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Dissertation Abstract

Obesity increases breast cancer risk, progression to metastasis, and potentially patient
immunotherapy responses. However, there are still gaps in knowledge on the
mechanisms on how obesity promotes these changes. Women can also have multiple
risk factors for breast cancer development, and obesity may interact with other risk
factors like breast density. It is unknown how these risk factors may cooperatively
enhance breast cancer risk. To model breast density, we used heterozygous Collaltmiae
(Het) mice, which have a mutation that limits collagen degradation, leading to increased
mammary collagen deposition. Het and wild type (WT) littermates were fed either a low-
fat diet (LFD) or a high-fat diet (HFD) to induce obesity. In non-tumor bearing mice,
obesity and excess collagen deposition enhanced macrophages, while obesity led to
diminished CD8+ T cells. When crossed with MMTV-PyMT mice to examine tumor
growth, we saw increased pulmonary metastasis in HFD-fed Het mice. Overall, we
demonstrated that breast density and obesity may cooperatively increase breast cancer
progression to metastasis in the lungs. Obesity is known to increase the risk for
metastasis following diagnosis. We hypothesized CD8+ T cells could play a role in
elevating metastasis to the lungs. Prior to tumor formation, CD8+ T cells had
characteristics of exhaustion, which limits T cell responses. We transplanted estrogen
receptor positive (ER+) TC2 cells into the mammary fat pads of obese and lean mice,
then surgically resected the tumors. While obesity reduced expression of genes
associated with T cell response in immune cells from metastatic lungs, CD8+ T cells
isolated from metastatic lungs of obese mice had increased responses to stimulation in
culture. These results suggest that obesity increased T cell dysfunction in lung
metastasis from ER+ breast cancer, but stimulation of CD8+ T cells uncovered elevated
functional responses. Our data suggests that CD8+ T cells from obese mice may
respond to immune checkpoint blockade (ICB) therapies targeting PD-1, however,
immunosuppressive macrophages may limit their ability to kill tumor cells. We
hypothesized that obese mice may benefit more than lean mice from a combination
therapy of anti-CSF-1R and anti-PD-1 antibodies. Anti-PD-1 antibodies alone reduced
lung metastasis in LFD-fed mice and enhanced expression of genes associated with

cytotoxicity. In contrast, anti-CSF-1R antibodies treatment reduced PD-L1+ myeloid



cells and metastasis only in HFD-fed mice. When these therapies were combined, HFD-
fed mice responded better to anti-CSF-1R and anti-PD1 antibodies to reduce
metastasis in the lungs. These studies highlight how the metastatic environment in the
lungs under conditions of obesity alter therapy responses. Further analysis of obesity-
associated breast cancer is needed to fully understand these differences in risk,
progression to metastasis and immunotherapy responses for the benefit of future

patients with breast cancer.
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CHAPTER 1:

Introduction



Obesity and Breast Cancer Risk

Obesity is defined as having a body mass index (BMI) of 230 kg/m? (1) and is
associated with higher risk for many cancers, including breast cancer (2). Obesity is a risk
factor for breast cancer in postmenopausal women, particularly, estrogen receptor alpha
(ERa) and progesterone receptor (PR) positive breast cancer, while the risk for triple
negative breast cancer (TNBC), which lack receptors for ERa, PR, and human epidermal
growth factor receptor 2 (HERZ2), are minimally associated with obesity in this group of
aging women (3) (4). For premenopausal women, the association between obesity and
risk for different breast cancer subtypes is less clear. Multiple studies suggest that
premenopausal women who are obese have a lower risk for breast cancer (5-7).
However, other studies show an increased risk for breast cancer in premenopausal
women of Asian-Pacific populations (8, 9). While other studies show that premenopausal
women with obesity have an increased risk for TNBC (9, 10). Increased BMI may also be
associated with higher risk of TNBC and a lower risk of ERa+ cancer particularly in
nulliparous women (11). The risk for HER2+ breast cancer appears to be unaffected by
obesity, however women diagnosed with HER2+ breast cancer may have worsened
outcomes following diagnosis (12). Overall, the influence of obesity as a risk factor for
breast cancer is dependent on stage of life, ethnicity, and expression of hormone

receptors.

Once breast cancer develops, women with obesity have higher mortality rates (13).
At the time of diagnosis, patients who have breast cancer and obesity have higher grade
and more progressed tumors (14). Patients who are obese also develop metastasis more

frequently than their lean counterparts and have a higher risk of dying from their disease



(15, 16). One analysis found a 36.1% increase in overall mortality risk due to obesity was
potentially related to tumor characteristics (stage at diagnosis, grade, tumor size, and
nodal status at the time of diagnosis) while 38—41% of patients with luminal subtypes
(ERa +, PR+/-, HERZ2 +/-) had an increased mortality risk. However, breast cancer specific
mortality was not different for TNBC and HER2+ tumors, compared to ERa+ tumors (17).
These results suggest that mortality due to obesity was due partially to higher grade
tumors and progression but also due to cardiovascular pathology, other systemic
disorders, and treatment mortality related to obesity. Other studies confirm that breast
cancer patients with ERa+ tumors have worse overall and disease-free survival with
increased risk for metastasis (18, 19). Breast cancer recurrence has also been associated
with weight gain in both postmenopausal and premenopausal women (20). Interestingly,
one study found a higher association of ERa- tumors in patients with obesity and worse
chance of having pathological complete response and reduced overall survival regardless
of cancer subtype following chemotherapy (21) Overall, obesity is associated with poor
outcomes, faster progression to metastatic disease, higher risk for recurrence and higher

mortality whether it relates to breast cancer or other factors.

Breast Density

Breast density is defined as having higher proportions of glandular and fibrous
tissue in the breast as opposed to fatty tissue according to the National Cancer Institute
(22). Women with highly dense breasts of >75% have a 4 to 5-fold increase in the risk for
developing breast cancer compared to women with low breast density (23). Breast density
is heterogeneous and can make up a majority of the space of the breast, or breasts can

have scattered areas of density. Breast tissue density widely varies based on a woman’s



age, menopausal status, BMI, parity, and genetic predisposition. Density generally
reduces with age and after the transition to menopause (24). However, the prevalence of
breast density effects a significant number of women. Of women 25-29 years of age, 39%
had very dense breasts, with density making up 290% of the total breast area. Of this
same age group, 39% had mostly fatty breast and by the age of 75-79, this increased to
76% of women having predominantly fatty breasts (250%) and only 6% having very dense
breasts. Although breast density decreases after menopause, in this same study, it was
shown that nearly half of women ages 40-44 and 50-79 that were undergoing hormone
replacement therapy had dense breasts (25). This study highlights the predominance of
breast density among young women but also the effects of hormone replacement after
menopause in increasing density (26). In the U.S., it has been shown that 43.3% of
women 40-74 had heterogeneous to extremely dense breast, and this was again shown
to be inversely associated with age and BMI (27). Recent studies have shown a higher
level of density compared to more scattered density can increase breast cancer risk 2-
fold (28). Other studies have defined an increase of 10% risk for a 3-6% increase in
density (29). Studies are mixed in whether breast density affects the risk for specific
subtypes of breast cancer. (30). Breast density is a risk factor for breast cancer because
it lowers sensitivity and specificity of mammograms compared to women with higher
levels of fat in breasts (31). Digital mammography is now more effective for detecting
cancer in women with extremely dense breasts compared to screen-film mammography
(32). Despite improved imaging, breast density is still such a prominent risk factor it's a
law for physicians to inform women of their breast density status through the Breast

Density Notification Act (BDNA) in states like Pennsylvania (33). However, most recently,



the Food and Drug Administration (FDA) has enforced breast density to be included on
mammogram reports as a national standard in March of 2023 (34). As screening methods
improve, recent work has uncovered that the microenvironment of dense breast tissue

may affect risk, rather than simply causing an obstruction to accurate diagnostic imaging.

Breast Density and Risk Mechanisms

Recent work has shown that dense breast tissue is more inflammatory, with
increased levels of extracellular IL-6, IL-8, and CCL5, CD45+ immune cells, and CD206+
M2 alternatively activated macrophages (35, 36). Further characterization of immune
cells also revealed increased B lymphocytes and dendritic cells with elevated expression
of IL-6, IL-8, and interferon-gamma (IFN-y) in dense tissue (37). These findings may
suggest that one way that breast density may contribute to breast cancer risk is through
tumor promoting chronic inflammation, which is a hallmark for cancer risk (38, 39).
Further, after tumor formation, in a mouse model with excess collagen I, neutrophils have
been shown to promote tumor formation and metastasis (40). Overall, these data suggest
that the immune mediated progression of breast cancer in dense extracellular matrix
(ECM) environments may be different than those that originate in less dense

environments.

Although immune cell infiltration has shown to be different for dense breasts, the
expression of proliferation markers and hormone receptor expression has shown to be
similar. Ki67, ERa, and PR have all been shown to be similar in expression between
dense and non-dense breasts in humans (36, 41, 42). However, dense breast tissue has

a higher level of stroma in addition to glandular tissue in dense breast patients (41, 42).



Although epithelial ERa expression is not associated with breast density, Gabrielson et.
al. showed stromal cell ERa expression was enhanced in dense breast tissue. This study
suggests that there may be differences in hormonal regulation within the stromal
compartment of breasts with higher density. Given that the stromal compartment of dense
breasts has higher expression of ERa, inhibition of estrogen signaling could be
particularly beneficial for women with high breast density. Supporting this idea, tamoxifen
use led to reduced breast density and subsequently breast cancer risk in some women

(43).

Although stroma may not affect ERa expression in the epithelium, stiffness of
stroma can induce oncogenes such as zinc finger protein 217 (ZNF217) in breast
epithelium (44). Stiffened ECM has also been shown to induce phosphoinositide 3-kinase
(PI3K) signaling and increase transformed pre-malignant epithelial invasiveness (45). In
addition to oncogenic changes and altered cell signaling, breast density has been
associated with increased numbers of epithelial columnar cells, which may be an indicator
for increased risk of cancer development but are not cancerous cells (46). In mouse
models, increased stromal collagen enhances tumor formation and metastasis (47).
Indicating breast density’s ability to increase risk but promote tumorigenesis and

metastasis.

Obesity and Breast Density

While increased BMI and elevated breast density both raise the risk for breast

cancer in postmenopausal women, obesity is generally associated with reduced



radiographic breast density. However, there are populations of women who have both
risk factors. In a population of Korean women, obesity and breast density were shown to
increase risk for breast cancer compared to women who were underweight with a Bl-
RADS category-1 score (low density). This risk was more than three times higher in
postmenopausal women than premenopausal women (48). Although this study was
limited to Korean women, other populations of women may also have an interaction
between these two risk factors. In particular, black women show a 37% rate of breast
density (4™ highest) and the highest rate of obesity at 58.4% (49). Shieh et. al. also
showed an increased risk associated with combined breast density and obesity. However,
the interactions identified were specific to premenopausal women and ERa- breast
cancer not ERa+ breast cancer (50). Recent data shows that after menopause, density
declines in the breast, and with a larger BMI, this decline in density is faster than in women
with a BMI in the normal range (51). However, obesity may impact the percent of the
tissue defined as dense rather than reducing areas defined as dense. While, weight loss
over time was associated with increased percent breast density (52, 53), the total dense
area of the breast was not altered with a change in weight, rather weight loss decreased
the total non-dense breast area (53). Little is known about changes in the breast

microenvironment that occur in dense breast tissue with obesity.

Potential Interactions between Obesity and Breast Density

Macrophages within the mammary gland in obesity include both resident
macrophages and those that are recruited from the bone marrow. Monocyte

chemoattractant protein-1 (MCP-1/CCL2) levels are increased in response to obesity and



facilitate macrophage infiltration (54). Increased macrophage infiltration and the
development of crown-like structures (CLS), which are formed by macrophages
surrounding necrotic adipocytes, are hallmarks of obesity (55). Free fatty acid release by
dying adipocytes and the dysregulation of lipid metabolism upregulates inflammatory
factors by adipocytes and macrophages (56). Free fatty acids activate nuclear factor-
kappa B (NF-kB) and c-Jun N-terminal kinase (JNK) pathways to further promote
inflammation by binding to toll-like receptors (TLR) (57). This then upregulates CCL2
furthering macrophage infiltration (58). CLS have been shown to strongly correlate with
BMI in healthy breast tissue, with breast tissue from individuals with BMI 230 kg/m? having
the most CLS (59). Macrophages have also been shown to upregulate IL-1p3, IL-6, and
tumor necrosis factor-alpha (TNF-a) in response to leptin (60), which is elevated in
adipose tissue in obesity. While some of these cytokines are also elevated in dense
breast tissue, differences in immune cells in the mammary glands in the context of obesity
and breast density have not been explored. While macrophages are greatly enhanced in
the context of obesity, it is not clear how the complement of immune cells or their function
change when both obesity and breast density are present.

In addition to inflammation, obesity also enhances fibrosis in mammary tissue (61-
63). Obesity-associated fibrosis and extracellular matrix deposition have been linked to
insulin resistance in several studies (64, 65). Mechanisms underlying the increases in
collagen and extracellular matrix observed in obesity have recently been reviewed (62).
In addition to increasing collagen around adipocytes, obesity has been shown to increase
collagen and fibronectin around mammary ducts (66, 67). While obesity promotes some

fibrotic changes within mammary tissue, it is not clear if obesity could enhance further



collagen deposition in areas of breast tissue that are already dense. Further studies are
necessary to determine how obesity impacts collagen deposition with the risk factor of

breast density.

Immune Checkpoint Blockade Therapy

Immunotherapy has become a routine approach to personalized cancer treatment.
Immunotherapy is a category of cancer treatment which acts to reprogram or assist the
immune system in clearing tumorigenic cells and facilitating anti-tumor immunity (68). The
ideal immunotherapy is potent against tumor cells, protects normal cells, and is sustained
over a long period of time, preventing relapse (69). A major class of immunotherapies
target immune checkpoints. Immune checkpoints function as immunosuppressors by
mitigating immune responses and preventing self-antigen autoimmunity. The checkpoint
ligands are present on cancer cells, immune cells, or somatic cells and bind to receptors
on other immune cells to affect their function (70, 71). The binding of the ligands to the
receptors results in downstream signaling that decreases immune cell reactivity. Immune
checkpoints can be utilized by tumor cells to evade cytotoxic T lymphocytes by shutting
down their proliferation and secretion of cytotoxic proteins. Antibodies designed to block
the binding of checkpoint proteins with their partner proteins are utilized for immune
checkpoint blockade (ICB) therapy. Two targets for ICB that shown therapeutic efficacy
are cytotoxic t-lymphocyte protein-4 (CTLA-4) and programmed cell death protein 1/
programmed death ligand-1 (PD-1/PD-L1). Their function is to control T lymphocyte
activation and maintain immune homeostasis. Anti-CTLA-4 (ipilimumab), anti-PD-1

(nivolumab, pembrolizumab, cemiplimab), and anti-PD-L1 (atezolizumab, avelumab,
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durvalumab) therapies are all FDA approved for various cancers, mostly for advanced or
metastatic disease (72).

Currently, pembrolizumab is FDA approved for treatment of advanced TNBC in
conjunction with chemotherapy (73). In a clinical trial that selected for patients with
pretreated metastatic PD-L1+ TNBC, patients that received pembrolizumab as a single
agent only had an 18.5% response rate (74). The mechanisms behind why targeting
immune checkpoints with antibody-based therapies are more effective in some patients
with breast cancer is not widely understood. Data from clinical trials suggests that cancer
patients with obesity that have solid tumors have an increased response to checkpoint
therapy (75) (76). Recent data has shown these trends in breast cancer models in obese
mice (77). Further studies are necessary to examine how obesity may impact immune

cell function to enhance immunotherapy responses.

T Cell Dysfunction

T cells can demonstrate dysfunction through exhaustion, anergy, and senescence. T
cell exhaustion has been identified in T cells that have distinct epigenetic and
transcriptional phenotypes, loss of effector functions, and prolonged and increased
expression of inhibitory markers, such as PD-1 (78, 79). CD8+ T cells as well as CD4+ T
cells can express PD-1 (80). Beyond PD-1, other markers for immune exhaustion have
been identified, including CTLA-4, T-cell immunoglobulin and mucin domain-3 (TIM-3),
lymphocyte activation gene-3 (LAG-3), T cell immunoreceptor with immunoglobulin and
ITIM domain (TIGIT), B- and T-lymphocyte attenuator (BTLA), V-domain immunoglobulin

suppressor of T-cell activation (VISTA), and glucocorticoid-induced tumor necrosis factor
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receptor-related protein (GITR) (81-83). In contrast to chronically stimulated, exhausted
T cells, anergic T cells that lacked co-stimulation are thought to be induced to prevent
autoimmunity and induce self-tolerance (84). Anergy occurs due to a lack of co-
stimulation by CD28 or high inhibitory signals by CTLA-4 (85, 86) and is characterized by
low IL-2 production, inhibited TCR signaling, and cell cycle arrest. Anergic T cells can
also express PD-1, LAG-3, and CTLA-4 similar to exhausted T cells, which makes
identification of anergic cells challenging. Finally, senescent T cells can be defined as
having shortened telomeres, complete cell cycle arrest, express IL-2, TNF-a, and IFN-y,
and loss of CD28 expression (87). DNA damage has also been shown to trigger cellular
senescence in T cells (88). Since dysfunctional T cells can express overlapping markers,
use of one marker such as PD-1 clinically to identify patients with potential to respond to
PD-1 directed therapy may contribute to challenges in identifying patients for treatment.
Further, activation of T cells in these other states may reduce the efficacy of PD-1-directed

therapies (89).

PD-1 Binding and Signaling with PD-L1 and PD-L2

PD-1 has two ligands PD-L1 and PD-L2. PD-L2 has a 2-6 fold higher binding
affinity to PD-1 than PD-L1, and different binding kinetics may affect immune cells
function (90). Although both PD-L1 and PD-L2 can be expressed on tumor cells, PD-L1
expression is more common. (91). Therapies targeting the PD-1 pathway are focused on
PD-1 and PD-L1. PD-1 functions on multiple types of cells to balance immune regulation,
self-antigen tolerance, and prevent abnormal immunopathology. A lack of PD-1

expression leads to autoimmunity in mice and leads to T cell proliferation, suggesting that
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this pathway has potent effects on dampening T cell function (92). In the context of
cancer, the PD-1 pathway dampens T cell function and ultimately leads to immune
evasion of cancers due to upregulation of both PD-L1 and PD-L2 on cancer cells.

For PD-1 binding to limit T cell function, the T cell must bind to the MHCI receptor
as well as PD-L1 or PD-L2 on an antigen-presenting cell, normal somatic cell, or tumor
cell. Signaling in T cells due to PD-1 binding counteracts T cell receptor activation by
MHCI and co-stimulation by CD28 and CD80. PD-1 signaling results in lower T cell
proliferation, cytokine production, and reduces survival (91). PD-L1 can also interact with
costimulatory molecule CD80 to diminish T cell responses (93). Studies show that PD-1
null T cells still have lower proliferation in the presence of PD-L1, which may indicate that
PD-1 expression alone should not be used as a predictor of anti-PD-L1 therapy response
in breast cancer (94).

Macrophages alter the function of CD8+ T cells by upregulating PD-L1 expression
on tumor cells. In multiple breast cancer cells lines, TNF-a production by macrophages
activated the NF-kB pathway and upregulated CNS5, a de-ubiquitination enzyme that
stabilized PD-L1 in cancer cells (95). PD-L1 is also expressed on antigen presenting cells,
like macrophages, dendritic cells as well as lymphocytes, T cells and B cells (96). PD-
L1+ antigen presenting cells decrease IFN-y, TNF-a and IL-2 expression by PD-1+ T cells
(97), (98). IL-2 is particularly important for preventing T cell apoptosis and triggering T
cell expansion, which may explain in part how macrophages contribute to lower CD8+ T
cell numbers within tumors. In an orthotopic breast cancer model, progranulin upregulated

PD-L1 on macrophages and as a consequence decreased infiltrating CD8+ T cells (99).
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PD-L1 can also increase NO (nitric oxide) production by macrophages, another inhibitor

of T cell proliferation (97).

In addition to tumor cells and antigen-presenting cells, PD-L1 is also expressed on
endothelial cells. Expression of PD-L1 on endothelial cell reduces T cell recruitment into
the tumor microenvironment by limiting T cell activity or proliferation. PD-L1 and PD-L2
are upregulated on endothelial cells in part due to increased concentrations of
inflammatory cytokines like IFN-y and TNF-a (100, 101). The density of PD-L1 expression
on the endothelium could reduce the ability of PD-1+ T cells to invade intratumorally. As
angiogenesis is increased in mammary tumors in mice (102), and macrophages
demonstrate increased TNF-a expression in obesity (103), PD-L1 and PD-L2 expression
by the endothelium could contribute to lower T cell recruitment and dampened effector
function observed in breast tumors in obesity (101, 104). However, other mechanisms
have been demonstrated to explained dampened T cell function in obese breast tumors
including the role of other immunosuppressive myeloid cells and altered metabolism (105,

106).

Overall, in breast cancer, further studies are needed to define how PD-1 binding
to PD-L1 and PD-L2 affects tumor cells, antigen presenting cells, and T cells. Signaling
of PD-1 with PD-L1 or PD-L2 may be different within T cells and antigen presenting cells
in the tumor and metastatic environment in the context of obesity. Further work is
necessary to understand the mechanisms of how anti-PD-1 and anti-PD-L1 therapies

alter cellular signaling to improve patient outcomes.
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Identification of Immune Checkpoint Blockade Therapy Response

CD8+ T cells infiltrated into the tumor are valued as a positive predicter of
responses to PD-1/PD-L1 therapy (107). Increased lymphocytes within the tumor are
associated with better responses because contact between tumor cells and T cells is
required to facilitate cytotoxicity and the destruction of tumors cells via the interaction of
MHC antigens and T cell receptors. Increased levels of lymphocytes including cytokines
in T cells in the periphery were associated with increased response to anti-PD-1 in
patients with non-small cell lung cancer (NSCLC) (108). However, PD-1 expression on
CD8+ T cells is not solely a strong predictor of response to anti-PD-1 therapy (109). In
models of melanoma, some PD-1+ cells were less responsive to proliferation following
ICB therapy (110), and stem-like T cell factor 1 (TCF1+) PD-1+ CD8+ T cells were
identified as the target for ICB response (111). Other studies suggest that a higher
number of circulating TIGIT+ PD-1+ T cells may predict response (81). The discovery of

additional markers for response may improve selection of patients for ICB therapy (112).

Despite the focus on the CD8+ subset, other T cell subtypes could influence
therapy response. CD4+ T cells are functionally divided into T helper cell 1 (Thl), Th2,
Th17 and Treg cells. Recent studies demonstrated that CD4+ T cells, largely Thl cells,
supported the ability of CD8+ T to differentiate, form memory, have more migratory
behavior, and support cytotoxic killing and survival (113). Increased circulating PD-1+
CD4+ cells in peripheral blood was associated with better responses to PD-1-directed
ICB therapy in melanoma and NSCLC (114). CD4+ Th1 polarity was also associated with
patient response, and polarization to Thl7 rather than Thl may be unfavorable for

response in models of prostate cancer (115). Additionally, CD4+ Treg cells can have a
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negative impact on ICB responses. PD-1+ Treg cells have immunosuppressive functions
in response to ICB therapies. Therefore, a higher PD-1+ CD8+ T cell to PD-1+ Treg cell
ratio may be more favorable for therapy response (116).

In addition to immune cells, PD-L1 expression on tumor cells has been correlated
with improved responses to checkpoint therapy (117), (118). Different subtypes of breast
cancer are known to have different levels of PD-L1 and PD-L2 expression. However, it
has been shown that there is not a difference in PD-1 or PD-L1 expression between
TNBC, Luminal A, Luminal B and HER2+ subtypes in one study either in the primary
tumor or metastatic lymph nodes (119), although the sample sizes were limited. Certain
breast cancer subtypes also have increased PD-L1 expression on tumor cells compared
to other subtypes, including HER2+ and basal-like breast cancers (120) (117).

Increased mutational load in tumors have been attributed to improved efficacy of
PD-1/PDL-1 therapy. Elevated mutations lead to more novel and abundant neoantigen
presentation that allows T cells to recognize tumor cells more efficiently. Genetic
characteristics that have been shown to enhance ICB therapy results include loss of
tumor suppressor genes, activation of oncogenes, microsatellite instability, chromosome
modifications, and BRCA1/2 mutations ((121); (122),(123);(124)). TNBC with BRCA1l
mutations have shown to have improved ICB responses when dual anti-CTLA4 and anti-
PD-1 therapies are combined with chemotherapy (125). TNBC identified with high
mutational burdens have better pathological complete response with PD-L1 inhibitors in
addition to anthracycline chemotherapy (126).

Combined therapies that increase tumor neoantigens may also increase the

efficacy of ICB. For example, chemotherapy kills tumor cells and releases tumor
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neoantigens. This can augment T cell immune responses. Chemotherapy also increases
the availability of antigens presented by antigen presenting cells and facilitates immune
cells recruitment, while ICB therapy can then reverse T cells exhaustion (127). Through
a similar mechanism, radiation therapy could augment ICB responses, as radiation has

also been shown to increase diverse intratumoral T cells(128).

Immune Checkpoint Blockade in Breast Cancer Subtypes

ERa+ breast cancers have a lower response rate to ICB than that of TNBC, and they
are generally thought to be immunogenically “cold” due to limited infiltration of T cells
(129, 130). The objective response rate of in patients with ERa+ breast cancer treated
with anti-PD-1 therapy has been shown to be 12%, unlike 18.5% seen in TNBC (131).
However, a subset of ERa+ tumors may have characteristics that may indicate they may
be vulnerable to PD-1/PD-L1 inhibitors. Tumor infiltrating lymphocytes are present in
poorer prognosis ERa+ tumors (132) which may indicate these patients could benefit from
ICB. Further, one study found 33% of ERa+ cancers had elevated PD-L2 expression
levels, which may indicate a potential response to anti PD-1 therapies or possibly future
drugs targeting PD-L2 (133). A recently updated clinical trial will examine responses of
patients with ERa+ breast cancer treated with pembrolizumab and neoadjuvant
chemotherapy and adjuvant endocrine therapy. This study is set for completion in 2031
(134).

In early stage, high-risk, non-metastatic TNBC, pembrolizumab used with
chemotherapy has been shown to have promising results for improved survival outcomes.
Specifically, across cohorts which received the same dosage of ICB with different

chemotherapy regimens, overall survival at twelve months ranged from 80-100% (135).
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Interestingly, pembrolizumab as a monotherapy did not elicit a response better than
chemotherapy alone, showing the importance for augmenting ICB with other standard of
care regimens (136). Clinical trials examining atezolizumab (anti-PD-L1 antibody) with
nab-paclitaxel chemotherapy in advanced TNBC have shown a progression-free survival
rate of 29.1%. Further, patients with PD-L1+ tumors had a 58.9% response rate with
10.3% of patients demonstrating complete response. Patient survival was drastically
improved in patients that received chemotherapy with ICB compared to the placebo which
led to FDA approval of atezolizumab (118). This data shows that responses to ICB are
not universal and need to be complimented with other interventions.

In HER2+ breast cancer, patients with trastuzumab-resistant HER-2+ breast cancer
treated with pembrolizumab in conjunction with trastuzumab showed a 15% response in
PD-L1+ patients and no response in PD-L1- patients (137). A subset of patients that have
HER2 antagonist resistant breast cancers that express PD-L1 may be responsive to
treatment with ICB. Currently, there is a study recruiting HER2+ breast cancer patients to
receive pembrolizumab in combination with dual anti-HER2 blockade with trastuzumab

and pertuzumab (138)

Macrophage Anti-CSFR1 Therapy

Macrophage depletion targeting the macrophage colony stimulating factor-1 (m-
CSF/CSF-1) axis is a promising target currently used in cancer treatment. CSF-1R binds
to both CSF-1 and IL-34 (139). Small molecule tyrosine kinase inhibitors prevent
autophosphorylation of CSF-1R and stop cytosolic signaling transduction by targeting the

intracellular domain of the receptor (140). Small molecules that have been developed
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include PLX3397 (Pexidartinib), JNJ-40346527, PLX7486, ARRY-382 and BLZ945.
PLX3397 gained FDA approved for the treatment of advanced tenosynovial giant cell
tumors in 2019 (141). These small molecules have entered several clinical trials that have
not yet reached completion or FDA approval, and results from these ongoing studies are
limited (140). ARRY-382 is currently being investigated in combination with
pembrolizumab for the treatment of TNBC and other solid tumors. While interim results
of this study showed limited clinical benefit, the combination of therapy was tolerable
(142). Antibodies targeting CSF-1R block the interaction of CSF-1R with CSF-1/IL-34 on
its extracellular domain. Antibodies that target the receptor ligand binding domain include
cabiralizumab (FPA008), AMB-05X (AMG 820), LY3022855/IMC-CS4, and axatilimab
(SNDX-6352). Antibodies have also been developed that bind to the ligand CSF-1,
including lacnotuzumab (MCS110) and PD-0360324 (143).

While CSF-1R is highly expressed on monocytes and macrophages (144, 145),
CSF-1R is also expressed on other cell types that may inhibit the efficacy of this potential
treatment. CSF-1R is expressed on myeloid dendritic cells (146), and depletion of these
cells could also impact antigen presentation to T cells in PD-1 directed therapy. In
addition, CSF-1R is also expressed on cells present in sites of potential metastasis
including osteoclasts in bone, microglia in the brain, and alveolar cells in the lungs
(147))(145, 148). These additional sites of expression of CSF-1R may contribute to off-
target toxicities that will need to be monitored in clinical trials.

CSF-1R antibodies have been used successfully to deplete macrophages in breast
cancer models. Blocking of CSF-1R increased the number of CD8+ T cells in the mouse

mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) model (149). In
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combination with cyclophosphamide, antibody treatment against CSF-1R, and small
molecule inhibition of CSF-1R lead to regression of multiple TNBC models and depletion
of macrophages in T12 tumors (150). However, this response was dependent on elevated
expression of Csflr. This combination treatment was also successful in increasing central
and effector memory CD8+ T cells within tumors compared to monotherapy alone (150).
PLX3397 in combination with paclitaxel reduced metastasis and primary tumor growth by
improving T cell responses in multiple TNBC models (151). Thus, multiple types of
chemotherapy in combination with macrophage depletion therapy, either by agonist
antibodies or small molecule inhibitors improved anti-tumor responses in breast cancer.
Adding anti-PD-1/PD-L1 inhibitors to chemotherapy and anti-CSF-1R may be a robust
strategy in treating some TNBC patients. However, CSF-1R treatments may not be limited
to use in TNBC patients, since tumor CSF-1R expression has been associated with
poorer prognosis in patients with ER+ disease (152).

In pre-clinical models, the use of CSF-1R directed therapy in combination with ICB
improved therapy responses. Depleting macrophages via CSF-1R has been shown to
improve T cell recruitment to tumors and metastasis in a model of osteosarcoma (153).
Anti-CSF-1R treatment has also been shown to increase T cell activity and upregulate
PD-1 on T cells (154). In a lung cancer model, treatment with combinations of anti-CSF-
1R, anti-PD-1, anti-angiogenic therapy, or chemotherapy did not improve CD8+ T cell
recruitment to tumors compared to the combination of PD-1 therapy and anti-angiogenic
therapy (155). In some cancer types, anti-CSF-1R treatment may also reduce T regs
which in higher numbers can negatively affect anti-PD-1 responses (156). In addition to

upregulating PD-1 on T cells, targeting CSF-1R also increased PD-L1 on pancreatic
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tumor cells (154). In a 4T1 mammary tumor model, PLX depletion of CSF-1R+
macrophages reduced metastasis and prolonged survival (157). Similarly in MET-1
mammary tumors, a combination PLX and anti-PD-1 therapy also reduced tumor size
(158). The anti-tumor effects of combining CSF-1R treatment with anti-PD-1 therapies
could further be augmented by adding additional immunotherapy targets. In a model of
pancreatic cancer, a combination of anti-CSF-1R, anti-PD-1, and anti-CTLA4 therapy
improved responses compared to either monotherapy alone or anti-CTLA-4 plus anti-PD-
1 therapy (154). Overall, anti-CSF-1R depletion of macrophages increased T cell

infiltration, activated T cell responses, and reduced immunosuppressive immune cells.

Obesity and Immune Checkpoint Blockade Therapy

The “obesity paradox” is the observation that, although obese patients have a
worse prognosis when diagnosed with cancer, they have better ICB responses than
patients with a BMI in the normal range. A cohort of patients with a BMI 230 kg/m? that
had multiple types of cancer had a longer progression-free survival and overall survival
compared to patients with a BMI <30 kg/m? when treated with anti-PD-L1 therapy (75).
Another study examining 20 different stage IV metastatic cancer types, progression-free
survival for patients with obesity (BMI >30 kg/m?) on ICB was 479 days compared to 128
days for normal weight (BMI 18.5-25 kg/m?) patients and 103 days for underweight
(BMI<18.5 kg/m?) patients (159). In men with NSCLC, a BMI in the obese range was
associated with improved overall survival on atezolizumab (anti-PD-L1) but not in patients
treated with docetaxel alone. The strongest association with BMI and improved overall

survival was in patients with high PD-L1 expression including 250% of tumor cells or
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210% of tumor-infiltrating immune cells (160). In melanoma, patients with a BMI in the
obese range had longer progression free survival on anti-PD-1/PD-L1 therapy than
patients with a BMI in the lean range, but only in male patients (7.6 vs. 2.7 months) (161).
These results suggest that there may be sex differences in ICB therapy responses. In
contrast, patients with renal cancer who have a BMI in the normal range have a better
response to ICB therapy than patients with obesity, which may be due in part to elevated
circulating IL-1B8 levels in patients with obesity (162). Although there is supported
evidence that obese patients have better survival on ICB than lean patients, there is
evidence that obese patients have an increase incidence of immune-related adverse
events (IrAEs), such as myocarditis, colitis, or autoimmune diabetes, when treated with
PD-1 therapy in a variety of malignancies (163, 164).

Preclinical models have provided some insight into these clinical observations. In
a murine breast cancer model, obese mice had higher numbers of PD1+ CD8+ T cells in
tumors, which expressed lower levels of Ifny and Gzmb (165). These results suggest that
targeting the PD-1/PD-L1 pathway may be more efficacious in obesity due to elevated
exhausted CD8+ T cells. Metabolically, obesity may also alter the function of immune
cells. In the MMTV-PyMT model, elevated leptin levels in obese mice led to increased
STAT3-mediated fatty oxidation in CD8+ T cells, which inhibits T cell function (105).
Regardless of obesity, glucose restriction by tumors dampens glycolysis and the ability
of T cells to produce IFN-y, however glycolysis and T cell function is restored following
treatment with anti-CTLA-4, PD-1, and PD-L1 antibodies (166). These results suggest
that obesity may create an environment conducive to CD8+ T cells with the ability to

respond to PD-1 directed therapy.
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Obesity and Lung Metastatic Environment

In breast cancer, the immune cells in the tumor microenvironment (TME) differ
from immune cells in the metastatic microenvironment (MME) (167). In contrast to primary
mammary tumors, the metastatic site of the lungs has a greater number of neutrophils
(168). Neutrophils have the ability to transfer lipid to metastatic cells, promoting
proliferation and survival (169). Neutrophils also form neutrophil extracellular traps
(NETSs), which function as traps for pathogens like bacteria, and primary tumors at distal
sites can promote the formation of NETS to facilitate metastasis in the lungs (170). While
NETs can be thought of as traps for cancer cells, but they also induce signaling and attract
cancer cells through CCDC25 (171). Under conditions of obesity, neutrophils are
increased in the lungs of mice without mammary tumors as well as after tumor formation
and metastatic growth (172, 173) Increased neutrophilia in the lung has been shown to
be dependent on elevated levels of granulocyte macrophage-colony stimulating factor
(GM-CSF) and IL-15 (174). One potential mechanism for increased metastasis in the
lungs in obesity is through elevated NET formation from neutrophils in the lungs. NETs
have been shown to diminish endothelial integrity leading to an influx of tumor cells into
the lung parenchyma (173). However, further studies are needed to fully understand
how neutrophils promote metastatic progression under conditions of obesity compared to
metastasis under lean conditions.

