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Abstract

This thesis explores several different aspects in theoretical quantum computing, including

problems in application, implementation and fundamental theories.

First, we investigate the spin bus problem. We primarily focus on the non-local multi-

qubit entanglement state generation and unitary gate construction using the new type of

gates we proposed, the mediated gates. We build a complete set of toolbox to solve and

optimize this problem using all the different mediated gates spin bus could offer. Specifically,

we compare the quantum circuit efficiency with the conventional serial gate implementation

method using a nearest-neighbor SWAP gate and demonstrate that in most cases, using

mediate gates through a spin bus will provide a significant improvement in terms of circuit

depth. As a consequence, it provides a viable and robust solution to the challenges we face

when considering scalability in quantum circuits.

We then turn our attention to a specific implementation of encoded logical qubit, the

exchange-only qubit in a semiconductor triple quantum dot. It has plenty of advantages

compare to other encoded qubit, such as fast gate operations via pure electrical control,

and robustness against global magnetic noise when encoding happens in decoherence free

subspace, etc. We show that there are more things we could do to further improve the

quality of gate operations on such encoded logical qubits. The general idea is similar as in

the context of singlet-triplet qubits and hybrid qubits. One thing is to take full advantage

of the true “sweet spot” of its energy level diagram as the optimal working point, which

provides protection against charge noise. The other is that we could optimize the tunnable

parameters in the pulse sequence by taking into account the knowledge we have about the

device, such as the strength of nuclear field bath (for GaAs triple quantum dot) and the

dephasing rate. Our result shows the upper bounds you could anticipate for specific gate

operations using DC pulse sequences.

Finally, we discuss a more theoretically fundamental problem in quantum computation,

the property of two partite entanglement space. We calculate the separability probability

in the high dimensional space of two rebits, two qubits, and two quaterbits using Monte
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Carlo Sampling methods. Our results match the analytical conjecture almost perfectly for

such three systems. Our method of probing such problems provides a simple but efficient

way to explore the geometrical structure of high dimensional two partite system, such

as the distribution of physical, separable and entanglement states. And the connection

between our numerical simulations and the analytical conjecture proposed earlier might

imply something more fundamental yet to be uncovered.
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Chapter 1

Introduction

The last twenty years have witnessed the rapid advancement of computation powers, based

upon the traditional electrical and computer engineering. Along with that, is the fast

development of microprocessing techniques towards the nanometer scales, which set the

bigger stage for quantum mechanics to reach its potential.

Utilizing the power of quantum mechanics to store, process and transfer information has

long been an intriguing and promising idea [1]. A quantum computer, if realized, is expected

to speed up certain types of computations exponentially [2]. A huge amount of effort has

been devoted into relevant research of a quantum computer on multiple different levels.

On the hardware side, several different implementations have made spectacular progress

towards the goal of building a working quantum computer [3], such as in photons [4, 5],

trapped atoms [6], superconductors [7] and quantum dots [8, 9]. On the software side,

multiple quantum algorithms have been proposed that could offer significant speed up to

solve some of the most difficult problems when compared to their classical counterparts,

such as Shor’s factorization algorithm [2], Grover’s searching algorithm [10] and algorithms

on graph isomorphism problems [11, 12].

With the maturity of modern technology, the ability to control and manipulate mul-

tiple qubits simultaneously is already within reach, which poses challenges along with the

excitement. Large-scale quantum computing is challenging in any qubit implementation.
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So, scalability issue is definitely a key factor that needs to be thoroughly considered for any

implementations to be practically meaningful.

The recent growing and development on experimental quantum computing also provides

us an unforeseen testbed to study fundamental theories in quantum mechanics. Quantum

mechanics, over the course of more than a hundred years history, still has plenty open

questions need to be answered. One such example is quantum entanglement [13]. It’s one

of the most peculiar phenomenon in quantum mechanics that lacks a classical counterpart,

which we still don’t fully understand.

In this thesis, we present our attempt and effort to attack several interesting problems

of the type described above.

1.1 Thesis outline

This thesis is an attempt to give a comprehensive overview of all the work I’ve been involved

during my graduate school. It is organized as follows.

First, in chapter 2, we show the application of spin bus in non-proximal quantum entan-

glement state generation and unitary gate construction on multiple qubits. We particularly

emphasize the aspect of efficiency comparison between the spin bus based protocols ver-

sus the conventional swap gate based serial protocols. In order to address such problem,

we develop a complete numerical solver to try to find the optimal solution. We utilize a

mix of different optimization methods, including both global (genetic algorithm, clustering

algorithm) and local (Nelder-Mead downhill simplex search) optimization methods. We

provide example solution for such problems in the generation of some of the most impor-

tant resources for quantum computation, such as entanglement state as Bell state, W state,

GHZ state, and also gates as CNOT and Toffoli. We demonstrate that in most cases, “me-

diated gates” protocol through a spin bus is indeed superior than conventional swap gate

based methods, and more so when we scale up the computation. We list the comparison as

benchmarks.

Second, in chapter 3, we zoom in onto the microscopic level. We study one particular
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implementation of encoded logical qubit, the exchange-only qubit in a triple quantum dot.

We simulate the dynamic evolution process for such logical qubit under DC pulsed gate, in a

full set of relevant basis states. There are multiple sources of errors that are associated with

such evolution, including both leakage and dephasing. We use the master equation method

the primary tool to model such a process, specifically for Z and X logical qubit rotations.

Knowledges and parameter settings of the device are taken into full account during the

simulation. We show that by operating the qubit at its “sweet spot” in the energy level

diagram and optimizing the pulse parameters, we could achieve reasonably high fidelities

for logical qubit rotations.

The last topic we delve into details is presented in chapter 4. We study the more

fundamental problem about quantum computation, the entanglement and its geometrical

properties for general two partite systems. There’s this very intriguing analytical conjecture

proposed to predict the separability probability in two partite systems, which we showed

previously that it works very well for qubit systems. Now we expand our work into rebit

and quaterbit systems, and test the conjecture again using Monte Carlo Simulations. Our

result still strongly supports the correctness of the conjecture.

Finally, in chapter 5 we provide a brief conclusion for the whole thesis.

We put most of our calculation details into the supplemental materials, which are pre-

sented in the corresponding order.

1.2 Publications List

Each of the three main chapters in this thesis is based on either published work or work to

be submitted. Here, I list all the relevant publications for the results presented.

Chapter 2 is based on Ref. [14], titled Mediated gates between spin qubits, which I

completed with Dr. Dong Zhou, Dr. Yun-Pil Shim, Dr. Sangchul Oh, Prof. Xuedong Hu

and Dr. Mark Friesen. Other closely related work that I’ve contributed to are Ref. [15, 16,

17, 18, 19].

Chapter 3 is based on our work to be submitted, titled Characterizing gate operations
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near the sweet spot of an exchange-only qubit, which I completed with Jo-Tzu Hung, Dr.

Teck Seng Koh, Dr. Yun-Pil Shim, Prof. Susan Coppersmith, Prof. Xuedong Hu, and Dr.

Mark Friesen. Other closely related work that I’ve contributed to is Ref. [20].

Chapter 4 is based on our work to be submitted, titled Numerical Computations of

Separability Probabilities, which I completed with Prof. Robert Joynt. Other closely related

work that I’ve contributed to is Ref. [21].
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Chapter 2

Spin Bus

2.1 Introduction

Quantum dot spin qubits are promising candidates for quantum computing because of their

long decoherence times and their potential to leverage existing semiconductor technolo-

gies [22, 23]. The exchange coupling is a desirable tool for mediating interactions between

spin qubits, because it can be controlled electrostatically and it is typically very fast [9]. In

combination with arbitrary single-qubit operations, the exchange coupling enables univer-

sal quantum computation [8]. When logical qubits consist of two [24] or three [25] physical

qubits in a decoherence-free subsystem, the exchange coupling alone is universal for quan-

tum computation. On the other hand, the intrinsic short-range nature of the exchange

coupling (typically tens of nanometers) imposes strong constraints on the physical archi-

tecture of the spin qubits. These constraints present a significant challenge to scalability

during quantum error correction, particularly for linear qubit architectures, which are typi-

cal for quantum dot spin qubits [26]. Indeed, large-scale quantum computing is challenging

in any qubit implementation, and the complexity of a given quantum circuit could, to a

large extent, determine its success.

In a number of qubit systems, such as nuclear magnetic resonance (NMR), the physical

interactions may be constant or “always on.” This is not necessarily a disadvantage. For
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1J 2J

Figure 2.1: A linear triple-quantum-dot geometry with three electrons. Mediated gates
can be achieved between qubit 1 and qubit 2 by applying simultaneous exchange couplings,
with J1 = J2. At the end of the operation, the ancilla qubit c is restored to its initial state.

example, it has been shown that simultaneous, multiqubit couplings can be used to enable

quantum state transfer [27, 15], and other rudimentary quantum gates [28]. Similar consid-

erations apply to quantum dot spin systems with Heisenberg couplings [29]. Quantum dots

provide unique opportunities for controlling the nature of the interactions. For example,

simultaneous, multiqubit couplings could provide a potential route for enhancing the effec-

tive range of the coupling, in analogy with the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction [30, 31, 32]. When these couplings are arranged into nontrivial topologies, such

as rings, a rich spectrum of quantum gates emerges [33, 34, 35]. However, even simple

topologies, like those considered here, can produce entangling gates that differ from the

existing two-qubit gates in spin qubits [36, 37, 38].

In this paper, we show how to control such simultaneous, multiqubit couplings. The

result is a class of “mediated” quantum gates. We focus primarily on the three-qubit

geometry shown in Fig. 2.1, due to recent experimental progress on triple quantum dots [39,

40, 41]. In this arrangement, the mediated gate acts on the nonproximal qubits 1 and 2,

leaving the ancilla or central qubit c unaffected, at the end of the operation. We characterize

this well-defined gate operation, U2, and show how arbitrary two-qubit states and gates can

be generated using U2 as the sole entangling resource. We also compare the circuit depth

of these mediated gate protocols to more conventional swap-based protocols. Finally, we

explain how long-range mediated gates can be attained by replacing qubit c with a spin

bus.
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2.2 Two-Qubit Mediated Gate, U2

Mediated gate, U2

We begin by characterizing the mediated gate U2. The effective spin Hamiltonian for the

quantum dot geometry in Fig. 2.1 derives from the exchange interaction and takes the form

of nearest-neighbor Heisenberg couplings [8], given by

H = J1s1 · sc + J2s2 · sc, (2.1)

where sj are spin operators. In typical experiments, the coupling constants J1 and J2 are

controlled by detuning the local electrostatic potentials in a given dot [9]. J1 and J2 can

usually be varied independently as a function of time [39, 40]. For mediated gates, however,

we assume that both couplings are turned on and off simultaneously.

The Hamiltonian H induces three-spin dynamics according to the time evolution oper-

ator U(t) = e−iHt, where we set ~ = 1. However, the mediated gate we seek has the special

form U = U2 ⊗ I, where U2 acts on qubits 1 and 2, and the identity operator I acts on the

ancilla qubit c. In Appendix A, we prove that only one nontrivial mediated gate exists for

the geometry in Fig. 2.1, corresponding to the unique parameter combination J1 = J2 = J

and the special evolution period Tg = 4π/3J (with periodic recurrences [42]). The gate is

robust against control errors, similarly to conventional two-qubit exchange gates. For ex-

ample, if J2 = J1(1 + δ) results in the gate U(δ), where U(0) is the desired gate, and if the

fidelity is defined as [43] F = |Tr[U(δ)†U(0)]|/Tr[U(0)†U(0)], then we obtain a quadratic

error in the fidelity: 1− F ' 0.97δ2 when δ ≤ 0.4.

Any unitary two-qubit operator U2 ∈ SU(4), including U2, can be expressed in the form

of a Cartan decomposition, given by [44, 45]

U2
l.u.
= e

i
2

(c1σx⊗σx+c2σy⊗σy+c3σz⊗σz), (2.2)

where σx, σy, σz are the Pauli matrices, and s = σ/2 in spinor notation. Here, the relation

l.u.
= means “equal, up to local unitary gates,” where the latter may be applied before and/or

after the nonlocal operator. The decomposition is unique when the parameters (c1, c2, c3)
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are restricted to the tetrahedron π − c2 ≥ c1 ≥ c2 ≥ c3 ≥ 0, known as the Weyl chamber.

(Note that special considerations apply to the base of the tetrahedron [45].) There is a

one-to-one mapping between the Weyl chamber and the Makhlin invariants [46], which

provides an alternative representation of the nonlocal properties of U2 ∈ SU(4) (except on

the bottom surface of the chamber). The Cartan decomposition for our two-qubit mediated

gate is given by (c1, c2, c3) = (2, 1, 1)(π/3) and it has the explicit form (see Appendix A for

details)

U2 = −



1
2(1 + i

√
3) 0 0 0

0 1
4(−1 + i

√
3) 1

4(3 + i
√

3) 0

0 1
4(3 + i

√
3) 1

4(−1 + i
√

3) 0

0 0 0 1
2(1 + i

√
3)


. (2.3)

The position of U2 in the Weyl chamber is shown in Fig. 2.2, along with several other

common two-qubit gates.

The gating capabilities of U2 ∈ SU(4) derive from its entangling properties, which can be

characterized in part by its position in the Weyl chamber. The operators known as “perfect

entanglers” lie inside a polyhedron, which fills half of the chamber [45], as shown in Fig. 2.2.

Combined with local unitaries, a perfect entangler can generate a maximally entangled state

from a separable state. For example, if we quantify two-qubit entanglement in terms of the

“concurrence” measure C [47, 48], then a separable state exhibits no entanglement, with

C = 0, while a highly nonlocal state like the singlet Bell state |Ψ−〉 = 1√
2
(|01〉−|10〉) exhibits

maximal entanglement, with C = 1. Thus, for some initial two-qubit state with C = 0, one

application of a perfect entangler produces a state with C = 1. The standard cnot gate is

known to be a perfect entangler [45], as indicated in Fig. 2.2. However, cnot does not arise

naturally from the exchange interaction between spin qubits; it must be constructed from

more basic gates [8]. In contrast, the mediated gate U2 does arise naturally in many-body

spin systems as we have shown; however, its location in the Weyl chamber indicates that it

is not a perfect entangler. Using the methods of [44], we find that U2 achieves a maximum

concurrence of Cmax =
√

3/2 < 1, when acting on a separable state.
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Weyl Chamber

SWAP

CNOT

B

2

A2

A1

A3

c1

c2

c3

0

√SWAP

Figure 2.2: A geometric representation of two-qubit SU(4) gate operations. Axes c1, c2, and
c3 are defined in Eq. (2.2). The Weyl chamber corresponds to the tetrahedron 0-A1-A2-A3,
while the gates known as perfect entanglers lie inside the shaded region [45]. The coordinates
for other special gates are given by b = (π2 ,

π
4 , 0), cnot = (π2 , 0, 0), swap = (π2 ,

π
2 ,

π
2 ), and√

swap = (π4 ,
π
4 ,

π
4 ).

A universal quantum processor must be able to generate arbitrary entangled states or

implement arbitrary quantum circuits. For example, cnot gates combined with single-

qubit unitaries are known to be universal [49, 50, 51]. Any two-qubit entangling gate U2

can replace cnot in this scheme [52], although the entangling capabilities of the gate will

affect the overall circuit depth. In the remainder of this section, we explore methods for

generating arbitrary entangled states and entangling gates using the mediated gate U2, and

we determine the circuit depth of such protocols.
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Generation of arbitrary states

Our goal here is to construct arbitrary, two-qubit, entangled pure states between qubit 1

and qubit 2 in the geometry shown in Fig. 2.1, using the mediated gate U2 as our nonlocal

entangling resource. Allowing for local operations and classical communication (LOCC),

it is possible to transform maximally entangled states, such as Bell states, into arbitrary

pure states [53]. We therefore focus on using U2 to generate Bell states. For simplicity, we

ignore global phase factors throughout this paper.

The strategy we adopt is to apply U2 repeatedly, assisted by single-qubit unitary rota-

tions U1, as needed:

|ψ〉 = (U1 ⊗ U1)[U2(U1 ⊗ U1)]n|00〉. (2.4)

Note that each application of U1 here represents an arbitrary rotation, and that, in general,

the rotations can all be different.

