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Introduction 

 

Understanding long-term variations in water levels for seepage lakes (i.e., closed-basin 

systems that lack surface inflows or outflows) requires consideration of the role of 

groundwater, climate and other patterns in driving lake level dynamics. Surface water bodies 

are tightly linked to the groundwater flow system (Winter 1999), and groundwater can exert 

substantial influence on the water levels of seepage lakes at both local and regional spatial 

scales (Almendinger 1990, Novitzki and Devaul 1978). Water level changes in lakes, 

especially declining water levels, can have substantial socio-economic (Kashian 2008) and 

ecological (Hayashi and Rosenberry 2002, Gaeta et al. 2014) consequences. In stream 

environments, understanding streamflow variability across landscapes has been essential to 

better natural resource management of these ecosystems (Poff et al. 1997), and similar 

frameworks will also advance groundwater and lake management. 

Lake level fluctuations over time reflect both natural (e.g., climate) and human-

induced (e.g., groundwater withdrawals) changes to the water budget including inputs and 

outputs from precipitation and evaporation, surface water inflow and outflow, and 

groundwater discharge and recharge (Figure 1). During the past decade, an extended drought 

in Northern Wisconsin resulted in the lowest recorded lake and groundwater levels since 

1937 (Watras et al. 2014). Concurrently, water levels in Lake Michigan experienced their 

lowest levels dating back to 1816. Long-term fluctuations of both groundwater and lake 

levels are extremely coherent, suggesting that these systems are coupled and influenced by 

similar drivers (Stow et al. 2008, Watras et al. 2014). Groundwater withdrawals have also 

dramatically lowered lake levels in the Central Sands area of Wisconsin by reducing 

groundwater discharge to lakes (Kraft et al. 2012) and further emphasize the tight coupling 

between groundwater and surface water levels (Almendinger 1990). 

 

 
Figure 1. Lake water budget. The water budget for most seepage lakes can be simplified to 

include precipitation, evaporation, and groundwater discharge and recharge. 

 

Lowered lake levels can desiccate large portions of littoral zone (or nearshore area) 

habitat, reducing and fragmenting critical ecological habitats. The littoral zone is rich in 

ecological and biological diversity, often containing dense coarse woody habitats, diverse 

aquatic plants, benthic macroinvertebrates, fish, and other vertebrates. Much of the lake’s 

primary production occurs in the littoral zone (Vadeboncoeur et al. 2008), and the littoral 
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zone is critical for fish spawning and growth. Drought in northern Wisconsin lowered water 

levels by 1.1 m on Little Rock Lake, stranding >75% of woody habitat above water, which in 

turn negatively influenced forage and sport fish (Gaeta et al. 2014). Some of Wisconsin’s 

most endangered aquatic taxa rely specifically on littoral lake habitat types to complete their 

life-cycle, thus factors leading to degradation of these habitats can be critical conservation 

considerations. For example, groundwater pumping in the Central Sands stranded piers and 

boat landings hundreds of feet away from the water line, caused Long Lake to dry up, and 

threatened an endangered plant that requires fluctuating water levels (US Fish and Wildlife 

Service 1991, Kraft and Mechenich 2010). 

Given the ecological and recreational importance of lake level and its strong coupling 

with both climate and anthropogenic activities, it is surprising how few lakes are monitored 

for water levels in the state. Of 15,000 + lakes in Wisconsin, only 41 have at least 10 full 

years of water level records that we are currently aware of. Initiating lake level monitoring on 

more lakes across the state is a priority for the WDNR, and this effort is underway as part of 

the Citizen Lake Monitoring Network. However, many management decisions (e.g., 

permitting high-capacity wells) cannot wait for new, long-term records to develop. New 

models linking existing long-term records to short-term monitoring efforts would represent a 

key resource management tool for Wisconsin. Successful examples of wedding short and 

long-term water level data exist in other states. For example, Florida administrative code 

defines minimum lake levels for each lake based on observed or modeled exceedance 

probabilities (https://www.flrules.org/gateway/ChapterHome.asp?Chapter=40D-8). 

