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ABSTRACT

Data labeling is the process of one or more users labeling a set of data instances using a set

of given labels. It is a pervasive problem in many data science tasks, such as classification, data

validation, tagging, etc. To collect high quality labels, data labeling usually requires a lot of man-

ual effort. Researchers have developed many techniques to help data labeling process, such as

crowdsourcing and active learning, but major challenges regarding cost, quality and scalability

still remain. In this dissertation I develop solutions to address these challenges for several impor-

tant data labeling tasks.

First, I have developed VChecker for validating data using crowdsourcing. In such tasks,

crowdsourcing cost and accuracy of aggregated answers are two important factors that users often

need to trade-off between each other. I developed solutions that estimate the difficulties of different

values of the attribute to be validated and partition items in the dataset according to the value

difficulties, then develop adaptive crowdsourcing strategies to crowdsource items in each partition.

These solutions can be used towards different crowdsourcing task scenarios, such as minimizing

crowdsourcing cost while maintaining the accuracy of aggregated answers, or maximizing the

accuracy of aggregated answers with some budget limit, etc.

Second, in collaboration with Fatemah Panahi, I have developed solutions for detecting label

errors for entity matching. Our interactive solutions significantly reduce the user workload. In each

iteration, we find the top-k entity pairs whose labels are most suspicious, return them to the users

for manual verification, then use their feedback (corrected labels) to find the top-k suspicious entity



x

pairs for the next iterations. We perform extensive experiments on 17 entity matching datasets,

which demonstrate the promise of our solutions.

Finally, I have developed solutions for performing large-scale active learning for entity match-

ing. We start with a simple distributed Spark solution, study its performance on many entity

matching datasets, identify opportunities to improve user labeling experience, then we implement

several ideas based on our observations and evaluate their effectiveness. Our empirical evaluations

show that our solutions effectively improve user labeling experience by significantly reducing both

the waiting time before users start labeling and the waiting time between iterations.
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Chapter 1

Introduction

Data labeling is the process of one or more users labeling a set of data instances using a set

of given labels 1. It is a pervasive problem in many data science tasks, such as classification, data

validation, tagging, etc. In classification tasks, we need labeled examples to train classifiers. For

example, in entity matching, to train a matcher (which is a classifier), we usually require a set of

labeled entity pairs (whether each pair refers to the same real-world entity, such as Dave Smith vs

David D. Smith) before training. In data validation tasks, we often need to label whether a data

instance is valid or not. Figure 1.1 shows an example of validating the color attribute of product

instances: the given color value of the bag is blue, which is invalid judging from the product

picture. In tagging tasks, we are asked to label a given content (e.g., post, picture, video, etc) with

one or more tags from some provided taxonomy.

1Our solutions in Chapter 3 also apply to data labeled using other means.

Figure 1.1: An example of validating the color attribute for products.
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To collect high quality labels, data labeling usually requires a lot of manual effort. Researchers

have developed many techniques to help data labeling process, such as crowdsourcing and active

learning, but major challenges regarding cost, quality and scalability still remain. First, manually

labeling thousands or more data instances usually takes a lot of time and monetary cost. Mean-

while, these labeled data usually contain label errors due to human mistakes, inconsistent labeling

criteria, etc. Active learning is widely used to save labeling cost. Active learning is a machine

learning method that iteratively selects a batch of most informative unlabeled pairs for users to

label. However, when given large sets of data instances, active learning often has scalability is-

sues. For example, in each iteration the labeling workers often need to wait a long time before they

get the set of data instances to be labeled. In this dissertation I develop solutions to address these

challenges for several important data labeling tasks, which I describe next.

1.1 Data Labeling Tasks

Specifically, my dissertation focused on three important data labeling tasks: (1) validating data

using crowdsourcing, (2) detecting label errors in the training data for entity matching; and (3)

performing active learning on large-scale entity matching datasets.

Validating Data Using Crowdsourcing: The first task I addressed is to validate data using

crowdsourcing. Specifically, given a set of items D and a target attribute A, validate the correct-

ness of attribute A’s values for all items in D using crowdsourcing. To do so, we transform each

item into a question of the form “Is v the correct value of attribute A for item d based on the pro-

vided context of d?”, then crowd workers will label it with either “yes” or “no” as the answer. In

such tasks, crowdsourcing cost and accuracy of aggregated answers are two important factors that

users often need to trade-off between each other. I developed solutions that estimate the difficulties

of different values of A and partition items in D according to the value difficulties, then develop

adaptive crowdsourcing strategies to crowdsource items in each partition. These solutions can be
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used towards different crowdsourcing goals, such as minimizing crowdsourcing cost while main-

taining the accuracy of aggregated answers, or maximizing the accuracy of aggregated answers

with some budget limit, etc.

Detecting Label Errors for Entity Matching: The second task I addressed is to detect label

errors for entity matching. In entity matching, given two tables of entities, we usually perform

blocking first to remove pairs of entities between the two tables that are obviously NOT matches

and get a set of candidate pairs that are likely matches. Then we need a matcher to predict whether

each candidate pair is a match or not. To build the matcher, we often need to manually label a

subset of candidate pairs, then use them as the training data. However, there are often many label

errors in such training data. It would require a lot of effort if users go through each entity pair and

verify the correctness of its label. I developed interactive solutions to detect label errors iteratively,

which significantly reduce the user workload. In each iteration, we find the top-k entity pairs with

the most suspicious labels, return them to the users for manual verification, then use their feedback

(corrected labels) to find the top-k suspicious entity pairs for the next iterations.

Large-Scale Active Learning for Entity Matching: The third task I addressed is to perform

active learning on large-scale entity matching datasets. As mentioned before, in entity matching,

after blocking we often get a set of candidate pairs U and need to label some pairs for building the

matcher. Instead of randomly sampling a small set of pairs for labeling, active learning is used to

iteratively select a batch of most controversial unlabeled pairs and send them to users for labeling,

until some stopping criteria are activated (e.g., it reaches the maximum number of iterations, or the

learned model has converged). However, given two large tables of entities, we often have a large

set of candidate pairs, which brings scalability issues. For example, it usually takes a lot of time

to do feature computation for pairs in U and apply trained models to select the most controversial

pairs for labeling, which means that each iteration users need to wait a long time before they get

the pairs to be labeled.

The project goal is to reduce the waiting time. Specifically, we aim to reduce (1) the start time

(i.e., time from users uploading the dataset to getting the first batch of controversial pairs to be
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labeled; and (2) the iteration latency (i.e., time from receiving the current batch of labeled pairs to

returning the next batch of controversial pairs for users to label).

To achieve our goals, I first developed a basic solution on Spark, evaluated it on several en-

tity matching datasets and studied its behaviors. Then I identified several opportunities to further

reduce the above types of waiting time. I implemented and integrated these ideas into our Spark

solution, performed extensive experiments, which demonstrates the promise of our revised solu-

tions.

1.2 Contribution of the Dissertation

My dissertation focuses on developing solutions for several challenges in the above data label-

ing tasks. My work has made the following contributions:

1. I developed VChecker, which uses adaptive crowdsourcing strategies for data validation

(Chapter 2). VChecker has successfully addressed many limitations in the existing solution

and significantly advanced this line of research in many ways. Our empirical evaluation

on three real datasets shows that compared with the existing solution, VChecker can help

reduce crowdsourcing cost by up to 53% while achieving comparable overall accuracy, or

reduce the error rate of aggregated answers by up to 35% with the same budget limit.

2. I developed solutions to debug labeled data for entity matching (Chapter 3). We perform

extensive experiments on 17 entity matching datasets (which are widely used in industry

and research, and are often assumed with no label errors), and our solutions find label errors

in 12 of them. The experiment results also demonstrate that our solutions can significantly

reduce the user workload and help find such errors effectively.

3. I developed solutions to perform large-scale active learning for entity matching (Chapter 4).

Our goals are to help improve user labeling experience during active learning. We evaluate

our solutions on several datasets and demonstrate the promise of our solutions: we help

significantly reduce both the waiting time (up to 95%) before users start labeling and the

waiting time between iterations.
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1.3 Roadmap of the Rest of This Dissertation

The rest of this dissertation is organized as follows. First, I describe our VChecker system,

which helps reduce the cost when validating data using crowdsourcing in Chapter 2. Next, I

describe our interactive solutions to debug label errors for entity matching in Chapter 3. After

that, in Chapter 4, I describe how we address the problem of large-scale active learning for entity

matching. I conclude this dissertation with Chapter 5.
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Chapter 2

Validating Data Using Crowdsourcing

This chapter studies the problem of validating data using crowdsourcing, focusing on detecting

attribute value errors. I first discuss the limitations of current common crowdsourcing solutions,

then describe how I develop our VChecker system to address those limitations. I evaluate our

system using three real datasets and demonstrate its promise.

The chapter is organized as follows. I first introduce the background and define the problem

in Section 2.2. Then I describe details of our VChecker system in Sections 2.3-2.6. I present our

experiment results in Section 2.7. After that, I briefly describe the related work, then conclude the

chapter with discussions and future work.

2.1 Introduction

Data cleaning has received significant recent attention (e.g., [16, 18, 23, 79]), due to the explo-

sion of data science applications, which often need data cleaning before analysis can be carried out.

Most recent data cleaning works focus on detecting and repairing data errors [16, 18, 23, 79] (e.g.,

outliers, incorrect values, duplicate tuples, and constraint violations). In this chapter we focus on

detecting errors.

To detect data errors, current work often employs semi-automatic solutions, which use machine

learning or hand-crafted data quality rules (e.g., “age must be between 18 and 80” and “any em-

ployee in NYC earns no less than any non-NYC employee at the same level” [16]). In certain cases

the user can be involved, e.g., to provide feedback to the solutions or verify that the data instances

reported by the solutions are indeed errors.
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Figure 2.1: An example of manual error detection.

In practice, however, there are many scenarios where users still have to detect data errors

completely manually. First, to detect data errors we often need to extract the values of certain

attributes. Such extraction can be very difficult for today’s algorithms, but much easier for human

users. This often happens when an attribute value is buried in a picture or text.

Example 2.1.1. Consider the product in Figure 2.1. A data quality rule is “the value of attribute

color should be consistent with the color of the product in the picture”. There is no algorithm

today that can reliably extract the color of the product from the picture. Here the picture shows not

just the product, a bag, but also a woman wearing a bag, making the extraction of the bag’s color

even more difficult. A human user however can quickly detect that the bag’s color in the picture

is red. This is inconsistent with the value of attribute color in the text, which is blue, suggesting a

data error.

Even if an attribute’s values are present (so no extraction is required), it can still be difficult for

algorithms to judge if those values are correct. For example, there is no good algorithm today to

detect if a given URL is indeed the correct URL for a given business (especially where multiple

fake URLs exist for a business). So detecting incorrect business URLs (e.g., to clean business

listings) is still done largely by human users. Another example is verifying if the category of a

product is “athletic (man)”, which typically requires a human user to read the product description,

examine the picture, etc.
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Finally, an algorithmic solution may exist, but the business may have no one qualified to de-

velop, debug, and run it. Or there is someone qualified, but developing and debugging the algorithm

would take weeks, whereas the cleaning work must be done within days. In such cases, businesses

often resort to detecting data errors completely manually, using human users.

In this chapter we consider manually detecting data errors 1. As a first step, we consider the

common setting in which users must manually check the correctness of the values of a target

attribute (e.g., color, category). This problem is often called manual data validation [16, 18, 23,

79]. It is pervasive, yet no published work has addressed it in depth, as far as we can tell.

Using in-house experts to do manual data validation is not practical for large amounts of data:

it takes too long and is not a good use of their limited time. So companies often use crowdsourcing,

where the crowd can be for instance contractors or Mechanical Turk workers. A common solution

formulates each error detection as a question, sends it to the crowd, solicits k answers (e.g., k = 5),

then takes a majority vote. For example, if three out of five workers answer “no” to the question

“is the color of this product indeed blue?” for the product in Figure 2.1, then we can report that

product as potentially having a data error.

The above solution is conceptually simple, but inefficient. Intuitively, different data values

pose different levels of difficulties to human users. For example, most people know the color

“blue”, and so can answer questions about this color with high accuracy. But fewer people know

the color “chartreuse”. So we may want to solicit fewer answers for questions involving “blue”

(e.g., 3 answers per question), but more answers for questions involving “chartreuse” (e.g., 7).

Such crowdsourcing strategies, which are sensitive to the difficulties of different data regions,

can significantly reduce the crowdsourcing cost while achieving the same level of error detection

accuracy.

Indeed many companies have now employed such adaptive crowdsourcing strategies. A very

common solution (e.g., employed at WalmartLabs, Facebook, Johnson Controls, and elsewhere)

works as follows:

1. Compute a ranking K of the data values (in decreasingly order of their difficulties),

1This problem is also often referred to as a data validation problem.
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2. Examine K to assign to each data value v a number of answers nv (such that a data value

placed higher in K is assigned a higher number of answers), then

3. Solicit nv answers for each question with value v.

Obtaining the ranking K is important for many purposes. For example, after crowdsourcing to

obtain answers for all questions, companies often take a sample and manually check the accuracies

of the questions in the sample, for quality assurance purposes. The ranking K allows them to bias

the sample, e.g., intentionally sample more items with values in the top-10 of K, to check how

well crowdsourcing works for these difficult values. Example 2.4.1 lists other usages of ranking

K.

While the above solution has been quite popular in industry, it has several important limitations.

In this chapter we address those and significantly advance this line of research in several ways.

First, obtaining a good ranking of the data values in terms of their difficulties is critical. To

do so, the above solution estimates the difficulty score of a data value to be the average worker

accuracy for a sample set S of questions with that value. To estimate these scores accurately, the

size of sample set S must be quite large. But this incurs a lot of domain expert’s effort, because he

or she must label all data instances in S (as having data errors or not).

Here we show that we do not need a large sample S. Our key idea is that if the average time it

takes for a worker to answer questions is high, or if the disagreement among workers is high, then

those also indicate that a data value is likely to be difficult. Consequently, we use all three factors

(i.e., worker accuracy, average answer time, and worker disagreement) to directly rank the data

values, using a machine learning approach. We show how to minimize the domain expert’s effort,

by iteratively expanding sample S and stopping when a convergence condition is met.

Second, once the ranking has been created, domain experts often want to examine, debug,

and modify it. To address this problem, we develop a solution to help a domain expert debug

the ranking. Specifically, he or she can request explanations on why a data value v is considered

difficult. Among others, our solution can explain that v is not difficult, but appears so due to

spammers, low-quality workers, or careless mistakes from the workers; or that v is indeed difficult,
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because the value is hard to understand (e.g., “chartreuse”), or the item description is incomplete,

or the description has confusing/conflict information, etc.

Third, the existing solution considers only the problem of minimizing the crowdsourcing cost

while achieving the same detection accuracy (as the baseline solution of soliciting the same number

of answers regardless of the data value). We show that in practice, users want to consider a far

broader range of problems. Examples include minimizing cost given that the accuracy exceeds a

threshold, maximizing accuracy given a budget on the cost, improving the overall accuracy of a

set of data items having difficult values, and more. We develop a unified framework that allows

users to easily express and solve a broad range of such optimization problems, all of which find

crowdsourcing strategies that adapt to the data value difficulties.

Finally, the existing solution assumes golden answers exist for the questions with each data

value (otherwise the worker accuracy for that value cannot be computed). In practice, surprisingly,

we found that there are many cases where there are no such golden answers. For example, a product

description may show the picture of a bag in sand color, with the value for attribute “color” being

“desert sand”. So the question for the crowd is “is the color of this product ’desert sand’?”. But

nobody knows what “desert sand” means. There is no such color. Or more accurately, this is

an ambiguous color invented by the marketing team. As such, there is no correct, i.e., golden

answer to the above question. (In our experiments, 2/3 of workers answer yes, and the rest answer

no.) Clearly, this problem of ambiguous values must be addressed, before the above adaptive

crowdsourcing solution can be applied. In this chapter we develop a simple but effective solution

to this problem.

Contributions: To summarize, in this chapter we make several fundamental contributions to the

problem of manually detecting errors for data cleaning:

• We argue that the above problem is pervasive, and needs more attention. As far as we can

tell, this is the first work that studies this problem in depth.

• We focus on the problem of manually verifying the values of a target attribute, and shows

that the current best solution has significant limitations.
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• We develop a new solution that addresses the above limitations and significantly advances

the state of the art. Our solution can find a much more accurate ranking of the data values,

can help domain experts debug this ranking by providing explanations on why a data value

is considered difficult, and can handle ambiguous values for which no golden answers exist.

Importantly, our solution provides a unified framework that allows users to easily express

and solve a broad range of optimization problems.

• We describe extensive experiments with three real-world data sets that demonstrate the utility

and promise of our solution approach.

2.2 Problem Definition

We now describe the problem of manual detection of data errors considered in this chapter.

Data Items, Attributes, and Values: For manually detecting data errors, many problem types

exist. As a start, in this chapter we will consider the problem of manually verifying the correctness

of the categorical values of a target attribute. Specifically, let D = {d1, . . . , dn} be a set of data

items, such as books, papers, products, etc. We assume that each item is encoded as a tuple of

attribute-value pairs, i.e., di = 〈a1 = vi1, . . . , am = vim〉. For example, a product may be encoded

as 〈category = shirt, gender = male, color = blue〉. We will use aj(di) to refer to the attribute

aj of di.

We assume that each attribute aj(di) has a set of correct values V ∗j (di). For example, a course

about discrete math is suitable for students from both mathematics and computer science depart-

ments, therefore its subject contains at least two values: mathematics and computer science. We

say that aj(di) is correct if and only if its value vij is in V ∗j (di).

Further, we assume that all attributes of each data item di are correct, except one attribute,

which is referred to as the target attribute and whose values we will need to verify. Without loss

of generality, we assume that the target attribute is the last attribute am.

Manual Validation of the Target Attribute: Let ci be the context of di, defined as “all other

attributes and their values”: ci = 〈a1 = vi1, . . . , am−1 = vi(m−1)〉.
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Our problem is to verify am(di) for all items di in D. For each item di, verifying whether

the value of am is correct is equivalent to answering the following question qi: “is the value of

am(di) indeed vim, given the context ci and any other background knowledge B that the worker

may have?” (we discuss examples of background knowledge B below).

Then the problem of verifying the target attribute am for items in D can be translated into

answering the set of questions Q = {q1, . . . , qn}, where the answer for each question qi is yes or

no. If the answer is yes, then our confidence that am(di) is correct is increased. If the answer is no,

then it is likely that there is a data error in di (in practice, the error may not be in am, but the error

must exist because am(di) is inconsistent with ci). In this case, di is sent for further verification by

an expert.

Suppose we have golden answers for all questions in Q, then for any solution to the above

validation problem, we can define its overall accuracy to be the fraction of questions whose answers

are correct, i.e., n0/n, where n0 is the number of questions whose answers match the golden

answers, and n = |Q|.

Current Manual Solutions: Today, such questions are often answered manually, on a GUI, by

an expert or a small set of experts, e.g., data analysts at an e-retailer, data scientists in an R&D

group. To give the expert the maximal context information, a question will typically display the

entire description of the item, e.g., all attribute-value pairs (see Figure 2.1).

If the expert still cannot decide after examining these attribute-value pairs, he or she may try to

find more information, e.g., examining the same product at a different e-retailer, looking for any

new information that can help answer the question. For the question “is the color of this product

chartreuse?”, the expert may have to first look up the meaning of “chartreuse” on the Web, and so

on. We refer to such externally acquired knowledge as the background knowledge B.

Clearly, this manual solution is tedious and time consuming. As a result, many real-world

applications have turned instead to crowdsourcing to verify attribute values.
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Current Crowdsourcing Solutions: The simplest crowdsourcing (CS) solution solicits k an-

swers from crowd workers for each question q ∈ Q, then combines these answers using majority

voting to obtain a final answer for q.

Note that we can combine worker answers using more sophisticated strategies, e.g., estimating

each worker’s accuracy, then taking a weighted sum [42, 37, 34, 61]. Many real-world applications,

however, still use majority voting, which is easy to understand, debug, and maintain. This is

especially important when there is a high personnel turnover. Further, the application may need

to contract with a crowdsourcing company and this may be the only solution being offered by

that company. Finally, as far as we know, there is no published conclusive evidence yet that

more sophisticated strategies to combine answers work much better in practice. Thus, in this

chapter we will focus on the above majority-voting solution to verify attribute values, leaving

more sophisticated solutions for future research.

The above CS solution, while faster than manual solutions, can incur high monetary costs,

especially if the application wants high accuracy for crowdsourcing.

Example 2.2.1. Suppose an e-retailer A must verify the attributes of 50K newly arrived products.