We would like to be able to compare the speed or efficiency of disparate gating protocols,

particularly between mediated and conventional gates. The most convenient measure of this

efficiency is the “circuit depth,” which we define here as the total number of exchange gates.

For example, in Eq. (2.4), the circuit depth is equal to n. For conventional quantum dot

circuits, there may be cases where it is possible to implement gates between different pairs

of qubits simultaneously, due to physical separation. We define the circuit depth of such

parallel gates to be 1, since they occur simultaneously. On the other hand, conventional

circuits typically require intermediate swap gates to be applied sequentially when the qubits

are nonproximal, causing the circuit depth to increase by 1 with each swap application.

This notion of circuit depth plays an important role in the gate times and fidelities of

quantum circuits, and we speak of circuit depth throughout the following discussion. To

conclude, we note that since U2 is not a perfect entangler, the value of n in Eq. (2.4) must

be greater than 1 when we generate a Bell state.

We have solved Eq. (2.4) numerically, obtaining several two-qubit states of interest. Our

procedure involves maximizing the state fidelity, f = |〈ψdes|ψactual〉|2, where |ψactual〉 is the

outcome of Eq. (2.4), and |ψdes〉 is the desired outcome. The two-qubit mediated gate used
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Figure 2.3: Quantum circuit for Bell state generation. (a) A quantum circuit for generating
the singlet Bell state |Ψ−〉 = 1√

2
(|01〉−|10〉) (up to a global phase), using the mediated gate

U2, given in Eq. (2.3). Here, the single qubit rotations are defined as Rα(θ) = e−
i
2
θσα , where

α = x, y, z. The rotation angles are given by θ1 = − arccos(1
3), θ2 = −1

6π−arctan 4
√

2−3
√

3
5 .

(b) An efficient Bell-state protocol between nonproximal qubits, based on nearest-neighbor,
pairwise gates. Here, h is the Hadamard gate and x is the Pauli gate σx, corresponding to
a π rotation about the x axis of the Bloch sphere (up to a global phase). In this figure,
and several other subsequent figures, we note that the central ancilla spin c mediates the
multi-qubit gates. The initial state of the ancilla |χ〉 is arbitrary, and it returns to its initial
state at the end of the operation. For completeness, we include c in these circuit diagrams
and use filled circles to indicate the qubits being acted on.

in the simulations is given by Eq. (2.3), and the individual single-qubit rotations U1 are

determined using global optimization methods, as described in Appendix B. In principle,

we could also allow the circuit depth n to vary. However, we find that maximally entangled

Bell states can already be obtained when n = 2. The resulting circuit for the singlet Bell

state |Ψ−〉 = 1√
2
(|01〉 − |10〉) is shown in Fig. 2.3(a). Other Bell states can be generated in

a similar fashion.

We can compare our mediated gate protocol to the conventional Bell-state protocol

based on nearest-neighbor gates, as shown in Fig. 2.3(b). In the latter case, cnot is used

to generate the Bell state, while the swap gates are used to make the qubits proximal. The

minimal circuit depth needed to construct cnot is 2 [8]. Comparing Figs. 2.3(a) and 2.3(b),

we obtain an exchange gate circuit depth of n = 2 for the mediated gate protocol and n = 4
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for the swap-based protocol. The mediated gate therefore offers distinct advantages for

generating arbitrary states.

Experimental proposal for a triple quantum dot

Triple quantum dots have been investigated in several laboratories [40, 41]. Here, we suggest

a specific protocol for generating a Bell state in a triple quantum dot, using the mediated

gate protocol in Fig. 2.3(a). Our proposal includes the supporting initialization and veri-

fication steps, and it is based on existing experimental methods. We note that Bell states

can also be produced via standard, conventional (i.e., nonmediated) techniques [9]. The

purpose of this section is simply to outline a proof-of-principle experiment that employs

mediated gates.

To generate a Bell state using mediated gates, we must first initialize the triple dot

into the separable state |0〉1|χ〉c|0〉2, as shown on the left in Fig. 2.3(a). There are two

common procedures for initializing quantum dot spin qubits: the preferential loading of

single-electron spin ground states (|0〉1 and |0〉2) in a large magnetic field [54], and the

preferential loading of a two-electron singlet state (|S〉1) [9]. The latter can be transformed

into the spin ground state of a double quantum dot (|0〉1|0〉c) by adiabatically detuning the

double dot in a moderate magnetic field [9]. Both of these methods require a magnetic field,

and we have confirmed that the protocol shown in Fig. 2.3(a) is unaffected by a uniform

field, up to an overall phase factor. For the singlet loading method, the desired initial state

is achieved, finally, by performing a swap operation between qubit c and qubit 2. Once

the triple dot has been initialized, the mediated gate protocol is implemented as shown in

Fig. 2.3(a), giving the result |Ψ−〉12|χ〉c.

The verification step is performed most conveniently via spin-to-charge conversion, using

a singlet projection procedure [9]. We first perform a swap operation between qubit c and

qubit 2, so the two spins in the singlet state become proximal: |Ψ−〉12|χ〉c → |Ψ−〉1c|χ〉2.

Dots 1 and c are then detuned, so that the electron in dot c tunnels to dot 1 only if the two

electrons form a singlet, due to the large singlet-triplet energy splitting in a single quantum



13

=l.u.
2 2 2 2

=l.u.

1:

2:

c:

c:

2:

1:

(a) Mediated Gates

(b) Pairwise Gates
SWAP SWAP

CNOT

CNOT

H H
√SWAP√SWAP

( )zR π−

( )yR b π− ( )zR π−

( )zR π−

( )zR π− ( )
2
π

−zR

( )
2
π

zR

=
l.u.

2 2 2 2 2
1:

2:

c:

=
l.u.

1:

2:

c: 2 2 2 2

1( )yR β 2( )zR β 3( )yR β 4( )zR β 5( )yR β 6( )zR β 7( )yR β 8( )zR β

9( )yR β 10( )zR β

1( )yR θ 2( )zR θ 3( )yR θ 4( )zR θ 5( )yR θ 6( )zR θ

7( )yR θ 8( )zR θ 9( )yR θ
10( )zR θ

√SWAP

=
l.u.

2 2 2 2 2
1:

2:

c: B
1( )zR ζ 2( )zR ζ 3( )yR ζ 4( )zR ζ ( )yR π 5( )zR ζ

=c:

2:

1:
SWAP SWAP

√SWAP
√SWAP

(c) Mediated Gates

(d) Pairwise Gates

=c:

2:

1:
SWAP SWAP

SWAP

(e) Mediated Gates

(f) Pairwise Gates SWAP

=l.u. B
SWAPSWAP

√SWAP √SWAP √SWAP
( )zR π ( )

2
π

−yR

1:

2:

c:

(g) Mediated Gates

(h) Pairwise Gates

SWAP

Figure 2.4: A comparison of circuits used to construct some common quantum gates. Each
case presents two results: a mediated gate construction, obtained using global optimization
methods (as described in Appendix B), and a “conventional” circuit, based on nearest-
neighbor, pairwise gates. The pairwise gates require extra swap operations when the qubits
being acted on are not proximal. In the cases shown here, the qubits (1 and 2) are separated
by one ancilla (c). (a), (b) cnot gates. For the mediated gate circuit, we have b =
− arccos(−1/3). The pairwise gate circuit is given in [8]. (c), (d)

√
swap gates. For the

mediated gate circuit, we have θ1 = 0.524π, θ2 = 0.549π, θ3 = 1.015π, θ4 = 0.100π,
θ5 = 0.392π, θ6 = −0.305π, θ7 = −0.437π, θ8 = 0.626π, θ9 = −0.906π, and θ10 =
−0.174π. (These parameters can be obtained up to machine precision. Here, and elsewhere
throughout the paper, we halt the optimization procedure when the objective function is
smaller than 10−14.) For the pairwise gate circuit, we note that swap and

√
swap are

“natural” gates for spin qubits, whose interactions are of the isotropic Heisenberg type. As
a result, the pairwise gate circuits for swap and

√
swap are very simple. (e), (f) swap

gates. For the mediated gate circuit, we have β1 = −0.737π, β2 = −0.465π, β3 = −0.543π,
β4 = 0.700π, β5 = 0.807π, β6 = 0.009π, β7 = −0.278π, β8 = 0.369π, β9 = 0.274π, and
β10 = −0.325π. (g), (h) b gates. For the mediated gate circuit, we have ζ1 = 0.297π,
ζ2 = 0.788π, ζ3 = 0.660π, ζ4 = −1.092π, and ζ5 = 0.579π. For the pairwise gate circuit,
the circuit was constructed by first solving for the b gate in terms of

√
swap gates, using

the global optimization methods described in Appendix B. swap gates were then applied,
to make the qubit states proximal.
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dot. This projection technique requires a moderate (not too large) magnetic field, so that

the singlet remains the ground state of the two-electron dot.

Construction of arbitrary gates

We now consider protocols for generating arbitrary two-qubit gates, using the mediated

gate U2 as an entangling resource, in combination with arbitrary single-qubit gates U1. We

adopt a strategy analogous to Eq. (2.4), given by

U2 = (U1 ⊗ U1)[U2(U1 ⊗ U1)]n. (2.5)

As before, we solve this equation using global optimization techniques, as described in

Appendix B. The results for some familiar gates are shown in Figs. 2.4(a), 2.4(c), 2.4(e),

and 2.4(g). These results appear to have the smallest possible circuit depth, based on

exhaustive searches. None of the gates requires more than five applications of U2.

Our result for cnot is indicated in Fig. 2.4(a). This mediated gate circuit employs four

U2 gates. The corresponding circuit for conventional, pairwise gate operations employs

two
√
swap gates when the qubits are proximal [8]. When the qubits are nonproximal,

additional swap gates are needed, as indicated in Fig. 2.4(b). Thus, for the second-nearest-

neighbor geometry shown in Fig. 2.1, the mediated and conventional cnot circuits have

equal circuit depths, with n = 4.

Figure 2.4 also shows mediated gate results for several other types of gates, as well as

the corresponding conventional, pairwise gate circuits. For the examples shown here, the

mediated gate method has equal or larger circuit depths compared to the pairwise gate

method. The examples where the pairwise gate method is more efficient fall into the SWAP

family, which is the “natural” gate for spin qubits, since it is generated by the isotropic

Heisenberg interaction. There are other, less familiar gates for which the mediated gate

circuit is more efficient; the gate U2 is an obvious example. Generally, we expect that the

mediated gate method should be more likely to improve the circuit depth of larger gates

(e.g., Toffoli) when multiqubit entangling gates like U3 are available, or when the central

spin can be replaced with a spin bus. We discuss both of these examples below.
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There are several well-known techniques for constructing arbitrary two-qubit gates,

which can be adapted for mediated gates. The most efficient method involves the so-

called b gate [55], which is defined as the only two-qubit gate that can generate generic

two-qubit operations from two successive applications. Figure 2.4(g) shows our globally

optimized circuit for a b gate, which employs five U2 gates. This result (together with [55]),

constitutes a formal proof that n ≤ 10 for a mediated gate with optimal circuit depth,

as described in Eq. (2.5). It also forms a constructive protocol for generating an arbitrary

two-qubit gate using 10 U2 gates. However, we note that the bound n ≤ 10 does not appear

to be tight, since none of the gates we have solved requires more than five applications of

U2.

To conclude this section, we consider the scaling properties of the two-qubit mediated

gate scheme for a spin bus geometry [42]. Specifically, we consider an odd-size spin chain

of length N , and two external qubits. When the bus is constrained to its ground-state

energy manifold, it can be treated as a spin-1/2 pseudospin [42]. The effective interaction

between the qubits and the bus pseudospin has a Heisenberg form [56, 15], with an effective

coupling constant J∗ ∝ J/
√
N [42]. We can immediately apply all our three-qubit protocols,

simply by replacing the central qubit in Fig. 2.1 with a bus and replacing J with J∗ when

we calculate the gate period Tg. The resulting bus gate U2 is identical to the two-qubit

mediated gate, and the protocols proceed as before, except that the qubits can now be far

apart. The exchange gate circuit depth for the bus protocol is the same as that for mediated

gates. Specifically, it is independent of N . The gate period Tg scales as
√
N , however,

since Tg ∝ 1/J∗. In contrast, the circuit depth of a conventional gate protocol, based on

pairwise swap gates, is proportional to N , while Tg is independent of N for a given pairwise

operation. Thus, the spin bus architecture has much better scaling properties than the

conventional gate protocol, in terms of both total gate time [O(
√
N) vs. O(N)] and circuit

depth [O(1) vs. O(N)], with immediate consequences for quantum error correction [26].
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2.3 Three-Qubit Mediated Gate, U3

Mediated gate, U3

We now consider the mediated gate geometry shown in Fig. 2.5(a), with three qubits coupled

through a single mediating spin, c. The system Hamiltonian is given by

H = J1cs1 · sc + J2cs2 · sc + J3cs3 · sc, (2.6)

and the time evolution operator is given by U(t) = e−iHt. If qubits 1–3 are arranged in a

linear geometry rather than the “star” geometry shown in Fig. 2.5, then an effective star

geometry can still be achieved by introducing a spin bus architecture [42], where c is an

odd-size bus.

For larger geometries, the group theoretical methods described in Appendix A become

cumbersome. However, for the special case of equal couplings, J = J1c = J2c = J3c, we

can still obtain mediated gates analytically. We do this by computing U(t) in the angular

momentum basis, where it is diagonal [42]. We then transform it to the computational

basis and identify the gate periods t = Tg for which the special decomposition U = U3 ⊗ I

is satisfied. Here, U3 is the mediated gate acting on qubits 1–3, while I is the single-

qubit identity operator acting on spin c. This procedure produces four different mediated

gates [42]. The first gate is the trivial identity operator, obtained at the gate periods Tg =

(8m)π/J (m is an integer). The second gate occurs at the gate periods Tg = (8m+ 2)π/J ,

and takes the form

U3 = i



1 0 0 0 0 0 0 0

0 −1/3 2/3 0 2/3 0 0 0

0 2/3 −1/3 0 2/3 0 0 0

0 0 0 −1/3 0 2/3 2/3 0

0 2/3 2/3 0 −1/3 0 0 0

0 0 0 2/3 0 −1/3 2/3 0

0 0 0 2/3 0 2/3 −1/3 0

0 0 0 0 0 0 0 1



. (2.7)
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The third gate occurs at the gate periods Tg = (8m+ 4)π/J , and is given by U2
3 = −I. The

fourth gate occurs at the gate periods Tg = (8m+ 6)π/J , and is given by U3
3 = −U3.

Generation of arbitrary states

The methods used to generate two-qubit states and gates can also be extended to three-qubit

problems. However, three-qubit protocols are slightly more complicated because they can

involve two-qubit gates, three-qubit gates, or both. The most general scheme for generating

a three-qubit state is shown in Fig. 2.6(a). We note that higher order gates such as the

three-qubit mediated gate U3 can potentially achieve shorter circuit depths, because they

are more parallel than two-qubit gates. The global optimization techniques used to solve

Eq. (2.4) can also be applied to Fig. 2.6(a).

J

J J

J
J

J

J
J

J
J J

(a) (b) (c)

Figure 2.5: Multiqubit “star” geometries for implementing mediated gates. Here, the
qubits are labeled with numbers and the ancilla spins labeled c mediate the gates. (a) The
U3 gate acts on qubits 1–3 when the three qubit couplings J are equal. (b) To generate
the four-qubit cluster state |C4〉, we implement three-qubit mediated gates U3 by turning
on the couplings to three of the qubits at a time. (c) To generate a WN state, we consider
N qubits connected simultaneously to the ancilla spin c, with equal couplings J . In each of
these geometries, the ancilla spin can be replaced with an odd-size spin bus. In this case,
c represents the pseudospin of the bus ground state [42].

There are known to be two nonfungible forms of entanglement for three qubits [57]: the

W -state family, characterized by the symmetric form

|W3〉 =
1√
3

(|001〉+ |010〉+ |100〉), (2.8)

and the Greenberger-Horne-Zeilinger (GHZ)-state family [58], characterized by the sym-
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metric form

|GHZ3〉 =
1√
2

(|000〉+ |111〉). (2.9)

The GHZ state is understood to be maximally entangled for three qubits.

