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Abstract 

 Crucial biological processes in mammalian organisms, ranging from 

morphogenesis and motility to dysregulated phenomena such as cancer metastasis, 

demand highly specified cellular morphologies for a wide variety of different functions. 

Yet, few studies have provided a framework for systematically quantifying the dynamics 

of cellular morphology, oftentimes resorting to qualitative statements that do not enable 

easy comparisons between different experimental conditions. My PhD research has 

yielded such a method for quantitatively assessing morphological dynamics of 

mammalian cells, as well as insights on how substrate spatial complexity and size can 

guide characteristic cell shape formation. 

 Spatial patterns of adhesive substrates can dictate cell motility trajectories. 

Mammalian cells demonstrate idiosyncratic trajectories when subjected to barbell-shaped 

micropatterns with thin constrictions. However, the morphologies of these cells over time 

remained uncharacterized. We subjected 3T3 mouse fibroblast cells to an array of 

micropatterns, an assay refined in Appendix A, and compared their shape dynamics to 

a panel of triple-negative breast cancer cells in Chapter 2. When exposed to a gradient 

of size, we found that the morphological dynamics of 3T3 cells display trends analogous 

to the potential energy curve of a molecule, where energy is high at small micropattern 

sizes, drops off at a minimum point, and rises again at large micropattern sizes. We also 

found the breast cancer cell panel exhibited a gradient of morphological activity and could 

be classified using principal component analysis. This fundamental work provides a 

quantitative framework for comparing dynamics shapes of cells over time and crucial 

insights on mammalian cell processing of substrate spatial patterns.  Chapter 3 is an 
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extension of the micropatterning technique in a different application, regarding how the 

shape of the cell can influence spatiotemporal patterns of the bacterial MinDE system in 

mammalian cells. Finally, Chapter 4 summarizes the findings and implications of the work 

herein and guides the reader towards future directions.
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Chapter 1: Introduction 

 

Mammalian cells process complex information from extracellular 

environments 

 Synthetic biologists often draw comparisons between biological cells and 

processing units, noting similarities in how they process various inputs to result in 

directed outputs. To serve a wide diversity of biological functions, the cell must process 

chemical gradients, biological signals, physical space, light, heat, and countless other 

sensory inputs. Through complicated decision-making genetic and regulatory networks, 

these arrays of inputs result in changes in cell life cycle, shape, motility, metabolism, 

and more. 

 The extracellular environment surrounding the cell contains a diverse range of 

molecules. As a form of intercellular communication, cells release signaling molecules 

that can take the forms of glycoproteins, peptides, growth factors, hormones, and 

glycans (Hynes & Naba, 2012). Chemical signaling provides several advantages for 

controlling the strength of signal, including diffusivity of the molecules for specified 

ranges of distance as well as concentration gradients for cells to respond to according 

to stratified thresholds (Muller & Schier, 2011),(Nair et al., 2019),(Lakhani & Elston, 

2017). Another advantage to signaling molecules is the degree of specificity conferred 

by a pathway relying on complementary pairing between receptors and their 

corresponding ligands. Signaling receptors activate specified biological pathways upon 

binding to their partner ligands, such as growth factors like vascular endothelial growth 

factor that will result in angiogenesis, the formation of blood vessels (Freed et al., 
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2017),(Domanskyi et al., 2022). Pairing provides another degree of control to ensure 

regulated execution of specific pathways depending on the biological timing and 

context. In addition to membrane-bound receptors designed for specific ligands, many 

membrane-bound protein channels enable the entry of other molecules or ions. For 

example, GABA, a major neurotransmitter receptor, is responsible for conducting 

chloride ions to polarize the cell membrane and inhibit the depolarization of neurons (S. 

Li et al., 2014). Potassium channels are another example, located in cell membranes 

and acting as gatekeepers for the efflux and influx of K+ ions from and into cells, which 

is crucial for regulating electrical voltage across the membrane for processes as varied 

as proliferation, regulating osmotic flow, hormone secretion, and more (Miller, 2000).  

