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ABSTRACT

Entity matching (EM) finds data records referring to the same real-world entity. This dis-

sertation studies the problem of scalable human-centric EM. By “human-centric” we mean EM

problems that involve a crowd of workers (in crowdsourcing) or analysts. By “scalable” we mean

problems that involve a large number of EM tasks or a large number of tuple pairs to match.

Today solving an EM task often involves a lot of developer effort. As such it is difficult for an

organization that wants to solve a large number of EM tasks, because there are simply not enough

developers. Recent approaches apply crowdsourcing to EM in order to reduce developer effort.

While promising, these approaches are limited in that they still require a developer to be in the

loop. To address this, we propose Corleone, a hands-off crowdsourced solution to EM. Corleone

crowdsources the entire EM workflow, requiring no developers. As a result, Corleone can scale

up EM at enterprises and crowdsourcing startups, and open up crowdsourcing for the masses.

Many EM settings require non-technical analysts to write EM rules. To address this problem,

we build upon techniques developed in Corleone to develop Rmony, a system that supports an-

alysts in writing EM rules. We evaluate Rmony with real-world users and data to show that it is

effective. We report on lessons learned that eventually lead to the inception of an open-source EM

management system in the Python ecosystem.

For important emerging EM settings, such as EM as a service on the cloud, the hands-off

crowdsourced approach of Corleone is ideally suited. Corleone however is severely limited in

that it does not scale to large tables. To address this limitation, in the last direction of this disserta-

tion, we propose Falcon, a solution that scales up Corleone, using RDBMS-style query execution
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and optimization over a Hadoop cluster. Extensive experiments show that Falcon can scale up to

tables of millions of tuples, thus providing a practical solution for hands-off crowdsourced EM.
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Chapter 1

Introduction

Entity matching (EM) is the problem of finding data records that refer to the same real-world

entity, such as (John Doe, Univ. of Wisc. Madison, 608-772-9642) and (J. Doe, UW-Madison, 772

9642). EM is a critical problem in many real-world applications, including comparison shopping

[2, 5], citation tracking [50], knowledge base construction [1], matching health records [51, 41],

matching census data [52, 108], and many more.

As a concrete example of a real-world use case of EM, consider product matching in e-

commerce companies (e.g., Amazon, eBay, Walmart). These companies have to regularly match

products in their catalog with those of competitor sites so that they can offer the best price for a

product. Another related example is comparison shopping on Web sites such as Google Shopping

[2], Nextag [5], PriceGrabber [7], and SlickDeals [9], where customers can compare prices of a

product across multiple online retailers. The underlying challenge in building these sites is identi-

fying product descriptions from multiple retailers that refer to the same real-world product, which

is an EM problem.

As yet another real-world use case of EM, consider matching patient records in health care in-

dustry. Patient data is often spread across hospitals, clinics, insurance companies, and pharmacies.

Data from all these sources must be matched in order to provide a single comprehensive view of

patient data to doctors and health care researchers. This can significantly improve patient diagnosis

and reduce the overall cost of health care. Matched patient data also allows researchers to identify

key disease patterns, e.g., matching patient addresses to location data helps identify hot-spots for

diseases and correlations between diseases [51, 41].
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In the current era, where large volumes of data is being integrated from multiple sources, the

problem of EM is becoming even more critical. For example, consider the recent introduction

of marketplaces by e-commerce companies such as Amazon and Walmart. In a marketplace, the

e-commerce company now sells items from smaller vendors (e.g., Tech for Less Inc., Unbeatable-

Sale, Circuit City) alongside products from its own catalog on the shopping Web site. Different

vendors may sell the same real-world product in the marketplace, and these matching products

need to be identified to avoid duplication.

This problem arises in many other domains as well. Today, data is being collected and analyzed

by users in virtually every occupation and field. Examples of these users include domain scientists,

small business workers, end users, and other “data enthusiasts” [58]. Many such users need to

perform EM. For example, a journalist may need to match two long lists of political donors for an

election campaign to find donors that contributed to two different campaigns.

These real world use cases show that EM is an important problem spanning different domains

(e.g., e-commerce, health care, census data) and different practitioners (e.g., enterprises, small

businesses, end users). As a result, this problem has received significant attention (see [27, 28, 37,

44] for surveys, overviews and books on EM). Despite this attention, EM is far from being solved.

Many research challenges remain and new directions have emerged to be explored.

In this dissertation we focus on the EM problem, in particular on the scalable human-centric

EM direction. By “human-centric” we mean EM problems that involve a crowd of workers (in

crowdsourcing) or an analyst (as we motivate below). By “scalable” we mean EM settings that

involve a very large number of EM tasks or very large number of tuple pairs to match. Specifically,

we consider the following three concrete research directions:

• Hands-Off Crowdsourcing for Entity Matching: Today solving an EM task often involves

a developer (who knows how to program or use machine learning techniques or both). How-

ever, there are many EM settings that involve a very large number of EM tasks to be solved

(e.g., in the hundreds). Such settings would require a large number of developers, which is
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often not feasible in practice. We address this problem by completely crowdsourcing the en-

tire EM task, thereby not requiring a developer. This is joint work with Chaitanya Gokhale,

and Section 1.1 details my contributions.

• Developing a Rule-Based Entity Matching Management System for Analysts: Many

EM settings ask non-technical analysts to write EM rules. Currently there is virtually no

support for such rule writing. To address this problem, we build on techniques developed in

the above direction (“hands-off crowdsourcing for EM”) to develop a system that supports

analysts in writing EM rules. We evaluate this system and report observations and lessons

learned.

• Scaling Up Crowdsourced Entity Matching to Large Tables: Many EM settings involve

matching very large tables (e.g., each consisting of millions of tuples). In the third and final

direction of the dissertation, we examine how to scale up hands-off crowdsourcing to such

settings using RDBMS-style query execution and optimization over a Hadoop cluster.

Next we elaborate on the above three directions and give an overview of the solutions.

1.1 Hands-Off Crowdsourcing for Entity Matching

Over the past few decades many different approaches have been proposed for EM such as

hand-crafted rules [30, 50, 61], supervised learning [20, 43], clustering [79], probabilistic models

[47, 91], and collective matching [19, 39, 90].

However, these solutions require significant developer effort (e.g., writing rules, selecting fea-

tures, training models) to produce high matching quality. In order to decrease developer effort,

crowdsourcing is being increasingly applied to entity matching [103, 104, 35, 106, 107]. In these

solutions, certain parts of the entity matching problem are solved using a crowd of workers. For

example, some works [103, 104, 35] use the crowd to verify the matches predicted by their EM

solutions.

While these works look promising, they crowdsource only parts of the EM problem and thus

still require substantial developer effort. For example, works that use the crowd only to verify
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predicted matches still need the developer to perform the matching (e.g., by writing rules or training

models). As a result, these solutions do not scale to the growing EM need at enterprises and

crowdsourcing startups. This is because these firms need to solve tens to hundreds of EM tasks

on a regular basis; with a developer in the loop this becomes very difficult. Furthermore, the

current solutions cannot help ordinary users such as domain scientists, journalists, and other “data

enthusiasts” [58], who can neither code like developers nor have enough budget to employ service

from crowdsourcing startups.

To address these problems, we propose Corleone, a hands-off solution for crowdsourced en-

tity matching [54]. Here, we crowdsource the entire EM problem, thus requiring no developers.

As such, Corleone can scale up EM at enterprises and crowdsourcing startups, and also enable

ordinary users to perform EM.

We evaluate Corleone over three real-world datasets and show that Corleone achieves com-

parable or better accuracy than traditional solutions at a reasonable crowdsourcing cost. For exam-

ple, Corleone completes the task of matching 2.6K citations from DBLP and 64K citations from

Google Scholar at a crowdsourcing cost of $70 with an F1 score of 92.1%, which is comparable to

the 88-92% F1 in the previously published works [71, 70, 17].

This work was carried out in collaboration with Chaitanya Gokhale. My main contributions

here are the following:

• collaborating with Chaitanya Gokhale to work out the Corleone architecture and to design

the experiments;

• developing a MapReduce-based solution to apply blocking rules to the input tables;

• developing a MapReduce-based solution to generate feature vectors for a given set of tuple

pairs; and

• designing and performing experiments on one data set, namely Citations.
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1.2 Developing a Rule-Based EM Management System for Analysts

In a recent study on Big Data [75], McKinsey Global Institute (MGI) estimated that by 2018, in

the US alone up to 1.5 million new managers and data analysts will be needed to analyze the data

being generated across various sectors. Data analysts are individuals who have been trained with

the business needs but generally do not have programming experience or background in Computer

Science. They are less expensive to hire than developers and hence can be hired in larger numbers.

EM is one such data management problem which may be performed by data analysts. For

example, product matching in e-commerce companies, such as Walmart, is often performed by

data analysts [88]. However, currently there are no interactive tools available for these “novice”

data analysts to perform matching quickly and accurately.

Discussions with analysts at WalmartLabs suggest that for such a tool to be useful, it should

have the following three features. First, the system should be end-to-end, i.e., it must be a “man-

agement” rather than just a “matching” system. Second, it must provide support for EM rules. The

analysts often prefer writing rules to do matching, such as “two books match if they agree on the

ISBNs and the number of pages”. This is because rules are relatively easy to understand, tune and

debug. Further, domain knowledge can be easily encoded in the form of rules. Finally, such a tool

must have good visualizations and debugging capabilities.

It turns out that some of the techniques we develop in Corleone could potentially be used here.

For example, in Corleone we extract rules from a trained Random Forest. This technique could be

used in the new system to learn rules. Another example is the use of active learning in Corleone

where the crowd iteratively labels examples to train a matcher. Again, this technique could be used

in the system to learn rules except that instead of the crowd, the analyst could label example pairs.

Thus, in this research direction, we build on Corleone to develop a rule-based EM manage-

ment system for analysts. Specifically:
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• First, we develop Rmony1, a system that helps an analyst manually write EM rules to match

two input tables, using a GUI. We experimentally demonstrate that Rmony helps analysts

write rules with high accuracy.

• Manually writing rules can be time consuming. Thus in the next step, we extend Rmony to

automatically suggest EM rules to the analyst, using the technology underlying Corleone.

Specifically, Corleone performs active learning with the crowd, where the crowd iteratively

labels examples to train a learning-based matcher. EM rules are then extracted from this

matcher. Rmony uses the same technology except that instead of the crowd, an analyst

labels the example pairs. We experimentally demonstrate that Rmony can suggest EM rules

that have high accuracy.

The research questions that we seek to answer in this direction are the following:

• Can we develop a system using which an analyst can manually write EM rules effectively?

What will be the quality of such rules? Will the analyst be able to write EM rules for diverse

domains?

• Can we develop a system to automatically suggest EM rules to analysts? What will be the

quality of such rules? Can high-quality rules be suggested for diverse domains?

• Can such a system be effectively used in real-world settings?

• What lessons can we learn?

To explore these questions, we have developed and experimented with several system vari-

ations, both with graduate students at UW-Madison and with analysts at WalmartLabs. In the

course of this, we have drawn a set of observations and lessons that we detail in the dissertation.

Some of these lessons have led to the inception of Magellan, an open-source EM management

system in the Python ecosystem.

1Rmony is a pun on “harmony” which means “agreement/match” and the ‘R’ in Rmony is for “rules”.
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1.3 Scaling Up Crowdsourced Entity Matching to Large Tables

Corleone demonstrates that hands-off crowdsourcing for EM is promising for many settings,

e.g., EM as a service on the cloud. However, Corleone does not consider scaling to large tables. To

address this problem, in this direction we introduce Falcon (fast large-table Corleone), a solution

that scales up Corleone to tables of millions of tuples.

We begin by identifying three reasons for Corleone’s being slow. First, it often performs

too many crowdsourcing iterations without a noticeable accuracy improvement, resulting in large

crowd time and cost. Second, many of its machine activities take too long. In particular, in the

blocking step Corleone simply applies the blocking rules to all tuple pairs in the Cartesian product

of the two input tables A and B. This is clearly unacceptable for large tables. Finally, when

Corleone performs crowdsourcing, the machines sit idly, a waste of resources. If we can “mask

the machine time” by scheduling as many machine activities as possible during crowdsourcing, we

may be able to significantly reduce the total runtime.

We then describe how Falcon addresses the above problems. It is difficult to address all three

simultaneously. So Falcon provides a relatively simple solution to cap the crowdsourcing time

and cost to an acceptable level (for now), then focuses on minimizing and masking machine time.

Realizing these goals raises three important challenges:

• First, we do not want to scale up a monolithic standalone EM workflow. Rather we want a

solution that is modular and extensible so that we can focus on scaling up pieces of it, and

can easily extend it later to more complex EM workflows. To address this, we introduce

an RDBMS-style execution and optimization framework, in which an EM task is translated

into a plan composed of operators, then optimized and executed. Compared to traditional

RDBMSs, this framework is distinguished in that its operators can use crowdsourcing.

• The second challenge is to provide efficient implementations for the operators. We describe a

set of implementations in Hadoop that significantly advances the state of the art. In particular,

we focus on the blocking step as this step consumes most of the machine time. Current

Hadoop-based solutions to execute blocking rules either do not scale or have considered
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only simple rule formats. We develop a solution that can efficiently process complex rules

over large tables. Our solution uses indexes to avoid enumerating the Cartesian product,

but faces the problem of what to do when indexes do not fit in memory. We show how the

solution can nimbly adapt to these situations by redistributing the indexes and the associated

workloads across the mappers and reducers.

• Finally, we consider the challenge of optimizing EM plans. We show that combining ma-

chine operations with crowdsourcing introduces novel optimization opportunities, such as

using crowd time to mask machine time. We develop masking techniques that use the crowd

time to build indexes and to speculatively execute machine operations. We also show to

replace an operator with an approximate one which has almost the same accuracy yet intro-

duces significant additional masking opportunities.

1.4 Contributions and Outline of This Dissertation

To summarize, in this dissertation I make the following contributions:

• First, I describe Corleone, a hands-off crowdsourcing system for EM. Corleone is novel in

that it crowdsources the entire EM pipeline. As a result, it can scale up EM for enterprises

and startups, and can open up crowdsourcing for the masses, e.g., EM as a service on the

cloud. Since this is a joint work with Chaitanya Gokhale (and has been described in detail

in his PhD dissertation), I explicitly outline my contributions in this dissertation.

• Second, I introduce and describe Rmony, a rule-based EM management system for the an-

alysts. I present extensive evaluation of Rmony with students at UW-Madison and analysts

at Walmart to show the efficacy of the system. I describe a real-world case study to show

how Rmony was instrumental in improving the accuracy of an EM system in production.

Finally, I list the important lessons learned during the development of Rmony which eventu-

ally led to the inception of Magellan, an open-source EM management system in the Python

ecosystem.
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• Third, I show that for emerging topics, e.g., EM as a cloud service, Corleone is ideally suited

but must be scaled to large tables to make such services a reality. I introduce and describe

Falcon, a solution that scales up crowdsourced EM using RDBMS-style query execution

and optimization over a Hadoop cluster. The Hadoop-based solution in Falcon to execute

complex rules over the Cartesian product significantly advances the state of the art. I develop

three novel optimization techniques to mask machine time by scheduling certain machine

activities during crowdsourcing activities. Finally, I present extensive experiments with real-

world data sets (using real and synthetic crowds) to show that Falcon can efficiently perform

hands-off crowdsourced EM over tables of 1.0M - 2.5M tuples at the cost of $54 - $65.5.

The rest of this dissertation is organized as follows. Chapters 2, 3, and 4 describe Corleone,

Rmony, and Falcon, respectively. Chapter 5 concludes this dissertation.

Parts of this dissertation have been published in database conferences. In particular, Corleone

(Chapter 2) is described in a SIGMOD-2014 paper [54], and Falcon (Chapter 4) has been accepted

to SIGMOD-2017. Magellan is described in two VLDB-2016 papers [69, 68].
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Chapter 2

Hands-Off Crowdsourcing for Entity Matching

2.1 Introduction

Entity matching (EM) finds data records that refer to the same real-world entity, such as (David

Smith, JHU) and (D. Smith, John Hopkins). This problem has received significant attention (e.g.,

[13, 33, 70, 37]). In particular, in the past few years crowdsourcing has been increasingly applied to

EM. In crowdsourcing, certain parts of a problem are “farmed out” to a crowd of workers to solve.

As such, crowdsourcing is well suited for EM, and indeed several crowdsourced EM solutions have

been proposed (e.g., [103, 104, 35, 107, 106]).

These pioneering solutions demonstrate the promise of crowdsourced EM, but suffer from

a major limitation: they crowdsource only parts of the EM workflow, requiring a developer who

knows how to code and match to execute the remaining parts. For example, several recent solutions

require a developer to write heuristic rules to reduce the number of candidate pairs to be matched,

then train and apply a matcher to the remaining pairs to predict matches (see Section 2.2). They

use the crowd only at the end, to verify the predicted matches. The developer must know how to

code (e.g., to write heuristic rules in Perl) and match entities (e.g., to select learning models and

features).

As described, current solutions do not scale to the growing EM need at enterprises and crowd-

sourcing startups. Many enterprises (e.g., eBay, Microsoft, Amazon, Walmart) routinely need to

solve tens to hundreds of EM tasks, and this need is growing rapidly. It is not possible to crowd-

source all these tasks if crowdsourcing each requires the involvement of a developer (even when

sharing developers across tasks). To address this problem, enterprises often ask crowdsourcing
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startups (e.g., CrowdFlower) to solve the tasks on their behalf. But again, if each task requires

a developer, then it is difficult for a startup, with a limited staff, to handle hundreds of EM tasks

coming in from multiple enterprises. This is a bottleneck that we have experienced firsthand in

our crowdsourcing efforts at two e-commerce enterprises and two crowdsourcing startups, and this

was a major motivation behind this work.

Furthermore, current solutions cannot help ordinary users (i.e., the “masses”) leverage crowd-

sourcing to match entities. For example, suppose a journalist wants to match two long lists of

political donors, and can pay up to a modest amount, say $500, to the crowd on Amazon’s Me-

chanical Turk (AMT). He or she typically does not know how to code, thus cannot act as a devel-

oper and use current solutions. He or she cannot ask a crowdsourcing startup to help either. The

startup would need to engage a developer, and $500 is not enough to offset the developer’s cost.

The same problem would arise for domain scientists, small business workers, end users, and other

“data enthusiasts” [58].

To address these problems, in this chapter we introduce the notion of hands-off crowdsourcing

(HOC). HOC crowdsources the entire workflow of a task, thus requiring no developers. HOC can

be a next logical direction for EM and crowdsourcing research, moving from no-, to partial-, to

complete crowdsourcing for EM. By requiring no developers, HOC can scale up EM at enterprises

and crowdsourcing startups.

HOC can also open up crowdsourcing for the masses. Returning to our example, the journalist

wanting to match two lists of donors can just upload the lists to a HOC Web site, and specify how

much he or she is willing to pay. The Web site will use the crowd to execute a HOC-based EM

workflow, then return the matches. Developing crowdsourcing solutions for the masses (rather

than for enterprises) has received rather little attention, despite its potential to magnify many times

the impact of crowdsourcing. HOC can significantly advance this direction.

In this chapter we describe Corleone, a HOC solution for EM (named after Don Corleone, the

fictional Godfather figure who managed the mob in a hands-off fashion). Corleone uses the crowd

(no developers) in all four major steps of the EM process:
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• Virtually any large-scale EM problem requires blocking, a step that uses heuristic rules to

reduce the number of tuple pairs to be matched (e.g., “if the prices of two products differ by

at least $20, then they do not match”). Current solutions require a developer to write such

rules. We show how to use the crowd instead. As far as we know, ours is the first solution

that uses the crowd, thus removing developers from this important step.

• We develop a solution that uses crowdsourcing to train a learning-based matcher. We show

how to use active learning [98] to minimize crowdsourcing costs.

• Users often want to estimate the matching accuracy, e.g., as precision and recall. Surpris-

ingly, very little work has addressed this problem, and we show that this work breaks down

when the data is highly skewed by having very few matches (a common situation). We show

how to use the crowd to estimate accuracy in a principled fashion. As far as we know, this is

the first in-depth solution to this important problem.

• In practice developers often do EM iteratively, with each iteration focusing on the tuple pairs

that earlier iterations have failed to match correctly. So far this has been done in an ad-hoc

fashion. We show how to address this problem in a rigorous way, using crowdsourcing.

We present extensive experiments over three real-world data sets, showing that Corleone achieves

comparable or significantly better accuracy (by as much as 19.8% F1) than traditional solutions

and published results, at a reasonable crowdsourcing cost.

2.2 Background and Related Work

Entity matching has received extensive attention (see Chapter 7 in [37]). A common setting

finds all tuple pairs (a ∈ A, b ∈ B) from two relational tables A and B that refer to the same

real-world entity. In this work we will consider this setting (leaving other EM settings as ongoing

work).

Recently, crowdsourced EM has received increasing attention in academia (e.g., [103, 104, 35,

107, 106]) and industry (e.g., CrowdFlower, CrowdComputing, and SamaSource). These works
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either use the crowd to verify predicted matches [103, 104, 35], or find the best questions to ask

the crowd [106], or find the best UI to pose such questions [107]. These works still crowdsource

only parts of the EM workflow, requiring a developer to execute the remaining parts. In contrast,

Corleone tries to crowdsource the entire EM workflow, thus requiring no developers.

Specifically, virtually any large-scale EM workflow starts with blocking, a step that uses heuris-

tic rules to reduce the number of pairs to be matched. This is because the Cartesian product A×B

is often very large, e.g., 10 billion tuple pairs if |A| = |B| = 100, 000. Matching so many pairs

is very expensive or highly impractical. Hence many blocking solutions have been proposed (e.g.,

[33, 37]). These solutions however do not employ crowdsourcing, and still require a developer

(e.g., to write and apply rules, create training data, and build indexes). In contrast, Corleone

completely crowdsources this step.

After blocking, the next step builds and applies a matcher (e.g., using hand-crafted rules or

learning) to match the surviving pairs (Chapter 7 in [37]). Here the works closest to ours are those

that use active learning [94, 13, 17, 80]. These works however either do not use crowdsourcing

(requiring a developer to label training data) (e.g., [94, 13, 17]), or use crowdsourcing [80] but

do not consider how to effectively handle noisy crowd input and to terminate the active learning

process. In contrast, Corleone considers both of these problems, and uses only crowdsourcing,

with no developer in the loop.

The next step, estimating the matching accuracy (e.g., as precision and recall), is vital in real-

world EM (e.g., so that the user can decide whether to continue the EM process), but surprisingly

has received very little attention in EM research. Here the most relevant work is [63, 97]. [63]

uses a continuously refined stratified sampling strategy to estimate the accuracy of a classifier.

However, it can not be used to estimate recall which is often necessary for EM. [97] considers the

problem of constructing the optimal labeled set for evaluating a given classifier given the size of

the sample. In contrast, we consider the different problem of constructing a minimal labeled set,

given a maximum allowable error bound.

Subsequent steps in the EM process involve “zooming in” on difficult-to-match pairs, revising

the matcher, then matching again. While very common in industrial EM, these steps have received
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little or no attention in EM research. Corleone shows how they can be executed rigorously, using

only the crowd.

Finally, crowdsourcing in general has received significant recent attention [38]. In the database

community, the works [78, 85, 48] build crowdsourced RDBMSs. Many other works crowdsource

joins [77], find the maximal value [55], collect data [100], match schemas [113], and perform data

mining [11] and analytics [74].

2.3 Proposed Solution

We now discuss hands-off crowdsourcing and our proposed Corleone solution.

Hands-Off Crowdsourcing (HOC): Given a problem P supplied by a user U , we say a crowd-

sourced solution to P is hands-off if it uses no developers, only a crowd of ordinary workers (such

as those on AMT). It can ask user U to do a little initial setup work, but this should require no spe-

cial skills (e.g., coding) and should be doable by any ordinary workers. For example, Corleone

only requires a user U to supply

1. two tables A and B to be matched,

2. a short textual instruction to the crowd on what it means for two tuples to match (e.g., “these

records describe products sold in a department store, they should match if they represent the

same product”), and

3. four examples, two positive and two negative (i.e., pairs that match and do not match, re-

spectively), to illustrate the instruction. EM tasks posted on AMT commonly come with

such instructions and examples.

Corleone then uses the crowd to match A and B (sending them information in (2) and (3) to

explain what user U means by a match), then returns the matches. As such, Corleone is a hands-

off solution. The following real-world example illustrates Corleone and contrasts it with current

EM solutions.
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Example 2.3.1. Consider a retailer that must match tens of millions of products between the online

division and the brick-and-mortar division (these divisions often obtain products from different sets

of suppliers). The products fall into 500+ categories: toys, electronics, homes, etc. To obtain high

matching accuracy, the retailer must consider matching products in each category separately, thus

effectively having 500 EM problems, one per category.

