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Abstract 

The hypocotyl (juvenile stem) of an Arabidopsis thaliana seedling elongates quickly in darkness. 

Light acting through photoreceptors in the cryptochrome, phototropin, and phytochrome 

families inhibit this extension as part of the photomorphogenic development of the seedling. 

Previous studies characterized the timing but not the location along the hypocotyl of the 

growth inhibition induced by light. Here we describe custom software called HypoQuantyl that 

can determine where growth occurs along the hypocotyl and where light inhibits it by analyzing 

time series of digital images. HypoQuantyl is an algorithm that integrates ground truth data, 

and anatomically relevant anchor points to predict the contour of the hypocotyl. The contour is 

used to determine a midline, and the midline is used to refine the contour. In a recursive 

fashion, HypoQuantyl ultimately produces a midline that traces the hypocotyl and terminates at 

the cotyledonary node. Then, optical flow techniques and kinematic concepts are used to 

analyze times lapse image data to map relative elemental growth rates along the hypocotyl. 

Dark-grown hypocotyl material expanded at rates as high as 4% h-1 mostly between 0.4 and 1.5 

mm below the cotyledon-hypocotyl junction. Blue light acting though the phototropin 1 

photoreceptor (PHOT1) rapidly inhibited expansion in this growth zone. The cryptochrome 1 

(CRY1) blue light receptor affected a different region of the hypocotyl. The long hypocotyl 

phenotype of a cryptochrome 1 (cry1) mutant begins to develop 30 min after the onset of 

illumination when expansion within the most apical 0.1-0.3 mm of the hypocotyl accelerates to 

6% h-1. This novel region of rapid expansion in cry1 lies above the regular growth zone. Red 

light-induced inhibition mediated by the phytochrome B (PhyB) photoreceptor occurs in the 

regular growth zone. The long hypocotyl phenotype of a phyB mutant in red light is due to weak 
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inhibition below 0.6 mm, not to activating a previously non-growing region as in cry1. Thus, the 

similar long-hypocotyl phenotypes of cry1 and phyB in blue and red light, respectively, have 

profoundly different kinematic bases. These HypoQuantyl-derived results indicate when and 

where to focus future mechanistic studies of photoreceptor function.  
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Introduction 

Plants rely on light as their primary energy source, which is probably why they use light as a 

source of information to guide their growth and development. Photomorphogenesis is a broad 

term that describes how plant growth and development is affected by light acting as 

information rather than energy. Photomorphogenesis requires photoreceptor proteins to 

detect and decode the light signals (Arsovski et al., 2012). Researchers have used light-induced 

inhibition of hypocotyl elongation, a component of seedling photomorphogenesis, as a model 

for elucidating the molecular mechanisms of photoreceptor action, primarily because 

mutations may produce long-hypocotyl phenotypes that are easy to score in genetic screens, 

and measuring hypocotyl length is straightforward when quantification is necessary. Indeed, 

Ahmad and Cashmore (1993) discovered the cryptochrome 1 (CRY1) blue-light receptor, the 

first of its kind in plants, by identifying the gene responsible for the long hypocotyl that hy4 

mutants (now called cry1) display when grown in 

continuous high-irradiance blue light for a few days 

(Figure 1). Hypocotyl length assays demonstrated that 

phytochrome B (PHYB) is the photoreceptor responsible 

for the inhibitory effect of long-term red light (Somers et 

al., 1991) and that PhyA is the photoreceptor 

responsible for the long-term effects of far-red light 

(Parks and Quail, 1993). While end-point hypocotyl 

lengths have provided critical information in 

innumerable studies of photoreceptor action, and 

Figure 1. Long hypocotyl 
phenotype. A cry1 mutant seedling 
compared to the wild type, both 
grown in continuous blue light for 
5 days. 
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continue to do so, end-point assays cannot provide temporal information about the affected 

process. Knowing when a mutant phenotype begins to develop is evidence of when the 

affected factor, typically a protein, begins to function in the process. 

 Electronic linear variable displacement transducers (LVDTs) can measure hypocotyl 

elongation continuously with high resolution (Meijer, 1968; Cosgrove, 1988; Spalding and 

Cosgrove, 1989), even in small Arabidopsis seedlings (Parks et al., 1998; Parks and Spalding, 

1999). Transducer results showed that blue light strongly inhibits hypocotyl elongation after a 

lag time measured in seconds, while it takes several minutes for red light to initiate a slower, 

weaker inhibition (Meijer, 1968; Cosgrove, 1982). 

Computational analysis of digital images acquired as a time series is another approach to 

measuring hypocotyl growth (Dowson-Day and Millar, 1999; Folta and Spalding, 2001). It has 

the potential to be high throughput, unlike transducer-based methods. Automated cameras 

and image processing can combine to measure growth rate accurately at intervals of five or ten 

minutes over several hours to provide a highly resolved time course of light responses, even in 

Arabidopsis seedlings that may be only 3 mm long at the beginning of an experiment (Miller et 

al., 2007; Wang et al., 2009). When used to compare mutants to the wild type, time course 

analyses can show when a photoreceptor begins to influence elongation, and for how long. For 

example, phyA does not display a long hypocotyl when grown in continuous red light for 3-5 

days (Parks and Quail, 1993) but a time course analysis showed that PHYA initiates the response 

to red light and controls it for the first three hours. After that point, the PHYB receptor 

establishes and sustains the inhibition and the PHYA contribution wanes (Parks et al., 1998). 

Time course analysis of blue light-induced inhibition indicated that this exceptionally rapid 
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response is also a sequence of separate photoreceptor actions. The phototropin 1 (PHOT1) 

receptor controls the immediate-early phase of the inhibition (Folta and Spalding, 2001). An 

end-point hypocotyl length assay cannot detect this initial, apparently transient, component of 

the mechanism. Conversely, cry1 responds with an initial phase of inhibition identical to the 

wild type (Parks et al., 1998; Folta and Spalding, 2001), because PHOT1 is the controlling 

photoreceptor. The long hypocotyl phenotype of cry1 that becomes evident after hours or days 

of growth in blue light is the result of fast elongation that develops 30 min after illumination. 

Another study showed that the nuclear pool of CRY1, not the cytoplasmic pool, is responsible 

for the apparent long-term maintenance of this post-PHOT1 inhibition (Wu and Spalding, 2007). 

Apparently, PHOT1 at the plasma membrane (Sakamoto and Briggs, 2002) rapidly initiates a 

transient phase of growth inhibition, which nuclear CRY1 sustains after a lag time of 30 min.  