Although signaling molecules and ions make up a substantial portion of the 

sensory input for cell decision making processes, many other sensory inputs play vital 

roles. Temperature sensors such as the temperature-activated TRP channels directly 

convert temperature shifts into gate channel conformation changes (Sánchez-Moreno et 

al., 2018). Channelrhoopsin-2, isolated from green algae Chlamydomonas reinhardtii, 

was demonstrated to modulate polarization of cells in response to light (Hoffmann et al., 

2018). Mechanical forces such as shear stress can act as stimuli for cells such as 

endothelial cells, affecting functions such as migration, apoptosis, permeability, and 

proliferation (Y. S. J. Li et al., 2005). While a vast body of research has explored 

chemical signaling, more recent efforts have been taken to understand how mammalian 

cells process their physical environment.
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Cell morphology is influenced by cues from their physical environment  

 One of the cell’s many potential outputs is its shape, a vast parameter space of 

physical contortions frequently sampled to serve specified biological functions such as 

morphogenesis, directed motility, and, with dysregulation of homeostatic processes, 

even metastasis (Vardhan et al., 2013). A complex coordination between substrate, cell-

matrix contacts, and the cytoskeleton is required in order for the cell to determine its 

overall orientation, polarity, and potential direction of movement.  

 Cell adhesion to the extracellular matrix (ECM), comprised of networks of sugars 

and proteins, is mediated through focal adhesions (FAs), the outer cell membrane 

protein complexes connecting the extracellular matrix to the cytoskeleton(Legerstee & 

Houtsmuller, 2021). The cytoskeleton, a network of protein fibers, provides physical 

structure and organization to the cell, as well as scaffolding for intracellular transport. 

FAs are macromolecular multiprotein assemblies comprised of roughly 150 different 

proteins located at the distal ends of actin fiber bundles facilitating dynamic interactions 

between the actin cytoskeleton and the ECM (Zaidel-bar et al., 2007),(Burridge et al., 

2016). 

Oftentimes, FAs act in concert with structured protrusions from the cell, including 

lamellipodia and filopodia, extending micron-scale distances from the cell out into the 

surrounding environment to survey environmental cues or participate in cell migration. 

Lamellipodia, veil-shaped cell protrusions driven by Arp2/3 complex nucleation of highly 

branched actin filament networks, form along wide swaths of the leading edge of 

migrating cells, usually extending 1-5um out into the ECM(Innocenti, 2018). Through 

integrin receptors in nascent FAs, they engage with the underlying matrix, as well as 
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providing information about the substrate, such as ECM composition or substrate 

stiffness (Innocenti, 2018). The maturation of these nascent FAs into mature FAs results 

in the creation of molecular clutches that couple force generated from actin filament 

rearward movement with the cell membrane to push forward the leading edge of the cell 

(Vallotton et al., 2005). Filopodia are another commonly observed structure that 

provides for protruded contacts in areas surrounding the main bulk of the cell. In 

contrast to lamellipodia, filopodia are thin, finger-like protrusions with a range of 60-

200nm in diameter filled with tight parallel bundles of filamentous actin and an extension 

range spanning from a few microns long to even hundreds (Gallop, 2020). Some cell 

types, such as neuronal growth cones or dendritic cells, express filopodia almost 

exclusively due to their ability to rapidly promote neuronal arborization and the 

connection between synapses (Gallop, 2020; Mejillano et al., 2004). 

These protrusions and their associated FAs possess the ability to sense crucial 

information in the surrounding environment. For example, macrophages deploy multiple 

filopodia at a time to sample nearby spaces, and upon making physical contact with 

antigens present on foreign pathogens, the filopodia bind to the prey and retract it 

towards the cell body for phagocytosis (Niedergang & Chavrier, 2004). Filopodia in 

neuronal cells have been observed to detect chemical gradients and subsequently 

orient the neurite towards the chemoattractants for eventual synapse connections (Gallo 

& Letourneau, 2004). Lamellipodia are largely responsible for mechanosensation, the 

detection of substrate stiffness, with implications for spreading, differentiation, migration, 

proliferation. Computational modeling suggests the bonds between integrin, an integral 

component of FAs, and fibronectin, a common component of ECM, exhibit catch-bond 
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biophysical properties, meaning the lifetime of the bonds increase as a function of load 

(Oakes et al., 2018). Traditional studies have implicated the interplay between the 

physical stresses caused by tension built between the matrix-cytoskeleton interface that 

causes changes in the kinetics of composition of proteins within the FA to serve as a 

sensor for substrate stiffness (Hu et al., 2007). Assessing substrate stiffness of the 

surrounding environment through these extensions aids the cell in important biological 

decision making processes. 

