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CHAPTER 1 , 

| INTRODUCTION 

; 1.0 Overview 

The groundwater resources in the State of Wisconsin are protected by the Wisconsin 

- Department of Natural Resources (DNR). Groundwater quality standards are 

established under Chapter NR 140 of the Wisconsin Administrative Code (Wisconsin 

_ DNR, 1988).. Also addressed in NR 140 are statistical methods for 1) evaluating 

background (clean) water quality and 2) determining exceedance of a water quality 

standard or finding an environmentally significant change in water quality. In this paper 

we address the complex issue of how to "defensibly" establish background water quality 

at waste disposal facilities, and subsequently how to "defensibly" discern standard 

exceedances and/or significant water quality changes. "Defensibly" is meant to imply 

that the technical approach should be acceptable to concerned parties and, if 

necessary, in a court of law. In the regulatory context, the intent of this study is to 

evaluate alternative analytic methods to meet the objectives of NR 140. Analytic 

techniques are also evaluated with respect to existing and proposed federal regulations 

for hazardous waste facilities and for municipal solid waste landfills. While the focus of 

this paper is on solid waste disposal facilities, the techniques are also applicable to 

most types of hazardous waste sites, land disposal systems and storage facilities. 

To help the DNR prioritize its work in enforcing NR 140, a secondary goal of this 

research is to screen the licensed landfill sites in Wisconsin for evidence of 

contamination. While the analytic methods discussed above will help to define the 

os degree and extent of contamination at each site, the statistical screening will help steer 

the DNR towards particular sites. More specific objectives of this study include: 

, @ to summarize current information on the statistical properties of 
groundwater quality data, and to evaluate how these properties affect the 

choice of analytic method; 

@ to investigate the hydrogeology and water quality at 20 landfill sites in 

order to document defensible procedures for establishing background 
water quality and determining apparent contamination; 

e to detail procedures for establishing background water quality; 
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| @ to evaluate appropriate statistical tests for determination of significant 

changes in water quality; and, 

@ to investigate site-wide "predictors" of groundwater contamination to 

prioritize licensed sites for regulatory action. - 

This report is the culmination of a two-part study which began in 1985. The first report 

(Goodman and Potter, 1987) is entitled "Graphical and Statistical Methods to Assess the 

_ Effect of Landfills on Groundwater Quality.” The earlier study focused on 1) evaluating 

the statistical nature of groundwater quality data and 2) developing procedures for ~ - 

evaluating groundwater quality. These procedures are currently being used by the 

DNR. In this report, the earlier results are summarized and in some instances methods 

are expanded or modified based on additional research. 

This report is written assuming that the reader has a rudimentary understanding of 

probability and statistics as well as hydrogeology, contaminant transport and water 

| chemistry. Other readers will be able to understand the basic concepts presented. For 

the reader interested primarily in regulatory issues and recommendations, the chapter 

summaries and all of Chapter 5 should be sufficient. 

The report is organized as follows: 

e Chapter 1 includes an overview of state and federal regulations and 

places them in a statistical context. Also the DNR landfill water quality 

database is introduced including a summary of the 20 landfill sites studied 

in detail in this study. 

e Graphical techniques for visualization of water quality data are presented ° 

in Chapter 2. Also, the statistical properties of groundwater quality data 

| are evaluated. These properties are introduced in the context of the 

. geophysical environment and related contaminant transport processes. ~ 

e Chapter 3 addresses how to evaluate groundwater contamination, given 

the statistical properties of the data. Types of statistical tests are 
introduced in Section 3.0. Statistical tests are evaluated with respect to - 

basic assumptions, performance and utility in Sections 3.1. 3.2 and 3.3. 

The applicability of Sections 3.1 to 3.3 to existing and proposed 

regulations are discussed in Sections 3.4 and 3.9. 

e Apredictor of groundwater quality change is introduced in Chapter 4. This 

predictor is used to execute a statistical screening of the groundwater 
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| quality database. The use of the predictor for prioritizing regulatory work is 

discussed. 

e Conclusions and recommendations are summarized in Chapter 5. Also, 

flow charts are used to present simple procedures to 1) define background 

water quality and 2) determine compliance of waste sites with existing 

” regulations. 

Do. 1.1 Statistical Context of Regulations 

oe The DNR and EPA regulations addressed in the following sections recognize that _ 

groundwater quality data vary temporally and spatially due to natural effects, and are 

also affected by sampling and analytic error!. Due to natural variability, the 

determination of a change in water quality should be linked to probability theory. Two 

regulatory situations present themselves: 

1) Has a water quality standard been exceeded? | 

2) Has there been a significant change in water quality? 

The first question is the more straight forward. If a sample value exceeds a standard, 

accounting for sampling and analytic variability, then a violation has occurred. In this 

situation a "violation" means only that a mandated concentration level has been 

exceeded, not that certain actions must be taken. Defining the magnitude of sampling 

and analytic variability is addressed in Chapter 3. The general idea is that a standard 

may be exceeded a "little" due to laboratory error, before a "defensible" violation occurs. 

This problem is acute when standards are at or approach the level of detection of the 

os contaminant, as is the case with some volatile organic compounds. Sampling error may 

be addressed by timely resampling of the entire site. 

: The second question is more complex, since now a comparison must be made between 

supposedly "clean" background data and possibly contaminated data, both of which are 

° subject to temporal and spatial variability as well as sampling and analytic error. Hence, 

1Sampling error in this context refers to error introduced by the technician during 

well sampling. Analytic error occurs in the laboratory. These are not to be confused 

with natural “sampling” error associated with spatial and temporal fluctuations in water 

quality. 
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the problem becomes one of statistical inference. The question could be rephrased as a 

statistical hypothesis: 

Null Hypothesis: Ho: No Contamination exists; facility is in compliance 

Alternative : H,: Contamination exists; facility is in violation 

Hypothesis 

A statistical test is made on the null hypothesis and a conclusion is reached that either 

the facility is in violation or the facility is not. In this situation, a "violation" implies that. _ 

water quality is significantly different from background, not that certain actions must be 

taken. The conclusion is based on probability assessment. Figure 1-1 illustrates the 

two types of errors associated with hypothesis testing. 

er 

STATISTICAL DECISION 

IN COMPLIANCE IN VIOLATION 
Ww 
O | 
Z 
s Good Decision False Positive 

> = Decision 

O O 
E O l-a a 

> <= Type | error 
= 

“”) . 

s > False Negative 

— = Decision Good Decision 

< » 

O B 1-8 
> 
z Type Il Error "Power" of Test - 

ae 

FIGURE 1-1 Statistical Error in Hypothesis Testing 
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Type | error (false positive decision) occurs when a site (or well) is actually in 

compliance but the statistical test determines it to be in violation. The probability of a 

Type | error is defined as the significance level of the test, a, and can be controlled. 

Usually, a is set at 0.05, giving a 1/20 chance that a "false positive" conclusion of 

: contamination will occur. o is exact however only when the assumptions of the test are 

met. The Type | error rate sets the "level of protection" afforded the polluter since when 

, a Type | error occurs a site owner may be required to perform remedial measures when 

none are necessary. 

On the other hand Type II error (false negative decision) occurs when contamination 

exists but is not detected. The Type II error sets the "level of protection" afforded the 

State (i.e. the people and the environment). Unfortunately, the probability of a false 

negative conclusion, b, is not controlled, is often difficult to calculate, and is dependent 

on many factors which may include sample size, magnitude of "change" in 

concentration, and choice of statistical test. Because the Type Il error rate is usually 

unknown and is likely to be higher than the Type | error rate, the ability for the State to 

protect the environment is confounded with the ability to maintain a low false negative 

rate. | 

Hypothesis tests may be divided into two general categories: those which rely on the 

estimation of parameters of a probability distribution (usually the mean and standard 

deviation of the normal distribution) and those which do not. The former are generally 

referred to as parametric procedures, while the latter are nonparametric. Sometimes 

nonparametric tests are referred to as distribution-free methods, although this name may 

be misleading (See Section 3.0). Examples of parametric procedures are Student's t- 

— test developed by W.S. Gossett in 1908, and the commonly-used analysis of variance. 

Nonparametric methods usually rely on test statistics developed from the ordered ranks 

of the data. For example, when testing for an increasing trend in time, if the 

” concentration data are ranked in exact order of time, "perfect" correlation would be 

found. The most widely known nonparametric measure is the median, or middle value 

: of a data set. 

These fundamental concepts are introduced here to place the state and federal 

regulations in context with the statistical hypothesis problem. 
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1.2 Wisconsin Regulatory Context 

Wisconsin has established two types of water quality standards: enforcement standards 

(ES) and preventive action limits (PAL's). ES's are maximum contaminant levels and 

are not to be exceeded. They are set forth in NR 140.10 for public health related . 

substances and in NR 140.12 for public welfare related substances (Wisconsin DNR, 

1988). For these substances, the PAL is established as a percentage ofthe ES. The - 

PAL in this situation is a "flag" of potential contamination. 60 substances have 

mandated ES's and PAL's. If natural water quality exceeds the mandated ES or PAL, _ 

an alternative concentration limit (ACL) may be set by the DNR. 

PAL's, for substances without an ES, are defined based on background water quality. 

Substances with PAL's set based on background water quality are called "indicator 

parameters.” An indicator parameter is a naturally occurring substance which is 

indicative of groundwater degradation when high values are observed or when 

significant concentration changes occur. High concentration of a “true” indicator, is not 

necessarily a health or welfare problem. Examples are specific conductance, total 

hardness, pH and alkalinity. Under the current regulations, a PAL for an indicator 

parameter is set by calculating the mean and standard deviation of background water 

quality (based on a minimum of 8 representative data points). The PAL is then set as : 

PAL= x +358 

where x is the sample mean and s is the sample standard deviation. In some cases s is 

so small that the difference between the PAL and background water quality is not _ 

environmentally significant. In such cases the PAL is based on a table of minimum 

significant increases above the background mean. PAL's set based on minimum __. 

increases defined in Table 3 of NR 140 are called "table values” in this report. - 

The choice of the mean plus three standard deviations as a measure of environmental | 

significance is based in part on a DNR study of 16 landfills, where it was found that 

clean well concentrations rarely exceeded x+ 3 § of background water quality. 

Statistically, this method implies that there is less than a one percent chance that a truly 

| “clean” data point will exceed the PAL, if the data are independent and normally 
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distributed about a mean value. These statistical assumptions may or may not be true 

as discussed in detail in Chapter 2. Hence, in this situation, it may be best to view a PAL 

as an empirical estimate of environmentally significant change. lf water quality data are 

assumed to be stationary, independent, and normally distributed, then, in the case of no 

° contamination, the probability that a PAL would be exceeded by a single measurement 

would be about 1 percent. 

In this study, we have focused on eight chemical parameters as shown in Table 1-1. 

These substances are the most frequently monitored parameters at landfill sites in 

: Wisconsin. Specific conductance, total alkalinity, total hardness, pH, and chemical 

oxygen demand are considered "indicator parameters." Iron, chloride, and sulfate are 

welfare concerns and, therefore, have enforcement standards as shown. | 

The Wisconsin regulations require the DNR to use a scientifically valid statistical 

procedure to determine if an enforcement standard is attained or exceeded or ifa 

change in the concentration of a substance has occurred. In NR 140.14 (2) the following | 

statistical procedures are specified at a 95% level of confidence: 

(a) Student t-test; 

(b) Temporal or spatial trend analysis; or | 

(c) Other scientifically valid statistical analyses which are appropriate 

for the data being considered. 

The main objective of this study is to provide technical guidance to DNR on the 

implementation of these or other procedures for determining compliance with NR 140. 

7 These regulations are similar to EPA's existing and proposed regulations for 

determining compliance at hazardous waste and municipal solid waste facilities which 

- | are discussed in the next section. 
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TABLE 1-1 

Chemical parameters included in analyses and applicable 

groundwater quality standards. 

PARAMETER ENFORCEMENT PREVENTIVE 

STANDARD ACTION LIMIT i 

(mg/|) (mg/\) 

Total Alkalinity as CaCO3 “-=- * | 

Total Hardness ---- s 

pH! —- | " 

Specific Conductance! 4 ---- . 

Chemical Oxygen Demand ---- 

lron - Total @ 0.309 0.153 

| Chloride 250° 1253 

Sulfate 250° 1253 _ 

1 Field measurements only 

2 Total includes dissolved and suspended particulate material 

3 if background water quality exhibits high concentrations an ACL may be 

established. 

4 Units are umhos/cm 

"PAL set based on background water quality. 
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1.3 Federal Regulatory Context. 

Like the DNR, the EPA has wrestled with statistical evaluation of groundwater quality 

. data at landfills. The EPA also has established water quality standards for specific 

chemical parameters The State of Wisconsin standards, discussed in the previous 

section are as strict, or stricter, than current federal standards. 

Federal regulations also exist for statistical determination of compliance for RCRA 

_ facilities. These are existing and new hazardous waste facilities covered by Subtitle C 

of the Resource Conservation and Recovery Act (RCRA) and regulated by 40 CFR Parts 

264 and 265. Until recently, Part 264 Subpart F provided that Cochran's 

Approximation to the Behrens Fisher Student's t-test (CABF) or an alternative statistical 

procedure approved by EPA be used to determine whether there is a statistically | 

significant exceedance of background levels, or other allowable levels, of specified 

constituents. These regulations, and in particular the CABF procedure, generated 

criticism and EPA proposed a new regulation in response to these concerns (EPA, 

| August 24, 1987). The proposed regulation was revised based on comments EPA 

received and was then made final (EPA, October 11, 1988). A draft guidance document 

for implementation of these regulations is currently under final review (EPA, 1988). 

The final regulation establishes five performance standards that a statistical procedure 

must meet. The performance standards allow flexibility in designing statistical 

procedures to site specific considerations. The choice of an appropriate statistical test 

can be made based on the data available, the hydrogeology of the site and the 

theoretical properties of the test. The proposed regulations do recommend four types of 

os statistical procedures to detect contamination in groundwater. For more information see 

Section 3.1. | 

oo In addition EPA is currently drafting amendments to Subtitle D of RCRA to include 

criteria for municipal solid waste landfills (MSWLF's). The statistical test requirements 

" are similar to the RCRA Subtitle C final regulation and recommend the same four types 

of procedures. The big difference between the federal hazardous waste and solid waste 

regulations is that at the permitted hazardous waste facilities, four independent samples 

must be collected for each monitoring round (the sampling interval may be as large as | 

monthly to obtain independence (EPA, October 11,1988)). At MSWLF's only one 
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quarterly or semi-annual measurement is necessary. 

| Unlike the Wisconsin rules the proposed regulations do not incorporate the idea of 

"exceeding background values or concentration limits" in terms of "a minimum increase." 

According to the Federal regulation, this is because any statistically significant increase : 

is a cause for concern. 

Another important difference between the EPA and Wisconsin regulations is that the 

EPA regulations require that the statistical tests be applied quarterly to new data. The _ 

tests provide a tool to determine which of two phases of groundwater monitoring is 

necessary. Under Subtitle C these phases are “detection monitoring" and the more 

extensive "compliance monitoring." The draft Subtitle D regulations divide monitoring 

into "Phase I" and "Phase II." Thus, the statistics are used as a gate into stricter 

regulatory control (i.e. more extensive monitoring and possible remediation). In 

Wisconsin the statistical tests are not a quarterly requirement; the statistics are only a 

possible tool to either confirm a standard exceedance or to detect a change in water 

quality. They do not have any direct consequences associated with them. In this 

respect, the draft Subtitle D regulations are stricter than current Wisconsin rules for non- 

hazardous waste disposal facilities. 

EPA performance standards and recommended procedures for statistical analysis of 

groundwater quality data are addressed in detail in Chapter 3. In order to evaluate the 

statistical tests, we investigated 20 Wisconsin landfill sites. An overview of these sites is 

presented in the next section. 

1.4 Wisconsin Landfill Water Quality Database _ 

The Wisconsin DNR Bureau of Solid and Hazardous Waste Management has collected* 

| groundwater quality data at solid waste disposal sites for many years. The landfill : 

groundwater database includes over 300 licensed sites, each with a number of wells, 

and water quality data for an array of constituents at each well. The majority of sites are - 

typically older, unengineered sites. Many are now closed or have clay-lined 

expansions. The database also includes many county-owned state-of-the-art sanitary 

landfills, as well as some older county-run facilities. Several sites in the database are 

considered to have seriously contaminated groundwater with hazardous substances. 
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Also included are industrial sites owned by paper mills, electric utilities and a variety of 

other industries. 

We obtained water quality and water elevation data for 316 licensed landfill facilities 

° from the DNR in August, 1987. The results reported in Chapter 4, for contamination 

predictors, are based on analysis of this database. In April, 1988 updated data were 

: obtained for 20 sites chosen for detailed analysis (Chapters 2 and 3). Due to the time 

lag for laboratory analysis, data transmittal and computer entry, these data may be 

; considered current at least through the end of 1987. 

The locations of the 20 selected sites are shown on Figure 1-2 and a summary of site 

characteristics is presented in Table 1-2. Nine (9) of the 20 were included in the 

previous DNR-funded study (Goodman and Potter, 1987). The sites may be generally 

classified by ownership and design as follows: 

9 small to medium size municipally-owned solid waste sites, either 

unlined or partially unlined with an engineered expansion, 

3 industrial facilities: 

: 2 paper sludge, | 

1 fly ash; 

3 larger “natural attenuation"* or unlined county-owned solid waste 

sites, and; 

5 county-owned clay lined solid waste facilities with leachate collection 

systems 

20 total 

2 "Natural attenuation" implies that the uppermost subsoil is a dense silt or clay 

material which should minimize, but not necessarily eliminate, leachate movement. 
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THE STATE OF WISCONSIN WITH COUNTY BOUNDARIES 

AND 

DNR FIELD DISTRICTS 

2° oD 

HK i 

| of : mo a NORTH "5 
CENTRAL 

SOUTHEAST 

ares 
1 City of Janesville (old) 11 Sauk County (old) oe 

2 City of Medford 12 Sauk County (new) 

3 City of Merrill 13 Fort Howard Paper Co. 
4 City of Oconto 14 Rock County/City ofJanesville - 
5 City/Town of Cedarburg 15 Town of Washington 
6 Dane County - Verona 16 Village of Bonduel 

7 Eau Claire County - 7 Mile Creek 17 WMI Brookfield 

8 La Crosse County 18 WMI Greidanus 

9 Marathon County 19 Wausau Paper Mills 
10 Portage County 2.0 WEPCO Oak Creek Ash Disposal 

FIGURE 1-2 Name and location of facilities studied 
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TABLE 1-2: Characterization of landfill sites studied 

SITE SITE YEAR SAMPLING 

FACILITY NAME FACILITY WASTE DESIGN VOLUME SIZE LIFE BEGAN AND NUMBER OF 
(LICENSE) DESIGN RECEIVED d°*10° Acres (Avg. No. of data pts) wets 

City of Janesville Partial clay lined, 18 ; 11 
(2822) partial unlined MSW, IND 0.7 1961 - 1978 1982 (19) 

City of Medford Unlined 45 " 6 OLD NONE ; 1972 -? 1980 - 83 (10) 
(341) | MSW 1983 (19) 6 NEW 

City of Merrill 1975 (40 (912) Unlined MSW NONE ") 18 

| City of Oconto Natural attenuation, 14.5 '70' 14 
(137). 7/83 groundwater inter. § MSW, IND NONE Early ‘70's -83 1977 (98) 

eption trench installed. 

| on own of Cedarburg Natural attenuation MSW NONE 10 1972 - 87 1975 (41) 11 

a Natural attenuation | 

oN, Dane #1 - Verona ieee collection MSW 9 49 1977 - Pres. 1977 (41) 23 

Clay lined, 

County eau ciaire leachate collection MSW 12 24 1978 - Pres. 1978 ( ) 8 

Natural attenuation 

2637) Lacrosse MSW. IND 1.38 55 1976 - Pres. 1977 ( ) 12 

| Clay lined, . . : 
‘oago} Marathon ‘leachate collection MSW. IND 15 10 1980 - Pres. 1980 ( ) rr 

Clay lined, 1.28 18.6 | 

aoe Portage leachate collection MSW 1984 - Pres. 1984 (20) 19 

* Two different sets of wells: old and new



' TABLE 1-2 (continued) 

. SITE SITE NUMBER OF 

FACILITY NAME FACILITY ed DESI ania SIZE LIFE EEN AND WELLS | 
(LICENSE) DESIGN yd°*10 (Acres) Avg. No. of data pts 

: County Sauk (Old) NONE MSW 4 1973 - 83 1979 16 
(2051) | foundary sand 1.0 | 

County Sauk (New) Clay lined, MSW 20 1983 - Pres. 1983 (20) 12 
(2978) © leachate collection 1.28 

| 

Fort Howard Paper Co. Part unlined, Paper sludge 293 1964 - Pres. 93 
Green Bay part lined 4.5 

2332 | 

Rock County Clay lined, MSW 45 1985 - Pres. 1984 16 
City of Janesville leachate collection 

é 

7 Town of Washington Unlined MSW and NONE 6.5 1930's - 79 1977 (35) 6 
pb (160) Unknown 

| MSW , <5 1950's - Pres. 
Village of Bonduel Unlined Canning waste and NONE 1986 (9) 6 
(59) Pickles 

Waste Management Inc. Unlined, 33 1969 - 1981 | 
Greidanus Landiill Capped 1988 MSW NONE 1976 (47) 15 | 
(140) 

Wsste Management Inc. Part Nat. atten, O: ( ) 1970 - Pres. : 
Brookfield Landfill part clay lined MSW and OLD: NONE N: ( ) Part closed 1977 (37) 16 
(1) unknown NEW: | 

| Wausau Paper Mills Mostly clay lined | 

(2875) leachate collection Paper sludge 0.25 4.8 1981 - Pres. 1982 (21) 8 

Wisconsin Electric Power Unlined | 
-- OakCreek Fly ash 4.0 130 1975 - Pres. 1975 ( )SA 17 
235/ , 

. 

4 F 6 ® s 44 a



The 20 sites range in size from 4 acres to 293 acres. The newest site opened in 1983, 

while the oldest has existed since the 1930's. Groundwater monitoring did not become 

widespread until the mid to late 1970's as evidenced by the years of water quality 

record. Three of the sites are either listed or proposed to be included on the EPA's 

. | national priority list for hazardous waste cleanup funding. The number of monitoring 

wells listed reflects the number of wells with sufficient water quality data for statistical 

« analysis (greater than 8 sampling dates for several parameters). A total of 274 wells 

© were included in the analysis. 

oS The 20 landfills are all located in the lower two-thirds of the State. Bedrock in the 

eastern edge of the state is primarily dolomite underlaid by limestone and/or shale: (6/20 

sites). A large part of the state is covered with sand and gravel and underlaid by 

sandstone (7 sites). The southwest portion of Wisconsin was unglaciated in the most 

recent "Wisconsin" glaciation of Pleistocene age (5/20 sites). Four sites located in the 

north lie in an area with a thin unconsolidated zone over Precambrian age middle and 

lower proterozoic rocks (granite, etc). 

Each of Wisconsin's four major hydrogeologic provinces are represented. Zaporozec 

| and Cotter (1985) define hydrogeologic conditions in these provinces and in nine 

subdistricts in terms of Pleistocene unconsolidated deposits. To some extent, the 

hydrogeologic provinces mimic the bedrock geology. 

The 20 selected sites represent a cross-section of Wisconsin solid waste disposal 

facilities. The industrial sector may be under-represented with only 3/20 sites. While 

industrial waste streams may be quite different from municipal solid waste, this does not 

- imply that different analytic methods are needed to detect industrial waste groundwater 

contamination. The big issue is the same. Is this facility contaminating groundwater, 

. . and if so, what is the degree and extent of contamination? 
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| CHAPTER TWO 

GROUNDWATER QUALITY DATA 

2.0 Overview 

In this chapter the statistical nature of groundwater quality data will be explored. More 

s specifically, in Section 2-1 graphical methods are introduced and some basic statistical 

concepts are reviewed. In Section 2.2 the assumptions implicit to statistical hypothesis _ 

oy testing are reviewed. Groundwater quality data are evaluated with respect to the validity 

or violation of these assumptions. 

Natural groundwater quality is known to vary both spatially -- between wells -- and 

temporally -- at a single well. Anthropogenic effects also contribute to the variability 

observed in water quality data. In order to understand the specifics of groundwater 

contamination at a site, the sources of natural variability should be understood and the 

impact of human activities considered. Sources of variability and error in groundwater 

data are listed in Table 2-1. A quick glance at this long list illustrates in general the 

complexity of the problem. It is no wonder that there is much debate in the literature as to 

appropriate analytic methods. | 

Natural spatial variability is often due to variations in lithology within the aquifer (Sen, 

1982). In Wisconsin many landfills are in areas with glacial till, a poorly sorted soil 

composed of mixed minerals and rock types (Sugden and John, 1984). Soil and rock 

heterogeneity may cause the chemical composition of groundwater to vary even at short 

distances. Spatial variation in water quality data may be exacerbated by well installation 

7 and development methods, as well as sampling techniques (Doctor et al, 1985a). 

* Temporal variability is most often attributed to hydrologic processes. Seasonal effects are 

~ usually associated with annual cycles in precipitation and recharge events, particularly for 

shallow, unconfined aquifers and in areas where surface water/aquifer interactions are 

- significant (Harris et a/, 1987). Also seasonal pumping for irrigation and high summer 

input from non-point pollution sources may be causes for seasonal fluctuations in 

background water quality (Doctor et al, 1985a). Seasonal variation has been reported by 

several investigators. A literature review on seasonality in groundwater data is presented 

by Montgomery et al (1987). 
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TABLE 2-1 Sources of Variability and Human Error 
in Groundwater Quality Data (Adapted from Doctor et al, 1985) 

SPATIAL TEMPORAL WELL CONSTRUCTION SAMPLE COLLECTION | 
AND DEVELOPMENT. AND ANALYSIS 

GEOLOGIC PROPERTIES TRENDS DRILLING PROCESS COLLECTION 

- lithologic composition, SEASONAL - drilling fluids - purging method 
sorting and grain size - type of borehole - purging rate/duration 

- structure of lithologic units ~ recharge _ - inter-aquifer transport of - sampling apparatus 
- bedding planes ~ Irrigation materials - cross-contamination between 
- fractures (joints and faults) | ~fertilization wells 
- soil development ~ pesticide/herbicide WELL DESIGN 
- properties of vadose zone application - field versus laboratory 

~ frozen ground - casing and screen measurements 
nO HYDRAULIC CONDITIONS material 

nD ~ diameter - sample preparation | 
- Location of recharge/ PERIODIC - screen length,depth, slot filtering/container/ 
discharge zones ae size preservatives/storage time 

- proximity of water ~ short term precipitation - packing material 
- presence of aquitards ~ PUMPING — - annular seal - operator error | 
~ pumping "river Flooding - incomplete well development 

WELL DEVELOPMENT 
OTHER ANALYTIC ERROR 

~ other chemical sources - analytic methods, apparatus 
- non-point source inputs - operator experience 

| - instrument calibration 
- interference from other 

constituents 

- holding time 
- clerical errors 

f 1 of vo aM cs cane nates ans aunt nem pnmaanpe ens | ee enn ene enemies one __ 2 :



The relative importance of these sources of variability is clearly site specific. In general 

however it is safe to say that natural temporal and spatial variability are greater in 

magnitude than sampling and analytic error, unless gross sample contamination or 

mishandling occurs ( Doctor et al, 1985a). Groundwater quality, in the local area ofa 

" waste facility, appears to vary temporally more than spatially -- as shown in Chapter 3. , 

This may not be true on a regional basis or in some geologic and climatic situations 

- (Sen,1987). | 

2.1 Visualization 

Graphical display of groundwater data is essential. Typically a first step in evaluating 

groundwater quality is to review existing hydrogeologic information and to try to define | 

groundwater flow and subsurface stratigraphy. The next logical step isto graph the 

chemical data as concentration versus time. Contaminant "plumes" in plan view or cross- 

section could also be prepared. Figure 2-1 shows a site map for the City of Merrill landfill, 

a small municipal unlined facility located above sand and gravel between the confluence 

of two streams. Groundwater flow is south. The site has 18 wells, 6 of which are shown. 

Of the six, OB-13 and OB-6 are up or side gradient and are not within the hydraulic 

influence of groundwater flowing beneath the site. Data for specific conductance are 

plotted versus time on Figure 2-2. This plot clearly shows increasing trends in time and 

high relative concentrations for wells OB-2, OB-11, OB-10 and OB-17. It is clear that these 

points are affected by the landfill. A statistical summary of these data is presented in 

Table 2-2 with important terms defined. | 

The same data are presented in box and whisker plots (or "box plots") on Figure 2-3. 

7 These plots separate each well and show clearly the difference in the distributions of the 

data. These plots are generated by ranking the data and may be constructed in different 

- ways (McGill et al, 1978). In this report a software program called STATVIEW 512+ was 

- used. In this program box plots are made as shown on Figure 2-4(a). At the DNR box 

plots are currently made using software called STATGRAPHICS and are defined as 

. shown in Figure 2-4(b). The boxes are constructed using the median (middle value of the 

data) and the interquartile range (the range of the middle fifty percent of the data). Note 

that the median and interquartile range (IQR) are analogous to the more common mean 

and standard deviation of a set of data. The mean and median are measures of "central 

| tendency" or "location", whereas the standard deviation and IQR are measures of 
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City of Merrill 
Sanitary Landfill : 
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OB-6 Monitoring Well Groundwater 
0 —e Elevation "1294 ; 

FIGURE 2-1 City of Merrill landfill map with selected monitoring wells 
shown. 
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TABLE 2-2 Summary Statistics for Specific Conductance with terms defined. 

WELL POINT STANDARD QUARTILE SKEWNESS | 
| DEVIATION RANGE COEFFICIENT 

OB - 13 14 225.3 221.5 36.92 31 903 

OB -6 33 139.9 117 110.78 - 475 3.796 

OB -2 33 689.1 700 145.28 178.75 738 

OB - 11 30 851.1 767.5 600.62 1044 534 

OB - 10 31 1921.6 1250 832.06 1199 397 | 

OB - 17 10 666.0 778.5 246.89 431- -.562 

no n = Sample size Mean = Standard Deviation = 
on 

Xj denotes the raw data _ 4n (x) Von 2 
X=—)D (x — 

| . n: S= a/ —A > (xj- x) 
Xi] denotes the order statistics I= nT | 

(or ordered ranks) of the data 

| Median n 3 
The middle value of a ranked data set 7 

SK Yn (>, (x;-x) } 
. . . ewn a ixd 
if n odd: m = x{j], where j= n+1/2 Coefficient - Y= _ 
ifn even: m = (x[k] +x[k +1]) /2 no | x 

where k= n/2 | >, (%- x)? 
| i= 

interquartile Range 

The range of the middle fifty percent | 

of the data.



