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CHAPTER 1
INTRODUCTION

1.0 Overview

The groundwater resources in the State of Wisconsin are protected by the Wisconsin
Department of Natural Resources (DNR). Groundwater quality standards are
established under Chapter NR 140 of the Wisconsin Administrative Code (Wisconsin
DNR, 1988).. Also addressed in NR 140 are statistical methods for 1) evaluating
background (clean) water quality and 2) determining exceedance of a water quality
standard or finding an environmentally significant change in water quality. In this paper
we address the complex issue of how to "defensibly" establish background water quality
at waste disposal facilities, and subsequently how to "defensibly" discern standard
exceedances and/or significant water quality changes. "Defensibly” is meant to imply
that the technical approach should be acceptable to concerned parties and, if
necessary, in a court of law. In the regulatory context, the intent of this study is to
evaluate alternative analytic methods to meet the objectives of NR 140. Analytic
techniques are also evaluated with respect to existing and proposed federal regulations
for hazardous waste facilities and for municipal solid waste landfills. While the focus of
this paper is on solid waste disposal facilities, the techniques are also applicable to
most types of hazardous waste sites, land disposal systems and storage facilities.

To help the DNR prioritize its work in enforcing NR 140, a secondary goal of this
research is to screen the licensed landfill sites in Wisconsin for evidence of
contamination. While the analytic methods discussed above will help to define the
degree and extent of contamination at each site, the statistical screening will help steer
the DNR towards particular sites. More specific objectives of this study include:

e to summarize current information on the statistical properties of
groundwater quality data, and to evaluate how these properties affect the
choice of analytic method;

e to investigate the hydrogeology and water quality at 20 landfill sites in
order to document defensible procedures for establishing background
water quality and determining apparent contamination;

e to detail procedures for establishing background water quality;
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e to evaluate appropriate statistical tests for determination of significant
changes in water quality; and,

e to investigate site-wide "predictors” of groundwater contamination to
prioritize licensed sites for regulatory action. .

This report is the culmination of a two-part study which began in 1985. The first report
(Goodman and Potter, 1987) is entitled "Graphical and Statistical Methods to Assess the
Effect of Landfills on Groundwater Quality.” The earlier study focused on 1) evaluating
the statistical nature of groundwater quality data and 2) developing procedures for
evaluating groundwater quality. These procedures are currently being used by the
DNR. In this report, the earlier results are summarized and in some instances methods
are expanded or modified based on additional research.

This report is written assuming that the reader has a rudi~mentary understanding of
probability and statistics as well as hydrogeology, contaminant transport and water
chemistry. Other readers will be able to understand the basic concepts presented. For
the reader interested primarily in regulatory issues and recommendations, the chapter
summaries and all of Chapter 5 should be sufficient.

The report is organized as follows:

e Chapter 1 includes an overview of state and federal regulations and
places them in a statistical context. Also the DNR landfill water quality
database is introduced including a summary of the 20 landfill sites studied
in detail in this study.

e Graphical techniques for visualization of water quality data are presented -
in Chapter 2. Also, the statistical properties of groundwater quality data
are evaluated. These properties are introduced in the context of the
geophysical environment and related contaminant transport processes. -

e Chapter 3 addresses how to evaluate groundwater contamination, given
the statistical properties of the data. Types of statistical tests are
introduced in Section 3.0. Statistical tests are evaluated with respectto -
basic assumptions, performance and utility in Sections 3.1. 3.2 and 3.3.
The applicability of Sections 3.1 to 3.3 to existing and proposed
regulations are discussed in Sections 3.4 and 3.5.

e A predictor of groundwater quality change is introduced in Chapter 4. This
predictor is used to execute a statistical screening of the groundwater

1-2



quality database. The use of the predictor for prioritizing regulatory work is
discussed.

e Conclusions and recommendations are summarized in Chapter 5. Also,
flow charts are used to present simple procedures to 1) define background
water quality and 2) determine compliance of waste sites with existing
regulations.

1.1 Statistical Context of Regulations

The DNR and EPA regulations addressed in the following sections recognize that
groundwater quality data vary temporally and spatially due to natural effects, and are
also affected by sampling and analytic error!. Due to natural variability, the
determination of a change in water quality should be linked to probability theory. Two
regulatory situations present themselves:

1) Has a water quality standard been exceeded?
2) Has there been a significant change in water quality?

The first question is the more straight forward. If a sample value exceeds a standard,
accounting for sampling and analytic variability, then a violation has occurred. In this
situation a "violation" means only that a mandated concentration level has been
exceeded, not that certain actions must be taken. Défining the magnitude of sampling
and analytic variability is addressed in Chapter 3. The general idea is that a standard
may be exceeded a "little" due to laboratory error, before a "defensible” violation occurs.
This problem is acute when standards are at or approach the level of detection of the
contaminant, as is the case with some volatile organic compounds. Sampling error may
be addressed by timely resampling of the entire site.

The second question is more complex, since now a comparison must be made between
supposedly "clean" background data and possibly contaminated data, both of which are
subject to temporal and spatial variability as well as sampling and analytic error. Hence,

1Sampling error in this context refers to error introduced by the technician during

well sampling. Analytic error occurs in the laboratory. These are not to be confused
with natural "sampling" error associated with spatial and temporal fluctuations in water
quality.
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the problem becomes one of statistical inference. The question could be rephrased as a
statistical hypothesis:

Null Hypothesis: Ho: No Contamination exists; facility is in compliance

Alternative : H1: Contamination exists; facility is in violation
Hypothesis

- -

A statistical test is made on the null hypothesis and a conclusion is reached that either
the facility is in violation or the facility is not. In this situation, a "violation" implies that.
water quality is significantly different from background, not that certain actions must be
taken. The conclusion is based on probability assessment. Figure 1-1 illustrates the
two types of errors associated with hypothesis testing.

STATISTICAL DECISION

IN COMPLIANCE IN VIOLATION

w

(&

Z

5 Good Decision False Positive
% % Decision
E 8 I-a (04

2
g = Type | error
[75)
5 > False Negative )
E g Decision Good Decision

3

o) B 1-B

>

Z Type |l Error "Power" of Test .-

FIGURE 1-1 Statistical Error in Hypothesis Testing



Type | error (false positive decision) occurs when a site (or well) is actually in
compliance but the statistical test determines it to be in violation. The probability of a
Type | error is defined as the significance level of the test, «, and can be controlied.
Usually, o is set at 0.05, giving a 1/20 chance that a "false positive" conclusion of
contamination will occur. o is exact however only when the assumptions of the test are
met. The Type | error rate sets the "level of protection” afforded the polluter since when
a Type | error occurs a site owner may be required to perform remedial measures when
none are necessary.

On the other hand Type Il error (false negative decision) occurs when contamination
exists but is not detected. The Type Il error sets the "level of protection™ afforded the
State (i.e. the people and the environment). Unfortunately, the probability of a false
negative conclusion, b, is not controlled, is often difficult to calculate, and is dependent
on many factors which may include sample size, magnitude of "change” in
concentration, and choice of statistical test. Because the Type |l error rate is usually
unknown and is likely to be higher than the Type | error rate, the ability for the State to
protect the environment is confounded with the ability to maintain a low false negative
rate.

Hypothesis tests may be divided into two general categories: those which rely on the
estimation of parameters of a probability distribution (usually the mean and standard
deviation of the normal distribution) and those which do not. The former are generally
referred to as parametric procedures, while the latter are nonparametric. Sometimes
nonparametric tests are referred to as distribution-free methods, although this name may
be misleading (See Section 3.0). Examples of parametric procedures are Student's t-
test developed by W.S. Gossett in 1908, and the commonly-used analysis of variance.
Nonparametric methods usually rely on test statistics developed from the ordered ranks
of the data. For example, when testing for an increasing trend in time, if the
concentration data are ranked in exact order of time, "perfect" correlation would be
found. The most widely known nonparametric measure is the median, or middle value
of a data set.

These fundamental concepts are introduced here to place the state and federal
regulations in context with the statistical hypothesis problem.
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1.2 Wisconsin Regulatory Context

Wisconsin has established two types of water quality standards: enforcement standards
(ES) and preventive action limits (PAL's). ES's are maximum contaminant levels and
are not to be exceeded. They are set forth in NR 140.10 for public health related )
substances and in NR 140.12 for public welfare related substances (Wisconsin DNR,
1988). For these substances, the PAL is established as a percentage of the ES. The_
PAL in this situation is a "flag" of potential contamination. 60 substances have
mandated ES's and PAL's. If natural water quality exceeds the mandated ES or PAL,
an alternative concentration limit (ACL) may be set by the DNR.

[

PAL's, for substances without an ES, are defined based on background water quality.
Substances with PAL's set based on background water quality are called "indicator
parameters.” An indicator parameter is a naturally occurring substance which is
indicative of groundwater degradation when high values are observed or when
significant concentration changes occur. High concentration of a "true” indicator, is not
necessarily a health or welfare problem. Examples are specific conductance, total
hardness, pH and alkalinity. Under the current regulations, a PAL for an indicator
parameter is set by calculating the mean and standard deviation of background water
quality (based on a minimum of 8 representative data points). The PAL is then set as :

PAL=  x +3s

where x is the sample mean and s is the sample standard deviation. In some cases s is
so small that the difference between the PAL and background water quality is not
environmentally significant. In such cases the PAL is based on a table of minimum
significant increases above the background mean. PAL's set based on minimum .
increases defined in Table 3 of NR 140 are called "table values” in this report. -

The choice of the mean plus three standard deviations as a measure of environmental
significance is based in part on a DNR study of 16 landfills, where it was found that

clean well concentrations rarely exceeded x+ 3 s of background water quality.
Statistically, this method implies that there is less than a one percent chance that a truly
"clean” data point will exceed the PAL, if the data are independent and normally



distributed about a mean value. These statistical assumptions may or may not be true
as discussed in detail in Chapter 2. Hence, in this situation, it may be best to view a PAL
as an empirical estimate of environmentally significant change. If water quality data are
assumed to be stationary, independent, and normally distributed, then, in the case of no
contamination, the probability that a PAL would be exceeded by a single measurement
would be about 1 percent.

In this study, we have focused on eight chemical parameters as shown in Table 1-1.
These substances are the rhost frequently monitored parameters at landfill sites in
Wisconsin. Specific conductance, total alkalinity, total hardness, pH, and chemical
oxygen demand are considered “indicator parameters.” Iron, chloride, and sulfate are
welfare concerns and, therefore, have enforcement standards as shown.

The Wisconsin regulations require the DNR to use a scientifically valid statistical
procedure to determine if an enforcement standard is attained or exceeded orif a
change in the concentration of a substance has occurred. In NR 140.14 (2) the following
statistical procedures are specified at a 95% level of confidence:

(@) Student t-test;

(b) Temporal or spatial trend analysis; or

(c) Other scientifically valid statistical analyses which are appropriate
for the data being considered.

The main objective of this study is to provide technical guidance to DNR on the
implementation of these or other procedures for determining compliance with NR 140.
These regulations are similar to EPA's existing and proposed regulations for
determining compliance at hazardous waste and municipal solid waste facilities which
are discussed in the next section.
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TABLE 1-1
Chemical parameters included in analyses and applicable
groundwater quality standards.

PARAMETER ENFORCEMENT PREVENTIVE

STANDARD ACTION LIMIT
(mg/l) (mg/l)

Total Alkalinity as CaCOg .

Total Hardness *

pH1 | .

Specific Conductance?4 .

Chemical Oxygen Demand *

Iron - Total 2 0.303 0.153

Chloride 2503 1253

Sulfate 2503 1253

-t

Field measurements only
Total includes dissolved and suspended particulate material

If background water quality exhibits high concentrations an ACL may be
established.

Units are pmhos/cm
PAL set based on background water quality.
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1.3 Federal Regulatory Context

Like the DNR, the EPA has wrestled with statistical evaluation of groundwater quality
data at landfills. The EPA also has established water quality standards for specific
chemical parameters The State of Wisconsin standards, discussed in the previous
section are as strict, or stricter, than current federal standards.

Federal regulations also exist for statistical determination of compliance for RCRA
facilities. These are existing and new hazardous waste facilities covered by Subtitle C
of the Resource Conservation and Recovery Act (RCRA) and regulated by 40 CFR Parts
264 and 265. Until recently, Part 264 Subpart F provided that Cochran's
Approximation to the Behrens Fisher Student's t-test (CABF) or an alternative statistical
procedure approved by EPA be used to determine whether there is a statistically
significant exceedance of background levels, or other allowable levels, of specified
constituents. These regulations, and in particular the CABF procedure, generated
criticism and EPA proposed a new regulation in response to these concerns (EPA,
August 24, 1987). The proposed regulation was revised based on comments EPA
received and was then made final (EPA, October 11, 1988). A draft guidance document
for implementation of these regulations is currently under final review (EPA, 1988).

The final regulation establishes five performance standards that a statistical procedure
must meet. The performance standards allow flexibility in designing statistical
procedures to site specific considerations. The choice of an appropriate statistical test
can be made based on the data available, the hydrogeology of the site and the
theoretical properties of the test. The proposed regulations do recommend four types of
statistical procedures to detect contamination in groundwater. For more information see
Section 3.1.

In addition EPA is currently drafting amendments to Subtitle D of RCRA to include
criteria for municipal solid waste landfills (MSWLF's). The statistical test requirements
are similar to the RCRA Subtitle C final regulation and recommend the same four types
of procedures. The big difference between the federal hazardous waste and solid waste
regulations is that at the permitted hazardous waste facilities, four independent samples
must be collected for each monitoring round (the sampling interval may be as large as
monthly to obtain independence (EPA, October 11,1988)). At MSWLF's only one
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quarterly or semi-annual measurement is necessary.

Unlike the Wisconsin rules the proposed regulations do not incorporate the idea of
"exceeding background values or concentration limits" in terms of "a minimum increase.”
According to the Federal regulation, this is because any statistically significant increase )
is a cause for concern.

Another important difference between the EPA and Wisconsin regulations is that the
EPA regulations require that the statistical tests be applied quarterly to new data. The
tests provide a tool to determine which of two phases of groundwater monitoring is
necessary. Under Subtitle C these phases are "detection monitoring” and the more
extensive "compliance monitoring." The draft Subtitle D regulations divide monitoring
into "Phase I" and "Phase II." Thus, the statistics are used as a gate into stricter
regulatory control (i.e. more extensive monitoring and possible remediation). In
Wisconsin the statistical tests are not a quarterly requirement; the statistics are only a
possible tool to either confirm a standard exceedance or to detect a change in water
quality. They do not have any direct consequences associated with them. In this
respect, the draft Subtitle D regulations are stricter than current Wisconsin rules for non-
hazardous waste disposal facilities. '

EPA performance standards and recommended procedures for statistical analysis of
groundwater quality data are addressed in detail in Chapter 3. In order to evaluate the
statistical tests, we investigated 20 Wisconsin landfill sites. An overview of these sites is
presented in the next section.

1.4 Wisconsin Landfill Water Quality Database

The Wisconsin DNR Bureau of Solid and Hazardous Waste Management has collected”
groundwater quality data at solid waste disposal sites for many years. The landfill
groundwater database includes over 300 licensed sites, each with a number of wells,
and water quality data for an array of constituents at each well. The majority of sites are -
typically older, unengineered sites. Many are now closed or have clay-lined
expansions. The database also includes many county-owned state-of-the-art sanitary
landfills, as well as some older county-run facilities. Several sites in the database are
considered to have seriously contaminated groundwater with hazardous substances.
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Also included are industrial sites owned by paper mills, electric utilities and a variety of
other industries.

We obtained water quality and water elevation data for 316 licensed landfill facilities
from the DNR in August, 1987. The results reported in Chapter 4, for contamination
predictors, are based on analysis of this database. In April, 1988 updated data were
obtained for 20 sites chosen for detailed analysis (Chapters 2 and 3). Due to the time
lag for laboratory analysis, data transmittal and computer entry, these data may be
considered current at least through the end of 1987.

The locations of the 20 selected sites are shown on Figure 1-2 and a summary of site
characteristics is presented in Table 1-2. Nine (9) of the 20 were included in the
previous DNR-funded study (Goodman and Potter, 1987). The sites may be generally
classified by ownership and design as follows:

g9 small to medium size municipally-owned solid waste sites, either
unlined or partially unlined with an engineered expansion;

3 industrial facilities:
2 paper sludge,
1 fly ash;

w2 . .
3 larger "natural attenuation"~ or unlined county-owned solid waste
sites, and,

5 county-owned clay lined solid waste facilities with leachate collection
systems

20 total

2 "Ngtural attenuation” implies that the uppermost subsoil is a dense silt or clay
material which should minimize, but not necessarily eliminate, leachate movement.
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TABLE 1-2: Characterization of landfill sites studied
SITE SITE YEAR SAMPLING
FACILITY NAME FACILITY WASTE DESIGN VOLUME  S7e Lt BEGAN AND NUMBER OF
(LICENSE) DESIGN RECEIVED yd2* 108 (Acres) (Avg. No. of data pts)  WELLS
City of Janesville Partial clay lined, 18 . "
(2822) partial unlined MSW, IND 07 1961 - 1978 1982 (19)
City of Medford Unlined 45 ) ' soL
NONE . 1972 -? 1980 - 83 (10)
(341) MSW 1983 (19) 6 NEW
City of Merrill 1975 (40
(912) Unlined MSW NONE (40) 8
City of Oconto Natural attenuation, 145 I 14
(137) 7/83 groundwater inter- MSW, IND NONE Early 70's - 83 1977 (36)
ception trench installed.
g%r)rown of Cedarburg Natural attenuation MSW NONE 10 1972 - 87 1975 (41) 11
Natural attenuation
(czzlg)y Dane #1 - Verona :;sr::l‘:eachate e 2 49 1977 - Pres. 1977 (41) 23
Clay lined,
(S):\t::rt‘y&:u (glemerke leachate collection MSW 12 24 1978 - Pres. 1978 () 8
2824
Natural attenuation
g%t;r;t)y Lacrosse MSW. IND 1.38 55 1976 - Pres. 1977 () 12
Clay lined,
g;gg Marathon - leachate collection MSW. IND 15 10 1980 - Pres. 1980 ( ) 11
Clay lined, 1.8 18.6
County Portage leachate collection MSW . : 1984 - Pres. 1984 (20) 19

(2966)

* Two different sets of wells: old and new
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TABLE 1-2 (continued)

. SITE SITE

sunue ooy wee  osovewe SESE emowrae s
LICENSE *

( ) yd 10 (Acres) (Avg. No. of data pts)
County Sauk (Old) NONE MsSwW 4 1973 - 83 1979 16
(2051) foundary sand 1.0
County Sauk (New) Clay lined, MsW 20 1983 - Pres. 1983 (20) 12
(2978) - leachate collection 1.28

Fort Howard Paper Co. Part unlined, Paper sludge 203 1964 - Pres. 23
Green Bay part lined 4.5
(2332)

Rock County Clay lined, MSw 45 1985 - Pres. 1984 16
City of Janesville leachate collection

(3023)
Town of Washington Unlined MSW and NONE 6.5 1930's - 79 1977 (35) 6
(160) Unknown

. MSW_. <5 1950's - Pres.

Village of Bonduel Unlined Canningwasteand  NONE 1986 (9) 6
(59) Pickles

Waste Management Inc.  Unlined, : 33 1969 - 1981

Greidanus Landfill Capped 1988 MSW NONE 1976 (47) 15
(140)

Wsste Management Inc.  Part Nat. atten, o: () 1970 - Pres.

Brookfield Landfill part clay lined MSW and OLD: NONE N: () Panclosed 1977 (37) 16
1) unknown NEW:

Wausau Paper Mills Mostly clay lined

(2875) leachate collection ~ Paper sludge 0.25 48 1981 - Pres. 1982 (21) 8
Wisconsin Electric Power  Unlined

-- OakCreek Fly ash 4.0 130 1975 - Pres. 1975 ( ) SA 17

(2357)
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The 20 sites range in size from 4 acres to 293 acres. The newest site opened in 1983,
while the oldest has existed since the 1930's. Groundwater monitoring did not become
widespread until the mid to late 1970's as evidenced by the years of water quality
record. Three of the sites are either listed or proposed to be included on the EPA's
national priority list for hazardous waste cleanup funding. The number of monitoring
wells listed reflects the number of wells with sufficient water quality data for statistical
analysis (greater than 8 sampling dates for several parameters). A total of 274 wells
were included in the analysis.

The 20 landfills are all located in the lower two-thirds of the State. Bedrock in the
eastern edge of the state is primarily dolomite underlaid by limestone and/or shale’(6/20
sites). A large part of the state is covered with sand and gravel and underlaid by
sandstone (7 sites). The southwest portion of Wisconsin was unglaciated in the most
recent "Wisconsin" glaciation of Pleistocene age (5/20 sites). Four sites located in the
north lie in an area with a thin unconsolidated zone over Precambrian age middle and
lower proterozoic rocks (granite, etc).

Each of Wisconsin's four major hydrogeologic provinces are represented. Zaporozec
and Cotter (1985) define hydrogeologic conditions in these provinces and in nine
subdistricts in terms of Pleistocene unconsolidated deposits. To some extent, the
hydrogeologic provinces mimic the bedrock geology.

The 20 selected sites represent a cross-section of Wisconsin solid waste disposal
facilities. The industrial sector may be under-represented with only 3/20 sites. While
industrial waste streams may be quite different from municipal solid waste, this does not
imply that different analytic methods are needed to detect industrial waste groundwater
contamination. The big issue is the same. s this facility contaminating groundwater,
and if so, what is the degree and extent of contamination?
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CHAPTER TWO
GROUNDWATER QUALITY DATA

2.0 Overview

In this chapter the statistical nature of groundwater quality data will be explored. More
specifically, in Section 2-1 graphical methods are introduced and some basic statistical
concepts are reviewed. In Section 2.2 the assumptions implicit to statistical hypothesis
testing are reviewed. Groundwater quality data are evaluated with respect to the validity
or violation of these assumptions.

Natural groundwater quality is known to vary both spatially -- between wells -- and
temporally -- at a single well. Anthropogenic effects also contribute to the variability
observed in water quality data. In order to understand the specifics of groundwater
contamination at a site, the sources of natural variability should be understood and the
impact of human activities considered. Sources of variability and error in groundwater
data are listed in Table 2-1. A quick glance at this long list illustrates in general the
complexity of the problem. It is no wonder that there is much debate in the literature as to
appropriate analytic methods.

Natural spatial variability is often due to variations in lithology within the aquifer (Sen,
1982). In Wisconsin many landfills are in areas with glacial till, a poorly sorted soil
composed of mixed minerals and rock types (Sugden and John, 1984). Soil and rock
heterogeneity may cause the chemical composition of groundwater to vary even at short
distances. Spatial variation in water quality data may be exacerbated by well installation
and development methods, as well as sampling techniques (Doctor et al, 1985a).

Temporal variability is most often attributed to hydrologic processes. Seasonal effects are
usually associated with annual cycles in precipitation and recharge events, particularly for
shallow, unconfined aquifers and in areas where surface water/aquifer interactions are
significant (Harris et al, 1987). Also seasonal pumping for irrigation and high summer
input from non-point poliution sources may be causes for seasonal fluctuations in
background water quality (Doctor et al, 1985a). Seasonal variation has been reported by
several investigators. A literature review on seasonality in groundwater data is presented
by Montgomery et al (1987).
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TABLE 2-1 Sources of Variability and Human Error
in Groundwater Quality Data (Adapted from Doctor et al, 1985)

SPATIAL TEMPORAL WELL CONSTRUCTION SAMPLE COLLECTION
AND DEVELOPMENT AND ANALYSIS
GEOLOGIC PROPERTIES TRENDS DRILLING PROCESS COLLECTION
- ithologic composition, SEASONAL - drilling fluids - purging method
sorting and grain size - type of borehole - purging rate/duration
- structure of lithologic units - recharge - inter-aquifer transport of - sampling apparatus
- bedding planes - Irrigation materials - cross-contamination between
- fractures (joints and faults) | - fertilization wells
- s0il development - paepspt“icc‘:ég 'r‘fr bicide WELL DESIGN
- properties of vadose zone - field versus laborator
- frozen ground - casing and screen measurements Y
HYDRAULIC CONDITIONS material
- diameter - sample preparation

- Location of recharge/
discharge zones

- proximity of water

- presence of aquitards

- pumping

OTHER

- other chemical sources
- non-point source inputs

PERIODIC

- short term precipitation
- pumping
- river flooding

- screen length,depth, slot
size

- packing material

- annular seal

WELL DEVELOPMENT

filtering/container/
preservatives/storage time

- operator error :
- incomplete well development

ANALYTIC ERROR

- analytic methods, apparatus

- operator experience

- instrument calibration

- interference from other
constituents

- holding time

- clerical errors

.. 5.4 ‘




The relative importance of these sources of variability is clearly site specific. In general
however it is safe to say that natural temporal and spatial variability are greater in
magnitude than sampling and analytic error, unless gross sample contamination or
mishandling occurs ( Doctor et al, 1985a). Groundwater quality, in the local area of a
waste facility, appears to vary temporally more than spatially -- as shown in Chapter 3.
This may not be true on a regional basis or in some geologic and climatic situations
(Sen,1987).

2.1 Visualization

Graphical display of groundwater data is essential. Typically a first step in evaluating
groundwater quality is to review existing hydrogeologic information and to try to define
groundwater flow and subsurface stratigraphy. The next logical step is to graph the
chemical data as concentration versus time. Contaminant "plumes" in plan view or cross-
section could also be prepared. Figure 2-1 shows a site map for the City of Merrill landfill,
a small municipal unlined facility located above sand and gravel between the confluence
of two streams. Groundwater flow is south. The site has 18 wells, 6 of which are shown.
Of the six, OB-13 and OB-6 are up or side gradient and are not within the hydraulic
influence of groundwater flowing beneath the site. Data for specific conductance are
plotted versus time on Figure 2-2. This plot clearly shows increasing trends in time and
high relative concentrations for wells OB-2, OB-11, OB-10 and OB-17. ltis clear that these
points are affected by the landfill. A statistical summary of these data is presented in
Table 2-2 with important terms defined.

The same data are presented in box and whisker plots (or "box plots") on Figure 2-3.
These plots separate each well and show clearly the difference in the distributions of the
data. These plots are generated by ranking the data and may be constructed in different
ways (McGill et al, 1978). In this report a software program called STATVIEW 512+ was
used. In this program box plots are made as shown on Figure 2-4(a). At the DNR box
plots are currently made using software called STATGRAPHICS and are defined as
shown in Figure 2-4(b). The boxes are constructed using the median (middle value of the
data) and the interquartile range (the range of the middle fifty percent of the data). Note
that the median and interquartile range (IQR) are analogous to the more common mean
and standard deviation of a set of data. The mean and median are measures of "central
tendency" or "location", whereas the standard deviation and IQR are measures of
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TABLE 2-2 Summary Statistics for Specific Conductance with terms defined.

INTER-
WELL POINT n MEAN STANDARD SKEWNESS
MEDIAN DEVIATION gt COEFFICIENT
RANGE

OB-13 14 225.3 2215 36.92 31 903
OB-6 3 139.9 117 110.78 4}'5 3.796
0B-11 30 851.1 7675 600.62 1044 534
OB-10 3 1321.6 1250 832.06 1199 397
OB-17 10 666.0 7785 246.89 431 -562

n = Sample size Mean = Standard Deviation =

Xj  denotes the raw data - 1N 1N
x==% () X
| 3 n s= A/ (T ()
X[l denotes the order statistics I= n-152
(or ordered ranks) of the data
Median 0 3
The middle value of a ranked data set =
. o (Y, (x-x))
. . , ewness ~ i=1
if n odd: m = x{[j], where j= n+1/2 Coefficient = Y=

if n even: m = (x[k] +x[k +1]) /2

where k= n/2

Interquartile Range
The range of the middle fifty percent
of the data.
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(a) ©
Upper and lower 10 % of ©

data are shown as
individual points. _‘, —— Upper 10 % cutoft

Upper 25 % cutoff

Notch indicates 95 % _
confidence limit on the ————— Madian
median

Lower 25 % cutoff

Lower 10 % cutoff

O
NOTE: Difference between 75 th
and 25 th percentile equals the
Inter Quartile Range (IQR)
(b) *Qutlier”, Point is farther away from
the median than 1.5 times the

interquartile range.

Upper 25% cutoff

X
Notch indicates 95 % )
confidence limit on the — Maedian
median
I Lower 25 % cutoff
X
X

Point is equal to 1.5 times
the inter quartile range

FIGURE 2-4: Box plot construction by STATVIEW 512 + (a)
and STATGRAPHICS (b).




"variability." Comparing the two software packages, STATGRAPHICS' boxplots are more
informative. STATVIEW always defines outliers as the outer 20 percent of the distribution.
It may be that only the outer 5 percent of the data are outliers or it may be that none of the
data are outliers. In STATGRAPHICS outliers are defined more explicitly (See Figure 2-

3).

Considering again Figures 2-2 and 2-3 it is clear that the box plots also illustrate the
apparent contamination at the Merrill site. The following points may be made from Figure
2-3. '

e The two clean wells OB-13 and OB-6 show slightly different background
water quality, indicative of natural spatial variability in water quality.

e Wells OB-2 and OB-17 are less impacted than Wells OB-10 and OB-11,
indicating that the most intense contamination is directly beneath the landfil
as one might expect.

e The impacted wells have much higher variability in the data as evidenced by
the wider boxes.

Box plots are very powerful tools for evaluating contamination. At a more complicated site
they may be used to even more advantage. For example, all wells screened in similar
stratigraphic unit may be aggregated on one plot, or data from two or three well "nests”
may be plotted on one plot to illustrate vertical trends. Also water elevation data could be
plotted to get a preliminary view of upgradient/downgradient relationships. Many
possibilities exist.

The same data are plotted a third time on Figure 2-5. This chart shows the mean values
(solid circle) and plus or minus one standard deviation error bars (vertical line) for each
well next to each box plot. Note that the mean is consistently greater than the median
and two standard deviations is larger than the IQR. This is because high values -- outliers -
-- tend to inflate the estimate of the mean and standard deviation. The median and IQR,
because they are based on ranks, are not sensitive to outlying values. Similar to Figure
2-3, the high variability in the impacted data is shown by the wide error bars.

The box plots are more powerful in visualizing contamination than the error bar plots
because they contain more information about the actual distribution of the data. The error
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bar plots, however, may be useful when working with parametric statistics; for example,
when setting PAL's for indicator parameters. For example, if a PAL was calculated from

well OB-6 as XoB-s+ 3 Sop-6, exceedances would be found in all wells except well OB-13.
By measuring the three standard deviation point from OB-6, you can see that the highest
outlier at this well would be considered an exceedance.