Today, solving each of these EM problems (with or without crowdsourcing) requires extensive

developer’s involvement, e.g., to write blocking rules, to create training data for a learning-based

matcher, to estimate the matching accuracy, and to revise the matcher, among others. Thus current

solutions are not hands-off. One may argue that once created and trained, a solution to an EM

problem, say for toys, is hands-off in that it can be automatically applied to match future toy

products, without using a developer. But this ignores the initial non-negligible developer effort put

into creating and training the solution (thus violating our definition). Furthermore, this solution

cannot be transferred to other categories (e.g., electronics). As a result, extensive developer effort

is still required for all 500+ categories, a highly impractical approach.

In contrast, using Corleone, per category the user only has to provide Items 1-3, as described

above (i.e., the two tables to be matched; the matching instruction which is the same across cate-

gories; and the four illustrating examples which virtually any crowdsourcing solution would have

to provide for the crowd). Corleone then uses the crowd to execute all steps of the EM workflow.

As such, it is hands-off in that it does not use any developer when solving an EM problem, thus

potentially scaling to all 500+ categories.

We believe HOC is a general notion that can apply to many problem types, such as entity

matching, schema matching, information extraction, etc. In this work we will focus on entity

matching. Realizing HOC poses serious challenges, in large part because it has been quite hard

to figure out how to make the crowd do certain things. For example, how can the crowd write

blocking rules (e.g., “if prices differ by at least $20, then two products do not match”)? We need

rules in machine-readable format (so that we can apply them). However, most ordinary crowd

workers cannot write such rules, and if they write in English, we cannot reliably convert them

into machine-readable ones. Finally, if we ask them to select among a set of rules, we often can
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Figure 2.1: The Corleone architecture.

only work with relatively simple rules and it is hard to construct sophisticated ones. Corleone

addresses such challenges, and provides a HOC solution for entity matching.

The Corleone Solution: Figure 2.1 shows the Corleone architecture, which consists of four

main modules: Blocker, Matcher, Accuracy Estimator, and Difficult Pairs’ Locator. The Blocker

generates and applies blocking rules toA×B to remove obviously non-matched pairs. The Matcher

uses active learning to train a random forest [22], then applies it to the surviving pairs to predict

matches. The Accuracy Estimator computes the accuracy of the Matcher. The Difficult Pairs’

Locator finds pairs that the current Matcher has matched incorrectly. The Matcher then learns a

better random forest to match these pairs, and so on, until the estimated matching accuracy no

longer improves.

As described, Corleone is distinguished in three important ways. (1) All four modules do not

use any developer, but heavily use crowdsourcing. (2) In a sense, the modules use crowdsourcing

not just to label the data, as existing work has done, but also to create complex rules (blocking rules

for the Blocker, negative rules for the Estimator, and reduction rules for the Locator, see Sections

2.4-2.7). And (3) Corleone can be run in many different ways. The default is to run multiple

iterations until the estimated accuracy no longer improves. But the user may also decide to just run

until a budget (e.g., $300) has been exhausted, or to run just one iteration, or just the Blocker and

Matcher, etc.
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Next we describe Corleone in detail. Sections 2.4-2.7 describe the Blocker, Matcher, Estima-

tor, and Locator, respectively. Section 2.8 describes the experiments. Section 2.9 discusses my

contributions.

2.4 Blocking to Reduce a Set of Pairs

We now describe the Blocker, which generates and applies blocking rules. As discussed earlier,

this is critical for large-scale EM. Prior work requires a developer to execute this step. Our goal

however is to completely crowdsource it. To do so, we must address the challenge of using the

crowd to generate machine-readable blocking rules.

To solve this challenge, Blocker takes a relatively small sample S from A×B; applies crowd-

sourced active learning, in which the crowd labels a small set of informative pairs in S, to learn a

random forest matcher; extracts potential blocking rules from the matcher; uses the crowd again to

evaluate the quality of these rules; then retain only the best ones. We now describe these steps in

detail.

2.4.1 Generating Candidate Blocking Rules

1. Decide Whether to Do Blocking: Let A and B be the two tables to be matched. Intuitively,

we want to do blocking only if A× B is too large to be processed efficiently by subsequent steps.

Currently we deem this is the case ifA×B exceeds a threshold tB, set to be the largest number such

that if after blocking we have tB tuple pairs, then we can fit the feature vectors of all these pairs

in memory (we discuss feature vectors below), thus minimizing I/O costs for subsequent steps.

The goal of blocking is then to generate and apply blocking rules to remove as many obviously

non-matched pairs from A×B as possible.

2. Take a Small Sample S from A × B: We want to learn a random forest F , then extract

candidate blocking rules from it. Learning F directly over A× B however is impractical because

this set is too large. Hence we will sample a far smaller set S from A × B, then learn F over S.

Naı̈vely, we can randomly sample tuples from A and B, then take their Cartesian product to be
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S. Random tuples from A and B however are unlikely to match. So we may get no or very few

positive pairs in S, rendering learning ineffective.

To address this problem, we sample as follows. Let A be the smaller table. We randomly

sample tB/|A| tuples from B, then take S to be the Cartesian product between this set of tuples

andA. Note that we also add the four examples (two positive, two negative) supplied by the user to

S. This way, S has roughly tB pairs, thus having the largest possible size that still fits in memory,

to ensure efficient learning. Furthermore, ifB has a reasonable number of tuples that have matches

inA, and if these tuples are distributed uniformly inB, then the above strategy ensures that S has a

reasonable number of positive pairs. We show empirically later that this simple sampling strategy

is effective; exploring better sampling strategies is future work.

3. Apply Crowdsourced Active Learning to S: In the next step, we convert each tuple pair in

S into a feature vector, using features taken from a pre-supplied feature library. Example features

include edit distance, Jaccard measure, Jaro-Winkler, TF/IDF, Monge-Elkan, etc. (See Chapter 4.2

in [37]). Then we apply crowdsourced active learning to S to learn a random forest F . Briefly, we

use the two positive and two negative examples supplied by the user to build an initial forest F , use

F to find informative examples in S, ask the crowd to label them, then use the labeled examples

to improve F , and so on. A random forest is a set of decision trees [22]. We use decision trees

because blocking rules can be naturally extracted from them, as we will see, and we use active

learning to minimize the number of examples that the crowd must label. We defer describing this

learning process in detail to Section 2.5.

4. Extract Candidate Blocking Rules from F : The active learning process outputs a random

forest F , which is a set of decision trees, as mentioned earlier. Figures 2.2.a-b show a toy forest

with just two trees (in our experiments each forest has 10 trees, and the trees have 8− 655 leaves).

Here, the first tree states that two books match only if the ISBNs match and the numbers of pages

match. Observe that the leftmost branch of this tree forms a decision rule, shown as the first rule in

Figure 2.2.c. This rule states that if the ISBNs do not match, then the two books do not match. It

is therefore a negative rule, and can clearly serve as a blocking rule because it identifies book pairs
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(c)

Figure 2.2: (a)-(b) A toy random forest consisting of two decision trees, and (c) negative rules
extracted from the forest.

that do not match. In general, given a forest F , we can extract all tree branches that lead from a

root to a “no” leaf to form negative rules. Figure 2.2.c show all five negative rules extracted from

the forest in Figures 2.2.a-b. We return all negative rules as the set of candidate blocking rules.

2.4.2 Evaluating Rules Using the Crowd

1. Select k Blocking Rules: The extracted blocking rules can vary widely in precision. So we

must evaluate and discard the imprecise ones. Ideally, we want to evaluate all rules, using the

crowd. This however can be very expensive money-wise (we have to pay the crowd), given the

large number of rules (e.g., up to 8943 in our experiments). So we pick only k rules to be evaluated

by the crowd (current k = 20).

Specifically, for each ruleR, we compute the coverage ofR over sample S, cov(R, S), to be the

set of examples in S for which R predicts “no”. We define the precision of R over S, prec(R, S),

to be the number of examples in cov(R, S) that are indeed negative divided by |cov(R, S)| (see

Figure 2.3). Of course, we cannot compute prec(R, S) because we do not know the true labels

of examples in cov(R, S). However, we can compute an upper bound on prec(R, S). Let T
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Figure 2.3: Coverage and precision of rule R over S.

be the set of examples in S that (a) were selected during the active learning process in Step 3,

Section 2.4.1, and (b) have been labeled by the crowd as positive. Then clearly prec(R, S) ≤

|cov(R, S) − T |/|cov(R, S)|. We then select the rules in decreasing order of the upper bound on

prec(R, S), breaking tie using cov(R, S), until we have selected k rules, or have run out of rules.

Intuitively, we prefer rules with higher precision and coverage, all else being equal.

2. Evaluate the Selected Rules Using the Crowd: Let V be the set of selected rules. We now use

the crowd to estimate the precision of rules in V , then keep only highly precise rules. Specifically,

for each rule R ∈ V , we execute the following loop:

1. We randomly select b examples in cov(R, S), use the crowd to label each example as matched

/ not matched, then add the labeled examples to a set X (initially set to empty).

2. Let |cov(R, S)| = m, |X| = n, and n− be the number of examples in X that are labeled

negative (i.e., not matched) by the crowd. Then we can estimate the precision of rule R over

S as P = n−/n, with an error margin ε = Z1−δ/2

√(
P (1−P )

n

) (
m−n
m−1

)
[105]. This means that

the true precision of R over S is in the range [P − ε, P + ε] with a δ confidence (currently

set to 0.95).

3. If P ≥ Pmin and ε ≤ εmax (which are pre-specified thresholds), then we stop and add R to

the set of precise rules. If (a) (P + ε) < Pmin, or (b) ε ≤ εmax and P < Pmin, then we stop

and drop R (note that in case (b) with continued evaluation P may still exceed Pmin, but we

judge the continued evaluation to be costly, and hence drop R). Otherwise return to Step 1.
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X1 = X2 = X3 = {}, � = {R1, R2, R3}

Sample 20 pairs at a time from Cov, and label using the crowd.

• At #labeled = 60: |X1| = 35, |X2| = 40, |X3| = 40

P1 + ε1 ≥ Pmin Keep R1, update Cov = cov(R2,S) � cov(R3,S)

• At #labeled = 80: |X2| = 50, |X3| = 55

P1 + ε2 < Pmin � = {R1, R3} , Cov = cov(R3,S)

• At #labeled = 100: |X3| = 75, 

P3 + ε3 ≥ Pmin Stop, return � = {R1, R3} (precise rules)

Figure 2.4: Example illustrating joint evaluation of rules.

Currently we set b = 20, Pmin = 0.95, εmax = 0.05.

The above procedure evaluates each rule in V in isolation. We can do better by evaluating all

rules in V jointly, to reuse examples across rules. Specifically, let R1, . . . , Rq be the rules in V .

Then we start by randomly selecting b examples from the union of the coverages of R1, . . . , Rq,

use the crowd to label them, then add them to X1, . . . , Xq, the set of labeled examples that we

maintain for the R1, . . . , Rq, respectively. (For example, if a selected example is in the coverage of

only R1 and R2, then we add it to X1 and X2.) Next, we use X1, . . . , Xq to estimate the precision

of the rules, as detailed in Step 2, and then to keep or drop rules, as detailed in Step 3. If we keep or

drop a rule, we remove it from the union, and sample only from the union of the remaining rules.

Figure 2.4 shows an example illustrating joint evaluation of three rules.

2.4.3 Applying Blocking Rules

Let Y be the set of rules in V that have survived crowd-based evaluation. We now consider

which subset of rulesR in Y should be applied as blocking rules to A×B.

This is highly non-trivial. Let Z(R) be the set of pairs obtained after applying the subset of

rulesR to A×B. If |Z(R)| falls below threshold tB (recall that our goal is to try to reduce A×B

to tB pairs, if possible), then among all subsets of rules that satisfy this condition, we will want

to select the one whose set Z(R) is the largest. This is because we want to reduce the number of

pairs to be matched to tB, but do not want to go too much below that, because then we run the risk

of eliminating many true positive pairs. On the other hand, if no subset of rules from Y can reduce
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Figure 2.5: Crowdsourced active learning in Corleone.

A × B to below tB, then we will want to select the subset that does the most reduction, because

we want to minimize the number of pairs to be matched.

We cannot execute all subsets of Y on A × B, in order to select the optimal subset. So we

use a greedy solution. First, we rank all rules in Y based on the precision prec(R, S), coverage

cov(R, S), and the tuple cost. The tuple cost is the cost of applying rule R to a tuple, primarily the

cost of computing the features mentioned in R. We can compute this because we know the cost of

computing each feature in Step 3, Section 2.4.1. Next, we select the first rule, apply it to reduce S

to S ′, re-estimate the precision, coverage, and tuple cost of all remaining rules on S ′, re-rank them,

select the second rule, and so on. We repeat until the set of selected rules when applied to S has

reduced it to a set of size no more than |S| ∗ (tB/|A× B|), or we have selected all rules. We then

apply the set of selected rules to A × B (using a Hadoop cluster), to obtain a smaller set of tuple

pairs to be matched. This set is passed to the Matcher, which we describe next.

2.5 Training and Applying a Matcher

Let C be the set of tuple pairs output by the Blocker. We now describe Matcher M , which

applies crowdsourcing to learn to match tuple pairs in C. We want to maximize the matching ac-

curacy, while minimizing the crowdsourcing cost. To do this, we use active learning. Figure 2.5

shows the overall workflow for learning the matcher. Specifically, we train an initial matcher M ,

use it to select a small set of informative examples from C, ask the crowd to label the examples,

use them to improve M , and so on. A key challenge is deciding when to stop training M . Ex-

cessive training wastes money, and yet surprisingly can actually decrease, rather than increase the

matcher’s accuracy. We now describe matcher M and our solution to the above challenge.
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2.5.1 Training the Initial Matcher

We begin by converting all examples (i.e., tuple pairs) in C into feature vectors, for learning

purposes. This is done at the end of the blocking step: any surviving example is immediately

converted into a feature vector, using all features that are appropriate (e.g., no TF/IDF features

for numeric attributes) and available in our feature library. In what follows we use the terms

“example”, “pair”, and “feature vector” interchangeably, when there is no ambiguity.

Next, we use all labeled examples available at that point (supplied by the user or labeled by

the crowd) to train an initial classifier that when given an example (x, y) will predict if x matches

y. Currently we use an ensemble-of-decision-trees approach called random forest [22]. In this

approach, we train k decision trees independently, each on a random portion (typically set at 60%)

of the original training data. When training a tree, at each tree node we randomly select m features

from the full set of features f1, . . . , fn, then use the best feature among the m selected to split

the remaining training examples. The values k and m are currently set to be the default 10 and

log(n) + 1, respectively. Once trained, applying a random forest classifier means applying the k

decision trees, then taking the majority vote.

2.5.2 Consuming the Next Batch of Examples

Once matcher M has trained a classifier, M evaluates the classifier to decide whether further

training is necessary (see Section 2.5.3). Suppose M has decided yes, then it must select new

examples for labeling.

In the simplest case, M can select just a single example (as current active learning approaches

often do). A crowd however often refuses to label just one example, judging it to be too much

overhead for little money. Consequently, M selects q examples (currently set to 20) for the crowd

to label. Intuitively,M wants these examples to be “most informative”. A common way to measure

the “informativeness” of an example e is to measure the disagreement of the component classifiers

using entropy [98]:

entropy(e) = −[P+(e) · ln(P+(e)) + P−(e) · ln(P−(e))], (2.1)
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where P+(e) and P−(e) are the fractions of the decision trees in the random forest that label ex-

ample e positive and negative, respectively. The higher the entropy, the stronger the disagreement,

and the more informative the example is.

Thus, M selects the p examples (currently set to 100) with the highest entropy from set C

(excluding those that have been selected in the previous iterations). Next, M selects q examples

from these p examples, using weighted sampling, with the entropy values being the weights. This

sampling step is necessary because M wants the q selected examples to be not just informative,

but also diverse. M sends the q selected examples to the crowd to label, adds the labeled examples

to the current training data, then re-trains the classifier.

2.5.3 Deciding When to Stop

Recall that matcher M trains in iteration, in each of which it pays the crowd to label q training

examples. We must decide then when to stop the training. Interestingly, more iterations of training

not only cost more, as expected, but can actually decrease rather than increase M ’s accuracy. This

happens because after M has reached peak accuracy, more training, even with perfectly labeled

examples, does not supply any more informative examples, and can mislead M instead. This

problem became especially acute in crowdsourcing, where crowd-supplied labels can often be

incorrect, thereby misleading the matcher even more.

To address this problem, we develop a solution that tells M when to stop training. Our solution

defines the “confidence” of M as the degree to which the component decision trees agree with one

another when labeling. We then monitor M and stop it when its confidence has peaked, indicating

that there are no or few informative examples left to learn from.

Specifically, let conf(e) = 1− entropy(e), where entropy(e) is computed as in Equation 4.1,

be the confidence of M over an example e. The smaller the entropy, the more decision trees of

M agree with one another when labeling e, and so the more confident M is that it has correctly

labeled e.

Before starting the active learning process, we set aside a small portion of C (currently set to

be 3%), to be used as a monitoring set V . We monitor the confidence of M over V , defined as
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Figure 2.6: Typical confidence patterns that we can exploit for stopping.

conf(V ) =
∑

e∈V conf(e)/|V |. We expect that initially conf(V ) is low, reflecting the fact thatM

has not been trained sufficiently, so the decision trees still disagree a lot when labeling examples.

As M is trained with more and more informative examples (see Section 2.5.2), the trees become

more and more “robust”, and disagree less and less. So conf(V ) will rise, i.e., M is becoming

more and more confident in its labeling. Eventually there are no or few informative examples left

to learn from, so the disagreement of the trees levels off. This means conf(V ) will also level off.

At this point we stop the training of matcher M .

We now describe the precise stopping conditions, which, as it turned out, was quite tricky

to establish. Ideally, once confidence conf(V ) has leveled off, it should stay level. In practice,

additional training examples may lead the matcher astray, thus reducing or increasing conf(V ).

This is exacerbated in crowdsourcing, where the crowd-supplied labels may be wrong, leading the

matcher even more astray, thus causing drastic “peaks” and “valleys” in the confidence line. This

makes it difficult to sift through the “noise” to discern when the confidence appears to have peaked.

We solve this problem as follows.

First, we run a smoothing window of size w over the confidence values recorded so far (one

value per iteration), using average as the smoothing function. That is, we replace each value x with

the average of the w values: (w− 1)/2 values on the left of x, (w− 1)/2 values on the right, and x

itself. (Currently w = 5.) We then stop if we observe any of the following three patterns over the

smoothed confidence values:
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• Converged confidence: In this pattern the confidence values have stabilized and stayed

within a 2ε interval (i.e., for all values v, |v− v∗| ≤ ε for some v∗) over nconverged iterations.

We use ε = 0.01 and nconverged = 20 in our experiments (these parameters and those de-

scribed below are set using simulated crowds). Figure 2.6.a illustrates this case. When this

happens, the confidence is likely to have converged, and unlikely to still go up or down. So

we stop the training.

• Near-absolute confidence: This pattern is a special case of the first pattern. In this pat-

tern, the confidence is at least 1 − ε, for nhigh consecutive iterations (see Figure 2.6.b). We

currently use nhigh = 3. When this pattern happens, confidence has reached a very high,

near-absolute value, and has no more room to improve. So we can stop, not having to wait

for the whole 20 iterations as in the case of the first pattern.

• Degrading confidence: This pattern captures the scenarios where the confidence has reached

the peak, then degraded. In this pattern we consider two consecutive windows of size

ndegrade, and find that the maximal value in the first window (i.e., the earlier one in time)

is higher than that of the second window by more than ε (see Figure 2.6.b). We currently

use ndegrade = 15. We have experimented with several variations of this pattern. For exam-

ple, we considered comparing the average values of the two windows, or comparing the first

value, average value, and the last value of a (relatively long) window. We found however that

the above pattern appears to be the best at accurately detecting degrading confidence after

the peak.

Afterward, M selects the last classifier before degrading to match the tuple pairs in the input set

C.

2.6 Estimating Matching Accuracy

After applying matcherM , Corleone estimatesM ’s accuracy. If this exceeds the best accuracy

obtained so far, Corleone continues with another round of matching (see Section 2.7). Otherwise,

it stops, returning the matches together with the estimated accuracy. This estimated accuracy is
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Datasets Table A Table B # of Matches
Restaurants 533 331 112
Citations 2616 64263 5347
Products 2554 22074 1154

Table 2.1: Data sets for our experiments.

especially useful to the user, as it helps decide how good the crowdsourced matches are and how

best to use them. [54] describes how Corleone estimates the matching accuracy in detail.

2.7 Iterating to Improve

In practice, entity matching is not a one-shot operation. Developers often estimate the matching

result, then revise and match again. A common way to revise is to find tuple pairs that have proven

difficult to match, then modify the current matcher, or build a new matcher specifically for these

pairs. For example, when matching e-commerce products, a developer may find that the current

matcher does reasonably well across all categories, except in Clothes, and so may build a new

matcher specifically for Clothes products.

Corleone operates in a similar fashion. It estimates the matching accuracy (as discussed ear-

lier), then stops if the accuracy does not improve (compared to the previous iteration). Otherwise,

it revises and matches again. Specifically, it attempts to locate difficult-to-match pairs, then build a

new matcher specifically for those. The challenge is how to locate difficult-to-match pairs. Our key

idea is to identify precise positive and negative rules from the learned random forest, then remove

all pairs covered by these rules (they are, in a sense, easy to match, because there already exist

rules that cover them). We treat the remaining examples as difficult to match, because the current

forest does not contain any precise rule that covers them. [54] describes this idea in detail.

2.8 Empirical Evaluation

We now empirically evaluate Corleone. Table 2.1 describes three real-world data sets for our

experiments. Restaurants matches restaurant descriptions. Citations matches citations between

DBLP and Google Scholar [71]. These two data sets have been used extensively in prior EM
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Datasets Corleone Baseline 1 Baseline 2 Published Works
P R F1 Cost # Pairs P R F1 P R F1 F1

Restaurants 97.0 96.1 96.5 $9.2 274 10.0 6.1 7.6 99.2 93.8 96.4 92-97 [103, 70]
Citations 89.9 94.3 92.1 $69.5 2082 90.4 84.3 87.1 93.0 91.1 92.0 88-92 [71, 70, 17]
Products 91.5 87.4 89.3 $256.8 3205 92.9 26.6 40.5 95.0 54.8 69.5 Not available

Table 2.2: Comparing the performance of Corleone against that of traditional solutions and pub-
lished works.

work (Section 2.8.1 compares published results on them with that of Corleone, when appropriate).

Products, a new data set created by us, matches electronic products between Amazon and Walmart.

Overall, our goal is to select a diverse set of data sets, with varying matching difficulties.

We used Mechanical Turk and ran Corleone on each data set three times, each in a different

week. The results reported below are averaged over the three runs. In each run we used common

turker qualifications to avoid spammers, such as allowing only turkers with at least 100 approved

HITs and 95% approval rate. We paid 1 cent per question for Restaurants & Citations, and 2 cents

for Products (it can take longer to answer Product questions due to more attributes involved).

2.8.1 Overall Performance

Accuracy and Cost: We begin by examining the overall performance of Corleone. The first five

columns of Table 2.2 (under “Corleone”) show this performance, broken down into P , R, F1, the

total cost, and the total number of tuple pairs labeled by the crowd. The results show that Corleone

achieves high matching accuracy, 89.3-96.5% F1, across the three data sets, at a reasonable total

cost of $9.2-256.8. The number of pairs being labeled, 274-3205, is low compared to the total

number of pairs. For example, after blocking, Products has more than 173,000 pairs, and yet only

3205 pairs need to be labeled, thereby demonstrating the effectiveness of Corleone in minimizing

the labeling cost.

Comparison to Traditional Solutions: In the next step, we compare Corleone to two traditional

solutions: Baseline 1 and Baseline 2. Baseline 1 uses a developer to perform blocking, then trains

a random forest using the same number of labeled pairs as the average number of labeled pairs

used by Corleone. Baseline 2 is similar to Baseline 1, but uses 20% of the candidate set (obtained
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after blocking) for training. For example, for Products, Baseline 1 uses 3205 pairs for training

(same as Corleone), while Baseline 2 uses 20% * 180,382 = 36,076 pairs, more than 11 times

what Corleone uses. Baseline 2 is therefore a very strong baseline matcher.

The next six columns of Table 2.2 show the accuracy (P , R, and F1) of Baseline 1 and Base-

line 2. The results show that Corleone significantly outperforms Baseline 1 (89.3-96.5% F1 vs.

7.6-87.1% F1), thereby demonstrating the importance of active learning, as used in Corleone.

Corleone is comparable to Baseline 2 for Restaurants and Citations (92.1-96.5% vs. 92.0-96.4%),

but significantly outperforms Baseline 2 for Products (89.3% vs. 69.5%). This is despite the fact

that Baseline 2 uses 11 times more training examples.