To ensure that product details on its Web pages are error-free as much as possible, A wants crowd-

sourcing to have an accuracy of at least 95%. To reach this accuracy, soliciting 3 answers per

question is often insufficient, A would need to solicit 5, 7, or more answers. Assuming 3 cents per

answer, if A solicits 5, 7, or 9 answers per question, crowdsourcing 5 attributes of 50K products

costs $37.5K, $52.5K, and $67.5K, respectively.

Thus, it is important that we develop solutions to minimize the crowdsourcing cost, while

achieving the same verification accuracy. As discussed in the introduction, intuitively, different

data regions often have different degrees of difficulty for human verification. So if we can estimate

these difficulty levels, we can adjust the degree of redundancy (i.e., the number of answers solicited

for each question in a region). For example, a set of productsD can be split into data regions where

all products with the same color form a region. Then for each question in the region with “red”

color, we only need to solicit 3 answers, say; whereas for each question in the region with the “acid

yellow” color, which is more difficult, we would solicit 7 answers.
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Indeed many companies have now employed such adaptive CS strategies. A very common

solution works as follows:

1. Compute a ranking of the data regions (in decreasingly order of their difficulties),

2. Examine the ranking to assign to each region a number of answers (such that a region placed

higher in the ranking is assigned a higher number of answers), then

3. Solicit that number of answers for each question in the region.

It is important that this solution outputs both a ranking and a crowdsourcing plan (which specifies

how many answers to solicit for each question in a data region). Outputting a ranking serves many

important purposes, as discussed in the introduction (see also Example 2.4.1).

The above solution is appealing, but has significant limitations. (1) The ranking that it com-

putes is often inaccurate, because the solution uses only the average worker accuracy to find the

ranking. (2) Domain experts often cannot debug the ranking, e.g., understand why a data region

is considered difficult. (3) The task of assigning to each data region a number of answers is often

done in an ad-hoc “eyeballing” way, by examining where the data region is in the ranking. (4)

It is difficult to express and solve a broad range of optimization problems regarding crowdsourc-

ing costs and accuracy, even though users often have such needs. (5) Finally, this solution cannot

handle “ambiguous” data values (e.g., “desert sand”), for which there are no golden answers.

In the rest of this chapter we introduce our solution, called VChecker, which addresses the

above limitations.

2.3 Ranking the Data Regions

In VChecker, we first obtain a ranking of the data regions, in decreasing order of their difficul-

ties. In this section we discuss how we split the data into different regions, then rank them. (The

next two sections describe how to debug the ranking, then how to use it to formulate and solve a

broad range of optimization problems, to find good crowdsourcing plans.)
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2.3.1 Splitting Data into Regions

We consider scenarios where for each data instance di, the difficulty in verifying the target

attribute am only depends on its value vim. Such scenarios are common in practice. For instance,

for products such as the one described in Figure 2.1, the difficulty of verifying the attribute color

only depends on its value (e.g., red, blue, acid yellow, etc.).

In such cases, the expert will split the data such that all questions with the same target attribute

value form a region (because all such questions share the same difficulty level). Formally, let

D = {d1, . . . , dn} be the set of data instances, am be the target attribute, Q = {q1, . . . , qn} be the

set of questions “is the value of attribute am of instance di indeed vim?”, and V = {v1, . . . , vr} be

the set of all values of am for instances in D. Then we can split the set of questions Q into r sets

such that all questions (and only these questions) in a set Qi share the same value for attribute am.

We refer to each such set as a data region. In general, it is not always possible to so simply split

the data into regions. This raises the interesting problem of how to help the expert do so, which we

leave for future work.

2.3.2 Learning to Rank the Regions

To rank the data regions, a common solution in industry is to compute for each region an

average worker accuracy, then rank the regions in increasing worker accuracy (thus in decreasing

difficulties).

Specifically, letQi be a data region, i.e., the set of questions (inQ) with the same value vi for the

target attribute am. The current solution assumes that all crowd workers have the same probability

of answering any question in Qi correctly (a reasonable assumption in many real-world scenarios).

It then takes this probability to be the average worker accuracy for Qi, denoted as a(Qi).

To estimate a(Qi), the solution randomly takes a set x of questions in Qi, solicits y answers

from the crowd for each question, then computes a(Qi) as the fraction of xy answers that are

correct. To determine answers’ correctness, the solution uses the golden answers to the x sampled

questions, as provided by an expert. Finally, the solution ranks the data regions in increasing order

of the computed average worker accuracy a(Qi).
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While conceptually simple, this solution is limited in several important ways. First, it provides

no way to determine x and y. If they are set to large values, then we waste a lot of crowdsourcing

money and expert time (to provide golden answers). If they are set to small values, then it is difficult

to estimate a(Qi) accurately. Second, it fails to exploit extra information that can help better

rank the data regions. Finally, the solution does not provide any way to solicit and incorporate

knowledge from the expert, even though he or she often has such knowledge about the difficulties

of the various data regions.

Key Ideas of Our Solution: Our solution exploits three key ideas. First, we observe that if a

value is difficult, it often takes a worker longer to provide an answer (e.g., for a question involving

the value “acid yellow”, he or she may need to consult the Web to understand its meaning before

being able to answer the question). It also often causes more disagreement among the workers.

As a result, we capture and exploit these two types of information and use them together with the

worker accuracy to learn to rank the values in decreasing order of their difficulties.

Second, to learn the ranking, we ask the expert to provide training data in the form of (vi, vj)

such that vi is ranked more difficult than vj . We also allow the expert to debug the ranking and

manually edit it if necessary (see Section 2.4). Thus, our solution provides a natural way for the

expert to provide domain knowledge about the difficulties of the data regions.

Finally, to minimize the crowdsourcing and expert cost, we develop a solution in which we

iteratively explore larger values for x (the number of questions sampled per value) and y (the

number of answers solicited per question), and stop when a condition is met. We now describe the

above ideas in detail.

1. Defining the Problem of Ranking the Values: Let V = {v1, . . . , vr} be the set of all values

of the target attribute for all data instances in D. Our goal is to find a total ranking K of the values

in V , such that vi being ranked higher than vj means that vi is judged more difficult than vj .

2. Learning the Ranking: For each value vi ∈ V , we start by sampling x questions from the

corresponding region Qi, then solicit y answers for each question from the crowd (we explain later

how to select x and y). This produces a total of xy answers.
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V={black, red, iris,
lavender, chartreuse}

G={〈black, f1〉, 〈red, f2〉,
〈chartreuse, f5〉}

(a) (c)
F = {f1 = 〈1, 2.3, 0〉,

f2 = 〈1, 2.4, 0.05〉,
f3 = 〈0.7, 5.1, 0.1〉,
f4 = 〈0.6, 8.4, 0.1〉,
f5 = 〈0.7, 11.2, 0.15〉}

(b)

{chartreuse} ≥ {black, red}
(d)

S = {(f5, 1), (f1, 2), (f2, 2)}
(e)

Figure 2.2: Creating training data for SVM Rank.

Next, we create a feature vector fi = 〈ai, ti, ei〉, where ai is the worker accuracy for vi, com-

puted as the fraction of xy answers that are correct. To determine if an answer is correct, the expert

must provide the golden answers for the x questions. ti is the time it takes for a worker to answer

the questions, averaged over the xy answers. Finally, ei is the disagreement among the workers in

answering the questions, measured as 1 − |Nyes − Nno|/(xy), where Nyes and Nno are the total

numbers of yes/no answers from the workers, respectively (and Nyes +Nno = xy).

Example 2.3.1. Consider the five colors in set V in Figure 2.2.a. Figure 2.2.b shows five feature

vectors created for these colors, after sampling x questions from each color region and soliciting y

answers from the crowd for each question.

At this point, we have obtained a set of feature vectors F = {f1, . . . , fr}, one for each value.

We now learn to rank the values, using these feature vectors. To do so, we use SVM Rank, a

well-known ML algorithm that can be used to rank examples [60].

To use SVM Rank, we create training data as follows. First, we randomly sample a set G of

feature vectors (FVs) from F . Next, we need to rank the FVs in G (in terms of the difficulty of

their corresponding values). Abusing notation, we use “fi ≥ fj” to indicate that FV fi is ranked

the same or higher than FV fj (i.e., the value corresponding to fi is the same or more difficult than

that of fj).

Ideally, we want to create a total ranking onG, i.e., for any pair (fi, fj) ∈ G×G, either fi ≥ fj

or fj ≥ fi, then use this total ranking as training data. However, creating a total ranking is very

expensive and often quite difficult for the expert, so we ask him or her to create only a partial
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ranking. Specifically, the expert merely divides G into two groups U and V based on his or her

domain knowledge 2 such that for any fi ∈ U and fj ∈ V , fi ≥ fj .

Then for each fi ∈ U , we create a training example (fi, 1). Similarly, for each fj ∈ V , we

create a training example (fj, 2). Here we assume that an example associated with rank 1 is more

difficult than any example associated with rank 2. We output the set S of all these examples as the

training data for SVM Rank.

Example 2.3.2. Continuing with Example 2.3.1, suppose we have selected the three colors black,

red, and chartreuse for creating the training data (see Figure 2.2.c). Suppose the expert specifies

that chartreuse is considered more difficult than both black and red (Figure 2.2.d). Then we can

create the training set S in Figure 2.2.e for SVM Rank.

SVM Rank then uses S to learn a regression model that assigns a score to each example, such

that the higher the score, the higher the example is ranked. Finally, we apply SVM Rank to FVs

in F to compute for each FV a score and use these scores to rank the FVs. This produces a total

ranking K for the values in V , such that a higher ranked value is said to be more difficult than a

lower-ranked one.

The expert can then optionally examine, debug, and edit the ranking K, as we discuss later in

Section 2.4.

3. Determining Parameters x and y: Recall that for each value vi we take x questions from the

set of questions with that value Qi, then solicit y answers per question from the crowd. We now

discuss how to set x and y. Our solution is to start with the smallest x and y, iteratively increase

them, computing rankings along the way, then stop when these rankings have “converged”. This

way, we hope to minimize the cost of the expert (who needs to answer x|V | questions and the

crowd (who needs to answer xy|V | questions).

Specifically, we start with (2,2), i.e., x = 2 and y = 2 (the smallest values that allow us to

meaningfully compute feature vectors), and compute the ranking of the values K(2, 2), as de-

scribed earlier. Next, we increase y to consider (2,3), and compute K(2, 3). Then we consider

2The expert can divide G into more groups as long as he/she can order values between different groups.
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(3,3) and compute K(3, 3), and so on. To compute a new ranking, say K(3, 3), using SVM Rank,

the expert needs to label, i.e., provide golden answers to the new questions, and we need to solicit

crowd answers for these questions. But we do not have to create any additional training data.

We use the Spearman score [86], which ranges from 1 to -1, to measure the correlation be-

tween any two rankings. Consider three consecutive rankings K(xn−2, yn−2), K(xn−1, yn−1),

K(xn, yn). If it is the case that the score Spearman(K(xn−2, yn−2), K(xn−1, yn−1)) and the score

Spearman(K(xn−1, yn−1), K(xn, yn)) are both exceeding a pre-specified threshold, or if xn and

yn reach pre-specified maximal values, then we stop, returning K(xn, yn) as the desired ranking.

Algorithm 2.1 shows the pseudo code of the entire process to rank the data regions.

2.4 Debugging the Ranking

Recall from the previous section that at the start, we enlist the expert and the crowd workers to

create a ranking K of the values in V , in decreasing order of difficulties. In practice, it turns out

that the ranking K can be used for many important purposes.

Example 2.4.1. The ranking K can be used to re-calibrate the worker accuracies of the values

(see Section 2.5.2). It can be used in formulating optimization problems, e.g., a user may want to

focus on the top-10 most difficult values in K and try to maximize the average accuracy of those

values (see Section 2.5.1). Finally, K can also be used in quality assurance (QA). For example,

after we have crowdsourced to obtain answers for all questions, we may want to take a sample and

manually check the accuracies of the questions in the sample, for QA purposes. The ranking K

allows us to bias the sample, e.g., intentionally sample items with values in the top-10 of K, to

check how well the crowdsourcing process works for these difficult values.

As a result, it is important to make the ranking K as accurate as possible. Once K has been

created (see Section 2.4), the expert often wants to examine, debug, and modify it. Currently,

however, there is no debugging support. To address this problem, as a first step, in this chapter we

will develop a way to generate explanations, which can help the expert debug K.
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Algorithm 2.1 Learning to Rank the Data Regions

Require: Q: set of questions, V : set of values,
xmax: max num of sampled questions, ymax:
max num of answers to be collected per
sampled question, (x0, y0): initial value for
(x, y), ε: convergence threshold for ranking,
n0: number of training examples for SVM
Rank

Ensure: A ranking K of values
1: Vt ← Randomly sample n0 values from V
2: O ← CREATEPARTIALORDER(Vt)
3: P ←GENERATECONFIGS(x0, y0, xmax, ymax)
4: Qs, As, Ts, Gs ← ∅
5: (xc, yc)← (0, 0) // current (x, y)
6: L← [ ] // list of rankings
7: for (x, y) ∈ P do
8: Sample x − xc new questions per value

and add them to Qs

9: Collects needed answers and time data
and add them to As and Ts

10: Find golden answers for newly sampled
questions and add them to Gs

11: Compute set of features F from
As, Ts, Gs

12: K(x, y) ← SVMRank values in V us-
ing F,O

13: (xc, yc)← (x, y)
14: Append K(x, y) to L
15: if IsRankingConverged(L, ε) then
16: break
17: end if
18: end for
19: K ← K(xc, yc)
20: W ← Improve estimated worker accuracy

using K in Equation 2.4
21: return K,W

22: procedure CREATEPARTIALORDER(Vt)
23: The expert partitions Vt into two groups

U, V such that each
value in U is more difficult than each

value in V
24: O ← ∅
25: for v ∈ U do
26: Add (v, 1) into O

27: end for
28: for v ∈ V do
29: Add (v, 2) into O
30: end for
31: return O
32: end procedure

33: procedure GENERATECONFIGS(x0, y0, xmax, ymax)
34: P ← [(x0, y0)]
35: n = min(xmax − x0, ymax − y0)
36: for i = 1, 2, . . . , n do
37: Append (x0 + i − 1, y0 + i) and

(x0 + i, y0 + i) to P
38: end for
39: if x0 + n == xmax then
40: m = ymax − y0 − n
41: for i = 1, 2, . . . ,m do
42: Append (x0 +n, y0 +n+ i) to P
43: end for
44: else if y0 + n == ymax then
45: m = xmax − x0 − n
46: for i = 1, 2, . . . ,m do
47: Append (x0 +n+ i, y0 +n) to P
48: end for
49: end if
50: return P
51: end procedure

52: procedure ISRANKINGCONVERGED(L, ε)
53: if len(L) < 3 then
54: return False
55: else
56: LetKn−2, Kn−1, Kn be the last three

rankings in L
57: s1 ← Spearman(Kn−2, Kn−1)
58: s2 ← Spearman(Kn−1, Kn)
59: if s1 ≥ ε and s2 ≥ ε then
60: return True
61: else
62: return False
63: end if
64: end if
65: end procedure
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Specifically, given a value v placed high in the ranking K, indicating that it is difficult, the

expert can ask for an explanation on why v is judged difficult by the system.

Example 2.4.2. When asked why “acid yellow” is judged difficult, our system may return expla-

nations that state that this value is actually not difficult, but appears to be difficult due to spammers

and low-quality (i.e., bad) workers who gave many incorrect answers. Or the system may return

explanations that state that the value is indeed difficult because it is unfamiliar to many work-

ers. Other explanations may include “the product description contains incomplete or confusing

information” and “the description is hard to understand”, among others.

Clearly, such explanations can significantly help the expert understand and debug the ranking

K. To generate such explanations, we first develop a model M on how a crowd worker answers

a question. Next, we analyze M to create a taxonomy T of possible explanations. Finally, we

develop a procedure that, when given a value v, analyzes answers solicited from the crowd to

identify the most likely explanations in T for v. We now discuss these steps in more details.

Developing a User Model for Answering Questions: There are many possible ways to model

how a worker answers our questions. For this chapter we use the following simple yet reasonable

model. Suppose a worker U has to answer a question q, which has a value v for the target attribute

and a context c (which is the rest of the description of the data item). ThenU first tries to understand

v. Next, U tries to understand c. Finally, U determines if v and c are consistent, returning “yes”

or “no” if U can make this determination with high confidence. Otherwise U returns the answer

(“yes” or “no”) judged most likely.

Creating a Taxonomy of Explanations: Analyzing the above user model produces the taxonomy

of explanations in Figure 2.3. Observe that the explanations fall into several clean groups. The first

group concerns the workers: if they are spammers, bad workers, etc., then the value may not be

difficult but will appear difficult. The second group concerns the nature of the value v itself: is

it ambiguous, unfamiliar, etc? If so, it may explain why v is ranked difficult. The final group

concerns the nature of the question/the description of the data item/the context. Is the description
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Figure 2.3: A taxonomy of explanations.

understandable (e.g., in English)? Is it complete? As we will see below, we can develop solutions

to explore each of the above groups of explanations.

Generating Explanations for a Value v: Given a value v, we now seek to generate explanations

for why v is difficult. We refer to each node in the above taxonomy (see Figure 2.3) as an expla-

nation. Our solution will return a set of such explanations (in future work we will explore ranking

them). To do so, the solution proceeds in the following steps (see Algorithm 2.2 for the pseudo

code).

(1) Collect data S: We first collect data that can be analyzed to generate explanations. This data

S consists of Qx, the set of all questions generated for the difficulty score estimation process, A,

the set of all answers solicited for questions in Qx, and W , the set of all workers who have given

at least one answer in A.

(2) Use S to classify the workers: We use a rule-based procedure to classify workers in W into

spammers, bad workers, and regular workers. For example, we classify a worker w as a spammer

if w’s accuracy is significantly lower than the average accuracy, and w’s response time is much

faster than the average response time (as computed from data S).

(3) Generate explanations regarding the nature of the workers: Next, we identify likely explana-

tions regarding the nature of the workers in the taxonomy T . For example, if a certain percentage

of workers that have answered questions involving v are spammers, then we will identify node
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Algorithm 2.2 Generating Explanations
Require: v: the value to be explained

Ensure: Ev: the set of possible explanations for value v

1: Collect data S = {Qx, A,W} where Qx is all x|V | questions sampled in difficulty estimation stage, A

is all answers and their time stats for questions in Qx, W is the set of all workers for A

2: Compute accuracy α and average time t for A

3: for each w ∈W do

4: Apply a procedure on Rw using α, t to classify w as spammers,

low-quality workers, or regular workers

5: end for

6: Let Wv be the set of workers who answer at least one question with value v

7: Ew ← GENWORKEREXPLANATIONS(Wv)

8: Update S to S+ by removing answers and the time stats from spammers and low-quality workers

9: Apply a procedure onRv using S+, α, t to classify the natureNv of value v (i.e., ambiguous, unfamiliar,

overlapping)

10: Ev ← GENVALUEEXPLANATIONS(Nv)

11: Let Qv be the set of questions in Qx with value v

12: for each q ∈ Qv do

13: Apply a procedure on Rq using α, t to classify the nature of q

(i.e., comprehension, incomplete, confusing/conflict)

14: end for

15: Let Nq be the set of natures for questions in Qv

16: Eq ← GENQUESTIONEXPLANATIONS(Nq)

17: Ev ← Ew ∪ Ev ∪ Eq

18: return Ev
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“1.A (Spammers)” of T as an explanation.

(4) Update data S into S+: Next, we remove the data involving the spammers and bad workers

from S, so that we can work with more accurate statistics in subsequent steps.

(5) Use S+ to classify the nature of value v: Similar to Step 2, here we use a rule-based procedure

to analyze S+, to classify the value v as ambiguous, unfamiliar, etc. For example, if the average

worker accuracy for v is high and the average response time is low, then we determine that v is not

unfamiliar.

(6) Generate explanations regarding the nature of value v: Again, similar to Step 3, we identity

explanations in taxonomy T that involve the nature of value v. This step is straightforward.

(7) Use S+ to classify the nature of the questions and generate explanations: We proceed similarly

to Steps 2-3. For example, if a certain percentage of the questions involving v is confusing, then

we will identify node “2.B.c” of T as an explanation. Finally, we return all identified explanations

as the set of explanations for value v.

It is important to note that our rule-based procedures for the above steps have been created, only

once. They are not dependent on the particular application domain. However, the rules employed

do use various parameters (e.g., thresholds). These parameters are set based on analyzing the data

S (but can also be tuned by the domain expert).

2.5 Finding Good Plans

We now discuss finding good crowdsourcing plans. We begin by considering the types of prob-

lems that the user wants to solve. As discussed in Section 2.1, a common baseline crowdsourcing

(CS) plan is to solicit tb answers per question, then take the majority vote to be the final answer.

The existing solution has considered a single problem: minimize the total CS cost while keeping

the accuracy the same as that of the baseline plan.
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In practice, however, we observe that users often want to express a wide range of other CS

problems. Examples include minimizing cost given that the accuracy exceeds a threshold, maxi-

mizing accuracy given a budget on the cost, improving the overall accuracy of a set of data items

having difficult values, and more.