FIGURE 2-5 ONE STANDARD DEVIATION ERROR BAR PLOT
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The last graphical displays to be introduced here are the histogram and normal
probability plot (also known as the quantile plot or Q-Q plot). Figure 2-6 (a),(b),(c) and (d)
show histograms, a tool which may be used to investigate the probability distribution of
the data. In simplest terms, the higher the bar the greater probability that (new)
measurements will fall in this range. The more sample values the histogram is made from
the closer the graph is to the "true" population distribution. Many statistical tests rely on
the assumption that the data are drawn from a normal distribution. A comparison of the
data distribution to that of the normal may be used to qualitatively evaluate the validity of
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this assumption. Figure 2-6 (a) and (b) show histograms of conductivity data for Merrill
wells OB-6 and OB-11 (note that the scales are different). For comparison Figures 2-6 (c)
and (d) are histograms of the normal and lognormal distribution®. 1000 variates were
generated to construct these figures.

As Figure 2-6 shows neither of Merrill wells OB-6 and OB-11 appear to have normally
distributed data; both sets of data are "skewed" to the right. Skew may be conceptualized -
easily by considering a histogram as a weight and beam balance. The balancing point is
the mean. If the data are not symmetric about the mean, but have a long right tail the
distribution is said to be positively skewed. The lognormal distribution is also skewed

right as shown. Often a transformation of positively skewed data to natural log scale will
make the data appear more normal (See Section 2.2).

While the histogram is useful to visualize the probability distribution of the data, it is not
the best way to graphically compare data to the normal distribution. Normal probability
plots are as easy to construct and give a better representation of the data (Benjamin and
Cornell, 1970). Figure 2-7 shows a normal probability plot for the same data as in Figure
2-6 (a) from Merrill well OB-11. These are constructed by first ordering the raw data from

smallest to largest. Let X [1]<X [2]<..< X [n] denote the ordered data. The X[j] are

called the order statistics of the data. The X[j] are then plotted on normal probability

paper versus the corresponding plotting position of (E{T) x 100 . Ifthe data are from a

normal distribution, the plotted points should lie approximately on a straight line2.

As one can see in Figure 2-7 (a) the data do not appear to plot as a straight line and we
may conclude that the assumption of normality is suspect. If we transform the data to log |
scale and replot the data as shown on Figure 2-7 (b) the line is not really any straighter,
and we cannot conclude that the lognormal distribution is more appropriate. For a full
discussion on tests for normality see Section 2.2.1.

1 The log normal distribution may be transformed to the normal by taking the natural log of each variate.
2 The plotting position represents the approximate cumulative probability of a measurement being less
than the value observed.
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In summary, data from the City of Merrill landfill site are presented in five ways:

(1) time versus concentration plots;

(2) box and whisker plots;

(3) one standard deviation error bar charts;

(4) histograms; and

(5) normal probability plots.
The first two graphical tools clearly illustrate qualitatively the relative water quality
between wells. The error bar charts may be valuable when working with parametric
statistics, particularly when deciding on PAL levels. Histograms may be used to view the

probability distribution of the data. When evaluating the assumption of normality, normal
probability plots are commonly prepared to observe deviations from normality.

The City of Merrill data illustrate several important points.

e Data outliers tend to inflate the mean and standard deviation of the data;

e The median and interquartile range are good estimates of the central
tendency and variation of data sets, particularly when outliers are present.

e Large data variability (IQR) is usually associated with high medians, i.e.
impacted wells . Natural temporal variability is much lower than the
variability observed when contamination is present.

e The histograms and normal probability plots show that groundwater data

may not be normally distributed. In this situation the median and IQR may be
better estimates of the central tendency and variability of the data.

In the following section, the issue of non-normality is addressed in detail. Also cyclic
trends in data (usually seen as seasonality) and serial correlation are investigated.
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2.2 Statistical Nature of Groundwater Quality Data

While graphical tools are invaluable in conceptually understanding water quality, the
application of statistics to the decision making process requires that a more quantitative
determination be made of the data's structure. In order to choose a statistical test to
evaluate groundwater contamination, two main factors must be considered:

e the experimental design of the test, and

e the validity of fundamental assumptions implicit in the statistical model of the -
test.

In this section the validity of common statistical assumptions will be explored through an
evaluation of the characteristics of groundwater quality data. The issue of experimental
design concerns whether a statistical test is analytically addressing the right
environmental question. This is addressed in Chapter 3.

Statistical hypothesis tests are based on a model of the null hypothesis: in our case a
model of background water quality. For many tests we define our model as a probability
distribution and then test whether a parameter of the distribution has changed. For
example the null hypothesis (see Section 1.1) for a two-sample Student's t-test is:

Ho: Hx = HKx 2, where we model background water quality by the normal distribution with
parameters Hxqs the mean, and Oxq: the standard deviation (by not including G in the null

hypothesis we assume Ox,= Ox,). We then test whether or not the mean of
downgradient water quality, Kxor is significantly different from our upgradient model.

Assumptions implicit in this model include:

e NORMALITY: The data are representative samples from a normally
distributed population. :

o STATIONARITY: the parameters of the probability model are not changing
in time. :

e INDEPENDENCE: The data are a random sample, i.e. each data point is
independent of the others.

The first assumption is common to parametric statistical tests such as the t-test or analysis
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of variance. The second two assumptions are true for most statistical tests, including
distribution-free or non-parametric tests.

The normality assumption is apt to be violated in water quality data when the data
distribution is skewed. As discussed in the previous section, a histogram of the data may
not resemble the normal distribution and a normal probability plot may not be a straight
line. The normality assumption is tested using data from the 20 landfill sites in Section
2.2.3.

The assumptions of stationarity and independence are related to the variability found in
data. In terms of statistical models, there are basically two types of variability:
deterministic and nondeterministic. Fluctuations which we can explain and account for
are deterministic. An example is seasonal fluctuations in mean water quality. Variability
about a constant central value (i.e. the mean) which we cannot explain or explicitly
account for is non deterministic. An example in this case is error introduced by laboratory
analysis. It is this non-deterministic variability (sometimes misleadingly called "random
noise") that we are attempting to model probabilistically.3

The stationarity assumption is most likely to be violated by the presence of cyclic trends,
particularly seasonal fluctuations. If water quality changes by season the mean of the
distribution (assumed under the null hypothesis) is not constant. This type of variability
may be accounted for deterministically; i.e. we could account for this shifting mean in the
t-test model by revising the null hypothesis to be:

where Hx is the annual mean of background water quality and 6; is the deviation of the

mean for season i from the annual mean. One approach to deal with nonstationarity
would be to subtract the mean of each season from the associated data points. Thus we
would reduce our seasonal model back to the original model. When there are seasonal
shifts in groundwater quality data and we do not account for them, we violate the
assumption of stationarity (Section 2.2.2).

3The idea here is that we do not know the true cause of this non-deterministic variability. It may be truly
random noise or it may have some quantiﬁaﬁle physical explanation that we do not know.
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The independence assumption is apt to be violated by the presence of serial correlation.
Serial correlation is found in data which are collected too frequently to be independent of
each other. When looking at time versus concentration plots, serial correlation may be a
factor when high values follow high values or low follow low. In a groundwater context,
serial correlation may be observed when groundwater flow is very slow, but sampling is
frequent. Figure 2-8 illustrates this concept using hypothetical data with no seasonal
trends (i.e. only nondeterministic variability). Serial correlation would be observed in the -
data set represented as circles. If sampling were done on a less frequent schedule (as
shown by the squares) the assumption of independence would be valid.

o Serial correlation present; subsequent samples are
not independent

[ | No serial correlation observed

Concentration

a_ Fw o
~

Monitoring Date

FIGURE 2-8 The concept of serial correlation in water quality data

Clearly, the presence of true trend can be confused with the presence of serial correlation.
This problem is particularly acute at wastewater treatment facilities where effluent
parameters are measured daily (Berthouex and Hunter, 1983).



Groundwater quality data may violate these assumptions as will be shown in the following
sections. Tests of stationarity, independence, and normality are discussed in the
remainder of this chapter. The assumption of normality is explored in detail since the
debate between the use of parametric and nonparametric procedures hinges on this
assumption.

2.2.1 The Assumption of Stationarity

Stationarity may be tested by addressing the question: do the data exhibit seasonal
concentration patterns?

To evaluate the presence of seasonality the data are either (1) divided into four groups
and a statistical test of "location" is applied, or (2) a time series test of periodicity is
applied. Recommended tests are of both types and include parametric and
nonparametric methods (Montgomery et al, 1987; Doctor et al, 1985; Harris et al, 1987,
Montgomery and Reckhow, 1984). The most commonly used procedure is the Kruskal-
Wallis test (KW). Also the Lag 4 autocorrelation function (ACF) and the one way analysis
of variance (ANOVA) were used in the cited studies.

While not going into detail about these procedures, several points are important.

e If in any season the data are significantly skewed, parametric tests may be
invalid.

e Prior to testing for seasonality using any test, positive or negative trends in
the data should be removed (to decrease the variability and increase the
sensitivity of the test; see Section 3.1.).

e For very small sample size, true seasonality is difficult to detect. As a rule of
thumb, at least five years of quarterly data is minimal

e Data collected "quarterly" should be measured in the same four months
each year. Monthly data must be grouped seasonally with local climatic
conditions in mind.

The overall results for seasonality from two studies are presented in Figure 2-9. The
seasonality, Montgomery et al (1987) found that positive seasonality was associated with
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shallow unconfined aquifers with peak season usually in the summer or fall.

The importance of these findings is that it is unlikely that seasonality is a dominant
contribution to the temporal variability observed in groundwater data. Many investigators
have found significant seasonal influences in surface water quality and have proposed
statistical methods which account for seasonal variation (Montgomery and Reckhow,

1984: Hirsch and Slack, 1984; Hirsch et al, 1982; vanBelle and Hughes, 1984). The low. .

observance of significant seasonality in groundwater data suggests that these methods
are rarely appropriate for Wisconsin data.

FIGURE 2-9 Overall Results for Tests of Seasonality
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Lastly, if seasonality is believed to be a dominant source of variability, we recommend that
box plots be made to illustrate the seasonal differences. Secondly, we recommend that
both the Kruskal-Wallis test and the One-Way ANOVA tests be performed to confirm
seasonality statistically. These are the simplest applicable procedures. The choice of
both these tests is based on their simplicity and ready availability on most computer
software programs, as well as on the statistical design of the test. These tests are
compared and described in more detail in Chapter 3. Also, statistical procedures which
take into account seasonality for evaluating groundwater contamination are discussed in
Chapter 3.

2.2.2 The Assumption of Independence

Independence may be tested by addressing the question: do the data show serial
correlation? From a groundwater sampling perspective, serial correlation is most likely to
occur when groundwater flow is very slow; thus, concentration measurements are
collected too frequently to be independent of each other. Independence can often be
achieved by increasing the time between observations. Several tests have been used to
evaluate the presence of serial correlation in groundwater quality data. Montgomery et al
(1987) chose the Lag 1 autocorrelation function (ACF). Goodman and Potter (1987) also
used this method as well as the nonparametric autorun test (AR). The application of the
ACF test to groundwater quality data is described in detail by Harris et al, 1987. The AR
test is applied to hydrologic data by Sen, 1979. Most advanced statistics texts and
mainframe computer packages include these tests.

The test results for serial correlation are presented in Figure 2-10. These results indicate
rial correlation xist in groundwater li ven mpling i
ysually at three month intervals. Research is needed to explore the relationship between

aquifer characteristic (hydraulic conductivity, flow rate, etc...) to the statistical

independence of water quality sample concentrations. Since the great majority of data

sets considered did not exhibit serial correlation, We feel that for everyday purposes it can
med th iv rly measurements are in n '
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Figure 2-10 Overall Results for Serial Correlation Tests
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2.2.3 The Assumption of Normality

The normal distribution is the single most important and widely used probability model in
applied statistics. This is because

e many real systems fluctuate "normally” about a central mean; i.e.
measurement error of a random variable is symmetric about a "true"™ mean
and has a greater probability of being small (close to the mean) than large * -
(in the tail of the distribution)?; and

o many of the parametric statistical tests are insensitive to the assumption of

normality, i.e. if the data are not distributed normal, it may not matter a great -
deal.

4This fact is supported by the Central Limit Theorem which, in simple terms, states that the distribution of a

sum of many small "errors” will be distributed normal, given that no single source of error dominates the rest
(Box, Hunter, and Hunter, 1978).
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This latter point is explored in detail in Chapter 3. Here the basic question to be
answered is "Are groundwater quality data distributed normally?"

We are questioning this in the context of EPA's regulations which do not require tests for
normality or other distributional assumptions unless 1) a data transformation is made, or
2) nonparametric statistical tests are applied. Many statisticians recommend data
transformations to "normalize" skewed data for parametric tests. EPA regulations
advocate transformations if necessary. Many environmental systems are modelled using
the lognormal distribution because (1) it has a lower bound of zero, and (2) is positively
skewed, aIlowiriQ high values to be included (Benjamin and Cornell, 1970)°. Unless
there is a physical justification to delete high values they must be considered as a part of
the dataset.

In this section, the assumption of normality is evaluated for eight parameters monitored at
20 Wisconsin waste disposal sites. First statistical tests for normality are discussed.

Then, results of the tests of normality are presented for both raw and log-transformed data.
The objective of the normality analysis was to gain insight into whether or the not normal
or lognormal distributions are appropriate probability models for these eight parameters.
In addition EPA policy and recommended methods are evaluated.

TESTS FOR NORMALITY.

To test the hypothesis of normality many statistical "goodness-of-fit" tests may be used.
These tests mathematically compare the shape of the normal distribution to the data set of
interest. These tests should only be applied to independent, stationary data sets. As
shown in the previous sections groundwater quality data in Wisconsin usually meet these
criteria.

Shapiro et al (1968) did a comparative (Monte Carlo) study of nine tests for normality,
evaluating the sensitivity of the tests to small sample size. At small sample sizes it is hard
to reject normality even if the data are not normal. A sensitive test is one which can detect
non-normality even at small sample size. Shapiro et al (1968) found that

5The model for the lognormal distribution is Y=In(x), where x = original concentration. x is said to be
distributed log normal. "In" is the abbreviation for the natural log of x.
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e The W-statistic (Shapiro and Wilk, 1965) was preferred.

e The Kolmogorov-Smirnov and chi square test -- the most often used
distribution tests -- were relatively insensitive.

® And, a combination of the third sample moment (skewness) and fourth
moment (kurtosis) provides a sensitive judgement, but even their combined
performance is less than his W-statistic.

The W-statistic however is not used widely because it is not readily available on
computer software.

In the groundwater quality literature, Montgomery et al (1987) tested the normality of
groundwater quality data using graphical methods, the chi square test and the skewness
test. Harris et al (1987) recommend the skewness test for general use with groundwater
quality data. EPA's draft guidance manual for statistical analysis at RCRA facilities
recommends three statistical procedures to check normality:

1) the chi square test,
2) the coefficient of variation method, and,

3) normal probability plots.

As mentioned above the chi square test does not perform well at small sample size (less
than 20). Furthermore, the method is very conservative for continuous distributions such
as the normal.6 For these reasons, we do not recommend the chi square test for
general use with groundwater quality data from waste disposal facilities.

The second EPA method relies on the sample coefficient of variation, v, which is equal to,

the sample standard deviation divided by the sample mean. This method was previously

required by EPA and is expected to be used widely (EPA, 1988). The ruleis: if vis

greater than 1 do not assume normality. The ideaisif v = 5; is greater than 1, then the

normal probability model will predict negative concentration values with an
(unacceptable) high probability. Water quality concentrations are inherently non-

6Conservative implies that the test will not reject the normal when in fact it should; i.e. the test will have a
high Type Il error rate.
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negative. An evaluation of this method is made below by comparing results to the resuits
of the skewness test.

The normal probability plot is a qualitative method, and thus cannot provide statistical
inference.” We do not recommend any of EPA's suggested tests for normality, although
normal probability plots are useful for illustrating deviations from normality.

The results presented below are based on the skewness test. We recommend the
skewness test because:

e the coefficient of skewness is easy to calculate and is included in all
statistical software packages;

e the test is simple, requiring only a comparison of the skewness coefficient to
tabulated values (see Appendix A);

e the critical levels (table values) have been generated for small sample sizes
(Harris et al, 1987); and

e the test has been found to be robust at small sample size by Shapiro and
Wilk, 1965.

The procedure for applying the skewness test to a data set is briefly described in
Appendix A.

SKEWNESS ANALYSIS,

In this study sample data for eight parameters from 161 groundwater wells located at 20
landfill sites are tested for normality using the skewness test and, for comparison
purposes, the coefficient of variation method. Results are used to evaluate the general
use of parametric statistical tests. Also, the normal and lognormal distribution are each
evaluated as being in general an appropriate probability distribution for each parameter.
Only wells with data representative of background water quality are included (161/274
wells from the 20 sites). Only background datasets were tested because samples
obtained in a contaminated situation are most likely not drawn from a single population
(that is, since leachate plumes are not well-mixed and evenly distributed in space) See
Section 4.1 for a discussion of how background water quality wells were distinquished

"There is a test based on the correlation coefficient of the probability plot. See Vogel, 1986 (Water
Resources Research. Vol. 22 No. 4: 587)
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from impacted wells. Each data set consists of the time series of concentrations
measured at a well for one parameter. Only data sets with zero samples reported at or
below the analytic detection limit and only data sets with nine or greater samples are
included in the analysis. A total of 699 concentation time series from the 161 wells met
these criteria. The skewness test is applied to both the raw data and the log-transformed
data. A two sided test for positive or negative skew is applied at o =0.10. The
hypotheses are:

Ho: |vl< Yn,a=.05 Sample may be from a normal distribution.

Hy: l'Y| 2%Yn,0=.05 The normal distribution is rejected.

where Y is the skewness coefficient as defined on Table 2-2.8 Values for o o5 are
tabulated by sample size in Appendix A. In general, if skew is greater than 1.0 the data
are found to be non-normal regardless of sample size.

Overall results are compared to two previous studies in Figure 2-11. Note that data
analyzed by Goodman and Potter (1987) is a subset of the data considered in this study;
however, Goodman and Potter did not eliminate datasets with observations at or below
the limit of detection. In this study, 47 percent of the datasets were found to be non-
normal. The lognormal distribution failed to fit 43 percent of the datasets. For those 238
data sets which rejected the normal distribution the lognormal distribution was not
rejected for 105. Thus either the normal or lognormal distribution was found to "fit" 68
percent of the data sets. However, the results show that groundwater quali

frequently violate the assumption of normality.

The results from individual parameters are shown in Figure 2-12 and summarized in
Table 2-3. This summary shows:

e pH is least apt to be skewed. Since pH is already on a logarithmic scale this
result is not surprising.

e Conductivity and alkalinity data were significantly non-normal less than 45
percent of the time. :

e COD, iron, and chloride data are most frequently skewed; this may be

8Note that these hypotheses imply an overall a = 0.10 since the absolute value of yis being considered.
That is, we are not assuming apriori that skew is positive or negative.
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because these parameters are often at or near the analytic detection limit in
background water quality.

Comparing the raw and log-transformed data, Figure 2-12 illustrates that

e the lognormal distribution reduces the frequency of positive skew for most
parameters, and particularly for iron, chloride and COD,; and,

e for pH, alkalinity, specific conductivity and hardness the lognormal
distribution performed similar to the normal.

TABLE 2-3 Skewness test results by parameter

Number of Non-normal Test Results
PARAMETER Raw Data Log-Transformed Data
Chioride 47176 28/76
COD 15/21 5/21
pH 47/150 50/150
Alkalinity 54/119 54/119
Conductivity 65/153 71/153
Hardness 72/131 69/131
Sulfate 19/40 22/40
Iron 8/9 1/9

Figure 2-12 implies that the lognormal distribution is more appropriate in general than the
normal. To explore this idea further, the results were divided into four categories
depending on whether the distributions were/were not rejected at the 5 percent
significance level.

1) both rejected
2) only lognormal rejected
3) only normal rejected

4) neither rejected.

If only the lognormal distribution is rejected, then the statement may be made that the
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normal distribution appears to better represent the data. Figure 2-13 illustrates these four
possible outcomes. If it had been possible, the exact p-values for each test would have
been plotted on a figure similar to Figure 2-13. However, available tables are limited to

FIGURE 2-13 Possible Outcomes for Skewness Test of Normality
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specific significance levels. The skewness results are divided into the four groups above
for each of the eight parameters. These results are summarized in Table 2-4.

Table 2-4 shows that

1) more than 20 percent of the datasets were found to reject both the normal
and lognormal distribution (except for iron).

2) For pH, alklainity, conductivity and hardness, both distributions were found
to fit more than 1/3 of the data sets. These parameters are found to have
less natural variation in groundwater (relative to the mean) than the other
parameters. Since the lognormal distribution is similar to the normal when
variance is low, these results are not surprising.

3) As also shown by Figure 2-12, datasets for chloride, COD and iron rejected
the lognormal distribution less frequently than the normal distribution.
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TABLE 2-4 Comparison of Skewness Test Results for the
Normal and Lognormal Distribution

PARAMETER Total Log-normal Normal Neither Either

Preferred Preferred .
Chloride 76 27 8 20 21
coD 26 10 0 5 6 )
PH 150 3 6 44 97 -,
Alkaliriity 119 12 12 42 53
Conductivity 153 18 233 47 65
Hardness 131 18 14 54 45
Sulfate 40 9 12 10 9
iron 9 8 1 0 0

Unfortunately these results do not imply that one distribution is preferred over the other for
any one parameter. In fact, the salient conclysion here js that the assumption of normality
hould al be i | for bef . . lied I it

data,

EPA (1988) advocates that it is protective of the environment to adopt the appoach of not
requiring testing of assumptions on a wide scale because "only extreme violations of - .
assumptions will result in an incorrect outcome of a statistical test." The results presented
thus far do not yield any insight into the "degree of violation." To investigate this issue N
further, the distribution of the skewness coefficient was inspected for each parameter. The .
skewness coefficient for large samples drawn from a normal population is distributed
normally with L = 0 and © = 6/N, where N is sample size.® Thus one approach to
investigate the "degree of violation" of the normality assumption would be to standardize

%The distribution of the skewness coefficient is independent of the mean (1) and standard deviation (o) of
the population from which the samples are drawn. Thus, coefficients calculated at different wells in different
geologic strata could be from a single normal population (that is, after the coefficients are standardized: see
text). '
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the skewness coefficients by dividing by the expected value of the standard deviation,

'\/%.. The resulting dataset for each parameter should be distributed standard normal.
The same approach is applicable for the log-transformed data to evaluate departure from
lognormality. Figure 2-14 (a) through (h) are plots of the standardized skewness
coefficient for the raw data versus the log transformed data. All points greater than 1.64
units from the origin will be found to reject the normal distribution at the 5 percent
significance level (for F(x) = 0.95, z=1.643)10. These plots may only be roughly
interpreted since the distribution of the skewness coefficient at small sample size is not
exact. Figure 2-14 shows for the normal distribution that many parameters include points
which may be considered extreme violations as evidenced particularly for conductivity,
total hardness, chloride and COD. For all parameters the lognormal distribution appears
more symmetric about the origin and has fewer extreme violations than the normal
distribution. Thus, while we cannot state that the lognormal distribution is always the
"best" choice for these parameters, it appears to be a better first choice than the normal
distribuiton. 1!

In summary, based on the skewness test we have found that 53 percent of the raw data
sets are approximately "normal." An additional 15 percent are found to be approximately
normal after log transformation. These results are important because they show that
parametric statistical tests may not be valid in many cases. The results for individual
parameters do not imply that either distribution is "best" for characterizing clean water
quality. However, inspection of the distribution of the skewness coefficient implies that the
lognormal distribution may be a better first choice than the normal for most parameters.
The implication of these results is that parametric tests must be used with caution.

Presented below is a comparison of the skewness test to EPA's recommended coefficient
of variation method.

10F(x) is the cumulative distribution function of the standard normal distribution; z = 1.643 implies that 95
percent of the standard normal distribution is less than 1.643 standard deviations from the mean.

1 At first glance, these results for pH are surprising since pH is already on a logarithmic scale. However, as
mentioned above with respect to Figure 2-14, pH data is usually found to have low variance, and thus, the
lognormal distribution closely resembles the normal. )
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COMPARISON OF SKEWNESS TEST TO EPA METHOD

The skewness test results presented above are compared to the coefficient of variation
method recommended by EPA. Of the 699 raw datasets considered in this study only 5
percent had a coefficient of variation greater than 1.0. Remember that for 47 percent of
the same datasets, the assumption of normality was rejected based on the skewness test.
The coefficient of variation method grossly underestimates the number of non-normal
datasets Results for specific parameters are listed in Table 2-5.

TABLE 2-5 Comparison of Skewness Test to Coefficient of
Variation Method

NUMBER OF NON-NORMAL TESTS
PARAMETER SKEWNESS TEST COEFFICIENT OF
RAW DATA VARIATION METHOD
Chloride 47 7
COD 15 7
pH 47 4
Alkalinity 54 0
Conductivity 65 2
Hardness 72 2
Sulfate 19 4
Iron 8 7
TOTAL 327/699 33

Based on these results we do not feel that the coefficient of variation method should ever
be used as an indicator of normality. In concept it only "protects” against the prediction of
negative values (for example, when setting prediction limits or tolerance intervals). The
assumption of normality must be evaluated by a "goodness-of-fit" test.
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2.2.4. Summary

The statistical characteristics of groundwater quality data were evaluated in order to test
the validity of fundamental assumptions implicit in statistical hypothesis tests. The results
assumptions of independence and stationarity are not. Seasonality and serial correlation
were evaluated to respectively test the assumptions of stationarity and independence.
Both assumptions were found to be generally valid. On the other hand, the assumption of
normality was found to be violated 47 percent of the time. Even with a log transformation
the normal distribution was rejected 43 percent of the time. Overall, 68 percent "fit" either
the normal or log normal distribution. These results show the importance of testing for
normality_before applying parametric statistical tests. The wide occurrence of non-
normality supports the use of nonparametric statistical procedures.

A comparison of EPA's coefficient of variation method to the skewness test results showed
that the coefficient of variation method is inadequate: the method estimated that only 5
percent of the datasets were non-normal compared to 47 percent for the skewness
coefficient.

2.3 Regulatory Perspective

In this chapter the numerous sources of variability and error in groundwater quality data
were introduced. Graphical methods were illustrated. In addition, we showed that the
assumption of normality is often violated, while the assumptions of stationarity and
independence are generally valid. To place this work in a regulatory context three
situations are briefly considered:

e applicability to everyday activities at the DNR;

e applicability in a court of law where groundwater quality regulations are to
be enforced; and

e applicability to facility owners/operators and their consultants working on a
quarterly basis to meet DNR and/or EPA requirements.

Graphical displays are by far the most valuable and essential tools in all three of the
above situations. A case of clear groundwater contamination by a landfill may be built
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solely with graphical data presentation, explanation of geology and standard
exceedances. It may not be necessary to apply statistical tests.

Whenever parametric statistical procedures are to be applied, DNR staff should always
consider the validity of the assumption of normality. The skewness test is recommended.
This method is briefly described in Appendix A. Because seasonality and serial
correlation were not found to be prevalent, we recommend that tests for these factors be .
applied only in special cases.

-

In a court of law clear graphical display of supposed contamination is essential. If a court
case is being built using results of statistical tests (as well as hydrogeologic information,
etc..) then the validity of the assumptions underlying the tests may be a central issue. We
recommend the following methods:

NORMALITY: Normal probability plots
The skewness test
STATIONARITY
(SEASONALITY) Box plots with the Kruskal-Wallis test
INDEPENDENCE

(SERIAL CORRELATION) The Lag 1 Autocorrelation function or
the Auto-Run test.

At RCRA waste sites a quarterly test for "change" in water quality is required (or proposed
to be required at MSWLF's) and time versus concentration plots must be submitted. Tests
for distributional assumptions are required only when 1) a data transformation is made or
2) nonparametric statistical tests are employed. Wisconsin does not require tests of .
distributional assumptions. Of the three methods recommended by EPA in the draft .
guidance manual for statistical analysis at RCRA facilities, we feel that only the normal
probability plots are useful. The chi square test and coefficient of variation method are
inadequate in many cases. We recommend that the skewness test be suggested for
general use because it is sensitive to small sample size, and may be performed quickly
and easily.

The prevalence of non-normal datasets complicates the choice of statistical test, since
nonparametric methods may be more appropriate than the traditional parametric tests.
Chapter 3 explores this issue. At this point, we suggest that
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1) DNR require graphical summaries of site water quality. These could be
prepared by solid waste site owners on a regular, perhaps annual, basis. A
quick review of time versus concentration graphs may show trends in time
and any abrupt changes in water quality; and,

2) DNR require that any statistical analyses (submitted by owners/operators for

setting PAL's or for detecting "change" in water quality) include tests for
normality to justify the use of parametric methods before applying them.
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CHAPTER THREE
EVALUATION OF GROUNDWATER CONTAMINATION

3.0 OVERVIEW

Enforcement of groundwater quality regulations at waste disposal facilities requires not
only a determination that contamination exists but also evidence that it is due to the
facility. Exceedance of water quality standards is largely relied on as an indication of
contamination. Yet even a standard exceedance must be compared to background
water quality to conclude that the facility owner is responsible. Thus, comparison of
downgradient water quality to "known" background water quality is an important
regulatory strategy. In this chapter we address the issue of how to detect significant
changes in water quality given the natural temporal and spatial variability in background
water quality. Statistical tests currently recommended by EPA and other methods
proposed in the water quality literature are evaluated. Examples are drawn from the 20
sites considered in this study to illustrate the use and misuse of these statistical tests.
Recommendations are made for analysis of two general situations:

® existing municipal solid waste landfills (MSWLF's),

e new facilities and existing facilities with historically clean water quality,

While MSWLF's are the focus of this study, the recommendations developed are also
applicable to hazardous waste disposal sites, industrial waste disposal sites, land
disposal sites for wastewater, and similar situations. The recommended methods are
synthesized into general procedures presented by flow charts in Chapter 5.

The chapter is organized as follows.

e General types of tests and the questions they answer are introduced in this
section, followed by a general comparison of parametric and
nonparametric tests.

e Evaluation of statistical tests follows in Sections 3.1, 3.2, and 3.3.

e Conclusions and recommendations are summarized in Section 3.4 and
discussed from a regulatory perspective in Section 3.5.
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The overall objective of this chapter is to highlight some of the theoretical and practical
limitations of specific statistical tests and to recommend tests to DNR. More specific
objectives are to provide DNR with:

e guidance on establishing background water quality for setting preventive
action limits (PAL's);

e advice on using statistical tests to determine exceedance of a water quality
standard; and -

e specific tests to determine significant changes in background water quality.

3.0.1 Types of Statistical Tests

Four general categories of statistical methods are currently considered appropriate for
determining compliance with groundwater quality regulations:

e tests of central tendency (location),

o tests of trend,

prediction, tolerance, and confidence intervals, and

@ control charts.