These time-course measurements of hypocotyl growth rate do not show which region of the 

hypocotyl is expanding, or which region does not respond in long-hypocotyl mutants such as 

cry1. Obtaining information about the spatial distribution of growth along the hypocotyl 

depends on the ability to track the displacement of many small material elements, and then 

interpreting their movements relative to each other using the concepts and methods of 

kinematics (Silk and Erickson, 1979). In larger species, applied marks such as ink dots can be 

tracked through image sequences to provide the raw data (Spalding and Cosgrove, 1993). The 

Arabidopsis inflorescence stem has been physically marked to map regions of greatest local 

extension after collecting images (Hall and Ellis, 2012). Arabidopsis hypocotyls are too small to 

mark effectively but endogenous brightness variation (texture) in grayscale digital images can 

serve as unique features to track. The authors of the KymoRod software (Bastien et al., 2016) 
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took this approach. KymoRod results demonstrated that the dark-grown (etiolated) Arabidopsis 

hypocotyl has a growth zone approximately 2 mm long located a short distance below the 

apical hook. To be useful in a study of light-induced hypocotyl growth inhibition, the method 

must be able to track material only within the hypocotyl and reference it to a position along the 

midline. It is generally not difficult to automatically isolate (‘segment’ is the term used in image 

analysis) the seedling from background in a high-contrast image and determine its midline, but 

it is difficult to determine where the midline should terminate to exclude the cotyledons 

(embryonic leaves), especially when the apical hook is so tightly closed that they contact the 

hypocotyl. The midline that KymoRod and the method of Miller et al. (2007) extracted from the 

segmented seedling included the cotyledons, so some manual pre- or post-processing steps 

were required to isolate only the hypocotyl. In studies of seedling photomorphogenesis, the 

growth and movement of the cotyledons limited the usefulness of methods that could not 

isolate the hypocotyl. Wang et al. (2009) devised a semi-automatic method for terminating the 

hypocotyl midline at the appropriate junction, the cotyledonary node, so that hypocotyl 

elongation could be tracked at 5 min intervals. HYPOTrace took advantage of a distinguishing 

feature detectable in suitably oriented seedlings. HYPOTrace required high-contrast images to 

function well, which minimized the texture a kinematics method would rely on to track material 

flow. Thus, to date, an image processing tool that can automatically segment specifically the 

hypocotyl and track patches of texture to determine the spatial distribution of material 

expansion as a seedling responds to light has not been produced. Therefore, lack of an 

appropriate tool has prevented a kinematic analysis of seedling hypocotyls responding to light. 

Consequently, spatial and temporal details of photoreceptor action during a critical phase of 
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plant growth and development remain unknown. Here we report the creation of a tool called 

HypoQuantyl that can automatically measure the spatial distribution of hypocotyl material 

expansion in terms of kinematics. The challenges of isolating the hypocotyl from the cotyledons 

and determining a midline that terminates at the appropriate location were solved by creating 

a custom machine learning-enabled pipeline. Patch tracking for kinematic analysis was achieved 

by incorporating a modified version of a recently published method (Henry et al., 2023). Results 

obtained with the HypoQuantyl pipeline can focus future cellular, molecular, and biochemical 

investigations on the right cells at the right time to determine how photoreceptors control 

hypocotyl cell expansion. 

Results 

HypoQuantyl is a custom software pipeline that automatically analyzes Arabidopsis hypocotyl 

elongation in kinematic terms. The kinematic analysis of hypocotyl growth requires tracking 

material elements as they move at many locations along the principal geometric feature of the 

organ, its midline (Aris, 2012; Erickson, 1980; Silk, 1979). The midline must include the tightly 

curved region called the apical hook, but not extend into the cotyledons or the petioles that 

attach them to the hypocotyl at the cotyledonary node. The midline can be determined from 

the hypocotyl’s contour. Simple segmentation methods will not faithfully isolate a contour from 

which a hypocotyl midline can be determined because the cotyledonary node lacks any feature 

that a standard, contrast-based method can reliably distinguish to terminate the midline, and 

the cotyledons sometimes touch the flank of the hypocotyl, which would deflect a midline 

based on simple binary object morphology. Furthermore, the apical hook opens and the 

cotyledons spread into unpredictable shapes in response to the (light) treatment during the 



6 
 

experiment. HypoQuantyl is a machine-learning based solution to these challenges.  

The raw data are time series of grayscale images of Arabidopsis seedlings growing in total 

darkness before receiving a light treatment (Figure 2). Ground truth data were required to train 

the convolutional neural networks that HypoQuantyl uses to find a hypocotyl-specific midline 

that orients the optical flow-based patch tracking that produces the kinematic analysis of 

growth.  The ground truth data set was obtained by a combination of automatic image 

processing steps and manual labeling in the form of tracing and point selections. An example of 

an image to be analyzed is shown in Figure 2A, which also illustrates the first steps in the 

process of creating the ground truth data.  

Creating the HypoQuantyl method 

Simple contrast-based (thresholding) segmentation (Otsu, 1979) isolated each seedling in a 

Figure 2. Example of the images to be 
analyzed and the first steps in the 
process of creating the ground truth data 
used to train the machine learning 
algorithms. A) An image containing six 
Arabidopsis seedlings from a time series. 
A blue box around one seedling shows 
how each seedling would be cropped 
from the image. B) The hypocotyl is 
divided into upper and lower sections 
because the upper section poses 
segmentation challenges that require a 
machine learning-based solution. C) Each 
section from every seedling is rescaled to 
be an equal 201 x 201 square. D) Ground 
truth contour (green), manually selected 
cotyledonary node points (red circles), 
and central base point 𝑃 produce a 
ground truth midline (red line). 
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frame from background. A bounding box cropped each seedling into a rectangular image 

(Figure 1A). Each cropped image was divided at a point 250 pixels below the top to create 

upper and lower sub images (Figure 2B). This step was taken because the lower sub image 

contained an uncomplicated portion of the hypocotyl while the upper sub image presented the 

segmentation challenges that required a machine learning approach. 