As a result, in this section we develop a unified framework in which users can easily express a

variety of such CS problems. Some of these problems make use of the rankingK (e.g., maximizing

the average accuracy of the values in the top-5 of K). Next, we show how to solve these problems

using integer linear programming (ILP). Our solutions often involve the average worker accuracy

per data value. Finally, we show how to use the ranking K to improve our estimations of these

average worker accuracies.

2.5.1 Expressing Crowdsourcing Problems

Let D = {d1, . . . , dn} be a set of data items to be validated. Let V = {v1, . . . , vr} be the set

of values for the target attribute of the items in D. We define a crowdsourcing plan p to be a tuple

〈〈v1, t1〉, . . . , 〈vr, tr〉〉, where for each question involving the value vi, plan p will solicit ti answers

from the crowd (i ∈ [1, r]).

Let S ⊆ V be a set of values. We define acc(S, p) to be the accuracy of plan p for the values in

S, i.e., the fraction of questions with value v ∈ S that receive a correct (aggregated) answer when

p is executed. We define cost(S, p) to be the total number of answers solicited from the crowd for

the questions with value v ∈ S.

We can now define a general CS problem template as follows “Given a set of plans P and a

set of values S, return the plan that maximizes or minimizes an objective O, subject to a constraint

C, where O and C involve P and S, and optionally a ranking K of values”. In this chapter we

consider the following concrete CS problems that follow the above template.

Finding Plans That Outperform a Baseline Plan: In many scenarios there exists already a

baseline plan pb. The user however wants a plan p that is better than pb in some aspects. While

numerous problem variations exist, in this chapter we consider the following variations:

T1: Minimize cost while achieving the same accuracy
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Return the plan p that minimizes cost(V, p), subject to constraints acc(V, p) ≥ acc(V, pb) and

cost(V, p) ≤ cost(V, pb). This is the problem considered by PBA [29].

T2: Maximize accuracy while keeping the same cost

Return the plan p that maximizes acc(V, p), subject to constraints cost(V, p) ≤ cost(V, pb) and

acc(V, p) ≥ acc(V, pb).

T3: Maximize the individual accuracy

In many cases the overall accuracy acc(V, p) can be high, say 95%, yet certain individual accuracies

(e.g., acc(v, p) for certain v-s) may be quite low, say 60%. For example, the overall accuracy for

color verification can be 95%. Yet the accuracy for “chartreuse” is only 60%.

In such cases, the user often wants to improve the accuracies of the values across the board

as much as possible, while keeping the overall accuracy at least as high as that of pb and keeping

the overall cost at most as high as that of pb. To do this, the user can try to solve the following

problem: Return the plan p that maximizes minvi∈V acc(vi, p), subject to acc(V, p) ≥ acc(V, pb)

and cost(V, p) ≤ cost(V, pb). Intuitively, if a plan increases minvi∈V acc(vi, p), then it would

increase the accuracies of all individual values.

Solving problems T1 − T3 for only a subset of values

The above problems T1 − T3 consider all values in V . In certain cases, the user may be interested

in optimizing for only a subset of values S ⊆ V , such as the top 10 most difficult values, according

to the ranking K. In such cases, we can formulate problems similar to T1− T3, but replace V with

S where appropriate.

Finding Plans That Satisfy General Constraints: In certain cases, the user does not have a

baseline plan pb to compare against. Instead, he or she just wants to find an “optimal” plan that

satisfies certain constraints about cost and accuracy. Many variations exist. In this chapter we

consider the following:

T4: Minimize cost while keeping accuracy above a threshold

Return the plan p that minimizes cost(V, p), subject to constraint acc(V, p) ≥ α.

T5: Maximize accuracy while keeping cost below a threshold
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Return the plan p that maximizes acc(V, p), subject to constraint cost(V, p) ≤ β.

Solving problems T4 − T5 for only a subset of values

Again, in certain cases, the user may be interested in optimizing for only a subset of values S ⊆

V . In such cases, we can formulate problems similar to T4 − T5, but replace V with S where

appropriate.

2.5.2 Solving Crowdsourcing Problems

We have described how users can express a variety of CS problems for detecting data er-

rors. We now discuss how to solve them. The main idea is to formulate them as integer lin-

ear programming (ILP) optimization problems, solve these problems to find an optimal CS plan

p∗ = 〈〈v1, t1〉, . . . , 〈vr, tr〉〉, then execute p∗.

In what follows we discuss how to carry out the above idea for problem type T1, then briefly

discuss problem types T2 − T5. Recall that in problem type T1, we want to find the plan p that

minimizes cost(V, p), subject to constraints acc(V, p) ≥ acc(V, pb) and cost(V, p) ≤ cost(V, pb).

We now discuss how to estimate the quantities cost(V, p), cost(V, pb), acc(V, pb), and acc(V, p).

Estimating cost(V, p) and cost(V, pb): It is straightforward to compute cost(V, pb), the crowd-

sourcing cost of the baseline solution. Recall that V is the set of values. Suppose each value vi has

ni questions, then the total number of questions is
∑r

i=1 ni. Since tb answers need to be collected

per question, cost(V, pb) = tb
∑r

i=1 ni.

To compute cost(V, p), recall that in our solution, for each value vi, we have sampled x ques-

tions and collected y answers per sampled question. If plan p states that ti answers will be collected

for each remaining question, then the cost spent on value vi will be ti(ni− x) + xy. Then the total

cost on V can be computed as cost(V, p) =
∑r

i=1(ti(ni − x) + xy).

However, we cannot use ti’s as variables in the resulting ILP optimization problem (because

constraints involving them will not be linear). To handle this problem, we use a set of indicator

variables to represent ti. Specifically, suppose tmin and tmax are the min and max number of answers

to be collected per question (these two values are pre-specified; tmin, tmax need to be odd positive



28

integers since majority vote is used for aggregation). Let A = {tmin, tmin + 2, . . . , tmax}. Clearly,

all ti’s are in A. To represent ti, for each j ∈ A we create an indicator variable hij . That is, if

j = ti, then hij = 1; otherwise hij = 0 for all j 6= ti. We have ti =
∑

j∈A jhij and cost(V, p) =∑r
i=1((

∑
j∈A jhij)(ni − x) + xy). As we will see shortly, our ILP formulation uses this formula

for cost(V, p).

Estimating acc(V, pb): Let mi be the number of questions with value vi whose aggregated an-

swers are correct, then acc(V, pb) = (
∑r

i=1mi)/(
∑r

i=1 ni), where ni is the number of questions

for value vi.

To estimate mi, for each question q with value vi we need to compute the probability that

q’s aggregated answer is correct, which depends on the number of collected answers. Recall that

we assume that all questions with value vi have the same difficulty and workers are i.i.d. (i.e.,

identically independently distributed) for each value. When we collect the same number of answers

per question for a value, the aggregated answers of those questions will have the same probability

of being correct.

We define fi,t as the probability that for any question q with value vi, q’s aggregated answer is

correct when t answers are collected per question. So if the baseline approach collects tb answers

per question, then mi = nifi,tb , where ni is the number of questions in region i (for value vi). We

now describe how to compute fi,t for any i and t.

To compute fi,t, we use the worker accuracy ai for value vi. Since we assume that workers

are i.i.d. for value vi, when t answers are collected for question q in region i, these answers are

independent and each answer has the probability ai of being correct. So the number of correct

answers follows the binomial distribution B(t, ai). Since we use majority voting, q’s aggregated

answer is correct if and only if more than half of the collected answers of q are correct. So we can

compute

fi,t =

t∑
j=dt/2e

(
t

j

)
aji (1− ai)

t−j (2.1)
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For each value vi, we compute fi,tb using (2.1), then estimate mi’s and cost(V, pb) as described

above. (At the end of this subsection we will describe how we use the rankings from Section 2.4

to adjust ai’s for all vi’s.)

Estimating acc(V, p): Recall that A = {tmin, tmin + 2, . . . , tmax} and fi,t is the probability that

for any question q with value vi, q’s aggregated answer is correct when t answers are collected

per question. Using the indicator variables described earlier, the expected probability that q’s

aggregated answer is correct can be estimated as
∑

j∈A hijfi,j . Then the overall accuracy of our

approach is computed as acc(V, p) =
∑r

i=1(x+(ni−x)(
∑

j∈A hijfi,j))∑r
i=1 ni

.

Formulating T1 as an ILP Problem: We now can formulate problem T1 as the following ILP

problem:

minimize
hij∀j∈A,
i=1,2,...r

r∑
i=1

(xy + (
∑
j∈A

jhij)(ni − x))

subject to

∑r
i=1(x+ (ni − x)(

∑
j∈A hijfi,j))∑r

i=1 ni
≥ αb

r∑
i=1

(xy + (
∑
j∈A

jhij)(ni − x)) ≤ tb
r∑

i=1

ni

∑
j∈A

hij = 1 ∀i = 1, 2, . . . , r

hij ∈ {0, 1} ∀j ∈ A,∀i = 1, 2, . . . , r

(2.2)

The objective function is the total number of answers to be collected, which should be minimized.

The first constraint ensures that the overall accuracy is same or better than that of the baseline

approach (here αb is acc(V, pb)). The second constraint ensures that the total cost is no more than

that of the baseline. The third constraint ensures that for each value, only one indicator variable is

equal to 1. Finally, we solve the above ILP problem using the Gurobi solver [3], and return any

solution found to the user, as the crowdsourcing plan p to be executed. We have

Proposition 1. Let tmin and tmax be the minimal and maximal number of answers that the user

wants to solicit for each question. Let tb be the number of answers that the baseline solution solicit

for each question, and x be the number of questions that we sample per value for the difficulty

estimation step. If tmin ≤ tb ≤ tmax and tb ≥ x, then Equation 2.2 always has at least one solution.
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Solving Problems T2 − T5: So far we have discussed solving problem T1. Problems T2, T4,

and T5 can be transformed similarly. For T2, we only need to change the objective to maximize

acc(V, p) (which is the left side part of first constraint in problem T1). For T4 (or T5), we only need

to replace the estimated baseline accuracy (or cost) with the given accuracy (or cost) threshold

from problem T1 (or T2) and remove the unnecessary constraint on cost (or accuracy).

Solving T3, which maximizes minvi∈V acc(vi, p), is a bit more involved. Let z be the minimum

value accuracy among values in V , then the objective function of the transformed optimization is

simply to maximize z, and it must add a constraint for each value vi in V to ensure the accuracy of

vi is at least z (Constraint 3 in Equation 2.3). Therefore, we formulate problem T3 as

maximize
z,hij∀j∈A,
i=1,2,...r

z

subject to

∑r
i=1(x+ (ni − x)(

∑
j∈A hijfi,j))∑r

i=1 ni
≥ αb

r∑
i=1

(xy + (
∑
j∈A

jhij)(ni − x)) ≤ tb
r∑

i=1

ni

x+ (ni − x)(
∑

j∈A hijfi,j)

ni
≥ z ∀vi ∈ V∑

j∈A
hij = 1 ∀i = 1, 2, . . . , r

hij ∈ {0, 1} ∀j ∈ A,∀i = 1, 2, . . . , r

(2.3)

We have described how to solve problems T1 − T5 in the cases where they involve the set of all

values V . It is easy to see that these problems can be solved in a similar fashion if they involve

only a subset of values S ⊆ V .

Using the Ranking to Adjust Worker Accuracies: Recall that for each value vi ∈ V , we have

obtained xy answers from the crowd, and have estimated the worker accuracy for vi as ai, the

fraction of the xy answers that are correct.

However, ai is often not a good estimation of the true worker accuracy for vi, because the set of

xy answers is often small (e.g., x = 4 and y = 5 for 20 answers total). Thus, we seek to improve

these estimations, using the ranking K. Our key idea is that if vi is ranked higher than vj , thus

being perceived as being more difficult, then the worker accuracy for vi should be no higher than
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that of vj . If this is not the case, then we can adjust such worker accuracies so that they become

more consistent with the ranking K.

Specifically, suppose K assigns to each value vi ∈ V a rank ki ∈ [1, r], where a smaller ki

indicates a value closer to the top of the ranked list. Then we model the task of improving the

worker accuracies ai’s as the following optimization problem:

minimize
z1,z2,...,zr

r∑
i=1

(zi − ai)2

subject to 0 ≤ zi ≤ zj ≤ 1 ∀i, j ∈ [1, r] s.t. ki < kj

(2.4)

Here zi is the improved worker accuracy for value vi, and the cost function is the sum of the

squares of zi − ai (also known as L2 cost function). Its constraint ensures that each value has the

same or less worker accuracy than any easier value. This model is a simple Isotonic Regression

problem, which always has a solution. It can be efficiently solved in O(r) time [38], where r is

the number of values. We solve it using Gurobi [3]. We then set ai = zi and use ai’s as the worker

accuracies in formulating ILP problems, as discussed earlier in this section.

2.6 Managing Ambiguous Values

As discussed in Section 2.1, in practice, there are many cases when the value for the target

attribute is inherently ambiguous, such as “desert sand” and “arctic white”. In such cases even the

expert has trouble determining what should be the correct answer to the question, let alone asking

the crowd workers. Such cases are surprisingly common, and no existing work has addressed them,

as far as we can tell.

In this chapter we provide a simple yet effective solution to this problem, based on what we

have seen working well in industry. Briefly, we ask the expert E to first create a taxonomy Z of

only unambiguous values, such as the one in Figure 2.1. Then the expert E examines each value v

in V (the set of all values for the target attribute in the data set D). If E judges v to be inherently

ambiguous, E should map v to a value m(v) in Z.
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Table 2.1: An example of handling ambiguous colors.

Example 2.6.1. Table 2.1 shows a set of values (on the left side of the figure) that are ambiguous.

The expert can map “Arctic White” to node “White” in the taxonomy, “Chocolate Cosmos” to

“Burgundy”, and so on.

A question such as “is the color of this product indeed chocolate cosmos?” is then transformed

into “is the color of this product indeed burgundy?”, which is unambiguous for crowd workers to

answer.

2.7 Empirical Evaluation

We now evaluate our solution. First, we crawled online sources to obtain the three datasets

shown under “Datasets A” in Table 2.2. Their schemas are shown at the top of the table, with the

target attribute underlined. Column “# Items” lists the number of data items in each dataset, and

column “# Values” lists the number of values for the target attribute.

Since it would be too expensive to crowdsource all items in all datasets, we downsample all

three datasets (using stratified sampling in which for each value of the target attribute, we randomly

retain only 20% of the data items with that value). The new datasets are listed under “Datasets B”

in the same table. Our experiments with real crowd workers are performed on these new datasets.

We used Amazon Mechanical Turk for crowdsourcing, and used common turker qualifications,

such as allowing only turkers with at least 100 approved HITs and 95% approval rate.
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Products (title, description, picture, price, color)
Courses (title, description, department, #credits, subject)
Apparel (title, description, style, size, picture, category)

Datasets A Datasets B
# Items # Values # Items # Values

Products 10,869 63 2,131 57
Courses 7,583 148 1,395 133
Apparel 3,480 12 690 11

Table 2.2: Datasets for our experiments.

2.7.1 Learning to Rank

We first examine the performance of learning to rank. Recall that for each dataset, we sample

x questions for each value, and then solicit y answers for each question. Thus, the expert must

provide golden answers for x|V | questions (where V is the set of all values for the target attribute),

and the crowd must provide xy|V | answers. So it is highly desirable that we minimize these two

quantities, to minimize the workload of the expert and the crowd workers.

For our current three datasets, (x, y) are (4, 5), (5, 5), (5, 5) for Products, Courses, and Ap-

parel, respectively. Our iterative expansion process (to find x and y) converged for Products and

Courses. These results suggest that indeed VChecker spends relatively little expert and crowd

effort to compute the difficulty scores.

Next, we examine the quality of the ranking K of the values that we have obtained. To do so,

we need a “golden” ranking K∗. We obtain K∗ as follows. First, for each value v, we collect

Av, the set of all answers obtained from the crowd for all questions involving v. Since we have

obtained at least 9 answers for each question, this is usually a large number (in the hundreds).

Next, we have identified the correct answer for all questions in our datasets, so we can compute

the worker accuracy for v as the fraction of answers in Av that is correct. Since Av is a large set

of answers, we take this worker accuracy to be the golden worker accuracy. Finally, we sort the

values in decreasing order of these golden accuracies, to obtain a golden rank K∗ of the values, in

decreasing order of difficulties.
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WAK VChecker
Precision Recall F1 Precision Recall F1

Products 71.97 61.33 66.22 68.64 68.47 68.56
Courses 74.81 51.46 60.98 66.71 64.46 65.57
Apparel 76.67 63.89 69.70 72.22 72.22 72.22

Table 2.3: Evaluating the quality of the rankings.

We now compare ranking K with K∗. Direct comparison turns out to be difficult, because we

often have two values vi and vj such that vi is ranked above vj in K and the reverse applies in K∗,

yet their difficulty scores differ by less than 0.01, say. In such cases, where the difficulty scores

differ by less than a small ε threshold, we say the two values are not comparable. We translate

ranking K∗ into a set of S(K∗) of all (vi, vj) pairs that are comparable, and translate ranking K

into a similar set S(K).

Table 2.3 compares these sets. Consider the last three cells of the first row (the cells under

“VChecker”). The cell under “Precision” is 68.64%, meaning 68.64% of pairs in S(K) appear

in S(K∗). The cell under “Recall” means 68.47% of pairs in S(K∗) appear in S(K). These two

numbers produce a F1 score of 68.56%. Thus, for Products, the rankingK approximates the golden

rank K∗ quite well, with high precision and recall (though there is still room for improvement).

Similar results are shown for Courses and Apparel.

Recall that the current popular solution in industry uses the average worker accuracy to rank the

data values. Table 2.3 shows that the ranking produced by this solution is worse than the VChecker

ranking (see the first three columns of the table, under “WAK”, shorthand for “worker accuracy-

based ranking”, which show lower F1 values). This result suggests that VChecker is indeed able

to exploit additional information such as the response time and the worker disagreement to obtain

a better ranking of value difficulties than the current existing solution.

2.7.2 Generating Explanations

To evaluate our explanation generator, for each dataset we select 3 values in the top part of

the ranking K, then ask for their explanations. For comparison purposes, we also ask a domain
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Values Explanations
by VChecker

Explanations
by Expert

# Compatible
Explanations

P.Denim 2Ab,2Ac,2B,2C 2A,2C 3 {2Ab,2Ac,2C}
P.Brown 1,2A,2Ab,2B,2C 1C,2A,2Bc,2C 5 {1,2A,2Ab,2B,2C}

P.Turquoise 2A,2B,2C 2Ab,2Ac,2Bc,2C 3 {2A,2B,2C}
C.German 2A,2B,2C 2A,2Bc,2C 3 {2A,2B,2C}
C.Zoology 2A,2C 2A,2B,2C 2 {2A,2C}
C.Dance 1A,1Ab,2A,2C 1A,2C 3 {1A,1Ab,2C}
A.Tanks 2Aa,2B,2Ba,2Bb,2C 2A,2B,2C 5 {2Aa,2B,2Ba,2Bb,2C}

A.Underwear 2A,2B,2C 2Bc,2C 2 {2B,2C}
A.Socks 2A,2C 2C 1 {2C}

Table 2.4: Evaluating the generated explanations.

Dataset tb
Cost Accuracy

UCS VChecker Reduction UCS VChecker

Products

3 6,393 4,435 30.6 96.10 95.53
5 10,655 5,961 44.1 96.89 96.03
7 14,917 7,585 49.2 97.27 96.18
9 19,179 8,941 53.4 97.49 96.32

Courses

3 4,185 4,063 2.9 95.94 96.08
5 6,975 5,393 22.7 96.83 97.18
7 9,765 6,639 32.0 97.17 97.60
9 12,555 7,715 38.6 97.56 97.69

Apparel

3 2,070 2,016 2.6 97.60 97.62
5 3,450 2,384 30.9 98.03 97.82
7 4,830 2,866 40.7 98.36 97.97
9 6,210 3,202 48.4 98.84 98.02

Table 2.5: VChecker vs. the UCS baseline solution.

expert to manually generate explanations, after carefully examining all the answers solicited from

the crowd.

Table 2.4 lists the explanations for VChecker vs those generated by the experts. “2Ab” for

example is the explanation at node “2.A.b” in the taxonomy of explanations in Figure 2.3 (“v is

indeed difficult because it is unfamiliar”). The table shows that the two sets of explanations share

large overlaps (see the last column of the table), suggesting that VChecker is effective in generating

explanations to explain why a value is considered difficult.
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2.7.3 Finding Good Crowdsourcing Plans

We now show that VChecker can find good crowdsourcing plans for a variety of problem types.