Dendritic cells are another important myeloid lineage cell type present in the lungs
that contributes to anti-metastatic immunity. Dendritic cells take up metastatic cell
material in the lungs, travel to the mediastinal lymph nodes, and stimulate T cell

responses. However, only CD103+ dendritic cells were able to stimulate CD8+ T cells
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(175). In a melanoma model, monocyte-dendritic progenitor cells were found to be
switched to an M2 macrophage-like phenotype in the lungs in an IL-6-dependent manner
(176). Overall, this shows how dendritic cell precursors can contribute to metastasis.
Macrophages have been shown to be important for metastatic seeding, particularly
to the lungs. There are two main resident populations of macrophages within the lungs:
alveolar macrophages and interstitial macrophages. Alveolar macrophages are localized
in the airway lumens and sample pathogens in the airways, which is critical for
inflammatory responses and regulating fibrotic tissue repair (177, 178). In breast cancer
metastasis, there has also been shown to be an abundance of lipid-associated
macrophages, mostly alveolar macrophages (179). Alveolar macrophages promoted
breast cancer metastasis to the lungs by suppressing anti-tumor T cells and increasing
the polarization of T helper cells to Th2 (180). In obese mice, macrophages contribute to
the formation of premetastatic niches in the lung (172, 181) and surround metastatic
lesions (172). In both premetastatic niches and metastases, macrophages upregulated
the SphK1/S1P/S1PR1 axis, leading to higher production of proinflammatory cytokines
such as IL-6 in obesity (181). Although proinflammatory cytokines are produced by
macrophages in the lungs with metastases in obese mice, other studies have found that
immunosuppressive  macrophages are elevated (182). Immunosuppressive
macrophages are abundant lung metastases in lean mice. Macrophages have been
shown to upregulate antigen presentation, interferon signaling, extracellular matrix
remodeling, immunosuppression, and decreased capacity for phagocytosis (179).
Although the metastasis promoting influence of macrophages has been documented in

the primary tumor and metastatic sites like the lungs, there are also macrophage subtypes
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that have been shown to be important in metastatic clearance. CD169+ macrophages in
lymph nodes undergo proliferative expansion in response to tumor burden and have been

shown to be protective against breast cancer metastasis (183).

T cells in the lungs can influence the formation and growth of breast cancer
metastasis. Lung stromal cells may influence the polarization of Th2 helper T cells, which
have been shown to promote breast cancer metastasis (184). CD4+ T cells such as
Tregs can be recruited to the lungs in response to breast cancer metastasis. In lungs
with 4T1 metastases, CCR4+ Tregs were increased through elevated CCL17/CCL22
expression. Elevated Treg recruitment resulted in reduced NK cells, which are important
mediators of metastatic clearance (185). There are also populations of T cells in breast
cancer that can contribute to metastatic dormancy. CD39+ PD1+ CD8+ T cells in tumors

were associated with increased disease-free survival and decreased metastasis (186).

Much of the current understanding of obesity-related immune dysfunction in the
lungs has been identified in the context of viral infections. In influenza infection, T cell
metabolism was impaired and T cell memory subsets were decreased in the lungs of
obese mice (187). In addition to metabolism, others have found impaired effector
functions of CD8+ T cells in the lungs of influenza-infected obese mice (188). Obesity in
both humans and mice caused impaired response to vaccination for influenza (189, 190),
and more recently severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (191),
suggesting that T cell function in lung tissue is impaired in the context of obesity. Further
studies are needed to understand how T cell impairment prior to cancer formation affects

metastatic seeding to the lungs.
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Literature Summary and Thesis Rational

Epidemiologically, obesity and breast density have been shown to increase breast
cancer risk and contribute to more progressed disease of breast cancer patients.
However, little is known about how these two risk factors interact together to modify the
microenvironment of the mammary gland to promote breast cancer growth. In Chapter
2, we will compare and contrast changes that occur in the mammary gland as a
consequence of obesity and breast density using a high-fat diet model to induce obesity
and transgenic mice with increased collagen deposition. We will examine how these risk
factors act together within the microenvironment of the mammary gland to enhance tumor

growth and metastasis using the MMTV-PyMT mouse model of mammary tumorigenesis.

Obesity contributes to more advanced metastatic disease at the time of breast
cancer diagnosis and obese patients have a higher risk of metastatic recurrence. A few
studies have begun to investigate how obesity affects the lung niche before cancer
development and the immune microenvironment after metastatic establishment. Most
studies looking at lung immunity in obesity are in the context of viral infection. However,
in the context of breast cancer metastasis adaptive immunity has been minimally
explored. In many cancer types, CD8+ T cells become dysfunctional during the
progression of disease. Overall, these altered T cell states can lead to immune evasion
by cancer cells and poorer overall outcomes. Furthermore, ERa+ breast cancers were
previously thought to be unsuitable for immunotherapy. However, evidence suggests that
some ERa+ tumors, such as the luminal B subtype, may have favorable outcomes on ICB

therapy. In Chapter 3, we will investigate how adaptive immune cell populations change
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before and ERa+ metastases in lean and obese mice to understand how obesity alters

the function of adaptive immune cells.

Evidence shows low efficacy of anti-PD-1 inhibitors alone in both human and
animal studies. Higher tumor-associated macrophages (TAMs) within tumors are
associated with poorer prognosis and CD8+ T cell exclusion from tumors. Potential
therapies to increase tumor infiltrating lymphocytes could enhance anti-PD-1/PD-L1
responses. Therefore, combining strategies to deplete tumor-associated macrophages
with anti-PD-1/PD-L1 inhibitors is a logical strategy to improve anti-tumor responses of
CD8+T cells. However, important questions remain in understanding how obesity alters
the function of both CD8+ T cells and macrophages in the metastatic microenvironment.
Further, it is also unclear how anti-CSF-1R and anti-PD-1 therapies will affect ERa+
breast cancer lung metastasis in lean and obese mice. In Chapter 4, we will explore how
combined immunotherapy targeting macrophages and T cells impacts ERa+ lung
metastasis in lean and obese mouse models and how obesity changes the response of
immune cell populations. Our goal was to understand how the lung immune system
responded to these therapies with or without a co-morbidity like obesity that changes the

immune response.

Chapter 5 is a summary of this dissertation’s conclusions and discusses future
directions into further investigating the interactions of obesity and breast density. Further,
this chapter will summarize how we can further define T cell subtypes and other adaptive
immune cells in the lungs before and after breast cancer metastasis under obese
conditions to understand why obese patients have higher metastatic burdens. Lastly, to

discuss the future of immunotherapy for obese breast cancer patients, especially those
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with advanced ERa+ metastasis. In Chapter 6, this dissertation will be concluded with a
science literacy chapter to communicate the conclusions of this dissertation and how it
fits with what is known about obesity’s effect on breast cancer risk, progression,

metastasis, and immunotherapy responses for non-scientists.
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CHAPTER 2

Obesity and breast density together increase macrophage-driven inflammation
and metastasis to the lungs
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Abstract:

Recent epidemiological studies suggest that breast density and obesity together
increase breast cancer risk. Although the underlying causes of increased risk
associated with dense breasts and obesity have individually been explored, little is
known about how these underlying risk factors interact together to promote breast
cancer. To model breast density, we used heterozygous Col1a1t™ae (Het) mice that have
a mutation that limits collagen degradation, leading to increased mammary collagen
deposition. Het and wild type (WT) littermates were fed either a low-fat diet (LFD) or a
high-fat diet (HFD) to induce obesity. We observed significantly increased numbers of
macrophages in mammary glands of HFD-fed WT and Het mice compared to LFD-fed
WT mice. HFD-fed Het mice also had increased crown-like structures (CLS) at an early
timepoint compared to other experimental groups. CD8+ T cells were decreased in
mammary glands of mice fed HFD. We also observed significantly enhanced collagen
surrounding mammary ducts from HFD-fed WT and Het mice compared to those from
LFD-fed WT mice. When crossed with MMTV-PyMT mice to examine tumor growth, we
did not see significant differences in tumor size. However, we did observe significantly
increased pulmonary metastasis in HFD-fed Het mice compared to LFD-fed WT and Het
mice. We also observed significant increases in macrophages surrounding tumors in
LFD-fed Het and HFD-fed WT mice. Overall, we demonstrated breast density and

obesity may cooperatively increase breast cancer risk.
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Introduction:

Breast density and obesity individually are major risk factors for breast cancer (1,
2). Mammographic breast density is defined as having higher proportions of glandular
and fibrous tissue in the breast with limited fatty tissue (3). Women with highly dense
breasts have a 4 to 5-fold increase in breast cancer risk compared to women with low
breast density (4). Breast tissue density widely varies based on a woman’s age,
menopausal status, body mass index (BMI), parity, and genetic predisposition. Percent
density and BMI have been shown to be inversely related and are thought to act as
confounders of each other’s effects (5, 6). However, a recent large epidemiological
study identified that obesity and breast density together increased breast cancer risk in
Korean women (7). Further, increased breast density was associated with a higher risk
for estrogen receptor negative breast tumors in women with obesity (8). These studies
suggest that the risk factors of breast density and obesity may interact to enhance
breast cancer risk, although the underlying mechanisms of these interactions have not
been explored.

Areas of breast density are associated with increased fibrillar collagen deposition
(9-11). Heterozygous Collal™%2¢ mice have a mutation in a crucial collagen | cleavage
site causing resistance to degradation (12, 13), leading to increased fibrillar collagen in
the mammary gland (14). Elevated collagen density in the mammary glands of
Collal'™%42e crossed with mice that expressed Polyomavirus middle-T under control of
the MMTV promoter (MMTV-PyMT) promoted advanced tumor growth and more
metastasis to the lung (15) (14, 16). Mice bearing the Collal™ua mutation also had

increased metastasis in an estrogen receptor positive breast tumor model (17). Using
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this model in conjunction with a high-fat diet (HFD) model of obesity may provide insight
into how the risk factors of mammographic density and obesity interact to enhance
breast cancer risk.

Chronic inflammation has been implicated in the development of multiple types
of cancer and may enhance breast cancer growth and progression. In humans, dense
breast tissue is more inflammatory (18), having increased levels of extracellular IL-6, IL-
8, and CCLS5, as well as more CD45+ immune cells and CD68+ macrophages (19).
Obesity also promotes increased inflammation in breast tissue through the chronic
recruitment of macrophages.(20). Macrophages surround necrotic adipocytes and form
crown-like structures (CLS), which are a hallmark of obesity, and secrete inflammatory
cytokines including IL-6, intermediate nitrogen and oxygen species (iNOS), and TNF-a
(21). While both breast density and obesity may enhance inflammation within breast
tissue, the immune cells implicated in promoting inflammation and the contributions of

each risk factor in modifying inflammation have not been identified.

To identify how breast density and obesity interact to enhance breast cancer risk,
we examined immune cell recruitment into the mammary glands of obese and lean
Col1a1t™'i2e mice. Further, we examined the impact of obesity and collagen density on
mammary tumor growth and progression using the MMTV-PyMT mouse model. We
observed that the risk factors together enhanced recruitment of immune cells and
collagen deposition. In the MMTV-PyMT model, we observed an increase in PyMT+
tumor cells in the lungs from mice with both risk factors compared to lean wild type (WT)
mice and lean heterozygous (Het) Col1a1t™'2¢ mice. Our results suggest that the risk

factors of breast density and obesity may collaboratively enhance inflammation within
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breast tissue leading to increased risk for breast cancer in women with both dense

breast tissue and obesity.
Materials and Methods:

Mouse Models

All animal procedures were conducted in compliance with a protocol approved by
the University of Wisconsin Institutional Animal Care and Use Committee. Mice were
housed and handled in accordance with the Guide for Care and Use of Laboratory
Animals in AAALAC-accredited facilities (Animal Welfare Assurance Number: D16-
00239). Mice were maintained and bred at the University of Wisconsin under the
oversight of and with the ethical approval of the University of Wisconsin Animal Use and
Care Committee. For this study, hemizygous male FVB/NJ MMTV-PyMT mice were
crossed with female heterozygous Col1a1i™%iae C57BL/6J mice. Beginning at 3 weeks of
age, nulliparous female mice were genotyped and randomly divided into one of two
treatment groups: low-fat diet (LFD) or HFD. The HFD (TestDiet 58Y 1) consisted of
34.9% fat, 25.9% carbohydrates, and 23.1% protein (5.1 kcal/g) while the LFD (Envigo
TD.2019) consisted of 9% fat, 44.9% carbohydrates, and 19.0% protein (3.3 kcal/g). The
mice were allowed unrestricted access to their respective diets. Mice were weighed on
a weekly basis. Mice were maintained on their respective diets for 9, 12, or 15 weeks

before euthanasia and tissue collection.

Tissue Collection and Preparation
All mammary glands were collected, and total mammary gland weight was

measured. One mammary gland per mouse was fixed in 10% neutral buffered formalin
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for 48 hours and embedded in paraffin. A second mammary gland from each mouse
was flash frozen and stored in liquid nitrogen. A third mammary gland from tumor-
bearing mice was embedded in Optimal Cutting Temperature medium for
cryosectioning. Lungs were dissected from tumor bearing mice. The largest lobe was
flash frozen and stored in liquid nitrogen while the remaining lobes were fixed in 10%

neutral buffered formalin for 48 hours and embedded in paraffin.

Immunohistochemistry

Paraffin embedded sections of mammary glands from PyMT- and PyMT+ mice
were deparaffinized with xylenes and rehydrated with graded alcohols. Tissue sections
were stained with anti-F4/80 (1:250; cat #123102; Biolegend), anti-CD8 (1:200; cat #
NBP1-49045; NovusBio), or anti-PyMT (1:500, cat #NB100-2749) antibodies. Five
images were used to quantify CD8+ cells, F4/80+ macrophages surrounding ducts, and
F4/80+ crown-like structures (CLS) and then averaged. PyMT+ glands stained with
F4/80 were quantified based on area of staining surrounding mammary intraepithelial
neoplasia (MIN) lesions and tumor borders. Staining was normalized by lesion or tumor
area in the image. Metastasis was defined as a minimum of 5 cells stained positive in
the lung tissue in proximity. All images were taken with Nikon Eclipse E600 Microscope
(RRID:SCR_018858) and QICAM Fast 1394 camera (Teledyne Photometrics, Tuscon,

AZ, USA). All images were analyzed using Imaged (NIH, RRID:SCR_003070).

Picrosirius red staining was completed as described (22). Picrosirius red was

quantified as described (23). Five images of comparably sized ducts were used to
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quantify picrosirius red staining from tissue from each mouse. Image values were then

averaged per mouse.

Statistical Analysis

Results are reported as the mean * standard error of the mean (s.e.m.). Statistical
differences were determined using two-way analysis of variance (ANOVA) and Tukey’s
multiple comparisons posttest, unless otherwise noted. A p-value of <0.05 denotes
significant value. All statistical analyses were performed with GraphPad Prism 9.4.1

(GraphPad Software).

Results:

Obesity increased adipocyte size and collagen deposition around mammary

ducts

To model how the risk factor of obesity interacts with elevated collagen density,
WT and Het littermates were randomized to receive either LFD or HFD for 9 weeks
(early timepoint) or 12-15 weeks (late timepoint), then mammary glands and serum
were collected (Figure 2-1A). Both WT and Het mice fed HFD gained significantly more
weight than mice in both groups fed LFD starting at 8 weeks of age (Figure 2-1B). At the
early and late timepoints, HFD-fed groups were significantly heavier than their LFD-fed
counterparts (Figure S2-1A, B) and had increased mammary gland weights (Figure S2-
1C, D). Consistent with increased mammary gland weights, HFD-fed WT and Het mice
had significantly larger adipocyte diameters within their mammary glands at both early

and late timepoints (Figure 2-1C).
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Although mammographic density and obesity have an inverse relationship (5, 6),
we recently observed that obesity enhances collagen deposition in the mammary gland
(23). To understand how obesity contributes to collagen deposition in this model over
time, we quantified collagen around mammary ducts. At the early timepoint, no
significant differences in collagen deposition around mammary ducts were observed in
LFD or HFD-fed mice of either genotype (Figure 2-1D). However, HFD-fed Het mice
had significantly greater collagen deposition around ducts compared to LFD-fed WT
mice (p=0.004, Figure 2-1D). Similar to the early timepoint, no differences in collagen
deposition around ducts were present in LFD-fed mice of either genotype at the late
timepoint (Figure 2-1D). No differences were also observed between WT and Het HFD-
fed mice (Figure 2-1D). However, HFD-fed mice of both genotypes had significantly
increased collagen deposition surrounding ducts compared to LFD-fed mice of both
genotypes (Figure 2-1D). Overall, obesity increased mammary gland weight, adiposity

and collagen around ducts.

Obesity increased macrophage-associated inflammation and decreased CD8+ T

cells within the mammary gland

Macrophages surrounding dying adipocytes form F4/80+ CLS. At the early
timepoint, no differences were observed between genotypes of LFD-fed mice (Figure 2-
2A). In contrast, HFD-fed Het mice had significantly more CLS than HFD-fed WT mice
(p=0.02, Figure 2-2A). HFD-fed Het mice also had significantly more CLS than LFD-fed
WT mice (p=0.005, Figure 2-2A). At the late timepoint, no significant differences were
observed between LFD-fed mice of both genotypes (Figure 2-2A). HFD-fed mice of

both genotypes had significantly increased numbers of CLS compared to LFD-fed WT
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mice (Figure 2-2A). However, both groups of HFD-fed mice were not significantly

different from each other (Figure 2-2A).

After quantifying CLS in white adipose tissue of the mammary glands, we also
examined macrophages directly in contact with the epithelial cells of the ducts. F4/80+
macrophages were not significantly different in any group at the early timepoint (Figure
2-2B). In the late timepoint, LFD-fed mice of both genotypes did not have significant
differences in the number of macrophages surrounding ducts. In contrast, HFD-fed
groups had more F4/80+ macrophages around mammary ducts compared LFD-fed WT
mice (Figure 2-2B). No significant differences were identified between HFD-fed mice of

both genotypes (Figure 2-2B).

Next, we examined CD8+ T cell recruitment within mammary glands of LFD and
HFD-fed mice of both genotypes. At the early timepoint, no differences were present
between LFD-fed mice of either genotype or HFD-fed mice of either genotype (Figure 2-
2C). However, HFD-fed mice of both genotypes had significantly reduced numbers of
CD8+ T cells than either LFD-fed WT or Het mice (Figure 2-2C). Similar to the early
timepoint, no differences were observed between genotypes fed LFD or those fed HFD
at the late timepoint (Figure 2-2C). Both LFD-fed WT and Het mice had significantly
more CD8+ T cells that HFD-fed WT mice (Figure 2-2C). LFD-fed Het mice also had
significantly more CD8+ T cells than HFD-fed Het mice (p=0.04, Figure 2-2C). This data
shows that both risk factors together increased macrophage inflammation. However, at

the late timepoint obesity suppressed CD8+ T cell recruitment to the mammary gland.
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Impact of risk factors on MMTV-PyMT tumor progression

To model how the risk factors of obesity and elevated collagen impacted
mammary tumor growth, MMTV-PyMT+ (PyMT+) mice were crossed with Col1a1tmtae
mice, then PyMT+ collagen wildtype (WT) and PyMT+ collagen heterozygous (Het)
littermates were randomized to receive either LFD or HFD for 9 or 15 weeks. At the 9
and 15-week timepoints, mammary glands, serum, and lungs were collected (Figure 2-
3A). PyMT+ WT and Het mice fed HFD gained significantly more weight than mice in
both groups of PyMT+ mice fed LFD starting at 6 weeks of age (Figure 2-3B). At the 9-
week timepoint, PyMT+ mice of both genotypes fed HFD weighed significantly more
than LFD-fed mice of both genotypes, and no significant differences were observed
between either HFD-fed or LFD-fed groups (Figure S2-3A). The body weights of the
PyMT+ mice at the 9-week timepoint were very similar to the body weights of the PyMT-
mice (Figure S2-2B). Similarly, no significant differences were noted between the body
weights of PyMT+ mice at the 15-week timepoint compared to 15-week-old PyMT- mice
of either genotype (Figure S2-2C). These results show that PyMT transgene expression

did not alter weight gain in the mice of any genotype.

Early in tumor progression, PyMT+ mice developed multifocal preneoplastic
lesions within their mammary glands. At the 9-week timepoint, mammary gland weight
was still consistent with body weights in all groups (Figure 2-3C). Variable numbers of
ductal hyperplasias were observed in the mammary glands of all PyMT+ mice
regardless of genotype (Figure 2-3D). Additionally, all PyMT+ mice had the formation of
variable numbers of MIN, with no differences between mice fed LFD or HFD or

genotype (Figure 2-3E). While multiple mice in each group had progression to



58

adenocarcinoma present, no significant differences in adenocarcinoma incidence were

observed in any of the groups (Figure 2-3F).

At the 15-week timepoint, mammary gland weights were more variable, and no
significant differences were observed based on diet or genotype (Figure 2-3G). All of
the mice in each diet and genotype group had evidence of the formation of
adenocarcinomas present in their mammary glands. Overall, risk factors did not affect

the development of neoplastic lesions in the PyMT+ model.

Obesity and mammary density increased macrophage recruitment around tumors

Since we observed differences in immune cells in healthy mammary tissue, we
hypothesized that differences in immune cells would be present during tumor
progression. At 9 weeks, no differences were observed in F4/80+ macrophages
surrounding MIN in any of the groups of PyMT+ mice (Figure 2-4A). With tumor
progression to adenocarcinomas at 15 weeks, F4/80+ macrophages surrounding
tumors were significantly higher in LFD-fed Het (p=0.001) and HFD-fed WT (p=0.0007)
mice as compared to LFD-fed WT controls. Macrophages surrounding the tumors of
HFD-fed Het mice were more variable (Figure 2-4B). No differences were observed in

F4/80+ macrophages within the tumors of mice in any group (Figure S2-2D).

In the mammary tissue of PyMT- mice, we observed that obesity significantly
reduced the recruitment of CD8+ T cells into the mammary glands (Figure 2-2C).
However, in PyMT+ tumors, we did not observe any significant differences in CD8+ T

cells (Figure 2-4C).



59

Obesity and breast density together increased metastasis to the lungs

To assess how the two risk factors contributed to pulmonary metastasis, we
quantified metastases in the lungs of PyMT+ mice at 9- and 15-week timepoints. We
saw no significant differences in the total number of PyMT+ metastases at 9 weeks
(Figure 2-5). However, at 15 weeks, PyMT+ Het mice had significantly more metastasis
within the lungs compared to either LFD-fed WT mice (p=0.03) or HFD-fed WT mice
(p=0.05, Figure 2-5). Together, these results suggest that together increased collagen

and obesity enhance metastasis during tumor progression.

Discussion

The relationship between breast density and obesity on breast cancer risk and
progression are not well understood. Here we used an established model of mammary
density with diet-induced obesity to assess mammary gland changes that may alter
breast cancer risk. Understanding the immune cell and extracellular matrix changes that
occur due to breast density and obesity will allow for better predictors of risk,
identification of preventative strategies, and the development of unique approaches to

breast cancer treatment.

Obesity enhanced macrophages within mammary glands in the mammary glands
of non-tumor bearing mice. Adipocyte diameters and mammary gland weights were
significantly larger at the early timepoint than LFD-fed WT mice. However, increased
numbers of macrophages due to obesity were not seen until the late timepoint,
suggesting that 5 weeks of exposure to the HFD was not sufficient induce mammary

gland inflammation. We have previously observed mammary gland inflammation due to
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obesity following consumption of HFD for 16 weeks (24). This observation is consistent
with other studies showing that adipocyte stress and subsequent death due to
hypertrophy correlates positively with obesity over time (25, 26). Adipocyte death also
correlates with adipocyte size (25), which was highest at the late timepoint. One
mechanism of macrophage recruitment into adipose tissue in obesity is through
expression of monocyte chemoattractant protein-1 (MCP-1) /CC chemokine ligand 2
(CCL2) by adipocytes (27). Hypoxia also promotes macrophage recruitment. Adipose
tissue with low oxygenation was found to have higher macrophage mRNA levels in
human tissue in obesity (28). It is possible that increased collagen in the mammary
glands of Het mice could exacerbate adipocyte death with obesity, leading to the
elevated CLS that we observed in the mammary glands of HFD-fed Het mice at both
early and late timepoints. Although we observed mildly elevated macrophages in the
mammary glands of LFD-fed Het mice, similar to other studies looking at macrophages
within high mammographic dense tissue (29), this difference did not reach significance.
Overall, obesity and breast density together may enhance adipocyte stress and death

creating an inflammatory environment.

Increased macrophages and collagen are thought to have suppressive effects on
the recruitment of CD8+ T cells (30-32). Interestingly, we found that CD8+ T cells were
reduced in non-tumor bearing HFD-fed mice at both the early and late timepoints, while
we did not observe differences in CD8+ T cell recruitment with increased collagen
density. Within the tumor microenvironment, we observed increased macrophages
around the tumors of LFD-fed Het mice, and macrophages may have an

immunosuppressive effect in the tumor microenvironment (33). However, LFD-fed Het
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mice had similar levels of CD8+ T cells within tumors compared to LFD-fed WT mice.
Although we observed similar patterns of macrophage recruitment between mammary
density and obesity, the T cell responses appear to differ. This may suggest that there
are functional differences in macrophages found in tumors associated with breast
density and obesity, and further work is necessary to explore these differences in both

macrophages and T cells.

In mice expressing the PyMT transgene, we did not see any differences in the
frequency of hyperplasia or MIN at 9 weeks of age regardless of collagen genotype or
diet. Although other groups have seen increased tumor progression in Col1a1tmiae
mice, the formation of early lesions was not explored (16). Diet-induced obesity has
been shown to increase the tumor size in MMTV-PyMT mice, while MIN were seen
mostly in LFD-fed mice, suggesting that the MIN progressed at a higher rate to tumors
in the HFD-fed mice (34). Overall, we observed that the quantification of these early
lesions was variable across collagen density and diet groups. We then sought to
quantify macrophages surrounding early MIN lesions and tumors of MMTV-PyMT mice
because of the known effects of macrophages on tumorigenesis. We previously
observed that HFD-fed mice had increased macrophages surrounding hyperplasias and
tumors in a trp537- model of mammary tumorigenesis (35). In this study, we did not
observe significant difference in macrophages around MIN or within tumors. However,
others have shown increased CD68+ macrophages in tumors of MMTV-PyMT mice on
the FVB/N genetic background following feeding a HFD for 8 weeks (36). It is possible

that the combination of risk factors could have a more pronounced impact on early
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tumor formation and progression in a transgenic model with a greater latency to tumor

formation or on a different genetic background of mice.

Mice expressing the PyMT transgene have detectible metastases to the lungs
and lymph nodes around 13-14 weeks of age with a mean latency of 92 days (37). We
hypothesized that these risk factors may accelerate this process, so we quantified
metastasis at an early timepoint of 9 weeks. Interestingly, we observed metastases in all
groups as early as 9 weeks, but no differences were observed among any groups. This
data is consistent with a study showing no differences in pulmonary metastasis at 12
weeks of age in HFD-fed MMTV-PyMT mice compared to controls (36). In contrast,
other studies have identified an increase in the size and number of metastases in HFD-
fed mice (38) (39). The differences in metastasis in these models could be due to
differences in mouse models or diet composition. Although we did not see a difference
in metastasis with one risk factor alone, we saw significant increases in metastasis in

HFD-fed Het mice compared to LFD-fed WT and Het mice.

Overall, our study shows that mammary gland density enhanced macrophage
recruitment similar to mice fed HFD. However, over time, macrophage recruitment was
associated with increased adiposity. Further, CD8+ T cell exclusion from mammary
glands was dependent upon obesity. Interestingly, early induction of CLS and collagen
deposition were seen in HFD-fed Het mice. These data suggest that both risk factors
together may promote a maladaptive immune cell infiltration and extracellular matrix
remodeling. Thus, breast density and obesity may cooperatively increase breast cancer
risk. Obesity and breast density together promoted lung metastasis compared to

mammary density alone. Future functional studies are needed to understand how



obesity and breast density alter inflammation. These studies suggest that women with
dense breasts who become obese may have an increased risk for breast cancer and

early progression to pulmonary metastasis.
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Figure 2-1: Obesity increased adipocyte size and collagen around mammary
ducts. compared to mice from a model of breast density. A. Wild type (WT) mice
were crossed with Collal™?¢ mice then WT and heterozygous (Het) littermates were
fed low-fat diet (LFD) or high-fat diet (HFD). Mammary glands were collected from
LFD/WT, LFD/Het, HFD/WT, or HFD/Het mice at the early (9 weeks) or late (12-15
weeks) timepoints. B. Weight gain of all four experimental groups (n=13-14 mice/group).

C. Adipocyte diameter for early and late timepoints.

Early timepoint (n= 6 mice/group)

and late timepoint (n=6-8 mice/group). Representative images of mammary adipose
tissue are from mice from the late timepoint. D. Quantified collagen around mammary
ducts as a ratio of collagen area/ductal area, early timepoint (n= 4-6 mice/group) and
late timepoint (n= 4-6 mice/group). Representative images are from mice from the late

timepoint. Magnification bars C: 100 pm, D: 50 pm.
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Late

Figure 2-2: Obesity enhanced macrophage-driven inflammation and reduced
CD8+ T cells compared to collagen dense mammary glands. A. Crown-like
structures (CLS) of F4/80+ macrophages were quantified per tissue section in
mammary glands from early timepoint (n=5-6 mice/group) and late timepoint (n=4-6
mice/group) mice. Representative images from each experimental group at the late
timepoint. B. Quantification of F4/80+ macrophages around mammary ducts. Results
are shown as an average count of macrophages at early timepoint (n= 6 mice/group)
and late timepoint (n= 6-8 mice/group). Representative images are ducts from the late
timepoint. C. Quantification of CD8+ T cells in the mammary gland. Early timepoint (n=
4-6 mice/group) and late timepoint (n= 4-8 mice/group). Data is represented as an
average per field of view (FOV) in the adipose tissue of the gland. Magnification bars A,

C: 50 pm, B: 25 pm.
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Figure 2-3: The effect of obesity and breast density on tumor stage and mammary
gland weight in the MMTV-PyMT mouse model. A. MMTV-PyMT (PyMT+) mice were
crossed with Collal™2e mice, and PyMT+ WT and PyMT+ Het littermates were fed
either LFD or HFD. Mammary glands and lungs were collected from LFD-fed PyMT+
WT or PyMT+ Het mice or HFD-fed PyMT+ WT or PyMT+ Het mice at 9 or 15 weeks. B.
Weight gain in grams (g) of all four experimental groups (n= 11-20 mice/group). HFD-
fed groups were significantly heavier than LFD-fed groups by 6 weeks. C. Percentage
of ducts in the mammary glands of each group that were hyperplastic (n=5-10
mice/group). Representative image shows a duct that depicts hyperplasia that was used
as the standard for quantification. D. Percentage of ducts in the mammary gland that
formed MIN. Representative image shows MIN that was used as standard for
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guantification (n= 5-9 mice/group). E. Mammary gland weight of mice at 9-week
timepoint (n= 6-10 mice/group). F. Number of mice with adenocarcinomas and no
tumor formation at 9-week timepoint (n=5-9 mice/group). No differences observed
among groups (Fishers exact test). G. Mammary gland weight of mice at 15-week
timepoint (n= 6-10 mice/group). Magnification bars 50 pm.
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Figure 2-4: Obesi and density increased macrophage
recruitment around tumors. A. The ratio of F4/80+ macrophages area to MIN lesion
area in mammary glands of mice at 9-week timepoint (n= 5-10 mice/group). B. The
ratio of F4/80+ macrophage area on the tumor edge to tumor area (n= 5-10 mice/group)
at the 15-week time point. C. Average number of CD8+ cells per field of view (FOV) per
gland (n= 5-6 mice/group). Representative images of CD8+ T cells in adenocarcinomas
from mice at 15-week timepoint. Magnification bars A, B: 25 um, C: 50 pm.
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Figure 2-5: Lung metastasis was increased in mice with both obesity and breast
density. A. Metastatic foci quantified in the lungs of PyMT+ mice at the 9 week
timepoint (n=5-8 mice/group). B. Metastatic foci quantified in the lungs of PyMT+ mice
at 15 week timepoint. (n= 5-9 mice/group). Magnification bars 50 pm.
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Supplementary Figure 2-1: Obesity increased mouse and mammary gland weight
in non-tumor bearing mice. A. Body weight of mice in grams (g) at the early timepoint
of 9 weeks (n= 6 mice/group). B. Mammary gland weight in g at the early timepoint (n=
6 mice/group). C. Body weight at the late timepoint of 12-15 weeks (n= 6 mice/group).

D. Mammary gland weight of mice from late timepoint (n= 6-8 mice/group).
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Supplementary Figure 2.2: MMTV-PyMT status did not affect body weight and risk
factors did not affect intratumoral macrophage recruitment. A. Body weight of
PyMT+ mice in grams (g) at 9-week timepoint (n= 5-10 mice/group). B. Comparison of
final body weights of PyMT- and PyMT+ mice at 9-week timepoint (n= 6-10 mice/group).
C. Comparison of final body weight of PyMT- and PyMT+ mice at 15-week timepoint (n=
6-8 mice/group). D. Quantification of F4/80+ macrophages within PyMT+ tumors per
field of view (FOV) at 15-week timepoint (n= 4-6 mice/group). Magnification bar: 50 um.
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CHAPTER 3:

Obesity contributes to CD8+ T cell dysfunction in the lungs before and after ERa+
breast cancer metastasis.
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Abstract:

Breast cancer patients with obesity have an increased risk for metastases following
diagnosis. We have previously observed that obesity enhances macrophages
surrounding breast cancer metastasis, however little is known about how obesity alters
the function of adaptive immune cells in the metastatic niche of the lungs in obesity. To
test adaptive immune function in the lungs, we fed female mice either a low-fat diet
(LFD) or high-fat diet (HFD) to induce obesity, then we transplanted estrogen receptor
alpha positive (ERa+) TC2 cells into the mammary fat pads. Tumors grew to 0.5 cm in
diameter then were surgically removed to model metastatic growth. Eight weeks after
tumor removal, T cell populations were quantified in metastatic lung tissue or lung tissue
from non-tumor bearing mice using flow cytometry. To assess how obesity alters the
functional state of T cells, CD45+ cells were sorted from lungs from lean and obese
mice with and without metastasis, and gene expression was examined using the
Nanostring nCounter Immune Exhaustion panel. We also disassociated whole lung
tissue from LFD and HFD-fed mice and stimulated CD8+ T cells to measure cytokine
expression. In the lungs of non-tumor bearing mice, CD8+ T cells from obese mice
expressed higher levels of PD-1, and immune cells from the lungs of obese mice had
increased expression of genes associated with T cell receptor signaling. Stimulated T
cells from obese mice produced less cytokines compared to lean mice. In metastatic
lungs from obese mice, immune cells had higher expression of genes associated with T
cell receptor signaling and reduced expression of genes associated with interferon and
tumor necrosis factor alpha (TNFa) signaling. Following stimulation, CD8+ T cells from

metastatic lungs of obese mice secreted significantly higher levels of TNFa in response
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to stimulation. These results suggest that obesity increases T cell dysfunction in ERa+
breast cancer lung metastasis, but stimulation of CD8+ T cells uncovers increased

functional responses despite PD-1 expression.
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Introduction:

Obesity rates are increasing worldwide, and the rates of obesity in women are
higher or equal to men depending on ethnicity (1). As more women are considered
obese, the higher the risk for cancer amongst women, particularly an increased risk for
postmenopausal breast cancer (2-5). After the diagnosis of breast cancer, women with a
body mass index (BMI) 230 kg/m? have worse disease outcomes and resistance to
most therapeutic interventions (6). Obese breast cancer patients also have more
advanced disease at the time of diagnosis, specifically higher-grade tumors, and more
distant metastasis, particularly to the lungs (7). Patients who are obese also develop
metastasis more frequently than their lean counterparts and have a higher risk of dying
from their disease (8-10). ERa+ breast cancer accounts for most cancer subtypes
diagnosed in women (11). Obese patients are at risk for developing ERa+ Luminal B
breast cancer (12), which has an elevated expression of proliferation markers and
higher histologic grade (13). Women who are obese with ERa+ tumors have decreased
overall survival and an increased risk for metastasis (14, 15). Although ERa+ tumors are
removed as part of standard of care, metastasis can occur decades after resection (16).
While there have been studies identifying poor adaptive immune responses in the lungs
in response to infectious respiratory diseases and vaccines under conditions of obesity
(17), little is known how obesity affects the response to breast cancer metastasis in the

lungs.