We have applied global optimization methods to obtain |GHZ3〉 and |W3〉, obtaining

the results shown in Figs. 2.6(b)-2.6(d). For |W3〉, we provide two different strategies. One

uses a combination of U2 and U3; the other uses U3 only. They both have the same circuit

depth, n = 2. Remarkably, we find that the GHZ state can be attained using U3 as the

only entangling resource with just a single application:

|GHZ3〉 = (U1 ⊗ U1 ⊗ U1)U3(U1 ⊗ U1 ⊗ U1)|000〉. (2.10)

The circuit is optimal (n = 1), indicating that U3 is a perfect entangler for the three-qubit

GHZ state family [57]. We can compare this result to the conventional, pairwise gating

circuit for |GHZ3〉, which uses two cnot gates [59]. In a quantum dot quantum computer,

this would require at least four exchange gate operations, or n = 4. It is interesting to

note that U3 is locally equivalent to the time evolution operator describing the three-qubit

triangular geometry (evaluated at a special time) [60]. The latter gate is also capable of

generating |GHZ3〉 in a single time step.

Although U3 acts on just three qubits at a time, it is interesting to note that it can

also be used as an entangling resource for larger systems. For example, we can consider

cluster states, which represent an important entanglement family used for one-way quantum

computing [61, 62]. The four-qubit cluster state |C4〉 is defined as

|C4〉
l.u.
=

1

2
(|0000〉+ |0011〉+ |1100〉 − |1111〉). (2.11)

We have solved |C4〉 numerically, for the geometry shown in Fig. 2.5(b). Here, the

ancilla spin c can be connected to each of the four qubits. However, we assume that only

three of the couplings are turned on at a time. For example, U3(1, 2, 3) indicates that the

couplings between c and qubits 1–3 are turned on, thus implementing the gate U3 between
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those three qubits. Hence, we obtain a numerical solution for |C4〉 of the form

|C4〉 =U⊗4
1 U3(1, 2, 3)U⊗4

1 U3(1, 2, 4)U⊗4
1 U3(1, 2, 3)

× U⊗4
1 U3(2, 3, 4)U⊗4

1 |0000〉. (2.12)

Here, U⊗4
1 represents arbitrary single-qubit rotations acting on each of the four qubits.

According to our definition of circuit depth, this protocol corresponds to n = 4.

We can compare our mediated gate solution to a conventional sequence for generating

|C4〉, based on nearest-neighbor pairwise gates. The conventional scheme involves three

sequential applications of the phase gate diag(1, 1, 1,−1), in addition to single-qubit rota-

tions [61, 62]. Since the phase gate is locally equivalent to cnot, it can be decomposed

into two exchange gates plus single-qubit rotations. The resulting circuit depth for the

conventional protocol is therefore n = 6. Thus, again, we find that mediated gates offer a

considerable improvement in terms of circuit depth.

Construction of arbitrary gates

We now turn to the construction of three-qubit quantum gates using U3. As an example,

we determine an explicit gate sequence for generating the Toffoli gate, defined as

UT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



. (2.13)

Our strategy is analogous to the state-generating circuit in Fig. 2.6(a), where we interspersed

U2 or U3 gates with arbitrary single-qubit rotations. Our best result for constructing the

Toffoli gate by this method is a gate sequence containing five U2 gates and seven U3 gates,

giving a total exchange-gate circuit depth of n = 12.
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Figure 2.6: Circuits for 3-qubit entanglement state generation with mediated gates. (a)
A general circuit for generating an arbitrary three-qubit state, using U2 and/or U3 gates.
Note that U2 can act on different pairs of qubits. (b) A circuit for generating a |GHZ3〉
state, using the three-qubit mediated gate U3. (c) A circuit for generating a |W3〉 state,
using both U2 and U3 gates, with θ1 = −0.262π, θ2 = 0.730π, θ3 = −1.356π, θ4 = 0.349π,
θ5 = 1.193π, θ6 = 0.270π, and φ = 1.299π. (d) An alternative circuit for generating a |W3〉
state, using only U3 gates, with θ1 = 0.529π, θ2 = 0.725π, θ3 = −0.608π, and θ4 = −0.137π.
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We can compare our mediated gate solution to a conventional Toffoli gate construction.

A Toffoli circuit using cnot gates as the entangling resource has been presented in [50] and

[63]; it consists of six sequential cnot gates. We can decompose this into a sequence of

nearest-neighbor exchange gates, including intermediate swap gates when necessary. After

identifying the exchange gates that can be performed in parallel, this procedure gives a

circuit depth of n = 16. Alternatively, if we allow other two-qubit gates in this procedure,

in addition to cnot, it can be shown that five sequential two-qubit gates are necessary and

sufficient for implementing a Toffoli gate [64]. However, some of these gates are decomposed

into exchange gate sequences with n > 2. Based on such considerations, it appears that

the mediated gate circuit with a circuit depth of n = 12 for constructing a Toffoli gate is

always more efficient than a conventional gate circuit.

2.4 Mediated Gates, U2N+1 (N > 1)

The previous approach to state generation and gate construction using mediated gates can

be extended to systems with more than three qubits. There are many qubit architectures

of interest. Here, we consider the “star” geometry shown in Fig. 2.5(c). In cases where it

is experimentally challenging to fabricate a star geometry, due to physical constraints, it

may be convenient to replace the central spin c with an odd-size spin bus [42]. In this case,

nontrivial mediated gates can be obtained when an odd number of qubits is simultaneously

coupled to the bus. These multiqubit mediated gates, U2N+1, are highly parallel and

potentially very efficient.

Here, we demonstrate that multiqubit W states can be generated using mediated gates,

with very small circuit depths. The N -qubit W state is defined as

|WN 〉 =
1√
N

(|00 . . . 01〉+ |00 . . . 10〉+ . . .+ |10 . . . 00〉). (2.14)

In Figs. 2.6(c) and 2.6(d) we indicate two methods for generating |W3〉. An alternative

method is shown in Fig. 2.7. This circuit requires a maximally entangled Bell state, |Ψ−〉,

as input. The total circuit depth for this solution (n = 3) is larger than in Figs. 2.6(c) and
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Figure 2.7: A mediated gate circuit for generating |W3〉 using a Bell state as input. Here,
θ1 = −θ2 = arccos(1/4).

2.6(d) because the circuit depth for generating |Ψ−〉 is n = 2. However, the scheme has the

advantage that it may be scalable for odd-size W states.

For the cases N = 1–3, we have numerically verified the result that

|W2N+1〉 = (U1 ⊗ U1)U2N+1(U1 ⊗ U1)|Ψ−〉|0〉⊗(2N−1), (2.15)

which includes the result in Fig. 2.7 for the case N = 1. For all cases, we note that the

single-qubit rotations are applied only to qubits 1 and 2 (the qubits in the Bell state). For

the cases of N = 2, 3, the generating circuits are similar to Fig. 2.7, but with different

angles θ1 and θ2. For each of these cases, the circuit depth is given by n = 3.

A related, probabilistic scheme can be used to generate the even-size W states. We first

generate the odd-size W state, as described above. This state can be expressed as

|W2N+1〉 =
1√

2N + 1
|0〉⊗2N |1〉+

√
2N

2N + 1
|W2N 〉|0〉. (2.16)

Hence, if one of the qubits is measured in the z basis, with outcome 0, then the state of the

remaining qubits will collapse to |W2N 〉. When N is large, this protocol is successful with

a high probability, P = 2N/(2N + 1).

2.5 Summary and Conclusions

In this paper, we developed the concept of a mediated gate between nonproximal qubits.

This gate is implemented by coupling the qubits simultaneously through a central, ancilla
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Table 2.1: Schemes we consider here are based on (i) mediated gates (as described in this
paper), or (ii) conventional pairwise gates. The pairwise gating method requires extra swap
gates when the qubits being acted on are not proximal. (A useful reference for the scaling
of |WN 〉 state using pairwise gates is [65].)

State or gate No. mediated gates No. pairwise gates

|Ψ−〉 2 4
|W3〉 2 2
|WN 〉 3 N − 1
|GHZ3〉 1 4
|C4〉 4 6
cnot 4 4√
swap 4 3

swap 5 3
b 5 5
Toffoli 12 16

qubit, which is restored to its initial state at the end of the operation. We have focused

on two and three-qubit gates, although higher dimensional gates can be obtained in similar

fashion. We investigated protocols, based on global optimization techniques, for generating

arbitrary states and gates, using mediated gates as the sole entangling resource.

Several promising results were obtained using mediated gates, as summarized in Table I.

We showed that a maximally entangled Bell state can be achieved with just two applications

of a mediated gate U2, and we proposed an experimental protocol for implementing this

procedure in a triple quantum dot. We showed that several important two-qubit quantum

gates can be obtained using five or fewer mediated gates, and we proved that ten exchange

gates is the maximum needed for generating an arbitrary two-qubit gate. We showed how

the central ancilla qubit can be replaced with a spin bus, leading to significant improvements

in scaling properties, for both the total gate time and the circuit depth. We also considered

the mediated gates UN with N ≥ 3, and showed how mediated gate methods might be

generalized to higher dimensions.

We find that mediated gates compare favorably with conventional, pairwise gating

schemes, which make use of SWAP gates when qubits are not proximal. For each of the

results reported in Table I, we compare the circuit depths based on mediated gates to those
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involving conventional pairwise gates.
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Chapter 3

Exchange Only Qubit

3.1 Introduction.

A great challenge in quantum computation is to perform prescribed operations with very

small error rates. Logical qubits are important for achieving this [66], since they are funda-

mental for quantum error correction [67]. Moreover, logical qubits can have symmetries that

give rise to so-called sweet spots, at which the effects of noise are suppressed [68]. Several

logical spin qubits have been proposed for quantum dot architectures [8]. Here, we consider

the exchange-only logical qubit [25], formed of three electrons in a triple dot [39, 40, 41], as

illustrated in Fig. 3.1(d). This qubit has the advantage that it has the potential to be very

fast, since all operations can be implemented without spatially varying magnetic fields.

The effects of charge noise can never be fully suppressed, even near a sweet spot [69]. In

this paper, we quantify the effect of sweet spots on gate fidelities by performing theoretical

simulations of pulsed gate operations in an exchange-only qubit. The sweet spot in this

device occurs at the symmetry point shown in Fig. 3.1(b), where the detuning parameters

ε = εM = 0, and the charge-induced fluctuations of the detuning [70] are suppressed, to

leading order. (Charge noise in the tunnel coupling [71] is not suppressed at this point, but is

not thought to be a dominant noise source [72].) As consistent with recent experiments [73],

Z-rotations are performed at the sweet spot, while X-rotations are obtained by pulsing away
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from this point. In principle, the different rotations can be turned on and off independently.

However, in practice it may be necessary to turn on the exchange interactions and magnetic

field at all times, to suppress leakage into the non-logical sector of the Hilbert space [74, 20].

The exchange-only qubit provides an ideal platform for assessing the effect of sweet

spots, since all gate operations are generated by the same physical process (the exchange

interaction [25, 75, 76]). The only difference between X and Z-rotations is their proximity

to the sweet spot. The fidelities of these operations can therefore be used to quantify the

effectiveness of the sweet spot for mitigating charge noise. This is in contrast with logical

qubits where the different rotation axes correspond to different physical processes (e.g.,

exchange vs. magnetic couplings in singlet-triplet qubits [77, 9]).

In Ref. [20], we provided a detailed account of magnetic noise from nuclear spins on the

decoherence of an exchange-only qubit. Here, we simulate realistic gate operations including

quasistatic random Overhauser fields [78] and charge noise [74]. In certain regimes we find

that the main limit on the gate fidelities arises from the Overhauser fields, as consistent with

experimental observations [73]. However, when the gates are properly optimized, we predict

that charge noise should determine the upper bound on gate fidelities. After optimization,

we find that gate fidelities at the sweet spot are typically 20 times better than away from

the sweet spot.

3.2 Theoretical Model.

We model the coherent evolution of the exchange-only qubit using a 3-electron, 3-site Hub-

bard model with the Hamiltonian B

H =
∑
〈i,j〉σ

tij(c
†
iσcjσ + c†jσciσ) + U

∑
j

nj↑nj↓

+
∑
j

εj(nj↑ + nj↓)− gµBB
∑
j

(nj↑ − nj↓)

+ gµB
∑
j

∆Bj(nj↑ − nj↓), (3.1)
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where the labels {i, j} = 1, 2, 3 correspond to dot locations, ↑, ↓, and σ refer to individual

spin sz eigenstates, c†jσ and cjσ are electron creation and annihilation operators, and njσ

is the electron number operator. The first term in Eq. (3.1) describes the tunneling, with

tunnel couplings tij . We assume a symmetric, linear triple dot geometry, as shown in

Fig. 3.1(d), with t12 = t23 ≡ t and t13 = 0. The second term describes the onsite Coulomb

repulsion, with energies U that are the same at every site. The third term describes the local

electrostatic potentials εj . The fourth term describes the Zeeman energy due to a uniform

external magnetic field B = Bẑ, with the Landé g-factor and Bohr magneton µB. The fifth

term describes the local variations of the Zeeman energy due to Overhauser field fluctuations

∆Bj . Here, we take ∆Bj‖B because the lateral components of ∆Bj generate couplings

between Sz manifolds that are highly suppressed in the regime of large Zeeman splittings,

which we consider below. We also ignore Coulomb interactions between electrons in different

dots. The detuning ε = ε1 − ε3 is defined in analogy with experiments [40, 73], and

corresponds to the energy difference between the (2,0,1) and (1,0,2) charge configurations.

For a triple dot, there is also a second, independent detuning parameter [79], which we

define here as εM = ε2 − (ε1 + ε3)/2. In experimental systems, the detunings ε and εM are

controlled by voltages, including VL and VR, which are applied to the top-gates. A typical

charge stability diagram is shown in Fig. 3.1(a) for a fixed value of εM .

The Hilbert space associated with Eq. (3.1) is large. For GaAs-based devices, most

leakage channels can be suppressed by enforcing sizeable energy splittings [20]. As consistent

with recent experiments [73], we therefore consider the energy hierarchy gµBB � J �

gµB∆B > 0, where J is the exchange interaction generated by the tunnel couplings. (In

B, we briefly consider 28Si-based devices, which do not require such an energy heirarchy,

due to the absence of nuclear spins.) Since gµBB is large, the energy spectrum splits

into manifolds of constant total spin Sz. Our simulations focus on the seven states in the

Sz = 1/2 manifold, where the two qubit states are defined in the decoherence free subspace

with S = Sz [25, 73]. For a basis set, we consider the seven eigenstates of Eq. (3.1) when ε =

εM = ∆Bj = 0, consisting of three singly-occupied (1, 1, 1) states, |0〉 =
√

1/3|T0〉13|↑〉2 −
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Figure 3.1: (a) A two-dimensional cut through the charge stability diagram of a triple
quantum dot as a function of top-gate voltages, for a fixed value of the detuning parameter
εM . (b) Energy level diagram of the Sz = 1/2 manifold as a function of the detuning
parameter ε. In the central region, the low energy states |0〉-|2〉 are in the (1,1,1) charge
configuration, while the high energy states are doubly occupied. (c) Bloch sphere repre-
sentation of the logical qubit, with the rotation axes corresponding to J23 = 0 (left) and
J12 = 0 (right). (d) Hubbard model of a triple quantum dot containing three electrons.
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√
2/3|T+〉13|↓〉2, |1〉 = |S〉13|↑〉2, and |2〉 =

√
2/3|T0〉13|↑〉2 +

√
1/3|T+〉13|↓〉2, and four

doubly-occupied states, |3〉 = |S〉1|·〉2|↑〉3, |4〉 = |·〉1|S〉2|↑〉3, |5〉 = |↑〉1|S〉2|·〉3, and |6〉 =

|↑〉1|·〉2|S〉3. Here, the subscript denotes the dot index, |S〉 = 1√
2
(|↑↓〉 − |↓↑〉), |T0〉 =

1√
2
(|↑↓〉 + |↓↑〉), and |T+〉 = |↑↑〉 are the singlet and triplet states of two spins, and |·〉

represents a dot with no electrons. |0〉 and |1〉 are the logical qubit states, |2〉 is the main

leakage state, and the doubly occupied states mediate the exchange interaction.