 

The objectives of this project were: 

1. Compile historical water level and climatic data into a publicly available database 

2. Analyze the spatial and temporal coherence of historic water levels 

3. Model historic lake levels 

4. Characterize hydrologic regimes for all seepage lakes 

 

Historical Water Level Data Compilation 
 

We compiled historical lake level, groundwater level, and climate data for this project. We 

also gathered lake and watershed characteristic data from the Wisconsin Department of 

Natural Resources (WDNR) Hydro24K VA database and the Lake multi-scaled geospatial 

and temporal database (LAGOS, www.lagoslakes.org). 

The lake level dataset includes 501 seepage lakes and 535 drainage lakes with a total 

of 342,319 observations (Figures 2, 3). The data set spans from January 1st, 1900 to 

December 31st, 2015. The data sources include the United States Geological Survey (USGS), 

WDNR, North Temperate Lakes-Long Term Ecological Research (NTL-LTER), North 

Lakeland Discovery Center, Waushara County, and City of Shell Lake. WDNR hosts two 

lake level data sets: historical lake levels recorded in paper files and modern records collected 

as part of a recently-initiated citizen monitoring program. The latter is stored in the 

Wisconsin Surface Water Integrated Monitoring System (SWIMS).  

https://www.flrules.org/gateway/ChapterHome.asp?Chapter=40D-8
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We then embarked on an extensive data compilation and cleaning effort. Some lakes 

had water level records from multiple sources. We attempted to use the datums from each 

data source to link records from the same lake together, often extending the period of record 

for an individual lake. However, many records could not be linked together, resulting in 

separate water level time series on the same lake. To identify errors or abnormal water level 

variation, we plotted the time series of each lake level record. We also calculated the water 

level range and rate of change for each lake level record to further detect lakes with 

problematic observations. We corrected obvious errors when possible and excluded some 

observations that appeared to be egregious outliers which could not be rectified using 

available resources. 

The groundwater level dataset includes 964 monitoring wells with about 400,800 

observations spanning February 2nd, 1929 to December 31st, 2015 (Figures 2, 3). Data came 

from USGS, NTL-LTER, and WDNR. The well data downloaded from WDNR is monitored 

through a joint effort between WDNR, volunteers, and six counties in the Central Sands area 

(Adams, Marquette, Portage, Waupaca, and Waushara). Data were retrieved from each source 

and pooled into one data set. As no well was monitored by more than one entity, no further 

merging operation was conducted. Like lakes, we reviewed time series plots and the range of 

water levels in each well. All wells in the confined aquifers were discarded as they were 

severely impacted by human activities and did not reflect natural variation in groundwater 

levels. 

Both the lake and groundwater level data sets were published online through the 

Environmental Data Initiative. 

 

Data Repositories 

Lakes: https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-ntl.362.1 

Groundwater: https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-ntl.363.0 

 

This enhanced data accessibility will benefit future research and management. Now it 

is much easier for the public to access the historical water level data from WDNR that was 

previously only available as paper files. This data set also pooled disparate data sets collected 

by different agencies on 30 lakes, expanding the length and frequency of these records. 

The climate data compiled for this project consist of precipitation and evaporation 

estimates at each lake. The precipitation data are derived from PRISM (PRISM 2004) and 

evaporation data are from a model developed by Jordan Read (Read et al. 2014). The 

evaporation model used data from two sources that were stitched together using a linear bias 

correction approach (White and Toumi, 2013): ZedX Inc. (Bellefonte, PA; Motew and 

Kucharik, 2013) and the North American Land Data Assimilation System (NLDAS-2; 

https://ldas.gsfc.nasa.gov/nldas/). The time span of precipitation data is from 1895 to 2015 

and the time span of evaporation data is from 1984 to 2015. 

 

https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-ntl.362.1
https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-ntl.363.0
https://ldas.gsfc.nasa.gov/nldas/
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Figure 2. Sites with lake level records (left) and groundwater levels (right). Symbol color indicates 

the number of years of data for an individual location. 

