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Abstract

In this thesis, we focus on the study of hyperkähler metric in four dimensional cases,

and practice GMN’s construction of hyperkähler metric on focus-focus fibrations.

We explicitly compute the action-angle coordinates on the local model of focus-focus

fibration, and show its semi-global invariant should be harmonic to admit a compati-

ble holomorphic 2-form. Then we study the canonical semi-flat metric on it. After the

instanton correction inspired by physics, we get a family of generalized Ooguri-Vafa met-

ric on focus-focus fibrations, which becomes more local examples of explicit hyperkähler

metric in four dimensional cases.

In addition, we also make some exploration of the Ooguri-Vafa metric in the thesis.

We study the potential function of the Ooguri-Vafa metric, and prove that its nodal

set is a cylinder of bounded radius 1 < R < ∞. As a result, we get that only on a

finite neighborhood of the singular fibre the Ooguri-Vafa metric is a hyperkähler metric.

Finally, we give some estimates for the diameter of the fibration under the Oogui-Vafa

metric, which confirms that the Oogui-Vafa metric is not complete.

The new family of metric constructed in the thesis, we think, will provide more

examples to further study of Lagrangian fibrations and mirror symmetry in future.
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Chapter 1

Introduction

1.1 Background

The well-known Calabi conjecture solved by Yau [42] in 1978 promises that given any

elliptic K3 surface there always exists a unique hyperkähler metric in each given Kähler

class. After this fundamental existence result, it has been an open problem to write

down the explicit expression of such metrics.

Motivated by the celebrated Strominger-Yau-Zaslow conjecture [38], nowadays it is

a folklore that the hyperkähler metrics near large complex limits are approximated by

semi-flat metrics with instanton correction from the holomorphic discs with boundaries

on special Lagrangian fibres [12]. The semi-flat metric is written down under the special

Lagrangian fibration setting in [17]. Later, Gross and Wilson [20] proved that such

hyperkähler metrics indeed can be approximated by the semi-flat metrics glued with

generalized Ooguri-Vafa metrics around each singular fibre. However, in this procedure

the instanton corrections are not included.

Recently, Gaiotto, Moore and Neitzke make a significant breakthrough and propose

a new approach on this problem with the instanton corrctions in their papers [14] [15].

It brings lots of new ingredients into the field, which includes: Kontsevich-Soibelman

wall-crossing formula on BPS states or generalized Donaldson-Thomas invariants [26],
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and construction of twistor spaces of hyperkähler metrics [22] from associated Riemann-

Hilbert problems determined by the wall-crossing data.

In this thesis, we try to practice the GMN’s construction in one of the important

cases of completely integrable systems: focus-focus fibration. Following Vũ Ngo.c’s clas-

sification result on focus-focus fibration [34], here we view the local model in [34] as a

total neighborhood of a type I or A1 singular fibre in the special Lagrangian fibration of

an elliptic K3 surface (up to some symplectomorphism). We adapt GMN’s construction

as outlined in [33] on the local model, and study the explicit hyperkähler metric on it.

1.2 Outlines

The thesis is organized as follows:

First, we study our local model and state Vũ Ngo.c’s classification result on focus-

focus fibrations, and then explore its explicit action-angle coordinates. As an important

example, we also calculate the action-angle coordinates for Ooguri-Vafa case.

Second, we follow Arnold’s integration over vanishing cycle technique [1], show the

semi-global invariant S introduced by Vũ Ngo.c in [34] on the local model should be a

harmonic function to admit a compatible holomorphic 2-form.

Then, we study the canonical semi-flat metric on the regular part of local model. We

show that under certain conditions on the semi-global invariant S, such semi-flat metric

will become a real hyperkähler metric on the regular part of the fibration. However,

such metric generally cannot be extended over the singular fibre.

Finally, we apply the GMN ansatz to modify the semi-flat metric to a global metric

with central fibre completion. In stead of making the modification on the metric directly,
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we consider the associated twistor space and translate the problem into a Riemann-

Hilbert problem on the holomorphic Darboux coordinates of holomorphic 2-forms. Then

we follow the GMN integral ansatz to solve the Riemann-Hilbert problem and construct

the modified twistor space. From the twistor space, we achieve the final modified metric.

It turns out to be the generalized Ooguri-Vafa metric with similar extra harmonic term

in the potential function as used in Gross-Wilson’s work on hyperkähler metric[20].

As a detailed review and also further exploration, we study the geometry of the

Ooguri-Vafa metric in the last part. We start with the classical Gibbons-Hawking ansatz,

and analyze the periodic Gibbons-Hawking ansatz, and then the Ooguri-Vafa metric.

Based on this, we make some geometric estimates of the fibration as Gross-Wilson did

in their work.

In the appendix part, we give the Fourier expansion of the Ooguri-Vafa potential

and also the curvature calculation of the Gibbons-Hawking ansatz for further interests.
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Chapter 2

Local Models

In this chapter, we first state the local model of focus-focus fibrations, which will be the

main object for our further study. Then we study the important action-angle coordinates

for the local model. Generally for dynamic systems, it is not easy to get the explicit

expression of the coordinates. Here we will give an explicit expression in the focus-focus

case. As a further example, we will also explore that for Ooguri-Vafa case, and make

some interesting observations.

2.1 Focus-focus fibrations

Definition 2.1 A Lagrangian fibration f : (M,ω) → B ∈ R2 is called a focus-focus

fibration if: (1) each fibre is compact; (2) the central fibre π−1(0) is the unique singular

fibre, which has one A1 singularity, i.e. the central fibre is a pinched torus.

Definition 2.2 Two focus-focus fibrations fi : (Mi, ωi) → Bi with i = 1, 2 are called

equivalent if there exist subsets B̃i ⊂ Bi such that we have the following bundle symplec-

tomorphism:

(M1|B̃1
, ω1)

F //

f1
��

(M2|B̃2
, ω2)

f2
��

B̃1
g // B̃2
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For the further construction, we need a quick review of the local model of focus-focus

fibration, and also the classification result of focus-focus fibration founded by Vũ Ngo.c

[34] here.

Focus-focus Singularity. Take the space W = R2×R2, with the symplectic structure:

ωcan = dx1 ∧ dy1 + dx2 ∧ dy2

We consider the following Lagrangian fibration with isolated singularity, namely the

focus-focus singularity:

πcan : W −→ R2

πcan(x1, y1;x2, y2) =(π1, π2) = (x1y1 + x2y2, x1y2 − x2y1)

If we take an auxiliary complex structure Jau on W with:

z1 = x1 − iy1, z2 = x2 + iy2

Then the symplectic structure becomes: ωcan = Re(dz1 ∧ dz2), and consequently the

fibration simply becomes:

πcan : W −→ C

πcan(z1, z2) = z1z2

with : π1 = Re(z1z2), π2 = Im(z1z2)

As a completely integral system, here {πi} induce independent hamitonian flows on

W . Under the auxiliary complex coordinates, they can be simply written as:

φt1(z1, z2) = (et · z1, e−t · z2)

φt2(z1, z2) = (e−it · z1, eit · z2)
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Gluing Procedure. We denote the space of smooth functions on R2 with vanishing

value at 0 by R[[x, y]]0. It will be our classification space. For any S ∈ R[[x, y]]0, we

denote its partial derivatives by S1 and S2. Then we take two Poincare surfaces in W

as follows:

Π1 = {(c, 1) | |c| < ε}

Π2 = {(eS1(c)−iS2(c), c · e−S1(c)+iS2(c)) | |c| < ε}

Here {Πi} are smooth surfaces constructed in such a way that for any c 6= 0, Π2 is

the image of Π1 by the joint flow of (π1, π2) at the time (S1 − ln |c|, S2 + arg(c)).

Consider the S1-orbit of Πi under the φ2 flow, denoted by φ2(Πi). We use the

symplectomorphism induced by the joint flow to glue collar neighborhoods of φ2(Πi)

inside each torus π−1(c), that is:

ψ : φ2(Π1) −→ φ2(Π2)

ψ(z1, z2) =(eS1(c)−iS2(c) · z−12 , e−S1(c)+iS2(c) · z1z22)

Notice that the gluing is carried out on each Lagrangian fibre. After the gluing

procedure, each regular fibre π−1can(c) with c 6= 0 becomes a compact torus, and the

central fibre π−1can(0) becomes a pinched torus.

Now let us denote the space after the gluing procedure by (W̃ , ωcan, S). Then we are

ready to state the classification result:

Theorem 2.3 ([34]) The equivalent classes of focus-focus fibration are classified by the

local model:

πcan : (W̃ , ωcan, S) −→ B = {c | |c| < ε}

with the classification space {S | S ∈ R[[x, y]]0}.
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Remark. Since the classification space R[[x, y]]0 is path connected, by the standard

Moser’s trick, we will get all the local models with the same base are symplectomorphic

to each other.

Semi-global Invariant. The classification data S above is also called the semi-global

invariant of focus-focus fibration. It has the following geometric interpretation in each

focus-focus fibration.

Given a focus-focus fibration f : (M,ω)→ B ∈ C ∼= R2. Let us take {γe, γm} as the

generators of H1(π
−1(c)). If we consider the action integral (central charge) along the

1-cycle:

zγm(c) =
1

2π

∫
γm

α, zγe(c) =
1

2π

∫
γe

α

where α is any 1-form on some neighbourhood of π−1(c) in W̃ such that dα = ω (which

always exists since π−1(c) is Lagrangian). Then the semi-global invariant S can be

interpreted as a regularised action integral:

S(c) = 2π · [zγm(c)− zγm(0)] +Re(c ln c− c). (∗)

Notice that the classification is purely about the Lagrangian fibration structure. The

auxiliary complex structure Jaux used above is not necessary compatible with the gluing.

In fact, we have the following result:

Lemma 2.4 The auxiliary complex structure Jau is compatible with the gluing if and

only if the semi-global invariant S is harmonic.

Proof 2.5 Recall that by definition, we have Si(c) = Si(
z1z2+z1z2

2
, z1z2−z1z2

2i
). We consider
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the Cauchy-Riemann equation for the gluing maps, that is:

∂

∂z1
(eS1−iS2) = 0,

∂

∂z2
(eS1−iS2) = 0

Such equations can be simplified to: S11 + S22 = 0. Thus we get the proof.

2.2 Action-Angle coordinates

Now we study the action-angle coordinates of the focus-focus fibration. Let us take a

local model (W̃ , ωcan, S), then denote the punctured disc by B0, and restricted fibration

over punctured disc B0 by W̃0. We will call W̃0 the regular part of the fibration in the

later discussion.

Following the general strategy, we pick a Lagrangian section of the fibration and then

use Hamiltonian flows to construct the coordinates.

Recall that from the gluing construction we have the local model given as:

W̃ = W/(Π1 ∼ Π2)

Here the two Poincare surfaces are chosen as:

Π1 = {(c, 1) | |c| < ε < 1}

Π2 = {(eS1(c)−iS2(c), c · e−S1(c)+iS2(c)) | |c| < ε < 1}

We take a simple Lagrangian section as another initial data:

Γ(c) = (c, 1)

Then we follow the standard procedure in [9] to construct the action-angel coordi-

nates. Using the Hamiltonian flows {φti} with Γ(c) as the initial level set, we get a
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parametrization of W̃0 as follows:

B0 × R/L T //

π

��

(W̃0, ωcan, S)

πcan

��
B0

id // B0

T (c; t1, t2) = φ−t11 ◦ φ−t22 (c, 1) = (c · e−t1+i·t2 , et1−i·t2)

Here the period lattice is L =< (S1 − ln |c|, S2 + arg c), (0, 2π) > from the above gluing

construction, which should be normalized to achieve the angle coordinates.