FIGURE 2-2 TIME vs CONCENTRATION PLOT 
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FIGURE 2-3 BOX AND WHISKER PLOTS 
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5 Upper and lower 10% of O 
data are shown as 

- individual points. ———_—-— Upper 10 % cutoff 

s ———_ Upper 25 % cutoff 

Notch indicates 95 % . 

. confidence limit on the : Median 
. median 

a ————__———._ Lower 25 % cutoff 

. 5 Lower 10 % cutoff . 

° 

NOTE: Difference between 75 th 
and 25 th percentile equals the 
Inter Quartile Range (IQR) 

"Outlier", Point is farther away from 

x the median than 1.5 times the 
interquartile range. 

———_ Upper 25% cutoff 

Notch indicates 95 % , 

confidence limit on the ——_ Median 

median 

—— Lower 25 % cutoff 

—————__ Point is equal to 1.5 times 

~ x* the inter quartile range 

. x 

: FIGURE 2-4: Box plot construction by STATVIEW 512 + (a) 
and STATGRAPHICS (pb). 

2-7



"variability." Comparing the two software packages, STATGRAPHICS' boxplots are more 

informative. STATVIEW always defines outliers as the outer 20 percent of the distribution. 

It may be that only the outer 5 percent of the data are outliers or it may be that none of the 

data are outliers. In STATGRAPHICS outliers are defined more explicitly (See Figure 2- - 

3). 

Considering again Figures 2-2 and 2-3 it is clear that the box plots also illustrate the — 

apparent contamination at the Merrill site. The following points may be made from Figure 

| 2-3. 7 

| @ The two clean wells OB-13 and OB-6 show slightly different background 
water quality, indicative of natural spatial variability in water quality. 

@ Wells OB-2 and OB-17 are less impacted than Wells OB-10 and OB-11, 

indicating that the most intense contamination is directly beneath the landfill 

as one might expect. 

@ The impacted wells have much higher variability in the data as evidenced by 

the wider boxes. | 

Box plots are very powerful tools for evaluating contamination. At a more complicated site 

they may be used to even more advantage. For example, all wells screened in similar 

stratigraphic unit may be aggregated on one plot, or data from two or three well "nests" 

may be plotted on one plot to illustrate vertical trends. Also water elevation data could be 

plotted to get a preliminary view of upgradient/downgradient relationships. Many 

possibilities exist. | 

The same data are plotted a third time on Figure 2-5. This chart shows the mean values. - 

(solid circle) and plus or minus one standard deviation error bars (vertical line) for each 

well next to each box plot. Note that the mean is consistently greater than the median - - 

and two standard deviations is larger than the IQR. This is because high values -- outliers - 

-- ten inf h im f the mean an ndard deviation. The median and IQR, 

because they are based on ranks, are not sensitive to outlying values. Similarto Figure - 

2-3, the high variability in the impacted data is shown by the wide error bars. 

) The box plots are more powerful in visualizing contamination than the error bar plots 

| because they contain more information about the actual distribution of the data. The error 
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bar plots, however, may be useful when working with parametric statistics; for example, 

when setting PAL's for indicator parameters. For example, if a PAL was calculated from 

well OB-6 as Xop-6+ 3 Sop-6 , exceedances would be found in all wells except well OB-13. 

By measuring the three standard deviation point from OB-6, you can see that the highest 

. outlier at this well would be considered an exceedance. 

~ FIGURE 2-5 ONE STANDARD DEVIATION ERROR BAR PLOT 
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m3 The last graphical displays to be introduced here are the histogram and normal 

, probability plot (also known as the quantile plot or Q-Q plot). Figure 2-6 (a),(b),(c) and (d) 

show histograms, a tool which may be used to investigate the probability distribution of 

. the data. In simplest terms, the higher the bar the greater probability that (new) 

measurements will fall in this range. The more sample values the histogram is made from 

the closer the graph is to the "true" population distribution. Many statistical tests rely on 

the assumption that the data are drawn from a normal distribution. A comparison of the 

data distribution to that of the normal may be used to qualitatively evaluate the validity of 
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this assumption. Figure 2-6 (a) and (b) show histograms of conductivity data for Merrill 

wells OB-6 and OB-11 (note that the scales are different). For comparison Figures 2-6 (c) 

and (d) are histograms of the normal and lognormal distribution’. 1000 variates were 

generated to construct these figures. 

As Figure 2-6 shows neither of Merrill wells OB-6 and OB-11 appear to have normally 

distributed data; both sets of data are "skewed" to the right. Skew may be conceptualized - 

easily by considering a histogram as a weight and beam balance. The balancing point is 

the mean. If the data are not symmetric about the mean, but have along righttailthe . 

distribution is said to be positively skewed. The lognormal distribution is also skewed 

right as shown. Often a transformation of positively skewed data to natural log scale will 

make the data appear more normal (See Section 2.2). 

While the histogram is useful to visualize the probability distribution of the data, it is not 

a the best way to graphically compare data to the normal distribution. Normal probability 

plots are as easy to construct and give a better representation of the data (Benjamin and 

Cornell, 1970). Figure 2-7 shows a normal probability plot for the same data as in Figure 

2-6 (a) from Merrill well OB-11. These are constructed by first ordering the raw data from 

smallest to largest. Let x [1]<X [2]<..-< X [n] denote the ordered data. The x{j] are 

called the order statistics of the data. The X[j] are then plotted on normal probability 

paper versus the corresponding plotting position of [— “| 100. Ifthe data are from a 

normal distribution, the plotted points should lie approximately on a straight line2. 

As one can see in Figure 2-7 (a) the data do not appear to plot as a straight line and we 

may conclude that the assumption of normality is suspect. If we transform the data to log 

scale and replot the data as shown on Figure 2-7 (b) the line is not really any straighter, — 

and we cannot conclude that the lognormal distribution is more appropriate. Fora full ~ : 

discussion on tests for normality see Section 2.2.1. 

1 The log normal distribution may be transformed to the normal by taking the natural log of each variate. 

2 The plotting position represents the approximate cumulative probability of a measurement being less 

than the value observed. 

2-10



14 z 22.5. 

20. 

12. 

10. 15. 

e ° 5 

8 2 10. 
6 

4 : : 4 
5 

. he (EE 

On 400 600 800 1000 1200 1400 1600 1800 2000 2200 oe 100 150 200 250 300 350 400 450 500 550 600 650 700 

rh OB-11 OB -6 

= (a) (b) . 

600. 350. 

300. . 
500. 

250. 

4004). — - 

. 
= 200. lela 

8 ™ ° 150 a + 
mele ls. : 

2004] te ol 

i ico PIER a 
, P| oS A ae 

1ooj} Po 50. es oe eal 

° i ‘ el TS ial 
oO 2 4 6 8 10 12 14 16 18 20 -5 -4 -3 -2 “1 0 1 2 3 4 5 

(LOG NORMAL DISTRIBUTION NORMAL DISTRIBUTION 

(c) (d) 

Figure 2-6 Histograms of specific conductivity (umhos/cm) for Wells 
OB-11 and OB-6 (a & b). Typical histograms for (c) the log normal 
distribution and (d) the normal distribution.
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In summary, data from the City of Merrill landfill site are presented in five ways: 

| (1) time versus concentration plots; 

. (2) box and whisker plots; 

(3) one standard deviation error bar charts; 

- (4) histograms; and : 

~ (5) normal probability plots. 

The first two graphical tools clearly illustrate qualitatively the relative water quality 

between wells. The error bar charts may be valuable when working with parametric 

statistics, particularly when deciding on PAL levels. Histograms may be used to view the 

probability distribution of the data. When evaluating the assumption of normality, normal 

probability plots are commonly prepared to observe deviations from normality. 

The City of Merrill data illustrate several important points. 

e Data outliers tend to inflate the mean and standard deviation of the data; 

@ The median and interquartile range are good estimates of the central | 

tendency and variation of data sets, particularly when outliers are present. 

e Large data variability (IQR) is usually associated with high medians, i.e. 

impacted wells . Natural temporal variability is much lower than the 

variability observed when contamination is present. 

| e The histograms and normal probability plots show that groundwater data 

. may not be normally distributed. In this situation the median and IQR may be 

° better estimates of the central tendency and variability of the data. 

- In the following section, the issue of non-normality is addressed in detail. Also cyclic 

° trends in data (usually seen as seasonality) and serial correlation are investigated. 
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2.2 Statistical Nature of Groundwater Quality Data 

While graphical tools are invaluable in conceptually understanding water quality, the 

application of statistics to the decision making process requires that a more quantitative - 

determination be made of the data's structure. In order to choose a statistical test to 

evaluate groundwater contamination, two main factors must be considered: . 

| @ the experimental design of the test, and 

| e the validity of fundamental assumptions implicit in the statistical model of the 
test. 

In this section the validity of common statistical assumptions will be explored through an 

evaluation of the characteristics of groundwater quality data. The issue of experimental 

design concerns whether a statistical test is analytically addressing the right | 

environmental question. This is addressed in Chapter 3. | 

Statistical hypothesis tests are based on a model of the null hypothesis: in our case a 

model of background water quality. For many tests we define our model as a probability 

distribution and then test whether a parameter of the distribution has changed. For | 

example the null hypothesis (see Section 1.1) for a two-sample Student's t-test is: 

Ho: Hx,=Hx,, where we model background water quality by the normal distribution with 

parameters Hy, the mean, and Ox, the standard deviation (by not including o in the null 

hypothesis we assume Ox,=©,x,). We then test whether or not the mean of 

downgradient water quality, Lxo is significantly different from our upgradient model. 

Assumptions implicit in this model include: - 

@ NORMALITY: The data are representative samples from a normally _* 
distributed population. " 

@ STATIONARITY: the parameters of the probability model are not changing 
in time. ° 

e INDEPENDENCE: The data are a random sample, i.e. each data point is 
independent of the others. 

The first assumption is common to parametric statistical tests such as the t-test or analysis 
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of variance. The second two assumptions are true for most statistical tests, including 

distribution-free or non-parametric tests. 

. | The normality assumption is apt to be violated in water quality data when the data 

. distribution is skewed. As discussed in the previous section, a histogram of the data may 

not resemble the normal distribution and a normal probability plot may not be a straight 

line. The normality assumption is tested using data from the 20 landfill sites in Section 

vos 2.2.3. 

oo The assumptions of stationarity and independence are related to the variability found in 

data. In terms of statistical models, there are basically two types of variability: 

deterministic and nondeterministic. Fluctuations which we can explain and account for 

are deterministic. An example is seasonal fluctuations in mean water quality. Variability 

about a constant central value (i.e. the mean) which we cannot explain or explicitly 

account for is non deterministic. An example in this case is error introduced by laboratory 

analysis. It is this non-deterministic variability (sometimes misleadingly called "random 

noise”) that we are attempting to model probabilistically.* 

The stationarity assumption is most likely to be violated by the presence of cyclic trends, 

particularly seasonal fluctuations. If water quality changes by season the mean of the | 

distribution (assumed under the null hypothesis) is not constant. This type of variability 

may be accounted for deterministically; i.e. we could account for this shifting mean in the 

t-test model by revising the null hypothesis to be: | 

i where Hy, Is the annual mean of background water quality and 6; is the deviation of the 

mean for season i from the annual mean. One approach to deal with nonstationarity 

j ° would be to subtract the mean of each season from the associated data points. Thus we 

would reduce our seasonal model back to the original model. When there are seasonal 

shifts in groundwater quality data and we do not account for them, we violate the 

: assumption of stationarity (Section 2.2.2). 

3The idea here is that we do not know the true cause of this non-deterministic variability. It may be truly 

random noise or it may have some quantifiable physical explanation that we do not know. 
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The independence assumption is apt to be violated by the presence of serial correlation. 

Serial correlation is found in data which are collected too frequently to be independent of 

each other. When looking at time versus concentration plots, serial correlation may be a 

factor when high values follow high values or low follow low. In a groundwater context, —- 

serial correlation may be observed when groundwater flow is very slow, but sampling is 

frequent. Figure 2-8 illustrates this concept using hypothetical data with no seasonal . 

trends (i.e. only nondeterministic variability). Serial correlation would be observed in thé ~ 

data set represented as circles. If sampling were done on a less frequent schedule (as 

shown by the squares) the assumption of independence would be valid. “ 

© Serial correlation present; subsequent samples are 

not independent 

Hi CNo serial correlation observed 

8 
g : 
< 

oD 
oO 
Cc 
oO 

. 

Monitoring Date .. 

FIGURE 2-8 The concept of serial correlation in water quality data 

Clearly, the presence of true trend can be confused with the presence of serial correlation. 

This problem is particularly acute at wastewater treatment facilities where effluent 

parameters are measured daily (Berthouex and Hunter, 1983). 
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Groundwater quality data may violate these assumptions as will be shown in the following 

| sections. Tests of stationarity, independence, and normality are discussed in the 

remainder of this chapter. The assumption of normality is explored in detail since the 

° debate between the use of parametric and nonparametric procedures hinges on this 

assumption. 

i 2.2.1 The Assumption of Stationarity 

: Stationarity may be tested by addressing the question: do the data exhibit seasonal 

concentration patterns? 

To evaluate the presence of seasonality the data are either (1) divided into four groups 

and a statistical test of "location" is applied, or (2) a time series test of periodicity is | 

applied. Recommended tests are of both types and include parametric and _ | | 

nonparametric methods (Montgomery et al; 1987; Doctor ef al, 1985; Harris et a/, 1987; 

Montgomery and Reckhow, 1984). The most commonly used procedure is the Kruskal- 

Wallis test (KW). Also the Lag 4 autocorrelation function (ACF) and the one way analysis 

of variance (ANOVA) were used in the cited studies. 

~ While not going into detail about these procedures, several points are important. 

e fin any season the data are significantly skewed, parametric tests may be 

invalid. 

| e Prior to testing for seasonality using any test, positive or negative trends in 

- the data should be removed (to decrease the variability and increase the 

° sensitivity of the test; see Section 3.1.). 

_ e For very small sample size, true seasonality is difficult to detect. As a rule of 

. thumb, at least five years of quarterly data is minimal 

e Data collected "quarterly". should be measured in the same four months 

. : each year. Monthly data must be grouped seasonally with local climatic 

conditions in mind. 

The overall results for seasonality from two studies are presented in Figure 2-9. [he 

: alient con ion here is that qgroundwater quality data are not usually affected b 

seasonality. Montgomery et al (1987) found that positive seasonality was associated with 
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shallow unconfined aquifers with peak season usually in the summer or fall. 

The importance of these findings is that it is unlikely that seasonality is a dominant 

contribution to the temporal variability observed in groundwater data. Many investigators 

have found significant seasonal influences in surface water quality and have proposed : 

statistical methods which account for seasonal variation (Montgomery and Reckhow, 

1984; Hirsch and Slack, 1984; Hirsch et a/, 1982; vanBelle and Hughes, 1984). The low. .: 

observance of significant seasonality in groundwater data suggests that these methods 

are rarely appropriate for Wisconsin data. - 

FIGURE 2-9 Overall Results for Tests of Seasonality , 
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Lastly, if seasonality is believed to be a dominant source of variability, we recommend that 

box plots be made to illustrate the seasonal differences. Secondly, we recommend that 

both the Kruskal-Wallis test and the One-Way ANOVA tests be performed to confirm 

seasonality statistically. These are the simplest applicable procedures. The choice of 

, both these tests is based on their simplicity and ready availability on most computer 

software programs, as well as on the statistical design of the test. These tests are 

ae compared and described in more detail in Chapter 3. Also, statistical procedures which 

take into account seasonality for evaluating groundwater contamination are discussed in 

oe Chapter 3. 

2.2.2 The Assumption of Independence 

Independence may be tested by addressing the question: do the data show serial 

correlation? From a groundwater sampling perspective, serial correlation is most likely to 

occur when groundwater flow is very slow; thus, concentration measurements are | 

collected too frequently to be independent of each other. Independence can often be 

achieved by increasing the time between observations. Several tests have been used to | 

| evaluate the presence of serial correlation in groundwater quality data. Montgomery et al 

(1987) chose the Lag 1 autocorrelation function (ACF). Goodman and Potter (1987) also 

used this method as well as the nonparametric autorun test (AR). The application of the 

ACF test to groundwater quality data is described in detail by Harris et a/, 1987. The AR 

test is applied to hydrologic data by Sen, 1979. Most advanced statistics texts and 

mainframe computer packages include these tests. 

The test results for serial correlation are presented in Figure 2-10. These results indicate 

me hat serial correlation may exist in groundwater quality data even though sampling i 

usually at three month intervals. Research is needed to explore the relationship between 

7 aquifer characteristic (hydraulic conductivity, flow rate, etc...) to the statistical 

. independence of water quality sample concentrations. Since the great majority of data 

sets considered did not exhibit serial correlation, We feel that for everyday purposes it can 

- be assumed tha essive quarterly measurements are independent. 
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Figure 2-10 Overall Results for Serial Correlation Tests 
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2.2.3 The Assumption of Normality 

The normal distribution is the single most important and widely used probability model in 

applied statistics. This is because 

@ many real systems fluctuate "normally" about a central mean; i.e. . 
measurement error of a random variable is symmetric about a "true" mean 
and has a greater probability of being small (close to the mean) than large : - 

(in the tail of the distribution)*; and : 

@ many of the parametric statistical tests are insensitive to the assumption of 
normality, i.e. if the data are not distributed normal, it may not matter a great - 
deal. 

4This fact is supported by the Central Limit Theorem which, in simple terms, states that the distribution of a 

sum of many small “errors” will be distributed normal, given that no single source of error dominates the rest 

(Box, Hunter, and Hunter, 1978). 
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This latter point is explored in detail in Chapter 3. Here the basic question to be 

answered is "Are groundwater quality data distributed normally?" 

We are questioning this in the context of EPA's regulations which do not require tests for 

- normality or other distributional assumptions unless 1) a data transformation is made, or 

| 2) nonparametric statistical tests are applied. Many statisticians recommend data 

- transformations to "normalize" skewed data for parametric tests. EPA regulations 

mS advocate transformations if necessary. Many environmental systems are modelled using 

; the lognormal distribution because (1) it has a lower bound of Zero, and (2) is positively 

- skewed, allowing high values to be included (Benjamin and Cornell, 1970)°. Unless 

there is a physical justification to delete high values they must be considered as a part of 

the dataset. 

In this section, the assumption of normality is evaluated for eight parameters monitored at 

, 20 Wisconsin waste disposal sites. First statistical tests for normality are discussed. 

Then, results of the tests of normality are presented for both raw and log-transformed data. 

The objective of the normality analysis was to gain insight into whether or the not normal 

or lognormal distributions are appropriate probability models for these eight parameters. 

In addition EPA policy and recommended methods are evaluated. 

TESTS FOR NORMALITY. 

To test the hypothesis of normality many statistical "goodness-of-fit" tests may be used. 

These tests mathematically compare the shape of the normal distribution to the data set of 

| interest. These tests should only be applied to independent, stationary data sets. As 

- shown in the previous sections groundwater quality data in Wisconsin usually meet these 

criteria. 

- | Shapiro et al (1968) did a comparative (Monte Carlo) study of nine tests for normality, 

evaluating the sensitivity of the tests to small sample size. At small sample sizes it is hard 

. to reject normality even if the data are not normal. A sensitive test is one which can detect 

non-normality even at small sample size. Shapiro et al (1968) found that 

5The model for the lognormal distribution is Y=In(x), where x = original concentration. x is said to be 

distributed log normal. "In" is the abbreviation for the natural log of x. 

2-21



e The W-statistic (Shapiro and Wilk, 1965) was preferred. 

@ The Kolmogorov-Smirnov and chi square test -- the most often used 
distribution tests -- were relatively insensitive. 

e And, acombination of the third sample moment (skewness) and fourth - 
moment (kurtosis) provides a sensitive judgement, but even their combined 
performance is less than his W-statistic. 

The W-statistic however is not used widely because it is not readily available on 

| _ computer software. . 

In the groundwater quality literature, Montgomery et al (1987) tested the normality of 

groundwater quality data using graphical methods, the chi square test and the skewness 

test. Harris et al (1987) recommend the skewness test for general use with groundwater 

quality data. EPA's draft guidance manual for statistical analysis at RCRA facilities 

recommends three statistical procedures to check normality: 

1) the chi square test, 

2) the coefficient of variation method, and, 

3) normal probability plots. 

As mentioned above the chi square test does not perform well at small sample size (less 

than 20). Furthermore, the method is very conservative for continuous distributions such 

as the normal.6 For these reasons, we do not recommend the chi square test for 

) general use with groundwater quality data from waste disposal facilities. a 

The second EPA method relies on the sample coefficient of variation, v, which is equal to, 

the sample standard deviation divided by the sample mean. This method was previously _ 

required by EPA and is expected to be used widely (EPA, 1988). The rule is: if vis 

greater than 1 do not assume normality. The idea is if v = S is greater than1,thenthe - 

normal probability model will predict negative concentration values with an 

(unacceptable) high probability. Water quality concentrations are inherently non- 

5Conservative implies that the test will not reject the normal when in fact it should; i.e. the test will have a 

| high Type II error rate. 
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negative. An evaluation of this method is made below by comparing results to the results 

of the skewness test. 

The normal probability plot is a qualitative method, and thus cannot provide statistical 

. inference.’ We do not recommend any of EPA's suggested tests for normality, although 

normal probability plots are useful for illustrating deviations from normality. 

st The results presented below are based on the skewness test. We recommend the 

skewness test because: 

@ the coefficient of skewness is easy to calculate and is included in all 

statistical software packages; 

e the test is simple, requiring only a comparison of the skewness coefficient to 

tabulated values (see Appendix A); 

@ the critical levels (table values) have been generated for small sample sizes 

(Harris et a/, 1987); and 

e the test has been found to be robust at small sample size by Shapiro and 
Wilk, 1965. 

The procedure for applying the skewness test to a data set is briefly described in 

Appendix A. | 

SKEWNESS ANALYSIS. 

_ In this study sample data for eight parameters from 161 groundwater wells located at 20 

landfill sites are tested for normality using the skewness test and, for comparison 

—— purposes, the coefficient of variation method. Results are used to evaluate the general 

use of parametric statistical tests. Also, the normal and lognormal distribution are each 

r evaluated as being in general an appropriate probability distribution for each parameter. 

° Only wells with data representative of background water quality are included (161/274 

wells from the 20 sites). Only background datasets were tested because samples 

- obtained in a contaminated situation are most likely not drawn from a single population 

(that is, since leachate plumes are not well-mixed and evenly distributed in space) See 

Section 4.1 for a discussion of how background water quality wells were distinquished 

7There is a test based on the correlation coefficient of the probability plot. See Vogel, 1986 (Water 

Resources Research. Vol. 22 No. 4: 587) 
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from impacted wells. Each data set consists of the time series of concentrations 

measured at a well for one parameter. Only data sets with zero samples reported at or 

below the analytic detection limit and only data sets with nine or greater samples are 

included in the analysis. A total of 699 concentation time series from the 161 wells met 

these criteria. The skewness test is applied to both the raw data and the log-transformed 

data. A two sided test for positive or negative skew is applied ata=0.10. The 

hypotheses are: +. 

H,: lyl< Yn, a =.05 Sample may be from a normal distribution. a 

H,: ly| 2 Yn,0=.05 The normal distribution is rejected. 

where is the skewness coefficient as defined on Table 2-2.8 Values for a og are 

tabulated by sample size in Appendix A. In general, if skew is greater than 1.0 the data 

are found to be non-normal regardless of sample size. 

Overall results are compared to two previous studies in Figure 2-11. Note that data 

analyzed by Goodman and Potter (1987) is a subset of the data considered in this study; 

however, Goodman and Potter did not eliminate datasets with observations at or below 

the limit of detection. In this study, 47 percent of the datasets were found to be non- 

normal. The lognormal distribution failed to fit 43 percent of the datasets. For those 238 

data sets which rejected the normal distribution the lognormal distribution was not 

rejected for 105. Thus either the normal or lognormal distribution was found to "fit" 68 

percent of the data sets. However, the results show that groundwater quality data 

frequently violate the assumption of normality. 

The results from individual parameters are shown in Figure 2-12 and summarized in 

Table 2-3. This summary shows: - 

e pH is least apt to be skewed. Since pH is already on a logarithmic scale this — 
result is not surprising. 

| e Conductivity and alkalinity data were significantly non-normal less than 45 
percent of the time. | 

e COD, iron, and chloride data are most frequently skewed; this may be 

8Note that these hypotheses imply an overall a = 0.10 since the absolute value of y is being considered. 

That is, we are not assuming apriori that skew is positive or negative. 
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FIGURE 2-11 Overall Skew Results 
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because these parameters are often at or near the analytic detection limit in 
background water quality. 

| Comparing the raw and log-transformed data, Figure 2-12 illustrates that 

@ the lognormal distribution reduces the frequency of positive skew for most 
| parameters, and particularly for iron, chloride and COD; and, 

@ for pH, alkalinity, specific conductivity and hardness the lognormal TS 
distribution performed similar to the normal. 

TABLE 2-3 Skewness test results by parameter 

Ter nnnaraTesrete 
Chloride 47/76 28/76 

. COD 15/21 5/21 

pH 47/150 50/150 

Alkalinity 54/119 54/119 

iron 8/9 1/9 

Figure 2-12 implies that the lognormal distribution is more appropriate in general than the 

normal. To explore this idea further, the results were divided into four categories . 

depending on whether the distributions were/were not rejected at the 5 percent ° 

significance level. 

1) both rejected | 

2) only lognormal rejected - 

3) only normal rejected 

4) neither rejected. 

If only the lognormal distribution is rejected, then the statement may be made that the 
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normal distribution appears to better represent the data. Figure 2-13 illustrates these four 

possible outcomes. If it had been possible, the exact p-values for each test would have 

been plotted on a figure similar to Figure 2-13. However, available tables are limited to 

. FIGURE 2-13 Possible Outcomes for Skewness Test of Normality 
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specific significance levels. The skewness results are divided into the four groups above 

for each of the eight parameters. These results are summarized in Table 2-4. 

ani Table 2-4 shows that 

os 1) more than 20 percent of the datasets were found to reject both the normal 
_- and lognormal distribution (except for iron). 

2) For pH, alklainity, conductivity and hardness, both distributions were found 
. to fit more than 1/3 of the data sets. These parameters are found to have 

less natural variation in groundwater (relative to the mean) than the other 
parameters. Since the lognormal distribution is similar to the normal when 
variance is low, these results are not surprising. 

3) As also shown by Figure 2-12, datasets for chloride, COD and iron rejected 
the lognormal distribution less frequently than the normal distribution. 
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| TABLE 2-4 Comparison of Skewness Test Results for the 
| Normal and Lognormal Distribution 

PARAMETER Total Log-normal Normal Neither — Either 
| Preferred Preferred . 

Chloride 76 27 8 20 21 
COD 26 10 | 0 5 6 
PH 150 3 6 44 97 - 
Alkalinity 119 12 12 42 53 
Conductivity 153 18 23 47 65 

| Hardness 131 18 14 54 45 
Sulfate 40 9 12 10 9 
lron 9 8 1 0 O- 

Unfortunately these results do not imply that one distribution is preferred over the other for 

any one parameter. In fa he salient co ion here is that the assumption of normali 

NOUIC aiWe ne tested for before parametri atisti are applied to aro dwater quali 

data, 

EPA (1988) advocates that it is protective of the environment to adopt the appoach of not 

requiring testing of assumptions on a wide scale because "only extreme violations of - . 

assumptions will result in an incorrect outcome of a statistical test.". The results presented 

thus far do not yield any insight into the "degree of violation." To investigate this issue - . 

further, the distribution of the skewness coefficient was inspected for each parameter. The . 

skewness coefficient for large samples drawn from a normal population is distributed 

normally with 1 = 0 and o = 6/N, where N is sample size.9 Thus one approach to ; 

investigate the "degree of violation" of the normality assumption would be to standardize 

°The distribution of the skewness coefficient is independent of the mean (u) and standard deviation (o) of 

the population from which the samples are drawn. Thus, coefficients calculated at different wells in different 

| geologic strata could be from a single normal population (that is, after the coefficients are standardized: see 

text). . 
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the skewness coefficients by dividing by the expected value of the standard deviation, 

VA _ The resulting dataset for each parameter should be distributed standard normal. 

The same approach is applicable for the log-transformed data to evaluate departure from 

; lognormality. Figure 2-14 (a) through (h) are plots of the standardized skewness 

| coefficient for the raw data versus the log transformed data. All points greater than 1.64 

units from the origin will be found to reject the normal distribution at the 5 percent 

-- significance level (for F(x) = 0.95, z=1 .643)10. These plots may only be roughly 

interpreted since the distribution of the skewness coefficient at small sample size is not 

- ° exact. Figure 2-14 shows for the normal distribution that many parameters include points 

which may be considered extreme violations as evidenced particularly for conductivity, 

~ total hardness, chloride and COD. For all parameters the lognormal distribution appears 

more symmetric about the origin and has fewer extreme violations than the normal 

| distribution. Thus, while we cannot state that the lognormal distribution is always the 

| "best" choice for these parameters, it appears to be a better first choice than the normal 

distribuiton."" 

In summary, based on the skewness test we have found that 53 percent of the raw data | 

sets are approximately "normal." An additional 15 percent are found to be approximately 

normal after log transformation. These results are important because they show that 

parametric statistical tests may not be valid in many cases. The results for individual 

| parameters do not imply that either distribution is "best" for characterizing clean water 

quality. However, inspection of the distribution of the skewness coefficient implies that the 

lognormal distribution may be a better first choice than the normal for most parameters. 

- The implication of these results is that parametric tests must be used with caution. 

oe Presented below is a comparison of the skewness test to EPA's recommended coefficient 

of variation method. 

| 10F(x) is the cumulative distribution function of the standard normal distribution; z = 1.643 implies that 95 

percent of the standard normal distribution is less than 1.643 standard deviations from the mean. 

"Tat first glance, these results for pH are surprising since pH is already on a logarithmic scale. However, as 

mentioned above with respect to Figure 2-14, pH data is usually found to have low variance, and thus, the 

lognormal distribution closely resembles the normal. " 
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FIGURE 2-14 Distribution of Skewness Coefficient for 

Raw and Log-transformed Data 
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FIGURE 2-14 (continued) 
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FIGURE 2-14 (Continued) 
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FIGURE 2-14 (Continued) 
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COMPARISON OF SKEWNESS TEST TO EPA METHOD 

The skewness test results presented above are compared to the coefficient of variation 

method recommended by EPA. Of the 699 raw datasets considered in this study only 5 

percent had a coefficient of variation greater than 1.0. Remember that for 47 percent of 

/ the same datasets, the assumption of normality was rejected based on the skewness test. 