The upper and lower sub images were both re-scaled into 201 x 201 squares (Figure 2C). Upper 

sub images from a group of 550 seedlings representing different stages of the light experiment 

and thus a wide variety of shapes and segmentation challenges were selected to produce a 

ground truth segmentation data set. Some of these could be segmented automatically with a 

simple threshold method while many others required manual tracing of the contour. Figure 2D 

shows a manually traced contour (green line) and two points selected to clip the contour at the 

cotyledonary node (red circles). A single selection marked the center of the base of the 

hypocotyl (P). From these inputs, a ground truth midline was constructed (red line). Usually, the 

cotyledons were in profile, facing either left or right. The images were standardized to be left-

facing by mirroring the coordinates of right-facing examples. These clipped and left-facing 

contours, divided into four sections, form the basis of the segmentation pipeline used to train 

our machine learning algorithms. The next step uses these ground-truth labeled images to 

produce a mathematical structure we call a Z vector (𝑍𝑉). It will form a scaffold for contour 

construction. Figure 3 illustrates the steps taken to create the components of 𝑍𝑉. Figure 3A 

shows the contour, selected cotyledon node points, the base point P, and two cotyledon 

domains that contribute information. A portion of a complete contour defined by a window of 

size 𝑤 (magenta line in Figure 3B) is selected. A point 𝑏 (yellow circle) is the midpoint of a line 
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that connects the two ends of this segment. A tangent vector 𝑇 and a normal vector 𝑁  form a 

frame 𝐹 at 𝑏. This point 𝑏 and its reference frame form an element in 𝑍𝑉. The window is slid 

along the contour to complete the 𝑍𝑉 scaffold (Figure 3C). Machine learning methods were 

implemented to train the HypoQuantyl algorithm to displace each point 𝑏 as illustrated in 

Figure 3D to form an accurate contour vector 𝐶𝑉.   

Complex objects such as curves may be represented as vectors in low (L) or high (E) 

dimensional embeddings (Pearson, 1901). The high dimensional vector representation of a 

general object X is  𝑋𝑉 and the low dimensional embedding is 𝑋𝑆. In the following description, 

𝑋𝑉 will correspond with the reshaping of the data in column-major order (vec(X) ≜ X𝑣). The 

vector 𝑋𝑉 results from projecting from a vector space of dimension 𝐿 to a vector space of 

Figure 3. Steps preparatory to predicting the contour of a hypocotyl. A) Depiction of the 
ground truth marks: contour, base point, and two cotyledonary node selections that are used 
to position two domains for sampling the cotyledon side of the node. B) A segment of the 
contour (magenta line) and its midpoint 𝑏 in a reference frame 𝐹 formed by normal (𝑁) and 
tangent (𝑇) vectors. C) Sliding the window over the entire contour builds up a sequence of 
base points and their attached reference frames, which collectively comprise the 𝑍𝑉. D) The 
HypoQuantyl algorithm is trained to predict a vector 𝑑 that will displace 𝑏 to its proper 
position on the contour. 
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dimension 𝐸 using an affine transformation 𝛾𝑋 ≜ [𝐹, 𝑈]. In this description of the HypoQuantyl 

pipeline, 𝐹 contains orthonormal column vectors (𝐹𝑖𝑗𝐹𝑖𝑘 = 𝛿𝑖𝑘) in a matrix of size [𝐸, 𝐿], and is 

derived from the eigenvector decomposition of the covariance matrix constructed from (a) 

number of samples of (𝑋𝑣
𝑎).  The offset (U) of the frame 𝐹 is the mean of the samples (𝑋𝑣

𝑎) and 

is an E dimensional vector. This, we may summarize a complex object X as [K, E, L, 𝛾𝑥, PER] ≜

𝑅𝑥 where K is the size of the natural representation of X, E is the dimensionality of 𝑋𝑉, 𝐿 is the 

dimensionality of 𝑋𝑆, 𝛾𝑥 maps 𝑋𝑆 to 𝑋𝑉, and PER is the percent variance explained.  

The HypoQuantyl pipeline relies on sampling pixel information at a location within a complex 

object and with respect to a reference frame 𝐹 to either shift or grade (quantitatively score) a 

curve. In these cases, 𝐹 is attached to a point 𝑏, i.e. [𝐹, 𝑏] (Cartan, 1925; Ehresmann, 1950). 

This construction moves a point x from the frame 𝐹 at a position 𝑏 into the origin’s frame such 

that 𝑥’ =  [𝐹, 𝑏] ∙ 𝑥 = 𝐹 ∙ 𝑥 + 𝑏. We will simplify [𝐹, 𝑏] into a single construct E so that 𝑥’ =

 𝐸 ∙ 𝑥. The structure E can be extended from a point 𝑏 to a sequence of points which constitute 

a curve 𝐵 and the corresponding construct [𝐹, 𝐵]. The total space E then consists of two parts, 

an underlying base structure 𝐵 and a frame structure 𝐹, which are rotated and translated 

copies of 𝐹 placed at each site on 𝐵. The total space E serves to map a location x on the base 

structure to a location in the image. Sampling the image at x in the total space E amounts to 

mapping the position from within the total space (𝐸 ∙ 𝑥) to the image frame and sampling the 

image as 𝐼(𝐸 ∙ 𝑥).   
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This explanation of the concepts that the symbols represent, and the constructions will aid the 

description of the machine learning-enabled midline discovery portion of the HypoQuantyl 

kinematics pipeline. This portion consists of the S-phase, the C-cycle, and the R-cycle. Figure 4 

and the text are meant to mutually support each other.   

 

S-phase 

The seeding phase (S-phase) of the algorithm consists of the Find Base and Initialize Scaffold 

functions. This phase runs an image 𝐼 through a convolution neural net and predicts the 

scaffold structure 𝑍𝑆 that is used for the contour generation cycle (C-cycle).  

Figure 4. A schematic summary of the software pipeline that produces a hypocotyl-specific 
midline. Machine learning algorithms trained on ground truth data and other image analysis 
methods operate in a recursive, generative fashion to produce a midline of the upper hypocotyl 
that terminates appropriately at the cotyledonary node. The main text explains the functions 
and the data structures within the S-phase, C-cycle, and R-cycle that together generate the 
contour-based midline shown as the output. 
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Find Base (𝛼) | 𝛼: 𝐼 → 𝑃 

Find Base uses a convolutional neural network to find the hypocotyl base point P of the upper 

hypocotyl image 𝐼 (LeCun et al., 2015).  