Remark. Notice here arg c or ln c is not globally defined function on B0. To clarify the

affine coordinates on the base, we need at least two affine charts, with different choice

of branches of the arg c or ln c function. In our calculation, we will skip this part, and

formally use arg c or ln c directly if no confusion happens.

From the relation between the action integral and the semi-global invariant above,

we have the following identity:

Theorem 2.6 Given the Lagrangian section Γ(c) as the initial level set, we have the

action-angle coordinates on W̃0 as follows:

zγm =
1

2π
[− ln |c| · c1 + arg c · c2 + c1 + S], zγe = c2

θγe =
2π · t1

S1 − ln |c|
, θγm = t2 −

S2 + arg c

S1 − ln |c|
· t1

i.e. T ∗(ωcan) = dzγm ∧ dθγe + dzγe ∧ dθγm

Proof 2.7 It is a direct calculation to get the identity:

T ∗(ωcan) = dc1 ∧ dt1 + dc2 ∧ dt2
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Moreover, from the gluing procedure in the local model, we can write down the action

integrals directly:

zγm =
1

2π
(− ln |c| · c1 + arg c · c2 + c1 + S) , zγe = c2

Consequently, we are able to figure out the frequency data. Recall we have the implicit

relations:

c1 = c1(zγm , zγe), c2 = c2(zγm , zγe)

Compute the implicit derivatives, then we will get the frequency data:

ω1,1 =
∂c1
∂zγm

=
2π

S1 − ln |c|
, ω1,2 =

∂c1
∂zγe

= −S2 + arg c

S1 − ln |c|

Similarly,

ω2,1 =
∂c2
∂zγm

= 0, ω2,2 =
∂c2
∂zγe

= 1

Thus we get the angle coordinates:

θγe = ω1,1 · t1 + ω2,1 · t2 =
2π · t1

S1 − ln |c|

θγm = ω1,2 · t1 + ω2,2 · t2 = t2 −
S2 + arg c

S1 − ln |c|
· t1

Finally follow the dynamic identity of the integrable system, we arrive at:

dc1 ∧ dt1 + dc2 ∧ dt2 = dzγm ∧ dθγe + dzγe ∧ dθγm

That finishes the proof of identities in the lemma.

Notice that(dzγm ∧ dθγe + dzγe ∧ dθγm) is invariant under the gluing determined by

the period lattice L, and also the monodromy transformation of zγm and θγe . Thus the

action-angle coordinates above is well defined. Moreover, under the angle coordinates
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{θγm , θγe}, the period lattice becomes the standard one: < (2π, 0), (0, 2π) >.

Remark. Notice that generally the action-angle coordinates is not unique, different

choice of Lagrangian section as the zero level set of the Hamiltonian flow may give us

different angle coordinates.

2.3 Examples

There are lots of interesting examples of focus-focus fibration studied in different fields.

However due to the complexity of elliptic integral generally the action-angle coordinates

and thus the semi-global invariant is not easy to calculate. We discuss several cases here.

Example.1. Spherical pendulum is a famous example equipped with the focus-focus

fibration structure. The action integrals and also the semi-global invariant is recently

calculated by Dullin in [10].

Example.2. The Ooguri-Vafa space MO.V. is also an important case of focus-focus

fibration. Geometrically it is a S1 bundle over R2 × S1 with first chern class ±1 as

constructed in [35]. Follow the Gibbons-Hawking ansatz [16], we choose the following

sympletic form on MO.V. (which is a rescaling by −2π of the standard one):

ω0 = −2π · [dc2 ∧ (
dθm
2π

+ A0) + V0d(
θe

2πR
) ∧ dc1]
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Here the Lagrangian fibration is given by:

f :MO.V. −→ R2

f(c1, c2; θe, θm) = (c1, c2)

Recall that the standard Ooguri-Vafa potential [35] is given as:

VO.V. =
R

4π
·
∑
n∈Z

[
1√

R2|c|2 + ( θe
2π

+ n)2
− κ(n)]

with the regularization terms: κ(0) = 0, and κ(n) = 1
|n| if n 6= 0 for the convergence

consideration.

Here we make some generalization and choose the following potential functions for

the symplectic structure ω0:

V0 =
R

4π
·

∑
n∈Z

[
1√

R2|c|2 + ( θe
2π

+ n)2
− κ(n)] + 2S1(c1, c2)


As above, here S is any smooth harmonic function with S(0) = 0, and Si = ∂

∂ci
S. It

satisfies the following positivity condition along the θe-axis:

S1(0) > − min
θe∈[0,2π]

1

2

∑
n∈Z

[
1

| θe
2π

+ n|
− κ(n)] (∗∗)

Then V is still a local positive harmonic function with one singularity at origin. The

connection 1-form is given from the standard relation: dA0 = ∗dV0.

Property 2.8 The action-angle coordinates on (MO.V., ω0) with respect to the above

Lagrangian fibration can be given by:

ω0 = dzm ∧ dθ̃e + dze ∧ dθ̃m
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with:

zm =
1

2π
· [Re(c− c ln c) + S] , ze = c2

θ̃e = θe +
2π ·Rσ
S1 − ln |c|

, θ̃m = −θm −
S2 + arg c

S1 − ln |c|
·Rσ

here when c 6= 0, the angle correction term is given by:

σ =

∫
V inst
0 dθe =

1

2π

∑
n6=0

1

i · n
ei·nθeK0(2π|nc|) + C

Proof 2.9 It mainly comes from the calculation of the action integrals. Notice that ωsf

and ω share the same action integrals [5] [14]. It is a special property comes from the

Gibbons-Hawking ansatz construction.

Recall that from Fourier expansion, the semi-flat or zero mode part of the potential

is simply given as:

V sf
0 = − R

4π
(ln c+ ln c− 2S1)

Consequently, we have the semi-flat or zero mode part of the connection 1-form:

Asf0 =
i

8π2
(ln c− ln c+ 2i · S2)dθe

Then from direct calculation, we have the action-angle coordinates for the semi-flat

part:

ωsf0 = −2π · [dc2 ∧ (
dθm
2π

+ Asf0 ) + V sf
0 d(

θe
2πR

) ∧ dc1]

= d

[
1

2π
·Re(c− c ln c) +

1

2π
· S
]
∧ dθe + dc2 ∧ d(−θm)

Now let us take the instanton part into account. Recall that the instanton part ωinst0 =

ω0 − ωsf0 is similarly determined by the instanton part of the potential and connection
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1-form:

V inst
0 =

R

2π

∑
n6=0

ei·nθeK0(2π|nc|)

Ainst0 = − R
4π

(
dc

c
− dc

c

)∑
n6=0

sign(n) · ei·nθe|c|K1(2π|nc|)

ωinst0 = −2π · [dc2 ∧ Ainst0 + V inst
0 d(

θe
2πR

) ∧ dc1]

From property of the Bessel function, we get the following action-angle coordinates

for the instanton part:

ωinst0 = d

[
1

2π
·Re(c− c ln c) +

1

2π
· S
]
∧ d
(

2π ·Rσ
S1 − ln |c|

)
+ dc2 ∧ d

(
−S2 + arg c

S1 − ln |c|
·Rσ

)
Add ωsf0 and ωinst0 together, we finish the proof of the lemma.

Notice that ωsf0 and ω0 share the same action coordinates but different angle coordi-

nates. In the Ooguri-Vafa space, θe and θm are global coordinates away from the singular

point, while the angle coordinates θ̃e and θ̃m generally are only defined on the regular

part of the fibration or away from the singular fibre. The above formula in the Ooguri-

Vafa case indicates a way to deform the angle coordinates to make them extendable over

the singular fibre, which might be helpful in other geometry cases.

In addition, the formula also shows that in the Ooguri-Vafa case, the instanton cor-

rection only contributes to the deformation of the angle coordinates, which comes in the

form of an infinite series labeled by wrapping number n as explained in [35].

Example.3. Another example of focus-focus fibration comes from the famous special

Lagrangian fibration model [19] used in the study of mirror symmetry and wall crossing

phenomena:

π : C2 − {z1z2 + 1 = 0} −→ R2
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π(z1, z2) = (ln |1 + z1z2|,
|z1|2 − |z2|2

2
)

Here the symplectic structure on C2 − {z1z2 + 1 = 0} is not the normal one, which is

given as:

ω =
i

2

1

|1 + z1z2|

2∑
j=1

dzj ∧ dz̄j

It will be quite interesting to study the dynamic system for this fibration, and find

its action integral and moreover the semi-global invariant.
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Chapter 3

Construction of Metrics

In this chapter, we construct hyperkähler metrics on focus-focus fibrations. Motivated

by the equivalent relation between hyperkähler manifold and its twistor space, we focus

on the construction of twistor space. We start with the study of holomorphic 2-form,

and then adapt the semi-flat metric inspired by physics, finally use the GMN ansatz to

derive the metric which could smoothly extend to the whole fibration. After that, we

provide some interesting discussion about the metric and also the whole construction.

3.1 Hyperkähler metric and twistor space

Definition 3.1 A hyperkähler manifold is a closed smooth Riemannian manifold M, g

with a triple of compatible complex structure I, J and K which satisfy the quaternionic

relations: I2 = J2 = K2 = IJK = −Id.

Notice that I, J and K give each tangent space the structure of a quaternionic vector

space, so the real dimension of a hyperkähler manifold must be divisible by 4. Since I, J

and K are covariantly constant, a parallel transport commutes with the quaternionic

multiplication and thus the holonomy group is contained in O(4n) ∩GLn(H) ∼= Sp(n).
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In particular, since Sp(n) ⊆ SU(2n) every hyperkähler manifold is Calabi-Yau. In

addition, when n = 1, we have Sp(1) ∼= SU(2), so every Calabi-Yau surface is hy-

perkähler. The only compact examples are T 4 and K3 surfaces.

From another point of view, if we consider the triple kähler structures induced by

I, J and K: ωI , ωJ , ωK , and their complex linear combination, then we will get into more

interesting geometry structures. For example, it is easy to check ΩI = (ωJ + i · ωK) will

become a holormorphic 2-form with respect to complex structure I. In fact, we have a

S2-family of such structures. From later discussion we will see, they would be essential

important data to a hyperkähler manifold.

Notice that for any u = (u1, u2, u3) ∈ R3, if we consider Iu = u1I + u2J + u3K, then

we have:

I2u = −(u21 + u22 + u23) · Id.

So as long as u ∈ S2, Iu will become a complex structure on M , which will also

induce some complex structure on M × S2.

Definition 3.2 The manifold Z = M × S2 with the complex structure given as:

Ip,u(v, w) = (Iuv, I0w),

where (p, u) ∈ Z, v ∈ TpM , w ∈ TuS
2, and I0 is the natural complex structure on

S2 ∼= CP 1, is called the twistor space of the hyperkähler manifold M.

From the above construction, we will get the following structures on the twistor space

of a hyperkähler manifold.