Table 2.5 compares VChecker to the baseline plan of soliciting the same number tb of answers for

each data value. We call this plan UCS, shorthand for “uniform crowdsourcing”.

To explain, consider the third row of this table. It shows that for dataset Products, if UCS

solicits tb = 3 answers per question, then it incurs a total crowdsourcing cost of 6,393 answers. If

we solve the CS problem T1 (as described in Section 2.5.1; we experiment with other CS problem

types below) to find a better CS plan, which would minimize this cost while keeping accuracy

at least equal or better than that of UCS, then the cost of this new plan (listed under column

“VChecker”) is 4,435. This produces a reduction of 30.6% in cost. The last two cells of this row

show that the accuracies of UCS and VChecker are comparable (96.1 vs 95.53) 3. (We obtained

these accuracy numbers by executing both plans on Amazon Mechanical Turk.) Subsequent rows

are similar, but for different values of tb.

The table shows that VChecker can significantly reduce the cost of the baseline solution UCS,

by 22.7-53.4% in all cases, except two cases where the reduction is a more modest 2.6% and 2.9%.

It also shows that the accuracy of VChecker is comparable to that of UCS (with the difference in

the range [-1.17%, 0.43%]).

Solving Other Types of CS Problems: Earlier we have shown how VChecker solves CS prob-

lems of type T1. We now show that VChecker is effective in helping users solve other types of CS

problems.

In Section 2.5.1 we discuss problem T3, where the user wants to improve the accuracies of the

values across the board as much as possible, while keeping the overall accuracy at least as high

as that of the baseline plan pb and keeping the overall cost at most as high as that of pb. The goal

is to return the plan p that maximizes minvi∈V acc(vi, p), subject to acc(V, p) ≥ acc(V, pb) and

cost(V, p) ≤ cost(V, pb).

3When solving the ILP problem, we specified the constraint that VChecker has the same or better accuracy than
UCS. When executing the found plan on Mechanical Turk, however, this constraint may not hold, due to spammers,
careless workers, etc. Nevertheless, our experiments show that the accuracies of VChecker and UCS differ by a very
small range.



37

Dataset Min Value Accuracy Avg Value Accuracy
UCS VChecker UCS VChecker

Products 68.45 83.33 92.34 96.11
Courses 72.45 74.68 96.11 96.81
Apparel 92.23 95.58 97.46 98.30

Table 2.6: VChecker vs UCS in solving problem T3.

Table 2.6 shows how well VChecker performs for this problem. The column “UCS” shows

the minimal value accuracy (i.e., the lowest accuracy among those of all values) when it solicits 3

answers for each question. The column “VChecker” shows that VChecker is able to improve this

minimal accuracy significantly, while keeping the cost no higher than the cost of UCS. The last two

columns show that even the average value accuracy (i.e., averaged over all values) of VChecker is

higher than that of UCS.

In Section 2.5.1 we also discuss the problem of maximizing the accuracy of k most difficult

values, as taken from the ranking K. Table 2.7 shows that VChecker is effective for solving this

problem, improving the accuracy of the top 5 most difficult values per dataset significantly.

2.7.4 Additional Experiments

Sensitivity Analysis: In the current VChecker system we set xmax = 5 and ymax = 5, meaning

that the iterative exploration process (see Section 2.3.2) never goes beyond these values. Figure 2.4

shows how iterative exploration is sensitive to varying these values. It shows that this process con-

verges between 3 and 6 for all three datasets, suggesting that setting the values to 5 is a reasonable

choice.

Managing Ambiguous Values: Finally, we briefly discuss examples of managing ambiguous

values. In our experiments it turns out that Products has ambiguous values. Specifically, it has a

total of 173 values, 110 of which are considered ambiguous and have to be mapped to 63 values

in a taxonomy of unambiguous values. Examples of such mappings include Arctic White mapped

to White, Fluorescent Orange mapped to Orange Red, and Saddle Brown mapped to Brown. This
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Dataset Values Value Accuracy
UCS VChecker % Improved

Products

Coral 68.45 83.33 14.88
Denim 81.07 100.00 18.93
Taupe 76.96 100.00 23.04
Brown 95.55 97.92 2.37
Camel 98.52 100.00 1.48

Courses

La Follette
School of Public
Affairs (PUB
AFFR)

78.04 87.50 9.46

Agronomy
(AGRONOMY)

96.13 100.00 3.87

Geological Engi-
neering (G L E)

93.45 100.00 6.55

Civil and En-
vironmental
Engineering
(CIV ENGR)

97.11 100.00 2.89

German (GER-
MAN)

87.22 96.90 9.68

Apparel

Underwear 98.43 100.00 1.57
Tanks 92.23 100.00 7.77
Pants 94.72 96.85 2.13
Socks 96.87 96.90 0.03
Swimwear 99.34 97.35 -1.99

Table 2.7: Maximizing accuracy of 5 most difficult values.

Figure 2.4: Convergence in iterative exploration.
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clearly suggests that managing such ambiguous values is critical in real-world verification of at-

tribute values.

2.8 Related Work

Data cleaning has received enormous attention (e.g., [52, 47, 31, 26, 21, 17, 63, 71, 75, 70, 76,

55, 49, 90, 66, 57, 7, 25, 50, 8, 15]). See [16, 18, 23, 79] for recent tutorials, surveys, and books.

However, as far as we can tell, no published work has examined the problem of manually detecting

data errors in categorical attributes, as we do in this chapter.

In recent years, crowdsourcing (CS) has received significant attention and has also been applied

to many data cleaning problems (e.g., [37, 40, 80, 35, 30, 45, 43, 20, 89, 46, 29]). Among these,

the work [29] also discusses the idea of adapting crowdsourcing strategies to the difficulties of

data regions. However, it considers this idea in the setting of crowdsourcing for active learning.

Further, it does not consider learning to rank the data regions, nor debugging the ranking, as we do

this chapter.

A critical challenge in CS is that the quality of workers varies. Researchers have proposed

many methods to differentiate workers, such as filtering out spammers [80, 40], measuring the

reliability and quality of workers [42, 37, 34, 61], and finding the right group of workers for a

given task [32]. These methods usually assume that all the questions are of the same difficulty. In

contrast, VChecker utilizes the difficulty heterogeneity among the questions while assuming that

all workers have the same quality.

VChecker uses majority voting to aggregate the collected answers of each question. Many other

aggregation methods have been proposed [42, 37, 34, 61]. They usually assign higher weights to

answers from workers with good quality, then perform weighted aggregation. Many build proba-

bilistic models [37, 61] to iteratively update the estimation of worker quality and weights. How-

ever, as far as we can tell, there is no published work yet showing conclusive evidence that these

methods can achieve higher accuracy than majority voting, especially when we can only collect a

small number of answers per question due to limited budget, as in our setting here.
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Researchers also propose other methods to reduce CS cost, e.g., early-stopping strategies [44,

36, 28]. They stop collecting more answers for a question when they realize that collecting more

answers will not change the aggregated answer. Such methods can also be used in VChecker to

further reduce our cost, when we use the best plan returned by VChecker to crowdsource all the

questions.

Finally, most CS works only collect answers from the crowd. [41] also collects the self-reported

confidence from workers to improve the accuracy of aggregated answers. However, they also notice

that workers have the tendency to overestimate or underestimate their confidence. Recently [33]

proposes to collect the time spent by workers to measure CS effort. VChecker also collects the

response times, but use these (and other data) to estimate question difficulty.

2.9 Conclusions

Detecting data errors completely manually is a ubiquitous problem in data cleaning, yet it has

not received much attention. In this chapter we have shown that the current common solution of

crowdsourcing the above problem using the same number of answers per question can be improved

by detecting the difficulties of data regions, then adjusting the number of answers required for each

region based on its difficulty. We showed that current work using this idea has several significant

limitations. We proposed VChecker, a novel solution to address these limitations, and described

extensive experiments with three real-world data sets that demonstrate the promise of our solution.

For future work, we plan to improve VChecker in multiple ways, including developing solutions

to partition the input data into regions, better solutions to estimate and rank the data regions’

difficulties, and better solutions to generate explanations for domain experts.
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Chapter 3

Debugging Labeled Data For Entity Matching

This chapter studies the problem of debugging labeled data for entity matching. There are many

challenges in this problem and I develop an interactive debugging system to help users debug label

errors in such datasets. I perform extensive experiments on 17 entity matching datasets, which

demonstrate the promise and effectiveness of our solutions.

The chapter is organized as follows. I first introduce the background, then define the problem

of debugging labeled data for entity matching in Section 3.2. After that, I describe in details our

solutions through Sections 3.3-3.5. I present our experiment results in Section 3.6. After that, I

briefly describe the related work, then conclude the chapter with discussions and future work.

3.1 Introduction

Entity matching is the task to classify given pairs of entities into matched and non-matched

pairs (a pair of entities is a match if they refer to the same real world entity). When doing entity

matching, people often build one or more matchers and use them to predict the label of each pair

(whether it is a match or not). Each matcher is usually a classification model such as Random

Forests, therefore people need to label a set of entity pairs as the training data.

However, these labeled datasets often have labeled errors. For example, we find label errors in

12 datasets (out of total 17 entity matching datasets used in our experiments). These label errors

are caused by many things. First, these datasets are often manually labeled by one or more workers

and they may make mistakes. Also, when a worker labels many entity pairs, it is hard for him/her

to follow the same matching criteria, which may cause inconsistency in the labels. Moreover,



42

users sometimes try to use semiautomatic or automatic approaches to label pairs (e.g., write some

positive rule and automatically label all pairs satisfying the rule as matches). However, these

approaches are often error-prone and likely cause many systematic errors. As a result, people often

have to detect and fix these label errors before using them to build matchers with good accuracy.

To detect and fix label errors in such datasets, the current solution is usually to ask some

analyst manually going through each labeled pair and verifying its label. Clearly this approach

is expensive (in terms of both time and cost), and becomes infeasible when given a large labeled

dataset. Therefore we build an interactive debugging system to help the analyst detect and fix label

errors in these datasets. Our system interacts with the analyst iteratively. In each iteration our

system returns a small set of most suspicious pairs to the analyst for manual verification, then use

the feedback from him/her (i.e., fixed errors in those suspicious pairs) to help detect suspicious

pairs for the next iterations. The iterative interaction continues until some stopping criteria are

triggered (e.g., the maximum number of iterations has reached, or no label errors are found in the

last three consecutive iterations, or the analyst decides to stop either because he/she thinks there is

no or very few errors in the remaining pairs or the labels of all pairs have been verified).

In this chapter, we present our interactive debugging system that can help the analyst detect

and fix label errors for entity matching tasks. Our contributions are:

• We argue that label errors are pervasive in labeled entity matching datasets, and they affect

the accuracy of learned models. It is important to detect and fix label errors in these datasets

when developing entity matching models.

• We have developed an interactive label debugging system to help reduce the user workload.

As far as we can tell, it is the first such system to detect label errors for entity matching

datasets. The system can utilize multiple error detectors to improve its precision and recall.

• We have developed two detectors: a learning based detector FPN, and a domain-knowledge

based detector Mono. We evaluate them extensively on entity matching datasets to show the

promise of these detectors.
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Figure 3.1: An example of matching person entities.

• We perform incremental updates between iterations and utilize multicores to further improve

the scalability of these detectors, which significantly reduce the latency between iterations.

3.2 Problem Definition

We now describe the problem of debugging labeled data for entity matching considered in this

chapter.

Entities and Entity Matching: In this chapter, we define an entity to be a distinct real-world

object (e.g., person, product, etc.). An entity is usually represented as a list of attribute value pairs.

For example, the basic information of the 44th U.S. President can be represented as { name=Barack

Obama, gender=Male, birth year=1961, political party=Democratic, ethnic group=African Amer-

ican }. Given a set of entity pairs, entity matching is the task to classify those pairs into matched

and non-matched pairs (a pair of entities is considered a match if they refer to the same real world

entity).

Example 3.2.1. Figure 3.1 shows an example of matching person entities from two tables. Each

person entity has attributes name, city and state. We wish to know which person from table A and

which person from table B refer to the same person in the real world. In this example, Dave Smith

from table A and David D. Smith from table B is the same person. Similarly, Dan Smith in table

A matches Daniel W. Smith in table B.

Dataset, Item Pairs, and Labels: Let D = {d1, d2, . . . , dn} be a set of entity pairs, each pair

having a given label indicating whether the pair is a match or not. That is, each di = 〈ai, bi, ci〉
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where (ai, bi) is the pair of entities, and ci is the given label, either 0 or 1. Our problem is to debug

the labels in D. That is, for each di, determine whether ci is the correct label for pair (ai, bi). For

example, if for some i, ci = 1 but ai and bi doesn’t refer to the same entity, then ci is a label error.

Example 3.2.2. Continue with the example in Figure 3.1. In total there are six entity pairs and

suppose their labels are given as following: (a1, b1, 1), (a1, b2, 0), (a2, b1, 0), (a2, b2, 1), (a3, b1, 0),

and (a3, b2, 0). Clearly, the labels in (a2, b2, 1) and (a3, b2, 0) are wrong.

As mentioned earlier, to detect and fix label errors in such datasets, the current solution usually

requires an analyst manually going through each pair and verifying its label. It might be necessary

to do so if he/she has to fix all label errors, but we often only need to fix most of the label errors and

the label quality is already good enough for training matchers. In that case, going through most

pairs and verifying their labels would be too much workload for the analyst. It would be much

better if the analyst only needs to verify a much smaller subset of pairs to fix most of the label

errors. To achieve this goal, we build an interactive system to iteratively debug label errors.

Example 3.2.3. Suppose the analyst needs to debug a dataset with 10, 000 pairs, and the dataset

contains only 500 label errors. The analyst may need to go through more than 9, 000 pairs to

find about 480 label errors, assuming label errors are uniformly randomly scattered in the dataset.

Suppose a new solution returns a subset of 2, 000 suspicious pairs for manual verification and this

subset of pairs already contains ≥ 480 label errors, then the new solution helps save about 78%

user workload.

Our Interactive Debugging System: Figure 3.2 shows the workflow of our interactive debugging

system. Given a dataset D of labeled entity pairs, our system first passes D through one or more

detectors. Each detector will find a list of suspicious pairs and rank them in descending order of

the error probabilities of their given labels (i.e, most likely wrong labels are ranked on the top).

Next, the combiner combines those lists into a single ranked list of suspicious pairs and returns the

top-k pairs to the analyst for manual verification. If the analyst finds any label errors and corrects

them, those corrected labels will be used as feedback to the detectors to help improve the detection
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Figure 3.2: Workflow of our system.

of suspicious pairs for the next iterations. The above iterative interaction with the analyst will

terminate when some prespecified stopping criteria are met (e.g., at most 30 iterations, or no label

errors found in the last three consecutive iterations, or the analyst decides to stop because he/she

feels that enough label errors have been fixed, or labels of all pairs have been verified). Finally,

our solution outputs the list of entity pairs with corrected labels, which then can be used to train

matchers.

In the next two sections we describe our learning based detector FPN and domain-knowledge

based detector Mono. After that, we describe how we combine multiple ranked lists into one

ranked list.

3.3 FPN

In this section we describe our FPN detector, which is a learning based approach. The key idea

is to build classifiers to predict labels of each pair in the dataset, and pairs whose predicted labels

differ from their given labels are likely wrong therefore sent to the analyst for manual verification.

Since it is a learning based approach, we need features that can be used to build those classifiers.

Recall that each pair inD is in the form of di = 〈ai, bi, ci〉where (ai, bi) is the pair of entities and ci

is its given label (whether ai and bi are considered the same real-world entity). For each pair, if the

user doesn’t provide a feature vector, then we will use Magellan [64] to compute a set of features for

each entity pair. Therefore each labeled pair is transformed into an example consisting of a feature
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vector and the given label. Let B be the dataset containing the list of the transformed examples. To

reduce the chance of overfitting when building those classifiers, we perform feature selection on B

and get a new dataset C, which is the input to our detectors FPN and Mono. Suppose m features

are selected, then example ei in C can be represented as ei = 〈f1i, f2i, . . . , fmi, ci〉 where fki is the

value of the k-th selected feature fk and ci is the given label.

Feature Selection: There are many feature selection algorithms [62, 93, 87, 24]. To select

useful features for the purpose of label debugging, we use one of the algorithms provided in the

feature selection package of scikit-learn. Specifically, we use the SelectFromModel algorithm.

This algorithm uses a given model to evaluate the importance of features, then selects the set

of features according to user-specified selection criteria (e.g., top k features, or features whose

importance is greater than or equal to given threshold, etc.) In our implementation, we choose

Random Forests as the model to evaluate feature importance, and keep features whose importance

is greater than or equal to the average feature importance over all features. Using feature selection,

we have removed features that are less important and only kept features that are highly correlated

with given labels, which in turn helps FPN detect suspicious label by avoiding overfitting the given

labels (Feature selection also helps the other detector Mono, which will be explained later).

3.3.1 The Overall Solution

To detect label errors, FPN iteratively interacts with the analyst. In each iteration, it performs

the following steps: first, it finds a set of pairs whose labels are likely wrong (i.e., suspicious pairs)

and ranks them in descending order of their error likelihood; next, it returns the top suspicious pairs

to the analyst for manual verification; when the verification is done, the correct labels of those pairs

are sent back to FPN, which are used as the feedback to help improve error detection for the next

iterations. FPN terminates the interaction when some prespecified stopping criteria are met (e.g.,

at most 30 iterations, or no label errors found in the last three consecutive iterations, or the analyst

decides to stop because he/she feels that enough label errors have been fixed, or labels of all pairs

have been verified). Now we describe how FPN finds the set of suspicious pairs and ranks them.

For simplicity, we refer to the labels of suspicious pairs as suspicious labels.
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Find and Rank Suspicious Labels: To find suspicious labels in C, FPN performs similar to

classification with cross validation. That is, it first randomly partitions C into k-folds (e.g. k = 5)

P1, P2, . . . , Pk; then for each partition Pi, it trains a classifier Mi (e.g. Random Forests in our

implementation) using examples in C \ Pi and uses Mi to predict the labels of examples in Pi.

Now from each partition we collect those examples whose predicted labels differ from their given

labels to form the set of suspicious examples S.

How should we rank suspicious examples in S? Those classifiers usually provide us their

confidence scores of predicted labels, but scores from different classifiers are often not comparable,

therefore we cannot use them directly to rank examples in S. To address this issue, FPN trains an

additional classifier M on C \ S, then uses M to predict examples in S. It has two advantages.

First, now the confidence scores from M can be used to rank suspicious examples in S. Second,

since C \ S likely has better label quality, M may have better accuracy than previous Mi’s. If

for some example, it predicted label from M now matches its given label, then we decide not to

send it for manual verification. Let S0 be the set of examples in S whose predicted labels from M

differ from their given labels, we rank them in descending order of their confidence scores from

M . Algorithm 3.1 shows the complete pseudocode of our FPN detector.

3.3.2 Reduce Latency between Iterations

Recall that in each iteration, FPN needs to find the set of suspicious labels and rank them,

which requires training of several classifiers and predicting labels with those classifiers. When C is

large, training classifiers (line 3 and 11 in Algorithm 3.1) can take minutes or even longer. It would

be impractical to let the analyst wait so long between iterations. To reduce the latency, we decide

to use classifiers that support incremental updates (i.e., support adding and removing examples

from the classifiers, etc.). In our implementation, we use Incremental Random Forest [4] (IRF for

short), which is a variant of Random Forests [10]. To support incremental updates, IRF stores extra

information in each tree. For example, for each tree it memorizes which examples are used to train

the tree. When removing an example, it finds those trees that use the example during training, then

traverses those trees to find the affected nodes and update the associated prediction probabilities in
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Algorithm 3.1 FPN
Require: C: set of labeled examples, k: number of folds

Ensure: L: ranked list of suspicious examples

1: Partition C into k folds P1, P2, . . . , Pk

2: for i = 1, 2, . . . , k do

3: Train classifier Mi using C \ Pi

4: Use Mi to predict labels of examples in Pi

5: Si ← examples in Pi whose predicted labels differ from given labels

6: end for

7: S ←
k⋃

i=1
Si

8: L← RANK(S,C)

9: return L

10: procedure RANK(S,C)

11: Train classifier M using C \ S

12: Use M to predict labels of examples in S

13: S0 ← examples in S whose predicted labels differ from given labels

14: Sort S0 in descending order of confidence scores from M

15: return S0

16: end procedure

those nodes. When adding a new example, it decides the trees that should use the new example for

training, then inserts the example into those trees. With these operations for incremental updates,

when a label error is detected, we can simply remove the associated example from those trees that

use the example in training, then add the example with the correct label back to the IRF. Clearly,

incremental updates in IRF would be much faster than training from scratch, which in turn reduces

the iteration latency significantly. Algorithm 3.2 shows how we perform incremental update to

existing classifiers M1,M2, . . . ,Mk and M given a set of manually corrected examples E.

