
Human-Centric Debugging of Entity Matching

by

Fatemah Panahi

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2017

Date of final oral examination: 12/16/2016

The dissertation is approved by the following members of the Final Oral Committee:
Jeffrey F. Naughton, Professor, Computer Sciences
AnHai Doan, Professor, Computer Sciences
Paris Koutris, Assistant Professor, Computer Sciences
Bilge Mutlu, Associate Professor, Computer Sciences
C. David Page Jr., Professor, Biostatistics and Medical Informatics

© Copyright by Fatemah Panahi 2017
All Rights Reserved

i

To my kind mother
my inspiring father

my beloved husband, Majid
our gorgeous son, Mohammad-Reza

ii

acknowledgments

In the Name of Allah, the Beneficent, the Merciful

Above all, I am thankful to Allah (God). I am thankful to him for all the blessings
in my life. This work was not possible without his will and support.

It is my honor that Professor Jeffrey Naughton is my advisor for my graduate
work and this thesis. I want to thank him for giving me the chance to work under his
supervision, and for advising me through this journey. From Professor Naughton,
not only I learned how to perform research, but also I learned many life lessons. His
patience and positive attitude was always a reassurance through this long journey.
He went above an beyond expectations to support me in any ways that he could.

I also want to thank Professor AnHai Doan, for he was like my second advisor
and was involved in some way in most of this thesis. I want to thank both Professor
Naughton and Professor Doan for their enormous encouragement and support as I
was going through big changes in my life with our son’s birth, searching for jobs, as
well as finishing up my thesis.

I thank my other committee members, Professor David Page, Bilge Mutlu, and
Paris Koutris, for kindly accepting to serve on my committee and for their precious
time, input, and feedback on this thesis.

I thank Professor Mary Vernon, for her advice throughout my PhD years. I
would go to her when I had to make hard decisions, and as an external eye she
helped me focus on what is most important. I thank Christopher Re for I improved
my programming skills in the limited time I worked with him.

I thank the students at UW-Madison, specially the students in the databases
group. I enjoyed working with them day-to-day, and they provided valuable input
to my research, papers, and presentations. It is not possible to name all these
students but I would like to name a few. I thnak Arun Kumar, Wentao Wu, Yueh-
Hsuan Chiang, Ian Rae, Xi Wu, Chaitanya Gokhale, Sanjib Das, Pradap Konda,
Adel Ardalan, Paul Suganthan, Haojun Zhang, Ce Zhang, Feng Nui, and Shishir
Prasad. Special thanks to Thanh Do for his advice in preparing for job interviews.
I also thank the group of women in the Computer Sciences department. I really
enjoyed interacting with them around the department as well as in WACM events
(UW-Madison’s chapter of women in computing).

iii

The Computer Sciences department was my home for my undergraduate, grad-
uate, and PhD work. I spent significant amount of my life in this department. I
thank all the professors who taught me or supported me in any form, and all the
administrative staff of the department.

Throughout these years at Madison, I was luckly to have many friends who
made my life pleasurable in these years. I want to thank them all.

I owe my family for my success. I thank my parents who raised me, taught me
value of knowledge, and always encouraged me to learn more. I thank my older
brother and sister for their support. I thank my parents-in-law for their support
of my studies. I am especially indebted to my husband for his enormous support
throughout these years. He believed in me even when I was discouraged and helped
me stay on track for finishing my PhD. He stayed by me for all these years in Madison
even though he had better career opportunies elsewhere. I was extremely happy
being with him and he was the most source of encouragement for me. I also want to
thank our son, for brining hope and freshness to our lives after this long journey.

iv

contents

Contents iv

List of Tables vi

List of Figures vii

Abstract ix

1 Introduction 1
1.1 What is Entity Matching (EM)? 1
1.2 The Entity Matching Process 2
1.3 Human-Centric Entity Matching 6
1.4 Debugging Entity Matching 7
1.5 Related Work 9
1.6 Contributions of the Thesis 12

2 Experience with Real and Abstract Analysts 13
2.1 Introduction 13
2.2 An End-to-End Entity Matching Tool for Analysts 14
2.3 An Abstract Model of an Entity Matching Task for Analysts 36
2.4 Insights from Experience with Real and Abstract Analysts 55

3 Towards Interactive Debugging of Rule-based EM 56
3.1 Introduction 56
3.2 Related Work 58
3.3 Motivating Example 59
3.4 Preliminaries 61
3.5 Early Exit + Dynamic Memoing 63
3.6 Optimal Ordering 68
3.7 Incremental Matching 78
3.8 Experimental Evaluation 82
3.9 Conclusions 90

4 Debugging Entity Matching Data sets 93

v

4.1 Introduction 93
4.2 Categories of Inconsistency in Data sets 94
4.3 A Framework for Finding and Resolving Inconsistencies 98
4.4 Experimental Evaluation116
4.5 Discussions128
4.6 Related Work130
4.7 Conclusions132

5 Conclusions, Limitations, and Future work134
5.1 Conclusions134
5.2 Limitations and Future work134

References136

vi

list of tables

2.1 Overview of student projects. 33

3.1 Notation used in cost modeling and optimal rule ordering study. 69
3.2 Real-world data sets used in the experiments. 83
3.3 Feature computation costs. 85

4.1 Data sets for evaluating effectiveness of rankings. 120
4.2 Analyst performance with different rankings with original data sets. . . 121
4.3 Analyst performance with different rankings with synthetic data sets

(part 1). 122
4.4 Analyst performance with different rankings with synthetic data sets

(part 2). 123
4.5 Quality of classifiers before/after cleanings. 127
4.6 Data sets for evaluating cleaning impact and spatial blocking. 128

vii

list of figures

1.1 A typical entity matching process. 2

2.1 Workflow of analysts in our prototype. 15
2.2 A sample rule set with 2 rules. 17
2.3 A screenshot of statistics for table. 21
2.4 A screenshot of per-attribute statistics. 22
2.5 A screenshot of the search and query features. 23
2.6 A screenshot of the matching summary view. 26
2.7 A screenshot of the matching details view. 27
2.8 A screenshot of the skyline functionality. 29
2.9 A screenshot of the find by feature and threshold functionality. 31
2.10 Performance of simple analyst on consistent data set. 47
2.11 Performance of threshfinder analyst on consistent data set. 47
2.12 Performance of threshfinder analyst on consistent dataset after injecting

non-matching pairs. 50
2.13 Number of rules for simple analyst with consistent dataset. 50
2.14 Number of rules for threshfinder analyst with consistent dataset. 50
2.15 Performance of simple analyst on inconsistent data set. 51
2.16 Performance of threshfinder analyst on inconsistent data set. 52
2.17 Performance of consistent analyst on inconsistent data set. 54

3.1 A typical matching workflow for analysts. 57
3.2 Motivating example. 60
3.3 Run time for different matching function evaluation approaches (Prod-

ucts data set). 84
3.4 Sample rules from random forest. 84
3.5 (A) Actual versus estimated run time. (B) Run time as we increase number

of pairs. (C) Run time as we incrementally add rules. 87
3.6 Incremental run time for matching function changes. 89
3.7 Run time for different matching function evaluation approaches (all data

sets). 91

4.1 Example of incorrect label. 95

viii

4.2 Example of missing feature. 96
4.3 Labeled sample illustration. 99
4.4 Framework for finding and resolving inconsistencies. 100
4.5 Median rank aggregation example. 104
4.6 Spatial blocking illustration. 110
4.7 Average size of random forest trees before and after cleaning. 126
4.8 Cleaning operations proposed for each data set. 127
4.9 Exhaustive search versus spatial blocking. 128

ix

abstract

Entity matching (EM) is the problem of finding data records that refer to the same
real-world entity. For example, the two records (Matthew Richardson, 206-453-
1978) and (Matt W. Richardson, 453 1978) may refer to the same person. It is an
important data integration problem with many applications such as in e-commerce,
healthcare, and national security. Recent work on entity matching has focused
on using machine learning and/or crowdsourcing in order to improve accuracy
and/or scale the current matching solutions despite the fact that this task is typically
done with a human analyst in the loop. Therefore, in this thesis we propose to
work on solutions that acknowledge that humans are in the loop for completing
an entity matching task. We focus on debugging of entity matching, which is an
iterative process by which an analyst improves matching quality. Hence the title,
“Human-Centric Debugging of Entity Matching”.

We build an end-to-end matching system and experiment with it in an e-commerce
setting as well as with students in a graduate data modeling course at UW-Madison.
We also develop an abstract model of the entity matching problem for an analyst
to understand what makes an entity matching problem hard for an analyst. The
insights learned in the above work lead to the following works in the rest of the
thesis: First, we focus on debugging rule-based matchers and we attempt to make it
an interactive process by which an analyst can quickly iterate and find a high quality
matcher. We show that by optimally ordering the rules as well as incrementally
running the matcher on top of previous matching output we can decrease runtime
significantly. And second, we focus on debugging of entity matching data sets. We
develop a framework to help an analyst quickly find and resolve inconsistencies
in a data set. We experiment with seven real-world data sets and demonstrate the
effectiveness of our framework in finding inconsistencies.

1

1 introduction

1.1 What is Entity Matching (EM)?

Entity matching (EM) is the problem of finding data records that refer to the same
real-world entity. For example, the two records (Matthew Richardson, 206-453-1978)
and (Matt W. Richardson, 453 1978) may refer to the same person, and (Apple,
Cupertino CA) and (Apple Corp, California) refer to the same company. Entity
matching is a crucial task for data integration and data cleaning. Therefore, it has
received significant attention and is becoming increasingly important in industry
and among data enthusiasts. For overview surveys and a comparison of different
matching platforms see [16, 23, 29, 46].

There are many use cases for matching in industry. Let us take Walmart as an
example. Walmart may want to find matching products in competitor sites (for
example, Amazon) in order to determine the price for a product. This is called
price matching. Introduction of online marketplaces has expanded the use case
for matching as well. In an online marketplace, a larger company such as Walmart
sells items from smaller vendors on its online shopping website. In this scenario,
different vendors may upload the same item to the marketplace, and these duplicates
need to be identified. Also, companies are interested in selling products stocked
at their stores through their online website. This requires matching products from
the online product database with the store’s product database. Finally, matching is
used for data enrichment. For example, suppose a vendor has uploaded a TV to the
marketplace without specifying the exact resolution. Walmart can partner with a
data provider such as CNET that has complete information about that TV and fill in
the missing value. This requires matching between the Walmart product database
and the CNET data provider’s database.

Given that today data is being collected in every occupation and field, data
enthusiasts are becoming increasingly interested in entity matching [24]. Data
enthusiasts are individuals who do not major in Computer Sciences but are interested
in analyzing data and making conclusions about it. For example, a journalist may
want to match two lists of donors for an election campaign and remove duplicates,
or find donors that contributed to different elections.

2

Database A Database B

Data

pre-processing

Data

pre-processing
Blocking

Record pair

comparison

Classification

Evaluation

Non-

matches
Matches

Potential

matches

Clerical

review

Figure 1.1: A typical entity matching process [9]

Other use cases of matching include a national census, where one would be
interested in generating longitudinal datasets, by matching census data that have
been collected at different instants in time (5 or 10 year intervals). Matching is also
very important in the health sector, where different institutions may record data
about the same individual. Another use case of matching is in national security,
where different states can share information about criminals that commit crimes
across states [9].

So far we have described the entity matching problem and some of its use cases
in an attempt to demonstrate the importance of the problem. We will describe the
steps involved in the entity matching process in the next section.

1.2 The Entity Matching Process

A typical entity matching process is shown in Figure 1.1 [9].

3

The input to this entity matching process are two tables to be matched. The
entity matching output is the matching record pairs from the two tables. In the
following subsections we explain different steps in the entity matching process (see
[9] for more detailed descriptions).

1.2.1 Data Pre-processing

Data stored in the two input tables can vary in format, structure, and content. For
example, in one table date of birth may be stored in one attribute and in the other
table in multiple attributes corresponding to day, month, and year. Therefore, data
needs to be cleaned and standardized before it can be used for matching. The goal
of this step is to make sure that attributes used for matching have the same structure,
and their content follows the same formats [9]. It has been shown that this is a
crucial step to successful entity matching [26]. The major steps involved in data
pre-processing are as follows [9]:

1. Remove unwanted characters and words.

2. Expand abbreviations and correct misspellings.

3. Segment attributes into well-defined and consistent output attributes.

4. Verify the correctness of attribute values.

1.2.2 Blocking

Given table A withm records, and table B with n records, there arem×n potential
matches. Basically, each record from one table needs to be compared with all records
in the other table to allow us to find all the matching pairs of records. However, even
with moderate size tables that have tens of thousands of records the total number
of potential matches could be very large. Suppose the two tables have one million
rows each. The total number of potential matches will be one trillion. Even if we
could do 100000 comparisons per second, it will take 116 days to compare these two
tables.

The majority of the comparisons will be between records that are clearly non-
matches. Through the blocking step we remove clear non-matches from all potential
matches and reduce the number of comparisons. For example, suppose that each

4

product has a category attribute (for example, clothing and electronics). We could
assume that products from different categories are clear non-matches. This will
reduce the task to finding matching products within the same category.

We refer to the set of potential matches left after the blocking step as the “candi-
date record pairs” throughout the rest of this document.

1.2.3 Record Pair Comparison

In order to determine the overall similarity of two records in the candidate record
pairs, we need to do detailed comparisons between those records. Record pair
comparison is done in the following steps:

1. Select attribute pairs: A subset of the attribute pairs are selected to be used
for matching. For example, product title from the Walmart table and product
title from the Amazon table create an attribute pair. The intuition is to select
attribute pairs such that the more similar the two records are across the selected
attribute pairs, the more likely they refer to the same real-world entity.

2. Select features: For each attribute pair one or more features is created. A
feature is specified by an attribute pair and a similarity function. For the above
example, the Walmart and Amazon title attribute pair may be compared using
the “Jaccard similarity function”. A similarity function typically generates a
number in [0, 1] where 0 means completely different and 1 means exactly the
same. We call this number the similarity score.

3. Calculate comparison vector: For each of the candidate record pairs, the
similarity score for each feature is calculated. We call this set of similarity
scores the comparison vector for that record pair.

The comparison vector for all the candidate record pairs is the input to the next
step, classification.

1.2.4 Classification

In this step we classify the compared record pairs to two or three classes [9]. In the
two-class case, each compared record pair is classified as a match or a non-match.
A record pair is classified as a “match” if the records refer to the same real-world

5

entity. If the records do not refer to the same real-world entity, then the record
pair is classified as a “non-match". Also, if the record pairs were removed in the
blocking step, they will be classified as non-matches without being compared. In
some classification methods there is a third class called potential match. These are
record pairs for which we are not sure about the classification outcome. Therefore,
a manual clerical review is needed to determine the correct match status of those
record pairs.

There are many approaches to classification. For example, supervised learning,
active learning, probabilistic classification, clustering-based approaches, and rule-
based classification are all approaches that have been used for classification (see [9]
for details of each approach).

1.2.5 Evaluation

To evaluate the quality of the entity matching output, we need to have ground-truth
data, which is also known as gold standard. Ground-truth data should contain the
true match status of all known matches between the two input tables.

Creating the gold standard is a time-consuming process. For each record pair,
we need to identify the true match status manually. This is called labeling the record
pair. If the number of candidate record pairs is very large, this may be infeasible with
respect to our time constraints. Therefore, in many cases a sample of the candidate
record pairs is selected and labeled, which we call the labeled sample. This sample is
then used for evaluation purposes. With this approach, the hope is that if we can
do high quality matching on the labeled subset of candidate record pairs, all the
matching output should have reasonable quality.

Of course, if we have ground-truth data for the entire dataset and we do not
expect to see any new data, we would be finished, and there would be no need for
any additional matching. However, as we mentioned in many cases we will not
be able to label the complete data set. Also, usually when we develop a classifier
on existing data, the ultimate goal is to automatically classify new records that we
encounter in the future using this classifier.

The standard measures for evaluation are precision and recall. Let n be the total
number of candidate record pairs that should match. Assume the classifier makes

6

predictions for p pairs and out of those, q pairs are correctly predicted to match.
Then precision is q/p and recall is q/n.

Basically, “precision” measures how many of the classified matches actually
refer to the same real-world entity. “Recall” measures how many of the real-world
entities that appear in both tables were correctly matched.

Normally there is a trade-off between improving recall and precision. We could
get to 100% recall by simply classifying all candidate record pairs as matches. But
that will lead to very poor precision. Similarly, we can simply get to 100% precision
by classifying all candidate record pairs as non-matches. This will lead to 0% recall.
Therefore, another measure called F1 score is usually reported along with precision
and recall. The F1 score considers both precision and recall and is formulated as the
harmonic mean of precision and recall:

F1 = 2× (precision × recall)/(precision + recall)

After the quality measures are calculated using ground-truth (or the labeled
sample), they are compared with quality requirements set for matching. In some
cases very high precision or recall is required. An example would be price matching
between two vendors. In this case, if a product is incorrectly matched with a different
less expensive product and the prices are matched, this will lead to profit loss.
Therefore, for this example the matching output must be precise. If the quality does
not meet the requirements, the problem areas in the matching process are identified
and modified, and matching is run again. The quality is iteratively improved to
satisfy the set requirements.

1.3 Human-Centric Entity Matching

Recent work on entity matching has focused on using machine learning and/or
crowdsourcing in order to improve accuracy and/or scale the current matching
solutions [22, 37, 38, 44, 45]. This is despite the fact that currently in industry this
task is typically done by non-technical human analysts [7]. Analysts are easier to
hire than the more technical developers and therefore more of them can be hired.
Also, they can be trained for the needs of the business and therefore are more reliable
than the crowd in crowdsourcing platforms. Furthermore, there is an increasing

7

need for humans to be able to do matching among data enthusiasts: non-technical
individuals in various occupations who are interested in analyzing data and making
conclusions about it. Currently, it is very hard for these individuals to do matching
unless they know programming or pay to use crowdsourced solutions [22].

Therefore, in this thesis we propose to work on solutions that acknowledge that
humans are in the loop for completing an entity matching task. Consequently, we
aim to build an entity matching system that helps non-technical analysts do entity
matching quickly and with high quality.

When focusing on the human aspect of the entity matching problem, these
questions arise: how do we make a good entity matching system for analysts to
use? What kind of classifier most suits the constraints of a human analyst? How can
we guide analysts in the entity matching process? What is it that makes an entity
matching task hard or easy for analysts? What is it that makes entity matching
time-consuming or labor-intensive for the analysts?

To gain a better understanding of the answers to these questions we built a
prototype of an entity matching system and experimented with it in an e-commerce
setting as well as with students from a data modeling graduate course in UW-
Madison. We also designed an abstract model of the entity matching problem
for the analysts to gain insight on the parts of the entity matching problem that
are challenging for the analysts. We desribe the system and the abstract model in
Chapter 2 of this thesis.

1.4 Debugging Entity Matching

From our experience with the entity matching system and feedback from real an-
alysts and students that tried the system, we observed that entity matching is an
iterative process where an analyst creates a matcher and then modifies the matcher
and/or input tables many times to improve the quality. We refer to this process as
debugging.

This process can be very time-consuming and labor-intensive for the analyst.
Specifically, we noticed that when using a rule-based matcher with many rules each
iteration can take a long time to run and thus waste analyst time waiting for the
matching output. This is despite the fact that the analyst only modifies the matcher
slightly at each iteration. Therefore, in Chapter 3 we attempt to find a rule ordering

8

such that matching is done faster. Furthermore, we investigate re-using matching
output from previous iterations and running matching incrementally to make this
process more interactive for the analyst.

We also developed and experimented with an abstract model of the entity match-
ing problem for analysts. We noticed that for some data sets it was very easy for
the analyst to come up with a small set of rules that lead to high quality matching
output. For some other data sets, no matter how many rules the analyst wrote, she
was not able to achieve high quality matching. Basically, we found that some data
sets are easy to match and some are hard to match for the analyst. We define the
notion of consistency for an entity matching data set, wihch intuitively means that
matching pairs should have higher similarity values than non-mathcing pairs, and
we show that consistent data sets are easy to match whereas inconsistent data sets
are hard to match for analysts.

In Chapter 4, we follow up on the notion of consistency. We categorize different
sources of inconsistency in a data set and discuss how the analyst should react to such
issues. We further propose a framework for finding and resolving inconsistencies in
a data set. In a sense, the anlayst debugs the entity matching data sets using this
framework. In this framework, we rank the pairs of records in the labeled sample
such that the ones that are more problematic are ranked higher. We then present
this ranking to the analyst and she interactively inspects the pairs and proposes
cleaning operations for the data set. The ranking is re-generated and the process
continues until the analyst inspects all record pairs or she runs out of time. We find
that there are multiple approaches for ranking the record pairs and each of them
can find a different set of problematic pairs. We propose two such approaches and
we show that a hybrid ranking that aggregates rankings from multiple approaches
can help the analyst find more issues in the data set.

In summary, in this thesis we consider two issues with human-centric debugging.
First, we consider debugging a rule-based matcher, and try to make this process more
interactive for the analyst. And second, we consider debugging entity matching
data sets, and help the analyst to quickly find and resolves issues in the data set.

9

1.5 Related Work

1.5.1 Entity Matching Systems

Konda et al. [33] extensively review existing non-commercial (for example, D-Dupe,
DuDe, Febrl, Dedoop, Nadeef) and commercial (for example, Tamr, Data Ladder,
IBM InfoSphere) entity matching systems as of 2016, and introduce Magellan, a new
kind of entity matching system.

Each of these systems provide a set of unique functionalities. For example,
all of these systems have support for blocking and matching, some of them have
support for data cleaning and exploration, but most of them lack support for other
steps of the matching pipeline, including debugging data sets and matching, that is
discussed in this thesis.

Techniques described in this thesis are inspired by our experience with an e-
commerce company as well as many graduate students that have tried out Magellan
for various entity matching data sets through courses at University of Wisconsin-
Madison. Thus, we feel that they could be used to enhance any entity matching
system. In particular, we are planning to encorporate these in Magellan. Magellan
is the most recent of these systems, and it is designed to be extendable, such that
new techniques can be easily added to the system to improve it. Furthermore, a
main focus in Magellan is to minimize user burden and provide a rich set of tools
to help users do each entity matching step, which aligns well with the goals and
contributions of this thesis.

1.5.2 Human-Centric Entity Matching

Chiticariu et al. [7] conducted a survey and show that while rule-based information
extraction dominates the commercial world, it is mostly regarded as a dead-end
technology by the academia. Their results show that while (as of 2013) 67% percent
of large vendors have implemented a rule-based information extraction solution,
only 3.5% of the Natural Language Processing (NLP) papers published between 2003
and 2012 focused on solely rule-based system. They argue that this gap between
academia and industry needs to be reduced so that academic research is most
valuable to industry.

10

Based on our experience with an e-commerce enterprise we highly suspect
that this is similar to the gap between academia and industry for entity matching
research. Firstly, we found that similar to NLP, rule-based approaches are used in
the industry due to the requirement for high precision matching outputs, while they
are typically not the focus in the research community. Furthermore, even though
there is typically a human in the loop for performing entity matching, most entity
matching research is focused on improving accuracy of matching and blocking steps
(at least 96 papers from 2009-2014 [33]) and does not address this fact. This highly
motivates our research on human-centric entity matching.

1.5.3 Rule-based Entity Matching

Different works have focused on maintaining a rule-based classifier and improving
the output of the classifier. [42, 43] exploit previous materialized Entity Resolu-
tion (ER) results to save redundant work when the rules change. [41] proposed
using negative rules to disallow inconsistencies in the entity resolution solution. A
consistent solution is then arrived using guidance from a domain expert. These
works assume that a rule-based classifier already exists and address the problem
of maintaining it. In this thesis, we instead focus on the problem of creating the
rule-based classifier and assume a “human analyst” will iteratively generate the
rule set.

1.5.4 Crowdsourcing

Recently, crowdsourced entity matching has received increasing attention in academia
and industry (CrowdFlower, CrowdComputing, and SamaSource).

In academia, works such as [12, 37, 38] use the crowd to verify the matching
output. [44] finds the best questions to ask the crowd, and [45] investigates the
impact of user interface (UI) when asking questions from the crowd. Corleone [22]
takes this concept a step further and introduces Hands-Off Crowdsouring (HOC).
HOC attempts to eliminate analysts by crowdsourcing all of the entity matching
pipeline.

These solutions demonstrate that in certain scenarios we can crowdsource all
or part of the entity matching task. However, our experience with an e-commerce
enterprise suggests that there may always be cases where a trained non-technical

11

analyst needs to manually design and maintain a matching classifier. For example,
in the case where extremely high precision matching output is required, current
crowdsourced solutions cannot be fully trusted, and analyst involvement is required.
Furthermore, there are always cases where these approaches fail to produce the
correct output, and thus an analyst has to devise new rules on top of the classifier
or modify the automatically generated classifier to get high quality.

In industry, companies such as CrowdFlower use crowdsouring for collecting,
cleaning, and labeling data. The customers for these companies are typically enter-
prises, businesses, and startups. It would not be feasible or would be very expensive
for a data enthusiast to submit a one-time or small matching task to these companies.
By taking a human-centric approach towards the entity matching problem, we make
it easier for such users to perform entity matching on their own.

1.5.5 Debugging Entity Matching

Most entity matching solutions do not consider the issue of debugging in various
steps of matching or are limited to showing what rules have fired for a matching pair
[33]. Magellan has support for debugging the blocking step as well as debugging
different kind of matchers such as decision tree and random forest. In this thesis
we focus on debugging entity matching data sets as well as reducing the time for
debugging rule-based matchers.

12

1.6 Contributions of the Thesis

More concretely, our accomplishments and contributions regarding this thesis are
as follows:

• Developed and experimented with an entity matching system as well as an
abstract model of the entity matching problem for analysts to gain insight on
issues for human-centric debugging of entity matching. This is presented in
Chapter 2.

• Developed algorithms for optimal odering of rules as well as incremental
matching to enable interactive debugging of rule-based matchers. This is
presented in Chapter 3.

• Developed a framework for debugging entity matching data sets such that
an analyst can quickly find and resolve inconsistencies. This is presented in
Chapter 4.

13

2 experience with real and abstract analysts

2.1 Introduction

Recall that what we hope to ultimately achieve through techniques proposed in this
thesis is to reduce the time and effort that analysts spend on each entity matching
task and help them achieve high quality matching faster. Therefore, in this chapter
we try to develop an understanding of what steps in the matching process take the
most time from the analysts and what is it that makes a data set hard for them for
matching. To do so we experiement with real and abstract analysts.

To gain experience with real analysts, we developed an end-to-end matching
system to help us better understand how analysts interact with a matching problem,
and what steps in the process are labor-intensive. With real analysts we mean
the author with available public data sets, analysts in an enterprise e-commerce
setting with industry data sets, and students at a data modeling graduate course at
UW-Madison. These students first generated an entity matching data set through
crawling the web, and then performed matching on it. This system was end-to-end,
meaning that analysts went through all the steps of entity matching in one tool,
from browsing, to matching, to debugging. We explain this system in more detail
in Section 2.2.

This experience helped us identify a key bottleneck in performing matching
efficiently for analysts. We observed that finding and defining a high quality matcher
is iterative by nature, and analysts have to refine their matcher many times before
reaching their satisfied quality. This is despite the fact that current research is
mostly focused on improving matching time when matching is done only once after
a matcher is decided on. Therefore, in Chapter 3 we investigate how to reduce run
time of each iteration for the analysts to enable her to find a high quality matcher
faster.

We also observed that it is very easy to define a high quality matcher for some
data sets, while it is very hard for other data sets. We further developed and
experimented with a set of simple abstract analsyts to better understand what is it
that makes a matching problem hard for analysts. In defining our abstract analysts,
our goal is not to fully model the entity matching problem, as we believe this is
not possible due to the many variations in workflows that analysts can follow. On

14

the other hand, our goal was to develop a better understanding of the matching
problem. In fact, we were able to get valuable insight with this simple model. We
further discuss our model and insights in Section 2.3.

In particular, we noticed that in some data sets, there are certain pairs of records
that are inconistent with respect to other pairs of records. For example, we found
some matching pairs that actually had lower similarity scores than non-matching
pairs. Data sets that were free of inconsistencies were very easy to match with
high quality while inconsistent data sets are harder to match with high quality. In
Chapter 4, we investigate how we can help the anlaysts to identify and rectify such
inconsistencies in a data set quickly.