Theorem 3.3 The twistor space Z of a hyperkähler manifold M2n is a complex manifold

with the following structures:
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(1) a holomorphic fibration p : Z → CP 1,

(2) a real structure σ : Z → Z covering the antipodal map of CP 1,

(3) a section $ of
∧2 T ∗Z/CP 1 ⊗ p∗O(2) which is real with respect to σ, and defines a

non-degenerate holomorphic 2-form on each fiber,

(4) a family of holomorphic sections on p : Z → CP 1, which are real with respect to

σ, and whose normal bundles are all isomorphic to C2n ⊗C p
∗O(1).

Moreover, from the twistor space we are able to recover the original hyperkähler

manifold in the following sense.

Theorem 3.4 ([22]) Suppose a complex manifold Z of dimension 2n+1 has the struc-

tures (1)-(4) given by the previous theorem. Then the parameter space of real sections

(4) is a hyperkähler manifold whose twistor space is Z. It’s hyperkähler metric can be

derived from the section of (3).

In practice, such theorems provide us with another approach to construct examples

of hyperkähler metrics. Instead of the explicit metric, first we construct a twistor space

of the underlying manifold, and then use Hithcin’s machine to recover its corresponding

hyperkähler metric. That is the key idea of GMN ansatz, and of our work here.

3.2 Holomorphic 2-form

Motivated by study of the hyperkähler metric on (local) elliptic K3, here we study

holomorphic 2-form or holomorphic symplectic structure on the local model of focus-

focus fibration.
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Recall that on elliptic K3 surface X with the hyperkähler data (ω, J,Ω), following the

standard hyperkähler rotation, we can always transfer the elliptic fibration structure into

a Lagrangian fibration structure with respect to the symplectic form Re(Ω) or Im(Ω).

Generally we will take local elliptic K3, denoted by M , as a total neighborhood of an

A1 singular fibre in such fibration. Then equipped with the restricted geometry data,

M acquires a focus-focus fibration structure with respect to the symplectic structure

Re(Ω|M) or Im(Ω|M).

From classification result [34], we know such Lagrangian fibration is also equivalent

to certain local model of focus-focus fibration. Therefore we would like to study similar

geometric structure directly on the local model of focus-focus fibration, which can be

viewed as the pull back of the geometric structure from local elliptic K3 through the

corresponding bundle symplectomorphism.

Based on Andreotti’s observation [23] about holomorphic 2-form on K3 surface, we

make the following definition on the local model:

Definition 3.5 We call a 2-form Ω on the local model (W̃ , ωcan, S) is a compatible

holomorphic 2-form, if it has the following specialty properties:

1) ωcan = Re(Ω);

2) dΩ = 0, Ω ∧ Ω = 0, Ω ∧ Ω > 0;

3) the fibration πcan : W̃ → B becomes an elliptic fibration with respect to the complex

structure determined by 2).

Notice that from Andreotti’s argument, in fact any 2-form Ω with property 2) will de-

termine a unique complex structure J0 such that Ω becomes a holomorphic 2-form with

respect to J0. Thus no ambiguity would happen in our definition.
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Now let us consider the condition of existence of such 2-form on the local model.

Suppose our local model (W̃ , ωcan, S) admits such a homomorphic 2-form Ω, and the

fibration πcan : (W̃ , J,Ω)→ B becomes an elliptic fibration, then similarly as before, we

have the action integral (central charge) along the 1-cycle:

Zγm(c) =
1

2π

∫
γm

κ, Zγe(c) =
1

2π

∫
γe

κ

where κ is any 1-form on some neighbourhood of π−1(c) in W̃ such that dκ = Ω (which

always exists since π−1(c) is Lagrangian). By construction, we have the simple relation:

Re(Zγe) = zγe , Re(Zγm) = zγm

Observations. The first observation comes from the result of integral over vanishing

cycles in singularity theory [1]. Since the local model now is equipped with the structure

of elliptic fibration with A1 singularity, we have the property:

Lemma 3.6 The action integrals Zγe , Zγm are holomorphic functions on B0. For the

integral over vanishing cycle, we have the local expression:

Zγm = f(c) + g(c) ln(c), ∀c ∈ B0

here f, g are local holomorphic functions defined near c. Consequently, the action inte-

grals zγe and zγm are always harmonic functions on B0.

Secondly, we have the simple but important identity:

c− c · ln c = (− ln |c| · c1 + arg c · c2 + c1) + i · (− ln |c| · c2 − arg c · c1 + c2)

Thus, we arrive at the following statement about the homomorphic 2-form on the

local model:
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Corollary 3.7 If a local model (W̃ , ωcan, S) admits a compatible holomorphic 2-form Ω

as defined above, then:

1) the semi-global invariant S is harmonic,

2) the action integral has the form:

Zγm =
1

2π
· [c− c · ln c+ (S + i · S̃)], Zγe = c2 − i · c1 = −i · c

here S̃ is conjugate harmonic function of S,

3) the holomorphic 2-form Ω is determined as:

Ω = dZγm ∧ dθγe + dZγe ∧ dθγm + i · h(c1, c2)dc1 ∧ dc2

with the positive definite condition: S1 > ln |c|. Here h(c1, c2) is a smooth function.

Proof 3.8 The first two properties directly comes from the observations made above.

We just check the three characteristic properties of two form Ω here.

1) The closeness of Ω is given directly.

2) Notice that we have (S+i · S̃) as a homomorphic function, by its Cauchy-Riemann

equation, we have the identity:

dZγm ∧ dZγe = 0

which implies the second property Ω ∧ Ω = 0 through a short calculation.

3) After arrangement, we get the expression:

Ω ∧ Ω = (dZγe ∧ dZγm + dZγe ∧ dZγm) ∧ dθγe ∧ dθγm

=
2

π
· (S1 − ln |c|)dc1 ∧ dc2 ∧ dθγm ∧ dθγe

therefore we arrive at the positivity condition: S1 > ln |c|. The h term appears here since

θγe , θγm are not necessary angle coordinates for Im(Ω) here.
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Remark. Here the addition term h(c1, c2) appears since we just know the fibration is

Lagrangian with respect to Im(Ω). If we further have the section Γ(c) is also Lagrangian

with respect to Im(Ω), then the h(c1, c2) term will vanish.

Generally it is not easy to write down the explicit expression of the complex structure

J0 determined by Ω. However from the observation in Lemma 2.4, we have the following

result in the special case:

Corollary 3.9 If a local model (W̃ , ωcan, S) admits a compatible holomorphic 2-form

with h = 0, then we have the complex structure J0 and the holomorphic 2-form Ω on W̃

simply given by:

J0 = Jau, Ω = dz1 ∧ dz2 = (dc1 + i · dc2) ∧ (dt1 − i · dt2)

Remark. Notice that in this case, J0 and Ω is well defined on whole W̃ , not just on the

regular part W̃0. Then the total space W̃ can be well described as in [45].

3.3 Semi-flat metric

In this part, we study the canonical semi-flat metric [4] [33] on W̃0 constructed by the

above action-angle coordinates. From now on, we just focus on the simple case with

h = 0. Notice that in such cases the background complex structure is fixed to be

J0 = Jau.

Definition 3.10 Given any R ∈ R+, the canonical semi-flat pseudo-metric on (W̃0, ωcan, S)

is given by:

ωsf = πR ·Re(dZγm ∧ dZγe) +
1

2πR
· dθγm ∧ dθγe
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It is easy to check this canonical form ωsf is compatible with the gluing, and invariant

under the monodromy transformation. Moreover, we have the following properties of

the canonical form:

Lemma 3.11

ωsf ∧ ωsf =
1

2
Ω ∧ Ω, ωsf ∧ Ω = 0, ωsf ∧ Ω = 0

Thus we get ωsf indeed a non-degenerate (1,1)-form with respect to J0 = Jau. As we

know in special geometry, generally ωsf is just a pseudo-metric on W̃0. We still need to

check the positivity condition here. From a direct computation, we have the following:

Proposition 3.12 The canonical form ωsf gives a hyper-kähler metric on (W̃0, J0) if

and only S1 > ln |c|.

Proof 3.13 Notice that we have the complex structure J0 = Jau. Thus the induced

complex structure on cooridnates {c1, c2; t1, t2} is given by:

J(dc1) = dc2, J(dt1) = −dt2

Consider the canonical form under the {c1, c2, t1, t2} coordinates, which is explicitly

given as follows:

ωsf = R(S1 − ln |c|)dc1 ∧ dc2 +
1

2πR
dθγm ∧ dθγe

= R(S1 − ln |c|)dc1 ∧ dc2

− t1
R(S1 − ln |c|)2

[dS2 + d arg(c)] ∧ dt1 +
t1

R(S1 − ln |c|)2
[dS1 − d ln |c|] ∧ dt2

+
t21

R(S1 − ln |c|)3
[dS2 + d arg(c)] ∧ [dS1 − d ln |c|]− 1

R(S1 − ln |c|)
dt1 ∧ dt2
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For abbreviation, we take some notations here:

m = S11 −
c1
|c|2

, n = S12 −
c2
|c|2

Then we continue the calculation and get the simplification:

ωsf =

[
R(S1 − ln |c|) +

t21(m
2 + n2)

R(S1 − ln |c|)3

]
dc1 ∧ dc2

− t1
R(S1 − ln |c|)2

[ndc1 −mdc2] ∧ dt1

+
t1

R(S1 − ln |c|)2
[mdc1 + ndc2] ∧ dt2

− 1

R(S1 − ln |c|)
dt1 ∧ dt2

By Sylvester’s criterion, the positivity condition goes to:

S1 − ln |c| > 0,

[
R(S1 − ln |c|) + t21 ·

m2 + n2

R(S1 − ln |c|)3

]
> 0[

R(S1 − ln |c|) + t21 ·
m2 + n2

R(S1 − ln |c|)3

]
· 1

R(S1 − ln |c|)
> [

t1n

R(S1 − ln |c|)2
]2 + [

t1m

R(S1 − ln |c|)2
]2

Previously we already have the condition for Ω in Corollary 3.7, that is: S1 > ln |c|.

Since R ∈ R+, thus the final condition goes to: S1 > ln |c|.

Therefore, for the semi-flat metric, we still need the same condition: S1 > ln |c| as

for the holomorphic 2-form Ω, which happens to coincide with the positive asymptotic

condition for the Ooguri-Vafa potential at infinity.

Furthermore, if we pick complex coordinates as u1 = c1 + ic2, u2 = t1− it2, then from

the above calculation, we will get a decomposition of the semi-flat metric. In fact, we

have:

πR ·Re(dZγm ∧ dZγe) = R[S1 − ln |c|]dc1 ∧ dc2
1

2πR
· dθγm ∧ dθγe = i∂∂̄

[
t21

R(S1 − ln |c|)

]
= i∂∂̄

[
S1 − ln |c|

4π2R
· θ2γe

]
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Notice that (S1 − ln |c|) is a harmonic function on the base B0, thus the first part

generally is not a Ricci flat metric on the base, unless it is a flat one. The second part

is a pseudo-metric on W̃0 since the metric is positive-semidefinite. This decomposition

also indicates that [ωsf ] 6= 0 in H1,1(W̃0, J0).

Remark. It is easy to see that in fact we can generalize the canonical semi-flat metric

by admitting the parameter R to be a suitable positive functions which is compatible

with the gluing and monodromy condition. Similar results as in Lemma 3.11 is still

valid, however ωsf is not Kähler anymore.