The coefficient of variation method grossly underestimates the number of non-normal 

datasets Results for specific parameters are listed in Table 2-5. 7s 

TABLE 2-5 Comparison of Skewness Test to Coefficient of 
Variation Method 

NUMBER OF NON-NORMAL TESTS 

PARAMETER SKEWNESS TEST COEFFICIENT OF 
RAW DATA VARIATION METHOD 

Chloride 47 7 
COD 15 7 

pH 47 4 
Alkalinity 54 0 
Conductivity 65 2 
Hardness 72 2 
Sulfate 19 4 
Iron 8 7 

Based on these results we do not feel that the coefficient of variation method should ever 

be used as an indicator of normality. In concept it only "protects" against the prediction of 

negative values (for example, when setting prediction limits or tolerance intervals). The 

assumption of normality must be evaluated by a "goodness-of-fit" test. 
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2.2.4. Summary 

The statistical characteristics of groundwater quality data were evaluated in order to test 

the validity of fundamental assumptions implicit in statistical hypothesis tests. [he results 

. now that the parametric 2 Ntion of normality is violated quite frequently while the 

assumptions of independence and stationarity are not. Seasonality and serial correlation 

a were evaluated to respectively test the assumptions of stationarity and independence. 

Both assumptions were found to be generally valid. On the other hand, the assumption of 

- normality was found to be violated 47 percent of the time. Even with a log transformation 

the normal distribution was rejected 43 percent of the time. Overall, 68 percent "fit" either 

the normal or log normal distribution. These results show the importance of testing for 

normality before applying parametric statistical tests. The wide occurrence of non- 

normality supports the use of nonparametric statistical procedures. 

A comparison of EPA's coefficient of variation method to the skewness test results showed 

that the coefficient of variation method is inadequate: the method estimated that only 5 

percent of the datasets were non-normal compared to 47 percent for the skewness | 

coefficient. 

2.3 Regulatory Perspective 

In this chapter the numerous sources of variability and error in groundwater quality data 

were introduced. Graphical methods were illustrated. In addition, we showed that the 

_ assumption of normality is often violated, while the assumptions of stationarity and 

| independence are generally valid. To place this work in a regulatory context three 

mS situations are briefly considered: | 

- 7 ® applicability to everyday activities at the DNR; 

, @ applicability in a court of law where groundwater quality regulations are to 

be enforced; and 

. : @ applicability to facility owners/operators and their consultants working on a 
quarterly basis to meet DNR and/or EPA requirements. 

Graphical displays are by far the most valuable and essential tools in all three of the 

above situations. A case of clear groundwater contamination by a landfill may be built 
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solely with graphical data presentation, explanation of geology and standard 

exceedances. It may not be necessary to apply statistical tests. 

' Whenever parametric statistical procedures are to be applied, DNR staff should always 

consider the validity of the assumption of normality. The skewness test is recommended. _ 

This method is briefly described in Appendix A. Because seasonality and serial 

correlation were not found to be prevalent, we recommend that tests for these factors be. .: 

applied only in special cases. 

In a court of law clear graphical display of supposed contamination is essential. If a court 

case is being built using results of statistical tests (as well as hydrogeologic information, 

| etc..) then the validity of the assumptions underlying the tests may be a central issue. We 

recommend the following methods: 

| NORMALITY: Normal probability plots 
The skewness test 

STATIONARITY | 
(SEASONALITY) Box plots with the Kruskal-Wallis test 

INDEPENDENCE | 
(SERIAL CORRELATION) The Lag 1 Autocorrelation function or 

the Auto-Run test. 

At RCRA waste sites a quarterly test for "change" in water quality is required (or proposed 

to be required at MSWLF's) and time versus concentration plots must be submitted. Tests 

for distributional assumptions are required only when 1) a data transformation is made or 

| 2) nonparametric statistical tests are employed. Wisconsin does not require tests of — 

distributional assumptions. Of the three methods recommended by EPA in the draft ° 

guidance manual for statistical analysis at RCRA facilities, we feel that only the normal 

probability plots are useful. The chi square test and coefficient of variation method are ~- | 

inadequate in many cases. We recommend that the skewness test be suggested for 

general use because it is sensitive to small sample size, and may be performed quickly 

and easily. : 

The prevalence of non-normal datasets complicates the choice of statistical test, since 

| _ nonparametric methods may be more appropriate than the traditional parametric tests. 

| | Chapter 3 explores this issue. At this point, we suggest that 
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1) DNR require graphical summaries of site water quality. These could be 

prepared by solid waste site owners on a regular, perhaps annual, basis. A 

quick review of time versus concentration graphs may show trends in time 

and any abrupt changes in water quality; and, 

2) DNR require that any statistical analyses (submitted by owners/operators for 

setting PAL's or for detecting "change" in water quality) include tests for 

- normality to justify the use of parametric methods before applying them. 
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CHAPTER THREE 

| EVALUATION OF GROUNDWATER CONTAMINATION 

- 3.0 OVERVIEW 

Enforcement of groundwater quality regulations at waste disposal facilities requires not 

7 only a determination that contamination exists but also evidence that it is due to the 

facility. Exceedance of water quality standards is largely relied on as an indication of 

_ contamination. Yet even a standard exceedance must be compared to background 

water quality to conclude that the facility owner is responsible. Thus, comparison of 

downgradient water quality to "known" background water quality is an important 

regulatory strategy. In this chapter we address the issue of how to detect significant 

changes in water quality given the natural temporal and spatial variability in background 

water quality. Statistical tests currently recommended by EPA and other methods 

proposed in the water quality literature are evaluated. Examples are drawn from the 20 

sites considered in this study to illustrate the use and misuse of these statistical tests. 

Recommendations are made for analysis of two general situations: 

e existing municipal solid waste landfills (MSWLF's), 

e new facilities and existing facilities with historically clean water quality, 

While MSWLF's are the focus of this study, the recommendations developed are also 

applicable to hazardous waste disposal sites, industrial waste disposal sites, land 

disposal sites for wastewater, and similar situations. The recommended methods are 

synthesized into general procedures presented by flow charts in Chapter 5. 

oO The chapter is organized as follows. 

: e General types of tests and the questions they answer are introduced in this 
section, followed by a general comparison of parametric and 
nonparametric tests. 

" e Evaluation of statistical tests follows in Sections 3.1, 3.2, and 3.3. 

@ Conclusions and recommendations are summarized in Section 3.4 and 
discussed from a regulatory perspective in Section 3.5. 
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The overall objective of this chapter is to highlight some of the theoretical and practical 

limitations of specific statistical tests and to recommend tests to DNR. More specific 

objectives are to provide DNR with: 

@ guidance on establishing background water quality for setting preventive 
action limits (PAL's); - 

@ advice on using statistical tests to determine exceedance of a water quality 
standard; and 7 

® specific tests to determine significant changes in background water quality. 

3.0.1 Types of Statistical Tests i 

: Four general categories of statistical methods are currently considered appropriate for 

determining compliance with groundwater quality regulations: 

e tests of central tendency (location), 

e tests of trend, 

@ prediction, tolerance, and confidence intervals, and 

@ control charts. | 

Tests of central tendency compare whether or not the mean or median of two or more 

datasets are significantly different. Tests of trend look for significant increases or 

decreases in water quality over time. Prediction and tolerance intervals are methods 

which set brackets for "acceptable" background water quality based on existing data. 

Confidence intervals are brackets for "average" background water quality. Control 

charts are graphical methods widely used in industrial engineering and are similarto 

the intervals mentioned. This study focuses on the first three categories. Control charts 

will not be addressed. | | 

While it is the statistician's job to develop correct procedures for answering relevant 

questions, the engineer/scientist must decide on the relevant questions. Once the right 

questions are clearly stated, it should be easy to decide which type of test is appropriate 

(if any). , 

. In order to select an appropriate test we must address the following issues: 
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@ What is the right question? 

@ Which tests have the appropriate statistical model to answer the question? 

e Do our data violate the implicit assumptions of the model? 

: After application of a test, it is essential to evaluate if the results are meaningful. 

_ e Do plots of the data support the statistical results? 

e Are statistically significant results environmentally meaningful? 

sO From a regulatory perspective the two questions generally asked are: 

e ls a groundwater quality standard exceeded? . 

e Has water quality significantly changed? 

These questions however are not specific enough to choose a type of statistical test. 

Consider Figure 3-1, a site map for Wausau Paper Mills sludge landfill. Wells P-7 and 

| P-3 are upgradient of the disposal cells. Wells P-8 and P-9 are between Cell 2 and Cell 

3. Wells P-1 and P-4 are downgradient of the disposal area. Monitoring has existed at 

this site since late 1981; however wells P-7, 8 and 9 were not installed until late 1984. 

One sample is collected from each well quarterly. Specific conductivity data are plotted 

versus time on Figure 3-2 and as box plots on Figure 3-3. These figures illustrate that 

the two downgradient wells have historically higher concentrations than the other four 

wells. Similar results are found for many other parameters. Clearly, the disposal area is 

contributing to these elevated concentrations. | 

, What are the questions of concern at this site? Are statistical tests necessary to 

° document groundwater contamination? At existing sites with apparent contamination a 

_ possible question is | 

, "Has this site historically affected groundwater quality?" | 

Evaluation of groundwater flow and geology, together with graphs of water quality, may 

clearly show contamination. To answer this question statistically a multivariate test of 

central tendency such as a parametric or nonparametric analysis of variance (ANOVA) 

may be appropriate (Section 3.1). These tests are designed to evaluate whether or not 

3-3



= com &



FIGURE 3-2 Specific Conductance vs. Time at Selected Monitoring Wells. 
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FIGURE 3-3 Boxplots for Specific Conductance at Selected Monitoring Wells 
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a significant difference exists between the historical mean/median of background water 

quality and the mean/median of each downgradient well. As shown further on, spatial 

variability in background may confound the results. The above question could be 

rephrased to 

Do concentrations observed at downgradient wells fall within limits 
established for average background water quality? 

This question could be addressed using statistical confidence intervals (Section 3.3). 

Another possible question is: | OO 

"Has water quality improved since monitoring began?" 

In this case, a test of trend over the length of record may be appropriate. Trend analysis 

could include parametric linear regression or a nonparametric measure of trend such 

as Kendall's Tau statistic (Section 3.2). Inspection of Figure 3-2 for wells P-8 and P-9 

suggests that the answer to this question is "yes." Now, for discussion purposes only, 

assume that Cell 3 is a separate facility from Cell 1 and 2. The question of concern is 

now: 

"Has Cell 3 contributed to contamination of groundwater?" 

The historic data from Wells P-8 and P-9 suggest that Cell 3 is not impacting 

groundwater. If this is so, we are in the situation where we have a currently “clean” site, 

and we are interested in assessing whether new data at Wells P-8 and P-9 reflect a 

change in water quality. A test of central tendency is no longer appropriate since 

historic water quality is clean. We are no longer interested in comparisons of average 

(mean) water quality. 1 Rather we want to compare recent data to historic background — 

water quality. When we want to compare a single round of new measurements to 

background, prediction intervals, tolerance intervals and control charts may be _ 

appropriate (Section 3.3). Another approach in the "clean" site situation is to segment _ 

the data at a single-well, and ask the question, 

"Has water quality degraded in the last (year)?" 

'The current RCRA regulations advocate the use of tests of central tendency even at clean 

sites; however, they recommend tests based only on recent data (for example, the last four 

independent samples). 
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A test of trend on only the last four monitoring dates may support this idea. Also, the 

historic data could be compared to the recent year's data using a test of central 

tendency. 

: The ability of these tests to detect groundwater contamination quickly (i.e. when applied 

quarterly with detection within one or two quarters after a "leak" occurs) depends on the 

a choice of test and other factors which may include the length of the clean water quality 

record, the variability in the clean data, and the magnitude of the increase in 

oo concentration due to contamination. 

Also of interest is whether or not specific standards have been exceeded. From a policy 

perspective, the intended interpretation of a fixed standard must be made clear. 

| Possible approaches include: 

@ no data should exceed the limit with consideration given to sampling and 

_ laboratory error, or 

@ the historic mean concentration at a well should not exceed this limit?; or | 

| @ the last-year's mean concentration should not exceed the limit; or | | 

e@ 95 percent of the population must be below the standard; or 

@ other. 

In the first situation, only sample values close to the standard are given the "benefit of 

the doubt." In the second and third cases, confidence limits on the mean (where the 

- standard must be below the lower confidence level) may be appropriate. In the last 

case tolerance intervals are appropriate (Section 3.3.2). 

- After stating the right question, the next step is to choose a specific test which answers 

the question. The test must not only have an appropriate experimental design (i.e. 

. answer the right question) but the implicit assumptions of the test must not be grossly 

violated. As shown in Chapter 2 groundwater quality data may grossly violate the 

assumption of normality, even after log-transformation of the data. The debate between 

2 This choice is rarely appropriate. It may be meaningful at existing sites where disposal 

predates monitoring and contamination is historic. 
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the use of parametric and nonparametric tests hinges on the importance of the 

assumption of normality. 

3.0.2 Nonparametric versus Parametric Tests 

Strictly speaking nonparametric tests are tests which may be based on an assumed 

probability distribution but which do not involve its parameters. Those procedures which 

do not rely on a specific probability model at all are termed distribution-free tests. While 

these terms are not synonymous, procedures of either type are generally known as __ . 

nonparametric methods. Most nonparametric tests are based on the ranks of the data 

rather than the data themselves. Some "information" is "lost" by using ranks rather than 

the data themselves. 

: One of the most appealing advantages of nonparametric methods is that they are less 

likely to be abused. Disregard for fundamental assumptions is the easiest way to abuse 

Statistics. According to J.D. Gibbons (1985a) "If the assumptions cannot be 

substantiated or are not even known to the investigator, then the inferences may be less 

reliable than a judicious opinion, or even an arbitrary guess." Nonparametric methods 

make fewer and less stringent assumptions about the population than those made in 

parametric statistics. Usually the underlying population or variable is only assumed to 

be continuous (symmetry is sometimes assumed too). Note however that nonparametric 

methods do not eliminate the necessity for collecting independent samples. 

Advantages of nonparametric tests include the following: 

@ Data below the detection limit can be incorporated without adjusting the. - 
data. ° 

| @ Nonparametric tests exist for the median, which for skewed data may be-a. 
better estimate of central tendency than the mean. mo, 

| e They do not require the assumption of normality. 

@ Transformations are not necessary. : 

e The tests may have greater power to detect contamination when the 
distribution is skewed and sample size is small. 

| e The tests are robust to outlying data, hence editing of the data is not 
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necessary. 

Two objective criteria for measuring performance in hypothesis testing are"power" and 

"robustness." Power is defined as the probability of rejecting the null hypothesis when 

. in fact it is false. Figure 1-1 and the accompanying discussion explored this idea in our 

situation where the null hypothesis is generally that water quality is clean. Hence, the 

; | "power" of a test may be loosely interpreted as the probability of detecting contamination 

~T when in fact it is present. If a test has high power even at small sample size itis termed | 

"efficient." A test is "robust" if inferences based on it remain valid, even when one or 

_ more basic assumptions are violated. Unfortunately the most powerful tests are those 

associated with the most assumptions. Conversely robust tests are by definition those 

with the weakest assumptions. Nonparametric tests are inherently robust, yet they are 

often criticized for having low "power" compared to parametric counterparts. 

Comparisons of the relative performance of parametric and nonparametric tests on real 

data are difficult to make because it is hard to quantify the relationship between power | 

and robustness at small sample sizes or when the exact normality assumptions are not / 

met. Comparison studies are usually made by evaluating how much power is lost by 

using a nonparametric test, when all the parametric assumptions are met and sample . 

' size is large. If the loss of power is small, then an investigator who has found parametric | 

assumptions to be invalid, or who is unsure of the validity of assumptions may be 

confident in the choice of nonparametric techniques. Unfortunately, when it is known 

that parametric assumptions are violated, the actual power cannot be explicitly 

determined. | 

The asymptotic relative efficiency (ARE) is a measure of relative performance of two 

° tests at large sample size. The ARE as discussed here is used to compare 

nonparametric tests to parametric counterparts when parametric assumptions are met. 

° However, the ARE may be used to compare any two tests with similar hypotheses. For 

practical purposes, the ARE may be interpreted as a ratio of the sample sizes required 

for two tests to achieve the same power at the same significance level (i.e. at equal Type 

" | and Type II error rates). For example, an ARE equal to 0.85 may be interpreted such 

that the nonparametric test with 100 observations is approximately as efficient as the 

parametric test with 85 (if the assumptions of the parametric test are strictly met, and if 

sample sizes are large). The ARE of a nonparametric test is the minimum relative 
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efficiency, in that the nonparametric test wil never be less efficient than the calculated 

| ARE implies. This is because the relative efficiency of a nonparametric test will always 

increase if parametric assumptions are not met.. Table 3-1 lists the ARE between 

analogous parametric and nonparametric tests. These figures must be interpreted with 

caution because typically sample size is small for groundwater quality data. Table 3-1 . 

shows that generally parametric tests are more powerful in the case of the normal 

distribution (ARE <1.0); however for other distributions, such as the uniform or double ; 

exponential, the nonparametric tests may be as or more efficient (ARE >1.0). - te 

There is no magical test to detect groundwater contamination. The regulatory issues’ ‘- 

vary from site to site. Also, the hydrogeology and type of contamination will influence a 

final decision. In the following sections we consider the three general types of 

stastistical methods introduced in Section 3.0.1: | 

(1) tests of central tendency (location); 

(2) tests of trend; and | 

(3) prediction, tolerance, and confidence intervals. 

In each subsection emphasis is placed on the situations where the type of test is 

| appropriate. The types of water quality questions these tests can answer are discussed. 

3.1 Tests of Central Tendency (Location) 

To introduce tests of central tendency, a brief review of applicable water quality literature 

is presented. The basic theory for one approach recommended by EPA is discussed in 

Section 3.1.1, followed by application to four sites in Section 3.1.2. The findings of this _ 

analysis are summarized in Section 3.1.3. . ° 

The mean and median are the most common estimators of central tendency. Tests ~ | 

which compare the mean or median of two or more sets of data are termed "tests of 

central tendency" or "tests of location." Table 3-2 summarizes tests of central tendency 

which have been proposed to be used with groundwater quality data. We do not 

recommend the use of several of the tests in Table 3-2. Helsel (1987) applies 

parametric test statistics using the ranks of the data rather than the concentration values. 
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| TABLE 3-1 Comparison of Nonparametric to Parametric Tests 

(adapted from Gibbons, J.D. 1985a,b, and P. Arzberger 1988) 

| Asymptotic Relative Efficiency 

- Uniform Double | 

. | Name of Analogous Expoential | . Continuous 

Type of Hypothesis none arameinic Parametric Test Lower 
est 

myY’*K\y 
Ww Central tendency 
_ 
oh. . 

One sample or paired sample] Wilcoxen signed rank test Student's t-test 0.955 1.0 0.864 

Two independent samples | Mann-Whitney-Wilcoxen test | Student's t-test 0.955 1.0 —- 

| k - independent samples Kruskal-Wallis test F-test (one way ANOVA) 0.955. 1.0 0.864 

Variance 

Two-independent samples | Sjegel-Tukey test _ F-test ) | 
oo 0.608 0.60 — 

Association analysis : 

Two related samples Spearman rank correlation or | Pearson product- 0.912 1.0 —- 
Kendall Tau moment correlation 

.955 k 
k-related samples Kendall Test F- test (*) k+1. _— -—— 

(*) Randomized blocks ANOVA or balanced incomplete blocks ANOVA



TABLE 3-2 Tests of Central Tendency 

| (P) Parametric (N) Nonparametric 

, |. At a single well with the data set split at 1) an arbitrary time or 2) remedial action | 

1 TESTS SELECTED REFERENCES 

a) Student's t-test and Cochran's Approximation 2 McBean and Rover, 1984 
| to Student's t-test (P) 

2 
b) Mann-Whitney-Wilcoxen test (N) 3 Doctor et al, 1985, Florida,1985 

c) Student's t-test using ranks instead of concentrations (P) Helsel, 1987 

Ul. Between two or more wells considering 1) all historic data or 2) using only "recent" data. 

4 
wo a) One-way ANOVA with multiple comparison tests (P) 4 EPA, October 1988, NCASI, 1985 

nm b) Kruskal-Wallis test with multiple comparison tests (N) EPA, October 1988, NCASI, 1985 

Cc) Two-way ANOVA (P) NCASI, 1985 
. S . 

d) Analysis of Covariance (P) | | 3 Silver, 1986a,b 

e) Two-way ANOVA using ranks instead of concentrations (P) Helsel, 1987 

‘ToA good general reference is "Groundwater Quality Data Analysis" by NCASI (1985). Tests for central tendency for records with 
dependent observations include Montgomery and Reckhow (1984) and Lettenmaier (1976) 

2 
These tests were previously recommended by EPA to compare two or more wells. The current trend is to use Group Il methods. 

3 We do not believe this method is appropriate for determining compliance with groundwater quality regulations. Helsel adopted Conover 
and Iman's (1976) procedure which they admit can only be justified empirically. Since true nonparametric procedures are available in 
the situations being considered we do not recommend this theoretically unsound method. : 

4 For only two wells the one-way parametric ANOVA reduces to the t-test, and the Kruskal-wallis test reduces to the Mann-Whitney-Wilcoxen test. 

5 We do not think this method is appropriate because the test addresses whether downgradient wells as a group are different from 
upgradient wells. Downgradient wells have different potentials for contamination. While some are clean others may be contaminated. 
There is no physical justification for grauping downgradient wells. °



He adapted Conover and Iman's (1976) procedure which they admit can only be 

| justified empirically. Since true parametric tests are available in the situations being 

considered and since the properties of the adapted tests have not been formally 

evaluated, we do not recommend Helsel's recommended procedure. Secondly, Silver 

° (1986b) uses an analysis of covariance, where downgradient wells as a group are 

compared to upgradient water quality. Since downgradient wells have different 

~ potentials for contamination, we feel there is no physical justifcation for grouping 

: downgradient wells, and, therefore, we do not recommend this method either. 

so EPA previously required that Cochran's Approximation to Student's t-test be applied 

between pooled background water quality data and each downgradient compliance 

well. Due to criticism of this procedure (EPA, October 11, 1988; Miller and Kohout, 

undated: Silver, 1986 and McBean and Rovers, 1984b), EPA currently recommends a 

parametric one-way analysis of variance (ANOVA) or the nonparametric analog called 

the Kruskal-Wallis test (EPA, 1988). The remainder of Section 3.1 will focus on these 

tests. 

3.1.1 Background on ANOVA 

The null and alternative hypotheses for parametric and nonparametric (one-way) 

ANOVA ares: 

Ho Ht = M2 = Hg = Hk 

Hy Be # By 

where k is the total number of wells to be compared and is the mean or median of a 

" time series. Only wells screened in similar geologic units should be compared; hence k 

may be less than the total number of wells. If the ANOVA is significant (typically at a = 

0.05) there is evidence that at least two wells are different. Multiple comparison 

: procedures can then be used to find which wells are different. Individual comparisons 

can be made between each compliance well with pooled upgradient water quality. 

Because these tests are based on the mean or median, they can only answer the 

3Statistical hypotheses are introduced in Section 1.1. 
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question whether the central tendency over time differs between wells. The semantics 

here are important because, as pointed out in the previous section, we are not always 

interested in historic water quality comparisons. 

The hypotheses above are based on the "shift model.” This model assumes that the __ - 

distributions being compared are the same shape, but their means may be different 

(shifted). Analytically this assumption is interpreted by assuming the sample groups ~—_—- 

have equal variance (scale). This assumption is frequently violated when contamination 

exists (as illustrated in Chapter 4). The problem of comparing the location of two ; 

distributions of different shape is referred to as the Behrens-Fisher problem. For the ot 

two-sample problem Cochran's approximation to Student's t-test accounts for this.4 

We are not aware of an analogous procedure for parametric or nonparametric 

ANOVA.® . 

The evolution of EPA's regulations from the two-sample t-test to the multiple sample 

ANOVA came about because many two-sample comparisons are necessary at a site. 

For example a site with just n=6 compliance wells tested for k=10 parameters will 

require n x k = 60 two-sample tests. These 60 tests may be substituted by 10 ANOVA 

tests. In addition, for each parameter which the ANOVA finds a significant difference 6 

multiple comparisons must be done. One concern with this approach is that there may 

still be high probability for false positive error; that is, detection of contamination when 

none exists. The issue is that the site-wide significance level, a,,,, will be very high for 

- g§0 many comparisons.® If the significance level for each comparison is a, the site 

; 4The two-sample problem is when only two data sets are being compared, or when one data set 

is split at a certain time, and the two time series are compared. 

| Statisticians and water quality scientists have evaluated the robustness of the t-test to this ° 

assumption and others (Montgomery and Loftis, 1987, Boneau, 1960, McBean ef al, 1988). 

Also, the effect of the Behrens-Fisher problem on the Mann-Whitney-Wilcoxen test has been - 

investigated (Fligner and Policello, 1981, Potthoff, 1963). Fung (1979) found the Mann- . 

Whitney-Wilcoxen test to be fairly robust for long-tailed slightly skewed distributions even for 

sample sizes as small as 10. Montgomery and Loftis (1983) showed that the t-test is not robust for 

distributions of different shape. Comparisons between Student's t-test and the Mann-Whitney- : 

Wilcoxen test may be found by Pratt (1964), Blair and Higgins (1980) and Rovers and McBean 

(1981). 

Sow is the site-wide probability for each parameter of finding contamination when none exists. 

See Figure 1-1. 
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wide significance level for each parameter is 

| n 
Ogy = 1 - (1 - O) 

where nis the number of compliance wells. (This equation assumes each test is 

° independent.) Asn increases, a, increases. For example if a, = 0.01 with 6 

compliance wells, o,,, = 0.06, but for 20 compliance wells, a,, = 0.18. This means 

_— there is an overall 18 percent chance that a false positive error will occur. This is not 

very protective of the owner/operator of the facility. Furthermore if a, is very high the 

co owner/operator will have legitimate grounds to argue with the validity of significant 

results. 

In the next section, parametric and nonparametric ANOVA are applied to datasets at } 

three municipal sanitary landfills. 

3.1.2 Application of ANOVA: Spatial Variability Analysis oe 

In the following evaluation of groundwater quality three main issues are addressed: | 

(1) Will natural spatial variations in groundwater quality be detected using . 

ANOVA? If so, natural shifts in mean and shifts due to contamination 
cannot be distinguished using this method. 

(2) Are the assumptions for parametric ANOVA met? 

(3) Are results consistent between parametric and nonparametric tests when 
fundamental assumptions are/are not violated? 

The first issue is crucial to the general applicability of this type of test. The second and 

- 7 third issues are raised to consider the performance of these tests under violation of 

, assumptions. These issues are illustrated on Figure 3-4 for total hardness data from 

wells at the (New) Sauk County landfill. There is no evidence to support groundwater 

. contamination at this site. The confusion evident in Figure 3-4 (a) is clarified in Figures 

3-4 (b) and (c). Spatial variation of total hardness is shown by the box plots. The boxes 

are shifted on the concentration scale; many of the boxes do not overlap. The 

| assumption of equal variance also appears to be violated. The height/length of the 

boxes are not consistent on Figure 3-4 (b); the range ("length") of the one-standard 
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FIGURE 3-4 Total Hardness Data from the New Sauk County Landfill 
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deviation error bars also varies. For example, while well pairs 104/106 and 102/103 

appear to have similar variance, the two pairs do not have the same variance. Nor do 

other wells at the site. Skew may also be visually evaluated on the box plot by seeing if 

the plots are symmetric and if high outliers are present. These features are evidence of 

; non-normality. The boxplots for W-118 and W-106 clearly show skew. 

. Three sites were selected for more detailed analysis. These sites are clay-lined facilities 

7 with leachate collection systems which are not believed to have contaminated 

groundwater. "Clean" sites were chosen because we are testing for natural spatial 

° variability only. The sites are: 

| SITE | LICENSE 

e (New) Sauk County Landfill 2978 | 

e Portage County Landfill 2966 

e Greidanus Landfill 140 

Wells at the Portage County landfill are screened at two levels; thus two separate 

: analyses were performed here. One well at Portage County was deleted from the 

analysis because contamination was suspected. The only data points deleted from the 

remaining data sets were those high values very early in the sampling record which may 

have been a result of well installation and development procedures. The well 

stabilization period was judged from time versus concentration plots. 

. A summary of conditions at each site is presented in Table 3-3. Table 1-2 provides 

° additional background information. The materials in which the wells are screened are 

; typical of Wisconsin geology. The analysis was performed for seven water quality 

— parameters. Four parameters are consistently found above detection limits -- pH, 

specific conductance, total alkalinity and total hardness. Three parameters may be 

detected at or below the laboratory detection limit -- chloride, chemical oxygen demand 

and iron. , 

Three one-way ANOVA tests were performed for each parameter at each site: 
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| TABLE 3-3 
Characteristics of facilities chosen for spatial variability analysis 

PORATGE COUNTY -- SHALLOW WELLS (12) screened at water table - 

DNR Well ID No.: Up or side gradient: 1,4,12,14,16,17 
Down or side gradient: 9, 23, 24, 26, 28, 30 3 

Length of record: n = 19.24 (geometric mean of n at each well) 

Geologic formation: sandy glacial till with cobbles and boulders. 

PORTAGE COUNTY -- DEEP WELLS (8) | 

| DNR Well ID No: Up or side gradient: 2,5, 13 
: | Down gradient: 10, 27, 29, 31, 33 

Length of record: fh = 19.16 

Geologic formation: sandy glacial till, coarser than above. 

SAUK COUNTY LANDFILL (NEW): WELLS (9) 

DNR Well ID No.: Up gradient 101, 102, 103 
Down gradient: 104, 106, 107, 108, 11, 118 

Length of record: n =19.76 

Geologic formation: sandstone | 

GREIDANUS LANDFILL: DEEP WELLS IN EXPANSION AREA (3) : 

DNR Well ID No. : Upgradient 215, 218 
Downgradient 225 . 

Length of record: N =7.92 for Cl and Hardness 
n =8.36 for other parameters. 

Geologic formation: glacial outwash -- dense sand with some gravel. 
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| 1) parametric ANOVA on raw data; 

2) parametric ANOVA on log transformed data; and 

| 3) nonparametric ANOVA, the Kruskal-Wallis test (KW). 