 

 

 
 

Figure 3. Spatial and temporal coverage of lake level (left) and groundwater level (right) data from 

the early 1900s to present. Rows represent individual monitoring sites and columns monitoring years. 

Green or yellow cells represent available data at the site-year and red represents no data. 

 

Spatial and Temporal Coherence of Historic Water Levels 

 

We investigated the spatial and temporal coherence of water levels across Wisconsin to 

inform our lake level modeling approach. The ultimate goal of this research is to characterize 

the hydrological regime of the lakes in Wisconsin. A lake’s historical water level could be 

predicted using historical water level data from the lake itself and/or adjacent lakes and wells. 

However, we did not whether lakes and wells near one another fluctuate in unison nor how to 

define “adjacent” lakes and wells if there is spatial and temporal synchrony. Besides 

supporting the decision-making in model building, recognizing the spatial and temporal 

coherence of lakes and wells can also provide insight into the interaction between surface 

water and groundwater in Wisconsin.  
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Approach 

 

Coherence analysis of the lakes and wells was conducted to delineate hydrological regions 

across the state. We applied the kernel k-means clustering method to group lakes and wells 

with similar water level variation patterns together using Dynamic Time Warping as a 

dissimilarity metric (sensu Lottig et al. 2017). The analysis includes both drainage and 

seepage lakes, as well as groundwater monitoring wells. The time series water level data were 

retrieved from multiple sources and compiled in one dataset. Then for each lake and well, its 

average water level in each year during the open water season (i.e., the time period from May 

15th to November 15th, was calculated).  

Clustering approaches to identify common trends in time series data require a 

complete time series with no missing data. If gaps in time series exist, those gaps are often 

filled in using a variety of different approaches including interpolation or mean value 

replacement. Here, we rely on a Dynamic Time Warping algorithm (Lottig et al. 2017) that 

can cluster time series even if gaps exist in the time series without the need to fill in the gaps 

to create complete time series. In order to understand the maximum amount of missing data 

feasible within a time series while still deriving clusters similar to the complete time series, 

we used a data-driven approach to determine an acceptable data missing rate. Briefly, a set of 

water level observations without any missing data was extracted from the water level datasets 

described above that included data from 41 lakes between 2002 and 2015. Observations were 

randomly removed from the time series to create three additional datasets with 10%, 20%, 

30% and 40% of the data missing. We compared the fidelity of the cluster results at each data 

missing rate and determined that a missing rate of 20% returned approximately the same 

result as the full dataset. Therefore, we allowed a missing rate of up to 20% when selecting 

water level records for coherence analysis.   

We analyzed the entire dataset to determine the time period that maximized the 

number of water level observations while maintaining a maximum missing data rate of 20%. 

The resulting dataset derived for coherence analysis through time series clustering included 

52 lakes and 115 wells from 2001 to 2015. This data subset is of sufficient length to capture 

the 13-year cycle observed by Watras et al. (2014) and covers most of Wisconsin. We applied 

dynamic time warping (DTW) to measure the distance, i.e., the similarities of members 

within the same clusters and the dissimilarities of members from other clusters. This is a 

method first developed for speech recognition (Sakoe et. al.1990). In comparison to other 

dissimilarity metrics, DTW can not only deal with missing data but also aligns time series 

that are slightly asynchronous. In our analysis, we set the time lag as ±1 year to account for 

possible lags of responses to the hydrological drivers. The number of clusters was determined 

by comparing the within-cluster DTW distances to DTW distances from random clusters and 

choosing the number of clusters where the difference was maximal or asymptotes. 
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Results & Interpretation 

 

Analysis of the data resulting from generating 10 sets of clusters (1 through 10) suggest the 

presence of two distinct clusters (Figure 3) that separate lakes and groundwater wells along a 

north/south gradient (Figure 3).  The patterns separating the two regions highlight the 

 

 
Figure 3. Comparison of DTW distances estimated by kernal clustering (red), random clustering 

(blue) and the difference between approaches (green; left panel). Location of lakes and groundwater 

that share similar long-term patterns based on time series clustering of water level records (right 

panel). 