Comparison to Published Results: The last column of Table 2.2 shows F1 results reported by

prior EM work for Restaurants and Citations. On Restaurants, [70] reports 92-97% F1 for several

works that they compare. Furthermore, CrowdER [103], a recent crowdsourced EM work, reports

92% F1 at a cost of $8.4. In contrast, Corleone achieves 96.5% F1 at a cost of $9.2 (including

the cost of estimating accuracy). On Citations, [71, 70, 17] report 88-92% F1, compared to 92.1%

F1 for Corleone. It is important to emphasize that due to different experimental settings, the

above results are not directly comparable. However, they do suggest that Corleone has reasonable

accuracy and cost, while being hands-off.

Summary: The overall result suggests that Corleone achieves comparable or in certain cases

significantly better accuracy than traditional solutions and published results, at a reasonable crowd-

sourcing cost. The important advantage of Corleone is that it is totally hands-off, requiring no

developer in the loop, and it provides accuracy estimates of the matching result.

2.8.2 Performance of the Components

We now “zoom in” to examine Corleone in more details.

Blocking: Table 2.3 shows the results for crowdsourced automatic blocking executed on the three

data sets. From left to right, the columns show the size of the Cartesian product (of tables A and

B), the size of the candidate set (i.e., the set after applying the blocking rules), recall (i.e., the
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Datasets Cartesian Candidate Recall (%) Cost # PairsProduct Set
Restaurants 176.4K 176.4K 100 $0 0
Citations 168.1M 38.2K 99 $7.2 214
Products 56.4M 173.4K 92 $22 333

Table 2.3: Blocking results for Corleone.

Datasets
Iteration 1 Estimation 1 Reduction 1 Iteration 2 Estimation 2

# Pairs P R F1 # Pairs P R F1 # Pairs Reduced Set # Pairs P R F1 # Pairs P R F1

Restaurants 140 97 96.1 96.5 134 95.6 96.3 96 0 157
Citations 973 89.4 94.2 91.7 366 92.4 93.8 93.1 213 4934 475 89.9 94.3 92.1 0 95.2 95.7 95.5
Products 1060 89.7 82.8 86 1677 90.9 86.1 88.3 94 4212 597 91.5 87.4 89.3 0 96 93.5 94.7

Table 2.4: Corleone’s performance per iteration on the data sets.

percentage of positive examples in the Cartesian product that are retained in the candidate set),

total cost, and total number of pairs being labeled by the crowd. Note that Restaurants is relatively

small and hence does not trigger blocking.

The results show that automatic crowdsourced blocking is quite effective, reducing the total

number of pairs to be matched to just 0.02-0.3% of the Cartesian product, for Citations and Prod-

ucts. This is achieved at a low cost of $7.2-22, or just 214-333 examples having to be labeled.

In all the runs, Corleone applied 1-3 blocking rules. These rules have 99.9-99.99% precision.

Finally, Corleone also achieves high recall of 92-99% on Products and Citations. For comparison

purposes, we asked a developer well versed in EM to write blocking rules. The developer achieved

100% recall on Citations, reducing the Cartesian product to 202.5K pairs (far higher than our result

of 38.2K pair). Blocking on Products turned out to be quite difficult, and the developer achieved a

recall of 90%, compared to our result of 92%. Overall, the results suggest that Corleone can find

highly precise blocking rules at a low cost, to dramatically reduce the Cartesian products, while

achieving high recall.

Performance of the Iterations: Table 2.4 shows Corleone’s performance per iteration on each

data set. To explain, consider for example the result for Restaurants (the first row of the table). In

Iteration 1 Corleone trains and applies a matcher. This step uses the crowd to label 140 examples,

and achieves a true F1 of 96.5%. Next, in Estimation 1, Corleone estimates the matching accuracy

in Iteration 1. This step uses 134 examples, and produces an estimated F1 of 96% (very close to
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the true F1 of 96.5%). Next, in Reduction 1, Corleone identifies the difficult pairs and comes up

with 157 such pairs. It uses no new examples, being able to re-use existing examples. At this point,

since the set of difficult pairs is too small (below 200), Corleone stops, returning the matching

results of Iteration 1.

The result shows that Corleone needs 1-2 iterations on the three data sets. The estimated F1 is

quite accurate, always within 0.5-5.4% of true F1. Note that sometimes the estimation error can be

larger than our desired maximal margin of 5% (e.g., Estimation 2 for Products). This is due to the

noisy labels from the crowd. Despite the crowd noise, however, the effect on estimation error is

relatively insignificant. Note that the iterative process can indeed lead to improvement in F1, e.g.,

by 3.3% for Products from the first to the second iteration (see more below). Note further that the

cost of reduction is just a modest fraction (3-10%) of the overall cost.

2.9 My Contributions

This work was carried out in collaboration with Chaitanya Gokhale. My main contributions

here are the following:

• collaborating with Chaitanya to work out the Corleone architecture and to design the exper-

iments (see Sections 2.3 and 2.8);

• developing a MapReduce solution to apply blocking rules to the input tables (see Section

2.9.1 below for details);

• developing a MapReduce solution to generate a feature vector for every tuple pair in a given

set of tuple pairs (see Section 2.9.2 below for details); and

• performing experiments on the Citations data set (see Section 2.8).

2.9.1 Applying Blocking Rules to the Input Tables

In Section 2.4.3, we apply a set of blocking rules to the two input tables to obtain a candidate

set of tuple pairs. (This is the step behind going from (a) to (b) in Figure 2.7.) I implemented
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two MapReduce-based solutions, MapSide and ReduceSplit, to apply the blocking rules to the two

input tables on a Hadoop cluster. The two solutions were proposed in [65]. Next, I describe the

two solutions at a high-level, complete details can be found in [65].

Figure 2.7: (a) The two tables A and B, (b) candidate set C after blocking, and (c) feature vectors
for pairs in C after feature vector generation.

1. MapSide: This solution is an implementation of broadcast join, where the smaller table (say

A) is broadcast to all map tasks. All map tasks load A in memory at the initialization time. The

larger table, B, resides on the distributed file system as several partitions. Each map task reads the

partition of B assigned to it, one tuple at a time. For each tuple b of B (read from disk) and each

tuple a in A (read from memory), we form a tuple pair (a, b). We apply the blocking rules to the

pair (a, b). The pairs that do not get eliminated by the blocking rules are output as candidate pairs.

There are no reduce tasks in this solution.

2. ReduceSplit: This solution is employed when table A is not small enough to fit in memory of

a mapper node. It applies the blocking rules on the pairs in the reduce phase. In the map phase, the

tuples of A and B (both residing on the distributed file system) are distributed in such a way that:

(1) all possible pairs (a, b) reach the reducers, and (2) all reducers get (almost) the same load. To

achieve this, the solution uses special composite keys for the map and reduce tasks and a specific
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partitioning scheme for the shuffle phase. The reducer on receiving a pair, applies the blocking

rules on it. The pair is output as a candidate pair if it does not get eliminated by the blocking rules.

MapSide is usually faster than ReduceSplit, because there is no Reduce phase in MapSide. If

the smaller table can fit in memory of a mapper node, then MapSide is our preferred choice. (In

fact, for all the data sets in our experiments, we used the MapSide implementation). If the smaller

table does not fit in memory of a mapper node, then we choose ReduceSplit.

2.9.2 Generating Features for a Set of Tuple Pairs

We convert a set of tuple pairs into a set of feature vectors for learning purposes (See Section

2.5.1). This is done at two places: (1) at the end of the sampling step (Section 2.4.1) when we

convert the sample of tuple pairs into a set of feature vectors, and (2) at the end of the blocking

step when any tuple pair that survived the blocking rules is immediately converted into a feature

vector (e.g., going from (b) to (c) in Figure 2.7). We describe the solution below.

Given a list of features F = {f1, ..., fm} and a set of tuple pairs S, we want to generate a

feature vector for each tuple pair (a, b) in S. This step is trivially parallelizable. We implement a

MapReduce solution with a single Map-only job. Each Mapper reads a pair (a, b) from S (residing

on HDFS); computes a feature value fi(a, b) for each feature fi ∈ F ; and outputs a key-value

pair where key is the composition of ids of a and b: <a.id, b.id>, and value is the feature vector:

<f1(a, b), ..., fm(a, b)>. There is no reduce phase.

2.10 Conclusion

We have proposed hands-off crowdsourcing (HOC), which crowdsources the entire EM work-

flow, without using a developer. We showed how HOC can scale to EM needs at enterprises and

startups, and open up crowdsourcing (by the masses) for the masses. We believe HOC can rep-

resent a next logical direction for crowdsourcing research. We have also presented Corleone, a

HOC solution for EM, and showed that it achieves comparable or better accuracy than traditional

solutions and published results, at a reasonable crowdsourcing cost.
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Chapter 3

Developing a Rule-Based EM Management System for Analysts

3.1 Introduction

In a recent study on Big Data [75], McKinsey Global Institute (MGI) estimated that by 2018,

in the US alone up to 1.5 million new managers and data analysts will be needed to analyze the

data being generated across various sectors. Data analysts are individuals who have been trained in

the business needs but generally do not have programming experience or background in Computer

Science.

EM is one such data management problem which may be performed by data analysts. For

example, product matching in e-commerce companies, such as Walmart, is often performed by data

analysts [88]. However, currently there are no interactive tools available for these “non-technical”

data analysts to perform matching quickly and accurately.

Discussions with analysts at WalmartLabs suggest that for such a tool to be useful, it should

have the following three features. First, the system should be end-to-end, i.e., it must be a “man-

agement” rather than just a “matching” system. Second, it must provide support for EM rules. The

analysts often prefer writing rules to do matching, such as “two books match if they agree on the

ISBNs and the number of pages”. This is because rules are relatively easy to understand, tune and

debug. Further, domain knowledge can be easily encoded in the form of rules. Finally, such a tool

must have good visualizations and debugging capabilities.

It turns out that some of the techniques that we develop in Corleone could potentially be used

here. For example, in Corleone we extract rules from a trained random forest. This technique

could be used in the new system to learn rules. Another example is the use of active learning in
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Corleone where the crowd iteratively labels examples to train a matcher. Again, this technique

could be used in the system to learn rules except that instead of the crowd, the analyst could label

example pairs.

Thus, in this research direction, we build on Corleone to develop a rule-based EM manage-

ment system for analysts. Specifically, we explore the following topics:

• First, we develop Rmony1, a system that helps an analyst manually write EM rules to match

two input tables, using a GUI.

• Manually writing rules can be time consuming. Thus in the next step, we extend Rmony to

automatically suggest EM rules to the analyst, using the technology underlying Corleone.

Specifically, the analyst can perform active learning to train a learning-based matcher. EM

rules are then extracted from this matcher.

• Finally, we evaluate Rmony in real-world settings, e.g., product matching at WalmartLabs.

The research questions that we seek to answer in this direction are the following:

• Can we develop a system using which an analyst can manually write EM rules effectively?

What will be the quality of such rules? Will the analyst be able to write EM rules for diverse

domains?

• Can we develop a system to automatically suggest EM rules to analysts? What will be the

quality of such rules? Can high-quality rules be suggested for diverse domains?

• Can such a system be effectively used in real-world settings? What lessons can we learn?

To explore these questions, we have developed and experimented with several system varia-

tions, both with students at UW-Madison and analysts at WalmartLabs. During the course, we

have drawn a set of observations and lessons that we detail in this chapter.

The rest of this chapter is organized as follows. Section 3.2 describes the first version of our

system, Rmony 0.1, where an analyst can manually write EM rules. Section 3.3 describes our
1Rmony is a pun on “harmony” which means “agreement/match” and the ‘R’ in Rmony is for “rules”.
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extended version Rmony 1.1, which can automatically suggest EM rules to analysts. Section 3.4

presents the empirical evaluation of the two versions of Rmony. Section 3.5 describes a case study

to demonstrate that Rmony can be effectively used in real-world settings. Section 3.6 discusses

the important lessons learned. Section 3.7 describes the related work and Section 3.8 concludes.

3.2 Rmony 0.1: A System to Manually Write EM Rules

Using Rmony 0.1, an analyst can match two tables by writing EM rules manually. Typically,

she will start by uploading two tables of records A and B. Then she will try to understand the data

by browsing the tables, viewing statistics, searching for keywords, querying on attributes, etc. She

can optionally perform basic cleaning of the tables by editing values, deleting tuples/attributes, etc.

Next, she will perform blocking on the two tables to obtain a candidate set of tuple pairs C.

Next, she will manually create a matcher, which is a set of EM rules that she wants to apply on

C to perform matching. Next, she will apply the matcher on C to obtain predicted matches M . To

know the quality of the matcher, she will evaluate it using labeled data. Finally, she can debug the

predicted matches M to analyze the different errors (e.g., false positives, false negatives). If she is

satisfied with the quality of the results, she will stop here. If not, she will go back and refine the

matcher, or go back further to understand the data better, and continue iterating. We now discuss

these steps in detail.

3.2.1 Uploading Tables and Understanding Data

Typically, an analyst starts by uploading the two tables (into Rmony) that she wants to match.

Rmony supports uploading of tables in CSV and JSON file formats. Next the analyst may want to

understand the data before proceeding with matching. To this end, Rmony supports the following

actions:

• Browse the records of a table through a paginated view (e.g., Figure 3.1 shows the records

of a “books” table),
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Figure 3.1: Understanding data by browsing tables, viewing statistics, querying tables, etc.

• View table-wide statistics (e.g., how many attributes, percentage of missing and unique val-

ues for each attribute as shown in Figure 3.1),

• View attribute-specific statistics (e.g., Figure 3.1 shows the frequency of values in the “bind-

ing” attribute),

• Sort the table on an attribute,

• Search for keywords in an attribute (e.g., Figure 3.1 shows searching for “General Books”

in the “Publisher” attribute) and write basic selection queries (e.g., show books that were

published after 2009 as in Figure 3.1), and

• Take a uniform random sample of a table.

The analyst can also perform basic data cleaning actions, e.g., edit attribute values in a table,

delete tuples/attributes from a table, etc.
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3.2.2 Performing Blocking to Reduce the Candidate Set of Tuple Pairs

It is often impractical to perform matching on the Cartesian product A×B of two tables A and

B because A × B can be very large. For example, two tables of 100K tuples each will result in

a Cartesian product of 10B tuple pairs. Typically, an analyst will perform blocking on two tables

to remove the obviously non-matched tuple pairs, thereby producing a candidate set of tuple pairs

much smaller than the Cartesian product. Rmony supports the following two blocking methods:

1. Attribute equivalence based blocking, where a tuple pair is kept in the candidate set if the

two tuples have the exact same value for an attribute (e.g., two persons match if they live in

the same state), and

2. Rule based blocking, where a tuple pair is kept in the candidate set if it satisfies a rule (e.g.,

two books match only if they differ in price by at most $10).

3.2.3 Manually Creating Features, Rules, and Matchers

Next the analyst will manually create features, rules, and matchers that she can use to match

the two tables. For example, suppose the analyst knows (from her domain knowledge) that two

books match if they have the exact same ISBNs, or their titles are highly similar and their prices

differ by at most $10. To encode this knowledge into a matcher, in Rmony, she needs to execute

the following three steps (in order):

1. First, she will create 3 features:

• f1(a, b): exactMatch(a.isbn, b.isbn),

• f2(a, b): Jaccard.word(a.title, b.title), and

• f3(a, b): absDiff(a.price, b.price).
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Each feature f(a, b) maps a tuple pair (a, b) into a numeric score. These features use standard

functions (e.g., exactMatch, Jaccard.word) from Rmony’s library, which currently com-

prises 24 standard similarity and distance functions (e.g., Jaccard, edit distance, Monge-

Elkan, TF-IDF, Smith-Waterman-Gotoh, Jaro-Winkler, etc.). In the above example, Jac-

card.word(a.title, b.title) stands for the Jaccard measure applied to the two sets of tokens

obtained after word-based tokenization of title attribute values of the tuples a and b respec-

tively.

2. Next, she will create 2 rules:

• r1(a, b): f1(a, b) == 1, and

• r2(a, b): f2(a, b) > 0.9 and f3(a, b) ≤ 10.

In Rmony a rule is a conjunction of predicates. Each predicate is of the form [f(a, b) op v],

where f(a, b) is a feature, op is an operator (e.g., =, <, ≤) and v is a value. A rule r(a, b)

maps a tuple pair (a, b) to true/false; true indicating that the tuple pair satisfies the rule, false

otherwise.

3. Finally, she will create a matcher:

• m1(a, b): r1(a, b) or r2(a, b).

In Rmony a matcher m(a, b) is a disjunction of rules. It evaluates to true if one of the rules

evaluates to true, indicating that the tuples a and b match.

Figure 3.2 shows screen shots showing (a) the library of 24 functions currently supported in

Rmony, (b) features manually created by an analyst using the library of functions, (c) rules man-

ually created by an analyst, and (d) matchers manually created by an analyst.



40

Figure 3.2: Screen shots from Rmony showing (a) the library of supported functions, (b) manually
created features, (c) manually created rules, and (d) manually created matchers.

3.2.4 Performing Matching on the Candidate Set Using a Matcher

Next the analyst will apply the matcher (that she has manually created) to the candidate set of

tuple pairs to obtain a prediction (“match” or “no-match”) for each tuple pair in the candidate set.

Matching in Rmony can be performed in two modes:

1. Fast, where Rmony uses short-circuiting techniques (e.g., skipping evaluation of rules in

a matcher and evaluation of predicates in a rule wherever appropriate). Specifically, since

the matcher is a disjunction of rules, if one rule evaluates to true for a tuple pair, then the

evaluation of the other rules is skipped. Similarly, for a rule which is a conjunction of

predicates, if one predicate evaluates to false for a tuple pair, then the evaluation of the other

predicates is skipped.

2. Debug, where Rmony evaluates every predicate in a rule, and every rule in the matcher and

also collects a lot of matching details (e.g., which rules evaluated to true). These details help

the analyst debug the results later as we shall see shortly.
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3.2.5 Evaluating a Matcher with Labeled Data

Next the analyst can evaluate how good a matcher is (in terms of precision and recall) using

a labeled set of tuple pairs. Each tuple pair in the labeled set is either labeled as “match” or “no-

match”. The matcher is first applied on the labeled set to get a predicted label for each tuple pair.

These predicted labels are then compared against the actual labels to compute precision and recall

for the matcher.

3.2.6 Debugging the Results

EM is never a one-shot process. An analyst usually writes an initial set of rules, creates a

matcher, applies the matcher on the candidate set of tuple pairs, and evaluates the quality. If the

quality does not meet the requirements, then she needs to iteratively improve the matching pipeline.

This is a very time-consuming process. In fact, based on our discussions with the analysts

at WalmartLabs, we anticipate that the analyst will spend most of her time trying to iteratively

improve the quality of the matching pipeline. Therefore, it is critical to save the analyst time.

Correspondingly, Rmony provides debugging support to help the analyst quickly and itera-

tively improve the quality of a matcher. Briefly, the analyst can perform the following debugging

actions in Rmony:

• Identify which rules in a matcher and which predicates in a rule evaluated to true on a tuple

pair and which did not,

• Quickly browse through the set of precision errors (i.e., false positives) and recall errors (i.e.,

false negatives), and

• Fine-tune the thresholds of the existing rules in the matcher and re-evaluate the quality. Inter-

nally, Rmony does not perform the matching process from scratch but quickly recomputes

the effect of the change using the matching details that it had previously computed.

Figure 3.3 shows a screen shot of the debugging interface in Rmony. To the left, Rmony shows

the evaluation summary of a matcher which includes precision, recall, and F1 of the matcher on a
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Figure 3.3: Debugging the results.

labeled candidate set of tuple pairs. Rmony also shows the number of precision and recall errors

(i.e., false positives and false negatives respectively) which are clickable links to help the analyst

zoom in and debug.

The matching summary section shows the number of candidate pairs and how many are pre-

dicted as “match” by the matcher. It also shows the total number of rules in the matcher. In the

rule summary section, for each rule Rmony shows how many candidate pairs were matched by

this rule.

In the matching details box (to the right), for each tuple pair Rmony shows which rule is

satisfied and which is not. For each rule, Rmony digs deeper to show which predicate in the rule

is satisfied and which is not. This helps an analyst identify exactly why a tuple pair matched or did

not match.

3.3 Rmony 1.1: Automatically Suggesting EM Rules

Manually creating features and rules can be very challenging for an analyst for two reasons.

First, it is very time consuming. Second, the analyst may not have the technical know how (e.g.,

which functions to use for which attributes when creating features). So we extended Rmony from

0.1 to 1.1 to support the following:

• Automatic generation of features,

• Automatic suggestion of rules using training data, and
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Figure 3.4: Guiding rules for automatically generating features.

• Automatic suggestion of rules using active learning.

We describe these extensions next.

3.3.1 Automatic Generation of Features

Manually creating features can be very challenging for an analyst. First, she may not have the

technical know-how of which functions to use for which attributes. Second, she can create only a

handful of features manually, which may not be sufficient to write (or learn) good rules.

Rmony 1.1 can automatically generate features. Given two tables, Rmony examines the at-

tribute types (e.g., string, numeric), and characteristics (e.g., short string, long string) to automat-

ically generate features. The guiding rules used by Rmony for automatic feature generation are

tabulated in Figure 3.4. We next describe generating features automatically in detail.

Conceptually, a feature is a function that maps a tuple pair (a, b) into a numeric score. However,

in Rmony we currently only consider features of the form f(a, b) = sim(a.x, b.y), where sim is a

similarity function (e.g., Jaccard, Levenshtein), a.x is the value of attribute x of tuple a (from table

A), and b.y is the value of attribute y of tuple b (from tableB). For example, if Rmony has inferred
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Figure 3.5: An overview of learning rules using training data.

that attributes A.title and B.title are multi-word mid-sized string attributes, then it will automati-

cally generate features such asMonge−Elkan(A.title, B.title), Jaccard.word(A.title, B.title),

and cosine(A.title, B.title) (see row 3 in Figure 3.4).

To decide on the set of features F = {f1, ..., fm} to generate automatically, Rmony first asks

the analyst to manually specify the attribute correspondences between the two tables A and B by

pairing an attribute in table A with an attribute in table B (e.g., A.title with B.title, A.address

with B.location). Next, Rmony scans through the tables to determine the characteristics (e.g.,

single-word string, multi-word long string, etc.) of each attribute in the two tables.

Next, for each attribute correspondence (x, y), Rmony includes in F a set of features, each of

the form sim(a.x, b.y) where sim is a similarity function chosen based on the rules in Figure 3.4.

If x and y have different attribute characteristics (but same attribute types), Rmony chooses the

characteristic that is at a lower row in Figure 3.4. For example, suppose x is a multi-word short

string attribute (row 2 in Figure 3.4) and y is a multi-word mid-sized string attribute (row 3 in

Figure 3.4), then Rmony chooses the similarity functions corresponding to multi-word mid-sized

string attribute (row 3 in Figure 3.4) for feature generation. Attribute correspondences between

attributes of different types (e.g., string with numeric) are ignored (and alerted to the analyst).
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3.3.2 Automatic Suggestion of Rules Using Training Data

Rmony 1.1 can automatically suggest rules to analysts using training data. The analyst must

supply the training data, which is a set of tuple pairs, each labeled “match” or “no-match”. Figure

3.5 shows an overview of learning rules using training data.

First the analyst uploads the two tables A and B that she wants to match. Next she either

manually creates features or automatically generates features, or does a mix of both. Automatic

feature generation (shown in Figure 3.5) is often the preferred choice. Next she supplies training

data. Rmony splits this training data into train and test splits (the split-ratio is configurable, default

being 67%-33%).

Next Rmony encodes the tuple pairs in the train split into a set of feature vectors (using the

features specified by the analyst). Rmony then trains a model (either a decision tree or a random

forest, default being random forest) using the train split (encoded as feature vectors), extracts

matching rules from the model, evaluates the rules (in terms of precision and recall) using the test

split and then outputs a ranked list of top rules. The analyst then selects a subset from the ranked

list of rules. Note that Rmony uses the ideas in Corleone, specifically, the idea of training a

random forest and extracting rules from it.

3.3.3 Automatic Suggestion of Rules Using Active Learning

Often it is difficult to get sufficient training data for learning rules. For such situations, Rmony

1.1 supports learning rules using active learning. Figure 3.6 gives an overview of learning rules

using active learning with the analyst.

The analyst supplies a seed training data S (which can be as small as four tuple pairs, two

labeled “match”, and two labeled “no-match”). Again she either manually creates features or

automatically generates features, or does a mix of both. Rmony then converts each tuple pair in

S into a feature vector, using the specified features. Next Rmony trains an initial model (e.g., a

random forest F as shown in Figure 3.6), uses the trained model to find informative examples in

S, asks the analyst to label them, then uses the labeled examples to improve the trained model, and

so on.
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Figure 3.6: An overview of learning rules using active learning with the analyst.

Note that Rmony builds upon the similar ideas in Corleone except that instead of the crowd,

here the analyst labels the tuple pairs. Another difference is that Rmony does not yet support the

automatic stopping criteria in Corleone (see Chapter 2) but instead lets the analyst decide when

to stop.

In order to decide when to stop, Rmony lets the analyst see and evaluate the rules extracted

from the trained model after every iteration. For evaluating the rules, the analyst can either use the

labeled data obtained in the course of active learning iterations, or a separately supplied test data.