In summary, through experimenting with real and abstract anslysts, we were
able to identify key issues in the matching process that decrease the time and effort
of matching for analysts. This motivated us to pursue these issues more deeply
which lead to works presented in Chapters 3 and 4.

2.2 An End-to-End Entity Matching Tool for Analysts

When we observed analysts perform entity matching in an e-commerce setting we
noticed that the workflow of matching for analysts may involve many tools, as all
steps are not covered under the same tool. For example, they may use SQL queries
to generate statistics and get an understanding of the attributes in an input table.
They use Excel to browse the input tables. They may write rules in a text file using
a business-specific rule language. They upload the rule file in a user interface for
matching and then run matching. The output is stored in a text file that they can
browse through a text editor. There are two problems that we can identify here:

1. Using different tools and switching between them for different parts of the
pipeline wastes a lot of time for analysts.

2. Each of these separate tools such as SQL and Excel are not tailored for matching
tasks and therefore do not provide exactly what analysts need nor can they be
extended to provide the features analysts need.

At the time of this thesis, the few entity matching systems that are around are
limited in their functionality and they do not support all steps of the matching

15

Smart	
Table	

Browsing	
Create	
Matcher	 Match	 Evaluate	 Debug	

Input	 Output	

Figure 2.1: Workflow of analysts in our prototype of end-to-end matching system.

workflow. We explain these systems further in detail in Section 2.2.7. Therefore, we
worked towards building a prototype of an end-to-end entity matching system.

Figure 2.1 shows the workflow that we considered for the analysts in our proto-
type. An analyst first tries to develop an understanding of the input tables. We help
the analyst through this process in our browser module. Then the analyst creates a
set of initial rules. In our prototype we only consider a specific type of matcher, a
rule-based matcher. We will describe our justification for using a rule-based matcher
as well as details of the mathcher in Sections 2.2.1, 2.2.2. We support rule creation/-
modification through a graphical interface. The analyst then runs matching. We
also support matching through our tool. Normally, the analyst is provided with a
labeled subset of the candidate record pairs or ground-truth to evaluate the quality
of the rule set (See Section 1.2.5 for details about how evaluation is performed). She
evaluates the rule set using the labeled record pairs. We support this step through
the evaluation module in our tool. It is common in industry that certain business
requirements are set for matching quality. For example, precision must be greater
than 95 percent and recall as high as possible. If the matching output does not meet
the set of requirements, the analyst tries to find out why, fix it, and run matching
again. We help the analyst to find out exactly why a certain error occurred through
the debug module. Through this module, we also show her record pairs that help
her quickly improve the current rule set to achieve higher precision and/or recall.

As described above, in this tool we support all the steps in this matching pipeline,
which we call “modules” hereafter. In each module, we identified the operations
that analysts commony perform and implemented them. In the interest of space
we will omit the details of create/modify rules, match, and evaluate modules as
the operations are fairly obvious to the reader from the explanations in Chapter

16

1. In the next sections, we will provide details regarding the Browser and Debug
modules which were in particular developed by the author.

I should note that I began the implementation of an early prototype of the end-to-
end rule-based matching system in the 2013-14 academic year. The current version
of the tool was implemented during an internship at WalmartLabs in the summer
of 2014. I did the primary coding for the browser and debug modules, Sanjib Das
did the primary coding of the other modules, and we collaborated to create the
end-to-end system under supervision of Professor AnHai Doan.

We experimented with this tool in an e-commerce setting as well as with graduate
students at University of Wisconsin-Madison and found that it can help analysts/s-
tudents quickly perform matching with high quality. The feedback that we got from
analysts/students were very positive. We will discuss this feedback in Section 2.2.6.

Our experience with building an end-to-end entity matching system gave us
insights on key steps in the pipeline that are time-consuming and labor-intensive
for the analysts. We try to address some of these issues in the remaining chapters of
this thesis. Through this prototype we were also able to identify key issues with
current entity management systems. Using these insights, the entity matching group
at UW-Madison subsequently re-designed our prototype to a full-fledged entity
management system, called Magellan [33], which is open-sourced and is being used
by students as well as our industry partners. We will discuss Magellan in more
detail in Section 2.2.8.

2.2.1 Why Rule-based Classification?

There are many classification methods that we can use for entity matching. For
example, one can use supervised or unsupervised machine learning approaches or
she can choose to write a set of rules for matching. For our prototype of an end-to-
end matching system, we decided to explore a rule-based classification method for
the following reasons:

First, rules are easy to understand and debug for non-technical analysts. Consider
a machine learning algorithm. Analysts need to become familiar with how the
algorithm works, which may be very technical. Moreover, the input to the machine
learning algorithm is training data. Thus, in order to change the matching output,
analysts need to retrain the model. This is non-trivial for two reasons. First, it is not

17

r1 : p1(first name) > 0.9 ∧ p2(last name) = 1.0 ∧ p3(address) > 0.7⇒Match
r2 : p1(first name) > 0.7 ∧ p2(last name) = 1.0 ∧ p3(phone) = 1.0⇒Match

Figure 2.2: A sample rule set with 2 rules.

guaranteed that enough training data is available for every instance. For example,
suppose an analyst wants to make sure that the model does not match “Peter Pan
peanut butter” and “Pan”. They need to add enough instances with the same pattern
to the training data such that the algorithm can learn this pattern. These training
instances may simply not be available. This is not the case with rules. If you show
this example to an analyst, it is highly likely that she will be able to modify the
rule set such that these two records do not match. Second, upon changing the
input training data, there is no guarantee that the machine learning model and
the matching output will change. Therefore, debugging a classifier generated by
machine learning can be very hard.

Rules are not only intuitive and easy to understand but also can be easily cus-
tomized to meet high precision/recall quality requirements. High quality require-
ments are very common in industry. For example, for a price matching application,
extremely high precision is required. Suppose you incorrectly match the price of
a more expensive product with a less expensive product from the competitor’s
website. This can lead to thousands of dollars of lost revenue. Therefore, even if a
coarse round of machine learning is used to quickly do matching, often manually
created rules are used on top of it to fine-tune the results and achieve high precision.

2.2.2 Rule-based Classifier

We implemented a commonly used rule-based classifier in our end-to-end matching
system where each rule set is a disjunction of a set of rules and each rule is a
conjunction of clauses/predicates. An example set of rules is shown in Figure 2.2.

Rule set: The entity matching result is generated by evaluating a rule set for
each candidate pair of records. If the rule set matches a pair, then it is a match,
otherwise it is a non-match. A rule set is a disjunction of one or more rules. If at
least one of the rules match a record pair, then the rule set matches that record pair.
Otherwise, the rule set does not match the record pair. In Figure 2.2, the rule set is a

18

disjunction of 2 rules that determine if two records refer to the same person or not.
The disjunction symbol is not explicitly shown here and is implicit from the context.

Rule: A rule is a conjunction of one or more clauses/predicates. A rule matches
a record pair if all its clauses return true for that pair.

In Figure 2.2, for the first rule, if the similarity score for first names of the two
records is greater than or equal to 0.9, the last names exactly match, and the address
similarity score is greater than or equal to 0.7, the record pair is considered a match.

Clause/Predicate: Each clause/predicate is a comparison between a similarity
score for an attribute pair and a threshold. For example, in Figure 2.2 the first clause
of the first rule checks that the similarity score for the first names of the two records
is greater than or equal to 0.9.

2.2.3 Helping Analysts to Develop a Classifier

Consider a situation where an analyst is given a set of candidate record pairs and
asked to write a high-quality rule set. What an analyst typically does is to look
through the candidate record pairs, find patterns for matching pairs, and write
a rule for it. This is when she is trying to improve recall. The question now is:
In what order should the analyst look through pairs? Should she just randomly
go through the pairs? Now consider the situation where the analyst has already
written a rule set, and would like to get an estimate of the precision of the rules. She
certainly could randomly go through the matched pairs and find out if she is making
precision errors. Again, the question is can we help her do better than randomly
looking through pairs? Basically, we would like to give the analyst a direction to
look at pairs when she is trying to improve precision or recall. The Skyline approach
is designed do give this direction.

The main idea here is to compute a skyline of record pairs, that is, a set of record
pairs such that no other record pair differs as much as or more than any of them
in every attribute pair (when trying to improve precision) or that no other record
pair is as similar as or more similar than any of them in every attribute pair (when
trying to improve recall).

Intuitively, when an analyst is trying to improve recall, the skyline record pairs
will be the most similar record pairs that she has not matched. These are the most
obvious recall errors that the analyst would want to take care of first. Also, if ground-

19

truth data is not available she can get an idea of what the actual recall is by looking
at the most similar pairs not matched. Intuitively, if the most similar items not
matched are non-matches, then this is an informal confirmation that the rule set has
a reasonably high recall and most obvious matches have been covered.

Similarly, when an analyst is trying to improve precision, the skyline record pairs
will be the most different record pairs that she has matched. These are the most
obvious precision errors that the analyst would want to take care of first. Also, if
ground-truth data is not available she can get an idea of what the actual precision is
by looking at these pairs. If these pairs are matches, then this is a confirmation that
no obvious non-matches have been matched by this rule set.

We compute the skyline in two steps: (1) generating comparison vectors and (2)
computing skyline vectors. We describe each step below:

Generating Comparison Vectors: Given 2 records in a candidate record pair,
if record1 has m attributes and record2 has n attributes there are m × n possible
attribute pairs from which the analyst selects a subset of size u, {P1 . . .Pu} as relevant
for matching.

The comparison vector Vi,j of two records ri and rj is denoted as < v1 . . . vu >
where each vk ∈ Vi,j is computed by a similarity function over the attribute values
for attribute pair Pk.

Skyline Vectors: Assume that for each similarity value computed above higher
values indicate higher similarity.

Given any two comparison vectors A and B, we say A dominates B (A � B) if
and only if:

∀k ∈ [1,u],ai > bi ∧ ∃j ∈ [1,u],aj > bj

Given a set SV of vectors, a vector Vi is a skyline vector if Vi is not dominated by
any other vectors in SV:

@Vd ∈ SV , s.t.,Vd � Vi

A skyline record pair is the pair of records corresponding to a skyline vector
Vi,j ∈ SV . We use the SFS algorithm [8] to find the skyline vectors given a set of
comparison vectors.

The skyline record pairs can be generated iteratively in case an analyst would
like to browse through more pairs. To produce more record pairs, the generated

20

skyline record pairs are removed from the set of vectors, and the next set of skyline
record pairs are generated. If we continue this process it is analogous to sorting the
record pairs from most similar to least similar, where most similar is defined by the
skyline approach.

The notion of a Skyline operator to assist analysts in entity resolution was orig-
inally proposed by Sun Chong in his PhD thesis [36] and we implemented it as
part of the debugging module of our end-to-end system to help analysts develop
rule-based classifiers.

2.2.4 Browser Module

A common matching workflow starts by an analyst browsing the data and developing
an understanding of the data. Therefore, the first goal of the browser module is to
help the analyst quickly develop an understanding of the dataset. We identified
operations that are commonly performed by analysts to understand the data and
incorporated them in this module. For example, with the “view table statistics”
operation, we help them quickly identify attributes that may be effective for matching
(for example, attributes containing unique values) and attributes that have almost
no value for matching (for example, attributes containing many missing values).

In our observations of analysts at work at WalmartLabs, it is very common for an
analyst to do simple table manipulation and normalization on the input tables before
writing any rule. In the browser module, we also support simple data manipulation
in case the analyst finds it necessary. For example, the analyst may want to remove
attributes that she decided have no value for matching from the table and save it as
a separate copy. Another example is when the input table contains large number of
rows, then she may want to take a sample of the table and work with the sample.

We have 2 types of operations in the browser module:

• Data exploration operations: An analyst perfoms these operations to develop
intuition about the input tables. These operations include viewing statistics
for table and attributes, sorting, searching, and querying attribute values.

• Table manipulation operations: These operations allow an analyst to do sim-
ple manipulations on the input tables such as taking a sample of table, remov-
ing rows/attributes from table, editing attribute values, opening a copy of
table, and saving changes to table.

21

Figure 2.3: A screenshot of statistics for table.

Next we will explain each of the operations in detail.

2.2.4.1 Data Exploration Operations

View Statistics for Table Figure 2.3 shows a screenshot of table statistics as part
of the data exploration operations.

Based on talking to analysts working on matching, we found that what an analyst
usually does in the matching workflow after loading a table is to get an idea of all the
attributes in the table. This operation was normally done through SQL queries on the
table which would be very time-consuming. Therefore, integrating this operation
in the end-to-end matching tool will make the workflow faster for analysts.

The analyst is interested to know which attributes are useful for matching and
what attributes have almost no value for matching. Two statistics that are frequently
considered are the percentage of unique values and the percentage of missing values
for each attribute. Intuitively, attributes that have a high percentage of unique values
are considered good candidates for matching (for example, “isbn” in the screenshot).
This is not always true but the analyst wants to be aware of these attributes. Also,
attributes that are mostly missing, for example “upc” in the above screenshot, cannot
be used for matching.

Therefore, we present the “percent unique” and “percent missing” statistics to
the analyst, and we rank the attributes based on the following heuristic to help
the analyst pinpoint good attributes for matching: Sort the attributes from higher

22

Figure 2.4: A screenshot of per-attribute statistics.

percent unique to lower percent unique; breaking ties by lower percent missing
values.

View Per-attribute Statistics Figure 2.4 shows a screenshot of per-attribute statis-
tics as part of the data exploration operations.

Analysts normally want to get an idea of the values that appear in an attribute.
For example, they may want to know the kind of bindings (book covers) that exist in
one table and compare it to the types of bindings that exist in the other table. This
is very important for normalization. For example, one data source may store “Hard
cover” as “Trade cloth”. This will cause a problem for matching as these values
will not match regardless of the fact that they refer to the same type of binding. To
normalize the data, the analyst can request that all the “Trade cloth” values are
changed to “Hard cover” or vice versa.

With this operation analysts can see all the values that appear in an attribute.
For each attribute value, we show them the frequency of that value, and we sort the
values from highest frequency to lowest frequency. This is because high frequency
values are more important for analysts for matching. For the bindings example
above, the two values with highest frequency values are “Paperback” and “Trade
Cloth”.

Sort Attribute Values Another way an analyst explores the data is by sorting the
values for an attribute. For example, she may be interested to group similar values

23

Figure 2.5: A screenshot of the search and query features.

together by sorting the values for an attribute. This is exactly what this operation
provides.

Search for a String in Attribute Values/Query Attribute Values Figure 2.5 shows
a screenshot of the search and query features as part of the data exploration opera-
tions.

The operators that we discussed so far give an analyst a global view of an input
table. However, in some cases the analyst is interested to look into records that
satisfy a specific condition. With the search operator, we allow the analyst to search
for a string in an attribute. This operation is type agnostic and will treat every
attribute value as a string. With the query operation, she can do simple queries on
the attributes and this operation takes into account the type of the attribute (for
example, numeric). She may stack multiple search and query conditions to perform
a conjunction of the searches. In the shown example, the analyst is interested to view
all books published by the publisher “General Books” (search) after 2009 (query)
which results in seven rows.

2.2.4.2 Table Manipulation Operations

Take a Sample of Table If the input table is very large, an analyst may prefer to
first work with a sample of the table. With this operation, the analyst specifies the
number of rows to sample and the table name to save the sample rows into. We
will then take a random sample of the table and save the sample rows in the table
specified by the analyst.

24

Remove Attribute/Rows from Table In some cases an analyst may want to remove
certain rows or attributes from the input table. For example, if she finds that an
attribute has many missing values she can remove that attribute from the table using
this operation.

Edit an Attribute Value If an analyst sees that an attribute value is recorded
incorrectly, using this operation she can edit that value to a new value that she
inputs. Note that if the analyst sees many such mistakes, the normal workflow is to
report that to the party who provided the table and she will not attempt to fix all
the errors.

Open a Copy of Table Commonly, an analyst would like to retain the original
table that was provided to her, and do her manipulations in another copy. With
the “open copy” operation, we make an in-memory copy of the table that she is
currently browsing and open it in a new tab for her to view.

Save Changes to Table This operation allows an analyst to persist table manipu-
lations on disk. All the manipulations are stored in memory and persisted in disk
only when the analyst explicitly asks for saving it.

2.2.5 Debug Module

A common workflow for matching consists of writing an initial set of rules, evaluat-
ing the quality, and iteratively improving the quality of the rule set until business
requirements are satisfied. This can be a very time-consuming process. In fact,
based on our discussions with analysts we anticipate that an analyst will spend most
of her time trying to iteratively improve the quality. Therefore, it is critical to save
analyst’s time in this step of the workflow. Correspondingly, the goal of the debug
module is to help analysts quickly and iteratively improve the precision/recall of
the rule set.

We identified a set of views and operations that help an analyst in quickly
improving the quality and incorporated them in this module. In summary, the
views and operations in this module help the analyst to:

25

• Identify exactly why a candidate record pair was matched or was not matched
using this rule set.

• Quickly browse through the set of candidate record pairs using different filters
(for example, view the precision/recall errors).

• Quickly modify existing rules to improve precision/recall.
• View the candidate record pairs that an updated rule would match, without

doing the complete matching process that uses all the rules.

This module can run in different modes. If an analyst has access to the ground-
truth or a labeled subset of candidate record pairs for the matching task, we can
use the ground-truth, calculate precision and recall, give her additional features for
filtering the candidate record pairs, and color code the candidate record pairs using
their true match status. However, they can always run the debug module without
the ground-truth, and they will have access to all the operations that do not need
ground-truth information (Please See Section 1.2.5 for detailed explanation on how
evaluation is performed).

Next we will explain each of the views and operations in the debug module in
detail.

2.2.5.1 Summary View

Figure 2.6 shows a screenshot of the matching summary view as part of the debug-
ging module.

This view gives an analyst a quick overview of the matching status. If ground-
truth is available, the evaluation summary is presented. The evaluation summary
includes precision, recall, and F1 score, which are common measures for calculating
the quality of matching (See Section 1.2.5 for details of how these measures are
calculated). We also show number of precision and recall errors, which are clickable
links and will filter the candidate record pairs by precision/recall errors so that the
analyst can zoom into problem areas quickly.

The matching summary section shows number of candidate record pairs and
number of matched record pairs by this rule set, along with the total number of
rules in the rule set. If there is no ground-truth available, this will give the analyst
an intuition about the recall.

26

Figure 2.6: A screenshot of the matching summary view.

In the rule summary section, for each rule we show how many candidate record
pairs were matched by this rule. The rule summary is helpful for an analyst since
she can identify rules that have a higher or lower effect on matching if they are
matching many or only few of the candidate record pairs.

Similar to the evaluation summary, from both the matching summary and the
rule summary the analyst can filter the candidate record pairs to view all the matched
record pairs, or all the matched record pairs by a particular rule.

2.2.5.2 Matching Details View

Figure 2.7 shows a screenshot of the matching details view as part of the debugging
module.

In order for an analyst to be able to debug the matching output, she needs to have
an understanding of exactly why a record pair was matched or did not match and
the options that she has for fixing the error. Therefore, for each candidate record pair
shown on the debug page, we show them the record pair details and the matching
details explained below.

27

Figure 2.7: A screenshot of the matching details view.

Record pair details For each record pair, we show the two records from the input
tables and all the attributes for each of the records. If ground-truth is not available,
the analyst can determine the match status of the record pair by inspecting all
attribute values of the records. Otherwise, the record pair will be color coded to
show the true match status of the pair in the ground-truth.

Looking at the record pair details also helps her to identify the attributes that
she should use for improving precision and/or recall. For example, suppose two
books that had different publication years were incorrectly matched and thus create
a precision error. She will be able to see that the publication year for the two books
is different and thus add a clause to her rule to make sure that the publication years
of the two books match.

Matching details In order to fix a precision or recall error, an analyst should know
why exactly the current rule set made a mistake about that record pair. If it is a recall
error, why is it not matched by any of the rules that she devised? If it is a precision
error, which rules incorrectly matched this record pair? This helps her to modify
her rules such that she can improve precision/recall. We provide this information
in the “Matching details” box.

In the matching details box, for each rule we show to the analyst if it matched
the record pair or not. We then dig deeper, and for each clause in the rule show if
it returned true for that record pair or not. Furthermore, for each clause we show
them the threshold that the analyst has specified and the calculated score for this
record pair. For example, if the threshold for title similarity score is set to 0.9 and

28

the calculated score is 0.1, this clause returns false for this record pair and thus the
rule will not match it. This information identifies exactly why a record pair was
matched or was not matched by a specific rule. Since we show these details for each
rule in the rule set, the analysts can identify exactly what rules matched or did not
match the record pair.

Once the analyst has identified why exactly a record pair corresponding to a
precision or recall error was matched or was not matched she will try to fix the
error. One common way of fixing the precision/recall errors is to use a different
similarity function for an attribute pair (i.e., a different feature). For example, in the
title similarity example mentioned above, the analyst may have chosen an incorrect
similarity function for comparing titles such that the similarity score is very low
even if the actual values look similar to the analyst.

Now, if the analyst decides that she needs another similarity function, we should
help her pick one. Therefore, in the matching box we give her the option of browsing
all the features available for this project and their score for this particular record pair.
For example, suppose she wants to compare addresses. She may find that Jaccard
similarity is not producing high numbers where 2 addresses actually match. When
she browses through all the available features and their scores for matching pairs,
she finds that Overlap similarity function can better identify matching addresses
and will decide switch to using that feature for comparing addresses.

Note that by showing these alternative features up front, we will keep the analyst
from doing many rounds of matching for identifying the right feature for an attribute
pair. By showing the similarity scores for all the alternative features we try to take
guesswork out of the loop as much as possible.

2.2.5.3 Filter by Matching Prediction

With this filter the analyst can zoom into:

• All the candidate record pairs that matched using the current rule set.
• All the candidate record pairs that were not matched.
• All the candidate record pairs regardless of their matched status.

This filter is very critical when ground-truth is not available. In order to keep an
eye on precision, an analyst would be looking into all the candidate record pairs that

29

Figure 2.8: A screenshot of the skyline functionality.

she matched. In order to keep an eye on recall, she will look into all the candidate
record pairs that she has not yet matched. Once she applied this filter, she can get
further guidance on how to improve recall and/or precision using the “find skyline
pairs” operation described below.

2.2.5.4 Filter by Rule

With this filter an analyst zooms into all the matches for a particular rule. This
is again very important in case ground truth data is not available. Normally, the
analyst will inspect these pairs to keep an eye on the precision of a particular rule.
She can get further guidance on how to improve the precision of this particular rule
using the “find skyline pairs” operation described below.

2.2.5.5 Filter by Precision/Recall Errors

With this filter an analyst zooms into precision/recall errors and tries to fix them.
This will be the go-to filter in case ground-truth is available. She can get further guid-
ance on how to improve precision/recall using the “find skyline pairs” operation
described below.

2.2.5.6 Find Skyline Pairs

Figure 2.8 shows a screenshot of the skyline functionality as part of the debugging
module.

The idea behind this operation is to quickly focus the attention of the analyst
to the most obvious precision/recall errors so that she can modify the rule set to

30

fix these errors. The normal workflow for using the skyline operator is to use of
the filter operations such as filter by precision/recall and then use this operation to
further focus the attention of the developer to a few pairs that will help her quickly
improve the quality. The analyst will have the option to view the most similar or
least similar record pairs out of the filtered pairs. This operation will be helpful in a
number of scenarios depending upon if ground-truth data is available or not.

Skyline use cases when ground truth not available

• The analyst filters by match status, views matching pairs, and selects least
similar pairs. This will point the analyst to pairs that could be precision errors.

• The analyst filters by match status, views non-matching pairs, and selects the
most similar pairs. This will point the analyst to pairs that could be recall
errors.

• The analyst filters by rule, views pairs matched by this rule, and selects least
similar pairs. This will point the analyst to pairs that could be precision errors
for this particular rule.

Skyline use cases when ground truth is available

• The analyst filters by recall errors, selects the most similar pairs. This will
focus the attention of the analyst to the most obvious recall errors.

• The analyst filters by precision errors, selects the least similar pairs. This will
focus the attention of the analyst to the most obvious precision errors.

2.2.5.7 Find by Feature and Threshold

Figure 2.9 shows a screenshot of the find by feature and threshold functionality as
part of the debugging module.

It is very common for analysts to modify the features and/or thresholds of the
clauses in existing rules or create new rules in the debugging phase. One could say
that this is the main point of the debug module.

Now, one workflow could be to decide on a change, make that change, run
matching again, and view the evaluation results. However, matching is an expensive
and sometimes time-consuming operation. There may be tens of rules that should
be applied to hundreds of thousands of candidate record pairs in each matching

31

Figure 2.9: A screenshot of the find by feature and threshold functionality.

step. This is despite the fact that the change that the analyst wants to try in each
iteration of debugging is usually local to one rule. Moreover, in many cases after
matching is done, the analyst may find out that the change that she proposed actually
was not very effective or even reduced quality. Now, to revert back to the original
rule, she needs to run matching again. This makes the debugging process very
time-consuming.

Therefore, the goal of this operation is to reduce the number of times that the
matching operation is run, by allowing the analyst to estimate the effect of her
change on the quality before running matching again. With the “find by feature
and threshold” operator the new workflow would be as follows: Decide on change,
investigate the effect of change on quality using the “find by feature and threshold”
operation, if satisfied with the change make the change and run matching again.

With this operation, the analyst selects a feature and threshold for that feature
and the candidate record pairs will be filtered by this condition. This is similar to a
clause in a rule. By stacking these clauses on top of each other she can effectively
make a rule composed of the clauses that she has in mind, and the candidate record
pairs will be filtered to show matches by that rule. She can then investigate the pairs
matched by this new rule.

Suppose the change was to improve recall using a new rule. She can browse
through the record pairs found by this operation and get an idea of how many
record pairs that she had not matched before are being matched by this new rule.
She may find that the change has no effect on recall and she is not introducing any

32

new matches by this change. Then she will go back and think of another way to
improve recall. But in case she is actually improving recall by this rule, she can
estimate the precision of this rule using the “Skyline” operator. She can view the
least similar pairs affected by this rule. If those pairs are matches then intuitively
this rule will not hurt precision significantly. As you can see with this operation the
analyst can estimate the effect of the change she has in mind on the quality even
before running matching again.

2.2.6 Feedback from Students and Analysts

We experimented with our end-to-end entity matching system with analysts in
an e-commerce setting as well as students in a graduate course at University of
Wisconsin-Madison. We demoed our system to analysts at WalmartLabs and got
their feedback regarding the usability of the system and features that they think
would be helpful for them. Furthermore, we performed matching using our tool
for industry data sets. Students worked with the system as part of their course
project. They crawled the web and generated data sets for matching from different
domains such as cars, movies, and books, among others. They then used our system
to upload and browse the data, peform matching, evaluate and debug their rule
sets until they reach a quality threshold. They reported on the rule sets that they
came up with as well as different iterations that they performed for improving the
matching quality.

Table 2.1 shows an overview of 12 student projects with our end-to-end matching
system. It is encouraging that students using our tool were able to achieve an average
precision of 98 percent and average recall of 91 percent with on average 4 rules. The
overall feedback from the analysts and students were very positive as well. Some of
their feedback are as follows:

• EMS has the complete pipeline for matching and it is easy for us to find our
way around.

• The system is designed well in that projects are easily portable and also uses
standard data formats.

• It has good interface for browsing and viewing intermediate results.

33

Group	 Domain	 Table	sizes	
(thousands)	

#	Rules	 Precision	 Recall	

1	 Restaurants	 25	×	3.2	 4	 1	 0.98	

2	 Cars	 25	×	5	 5	 0.97	 0.88	

3	 Electronics	 21.5	×	3.6	 4	 0.98	 0.94	

4	 Movies	 17	×	9	 5	 1	 0.91	

5	 Video	games	 6.7	×	3.7	 2	 1	 0.89	

6	 Movies	 5.5	×	4.3	 5	 0.97	 0.98	

7	 Books	 5	×	6.5	 3	 0.9	 0.96	

8	 Breakfast	 4	×	3.6	 4	 1	 0.79	

9	 Books	 3	×	33.5	 2	 0.97	 0.99	

10	 Books	 3.4	×	3.2	 2	 1	 0.82	

11	 Books	 3.6	×	3.5	 5	 0.96	 0.93	

12	 CosmeEcs	 17	×	3.7	 NR	 NR	 NR	

Table 2.1: Overview of student projects with our end-to-end entity matching system.

• Easy UI and very well descriptive debugging and refining rules interface,
helped us a lot in improving precision and/or recall.