Obesity has been characterized as a chronic inflammatory disease (18).
However, adaptive immune cell dysfunction or exclusion, particularly impaired CD8+ T

cell function, has been reported under conditions of obesity in primary breast tumors,
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visceral fat, spleen, and in circulation (19-22). Exhaustion is a type of T cell dysfunction
caused by abundant and chronic antigen stimulation and inflammatory signals (23). T
cell exhaustion is often defined by programmed cell death-1 (PD-1) expression on T
cells along with other checkpoint marker expression, such as Lag-3 and Tim-3 (24). It
was thought that T cell exhaustion led to a homogenous population that lost effector
function progressively over time. However, now it's known that this population of CD8+
T cells is heterogenous and includes some subsets of exhausted CD8+ T cells that have
stem cell function (25). T cell dysfunction has been identified in the lungs of obese
patients and is attributed to poorer outcomes in respiratory infectious disease (26).
However, the impact of obesity on T cell dysfunction before and after metastatic disease

has not been examined.

Recent clinical studies suggest that patients with obesity that received immune
checkpoint blockade (ICB) targeting the PD-1/PD-L1 axis for melanoma and lung
cancer had improved outcomes.(27-29). However, these improved responses in
patients with obesity were observed more frequently in men (27). ICB has not been
well-explored as a treatment for patients with ERa+ breast cancer, because ERa+
breast cancer is considered immunologically “cold” compared to other breast cancer
subtypes (30) (31) In order to enhance ICB efficacy and improve outcomes for more
patients, it is crucial to understand how obesity alters the function of adaptive immune

cells in the metastatic environment.

In metastasis, CD8+ T cells have shown to be reduced compared to levels in
primary tumors (32). Our lab and others have shown a shift in the myeloid population in

the lungs under conditions of obesity that may contribute to increased metastasis (33,
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34). However, adaptive immune cells like CD8+ T cells have not been widely explored in
lung metastasis under obese conditions. In our study, we used ERa+ TC2 mammary
tumor cells to study ERa+ breast cancer metastasis, which has been previously
challenging to model in mice (35). Here we investigate CD8+ T cell function in non-
tumor bearing mice and mice with ERa+ lung metastasis under conditions of obesity.
We discovered that obese mice have increased PD-1+ CD8+ T cells in the lungs before
and after metastasis. After metastasis, CD8+ T cells retain function to produce cytokines
after stimulation. These results provide new insight into CD8+ T cell function in the lungs

under conditions of obesity.
Methods:

Mouse Models

All animal procedures were approved by the University of Wisconsin Institutional
Animal Care and Use Committee, per guidelines published by the NIH Guide for the
Care and Use of Laboratory Animals (Animal protocol number V005188). All mice were
housed in AAALAC-accredited facilities. Three-week-old-female FVB/N (FVB/NTac,
Taconic Biosciences) mice were fed either a purified chow low-fat diet (LFD; 16% kcal
from fat; 2920X; Teklad Global; ENVIGO) or a high-fat diet (HFD; 60% kcal from fat;
Test Diet 58Y1; 0056833) for 16 weeks to induce obesity. Food and water were
provided ad libitum. Body weights were measured weekly. Non-tumor-bearing mice
were used as controls, and lungs were collected after 16 weeks on the diets. For
metastases, LFD and HFD-fed mice were orthotopically transplanted with ERa+ green
fluorescence protein (GFP) expressing TC2 cells. TC2 cells have previously been

reported as ERa+ (36). 75,000 TC2 cells suspended in PBS were injected into bilateral
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fourth inguinal mammary glands. Tumor diameters were measured each week using

calipers. Tumor volume was calculated using the formula (L*W*W)/2. Once tumors

reached a diameter of 0.5 cm, tumors were resected. If tumors recurred at the surgical
site, mice were excluded from the study. Mice were fed their respective diets for

another 8 weeks before collection. Mice were then euthanized with CO2 asphyxiation.

Cell Culture

TC2 cells were provided by Dr. Linda Schuler at the University of Wisconsin-
Madison. TC2 cells were cultured in DMEM (Corning; 10-017-CV, Corning, NY, USA)
supplemented with 10% FBS and 1 mg/mL G418 (ThermoFisher Scientific; 11811023,
Waltham, MA, USA). All media contained 1% antibiotic/antimycotic solution, and cells
were maintained at 37°C in 5% CO2. Tumor cell lines were not further validated and were
tested for mycoplasma prior to use in experiments (Idexx BioAnalytics, Columbia, MO,
USA). Before transplantation TC2 cells were trypsinized with 0.25% trypsin for 5 minutes

at 37 °C in 5% COs2. Cells were then counted and suspended in PBS at 2.5 x103 cells/mL.

Tissue Collection

Blood was removed from lungs via cardiac puncture following euthanasia. The
three largest lobes of the lungs from each mouse were manually minced in 1 mL of DMEM
(Corning, 10-017-CV) supplemented with 10% FBS (Gibco, A52567-01), 1% antibiotic-
antimycotic solution (Corning, 30-004-Cl), 10 pg/mL insulin (Sigma-Aldrich, 10516), 5
ng/mL human epidermal growth factor (Sigma-Aldrich, E9644), 0.5 ug/mL hydrocortisone
(Sigma-Aldrich, H0888), 3 mg/mL collagenase A (Sigma-Aldrich, 11088793001),100

U/mL hyaluronidase (Sigma-Aldrich, H3506), and 0.1 mg/mL DNase | (Sigma-Aldrich,
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10104159001) and digested for 45 mins at 37°C. The two smaller lobes of the lungs were
fixed for 2 hours in 4% paraformalin at 4°C, followed by rinsing with PBS three times for
30 min. Lungs were incubated in 20% sucrose/PBS at 4°C overnight. The following day,
the lungs were incubated in 30% sucrose/PBS for 1 hr prior to snap-freezing in Optimal
cutting temperature (OCT) compound (Thermo Fisher; 4585) in a bath of methanol and

dry ice.

Immunofluorescence and Histology

The lung tissue was sectioned using a cryostat at the Experimental Pathology
Laboratory (Carbone Cancer Center, University of Wisconsin-Madison). Frozen sections
of lung tissue were incubated in cold methanol for 5 min and then rinsed with PBS before
blocking and incubating with primary antibodies as Table S1. Nuclei were counterstained
with DAPI, then mounted with TrueVIEW Autofluorescence Quenching Kit (Vector
Laboratories, SP-8400-15). All tissues were imaged on the Nikon Eclipse E600. All
images were quantified using ImagedJ (NIH). Five 200X images were taken in random
areas of lung tissue with similar densities in nuclei. An average cell count of each image
was recorded for each individual mouse. If lungs were stained with one marker, tissue
was imaged in multiple channels to identify auto fluorescent cells. These cells were then
excluded from analysis. H&Es of lungs were used to identify and quantify breast cancer
metastasis. H&E’s were scanned at 200X and 400X using the Nikon Eclipse E600 to

identify metastasis. Two of five lung lobes were used to quantify metastasis.
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Flow Cytometry

After digestion, lungs were mechanically dissociated using a 20-gauge needle in
5% bovine calf serum (BCS) in PBS to achieve a cell suspension. Samples were then
incubated for 2 mins in Ammonium—chloride—potassium (ACK) lysis buffer (Quality
Biological; 118-156-101, Gaithersburg, MD, USA) to lyse red blood cells. Next, samples
were filtered 100 um (Falcon; 352360) and 40 pym cell strainers (Falcon; 352340) to isolate
single cells. For each mouse, 500,000 lung cells were blocked with Fc blocking antibody
(CD16/32, ThermoFisher; 14-0161-82) for 20 minutes. To assess viability, each lung
sample was stained with live/dead UV blue dye (ThermoFisher; L34961) in PBS for 30
minutes at 4°C in the dark. A sample spiked with cells heat-killed at 60°C for 5 mins was
included as a control. Antibodies for flow cytometry analysis are listed in Table S1.
Samples were incubated with antibodies for 20 min in 2% BCS/PBS at 4°C. Cells were
fixed with Cyofix/CytoPerm Plus kit with Golgi Plug (BD Biosciences; 555028) for 25
minutes, then stored in 2% BCS/PBS at 4°C overnight. Flow cytometry was conducted
on a Cytek Aurora Cytometer using SpectroFlo software. Fluorescence minus one (FMO)
and single color controls were included. Single color controls conjugated to UltraComp
ebeads (ThermoFisher; 01-2222-42), and a sample of unstained cells and beads were
used to determine fluorophore unmixing. Samples and FMOs were analyzed using

FlowJo (version 10.1).
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CD8+ T cell stimulation experiments

Whole lung tissue isolated from mice with TC2 tumors was digested and separated
into a single cell suspension. 500,000 cells from non-tumor-bearing and TC2 metastatic
lungs were incubated in RPMI media (Corning; 10-040-CV) with 10% FBS, (100 ng/mL)
IL-2 (ThermoFisher; PIRP8605), and (1 p/mL) Golgi Plug from BD Cytofix/Cytoperm Plus
(BD Biosciences; 555028). Stimulated samples received (10 ng/mL) (ThermoFisher;
BP6851) phorbol myristate acetate and (1 pg/mL) (ThermoFisher; 124222) ionomycin
(PMAI). Stimulated and unstimulated lungs were incubated for 5 hours at 37°C in the
presence of CO2. After 5 hours cells were stained for cell surface markers CD8a and PD-
1 (Table S1). Cells were then permeabilized and stained for intracellular cytokines TNFa
and IFNy (Table S1). Cells were stored overnight at 4°C and analyzed the next day on a

Cytek Aurora Cytometer. Each individual data point represents a separate mouse.

NanoString Analysis

RNA was collected from CD45+ cells isolated from lungs tissue with or without TC2
metastasis. Anti-Rat IgG Dynabeads (ThermoFisher; 11035) were incubated with CD45
(Biolegend; 103101) antibodies at a 1:10 ratio for 30 minutes at 4°C. Beads conjugated
to CD45 antibodies were incubated with dissociated lung tissue for 30 minutes at 4°C as
described by the manufacturer. RNA was extracted using Qiagen RNA Microkit (Qiagen;
74004). Samples were tested for quality control by the Biotechnology Center (University
of Wisconsin-Madison) using a NanoDrop One Spectrophotometer and Agilent 2100
Bioanalyzer. RNA with DV200 greater than 70% were sent to the Translational Research

Initiatives in Pathology (TRIP) Laboratory (Carbone Cancer Center, University of
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Wisconsin-Madison) for analysis on the nCounter MAX System using the nCounter
NanoString Immune Exhaustion Panel (NanoString; XT-H-EXHAUST-12). If samples
failed quality control from either the UW-Madison Biotechnology Center or ROSALIND
Analysis Software, the samples were excluded from the study. nCounter NanoString data

was analyzed using ROSALIND software.

Statistical Analysis

Results are reported as the mean * standard error of the mean (s.e.m.). Statistical
differences were determined using two-way analysis of variance (ANOVA) and Tukey’s
multiple comparisons posttest, unless otherwise noted. A p-value of <0.05 denotes
significant value. All statistical analyses were performed with GraphPad Prism 9.4.1

(GraphPad Software).

Results:

Obesity increases immune cell recruitment and PD-1 expression on CD8+ T cells

in non-tumor bearing mice

To investigate how obesity changes the immune microenvironment in the lungs to
create an environment vulnerable to metastatic growth, we fed 3-week-old female
FVB/N mice HFD or LFD diet for 16 weeks. HFD-fed mice were significantly heavier at
16 weeks than LFD-fed mice (Figure 3-1A). We then collected the lung tissue and
digested the tissue into a single cell suspension, stained the cells with antibodies to
investigate T cell populations, and quantified cells using flow cytometry (Figure S3-1).
CD45+ immune cells were increased in lungs from HFD-fed mice compared to LFD-fed

mice (Figure 3-1B). However, CD3+, CD4+, and CD8+ cells were unchanged in the
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lungs of mice fed either diet (Figure 3-1C-E). Obesity has been shown to promote PD-1
expression in T cells in other contexts (19), so we examined PD-1 expression in the
lungs. PD-1 was not significantly increased on CD4+ cells in lungs of LFD and HFD-fed
mice (Figure 3-1F). However, PD-1 was significantly increased on CD8+ T cells in lungs
of HFD-fed mice (Figure 3-1G). These results suggest that CD8+ T cells rather than
CD4+ T cells could be dysfunctional in the lungs of HFD-fed mice prior to tumor

formation.

CD8+ T cells from lungs of HFD-fed mice show signs of exhaustion

Since we observed PD-1+ CD8+ T cells in the lungs of obese mice, we
hypothesized that obesity may promote T cell dysfunction. We sorted CD45+ total
immune cells from lungs non-tumor bearing mice fed LFD or HFD for 16 weeks, then
examined gene expression using the NanoString Immune Cell Exhaustion Panel.
Immune cells from the lungs of HFD-fed mice had significant differences in gene
expression compared to those from LFD-fed mice (Figure 3-2A, Table S3-2). Genes
associated with T cell receptor (TCR) signaling (Figure 3-2B) and a T cell checkpoint
signaling signature (Figure 3-2C) were mostly upregulated in immune cells from the
lungs of HFD-fed mice. Upregulation of expression of other checkpoints, such as Tigit

(Figure 3-2C), suggest an exhausted-like signature.

Since CD8+ T cells in the lungs of non-tumor bearing mice showed evidence of
dysfunction, we tested their function in vitro using IL-2 and PMAI stimulation. We
incubated isolated cells from the whole spleen and whole lungs without (Un) or with
PMAI (Stim) and quantified changes in cytokines and PD-1 expression using flow

cytometry (Figure S3-2). In the spleen, CD8+ T cells from LFD and HFD-fed mice
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responded to stimulation to produce significantly higher levels of TNF-a and IFN-y
compared to unstimulated CD8+ T cells (Figure 3-2D, E). Additionally, PD-1 expression
of CD8+ T cells was unaffected by diet or stimulation in the spleen (Figure 3-2F). In the
lungs of LFD-fed mice, CD8+ T cells responded to stimulation with PMAI by significantly
increasing TNF-a expression (p=0.0006, Figure 3-2G). While CD8+ T cells from HFD-
fed mice had elevated expression of TNF-a compared to unstimulated cells (p=0.01),
the level of TNF-a was significantly lower than stimulated cells from LFD-fed mice
(p=0.02, Figure 3-2G). In contrast to the spleen (Figure 3-2E), CD8+ T cells from the
lungs of LFD or HFD-fed mice did not produce more IFN-y in response to stimulation
(Figure 3-2H). Similar to the spleen (Figure 3-2F), stimulation of CD8+ T cells in the
lungs of LFD-fed mice did not alter expression levels of PD-1 (Figure 3-21). However,
stimulation of CD8+ T cells in the lungs of HFD-fed mice led to significantly increased
levels of PD-1 (p=0.007, Figure 3-21). Together, these results suggest that CD8+ T cells
from the lungs of HFD-fed mice have evidence of chronic stimulation leading to

increased exhaustion prior to tumor formation.

Obesity promotes tumorigenesis and more advanced metastatic disease in a

model of ERa+ breast cancer

To model metastasis of ERa+ mammary tumors to the lungs, mice were
randomized to receive LFD or HFD for 16 weeks. LFD and HFD-fed mice were injected
with TC2 cells, then tumors were resected following growth to 0.5 cm in diameter. Eight
weeks following tumor resection, mice were euthanized, and lung tissue was collected
for analysis (Figure 3-3A). HFD-fed mice orthotopically injected with TC2 ERa+

mammary tumor cells gained significantly more weight than LFD-fed mice (Figure 3-3B).
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TC2 tumors grew faster in HFD mice but were resected at similar volumes as tumors
from LFD-fed mice (Figure S3-3). TC2 tumors expressed ERa in both LFD and HFD-fed
mice (Figure 3-3C), and we previously observed no significant differences in ERa
expression in mice fed either diet (33). TC2 metastases were increased in HFD-fed
lungs compared to mice that were fed LFD (p=0.04, Figure 3-3D). Obesity overall

increased metastasis to the lungs in a ERa+ mammary tumor model.

Obesity increased inflammation and upregulated PD-1 expression on CD8+ T

cells within ERa+ lung metastases

To assess how obesity altered adaptive T cells within the metastatic environment,
we digested metastatic lungs from LFD and HFD-fed mice into a single cell suspension
and quantified T cells using flow cytometry. Like non-tumor bearing mice (Figure 3-1B),
metastatic lungs of HFD-fed mice had significantly more CD45+ cells than LFD-fed mice
(p=0.02, Figure 3-4A). No significant differences were observed in CD3+ cells in the
lungs of mice either diet group (Figure 3-4B). Similarly, no significant differences were
observed in total CD4+ cells (Figure 3-4C) or PD-1+ CD4+ T cells (Figure 3-4D).
However, immunofluorescent staining of metastatic lungs showed a significant increase
in immunosuppressive FOXP3+CD4+ Tregs in the metastatic lungs of HFD-fed mice
(p=0.03, Figure 3-4E). No significant differences in CD8+ T cells were observed in the
metastatic lungs of LFD or HFD-fed mice quantified either by flow cytometry (Figure 3-
4F) or using immunofluorescence (Figure 3-4G). However, PD-1+ CD8+ T cells were
significantly elevated in the metastatic lungs of HFD-fed mice (p=0.02, Figure 3-4H).
Together, these results suggest that obesity enhances immunosuppressive CD4+ T regs

and immune checkpoint expression on CD8+ T cells.
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CD8+ T cells from obese lung metastasis retain function despite increased levels

of PD-1

To assess functional changes in the immune cells, we sorted CD45+ cells from
metastatic lungs and examined gene expression before and after metastasis using the
NanoString Immune Exhaustion Panel. Immune cells from LFD-fed mice showed
multiple gene expression changes before and after metastases (Figures S3-4A and
Table S3-4). Immune cells from the metastatic lungs of LFD-fed mice demonstrated
downregulation of multiple genes associated with TCR signaling (Figure S3-4B) and
cytotoxicity (Figure S3-4C). However, immune cells from metastatic lungs of LFD-fed
mice had significant upregulation of genes associated with type Il interferon signaling
(Figure S3-4D) and TNF signaling (Figure S3-4E). In contrast, immune cells from non-
tumor bearing and metastatic lungs of LFD-fed mice showed greater differences in gene
expression (Figure S3-4A and Table S3-4) compared to HFD-fed mice (Figure S3-5A
and Table S3-5). While genes associated with TCR signaling and cytotoxicity were also
downregulated in immune cells from metastatic lungs of HFD-fed mice (Figure S3-5B
and S3-5C), fewer genes were down regulated and fold change differences of genes
associated with these pathways were smaller than in immune cells from metastatic
lungs of LFD-fed mice (Figure S3-4B and S3-4C). Further, tumor necrosis factor (TNF)
signaling was down regulated in immune cells from metastases of HFD-fed mice
compared to non-tumor bearing HFD-fed mice (Figure S3-5D), and no differences in
interferon Il signaling were detected. Together, these results suggest that metastases
cause a greater change in function of immune cells in LFD-fed mice compared to HFD-

fed mice.
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With direct comparison of gene expression of immune cells isolated from
metastatic lungs of LFD and HFD-fed mice, a number of genes were differentially
expressed (Figure 3-5A, Table S3-3). Similar to the comparison of immune cells in non-
tumor bearing mice (Figure 3-2B), genes associated with TCR signaling were
significantly upregulated in immune cells from HFD-fed mice (Figure 3-5B). We also
observed increased expression of genes associated with cytotoxicity (Figure 4-5C).
Surprisingly, genes associated with interferon type Il signaling (Figure 3-5D) and TNF
signaling were downregulated in immune cells from metastatic lungs of HFD-fed mice
(Figure 3-5E). In addition to gene expression changes associated with CD8+ T cells,
we also observed a significant increase in a gene expression signature of natural killer
(NK) cell exhaustion (Figure 3-5F), as well as B cell receptor (BCR) signaling (Figure 3-
5G) in immune cells from metastatic lungs of HFD-fed mice. These gene signatures
suggest that obesity may also alter the function of NK and B cells in the metastatic

environment.

To directly test the function of CD8+ T cells from LFD and HFD-fed mice with
metastases, we stimulated cells from the whole spleen and lungs with PMAI and IL-2.
CD8+ T cells from the spleen of LFD-fed mice significantly upregulated TNF-a in
response to stimulation (p=0.01, Figure 3-5H). Similarly, CD8+ cells from the spleen of
HFD-fed mice showed increased expression of TNF-a (p<0.0001), and the degree of
stimulation was significantly greater in CD8+ T cells from the spleen of HFD-fed mice
compared to LFD-fed mice (p=0.03, Figure 3-5H). PMAI and IL-2 stimulation did not
affect PD-1 expression in CD8+ T cells of the spleen in either LFD or HFD-fed mice

(Figure 3-5l1). Similar to the spleen, CD8+ T cells in the lungs of LFD-fed mice with
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metastases showed increased expression of TNF-a in response to stimulation (p=0.05,
Figure 3-5J). CD8+ T cells from HFD-fed mice also showed a significant elevation of
TNFa expression compared to unstimulated cells (p=0.0003) as well as stimulated
CD8+ T cells from LFD-fed mice (p=0.007, Figure 3-5J). Unlike in non-tumor bearing
mice (Figure 3-2l), stimulation of CD8+ T cells in metastatic lungs did not increase PD-1
expression in CD8+ T cells. Together, these results suggest that although CD8+ T cells
from metastatic lungs of HFD-fed mice show expression of PD-1, CD8+ T cells are
capable of a more robust response following stimulation than CD8+ T cells from LFD-

fed mice.

Discussion:

Patients with obesity and breast cancer are at risk for developing ERa+ Luminal
B breast cancer (12), which have a higher risk for relapse following initial treatment (37).
Here we used a diet-induced obesity model to simulate obesity and orthotopically
injected syngeneic ERa+ TC2 mouse mammary cells into the mammary glands of
obese and lean mice, to model ERa+ metastasis. We compared immune cells from
lungs from LFD and HFD fed non-tumor bearing mice and mice who have previously
had TC2 tumors to identify changes in the lung microenvironment before and after
tumor burden in lean and obese mice. We discovered that CD8+ T cells before
metastasis have impaired ability to respond to stimulus in obese mice and express
higher levels of PD-1. Further, CD8+ T cells in obese mice have higher expression of
genes associated with TCR stimulation before and after metastasis. After metastasis,
CD8+ cells from obese mice responded to stimulation and produced higher levels of

TNFa than CD8+ T cells from metastatic lungs of LFD-fed mice despite higher PD-1
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expression. Together, these results suggest that CD8+ T cells in the lungs of obese

mice may have better responses to immune checkpoint inhibitors targeting PD-1/PD-L1.

In healthy, non-tumor-bearing mice, we showed that obesity increased total
immune recruitment of CD45+ cells, as we observed previously (33). Percentages of
CD3+, CD4+, CD8+ cells were unchanged in the lungs of non-tumor bearing mice.
However, analysis of CD45+ cells suggests that non-tumor bearing obese mice had
increased expression of genes related to TCR signaling and T cell checkpoint signaling,
including the gene for T cell immunoglobulin and ITIM domain (TIGIT), Tigit. PD-1
expression and upregulation of Tigit may indicate CD8+ T cells moved into a more
exhausted signature. Functionally, stimulation of CD8+ T cells revealed that CD8+ T
cells from the lungs of HFD-fed mice had reduced ability to produce significant amounts
of TNFa compared to CD8+ T cells from the lungs of LFD-fed mice. Interestingly,
stimulation also increased PD-1 expression only on CD8+ T cells derived from lungs of
HFD-fed mice. These data may indicate that chronic TCR stimulation due to obesity in
vivo may prime CD8+ T cells for upregulation of PD-1 expression with acute stimulation
in vitro. Other immune cells cultured with the CD8+ T cells from the lung support this
upregulation of PD-1 with TCR stimulation and this supportive cellular environment is
different in HFD-fed mice. Overall, this data supports the idea that CD8+ T cells in non-
tumor bearing HFD-fed mice have a dysfunctional signature similar to exhaustion prior
to tumor formation (38). Recent work suggests that T cell dysfunction within sarcomas in
obesity lead to decreased immunosurveillance (39). Additional work is necessary to
determine whether dysfunctional T cells in the lungs promote metastatic growth in this

site.
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Following metastatic growth, we observed increased CD45+ immune cells within
lungs from obese mice. Despite increased inflammation, HFD-fed mice had elevated
metastases. Based on data showing lower CD8+ T cell infiltration in primary tumors of
obese mice (20, 40), we hypothesized CD8+ T cells would be reduced in the lungs of
HFD-fed mice with metastasis. However, similar to non-tumor bearing mice, we did not
see differences in CD3+, CD4+, and CD8+ cells. PD-1 expression was significantly
upregulated on CD8+ cells in lungs from HFD-fed mice. While we observed significantly
increased expression of genes associated with T cell receptor signaling and cytotoxicity,
genes associated with Type Il interferon and TNF signaling pathways were down
regulated. When TNF-a and IFN-y are expressed by CD8+ T cells, these cytokines are
both cytotoxic to cancer cells and can activate other cells in the immune system (41).
Decreased pathways associated with TNF-a and IFN-y could indicate T cell exhaustion
(42). Together these data suggest that T cells in metastases of obese mice show more
stimulation than those from LFD-fed mice and may retain some cytotoxicity but have the
potential to become more exhausted with higher PD-1 expression. To investigate the
function of CD8+ T cells, we quantified TNF-a following acute stimulation. Similar to
non-tumor bearing mice, in the spleen both LFD-fed and HFD-fed derived CD8+ T cells
responded to stimulation and produced significantly more TNF-a. In isolated cells from
metastatic lungs, there were clearly different responses. Prior to metastasis, CD8+ T
cells from HFD-fed mice were unable to respond to PMAI stimulation and produced less
TNF-a than stimulated cells from LFD-fed mice. However, after metastatic
establishment, CD8+ T cells from HFD-fed mice were able to respond to stimulation and

produce more TNFa than stimulated lean CD8+ T cells. Despite PD-1 expression,
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obese CD8+ T cells area able to retain function and respond more robustly to
stimulation. These observations are consistent with CD8+ T cells observed in human
breast tumors, which retained functionality while expressing markers of exhaustion, in
contrast to similar cells in melanomas (43) Recent work has shown that subsets of
exhausted CD8+ T cells exist, some of which retain polyfunctionality,(44) and further

work is necessary to define CD8+ T cell populations within metastatic niches.

Immunosuppressive Tregs may play a role in the elevated metastases observed
in the lungs of obese mice. We observed increased CD4+FOXP3+ cells in the
metastatic lungs of HFD-fed mice. Tregs are known to affect the activation of both CD4+
and CD8+ T cells, in addition to impairing the function of NK cells and antigen
presenting cells (45). An increase in Tregs in HFD-fed mice may result in dysfunction of
other immune cells leading to immune evasion by metastasis in obese mice. This data
is in contrast to work by McDowell et. al. that showed no differences in Tregs in the
metastatic lungs of obese mice in the MMTV-PyMT mammary tumor model. Differences
in these results may be due to the different subtypes of breast cancer modeled as well

as the presence of primary tumors in MMTV-PyMT mice.

Gene expression profiling also revealed differences in function of other cell types,
including NK and B cells, that might enhance metastatic growth in obese mice. NK cells
have been found to not directly clear metastasis in the lungs in melanoma, but rather
reduce metastatic disease by supporting CD4+ and CD8+ T cell recruitment to the lungs
and supporting T cell activation (46) In this same study, it was established NK cells
prevent lung metastasis by eliminating circulating tumors cells.(46) NK cells however,

can become exhausted and this may affect their ability in the lung to mitigate T cell
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immune responses. NK cells are exhausted through chronic stimulation of activating
receptors NKp46 and NKG2D and can be reversed through balancing inhibitory signals
(47). Like exhausted T cells, NK cells can also produce less TNF-a and IFN-y (48)
Although consensus on the regulatory mechanisms behind NK cell exhaustion are not
as well defined as T cell exhaustion (49). Obesity led to enhanced expression of genes
associated with NK exhaustion, suggesting that NK cells may have chronic unbalanced
activating and inhibitory signals, leading to immune evasion by metastasis. Exhausted
NK cells could also contribute to the lower expression of genes associated with TNF
and IFN signaling seen in obese metastatic lungs. Dysfunctional NK cells within lung
metastasis have been found to contribute to ICB resistance in melanoma (50).
Interestingly, B cell receptor (BCR) signaling was also upregulated. B cell memory
signatures have been associated with responses to ICB therapy (51). Further work is
necessary to understand how these different cell types interact together in metastases

and how this activity might be dysregulated in obesity.

Our study shows that despite ERa+ cancers notoriously being labeled as “cold”,
obese patients with ERa+ lung metastasis may benefit for ICB targeting PD-1/PD-L1. In
recent clinical trials, a cohort of patients with endocrine therapy resistant ERa+
metastatic breast cancer responded to ICB therapy.(52, 53) While multiple variables
can exist for response to ICB therapy, the role of obesity was not considered as a
variable for patient outcomes. We identified an exhausted-like state for CD8+ T cells in
metastatic lungs under obese conditions. A recent small clinical trial showed that CD8+
PD-1+ exhausted T cells were present in the blood or tumors of patients with ERa+

metastases that responded to ICB (54). Understanding how obesity alters the function
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of CD8+ T cells could identify biomarkers for patient response to ICB or identify patients

that would benefit from IBC for metastatic ERa+ breast cancer.
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Figure 3-1: Obesity increases immune cell infiltration and PD-1 expression on
CD8+ T cells in lungs of non-tumor bearing mice. A. Weight gain over time of LFD
and HFD mice over 16 weeks. Significance was determined with a multiple t-test at
p<0.05. Flow cytometry quantification of total CD45+ cells (B), CD3+ cells (C), CD4+ T
cells (D), PD1+ CD4+ cells (E), CD8 + T cells (F), and PD1+ CD8+ T cells (G) in lungs
of LFD and HFD-fed non-tumor bearing mice. B-G. Data was quantified using flow
cytometry, and significance was determined using a t- test (p<0.05). Error bars
represent s.e.m.
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Figure 3-2: Obesity increases gene expression associated with T cell receptor
signaling, but impaired response to stimulation in CD8+ T cells in lungs. A.
Heatmap representing all genes found to be significantly different between CD45+
immune cells sorted from the lungs of LFD and HFD-fed non-tumor bearing mice. Gene
expression quantified using NanoString Immune Exhaustion panel (n=3/group). B.
Genes associated with T cell receptor (TCR) signaling signature in HFD-fed mice that
were upregulated (red) and downregulated (blue). C. Genes associated with T cell
checkpoint signaling signature that were upregulated and downregulated in HFD-fed
mice. Cells from the whole spleens of LFD and HFD-fed mice were treated with vehicle
(Un) or stimulated (Stim) with IL-2 and PMAI and CD8+ T cells expressing TNFa (D),
IFNy (E), and PD-1 (F) were quantified using flow cytometry (n=5/group). Cells from
whole lung tissue were treated with vehicle (Un) or stimulated with IL-2 and PMAI, and
CD8+ T cells expressing TNFa (G), IFNy (H), and PD-1 (1) were quantified (n=5/group).
Statistical significance was determined by 2-way ANOVA with Tukey’s multiple
comparison post-test, and error bars represent s.e.m.
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Figure 3-3: TC2 tumor cell model of ERa+ metastasis in obese and lean mice. A.
Mice were randomized to receive LFD or HFD for 16 weeks. LFD and HFD-fed mice
were injected with TC2 cells, then tumors were resected following growth to 0.5 cm in
diameter. Eight weeks following tumor resection, mice were euthanized, and lung tissue
was collected for analysis. B. Weight gain of mice fed LFD or HFD during experiment.
Significance was determined using multiple t tests. C. Representative images of ERa
expression in TC2 tumors in mammary glands of LFD and HFD-fed mice. D.
Quantification of ERa+ TC2 metastasis in the lung of LFD and HFD mice after tumor
removal with representative images. Significance was determined using t-test.
Magnification bars 50 pym.
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Figure 3-4: Obesity increases PD-1 expression and immunosuppressive Tregs in
TC2 ERa+ metastatic lungs. Flow cytometry quantification of total CD45+ immune
cells (A), CD3+ cells (B.), CD4+ T cells (C) and PD1+ CD4+ cells (D) in TC2 ERa+
metastatic lungs of LFD and HFD-fed mice. E. Representative images of CD4+ FoxP3+
Treg cells in LFD and HFD TC2 ERa+ metastatic lungs. Quantification of CD4+ T cells
and CD4+ FOXP3+ Tregs per field of view (FOV). Flow cytometry quantification of
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CD8+ T cells (F) and PD1+ CD8+ T cells (G) in TC2 ERa+ metastatic lungs of LFD and
HFD-fed mice. H. Representative images and quantification of CD8+ T cells in
metastatic lungs of LFD and HFD-fed mice. Significance was determined using a t- test,
and error bars represent s.e.m. Magnification bars 50 um
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Figure 3-5: CD8+ T cells from metastatic lungs of obese show increased levels of
activity despite PD-1 expression. A. Heatmap representing all genes found to be
significantly different between CD45+ immune cells sorted from TC2 ERa+ metastatic
lungs from LFD and HFD-fed mice. Gene expression quantified using NanoString
Immune Exhaustion panel (n=3/group). Genes associated with signatures of TCR
signaling (B), Cytotoxicity (C), Interferon type Il signaling (D), TNF signaling (E), NK cell
exhaustion (F), and BCR cell signaling (G). Genes upregulated in red or downregulated
in blue in HFD-fed mice. H-l. Cells from the whole spleens of LFD and HFD-fed mice
were treated with vehicle (Un) or stimulated (Stim) with IL-2 and PMAI and CD8+ T cells
expressing TNFa (H) and PD-1 (I) were quantified using flow cytometry (n=5/group).
Cells from whole lung tissue were treated with vehicle (Un) or stimulated with IL-2 and
PMAI, and CD8+ T cells expressing TNFa (J) and PD-1 (K) were quantified
(n=5/group). Statistical significance was determined by 2-way ANOVA with Tukey’s
multiple comparison post-test, and error bars represent s.e.m.
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Supplementary Figure 3-1: Gating strategy for flow cytometry experiments in
lungs. Gates for live cells, CD45+, CD3+, CD4+, CD8+, PD-1+ cells were all
determined with fluorescence minus one (FMO) samples.
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Supplementary Figure 3-2: Gating strategy for T cell stimulation experiments of
cells in spleen and lungs. Gates for live cells, CD45+, CD8+, PD-1+, TNFa+, IFNy+
cells were all determined with FMO samples.
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Supplementary Figure 3-3: TC2 tumors grow faster in HFD-fed mice. Tume growth
curve for TC2 ERa+ tumors. Tumors were removed when tumors reached a diameter of
0.5 cm. Tumor volumes were reported as cm3. Significance was determined with a
multiple t-test at p<0.05.
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Supplementary Figure 3-4: TNF and IFN signaling is upregulated in LFD-fed mice
with metastasis compared to non-tumor bearing LFD-fed mice. A. Heatmap
representing all genes found to be significantly different between CD45+ immune cells
sorted from lungs of non-tumor bearing LFD-fed mice and TC2 ERa+ metastatic lungs
of LFD-fed mice. Gene expression quantified using NanoString Immune Exhaustion
panel (n=3/group). Genes associated with signatures of TCR signaling (B), Cytotoxicity
(C), Type Il Interferon (D), and TNF signaling (E). Genes upregulated in red or
downregulated in blue from lungs of LFD-fed mice with TC2 cell metastases compared
to lungs from non-tumor bearing LFD-fed mice.
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Supplementary Figure 3-5: A. T cell activity is suppressed in HFD-fed mice with
metastasis compared to HFD-fed non-tumor bearing lungs Heatmap representing
all genes found to be significantly different between CD45+ immune cells sorted from
lungs of non-tumor bearing HFD-fed mice and TC2 ERa+ metastatic lungs of HFD-fed
mice. Gene expression quantified using NanoString Immune Exhaustion panel
(n=3/group). Genes associated with signatures of TCR signaling (B), Cytotoxicity (C),
and TNF signaling (D). Genes upregulated in red or downregulated in blue from lungs of
HFD-fed mice with TC2 cell metastases compared to lungs from non-tumor bearing
HFD-fed mice.
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Antibody Dilution Manufacturer Catalog Number
Fc Receptor 1 ug/mL ThermoFisher 14-0161-86
CD8 4 pg/mL Novus NBP1-49045
FoxP3 0.2 ug/mL Cell Signaling 12653T
CD4 2 ug/mL Biolegend 100402
Anti-Rabbit 8 pg/mL ThermoFisher A-11008
Secondary green
Anti-Rat Secondary | 8 pg/mL ThermoFisher A-11081
red
CD45 5 ug/mL Biolegend 103101
CD45-eFluor 450 5 ug/mL ThermoFisher 48-0453-82
CD3 PE-efluor610 | 20 pg/mL ThermoFisher 61-0031-82
CD4 APC 2 ug/mL BioLegend 100515
CD8a-PE/Cy7 Lung (4 pg/mL) BioLegend 100721
Spleen (1 pg/mL)
CD115-Brilliant 10 pg/mL BioLegend 135515
Violet 711
CD11b-Brilliant 5 pg/mL BioLegend 101237
Violet 605
PD-1-PE Lung (10 pg/mL) BioLegend 135205
Spleen (2.5 pg/mL)
PD-L1-PerCP- 2.5 yg/mL ThermoFisher 46-5982-82
eFluor 710
TNFa-eFluor 450 Lung (5 pg/mL) ThermoFisher 48-7321-82
Spleen (5 pg/mL)
IFNy-PerCP/Cy5.5 | Lung (1.25 ug/mL) | BioLegend 505822
Spleen (1.25
pg/mL)

Table S3-1: A summary of antibodies used in staining immunofluorescence (IF),
flow cytometry, and cell sorting.