Limitations of IRF: IRF is fast in doing incremental updates, but there is no guarantee of the

prediction accuracy after many incremental updates to the original random forests in IRF. In fact,

the prediction accuracy is likely dropping when more and more incremental updates are performed.

To solve this problem, we decide to utilize the time when the analyst manually verifies suspicious

labels to train new random forests from scratch in the backend, which is described next.
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Algorithm 3.2 Incremental Update
Require: C: set of labeled examples, k: number of folds, P1, P2, . . . , Pk: folds for cross-validation, M1,M2, . . . ,Mk: classifiers from cross-

validation, M : classifier to rank suspicious examples, S: previous suspicious examples, E: examples whose labels are manually corrected in

current iteration

Ensure: L: new ranked list of suspicious examples

1: for i = 1, 2, . . . , k do

2: ∆i ← E
⋂

(C \ Pi)

3: Update classifier Mi using correct labels of ∆i

4: Use Mi to predict labels of examples in Pi

5: Si ← examples in Pi whose predicted labels differ from given labels

6: end for

7: A← S \
k⋃

i=1
Si

8: Add examples in A to M

9: B ← (
k⋃

i=1
Si) \ S

10: Remove examples in B from M

11: S ←
k⋃

i=1
Si

12: Use M to predict labels of examples in S

13: L← examples in S whose predicted labels differ from given labels

14: Sort L in descending order of confidence scores from M

15: return L

Backend Training: Let C1, C2, . . . be the set of labeled examples for each iteration. That is,

C1 = C, C2 is after we update C1 using the feedback from the analyst in the first iteration, and

Ci+1 is after we updateCi using the feedback from the analyst in the i-th iteration. Let ∆(Ci, Cj) be

the changes from Ci to Cj . Suppose F1 is the set of IRFs trained in the first iteration (F1 contains

classifiers M1,M2, . . . ,Mk and M , where k is the number of folds in cross-validation). In the

second iteration, we first update F1 using the analyst’s feedback, then find suspicious labels, rank

them and return top k to the analyst. When the analyst manually verifies those k suspicious pairs,

we start to train a new set of IRFs F2 on C2 concurrently. When the analyst finishes verification,

if F2 is not ready, then we will continue updating F1 and use it in the third iteration. If F2 is

ready, then we replace F1 with F2, then incrementally update F2 using ∆(C2, C3) before finding

suspicious labels. Suppose F2 is ready only before iteration i, then after we replace F1 with F2,

we need to update F2 using ∆(C2, Ci). Now F2 is ready for iteration i. When the analyst manually

verifies top k suspicious labels from iteration i, we start to train a new IRF Fi from scratch on Ci

concurrently.
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In general, at the beginning of each iteration, if the new set of IRFs is not ready, then we

incrementally update the current set of IRFs and use it for the current iteration. If the new set

of IRFs is ready, we replace the current set of IRFs with the new set and update the new set of

IRFs with all changes in the training examples, then start training another new set of IRFs with

latest training examples at the backend. Clearly, each new set of IRFs likely has better prediction

accuracy than the current set of IRFs, therefore we can expect that our solution will find more label

errors if many iterations are needed before termination. Ideally, if the backend training takes less

time than the manual verification, then for iteration i, we are using the set of IRFs trained on Ci−1

and updated using ∆(Ci−1, Ci), whose accuracy should be close to the set of IRFs trained from

scratch (i.e., trained on Ci) since ∆(Ci−1, Ci) contains at most k examples. Algorithm 3.3 shows

the pseudocode of backend training.

3.3.3 Utilize Multicores

We have described how we use IRFs to reduce the latency between iterations. However, when

C is large, classifiers training takes long time to complete, which causes two problems: first, the

analyst needs to wait long time before receiving the first set of suspicious pairs for verification;

second, the backend training falls behind incremental updates by many iterations. To address this

issue, we use multicores to speed up the training of classifiers M1,M2, . . . ,Mk and M on C.

Recall that in cross-validation, we need to partition C into k folds and train k classifiers.

Clearly, if each classifier can utilize all given cores for training, then we can sequentially train

these classifiers effectively. What if each classifier can only use one core during training? Since

during training, the classifier only needs to read its training examples as input, which means that

training different classifiers are independent from each other by nature, therefore we can assign the

training of each classifier to one core, which means we can use at most k cores to train the k clas-

sifiers (if there are fewer than k available cores, we can do a round-robin scheduling). Algorithm

3.4 shows how we assign each core a classifier for cross-validation.
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Algorithm 3.3 Backend Training

Require: C: set of labeled examples, k: number of folds

1: t← 0

2: M1, . . . ,Mk, S,M,L← TRAIN(C)

3: x← t

4: Cx ← C

5: K ← top k suspicious examples of L

6: Send K for manual verification and wait for their verified labels

7: E ← examples in K whose labels are corrected by the analyst

8: Update C with E

9: t← t + 1

10: y ← t

11: Cy ← C

12: Create a backend process to execute TRAIN(Cy)

13: while Stopping criteria are NOT met do

14: if Backend training has complete then

15: Replace M1, . . . ,Mk, S,M,L with those from backend

training

16: x = y

17: Cx = Cy

18: Incremental update M1, . . . ,Mk, S,M,L using differ-

ence between C and Cx

19: y ← t

20: Cy ← C

21: Create a backend process to execute TRAIN(Cy)

22: else

23: Incremental update M1, . . . ,Mk, S,M,L using E

24: end if

25: K ← top k suspicious examples of L

26: Send K for manual verification and wait for their verified labels

27: E ← examples in K whose labels are corrected by the analyst

28: Update C with E

29: t← t + 1

30: y ← t

31: Cy ← C

32: end while

33: procedure TRAIN(Ct)

34: Partition Ct into k folds P1, P2, . . . , Pk

35: for i = 1, 2, . . . , k do

36: Train classifier Mit using Ct \ Pit

37: Use Mit to predict labels of examples in Pit

38: Sit ← examples in Pit whose predicted labels differ from

given labels

39: end for

40: St ←
k⋃

i=1
Sit

41: Train classifier Mt using Ct \ St

42: Use Mt to predict labels of examples in St

43: Lt ← examples in St whose predicted labels differ from given

labels

44: Sort Lt in descending order of confidence scores from Mt

45: return M1t, . . . ,Mkt, St,Mt, Lt

46: end procedure
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Algorithm 3.4 Multicore FPN
Require: C: set of labeled examples, k: number of folds

Ensure: L: ranked list of suspicious examples

1: Partition C into k folds P1, P2, . . . , Pk

2: for i = 1, 2, . . . , k do

3: Si ← Create a process to execute PROCESSPARTITION(C \ Pi, Pi)

4: end for

5: S ←
k⋃

i=1
Si

6: L← RANK(S,C)

7: return L

8: procedure PROCESSPARTITION(Dt, Dp)

9: Train classifier M using Dt

10: Use M to predict labels of examples in Dp

11: S ← examples in Dp whose predicted labels differ from given labels

12: return S

13: end procedure

14: procedure RANK(S,C)

15: Train classifier M using C \ S

16: Use M to predict labels of examples in S

17: S0 ← examples in S whose predicted labels differ from given labels

18: Sort S0 in descending order of confidence scores from M

19: return S0

20: end procedure

3.4 Mono

In this section we describe our second detector Mono, which is a domain-knowledge based

approach. In entity matching, similarity measures usually satisfy the monotonicity property, such

as cosine and jaccard [56]. That is, the scores of similarity measures on matched pairs are usually

greater than those scores on non-matched pairs. This property was first observed in [14]. Based

on this observation, we designed our Mono detector, which interacts with the analyst in a way

similar to FPN. What Mono differs from FPN is the first step of each iteration, that is, how to find

suspicious labels and rank them.
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Before describing Mono, we first define the monotonicity property between an example with

label 1 and an example with label 0, then describe our motivations for using this property to detect

label errors. Recall that we have m features for each example ei = 〈f1i, f2i, . . . , fmi, ci〉.

Definition 1. Monotonicity at feature f Given an example ei with label 1 and an example ej with

label 0, let fi and fj be their values of feature f , then ei and ej satisfy monotonicity at feature f iff

fi > fj .

Example 3.4.1. Continue with the example in Figure 3.1. If two persons are a match, we expect

that they have the same or similar names so the string similarity score between their names are

very high. In contrast, if two persons are a non-match, then they usually have different names,

which leads to low score between their names. Therefore if we compare the string similarity scores

between names for a matched pair of persons and a non-matched pair of persons, we likely notice

that they satisfy the monotonicity property at this feature.

Ideally, we wish that ei and ej satisfy monotonicity at all m features. However, in reality

entities may have noise in the values of some attribute, or use synonyms, which may cause ei and

ej to violate the monotonicity property at some features. Therefore we lower the requirement to

satisfy monotonicity at at least k features (k-consistency).

Definition 2. k-consistency Given an example ei with label 1 and an example ej with label 0, ei

and ej is k-consistent iff ei and ej satisfy monotonicity at at least k different features.

Clearly, using a larger k increases our confidence of the correctness of the labels for both ei

and ej (but we may also find more false positives, i.e., some labels are misreported as suspicious

though they are correct). As a start, we study the situation of 1-consistency (e.g., k = 1). For

simplicity, from now on, ei and ej is called consistent if they are 1-consistent, otherwise they are

called inconsistent.

Why do we care about the consistency between examples with different labels? If an example

is a match but its given label is wrong (i.e., its given label is 0), then when we compare it with

other examples with label 1, we are likely to find many inconsistencies. Similarly, we would find
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many inconsistencies when we compare a non-matched example whose label is wrong (i.e., its

given label is 1) with other examples with label 0. Therefore when an inconsistency is detected

between pairs with different labels, the labels of both examples are suspicious and need manual

verification. Clearly, if an example causes many inconsistencies, then we are more confident that

its given label is likely wrong.

Based on the above motivation, to find suspicious labels, Mono identifies all inconsistencies

between examples with label 1 and examples with label 0, then collects all the examples causing

at least one inconsistency. Then the suspicious examples are ranked in descending order of the

number of caused inconsistencies (Algorithm 3.5).

Algorithm 3.5 Mono
Require: C: set of examples

Ensure: L: ranked list of suspicious examples

1: Find the list of examples L that cause at least one inconsistency

2: Sort L in descending order of the number of caused inconsistencies

3: return L

How can we identify all inconsistencies? Naively, for each example e, we can compare it

with all examples whose labels differ from e for consistency checking (Algorithm 3.6). Note that

inconsistency property is symmetric (that is, if ei is inconsistent with ej , then ej is also inconsistent

with ei), therefore we only need to find the list of inconsistent examples (with label 0) for each

example with label 1. If we have n0 examples with label 0 and n1 examples with label 1, the naive

algorithm has complexity O(n1n2m), where m is the number of features. Clearly, this algorithm

is computationally expensive when n1, n2 and m are large, which is common for datasets used

in entity matching. To speed up the computation, we implement another algorithm to find all

inconsistencies in the dataset: Sort Probing, which is described next.

Example 3.4.2. Consider the example in Figure 3.3. It has 16 labeled pairs, among which half

are with label 1 and marked with blue circles, and the others are with label 0 and marked with

red stars. With Naive Mono, we need to compare 8 × 8 = 64 pairs of feature vectors to find all

inconsistencies.
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Algorithm 3.6 Naive Mono
Require: C: set of examples

Ensure: X: dictionary that maps each example to its list of inconsistent examples

1: M ← examples in C whose given labels are 1

2: N ← example in C whose labels are 0

3: X ← empty dictionary

4: for e ∈ C do

5: X[e]← empty list

6: end for

7: for e1 ∈M do

8: for e0 ∈ N do

9: if e0 is inconsistent with e1 then

10: Append e0 to X[e1]

11: Append e1 to X[e0]

12: end if

13: end for

14: end for

15: Remove all examples e from X whose X[e] is empty

16: return X

Figure 3.3: An example with two features.

3.4.1 Sort Probing

In the naive algorithm, given an example e, we compare it with all examples whose labels

differ from e to find its list of inconsistent examples. Sort Probing uses a different method to find
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this list. Recall that given an example ei with label 1 and an example ej with label 0, ei and ej

are inconsistent if ej has same or higher values than that of ei at all features. Let Lk be the set of

examples with label 0 and has same or higher values than that of ei at feature k, then
⋂m

k=1 Lk is

exactly the list of examples inconsistent with ei. Motivated by this observation, we developed Sort

Probing (Algorithm 3.7).

In Sort Probing, for each feature we need to find all Lk’s for all examples with label 1 (we don’t

need to do it for examples with label 0 due to the symmetric property of inconsistency). It would

still be computationally expensive if we find these Lk’s independent from each other. To amortize

the time cost when handling feature f , we first sort all examples with the same label in ascending

order of their values at f . Let P be the sorted list of examples with label 1 and Q be the sorted list

of examples with label 0. For example ei ∈ P , let Li be the sublist of Q with same or higher value

than that of ei at feature f . Since Q is sorted, to find Li, we only need to find the first example ej

in Q whose value is same or higher than that of ei, then Li is the sublist from ej to the end of Q.

Therefore after sorting, we scan P andQ from their last examples. Let i, j be the indices of current

examples in P and Q. If P [i] has higher value than that of Q[j], then Li begins with Q[j + 1], and

we reduce i by 1; otherwise we reduce j by 1. In this way, we only need to scan P and Q one time

to find Li’s for all ei’s in P .

Example 3.4.3. Continue with the previous example. Consider the two blue pairs marked as A

and B in Figure 3.4. Suppose A = (x1, y1) and B = (x2, y2). Let Lax be the set of red stars with

x-values greater x1 and Lay be the set of red stars with y-values greater than y1, then Lax

⋂
Lay

gives the set of red stars inconsistent with A. Let Lbx and Lby be the corresponding sets forB, then

Lbx ⊆ Lax since x1 < x2, and Lay ⊆ Lby since y1 > y2.

3.4.2 Reduce Latency between Iterations

Sort Probing is much faster than the naive algorithm. However, on a large dataset, it still takes

minutes or longer to find all inconsistencies, which is intolerable between iterations. Therefore we

decide to incrementally update the inconsistent lists of all examples if the label of some example

is changed (because the analyst finds that its given label is wrong).



57

Algorithm 3.7 Sort Probing
Require: C: set of examples

Ensure: X: dictionary that maps each example to its list of inconsistent examples

1: M ← example in C whose given labels are 1

2: N ← examples in C whose given labels are 0

3: Y ← empty dictionary

4: for each feature f do

5: Y [f ]← empty dictionary

6: Mf ← Sort M in descending order of values for f

7: Nf ← Sort N in ascending order of values for f

8: for e ∈Mf do

9: Lf ← examples in Nf with values same or higher than that of e

10: Y [f ][e]← Lf

11: end for

12: end for

13: X ← empty dictionary

14: for e ∈ N do

15: X[e]← empty list

16: end for

17: for e1 ∈M do

18: L←
⋂
f
Y [f ][e1]

19: if L is not empty then

20: X[e1]← L

21: for e0 ∈ L do

22: Append e1 to X[e0]

23: end for

24: end if

25: end for

26: Remove all examples e from X whose X[e] is empty

27: return X

Suppose the label of example e is changed and L is its previous list of inconsistent examples.

To perform incremental updates, we first remove e from the inconsistent lists of examples in L.

Next, we correct the label of e, then compare e with examples whose labels differ from e to find

its new list L′ of inconsistent examples. Finally, we append e to the inconsistent lists of examples

in L′. Now those examples with nonempty inconsistent lists are suspicious and we rank them by

their number of inconsistencies.
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Figure 3.4: An example using Sort Probing.

Since in each iteration only top k suspicious examples are sent for manual verification, the

number of examples whose labels are changed is at most k, therefore the above incremental update

is much faster than finding all inconsistencies from scratch. However, the above Sort Probing (and

also the naive algorithm) keeps all the inconsistent lists in memory, which could be an issue if

there are a lot of inconsistencies. For example, given a dataset with 1M pairs (among which 500k

pairs are with label 1 and the other 500k pairs are with label 0), suppose on average each pair p is

inconsistent with 1% pairs whose labels differ from p (i.e., the average length of inconsistent list is

500, 000×1% = 5, 000), then the total number of inconsistencies is 106×5, 000 = 5×109, which

takes about 40GB memory (assuming it requires 8 bytes per inconsistency in memory). Next we

describe how we address the memory issue.

3.4.3 Revised Version

How can we address the above memory issue? In the previous version, we notice that the

inconsistent lists are used for two different purposes. First, we use the length of inconsistent lists

to rank suspicious examples. Second, if after manual verification, the given label of a suspicious

example p is wrong, we need to remove p from the inconsistent lists of examples in the inconsistent
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list of p. Clearly, for the first purpose, we only need the length of those inconsistent lists. Therefore

instead of storing those inconsistent lists, we only record down the length of the inconsistent list

for each suspicious example. But now we need to figure out how to address the second purpose,

i.e., how to do incremental update. Note that if the label of example e has changed, we need its

previous inconsistent list to perform incremental update. Since each iteration only top-k suspicious

examples are sent to the analyst for manual verification, the number of examples whose given labels

are wrong cannot exceed k. Since k is usually small, reconstructing the previous inconsistent lists

of such examples takes little time. Therefore we first reconstruct the previous inconsistent lists,

then perform incremental update. Algorithm 3.8 shows the revised sort probing algorithm.

3.4.4 Utilize Multicores

Now we describe how we use multicores to speed up the computation of all inconsistencies

in the first iteration (Algorithm 3.9). Suppose k cores are given, there are two places that we

can do parallel processing. First, clearly processing each feature is independent from each other,

therefore we can use min(k,m) cores to parallel process features, where m is the number of

features. After that, for each example with label 1 we need to intersect its lists from all features to

find its list of inconsistent examples. To use k cores, we partition the set of examples with label 1

into k partitions, then assign the processing of each partition to one core. Once all partitions are

processed, we union the inconsistencies found by each core into the final inconsistent map.

3.5 Combining Detectors

If only one detector is used, we can simply return top k from its ranked list of suspicious pairs

to the analyst for manual verification. When we use more than one detector, each detector will

return a ranked list of suspicious pairs, then the combiner needs to combine them into a single

ranked list. Clearly, if a pair is marked suspicious by many detectors, then its label is more likely

wrong. Therefore if we only return those marked suspicious by all or most detectors for manual

verification, those returned suspicious pairs will have high precision, but we might miss many pairs
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Algorithm 3.8 Revised Sort Probing
Require: C: set of examples

Ensure: X: dictionary that maps each example to the length of its list of inconsistent examples

1: M ← example in C whose given labels are 1

2: N ← examples in C whose given labels are 0

3: Y ← empty dictionary

4: for each feature f do

5: Y [f ]← empty dictionary

6: Mf ← Sort M in descending order of values for f

7: Nf ← Sort N in ascending order of values for f

8: for e ∈Mf do

9: Lf ← examples in Nf with values same or higher than that of e

10: Y [f ][e]← Lf

11: end for

12: end for

13: X ← empty dictionary

14: for e ∈ N do

15: X[e]← 0

16: end for

17: for e1 ∈M do

18: L←
⋂
f
Y [f ][e1]

19: if L is not empty then

20: X[e1]← length of L

21: for e0 ∈ L do

22: Increase X[e0] by 1

23: end for

24: end if

25: end for

26: Remove all examples e from X whose X[e] is 0

27: return X
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Algorithm 3.9 Multi-core Sort Probing
Require: C: set of examples, k: number of cores

Ensure: S: set of suspicious examples

1: M ← examples in C whose given labels are 1

2: N ← examples in C whose given labels are 0

3: Y ← empty dictionary

4: for each feature f do // parallel process

5: Y [f ]← empty dictionary

6: Mf ← Sort M in descending order of values for f

7: Nf ← Sort N in ascending order of values for f

8: for e ∈Mf do

9: Lf ← examples in Nf with values same or higher than that of e

10: Y [f ][e]← Lf

11: end for

12: end for

13: Partition M into M1,M2, . . . ,Mk

14: for i = 1, 2, . . . , k do // parallel process

15: Xi ←PROCESSPARTITION(Mi, Y )

16: end for

17: X ←
k⋃

i=1
Xi

18: Remove all examples e from X whose X[e] is empty

19: return X

20: procedure PROCESSPARTITION(M,Y )

21: X ← empty dictionary

22: for e1 ∈M do

23: L←
⋂
f
Y [f ][e1]

24: X[e1]← L

25: for e0 ∈ L do

26: if e0 ∈ X then

27: Append e1 to X[e0]

28: else

29: X[e0]← [e1]

30: end if

31: end for

32: end for

33: end procedure
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Figure 3.5: An example to combine two ranked lists.

whose labels are indeed wrong (i.e., the recall is likely lower). To maximize the recall, we decide

to union the suspicious pairs returned from each detector to form the set of suspicious pairs S.

How do we rank pairs in S? There are many methods to merge ranked lists [48, 83, 78, 74].