Tests of central tendency compare whether or not the mean or median of two or more
datasets are significantly different. Tests of trend look for significant increases or
decreases in water quality over time. Prediction and tolerance intervals are methods
which set brackets for "acceptable" background water quality based on existing data.
Confidence intervals are brackets for "average" background water quality. Control
charts are graphical methods widely used in industrial engineering and are similarto
the intervals mentioned. This study focuses on the first three categgries. Control charts
will not be addressed.

While it is the statistician's job to develop correct procedures for answering relevant
questions, the engineer/scientist must decide on the relevant questions. Once the right
questions are clearly stated, it should be easy to decide which type of test is appropriate

(if any).

In order to select an appropriate test we must address the following issues:
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® What is the right question?
e Which tests have the appropriate statistical model to answer the question?

e Do our data violate the implicit assumptions of the model?
After application of a test, it is essential to evaluate if the results are meaningful.

e Do plots of the data support the statistical results?

e Are statistically significant results environmentally meaningful?
From a regulatory perspective the two questions generally asked are:

e Is a groundwater quality standard exceeded?

e Has water quality significantly changed?

These questions however are not specific enough to choose a type of statistical test.
Consider Figure 3-1, a site map for Wausau Paper Mills sludge landfill. Wells P-7 and
P-3 are upgradient of the disposal cells. Wells P-8 and P-9 are between Cell 2 and Cell
3. Wells P-1 and P-4 are downgradient of the disposal area. Monitoring has existed at
this site since late 1981; however wells P-7, 8 and 9 were not installed until late 1984.
One sample is collected from each well quarterly. Specific conductivity data are plotted
versus time on Figure 3-2 and as box plots on Figure 3-3. These figures illustrate that
the two downgradient wells have historically higher concentrations than the other four
wells. Similar results are found for many other parameters. Clearly, the disposal area is
contributing to these elevated concentrations.

What are the questions of concern at this site? Are statistical tests necessary to
document groundwater contamination? At existing sites with apparent contamination a
possible question is

"Has this site historically affected groundwater quality ?"

Evaluation of groundwater flow and geology, together with graphs of water quality, may
clearly show contamination. To answer this question statistically a multivariate test of
central tendency such as a parametric or nonparametric analysis of variance (ANOVA)
may be appropriate (Section 3.1). These tests are designed to evaluate whether or not
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FIGURE 3-2 Specific Conductance vs. Time at Selected Monitoring Wells.
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a significant difference exists between the historical mean/median of background water
quality and the mean/median of each downgradient well. As shown further on, spatial
variability in background may confound the results. The above question could be
rephrased to

Do concentrations observed at downgradient wells fall within limits
established for gverage background water quality?

This question could be addressed using statistical confidence intervals (Section 3.3). '

Another possible question is:
"Has water quality improved since monitoring began?"

In this case, a test of trend over the length of record may be appropriate. Trend analysis
could include parametric linear regression or a nonparametric measure of trend such
as Kendall's Tau statistic (Section 3.2). Inspection of Figure 3-2 for wells P-8 and P-9
suggests that the answer to this question is "yes." Now, for discussion purposes only,
assume that Cell 3 is a separate facility from Cell 1 and 2. The question of concern is
now:

"Has Cell 3 contributed to contamination of groundwater?"

The historic data from Wells P-8 and P-9 éuggest that Cell 3 is not impacting
groundwater. If this is so, we are in the situation where we have a currently "clean" site,
and we are interested in assessing whether new data at Wells P-8 and P-9 reflect a
change in water quality. A test of central tendency is no longer appropriate since
historic water quality is clean. We are no longer interested in comparisons of average
(mean) water quality. 1 Rather we want to compare recent data to historic background
water quality. When we want to compare a single round of new measurements to
background, prediction intervals, tolerance intervals and control charts may be
appropriate (Section 3.3). Another approach in the "clean” site situation is to segment
the data at a single-well, and ask the question,

"Has water quality degraded in the last (year)?"

1The current RCRA regulations advocate the use of tests of central tendency even at clean
sites; however, they recommend tests based only on recent data (for example, the last four
independent samples).
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A test of trend on only the last four monitoring dates may support this idea. Also, the
historic data could be compared to the recent year's data using a test of central
tendency.

The ability of these tests to detect groundwater contamination quickly (i.e. when applied
quarterly with detection within one or two quarters after a "leak" occurs) depends on the
choice of test and other factors which may include the length of the clean water quality
record, the variability in the clean data, and the magnitude of the increase in
concentration due to contamination.

Also of interest is whether or not specific standards have been exceeded. From a policy
perspective, the intended interpretation of a fixed standard must be made clear.
Possible approaches include:

e no data should exceed the limit with consideration given to sampling and
laboratory error, or

e the historic mean concentration at a well should not exceed this limit2; or
e the last-year's mean concentration should not exceed the limit; or
e 95 percent of the population must be below the standard; or

e other.

In the first situation, only sample values close to the standard are given the "benefit of
the doubt." In the second and third cases, confidence limits on the mean (where the
standard must be below the lower confidence level) may be appropriate. In the last
case tolerance intervals are appropriate (Section 3.3.2). )

After stating the right question, the next step is to choose a specific test which answers
the question. The test must not only have an appropriate experimental design (i.e.
answer the right question) but the implicit assumptions of the test must not be grossly
violated. As shown in Chapter 2 groundwater quality data may grossly violate the
assumption of normality, even after log-transformation of the data. The debate between

2 This choice is rarely appropriate. It may be meaningful at existing sites where disposal
predates monitoring and contamination is historic.
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the use of parametric and nonparametric tests hinges on the importance of the
assumption of normality.

3.0.2 Nonparametric versus Parametric Tests

Strictly speaking nonparametric tests are tests which may be based on an assumed
probability distribution but which do not involve its parameters. Those procedures which
do not rely on a specific probability model at all are termed distribution-free tests. While
these terms are not synonymous, procedures of either type are generally known as _ .
nonparametric methods. Most nonparametric tests are based on the ranks of the data ‘
rather than the data themselves. Some "information” is "lost" by using ranks rather than
the data themselves.

One of the most appealing advantages of nonparametric methods is that they are less
likely to be abused. Disregard for fundamental assumptions is the easiest way to abuse
statistics. According to J.D. Gibbons (1985a) "If the assumptions cannot be
substantiated or are not even known to the investigator, then the inferences may be less
reliable than a judicious opinion, or even an arbitrary guess." Nonparametric methods
make fewer and less stringent assumptions about the population than those made in
parametric statistics. Usually the underlying population or variable is only assumed to
be continuous (symmetry is sometimes assumed too). Note however that nonparametric
methods do not eliminate the necessity for collecting independent samples.

Advantages of nonparametric tests include the following:

e Data below the detection limit can be incorporated without adjusting the
data.

e Nonparametric tests exist for the median, which for skewed data may bea.
better estimate of central tendency than the mean.

e They do not require the assumption of normality.
e Transformations are not necessary.

e The tests may have greater power to detect contamination when the
distribution is skewed and sample size is small.

e The tests are robust to outlying data, hence editing of the data is not
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necessary.

Two objective criteria for measuring performance in hypothesis testing are"power” and
"robustness." Power is defined as the probability of rejecting the null hypothesis when
in fact it is false. Figure 1-1 and the accompanying discussion explored this idea in our
situation where the null hypothesis is generally that water quality is clean. Hence, the
"power" of a test may be loosely interpreted as the probability of detecting contamination
when in fact it is present. If a test has high power even at small sample size it is termed
"efficient.” A test is "robust” if inferences based on it remain valid, even when one or
more basic assumptions are violated. Unfortunately the most powerful tests are those
associated with the most assumptions. Conversely robust tests are by definition those
with the weakest assumptions. Nonparametric tests are inherently robust, yet they are
often criticized for having low "power" compared to parametric counterparts.

Comparisons of the relative performance of parametric and nonparametric tests on real
data are difficult to make because it is hard to quantify the relationship betwéén'power
and robustness at small sample sizes or when the exact normality assumptions are not
met. Comparison studies are usually made by evaluating how much power is lost by
using a nonparametric test, when all the parametric assumptions are met and sample
size is large. If the loss of power is small, then an investigator who has found parametric
assumptions to be invalid, or who is unsure of the validity of assumptions may be
confident in the choice of nonparametric techniques. Unfortunately, when it is known
that parametric assumptions are violated, the actual power cannot be explicitly
determined.

The asymptotic relative efficiency (ARE) is a measure of relative performance of two
tests at large sample size. The ARE as discussed here is used to compare
nbnparametric tests to parametric counterparts when parametric assumptions are met.
However, the ARE may be used to compare any two tests with similar hypotheses. For
practical purposes, the ARE may be interpreted as a ratio of the sample sizes required
for two tests to achieve the same power at the same significance level (i.e. at equal Type
I and Type Il error rates). For example, an ARE equal to 0.85 may be interpreted such
that the nonparametric test with 100 observations is approximately as efficient as the
parametric test with 85 (if the assumptions of the parametric test are strictly met, and if
sample sizes are large). The ARE of a nonparametric test is the minimum relative
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efficiency, in that the nonparametric test wil never be less efficient than the calculated
ARE implies. This is because the relative efficiency of a nonparametric test will always
increase if parametric assumptions are not met.. Table 3-1 lists the ARE between
analogous parametric and nonparametric tests. These figures must be interpreted with
caution because typically sample size is small for groundwater quality data. Table 3-1
shows that generally parametric tests are more powerful in the case of the normal
distribution (ARE <1.0); however for other distributions, such as the uniform or double )
exponential, the nonparametric tests may be as or more efficient (ARE >1.0). -t

There is no magical test to detect groundwater contamination. The regulatory issues™ *
vary from site to site. Also, the hydrogeology and type of contamination will influence a
final decision. In the following sections we consider the three general types of
stastistical methods introduced in Section 3.0.1:

(1) tests of central tendency (location);
(2) tests of trend; and
(3) prediction, tolerance, and confidence intervals.

In each subsection emphasis is placed on the situations where the type of test is
appropriate. The types of water quality questions these tests can answer are discussed.

3.1 Tests of Central Tendency (Location)

To introduce tests of central tendency, a brief review of applicable water quality literature
is presented. The basic theory for one approach recommended by EPA is discussed in
Section 3.1.1, followed by application to four sites in Section 3.1.2. The findings of this _
analysis are summarized in Section 3.1.3.

The mean and median are the most common estimators of central tendency. Tests
which compare the mean or median of two or more sets of data are termed "tests of
central tendency" or "tests of location." Table 3-2 summarizes tests of central tendency
which have been proposed to be used with groundwater quality data. We do not )
recommend the use of several of the tests in Table 3-2. Helsel (1987) applies
parametric test statistics using the ranks of the data rather than the concentration values.
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TABLE 3-1 Comparison of Nonparametric to Parametric Tests
(adapted from Gibbons, J.D. 1985a,b, and P. Arzberger 1988)

L€

Asymptotic Relative Efficiency
Normal " Uniform Double .
. Name of Analogous Expoential .Continuous
Type of Hypothesis ;lonp arameiric Parametric Test Lower
est
J\ 7 Bound
Central tendency
One sample or paired sample| Wilcoxen signed rank test Student's t-test 0.955 1.0 - 0.864
Two independent samples | Mann-Whitney-Wilcoxen test | Student's t-test 0.955 1.0 1.5 —
k - independent samples Kruskal-Wallis test F-test (one way ANOVA) 0.955 . 1.0 1.5 0.864
Variance
Two-independent samples | Sjegel-Tukey test F-test
genTHey s 0.608 0.60 o —
Association analysis
Two related samples Spearman rank correlation or | Pearson product- 0.912 1.0 —_— —
Kendall Tau moment correlation
.955k
k-related samples Kendall Test F-test (*) K+ 1 — — —_

(*) Randomized blocks ANOVA or balanced incomplete blocks ANOVA




TABLE 3-2 Tests of Central Tendency

(P) Parametric (N) Nonparametric

I. At asingle well with the data set split at 1) an arbitrary time or 2) remedial action

1
TESTS SELECTED REFERENCES
a) Student's t-test and Cochran's Approximation 2 McBean and Rover, 1984
to Student's t-test (P)
2
b) Mann-Whitney-Wilcoxen test (N) 3 Doctor et al, 1985, Florida,1985
c) Student's t-test using ranks instead of concentrations (P) Helsel, 1987

cl-€

Il. Between two or more wells considering 1) all historic data or 2) using only “recent" data.

a) One-way ANOVA with multiple comparison tests (P)‘: EPA, October 1988, NCASI, 1985
b) Kruskal-Wallis test with multiple comparison tests (N) EPA, October 1988, NCASI, 1985
c) Two-way ANOVA (P) NCASI, 1985

d) Analysis of Covariance (P) S 3 Silver, 1986a,b

e) Two-way ANOVA using ranks instead of concentrations (P) Helsel, 1987

A good general reference is "Groundwater Quality Data Analysis" by NCASI (1985). Tests for central tendency for records with
dependent observations include Montgomery and Reckhow (1984) and Lettenmaier (1976)

These tests were previously recommended by EPA to compare two or more wells. The current trend is to use Group Il methods.

We do not believe this method is appropriate for determining compliance with groundwater quality regulations. Helsel adopted Conover
and Iman's (1976) procedure which they admit can only be justified empirically. Since true nonparametric procedures are available in
the situations being considered we do not recommend this theoretically unsound method.

For only two wells the one-way parametric ANOVA reduces to the t-test, and the Kruskal-wallis test reducss to the Mann-Whitney-Wilcoxen test.

We do not think this method is appropriate because the test addresses whether downgradient wells as a group are different from
upgradient wells. Downgradient wells have different potentials for contamination. While some are clean others may be contaminated.
There is no physical justification for grouping downgradient wells. ' :
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He adapted Conover and Iman's (1976) procedure which they admit can only be
justified empirically. Since true parametric tests are available in the situations being
considered and since the properties of the adapted tests have not been formally
evaluated, we do not recommend Helsel's recommended procedure. Secondly, Silver
(1986b) uses an analysis of covariance, where downgradient wells as a group are
compared to upgradient water quality. Since downgradient wells have different
potentials for contamination, we feel there is no physical justifcation for grouping
downgradient wells, and, therefore, we do not recommend this method either.

EPA previously required that Cochran's Approximation to Student's t-test be applied
between pooled background water quality data and each downgradient compliance
well. Due to criticism of this procedure (EPA, October 11, 1988; Miller and Kohout,
undated; Silver, 1986 and McBean and Rovers, 1984b), EPA currently recommends a
parametric one-way analysis of variance (ANOVA) or the nonparametric analog called
the Kruskal-Wallis test (EPA, 1988). The remainder of Section 3.1 will focus on these
tests.

3.1.1 Background on ANOVA

The null and alternative hypotheses for parametric and nonparametric (one-way)
ANOVA are3:

Ho : H1= H2= U3 e = Uk

H1:ui¢uj

where k is the total number of wells to be compared and p is the mean or median of a
time series. Only wells screened in similar geologic units should be compared; hence k
may be less than the total number of wells. If the ANOVA is significant (typically at o =
0.05) there is evidence that at least two wells are different. Multiple comparison
procedures can then be used to find which wells are different. Individual comparisons
can be made between each compliance well with pooled upgradient water quality.
Because these tests are based on the mean or median, they can only answer the

3Statistical hypotheses are introduced in Section 1.1.



question whether the central tendency over time differs between wells. The semantics
here are important because, as pointed out in the previous section, we are not always
interested in historic water quality comparisons.

?

The hypotheses above are based on the "shift model." This model assumes that the
distributions being compared are the same shape, but their means may be different

(shifted). Analytically this assumption is interpreted by assuming the sample groups .
have equal variance (scale). This assumption is frequently violated when contamination’
exists (as illustrated in Chapter 4). The problem of comparing the location of two .

distributions of different shape is referred to as the Behrens-Fisher problem. For the o
two-sample problem Cochran's approximation to Student's t-test accounts for this.4

We are not aware of an analogous procedure for parametric or nonparametric
ANOVA.S :

The evolution of EPA's regulations from the two-sample t-test to the multiple sample
ANOVA came about because many two-sample comparisons are necessary at a site.
For example a site with just n=6 compliance wells tested for k=10 parameters will
require n x k = 60 two-sample tests. These 60 tests may be substituted by 10 ANOVA
tests. In addition, for each parameter which the ANOVA finds a significant difference 6
multiple comparisons must be done. One concern with this approach is that there may
still be high probability for false positive error; that is, detection of contamination when
none exists. The issue is that the site-wide significance level, a,,, will be very high for
so many comparisons.® If the significance level for each comparison is ., the site

4The two-sample problem is when only two data sets are being compared, or when one data set
is split at a certain time, and the two time series are compared.

Sstatisticians and water quality scientists have evaluated the robustness of the t-test to this
assumption and others (Montgomery and Loftis, 1987, Boneau, 1960, McBean ef al, 1988).
Also, the effect of the Behrens-Fisher problem on the Mann-Whitney-Wilcoxen test has been
investigated (Fligner and Policello, 1981, Potthoff, 1963). Fung (1979) found the Mann-
Whitney-Wilcoxen test to be fairly robust for long-tailed slightly skewed distributions even for
sample sizes as small as 10. Montgomery and Loftis (1983) showed that the t-test is not robust for
distributions of different shape. Comparisons between Student's t-test and the Mann-Whitney-
Wilcoxen test may be found by Pratt (1964), Blair and Higgins (1980) and Rovers and McBean
(1981).

Sasw is the site-wide probability for each parameter of finding contamination when none exists.
See Figure 1-1.
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wide significance level for each parameter is

Ogu=1-(1- )"

where n is the number of compliance wells. (This equation assumes each test is
independent.) As n increases, o, increases. For example if ag = 0.01 with &
compliance wells, o, = 0.06, but for 20 compliance wells, ag, = 0.18. This means
there is an overall 18 percent chance that a false positive error will occur. This is not
very protective of the owner/operator of the facility. Furthermore if g, is very high the
owner/operator will have legitimate grounds to argue with the validity of significant
results.

In the next section, parametric and nonparametric ANOVA are applied to datasets at '
three municipal sanitary landfills.

3.1.2 Application of ANOVA: Spatial Variability Analysis

In the following evaluation of groundwater quality three main issues are addressed:

(1) Will natural spatial variations in groundwater quality be detected using
ANOVA? If so, natural shifts in mean and shifts due to contamination
cannot be distinguished using this method.

(2) Are the assumptions for parametric ANOVA met?

(3) Are results consistent between parametric and nonparametric tests when
fundamental assumptions are/are not violated?

The first issue is crucial to the general applicability of this type of test. The second and
third issues are raised to consider the performance of these tests under violation of
assumptions. These issues are illustrated on Figure 3-4 for total hardness data from
wells at the (New) Sauk County landfill. There is no evidence to support groundwater
contamination at this site. The confusion evident in Figure 3-4 (a) is clarified in Figures
3-4 (b) and (c). Spatial variation of total hardness is shown by the box plots. The boxes
are shifted on the concentration scale; many of the boxes do not overlap. The
assumption of equal variance also appears to be violated. The height/length of the
boxes are not consistent on Figure 3-4 (b); the range ("length") of the one-standard
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FIGURE 344 Total Hardness Data from the New Sauk County Landfill
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deviation error bars also varies. For example, while well pairs 104/106 and 102/103
appear to have similar variance, the two pairs do not have the same variance. Nor do
other wells at the site. Skew may also be visually evaluated on the box plot by seeing if
the plots are symmetric and if high outliers are present. These features are evidence of
non-normality. The boxplots for W-118 and W-106 clearly show skew.

Three sites were selected for more detailed analysis. These sites are clay-lined facilities
with leachate collection systems which are not believed to have contaminated
groundwater. "Clean" sites were chosen because we are testing for natural spatial
variability only. The sites are:

SITE ’ LICENSE
e (New) Sauk County Landfill 2978
e Portage County Landfill 2966
e Greidanus Landfill 140

Wells at the Portage County landfill are screened at two levels; thus two separate
analyses were performed here. One well at Portage County was deleted from the
analysis because contamination was suspected. The only data points deleted from the
remaining data sets were those high values very early in the sampling record which may
have been a result of well installation and development procedures. The well
stabilization period was judged from time versus concentration plots.

A summary of conditions at each site is presented in Table 3-3. Table 1-2 provides
additional background information. The materials in which the wells are screened are
typical of Wisconsin geology. The analysis was performed for seven water quality
parameters. Four parameters are consistently found above detection limits -- pH,
specific conductance, total alkalinity and total hardness. Three parameters may be
detected at or below the laboratory detection limit -- chloride, chemical oxygen demand
and iron.

Three one-way ANOVA tests were performed for each parameter at each site:
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TABLE 3-3
Characteristics of facilities chosen for spatial variability analysis

PORATGE COUNTY -- SHALLOW WELLS (12) screened at water table

DNR Well ID No.: Up or side gradient: 1,4,12,14,16,17
Down or side gradient: 9, 23, 24, 26, 28, 30

Lengthof record: n  =19.24 (geometric mean of n at each well)

Geologic formation: sandy glacial till with cobbles and boulders.

PORTAGE COUNTY -- DEEP WELLS (8)

DNR Well ID No: Up or side gradient: 2,5, 13
- Down gradient: 10, 27, 29, 31, 33

Length ofrecord : n =19.16

Geologic formation: sandy glacial till, coarser than above.

SAUK COUNTY LANDFILL (NEW): WELLS (9)

DNR Well ID No.: Up gradient 101, 102, 103
Down gradient: 104, 106, 107, 108, 11, 118

Length of record: n = 19.76

Geologic formation: sandstone

GREIDANUS LANDFILL: DEEP WELLS IN EXPANSION AREA (3)

DNR Well ID No. : Upgradient 215, 218
Downgradient 225

Length of record: n =7.92 for Cl and Hardness
n = 8.36 for other parameters.

Geologic formation: glacial outwash -- dense sand with some gravel.
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1) parametric ANOVA on raw data;
2) parametric ANOVA on log transformed data; and

3) nonparametric ANOVA, the Kruskal-Wallis test (KW).

For each parameter (at each site) one of these tests was chosen as the most applicable
method based on an evaluation of test assumptions. The preferred test for spatial
variability was determined as shown by the flow chart on Figure 3-5. To evaluate the
validity of the assumption of constant variance, Bartlett's test for homogeneity of
variance was applied to both the raw and log-transformed data. The skewness test was
applied grouping all the data at the site after subtracting the individual well means (or
means of the logs) prior to analysis. This approach eliminates the effect of shifts in
mean (spatial variability) on the overall skew calculation.

The percent of data below detection limits (ND's) was calculated for chloride, iron, and
chemical oxygen demand. Except for chloride data at the Greidanus landfill (0 % ND's),
the percent ND's exceeded 15 percent of the records site wide. The KW test results are
"preferred" for these parameters. "Preferred” is meant in the sense that this test based
on the validity of assumptions is most appropriate for this set of data. Four cases had
more than 50 percent ND's and even the ANOVA results are suspect. '

Table 3-4 summarizes the "preferred” test results. Quite clearly, the KW test is most
appropriate for evaluating shifts in mean between landfill monitoring wells. For all three
tests which the parametric ANOVA was "preferred,” the KW test gave the same result, i.e.
significant or not significant at the five percent level.” |

7The choice of the Kruskal-Wallis test is made here by "default.” Unfortunately the KW test is
also based on the shift model and thus is sensitive to the assumption of equal variance between
groups. Technically, the KW test makes the assumption that the distributions are symmetric,
which of course is not always the case with water quality data.
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Inspect time vs. concentration plots for outliers .
( Delete justifiable outliers only.)

>5%

Calculate % ND's
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Test parametric ANOVA assumptions
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Test parametric ANOVA assumptions
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Kruskal - Wallis
Test Results
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results
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C Spatial Variability j
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I_.( No Spatial Variability )4-———|

Tests of parametric ANOVA assumptions include:

1. Test for homogeneity of variance = Bartlett's test

2. Test for normality : skewness test.
(applied to site-wide data after removing individual well means)

FIGURE 3-5 Flow Chart for Spatial Variability Analysis
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TABLE 3-4
Applicable tests for evaluating spatial variability

PARAMETER Parametric Parametric Kruskal-Wallis
ANOVA ANOVA Test
log-transformed data
Chioride 1 0 3
Chemical oxygen demand 0 0 4
iron 0 0 4
pH 0 1 3
Alkalinity 0 0 4
Specific conductivity 0 0 4
Total hardness 1 0 3
TOTAL 2 1 o5
The parametric ANOVA was rejected for the following reasons:
BawData  LogData

Presence of ND's

11

Violation of variance assumptions 6
Violation of normality assumption 1 2
Violation of both assumptions 8
Total 26/28 27/28
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Note that Bartlett's test rejected the assumption of constant variance 50 percent of the
time for both the raw and log-transformed data.

The Kruskal-Wallis test results are presented in Table 3-5. Spatial variability was A
detected at each site for at least two parameters. The shallow wells at Portage County
exhibited significant spatial variability for all parameters. From these results we
conclude that natural spatial variability in groundwater may confound the results of - -.
ANOVA when applied to detect groundwater contamination. When ANOVA is applied at
. ntaminatin e | oo

. l [ nl . I- :

Significant results may be due to either natural spatial variability or contamination. If
ANOVA must be a choice for determination of compliance, 1) Bartlett's test should
always be applied, and 2) preliminary ANOVA should be applied at clean wells to see if
spatial variability is significant (if there are at least three background wells). If spatial
variability is not apparent, then the Kruskal-Wallis test should be applied.

3.1.3 Summary

In conclusion, we have pointed out some severe limitations of tests of central tendency
as applied to groundwater quality data. These are:

1) The site-wide significance level, gy, May be high when many wells are
included in ANOVA analyses.

2) Natural spatial variability may be statistically significant. ANOVA results- -
may not be able to discern between natural shifts in mean and those due
to contamination.

3) The assumption of homogeneity of variance is frequently violated.

4) Because parametric ANOVA assumptions are found to be invalid in many
cases, the nonparametric Kruskal-Wallis test is the preferred test to apply
to evaluate spatial variability in groundwater

5) These tests compare the central tendency of the data sets which may not
be the right question at sites thought to be "clean."
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. TABLE 3-5 :
Results of Kruskal-Wallis Test applied to detect spatial variability

(SIGNIFICANT = Conclude natural spatial variability is detectable.)

TEST RESULT AT a =0.05

PARAMETER

Significant Not significant  p-value
Chloride 2 2 .26,. 25
Chemical oxygen demand 1 3 .66, .55 ,.052
Iron 1 3 .35, .34, .07
pH 3 1 67
Alkalinity 4 o J—
Specific conductivity 3 1 .36
Total Hardness 3 1 .18

TOTAL 17 11
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3.2 Tests of Trend

Tests of trend can be used to evaluate whether water quality is increasing or decreasing
with time. Strictly speaking trend could be observed as either a step function or a

gradual increase (usually modelled as a linear function). Step trend should be i
analyzed using the tests of central tendency discussed in the previous section. Here we
are looking at methods to evaluate long-term trend. T

Trend tests alone cannot be used to determine compliance with groundwater quality. .
regulations. The tests can only answer the question "Does a positive or negative trend ’
exist?" The tests cannot determine the environmental significance of the trend. The
presence of a "small" trend does not mean there is contamination; the absence of trend
does not mean there is no contamination. Therefore if a test of trend is used to support
the hypothesis of contamination, the results must be linked to exceedanceof standards
and to likelihood of contamination.

Tests of trend are also applicable in evaluating the effectiveness of remedial action.
However, this type of test should not be used to "predict" when a target concentration
will be reached since aquifer restoration is usually not a linear process. A multi-volume
document is currently being prepared by EPA on this subject entitled "Statistical
Methods for the Attainment of Superfund Cleanup Standards --Draft ."

Table 3-6 lists trend tests proposed in the literature for water quality data with and
without seasonal effects. Linear regression analysis is the method most people are
familiar with. A least squares regression of the concentration data, y;, yields a linear
best-fit equation L

yi=mx;+b DT
where, )
;i = predicted mean concentration at time i, the dependent variable

xj = time, the independent variable
m = the slope of the predicted trend line
b = the y-intercept, a constant.

An f-test on the mean square error of the regression line to the mean square of the
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TABLE 3-6 Tests of Trend

(P) Parametric (N) Nonparametric

I. At a single well over 1) entire time series or 2) recent data SELECTED REFERENCES
a) linear regression with f-test (P) NCASI 1985
McBean and Rovers 1984
b) Kendall Tau with/without Sen's estimate of slope (N) Doctor et al 1985
Hirsch et al 1982
Gilbert 1987

¢) Spearman's Rho (N)

d) Seasonal Kendall Tau with/without Sen's seasonal slope estimator (N) Doctor et al 1985
Hirsch et al 1982
Gilbert 1987
e) Farrell's (Seasonal) aligned-rank test (N) vanBelle and Hughes 1984

References for trend tests for serially correlated (dependent) data include Hirsch and Slack (1984) and Lettenmaier (1976).

Montgomery and Reckhow (f984) present a general methodology for detecting linear trends in
lake water quality and recommend specific techniques under various conditions.




"unexplained" error provides a measure of whether the slope, m, is significantly different
from zero. Linear regression is very sensitive to outlying values.

Another use of trend tests is to evaluate whether background water quality is
significantly (gradually) changing in time. In this case, the trend should be removed -
prior to further analysis (Harris et al, 1987). An apparent trend at a downgradient well
cannot be confirmed as evidence of contamination, unless it can be shown that the .
same trend does not exist in upgradient wells. Detrending is aécomplished using the
calculated equation from linear regression (above). The predicted mean value of y at .

time x;, Yi, is subtracted from y;., the observed value of y.
Zi=yj-y;i fori=1ton

zj (i =1to n) are the detrended concentrations. Further analysis on z;j could include
tests of central tendency. The linear trend observed in background data is also removed
from the compliance well data before analysis.

The nonparametric analogs to the linear regression f-test are Kendall's Tau statistic and
Spearman's (Rho) rank correlation coefficient. Usually Kendall's Tau is chosen for
water quality data because the test statistic approaches normality at smaller sample
sizes than Spearman's Rho (Montgomery et al, 1987). Kendall's Tau is a number
between -1 (perfect negative correlation) and 1 (perfect positive correlation). The test
statistic, T, basically evaluates whether the ranks of the data increase with time. (See
Gibbons, J.D. (1985b) for a simple derivation of T.) The calculated value of Tis
compared to tabulated values to determine if trend exists (See Appendix A). Because
the test is based on the ranks of the data, Kendall's Tau is robust to data outliers.