 

extensive drought in northern Wisconsin and the more recent higher than average 

precipitation years in southern Wisconsin (Figure 4). 

 

 
Figure 4. Water level patterns for both lakes and ground waters for the two clusters shown in Figure 

3. Light blue lines are individual time series, the black line is group median value. 

 

We used random forest models to help understand what ecological context variables 

might explain why these groups of lakes and groundwater wells shared similar long-term 

water level patterns. Variables used to predict cluster association include site-specific 

information (e.g., lake vs well), watershed land use information, soil types and soil 
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characteristics, and climate. Climate variables characterizing precipitation were able to 

classify 89% of the lakes between the northern and southern groups. The two most important 

variables were the 30-year mean annual precipitation and the cumulative precipitation 

deviation from the 10-year rolling mean. Additionally, it is important to note that the site type 

(i.e., lake or groundwater well) was not important for understanding the long-term water level 

patterns.  These results highlight that 

climate (precipitation) is one of the 

strongest drivers of water levels across the 

state of Wisconsin and that both lake and 

groundwater levels respond similarly to 

precipitation patterns at multiple spatial 

and temporal scales. 

While the long-term water level 

data does not exist to assess if these 

clusters change depending on the time 

period or time span the data covers, we 

suspect that given the strong climate 

signal from precipitation observed here, 

periods of converging and diverging 

patterns should emerge. We would expect 

similar water level patterns to be observed 

across the entire state if similar 

precipitation patterns are observed. On the 

other hand, if precipitation patterns differ 

amongst regions for a significant period, 

we would expect the water level patterns 

to differ in a similar matter as well for that 

region. 

 

Modeling Historic Lake Levels 

 

We explored reconstructing historical water levels using two different approaches. The first 

approach was to rely on the strong correlation between water levels and precipitation (Goal 

#2) and the second approach was to build a mechanistic-based model similar to Watras et al. 

2014 and reconstruct water levels using both precipitation and evaporation data. 

Empirical Model Using Historic Precipitation Data 

 

Given the strong correlations observed between precipitation patterns and observed lake 

levels (Goal #2), we quantified the relationship between precipitation and water levels in 

seepage lakes (i.e., lakes with closed basins) whereby:  

𝑦𝑡𝑗 = 𝑝𝑝𝑡𝑡𝑗  +  𝜀𝑗 

 

To assess the relationship, we fit a Bayesian Hierarchical model as follows: 

Figure 5. Example of North/South gradient in 

precipitation across the state of Wisconsin that 
correlates with the division between the North/South 
patterns of lake and groundwater levels. 
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𝑦𝑖 ∼ 𝑁(𝑎𝑗(𝑖) + 𝐵𝑗(𝑖)𝑥𝑖, 𝜎𝑗
2), 𝑓𝑜𝑟 𝑖 =  1, . . . 𝑛 

( 𝐵𝑗

𝑎𝑗
) ∼ 𝑁 (( 𝑢𝐵

𝑢𝑎 ) , (
𝜎𝑎 𝜎𝐵

𝜎𝑎
2

𝜎𝐵
2

𝜌𝜎𝑎𝜎𝐵)) , 𝑓𝑜𝑟 𝑗 =  1, . . . 𝑗 

𝜎𝑗 ∼ 𝑁(𝑢𝑎, 𝜔𝜎
2), 𝑓𝑜𝑟 𝑗 =  1, . . . 𝑗  

 

where yi is the observation i of change in lake water level from lake j; xi is the precipitation 

from lake j; αj and βj are the intercept and slope for lake j, respectively; μα is the population-

average intercept and μβ is the population average slope; 𝜎𝑎
2 and 𝜎𝐵

2 are the variances of the 

intercepts and slopes, respectively; and ρσασβ describes the covariance between αj and βj with 

ρ describing the correlation between αj and βj. σj is the lake-specific residual variance with a 

mean μα and variance 𝜔𝜎
2 . 