• The tool helped us to identify data cleaning or attribute extraction problems.

• System provides useful statistics.

The feedback was encouraging, and it was clear that students used all the mod-
ules in order to get their matching task done. Specifically, they used the debug
module iteratively to improve precision and recall. The students also provided
suggestions for improving the system. Some of their suggestions are as follows:

• The system may have a bit of learning curve for non-technical users. Specifi-
cally, it is not trivial to know which function is suitable for what attribute.

• Add support for suggesting features and functions.

• Add support for machine learning.

34

• Make the system more robust to user errors and provide useful hints for them
to resolve the issue.

• Enable simple data cleaning inside EMS.

From the suggestions it seems that users did not feel confident in selecting
features and functions, and would like to try out more automatic approaches such
as machine learning. Furthermore, our system did not enable data transformations
and cleanings inside the browser module, and they had to do this outside the system.
This created a burden for the user.

To mitigate these issues, we can suggest features and functions to users based on
attribute types and charactaristics such as average length of attribute values. Also,
we can enable them to run a variety of machine learning approaches through this
system. Since we cannot possibly enumerate all the cleaning operations that a user
may want to do on a data set, we can provide support for the major operations, and
enable the users to clean the data sets using an interactive scripting environment
inside the system. We try to address all these concerns in the consequent versions,
with the latest one being Magellan, which we describe in more detail in Section
2.2.8.

2.2.7 State-of-the-art Entity Matching Systems

Konda et al. conduct a comprehensive review of the current entity matching systems
as of early 2016 [33], which consists of 18 major non-commercial systems and 15
commercial ones.

Non-commercial systems, such as D-Dupe, DuDe, Febrl, Dedoop, and Nadeef
provide support for blocking and matching steps, and limited support for data
transformation and cleaning. These systems do not provide guidance to the user on
how to perform matching step by step, or guidance on how to select appropriate
matchers and blockers. A few of these systems support scaling up the matching
and blocking steps. They lack support for other steps of matching such as sampling,
labeling, or debugging.

Commerial systems, such as Tamr, Data Ladder, and Informatica Data Quality,
mostly offer entity matching as part of a data integration system. They have more
sophisticated support and user interface for data cleaning and transformation than

35

non-commercial systems. Similar to non-commercial systems they provide support
mostly for blocking and matching steps, and they do not have support for other
steps of the matching pipeline such as sampling, labeling, debugging, and so forth.
It is notable that the commercial systems provide fewer variety of matching and
blocking mechanisms. Authors suspect that this is due to the fact that they need
to support these operations at scale. Indeed, almost all of the commercial systems
support scaling up using Hadoop or Spark.

Through review of these commercial and non-commercial systems, it becomes
apparent that there is no single entity matching system that supports all entity
matching steps. In fact, in Magellan [33], we argue that we cannot possibly build
such a system, and that is why it is important that an entity matching system can
operate with existing tools as part of an open-source data stack. We will discuss
Magellan in more detail below.

2.2.8 Magellan: Toward Building Entity Matching Management
Systems

Most entity matching research so far has focused on building algorithms to improve
accuracy of matching. Magellan argues that we should build end-to-end systems to
make practical impact. They review 18 non-commercial and 15 commercial systems
and observe the following key points:

1. While entity matching is an iterative process done in many steps, current entity
matching systems only cover part of the steps such as matching and blocking,
and miss some equally important steps such as debugging and sampling.

2. Current EM systems are stand-alone and do not co-exist well with other tools
that provide other functionalities. They were not inherently designed to be
extensible. Therefore, it is labor-intensive and time-consuming for analysts to
switch between different tools to complete a matching task.

3. Because a single system cannot support all requirements of every user, it is
important that a system is easy to “patch” by users. This means that they
should be able to quickly write code to implement a lacking functionality.
Most current EM systems do not provide such functionality.

36

4. Current EM systems do not provide guidance to the user on how to perform
matching with high quality. For example, should they use rules or machine
learning for achieving a certain quality threshold? or how to debug a selected
technique?

Magellan tries to address these limitations. Through providing how-to guides
Magellan tells the users what to do step by step and it supports all those steps in
a single end-to-end system. Furthermore, all the tools supported by Magellan are
built on top of the Python data analysis and big data stack. In particular, Magellan
suggests that entity matching is done by analysts in two separate steps. In the
development stage, users use data samples to come up with a good quality mathcing
workflow. This is supported through the python data analysis tools such as pandas,
scikit-learn, matplotlib, etc. In the production step, this solution is applied to the
whole data set which may be much larger and require tools from the big data stack
such as Pydoop, mrjob, PySpark, etc. As such, Magellan is well-integrated with
the Python data eco-system that allows the users to use a wide range of techniques
available to them through this eco-system. Furthermore, this allows Magellan to
provide users with an interactive scripting environment such that they can quickly
patch the system.

Magellan is developed by the entity matching group at University of Wisconsin-
Madison, and we are planning to encorporate some of the tools and techniques
proposed by this thesis into Magellan.

2.3 An Abstract Model of an Entity Matching Task for
Analysts

Through our experiments with real analysts, students, and working with multiple
matching data sets, we noticed that for some matching tasks it is very easy for
analysts to come up with a high quality matching solution. However, for some
other matching tasks, it deems almost impossible to come up with a set of rules to
achieve high quality matching. If we could get insight about the reasons behind
this observation we could try to build tools to help analysts with the hardest parts
of the matching process. Therefore, to better understand the underlying structural
difficulties of matching for analysts, we develop an abstract model of the entity

37

matching problem for analysts. Our goal from developing this model is not to fully
model the matching problem. What we are hoping to achieve is to generate insight
on what it is that makes the entity matching problem hard for the analysts.

In this section we explain the components of our matching model. In this model,
we work with the rule-based matcher that we described earlier. A rule-based matcher
is easier to model and specifically it is easier to model how an analyst would go about
generating a set of rules. Normally, an analyst browses through the pairs of records
to come up with a set of rules. Therefore, our model consists of 3 main parts. The
analyst which specifies the rule generation approach and what the analyst does when
browsing a particular pair of records. The pair generator that specifies the order in
which the analyst browses the candidate record pairs, and the dataset characteristics
which considers the consistency of the dataset. The notion of consistency seems
vague at this point and we will define the exact definition of it for this model later.
We will explain each of these parts in detail in the following sections.

2.3.1 Analysts

Different analysts generate different rules when they see a new record pair. For
example, one analyst may ignore all non-matching pairs and only inspect the match-
ing pairs in detail. Another analyst, may develop a pattern of the non-matching
pairs and make sure that she will not match those pairs in the rules that she devel-
ops. Therefore, in this model we consider three abstract types of analysts: Simple,
ThreshFinder, and Consistent analysts which will be explained in detail.

Note that these analysts are very simple and abstract, and they are not intended to
be realistic representations of real analysts. Rather, they are intended to isolate and
make precise certain basic aspects of real analysts’ behavior. Our hope is that these
abstract analysts help us develop insight into how these basic behaviors interact
with some key properties of comparison vectors and data sets.

We assume that all the analysts are able to determine the true match status of a
record pair when they view it. However, we do not assume that analysts have access
to the ground-truth. That means that they cannot calculate precision and recall of
their matching output unless they determine the match status of all candidate record
pairs. These analysts will assume that all the records pairs in the candidate record
pairs are classified as non-match when they start matching. They will then write

38

positive rules that will classify subsets of the candidate record pairs as matches. The
rule set definition is described in Section 2.2.2.

2.3.1.1 The Simple Analyst

Recall that to determine the overall similarity of two records, for each record pair in
the candidate record pairs we generated a comparison vector which was composed
of similarity scores for selected attribute pairs (See Section 1.2.3 for details).

Given a matching record pair and its comparison vector F :< f1, f2, . . . , fn >, the
simple analyst will make a rule as follows:

(s1 = f1)∧ (s2 = f2)∧ . . . ∧ (sn = fn)⇒Match

where < s1, s2, . . . , sn > is the comparison vector for every candidate record pair
that will be evaluated with this rule. This analyst will not make any rule when
seeing a non-matching record pair.

The intuition is that from seeing a matching pair, the analyst concludes that other
pairs with the same comparison vector are likely to be matches. Therefore, this rule
will match all the record pairs with the exact same comparison vector as this record
pair.

Note that the simple analyst is making an implicit assumption about the dataset.
It assumes that there are no non-matching pairs with the same comparison vector
as the matching pairs. The more this assumption is violated, the more precision
errors that the analyst will introduce to the output.

If this assumption is not violated, the analyst will always achieve 100% precision
for the matching task. This is because intuitively what this analyst is doing is writing
a rule per matching record pair and thus it will never match a non-matching pair.
This of course comes at a cost, in order to improve recall this analyst will be making
many rules, and it has to potentially view all matching pairs to devise all the rules.

Technically speaking, the simple analyst will achieve 100% recall when it views
all the distinct comparison vectors that correspond to at least one matching pair.

This analyst is very interesting because it shows that with certain assumptions
about the data, it is actually not a complicated task to achieve 100% precision and
recall. You just write one rule per matching pair. It may take a long time and you may
write many rules but you eventually will get perfect precision and recall. However,

39

it is not clear to what extent this rule set will be useful if it is to be used for matching
new data.

The simple analyst also highlights the point that matching might be simple if the
data set is consistent with respect to the set of features that are used to generate the
comparison vectors (We will formally define dataset consistency in Section 2.3.3).
That is, in other words, one can view the matching process as at least in part trying
to modify the set of features and data set to render them consistent. We will return
to this later.

2.3.1.2 The ThreshFinder Analyst

The simple analyst can be very slow in improving recall because the rules that
it makes only affects record pairs that have the same comparison vector as the
matching pair it just saw. It also tends to make many rules. In order for her to get
100% recall, it will generate a rule for each distinct comparison vector corresponding
to at least one matching pair.

To remedy the shortcomings of the simple analyst, we introduce the ThreshFinder
Analyst. This analyst makes a stronger assumption about the dataset that allows her
to improve recall faster. Also, to get to 100% recall it will tend to write fewer rules.

Given a record pair and it’s comparison vector F :< f1, f2, . . . , fn > the threshfinder
analyst will make a rule as follows:

(s1 > f1)∧ (s2 > f2)∧ . . . ∧ (sn > fn)⇒Match

where < s1, s2, . . . , sn > is the comparison vector for every candidate record pair
that will be evaluated with this rule. This analyst will not make any rule when
seeing a non-matching record pair.

The intuition is that from seeing a matching pair, the analyst concludes that all
other pairs that are more similar than this pair (with respect to the features) are
also matching pairs. This helps the analyst to improve recall faster than the simple
analyst. However, this analyst is making a stronger assumption about the dataset
than the simple analyst. Therefore, if there are non-matching pairs that are more
similar than the matching pairs in their comparison vectors, this analyst will make
precision errors. If this assumption is not violated, then the analyst can achieve

40

100% precision. The threshfinder analyst will achieve 100% recall when it views all
the least similar matching pairs (with respect to the features).

Suppose the threshfinder analyst’s assumption about the dataset is actually true.
We formally call this a consistent dataset which will be explained in Section 2.3.3. In
that case we will see that with many fewer rules and much more quickly an analyst
can achieve perfect precision and recall. This suggests that trying to approach a
consistent dataset will be helpful in matching.

With the rules that the threshfinder analyst makes, there is a possibility that one
rule matches at least all the candidate record pairs that another rule matches. In that
case, the second rule is redundant. Therefore, each time the analyst makes a rule, it
modifies the rule set with this new devised rule such that there are no redundant
rules. We call this a valid rule set. Lets formally define a valid rule set:

Suppose rule r1 uses comparison vector A = < a1,a2, . . . ,an > and rule r2 uses
comparison vector B = < b1,b2, . . . ,bn >. Therefore r1, r2 are:

r1 : (s1 > a1)∧ (s2 > a2)∧ . . . ∧ (sn >= an)⇒Match

r2 : (s1 > b1)∧ (s2 > b2)∧ . . . ∧ (sn >= bn)⇒Match

Definition 2.1. comparison vector A dominates comparison vector B if and only if:

∀i ∈ [1,n],ai 6 bi ∧ ∃j ∈ [1,n],aj < bj

Definition 2.2. Rule r1 with comparison vector A dominates rule r2 with comparison
vector B if and only if A dominates B.

Intuitively, if r1 dominates r2 then the set of pairs that r1 matches is a superset of
pairs that r2 matches.

Definition 2.3. In a valid rule set there does not exist 2 rules {r1, r2} such that r1 dominates
r2.

Intuitively, this means that all rules either should affect the matching output, or
should be removed.

The analyst makes sure the rule set is valid in 2 steps:

41

1. Determine if devised rule is dominated. In that case, there is no reason to add
this rule to the rule set. If not, move to step 2.

2. Remove all rules dominated by the devised rule from the rule set. This is
because after adding this new rule, the dominated rules will not have any
effect on the matching result.

2.3.1.3 The Consistent Analyst

So far the simple and threshfinder analyst made very strong assumptions about
the dataset. The simple analyst assumes that if two record pairs have the same
comparison vector, one cannot be matching and one non-matching. The threshfinder
analyst assumes that a non-matching pair cannot be more similar than a matching
pair. If those assumptions hold in the dataset, they will not make a single precision
error while devising new rules.

However, this is far from true in the practical datasets and thus the precision
drops very quickly as these analysts try to improve the recall. To remedy this
situation, we introduce a new analyst: the Consistent Analyst, which does not make
any assumptions about the dataset and tries to do her best in a dataset that may
contain inconsistencies.

The rules that the consistent analyst makes are exactly the same as the threshfinder
analyst. The difference is in it’s reasoning and when it devises a new rule. Rather
than making a new rule every time it sees a matching pair, it keeps a memory of the
non-matching pairs that it has seen and does not make inconsistent decisions.

Definition 2.4. If an analyst decides that a record pair is a non-match, then it is an incon-
sistent decision to decide that a less similar pair is a match.

If the analyst makes inconsistent decisions it means that it is willing to introduce
precision errors to the output to improve recall. We configure this willingness with
parameter K. By increasing K, we allow the analyst to make decisions that are
inconsistent with what it has previously decided.

Now lets define what we exactly mean by more similar and less similar

Definition 2.5. Record pair with comparison vector A is more similar than record pair
with comparison vector B if and only if A dominates B. If B dominates A then record pair
with comparison vector A is less similar than record pair with comparison vector B.

42

Note that being more similar is always defined with respect to the features used
to generate the comparison vectors. A record pair may be more similar than another
pair with respect to a set of features, but be more different than the other pair with
respect to another set of features. To illustrate this, consider two cases where the
comparison vector was generated using only one feature. For the first case, the
used feature was title similarity. For the second case, the used feature was price
similarity. A record pair may be more similar than another record pair with respect
to title. However, these same records may have very different prices, and could be
less similar than the other record pair with respect to price.

The consistent analyst makes a rule with a matching pair if it passes the following
acceptance criteria:

Definition 2.6. Acceptance criteria: The analyst has not seen K or more non-matching
pairs that are equally or more similar to the current pair.

This means that if the analyst is sure that adding this rule will introduce at least
K precision errors, then it will not make that rule. This way the consistent analyst
tries to keep the precision high as it is improving the recall. The higher the value of
K is the more the analyst tolerates precision errors.

2.3.2 Pair Generators

Generally an analyst browses record pairs and inspects their comparison vectors to
make new rules. Now, the question is: what is the best way to browse the record
pairs? Should she randomly look at pairs? Or can we provide her some guidance
that can help her quickly come up with a good rule set? The pair generators define
the order in which the analyst browses the record pairs. We consider three different
pair generators: Random, Sort, and Skyline as described below.

Remember that the analysts in our simple model make a rule based on the match
status of a record pair and the comparison vector associated with that pair. Therefore,
if they see a pair with the same comparison vector and the same match status as
they have seen before this will not add knowledge to them and may significantly
increase the number of pairs that they view. For example, all the record pairs that
are exact matches will have a comparison vector containing of all 1’s. Viewing these
pairs over and over again will not add any knowledge to our analysts.

43

To resolve this issue, the pair generators should not show record pairs that do
not add any knowledge to the analysts. However, the pair generators have no way
of verifying the match status before showing the pair to the analyst and can only
decide based on the comparison vectors. Since we found that record pairs with the
exact same comparison vector and with different match status are not common, in
our model the pair generators will skip the pairs with repeated comparison vectors;
regardless of the match status.

2.3.2.1 The Random Generator

The random generator chooses a record pair randomly and shows it to the analyst.
This will work as a baseline for us to compare with the next generators that are
designed to have a particular order for showing record pairs.

2.3.2.2 The Sort Generator

For the sort generator, the analyst defines a sort order. For example, <title similarity,
year similarity>. The record pairs are sorted based on this hierarchical sort order,
resolving ties in the higher level using the values in the lower level. This may be
useful to the analyst if she has an idea of the relevancy of the features for matching
purpose. The pairs are presented to the analyst in the sort order.

2.3.2.3 The Skyline Generator

For the skyline generator, the items are presented to the analyst from most similar
to least similar. If we have only one feature, it is easy to generate this order. You just
sort the items on the similarity score for that feature from higher to lower. When we
have more than one attribute this is not trivial because an record pair may be more
similar than another record pair in one feature but less similar in another feature in
the comparison vector.

Definition 2.7. a record pair is the most similar pair if no pair is more similar than this
pair (see definition 2.5).

Note that there may be more than one record pair that fits this definition; i.e.,
more than one record pair could be “most similar”. The most similar record pairs
are generated iteratively. We form a first-in-first-out queue to hold record pairs to be

44

shown to the analyst. The record pairs are retrieved one by one from the head of the
queue and shown to the analyst. If the queue is empty, the most similar record pairs
are extracted, inserted in the queue, and removed from the set of all record pairs.

2.3.3 Dataset Consistency

Dataset consistency is an important factor for the matching problem. As we will
see later in the evaluation section, it is actually very easy to do matching on a
consistent dataset, and it could be very hard to do matching on an inconsistent dataset.
Unfortunately, many datasets encountered in practice are inconsistent based on the
definition below:

Definition 2.8. A dataset is consistent with respect to a set of features if and only if for
any matching pair, there does not exist a non-matching pair that is more similar than the
matching pair or has the same comparison vector as that matching pair.

Definition 2.9. A dataset is weakly consistent with respect to a set of similarity functions
if and only if for any matching pair, there does not exist a non-matching pair that has the
exact same comparison vector.

The intuition is that greater similarity score should reflect greater similarity.
However, this is not always the case in reality and in that case we have a weakly
consistent or inconsistent dataset. Inconsistency may arise for different reasons such
as:

• Unnormalized data: The same value may have different formats in the two
tables to be matched. For example: hard cover and trade cloth have the same
meaning for books, but Walmart may store it as trade cloth and the Bowker data
provider may store it as hard cover. This will result unusually low similarity
scores for the binding feature for matching pairs.

• Poor attribute extraction: If relevant attributes for matching such as color
and quantity are not extracted, a non-matching pair may have unusually high
similarity measures. For example, if color is not extracted from the title, it can
be the case that all words except for a single word “blue” matches with the
other title which has a “red” color. This will lead to a high similarity score for
the title similarity where the two items actually refer to different products.

45

• Using unsuitable similarity functions: Some functions may be insensitive to
slight differences in the values that actually matter for the matching purpose.
For example, an single extra character in model number for cameras is very
significant for matching purposes but a single character different in the title
of the product is not very significant. Therefore, the same similarity function
should not be used for comparing model numbers and comparing titles.

• Incorrect data: Some data is stored incorrectly into the database. Even impor-
tant attributes for matching such as “modelno” and “UPC” are sometimes
entered incorrectly. This may lead to unusually high or low similarity scores.

• Missing data: If at least one of the items in a pair is missing some attribute (for
example, price), then typically the similarity score will be 0 for every feature
using that attribute. This could lead to unusually low similarity measures for
matching pairs that have missing values.

In the next section, we evaluate our abstract model on a real-world dataset.
For our evaluation, we define a set of features, convert this inconsistent dataset to
consistent and experiment with both of the datasets to understand the implications
that dataset consistency has on the matching task.

2.3.4 Empirical Evaluation

We now empirically evaluate our abstract model of the entity matching problem
on the Products dataset. This the data set created by [22], and matches electronics
products between Amazon and Walmart. We chose this dataset because it is repre-
sentative of datasets that are used in the industry and is inconsistent with respect to
the main features that are used for performing matching on it.

2.3.4.1 The Products Dataset

The product dataset matches 2554 items from Amazon and 22074 items from Wal-
mart with 1154 matching pairs. After blocking there are about 297000 candidate
record pairs left.

The features that we consider for matching are as follows:

1. Similarity of Amazon title with Walmart model number

46

2. Similarity of Amazon title with Walmart title

3. Similarity of Amazon model number with Walmart model number

We chose these features because based on our past experience with this dataset
title and modelno similarity are very important for determining the match status
for this dataset. The first feature may need further explanation because it searches
for the Walmart modelno in the Amazon title. This feature has an important role
in recall because for many of the Amazon items, the model number is recorded in
the title instead of the model number attribute. All these features are calculated
using a customized similarity function created at WalmartLabs for comparing string
attributes.

2.3.4.2 Consistent Products Dataset

We created a consistent version of the dataset with the following steps:

1. Remove all the matches such that sum of their similarity scores is less than the
threshold T = 0.7. This means that to be a match, at least one of the features
should be fairly similar.

2. For every match, remove all the non-matches that did not have a similarity
score less than this pair for at least one of the features. This means that the
non-matching pair either had the same comparison vector as the matching
pair, or was more similar than the matching pair.

This is of course not the only way to create a consistent version of the dataset;
but we found that it suffices to illustrate the performance of the various analysts
with respect to consistent data sets.

Next we present the results with the consistent and inconsistent dataset and
discuss the implications of the results on the matching task for analysts.

2.3.4.3 Results with the Consistent Dataset

For the consistent data set, we only experimented with the simple and threshfinder
analysts, because the consistent analyst would behave exactly like the threshfinder
analyst in the absence of inconsistency. With this dataset, if the analyst sees a

47

Figure 2.10: Performance of the simple analyst on the consistent dataset.

Figure 2.11: Performance of the threshfinder analyst on the consistent dataset.

matching pair and makes a rule with it, there is no chance to hurt precision. The
question then becomes how fast the analyst can improve recall.

We measure the performance of the analyst by counting the number of pairs
that it views before it gets to a certain precision/recall. Therefore, the fewer pairs
viewed to get to a certain precision/recall, the better the performance. We also
consider the number of rules the analyst generates. In practice, large rule sets are
hard to maintain, and sometimes correspond to over-fitting to the sample data set.
Therefore, we present the number of rules generated here to provide insight as to
what generates large numbers of rules in our admittedly highly abstract setting.

48

Figures 2.10 and 2.11 show the performance of simple and threshfinder analysts
on this dataset. Recall that when the threshfinder analyst sees a matching pair, it
concludes that all pairs that have exactly the same comparison vector or are more
similar than this pair match. However, when the simple analyst sees a matching
pair, it only concludes that all pairs with exactly the same comparison vector are
matches. Thus the simple analyst does not generalize her findings.

Note that with the consistent dataset, both analysts, no matter how they browse
the pairs, can get to 100% recall. It is just a matter of how many pairs they need to
see before getting to that point.

It may sound counter-intuitive that threshfinder analyst can perform very well
with the random generator. In fact, within the first few pairs the analyst can get to
90% recall or above.

This is because there are a total of 1101 unique comparison vectors and 238 (22%)
of them belong to matches. This means that in average out of about 5 pairs that the
analyst randomly browses, one of them is a match. Since the random pairs shown
do not follow any order in terms of similarity scores, the analyst quickly encounters
matching pairs with low similarity scores, and the rules that it makes with them
automatically cover all the pairs that are more similar than these pairs.

However, analyst’s performance with the random pair generator degrades sig-
nificantly as the number of non-matches increases. To show this, we injected 100000
non-matches to the dataset. All these non-matches have comparison vectors strictly
lower than all the matches. In this case there are a total of 101101 unique comparison
vectors and 238 (0.002%) of them belong to matches. Thus in average out of every
425 pairs that the analyst randomly browses, 1 of them is a match.

As you can see in Figure 2.12 the analyst performs much worse with the random
generator than with the skyline and sort generators when there are many distinct
comparison vectors corresponding to non-matches. The random generator just
cannot find matches and thus the analyst is not able to improve recall. In fact, the
sort generator also stops finding matches at a very low recall. This is because when
the threshold on the first attribute in the sort order becomes low, most of the pairs
that the analyst views are actually non-matches. The skyline is able to get the analyst
to 100% recall without seeing many non-matches.

49

Also, in the case of the simple analyst, the random generator improves recall
very slowly. The analyst sees a lot of non-matches with this generator which makes
it slow.

Therefore, we can conclude that randomly browsing the record pairs will result
in poor performance unless a high percentage of the distinct comparison vectors
belong to matches and we make very strong assumptions about the consistency of
the dataset as in the threshfinder analyst.

Another interesting result is that both simple and threshfinder analysts get to
100% recall faster with the skyline generator than sort and random. This is because it
does a better job at identifying matching items in the dataset. The random generator
simply does not consider any of the similarity scores for generating pairs. The sort
generator emphasises the sort order and thus sees many non-matches once the
attribute highest in the sort order drops below a certain threshold.

One observation regarding the performance of analysts with skyline and the
sort generator is that with each new rule that they devise they improve the recall
just a little. This is because these two generators search the space of matches from
more similar to less similar one by one. Therefore, when they see a match they
already have devised a rule for more similar matches, and thus the current rule
that they devise only adds matches with exactly the same comparison vector as this
match. This behavior is not necessarily true with real analysts. The real analysts,
can quickly skim through the pairs that they think are too similar to the pairs that
they have already seen.

As expected, the simple analyst generates many more rules than the threshfinder
analyst because it only assumes that pairs with the exact same comparison vector
as the matching pair that it just saw are matches. Figures 2.13 and 2.14 show the
number of rules devised by the simple versus the threshfinder analyst.

As you can see, the final rule set for the simple analyst has 238 rules, which is
the number of unique comparison vectors for matching record pairs. On the other
hand, the final rule set for the ThreshFinder has no more than 10 rules for all the
generators.

2.3.4.4 Results with the Inconsistent Dataset

In this section, we compare the performance of the analyst with the inconsistent
dataset with that of the consistent dataset.

50

Figure 2.12: Performance of the threshfinder analyst on the consistent dataset after
adding 100000 non-matching pairs.

Figure 2.13: Number of rules that the simple analyst generates with the consistent
dataset.

Figure 2.14: Number of rules that the threshfinder analyst generates with the con-
sistent dataset.

51

Figure 2.15: Performance of the simple analyst on the inconsistent dataset.

Unlike the consistent data set, with the inconsistent dataset the analyst may
introduce precision errors, because there can exist non-matching pairs that are
more similar than the matching pairs or have the exact same comparison vector as
the matching pairs. This means that none of the assumptions that the simple and
threshfinder analyst make hold. Therefore, we look at both precision and recall
curves for analyzing performance.

Figure 2.15, 2.16 show the precision and recall for the simple and threshfinder
analyst for the inconsistent dataset.

The threshfinder analyst loses precision very quickly with all the generators.
Specifically, the analyst loses precision much faster with the random generator than
with skyline and sort. Remember that with the consistent dataset, the random

52

Figure 2.16: Performance of the threshfinder analyst on the inconsistent dataset.

generator in some cases performed very well because there was no chance to hurt
precision. But when there are inconsistencies in the data set, it simply cannot keep
precision high. This is because it is likely that the analyst views matching pairs that
have low similarity scores in the comparison vector and thus are not very similar. In
that case there may be many non-matching pairs that have higher similarity scores
than this matching pair and will be added to the matching output by the newly
devised rule. This problem is avoided with the skyline and sort because they view
the matching pairs from more similar to least similar.

Note that the simple analyst is able to keep precision higher for longer. This is
because the rules that it makes are very specific to the matching pairs that it sees.
However, since the dataset is not even weakly consistent, there may be non-matching

53

pairs with exactly the same comparison vector as the matching pairs has, and thus
the simple analyst can still have precision errors.

In fact, if the dataset is at least weakly consistent, the simple analyst can eventually
achieve 100% recall and 100% precision. However, the simple analyst makes many
rules to achieve this, basically one rule per matching pair. This rule set will be
tailored to the matching pairs in this data set and it is very possible that it will not
work well on new data.