Linear regression is quite powerful, but analysts tend to delete outlying values without. _
physical justification to get a "good fit." Also, some users will wrongly try to make )
predictions of "when concentration will return to normal" or "when a standard will be
exceeded.” The DNR should be aware of the common misuses of regression. When
facility reports are submitted to DNR containing linear regression analysis, reviewers
should make sure that deletion of data is "physically" justified. Also any predictions
made with the regression line should be interpreted as no more than a best guess.
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3.3 Confidence, Tolerance and Prediction Intervals

Statistical intervals are used to "bracket" background water quality. Measurements may
be compared to the upper bound of the interval to determine contamination. Both the
upper and lower bounds are considered for parameters such as pH which may increase
or decrease depending on the type of contamination. Each of the techniques are used
to answer different questions.

Confidence limits on the mean define an interval within which the true mean of the
population will fall (90, 95, 99 percent) percent of the time.

Tolerance limits define a range within which some proportion of the population will fall
(90, 95, 99 percent) of the time. Usually this proportion is also 90, 95 or 99 percent.

Prediction limits define an interval within which it can be stated that the next k-
measurements will fall (90, 95, 99 percent) of the time.

Hahn (1970) explains the difference between these limits.

A typical astronaut, who has been assigned to a specific
number of flights, is generally not very interested in what
will happen on the average in the population of all space
flights, of which his happens to be a random sample
(confidence interval on the mean), or even what will
happen in at least 99 percent of such flights (tolerance
interval). His main concern is the worst that will happen in
the (next) one, three or five flights in which he will
personally be involved (prediction interval).

All three (parametric) intervals are symmetric and are calculated based on the models

X * ks (two-sided) or x + ks (one-sided)

where k is a constant obtained from tabulated values. The environmental
meaningfullness of these statistics depends on the validity of the assumptions of
normality, stationarity and independence.

These limits cannot be used interchangeably. A common mistake is to use confidence
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limits when tolerance intervals or prediction limits will answer the question of concern.
Table 3-7 lists intervals proposed in the literature with application to water quality
problems. Table 3-8 lists questions asked from a regulatory perspective and the
appropriate method(s) in each case.

In theory question 6 of Table 3-8 is not applicable for determining compliance with
groundwater quality regulations. This is because we are not interested in comparisons *
to average water quality, but rather on comparison of compliance well data to the
population of background data. This point is often misunderstood. In fact, conversations
with DNR personnel revealed that confidence limits on the mean are currently used for ]
determination of compliance with RCRA regulations at some Wisconsin hazardous
waste sites (Tusler, 1988). With the advent of EPA's new rules at these sites, we
suggest that alternative procedures be considered (see Section 3.3.1).

In the next two sections intervals are 1) compared to PAL's as estimates of an upper limit
of background water quality, and 2) discussed as methods to determine standard
exceedances.

3.3.1 Comparison of Intervals to PAL's

How should background water quality be defined? What is a reasonable number above
which we suspect groundwater is contaminated? Tolerance intervals, prediction
intervals and PAL's have been proposed as estimates of this level. In this section these
three estimates are compared. The choice must be made between defining background
on a well by well basis or on a site-wide (aggregating data from different wells). In the
analysis of four sites presented in Section 3.2, it was found that spatial variability in - -
groundwater quality was common. Both the mean and variance were shown to vary
among clean wells. These results suggest that background water quality be defined on -
a well-specific basis. DNR has adapted this policy for setting PAL's at most sites.
However, in some cases site-wide PAL's are in effect. The site-wide approach simplifies
the methodology and minimizes the time to calculate PAL's; however, spatial variation is-
not distinquished from temporal effects. The resulting PAL's may be too high at some
wells and too low at others. When spatial variation is present (which we believe to be
the usual case) the well-specific approach is preferred.
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TABLE 3-7 Confidence, Tolerance and Prediction Intervals

SELECTED REFERENCES 1
|. CONFIDENCE INTERVALS 1) to determine standard exceedances, and

2) to determine limits on mean background water quality.

Normal and lognormal distribution Gilbert 1987
' NCASI 1985

-Nonparametric EPA 1988

II. TOLERANCE INTERVALS 1) {o set standards, 2) to determine standard exceedances,
and 3) to define an interval within which background concentrations will fall with high probability.

Normal and Lognormal distribution Loftis et al 1987
EPA 1988
Nonparametric2 EPA 1988

lil. PREDICTION INTERVALS 1) to define background concentration interval within which
future measurements from downgradient wells are likely to fall.

Normal apd lognormal distribution Gibbons 1987

EPA 1988
Hahn 1970¢., Yo
Hahn and Nelson 1973

T A good general reference is "Understanding Statistical Intervals" by Hahn (1970).

2 This method requires such a large number of data points to provide a reasonable interval that
it appears to be impractical in this application.




TABLE 3-8 Application of intervals to regulatory questions

QUESTIONS METHOD

What is a reasonable upper limit for background Tolerance
water quality?

—

2. Are downgradient concentrations outside the allow-| Tolerance
able range of background water quality? Prediction

3. Do new measurements at downgradient wells come Prediction
from the background population?

4. Has a standard been exceeded based on average Confidence
water quality over a time period?

5. Has a standard been exceeded more than a specified Tolerance
percent of the time?

6. Within What range can we state the mean/median of Confidence
background water quality falls?
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A PAL equalto X+3s may be statistically interpreted as an estimate of the 99.87
quantile of the normal distribution. That is, k=3 is the z-score associated with F(x) =
0.9987 where F(x) is the normal cumulative distribution function. If a time series is
independent, stationary, distributed approximately normal, and sample size is large,
then it may be stated with confidence that water quality will exceed the PAL less than 1
percent of the time (the exact value is 0.13 percent). At small sample size the
probability of exceeding a PAL is not controlled.

A tolerance interval (Tl) , like the PAL, is also associated with a quantile point. However,
each end of the Tl is an (outside) confidence limit on the exact value of the quantile
point. Thus, the Tlis a "hedged" estimate of a quantile. For the same quantile point, the
(upper) Tl will always be larger than the PAL at small sample size, and will approach the
PAL at large sample size. Similar to the PAL, the probability of exceeding a Tl is not
controlled at small sample size.

The prediction interval (P1) does control the probability of exceedance, accounting for
both. natural variability and small sample size. Thus, in principle, the Pl is the logical
choice for an upper background water quality level, although, like the PAL and TI, it
depends critically on distributional assumptions. The prediction interval may be
calculated for one or more new samples.

At large sample size, when distributional assumptions are met, the Tl and PI will
estimate the same concentration limit for a given exceedance level. This concept is
illustrated on Figure 3-6 for an exceedance probability of 0.95. EPA recommends this
significance level for Tl and Pl calculations (EPA, 1988). The y-axis label "k" refers to

the multiplication factor in x + k s for each type of interval. Prediction interval k's are
plotted for one new sample (quarterly comparisons at MSWLF's) and for four new
samples (annual comparisons). It is assumed that only one measurement is made per
quarter. The PAL (k=3) is also plotted. Figure 3-6 shows the following.

o The PAL is a higher estimate of background water quality than either the Pl
or Tl at sample sizes greater than 10.

® At small sample size, the Tl (N<10) and four-sample prediction interval
(N<9) exceed the PAL.
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FIGURE 3-6 Comparison of Intervals at the 95 % Significance Level
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e The Tl and one-sample Pl asymptotically approach the 95 th quanitle.
Note that these intervals would approach the PAL if a significance level of
0.0013 had been used rather than 0.05.

® At small sample size, the Tl increases significantly with decreasing n.

e The four-sample Pl is greater than the one-sample Pl because when four
comparisons are made each individual comparison is made at a

significance level of (05/4) = 0.125.8 Thus the four-sample prediction
limit asymptotically approaches the 0.9875 quantile point (k = 2.24).

It is important to emphasize that these limits may not be environmentally meaningful if
distributional assumptions are not met. The effect of violating distributional assumptions
is briefly discussed with an example below.

Table 3-9 presents calculations of the PAL, Tl, PI- 1 sample and Pl - 4 sample for
alkalinity data at DNR Well 18 from the Greidanus Landfill. The intervals are calculated
for (1) the normal distribution and (2) the lognormal distribution. At this well, alkalinity
varies over a wide range (minimum 93 mg/l; maximum 465 mg/l). Yet there is no reason
to suspect contamination or any grounds to delete high or low data. Comparing the
skewness coefficient for the two distributions implies that the normal distribution better
represents these data (since Y is closerto 0). Sample size is small (9), thus the
tolerance interval is greater than the PAL, as mentioned above. Inspection of the
resulting limits reveals that the lognormal intervals are unreasonably high. The normal
calculations appear to be much better estimates of upper limits of background water
quality in this case.

The above discussion has illustrated different methods for establishing an upper limit for
background water quality. Important conclusions are summarized below.

® The prediction interval in theory directly answers the right question: What
is the concentration associated with an allowable exceedance probability
given the natural variability in the data and the sample size?

e The PAL is a conservative (high) estimate of background water quality
compared to the more sophisticated Tl and PI, except at small sample size.
(when the Tl and PI are calcuated at a significance level of 0.05 as
recommended by EPA).

8That is, when using the Bonferroni multiple comparison procedure.
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TABLE 3-9
Example Calculation of Statistical Intervals

Alkalinity data from Well # 18 Greidanus Landfill

Distribution | X s Y PAL n PI (1) Pl (4)
k=3.0 k =3.03 k=1.96 k=2.89

Normal 259 105 0.334 574 577 465 562

Lognormal | 5.47  0.465 -0.784 959 972 591 909

Tl = Tolerance interval
Pl (1) = One sample prediction interval
Pl (4) = Four sample prediction interval

e The Tl may be unreasonably high at very small sample size (<8).

e If distributional assumptions are not met, all of the methods may yield
results which are not environmentally meaningful.

These three methods all predict some upper limit for background water quality above

which contamination is suspected. The environmental significance of the exact number,
however, is unknown.

The PAL is simplest to calculate. The tolerance interval is almost as easy, except
instead of using "3" as the multiplier in x + ks, a value is obtained from a table. The -
value of the tolerance interval k is less than 3 at large sample size and greater than 3 at -
small sample size. The prediction interval is most difficult to calculate and is dependent
on the number of future monitoring rounds the interval will cover. All three of these
methods assume the data are normally distributed which we know is not always true.
The methods may also be applied to the log-transformed data if necessary. We do not
recommend aggregating data from different wells to set any of these limits.

3-34



Because the PAL method is simplest and yields a conservative (from the industry
perspective), but not unreasonably high, upper limit of background water quality, we
recommend that DNR continue to employ the PAL "as is" at waste disposal sites. If
facility owners are dissatisfied with PAL values, DNR should suggest that they calculate
prediction intervals as described in EPA (1988) for each well. This procedure is also
presented in Appendix A. At hazardous waste sites, we recommend that prediction
intervals be calculated for each well rather than the t-distribution confidence intervals
currently employed. These recommendations are synthesized into flow charts in
Chapter 5.

The DNR currently sets PAL's at existing sites with known contamination as well as at
new facilities. The PAL at a contaminated well is set based on a clean well(s) screened
in a similar stratigraphic unit. We do not believe that this practice is appropriate or
correct, due to spatial variations in the mean and standard deviation of water quality in
groundwater. Therefore, if a site is known to have contaminated groundwater, PAL's
may not be necessary at all, since PAL's from a regulatory perspective are intended to
be early warnings of groundwater contamination. PAL's may be appropriate at a
contaminated facility as clean-up goals for a remedial action procedure. For existing
sites with contamination, we suggest that the procedures discussed in Sections 5.2 and
5.3 be used to build a defensible case of contamination.

In determining whether a PAL has been exceeded, DNR may be confident that
contamination exists when more than one sample at a well exceeds a PAL, particularly if
the PAL is based on a reasonable sample size (8 or more.independent samples at a
well) and no data are deleted from the time series.

3.3.2 Intervals to Determine Standard Exceedances

This section addresses the use of intervals to determine exceedance of externally
defined standards such as EPA's maximum contaminant levels, Wisconsin's
enforcement standards, and PAL's set based on a percent of these standards. PAL's

set based on background water quality are addressed in the previous section.

As discussed in Section 3.0.1 the definition of a standard must be clear. Interpretation of
federal and state regulations is not straight forward. NR140 implies that ES's and PAL's
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set based on the ES are not-to-be-exceeded limits. However, if it can be shown to the
agency "that a scientifically valid determination cannot be made that the preventive
action limit or enforcement standard ..... has been attained or exceeded based on
consideration of sampling procedures or laboratory precision and accuracy....”" then no
remedial response shall be required (Wisconsin DNR, 1988). The discussion of these ~
regulations will therefore focus on using intervals to determine exceedances with
consideration of 1) sampling procedures, and 2) laboratory error. Unlike the WI .
regulations, the EPA hazardous waste regulations (as interpreted in the Draft Guidance
Manual) imply that some samples may exceed the standard. EPA recommended
procedures are discussed following the discussion of NR 140.

NR 140, A strict interpretation of NR 140 would be to consider each exceedance "real"
unless the possibility exists that sampling or laboratory error were the cause of the high
value. Under current regulations, if an exceedance occurs which the agency or owner
feels is an anomalous high value due to sampling procedures or gross laboratory error,
the well must be resampled. Gross laboratory error implies data transcription error,
sample mislabeling, etc.and must be distinquished from true laboratory error which is
associated with the precision and accuracy of the actual analysis.

If a sample and the corresponding "re-sample” exceed the standard, the only
"unaccounted" reason for a false positive exceedance is true laboratory error. If an
exceedance is near the standard, it may be that the "true" sample concentration does
not exceed the standard. Tables 3-10 summarizes laboratory accuracy confidence
ranges at the Wisconsin State Lab of Hygiene for several parameters (Songzoni, 1988).
These levels have been calculated for many other compounds as well. Accuracy
confidence ranges are applicable for judging sample exceedances close to the
standard. The accuracy confidence range defines an interval within which the true
sample concentration will fall 95 percent of the time. These levels are determined from -
spiked samples; that is, samples with a known concentration prepared by the laboratory:
The confidence range is expressed as a percent of the true concentration. For example,
if a total hardness concentration value of 403 mg/l was measured, the interval of 392 -
mg/l (0.973 X 403) to 411 mg/l (1.02 X 403) will contain the true sample concentration
95 percent of the time. If a PAL of 400 mg/l is in effect, the possibility exists that the true
alkalinity concentration may be below the standard by 8 mg/l. Therefore, the standard
may not have truly been exceeded.
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As one would expect, Table 3-10 shows that only a small percent of the total
concentration should be due to analytic error. These estimates may be lower than at
other laboratories which do not employ as strict quality control procedures. Rice,
Brinkman and Muller (1988) reported on a quality assurance program for groundwater
samples which evaluated eight laboratories for precision and accuracy. They
concluded that the reliability of laboratory analyses should not be taken for granted.
(They also found analytic reliability to be independent of the prices charged by the

laboratory.)

In summary the strict interpretation of NR 140 presented here allows for resampling
when sampling procedures or gross laboratory error is suspected. Otherwise, sample
values are considered true exceedances except when laboratory accuracy ranges
indicate that the true sample concentration may be below the standard. EPA
recommends a less stringent approach for evaluating quarterly groundwater reports
from hazardous waste sites.

TABLE 3-10
Accuracy Confidence Range for Non-RCRA Samples; 1
Determined from Spiked Samples at Wi State Lab of Hygiene

PARAMETER METHOD 95 % 99 %
CONFIDENCE CONFIDENCE
RANGE RANGE
(%) (%)
Hardness 200.1 97.3-102 96.0-103
COD, LL 280.2 90.4-108 '86.0-1 13
COD, ML 270.2 93.1-105 89.0-108
Sulfate 370.2 94.0-107 91.0-110
Iron, Flame 500.1 93.3-104 90.0-107
Chloride 140.2 97.3-103 96.0-104

Non-RCRA samples include surface and drinking waters, groundwater, and
domestic and industrial wastes.
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The federal hazardous waste regulations ( RCRA: Subtitle C) require 16 independent
samples annually. Four measurements are to be collected each quarter but must be -
independent samples. To achieve independence the quarterly data may be collected
daily, weekly or monthly depending on groundwater flow. (EPA,. October 11, 1988). At -
waste sites governed under Subtitle D of RCRA, sampling consists of one sample four
times a year. EPA recommends two methods for determining exceedance of health or,
welfare standards: confidence limits and tolerance limits. )

The first method EPA (1988) discusses is construction of a 99 percent confidence limit

on the mean of the most recent four measurements. The standard is then compared to

the lower limit of the confidence interval. In the hazardous waste case, the mean of the
four quarterly measurements are used to construct the confidence interval. Thus, in this
case, the confidence interval method addresses the question

"Does the mean of the quarterly sample exceed the standard?"

This approach "allows" some samples to exceed the standard. It is possible that three
out of four quarterly measurements could exceed the standard, yet this approach may
not "detect” an exceedance. This possibility exists because the confidence interval is
very sensitive to the standard deviation of the four measurements; data drawn from a
contaminated regime is likely to be quite variable, since contaminated groundwater is
not well mixed. Because data from a contaminated regime are most likely not from a
single population, we do not believe that distributional parameters should be calculated.
using these data. Furthermore, confidence intervals based on such a few samples are
always wide, since information is limited.

While the confidence interval could be applied to the MSWLF situation, it must be
recognized that when only four samples are collected per year the question becomes, _

"Does annual average water quality exceed the standard?"

At some sites this question may not be adequate. Contamination by highly toxic
substances may require quicker action. More frequent sampling at MSWLF's could
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alleviate this problem. Yet, even if 16 samples were collected, like at HWS's, the high
variability of groundwater may cause unreasonably wide confidence intervals.

EPA(1988) also presents a tolerance interval method. This approach would be
applicable when a permit is written specifying that a standard is not to be exceeded
more than a specifed fraction of the time. EPA suggests that the four quarterly
measurements be used to construct an upper tolerance limit. If this limit is below the
standard then the site remains in compliance. It is important to note that the choice of an
upper tolerance limit is much more protective of the environment than the lower
confidence limit discussed above. We do not like this procedure for the same reasons
given for the confidence interval approach. Data from a contaminated distribution
should never be used to directly estimate distribution parameters.

The strict interpretation of an exceedance as discussed with respect to NR 140 is the
most environmentally sound approach to comparing data to standards. When
contamination exists, the confidence interval and tolerance interval approaches
recommended by EPA will rely on estimating the mean and standard deviation with data
which may not be from a single population. Furthermore, the high variability typically
observed in contaminated time series will cause a very low confidence limit to be
calculated.

3.4 Summary and Regulatory Perspective

In this chapter three types of statistical tests were discussed: tests of central tendency,
tests of trend and statistical intervals. The discussion emphasized the questions
addressed by each type of test addresses. Both parametric and nonparametric tests
were considered. The evaluation of statistical methods yields some insight into how
DNR may effectively determine compliance with NR 140 at waste disposal sites. On the
other hand, several of EPA recommended procedures for use at RCRA hazardous waste
sites were shown to be ineffective.

As evidenced by the Wausau Paper Mills example in Section 3.0.1, many statistical
questions may apply at a site. At sites with historically evident groundwater
contamination, no statistical tests may be necessary, since a strong case for
contamination may be built solely using information on site hydrogeology, groundwater
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flow and water quality graphs. PAL's are intended to act as flags of potential water
quality degradation. We do not feel they are applicable at existing sites with
contamination unless they are calculated as a target value set as a remedial action goal.

There is no magical test to conclusively detect groundwater contamination. Some
statistical tests may confuse the issue of documenting groundwater contamination.
Violation of statistical assumptions may lead to erroneous Type | and Type II error rates. *
Inexperienced analysts may apply the wrong test to answer the right question or vice
versa. The evaluation of statistical tests presented here will hopefully contribute to
solving this problem.

Tests of central tendency both parametric and nonparametric were shown to have
severe limitations. ANOVA tests were applied to three state-of-the-art sanitary landfills
which are not suspected of contaminating groundwater. The analysis showed that

natural spatial variability may be statistically significant. ANOVA results may not be able
to discern between natural variations in mean and those due to contamination. Also, the

parametric assumption of normality and the assumption of constant variance were
found to be frequently violated for both raw and log-transformed data sets. The
nonparametric Kruskal-Wallis test was found to be the preferred test of central tendency,
yet we recommend its use only for testing for spatial variability, not for detecting
contamination. Because spatial variability was frequently observed, we recommend the
use of well-specific comparisons, such as statistical intervals and trend tests for
detecting contamination.

Tests of trend may be used as supporting evidence of contamination. These tests
however cannot be used alone since the sole presence of a trend is not conclusive

evidence of contamination. However, a strong positive trend of magnitude great enough
o cause standard exceedances is powerful evidence of contamination. We recommend-

use of Kendall's Tau, a non-parametric correllation coeffiecient, rather than linear -
regression techniques. This recommendation is made because linear regression may
be easily misused and is dramatically affected by data outliers. .

Confidence, prediction, and tolerance intervals were discussed from two perspectives:

1) as methods for establishing upper limits for background water quality (i.e. lower limits
of potential contamination), and 2) as tools for determining standard exceedances. As
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mentioned above, we feel intervals set based on background water quality are the
preferrred method for statistically detecting groundwater contamination. The intervals
] ifi i her th n a site-wi i

PAL's consistently are the highest estimator of background water quality, except when
sample size is small. These results however were dependent on the choice of a 95
percent significance level for the tolerance and prediction interval. This choice was
made based on EPA recommendation. _Th iction interval i

sound approach to setting background levels, since it is a concentration value
associated with a specified exceedance probability and takes into account sample size
and natural variability.

We recommend that the DNR continue to rely on the PAL as an early warning of
groundwater degradation. PAL's should always be set on a well-specific basis rather
than site wide since spatial variability is believed to be common. From a statistical
perspective the prediction interval is superior to the PAL, since this method is
theoretically correct when the implicit assumptions are met. If a facility owner is
dissatisfied with DNR's calculated PAL values, prediction intervals are recommended as
an alternative approach.

At hazardous waste sites where quarterly comparisons are made between background
water quality and compliance well data by facility owners/operators, we suggest that the
prediction interval approach be considered before other methods. The interval may be
updated, perhaps annually, to give a better, probably lower, estimate of background
water quality. The updated interval will probably be lower because at the same
exceedance level, the interval decreases with increased sample size

When data are to be compared to health and welfare standards, we recommend that
DNR take a strict approach to determine exceedances. Resampling should always be
allowed. However, all results should be considered "true” unless it can be shown that
there is gross error due to sampling procedures or laboratory error. In all other cases,
exceedances should be given the benefit of the doubt only if laboratory accuracy
ranges indicate that the true sample concentration may be below the standard. This will
only be the case when sample values are very close to the standard.
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We do not support the use of confidence or tolerance intervals for determining standard
exceedances as recommended by EPA. These methods, and in particular the
confidence interval, are considerably less protective of the environment than the method
outlined above. Our primary concern with these methods is that they require estimation -
of the parameters for a (possibly) contaminated distribution. These estimates of the
mean and standard deviation are meaningless since samples are probably not from the.
same population, i.e. leachate plumes are not homogenous mixtures of pure chemicals.”
Furthermore, the estimates of the standard deviation may be greatly inflated, since
groundwater contamination is highly variable.

The information presented in this chapter implies that in a court of law, statistics applied
to groundwater quality data may be easily challenged. Fundamental assumptions of all
these methods are frequently violated. A strong case built on hydrogeology, disposal
history, and water quality graphs may be supplemented with statistical test results.
However, a groundwater contamination case which rests heavily on statistical
conclusions will never stand up to detailed examination. Statistics should be viewed as
an admittedly imperfect regulatory tool used to confirm apparent contamination for
determination of compliance with groundwater regulations.

The recommendations summarized above are synthesized into a methodology in
Chapter 5 with specific recommendations for changes to NR140.
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CHAPTER FOUR
STATISTICAL SCREENING OF
THE GROUNDWATER QUALITY DATABASE

4.0 OVERVIEW

While the first three chapters of this report have focused on determining compliance with
groundwater quality regulations, this chapter presents the results of a statistical analysis
on Wisconsin's database of water quality data at waste disposal sites. The landfill
groundwater database includes over 300 licensed sites, each with a number of wells,
and water quality data for an array of constituents at each well.

The DNR is currently working on setting preventive action limits (PAL's) at landfill
monitoring wells for various constituents. The PAL (for those constituents without a
mandated enforcement standard) is set based on a review of background water quality
(see Section 1.2). The current procedure to set PAL's for these indicator parameters
requires a thorough review of site history, hydrogeology, and historic water quality data.
This procedure, as one might expect, is time consuming.

Hence, the broad objective of our analysis of the groundwater database was to
prioritize particular sites for the setting of PAL's and to help minimize the time required to
set PAL's for all the sites. In order to meet this goal, several more specific objectives
included:

(1) to characterize the data available for each site;

(2) to develop a "predictor” of groundwater quality change with respect to
background water quality at a site;

(3) to use this predictor to group landfill sites into categories of similar
groundwater impacts.

In March 1988 we submitted a report to DNR entitled Summary Report Task 3 "Statistical
Screening of the Groundwater Quality Database." In that report a "predictor” of
groundwater quality change with respect to background water quality was developed
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and applied to the database. Landfill sites were grouped into categories of similar
groundwater impact. In subsequent meetings with DNR it became apparent that this
predictor did not work well at sites where more than 50 percent of the wells at the site
were contaminated. Since this is often the case at sites with significant problems, we
continued this line of research. The "predictor” presented in this chapter is simpler than-
the one which we first proposed. Also, a larger control group of sites was used to
evaluate the predictor performance. Therefore, this chapter is intended to replace in
entirety our previous report. CT
We described the groundwater quality data using a database management program E
developed specifically to meet our needs. For each site a variety of information was
generated, including: the number of dates each parameter was tested at each
monitoring well, the number and name of parameters tested per well, and the number of
replicate samples.

No surface water monitoring stations or other non-well points were considered. A total

of 316 sites are included in the database with a total of 4202 wells. If it is assumed that
an average of five PAL's will be set at each well, then a total of 21,010 PAL values must
be determined. These numbers are approximate since some sites are in the process of
closing, and new sites are added on an ongoing basis.

Many environmental parameters are monitored at the landfill sites; however this study
focused on the eight chemical parameters most frequently monitored at landfills:

- chloride - pH

- chemical oxygen demand

specific conductance T

- sulfate total hardness

)

- iron total alkalinity .

In the site characterization it was found that 9 sites had no data for these parameters,

and 79 sites have less than 8 monitoring dates for all parameters at all wells. We did not
address these sites in the statistical analysis. The remaining 228 sites were screened
for evidence of contamination.



4.1 Development of Predictor of Groundwater Quality Change

The general strategy employed to develop a groundwater predictor was, first, to
evaluate in detail the site conditions for a subset of 20 sites from the groundwater quality
database. Then this subset was used to develop and test a predictor. To evaluate
whether groundwater contamination had occurred, water quality data from well samples
was reviewed in conjunction with information on disposal history, waste type and
hydrogeology. In this study, we analyzed a control group of 274 wells from 20 landfill
sites in Wisconsin for evidence of contamination. A summary of the characteristics of
these sites was presented in Section 1.3. Not only was geology, groundwater flow, site
history and waste type considered, but the water quality data at each well were tested
for increasing trends in time, and also compared to other wells. The 274 wells were
grouped into four categories based on the evidence that contamination is present or
absent. The four categories are:

Group|  Presumptive evidence that well is clean
Group Il Evidence that well is probably clean
Group Il Evidence that well is probably contaminated

Group IV Presumptive evidence that well is contaminated

The procedure used to group wells is similar to the flow charts presented in Section 5.1
for setting PAL's based on background water quality. More specifically,

o We met with DNR personnel to discuss background information at each
site.

e Information on site history, geology and groundwater flow was
summarized.

e Wells with sufficient data were identified and located on a site map.

e Time versus concentration plots and box plots were constructed for each
parameter for wells screened in similar geologic formations.

‘& Kendall's Tau two-sided test for trend was applied. Significant trends were



noted on box plots.
e Inferences drawn from the parameter plots for each well were summarized.
e Waells were grouped into categories |, I, lIl, or IV.
A summary of the wells considered and their associated group is presented in Appendix )
B. Group | and Il wells may be used to determine background water quality. Figure 4-1

shows that of the 274 control group wells, 59 percent are either Group | or Il (clean),
while 41 percent are in Group Il and IV (dirty).

FIGURE 4-1 Breakdown of Control Wells
into Four Water Quality Groups

B v

Each dataset for the control wells was statistically summarized including:

X the sample mean

s the sample standard deviation

X|n  the sample mean of the log-transformed data

s|n  the sample standard deviation of the log-transformed data

m the median

TNote that the 99 control group wells evaluated in the previous study (Goodman &
Potter, 1987) were re-classified based on two years of additional data. Some well
groups were changed: most changes were "downgrading” wells from | and Il to Il and IV.
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IQR the interquartile range?

These summary data were explored for use as possible predictors. In theory, a perfect
prediction will always correctly assign wells as "clean” or "dirty." In practice, some group
I and Il wells will be predicted "dirty," and some group Ill and IV wells will be predicted
"clean." Figure 4-2 summarizes these errors for a predictor on the control group wells.
Clearly we want to maximize the success rate, and minimize the probability of false
positive and false negative error.

FIGURE 4-2 lllustration of Errors Inherent in the Contamination Predictor

Predicted Situation
Clean Dirty
c Group Group
© 1&I 1&11
c o -
9o O False Positive
T Error Rate,
2 a
[75]
)
3 Group Group
= 2 & ma&wv
a False Negative Dirty
Errc;r—BRate. Success Rate =

Preliminary analyses included plots of mean versus standard deviation and median
versus fourth spread as shown on Figure 4-3 (a), (b) and (c) for alkalinity data sets. Of
these three plots, the lognormal mean and standard deviation plotted on Figure 4-3 (b)
most clearly separate Group | and Il from Groups Il and IV. Clearly wells with very high
contamination make plots of the mean versus standard deviation (a) and median versus

2 The IQR is usually referred to as the fourth spread when estimated from a sample.
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FIGURE 4-3 Exploratory Data Analysis of Possible Predictor Statistics
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IQR (c) difficult to interpret. These two plots are replotted on a logarithmic scale on
Figure 4-4 (a) and (b). 3 These plots illustrate that data from "dirty” wells (squares)
have significantly higher variability and central tendency than data from "clean” wells
(circles).

Further inspection of Figures 4-3 (b) and 4-4 (a) and (b) reveals that:

e The lognormal standard deviation is consistently low for clean wells
(Figure 4-3 (b)) Since the standard deviation is sensitive to outlying
values, this result is not surprising.

e Both Figure 4-4 plots show a clear difference between clean and dirty
wells, which is the objective for a predictor of groundwater contamination.
The statistics are consistently low for group | and Il wells, relative to Group
liland IV.

e Less "overlap” of clean and dirty wells is apparent in Figure 4-4 (b) than
Figure 4-4 (a).