Initialize Scaffold (𝛽) | 𝛽: 𝐼 → 𝑍𝑆 

Initialize Scaffold estimates the curve-like structure 𝑍𝑆, which provides the context and a 

buttress for operations that determine the desired contour. This is the representation signature 

for 𝑍: 

𝑅𝑍 ≜ [{150,6},900,10, 𝛾𝑍, 99] 

C-cycle 

The C-cycle is a recursive generative loop that produces and iteratively smooths contours. The 

main components are a scaffold 𝑍, contour 𝐶, and the vector field structure D that connects 

them. 𝑍 consists of a base curve (𝐵) and a reference frame (F) attached to each point on the 

curve. Therefore, 𝑍 = [B, F]. The displacement vector (𝐷) is attached to each point on Z and is 

expressed in the frame (F) on the curve. The contour 𝐶 is generated by adding (𝐷) to the base 

curve (𝐶 = 𝐷 + 𝐵). This 𝐶 is used to determine a new 𝑍 and then a new 𝐷 which will produce a 

new 𝐶. The process repeats recursively for 15 iterations, where each subsequent iteration 

yields a smoother 𝐶. Functions 𝜓, 𝛿, 𝜁, and 𝜀 perform this generative and iterative 

improvement of 𝐶. The contour has separate representations for x and y: 

𝑅𝐶𝑋 ≜ [{150,1},150,7, 𝛾𝐶𝑋, 99] and 𝑅𝐶𝑌 ≜ [{150,1},150,8, 𝛾𝐶𝑌, 99] 

The predicted displacement vector 𝐷 produces a contour that needs to be smoothed in a way 

that respects the ground truth data. Both operations require a vector space constructed from 

the ground control curves: a vector set spanning the contour curve segments and a vector set 
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spanning the whole of the closed contour. Both operations project the vector into F at U and 

then project it out of F at U and is symbolized as (𝑥 = 𝐸𝑤  ∙ 𝐸𝑤
−1  ∙ �̃�).  

Extract Local Information (ψ) | ψ: I ×  ZV ×  Xn → V  

The 𝜓 function uses the Z𝑉 scaffold to extract local image information, which is used to predict 

the displacement vector 𝐷. Z𝑉 is a bundle of a frame and a base curve and serves to relate the 

many frames along the curve to the frame at the origin of the image. 𝑋 consists of 𝑛 

rectangular domains, hence 𝑋𝑛 in the above statement, along and across the reference frame 

𝐹, which are sampled and then dimensionally reduced by principal components analysis. The 

results obtained at each point in Z𝑉 are stored in vector 𝑉. Using the bundle’s sampling 

notation from above, 𝜓  produces a vector of local image information 𝑉 = 𝐼(Z𝑉 ∗ 𝑋𝑛) that the 

next stage uses. The sampled domains have the representation:  

𝑅𝑋𝑛 =  [{{30,30}, {30,30}, {100,3}, {100,3}},2400,30, 𝛾𝑛, 97] 

Predict Displacement (𝛿) | 𝛿: 𝑉 → 𝐷 

Function 𝛿 uses a feedforward network and the pixel information in 𝑉 to predict a 

displacement vector 𝐷 that will produce a 𝐶 that better approximates the final contour (Sadler 

et al., 2022). The use of the scaffold curve Z𝑉 in the extraction function 𝜓 allows for a simpler 

prediction function for a translation and rotation invariant prediction function 𝛿. In other 

words, the same regression network can be used for the entire hypocotyl. 

Generate New Curve (𝜁) | 𝜁: 𝑍 ×  𝐷 → 𝐶 

The 𝜁 function generates a new contour 𝐶 by first transforming the displacement vector field 

(D) from 𝐹 to the image frame and then adding displacement values to the base curve Q. Thus, 

𝐶 = 𝑄 +  𝑍 ∙ 𝐷. 
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Generate Core (𝜀) | 𝜀: 𝑤 ×  𝐶 → 𝑍𝑉  

𝜀 takes a range in 𝕀1 of size 𝑤 to demark a segment of 𝐶. A line joining the endpoints of the 

segment has a midpoint 𝑏. At each point 𝑏, a unit vector (𝑇) that is along the line joining the 

segment endpoints and another that is normal to it (𝑁) define a frame 𝐹 at 𝑏 (Figure 3B). The 

window 𝑤 shifts by one in 𝕀1 to define a new segment with a new midpoint 𝑏, and new 𝑇 and 𝑁 

vectors. The process continues along 𝕀1 to build up a curve 𝐵 consisting of each point 𝑏 and a 

vector 𝐹 containing the [𝑇, 𝑁] reference frames at each point (Figure 3C). Together, 𝐵 and 𝐹 

form the scaffold curve Z𝑉 (yellow circles in Figure 3C). 

The sequence of functions ψ, δ, ζ, and ε is repeated for 15 recursive iterations, as this was 

sufficient for predictions on the training dataset to approach ground truth results.  

R-cycle 

After generating a recursively smoothed contour 𝐶𝑉, the refinement cycle (R-cycle) first 

generates a midline (𝑀𝑉), and then grades the quality of 𝐶𝑉 and 𝑀𝑉 described in detail below. 

The overall grade is the sum of both individual grades. Depending on whether this grade meets 

a threshold value, the R-cycle will either output the finalized 𝐶𝑉 and 𝑀𝑉 or adjust the initial 

scaffold 𝑍𝑆 to make another run through the C-cycle. This cycle is repeated until the threshold is 

met or a set maximum number of iterations is reached. 

The midline 𝑀𝑉 is generated using the Trace Midline routine described below. The 

operations that make up the R-cycle use information in the image 𝐼 to grade the hypocotyl 

boundary 𝐶𝑉, which is then used to refine the contour’s shape and termination of the 

corresponding midline. A contour’s grade is constructed by summing the grades of two 

products which are derived from 𝐶𝑉 and the locally invariant image information from the 
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midline (𝐻𝑀) and cotyledon (𝐻𝑌). These geometries are relative to the contour, were selected 

to be anatomically relevant anchors and indicative of the quality of the contour. Figure 3A 

shows the two elliptical domains located at the cotyledonary node that provide the information 

in 𝐻𝑌. A contour 𝐶𝑉 is considered highly likely if the image information at those locations is 

considered probable. The three major steps, 𝜌, Θ𝑀, and Θ𝑌 construct the midline and 

cotyledon, sample the locally invariant information for these objects and grade the extracted 

information. 

Trace Midline (𝜌) | 𝜌: 𝐶𝑉 → [𝑀𝑉 , 𝑌𝑉]  

This function operates on the contour and produces the geometry for two anchors: the midline 

and the cotyledon points. The midline curve is produced with a method similar to the one 

Miller et al. (2007) described.  The curve’s tangent and normal vectors define a frame (F) which 

is complexed with the curve to create the midline bundle (M). The other derived product of the 

contour is the location of the cotyledons. These locations are a fixed distance along the tangent 

vectors of the top-left and top-right sides of the contour. These positions along with the 

sampled midline are used to grade the contour’s quality.  