Substrate stiffness has been implicated in a wide array of crucial biological 

processes including development, inflammation, wound contraction, tissue 

maintenance, angiogenesis, and development (Bischofs & Schwarz, 2003). Facilitating 

these processes requires navigating a complex 3D environment within the body, which 

presents a number of challenges for the cell, such as polarizations and directional 

motility towards specific sites. However, due to the wide landscape of tissues, organs, 

and extracellular spaces throughout the body, there are plenty of varied sensory cues, 

including substrate stiffness, unique to different kinds of environments to drawn from 

that cells can take advantage of to elicit processes tailored for the appropriate biological 

process. Tissues within the human body are composed of ECMs and cells that have 

well-characterized elastic moduli that span a wide range, with the higher numbers 

reported for cartilage and bone, >10,000 Pa for muscle and roughly 100 Pa for soft 

tissues such as fat or brain tissue (Levental et al., 2007). During inflammation, cells 

must orient themselves and travel towards the wound site, which requires the ability to 

polarize the nucleus and cytoskeleton. It has been reported that fibroblasts tend to 

locomote in favor of ECMs with high tensile strain and larger rigidity, which is thought to 
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represent in vivo environments where the wound site tends to have substrate with 

higher substrate stiffness (Solon et al., 2007),(Evans et al., 2013). 

Locomotion requires reorganization of the cell cytoskeleton, as well as 

polarization of the nucleus and various other organelles present within the cell, which is 

an example of how certain biological functions dictate specified cell morphologies. 

However, it has also been extensively observed that cell morphology itself can largely 

influence biological functions, showing the bidirectional relationship between shape and 

function. 

 

Cell morphology plays a large role in various biological processes 

 A growing body of evidence suggests that the shape of the cell can influence and 

dictate the outcomes of different biological processes including differentiation, genetic 

expression, proliferation, and apoptosis. These phenomena demonstrate the 

importance of considering how the outside environment may shape the fate of the cell 

through the manipulation of the physical shape of the cell, illustrating the importance of 

observing cell shape morphology as an area of significant study. These studies hold 

implications for human health and understanding of fundamental biological processes. 

 Gene expression profiles of cells have been shown to be altered depending on 

geometrical constraints of the substrate. One particular study varied the size, shape, 

and aspect ratio of micropatterned fibronectin substrates to modulate cellular geometry 

of 3T3 mouse fibroblast cells. Rectangular aspect ratios ranging from 1:1 to 1:5, circles, 

triangles, and squares with surface areas ranging from 500-2,000um2, comparable to 
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the roughly 1,300 um2 average physiological spreading area of 3T3 cells (N. Jain et al., 

2013). Cells largely adopted the shape of the underlying micropatterns, demonstrating 

micropatterning as an effective technique for modulating cell morphology. Whole 

genome transcriptome analysis using microarray was performed on cells grown on 

these different geometries. Different sizes appeared to differentially regulate genes to a 

greater extent than different types of shapes with roughly equal area, with >250 genes 

shifting expression when exposed to different sized micropatterns compared to the ~70-

150 genes changing expression due to different cell shapes. The main groups of genes 

changing expression levels were involved with regulating apoptosis, cell division, cell 

migration, and cell-substrate adhesion (N. Jain et al., 2013). 

 Regulation of cell life cycle stages, including proliferation and apoptosis, has also 

been shown to be influenced by cell shape. Using a micropatterning approach, 

researchers confined MC3T3-E1 osteoblastic cells into rectangle, circle, square, and 

triangle shapes, resulting in shifted cell proliferation rates due to the downregulation of 

IP3R1 and SERVA2 calcium cycling proteins(Tong et al., 2017). It has been noted in 

Xenopus development studies that the cell shape of cells within the egg largely guides 

the orientation of the mitotic spindle, and the subsequent direction of division (Théry & 

Bornens, 2006). In order to progressively restrict cell extension, human and bovine 

capillary endothelial cells were subjected to decreasing sizes of matrix-coated adhesive 

islands, ranging from 5 to 50um, which induced the switch from growth modes to 

apoptosis (Chen et al., 1997). Regardless of the matrix protein type or antibody to 

integrin used as the substrate for their adhesion islands, size was the dominating 

determinant factor for whether the cells would grow or undergo apoptosis. 
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 Cell shape also influences differentiation of stem cells and can even bias the 

stochastic fate decisions of daughter cells even after rounding of the progenitor cells 

during mitosis, suggesting that the memory of cell shape can have impacts for future 

generations of cells from an ancestor. Somatic epidermal stem cells, specifically 

neonatal human keratinocytes, were subjected to either large (1,024 um2) or small 