Now we describe how we combine the two ranked lists from FPN and Mono, which can be also

extended to combining ranked lists from more detectors.

Our method is based on Borda count method [48]. The key idea is: for each ranked list, assign

points to candidates according to their rankings, then for each candidate sum its points from all

ranked lists and rank candidates by their total points. Following Borda count method, for each

ranked list, we first assign points to each candidate in reverse proportion to their ranking, so that

higher-ranked pairs receive more points. When all ranked lists have been processed, for each

suspicious pair we add up its points, then rank all suspicious pairs in descending order of their

total points. However, recall that each ranked list is usually only a subset of S, therefore we need

to figure out how to assign points to those missing pairs. To solve this problem, we extend each

ranked list into a full list by appending each missing pair to the end of each list. Let L1, L2 be the

two ranked lists from FPN and Mono, then S = L1

⋃
L2. Let M1 = S \ L1 be the set of missing

pairs from L1. For simplicity we assign the same number of point to all pairs in M1. Once we sum

up the points for each suspicious pair, there might be pairs with the same number of total points,

which will be returned in random order for simplicity.

Example 3.5.1. Figure 3.5 shows how we combine two ranked lists L1 = [a, b, d, e, f ] and L2 =

[c, a, b, e, g, h] (in which each letter represents a pair). Note that c, g, h are not in L1. Ap-

pending them to the end of L1, we get L′1 = [a, b, d, e, f, (c, g, h)]. Similarly, we get L′2 =
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Algorithm 3.10 Combine Ranked Lists
Require: L1, L2, . . . , Ln: ranked lists to be combined

Ensure: L: combined list

1: L←
n⋃

i=1
Li

2: m← length of L

3: R← {v : 0 ∀v ∈ L}

4: for i = 1, 2, . . . , n do

5: mi ← length of Li

6: for j = 0, 1, . . . ,mi − 1 do

7: R[Li[j]]← R[Li[j]] + (m− j)

8: end for

9: for v ∈ L \ Li do

10: R[v]← R[Li[j]] + (m−mi)

11: end for

12: end for

13: Sort L in descending order of R[v] for v ∈ L

14: return L

[c, a, b, e, g, h, (d, f)]. Assume that we assign 8 points to the first item in each list, and 1 point

less to the next in each list. Now we compute the sum of points for each item, sort them in descend-

ing order of summed points, then we get the combined ranked list L = [a, b, c, e, d, g, f, h]. Note

that points of f and h are the same, and the ordering between them is random in the combined list.

3.6 Empirical Evaluation

Datasets: We use datasets from a diverse range of domains and different sizes to evaluate our

debugging system (Table 3.1). The first nine datasets are publicly available and have been widely

used for EM ([65],[19],[72]). The two private datasets, Tools and Clothing, come from a major

retailer and are used extensively to match their products with another competitor. The last six

datasets come from EM projects in a data science course offered in UW-Madison, which are of

small size but cover various domains. Each project dataset was labeled by a team of two or three

students.

In Table 3.1, column Size shows the number of labeled pairs and the number of matched pairs

in each dataset. The next column provides the number of label errors in those datasets for which
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Table 3.1: Datasets for our experiments.

we have golden labels. The last column lists the number of attributes that are common in the two

tables for each dataset.

Datasets in private and teamwork category contain both matched and non-matched pairs, while

the nine public datasets originally provide only the set of matched pairs, therefore we need to add

non-matched pairs into those datasets before using our debugging system.

Adding Non-matched pairs: Now we describe how we add non-matched pairs to a public dataset

that has two tablesA andB but only provides a set of matched pairs P betweenA andB. To do so,

we first perform some blocking on the given A and B to get a set of candidate pairs C. C should

contain most matched pairs. Let X = A×B \ (P ∪C), then X should only contain non-matched
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pairs that are very different from those pairs in P . Now we want to randomly sample a set of pairs

N fromX . However,A×B can be very huge, which means implicitly generatingX would be very

costly. To avoid such an issue, each time we randomly sample an entity a from A and an entity b

from B, then check whether (a, b) ∈ (P ∪C)∪N . If not, then add (a, b) to N . We continue doing

so until the size of N is roughly the same as that of P (we want N and P to have similar size to

reduce its effect on ranking). Finally, D = P ∪N is the labeled dataset that will be passed to our

debugging system to detect potential false matched pairs in P .

3.6.1 Interactive Error Detection

To evaluate the usefulness of our debugging system, an analyst tests our system on the above

datasets interactively until it converges (i.e., no label errors are found in three consecutive itera-

tions) or 40 iterations are reached. During the tests, both detectors FPN and Mono are enabled.

Each detector returns its ranked list of suspicious pairs, then the combiner combines the top 500

pairs from each list into a single ranked list and return the top 20 suspicious pairs from the com-

bined list to the analyst for manual verification. The number of iterations before it stops and the

number of found errors are reported in the 4th and 5th columns in Table 3.2. The last column

shows the (estimated) lower bound of total number of label errors in each dataset.

3.6.1.1 Lessons Learned from Interactive Debugging

Importance of Label Debugging: The analyst manages to find label errors in 12 of the 17 above

datasets, whose labels are often assumed correct in many research work or industry projects. Also,

the number of label errors can be quite large. For example, from the detected label errors, the

analyst further estimate that the two private datasets contains at least 3,111 and 8,302 label errors.

Effectiveness of Our System: Within 40 iterations, our system helps the analyst find many label

errors on many datasets (for example, 614 label errors are found in Cora dataset). Moreover, on

many of those datasets our system converges very fast (in fewer than 13 iterations).
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Table 3.2: Statistics of detected label errors.

For the three datasets Cora, Tools and Clothing, the analyst interacts with our system until

he/she reaches 40 iterations, and in the last few iterations he/she still finds many label errors,

which suggests that there might be more label errors in those datasets. The analyst could continue

debugging with our system, or choose to analyze those already found label errors for potential

systematic error patterns. Also, on several datasets our system doesn’t detect any label errors

hence terminates after three iterations. Does it mean that those datasets are clean? For Fodors-

Zagats, Citations and Restaurants, we have manually created golden labels confirming that their

given labels are indeed clean. For DBLP-ACM and DBLP-Scholar, we don’t have golden labels,

therefore we randomly sample 100 pairs and manually verify that their given labels are correct,
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therefore there is high chance that most labels (if not all) of these two datasets are also correct.

Hence our system can help increase the confidence of the analyst in the label quality if he/she

doesn’t find any errors when our system converges in three iterations.

3.6.1.2 Different Debugging Scenarios

First, as shown in our experiments, the analyst can interact with our system to debug label

errors. If the label quality is poor, then our system should help him/her detect many such label

errors in first few iterations. Without our system, all he/she can do is to randomly sample a subset

for manual verification, which clearly contains much fewer label errors if most labels are still

correct.

Next, our system can be used to perform a sanity check on the label quality of a given dataset.

As we mentioned earlier, if on a given dataset our system terminates after 3 iterations and no errors

are found, it usually indicates that the label quality are really good.

Third, our system can help detect systematic errors. Given a dataset, the analyst first interacts

with our system iteratively. If he/she notices that many pairs with label errors follow similar

pattern, he/she may suspect that there is one or more systematic error patterns in the dataset. Now

he/she carefully examines those pairs for potential error patterns, then writes one or more rules

to capture such patterns. After that, he/she can apply the rule(s) to the whole dataset and extract

pairs that satisfy those rule(s). If the number of extracted pairs are huge, then he/she can randomly

sample a small subset of pairs. Next, he/she manually verifies the labels of those (sampled) pairs,

and estimates how many such errors may exist in the pairs that satisfy those rules.

For example, on Tools and Clothing datasets, the analyst follows the above procedure and man-

ages to detect a few systematic error patterns, and estimate that these datasets have at least 3,111

and 8,302 label errors. For example, on Clothing dataset, he/she notices that many pairs, whose

product types are very different but their product names and descriptions are very similar, were

wrongly labeled as non-matches. Therefore he/she writes a rule to extract 7,686 such pairs, sam-

ples 100 pairs for manual verification. He/she finds that 82 out of 100 pairs are actually matches.

Therefore he/she estimates that there are about 6,302 such errors in the dataset.
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Our debugging system can also help detect inconsistent matching definitions. Nowadays the

labels are usually created by a small team of experts or a crowd of workers. It’s hard for them to

follow the same matching definitions (even if there is only one expert for labeling, it’s difficult for

him to use the same matching definition when there are thousands of pairs to be labeled).

If the analyst wishes to know whether inconsistent matching definitions are used during label

creation, then he/she can use our system for help and follow these steps: first, he/she interacts with

our system for a few iterations. If he/she detects label errors, he/she can carefully examine them

to see whether these errors are caused by inconsistent matching definitions. If true, then he/she

can continue with our system to detect more such inconsistencies. However, if all detected pairs

with label errors seem to follow the same matching definition, then he/she can randomly sample

a small subset from remaining pairs in the dataset, and examine whether they follow the same

matching definition as those pairs with label errors. If the answer is no, then inconsistency is

detected. Otherwise, he/she should feel confident that a consistent matching definition is used over

the dataset.

3.6.2 Runtime and Scalability

Table 3.3 shows the runtime of our debugging system on those datasets. The second column

lists the time of the first iteration (i.e., the time between our system receiving preprocessed features

and returning the top k suspicious pairs to the analyst). The next three columns reports the average,

minimum and maximum time of our system for interactive debugging (i.e., the time to process the

feedback from the analyst for current iteration and return the next top k suspicious pairs to the

analyst). The last column shows the number of iterations before the analyst stops debugging.

The time for the first iteration depends on several factors: size of labeled pairs, number of

features, and noisiness of the dataset. We can see that our system spends no more than 2 seconds

on these small datasets. Citeseer-DBLP contains about 1.1 million labeled pairs and it takes less

than 200 seconds for our system to finish the first iteration. Both Tools and Clothing have about

250k labeled pairs, but many of their attributes contain noisy textual values, which takes more
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Table 3.3: Runtime with our system.

processing time for the first iteration. Nevertheless, our system manages to finish the first iteration

within 11 minutes.

For the subsequent interactive debugging iterations, thanks to our incremental updating algo-

rithms, our system has fast response time. For most datasets, on average it takes no more than 4

seconds per iteration. Even for datasets with large size or noisy attributes, our system spends no

more than 13 seconds per iteration on average. All these statistics suggest that our system is time

effective in various debugging scenarios.
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Table 3.4: Runtime of the first iteration with multicores.

To study the scalability of our system when utilizing multicores, we use Tools and Clothing

datasets. Table 3.4 shows the time of the first iteration when we vary the number of cores from

1 to 8. Clearly, multicores help reduce the runtime of the first iteration. Meanwhile, increasing

the number of cores has diminishing returns, because of the overhead of multiprocessing (e.g., in

Python, there are process communication and memory copy overhead) and the part of our solutions

that cannot be parallelized (Amdahl’s law [81]) For other iterations, we observe that it doesn’t

benefit to use more than 4 cores due to the multiprocessing overhead.

3.6.3 Comparison between Detectors

In this section, we study and compare the performance of FPN and Mono. To do so, we use

7 datasets with golden labels, randomly insert some percentage of label errors (the percentage of

error is set randomly between 5% to 15%), then run the debugger until there is no label errors in

three consecutive iterations. Table 3.5 shows the results from these detectors. We can see that they

detect most and even all label errors in only a few iterations on these datasets. FPN and Mono

have similar performance on most datasets, while on other datasets one detector is better than the

other. For example, on Restaurants Mono finds 40 label errors while FPN only finds 24 errors.

Meanwhile, on datasets Beer and Bike, they find similar number of label errors, but each of them

actually finds some unique errors, then when both detectors are used, more errors are found.

3.6.4 Sensitivity Analysis

In this section, we perform sensitivity analysis of our system. Specifically, we study the effects

of the following parameters in our system: batch size (the number of suspicious pairs returned to

the analyst for manual verification in each iteration), and the percentage of label errors.
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Table 3.5: Performance comparison between detectors.

Table 3.6: Sensitivity analysis of batch size.

Table 3.6 shows the results when batch size varies from 5 to 20. For each dataset, we insert the

same percentage of label errors as in Table 3.5. When the batch size is small, we can see that our

system finds fewer label errors sometimes. Recall that we will stop debugging if there is no label

error in three consecutive iterations. With smaller batch size, the stopping criteria are more likely

triggered, which is why we set 20 to be the default batch size.

Table 3.7 shows the results when the percentage of label errors is increased from 5% to 20%

(the batch size is default, i.e., 20). Clearly, our system can detect most label errors even when there

are 20% label errors in the dataset. The number of undetected label errors might increase when

the percentage of errors continue increasing, due to (1) too many label errors might force FPN to

learn a different matching definition, and (2) too many label errors will affect the ranking of Mono

and more pairs with correct given labels might be ranked higher, then trigger the stopping criteria

(i.e., there is no label errors in three consecutive iterations).
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Table 3.7: Sensitivity analysis of error percentage.

3.7 Related Work

Recently human-in-the-loop systems and solutions have attracted more and more attentions in

both research communities [64, 92, 68] and industries [27, 53]. One of their design goals is to

help reduce the workloads of users, which is also the main goal of our label debugging system.

However, different such systems usually solve different problems, therefore encounter different

challenges and developed different strategies. When designing our system, we also try to improve

its flexibility and generality. We believe that such system design is a correct direction toward better

human-in-the-loop systems.

Label errors and its effects on supervised learning (especially classification) have been widely

studied [51]. Recently machine learning communities also contribute enormous efforts to design

new learning models that can tolerate errors in training data [91, 69, 77, 88]. However, the tolerance

of label errors in these models are usually very limited. Therefore, we believe that designing

solutions to detect and fix label errors is still the most promising approach to improve the quality

of such data analysis tasks.

As far as we can tell, our solution is the first research work to detect label errors in labeled entity

matching datasets. [11] performs similar to our FPN detector. However, instead of detecting and

fixing label errors, they eliminate examples whose labels are likely wrong and train model on other

examples.

Combining rankings has been widely studies and different methods are proposed, such as Con-

dorcet method [78], Schulze method [83], Voting System [74] and Borda count [48] (which is used
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in our system). However, Arrow’s impossibility theorem [9] indicates that there is no best combin-

ing method in general. We choose Borda count due to its simplicity and O(n) time complexity.

Researchers also work on a different debugging scenario for which labels are assumed clean

and they want to do minimal repairs on other attributes (or features) of training data so that the bias

in trained model is reduced [12].

3.8 Conclusions

In this chapter, we addressed the problem of debugging label errors in labeled entity matching

datasets. As far as we can tell, this is the first research work for this problem. We designed an

system that iteratively interact with the analyst to detect and fix label errors. We implemented

two detectors to detect label errors: learning based FPN and domain-knowledge based Mono. We

conduct extensive experiments with real datasets and demonstrate the effectiveness of our system:

it helps significantly reduce the workload of the analyst and can be used towards various debugging

scenarios. Our system is extendable can also integrated other types of detectors, such as rule-based

detectors. We also implemented various techniques such as incremental updates and utilization

of multicores to reduce the latency between iterations. Our experiments show that it can handle

datasets of thousands labeled pairs of entities and the latency between iterations is usually within

seconds. In the future, we plan to extend our system to support other label debugging tasks, and

more generally, data cleaning tasks.
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Chapter 4

Large-Scale Active Learning for Entity Matching

This chapter studies the problem of performing large-scale active learning for entity matching.

I first develop a distributed solution on a cluster of machines, evaluate it using several datasets and

study its limitations, then explore various opportunities to develop better solutions.

The chapter is organized as follows. The next section introduces some background and defines

the problem that we plan to address in this project. Section 4.2 describes our first solution in detail

and our empirical evaluation results. Section 4.3 describes how I improve our first solution to

develop our second solution, and perform experiments to compare these two solutions. Section 4.4

describes how I continue improving our second solution and develop our third solution, followed

by experiments to demonstrate its promise. After that, I briefly describe the related work, then

conclude the chapter with discussions and future work.

4.1 Background and Problem Definition

For many data management tasks, we need to label data. It will take huge amount of time and

money to manually label a large set of data instances. To help reduce labeling cost and time, we

usually first uniformly-random sample a small set of data instances from the dataset, label these

sampled instances, then use the labeled instances to train a machine learning model, and finally use

the model to automatically label the remaining instances in the dataset. However, to train a model

with good accuracy, the sample size cannot be too small.

To further reduce the number of instances to be labeled, researchers proposed active learning.

The key idea behind active learning is that a machine learning algorithm can perform better with
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Figure 4.1: An example of active learning workflow.

fewer training examples if it is allowed to choose the data from which it learns [84]. To do so,

active learning builds an initial model with a small set of labeled examples. Then it performs

iterative interaction with one or more labeling workers (Figure 4.1).

In each iteration, it uses the current model to select the most controversial unlabeled examples,

then sends them for manual labeling. Once their labels are returned, active learning adds them to

the training data to build a new model. Active learning continues until some pre-specified stopping

criteria are met (e.g., the maximum number of iterations has been reached, or the model has con-

verged according to some measurement such as maximum entropy of label prediction confidence

among all unlabeled examples).

4.1.1 Large-Scale Active Learning for Entity Matching

In this chapter, we focus on active learning on large-scale entity matching datasets. In entity

matching, we are usually given two tables A and B, and a set of unlabeled pairs U (which is

often the result of performing some blocking step between A and B), then we wish to label each

pair as match or non-match. We assume that there is a target model M to be trained (i.e., some

classifier such as Random Forests). Unlike most active learning scenarios (in which feature vectors
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of unlabeled examples are given), in entity matching we are often given only a set of similarity

functions F to compute features for M .

To perform active learning, we also need some labeled pairs (seeding pairs) S to train the

initial model. For our study, we will use Random Forests as the model M and the set of features

automatically generated by Magellan [64] between A and B as the set of similarity functions F .

Now we first introduce a basic common solution, discuss its limitations and our project goals.

After that, we will detail how we develop our solutions step by step.

A Basic Solution: As mentioned earlier, in our scenario, we are given a set of similarity functions

F instead of the set of feature vectors for unlabeled pairs. To perform active learning, we first need

to compute the feature vectors for pairs in S and train the initial matching model M . To apply

the model on unlabeled pairs in U to select the most controversial pairs for labeling, we also need

to compute their feature vectors (for simplicity, each iteration active learning uses entropy [13] to

select pairs for manual labeling).

Now we can perform the common active learning steps iteratively until some stopping criteria

are met: in each iteration, (1) we apply M to feature vectors of unlabeled pairs in U and for each

pair in U we compute the entropy score of its label prediction confidence; (2) we sort pairs in U

in descending order of their entropy scores, then return the top k pairs (denoted as K) for manual

labeling; (3) if the given stopping criteria are met, we stop active learning; otherwise (4) we remove

K from U , add K (and their labels) to S and train a new model M , then repeat from step (1).

The above solution is simple and works well on a single machine if the size of U is not large. In

fact, when U is small, it only takes seconds or a few minutes to compute all feature vectors, and in

each iteration the time to train models and select the most controversial pairs for manual labeling

is often less than one second.

However, in each iteration manually labeling pairs may take significantly more time. For ex-

ample, in our experience, it often takes 5 or more seconds to label one entity pair. Then if in each

iteration active learning returns 20 pairs for manual labeling, it will take at least 100 seconds before

continuing next iteration. Clearly when U is small, the (time) bottleneck of each iteration is the
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time to wait for manual labeling of pairs in K. However, when given a large-scale dataset U , the

labeling experience is very different, and the above solution has significant limitations.

Limitations: First, when U has large size, with a single commodity machine, it may take hours

to compute feature vectors of pairs in U . It is because entity matching tasks usually use dozens and

even hundreds of similarity features to train the matcher (i.e., the model M ), and most features are

evaluated on pairs of strings, which are often expensive to compute. It means that the user has to

wait a very long time before he/she can start labeling the batch of pairs from the first iteration.

Moreover, when given millions of pairs and hundreds of features, the size of all feature vectors

of pairs often exceeds the memory size of a single commodity computer. If we save the feature

vectors to disk then load and scan through it every iteration, it increases the time between iterations

(which also means that users face longer waiting time between iterations). Since active learning

often continues tens or even hundreds of iterations before termination, it also increases the total

time significantly.

In summary, the above solution has scalability issues when U is large and active learning takes

too much time to complete, and users need to wait long time before starting labeling and between

iterations.

Project Goals: In this project, we want to address the above limitations. Specifically, we

want to build solutions to improve the labeling experience of users when performing large-scale

active learning for entity matching. Assuming that users want to label at most n entity pairs (e.g.,

n = 600), our goals are:

1. Reducing the waiting time before users can start labeling pairs selected from the first model;

and

2. Reducing the user waiting time between iterations (which includes time to train a new model

and time to select the next batch of pairs for manual labeling, etc.).