Precipitation was represented in the model as the cumulative deviation of monthly 

precipitation (cmdev) from an eight-year rolling mean (sensu Smail personal 

communication). Though precipitation is an important factor, applying raw precipitation data 

could lead to several problems. The most critical issue with the raw data is that they can only 

show isolated rainfall instances at each time point and therefore fail to capture the deficit and 

surplus of the precipitation budget. If there were a significant amount of precipitation in 

previous years, i.e., there is a surplus in the water budget, one dry year might not cause an 

immediate negative impact on the water level. By the same logic, one wet year may not be 

able to make up for the consequence of a long-term drought and fail to increase the lake level. 

The cumulative values which are the sums of the precipitation data between a certain time 

period can deal with this problem by reflecting the influence of the past precipitation. Lake-

specific precipitation data was derived from PRISM spatial coverages. 

In total 40 different lakes had sufficient temporal coverage (8+ years of data) and 

precipitation ranges to assess the relationship between cmdev and lake - specific water levels 

(Figure 6). There were strong linear relationships between lake water level and cmdev for 

each discrete lake (Figure 6) that were well characterized by the hierarchical linear models. 

Resultant predictions of lake specific water levels generally closely approximated observed 

water levels (Figure 7). On average the slope between cmdev and the lake water level was 

approximately 1.2 but varied from approximately 0.5 to 4. This variation in slopes provided 

challenges for extrapolating the knowledge gained from these study lakes to other lakes 

across the state of Wisconsin.  

To extrapolate the relationships quantified here to other lakes, we tested a variety of 

model selection approaches to explain the variation in among lake slopes and ecological 

context variables including black box approaches such as random forest. For ease of 

interpretation, we have chosen to rely on linear models. These analyses were driven by semi-

informed decisions about what ecological context variables may be important factors 

influencing water level changes in lakes and their response precipitation. The ecological  
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Figure 6. Lake water level time series for 40 lakes (left) used to quantify the relationship between 

cumulative monthly precipitation deficit (cmdev) and lake water level (right). 

 

 
Figure 7. Time series of water levels from Anvil lake and modeled water levels based on the lake 

specific Bayesian hierarchical model. 

 

context variables used to understand the variation in the slope of the relationships among 

lakes between water levels and precip observed above included the following variables: Max 

lake depth, soil permeability, soil Darcy value, conductivity, the difference between lake 

elevation and maximum watershed elevation, the lake area, and percent riparian forest. Forest 

land type was chosen for the land-use variable because it is strongly correlated with other 

variables. We also chose to use land-use characteristics calculated for the riparian zone (30m 

buffer) around the lake. 

 The best model for extrapolating the slope between lake water level and cmdev was: 

 

water_level = elevation_difference + Forest*Darcy 
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Estimate  Std. Error    Pr(>|t|)     

(Intercept)            4.223e-01  3.542e-01     0.241     

elevation_difference   1.924e-02   6.592e-03     0.006  

forest                1.214e-02   7.003e-03     0.092   

DARCY                     -5.720e-03   1.645e-03    0.001  

forest:DARCY       1.117e-04   3.061e-05     0.001 

 

The overall model explained 49.1% of the variation in the slope of the relationship between 

cmdev and water level between lakes (p < 0.001). In order to limit the potential of 

extrapolating beyond the bounds of the training dataset, we limited lakes that were 

extrapolated to have elevation differences between 5 and 62 m, forest landcover between 2 

and 88 percent, and Darcy estimates between -502 and 5. 

 

Mechanistic Model Using Precipitation and Evaporation Data 

 

The second approach we explored for understanding how climate and groundwater interact to 

influence water levels in lakes was through the use of recursive time series models. Changes 

in closed basin (seepage) lake water levels (S) can be described by: 

 

𝑆𝑡 = 𝑆(𝑡−1) + 𝑃(𝑡−1) − 𝐸(𝑡−1) − 𝛽 ∗ 𝑆(𝑡−1) 

 

where S is the lake stage (cm), P is precipitation (cm), E is lake evaporation (cm), and ϐ is a 

coefficient accounting for stage-specific groundwater outflow (i.e., loss of lake water to 

groundwater) after Watras et al. (2014). The precipitation data are derived from PRISM 

(PRISM 2004) and evaporation data are from a model developed by Jordan Read (Read et al. 