. For each parameter (at each site) one of these tests was chosen as the most applicable 

sO method based on an evaluation of test assumptions. The preferred test for spatial 

variability was determined as shown by the flow chart on Figure 3-5. To evaluate the 

” validity of the assumption of constant variance, Bartlett's test for homogeneity of : 

variance was applied to both the raw and log-transformed data. The skewness test was 

applied grouping all the data at the site after subtracting the individual well means (or 

means of the logs) prior to analysis. This approach eliminates the effect of shifts in 

mean (spatial variability) on the overall skew calculation. 

The percent of data below detection limits (ND's) was calculated for chloride, iron, and 

chemical oxygen demand. Except for chloride data at the Greidanus landfill (0 % ND's), 

the percent ND's exceeded 15 percent of the records site wide. The KW test results are 

"preferred" for these parameters. “Preferred” is meant in the sense that this test based 

on the validity of assumptions is most appropriate for this set of data. Four cases had 

more than 50 percent ND's and even the ANOVA results are suspect. | 

| Table 3-4 summarizes the "preferred" test results. Quite clearly, the KW testis most _ 

appropriate for evaluating shifts in mean between landfill monitoring wells. For all three 

tests which the parametric ANOVA was "preferred," the KW test gave the same result, i.e. 

- - significant or not significant at the five percent level.’ 

’The choice of the Kruskal-Wallis test is made here by “default.” Unfortunately the KW test is 

also based on the shift model and thus is sensitive to the assumption of equal variance between 

groups. Technically, the KW test makes the assumption that the distributions are symmetric, 

which of course is not always the case with water quality data. | 
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Inspect time vs. concentration plots for outliers . 
( Delete justifiable outliers only.) 

>5% 
Calculate % ND's 

<5 % . 

Pass 
| Test parametric ANOVA assumptions ; 

Fail ; 

Log -transform data 

Fail Pass 
Test parametric ANOVA assumptions 

Choose we ngs Choose 
Kruskal - Wallis __ Significant ‘Parametric ANOVA 
Test Results results 

Spatial Variability 

Not Significant Not Significant . 

No Spatial Variability 

Tests of parametric ANOVA assumptions include: - 

1. Test for homogeneity of variance = Bartlett's test 

2. Test for normality : skewness test. 
| (applied to site-wide data after removing individual well means) 

FIGURE 3-5 _ Flow Chart for Spatial Variability Analysis 
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TABLE 3-4 
Applicable tests for evaluating spatial variability 

PARAMETER Parametric Parametric Kruskal-Wallis | 
. ANOVA ANOVA Test 
“ot log-transformed data 

a Chloride 1 0 3 

Chemical oxygen demand 0 0 4 

iron 0 0 4 

| pH 0 1 3 | 

Alkalinity 0 0 40 

Specific conductivity 0 0 4 

Total hardness 1 0 3 

| The parametric ANOVA was rejected for the following reasons: 

_ Raw Data Log Data 

Presence of ND's 11 11 

| Violation of variance assumptions 6 3 

Violation of normality assumption 1 2 

Violation of both assumptions 8 11 

Total 26/28 27/28 
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Note that Bartlett's test rejected the assumption of constant variance 50 percent of the 

time for both the raw and log-transformed data. 

The Kruskal-Wallis test results are presented in Table 3-5. Spatial variability was 

detected at each site for at least two parameters. The shallow wells at Portage County 
exhibited significant spatial variability for all parameters. From these results we 

conclude that natural spatial variability in groundwater may confound the results of - - - 

ANOVA when applied to detect groundwater contamination. When ANOVA is applied at 

a site thought to be contaminating groundwater. significa 2sults are not co ive -. 

Significant results may be due to either natural spatial variability or contamination. If 

ANOVA must be a choice for determination of compliance, 1) Bartlett's test should 

always be applied, and 2) preliminary ANOVA should be. applied at clean wells to see if | 

spatial variability is significant (if there are at least three background wells). If spatial 

variability is not apparent, then the Kruskal-Wallis test should be applied. 

3.1.3 Summary 

In conclusion, we have pointed out some severe limitations of tests of central tendency 

as applied to groundwater quality data. These are: 

1) The site-wide significance level, Asyw, May be high when many wells are 

included in ANOVA analyses. 

2) Natural spatial variability may be statistically significant. ANOVA results. - 
may not be able to discern between natural shifts in mean and those dué 
to contamination. 

3) The assumption of homogeneity of variance is frequently violated. my 

4) Because parametric ANOVA assumptions are found to be invalid in many 
cases, the nonparametric Kruskal-Wallis test is the preferred test to apply - 
to evaluate spatial variability in groundwater 

5) These tests compare the central tendency of the data sets which may not 
be the right question at sites thought to be "clean." 
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a TABLE 3-5 | 
Results of Kruskal-Wallis Test applied to detect spatial variability 

| (SIGNIFICANT = Conclude natural spatial variability is detectable.) 

Significant Not significant p-value 

} Chemical oxygen demand | 
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3.2 Tests of Trend 

Tests of trend can be used to evaluate whether water quality is increasing or decreasing 

with time. Strictly speaking trend could be observed as either a step function or a 

gradual increase (usually modelled as a linear function). Step trend should be . 

analyzed using the tests of central tendency discussed in the previous section. Here we 

are looking at methods to evaluate long-term trend. at 

Trend tests alone cannot be used to determine compliance with groundwater quality. - 

regulations. The tests can only answer the question "Does a positive or negative trend 

exist?" The tests cannot determine the environmental significance of the trend. The 

presence of a “smail" trend does not mean there is contamination; the absence of trend 

does not mean there is no contamination. Therefore if a test of trend is used to support 

| the hypothesis of contamination, the results must be linked to exceedanceof standards 

and to likelihood of contamination. | 

Tests of trend are also applicable in evaluating the effectiveness of remedial action. 

However, this type of test should not be used to "predict" when a target concentration 

will be reached since aquifer restoration is usually not a linear process. A multi-volume 

| document is currently being prepared by EPA on this subject entitled "Statistical 

Methods for the Attainment of Superfund Cleanup Standards --Draft ." 

Table 3-6 lists trend tests proposed in the literature for water quality data with and 

without seasonal effects. Linear regression analysis is the method most people are 

| familiar with. A least squares regression of the concentration data, y;, yields a linear 

best-fit equation 

Y; =Mm xX + b . 7 

where, . 

y, = predicted mean concentration at time i, the dependent variable 

xj = time, the independent variable : 
m = the slope of the predicted trend line 

b = the y-intercept, a constant. 

An f-test on the mean square error of the regression line to the mean square of the 
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TABLE 3-6 Tests of Trend 

(P) Parametric (N) Nonparametric 
1 

|. Ata single well over 1) entire time series or 2) recent data SELECTED REFERENCES 

a) linear regression with f-test (P) NCASI 1985 
McBean and Rovers 1984 

b) Kendall Tau with/without Sen's estimate of slope (N) Doctor et al 1985 
Hirsch et al 1982 

Y Gilbert 1987 
ho | 
on 

Cc) Spearman's Rho (N) 

d) Seasonal Kendall Tau with/without Sen's seasonal slope estimator (N) Doctor et al 1985 
Hirsch et al 1982 | 

| , Gilbert 1987 

e) Farrell's (Seasonal) aligned-rank test (N) vanBelle and Hughes 1984 | 

1 s 

References for trend tests for serially correlated (dependent) data include Hirsch and Slack (1984) and Lettenmaier (1976). 

Montgomery and Reckhow (1984) present a general methodology for detecting linear trends in 
lake water quality and recommend specific techniques under various conditions.



"unexplained" error provides a measure of whether the slope, m, is significantly different 

from zero. Linear regression is very sensitive to outlying values. 

Another use of trend tests is to evaluate whether background water quality is 

significantly (gradually) changing in time. In this case, the trend should be removed ~~ 
prior to further analysis (Harris et al, 1987). An apparent trend at a downgradient well 

cannot be confirmed as evidence of contamination, unless it can be shown that the _ 7 

same trend does not exist in upgradient wells. Detrending is accomplished using the 

calculated equation from linear regression (above). The predicted mean value of y at . 

time x; , Yi , is subtracted from yj., the observed value of y. 

| Z=Yi-Y; fori=1ton 

zj (i= 1 ton) are the detrended concentrations. Further analysis on z; could include 

tests of central tendency. The linear trend observed in background data is also removed 

) from the compliance well data before analysis. 

The nonparametric analogs to the linear regression f-test are Kendall's Tau statistic and 

Spearman's (Rho) rank correlation coefficient. Usually Kendall's Tau is chosen for 

water quality data because the test statistic approaches normality at smaller sample 

sizes than Spearman's Rho (Montgomery et al, 1987). Kendall's Tau is a number 

between -1 (perfect negative correlation) and 1 (perfect positive correlation). The test 

Statistic, T, basically evaluates whether the ranks of the data increase with time. (See 

Gibbons, J.D. (1985b) for a simple derivation of tT.) The calculated value of Tis | 

compared to tabulated values to determine if trend exists (See Appendix A). Because 

| the test is based on the ranks of the data, Kendall's Tau is robust to data outliers. a 

Linear regression is quite powerful, but analysts tend to delete outlying values without. _ 
physical justification to get a "good fit." Also, some users will wrongly try to make 

predictions of “when concentration will return to normal" or "when a standard will be 

exceeded." The DNR should be aware of the common misuses of regression. When __ 
facility reports are submitted to DNR containing linear regression analysis, reviewers 

should make sure that deletion of data is "physically" justified. Also any predictions 

made with the regression line should be interpreted as no more than a best guess. 
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3.3. Confidence, Tolerance and Prediction Intervals 

Statistical intervals are used to "bracket" background water quality. Measurements may 

be compared to the upper bound of the interval to determine contamination. Both the 

. upper and lower bounds are considered for parameters such as pH which may increase 

or decrease depending on the type of contamination. Each of the techniques are used 

oO to answer different questions. 

Confidence limits on the mean define an interval within which the true mean of the 

° population will fall (90, 95, 99 percent) percent of the time. 

. Tolerance limits define a range within which some proportion of the population will fall: 

(90, 95, 99 percent) of the time. Usually this proportion is also 90, 95 or 99 percent. 

, Prediction limits define an interval within which it can be stated that the next ke: 

measurements will fall (90, 95, 99 percent) of the time. - 

Hahn (1970) explains the difference between these limits. . 

A typical astronaut, who has been assigned to a specific - 

number of flights, is generally not very interested in what 

will happen on the average in the population of all space 

flights, of which his happens to be a random sample 

(confidence interval on the mean), or even what will 

happen in at least 99 percent of such flights (tolerance 

_ interval). His main concern is the worst that will happen in 

the (next) one, three or five flights in which he will 

| personally be involved (prediction interval). 

All three (parametric) intervals are symmetric and are calculated based on the models 

. x + ks (two-sided) or x + ks (one-sided) 

_ where k is a constant obtained from tabulated values. The environmental 

meaningfullness of these statistics depends on the validity of the assumptions of 

normality, stationarity and independence. 

These limits cannot be used interchangeably. A common mistake is to use confidence 
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limits when tolerance intervals or prediction limits will answer the question of concern. 
Table 3-7 lists intervals proposed in the literature with application to water quality 

problems. Table 3-8 lists questions asked from a regulatory perspective and the 

appropriate method(s) in each case. | 

In theory question 6 of Table 3-8 is not applicable for determining compliance with 

groundwater quality regulations. This is because we are not interested in comparisons - 
to average water quality, but rather on comparison of compliance well data to the 

population of background data. This point is often misunderstood. In fact, conversations 
with DNR personnel revealed that confidence limits on the mean are currently used for 

determination of compliance with RCRA regulations at some Wisconsin hazardous 
waste sites (Tusler, 1988). With the advent of EPA's new rules at these sites, we 

suggest that alternative procedures be considered (see Section 3.3.1). | 

In the next two sections intervals are 1) compared to PAL's as estimates of an upper limit 

of background water quality, and 2) discussed as methods to determine standard 

exceedances. | 

3.3.1 Comparison of Intervals to PAL's 

How should background water quality be defined? What is a reasonable number above 
which we suspect groundwater is contaminated? Tolerance intervals, prediction 
intervals and PAL's have been proposed as estimates of this level. In this section these 

three estimates are compared. The choice must be made between defining background 

on a well by well basis or on a site-wide (aggregating data from different wells). In the 

analysis of four sites presented in Section 3.2, it was found that spatial variability in ~_ - 
groundwater quality was common. Both the mean and variance wére shown to vary 
among clean wells. These results suggest that background water quality be defined on - 

| a well-specific basis. DNR has adapted this policy for setting PAL's at most sites. . 

However, in some cases site-wide PAL's are in effect. The site-wide approach simplifies 

the methodology and minimizes the time to calculate PAL's; however, spatial variation is- 

not distinquished from temporal effects. The resulting PAL's may be too high at some 

wells and too low at others. When spatial variation is present (which we believe to be 

the usual case) the well-specific approach is preferred. 
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: , TABLE 3-7 Confidence, Tolerance and Prediction Intervals | 

| SELECTED REFERENCES 
|. CONFIDENCE INTERVALS 1) to determine standard exceedances, and 

2) to determine limits on mean background water quality. 

Normal and lognormal distribution Gilbert 1987 
NCASI 1985 

‘Nonparametric EPA 1988 

lt. TOLERANCE INTERVALS 1) to set standards, 2) to determine standard exceedances, | 
Oo and 3) to define an interval within which background concentrations will fall with high probability. 

no 
co 

Normal and Lognormal distribution Loftis et al 1987 
EPA 1988 

Nonparametric 2 EPA 1988 

lll. PREDICTION INTERVALS 1) to define background concentration interval within which 
future measurements from downgradient wells are likely to fall. 

| Normal and lognormal distribution Gibbons 1987 

EPA 1988 
Hahn 19704, !0 | 
Hahn and Nelson 1973 

A good general reference is “Understanding Statistical Intervals" by Hahn (1 970). 

2 This method requires such a large number of data points to provide a reasonable interval that | 
it appears to be impractical in this application.



TABLE 3-8 Application of intervals to regulatory questions 

QUESTIONS METHOD 

1. What is a reasonable upper limit for background Tolerance 
water quality? 

2. Are downgradient concentrations outside the allow-| Tolerance 
able range of background water quality? Prediction 

3. Do new measurements at downgradient wells come Prediction 
from the background population? 

4. Has a standard been exceeded based on average Confidence 
water quality over a time period? 

| S. Has a standard been exceeded more than a specified Tolerance 
percent of the time? _ 

6. Within what range can we state the mean/median of Confidence _ 7 
background water quality falls? ° 
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APAL equalto x+3s may be statistically interpreted as an estimate of the 99.87 

quantile of the normal distribution. That is, k=3 is the z-score associated with F(x) = 

0.9987 where F(x) is the normal cumulative distribution function. If atime series is 

independent, stationary, distributed approximately normal, and sample size is large, 
* then it may be stated with confidence that water quality will exceed the PAL less than 1 

percent of the time (the exact value is 0.13 percent). At small sample size the 

mo probability of exceeding a PAL is not controlled. 

. A tolerance interval (Tl) , like the PAL, is also associated with a quantile point. However, 

| each end of the TI is an (outside) confidence limit on the exact value of the quantile 

point. Thus, the Tlis a “hedged” estimate of a quantile. For the same quantile point, the 

(upper) TI will always be larger than the PAL at small sample size, and will approach the 

PAL at large sample size. Similar to the PAL, the probability of exceeding a TI is not 

controlled at small sample size. | 

- The prediction interval (P!) does control the probability of exceedance, accounting for 

both. natural variability and small sample size. Thus, in principle, the PI is the logical | 

choice for an upper background water quality level, although, like the PAL and Tl, it : 

depends critically on distributional assumptions. The prediction interval may be | 

calculated for one or more new samples. 

At large sample size, when distributional assumptions are met, the TI and PI will 

estimate the same concentration limit for a given exceedance level. This concept is 

illustrated on Figure 3-6 for an exceedance probability of 0.95. EPA recommends this 

| significance level for Tl and PI calculations (EPA, 1988). The y-axis label "k" refers to 

— the multiplication factor in x+ks for each type of interval. Prediction interval k's are 

| plotted for one new sample (quarterly comparisons at MSWLF's) and for four new 

m samples (annual comparisons). It is assumed that only one measurement is made per 

quarter. The PAL (k=3) is also plotted. Figure 3-6 shows the following. 

- @ The PAL is a higher estimate of background water quality than either the Pl 
or Tl at sample sizes greater than 10. 

e At small sample size, the Tl (N<10) and four-sample prediction interval 
(N<9) exceed the PAL. 
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FIGURE 3-6 Comparison of Intervals at the 95 % Significance Level 
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e The Tl and one-sample PI asymptotically approach the 95 th quanitle. 
Note that these intervals would approach the PAL if a significance level of 
0.0013 had been used rather than 0.05. 

@ At small sample size, the Tl increases significantly with decreasing n. 

. e The four-sample PI is greater than the one-sample P! because when four 
comparisons are made each individual comparison is made at a 
significance level of (05/4) = 0.125.8 Thus the four-sample prediction 

- limit asymptotically approaches the 0.9875 quantile point (k = 2.24). 

- It is important to emphasize that these limits may not be environmentally meaningful if 

distributional assumptions are not met. The effect of violating distributional assumptions 

is briefly discussed with an example below. 

Table 3-9 presents calculations of the PAL, Tl, Pl- 1 sample and PI - 4 sample for 

alkalinity data at DNR Well 18 from the Greidanus Landfill. The intervals are calculated 

for (1) the normal distribution and (2) the lognormal distribution. At this well, alkalinity 

varies over a wide range (minimum 93 mg/l; maximum 465 mg/|). Yet there is no reason 

to suspect contamination or any grounds to delete high or low data. Comparing the 

skewness coefficient for the two distributions implies that the normal distribution better 

represents these data (since y is closer to 0). Sample size is small (9), thus the 

tolerance interval is greater than the PAL, as mentioned above. Inspection of the 

resulting limits reveals that the lognormal intervals are unreasonably high. The normal 

calculations appear to be much better estimates of upper limits of background water 

Quality in this case. 

The above discussion has illustrated different methods for establishing an upper limit for 

os background water quality. Important conclusions are summarized below. 

—_ @ The prediction interval in theory directly answers the right question: What 
is the concentration associated with an allowable exceedance probability 
given the natural variability in the data and the sample size? 

- e The PAL is a conservative (high) estimate of background water quality 
compared to the more sophisticated Tl and Pl, except at small sample size. 
(when the Tl and PI are calcuated at a significance level of 0.05 as 
recommended by EPA). | 

That is, when using the Bonferroni multiple comparison procedure. 
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TABLE 3-9 | 
Example Calculation of Statistical Intervals 

Alkalinity data from Well # 18 Greidanus Landfill . 

Distribution | x S Y PAL Tl PI (1) PI (4) 
k=3.0 k = 3.03 k=1.96 k=2.89 [- . 

Normal 259 105 0.334 574 577 465 562 

Lognormal | 5.47 0.465 -0.784 959 972 591 909 

| TI = Tolerance interval 
PI (1) = One sample prediction interval 
P| (4) = Four sample prediction interval 

@ The TI may be unreasonably high at very small sample size (<8). 

e If distributional assumptions are not met, all of the methods may yield 
results which are not environmentally meaningful. 

These three methods all predict some upper limit for background water quality above 

which contamination is suspected. The environmental significance of the exact number, 

however, is unknown. 

The PAL is simplest to calculate. The tolerance interval is almost as easy, except 

instead of using "3" as the multiplier in x + ks, a value is obtained from atable. The - - 

value of the tolerance interval k is less than 3 at large sample size and greater than 3 at - 

small sample size. The prediction interval is most difficult to calculate and is dependent 

on the number of future monitoring rounds the interval will cover. All three of these . 

| methods assume the data are normally distributed which we know is not always true. 

The methods may also be applied to the log-transformed data if necessary. We do not 

recommend aggregating data from different wells to set any of these limits. 
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Because the PAL method is simplest and yields a conservative (from the industry 

perspective), but not unreasonably high, upper limit of background water quality, we 

recommend that DNR continue to employ the PAL "as is" at waste disposal sites. If 

facility owners are dissatisfied with PAL values, DNR should suggest that they calculate 

. prediction intervals as described in EPA (1988) for each well. This procedure is also 

presented in Appendix A. At hazardous waste sites, we recommend that prediction 

. intervals be calculated for each well rather than the t-distribution confidence intervals 

os currently employed. These recommendations are synthesized into flow charts in 

Chapter 5. 

The DNR currently sets PAL's at existing sites with known contamination as well as at 

new facilities. The PAL at a contaminated well is set based on a clean well(s) screened 

in a similar stratigraphic unit. We do not believe that this practice is appropriate or 

correct, due to spatial variations in the mean and standard deviation of water quality in 

groundwater. Therefore, if a site is known to have contaminated groundwater, PAL's 

| may not be necessary at all, since PAL's from a regulatory perspective are intended to 

be early warnings of groundwater contamination. PAL's may be appropriate at a 

contaminated facility as clean-up goals for a remedial action procedure. For existing 

_ sites with contamination, we suggest that the procedures discussed in Sections 5.2 and 

5.3 be used to build a defensible case of contamination. | 

In determining whether a PAL has been exceeded, DNR may be confident that 

contamination exists when more than one sample at a well exceeds a PAL, particularly if 

the PAL is based on a reasonable sample size (8 or more.independent samples at a 

well) and no data are deleted from the time series. 

3.3.2 Intervals to Determine Standard Exceedances " 

— This section addresses the. use of intervals to determine exceedance of externally 

defined standards such as EPA's maximum contaminant levels, Wisconsin's 

. enforcement standards, and PAL's set based on a percent of these standards. PAL's 

set based on background water quality are addressed in the previous section. 

As discussed in Section 3.0.1 the definition of a standard must be clear. Interpretation of 

federal and state regulations is not straight forward. NR140 implies that ES's and PAL's 
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set based on the ES are not-to-be-exceeded limits. However, if it can be shown to the 

agency “that a scientifically valid determination cannot be made that the preventive 

action limit or enforcement standard ..... has been attained or exceeded based on 

consideration of sampling procedures or laboratory precision and accuracy...." then no 

remedial response shall be required (Wisconsin DNR, 1988). The discussion of these ~ 

regulations will therefore focus on using intervals to determine exceedances with 

consideration of 1) sampling procedures, and 2) laboratory error. Unlike the WI . 

regulations, the EPA hazardous waste regulations (as interpreted in the Draft Guidance 

| Manual) imply that some samples may exceed the standard. EPA recommended _. 

procedures are discussed following the discussion of NR 140. 

NR 140. A strict interpretation of NR 140 would be to consider each exceedance "real" 

unless the possibility exists that sampling or laboratory error were the cause of the high 

value. Under current regulations, if an exceedance occurs which the agency or owner 

| feels is an anomalous high value due to sampling procedures or gross laboratory error, 

the well must be resampled. Gross laboratory error implies data transcription error, 

sample mislabeling, etc.and must be distinquished from true laboratory error which is 

associated with the precision and accuracy of the actual analysis. 

| lf a sample and the corresponding “re-sample" exceed the standard, the only 

"unaccounted" reason for a false positive exceedance is true laboratory error. If an 

exceedance is near the standard, it may be that the "true" sample concentration does 

not exceed the standard. Tables 3-10 summarizes laboratory accuracy confidence 

ranges at the Wisconsin State Lab of Hygiene for several parameters (Songzoni, 1988). 

These levels have been calculated for many other compounds as well. Accuracy 

confidence ranges are applicable for judging sample exceedances close to the 7 

standard. The accuracy confidence range defines an interval within which the true 

sample concentration will fall 95 percent of the time. These levels are determined from - 

spiked samples; that is, samples with a known concentration prepared by the laboratory- 

The confidence range is expressed as a percent of the true concentration. For example, 

if a total hardness concentration value of 403 mg/l was measured, the interval of 392 - 

mg/l (0.973 X 403) to 411 mg/l (1.02 X 403) will contain the true sample concentration 

95 percent of the time. Ifa PAL of 400 mg/| is in effect, the possibility exists that the true 

alkalinity concentration may be below the standard by 8 mg/I. Therefore, the standard 

may not have truly been exceeded. 
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As one would expect, Table 3-10 shows that only a small percent of the total 

| concentration should be due to analytic error. These estimates may be lower than at 

other laboratories which do not employ as strict quality control procedures. Rice, 

Brinkman and Muller (1988) reported on a quality assurance program for groundwater 

. samples which evaluated eight laboratories for precision and accuracy. They 

concluded that the reliability of laboratory analyses should not be taken for granted. 

(They also found analytic reliability to be independent of the prices charged by the 

ec laboratory.) | 

-"* In summary the strict interpretation of NR 140 presented here allows for resampling 

when sampling procedures or gross laboratory error is suspected. Otherwise, sample 

values are considered true exceedances except when laboratory accuracy ranges 

indicate that the true sample concentration may be below the standard. EPA 

recommends a less stringent approach for evaluating quarterly groundwater reports 

from hazardous waste sites. - 

TABLE 3-10 

Accuracy Confidence Range for Non-RCRA Samples; 1 | 

Determined from Spiked Samples at WI State Lab of Hygiene 

PARAMETER METHOD 95 % 99 % 
CONFIDENCE CONFIDENCE 

| | RANGE RANGE 

(%) (%) 

a Hardness 200.1 97.3-102 96.0-103 

COD, LL 280.2 90.4-108 86.0-113 
- COD, ML 270.2 93.1-105 89.0-108 

Sulfate 370.2 94.0-107 91.0-110 

: lron, Flame 500.1 93.3-104 90.0-107 

Chloride 140.2 97.3-103 96.0-104 

1 | 
Non-RCRA samples include surface and drinking waters, groundwater, and 

ye domestic and industrial wastes. 37 
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The federal hazardous waste regulations ( RCRA Subtitle C) require 16 independent 

samples annually. Four measurements are to be collected each quarter but must be ~ 

independent samples. To achieve independence the quarterly data may be collected 

daily, weekly or monthly depending on groundwater flow. (EPA,. October 11, 1988). At - 

waste sites governed under Subtitle D of RCRA, sampling consists of one sample four 

| times a year. EPA recommends two methods for determining exceedance of health or, 

welfare standards: confidence limits and tolerance limits. 

The first method EPA (1988) discusses is construction of a 99 percent confidence limit 

on the mean of the most recent four measurements. The standard is then.compared to 

the lower limit of the confidence interval. In the hazardous waste case, the mean of the 

four quarterly measurements are used to construct the confidence interval. Thus, in this 

case, the confidence interval method addresses the question 

"Does the mean of the quarterly sample exceed the standard?" 

This approach "allows" some samples to exceed the standard. It is possible that three 

out of four quarterly measurements could exceed the standard, yet this approach may 

not "detect" an exceedance. This possibility exists because the confidence interval is 

very sensitive to the standard deviation of the four measurements; data drawn from a 

| contaminated regime is likely to be quite variable, since contaminated groundwater is 

not well mixed. Because data from a contaminated regime are most likely not from a 

| single population, we do not believe that distributional parameters should be calculated. 

using these data. Furthermore, confidence intervals based on such a few samples are 

always wide, since information is limited. . 

While the confidence interval could be applied to the MSWLF situation, it must be 

recognized that when only four samples are collected per year the question becomes, | 

"Does annual average water quality exceed the standard?" 

At some sites this question may not be adequate. Contamination by highly toxic 

substances may require quicker action. More frequent sampling at MSWLF's could 
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alleviate this problem. Yet, even if 16 samples were collected, like at HWS's, the high 

variability of groundwater may cause unreasonably wide confidence intervals. 

EPA(1988) also presents a tolerance interval method. This approach would be 

. applicable when a permit is written specifying that a standard is not to be exceeded 

more than a specifed fraction of the time. EPA suggests that the four quarterly 

. measurements be used to construct an upper tolerance limit. If this limit is below the 

mt standard then the site remains in compliance. It is important to note that the choice of an 

upper tolerance limit is much more protective of the environment than the lower 

cS confidence limit discussed above. We do not like this procedure for the same reasons 

given for the confidence interval approach. Data from a contaminated distribution 

should never be used to directly estimate distribution parameters. . 

The strict interpretation of an exceedance as discussed with respect to NR 140 is the 

most environmentally sound approach to comparing data to standards. When _ 

contamination exists, the confidence interval and tolerance interval approaches ; 

recommended by EPA will rely on estimating the mean and standard deviation with data 

which may not be from a single population. Furthermore, the high variability typically 

observed in contaminated time series will cause a very low confidence limit to be 

calculated. 

3.4 Summary and Regulatory Perspective 

in this chapter three types of statistical tests were discussed: tests of central tendency, 

tests of trend and statistical intervals. The discussion emphasized the questions 

- 2 addressed by each type of test addresses. Both parametric and nonparametric tests 

were considered. The evaluation of statistical methods yields some insight into how 

wo DNR may effectively determine compliance with NR 140 at waste disposal sites. On the 

— other hand, several of EPA recommended procedures for use at RCRA hazardous waste 

sites were shown to be ineffective. 

As evidenced by the Wausau Paper Mills example in Section 3.0.1, many statistical 

questions may apply at a site. At sites with historically evident groundwater 

contamination, no statistical tests may be necessary, since a strong case for 

contamination may be built solely using information on site hydrogeology, groundwater 
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flow and water quality graphs. PAL's are intended to act as flags of potential water 

quality degradation. We do not feel they are applicable at existing sites with 
contamination unless they are calculated as a target value set as a remedial action goal. 

There is no magical test to conclusively detect groundwater contamination. Some " 
Statistical tests may confuse the issue of documenting groundwater contamination. 

| Violation of statistical assumptions may lead to erroneous Type | and Type II error rates. * 
Inexperienced analysts may apply the wrong test to answer the right question or vice 

versa. The evaluation of statistical tests presented here will hopefully contribute to _ . 

solving this problem. 

Tests of central tendency both parametric and nonparametric were shown to have 
severe limitations. ANOVA tests were applied to three state-of-the-art sanitary landfills 
which are not suspected of contaminating groundwater. The analysis showed that 

_ Natural spatial variability may be statistically significant. ANOVA results may not be able 
o discern between natural variations in mean and those due to contamination. Also, the 

parametric assumption of normality and the assumption of constant variance were 

found to be frequently violated for both raw and log-transformed data sets. The 
nonparametric Kruskal-Wallis test was found to be the preferred test of central tendency, 
yet we recommend its use only for testing for spatial variability, not for detecting 

| contamination. Because spatial variability was frequently observed, we recommend the 

use of well-specific comparisons, such as statistical intervals and trend tests for 

detecting contamination. 