In the rest of this chapter, we will detail how we develop our solutions step by step to achieve our

goals.
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4.2 Our First Solution

As mentioned earlier, when U contains many unlabeled entity pairs, we face the scalability is-

sues: it takes significant amount of time to compute the feature vectors of those pairs, and the fea-

ture vectors may not fit into the memory of a single commodity machine. To address the scalability

issues, we decide to develop our first solution that can utilize a cluster of commodity machines,

since it’s easy and cheap to set up a cluster of commodity computers nowadays.

4.2.1 A Cluster Solution Using Spark

We choose Spark to develop our first solution on a cluster of machines. Why? Spark is “an

open-source distributed general-purpose cluster-computing framework”, “a unified analytics en-

gine for large-scale data processing” [2]. Due to caching in memory and other optimizations, it

can be up to 100x faster than Hadoop. It is easy to use and provides high level APIs in Scala,

Java, Python, R and SQL shells. Besides its own cluster resource management mode (standalone),

it can also run with many other cluster management systems, such as YARN, Apache Mesos, Ku-

bernetes, which also makes it easy to deploy in the cloud (such as AWS). Therefore we choose

Spark (specifically, PySpark) to scale up active learning for large-scale entity matching datasets.

For our experiments, our Spark cluster is configured in standalone mode, and use the default task

scheduling and failure recovery from Spark.

How should we perform active learning on a cluster of machines? Given one master machine

and m worker machines, we can partition U into m partitions U1, U2, . . . , Um, then assign Ui to the

i-th worker machine. Each worker machine will need to compute and store feature vectors of pairs

in its local partition, predict their labels with M , therefore each worker machine needs a copy of

tables A and B, and the set of feature functions F . To perform prediction, in each iteration we also

need to broadcast the trained model M to each worker machine.

How should we find the top k controversial pairs in each iteration? We could ask each worker

machine to send back the computed entropy scores of pairs in its local partition, then sort all of

them and return the top k pairs. However, it could cause a lot of communication overheads. A
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Algorithm 4.1 Our First Spark Solution
Require: A,B: the two tables of entities, U : set of unlabeled pairs, S: set of labeled (seeding) pairs, F : set of feature functions, M : the model to

be trained, C: stopping criteria, m: the number of worker machines

Ensure: PU : labels of pairs in U , M : the final trained model

1: Broadcast A,B, F to each machine

2: Partition U into U1, U2, . . . , Um and send Ui to machine i

3: Worker machine i computes and caches feature vectors for pairs in Ui

4: Apply F to S to compute feature vectors XS

5: XM ← XS

6: PU ← ∅

7: while true do

8: Train M on XM

9: Broadcast M to each worker machine

10: Each worker machine applies M and finds its local top-k pairs, then sends them to the master machine

11: Let Ki be the local pairs from machine i

12: Find top-k pairs from
⋃m

i Ki and denote them as K

13: if C is satisfied then

14: break

15: else

16: Broadcast K to each machine

17: Send K for manual labeling and let Y be the labels of pairs in K

18: XK ← compute features of pairs in K

19: XM ← XM
⋃

XK

20: PU ← PU
⋃

Y

21: end if

22: end while

23: return PU ,M

better way is to find the top k distributively. The key observation is that if for a worker machine, a

pair is NOT among the top k controversial pairs in its assigned partition, then that pair cannot be

one of the global top k controversial pairs. That is, the global top k pairs can only exist among the

top k pairs of each local partition. Therefore each worker machine finds its local top k pairs and

sends them back to the master machine, then the master machine only needs to sort those m × k

pairs and find the global top k pairs.

A new problem in this distributed solution is that now each machine needs to know what pairs

have been labeled before that iteration so it can exclude them when selecting the local top k pairs.
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Table 4.1: Datasets for our preliminary experiments.

To solve it, in each iteration the master machine will broadcast the global top k pairs to all worker

machines. The above distributed active learning procedure is described in Algorithm 4.1.

4.2.2 Empirical Evaluation

Cluster Setup: All our experiments are conducted on a Spark cluster consisting of 10 computers.

Each computer has 4 cores and 16GB memory. In our experiments, one computer is used as the

master machine, while each of the other 9 computers is configured to run three executors (each

executor is a virtual worker machine assigned with one core and 4GB memory), which means in

total the cluster contains 27 executors 1. Therefore each dataset is automatically partitioned into

27 partitions and each executor processes its tasks on its assigned partition.

Datasets: To evaluate our first solution, we use 6 entity matching datasets (Table 4.1). The table

shows some important statistics of those datasets, including the number of attributes, the total

number of pairs and the number of matched pairs. All pairs in each dataset are labeled as either

matched or non-matched pairs, so that we can use them to simulate active learning (for the first 4

datasets, their candidate sets U ’s are from DeepMatcher [72]). The first 4 datasets are relatively

small: each has only three to five attributes and contains fewer than 30k candidate pairs, and less

than 20% of their candidate pairs are matches. The other two datasets, Clothing and Tools, have

26 and 27 attributes and each contains about 250k candidate pairs (of which about 40% pairs are

matches).
1The remaining core and 4GB memory are reserved for other services in the cluster.
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Table 4.2: Runtime on these datasets.

Experiment Settings: For each active learning experiment, we start with 4 seeding pairs (2

matched pairs and 2 non-matched pairs), In each iteration we select the top 20 most controversial

pairs from the set of unlabeled pairs, and manual labeling is simulated by automatically retriev-

ing their golden labels. The training model is the Random Forests classifier from scikit-learn (for

which the number of trees is set to 10). The set of feature functions are automatically generated

from common attributes between table A and table B using Magellan [64]. Active learning con-

tinues until in total 600 pairs are selected and manually labeled (in other words, active learning is

terminated after 30 iterations in our first Spark solution).

Cluster Runtime: Table 4.2 shows the runtime results on these datasets with our first solution.

To better evaluate the scalability of our first solution, we replicate the set of candidate pairs for

Clothing and Tools to create 6 additional datasets, which are shown in the last 6 rows. For example,

Clothing (x10) means that the set of candidate pairs are replicated 10 times, therefore it contains

about 2.5 million candidate pairs.

The second and third column of the table list the total machine runtime and the time for feature

computation. For the first 4 datasets, their machine runtime is less than 25 seconds and it also
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takes no more than 14 seconds for feature computation, because they only have dozens of features

to compute and relatively small number of candidate pairs. However, for Clothing and Tools, the

total machine runtime increases to more than 400 seconds, and feature computation takes between

70% and 80% of their total machine time. For those replicated datasets, we can see that both the

total machine runtime and time for feature computation increases (approximately) linearly to the

number of replications, which is as expected.

The next three columns summarize the average time per iteration (after the pairs from the first

iteration are labeled), split into the time to train models and the time to find the top 20 pairs.

Clearly, the time to train models is small because each iteration only 20 pairs are labeled and the

training set is small (when active learning terminates, there are only 604 labeled pairs). Also,

thanks to our distributed top-k algorithm, the time to find the top 20 pairs is small. However, if the

size of candidate pairs continue increasing, the average time per iteration will continue increasing,

which means that users may need to wait longer between iterations.

The last two columns contain the waiting time before users can start labeling and the average

waiting time between iterations. The waiting time before users can start labeling includes both

the time to load and distribute datasets to worker machines and the time for feature computation.

The average waiting time between iterations is (almost) the same as the average machine runtime

between iterations.

We observe that most of the machine runtime is spent for feature computation, which also

means that users still have to wait very long time before they can start labeling the batch of pairs

from the first iteration. To further speed up feature computation, we may add more computers to

the cluster if we have enough budget. Is it possible to speed up feature computation without adding

more computers and reduce the user waiting time before they can start labeling? To answer this

question, we go deeper and study how features are computed in entity matching and how models

change through active learning, then develop our second solution, which will be described in the

next section.
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4.3 Our Second Solution

As mentioned earlier, to speed up feature computation without adding more computers and

reduce the user waiting time before labeling, we first study how features are computed in entity

matching and how models change through active learning to search for opportunities that we can

explore.

4.3.1 Feature Computation in Entity Matching

Recall that we are given two tables A and B, and a set of features F . To compute the features

for a pair of tuples 〈a, b〉 between A and B, we first retrieve a from table A and b from table B.

Now to apply a feature function f , we need to get values of the attribute α required by f (these

values are denoted as α(a) and α(b)), then compute f(α(a), α(b)). Sometimes the feature function

also needs to first tokenize the values of the attribute for a and b, then compute the similarity score

between the two sets of tokens. Suppose the tokenizer is denoted as t, then what we compute will

be f(t(α(a)), t(α(b))). A concrete example is shown here.

Example 4.3.1. Suppose we want to compare the titles of two books: “Database Systems: De-

sign, Implementation, & Management” and “Database Systems: A Practical Approach to Design,

Implementation, and Management”. We might agree that if the two titles have a lot of common

words, they are likely the same book. One such similarity measure is Jaccard [5]. After remov-

ing punctuation marks, we tokenize both titles into words, therefore we have two sets of words:

S1={Database, Systems, Design, Implementation, Management} and S2={Database, Systems, A,

Practical, Approach, to, Design, Implementation, and, Management}. S1 contains five words and

S2 contains 10 words, and S1

⋂
S2 contains five words. Therefore the Jaccard score between S1

and S2 is J(S1, S2) = |S1
⋂

S2|
|S1|+|S2|−|S1

⋂
S2| = 5

5+10−5
= 0.5. This score is not high, so we cannot claim

that they are the same book (In fact, they are two different books.)

How should we speed up the computation without adding more computing powers? We need

to figure out whether there are any operations that occur more than one time. If so, we may only

need to compute that operation once, cache its result in memory, then reuse it when we encounter
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the same operation again. In total we develop three caching techniques. Now we first describe

what motivates our development, then provide details of how these caching techniques are used.

In entity matching, it is common that several features require the same attribute, especially if

the attribute is of type string. For example, Magellan usually provides at least five features on each

attribute of type string, such as Jaccard, Cosine, Jaro distance, Levenshtein distance, Jaro–Winkler

Similarity, etc. It motivates us to develop our first caching technique - Caching Values for At-

tributes (which will be described later). Meanwhile, tokenization is an expensive operation, espe-

cially on strings containing many characters. But we often use the same tokenizer before applying

Jaccard and Cosine similarity functions, therefore we develop our second caching technique -

Caching Tokens for Attributes. To introduce our third caching technique, we first describe another

common scenario in entity matching next.

Frequency Analysis of Categorical Attributes: In entity matching datasets, categorical at-

tributes are quite common, such as gender, country, state, city, department, etc. Each such attribute

only contains limited number of values, which means that the total number of unique pairs of their

attribute values are also limited. Given a large dataset of unlabeled pairs, some unique pair of

values might occur in thousands of unlabeled pairs. Therefore we perform frequency analysis on a

few categorical attributes. We ranked pairs of attribute values in descending order of their frequen-

cies, then plot the corresponding frequency-rank curve shown in Figure 4.2, where the x-axis is the

ranking and the y-axis shows the corresponding frequency. In the figures for the datasets Clothing

and Tools, we have log-scaled the frequency and cut off the ranking at 200. From those curves, we

can see that the frequency curves are similar to Zipfian distribution, i.e., the top frequent pairs of

attribute values occur much more than other pairs. Based on this observation, we develop our third

caching technique - Caching Values of Features for Categorical Attributes. Next we will provide

details of our three cache caching techniques.

4.3.2 Speed up Feature Computation with Caching Techniques

As mentioned earlier, in total we develop three caching techniques to speed up feature compu-

tation. Now we describe each in detail.
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Caching Values for Attributes: When we compute a feature f on a pair of tuples 〈a, b〉 and

f is operated on attribute α, then we need to first get the values α(a) and α(b), then compute

f(α(a), α(b)). It turns out that retrieving the value of an attribute from a tuple is expensive. Mean-

time, in entity matching, it is common that various features are computed on the same attribute. For

example, if an attribute is of type string (such as book title in previous example), there are features

such as Jaro-Winkler distance, Levenshtein distance, Jaccard and Cosine (these two features need

to tokenize the pairs of strings first), etc. It brings us the opportunities to caching attribute values

and reusing them. That is, for a pair of tuples, when we first get values from an attribute, we cache

them. Later when another feature on the same attribute is encountered, we get the values directly

from the cache. When can we free the corresponding cache for an attribute? Clearly, if all features

requiring that attribute have been computed, the cache is no longer needed and hence can be freed

safely. Alternatively, each machine can cache the values of all attributes for pairs assigned to it

in advance before computing any features, then it no longer needs to store tables A and B in the

memory therefore discards the two tables. This alternative approach is preferred if tables A and B

are huge and pairs in each partition only need small subsets of tuples from tables A and B.

Caching Tokens for Attributes: As mentioned earlier, many features on strings (such as Jac-

card and Cosine) require to first tokenize the pair of strings into two sets of tokens, then evaluate

between the sets of tokens. Tokenizing strings is very expensive, especially when the string length

is large. If more than one feature needs to tokenize the same attribute using the same tokenizing

method (e.g., 3-gram), then it is worth caching the sets of tokens and reusing them later. Similarly,

we can monitor whether all features on the same attributes and using the same tokenizer have been

computed. If so, we can safely free those cached tokens.

One problem of caching tokens is that tokens may take huge amount of memory in Python,

since tokens are essentially stored as strings. Also, set operations such as intersection, union are

much more expensive on set of strings, compared with set of integers. We also observe that strings

often share many common tokens, which means the total number of unique tokens will be much

smaller than the sum of size of all sets of tokens. To reduce memory usage, we map each token into

an integer, then each set of tokens is converted into set of integers, and now we only need to cache
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Figure 4.2: Examples of categorical attributes and their frequency distributions.

the set of integers. Though the mapping causes some runtime overhead, it is often compensated by

the time savings on those set operations during feature computation.

Caching Values of Features for Categorical Attributes: As mentioned earlier, categorical

attributes (i.e., attributes that have only a small set of values, such as cities, gender, states, etc) are

common. If the attribute has only k values, then the number of unique pairs of this attribute values

is at most k2. Given a large set of entity pairs, thousands or more of them will contain the same

pair of values for the attribute. As shown in Figure 4.2, they often follows Zipfan distribution.

Meanwhile, many distance similarity functions operated on a pair of strings are really expensive

to compute. Therefore it is worth caching and reusing such feature scores. When a pair of values
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Table 4.3: Feature statistics.

for the attribute is encountered, we first probe the cache. If the feature score between the pair has

been computed, we don’t need to compute it again. If it is not in the cache, we compute and cache

the score. Note that this caching technique only benefits on categorical attributes and for features

that are expensive to compute (if a feature is computationally light, such as exact match, caching

the scores is not that helpful).

We have described our study of feature computation in entity matching and how it motivates us

to develop the above caching techniques to speed up feature computation. Next we will describe

our study of those trained models over iterations during active learning, which motivates us to

apply another important idea in our second solution.

4.3.3 Number of Features over Iterations

Table 4.3 shows some feature statistics of these datasets, including the total number of com-

puted features, and the number of features used in at least one model during the active learning

process. In general, if a dataset has many attributes, then Magellan usually transforms them into

more features.

We observe that on the first 4 datasets, all features are used in at least one model during active

learning. One plausible explanation is that the creators of those datasets discarded attributes that

are not involved in their matching criteria after they created the golden labels (which may also

explain why they contain so few attributes).
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As mentioned earlier, the last two datasets, Clothing and Tools, have many attributes, which are

transformed into 201 and 170 features by Magellan. But we can see that only 79 and 97 features are

actually used during active learning. This situation is quite common in entity matching tasks: users

try to collect as many attributes as possible since they have little clue which attributes might be

useful for their tasks, while many of these attributes turn out not useful when learning the matcher.

We continue to study those trained models over iterations and focus on the number of features

used in those models. Recall that we use Random Forests as the active learning models. To get

the set of features used in a Random Forest, we first traverse each tree in the model for its list of

features in the tree. Then we union the lists of features from all trees in the Random Forest to get

the set of features in the Random Forest. Besides the number of features in the trained models over

iterations, we also record down the number of new features (that is, features not present among

models in previous iterations), and the cumulated number of features (total number of unique

features presented in at least one previous and current iterations). These statistics are plotted as

three curves shown in Figure 4.3.

Each subfigure has three curves. The blue curve shows the cumulated number of features

over iterations, which is clearly monotonically increasing. The orange curve shows the number

of features in Random Forests over iterations. As we can see, the first Random Forest often uses

only a few features since it is trained with only four initial labeled pairs 2. When more and more

labeled pairs are available, Random Forests in later iterations use more and more features. But

the number of features used in Random Forests become relatively stable after enough number of

iterations. It is because with enough training data, features that are useful to learn the matcher will

be detected and used in Random Forests. The green curve shows the number of new features over

iterations. Clearly, most new features start to appear in the first few iterations. For later iterations,

there are very few new features and for many iterations there are even no new features used by

those Random Forests.

The above is an important observation. Recall that in our first solution we compute all features

before active learning starts, which takes too much time and users have to wait before they can start

2In general, increasing the number of trees in the forest likely increases the number of used features.
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Figure 4.3: Number of features over iterations.
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labeling. However, since the first Random Forest often uses only a few features, we don’t need to

compute all features. Instead, we only need to compute those features required by the first Random

Forest, then we are able to apply the first Random Forest to select pairs for manual labeling. It will

significantly reduce the waiting time before users can start labeling the batch of pairs from the first

iteration. We extend this idea to all iterations and call it lazy feature computation, i.e., a feature is

only computed for unlabeled candidate pairs when it is needed the first time by the Random Forest

in some iteration. We will provide more details of lazy feature computation in the next subsection.

4.3.4 Lazy Feature Computation

As mentioned above, with our observation from curves in Figure 4.3, we find the opportunity

of lazy feature computation. Besides the benefit for users to start labeling much faster, it might also

reduce the total machine time. Recall that in Table 4.3, the two datasets, Clothing and Tools, have

201 and 170 features, but only 79 and 97 features are used in trained Random Forests during active

learning. That is, the other 122 features for Clothing and 73 features for Tools are NOT useful, but

in our first solution we still compute those unused features. With lazy feature computation, those

unused features won’t be computed at all, therefore lazy feature computation may also reduce the

total machine time.

Some may ask why not try to identify and discard features that are not helpful in advance? If

we were able to identify them, we would also avoid computing them. However, in general it is

really difficult to identify such features. Most feature selection algorithms (if not all of them) re-

quire labeled data to perform feature selection (i.e., selecting useful features or identifying useless

features). If we have a large enough set of labeled pairs available before hand, we could perform

feature selection first before active learning. But as mentioned earlier, in active learning, we often

only start with a few labeled pairs (in our settings, only four such labeled pairs). Therefore feature

selection won’t work.

To perform lazy feature computation, we need the list of features used in the model. Since we

use Random Forest as the active learning model, to get the list of used features, we traverse each

tree to find the set of features used in the tree, then union the sets of features from all trees in the
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Algorithm 4.2 Lazy Feature Computation
Require: A,B: the two tables of entities, U : set of unlabeled pairs, S: set of labeled (seeding) pairs, F : set of feature functions, M : the model to

be trained, C: stopping criteria, m: the number of worker machines

Ensure: PU : labels of pairs in U , M : the final trained model

1: Broadcast A,B, F to each machine

2: Partition U into U1, U2, . . . , Um and send Ui to machine i

3: XM ← XS

4: PU ← ∅

5: while true do

6: Train M on XM

7: Broadcast M to each worker machine

8: Each worker machine computes any missing features required by M , applies M and finds its local top-k pairs, then sends them to the

master machine

9: Let Ki be the local pairs from machine i

10: Find top-k pairs from
⋃m

i Ki and denote them as K

11: if C is satisfied then

12: break

13: else

14: Broadcast K to each machine

15: Send K for manual labeling and let Y be the labels of pairs in K

16: XK ← compute features of pairs in K

17: XM ← XM
⋃

XK

18: PU ← PU
⋃

Y

19: end if

20: end while

21: return PU ,M

trained Random Forest to get the list of all used features. Once we get the list of features required

by the current model, we check if any feature is not computed yet, then compute those missing

features for all unlabeled pairs. Now we can use the current model to select the most controversial

pairs for manually labeling before training the model for next iteration. Algorithm 4.2 shows the

revised procedure with lazy feature computation.

One additional challenge due to lazy feature computation is about caching. Recall that one of

the cache techniques we develop is to cache values for attributes. That is, when computing features

for a pair of tuples, if more than one feature requires the same attribute, we will cache the values

for that attribute when first such feature is computed and reuse those values for other features that

requires the same attribute. Therefore the cache is usually freed when all features are computed for
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the pair of tuples. However, since now we perform lazy feature computation, these features might

be computed over several different iterations (worse case is that some feature is still not computed

when active learning terminates), which means more memory are used for caching during active

learning iterations.

To address this issue, we can cache only a subset of attributes that are likely reused during

active learning. How to select such attributes? One method is to select attributes based on feature

importance in current model (if an attribute is important in the current model, all other features

requiring the same attribute might be used in models from future iterations, hence that attribute is

worth caching). This is one of our future work.