The gate simulations described below include the full set of seven basis states, in order

to address questions of leakage and decoherence. However it is instructive to consider the

effective Hamiltonian in the {|0〉, |1〉} logical subspace [74],

H =

√
3

4
(J12 − J23)σx −

1

4
(J12 + J23)σz, (3.2)

where J12 and J23 are exchange interactions. The latter may be tuned independently as

a function of the control parameters ε and εM , yielding a continuous set of rotations in

the x-z plane of the Bloch sphere. For example, we could independently set J12 or J23 to

zero, yielding the pair of rotation axes shown in Fig. 3.1(c). From Eq. (3.2), we see that

Z-rotations are obtained when J12 = J23. In B, we show that this requirement is met when

either ε = 0 or εM = 0. We also show that the special combination ε = εM = 0 corresponds

to a detuning sweet spot, because ∂E01/∂ε = ∂E01/∂εM = 0, where E01 is the energy

splitting between the qubit states. Since always-on exchange interactions are needed to

prevent leakage, and since J12, J13 > 0, Eq. (3.2) suggests that we cannot achieve pure X-

rotations. We overcome this problem by implementing a three-step pulse sequence [80]. This

procedure requires moving away from the sweet spot, with consequences for the decoherence

and gate fidelity. Finally, we note that a complete set of single-qubit operations must include

initialization and readout. The latter are accomplished in experiments by adiabatically

tuning the device to the (2, 0, 1) or (1, 0, 2) charge configurations in the far-detuned regime

of Fig. 3.1(b) [73]. In our simulations, we do not investigate readout and initialization; we

consider only the unitary gate operations. Moreover, we assume instantaneous (diabatic)

pulses and do not investigate pulse imperfections. We consider only the errors caused by

charge and nuclear noise sources, and by leakage outside the logical qubit Hilbert space.
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3.3 Gate Simulations.

We simulate the dynamics of the logical qubit gate operations by solving the master equation

dρ(t)

dt
= − i

~
[H, ρ(t)]−D (3.3)

for the 7× 7 density matrix, ρ. The first term on the right-hand side of Eq. (3.3) describes

the unitary evolution, while the second term describes the decoherence.

We consider dephasing from charge noise and random Overhauser fields. The nuclear

fluctuations occur at frequencies much lower than the relevant electronic time scales [81]; we

take them to be quasistatic with a Gaussian distribution width σB = 4 mT, as appropriate

for GaAs [82]. The charge fluctuations occur over a range of frequencies [72]. Here, we model

them as either “fast” (compared to qubit gate frequencies), with a characteristic Markovian

dephasing rate Γ ∼ 1 GHz [83], or “slow” (quasistatic), with a Gaussian distribution width

σε = 5 µeV [84, 85].

We consider two types of fast charge noise. The virtually occupied states |3〉-|7〉 mediate

exchange interactions, but they also contribute to double occupation dephasing errors of

the form [86] DU =
∑

i
Γ
2 [ni↑ + ni↓, [ni↑ + ni↓, ρ]]. We also consider direct dephasing Dε of

the singly occupied states |0〉-|2〉, with rates that depend on the derivative of the energy

splitting Eij between eigenstates |i〉 and |j〉 with respect to the detuning [81]. We assume

that contributions from the individual detuning parameters contribute in quadrature, with

the dephasing rates γij = Γ[(∂Eij/∂ε)
2 + 2(∂Eij/∂εM )2]1/2. Here, the factor of 2 reflects

the relative magnitudes of the ε and εM terms in the effective 2 × 2 Hamiltonian for the
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logical qubit states B. The resulting dephasing matrix is given by

D = DU +Dε = (3.4)

0 γ01ρ01 γ02ρ02 Γρ03 Γρ04 Γρ05 Γρ06

γ01ρ
∗
01 0 γ12ρ12 Γρ13 Γρ14 Γρ15 Γρ16

γ02ρ
∗
02 γ12ρ

∗
12 0 Γρ23 Γρ24 Γρ25 Γρ26

Γρ∗03 Γρ∗13 Γρ∗23 0 4Γρ34 3Γρ35 Γρ36

Γρ∗04 Γρ∗14 Γρ∗24 4Γρ∗34 0 Γρ45 3Γρ46

Γρ∗05 Γρ∗15 Γρ∗25 3Γρ∗35 Γρ∗45 0 4Γρ56

Γρ∗06 Γρ∗16 Γρ∗26 Γρ∗36 3Γρ∗46 4Γρ∗56 0



.

We treat the slow fluctuations of the detuning and Overhauser fields by numerically

solving the 49 coupled real differential equations in Eq. (3.3) for a fixed noise realization B.

We then repeat the calculations for 625 realizations of Overhauser field fluctuations and

961 realizations of detuning fluctuations, and perform the appropriate Gaussian averages.

The simulations are performed on the Open Science Grid at the University of Wisconsin-

Madison [87]. The results reported here represent > 23 compute years.

3.4 Gate Optimization.

We begin by considering Z(π) rotations of the logical qubit. As described above, these

operations are performed at the sweet spot ε = εM = 0. Fluctuations of the detuning and

the Overhauser fields give rise to errors within the qubit subspace as well as leakage. We

monitor these effects by performing quantum process tomography (QPT) B, beginning the

simulations in four different initial states, and comparing the final results to the ideal final

states for a fixed value of the tunnel coupling t. In this procedure, the evolution period

τ is treated as a variable. The optimal value of τ is chosen by maximizing the fidelity F

obtained from QPT, with results shown in Fig. 3.3. For small t, the rotations are slow,

and the fidelity is strongly suppressed by the quasistatic random Overhauser fields. For

large t, the rotations are fast, and the fidelity is determined by a combination of charge
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noise and leakage. Since the leakage process is coherent, the projection of the full density

matrix onto the logical qubit subspace undergoes oscillations, as seen in the lower inset of

Fig. 3.3. These oscillations are severe for large tunnel couplings, causing a deterioration of

the fidelity as seen in the main figure.

We also investigate X(π) rotations of the logical qubit. As noted above, it is not possible

to perform a direct rotation around x̂; accurate rotations require multi-pulse gate sequences.

Here, we consider a three-step procedure [80] that can be visualized as shown in the lower

inset of Fig. 3.4. The sequence consists of (i) a π-rotation around the −(x̂+ ẑ)/
√

2 axis on

the Bloch sphere, (ii) a Z(π) rotation, and (iii) a final π-rotation around the −(x̂ + ẑ)/
√

2

axis. For steps (i) and (iii), the values of ε and εM that determine the axis tilt are not known

a priori ; we find them by performing fidelity simulations for the desired gate operations in

the absence of detuning and nuclear fluctuations. The results are shown in Fig. 3.2 for a

fixed value of t, with the optimal values of ε and εM indicated by a red star. This calibration

procedure is then repeated for other values of t. The three-step protocol is then optimized,

step by step, by performing simulations to determine the evolution period τ that maximizes

the fidelity of each step. The final fidelities of the three-step X(π) protocol are shown in

Fig. 3.4. We observe results similar to those in Fig. 3.3. However, the effects of leakage and

charge noise are more severe because steps (i) and (iii) are not performed at sweet spots.

The suppression of the fidelity due to leakage is most obvious at large t. The lower inset

shows a typical evolution projected onto the logical qubit Bloch sphere.

3.5 Results and Discussion.

The X and Z-rotation protocols used in Fig. 3.3 3.4 are different. However, by comparing

fidelities obtained using QPT, we can compare the final results effectively. We observe that

maximal fidelities (or minimal infidelities, 1 − F ) occur over a range of moderate to large

tunnel couplings, t ' 5-20 GHz, that depends on the Hubbard repulsion parameter U . Our

results also depend on the local field gradients ∆Bj , which determine the leakage rate. The

values of ∆Bj considered here are typical for GaAs triple dots. The optimal fidelities in
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Figure 3.2: Fidelity of π-rotations around the axis −(x̂ + ẑ)/
√

2, in the absence of noise,
corresponding to step (i) of a three-step X(π) rotation protocol [80], for t = 5 GHz. The
red star indicates the optimal values of ε and εM .

Fig. 3.3 3.4 occur on a plateau, whose value is largely determined by the detuning noise.

This is not the same conclusion reached in [73], where fidelity limits were attributed to

nuclear noise. We speculate that those experiments were performed at lower t, below the

plateau, where nuclear noise predominates. We emphasize that larger t should be used to

achieve maximal fidelities.

Our most important results are obtained by comparing the maximal fidelities of X(π)

and Z(π) rotations. We find thatX-rotations have maximum fidelities∼20 times worse than

Z-rotations, which can be directly attributed to the fact that X-rotations occur away from

the sweet spot, while Z-rotations occur at the sweet spot. The degradation of X-rotations is

most noticeable for large t, where the fidelity is dominated by charge noise. Measurements
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Figure 3.3: Z(π) rotations. Circles include fast and slow detuning fluctuations, while the
longitudinal magnetic field gradients are held fixed at ∆Bz

2 −∆Bz
1 = ∆Bz

3 −∆Bz
2 = 3 mT.

Diamonds include quasistatic fluctuations of the Overhauser fields and fast detuning noise,
but no slow detuning fluctuations. Both solutions assume an onsite Coulomb repulsion of
U = 1 meV. For small t, the fidelity is mainly limited by nuclear noise and leakage into
state |2〉, while for large t, the fidelity plateau is mainly limited by charge noise. For very
large t, leakage into the excited charge states causes fidelity oscillations that are nearly
independent of nuclear noise B. The lower inset shows the evolution of the density matrix
projected onto the Bloch sphere of the logical qubit for the tunnel coupling t = 10 GHz; the
small, rapid oscillations are caused by leakage. The upper inset shows results of averaging
over detuning noise for U = 1 meV (circles, as in the main figure), U = 2 meV (triangles),
and U = 3 meV (squares), with larger U yielding higher maximum fidelities.
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Figure 3.4: Final fidelity of X(π) rotations, via the three-step protocol, where step (i)
occurs at the red star in (b), step (ii) occurs at the white star (ε = εM = 0), and step (iii)
occurs at the red star. The circles and diamonds have the same meaning as in 3.3. Here,
the fidelity-limiting mechanisms are similar to 3.3, with a much stronger suppression of the
fidelity at large t, due to leakage and charge noise. The insets are also defined as in 3.3.
Note the large leakage oscillations during steps (i) and (iii) of the protocol.
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of the quantum dot hybrid qubit show a similar degradation of coherence away from a sweet

spot [88, 89]. This suggests that AC gating techniques could yield better fidelities than the

DC pulsing techniques studied here, because the detuning is always centered at the sweet

spot [74]. Indeed, recent experiments on the exchange-only qubit have employed such a

strategy [90]. On the other hand, AC methods tend to produce somewhat slower gates, for

which nuclear noise could be a problem.

Finally, we note that our analysis has focused on GaAs quantum dot devices, where

nuclear noise is known to be important. For Si-based devices, especially isotopically purified

28Si, the nuclear noise can be very small. As a result, Si devices should yield better fidelities

for DC pulsed gates, especially in the low-t regime. (See B.) At higher t, where nuclear

noise is not predominant, Si and GaAs exchange-only qubits should have similar fidelities.

We thank Z. Shi, X. Wu, K. Rudinger, J. Gamble, and C. Wong for helpful discussions.

We also thank the HEP, Condor, and CHTC groups at UW-Madison for computational

support. This work was supported in part by ARO (W911NF0910393), NSF (PHY-1104660

and PHY-1104672), UW-Madison (150 486700 4), and by the United States Department of

Defense. The views and conclusions contained in this paper are those of the authors and

should not be interpreted as representing the official policies, either expressed or implied,

of the US Government.



37

Chapter 4

Separability Probability

4.1 Introduction

The surprising efficacy of complex numbers in describing the physical world has led to

persistent speculation that quaternions might also serve as a fruitful foundation of physical

theories. Quaternions resemble the complex numbers in forming a division ring: they

are the richest such number system that has the very restrictive unique division property

(Frobenius). Thus there is a natural mathematical progression from the real to the complex

to the quaternionic numbers. We might ask if there is a corresponding natural progression

also in physical theories that use these numbers.

Real numbers are sufficient to completely describe rebits, physical objects with two

degrees of freedom whose 2 × 2 density matrices are symmetric real matrices. Complex

numbers describe the usual qubits that have 2 × 2 complex Hermitian density matrices.

Quaterbits are described by 2×2 density matrices with quaternionic entries. These matrices

are Hermitian in the sense that the transpose is the quaternionic conjugate. The conjugate

of a quaternion h = a+ ihb+jc+kd is h = a− ihb−jc−kd. a, b, c, d are real and Hamilton’s

symbols ih, j, k satisfy i2h = j2 = k2 = −1, ihj = −jih = k, etc. The density matrices are

positive and have unit trace in all cases.

Recently, there has been some interesting mathematical work that gives some indication



38

of such a natural progression in the properties of these density matrices. This progression

arises in the context of considering correlations in bipartite systems, i.e., in the 4×4 density

matrices ρ that describe a pair of physical objects. Two objects A and B are said to be

separable if ρ may be written as

ρ =
∑
i

pi ρ
A
i ⊗ ρBi (4.1)

where the real numbers pi satisfy pi ≥ 0 and
∑

i pi = 1. ρAi and ρBi are 2 × 2 density

matrices that refer to the 2 objects individually. Clearly this definition makes sense in all

three number systems, as do the positivity and trace conditions.

Now there is a very fundamental question, first proposed in [91]: what proportion P of

bipartite systems are separable? There is an intriguing conjecture that the formula

P (α) =

∞∑
i=0

f(α+ i), (4.2)

where

f (α) =
q (α) 2−4α−6Γ

(
3α+ 5

2

)
Γ (5α+ 2)

3Γ (α+ 1) Γ (2α+ 3) Γ
(
5α+ 13

2

) , (4.3)

with

q (α) = 185000α5 + 779750α4 + 1289125α3

+ 1042015α2 + 410694α+ 63000, (4.4)

which for simple integral and half-odd-integral values of α gives results that are close to

rational numbers with fairly small denominators, and that the rational numbers P (1/2)

gives the proportion of separable 2-rebit states, and P (1) gives the proportion of separable

2-qubit states. This remarkable result [92, 93] comes from the computation of moments such

as
〈
|ρ|n

∣∣ρPT ∣∣〉 , an application of Zeilberger’s algorithm [94], and numerical evaluation of

Eq. 4.2 to thousands of decimal places. Here the angle brackets refer to an average over

all physical states (i.e., those that satisfy positivity and have unit trace), and the straight

brackets denote the determinant. The average is defined using the measure induced by the

Hilbert-Schmidt metric on the space of density matrices. As we shall see, the α = 1 and
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α = 1/2 conjectures are extremely well-supported. So it is natural to ask if higher values of

α have a physical interpretation. In this paper, we shall focus on the possibility that α = 2

corresponds to quaterbits (quaternion-based bits), though we also present computations for

qubits and rebits. Our approach is to compute P (α) by a Monte Carlo method.

4.2 Qubits

For qubits, the conjecture based on Eq. 4.2 gives

P (1) =
8

33
= 0.24,

where the overbar indicates a repeating decimal.

This conjecture was also supported by numerical evidence [21], with Monte Carlo sim-

ulations yielding

Pest (1) = 0.2424± 0.0002.

This earlier Monte Carlo work used the condition of zero concurrence for separability [47,

48]. This is equivalent to the Peres-Horodecki Criterion (PHC) [95, 96] which states that

to be separable, it is necessary and sufficient for the partial transpose ρPT of the density

matrix ρ to be positive. In the 2-qubit case, the 4× 4 density matrix can be written as

ρ =
1

4
I4 +

1

4

3∑
i,j=0

nij (σi ⊗ σj) , (4.5)

where In is the n× n identity matrix, σ0 = I2, and the σi are the Pauli matrices. The sum

excludes the i = j = 0 term, and nij is thus a real 15-vector. We can use Euclidean measure

to define probabilities in the space, which is equivalent to the Hilbert-Schmidt measure. The

allowed values of nij form a compact and convex subset of R15 whose boundary is set by

the condition thatρ is positive. This set is the generalization of the familiar Bloch sphere for

spin 1/2. Its shape has been described in at least a partial fashion [21, 97], and its volume

has been computed [98]. It lies within the sphere given by
∑3

i,j=0 n
2
ij = 3/4. The 15-ball of

radius
√

3/4 is sampled uniformly, testing both positivity and the PHC, which yields P (1).