While this third point is difficult to see on the graphs, this finding implies that the median
and IQR are better statistics for delineating contamination than the mean and standard
deviation. Inspection of similar plots for all parameters confirms this fact. Fewer false
positive results (prediction of clean wells to be dirty) will occur when the predictor is
based on the nonparametric estimators. '

Considering Figure 4-4 (b) , we can define a region within which all, or close to all, the
clean wells fall. A limit of 350 and 150 mg/I for the median and IQR respectively appear
to capture most of the Group | and Il wells. Any data points above these limits could then
be predicted as contaminated. This is the basic idea of our predictor.

Two of the eight parameters do not successfully separate the well groups. Figure 4-5 (a)
shows, the median and IQR for pH data cannot be successfully used to separate groups,
hence this parameter was dropped from the analysis. Also the plot for sulfate, Figure 4-
5 (b), shows fewer wells are sampled for this parameter. Also many of the dirty wells

3 Note that Figure 4-3 (b) is not the same as Figure 4-4 (a). The former is a plot of the mean and
standard deviation of the log transformed data sets, while the latter is a graph of the statistics
calculated for the raw data, but plotted on a log scale for clarity purposes.



FIGURE 4-4 Further Data Analysis of Possible Predictor Statistics
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FIGURE 4-5 Parameters which do not successfully separate well groups
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have low median and will not be predicted "dirty." This high false negative rate does not
help our objectives, therefore sulfate was excluded in the final predictor analysis.

Concentration limits were estimated for each of the six remaining parameters below
which almost all of the clean well data falls, and above which contamination appears
likely. For each parameter some "dirty” wells will be predicted to be clean, since not all
parameters may be elevated at a particular site. But, if we summarize the wells e
predicted "dirty" over all parameters we will most likely capture a high percent of dirty
wells. Thus, two possible predictors considered were:

(1) if for gne parameter at a well the median or the IQR fall above the
established limits, then the well is predicted "dirty,” and

(2) if for two parameters at a well the median or the IQR is above the
established limits, then the well is predicted "dirty."

The two predictors were applied to the control grdup using limits visually determined
from the median/IQR log-scale plots . A computer program was written to calculate false
positive and false negative rates for any concentration limits. By adjusting the limits and
re-running the program we tried to optimize the success rate and minimize the false
negative rate of the predictor.

It was found that the gne parameter predictor had an 86 percent success rate but a 22
percent false positive rate (clean wells predicted dirty). The lwo parameter predictor
reduced the false positive rate to 6 percent, but also reduced the success rate to 76
percent. We then inspected the false positive and negative results and made
adustments to the concentration limits. Figures 4-5 (a), (b), (c), (d), (e), and (f) show the .
prediction limits for each parameter which were found to maximize the success rate and
minimize the false positive rate. The concentration limits are listed in Table 4-1.

The final rule was, if a well had two parameters with median or IQR above the prediction
limits, then the well was predicted dirty. This predictor has an estimated success rate of
84 percent and an estimated false positive rate of 9 percent based on analysis of the
274 control group wells.

An analogy may be drawn between our prediction limit for each parameter and the PAL
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FIGURE 4-6 Median & IQR Prediction Limits for Six Parameters
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TABLE 4-1
Concentration limits used for groundwater contamination predictor

PARAMETER MEDIAN IQR
(mg/l) (mg/1)

Alkalinity 339 141
Specific Conductance ! 589 282
Total Hardness 427 126
Chloride 26 19

Chemical Oxygen Demand 39 56

Iron 0.40 2.10

1 Units are tmhos/cm

(for parameters without an enforcement standard). The prediction limits were chosen to
be above background water quality at the 20 control sites, and hence may be thought of
as upper limits of "clean" water quality. Both the PAL and the prediction limits are '
intended to act as flags of background water quality.

A comparison was made between final PAL's set for ten sites (five of which were
included in the analysis) and the prediction limits. Since the predictor is based on either
ther median or the IQR exceeding a prediction limit, a full comparison cannot be made.
PAL values were only compared to the concentration limit set for the median. PAL's
which are mandated as 50 percent of the enforcement standard were not included (i.e.
PAL's for chloride and iron). However, PAL's established as a minimum increase over
background values are included. Of the 277 PAL values considered for specific
conductance, COD, hardness and alkalinity, only 74 exceeded the prediction limits. 47
of the 74 PALs which exceeded the prediction limits were for COD, and 23 of these 47
PAL's were within 10 mg/| of the limit.

4-13



This comparison shows that the prediction limits individually are conservative estimates
of an upper limit for background water quality. Yet, at the 20 sites considered in this
study, 85 percent of the "dirty" wells are still detected using the overall predictor.

4.2 Screening of the Database

The chosen predictor was applied to all wells in the database which had at least eight
monitoring dates for one or more parameters. As mentioned previously, a "dirty" well.is. ]
defined as having two parameters exceeding the prediction limits.

A simple scheme was used to categorize landfill sites into groups of similar groundwater
quality impacts. Two criteria were used: (1) the number of wells at the site; and (2) the
percent of "dirty” wells at the site.

A site with a large number of wells is likely to be a large site, or a site at which there is a
recognized problem, or a site which is close to a community or valuable resource.

The choice of the second criteria is based on the assumptions that:

(1) there are more downgradient wells than upgradient; and

(2) the more dirty wells, the higher possibility of adverse environmental
impact.

Note that the local extent of contamination is considered using these grouping criteria.

Table 4-2 summarizes the site grouping results. As shown, 16 groups were defined
based on the two criteria. The number of wells at a site (criteria 1) was divided into 4 - -
categories: 1-5 wells, 6-10 wells, 11-20 wells and greater than 20 wells. The percent of -
wells, with sufficient data, predicted dirty (criteria 2) was also divided into 4 groups as
shown on Table 4-1. 24 sites with more than 10 wells are found to have over 75 percent-
of the wells (with enough data) predicted dirty. 41 sites are found to have all or almost
all clean wells (i.e.29+5+7+0). Table 4-3 lists these clean sites and their license
numbers. Table 4-4 lists the 24 sites (16+8) with greater than 10 wells with over 75
percent or more predicted dirty. The complete results are in Appendix C.
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TABLE 4-2 Summary of Site Grouping Results

Total number of wells
1-5 6-10 11-20 > 20 TOTAL

0% 29 5 7 0 41
2 >
ot
25 1-50% | 16 10 19 8 53
53
€9
©% 50-75% | 22 26 8 9 65
g a
>75 % 29 16 16 8 69
TOTAL 96 57 50 25 228

NOTE: Percent of wells predicted dirty calculated
based only on wells with enough data. Total number of wells
includes wells without enough data.

The sites listed in Table 4-3 most likely are not having a significant impact on
groundwater. We feel that the method used in this analysis is powerful at detecting low
groundwater impact. The method has limitations in cases of high contamination as
discussed below.

The lists presented in Tables 4-3 and 4-4 and Appendix C do not represent an absolute
ranking of facilities. Rather the list should be interpreted as groups of sites which
appear to have similar groundwater impacts using our method. It is important to
recognize that impact is determined based on statistical analysis of only indicator
parameters.
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TABLE 4-3 Sites predicted to have low groundwater impact

No. FACILITY NAME LICENSE |
1 BRIDGEPORT LANDFILL 445
2 CNTY EAU CLAIRE-SEVENMILE CRK 2821
3 CNTY JUNEAU 2565
4. CNTY LA CROSSE 2637
5 CNTY MONROE-RIDGEVILLE SITE 2858
6 CNTY ONEIDA 2805
7 CNTY PORTAGE LANDFILL 2966
8 CNTY SAUK SANITARY LANDFILL 2978
9 CTY GALESVILLE 2738
10 CTY NEW RICHMOND 2492
1 CTY PHILLIPS ~ 57
12 CTY SHAWANO - PHASE 2 3069
13 CTY WISCONSIN DELLS 2712
14 EXXON MINERALS COMPANY 2977
15 HUGHES REFUSE & LANDFILL CO 2776
16 JACKSON CNTY SANITARY LF INC C 2004
17 LEADFREE LANDFILL-BRIDGEPORT 2959
18 MERCURY MARINE LANDFILL 2603
19 N.O.W. PAPER CORP. FLY ASH LF 2964
20 NEKOOSA PAPERS INC 2891
21 NEKOOSA PAPERS, INC 2811
22 NORTHRNESTATESKPWR-DEERPCRE 2767
23 PATS STORAGE LAGOON 3003
24 RIVERSIDE SANITATION LANDFILL 738
25 SCOTT PAPER CO LANDFILL 2846
26 TN GRAND RAPIDS 693
27 TN HALLIE 2807
28 TN MENOMONIE 2659
29 TN MINOCQUA-MERCER LAKE SITE 1559
30 TN SHERMAN 2856
31 TN STUBBS-DISTRICT 5 LANDFILL 2909
32 TN SUGAR CAMP-SOUTH SITE 2884
33 VALLEY SANITATION CO, INC 2686
34 WARD PAPER COMPANY LANDFILL 2991
35 WATERFORD SEPTIC SERVICE 2894
36 WAUPACA FOUNDRY, INC 2089
37 WIS ELECTRIC POWER CO-HWY 32 2801
38 WIS ELECTRIC POWER CO-HWY 59 918
39 WIS PUB SERV CORP-WESTON #3 LF 2879
40 WIS PUBLIC SERV CORP-LEGNER 3067
41 YOURCHUCK'S SANITARY LANDFILL 2010

4-16



TABLE 4-4 Sites predicted to have high groundwater impact.

No. FACILITY LICENSE
1 APPLETON PAPERS, INC 30
2 BARRETT LANDFILL, INC 1940
3 BERGSTROM PAPER LF-NEENAH 2446
4 CNTY FOND DULAC 2358
5 CNTY KEWAUNEE SW BALEFILL 2975
6 CNTY MILWAUKEE HWY DEPT 881
7 CNTY WINNEBAGO 611
8 CONSOLIDATED PAPERS-KRAFT DIV 1838
9 CONSOLIDATED PAPERS-WQC 2488
10 . CTY ASHLAND . 177
11 CTY SHAWANO 2342
12 CTY SUPERIOR-WIS POINT LF 12
13 FLAMBEAU PAPER CORP 2756
14 HOLTZ & KRAUSE, INC 674
15 JAMES RIVER NORWALK-NORTHLAND 2893
16 NEKOOSA PAPERS (LIME SLUDGE) 2614
17 SANITARY TRANS & LF-DELAFIELD 719
18 TORK ALUM MUD DISPOSAL SITE 1892
19 TORK LANDFILL CORPORATION 652
20 VULCAN MATERIALS CO 2998
21 WASTE MANAGEMENT OF GREEN BAY 3
22 WASTE MNGT OF WI, INC-POLK 307
23 WASTE MNGT OF WIS, INC-CITY DS 37
24 WASTE MNGT OF WIS-BROOKFIELD 1

Limitations of this analysis include,

- (1) Contamination from specific heavy metals, volatile organic hydrocarbons,
or other hazardous constituents is not directly evaluated; instead,
indicators of water quality change were considered. These indicators are
naturally found to occur in low concentrations in groundwater. The result is
that some wells with contamination only by a specific contaminant may be
overlooked.

(2) False positive results may occur at wells screened in geologic formations
which naturally have highly variable background water quality or high
background concentration. Glacial till for example may exhibit naturally
high water quality variation.
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Table 4-3 and 4-4 and Appendix C may be interpreted in several ways:

(1) Sites which have few monitoring wells (<10) with greater than 50 percent
of the wells flagged may be sites which need additional monitoring. While
each site must be considered individually, our resuits indicate that .
contamination is apparent, but information is limited.

(2) Sites with greater than 50 percent of flagged wells should have higher .
priority for in-depth investigation than other sites. s

(3) When targeting a particular site for investigation Appendix C may be used,
to get a first understanding of water quality at a landfill. :

(4) Results should not be interpreted as an absolute ranking of water quality at
landfills.

The first item above applies to 93 sites in Wisconsin, that is 41 percent of the sites
included in this screening (and 29 percent of the 316 licensed sites-- as of August
1987). These results imply that high priority should be given to expanding the
monitoring system design at existing landfills in Wisconsin. Item two suggests that the
sites listed in Table 4-4 should be given high priority, however many of these are
currently closely monitored. Review of Appendix C may identify sites not currently
assigned to personnel which may warrent additional review.

4.3 Characteristics of Background Water Quality

The exploratory data analysis presented in Section 4.1 illustrated that the median and
IQR may be used to predict levels above which contamination is likely. This section
illustrates characteristics of background water quality in Wisconsin as defined by these
same statistics. Data from 161 Group | and |l wells were used to generate histograms of
the distribution of clean water quality at the 20 landfill sites investigated in this study.
Figures 4-7 and 4-8 present these distributions for the median and IQR respectively.
The prediction limits are drawn on each figure. Note that the scales on these figures are
log base 10, i.e 1= 10 mg/l, 2 = 100 mg/l etc. When interpreting laboratory reports of ,
sample values, an analyst may wonder if a value is really high/low with respect to other
sites in the State. Figure 4-7 may be used by new DNR hydrogeologists to get a feel for
what typical concentrations for background water quality are.

-
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Figure 4-7 may also be used when evaluating contamination at a site. The
standardization procedure currently used at DNR to allow many parameters to be
plotted on one figure employs both the median and interquartile range (See Goodman
and Potter for a discussion of this procedure). The standardization procedure is useful
in this respect, however at a site where there is contamination at more than 50 percent
of the wells the values for the standardization statistics will not be representative of
background water quality (i.e. the zero point of the graph will not represent background
conditions). The values of the site-wide median and median fourth spread may be
compared to the appropriate graphs on Figure 4-7 and 4-8 to get a feel for the
reasonableness of the values.

Appendix D contains a statistical summary of these distributions. Also included are
summary statistics for the distribution mean, standard deviation, and (standardized)
skewness coefficient for the raw data and log-transformed data (not presented here).

4.4 Summary and Conclusion

A statistical analysis of groundwater quality data collected at monitoring wells at landfill
sites in Wisconsin was conducted. A characterization of the data available showed that
316 sites with 4,202 wells are included in the database, however only 228 sites were
included in the analysis.

A predictor was developed of groundwater quality change with respect to background
water quality. Performance of the predictor was evaluated using a control group of 274
wells analyzed in detail in a previous study. The predictor was defined as not-to-be
exceeded upper limits of background water quality for each parameter. The chosen
predictor required at least two parameters at a well to exceed the prediction limits before
the well was predicted "dirty." It is estimated that this predictor successfully observes
contamination 84 percent of the time, while having false positive prediction (clean wells
estimated dirty) only 9 percent of the time. The percent of wells considered dirty and the
total number of wells at a site were then used as criteria to place all the sites into 16
groups as summarized in Appendix C.

Interpretation of the results requires an understanding of the limitations of the analysis.
The most important limitation is the fact that only indicators of change from background
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water quality were used; specific hazardous substances were not considered. Results
should not be interpreted as an absolute ranking of water quality at landfills.

While this technique does have limitations, it can be used to prioritize sites for the setting
of PAL's. The method considers both the degree and extent of contamination at the
facilities. Degree is considered in the predictor itself, although only as an absolute

assessment of "clean” or "dirty.” Extent is addressed implicitly by the grouping criteria. _

A second result of the exploratory data analysis is a description of characteristics of
background water quality. The log-distributions of the median and fourth-spread may be
used to get a preliminary indication of what typical "high" and "low" background
concentrations are. These figures may be particularly useful to new personnel trying to
interpret relative concentration levels from laboratory reports or time versus
concentration plots.
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Figure 4-7 (continued)

(d).

Chemical Oxygen Demand

304

25+

204

154

10+

35

.8

1 1.2
LOG (MEDIAN) COD (mg/l)

1.4 1.6

(e) Iron

30

25 |

20 J

15 4

10 J

-1.8

-1.6

1.4

-1.2

LOG(MEDII-\N) IRON (m(_':;fl)

() Chlaride

8 -6 -4

1

1.5 ' 2 j
LOG (MEDIAN) CHLORIDE

4-22




FIGURE 4-8 Background Histograms for the Interquartile Range
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CHAPTER FIVE
CONCLUSIONS AND RECOMMENDATIONS

5.0 Overview

This report has explored the use of graphics and statistics to detect groundwater
contamination at waste disposal sites. Hydrogeology and water quality at twenty
Wisconsin waste disposal sites were considered for this research. The sites represent a
good cross-section of landfill design, size and geologic location for the State of
Wisconsin.

This chapter summarizes the major findings of the previous chapters from a regulatory
and technical perspective. Also, defensible procedures for evaluating contamination
are synthesized into a general methodology useful in two general situations:

e existing waste sites with historic evidence of contamination, and

e new or existing sites with no suspected impact on groundwater quality.

The broad objective of this study is to evaluate alternative analytic methods that DNR
can use to meet the intent of NR 140 at nonhazardous waste sites. To meet this
objective, graphical and statistical methods appropriate for individual site reviews were
evaluated in Chapters 2 and 3. Also, in order to help DNR prioritize their work in
enforcing NR 140, a statistical screening of all licensed Wisconsin facilities is presented
in Chapter 4. While the focus of this study is on solid waste disposal facilities, the insight
provided is in many cases applicable to most types of hazardous waste sites, land
disposal systems and storage facilities.

This chapter is organized as follows:

e the technical findings are discussed with respect to regulatory
objectives in Section 5.1;

e our concerns with current EPA policy and technical guidance on

statistical analysis of groundwater quality data are summarized in
Section 5.2; and
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e procedures to document groundwater contamination are synthesized
into a general method in Section 5.3.

5.1 Summary and Regulatory Perspective

The most powerful analytic tools to detect groundwater contamination are graphs of
water quality data. Well trained analysts can usually build a conclusive case for
remedial action or further investigation based solely on geology, groundwater flow data,
waste disposal history, and water quality graphs. Time versus concentration plots and-
boxplots are two powerful methods for detecting contamination. Time versus
concentration plots are easy to prepare and may show trends in time and any abrupt
changes in water quality. For these reasons, we recommend that DNR amend current
solid waste and waste water regulations to require submittal of annual time series plots.
Review of these submittals would be a quicker and more effective method of detecting
new problems than trying to review all the laboratory analysis turn-around documents.

Because groundwater quality varies naturally both in space and in time, statistical
methods are applicable to the regulatory decision making process. The correct use of
statistical tests requires that assumptions implicit to the chosen statistical model be valid.
Our investigation of the validity of assumptions for parametric statistical tests revealed
that the assumption of normality may be frequently violated. Many of the most powerful
statistical tests rely on this assumption. This finding further emphasizes the importance
of graphical techniques and investigation of hydrogeologic conditions. It also supports
the use of nonparametric statistics, although these methods can be less powerful than
parametric counterparts. On a more positive note, results of previous studies show that
seasonality and serial correlation are not frequently found in groundwater quality data.
Thus we may conclude that the basic assumptions of stationarity and independence are
valid. )

Distributional assumptions aside, the use of statistical methods is complicated by spatial
variations in background water quality. An analysis of 32 wells at three "clean" solid
waste facilities showed that wells screened in similar geologic strata cannot be
assumed to have equal mean or constant variance. When this is the case, groundwater
contamination cannot be statistically discerned from natural variability (when
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comparisons are made between background wells and compliance wells). Whenever
possible, background water quality should be defined for each well at a site.

The DNR relies on PAL's as indicators of potential groundwater contamination. At new
and existing "clean" sites our research supports the DNR policy of setting PAL's at each
well, rather than establishing site-wide levels. DNR also currently relies on PAL's as a
tool to enforce regulations at existing sites with known contamination. In this case,
PAL's are set at contaminated wells based on data from another well(s) at the site. for
several reasons we recommend that DNR discontinue this practice. In the first place, at
a clearly contaminated site, a case for remedial action can be built using water quality
graphs, hydrogeologic information and good judgement. Calculation of PAL's is always
secondary to this review. Secondly, transposing PAL's from one well or group of wells
to another is not a sound statistical practice, since groundwater quality may significantly
vary in space.

PAL's may be thought of as an upper limit for background water quality. Two other
methods which are also used to define background water quality are statistical
prediction intervals and tolerance intervals. A review of the statistical concept of these
statistics shows that the prediction interval most directly compares background water
quality to new data. The prediction interval is a background concentration estimated to
have a set (low) probability of exceedance for new samples. The limit takes into account
small sample size (unlike the PAL) and natural variation. A comparison of prediction
intervals, tolerance intervals, and PAL's showed that the PAL is a conservative (high)
estimate of background water quality when a significance level of 0.95 is employed in
the calculations as recommended by EPA. It is importantto note that these methods
may not produce environmentally meaningful results if parametric distributional
assumptions are not met. Since we know this is often the case, and because PAL's
appear to be conservative, we recommend DNR continue to calculate background water

quality levels based on the algorithm PAL = x + 3s_

At hazardous waste sites (permitted under RCRA Subtitle C), EPA requires that quarterly
data be compared to background water quality using a statistical test. Our investigation
has shown that statistical prediction intervals are the preferred method. However as
mentioned above, these intervals are dependent on the validity of distributional
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assumptions. Also, the interval should be updated annually as long as no
contamination is present. We also recommend this method for sanitary landfills if
(when) EPA adopts the amendments to Subtitle D of RCRA as proposed in ,
1988. The PAL does not appear to meet the requirements of the proposed regulations.
The prediction interval calculation would replace comparison of new data to PAL's.

New monitoring data must be compared to mandated water quality standards as well. as
to background water quality. Wisconsin enforcement standards and PAL's set as a
percent of these standards are interpreted in this report as being not-to-be-exceeded -
limits, except if sample collection, handling or laboratory error can be proven. The
possibility of an exceedance being caused by sampling error or laboratory mishandling
can be assessed by the timely resampling of the well. Other than that, the only reason
that a sample value above the standard may not be a true exceedance is if laboratory
accuracy is a factor. We suggest that sample values close to a standard be given the
benefit of the doubt only if a lower accuracy confidence range reported by the laboratory
indicates that the true sample concentration is below the standard. DNR should further
investigate the use of laboratory accuracy reports for determining standard
exceedances. ‘

The above discussion focused on the main issues surrounding individual site review.
The graphical and statistical procedures which we recommend are synthesized into a
general methodology in Section 5.3.

Our research also resulted in the development of a predictor of groundwater quality
change. A control group of 161 background wells and 113 "contaminated” wells was
used to evaluate the performance of the predictor. This predictor separates "clean” and"
"dirty" wells based on concentration limits for both the median andinterquartile range of
a dataset below which contamination was unlikely. These nonparametric statistics were
found to be consistently low for "clean" wells, unlike parametric distribution parameters
which are sensitive to data outliers. Ongoing DNR efforts should be focused on those
sites which appear to significantly impact groundwater and on sites which are believed *
to need additional monitoring. A secondary result of the predictor research was a
characterization of clean water quality. Between the statistical screening results and the
insight gained from the evaluation of statistical tests, the DNR hopefully is in a better
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position to prioritize and expedite the remediation of contaminated groundwater
resources in Wisconsin.

5.2 Concerns with EPA Policy and Recommendations

The final EPA rules for permitted RCRA hazardous waste facilities (EPA, October 11,
1988) require a quarterly test for "change” in water quality as well as comparison of new
data to water quality standards. A draft guidance document for these regulations is
currently in the final review stage (EPA, 1988). This document is a statistical "cookbook”
for hazardous waste facility owners. It is also intended to provide guidance for the
proposed changes to RCRA Subtitle D which affect municipal solid waste facilities.
Throughout this report we evaluated and discussed procedures recommended in this.
document. In this section our primary concerns with the guidance document are
summarized. These concerns are:

e the lack of insight on environmental questions which recommended
tests are "answering;"

e EPA policy of not requiring tests for distributional assumptions prior to
use of parametric statistics;

e recommendation of parametric ANOVA as a "default” method of
analysis; and

e use of confidence and tolerance intervals for detecting standard
exceedances.

The document does not discuss the advantages and disadvantages of the various
recommended procedures. Looking at the broad picture, the choice between making
between-well comparisons versus intra-well tests is not thoroughly discussed. The
document implies that between-well comparisons are preferred. Conversely, we feel

hat intra-well comparisons ar istically m r n inter-well inceth
latter ar nfoun r i riability. From a closer perspective, the

recommended tests for both inter- and intra-well comparisons should be presented by
defining the null and alternative hypotheses in terms of the "question” the test answers
as well as in statistical notation. Some insight should be provided regarding the
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fundamental difference in philosophy of the recommended procedures.

Addressing the second issue listed above, we believe that tests for normality should be
performed prior to using parametric statistical tests. This research has shown that this
assumption is frequently violated by groundwater quality data, even after log-
transformation. Three (optional) tests for normality are detailed in the EPA document:

normal probability plots, the coefficient of variation method, and the chi square test. We,

do not believe that any of these tests are appropriate for wide-spread use to test for

normality, although the probability plots are useful for qualitative inferences. The chi _ .

square test is not very sensitive to departures from normality at small sample size. The
coefficient of variation method is not a "goodness-of-fit" test, rather the procedure is a
"rule of thumb." We found this rule to grossly underestimate the number of non-normal
datasets found by the skewness test. In place of these methods we recommend that

EPA advocate the skewness test. This test is simple to perform and is sensitive to small
sample size.

Our most serious concern with the EPA guidance document concerns the use of
between-well comparisons, and particularly the ANOVA method. In this study, 8
parameters measured at 4 groups of wells (from three sites) were tested for natural
spatial variability. The assumptions implicit in parametric ANOVA were tested for both
the raw data and the log-transformed data. This analysis found that

e the assumption of constant variance (as tested by Bartlett's test) was
found to be frequently violated for both the raw and log-transformed

data; and

e the normality assumption was also frequently violated.

Based on the above findings, the Kruskal-Wallis test (nonparametric one-way ANOVA] *
was used to test whether mean water quality differed between background wells. At all *

four groups of wells spatial variability was detected for at least two parameters. From
these results we conclude that shifts in mean due to contamination cannot be
distinquished from natural shifts in mean water quality at these sites. Therefore, we
believe that neither parametric nor nonpar. ric ANQVA shoul

contamination, unless it can be shown that natural spatial variability is not significant.
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Another important issue regards the use of confidence and tolerance intervals for
detecting standard exceedances. First of all, the use of an upper confidence limit (on
the mean of four independent quarterly samples) is a lot less protective of the
environment than the alternative method of using a lower tolerance interval. The
confidence limit method could allow three out of four samples to be above a standard
and still not conclude that the standard has been exceeded. This is because very wide
intervals are calculated when sample variance is large, which is usually the case for
"contaminated" samples. Secondly, both of these methods rely on calculating the mean
and standard deviation from samples which may be contaminated by landfill leachate.
We do not believe this is correct because samples drawn from a contaminated regime
are not necessarily from the same population, since leachate plumes are not
homogeneous mixtures evenly dispersed in groundwater. Thirdly, as discussed in

Section 3.3, w n re th istical intervals should pl role in erminin
rd ex n 1l f rh nsidering | r r
confidence levels.

More detailed discussion of EPA recommended tests and policy may be found
throughout this report and in particular in,

e Section 1.3 Federal Regulatory Context,
e Section 2.2.3 The Assumption of Normality,
e Section 3.1 Tests of Central Tendency, and

® Section 3.3 Confidence, Tolerance and Prediction Intervals.

5.3 Statistical Procedures to Document Groundwater Contamination

The results of this research indicate that the following procedures are preferred for
evaluating contamination at landfills with respect to determining compliance with
groundwater quality regulations:

e time versus concentration plots and box plots,
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o tests of trend to support cases of contamination,
o resampling of wells,

e comparison of standard exceedances to laboratory accuracy
confidence levels, and

e PAL's and prediction limits for detecting high concentrations thought to
be indicative of contamination.

When parametric statistics are employed (for example for prediction intervals) we
recommend,

e the skewness test for testing normality, and

e log transformation of data if raw data are positively skewed.

These methods are synthesized into a methodology for analyzing water quality at waste
disposal sites on Figures 5-1 to 5-5. No single method is appropriate at all sites. The
guidance provided in this section is intended to have general applicability for
determining if background water quality has significantly changed at waste disposal
facilities. Basically the approach is to define background water quality using
hydrogeologic information, summary statistics and review of water quality graphs. If a
site appears clean or is a new site, a future comparison procedure is presented. At
existing sites methods are shown for documenting existing contamination if present.

Figure 5-1 summarizes the overall approach. Procedures to evaluate background water'
quality at existing sites are presented in Figure 5-2. Time versus concentration plots
and boxplots are used to identify those wells which are believed to be clean. The DNR
currently has adopted an approach recommended by Goodman and Potter (1987) for
standardizing well data in order to plot all parameters at a well on one plot. This method
uses nonparametric statistics based on the median and IQR to transform data from )
different parameters to a single (NP) scale. This procedure is termed "optional” on
Figure 5-2 since it is not as essential as the one- parameter time series plot or the box
plot. Also, the NP scale is not as easy to interpret as a true concentration scale.

5-8



We suggest that time series plots be annotated by noting the presence of siginificant
trends and that box plots be annotated by adding the sample size and the number of
standard exceedances. If plots are rescaled to "hide" high data this should also be
noted on the figure. We do not recommend the arbitrary deletion of high data values just
because outliers are infrequent. Unless editing of data can be physically justified, it
should not be done.

Statistics should be summarized for each well. Important summary statistics are listed
on Figure 5-3. In addition to familiar distributional parameters we recommend that
Kendall's Tau statistic and the skewness coefficient be generated on a routine basis.
Kendall's Tau is a measure of temporal correlation and, if found to be significant,
indicates that a trend exists. The procedure to apply Kendall's test of trend is described
in Appendix A. Also described in Appendix A is the skewness test.

The statistical program used by the DNR to generate statistics is the STATISTICAL
ANALYSIS SYSTEM (SAS). Currently DNR has programed SAS to generate output for
a multitude of summary statistics for each well. Most of these statistics such as the
coefficient of variation, the quantile points, etc are not reviewed. We suggest that DNR
reprogram SAS to output only those statistics listed in Figure 5-3. This new output
format will be easier to interpret and probably inspected in more detail than the current
forms.

Figure 5-4 presents procedures for documenting existing contamination at a site. For
sites with apparent contamination we see no need to calculate PAL's. The only
statistical test we suggest is Kendall's test for trend. Significant positive trend coupled
with standard exceedances is powerful evidence of contamination. "For sites where
more extensive documentation of contamination is necessary, we suggest that PAL's be
calculated as currently mandated. A viable alternative however is the statistical
prediction interval. The procedure for calculating a prediction interval is given in
Appendix A. Calculation of a prediction interval would also be appropriate at sites when
a quarterly comparison to background water quality is required. The skewness test for
normality should be applied before calculating prediction intervals. It is important to
recognize that PAL's and prediction intervals calculated on non-normal data sets may
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not be environmentally meaningful. Log-transformation of data should be considered in
this situation.