With the inconsistent dataset, the notion of the consistent analyst makes sense.
This analyst tries to avoid precision errors using the knowledge about the non-
matching pairs that it has already seen. It will not devise a rule that it is sure will
add at least K precision errors (false positives) to the matching output. In Figure 2.17
you can see the performance of the consistent analyst with inconsistency threshold
K = 10.

With the consistent analyst, with all the generators, the analyst can improve
recall and keep the precision higher than the simple and threshfinder analyst.

Also, with the random generator, even the consistent analyst has a hard time
keeping precision high because it does not view the matches from most similar to
least similar and thus cannot keep track of inconsistencies.

2.3.4.5 Conclusions from the experiments with abstract analysts

In this section, we would like to revisit some of the interesting and/or important
findings throughout the experiments:

• With the consistent dataset, all the analysts no matter how they browse the
pairs, can get to 100% recall. However, using the skyline generator they will get
to 100% recall faster than with random and sort pair generators. The skyline
generator does a better job at finding matching pairs.

• Randomly browsing the record pairs will result in poor performance with
both consistent and inconsistent data sets for common matching tasks where
a very high percentage of the candidate record pairs are non-matches. For the
consistent data set, with the random generator the analyst will not encounter
matching pairs and keeps looking through non-matching record pairs. For the
inconsistent data set, the same problem holds plus using the random generator
leads to a very quick drop in precision. The random generator is not able to

54

Figure 2.17: Performance of the consistent analyst on the inconsistent dataset.

keep precision high even with the consistent analyst because the analyst will
not be able to detect inconsistencies through randomly browsing the pairs.

• The simple analyst, who basically writes a rule per matching pair, improves
recall very slowly in all cases and generates many rules. However, with the
inconsistent dataset it is able to keep precision higher for longer than the
threshfinder analyst because it only assumes that the dataset is weakly con-
sistent. However, it is not clear if the rules that it makes would result in high
quality with a new set of data.

• The main challenge with the inconsistent dataset is to keep precision high
while improving recall. With this dataset, the consistent analyst does a better

55

job than simple and threshfinder analysts since it is reluctant to write rules
that it knows will cause precision errors.

2.4 Insights from Experience with Real and Abstract
Analysts

Insights that we gained from working with real and abstract analysts helped us
shape the next chapters of this thesis. In particular, we noticed that as the analyst
explores the set of features and rules for matching the data set, she goes through
many iterations before acheiving high quality. The matching step is performed in
each iteration and if we could speed it up, it means that the analyst can go through
the iterations and complete the matching task faster. We will focus on this problem
in Chapter 31.

Through working with real analysts and real-world data sets we noticed that
some data sets are harder to match than others. With our abstract analysts we found
out that the notion of dataset consistency has a significant impact on analyst perfor-
mance such that consistent data sets could be easily matched with high precision
and recall with a few rules. In Chapter 4, we investigate how we can help the analyst
quickly find and eliminate inconsistencies in a data set.

1We did not do formal user studies, so the insights from real analysts are only presented to
provide intuition and insight rather than to draw concrete conclusions.

56

3 towards interactive debugging of rule-based em

3.1 Introduction

Rule-based entity matching is widely used in practice [3, 32]. This involves analysts
designing and maintaining sets of rules. These analysts typically follow an iterative
and time-consuming debugging process, as depicted in Figure 3.1. For example,
imagine an e-commerce marketplace that sells products from different vendors.
When a vendor submits products from a new category, the analyst writes a set of
rules designed to match these products with existing products. He or she then
applies these rules to a labeled sample of the data and waits for the results. If the
analyst finds errors in the matching output, he or she will refine the rules and re-run
them, repeating the above process until the result is of sufficiently high quality.

Our goal is to make this process interactive by reducing the time that an analyst
is idle in the Run EM step. Research shows that when interacting with software, if
the response time is greater than one second, the analyst’s flow of thought will be
interrupted, and if it is greater than 10 seconds, the user will turn their attention to
other tasks [31]. Therefore, it is imperative to reduce the idle “waiting” time as much
as possible. Moreover, the faster an iteration can be finished, the more iterations
that can be accomplished in a given time, which typically leads to better matching
quality.

Rule-based entity matching is typically accomplished by evaluating a boolean
matching function for each candidate record pair (for example, B1 in Figure 3.2). In
this thesis, we follow the approach we have encountered in practice in which this
matching function is in Disjunctive Normal Form (DNF). Each disjunction is a rule,
and each rule is a conjunction of a set of predicates that evaluate the similarity of
two records on one or more attributes, using a similarity function (such as Jaccard
or TF-IDF). For example, Jaccard(a.name,b.name) > 0.7 is a predicate, where
Jaccard(a.name,b.name) is a feature. A record pair is a match if it matches at least
one rule.

As was pointed out by Benjelloun et al. [3], and confirmed in our experiments,
computing similarity function values dominates the matching time. In view of this,
our basic idea is to eliminate unnecessary similarity function computations as the
analyst defines new rules and/or refines existing rules.

57

title: Sony Black Cyber-shot RX100 II with
20.2 Megapixels and 3.6x Zoom
modelno: DSCRX100
price: $555

title: Sony DSC-RX100 20.2 MP Exmor
CMOS Sensor Camera with 3.6x Zoom
modelno: DSCRX100/B
price: $448

Record id: A20

Sample records to be matched

Jaccard(title, title) ≥ 0.9 ∧
Jaro(modelno, modelno) ≥ 0.9
⇒Match

W3-A20
do not match

Add rule
Normalize data

W3-A20
should be
matched!

Write initial rules Run EM Analyze Refine

Matching workflow

Record id: W3

Figure 3.1: A typical matching workflow for analysts.

Specifically, we exploit properties of DNF/CNF rule sets that enable “early exit”
evaluation, which can eliminate the need for evaluating many rules and/or predi-
cates for a given candidate pair of records. Moreover, we use “dynamic memoing”:
we only compute (and materialize the result of) a feature (i.e., a similarity score)
if that predicate result is required by the matching function (because of early exit,
not all features need to be computed.) This “lazy feature computation” strategy can
thus save significant computation cost when there are many possible features but
only a few of them are really required by the rule set/data set under consideration.
Techniques such as “early exit” and “dynamic memoing” are of course ubiquitous
in computer science, but to the best of our knowledge, ours is the first study of their
efficacy in the domain of entity matching.

Meanwhile, the application of “early exit” and “dynamic memoing” implies that
different evaluation orders of the predicates/rules may lead to significant differences
in computational cost. This then raises the problem of optimal predicate/rule
ordering. We study this problem in detail. We show that the optimization problem
under our setting is NP-hard, and we propose two greedy solutions based on
heuristic optimization criteria. In our experiments with six real-world datasets, we
show that the greedy solutions can indeed produce orderings that significantly
reduce runtime compared to random ones.

Since the elements (e.g., features, predicates, or rules) involved in matching
change frequently as the analyst iteratively refines the rule set, we further develop
an incremental matching solution to avoid rerunning matching from scratch after

58

each change. We show that our incremental solutions can reduce matching time by
orders of magnitude.

3.2 Related Work

Our work differs from previous work in several ways. Previous work on efficiently
running rule-based entity resolution [3] assumes that each predicate is a black box,
and thus memoing of similarity function results is not possible. In our experience
in an industrial setting, these predicates are often not black boxes — rather, they are
explicitly presented in terms of similarity functions, attributes, and thresholds.

On the other hand, the traditional definition of the EM workflow, as described
in [9, 14], assumes that all similarity values for all pairs are precomputed before
the matching step begins. This makes sense in a batch setting in which a static
matching function has been adopted, and the task is to apply this function to a
set of candidate record pairs. However, in this chapter we are concerned with the
exploratory stage of rule generation, where at the outset the matching function is
substantially unknown. In such settings the combinatorial explosion of potential
attributes pairs, potential similarity functions, and candidate pairs can render such
full precomputation infeasible.

Even in small problem instances in which full precomputation may be feasible,
it can impose a substantial lag time between the presentation of a new matching
task and the time when the analyst can begin working. This lag time may not be
acceptable in practical settings where tens of matching tasks may be created every
day [22] and the analyst wants to start working on high priority tasks immediately.
Finally, during the matching process, an analyst may perform cleaning operations,
normalization, and attribute extractions on the two input tables. The analyst might
also introduce new similarity functions. In any of these situations, it is not possible
to precompute all features a priori.

Previous work on incrementally evaluating the matching function when the logic
evolves assumes that we evaluate all predicates for all pairs and materialize the
matching result for each predicate [43]. Because we use early exit, our information
about the matching results for each predicate is not complete. As a result, this
solution is not directly applicable in our setting.

59

In other related work, Dedoop (abbreviation for “Deduplication with Hadoop”) [27]
seeks to improve performance for general, large, batch entity matching tasks through
the exploitation of parallelism available in Hadoop. By contrast, our work focuses
on interactive response for rule-based entity matching where the matching function
is composed of many rules that evolve over time. Exploring the application of
parallelism as explored in Dedoop to our context is an interesting area for future
work.

Our work is also related to [39]. In that work, the user provides a set of rule
templates and a set of labeled matches and non-matches, the system then efficiently
searches a large space of rules (that instantiate the rule templates) to find rules that
perform best on the labeled set (according to an objective function). That work also
exploits the similarities among the rules in the space. But it does so to search for
the best set of rules efficiently. In contrast, we exploit rule similarities to support
interactive debugging.

Finally, our work is related to the Magellan project, also at UW-Madison [28].
That project proposes to perform entity matching in two stages. In the development
stage, the user iteratively experiments with data samples to find an accurate EM
workflow. Then in the production stage the user executes that workflow on the
entirety of data. If the user has decided to use a rule-based approach to EM, then
in the development stage he or she will often have to debug the rules, which is the
focus of this paper. This work thus fits squarely into the development stage of the
Magellan approach.

In the following we present our approach to try to achieve interactive response
times, and present experimental results of our techniques on six real world data
sets.

3.3 Motivating Example

To motivate and give an overview of our approach, consider the following ex-
ample. Our task is to match Table A and Table B shown in Figure 3.2 to find
records that refer to the same person. We have four candidate pairs of records:
{a1b1,a1b2,a2b1,a2b2}. Assume our matching function is B1. Intuitively, B1 says
that if the name and zipcode of two records are similar, or if the phone number and
name of two records are similar, then they match. Here p1name and p2name for

60

Id	 Name	 Street	 Zip	 Phone	

a1	 John	 Dayton	 54321	 123-4567	

a2	 Bob	 Regent	 53706	 121-1212	

Table	A	
Id	 Name	 Street	 Zip	 Phone	

b1	 John	 Dayton	 54321	 987-6543	

b2	 John	 Bascom	 11111	 258-3524	

Table	B	

B1:	(p1name	∧	pzip)	∨	(pphone	∧	p2name)	→		
B2:	(p1name	∧	pzip	∧	pstreet)	∨	(pphone	∧	p2name)	

Matching	func>on	evolu>on	

Figure 3.2: Tables A, B to be matched and example matching functions. Function B1
evolves to B2.

example compute Jaccard(a.name,b.name)1, then compare this value to different
thresholds, respectively, as we will see below. For this example, B1 will return true
for a1b1 and false for the rest of the candidate pairs.

A simple way to accomplish matching is to evaluate every predicate for every
candidate pair. To evaluate a predicate, we compute the value of the similarity
function associated with that predicate and compare it to a threshold. For the
candidate pair a2b1, we would compute 4 similarity values.

This is unnecessary because once a predicate in a rule evaluates to false, we can
skip the remaining predicates. Similarly, once a rule evaluates to true, we can skip
the rest of the rules and therefore finish matching for that pair. We call this strategy
“early exit,” which saves unnecessary predicate evaluations. For instance, consider
the candidate pair a2b1 again. Suppose that the predicate p1name is

Jaccard(a.name,b.name) > 0.9.

Since the Jaccard similarity of the two names is 0, p1name will return false for this
candidate pair. Further assume that pphone performs an equality check and thus
returns 0 as well. We then do not need to evaluate pzip and p2name to make a
decision for this pair. Therefore, for this candidate pair, “early exit” reduces the
number of similarity computations from 4 to 2.

Since the same similarity function may be applied to a candidate pair in multiple
rules and predicates, we “memo” each similarity value once it has been computed.

1In practice we often compute Jaccard over the sets of q-grams of the two names, e.g., where
q = 3; here for ease of exposition we will assume that Jaccard scores are computed over the set of
words of the two names.

61

If a similarity function appears in multiple predicates, only the first evaluation of the
predicate incurs a computation cost, while subsequent evaluations only incur (much
cheaper) lookup costs. We call this strategy “dynamic memoing.” Continuing with
our example, suppose p2name is

Jaccard(a.name,b.name) > 0.7.

Then for a2b1 this predicate only involves a lookup cost.
When using early exit and dynamic memoing, different orders of the predicates/rules

will make a difference in the overall matching cost. Once again consider the candi-
date pair a2b1. If we change the order of predicates in B1 to

(p1name ∧ pzip)∨ (p2name ∧ pphone),

the output of the matching function will not change. However, it reduces the
matching cost to one computation for p1name plus one lookup for p2name. This
raises a novel optimization problem that we study in Section 3.6.

Finally, we take into account the fact that, as the matching function’s logic evolves,
the changes to the function are often incremental. We can then store results of a
previous EM run, and as the EM logic evolves, use those to save redundant work
for the next EM iterations. As an example, imagine the case where the matching
function B1 evolves to B2. Since B2 is stricter than B1, we only need to evaluate
pstreet for the pairs that were matched by B1 to verify if they still match. For our
example, this means that we only need to evaluate B1 for a1b1 among the four
pairs.

3.4 Preliminaries

Recall from Chapter 1 that the input to the entity matching (EM) workflow is two
tables A, Bwith a set of records {a1 . . .an}, {b1 . . .bm} respectively. The goal of EM
is to find all record pairs aibj that refer to the same entity. Given table A with m
records and table Bwith n records, there arem× n potential matches. Even with
moderate-size tables, the total number of potential matches could be very large.
Many of these potential matches obviously do not match and can be eliminated

62

from consideration easily. That is the purpose of a blocking step, which typically
precedes a more detailed matching phase.

For example, suppose that each product has a category attribute (e.g., clothing
or electronics). We can assume that products from different categories are clear
non-matches. This will reduce the task to finding matching products within the
same category. We refer to the set of potential matches left after the blocking step as
the candidate record pairs or candidate pairs throughout the rest of this chapter.

Each candidate record pair is evaluated by a Boolean matching function B, which
takes in two records and returns true or false. We assume that B is commutative,
i.e.,

∀aibj,B(ai,bj) = B(bj,ai).

We assume that each matching function is in disjunctive normal form (DNF). We
refer to each disjunct as a rule. For example, our matching function B1, depicted in
Figure 3.2 is composed of two rules.

Such a matching function is composed of only “positive” rules, as they say what
matches, not what does not match. In our experience, this is a common form of
matching function used in the industry. Reasons for using only positive rules include
ease of rule generation, comprehensibility, ease of debugging, and commutativity
of rule application.

Each rule is a conjunction of a set of predicates. Each predicate compares the
value of a feature for a candidate pair with a threshold. A feature in our context
is a similarity function computed over attributes from the two tables. Similarity
functions can be as simple as exact equality, or as complex as arbitrary user-defined
functions requiring complex pre-processing and logic.

Recall from Chapter 1 that the matching result is composed of the return value
of the matching function for each of the candidate pairs. In order to evaluate the
quality of matching, typically a sample of the candidate pairs is randomly chosen
and manually labeled as match or non-match based on domain knowledge. The
matching results for the sample is then compared with the correct labels to get an
estimate of the quality of matching. The standard measures for quality are precision
and recall.

63

Algorithm 1: The rudimentary baseline.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (Mmeans a match and Umeans

an unmatch)
1 Let R be the CNF rules in B;
2 Mark all c ∈ C with U;
3 foreach c ∈ C do
4 foreach r ∈ R do
5 foreach p ∈ predicate(r) do
6 Evaluate p;
7 end
8 Evaluate r =

∧
p∈predicate(r) p;

9 end
10 Mark cwithM if B =

∨
r∈R r is true;

11 end

3.5 Early Exit + Dynamic Memoing

In this section, we present the details of early exit and dynamic memoing.

3.5.1 Baselines

We study two baseline approaches in this section. In the following algorithms, for a
given rule r, we will use predicate(r) and feature(r) to denote the set of predicates
and features r includes, respectively.

3.5.1.1 The Rudimentary Baseline

The first baseline algorithm simply evaluates every predicate in the matching func-
tion for every candidate pair. Each predicate is considered as a black box and any
similarity value used in the predicate is computed from scratch. The results of the
predicates (true or false) are then passed on to the rules, and the outputs of the rules
passed on to the matching function to determine the matching status. Algorithm 1
presents the details of this baseline.

64

3.5.1.2 The Precomputation Baseline

This algorithm precomputes all feature values involved in the predicates before
performing matching. Algorithm 2 presents the details of this baseline. As noted
in the introduction of this chapter, full precomputation may not be feasible or
desirable in practice, but we present it here as a point of comparison. We store
precomputed values as a hash table mapping pairs of attribute values to similarity
function outputs.

Algorithm 2: The precomputation baseline.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (Mmeans a match and Umeans

an unmatch)
1 Let R be the CNF rules in B;
2 Let F =

⋃
r∈R feature(r);

3 Let Γ = {(c, f, v)} be a |C|× |F| array that stores the value v of each f ∈ F for
each c ∈ C;

4 foreach c ∈ C do
5 foreach f ∈ F do
6 Compute v and store (c, f, v) in Γ ;
7 end
8 end
9 Run Algorithm 1 by looking up feature values from Γ when evaluating

predicates;

3.5.2 Early Exit

Both baselines discussed above ignore the properties of the matching function B.
Given that B is in DNF, if one of the rules returns true, B will return true. Similarly,
because each rule in B is in CNF, a rule will return false if one of its predicate returns
false. Therefore, we do not need to evaluate all the predicates and rules. Algorithm 3
uses this idea. While this is straightforward, we choose to retain the details here to
ease our discussion on cost analysis in Section 3.5.4. The “breaks” in lines 8 and 12
are the “early exits” in this algorithm.

65

Algorithm 3: Early exit.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (Mmeans a match and Umeans

an unmatch)
1 Let R be the CNF rules in B;
2 Mark all c ∈ C with U;
3 foreach c ∈ C do
4 foreach r ∈ R do
5 r is true;
6 foreach p ∈ predicate(r) do
7 if p is false then
8 r is false; break;
9 end

10 end
11 if r is true then
12 Mark cwithM; break;
13 end
14 end
15 end

3.5.3 Dynamic Memoing

We can combine the precomputation of the second baseline with early exit. That is,
instead of precomputing everything up front, we postpone the computation of a
feature until it is encountered during matching. Once we have computed the value
of a feature, we store it so following references of this feature only incur lookup
costs. We call this strategy “dynamic memoing,” or “lazy feature computation.”
Algorithm 4 presents the details.

3.5.4 Cost Modeling and Analysis

In section, we develop simple cost models to use in rule and predicate ordering
decisions studied in Section 3.6. In the following discussion, we use cost(p) to
denote the cost of evaluating a predicate p. Let C be the set of all candidate pairs.
Moreover, let F be the set of all features involved in the matching function, and we
use cost(f) to denote the computation cost of a feature f. Furthermore, we use δ to
represent the lookup cost.

66

Algorithm 4: Early exit with dynamic memoing.
Input: B, the matching function; C, candidate pairs
Output: {(c, x)}, where c ∈ C and x ∈ {M,U} (Mmeans a match and Umeans

an unmatch)
1 Let R be the CNF rules in B;
2 Let Γ be the feature values computed; Γ ← ∅;
3 Mark all c ∈ C with U;
4 foreach c ∈ C do
5 foreach r ∈ R do
6 r is true;
7 foreach p ∈ predicate(r) do
8 Let f be the feature in p;
9 if f 6∈ Γ then

10 Compute f; Γ ← Γ ∪ {f};
11 else
12 Read the value of f from Γ ;
13 end
14 if p is false then
15 r is false; break;
16 end
17 end
18 if r is true then
19 Mark cwithM; break;
20 end
21 end
22 end

3.5.4.1 The Rudimentary Baseline

The cost of the rudimentary baseline (Algorithm 1) can be represented as:

C1 =
∑

c∈C

∑
r∈R

∑
p∈predicate(r)

cost(p).

In our running example in the introduction, the cost of making a decision for
the pair a1b2 is then

cost(p1name) + cost(pzip) + cost(pphone) + cost(p2name).

67

3.5.4.2 The Precomputation Baseline

Suppose that each feature f appears freq(f) times in the matching function. Then
the cost of the precomputation baseline (Algorithm 2) is

C2 =
∑

c∈C

∑
f∈F

(cost(f) + freq(f)δ).

In our running example this means that, for pair a1b2 and matching function
B1, we would need to precompute three similarity values and look up four. Note
that this requires knowing cost(f) — in our implementation, as discussed in our
experimental results, we use an estimate of cost(f) obtained by evaluating f over a
sample of the candidate pairs.

3.5.4.3 Early Exit

To compute the cost of early exit (Algorithm 3), we further introduce the probability
sel(p) that the predicate p will return true for a given candidate pair (i.e., the
selectivity of p). In our implementation, we use an estimate of sel(p) obtained by
evaluating p over a sample of the candidate pairs.

Given this estimate for sel(p), suppose that we have a rule rwithm predicates
p1, ..., pm. The expected cost of evaluating r for a (randomly picked) candidate pair
is then

cost(r) = cost(p1) + sel(p1) cost(p2) + · · · (3.1)

+ sel(
∧m−1

j=1
pj) cost(pm),

because we only need to evaluate pj if p1, ..., pj−1 are all evaluated to be true.
Similarly, we can define the selectivity of the rule r as

sel(r) = sel(
∧m

j=1
pj).

Suppose that we have n rules r1, ..., rn. The expected cost of the early exit strategy
(Algorithm 3) is then

C3 = cost(r1) + (1 − sel(r1)) cost(r2) + · · ·

+(1 − sel(
∨n−1

i=1
ri)) cost(rn).

68

3.5.4.4 Early Exit with Dynamic Memoing

The expected cost of early exit with dynamic memoing (Algorithm 4) can be esti-
mated in a similar way. The only difference is that we need to further know the
probability that a feature is present in the memo. Specifically, suppose that a feature
can appear at most once in a rule. Let α(f, ri) be the probability that a feature f is
present in the memo after evaluating ri. The expected cost of computing f when
evaluating ri is then

E[cost(f)] = (1 − α(f, ri−1) cost(f) + α(f, ri−1)δ. (3.2)

The expected cost C4 of Algorithm 4 can be obtained by replacing all cost(p)’s in
Equation 3.1 with their expected cost expressed in Equation 3.2.

Let prev(f, ri) be the predicates in the rule ri that appear before f. We then have

α(f, ri) = (1 − α(f, ri−1)) sel(
∧
p∈prev(f,ri)

p) + α(f, ri−1).

Based on our assumption, different predicates in the same rule contain different fea-
tures. If we further assume that predicates with different features are independent,
it then follows that

α(f, ri) = (1 − α(f, ri−1))
∏

p∈prev(f,ri)
sel(p) + α(f, ri−1).

Note that the initial condition satisfies

α(f, r1) =
∏

p∈prev(f,r1)
sel(p).

We therefore have obtained an inductive procedure for estimatingα(f, ri) (1 6 i 6 n).
Clearly, α(f, ri) = α(f, ri−1) if f 6∈ feature(ri−1). So we only need to focus on those
rules that contain f.

3.6 Optimal Ordering

Our goal in this section is to develop techniques to order rule and predicate evalua-
tion to minimize the total cost of matching function evaluation. This may sound
familiar, and indeed it is — closely related problems have been studied previously

69

Notation Description
cost(X) cost of X (X is a feature/predicate/rule)
δ the lookup cost
freq(f) frequency of feature f
predicate(r) predicates of rule r
feature(X) features of X (X can be a predicate/rule)
sel(X) selectivity of X (X can be a predicate/rule)
prev(f, r) features/predicates in rule r before feature f
predicate(f, r) predicates in rule r that have feature f
reduction(r) overall cost reduction by execution of rule r
cache(f, r) chance that f is in the memo after running r

Table 3.1: Notation used in cost modeling and optimal rule ordering study.

in related settings (see, for example, [2, 25]). However, our problem is different and
unfortunately more challenging due to the interaction of early exit evaluation with
dynamic memoing.

3.6.1 Notation

Table 3.1 summarizes notation used in this section. Some of the notation has been
used in the previous section when discussing the cost models.

3.6.2 Problem Formulation

We briefly recap an abstract version of the problem. We have a set of rules R =

{r1, ..., rn}. Each rule is in CNF, with each clause containing exactly one predicate.
A pair of records is a match if any rule in R evaluates to true. Therefore, R is a
disjunction of rules:

R = r1 ∨ r2 ∨ · · ·∨ rn.

Consider a single rule

r = p1 ∧ p2 ∧ · · ·∧ pm.

We are interested in the minimum expected cost of evaluating r with respect to
different orders (i.e., permutations) of the predicates p1, ..., pm.

70

Given a specific order of the predicates, the expected cost of r can be expressed
as

cost(r) = cost(p1) + sel(p1) cost(p2) + · · · (3.3)

+ sel(
∧m−1

j=1
pj) cost(pm).

Similarly, given a specific order of the rules, the expected cost of evaluating R, as
was in Section 3.5.4.3, is

cost(R) = cost(r1) + (1 − sel(r1)) cost(r2) + · · · (3.4)

+(1 − sel(
∨n−1

i=1
ri)) cost(rn).

We want to minimize cost(R).

3.6.3 Independent Predicates and Rules

The optimal ordering problem is not difficult when independence of predicates/rules
holds. We start by considering the optimal ordering of the predicates in a single
rule r. If the predicates are independent, Equation 3.3 reduces to

cost(r) = cost(p1) + sel(p1) cost(p2) + · · ·

+ sel(p1) · · · sel(pm−1) cost(pm).

The following lemma is well known for this case (e.g., see Lemma 1 of [25]):

Lemma 3.1. Assume that the predicates in a rule r are independent. cost(r) is minimized
by evaluating the predicates in ascending order of the metric:

rank(pi) = (sel(pi) − 1)/ cost(pi) (for 1 6 i 6 m).

We next consider the optimal ordering of the rules by assuming that the rules
are independent. We have the following similar result.

71

Theorem 3.2. Assume that the predicates in all the rules are independent. cost(R) is min-
imized by evaluating the rules in ascending order of the metric:

rank(rj) = −
sel(rj)

cost(rj)
= −

∏
p∈predicate(rj) sel(p)

cost(rj)
.

Here cost(rj) is computed by using Equation 3.3 with respect to the order of predicates
specified in Lemma 3.1.

Proof. By De Morgan’s laws, we have

R = r1 ∨ · · ·∨ rn = ¬(r̄1 ∧ · · ·∧ r̄n).

Define r ′j = r̄j for 1 6 j 6 n and R ′ = ¬R. It follows that

R ′ = r ′1 ∧ · · ·∧ r ′n.

This means, to evaluate R, we only need to evaluate R ′, and then take the negation.
Since R ′ is in CNF, based on Lemma 3.1, the optimal order is based on

rank(r ′j) = (sel(r ′j) − 1)/ cost(r ′j) (for 1 6 j 6 n).

We next compute sel(r ′j) and cost(r ′j). First, we have

sel(r ′j) = 1 − sel(rj) = 1 −
∏

p∈predicate(rj)
sel(p),

by the independence of the predicates. Moreover, we simply have cost(r ′j) = cost(rj),
because we can evaluate r ′j by first evaluating rj and then taking the negation.
Therefore, it follows that

rank(rj) = rank(r ′j) = −
sel(rj)

cost(rj)
= −

∏
p∈predicate(rj) sel(p)

cost(rj)
.

This completes the proof of the theorem.

Recall that in our implementation we compute feature costs and selectivity by
sampling a set of record pairs and compute the costs and selectivities on the sample.
So far, we have implicitly assumed that memoing is not used.

72

3.6.4 Correlated Predicates and Rules

We now consider the question when memoing is used. This introduces dependencies
so Lemma 3.1 and Theorem 3.2 no longer hold.

Let us start with one single rule r. We introduce a canonical form of r by “grouping”
together predicates that share common features. Formally, for a predicate p, let
feature(p) be the feature it refers to. Furthermore, define

feature(r) = ∪p∈predicate(r){feature(p)}.

Given a rule r and a feature f ∈ feature(r), let

predicate(f, r) =
∧
p∈predicate(r)∧feature(p)=f

p.