2014). Lake-specific ϐ values were estimated using a grid-search algorithm that minimized 

the root mean squared error values between the predicted and observed water levels for each 

individual lake. A one-year time step was used in the model, and lakes had to have at least 20 

years of data for quantifying ϐ values. In total, 20 lakes met this criterion for estimating a 

lake-specific ϐ value. Groundwater outflow ranged from 22 - 43 cm/yr (mean = 35 cm/yr). 

The average value of groundwater outflow was consistent with those observed by Watras et 

al. (2014). 

 As with the empirical approach above, lake-specific ϐ values were extrapolated to 

seepage lakes that lacked water level observations needed for directly calculating a ϐ value. 

We used the same set of predictor variables as described above to help identify the ecological 

context variables that explain the among lake variation in ϐ. The best model for extrapolating 

the slope between lake water level and cmdev was: 

 

ϐ = Lake Elevation + Lake Max Depth + Conductivity 

 

                Estimate  Std. Error Pr(>|t|)     
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(Intercept)    1.699e-02   5.669e-03    0.009 

Lake Elevation     6.266e-05   1.249e-05    0.001 

Max Depth      -1.844e-04   4.074e-05   0.001 

Conductivity          2.118e-05   1.101e-05   0.072  

 

The overall model explained 72.3% of the variation in lake specific ϐ values (p < 0.001). In 

order to limit the potential of extrapolating beyond the bounds of the training dataset, we 

limited lakes that were extrapolated to have maximum depths between 12 and 67 m, lake 

elevations between 256 and 517 m, and conductivity between 16 and 412 us/cm. In total, ϐ 

were extrapolated for 312 lakes. Average groundwater outflow was 36 cm/yr (range 24 - 48 

cm/yr). 

 

Statewide Seepage Lake Hindcasted Water Levels 

 

In total, water levels were 

hindcasted for 316 seepage 

lakes using a combination of 

either or both approaches 

described above depending on 

the availability of driver data 

for each model (Figure 8). In 

general, there was close 

agreement between water 

levels hindcasted using the 

empirical and mechanistic 

models (See Supplementary 

Document #1). While the 

overall patterns in annual 

water levels were similar 

between both approaches, 

water levels hindcasted using 

the empirical model tended to 

be more accurate (RMSE = 

33.6 cm) relative to the mechanistic model (RMSE = 44.3 cm; Figure 9).  

In addition to generating more accurate predictions of seepage lake water levels, the 

empirical model is advantageous in the applications explored here because it only requires 

precipitation data instead of both precipitation and evaporation data which must be either 

directly measured or modeled using complicated process-based models (see Read et al. 

2014). Visual analysis of the differences between hindcasted and observed water levels 

suggest that, while the agreement is generally good (Figure 9), patterns have the potential to 

deviate substantially at times (See Supplementary Document #1). Further research is needed 

to better understand the dynamics of lakes in which water levels do not appear to track 

climate. 

Figure 8. Map of seepage locations that have hindcasted 

water levels. 
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Figure 9. Comparison of observed and hindcasted water levels for the empirical (A) and mechanistic 

seepage lake water level models. 

 

Seepage Lake Hydrologic Regimes 
 

Hindcasting water levels over long periods of time (since the 1920s) provides an opportunity 

to begin placing water levels within a lake’s hydrologic regime instead of simply the period 

of the current record (Figure 10). Across all lakes with empirical (precipitation based) water 

level predictions, 20% of the time lake stage equaled or exceeded 26 cm above the long-term 

average (range 9 to 54cm) and 70% of the time it equaled or exceeded -19 cm (range -45 to -

6cm). Thus, on average for lakes considered in this study, water levels were typically +/- 

0.25m 50% of the time for any given lake. 

 
Figure 10. Stage exceedance curves for seepage lakes with hindcasted water levels. 
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