The former is a highly optimistic evaluation but sometimes is the only option when obtaining a

separate test data is difficult.

3.4 Empirical Evaluation

We now empirically evaluate Rmony using real-world data and users. First, we evaluate

Rmony 0.1 which helps an analyst match two tables by writing EM rules manually. Specifi-

cally, we ask UW-Madison students in a graduate class to apply Rmony 0.1 to match real-world

data from diverse domains collected from the Web. The goal is to demonstrate that Rmony 0.1

can be used to match real-world data with high accuracy by writing EM rules manually. Second,
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Team Domain Table Sizes (# of Tuples) # of Rules Precision Recall
1 Restaurants 25K x 3.2K 4 1 0.98
2 Car Ads 25K x 5K 5 0.97 0.88
3 Electronics 21.5K x 3.6K 4 0.98 0.94
4 Movies 17K x 9K 5 1 0.91
5 Video Games 6.7K x 3.7K 2 1 0.89
6 Movies 5.5K x 4.3K 5 0.97 0.98
7 Books 5K x 6.5K 3 0.9 0.96
8 Breakfast Products 4K x 3.6K 4 1 0.79
9 Books 3K x 3.5K 2 0.97 0.99

10 Books 3.4K x 3.2K 2 1 0.82
11 Books 3.6K x 3.5K 5 0.96 0.93

Table 3.1: Evaluation of manual rule writing in Rmony on Web data.

we evaluate Rmony 1.1 to see if it can automatically suggest high-quality rules using (a) training

data, and (b) active learning. We now elaborate on these evaluations.

3.4.1 Evaluation of Rmony 0.1

Using Rmony 0.1, a user can match two tables by writing EM rules manually. We released

Rmony 0.1 to graduate students at UW-Madison in a Fall 2014 database class. These students

were grouped into 11 teams, each comprising 2-3 members.

We asked each team to find two data-rich Web sites, extract and convert data from them into two

relational tables, then apply Rmony 0.1 to match tuples across the tables. Table 3.1 summarizes the

evaluation. Each row in the table shows a team, domain of data, sizes of the two tables to match,

number of rules used in the final matcher, and quality of the matcher in terms of precision and

recall. Note that two teams may cover the same domain, e.g., “Books”, but extract from different

sites.

Overall, there are 7 domains. The average precision and recall of EM rules written by students

is 98% and 91% respectively. This suggests that students were able to write high quality EM rules

using Rmony 0.1 to match real-world data of diverse domains.

Encouraging Feedback: We received a lot of encouraging feedback from the students. We quote

some of them below:
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• “The system has the complete pipeline for matching and it is easy for us to find our way

around.”

• “The system is designed well in that projects are easily portable and also uses standard data

formats.”

• “It has good interface for browsing and viewing intermediate results.”

• “Easy UI and very well descriptive debugging and refining rules interface, helped us a lot

in improving precision and/or recall.”

• “The tool helped us to identify data cleaning or attribute extraction problems.”

• “The system provides useful statistics.”

Suggestions for Improvement: We also received many useful suggestions for improvement

(some of which have been addressed in Rmony 1.1). We quote some of them below:

• “The system may have a bit of learning curve for non-technical users. Specifically, it is not

trivial to know which function is suitable for what attribute.” (Note that Rmony 1.1 supports

automatic feature generation.)

• “Add support for machine learning.” (Note that Rmony 1.1 automatically suggests rules to

analysts using training data or active learning.)

• “Make the system more robust to user errors and provide useful hints for them to resolve the

issue.” (Rmony 1.1 handles exceptions better and is more robust to errors.)

• “Enable simple data cleaning (e.g., applying transforms) inside the system.” (This has not

been addressed yet.)

3.4.2 Evaluation of Rmony 1.1

Rmony 1.1 can automatically suggest rules to analysts using two methods: (a) training data,

and (b) active learning. We want to validate the following two claims for each method:
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Figure 3.7: Rmony automatically suggests high-quality rules using training data.

1. Rmony can automatically suggest high-quality rules when matching data of diverse do-

mains, and

2. The suggested rules are comparable in quality to those manually written by the analysts.

To validate the claims we pick four data sets of varied domains, namely “Books” (Team 7),

“Video Games”, “Car Ads”, and “Breakfast Products” from Table 3.1. For each of these four

data sets, Rmony automatically suggests rules using training data and active learning as described

below.

(a) Automatically Suggest Rules Using Training Data: For each of the four chosen data sets,

the students have manually labeled a set of a few hundred tuple pairs. We use those sets of labeled

pairs as our training data. As in Figure 3.5 we split the training data into 67% train and 33% test

splits. We train a random forest of 10 trees on the train split encoded as feature vectors using

features automatically generated by Rmony. We extract the positive rules from the random forest,

evaluate these rules using the test split and retain the top rules in terms of precision and recall.

Figure 3.7 validates our first claim that Rmony can automatically suggest high-quality EM

rules for data sets of varied domains. For example, for the “Books” data set, Rmony learns 102

rules. The students have manually labeled a set of 600 tuple pairs (termed as “Gold” in Figure

3.7) which we use as the training data to learn the rules. These rules have precision in the range

[0-100%], recall in the range [0-72%], and F1 in the range [0-82%]. 62 out of the 102 rules have a

precision of 100%.
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Figure 3.8: The automatically suggested rules using training data by Rmony are comparable to
the manually written rules.

Figure 3.8 validates our second claim that the automatically suggested rules using training data

are comparable in quality with the rules manually written by the students. For example, for the

“Books” data set, the students have manually created a matcher of 3 rules (column 4). These rules

look comparable in quality with the top-3 F1 rules suggested by Rmony (last column).

(b) Automatically Suggest Rules Using Active Learning: We choose the same four data sets as

before. For each data set, from the labeled data that the students have manually created, we choose

four tuple pairs, two labeled “match” and two labeled “no-match”, to seed the active learning.

Again we use the automatically generated features and train a random forest of 10 trees. We run

10 rounds of active learning, where an analyst labels 10 pairs in each round (i.e., a total of 100

labeled pairs). We extract the positive rules from the trained random forest and evaluate the rules

using the entire labeled data manually created by the students.

Figure 3.9 validates our first claim that Rmony is able to suggest high-quality EM rules using

active learning for data sets of varied domains. For example, for the “Books” data set, Rmony

learns 53 rules. These rules have precision in the range [4-100%], recall in the range [1-91%], and

F1 in the range [1-93%]. 3 out of the 53 rules have a precision of 100%.
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Figure 3.9: Rmony automatically suggests high-quality rules using active learning.

Figure 3.10: The automatically suggested rules using active learning by Rmony are comparable
to the manually written rules.

Figure 3.10 validates our second claim that the automatically suggested rules are comparable

in quality with the rules manually written by the students. For example, for the “Books” data set,

the students have manually created a matcher of 3 rules (column 4). These rules look comparable

in quality with the top-3 F1 rules suggested by Rmony (last column).
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Figure 3.11: A highly simplified high-level architecture of product matching system at Walmart.

3.5 Product Matching at Walmart: A Case Study

Walmart has recently added a “marketplace” feature to its e-commerce business. In a market-

place, Walmart sells items from smaller vendors (e.g., Tech for Less Inc., UnbeatableSale, Circuit

City) alongside products from its own catalog on the shopping Web site. Different vendors may

sell the same real-world product in the marketplace, so it is critical to avoid duplication of the

matching products.

3.5.1 Existing Solution at Walmart

Walmart has deployed multiple EM systems for product matching and other purposes. Figure

3.11 presents a highly simplified high-level architecture of one of their EM solutions.

An incoming vendor product v is queried against Walmart’s catalog of products using an Elastic

Search interface. This interface returns a set of similar Walmart products (say w1, w2, and w3).
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The similar Walmart products are then paired with the vendor product to form the candidate set of

product pairs (e.g., (w1, v), (w2, v), and (w3, v)). Think of this step as blocking.

The candidate set of tuple pairs are then passed through a key-based matcher (e.g., a matcher

that looks for equivalence in key attributes such as UPC, ISBN, GTIN, etc.). If an exact equivalence

is found for the key attribute, then the product pair is most likely a “match”, and hence it is passed

to a “false positive detector” module which we will discuss shortly. If an exact equivalence is

not found, then the product pair is passed to a more sophisticated learning-based matcher. If the

learning-based matcher decides that a pair is “no-match”, then it is immediately labeled as as “no-

match” and is not carried forward in the EM pipeline. On the other hand, if the learning-based

matcher decides that a pair is a “match”, then it is passed to the “false positive detector” module.

False positives are highly undesirable in product matching. The final module in the EM

pipeline, “false positive detector”, tries to detect and eliminate false positives. All pairs that have

reached this module are highly likely to be matching pairs (as these were passed by some previous

module in the pipeline). This module consists of many rules that encode domain knowledge, busi-

ness requirements, etc. and is designed to “kill off” the “false positives” (pairs that are not actually

“matching” but have reached this module). Finally the pairs that survive this module are labeled

“match”.

3.5.2 Applying Rmony to Walmart Data

Goal: In the summer of 2015, I interned at WalmartLabs. The goal was to match Walmart

products with third-party vendor products using Rmony 1.1 and thereby verify if Rmony could be

used to perform rule-based EM in real-world settings. To scope the problem, I considered matching

products only in the “Electronics” domain.

Collecting Labeled Data: Walmart’s analysts have prepared a large set of labeled product pairs

for training purposes. I sampled a set of 10K product pairs, with 6K pairs labeled “match” and 4K

labeled “non-match”, as my training data. I sampled another set of 10K product pairs, with 6K

pairs labeled “match” and 4K labeled “no-match”, as my test data.
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Figure 3.12: Analysis of precision errors.

Figure 3.13: An example of P1 error category.

Training an Initial Matcher: Next I used Rmony to automatically generate 68 features for this

data. Then I trained a random forest of 10 trees on 80% of training data (encoded as feature vectors

using the automatically generated features). Then I extracted the positive rules from the trained

random forest and evaluated them on the remaining 20% of the training data. Finally, I constructed

a matcher comprising the top-10 F1 rules. This matcher obtained a precision of 98.61% and a

recall of 69.58% on the test data.

Debugging the Errors: Next I debugged the data, features, and matcher to improve the matching

accuracy (i.e, precision and recall). Specifically, I took the following three steps. First, I manually

analyzed a sample of precision and recall errors (i.e, false positives and negatives respectively) to

understand the errors. Second, I categorized these errors. Third, I took actions to fix the common

categories of errors. I describe my debugging efforts below.

The initial matcher M1 made 59 precision errors and 1824 recall errors on the test data. Product

matching is an EM setting that requires a very high precision (often close to 100%). Any precision

error is highly undesirable. So I decided to first analyze the precision errors and then analyze the

recall errors.
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Figure 3.14: An example of P2 error category.

I manually analyzed all the 59 precision errors and categorized them into 4 categories P1-

P4 as shown in Figure 3.12. P1 errors, constituting about 8.5% of all the precision errors, were

those where the pairs were incorrectly labeled as “no-match”. Figure 3.13 shows an example of

this category. P2 errors, constituting about 37.3% of the precision errors, were those where the

“Manufacturer Part Number” attribute values in the products were highly similar but not exactly

the same. Figure 3.14 shows one example of this category. P3 errors, constituting about 45.8% of

the precision errors, were those where a relevant attribute value had not been extracted from text.

Figure 3.15 shows an example of this category where a relevant attribute, “Color”, was missing

from the product details but the color values were present in the text of “Product Name” attribute

and have not been extracted. Finally, there were P4 errors, constituting about 8.5% of the precision

errors, for which I was not able to assign any particular reason. Figure 3.16 shows an example of

this category.

I started by resolving P1 errors. I manually corrected the actual labels (from “no-match” to

“match”) for the 5 erroneous tuple pairs in test data. Ideally one should correct all the incorrect

labels in the train and test data but detecting the incorrect labels automatically is difficult.

Next I tried to resolve P2 errors. A high similarity in the values of Manufacturer Part Number

(MPN) attribute is not enough for a tuple pair to be a “match” (e.g., as in Figure 3.14). In fact,

slight differences in values of MPN capture subtle differences between two products. For example,
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Figure 3.15: An example of P3 error category.

in Figure 3.14, “BL” and “BK” in the MPN values of the two products actually stand for the colors

“Blue” and “Black” respectively, thereby indicating that the two products (which otherwise have

almost identical attribute values) differ only in color. To address this category of errors, I created

only the “ExactMatch” feature on MPN and discarded all the “fuzzy” similarity features (e.g., Lev-

enshtein) on MPN. This is because all the fuzzy features will fail to capture the slight differences

in the MPN values. I retrained a matcher with the new set of features. This matcher M2 obtained

99.27% precision and 90.05% recall. Precision and recall errors go down significantly to 40 and

597 respectively. It is worth noting that the change improved recall significantly (even though it

was targeted towards precision). This may be due to the fact that with “fuzzy” similarity features,

the matcher was trying to learn complex patterns on MPN. But when trained with a relevant “ex-

act” match feature on MPN, a more accurate matcher was learned, resulting in improvements in

both precision and recall.

Next I tried to resolve P3 errors (e.g., Figure 3.15). A long-term solution for these errors is to

extract the relevant attribute values (e.g., color) from text (e.g., product name). For example, for

the example shown in Figure 3.15, color (“Black” for Walmart product and “White” for vendor

product) must be extracted. Ideally, this full-fledged information extraction should precede EM

to obtain better matching accuracy. As a short-term solution, I manually created a custom feature

that can do “quick and dirty extraction” in some cases. Specifically, I created a custom feature
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Figure 3.16: An example of P4 error category.

PN Colors Jaccard(walmart.pn, vendor.pn), which extracts a set of color words, S1 from the Wal-

mart product’s “Product Name” attribute and a set of color words, S2, from the vendor product’s

“Product Name” attribute. It then computes a Jaccard score on the two sets S1 and S2. For the

example pair in Figure 3.15, S1 = {“Black”} and S2 = {“White”} and the feature score will

be 0. To extract the color words from “Product Name”, I used a dictionary-based approach where

I constructed a dictionary of all the color values from all the Walmart and vendor products. Next,

I retrained a matcher with this additional custom feature. This matcher M3 obtained 99.26% pre-

cision and 93.87% recall. The number of precision errors went up marginally to 42, but the recall

errors went down significantly from 597 to 368. Again this is a case where the change was directed

towards the improvement of precision but we observed an improvement in recall. This was due

to the fact that this change resolved some of the false positives that I had manually observed but

introduced a few other false positives (e.g., “black printers with blue cartridges” were matched

with “blue printers with black cartridges”) thereby keeping precision nearly the same. Recall im-

proved because pairs that were previously not matched but had color attribute values hidden in the

“Product Name” attribute values were now matched due to this additional feature.
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Figure 3.17: Analysis of recall errors.

Next I wanted to analyze the recall errors. Since manually analyzing 368 recall errors would

be time consuming, I took a random sample of 50 recall errors. I analyzed them manually and

categorized them into 5 categories R1-R5 as shown in Figure 3.17. R1 errors, constituting 36% of

the sample recall errors, were those pairs where a relevant attribute value had not been extracted

from text. Figure 3.18 shows an example of this category. R2 errors, constituting 24% of the

sample recall errors, were due to differing formats in the UPCs of the Walmart and vendor products.

The Walmart products had 12-digit UPCs whereas the vendor products had 13-digit UPCs. R3

errors, constituting 16% of the sample recall errors, were those pairs where the MPN values would

match but after cleaning (e.g., removing hyphens and leading zeroes). R4 errors, constituting 8%

of the sample recall errors, were pairs where a lot of relevant attribute values were missing from

the product details. Figure 3.19 shows an example. For these pairs, enough information was not

present in the product details to guide the matcher. Finally there were R5 errors, constituting 16%

of the sample recall errors, for which I was not able to assign any specific reason. Figure 3.20

shows an example of this category.

Next I tried to resolve R1 errors. In Figure 3.18, observe that the MPN value of the ven-

dor product is missing but is present in the text of “Product Name” attribute value. Had it been

extracted it would have matched exactly with the MPN value of the Walmart product. So I man-

ually created two custom features to do “quick and dirty extraction” before matching. The first

feature, Walmart MPN in vendor PN, probes Walmart product’s MPN attribute value in vendor
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Figure 3.18: An example of R1 error category.

product’s “Product Name” attribute value and returns 1 if found and 0 if not found. For exam-

ple, this feature will return a score of 1 for the example pair shown in Figure 3.18. The second

feature, Walmart MPN in vendor PLD, probes Walmart product’s MPN attirbute value in vendor

product’s “Product Long Description” attribute value, and returns 1 if found and 0 if not found. For

example, this feature will return a score of 1 for the example pair shown in Figure 3.18. With these

additional custom features, I retrained a matcher. This matcher M4 obtained 99.14% precision

and 94.47% recall. The number of recall errors decrease from 368 to 332 but the precision errors

increase 42 to 49.

Next I tried to resolve R2 errors. I observed that many Walmart products had 12-digit UPC val-

ues whereas the vendor products had 13-digit UPC values. For example, a Walmart product had an

UPC value of “085854222624”, a matching vendor product had a UPC value of “0008585422262”

but our matcher was unable to predict this pair as a “match”. Had normalization to 11-digits been

done, both the products would have the identical UPC value of “08585422262”. So to address the

R2 errors, I normalized the UPC values (to 11 digits) for all the products in the train and test data
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Figure 3.19: An example of R4 error category.

sets. I retrained a matcher with the same features but on the normalized data. This matcher M5

obtained 99.65% precision and 95.87% recall. The number of precision errors went down from

49 to 20 and the number of recall errors went down from 332 to 303, thereby proving that the

normalization of UPC values helped improve the overall accuracy (i.e., both precision and recall)

of the matcher.

Next I tried to resolve R3 errors. I observed that in many of the recall errors, the MPN values

of the Walmart and vendor products were almost matching except for punctuations (e.g., hyphens)

and leading zeroes. For example, one recall error had “ENST-213Pink” and “ENST-213-Pink” as

MPN values in the Walmart and vendor products respectively. Another recall error had “08873”

and “8873” as MPN values in the Walmart and vendor products respectively. Note that since

we were using “exact” match as the only feature on MPN, these subtle differences would not be

captured by this feature. So to address R3 errors, I wrote a custom feature that would first clean

MPN values of punctuations and leading zeroes, then perform an “exact” match. I retrained a
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Figure 3.20: An example of R5 error category.

matcher using this new feature. This matcher M6 obtained a precision of 99.55% and a recall of

95.87%. Precision errors increased from 20 to 26 and recall errors went down form 303 to 248.

On analyzing the 6 additional false positives introduced by M6, I realized that my naı̈ve clean-

ing of MPN values can potentially introduce many false positives as the position of punctuations

(e.g., hyphens) matters. For example, “A65-06” and “A6-506” are MPN values of two very differ-

ent products. So I discarded the new feature and reverted to matcher M5.

As a last debugging step, I wrote a manual rule to improve the recall. From my manual inspec-

tion of a few hundreds of pairs, I had observed that if both UPC and MPN values are identical for a

product pair, then that pair is a “match”. I added a manual rule (encoding this domain knowledge)

to matcher M5 to obtain a new matcher M7. M7 had the same precision of 99.65% as M5 (thereby

showing that my rule did not introduce any false positives) but an improved recall of 95.30%. The

recall errors went down from 303 to 282.

M7 was my final matcher. Figure 3.21 summarizes my debugging efforts, i.e., how I iteratively

improved the data (e.g., by fixing incorrect labels), features, and matcher.

Final Results: My final matcher M7 obtained a precision of 99.65% and a recall of 95.30% on

test data. Since I performed debugging by looking at the test data, I collected another set of 28K

labeled pairs (as my final test data) and applied M7 on it. M7 obtained a precision of 98.45% and

a recall of 94.03% thereby suggesting that M7 achieved high matching accuracy.
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Figure 3.21: Iteratively improving the data, features, and matcher.

Revising Walmart’s Existing Solution: The precision/recall of my final matcher on the newly

created test data of 28K pairs was significantly higher than Walmart’s solution on the same test

data. (For confidentiality purposes I cannot disclose the exact numbers.) As a result, some of my

findings (e.g., cleaning the data, fixing the labels, and adding custom features) were incorporated

into their existing solution. This significantly improved the system in production: increasing recall

by 34 percentage points while reducing precision only slightly by 0.75 percentage points.

3.6 Lessons Learned and the Inception of Magellan

During the course of the development and evaluation of Rmony we learned the following main

lessons:

1. Proxy debugging: The case study of product matching at Walmart using Rmony suggested

a new debugging method. To debug a complex system, we can debug a simpler one and then

transfer the findings where appropriate. For example, to debug Walmart’s complex black-box

learning-based solution, I first debugged my rule-based matcher in Rmony and then transferred

the findings. This “proxy debugging” is promising (as demonstrated in Section 3.5) as it can

uncover problems in data, labels, and features. Of course, it cannot help with errors specific to

the complex system. But once “low hanging” errors have been debugged, we can better focus on

errors specific to the complex system.
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2. A declarative, operator-driven end-to-end EM system may not be a good idea: Most

current works on EM systems (e.g., Ajax [49]) have tried to build a declarative framework. These

works first identify a small set of core operators. All analyst actions are then compiled into a

workflow of these operators. The workflow is then optimized and executed.

We tried this in Rmony but found it hard to come up with a small set of core operators that can

capture all user actions. For example, there are so many debugging actions that the analysts may

want to do, it is not clear how to represent all of them using a a small set of core operators. Also,

some operators are human-centric such as exploring a data set. It is not clear how to represent

them in a workflow. As a result we found it very hard to extend the conceptual model of Rmony

to incorporate debugging and exploration activities.

3. Need a different approach to building EM management systems: Our work suggested

a different approach to building EM management systems. We should first distinguish between

the development and production stages. For the development stage, the goal is to come up with a

good workflow (e.g., accurate) that can then be executed in the production stage. Finding a good

workflow is akin to data mining or data analysis. There is no clear small set of core operators.

Instead people use a rich range of commands in a data analysis stack, such as the Python data

analysis stack.

So we propose that we develop the development stage of an EM system on top of the Python

data analysis stack, by developing as many commands as necessary. The production stage can

probably benefit from compiling and optimizing the workflow, as done in prior work.

4. Need a methodology for the analysts: Our work suggested that we need a methodology for

analysts to use an EM system. There are many questions that remain unanswered. What actions

should an analyst perform? In what order? How should she debug? Our current debugging solution

is iterative: analyze precision and recall errors, then modify data, labels, and matcher accordingly.

Is this a good approach? We need to explore these questions systematically.
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Magellan: Some of these lessons have led to the inception of Magellan [69], an open-source EM

management system situated within the PyData ecosystem. Magellan adopts a different approach

to building EM management systems. This approach is novel in several important aspects.

First, Magellan provides a methodology to users in the form of how-to guides which guide

users through the EM workflow, step by step. Second, it provides automated tools to address the

“pain points” of the steps, and these tools seek to cover the entire EM workflow.

Finally, the tools are built on top of the Python data analysis and Big Data stacks. Magellan

proposes that users solve an EM scenario in two stages. In the development stage users find an

accurate EM workflow using data samples. In the production stage users execute this workflow on

the entirety of data. The development stage is akin to data analysis. So Magellan builds tools for

this stage on top of Python data analysis stack, which includes packages such as pandas, scikit-

learn, matplotlib, etc. The production stage on the other hand focuses on scalability. So Magellan

develops tools for this stage on top of the Python Big Data stack, which includes packages such as

PyDoop, PySpark, mrjob, etc.

3.7 Related Work

Many EM systems are available both commercially and non-commercially (see Chapter 10 in

[27] for a detailed overview and [70] for a comparison).

Commercial systems include industry leaders (e.g., IBM InfoSphere [3], Informatica Data

Quality [4], SAS Data Quality [8] and Oracle Enterprise Data Quality [6]) and recent players

(e.g., Tamr [10]). One limitation of most of these systems is that they support EM only as a small

part of a bigger data cleaning/integration pipeline. As a result, the support for EM is often limited.

Non-commercial systems include D-Dupe [21], Dedoop [67], Dedupe, Dude [40], Febrl [26],

NADEEF, OYSTER, pydedupe, RecordLinkage, SERF [18], Silk, TAILOR [43], etc. (See [27] for

more.)

Rmony is distinguished in three aspects. First, it has extensive support for rules. Second, it

is designed for the “non-technical” user (e.g., data analyst). Third, it seeks to cover critical but
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often-ignored steps (e.g., debugging) of the EM pipeline. So next we compare EM systems with

Rmony with respect to the above three aspects:

• Support for rules: Most commercial systems and many non-commercial systems (e.g., DuDe,

NADEEF, OYSTER, pydedupe, Silk) support rules. Most of these systems support manual

rule creation. However very few systems (e.g., Tamr) support learning rules using training

data, and almost none (except NADEEF) support learning rules using active learning.