Table S3-2.

Comparison of gene expression from non-tumor bearing LFD and HFD-fed

Gene LFD LFD LFD HFD HFD HFD
Name Naive #1 | Naive #2 | Naive #3 | Naive #1 | Naive #2 | Naive #3
Tcrg-V6 -1.58814 | -0.61647 | -0.13805 | 0.592267 | 1.389797 | 0.360607
Tcrg-V5 -1.51059 | -0.21699 | 0.084555 | 0.178165 | 1.204325 | 0.260525
Trgc1/2/3 | -1.14962 | -0.41963 | -0.2268 | 0.43249 | 1.02486 0.3387
Trdc -0.86882 | -0.68596 | -0.0968 | -0.07762 | 1.074363 | 0.654823
Trdv4 -1.13049 | -0.77492 | -0.47395 | 0.29045 | 1.25592 | 0.83299
Ccl5 -0.28313 | 0.013267 | -0.92553 | 0.260667 | 0.705667 | 0.229067
Pdk4 -1.06565 | 0.199175 | -0.45175 | 0.460165 | 0.411665 | 0.446385
Cxcré -0.79204 | 0.062347 | -0.52828 | 0.271087 | 0.663837 | 0.323057
Tigit -0.17815 | -0.23871 | -0.49924 | 0.240993 | 0.310753 | 0.364343
Hspa5 -0.3372 | -0.5894| -0.1216 0.3229 0.1634 0.5619
Klrcl -0.4086 | -0.62551 | -0.55191 | 0.42558 | 0.81221 | 0.34823
Icos -0.84478 | -0.41611 | -0.22761 | 0.539595 | 0.656155 | 0.292735
Tnfrsf14 -0.00378 | 0.660145 | 0.172435 | -0.2548 | -0.19067 | -0.38335
Cd163 0.365918 | -0.06185 | 0.702998 | -0.61731 | -0.01814 | -0.37161
Hdac7 0.88766 | 0.04431 | 0.05878 | -0.48392 | -0.05722 | -0.44961
Pik3r2 0.43599 | 0.31361 | 0.06505| -0.6703 | -0.05095| -0.0934
Dnmt3a | 0.693173 | 0.146323 | -0.03162 | -0.26965 | -0.28237 | -0.25587
Smad3 0.88063 | -0.01418 | -0.12741 | -0.0007 | -0.5126 | -0.22574
Mif 0.756318 | 0.229108 | -0.16419 | -0.23675 | -0.24997 | -0.33451
Cd4 1.258968 | -0.27671 | 0.278328 | -0.08115 | -0.45685 | -0.72258
Ccnb1 1.280578 | -0.33068 | -0.02971 | -0.25815 | -0.29984 | -0.36219
Gata3 1.750935 | -0.12443 | -0.36046 | -0.40708 | -0.25602 | -0.60297
Lgals9 1.41957 | -0.23652 | -0.14928 | -0.35611 | -0.36057 | -0.31709
Argl 3.09219 | -0.72012 | -0.34719 | -1.18945 | -0.76275 | -0.07268
Tcf7 1.8501 | -0.59584 | 0.19298 | -0.28163 | -0.55839 | -0.60722
Bmp2 1.65679 | -0.44646 | 0.24294 | -0.64372 | -0.11268 | -0.69687
Acsl3 1.335705 | -0.4151 | -0.05216 | -0.45948 | -0.17821 | -0.23078

Table S3-2: Genes significantly different in CD45+ cells isolated from naive lungs

from LFD and HFD-fed mice.
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Table S3-3. Comparison of gene expression from metastatic lungs of LFD and HFD-fed

mice.
Gene HFDTC2 | HFDTC2 | HFDTC2 | LFDTC2 |LFDTC2 |LFDTC2
Name #1 #2 #2 #1 #2 #3
Cd19 0.385533 | 0.376223 | 0.977993 | -1.10219 | 0.041833 | -0.6794
Itga6 0.593733 | 0.148543 | 0.676653 | -0.91759 | 0.025883 | -0.52723
Cdoe 0.207487 | 0.024877 | 0.674177 -0.7695 | -0.14694 | 0.009907
Cdie0 0.664737 | -0.27132 | 0.367917 | -0.45427 | -0.34268 | 0.035627
Nkg7 0.645883 | 0.024803 | 0.361163 | -0.80201 | -0.17256 | -0.05729
Fasl 0.42629 | 0.41494 | 0.54639 | -0.57536 | -0.14184 | -0.67042
Klrc1 0.485395 | 0.164755 | 0.633485 | -0.5207 | -0.41568 | -0.34727
Bcl2 0.710153 | 0.306913 | 0.439893 | -1.0038 | -0.18438 | -0.26879
Ctsw 0.416247 | 0.374397 | 0.257247 | -0.87268 | 0.042517 | -0.21772
Cd79b 0.287522 | 0.632752 | 1.191132 | -0.80502 | -0.31844 | -0.98795
Iglc1 -0.12636 | 0.513082 | 0.822352 | -0.2933 | -0.15085 | -0.76493
Ms4al -0.04332 | 0.696238 | 1.138538 | -0.68773 | -0.21074 | -0.89298
Tcrg-V6 | 0.808335 | 0.230285 | 0.670225 | -1.09951 | -0.77735 | 0.168005
Trdc 0.897868 | 0.295208 | 0.705968 | -0.68525 | -0.94805 | -0.26574
Ncri 1.207105 | 0.334925 | 0.542435 | -1.34486 | -0.2997 | -0.43992
Gzma 1.077953 | 0.172353 | 0.189513 | -0.68713 | -0.41303 | -0.33967
Spib -0.4922 | 0.522843 | 0.743213 | -0.51809 | -0.03494 | -0.22084
Blk -0.092 | 0.217055 | 0.548185 | -0.22893 | -0.45376 | 0.009435
Tratl -0.1879 | 0.250442 | 0.678352 | -0.06179 | -0.32961 | -0.3495
Rasgrp3 | 0.105775 | 0.113745 | 0.503665 | -0.01543 | -0.14661 | -0.56116
Foxo1l 0.060355 | 0.379465 | 0.378965 | -0.04861 | -0.22919 -0.541
Trdv2-
1/2-2 0.9872 | 0.60558 | -0.07418 | -0.01794 | -0.16526 | -1.3354
Prf1l 1.191705 | 0.090415 | 0.391795 | -0.60444 | -0.20006 | -0.86943
Ehhadh 0.72094 | -0.23672 | 0.27455 | 0.04427 | -0.28831 | -0.51473
Sesnl 0.507847 | -0.05561 | 0.350437 | -0.13472 | -0.17513 | -0.49281
Tgfb2 0.607373 | -0.33261 | 0.678833 | 0.282813 | -1.27217 | 0.035753
Pctp 0.388118 | -0.02452 | 0.006208 | 0.004028 | -0.4958 | 0.121968
Cblb 0.354945 | 0.159165 | 0.274495 | -0.22212 | -0.30882 | -0.25768
Clcf1l -0.01179 | 0.56812 | -0.21068 | -0.12385 | -0.05734 | -0.16446
Taf6l 0.331272 | 0.190092 | 0.168432 | -0.37851 | -0.22337 | -0.08792
Cd33 -0.13846 | -0.97775 | -0.25266 | -0.07539 | 0.468017 | 0.976257
Gk -0.18558 | -1.07693 | 0.173158 | -0.05456 | 0.509498 | 0.634418
Cd14 -0.18005 | -0.92675 | -0.11175 | 0.13495 | 0.40105| 0.68255
1r2 -0.27545 | -1.19995 | -0.72365 | 0.28645 | 1.01065| 0.90195
Socs3 -0.31353 | -0.29518 | -0.31801 | -0.10677 | 0.441197 | 0.592307
Sesn2 -0.42423 | -0.54127 | 0.044945 | -0.11723 | 0.305765 | 0.732005
Fas -0.33389 | -0.62998 | -0.01278 | 0.124795 | 0.216085 | 0.635755




Stat3 -0.21685 | -0.51295 | -0.17465 | 0.00315 | 0.34635 | 0.55495
Entpdl -0.64518 | -0.40896 | -0.09945 | 0.247113 | 0.347933 | 0.558533
Ptafr -0.77632 | -0.19065 | -0.18012 | 0.227998 | 0.340398 | 0.578698
Oas2 -1.40632 | -0.12326 | -1.33645 | 0.234365 | 1.184915 | 1.446735
Oas3 -1.11663 | -0.25299 | -0.69885 | 0.257398 | 0.583778 | 1.227298
Ciita -0.88932 | 0.07509 | -0.35051 | 0.33271 0.2276 | 0.60443
H2-Eb1l | -1.10106 | 0.185273 | -0.68328 | 0.752963 | -0.06117 | 0.907263
Cxcl9 -1.03099 | -0.13697 | -0.48227 | 0.869115 | 0.007045 | 0.774055
Oasla -0.7524 | 0.282762 | -0.65654 | 0.194732 | 0.073862 | 0.857582
Nfkbie -0.7097 | 0.037843 | -0.45223 | 0.556173 | 0.190453 | 0.377453
Gbp2 -0.68247 | -0.29672 | -0.27717 | 0.362643 | 0.369683 | 0.524023
Cd86 -0.50495 | -0.15546 | -0.46411 | 0.927557 | -0.1454 | 0.342377
Cd8o -0.1889 | -0.1843 | -0.47666 | 0.727612 | 0.059652 | 0.062592
Mmp14 | -0.60092 | -0.55163 | -1.01321 | 0.972645 | 0.324555 | 0.868545
Cxcl3 -0.39323 | -1.11303 | -0.76329 | 1.077483 | 0.053843 | 1.138213
Iirn -0.32943 | -0.48063 | -0.19563 | 0.650467 | 0.102467 | 0.252767
Ccnt2 -0.31356 | -0.38712 | -0.24668 | 0.364338 | 0.067588 | 0.515438
Nfe2l2 -0.31495 | -0.44995 | -0.13795 | 0.39945 | 0.07895 | 0.42445
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Table S3-3: Genes significantly different in CD45+ cells isolated from TC2 ERa+
metastatic lungs from LFD and HFD-fed mice.



Table S3-4. Comparison of gene expression from lungs of non-tumor bearing and
metastatic LFD-fed mice.

LFD LFD LFD LFDTC2 |LFDTC2 | LFDTC2

Gene Name Naive #1 | Naive #2 | Naive #3 | #1 #2 #3

Slc2a3 -1.03321 | -1.4014 | -1.06158 | 0.081978 | 1.479768 | 1.934448
Hdc -1.05879 | -1.5066 | -1.70291 | -0.0339 | 2.028257 | 2.273957
Oas3 -1.40959 | -1.8585| -0.92298 | 0.96493 | 1.29131 | 1.93483
Oas2 -1.81152 | -1.79093 | -0.71887 | 0.719468 | 1.670018 | 1.931838
Mmp9 -1.1457 | -1.71295 | -2.23188 | 0.110025 | 2.133895 | 2.846595
Mapk13 -0.73703 | -1.59092 | -2.34728 | 0.559493 | 1.748153 | 2.367573
Csf3r -1.10393 | -1.65909 | -1.94852 | 0.418475 | 1.992375 | 2.300675
I11f9 -1.46546 | -1.69816 | -2.69156 | 0.94842 | 2.48543 | 2.42133
11r2 -1.25965 | -2.31328 | -2.06858 | 1.433938 | 2.158138 | 2.049438
Cxcl3 -1.40322 | -1.25139 -2.139 | 1.91884 0.8952 | 1.97957
I11b -1.0416 | -1.3267 | -1.8647 0.737 1.7981 1.6979
Gbp2 -0.51197 | -0.65983 | -0.92463 | 0.64267 | 0.64971 | 0.80405
Pdcdilg2 -0.20783 | -0.99085 | -0.49239 | 0.633023 | 0.231513 | 0.826523
Fas -0.5634 | -0.66835 | -0.65532 | 0.428272 | 0.519562 | 0.939232
Lilra6 -1.04187 | -0.96117 | -0.58236 | 0.985473 | 0.682023 | 0.917893
Ptafr -0.85879 | -0.74343 | -0.86967 | 0.669593 | 0.781993 | 1.020293
Entpd1l -0.87418 | -0.76348 | -0.42286 | 0.549423 | 0.650243 | 0.860843
I113ral -0.99174 | -0.51042 | -0.26481 | 0.522027 | 0.455727 | 0.789227
Adora2b -1.2728 | -0.86519 | -1.2578 | 1.738322 | 0.107312 | 1.550152
Fcgr2b -0.89736 | -0.6105| -1.02881 | 1.471163 | 0.010833 | 1.054663
Cxcl9 -0.73751 | -0.93932 | -0.36476 | 0.999577 | 0.137507 | 0.904517
Ahr -0.90186 | -0.64266 | -0.46944 | 0.822618 | 0.306778 | 0.884568
Gk -0.68791 | -0.65065 | -0.55074 | 0.212088 | 0.776148 | 0.901068
Gng12 -0.60655 | -0.54839 | -0.63572 | 0.247892 | 0.509732 | 1.033032
Ccr2 -0.83581 | -0.31005 | -0.5787 | 0.391352 | 0.264752 | 1.068452
Piral -0.78774 | -0.40441 | -0.39522 | 0.180753 | 0.549953 | 0.856653
Plscr1 -1.12734 | -0.07322 | -0.24714 | 0.238307 | 0.388607 | 0.820797
Socs3 -0.9169 | -0.20166 | -0.3821 | 0.084538 | 0.632508 | 0.783618
Pirb -0.85568 | -0.26217 | -0.45705 | 0.132963 | 0.662613 | 0.779313
Nfil3 -0.98001 | -0.31131 | -0.97828 | 0.615895 | 0.648895 | 1.004795
Oasla -0.85572 | -0.57086 | -0.82181 | 0.568807 | 0.447937 | 1.231657
Ncf4 -0.76702 | -0.53732 | -0.80392 | 0.261483 | 0.685983 | 1.160783
Gadd45a -0.60159 | -0.9361 | -1.01216 | -0.00961 | 1.261178 | 1.298288
Sell -0.60967 | -0.8367 | -1.1066 | 0.472027 | 0.866327 | 1.214627
Csf1 -0.61765 | -1.12878 | -0.78757 | 0.351507 | 1.484047 | 0.698457
Cxcl2 -0.90655 | -0.89345 | -0.51085 | 0.44465 | 1.21085| 0.65535
Ccer1 -0.95851 | -0.64153 | -1.14239 | 0.478578 | 1.242768 | 1.021088
Ptgs2 -0.64796 | -0.66528 | -1.17342 | 0.457437 | 1.216047 | 0.813187




Cd14 -1.06163 | -0.81473 | -1.19113 | 0.751267 | 1.017367 | 1.298867
1115 -1.05169 | -0.94705 | -0.79108 | 0.531715 | 0.900425 | 1.357665
Cd33 -1.30825 | -0.82103 | -0.73829 | 0.42417 | 0.96758 | 1.47582
Jak2 -0.31232 | -1.05965 | -0.05952 | 0.760095 | 0.589795 | 0.081585
I11rll -0.81918 | -0.6199 | -0.27812 | 0.697457 | 0.629577 | 0.390177
Hspab -0.4162 | -0.6684 | -0.2005 0.6023 0.545 0.1378
St3gal6 -0.39463 | -0.6477 | -0.34973 | 0.10582 | 1.04561 | 0.24063
S0s2 -0.38318 | -0.41188 | -0.23814 | 0.007125 | 0.655475 | 0.370585
Il6ra -0.49289 | -0.48202 | -0.18669 | 0.125568 | 0.496068 | 0.539968
Tax1bpl -0.24371 | -0.55703 | -0.12578 | 0.102043 | 0.253433 | 0.571033
Ptprc -0.4025 | -0.3539| -0.2115| -0.0718 0.3667 0.673
Cd200r1 -0.70328 | -0.26252 | -0.14628 | 0.558475 | 0.314325 | 0.239265
Cdg4 -0.71115 | -0.27131 | -0.10071 | 0.37189 | 0.34519 | 0.36609
Nfkbie -0.63195 | -0.35535 | -0.60662 | 0.712783 | 0.347063 | 0.534063
Vav3 -0.72592 | -0.31131 | -0.43365 | 0.446157 | 0.359527 | 0.665207
Nfe2l2 -0.65852 | -0.37012 | -0.45182 | 0.591983 | 0.271483 | 0.616983
Fcerlg -0.52655 | -0.09505 | -0.32005 | 0.24565 | 0.04895 | 0.64705
Batf -0.77422 | 0.033185 | -0.48593 | 0.354355 | 0.149025 | 0.723575
Scp2 -0.54989 | -0.10189 | -0.52894 | 0.355347 | 0.182137 | 0.643247
Cd8o -0.88997 | -0.17208 | -0.30142 | 0.898813 | 0.230853 | 0.233793
Ilirn -1.00524 | -0.26908 | -0.41494 | 0.87832 | 0.33032 | 0.48062
Osm -0.94429 | -0.30422 | -0.65382 | 0.610817 | 1.097017 | 0.194507
Mcll -0.89215 | -0.36095 | -0.36305 | 0.28665 | 0.62285 | 0.70665
Syk -0.815| -0.1028 | -0.2978 0.1466 0.5916 0.4774
Sesn2 -0.62945 | -0.06188 | -0.66984 | 0.029645 | 0.452635 | 0.878875
Cebpb -0.74672 | 0.045583 | -0.48022 | 0.160983 | 0.385183 | 0.635183
Bcl6 -0.26255 | -0.52611 | -0.59797 | 0.009582 | 0.504102 | 0.872942
4632428N05Rik | -0.48829 | -0.42286 | -0.46445 | 0.118837 | 0.637137 | 0.619637
Nfkb2 -0.41169 | -0.27109 | -0.36652 | 0.084292 | 0.359452 | 0.605552
Stat3 -0.4707 | -0.2846 | -0.4445 0.1016 0.4448 0.6534
Siglech 0.297625 | -0.11328 | 0.983315 | -0.17926 | -0.51665 | -0.47177
Cd163 0.310625 | -0.11716 | 0.647705 | -0.37323 | -0.37517 | -0.09279
Cd180 0.26347 | 0.17315| 0.41832 | -0.35826 | -0.31553 | -0.18115
I127ra -0.16843 | 0.232763 | 0.404053 | 0.155063 | -0.21397 | -0.40949
Atm 0.0568 | 0.13143 | 0.56257 | -0.09513 | -0.16591 | -0.48976
Rasgrp3 0.357567 | 0.336637 | 0.366417 | -0.1279 | -0.25908 | -0.67363
[16st 0.256938 | 0.336658 | 0.430468 | -0.17748 -0.311 | -0.53558
Pik3r2 0.418708 | 0.296338 | 0.047768 | -0.1058 | -0.59366 | -0.06335
Cd276 0.108638 | 0.314768 | -0.00036 | 0.054658 | -0.60723 | 0.129528
Pvrig -0.05475 | 0.509465 | 0.304125 | -0.0559 | -0.55199 | -0.15097
Blk 0.068352 | 0.590332 | 0.101962 | -0.25806 | -0.48289 | -0.0197
Cd22 -0.32709 | 1.26005 | 0.51325 | -0.34467 | -0.65202 | -0.44952
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I7r -0.09127 | 0.826705 | 0.432245 | -0.50456 | -0.52072 | -0.14242
Hdac9 -0.24457 | 0.287512 | 0.501242 | -0.18071 | -0.25764 | -0.10584
Creb312 -0.27312 | 0.546128 | 0.321488 | -0.1435| -0.2394 | -0.21159
Clcfl 0.087703 | 0.734473 | 0.468613 | -0.4389 | -0.37239 | -0.47951
Cblb -0.03046 | 0.50675 0.5415 | -0.29851 | -0.38521 | -0.33407
Ptprs 0.111038 | 0.440568 | 0.456378 | -0.4886 | -0.39515 | -0.12423
Ppp3cc 0.185405 | 0.314305 | 0.259435 | -0.31326 | -0.27924 | -0.16666
Lefl 0.612613 | 0.567233 | 0.692223 | -0.59741 | -0.97124 | -0.30343
Pmepal 0.162832 | 0.565882 | 0.566602 | -0.17808 | -1.06649 | -0.05075
Trdc 0.166477 | 0.349327 | 0.938497 -0.537 | -0.7998 | -0.11749
Cd19 0.638678 | 0.749678 | 0.814098 | -1.25642 | -0.1124 | -0.83363
Cd79b 0.851963 | 0.714013 | 0.462923 | -0.77752 | -0.29094 | -0.96045
Trdv2-1/2-2 0.206538 | 0.898498 | 1.693158 | -0.44447 | -0.59179 | -1.76193
Prfl 0.535267 | 1.167517 | 0.613217 | -0.81846 | -0.41408 | -1.08345
Sesnl 0.554818 | 0.627768 | 0.635698 | -0.47326 | -0.51367 | -0.83135
Fasl 0.319465 | 0.891845 | 0.470775 | -0.67352 -0.24 | -0.76858
Grap2 0.496322 | 0.593332 | 0.599322 | -0.75522 | -0.4054 | -0.52836
Nkg7 0.5601 | 1.00871 | 0.22748 | -1.05682 | -0.42737 | -0.3121
Ncrl 0.927142 | 1.090592 | 0.810622 | -1.59282 | -0.54766 | -0.68788
Gzma 0.614907 | 1.153957 | 0.463247 | -0.95122 | -0.67712 | -0.60376
Zbtb16 -0.11902 | 0.723058 | 1.279458 | -1.09551 | -0.12097 | -0.66701
Bcl2 0.323015 | 0.787905 | 0.758475 | -1.14128 | -0.32186 | -0.40627
Cd28 0.683418 | 0.394218 | 0.774548 | -1.00129 | -0.60047 | -0.25042
Cdo6 0.251388 | 0.462788 | 0.618418 | -0.91152 | -0.28896 | -0.13211
Ptpn22 0.150063 | 0.472863 | 0.532193 | -0.63285 | -0.19367 | -0.32861
Siprl 0.062975 | 1.050575 | 0.767605 | -1.25014 | -0.50467 | -0.12636
Tnfrsf14 0.257083 | 0.921013 | 0.433293 | -1.31238 | -0.3297 | 0.030683
Eomes 0.733075 | 0.542155 | 0.131825 | -0.84488 | -0.62225 | 0.060065
Mif 0.925367 | 0.398157 | 0.004847 | -0.79405 | -0.29289 | -0.24142
Msdal 0.651202 | 0.490542 | 0.235852 | -0.54978 | -0.07279 | -0.75503
Spib 0.600393 | 0.471223 | 0.151583 | -0.66787 | -0.18472 | -0.37062
Taf6l 0.40819 | 0.65537 | 0.11299 | -0.54076 | -0.38562 | -0.25017
Ctsw 0.776668 | 0.220278 | 0.310588 | -0.95923 | -0.04403 | -0.30427
Pml 0.562102 | 0.427092 | 0.404362 | -0.93954 | 0.028042 | -0.48206
Foxol 1.015117 | 0.301647 | 0.246857 | -0.29688 | -0.47746 | -0.78927
Gnas 0.643645 | 0.360645 | 0.245945 | -0.29238 | -0.59313 | -0.36474
Plcgl 0.811953 | -0.05812 | 0.491033 | -0.52266 | -0.13926 | -0.58296
Acaca 0.637108 | -0.11283 | 0.272168 | -0.22391 | -0.08561 | -0.48692
Cd160 0.797425 | -0.27314 | -0.07328 | -0.35084 | -0.23925 | 0.139065
Ptpn7 0.682185 | 0.057265 | 0.095315 | -0.28829 | -0.41023 | -0.13626
Mcm5 0.656538 | 0.121658 | 0.210128 | -0.40102 | -0.50371 | -0.08359
Dgkz 0.498488 | 0.307558 | 0.314878 | -0.44892 | -0.38933 | -0.28267
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Acsl3 1.396298 | -0.35449 | 0.008448 | -0.12918 | -0.47444 | -0.44663
Chek1 1.321478 | -0.19228 | -0.16637 | -0.31489 | -0.17087 | -0.47706
Pycr2 1.376613 | -0.16209 | -0.03309 | -0.4484 | -0.35952 | -0.37353
Trac 1.557118 | -0.10724 | 0.104748 | -0.77883 | -0.40743 | -0.36836
Mcm7 1.438295 | -0.06174 | 0.297575 | -0.64741 | -0.39432 | -0.63242
Lck 1.296508 | -0.11687 | 0.214838 | -0.73015 | -0.14844 | -0.51588
Cd4 1.704203 | 0.168523 | 0.723563 | -0.97934 | -0.67686 | -0.9401
ltgab 1.417197 | 0.226177 | 1.087057 | -1.35475 | -0.41128 | -0.96439
Trbc1/2 1.425045 | 0.076045 | 0.696065 | -1.40858 | -0.63725 | -0.15134
Hdac7 1.378368 | 0.535008 | 0.549478 | -1.51098 | -0.51576 | -0.43611
Zap70 1.15965 | 0.32319 | 0.52891 | -1.32144 | -0.11031 -0.58
Cd8a 2.101313 | -0.83747 | 0.628573 | -0.61598 | -1.0349 | -0.24155
Cd8b1 2.391653 | -0.66241 | 0.804423 | -1.11918 | -0.45264 | -0.96186
Tcf7 2.346488 | -0.09939 | 0.689438 | -1.31638 | -0.87252 | -0.74763
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Table S3-4: Genes significantly different in CD45+ cells isolated from TC2 ERa+
metastatic lungs and naive lungs from LFD-fed mice.



Table S3-5. Comparison of gene expression from lungs of non-tumor bearing and
metastatic HFD-fed mice.

HFDTC2 | HFDTC2 | HFDTC2 | HFD HFD HFD

Gene Name #1 #2 #3 Naive #1 | Naive #2 | Naive #3

Mmp9 2.091517 | -0.24962 | 1.698477 | -0.3791 | -1.58933 | -1.57193
I11b 1.826 0.2449 1.3371| -0.4377 -1.489 | -1.4813
Mapk13 1.76257 1.0352 | 1.36195 | -1.23442 | -1.52901 | -1.39629
Hdc 1.570212 | 0.388532 | 1.718912 | -0.66521 | -1.67721 | -1.33524
119 2.21698 | 0.64582 | 1.54492 | -0.30289 | -2.08178 | -2.02305
Csf3r 1.871578 | 0.315498 | 1.511778 | -0.41275 | -1.76366 | -1.52244
Pdcd1lg2 0.347857 | 0.584617 | 0.221117 | -0.31875 | -0.50187 | -0.33296
Bid 0.710098 | 0.169048 | 0.342938 | -0.14297 | -0.55371 | -0.5254
Fos 0.512783 | -0.11202 | 0.565683 | -0.44472 | -0.22322 | -0.29852
Dusp1 0.8186 | -0.2352 0.5521 | -0.3031| -0.4087| -0.4237
Msdada 0.369843 | 0.238033 | 0.998623 | 0.279733 | -0.81716 | -1.06908
Lilra6 0.634957 | 0.890637 | 0.697057 | -0.3435 | -0.57025 | -1.30889
Sell 0.789847 | 0.368147 | 0.764447 | -0.14005 | -0.95642 | -0.82596
Ptgs2 1.103253 | 0.182783 | 1.078473 | -0.27636 | -1.12917 | -0.95899
Gadd45a 1.2288 | -0.13205 | 0.84906 | -0.3925 | -0.73415 | -0.81916
Ccr1 1.30131 | -0.0723 | 0.80052 | -0.2381 | -0.98266 | -0.80877
Cebpd 0.909198 | 0.032648 | 0.543888 | 0.089738 | -0.60794 | -0.96753
Cd101 1.218777 | -0.11465 | 0.753997 | -0.22303 | -0.7134 | -0.92168
I112b -0.43744 | -0.45154 | -0.89657 | 0.687842 | 0.140052 | 0.957652
110 0.216645 | -0.60579 | -0.89574 | 0.228415 | 0.386335 | 0.670125
Cxcl1 -0.06763 | -0.34123 | -0.55503 | 0.210367 | 0.086067 | 0.667467
Cd276 -0.17633 | -0.15953 | -0.55105 | 0.132108 | 0.290028 | 0.464778
Itgae -0.15182 | -0.24347 | -0.45236 | -0.01953 | 0.418503 | 0.448663
lcam1 -0.42979 | -0.07909 | -0.38814 | 0.261475 | 0.310455 | 0.325075
Klrk1 -0.32549 | -0.29753 | -0.39237 | 0.281388 | 0.365598 | 0.368408
Cblb -0.28067 -0.396 | -0.20022 | 0.255322 | 0.187282 | 0.434282
Card11 -0.38386 | -0.5857 | -0.10815 | 0.325318 | 0.358148 | 0.394248
Cyp8b1 -0.22567 | -0.23487 | -1.03577 | 0.198798 | 0.735228 | 0.562288
Ccl12 -0.16575 | -0.14757 | -0.75346 | 0.134093 | 0.525213 | 0.407463
Icos -0.36149 | 0.083795 | -0.78108 | 0.149495 | 0.512915 | 0.396355
Rora -0.40483 | 0.069607 | -0.56018 | 0.055647 | 0.571657 | 0.268107
Trgv1/Trgv2/Trgv3 | -0.00206 | -1.11079 | -0.24581 | 0.294857 | 0.452777 | 0.611037
Ccl3 0.046912 | -1.29121 | -0.38344 | 0.644112 | 0.398612 | 0.585012
Ccl2 -0.1166 | -0.71145 | -0.51145 | 0.781107 | 0.335587 | 0.222817
H2-Ob -0.11079 | -0.42961 | -0.42038 | 0.475495 | 0.198555 | 0.286715
Trdv4 -0.61479 | -0.64408 | -0.09753 | 0.492002 | 0.914932 | -0.05054
Klrd1 -0.5695 | -0.83023 | -0.16755 | 0.407507 | 0.749847 | 0.409937
Ccl5 -0.46863 | -0.68823 | -0.50103 | 0.383267 | 0.859767 | 0.414867




Trgc1/2/3

-0.29937

-0.49383

-0.31605

0.109762

0.795932

0.203552

Klrc1

-0.31444

-0.78317

-0.46253

0.339608

0.803578

0.416958
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Table S3-5: Genes significantly different in CD45+ cells isolated from TC2 ERa+
metastatic lungs and naive lungs from HFD-fed mice.
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CHAPTER 4:

Obesity increases the efficacy of anti-CSF-1R inhibitors combined with anti-PD-1
immune checkpoint blockade therapy in a model of ERa+ breast cancer
metastasis.
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Abstract:

Breast cancer patients with a body mass index (BMI) of 230 kg/m? have an increased
risk for metastatic disease compared to patients with a BMI in the normal range. We
have previously observed elevated CSF-1R+ macrophages surrounding estrogen
receptor (ER)+ metastases in obese mice and increased PD-1+ CD8+ T cells. These
results are suggestive that immunotherapy targeting CSF-1R and PD-1 may be
beneficial to reduce metastases. To test this hypothesis, we fed 3-week-old female
FVB/N mice either a low-fat diet (LFD) or high-fat diet (HFD) for 16 weeks to induce
obesity, then injected estrogen receptor alpha positive (ERa+) TC2 cells into the
mammary fat pads. Tumors grew to 0.5 cm in diameter then were surgically removed to
model metastatic growth. LFD and HFD-fed mice bearing metastasis were treated with
anti-PD-1 antibodies with or without anti-CSF-1R therapy. In response to anti-PD-1
therapy, obese mice had an influx of T cells into metastatic lungs, and NanoString
analysis showed that cytotoxic gene expression was upregulated in lean mice, while
obese mice had upregulated expression of genes associated with T cell checkpoints.
Obese mice had reduced metastasis in response to treatment with anti-CSF-1R
antibodies and decreased numbers of PD-L1+ myeloid cells. Obese mice treated with
combined CSF-1R and PD-1 therapies showed increased inflammation and elevated
PD-1+ CD8+ T cells in obese mice. Additionally, obese mice had less metastasis
compared to lean mice on dual therapy. Our results show that macrophage depletion in

combination with anti-PD-1 inhibitors reduces ERa+ metastases in obese mice.
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Introduction:

Patients with breast cancer and obesity are more likely to have metastasis at the
time of diagnosis (1-3). Further, obese patients have worse overall survival when
treated with standard of care therapy (4). Luminal B breast cancer expresses estrogen
receptor alpha (ERa+) and are associated with higher histological grade (5). ERa+
disease accounts for 70% of breast cancers diagnosed in women (6) Luminal B breast
cancer is associated with obesity and obese women with ERa+ have increased risk for
metastasis and have lower levels of survival (7) (8, 9). Although ERa+ tumors are
removed as part of standard of care, metastasis can occur 20 years after resection (10,

11).

Immune checkpoint blockade (ICB) has emerged as a new tool in cancer
treatment. However, ICB therapy targeting programmed cell death-1 (PD-1) and its
ligand PD-L1 are not efficacious in all patients. In ERa+ breast cancer, the responses to
ICB are very low, with objective response rates equaling 12% (12). Strategies have
emerged to increase the efficacity of ICB targeting PD-1/PD-L1 in several cancers,
including breast cancer (13). Methods to increase tumor infiltrating lymphocytes have
improved ICB responses in immunogenically cold tumors (14, 15). To increase tumor
infiltrating lymphocytes, one strategy is to deplete macrophages within the mammary
tumors (16). Macrophages can limit the infiltration of lymphocytes like CD8+ T cells
within tumors. Within breast cancer metastasis, higher levels of macrophages around
lung metastasis have been seen under obese conditions (17) Therefore, combining
macrophage depletion strategies with checkpoint inhibitors may improve overall anti-

tumor immune responses. Colony stimulating factor-1 receptor (CSF-1R) inhibitors have
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been used clinically to deplete macrophages and monocytes in the tumor
microenvironment. In pre-clinical models, combining CSF-1R inhibitors with anti-PD-1
inhibitors in mammary tumors in mice have improved CD8+ T cell infiltration and
decreased tumor volume compared to each therapy alone (18). However, it is unknown
what effects these two immunotherapies will have in a model of ERa+ breast metastasis

under conditions of obesity.