Remark. Notice that if the h term in the holomorphic form Ω is non-vanishing, then

it is easy to check ω ∧ Ω 6= 0, and ω ∧ Ω̄ 6= 0, thus the canonical form ωsf cannot be a

(1,1) form or a Kähler metric. Moreover, in this case, the complex structure determined

by Ω is not Jau anymore. It is not easy to write down the explicit expression of the

complex structure in general case. Therefore, although we start the construction on the

real completely integral system, so far we are just able to carry out further calculation

in the complex integrable system, i.e. h term vanishing case. We’d like to explore the

general case in further studies.

3.4 Instanton correction

Now we consider the instanton correction of the semi-flat metric.

The main strategy here is that we do not make the modification directly on the semi-

flat metric, but instead on its associated twistor space. Then we transfer the correction
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problem into a Riemann-Hilbert problem of solving the monodromy of the associated

holomorphic Darboux coordinates. Finally, we adapt GMN’s integral ansatz and read

out the metric from the twistor space determined by modified holomorphic Darboux

coordinates.

First we consider the twistor space of W̃0. By the previous construction of holomor-

phic 2-form Ω and Kähler form ωsf , we can write the family of holomorphic 2-forms

as:

$sf (ζ) = − 1

2ζ
· Ω + ωsf +

1

2
ζ · Ω, ζ ∈ CP 1

Here we have an important observation by Gaiotto, Moore and Neitzke. In fact, we

can represent the holomorphic 2-forms by holomorphic Darboux coordinates:

Lemma 3.14 ([14]) The CP 1-family of holomorphic 2-form can be rearranged into the

form:

$sf (ζ) =
1

2πR
·
dχsfγm

χsfγm
∧
dχsfγe

χsfγe

here the holomorphic Darboux coordinates are given by:

χsfγm = exp[i · πR
ζ
· Zγm − iθγm − i · πRζ · Zγm ]

χsfγe = exp[i · πR
ζ
· Zγe + iθγe − i · πRζ · Zγe ]

Remark. Recall that we have the action-angle coordinates of Ω given by:

Zγm =
1

2π
· [c− c · ln c+ (S + i · S̃)], Zγe = −i · c

θγe =
2π · t1

S1 − ln |c|
, θγm = t2 −

S2 + arg c

S1 − ln |c|
· t1

According to the monodromy transformation:

Zγm → Zγm + Zγe , θγm → θγm − θγe
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the pairing in the Darboux coordinates is the unique one which induces the complex

structure, although with the global monodromy:

χsfγm → χsfγm · χ
sf
γe

Now comes the main idea of GMN’s construction. We should carry out instanton

correction on the CP 1-family of holomorphic 2-forms by solving the monodromy issue

for the whole family of holomorphic Darboux coordinates simultaneously.

The basic idea to achieve this is to produce the inverse monodromy to cancel the orig-

inal one. The main tool we need is the Cauchy-Plemelj-Sokhotskii formula for Riemann-

Hilbert problem, that is:

Theorem 3.15 Take a smooth simple curve l on C, for every C0,α(l) function ϕ on l,

there exist an unique piecewise holomorphic function on C, which is:

1) continuously extendable from l+ to l+ as well as from l− to l−,

2) it vanishes for large |z|,

3) it has the monodormy: f+ − f− = ϕ on l,

Moreover, such function is given by the Cauchy-Plemelj-Sokhotskii formula:

f(z) =
1

2πi

∫
l

ϕ

t− z
dt

Taking into account of further compatible conditions for the twistor space [33], we

have GMN’s integral ansatz for the holomorphic Darboux coordinates:

Theorem 3.16 ([14]) The instanton corrected holomorphic Darboux coordinates on W̃0



28

can be given by the following integral formulas:

χγe = χsfγe

χγm = χsfγm · exp

[
i

4π

∫
l+

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
ln(1− Xγe(ζ

′))− i

4π

∫
l−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
ln(1− X−1γe (ζ ′))

]
Consequently, the instanton corrected holomorphic 2-forms are given by:

$(ζ) =
1

2πR
· dχγm(ζ)

χγm(ζ)
∧ dχγe(ζ)

χγe(ζ)

Here l± are the rays connecting 0 and∞, which are away from the BPS rays: {ζ | Re c
ζ

=

0} determined by holomorphic discs bounding vanishing cycle, otherwise the above inte-

gral will diverge.

Now we adapt this integral formula and compute the new twistor space after instan-

ton correction on our local model.

Corollary 3.17 After the instanton correction given by GMN ansatz, we get the modi-

fied twistor space given as:

$(ζ) =
1

2πR
· ξm ∧ ξe

where:

ξm = −idθγm + 2πi · A+ πi · V · (1

ζ
dc− ζdc)

ξe = idθγe + πR · (1

ζ
dc+ ζdc)

and the potential function here is given by:

V =
R

4π
·

∑
n∈Z

[
1√

R2|c|2 + ( θγe
2π

+ n)2
− κ(n)] + 2S1
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Proof 3.18 The proof of the identity contains the semi-flat part and the instanton part.

Semi-flat part. For the semi-flat part, we need to check the following identity:

$sf (ζ) =
1

2πR
·
dχsfγm(ζ)

χsfγm(ζ)
∧ dχγe(ζ)

χγe(ζ)

Notice that on the left side, we have:

$sf (ζ) =
1

2πR
· ξsfm ∧ ξe

=
1

2πR

[
−idθγm + 2πi · Asf + πi · V sf · (1

ζ
dc− ζdc)

]
∧ ξe

=
1

2πR

[
−idθγm + 2πi · Asf + πi · V sf · (1

ζ
dc− ζdc)

]
∧ dχγe(ζ)

χγe(ζ)

here

V sf = − R
4π

(ln c+ ln c− 2S1)

Asf =
i

8π2
(ln c− ln c+ 2iS2) dθγe

Moreover, a direct calculation verifies that:

dχsfγm(ζ)

χsfγm(ζ)
=

[
−idθγm + 2πi · Asf + πi · V sf (

1

ζ
dc− ζdc)

]
− i

4π
(ln c− ln c+ 2iS2)

dχγe(ζ)

χγe(ζ)

Thus we get the identity for the semi-flat part.

Instanton part. For the instanton part, we need to check the following identity:

$inst(ζ) =
1

2πR
·
dχinstγm (ζ)

χinstγm (ζ)
∧ dχγe(ζ)

χγe(ζ)

The whole calculation is similar as given in [14]. For completeness, we outline the

main steps here, which will show how the instanton correction will appear from contour

integrals. More details and explanations can be found in [14] and [37].
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Notice that on the left side, we have:

$inst(ζ) =
1

2πR
· ξinstm ∧ ξe

=
1

2πR

[
2πiAinst + πiV inst

(
1

ζ
dc− ζdc

)]
∧ ξe

here

V inst =
R

2π

∑
n6=0

einθγeK0(2πR|nc|)

Ainst = − R
4π

(
dc

c
− dc

c

)∑
n 6=0

sign(n) · einθγe |c|K1(2πR|nc|)

On the right side, first let us take the partial integrals:

I± = − i

4π

∫
l±

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ

[
χγe(ζ

′)±1

1− χγe(ζ ′)±1
dχγe(ζ

′)

χγe(ζ
′)

]
Then the right side of identity goes to:

1

2πR
· (I+ + I−) ∧ dχγe(ζ)

χγe(ζ)

Thus the identity we want to verify can be simplified into:

(I+ + I−) ∧ dχγe(ζ)

χγe(ζ)
=

[
2πiAinst + πiV inst

(
1

ζ
dc− ζdc

)]
∧ ξe

Now let us explicitly compute the left side terms. Notice that:

I± ∧
dχγe(ζ)

χγe(ζ)
=

i

4π

∫
l±

dζ ′

ζ ′

(
ζ ′ + ζ

ζ ′ − ζ
· dχγe(ζ)

χγe(ζ)
∧ dχγe(ζ

′)

χγe(ζ
′)

)[
χγe(ζ

′)±1

1− χγe(ζ ′)±1

]
=

i

4π

∫
l±

dζ ′

ζ ′

(
ζ ′ + ζ

ζ ′ − ζ
· dχγe(ζ)

χγe(ζ)
∧
[
dχγe(ζ

′)

χγe(ζ
′)
− dχγe(ζ)

χγe(ζ)

])[
χγe(ζ

′)±1

1− χγe(ζ ′)±1

]
=

i

4π

∫
l±

dζ ′

ζ ′

(
−πR · dχγe(ζ)

χγe(ζ)
∧
[(

1

ζ ′
+

1

ζ

)
dc− (ζ ′ + ζ) dc

])[
χγe(ζ

′)±1

1− χγe(ζ ′)±1

]
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Take the arrangement:

L+
1 =

∫
l+

dζ ′

ζ ′

(
1

ζ
dc− ζdc

)[
χγe(ζ

′)

1− χγe(ζ ′)

]
L−1 =

∫
l−

dζ ′

ζ ′

(
1

ζ
dc− ζdc

)[
χγe(ζ

′)−1

1− χγe(ζ ′)−1

]
L+
2 =

∫
l+

dζ ′

ζ ′

(
1

ζ ′
dc− ζ ′dc

)[
χγe(ζ

′)

1− χγe(ζ ′)

]
L−2 =

∫
l−

dζ ′

ζ ′

(
1

ζ ′
dc− ζ ′dc

)[
χγe(ζ

′)−1

1− χγe(ζ ′)−1

]
Thus we have the simplification:

(I+ + I−) ∧ dχγe(ζ)

χγe(ζ)
=
iR

4
(L+

1 + L−1 + L+
2 + L−2 ) ∧ dχγe(ζ)

χγe(ζ)

Now we are ready to calculate the contour integrals. During the computation, we need

some identity for Bessel functions. Notice that after expanding the geometric series, we

get the series labeled by n:∫
l+

dζ ′

ζ ′
χγe(ζ

′)

1− χγe(ζ ′)
=
∑
n>0

2einθγeK0(2πR|nc|)∫
l−

dζ ′

ζ ′
χγe(ζ

′)−1

1− χγe(ζ ′)−1
=
∑
n<0

2einθγeK0(2πR|nc|)

Thus, we have the first important identity about the V inst part:

iR

4
(L+

1 + L−1 ) ∧ dχγe(ζ)

χγe(ζ)
=
iR

2

∑
n 6=0

einθeK0(2πR|nc|)
(

1

ζ
dc− ζdc

)
∧ dχγe(ζ)

χγe(ζ)

= πiV inst

(
1

ζ
dc− ζdc

)
∧ dχγe(ζ)

χγe(ζ)

= πiV inst

(
1

ζ
dc− ζdc

)
∧ ξe
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Moreover, we have the identity:∫
l+

dζ ′

ζ ′
ζ ′

χγe(ζ
′)

1− χγe(ζ ′)
= −

∑
n>0

2
|c|
c
einθγeK1(2πR|nc|)∫

l+

dζ ′

ζ ′
1

ζ ′
χγe(ζ

′)

1− χγe(ζ ′)
= −

∑
n>0

2
|c|
c
einθγeK1(2πR|nc|)

Similarly: ∫
l−

dζ ′

ζ ′
ζ ′

χγe(ζ
′)−1

1− χγe(ζ ′)−1
=
∑
n<0

2
|c|
c
einθγeK1(2πR|nc|)∫

l−

dζ ′

ζ ′
1

ζ ′
χγe(ζ

′)−1

1− χγe(ζ ′)−1
=
∑
n<0

2
|c|
c
einθγeK1(2πR|nc|)

Thus L± will contribute to the rest part of the identity. We get the second important

identity about the Ainst part:

iR

4
(L+

2 + L−2 ) ∧ dχγe(ζ)

χγe(ζ)
=

[
−iR

2

(
dc

c
− dc

c

)∑
n6=0

sign(n) · einθγe |c|K1(2πR|nc|)

]
∧ dχγe(ζ)

χγe(ζ)

= 2πiAinst ∧ dχγe(ζ)

χγe(ζ)

= 2πiAinst ∧ ξe

Combining the two important identities about the instanton contribution, finally we

finish the proof of the instanton part through:

(I+ + I−) ∧ dχγe(ζ)

χγe(ζ)
=
iR

4
(L+

1 + L−1 + L+
2 + L−2 ) ∧ dχγe(ζ)

χγe(ζ)

=

[
2πiAinst + πiV inst

(
1

ζ
dc− ζdc

)]
∧ ξe

Then following the standard procedure from twistor space to the metric, we are

able to read out the explicit metric. However, here we adapt an alternative way. In

fact, from direct comparison to the twistor space $o.v.(ζ) of Ooguri-Vafa metric with



33

potential function V , we can figure out the twistor space $(ζ) we constructed above is

just a rescaling by the constant of 2π, that is $(ζ) = 2π$o.v.(ζ).