We can then write the rule r as

r =
∧
f∈feature(r)

predicate(f, r). (3.5)

Since we only consider predicates of the form A > a or A 6 a where A is a
feature and a is a constant threshold, it is reasonable to assume that each rule does
not contain redundant predicates/features. As a result, each group predicate(f, r)
can contain at most one predicate of the form A > a and/or A 6 a. Based on this
observation, we have the following simple result.

Lemma 3.3. cost(predicate(f, r)) is minimized by evaluating the predicates in ascending
order of their selectivities.

Proof. Remember that predicate(f, r) contains at most two predicates p1 and p2.
Note that, the costs of the predicates follow the pattern c, c ′ if memoing is used,
regardless of the order of the predicates in predicate(f, r). Here c and c ′ are the
costs of directly computing the feature or looking it up from the memo (c > c ′). As
a result, we need to decide which predicate to evaluate first. This should be the
predicate with the lower selectivity. To see this, without loss of generality let us
assume sel(p1) < sel(p2). The overall cost of evaluating p1 before p2 is then

C1 = c+ sel(p1)c
′,

73

whereas the cost of evaluating p2 before p1 is

C2 = c+ sel(p2)c
′.

Clearly, C1 < C2. This completes the proof of the lemma.

Since the predicates in different groups are independent, by applying Lemma 3.1
we get the following result.

Lemma 3.4. cost(r) is minimized by evaluating the predicate groups in ascending order
of the following metric:

rank(predicate(f, r)) = sel(predicate(f, r)) − 1
cost(predicate(f, r))

.

Here cost(predicate(f, r)) is computed by using Equation 3.3 with respect to the order of
predicates specified in Lemma 3.3.

Now let us move on to the case in which there are multiple rules whose predicates
are not independent. Unfortunately, this optimization problem is in general NP-hard.
We can prove this by reduction from the classic traveling salesman problem (TSP)
as follows. Let the rules be vertices of a complete graph G. For each pair of rules
ri and rj, define the cost c(i, j) of the edge (ri, rj) to be the execution cost of rj if it
immediately follows ri. Note that here we have simplified our problem by assuming
that the cost of rj only depends on its predecessor ri. Under this specific setting, our
problem of finding the optimal rule order is equivalent to seeking a Hamiltonian
cycle with minimum total cost in G, which is NP-hard. Moreover, it is known that a
constant-factor approximation algorithm for TSP is unlikely to exist unless P equals
NP (e.g., see Theorem 35.3 of [11]). Therefore, in the following we seek heuristic
approaches.

3.6.4.1 Greedy Algorithms

We now need to further order the rules by considering the overhead that can be saved
by memoing. By Lemma 3.4, the predicates in each rule can be locally optimally
ordered. Note that each order of the rules induces a global order over the (bag of)
predicates. However, the selectivities of the predicates are no longer independent,
because predicates in different rules may share the same feature. Furthermore,

74

Algorithm 5: A greedy algorithm based on expected costs of rules.
Input: R = {r1, ..., rn}, a set of CNF rules
Output: Rπ, execution order of the rules

1 Let Q be a priority queue 〈(cost(r), r)〉 of the rules;
2 Rπ ← ∅;
3 foreach r ∈ R do
4 Order predicate(r) according to Lemma 3.4;
5 Compute cost(r) based on this order;
6 Insert (cost(r), r) into Q;
7 end
8 while Q is not empty do
9 rmin ← ExtractMin(Q);

10 Add rmin into Rπ;
11 foreach (cost(r), r) ∈ Q do
12 Update cost(r) by assuming that r immediately follows rmin;
13 end
14 end
15 return Rπ;

the costs of predicates are no longer constants due to memoing. In fact, they even
depend on the positions of the predicates in their global order. In other words,
the costs of predicates depend on the order of the rules (recall the cost model in
Section 3.5.4.4). Hence we are not able to apply Lemma 3.1 or Theorem 3.2 in this
context.

Nonetheless, intuitively, a predicate should tend to have priority if it is very
selective (returns true for very few pairs) and small cost, since it will eliminate many
pairs cheaply. On the other hand, a rule should tend to have priority if it is not very
selective (returns true for many candidate pairs) and small cost, since it contributes
many matches cheaply.

Our first algorithm then uses this intuition in a greedy strategy by picking the
rule with the minimum expected cost. The details of this algorithm are presented
in Algorithm 5. Note that when we update cost(r) at line 12, we use the cost model
developed in Section 3.5.4.4, which considers the effect of memoing, by assuming
that rwill be the immediate successor of rmin.

Algorithm 5 only considers the expected costs of the rules if they are the first
to be run among the remaining rules. Some rules may have slightly high expected
costs but significant long-term impact on overall cost reduction. Algorithm 5 does

75

not consider this and thus may overlook these rules. We therefore further consider
a different metric that is based on the rules that can be affected if a rule is executed.
This gives our second greedy algorithm.

In the following, we use reduction(r) to represent the overall cost that can be
saved by the execution of the rule r, and use cache(f, r) to represent the probability
that a feature f is in the cache (i.e., memo) after the execution of r. For two features
f1 and f2 in r, we write f1 < f2 if f1 appears before f2 in the order of predicate groups
specified by Lemma 3.4. Following Section 3.5.4.4, we redefine prev(f, r) to be the
features that appear before f in r, namely,

prev(f, r) = {f ′ ∈ feature(r)∧ f ′ < f}.

If we write r as it is in Equation 3.5, then

sel(prev(f, r)) =
∏

f ′∈prev(f,r)
sel(predicate(f ′, r)) (3.6)

is the selectivity of (conjunction of) the predicates appearing before f in r. Here we
have abused notation because prev(f, r) is a set of features rather than a predicate.
Basically, sel(prev(f, r)) is the chance that the feature f needs to be computed (by
either direct computation or cache lookup) when executing r. We further define
prev(r) to be the rule executed right before r. It then follows that

cache(f, r) = (1 − cache(f, prev(r))) sel(prev(f, r))

+ cache(f, prev(r)).

Next, define contribution(r ′, r) to be the reduced cost of r ′ by executing the rule
r before the rule r ′. Further define contribution(r ′, r, f) to be the reduced cost due
to the feature f. Let feature(r ′, r) = feature(r ′) ∩ feature(r). Clearly,

contribution(r ′, r) =
∑

f∈feature(r ′,r)
contribution(r ′, r, f).

76

We now consider how to compute contribution(r ′, r, f). If we do not run r before r ′,
the expected cost of evaluating f in r ′ is then

cost1(f, r ′) = sel(prev(f, r ′))
[

cache(f, prev(r))δ

+(1 − cache(f, prev(r))) cost(f)
]
,

whereas if we run r before r ′ the cost becomes

cost2(f, r ′) = sel(prev(f, r ′))
[

cache(f, r)δ

+(1 − cache(f, r)) cost(f)
]
.

It then follows that

contribution(r ′, r, f) = cost1(f, r ′) − cost2(f, r ′)

= sel(prev(f, r ′))∆(cost(f) − δ),

where ∆ = cache(f, r) − cache(f, prev(r)).
Based on the above formulation, we have

reduction(r) =
∑

r ′ 6=r
contribution(r ′, r).

Our second greedy strategy simply picks the rule r that maximizes reduction(r)
as the next rule to be executed. Algorithm 6 presents the details of the idea. It is
more costly than Algorithm 5 because update of reduction(r) at line 21 requires
O(n) rather than O(1) time, where n is the number of rules.

Note that the computations of cost(r) and reduction(r) are still based on local
decisions, namely, the immediate effect if a rule is executed. The actual effect, however,
depends on the actual ordering of all rules and cannot be estimated accurately
without finishing execution of all rules (or alternatively, enumerating all possible
rule orders).

3.6.4.2 Discussion

If we only employ early exit without dynamic memoing, the optimal ordering
problem remains NP-hard when the predicates/rules are correlated. However,
we can have a greedy 4-approximation algorithm [2, 30]. The difference in this

77

Algorithm 6: A greedy algorithm based on expected overall cost reduction.
Input: R = {r1, ..., rn}, a set of CNF rules
Output: Rπ, execution order of the rules

1 Let Q be a priority queue 〈(reduction(r), r)〉 of the rules;
2 Rπ ← ∅;
3 foreach r ∈ R do
4 Order predicate(r) according to Lemma 3.4;
5 end
6 foreach r ∈ R do
7 reduction(r)← 0;
8 foreach r ′ ∈ R such that r ′ 6= r do
9 foreach f ∈ feature(r ′) do

10 if f ∈ feature(r) then
11 reduction(r)← reduction(r) + contribution(r ′, r, f);
12 end
13 end
14 end
15 Insert (reduction(r), r) into Q;
16 end
17 while Q is not empty do
18 rmax ← ExtractMax(Q);
19 Add rmax into Rπ;
20 foreach (reduction(r), r) ∈ Q do
21 Update reduction(r) by assuming that r immediately follows rmax;
22 end
23 end
24 return Rπ;

context is that the costs of the predicates no longer depend on the order of the rules.
Rather, they are constants so approximation is easier. One might then wonder if
combining early exit with precomputation (but not dynamic memoing) would make
the problem even tractable, for now the costs of the predicates become the same (i.e.,
the lookup cost). Unfortunately, the problem remains NP-hard even for uniform
costs when correlation is present [20].

3.6.4.3 Optimization: Check Cache First

We have proposed two greedy algorithms for ordering rules and predicates in each
rule. The order is computed before running any rule and remains the same during

78

matching. However, the greedy strategies we proposed are based on the “expected”
rather than actual costs of the predicates. In practice, once we start evaluating the
rules, it becomes clear that a feature is in the memo or not. One could then further
consider dynamically adjusting the order of the remaining rules based on the current
content of the memo. This incurs nontrivial overhead, though: we basically have
to rerun the greedy algorithms each time we finish evaluating a rule. So in our
current implementation we do not use this optimization. Nonetheless, we are able to
reorder the predicates inside each rule at runtime based on the content of the memo,
if lookups are much cheaper than direct computations (which is the common case in
practice). Specifically, we first evaluate predicates for which we have their features
in the memo, and we still rely on Lemma 3.4 to order the remaining predicates.

3.6.5 Putting It All Together

The basic idea in this section is to order the rules such that we can decide on the
output of the matching function with lowest computation cost for each pair. To order
the rules we use a small random sample of the candidate pairs and estimate feature
costs and selectivities for each predicate and rule. We then use Algorithm 5 or
Algorithm 6 to order the rules. These two algorithms consider two different factors
that affect the overall cost: 1) the expected cost of each rule, and 2) the expected
overall cost reduction that executing this rule will have if the features computed for
this rule are repeated in the following rules. In our experiments we show results for
both algorithms.

3.7 Incremental Matching

So far we have discussed how to perform matching for a fixed set of fixed rules. We
now turn to consider incremental matching in the context of an evolving set of rules.

3.7.1 Materialization Cost

To perform incremental matching, we materialize the following information during
each iteration:

79

• For each pair: For each feature that was computed for this pair, we store the
calculated score. Note that because we use lazy feature computation, we may
not need to compute all feature values.

• For each rule: Store all pairs for which this rule evaluated to true.

• For each predicate: Store all pairs for which this predicate evaluated to false.

We show in our experiments that if we use straightforward techniques such as
storing bitmaps of pairs that pass rules or predicates, the total memory needed to
store this information for our data sets is less than 1GB.

3.7.2 Types of Matching Function Changes

An analyst often applies a single change to the matching function, re-runs EM, ex-
amines the change in the output, then applies another change. We identify different
types of changes to the matching function and present our incremental matching
algorithm for each type.

3.7.2.1 Add a Predicate / Make a Predicate More Strict

If a matching result contains pairs that should not actually match, the analyst can
make the rules that matched such a pair more “strict” by either adding predicates,
or making existing predicates more strict. (We consider the alternative of deleting a
rule separately.) For example, consider the following predicate

Jaccard(a.name,b.name) > 0.7.

We can make this more strict by changing it to

Jaccard(a.name,b.name) > 0.8.

In this case, we can obtain the new matching results incrementally by evaluating
this modified predicate only for the pairs that were evaluated and matched by the
rule we made stricter. Consider such a previously matched pair:

• If the modified predicate returns true, the pair is still matched.

80

• If the modified predicate returns false, the current rule no longer matches this
pair. However, other rules in the matching function may match this pair, so
we must evaluate the pair with the other rules until either a rule returns true
or all rules return false.

We can use the same approach for adding a new predicate to a rule, because that
can be viewed as making an empty predicate that always evaluates to true more
strict. Algorithm 7 illustrates the procedure for adding a predicate.

Algorithm 7: Add a predicate.
Input: R, the set of CNF rules; r, the rule that was changed; p, the predicate

added to r
1 LetM(r) be the previously matched pairs by r;
2 Let X be the unmatched pairs by p; X← ∅;
3 foreach c ∈M(r) do
4 if p returns false for c then
5 X← X ∪ {c};
6 end
7 end
8 Let R ′ be the rules in R after r;
9 foreach c ∈ X do

10 Mark c as an unmatch;
11 foreach r ′ ∈ R ′ do
12 if r ′ returns true for c then
13 Mark c as a match; break;
14 end
15 end
16 end

3.7.2.2 Remove a Predicate / Make a Predicate Less Strict

In the case where pairs that should match are missing from the result, we might
be able to fix the problem by either removing a predicate or making an existing
predicate less strict. (We consider the alternative of adding a new rule separately.)
Consider again the predicate

Jaccard(a.name,b.name) > 0.7.

81

We can make it less strict by changing it to

Jaccard(a.name,b.name) > 0.6.

In both cases, all pairs for which this predicate returned false need to be re-evaluated.
Consider such a previously unmatched pair:

• If the new predicate returns false, the pair then remains unmatched.

• If the new predicate returns true, we will evaluate the other predicates in
the rule.2 If any of these predicates returns false, then the pair will remain a
non-match. Otherwise, this rule will return true for this pair, and it will be
declared a match.

Algorithm 8 illustrates the details of the procedure for updating the matching
result after making a predicate less strict. Removing a predicate follows similar
logic and is omitted for brevity.

3.7.2.3 Remove a Rule

We may decide to remove a rule if it returns true for pairs that should not match.
In such a case, we can re-evaluate the matching function for all pairs that were
matched by this rule. Either another rule will declare this pair a match or the
matching function will return false. Algorithm 9 illustrates this procedure.

3.7.2.4 Add a Rule

One way to match pairs that are missed by a current matching function is to add
a rule that returns true for them. In this case, inevitably, all non-matched pairs
need to be evaluated by this rule. However, note that only the newly added rule
will be evaluated for the non-matched pairs, which can be substantial savings over
re-evaluating all rules. Algorithm 10 demonstrates this procedure.

2Note that, because we use the “check-cache-first” optimization, the order of the predicates
within the rule is no longer fixed. In other words, different pairs may observe different orders. So we
cannot just evaluate predicates that “follow” the changed one.

82

Algorithm 8: Make a predicate less strict.
Input: r, the rule that was changed; p, the predicate of r that was made less

strict
1 Let U(p) be the pairs for which p returned false;
2 Let Y be the pairs p now returns true; Y ← ∅;
3 foreach c ∈ U(p) and c was an unmatch do
4 if p returns true for c then
5 Y ← Y ∪ {c};
6 end
7 end
8 foreach c ∈ Y do
9 Mark c as a match;

10 foreach p ′ ∈ predicate(r) and p ′ 6= p do
11 if p ′ returns false for c then
12 Mark c as an unmatch; break;
13 end
14 end
15 end

Algorithm 9: Remove a rule.
Input: R, the set of CNF rules; r, the rule removed

1 LetM(r) be the previously matched pairs by r;
2 Let R ′ be the rules in R after r;
3 foreach c ∈M(r) do
4 Mark c as an unmatch;
5 foreach r ′ ∈ R ′ do
6 if r ′ returns true for c then
7 Mark c as a match; break;
8 end
9 end

10 end

3.8 Experimental Evaluation

In this section we explore the impact of our techniques on the performance of various
basic and incremental matching tasks. We ran experiments on a Linux machine with
eight 2.80 GHz processors (each with 8 MB of cache) and 8 GB of main memory. We
implemented our algorithms in Java. We used six real-world data sets as described
below.

83

Algorithm 10: Add a rule.
Input: R, the set of CNF rules; r, the rule added

1 Let U(r) be the previously unmatched pairs by R;
2 foreach c ∈ U(r) do
3 Mark c as a match;
4 foreach p ∈ predicate(r) do
5 if p returns false for c then
6 Mark c as an unmatch; break;
7 end
8 end
9 end

Data	set	 Source	1	 Source	2	 Table1	
size	

Table2	
size	

Candidate	
pairs	

Rules	 Used	
features	

Total	
features	

Products	 Walmart	 Amazon	 2554	 22074	 291649	 255	 32	 33	

Restaurants	 Yelp	 Foursquare	 3279	 25376	 24965	 32	 21	 34	

Books	 Amazon	 Barnes&Noble	 3099	 3560	 28540	 10	 8	 32	

Breakfast	 Walmart	 Amazon	 3669	 4165	 73297	 59	 14	 18	

Movies	 Amazon	 Bestbuy	 5526	 4373	 17725	 55	 33	 39	

Video	games	 TheGamesDB	 MobyGames	 3742	 6739	 22697	 34	 23	 32	

Table 3.2: Real-world data sets used in the experiments.

3.8.1 Datasets and Matching Functions

We evaluated our solutions on six real-world data sets. One data set was obtained
from an industry EM team. The remaining five data sets were created by students
in a graduate-level class as part of their class project, where they had to crawl the
Web to obtain, clean, and match data from two web sites. Table 3.2 describes these
six data sets.

We extensively experiment with the first and largest data set and present the
results for the other data sets in Section 3.8.7. We obtained the Walmart/Amazon
products data set used in [22] from the authors of that paper. The dataset domain is
electronics items from Walmart.com and Amazon.com. After the blocking step, we
have 291, 649 candidate pairs. Gokhale et al. [22] have generated the labels for these
pairs.

84

0

20

40

60

80

0 40 80 120 160 200 240

R
u

n
 t

im
e

(s
)

Number of rules

Random order

Algorithm 5

Algorithm 6

C

0

200

400

600

0 40 80 120 160 200 240

R
u

n
 t

im
e(

s)

Number of rules

R

EE

PPR + EE

FPR + EE

DM + EE

0

20

40

60

80

100

0 40 80 120 160 200 240

R
u

n
 t

im
e(

s)

Number of rules

PPR + EE

FPR + EE

DM + EE

BA

Figure 3.3: (A) Run time for different sizes of matching function for rudimentary
baseline (R), early exit (EE), production precomputation baseline + early exit (PPR +
EE), full precomputation baseline + early exit (FPR + EE), and dynamic memoing
+ early exit (DM + EE). (B) Zoom-in of A to compare methods that use precom-
putation/dynamic memoing. (C) Run time for different orderings of the set of
rules/predicates: Random ordering, order by Algorithm 5, and order by Algorithm
6.
R1 Jaro Winkler(m, m) > 0.97 ∧

Jaro(m, m) > 0.95
∧ Soft TF-IDF(m, t) < 0.28
∧ TF-IDF(m, t) < 0.25 ∧ Cosine(t,
t) > 0.69

R2 Jaccard(t, t) < 0.4 ∧ TF-IDF(t, t) <
0.55
∧ Soft TF-IDF(t, t) > 0.63 ∧ Jaccard
> 0.34
∧ Levenshtein(m, m) < 0.72
∧ Jaro Winkler(m, m) < 0.05

Figure 3.4: Sample rules extracted from the random forest. m, t stand for modelno
and title respectively.

We generated 33 features using a variety of similarity functions based on heuris-
tics that take into account the length and type of the attributes. Table 3.3 shows
a subset of these features and their associated average computation times. The
computation times of features vary widely.

Using a combination of manual and semi-automatic approaches, analysts from
the EM team that originally created the data set have created a total of 255 matching
rules. We will use this rule set as a basis from which to create and evaluate a variety
of matching functions. Figure 3.4 shows two sample rules for this data set.

85

Function Walmart Amazon µs

Exact Match modelno modelno 0.2

Jaro modelno modelno 0.5

Jaro Winkler modelno modelno 0.77

Levenshtein modelno modelno 1.22

Cosine modelno title 3.37

Trigram modelno modelno 4.79

Jaccard modelno title 6.75

Soundex modelno modelno 8.77

Jaccard title title 10.54

TF-IDF modelno title 12.18

TF-IDF title title 18.92

Soft TF-IDF modelno title 21.89

Soft TF-IDF title title 66.06

Table 3.3: Computation costs for a subset of features in the products data set

3.8.2 Early Exit + Dynamic Memoing

Figure 3.3A shows the effect of early exit and precomputing/memoing feature
values on matching time as we use an increasingly larger rule set. For example, to
generate the data point corresponding to 20 rules, we randomly selected 20 rules
and measured the time to apply them to the data set. For each data point we report
the average running time over three such random sets of rules.

We compare the run time for baseline, early exit, production precomputation
+ early exit, full precomputation + early exit, and dynamic memoing + early exit.
For production precomputation, which we described as one of our baselines in
Section 3.5.1.2, we assume that we know all the features that are used in the rules.
We call this “production precomputation” because it would be feasible only if the
set of rules for matching is already finalized. In full precomputation, we know a
superset of features that the analyst will choose from to make the rule set. In such a
case, we may precompute values for features that will never be used. We compare
these approaches with dynamic memoing + early exit proposed in this chapter.

86

We can see that the rudimentary baseline has a very steep slope, and around
20 rules, it takes more than 10 minutes to complete. The early exit curve shows
significant improvement over baseline, however, it is still slow compared to either the
precomputation baseline or early exit with dynamic memoing. Figure 3.3B zooms
in and shows the curves for the full and production precomputation baselines
and dynamic memoing. We can see that using dynamic memoing + early exit can
significantly reduce matching time.

In this section, we have not considered the optimal ordering problem, and we
ran dynamic memoing with a random ordering of the rules and predicates in each
rule. In the next section, we further study the effectiveness of our greedy algorithms
on optimizing orderings of predicates/rules.

3.8.3 Optimal Ordering

Figure 3.3C shows runtime as we increase the number of rules for “dynamic mem-
oing + early exit” with random ordering of predicates/rules, as well as that with
orderings produced by the two greedy strategies presented in Algorithm 5 and Al-
gorithm 6. Each data point was generated using the same approach described in the
previous section. We used a random sample consisting of 1% of the candidate pairs
for estimating feature costs and predicate selectivities. We can see that the orderings
produced by both of these algorithms are superior to the random ordering.

We further observe that Algorithm 6 is faster than Algorithm 5, perhaps due
to the fact that its decision is based on a global optimization metric that considers
the overall cost reduction by placing a rule before other rules. As the number of
rules increases, the impact is less significant, because most of the features have to be
computed. Nonetheless, matching using Algorithm 6 is still faster even when we
use 240 rules in the matching function.

3.8.4 Memory Consumption

We store the similarity values in a two dimensional array. We assign each pair an
index based on their order in the input table. Similarly, we assign each feature a
random order and an index based on the order. In the case of the precomputation
baseline, this memo is completely filled with feature values before we start matching.
In the case of dynamic memoing, we fill in the memo as we run matching and the

87

0

25

50

75

100

0 50 100 150 200 250

R
u

n
 t

im
e

(s
)

Number of pairs (thousands)

PR + EE

DM + EE (Random)

DM + EE (Alg. 5)

DM + EE (Alg. 6)

0

20

40

60

80

0 40 80 120 160 200 240

R
u

n
 t

im
e

(s
)

Number of rules

Random order (Actual)

Random order (Model)

Algorithm 6 (Actual)

Algorithm 6 (Model)
0

20

40

60

0 40 80 120 160 200 240

R
u

n
 t

im
e

(s
)

Number of rules

Rerun from scratch

Precomputation

Fully incremental

CA B

Figure 3.5: (A) Actual run time versus run time estimated by the cost model for
random ordering of rules and rules ordered by Algorithm 6. (B) Run time as we
increase number of pairs for production precomputation + early exit (PPR + EE),
and dynamic memoing + early exit (DM + EE) for random ordering of rules, rules
ordered by Algorithm 5, and ordered by Algorithm 6. (C) Run time with dynamic
memoing + early exit as we incrementally add rules one by one to the matching
function in three cases: 1) Rerun matching from scratch, 2) Precomputation: lookup
memoed feature values but evaluate all rules 3) Fully incremental: lookup memoed
feature values but only evaluate the newly added rule.

analyst makes changes to the rule set. Therefore, the memory consumption of both
approaches is the same. For this dataset, if we use all rules, the two-dimensional
array takes 22 MB of space, which includes the space for storing the actual floats as
well as the bookkeeping overhead for the array in Java. For incremental matching,
we store a bitmap for each rule as well as for each predicate. In our implementation,
we use a boolean array for each bitmap. For this dataset, we have 255 rules and a
total of 1, 688 predicates. These bitmaps occupy 542 MB.

For our dataset, the two-dimensional array and bitmaps fit comfortably in mem-
ory. For a data set where this is not true, one could consider avoiding an array and
using a hash-map for storing similarity values. Since we do not compute all the
feature values, this would lead to less memory consumption, although the lookup
cost for hash-maps would be more expensive.

3.8.5 Cost Modeling and Analysis

To illustrate accuracy of our cost models, in Figure 3.5A we compare the actual
run time of “dynamic memoing + early exit” versus run time estimated by the cost
model for random ordering of rules as well as rules ordered by Algorithm 6. The
two curves follow each other closely.

88

To compute the selectivity of each predicate, we select a sample of the candidate
pairs, evaluate each predicate for the pairs in the sample and compute the percentage
of pairs that pass each predicate. In our experiments, we observed that using a 1%
sample can give relatively accurate estimates of the selectivity, and increasing the
sample size did not change the rule ordering in a major way. We used the same
small sample approach to estimate feature costs.

Figure 3.5B shows the actual matching time when we use all the rules for the
data set as we increase number of pairs. As we assumed in our cost modeling, the
matching cost increases linearly as we increase number of pairs. Given this increase
proportional to the number of pairs (which is itself quadratic in the number of input
records), the importance of performance enhancing techniques to achieve interactive
response times will increase with larger data sets.

3.8.6 Incremental Entity Matching

Our first experiment in this section examines the “add rule” change to a rule set.
Adding a rule can be expensive for incremental entity matching because we need to
evaluate the newly added rule for all the unmatched pairs.

To test how incremental matching performs for adding a new rule, we conducted
an experiment in which we start from an empty matching function without any
rules. We then add the first rule to the matching function, run matching with this
single-rule matching function, and materialize results. Next, we add the second
rule and measure the time required for incremental matching. In general, we run
matching based on k rules, and then run incremental matching for the (k+ 1)-th
rule when it is added. We repeat this for 1 6 k 6 240.

We consider two variations of incremental algorithm. In the precomputation
variation, all the rules in the matching function are evaluated. Note that we use
early exit and the optimization discussed in Section 3.6.4.3 with this variation to
reduce unnecessary lookups. The second variation is fully incremental. In this case
we not only lookup the stored feature values, but also only evaluate part of the
matching function for the subset of candidate pairs that will be affected by this
operation. In particular, for the “add rule” operation, all the non-matched pairs
need to be evaluated by just the new rule that is added, and all the rules in the
matching function do not need to be evaluated.

89

428 2883 902 426

0

10

20

30

40

Add
predicate

Tighten
threshold

Remove
rule

Remove
predicate

Relax
threshold

Add rule

More strict Less strict

R
u

n
 t

im
e

(m
s)

Min Median Average Max

Figure 3.6: Incremental EM run time for different changes to the matching function
that make it more/less strict.

Figure 3.5C shows the results for the add-rule experiment. We can see that in
the first iteration, both variations are slow. This is because there is no materialized
result to use (i.e. the memo is empty). However, from the second iteration onwards
we can see that the cost of the precomputation baseline steadily increases whereas
the cost of fully incremental is mostly constant and significantly smaller than that of
the precomputation baseline. This is because the precomputation baseline performs
unnecessary lookups and evaluates all the rules in the matching function. The
incremental approach just evaluates the newly added rule and thus it does not slow
down as the number of rules increases.

In certain runs both of the variations experience a sudden increase in the running
time. These are the cases in which the new rule requires many feature computations,
because either there was a new feature, or the feature was not in the memo, and this
feature was “reached” in the rule evaluation (it might not be reached, for example,
if a predicate preceding the feature evaluates to false.)