40

The sampling method is taken from [99]. In [21], 5 × 1012 points were sampled. We have

now reproduced this calculation, sampling 5× 1011 points. The new result is

Pest (1) = 0.24243± 0.00001.

Thus the numerical results strongly support the conjecture P (1) = 8/33.

4.3 Rebits

The progression aspect of the problem arises already when we consider the same problem

for rebits. Rebits are obtained by setting n02 = n12 = n32 = n20 = n21 = n23 = 0, i.e.,

omitting the imaginary generators in Eq. 4.5. Positivity still requires that
∑
n2
ij ≤ 3/4 for

the coefficients of the nonzero generators. The conjecture is that

P (1/2) =
29

64
= 0.453125.

What is remarkable is that P (1) and P
(

1
2

)
are given by the same formula, changing only the

parameter α. We have performed the Monte Carlo sampling for this case, testing positivity

and the PHC for points in the 9-ball. The result is

P (1/2) = 0.45313± 0.00001, while

29

64
= 0.453125.

We tested 5 × 1011 points. Hence the unified formula is well-confirmed by the numerical

computations for both α = 1/2 and α = 1.

4.4 Quaterbits

Now we consider quaterbits. It is reasonable to conjecture that α = 2 formula should give

the separability ratio for this 26-dimensional case. The conjecture is:

P (2) =
26

323
≈ 0.080495.

We first note that the PHC has not been proven for this case - it is not known whether

positivity of the partial transpose is equivalent to separability. Thus it is very interesting to
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repeat the above calculations for this case. The 2× 2 matrix representation of quaternions

in which h = a + ihb + ic + id → I2a + ibσx + icσy + idσz will be useful. In is the n × n

identity.

Two quaterbits are described by 4 × 4 density matrices ρ with quaternionic entries.

These matrices are self adjoint. Writing the quaternions themselves as matrices we find

ρ− I8

8
= ρ′ =



AI2 q0 q1 q2

q0 BI2 q3 q4

q1 q3 CI2 q5

q2 q4 q5 DI2


,

with

qi =

ai − idi ibi + ci

ibi − ci ai + idi

 , qi =

 ai + idi −ibi − ci

−ibi + ci ai − idi

 .

We must have that A+B+C+D = 0. Defining u = 2A+ 2B, v = 2A+ 2C,w = −2B−2C

and

λijk = σi ⊗ σj ⊗ σk

so that Tr λijkλi′j′k′ = 8 δii′δjj′δkk′ , we find, after a lengthy calculation:

ρ′ = uλ300 + vλ030 + wλ330

+
1

2
a0 (λ010 + λ310) +

1

2
b0 (λ021 + λ321)− 1

2
c0 (λ022 + λ322)

− 1

2
d0 (λ023 + λ323) +

1

2
a1 (λ100 + λ130)− 1

2
b1 (λ201 + λ231)

− 1

2
c1 (λ202 + λ232)− 1

2
d1 (λ203 + λ233) +

1

2
a2 (λ110 − λ220)

− 1

2
b2 (λ121 + λ211)− 1

2
c2 (λ122 + λ212)− 1

2
d2 (λ123 + λ213)

+
1

2
a3 (λ110 + λ220) +

1

2
b3 (λ121 − λ211)− 1

2
c3 (λ122 − λ212)

+
1

2
d3 (λ123 − λ213) +

1

2
a4 (λ100 − λ130)− 1

2
b4 (λ201 − λ231)

+
1

2
c4 (λ202 − λ232)− 1

2
d4 (λ023 − λ233) +

1

2
a5 (λ010 − λ310)

− 1

2
b5 (λ021 − λ321) +

1

2
c5 (λ022 − λ322)− 1

2
d5 (λ023 − λ323)
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Thus

ρ′ =
′∑
ijk

nijkλijk,

where the sum Σ
′

runs only over the combinations

{ijk} = {300} , {030} , {330} , {010} , {310} , {021} ,

{321} , {022} , {322} , {023} , {323} , {100} ,

{130} , {201} , {231} , {202} , {232} , {203} ,

{233} , {110} , {220} , {121} , {211} , {122} ,

{212} , {123} , {213} .

and positivity requires that
′∑
ijk

(nijk)
2 ≤ 7

64
.

To determine P (2) numerically, we sample the 27-ball of radius
√

7/64 uniformly in the

nijk, which, as stated above, is also uniform in the Hilbert-Schmidt metric. We test each

point for PPT and positivity, giving an estimate Pest (2) . 5 × 1011 points are sampled in

the Monte Carlo simulation. We find

Pest (2) = 0.08048± 0.00005.

The numerical results give strong evidence in favor of the conjecture.

4.5 Conclusion

Quaternionic quantum mechanics has been investigated in detail. It can only describe the

observed universe if some superselection rules are added [100]. Rebits do not have a rich

enough mathematical structure to describe the real world - it would be very difficult to

see how a rebit could display Ramsey fringes, for example, since the whole Bloch sphere

is required for the dynamics. Qubits seem to be about right, of course. But it is remark-

able that some mathematical structures overarch the three possibilities. The separability

probability formula in Eq. 4.2 seems to be one of these.
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Chapter 5

Conclusion

In this thesis, we have investigated several different aspects of quantum computing prob-

lems, including applications, implementations and also the fundamentals. We provide some

interesting results and new insights on each topic we’ve covered.

The first major topic we explored in detail is spin bus in chapter 2. We discussed

the challenges need to be overcome in modern quantum computing when most practical

implementations are already in a stage of scaling up. We extend the previous work on this

subject and develop a new concept “mediated gates” using a spin bus to provide a viable

solution to this problem. It usually improves the circuit efficiency significantly compared to

conventional serial method when generating useful entanglement states, or arbitrary multi-

qubit unitary gates. We discuss our method on how to approach and dissect such problems

and build a complete toolbox dedicated for solving this type of problems. Specifically,

we listed the “step-by-step recipes” for the generation of several resources of particular

importance for quantum computing, like Bell state, W-state, GHZ-state, and CNOT, Toffoli

gates. We show how much it improves upon conventional method in terms of circuit depth,

which makes it more robust against noise and more likely to achieve high fidelity to meet

practical needs.

Chapter 3 delves into issues in the effort of physically implementing accurate single

qubit operations, which is the building block for all quantum computation schemes. We
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primarily focus on the exchange-only logical qubit in a semiconductor triple quantum dot,

inspired by the very active and fast developing experiments on this topic. We try to improve

the overall quality of gate operations on such encoded qubit mainly by doing two things.

First, tune the device and operate at the optimal working point, the “sweet spot”. Second,

optimize the pulse sequence in the parameter space to realize the rotation in an optimal

way.

The idea of operating the qubit at its “sweet spot” of the energy level diagram has

emerged as a widely used tool to provide protection for the encoded qubits against charge

noise, such as in the context of singlet-triplet qubit [101, 102] and hybrid qubit [89]. Our

work confirms that it works well for exchange-only qubit as well in a similar fashion. Com-

pare to other implementations of logical encoded qubits, which has only one detuning

parameter to operate on, there are two independent detuning parameters for exchange-only

qubit. We discover that there’s a “true sweet spot” for both detunings for exchange-only

qubit, and it indeeds mitigate the effect of charge noise.

Due to the nature of the logical qubit rotation, for some operations, you have to operate

away from the “sweet spot”, such as in a DC pulsed gate sequence. We demonstrate how

to optimize the tunable parameters to improve the fidelity in such cases. The optimization

is conducted based on very practical estimation of the device, such as the strength of the

nuclear bath and charge noise. And our calculation will point out the optimal fidelity we

could anticipate when conducting such operations.

Finally, in chapter 4, we turn to the more fundamental questions in quantum comput-

ing, the entanglement properties of two partite systems. We investigate the geometrical

structure of physical states, separable states and entangled states and compute the prob-

ability that a bipartite quantum state is separable by Monte Carlo sampling. We expand

upon our previous work on two qubits [21], and calculate the separability probability for

both two rebits and two quaterbits systems. Our numerical results match the analytical

conjecture almost perfectly for such three different cases, which is surprisingly interesting

and might indicate something more fundamental about entanglement space that we don’t
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quite understand yet.

Much effort has been devoted in the study of quaterbit system, in which case the Peres-

Horodecki Criterion for separability has not been proven yet. So, we are actually testing a

double-conjecture here by conducting similar separability probability calculation as in the

two rebits and two qubits case. Our numerical results seems to support both. First, Peres-

Horodecki Criterion is still a valid separability criterion for quaterbit. Second, the analytical

conjecture for general separability probability formula still works for two quaterbits case.
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Appendix A

Supplemental information for

Chapter 2

A.1 Effective Hamiltonian of Odd Size Bus

Hamiltonian

Here we consider the Hamiltonian of the bus plus external qubits system

H = H0 +H ′ = Jb

N−1∑
j=1

sj · sj+1 +
N∑
j=1

Jjsj · Sj , (A.1)

where sj represent bus internal spins, Sj represent external spins. Jb is the uniform bus

internal coupling constant, and Jj is the coupling between the jth bus internal node and

the jth external spin. We consider the case Jj � Jb, so that we could treat the 2nd term as

perturbation.

We use the eigenstates of H0 as our basis states. Assume we have a subspace DA spanned

by a set of basis states with similar energies. Here DA corresponds to the bus ground state

manifold. The complementary subspace DB, excited states manifold, is spanned by basis

states with energies well separated from the energies of the basis states of DA . The
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Schrödinger equation for the eigenvalue problem is, in a matrix form, HAA HAB

HBA HBB


 aA

aB

 = ε

 aA

aB

 . (A.2)

1st order term

Up to the 2nd order term, the effective Hamiltonian of the ground state manifold is given

by

(Heff)AA = H
(0)
AA + H

(1)
AA + H

(2)
AA (A.3)

= (H0)AA + H′AA +
i

2
(H′ABS

(1)
BA − S

(1)
ABH

′
BA), (A.4)

where S
(1)
AB and S

(1)
BA are

S
(1)
kl =

iH′kl

ε
(0)
k − ε

(0)
l

, ∀k ∈ DA, ∀l ∈ DB. (A.5)

By the hermiticity of S,

S
(1)
lk = (S

(1)
lk )∗ =

iH′lk

ε
(0)
l − ε

(0)
k

, ∀k ∈ DA, ∀l ∈ DB. (A.6)

We’ve already known that the 0th order term H
(0)
AA and the 1st order term H

(1)
AA [42],

H
(0)
AA = ε01b = ε0|0b〉〈0b| = ε0| ⇑〉〈⇑ |, (A.7)

H
(1)
AA =

N∑
j=1

J̃
(1)
j Sb · Sj , (A.8)

where the subscript b means bus, and ε0 is the bus ground state energy. The 1st order

effective coupling constant J̃
(1)
j is

J̃
(1)
j = Jj〈0b|szj |0b〉 = Jj〈⇑ |szj | ⇑〉. (A.9)

2nd order term

H
(2)
AA =

i

2
(H′ABS

(1)
BA − S

(1)
ABH

′
BA). (A.10)
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For ∀k, k′ ∈ DA,∀l ∈ DB, we have

H
(2)
kk′ =

i

2
〈k|H′ABS(1)

BA − S
(1)
ABH

′
BA|k′〉 (A.11)

=
i

2

∑
l

(〈k|H′AB|l〉〈l|S(1)
BA|k

′〉 − 〈k|S(1)
AB|l〉〈l|H

′
BA|k′〉)

=
i

2

∑
l

(H′kl
iH′lk′

ε
(0)
l − ε

(0)
k′

− iH′kl

ε
(0)
k − ε

(0)
l

H′lk′) (ε
(0)
k = ε

(0)
k′ )

=
∑
l

H′klH
′
lk′

ε
(0)
k − ε

(0)
l

, ∀l ∈ DB. (A.12)

We could always write the state k, k′, l in terms of the bus spin state λ and external spin

state {σj},

|k〉 = |λb; {σj}〉, (A.13)

|k′〉 = |λ′b; {σ′j}〉, (A.14)

|l〉 = |λl; {σ′′j }〉. (A.15)
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H
(2)
kk′ =

∑
l

H′klH
′
lk′

ε
(0)
k − ε

(0)
l

=
∑

λl;{σ′′j }

1

ε
(0)
k − ε

(0)
l

〈λb; {σj}|H′|λl; {σ′′j }〉〈λl; {σ′′j }|H′|λ′b; {σ′j}〉

=
∑
jj′

∑
λl;{σ′′j }

JjJj′

ε
(0)
k − ε

(0)
l

〈λb; {σj}|sj · Sj|λl; {σ′′j }〉〈λl; {σ′′j }|sj′ · Sj′ |λ′b; {σ′j}〉

=
∑
jj′

∑
λl;{σ′′j }

JjJj′

ε
(0)
k − ε

(0)
l

〈λb|sj|λl〉 · 〈{σj}|Sj|{σ′′j }〉〈λl|sj′ |λ′b〉 · 〈{σ′′j }|Sj′ |{σ′j}〉

=
∑
jj′

∑
λl;{σ′′j }

JjJj′

ε
(0)
k − ε

(0)
l

∑
α,β=x,y,z

〈λb| sαj |λl〉〈{σj}| Sαj |{σ′′j }〉〈λl| s
β
j′ |λ
′
b〉〈{σ′′j }| S

β
j′ |{σ

′
j}〉

=
∑
jj′

∑
λl

JjJj′

ε
(0)
k − ε

(0)
l

∑
α,β=x,y,z

〈λb| sαj |λl〉〈λl| s
β
j′ |λ
′
b〉〈{σj}| Sαj S

β
j′ |{σ

′
j}〉. (A.16)

H
(2)
AA =

∑
kk′

|k〉H(2)
kk′〈k′| (A.17)

=
∑

λb;{σj}

∑
λ′b;{σ

′
j}

|λb; {σj}〉H
(2)
kk′〈λ′b; {σ′j}|

=
∑

λb;{σj}

∑
λ′b;{σ

′
j}

|λb; {σj}〉
∑
jj′

∑
λl

JjJj′

ε
(0)
k − ε

(0)
l

×

∑
α,β

〈λb| sαj |λl〉〈λl| s
β
j′ |λ
′
b〉〈{σj}| Sαj S

β
j′ |{σ

′
j}〉〈λ′b; {σ′j}|

=
∑
λbλ
′
b

∑
jj′

∑
λl

JjJj′

ε
(0)
k − ε

(0)
l

∑
α,β

〈λb| sαj |λl〉〈λl| s
β
j′ |λ
′
b〉|λb〉〈λ′b|Sαj S

β
j′

=
∑
jj′

∑
α,β

∑
λbλ
′
b

∑
λl

JjJj′

ε
(0)
k − ε

(0)
l

〈λb| sαj |λl〉〈λl| s
β
j′ |λ
′
b〉|λb〉〈λ′b|Sαj S

β
j′ . (A.18)

Consider the state |λb〉, |λ′b〉 could be | ⇑〉 or | ⇓〉, which gives 4 possible combinations. And

α, β could be (x, y, z) or (+,−, z), which gives 9 possible combinations. So in total, there

will be 36 terms in the above summation. Here we expand those terms in terms of creation

and annihilation operator (+,−, z) by using

sj · Sj = sαj S
α
j =

1

2
(s+
j S
−
j + s−j S

+
j ) + szjS

z
j . (A.19)
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By carefully analyzing the total z component of angular momentum of each term, there are

10 non-zero terms,

H
(2)
AA =

∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

4
〈⇑ |s+

j |λl〉〈λl|s
−
j′ | ⇑〉| ⇑〉〈⇑ |S

−
j S

+
j′ +

1

4
〈⇓ |s+

j |λl〉〈λl|s
−
j′ | ⇓〉| ⇓〉〈⇓ |S

−
j S

+
j′

+
1

2
〈⇑ |s+

j |λl〉〈λl|s
z
j′ | ⇓〉| ⇑〉〈⇓ |S−j S

z
j′ +

1

4
〈⇑ |s−j |λl〉〈λl|s

+
j′ | ⇑〉| ⇑〉〈⇑ |S

+
j S
−
j′

+
1

4
〈⇓ |s−j |λl〉〈λl|s

+
j′ | ⇓〉| ⇓〉〈⇓ |S

+
j S
−
j′ +

1

2
〈⇓ |s−j |λl〉〈λl|s

z
j′ | ⇑〉| ⇓〉〈⇑ |S+

j S
z
j′

+
1

2
〈⇑ |szj |λl〉〈λl|s+

j′ | ⇓〉| ⇑〉〈⇓ |S
z
jS
−
j′ +

1

2
〈⇓ |szj |λl〉〈λl|s−j′ | ⇑〉| ⇓〉〈⇑ |S

z
jS

+
j′

+ 〈⇑ |szj |λl〉〈λl|szj′ | ⇑〉| ⇑〉〈⇑ |SzjSzj′ + 〈⇓ |szj |λl〉〈λl|szj′ | ⇓〉| ⇓〉〈⇓ |SzjSzj′
)
. (A.20)