4.3.5 Empirical Evaluation

Now we evaluate our second solution using the same datasets and cluster settings. The results

are shown in Table 4.4. Recall that for our second solution, we develop and use two important

ideas: caching techniques and lazy feature computation. Caching techniques are mainly used to

speed up feature computation and Lazy Feature Computation is to reduce the waiting time before

users start labeling. Therefore we record down and compare the total machine runtime and time

before users start labeling between our first and second solution. Columns with header ‘V1’ are for

our first solution, Columns with header ‘LazyFC’, ‘Cache’, and ‘V2’ are when only lazy feature

computation is used, only caching techniques are used, and when both ideas are used.

For the total machine runtime, we can see that for the first 4 datasets, all four columns under

‘Total Time’ have similar numbers. Those with lazy feature computation takes slight longer time.

Recall that for these 4 datasets, all features are used by the end of active learning, therefore lazy

feature computation doesn’t reduce the total machine runtime. Instead, it has slight longer total

runtime since the implementation of lazy feature computation creates some small time overhead

per iteration.

For the other rows, lazy feature computation indeed helps reduce their total runtime, since

those unused features are not computed at all in lazy feature computation. Comparing the columns

between V1 and Cache, we can clearly see that caching techniques help significantly reduce the
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Table 4.4: Evaluation of caching and lazy feature computation.

total machine runtime. Similarly, V2 (Cache+LazyFC) has much lower numbers than those in

V1 and LazyFC, but might be higher than those in Cache due to the overhead of lazy feature

computation. However, when the dataset size continues growing, if there are many unused features,

the benefits of lazy feature computation to avoid computing such features will eventually beat the

overhead caused by the implementation of lazy feature computation, such as Clothing (x5) and

Clothing (x10).

When comparing the waiting time before users start labeling, we can clearly see that lazy

feature computation helps significantly reduce the waiting time on those large datasets. Even on

the first 4 small datasets, lazy feature computation has smaller waiting time.

Clearly both caching techniques and lazy feature computation help achieve our goals. But

according to “No free lunch theorem”, we must have sacrificed something for them. For caching

techniques, it’s easy to understand that we actually need more memory to cache those attribute

values, tokens, and feature scores. For lazy feature computation, we only compute a feature when

it is needed the first time in some Random Forest. It means that in some later iteration, if a feature

is required but not computed yet, then we still need to compute it. Therefore for that iteration users

need to wait longer due to lazy feature computation, which explains why in the last column of

Table 4.4, V2 has longer average waiting time between iterations than those numbers in Table 4.2.



94

Note that even if we don’t use lazy feature computation, users cannot continue labeling until

they get the batch of pairs from the next iteration. Can we handle this new problem caused by

lazy feature computation? More generally, can we reduce or even eliminate the user waiting time

between iterations? To address this goal, we develop our third solution, which will be described

next.

4.4 Our Third Solution

In our second solution, we use lazy feature computation to significantly reduce the waiting time

before users start labeling. It delays the computation of other features to later iterations, which may

cause users to wait longer between iterations. To help reduce the waiting time between iterations,

we develop our third solution.

The key idea is to utilize user labeling time. Recall that in our experience, labeling one entity

pair often takes at least 5 seconds, then labeling a batch of 20 pairs will take 100 seconds or more.

In our first two solutions, when users label pairs from the current iteration, the cluster is completely

idle. Therefore we decide to utilize user labeling time, which will be described next.

4.4.1 Utilize User Labeling Time

How should we utilize user labeling time to help reduce the user waiting time between itera-

tions? The idea is simple: instead of waiting for the labels of all the 20 pairs then train the next

model, we decide to train the next model after getting the labels of 10 pairs. That is, in the first

iteration, we select the top 20 pairs and send the first 10 pairs for manual labeling. Once we get

their labels, we send the other 10 pairs for manual labeling. Meanwhile we start to train the sec-

ond model, compute any missing features required by the second model, then apply the second

model to select the top 10 pairs from the remaining unlabeled pairs. From now on, we train a new

model once we get 10 new labeled pairs, and use it to select the next top 10 pairs for labeling.

With this idea, starting from the second iteration, we are able to train the next model concurrently

when users label the previous 10 pairs. If the time to train the model, compute features and select
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Table 4.5: Reducing user waiting time.

the next top 10 pairs is no more than the time for users to label 10 pairs, then users can continue

labeling without any waiting time.

Note that in our third solution, we need to train more models, therefore the total machine time

will increase. However, from the second model, the time for model training, feature computation

and selecting the next 10 pairs is concurrent with user labeling time, which means that if we

measure the total time from the beginning to the end of active learning, this time is likely reduced.

4.4.2 Empirical Evaluation

We use the same datasets to evaluation our third solution, and compare it with our second

solution (which uses both caching techniques and lazy feature computation). The results are shown

in Table 4.5, in which columns with header ‘V2’ are for our second solution and columns with

header ‘V3’ are for our third solution. The table contains the total machine time, the total user
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waiting time after the first iteration, the accuracy of the last model before active learning terminates,

and the average waiting time between iterations in V3.

As expected, the total machine time of our third solution is longer than that of our second

solution, since our third solution trains more models in order to select and label 600 pairs in total.

But now users are able to continue labeling without any waiting time between iterations for most of

the datasets. For the last two rows, users still need to wait some time after the first iteration, which

is due to that in some iteration, there are many missing features that need computation, therefore

the next batch of 10 pairs is not ready when users finish labeling the previous batch of pairs. But

our third solution still manages to significantly reduce the total user waiting time, compared with

the second solution. We can expect that on larger datasets, our third solution will help reduce more

user waiting time.

One concern with our third solution is whether the final learned model can still have similar

accuracy. To evaluate the accuracy of the final models, we sample 1,000 pairs (half are matches

and half are non-matches), then compute their model accuracy. From the table, we can clearly

see that the final models from our second and third solutions have comparable accuracy on most

datasets.

Figure 4.4 shows the accuracy of the models vs. the number of labeled pairs for both our second

and third solutions. From these curves, we can see that even though the accuracy of models from

the first few iterations may have huge difference, models from both solutions will have comparable

accuracy with enough labeled pairs. Another interesting finding is that on many datasets, the

accuracy of models converge before active learning terminates. However, the final models on

dataset Amazon-Google seem not converged yet. It may be caused by the initial seeding pairs.

4.5 Related Work

Active learning is a hot topic among both the academic and industry communities. There are

many surveys [84], tutorials [22, 73], and books about active learning. It has been applied to many

task scenarios, and most of them can be categorized as pool-based active learning [67]. That is, we

have a pool of unlabeled examples for selection during active learning.
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Figure 4.4: Model accuracy vs. number of labeled pairs over iterations.
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Many researchers focus on developing query strategies to select examples for labeling, such as

Uncertainty Sampling [67], Query-By-Committee [85], Density Weighted Methods [82, 94, 58],

etc. Recent research works [29] also study how to make the target model converge faster, which

often requires the target model follows some properties, therefore it’s hard to generalize their ideas

to black-box models.

Since active learning is proven useful in many applications and domains, there are more and

more attentions on how to build active learning frameworks [59] and platforms [6, 1] to help

users deploy their active learning tasks. Unfortunately these frameworks and platforms either face

scalability issues, or can not be used for entity matching tasks.

[54, 19] build and scale up crowdsourced entity matching tasks. They focus on how to minimize

user efforts with the help of crowdsourcing. They use active learning to collect labeled pairs for

some entity matching steps, but their task scenario is different from ours, therefore their solutions

are different from ours.

4.6 Conclusions and Future Work

Large-scale active learning on entity matching is an important data labeling task, yet there

is little research on this topic. In this chapter we study this problem and develop solutions to

address the scalability challenge. We evaluate our solutions extensively on several entity matching

datasets. The results clearly show that our solutions help effectively reduce both the waiting time

before users start labeling and the waiting time between iterations, which demonstrate the promise

of our solutions.

Future Work: Active learning is a broad research topic and there are many directions we can

continue as future work. First, in our third solution, we utilize user labeling time to train models.

Another idea to utilize user labeling time and reduce user waiting time is to use the labeling time

to compute features that might be needed in later iterations. How to identify such features might

be a good challenge. Feature correlation with labels may be used as some criteria to identify them.

Or we may train a different model such as SVM using the current set of labeled pairs, which can
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provide us the importance of all features, therefore we can use the feature importance to rank

features that have been computed and use user labeling time to compute them one feature after

another. Next, one important research topic for active learning is detecting whether models have

converged. In our experiments, we stop active learning after 600 pairs are labeled. But from Figure

4.4, we can see that on some datasets, models seem to have converged much earlier. We cannot use

model accuracy for convergence detection since in real active learning, we don’t have such testing

set to evaluate model accuracy. For future work, we plan to explore how to effectively detect model

convergence when performing active learning on entity matching datasets.
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Chapter 5

Conclusions

Data labeling is the process of one or more users labeling a set of data instances using a set

of given labels. It is a pervasive problem in many data science tasks, such as classification, data

validation, tagging, etc. To collect high quality labels, data labeling usually requires a lot of man-

ual effort. Researchers have developed many techniques to help data labeling process, such as

crowdsourcing and active learning, but major challenges regarding cost, quality and scalability

still remain. In this dissertation I develop solutions to address these challenges for several impor-

tant data labeling tasks.

First, I have developed VChecker for validating data using crowdsourcing. In such tasks,

crowdsourcing cost and accuracy of aggregated answers are two important factors that users often

need to trade-off between each other. I developed solutions that estimate the difficulties of different

values of the attribute to be validated and partition items in the dataset according to the value

difficulties, then develop adaptive crowdsourcing strategies to crowdsource items in each partition.

These solutions can be used towards different crowdsourcing task scenarios, such as minimizing

crowdsourcing cost while maintaining the accuracy of aggregated answers, or maximizing the

accuracy of aggregated answers with some budget limit, etc.

Second, in collaboration with Fatemah Panahi, I have developed solutions for detecting label

errors for entity matching. Our interactive solutions significantly reduce the user workload. In each

iteration, we find the top-k entity pairs whose labels are most suspicious, return them to the users

for manual verification, then use their feedback (corrected labels) to find the top-k suspicious entity

pairs for the next iterations. We perform extensive experiments on 17 entity matching datasets,

which demonstrate the promise of our solutions.
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Finally, I have developed solutions for performing large-scale active learning for entity match-

ing. We start with a simple distributed Spark solution, study its performance on many entity

matching datasets, identify opportunities to improve user labeling experience, then we implement

several ideas based on our observations and evaluate their effectiveness. Our empirical evaluations

show that our solutions effectively improve user labeling experience by significantly reducing both

the waiting time before users start labeling and the waiting time between iterations.
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A Main Codes for Our First Solution in Chapter 4
Also available at repository https://github.com/hzhang0418/al4em

1   '''
2   Baseline solution
3   '''
4   import os
5   import copy
6   import heapq
7   import numpy as np
8   import time
9   import pandas as pd

10   from pyspark import SparkContext
11   
12   import seeder
13   import labeler
14   import driver
15   import cachenone
16   import helper
17   
18   def run(sc, table_A, table_B, candidate_pairs, table_G, feature_table, feature_info,
19   num_executors, seed_size, max_iter, batch_size):
20   
21   # prepare driver
22   # driver node
23   driver = driver.Driver()
24   driver.prepare(table_A, table_B, feature_table, helper.tok_name2func,
25   helper.sim_name2func)
26   
27   # seeds
28   seeder = seeder.Seeder(table_G)
29   labeler = labeler.Labeler(table_G)
30   
31   # partition pairs
32   pair_rdd = sc.parallelize(candidate_pairs, num_executors)
33   bc_table_A = sc.broadcast(table_A)
34   bc_table_B = sc.broadcast(table_B)
35   bc_feature_info = sc.broadcast(feature_info)
36   
37   # compute feature vectors
38   ex_rdd = pair_rdd.mapPartitions(
39   lambda pairs_partition: create_executors(pairs_partition, bc_table_A,
40   bc_table_B, bc_feature_info, num_executor, cache_level),
41   preservesPartitioning=True)
42   ex_rdd.cache()
43   
44   # simulate active learning    
45   # select seeds
46   pair2label = seeder.select(seed_size)
47   exclude_pairs = set(pair2label.keys())
48   
49   num_iter = 0
50   all_features = set()
51   
52   while num_iter<max_iter:
53   driver.add_new_training(pair2label)
54   # train model
55   rf = driver.train()
56   # features in RF
57   required_features = nodes.helper.get_features_in_random_forest(rf)
58   all_features.update(required_features)
59   
60   # select most informative examples
61   candidates = ex_rdd.mapPartitions(
62   lambda executors: iteration(executors, rf, batch_size, exclude_pairs),
63   preservesPartitioning=True).collect()
64   
65   # select top k from candidate
66   top_k = heapq.nlargest(batch_size, candidates, key=lambda p: p[1])
67   top_k_pairs = [ t[0] for t in top_k ]



68   pair2label = labeler.label(top_k_pairs)
69   exclude_pairs.update(top_k_pairs)
70   
71   num_iter += 1
72   
73   ex_rdd.unpersist()
74   
75   
76   
77   # map functions that apply to each partition
78   def create_executors(pairs_partition, bc_table_A, bc_table_B, bc_feature_info):
79   pairs = [p for p in pairs_partition ]
80   # executor node
81   executor = cachenone.CacheNone()
82   executor.prepare(bc_table_A.value, bc_table_B.value, bc_feature_info.value, pairs)
83   executor.compute_features(list(range(len(bc_feature_info.value))),
84   bc_feature_info.value, bc_table_A.value, bc_table_B.value)
85   return [executor]
86   
87   def iteration(executors, rf, batch_size, exclude_pairs):
88   combined = []
89   for executor in executors:
90   # apply random forest and select most informative examples
91   top_k = executor.apply(rf, batch_size, exclude_pairs)
92   combined.extend(top_k)
93   return combined
94   
95   '''
96   driver.py
97   '''
98   import numpy as np
99   import pandas as pd

100   
101   from sklearn.ensemble import RandomForestClassifier
102   from sklearn.tree import DecisionTreeClassifier
103   from sklearn.utils import shuffle
104   
105   import py_entitymatching as em
106   
107   import helper
108   
109   class Driver:
110   
111   def __init__(self):
112   # table A, B and candidate pairs
113   self.table_A = None
114   self.table_B = None
115   
116   # feature table
117   self.feature_table = None
118   self.tok_name2func = None
119   self.sim_name2func = None
120   
121   # features and labels, used for training model
122   self.features = None
123   self.labels = None
124   
125   # labeled pairs
126   self.pair2label = {}
127   
128   def prepare(self, table_A, table_B, feature_table, tok_name2func, sim_name2func):
129   self.table_A = table_A
130   self.table_B = table_B
131   self.feature_table = feature_table
132   self.tok_name2func = tok_name2func
133   self.sim_name2func = sim_name2func
134   
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135   def add_new_training(self, pair2label: dict) -> None:
136   pairs = []
137   labels = []
138   for k,v in pair2label.items():
139   if k not in self.pair2label: # only need to compute features for new pairs
140   pairs.append(k)
141   labels.append(v)
142   self.pair2label[k] = v
143   
144   self._compute_features(pairs)
145   if self.labels is None:
146   self.labels = np.array(labels, dtype=int)
147   else:
148   self.labels = np.hstack( (self.labels, np.array(labels, dtype=int)) )
149   
150   def _compute_features(self, pairs: list) -> None:
151   
152   features_new = np.empty( (len(pairs), len(self.feature_table)), dtype=np.float32)
153   try:
154   f = 0
155   for fs in self.feature_table.itertuples(index=False):
156   lattr = getattr(fs, 'left_attribute')
157   rattr = getattr(fs, 'right_attribute')
158   ltok = getattr(fs, 'left_attr_tokenizer')
159   rtok = getattr(fs, 'right_attr_tokenizer')
160   simfunc = self.sim_name2func[ getattr(fs,'simfunction') ]
161   #func = getattr(fs, 'function') 
162   
163   if ltok is None:
164   for k, pair in enumerate(pairs):
165   ltable_id, rtable_id = pair[0], pair[1]
166   ltable_value = self.table_A.loc[ltable_id][lattr]
167   rtable_value = self.table_B.loc[rtable_id][rattr]
168   features_new[k][f] = simfunc(ltable_value, rtable_value)
169   else:
170   ltokfunc = self.tok_name2func[ltok]
171   rtokfunc = self.tok_name2func[rtok]
172   for k, pair in enumerate(pairs):
173   ltable_id, rtable_id = pair[0], pair[1]
174   ltable_value = self.table_A.loc[ltable_id][lattr]
175   rtable_value = self.table_B.loc[rtable_id][rattr]
176   features_new[k][f] = simfunc(ltokfunc(ltable_value), rtokfunc(

rtable_value))
177   f += 1
178   except ValueError:
179   print(pair, ltable_value, rtable_value)
180   raise
181   
182   np.nan_to_num(features_new, copy=False)
183   
184   if self.features is None:
185   self.features = features_new
186   else:
187   self.features = np.vstack( (self.features, features_new) )
188   
189   def train(self) -> RandomForestClassifier:
190   #features, labels = self.features, self.labels
191   #features, labels = shuffle(self.features, self.labels)
192   features, labels = shuffle(self.features, self.labels, random_state=0)
193   rf = RandomForestClassifier(n_estimators=10, max_depth=None,
194   max_features='auto', random_state=0, n_jobs=1)
195   #rf = DecisionTreeClassifier(random_state=0)
196   rf.fit(features, labels)
197   return rf
198   
199   
200   
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201   
202   '''
203   cachenone.py
204   '''
205   import heapq
206   
207   import numpy as np
208   from scipy.stats import entropy
209   from sklearn.ensemble import RandomForestClassifier
210   
211   import helper
212   
213   class CacheNone:
214   
215   def __init__(self):
216   # pairs assigned to this node
217   self.pairs = None # list of (ltable_id, rtable_id)
218   self.features = None # numpy array of features
219   
220   def prepare(self, table_A, table_B, feature_info, pairs):
221   self.pairs = pairs
222   self.features = np.zeros( (len(self.pairs), len(feature_info)), dtype=np.float32

)
223   
224   def compute_features(self, required_features, feature_info, table_A, table_B):
225   if len(required_features)==0:
226   return None
227   
228   # no cache, therefore fetch each pair, then compute required features
229   for k, pair in enumerate(self.pairs):
230   ltuple = table_A.loc[pair[0]]
231   rtuple = table_B.loc[pair[1]]
232   
233   for f in required_features:
234   fs = feature_info.iloc[f]
235   lattr = getattr(fs, 'left_attribute')
236   rattr = getattr(fs, 'right_attribute')
237   ltok = getattr(fs, 'left_attr_tokenizer')
238   rtok = getattr(fs, 'right_attr_tokenizer')
239   simfunc = nodes.helper.sim_name2func[ getattr(fs, 'simfunction') ]
240   
241   if ltok==None:
242   value = simfunc(ltuple[lattr], rtuple[rattr])
243   else:
244   ltokfunc = nodes.helper.tok_name2func[ltok]
245   rtokfunc = nodes.helper.tok_name2func[rtok]
246   value = simfunc( ltokfunc(ltuple[lattr]), rtokfunc(rtuple[rattr]) )
247   
248   if np.isnan(value):
249   value = 0
250   self.features[k,f] = value
251   
252   def apply(self, rf: RandomForestClassifier, k: int, exclude_pairs: set) -> list:
253   # prediction
254   proba = rf.predict_proba(self.features)
255   entropies = np.transpose(entropy(np.transpose(proba), base=2))
256   
257   # select top k, return list of pairs of (index, entropy)
258   candidates = [ (self.pairs[k],v) for k,v in enumerate(entropies)
259   if self.pairs[k] not in exclude_pairs ]
260   top_k = heapq.nlargest(k, candidates, key=lambda p: p[1])
261   
262   return top_k
263   
264   
265   
266   
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267   '''
268   helper.py
269   '''
270   import random
271   from sklearn.ensemble import RandomForestClassifier
272   from sklearn.tree import DecisionTreeClassifier
273   
274   import py_entitymatching as em
275   
276   tok_name2func = em.get_tokenizers_for_matching(q = [2,3,4,5])
277   sim_name2func = em.get_sim_funs_for_matching()
278   
279   def get_features_in_random_forest(rf: RandomForestClassifier) -> list:
280   rf_features = set()
281   for tree in rf.estimators_:
282   for f in tree.tree_.feature:
283   if f != -2:
284   rf_features.add(f)
285   return list(rf_features)
286   
287   def get_features_in_decision_tree(tree: DecisionTreeClassifier) -> list:
288   tree_features = set()
289   for f in tree.tree_.feature:
290   if f != -2:
291   tree_features.add(f)
292   return list(tree_features)
293   
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