Extract Local Information (𝛩) | 𝛩: 𝐼 × 𝐴𝑉 ×  𝑋 → 𝐻𝑣
𝐴 

Function Θ is used to create the vectorized representation of the local image information 

associated with the midline and cotyledon objects 𝐻𝑣
𝑀 and 𝐻𝑣

𝑌. Using the notation for sampling 

the local image information along the bundle, 𝐻𝑣
𝑀 = I(𝑀𝑣 ∙ x) and 𝐻𝑣

𝑌 = I(𝑌𝑣 ∙ x). The samples 

along the midline and cotyledon have the following signatures:  

𝑅𝑀 ≜ [{50,40},2000,3, 𝛾𝑀, 66] , 𝑅𝑌 ≜ [{30,30},900,3, 𝛾𝑌, 45] 

Any variation of 𝐻𝑣
𝑀 and 𝐻𝑣

𝑌 from the expected character of these patches is used to 
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adjust 𝐶, which adjusts the next round of 𝐻𝑣
𝑀 and 𝐻𝑣

𝑌 sampling. To estimate any difference 

from the expected patches, the R-cycle uses two spaces [Υ, ζ] outfitted with probability 

distributions [𝑃Υ, 𝑃ζ]. A vectorized representation of m ∈ 𝐻𝑣
𝑀 is drawn from the space Υ with 

probability 𝑃Υ(m|C), which we represent simply as 𝐻𝐺
𝑀. Similarly, the vectorized representation 

of the cotyledonary patch is (y ∈ Y, ζ, 𝑃ζ(y|C)), or 𝐻𝐺
𝑌. The likelihood 𝐿(𝐶) of the contour 𝐶 is 

then computed as 𝐻𝐺
𝑀 +  𝐻𝐺

𝑌. This likelihood is associated with the initial 𝑍𝑆 guess that 

produced 𝐶. The value of 𝑍𝑆 that is fed into the P-cycle is adjusted until the most likely contour 

is found, determined by the minimization function Ω𝑚𝑖𝑛 in Figure 4 (Nelder and Mead, 1965; 

Kingma and Ba, 2014).  

In summary, three high level constructs are used to trace out the contour: a method to 

obtain an initial seed (S-phase), generate a contour from this seed (C-cycle), and then grade the 

generated contour (R-cycle), which can then seed (S-phase) the generative method (C-cycle) 

with a more probable input. This implementation uses a triple complex [Z, D, C] to predict the 

contour from local image information and a likelihood function of an action (midline tracing) on 

the contour to grade the contour.  

Constructing and optimizing machine learning models 

Three functions in the segmentation pipeline (Figure 4) implement trained learning models to 

perform their operations. They are 𝛼 and 𝛽 from the S-phase and 𝛿 from the C-cycle. The 

ground truth dataset consists of a set of contours (𝐶) traced from upper hypocotyl grayscale 

images (𝐼) that terminate properly at the cotyledonary node [N = 550]. To reduce variability 

within the indexing of 𝐶, we split the 150 coordinate points in 𝐶 into left, top, right, and bottom 

sections such that they contained 60, 15, 60, and 15 points respectively. This normalization 
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allows the learning models to generate more predictable curves while also placing greater 

emphasis on the more complex curvilinear left and right regions. These data were then split 80-

10-10% into training-testing-validation sets. All models were trained from this same set of 

ground truth data, although each utilized different elements of the decomposed contour as 

their inputs to predict different outputs. 

Convolutional Neural Net 𝛼 

Function 𝛼 in the S-phase (Figure 4) implements a convolutional neural network (CNN) trained 

on the most basal [20 x 201] pixels of upper hypocotyl images to predict the x-coordinate 

element of their corresponding base point 𝑃 ([1 x 2] vector). The CNN consists of three layers 

that each contain a 2D Convolution, Batch Normalization, and a rectified linear unit. A 2D max-

pooling operation then predicts the initialization vector. The layers are fully connected, and a 

regression layer is used to produce 𝑍𝑆 (MathWorks, 2022). 

Convolutional Neural Net 𝛽 

Function 𝛽 in the S-phase implements a CNN of similar structure but is trained on the entire 

upper hypocotyl image ([201 x 201] pixels) to predict the initial scaffold 𝑍𝑆 ([10 x 1] vector). A 

separate CNN model was made for each of the 10 dimensions within 𝑍𝑆. We used Bayesian 

hyperparameter optimization to find the best values for convolution filter size, total filters per 

layer, dropout percentage layer, and the initial learning rate for each of these models, such that 

each CNN was uniquely trained and optimized on each dimension in 𝑍𝑆. 

Feedforward Network 𝛿  

Lastly, function 𝛿 from the C-cycle implements a 5-layer feedforward network with scaled 

conjugate gradient backpropagation. It was trained on the vectorized local image information 𝑉 
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to predict displacement vectors D. 

Measuring segmentation performance 

Matthew’s Correlation Coefficient (MCC) was used to assess how well our segmentation 

pipeline performed on ground truth data (Chicco and Jurman, 2020). MCC is generally used to 

measure association of binary variables, therefore a binary mask was created from the image 

coordinates of the contours, where contour coordinates are labelled as ones with a small 

dilation in a 201 x 201 mask of zeros. Comparing identical contours would produce the 

maximum MCC score of 1. This measurement was selected because it yields a measurement 

that does not require pairing between two contours, such as those used in Euclidean distance 

measurements. 

The segmentation pipeline processed the training set data [N = 550] and computed the MCC to 

Figure 5. Measuring segmentation performance on ground truth and untraced contours. A) 
Matthews Correlation coefficients for the training, testing and validation sets. B) Examples of 
contours and midlines for hypocotyls with poor, median, or high MCC scores. C) Probability 
grading scores for the ground truths, predicted, and full data sets were similar, indicating the 
pipeline imitated the human expert. D) An example of a times series of hypocotyls that were 
successfully processed by HypoQuantyl. 
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compare the masks of the predicted contour points with their ground truth points. The MCC 

distribution for our validation set showed a mean of 0.90 ± 0.12 [N = 55]. The mean MCC  

for the training and testing sets were 0.92 ± 0.08 [N = 440] and 0.91 ± 0.09 [N = 55], 

respectively. These were all satisfyingly close to a perfect score of 1. To assess performance on 

untraced hypocotyl images, we processed 61 time course trials with the segmentation pipeline. 