Figure 3.6 shows run times for incremental EM for different changes to the
matching function. To illustrate how the numbers were generated, assume that we
want to measure the incremental run time for adding a predicate. We randomly
selected 100 predicates, removed the predicate, ran EM and materialized the results,
then added the predicate to the rule, and measured the run time. The rest of the
numbers in the table were generated in a similar manner.

For tightening the thresholds, we randomly selected a predicate, and for that
predicate we randomly chose one of the values in {0.1, 0.2, 0.3, 0.4, 0.5} that could be

90

applied to the predicate. For example, assume that the predicate is

Jaccard(a.name,b.name) > 0.6.

For tightening the threshold, we add a value to the current threshold. For this
predicate we select a random value from {0.1, 0.2, 0.3, 0.4}, because adding 0.5 to the
current threshold makes it larger than 1. If the predicate uses a > operation we add
the value to the current threshold, and if it uses a 6 operation we subtract the value
from the current threshold. The procedure is similar for relaxing thresholds.

We can see that making the matching function more strict by adding a predicate,
tightening the threshold, and removing a rule on average takes no more than about
6 milliseconds. On the other hand, making the function less strict could take up to
34 milliseconds on average. This cost is due to the fact that we may need to calculate
new features for a fraction of candidate pairs.

3.8.7 Other data sets

In this section, we show the results of our experiments using the other five real-
world data sets along with the largest data set that we used in the above experiments
(Figure 3.7). The features/rules for each data set is defined using a combination of
manual decisions based of domain knowledge, and an automatic approach where
we extract rules from a random forest using a labeled sample of candidate pairs. The
candidate sets were generated using a standard blocking technique (Q-gram). Table
3.2 describes the details about each data set. In summary, we observe no meaningful
difference between the performance of our techniques on these data sets and the
performance on the data set presented above.

3.9 Conclusions

We have focused on scenarios where an analyst iteratively designs a set of rules for
an EM task, with the goal of making this process as interactive as possible. Our
experiments with six real-world data sets indicate that “memoing” the results of
expensive similarity functions is perhaps the single most important factor in achiev-
ing this goal, followed closely by the implementation of “early-exit” techniques that

91

0	

20	

40	

60	

80	

100	

0	 40	 80	 120	 160	 200	 240	

Ru
n	
+m

e	
(s
)	

Number	of	rules	

Products	

0	

5	

10	

0	 10	 20	 30	

Ru
n	
+m

e	
(s
)	

Number	of	rules	

Restaurants	

0	

20	

40	

0	 5	 10	

Ru
n	
+m

e	
(s
)	

Number	of	rules	

Books	

0	

5	

10	

15	

0	 10	 20	 30	

Ru
n	
+m

e	
(s
)	

Number	of	rules	

Video	games	

0	

20	

40	

60	

0	 10	 20	 30	 40	 50	

Ru
n	
+m

e	
(s
)	

Number	of	rules	

Breakfast	

0	

10	

20	

0	 10	 20	 30	 40	 50	

Ru
n	
+m

e	
(s
)	

Number	of	rules	

Movies	

PPR	+	EE	 FPR	+	EE	

DM	+	EE	(Random)	 DM	+	EE	(Alg.	3)	

DM	+	EE	(Alg.	4)	

(Alg.	5)	
(Alg.	6)	

Figure 3.7: Run time for different sizes of matching function for production pre-
computation + early exit (PPR + EE), full precomputation + early exit (FPR + EE),
and dynamic memoing + early exit (DM + EE) with random ordering and rules
ordered by Algorithm 5 and Algorithm 6 for real-world data sets.

stop evaluation as soon as a matching decision is determined for a given candidate
pair.

In the context of rule creation and modification it may not be desirable or even
possible to fully precompute similarity function results in advance. Our just-in-
time “memoing” approach solves this problem, dynamically storing these results
as needed; however, the interaction of the on-demand memoing and early-exit
evaluation creates a novel rule and predicate ordering optimization problem. Our
heuristic algorithms to solve this optimization problem provide significant further
reductions in running times over more naive approaches.

Finally, in the context of incremental rule iterative development, we show that
substantial improvements in running times are possible by remembering the results
of previous iterations and on the current iteration only computing the minimal delta
required by a given change.

From a broader perspective, this work joins a small but growing body of litera-
ture which asserts that for matching tasks, there is often a “human analyst in the

92

loop,” and rather than trying to remove that human, attempts to make that human
more productive. Much room for future work exists in integrating the techniques
presented here with a full system and experimenting with its impact on the analyst.

93

4 debugging entity matching data sets

4.1 Introduction

In this chapter, we re-visit the insights that we got from developing abstract analysts
in Chapter 2. With the abstract model of the entity matching problem, we asked
abstract analysts to create rules for matching for two kinds of data sets. The first kind
was the original product data set from an e-commerce industry which included many
inconsistencies. We formally defined an inconsistency, but intuitively, inconsistencies
are matching pairs of records with low similarity values or non-matching pairs of
records with high similarity values. We then created a synthetic and clean version of
this data set by removing the inconsistencies. When comparing the abstract anlaysts
performance with these two data sets we had a very interesting (and intuitive)
observation. With a clean data set all our analysts can find a set of rules with high
precision and recall for matching. However, the matching task becomes hard when
we have inconsistencies in the data set. In particular, it becomes very hard to keep
precision high while improving recall. In fact, we show that with some data sets it
is impossible to achieve perfect precision and recall even if the analyst creates a rule
for every matching pair of records.

Following this observation, in this chapter we try to answer the following ques-
tions:

1. What causes inconsistency in a data set and how should the analyst act on an
inconsistency that she finds?

2. How can we help the analyst to reduce inconsistency in a data set?

Answering the first question helps us focus our attention to different kinds of
inconsistency so that we can develop techniques to help the analyst resolve them.
Answering the second question helps the analyst in finding and resolving such
inconsistencies. It may not be possible to fully identify all causes of inconsistency in
data sets. Therefore, in Section 4.2 we will describe the main categories that we have
come across working with many data sets and suggest a decision process for the
analyst for acting on each category in Section 4.2.6. Follwing that in Section 4.3 we
will propose a framework for identifying and presenting record pairs to the anlayst

94

that helps her in identifying inconsistency causes so that she can resolve them. In
Section 4.4 we turn our attention to a particular kind of inconsisnency, incorrect
labels, and evaluate our proposed framework with respect to this particular cause
of inconsistency. We review related work in Section 4.6 and conclude this chapter in
Section 4.7.

4.2 Categories of Inconsistency in Data sets

In this section we will describe the categories of inconsistencies that we have came
across working with many entity matching data sets. Even though it is not possible
to enumerate every cause of inconsistency in matching data sets, we believe that
this set of categories occur enough that warrants further attention to them.

4.2.1 The Restaurants Data set

This data set is commonly used for evaluation in entity matching research. It
compares restaurant listings from two sources, Fodors and Zagat, containting 528
and 329 records respectively. 4 attributes are available for matching: restaurant
name, addr, city, and type. The type of a restaurant identifies its cuisine. There are
111 matching records between the two sources.

4.2.2 Incorrect Label in Ground Truth

As described in Chapter 1, typically, an analyst uses a labeled sample of data in
the matching process. In the case of rule-based matching, the analyst views this
labeled sample to get a sense of what rules to create. In the case of matchers that
are created using machine learning, the labeled sample is used as training and
test data. Furthermore, the labeled sample is used for performing evaluation and
generating precision and recall numbers as the analyst iterates to generate a high
quality matcher. Therefore, the labeled sample is used in different parts of the
matching pipeline.

Taking a representative sample of the candidate pairs is a non-trivial task by
itself that is discussed in [22, 33] in more detail. What we are interested in this
thesis is the labeling process itself. The typical way of labeling is by manually going
through the sample and labeling it. If the sample is large multiple analysts may

95

Figure 4.1: Incorrect label in the labeled sample for restaurants data set. This pair
was labeled as a match but the records do not match.

be assigned to label different chunks of the sample. Similarly, the sample can be
generated via crowdsoucing. In the case of very large samples, the labels could be
generated via semi-automatic approaches such as using rules.

In all these approaches of labeling a sample, there are opportunities for error. For
example, different analysts may have different logic for deciding if a pair of records
is a match or not. This problem is even more pronounced if we use crowdsourcing
or semi-automatic approaches to label the sample.

Consider the example in Figure 4.1 from the restaurants data set. The two records
represent two restaurants that are in the same building and have the exact same
address. However, they have different names and types. An analyst may have
devised a rule that two records with the exact same address are matching even
though these records do not match, leading to the incorrect label.

4.2.3 Missing Feature

Consider the interesting example in Figure 4.2 from the restaurants data set. These
two records are actually matching but because the restaurant is located at the corner
of Horn Avenue and Sunset Boulevard it has two addresses that appear completely
different. In fact, this is a pattern and there are other restaurants in this data set in
New York City that have two valid addresses. The analyst, after viewing this pair of
records, can resolve this issue by adding a feature that captures the similarity of the
addresses using latitude and longitude coordinates of the addresses.

96

Figure 4.2: Example of missing feature. These restaurants are the same with two
valid addresses. The analyst can add a feature comparing latitude and longitude of
the addresses.

4.2.4 Inconsistent Extraction Logic or Extraction Error

In some cases, the attributes are extracted with different logic across the sources.
For example, consider the record pair in Figure 4.2 again. In one data source the
city attribute is extracted with finer granularity, west hollywood, compared to the
other data source that has los angeles as the city. Furthermore, the data sources may
include extraction error. For example, in one data source, the city attribute from
some records may be missing due to an error in the code that extracted the attribute.
In such cases, if the analyst has access to the extraction code or the developer that
has written the extraction code, she can take action to fix the extraction error or
inconsistent extraction logic.

4.2.5 Normalization Opportunity

Consider the following example from a data set that includes books from different
sources. Suppose in one data source a book’s cover type is specified as “hard cover”,
and in the other source cover type is “trade cloth” for the same book. These two
values refer to the same cover type. This is a normalization opportunity. The analyst
then can fix this issue by changing the representations of this value to be the same
in both data sources.

4.2.6 Analyst Actions on Inconsistencies

Now, how should the analyst react to each record pair that she inspects? If she
performs extensive cleaning on the labeled sample (train) such that the cleanings do
not apply to all the data (test) she has wasted time and as we show in the experiments

97

Algorithm 11: Possible analyst decision process
Input: r, record pair to inspect

1 if Incorrect label in ground truth then
2 Fix label in sample.
3 else if Systematic extraction error then
4 Modify the extraction code or contact developer.
5 else if Systematic normalization opportunity then
6 Modify data sources to have the same representation for the value.
7 else if Missing feature then
8 Add feature to set of features.
9 else

10 Do not make any change to the data or features.

this may in fact lead to lower quality matching output. This notion is similar to
over-fitting in machine learning literature. If the model learns too much about
patterns in the training data set, it may not perform well on the test data. Therefore,
we loosely define systematic errors as follows:

Definition 4.1. Systematic errors are ones for which the analyst can define a fix such that
it can be applied to all pairs, training and test, to resolve the issue.

In simpler terms, a systematic error is one that you see it in the training data,
then you can fix it in all data. Recall the example of normalization opportunity
above where in one data source a book’s cover type is specified as “hard cover” and
in the other as “trade cloth”. These two values refer to the same cover type. It makes
sense to suspect that this applies for the rest of the data as well. In fact, the analyst
can quickly browse the tables to verify that this is the case. The analyst then can fix
this issue by changing the representations of this value to be the same in both tables.

Given the definition of systematic errors, Algorithm 11 shows a possible decision
process for the analyst. If she encounters an incorrect label in the ground truth, she
can safely fix the error. If an attribute is not extracted and is required for matching,
the analyst will modify the extraction mechanism to fix this error or contact the
developer responsible for extraction. Also, if she finds that normalizing different
representations of a value can help the matching quality, she will modify the data
sources accordingly. In some cases, adding a new feature will capture some aspect
of similarity that was not captured through another feature. In such a case, the
analyst will add this feature. Any record pair that does not fit into these categories

98

will be left untouched with the hope that the matching algorithm will be able to
deal with it.

We speculate that this might be a reasonable algorithm for an analyst to use. We
have not evaluated this whole algorithm, and think this is very fertile ground for
future work. We will focus on the very first step - "Fix label in sample" - later in this
chapter.

4.3 A Framework for Finding and Resolving
Inconsistencies

To date, most of the literature on matching algorithms has focused on improving
accuracy and reducing run time given that the data to be matched is “fixed” or
“frozen.” In this thesis, we consider a situation in which data cleaning/debugging
and matching is done in an interleaved fashion. That is, can you use information
gathered in the matching phase to provide insight into opportunities for cleaning,
and then use this in turn to improve the quality of the matching? Specifically, our
goal is to identify record pairs that we suspect are causing an inconsistency in the
data set and require analyst action and show them to the analyst for inspection. We
may refer to the process of finding and resolving inconsistencies as “debugging” or
“cleaning” hereafter.

To find suspect pairs of records and show them to the analyst, we leverage the
existence of a set of labeled examples for matching. Given two records, denoted
as a “record pair", the label states if the record pair is a “matching pair” or a “non-
matching pair”. Typically a sample of record pairs are labeled for evaluating the
matching output and we propose to use the same set of labels in the debugging step.
Figure 4.3 shows a labeled sample for a set of record pairs along with the similarity
values between the records for two attributes, regarded as feature vectors.

To find all debugging opportunities, the analyst can inspect all the pairs of
records in the labeled sample. This requires a lot of effort from the analyst, and may
be infeasible when the sample is very large. On the other hand, if she randomly
selects a subset of the labeled sample and inspects it, she may lose many debugging
opportunities, specially if most of the data is clean and consistent. Therefore, we
propose to rank the record pairs such that the ones that provide more clues for

99

Figure 4.3: Labeled sample for pairs of records and their feature (similarity) vector.

debugging come first such that the analyst can find more issues in the data set with
less effort (i.e. inspecting fewer number of record pairs).

There are multiple ways of generating rankings, and we found that they can
reveal different kinds of issues. We will illustrate this with an example. Let us
assume that matches have positive labels and non-matches have negative labels.
Consider a matching pair that has a negative label, which is incorrect. Now, how
does the analyst go about finding an incorrect label?

One way an analyst finds incorrect labels is after she has performed matching
and come up with a matcher. When she evaluates the output of the matcher, she
finds that the matcher predicts this pair as a match, but the label is negative. Let us
call this approach False Positives False Negatives (FPFN). In this approach, the analyst
inspects the false positives and false negatives from the matching output. False
positives are pairs of records that are labeled as non-matching but declared as match
by the matcher. False negatives are pairs of records that are labeled as matching but
predicted non-match by the matcher. What if the matcher also predicts this pair as
a non-match? Basically, the matcher agrees with the incorrect label. In such a case,
the analyst will not have a chance to view this pair and correct the label.

As the above example showed, relying on the errors of the matcher may not
reveal all the debugging opportunities. Therefore, we introduce another approach
for finding such opportunities, which we call Mono hereafter. In Mono, we make
use of the following property of the matching problems: matching record pairs
typically have higher similarity values than non-matching record pairs. Let us
call this property monotonicity, and we will define it precisely later. Now for the
above example, it is likely that the matching pair with negative label will violate
monotonicity with respect to other matching pairs. This means that it is labeled as

100

Figure 4.4: A framework for finding and resolving inconsistencies.

a non-match and has higher similarity values than some other matches. In such a
case, the analyst can find the incorrect label by inspecting the pairs of records that
violate monotonicity.

We can present the output of each of these methods separately to the analyst,
but that will waste analyst time because they may overlap. Therefore, we propose
to aggregate the rankings from multiple approaches and present the aggregate
ranking to the analyst. The hope is that the aggregate ranking will effectively
combine the information revealed by each of the rankings and record pairs that
reveal a debugging opportunity will be ranked higher in the aggregate ranking.

Figure 4.4 summarizes our approach. Basically, given a labeled sample, there
are multiple ways of ranking the pairs of records to reveal debugging opportunities.
We then aggregate the individual rankings to produce a final ranking that will be
presented to the analyst. The analyst then iteratively and interactively inspects the
records pairs, applies fixes to the data set, features, and/or labels in the labeled
sample until she runs out of time or cannot find more issues.

Motivating Example As an anecdotal motivating example of the power of this
approach, consider the Restaurants data set. This data set has been used often in the
matching literature; to the best of our knowledge, no paper has reported any data
cleaning or synonym representation problems in this data set. The data set has over
1 million potential matching pairs for which we know the label. The approach we
present in this paper, when applied to this data set, immediately returns as the first
pair to consider the record pair shown in Figure 4.2. As we disussed in Section 4.2

101

these two records are actually matching but because the restaurant is located at the
corner of Horn Avenue and Sunset Boulevard they have two addresses that appear
completely different. The analyst, after viewing this pair of records, can easily clean
the addresses by adding a feature that captures the similarity of the addresses using
latitude and longitude coordinates of the addresses. It would be very unlikely that
the analyst spots this cleaning issue just by randomly looking at over 1 million pairs
of records.

In the following sections we will formally describe the ranking and rank aggre-
gation propblems. Then we will discuss details of FPFN and Mono. Following that
we will describe the interactive/iterative process that the analyst will go through
for insepcting the records in the ranking and resolving the inconsistencies.

4.3.1 Ranking and Rank Aggregation Background

Ranking and rank aggregation has been studied extensively in the literature. Some
of these works include [5, 15, 19, 17, 18, 34, 35]. Here we draw from this existing
literature and discuss preliminaries regarding ranking and rank aggregation to the
extent relevant to this chapter.

Given a universe U of candidates, a ranking with respect to U is a list τ = [x1 >

x2 > ... > xd] where xi ∈ S ⊂ U and > denotes an ordering relation between the
elements.
τ can be a full list, partial list, or a top-k list: If τ contains all the elements in U

then it is a full list. In other words, a full list is a permutation of the elements in U.
On the other hand, if |τ| < |U| then τ is a partial list. Top-k lists are a special case of
partial lists. In this case, only the first k elements from the top of the ranking are
reported and all the other elements are assumed to have a ranking lower than k.

To illustrate further, consider a search engine over the web. The engine is return-
ing a full list if it has access to all pages in the web and it is returning an ordering of
the pages to the user. This is rarely the case, since typically an engine has indexed
only a subset of the pages in the web. In that case, it has access to a subset S of U
and if it returns an ordering of elements in S, we call it a partial list. However, due
to performance reasons and the fact that a user typically browses only a limited
number of top results, the search engine returns the top k ranked pages from S,
which we call a top-k list.

102

4.3.1.1 Distance measures

Given a set S we can have multiple rankings τ1, τ2, . . . , τk. The question that we
address in this section is: how do we measure the distance between two rankings
with respect to a set S? First, let us assume that we only consider full lists and then
we will extend the discussion to partial lists. Two popular distance measures for
rankings are Spearman footrule distance and Kendall tau distance. Let τ(i) denote the
ranking of element xi in τ. Given two full lists σ, τ, the Spearman footrule distance
sums up the absolute difference in the rank of element i in the two lists:

F(σ, τ) =
∑
i

|σ(i) − τ(i)|

The Kendall tau distance counts the number of pairwise disagreements between
two lists, as follows:

K(σ, τ) = |(i, j) : i < j,σ(i) < σ(j) τ(i) > τ(j)|

Basically, the Kendall distance is the number of pairwise swaps required to
transform one list to the other list.

Suppose we have several lists τ1, τ2, . . . , τk and we want to compute the distance
of one list σ with respect to the others. We can extend the definition above and
compute the normalized footrule distance as follows:

F(σ, τ1, τ2, . . . , τk) = (1/k)
∑
i

F(σ, τi)

We can compute the normalized Kendall distance in a similar manner.
Now, let us consider the case where we have partial lists. In such a case, there

may be elements that are in one set but not in the other set. Therefore, we cannot
apply the formulas above directly. We first need to define the concept of projection:

Given a list τ and a subset S of the universe U, the projection of τ with respect to
S, denoted τ|S, will be a new list that contains only elements from S.

If τ1, τ2, . . . , τk are partial lists, let U denote the union of elements in τ1, τ2, . . . , τk
and let σ be a full list with respect to U. Now, given σ, the idea is to consider the
distance between τi and the projection of σ with respect to τi. Then, we have the
induced footrule distance:

103

F(σ, τ1, τ2, ...τk) = (1/k)
∑
i

F(σ|τi, τi)

The induced Kendall distance can be defined in a similar manner.

4.3.1.2 Optimal rank aggregation

In rank aggregation we want to come up with a single ranking that best represents
the information we obtain from different ranking methods (for example, search
engines). Typically, in doing so we would like to minimize the distance of the final
ranking from each individual ranking. Therefore, the term optimal is defined with
respect to a particular distance metric. For example, suppose we use the Kendall
distance. The question is that given full or partial lists τ1, τ2, . . . , τk find a σ such
that σ is a full list with respect to the union of the elements of τ1, τ2, . . . , τk, and σ
minimizes K(σ, τ1, τ2, ...τk).
σ obtained from solving the above optimization problem is called the Kemeny

optimal aggregation. This particular aggregation has the property of eliminating
noise from various ranking schemes. More importantly, it is the only aggregation
that simultaneously satisfies natural and important properties of rank aggregation
functions, called neutrality, consistency, and the Condorcet property. Neutrality
in a voting system means that the system itself does not favor any candidate. Con-
sistency says that if the voters in two arbitrary groups in separate elections select
the same candidate the result should not change if the groups are combined. An
election method satisfies the Condorcet property if it elects the candidate that would
win by majority rule in all pairings against the other candidates, whenever one of
the candidates has that property. Unfortunately, computing the Kemeny optimal
aggregation is known to be NP-Hard. Therefore, there are many approximations
have been suggested in the literature.

Specifically, it is shown that the footrule optimal aggregation can reasonably
approximate the Kenemy optimal aggregation [15]:

If σ is the Kemeny optimal aggregation of full lists τ1, τ2, ...τk, and σ ′ optimizes
the footrule aggregation, then

K(σ ′, τ1, τ2, ...τk) < 2K(σ, τ1, τ2, ...τk)

104

Figure 4.5: Median rank aggregation example.

.
Fagin et al. [17] propose Median Rank Aggregation, which approximates the

footrule aggregation by a constant factor of three and consequently approximates
the Kemeny optimal aggregation by a constant factor. They found that it works
reasonably well in practice and is simple and fast to compute. We will use this
method for rank aggregation and will describe it in detail in the following section.

4.3.1.3 Median Rank Aggregation

Median rank aggregation is an approach for finding a constant factor approximation
of the optimal aggregation ranking of multiple partial rankings. The algorithm is
surprisingly simple: Sort all the candidates based on the median of the ranks they
receive from the rankings. Break ties arbitrarily.

Figure 4.5 shows an example with three partial rankings τ1, τ2, τ3. The last group
of candidates in each ranking are ties in each ranking. σ is the optimal ranking. In σ
A, D are ties with median ranking of 2, and B, C are ties with median ranking of 3.
We break the ties in σ arbitrarily.

4.3.2 False Positives False Negatives (FPFN)

4.3.2.1 Pair selection

One way of finding problematic pairs is to use the labeled sample and learn a
matcher using machine learning approaches such as decision trees, random forest,
naiive bayes and so on. Recall that a false positive is a non-matching pair that is
reported as match by the matcher. A false negative is a matching pair that is reported
non-match by the matcher. We found that pairs of records that this matcher gets

105

wrong in terms of false positive and false negatives can reveal issues in the data set
and/or set of features used for learning the matcher, hence the name FPFN.

To learn a machine learning model, typically we split the labeled sample to train
and test data. Train a model using training data (seen data) and test the accuracy
of the model using the test data (unseen data) which was not revealed at training.
To reduce variability of the prediction, a well-known approach for evaluating a
model is k-fold cross validation. In this case, the labeled sample is divided to k
folds and k models are learned using k-1 folds as training and 1 fold as test data
in k iterations. The accuracy of the model is then the average accuracy of all the
models. k is typically set to 10, meaning that at each iteration 90% of the data is
used as training data and 10% is used as test data.

For us to use false positives and false negatives as pairs to show to the analyst,
we would like to find such pairs in all the labeled sample and not only in test data.
If we split the data into train and test, we will get false positives and negatives from
only the test data, since prediciton is done only on test data. To achieve this we can
use 10-fold cross validation, and union the false positives and false negatives from
each iteration. Since every data point is used at least in one fold as test data, every
record pair in the labeled sample will have a chance to appear in the final ranking
as false positive or false negative.

4.3.2.2 Ranking

Recall that we would like record pairs that reveal more debugging issues ranked
higher so that the analyst can quickly debug the most important/prevalent issues.
In FPFN we select pairs that appear in false positives or false negatives after learning
a model for predicting if a pair is a match or a non-match. Suppose a pair of records
shows in the false positives, meaning that it must not be a match but it is predicted
as a match by the model. The more confident the model is in predicting this pair
as a match, the more suspicious this pair looks like. That is, this is a non-match
that has very high similarity values and that is probably the reason the model has
learned to predict it as a match with high confidence.

Therefore, if the machine learning model that we learn reports a confidence score
for each of its predictions, we can use this score to rank the pairs returned by the
pair selection method. Pairs with higher confidence score are ranked on top, and
we break ties arbitrarily.

106

Random forest is one of the models that is amenable to this requirement for
a confidence score. In a random forest, multiple decision trees are learned using
the same training data and the final prediction is the majority vote between the
trees. Basically, if more trees agree on a prediction for a pair, then the model is
more confident of its prediciton. Therefore, we can use the mean predicted class
probabilities of the trees in the forest as the confidence score for each pair. Using
a random forest model has the additional advantage that the model is composed
of rules that can be understood by humans. Therefore, if necessary the analyst can
try to decipher why the model made a decision for a particular pair. Many other
learning algorithms lack this property and are like a black box for the analyst. For
the above reasons, we will use random forests to generate the rankings for FPFN.

4.3.3 Mono

In Mono, we find suspect record pairs based on the observation that a matching
record pair typically has higher similarity values than non-matching record pairs.
Particularly, it would be non-intuitive for a non-matching pair to be more similar
than a matching pair in all dimensions. This observation was reported in [6] and
this is what we found in practice as well.

One way to capture this observation is through the monotonicity property for
matching data sets introduced in [6] and defined below:

Definition 4.2. Monotonicity A matching record pair p1 and non-matching record pair
p2 satisfy monotonicity with respect to a set of defined features F if there exists at least a
feature f ∈ F such that f(p1) > f(p2).

Intuitively, the matching pair must at least be more similar than the non-matching
pair in one feature. If a data set is monotonic or highly monotonic with respect to
a set of features, we can perform matching using a few simple rules [6]. However,
we have observed that in many data sets used in practice, specially if they are not
cleaned or missing features, monotonicity is violated. Based on this observation, our
idea is that monotonicity violations can point to cleaning opportunities or missing
features for matching.

The above definition of monotonicity only requires the matching pair to be more
similar than the non-matching pair in one dimension. We generalize the notion of
monotonicity introduced in [6] as follows:

107

Definition 4.3. k-monotonicity A matching record pair p1 and non-matching record pair
p2 satisfy k-monotonicity with respect to a set of defined features F if there exists at least k
features f ∈ F such that f(p1) > f(p2).

Note that 1-monotonicity resolves to the original definition of monotonicity, and
thus throughout this paper we use 1-monotoniciy and monotonicity interchangeably.
We have observed that if a non-matching pair is more similar than the matching
pair in every dimension, violating 1-monotonicity, it is a strong signal for cleaning
opportunities. However, we found this definition rather strict in the general case,
specifically if we have many features. As the number of features increase, it is more
likely that a matching and non-matching record pair satisfy 1-monotonicity even
if they do require cleaning. Suppose we have 15 features for a data set, it seems
counter-intuitive if a matching pair is not more similar than a non-matching pair
even in 2 dimensions, violating 2-monotonicity. We found that in such cases, record
pairs that violate 2-monotonicity can also be a good signal for a cleaning opportunity,
although a weaker signal than 1-monotonicity violations. In general, as k increases,
violations of k-monotonicity are weaker and weaker signals of cleaning issues.

In practice, the analyst can only look at a limited number of record pairs before
moving forward with the matching process. Therefore, we would like to rank record
pairs such that ones that need cleaning issues come first. Therefore, given a limit
for the number of pairs L that the analyst will inspect at each round, our problem is
to include as many record pairs that need cleaning as possible in the top-L record
pairs. We use monotonicity violations as a signal that a record pair needs cleaning.