• Support for “non-technical” users: Most commercial systems and some non-commercial sys-

tems (e.g., Dedoop, Febrl, NADEEF, TAILOR) have rich standalone or Web-based GUI with

excellent visualization capabilities. They are still very difficult to use for a “non-technical”

user because they do not automate the technically hard steps. For example, none of the sys-

tems supports automatic feature generation. Commercial systems however sell consulting

services (sometimes called “data stewarding”) to help “non-technical” users.

• Support for debugging: There is very limited or no support for debugging in these systems.

Support for debugging (if present) is limited to showing which EM rules fire on a given tuple

pair. Rmony on the other hand has a much richer set of debugging capabilities.

Many declarative data cleaning systems (e.g., Ajax [49], HIL [60], Dedupalog [14], Potter’s

Wheel [89], BigDansing [64], and Wisteria [56]) have also been proposed. These systems differ

from Rmony in at least three aspects. First, they define operators for EM at a very coarse gran-

ularity. For example, feature vector generation is not modeled as an operator in these systems.

As another example, Ajax uses just a single operator “Match”, and Wisteria uses two operators

“SimilarityJoin” (for blocking) and “Filtering” (for matching) to model the EM process. Second,

the data cleaning workflows in these systems must be manually specified by the user using their

domain-specific languages; there is little provision to learn the workflows. Third, these systems

are designed to optimize and execute already known workflows (e.g., in production stage), but not

for discovering workflows (e.g., in development stage). Rmony on the other hand is seeks to help

the user discover an accurate EM workflow in the development stage.
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Prior work has also addressed debugging learning-based models. They help users build, inspect

and visualize specific models (e.g., decision trees [12], Naı̈ve Bayes [16], SVM [23], ensemble

models [99]). But, unlike Rmony, they do not allow users to examine errors and inspect raw

data. Another related work [31] queries a complex model (e.g., a trained neural network) to obtain

input-output pairs which serve as training examples to build a decision tree. This decision tree is an

approximate but more interpretable representation of the complex model. We believe that this work

is complementary to ours. In the future, when we extend Rmony to train learning-based matchers

(e.g., SVM, neural networks), we can potentially use this work to approximate the matcher by a

decision tree, and then extract rules from the tree (using the current techniques).

3.8 Conclusion

In this chapter, we have presented Rmony, a rule-based entity matching management system

for the analysts. Using Rmony an analyst can either manually write rules or Rmony can auto-

matically suggest rules using training data or active learning. We present evaluation of Rmony

with students at UW-Madison and analysts at Walmart to show that Rmony is effective. Finally,

we discuss the important lessons learned during the course of development of Rmony. Some of

these lessons have led to the inception of Magellan, a novel EM management system in the Python

ecosystem.

Rmony has opened up many interesting future research directions, some of which are being

pursued in Magellan, but a lot more needs to be done. These include extending the system with

more capabilities (e.g., crowdsourcing, cloud-based service, etc.), handling more EM scenarios

(e.g., linking a table into a knowledge base), handling more EM workflows (e.g., information

extraction and data cleaning before performing EM), and providing more methodologies (e.g.,

how-to guides) for various critical steps (e.g., blocking, sampling, debugging) to users. Finally, we

hope that Rmony (and now Magellan) will motivate the research community to devote far more

efforts toward system building in the future.
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Chapter 4

Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching

4.1 Introduction

Corleone demonstrates that hands-off crowdsourcing for EM is promising for many EM set-

tings, e.g., EM as a service on the cloud. But it suffers from a major limitation: it does not scale to

large tables, as the following example illustrates.

Example 4.1.1. We are currently seeking to provide EM services to hundreds of domain scientists.

Such users often do not know how to, or are reluctant to, deploy EM systems locally (such systems

often require a Hadoop cluster, as we will see). So we want to provide such EM services on the

cloud, supported in the backend by a cluster of machines.

During any week, we may have tens of submitted EM tasks running. Many of these tasks

require blocking, but the users do not know how to write blocking rules (which often involve string

similarity functions, e.g., edit distance, Jaccard, TF/IDF), and we simply cannot afford to ask our

two busy developers to assist the users in all of these tasks.

Thus, we planned to deploy the hands-off solution of Corleone. A user can just submit the two

tables to be matched on a Web page and specify the crowdsourcing budget. We will run Corleone

internally, which uses the crowd to match. (In fact, if users do not want to engage the crowd, they

can label the tuple pairs themselves. Most users we have talked to, however, prefer if possible to

just pay a few hundreds crowdsourcing dollars to obtain the result in 1-2 days.)

As described, Corleone seems perfect for our situation. Unfortunately, it executes a single-

machine in-memory EM workflow, and does not scale at all to tables of moderate and large sizes.

Our users often need to match tables of 50-200K tuples each (and some have tables of millions
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of tuples), e.g., an applied economist studying non-profit organizations in the US must match two

lists of hundreds of thousands of organizations. For such tables, Corleone took weeks, a simply

unacceptable time (and use of machine resources).

The above example shows that Corleone is highly promising for certain EM situations, e.g.,

EM as a service on the cloud, but that it is critical to scale Corleone up to large tables, to make

such cloud-based services a reality.

To address this problem, in this chapter we introduce Falcon (fast large-table Corleone), a

solution that scales up Corleone to tables of millions of tuples.

We begin by identifying three reasons for Corleone’s being slow. First, it often performs

too many crowdsourcing iterations without a noticeable accuracy improvement, resulting in large

crowd time and cost. Second, many of its machine activities take too long. In particular, in the

blocking step Corleone simply applies the blocking rules to all tuple pairs in the Cartesian product

of the two input tables A and B. This is clearly unacceptable for large tables. Finally, when

Corleone performs crowdsourcing, the machines sit idly, a waste of resources. If we can “mask

the machine time” by scheduling as many machine activities as possible during crowdsourcing, we

may be able to significantly reduce the total runtime.

We then describe how Falcon addresses the above problems. It is difficult to address all three

simultaneously. So Falcon provides a relatively simple solution to cap the crowdsourcing time and

cost to an acceptable level (for now), then focuses on minimizing and masking machine time.

Challenges: Realizing the above goals raised three challenges. First, we do not want to scale up

a monolithic stand-alone EM workflow. Rather, we want a solution that is modular and extensible

so that we can focus on scaling up pieces of it, and can easily extend it later to more complex EM

workflows. To address this, we introduce an RDBMS-style execution and optimization framework,

in which an EM task is translated into a plan composed of operators, then optimized and executed.

Compared to traditional RDBMSs, this framework is distinguished in that its operators can use

crowdsourcing.

The second challenge is to provide efficient implementations for the operators. We describe a

set of implementations in Hadoop that significantly advances the state of the art. We focus on the
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blocking step as this step consumes most of the machine time. Current Hadoop-based solutions to

execute blocking rules either do not scale or have considered only simple rule formats. We develop

a solution that can efficiently process complex rules over large tables. Our solution uses indexes to

avoid enumerating the Cartesian product, but faces the problem of what to do when the indexes do

not fit in memory. We show how the solution can nimbly adapt to these situations by redistributing

the indexes and associated workloads across the mappers and reducers.

Finally, we consider the challenge of optimizing EM plans. We show that combining machine

operations with crowdsourcing introduces novel optimization opportunities, such as using crowd

time to mask machine time. We develop masking techniques that use the crowd time to build

indexes and to speculatively execute machine operations. We also show how to replace an operator

with an approximate one which has almost the same accuracy yet introduces significant additional

masking opportunities. To summarize, our main contributions are:

• We show that for important emerging topics such as EM as a cloud service, Corleone is

ideally suited, but must be scaled up to make such services a reality.

• We show that an RDBMS-style execution and optimization framework is a good way to

address scaling for crowdsourced EM, and we develop the first end-to-end solution to scale

up hands-off crowdsourced EM.

• We define a set of operators and plans for crowdsourced EM that uses machine learning.

• We develop a Hadoop-based solution to execute complex rules over the Cartesian product

of two tables (without materializing the Cartesian product), a problem that arises in many

settings (not just in EM). The solution significantly advances the state of the art.

• We develop three novel optimization techniques to mask machine time by scheduling certain

machine activities during crowdsourcing activities.

Finally, extensive experiments with real-world data sets (using real and synthetic crowds) show

that Falcon can efficiently perform hands-off crowdsourced EM over tables of 1.0M - 2.5M tuples

at the cost of $54 - $65.5.
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4.2 Related Work

Parallel Execution of DAGs of Operators: Several pioneering works have developed platforms

for the specification, optimization, and parallel execution of directed acyclic graphs (DAGs) of

operators (e.g., [64, 92, 62, 53]).

While highly scalable for many applications, these platforms are not applicable to our context

for two reasons. First, it is difficult to encode our workflows, which are specific to learning-based

EM, in their DAG languages. For example, some platforms consider only key-based blockers, i.e.,

grouping tuples with the same key into blocks [64]. Falcon however learns a more general kind of

blockers called rule-based blockers, which cannot be easily encoded using the current operators of

these platforms. Similarly, crowd-based active learning (to learn blockers/matchers) is common in

Falcon, but difficult to encode in the current platforms.

Second, even if we can encode our workflows (using UDFs, say), the platforms cannot execute

them scalably because they do not yet have scalable solutions for rule-based blocking. In most

cases, rule-based blocking will be treated as a “blackbox” UDF to be applied to all tuple pairs in

the Cartesian product of the input tables, an impractical solution.

RDBMS-Style Solutions for Data Cleaning: Several such solutions have been developed, e.g.,

Ajax, BigDansing, and Wisteria [49, 64, 56]. Compared to these works, Falcon is novel in

four aspects. First, Falcon focuses on learning-based EM (which uses active learning to learn

blockers/matchers). It provides eight “atomic” operators that we believe are appropriate for (a)

modeling such EM processes, (b) facilitating efficient operator implementation, and (c) providing

opportunities for inter-operator optimization. In contrast, current works either do not consider

learning-based EM [64], or define operators at granularity levels that are too coarse for the above

purposes [49, 56]. For example, feature vector generation, a very common step in learning-based

EM, is not modeled as an atomic operation. As another (extreme) example, Ajax uses just a single

operator called Match to model the entire EM process.

Second, current works consider only certain types of blocking, such as key-based ones [64].

However, such blocking types are not accurate for many real-world data sets, due to dirty/missing
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data (see Section 4.3.2). As a result, Falcon considers a far more general type of blocking called

rule-based blocking and develops efficient MapReduce solutions.

Third, current works do not provide comprehensive end-to-end solutions for parallel crowd-

sourced EM. Ajax considers neither parallel processing nor crowdsourcing. BigDansing develops

a highly effective parallel platform but does not consider crowdsourcing. Wisteria crowdsources

only the matching step and provides parallel processing for a limited set of blockers and matchers

(e.g., only for string similarity join-style blockers). In contrast, Falcon can handle more general

types of blockers and matchers. It crowdsources and provides parallel processing (where neces-

sary) for all steps of the EM process. It also provides effective novel optimizations, e.g., masking

machine time using crowd time.

Finally, both Ajax and BigDansing require users to manually specify blockers/matchers. In

contrast, Falcon automatically learns them. Wisteria also considers learning, but it supports only

learning the matchers.

Blocking: Key-based blocking (KBB) partitions tuples into blocks based on associated keys (the

subsequent matching step then considers only tuples within each block). As such, KBB is highly

scalable and is employed in many recent works [64, 42, 111, 33, 29]. Our experience however

suggests that it is not always accurate on real-world data, in that it can “kill off” too many true

matches (see Section 4.3.2). As a result, we elect to use rule-based blocking (RBB), as used in

Corleone. RBB subsumes KBB, i.e., each KBB method can be expressed as an RBB rule. RBB

proves highly accurate in our experiments (Section 4.11), but is challenging to scale. As far as we

can tell, Falcon provides the first MapReduce solution to scale such rules (each being a Boolean

expression of predicates).

Recent work has also examined scaling up sorted neighborhood blocking [66] and meta-blocking

[42, 111], which combines multiple blocking methods in a scalable fashion. Such methods are

complementary to our work here, and can potentially be used in future versions of Falcon.

Similarity Joins: Falcon is also related to scaling up similarity joins (SJs) [101, 110, 93, 109,

102] and theta joins [82]. To avoid examining all tuple pairs in the Cartesian product, work on SJs
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uses inverted indexes [95], prefix filtering [24], partition-based filtering [36], and other pruning

techniques [110] (see [112] for a recent survey). Some have considered special similarity functions

such as Euclidean distance [96] and edit distance [109, 102]. Most works however consider join

conditions of just a single predicate [101, 110] or a conjunction of predicates [73], and develop

specialized solutions for these. In contrast, Falcon develops general solutions to handle far more

powerful join conditions in our blocking rules, which are Boolean expressions of predicates.

Active Learning and Optimizing: Like Falcon, [80] also proposes using active learning to

reduce the number of tuple pairs to be labeled by the crowd. However, it applies learning to the

Cartesian product, and thus does not scale to large tables. The idea of combining and optimizing

crowd- and relational operators is also discussed in [86]. But as far as we know, Falcon is the first

work to do so for crowdsourced EM. Further, some works on optimizing crowd operators have

focused on minimizing cost [78, 87], minimizing crowd latency [57], or studying the trade-offs

between the two [45]. These works are complementary to ours, which focuses on minimizing

the machine time. As far as we know, no other work has proposed the “masking machine time”

optimizations in Section 4.10.2.

Crowdsourced RDBMSs: Finally, works have proposed crowdsourced RDBMSs [48, 78, 85, 86]

and have addressed crowdsourcing enumeration, select, max, count, and top-k queries, among

others (e.g., [100, 84, 55, 76, 34, 83, 11]). Crowdsourced joins (CSJs) which at the heart solve the

EM problem, have been addressed in [48, 77, 78, 45, 104]. Initial CSJ works [48, 77] however

crowdsource all tuple pairs in the Cartesian product of the two tables and hence do not scale.

Recent CSJ works [45, 78] ask users to write filters to reduce the number of tuple pairs to be

crowdsourced. Such hand-crafted filters can be difficult to write and using them severely limits the

applicability of crowdsourced RDBMSs. Falcon can automatically learn such filters (i.e., blocking

rules) using crowdsourcing, and thus can potentially be used to perform CSJ over large tables.
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Figure 4.1: The EM workflow of Corleone.

4.3 Problem Definition

Chapter 2 describes Corleone in detail. In this section, we briefly describe the EM workflows

considered by Corleone and Falcon, analyze Corleone’s limitations, and define the problem

considered by Falcon.

4.3.1 The EM Workflows of Corleone

Many types of EM tasks exist, e.g., matching across two tables, within a single table, matching

into a knowledge base, etc. Corleone (and Falcon) consider one such kind of tasks: matching

across two tables. Specifically, given two tables A and B, Corleone applies the EM workflow in

Figure 4.1 to find all tuple pairs (a ∈ A, b ∈ B) that match. This workflow consists of four main

modules: Blocker, Matcher, Accuracy Estimator, and Difficult Pairs’ Locator.

The Blocker generates and applies blocking rules to A× B to remove obviously non-matched

pairs (Figure 4.2.b shows two such rules). Since A × B is often very large, considering all tuple

pairs in it is impractical. So blocking is used to drastically reduce the number of pairs that subse-

quent modules must consider. The Matcher uses active learning to train a random forest classifier

[22], then applies it to the surviving pairs to predict matches. The Accuracy Estimator computes

the accuracy of the Matcher. The Difficult Pairs’ Locator finds pairs that most likely the current

Matcher has matched incorrectly. The Matcher then learns a better random forest to match these

pairs, and so on, until the estimated matching accuracy no longer improves.

Corleone is distinguished in that the above four modules use no developers, only crowdsourc-

ing. For example, to perform blocking, most current works would require a developer to examine

Tables A and B to come up with heuristic blocking rules (e.g., “If prices differ by at least $20,
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then two products do not match”), code the rules (e.g., in Python), then execute them over A and

B. In contrast, the Blocker in Corleone uses crowdsourcing to learn such blocking rules (in a

machine-readable format), then automatically executes those rules. Similarly, the remaining three

modules also heavily use crowdsourcing but no developers.

Corleone can also be run in many different ways, giving rise to many different EM workflows.

The default is to run multiple iterations until the estimated accuracy no longer improves. But the

user may also decide to just run until a budget (e.g., $300) has been exhausted, or to run just one

iteration, or just the Blocker and Matcher, or just the Matcher if the two tables are relatively small,

making blocking unnecessary, etc.

4.3.2 The EM Workflows Considered by Falcon

As a first step, Falcon will consider EM workflows that consist of just the Blocker followed by

the Matcher, or just the Matcher. (Virtually all current works consider similar EM workflows.) As

we will see, these workflows already raise difficult scaling challenges. Considering more complex

EM workflows is future work.

We now briefly describe the Blocker and the Matcher, focusing only on the aspects necessary

to understand Falcon (see Chapter 2 for more details).

The Blocker: The key idea underlying this module is to use crowdsourced active learning to

learn a random forest based matcher (i.e., binary classifier) M [22], then extract certain paths of

M as blocking rules.

Specifically, learning on A×B is impractical because it is often too large. So this module first

takes a small sample of tuple pairs S from A × B (without materializing the entire A × B), then

uses S to learn matcher M .

To learn, the module first trains an initial random forest matcher M , uses M to select a set

of controversial tuple pairs from sample S, then asks the crowd to label these pairs as matched /

no-matched. In the second iteration, the module uses these labeled pairs to re-train M , uses M to

select a new set of tuple pairs from S, and so on, until a stopping criterion has been reached.
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Figure 4.2: (a) A decision tree learned by Corleone and (b) blocking rules extracted from the tree.

At this point the module returns a final matcher M , which is a random forest classifier con-

sisting of a set of decision trees. Each tree when applied to a tuple pair will predict if it matches,

e.g., the tree in Figure 4.2.a predicts that two book tuples match only if their ISBNs match and the

number of pages match. Given a tuple pair p, matcher M applies all of its decision trees to p, then

combines their predictions to obtain a final prediction for p.

Next, the module extracts all tree branches that lead from the root of a decision tree to a “No”

leaf as candidate blocking rules. Figure 4.2.b shows two such rules extracted from the tree in

Figure 4.2.a. The first rule states that if two books do not agree on ISBNs, then they do not match.

Next, for each extracted blocking rule r, the module computes its precision. The basic idea is

to take a sample T from S, use the crowd to label pairs in T as matched / no-matched, then use

these labeled pairs to estimate the precision of rule r. To minimize crowdsourcing cost and time,

T is constructed (and expanded) incrementally in multiple iterations, only as many iterations as

necessary to estimate the precision of r with a high confidence (see Chapter 2).

Finally, the Blocker applies a subset of high-precision blocking rules to A × B to remove

obviously non-matched pairs. The output is a set of candidate tuple pairs C to be passed to the

Matcher.

The Matcher: This module applies crowdsourced active learning on C to learn a new matcher

N , in the same way that the Blocker learns matcher M on sample S. The module then applies N

to match the pairs in C.

Reasons for Not Using Key-Based Blocking: Recall that we plan to learn blocking rules such

as those in Figure 4.2.b. As we will see in Section 4.7, it is a major challenge to execute such rules
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over two tables A andB efficiently, without enumerating the entire Cartesian product as Corleone

does.

Given this, one may ask why consider rule-based blocking (RBB) at all. In particular, many

recent works have used key-based blocking (KBB, see the related work section), where tuples are

grouped into blocks based on associated keys, and only tuples in each block are considered in the

subsequent matching step. As such, KBB is highly scalable.

It turns out that KBB does not work well for many data sets, due to dirty data, variations in

data values, and missing values. For example, on the Products, Songs, and Citations data sets in

Section 4.11, our extensive effort at KBB produces recalls of 72.6%, 98.6%, and 38.8% (recall

measures the fraction of true matches that survive the blocking step; ideally we want 100% recall).

In contrast, rule-based blocking produces recalls of 98.09%, 99.99%, and 99.67%.

Thus, we decide to use rule-based blocking. This does not mean we execute blocking rules on

the materialized Cartesian product, like Corleone. Instead, we analyze the rules, build indexes

over the tables, then use them to quickly identify only a small fraction of tuple pairs to which

the rules should be applied (see Section 4.7). In particular, it can be shown that when a blocking

rule performs key-based blocking (e.g., the first rule in Figure 4.2.b, “(isbn match = N) → No”,

considers only tuples that share the same ISBN), our solution in Section 4.7 reduces to current

key-based blocking solutions on MapReduce.

4.3.3 Limitations of Corleone

Corleone is highly promising because it uses only crowdsourcing to achieve high EM accuracy

at a relatively low cost. However it suffers from a major limitation: it does not scale to large tables.

The largest table pair considered by Corleone is 2.6K tuples × 64K tuples (see Chapter 2).

Several real-world applications that we have been working with, however, must match tables

ranging from 100K to several millions of tuples. On two tables of 100K tuples each, Corleone

had to be stopped after more than a week, with no result. Clearly, we must drastically scale up

Corleone to make it practical.
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To scale, our analysis reveals that we must address three problems. First, we must minimize the

crowd time of Corleone. As described earlier, the Blocker and Matcher crowdsource in iterations

(until reaching a stopping criterion). Each iteration requires the crowd to label a certain number of

tuple pairs (e.g., 20). The number of iterations can be quite large (e.g., close to 100 for the Blocker

in certain cases), thus incurring a large crowd time (and cost).

Second, we must minimize the machine time of Corleone. The single biggest “consumer” of

machine time turned out to be the step of executing the blocking rules. For this step Corleone

applies the rules to each tuple pair in A× B. This clearly does not scale, e.g., two tables of 100K

tuples each already produce 10 billion tuple pairs, too large to be exhaustively enumerated. Given

the single-machine in-memory nature of Corleone, certain other steps also consume considerable

time, e.g., the set C of tuple pairs output by the Blocker is often quite large (often in the tens of

millions), making active learning on C very slow.

Finally, Corleone performs crowdsourcing and machine activities sequentially. For example,

in each iteration of active learning in the Blocker, the machine is idle while Corleone waits for the

crowd to finish labeling a set of tuple pairs. Thus, we should consider masking the machine time,

by scheduling as many machine activities as possible during crowdsourcing. As we will see in

Section 4.10.2, this raises very interesting optimization opportunities, and can significantly reduce

the total execution time.

4.3.4 Goals of Falcon

It is difficult to address all of the above performance factors simultaneously. So as a first step,

in Falcon we will develop a relatively simple solution to keep the crowd time (and cost) at an

acceptable level (for now), then focus on minimizing and masking machine time.

Keeping Crowd Time Manageable: The total crowd time tc is the sum of tab, crowd time for

active learning of the Blocker, ter, crowd time for evaluating the blocking rules of the Blocker, and

tam, crowd time for active learning of the Matcher.

We observe that active learning in the Blocker and Matcher can take up to 100 iterations.

Yet after 30 iterations or so the accuracy of the learned matcher stays the same or increases only
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minimally. As a result, in Falcon we stop active learning when the stopping criterion is met or

when the number of iterations has reached a pre-specified threshold k (currently set to 30). This

caps the crowd times tab and tam. As for ter, we can show that:

Proposition 1. The procedure of evaluating blocking rules (described in Chapter 2) is guaranteed

to execute at most 20 iterations per rule.

Proof. We prove that evaluating the blocking rules is guaranteed to execute at most 20 iterations

per rule. Section 2.4.2 describes in detail the algorithm for evaluating a set of rules V by the crowd.

Briefly, for each rule R ∈ V , the following 3-step loop is executed:

1. Randomly select b examples in cov(R, S), get these examples labeled by crowd, then add

the labeled examples to set X (initially empty).

2. Let |cov(R, S)| = m, |X| = n, and n− be the number of examples in X that are labeled

“not matched”. Estimate the precision of rule R over S as P = n−/n, with an error margin

ε = Z(1−δ)/2

√(
P (1−P )

n

) (
m−n
m−1

)
.

3. If P ≥ Pmin and ε ≤ εmax then stop and retain R. If (a) (P + ε) < Pmin, or (b) ε ≤ εmax

and P < Pmin, then stop and drop R. Otherwise return to Step 1.

Note that for each rule, this algorithm proceeds in iterations and stops either by retaining or

dropping the rule. Also observe (from Step 3) that if ε ≤ εmax, then the algorithm either retains

the rule (if P ≥ Pmin) or drops the rule (if P < Pmin). In either case, it terminates the iterations

for the rule.

So we can compute the minimum n that will guarantee ε ≤ εmax as follows:

ε = Z(1−δ)/2

√
P (1− P )

n
· m− n
m− 1

(from step 2 of algorithm)

≈ Z(1−δ)/2

√
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Corleone (and hence Falcon) uses the following parameter setting: εmax = 0.05, and δ =

0.95. With this parameter setting, we get n ≥ 384.

This means that when at least 384 examples are labeled by the crowd, it is guaranteed that

ε ≤ εmax and hence the algorithm retains or drops the rule. In the current setting, to get 384

examples labeled, Falcon will run for 20 iterations (since it gets b = 20 examples labeled by the

crowd per iteration).

Hence, the procedure for evaluating blocking rules in Falcon is guaranteed to execute at most

20 iterations per rule.