Each trial contained 1-5 seedlings (𝜇 = 4.0) imaged for 8 hours at 5-minute intervals. 

Processing these images yielded a total of 23,303 individually segmented curves. We used the 

probability grading function (Θ) described in the R-Cycle of this pipeline to measure the quality 

of the outputted 𝐶 and 𝑀𝑉. The mean of the grades for the top 90% [N = 20,973 curves] of 

predictions was 7.9 ± 7.3 (Figure 5B). The mean grades from the ground truth set and 

predictions on the ground truth set were 4.0 ± 4.4  and 4.4 ± 8.1 [N = 550], respectively. The 

similarity of these scores indicates that HypoQuantyl mimicked the human expert.  

Figure 6. Tracking image patches between two successive frames to measure REGR. Patch px in 
frame n is found as qx in frame n+1. Tracking material movement between frames n+1 and n+2 
is based on a new patch px being found as qx. Many patches are tracked between two 
successive frames but the same patch is not tracked throughout the time series. 
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Tracking pipeline 

The expansion of the cells along the midline causes a mixture of movement in the stem, 

including elongation, twisting, bending, and swinging.  Separating out the internal movement 

along the midline of the hypocotyl from the swinging and bending motion required the 

extraction of the midline (Figure 4). Given a midline, the tracking becomes a two-dimensional 

optimization problem with constraints to prevent collisions between points (Lucas and Kanade, 

1981; Meinhardt-Llopis et al., 2013; Philipp et al., 2015). Generally, the second-order solution 

has five degrees of motion: two translations, two stretches, and one rotation. The isolation of a 

midline reduces the degrees of freedom to a one-dimensional search along the midline and one 

stretch value along the midline. The angle of rotation is fixed by the angle given by the midline, 

stretching along the width of the midline was removed, and two degrees of freedom in the (x,y) 

image system are reduced to searching through a window of percentages along the midline. A 

12-pixel radius disk is used with 60 points along the radius and 96 frames along the angular 

direction. HypoQuantyl adapted the recently published Patch Track method (Henry et al., 2023) 

for tracking hypocotyl patches. The only modifications were in the levels of constraints imposed 

on the amount of translation and stretch permitted. Processing the tracking results into 

measurements of local material strain rate, the relative elemental growth rate (REGR), was 

performed as described in Henry et al. (2023) and by Silk and Erickson (Silk and Erickson, 1979; 

Erickson and Silk, 1980; Silk, 1984).   

Figure 7 demonstrates that the entire HypoQuantyl pipeline successfully measured 

relative elemental growth rate, which is the local rate of material expansion, theoretically the 

instantaneous strain rate. Figure 7A shows the REGR values determined by HypoQuantyl 
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mapped on to images of the measured wild-type seedling at selected time points during growth 

in complete darkness. The greatest local rates of expansion (4-6% h-1) occurred in a zone 

approximately 1 mm long centered approximately 1 mm from the top of the hypocotyl. The 

selected images representing this individual seedling show the growth zone to be relatively 

constant across time and space. Figure 7B shows selected time points of a single seedling 

growing in darkness before illumination with 

blue light begins at 2 h. REGR throughout the 

growth zone is quickly suppressed. Opening of 

the apical hook quickly follows hypocotyl 

inhibition. Apical hook opening results from 

differential growth across the organ, which 

HypoQuantyl was not designed to measure, 

but the transient period of high REGR at the 

apex may reflect the acceleration of expansion 

on the concave side of the hook that produces 

the opening. These results indicate that 

HypoQuantyl can perform the measurements 

it was designed to make.  

Using HypoQuantyl to analyze hypocotyl 

growth in photoreceptor mutants  

In one set of experiments, wild-type seedlings 

were maintained in total darkness as images 

Figure 7. Kinematic analysis of Arabidopsis 
hypocotyl elongation. A) Relative elemental 
growth rate (REGR,) measured on a single 
seedling growing in continuous darkness. B) as 
in A except this seedling received blue light at 
the 2 h point. Peak rates of near 6 % h-1 
reduced quickly to near 0. 
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were collected every 5 min. Figure 8A shows the average spatiotemporal distribution (map) of 

REGR for wild-type seedlings in darkness. The REGR map shows that the major expansion 

occurred in a zone extending from 0.3 to 1.5 mm from the top of the hypocotyl. REGR values 

reached 4% h-1 in this region. They were not constant. During 7 h of growth in darkness, the 

average REGR response map displayed four peaks and three troughs in the temporal direction. 

The peaks were spaced between 1.5 and 2.5 h apart. Along the axial direction, the single REGR 

peak migrated basally from approximately 0.7 to 1.3 mm from the apex during the recording 

period. In another set of experiments, continuous illumination with red light began after 2 h of 

growth in the dark. Over the ensuing 5 h, REGR decreased throughout the 0.7-1.3 mm 

elongation zone (Figure 8B). This slowly developing inhibition of hypocotyl elongation is a 

phytochrome-mediated response. Genetic evidence indicates that PhyB is the photoreceptor 

that contributes most to the response because phyB mutants have a long hypocotyl when 

grown in red light (Somers et al., 1991).  

Figure 8. REGR maps depicting the effects of red light on hypocotyl elongation. A) Wild-type 
seedlings grown in continuous dark, average of 10 individual seedling maps. B) Wild-type 
seedlings grown in darkness for 2 h before continuous irradiation with red light average of n = 
10. C) phyB mutant seedlings grown in darkness for 2 h before continuous irradiation with red 
light average of n = 7. The black contour lines surround areas are that significantly different 
than the wild-type response, p=0.05. 
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Consistent with the long-hypocotyl endpoint phenotype of phyB mutants, REGR remained high 

across much of the regular elongation zone. The black contour line indicates where in space and 

time this average phyB result differed from the wild-type average response according to t-tests 

of statistical significance. The significantly different region from 4.5 h to 7 h confirmed the 

timing of PHYB action Parks et al. (1999) reported based on hypocotyl lengths measured over 

time. What the previous study could not address was where along the hypocotyl PHYB acted. 

Figure 8B shows that growth was significantly greater (inhibition significantly reduced) in phyB 

everywhere below 0.6 mm after 4.5 h. An earlier period of significant difference in the REGR 

map is probably the kinematic basis of a rapid, transient period of growth inhibition that Parks 

et al. (1999) determined to be caused by a combination of PHYA and PHYB action. Figure 8B 

shows that this initial, transient phase of inhibition occurred in a region of the hypocotyl above 

the later-inhibited zone. Thus, growth inhibition mediated by the PHYB photoreceptor occurs 

first and transiently in the apical-most 0.8 mm of the hypocotyl, and later in the region below 

0.8 mm.  