Let’s reorganize them into pairs as follows,

H
(2)
AA =

∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

4
〈⇑ |s+

j |λl〉〈λl|s
−
j′ | ⇑〉| ⇑〉〈⇑ |S

−
j S

+
j′ +

1

4
〈⇓ |s−j |λl〉〈λl|s

+
j′ | ⇓〉| ⇓〉〈⇓ |S

+
j S
−
j′

+
1

4
〈⇓ |s+

j |λl〉〈λl|s
−
j′ | ⇓〉| ⇓〉〈⇓ |S

−
j S

+
j′ +

1

4
〈⇑ |s−j |λl〉〈λl|s

+
j′ | ⇑〉| ⇑〉〈⇑ |S

+
j S
−
j′

+
1

2
〈⇑ |s+

j |λl〉〈λl|s
z
j′ | ⇓〉| ⇑〉〈⇓ |S−j S

z
j′ +

1

2
〈⇑ |szj |λl〉〈λl|s+

j′ | ⇓〉| ⇑〉〈⇓ |S
z
jS
−
j′

+
1

2
〈⇓ |s−j |λl〉〈λl|s

z
j′ | ⇑〉| ⇓〉〈⇑ |S+

j S
z
j′ +

1

2
〈⇓ |szj |λl〉〈λl|s−j′ | ⇑〉| ⇓〉〈⇑ |S

z
jS

+
j′

+ 〈⇑ |szj |λl〉〈λl|szj′ | ⇑〉| ⇑〉〈⇑ |SzjSzj′ + 〈⇓ |szj |λl〉〈λl|szj′ | ⇓〉| ⇓〉〈⇓ |SzjSzj′
)
. (A.21)

We could further simplify this expression by considering the following quantitative proper-

ties of the summation:

1. All the matrix elements, such as 〈⇑ |s+
j |λl〉, are real numbers. The bus Hamiltonian is

a real matrix. Under the spin configuration basis, we could always express the bus eigen-

states, such as | ⇑〉, | ⇓〉, and |λl〉, in real vector form. Also, all the spin operators s+
j , s−j ,

and szj , can also be expressed in real matrix form under the same basis,

s+ =

 0 1

0 0

 , s− =

 0 0

1 0

 , sz =

 1 0

0 −1

 . (A.22)
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so we have 〈⇑ |s+
j |λl〉 = 〈λl|s−j | ⇑〉∗ = 〈λl|s−j | ⇑〉, etc.

2. We could exchange indices j and j′ if needed, since they are dummy indices in the sum.

Sum over term 1 and term 2,

∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

4
〈⇑ |s+

j |λl〉〈λl|s
−
j′ | ⇑〉| ⇑〉〈⇑ |S

−
j S

+
j′ +

1

4
〈⇓ |s−j |λl〉〈λl|s

+
j′ | ⇓〉| ⇓〉〈⇓ |S

+
j S
−
j′

)
=
∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

4
〈⇑ |s+

j |λl〉〈λl|s
−
j′ | ⇑〉| ⇑〉〈⇑ |S

−
j S

+
j′ +

1

4
〈⇓ |s−j |λl〉〈λl|s

+
j′ | ⇓〉| ⇓〉〈⇓ |S

−
j S

+
j′

)
=
∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

1

4
〈⇑ |s+

j |λl〉〈λl|s
−
j′ | ⇑〉

(
| ⇑〉〈⇑ |+ | ⇓〉〈⇓ |

)
S−j S

+
j′

=
∑
jj′

JjJj′
∑
λl

〈⇑ |s+
j |λl〉〈λl|s

−
j′ | ⇑〉

4(ε
(0)
k − ε

(0)
l )

1bS
−
j S

+
j′ . (A.23)

Notice that,

〈⇑ |s+
j |λl; s

tot
z = −1

2
〉 = 〈⇓ |s−j |λl; s

tot
z =

1

2
〉, (A.24)

〈λl; stotz = −1

2
|s−j′ | ⇑〉 = 〈λl; stotz =

1

2
|s+
j′ | ⇓〉. (A.25)

Sum over term 3 and term 4,

∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

4
〈⇓ |s+

j |λl〉〈λl|s
−
j′ | ⇓〉| ⇓〉〈⇓ |S

−
j S

+
j′ +

1

4
〈⇑ |s−j |λl〉〈λl|s

+
j′ | ⇑〉| ⇑〉〈⇑ |S

+
j S
−
j′

)
=
∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

4
〈⇓ |s+

j |λl〉〈λl|s
−
j′ | ⇓〉| ⇓〉〈⇓ |S

−
j S

+
j′ +

1

4
〈⇑ |s−j |λl〉〈λl|s

+
j′ | ⇑〉| ⇑〉〈⇑ |S

−
j S

+
j′

)
=
∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

1

4
〈⇑ |s−j |λl〉〈λl|s

+
j′ | ⇑〉

(
| ⇓〉〈⇓ |+ | ⇑〉〈⇑ |

)
S−j S

+
j′

=
∑
jj′

JjJj′
∑
λl

〈⇑ |s−j |λl〉〈λl|s
+
j′ | ⇑〉

4(ε
(0)
k − ε

(0)
l )

1bS
−
j S

+
j′ . (A.26)

Notice that,

〈⇓ |s+
j |λl; s

tot
z = −3

2
〉 = 〈⇑ |s−j |λl; s

tot
z =

3

2
〉, (A.27)
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〈λl; stotz = −3

2
|s−j′ | ⇓〉 = 〈λl; stotz =

3

2
|s+
j′ | ⇑〉. (A.28)

Sum over term 5 and term 6,

∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

2
〈⇑ |s+

j |λl〉〈λl|s
z
j′ | ⇓〉| ⇑〉〈⇓ |S−j S

z
j′ +

1

2
〈⇑ |szj |λl〉〈λl|s+

j′ | ⇓〉| ⇑〉〈⇓ |S
z
jS
−
j′

)
=
∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

2
〈⇑ |s+

j |λl〉〈λl|s
z
j′ | ⇓〉| ⇑〉〈⇓ |S−j S

z
j′ +

1

2
〈⇓ |s−j |λl〉〈λl|s

z
j′ | ⇑〉| ⇑〉〈⇓ |S−j S

z
j′

)
=
∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

1

2

(
〈⇑ |s+

j |λl〉〈λl|s
z
j′ | ⇓〉+ 〈⇓ |s−j |λl〉〈λl|s

z
j′ | ⇑〉

)
| ⇑〉〈⇓ |S−j S

z
j′

=0. (A.29)

Notice that,

〈⇑ |s+
j |λl; s

tot
z = −1

2
〉 = 〈⇓ |s−j |λl; s

tot
z =

1

2
〉, (A.30)

〈λl; stotz = −1

2
|szj′ | ⇓〉 = −〈λl; stotz =

1

2
|szj′ | ⇑〉. (A.31)

Sum over term 7 and term 8,

∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

2
〈⇓ |s−j |λl〉〈λl|s

z
j′ | ⇑〉| ⇓〉〈⇑ |S+

j S
z
j′ +

1

2
〈⇓ |szj |λl〉〈λl|s−j′ | ⇑〉| ⇓〉〈⇑ |S

z
jS

+
j′

)
=
∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(1

2
〈⇓ |s−j |λl〉〈λl|s

z
j′ | ⇑〉| ⇓〉〈⇑ |S+

j S
z
j′ +

1

2
〈⇑ |s+

j |λl〉〈λl|s
z
j′ | ⇓〉| ⇓〉〈⇑ |S+

j S
z
j′

)
=
∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

1

2

(
〈⇓ |s−j |λl〉〈λl|s

z
j′ | ⇑〉+ 〈⇑ |s+

j |λl〉〈λl|s
z
j′ | ⇓〉

)
| ⇓〉〈⇑ |S+

j S
z
j′

=0. (A.32)
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Notice that,

〈⇓ |s−j |λl; s
tot
z =

1

2
〉 = 〈⇑ |s+

j |λl; s
tot
z = −1

2
〉, (A.33)

〈λl; stotz =
1

2
|szj′ | ⇑〉 = −〈λl; stotz = −1

2
|szj′ | ⇓〉. (A.34)

Sum over term 9 and term 10,

∑
jj′

JjJj′
∑
λl

1

ε
(0)
k − ε

(0)
l

×

(
〈⇑ |szj |λl〉〈λl|szj′ | ⇑〉| ⇑〉〈⇑ |SzjSzj′ + 〈⇓ |szj |λl〉〈λl|szj′ | ⇓〉| ⇓〉〈⇓ |SzjSzj′

)
=
∑
jj′

JjJj′
∑
λl

〈⇑ |szj |λl〉〈λl|szj′ | ⇑〉

ε
(0)
k − ε

(0)
l

(
| ⇑〉〈⇑ |+ | ⇓〉〈⇓ |

)
SzjS

z
j′

=
∑
jj′

JjJj′
∑
λl

〈⇑ |szj |λl〉〈λl|szj′ | ⇑〉

ε
(0)
k − ε

(0)
l

1bS
z
jS

z
j′

=
∑
jj′

J̃zzj,j′S
z
jS

z
j′ , (A.35)

where

J̃zzj,j′ = JjJj′
∑
λl

〈⇑ |szj |λl〉〈λl|szj′ | ⇑〉

ε
(0)
k − ε

(0)
l

. (A.36)

We used the fact that,

〈⇑ |szj |λl; stotz =
1

2
〉 = −〈⇓ |szj |λl; stotz = −1

2
〉, (A.37)

〈λl; stotz =
1

2
|szj′ | ⇑〉 = −〈λl; stotz = −1

2
|szj′ | ⇓〉. (A.38)

Put all the calculations above together, we get

H
(2)
AA =

∑
jj′

JjJj′
∑
λl

〈⇑ |s+
j |λl〉〈λl|s

−
j′ | ⇑〉+ 〈⇑ |s−j |λl〉〈λl|s

+
j′ | ⇑〉

4(ε
(0)
k − ε

(0)
l )

S−j S
+
j′ +

∑
jj′

J̃zzj,j′S
z
jS

z
j′ .

(A.39)

Let’s define

Ij,j′ =
〈⇑ |s+

j |λl〉〈λl|s
−
j′ | ⇑〉+ 〈⇑ |s−j |λl〉〈λl|s

+
j′ | ⇑〉

4(ε
(0)
k − ε

(0)
l )

. (A.40)

We could easily show that

Ij,j′ = Ij′,j = I(j, j′, λl), (A.41)

H
(2)
AA =

∑
jj′

JjJj′
∑
λl

I(j, j′, λl)S
−
j S

+
j′ +

∑
jj′

J̃zzj,j′S
z
jS

z
j′ . (A.42)
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Recall that,

S+ = Sx + iSy, (A.43)

S− = Sx − iSy. (A.44)

So,

S−j S
+
j′ = Sxj S

x
j′ + Syj S

y
j′ + i(Sxj S

y
j′ − S

y
j S

x
j′). (A.45)

H
(2)
AA =

∑
jj′

JjJj′
∑
λl

I(j, j′, λl)(S
x
j S

x
j′ + Syj S

y
j′ + i(Sxj S

y
j′ − S

y
j S

x
j′)) +

∑
jj′

J̃zzj,j′S
z
jS

z
j′ . (A.46)

The cross term i(Sxj S
y
j′ − S

y
j S

x
j′) will be gone after the sum over j and j′,

H
(2)
AA =

∑
jj′

JjJj′
∑
λl

I(j, j′, λl)(S
x
j S

x
j′ + Syj S

y
j′) +

∑
jj′

J̃zzj,j′S
z
jS

z
j′ . (A.47)

Let’s define

J̃xxj,j′ = J̃yyj,j′ = JjJj′
∑
λl

I(j, j′, λl). (A.48)

H
(2)
AA =

∑
jj′

J̃xxj,j′(S
x
j S

x
j′ + Syj S

y
j′) +

∑
jj′

J̃zzj,j′S
z
jS

z
j′ . (A.49)

We are not breaking any symmetry here. So we could expect,

J̃xxj,j′ = J̃yyj,j′ = J̃zzj,j′ = J̃
(2)
j,j′ . (A.50)

Then we get the final form of the 2nd order effective Hamiltonian of odd size bus, which is

just spin-spin interaction,

H
(2)
AA =

∑
j 6=j′

J̃
(2)
j,j′Sj · Sj′ , (A.51)

where the 2nd order effective coupling constant J̃
(2)
j,j′ ,

J̃
(2)
j,j′ = JjJj′

∑
λl

〈⇑ |szj |λl〉〈λl|szj′ | ⇑〉

ε
(0)
k − ε

(0)
l

(A.52)

= −JjJj′
∑
λl

〈⇑ |szj |λl〉〈λl|szj′ | ⇑〉

ε
(0)
l − ε

(0)
k

. (A.53)

All the above calculations are supported by numerical simulations.
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A.2 EXISTENCE PROOF FOR U2

Here, we prove that the gate U2, presented in Eq. (2.3) of the main text (and its family),

represents the only solutions to the mediated gate problem for two qubits. For convenience,

we adopt slightly different notation than in the main text, as indicated in Fig. A.1. Spins

1 and 3 are the two nonproximal qubits, while spin 2 is the central ancilla qubit.

aJ bJ

Figure A.1: Two-qubit mediated gate geometry. Here, ancilla qubit 2 mediates gate U2,
which acts on qubits 1 and 3.

We consider the following Hamiltonian for a linear three-qubit array:

H = Ja s1 · s2 + Jb s2 · s3, (A.54)

where sj is the spin operator for qubit j. In principle, Ja and Jb may take any value.

However, we limit our search to the case where the couplings are turned on and off simulta-

neously. Ja and Jb are therefore constant throughout the gate operation. The goal of this

Appendix is to identify specific relations between Ja and Jb that lead to mediated gates.

We make use of the identity [103, 104]

4 si · sj = 2pij − I, (A.55)

where pij is the swap (i.e., transposition) operator between spin i and spin j, and I is the

two-qubit identity operator. Hamiltonian (A.54) can then be rewritten as

H =
1

2
(Jap

12 + Jbp
23)− 1

4
(Ja + Jb). (A.56)
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The time evolution operator is given by

U(t) = e−iHt

= ei(Ja+Jb)t/4e−iQJbt/2

= ei(Ja+Jb)t/4
∞∑
n=0

(−iJbt/2)n

n!
Qn, (A.57)

where ~ = 1 and we have defined

Q ≡ p23 + Jp12, (A.58)

with J = Ja/Jb. Since p23 and p12 are generators of the symmetric group S3, we may

expand Qn in terms of the S3 group elements:

Qn = anp
231 + bnp

312 + cnp
12 + dnp

13 + enp
23 + fnI. (A.59)

Here, pijk is the tripartite, cyclic permutation operator.

Table A.1: Cayley table for the symmetric group S3.

