADKDD’17, pages 1–7. 2017.

123

[193] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu. What
your images reveal: Exploiting visual contents for point-of-interest
recommendation. In Proceedings of the 26th international conference
on world wide web, pages 391–400, 2017.

[194] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-
attention with linear complexity. arXiv preprint arXiv:2006.04768,
2020.

[195] X. Wang and Y. Wang. Improving content-based and hybrid music
recommendation using deep learning. In Proceedings of the 22nd
ACM international conference on Multimedia, pages 627–636, 2014.

[196] Z. Wang, J. Wohlwend, and T. Lei. Structured pruning of large
language models. arXiv preprint arXiv:1910.04732, 2019.

[197] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for
communication-efficient distributed optimization. In Advances in
Neural Information Processing Systems, pages 1299–1309, 2018.

[198] J. Wen, J. She, X. Li, and H. Mao. Visual background recommenda-
tion for dance performances using deep matrix factorization. ACM
Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMM), 14(1):1–19, 2018.

[199] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad:
Ternary gradients to reduce communication in distributed deep
learning. In Advances in neural information processing systems, pages
1509–1519, 2017.

[200] L. Wesolowski, B. Acun, V. Andrei, A. Aziz, G. Dankel, C. Gregg,
X. Meng, C. Meurillon, D. Sheahan, L. Tian, et al. Datacenter-scale
analysis and optimization of gpu machine learning workloads. IEEE
Micro, 41(5):101–112, 2021.

[201] J. Wu, W. Huang, J. Huang, and T. Zhang. Error compensated
quantized sgd and its applications to large-scale distributed op-
timization. In International Conference on Machine Learning, pages
5325–5333. PMLR, 2018.

124

[202] H. Xia, T. Ge, P. Wang, S.-Q. Chen, F. Wei, and Z. Sui. Speculative
decoding: Exploiting speculative execution for accelerating seq2seq
generation. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 3909–3925, 2023.

[203] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han.
Smoothquant: Accurate and efficient post-training quantization
for large language models. In International Conference on Machine
Learning, pages 38087–38099. PMLR, 2023.

[204] H. Xu, C.-Y. Ho, A. M. Abdelmoniem, A. Dutta, E. H. Bergou,
K. Karatsenidis, M. Canini, and P. Kalnis. Compressed commu-
nication for distributed deep learning: Survey and quantitative
evaluation, 2020. URL http://hdl.handle.net/10754/662495.

[205] H. Xu, C.-Y. Ho, A. M. Abdelmoniem, A. Dutta, E. H. Bergou,
K. Karatsenidis, M. Canini, and P. Kalnis. Compressed commu-
nication for distributed deep learning: Survey and quantitative
evaluation. Technical report, 2020.

[206] C.-Q. Yang and B. P. Miller. Critical path analysis for the execution of
parallel and distributed programs. In The 8th International Conference
on Distributed, pages 366–367. IEEE Computer Society, 1988.

[207] J. Yang, Y. Zhang, Z. Qiu, Y. Yue, and R. Vinayak. Fifo queues are
all you need for cache eviction. In Proceedings of the 29th Symposium
on Operating Systems Principles, pages 130–149, 2023.

[208] S. Yang, G. Lee, J. Cho, D. Papailiopoulos, and K. Lee. Predictive
pipelined decoding: A compute-latency trade-off for exact llm de-
coding. arXiv preprint arXiv:2307.05908, 2023.

[209] C. Yin, B. Acun, C.-J. Wu, and X. Liu. Tt-rec: Tensor
train compression for deep learning recommendation models.
In A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings
of Machine Learning and Systems, volume 3, pages 448–462,
2021. URL https://proceedings.mlsys.org/paper/2021/file/
979d472a84804b9f647bc185a877a8b5-Paper.pdf.

[210] Y. You, I. Gitman, and B. Ginsburg. Scaling sgd batch size to 32k
for imagenet training. arXiv preprint arXiv:1708.03888, 6, 2017.

http://hdl.handle.net/10754/662495
https://proceedings.mlsys.org/paper/2021/file/979d472a84804b9f647bc185a877a8b5-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/979d472a84804b9f647bc185a877a8b5-Paper.pdf

125

[211] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh. Large batch optimiza-
tion for deep learning: Training bert in 76 minutes. arXiv preprint
arXiv:1904.00962, 2019.