Obesity is associated with chronic inflammation and adaptive immune cell
dysfunction (19). Obesity causes macrophage driven inflammation within fat and the
mammary gland (20, 21). Macrophages have been shown to promote breast cancer
growth and suppress CD8 +T cells in primary tumors in obesity (22), and we have
previously shown that there is an increase of CSF-1R+ macrophages within metastasis
in the lungs of obese mice (17). Others have shown an increase in monocytes and PD-
1+ CD8+ T cells within lung metastasis in obese mice (23). Together, these studies
suggest that depletion of CSF-1R+ macrophages may enhance anti-PD-1 therapies in

obese mice in ERa+ metastatic breast cancer.

Here we feed female FVB/N mice a low-fat diet (LFD) or high-fat-diet (HFD) to
model obesity. We orthotopically injected TC2 ERa+ mammary cells into the mammary
fat pad to model ERa+ breast cancer. Mice were treated with either IgG control, anti-
PD-1 or anti-CSF-1R antibodies or a combination of both therapies to answer how the
metastatic immune microenvironment in the lungs responds under lean and obese
conditions. Our work may identify a new therapeutic opportunity to reduce metastasis

for patients with stage IV ERa+ breast cancer.



130

Materials and Methods:

Mouse Models

All animal procedures were approved by the University of Wisconsin Institutional
Animal Care and Use Committee, per guidelines published by the NIH Guide for the
Care and Use of Laboratory Animals (Animal protocol number V005188). All mice were
housed in AAALAC-accredited facilities. Three-week-old-female FVB/N (FVB/NTac,
Taconic Biosciences) mice were fed either a purified chow low-fat diet (LFD; 16% kcal
from fat; 2920X; Teklad Global; ENVIGO) or high-fat diet (HFD; 60% kcal from fat; Test
Diet 58Y1; 0056833) for 16 weeks to induce obesity. Food and water were provided ad
libitum. Body weights were measured weekly. LFD and HFD-fed mice were
orthotopically transplanted with ERa* GFP* TC2 cells. 75,000 TC2 cells suspended in
1X PBS were injected into bilateral fourth inguinal mammary glands. Tumor diameters
were measured each week using calipers. Tumor volume was calculated using the
formula (L*W*W)/2. Once tumors reached a diameter of 0.5 cm, tumors were resected.
If tumors recurred at the surgical site, mice were excluded from the study. Mice were
fed their respective diets for another 8 weeks before beginning immunotherapy
regimens.

After 8 weeks, mice were randomized to receive either immunoglobulin G (IgG)
control (BioCell; BE0089), anti-CSF-1R (BioCell; BE0146), anti-PD-1 (BioCell;
BE0146), or anti-CSF-1R, and ant-PD-1 antibodies. IgG and anti-PD-1 were injected
intraperitoneally with 250 pug/0.2 mL in sterile PBS every 3 days for 2 weeks. Anti-CSF-
1R treated mice were given a 1.0 mg loading dose in sterile PBS then 0.5 mg doses

every 5 days for a total of 2.5 mg per mouse. Mice treated anti-CSF-1R and anti-PD-1



131

antibodies were given a 1.0 mg loading dose of anti-CSF-1R then began anti-PD-1
treatment the next day. For NanoString analysis, mice were treated with 1gG, anti-PD-
1, and anti-CSF-1R antibodies once tumors reached 0.7 cm in diameter. Mice were
collected a day after the last antibody treatment. At the end of treatment, mice were

humanely euthanized with CO2 asphyxiation.

Cell culture

TC2 cells were provided by Dr. Linda Schuler at the University of Wisconsin-
Madison (24). TC2 cells were cultured in DMEM (Corning; 10-017-CV, Corning, NY,
USA) supplemented with 10% FBS and 1 mg/mL G418 (ThermoFisher Scientific;
11811023, Waltham, MA, USA). All media contained 1% antibiotic/antimycotic solution,
and cells were maintained at 37°C in 5% CO2. Tumor cell lines were not further validated
and were tested for mycoplasma prior to use in experiments (ldexx BioAnalytics,
Columbia, MO, USA). Before transplantation, TC2 cells were trypsinized with 0.25%
trypsin for 5 minutes at 37°C in 5% COs2. Cells were then counted and suspended in PBS

at 2.5 x103 cells/mL.

Tissue Collection

Blood was removed from lungs via cardiac puncture following euthanasia. The
three largest lobes of the lungs from each mouse were manually minced in 1 mL of DMEM
(Corning, 10-017-CV) supplemented with 10% FBS (Gibco, A52567-01), 1% antibiotic-
antimycotic solution (Corning, 30-004-Cl), 10 pg/mL insulin (Sigma-Aldrich, 10516), 5
ng/mL human epidermal growth factor (Sigma-Aldrich, E9644), 0.5 uyg/mL hydrocortisone

(Sigma-Aldrich, HO888), 3 mg/mL collagenase A (Sigma-Aldrich), and 0.1 mg/mL DNase
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| (Sigma-Aldrich, 10104159001) and digested for 45 mins at 37°C. Tissue was not frozen

prior to RNA extraction or flow cytometry staining.

Flow Cytometry

After digestion, lungs were mechanically dissociated through a 20-gauge needle
in 5% bovine calf serum (BCS) in PBS to achieve a cell suspension. Samples were then
incubated for 2 mins in Ammonium—chloride—potassium (ACK) lysis buffer (Quality
Biological; 118-156-101, Gaithersburg, MD, USA) to lyse red blood cells. Next, samples
were filtered 100 um (Falcon; 352360) and 40 um cell strainers (Falcon; 352340) to isolate
single cells. For each mouse, 500,000 lung cells were blocked with Fc blocking antibody
(CD16/32, ThermoFisher; 14-0161-82) for 20 minutes. To assess viability, each lung
sample was stained with live/dead UV blue dye (ThermoFisher; L34961) in PBS for 30
minutes at 4°C in the dark. A sample spiked with cells heat-killed at 60°C for 5 mins was
included as a control. Antibodies for flow cytometry analysis are listed in Table S1.
Samples were incubated with antibodies for 20 min in 2% BCS/PBS at 4°C. Cells were
fixed with Cyofix/CytoPerm Plus kit with Golgi Plug (BD Biosciences; 555028) for 25
minutes, then stored in 2% BCS/PBS at 4°C overnight. Flow cytometry was conducted
on a Cytek Aurora Cytometer using SpectroFlo software. Fluorescence minus one (FMO)
and single-color controls were included. Single color controls conjugated to UltraComp
ebeads (ThermoFisher; 01-2222-42), and a sample of unstained cells and beads were
used to determine fluorophore unmixing. Samples and FMOs were analyzed using

FlowJo (version 10.1).
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CD8+ T cell stimulation experiments

Whole lung tissue isolated from mice with TC2 tumors was digested and separated
into a single cell suspension. F4/80+ macrophages were FACS sorted from LFD and
HFD-fed tumor bearing mice (ThermoFisher; 17-4801-82). CD8+ T cells were isolated
from a spleen from a LFD-fed mouse using the EasySep Mouse CD8+ T cell Isolation Kit
(Stemcell Technologies; 19853). 24 well plates were coated with (1 pg/mL) CD3
antibodies (eBioscience; 16-0032-82) for 2 hours in 1X PBS at °C in 5% COZ2. PBS was
then removed from wells. T cells and macrophages were incubated at a 1:3 ratio
(macrophages/CD8+T cells) in RPMI media (Corning; 10-040-CV) in CD3 antibody
coated wells with 10% FBS, with or without (5 ug/mL) CD28 antibodies (eBioscience; 16-
0281-82) for 24 hours. After 19 hours Golgi Plug from BD Cytofix/Cytoperm Plus (BD
Biosciences; 555028) was added to wells for 5 hours. After 5 hours cells were stained for
cell surface markers CD8a and F4/80 (Table S1). Cells were then permeabilized and
stained for intracellular cytokines TNFa and IFNy (Table S1). Cells were stored overnight
at 4°C and analyzed the next day on a Cytek Aurora Cytometer. Each individual data point

represents a replicate from macrophages sorted from LFD and HFD-fed mice.

NanoString RNA Analysis

RNA was collected from CD45+ cells isolated from lung tissue with TC2 metastasis
treated with either 1gG, anti-PD-1 or anti-CSF-1R antibodies. Anti-Rat IgG Dynabeads
(ThermoFisher; 11035) were incubated with CD45 (Biolegend; 103101) antibodies at a

1:10 ratio for 30 minutes at 4°C. Beads conjugated to CD45 antibodies were incubated
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with dissociated lung tissue for 30 minutes at 4°C as described by the manufacturer. RNA
was extracted using Qiagen RNA Microkit (Qiagen; 74004). Samples were tested for RNA
quality by the UW Biotechnology Center (University of Wisconsin-Madison) using a
NanoDrop One Spectrophotometer and Agilent 2100 Bioanalyzer. RNA with DV200
greater than 70% were sent to the Translational Research Initiatives in Pathology (TRIP)
Laboratory (UW Carbone Cancer Center, University of Wisconsin-Madison) for analysis
on the nCounter MAX System. RNA from IgG and anti-PD-1 treated mice were analyzed
on the nCounter NanoString Immune Exhaustion Panel (NanoString; XT-H-EXHAUST-
12) and an additional set of RNA from IgG mice and anti-CSF-1R treated mice were
analyzed on the nCounter NanoString Myeloid Innate Immunity Panel (NanoString;
XT_PGX_MmV2_Mpyeloid_CSO). If samples failed quality control during testing from the
UW-Madison Biotechnology Center or ROSALIND Analysis Software, samples were
excluded from the study. nCounter NanoString data was analyzed using ROSALIND

software.

Statistical Analysis

Results are reported as the mean * standard error of the mean (s.e.m.). Statistical
differences were determined using two-way analysis of variance (ANOVA) and Tukey’s
multiple comparisons posttest, unless otherwise noted. A p-value of <0.05 denotes
significant value. All statistical analyses were performed with GraphPad Prism 9.4.1

(GraphPad Software).
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Results:

Anti-PD-1 treatment upregulates immune checkpoints in HFD-fed mice

To investigate how ERa+ tumors and metastasis respond to anti-PD-1 ICB
therapy in lean and obese mice, 3-week-old female FVB/N mice were fed either a LFD
or a HFD for 16 weeks, then TC2 ERa+ mammary tumor cells were orthotopically
injected into mammary fat pads. Once tumors reached 0.7 in diameter, mice were
randomized to receive IgG or anti-PD-1 antibodies (Figure 4-1A). As observed
previously, HFD-fed mice gained significantly more weight than LFD-fed mice (Figure 4-
1B) (17, 25, 26). Interestingly, HFD-fed mice treated with anti-PD-1 antibodies had a
mild, although not significant, decrease in tumor growth compared to HFD-fed IgG

treated mice (Figure 4-1C).

As the major cause of breast cancer mortality is due to metastasis, we examined
how targeting PD-1 altered immune cell function in the lung metastatic site. To do this,
we sorted CD45+ cells from metastatic lungs, extracted RNA, and analyzed gene
expression using the NanoString Immune Exhaustion Panel. In immune cells from IgG-
treated mice, we observed a number of genes that were differentially expressed (Figure
S4-1A, Table S4-2). In particular, expression of genes associated with T cell receptor
(TCR) signaling were upregulated in HFD-fed mice compared to LFD-fed mice (Figure
S4-1B). We also observed that expression of genes involved with myeloid immune
evasion pathways were also altered (Figure S4-1C). Nos2 was significantly upregulated
in immune cells from obese mice (4.3 fold, p=0.01, Figure S4-1C), which plays a role in
enhancing macrophage migration and survival and has been associated with lung

carcinogenesis (27).
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Immune cells from LFD-fed mice had the largest number of genes expression
differences in mice treated either with IgG or anti-PD-1 antibodies (Figure 4-1D, Table
S4-3). As expected, anti-PD-1 treatment increased genes associated with cytotoxicity
(Figure 1E). Genes associated with IL-10 signaling were mostly upregulated in LFD-fed
mice treated with anti-PD-1 inhibitors (Figure 4-1F); IL-10 signaling has been shown to
increase immunosuppression with PD-1 therapy (28). We also observed elevated
expression of genes involved in NFkB signaling in mice treated with anti-PD-1
antibodies (Figure 4-1G). In particular, CCL21 expression, which was upregulated 3-
fold (p=0.04, Figure 4-1G), was increased hepatocellular carcinoma and enhanced ICB
response (29). We also saw a decrease in genes associated with myeloid cell immune
evasion in LFD-fed mice treated with anti-PD-1 antibodies (Figure 4-1H). Argl, which is
expressed by immunosuppressive myeloid cells (30), was downregulated 5-fold

compared to IgG treated LFD-fed mice (p=0.01, Figure 4-1H).

Like in LFD-fed mice, multiple genes were differentially expressed in immune
cells from metastatic lungs of HFD-fed mice (Figure 4-11, Table S4-4). In contrast to
LFD-fed mice, HFD-fed mice treated with anti-PD-1 antibodies had increased
expression of other genes associated with T cell checkpoint signaling, including Lag3
and Tigit (Figure 4-1J). Similar to LFD-fed mice, genes involved in NFkB signaling were
upregulated in HFD-fed mice treated with anti-PD-1 antibodies (Figure 4-1K). Unlike in
LFD-fed mice, Vcam1 expression was upregulated 4-fold (p=0.002), and VCAM1 has

been shown to enhance T cell infiltration in other preclinical models (31).

Unexpectedly, there were only six genes differentially expressed between LFD

and HFD-fed mice treated with anti-PD-1 antibodies (Figure S4-1D, Table S4-5). Gzmb
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is the most pro-apoptotic of the granzyme family (32) and was upregulated in immune
cells from LFD-fed mice (Figure S4-1D). In contrast, Gzmd, which was upregulated in
immune cells from HFD-fed mice (Figure S4-1D), may be produced by multiple cell
types including activated mast cells (33). Overall, immune cells in TC2 ER+ lung
metastasis from obese mice show increased in T cell receptor activation and signs of

myeloid cell immune dysfunction.

Anti-PD-1 treatment reduced metastasis in LFD-fed mice

ERa+ breast cancer can recur with distal metastasis up to 20 years after the
initial diagnosis and treatment (11). To examined immune responses to anti-PD-1
antibodies for metastatic diseases, we fed FVB/N female mice LFD or HFD for 16
weeks. We orthotopically injected ERa+ GFP+ TC2 mammary cells into the fat pads of
LFD and HFD-fed mice then surgically removed tumors when they reached 0.5 cm in
diameter. We allowed 8 weeks for metastatic progression, then treated mice with anti-
PD-1 or IgG control antibodies (Figure 4-2A). Tumors in HFD-fed mice grew significantly
faster than in LFD-fed mice prior to tumor removal (Figure 24-B). After 8 weeks, we
quantified cell populations using flow cytometry (Figure S4-2). Flow cytometry analysis
revealed no differences in CD45+ total immune cells or CD4+ cells between LFD or
HFD-fed mice treated with IgG or anti-PD-1 antibodies (Figure 4-2C, D). No differences
were observed in the percentage of CD8+ T cells following anti-PD-1 treatment in LFD-
fed mice (Figure 4-2E). However, anti-PD-1 treatment significantly increased CD8+ T
cell recruitment into the lungs in HFD-fed mice compared to HFD-fed mice treated with

IgG control antibodies (p=0.02, Figure 4-2E). No significant differences in PD-1
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expression on CD8+ T cells were observed in any of the treatment groups (Figure 4-

2F).

Obesity has been shown to increase myeloid lineage cells in metastasis in
multiple contexts (17, 23). However, we did not see any differences in CD11b+ cells or
CD115/CSF-1R+ cells regardless of diet or treatment (Figure 4-2G, H). PD-L1
expression on myeloid cells has been associated with increased responses to ICB in
triple negative breast cancer (34). Although we saw a trending increase in PD-L1+
CD11b+ cells in HFD-fed mice, we did not see any significant differences in PD-L1

expression due to treatment with anti-PD-1 antibodies (Figure 4-2I).

To measure metastatic burden in the lungs of LFD and HFD-fed mice, we
quantified GFP+ cells. There was a significant reduction in GFP+ metastasis in LFD-fed
mice treated with anti-PD-1 antibodies compared to LFD-fed mice treated with an IgG
control (p=0.05, Figure 4-2J). Anti-PD-1 treatment did not reduce GFP+ metastatic cells
in HFD-fed mice (Figure 4-2J). PD-L1 is also expressed on tumor cells within metastatic
lesions (35). Although there seemed to be an increase of PD-L1 expression on TC2
cells within LFD-fed mice treated with anti-PD-1 antibodies compared to IgG controls,
this was not significant, and no differences were observed in HFD-fed mice in either
group (Figure 4-2K). Overall, only LFD-fed mice showed a reduction in GFP+
metastasis within the lungs, and obesity did not significantly alter immune cells

recruitment to the lungs in response to anti-PD-1 therapy.
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Macrophages from obese lung metastasis are immunosuppressive

To understand how macrophages from lung metastasis altered the function of
CD8+ T cells, we cultured CD8+ T cells sorted from the spleen of LFD-fed mice with
FACS-isolated macrophages from LFD and HFD-fed mice with TC2 ERa+ metastasis.
Cells were cultured with CD3 alone (unstimulated) or stimulated with CD28 and CD3
antibodies for 24 hours. Using flow cytometry, we quantified changes in expression of
TNF-a and IFN-y in CD8+ T cells (Figure S4-3A). First, we confirmed similar numbers of
macrophages in our co-culture conditions (Figure S4-3B). Macrophages from HFD-fed
mice significantly decreased basal expression of TNF-a in unstimulated CD8+ T cells
compared to macrophages from LFD-fed mice (p=0.03, Figure S4-3C). Stimulation did
not further enhance expression of TNF-a or induce IFN-y in CD8+ T cells when cultured
with macrophages from metastatic lungs (Figure S4-3C, D). Overall, macrophages from
HFD-fed mice had an immunosuppressive effect to limit cytokine expression in CD8+ T

cells.

Given the immunosuppressive effects of macrophages isolated from metastatic
lungs, we investigated the impact of anti-CSF-1R antibodies to inhibit macrophages in
the lungs of mice with metastasis. We fed female mice LFD or HFD for 16 weeks, then
orthotopically injected ERa+ GFP+ TC2 mammary cells into mammary fat pads. We
then treated mice with IgG or anti-CSF-1R antibodies when tumors reach 0.7 cm in
diameter (Figure 4-3A). Within primary tumors, we did not observe any impact on tumor
growth in either LFD or HFD-fed mice treated with IgG or anti-CSF-1R antibodies

(Figure 4-3B).
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To assess functional changes in myeloid lineage cells within the metastatic
environment, we isolated CD45+ immune cells from the lungs of LFD and HFD-fed mice
bearing TC2 tumors. We then compared gene expression using the NanoString
Myeloid Innate Immunity Panel. In IgG treated mice, there were a number of genes with
differential expression (Figure S4-4A, Table S4-6). Expression of genes associated with
chemokine signaling were significantly reduced in 1gG treated HFD-fed mice (Figure S4-
4B). Elevated expression of CXCL13 has been shown to promote the expansion and
activation of CD8+ T cells in multiple different types of cancer (36) and diminished
expression of Cxcl13 in metastatic lungs from HFD-fed mice may reduce the ability to

recruit CD8+ T cells.

We observed multiple genes differentially expressed in LFD-fed mice treated
either with 1gG or anti-CSF-1R antibodies (Figure 4-3C, Table S4-7). Treatment of LFD-
fed mice with anti-CSF-1R antibodies led to increased expression of genes associated
with lymphocyte activation (Figure 4-3D). Nr4al expression was upregulated in CSF-1R
treated mice, which is increased upon TCR stimulation and is involved in self-tolerance
(37). Chemokine signaling was also downregulated in LFD-fed mice treated with anti-
CSF-1R antibodies (Figure 4-3E). Interestingly, Ccr2 expression was upregulated in
immune cells from anti-CSF-1R treated mice (1.0-fold, p=0.005, Figure 4-3E). CCR2
expression is associated with pro-inflammatory macrophages (38). Although targeting
CSF-1R depletes macrophages in the tumor microenvironment, it has been found to

polarize other macrophages to M1 in colorectal cancer (39).

Fewer genes were differentially expressed in HFD-fed mice treated with control

IgG compared to anti-CSF1R antibodies than observed in LFD-fed mice (Figure 4-3G,
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Table S8). In HFD-fed mice treated with anti-CSF-1R antibodies, a number of cytokine
signaling pathways were reduced (Figure 4-3G). Expression of Kitl, as known as stem
cell factor, and its receptor Kit were both significantly downregulated (Figure 4-3G), and
this cognate receptor and ligand have been associated with mobilizing immature
myeloid cells to promote metastasis (40). Chemokine signaling was downregulated in
immune cells from HFD-fed mice (Figure 4-3H), however, not as many chemokines
were downregulated compared to LFD-fed mice treated with anti-CSF-1R antibodies
(Figure 4-3E). Expression of Cxcl12 was downregulated in HFD-fed mice treated with
anti-CSF-1R antibodies (-3.8 fold, p=0.004, Figure 4-3H). Inhibition of CXCR4, the
receptor for CXCL12, with a peptide antagonist led to reduced T regulatory cells (Tregs)

and improved responses to anti-PD-1 therapy in a model of colon cancer (41).

In immune cells from mice treated with anti-CSF-1R antibodies, HFD-fed mice
had a number of genes that were downregulated compared to LFD-fed mice (Figure S4-
4D, Table S4-9). Genes associated with cytokine signaling were also downregulated in
HFD-fed mice treated with anti-CSF-1R antibodies compared control anti-CSF-1R
treated mice (Figure S4-4D). Interestingly, Tnfrsf4 was upregulated in immune cells
from HFD-fed mice treated with anti-CSF-1R antibodies (1.2-fold, p=0.03, Figure S4-
4D). TNFRSF4, also known as OX40, is a costimulatory receptor that enhances CD8+

T cell responses to antigens (42).

Anti-CSF-1R treatment increases inflammation and reduces PD-L1+ myeloid cells

in lung metastasis of HFD-fed mice

To investigate how anti-CSF-1R antibodies alter immune responses in the

metastatic lungs of LFD and HFD-fed mice, we fed female mice LFD or HFD for 16



142

weeks. We orthotopically injected ERa+ GFP+ TC2 mammary tumor cells into the fat
pads of LFD and HFD-fed mice, then surgically removed tumors when they reached 0.5
cm in diameter. Eight weeks after tumor removal, we treated mice with anti-CSF-1R or

IgG control antibodies (Figure 4-4A).

Flow cytometry analysis of metastatic lungs showed an increase in total CD45+
immune cells in HFD-fed mice treated with ant-CSF-1R antibodies compared to all other
treatment groups (Figure 4-4B). No differences were observed in CD4+ and CD8+ T
cells in LFD or HFD-fed mice regardless of immunotherapy treatment (Figure 4-4C, D).
No significant differences were observed in PD-1 expression on CD8+ T cells in LFD-
fed mice (Figure 4-4E). In contrast, HFD-fed mice treated with anti-CSF-1R therapy
had significantly increased amounts of PD-1+ CD8+ T cells compared to either LFD or

HFD-fed mice treated with IgG control antibodies (Figure 4-4E).

To investigate how anti-CSF-1R antibodies impacted myeloid lineage cells, we
guantified CD11b+ cells. No significant difference was observed in CD11b+ cells in
LFD-fed mice in either treatment group (Figure 4-4F). However, HFD-fed mice treated
with anti-CSF-1R antibodies had significantly increased myeloid cells compared to both
LFD and HFD-fed mice treated with IgG (Figure 4-4F). CD115/CSF-1R+ macrophages
were reduced in both LFD and HFD-fed mice treated with anti-CSF-1R antibodies,
however, these differences did not reach significance (Figure 4-4G). We then sought to
quantify PD-L1+ myeloid cells to see if inmunosuppressive innate cells were decreased
with anti-CSF-1R antibodies. No significant differences were observed in LFD-fed mice

treated with anti-CSF-1R antibodies (Figure 4-4H). In HFD-fed mice, anti-CSF-1R
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treatment significantly decreased PD-L1 CD11b+ myeloid cells compared to IgG

treatment (p=0.03, Figure 4H).

To quantify metastasis, we measured GFP+ cells in the lungs of LFD and HFD-
fed mice. No significant differences in GFP+ cells were observed in LFD-fed mice
(Figure 4-41). In contrast, HFD-fed mice treated with anti-CSF-1R antibodies had
significantly less GFP+ metastatic cells than both LFD-fed groups, although HFD-fed
mice treated with anti-CSF-1R antibodies did not have significantly decreased GFP+
metastatic cells compared to HFD-fed controls (Figure 4-41). We did not observe any
significant differences in PD-L1+ GFP+ cells in LFD-fed groups (Figure 4-4J). However,
PD-L1+GFP+ cells were significantly increased in HFD-fed mice treated with anti-CSF-
1R antibodies compared to LFD and HFD-fed mice treated with IgG controls (Figure 4-
4J). Together these data suggest that depletion of CSF-1R+ myeloid cells in HFD-fed

mice promoted a more robust immune response to diminish metastasis in the lungs.

Dual anti-CSF-1R and anti-PD-1 immunotherapy is more robust in metastatic

lungs from obese mice

We hypothesized that HFD-fed mice might benefit from a combination of anti-PD-
1 inhibitors in addition to macrophage depletion via anti-CSF-1R antibodies. To test this
hypothesis, we injected TC2 tumor cells into the mammary glands of LFD and HFD-fed
mice, and treated mice with metastases with anti-PD-1 and anti-CSF-1R (dual) or IgG
control antibodies 8 weeks after tumor removal (Figure 4-5A). Using flow cytometry, we

observed that LFD-fed mice did not have significant differences in CD45+ cells,
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however, HFD-fed mice treated with both antibodies had significantly higher levels of
total CD45+ immune cells compared to all other treatment groups (Figure 4-5B). No
differences were observed in CD4+ or CD8+ T cells in any treatment group (Figure 4-
5C, D). Although CD8+ T cell numbers were not different, PD-1 expression was
significantly increased on CD8+ T cells in both LFD and HFD mice that received dual

treatment compared to IgG controls (Figure 4-5E).

We then quantified myeloid lineage cells. No differences were detected in total
CD11b+ cells in any of the treatment groups (Figure 4-5F). 1gG-treated LFD-fed mice
had significantly decreased CD115+ macrophages compared to LFD-fed mice that
received dual treatment (p=0.03, Figure 4-5G). Similarly, IgG-treated HFD-fed mice
showed a significant decrease in CD115+ macrophages compared to dual-treated HFD-
fed mice (p=0.04, Figure 4-5G). These data show that the treatment with the anti-CSF-
1R antibodies reduced macrophages in metastatic lungs of both groups. PD-L1
expression was variable across all groups, and no significant differences in CD11b+PD-

L1+ cells were detected among any of the treatment groups (Figure 4-5H).

To identify changes in metastasis, we quantified GFP+ tumor cells. No significant
difference was observed between IgG-treated LFD-fed mice and dual antibody treated
LFD-fed mice (Figure 4-51). However, dual antibody-treated LFD-fed mice had
significantly higher GFP+ tumor cells than IgG-treated HFD-fed mice (p=0.03) and dual
antibody treated HFD-fed mice (p=0.003, Figure 4-5I). No differences were observed
between IgG-treated HFD-fed mice and dual antibody treated HFD-fed mice (Figure 4-
51). GFP+ PD-L1+ tumor cells were not significantly different between IgG-treated LFD-

fed mice and dual antibody-treated LFD-fed mice (Figure 4-5J). However, both IgG-
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treated LFD and HFD-fed mice had significantly less GFP+ PD-L1+ cells compared to
dual antibody-treated HFD-fed mice (Figure 4-5J). Overall, HFD-fed mice had a more
robust response to dual anti-PD-1 and anti-CSF-1R therapy through increased levels of

checkpoint markers, immune cells, and reduced GFP+ metastasis.

Discussion:

The use of ICB therapies targeting the PD-1/PD-L1 axis have had low rates of
efficacy ERa+ breast cancer (12). However, combining ICB therapies with other
immunotherapies or other therapeutics have potential to improve responses in these
patients (43). While immune responses in the primary tumors have been examined, less
is known about how ICB impacts the metastatic microenvironment (44). We explored
anti-CSF-1R antibodies to deplete macrophages with the goal of increasing infiltrating
lymphocytes within metastasis and response to ICB therapy. Here we demonstrated
that anti-PD-1 treatment alone reduced ERo+ breast cancer metastasis in LFD-fed
mice, but not obese mice, and increased expression of genes associated with
cytotoxicity in immune cells. Anti-PD-1 therapy increased CD8+ T cells in metastatic
lungs of HFD-fed mice, but these T cells had gene expression associated with
exhaustion. In contrast to LFD-fed mice, anti-CSF-1R antibodies increased
inflammation, reduced PD-L1+ cells, and increased PD-1 expression in HFD-fed mice,
evident of a more robust increase in immune activity. These results suggest that the
metastatic microenvironment in HFD-fed mice may be more favorable after macrophage
depletion. In fact, dual anti-CSF-1R and anti-PD-1 antibodies led to a more robust

reduction of metastasis in HFD-fed mice. This study provides evidence that ERa+
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breast cancer lung metastasis can respond to dual macrophage depletion and anti-PD-1

inhibitors under conditions of obesity.

In response to anti-PD-1 antibodies, we observed a significant decrease in
GFP+ metastatic cells in LFD-fed mice. Analysis of gene expression of CD45+ cells
from metastasis in LFD-fed mice treated with anti-PD-1 or IgG antibodies revealed an
increase in genes associated with cytotoxicity, including Gzmb, and a decrease in
genes associated with myeloid cell immune evasion such as Arg1. Interestingly, anti-
PD-1 antibody treated LFD-fed mice did not show significant increases in CD8+ PD-1+
T cells, which was associated with ICB responses in a small clinical trial of patients with
highly treated metastatic ERa+ breast cancer (45). In contrast, the CD45+ cells from
the metastatic lungs of anti-PD-1 antibody-treated HFD-fed mice showed upregulation
of genes associated with terminal exhaustion, including Lag-3 and Tigit.(46). Further,
expression of Tnfrsf14, a member of the TNFa superfamily, was downregulated in
response to anti-PD-1 antibodies. Reduced expression of Tnfrsf14 has been
associated with poorer prognosis in multiple types of cancer when downregulated (47).
Overall, these results point to a reduced response to anti-PD-1 antibodies as a single

agent in lungs with ERa+ metastases under conditions of obesity.

Compared with primary breast cancers, breast cancer metastases have greater
recruitment of macrophages.(48, 49). Macrophages in the lungs have been shown to
suppress T cell responses (50), which may contribute to the increased metastases
observed in this environment. Obesity also enhances myeloid lineage cells in the bone
marrow, resulting in expansion of myeloid cells in metastatic sites (17, 23). Co-culture

of macrophages isolated from the metastatic environment of the lungs with CD8+ T cells
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from the spleens of non-tumor bearing mice showed that macrophages from HFD-fed
mice reduced basal levels of TNFa production in CD8+ T cells, and stimulation of the
CD8+ T cells did not enhance TNFa expression levels. These results demonstrate
significant immunosuppression by macrophages from metastases in mice fed HFD. In
comparison of gene expression from immune cells from IgG controls, HFD-fed mice had
decreased expression of Cxcl13 compared to LFD-fed mice. Since CXCL13 has been
shown to be involved in T cell activation, decreased CXCL13 play a role in the observed
reduction of T cell function when exposed to macrophages isolated from metastasis
from HFD-fed mice (36). Additional studies are necessary to identify differences in

macrophages from obese mice that promote immunosuppression in CD8+ T cells.

Anti-CSF-1R treatment increased anti-metastasis inflammation. Gene expression
of CD45+ cells from metastasis of anti-CSF-1R antibody treated LFD-fed mice
increased lymphocyte activation and decreased chemokine signaling compared to LFD-
fed IgG controls. Increased lymphocyte activation matches data that supports CSF-1R+
cells diminish lymphocyte mediated immunity in cancer (51). However, only HFD-fed
mice revealed differences in immune cell recruitment, including an increase in CD45+
and CD11b+ cells. Downregulation of cytokines related to angiogenesis and anti-
inflammation in HFD-fed mice may aid in more immune recruitment after anti-CSF-1R
treatment. For example, inhibition of Sptbn1 expression in hepatocellular carcinoma led
to upregulation of expression of inflammatory cytokines (52). This gene was found to be
downregulated in HFD-fed mice treated with anti-CSF-1R antibodies and may partially

explain increased immune recruitment to the lungs of these mice.
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Treatment with anti-CSF-1R antibodies may improve anti-PD-1 responses in lung
metastasis of obese mice. Other studies have documented that macrophages can lead
to anti-PD-1 resistance (53). We observed reduced TNF-a expression in CD8+ T cells
when incubated with macrophages from metastatic lungs of HFD-fed mice, showing that
the macrophages from obese mice are more immunosuppressive. Depletion of CSF-
1R+ macrophages also decreased PD-L1+ myeloid cells. However, both M1,
inflammatory macrophages, and M2, anti-inflammatory macrophages, can express PD-
L1 (54), and it is unclear whether M1 or M2 macrophages are being reduced in HFD-
fed mice. PD-L1 high/+ macrophages have also been shown to be T cell activating
compared to PD-L1 low/- macrophages which were immunosuppressive. In the same
study, higher tumor associated macrophage PD-L1+/PD-L1- ratio was associated with
better clinical outcomes in a ERa-/ERa+ mixed cohort of breast cancer patients (55).
These studies are recent and further investigation is needed into the heterogeneity of
PD-L1+ macrophages. Anti-CSF-1R therapies are also thought to reprogram
macrophages to an M1 phenotype (39), but more studies are needed to confirm this in
obesity. In obese mice PD-1+ CD8+ T cells were increased with anti-CSF-1R treatment.
An increase in PD-1+ CD8+ T cells in response to anti-CSF-1R inhibitors has been seen
in models of other types of cancer (56). PD-L1+ tumor cells were increased with anti-
CSF-1R treatment in HFD-fed mice, which could coincide with an increase of
inflammation, particularly M1 macrophages, or a resistance to the clearing of PD-L1+
tumor cells (57). Thus, macrophages within ERa+ breast cancer metastasis are different
in HFD-fed mice than in lean controls and removing the CSF-1R+ macrophage

population reduces metastasis under obese conditions.
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Dual anti-CSF-1R and anti-PD-1 treatment reduced metastasis in HFD-fed mice.
Flow cytometry data revealed an increase in total immune infiltration only in HFD-fed
mice. HFD-fed mice that received dual treatment diminished metastasis that was
significantly lower than LFD-fed dual treated mice. However, dual treatment was not
curative in either diet after 2-weeks, and a significant level of PD-L1+ metastasis
remained in HFD-fed dual treated mice compared to 1gG treated HFD-fed mice.
Additional investigation into duration and timing of anti-CSF-1R and anti-PD-1 inhibitors
is needed to identify if this combination could be curative. Treating PD-L1+ metastasis
could be done with the addition of anti-PD-L1 treatment. Overall, dual treatment was

more efficacious in HFD-fed mice as it reduced lung metastasis.