As a result, we can estimate an upper bound on the total crowd time (regardless of the table

sizes):

Proposition 2. For active learning in the Blocker and Matcher, let k be the upper bound on the

number of iterations, q1 be the number of pairs to be labeled in each iteration, and ta be the

average time it takes the crowd to label a pair (e.g., the time it takes to obtain three answers from

the crowd, then take majority voting). For rule evaluation in the Blocker, let n be the number of

rules to be evaluated, and q2 be the number of pairs to be labeled in each iteration. Then the total

crowd time tc is upper bounded by ta(2kq1 + 20nq2).

In practice, when crowdsourcing tables of several million tuples each, we found tc in the range

9h 59m - 15h 48m on Mechanical Turk. While still high, this time is already acceptable in many

settings, e.g., many users are satisfied with letting the system run overnight. Thus, we turn our at-

tention to reducing machine time, which poses a far more serious problem as it can easily consume

weeks.

Minimizing and Masking Machine Time: Let tm be the total machine time (i.e., the sum of the

times of all machine activities). The total time of Corleone is (tc + tm). We seek to minimize

this time by (a) minimizing tm, and (b) masking, i.e., scheduling as many machine activities as

possible during crowd activities. This will result in a (hopefully far smaller) total time (tc + tu),

where tu < tm is the total time of machine activities that cannot be masked.
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We will seek to preserve the EM accuracy of Corleone, which are shown to be already quite

high in a variety of experiments (see Chapter 2). Yet we will also explore optimization techniques

that may reduce this accuracy slightly, if they can significantly reduce (tc + tu).

Reasons for Focusing on Machine Time: As hinted above, we focus on machine time for several

reasons. First, for now machine time is the main bottleneck. It often takes weeks on moderate data

sets, rendering Corleone unusable. On the other hand, crowd time (say on Mechanical Turk) is

already in the range of being acceptable for many applications. So our first priority is to reduce

machine time to an acceptable range (say hours), to be able to build practical systems.

Second, Section 4.11 shows that we have achieved this goal, reducing machine time from

weeks to 52m - 2h 32m on several data sets. Since crowd time on Mechanical Turk was 11h 25m -

13h 33m, it may appear that the next goal should be to minimize crowd time because it makes up

a large portion of total time. This however is not quite correct. As we discuss in Section 4.11.1,

crowd time can vary widely depending on the platform. In fact, we describe an application on

drug matching that uses in-house crowds, where crowd time was only 1h 37m, but machine time

was 2h 10m, constituting a large portion (57%) of the total run time. For such applications further

optimizing machine time is important.

Finally, once we have made major progress on reducing machine time, we fully intend to focus

on crowd time, potentially using the techniques in [57].

4.4 The Falcon Solution

4.4.1 Adopting an RDBMS Approach

Recall that Falcon considers EM workflows consisting of the Blocker followed by the Matcher,

or just the Matcher if the tables are small. A straightforward solution is to just optimize these two

stand-alone monolithic EM workflows.

This solution however is unsatisfying. First, soon we may want to add more operators (e.g.,

the Accuracy Estimator), resulting in more kinds of EM workflows. Second, we focus for now

on machine time, but soon we may consider other objectives, e.g., minimizing crowd time/cost,
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maximizing accuracy, etc. In fact, users often have differing preferences for trade-offs among

accuracy, cost, and time. It would be difficult to extend an “opaque” solution focusing on stand-

alone monolithic EM workflows to such scenarios. Finally, the Blocker and Matcher actually share

common operations, e.g., crowdsourced active learning. An opaque solution makes it hard to factor

out and optimize such commonalities.

For these reasons, we propose that Falcon adopt an RDBMS approach. Specifically, (1) we

will identify a set of basic operators that underlie the Blocker and Matcher (as well as constitute a

big part of other modules, e.g., Accuracy Estimator). We will compose these operators to form EM

workflows. (2) We will develop efficient implementations of these operators, using Hadoop. And

(3) we will develop both intra- and inter-operator optimization techniques for the resulting EM

workflow, focusing on rule-based optimization for now (and considering cost-based optimization

in the future).

We now define a set of operators and show how to compose them to form EM workflows,

henceforth called EM plans. Sections 4.5-4.10 describe efficient implementations of operators,

then plan generation, execution, and optimization.

4.4.2 Operators

We have defined the following eight operators that we believe are sufficient to compose a wide

variety of EM plans.

sample pairs: takes two tables A,B and a number n, and outputs a set S of n tuple pairs

(a, b) ∈ A×B. This operator is important because we want to learn blocking rules on the sample

S instead of A×B, as learning on A×B is impractical for large A and B.

gen fvs: takes a set S of tuple pairs and a set F of m features, then converts each pair (a, b) ∈ S

into a feature vector 〈f1(a, b), . . . , fm(a, b)〉, where each feature fi ∈ F is a function that maps

(a, b) into a numeric score. For example, a feature may compute the edit distance between the

values of the attributes title of a and b. This operation is important because we want to learn
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blocking rules (during the blocking stage) and a matcher (during the matching stage), and we need

feature vectors to do the learning. (Section 4.10.1 discusses how Falcon generates features.)

al matcher: Suppose we have taken a sample S fromA×B and have converted S into a set S ′ of

feature vectors. This operator performs crowdsourced active learning on S ′ to learn a matcher M .

Specifically, it trains an initial matcher M , uses M to select a set of controversial pairs from S ′,

asks the crowd to label these pairs, uses them to improve M , and so on, until reaching a stopping

criterion.

get blocking rules: extracts a set of blocking rules from a matcher M (typically output by

operator al matcher). This operator assumes that M is such that we can extract rules from it. To

be concrete, Falcon will assume that M is a random forest, from which we can extract a set of

blocking rules {R1, . . . , Rn} such as those shown in Figure 4.2.b. Each rule Ri is of the form

pi1(a, b) ∧ . . . ∧ pimi
(a, b)→ drop (a, b), (4.1)

where each predicate pij(a, b) is of the form [f ij(a.x, b.y) opij v
i
j]. Here f ij is a function that computes

a score between the values of attribute x of tuple a ∈ A and attribute y of tuple b ∈ B (e.g., string

similarity functions such as edit distance, Jaccard). Thus predicate pij compares this score via

operation opij (e.g., =, <, ≤) with a value vij .

eval rules: takes a set of blocking rules, computes their precision and coverage, then retains

only those with high precision and coverage. Precisions are computed using crowdsourcing. This

operator is important because some blocking rules may be imprecise, i.e., eliminating too many

matching tuples when applied to A×B.

select opt seq: Let R be the set of n blocking rules output by eval rules. Then there are∑n
k=0

(
n
k

)
∗ k! possible rule sequences, each containing a subset of rules in R. Executing a rule

sequence R̄ on a tuple pair means executing each rule in R̄ in that order, until a rule “fires” or all

rules have been executed. It turns out that the rule sequences of R can vary drastically in terms

of precision, selectivity, and run time. Thus this operator returns a rule sequence R̄∗ from R that

when applied to A×B would minimize run time while maximizing precision and selectivity (i.e.,
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Figure 4.3: The two plan templates used in Falcon.

it would produce a set of tuple pairs C that is as small as possible and yet contains as many true

matching pairs as possible).

apply blocking rules: applies a sequence of blocking rules R̄ to two tables A and B, producing

a set of tuple pairs C ⊆ A×B to be matched in the matching stage. Applying R̄ in a naı̈ve way to

all pairs in A × B is clearly impractical. So this operator uses indexes to apply R̄ only to certain

tuple pairs, on a Hadoop cluster (see Section 4.7.3).

apply matcher: applies a matcher to a set of tuple pairs C, where each pair is encoded as a

feature vector, to predict “matched”/“not matched” for each pair in C.

4.4.3 Composing Operators to Form Plans

The above eight operators (together with relational operators such as selection, join, and pro-

jection) can be combined in many different ways to form EM plans. As a first step, Falcon will

consider the two common plan templates in Figure 4.3, which correspond to the EM workflows

that use both the Blocker and Matcher, and just the Matcher, respectively.

The first plan template (Figure 4.3.a, where operators with crowd symbol use crowdsourcing)

performs both blocking and matching. Specifically, we apply sample pairs to Tables A and B

to obtain a sample S, then convert S into a set of feature vectors S ′. Next, we do crowdsourced

active learning on S ′ to obtain a matcher M . Next we extract blocking rules R from M , then use

crowdsourcing to evaluate and retain only the best rules E. Next, we select the best rule sequence

F from E, then apply F on Tables A and B to obtain a set of tuple pairs C. Finally, we convert C
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into a set of feature vectors C ′, do crowdsourced active learning on C ′ to learn a matcher N , then

apply N to match pairs in C ′.

The second plan template (Figure 4.3.b) performs only matching. It computes the Cartesian

product C of A and B, converts C into a set of feature vectors C ′, does crowdsourced active

learning on C ′ to learn a matcher N , then applies N to match pairs in C ′.

Falcon selects the first plan template if it deems TablesA andB sufficiently large, necessitating

blocking, otherwise it selects the second plan template (see Section 4.10.1).

In the next few sections we describe how to implement the operators efficiently. First we

focus on the four operators sample pairs, select opt seq, apply blocking rules, and gen fvs as

implementing them is most challenging. Then we discuss the rest of the operators.

4.5 Sampling Input Tables

The sample pairs operator samples a set S fromA×B, so that subsequent operators can learn

on S. To sample, first we must decide on a size. We want S (when encoded as a set of feature

vectors) to fit in memory, and large enough so that we can learn effective blocking rules, yet not

too large so that learning would be slow. Our experiments show |S| in the range 500K-1M to be

reasonable (see Section 4.11.4).

Let n be the size of S. We now consider sampling n pairs from A × B. Naı̈vely, we can

randomly sample tuples from A and B, then take their Cartesian product to be S. Random tuples

from A and B however are unlikely to match, so S may contain very few positive (i.e., matching)

pairs, rendering learning ineffective.

To address this, Corleone randomly samples n/|A| tuples from B (the larger table), then takes

the Cartesian product of these with A to be S. If B has a reasonable number of tuples that have

matches in A and if these tuples are distributed uniformly in B, then this strategy ensures that S

contains a reasonable number of matches.

It turns out that this solution does not work for large A and B. First, if A is larger than n (as

in some of our experiments), the solution is not applicable. Second, even if A is smaller than n,

it may not be much smaller, in which case we sample very few tuples from B. For example, if
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|A| = 500K and n = 1M , then we sample only 2 tuples from B. This can produce very few

matches in S, especially if we unluckily pick two tuples from B that have no matches in A.

To address this, we develop the following solution. First, we create an inverted index on A, the

smaller table. Specifically, we convert each tuple a in A into a document d(a) that contains only

the (white space delimited) tokens in the string attributes of a (we use a procedure that analyzes

the tables to recognize string attributes). Then we build an inverted index I with entries 〈w :

id1, . . . , idk〉, indicating that token w appear in the documents of the tuples id1, . . . , idk in A.

Next, we randomly select n/y tuples from B (where y is a tunable parameter, currently set to

100). For each selected tuple b ∈ B, we select y tuples from A (to be paired with b) as follows.

First, we convert b into a document d(b) that contains only the tokens in the string attributes of

b (similar to the way tuples of A have been converted). Next, we use the inverted index I to

find the set X of tuples a in A whose documents d(a) share at least a token with d(b). We sort

the tuples in X in decreasing order of the number of tokens shared with b, then select the top

y1 = min(y/2, |X|) tuples from X . Next, we randomly select (y − y1) tuples from the remaining

tuples of A. We then pair these y selected tuples with b. The sample S contains all such pairs, for

all n/y selected tuples b in B.

Intuitively, we have constructed S such that for each tuple b selected from B, we have tried to

pair it with (1) roughly y/2 tuples from A that are likely to match (judged by the number of shared

tokens), and (2) roughly y/2 random tuples from A. Thus we try to get a reasonable number of

matches into S yet keep it as representative of A×B as possible.

Section 4.11.4 shows that this simple and fast sampling strategy is highly effective, in that

the blocking rules learned on the samples achieve high recall of 98.09%-99.99% on our data sets

(recall measures the fraction of true matches that survive blocking). We implement this strategy

using two MapReduce jobs, to create the inverted index and to generate the pairs of S, respectively.

4.6 Selecting Optimal Rule Sequence

Given a set of blocking rules R, this operator finds the optimal rule sequence with respect to

precision, selectivity, and run time, which are defined as follows:
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Definition 1. Let X̄ be a rule sequence and Y be a set of tuple pairs. Precision prec(X̄, Y ) is the

fraction of negative predictions X̄ made on Y that are indeed negative. Selectivity sel(X̄, Y ) is

the number of pairs in Y that survive X̄ (which drops all pairs predicted negative) divided by |Y |.

Finally, run time time(X̄, Y ) is the average run time of X̄ on a tuple pair in Y . �

We then define an overall score for X̄ on Y as follows:

score(X̄, Y ) = α ∗ prec(X̄, Y )− β ∗ sel(X̄, Y )− γ ∗ time(X̄, Y ),

where α, β, γ can be tuned by the application, e.g., those that must minimize the matches lost to

blocking can choose a high weight for α, memory-constrained applications that can process only a

small candidate set can choose a high β, whereas real-time applications that must perform blocking

fast can choose a high γ.

Let p(R) be the set of all rule sequences of R. Our problem is to find the rule sequence R̄ ∈

p(R) that maximizes score(R̄, A×B). Since we cannot realistically enumerateA×B, we develop

an approximate solution by finding the rule sequence R̄ ∈ p(R) that maximizes score(R̄, S),

where S is the sample produced by sample pairs from A×B.

To solve this problem, we will enumerate all possible subsets of R, find the optimal sequence

for each subset, then compare them to find the globally optimal sequence. Since eval rules outputs

only a small set of rules, e.g., up to 20 in the current Falcon, the number of subsets ofR is relatively

small (e.g., 220), and direct enumeration is fast.

So the main problem left is to find the optimal sequence for a given subset of rules. Suppose

this subset has k rules, then there are k! sequences. It is not difficult to see that these sequences

have the same precision and selectivity, but can differ drastically in run time (depending on how

time intensive and how selective the rules in the sequence are, and how these rules are ordered in

the sequence). Thus, our goal is to find the sequence with minimal run time.

This problem is NP-hard as shown in [15]. Specifically, [15] shows how the problem of or-

dering pipelined filters for stream processing (when the stream and filter characteristics have stabi-

lized) reduces to the min-sum set cover problem, which is known to be NP-hard [81, 46]. Although

[15] shows the problem of ordering a set of pipelined filters (for stream processing) to be NP-hard,
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the problem at the core is the same as ours. To elaborate, [15] considers the problem of optimally

ordering a set of n filters F1, F2, ..., Fn in conjunction, where each filter Fi takes a stream tuple t

as input and returns either true or false. If Fi returns false for tuple t, then Fi is said to drop t.

A tuple is emitted in the final result if and only if all n filters return true. The goal is to optimally

order the n filters so that the expected time to process an incoming tuple t is minimized. This

problem is equivalent to our problem of selecting an optimal sequence of rules because we can

view each rule as a filter that passes or drops a tuple pair.

The work [81] also proves that any polynomial time algorithm to solve the min-sum set cover

problem can at best provide a constant-factor approximation algorithm guarantee. To this end

[15] proposes a 4-approximation greedy algorithm to optimally order pipelined filters for data

streams. We adapt this greedy algorithm as a solution to our problem. Specifically, given a set T =

{R1, R2, ..., Rm} of rules, we first choose rule Ri that maximizes [1 − sel(Ri, S)]/time(Ri, S),

then choose rule Rj (j 6= i) that maximizes [1 − sel([Ri, Rj], S)/sel(Ri, S)]/time(Rj, S), then

choose rule Rk (k 6= j, i) that maximizes [1− sel([Ri, Rj, Rk], S)/sel([Ri, Rj], S)]/time(Rk, S),

and so on. The chosen rules form the optimal sequence [Ri, Rj, Rk, . . .].

What makes the problem hard is the fact that the rules in the sequence can be correlated,

i.e., non-independent. For example, many rules may share the same feature (e.g., Jaccard(a.title,

b.title)) and hence are correlated. When the rules are independent, the optimal ordering of rules in

a sequence can be computed in polynomial time. Prior work [25, 59, 72] on related problems (e.g.,

pipelined filters, ordering selection and join conditions in SQL queries) makes the independence

assumption and uses the rank-based ordering technique. The solution there is to order the rules

in decreasing order of rank, where for a rule Ri, rank(Ri) = [1 − sel(Ri)]/time(Ri). Note that

our greedy algorithm described above also simplifies to the rank-based solution when rules are

independent. This is because if two rules Ri and Rj are independent, we can write sel([Ri, Rj]) =

sel(Ri)sel(Rj). However, the assumption that rules are independent is not very realistic as it

is pretty common for rules to share the same or related features. Nevertheless, the approximate

solution (given by the above algorithm) seems to work well in practice (see Section 4.11.2).
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After we have obtained an optimal sequence for each subset of rules, we want to find the

globally optimal sequence. Recall that the globally optimal sequence is the one that has maximal

score. However, in order to compute the score for a sequence, we must compute its precision,

selectivity, and run time. To compute these, we first need to compute the coverage and selectivity

of a rule, as described next.

Coverage of a Rule: For each rule Ri ∈ R, we have already computed (when extracting the

top rules from the random forest) the coverage of rule Ri over sample S, cov(Ri, S), which is the

set of tuple pairs in S that Ri would “drop”. For each rule Ri, Falcon maintains cov(Ri, S) in the

form of a bitmap Bi of size |S|. Each bit bj in Bi indicates whether for the jth tuple pair in S,

the rule Ri would “drop” it (bit 1), or “keep” it (bit 0). Maintaining these bitmaps helps Falcon

compute the coverages of rule sequences efficiently (as we shall see shortly).

Selectivity of a Rule: Having computed the coverage of a rule Ri, Falcon computes the selec-

tivity of the rule as sel(Ri, S) = 1− (|cov(Ri, S)|/|S|).

Coverage of a Sequence: Coverage of a rule sequence R̄ on S, cov(R̄, S), is the set of pairs in

S that R̄ would “drop”. R̄ would “drop” a tuple pair if any one rule Ri ∈ R̄ would “drop” it. So it

is not hard to see that this can easily be computed by OR-ing the bitmaps Bi of each rule Ri in R̄.

Selectivity of a Sequence: Having computed the coverage of a sequence, Falcon computes the

selectivity of a sequence as sel(R̄, S) = 1− (|cov(R̄, S)|/|S|).

Run Time of a Sequence: Falcon estimates the run time of a sequence R̄ = [R1, .., Rm] from

the run times and selectivities of its sub-sequences as time(R̄, S) = time(R1, S) + sel(R1, S) ∗

time(R2, S) + sel([R1, R2], S)∗ time(R3, S) + ...+ sel([R1, ..., Rm−1], S)∗ cost(Rm, S). Falcon

estimates the run times of sequences in a bottom-up fashion proceeding from shorter sequences to

longer ones.

Precision of a Sequence: To compute the actual precision, prec(R̄, S), we need the true labels

of all pairs in cov(R̄, S). However, we do not have these labels. So we estimate the precision of

a rule sequence from the estimated precisions of its constituent rules. Note that we have obtained
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Figure 4.4: (a) A rule sequence, (b) the same rule sequence converted into a single “positive” rule,
and (c) an illustration of how apply all works.

estimates of the precision of the constituent rules from crowd-based evaluation (in eval rules

operator). Using these we can compute a lower bound on the estimate of precision, prec(R̄, S), of

a rule sequence R̄ = [R1, ..., Rm] as:

prec(R̄, S) ≥ 1−

m∑
i=1

|cov(Ri, S)|(1− prec(Ri, S))

|cov([R1, ..., Rm], S)|
.

We use the above lower bound on prec(R̄, S) as the substitute for prec(R̄, S).

4.7 Applying the Blocking Rules

In this section we will focus on apply blocking rules operator which consumes by far the

most of machine time, and is also the most difficult to implement.

Recall that apply blocking rules takes two tables A and B, and a sequence of rules R̄ =

[R1, . . . , Rn], where each rule Ri is of the form shown in Formula 4.1, then outputs all tuple pairs

(a, b) ∈ A×B that satisfy at least one rule in R̄.

Example 4.7.1. Consider the sequence of two rules [R1, R2] in Figure 4.4.a. Rule R1 states that

two books do not match if their titles are not sufficiently similar (using a Jaccard similarity function

over the two titles tokenized as two sets of words). Rule R2 states that two books do not match if

they disagree on years and their prices differ by at least $10 (here exact match(a.year, b.year)

returns 1 if the years match and 0 otherwise, and abs diff(a.price, b.price) returns the absolute

difference in prices).
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In what follows we describe the limitations of the current solutions for this operator, the key

ideas underlying our solution, then the implementation of these ideas.

4.7.1 Limitations of Current Solutions

Two MapReduce solutions to apply rules to tuple pairs inA×B have been proposed: MapSide

and ReduceSplit [65].

MapSide assumes the smaller table fits in the memory of the mappers, in which case it can

execute a straightforward map-only job to enumerate the pairs and apply the rules. If neither table

fits in memory, then ReduceSplit uses the mappers to enumerate the pairs, then spreads them

evenly among the Reducers, which apply the rules.

As far as we can tell, these are state-of-the-art solutions that can be applied to our setting. (The

works [101, 110, 73] are related, but consider specialized types of rules and develop specialized

solutions for these. Hence they do not apply to our setting that uses a far more general type of

rules.)

Both MapSide and ReduceSplit are severely limited in that they still enumerate the entire

A×B, which is often very large (e.g., 10 billion pairs for two tables of 100K tuples each).

4.7.2 Key Ideas Underlying Our Solution

Both MapSide and ReduceSplit assume the rules are “blackboxes”, necessitating the enu-

meration of A × B. This is not true in Falcon, where the rules use the features automatically

generated by Falcon (see Section 4.10.1), and these features in turn often use well-known simi-

larity functions, e.g., edit distance, Jaccard, exact match, etc. (see Example 4.7.1). Thus, we can

exploit certain properties of these functions to build index-based filters, then use them to avoid

enumerating A×B.

Example 4.7.2. Suppose we want to find all tuple pairs in A × B that satisfy the predicate

jaccard word(a.title, b.title)> 0.6. It is well known that for a pair of string (x, y), jaccard(x, y) ≥

t implies |y|/t ≥ |x| ≥ |y| · t [112]. This property can be exploited to build a length filter for

the above predicate. Specifically, we build a B-tree index Il over the lengths of attribute a.title
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(counted in words). Given a tuple b ∈ B the filter uses Il to find all tuples a in A where the length

of a.title falls in the range [|b.title| · 0.6, |b.title|/0.6], then returns only these (a, b) pairs. We can

then evaluate jaccard word(a.title, b.title) > 0.6 only on these pairs.

Realizing this idea in MapReduce however raises the challenge that the indexes may not fit into

memory. So we propose four solutions that balance between the amount of available memory and

the amount of work done at the mappers and reducers, then develop rules for when to select which

solutions.

4.7.3 The End-to-End Solution

We now build on the above ideas to describe the end-to-end solution for apply blocking rules.

1. Convert the Rule Sequence into a CNF Rule: We begin by rewriting the rule sequence

R̄ = [R1, . . . , Rn] into a form that is amenable to distributed processing in subsequent steps.

Specifically, we first rewrite R̄ as a single “negative” rule P in disjunctive normal form (DNF):

[p11(a, b) ∧ . . . ∧ p1m1
(a, b)] ∨ . . . ∨ [pn1 (a, b) ∧ . . . ∧ pnmn

(a, b)]

→ drop (a, b).

Then we convert this negative rule into a “positive” rule Q in conjunctive normal form (CNF):

[q11(a, b) ∨ . . . ∨ q1m1
(a, b)] ∧ . . . ∧ [qn1 (a, b) ∨ . . . ∨ qnmn

(a, b)]

→ keep (a, b) as they may match,

where each predicate qij is the complement of the corresponding predicate pij in the “negative” rule

P .

Example 4.7.3. The rule sequence [R1, R2] in Figure 4.4.a is converted into the “positive” rule Q

in CNF in Figure 4.4.b.

2. Analyze CNF Rule to Infer Index-Based Filters: Next, we analyze the CNF rule to infer

index-based filters. Work on string matching has studied several such filters for similarity functions
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(e.g., [95, 24]). Falcon builds on this work. It currently uses eight similarity functions (e.g., edit

distance, Jaccard, overlap, cosine, exact match, etc.), and five filters. The filters are discussed in

detail in Section 4.7.4.

Example 4.7.4. Consider again rule Q in Figure 4.4.b. Falcon assigns three filters to predicate

jaccard word(a.title, b.title) > 0.6: length filter, prefix filter, and position filter [112]. Falcon

assigns an equivalence filter to exact match(a.year, b.year) = 1. Given a tuple b ∈ B, this filter

uses a hash index to find all tuples in A that have the same year as b.year. Finally, Falcon assigns

a range filter to abs diff(a.price, b.price) < 10. Given a tuple b ∈ B, this filter uses a B-tree

index to find all tuples in A whose prices fall into the range (b.price− 10, b.price+ 10).