Tests of trend may be used as supporting evidence of contamination. These tests 

however cannot be used alone since the sole presence of a trend is not conclusive ~*~ ~ 

evidence of contamination. However, _a strong positive trend of magnitude great enough 

o Cause standard exceedances is powerful evidence of contamination. We recommend: 

use of Kendall's Tau, a non-parametric correllation coeffiecient, rather than linear ™ 
regression techniques. This recommendation is made because linear regression may 

be easily misused and is dramatically affected by data outliers. . 

Confidence, prediction, and tolerance intervals were discussed from two perspectives: 

1) as methods for establishing upper limits for background water quality (i.e. lower limits 

of potential contamination), and 2) as tools for determining standard exceedances. As 
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mentioned above, we feel intervals set based on background water quality are the 

preferrred method for statistically detecting groundwater contamination. [he intervals 

ould alwavs be calculated on a well specific basis rather than on a site-wide basi 

ince the mean and variance at different wells are likely to vary significantly, A 

. comparison between tolerance intervals, prediction intervals and PAL's showed that 

PAL's consistently are the highest estimator of background water quality, except when 

. sample size is small. These results however were dependent on the choice of a 95 

-o percent significance level for the tolerance and prediction interval. This choice was 

made based on EPA recommendation. The prediction interval is the most theoretically 

a sound approach to setting background levels, since it is a concentration value 

associated with a specified exceedance probability and takes into account sample size 

and natural variability. 

We recommend that the DNR continue to rely on the PAL as an early warning of 

groundwater degradation. PAL's should always be set on a well-specific basis rather 

than site wide since spatial variability is believed to be common. Froma statistical 

: perspective the prediction interval is superior to the PAL, since this method is | 

theoretically correct when the implicit assumptions are met. If a facility owner is | 

dissatisfied with DNR's calculated PAL values, prediction intervals are recommended as 

an alternative approach. 

At hazardous waste sites where quarterly comparisons are made between background 

| water quality and compliance well data by facility owners/operators, we suggest that the 

| prediction interval approach be considered before other methods. The interval may be 

updated, perhaps annually, to give a better, probably lower, estimate of background 

— water quality. The updated interval will probably be lower because at the same 

" exceedance level, the interval decreases with increased sample size 

_ When data are to be compared to health and welfare standards, we recommend that 

DNR take a strict approach to determine exceedances. Resampling should always be 

; allowed. However, all results should be considered "true" unless it can be shown that 

there is gross error due to sampling procedures or laboratory error. In all other cases, 

exceedances should be given the benefit of the doubt only if laboratory accuracy : 

ranges indicate that the true sample concentration may be below the standard. This will 

only be the case when sample values are very close to the standard. 
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We do not support the use of confidence or tolerance intervals for determining standard 

exceedances as recommended by EPA. These methods, and in particular the 

confidence interval, are considerably less protective of the environment than the method 

Outlined above. Our primary concern with these methods is that they require estimation - 

| | of the parameters for a (possibly) contaminated distribution. These estimates of the 

mean and standard deviation are meaningless since samples are probably not from the. 

same population, i.e. leachate plumes are not homogenous mixtures of pure chemicals.” 

| Furthermore, the estimates of the standard deviation may be greatly inflated, since 

groundwater contamination is highly variable. 7 

The information presented in this chapter implies that in a court of law, statistics applied 

to groundwater quality data may be easily challenged. Fundamental assumptions of all 

these methods are frequently violated. A strong case built on hydrogeology, disposal 

history, and water quality graphs may be supplemented with statistical test results. 

However, a groundwater contamination case which rests heavily on statistical 

conclusions will never stand up to detailed examination. Statistics should be viewed as 

an admittedly imperfect regulatory tool used to confirm apparent contamination for 

determination of compliance with groundwater regulations. 

The recommendations summarized above are synthesized into a methodology in 

Chapter 5 with specific recommendations for changes to NR140. 
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CHAPTER FOUR 

STATISTICAL SCREENING OF . 

THE GROUNDWATER QUALITY DATABASE 

4.0 OVERVIEW | 

7 While the first three chapters of this report have focused on determining compliance with 

groundwater quality regulations, this chapter presents the results of a Statistical analysis 

- on Wisconsin's database of water quality data at waste disposal sites. The landfill 

groundwater database includes over 300 licensed sites, each with a number of wells, 

and water quality data for an array of constituents at each well. 

The DNR is currently working on setting preventive action limits (PAL's) at landfill 

monitoring wells for various constituents. The PAL (for those constituents without a 

mandated enforcement standard) is set based on a review of background water quality 

(see Section 1.2). The current procedure to set PAL's for these indicator parameters | 

requires a thorough review of site history, hydrogeology, and historic water quality data. a 

This procedure, as one might expect, is time consuming. 

Hence, the broad objective of our analysis of the groundwater database was to 

7 prioritize particular sites for the setting of PAL's and to help minimize the time required to 

, set PAL's for all the sites. In order to meet this goal, several more specific objectives 

included: 

a (1) to characterize the data available for each site; 

(2) to develop a "predictor" of groundwater quality change with respect to 

, background water quality at a site; 

° (3) to use this predictor to group landfill sites into categories of similar 

| groundwater impacts. 

In March 1988 we submitted a report to DNR entitled Summary Report Task 3 "Statistical 

Screening of the Groundwater Quality Database." In that report a "predictor" of 

groundwater quality change with respect to background water quality was developed 
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and applied to the database. Landfill sites were grouped into categories of similar 
groundwater impact. In subsequent meetings with DNR it became apparent that this 
predictor did not work well at sites where more than 50 percent of the wells at the site 
were contaminated. Since this is often the case at sites with Significant problems, we 
continued this line of research. The "predictor" presented in this chapter is simpler than- 

| the one which we first proposed. Also, a larger control group of sites was used to 
evaluate the predictor performance. Therefore, this chapter is intended to replace in. 
entirety our previous report. a 

We described the groundwater quality data using a database management program * 
developed specifically to meet our needs. For each site a variety of information was 
generated, including: the number of dates each parameter was tested at each ; 

| | monitoring well, the number and name of parameters tested per well, and the number of 
replicate samples. 

No surface water monitoring stations or other non-well points were considered. A total 
of 316 sites are included in the database with a total of 4202 wells. If it is assumed that 
an average of five PAL's will be set at each well, then a total of 21,010 PAL values must 
be determined. These numbers are approximate since some sites are in the process of 
closing, and new sites are added on an ongoing basis. 

Many environmental parameters are monitored at the landfill sites; however this study 
focused on the eight chemical parameters most frequently monitored at landfills: 

- chloride - pH 

- chemical oxygen demand - specific conductance ee 

- sulfate - total hardness 

- iron - total alkalinity . 

_ Inthe site characterization it was found that 9 sites had no data for these parameters, 
and 79 sites have less than 8 monitoring dates for all parameters at all wells. We did not 
address these sites in the statistical analysis. The remaining 228 sites were screened 
for evidence of contamination. 

ot 4-2



: 4.1 Development of Predictor of Groundwater Quality Change 

The general strategy employed to develop a groundwater predictor was, first, to 

" evaluate in detail the site conditions for a subset of 20 sites from the groundwater quality 

database. Then this subset was used to develop and test a predictor. To evaluate 

- whether groundwater contamination had occurred, water quality data from well samples 

was reviewed in conjunction with information on disposal history, waste type and 

. hydrogeology. In this study, we analyzed a control group of 274 wells from 20 landifill 

sites in Wisconsin for evidence of contamination. A summary of the characteristics of 

these sites was presented in Section 1.3. Not only was geology, groundwater flow, site 

history and waste type considered, but the water quality data at each well were tested 

for increasing trends in time, and also compared to other wells. The 274 wells were 

grouped into four categories based on the evidence that contamination is present or 

absent. The four categories are: 

Group | Presumptive evidence that well is clean 

Group Il Evidence that well is probably clean 

Group lil Evidence that well is probably contaminated . 

Group IV Presumptive evidence that well is contaminated 

The procedure used to group wells is similar to the flow charts presented in Section 5.1 

for setting PAL's based on background water quality. More specifically, 

: @ We met with DNR personnel to discuss background information at each 
site. 

. e Information on site history, geology and groundwater flow was 
| summarized. 

. e Wells with sufficient data were identified and located on a site map. | 

@ Time versus concentration plots and box plots were constructed for each 
parameter for wells screened in similar geologic formations. 

@ Kendall's Tau two-sided test for trend was applied. Significant trends were 
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noted on box plots. 

e@ Inferences drawn from the parameter plots for each well were summarized. 

e@ Wells were grouped into categories |, Il, Ill, or IV. 

A summary of the wells considered and their associated group is presented in Appendix ‘ 

B. Group | and II wells may be used to determine background water quality. Figure 4-1 

shows that of the 274 control group wells, 59 percent are either Group | or Il (clean), _ .~ 

while 41 percent are in Group III and IV (dirty).1 

FIGURE 4-1 Breakdown of Control Wells 

into Four Water Quality Groups 
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Each dataset for the control wells was statistically summarized including: 

x the sample mean 

s the sample standard deviation : , 

Xin the sample mean of the log-transformed data ea 

Sin the sample standard deviation of the log-transformed data 

m the median : 

1Note that the 99 control group wells evaluated in the previous study (Goodman & 

Potter, 1987) were re-classified based on two years of additional data. Some well 

groups were changed: most changes were "downgrading" wells from | and II to Ill and IV. 
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IQR __ the interquartile range? 

| These summary data were explored for use as possible predictors. In theory, a perfect 

prediction will always correctly assign wells as “clean” or "dirty." In practice, some group 

. | and II wells will be predicted "dirty," and some group III and IV wells will be predicted 

| "clean." Figure 4-2 summarizes these errors for a predictor on the control group wells. 

Clearly we want to maximize the success rate, and minimize the probability of false 

-" positive and false negative error. 

FIGURE 4-2 Illustration of Errors Inherent in the Contamination Predictor 

: Predicted Situation 

Clean Dirty | : 

c Group Group 
oy {& il | & il 

c rab) 

oO QO False Positive 
i Error Rate, 
= a = 

@ 
3 Group Group 
- > H&IV I &IV 

5 False Negative Dirty 

"1B ate, Success Rate = B 

_ Preliminary analyses included plots of mean versus standard deviation and median 

versus fourth spread as shown on Figure 4-3 (a), (b) and (c) for alkalinity data sets. Of 

; these three plots, the lognormal mean and standard deviation plotted on Figure 4-3 (b) _ 

most clearly separate Group | and II from Groups Ill and IV. Clearly wells with very high 

contamination make plots of the mean versus standard deviation (a) and median versus 

2 The IQR is usually referred to as the fourth spread when estimated from a sample. 
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FIGURE 4-3 Exploratory Data Analysis of Possible Predictor Statistics 
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lQR (c) difficult to interpret. These two plots are replotted on a logarithmic scale on 

Figure 4-4 (a) and (b). 3 These plots illustrate that data from “dirty” wells (squares) 

have significantly higher variability and central tendency than data from "clean" wells 

(circles). 

Further inspection of Figures 4-3 (b) and 4-4 (a) and (b) reveals that: 

mh, @ The lognormal standard deviation is consistently low for clean wells 
| (Figure 4-3 (b)) Since the standard deviation is sensitive to outlying 

values, this result is not surprising. 

| e Both Figure 4-4 plots show a clear difference between clean and dirty 
wells, which is the objective for a predictor of groundwater contamination. 
The statistics are consistently low for group | and II wells, relative to Group 
Iland!IV. 

e Less "overlap" of clean and dirty wells is apparent in Figure 4-4 (b) than 
Figure 4-4 (a). 

While this third point is difficult to see on the graphs, this finding implies that the median 

and IQR are better statistics for delineating contamination than the mean and standard 

deviation. Inspection of similar plots for all parameters confirms this fact. Fewer false 

positive results (prediction of clean wells to be dirty) will occur when the predictor is 

based on the nonparametric estimators. | 

Considering Figure 4-4 (b) , we can define a region within which all, or close to all, the 

clean wells fall. A limit of 350 and 150 mg/I for the median and IQR respectively appear 

to capture most of the Group | and II wells. Any data points above these limits could then 

| be predicted as contaminated. This is the basic idea of our predictor. 

Two of the eight parameters do not successfully separate the well groups. Figure 4-5 (a) 

- shows, the median and IQR for pH data cannot be successfully used to separate groups, 

. hence this parameter was dropped from the analysis. Also the plot for sulfate, Figure 4- 

5 (b), shows fewer wells are sampled for this parameter. Also many of the dirty wells 

3 Note that Figure 4-3 (b) is not the same as Figure 4-4 (a). The former is a plot of the mean and 

: standard deviation of the log transformed data sets, while the latter is a graph of the statistics 

| calculated for the raw data, but plotted on a log scale for clarity purposes. 
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FIGURE 4-4 Further Data Analysis of Possible Predictor Statistics 
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FIGURE 4-5 Parameters which do not successfully. separate well groups 
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have low median and will not be predicted "dirty." This high false negative rate does not 

help our objectives, therefore sulfate was excluded in the final predictor analysis. 

Concentration limits were estimated for each of the six remaining parameters below 

which almost all of the clean well data falls, and above which contamination appears — 

: likely. For each parameter some “dirty” wells will be predicted to be clean, since not all 

parameters may be elevated at a particular site. But, if we summarize the wells a 

predicted “dirty” over all parameters we will most likely capture a high percent of dirty 

wells. Thus, two possible predictors considered were: oo 

(1) if for one parameter at a well the median or the IQR fall above the 
established limits, then the well is predicted “dirty,” and 

(2) if for two parameters at a well the median or the IQR is above the . 
established limits, then the well is predicted “dirty.” 

The two predictors were applied to the control group using limits visually determined 

from the median/IQR log-scale plots . A computer program was written to calculate false 

positive and false negative rates for any concentration limits. By adjusting the limits and 

re-running the program we tried to optimize the success rate and minimize the false 

negative rate of the predictor. 

lt was found that the one parameter predictor had an 86 percent success rate but a 22 

percent false positive rate (clean wells predicted dirty). The two parameter predictor 

| reduced the false positive rate to 6 percent, but also reduced the success rate to 76 

percent. We then inspected the false positive and negative results and made 

adustments to the concentration limits. Figures 4-5 (a), (b), (c), (d), (e), and (f) show the . 

| prediction limits for each parameter which were found to maximize the success rate and 

minimize the false positive rate. The concentration limits are listed in Table 4-1. -. 

The final rule was, if a well had two parameters with median or IQR above the prediction 

limits, then the well was predicted dirty. This predictor has an estimated success rate of. 

84 percent and an estimated false positive rate of 9 percent based on analysis of the 

274 control group wells. 

An analogy may be drawn between our prediction limit for each parameter and the PAL 
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FIGURE 4-6 Median & IQR Prediction Limits for Six Parameters 
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FIGURE 4-6 (Continued) 
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TABLE 4-1 | 

Concentration limits used for groundwater contamination predictor 

, PARAMETER MEDIAN _—IQR 
(mg/I) (mg/l) 

Alkalinity 339 141 

| Specific Conductance ' 589 282 

Total Hardness 427 126 

Chloride 26 19 

Chemical Oxygen Demand 39 56 

| lron 0.40 2.10 

1 Units are Umhos/cm 

(for parameters without an enforcement standard). The prediction limits were chosen to 

| be above background water quality at the 20 control sites, and hence may be thought of 

as upper limits of "clean" water quality. Both the PAL and the prediction limits are | 

intended to act as flags of background water quality. 

— A comparison was made between final PAL's set for ten sites (five of which were 

° included in the analysis) and the prediction limits. Since the predictor is based on either 

| ther median or the IQR exceeding a prediction limit, a full comparison cannot be made. 

S PAL values were only compared to the concentration limit set for the median. PAL's 

which are mandated as 50 percent of the enforcement standard were not included (i.e. 

PAL's for chloride and iron). However, PAL's established as a minimum increase over | 

background values are included. Of the 277 PAL values considered for specific 

conductance, COD, hardness and alkalinity, only 74 exceeded the prediction limits. 47 

of the 74 PALs which exceeded the prediction limits were for COD, and 23 of these 47 

PAL's were within 10 mg/l of the limit. 
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This comparison shows that the prediction limits individually are conservative estimates 

of an upper limit for background water quality. Yet, at the 20 sites considered in this 

study, 85 percent of the “dirty” wells are still detected using the overall predictor. 

| 4.2 Screening of the Database 

The chosen predictor was applied to all wells in the database which had at least eight 

monitoring dates for one or more parameters. As mentioned previously, a “dirty” well.is. 

defined as having two parameters exceeding the prediction limits. 

A simple scheme was used to categorize landfill sites into groups of similar groundwater 

quality impacts. Two criteria were used: (1) the number of wells at the site; and (2) the 

percent of "dirty" wells at the site. 

A site with a large number of wells is likely to be a large site, or a site at which there is a 

, recognized problem, or a site which is close to a community or valuable resource. 

The choice of the second criteria is based on the assumptions that: 

(1) there are more downgradient wells than upgradient; and 

(2) the more dirty wells, the higher possibility of adverse environmental 
impact. 

| Note that the local extent of contamination is considered using these grouping criteria. 

Table 4-2 summarizes the site grouping results. As shown, 16 groups were defined 

based on the two criteria. The number of wells at a site (criteria 1) was divided into 4 - - 

categories: 1-5 wells, 6-10 wells, 11-20 wells and greater than 20 wells. The percent of- 

wells, with sufficient data, predicted dirty (criteria 2) was also divided into 4 groups as 

shown on Table 4-1. 24 sites with more than 10 wells are found to have over 75 percent: 

of the wells (with enough data) predicted dirty. 41 sites are found to have all or almost 

all clean wells (i.e.29+5+7+0). Table 4-3 lists these clean sites and their license : 

numbers. Table 4-4 lists the 24 sites (16+8) with greater than 10 wells with over 75 

percent or more predicted dirty. The complete results are in Appendix C. 
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TABLE 4-2 Summary of Site Grouping Results | 

Total number of wells 

" 1-5 6-10 11-20 > 20 TOTAL 

-" * wo > 

ot 

" ” | = 2 ' : 90 * "8 0 | |e °s . Oo 3 

es 
| O98 50-75%| 22 26 65 

oo : 
o 

TOTAL 96 97 — 80 25 228 , 

NOTE: Percent of wells predicted dirty calculated | 

based only on wells with enough data. Total number of wells 
includes wells without enough data. 

The sites listed in Table 4-3 most likely are not having a significant impact on 

| groundwater. We feel that the method used in this analysis is powerful at detecting low 

— groundwater impact. The method has limitations in cases of high contamination as 

_ discussed below. | 

- The lists presented in Tables 4-3 and 4-4 and Appendix C do not represent an absolute 

: ranking of facilities. Rather the list should be interpreted as groups of sites which 

appear to have similar groundwater impacts using our method. It is important to 

° recognize that impact is determined based on statistical analysis of only indicator 

parameters. | 
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TABLE 4-3 Sites predicted to have low groundwater impact 

1 BRIDGEPORT LANDFILL 445 - 7 
2 CNTY EAU CLAIRE-SEVENMILE CRK 2821 
3 CNTY JUNEAU 2565 
4. CNTY LA CROSSE 2637 mT 
5 CNTY MONROE-RIDGEVILLE SITE 2858 
6 CNTY ONEIDA 2805 
7 CNTY PORTAGE LANDFILL 2966 
8 CNTY SAUK SANITARY LANDFILL 2978 | 
9 CTY GALESVILLE 2738 
10 CTY NEW RICHMOND 2492 
11 CTY PHILLIPS 57 
12 CTY SHAWANO - PHASE 2 3069 
13 CTY WISCONSIN DELLS 2712 
14 EXXON MINERALS COMPANY 2977 
15 HUGHES REFUSE & LANDFILL CO 2776 
16 JACKSON CNTY SANITARY LF INC C 2004 
17 LEADFREE LANDFILL-BRIDGEPORT 2959 
18 MERCURY MARINE LANDFILL 2603 
19 N.O.W. PAPER CORP. FLY ASH LF 2964 
20 NEKOOSA PAPERS INC 2891 
21 NEKOOSA PAPERS, INC 2811 
22 NORTHRNESTATESKPWR-DEERPCRE 2767 
23 PATS STORAGE LAGOON 3003 
24 RIVERSIDE SANITATION LANDFILL 738 | 

| 25 SCOTT PAPER CO LANDFILL 2846 
26 TN GRAND RAPIDS 693 
27 TN HALLIE 2807 
28 TN MENOMONIE 2659 
29 TN MINOCQUA-MERCER LAKE SITE 1559 7 7 
30 TN SHERMAN 2856 
31 TN STUBBS-DISTRICT 5 LANDFILL 2909 

| 32 TN SUGAR CAMP-SOUTH SITE 2884 " - 
| 33 VALLEY SANITATION CO, INC 2686 ; 

34 WARD PAPER COMPANY LANDFILL 2991 
35 WATERFORD SEPTIC SERVICE 2894 
36 WAUPACA FOUNDRY, INC 2089 
37 WIS ELECTRIC POWER CO-HWY 32 2801 . 
38 WIS ELECTRIC POWER CO-HWY 59 918 | 
39 WIS PUB SERV CORP-WESTON #3LF 2879 
40 WIS PUBLIC SERV CORP-LEGNER 3067 
41 YOURCHUCK'S SANITARY LANDFILL 2010 
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TABLE 4-4 Sites predicted to have high groundwater impact. 

1 APPLETON PAPERS, INC 30 

. 2 BARRETT LANDFILL, INC 1940 

-o 3 BERGSTROM PAPER LF-NEENAH 2446 
4 CNTY FOND DU LAC 2358 
5 CNTY KEWAUNEE SW BALEFILL 2975 

Ot . 6 CNTY MILWAUKEE HWY DEPT 881 
7 CNTY WINNEBAGO 611 
8 CONSOLIDATED PAPERS-KRAFT DIV 1838 

} 9 CONSOLIDATED PAPERS-WQC 2488 
10. CTY ASHLAND . 177 

11 CTY SHAWANO 2342 
12 CTY SUPERIOR-WIS POINT LF 12 
13 FLAMBEAU PAPER CORP 2756 
414 HOLTZ & KRAUSE, INC 674 | 

15 JAMES RIVER NORWALK-NORTHLAND 2893 

| 16 NEKOOSA PAPERS (LIME SLUDGE) 2614 
17 SANITARY TRANS & LF-DELAFIELD 719 

, 18 TORK ALUM MUD DISPOSAL SITE 1892 
19 TORK LANDFILL CORPORATION 652 
20 VULCAN MATERIALS CO 2998 | 
21 WASTE MANAGEMENT OF GREEN BAY 3 
22 WASTE MNGT OF WI, INC-POLK 307 
23 WASTE MNGT OF WIS, INC-CITY DS 37 
24 WASTE MNGT OF WIS-BROOKFIELD 1 

~. Limitations of this analysis include, 

_ (1) Contamination from specific heavy metals, volatile organic hydrocarbons, 

7) or other hazardous constituents is not directly evaluated; instead, 
- indicators of water quality change were considered. These indicators are 

naturally found to occur in low concentrations in groundwater. The result is 

. that some wells with contamination only by a specific contaminant may be 

. overlooked. 

(2) False positive results may occur at wells screened in geologic formations 
which naturally have highly variable background water quality or high 

: background concentration. Glacial till for example may exhibit naturally 
| high water quality variation. | 
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Table 4-3 and 4-4 and Appendix C may be interpreted in several ways: 

(1) Sites which have few monitoring wells (<10) with greater than 50 percent 
of the wells flagged may be sites which need additional monitoring. While 
each site must be considered individually, our results indicate that . 
contamination is apparent, but information is limited. 

(2) Sites with greater than 50 percent of flagged wells should have higher . 
priority for in-depth investigation than other sites. Ts 

(3) When targeting a particular site for investigation Appendix C may be used, 
to get a first understanding of water quality at a landfill. ” 

(4) Results should not be interpreted as an absolute ranking of water quality at 
landfills. 

The first item above applies to 93 sites in Wisconsin, that is 41 percent of the sites 

included in this screening (and 29 percent of the 316 licensed sites-- as of August 

1987). These results imply that high priority should be given to expanding the 

monitoring system design at existing landfills in Wisconsin. Item two suggests that the 

sites listed in Table 4-4 should be given high priority, however many of these are 

currently closely monitored. Review of Appendix C may identify sites not currently 

assigned to personnel which may warrent additional review. 

4.3 Characteristics of Background Water Quality 

The exploratory data analysis presented in Section 4.1 illustrated that the median and 

IQR may be used to predict levels above which contamination is likely. This section 

illustrates characteristics of background water quality in Wisconsin as defined by these. . 

same Statistics. Data from 161 Group | and II wells were used to generate histograms of 

the distribution of clean water quality at the 20 landfill sites investigated in this study. . . 
Figures 4-7 and 4-8 present these distributions for the median and IQR respectively. . 
The prediction limits are drawn on each figure. Note that the scales on these figures are 
log base 10, i.e 1= 10 mg/l, 2 = 100 mg/l etc. When interpreting laboratory reports of og 

sample values, an analyst may wonder if a value is really high/low with respect to other 

sites in the State. Figure 4-7 may be used by new DNR hydrogeologists to get a feel for 

what typical concentrations for background water quality are. 
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Figure 4-7 may also be used when evaluating contamination at a site. The 

standardization procedure currently used at DNR to allow many parameters to be 

plotted on one figure employs both the median and interquartile range (See Goodman 

and Potter for a discussion of this procedure). The standardization procedure is useful 

- in this respect, however at a site where there is contamination at more than 50 percent 

of the wells the values for the standardization statistics will not be representative of 

. background water quality (i.e. the zero point of the graph will not represent background 

an conditions). The values of the site-wide median and median fourth spread may be 

compared to the appropriate graphs on Figure 4-7 and 4-8 to get a feel for the 

- reasonableness of the values. 

Appendix D contains a statistical summary of these distributions. Also included are 

summary statistics for the distribution mean, standard deviation, and (standardized) 

skewness coefficient for the raw data and log-transformed data (not presented here). 

4.4 Summary and Conclusion | 

A statistical analysis of groundwater quality data collected at monitoring wells at landfill 

sites in Wisconsin was conducted. A characterization of the data available showed that 

316 sites with 4,202 wells are included in the database, however only 228 sites were 

included in the analysis. 

A predictor was developed of groundwater quality change with respect to background 

water quality. Performance of the predictor was evaluated using a control group of 274 

wells analyzed in detail in a previous study. The predictor was defined as not-to-be 

. exceeded upper limits of background water quality for each parameter. The chosen 

° predictor required at least two parameters at a well to exceed the prediction limits before 

i. the well was predicted “dirty.” It is estimated that this predictor successfully observes 

— contamination 84 percent of the time, while having false positive prediction (clean wells 

estimated dirty) only 9 percent of the time. The percent of wells considered dirty and the 

. total number of wells at a site were then used as criteria to place all the sites into 16 

groups as summarized in Appendix C. 

Interpretation of the results requires an understanding of the limitations of the analysis. 

The most important limitation is the fact that only indicators of change from background 
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water quality were used; specific hazardous substances were not considered. Results 

should not be interpreted as an absolute ranking of water quality at landfills. 

While this technique does have limitations, it can be used to prioritize sites for the setting 

of PAL's. The method considers both the degree and extent of contamination at the - 

facilities. Degree is considered in the predictor itself, although only as an absolute 

assessment of “clean” or “dirty.” Extent is addressed implicitly by the grouping criteria. _ 

A second result of the exploratory data analysis is a description of characteristics of 

background water quality. The log-distributions of the median and fourth-spread may be 

used to get a preliminary indication of what typical "high" and "low" background 

concentrations are. These figures may be particularly useful to new personnel trying to 

interpret relative concentration levels from laboratory reports or time versus 

concentration plots. 
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Figure 4-7 Background Histograms for the Median 
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Figure 4-7 (continued) 
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FIGURE 4-8 Background Histograms for the Interquartile Range 
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Figure 4-8 (continued) 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

° 5.0 Overview 

- This report has explored the use of graphics and statistics to detect groundwater 

contamination at waste disposal sites. Hydrogeology and water quality at twenty 

. Wisconsin waste disposal sites were considered for this research. The sites represent a 

good cross-section of landfill design, size and geologic location for the State of 

| Wisconsin. 

This chapter summarizes the major findings of the previous chapters from a regulatory 

and technical perspective. Also, defensible procedures for evaluating contamination | 

are synthesized into a general methodology useful in two general situations: 

e existing waste sites with historic evidence of contamination, and 

@ newor existing sites with no suspected impact on groundwater quality. 

| The broad objective of this study is to evaluate alternative analytic methods that DNR 

can use to meet the intent of NR 140 at nonhazardous waste sites. To meet this 

objective, graphical and statistical methods appropriate for individual site reviews were 

evaluated in Chapters 2 and 3. Also, in order to help DNR prioritize their work in 

enforcing NR 140, a statistical screening of all licensed Wisconsin facilities is presented 

in Chapter 4. While the focus of this study is on solid waste disposal facilities, the insight 

— provided is in many cases applicable to most types of hazardous waste sites, land 

" disposal systems and storage facilities. - 

a This chapter is organized as follows: 

@ the technical findings are discussed with respect to regulatory 
. objectives in Section 5.1; 

@® our concerns with current EPA policy and technical guidance on 
statistical analysis of groundwater quality data are summarized in 
Section 5.2; and 
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@ procedures to document groundwater contamination are synthesized 
into a general method in Section 5.3. 

5.1 Summary and Regulatory Perspective 

The most powerful analytic tools to detect groundwater contamination are graphs of 

water quality data. Well trained analysts can usually build a conclusive case for +. 

remedial action or further investigation based solely on geology, groundwater flow data, 

waste disposal history, and water quality graphs. Time versus concentration plots and: 

boxplots are two powerful methods for detecting contamination. Time versus 

concentration plots are easy to prepare and may show trends in time and any abrupt 

changes in water quality. For these reasons, we recommend that DNR amend current 

solid waste and waste water regulations to require submittal of annual time series plots. 

Review of these submittals would be a quicker and more effective method of detecting 

new problems than trying to review all the laboratory analysis turn-around documents. 

Because groundwater quality varies naturally both in space and in time, statistical 

methods are applicable to the regulatory decision making process. The correct use of 

Statistical tests requires that assumptions implicit to the chosen statistical model be valid. 

Our investigation of the validity of assumptions for parametric statistical tests revealed 

that the assumption of normality may be frequently violated. Many of the most powerful 

Statistical tests rely on this assumption. This finding further emphasizes the importance 

of graphical techniques and investigation of hydrogeologic conditions. It also supports 

| the use of nonparametric statistics, although these methods can be less powerful than 

| parametric counterparts. On a more positive note, results of previous studies show that 

seasonality and serial correlation are not frequently found in groundwater quality data. ° 

Thus we may conclude that the basic assumptions of stationarity and independence are 

valid. . 