I p12 p13 p23 p231 p312

I I p12 p13 p23 p231 p312

p12 p12 I p231 p312 p13 p23

p13 p13 p312 I p231 p23 p12

p23 p23 p231 p312 I p12 p13

p231 p231 p23 p12 p13 p312 I
p312 p312 p13 p23 p12 I p231

The full set of S3 group operations is listed in Table. A.1. We then deduce the recursion

relations for Qn+1 = QQn:

an+1 = cn + Jdn, (A.60)

bn+1 = dn + Jen, (A.61)

cn+1 = an + Jfn, (A.62)

dn+1 = bn + Jan, (A.63)

en+1 = fn + Jbn, (A.64)

fn+1 = en + Jcn. (A.65)
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These relations can be expressed compactly as

vn+1 = Tvn, (A.66)

where

vn = [fn cn en an bn dn]T , (A.67)

and

T =



0 J 1 0 0 0

J 0 0 1 0 0

1 0 0 0 J 0

0 1 0 0 0 J

0 0 J 0 0 1

0 0 0 J 1 0


. (A.68)

We now solve the recursion problem analytically. The n = 0 term of the summation in

Eq. (A.57) corresponds to the initial condition v0 = [1 0 0 0 0 0]T . Equation (A.66) then

leads to

an =
1

3
[(1 + J)n − (1− J + J2)

n
2 ], (A.69)

bn =
1

3
[(1 + J)n − (1− J + J2)

n
2 ], (A.70)

fn =
1

3
[(1 + J)n + 2(1− J + J2)

n
2 ], (A.71)

cn = dn = en = 0, (A.72)

when n is even, and

cn =
1

3
[(1 + J)n + (2J − 1)(1− J + J2)

n−1
2 ], (A.73)

dn =
1

3
[(1 + J)n − (1 + J)(1− J + J2)

n−1
2 ], (A.74)

en =
1

3
[(1 + J)n + (2− J)(1− J + J2)

n−1
2 ], (A.75)

an = bn = fn = 0, (A.76)
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when n is odd. Performing the sum over n, the time evolution operator can finally be

written as

U(t) =
eiJbt(1+J)/4

3

(
p231

{
cos[Jbt(1 + J)/2]− cos(Jbt

√
1− J + J2/2)

}
+ p312

{
cos[Jbt(1 + J)/2]− cos(Jbt

√
1− J + J2/2)

}
+ I

{
cos[Jbt(1 + J)/2] + 2 cos(Jbt

√
1− J + J2/2)

}
− ip12

{
sin[Jbt(1 + J)/2] +

2J − 1√
1− J + J2

sin(Jbt
√

1− J + J2/2)

}
− ip13

{
sin[Jbt(1 + J)/2]− 1 + J√

1− J + J2
sin(Jbt

√
1− J + J2/2)

}
− ip23

{
sin[Jbt(1 + J)/2] +

2− J√
1− J + J2

sin(Jbt
√

1− J + J2/2)

})
. (A.77)

The mediated gates we search for can be decomposed as

U = U2 ⊗ I, (A.78)

where U2 acts on qubits 1 and 3, while I is the single-qubit identity operator acting on spin

2. Condition (A.78) is satisfied when the coefficients of p231, p312, p12, and p23 in Eq. (A.77)

all vanish. The solution is given by

J =
Ja
Jb

= 1, (A.79)

with

cos(Jbt/2) = cos(Jbt), (A.80)

sin(Jbt/2) = − sin(Jbt). (A.81)

We then solve Eqs. (A.80) and (A.81) to obtain the mediated gate periods, t = Tg:

JbTg = 0,
4π

3
,
8π

3
, 4π, . . . . (A.82)

The time evolution operator obtained from Eqs. (A.79)–(A.81) is given by

U(Tg) = eiJbTg/2[I cos(Jbt)− ip13 sin(JbTg)]. (A.83)
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Equation (A.82) then leads to three distinct types of gate operations. When JbTg = (4m)π,

with m an integer, we obtain the trivial gate, U(Tg) = I. When JbTg = (4m + 4
3)π, we

obtain the nontrivial result

U(Tg) = e−i
π
3 (

1

2
I − i

√
3

2
p1,3). (A.84)

The decomposition of Eq. (A.78) leads to the identification of the mediated gate U2, given

in Eq. (2.3). When JbTg = (4m+ 8
3)π, we obtain the complementary gate U(Tg) = U2

2 ⊗ I.

Finally, we note that U3
2 = I. Thus, U2, U2

2 = U−1
2 , and I comprise the full set of two-qubit

mediated gates.

A.3 GLOBAL OPTIMIZATION TECHNIQUES FOR

CONSTRUCTING QUANTUM STATES AND

GATES

In this Appendix, we outline the global optimization methods used to solve Eqs. (2.4) and

(2.5), which act on two qubits. Identical methods can also be used to generate states and

construct gates involving more than two qubits.

Equations (2.4) and (2.5) can be summarized as follows. An arbitrary two-qubit quan-

tum circuit is formed of units comprised of one entangling gate, U2, sandwiched between

single-qubit unitary rotations. One or more of these units can be combined, sequentially,

to form a circuit. The single-qubit rotations in this protocol are arbitrary. However, the

entangling gate U2 is fixed, with the form shown in Eq. (2.3).

Three scalar parameters are required, to fully specify an arbitrary single-qubit rotation,

up to a global phase factor (e.g., the Euler angle construction). Here, we adopt the ZYZ

decomposition [50]:

U1(α, β, γ) = e−iασz/2e−iβσy/2e−iγσz/2. (A.85)

In the most general case, the rotations will be applied to both qubits, before and after each

exchange gate. The construction can be further simplified by noting that terms such as
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(U1⊗U1)(U1⊗U1) are redundant and can be collapsed into the form U1⊗U1. Thus, up to

6(n+ 1) rotation angles are required, to specify an arbitrary gate sequence of circuit depth

n.

Here, we employ global optimization techniques, to search through this large parameter

space. We have found that multistart clustering algorithms [105, 106] are particularly

effective for solving this problem. We first define an appropriate objective function to be

minimized. For generating arbitrary states, as in Eq. (2.4), we use the infidelity (1− f) of

the desired final state |ψdes〉 as the objective function, where

f = |〈ψdes|ψactual〉|2 (A.86)

= |〈ψdes|(U1 ⊗ U1)[U2(U1 ⊗ U1)]n|00〉|2.

For generating arbitrary gates, as in Eq. (2.5), we use the operator error norm ε as the

objective function, where

ε = ||U2,des − U2,actual||. (A.87)

The global optimization is performed in two steps. In the first step, we use the multistart

algorithm to identify potential candidate solutions. Then, we use these solutions as a first

guess in a local Nelder-Mead downhill simplex search [107]. The final outcome generally

provides results with very low or very high accuracy. The latter are accepted as valid

solutions. We begin our searches using the minimal exchange gate sequence (n = 1). If no

valid solutions are obtained for a given sequence length, we increment n by 1 and repeat

the procedure. Once an optimal, numerical solution has been obtained, it is sometimes

possible to work backwards, to determine the exact rotation angles, as in Figs. 2.3, 2.4, and

2.6. These identifications can then be confirmed analytically.
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Appendix B

Supplemental information for

Chapter 3

In these Supplementary Materials, we provide details about the calculations and simula-

tions discussed in the main text. Section B.1 describes the Hamiltonian for the Sz = 1/2

spin manifold. Section B.2 provides analytical estimates for the exchange interactions in

certain operating regimes of interest. Section B.3 provides details of the quantum process

tomography methods. Section B.4 describes our statistical averaging procedure for treating

quasistatic charge and nuclear noise. Section B.5 describes some additional results for sim-

ulations with averages over Overhauser field gradients. Section B.6 describes results with

no Overhauser field gradients, consistent with pure, isotopically purified 28Si.
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B.1 Calculation Details

In this section, we describe our Hubbard model Hamiltonian. We evaluate each individual

term of Eq. 3.2 in the main text using the 7D basis set defined by

|0〉 =
1√
6

(|↑↑↓〉+ |↓↑↑〉)−
√

2

3
|↑↓↑〉, (B.1)

|1〉 =
1√
2

(|↑↑↓〉 − |↓↑↑〉) , (B.2)

|2〉 =
1√
3

(|↑↑↓〉+ |↓↑↑〉) +

√
1

3
|↑↓↑〉, (B.3)

|3〉 =
1√
2

(|↑↓〉1 − |↓↑〉1) |·〉2|↑〉3, (B.4)

|4〉 =
1√
2
|·〉1 (|↑↓〉2 − |↓↑〉2) |↑〉3, (B.5)

|5〉 =
1√
2
|↑〉1 (|↑↓〉2 − |↓↑〉2) |·〉3, (B.6)

|6〉 =
1√
2
|↑〉1|·〉2 (|↑↓〉3 − |↓↑〉3) , (B.7)

where the notation |↑↓〉j (or |↓↑〉j) indicates that both electrons are in the same dot, labelled

j = 1, 2, 3, and |·〉j indicates an empty dot. The creation-annihilation operator combina-

tions, c†iσcjσ, are then readily evaluated, as are the particle number operators niσ = c†iσciσ,

for dots i, j, and spins σ =↑, ↓.

We then obtain the following expressions for the individual terms in the Hubbard Hamil-

tonian, Eq. 3.2 in the main text. The tunnel coupling term is given by

Ht =



0 0 0
√

3
2 t −

√
3
2 t −

√
3
2 t

√
3
2 t

0 0 0 − 1√
2
t 1√

2
t − 1√

2
t 1√

2
t

0 0 0 0 0 0 0√
3
2 t − 1√

2
t 0 0 0 0 0

−
√

3
2 t

1√
2
t 0 0 0 0 0

−
√

3
2 t −

1√
2
t 0 0 0 0 0√

3
2 t

1√
2
t 0 0 0 0 0



. (B.8)



64

The onsite Coulomb repulsion term describes the double-occupation energy cost for a

single dot. It is given by

HU =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 U 0 0 0

0 0 0 0 U 0 0

0 0 0 0 0 U 0

0 0 0 0 0 0 U



. (B.9)

The detuning energies are given by

Hε =



εM 0 0 0 0 0 0

0 εM 0 0 0 0 0

0 0 εM 0 0 0 0

0 0 0 ε
2 0 0 0

0 0 0 0 2εM − ε
2 0 0

0 0 0 0 0 2εM + ε
2 0

0 0 0 0 0 0 − ε
2



. (B.10)

Since the basis states all belong to the same Sz = 1/2 spin manifold, they all have the same

Zeeman energy, which we ignore here. The local Overhauser field energies due to nuclear

fluctuations are given by

H∆B = gµB



2
3
(∆Bl − ∆Br)

1√
3
(∆Bl + ∆Br) −

√
2

3
(∆Bl − ∆Br) 0 0 0 0

1√
3
(∆Bl + ∆Br) 0

√
2
3
(∆Bl + ∆Br) 0 0 0 0

−
√

2
3

(∆Bl − ∆Br)
√

2
3
(∆Bl + ∆Br)

1
3
(∆Bl − ∆Br) 0 0 0 0

0 0 0 −∆Br 0 0 0

0 0 0 0 −∆Br 0 0

0 0 0 0 0 ∆Bl 0

0 0 0 0 0 0 ∆Bl


,

(B.11)
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where we define ∆Bl = Bz
1−Bz

2 and ∆Br = Bz
2−Bz

3 to be the differences in local magnetic

fields in the ẑ direction. As explained in the main text, we only consider longitudinal (ẑ)

components of the Overhauser fields, defined by B = Bẑ, as consistent with [81].

Equation 3.3 of the main text then represents a set of 49 real coupled differential equa-

tions. We solve these equations numerically and check that the trace-preserving condition

is satisfied for the final density matrix, when the calculation is complete.

B.2 Exchange Interactions and the Sweet Spot

In this section, we estimate the effective exchange interactions Jij that generate rotations.

We can use the results to provide initial estimates for the evolution periods for gate opera-

tions; we use these estimates to optimize the gates, as discussed in the main text.

We now reduce the full 7 × 7 Hamiltonian, H = Ht + HU + Hε, to an effective 2 × 2

Hamiltonian for the logical qubit states. We consider the ideal case with no nuclear fields,

so ∆Bj = 0 and there is no coupling between the qubit states {|0〉, |1〉} and the leakage

state |2〉. A Schrieffer-Wolff transformation [108] to order t2 in the small parameter t/U

yields the well-known Heisenberg Hamiltonian

Heff = J12 s1 · s2 + J23 s2 · s3, (B.12)

for the 3 × 3 subspace of (1, 1, 1) charge states. Here, J12, J23 ∼ O[t2]. In the absence of

any coupling to the leakage state, we can immediately project Heff onto the 2 × 2 logical

qubit subspace, yielding

Heff = (const) +

√
3

4
(J12 − J23)σx −

1

4
(J12 + J23)σz, (B.13)

where σx and σz are Pauli matrices. Here, we may drop the constant term, giving Eq. (2)

in the main text.

We can also obtain Heff by directly performing a Schrieffer-Wolff transformation of H

onto the 2× 2 subspace, yielding

Heff ' −
2
√

3t2UεMε

D
σx −

2t2U(U2 − ε2
M − ε2/4)

D
σz, (B.14)
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where the denominator is given by

D = U4 − 2(ε2
M + ε2/4)U2 + (ε2

M − ε2/4)2. (B.15)

By comparing Eqs. (B.13) and (B.14), we can identify the individual exchange interactions:

J12 =
4t2U(U2 − (εM + ε/2)2)

D
, (B.16)

J23 =
4t2U(U2 − (εM − ε/2)2)

D
. (B.17)

Diagonalizing Eq. (B.14), we obtain the energy splitting

E01 =
4t2U

√
(U2 − ε2

M − ε2/4)2 + 3 ε2
Mε

2

D
. (B.18)

Since E01 is an even function in the variables ε and εM , we immediately find that

∂E01

∂ε
=
∂E01

∂εM
= 0 (B.19)

when ε = εM = 0, establishing this setting as a detuning sweet spot.

At the sweet spot, we find that

Heff = −2t2

U
σz, (B.20)

corresponding to a Z-rotation. Indeed, we see that Z-rotations are achieved when either

ε = 0 or εM = 0. From Eq. (B.14), we see that rotations around the axis −(x̂ + ẑ)/
√

2,

used in the three-step X(π) protocol described in the main text, are defined by the line

ε2
M + ε2/4 +

√
3 εMε = U2, (B.21)

which correctly predicts the line of highest fidelities in Fig. 3.2 of the main text.

B.3 Quantum Process Tomography

Quantum process tomography (QPT) provides a means of characterizing quantum gates

by comparing the ideal outcomes of gate operations with their actual outcomes. Here, we

follow the QPT recipe given in [50]. We solve the master equation, Eq. (3) in the main
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Figure B.1: Infidelity, 1 − F , of a Z(π) rotation, including quasistatic nuclear noise for
three different values of the intradot Coulomb repulsion: U = 1 meV (black diamonds, as
in the main panel of Fig. 3.3 in the main text), U = 2 meV (triangles), and U = 3 meV
(circles), with larger U values yielding higher maximum fidelities.

text, for a specified pulse sequence for a given gate operation. For each simulation, the

detuning parameters and the local magnetic fields are held constant. Using the simulation

results, we calculate the final fidelity, as outlined below. In the following section, we describe

our method for performing statistical averages of those fidelities, taking into account the

fluctuations of the detuning parameters and the random magnetic fields. We now summarize

the QPT method.

We consider a gate operation E(ρ) acting on an initial state described by the density
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Figure B.2: Fidelity of a three-step X(π) rotation, as described in the main text, including
quasistatic nuclear noise for three different values of the Coulomb repulsion: U = 1 meV
(black diamonds, as in the main panel of Fig. 3.4 in the main text), U = 2 meV (triangles),
and U = 3 meV (circles). All fidelity averages are obtained assuming a Gaussian distribution
of Overhauser field differences with standard deviation σB = 4 mT. Quasistatic noise in the
detuning parameters are not included in this simulation.

matrix ρ. Here, E(ρ) represents the final density matrix, and has no relation to the detuning

parameter. The E operation can be expressed in terms of operation elements Ei, such that

E(ρ) =
∑
i

EiρE
†
i . (B.22)

The operation elements can be decomposed with respect to an orthogonal basis set of
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operators Ẽm for the state space, such that

Ei =
∑
m

eimẼm, (B.23)

where eim are complex numbers. If ρ describes a single qubit, then each Ẽm is a 2 × 2

matrix. A convenient choice is the basis set

Ẽ0 = I, (B.24)

Ẽ1 = σx, (B.25)

Ẽ2 = −iσy, (B.26)

Ẽ3 = σz, (B.27)

where σα are Pauli matrices. We then have

E(ρ) =
∑
mn

ẼmρẼ
†
nχmn, (B.28)

where the process matrix χ is defined as

χmn =
∑
i

eime
∗
in. (B.29)

The process matrix can be fully characterized by initializing the system into linearly in-

dependent basis elements for the density matrix. A convenient choice of initial states is

|0〉, |1〉, |+〉 = (|0〉 + |1〉)/
√

2, and |−〉 = (|0〉 + i|1〉)/
√

2. We then perform appropriate

linear combinations of gate operations on the initial states, as described in [50]. Once the

process matrix has been reconstructed, the process fidelity for a single-qubit rotation is

given by [109]

F̄ =
1

3
(2Tr[χχideal] + 1) , (B.30)

where χideal represents the ideal process matrix.