To do so, we first need to find all monotonicity violations. If we have a large
labeled sample finding all monotonicity violations may take a long time or be
prohibitively expensive. For example, assume that we have 100000 labeled record
pairs out of which 40000 are matches and 60000 are non-matches. With an exhaustive
search we need to compare 2400 million pairs of matching and non-matching records
which can take hours to complete. Therefore, we need to devise a mechanism where
we can quickly find all monotonicity violations. We develop a spatial blocking
mechanism to find violations quickly and describe it in Section 4.3.3.1.

The notion of k-monotonicity helps us find and rank violations from stronger
signals to weaker signals. However, there may be thousands of violations. Not
all record pairs involved in a violation are interesting and require cleaning. For
example, assume a matching record pair that has similarity zero in all dimensions.

108

Algorithm 12: Exhaustive search for finding monotonicity violations.
Input: P = {p1,p2, ...} list of positive pairs
N = {n1,n2, ...} list of negative pairs
FV hash table containing feature vector for each pair
Output: V = {(pi,nj)|(pi,nj) violate monotonicity}

1 V = [];
2 foreach p ∈ P do
3 foreach n ∈ N do
4 pos_feature_vec = FV.get(p);
5 neg_feature_vec = FV.get(n);
6 if dominates(neg_feature_vec, pos_feature_vec) then
7 V.append((p,n));
8 end
9 end

10 return V;

This may be due to a ground truth error, meaning that this record pair is actually
not a match and the label was incorrect. This record pair may violate monotonicity
with respect to thousands of non-matching record pairs that are more similar than
this pair. Now, which record pairs should we propose to the analyst to look at?
Intuitively, this particular record pair should be presented to the analyst, and the
rest of the pairs that violate monotonicity with respect to this record pair do not
necessarily need cleaning. So here the question is how do we select a subset of
record pairs to show to the analyst?

Here we borrow ideas from the data repair literature where we have a set of data
quality rules (DQRs) that need to be satisfied, and we want to make the minimum
number of changes to the data such that all violations are resolved [4, 10, 47]. Here,
our data quality rule or constraint is that matching pairs must be more similar than
non-matching pairs in at least k dimensions (satisfy k-monotonicity). Consequently,
we want to make minimal changes to the data sets such that all monotonicity viola-
tions are resolved. We use this idea to select record pairs to show the analyst which
is described in Section 4.3.3.3.

4.3.3.1 Spatial blocking

So far we have established that we are interested in monotonicity violations because
they can point us to record pairs that we suspect will point us to cleaning opportu-

109

Algorithm 13: Spatial blocking for finding monotonicity violations.
Input: P = {p1,p2, ...} list of positive pairs
FV hash table containing feature vector for each pair
S hash table containing negative pairs in each square
Output: V = {(pi,nj)|(pi,nj) violate monotonicity}

1 foreach p ∈ P do
2 p_square = getSquare(p);
3 foreach s ∈ S do
4 if strongly_dominates(s, p_square) then
5 foreach n ∈ S.get(s) do
6 V.append((p,n));
7 end
8 if s == p_square or dominates(s, p_square) then
9 foreach n ∈ S.get(s) do

10 pos_feature_vec = FV.get(p);
11 neg_feature_vec = FV.get(n);
12 if dominates(neg_feature_vec, pos_feature_vec) then
13 V.append((p,n));
14 end
15 end
16 end
17 return V;

nities or missing features. The problem that we attempt to address in this section is:
how do we efficiently find all monotonicity violations?

To find monotonicity violations in a sample of labeled pairs, we can evaluate
monotonicity of all matching record pairs with respect to all non-matching record
pairs. We can implement this process as an exhaustive search presented in Algorithm
12. This algorithm has complexity of O(N × P) where N is the number of non-
matching examples and P is number of matching examples in the labeled sample.
This solution is suitable for small labeled samples but can be prohibitively expensive
in cases where we have samples containing a large number of matching and non-
matching pairs.

Fortunately, many matching and non-matching record pairs are obviously mono-
tonic. For example, consider Figure 4.6. For the labeled sample in this figure, we
have two features represented by the horizontal and vertical axis. Record pairs
labeled as matches are denoted by a star and non-matches are denoted by crosses.

110

f1

f2

p1

n1 n2

n3 n4

Figure 4.6: Labeled sample shown in the space of two features f1, f2. Stars denote
matching pairs and crosses denote non-matching pairs. The space is divided into
squares. Only negative points in the gray area can violate monotonicity with respect
to matching pair p1.

Matching pairs on the top-right of the figure are obviously monotonic with respect
to record pairs on the bottom-left of the figure since they have higher similarity
in both features f1, f2. We can use this special structure of the matching problem
to avoid unnecessary checks for monotonicity violations. We call this approach
Spatial Blocking. It is “spatial” because it uses the feature space to avoid comparing
obviously monotonic pairs. We also call it “blocking” because it is similar to blocking
in the context of matching where we want to avoid computing expensive similarity
functions on obviously non-matching record pairs.

Details of the algorithm are presented in Algorithm 13. Assume that we have
n features defined by the analyst. Intuitively, we divide the feature space into
equal-volume squares. We then assign each negative point to a square, and keep
track of the negative points in each square in a hash table. We denote a square
s in d dimensions with its lower left and upper right corner s = (ll,ur) where
ll,ur ∈ [0, 1]d.

Definition 4.4. A point in space p1 ∈ [0, 1]d dominates p2 ∈ [0, 1]d if ∀di ∈ dp1[di] >

p2[di]

Definition 4.5. A point in spacep1 ∈ [0, 1]d strongly dominatesp2 ∈ [0, 1]d if ∀di ∈ dp1[di] >

p2[di], ∃di ∈ dp1[di] > p2[di].

Definition 4.6. A square s1(ll1,ur1) dominates/strongly dominates another square s2(ll2,ur2)

if ur1 dominates/strongly dominates ll2.

111

For each positive pair like p1 in Figure 4.6, we only need to check monotonicity
with respect to negative pairs in the same square, here n1, and negative pairs in
squares that dominate this square, here n2. Negative pairs in squares strongly
dominating this square, heren3, n4, will obviously violate monotonicity with respect
to this positive pair. Negative pairs in squares dominated by this square will be
obviously monotonic with respect to the positive pair.

For each square, we will store all the negative record pairs that fall into that
square, and this requires O(N) storage since we do not have overlapping squares. If
we are memory-constrained, an alternative is to create the hash table over positive
pairs, which are typically much less than negative pairs, and loop through negative
pairs to find violations.

We define the granularity of the squares using the parameter slength ∈ (0, 1]
which specifies the length of each side of the square. The larger slength the less
points in each square, and this will reduce number of unnecessary monotonicity
checks. On the other hand, this increases the complexity of finding all dominating
squares. The number of features also affects the decision of slength. Suppose we
have only one feature. In that case slength = 1 reduces to exhaustive search. The
more features that we have, the larger we can have slength. In our experiments we
set slength to 0.25 and we found that it performed well with respect to a variety of
data sets with different number of features.

4.3.3.2 Finding k-monotonicity violations

We may also be interested in finding violations of 2-monotonicity, 3-monotonicity
and so on as they can point to a cleaning issue for the record pair. Given the
maximum K that we are interested in finding the violations for, denoted as K, we
can find all violations of 1 . . .K-monotonicities in one path using both exhaustive
search or spatial blocking. We will have K separate lists to store violations for
each k-monotonicity and insert violations to the lists as we find them. Note that a
non-matching and matching pair that violate k-monotonicity will definitely violate
(k+ 1)-monotonicity. We only store violations in one list and do not repeat them in
lists with higher k.

112

Algorithm 14: Select and rank record pairs given monotonicity violations
Input: V = {(pi,nj)|(pi,nj) violate monotonicity}
Output: R = {r1, r2, ...} list of selected and ranked record pairs

1 P← {pi|∃(pi,nj) ∈ V}

2 N← {nj|∃(pi,nj) ∈ V}

3 Vertices = {P ∪N}

4 Edges = {(pi,nj)|(pi,nj) ∈ V}

5 G = (Vertices,Edges)
6 M←Minimum vertex cover of G.
7 R← Rank M such that records involved in more violations are on top.
8 return R;

4.3.3.3 Pair selection

In the previous section, we described how to efficiently find all monotonicity viola-
tions in a matching data set. There may be thousands of matching and non-matching
record pairs involved in monotonicity violations, but not all of them are record pairs
that are worth the analyst time for inspection. For example, suppose that we have a
ground truth error, such that a non-matching record pair which has low similarity
values is labeled as a match. In such a case, this record pair may violate monotonicity
with respect to thousands of non-matching record pairs, which may be perfectly fine
record pairs that do not need inspection. So the question is how do we select/rank
a set of record pairs to show to the analyst for inspection?

We make use of similar concepts in the data repair literature [10, 47]. For data
repair, given a database D, and a set of data quality rules (DQRs), we would like to
minimally repair D such that all violations of the DQRs are resolved. Following the
same concept, we define the following data quality rule for our matching data set:

Definition 4.7. Matching Data Quality Rule (DQR): All matching and non-matching
record pairs must satisfy the monotonicity property.

Therefore, all monotonicity violations violate this matching DQR. Similarly, we
would like to minimally change our data set such that all monotonicity violations
are resolved. Intuitively, the minimal change hints to minimum analyst effort for
cleaning the matching data sets.

In order to achieve this goal, we would like to find the Maximal Consistent Dataset,
which is basically the largest set of record pairs for which there is no monotonicity

113

violations. In other words, we want the analyst to inspect the minimum number
of record pairs such that if they are removed from the data set all of monotonicity
violations are resolved.

We formulate this problem as finding the Minimum Vertex Cover of a bipartite
graph generated from the set of all monotonicity violations. This solution is shown
in Algorithm 14.

Definition 4.8. The Minimum Vertex Cover of a graph is the minimum set of vertices such
that each edge of the graph is incident to at least one of these vertices.

Given the set of negative pairs N and a set of positive pairs P that are involved
in at least one violation, {P ∪N} are vertices in our graph G. We then add an edge
between every matching pair pi and non-matching pair nj that violate monotonicity.
Since there are no edges among matching pairs or non-matching pairs, we have a
bipartite graph.

For our problem, finding the minimum vertex cover of our bipartite graph
means that we find the minimum set of pairs that if removed from the data set are
monotonicity violations are resolved. Finding the minimum vertex cover a general
graph is an NP-Hard optimization problem. However, for the special case of a
bipartite graph a polynomial solution exists.

4.3.3.4 Pair selection using k-monotonicity violations

Recall from Section 4.3.3 that violations of k-monotonicity can signal cleaning issues,
with lower k’s being a stronger signal and higher k’s weaker signals. Also, recall that
an analyst will look at a limited number of pairs L in each iteration before making a
cleaning decision. In the previous section, we discussed how to modify the spatial
blocking algorithm to return lists of {1 − K}monotonicity violations and and that in
some cases we can update these lists incrementally as the analyst performs cleaning
operations.

Now, the question is how to consolidate and use all these signals in finding
the best pairs to show to the analyst, given that the analyst will inspect only a
maximum of L record pairs. In algorithm 14 we only have one type of signal, and
that is 1-monotonicity violations. Here we would like to use all {1 − K}monotonicity
violations as a signal.

114

To do so, we will give these lists one by one, from lower k to higher k, as input
to Algorithm 14. For each k, the algorithm will return to us the set of record pairs
to be inspected by the analyst corresponding to those violations. We will repeat
this process until we have processed all K lists or we have reached the maximum
number of pairs L that the analyst will inspect. Note that with this process, we have
ordered the record pairs such that record pairs with stronger signals (lower k’s) are
shown to the analyst before weaker signals (higher k’s).

4.3.3.5 Ranking

Just as with FPFN, all pairs selected by Mono are not equally interesting. We expect
some to reveal more debugging opportunities for the analyst. Therefore, we still
need to decide on the ranking of the pairs. To do so, we will use the bipartite graph
generated based on the monotonicity violations for ranking the selected record pairs.
Pairs are ranked such that the ones with highest number of connections are ranked
higher. The intuition behind this method is that record pairs that are involved in
many monotonicity violations are more suspect and need to be inspected by the
analyst higher in the ranking. Algorithm 14 shows the process of selecting a set of
record pairs and ranking them for showing to the analyst.

4.3.4 Other heuristics

We can use other heuristics for ranking the record pairs as well. For example, using
the summation of the values of feature vectors is a simple heuristic to find prob-
lematic pairs. Basically, matching pairs with lowest summation and non-matching
pairs with highest summation could be suspect record pairs.

One limitation of this approach is that it considers matching pairs and non-
matching pairs in isolation. For example, non-matching pairs with highest sum-
mation are not necessarily suspect record pairs. If there is not any matching pair
that is less similar than this non-matching pair, it is likely that there is no issue
with this pair. Even if there are matches that are less similar than this pair, it is not
clear that the issue is with this non-matching pair and not those matching pairs.
Also, since matching and non-matching pairs are treated in isolation, this approach
generates two rankings that should be inspected by the analyst and may increase
analyst effort.

115

Furthermore, we empirically found that this appraoch can be sensitive to the data
and the set of features that are selected and produce inferior rankings to FPFN and
Mono. For example, suppose that our set of features contains redundant features.
Intuitively, two features are redundant if they provide the same information. For
example, if one of the features shows high similarity the other feature also shows high
similarity. In such a case, these set of redundant features can drive the summation
of the feature values high or low and negatively affect the ranking. This is avoided
in FPFN and Mono to some extent because the score for each pair for ranking is not
decided on in isolation and is relative to the other pairs of records.

4.3.5 Hybrid

The idea behind the Hybrid approach is that each of the methods for ranking the
pairs could surface different issues in the data set. Therefore, in the Hybrid ranking
we make use of multiple rankings, here FPFN and Mono. We first generate the
ranking for each, and then aggregate them to generate a single ranking to present to
the analyst. We use median rank aggregation as described in Section 4.3.1.3. The
median of two values is the average of the two values. Therefore, the median rank
aggregation for two rankings is equivalent to taking the average ranking for each
pair, and then sorting the pairs from higher to lower average ranking, breaking ties
arbitrarily.

4.3.6 Interactive Debugging

So far we have generated a ranking to present to an analyst for inspection. Now,
how does the analyst interact with this ranking? Specifically, what happens after
the analyst proposes a fix to the data set and/or features? After the analyst makes a
change to the dataset it may not make sense for the analyst to go through the same
ranking again. Consider the following example. After viewing a matching pair
that has low similarity values in the book type attribute, the analyst proposes to
normalize the values in table A from “trade cloth” to “hard cover” to be consistent
with table B. After this fix, not only this pair will have higher similarity values, but
also many other pairs with the same issue will have higher similarity values. If such
pairs are shown to the analyst in the ranking, it will be a waste of analyst time.

116

Algorithm 15: Interactive_Clean(L Labeled Sample, F Features)
1 FV← Generate feature vectors
2 R← Generate the Hybrid ranking
3 I← ∅ Inspected records
4 while User wants to continue and R not empty do
5 User inspects next top-k record pairs r1−k ∈ R

6 I← I ∪ r1−k
7 if User performs cleaning or changes feature set then
8 FV← update features vectors
9 R← Generate the Hybrid ranking

10 R← R− I

Therefore, we re-generate the ranking after each fix that the analyst proposes.
When we re-generate the ranking the new and old rankings may overlap. Suppose
the analyst proposes a fix to the data set after viewing 10 pairs. The new ranking
may rank the same 10 pairs on top. Thus we want to avoid presenting them again
to the analyst. Therefore, in the new ranking we will eliminate the pairs that the
analyst has already viewied. This way, the analyst can start again from top of the
list and inspect the pairs.

We show this process in Algorithm 15. The analyst is presented ranked pairs
of records to inspect. She will inspect the pairs and propose fixes. Once a fix is
applied, the ranking is re-generated and pairs already inspected are removed from
the ranked list. She continues this process until she runs out time or she inspects
all the pairs. Given that the number of pairs in the labeled sample can be large, we
suspect that the analyst will stop after she does not find any other issue to fix after
inspecting a number of record pairs.

4.4 Experimental Evaluation

4.4.1 Ranking methods

In this section, we would like to evaluate our framework for ranking and presenting
pairs of problematic record pairs to the analyst. We do not have access to real
analysts for evaluation purposes, and so we will mimic the analyst behavior by the
following procedure.

117

According to our interactive cleaning process described in Algorithm 15 we
simulate an analyst looking at the first k pairs, fixing issues found in those pairs,
re-ranking, then continuing. k is a parameter in our experiments and we set it to 20
for the results reported here. This will continue until the analyst is available and
there are more pairs to view. Typically, there are hundreds of pairs in the labeled
sample, and so we suspect that the first condition will terminate the loop.

Now, in our experiments, how do we simulate if an analyst is still available? We
assume that the analyst will stop if she finds no more problematic pairs. The main
point of ranking record pairs is that the ones that are problematic are ranked higher
than non-problematic ones. Therefore, after a certain point, the analyst will run
out of problematic pairs and start inspecting mostly non-problematic pairs. In that
case, she will stop inspecting more pairs. Specifically, we will stop inspecting more
pairs if we go through d iterations without finding any more problematic pairs. For
smaller data sets generated by students, we set d to 3. For Cora which is larger and
has more errors, we set this to 15.

When evaluating a ranking, we are interested to know how much the ranking
was able to help the analyst in cleaning a data set. This is a challenge for evaluation,
especially without access to real analysts. The challenge arises from two facts: First,
there are many categories of issues in a data set that require action from the analyst,
and a pair of records may hint to multiple cleaning issues. For example, one pair
might point to a missing feature and also need normalization on an attribute. How
do we know what cleaning issues do a pair of records suggest to an analyst?

The second challenge for evaluating a ranking is to measure how much the data
set has been cleaned based on an action that the analyst takes. For example, if the
analyst normalizes a value across two tables, how important is this cleaning for
matching? It is challenging to measure this importance directly. One proxy for
measuring it is to measure the quality of the matcher that an analyst comes up with
after cleaning the data set. Intuitively, the better the data is cleaned, the higher the
matching quality is. We show this correletaion in Section 4.4.2.2. For evaluation
purposes we need to decide on the kind of matcher that the analyst uses among
many possibilites, which adds another dimension to the problem.

As it has become apparent, fully evaluating the effectiveness of a ranking in
revealing issues in a data set is non-trivial. Therefore, in order to make evaluation
tractable, in this thesis we focus on one category of inconsistency in the data set and

118

will consider evaluating the ranking for the rest of the categories for future work.
In particular, we are interested to evaluate our framework with respect to finding
incorrect labels in the labeled sample. As we mentioned in Section 4.2, there can
be multiple causes for incorrect labels in the labeled sample, such as dividing the
labeling work between multiple analysts or using semi-automatic approaches. We
also discussed that incorrect labels in the labeled sample may lead to learning a
lower-quality matcher as well as misleading us when evaluating the precision and
recall of a matcher. Therefore, it is important to fix the labels as much as possible.

Focusing on finding pairs of records with incorrect labels will make evaluation
tractable. First, when viewing a pair of records, either it is a pair of record with an
incorrect label or a correct label. Therefore, it is clear if the pair is problematic or not.
Second, in order to evaluate effectiveness of a ranking and measure how much the
ranking has helped the analyst in cleaning the data set, we can count the number of
incorrect labels that the ranking revealed to the analyst. Basically, a ranking will be
more effective if it ranks more records with incorrect labels on top.

4.4.1.1 Introducing errors in data sets

For each of the data sets, we have manually created a version of the labeled sample
that is free of errors. We need this version because we would like to know how
many errors are revealed by each ranking method. The samples that were generated
by the students were small and contained only a few labeling errors. Therefore, we
were not able to meaningfully compare Mono, FPFN, and the hybrid rankings in
terms of how many errors they revealed. Therefore, in order to better understand
the difference between these approaches, we introduce synthetic errors to the labels
and repeat the experiments.

To inject synthetic errors in the labels we flip the labels in the corrected version
of the labeled sample to be incorrect. We initially selected a random set of pairs and
flipped their labels. We found that this method did not reveal many differences in
the rankings. Let us illustrate this further. Recall that most of our pairs of records in
the labeled sample actually are clean and do not need analyst action. For example,
consider a matching pair in the restaurant data set with exactly the same name,
address, city and type. Now, if we flip the label for this pair from match to non-
match, it will be a very obvious problematic pair. Basically, it is a non-matching

119

pair with high similarity value in all the attributes. This will be picked up by all our
ranking mechanisms and ranked high.

Randomly flipping the labels for a pair of records in order to inject error does
not make a lot of sense in practice as well. Consider the above example, the analysts
will probably not make a mistake on such an obviously matching pair. Therefore,
it makes sense to flip the label for pairs that their match status is not obvious. We
suspect that the analyst would have a harder time on deciding a label for this pair.

In order to find pairs of records that are hard or tricky for analysts to label, we
use state-of-the-art active learning methods. Active learning is typically used for
generating a labeled sample for training a machine learning algorithm. In such a
scenario, the advantage of machine learning is that the user needs to label fewer
data points for leanring a model. In active leanring, the user labels a few seed data
points and feeds that to the model. The model then will query the user to label
more data points that it thinks would be helpful for learning an accurate model.
There are multiple strategies for selecting a data point to show to the user label.
In our experiments we use “uncertainty sampling", which means that the model
asks the user to label points that it is most uncertain about. We assume that if the
machine learning model cannot confidently decide on a label for a pair, it is hard for
the analyst to label that pair as well. That means that we take the points that the
model is most uncertain about from active learning and flip their label to incorrect
to inject labeling errors into the data set.

4.4.1.2 Results

To evaluate effectiveness of different ranking mechanisms in finding incorrect labels
we use six real-world entity matching data sets generated by students at a graduate-
level data modeling course at UW-Madison. We also use the Cora data set that is
used for evaluations in entity matching literature. Details of the data sets can be
found in Table 4.1.

For each of the seven data sets, we report how many incorrect labels were found
once our code stops according the stopping criteria defined above. We also report
how many pairs were inspected before stopping inspecting more pairs. We consider
three rankings in our experiments, Mono, FPFN, and Hybrid. Hybrid is generated by
aggregating the rankings in Mono and FPFN via median rank aggregation described
in Section 4.3.1.3.

120

Data	set	 Source	A	 Source	B	 Table	A	
size	

Table	B	
size	

Candidate	
Set	Size	

Labeled	sample	
size	(+,	-)	

Beer*	 Beer	
Advocate	

Rate	Beer	 4345	 3000	 4334961	 450	
(68,	382)	

Bikes*	 Bikedekho	 Bikewale	 4785	 9002	 8009	 450	
(130,	320)	

Books*	 Amazon	 Barnes	&	
Noble	

3506	 3508	 2017	 374	
(232,	142)	

CitaHons*	 Google	
Scholar	

DBLP	 3122	 12418	 5882623	 1417	
(92,	308)	

Movies*	 RoPen	
Tomatoes	

IMDB	 7390	 6407	 78079	 600	
(190,	410)	

Restaurants*	 Yellow	
Pages	

Yelp	 11840	 5223	 5278	 400	
(130,	270)	

Cora		 Cora	search	
engine	

Cora	search	
engine	

1295	 1295	 379748	 20000	
(932,	19068)	

Table 4.1: Data sets used in the experiments for evaluating effectiveness of rankings
in finding incorrect labels. Data sets generated by students are marked with a *. The
number of positive and negative labels for each data set is listed in the paranthesis
after the sample size.

As described, we created a corrected version of the labeled sample for our data
sets. Table 4.2 for each data set shows size of the labeled sample and the total number
of incorrect labels that we found in the labeled sample. For the data sets generated
by the students there are a few hundred pairs in the labeled sample and only a
few of their labels were incorrect. Cora data set is larger and we found many more
labeling errors in this data set.

In the same table we also report the number of errors that our program found
with each ranking and the number of pairs that our program inspected before it
stopped. We find that for all data sets we find more incorrect labels using Hybrid
than each of the methods alone. For Bikes and Cora, FPFN and Mono find a different
set of labels even though they may overlap. This is encouraging as it supports our
assumption that multiple rankings can reveal different errors and that aggregating
them will generate a ranking that can be more effective than each alone.

121

Data	set	 Sample	
size	

Incorrect	
labels	

Mono	 FPFN	 Hybrid	

Beer		 450	 2	 0,	8	 0,	10	 0,	13	

Bikes		 450	 8	 2,	25	 4,	132	 5,	153	

Books		 374	 4	 2,	14	 3,	15	 3,	21	

Cita5ons		 400	 0	 0,	4	 0,	7	 0,	8	

Movies		 600	 1	 0,	8	 0,	7	 0,	12	

Restaurants		 400	 0	 NA	 NA	 NA	

Cora		 20000	 116	 51,	104	 78,	180	 90,	194	

Table 4.2: Performance of simulated analyst with different rankings for errors in the
original labeled sample. For each of the rankings the first number indicates number
of errors found and the second number indicates number of inspected pairs.

For the six data sets generated by students, since there were only a few errors
in the original labeled samples, we use active learning and select a subset of the
pairs to flip their label to be incorrect. The active learning mechanism may choose
matching or non-matching pairs for us to flip their labels. Therefore, we also report
in each case how many matching (positive, denoted by +) or non-matching (negative,
denoted by -) labels were chosen by active learning and flipped. For each of the
data sets, we report five tirals with different seed data points to the active learning
method. For each of the rankings Mono, FPFN, and Hybrid we report number of
incorrect labels found as well as number of inspected pairs to find those errors. We
report these results in tables 4.3 and 4.4.

One issue to note is that we suspect that this method of selecting pairs for flipping
their labels using active learning may favor the FPFN approach over Mono, and this
could explain why in many cases the FPFN approach is able to find more errors
than Mono. Recall that using active learning we will select pairs of records that are
not obvious for the machine learning model if they are matches or non-matches.
This means that the model was not able to classify these pairs of records easily to
start with. Therefore, it is likely that they will show up as false positives and false
negatives and thus be included in the FPFN ranking, and consequently we will be
able to find them in that ranking.

122

Experiment	 Flipped	
labels	(+,	-)	

Mono		 FPFN		 Hybrid		

Beer	

1	 3,	19	 10,	14	 17,	24	 17,	25	

2	 3,	19	 7,	8	 16,	25	 16,	25	

3	 7,	15	 12,	14	 15,	21	 17,	28	

4	 5,	17	 16,	21	 15,	21	 17,	24	

5	 3,	19	 17,	23	 12,	17	 17,	27	

Bikes		

1	 8,	14	 3,	26	 12,	118	 13,	122	

2	 9,	13	 5,	28	 13,	112	 14,	132	

3	 8,	14	 3,	25	 11,	100	 15,	131	

4	 9,	13	 2,	24	 10,	93	 12,	117	

5	 10,	12	 4,	26	 11,	100	 13,	124	

Books	

1	 13,	5	 8,	14	 13,	24	 13,	27	

2	 13,	5	 5,	11	 12,	23	 12,	23	

3	 12,	6	 5,	10	 13,	20	 13,	26	

4	 15,	3	 3,	11	 14,	23	 13,	26	

5	 13,	5	 2,	11	 14,	22	 13,	28	

Table 4.3: Performance of simulated analyst with different rankings with synthetic
errors introduced using active learning (for Beer, Bikes, and Books data sets). For
each ranking we report number of incorrect labels found and number of inspected
pairs separated by a comma.

On the other hand, this method of selecting pairs does not favor the Mono
approach. Recall that the idea behind the Mono approach is that matching pairs
typically have higher similarity values than non-matching pairs. Therfore, using
Mono, we are hoping to find matching pairs with high similarity values or non-
matching pairs with low similarity values. On the other hand, the pairs selected
by active learning are likely to be borderline cases where it is not clear that they

123

Experiment	 Flipped	
labels	(+,	-)	

Mono		 FPFN		 Hybrid		

Cita%ons	

1	 7,	13	 7,	14	 17,	20	 17,	22	

2	 4,	16	 11,	19	 18,	21	 18,	23	

3	 4,	16	 10,	12	 18,	21	 18,	22	

4	 4,	16	 8,	11	 18,	21	 18,	26	

5	 3,	17	 8,	17	 19,	23	 19,	31	

Movies	

1	 12,	18	 2,	3	 28,	32	 30,	40	

2	 15,	15	 12,	15	 25,	33	 29,	41	

3	 13,	17	 9,	10	 28,	35	 28,	37	

4	 11,	19	 8,	13	 28,	36	 28,	41	

5	 14,	16	 10,	14	 28,	37	 28,	38	

Restaurants		

1	 3,	14	 5,	7	 13,	19	 13,	19	

2	 4,	16	 4,	7	 7,	11	 11,	16	

3	 6,	14	 11,	15	 17,	20	 20,	26	

4	 7,	13	 6,	8	 17,	20	 17,	21	

5	 7,	13	 10,	11	 16,	18	 15,	16	

Table 4.4: Performance of simulated analyst with different rankings with synthetic
errors introduced using active learning (for Citations, Movies, and Restaurants data
sets). For each ranking we report number of incorrect labels found and number of
inspected pairs separated by a comma.

are matches or non-matches and thus have a mix of high and low similarity values.
This makes it harder for the Mono approach to find these pairs of records.