Notice that because of the orientation issue of the local model, here we need to take

a negative sign for θγm . Up to this orientation adjustment, we end with the following

result:

Theorem 3.19 Given a harmonic semi-global invariant S with S1 > ln |c| and positivity

condition (∗∗), the twistor structure determined by $(ζ) gives a construction of metric

2πg on W̃0, here g is the generalized Ooguri-Vafa metric with potential function V given

as above.

Notice that the metric we directly get from the above construction is just defined on

the regular part W̃0 of the fibration over B0 = {0 < |c| < ε}. One natural question is

how to carry out certain completion of the metric, by adding the central fibre. Here, we

adapt the partial completion through Ooguri-Vafa space as follows.

Partial completion. Since now W̃0 is equipped with the metric 2πg, by the property

of Ooguri-Vafa space, we have a partial metric completion of W̃0 by addition a central

fibre, which comes from the following isometric embedding:

i : (W̃0, 2πg) −→ (MO.V., 2πg)

(zγe , zγm , θγm , θγe) 7−→ (ze, zm,−θm, θe)

Here the space MO.V., and also the coordinates are explicitly given as in the Example 2.

This partial completion is a little tricky here, since it is not directly from W̃0 to W̃ ,

although we know MO.V. is homeomorphism to W̃ as the total space of same topological
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torus fibration. The main reason we choose the above approach through embedding

i is the following: if originally ωcan comes from a hyperkähler metric g0 on the local

model, then from construction we can see g0|W̃0
it is always different from the metric

2πg determined by the twistor space $(ζ).

We make more discussion from the point view of Lagrangian fibration here. Recall

that twistor strucutre of (MO.V., 2πg) is given by 2π$o.g.(ζ). With respect to the sym-

plectic structure: 2πωo.v. = −4πRe$o.g.(0), MO.V. has the Lagrangian fibration structure

given by:

f : MO.V. −→ B

f(c1, c2; θm, θe) = (c1, c2)

As for the local model W̃ , we have the global symplectic structure given by: ωcan =

Re(dz1 ∧ dz2). Its Lagrangian fibration is simply given by:

πcan : W̃ −→ B

πcan(z1, z2) = (c1, c2) = (Re(z1z2), Im(z1z2))

Notice that on the regular part, we have the important relation from the embedding

map:

ωcan|W̃0
= i∗(2πωsfo.v.)

Thus we find i : (W̃0, ωcan) −→ (MO.V., ωo.v.) is not a symplectic embedding (or

equivalently ωcan|W̃0
6= −2Re$(0)), since θγe , θγm are angle coordinates on the left side,

however θe, θm are not angle coordinates on the right side, as showed in Property 2.8.

The difference essentially can be read out from similar identity as in Property 2.8. The

infinite terms of instanton deformation of the angel coordinates here are directly achieved
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through GMN’s integration formula.

After the above partial completion, finally we get a re-construction of the Ooguri-Vafa

metric (up to a rescaling by 2π ) with the generalized potential function on a focus-focus

fibration through GMN’s construction of hyperkähler on completely integrable systems.

The type of metrics we get coincides with the one used in Gross and Wilson’s work on

approximation construction of hyperkähler metric on elliptic K3. Morever, from point

of view of focus-focus fibration, we unfold the geometric meaning of the extra harmonic

term in the potential function V . In fact, it indicates the semi-global invariant of the

integrable system. Such dynamic interpretation also serves as a positive evidence that

GMN’s project might work finally on the global picture [14] [26].
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Chapter 4

Further Discussions

At the end, we make some further discussion about the whole construction. Compared

to the Gibbons-Hawking ansatz on S1 fibration, the GMN ansatz acts as a construc-

tion of hyperkähler metric on torus fibration with singular fibres. They require totally

different ingredients and technics. However, on the local model, they still have certain

relations.

• An singularity case:

In our paper, we just study the one singularity case of the Ooguri-Vafa potential,

which corresponds to the A1 singularity case. Generally, it is similar to construct the

metric on An singularity case. Use the GMN ansatz in the local model, we are also able

to construct such metrics. For example, as constructed in [34], we take n copies of the

local model with the same semi-global invariant {(Wi, ω, S)}, and denote the Poincare

surfaces by Γi,1 ≡ Γ1, and Γi,2 ≡ Γ2. Then we make the following sequence of gluing:

n∐
i=1

(Wi, ω, S)/{Γi,2 ∼ Γi+1,1}

here Γn+1,1 = Γ1,1 and Γn+1,2 = Γ1,2.

Since the compatible property of the final metric 2πg on W̃0, we just need to take the

same metric on each copy and glue them together. After the similar partial completion

procedure, we thus get a smooth hyperkähler metric in the An singularity case.
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• S1-symmetry

As we know, the Ooguri-Vafa metric has the isometric tri-hamiltonian S1 action

which is inherited from the Gibbons-Hawking ansatz [3]. However in the GMN ansatz,

there is no a priori reason such symmetry will appear in the result. Thus it turns out

to be interesting in the local model so far we still cannot get a new metric without such

symmetry. It may require a further bundle symplectic automorphism (but not holomor-

phic automorphism) to break such symmetry.

• Removable singularity of GMN ansatz

In the local model, the extension over singular fibre property of the final metric is

borrowed from the good property of Ooguri-Vafa metric. However, in the general case,

even for two singular fibres case, we have no such auxiliary metric to make the extension

work directly. One possible approach comes from the recent development of geometric

analysis on the removable singularity of Kähler-Einstein metrics [6] [8] [44]. GMN ansatz

on elliptic K3 may need similar results for hyperkähler metric or even twistor space to

justify the extension property of the final metric.
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Chapter 5

Gibbons-Hawking Ansatz

In this chapter, we review the Ooguri-Vafa metric, and also make some further explo-

ration, which is important ingredient of our above results.

Back to the story of explicit hyperkähler metric. By Calabi-Yau Theorem, we know

such metric always exists, however it is not easy to write down an explicit one. Some

newest global approaches are given by gluing of Oaguri-Vafa metric by Gross and Wil-

son in [20], by gluing Yau-Tian ansatz by Hein in [21] and physically by Kontsevich-

Soibelman wall crossing formula by Gaiotto, Moore and Neitzke in [14]. Locally, in a

neighborhood of a singular point (fibre), the most important approach is via Gibbons-

Hawking ansatz. The first explicit expression is known as the Oogui-Vafa metric [35].

To follow the traditional notation for the Ooguri-Vafa metric, our symbols and pa-

rameters adapted here might be different from the ones used above in the main body of

the thesis.

5.1 Classical Gibbons-Hawking ansatz

Gibbons-Hawking ansatz is a systematic way to construct equivariant hyperkähler met-

rics on S1 bundles over open subsets of R3 [9].

Classically, let π : M → U be a principal S1 bundle over some open set U ⊂ R3.
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Let α be a connection 1-form on M . The curvature of the connection is dα = π∗ω for a

2-form ω on U . And then the first Chern class of the bundle is given by iω/2π. Suppose

V is a positive harmonic function on base U satisfying ∗dV = ω/(2πi). Let

ω1 = du1 ∧ α/(2πi) + V du2 ∧ du3

ω2 = du2 ∧ α/(2πi) + V du3 ∧ du1

ω3 = du3 ∧ α/(2πi) + V du1 ∧ du2.

It follows that ω1, ω2, ω3 defines a hyperkähler metric on M . Let α0 = α/(2πi) denote

the real 1-form. Then the metric is explicitly given by:

ds2 = V du · du + V −1α2
0.

We are particularly interested in the case when the open set is R3 with finite discrete

points removed. This leads to the following characterization of the Gibbons-Hawking

ansatz:

Theorem 5.1 ([16], [29], [31]) Let π : M → R3 − {x1, . . . , xk} be an S1 bundle with

first Chern class −ai (ai ∈ N) around each point. Let V be the positive harmonic

function:

V (x) = c+
1

2

k∑
i=1

ai
|x− xi|

, c ∈ R+.

Equip the bundle with the connection 1-form α0 satisfying: dα0 = π∗(∗dV ), which is

unique upto gauge change. Then the metric

g = V dx · dx + V −1α2
0

defines a hyperkähler metric on M, which is referred as Gibbons-Hawking ansatz.

Moreover, we have the following results:
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If ai ≡ 1, then M has a nonsingular completion M = M ∪ {xi}.

In addition, if c = 0, we obtain in this way the multi-Eguchi-Hanson metric; if c > 0,

we get the multi-Taub-NUT metrics. For example:

1) If c = 0, k = 1, then M is just the Euclidean space R4;

2) If c = 1, k = 1, then M is R4 with a non-flat hyperkähler metric, which is classified

by Lebrun.

In contrast, if ai > 1, then M has an orbifold point at xi of the form C2/Zai.

In this construction, the positive harmonic potential function V (x) plays an impor-

tant role. Indeed, positive harmonic function on Rn with isolated singularities can be

completely described thanks to Bôcher’s Theorem:

Proposition 5.2 Let A = {x1, x2, . . .} be a set of discrete points in Rn(n > 2). If V is

a positive harmonic function on Rn − A, then it has the following form:

V (x) = c+
1

2

∞∑
i=1

ai|x− xi|2−n, c ≥ 0

for each point xi, if we take a small sphere with radius ri centered at xi which contains

only xi inside, then:

ai = lim
x→xi

V (x)

fi(x)
, here fi(x) =

1

2
|x− xi|2−n.

Different choices of the coefficients will give us different potential functions of the

Gibbons-Hawking ansatz. In this way, we can construct a large family of hyerkähler

metrics on M .

One interesting problem is that what kind of hyperkähler metric can be reconstructed

by the Gibbons-Hawking ansatz. With the help of the above Proposition, we can get

the following answer:
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Theorem 5.3 ([24]) Let (M, g) be a complete, simply-connected hyperkähler 4-manifold

which admits an isometric, triholomorphic S1-action. Then the metric g is obtained from

the Gibbons-Hawking ansatz.