Once we have inferred all filters for rule Q, we execute several MapReduce (MR) jobs to build

the indexes for these filters (more details in Section 4.7.5).

3. Apply the Filters to the Rule Sequence: Let F and I be the set of filters and indexes that

have been constructed for rule Q, respectively. We now consider how to use MapReduce to apply

F to A× B (without materializing A× B) to find a set of tuple pairs that may match, then apply

Q to these pairs. A reasonable solution is to copy the set of indexes I to each of the mappers, use

I to quickly locate candidate pairs (a, b), send them to the reducers, then apply Q to these pairs.

A challenge however is that I (which can be as large as 3G in our experiments) may not fit

into the memory of each mapper. So we propose four solutions that balance between the amount

of memory available for the indexes at the mappers and the amount of work done at the reducers.

Section 4.10.1 discusses how to select among these four solutions.

(a) apply-all: This solution loads the entire set of indexes I into the memory of each mapper,

which uses I to locate pairs (a, b) that may match. The reducers then apply rule Q to these pairs

(see the pseudo code in Algorithm 4.1).

Example 4.7.5. Consider three mappers into whose memory we already load indexes I (Figure

4.4.c). We first partition table A three ways sending each partition to a mapper. We do the same

for table B. Now consider Mapper 1. For each arriving tuple a ∈ A, it emits a key-value pair
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Algorithm 4.1 apply-all
1: Input: Tables A and B, Rule sequenceR, L: set of length indexes, O: set of token orderings, P : set of inverted indexes (on prefix tokens), H:

set of hash indexes, and T : set of tree indexes

2: Output: Candidate tuple pairs C

3:
4: map-setup: /* before running map function */

5: Load L,O, P , H , and T into memory

6: Q⇐ TranslateR into a positive rule in CNF

7:
8: map(K: null, V : record from a split of either A or B):

9: if V ∈ B then

10: /* Q = q1 ∧ q2... where each qi is pi1 ∨ pi2 ...*/

11: CQ⇐
⋂

q∈Q (
⋃

p∈q FindProbableCandidates(V , p))

12: for each a.id ∈ CQ, emit (a.id, V )

13: else /* V ∈ A */

14: emit(V.id, V )

15: end if

16:
17: reduce(K′: a.id where a ∈ A, LIST V ′: contains a ∈ A and a set of B tuples, CB):

18: for each b ∈ CB do

19: if (a, b) does not satisfy rule sequenceR, emit (a, b)

20: end for

Procedure FindProbableCandidates(b, p)

1: Input: b ∈ B, p: predicate of the form sim(a.col1, b.col2) op v

2: Output: Cp = {a.id | a ∈ A, (a, b) passes all filters}

3: if sim = ExactMatch then

4: Hp⇐ Get hash index for p from H

5: Cp⇐ Probe Hp with b.col2

6: else if sim ∈ {AbsDiff, RelDiff} then

7: Tp⇐ Get tree index for p from T

8: Cp⇐ Probe Tp with range [b.col2− v, b.col2 + v]

9: else /* sim ∈ {Jaccard, Dice, Overlap, Cosine, Levenshtein} */

10: {Pp, Lp, Op} ⇐ Get inverted index, length index and token ordering for p from P,L and O

11: l⇐ Compute prefix length of b.col2 using v

12: bl⇐ Get prefix tokens of b.col2 using l and Op

13: Cp⇐ Probe Pp with bl, apply position and length filters using Pp and Lp

14: end if

15: return Cp

〈aid, a〉, where aid is the ID of a. For each arriving tuple b ∈ B, Mapper 1 applies the filters by

using I to find a set of IDs of tuples in A that may match with b. Let these IDs be aid1, . . . , aidn.
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Then Mapper 1 emits key-value pairs 〈aid1, b〉, . . . , 〈aidn, b〉 (we discuss below optimizations to

avoid emitting multiple copies of the same tuple). The other mappers proceed similarly.

Each emitted key-value pair is sent to one of the two reducers. For example, for a particular

key aid, Reducer 1 receives all key-value pairs with that key: 〈aid, a〉, 〈aid, b1〉, . . . , 〈aid, bm〉 (see

Figure 4.4.c). Then this reducer can apply rule Q to the pairs (a, b1), . . . , (a, bm).

(b) apply-greedy: loads only the indexes of the most selective conjunct of ruleQ into the mappers’

memory. The mappers apply only the filters of this conjunct. The reducers then apply Q to all

surviving pairs. The selectivity of each conjunct in Q can be computed from the selectivity of the

corresponding rule in R̄. Section 4.11 shows how to estimate rule selectivities when we evaluate

the rules on sample S.

(c) apply-conjunct: uses multiple mappers, each loading into memory only the indexes of one

conjunct (of rule Q). There are at most as many mappers as the number of conjuncts (no mapper

for those conjuncts whose indexes do not fit into the mappers’ memory). The reducers first perform

intersection on the pairs surviving various mappers, then apply Q to the pairs in the intersection.

(d) apply-predicate: is similar to apply conjunct, except that here each mapper loads the indexes

of one predicate (of rule Q), and the reducers need to process the pairs surviving the mappers in a

more complicated fashion (than just taking intersection as in apply conjunct).

Optimizations: We have extensively optimized the above solutions as follows:

1. Load Balancing at Map Phase: In the default mode some mappers process only tuples

from A and some process only tuples from B. This incurs highly unbalanced loads. This is

because the map tasks that process A tuples complete very fast (because the processing is

trivial; see lines 13-14 of Algorithm 4.1) whereas the map tasks that process B tuples run

longer (because the processing is more involved; see lines 9-12 of Algorithm 4.1). This leads

to under-utilization of the resources. To address this, we have optimized so that each mapper

processes both A’s and B’s tuples in a way that evens out the loads. Specifically, we create

one combined file with interleaved A and B tuples (depending on the ratio of sizes of A and

B). This combined file is then distributed on HDFS. When running the jobs, splits of this
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combined file are sent to mapper nodes. As a result each mapper now has to process both A

and B tuples thereby leading to better utilization of resources.

2. Reducing Intermediate Output Size: In the default mode, each mapper outputs the entire

tuple as value. For A tuples, this is still fine because each A tuple is output only once. Each

B tuple however can be output multiple times (depending upon the number of candidate A

matches coming from indexes). This can sometimes result in huge intermediate output lead-

ing to increased I/O and network overhead. To prevent this, we minimize the intermediate

output size, e.g., by passing only the IDs of the B tuples to the reducers, instead of pass-

ing the entire B tuples. However to do that, we have to load an index (on ID) of B tuples in

memory of every Reducer node. This is needed because we need the entireB tuple when ap-

plying the rule sequence in the reducer. Due to this overhead we apply this optimization only

if index for B fits in memory of a reducer node, and the selectivity of the rule sequence is

above a pre-specified threshold (indicating that the intermediate output can be huge). Note

that this optimization is in addition to using Hadoop’s built-in feature of compressing the

intermediate output.

3. Optimizations on Rule Sequence: We also optimize the application of the rule sequences to

tuple pairs. For example, we cache and reuse computations such as Jaccard word(a.title,

b.title) (as the same rule or two different rules may refer to this), and we simplify predicate

expressions such as f < 0.5 AND f < 0.2 into f < 0.2. We do this simplification only for

predicates that have <, ≤, >, and ≥ operators. The implementation is straightforward. We

parse a rule to first collect all unique features referenced in the rule. For each unique feature

f we examine all its predicates of the form f < v or f ≤ v to determine the minimal v (say

v1) and the operator (< or ≤) associated with v1 (say op1). Similarly, we examine all the

predicates of the form f > v or f ≥ v to determine the maximal v (say v2) and the operator

(> or ≥) associated with v2 (say op2). Finally, we replace all the predicates involving f and

operators <, ≤, >, and ≥ in the rule with f op1 v1 AND f op2 v2.
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4.7.4 Using Filters to Apply Blocking Rules

We now describe in detail the filters and indexes used in Falcon. We associate one or more

filters with each predicate qij in Q. A filter is a necessary (but not sufficient) condition for a tuple

pair (a, b) to satisfy the predicate qij(a, b). In other words, if the filter does not pass (a, b) then

it is guaranteed that qij(a, b) is not satisfied. But if the filter passes (a, b), then qij(a, b) must be

evaluated to see if it is satisfied.

For example, if the predicate is [Jaccard(a.x, b.y) ≥ 0.6], then a “share-token” filter is f1

= “a.x and b.y must share at least one token”, and a “length” filter is f2 = length(a.x)/0.6 ≥

length(b.y) ≥ 0.6 ∗ length(a.x).

We build on prior work [37] to come up with the various filters that can be constructed and

indexes that can be created to quickly find tuple pairs that satisfy the filters. Below are the five

filters (and the corresponding indexes) that we consider in our implementations.

1. Equivalence Filter: requires that “a.x” and “b.y” are equivalent for the predicate f(a.x, b.y)

op v to be satisfied on pair (a, b). It is implemented using a hash index on “a.x”, and is used

for predicates that use exact match similarity function.

2. Range Filter: requires that “b.y” lie within a range of “a.x” for the predicate to be satis-

fied. It is implemented using a B-tree index over “a.x”, and is used for predicates involving

abs diff and rel diff .

3. Length Filter: requires that a constraint on the lengths of “a.x” and “b.y” be satisfied for

the predicate to be satisfied. It is implemented using a length index on length(a.x) (probed

using length(b.y)), and is used for predicates involving Jaccard, overlap,Dice, cosine and

Levenshtein.

4. Prefix Filter: requires that there must be at least one shared token in the prefixes of “a.x”

and “b.y” for the predicate to be satisfied. Note that the tokens of “a.x” and “b.y” are first

re-ordered based on a global token ordering and then prefixes of the re-ordered tokens are

considered. This filter is implemented using an inverted index over the prefixes of re-ordered
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tokens of “a.x”, and used for predicates involving Jaccard, overlap, Dice, cosine and

Levenshtein.

5. Position Filter: requires that at least a certain number of tokens be shared between the pre-

fixes of “a.x” and “b.y”. It is implemented using an inverted index on the prefixes of “a.x”

(the same index constructed for prefix filters) and a length index (constructed for length fil-

ters). It is used for predicates involving Jaccard, overlap, Dice, cosine and Levenshtein.

Since filters have been extensively used in string matching and set similarity joins, we point the

reader to [37] for more details. Next we describe how we construct indexes in Falcon to implement

the various filters.

4.7.5 Building Indexes for Filters in MapReduce

Once we have inferred all filters for rule Q, we run several MapReduce (MR) jobs to build the

indexes for these filters. Specifically, we run three MR jobs sequentially to build all the relevant

indexes for rule Q.

Before running the first MR job, Falcon first analyzes Q to determine all the unique attribute-

tokenization pairs (x, T ) used in Q. For example, if Q uses two features: Dice 3gram(a.title,

b.title) and Jaccard word(a.title, b.title), then there are two unique attribute-tokenization pairs:

(title, word) and (title, 3gram).

For each attribute-tokenization pair (x, T ):

1. The first MR job computes the frequencies of all tokens obtained by tokenizing (using T )

the values of attribute x of all A tuples.

2. The second MR job sorts all the tokens obtained for that (x, T ) pair in increasing order of

frequencies to obtain a global token ordering for that (x, T ) pair, which will be used by the

next MR job to construct inverted indexes for prefix and position filters.
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Figure 4.5: Rules for feature generation.

3. The third MR job tokenizes (using T ) values of attribute x of each A tuple; reorders the

tokens (using the global token ordering output by the second MR job); computes prefix

length for that tuple; and indexes the prefix of the reordered tokens.

In addition to constructing inverted indexes of prefix tokens, the third MR job also simultaneously

constructs the length indexes (needed for length filter), hash indexes (for equivalence filter) and

B-tree indexes (for range filters). Note that each MR job scans the table A only once.

4.8 Generating Feature Vectors

Given a set S of tuple pairs and a set F ofm features, this operator converts each pair (a, b) ∈ S

into a feature vector 〈f1(a, b), . . . , fm(a, b)〉. Given F , converting a set of pairs into a set of feature

vectors is straightforward (as we shall see shortly). The key challenge, however, is to automatically

generate F . In prior EM work, selection of relevant features is usually performed by a developer.

But since crowdsourced EM in Falcon must be executed in a hands-off fashion (without requiring

a developer), automatically generating features F becomes a necessity. Falcon addresses this

challenge by generating F based on the types (e.g., string, numeric) and characteristics (e.g., short

string, long string) of the attributes of the two tables. The heuristic rules guiding the generation

process are shown in Figure 4.5. We next describe generating features in detail.

Conceptually, a feature is a function that maps a tuple pair (a, b) to a numeric score. However,

in Falcon we currently only consider features of the form f(a, b) = sim(a.x, b.y), where sim is
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a similarity function (e.g., Jaccard, edit distance), a.x is the value of attribute x of tuple a (from

table A), and b.y is the value of attribute y of tuple b (from table B). For example, if we have

inferred that attributes A.name and B.name are of type string, we can generate features such as

jaccard(3gram(A.name), 3gram(B.name)), and

edit dist(A.name,B.name), etc. To decide on the set of relevant features F = {f1, ..., fm},

Falcon first creates attribute correspondences between the two tables A and B by pairing string

with string, numeric with numeric, etc.

Next, we scan through the tables to determine the characteristics (e.g., single-word string,

multi-word long string, etc.) of every attribute. Next, for each attribute correspondence (x, y), we

include in F a set of features, each of the form sim(a.x, b.y) where sim is a similarity function

chosen based on the rules in Figure 4.5. If x and y have different attribute characteristics, we

choose the characteristic that is at a lower row in Figure 4.5.

Once we have selected F = {f1, ..., fm}, we want to generate the feature vector for every tuple

pair (a, b) in S. This step is trivially parallelizable. We implement it as a single map-only job

on a Hadoop cluster. In this job, each mapper reads in a pair (a, b) from S (residing on HDFS);

computes a feature value fi(a, b) for each feature fi ∈ F ; and outputs a key-value pair where a

composition of tuple IDs (〈a.id, b.id〉) is the key, and the feature vector (〈f1(a, b), ..., fm(a, b)〉) is

the value.

4.9 Implementing Other Operators

We now briefly describe implementing the remaining four operators: al matcher, get blocking

rules, eval rules, and apply matcher.

Operator al matcher: This operator performs crowdsourced active learning on a set of pairs V .

It trains an initial matcher M , uses M to select a small set of controversial pairs from V (currently

set to 20), asks the crowd to label these pairs, uses them to improve M , and so on. This operator

was described in Chapter 2 and is straightforward to implement. We made only two small changes

to the implementation in Corleone. First, we execute pair selection on Hadoop, as it can be time
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consuming (Section 4.10.2 shows further optimizations of this step). Second, Corleone performs

active learning until a convergence criterion T is met. Falcon however stops active learning when

either T is met or the number of iterations reaches a pre-specified threshold (currently set to 30).

Our experiments show that this limit has negligible effects on the accuracy yet can significantly

reduce the crowd time and cost.

Operator get blocking rules: This operator extracts candidate blocking rules from a random

forest. It is trivial to implement on a single machine.

Operator eval rules: This operator uses crowdsourcing to evaluate and retain only the most

precise rules. Chapter 2 describes it and is straightforward to implement. Similar to al matcher, it

also operates in iterations. Thus we also impose a threshold on the maximal number of iterations,

capping the crowd time and cost. Note that we use the same crowdsourcing strategies as Corleone

uses for al matcher and eval rules (see Chapter 2).

Operator apply matcher: This operator applies a trained classifier to each tuple pair (encoded as

a feature vector) in a setC to predict match/no-match. It is highly parallelizable and is implemented

as a map-only job on Hadoop.

4.10 Plan Generation, Execution, and Optimization

4.10.1 Plan Generation and Execution

Given two tables A and B (to be matched), we generate a plan p as follows. First, we analyze

A and B to automatically generate a set of features F (see Section 4.8). Later, operators such as

gen fvs (Section 4.8) will need these features (e.g., to convert tuple pairs into feature vectors).

Next, we estimate the size of A× B, where each pair is encoded as a feature vector (using the

features in F ). If this size does not fit in the memory of machine nodes, then blocking is likely to

be necessary, so we generate the plan in Figure 4.3.a. Otherwise we generate the plan in Figure

4.3.b. (Since we are currently using a rule-based optimization approach, this is just a heuristic

rule encoding the intuition that in such cases the plan in Figure 4.3.b can do everything solely in
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memory, and hence will be faster. In the future we will consider a cost-based approach that selects

the plan with the estimated lower runtime.)

Next, we replace each logical operator in p except operator apply blocking rules with a phys-

ical operator. Currently each such logical operator has just a single physical operator, so these

replacements are straightforward. We cannot yet replace apply blocking rules because this log-

ical operator has six physical operators: four provided by us (e.g., apply all, apply greedy, etc.)

and two from prior work: MapSide and ReduceSplit (Section 4.7). Selecting the appropriate

physical operator requires knowing the index sizes and the rule sequence R̄, which are unknown

at this point.

So in the next step we execute all operators in p from the start up to (and including) the operator

right before apply blocking rules. This produces the rule sequence R̄. Next, we convert it into a

single positive rule Q, then infer filters and build indexes for Q, as described in Section 4.7.

Once index building is done, we select a physical operator for apply blocking rules, i.e., select

among the six methods apply all, apply greedy, etc. as follows.

First, let c be the most selective conjunct in rule Q. Let sel(c) and sel(Q) be the selectivities of

c and Q, respectively (see Section 4.11 on computing such selectivities). Clearly sel(c) ≥ sel(Q).

If sel(Q)/sel(c) exceeds a threshold (currently set to 0.8), then intuitively c is almost as selective

as the entire rule Q. In this case, we will select apply greedy.

Otherwise we proceed in this order (a) if the indexes for all conjuncts fit in memory (of a

mapper) then select apply all; (b) if the indexes of at least one conjunct fit in memory then select

apply conjunct; (c) if the indexes of each predicate fit in memory then select apply predicate;

(d) if the smaller table fits in memory then select MapSide, else select ReduceSplit.

After selecting a physical operator for apply blocking rules, we execute it, then execute the

rest of plan p. Of course, if p does not involve blocking, then we do not have to deal with the above

issues, and plan execution is straightforward.
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Figure 4.6: Three types of optimization solutions that use crowd time to mask machine time.

4.10.2 Plan Optimization

We now consider how to optimize plan p. The Falcon framework raises many interesting

optimization opportunities regarding time, accuracy, and cost. As a first step, Falcon will focus on

a kind of optimization called “using crowd time to mask machine time”.

To explain, observe that plan p currently executes machine and crowd activities sequentially,

with no overlap. For example, eval rules uses the crowd to evaluate blocking rules. Only after

this has been done would select opt seq and apply blocking rules start, which execute machine

activities on a Hadoop cluster. Thus this cluster is idle during eval rules. This clearly raises an

opportunity: while eval rules is performing crowdsourcing, if we can do some useful machine

activities on the idle cluster, we may be able to reduce the total run time. To mask machine time,

we have developed three solutions, marked with (1), (2), and (3) respectively in Figure 4.6.

• Solution (1) uses the crowd time in al matcher and eval rules to build indexes for apply

blocking rules.

• Solution (2) speculatively executes rules and matchers for apply blocking rules and apply

matcher.

• The above solutions are inter-operator optimizations. Solution (3) in contrast is an intra-

operator optimization for al matcher. It interleaves “selecting pairs for labeling” with

“crowdsourcing to label the pairs”. As such, it learns an approximate matcher but drasti-

cally cuts down on pair selection time.

We now describe these solutions.



103

1. Building Indexes for apply blocking rules: Recall that apply blocking rules must build

indexes for filters. There are two earlier operators in the plan pipeline, al matcher and eval rules,

where crowdsourcing is done and the Hadoop cluster is idle. So we will move as much index

building activities to these two operators as possible.

In particular, while al matcher crowdsources, we still do not know the rules that apply blocking

rules will ultimately apply. So we use the Hadoop cluster to build only generic indexes that do not

depend on knowing these rules, e.g., hash and range indexes for numeric and categorical attributes,

and global token orderings for string attributes. This ordering will be required if later we decide to

build indexes for prefix and position filters [112].

After al matcher has finished crowdsourcing, it outputs a matcher M . get blocking rules

then extracts blocking rules from M . Next, eval rules ranks then evaluates the top 20 rules using

crowdsourcing. So while eval rules crowdsources, we already know that the rules apply blocking

rules ultimately uses will come from this set of 20 rules. So we use the Hadoop cluster to build

indexes for all predicates in all 20 rules (or for as many predicates as we can). Clearly, some of

these indexes may not be used in apply blocking rules. But if some are used, then we have saved

time.

2. Speculative Execution of Future Operations: Recall that eval rules uses crowdsourcing to

evaluate 20 rules and retain only the best ones. Then select opt seq examines these rules to output

an optimal rule sequence R̄, which apply blocking rules will execute.

While eval rules crowdsources the evaluation of the 20 rules, we use the idle Hadoop cluster

to speculatively execute these 20 rules (in practice we use the cluster to build indexes first, then

to speculatively execute the rules). If later it turns out R̄ contains at least one rule that has been

executed, then we can reuse the result, saving significant time.

Specifically, we execute the 20 rules individually, in the order that eval rules crowdsources

(i.e., executing the most promising rules first). When eval rules finishes, select opt seq takes

over and outputs an optimal rule sequence R̄, say [R2, R1, R3]. At this point we start executing

apply blocking rules as usual, but modify it to use the speculative execution results as follows.

Suppose the output of one or more rules in R̄ has been generated. Then we pick the smallest
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output then apply the remaining rules to it in a map-only job. For example, suppose that the

outputs O(R1), O(R3) of rules R1, R3 have been generated, and that O(R3) is the smallest output.

Then we apply the sequence [R2, R1] to O(R3).

Now suppose none of the outputs of the rules in R̄ has been generated, but we are still in the

middle of running a MapReduce (MR) job to execute a rule in R̄. Then reusing becomes quite

complex, as we want to keep the MR job running, but tell it that the rule sequence R̄ has been

selected, so that it can figure out how to execute R̄ while reusing whatever partial results it has

obtained so far.

Specifically, if the MR job is still in the map stage, then a reasonable strategy is to let the map-

pers complete, then tell the reducers to use R̄ to evaluate the tuple pairs. This strategy resembles

apply greedy. Thus, we use it if operator apply blocking rules has selected apply greedy as the

rule execution strategy. Otherwise, apply greedy has not been selected, suggesting that similar

strategies may also not work well. In this case we kill the MR job and start apply blocking rules

as usual.

Now if the MR job is in the reduce stage, then it has already produced some partX of the output

of a rule, say R1. We then communicate the rule sequence R̄, say [R2, R1, R3], to the reducers, so

that for new incoming tuple pairs, the reducers can apply R̄ and collect the output into a set of files

Y . We then run a map-only job to apply [R2, R3] to X to obtain a set of files Z. The sets Y and Z

contain the desired tuple pairs (i.e., the correct output of apply blocking rules).

Finally, if none of the outputs of rules in R̄ has been generated, and none of these rules is

currently being executed, then we simply start apply blocking rules as usual. See Algorithm 4.2

for the pseudo-code of this optimization.

In addition to speculatively executing blocking rules (as described above), we speculatively

execute matchers (in the matching phase). Recall that al matcher trains a new matcher in each

iteration of crowdsourced active learning. When it decides to stop, it outputs the “best” matcher

so far, which is then applied to the candidate set of tuple pairs by the apply matcher operator.

While al matcher crowdsources, the Hadoop cluster is idle and can potentially be used to apply a

matcher to the candidate set. So in this optimization, we speculatively execute the apply matcher
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Algorithm 4.2 Speculative Rule Execution
1: Input: Tables A and B, a sorted list of blocking rules [R1, R2, ..., Rk]

2: Output: Candidate tuple pairs C

3: for 1 ≤ i ≤ k do

4: jobi⇐ Start execution of rule Ri on tables A and B

5: Wait till eval rules is complete or jobi is complete

6: if eval rules is complete then

7: R⇐ Get the optimal sequence

8: if any of the rules R1, ..., Ri−1 is inR then

9: Kill jobi

10: m⇐ argminj∈[1,i−1]|Cj |

11: C ⇐ ApplyR−Rm to Cm in a map-only job

12: else if Ri ∈ R then

13: if jobi is in map phase then

14: if apply-greedy is chosen forR and Ri is most selective inR then

15: PassR to jobi and wait for jobi to complete

16: C ⇐ Fetch output of jobi

17: else

18: Kill jobi

19: C ⇐ ApplyR to A and B

20: end if

21: else /* jobi is in reduce phase*/

22: PassR to the reducer of jobi. jobi will now output tuple pairs to a different file. Let jobi complete.