A method to evaluate quarterly reports submitted by supposedly "clean” sites is
presented in Figure 5-5. The procedure advocates resampling of wells if sample or
gross laboratory error are suspected. A comparison of health and welfare parameters to
laboratory accuracy confidence levels is recommended.

-

-

These admittedly general procedures are presented so that site-review personnel will
have a set of tools which provide the level of scientific detail necessary to defensibly e
document groundwater contamination. We suggest that these procedures are

defensible because 1) they are based primarily on graphical inference and good
judgement and 2) nonparametric statistics are advocated whenever possible (i.e. trend
tests and box plots). The one parametric method suggested for general use is the
prediction interval. Because data may not be normally or lognormally distributed, a test
for normality is recommended.

These flow charts coupled with the explanation of graphical procedures in Chapter 2,
the discussion of statistical tests in Chapter 3, and the statistical methods described in
Appendix A provide DNR with a foundation for determining compliance with NR 140 at
solid waste disposal facilties. The sites targeted by the statistical screening of the
Wisconsin groundwater quality database should be given high priority for investigation
using these procedures.

5-10



FIGURE 5-1 Overview of Methodology

PRELIMINARY TASKS

Evaluate hydrogeology
Group wells by stratigraphic unit
Order wells upgradient to downgradient
Select "critical” chemical constituents/indicators

NEW SITES \Lxusme SITES

Summarize Background Evaluate Background
Water Quality Water Quality
(Figures 5-2 and 5-3) (Figure 5-2)

Future Monitoring
and
Data Analysis
(Figure 5-5)

Use “clean" data to summarize
BackgroundWater Quality
(Figure 5-3)

Detection of contamination Document existing contamination
(Figure 5-4)
NO Contaminated ?
<
Further investigation YES
and ¢

remedial action
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FIGURE 5-2 Evaluation of Background Water Quality at Existing Sites

Perform Preliminary Tasks
Figure 5-1

Plot time versus concentration.
Inspect plots for "early" outliers and for data transcription errors.

Delete erroneous data

4
l ! l 2 3 (Optional)

[pbt box plots for eacr) Calulate summary statistics Standardize data

for each well and site-wide

parameter at each well See Te
l (See Figure 5-3) ( x)
~ A
Inspect for A 4
1) wells with high median and large IQR 4 Replot )
as potentially contaminated (for each parameter) time versus concentration
2) Note all wells which appear stable One parameter
(low median and IQR) for each at all wells Allafzrnaem:;irs
parameter as potentially background
\_water quality. "/ Inspect for Inspect for
1) evidence of trend 1) correlation between
2) evidence of seasonality parameters
Annotate by adding 3) evnde;tqe of serial 2) fqo';\stltuents wnhhhlgh
1) number of measurements koorre on scores at eac web
2) No. of ES/MCL/PAL exceedances
3) significant skew (optional) A 4
3) rescale if necessary by deleting high Q\nnotate plots by noting significant trendg ;
outliers and noting omission on plot. - .

> <

CHOOSE BACKGROUND WELLS
SUMMARIZE BACKGROUND
STATISTICS FOR EACH WELL
(Go to Figure 5-3)
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FIGURE 5-3 SUMMARY OF BACKGROUND WATER QUALITY
' (Existing sites and new sites)

Calculate summary statistics for each well and site wide

l

Important summary statistics include:

the number of samples,

mean, median, standard deviation, interquartile range,

skewness coefficient, Kendall's Tau statistic and
knumber of ES exceedances j

Inspect box plots of selected background wells for spatial variability.

Note natural spatial trends on site map

l

Check for significant skewness using Appendix A
(optional)
Check for significant trend using Appendix A
See text

l

[Annotate box plots and time versus concentration plotsj

(See Figure 5-2)

CGO to Figure 5-4)
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Figure 5-4 Document Existing Contamination and/or set Limits

Sites with Apparent Contamination

Build case for contamination based on
enforcement standard exceedances,
trend test results, water quality graphs,
and hydrogeologic information

Sites where more extensive
documentation Is necessary

Set PAL's/ACL's based on background
water quality

;Requlrég further investigation and
: _ re_medlal action

Rely on standard exceedancess,
tolerance level or PAL exceedances,
trend test results, hydrogeologic
information, etc.

Exceedances

Summarize compliance well data

Analyze summary statistics
for each well or group of wells.

y

Calculate PAL based on

PAL = X+3s oras
PAL= YX+ks

where K is calculated as a prediction
interval
(See Section 3.4 & Appendix A)

which exceed PAL/ACL/ES. <

No exceedances

C See Figure 5-5)




Figure 5-5 Determining Compliance at "Clean" Sites

Perform preliminary tasks
Figure 5-1

v

Calculate summary statistics at each well and site-wide
Calculate PAL/ACL's or prediction limits
(Figures 5-3 & 5-4)

I

#| Obtain quarterly report |

) 8
. ( RCRA Hazardous Waste Site
Non-hazardous waste site MSWLF .
( (1 quarterly sample) ) (4 independent quarterly samples) ]

Comparison to standard: compare each

Doss not exceed sample to standard.
Comparison to background: compare each —p

Compare data to measurement of critical constituents or indicators

f¢—{ PAL's or ES/ACL's to prediction intervals established based on Does not
background water quality (See Text) or perform exceed
other comparison procedure.

Exceeds Way above standard Exceeds
| »| Require
Resample
Close to standard
Check laboratory ]
_accuracy Further investigation
confidence levels. J Sample and
exceeds Remedial Action
< standard

Standard within
confidence range

5-15



REFERENCES

Benjamin J.R. and C. A. Cornell. 1970. Probability, Statistics. and Decision for
Civil Engineers. New York: McGraw-Hill Book Company

Berthouex, P.M. and W.G. Hunter. 1983. How to Construct Reference
Distributions to Evaluate Treatment Plant Effluent.Quality. Journal WPCF.
Vol. 55, No. 12 (December): 1417-1423.

Blair, R. Clifford and James J. Higgins. 1980. A Comparison of the Power of
Wilcoxon's Rank-Sum Statistic to that of Student's T Statistic Under

Various Nonnormal Distributions. Journal of Educational Statistics. Vol 5,
No. 4 (Winter): 309-335.

Boneau, C. Alan. 1960. The Effects of Violations of Assumptions Underlying
the T-Test. Psychological Bulletin. Vol. 37, No. 1: 49-64.

Box, G.E.P., W.G. Hunter and J.S. Hunter. 1978. Statistics for Experimenters.
New York: John Wiley & Sons.

Cohen, A.C., Jr. 1959. Simplified Estimators for the Normal Distribution When
Samples are Singly Censored or Truncated. Technometrics. Vol 1: 217-
237.

Cohen, A.C., Jr. 1961. Tables for Maximum Likelihood Estimates: Singly
Truncated and Singly Censored Samples. Technometrics. Vol. 3: 535-
541.

Conover, W.J. and R.L. Iman. 1976. On Some Alternative Procedures Using
Ranks for the Analysis of Experimental Designs. Commun, Statist.-Theor.
Meth,, Vol. A5, No. 14: 1349-1368.

Davis, C.B. and R.J. McNichols. Discussion of Statistical Prediction Intervals for

the Evaluation of Ground-Water Quality, by R.D. Gibbons. Ground Water. :
90-91.

6-1



Doctor, P.G., R.O. Gilbert, R.A. Saar, and G. Duffield. 1985a (February 14). An
Analysis of Sources of Variation in Ground-Water Monitoring Data of
Hazardous Waste Sites. Milestone 1. Revised Draft. EPA Contract No.
68-01-6871. Battelle, Pacific Northwest Laboratories. Richland, WA.

Doctor, P.G., R.O. Gilbert, and R.R. Kinnison, 1985b (February 25). Ranges of
Variation in Ground-Water at Hazardous Waste Sites. Draft Milestone 2.
EPA Contract No. 68-01-6871. Battelle, Pacific Northwest Laboratory.
Richland, WA.

Doctor, P.G., R.O. Gilbert and R.R. Kinnison 1985¢ (May 9). Statistical
Comparisons of Ground-Water Monitoring Data-Draft. Milestone 3. EPA
Contract No. 68-01-6871. Batelle, Pacific Northwest Laboratory. Richland,
WA.

EPA (United States Environmental Protection Agency). August 24, 1987.
Statistical Methods for Evaluating Ground-Water Monitoring Data from
Hazardous Waste Facilities; Proposed Rule. 40 CFR Part 264. Eederal
Register (Part VII). Vol. 52, No. 163 (Monday).

EPA (United States Environmental Protection Agency). October 11, 1988.
Statistical Methods for Evaluating Ground-Water Monitoring from
Hazardous Waste Facilities; Final Rule. 40 CFR Part 264. Eederal
Begister (Part I). Vol. 53, No. 196 (Tuesday).

EPA (United States Environmental Protection Agency). 1988. Statistical
Analysis of Ground Water at RCRA Facilities-Draft Guidance. Office of
Solid Waste. Waste Management Division. Washington, D.C.

Fligner, Michael A. and George E. Policello . 1981. Robust Rank Procedures

for the Behrens-Fisher Problem. Journal of the American Statistical
Association. Vol. 76, No. 373. (March): 162-168.

Florida, Department of Environmental Regulation. June, 1985. Statistical

P I | Considerati for Envi tal M
(SPACEMAN). DER Technical Report by L. Groeneveld and R.D. Duval.

6-2



Fung, Karen Yuen. 1979. A Monte Carlo Study of the Studentized Wilcoxen

Statistic for the Behrens-Fisher Problem. Journal Statist. Comput. Simul,
Vol. 10: 15-24. '

Gibbons, Jean D. 1985a. Nonparametric Methods for Quantitative Analysis.

Columbus, Ohio: American Sciences Press, Inc.

Gibbons, Jean D. 1985b. Nonparametric Statistical Inference. New York:
Marcel Dekker, Inc.

Gibbons, Robert D. 1987a. Statistical Prediction Intervals for the Evaluation of
Ground-Water Quality. Ground Water. Vol. 25, No. 4 (July-August): 455-
465.

Gibbons, Robert D. 1987b. Statistical Models for the Analysis of Volatile
Organic Compounds in Waste Disposal Sites. Ground Water. Vol. 25,
No. 5 (September-October): 572-580.

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring.
New York: Van Nostrand Reinhold Company.

Goodman, Iris. 1987. Graphical and Statistical Methods to Assess the Effect of
Landfills on Groundwater Quality. M.S. Thesis. University of Wisconsin-
Madison.

Goodman, Iris and Kenneth Potter. 1987. Graphical and Statistical Methods to
Assess the Effects of Landfills on Groundwater Quality. Report to
Wisconsin Department of Natural Resources, Bureau of Solid and
Hazardous Waste (see also Goodman, 1987).

Hahn, Gerald J. 1970a. Statistical Intervals for a Normal Population, Part I.

Examples & Applications. Journal of Quality Technology. Vol. 2, No. 3
(July): 115-125.

Hahn, Gerald J. 1970b. Statistical Intervals for a Normal Population, Part .

Formulas, Assumptions, Some Derivations. Journal of Quality Technology.
Vol. 2, No. 4 (October): 195-206.

6-3



Hahn, Gerald. 1970c. Understanding Statistical Intervals. Industrial
Engineering. Vol. 2, No. 12 (December): 45-48.

Hahn, Gerald J. and Wayne Nelson. 1973. A Survey of Prediction Intervals and

Their Applications. Journal of Quality Technology. Vol. 15, No. 4
(October): 178-188.

Harris, Jane, Jim C. Loftis and Robert H. Montgomery. 1987. Statistical
Methods for Characterizing Ground-Water Quality. Ground Water. Vol. 25,
No. 2 (March-April): 185-193.

Helsel, Dennis R. 1987. Advantages of Nonparametric Procedures for Analysis

of Water Quality Data. Hydrological Sciences Journal. Vol. 32, No. 2
(June): 179-190.

Helsel, Dennis R. and Robert M. Hirsch. 1988. Discussion of Applicability of the
T-Test for Detecting Trends in Water Quality Variables by R.H. Montgomery
and J.C. Loftis. Water Resources Bulletin. Vol. 24, No. 1: 201-207.

Helsel, Dennis R. and Timothy A. Cohn. 1988. Estimation of Descriptive
Statistics for Multiply Censored Water Quality Data. Water Resources
Besearch. Vol.24, No. 12. (December): 1997-2004.

Hirsch, Robert M. and James R. Slack. 1984. A Nonparametric Trend Test for

Seasonal Data with Serial Dependence. Water Resources Research.
Vol. 26, No. 6 (June): 727-732.

Hirsch, Robert M., James R. Slack and Richard A. Smith. 1982. Techniques of
Trend Analysis for Monthly Water Quality Data. Water Resources
Research. Vol. 18, No. 1 (February): 107-121.

Lettenmaier, Dennis P. 1976. Detection of Trends in Water Quality Data from

Records with Dependent Observations. Water Resources Research.
Vol. 12, No. 5 (October): 1037-1046.

Loftis, Jim C., Jane Harris and Robert H. Montgomery. 1987. Detecting

Changes in Ground Water Quality at Regulated Facilities. Ground Water
Monitoring Review. (Winter 1987): 72-76.

6-4



Loftis, J.C. and R.C. Ward. 1980. Sampling Frequency Selection for Regulatory

Water Quality Monitoring. Water Resources Bulletin. Vol. 16, No. 3 (June):
501-507.

McBean, Edward A., Michel Kompter and Frank Rovers. 1988. A Critical
Examination of Approximations Implicit in Cochran’s Procedure. Ground

Water Monitoring Review. Vol. ___ (Winter): 83-87.

McBean, Edward and Frank A. Rovers. 1984. Alternatives for Handling

Detection Limit Data in Impact Assessments. Ground Water Monitoring
Review. Vol. 4, No. 2 (Spring): 42-44.

McBean, Edward and Frank A. Rovers. 1984. Alternatives for Assessing
Significance of Changes in Concentration Levels. Ground Water
Monitoring Review. Vol. 4, No. 3 (Summer): 39-41.

McBean, Edward and Frank A. Rovers. 1985. Analysis of Variances as
Determined from Replicate vs. Successive Sampling. Ground Water
Monitoring Review. Vol. 5, No. 3 (Summer): 61-64.

McGill, Robert, John W. Tukey and Wayne A. Larsen. 1978. Variations of Box
Plots. The American Statistician. Vol. 32, No. 1 (February): 12-16.

Millard, S.P. and S.J. Deverel. 1988. Nonparametric Statistical Methods for
Comparing Two Sites Based on Data with Multiple Nondetect Limits.
Water Resources Research. Vol.24, No. 12 (December): 2087-2098

Miller, M.D. and F.C. Kohout. (Undated.) RCRA Ground Water Monitoring
Statistical Comparisons: A Better Version of Student's T-Test. Mobil
Research and Development Corporation. Paulsboro, New Jersey.

Montgomery, Robert H. and Jim C. Loftis. 1987. Applicability of the T-Test for
Detecting Trends in Water Quality Variables. Water Resources Bulletin.
Vol. 23, No. 4: 653-662.

Montgomery, Robert H., Jim C. Loftis and Jane Harris. 1987. Statistical
Characteristics of Ground-Water Quality Variables. Ground Water. Vol. 25,
No. 2 (March-April): 176-184.



Montgomery, Robert H. and Kenneth H. Reckhow. 1984. Techniques for

Detecting Trends in Lake Water Quality. Water Resources Bulletin.
Vol. 20, No. 1 (February): 43-51.

NCASI. 1985. Groundwater Quality Data Analysis. National Council of the
Paper Industry for Air and Stream Improvement, Inc. Technical Bulletin
#462 (June).

Nelson, James D. and Robert C. Ward. 1981. Statistical Considerations and
Sampling Techniques for Ground-Water Quality Monitoring. Ground
Water. Vol. 19, No. 6 (November-December): 617-625.

Potthoff, Richard F. 1963. Use of the Wilcoxon Statistic for a Generalized

Behrens-Fisher Problem. _m_a_s_Q_LMgm_e_rn_ang_aLS_tans_tﬁ Vol. 34:
1596-1599.

Pratt, John W. 1964. Robustness of Some Procedures for the Two-Sample

Location Problem. Journal of the American Statistical Association. Vol. 59
(September): 665-680.

Rice, George, James Brinkman and Dianna Muller. 1988. Reliability of
Chemical Analyses of Water Samples-the Experience of the UMTRA
Project. Ground Water Monitoring Review. (Summer 1988): 71-75.

Rovers, Frank A. and Edward A. McBean. 1981. Significance Testing for

Impact Evaluation. Ground Water Monitoring Review. Vol. 1, No. 3
(Summer): 39-43.

Sen, P.K. 1968. Estimates of the Regression Coefficient Based on Kendall's
Tau. Journal of the American Statistical Association Vol. 63: 1379-1389.

Sen, Z. 1979. Application of the Autorun Test to Hydrologic Data. Journal of
Hydrology. Vol. 42: 1-7.

Sen, Z. 1982. Discussion of Statistical Considerations and Sampling
Techniques for Ground-Water Quality Monitoring by J.D. Neilson and R.C.
Ward. Vol. 20: 494-495.

Sen, Z. 1987. Discussion of Statistical Methods for Characterizing Ground-

6-6



Water Quality by Harris et al. Ground Water. Vol. 25, No. 6 (November-
December): 741-742.

Shapiro, S.S. and M.B. Wilk. 1965. An Analysis of Variance Test for Normality
(complete samples). Biometrika. Vol. 52: 591-611.

Shapiro, S.S., M.B. Wilk and Mrs. H.J. Chen. 1968. A Comparative Study of

Various Tests for Normality. American Statistical Assoc. Journal
(December): 1343-1372.

Silver, Carl A. 1986a. Statistical Approaches to Groundwater Monitoring. Open

File Report #7. University of Alabama, Environmental Institute for Waste
Management Studies.

Silver, Carl A. 1986b. Statistical Approaches to Ground Water Monitoring.
Journal of Hazardous Materials. Vol. 13: 207-216.

Silver, Carl A. and Dennis Dunn. 1988. Statistical Analysis of Rare Events in’
Ground Water. Journal of Hazardous Materials. Vol. 18: 17-24.

Snedecor, G.W. and W.G. Cochran. 1967. Statistical Methods. Ames, lowa:
lowa State University Press.

Songzoni, William. September, 1988. Personal Communication. Wisconsin
State Lab of Hygiene.

Sugden, D.E. and B.S. John. 1984. Glaciers and Landscape. London: Butler &
Tanner, Ltd.

Tusler, Mark. September, 1988. Personal Communication. Wisconsin
Department of Natural Resources, Bureau of Solid and Hazardous Waste
Management.

vanBelle, Gerald and James P. Hughes. 1984. Nonparametric Tests for Trend
in Water Quality. Water Besources BResearch. Vol. 20 (January): 127-136.

6-7



Wisconsin DNR. 1985. Chapter NR 140 Wisconsin Administrative Code. Cr.
Register, September, 1985, No. 357 and as amended Cr. Register,
October, 1988, No. 394.

Zaporozex, A. and R.D. Cotter. 1885. _Major Ground-Water Units of Wisconsin.

University of Wisconsin Extension: Geological and Natural History Survey.
Madison, WI.

Zar, Jerrold H. 1982. Power and Statistical Significance in Impact Evaluation.

Ground Water Monitoring Review. Vol. 2, No. 3: 33-35.



APPENDIX A

Recommended Statistical Tests



APPENDIX A
RECOMMENDED STATISTICAL TESTS

TABLE OF CONTENTS

A1.0 Skewness Test
A2.0 Mann-Kendall Test of Trend

A3.0 Prediction Intervals

LIST OF TABLES
A-1 Critical Skewness Coefficients
A-2 Calculation of Kendall Tau Statistic

A-3 Critical Values for Kendall Tau Statistic

A-4 95th Percentiles of the Bonferroni t-Statistics, t (v,ok)



APPENDIX A
RECOMMENDED STATISTICAL TESTS

Three statistical procedures are documented below. The tests are 1) the skewness
test for normality, 2) the Mann-Kendall test for trend, and 3) calculation of prediction
intervals. The documentation provided here is sufficient to perform the tests;
however, the reader is cautioned against applying statistical procedures without
thorough understanding of the theory, hypotheses and limitations of the procedures.
The references cited can provide the necessary background information.

Many computer based statistical analysis programs include the skewness test (or
calculation of the skewness coefficient) and the Mann-Kendall test for trend (or
calculation of Kendall's Tau statistic).

A1.0 The Skewness Test

References:

George W. Snedecor and William G. Cochran. Statistical Methods.The lowa State
University Press. Ames, lowa. 1980.

Harris et al. Statistical Methods for Characterizing Ground-Water Quality.
Groundwater, Vol.25, No.2. March-April 1987.

The skewness test may be used to determine whether or not a set of independent
data points are drawn from a normal distribution. The test is very simple to apply.
The skewness coefficient is calculated and the value compared to a critical value
found in Table A-1.

The null and alternative hypotheses for the skewness test may be stated as:

Ho : The data may be normally distributed.

H{ . The data are not drawn from a normal distribution.

A1-1



The skewness coefficient is:

n
m Y, (- %)%
g= —= 5
> (xi- X)2
i=1
where g = skewness coefficient

n = sample size
Xj = concentration at time i

X = mean concentration

To apply the skewness test, consult Table A-1. Find the critical skew associated with
sample size n. [f the calculated skewness coefficient is less than the critical skew
(from the table), then the null hypothesis is not rejected at the 5 or 1 percent
significance level. Conclude that the data may be drawn from a normal distribution.
If the calculated skewness coefficient is greater than the critical skew in the table,
then the null hypothesis is rejected at the 5 or 1 percent significance level.
Conclude that the data are probably not drawn from a normal distribution.

Note that Table A-1 may be used to test either positive skew, negative skew or both.
To test negative skew, the critical skew is just the negative of the tabulated values at
any sample size. To perform a two-tailed test, compare the calculated skewness
coefficient to both the positive and negative critical skew value. The test is then
performed at the 10 or 2 percent significance level.
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TABLE A-1
CRITICAL SKEWNESS COEFFICIENTS

Percentage Points

Sample Size 5% 1%

9 0.953 1.420
10 0.950 1.395
11 0.927 1.358
12 0.915 1.331
13 0.886 1.306
14 0.861 1.291
15 0.854 1.280
16 0.833 1.246
17 0.817 1.220
18 0.798 1.197
19 0.769 1.161
20 0.777 1.146
21 0.753 1.116
22 0.742 1.099
23 0.732 1.087
24 0.710 1.074
25 0.712 (0.711) 1.060 (1.061)
26 0.689 1.013
27 0.689 1.016
28 0.674 1.006
29 0.669 0.992
30 0.651 (0.662) 0.972 (0.986)
35 (0.621) (0.921)
40 (0.587) (0.869)
45 (0.558) (0.825)
50 (0.533) (0.787)

Adapted from Table 4 (Harris et al, 1987) . Data in parentheses from Table A-20
(Snedecor and Cochran 1980)
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A2.0 Mann-Kendall Test

The Mann-Kendall test for trend is also known as Kendall's Tau test. The one sided
null hypothesis is:
Ho = the Xj exhibit no trend .

The one sided alternative hypotheses are:
H, = the Xi exhibit an upward trend
H. = the Xj exhibit a downward trend
and the two-sided alternative is:
H = there is either an upward or a downward trend.

A good reference for Kendall's Tau statistic and the associated statistical hypothesis
test is

Gibbons, Jean Dickenson. Nonparametric Methods for Quantitative Analysis
(Second Edition) . American Sciences Press, Inc.: Columbus, Ohio. 1985.

The test for trend assumes that the data points are independent of each other. This
would not be the case for monthly data, for example, if there is a seasonal pattern by
months. [f the seasonal variation can be removed, these procedures are applicable
to the adjusted data. Kendall's Tau statistic is the nonparametric analog of the
parametric test based on the regression coefficient (which assumes the normal
distribution) . The asymptotic efficiency of Kendall's tau to the regression test is
about 0.98 for normal distributions.

To perform the test, consider each sampling event as a pair of observations (X,Y) - -
where Y is the sample value and X is the sampling date. List the data in ’
chronological order and assign ranks to X and to Y independently. Rank (1) is
associated with the first sampling date, X4, and the lowest sample value (if testing for
positive trend). )
If the X and the Y characteristics are in perfect agreement (positive trend), the Y

data should be in natural order (the X data already are). If there is perfect

disagreement (negative trend), the corresponding Y data is in reverse of natural
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order. The Kendall Tau coefficient is a relative measure of the discrepancy between
the actual observed order of the Y's and the two orders that would result from perfect
association. The procedure is most easily explained by an example (drawn from
Gibbons 1985):

EXAMPLE:

Suppose that n=5 and two sets of ranks are paired as follows.
Xrank: 12345 (monitoring dates)
Yrank: 23145 (sample values)

Note that the X set is in natural order. In the resulting arrangement of Y ranks, we
consider all of the possible pairs of Y ranks and score a 1 for each pair of ranks that
appear in natural order and -1 for those in reverse order. We take the pairs in a
systematic way, as the 2 paired with each successive rank appearing to its right, then
the 3 paired with each to its right, and so on. The first pair of Y ranks, 2 followed by 3,
is in natural order, so its score is 1. The second pair, 2 followed by 1, is in reverse
order, so -1 is scored. The resulting scores for all possible pairs are shown in Table
A-2.

Note that there are ( 2): 10 possible pairs. The ratio of the total plus score, in this

case 8, to the maximum,10, provides a measure of relative agreement, that is 8/10.
Similarly the ratio of the total minus score to the maximum, 2/10 in this case,
measures the relative disagreement. The net relative score of association is then
8/10-2/10 = 6/10, and this is the value of the Kendall Tau statistic. If we let U=the
number of pairs of Y values (or ranks) in natural order (that is, the number of plus
scores) and let V equal the number of Y pairs in reverse order, and let S be the
difference between U and V, S = U-V , then the Tau coefficient is calculated as:

where n is the number of (X,Y) pairs (sample size). For our example, T is equal to
3/5 (0.60). The test statistic presented here is not exact if ties exist in the sample
data. No ties should exist in the X series, sampling dates. Any duplicate data should
be averaged. If multiple dates have the same sample value the denominator of the
test statistic must be adjusted (i.e. ties exist). The adjusted test statistic is more
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difficult to calculate and computer analysis is recommended. Gibbons (1985)
presents this test statistic in detail and how it may be calculated by hand.

TABLE A-2
Calculation of Kendall Tau Statistic

Y pair Score Summary Totals

2,3 1 8 plus
2,1 -1 2 minus
2,4 1

2,5

3,1 -1

3,4 1

3,5 1

1,4 1

1,5 1

4,5 1

The statistic T above, and the T statistic adjusted for ties, is found in most statistical
software packages. Interpretation of the Tau statistic is simple. If perfect positive
correlation exists T is equal to 1. If perfect negative correlation exists T is equal to -1.
If no correlation exists T is equal to 0. To test the null hypothesis that no trend exists,
the value of T is compared to a critical value of T found on Table A-3.

For a one-sided test for positive trend, compare the calculated value of T to the
associated T in Table A-3. If the calculated value is greater than or equal to the
table value, reject the null hypothesis of no trend (conclude that positive trend exists).
For a one-sided test for negative trend, compare the calculated value of T to the
negative of the associated T in Table A-3. If the calculated value is less than or
equal to the table value, reject the null hypothesis of no trend (conclude that
negative trend exists). For a two-sided test for positive or negative trend, compare
the calculated value of T to both the positive and negative of the associated table

value. If the calculated value is greater than +T or less than -T conclude that trend
exists.
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TABLE A-3
Critical values for Kendall Tau Statistic

Sample Size T

(n) (tau)
) 0.80

6 0.733
7 0.619
8 0.571
9 : 0.500
10 0.467
11 0.418
12 0.394
13 0.359
14 0.363
15 0.333
16 0.317
17 0.309
18 0.294
19 0.287
20 0.274
21 0.267
22 0.264
23 - 0.257
24 0.246
25 0.24
26 0.237
27 0.231
28 0.228
29 . 0.222
30 0.218

Note: The T values for n>10 are the right tail (or left tail) critical values for a one-
sided test performed at a significance level of 0.05. For 5<n<10, the values are the
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lowest T for which a one sided test, performed at a significance level of 0.05, would
reject the null hypothesis. In this case, the probability associated with the T value is
not exact, but is always less than 0.05. For n>30, critical values may be found from a
normal probability table (See Gibbons 1985). However, T = 0.218 will always be a
conservative estimate.

A3.0 PREDICTION INTERVALS
References:

U.S. Environmental Protection Agency. Statistical Analysis of Groundwater at
RCRA Facilities. Office of Solid Waste, Waste Management Division. October, 1988
(Available from NTIS Reference Number PB 89-151-047).

Gibbons, Robert D. "Statistical Prediction Intervals for the Evaluation of Ground-
Water Quality." Ground Water. Vol. 25. pp.455-465. 1987.

A prediction interval is a statistical interval designed to define a background
concentration interval within which future measurements from the same population
are likely to fall. The prediction interval can answer the question "What is the
concentration associated with an allowable exceedance probability given the natural
variability in the data and the sample size?". The allowable exceedance probability
is recommended as 0.05 by EPA.

The prediction interval is recommended to be developed on a well by well basis.
Data from multiple wells should not be aggregated.

To calculate a prediction interval the mean, X, and the standard deviation s, must be -
calculated for the data used to form the prediction interval. Then the interval is given -
by

X+S %1— Aot (n-1,K,0.95)

where m is the number of measurements per sampling period (i.e. 2 if duplicate data
are available), and n is the number of observations in the background data, and
t(n-1, 0.95) is found from Table A-4. The table is entered with K as the number of

future observations (usually 1 if comparison is done each quarter, or 4 if comparison
is done annually), and degrees of freedom, v = n-1. If K is greater than 5 (unlikely),
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use the column for K = 5.

To compare new data to the prediction interval, calculate the mean of duplicate
measurements or just compare the new data point to see whether it falls within the
interval. If the new data is not within the prediction interval, this is statistically
significant evidence of contamination.

Note that for a single future observation (i.e. one observation per quarter with
quarterly comparisons), the t value may be obtained straight from the t-distribution
which is tabulated in most statistical texts. Also, note that the prediction intervals are
one-sided, giving a value that should not be exceeded by the future observations. |If
a two sided interval is required, the same procedure may be used, however Table A-

4 will provide interval at the 2 a. percent significance level (where o is usually 0.05).