5.2 Periodic Gibbons-Hawking ansatz

In this section, we shall discuss the periodic Gibbons-Hawking ansatz, which is closely

related to the construction of the Oogui-Vafa metric. In the view of potential function

V (x) in Theorem 5.1, now we require V (x) is periodic in one direction. Therefore such

ansatz induces metrics on S1 bundles over R2 × S1.

Periodic condition is important in the local K3. Since generally a local K3 is an

elliptic fibration with one type I singularity, which can be regarded as an S1 bundle over

R2 × S1. As pointed by Bernard and Matessi [1], topologically the model of local K3 is

the one given by Gross in [9], as follows:

M = C2 − {1 + z1z2 = 0}, ω =
1

|1 + z1z2|
i

2

2∑
j=1

dzj ∧ dzj

f1 : M → R2 given by : f1(z1, z2) = (|z1|2 − |z2|2, ln |1 + z1z2|)

This fibration is a special lagrangian fibration. It induces the S1 fibration we want to

apply the ansatz:

f2 : M − {(0, 0)} → R2 × S1 − {(0, 0, 1)}

f2(z1, z2) = (|z1|2 − |z2|2, ln |1 + z1z2|,
1 + z1z2
|1 + z1z2|

)

The fibre S1 can be observed from the S1 action on the fibration,which is given as:

Tθ(z1, z2) = (eiθz1, e
−iθz2). The singular point of this fibration is the origin O in C2. The

first Chern class of the fibration around the singular point is −1.
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In this case, the base of the fibration is R2×S1−{(0, 0, 1)}. Thus we need to find a

potential V on R3 which is periodic along one direction with period 1. Without loss of

generality, we assume the periodic direction is the last component of R3, so we use the

coordinate (y, z;φ = x mod 1) on the base, then the potential conditions for V can be

stated as follows:

∆V (y, z;φ) = δ(0, 0, 1), V > 0,
1

2πr2

∫
S2

∗dV = −1. (5.1)

Here S2 is a small sphere with radius r < 1 centered at (0, 0, 1).

Nevertheless, we have the striking non-existence result:

Theorem 5.4 There does not exist a harmonic function V on R3 satisfying (5.1), which

is periodic with period 1 in last component.

Proof 5.5 We prove this by contradiction. Suppose there is a periodic function V satis-

fies (5.1). First, since V is a positive harmonic function on space R3−{(0, 0, i)|i ∈ Z},

by Proposition 5.2, we know there are nonnegative constants ai and c such that:

V (y, z, x) = c+
∑
i∈Z

1

2

ai
|(y, z, x)− (0, 0, i)|

.

Second, since V is period in x, we have

∑
i∈Z

ai
|(y, z, x)− (0, 0, i)|

=
∑
i∈Z

ai+1

|(y, z, x)− (0, 0, i+ 1)|

By the Heaviside Trick, we obtain: ai = ai+1. Then series converges if and only if

ai ≡ 0, in another word: u = c, which does not satisfies the integral condition. Thus we

get the contradiction.
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As a result, we get some statement about the hyperhäler metric on local K3:

Corollary 5.6 There is no complete hyperkähler metric on local K3 which can be con-

structed directly from periodic Gibbons-Hawking ansatz.

Remark. A simple observation here is that: the above analysis also works for general

case Rn−1×R (n ≥ 3). From the argument, we can see the existence of potential function

is equivalent to the convergence of the series
∑

(1
i
)
n
2 . Thus in the higher dimensional

case, when n > 2, the potential function always exists, and it will induce function

on Rn−1 × S1 which satisfies the potential conditions, and therefore we can construct

hyperkähler metrics through the periodic ansatz [3].

5.3 Ooguri-Vafa Metric

From last section, we see that a global positive harmonic function V on R3 \ {(0, 0,Z)}

does not exist. If we relax the positive condition, we will show by explicit construction

that such harmonic function exists, and it is positive on a cylinder of the form D ×

R \ {0, 0,Z}, where D is a disk centered at 0 of the y − z plane. Hence it induces

an incomplete hyperkähler metric on M , the S1 bundle over D × S1 \ (0, 0, 1). By

inserting the point back, this metric extends to M , which can be regarded as a singular

torus fibration given as π : M → D, with the central fibre π−1(0) degenerates to a

pinched torus. The fist explicit construction is due to Ooguri-Vafa [35], hence referred

as Ooguri-Vafa metric.

Now we explain in full detail the explicit construction of the Ooguri-Vafa metric. It is

a metric constructed through the periodic Gibbons-Hawking ansatz, with the following
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amazing potential function on the base R3 − {(0, 0,Z)}:

Vc(y, z, x) = c+
1

2

∑
n∈Z

[
1

|(y, z, x)− (0, 0, n)|
− νn]. (5.2)

Here the correction term is given as:

ν0 = 0 , νn =
1

|n|
(n 6= 0).

If we take cylindrical coordinate (r, θ) on R2, then we get another expression:

Vc(r, θ, x) = c+
1

2

1√
r2 + x2

+
1

2

∑
n∈Z−{0}

[
1√

r2 + (x− n)2
− 1

|n|
]. (5.3)

We state some elementary properties of the potential function by looking at the

expression (5.3).

First notice that, for fixed (r, x), we have: | 1√
r2+(x−n)2

− νn| has the order of n−2

as n → +∞, thus the series on the right hand side of (5.3) converges absolutely. As a

result, the potential function enjoys some good properties:

(1) Periodic in x: Vc(r, x) = Vc(r, x+ 1);

(2) Even in x: Vc(r, x) = Vc(r,−x);

(3) Vc(r, ·) is a strict decreasing function with respect to r;

(4) The series in (5.3) converges uniformly on any compact subsetK ⊂ R3\{(0, 0,Z)},

thus Vc is a singular harmonic function;

(5) Vc ∼ − ln r when r → ∞ (this is a physical requirement set on the Ooguri-Vafa

metric).

In order to get a metric by applying the ansatz, we need to figure out the region

where Vc is positive. By the property above, it follows that the region of Vc > 0 is a

cylindrical region around x-axis of the form:

{Vc > 0} = {(r, x) | r ≤ Rc(x)}, (5.4)
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where Rc(x) is the radius of the slice for each x, which is an even function of x and with

period 1. By continuity of Vc, the boundary N(Vc) of {Vc > 0} is where Vc vanishes,

namely, the nodal set of the harmonic function Vc.

In what follows, we estimate the radius Rc(x) of the cylindrical region {Vc > 0}. We

warm up with the c = 0 case, then move to the general case.

Proposition 5.7 Consider the potential function Vc when c = 0, then we have

a) if r ≤ 1/2, then V0(r, x) > 0;

b) if r ≥ 2, then V0(r, x) < 0.

It thus follows: when c = 0, 1
2
< R0(x) < 2.

Proof 5.8 By property (1) and property (2) of V0, we only need to check for x ∈ [1
2
, 1].

Part a). According to the property (3), we just need to show: V0(
1
2
, x) > 0. We

arrange the terms of V0 into the following expression:

2V0(
1

2
, x) = I1 + I2,

where

I1 =
1√

1/4 + x2
+ (

1√
1/4 + (x− 1)2

− 1) + (
1√

1/4 + (x+ 1)2
− 1),

I2 =
∑
n≥2

[
1√

1/4 + (x− n)2
− 1

n
] +
∑
n≥2

[
1√

1/4 + (x+ n)2
− 1

n
].

Notice that since x ∈ [1
2
, 1], when n ≥ 2 we have:

√
1/4 + (n− x)2 < n, thus every

term is the first part of I2 is positive.

Now let us estimate I1 and I2. Notice that:

1√
1/4 + (x− n)2

− 1

n
=

2nx− x2 − 1/4

n
√

1/4 + (x− n)2(n+
√

1/4 + (x− n)2)
,
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1√
1/4 + (x+ n)2

− 1

n
= − 2nx+ x2 + 1/4

n
√

1/4 + (x+ n)2(n+
√

1/4 + (x+ n)2)
.

Thus we get

I2 ≥
∑
n≥2

(2nx− x2 − 1/4)− (2nx+ x2 + 1/4)

n
√

1/4 + (x− n)2(n+
√

1/4 + (x− n)2)

≥
∑
n≥2

−2x2 − 1/2

n
√

1/4 + (x− n)2(n+
√

1/4 + (x− n)2)

≥ −
∑
n≥2

5/2

n
√

1/4 + (n− 1)2(n+
√

1/4 + (n− 1)2)
≥ −3

5
.

As for the term I1, it is easy to get

I1 ≥ min I1 ≥
6

5
.

Therefore, we get 2V0(
1
2
, x) ≥ 6

5
− 3

5
> 0, i.e. V0(

1
2
, x) > 0.

Part b). According to the property (3), we just need to show: V0(2, x) < 0. In this

case, we use the following decomposition

2V0(2, x) = Ĩ1 + Ĩ2,

where

Ĩ1 =
∑
−1≤n≤4

[
1√

4 + (x− n)2
− νn],

and

Ĩ2 =
∑
n≥5

[
1√

4 + (x− n)2
− 1

n
] +
∑
n≥2

[
1√

4 + (x+ n)2
− 1

n
].

We rewrite Ĩ2 as follows:

Ĩ2 =
∑
n≥2

[
1√

4 + (n+ 3− x)2
− 1

n+ 3
] +
∑
n≥2

[
1√

4 + (n+ x)2
− 1

n
]
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Notice that

1√
4 + (n+ 3− x)2

− 1

n+ 3
=

2(n+ 3)x− x2 − 4

(n+ 3)
√

4 + (n+ 3− x)2(n+ 3 +
√

4 + (n+ 3− x)2)
,

and

1√
4 + (x+ n)2

− 1

n
= − 2nx+ x2 + 4

n
√

4 + (n+ x)2(n+
√

4 + (n+ x)2)
.

Thus we get

Ĩ2 ≤
∑
n≥2

(2(n+ 3)x− x2 − 4)− (2nx+ x2 + 4)

n
√

4 + (n+ x)2(n+
√

4 + (n+ x)2)

≤
∑
n≥2

− 2x2 − 6x+

n
√

4 + (n+ x)2(n+
√

4 + (n+ x)2)

≤
∑
n≥2

− 4

n
√

4 + (n+ 1)2(n+
√

4 + (n+ 1)2)
≤ − 1

10
.

As for the term Ĩ1, it is easy to get

Ĩ1 ≤ max I1 ≤
12

5
− 37

12
< 0.

Therefore, we get 2V0(2, x) < 0, i.e. V0(2, x) < 0.

Now let us restrict V0 on x-axis, denoted the corresponding function by ϕov(x), i.e.,

ϕov(x) := V0(0, x) = 0 +
1

2
· 1

|x|
+
∑
n∈N

1

2
· [ 1

n+ x
+

1

n− x
− 2

n
]. (5.5)

It turns out ϕov(x) is closely related to the digamma function ψ(x) in number theory

and the Euler-Mascheroni constant γ. Digamma function ψ(x) has following expression:

ψ(x+ 1) = −γ +
∞∑
k=1

(
1

k
− 1

x+ k
). (5.6)

Hence by (5.5) and (5.6), we have
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ϕov(x) =
1

2
· 1

|x|
−
∑
n∈N

1

2
· ( 1

n
− 1

x+ n
)− 1

2
·
∑
n∈N

(
1

n
− 1

−x+ n
) (5.7)

= −γ +
1

2
· 1

|x|
− 1

2
[ψ(x+ 1) + ψ(−x+ 1)]

= −γ +
1

2|x|
− 1

2
[ψ(x) + ψ(−x)]

From above expression (5.7), we directly get

Lemma 5.9 ϕov(x) ∈ C∞(R− Z), it is a positive and even function with period 1.