Further studies are needed to identify what changes in the lung prior to treatment
may be biomarkers for response to anti-CSF1R and anti-PD1 therapies. Patients with
advanced metastatic disease may receive immunotherapy treat patients after resistance
to standard of care. Therefore, it is important to understand how standard of care may
influence the lung environment prior to immunotherapy to better predict patient
outcomes. The standard of care for ERa+ breast cancer are estrogen/ER inhibitors
coupled with cyclin-dependent kinases (CDK) 4/6 inhibitors after primary tumor removal
(58, 59). In our study, we did not treat mice with standard of care before investigating
the effects of CSF-1R+ macrophage/monocyte depletion or anti-PD-1 inhibitors.
Estrogen signaling has been shown to influence macrophages and immune responses
(60), and treatment of mice with anti-estrogen therapies may alter the function of

macrophages and CD8+ T cells. Further studies are needed on how obesity affects
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immunotherapy response when coupled with standard of care treatment to enhance the

ability to translate this work for patients with obesity.
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Figure 4-1: Anti-PD1 treatment increased cytotoxicity in LFD-fed mice and T cell
exhaustion in HFD-fed mice (A) Experimental design for treating mice with ER+
mammary tumors and metastases with anti-PD-1 antibodies. Mice were fed LFD or
HFD, then TC2 ER+ mammary tumor cells were transplanted into mammary fat pads.
Once tumors reached 0.7 cm in diameter, LFD and HFD-fed mice were randomized to
receive IgG or anti-PD-1 antibodies. (B) Weight gain of LFD and HFD-fed mice (n=22,
30 mice/group). (C) Tumor growth of mice treated with IgG or anti-PD-1 antibodies (n=6
tumors/group). (D) Heatmap representing all genes that were significantly different in
CD45+ cells from metastatic lungs of LFD-fed mice treated with 1gG or anti-PD1
antibodies (n=3/group). Genes associated with signatures of Cytotoxicity (E), IL-10
Signaling (F), NF-kB Signaling (G), and Myeloid Immune Evasion (H). (I) Heatmap
representing all genes that were significantly different between CD45+ cells sorted from
metastatic lungs from HFD-fed mice treated with either IgG or anti-PD-1 antibodies
(n=3/group). Genes associated with signatures of T Cell Checkpoint Signaling (J), and
NF-kB Signaling (K).
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Figure 4-2: Anti-PD1 decreases metastasis in LFD-fed mice (A) Experimental design
for treating mice with ER+ metastasis with anti-PD-1 antibodies. Mice were fed LFD or
HFD, then TC2 ER+ mammary tumor cells were transplanted into mammary fat pads.
Once tumors reached 0.5 cm in diameter, tumors were resected. After 8 weeks, LFD
and HFD-fed mice were randomized to receive IgG or anti-PD-1 antibodies. (B) Tumor
growth curves of TC2 tumors prior to resection. Flow cytometry analysis of CD45+ (C),
CD4+ (D), CD8+ (E), CD8+ PD1+ (F), CD11b+ (G), CD115+ (H), CD11b PDL1+ (1),
GFP+ (J), GFP+ PDL1+ (K) cells from metastatic lungs of LFD-fed and HFD-fed mice
treated with IgG or anti-PD1 antibodies. Statistical significance was determined by 2-
way ANOVA with Tukey’s multiple comparison post-test, and error bars represent s.e.m.
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Figure 4-3: Anti-CSF1R primes metastasis for anti-PD1 treatment (A) Experimental
design for treating mice with ER+ mammary tumors and metastasis with anti-CSF-1R
antibodies. Mice were fed LFD or HFD, then TC2 mammary tumor cells were
transplanted into mammary fat pads. Once tumors reached 0.7 cm in diameter, LFD and
HFD-fed mice were randomized to receive I1gG or anti-CSF-1R antibodies. (B) Tumor
growth of LFD and HFD-fed mice treated with either IgG control or anti-CSF-1R
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antibodies (6 tumors/group). (C) Heatmap representing all genes that were significantly
different in CD45+ cells sorted from metastatic lungs from LFD-fed mice treated with
IgG or anti-CSF-1R antibodies (n=3/group). Genes associated with signatures of
Lymphocyte Activation (D), Chemokine Signaling (E). (F) Heatmap representing all
genes that were significantly different in CD45+ cells sorted from metastatic lungs from
HFD-fed mice treated with either IgG or anti-CSF-1R antibodies (n=3/group). Genes
associated with signatures of Cytokine Signaling (G) and Chemokine Signaling (H).
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Figure 4-4: Anti-CSF1R increases inflammation in HFD-fed metastasis (A)
Experimental design for treating mice ER+ metastasis with anti-CSF-1R antibodies.
Mice were fed LFD or HFD, then TC2 ER+ tumor cells were transplanted into mammary
fat pads. Once tumors reached a diameter of 0.5 cm, tumors were resected. LFD and
HFD-fed mice were randomized to receive IgG or anti-CSF-1R antibodies. Flow
cytometry analysis of CD45+ (B), CD4+ (C), CD8+ (D), CD8+ PD1+ (E), CD11b+ (F),
CD115+ (G), CD11b PDL1+ (H), GFP+ (), GFP+ PDL1+ (J) cells from metastatic lungs
of LFD-fed and HFD-fed mice treated with IgG or anti-CSF-1R antibodies. Statistical
significance was determined by 2-way ANOVA with Tukey’s multiple comparison post-
test, and error bars represent s.e.m.
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Figure 4-5: Dual anti CSF1R and anti-PD1 treatment is more efficacious in HFD-
fed mice (A) Experimental design for treating mice with ER+ metastasis with anti-PD-1
and anti-CSF-1R antibodies. Mice were fed LFD or HFD, then TC2 mammary tumor
cells were transplanted into mammary fat pads. Once tumors reached 0.5 cm in
diameter, tumors were resected. LFD and HFD-fed mice were randomized to receive
either IgG or anti-PD-1 and anti-CSF-1R antibodies (Dual). Flow cytometry analysis of
CD45+ (B), CD4+ (C), CD8+ cells (D), CD8+ PD1+ (E), CD11b+ (F), CD115+ (G),
CD11b PDL1+ (H), GFP+ (1), GFP+ PDL1+ (J) cells from metastatic lungs from LFD and
HFD-fed mice treated with 1gG or dual antibodies. Statistical significance was
determined by 2-way ANOVA with Tukey’s multiple comparison post-test, and error bars
represent s.e.m.
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Supplementary Figure 4-1 Obese metastasis has increased TCR signaling and
myeloid Immune evasion: (A) Heatmap representing all genes that were significantly
different in CD45+ cells sorted from ER+ metastatic lungs from LFD or HFD-fed mice
treated with IgG antibodies (n=3/group). Genes associated with signatures of TCR
Signaling (B) and Myeloid Immune Evasion (C). (D) Heatmap representing all genes
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that were significantly different in CD45+ cells sorted from ER+ metastatic lungs from
LFD or HFD-fed mice treated with anti-PD-1 antibodies (n=3/group).
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Supplementary Figure 4-2: Gating strategy for flow cytometry panel for metastatic
lungs. Cells were gated to remove debris (cells), single cells, and live cells. Immune
cells were gated for CD45, then CD3. CD3+ cells were gated for CD4 and CD8, then
CD4 and CD8+ cells were gated for PD-1. CD3- cells were gated for CD11b. CD11b+
cells were gated for CD115 and PD-L1. Live cells were gated for GFP, and GFP cells
were gated for PD-1L1.
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Supplementary Figure 4-3: F4/80+ macrophages from metastatic lungs of obese
mice decreased TNFa production in CD8+ T cells (A) Gating strategy for co-culture
experiments between F4/80+ macrophages isolated from metastatic lungs and splenic
CD8+ T cells. Debris was removed (cells), then gated for single cells and live cells.
Gates were set for CD8 cells, then TNFa and IFNy. Live cells were also gated for F4/80
macrophages. F4/80+ macrophages from metastatic lungs of LFD and HFD-fed mice
were co-cultured with CD8+ T cells isolated from the spleen of LFD-fed mice. Cells
were unstimulated (Un) or stimulated (Stim) with CD28+ antibodies. Quantification of
CD8+TNFa+ (B), CD8+IFNy (C), and total F4/80+ macrophages (D). Statistical
significance was determined by 2-way ANOVA with Tukey’s multiple comparison post-
test, and error bars represent s.e.m.
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Table S4-1. Antibodies for T cell stimulation and flow cytometry.
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Antibody Dilution Manufacturer Catalog Number
Fc Receptor 1 pg/mL ThermoFisher 14-0161-86
CD3 1 pg/mL ThermoFisher 16-0032-82
CD28 5 ug/mL ThermoFisher 16-0281-82
CD45 5 ug/mL Biolegend 103101
CDA45-eFluor 450 5 ug/mL ThermoFisher 48-0453-82
CD3 PE-efluor610 |20 pg/mL ThermoFisher 61-0031-82
CD4 APC 2 ug/mL BioLegend 100515
CD8a-PE/Cy7 4 ug/mL BioLegend 100721
CD115-Brilliant Violet|10 pg/mL BioLegend 135515
711

CD11b-Brilliant Violet|5 pg/mL BioLegend 101237
605

PD-1-PE 10 pg/mL BioLegend 135205
PD-L1-PerCP-eFluor [2.5 pg/mL ThermoFisher 46-5982-82
710

F4/80 APC 12.5 pg/mL ThermoFisher 17-4801-82
TNFa-eFluor 450 5 ug/mL ThermoFisher 48-7321-82
IFNy-PerCP/Cy5.5 [1.25 ug/mL BioLegend 505822

Supplementary Table 4-1: Antibodies used for flow cytometry and CD8+ T cell

stimulation.



169

Table S4-2. Comparison of gene expression of LFD and HFD-fed mice with metastases
treated with IgG antibodies.

Gene HFDIgG | HFDIgG | HFD IgG

Name LFDIgG1 | LFDIgG2 | LFDIgG3 |1 2 3 Cluster
Hdc -1.3647167 | -1.33338 | 0.576323 | 0.833523 | 0.206623 | 1.081623 1
Plscrl -0.874065 | -0.53854 | -0.23599 | 0.516635 | 0.394535 | 0.737435 1
115 -1.4351467 | -0.54854 | -0.16682 | 0.584123 | 0.358443 | 1.207933 1
Il1b -1.22675 | -0.25005 | 0.04455 | 0.52365| 0.21295 | 0.69565 1
Tcrg-V6 | -1.0006683 | -1.34034 | -0.36588 | 1.224452 | 0.613942 | 0.868492 1
Cd28 -0.9515417 | -0.61173 | -0.1932 | 1.067378 | 0.579178 | 0.109918 1
Vegfa -0.9843983 | -0.56508 | 0.128762 | 0.970272 | -0.0069 | 0.457342 1
Junb -0.5954333 | -0.56423 | 0.053967 | 0.751967 | 0.053167 | 0.300567 1
Gadd45a | -0.625485 | -0.77793 | 0.169385 | 0.240035 | 0.236415 | 0.757575 1
Pbx1 -0.4792633 | -0.46047 | 0.130657 | -0.11807 | 0.252797 | 0.674357 1
Semadd | -0.7678417 | -0.48458 | 0.021358 | 0.166498 | 0.429268 | 0.635298 1
Oas2 -0.1202233 | -0.49769 | -0.906 | 0.059177 | 0.477067 | 0.987677 1
Cpa3 -0.6610983 | -0.29027 | -0.33373 | 0.121672 | 0.507892 | 0.655532 1
Bcle -0.73188 | -0.32361 | -0.24379 | 0.26595 | 0.24559 | 0.78774 1
Hgf -1.037725 | -0.00053 | -0.01323 | 0.073285 | 0.399075 | 0.579135 1
E2f2 -0.544735 | -0.35388 | -0.04521 | 0.346965 | 0.076035 | 0.520835 1
Fos -0.7845333 | -0.17463 | -0.18563 | 0.255767 | 0.269667 | 0.619367 1
Cd40 -0.8808133 | 0.346887 | -1.01739 | 0.299917 | 0.733797 | 0.517607 1
Psmb9 | -0.5469567 | 0.064003 | -0.55873 | 0.373573 | 0.428753 | 0.239353 1
Tapbp -0.5706767 | -0.16805 | -0.22892 | 0.510993 | 0.568753 | -0.11211 1
Btla -1.033435 | -0.21877 | -0.31819 | 0.881345 | 0.543085 | 0.145975 1
Cd180 -0.687445 | -0.27449 | -0.55272 | 0.560405 | 0.517725 | 0.436535 1
Ptpn22 | -0.5390267 | -0.41567 | -0.03406 | 0.667103 | 0.160103 | 0.161543 1
Lrrk2 -0.58666 | -0.58387 | 0.04613 | 0.64891 | 0.12067 | 0.35482 1
Nfe2l2 | -0.4554333 | -0.64573 | 0.167567 | 0.578367 | -0.04623 | 0.401467 1
lglc1 -0.1028183 | -0.23099 | -0.83603 | 0.943542 | 0.455212 | -0.22892 1
Jak3 -0.10305 | -0.43356 | -0.56648 | 0.80146 | 0.00836 | 0.29327 1
Scp2 -0.1566267 | -0.55977 | -0.18176 | 0.400303 | 0.126193 | 0.371653 1
Nfkb2 -0.2749733 | -0.64179 | -0.06433 | 0.694167 | 0.071467 | 0.215467 1
Mx2 -0.7302642 | -0.5845 | -2.2654 | 0.687506 | 1.505836 | 1.386826 1
Nos2 -1.5385917 | -1.0709 | -1.16683 | 0.864068 | 0.867438 | 2.044818 1
Trdv4 -1.1499167 | -0.97501 | -0.64691 | 0.445393 | 1.185723 | 1.140713 1
Trdc -1.2821433 | -0.12704 | -0.63285 | 0.057017 | 1.109237 | 0.875787 1
Tlrl -1.5531733 | 0.124507 | -0.68715 | 0.595727 | 0.641617 | 0.878477 1
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Cd101 -2.3278517 | -0.41226 | 0.148598 | 0.686468 | 0.561378 | 1.343668 1
Ptgs2 -2.0555 | -0.31341 | -0.44756 | 1.30789 | 0.59529 | 0.91329 1
Cxcré -1.931685 | -0.52511 | -0.07672 | 1.043635 | 0.809645 | 0.680245 1
Trgc1/2/3 | -1.693115 | -0.76976 | 0.295315 | 0.631545 | 1.002415 | 0.533595 1
Icos -1.6383767 | -0.66872 | 0.127363 | 0.943113 | 0.737133 | 0.499483 1
Socs2 1.00981833 | 0.118508 | -0.12894 | 0.095508 | -0.27315 | -0.82174 2
Lifr 0.87884667 | -0.06544 | 0.052097 | -0.22906 | -0.42012 | -0.21631 2
Cd160 -0.756255 | 0.567045 | 0.969145 | -0.86456 | 0.064815 | 0.019805 2
Ccrb 0.00393833 | 0.594608 | 0.264808 | -0.38522 | -0.05941 | -0.41872 2
I11rl2 0.09836667 | 0.201317 | 0.629907 | 0.062837 | -0.13544 | -0.85698 2
Vcaml 0.46415 | -0.11653 | 0.87243 | -0.75963 | -0.00019 | -0.46023 2
Lpl -0.0506283 | 0.269372 | 0.724872 | -0.11876 | -0.07783 | -0.74703 2
Cd38 2.344455 | -0.06302 | -0.06861 | -0.18333 | -0.92063 | -1.10884 2
ltgab 2.16709833 | -0.12828 | -0.62072 | -0.3597 | -0.74611 | -0.31228 2
Lparl 1.967035 | -0.44791 | -0.32145 | -0.06043 | -0.22007 | -0.91715 2
Fabp4 1.96044833 | -0.33774 | -0.12622 | -0.46978 | -0.32663 | -0.70007 2
Ucpl 2.99448 0.1243 | -0.41666 | -0.81426 | -0.59539 | -1.29247 2
Lepr 3.44636 | -0.09304 | -0.26675 | -0.94874 | -0.90859 | -1.22924 2
Mst1r 2.78633667 | 0.228757 | -0.7089 | -0.8004 | -0.5491 | -0.95668 2
Cmklrl 2.44146667 | 0.076657 | -0.57218 | -0.72477 | -0.49239 | -0.72877 2

Supplementary Table 4-2: Comparison of gene expression of LFD-fed mice with
metastasis treated with IgG or anti-PD-1 antibodies from the NanoString Immune
Exhaustion Panel.



Table S4-3. Comparison of gene expression of LFD-fed mice with metastasis treated
with 1gG or anti-PD-1 antibodies.
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Gene LFD aPD-1

Name LFDIgG 1 LFDIgG2 | LFDIgG3 | LFDaPD-11 | LFDaPD-12 | 3 Cluster
Tnfrsfo -0.943095 | -0.50207 | -0.88711 0.245455 1.134835 0.951995 1
Ccl22 -1.083055 | -0.36079 | -0.32609 -0.214585 1.307205 0.677325 1
Zap70 -1.166396667 | 0.014773 | -0.3182 | 0.30908333 | 0.76331333 | 0.39742333 1
Lck -1.13452 | -0.29258 | -0.17389 0.46982 0.90049 0.23068 1
Tratl -1.352286667 | -0.35854 | 0.076053 | 0.27000333 | 0.84414333 | 0.52062333 1
lor -1.100953333 | -0.48368 | -0.19216 | 0.32030667 | 1.00498667 | 0.45150667 1
Rora -0.873715 | -0.64001 | -0.11606 0.242685 0.864205 0.522895 1
Cd3e -1.181298333 | -0.66298 | 0.009222 | 0.56931167 | 1.16221167 | 0.10353167 1
Cd4 -1.671218333 | -0.47839 | 0.319452 | 0.56857167 | 1.18115167 | 0.08043167 1
Sesn3 -1.389385 | -0.20333 | 0.197645 0.491085 0.817045 0.086935 1
Ccr7 -1.869388333 | -0.59887 | 0.116722 | 0.34833167 | 1.26115167 | 0.74205167 1
Wntl1 -1.665486667 | -0.63432 | -0.09282 | 0.87833333 | 0.84827333 | 0.66601333 1
Icos -1.835818333 | -0.86616 | -0.07008 | 0.85505167 | 1.31628167 | 0.60072167 1
Tnfrsf4 -1.479103333 | -0.62083 | -1.02488 | 0.54983667 | 1.56873667 | 1.00624667 1
Dcn -1.699878333 | -0.71762 | -0.74316 | 1.17141167 | 1.24559167 | 0.74365167 1
Ctla4 -1.793173333 | -0.51243 | -0.69743 | 0.71656667 | 1.55585667 | 0.73061667 1
Cd5 -1.802811667 | -0.14248 | -0.36965 | 0.50426833 | 1.45830833 | 0.35236833 1
Sh2d1a -1.477413333 | -0.23212 | -0.26435 | 0.78873667 | 1.02264667 | 0.16250667 1
Cd3g -1.415163333 | -0.31521 | -0.06155 | 0.49304667 | 1.01250667 | 0.28637667 1
Pdcd1 -0.798823333 | -1.2056 -0.262 | 0.21569667 | 0.99099667 | 1.05973667 1
Id2 -0.6344 | -1.0002 | -0.1615 0.5372 0.575 0.6839 1
Tnfrsf18 -0.720505 | -0.82843 | 0.206775 0.589905 0.529305 0.222955 1
l21r -0.79626 | -0.77552 | -0.34855 0.5619 0.95099 0.40744 1
Cd28 -0.974581667 | -0.63477 | -0.21624 | 0.79645833 | 0.73576833 | 0.29336833 1
Ccl21a/b/c | -0.832676667 | -1.04682 | -0.80487 | 1.21661333 | 0.65336333 | 0.81438333 1
Vegfa -1.4317 | -1.01238 | -0.31854 1.12995 0.63946 0.99321 1
Cxcl3 -1.485458333 | -1.17305 | -0.21324 | 0.81968167 | 0.80178167 | 1.25028167 1
Havcr2 -0.85557 | -0.4334 | -1.20002 1.65613 0.52054 0.31232 1
Trbc1/2 -0.903243333 | -0.83692 | -0.21921 | 1.25316667 | 0.55318667 | 0.15302667 1
Slamfé -0.466145 | -0.66832 | -0.04709 0.771265 0.532435 | -0.122155 1
Sipri -0.516868333 | -0.71452 | -0.2305 | 1.04533167 | 0.64744167 | -0.2308883 1
Trim2 -0.09695 | -0.68455 | -0.55808 0.81591 -0.07748 0.60115 1
Cdse -0.31415 | -0.60576 | -0.41696 0.72586 0.20705 0.40396 1
Psmb9 -0.560436667 | 0.050523 | -0.57221 | 0.70066333 | 0.51166333 | -0.1302067 1
Tox4 -0.275518333 -0.229 | -0.4465 | 0.77138167 | 0.13586167 | 0.04377167 1




172

Ptger4 -0.506115 | -0.41798 | -0.30794 0.632095 0.406025 0.193925 1
Cxcl2 -0.9663 -0.6072 -0.1961 0.3933 0.3417 1.0346 1
Gzmb -1.231153333 -0.0403 | -0.44435 | 0.66952667 | 0.12936667 | 0.91691667 1
Hgf -1.123906667 | -0.08672 | -0.09942 | 0.35266333 | 0.34044333 | 0.61693333 1
Gbp2 -0.840275 | -0.12623 | -0.29087 0.530835 0.510235 0.216315 1
Maltl -0.95028 | -0.32071 | -0.32302 0.64267 0.51717 0.43417 1
Nfil3 -0.9387 -0.0293 -0.0159 0.3906 0.2623 0.331 1
I11r1 -0.92968 | -0.33254 | 0.06769 0.41499 0.41008 0.36946 1
Nfkbie -1.13365 | -0.26345 | 0.20697 0.28086 0.44227 0.467 1
Itgh3 -0.754361667 | -0.26215 | -0.27157 | 0.12756833 | 0.59164833 | 0.56886833 1
Cul2 -0.464171667 | -0.03779 | -0.38865 | 0.13888833 | 0.27750833 | 0.47421833 1
Ptpn22 -0.527196667 | -0.40384 | -0.02223 | 0.38438333 | 0.19706333 | 0.37181333 1
Iirn -0.841166667 | -0.37657 | 0.089433 | 0.21543333 | 0.27703333 | 0.63583333 1
Argl 4.352553333 | 2.569833 | -2.81677 | -1.67980667 | -0.4881667 | -1.9376467 2
Ltbp1 3.934606667 | 1.311297 | -1.78463 | -1.03999333 | -1.6259533 | -0.7953233 2
Gata6 2.886656667 | 0.731417 | -1.78597 | -1.13444333 | -0.3053733 | -0.3922833 2
Mstlr 2.864478333 | 0.306898 | -0.63076 | -0.76059167 | -0.7615917 | -1.0184317 2
Lepr 3.19457 | -0.34483 | -0.51854 -1.53063 -0.28341 -0.51716 2
Ucpl 3.174528333 | 0.304348 | -0.23661 | -0.82455167 | -1.1654017 | -1.2523117 2
Itgab 2.33015 | 0.03477 | -0.45767 -0.54311 -0.34081 -1.02333 2
Cmklrl 2.308748333 | -0.05606 -0.7049 | -0.38224167 | -0.5324117 | -0.6331317 2
Acaca 1.617815 | 0.014445 | -0.48275 -0.359115 -0.263435 -0.526965 2
Cd38 2.04996 | -0.35752 | -0.36311 -0.53562 -0.45553 -0.33818 2
Tnf 1.634918333 | -0.17987 | 0.567178 | -0.77520167 | -0.7248117 | -0.5222117 2
Lifr 0.908496667 | -0.03579 | 0.081747 | -0.17810333 | -0.3671233 | -0.4092233 2

Supplementary Table 4-3: Comparison of gene expression of HFD-fed mice with
metastases treated with IgG or anti-PD-1 antibodies from the NanoString Immune
Exhaustion Panel.
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Table S4-4. Comparison of gene expression of HFD-fed mice with metastases treated
with 1gG o anti-PD-1 antibodies.

Gene

Name HFD 1gG 1 HFD 1gG 2 HFD I1gG 3 HFD aPD-11 | HFDaPD-12 | HFD aPD-13 | Cluster
Bcl2ll -0.688075 -0.634385 -0.045215 0.895795 0.340975 0.130905 1
Ilirn -0.8073333 | -0.1595333 | -0.1619333 | 0.355966667 | 0.331366667 | 0.441466667 1
Plcgl -0.566955 -0.392475 -0.241095 -0.093255 0.927105 0.366675 1
Naa50 -0.584475 -0.046005 -0.290785 -0.005735 0.652425 0.274575 1
Ccrb -0.42835 -0.10254 -0.46185 0.35958 0.25288 0.38028 1
Jak2 -0.3307167 | -0.2045167 | -0.3766167 | 0.199783333 | 0.602883333 | 0.109183333 1
Cxcl3 -1.5484283 | -0.5335883 | -0.5981783 | 1.130831667 | 0.490831667 | 1.058531667 1
Ifng -1.6082633 | -0.8264533 | 0.28607667 | 0.144296667 | 0.829216667 | 1.175126667 1
Pmepal -1.4873517 | 0.00904833 | -0.5765317 | 0.390738333 | 1.043228333 | 0.620868333 1
Cxcl2 -1.1051833 | -0.5054833 | -0.1460833 | 0.764916667 | 0.627216667 | 0.364616667 1
Iirl2 0.06307167 | -0.1352083 | -0.8567483 | 0.472171667 | 0.527001667 | -0.07028833 1
Trim35 -0.278395 -0.366955 -0.657075 0.130205 0.837155 0.335065 1
Lpl -0.2858417 | -0.2449117 | -0.9141117 | 0.435688333 | 0.654488333 | 0.354688333 1
Lag3 -0.0631933 | -1.0213533 | -2.4289333 | 1.429866667 | 1.663076667 | 0.420536667 1
Mras 0.34604333 | -0.6232167 | -1.5824967 | 0.755193333 | 0.909993333 | 0.194483333 1
Sftpal -1.1919417 | -1.6080717 | -0.7405517 | 0.216658333 | 3.295738333 | 0.028168333 1
Ccl21a/b/c | -1.1667283 | -0.2552883 | -0.5998583 | -0.72159833 | 2.171211667 | 0.572261667 1
Dcn -1.1968233 | -0.2853833 | -1.1604633 | 0.013836667 | 1.556156667 | 1.072676667 1
Vcam1 -1.3940617 | -0.6346217 | -1.0946617 | 1.220998333 | 1.487028333 | 0.415318333 1
Klrk1 -0.91908 -0.59214 -0.82443 0.73413 1.3481 0.25342 1
1d2 -0.4153667 | -0.6820667 | -1.1490667 | 0.818233333 | 1.080933333 | 0.347333333 1
Klrbla -0.5001117 | -0.3077117 | -1.1076117 | 0.763868333 | 0.971578333 | 0.179988333 1
H2-DMb2 -0.6539333 | -0.3916033 | -0.9528633 | 1.043756667 | 1.007256667 | -0.05261333 1
Cxcl9 -0.3031067 | -0.6261267 | -0.6711367 | -0.80139667 | 0.828383333 | 1.573383333 1
Tigit -0.4843483 | -0.6607783 | -1.4219883 | -0.08993833 | 1.442301667 | 1.214751667 1
Pparg -0.2042733 | -0.3197033 | -0.7146533 | -0.23549333 | 1.114176667 | 0.359946667 1
Tslp -0.5256517 | 0.06267833 | -0.9298617 | 0.043108333 | 1.174858333 | 0.174868333 1
Adora2a -0.3282017 | 0.02617833 | -1.0188317 | -0.06545167 | 0.916628333 | 0.469678333 1
Tnfrsf14 0.375175 -0.006625 0.553785 -0.714705 -0.113045 -0.094585 2
Il1b 0.44186667 | 0.13116667 | 0.61386667 | -0.58403333 | 0.237733333 | -0.36513333 2
Tapbp 0.47932833 | 0.53708833 | -0.1437717 | -0.69991167 | 0.154638333 | -0.32737167 2
Atr 0.53129833 | 0.03287833 | 0.29419833 | -0.62209167 | 0.186108333 | -0.42239167 2
Cpa3 0.00464333 | 0.39086333 | 0.53850333 | -0.33026667 | 0.280653333 | -0.88439667 2
Pik3cd 0.524215 0.169415 0.312715 -0.519605 -0.081925 -0.404815 2
Mx2 0.71370467 | 1.53203467 | 1.41302467 | -0.57813533 | 2.755713333 | -0.32491533 2




174

Tlrl 0.34606167 | 0.39195167 | 0.62881167 | -0.48899833 | 0.591938333 | -0.28588833 2
Cd180 0.61882667 | 0.57614667 | 0.49495667 | -1.17244333 | 0.081203333 | -0.43628333
Oas2 0.12742 0.54531 1.05592 -1.70721 -0.29983 0.27839
Rnf213 0.17769 0.54594 0.57019 -0.92511 -0.18069 -0.18802
Tgfb2 1.21253167 | -0.1211383 | 0.83385167 | -1.49434833 | 0.256888333 | -0.17400833 2
Cdc14b 1.20643167 | 0.05076167 | 0.52032167 | -1.22290833 | 0.262988333 | -0.29161833 2
Rara 0.81115833 | 0.18113833 | 0.44045833 | -0.56491167 | 0.365931667 | -0.50191167 2
Nrdal 0.85821667 | -0.0393833 | 0.19881667 | -0.43338333 | 0.143583333 | -0.44068333 2

Supplementary Table 4-4: Comparison of gene expression of LFD and HFD-fed

mice with metastases treated with IgG from the NanoString Immune Exhaustion

Panel.
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Table S4-5. Comparison of gene expression of LFD and HFD-fed mice with metastases
treated with anti-PD-1 antibodies.

Gene HFD aPD-1 LFD aPD-1

Name HFD aPD-11 | 2 HFD aPD-13 | LFDaPD-11 | LFDaPD-12 |3 Cluster
Gzmd 0.217536667 | 0.16290667 | 0.854546667 | 0.766423333 | 0.140656667 | 0.60922333 1
Klrbla | 0.704063333 | 0.08752667 | 0.496353333 | 0.164416667 | 0.263186667 | 0.68528667 1
Cxclo 0.794728333 | 1.53972833 | 0.835051667 | 0.912751667 | 0.111868333 | 0.69852167 1
Cxcl11 | 0.791973333 | 0.67845333 | 0.182446667 | 0.016603333 | 0.532836667 | 0.77174667 1
Ccl12 0.826515 0.309775 -0.106935 -0.689935 -0.208785 -0.130635 1
Gzmb 0.063581667 | 0.28814167 | 1.055931667 | 0.566808333 | 0.026648333 | 0.81419833 2

Supplementary Table 4-5: Comparison of gene expression of LFD and HFD-fed
mice with metastases treated with anti-PD-1 antibodies from the NanoString
Immune Exhaustion Panel.




Table S4-6. Comparison of LFD and HFD-fed mice with metastasis treated with 1gG

antibodies.

Gene LFDIgG |LFDIgG |LFDIgG |HFDIgG | HFD HFD

Name 1 2 3 1 1gG2 1gG3

Cdh5 -0.23786 -0.5303 | -0.54843 | 0.92468 -0.0485 | 0.44041
Cd34 -0.35737 | -0.37255 | -0.30886 | 0.469727 | 0.070777 | 0.498287
Tnfrsf11a | -0.00035 | -0.60418 | -0.26219 | 0.246945 | 0.300675 | 0.319085
Kit -0.42566 | -0.60434 | 0.241765 | 0.269655 | 0.453705 | 0.064865
Btg2 -0.37493 | -0.44083 | -0.10773 | 0.127767 | 0.429267 | 0.366467
Nr4a1 -0.60535 | -0.97865 | 0.14205 | -0.26685 | 1.25505 | 0.45375
Nfatc2 -0.3971 | -0.42257 | -0.20547 | -0.14469 | 0.857552 | 0.312272
Ltadh -0.25698 | -0.56574 | -0.45358 | 0.205507 | 0.858297 | 0.212507
I1r1 -0.09385 | -1.32316 | -0.61792 | 0.217093 | 1.239113 | 0.578713
Lag3 -0.21586 | -0.60563 | -0.85541 | -0.00728 | 1.27428 0.4099
Fgfr1 -0.58337 | -0.60747 | -0.58166 | -0.15887 | 1.766933 | 0.164423
Plau -0.39 | -0.47039 | -0.23653 | -0.11646 1.40116 | -0.18778
Mmp12 -0.354 -0.2052 -0.4832 -0.2227 1.0651 0.2
Chil4 -0.13682 | 1.632683 | -0.32372 | -0.00552 | -0.67842 | -0.48822
Marco 0.450248 | 1.006088 | 0.173918 | -0.22107 | -0.78808 -0.6211
C4a 0.452137 | 0.643397 | 0.048127 | -0.09928 | -0.71687 -0.3275
Top2a -0.12077 | 0.802118 | 0.342768 | -0.21968 | -0.67221 | -0.13222
C3 0.087167 | 0.404367 | 0.415667 | -0.11083 | -0.43153 | -0.36483
Cxcl13 0.478258 | 0.838548 | 0.752058 | -0.48293 | -0.64528 | -0.94065
Mmp13 0.657922 | 0.636572 | 0.451172 | -0.36298 | -0.89457 | -0.48812
Cilqgc 0.547405 | 0.722395 | 0.477995 | -0.39531 | -1.03477 | -0.31773
Stat1 0.246823 | 0.123523 | 0.826913 | -0.11112 | -0.47473 | -0.61142
Irf7 0.472888 | 0.322018 | 0.635358 | -0.21427 | -1.05997 | -0.15602
Isg15 0.188732 | 0.182802 | 0.891372 | -0.24872 | -0.68164 | -0.33255
Ccl7 1.125293 | -0.00383 | 0.532693 | 0.001703 | -1.08124 | -0.57463
Gpr183 0.719302 | 0.220902 | 0.251232 | -0.14262 | -0.96446 | -0.08436
Ccl12 0.779947 | 0.233447 | 0.328027 | -0.21629 | -0.48247 | -0.64265
Ccl2 0.73692 | 0.17069 | -0.03354 | -0.13971 | -0.39219 | -0.34217
Cxcl16 0.580455 | 0.063595 | 0.292285 | -0.44724 | -0.57446 | 0.085355
Mmp19 0.56564 | 0.38444 | 0.27347 | -0.67155 | -0.36452 | -0.18748
C1gb 0.182652 | 0.443712 | 0.429292 | -0.63464 | -0.29151 | -0.12951
Timd4 0.04394 | 0.56321 0.72508 | -1.05745 | -0.15381 | -0.12097
Flt3 0.296073 | 0.344973 | 0.678323 | -0.74473 -0.4642 | -0.11045
C1qga 0.233627 | 0.583267 | 0.602687 -0.6411 | -0.47883 | -0.29964
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Supplementary Table 4-6: Comparison of gene expression of LFD-fed mice with
metastasis treated with IgG or anti-CSF-1R antibodies from the NanoString
Myeloid Innate Immunity Panel.



Table S4-7. Comparison of gene expression of LFD-fed mice with metastasis treated

with 1gG or anti-CSF-1R antibodies.