23: C1⇐ Fetch output of jobi before passingR

24: C2⇐ Fetch output of jobi after passingR

25: C
′
1⇐ ApplyR−Ri to C1 in a map-only job

26: C ⇐ C
′
1 ∪ C2

27: end if

28: else /* None of the rules R1, ...Ri is inR */

29: Kill jobi

30: C ⇐ ApplyR to A and B

31: end if

32: return C

33: end if

34: end for

35: /* We have speculatively executed all rules */

36: Wait till eval rules is complete

37: m⇐ argminj∈[1,k]|Cj |

38: C ⇐ ApplyR−Rm to Cm in a map-only job

39: return C



106

operator with the “best” matcher so far (while al matcher is crowdsourcing). If the speculatively

executed matcher happens to be the final matcher output by al matcher then we would have saved

the apply matcher run time. If not, we simply execute apply matcher as usual.

3. Masking Pair Selection in al matcher: Recall that after apply blocking rules has applied a

rule sequence R̄ to Tables A and B to obtain a set of candidate tuple pairs C, we convert C into a

set of feature vectors C ′, then use al matcher to “active learn” a matcher on C ′.

Specifically, al matcher iterates. In each iteration it (a) applies the matcher learned so far to

C ′ and uses this result to select 20 “most controversial” pairs from C ′, (b) uses crowdsourcing to

label these pairs, then (c) adds the labeled pairs to the training data and retrains the matcher.

It turns out that when C ′ is large (e.g., more than 50M pairs), Step (a) can take a long time,

e.g., 2 minutes per iteration in our experiments; if al matcher takes 30 iterations, this incurs 60

minutes, a significant amount of time. Consequently, we examine how to minimize the run time

of Step (a). One idea is to do Step (a) during the time allotted to crowdsourcing of Step (b). The

problem, however, is that Step (b) depends on Step (a): without knowing the 20 selected pairs, we

do not know what to label in Step (b).

To address this seemingly insurmountable problem, we propose the following solution. In the

first iteration, we select not 20, but 40 tuple pairs. Then we send 20 pairs to the crowd to be labeled,

as usual, keeping the remaining 20 pairs for the next batch. When we get back the 20 pairs labeled

by the crowd, we immediately send the remaining 20 pairs for labeling. During the labeling time

we use the 20 pairs already labeled to retrain the matcher and select the next batch of 20 pairs, and

so on.

Thus the above solution masks the pair selection time using the pair labeling time. It approxi-

mates the original physical implementation of al matcher since it may not learn the same matcher

(because it selects 40 pairs in the first iteration, instead of 20). Our experiments however show that

this loss is negligible, e.g., both matcher versions achieve 99.61% F1 accuracy on the Songs data

set, yet the optimized version drastically reduces pair selection time, from 58m 32s to 2m 5s (see

Section 4.11).



107

Dataset Table A Table B # of Correct Matches
Products 2,554 22,074 1,154
Songs 1,000,000 1,000,000 1,292,023
Citations 1,823,978 2,512,927 558,787

Table 4.1: Data sets for our experiments.

Figure 4.7: The schemas of the data sets.

We use the above optimization for al matcher in the matching stage, when it is applied to a

large set of pairs (at least 50M in the current Falcon). We do not use it for al matcher in the

blocking stage as this operator is applied to a relatively small sample of 1M tuple pairs, incurring

little pair selection time.

4.11 Empirical Evaluation

We now empirically evaluate Falcon. We consider three real-world data sets in Table 4.1.

Products describes electronic products and was used in Corleone. Songs describes songs within a

single table and was obtained from the freely available Million Song Dataset1. Citations describes

citations in Citeseer and DBLP (see Figure 4.7 for the schemas). Songs and Citations have 1-2.5M

tuples in each table, and are far larger than those used in crowdsourced EM experiments so far. We

have made all three data sets publicly available at [32].

Falcon applied the procedure described in Section 4.8 to generate features for these data sets.

Overall, it generated 50/83 features for Products, 20/47 features for Songs, and 22/30 features for

Citations. “50/83” for example means that 50 and 83 features were generated for the blocking

and matching steps, respectively. Note that only features involving relatively fast string similar-

ity measures were generated for the blocking step (see Figure 4.5 for the list of string similarity

measures).
1labrosa.ee.columbia.edu/millionsong
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Figure 4.8: Screenshot of a task to the crowd.

We used Mechanical Turk and ran Falcon on each data set three times, paying 2 cents per

answer. In each run we used common turker qualifications to avoid spammers, such as allowing

only turkers with at least 100 approved HITs and 95% approval rate. Figure 4.8 shows a screenshot

of a task presented to the crowd on the Songs data set. The first half of the screen shows instructions

to the crowd and the bottom half asks the crowd if two given song tuples match. A task contains

10 such tuple pairs. On Mechanical Turk workers prefer tasks that contain multiple pairs since it
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Dataset
Accuracy (%) Cost

(# Questions)
Run Time

Candidate Set Size
P R F1 Machine Time Crowd Time Total Time

Products 90.9 74.5 81.9 $57.6 (960) 52m 13h 7m 13h 25m 536K - 11.4M
Songs 96.0 99.3 97.6 $54.0 (900) 2h 7m 11h 25m 11h 58m 1.6M - 51.4M
Citations 92.0 98.5 95.2 $65.5 (1087) 2h 32m 13h 33m 14h 37m 654K - 1.06M

Table 4.2: Overall performance of Falcon on the data sets. Each row is averaged over three runs.

reduces the overhead. Thus, we present 10 pairs per task, following the exact same crowdsourcing

procedure of Corleone.

We ran Hadoop on a 10-node cluster, where each node has an 8-core Intel Xeon E5-2450

2.1GHz processor and 8GB of RAM.

In addition to the above three data sets, we have recently successfully deployed Falcon to solve

a real-world drug matching problem at a major medical research center. We will briefly report on

that experience as well.

4.11.1 Overall Performance

We begin by examining the overall performance of Falcon. The first few columns of Table

4.2 show that Falcon achieves high accuracy, 81.9% F1 on Products and 95.2-97.6% F1 on Songs

and Citations. Products is a difficult data set used in Corleone, and the accuracy 81.9% here is

comparable to the accuracy of Corleone (86% F1 after the first iteration, see Table 2.4). Note that

each row of Table 4.2 is averaged over three runs. (Table 4.3 shows all nine runs. The results show

that while the candidate set size can vary across runs, affecting the machine and crowd time, the

cost and the F1 accuracy stay relatively stable.)

The next column, labeled “Cost”, shows that this accuracy is achieved at a reasonable cost of

$54 - 65.5 (the numbers in parentheses show the number of questions to the crowd).

The next two columns show the total machine time and crowd time, respectively. Crowd time

on Mechanical Turk is somewhat high (11h 25m - 13h 33m), underscoring the need for future

work to focus on how to minimize crowd time. Machine time is comparatively lower, but is still

substantial (52m - 2h 32m).
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Dataset Runs
Accuracy (%) Cost

(# Questions)
Run Time

Candidate Set Size
P R F1 Machine Time Crowd Time Total Time

Products Run 1 92.6 74.9 82.8 $61.2 (1020) 31m 52s 12h 45m 22s 13h 1m 23s 536K
Products Run 2 88.4 75.1 81.2 $58.8 (980) 56m 9s 13h 57s 13h 18m 41s 5.3M
Products Run 3 91.8 73.4 81.6 $52.8 (880) 1h 6m 32s 13h 35m 57s 13h 56m 3s 11.4M
Songs Run 1 90.9 99.7 95.1 $56.4 (940) 3h 54m 4s 11h 59m 39s 12h 38m 55s 51.4M
Songs Run 2 98.2 99.6 98.9 $55.2 (920) 1h 23m 5s 11h 44m 36s 12h 18m 15.9M
Songs Run 3 98.9 98.7 98.8 $50.4 (840) 1h 4m 1s 10h 30m 4s 10h 57m 8s 1.6M
Citations Run 1 92.4 99.6 95.9 $52.8 (880) 1h 49m 18s 9h 59m 8s 10h 38m 26s 654K
Citations Run 2 93.4 96.8 95.1 $66.8 (1100) 3h 6m 12s 15h 48m 16h 27m 46s 835K
Citations Run 3 90.2 99.2 94.5 $76.8 (1280) 2h 40m 54s 14h 51m 47s 16h 44m 31s 1.06M

Table 4.3: All runs of Falcon on the data sets.

The next column, labeled “Total Time”, shows the total run time of 11h 58m - 14h 37m. This

time is often less than the sum of machine time and crowd time, e.g., the Songs data set incurs a

“machine time” of 2h 7m and a “crowd time” of 11h 25m; yet it incurs a “total run time” of only

11h 58m. This is because plan optimization was effective, masking parts of the machine time by

executing them during the crowd time (see more below).

The last column shows the number of tuple pairs surviving blocking: 536K - 51.4M. This

number varies a lot, both within and across data sets. Yet despite such drastic swings, we have

observed that Falcon stays relatively stable in terms of accuracy and cost (see Table 4.3).

Drug Matching: Recently we have successfully deployed Falcon to match drug descriptions

across two tables for a major medical research center. The two tables are derivatives of the First

Databank’s National Drug Data File (NDDF). The tables have 453K and 451K tuples. They have

identical schema comprising eight attributes: (drug id, drug, drug name, generic name, therapeu-

tic ahfs id, therapeutic standard desc, ahfs specific category desc, ndc code).

Two drug products are said to match when they contain the same active ingredients or when

one product contains all of the active ingredients of the other. Active ingredients of a drug prod-

uct are usually present in the “generic name” attribute value. For example, consider two drug

products a and b with generic names “LAMIVUDINE” and “LAMIVUDINE/ZIDOVUDINE”,

respectively. a contains only one active ingredient “LAMIVUDINE”. b contains two active ingre-

dients: “LAMIVUDINE” and “ZIDOVUDINE”. Thus, b contains all the active ingredients of a.
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Figure 4.9: An example of a matching pair of drug products.

Hence by the above match definition drug products a and b match. Figure 4.9 shows this example

matching pair.

As another example, consider two drug products “HYDROCODONE/ACETAMINOPHEN”

and “OXYCODONE/ACETAMINOPHEN”. Here the first product contains “HYDROCODONE”

and “ACETAMINOPHEN”, whereas the second product contains “OXYCODONE” and “AC-

ETAMINOPHEN”. Thus, the two products do not contain the same active ingredients (since

“HYDROCODONE” and “OXYCODONE” are not the same) and neither product contains all

the active ingredients of the other. Hence by the above match definition the products do not match.

Figure 4.10 shows this example non-matching pair.

Further, for two active ingredients to match, in general the first words must be the same but

the second words may be different (e.g., “diclofenac sodium” and “diclofenac potassium” match).

However, two active ingredients that have similar names may be very different and hence do not

match (e.g., “fluoxetine” and “paroxetine” both share “oxetine” but do not match).

For privacy reasons we could not use Mechanical Turk. So an in-house scientist labeled the

data, effectively forming a crowd of 1 person. The scientist labeled 830 tuple pairs, incurring a

crowd time of 1h 37m. Machine time was 2h 10m, constituting a significant portion (57%) of the

total run time. Our optimizations reduced this machine time by 49%, to 1h 6m, resulting in a total

Falcon time of 2h 42m. The end result is 4.3M matches, with 99.18% precision and 95.29% recall

on a set-aside sample.
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Figure 4.10: An example of a non-matching pair of drug products.

Discussion: The results suggest that Falcon can crowdsource the matching of very large tables

(of 1M-2.5M tuples each) with high accuracy, low cost, and reasonable run time. In particular, the

run times 11h 58m - 14h 37m suggest that Falcon can match large tables overnight, a time frame

already acceptable for many real-world applications. But there is clearly room for improvement,

especially for crowdsourcing time on Mechanical Turk (11h 25m - 13h 33m).

It is also important to note that crowd time can vary widely, depending on the platform. For

instance, many companies have in-house dedicated crowd workers (often as contractors) or use

platforms such as Samasource and WorkFusion that can provide dedicated crowds. Many applica-

tions with sensitive data (e.g., drug matching) will use a “crowd” of one or a few in-house experts.

In such cases, the crowd time can be significantly less than that on Mechanical Turk. As a result,

machine time can form a significant portion of the total run time, thus requiring optimization.

4.11.2 Performance of the Components

We now “zoom in” to examine the major components of Falcon. Recall that we run Falcon

three times on each data set. Table 4.4 shows the time of the first run on each data set, broken down

by operator.

Table 4.4 shows that five “machine” operators: sample pairs, gen fvs, get block rules,

sel opt seq, and apply matcher, finish in seconds or minutes, suggesting that they have been

successfully optimized. The remaining three operators: the two “crowd” operators, al matcher
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Dataset sample gen al matcher get block eval rules sel opt apply block gen al matcher apply
pairs fvs rules seq rules fvs matcher

Products 1m 15s 34s 8h 14m 37s 2m 9s 46m 46s 130ms 0 (1m 53s) 49s 3h 54m 40s 33s
Songs 1m 29s 33s 5h 21m 29s 30s 1h 48m 19s 52ms 0 (5m 7s) 13m 5s 5h 12m 9s (6h 40m 34s) 1m 21s
Citations 2m 23s 36s 2h 23m 12s 45s 1h 10m 144ms 7m (1h 13m 20s) 55s 6h 53m 35s

Table 4.4: Falcon’s runtimes per operator on the data sets. Each row refers to the first run of each
data set.

and eval rules, and the “machine” operator apply block rules are the most time-consuming. In

what follows we will now zoom in on the major operators described in detail in this chapter.

Operator sample pairs: Recall that we run Falcon three times on each data set. Table 4.4 shows

the time of the first run on each data set, broken down by operator. Column “sample pairs” of this

table shows that sampling is very fast, taking just 1m 15s - 2m 23s. The candidate sets in the last

column of Table 4.2 contain tuple pairs surviving blocking. These sets are just 0.01-0.95% of the

size of A×B, and retain 98.09-99.99% of matching pairs. These results suggest that our sampling

solution is fast and effective, in that it helps Falcon learn very good blocking rules.

Operators al matcher & eval rules: The first “al matcher” column of Table 4.4 shows that the

time we learn a matcher via active learning in the blocking step is quite significant, 2h 23m - 8h

14m, due mainly to crowdsourcing. Similarly, column “eval rules” shows a high rule evaluation

time of 46m - 1h 48m, also due to crowdsourcing. This raises an opportunity for masking machine

time, which we successfully exploit. For example, column “apply block rules” show in parenthe-

ses the unoptimized time of apply blocking rules: 1m 53s - 1h 13m 20s, which in certain cases

is quite significant. Masking optimization however successfully reduced these times to just 0 - 7m

(the numbers outside parentheses).

The second “al matcher” column of Table 4.4 shows that the time we learn a matcher in the

matching step is also quite significant, due partly to crowdsourcing and partly to pair selection

(see Section 4.10.2). Pair selection however was successfully optimized. For example, for Songs

the unoptimized “al matcher” time is 6h 40m 34s (the number in parentheses). Pair selection

optimization reduced this to 5h 12m 9s (almost all of which is crowdsourcing time).
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Figure 4.11: Comparison of optimal rule sequence with other rule sequences.

Operator sel opt seq: Column “sel opt seq” of Table 4.4 shows that selecting the optimal rule

sequence is very fast, taking milliseconds. To measure the impact of the optimal sequence R̄,

we examine what happens if instead of executing R̄, we execute all the rules (deemed precise by

eval rules), top-1 rule, or top-3 rules (in the order produced by eval rules). Figure 4.11 shows

a detailed comparison of the optimal rule sequence with other rule sequences for the first runs on

each data set.

To summarize, for all three data sets, executing R̄ produces (a) the highest recall (e.g., on

Products and Songs), or recall within 0.3% of the highest recall (e.g., on Citations), (b) the lowest

run time or run time within 4% of the lowest run time, and (c) the second smallest candidate set

or candidate set of size within 25% of that of the smallest candidate set. These results suggest that

different rule sequences can vary significantly in their effects, and that we successfully select a

good rule sequence.

Operator apply blocking rules: The numbers in parentheses in column “apply block rules” of

Table 4.4 show that this operator takes 1m 53s - 1h 13m 20s on three data sets, suggesting that

our Hadoop-based solution was able to scale up to large tables. Masking optimization successfully

reduced this time further, to just 0 - 7m, as shown in the same column (outside the parentheses).

For this operator, recall that we provided four solutions, apply all (AA), apply greedy (AG),

apply conjunct (AC), and apply predicate (AP ), as well as rules on when to select which so-

lution. In addition, we also supplied two Hadoop-based solutions from prior work: MapSide and

ReduceSplit [65]. We now examine the performance of these six solutions. Recall that we ran

Falcon three times on each data set, resulting in nine runs. In all runs except two Falcon correctly

selected the best solution (i.e., the one with lowest run time). For example, on a run of Songs,
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Dataset U O Reduction O − O1 O − O2 O − O3

Products 18m 16m 11% 17m 17m 16m
Songs 2h 12m 39m 70% 40m 43m 2h 7m
Citations 1h 46m 40m 62% 41m 1h 45m 40m

Table 4.5: Effect of optimizations on machine time.

the times for AA,AG,AC, and AP are 10m 19s, 1h 3m, 1h 40m, and 1h 45m, respectively, and

Falcon correctly picked AA to run. (MapSide and ReduceSplit did not complete on this data

set.)

In all nine runs, the best solution was eitherAA (4 times),AG (3 times), orMapSide (2 times).

Solutions MapSide and ReduceSplit only worked on Products, the smallest data set. For Songs

and Citations they had to be killed as they took forever trying to enumerate A×B.

For these nine runs, each mapper has 2G of memory, sufficiently large for AA and AG to

work. When we reduced the amount of memory to 1G and 500M, AA,AG, and AC did not work

on Songs and Citations because there was not enough memory to load the required indexes, but

AP worked well (AC did not appear to dominate in any experiment).

Overall, the results here suggest that (a) the solutions can vary drastically in their run times,

(b) Falcon often selected the best solution, which is AA,AG, or AP depending on the amount of

available memory, and (c) prior solutions do not scale as they enumerate A×B.

4.11.3 Effectiveness of Optimization

Recall that our goal is to minimize the machine time beyond the crowdsourcing time (i.e., the

machine time that cannot be masked). Column “U” of Table 4.5 shows this unoptimized time,

18m - 2h 12m, for the first run of each data set (recall that we run Falcon three times with real

crowd for each data set; the results are similar for other runs, and we only show the first runs for

space reasons). Column “O” shows the optimized time 16m - 40m, a significant reduction, ranging

from 11% to 70% (see Column “Reduction”). This result suggests that the current optimization

techniques of Falcon are highly effective.

The next three columns show the run time when we turned off each type of optimization: index

building (O1), speculative execution (O2), and masking pair selection (O3). The result shows that
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all three optimization types are useful, and that the effects of some are quite significant (e.g., O2

on Citations and O3 on Songs).

4.11.4 Sensitivity Analysis

Figure 4.12: Effect of crowd error rate on F1, runtime, and cost.

We now examine the main factors affecting Falcon’s performance.

Error Rate of the Crowd: First we examine how varying crowd error rates affect Falcon. To do

this, we use the random worker model in Corleone to simulate a crowd of random workers with

a fixed error rate (i.e., the probability of incorrectly labeling a pair) [54]. Figure 4.12 shows F1,

run time, and cost vs. the error rate (the results are averaged over three runs). We can see that as

error rate increases from 0 to 15%, F1 decreases and run time increases, but either minimally or

gracefully. Interestingly there is no clear trend on cost. This is because in some cases (e.g., when

the error rate is high), active learning converged early, thereby saving crowdsourcing costs. In any

case, recall that there is a cap on crowdsourcing cost (Section 4.3.4) and the costs in Figure 4.12

remain well below that cap.

Size of the Tables: So far we have shown that Falcon achieved good performance on tables

of size 1-2.5M tuples. We now examine how this performance changes as we vary the table size.

Figure 4.13 shows F1, run time, cost as we run Falcon on 25%, 50%, 75%, and 100% of Songs and

Citations (using simulated crowd with 5% error rate and 1.5m latency per a 10-question HIT; each

data point is averaged over 3 runs). The results show that as table size increases, (a) F1 remains
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Figure 4.13: Performance of Falcon across varying sizes of Songs and Citations data.

stable or fluctuates in a small range. (b) run time increases sublinearly, and (c) cost increases

sublinearly (recall that cost will not exceed the cap).

Additional Experiments: As we varied the Hadoop cluster size from 5 to 20 nodes, we found

that the machine time of Falcon (i.e., total time subtracting crowd time) decreases, as expected.

But this decrease is largest from 5-node to 10-node. Subsequent decrease is not as significant. For

example, the times of a run of Songs on a 5-, 10-, 15-, and 20-node cluster are 31m, 11m, 7m, and

6m, respectively.

We are also interested in knowing how sample size affects Falcon. As we vary the sample size

from 500K to 2M tuples, we found that it has negligible effects on F1, and increases total run time

and cost very slightly. Based on this, we believe a sample size of 1M (that we have used) or even

500K is a good default size.

Regarding memory size, its largest effect would be on apply blocking rules, and we have

discussed this earlier in Section 4.11.2. Finally, we have experimented with varying the maximal

number of iterations for active learning. As this number goes from 30 to 100, we found that (a) all

active learning in our experiments terminated before 100, (b) the run time (including crowdsourc-

ing time) increased significantly, (c) yet F1 accuracy fluctuates in a very small range. This suggests

that capping the number of iterations at some value, say 30 as we have done, is a reasonable solu-

tion to avoid high run time and cost yet achieve good accuracy.
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4.12 Conclusion

In this chapter we have shown that for important emerging topics such as EM as a service on

the cloud, the hands-off crowdsourcing approach of Corleone is ideally suited, but must be scaled

up to make such services a reality.

We have described Falcon, a solution that adopts an RDBMS approach to scale up Corleone.

Extensive experiments show that Falcon can efficiently match tables of millions of tuples. We are

currently in the process of deploying Falcon as an EM service on the cloud for data scientists.

Falcon also provides a framework for many interesting future research directions. These in-

clude minimizing crowd latency / monetary cost, examining more optimization techniques (includ-

ing cost-based optimization), extending Falcon with more operators (e.g., the Accuracy Estimator

of Corleone), and applying Falcon to other problem settings, e.g., crowdsourced joins in crowd-

sourced RDBMSs.



119

Chapter 5

Conclusion

Entity matching (EM) is the problem of finding data records that refer to the same real-world

entity. It is a critical problem in many real-world applications spanning different domains (e.g., e-

commerce, healthcare) and practitioners (e.g., enterprises, data enthusiasts). Despite this problem

receiving significant attention in the past, it is still far from being solved.

There are many EM settings that involve a crowd of workers (in crowdsourcing) or “non-

technical” users (e.g., analysts). There are also many EM settings that involve a large number

of EM tasks to be solved (e.g., in the hundreds) or a large number of tuple pairs to match. This

dissertation addresses these EM settings. Below are our three key contributions in this dissertation:

1. We have developed Corleone, a hands-off crowdsourcing system for EM. Corleone crowd-

sources the entire EM pipeline thereby requiring no developer. As such it can scale to grow-

ing EM needs at enterprises and startups, and open up crowdsourcing for the masses. We

have shown that Corleone achieves comparable or better accuracy than traditional solutions

and published results, at a reasonable crowdsourcing cost.

2. We have developed Rmony, a rule-based EM management system for the analysts. Rmony

helps an analyst write EM rules manually. Rmony also automatically suggests EM rules

to the analysts. We have evaluated Rmony with real-world users and data to demonstrate

its effectiveness. We have described a case study to show how Rmony was instrumental in

improving an EM system in production. We have described the main lessons learned during

the course of development of Rmony, some of which have led to the inception of Magellan,

an open-source EM management system in the Python ecosystem.
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3. We have developed Falcon, a system that scales up Corleone, using RDBMS-style query

execution and optimization over a Hadoop cluster. Falcon’s MapReduce solution to execute

complex rules over the Cartesian product of two tables significantly advances the state of

the art. Extensive experiments show that Falcon can efficiently match tables of millions of

tuples. We are currently in the process of deploying Falcon as an EM service on the cloud

for data scientists.

Future Research Directions: This dissertation suggests several interesting future research di-

rections. First, our systems can be extended with more capabilities. For example, Corleone can

be extended with better algorithms (e.g., sampling pairs during blocking, stopping criteria during

active learning), Rmony can be extended with crowdsourcing; Falcon can be extended with more

operators (e.g., accuracy estimator), cost-based optimization, etc. Second, we handle only the EM

scenario of matching two tables. Exploring other EM scenarios (e.g., linking tables to a knowledge

base, matching entity mentions in text with a structured catalog) will be interesting. Third, a next

logical research direction for EM can be EM services on the cloud, which will bring with itself

its own novel challenges (e.g., pricing, minimizing resource utilization, security, etc.). Finally,

this dissertation presents key ideas that are applicable in many research problems, not just EM.

For example, hands-off crowdsourcing (in Corleone), system building for analysts (in Rmony),

and using RDBMS-style approaches to scale solutions (in Falcon) are applicable to many data

management problems, including information extraction, schema matching, and data cleaning.
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