Distributional assumptions aside, the use of statistical methods is complicated by spatial 

variations in background water quality. An analysis of 32 wells at three "clean" solid ~ 

waste facilities showed that wells screened in similar geologic strata cannot be 

assumed to have equal mean or constant variance. When this is the case, groundwater 

contamination cannot be statistically discerned from natural variability (when 
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| comparisons are made between background wells and compliance wells). Whenever 

possible, background water quality should be defined for each well at a site. : 

The DNR relies on PAL's as indicators of potential groundwater contamination. At new 

- and existing "clean" sites our research supports the DNR policy of setting PAL's at each 

| well, rather than establishing site-wide levels. DNR also currently relies on PAL's as a 

. tool to enforce regulations at existing sites with known contamination. In this case, 

7 PAL's are set at contaminated wells based on data from another well(s) at the site. for 

several reasons we recommend that DNR discontinue this practice. In the first place, at 

- a clearly contaminated site, a case for remedial action can be built using water quality 

graphs, hydrogeologic information and good judgement. Calculation of PAL's is always 

secondary to this review. Secondly, transposing PAL's from one well or group of wells 

to another is not a sound statistical practice, since groundwater quality may significantly 

vary in space. 

PAL's may be thought of as an upper limit for background water quality. Two other 

methods which are also used to define background water quality are statistical 

prediction intervals and tolerance intervals. A review of the statistical concept of these - 

statistics shows that the prediction interval most directly compares background water 7 

quality to new data. The prediction interval is a background concentration estimated to 

have a set (low) probability of exceedance for new samples. The limit takes into account 

small sample size (unlike the PAL) and natural variation. A comparison of prediction 

: intervals, tolerance intervals, and PAL's showed that the PAL is a conservative (high) 

estimate of background water quality when a significance level of 0.95 is employed in 

the calculations as recommended by EPA. It is important:to note that these methods 

. may not produce environmentally meaningful results if parametric distributional 

" assumptions are not met. Since we know this is often the case, and because PAL's 

. appear to be conservative, we recommend DNR continue to calculate background water 

| quality levels based on the algorithm PAL = X+ 3S. 

: At hazardous waste sites (permitted under RCRA Subtitle C), EPA requires that quarterly 

data be compared to background water quality using a statistical test. Our investigation 

has shown that statistical prediction intervals are the preferred method. However as 

mentioned above, these intervals are dependent on the validity of distributional 
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assumptions. Also, the interval should be updated annually as long as no 

contamination is present. We also recommend this method for sanitary landfills if 

| (when) EPA adopts the amendments to Subtitle D of RCRA as proposed in ; 
1988. The PAL does not appear to meet the requirements of the proposed regulations. 

The prediction interval calculation would replace comparison of new data to PAL's. : 

New monitoring data must be compared to mandated water quality standards as well. as 

to background water quality. Wisconsin enforcement standards and PAL's set as a 

percent of these standards are interpreted in this report as being not-to-be-exceeded -_ 

| limits, except if sample collection, handling or laboratory error can be proven. The 

possibility of an exceedance being caused by sampling error or laboratory mishandling 

can be assessed by the timely resampling of the weil. Other than that, the only reason 

that a sample value above the standard may not be a true exceedance is if laboratory 

accuracy is a factor. We suggest that sample values close to a standard be given the 

benefit of the doubt only if a lower accuracy confidence range reported by the laboratory 

indicates that the true sample concentration is below the standard. DNR should further 

investigate the use of laboratory accuracy reports for determining standard 

exceedances. | 

The above discussion focused on the main issues surrounding individual site review. 

The graphical and statistical procedures which we recommend are synthesized into a 

general methodology in Section 5.3. 

Our research also resulted in the development of a predictor of groundwater quality 

change. A control group of 161 background wells and 113 "contaminated" wells was 

used to evaluate the performance of the predictor. This predictor separates "clean" and° 

"dirty" wells based on concentration limits for both the median and interquartile range of 

a dataset below which contamination was unlikely. These nonparametric statistics weré 

found to be consistently low for "clean" wells, unlike parametric distribution parameters ~ 

which are sensitive to data outliers. Ongoing DNR efforts should be focused on those 

sites which appear to significantly impact groundwater and on sites which are believed ° 

to need additional monitoring. A secondary result of the predictor research was a 

characterization of clean water quality. Between the statistical screening results and the 

insight gained from the evaluation of statistical tests, the DNR hopefully is in a better 
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position to prioritize and expedite the remediation of contaminated groundwater 

resources in Wisconsin. | 

5.2 Concerns with EPA Policy and Recommendations | 

| The final EPA rules for permitted RCRA hazardous waste facilities (EPA, October 11, 

_ 1988) require a quarterly test for “change” in water quality as well as comparison of new 

- data to water quality standards. A draft guidance document for these regulations is 

currently in the final review stage (EPA, 1988). This document is a statistical "cookbook" 

- for hazardous waste facility owners. It is also intended to provide guidance for the 

proposed changes to RCRA Subtitle D which affect municipal solid waste facilities. 

| Throughout this report we evaluated and discussed procedures recommended in this. 

| document. In this section our primary concerns with the guidance document are 

summarized. These concerns are: . 

@ the lack of insight on environmental questions which recommended 

: tests are “answering;" 

e EPA policy of not requiring tests for distributional assumptions prior to 

use of parametric statistics; : 

® recommendation of parametric ANOVA as a “default” method of 

analysis; and 

e use of confidence and tolerance intervals for detecting standard 

| exceedances. 

oe The document does not discuss the advantages and disadvantages of the various 

recommended procedures. Looking at the broad picture, the choice between making 

0 between-well comparisons versus intra-well tests is not thoroughly discussed. The 

document implies that between-well comparisons are preferred. Conversely, we feel 

hat intra-well comparisons are statistically more correct than inter-well te incethe 

latter are confounded by natural spatial variability. From a closer perspective, the 

recommended tests for both inter- and intra-well comparisons should be presented by 

defining the null and alternative hypotheses in terms of the "question" the test answers 

as well as in statistical notation. Some insight should be provided regarding the 
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fundamental difference in philosophy of the recommended procedures. 

Addressing the second issue listed above,_we believe that tests for normality should be 

performed prior to using parametric statistical tests. This research has shown that this 

assumption is frequently violated by groundwater quality data, even after log- ° 

transformation. Three (optional) tests for normality are detailed in the EPA document: 

normal probability plots, the coefficient of variation method, and the chi square test. We - 

do not believe that any of these tests are appropriate for wide-spread use to test for : 

"normality, although the probability plots are useful for qualitative inferences. The chi_ . 

square test is not very sensitive to departures from normality at small sample size. The 

coefficient of variation method is not a "goodness-of-fit" test, rather the procedure is a 

"rule of thumb.” We found this rule to grossly underestimate the number of non-normal 

datasets found by the skewness test. In place of these methods we recommend that 

EPA advocate the skewness test. This test is simple to perform and is sensitive to small 

sample size. | | 

| Our most serious concern with the EPA guidance document concerns the use of 

between-well comparisons, and particularly the ANOVA method. In this study, 8 

parameters measured at 4 groups of wells (from three sites) were tested for natural 

spatial variability. The assumptions implicit in parametric ANOVA were tested for both 

the raw data and the log-transformed data. This analysis found that 

@ the assumption of constant variance (as tested by Bartlett's test) was 

found to be frequently violated for both the raw and log-transformed 

data; and 

e the normality assumption was also frequently violated. i 

Based on the above findings, the Kruskal-Wallis test (nonparametric one-way ANOVA) ° 

was used to test whether mean water quality differed between background wells. At all * 

four groups of wells spatial variability was detected for at least two parameters. From | 

these results we conclude that shifts in mean due to contamination cannot be . 

distinquished from natural shifts in mean water quality at these sites. Therefore, we 

believe that neither parametric nor nonparametric ANOVA should be used to test for 

ontamination, unless it can be shown that natural spatial variability is not significant. 
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Another important issue regards the use of confidence and tolerance intervals for 

detecting standard exceedances. First of all, the use of an upper confidence limit (on 

the mean of four independent quarterly samples) is a lot less protective of the 

: environment than the alternative method of using a /ower tolerance interval. The 

confidence limit method could allow three out of four samples to be above a standard 

a and still not conclude that the standard has been exceeded. This is because very wide 

intervals are calculated when sample variance is large, which is usually the case for 

-. “contaminated” samples. Secondly, both of these methods rely on calculating the mean 

and standard deviation from samples which may be contaminated by landfill leachate. 

We do not believe this is correct because samples drawn from a contaminated regime 

are not necessarily from the same population, since leachate plumes are not 

homogeneous mixtures evenly dispersed in groundwater. Thirdly, as discussed in 

Section 3.3, we are not sure that statistical intervals should play a role in determining 

andard exceedance at all, except for perhaps considering laboratory accura 

- confidence levels. 

More detailed discussion of EPA recommended tests and policy may be found | 

throughout this report and in particular in, 

e Section 1.3 Federal Regulatory Context, 

e Section 2.2.3 The Assumption of Normality, 

| @ Section 3.1 Tests of Central Tendency, and 

e Section 3.3 Confidence, Tolerance and Prediction Intervals. . 

a 5.3 Statistical Procedures to Document Groundwater Contamination 

The results of this research indicate that the following procedures are preferred for 

, evaluating contamination at landfills with respect to determining compliance with 

groundwater quality regulations: 

| @ time versus concentration plots and box plots, 
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@ tests of trend to support cases of contamination, 

@ resampling of wells, 

| @ comparison of standard exceedances to laboratory accuracy 

confidence levels, and 

@ PAL's and prediction limits for detecting high concentrations thought to 

be indicative of contamination. _ 

When parametric statistics are employed (for example for prediction intervals) we 

recommend, | 

@ the skewness test for testing normality, and | 

@ log transformation of data if raw data are positively skewed. 

- These methods are synthesized into a methodology for analyzing water quality at waste 

disposal sites on Figures 5-1 to 5-5. No single method is appropriate at all sites. The 

guidance provided in this section is intended to have general applicability for 

determining if background water quality has significantly changed at waste disposal 

facilities. Basically the approach is to define background water quality using 

hydrogeologic information, summary statistics and review of water quality graphs. Ifa 

site appears clean or is a new site, a future comparison procedure is presented. At 

existing sites methods are shown for documenting existing contamination if present. 

Figure 5-1 summarizes the overall approach. Procedures to evaluate background water 

quality at existing sites are presented in Figure 5-2. Time versus concentration plots | 

and boxplots are used to identify those wells which are believed to be clean. The DNR ~ 

currently has adopted an approach recommended by Goodman and Potter (1987) for 

Standardizing well data in order to plot all parameters at a well on one plot. This method 

uses nonparametric statistics based on the median and IQR to transform data from 

different parameters to a single (NP) scale. This procedure is termed "optional" on 

Figure 5-2 since it is not as essential as the one- parameter time series plot or the box 

plot. Also, the NP scale is not as easy to interpret as a true concentration scale. 
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We suggest that time series plots be annotated by noting the presence of siginificant 

trends and that box plots be annotated by adding the sample size and the number of 

| standard exceedances. If plots are rescaled to "hide" high data this should also be 

- noted on the figure. We do not recommend the arbitrary deletion of high data values just 

because outliers are infrequent. Unless editing of data can be physically justified, it 

- should not be done. 

.. Statistics should be summarized for each well. Important summary statistics are listed 

: on Figure 5-3. In addition to familiar distributional parameters we recommend that 

Kendall's Tau statistic and the skewness coefficient be generated on a routine basis. 

Kendall's Tau is a measure of temporal correlation and, if found to be significant, 

indicates that a trend exists. The procedure to apply Kendall's test of trend is described 

in Appendix A. Also described in Appendix A is the skewness test. 

| The statistical program used by the DNR to generate statistics is the STATISTICAL | 

ANALYSIS SYSTEM (SAS). Currently DNR has programed SAS to generate output for 

a multitude of summary statistics for each well. Most of these statistics such as the 

coefficient of variation, the quantile points, etc are not reviewed. We suggest that DNR | 

reprogram SAS to output only those statistics listed in Figure 5-3. This new output 

format will be easier to interpret and probably inspected in more detail than the current 

forms. 

Figure 5-4 presents procedures for documenting existing contamination at a site. For 

sites with apparent contamination we see no need to calculate PAL's. The only 

os | statistical test we suggest is Kendall's test for trend. Significant positive trend coupled 

with standard exceedances is powerful evidence of contamination. For sites where 

ss more extensive documentation of contamination is necessary, we suggest that PAL's be 

. calculated as currently mandated. A viable alternative however is the statistical 

| prediction interval. The procedure for calculating a prediction interval is given in 

. Appendix A. Calculation of a prediction interval would also be appropriate at sites when 

a quarterly comparison to background water quality is required. The skewness test for 

normality should be applied before calculating prediction intervals. It is important to 

recognize that PAL's and prediction intervals calculated on non-normal data sets may 

PS 9-9



not be environmentally meaningful. Log-transformation of data should be considered in 

this situation. 

A method to evaluate quarterly reports submitted by supposedly "clean" sites is 

presented in Figure 5-5. The procedure advocates resampling of wells if sample or - 

gross laboratory error are suspected. A comparison of health and welfare parameters to 

laboratory accuracy confidence levels is recommended. ; 

These admittedly general procedures are presented so that site-review personnel will 

have a set of tools which provide the level of scientific detail necessary to defensibly oe 

document groundwater contamination. We suggest that these procedures are 

defensible because 1) they are based primarily on graphical inference and good 

judgement and 2) nonparametric statistics are advocated whenever possible (i.e. trend 

| tests and box plots). The one parametric method suggested for general use is the 

prediction interval. Because data may not be normally or lognormally distributed, a test 

for normality is recommended. 

These flow charts coupled with the explanation of graphical procedures in Chapter 2, 

the discussion of statistical tests in Chapter 3, and the statistical methods described in | 

Appendix A provide DNR with a foundation for determining compliance with NR 140 at 

solid waste disposal facilties. The sites targeted by the statistical screening of the 

Wisconsin groundwater quality database should be given high priority for investigation 

using these procedures. 
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FIGURE 5-1 Overview of Methodology 

PRELIMINARY TASKS 

° Evaluate hydrogeology | 

Group wells by stratigraphic unit 
Order wells upgradient to downgradient 

- Select “critical” chemical constituents/indicators 

: NEW SITES EXISTING SITES 

Summarize Background Evaluate Background | 

Water Quality Water Quality 

(Figures 5-2 and 5-3) (Figure 5-2) 

Use "clean" data to summarize 
Future Monitoring BackgroundWater Quality 

and (Figure 5-3) 

Data Analysis 

(Figure 5-5) 

7 Detection of contamination Document existing contamination 

, (Figure 5-4) 

, NO Contaminated ? 

Further investigation YES 

and 

| remedial action 
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FIGURE 5-2 Evaluation of Background Water Quality at Existing Sites 

Perform Preliminary Tasks 
Figure 5-1 

Plot time versus concentration. - 
Inspect plots for “early” outliers and for data transcription errors. 

Delete erroneous data oo 

1 2 3 4 
(Optional) 

. Plot box plots for each Calulate summary Statistics Standardize data 
parameter at each well | for each well and site-wide (See Text) 

[ (See Figure 5-3) 

Inspect for 
1) wells with high median and large IQR 

tentially contaminated (for each t Replot as potentially contaminated (for each parameter) time versus concentration 

2) Note all wells which appear stable One parameter . 
(low median and IQR) for each at all wells All parame 
parameter as potentially background atone we 
water quality. Inspect for Inspect for 

1) evidence of trend 1) correlation between 
2) evidence of seasonality Parameters 

Annotate by adding 3) evidence of serial 2) constituents with high 
1) number of measurements correlation NP scores at each well 

2) No. of ES/MCL/PAL exceedances 
3) significant skew (optional) 

3) rescale if necessary by deleting high Annotate plots by noting significant trends 7 7 Outliers and noting omission on plot. . ” 

CHOOSE BACKGROUND WELLS 
SUMMARIZE BACKGROUND 
STATISTICS FOR EACH WELL 

(Go to Figure 5-3) 
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FIGURE 5-3 SUMMARY OF BACKGROUND WATER QUALITY 

| (Existing sites and new sites) 

_— Calculate summary statistics for each well and site wide 

Important summary statistics include: 

the number of samples, 
mean, median, standard deviation, interquartile range, 
skewness coefficient, Kendall's Tau statistic and 
number of ES exceedances | 

Inspect box plots of selected background wells for spatial variability. 

Note natural spatial trends on site map 

| Check for significant skewness using Appendix A 
a (optional) ; 

Check for significant trend using Appendix A 
i. see text 

Annotate box plots and time versus concentration plots 
(See Figure 5-2) 
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Figure 5-4 Document Existing Contamination and/or set Limits 

| Sites where more extensive 
Sites with Apparent Contamination documentation is necessary 

Build case for contamination based on +) 
enforcement standard exceedances, Set PAL's/ACL's based on background 
trend test results, water quality graphs, | water quality 
and hydrogeologic information ot 

a ee ~ sees ™ Analyze summary statistics 

ee for each well or group of wells. 
(Require turther investigation and 
L =  Femedial action 

Rely on standard exceedancess, 

tolerance level or PAL exceedances, 
trend test results, hydrogeologic Calculate PAL based on 

information, etc. 

PAL = X¥+3S oras ° 

Exceedances PAL= X+ks — 

where k is calculated as a prediction _— 
interval * 

(See Section 3.4 & Appendix A) 

Summarize compliance well data «Ss ; 
which exceed PAL/ACL/ES. 

No exceedances | 

| See Figure 5-5 
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Figure 5-5 Determining Compliance at "Clean" Sites 

Perform preliminary tasks . 
Figure 5-1 

Calculate summary statistics at each well and site-wide 
Calculate PAL/ACL's or prediction limits | 

+. (Figures 5-3 & 5-4) 

: Obtain quarterly report = j<g———__ 

, RCRA Hazardous Waste Site 
Non-hazardous waste site MSWLF 

(1 quarterly sample) (4 independent quarterly samples) 

| Comparison to standard: compare each 
Does not exceed sample to standard. 

Comparison to background: compare each 
Compare data to measurement of critical constituents or indicators 

(¢———-| PAL's or ES/ACL's to prediction intervals established based on Does not 
: background water quality (See Text) or perform exceed 

other comparison procedure. 

“ Exceeds = Way above standard Exceeds 
Require 

Resample 
" Close to standard 

| Check laboratory 

. accuracy Further investigation 
confidence levels. Sample and 

exceeds Remedial Action 
standard 

Standard within 
confidence range 
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APPENDIX A 

RECOMMENDED STATISTICAL TESTS 

Three statistical procedures are documented below. The tests are 1) the skewness 

. test for normality, 2) the Mann-Kendall test for trend, and 3) calculation of prediction 

intervals. The documentation provided here is sufficient to perform the tests; 

however, the reader is cautioned against applying statistical procedures without 

- thorough understanding of the theory, hypotheses and limitations of the procedures. 

The references cited can provide the necessary background information. 

sO | Many computer based statistical analysis programs include the skewness test (or 

calculation of the skewness coefficient) and the Mann-Kendall test for trend (or 

calculation of Kendall's Tau statistic). 

A1.0 The Skewness Test | 

References: 

George W. Snedecor and William G. Cochran. Statistical Methods.The lowa State 

University Press. Ames, lowa. 1980. 

Harris et al. Statistical Methods for Characterizing Ground-Water Quality. 

Groundwater, Vol.25, No.2. March-April 1987. 

The skewness test may be used to determine whether or not a set of independent 

data points are drawn from a normal distribution. The test is very simple to apply. 

The skewness coefficient is calculated and the value compared to a critical value 

° found in Table A-1. | 

The null and alternative hypotheses for the skewness test may be stated as: 

; H, : The data may be normally distributed. 

H1: The data are not drawn from a normal distribution. 

mo Ai-1



The skewness coefficient is: 
n 

am D> (xj- x) =“ 

9 . 
> (Xi X)2 
i=1 

where gQ = skewness coefficient 

n = sample size OT 

Xj = concentration at time i 

X = mean concentration 

To apply the skewness test, consult Table A-1. Find the critical skew associated with 

sample size n. If the calculated skewness coefficient is less than the critical skew 

(from the table), then the null hypothesis is not rejected at the 5 or 1 percent 

significance level. Conclude that the data may be drawn from a normal distribution. 

If the calculated skewness coefficient is greater than the critical skew in the table, 

then the null hypothesis is rejected at the 5 or 1 percent significance level. 

Conclude that the data are probably not drawn from a normal distribution. 

Note that Table A-1 may be used to test either positive skew, negative skew or both. 

To test negative skew, the critical skew is just the negative of the tabulated values at 

any sample size. To perform a two-tailed test, compare the calculated skewness 

coefficient to both the positive and negative critical skew value. The test is then 

performed at the 10 or 2 percent significance level. 
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TABLE A-1 

CRITICAL SKEWNESS COEFFICIENTS 

. Percentage Points 

| Sample Size 5% 1% 

me 9 0.953 1.420 

10 0.950 1.395 

| 11 0.927 1.358 

” 12 0.915 1.331 

13 0.886 1.306 

, 14 0.861 1.291 

| 15 0.854 1.280 

16 0.833, 1.246 | 

17 0.817 1.220 

| 18 0.798 1.197 . 
19 0.769 1.161 _ 
20 0.777 1.146 

21 0.753 1.116 

22 0.742 1.099 

| 23 0.732 1.087 : 

24 0.710 1.074 

25 0.712 (0.711) 1.060 (1.061) 

26 0.689 1.013 

27 0.689 1.016 

28 0.674 1.006 

29 0.669 0.992 

oe | 30 0.651 (0.662) 0.972 (0.986) 

" 35 (0.621) (0.921) 

. 40 (0.587) (0.869) 

. 45 (0.558) (0.825) 

oO 50 (0.533) (0.787) 

Adapted from Table 4 (Harris et al, 1987). Datain parentheses from Table A-20 

(Snedecor and Cochran 1980) 
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A2.0 Mann-Kendall Test 

The Mann-Kendall test for trend is also known as Kendall's Tau test. The one sided 

null hypothesis is: 

Ho = the Xj exhibit no trend . 

The one sided alternative hypotheses are: 

H, =the Xj exhibit an upward trend 

H. =the Xj exhibit a downward trend 

and the two-sided alternative is: . 

| H = there is either an upward or a downward trend. 

A good reference for Kendall's Tau statistic and the associated statistical hypothesis — 

test is 

Gibbons, Jean Dickenson. Nonparametric Methods for Quantitative Analysis 

(Second Edition). American Sciences Press, Inc.: Columbus, Ohio. 1985. 

The test for trend assumes that the data points are independent of each other. This 

would not be the case for monthly data, for example, if there is a seasonal pattern by 

months. If the seasonal variation can be removed, these procedures are applicable 

to the adjusted data. Kendall's Tau statistic is the nonparametric analog of the 

parametric test based on the regression coefficient (which assumes the normal 

distribution) . The asymptotic efficiency of Kendall's tau to the regression test is 

about 0.98 for normal distributions. 7 * 

To perform the test, consider each sampling event as a pair of observations (X,Y) - - 

where Y is the sample value and X is the sampling date. List the data in oe 

chronological order and assign ranks to X and to Y independently. Rank (1) is 

associated with the first sampling date, X;, and the lowest sample value (if testing for 

positive trend). 

lf the X and the Y characteristics are in perfect agreement (positive trend), the Y 

data should be in natural order (the X data already are). If there is perfect 

disagreement (negative trend), the corresponding Y data is in reverse of natural 
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order. The Kendall Tau coefficient is a relative measure of the discrepancy between 

the actual observed order of the Y's and the two orders that would result from perfect 

association. The procedure is most easily explained by an example (drawn from 

Gibbons 1985): 

| EXAMPLE: 

te Suppose that n=5 and two sets of ranks are paired as follows. 

os. X rank: 12345 (monitoring dates) 

Y rank: 23145 (sample values) 

| Note that the X set is in natural order. In the resulting arrangement of Y ranks, we 

| consider all of the possible pairs of Y ranks and score a 1 for each pair of ranks that 

appear in natural order and -1 for those in reverse order. We take the pairs in a 

systematic way, as the 2 paired with each successive rank appearing to its right,.then 

| the 3 paired with each to its right, and so on. The first pair of Y ranks, 2 followed by 3, 

is in natural order, so its score is 1. The second pair, 2 followed by 1, is in reverse 

| order, so -1 is scored. The resulting scores for all possible pairs are shown in Table 

A-2. — 

Note that there are ; ) = 10 possible pairs. The ratio of the total plus score, in this 

case 8, to the maximum,10, provides a measure of relative agreement, that is 8/10. 

Similarly the ratio of the total minus score to the maximum, 2/10 in this case, 

measures the relative disagreement. The net relative score of association is then 

8/10-2/10 = 6/10, and this is the value of the Kendall Tau statistic. If we let U= the 

number of pairs of Y values (or ranks) in natural order (that is, the number of plus 

. scores) and let V equal the number of Y pairs in reverse order, and let S be the 

| difference between U and V, S = U-V , then the Tau coefficient is calculated as: 

_— T=-2S 
n (n-1) | 

- where n is the number of (X,Y) pairs (Sample size). For our example, T is equal to 

| 3/5 (0.60). The test statistic presented here is not exact if ties exist in the sample 

data. No ties should exist in the X series, sampling dates. Any duplicate data should 

be averaged. If multiple dates have the same sample value the denominator of the 

test statistic must be adjusted (i.e. ties exist). The adjusted test statistic is more 
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difficult to calculate and computer analysis is recommended. Gibbons (1985) 

presents this test statistic in detail and how it may be calculated by hand. 

TABLE A-2 

Calculation of Kendall Tau Statistic 

Y pair score Summary Totals y 

2,3 1 8 plus 

2,1 -1 2 minus 

2,4 1 

2,5 1 

3,1 -1 

3,4 1 | | 

3,5 1 
1,4 1 

1,5 1 

4,5 1 

The statistic T above, and the T statistic adjusted for ties, is found in most statistical 

software packages. Interpretation of the Tau statistic is simple. If perfect positive 

correlation exists T is equal to 1. If perfect negative correlation exists T is equal to -1. 

If no correlation exists T is equal to 0. To test the null hypothesis that no trend exists, 

the value of T is compared to a critical value of T found on Table A-3. _ 

For a one-sided test for positive trend, compare the calculated value of T to the a 

associated T in Table A-3. If the calculated value is greater than or equal to the - 

table value, reject the null hypothesis of no trend (conclude that positive trend exists). : 

For a one-sided test for negative trend, compare the calculated value of T to the 

negative of the associated T in Table A-3. If the calculated value is less than or - 

equal to the table value, reject the null hypothesis of no trend (conclude that 

negative trend exists). For a two-sided test for positive or negative trend, compare 

the calculated value of T to both the positive and negative of the associated table 

value. If the calculated value is greater than +T or less than -T conclude that trend 

exists. 

ome, A1-6



TABLE A-3 

Critical values for Kendall Tau Statistic 

Sample Size T 

(n) (tau) 

; a) 0.80 

mS 6 0.733 
7 0.619 

8 0.571 

9 0.500 

10 0.467 

11 0.418 

12 0.394 
13 0.359 

14 0.363 

15 0.333 : 

16 0.317 

17 0.309 : 

18 0.294 | 
19 0.287 

| 20 0.274 

| 21 0.267 - 

22 0.264 

23 0.257 

. 24 0.246 , 

° 25 0.24 

26 0.237 

- 27 0.231 
° 28 0.228 

| 29 - 0.222 

- 30 0.218 

Note: The T values for n>10 are the right tail (or left tail) critical values for a one- 

sided test performed at a significance level of 0.05. For 5<n<10, the values are the 
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lowest T for which a one sided test, performed at a significance level of 0.05, would 

reject the null hypothesis. In this case, the probability associated with the T value is 

not exact, but is always less than 0.05. For n>30, critical values may be found from a 

normal probability table (See Gibbons 1985). However, T = 0.218 will always be a 

conservative estimate. | . 

A3.0 PREDICTION INTERVALS a 

References: iy 

U.S. Environmental Protection Agency. Statistical Analysis of Groundwater at 

RCRA Facilities. Office of Solid Waste, Waste Management Division. October, 1988 

(Available from NTIS Reference Number PB 89-151-047). 

| Gibbons, Robert D. "Statistical Prediction Intervals for the Evaluation of Ground- 

Water Quality." Ground Water. Vol. 25. pp.455-465. 1987. 

A prediction interval is a statistical interval designed to define a background 

concentration interval within which future measurements from the same population 

are likely to fall. The prediction interval can answer the question "What is the 

concentration associated with an allowable exceedance probability given the natural 

| variability in the data and the sample size?". The allowable exceedance probability 

is recommended as 0.05 by EPA. 

The prediction interval is recommended to be developed on a well by well basis. 

Data from multiple wells should not be aggregated. 

To calculate a prediction interval the mean, x, and the standard deviations, mustbe . - 

calculated for the data used to form the prediction interval. Then the interval is given ~ 

by _. 

x+syV an +t t (n-1,K,0.95) 

where m is the number of measurements per sampling period (i.e. 2 if duplicate data : 

are available), and n is the number of observations in the background data, and 

tin-1,K, 0.95) iS found from Table A-4. The table is entered with K as the number of 

| future observations (usually 1 if comparison is done each quarter, or 4 if comparison 

is done annually), and degrees of freedom, v=n-1. If K is greater than 5 (unlikely), 

Ai-8 |



use the column for K = 5. 

To compare new data to the prediction interval, calculate the mean of duplicate 

measurements or just compare the new data point to see whether it falls within the 

interval. If the new data is not within the prediction interval, this is statistically 

" significant evidence of contamination. 

. Note that for a single future observation (i.e. one observation per quarter with 

sO quarterly comparisons), the t value may be obtained straight from the t-distribution 

which is tabulated in most statistical texts. Also, note that the prediction intervals are — 

7 one-sided, giving a value that should not be exceeded by the future observations. If 

a two sided interval is required, the same procedure may be used, however Table A- 

4 will provide interval at the 2 « percent significance level (where « is usually 0.05). 