LFD LFD LFD

Gene LFD I1gG LFD I1gG LFD I1gG aCSF1R | aCSF1R | aCSF1R
Name 1 2 3 1 2 3

Prg2 -2.05912 | -1.09341 | -1.01061 | 1.879487 | -0.26501 | 2.548677
Ear6 -1.82304 | -0.85733 | -0.71564 | 1.106475 | 0.523615 | 1.765905
Camp -1.73112 | -0.00985 -0.7899 | 0.625727 | 0.506327 | 1.398827
Csf2ra -0.73905 | -0.74942 | 0.092483 | 1.411253 | -0.85063 | 0.835353
Nr4a1 -0.69502 | -1.06832 | 0.052383 | 1.137983 | -0.29412 | 0.867083
Prok2 -1.23672 | -0.63495 | 0.089082 | -0.68701 | 0.848812 | 1.620782
Ly6g -1.47246 -0.4119 | -0.13891 | 0.170667 | 0.551617 | 1.300997
Mmp8 -0.97141 | -0.33923 | -0.15376 | -0.19455 | 0.352015 | 1.306915
Gata1 -0.94112 | -0.40837 | 0.10739 | 0.22893 | 0.16849 | 0.84468
S100a8 -1.06487 | -0.41677 | -0.08167 | 0.212433 | 0.085833 | 1.265033
Trem1 -0.48243 | -0.35339 | -0.07423 | -0.07243 | 9.00E-05 | 0.98239
S100a9 -0.63808 | -0.33338 | -0.14988 | -0.21208 | 0.296617 | 1.036817
Ptgs1 -0.6765 | -0.07336 | -0.23568 | -0.02841 | 0.458652 | 0.555292
Selp -0.49944 | -0.28044 | -0.22854 | -0.08522 | 0.528262 | 0.565372
Mmp9 -0.65601 | -0.27245 | -0.34966 -0.4146 | 0.69091 1.00181
Pglyrp1 -0.55466 | -0.20225 | -0.19407 | -0.31847 | 0.360922 | 0.908522
Ceacam1 -0.0005 | -0.43742 | -0.55009 | -0.06938 | 0.862223 | 0.195153
Ltadh -0.18303 | -0.49179 | -0.37963 | 0.53128 | 0.67059 | -0.14742
Fn1 -0.6515 -0.4514 -0.5361 0.4158 0.4372 0.786
Ikbke -0.59013 | -0.35694 | -0.17239 | 0.34545 | 0.39863 | 0.37538
Fut4 -0.07694 | -0.66705 | -0.25083 | 0.313448 | 0.304088 | 0.377288
Krba1 -0.29562 | -0.31541 | -0.24711 | 0.156077 | 0.086367 | 0.615707
Tm7sf3 -0.41174 | -0.25926 -0.1662 | 0.196277 | 0.024817 | 0.616117
S100a4 -0.04027 | -0.73527 | -0.28087 | 0.788033 | 0.297533 | -0.02917
Ccr2 -0.5242 -0.7187 | -0.18264 | 0.77472 | 0.26209 | 0.38873
ltgad -0.41205 | -0.29235 | -0.27667 | 0.641092 | -0.17727 | 0.517242
C3ar1 -0.35125 | -0.64051 | -0.16769 | 0.769035 | -0.17759 | 0.567985
Ptprb 1.24123 0.009 | -0.08878 | -0.54808 | -0.40207 -0.2113
Ccl7 0.983398 | -0.14572 | 0.390798 | -0.05797 | -0.67095 | -0.49955
Irf8 4.444531 | -2.54977 | 2.872881 | 0.280181 | -2.45833 | -2.58949
Cyr61 2.94658 | -3.37312 | 2.27192 | 1.04179 | -3.28168 | 0.39451
Col14a1 1.205933 | 0.645573 | 0.917403 | -0.84642 | -1.58492 | -0.33758
Mmp13 0.938817 | 0.917467 | 0.732067 | -1.25259 | -1.21349 | -0.12226
C1qga 0.3009 | 0.65054 | 0.66996 | -0.51603 | -1.34811 | 0.24274
Ciqgc 0.60837 | 0.78336 | 0.53896 | -0.69291 | -1.05331 | -0.18447
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C1gb 0.345812 | 0.606872 | 0.592452 | -0.50621 -1.1773 | 0.138372
Stat1 0.213792 | 0.090492 | 0.793882 | -0.47722 | -0.42951 | -0.19144
Cxcl9 0.359443 | 0.325153 | 1.470963 | -0.33033 | -0.88827 | -0.93697
Tnfrsf4 -0.02817 | 0.229718 | 0.763178 | -0.14679 | -0.47026 | -0.34767
Ttk 0.315327 | 0.368017 | -0.05937 | 0.135227 | -0.28778 | -0.47141
Ccr7 0.579 | 0.16166 | 0.26745 | 0.06429 | -0.37585 | -0.69655
Top2a -0.08123 | 0.841657 | 0.382307 | -0.45551 | 0.157967 | -0.84518
Ccl12 0.7565 0.21 | 0.30458 | -1.08344 0.3249 | -0.51254
Fzd4 0.436675 | 0.396845 | 0.251695 | -0.30373 | -0.36417 | -0.41733
Cxcl16 0.619478 | 0.102618 | 0.331308 | -0.14965 | -0.52757 | -0.37618
Chil4 0.1008 1.8703 | -0.0861 -0.9355 -1.013 0.0635
Chil3 -0.07997 | 2.001633 | -0.06377 | -0.89967 | -1.18967 | 0.231433
Marco 0.337992 | 0.893832 | 0.061662 | -0.62415 | -0.78647 | 0.117132
Pdgfb 0.373683 | 0.814543 | -0.02388 | -0.47837 | -0.4608 | -0.22519
Ear3 0.313683 | 0.949683 | -0.17432 | -0.36002 | -0.55532 | -0.17372
Kif20a -0.26783 | 0.920267 | 0.950597 | 0.312087 | -1.57326 | -0.34185
Cldn1 0.2406 | 0.61408 | 0.38041 | -0.04578 | -1.01695 | -0.17236
Mrc1 0.224208 | 0.792268 | 0.171878 | -0.09778 | -1.16386 | 0.073288
Cda 0.379297 | 0.570557 | -0.02471 | -0.02299 | -0.88549 | -0.01665
Adgre1 0.512207 | 0.507387 | 0.165557 | -0.32022 | -1.00539 | 0.140467
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Supplementary Table 4-7: Comparison of gene expression of HFD-fed mice with

metastasis treated with IgG or anti-CSF-1R antibodies from the NanoString
Myeloid Innate Immunity Panel.



Table S4-8. Comparison of gene expression of HFD-fed mice with metastasis treated

with 1gG or anti-CSF-1R antibodies.

HFD HFD

Gene HFDIgG |HFDIgG | HFDIgG |aCSF1R | aCSF1R | HFD a
Name 1 2 3 1 2 CSF1R 3
Ercc1 0.203787 | 0.038897 | 0.174167 | -0.14902 | -0.07889 | -0.18893
Kit 0.234052 | 0.418102 | 0.029262 | -0.19112 -0.2415 -0.2488
Nr2f6 0.239577 | 0.299317 | 0.116857 | -0.39275 | 0.029797 | -0.29279
Cxcl14 0.511602 | 0.122112 | 0.108522 | -0.36122 | -0.27328 | -0.10774
Mx1 0.29431 | 0.44861 | 0.25945 | -0.45279 | -0.56457 | 0.01499
Prkca 0.476278 | 0.331018 | 0.119488 | -0.49321 -0.3826 | -0.05097
Adamts2 | 0.44376| 0.19089 | 0.15373 | -0.47347 | -0.21657 | -0.09834
Siglec1 0.588195 | 0.470535 | 0.374485 | -0.05462 | -0.48125 | -0.89736
Rhoc 0.104292 | 0.363202 | 0.471512 | 0.037772 | -0.30479 | -0.67199
Ccr8 0.111607 | 0.268647 | 0.321457 | -0.24942 | 0.041237 | -0.49352
Arg1 -0.65039 | 2.764455 | -0.06857 | -0.09631 | -1.24623 | -0.70298
Cd163 -0.42663 | 0.826743 | 0.804683 | -0.02142 | -0.91354 | -0.26985
Col3a1 -0.06488 | 1.109562 | 0.459902 | -0.39275 | -0.82646 | -0.28538
Slc16a6 | -0.07737 | 0.718345 | 0.271795 | -0.10825 | -0.49083 | -0.31371
Mob3c -0.16002 | 0.347927 | 0.415367 | -0.37533 | -0.13919 | -0.08874
Flt1 0.188932 | 0.822412 | 0.533712 | -0.84195 | -0.42893 | -0.27418
Cdh1 0.002788 | 0.459658 | 0.262678 | -0.44732 | -0.22584 | -0.05196
Tspan7 1.280052 | 0.216842 | 0.746392 -0.3358 | -1.80534 | -0.10215
Kitl 1.408838 | 0.219708 | 1.293578 | -0.60863 | -1.73207 | -0.58142
Timp3 1.518658 | 0.331458 | 1.071908 | -0.23511 | -1.94225 | -0.74466
Tek 1.502143 | 0.422213 | 0.919843 | -0.52875 | -1.50358 | -0.81188
Cxcl12 1.48522 | 0.27001 0.8691 | -0.78667 | -1.37365 | -0.46401
Cdh5 1.459683 | 0.486503 | 0.975413 | -0.88241 | -1.55839 | -0.48081
Col4a2 0.927085 | 0.425245 | 0.714485 | -0.26887 | -0.97133 | -0.82663
Ptprb 1.254588 | 0.185228 | 1.054408 | -0.33088 | -1.25198 | -0.91136
Adamts1 | 1.020153 | 0.010373 | 1.240963 | -0.28928 | -1.28719 | -0.69503
Cav1 0.836757 | 0.317627 | 0.575927 | -0.12604 | -1.26069 | -0.34357
Col1a2 0.397818 | 0.160578 | 1.144698 | -0.44864 | -0.83302 | -0.42143
S1pr1 0.565783 | 0.321113 | 0.531163 | -0.10831 | -1.01971 | -0.29005
Hpgd 1.293137 | 0.339587 | 0.305147 | -0.95676 | -0.59654 | -0.38456
Hc 0.813473 | 0.020033 | 0.634473 | -0.97823 | -0.06925 | -0.42051
Stab1 0.763643 | -0.44602 | 0.251483 | -0.30678 | -0.13477 | -0.12757
Cd34 0.337762 | -0.06119 | 0.366322 | -0.40362 | -0.05878 -0.1805
Edn1 0.96906 | -0.56607 0.6858 | -0.44885 | -0.51785 | -0.12209
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Tgfbr3

0.71721

-0.0184 | 0.43696 | -0.21881 | -0.69888 | -0.21808
Fzd4 0.795652 | 0.130372 | 0.186322 | -0.28888 | -0.83933 | 0.015862
Enc1 0.40697 | 0.45257 | 0.12205 | 0.09431 | -0.88254 | -0.19336
Sptbn1 0.455542 | 0.182972 | 0.282832 | -0.22576 | -0.45064 | -0.24495

Supplementary Table 4-8: Comparison of HFD-fed mice with metastasis treated
with IgG or snit-CSF1R from the NanoString Myeloid Innate Immunity Panel.
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Table S4-9. Comparison of LFD and HFD-fed mice with metastasis treated with anti-

CSF-1R antibodies.

LFD LFD LFD HFD HFD HFD

Gene aCSF1R | aCSF1R | aCSF1R | aCSF1R | aCSF1R | aCSF1R
Name 1 2 3 1 2 3

Tnfrsf4 -0.35504 | -0.15416 | -0.47763 | -0.08733 | 0.61972 | 0.45444
Tubala -1.32262 -0.0154 | -0.00102 | -0.01023 | 0.637238 | 0.712038
Cb5ar1 0.785932 -0.3298 | 0.414032 | 0.044122 | -0.47193 | -0.44236
Tlr13 0.773215 | -0.30189 | 0.428415 | -0.28696 -0.2286 -0.3842
Pglyrp1 0.846608 | -0.38038 | 0.299008 | -0.10301 -0.2478 | -0.41442
Arg1 1.831627 | -0.32039 | 0.651597 | -0.13541 | -1.28533 | -0.74208
Mmp9 0.955745 | -0.46067 | 0.644845 | -0.05931 -0.4653 | -0.61533
Mmp8 1.130055 | -0.37141 | 0.175155 | -0.09345 | -0.36775 | -0.47262
Ly6g 1.003613 | -0.12672 | 0.254233 -0.1331 | -0.39362 | -0.60442
Csf3r 0.880233 | -0.17857 | 0.175033 | -0.12557 | -0.34307 | -0.40807
Hbegf 0.365543 | 0.760303 | 0.183543 | -0.08104 | -0.75338 | -0.47498
Fcgr1 0.410837 | 0.372277 | 0.318897 -0.1126 | -0.58326 | -0.40614
C3ar1 0.535858 | 0.736908 | -0.20971 | -0.18227 | -0.36799 | -0.51279
Mx1 0.653913 | 0.639053 | -0.09945 | -0.51651 | -0.62829 | -0.04873
Mafb 0.630423 | 0.407703 | 0.023713 | -0.27852 | -0.32825 | -0.45508
Tlr4 0.045023 | 0.168443 | 0.659743 | -0.28083 | -0.29126 | -0.30113
Golim4 0.502725 | 0.211935 | 0.048935 | -0.33066 | -0.22903 | -0.20392
Grn 0.473597 | 0.152367 | 0.248107 | -0.35914 | -0.19132 -0.3236
Ptgs1 0.707402 | 0.123702 | 0.610762 | -0.40626 | -0.90167 | -0.13394
Selp 0.592912 | -0.05768 | 0.555802 | -0.17577 | -0.64118 | -0.27409
Fn1 0.762517 | 0.392317 | 0.413717 | -0.51068 | -0.50008 | -0.55778
Cd38 0.618743 | 0.397813 | 0.562633 | -0.24451 | -0.71962 | -0.61507
Slc16a6 0.52673 | 0.43145| 0.35652 | -0.24222 -0.6248 | -0.44768
Ear6 1.441378 | 0.781948 | 0.199088 | -0.46239 | -0.52484 | -1.43518
Camp 0.957797 | 0.184697 | 0.065297 -0.0889 | -0.46041 | -0.65847
Tgm2 1.086357 | 0.422857 | -0.18955 | -0.05204 | -0.74929 | -0.51832
Maff 0.798688 | 0.454038 | -0.35372 | 0.160228 -0.502 | -0.55723
ler3 0.689298 | 0.446698 -0.0513 | 0.036298 -0.4939 | -0.62709
Ccrl2 0.934983 | -0.07762 | 0.135683 | -0.44872 | -0.07422 | -0.47012
Cebpb 0.5803 0.0669 0.2563 -0.3428 -0.1784 -0.3823
Fut4 0.490247 | 0.426407 | 0.417047 | -0.03057 | -0.19169 | -1.11143
Ikbke 0.304648 | 0.274718 | 0.327898 | 0.161818 | -0.30117 | -0.76791
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Runx2 0.856762 | 0.215472 | -0.09007 | -0.15948 | -0.33894 | -0.48375
Irf7 0.829163 | 0.340783 | 0.022393 | -0.3572 | -0.31447 | -0.52068
Sell 0.687183 | 0.057583 | 0.376083 | -0.22282 | -0.42002 | -0.47802
C3 0.611017 | 0.087817 | 0.182117 | -0.15748 | -0.27208 | -0.45138
Alox5 0.675207 | -0.06903 | 0.235677 | -0.05312 | -0.34105 | -0.44767
Nfkbiz 0.768633 | -0.02417 | 0.079733 | -0.10387 | -0.35727 | -0.36307
Cd163 0.774177 | 0.178177 | 0.047357 | 0.046947 | -0.84517 | -0.20148
Egr3 0.828822 | -0.04775 | 0.117532 | -0.0945 | -0.63298 | -0.17113
Tm7sf3 | 0.543443 | 0.123603 | -0.04786 | -0.06087 | -0.3642 | -0.19413
Ly6c1 0.599347 | 0.189077 | 0.156017 | -0.06492 | -0.4417 | -0.43781
Prg2 2.202603 | 1.533413 | -0.61109 | -0.2346 | -0.96305 | -1.92729
Serpinb2 | 2.043093 | 0.647413 | -0.79153 | -0.79194 | -0.3106 | -0.79645
Apoe 2.33876 | 0.23405 | -0.48264 | -0.81064 | -0.73173 | -0.5478
Siglec1 1.509018 | 0.010538 | -0.39934 | 0.049718 | -0.37691 | -0.79302
Trem2 1.380388 | 0.052828 | -0.32209 | -0.25635 | -0.35498 | -0.49979

183

Supplementary Table 4-9: Comparison of LFD and HFD-fed mice with metastasis
treated with anti-CSF-1R antibodies from the NanoString Myeloid Innate Immunity

Panel.
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CHAPTER 5:

Conclusions and Future Directions
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Conclusions:

In Chapter 2, we explored how obesity interacts with other breast cancer risk
factors such as breast density to alter the non-tumor bearing mammary gland and
tumorigenesis in the context of collagen deposition and immune recruitment. Using a
HFD-induced model of obesity and mice that express a mutation leading to
accumulation of collagen, we found obesity increases collagen around ducts compared
to their LFD-fed counterparts. Increased collagen around ducts could increase overall
breast cancer risk by increasing the invasiveness of epithelium (1). We confirmed
previous reports of increased macrophage-driven inflammation within obese mammary
glands (2). This was measured by increased F4/80+ cells surrounding mammary ducts
and increased macrophages forming CLS around adipocytes. CD8+ T cell recruitment

within non-tumor-bearing glands was also reduced in a diet-dependent manner.

To model how these risk factors affected breast cancer progression, we utilized
the MMTV-PyMT model of spontaneous mammary tumor growth. Overall, we did not
see an effect on progression due to risk factors on this model at 9 weeks nor did we see
differences in tumor growth at 15 weeks. However, metastasis to the lungs was
significantly enhanced at 15 weeks in mice with both risk factors compared to LFD/WT
and HFD/WT mice. Early in tumor formation, we did not observe differences in
macrophages. However, as tumors formed, there were significant increases in F4/80+

macrophages around tumors of mice with either risk factor.
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Overall, Chapter 2 shows that (1) a combination of breast density and obesity
together can enhance macrophage inflammation and collagen deposition that
may increase breast cancer risk beyond one risk factor alone. (2) During the
progression of breast cancer, both risk factors together seem to promote
metastasis to the lung, which may translate to an overall poorer survival outcome

in patients with both conditions at the time of breast cancer development.

Obesity also contributes to more metastasis in breast cancer patients, particularly
to the lungs. In Chapter 3, we explored the phenotype of CD8+ T cells before and after
ERa+ breast cancer metastasis to the lungs. In non-tumor bearing mice, we discovered
that although CD8+ T cell numbers are not different between LFD or HFD fed mice in
the lung, CD8+ T cells in obese mice had higher expression of PD-1 and had impaired
responses to in vitro stimulation. CD8+ T cells from HFD-fed mice did not produce
significantly higher levels of TNF-a in response to stimulation, whereas CD8+ LFD-fed
mice robustly responded to stimulation and produced significant amounts of TNF-a.
RNA analysis from NanoString nCounter Immune Exhaustion Panel revealed that T
cells in non-tumor bearing mice in the lungs had increased T cell receptor signaling
(TCR) and upregulation of some genes of T cell immune checkpoints such as Tigit.
Overall, the dysfunctional response to stimulation coupled with increased immune
checkpoint expression may point to obesity promoting T cell exhaustion in CD8+ T cells
prior to tumor burden and metastasis. This could create a pre-metastatic niche that is

more conductive for metastasis.

Mice orthotopically injected with ERa+ mammary tumor cells showed differential

immune responses in the lungs of HFD-fed mice compared to LFD-fed mice. Total
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immune infiltration measured by an increase in total CD45+ cells was higher in HFD-fed
mice after metastasis. Similar to non-tumor bearing mice, lungs from HFD-fed mice with
metastasis had an increase of PD1+ CD8+ T cells. Lungs with metastases from HFD-
fed mice showed a significant increase in Tregs which may play a role in
immunosuppression (3). Expression analysis of CD45+ immune cells isolated from the
metastatic lungs of HFD-fed mice revealed increases in T cell receptor signaling and
cytotoxicity but downregulation of IFN signaling and TNF signaling. These results
indicated, that despite increased T cell receptor activation, there may be an impairment
of cytokine production by CD8+ T cells. To test this, we repeated the stimulation of
CD8+ T cells isolated from lungs with TC2 metastasis. Surprisingly, CD8+ T cells from
HFD-fed mice responded to stimulation to produce high levels of TNF-a. This suggests
despite PD-1 expression, CD8+ T cells in metastasis might retain some function in
obesity. Since genes associated with T cell exhaustion were not upregulated in our
NanoString analysis, we propose that in HFD-fed mice, after metastasis CD8+ T cells

may have a different exhausted-like phenotype.

Pathways such as IFN signaling, TNF signaling, and cytotoxicity are not all T cell
specific, and it is possible that other cell types may be involved since we analyzed the
whole CD45+ population. Therefore, decreased cytokine signaling could be due to other
cell types. We also observed an upregulation of genes associated with natural killer
(NK) cell exhaustion and increased B cell receptor (BCR signaling). Thus, NK cells and
B cells could play a role in immune cell dysfunction in lung metastasis in HFD-fed mice.
Further studies are needed to explore how NK cell and B cell function could contribute

to worse metastatic disease in HFD-fed mice. Chapter 3 highlights that (1) Obesity
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impairs CD8+ T cell function to an exhausted-like state in the lungs of non-tumor
bearing mice. (2) After metastasis, CD8+ T cells in the lungs of obese mice
express PD-1, but they retain function after in vitro stimulation, which indicates
that they may have a different T cell phenotype following metastasis. (3) NK and B

cells may contribute to metastatic progression in HFD-fed mice.

In Chapter 4, we investigated how anti-PD-1 and anti-CSF-1R antibodies affect
immune responses in TC2 ERa+ metastasis in obese and lean mice. In LFD-fed mice
treated with anti-PD-1 antibodies alone reduced lung metastasis but not HFD-fed mice.
To further investigate how immune cells change within metastasis to the lung, we sorted
CD45+ from TC2 tumor bearing mice treated with IgG or anti-PD-1 antibodies. Analysis
from the NanoString immune exhaustion panel revealed that anti-PD-1 therapy
increased genes associated with cytotoxicity but only in LFD-fed mice. In HFD-fed mice,
immune checkpoints such as Lag-3 and Tigit were upregulated, indicating exhaustion in
response to anti-PD-1 antibodies in obese mice. Coinciding with this data, only LFD-fed
mice had a reduction in lung metastasis. Although HFD-fed mice were the only group
that saw increases in CD8+ T cells after anti-PD-1 antibody treatment, these T cells
were exhausted in HFD-fed mice. HFD-fed mice also showed a trending increase in PD-
L1+ myeloid cells. Previous studies have shown an increase of immunosuppressive
myeloid cells within lung metastasis of HFD-fed mice (4, 5). To see if macrophages
could be playing this immunosuppressive role and inhibiting responses to anti-PD-1
inhibitors, we co-cultured macrophages isolated from ERa+ metastasis from HFD or

LFD-fed mice with control splenic CD8+ T cells. Macrophages from HFD-fed mice
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reduced TNF-a expression in unstimulated CD8+ T cells. Thus, these macrophages

could be playing an inhibitory role.

To deplete macrophages, we used anti-CSF-1R antibodies. In mice with intact
tumors, CSF-1R treatment did not significantly reduce tumor growth in either obese or
lean mice. However, we hypothesized it could affect the progression of metastatic
disease in the lungs. NanoString analysis with the Myeloid Innate Immunity Panel
revealed LFD-fed mice had increased lymphocyte activation in response to anti-CSF-1R
antibody treatment. Chemokines related to monocyte recruitment and immune evasion
were downregulated in both LFD and HFD-fed mice but different chemokines were
altered in mice from the different diet groups. HFD-fed mice had a reduction in cytokines
involved with immunosuppression. Thus, further investigation was warranted to
determine whether HFD or LFD-fed mice would have better responses to anti-CSF-1R
antibody treatment alone. We analyzed immune cells via flow cytometry between anti-
CSF-1R or IgG antibody treated groups. CSF-1R inhibition increased CD45+ and
CD11b+ cells in HFD-fed mice only and reduced PD-L1+ myeloid cells. Therefore, in
obesity, CSF-1R treatment improves inflammatory responses more than in LFD-fed
mice. To match this change in immune cell response, HFD-fed anti-CSF-1R treated
mice had reduced metastasis, but this was not significant compared to HFD-fed 1gG
controls. However, anti-CSF-1R treatment increased PD-1+ CD8+ T cells and had
increased levels of PD-L1+ metastasis. Therefore, HFD-fed mice might benefit more

from a dual anti-CSF-1R, anti-PD-1 combination therapy than LFD-fed mice.

To test if HFD-fed mice would benefit from dual macrophage depletion and PD-

1/PD-L1 blockade, we treated mice with resected tumors with a loading does of anti-
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CSF-1R to deplete macrophages before anti-PD-1 treatment. Mice then received anti-
CSF-1R and anti-PD-1 antibodies together. HFD-fed mice, as hypothesized, had the
best responses to dual immunotherapy. HFD-fed mice saw an increase in total CD45+
immune cells in response to dual therapy, which was not seen in LFD-fed mice. HFD-
fed mice also had reduced metastasis in response to dual therapy compared to LFD-fed
mice on dual immunotherapy. Overall, obesity had more robust responses to dual
immunotherapy than LFD-fed mice by increasing immune recruitment. In Chapter 4, we
conclude (1) Under conditions of obesity, responses to anti-PD-1 antibodies are
limited. (2) Obese mice had more robust responses to anti-CSF-1R in the lungs
which was due in part due to increased inflammation and reduction
immunosuppressive macrophages and PD-L1+ myeloid cells. (3) Obese mice also
had more robust responses to a dual combination of anti-CSF-1R and anti-PD-1

antibodies within lung metastasis.

This body of work still leaves many unanswered questions regarding obesity’s
role in breast cancer risk, progression to metastasis, and its effects on immunotherapy
responses. Below is a summary of further experiments that would uncover answers to
lingering questions. In addition, this thesis points to new avenues of investigation for
future work understanding obesity-associated breast cancer for the benefit of future

patients.

Future Directions:

Investigating the effects of obesity and breast density on breast cancer risk and

progression
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To investigate the relationship between obesity and breast density to impact
breast cancer risk, we should further quantify collagen deposition in mammary glands of
LFD and HFD-fed WT and Het mice in the surrounding stroma and adipose tissue. We
were surprised that we did not observe significant differences in collagen surrounding
the mammary ducts of LFD-fed Het mice at the early or late time point. The significant
increases in collagen surrounding mammary ducts in HFD-fed mice points to a possible
difference in pattern in collagen deposition between obesity and this transgenic model,
which could be studied using different imaging modalities such as second harmonic
generation microscopy to identify changes to the organization of the collagen. These
differences could point to new avenues of study on collagen deposition patterns in the

non-tumor bearing mammary gland and its effects on breast cancer risk.

We also did not look at intrinsic differences in epithelial cells within the mammary
gland of PyMT- mice. Markers like Ki67, which can be measured via
immunohistochemistry, could identify potential differences proliferation in epithelial cells
among the groups which have been shown to increase breast cancer risk in
premenopausal women (6, 7). Further, quantification of estrogen receptor (ER) could
identify potential risk of ERa+ breast cancer, however, the data linking ER expression to
breast cancer risk is inconsistent (7). Cells that express both Ki67 and ER correlated
with increasing age and were present in high-risk DCIS lesions, therefore they may be
involved in the early stages of developing breast cancer (8). Identifying these cells could
further give insight to how these risk factors together could contribute risk. ER
expression is increased in epithelial cells under obese conditions in non-tumor bearing

mammary glands (9). In contrast, breast density is associated with stromal expression
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of ER rather than increased epithelial expression of ER (10, 11). Both breast density
and obesity are associated with the development of ERa+ breast cancer (12, 13). Thus,
both risk factors together could transform epithelium to a luminal Ki67/ER+ state and

ERa+ stroma to increase the risk of ERa+ breast cancer.

While we did not perform any assays to identify functional changes in immune
cells like macrophages or CD8+ T cells in PyMT- and PyMT+ mammary glands. A
cytokine array within PyMT- and PyMT+ glands could give an insight to what cytokines
are being produced by both myeloid and adaptive immune cells between glands under
the influence of different risk factors. Further, flow cytometry would aid in identifying
other immune cells that change due to breast density and obesity. This approach would
provide an opportunity to look at makers associated with macrophage polarization such
as MHCII and CD80/CD86 to identify M1 macrophages and CD163 and CD206 to
designate M2 macrophages. CCR7 has also been suggested as an M1 marker (14).
Although macrophages are increased in both dense mammary glands and obesity, they
may have different functions among the groups. In non-tumor bearing mammary glands,
we also saw lower CD8+ T cell recruitment in HFD-fed mice but similar levels of CD8+ T
cells between LFD-fed groups. Other studies have shown that breast density increased
PD-1 expression within the mammary gland (15). Although CD8+ T cells were not
different between LFD/WT and LFD/Het groups, there may be differences in function.
Exploring CD8+ T cell dysfunction within dense mammary glands may identify how
collagen alters CD8+ T cell immune surveillance of pre-neoplastic cells and point to

mechanisms that drives breast cancer in dense breast tissue.
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We used the MMTV-PyMT+ model to investigate how breast density and obesity
interacted to promote tumorigenesis. We did not see any obvious differences with the
MMTV-PyMT model and tumor progression in obesity at 9 or 15 weeks of age. We
hypothesized that risk factors would affect early lesions and accelerate tumorigenesis in
a significant manner by 15 weeks. However, due to the nature of this model and its fast
progression to adenocarcinoma, future studies should look at how these risk factors
affect MMTV-PyMT at later timepoints, such as 20-30 weeks. At this timepoint, obesity
as well as breast density will be well established and may be more likely to affect tumor
growth. At 9 weeks, although HFD-fed mice were significantly heavier, obesity levels
were higher at 15 weeks. At 15 weeks, we started to see differences in immune cell
recruitment around tumors and saw increases in metastasis. We observe peak
increases in obesity induced inflammation in the mammary gland at a 16-weeks
timepoint, and later timepoints may reveal more differences. However, with mice
currently collected for this manuscript, an IHC stain of Ki67 could be used to identify if
epithelium from LFD/Het, HFD/WT or HFD/Het tumors have early proliferative
capacities. Lastly, due to the link of collagen and tumor invasiveness, we could look at
extracellular matrix (ECM) deposition in PyMT+ tumors with these risk factors. Collagen
may be enhanced in HFD/Het tumors which metastasized more to the lungs compared

to WT obese mice (1).

There are other ways to model breast density and obesity associated mammary
tumorigenesis in mice for further in vivo exploration. Orthotopically injecting mice with
diet-induced obesity, transgenic Col1a1t™2¢ mice , and Col1a1t™2¢ mice fed a HFD with

tumor cell lines gives opportunity to investigate different subtypes of breast cancer as
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well as more flexibility with the latency of tumor growth. To further study these risk
factors, MET-1 cells, which are derived from the MMTV-PyMT model and metastasize to
the lungs, could be orthotopically injected to model TNBC (16). ERa+ breast cancers
could also be studied by using cell lines like TC2 cells, but TC4 and TC11 variants could
also be used to see if there are differences between different breast cancer subtypes.
After 16 weeks fed either a LFD or HFD, Col1a1'™/2¢ (Het) and WT mice would be
orthotopically injected with ERa- or ERa+ cell lines to see the effects of these risk

factors on both subtypes.

We observed an increase in metastasis in HFD-fed Het mice compared to LFD-
fed WT and Het mice. Although we quantified metastasis number, metastatic area may
be larger in HFD-fed Het mice. We did not identify a mechanism for this increased level
of metastasis in mice with both risk factors. Further exploration of differences in the
extracellular matrix and immune cell recruitment in tumors could help explain these
results. However, the changes in the metastatic microenvironment of the lungs could be
explored in dual risk factor mice to better understand increased metastasis in these
mice. Overall, the interactions of obesity and breast density together on breast cancer

risk and metastasis to the lung should continue to be explored.

Defining CD8+ T cells phenotypes before and after breast cancer metastasis

under obese and lean conditions

In Chapter 3, we did not fully define the phenotype of CD8+ T cells in the lungs
before and after breast cancer metastasis. Our data supports the conclusion that before
metastasis, CD8+ T cells from lungs of obese mice are exhausted at some level. While

CD8+ T cells had more PD-1 expression in lungs of obese mice before metastasis,
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genes associated with T cell exhaustion were not widely upregulated. Before
metastasis, we identified an upregulation of gene expression of Tigit, which can be seen
on exhausted or senescent cells (17, 18). Lower cytokine production and an
upregulation of PD-1 after stimulation in HFD-fed mice also matches an exhausted
phenotype. Since PD-1 is not associated with senescence, it is likely these T cells are
exhausted (19). However, more recent reviews suggest PD-1 expression on senescent
cells is controversial (20) In mice with metastasis, CD8+ T cells also expressed more
PD-1 in HFD-fed mice. Surprisingly, CD8+ T cells in obese mice showed some retention
of cytokine production after stimulation, specifically an ability to produce TNF-a, unlike
before metastasis. These results suggested that the phenotype of CD8+ T cells differ
after metastatic establishment in the lungs. We were surprised that CD8+ T cells
exposed to metastasis produced more cytokines than prior to disease. It's unclear why
CD8+ T cells are not effective in eliminating tumor cells in the lungs. Experiments are
necessary to identify the mechanisms for these differences and to precisely classify
CD8+ T cell populations through genetic, epigenetic, and analysis of identified surface

markers for different types of exhaustion or dysfunction.

Recent research suggests that exhausted CD8+ T cells are heterogeneous. It is
now understood there are two categories of exhaustion CD8+ T cells defined as
progenitor exhausted and terminally exhausted. Progenitor exhausted T cells (Tpex) are
stem-like and can be identified by intermediate levels of PD-1. They are express the
transcription factor TCF1. Terminally exhausted T cells (Ttex) are differentiated and
derived from Tpex (21). Ttex are identified as TCF1- and express high levels of PD-1

and other inhibitory receptors like TIM-3 (22). Ttex cells were found to express more
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granzyme B than Tpex cells and had reduced proliferation capacity than Tpex after
restimulation (22). Incorporating different exhaustion markers (TIM-3, LAG-3, TIGIT etc.)
in our future flow panels, staining for other cytotoxic proteins like granzyme B, and
incorporating a test for T cell proliferation, such as by labeling with BrdU, may further
define these T cell phenotypes within the lungs of obese and lean mice. Tpex cells
respond to anti-PD-1 inhibitors, leading to enhanced proliferation (21). In Chapter 4, we
identified anti-PD1 treatment increased CD8+ T cells in obese metastasis but not in lean
mice. It is worthwhile to identify if there is a change in CD8+ T populations after
metastasis to increase Tpex. Identifying Tpex in the lungs after metastasis under
conditions of obesity may provide a biomarker for treatment of advanced ERa+ disease

with ICB.

Generally, senescent T cells are not thought to respond to stimulation or express
PD-1. However, obesity increases PD-1+ senescent-like T cells in adipose tissue (23).
As a future point of exploration, we did not confirm that senescent CD8+ T cells are not
present in metastasis. It is possible senescent cells made up a portion of the PD-1-
CD8+ population in the lungs or senescent-like PD-1+ cells could be present. B-
galactosidase is a reliable marker for cellular senescence that could be identified by IF
staining or flow cytometry. Coupling B-galactosidase with quantification of intracellular
cytokines and proliferation markers using flow cytometry would solidify the identity of

senescent CD8+ T cells.
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How do other cells in the adaptive immune system play a role in breast cancer

metastasis under the conditions of obesity?

In Chapter 3, we identified that NK cells may be exhausted in the lungs of HFD-
fed mice with metastasis. A future direction would be to explore in-depth NK cell
function within metastasis. We could quantify NK cells via IF staining to see if NK cells
are reduced in the lungs of obese mice before and after ER+ metastasis. Markers like
CD161 are found on a majority of NK cells and are associated with activated NK cells
which have higher proliferative capacities (24). It is possible that there are less CD161+

NK cells in the lungs of obese mice, particularly with metastasis.

NK cells may be important in the context of understanding why obese patients
have better responses to PD-1/PD-L1 inhibitors (25). NK cells also express PD-1, and
this expression should be explored in metastasis in the context of obesity (25, 26). It
has been shown NK cells can inhibit ICB responses in melanoma lung metastasis (27).
It is a fascinating avenue to investigate NK cell phenotypes, like exhaustion, within
breast cancer metastasis under obese conditions and how these phenotypes relate to

immunotherapy responses.

It is likely other compartments of the immune system are impaired in metastatic
disease in obesity. We also saw in chapter 3 an increase in B cell receptor (BCR)
signaling. B cells can also have an exhausted phenotype and may contribute to
metastatic growth in obese mice (28). B cells can also express PD-1, and PD-1+ B
cells can contribute to T cell dysfunction (29). Exploring B cell numbers with markers
like CD19 and CD20 could identify B cells within metastasis to see if they are increased

or reduced under obese conditions. It is clear that CD8+ T cells are not the only
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contributing factor to immune evasion of metastasis and response to PD-1/PDL-1
inhibitors and understanding the function of other cell types could help to predict ICB

therapy responses.