Blue light inhibits hypocotyl elongation more rapidly than red light, beginning even 

within a few seconds (Spalding and Cosgrove, 1989; Parks et al., 1998). Figure 9A shows that 

the growth zone in darkness, from approximately 0.3 mm to 1.5 mm, collapses quickly after the 

onset of blue light. This figure shows the kinematic basis of the well-studied rapid inhibition of 

hypocotyl growth by blue light that pea, cucumber, Sinapis, and Arabidopsis seedlings display 

(Cosgrove, 1981; Cosgrove, 1982; Spalding and Cosgrove, 1989). A previous study showed that 
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the initial period of inhibition was due to the action of the PHOT1 blue light receptor (Folta et 

al., 2001). The kinematic results in Figure 9B show that REGR in a phot1 mutant remains higher 

than wild type (is less inhibited) across much of the regular elongation zone beginning 

immediately and persisting through the recording period. Statistical analysis detected an 

additional, small region of difference from the wild type between 0.1 mm and 0.3 mm and 

lasting for 2 h after the onset of blue light. The exact timing of changes is difficult to define in 

these kinematic data because the patterns are changing in the dark before the treatment 

begins. This small transient is worth noting because it indicates that the mutant is more 

inhibited than the wild type in this restricted, very apical region. Because the phot1 mutant 

Figure 9. REGR maps depicting the effects of blue light on hypocotyl elongation. A) Wild type, 
average of n = 1 B) cry1 mutant, n = 14 C) phot1 mutant, n = 10 D) cry1 transformed with CRY1 
translationally fused to a nuclear localization signal, n = 8 E) cry1 transformed with CRY1 
translationally fused to a nuclear export signal, n = 10. 
The black contour lines surround areas are that significantly different than the wild-type 
response, p=0.05. 
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does not display a long-hypocotyl endpoint phenotype, its inhibitory action must not persist. 

CRY1 causes persistent inhibition. The initial phase of inhibition occurs normally in cry1 

mutants, presumably because PHOT1 is mediating that first phase, but after 30 min of blue 

light, elongation rate increases in cry1. These results were interpreted to mean that the initial 

phase of inhibition controlled by PHOT1 must be replaced by a CRY1-dependent mechanism 

and the two must be coordinated well in time in a wild-type seedling. It was proposed that the 

CRY1 mechanism must strengthen as the PHOT1 mechanism weakens. The kinematic results in 

Figure 9B,C support a new mechanism based on unprecedented kinematic data. In cry1, the 

main elongation zone remains inhibited during the recording period. The apparent escape from 

inhibition is not due to a resumption of growth in the main elongation zone (0.3-1.5 mm from 

the top), but to a new region of very high REGR with peak local expansion occurring only 0.2 

mm from the top of the hypocotyl. A region of the hypocotyl that was previously not 

contributing to elongation becomes the source of elongation. The role of CRY1 in a wild-type 

seedling receiving blue light is to prevent these cells at the apical end of the hypocotyl from 

elongating.  

CRY1 is in the cytoplasm and nucleus of cells. Wu and Spalding (2007) manipulated its 

subcellular localization by expressing CRY1 fused to a nuclear localization signal (NLS) in a cry1 

mutant. Wu and Spalding (2007) also fused a nuclear export signal (NES) to CRY1 and expressed 

it in a cry1 mutant. Measurements of hypocotyl elongation by the HYPOTrace method (Wang et 

al., 2009) showed that the nuclear localized version of CRY1 completely rescued the cry1 

growth response while the cytoplasmic version had no effect on the mutant phenotype. 

Kinematic analysis of these same lines produced the results in Figure 9D, E. The CRY1-NES 
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produced a REGR map that was essentially like the unaltered mutant, sharing the same regions 

of statistical difference while the CRY1-NLS response was like the wild type. This molecular 

rescue experiment validates the conclusion that, in blue light, CRY1 prevents cell elongation in 

the most apical part of the hypocotyl. In the absence of CRY1, those cells elongate. The 

kinematic analysis indicates that CRY1 does not inhibit the primary region that was expanding 

before the light treatment but prevents cells above that zone from contributing to the 

lengthening process in the presence of blue light. 

Discussion 

HypoQuantyl is an end-to-end analysis pipeline for characterizing the kinematic basis of 

hypocotyl growth over time scales relevant to studies of photomorphogenesis. The most novel 

aspect of the pipeline is its method for discovering a faithful midline specific to the hypocotyl. 

This part of the HypoQuantyl solution can be described as a recursive engine with an internal 

structure that generates, grades, and optimizes the discovery of a curve in a digital image. A 

curve that bounds a structure is a contour, and contour isolation is a prominent topic in 

computer vision and biological imaging (Blake et al., 1988; Kass et al., 1988; Xi et al., 2017; 

Rabeh, et al., 2017). At a high level, the part of HypoQuantyl summarized in Figure 4 is a 

machine learning-based algorithm that collapses a closed contour down on to a specific target. 

It was developed and trained to isolate hypocotyls from grayscale images, but the architecture 

of the S-phase, C-cycle, and R-cycle could be more generally applicable in plant biology 

research, where methods for defining shapes, particularly through image analysis, and then 

treating them as mathematical objects has been recognized as a critical need (Bucksch et al., 

2017). Measuring the effects of mutations (phenotypes) with the objectivity, precision, and 
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throughput such methods can deliver creates data that advances our understanding of the 

genotype-phenotype relationship. Ideally, every aspect of plant growth and development could 

be measured using the methods HypoQuantyl brings to bear on the Arabidopsis hypocotyl 

growing and responding to light. 

The ability of HypoQuantyl to faithfully segment thousands of hypocotyls in various 

stages of de-etiolation, and map the distribution of material expansion within them, generated 

an unprecedented description of how fast, where, and when stem material expanded. The 

results obtained with dark-grown seedlings (Figure 8A) closely matched the results reported by 

Bastien et al. (2016) with their KymoRod software. They also found REGR of 3-4% h-1 in an 

apical growth zone approximately 2 mm long. Thus, the tracking and kinematic analyses within 

HypoQuantyl appear to function as well as those in KymoRod. Where HypoQuantyl primarily 

distinguishes itself from KymoRod is in the automation of hypocotyl segmentation (Figure 3) 

that the machine learning approach enabled. HypoQuantyl operates without human inputs. In 

fact, the computations were performed on a distributed high-throughput computing resource 

at the University of Wisconsin Center for High Throughput Computing managed by HTCondor 

job scheduling software (Thain et al., 2005). 