TABLE A-4 

95th Percentiles of the Bonferroni t-statistics, t (y, o/k) 

(adapted from EPA, October 1988) 

a 

k 1 2 3 4 5 

| Vv o/k 0.05 0.025 0.0167 0.0125 0.01 

4 2.13 2.78 3.20 3.51 3.75 

5 2.02 2.57 +} 2.90 3.17 3.37 

6 1.94 2.45 2.74 2.97 3.14 

7 1.90 2.37 2.63 2.83 3.00 

‘ - 8 1.86 2.31 2.55 2.74 2.90 

9 1.83 2.26 2.50 2.67 2.82 

_ 10 1.01 2.23 2.45 2.61 2.76 | 

0 15 1.75 2.13 2.32 2.47 2.60 

20 1.73 2.09 2.27 2.40 2.53 

30 . 1.70 2.04 2.21 2.34 2.46 

” >30 1.65 1.96 2.13 2.24 2.33 

eI
 

v = degrees of freedom associated with the mean square error. 

k-= number of comparisons | 

a = 0.05, the experimentwise error level 
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APPENDIXB 

CONTROL GROUP SITES ; 

SITE LICENSE _ 

City of Janesville 2822 

City of Medford 341 
| City of Merrill 912 

City of Oconto 137 

City/Town of Cedarburg 271 

County Dane #1 - Verona 2680 
County Eau Claire Seven Mile Creek 2821 | 

County Lacrosse 2637 

County Marathon 2892 
County Portage 2966 

County Sauk (Old) 2051 

County Sauk (New) 2978 
Fort Howard Paper Co. Green Bay 2332 

Rock County / City of Janesville 3023 

Town of Washington 160 

Village of Bonduel 59 

Waste Management Inc Greidanus Landfill 140 

| Waste Management Inc. Brookfield Landfill 1 

: Wausau Paper Mills 2875 

Wisconsin Electric Power - Oak Creek 2357 a.



CONTROL GROUP WELLS BY LICENSE NUMBER 

LICENSE DNRWELLID WELLGROUP 
1 1 3 
1 2 3 | 

1 3 3 
1 4 4 
1 5 4 

- 1 6 4 | 

1 7 4 

1 8 1 

. 1 11 4 

-* 1 12 4 

1 13 1 

. . 1 14 3 

° : 1 15 3 
1 16 4 
1 19 1 

59 1 1 

59 2 4 , 

59 3 3 | 

59 4 3 
59 5 3 . 

59 6 4 

137 1 4 

137 2 4 
137 3 1 
137 4 3 
137 5 1 
137 9 1 | 

137 10 1 
137 11 3 
137 12 1 

| 137 13 1 
137 414 2 
137 15 3 
137 16 4 | 

} 137 17 2 

i 140 202 4 
140 203 1 

| 140 204 1 . 

. 140 205 2 | 

- 140 206 2 

| 140 207 3 
140 208 3 | 

- 140 211. 1 | 

140 212 1 
140 213 1 
140 214 3 
140 224 1 
140 225 1



CONTROL GROUP WELLS BY LICENSE NUMBER 

LICENSE DNRWELLID WELLGROUP 
160 101 1 
160 102 4 , 
160 103 1 
160 104 1 
160 105 3 
160 107 4 . 
271 201 1 
271 202 3 
271 209 2 _* 

271 210 1 ot 
271 211 4 

. 271 212 2 _ 

| 271 213 2 . 

271 216 3 
271 217 4 | 
271 218 4 
271 219 © 2 
341 801 1 
341 802 4 
341 803 2. 
341 804 1 
341 805 1 
341 806 2 

| 341 807 1 
341 808 4 
341 809 4 
341 810 4 
341 811 4 
341 812 | 1 
912 2 4 

| 912 6 1 
912 7 3 
912 8 3 

| 912 9 4 
912 15 4 _— 

912 16 4 
912 17 1 
912 18 1 _. 
912 19 1 . 

912 20 4 . 
912 21 1 
912 22 : 4 
912 23 3 . 
912 24 1 
912 25 3 
912 26 2 

| 912 27 2 
2051 104 1



CONTROL GROUP WELLS BY LICENSE NUMBER 

LICENSE DNRWELLID WELLGROUP 
2051 105 1 
2051 106 4 
2051 110 { 
2051 114 4 
2051 115 4 

. 2051 116 4 
2051 117 4 
2051 118 2 
2051 119 3 

7° 2051 120 2 
2051 121 4 

- . " 2051 122 4 
. 2051 123 3 

2051 107 1 
2332 1 2 
2332 4 2 | 

: 2332 5 4 
2332 6 4 
2332 7 1 | 
2332 8 4 
2332 9 1 

| 2332 10 2. 
2332 11 4 
2332 12 2 
2332 13 1 
2332 14 3 
2332 15 1 
2332 16 4 
2332 17 1 
2332 18 1 
2332 19 1 
2332 20, 4 
2332 21 1 
2332 22 1 
2332 23 4 

ot 2332 32 4 
2332 33 1 

- 2357 201 3 
: 2357. 202 1 

2357 203 { 
2357 204 4 
2357 205 1 
2357 206 1 
2357 207 2 
2357 208 3 
2357 209 2 
2357 210 2 
2357 211 3



CONTROL GROUP WELLS BY LICENSE NUMBER 

LICENSE DNRWELLID WELLGROUP 

2357 212 4 . 

2357 213 4 
2357 214 4 
2357 227 4 
2357 228 4 
2357 229 3 - 

2637 4 1 
2637 6 2 : 

2637 7 2 

2637 8 2 7 oe 

2637 9 2 

. 2637 10 1 4 

2637 11 1 " 

2637 12 1 
2637 13 3 
2637 14 1 | 
2637 15 1 
2637 16 4 
2680 106 1 
2680 108 2 
2680 114 4 | 

2680 115 2 
2680 124 3 
2680 125 1 
2680 126 4 
2680 131 4 
2680 134 1 
2680 135 2 
2680 136 1 
2680 140 1 
2680 150 1 
2680 171 3 
2680 172 4 
2680 173 3 
2680 175 4 — 

2680 176 3 . 

2680 177 1 

| 2680 178 4  . 

. 2680 179 4 . 

2680 180 4 " 

2680 181 1 
2821 5 1 
2821 6 1 ° 

2821 7 3 
2821 8 1 
2821 17 3 
2821 18 4 
2821 19 4



CONTROL GROUP WELLS BY LICENSE NUMBER 

LICENSE DNRWELLID WELLGROUP 

2821 30 1 
2822 107 4 
2822 108 4 

2822 109 1 | 

2822 110 1 

. 2822 112 4 
2822 113 4 
2822 114 2 

. 2822 115 2 

- 7° 2822 124 4 
2822 125 4 

. - 2822 129 4 

° 2875 1 4 
2875 2 1 
2875 3 3 
2875 4 1 
2875 5 4 
2875 9 1 
2875 10 1 

| 2875 11 1 
2892 1 1 
2892 2 1 
2892 8 1 
2892 10 1 
2892 34 1 
2892 35 1 
2892 36 3 
2892 37 2 
2892 38 1 
2966 1 1 
2966 2 1 

| 2966 4 2 
2966 5 2 

: 2966 9 1 
2966 10 1 

- 2966 12 1 

. 2966 13 1 

2966 14 1 

" S 2966 16 1 

- 2966 17 1 
2966 23 2 
2966 24 2 

- | 2966 26 1 
2966 27 1 
2966 28 1 
2966 30 1 
2966 31 1 
2966 32 4 |



CONTROL GROUP WELLS BY LICENSE NUMBER 

LICENSE DNRWELLID WELLGROUP 
2966 33 1 
2966 29 1 
2978 101 1 
2978 102 1 
2978 103 1 
2978 104 1 . 

| 2978 106 1 
2978 107 1 
2978 108 1 

2978 111 1 _ 

2978 118 1 
. 2978 119 1 aa 

2978 105 1 
2978 109 1 
3023 1 2 
3023 2 | 1 

| 3023 3 1 
3023 4 4 
3023 5 2 
3023 6 1 
3023 7 1 
3023 8 1 
3023 9 4 
3023 10 4 
3023 11 2 
3023 12 3 
3023 13 4 
3023 14 4 
3023 15 4 
3023 16 1
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APPENDIX C 

The results of the statistical screening of the Wisconsin grounwater quality 

database are presented herein. The screening results are presented first 

nO alphabetically by site name and then by the predictor groups. 

-— The column headings refer to: 

# WELLS , 

_ PREDICTED : This is the number of wells to which the predictor was applied. 

| That is, it is the number of wells with enough data at the site. 

| "Enough data" is defined as 8 or more sampling dates for at 

. least two parameters at the well. 

TOTAL 
# WELLS : This is the total number of wells at the site, with or without 

enough data. 

% TOTAL 
DIRTY : This is the number of wells with enough data which are 

predicted to be “dirty” divided by the total number of wells.



Alphabetical Site List 

FACILITY NAME LICENSE  #WELLS TOTAL % TOTAL 
TESTED # WELLS DIRTY 

ANDERSON PEAT-ORGANIC COMPOST 420 7 7 57.14 

APPLETON PAPERS, INC 30 18 18 88.89 

BAAP DETERRENT BURNING GROUND 3037 4 4 50 

BAAP-PROPELLANT BURNING GRNDS 2814 7 7 28.57 

BADGER ARMY AMMUNITION PLANT 2813 6 6 50 —Cti«ty 

BADGER DISPOSAL 234 12 12 33.33 

BAKER SANITARY LANDFILL 189 4 4 25 

BARRETT LANDFILL, INC 1940 27 27 92.59 . 

BEECHER WOODYARD 2328 3 3 33.33 ° - 

BELOIT CONCRETE STONE CO INC 781 2 2 100 

BERGSTROM PAPER LF-NEENAH 2446 30 30 96.67. 
BRIDGEPORT LANDFILL 445 3 3 oO -°- 

BRILLION IRON WORKS, INC 2866 6 6 66.67 

CENTRAL SANITARY LANDFILL 2132 8 8 75 

CNTY BROWN-EAST 2569 35 35 48.57 

CNTY BROWN-WEST 2568 35 35 71.43 

CNTY DANE LANDFILL #1-VERONA | 2680 22 22 72.73 

CNTY DANE LANDFILL #2-RODEFELD 3018 32 32 59.38 

CNTY DOOR SANITARY LANDFILL 2937 10 10 8 0 

| CNTY EAU CLAIRE-SEVENMILE CRK 2821 11 11 0 

CNTY FOND DU LAC 2358 18 18 88.89 

CNTY GREEN 217 9 9 55.56 

CNTY GREEN S/W DISPOSAL SITE 2990 10 10 8 0 

CNTY JUNEAU 2565 3 3 0 

CNTY KEWAUNEE SW BALEFILL 2975 11 11 100 

CNTY LA CROSSE 2637 11 11 9.09 

CNTY MARATHON LANDFILL 2892 7 7 14.29 

CNTY MILWAUKEE HWY DEPT 881 11 11 90.91 

CNTY MONROE-RIDGEVILLE SITE 2858 6 6 0 

CNTY ONEIDA 2805 4 4 0 

CNTY OUTAGAMIE 2484 33 33 42.42 

CNTY PORTAGE LANDFILL 2966 20 20 5 

CNTY SAUK 2051 15 15 20 

CNTY SAUK SANITARY LANDFILL 2978 11 11 0 

CNTY SHAWANO-ANGELICA SITE 2728 2 2 50° * 

CNTY WINNEBAGO 611 78 78 76.92 

COLT INDUSTRIES-FARNAM DIV. 640 4 4 25 

CONSOLIDATED PAPER WIS RIV DIV 1686 22 27 45.45 _— 

CONSOLIDATED PAPERS-BIRON DIV 1687 8 8 75 

CONSOLIDATED PAPERS-KRAFT DIV 1838 16 16 100 

CONSOLIDATED PAPERS-STEVENS PT 2344 24 24 29.17 

CONSOLIDATED PAPERS-WQC 2488 33 33 87.88 - 

CTY ABBOTSFORD LANDFILL 2932 5 5 20 

CTY ADAMS-VIL FRIENDSHIP 1721 3 3 33.33 

CTY ALGOMA 179 6 6 33.33 

CTY ANTIGO 1357 15 15 26.67 

CTY ASHLAND 177 21 21 95.24



Alphabetical Site List 

FACILITY NAME LICENSE #WELLS TOTAL % TOTAL 
TESTED # WELLS DIRTY 

CTY BARRON 82 2 2 50 

CTY BLACK RIVER FALLS 287 10 10 50 

CTY BURLINGTON | 186 5 5 100 

CTY CHIPPEWA FALLS 85 7 7 71.43 

. CTY CLINTONVILLE 314 10 10 50 

, CTY EAU CLAIRE 77 3 3 33.33 

CTY FOX LAKE WOODBURNING SITE 369 4 4 100 

. CTY GALESVILLE 2738 1 1 0 | 

- CTY GILLETT 1115 5 5 40 

| CTY GREEN BAY-2130 DANZ AVENUE 170 6 6 66.67 

| CTY GREEN BAY-HUMBOLT ROAD 1129 6 6 50 

° CTY GREEN BAY-MILITARY AVENUE 169 5 5 100 

: CTY HAYWARD 1751 2 2 50 

CTY JANESVILLE 62 7 7 57.14 

CTY JANESVILLE 2822 10 10 70 

CTY JANESVILLE-ASH BEDS 3061 5 5 60 

CTY KENOSHA 38 5 5 100 

CTY LA CROSSE 144 5 5 100 

CTY MADISON-GREENTREE HILLS 1714 | 5 5 100 

CTY MADISON-SYCAMORE SITE 1935 7 7 85.71 

CTY MEDFORD 341 11 11 63.64 

CTY MENOMONIE 372 5 5 60 

CTY MERRILL | 912 17 17 29.41 

CTY NEW RICHMOND 2492 3 3 0 

| CTY OCONTO 137 14 14 57.14 

CTY PARK FALLS 777 1 1 100 

CTY PHILLIPS 57 2 2 0 

CTY PORTAGE 1885 6 7 33.33 

CTY RICE LAKE 108 2 2 100 

CTY RICHLAND CENTER 1519 4 4 50 

CTY RIPON-TN RIPON 467 3 3 100 

| CTY SHAWANO 2342 17 17 76.47 

CTY SHAWANO - PHASE 2 3069 12 12 8.33 

CTY STOUGHTON 133 5 5 80 

- CTY SUPERIOR-MOCASSIN MIKE 2627 4 4 100 

: CTY SUPERIOR-WIS POINT LF 12 12 12 100 

CTY TWO RIVERS 318 5 5 100 

i CTY WATERTOWN 893 3 3 100 

- CTY WAUPUN 2246 4 4 100 

CTY WEST BEND 224 18 18 61.11 

CTY WHITEWATER . 65 9 9 77.78 

- CTY WISCONSIN DELLS 2712 8 8 0 

CTY-TN CEDARBURG 271 11 11 36.36 

DAIRYLAND POWER COOP-ALMA 1673 12 12 33.33 

DAIRYLAND POWER COOP-CASSVILLE 96 25 25 28 

DAIRYLAND POWER COOP-GENOA #3 1747 6 6 100 

DAIRYLAND POWER-OFFSITE DISP. 2927 13 13 61.54



Alphabetical Site List | 

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL 
TESTED # WELLS DIRTY 

DEROSSO LANDFILL | 1979 5 5 40 
EXXON MINERALS COMPANY 2977 13 13 0 
FAHERTY DRILLING CO INC 949 2 2 50 
FALK CORPORATION 1882 8 8 62.5 
FLAMBEAU PAPER CORP 2756 13 13 76.92 - 
FORT HOWARD PAPER CO-GREEN BAY 2332 24 24 62.5 
FORT HOWARD STEEL & WIRE DIV 2972 7 7 100 
GENERAL MOTORS-WHEELER PIT 2795 8 8 75 —- 
GREDE-REEDSBURG FOUNDRY SW LF 2974 6 6 16.67° - 
GREEN LAKE SANITARY LANDFILL 1890 5 5 60 
H & R PAPER & REFUSE SERVICE 850 12 12 33.33. . 
HOLTZ & KRAUSE, INC 674 12 12 75 - 
HUGHES REFUSE & LANDFILL CO 2776 5 5 0 
JACKSON CNTY SANITARY LF INC C 2004 5 5 0 
JACKSON COUNTY IRON COMPANY 2924 7 7 57.14 
JAMES RIVER CORP-ASHLAND MILL 2826 3 3 33.33 
JAMES RIVER NORWALK-ALPINE 1832 4 4 100 
JAMES RIVER NORWALK-NORTHLAND 2893 11 11 100 
JONGETJES LANDFILL 943 4 4 75 
JUNKER SANITARY LANDFILL, INC 1972 20 2 50 
KIMBERLY-CLARK LAKEVIEW MILL 3004 7 7 57.14. 
KOHLER COMPANY LANDFILL 1508 16 16 18.75 
LAKE AREA DISPOSAL LANDFILL 2054 5 5 40 
LAND AND GAS RECLAMATION, INC 1118 4 4 75 
LAND RECLAMATION, LTD 572 28 28 60.71 
LAWENT IRON & METAL CORP 2611 5 5 20 
LEADFREE LANDFILL-BRIDGEPORT 2959 2 2 0 
MADISON PRAIRIE DEMOLITION LF 2918 11 11 27.27 
MASTER DISPOSAL, INC LANDFILL 2425 7 7 100 
MAZO LAND DISPOSAL 2009 2 2 50 
MERCURY MARINE LANDFILL 2603 1 1 0 
METROPOLITAN REFUSE DIST, INC 107 14 14 57.14 
MIDWEST DISPOSAL 73 15 15 66.67 
MOSINEE PAPER CORP. LANDFILL 2806 22 22 45.45 | 
MURRAY MACHINERY, INC 1722 1 1 100 _- 
N.O.W. PAPER CORP. FLY ASH LF 2964 2 2 0 
NEENAH-WHITING MILL LANDFILL 2576 6 6 50 _ | 
NEKOOSA MILL REFUSE DISP SITE 2857 8 8 100 - 
NEKOOSA PAPER-WW TREATMENT RES 2613 38 38 65.79 ° 

| | NEKOOSA PAPERS (LIME SLUDGE) 2614 14 14 85.71 
NEKOOSA PAPERS ASH-BARK SITE 1365 7 7 71.43 
NEKOOSA PAPERS INC 2891 3 3 oO - 
NEKOOSA PAPERS, INC 2811 6 6 0 
NEKOOSA PAPERS,SLUDGE SPREAD. 2672 6 6 66.67 
NIAGARA OF WISC PAPER CORP 3005 2 2 50 
NORTH WOODS DISPOSAL 2001 6 6 66.67 

NORTHRNESTATESKPWR-DEERPCREEK 2767 2 2 0



Alphabetical Site List 

FACILITY NAME LICENSE #WELLS TOTAL % TOTAL 
TESTED # WELLS DIRTY 

OCEAN SPRAY CRANBERRIES, INC 2423 10 10 30 

OWENS-ILLINOIS, INC LANDFILL 1346 32 40 56.25 

PATS STORAGE LAGOON 3003 3 3 ) 

PELISHEK CONTRACTING LANDFILL 338 1 1 100 

. POPE & TALBOT WI-ABSORBENT PRD 2695 13 13 23.08 

R LO'KEEFE & SONS, INC LF 2031 6 6 50 

REFUSE HIDEAWAY LANDFILL 1953 4 4 400 

. RHINELANDER PAPER COMPANY 1857 22 23 45.45 

- 7° RICHLAND CENTER FOUNDRY CO 2487 6 6 66.67 

RIVERSIDE SANITATION LANDFILL 738 2 2 ) 

; ROCK COUNTY-CTY JANESVILLE LF 3023 15 15 33.33 

: RUEF SANITARY LANDFILL 2936 5 5 100 

RUEF'S SANITARY SERVICE, INC 478 5 5 60 

SANITARY TRANS & LF-DELAFIELD 719 5 1 52 76.47 

SCOTT PAPER CO 2368 6 6 50 

| SCOTT PAPER CO LANDFILL 2846 4 4 0 

SHAWANO PAPER MILLS LANDFILL 2719 6 6 50 

SLINGER FOUNDRY LANDFILL 2702 3 3 100 

SOUTHEASTERN BARRON CNTY 1887 2 2 100 

THILMANY PULP & PAPER CO 493 16 16 31.25 

TN ASHWAUBENON 263 4 4 75 | 

TN EAST TROY 24 20 20 40 | 

TN GRAND RAPIDS 693 2 2 0 

TN HALLIE 2807 2 2 0 

TN LINCOLN 1779 2 2 50 

TN MENASHA 671 4 4 50 

TN MENOMONIE 2659 2 2 0 

TN MINOCQUA BO-DI-LAC LANDFILL 1561 2 2 50 

TN MINOCQUA-HWY 51 SITE 1558 3 3 33.33 

TN MINOCQUA-MERCER LAKE SITE 1559 8 3 0 

TN ONALASKA 507 9 9g 55.56 

TN ROSENDALE 2747 2 2 50 

TN RUTLAND 2115 2 2 50 

: TN SHERMAN 2856 2 2 0 

_ - TN ST GERMAIN 1389 3 3 33.33 

° TN STUBBS-DISTRICT 5 LANDFILL 2909 1 1 0 

TN SUGAR CAMP-SOUTH SITE 2884 1 1 0 

7 TN WASHINGTON | 160 5 5 40 

. TN WESCOTT 1004 4 4 50 

TOMAHAWK TISSUE CORP LANDFILL 1878 10 10 80 

TORK ALUM MUD DISPOSAL SITE 1892 12 12 91.67 

. TORK LANDFILL CORP (SENECA) 2967 17 17 29.41 

- TORK LANDFILL CORPORATION 652 16 29 93.75 

US ARMY-BAAP ACID SPILL AREA 2934 6 6 83.33 

U S ARMY-BAAP PERIMETER WELLS 3038 7 7 100 

VALLEY SANITATION CO, INC 2686 3 3 0 

VAN HANDEL SANITARY LANDFILL 49 10 10 90



Alphabetical Site List 

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL 
TESTED # WELLS DIRTY 

VIL ROTHSCHILD 1538 2 2 50 
VIL WONEWOC 164 4 4 75 
VULCAN MATERIALS CO 2998 15 23 93.33 
WARD PAPER COMPANY LANDFILL 2991 7 8 0 
WASTE CONTROL INC 1970 6 6 16.67 ° 
WASTE MANAGEMENT OF GREEN BAY 3 11 11 100 
WASTE MANAGEMENT OF WIS-NEOSHO 443 8 8 62.5 
WASTE MGMT OF WIS-GREIDANUS LF 140 10 10 20.7 
WASTE MGMT OF WIS-METRO LF 1099 42 42 64.29 ~ 
WASTE MGMT OF WIS-MUSKEGO LF O 2895 4 4 50 
WASTE MGMT OF.WIS-OMEGA HILLS 1678 109 109 63.3 °_ 
WASTE MGMT OF WIS-PHEASANT RUN 1739 16 17 43.75 
WASTE MGMT OF WIS-RIDGE VIEW 2575 16 16 43.75 
WASTE MNGT OF WI, INC-POLK 307 14 14 92.86 
WASTE MNGT OF WIS, INC-CITY DS 37 12 12 100 
WASTE MNGT OF WIS, INC-MUSKEGO 141 10 10 90 
WASTE MNGT OF WIS, INC-RECLAM 1356 5 5 100 
WASTE MNGT OF WIS-BROOKFIELD 1 14 14 85.71 
WATERFORD SEPTIC SERVICE 2894 2 2 0 
WAUPACA FOUNDRY COMPANY 2638 4 4 75 
WAUPACA FOUNDRY, INC 2089 1 1 0 
WAUSAU HOMES, INC | 1774 4 4 25 
WAUSAU PAPER MILLS LANDFILL 2875 7 7 28.57 
WEYERHAEUSER COMPANY 2873 9 9 11.11 
WI DOT HWY 100-RYAN RD 2988 7 7 71.43 
WI ST DEPT TRANSPORTATION 2586 2 2 50 
WIS ELEC POWR-PLEASANT PRAIRIE 2786 11 11 36.36 
WIS ELECTRIC POWER CO-HWY 32 2801 11 11 9.09 
WIS ELECTRIC POWER CO-HWY 59 918 1 1 0 
WIS ELECTRIC POWER-CEDAR SAUK 603 30 37 33.33 
WIS ELECTRIC POWER-OAK CREEK 2357 17 17 52.94 

. WIS POWER & LIGHT CO-COLUMBIA | 2325 6 15 33.33 
WIS POWER & LIGHT CO-EDGEWATER 2524 6 8 50 
WIS POWER & LIGHT-NELSON DEWEY 2525 17 17 17.65. . 
WIS POWER & LIGHT-ROCK RIVER 728 5 5 40 . 
WIS PUB SERV CORP-WESTON #3 LF 2879 8 8 0 
WIS PUBLIC SERV CORP-LEGNER 3067 1 1 O-. 
WIS PUBLIC SERV-FLY ASH SITE 5 1 5 5 100° 
WP&L EDGEWATER GEN STA-DRY ASH 2853 11 11 72.73 
YOURCHUCK'S SANITARY LANDFILL 2010 2 2 0



SITE LIST BY PREDICTOR GROUPS 

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL 

PREDICTED # WELLS DIRTY 

WIS ELECTRIC POWER CO-HWY59 = 918 1 1 0 

WAUPACA FOUNDRY, INC 2089 1 1 0 

MERCURY MARINE LANDFILL 2603 1 1 0 

CTY GALESVILLE 2738 1 1 0 

TN SUGAR CAMP-SOUTH SITE 2884 1 1 0 

° TN STUBBS-DISTRICT 5 LANDFILL 2909 1 1 0 | 

WIS PUBLIC SERV CORP-LEGNER 3067 1 1 0 

CTY PHILLIPS 57 2 2 0 

co TN GRAND RAPIDS 693 2 2 0 

- RIVERSIDE SANITATION LANDFILL 738 2 2 0 

YOURCHUCK'S SANITARY LANDFILL 2010 2 2 0 

. TNMENOMONIE 2659 2 2 0 

- NORTHRNESTATESKPWR-DEERPCRE 2767 2 2 0 

TN HALLIE 2807 2 2 0 

TN SHERMAN 2856 2 2 0 

WATERFORD SEPTIC SERVICE 2894 2 2 0 

LEADFREE LANDFILL-BRIDGEPORT 2959 2 2 0 

N.O.W. PAPER CORP. FLY ASH LF 2964 2 2 (0 

BRIDGEPORT LANDFILL 445 3 3 0 

TN MINOCQUA-MERCER LAKE SITE 1559 3 3 0 

CTY NEW RICHMOND 2492 3 3 0 

CNTY JUNEAU 2565 3 3 0 

VALLEY SANITATION CO, INC 2686 3 3 0 

NEKOOSA PAPERS INC 2891 3 3 0 

PATS STORAGE LAGOON 3003 3 3 0 

CNTY ONEIDA 2805 4 4 0 

SCOTT PAPER CO LANDFILL 2846 4 4 0 

JACKSON CNTY SANITARYLFINCC 2004 5 5 0 

HUGHES REFUSE & LANDFILL CO 2776 5 5 0 

LAWENT IRON & METAL CORP 2611 5 5 20 

CTY ABBOTSFORD LANDFILL 2932 5 5 20 

BAKER SANITARY LANDFILL 189 4 4 25 

COLT INDUSTRIES-FARNAM DIV. | 640 4 4 25 

WAUSAU HOMES, INC 1774 4 4 25 

CTY EAU CLAIRE 77 3 3 33.33 

TN ST GERMAIN 1389 3 3 33,33 

TN MINOCQUA-HWY 51 SITE 1558 3 3 33.33 

a CTY ADAMS-VIL FRIENDSHIP 1721 3 3 33.33 

BEECHER WOODYARD 2328 3 3 33.33 

JAMES RIVER CORP-ASHLAND MILL 2826 3 3 33.33 

- TN WASHINGTON 160 5 5 40 

. WIS POWER & LIGHT-ROCK RIVER 728 5 5 40 

CTY GILLETT 1115 5 5 40 

DEROSSO LANDFILL 1979 5 5 40 

LAKE AREA DISPOSAL LANDFILL 2054 5 5 40 

CTY BARRON 82 2 2 50 

FAHERTY DRILLING CO INC 949 2 2 50 

VIL ROTHSCHILD 1538 2 2 50 

TN MINOCQUA BO-DI-LAC LANDFILL 1561 2 2 50 

CTY HAYWARD 1751 2 2 50 

TN LINCOLN 1779 2 2 50 

: JUNKER SANITARY LANDFILL, INC 1972 2 2 50



SITE LIST BY PREDICTOR GROUPS 

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL 
PREDICTED # WELLS DIRTY 

MAZO LAND DISPOSAL 2009 2 2 50 | 
TN RUTLAND 2115 2 2 50 
WI ST DEPT TRANSPORTATION 2586 2 2 50 
CNTY SHAWANO-ANGELICA SITE 2728 2 2 50 

| TN ROSENDALE 2747 2 2 50 ; 
NIAGARA OF WISC PAPER CORP 3005 2 2 50 
TN MENASHA 671 4 4 50 
TN WESCOTT 1004 4 4 50 
CTY RICHLAND CENTER 1519 4 4 50 * 
WASTE MGMT OF WIS-MUSKEGO LF.O 2895 4 4 50 - 
BAAP DETERRENT BURNING GROUND 3037 4 4 50 
CTY MENOMONIE _ 372 5 5 60 Ott 

| RUEF'S SANITARY SERVICE, INC 478 5 5 60 ° 
GREEN LAKE SANITARY LANDFILL 1890 5 5 60 

| CTY JANESVILLE-ASH BEDS 3061 5 5 60 
VIL WONEWOC 164 4 4 75 
TN ASHWAUBENON 263 40 4 75 
JONGETJES LANDFILL 943 4 4 75 
LAND AND GAS RECLAMATION, INC 1118 4 4 75 
WAUPACA FOUNDRY COMPANY 2638 4 4 75 
CTY STOUGHTON 133 5 5: 80 
PELISHEK CONTRACTING LANDFILL 338 1 1 100 
CTY PARK FALLS 777 1 { 100 
MURRAY MACHINERY, INC 1722 1 1 100 
CTY RICE LAKE 108 2 2 100 
BELOIT CONCRETE STONECOINC 781 2 2 100 
SOUTHEASTERN BARRON CNTY 1887 2 2 100 
CTY RIPON-TN RIPON 467 3 3 100 

| CTY WATERTOWN 893 3 3 100 
SLINGER FOUNDRY LANDFILL 2702 3 3 100 

| CTY FOX LAKE WOODBURNING SITE 369 4 4 100 
JAMES RIVER NORWALK-ALPINE 1832 4 4 100 

| REFUSE HIDEAWAY LANDFILL 1953 4 4 100 
CTY WAUPUN 2246 4 4 100 
CTY SUPERIOR-MOCASSIN MIKE 2627 4 4 100 
CTY KENOSHA 38 5 , 5 100 