TABLE A-4
95th Percentiles of the Bonferroni t-statistics, t (v, wk)

(adapted from EPA, October 1988)

k 1 2 3 4 5
v ok 0.05 0.025 0.0167 0.0125 0.01

4 213 2.78 3.20 3.51 3.75
5 2.02 257 2.90 3.17 3.37
6 1.94 245 2.74 2.97 3.14
7 1.90 237 263  2.83 3.00
8 1.86 231 2.55 2.74 2.90
9 1.83 2.26 2.50 2.67 2.82
10 1.01 223 2.45 2.61 2.76
15 1.75 2.13 2.32 2.47 2.60
20 1.73 2.09 2.27 2.40 2.53
30 . 170 2.04 2.21 2.34 2.46
>30 165 1.96 2.13 2.24 2.33

v = degrees of freedom associated with the mean square error.
k-= number of comparisons

o = 0.05, the experimentwise error level
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APPENDIX B

CONTROL GROUP SITES

SITE

City of Janesville

City of Medford

City of Merrill

City of Oconto

City/Town of Cedarburg

County Dane #1 - Verona

County Eau Claire Seven Mile Creek
County Lacrosse

County Marathon

County Portage

County Sauk (Old)

County Sauk (New)

Fort Howard Paper Co. Green Bay
Rock County / City of Janesville
Town of Washington

Village of Bonduel

Waste Management Inc Greidanus Landfill
Waste Management Inc. Brookfield Landfill

Wausau Paper Mills
Wisconsin Electric Power - Oak Creek

LICENSE

2822
341
912
137
271
2680
2821
2637
2892
2966
2051
2978
2332
3023
160
59
140
1
2875
2357



CONTROL GROUP WELLS BY LICENSE NUMBER

LICENSE DNRWELLID WELLGROUP

1 1 3
1 2 3
1 3 3
1 4 4
1 5 4
1 6 4
1 7 4
1 8 1
1 11 4
1 12 4
1 13 1
1 14 3
1 15 3
1 16 4
1 19 1
59 1 1
59 2 4
59 3 3
59 4 3
59 5 3
59 6 4
137 1 4
137 2 4
137 3 1
137 4 3
137 5 1
137 9 1
137 10 1
137 11 3
137 12 1
137 13 1
137 14 2
137 15 3
137 16 4
137 17 2
140 202 4
140 203 1
140 204 1
140 205 2
140 206 2
140 207 3
140 208 3
140 211 1
140 212 1
140 213 1
140 214 3
140 224 1
140 225 1



CONTROL GROUP WELLS BY LICENSE NUMBER

LCENSE DNRWELLID WELLGROUP

160 101 1
160 102 4
160 103 1
160 104 1
160 105 3
160 107 4
271 201 1
271 202 3
271 209 2
271 210 1
271 211 4
271 212 2
271 213 2
271 216 3
271 217 4
271 218 4
271 219 2
341 801 1
341 802 4
341 803 2.
341 804 1
341 805 1
341 806 2
341 807 1
341 808 4
341 809 4
341 810 4
341 811 4
341 812 1
912 2 4
912 6 1
912 7 3
912 8 3
912 9 4
912 15 4
912 16 4
912 17 1
912 18 1
912 19 1
912 20 4
912 21 1
912 22 4
912 23 3
912 24 1
912 25 3
912 26 2
912 27 2
1

2051 104



CONTROL GROUP WELLS BY LICENSE NUMBER

LICENSE DNR WELL ID WELL GROUP

2051 105 1
2051 106 4
2051 110 1
2051 114 4
2051 115 4
2051 116 4
2051 117 4
2051 118 2
2051 119 3
2051 120 2
2051 121 4

" 2051 122 4
2051 123 3
2051 107 1
2332 1 2
.2332 4 2
2332 5 4
2332 6 4
2332 7 1
2332 8 4
2332 9 1
2332 10 2
2332 11 4
2332 12 2
2332 13 1
2332 14 3
2332 15 1
2332 16 4
2332 17 1
2332 18 1
2332 19 1
2332 20 4
2332 21 1
2332 22 1
2332 23 4
2332 32 4
2332 33 1
2357 201 3
2357 202 1
2357 203 1
2357 204 4
2357 205 1
2357 206 1
2357 207 2
2357 208 3
2357 209 2
2357 210 2
2357 211 3



CONTROL GROUP WELLS BY LICENSE NUMBER

LICENSE DNR WELLID WELLGROUP

2357 212 4
2357 213 4
2357 214 4
2357 227 4
2357 228 4
2357 229 3
2637 4 1
2637 6 2
2637 7 2
2637 8 2
2637 9 2
2637 10 1
2637 11 1
2637 12 1
2637 13 3
2637 14 1
2637 156 1
2637 16 4
2680 106 1
2680 108 2
2680 114 4
2680 115 2
2680 124 3
2680 125 1
2680 126 4
2680 131 4
2680 134 1
2680 1356 2
2680 136 1
2680 140 1
2680 150 1
2680 171 3
2680 172 4
2680 173 3
2680 175 4
2680 176 3
2680 177 1
2680 178 4
2680 179 4
2680 180 4
2680 181 1
2821 5 1
2821 6 1
2821 7 3
2821 8 1
2821 17 3
2821 18 4
2821 19 4



CONTROL GROUP WELLS BY LICENSE NUMBER

LICENSE DNR WELLID WELLGROUP

2821 30 1
2822 107 4
2822 108 4
2822 109 1
2822 110 1
2822 112 4
2822 113 4
2822 114 2
2822 115 2
2822 124 4
2822 125 4
2822 129 4
2875 1 4
2875 2 1
2875 3 3
2875 4 1
2875 5 4
2875 9 1
2875 10 1
2875 11 1
2892 1 1
2892 2 1
2892 8 1
2892 10 1
2892 34 1
2892 35 1
2892 36 3
2892 37 2
2892 38 1
2966 1 1
2966 2 1
2966 4 2
2966 5 2
2966 9 1
2966 10 1
2966 12 1
2966 13 1
2966 14 1
2966 16 1
2966 17 1
2966 23 2
2966 24 2
2966 26 1
2966 27 1
2966 28 1
2966 30 1
2966 31 1
2966 32 4



CONTROL GROUP WELLS BY LICENSE NUMBER

LICENSE DNR WELL ID WELL GROUP

2966 33 1
2966 29 1
2978 101 1
2978 102 1
2978 103 1
2978 104 1
2978 106 1
2978 107 1
2978 108 1
2978 111 1
2978 118 1
2978 119 1
2978 105 1
2978 109 1
3023 1 2
3023 2 1
3023 3 1
3023 4 4
3023 5 2
3023 6 1
3023 7 1
3023 8 1
3023 9 4
3023 10 4
3023 11 2
3023 12 3
3023 13 4
3023 14 4
3023 15 4

1

3023

—
»
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APPENDIX C

The results of the statistical screening of the Wisconsin grounwater quality
database are presented herein. The screening results are presented first
alphabetically by site name and then by the predictor groups.

The column headings refer to:

# WELLS .
PREDICTED : This is the number of wells to which the predictor was applied.
That is, it is the number of wells with enough data at the site.
"Enough data" is defined as 8 or more sampling dates for at
least two parameters at the well.

TOTAL

# WELLS : This is the total number of wells at the site, with or without
enough data.

% TOTAL

DIRTY : This is the number of wells with enough data which are

predicted to be "dirty" divided by the total number of wells.



Alphabetical Site List

FACILITY NAME LICENSE  # WELLS TOTAL % TOTAL
TESTED # WELLS DIRTY
ANDERSON PEAT-ORGANIC COMPOST 420 7 7 57.14
APPLETON PAPERS, INC 30 18 18 88.89
BAAP DETERRENT BURNING GROUND 3037 4 4 50
BAAP-PROPELLANT BURNING GRNDS 2814 7 7 28.57
BADGER ARMY AMMUNITION PLANT 2813 6 6 50
BADGER DISPOSAL 234 12 12 33.33
BAKER SANITARY LANDFILL 189 4 4 25
BARRETT LANDFILL, INC 1940 27 27 92.59
BEECHER WOODYARD 2328 3 3 33.33 °
BELOIT CONCRETE STONE COINC 781 2 2 100
BERGSTROM PAPER LF-NEENAH 2446 30 30 96.67 .
BRIDGEPORT LANDFILL 445 3 3 0
BRILLION IRON WORKS, INC 2866 6 6 66.67
CENTRAL SANITARY LANDFILL 2132 8 8 75
CNTY BROWN-EAST . 2569 35 35 48.57
CNTY BROWN-WEST 2568 35 35 71.43
CNTY DANE LANDFILL #1-VERONA 2680 22 22 72.73
CNTY DANE LANDFILL #2-RODEFELD 3018 32 32 .59.38
CNTY DOOR SANITARY LANDFILL 2937 10 10 80
CNTY EAU CLAIRE-SEVENMILE CRK 2821 11 11 0
CNTY FOND DU LAC 2358 .18 18 88.89
CNTY GREEN 217 9 9 55.56
CNTY GREEN S/W DISPOSAL SITE 2990 10 10 80
CNTY JUNEAU 2565 3 3 0
CNTY KEWAUNEE SW BALEFILL 2975 11 11 100
CNTY LA CROSSE 2637 11 11 9.09
CNTY MARATHON LANDFILL 2892 7 7 14.29
CNTY MILWAUKEE HWY DEPT 881 11 11 90.91
CNTY MONROE-RIDGEVILLE SITE 2858 6 6 0
CNTY ONEIDA 2805 4 4 0
CNTY OUTAGAMIE 2484 33 33 42.42
CNTY PORTAGE LANDFILL 2966 20 20 5
CNTY SAUK 2051 15 15 20
CNTY SAUK SANITARY LANDFILL 2978 11 11 0
CNTY SHAWANO-ANGELICA SITE 2728 2 2 50 "
CNTY WINNEBAGO 611 78 78 76.92
COLT INDUSTRIES-FARNAM DIV. 640 4 4 25
CONSOLIDATED PAPER WIS RIV DIV 1686 22 27 45.45 _
CONSOUDATED PAPERS-BIRON DIV 1687 8 8 75
CONSOUDATED PAPERS-KRAFT DIV 1838 16 16 100
CONSOUDATED PAPERS-STEVENS PT 2344 24 24 29.17
CONSOLIDATED PAPERS-WQC 2488 33 33 87.88
CTY ABBOTSFORD LANDFILL 2932 5 5 20
CTY ADAMS-VIL FRIENDSHIP 1721 3 3 33.33
CTY ALGOMA 179 6 6 33.33
CTY ANTIGO 1357 15 15 26.67

CTY ASHLAND 177 21 21 95.24



Alphabetical Site List

FACILITY NAME LICENSE  # WELLS TOTAL % TOTAL

TESTED # WELLS DIRTY
CTY BARRON 82 2 2 50
CTY BLACK RIVER FALLS 287 10 10 50
CTY BURLINGTON ' 186 5 5 100
CTY CHIPPEWA FALLS 85 7 7 71.43
CTY CLINTONVILLE 314 10 10 50
CTY EAU CLAIRE 77 3 3 33.33
CTY FOX LAKE WOODBURNING SITE 369 4 4 100
CTY GALESVILLE 2738 1 1 0
CTY GILLETT 1115 5 5 40
CTY GREEN BAY-2130 DANZ AVENUE 170 6 6 66.67
CTY GREEN BAY-HUMBOLT ROAD 1129 6 6 50
CTY GREEN BAY-MILITARY AVENUE 169 5 5 100
CTY HAYWARD 17561 2 2 50
CTY JANESVILLE 62 7 7 57.14
CTY JANESVILLE 2822 10 10 70
CTY JANESVILLE-ASH BEDS 3061 5 5 60
CTY KENOSHA 38 5 5 100
CTY LA CROSSE 144 5 5 100
CTY MADISON-GREENTREE HILLS 1714 5 5 100
CTY MADISON-SYCAMORE SITE 1935 7 7 85.71
CTY MEDFORD 341 11 11 63.64
CTY MENOMONIE 372 5 5 60
CTY MERRILL 912 17 17 29.41
CTY NEW RICHMOND 2492 3 3 0
CTY OCONTO 137 14 14 57.14
CTY PARK FALLS 777 1 1 100
CTY PHILLIPS 57 2 2 0
CTY PORTAGE 1885 6 7 33.33
CTY RICE LAKE 108 2 2 100
CTY RICHLAND CENTER 1619 4 4 50
CTY RIPON-TN RIPON 467 3 3 100
CTY SHAWANO 2342 17 17 76.47
CTY SHAWANO - PHASE 2 3069 12 12 8.33
CTY STOUGHTON 133 5 5 80
CTY SUPERIOR-MOCASSIN MIKE 2627 4 4 100
CTY SUPERIOR-WIS POINT LF 12 12 12 100
CTY TWO RIVERS 318 5 5 100
CTY WATERTOWN 893 3 3 100
CTY WAUPUN 2246 4 4 100
CTY WEST BEND 224 18 18 61.11
CTY WHITEWATER . 65 9 9 77.78
CTY WISCONSIN DELLS 2712 8 8 0
CTY-TN CEDARBURG 271 11 11 36.36
DAIRYLAND POWER COOP-ALMA 1673 12 12 33.33
DAIRYLAND POWER COOP-CASSVILLE 96 25 25 28
DAIRYLAND POWER COOP-GENOA #3 1747 6 6 100

DAIRYLAND POWER-OFFSITE DISP. 2927 13 13 61.54



Alphabetical Site List

FACILITY NAME LICENSE  # WELLS TOTAL % TOTAL
TESTED # WELLS DIRTY
DEROSSO LANDFILL . 1979 5 5 40
EXXON MINERALS COMPANY 2977 13 13 0
FAHERTY DRILLING COINC 949 2 2 50
FALK CORPORATION 1882 8 8 62.5
FLAMBEAU PAPER CORP 2756 13 13 76.92
FORT HOWARD PAPER CO-GREEN BAY 2332 24 24 62.5
FORT HOWARD STEEL & WIRE DIV 2972 7 7 100
GENERAL MOTORS-WHEELER PIT 2795 8 8 75 |
GREDE-REEDSBURG FOUNDRY SW LF 2974 6 6 16.67 ~
GREEN LAKE SANITARY LANDFILL 1890 5 5 60
H & R PAPER & REFUSE SERVICE 850 12 12 33.33. .
HOLTZ & KRAUSE, INC 674 12 12 75
HUGHES REFUSE & LANDFILL CO 2776 5 5 0
JACKSON CNTY SANITARY LFINCC 2004 5 5 0
JACKSON COUNTY IRON COMPANY 2924 7 7 57.14
JAMES RIVER CORP-ASHLAND MILL 2826 3 3 33.33
JAMES RIVER NORWALK-ALPINE 1832 4 4 100
JAMES RIVER NORWALK-NORTHLAND 2893 11 11 100
JONGETJES LANDFILL 943 4 4 75
JUNKER SANITARY LANDFILL, INC 1972 2 2 50
KIMBERLY-CLARK LAKEVIEW MILL 3004 7 7 57.14
KOHLER COMPANY LANDFILL 1508 16 16 18.75
LAKE AREA DISPOSAL LANDFILL 2054 5 5 40
LAND AND GAS RECLAMATION, INC 1118 4 4 75
LAND RECLAMATION, LTD 572 28 28 60.71
LAWENT IRON & METAL CORP 2611 5 5 20
LEADFREE LANDFILL-BRIDGEPORT 2959 2 2 0
MADISON PRAIRIE DEMOLITION LF 2918 11 11 27.27
MASTER DISPOSAL, INC LANDFILL 2425 7 7 100
MAZO LAND DISPOSAL 2009 2 2 50
MERCURY MARINE LANDFILL 2603 1 1 0
METROPOLITAN REFUSE DIST, INC 107 14 14 57.14
MIDWEST DISPOSAL 73 15 15 66.67
MOSINEE PAPER CORP. LANDFILL 2806 22 22 45.45
MURRAY MACHINERY, INC 1722 1 1 100
N.O.W. PAPER CORP. FLY ASH LF 2964 2 2 0
NEENAH-WHITING MILL LANDFILL 2576 6 6
NEKOOSA MILL REFUSE DISP SITE 2857 8 8 100
NEKOOSA PAPER-WW TREATMENT RES 2613 38 38 65.79
NEKOOSA PAPERS (LIME SLUDGE) 2614 14 14 85.71
NEKOOSA PAPERS ASH-BARK SITE 1365 7 7 71.43
NEKOOSA PAPERS INC 2891 3 3 0
NEKOOSA PAPERS, INC 2811 6 6 0
NEKOOSA PAPERS,SLUDGE SPREAD. 2672 6 6 66.67
NIAGARA OF WISC PAPER CORP 3005 2 2 50
NORTH WOODS DISPOSAL 2001 6 6 66.67
NORTHRNESTATESKPWR-DEERPCREEK 2767 2 2 0

50 .



Alphabetical Site List

FACILITY NAME LICENSE  # WELLS TOTAL % TOTAL

TESTED # WELLS DIRTY
OCEAN SPRAY CRANBERRIES, INC 2423 10 10 30
OWENS-ILLINOIS, INC LANDFILL 1346 32 40 56.25
PATS STORAGE LAGOON 3003 3 3 0
PELISHEK CONTRACTING LANDFILL 338 1 1 100
POPE & TALBOT WI-ABSORBENT PRD 2695 13 13 23.08
R L OKEEFE & SONS, INC LF 2031 6 6 50
REFUSE HIDEAWAY LANDFILL 1953 4 4 100
RHINELANDER PAPER COMPANY 1857 22 23 45.45
RICHLAND CENTER FOUNDRY CO 2487 6 6 66.67
RIVERSIDE SANITATION LANDFILL 738 2 2 0
ROCK COUNTY-CTY JANESVILLE LF 3023 156 15 33.33
RUEF SANITARY LANDFILL 2936 5 5 100
RUEF'S SANITARY SERVICE, INC 478 5 5 60
SANITARY TRANS & LF-DELAFIELD 719 51 52 76.47
SCOTT PAPER CO 2368 6 6 50
SCOTT PAPER CO LANDFILL 2846 4 4 0
SHAWANO PAPER MILLS LANDFILL 2719 6 6 50
SLINGER FOUNDRY LANDFILL 2702 3 3 100
SOUTHEASTERN BARRON CNTY 1887 2 2 100
THILMANY PULP & PAPER CO 493 16 16 31.25
TN ASHWAUBENON 263 4 4 75
TN EAST TROY 24 20 20 40
TN GRAND RAPIDS 693 2 2 0
TN HALLIE 2807 2 2 0
TN LINCOLN 1779 2 2 50
TN MENASHA 671 4 4 50
TN MENOMONIE 2659 2 2 0
TN MINOCQUA BO-DI-LAC LANDFILL 1561 2 2 50
TN MINOCQUA-HWY 51 SITE 1558 3 3 33.33
TN MINOCQUA-MERCER LAKE SITE 1559 3 3 0
TN ONALASKA 507 9 9 55.56
TN ROSENDALE 2747 2 2 50
TN RUTLAND 2115 2 2 50
TN SHERMAN 2856 2 2 0
TN ST GERMAIN 1389 3 3 33.33
TN STUBBS-DISTRICT 5 LANDFILL 2909 1 1 0
TN SUGAR CAMP-SOUTH SITE 2884 1 1 0
TN WASHINGTON 160 5 5 40
TN WESCOTT 1004 4 4 50
TOMAHAWK TISSUE CORP LANDFILL 1878 10 10 80
TORK ALUM MUD DISPOSAL SITE 1892 12 12 91.67
TORK LANDFILL CORP (SENECA) 2967 17 17 29.41
TORK LANDFILL CORPORATION 652 16 29 93.75
U S ARMY-BAAP ACID SPILL AREA 2934 6 6 83.33
U S ARMY-BAAP PERIMETER WELLS 3038 7 7 100
VALLEY SANITATION CO, INC 2686 3 3 0
VAN HANDEL SANITARY LANDFILL 49 10 10 90



Alphabetical Site List

FACILITY NAME LICENSE  # WELLS TOTAL % TOTAL
TESTED # WELLS DIRTY
VIL ROTHSCHILD 1538 2 2 50
VIL WONEWOC 164 4 4 75
VULCAN MATERIALS CO 2998 15 23 93.33
WARD PAPER COMPANY LANDFILL 2991 7 8 0
WASTE CONTROL INC 1970 6 6 16.67
WASTE MANAGEMENT OF GREEN BAY 3 11 11 100
WASTE MANAGEMENT OF WIS-NEOSHO 443 8 8 62.5
WASTE MGMT OF WIS-GREIDANUS LF 140 10 10 20 .
WASTE MGMT OF WIS-METRO LF 1099 42 42 64.29
WASTE MGMT OF WIS-MUSKEGO LF O 2895 4 4 50
WASTE MGMT OF.WIS-OMEGA HILLS 1678 109 109 63.3 -
WASTE MGMT OF WIS-PHEASANT RUN 1739 16 17 43.75
WASTE MGMT OF WIS-RIDGE VIEW 2575 16 16 43.75
WASTE MNGT OF WI, INC-POLK 307 14 14 92.86
WASTE MNGT OF WIS, INC-CITY DS 37 12 12 100
WASTE MNGT OF WIS, INC-MUSKEGO 141 10 10 90
WASTE MNGT OF WIS, INC-RECLAM 1356 5 5 100
WASTE MNGT OF WIS-BROOKFIELD 1 14 14 85.71
WATERFORD SEPTIC SERVICE 2894 2 2 0
WAUPACA FOUNDRY COMPANY 2638 4 4 75
WAUPACA FOUNDRY, INC 2089 1 1 0
WAUSAU HOMES, INC 1774 4 4 25
WAUSAU PAPER MILLS LANDFILL 2875 7 7 28.57
WEYERHAEUSER COMPANY 2873 9 9 11.11
WI DOT HWY 100-RYAN RD 2988 7 7 71.43
WI ST DEPT TRANSPORTATION 2586 2 2 50
WIS ELEC POWR-PLEASANT PRAIRIE 2786 11 11 36.36
WIS ELECTRIC POWER CO-HWY 32 2801 11 11 9.09
WIS ELECTRIC POWER CO-HWY 59 918 1 1 0
WIS ELECTRIC POWER-CEDAR SAUK 603 30 37 33.33
WIS ELECTRIC POWER-OAK CREEK 2357 17 17 52.94
WIS POWER & LIGHT CO-COLUMBIA 2325 6 15 33.33
WIS POWER & LIGHT CO-EDGEWATER 2524 6 8 50
WIS POWER & LIGHT-NELSON DEWEY 2525 17 17 17.65.
WIS POWER & LIGHT-ROCK RIVER 728 5 5
WIS PUB SERV CORP-WESTON #3 LF 2879 8 8 0
WIS PUBLIC SERV CORP-LEGNER 3067 1 1 0-
WIS PUBLIC SERV-FLY ASH SITE 51 5 5 100 -
WP&L EDGEWATER GEN STA-DRY ASH 2853 11 11 72.73
YOURCHUCK'S SANITARY LANDFILL 2010 2 2 0

40 -



SITE LIST BY PREDICTOR GROUPS

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL

PREDICTED # WELLS DIRTY
WIS ELECTRIC POWER CO-HWY 59 918 1 1
WAUPACA FOUNDRY, INC 2089
MERCURY MARINE LANDFILL 2603
CTY GALESVILLE 2738
TN SUGAR CAMP-SOUTH SITE 2884
TN STUBBS-DISTRICT 5 LANDFILL 2909
WIS PUBLIC SERV CORP-LEGNER 3067
CTY PHILLIPS 57
TN GRAND RAPIDS 693
RIVERSIDE SANITATION LANDFILL 738
YOURCHUCK'S SANITARY LANDFILL 2010
TNMENOMONIE . 2659
NORTHRNESTATESKPWR-DEERPCRE 2767
TNHALLIE 2807
TN SHERMAN 2856
WATERFORD SEPTIC SERVICE 2894

LEADFREE LANDFILL-BRIDGEPORT 2959
N.O.W. PAPER CORP. FLY ASH LF 2964

OOOOOOOOOOOOOOOOOOOOOOOOOOOOO

1 1

1 1

1 1

1 1

1 1

1 1

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

BRIDGEPORT LANDFILL 445 3 3

TN MINOCQUA-MERCER LAKE SITE 1539 3 3

CTY NEW RICHMOND 2492 3 3

CNTY JUNEAU 2565 3 3

VALLEY SANITATION CO, INC 2686 3 3

NEKOOSA PAPERS INC 2891 3 3

PATS STORAGE LAGOON 3003 3 3

CNTY ONEIDA 2805 4 4

SCOTT PAPER CO LANDFILL 2846 4 4

JACKSON CNTY SANITARYLFINCC 2004 5 5

HUGHES REFUSE & LANDFILL CO 2776 5 5
LAWENT IRON & METAL CORP 2611 5 5 20
CTY ABBOTSFORD LANDFILL 2932 5 5 20
BAKER SANITARY LANDFILL 189 4 4 25
COLT INDUSTRIES-FARNAM DIV. 640 4 4 25
WAUSAU HOMES, INC 1774 4 4 25
CTY EAU CLAIRE 77 3 3 33.33
TN ST GERMAIN 1389 3 3 33.33
TN MINOCQUA-HWY 51 SITE 1558 3 3 33.33
CTY ADAMS-VIL FRIENDSHIP 1721 3 3 33.33
BEECHER WOODYARD 2328 3 3 33.33
JAMES RIVER CORP-ASHLAND MILL 2826 3 3 33.33
TN WASHINGTON 160 5 5 40
WIS POWER & LIGHT-ROCK RIVER 728 5 5 40
CTY GILLETT 1115 5 5 40
DEROSSO LANDFILL 1979 5 5 40
LAKE AREA DISPOSAL LANDFILL 2054 5 5 40
CTY BARRON 82 2 2 50
FAHERTY DRILLING CO INC 949 2 2 50
VIL ROTHSCHILD 1638 2 2 50
TN MINOCQUA BO-DI-LAC LANDFILL 1561 2 2 50
CTY HAYWARD 1751 2 2 50
TNLINCOLN 1779 2 2 50

2 2

JUNKER SANITARY LANDFILL, INC 1972



SITE LIST BY PREDICTOR GROUPS

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL

PREDICTED # WELLS DIRTY
MAZO LAND DISPOSAL 2009 2 2 50
TN RUTLAND 2115 2 2 50
WI ST DEPT TRANSPORTATION 2586 2 2 50
CNTY SHAWANO-ANGELICA SITE 2728 2 2 50
TN ROSENDALE 2747 2 2 50
NIAGARA OF WISC PAPER CORP 3005 2 2 50
TN MENASHA 671 4 4 50
TNWESCOTT 1004 4 4 50
CTY RICHLAND CENTER 1519 4 4 50
WASTE MGMT OF WIS-MUSKEGO LF O 2895 4 4 50
BAAP DETERRENT BURNING GROUND 3037 4 4 50
CTY MENOMONIE _ 372 5 5 60
RUEF'S SANITARY SERVICE, INC 478 5 5 60
GREEN LAKE SANITARY LANDFILL 1890 5 5 60
CTY JANESVILLE-ASH BEDS 3061 5 5 60
VIL WONEWOC 164 4 4 75
TN ASHWAUBENON ‘ 263 4 4 75
JONGETJES LANDFILL 943 4 4 75
LAND AND GAS RECLAMATION, INC 1118 4 4 75
WAUPACA FOUNDRY COMPANY 2638 4 4 75
CTY STOUGHTON 133 5 5 80
PELISHEK CONTRACTING LANDFILL 338 1 1 100
CTY PARK FALLS 777 1 1 100
MURRAY MACHINERY, INC 1722 1 1 100
CTY RICE LAKE 108 2 2 100
BELOIT CONCRETE STONECOINC 781 2 2 100
SOUTHEASTERN BARRON CNTY 1887 2 2 100
CTY RIPON-TN RIPON 467 3 3 100
CTY WATERTOWN 893 3 3 100
SLINGER FOUNDRY LANDFILL 2702 3 3 100
CTY FOX LAKE WOODBURNING SITE 369 4 4 100
JAMES RIVER NORWALK-ALPINE 1832 4 4 100
REFUSE HIDEAWAY LANDFILL 1953 4 4 100
CTY WAUPUN 2246 4 4 100
CTY SUPERIOR-MOCASSIN MIKE 2627 4 4 100
CTY KENOSHA 38 5 5 100
WIS PUBLIC SERV-FLY ASH SITE 51 5 5 100
CTY LA CROSSE 144 5 5 100
CTY GREEN BAY-MILITARY AVENUE 169 5 5 100
CTY BURLINGTON 186 5 5 100
CTY TWO RIVERS 318 5 5 100
WASTE MNGT OF WIS, INC-RECLAM 1356 5 5 100
CTY MADISON-GREENTREE HILLS 1714 5 5 100
RUEF SANITARY LANDFILL 2936 5 5 100
NEKOOSA PAPERS, INC 2811 6 6 0
CNTY MONROE-RIDGEVILLE SITE 2858 6 6 0
CTY WISCONSIN DELLS 2712 8 8 0
WIS PUB SERV CORP-WESTON #3 LF 2879 8 8 0
WARD PAPER COMPANY LANDFILL 2991 7 8 0
WEYERHAEUSER COMPANY 2873 9 9 11.11
CNTY MARATHON LANDFILL - 2892 7 7 14.29
WASTE CONTROL INC 1970 6 6 16.67



SITE LIST BY PREDICTOR GROUPS

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL

PREDICTED # WELLS DIRTY
GREDE-REEDSBURG FOUNDRY SWLF 2974 6 6 16.67
WASTE MGMT OF WIS-GREIDANUS LF 140 10 ‘ 10 20
BAAP-PROPELLANT BURNING GRNDS 2814 7 7 28.57
WAUSAU PAPER MILLS LANDFILL 2875 7 7 28.57
OCEAN SPRAY CRANBERRIES, INC 2423 10 10 30
CTY ALGOMA 179 6 6 33.33
CTY PORTAGE 1885 6 7 33.33
CTY GREEN BAY-HUMBOLT ROAD 1129 6 6 50
R L OKEEFE & SONS, INC LF 2031 6 6 50
SCOTT PAPER CO 2368 6 6 50
NEENAH-WHITING MILL LANDFILL 2576 6 6 50
SHAWANO PAPER MILLS LANDFILL 2719 6 6 50
BADGER ARMY AMMUNITION PLANT 2813 6 6 50
WIS POWER & LIGHT CO-EDGEWATER 2524 6 8 50
CTY BLACK RIVER FALLS 287 10 10 50
CTY CLINTONVILLE 314 10 10 50
CNTY GREEN 217 9 9 55.56
TN ONALASKA 507 9 9 55.56
CTY JANESVILLE 62 7 7 57.14
ANDERSON PEAT-ORGANIC COMPOS 420 7 7 57.14
JACKSON COUNTY IRON COMPANY 2924 7 7 57.14
KIMBERLY-CLARK LAKEVIEW MILL 3004 7 7 57.14
WASTE MANAGEMENT OF WIS-NEOSF 443 8 8 62.5
FALK CORPORATION 1882 8 8 62.5
CTY GREEN BAY-2130 DANZ AVENUE 170 6 6 66.67
NORTH WOOQODS DISPOSAL 2001 6 6 66.67
RICHLAND CENTER FOUNDRY CO 2487 6 6 66.67
NEKOOSA PAPERS,SLUDGE SPREAD 2672 6 6 66.67
BRILLION IRON WORKS, INC 2866 6 6 66.67
CTY JANESVILLE 2822 10 10 70
CTY CHIPPEWA FALLS 85 7 7 71.43
NEKOOSA PAPERS ASH-BARK SITE 1365 7 7 71.43
W1 DOT HWY 100-RYAN RD 2988 7 7 71.43
CONSOLIDATED PAPERS-BIRON DIV 1687 8 8 75
CENTRAL SANITARY LANDFILL 2132 8 8 75
GENERAL MOTORS-WHEELER PIT 2795 8 8 75
CTY WHITEWATER 65 9 9 77.78
TOMAHAWK TISSUE CORP LANDFILL 1878 10 10 80
CNTY DOOR SANITARY LANDFILL 2937 10 10 80
CNTY GREEN S/W DISPOSAL SITE 2990 10 10 80
U S ARMY-BAAP ACID SPILL AREA 2934 6 6 83.33
CTY MADISON-SYCAMORE SITE 1935 7 7 85.71
VAN HANDEL SANITARY LANDFILL 49 10 10 90
WASTE MNGT OF WIS, INC-MUSKEGO 141 10 10 90
DAIRYLAND POWER COOP-GENOA #3 1747 "6 6 100
MASTER DISPOSAL, INC LANDFILL 2425 7 7 100
FORT HOWARD STEEL & WIRE DIV 2972 7 7 100
U S ARMY-BAAP PERIMETER WELLS 3038 7 7 100
CNTY EAU CLAIRE-SEVENMILE CRK 2821 : 11 11 0
CNTY SAUK SANITARY LANDFILL 2978 11 11 0
EXXON MINERALS COMPANY 2977 13 13 0