Explore macrophage populations in obese lungs before and after metastasis

In Chapter 4, we identified that CSF-1R+ macrophages impacted the metastatic
microenvironment differently between obese and lean mice. Although blocking CSF-
1/CSF-1R is generally thought to decrease M2 macrophages, the phenotype of CSF-
1R+ macrophages has not been explored under conditions of obesity (30). However,
CSF-1R treatment reduced PD-L1+ myeloid cells in the lungs of obese mice. PD-L1+
macrophages are classically thought to be immunosuppressive, there may be
differences between PD-L1-/low macrophages and PD-L1+/high and their ability to
activate T cells (31). Our results, showing depletion of macrophages and subsequent
increase in total immune cell recruitment after anti- CSF-1R treatment may suggest PD-
L1+ macrophages were immunosuppressive in HFD mice, as we suggested in Chapter
4. However, the possibility that M1-macrophages may also be playing a role in obese

metastasis should further be explored with markers mentioned above.

How does adaptive immune cell dysfunction play a role in mammary tumors?

The focus of this dissertation was mostly on the metastatic microenvironment
rather than the tumor microenvironment under the influence of obesity. In Chapter 2, we
observed that obesity increased macrophages and reduced intertumoral CD8+ T cell
infiltration. Supporting studies with EO771 cells saw reduce CD8+ T cells in tumors of

obese mice (32). Others have shown that CD8+ T cells express less granzyme B
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(GzmB) in mammary tumors of obese mice which may suggest T cell dysfunction (33).
Further studies could explore how obesity alters CD8+ T cells in the tumor
microenvironment of ER+ tumors. Increased macrophages due to obesity have not
been seen in all models of breast cancer, and we have not observed increased
macrophages in TC2 tumors (34). Although the total number macrophages may not be
different in certain breast cancer subtypes or stages, polarization may be different (34).
Obesity has been shown to decrease the ratio of M1/M2 polarized macrophages in
tumors (32). Reducing M1/M2 ratios are thought to be tumor promoting, but it is unclear
under obese conditions how this could affect immunotherapy responses to ICB. Further
studies are needed to understand the tumor microenvironment of different subtypes of
breast cancer under obese conditions. Further, how this effects responses to anti-PD-1
and anti-CSF-1R treatment should be explored as we saw different responses in the

primary tumor compared to metastatic environments like the lungs.

In obese conditions, do other therapy combinations improve responses to anti-

PD-1 therapies?

There are plenty of opportunities to pair anti-PD-1 or anti-PD-L1 inhibitors with
other therapies to improve responses to lung metastasis in lean and obese patients with
breast cancer. In this work, we mostly focused on ERa+ tumor models as little is known
about ICB response in ERa+ breast cancer. A limitation to Chapter 4, is that most
patients receive standard of care or a combination of therapies before receiving
experimental immunotherapy combinations. The standard of care for advanced
metastatic ERa+ breast cancer is endocrine therapy, usually with multiple different types

including tamoxifen, aromatase inhibitors, and fulvestrant coupled with cyclin-dependent
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kinases (CDK) 4/6 inhibitors after surgery (35, 36). Palliative chemotherapy is offered if
endocrine resistance occurs (35). Standard of care endocrine therapies could alter the
efficacy of ICB. In a lung cancer model, anti-estrogen fulvestrant and a pan-HER
inhibitor dacomitinib reduced IFN-y and TNF-a production by CD8+ T cells and
increased PD-1 expression. Combining fulvetrant, dacomitinib, and anti-PD-1 was more
efficacious than fulvestrant and dacomitinib alone (37). Immune cells express ERa and
ERB and ER/ER2 signaling play a pivotal role in the differentiation of immune cells (38).
ER signaling by the immune system has been linked to more autoimmune disease in
women (39). Further, anti-PD-1 inhibitors have been linked to enhanced efficacy in men
(40). Despite these trends, women with ERa+ breast cancer that have blocked ER/E2
signaling may benefit from PD-1 inhibitors. The effect of ER is profound on the immune
system, this opens the door for fulvestrant use in ER subtypes of breast cancer in
combination with anti-PD-1/PD-L1 inhibitors. Preclinical models have already begun to
explore fulvestrant use in combination with radiation and anti-PD-L1 in ERa+ breast
cancer, showing decreased tumor volumes compared to radiation therapy and anti-PD-
L1 alone (41). How obesity effects this combination of therapies is currently unknown.
Overall, the complex biology of estrogen signaling and immune checkpoint signaling

under the influence of obesity should further be explored.
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CHAPTER 6

When your immune system helps cancer grow: A story of obesity and breast
cancer

Communicating Science to a broader audience as part of the Wisconsin Initiative for
Science Literacy Program
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To the reader:

| decided to conclude my Ph.D. dissertation with a chapter dedicated to you, a
non-expert in the field of obesity-associated breast cancer, so my work can reach a
broader audience. This chapter is brought to you thanks to the Wisconsin Initiative for
Science Literacy (WISL) at UW-Madison. This chapter gives you a non-technical
explanation of my thesis entitled “Obesity enhances breast cancer risk, metastasis, and

response to Immunotherapy.”

Science communication is an important part of being an effective scientist. Our
work cannot benefit you if you are not able to access the information. In recent years,
with the widespread use of the internet and multiple media sources, it is very easy for
scientific information to be misrepresented, unbeknown to the person enjoying that
content. As scientists, we often focus on the gritty details of what questions we are
trying to answer. Most of our day-to-day communication about our science is with other
scientists that have similar expertise to our own. We sometimes forget how to
communicate with non-scientists. It is an artto communicate research, specifically
biomedical research in my case, to a non-expert. Science is its own language, and it

takes years to learn. However, it doesn’t have to be inaccessible to you.

During my Ph.D., the COVID-19 pandemic highlighted a failure of scientific
communication to the public by scientists. This in turn resulted in deaths that were likely
preventable. With improved scientific education and communication, the public will be
able to know how to protect themselves from the latest public health threat, as well as
help communicate to others how to do the same. | know everyone cannot fall in love

with science as much as me, but | hope everyone can find a trusted friend in science,
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and is able to understand, enjoy, and benefit from when she reveals her exciting new

secrets.

Introduction:

Many families have been affected by breast cancer. You may be familiar with
the pink folded ribbon, a recognizable symbol for breast cancer awareness, but you may
not know what health factors could increase your chances for developing this disease.
Two of those risk factors, which were the focus of my dissertation, are breast density
and obesity. Some women that have high breast density may become obese in their
lifetime. It is unknown how these risk factors together might affect breast cancer risk.
Not only do higher breast density and obesity affect the likelihood of developing breast

cancer, but they also can affect how breast cancer grows and spreads.

Cancer is an overgrowth of the body’s own cells until they form a tumor, or mass.
Breast cancer is an overgrowth of breast cells, or epithelium. In humans, obesity has
been shown to increase both breast cancer tumor size and the cancer’s ability to
spread, or metastasize, to the lungs. Cancer metastasis is often fatal for cancer
patients. It is currently unknown why obese patients have larger tumors at diagnosis,
and more metastasis to the lung. Women with dense breasts also have worse overall
outcomes when they develop breast cancer. The first aim of my work was to test if
breast density and obesity together would accelerate risk and tumor progression more
than one risk factor alone. Second, | focused on obesity only to understand why these
patients may have more metastasis in the lungs. Thirdly, | investigated why obese

patients have better responses to some types of cancer therapy.
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Figure 6-1 Obese patients frequently have larger, more invasive breast tumors at
the time of diagnosis: Shows an example of a tumor at the time of diagnosis in lean
women and a tumor at diagnosis in an obese patient. Obese women at the time of
diagnosis frequently have larger tumors that are more invasive. Invasive tumors have
spread farther into the surrounding breast and eventually into the chest.

What is breast density?

Breast density is an increase in glandular tissue and structural support
fibers, like collagen, in the gland. Glandular tissue includes the epithelium, ducts and
lobes of the mammary gland. The rest of the mammary gland mostly consists of fat. The
mammary gland has many fibers that provide structural support to the gland, including
collagen. Collagen is one of the main structural support fibers in the mammary gland. It
is not completely understood how increased collagen contributes to breast cancer risk.
In tumors, collagen can structurally help tumors grow. Breast density is thought to make
it more difficult for doctors to see early breast cancer on a mammogram. Fat is black on

a mammogram, while glandular tissue, collagen, and breast cancer are white on this
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scan. Mammary density blocks the visualization of small breast tumors on scans
because it shows up as the same color. Although high breast density may contribute to
breast cancer being missed on scans, evidence also suggests that increased glandular

tissue, collagen and other fibers may change the breast environment to promote cancer.

Mammogram of a breast that Mammogram of a breast that Mammogram of a breast that
is dense has low density, high i has breast cancer
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Figure 6-2: Breast density on a mammogram can make it challenging to
identify early breast cancer lesions. Breast density is thought to consist of increased
glandular tissue taking up a majority of the area of the breast. Breast density also
consists of increased structural support fibers like collagen. Collagen and glandular
tissue appear white on a mammogram, while fat appears dark gray. (A) Shows a
mammogram of a dense breast. (B) Shows a mammogram of a low dense/fatty breast
and (C) Shows a mammogram of a breast with a large breast cancer mass. A low-
density breast consists mostly of fat. The breast appears mostly dark gray with a few
white areas appearing, representing collagen and glandular tissue. Early and small
breast tumors will be easier to see in breasts with low density. The last mammogram
shows a breast with a large tumor in the lower left corner (C). The tumor shows up on
the mammogram as white, similar to dense issue. The tumor is present in a breast with
some density. Hopefully you can appreciate if this tumor was smaller and within a more
dense breast like in (A), the tumor would be difficult to identify. Images are from the
American Cancer Society https://www.cancer.org/cancer/types/breast-
cancer/screening-tests-and-early-detection/mammograms/breast-density-and-your-
mammogram-report.html and Nature https://www.nature.com/articles/s41598-020-
77053-7
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Obesity

Obesity is defined as having a body mass index (BMI) of 230 kg/m?. BMI is
calculated by taking a person’s weight divided by the square of a person’s height in
meters. It is not always an accurate measurement to determine if someone is obese.
However, it is still used in humans today to determine a person’s level of obesity. More
accurately, obesity is defined as an excess of adipose tissue in the body, often caused
by an excess caloric intake. Obesity affects the mammary tissue by increasing the size
and amount of fat cells in the gland. These fat cells are called adipocytes. These
adipocytes are large cells that store fat in the body. As a person becomes more obese
these cells expand and become stressed. They will eventually die from this stress.
Macrophages, a cell that is part of our immune system, helps “clean up” cells when

they die.

The immune system is made up of many types of cells, including macrophages,
that protect our bodies from bacteria, viruses and fungi. Immune cells can also protect
our bodies from cancer. In fact, they play an important role in preventing and fighting
cancer. However, sometimes immune cells can promote the development of cancer. Fat
cells that die cannot remain where they are, they need to make room for new cells.
Multiple macrophages will surround a dying adipocyte and start to “eat” the adipocyte.
We can visualize macrophages doing this under a microscope. We call these structures
of macrophages and adipocytes crown like structures (CLS). However, a lot of CLS in
a mammary gland is not considered normal. In lean people, we can see very few CLS
because adipocytes are a healthy size. These CLS can be present before cancer

develops, and also after. In general, CLS are thought to possibly increase breast cancer
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risk because they are signs of inflammation. However, a direct link between CLS and

breast cancer risk has not been identified.

Inflammation is an increase in immune cells and cytokines that activate or turn
off immune cells. Cytokines are substances that are produced by immune cells, to
communicate to other immune cells to help fight infections and cancer. Sometimes
immune cells will be activated and produce inflammation cytokines when it is
unnecessary. Chronic inflammation increases the risk for cancer. We do not want our
immune system to be overly active all the time, instead we only want the immune
system active when we have an iliness, are responding to vaccines, or other immune

therapy.

In obesity, inflammation often is high, even if a person does not have an infection
or cancer. Macrophages are one of these cells that cause inflammation, and although
they are cleaning up dying fat cells, they can produce proteins that promote the growth
of epithelium. Macrophages are around mammary ducts, in addition to forming CLS
(crown like structures). Mammary ducts are part of the glandular tissue in the breast and
help transport milk during lactation. In obesity, there is more macrophage-driven
inflammation in the mammary gland. Inflammation is a hallmark of cancer, and these
macrophages could increase risk. However, a direct link between inflammation in the
mammary gland and breast cancer has not been identified. This is a current area of

research, as other labs try to identify how macrophages contribute to breast cancer risk.

Inflammation also results in cells in the breast producing extra collagen or
structural support fibers. Too much collagen could increase breast cancer risk, and can

later help early cancer cells spread to other parts of the gland, and eventually other
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organs. Like high breast density, obesity causes an increase in collagen production in
the breast. Specifically, we have seen increased collagen around mammary ducts.
Mammary ducts are lined with epithelium, and these are the cells that will eventually
turn into cancer if they are damaged. As part of my research, | quantify macrophages

and collagen to try to measure inflammation and breast density.

Breast density can also increase macrophages and breast inflammation. It is
unknown if both obesity and breast density together may further breast cancer risk or

further increase both collagen deposition and inflammation.

Obesity effects on tumors in the breast

Think of the tumor as an ecosystem. When talking about the cells, cytokines, and
structural support fibers, like collagen, we often call this the tumor microenvironment
(TME). Multiple cell types are found within the tumor. Remember, a tumor is an
overgrowth of our own cells because cells have lost their ability to control their growth. A
breast cancer tumor is made of mostly abnormal breast epithelium. However, immune
cells are incorporated into the tumor as well, cells like macrophages. Breast tumors are
also surrounded by adipocytes or fat cells. These fat cells can affect how the tumor
grows, and they function differently in obesity. Macrophages have been shown, in some
studies, to be increased around and within breast tumors. Macrophages are thought to
contribute to tumor growth. In fact, more macrophages within mammary tumors can be

associated with worse outcomes for patients.
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Figure 6-3: Obesity changes the immune system in the mammary gland,
mammary tumor, and in the lung. (A) Obesity increases inflammation in the
mammary gland before cancer occurs. This inflammation can increase breast cancer
risk. Inflammation in the mammary gland is mostly driven by macrophages that have
been recruited to the gland to “clean up” or “eat” dying or dead fat cells. Macrophages
will also be present around ducts and are increased in obesity. (B) Macrophages in
tumors are sometimes thought to be immunosuppressive or “pro-tumor.” They can
suppress other cells like CD8+ T cells from recruiting into the tumor. Obese mammary
tumors have been shown to have less CD8+ T cells in mice. Therefore, these cells
cannot kill tumor cells and shrink tumors. (C) Breast cancer can spread to the lung.
These masses or small tumors are called metastasis. My lab has shown there are
increased macrophages physically around metastasis in obese mice. However, it is
unknown if, in the lung, these macrophages are pro- or anti-tumor and if they suppress
CD8+ T cells like we see in tumors.

The tumor microenvironment, or TME, is complicated. Sometimes increased
levels of certain types of cells are beneficial to killing tumor cells and thereby shrinking
tumors, however, sometimes immune cells can suppress other parts of the immune

system from killing cancer cells. In normal tissue, we generally do not want many
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immune cells, like macrophages, because of the associated inflammation. Macrophages
can either promote tumor growth or support tumor killing. Although we don’t fully
understand the phenomenon, there are more macrophages within tumors in patients
with worse outcomes (tumors that grow fast), and we believe these macrophages
promote tumor growth by suppressing other cells. Therefore, in obesity, macrophages

could be causing other cells to be excluded or “turned off” in tumors.

In fact, in our mouse experiments in my lab, we have shown that CD8+ T cells
can be excluded from tumors in obese mice. CD8+ T cells are a cell that can directly Kill
tumors with “toxic” proteins. Macrophages in obesity may be playing a role in
suppressing important cells like CD8+ T cells from entering the tumor. In tumors from
lean mice and people, this occurrence has been well studied, however, it is uncertain if

this also occurs in metastasis.

Remember, metastasis is the spread of breast tumor cells to other organs, like
the lungs. The lungs are a common site for metastasis to grow. Obese patients are
known to have more metastasis and have a higher risk for metastatic spread. Why

obese patients have more metastasis is unknown.

Many studies have looked at how macrophages change the mammary gland to
possibly increase breast cancer risk and affect its growth and spread. However, it is
unknown how macrophages could be aiding growth of breast cancer in the lungs under
obese conditions. In previous work in Dr. Lisa Arendt’s Lab, we saw an increase in
macrophages surrounding metastasis in obese mice, with macrophages in direct
physical contact with metastasis. This contact may create a barrier for CD8+ T cells,

preventing them from reaching and killing the tumor cells. In addition, macrophages may
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produce signals that impede CD8+ T cell recruitment or exhaust CD8+ T cells by
sending too many activating signals. We thought that these macrophages may be
increasing metastasis growth by impairing CD8+ T cells ability to kill breast cancer cells
in the lung. However, it is currently unknown if this is true, especially when patients are

also obese.

CD8+ T cells

CD8+ T cells are lymphocyte immune cells that directly attack cancer cells
They kill cancer cells by identifying them with a receptor called the T-cell receptor
(TCR), a protein on the cell's surface that identifies other proteins. CD8+ T cells
can only Kill cells they are designed to recognize. For example, a CD8+ T cell that is

programmed to kill a breast cancer cell will not kill a liver cell.

All of our cells express proteins known as antigens that are specific to their cell
type. Antigens act like “tags” that signal to other cells, like cells in the immune system,
what they are. Antigens can tell immune cells “| am not normal; | am a cancer cell” or ‘I
am a cell infected with a virus.” Macrophages can pick up these antigens from dead
cancer cells and present them to CD8+ T cells, activating those T cells to kill

surrounding live cancer cells.

When T cells are activated, they begin to produce their own cytokines and cancer
killing proteins. Remember that cytokines are how immune cells communicate to help
fight infections and cancer. CD8+ T cells with low cytokine production may be
exhausted. CD8+ T cells become “tired” or exhausted from killing tumor cells. The

second aim of my thesis was to identify if CD8+ T cells are exhausted in obese lungs
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before or after metastasis, which may explain why obese patients have more metastatic

burden.

Functional CD8+ T cell Exhausted CD8+ T cell
T cell T cell
Cytokines _ Little t
produced 2 TCR nlo & PD-1 TCR
' Tumor  cytokines PDL-T !’ Tumor
antigen Produced antigen
”tag" u_tagn
Tumor cell or cell Tumor cell or cell
presenting antigen presenting antigen

Figure 6-4: T cells can become exhausted when killing tumor cells. When CD8+ T
cells interact with tumor antigens or “tags” with their T cell receptor (T cell uses this to
recognize the tumor), they produce cytokines (anti-cancer proteins) to kill cancer cells.
However, when exhausted CD8+ T cells interact with tumor antigens, they cannot
produce cytokines, and tumor cells survive. This is because these CD8+ T cells express
PD-1 and it binds to a PD-L1 positive cell (tumor cell or cell presenting antigen).

When CD8+ T cells are activated, they raise a “flag” or receptor on their surface
known as programmed cell death-1, or PD-1, after they start killing cancer cells. When
they receive an activation signal by tumor cells or cells like macrophages, they produce
more PD-1. When PD-1 binds to its “partner” PD-LA1, it acts like pressing the “off”

button, causing CD8+ T cells to become exhausted and dampening their ability to kill
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cancer cells. This can eventually cause CD8+ T cells to die (Figure 6-4). Oncologists
can block this interaction so CD8+ T cells can stay “on” and continue to clear cancer

cells.

How we can reduce tumor promoting macrophages and keep CD8+ T cells “on”

Doctors that treat cancer, known as oncologists, use drugs and other agents to
improve the immune system’s ability to fight cancer, a strategy called immunotherapy.
Popular immunotherapies target cancer-promoting macrophages and exhausted CD8+
T cells. Depleting macrophages from breast tumors has been shown to reduce tumor
size. We can deplete macrophages using colony stimulating factor-1 receptor (CSF-
1R) blocking agents to inhibit macrophage recruitment to tumors and metastasis.
Decreasing macrophages can also increase CD8+ T cells in the tumor, improving the
body’s immune response, and shrinking tumors, in part because CD8+ T cells are
able to come in contact with the tumor cells. However, these newly recruited CD8+ T
cells can still become exhausted and express PD-1. This is why a combined anti-CSF-

1R and anti-PD-1 approach is promising for the removal of breast cancer metastasis.
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Figure 6-5: Macrophages express colony stimulating factor-1 receptor (CSF-1R).
Macrophages express CSF-1R that can affect their recruitment and development in
tumors. Blocking this receptor with anti-CSF-1R, removes macrophages from the tumor,
overall improving CD8+ T cell numbers and activity.

When it works, blocking PD-1/PD-L1 causes tumors to shrink and metastasis to
be cleared. However, it does not always work for some patients. One reason for this is
that CD8+ T cells sometimes cannot get into the tumor to fight it. The therapeutic

combination of depleting macrophages and blocking PD-1 results in reduced tumor

sizes compared to one therapy alone in many cancers.

To summarize, breast tumors with high macrophages and low CD8+ T cells have
an overall poorer prognosis (Figure 6-6A). When macrophages are reduced in the
tumor, CD8+ T cells are increased to the tumor (Figure 6-6B). These CD8+ T cells begin

to shrink the tumor, but CD8+ T cells become exhausted or “tired” and increase their
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expression of PD-1 (Figure 6-6C). An oncologist can block PD-1 to keep the newly

recruited CD8+ T cells turned “on,” shrinking tumors or metastasis further (Figure 6-6D).
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Figure 6-6: How anti-CSF-1R and anti-PD1 may shrink breast tumors (A) Shows a
tumor prior to treatment. Macrophages, in blue, are high, and suppress CD8+ T cells
(green). (B) When macrophages are depleted with anti-CSF-1R, CD8+ T cells increase
in the tumor. These CD8+ T cells are active and functional and produce cytokines (anti-
tumor proteins) to aid in the anti-tumor immune response. (C) As CD8+ T cells kill tumor
cells and recognize more and more tumor antigen “tags” they become tired or
exhausted. Exhausted T cells (yellow) will express PD-1 and lose their ability to kill
cancer cells. (D) After blocking PD-1 and continuing to keep macrophages low with anti-
CSF-1R, CD8+ T cells are able to be turned back “on” and become activated. These
CD8+ T cells are able to continue to kill cancer cells and overall shrink the tumor.

Surprisingly, obese patients have longer overall survival on therapies targeting
PD-1/PD-L1 binding on CD8+ T cells compared to lean patients. This is shocking
because in obese mouse models, and as shown in some human studies, CD8+ T cells
are low in the tumor. However, the mechanism behind this better response in patients
with obesity is unknown. With obesity increasing macrophages around metastasis in the

lung, and clinical evidence that obese patients respond better to PD-1/PD-L1 targeted
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therapy, | believe that obese patients with metastasis might respond better to a

combination approach targeting macrophages and exhausted CD8+ T cells.

To test these questions, | used mice to model how obese and lean patients with
metastasis may respond to these therapies. The last aim of my thesis was to investigate
if obese mice will have reduced metastasis to the lung on a dual macrophage, CD8+ T
cell targeted therapeutic approach, or if targeting macrophages or CD8+ T cells alone

will be more efficacious. Lastly, if responses are different than in lean mice, why?

How we study breast cancer risk and progression in the lab:

Mice are an important tool used in biomedical research to study diseases like
cancer and can help us answer questions about cancer progression. There is a lot we
do not know about the body, so using an animal model helps us mimic as closely as
possible what might happen in you or me. Many factors affecting cancer growth involve
the whole body, or “system.” We call these factors systemic effects. One systemic
factor is our immune system. Immune cells are in our tissues, blood and lymph system,
surveying and killing pathogens, including cancer cells. Cancer metastasis involves
cancer cells surviving leaving the primary tumor (in the mammary gland, in this case),
traveling in circulation in the body, and entering secondary organs, like the lungs.
Mouse models allow us to mimic this process as closely as possible to what would

happen in a cancer patient.

In my thesis work, | used different diets to induce obesity. Lean mice received a
low-fat diet, and obese mice received a high-fat diet. | utilized a mouse model where

mice are born with abnormal mammary epithelium that is genetically altered to form
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multiple mammary tumors. These mice will begin to form tumors from birth. These
models are useful for us to study the early stages of breast cancer (Figure 6-7). | used
these genetically altered mice to study early and late tumor formation under conditions
of obesity and breast density. Later, to study later stage metastatic breast cancer, |
inject tumor cells into the mammary gland so | can remove the tumors surgically (Figure
6-8). This is to mimic when tumors are removed in breast cancer patients before their

metastasis is treated.

Mammary glands are composed of many ducts that are lined with a single layer
of epithelial cells. When you look at mammary glands under a microscope, you are
looking down the center of the mammary duct, like looking down an innertube. The
center of the duct is referred to as the lumen, a hollow space that allows milk to flow out
of the mammary gland during lactation. As these cells begin to divide, they form
additional layers, filling the lumen of the duct. In the normal mammary gland, these cells
do not fill the lumen, and this space is empty until a woman would begin to lactate after
giving birth. In cancer, epithelial cells continue to divide, the entire lumen will be filled,
and the lumen is no longer visible. Eventually the structure of the duct cannot withstand
the rapidly dividing cells. The now cancerous epithelium breaks the outer structure of
the duct and continues to divide and fill up the surrounding gland (Figure 6-7).
Eventually these mice will form multiple tumors that metastasize to the lung. This is how
tumors progress in genetically engineered mice. These genetically engineered mice can
also be fed a HFD (high-fat-diet) to induce obesity. Thus, we can observe how these

early tumor stages are affected by obesity.
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As | previously mentioned, breast density can include a buildup of “structural
support fibers,” known as collagen. To model breast density we used mice that lack the
ability to break down collagen in the mammary gland. In normal mice, and in you and I,
collagen is broken down and rebuilt as tissue adapts to changes. However, the bodies
of these mice can’t break collagen apart into pieces; instead, the collagen forms a
dense network in the mammary gland. We can cross collagen-dense with mice that form
mammary tumors to model breast cancer under high density conditions. These mice can

also be fed a HFD so we can model obesity and breast density together.

Normal
epithelium

Breast
cancer

Normal Invasive cancer
Mammary Duct cells leaving duct

Figure 6-7: The progression of breast cancer. Normal epithelium lines the mammary
duct. Cancer cells begin to fill the lumen of the duct until they invade into the
surrounding mammary gland.

After mice become obese, | can induce a mammary tumor by injecting mammary
tumor cells directly into the mammary gland on each flank of the mouse. Two tumors
will then grow and form noticeable lumps under the skin on each side of the mouse.
Once one tumor reaches 0.5 cm in size, tumors can be surgically removed from the
mice. | removed the tumors in our mice to mimic when there is a resection (removal) of

breast cancer in women. Although women have their breast tumors removed, cancer
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cells still might be present throughout other parts of the body. The cells may grow and
form metastasis. We used this model over a genetically engineered tumor model
because it allows us to remove tumors from mice (Figure 6-8). Women often have their
tumors removed prior to some types of therapy so it is important to try to model this in

our mice.
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Figure 6-8: Methods for inducing breast cancer metastasis in obese mice. Female
mice were fed a low-fat diet or high-fat diet for 16 weeks. Once mice fed a high-fat

diet were obese, tumor cells (mammary cancer cells) were injected into the mouse’s
mammary glands. These cells were then left to grow in lean and obese mice. At a
certain size, | removed the tumors surgically from the mice to mimic when women have
their tumors removed. | then waited another 8 weeks for metastasis to grow in the lung
before | analyzed the metastasis and immune cells in each group. This is a great way to
model obesity-induced breast cancer in mice.
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The main results of my PhD
Obesity and breast density on breast cancer risk and progression

My work revealed that in mice without mammary tumors, breast density and
obesity increased macrophage-driven inflammation. Mice with high breast density and
obesity had more CLS (crown like structures, or macrophages around dying
adipocytes), indicating more adipocyte death and total inflammation within the gland. |
also saw increased collagen around ducts in these mice compared to control mice.
CD8+ T cells were reduced in the mammary gland of obese mice, but not in lean mice.
This indicates obesity specifically decreases CD8+ T cells, potentially causing the

immune system to miss the development of early mammary tumor stages.

Evaluating tumor-bearing mice, | did not see differences in tumor progression in
the mammary glands of mice with high density breasts, obesity, or both risk factors
combined. However, there were more macrophages around tumors in mammary dense
mice, obese mice, and mice with both risk factors combined. CD8+ T cells were only
reduced in tumors of obese mice, with or without increased breast density. Lean mice

with dense mammary glands did not have less CD8+ T cells, like what | saw in mice
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without cancer. Low CD8+ T cells in tumors and higher macrophages around the edges

may increase cancer metastasis (Figure 6-9).

Mammary Gland ) Tumor Metastasis

Figure 6-9: Results showed obesity and breast density together may increase
breast cancer risk and metastasis to the lung. (A) In the normal mammary gland,
obesity and breast density together increased crown-like structures (CLS), or
macrophages around dying adipocytes, compared to one risk factor alone in young
mice. Collagen was also increased around ducts of mice with both risk factors. This may
correlate with a higher risk for breast cancer development. (B) Although we didn’t find
any differences with tumor size. Tumors from mice with both risk factors have more
macrophages surrounding the tumor edge. This may lead to more invasive tumors and
worse prognosis. (C) In the lung, mice with both risk factors had more metastasis
compared to mice with one or no risk factors. Therefore, women with breast density and
obesity may be at higher risk for metastatic spread to the lung.

Lastly, measuring metastasis to the lung, mice with both risk factors had
increased levels of metastasis in the lungs (Figure 6-9C). However, mice with just high
mammary density or obesity alone did not have increased metastasis compared to our
control mice. | found this surprising, as it shows that a combination of higher breast
density and obesity could really promote cancer spread to the lungs. Overall, |
concluded that (1) a combination of breast density and obesity together may

increase breast cancer risk beyond one risk factor alone. (2) During the
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progression of breast cancer, both risk factors together seem to promote
metastasis to the lung, which may translate to an overall poorer survival outcome

in patients with both conditions at the time of breast cancer development.

| discovered CD8+ T cells are more exhausted under obese conditions before

metastasis

In my second project, | looked at how CD8+ T cells functioned in the lungs of
obese and lean mice before and after metastasis. In non-tumor bearing mice, obesity
increased PD-1+ (programmed cell death-1, a marker for exhaustion) in CD8+ T cells
within the lungs. This indicated to me that they may be exhausted. Obesity also
increased TCR (T cell receptor, what T cells used to recognize tumor cells) signaling
within the lungs, which may indicate an over- activation of T cells, even before cancer is
present. T cells also produced less cytokines in the lungs of obese mice. This data
indicates that obesity exhausts T cells prior to tumor development in the lungs, which

may render CD8+ T cells unable to kill cancer cells that make it to the lung early on
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CD8+ T cell Function Under Obese
Conditions

A. Before Metastasis B. After Metastasis
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Figure 6-10: Obesity alters CD8+ T cell function in the lung. (A) Before metastasis,
CD8+ T cells were more exhausted, failed to produce cytokines, and expressed PD-1 in
obese mice compared to lean mice. This overall means these CD8+ T cells from obese
lungs may be dysfunctional and therefore unable to clear early metastasis. (B) Obese
mice had more metastasis than lean mice and also had more CD8+ T cells that
expressed PD-1. However, in metastasis, obese CD8+ T cells were able to produce
cytokines, which indicates that after metastasis CD8+ T cells are able to retain some
function and may respond to anti-PD-1 inhibitors.

| showed that CD8+ T cells in obese mice with breast cancer metastasis express

exhaustion markers like PD-1 but still can retain function

CD8+ T cells’ exhaustion prior to tumor development allows cancer cells to evade
the immune response in obese mice. Obese mice had more metastasis to the lung than
lean mice, consistent with clinical data in humans and similar mouse studies. Contrary

to my prediction, | found that CD8+ T cells were not decreased in obese mice lung
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metastasis, though | did observe that PD-1 expression was higher, indicating possible
exhaustion (Figure 6-10). However, CD8+ T cells from obese mice could still produce
cytokines (the protein CD8+ T cells produce when activated, which helps kill cancer
cells). Overall, this may suggest that in cases of lung metastasis, CD8+ T cells under
conditions of obesity are able to retain some function. | concluded that (1) Obesity
impairs CD8+ T cell function to an exhausted-like state in the lungs of non-tumor
bearing mice. (2) After metastasis, CD8+ T cells in the lungs of obese mice

express PD-1, but they retain function.

Out with the bad macrophages and in with the activated CD8+ T cells

| set out to test whether anti-PD-1 (a drug that blocks PD-1 from binding to PD-
L1, keeping T cells “on”), anti-CSF-1R (a drug that blocks colony stimulating factor 1
receptor) depletion of macrophages, or a combination of both therapies would be better
at removing breast cancer metastasis. | found that anti-PD-1 reduced metastasis in lean
mice but not in obese mice. However, anti-PD-1 treatment in obese mice increased
CD8+ T cells in the lungs. If CD8+ T cells are increased, | assumed that there would be
more cells to clear metastasis from the lungs. Despite this increase, | suspected the
CD8+ T cells were more exhausted. Indeed, other exhaustion markers were higher in
these cells. What could be making them exhausted or “turned off?” | predicted it may
be PD-L1+ (PD-L1 positive) macrophages! | saw that a population of cells, which
includes macrophages, had higher PD-L1 expression! Therefore, macrophages may be

decreasing anti-PD-1 response in obese mice
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The effects of immunotherapy on obese
breast cancer metastasis

A. B. C.

Anti-PD-1 Anti-CSF-1R Anti-PD1 and
anti-CSF-1R

Exhausted CD8+ T cell CD8+ T cell PD-L1+ Myeloid Cell

Figure 6-11: Obese mice responded better to immunotherapy. (A) Anti-PD-1 alone
did not reduce metastasis in obese mice. It did increase the number of CD8+ T cells in
obese lungs, but these CD8+ T cells were exhausted. In lean mice, CD8+ T cells were
activated and were not increased. PD-L1+ Myeloid cells were also increased in obese
lungs in response to anti-PD-1. Myeloid cells include macrophages! This might be why
obese mice had a resistance to anti-PD-1 alone. (B) Macrophage depletion via anti-
CSF-1R reduced PD-L1+ myeloid cells (probably macrophages) and reduced
metastasis in obese mice. In lean mice, anti-CSF-1R did not reduce metastasis,
suggesting macrophages are more tumor-promoting in obese metastasis. (C) Dual anti-
PD-1 plus anti-CSF-1R was more efficient in obese mice, reducing metastasis and
activating the immune system. Overall, macrophage depletion and dual therapy reduced
metastasis more in obese mice compared to lean mice. This suggests that obese
patients may benefit more from these therapies.

| found that anti-CSF-1R treatment increased activation of a population of cells,
which includes CD8+ T cells, in lean mice. Therefore, depleting macrophages may
improve T cell responses to cancer in lean mice. However, only in obese mice did
depleting macrophages reduce metastasis. | also showed that only in obese mice did
total immune cells increase. This was not seen in lean mice. It is possible that is why

in lean mice, metastasis was not reduced.
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PD-L1+ immune cells were reduced with anti-CSF-1R treatment only in obese
mice, suggesting a reduction in cells that could exhaust CD8+ T cells. This also shows
that macrophages are contributing to the PD-L1 expression in the lung. | also showed
anti-CSF-1R treatment in obese mice increased PD-1 expression on CD8+ T cells (T
cells could become exhausted!). This data suggested to me that combining anti-CSF-1R
treatment with anti-PD-1 inhibitors could improve responses in obese mice. In fact, it
did! | showed that a combination of anti-CSF-1R and anti-PD-1 reduced metastasis
more in obese mice compared to lean (Figure 6-11). In this chapter we conclude (1)
Under conditions of obesity, responses to anti-PD-1 antibodies are limited. (2)
Obese mice had more robust responses to anti-CSF-1R in the lungs, which was
due in part to increased immune cells and decreased PD-L1+ macrophages (3)
Obese mice also had more robust responses to a dual combination of anti-CSF-

1R and anti-PD-1 antibodies within lung metastasis.

Why this research matters:

My work showed that women with both high breast density and obesity may have
a higher risk for breast cancer and could have worse overall survival. Identifying women
with both risk factors may help diagnose women sooner and identify breast cancer
patients that are at higher risk for metastasis. Additionally, investigating CD8+ T cells in
the lung could identify new therapeutic targets for future patients. Lastly, exploring
different patient demographics that have better responses to therapies already
developed, like obese patients, helps us personalize cancer care, identify markers for

therapy response, and save lives.