: WIS PUBLIC SERV-FLY ASH SITE 51 5 5 100 | 
CTY LA CROSSE 144 5 5 100 
CTY GREEN BAY-MILITARY AVENUE 169 5 5 100 
CTY BURLINGTON 186 5 5 100. 

| CTY TWO RIVERS 318 5 5 100. 
WASTE MNGT OF WIS, INC-RECLAM 1356 5 5 100 . 
CTY MADISON-GREENTREE HILLS 1714 5 5 100 
RUEF SANITARY LANDFILL 2936 5 5 100 
NEKOOSA PAPERS, INC 2811 6 : 6 0 . 
CNTY MONROE-RIDGEVILLE SITE 2858 6 6 0 
CTY WISCONSIN DELLS 2712 8 8 0 
WIS PUB SERV CORP-WESTON #3 LF 2879 8 8 0 
WARD PAPER COMPANY LANDFILL 2991 7 8 0 
WEYERHAEUSER COMPANY 2873 g 9 11.11 
CNTY MARATHON LANDFILL 2892 7 7 14.29 
WASTE CONTROL INC 1970 6 6 16.67



SITE LIST BY PREDICTOR GROUPS 

FACILITY NAME LICENSE # WELLS TOTAL % TOTAL 
PREDICTED # WELLS DIRTY 

GREDE-REEDSBURG FOUNDRY SW LF 2974 6 6 16.67 

WASTE MGMT OF WIS-GREIDANUS LF 140 10 10 20 

BAAP-PROPELLANT BURNING GRNDS 2814 7 7 28.57 

WAUSAU PAPER MILLS LANDFILL 2875 7 | 7 28.57 

OCEAN SPRAY CRANBERRIES, INC 2423 10 10 30 

* CTY ALGOMA 179 6 6 33.33 

CTY PORTAGE 1885 6 7 33.33 

CTY GREEN BAY-HUMBOLT ROAD 1129 6 6 50 

» RL O'KEEFE & SONS, INC LF 2031 6 6 50 

-_— SCOTT PAPER CO 2368 6 6 50 

NEENAH-WHITING MILL LANDFILL 2576 6 6 50 

SHAWANO PAPER MILLS LANDFILL 2719 6 6 50 

- BADGER ARMY AMMUNITION PLANT 2813 6 6 50 

WIS POWER & LIGHT CO-EDGEWATER 2524 6 8 50 

CTY BLACK RIVER FALLS 287 10 10 50 

CTY CLINTONVILLE | 314 10 10 50 

CNTY GREEN 217 9 9 55.56 

TN ONALASKA 507 9 9 55.56 

CTY JANESVILLE 62 7 7 57.14 

ANDERSON PEAT-ORGANIC COMPOS 420 7 7 57.14 

JACKSON COUNTY IRON COMPANY 2924 7 7 57.14 

KIMBERLY-CLARK LAKEVIEW MILL 3004 7 7 57.14 : 

WASTE MANAGEMENT OF WIS-NEOSt# 443 8 8 — 62.5 

FALK CORPORATION 1882 8 8 62.5 

CTY GREEN BAY-2130 DANZ AVENUE 170 6 6 66.67 

NORTH WOODS DISPOSAL 2001 6 6 66.67 

RICHLAND CENTER FOUNDRY CO 2487 6 6 66.67 

NEKOOSA PAPERS,SLUDGE SPREAD 2672 6 6 66.67 

BRILLION IRON WORKS, INC 2866 6 6 66.67 

CTY JANESVILLE 2822 10 10 70 

CTY CHIPPEWA FALLS 85 7 7 71.43 

NEKOOSA PAPERS ASH-BARK SITE 1365 7 7 71.43 

WI DOT HWY 100-RYAN RD 2988 7 7 71.43 

| CONSOLIDATED PAPERS-BIRON DIV 1687 8 8 75 

CENTRAL SANITARY LANDFILL 2132 8 8 75 

GENERAL MOTORS-WHEELER PIT 2795 8 8 75 3 

CTY WHITEWATER 65 9 9 77.78 

- ° TOMAHAWK TISSUE CORP LANDFILL 1878 10 10 80 

- CNTY DOOR SANITARY LANDFILL 2937 10 10 80 | 

CNTY GREEN S/W DISPOSAL SITE 2990 10 10 80 

- U S ARMY-BAAP ACID SPILL AREA 2934 6 6 83.33 

| CTY MADISON-SYCAMORE SITE 1935 7 7 85.71 

° VAN HANDEL SANITARY LANDFILL 49 10 10 90 

WASTE MNGT OF WIS, INC-MUSKEGO 141 10 10 90 

DAIRYLAND POWER COOP-GENOA #3 1747 '6 6 100 

° MASTER DISPOSAL, INC LANDFILL 2425 7 7 100 

FORT HOWARD STEEL & WIRE DIV 2972 7 7 100 

| US ARMY-BAAP PERIMETER WELLS 3038 7 7 100 

CNTY EAU CLAIRE-SEVENMILE CRK 2821 . 11 11 0 

CNTY SAUK SANITARY LANDFILL 2978 11 11 0 

EXXON MINERALS COMPANY 2977 13 13 0



SITE LIST BY PREDICTOR GROUPS 

| FACILITY NAME LICENSE # WELLS TOTAL % TOTAL 
PREDICTED # WELLS DIRTY 

CNTY PORTAGE LANDFILL 2966 | 20 20 5 
CTY SHAWANO - PHASE 2 3069 12 12 8.33 
CNTY LACROSSE | 2637 11 11 9.09 
WIS ELECTRIC POWER CO-HWY 32 2801 11 11 9.09 
WIS POWER & LIGHT-NELSON DEWEY 2525 17 17 17.65 
KOHLER COMPANY LANDFILL 1508 16 16 18.75 ° 
CNTY SAUK 2051 15 15 20 
POPE & TALBOT WI-ABSORBENT PRD 2695 13 13 23.08 
CTY ANTIGO 1357 © 15 15 26.67 _« 
MADISON PRAIRIE DEMOLITION LF 2918 11 11 27.27 - 

| CTY MERRILL 912 17 17 29.41 
TORK LANDFILL CORP (SENECA) 2967 17 17 29.41 . 
THILMANY PULP & PAPER CO 493 16 16 31.25 - 
BADGER DISPOSAL 234 12 12 33.33 

| DAIRYLAND POWER COOP-ALMA 1673 12 12 33.33 
H & R PAPER & REFUSE SERVICE 850 12 12 33.33 
ROCK COUNTY-CTY JANESVILLELF 3023 15 15 33.33 
WIS POWER & LIGHT CO-COLUMBIA 2325 6 15 33.33 
CTY-TN CEDARBURG 271 11 41 36.36 
WIS ELEC POWR-PLEASANT PRAIRIE 2786 11 11 36.36 
TN EAST TROY 24 20 20 40 
WASTE MGMT OF WIS-PHEASANT RUN 1739 16 17 43.75 
WASTE MGMT OF WIS-RIDGE VIEW 2575 16 16 43.75 
WIS ELECTRIC POWER-OAK CREEK 2357 17 17 52.94 
CTY OCONTO 137 14 14 57.14 
METROPOLITAN REFUSE DIST, INC 107 14 14 57.14 
CTY WEST BEND 224 18 18 61.11 
DAIRYLAND POWER-OFFSITE DISP. 2927 13 13 61.54 
CTY MEDFORD 341 11 11 63.64 
MIDWEST DISPOSAL 73 15 15 66.67 
WP&L EDGEWATER GEN STA-DRY ASt 2853 11 11 72.73 
HOLTZ & KRAUSE, INC 674 12 12 75 

CTY SHAWANO 2342 17 17 76.47 
FLAMBEAU PAPER CORP 2756 13 13 76.92 
NEKOOSA PAPERS (LIME SLUDGE) 2614 14 14 85.71 
WASTE MNGT OF WIS-BROOKFIELD 1 14 14 85.71 
APPLETON PAPERS, INC 30 18 18 88.89 
CNTY FOND DU LAC 2358 18 18 88.89 7 
CNTY MILWAUKEE HWY DEPT 881 11 11 90.91 J 
TORK ALUM MUD DISPOSAL SITE 1892 12 12 91.67 
WASTE MNGT OF WI, INC-POLK 307 14 14 92.86 —_ 
CNTY KEWAUNEE SW BALEFILL 2975 11 11 100 - 
CONSOLIDATED PAPERS-KRAFT DIV 1838 16 16 100 
CTY SUPERIOR-WIS POINT LF 12 12 12 100 

JAMES RIVER NORWALK-NORTHLAND 2893 11 11 100 . 
NEKOOSA MILL REFUSE DISP SITE 2857 8 8 100 
WASTE MANAGEMENT OF GREEN BAY 3 11 11 100 

DAIRYLAND POWER COOP-CASSVILLI 96 25 25 28 
CONSOLIDATED PAPERS-STEVENS P 2344 24 24 29.17 
WIS ELECTRIC POWER-CEDAR SAUK 603 30 37 33.33 
CNTY OUTAGAMIE 2484 33 33 42.42



SITE LIST BY PREDICTOR GROUPS 

FACILITY NAME LICENSE # WELLS TOTAL  % TOTAL 
PREDICTED # WELLS DIRTY 

MOSINEE PAPER CORP.LANDFILL 2806 22 22 45.45 
RHINELANDER PAPER COMPANY ~—_1857 22 23 45.45 
CONSOLIDATED PAPER WIS RIV DIV 1686 22 27 45.45 
CNTY BROWN-EAST 2569 35 35 48.57 
OWENS- ILLINOIS, INC LANDFILL 1346 32 40 56.25 

. CNTY DANE LANDFILL #2-RODEFELD 3018 32 32 59.38 
LAND RECLAMATION, LTD 572 28 28 60.71 
FORT HOWARD PAPER CO-GREEN BA 2332 24 24 62.5 

. WASTE MGMT OF WIS-OMEGA HILLS 1678 109 109 63.3 
cc WASTE MGMT OF WIS-METRO LF 1099 42 42 64.29 

NEKOOSA PAPER-WW TREATMENT R 2613 38 38 65.79 
CNTY BROWN-WEST 2568 35 35 71.43 

_* + @NTY DANE LANDFILL #1-VERONA = 2680 22 22 72.73 
SANITARY TRANS &LF-DELAFIELD 719 51 52 76.47 
CNTY WINNEBAGO 611 78 78 76.92 
CONSOLIDATED PAPERS-WQC 2488 33 33 87.88 
BARRETT LANDFILL, INC 1940 27 27 92.59 
VULCAN MATERIALS CO 2998 15 23 93.33 
TORK LANDFILL CORPORATION 652 16 29 93.75 
CTY ASHLAND 177 21 21 95.24 
BERGSTROM PAPERLF-NEENAH 2446 30 30 96.67 
WASTE MNGT OF WIS, INC-CITYDS 37 12 12 100



APPENDIX D 

| Statistical Description of Clean Well Data



APPENDIX D 

SUMMARY STATISTICS FOR CLEAN WELL DISTRIBUTIONS 

1. Distribution of Median and IQR for background wells | 

| 2. Correlation coefficients Median vs. IQR and LOG10(median) vs a 

| LOG10 (IQR) 

| 3. Distribution.of Mean and Standard Deviation for raw datasets . 

4. Correlation coefficients for Mean vs. Standard Deviation and 

LOG10(mean) vs. LOG10(standard deviation) | 

5. Distribution of Lognormal Mean and Standard Deviation 

6. Correlation coefficients of Lognormal Mean vs. Lognormal 

Standard Deviation. 

7. Distribution of standardized skewness coefficient for raw 

datasets 

8. Distribution of standardized skewness coefficient for log- 

transformed datasets.



SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR 

X14: Chloride - MEDIAN | 
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SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR 

X4: Conductivity - MEDIAN 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 
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Xs: Hardness - MEDIAN 
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SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR 

X7: Chloride - IQR 
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SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR 

X40: Conductivity - IQR | 

; Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 
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X47: Hardness - IQR . 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

| Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

a dere —des —‘iroas7 —easzso.us [2s 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

fone —idez.ars fas ideo —~ido 
# > 90th %:  Kurtosis: Skewness: 

ia rss fasted 

X42: fron - IQR 

| Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

EE Ee Eo 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: - 

os fens esos |aa.caa eran as 
#< 10th %: 10th %: 25th %: 0th %: 75th %: 90th %: - 

2 fos ose ft feared 
# > 90th %: Kurtosis: Skewness: 

ia _die.soe feos? | SSC*dSCi‘CSC*drSOC‘“‘( 

| GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR 

Corr. Coeff. X14: Chloride - MEDIAN Yi: Chloride - IQR 

Count: Covariance: Correlation: R-squared: 

iso szo.o0s ses f.927 
Note: 11 cases deleted with missing values. 

: ° Corr. Coeff. Xa: COD - MEDIAN Y2: COD - IQR 

Count: Covariance: Correlation: R-squared: 

346.986 

Corr. Coeff. X3: Alkalinity - MEDIAN Y3: Alkalinity - IQR | 

| Count: Covariance: Correlation: R-squared: - 

30d 791.377 . 
Note: 30 cases deleted with missing values. : 

Corr. Coeff. Xq: Conductivity - MEDIAN Y4: Conductivity - IQR 

Count: Covariance: Correlation: ____R-squared: 

isato.se1 f.ee1 437 
_ Note: 1 case deleted with missing values. 

- Corr. Coeff. X5: Hardness - MEDIAN Ys: Hardness - IQR 

| Count: Covariance: Correlation: R-squared: 

Note: 23 cases deleted with missing values. 

GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTION OF MEDIAN AND IQR 

Corr. Coeff: Xg: Iron - MEDIAN Yg: Iron - IQR 

Count: Covariance: Correlation: R-squared: 

revise 
Note: 23 cases deleted with missing values. 

oe GROUP | AND Il WELLS ONLY :



SUMMARY STATISTICS FOR (LOG)DISTRIBUTION OF MEDIAN AND IQR | 

Corr. Coeff. Xj: Chloride - LOG(MED) Yi: Chloride - LOG(IQR) 

Count: Covariance: Correlation: R-squared: 

Note: 11 cases deleted with missing values. 

: Corr. Coeff. Xg: COD- LOG(MED) Y2: COD - LOG(IQR) , 

Count: Covariance: Correlation: R-squared: - 

isp tts poses 
Note: 2 cases deleted with missing values. 

Corr. Coeff. X 3: Alkalinity - LOG(MED) Y3: Alkalinity - LOG(IQR) 

Count: Covariance: Correlation: R-squared: 

odo? dae 
Note: 30 cases deleted with missing values. 

| Corr. Coeff. X4q: Conductivity - LOG(MED) Y4: Conductivity - LOG(IQ... 

Count: Covariance: Correlation: R-squared: 

— Note: 1 case deleted with missing values. 

; Corr. Coeff. Xs: Hardness - LOG(MED) Ys: Hardness - LOG(IQR) 

Count: Covariance: Correlation: R-squared: 

, 
Note: 23 cases deleted with missing values. 

GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR (LOG)DISTRIBUTION OF MEDIAN AND IQR 

Corr. Coeff. Xg: Iron - LOG(MED) Ye: Iron - LOG(IQR) 

| Count: Covariance: Correlation: R-squared: 

order soso 
| Note: 23 cases deleted with missing values. 

oe GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV 

X74: Chloride - mean 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: | 

i425 fas.se7 _—fz.eo7__—|r2so.zez__|2er.eza [rao 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

1.084 30.933 |szo.s4a [2179129 [2reose.o79 [11 
; #< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

is tess fz.sze_fa.as__|te.954 23.406 
: ° # > 90th %: _Kurtosis: Skewness: 

is ien-rgg se | 

| X9: COD - mean 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

23.86 [so.rer [2.ase _ov7.e17 _|v29.0e7 [veo 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

sas aor.e —f2oe.4s —|aets.o26 [2arzit.oat Jo 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: | 

# > 90th %: Kurtosis: Skewness: 

ie sifaorr2—fs.zas | 

| X3: Alkalinity - mean 

| . Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

- | Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

~ fazaz [sso [se2.sea _|evoso.ere [e77aaa7.ze oo 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

| fig Frscsa [rates [ors.eee |ossios7 [sosssa 
" # > 90th %: Kurtosis: Skewness: : 

a3 feso7 ess | 

| GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV 

X4: Conductivity - mean 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

90.671 _[2as408  froras  [se27e.es |sa.sos _[1so 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

# > 90th %: _Kurtosis: Skewness: _ 

ie fxses ats | CTC 

X5: Hardness - mean 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

207.028 [12068 |io.a0a _[rasseasa so00s [iar 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

2s __ [70.700 |va4.7aa__[searaeea [osr7oi.sea|za 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

ia ___[o.soe__|rss.oor _|2s.s0 [220.03 [s7ao01 
# > 90th %: Kurtosis: Skewness: 

a4 fase fsa fT 

Xg: Iron - mean 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

| Minimum: Maximum: Range: Sum: Sum Squared: # Missing: - 

027 ea.zee _[az.as7 _|rae.osa [asse.so1 [2s 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: - . 

is foas ove dies idsta iden dC; 
| # > 90th %: Kurtosis: Skewness: 

i# roars _deusr 7 <7. id OdSOt~=~S 

- GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV 

X7: Chloride - stdev 

Mean: Std. Dev.: Std. Error: Variance: __Coef. Var.: Count: 

eos —i|2e.cae 2.207 ___—i|72s.sa7_—fzeo.sco [149 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

. is tos ste favo f.zt9 | t5.571 
| # > 90th %: _Kurtosis: Skewness: 

is feoses ener SOC 

Xg: COD - stdev 
Mean: Std. -Dev.: Std. Error: Variance: Coef. Var.: Count: 

ea.s0s [ss.co7 fase _faras.er__frez.ers [reo 
| Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

ese —|sez.see_—|ser.4a2__—|s4a0.797__|easzes.ces [o 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: . 

# > 90th %: _Kurtosis: Skewness: 

ie its.eta foe | 

| | Xg: Alkalinity - stdev 

. Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

. Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

2.080 [rso.e7e  [rea.srs |svaaoso |asazea.7» [30 
. # < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

ia dvser_fsaoi7 _[e0.cea _[es.soe _froaser 
: # > 90th %:  Kurtosis: Skewness: 

is fete tee? 

GROUP | AND Il WELLS ONLY |



SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV 

X10: Conductivity - stdev 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

jo7.147 _[1o7.ser__Je.saz [11873800 [100.405 iso 
Minimum: Maximum: Range: Sum: 7 Sum Squared: # Missina: 

zcea_|797.197__ [ves.ece [17096963 [sesaozess [1 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

# > 90th %: _Kurtosis: Skewness: * 

I EC 

X11: Hardness -_ stdev 
_ Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

ees |sazaso_[sse.es4  [s07e.066 [tostoss.eorf2a 
# << 10th %: 10th %: 25th %: 50th %: 75th %: 90th _%: 

# > 90th %:  Kurtosis: Skewness: 

ER C2 

| X42: Iron -_ stdev 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

ios [issos [iz Jeas.zre  [soaaaafia7 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 7 oe 012 _|ee.a76 _|res.aes _[sas.asa [sasor.see 20 
#< 10th %: 10th %: 25th %: Ssoth %: 75th %: 90th &%: 7 

aoe sion ideas ido? dos CC; 
# > 90th %: —Kurtosis: Skewness: 

is esis dems ~~] SOO ]OCti«SC 

| GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV 

Corr. Coeff. X74: Chloride - mean Yi: Chloride - stdev 

Count: Covariance: Correlation: R-squared: | 

671.216 
Note: 11 cases deleted with missing values. 

. Corr. Coeff. X2: COD - mean Y 2: COD - stdev 

. | Count: Covariance: Correlation: R-squared: 

eof 142.131 

Corr. Coeff. X3: Alkalinity - mean Y3: Alkalinity - stdev 

| Count: Covariance: Correlation: R-squared: . 

Note: 30 cases deleted with missing values. - 

Corr. Coeff. X4: Conductivity - mean Y4: Conductivity - stdev 

Count: Covariance: —_ Correlation: R-squared: : 

_ i. Note: 1 case deleted with missing values. | 

-” ~ 

‘ Corr. Coeff. Xs: Hardness - mean Ys: Hardness -_ stdev 

i Count: Covariance: Correlation: R-squared: 

| Note: 23 cases deleted with missing values. 

GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF NORMAL MEAN AND STDEV 

Corr. Coeff. Xg: Iron - mean Ye: Iron -_ stdev 

Count: Covariance: Correlation: R-squared: 

ior _eas7s sca i.e? 
| Note: 23 cases deleted with missing values. 

| GROUP | AND II WELLS ONLY |



JMMARY STATISTICS FOR DISTRIBUTIONS OF log (10) of the NORMAL MEAN AND STDEV 

Corr. Coeff. X1: Chloride - log(x) of mean Y1: Chloride - log(x) of s... 

Count: Covariance: Correlation: R-squared: | 

Fr 
Note: 11 cases deleted with missing values. 

a Corr. Coeff. X2: COD - log(x) of mean Y2: COD - log(x) of stdev 

. Count: Covariance: Correlation: R-squared: 

| Corr. Coeff. X3: Alkalinity - log(x) of mean Y3: Alkalinity - log(x) ... , 

Count: Covariance: Correlation: R-squared: 

ico —idiose dae dt 
Note: 30 cases deleted with missing values. 

Corr. Coeff. Xq: Conductivity - log(x) of mean Y4: Conductivity - lo... 

Count: Covariance: Correlation: R-squared: 

iso dost isos dase 
_ Note: 1 case deleted with missing values. 

. Corr. Coeff. Xs: Hardness - log(x) of mean Ys: Hardness -_ log(x) of... 

Count: Covariance: Correlation: _R-squared: . 

| Note: 23 cases deleted with missing values. 

GROUP | AND Il WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF log (10) of the NORMAL MEAN AND STDEV 

Corr. Coeff. Xg: Iron - log(x) of mean Yg: Iron - log(x) of stdev 

Count: Covariance: Correlation: R-squared: 

ar idaes ovens 
Note: 23 cases deleted with missing values. 

GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV 

X74: Chloride - LOG MEAN | 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

606 [irae [ose i.soe__fevaas [rsa 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

. Fest [seo s.05 —faso.sis [eseass le 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

is est fsa fteaz |2.eea fzgs9 
. oo # > 90th %: Kurtosis: Skewness: . 

fs feos fee 

X9: COD - LOG MEAN 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

220 dees doer erie —_—idav.rea dies 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

a5 faoaz |4soz_ [sete foz7.s0 fo 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

| # > 90th %: _Kurtosis: Skewness: 

ie fees ete 

X3: Alkalinity - LOG MEAN 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

saa fe7s oso fas ft3.077_ tat 
ae Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

0s ears |aois erence fasar.sar [oo 
_ # < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

" : # > 90th %: _Kurtosis: Skewness: 

9 sere fore | 

GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV 

X4: Conductivity - LOG MEAN 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

soit [ser fogs fists foto to 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

eer [rase _faeso _essr7aseaos7r [1 tC 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

se fs.ssa_[s.see_fs.c6e ez [aso 
# > 90th %: _Kurtosis: Skewness: i 

ne fnsaa fesse | TC 

X5: Hardness - LOG MEAN 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

Minimum: Maximum: Range: Sum: Sum Squared: # Missing: | 

a2 |es7e __|aa7e _|re7.ses oses.ses [2s 
# < 10th %: 10th %: 25th %: SOth %: 75th %: 90th %: | 

is danse dass sas —ids.ri2—(s.ocs 
# > 90th %: _Kurtosis: Skewness: 

ve fer feos TTC 

Xg: Iron - LOG MEAN 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

2420 [os dors —idieze—-s7.s00 [iss 
| Minimum: Maximum: Range: Sum: Sum Squared: # Missing: "8 

3097 fo ——idis.s07—‘-asavoa|osos7s fis 
# < 10th %: 10th %: 25th %: 50th %: 75th &%: 90th %: - 

is ses [acre [aaes[rzss [120] 
# > 90th %:  Kurtosis: Skewness: 

i GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV 

X7: Chloride - LOG STDEV 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

ie36[.se7 doze disor —idst.ona tsa 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

joe rset [rao ovsee (reso fe 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

is for fesve sews? dt 
. # > 90th %: _Kurtosis: Skewness: 

is feste2 stg 

-—-Xg: COD - LOG STDEV 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

ei foe idcoae nee asaa tes 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

wis7_ asia fz.gs7_fits6.as 77.73 fo 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 7 

#> 90th %: Kurtosis: Skewness: 

Xg: Alkalinity - LOG STDEV , 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

252 fara fore fogs fase fin 
_ Minimum: Maximum: Rance: Sum: Sum Squared: # Missing: 

poze tae tsa fsg.o4e |i4.zgo 30 
; #< 10th %: 10th %: 25th %: 50th %:_ 75th %:_ 90th %: 

: a does dices diate ida 
. # > 90th %: Kurtosis: Skewness: | 

fs faggot 

GROUP | AND II WELLS ONLY



SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV 

X10: Conductivity - LOG STDEV 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

204 tas fore foes ecaaze reo 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

woze 997 fig7s aze7fiztes ti 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

ne foos fiszn ton zoe ass] 
# > 90th %: _Kurtosis: Skewness: * 

ye aors foo | TCT dS 

X11: Hardness - LOG STDEV 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

zo fare fore dows (ar.o77 ise 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

7 far —id.asa_—dev.ny—idtesas das 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

v4 fost trp ate gee sz 
# > 90th %: Kurtosis: Skewness: 

ja fsevs foe | CC 

X42: lron - LOG STDEV : 
Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

nie [sar —id.ons— dias idence dita 
| Minimum: Maximum: Range: Sum: Sum Squared: # Missing: Ot 

.204 feessfa.sso[ie9.443 [ase.008 [is 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: _ 

is soe —idiros —ids.toe ids ides «dC 
# > 90th %: _Kurtosis: Skewness: 

ts fzot foes , 

GROUP | AND Il WELLS ONLY .



SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV 

Corr. Coeff. X41: Chloride - LOG MEAN Yj: Chloride - LOG STDEV 

Count: Covariance: Correlation: roee 

Note: 8 cases deleted with missing values. 

. Corr. Coeff. X2g: COD - LOG MEAN Y2: COD - LOG STDEV 

. Count: Covariance: Correlation: R-squared: ° 

set eova 292.054 

Corr. Coeff. X3: Alkalinity - LOG MEAN Y3: Alkalinity - LOG STDEV 

Count: Covariance: Correlation: R-squared: . 

Note: 30 cases deleted with missing values. | 

Corr. Coeff. X4: Conductivity - LOG MEAN Ya: Conductivity - LOG S... 

Count: Covariance: Correlation: R-squared: 

- Note: 1 case deleted with missing values. 

e Corr. Coeff. Xs: Hardness - LOG MEAN Ys: Hardness - LOG STDEV | 

| Count: Covariance: Correlation: R-squared: 

ise fot 2g fs 
Note: 23 cases deleted with missing values. 

GROUP | AND II WELLS ONLY



| SUMMARY STATISTICS FOR DISTRIBUTIONS OF LOGNORMAL MEAN AND STDEV 

Corr. Coeff. Xg: Iron - LOG MEAN Ye: Iron - LOG STDEV 

Count: Covariance: Correlation: R-squared: 

ae idse7idtse dz 
Note: 15 cases deleted with missing values. 

- GROUP | AND Il WELLS ONLY



DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- RAW DATA -- 

| X74: Chloride - z-score 

Mean: Std. Dev.: ‘Std. Error: Variance: Coef. Var.: Count: 

ses f-990 tts 998 ftts.az fe 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

casa [esce [sore _[os.res___[rareor [77 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

fe oes zen ett dt zee fogs 
. " # > 90th %: _Kurtosis: Skewness: 

egy fas 

Xo: COD - z-score 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

CR C7 OCC 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

ozo |s.os2_fs.0z9faa.oes | ss.o11 132 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

2 ere see v9? sz dz as 
# > 90th %: _Kurtosis: Skewness: 

2 fazer fone 

X3: pH - z-score 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

035 fr.ooe dose —fs.c0s—‘|-2eor.e1 [iso 
_ | Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

asses feae fost [-s.sae(usaser [a 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

0 fis emda sete ides sas 
. # > 90th %: —_Kurtosis: Skewness: 

is fara idewen OP SCSC*~idSC“‘;*~™S 
s 

GROUP | AND Il WELLS ONLY



DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- RAW DATA -- 

X4: Alkalinity - z-score 

Mean: - Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

aaa fsa —id.oes idee —‘disva.acs [ie 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

#<10th%: 10th %: 25th %: 50th %: 75th %: 90th %: 

v2 —id-ea fas —idxze—idisss sits Od 
# > 90th %: _Kurtosis: Skewness: e 

v2 idaves—idass =] SSCSC*dSC“‘;CS*r 

Xs: Conductivity - z-score 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: | 

aor dvaes for —*dit.sse—asa.res [iss 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

2017 _|s.oor _jere racer —ertses fo 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

is dsoe [zor disse ideas ——*dit-see 
# > 90th %: Kurtosis: Skewness: 

as agra ese | 

Xg: Hardness - z-score 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

cao diaz fs d.g0a—seesor fin 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: - , 

2000 [eser frase _[asi7ea_[iss.esa [a2 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: - . 

is d-s93 —idase sidan? dies itd] 
# > 90th %: Kurtosis: Skewness: 

no fase sos x 

; GROUP I AND II WELLS ONLY



DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- RAW DATA -- 

X7: Sulfate - z-score 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

o7 isos [zee _fr.s7s _faop.ear [eo 
Minimum. Maximum: Range: Sum: Sum Squared: # Missing: 

033 eter [ree |es.reo _oa.cos [119 
| #< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

[a Tears toe fee ara 2072 
. : # > 90th %: __—Kurtosis: Skewness: 

ja sors zoos fT 

| Xg: Iron - z-score | 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

i401 [see dase idz7e iden ao id 
. Minimum: Maximum: | Range: Sum: Sum Squared: # Missing: 

[asp dasss —fa.ses _|rz.eir _[eo.eoa fia 
# < 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: | 

# > 90th %: _Kurtosis: Skewness: 

. | 

_ | 

GROUP | AND II WELLS ONLY



DISTRIBUTIONS FOR STANDARDIZED SKEWNESS COEF. -- LOG DATA -- 

X74: Chloride - log z-score 

Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 

oss [soo joss diss —‘rava.oss [7s 
Minimum: Maximum: Range: Sum: Sum Squared: # Missing: 

aoc f2oze (sve farre 'assra fr? 
#< 10th %: 10th %: 25th %: 50th %: 75th %: 90th %: 

eo d-ors idea? —idica? ~——=idiaas iiss Od] 
# > 90th %: _Kurtosis: Skewness: ° 

CN Ce A 

X9: COD - log z-score 
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