[212] M. Yu, Z. Lin, K. Narra, S. Li, Y. Li, N. S. Kim, A. Schwing, M. An-
navaram, and S. Avestimehr. Gradiveq: Vector quantization for
bandwidth-efficient gradient aggregation in distributed cnn train-
ing. arXiv preprint arXiv:1811.03617, 2018.

[213] Y. Yu, J. Wu, and J. Huang. Exploring fast and communication-
efficient algorithms in large-scale distributed networks. arXiv
preprint arXiv:1901.08924, 2019.

[214] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hel-
laswag: Can a machine really finish your sentence? arXiv preprint
arXiv:1905.07830, 2019.

[215] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang. Zipml:
Training linear models with end-to-end low precision, and a little
bit of deep learning. In International Conference on Machine Learning,
pages 4035–4043, 2017.

[216] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. De-
wan, M. Diab, X. Li, X. V. Lin, et al. Opt: Open pre-trained trans-
former language models. arXiv preprint arXiv:2205.01068, 2022.

[217] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin. Is network
the bottleneck of distributed training? In Proceedings of the Workshop
on Network Meets AI & ML, pages 8–13, 2020.

[218] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song,
Y. Tian, C. Ré, C. Barrett, et al. H _2 o: Heavy-hitter oracle for effi-
cient generative inference of large language models. arXiv preprint
arXiv:2306.14048, 2023.

[219] H. Zhao, Z. Yang, Y. Cheng, C. Tian, S. Ren, W. Xiao, M. Yuan,
L. Chen, K. Liu, Y. Zhang, et al. Goldminer: Elastic scaling of
training data pre-processing pipelines for deep learning. Proceedings
of the ACM on Management of Data, 1(2):1–25, 2023.

126

[220] M. Zhao, N. Agarwal, A. Basant, B. Gedik, S. Pan, M. Ozdal, R. Ko-
muravelli, J. Pan, T. Bao, H. Lu, et al. Understanding and co-
designing the data ingestion pipeline for industry-scale recsys train-
ing. arXiv preprint arXiv:2108.09373, 2021.

[221] M. Zhao, N. Agarwal, A. Basant, B. Gedik, S. Pan, M. Ozdal, R. Ko-
muravelli, J. Pan, T. Bao, H. Lu, et al. Understanding data storage
and ingestion for large-scale deep recommendation model training:
Industrial product. In Proceedings of the 49th annual international
symposium on computer architecture, pages 1042–1057, 2022.

[222] M. Zhao, S. Pan, N. Agarwal, Z. Wen, D. Xu, A. Natarajan, P. Kumar,
R. Tijoriwala, K. Asher, H. Wu, et al. {Tectonic-Shift}: A compos-
ite storage fabric for {Large-Scale}{ML} training. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23), pages 433–449, 2023.

[223] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen, et al. Ansor: Generating {High-Performance} tensor
programs for deep learning. In 14th USENIX symposium on operating
systems design and implementation (OSDI 20), pages 863–879, 2020.

[224] S. Zheng, Z. Huang, and J. Kwok. Communication-efficient
distributed blockwise momentum sgd with error-feedback. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32, pages 11450–11460. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper/2019/file/
80c0e8c4457441901351e4abbcf8c75c-Paper.pdf.

[225] Y. Zhou, N. Du, Y. Huang, D. Peng, C. Lan, D. Huang, S. Shakeri,
D. So, A. M. Dai, Y. Lu, et al. Brainformers: Trading simplicity for
efficiency. In International Conference on Machine Learning, pages
42531–42542. PMLR, 2023.

https://proceedings.neurips.cc/paper/2019/file/80c0e8c4457441901351e4abbcf8c75c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/80c0e8c4457441901351e4abbcf8c75c-Paper.pdf

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Introduction
	List of Papers

	Bottlenecks in Machine Learning Systems
	Input Data bottlenecks
	Model Parameter bottlenecks
	Intermediate Activation bottlenecks.

	Reducing Data Movement in Distributed Training
	Adaptive gradient compression
	Preliminaries
	Accordion
	Evaluation
	Conclusion

	Utility of Gradient Compression
	Preliminaries
	Evaluating Gradient Compression
	Conclusion

	Reducing Data Movement in Recommendation Model Training
	Accelerating Recommendation Model Training
	Preliminaries
	 Design
	Implementation
	Evaluation
	Conclusion

	Reducing Memory Bandwidth Requirement for LLM Inference.
	Clustered Head Attention
	Preliminaries
	CHAI
	Evaluation
	Conclusion

	Conclusion and Future Work
	Conclusion
	Summary and Contributions
	Learnings

	Bibliography