B.4 Averaging Procedure for Nuclear Field and Detuning

Fluctuations

In the previous section, we described the calculation of QPT fidelities for individual sim-

ulations. Each simulation is performed for a constant value of the detuning parameters
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and the local nuclear fields. However, these parameters are all quasistatic, and we should

perform an average over these quantities, as described in the main text, to describe the

inhomogeneous broadening.

There are two different fluctuation axes for the detuning parameters (ε and εM ) and

two different axes for the nuclear fields (∆Bl and ∆Br). While it is not computationally

feasible to perform accurate, simultaneous averages over four different fluctuation axes, it

is possible to perform simultaneous averages over two axes at a time. We choose to perform

simultaneous averages over the detuning fluctuations and the random Overhauser fields

separately, to distinguish the effects of charge and nuclear noise. These calculations are

computationally intensive.

We first consider the quasistatic random Overhauser fields. When B � ∆B, we only

need to consider the longitudinal components of ∆Bl,r [81]. We model the probability

distributions of these random fields as

P (∆Bl,∆Br) =
1

2πσ2
B

e−(∆B2
l +∆B2

r )/(2σ2
B), (B.31)

where σB is the standard deviation of the random fields. The master equation is solved

over a grid (∆Bl,∆Br) of size Ng ×Ng, with Ng = 25, while keeping ε and εM fixed. The

noise-averaged fidelity is then given by

F =

∫
d∆Bld∆Br

2πσ2
B

F̄ (∆Bl,∆Br, ε, εM )e−(∆B2
l +∆B2

r )/(2σ2
B) (B.32)

=
(∆Bmax −∆Bmin)2

2πσ2
BN

2
g

∑
〈∆Bl,∆Br〉

F̄ (∆Bl,∆Br, ε, εM )e−(∆B2
l +∆B2

r )/(2σ2
B). (B.33)

In our simulations, we choose ∆Bl and ∆Br in the range (-12 mT,+12 mT), and σB=4 mT,

as consistent with [82].

Similarly, we consider fluctuations of the detuning parameters keeping the local magnetic

fields fixed. We model the fluctuation probability distribution as

P (∆ε,∆εM ) =
1

2πσ2
ε

e−(∆ε2+∆ε2M )/(2σ2
ε) (B.34)
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Figure B.3: Comparison of gate infidelities, 1 − F , for perfect, isotopically purified 28Si
(purple squares) and GaAs (red circles) in the presence of detuning fluctuations. The
GaAs results are identical to the red circles in Fig. 3.3 3.4 of the main text. For 28Si,
we assume no Overhauser fields in the dots, while for GaAs, we assume the fixed values
∆Bz

2 −∆Bz
1 = ∆Bz

3 −∆Bz
2 = 3 mT, as for the red circles in Fig. 3.3 3.4. We assume an

intradot Coulomb repulsion of U = 1 meV. Z(π)-rotations, as described in the main text.

over a grid (∆ε,∆εM ) of Ng×Ng points, with Ng = 31. The noise-averaged fidelity is then
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Figure B.4: Comparison of gate infidelities, 1 − F , for perfect, isotopically purified 28Si
(purple squares) and GaAs (red circles) in the presence of detuning fluctuations. The
GaAs results are identical to the red circles in Fig. 3.3 3.4 of the main text. For 28Si,
we assume no Overhauser fields in the dots, while for GaAs, we assume the fixed values
∆Bz

2 −∆Bz
1 = ∆Bz

3 −∆Bz
2 = 3 mT, as for the red circles in Fig. 3.3 3.4. We assume an

intradot Coulomb repulsion of U = 1 meV. Three-step X(π) rotations, as described in the
main text.

given by

F =

∫
d∆εd∆εM

2πσ2
ε

F̄ (ε+ ∆ε, εM + ∆εM ,∆Bl,∆Br)e
−(∆ε2+∆ε2M )/(2σ2

ε) (B.35)

=
(∆εmax −∆εmin)2

2πσ2
εN

2
g

∑
〈∆ε,∆εM 〉

F̄ (ε+ ∆ε, εM + ∆εM ,∆Bl,∆Br)e
−(∆ε2+∆ε2M )/(2σ2

ε)

(B.36)
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In our simulations, we choose ∆ε and ∆εM in the range (-15 µeV,+15 µeV), and σε=5 µeV,

as consistent with [84, 85].

B.5 Nuclear Noise Averages

Figures 3.3 and 3.4 of the main text show comparisons of nuclear and charge noise averaging

results, while the insets show comparisons of charge noise averaging for three different values

of U .

In this section, we extend these results by plotting nuclear noise-averaged results for

three different values of U , as shown in Fig. B.1 B.2. As before, we find that X(π)

rotations have fidelities that are approximately 20 times worse than Z(π) rotations, with

optimal values that improve when U is larger.

B.6 28Si

In previous sections, particularly in Fig. 3.2 3.3 3.4 of the main text and Fig. B.1 B.2 of

the Supplemental Materials, we compared the effects of random nuclear fields and detuning

fluctuations. When we simulated detuning fluctuations, we adopted a fixed, characteristic

magnetic field difference between the two dots. To complete this story, we perform the

same simulation here, setting the static Overhauser fields to zero. This can be viewed as

the ideal case for perfect, isotopically purified 28Si devices, whereas the previous simulations

corresponded to GaAs.

The results of our 28Si simulation are shown in Fig. B.3 B.4, assuming only detuning

fluctuations. We also show the equivalent GaAs simulation for comparison, with the same

detuning fluctuations but setting ∆Bz
2 − ∆Bz

1 = ∆Bz
3 − ∆Bz

2 = 3 mT, as in Fig. 3.3

3.4 of the main text. We see that using 28Si is highly beneficial in two ways. First,

it yields an improvement in the maximum fidelity. Second, it lowers the optimal tunnel

coupling, and therefore the gate speed, to a range that may be more convenient from a

technological perspective. At even lower gate speeds, fast charge noise eventually degrades
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the gate fidelity. At higher tunnel couplings, where the effects of quasistatic charge noise and

leakage to doubly-occupied charge states dominate the fidelity, the presence of a magnetic

field difference is irrelevant. Once again, we find the optimal fidelity for Z-rotations is

approximately one order of magnitude better than for X-rotations, due to the presence of

the sweet spot.
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Appendix C

Supplemental information for

Chapter 4

C.1 Quaternions

A quaternion is defined as h = a + ihb + jc + kd where a, b, c, d are real and Hamilton’s

symbols ih, j, k satisfy i2h = j2 = k2 = −1, ihj = −jih = k, etc. The conjugate is defined

as h = a − ihb − jc − kd. The magnitude squared is hh = hh = a2 + b2 + c2 + d2. Two

quaternions do not commute in general: gh 6= hg. We define taking the real part by tr

h = a.We will find it very convenient to write quaternions as 2 × 2 matrices using the

identifications ih = iσx, j = iσy and k = iσz, so that

h =

a+ id ib+ c

ib− c a− id

 . (C.1)

It is easy to see that this gives the right commutation relations.

Matrices with quaternionic entries can be defined and clearly do not commute. If we

define the adjoint as

M †rs = M sr (C.2)

and the trace as

Tr M =
∑
r

tr Mrr (C.3)
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then we have

(MN)† = N †M † (C.4)

and

Tr (MN) = Tr (NM) (C.5)

but in contrast to complex matrices

MN 6= MN (C.6)

and

(MN)T 6= NTMT (C.7)

in general. If M is self-adjoint then M † = M, and for this case when Mψ = ψλ for some

quaternionic vector ψ, then the eigenvalues λ are real.

C.2 Single Quaterbits

Quaterbits are described by 2 × 2 density matrices ρ with quaternionic entries. These

matrices are self adjoint. Thus we have

ρ =

a q

q a′

 , (C.8)

where a is “real”, i.e., a = a. Using the matrix forms for the individual quaternions, this

becomes a 4× 4 matrix of the form

ρ =
1

4
I +



A 0 a+ id ib+ c

0 A ib− c a− id

a− id −ib− c −A 0

−ib+ c a+ id 0 −A


, (C.9)

which has 5 real parameters A, a, b, c, d. This is more than the 3 real parameters that

characterize a qubit density matrix, but much less than the 15 that characterize a 4 × 4
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2-qubit density matrix. This can be written as

ρ− 1

4
I =



A 0 a+ id ib+ c

0 A ib− c a− id

a− id −ib− c −A 0

−ib+ c a+ id 0 −A


= A σz ⊗ σ0 + a σx ⊗ σ0 − b σy ⊗ σx − c σy ⊗ σy − d σy ⊗ σz. (C.10)

C.3 Two Quaterbits

Quaterbits are described by 4 × 4 density matrices ρ with quaternionic entries. These

matrices are self adjoint. So

ρ− I

8
= ρ′ =



AI2 q0 q1 q2

q0 BI2 q3 q4

q1 q3 CI2 q5

q2 q4 q5 DI2


. (C.11)

When the quaternions are rewritten as 2× 2 matrices, we get an 8× 8 matrix with

I2 =

1 0

0 1

 (C.12)

and

qi =

ai − idi ibi + ci

ibi − ci ai + idi

 (C.13)

qi =

 ai + idi −ibi − ci

−ibi + ci ai − idi

 . (C.14)

We must have that A+B+C+D = 0. Defining u = 2A+ 2B, v = 2A+ 2C,w = −2B−2C

and

λijk = σi ⊗ σj ⊗ σk (C.15)
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so that Tr λijkλi′j′k′ = 8 δii′δjj′δkk′ , we find, after a lengthy calculation:

ρ′ = uλ300 + vλ030 + wλ330

+
1

2
a0 (λ010 + λ310) +

1

2
b0 (λ021 + λ321)− 1

2
c0 (λ022 + λ322)− 1

2
d0 (λ023 + λ323)

+
1

2
a1 (λ100 + λ130)− 1

2
b1 (λ201 + λ231)− 1

2
c1 (λ202 + λ232)− 1

2
d1 (λ203 + λ233)

+
1

2
a2 (λ110 − λ220)− 1

2
b2 (λ121 + λ211)− 1

2
c2 (λ122 + λ212)− 1

2
d2 (λ123 + λ213)

+
1

2
a3 (λ110 + λ220) +

1

2
b3 (λ121 − λ211)− 1

2
c3 (λ122 − λ212) +

1

2
d3 (λ123 − λ213)

+
1

2
a4 (λ100 − λ130)− 1

2
b4 (λ201 − λ231) +

1

2
c4 (λ202 − λ232)− 1

2
d4 (λ023 − λ233)

+
1

2
a5 (λ010 − λ310)− 1

2
b5 (λ021 − λ321) +

1

2
c5 (λ022 − λ322)− 1

2
d5 (λ023 − λ323)

(C.16)

It is sufficient to write

ρ′ =

′∑
ijk

nijkλijk, (C.17)

where the sum Σ
′

runs only over the combinations

{ijk} = {300} , {030} , {330} , {010} , {310} , {021} , {321} , {022} , {322} ,

{023} , {323} , {100} , {130} , {201} , {231} , {202} , {232} , {203} ,

{233} , {110} , {220} , {121} , {211} , {122} , {212} , {123} , {213} .

We may use the condition that Tr ρ2 ≤ 1, together with

Trλijkλi′j′k′ = δii′δjj′δkk′ (C.18)

to get

Trρ2 = Tr

(
ρ′ +

1

8
I

)2

= Trρ′2 + Tr
1

64
I

= Tr

 ′∑
ijk

nijkλijk

2

+
1

8

=
1

8
+ 8

′∑
ijk

(nijk)
2

≤ 1
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so that
′∑
ijk

(nijk)
2 ≤ 7

64
. (C.19)

C.4 Computational Methods

Two Qubits

We wish to find the ratio of the total number of separable states to the total number of

physical states. We write

ρ− 1

4
I =

′∑
i,j=0,3

nijλij , (C.20)

where the nij are real and the prime on the sum indicates that the term i = j = 0 is

omitted. λij = 1
4σi ⊗ σj . We have

Tr ρ2 = Tr

1

4
I +

′∑
i,j=0,3

nijλij

2

=
1

4
+ Tr

′∑
i,j=0,3

nijλij

′∑
k,l=0,3

nklλkl

=
1

4
+

′∑
i,j=0,3

n2
ij Trλ

2
ij

=
1

4
+ 4

′∑
i,j=0,3

n2
ij

≤ 1

so
′∑
ij

(nij)
2 ≤ 3

16
. (C.21)

Hence we need to sample the 15-ball uniformly. Then we check for positivity, which may

be done by computing the eigenvalues, and for separability, which may be done by checking

the positivity of the partial transpose. To get the desired ratio, we discard those ρ that

are not positive, and for the remaining ρ’s just divide the separable ones by the total. The
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partial transpose is given by

(
nT
)
ij

= −nij if j = 2, (C.22)(
nT
)
ij

= nij if j 6= 2. (C.23)

This is because σTi = σi except when i = 2.

Two Rebits

We write the expansion for ρ using only the real generators:

ρ− 1

4
I = n01λ01 + n03λ03 + n10λ10 + n11λ11 + n11λ11 + n22λ22

+n30λ30 + n31λ31 + n33λ33. (C.24)

where the nij are again real. The constraint on the 9-vector −→n is that

−→n 2 ≤ 3

16
.

Now we sample the 9-ball and proceed exactly as we did for 2 qubits. The partial transpose

is given by

(
nT
)
ij

= −nij if j = 2, (C.25)(
nT
)
ij

= nij if j 6= 2. (C.26)

For this case, the only nij that is changed is n22.

Two Quaterbits

We write the expansion for ρ using only the generators λijk with

{ijk} = {300} , {030} , {330} , {010} , {310} , {021} , {321} , {022} , {322} ,

{023} , {323} , {100} , {130} , {201} , {231} , {202} , {232} , {203} ,

{233} , {110} , {220} , {121} , {211} , {122} , {212} , {123} , {213} .
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ρ− 1

4
I = n01λ01 + n03λ03 + n10λ10 + n11λ11 + n11λ11 + n22λ22

+n30λ30 + n31λ31 + n33λ33. (C.27)

where the nij are again real. The constraint on the 27-vector −→n is that

−→n 2 ≤ 7

64
.

Now we sample the 27-ball and proceed exactly as we did for 2 qubits. The partial transpose

is given by (
nT
)
ijk

= −nijk if j = 2, (C.28)(
nT
)
ijk

= nijk if j 6= 2. (C.29)

Monte Carlo Sampling

To get an error estimate for the computation, we consider the volume V of physical states,

each given by some ~n. Let p(~n) = 1/V , so∫
V
p(~n)d~n = 1. (C.30)

Now define the function f(~n) = 1, if ~n is separable, and f(~n) = 0, if not. The quantity we

wish to estimate is

P = 〈f(~n)〉 =

∫
V
f(~n)p(~n)d~n. (C.31)

We do this by taking the finite sum

SN =
1

N

N∑
i=1

f(~ni), (C.32)

with the ~ni each distributed uniformly, i.e., pi(~ni) = p(~ni)1/V . Now note that

〈SN 〉 =
1

N

N∑
i=1

〈f(~ni)〉 = P, (C.33)

and the variance is

V ar(SN ) =
〈
(SN − P )2

〉
=

〈[
1

N

N∑
i=1

f(~ni)− P

]2〉

=
1

N

(
P − P 2

)2 ≤ 1

4N
, (C.34)
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since 0 ≤ P ≤ 1. Chebyshev’s inequality is

Pr (|SN − P | > a) ≤ 1

a2

〈
(SN − P )2

〉
≤ 1

4Na2
. (C.35)

Setting a = 1
2ε
−1/2N−1/2, we find

Pr

(
|SN − P | >

1

2
ε−1/2N−1/2

)
≤ ε. (C.36)

Hence if we want the probability that we are off by more than a = 0.01 to be less than

ε = 0.1, we need

N =
1

4εa2
= 2.5× 104 steps.
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