Furthermore, we can see that in some cases with Mono the analyst stops earlier
than with the FPFN approach and is able to find fewer number of errors. Recall that
with Mono, we select the minimum number of pairs to show to the analyst and thus
some suspect pairs may have been removed by the minimum vertex cover algorithm
that chooses a subset of pairs to show to the analyst.

124

Nevertheless, in 12 out of 30 trials Mono and FPFN find different sets of errors
and using the Hybrid approach the analyst is able to find more incorrect labels than
any individual approach. This confirms our observations with the original data set
that the analyst can find more errors by aggregating multiple rankings.

Results presented in this section were joint work with Haojun Zhang and with
guidance of Professor AnHai Doan.

4.4.2 Impact of cleaning

We have observed that when the data is clean, matching can be done with higher
quality with “simpler” matchers. To illustrate this observation we propose a set
of cleaning operations for three datasets commonly used in the entity matching
literature, Cora, Restaurants, and Products. Please refer to Figure 4.6 for details of
the data sets. We find these cleaning operations by closely inspecting the record
pairs in these data sets. In fact, we used the Mono approach to generate a ranking
of suspect record pairs and help us with finding cleaning opportunities. Figure 4.8
shows these cleaning operations.

To evaluate impact of cleaning on different matchers we consider one rule-based
matcher and one machine learning matcher. Both of these approaches use a set of
labeled samples to create a matcher. Rule-based approaches are popular because
they are easy to understand and debug for analysts. For rule-based, we explore SJU
operator trees that contain similarity joins and unions [6]. For machine learning,
we use random forest that is shown to generate accurate models for matching in
previous work [22]. We will explain these matchers below.

Rule-based SJU operator trees were proposed in [6]. Suppose we have defined
z features over the attribute pairs M. The set of all defined features is denoted as
F = {f1, . . . , fz}. Recall that we name the set of feature values for all features for a
record pair a feature vector.

We have a set of rules R = {r1, ..., rn}. Each rule is in Conjunctive Normal Form
(CNF), with each clause containing exactly one predicate in the form of fi > ti

where ti is a threshold ∈ [0, 1]
A single rule is shown below:

title_exact_match > 1.0 ∧ author_exact_match > 1.0

125

A pair of records is a match if any rule in R evaluates to true. Therefore, R is a
disjunction of rules:

R = r1 ∨ r2 ∨ · · ·∨ rn.

A rule set will output a set of matching pairs O ⊆ P (all candidate pairs).
Given a set of feature vectors for the labeled examples, we can search the feature

space to find a SJU operator tree with high matching quality. The algorithm has
three tuning parameters:

• d, maximum number of predicates in each rule

• K, maximum number of rules

• B, maximum number of false positives for each rule on labeled examples

They show that for three data sets commonly used in the literature we can achieve
high precision and recall by setting d = 4,K = 4. We implemented their approach
and achieved comparable results on these data sets.

Random Forest Random forest is a popular machine learning model for classifi-
cation. Random forests are an ensemble learning method for classification in which
multiple decision trees are learned over the data. Classification decision is made by
majority voting over the trees. An advantage of random forest over trees is that it
avoids over-fitting to examples through the majority voting procedure. Even though
it loses some interpretability compared to single decision trees, it is still convertible
to a set of rules that are human-readable. We are specifically interested in random
forests because we would like to compare the complexity of learned trees between
the original and cleaned data sets. Gokhale et al. [22] used random forest to learn a
matching classifier and show that it can achieve high quality matching results.

4.4.2.1 Cleaning options

Table 4.5 shows the effect of proposed cleanings on the quality of the rule-based
and machine learning matchers. We report quality with three different options:

1. None. No cleaning applied to training or test data.

2. Training and test. Cleaning operations applied to both training and test data.

126

0	
50	

100	
150	
200	
250	
300	
350	

Restaurants	 Products	 Cora	

Av
er
ag
e	
tr
ee
	si
ze
	

Before	cleaning	 A<er	cleaning	

Figure 4.7: Average size of random forest trees before and after cleaning.

3. Training but not test. Cleaning operations only applied to training data.

When comparing the quality with no cleaning (option 1), and when both training
and test data are cleaning (option 2), we can see that quality of the classifiers increase
with cleaning the data sets. However, if we only normalize the training data and
not the test data (option 3), it can have a detrimental effect on quality, such that
quality is decreased compared to not doing any cleaning. This test is not applicable
to the products data set since the reference cleaning operations do not have any
normalizations. This shows that it is important that the analyst performs “systematic”
cleanings, those that will be able to fix errors in both train and test data.

4.4.2.2 Classifier complexity

We find that simpler matchers are easier to understand/debug for the analysts. We
observed that cleaning a data set can simplify the matcher as we will show here.
For the purpose of our experiments we estimate the complexity of the model with
average tree size of the trained random forest (i.e. number of nodes in the tree). In
Figure 4.7, we report the average size of the random forest trees before and after
applying the cleaning operations to both training and test data. We can see that
cleaning can lead to significantly simpler random forest models, which is most
obvious for the case of the Cora data set that required the most cleanings.

127

Figure 4.8: Cleaning operations identified by inspecting the record pairs using the
Mono ranking.

Data	set	 Classifier	 F1	before	 F1	a1er	 Increase	
in	F1	

F1	a1er		
(only	train)	

Decrease	in	F1	
(only	train)	

Restaurants	 Rule-based	 94	 96	 2	 94	 0	

Random	Forest	 94	 96	 2	 91	 -3	

Products	 Rule-based	 76	 80	 4	 NA	 NA	

Random	Forest	 74	 78	 4	 NA	 NA	

Cora	 Rule-based	 86	 97	 11	 94	 8	

Random	Forest	 91	 98	 7	 81	 -10	

Table 4.5: Quality of classifiers before/after cleanings proposed by the analyst.

4.4.3 Spatial blocking

The goal of spatial blocking is to reduce the runtime of the Mono approach for
larger samples. Basically, we want to find all monotonicity violations efficiently.
The exhaustive approach will compare all pairs with a positive label with all pairs
with a negative label. With spatial blocking we eliminate comparing matching and
non-matching pairs that are obviously monotonic.

For this experiment we use the full candidate sets for Cora, Restaurants, and
Products. We have access to the labels for all the candidate pairs for these data sets.
We set slength, the length of each side of the squares in spatial blocking, to 0.25 for
all the data sets. Number of positive and negative record pairs in each table and the
cross product is reported in Figure 4.6. In Figure 4.9, we can see that with all three

128

0	

50	

100	

150	

200	

250	

300	

Restaurants	 Products	 Cora	

se
co
nd

s	

Exhaus7ve	search	 Spa7al	blocking	

107X	

						>	100X	

N	x	P:	19M	

N	x	P:	323M	

N	x	P:	6B	

>	2	hours	

131X	

Figure 4.9: Time for finding all monotonicity violations with exhaustive search
versus spatial blocking.

Data	set	 Source	A	 Source	B	 Table	A	
size	

Table	B	
size	

Candidate	
set	size	

Cross	product	
(N,	P)	N	×	P	

Restaurants	 Fodors	 Zagats	 528	 329	 173712	 (111,	173601)	
19269711	

Products	 Walmart	 Amazon	 2554	 22074	 291649	 (1112,	290537)	
323077144	

Cora	 Cora	search	
engine	

Cora	search	
engine	

1295	 1295	 379748	 (17184,	362564)	
6230299776	

Table 4.6: Data sets used in the experiments for evaluating cleaning impact and
spatial blocking.

data sets there is orders of magnitude improvement in run time. This improvement
is specially noticeable for the analyst with the Cora data set. For this data set the
exhaustive search would take hours to complete, however, with spatial blocking,
this time is reduced to about 60 seconds.

4.5 Discussions

Continuing from our abstract analysts in Chapter 2 and throughout this chapter
we observe that resolving inconsistencies in a data set can lead to simpler and

129

more accurate matchers and reduce analyst effort for matching. We saw that there
can be many causes for inconsistency in a data set such as normalization issues,
incorrect labels, attribute extraction error and so forth. Even though we evaluated
our framework for finding and resolving inconsistencies in a data set for the case of
incorrect labels, we anticipate this framework to reveal other kinds of inconsistencies
in a data set. In fact, when inspecting the exact same rankings that we inspected for
finding incorrect labels, we can identify other causes of inconsistency. This is how
we found and proposed cleaning operations for Cora, Restaurants, and Products
data sets in the previous section.

Even though we empirically observed that the rankings generated by Mono,
FPFN, and Hybrid are helpful in finding a variety of inconsistency causes, it remains
an open challenge how to precisely show this in an experimental setting. This is due
to the fact that every pair in the ranking can point to multiple causes of inconsistency
and so it is not clear what action the analyst will take when vieiwing that pair. For
the case of the incorrect label, we assumed that the analyst will fix the incorrect
label, which intuitively makes sense. Even if we know exactly how the analyst reacts
when viewing a pair, it is not clear how helpful that action is in terms of cleaning
the data set.

One way to mitigate this issue is to come up with an objective metric for cleanli-
ness of a data set that can be measured after analysts’ cleaning actions are performed.
One can think of multiple metrics that can be indicative of cleanliness. For example,
we hypothesise that the number of monotonicity violations can be correlated with
cleanliness. If there are no monotonicity violations, typically matching can be done
with a set of simple rules. However, even without monotonicity violations, there
could be cases where the analyst would need to write many rules for matching.

Similarly, complexity of the matcher can be correlated with cleanliness. The
cleaner the data set, the simpler the matcher can be. We showed in our experiments
that as we clean the data set, our random forest model got much simpler. Further-
more, the quality of matching can be correlated with cleanliness. The cleaner the
data set, the higher we can get with respect to precision and recall. We showed
this with abstract analysts in Chapter 2 to some extent. When the data set included
inconsistencies, it was hard for the analyst to increase recall by keeping the precision
high. However, in some cases, you can achieve high quality matching even though

130

your data set includes many inconsistencies by having a very complex matching
model.

As has become apparent, even though these metrics can be correlated with
cleaning, they are not absolute metrics for data set cleanliness. In fact, there may not
exist an absolute metric for data cleanliness since the notion of cleanliness can be
vague itself. One could argue the the ultimate goal is to have high quality matching,
and cleaning the data set is only relevant when it can improve matching. Consider
the case of fixing incorrect labels in the labeled sample. It seems very intuitive that
if the analyst finds an incorrect label, she should fix it. However, in our experiments
we found cases where fixing the incorrect label actually reduced the quality of the
machine learning model. In such a case should the analyst fix this label or not?

Finding a metric for data set cleanliness remains an open challenge and an
interesting area for future work. In the meantime, we believe that it is important
to resolve inconsistencies in a data set regardless of quality of matching. First, it is
counter-intuitive that cleaning a data set will reduce quality of matching. In that
case, perhaps the matcher is very complex and is over-fitting to the data. This kind
of matcher will be very hard for the analyst to debug and understand. And secondly,
typically the same data has multiple use cases in an organization that could be
different from matching. In that case, cleaning a data set can improve quality of
other usecases of the same data and thus desired.

4.6 Related Work

The notion of monotonicity for entity matching data sets was introduced in [6]. They
observed that for most entity matching data sets matching pairs are more similar
than non-matching pairs in at least one dimension. They then propose a heuristic
algorithm that uses this observation, searches the feature space and finds a set of
simple rules for matching. We also have observed that “clean” entity matching data
sets satisfy monotonicity. However, data sets that are not properly cleaned or enough
features are not defined for capturing their similarity often violate monotonicity.
We use this observation to find record pairs that we suspect require cleaning and
ranking them.

Our work is related to the literature regarding data repair [4, 10, 47]. In these
works, given database D, we have a set of Data Quality Rules (DQRs) that need to be

131

satisfied, and we would like to resolve the constraints with minimal change to the
database. For example, one DQR can state that if zipcode is 53706 then city must
be Madison and state must be WI. Cong et al. [10] propose a heuristic approach to
automatically repair the database to satisfy the DQRs while keeping the accuracy of
the repairs high. Yakout et al. [47] investigate a solution where an analyst should
inspect the automatically suggested repairs for correctness. They propose a ranking
mechanism to show repairs to the analyst that will improve the quality most. We
use similar concepts in the entity matching context, where our DQR is that there is
no monotonicity violation between matching and non-matching record pairs. We
then rank the record pairs such that the ones we suspect will be most helpful to the
analyst for resolving the violations come first.

In order to find monotonicity violations quickly, we use a spatial blocking method
to avoid comparing record pairs that are obviously monotonic. To do so we map
each feature vector to a point in the feature space. This is similar to the work done for
clustering high dimensional and spatial data in [1, 40]. In these works, the feature
space is divided into rectangular cells and points are assigned to each cell based
on their feature vector. This information is then used to find high density cells
adjacent to each other and form clusters. We leverage the spatial structure to quickly
find record pairs that are obviously monotonic or non-monotonic with respect to a
particular record pair.

We can regard the task of finding violations of monotonicity as a non-equijoin
over two data bases composed of only matching and only non-matching pairs and
their feature vectors . A non-equi (or theta) join is a join statement that uses an
unequal operation such as 6,> [13]. Suppose we have two features f1, f2, to find all
non-matching pairs that are more similar than matching pairs in all dimensions we
will write the join:

SELECT M.pair,N.pair FROM MATCHING AS M, NONMATCHING AS N WHERE N.f1
> M.f1 AND N.f2 > M.f2

Frenay et al. [21] survey the state-of-the-art research on finding incorrect labels
in training data for machine learning. They enumerate reasons for such mislabelled
data points such as insufficient information for labeling, data of poor quality, mis-
take of labelers, and so on. They also discuss various literature that have shown
that labeling errors can decrease prediction performance as well as increase the

132

complexity of the learned model. Other related tasks such as feature selection or
feature ranking may be impacted by label noise as well.

They also categorize state of the art methods to deal with label noise. The first
approach is to use learning methods that are robust to label noise. For example,
bagging achieves better results than boosting in presence of label errors. Data cleans-
ing methods remove data points that appear to be mislabelled, for example, using
model predictions to detect suspicious data points and removing them. Another
approach is to make learning algorithms noise-tolerant. For example, prevent data
points to take too large weights in neural networks.

They further discuss the issue that there are only a few data sets where mis-
labelled instances have been identified. This is similar to our experiment setting
where we had to manually verify the correctness of the labels in our seven data
sets to find the incorrect labels. This makes it hard to verify effectiveness of the
approaches to deal with noise in labels. Thus, most of the experiments are done
with injecting synthetic errors. We also had to inject synthetic errors to six of our
data sets where there were only a few errors as well.

Our goal in this chapter is broader than just finding incorrect labels in the
labeled sample. We propose a framework for finding and resolving inconsistencies
in a matching data set, and there could be many causes for such inconsistencies.
Furthermore, in matching we may use manual rule-based matchers or matchers that
are learned from the labeled sample. The research on dealing with noise in labels
for machine learning models can help us learn higher quality machine learning
matchers if incorrect labels exist in the labeled sample, but does not eliminate the
need for fixing such errors in the labeled sample.

4.7 Conclusions

In this chapter we categorize the causes of inconsistency in a matching data set and
propose a framework for finding and resolving such inconsistencies for the analyst.
Our goal is to reduce analyst effort in this process. Therefore, we attempt to rank
pairs of records such that the ones that are more problematic come on top so that the
analyst can easily find them. We observe that there could be multiple methods for
ranking the pairs of records and each could find a different set of problematic pairs.
Therefore, we propose to use state-of-the-art rank aggregation methods and present

133

a single aggregated ranking to the analyst. We propose two different rankings, FPFN
and Mono, and aggregate them to get a third ranking, Hybrid. The analyst then
interactively inspects the pairs in the ranking and proposes cleaning operations on
the data set. We experiment with seven data sets and show that the rankings can
in fact find different problematic pairs and using the Hybrid approach the anlayst
is able to pinpoint more errors. Furthermore, we propose cleaning operations for
three data sets used in the entity matching literature and show that cleaning the
data sets will improve matching quality and reduce complexity of matchers.

134

5 conclusions, limitations, and future work

5.1 Conclusions

In this thesis we worked on the problem of “Human-Centric Debugging of Entity
Matching”. By “Human-Centric” we acknowledged the fact that typically there is
a human analyst in the loop for performing entity matching. We then turned our
attention to “Debugging of Entity Matching” when it is done by a human analyst,
where debugging is the process by which an analyst iteratively improves quality of
matching.

To better understand the problem space we developed an end-to-end matching
system and experimented with it in an e-commerce setting as well as with students
from a graduate data modeling course at UW-Madison. We also developed and
experimented with an abstract model of the entity matching problem for the analyst.
These experiences helped us identify two key challenges in debugging of entity
matching for analysts (Chapter 2). First, we found that as an analyst is iteratively
defining a set of rules for matching, she spends unproductive time waiting for
matching results to come back after each change to the matcher. And second, we
found that some data sets are harder for analysts to match due to inconsistencies in
them.

In Chapter 3, we address the first challenge by developing algorithms to order
rules as well as performing matching incrementally to reduce runtime of rule-based
matchers. We show that we can reduce matching runtime significantly by using
these methods. In Chapter 4, we address the second challenge by developing a
framework for helping analysts to find and resolve inconsistencies in a data set.
We show that the analyst is able to find inconsistencies in a data set using this
framework, and that removing these inconsistencies lead to simpler and higher
quality matchers.

5.2 Limitations and Future work

Throughout this thesis, we have used a set of simple measures, such as time to
perform matching and number of browsed pairs, to suggest that we can reduce the
time and effort that an analyst spends in debugging for completing a matching task.

135

These measures are intuitive and we found them important through interacting
with analysts in an e-commerce setting and students that used our end-to-end
entity matching system on data sets with various domains. Intuitively, if the analyst
can iterate faster through the matching process, this is likely to save the analyst
time. Similarly, if we rank the pairs of records so that the problematic ones are
ranked higher, the analyst needs to browse through fewer number of pairs to find
inconsistencies, and this saves analyst time and effort. However, there may be more
variables that come into play in practice when the analyst is performing matching,
and we have not addressed them in this thesis.

Fully understanding how an analyst interacts with a matching problem, and
what parts of the debugging process are more challenging to the analyst, would
require performing formal field studies. Field studies are conducted in the actual
location and context where the work is getting done. For example, one can observe
real analysts whose job is performing entity matching to understand their work
process and find points in the process that requires the most time and/or effort
from the analyst. Even though we tried to develop intuition by interacting with
analysts in an e-commerce setting and students that used our end-to-end system,
we did not perform formal studies.

Furthermore, validating that our proposed approaches actually help analysts
would require conducting controlled laboratory experiments using human partici-
pants, preferably real analysts. Such experiments would require measuring metrics
such as time and number of browsed pairs for analysts when performing matching,
with and without employing our techniques, and with data sets from different
domains. We would then be able to examine if we observe a statistically significant
difference in the metrics under these conditions.

Conducting field studies to better understand analyst challenges in debugging of
entity matching as well as conducting controlled laboratory experiments to confirm
effectiveness of our approaches are interesting areas for future work.

136

references

[1] Agrawal, Rakesh, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. 2005. Automatic subspace clustering of high dimensional data. Data
Mining and Knowledge Discovery 11(1):5–33.

[2] Babu, Shivnath, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jen-
nifer Widom. 2004. Adaptive ordering of pipelined stream filters. In SIGMOD,
407–418.

[3] Benjelloun, Omar, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Eui-
jong Whang, and Jennifer Widom. 2009. Swoosh: a generic approach to entity
resolution. The VLDB Journal 18(1):255–276.

[4] Bohannon, Philip, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-
etsidis. 2007. Conditional functional dependencies for data cleaning. In ICDE,
746–755.

[5] Brancotte, Bryan, Bo Yang, Guillaume Blin, Sarah Cohen-Boulakia, Alain
Denise, and Sylvie Hamel. 2015. Rank aggregation with ties: Experiments
and analysis. In VLDB, 1202–1213.

[6] Chaudhuri, Surajit, Bee Chung Chen, Venkatesh Ganti, and Raghav Kaushik.
2007. Example driven design of efficient record matching queries. In VLDB,
327–338.

[7] Chiticariu, Laura, Yunyao Li, and Frederick R Reiss. 2013. Rule-based informa-
tion extraction is dead! long live rule-based information extraction systems! In
EMNLP, 827–832.

[8] Chomicki, Jan, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2003. Skyline
with presorting. In ICDE, 717–719.

[9] Christen, Peter. 2012. Data matching concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer.

[10] Cong, Gao, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving
data quality: Consistency and accuracy. In VLDB, 315–326.

137

[11] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2001. Introduction to algorithms, second edition. The MIT Press and McGraw-Hill
Book Company.

[12] Demartini, Gianluca, Djellel Eddine Difallah, and Philippe Cudré-Mauroux.
2012. Zencrowd: leveraging probabilistic reasoning and crowdsourcing tech-
niques for large-scale entity linking. In WWW, 469–478.

[13] DeWitt, David J, Jeffrey F Naughton, and Donovan A Schneider. 1991. An
evaluation of non-equijoin algorithms. In VLDB, 443–452.

[14] Doan, AnHai, Alon Halevy, and Zachary Ives. 2012. Principles of data integration.
Elsevier.

[15] Dwork, Cynthia, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. 2001.
Rank aggregation methods for the web. In WWW, 613–622.

[16] Elmagarmid, Ahmed K, Panagiotis G Ipeirotis, and Vassilios S Verykios. 2007.
Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data
Engineering 19(1):1–16.

[17] Fagin, Ronald, Ravi Kumar, Mohammad Mahdian, D Sivakumar, and Erik Vee.
2004. Comparing and aggregating rankings with ties. In SIGMOD, 47–58.

[18] ———. 2006. Comparing partial rankings. SIAM Journal on Discrete Mathematics
20(3):628–648.

[19] Fagin, Ronald, Ravi Kumar, and D Sivakumar. 2003. Comparing top k lists.
SIAM Journal on Discrete Mathematics 17(1):134–160.

[20] Feige, Uriel, László Lovász, and Prasad Tetali. 2002. Approximating min-sum
set cover. In APPROX, 94–107.

[21] Frénay, Benoît, Ata Kabán, et al. 2014. A comprehensive introduction to label
noise. In ESANN, 667–676.

[22] Gokhale, Chaitanya, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan
Rampalli, Jude Shavlik, and Xiaojin Zhu. 2014. Corleone: Hands-off crowd-
sourcing for entity matching. In SIGMOD, 601–612.

138

[23] Gu, Lifang, Rohan Baxter, Deanne Vickers, and Chris Rainsford. 2003. Record
linkage: Current practice and future directions. Tech. Rep., CSIRO Mathemati-
cal and Information Sciences.

[24] Hanrahan, Pat. 2012. Analytic database technologies for a new kind of user:
the data enthusiast. In SIGMOD, 577–578.

[25] Hellerstein, Joseph M. 1998. Optimization techniques for queries with expen-
sive methods. ACM TODS 23(2):113–157.

[26] Herzog, Thomas N, Fritz J Scheuren, and William E Winkler. 2007. Data quality
and record linkage techniques. Springer.

[27] Kolb, Lars, Andreas Thor, and Erhard Rahm. 2012. Dedoop: efficient dedupli-
cation with hadoop. In VLDB, 1878–1881.

[28] Konda, Pradap, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,
Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al.
2016. Magellan: Toward building entity matching management systems. In
VLDB, 1197–1208.

[29] Köpcke, Hanna, and Erhard Rahm. 2010. Frameworks for entity matching: A
comparison. Data & Knowledge Engineering 69(2):197–210.

[30] Munagala, Kamesh, Shivnath Babu, Rajeev Motwani, and Jennifer Widom.
2005. The pipelined set cover problem. In ICDT, 83–98.

[31] Nielsen, Jakob. 1994. Usability engineering. Elsevier.

[32] Paul Suganthan, GC, Chong Sun, K Krishna Gayatri, Haojun Zhang, Frank Yang,
Narasimhan Rampalli, Shishir Prasad, Esteban Arcaute, Ganesh Krishnan,
Rohit Deep, et al. 2015. Why big data industrial systems need rules and what
we can do about it. In SIGMOD, 265–276.

[33] Pradap Konda, Paul Suganthan G.C. AnHai Doan Adel Ardalan Jeffrey R.
Ballard Han Li Fatemah Panahi Haojun Zhang Jeff Naughton Shishir Prasad
Ganesh Krishnan Rohit Deep Vijay Raghavendra, Sanjib Das. 2016. Toward
building entity matching management systems. Tech. Rep., UW-Madison.

139

[34] Schalekamp, Frans, and Anke van Zuylen. 2009. Rank aggregation: Together
we’re strong. In Proceedings of the meeting on algorithm engineering & expermi-
ments, 38–51.

[35] Stoyanovich, Julia, Sihem Amer-Yahia, Susan B Davidson, Marie Jacob, Tova
Milo, et al. 2013. Understanding local structure in ranked datasets. In CIDR.

[36] Sun, Chong, and Jeffrey Naughton. 2012. Multi-filter string matching and
human-centric entity matching for information extraction.

[37] Wang, Jiannan, Tim Kraska, Michael J Franklin, and Jianhua Feng. 2012. Crow-
der: Crowdsourcing entity resolution. In VLDB, 1483–1494.

[38] Wang, Jiannan, Guoliang Li, Tim Kraska, Michael J Franklin, and Jianhua Feng.
2013. Leveraging transitive relations for crowdsourced joins. In SIGMOD,
229–240.

[39] Wang, Jiannan, Guoliang Li, Jeffrey Xu Yu, and Jianhua Feng. 2011. Entity
matching: How similar is similar. In VLDB, 622–633.

[40] Wang, Wei, Jiong Yang, Richard Muntz, et al. 1997. Sting: A statistical informa-
tion grid approach to spatial data mining. In VLDB, 186–195.

[41] Whang, Steven Euijong, Omar Benjelloun, and Hector Garcia-Molina. 2009.
Generic entity resolution with negative rules. The VLDB Journal 18(6):1261–
1277.

[42] Whang, Steven Euijong, and Hector Garcia-Molina. 2010. Entity resolution
with evolving rules. In VLDB, 1326–1337.

[43] ———. 2014. Incremental entity resolution on rules and data. The VLDB Journal
23(1):77–102.

[44] Whang, Steven Euijong, Peter Lofgren, and Hector Garcia-Molina. 2013. Ques-
tion selection for crowd entity resolution. In VLDB, 349–360.

[45] Whang, Steven Euijong, Julian McAuley, and Hector Garcia-Molina. 2012. Com-
pare me maybe: Crowd entity resolution interfaces. Tech. Rep., Stanford Info-
Lab.

140

[46] Winkler, William E. 2006. Overview of record linkage and current research
directions. Tech. Rep., Bureau of the Census.

[47] Yakout, Mohamed, Ahmed K Elmagarmid, Jennifer Neville, Mourad Ouzzani,
and Ihab F Ilyas. 2011. Guided data repair. In VLDB, 279–289.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	What is Entity Matching (EM)?
	The Entity Matching Process
	Human-Centric Entity Matching
	Debugging Entity Matching
	Related Work
	Contributions of the Thesis

	Experience with Real and Abstract Analysts
	Introduction
	An End-to-End Entity Matching Tool for Analysts
	An Abstract Model of an Entity Matching Task for Analysts
	Insights from Experience with Real and Abstract Analysts

	Towards Interactive Debugging of Rule-based EM
	Introduction
	Related Work
	Motivating Example
	Preliminaries
	Early Exit + Dynamic Memoing
	Optimal Ordering
	Incremental Matching
	Experimental Evaluation
	Conclusions

	Debugging Entity Matching Data sets
	Introduction
	Categories of Inconsistency in Data sets
	A Framework for Finding and Resolving Inconsistencies
	Experimental Evaluation
	Discussions
	Related Work
	Conclusions

	Conclusions, Limitations, and Future work
	Conclusions
	Limitations and Future work

	References