SITE LIST BY PREDICTOR GROUPS

FACILITY NAME LICENSE # WELLS TOTAL

PREDICTED # WELLS
CNTY PORTAGE LANDFILL 2966 _ 20 20
CTY SHAWANO - PHASE 2 3069 12 12
CNTY LACROSSE 2637 11 11
WIS ELECTRIC POWER CO-HWY 32 2801 11 11
WIS POWER & LIGHT-NELSON DEWEY 2525 17 17
KOHLER COMPANY LANDFILL 1508 16 16
CNTY SAUK 2051 15 15
POPE & TALBOT WI-ABSORBENT PRD 2695 13 13
CTY ANTIGO 1367 - 15 15
MADISON PRAIRIE DEMOLITION LF 2918 11 11
CTY MERRILL 912 17 17
TORK LANDFILL CORP (SENECA) 2967 17 17
THILMANY PULP & PAPER CO 493 16 16
BADGER DISPOSAL 234 12 12
DAIRYLAND POWER COOP-ALMA 1673 12 12
H & R PAPER & REFUSE SERVICE 850 12 12
ROCK COUNTY-CTY JANESVILLELF 3023 15 15
WIS POWER & LIGHT CO-COLUMBIA 2325 6 15
CTY-TN CEDARBURG 271 11 11
WIS ELEC POWR-PLEASANT PRAIRIE 2786 11 11
TN EAST TROY 24 20 20
WASTE MGMT OF WIS-PHEASANT RUN 1739 16 17
WASTE MGMT OF WIS-RIDGE VIEW 2575 16 16
WIS ELECTRIC POWER-OAK CREEK 2357 17 17
CTY OCONTO 137 14 14
METROPOLITAN REFUSE DIST,INC 107 14 14
CTY WEST BEND 224 18 18
DAIRYLAND POWER-OFFSITE DISP. 2927 13 13
CTY MEDFORD 341 11 11
MIDWEST DISPOSAL 73 15 15
WP&L EDGEWATER GEN STA-DRY AS}H 2853 11 11
HOLTZ & KRAUSE, INC 674 12 12
CTY SHAWANO 2342 17 17
FLAMBEAU PAPER CORP 2756 13 13
NEKOOSA PAPERS (LIME SLUDGE) 2614 14 14
WASTE MNGT OF WIS-BROOKFIELD 1 14 14
APPLETON PAPERS, INC 30 18 18
CNTY FOND DU LAC 2358 18 18
CNTY MILWAUKEE HWY DEPT 881 11 11
TORK ALUM MUD DISPOSAL SITE 1892 12 12
WASTE MNGT OF WI, INC-POLK 307 14 14
CNTY KEWAUNEE SW BALEFILL 2975 11 11
CONSOLIDATED PAPERS-KRAFT DIV 1838 16 16
CTY SUPERIOR-WIS POINT LF 12 12 12
JAMES RIVER NORWALK-NORTHLAND 2893 11 11
NEKOOSA MILL REFUSE DISPSITE 2857 8 8
WASTE MANAGEMENT OF GREEN BAY 3 11 11
DAIRYLAND POWER COOP-CASSVILLI96 25 25
CONSOLIDATED PAPERS-STEVENS P 2344 24 24
WIS ELECTRIC POWER-CEDAR SAUK 603 30 37
CNTY OUTAGAMIE 2484 33 33

% TOTAL
DIRTY
5
8.33
9.09
9.09
17.65
18.75
20
23.08
26.67
27.27
29.41
29.41
31.25
33.33
33.33
33.33
33.33
33.33
36.36
36.36
40
43.75
43.75
52.94
57.14
57.14
61.11
61.54
63.64
66.67
72.73
75
76.47
76.92
85.71
85.71
88.89
88.89
90.91
91.67
92.86
100
100
100
100
100
100

28
29.17
33.33
42.42



SITE LIST BY PREDICTOR GROUPS

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL

PREDICTED # WELLS DIRTY
MOSINEE PAPER CORP. LANDFILL 2806 22 22 45.45
RHINELANDER PAPER COMPANY 1857 22 23 45.45
CONSOLIDATED PAPERWIS RIVDIV 1686 22 27 45.45
CNTY BROWN-EAST 2569 35 35 48.57
OWENS-ILLINOIS, INC LANDFILL 1346 32 40 56.25
CNTY DANE LANDFILL #2-RODEFELD 3018 32 32 59.38
LAND RECLAMATION, LTD 572 28 28 60.71
FORT HOWARD PAPER CO-GREEN BA 2332 24 24 62.5
WASTE MGMT OF WIS-OMEGA HILLS 1678 109 109 63.3
WASTE MGMT OF WIS-METRO LF 1099 42 42 64.29
NEKOOSA PAPER-WW TREATMENT R 2613 38 38 65.79
CNTY BROWN-WEST 2568 35 35 71.43
CNTY DANE LANDFILL #1-VERONA 2680 22 22 72.73
SANITARY TRANS & LF-DELAFIELD 719 51 52 76.47
CNTY WINNEBAGO 611 78 78 76.92
CONSOLIDATED PAPERS-WQC 2488 33 33 87.88
BARRETT LANDFILL, INC 1940 27 27 92.59
VULCAN MATERIALS CO 2998 15 : 23 93.33
TORK LANDFILL CORPORATION 652 16 29 93.75
CTY ASHLAND 177 21 21 95.24
BERGSTROM PAPER LF-NEENAH 2446 30 30 96.67

WASTE MNGT OF WIS, INC-CITY DS 37 12 12 100



APPENDIX D

Statistical Description of Clean Well Data



APPENDIX D
SUMMARY STATISTICS FOR CLEAN WELL DISTRIBUTIONS

. Distribution of Median and IQR for background wells

. Correlation coefficients Median vs. IQR and LOG10(median) vs -
LOG10 (IQR)

. Distribution of Mean and Standard Deviation for raw datasets

. Correlation coefficients for Mean vs. Standard Deviation and
LOG10(mean) vs. LOG10(standard deviation)

. Distribution of Lognormal Mean and Standard Deviation

. Correlation coefficients of Lognormal Mean vs. Lognormal
Standard Deviation.

. Distribution of standardized skewness coefficient for raw
datasets

. Distribution of standardized skewness coefficient for log-
transformed datasets.



SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR

X4: Chloride - MEDIAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
12.656 34.671 2.84 1202.057 273.939 149
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
1 330 329 1885.8 201771.857 |11
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
0 1 1.784 6 14.962 20.3
# > 90th %:  Kurtosis: Skewness:
15 65.399 7.961

X2: COD - MEDIAN

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
13.047 14.359 1.135 206.174 110.05 160
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
2 110 108 2087.595 60019.505 0
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
16 3.85 5 8.525 14 28.5
# > 90th %: Kurtosis: Skewness:
16 16.512 3.49

Xg3: Alkalinity - MEDIAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
201.954 94.842 8.318 8994.993 46.962 130
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
7.7 610 602.3 26254.05 6462470.552 |30
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
13 81 137.5 196.75 285 304
# > 90th %:  Kurtosis: Skewness:
13 1.41 .472

GROUP | AND ITWELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR

X4: Conductivity - MEDIAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
426.646 232.326 18.425 53975.208 54.454 159
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
46 1768 1722 67836.765 3.747E7 1
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
16 177.4 271.625 382.5 573.5 695.6
# > 90th %: Kurtosis: Skewness:
16 7.627 1.863
Xs: Hardness - MEDIAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
231.329 121.34 10.367 14723.441 52.453 137
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
24 710 686 31692.1 9333696.06 |23
# < 10th %: _ 10th %: 25th_%: 50th %: 75th_%: 90th _%:
14 87.2 137.25 211 331.25 377.8
# > 90th %: Kurtosis: Skewness:
14 1.303 .781
Xg: lron - MEDIAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.136 .234 .02 .055 171.926 137
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.01 2.325 2.315 18.679 10.02 23
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
5 .02 .05 .08 .135 .254
# > 90th %:  Kurtosis: Skewness:
14 55.666 6.699

GROUP | AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR

X7: Chloride - IQR
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
7.399 18.906 1.549 357.438 255.515 149
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
A 173 172.9 1102.48 61058.232 11
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 .886 1.5 3 7.1 15
# > 90th %:  Kurtosis: Skewness:
12 57.91 7.376

Xg: COD - IQR

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
16.974 31.79 2.513 1010.625 187.293 160
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
0 370 370 2715.77 206785.617 |0
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 3.3 5.275 8.84 17.275 31.775
# > 90th %: Kurtosis: Skewness:
16 93.514 8.797

Xg: Alkalinity - [QR
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
50.924 54.158 4.75 2933.113 106.351 130
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
1.3 247.5 246.2 6620.1 715492.545 |30
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
13 8.25 13 29.75 60 141.5
# > 90th %:  Kurtosis: Skewness:
13 1.75 1.588

GROUP-1 AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR

X10: Conductivity - IQR
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
98.573 87.359 6.928 7631.508 88.623 159
Minimum: Maximum: Range. Sum: Sum Squared. # Missing:
10 795.5 785.5 15673.18 2750737.844 |1
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
16 28.2 45 83 124.875 187.8
# > 90th %:  Kurtosis: Skewness:
16 25.869 3.955
X14: Hardness - IQR
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
51.363 44.79 3.827 2006.147 87.203 137
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
4 272 268 7036.7 634260.43 23
# < 10th %:. 10th %: 25th %: 50th %: 75th %: 90th %:
14 9.42 22.375 46 60 109.2
# > 90th %:  Kurtosis: Skewness:
14 7.375 2.316
X12: Iron - IQR
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.324 .624 .053 .39 192.89 137
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: _
.005 4.11 4.105 44.332 67.33 23
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
12 .03 .054 11 272 .724
# > 90th %:  Kurtosis: Skewness:
14 18.639 4.057

GROUP | AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR

Corr. Coeff. Xq: Chloride - MEDIAN Y41: Chioride - IQR

Count: Covariance: Correlation: R-squared:
149 630.995 .963 .927

Note: 11 cases deleted with missing values.

Corr. Coeff. X2: COD - MEDIAN Y2: COD - IQR

Count: Covariance: Correlation: R-squared:
160 346.986 .76 .578

Corr. Coeff. X3: Alkalinity - MEDIAN Y3: Alkalinity - IQR

Count: Covariance: Correlation: R-squared:
130 791.377 .154 .024

Note: 30 cases deleted with missing values.

Corr. Coeff. X4: Conductivity - MEDIAN Y4: Conductivity - IQR

Count: Covariance: Correlation: R-squared:
159 13410.561 .661 .437

Note: 1 case deleted with missing values.

Corr. Coett. Xs5: Hardness - MEDIAN Ys: Hardness - IQR

Count: Covariance: Correlation: R-squared:
137 2602.428 .479 .229

Note: 23 cases deleted with missing values.

GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR
Corr. Coeff. Xg: lron - MEDIAN Yg: Iron - IQR

Count: Covariance: Correlation: R-squared:
137 A1 .753 .566

Note: 23 cases deleted with missing values.

GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR (LOG)DISTRIBUTION OF MEDIAN AND IQR

Corr. Coeff. Xj1: Chloride - LOG(MED) Y4: Chloride - LOG(IQR)
Count: Covariance: Correlation: R-squared:
149 .21 .784 .615
Note: 11 cases deleted with missing values.
Corr. Coeff. Xz: COD - LOG(MED) Y2: COD - LOG(IQR)
Count: Covariance: Correlation: R-squared: -
158 114 .805 .648
Note: 2 cases deleted with missing values.
Corr. Coeff. X3: Alkalinity - LOG(MED) Y3: Alkalinity - LOG(IQR)
Count: Covariance: Correlation: R-squared:
130 .047 .348 121

Note: 30 cases deleted with missing values.

Corr. Coeff. X4: Conductivity - LOG(MED) Y4: Conductivity - LOG(IQ...
Count: Covariance: Correlation: R-squared:
159 .052 .632 .4
Note: 1 case deleted with missing values.
Corr. Coeff. Xs: Hardness - LOG(MED) Ys: Hardness - LOG(IQR)
Count: Covariance: Correlation: R-squared:
137 .042 415 172

Note: 23 cases deleted with missing values.

GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR (LOG)DISTRIBUTION OF MEDIAN AND IQR

Corr. Coeff. Xg: Iron - LOG(MED) Yg: lron - LOG(IQR)
Count: Covariance: Correlation: R-squared:
137 .191 .804 .646

Note: 23 cases deleted with missing values.

GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV

X4: Chloride - mean
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
14.625 35.367 2.897 1250.792 241.822 149
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
1.084 330.933 329.849 2179.129 216986.979 |11
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
15 1.656 2.376 8.735 16.954 23.496
# > 90th %: _ Kurtosis: Skewness:
15 61.749 7.68

X2: COD - mean

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
23.85 30.787 2.434 947.817 129.087 160
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
3.35 301.8 298.45 3815.926 241711.041 |0
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
16 5.485 7.883 14.368 30.105 49.856
# > 90th %:  Kurtosis: Skewness:
16 40.712 5.246

X3: Alkalinity - mean
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
208.159 94.023 8.246 8840.403 45.169 130
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
8.232 590.8 582.568 27060.678 6773337.28 |30
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
13 75.863 141.846 215.866 286.067 306.698
# > 90th %: Kurtosis: Skewness:
13 .907 .253

GROUP | AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV

X4: Conductivity - mean
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
439.671 241.406 19.145 58276.85 54.9'06 159
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
47.791 1858.667 1810.876 69907.763 3.994E7 1
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
16 191.9 273.822 398.667 575.615 693.169
# > 90th %:  Kurtosis: Skewness:
16 9.383 2.155
Xg5: Hardness - mean
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
237.028 120.66 10.309 14558.949 50.905 137
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
25 759.733 734.733 32472.889 9677013.568 |23
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
14 93.504 146.091 216.858 329.93 373.001
# > 90th %:  Kurtosis: Skewness:
14 2.484 .953
Xg: Iron - mean
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
1.008 4.038 .345 16.307 400.711 137
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.027 42.284 42.257 138.063 2356.891 23
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
14 .046 .082 .185 .413 1.581
# > 90th %:  Kurtosis: Skewness:
14 79.819 8.467

GROUP | AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV

X7: Chloride - stdev
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
9.98 26.936 2.207 725.547 269.899 149
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.489 249.148 248.659 1487.023 122221.479 |11
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 1.05 1.518 3.879 8.219 15.571
# > 90th %: Kurtosis: Skewness:
15 49.586 6.681

Xg: COD - stdev

Mean: Std. -Dev.: Std. Error: Variance: Coef. Var.: Count:
34.305 55.907 4.42 3125.61 162.971 160
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.956 382.388 381.432 5488.797 685265.083 |0
# < 10th %: 10th %: 25th %:. 50th %: 75th %: 90th %:
16 3.986 5.768 13.146 34.946 91.681
# > 90th %:  Kurtosis: Skewness:
16 15.814 3.602

Xg: Alkalinity - stdev
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
44.192 38.419 3.37 1475.989 86.936 130
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
2.399 190.974 188.575 5744.959 444283.71 30
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
13 7.381 14.917 28.262 65.508 104.697
# > 90th %: Kurtosis: Skewness:
13 .816 1.182

GROUP | AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV

X10: Conductivity - stdev
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
107.147 107.581 8.532 11573.598 100.405 159
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
7.329 797.197 789.868 17036.363 3654022.55 |1
# < 10th %: __ 10th %: 25th %: 50th %: 75th %: 90th %:
16 30.9 40.629 81.58 129.343 195.238
# > 90th %:.  Kurtosis: Skewness:
16 14.401 3.308
X11: Hardness - stdev
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
58.964 66.683 5.697 4446.624 113.091 137
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
3.665 542.499 538.834 8078.066 1081055.801 |23
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
14 8.874 23.278 40.83 68.794 126.82
# > 90th %:  Kurtosis: Skewness:
14 20.705 3.792
X12: lron - stdev
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
3.104 15.595 1.332 243.218 502.448 137
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.012 164.476 164.464 425.233 34397.528 23
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
14 .04 .077 .235 .707 3.021
# > 90th %:  Kurtosis: Skewness:
14 83.613 8.713

GROUP | AND [l WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV

Corr. Coeff. Xq: Chloride - mean Y{: Chloride - stdev
Count: Covariance: Correlation: R-squared:
149 671.216 .705 .496
Note: 11 cases deleted with missing values.
Corr. Coeff. Xa2: COD - mean Y2: COD - stdev
Count: Covariance: Correlation: R-squared:
160 1452.131 .844 712
Corr. Coeff. Xg3: Alkalinity - mean Y3: Alkalinity - stdev
Count: Covariance: Correlation: R-squared:
130 1245.675 .345 119
Note: 30 cases deleted with missing values.
Corr. Coeff. Xg: Conductivity - mean Y4: Conductivity - stdev
Count: Covariance: Correlation: R-squared:
159 14886.586 .573 .329
Note: 1 case deleted with missing values.
Corr. Coeff. Xs: Hardness - mean Ys: Hardness - stdev
Count: Covariance: Correlation: R-squared:
137 3547.562 441 .194

Note: 23 cases deleted with missing values.

GROUP I AND I WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV

Corr. Coeff. Xg: Iron - mean Yg: Iron - stdev
Count: Covariance: Correlation: R-squared:
137 62.576 .994 .987

Note: 23 cases deleted with missing values.

GROUP | AND Il WELLS ONLY



JMMARY STATISTICS FOR DISTRIBUTIONS OF log (10) of the NORMAL MEAN AND STDEV

Corr. Coeft. Xq4: Chloride - log(x) of mean Y1: Chiloride - log(x) of s...
Count: Covariance: Correlation: R-squared:
149 .203 .83 .689

Note: 11 cases deleted with missing values.

Corr. Coeft. X3: COD - log(x) of mean Y2: COD - log(x) of stdev
Count: Covariance: Correlation: R-squared:
160 .184 919 .845
Corr. Coeff. X3: Alkalinity - log(x) of mean Y3: Alkalinity - log(x) ...
Count: Covariance: Correlation: R-squared:
130 .052 .44 .193
Note: 30 cases deleted with missing values.
Corr. Coeff. X4: Conductivity - log(x) of mean Y4: Conductivity - lo...
Count: Covariance: Correlation: R-squared:
159 .051 .595 .354
Note: 1 case deleted with missing values.
Corr. Coeff. Xs: Hardness - log(x) of mean Y5: Hardness - log(x) of...
Count: Covariance: Correlation: R-squared:
137 .047 .443 197

Note: 23 cases deleted with missing values.

GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF log (10) of the NCRMAL MEAN AND STDEV

Corr. Coeff. Xg: Iron - log(x) of mean Yg: lron - log(x) of stdev
Count: Covariance: Correlation: R-squared:
137 .461 .972 .946

Note: 23 cases deleted with missing values.

GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV

X1: Chloride - LOG MEAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
1.696 1.142 .092 1.304 67.335 1583
Minimum: Maximum: Range: Sum: Sum Squared:. # Missing:
-.281 5.669 5.95 259.515 638.455 8
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 .251 .625 1.842 2.684 2.959
# > 90th %:  Kurtosis: Skewness:
15 -.095 .292

X2: COD - LOG MEAN

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
2.246 .848 .067 .719 37.763 161
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.35 4.942 4.592 361.63 927.39 0
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
16 1.008 1.79 2.132 2.851 3.312
# > 90th %: Kurtosis: Skewness:
16 .265 .124

X3: Alkalinity - LOG MEAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
5.148 .673 .059 .453 13.077 131
Minimum: Maximum: Range. Sum: Sum Squared: # Missing:
2.06 6.375 4.315 674.433 3531.141 30
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
13 4.276 4.887 5.275 5.61 5.711
# > 90th %: Kurtosis: Skewness:
13 5.826 -2.012

GROUP 1 AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV

X4: Conductivity - LOG MEAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
5.911 .561 .044 .315 9.49 160
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
3.841 7.494 3.653 945.773 5640.577 1
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
16 5.184 5.5886 5.966 6.32 6.529
# > 90th %: Kurtosis: Skewness:
16 1.534 -.696
X5: Hardness - LOG MEAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
5.272 .597 .051 .357 11.329 138
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
3.2 6.576 3.376 727.585 3884.966 23
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
14 4.439 4.931 5.35 5.712 5.906
# > 90th %:  Kurtosis: Skewness:
14 .847 -.83
Xg: Iron - LOG MEAN
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
-2.429 .906 .075 .822 -37.309 146
Minimum: Maximum: Range. Sum: Sum Squared: # Missing: _
-3.997 0 3.997 -354.704 980.875 15
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 -3.615 -3.316 -2.465 -1.755 -1.282
# > 90th %:  Kurtosis: Skewness:
15 -.613 .24

GROUP | AND | WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV

X7: Chloride - LOG STDEV
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.636 .327 .026 .107 51.342 153
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.092 1.521 1.429 97.342 78.149 8
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
15 .207 .378 .587 .857 1.13
# > 90th %: _ Kurtosis: Skewness:
15 -.312 .513

Xg: COD - LOG STDEV

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.971 .402 .032 .162 41.427 161
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.157 2.514 2.357 156.35 177.73 0
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
16 .525 .69 .934 1.21 1.533
# > 90th %: Kurtosis: Skewness:
16 .88 .818

Xg: Alkalinity - LOG STDEV
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.252 .213 .019 .045 84.54 131
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.026 1.28 1.254 33.046 14.249 30
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
13 .044 .085 .218 .34 .537
# > 90th %:  Kurtosis: Skewness:
13 13.996 1.64

GROUP | AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV

X10: Conductivity - LOG STDEV
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.234 .146 .012 .021 62.434 160
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.026 .997 .971 37.487 12.185 1
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
16 .095 .128 .191 .296 .438
# > 90th %:  Kurtosis: Skewness:
16 4.018 1.609
X41: Hardness - LOG STDEV
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.269 .218 .019 .048 81.077 138
Minimum: Maximum: Range: _ Sum: Sum Squared: # Missing:
.017 1.37 1.353 37.17 16.545 23
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
14 .051 119 .216 .386 .528
# > 90th %:  Kurtosis: Skewness:
14 5.975 1.934
X42: lron - LOG STDEV
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
1.161 .521 .043 .271 44.891 146
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.294 2.853 2.559 169.443 236.008 15
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 .508 .796 1.104 1.396 1.843
# > 90th %:  Kurtosis: Skewness:
15 1.201 .945

GROUP | AND Il WELLS ONLY




SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV

Corr. Coeff. X4: Chloride - LOG MEAN Y1: Chloride - LOG STDEV

Count: Covariance: Correlation: R-squared:

153 -.093 -.25 .062

Note: 8 cases deleted with missing values.

Corr. Coeff. X2: COD - LOG MEAN Y2: COD - LOG STDEV
Count: Covariance: Correlation: R-squared:

161 -.079 -.232 .054

Corr. Coeff. Xg3: Alkalinity - LOG MEAN Y3: Alkalinity - LOG STDEV

Count: Covariance: Correlation: R-squared:

131 -.049 -.339 .115

Note: 30 cases deleted with missing values.

Corr. Coeff. X4: Conductivity - LOG MEAN Y4: Conductivity - LOG S...
Count: Covariance: Correlation: R-squared:
160 -.012 -.146 .021
Note: 1 case deleted with missing values.
Corr. Coeff. Xs5: Hardness - LOG MEAN Ys: Hardness - LOG STDEV
Count: Covariance: Correlation: R-squared:
138 -.031 -.234 .055

GROUP | AND Il WELLS ONLY

Note: 23 cases deleted with missing values.



SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV
Corr. Coeff. Xg: lron - LOG MEAN Yg: Iron - LOG STDEV

Count: Covariance: Correlation: R-squared:
146 167 .354 .126

Note: 15 cases deleted with missing values.

GROUP | AND Il WELLS ONLY



DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- RAW DATA --

X1: Chloride - 2z-score

Mean: Std. Dev.: -Std. Error: Variance: Coef. Var.: Count:
.866 .999 .115 .998 115.42 76
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-1.454 4.462 5.916 65.786 131.807 77
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
8 -.084 .261 71 1.244 2.045
# > 90th %:  Kurtosis: Skewness:
8 2.351 1.21

X2: COD - 2z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
1.189 1.145 .25 1.312 96.329 21
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
.023 5.052 5.029 24.966 55.911 132
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
2 212 .388 .897 1.532 2.433
# > 90th %:  Kurtosis: Skewness:
2 4.361 2.022

X3: pH - z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
-.035 1.002 .082 1.005 -2901.311 150
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-2.696 6.414 9.11 -5.182 149.867 3.
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 -.971 -.438 -.106 .228 .749
# > 90th %:  Kurtosis: Skewness:
15 14.713 2.633

GROUP | AND Il WELLS ONLY




DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- RAW DATA --

X4: Alkallnity - z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.143 .93 .085 .866 649.333 119
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-2.247 4.068 6.315 17.051 104.589 34
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
12 -.882 -.325 .128 .635 .968
# > 90th %:  Kurtosis: Skewness:
12 2.723 .366

Xs5: Conductivity - z-score

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.481 1.246 .101 1.552 258.765 153
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-2.317 6.001 8.318 73.657 271.345 0
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 -.504 -.231 .146 .849 1.924
# > 90th %: Kurtosis: Skewness:
15 4.914 1.838

Xg: Hardness - z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.349 1.142 A 1.303 326.807 131
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-2.909 4.547 7.456 45.764 185.433 22
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
13 -.833 -.292 .317 .942 1.728
# > 90th %:  Kurtosis: Skewness:
13 1.438 .39

GROUP 1 AND Il WELLS ONLY




DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- RAW DATA --

X7: Sulfate - z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.67 1.404 .222 1.971 209.621 40
Minimum:. Maximum: Range: Sum: Sum Squared: # Missing:
-.933 6.191 7.124 26.789 94.806 113
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
4 -.475 -.192 .282 1.218 2.072
# > 90th %:  Kurtosis: Skewness:
4 5.021 2.095

Xg: lron - 2z-score

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
1.401 .882 .294 .778 62.939 9
Minimum: Maximum: Range: Sum: Sum Squared:. # Missing:
.299 2.693 2.394 12.611 23.893 144
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
1 .45 .685 .997 2.302 2.627
# > 90th %: Kurtosis: Skewness:
1 -1.389 .373

GROUP | AND Il WELLS ONLY



DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- LOG DATA --

X1: Chloride - log z-score

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
.055 .809 .093 .655 1473.083 76
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-3.024 2.922 5.946 4,174 49.319 77
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
8 -.814 -.277 .047 .435 .854
# > 90th %:  Kurtosis: Skewness:
8 3.728 -.124

X2: COD - log z-score
Mean: .Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
114 .435 .095 .189 382.444 21
Minimum: Maximum: Range:_ Sum: Sum Squared: # Missing:
-.97 .947 1.917 2.386 4.047 132
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
2 -.326 -.097 .093 312 .726
# > 90th %:  Kurtosis: Skewness:
2 .53 -.224

X3: pH - log z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
-.134 1.059 .086 1.122 -790.254 150
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-4.208 6.389 10.597 -20.107 169.894 3.
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
15 -1.025 -.521 -.174 .161 .609
# > 90th %:  Kurtosis: Skewness:
15 13.629 1.912

GROUP | AND Il WELLS ONLY




DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- LOG DATA --

X4: Alkalinity - log z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
-.213 1.006 .092 1.013 -472.045 119
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-2.955 3.506 6.461 -25.368 124.897 34
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %:
12 -1.521 -.713 -.121 .347 .731
# > 90th %:  Kurtosis: Skewness:
12 2.013 -.174

Xs: Conductivity - log z-score

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: ‘Count:
.002 1.103 .089 1.216 50825.091 153
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-3.56 4.758 8.318 .332 184.882 0
# < 10th %:  10th %: 25th %: 50th %: 75th. %: 90th %:
15 -.897 -.54 -.147 .482 1.32
# > 90th %: Kurtosis: Skewness:
15 4.21 .89

Xg: Hardness - log z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
-.21 1.156 .101 1.337 -549.898 131
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-4.748 2.725 7.473 -27.547 179.618 22
# < 10th %:  10th %: 25th %: 50th %: 75th %: 90th %:
13 -1.577 -.742 -.147 .457 1.085
# > 90th %: Kurtosis: Skewness:
13 2.025 -.884

GROUP | AND Il WELLS ONLY




DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- LOG DATA --

X7: Sulfate - log z-score
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
-.22 1.055 .167 1.112 -479.55 40
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-2.145 3.01 5.155 -8.797 45.314 113
# < 10th %: __ 10th %: 25th %: 50th %: 75th _%: 90th %:
4 -1.152 -.932 -.393 .319 .889
# > 90th %:  Kurtosis: Skewness:
4 1.955 1.119

Xg: lron - log 2z-score

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count:
-.064 .642 214 .413 -1000.238 9
Minimum: Maximum: Range: Sum: Sum Squared: # Missing:
-1.66 .505 2.165 -.578 3.338 144
# < 10th %:  10th %: 25th %: 50th %! 75th %: 90th %:
1 -1.14 -.031 .086 .251 .436
# > 90th %:  Kurtosis: Skewness:
1 2.477 -1.901

GROUP | AND I WELLS ONLY
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