The usefulness of HypoQuantyl was demonstrated here in a study of light-induced 

inhibition of hypocotyl elongation. The kinematic results can be interpreted in the context of 

much previous research into the molecular and physiological mechanism of the growth 

inhibition. Light in the blue region of the spectrum inhibits hypocotyl elongation very rapidly. 

The inhibition is due to a change in the rheological properties of the cell wall. Specifically, blue 

light reduces the loosening rate of bonds between polymers in the cell wall that are bearing the 



27 
 

stress imposed by cellular turgor pressure (Cosgrove, 1988). A ‘tightening’ of the cell wall 

quickly follows the onset of blue light to explain the growth inhibition. Some evidence indicates 

that the effect on wall loosening is due to inhibition of the H+-ATPase at the plasma membrane, 

which would be expected to raise the pH of the wall, which would inhibit the activity of the 

expansin proteins. Because PHOT1 is known to control the activity of the H+-ATPase at the 

plasma membrane of stomatal guard cells, albeit in the activating direction (Yamauchi et al., 

2016), and because PHOT1 resides at the plasma membrane in hypocotyl cells (Sakamoto and 

Briggs, 2002), we suggest that PHOT1 inhibits the H+-ATPase in the main elongation zone to 

inhibit expansion. Thus, we propose that the initial inhibition of elongation known to be PHOT1-

mediated occurs in the main elongation zone, possibly due to inhibition of the plasma 

membrane H+-ATPase in these expanding cells. The surge in growth observed after 30 min in 

cry1 mutants is not, as previously thought, due to a dissipation of this initial inhibition. The 

REGR maps (Figure 7) indicate that the main elongation zone where PHOT1 began the response 

remains inhibited. The rapid expansion in cry1 mutants after 30 min is due to cells above the 

main elongation zone becoming competent to expand. Somehow, when CRY1 is activated by 

blue light, it makes cells in the apical-most 0.2 mm of the hypocotyl unable to expand. This 

state change does not occur in the cry1 mutant. Essentially, a new elongation zone is 

established, limited on the apical end by the cotyledonary node and on the basal end by 

PHOT1-inhibited cells. Perhaps CRY1 control over this region of the hypocotyl serves to 

maintain a reserve of extension capability should the seedling, in a natural scenario, become 

covered again by soil or leaf litter. Over time in darkness, CRY1 reverts biochemically to its dark 

state, which may relieve the block of material in this region of the hypocotyl and allow 
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expansion in a re-darkening situation. 

Molecular genetic studies of CRY1 provide some possible mechanisms to explain how 

CRY1 may lock cells into a non-expanding state. Previous work from our lab showed that CRY1 

must be in the nucleus to maintain this apical region in a non-responsive state (Wu and 

Spalding, 2007). In the nucleus, the light-sensing domain of CRY1 interacts with AUX/IAA 

proteins (Xu et al., 2018), which must be degraded for this growth hormone to promote cell 

expansion. The CRY1-AUX/IAA interaction is thought to stabilize the AUX/IAA, prevent its 

degradation, and thereby inhibit auxin responses. Remarkably, PHYB interacts with the same 

AUX/IAA proteins (Xu et al., 2018). This raises the possibility that the CRY1-mediated inhibition 

of expansion in a short apical region of the hypocotyl and PHYB-mediated inhibition of the 

standard growth zone are both due to suppression of auxin responses. This is consistent with 

the observation that auxin transport through the hypocotyl mediated by the ABCB19 protein 

contributes to the extra phase of elongation that cry1 mutants display in blue light, and phyB 

mutants display in red light (Wu et al., 2010). 

None of the molecular genetic investigations of cryptochrome actions that Wang and Lin 

(2020) recently reviewed focused on a specific location or cell type. In fact, these authors 

highlighted the fact that location of action is understudied.  

 “… plant cryptochromes appear to express ubiquitously, but light is unlikely to have the same 

effects on different cells and organs of a plant. Therefore, how to distinguish the specific 

functions of cryptochromes in the specific photoresponses of individual cells is another 

challenge. Recent advances in single-cell RNA and protein analysis technologies would likely 

bring new insights about the novel and cell-specific functions of plant cryptochromes.” 
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The emphasis is mine. 

The HypoQuantyl analysis of the cry1, phot1, and phyB mutants provides exactly the 

spatiotemporal information called for in this quote.  
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Materials and Methods 

Seedling culture 

Seeds of Arabidopsis thaliana were sown, stratified, and cultivated on vertical agar plates as 

described in Wang et al. (2007). Seedlings were used after 3 d of growth in total darkness. 

Image acquisition 

A clear plastic Petri plate with seedlings growing vertically on the surface of agar was mounted 

perpendicular to the optical axis of a macro video zoom lens (18-108 mm f/2.5, 

www.edmundoptics.com) fitted to a charge-coupled device camera (Marlin F-146B; 

www.alliedvision.com) that was controlled by a computer. A close-up +4 lens (www.tiffen.com) 

attached to the zoom lens increased magnification. An infrared-pass filter (R72, 

www.hoyafilterusa.com) permitted 948-nm infrared radiation emitted by a BL020201 backlight 

(www.advancedillumination.com) placed behind the seedlings to reach the camera, which was 

made sensitive to infrared by removal of the internal infrared-blocking filter. This platform 

produced images of growing seedlings at a resolution of 184 px mm-1, even in the complete 

absence of visible light. This arrangement ensured that blue light produced by a LED source 

described in Wang et al. (2007) treated the seedlings with a fluence rate of approximately 80 

µmol m-2 s-1 without affecting the image the camera collected. The LED red light source 

described in Parks et al. (1999) produced a fluence rate of approximately 100 µmol m-2 s-1. All 

experiments were performed in a photobiology darkroom. Some manipulations required brief 

use of a dim green safelight.  

The camera collected images every 5 min. The indicated light treatment began at frame 

http://www.edmundoptics.com/
http://www.alliedvision.com/
http://www.hoyafilterusa.com/
http://www.advancedillumination.com/
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24, 2 h after the start of recording in complete darkness. Image collection continued every 5 

min for 6 h. The 96 images per trial were stored in tagged image file (.TIF) format. These time 

series of images were used to develop the HypoQuantyl analysis pipeline, and they were the 

raw experimental data used to characterize the kinematics of light responses in the wild type 

and the indicated mutant genotypes.  
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