By the periodic property, we can just consider the function in one period (0, 1). As

a result of the property of digamma function, we can get

Proposition 5.10 ϕov(x) is strict decreasing on (0, 1
2
), and thus strict increasing on

(1
2
, 1), with:

min
0<x<1

ϕov(x) = ϕov(
1

2
) = ln 4.

For general r > 0 case, we can get similar result by the following symmetry of the

expression of the potential function for x ∈ [0, 1]:

V0(r, x) = lim
k→+∞

1

2

k∑
n=0

{[ 1√
r2 + (n+ x)2

+
1√

r2 + (n+ 1− x)2
]− 2

n
}

Based on the estimate given in Propostion 5.7, similarly we also have

Proposition 5.11 For fixed 1
2
≤ r ≤ 2, we have the extremal value of V0(r, x):

minV0(r, x) = V0(r,
1

2
) =

1

2
· 1√

r2 + 1
4

+
1

2
·
∑

n∈Z−{0}

[
1√

r2 + (1
2
− n)2

− 1

|n|
].
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From Proposition 5.11, we obtain a sharp lower bound for R0(x), which is R0(
1
2
). By

direct calculation of V0(r,
1
2
) > 0, we can get an estimate:

r > 1, thus : R0(
1

2
) > 1.

This leads to following result:

Corollary 5.12 When c = 0, the region {V0 > 0} is cylindrical region around the x-axis

of the form (5.4) with 1 < R0(x) < 2.

For general c ≥ 0, notice that for fixed r and x, the function Vc(r, x) is always

increasing with respect to c, thus we have:

Corollary 5.13 the region {Vc > 0} is cylindrical region around the x-axis of the form

(5.4) with 1 < ε1(c) < Rc(x) < ε2(c). Here ε1 are smooth increasing functions of c

(c ≥ 0), moreover when c→∞, ε2(c) has the order of ec.

Notice that the radius function Rc(x) automatically descends to the base: R2×S1 of

local K3, here we recall φ as the coordinate of S1 component. Now we arrive the locality

propery of the Ooguri-Vafa metric:

Theorem 5.14 The Ooguri-Vafa metric is a hyperkähler metric of the S1 fibration re-

stricted over an open solid torus, with varying radius 1 < Rc(φ) <∞.

Remark. From the construction we can see the potential and thus the metric loose

uniqueness. Since we just consider positive periodic potential on some solid torus D×S1,

we can construct a lot of other potentials in the form:

Ṽ = Vc + h(r, x).
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For example, in [20] Gross and Wilson make a little correction of the potential func-

tion, then consider a new family of potential function:

Ṽ = Ṽc + f(y, z),

where f(y, z) is a harmonic function satisfies some bounded condition.

Apply the Gibbons-Hawking ansatz, then we get a lot of new hyperkähler metrics in

a small neighborhood of the singular fibre.

5.4 Geometry of the Ooguri-Vafa Metric

In this part, we follow the calculation in [7] to estimate the diameter of the fibration

under the Ooguri-Vafa metric. Finally, we will see the Ooguri-Vafa metric is not a

complete metric on the fibration.

We recall the formula of the metric according to the Gibbons-Hawking ansatz,

namely:

gov = Vcdx · dx + V −1c α2
0

Here the potential function Vc is a function on the base: R3 − {(0, 0,Z)}, now we

picked the cylindrical coordinate {r, θ;x} on the base. α0 is the connection 1-form of

the S1 bundle. Since the function is periodic in the x direction, we just need to consider

the function in one period, that is: 0 ≤ x < 1.

Generally if we choose a local trivialization of the S1-firbration so as to have a

coordinate t on the fibre. By solving the equation: dα0 = ∗dVc under the cylindrical

coordinates {r, θ;x}, we can get an explicit formula of the Ooguri-Vafa metric [18]:
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Theorem 5.15 Locally the connection 1-form α is given as:

α0 =
∑
n∈Z

[
x− n

2
√
r2 + (x− n)2

+
sign(n)

2
]dθ +

1

2π
dt

up to gauge equivalence. Here we set sign(0) = 0.

By the Gibbons-Hawking ansatz, we get the local expression of the Ooguri-Vafa met-

ric:

gov = g1 + g2,

with

g1 = Vcdr
2 + Vcr

2dθ2 + Vcdx
2,

g2 =
1

Vc
{
∑
n∈Z

[
x− n

2
√
r2 + (x− n)2

+
sign(n)

2
]dθ +

1

2π
dt}2.

Remark. The term sign(n) here is added for convergence. The metric above is periodic

in the x direction.

Recall that for the potential function, we has the following properties:

1) lim(r,x)→(0,0) Vc(r, x) = +∞;

2) limr→Rc(x) Vc(r, x) = 0;

By direct calculation, we get the first estimate on one side:

Lemma 5.16 For fixed x, when r → 0, we have the estimate for the potential function

Vc(r, x):

1) if x = 0, then Vc(r, 0)→∞ with the order of r−1;

2) if x 6= 0, then Vc(r, x) < C1(x)√
r2+x2

, here C1(x) is a positive constant depends on x

and c.
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On the other side, by direct calculation of the derivative we can get a positive constant

C2(x) such that:

∂rVc(r, x)|r=Rc(x) = −C2(x)

Therefore, we have the second estimate:

Lemma 5.17 For fixed x, when r → Rc(x), we have Vc(r, x) → 0 with the order of:

(Rc(x)− r), and thus V
−1/2
c (r, x)→ +∞ with the order of: (Rc(x)− r)−1/2.

Now let us start the estimate of diameter of the fibration in each direction.

First, we estimate the diameter of the S1 fibre, that is the case when r, θ and x are

fixed:

Proposition 5.18 The diameter of S1 fibre over the base point (r, θ, x), with 0 ≤ r <

Rc(x), is given as:

d1(r, θ, x) =

∫ 2π

0

1

2π
V −1/2c (r, x)dt = V −1/2c (r, x).

When (r, x)→ (0, 0), we get the diameter of the singular fibre: d1(0, 0) = 0;

when r → Rc(x), the diameter d1(r, x)→∞, with the order of: (Rc(x)− r)−1/2.

Next we consider the diameter of the fibration in the horizontal direction.

We start from the x direction. We consider the central axis of the cylinder, which is

the S1 on the base. In this case, we have fixed r = 0. Let us denote the diameter by d2.

Recall that when r = 0, we have the expression of the potential as:

Vc(0, x) = c+ ϕov(x) = c− γ +
1

2x
− 1

2
[ψ(1 + x) + ψ(1− x)].

By the formula about digamma function and usual zeta function, we get:

−[ψ(1 + x) + ψ(1− x)] = 2(1− x2)−1 + 2γ − 2 +
∞∑
n=1

2(ζ(2n+ 1)− 1)x2n.
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Thus we have a simple expression of the potential:

Vc(0, x) = c+
1

2x
+

x2

1− x2
+
∞∑
n=1

(ζ(2n+ 1)− 1)x2n,

which has a radius of convergence at least 2.

Then we get the following estimate:

Proposition 5.19 The diameter d2 of the central S1 in the x direction is given as:

d2 =

∫ 1

0

V 1/2
c (0, x)dx,

which is bounded as:

max{
√

2,
√
c} < d2 <

√
c+ (1 +

√
2) +

∞∑
n=1

(ζ(2n+ 1)− 1)1/2

n+ 1
.

Proof 5.20 The lower bound follows from the property:

Vc(0, x) > c , and Vc(0, x) >
1

2x
,

thus,

V 1/2
c (0, x) >

√
c , and V 1/2

c (0, x) >
1√
2x
.

we get the result after integration.

The upper bound follows from the property:

V 1/2
c (0, x) <

√
c+

√
1

2x
+

√
x2

1− x2
+
∞∑
n=1

(ζ(2n+ 1)− 1)1/2xn,

again, we get the result after integration.

Remark. When the central line moves to the nodal set of the potential, with θ fixed,

then it is easy to check: since V (r, x) decreases to 0, the diameter of the S1 on the base

decreases to 0.
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At last, we consider the diameter in the radial direction. For 0 ≤ x < 1, we consider

a radial curve lx from r = 0 to r = Rc(x) within the slice. There is a horizontal lift l̃x of

lx to the fibration. Let us denote the length of curve l̃x by d3.

Notice that for 0 ≤ x < 1, we always have: Rc(x) > 1. By the property of the

potential function, we get the estimate:

Proposition 5.21 For 0 ≤ x < 1, the length d3(x) of the radial curve is given as:

d3(x) =

∫ Rc(x)

0

V 1/2
c (r, x)dr,

which is bounded as:√
c+

1

10
< d3(x) ≤ C3(x) + 2C

1/2
2 (x) ·R3/2

c (x) < +∞.

Here Ci are all positive constants which only depend on c and x.

Proof 5.22 The lower bound comes from the estimate:

d3(x) >

∫ 1

0

V 1/2
c (r, x)dr >

∫ 1

0

V 1/2
c (1, x)dr >

∫ 1

0

V 1/2
c (1,

1

2
)dr,

and here for V
1/2
c (1, 1

2
), we have:

Vc(1,
1

2
) = c+

1

2
√

1 + (1
2
)2

+
1

2

∑
n∈N

{[ 1√
1 + (n− 1

2
)2

+
1√

1 + (n+ 1
2
)2

]− 2

n
},

Vc(1,
1

2
) ≥ c+

1√
5

+
1

2
(−17

25
) > c+

1

10
.

We get the result after integration.

Then upper bound comes from the estimate:

d3(x) =

∫ 1

0

V 1/2
c (r, x)dr +

∫ Rc(x)

1

V 1/2
c (r, x)dr,

by Lemma 5.16 for the first term and Lemma 5.17 for the second term, we get the

estimate by integration.
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Notice that the Ooguri-Vafa is not defined on the nodal set of the potential function,

thus it is just defined on the fibration over an open solid torus, which is not topological

closed. Therefore the Proposition 5.21 implies that:

Corollary 5.23 The Ooguri-Vafa metric is not a complete metric.

As a result, generally we will get an incomplete hyperkähler metric in a small neigh-

borhood of the singular fibre, but not a complete metric in the entire local K3. It will

be an interesting problem to find a complete hyperhähler metric in local K3.
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Appendix A

Some calculations

A.1 Fourier expansion of the Ooguri-Vafa potential

In this part, we calculate the Fourier expansion of the potential function Vc first and

then discuss its asymptotic expansion when r →∞.

First, recall that the potential function Vc(r, x) is periodic on the x direction, i.e.

Vc(r, x) = Vc(r, x+ 1), thus it has Fourier expansion with respect to x. Now let us figure

out the explicit expansion by the standard calculation.

For the 0-mode term, we apply the trick of [20] and arrange the term in the following

way:

2V0(r, x) = lim
n→∞

n∑
k=−n

[
1√

r2 + (x− k)2
− ν̃k] + lim

n→∞

n∑
k=−n

(ν̃k − νk).

Here the correction term is given as: νk = 1
|k| , ν̃k = ln(|k| + 1)− ln |k| if k 6= 0, and

ν0 = ν̃0 = 0. Now let us calculate the 0-mode of each term.
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For the first part, we have:∫ 1

0

n∑
k=−n

[
1√

r2 + (x− k)2
− ν̃k]dx

=
n∑

k=−n

∫ 1

0

[
1√

r2 + (x− k)2
− ν̃k]dx

=
n∑

k=−n

ν̃k +
n∑

k=−n

∫ k+1

k

1√
r2 + x2

dx

=

∫ n+1

1

−1

x
dx+

∫ 0

−n

1

x− 1
dx+

n∑
k=−n

∫ k+1

k

1√
r2 + x2

dx

=

∫ n+1

1

(
1√

r2 + x2
− 1

x
)dx+

∫ 0

−n
(

1√
r2 + x2

+
1

x− 1
)dx+

∫ 1

0

1√
r2 + x2

dx

= ln(
x+
√
r2 + x2

x
)|n+1
1 + ln[|x− 1| · (x+

√
r2 + x2)]|0−n + ln(x+

√
r2 + x2)|10

= ln[
(n+ 1) +

√
r2 + (n+ 1)2

n+ 1
]− ln[(n+ 1) · (−n+

√
r2 + n2)]

= ln[
(n+ 1) +

√
r2 + (n+ 1)2

n+ 1
]− ln[(n+ 1) · (−n+

√
r2 + n2)]

= ln[
(n+ 1) +

√
r2 + (n+ 1)2

n+ 1
]− ln[

(n+ 1) · r2

n+
√
r2 + n2

].

Let n→∞, we get the 0-mode of the first part is:∫ 1

0

lim
n→∞

n∑
k=−n

[
1√

r2 + (x− k)2
− ν̃k]dx = ln 2− ln

r2

2
= 2 ln 2− 2 ln r.

For the second part, we have:∫ 1

0

n∑
k=−n

(ν̃k − νk)dx

=
n∑

k=−n,k 6=0

[ln(|n|+ 1)− ln |n|]−
n∑

k=−n,k 6=0

1

|n|

= 2 ln(n+ 1)−
n∑
k=1

2

n
.
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Let n→∞, we get the 0-mode of the second part is:∫ 1

0

lim
n→∞

n∑
k=−n

(ν̃k − νk)dx = −2γ.

Here γ is the Euler-Mascheroni constant as given before.

Thus, we get the 0-mode of the potential function as follows:∫ 1

0

Vc(r, x)dx = c+ ln 2− γ − ln r.

It is easy to see here when r ≤ 1, the 0-mode is always positive.

Now let us calculate the other mode term:∫ 1

0

Vc(r, x) · e2πimxdx

=

∫ 1

0

∑
k∈Z

1

2
√
r2 + (x− k)2

· e2πimxdx

=
∑
k∈Z

∫ 1

0

1

2
√
r2 + (x− k)2

· e2πimxdx

=
∑
n∈Z

∫ −n+1

−n

1

2
√
r2 + x2

· e2πimxdx

=

∫ +∞

−∞

1

2
√
r2 + x2

· e2πimxdx

=

∫ +∞

0

cos(2πmx)√
r2 + x2

dx

=

∫ +∞

0

cos(2πm · ru)√
1 + u2

du (here : u =
x

r
)

= K0(2π|mr|).

Here K0(x) is the modified Bessel function of the second kind.

As a result, we get the Fourier expansion of the potential function as follows:

Vc(r, x) = (c+ ln 2− γ) +
1

2
ln(

1

r2
) +

∑
m6=0

e2πimx ·K0(2π|mr|).
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Moreover, when c � r � 0, we can get the asymptotic expansion of potential

function by the property of Bessel function K0(x). Notice that when x � 0, we have

the asymptotic expansion:

K0(x) =

√
π

2x
· e−x ·

∞∑
n=0

(−1)n[(2n− 1)!!]2

n!(8x)n
,

Thus we have the asymptotic expansion of the potential function when c � r � 0

as follows:

Vc(r, x) = (c+ ln 2− γ) +
1

2
ln(

1

r2
) + Vinstanton(r, x),

here the instanton term is given as follows:

Vinstanton(r, x) =
∑
m6=0

{exp[−2π(|mr| − imx)] ·
∞∑
n=0

(−1)n
2
√
π[(2n− 1)!!]2

n!
· ( 1

16π|mr|
)n+

1
2}

=
∑
m6=0

{exp[−2π(|mr| − imx)] ·
∞∑
n=0

√
π · Γ(1

2
+ n)

n! · Γ(1
2
− n)

· ( 1

4π|mr|
)n+

1
2}.

Physically [35] the term 2π|mr| in the exponent gives the the Born-Infeld action for

the m−instanton, and the second term 2πimx describes the coupling of the D2-brane

to the RR field.
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A.2 Curvature form for the Gibbons-Hawking Ansatz

In this part, we make some tensor calculation of the Gibbon-Hawking ansatz, which is

important ingredient for further construction and application.

Since the Gibbons-Hawking ansatz comes in the good form:

g = V ((du1)2 + (du2)2 + (du3)2) + V −1(α0)
2, dα0 = ∗dV,

we take the orthonormal coframe for the metric, which is just:

ω1 = V 1/2du1, ω2 = V 1/2du2, ω3 = V 1/2du3, ω4 = V −1/2α0.

Let us solve the Cartan’s Structural Equations (torsion free):

dωi = ωj ∧ ωij, ωij + ωji = 0, (A.1)

dωij = ωkj ∧ ωik + Ωi
j. (A.2)

We solve the first equation first. A direct computation shows that:

dω1 =
1

2
V −1dV ∧ ω1, dω2 =

1

2
V −1dV ∧ ω2, dω3 =

1

2
V −1dV ∧ ω3,

dω4 = −1

2
V −1dV ∧ ω4 + V −3/2(V1ω

2 ∧ ω3 + V2ω
3 ∧ ω1 + V3ω

1 ∧ ω2).

Thus we can get the expression for {ωij}:

ω1
2 =

1

2
V −3/2(V2ω

1 − V1ω2 − V3ω4), ω1
3 =

1

2
V −3/2(V3ω

1 − V1ω3 + V2ω
4),

ω2
3 =

1

2
V −3/2(V3ω

2 − V2ω3 − V1ω4), ω1
4 = −1

2
V −3/2(V3ω

2 − V2ω3 − V1ω4),

ω2
4 = −1

2
V −3/2(V1ω

3 − V3ω1 − V2ω4), ω3
4 = −1

2
V −3/2(V2ω

1 − V1ω2 − V3ω4).
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Then we solve the second equation and get the curvature form {Ωi
j}. Set the following

anti-self dual basis:

ω−a =
1

2
(ω1 ∧ ω2 − ω3 ∧ ω4), ω−b =

1

2
(ω1 ∧ ω3 − ω4 ∧ ω2), ω−c =

1

2
(ω1 ∧ ω4 − ω2 ∧ ω3),

For i < j ≤ 3 cases, we have:

Ω1
2 = ω−a · {−V −3(−V 2

1 − V 2
2 + 2V 2

3 ) + V −2V33}+ ω−b · {3V
−3V2V3 − V −2V23}

+ ω−c · {3V −3V1V3 − V −2V13}

Ω1
3 = ω−b · {−V

−3(−V 2
1 − V 2

3 + 2V 2
2 ) + V −2V22}+ ω−a · {3V −3V2V3 − V −2V23}

+ ω−c · {−3V −3V1V2 + V −2V12}

Ω2
3 = ω−c · {−V −3(V 2

2 + V 2
3 − 2V 2

1 )− V −2V11}+ ω−a · {−3V −3V1V3 + V −2V13}

+ ω−b · {3V
−3V1V2 − V −2V12}.

For j = 4 cases, we have:

Ω1
4 = ω−c · {−V −3(−V 2

2 − V 2
3 + 2V 2

1 ) + V −2V11}+ ω−a · {3V −3V1V3 − V −2V13}

+ ω−b · {−3V −3V1V2 + V −2V12}

Ω2
4 = ω−b · {−V

−3(−V 2
1 − V 2

3 + 2V 2
2 ) + V −2V22}+ ω−a · {3V −3V2V3 − V −2V23}

+ ω−c · {−3V −3V1V2 + V −2V12}

Ω3
4 = ω−a · {−V −3(V 2

1 + V 2
2 − 2V 2

3 )− V −2V33}+ ω−b · {−3V −3V2V3 + V −2V23}

+ ω−c · {−3V −3V1V3 + V −2V13}.

Meanwhile, we could observe the curvature forms also have the symmetry relations:

Ω1
2 = −Ω3

4, Ω1
3 = Ω2

4, Ω2
3 = −Ω1

4.
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It is ready to check the Ricci Curvature is 0 here with the above expression.

At last, we consider the point-wise norm square of the curvature form. Notice that

the norm square equals to: Ω∧∗Ω = −Ω∧Ω, since the curvature form is anti self dual. It

also equals to the square sum of all the coefficients of Ωi
j under the basis: {ω

−
a√
2
,
ω−
b√
2
, ω

−
c√
2
},

thus we have:

1

2
‖Rm‖2 =

3∑
i=1

{−V −3|∇V |2 + (3V −3V 2
i − V −2Vii)}2 +

3∑
i 6=j

(3V −3ViVj − V −2Vij)2

= 3V −6|∇V |4 − 2
3∑
i=1

V −3|∇V |2(3V −3V 2
i − V −2Vii) +

3∑
i,j

(3V −3ViVj − V −2Vij)2

= 3V −6|∇V |4 − 6V −6|∇V |4 + 2V −5∆V + 9V −6|∇V |4 − 6V −5
∑
i,j

ViVijVj + V −4
∑
i,j

V 2
ij

= 6V −6|∇V |4 − 6V −5
∑
i,j

ViVijVj + V −4
∑
i,j

V 2
ij

= 6V −6|∇V |4 − 3V −5∇V∇|∇V |2 + V −4|HessV |2

= 6V −6|∇V |4 − 3V −5∇V∇|∇V |2 +
1

2
V −4∆|∇V |2 −∇V∇∆V

=
1

4
V −1∆∆V −1.

Therefore norm square of the curvature tensor is given by: 1
2
V −1∆∆V −1.

Remark. From the above formula we can get the decomposition of the curvature

operator on the basis of self-dual 2 forms and anti self-dual 2 forms. It is easy to see

that the Gibbons-Hawking ansatz only has the anti self-dual part of the Weyl curvature.

Moreover, we can find that the curvature tensor (Wij) in this orthonormal basis is

the trace-free part of the matrix

(
Vij
V 2 − 3

ViVj
V 3

)
, which can also be written as 2V times

the trace-free part of the Hessian of the function V −2, see Donaldson’s work for reference.
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Remark. During the computation, we always use the fact that V is a harmonic function.

In the absence of this condition, the curvature form will have different expression, for

instance:

Ω1
2 = ω−b {−3V −3V2V3 + V −2V23}+ ω−c {−3V −3V1V3 + V −2V13}

+
ω1 ∧ ω2

2
{V −3(−V 2

1 − V 2
2 + 2V 2

3 ) + V −2(V11 + V22)}

− ω3 ∧ ω4

2
{V −3(−V 2

1 − V 2
2 + 2V 2

3 )− V −2V33}.

Then the norm of the curvature tensor goes to:

‖Rm‖2 = 12V −6|∇V |4 +V −4∆|∇V |2−6∇V∇|∇V |2 +4V −5|∇V |2∆V −2V −4(∆V )2.

which will be simplified to 1/2V −1∆∆V −1 in the presence of harmonicity of V .
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