(300um2) square microprinted fibronectin islands (Totaro et al., 2017). Using a marker 

for terminal differentiation, expression of involucrin, the number of involucrin-positive 

cells were substantially increased on the small islands, whereas on the large islands, 

cells were mostly shielded from differentiation. To probe the molecular mechanism 

behind this phenomenon, researchers subjected cells spread on large islands to short 

interfering RNAs (siRNAs) targeting YAP/TAZ. As a result, these spread cells were 

depleted of YAP/TAZ and differentiated en-masse, suggesting these proteins were 

involved as biomechanical intermediaries between substrate size detection and cell 

differentiation.  

In order to test memory effects of cell shape on daughter cells, researchers 

injected V2 neural progenitor cells into a developing zebrafish nervous system and 

observed the progenitor cells and their respective daughter cells over time (Akanuma et 

al., 2016). Depending on the degree of elongation and the orientation of the progenitor 

cell, the fate of the daughter cells change due to the formation of intracellular spatially 

localized concentrations of upstream signaling proteins such as the Delta family of 

proteins from the Delta-Notch signaling mediated lateral inhibition system (Akanuma et 

al., 2016). Due to the substantial effect of cell morphologies on such a vast array of 

biological processes, many studies have investigated the biomechanical mechanisms 
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through which physical alterations of cell shape could impact regulation of gene 

expression. 

 Traditionally, the cytoskeleton, along with focal adhesion proteins such as 

vinculin, zyxin, filamin A, and talin, have been implicated as mediators between integrin 

and actin filaments for mechanosensitive gene regulation (Riveline et al., 2001). Zyxin 

and paxillin travel between the nucleus and the cytoplasm depending on actomyosin 

contractility, serving as transcriptional regulators of gene expression(Yuan Wang & 

Gilmore, 2003). Rho activity has been observed to increase in rounded cell phenotypes, 

attributed to the inhibition of p190RhoGAP upon binding to filamin A and the reduction of 

GTPase activation. On the other hand, spread cells cleave filaminA binding from 

p190RhoGAP, resulting in the inactivation of Rho (Mammoto et al., 2007). 

Transcriptional attenuation was observed when skin stem cells were subjected to 

stretching forces, leading to the redistribution of emerin to the outer nuclear membrane 

and the detachment of heterochromatin from the nuclear lamina and resulting reduction 

of nuclear actin(Le et al., 2016). Although substantial numbers of molecular agents have 

been identified as mediators in the ECM-focal adhesion-nucleus interface, an additional 

element of the spatial reorganization of the nucleus itself during morphological 

rearrangement of the entire cell has also been observed to play a role in changes of 

gene expression.  

 It has been observed that the modulation of gene expression via shape changes 

appears to be substantially facilitated through to the mechanosensitive reorganization of 

the nucleus. During processes, such as cell migration, the shape changes required for 

different functions result in physical forces applied to the nucleus, forcing it into different 
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configurations. As a result of these different mechanical stresses, the inner contents of 

the nucleus are rearranged, resulting in differential expression. For example, in 

fibroblasts, as they flatten and extend, forming focal adhesions to attach to the ECM to 

survey their surrounding environment, the nucleus is flattened during the process as 

well (N. Jain et al., 2013; Q. Li et al., 2014). Conversely, with fewer matrix attachments, 

the sphericity of the nucleus increases. 

The consequences are significant, especially when taking into consideration the 

importance of how the spatial dimension of DNA packing into nonrandom 3D 

chromosome territories has been shown to a critical intermediate for genome regulatory 

processes (Lanctôt et al., 2007). The co-expression of clustered genes has been 

suggested to be reliant on the spatial positionings of chromosomes relative to each 

other (Bickmore & Van Steensel, 2013). The nuclear lamina has been observed to be an 

anchoring interface for chromosomal domains, providing for relatively fixed positions of 

3D nuclear structures and a method of spatially regulating levels of accessibility of the 

chromosome for transcriptional expression (Pickersgill et al., 2006). Although many 

associations between clusters tend to be cis, located on the same arm of the 

chromosome, large-scale studies have also captured robust intrachromosomal contrats 

between territories of opposite arms on the same chromosome and interchromosomal 

contacts between different chromosomes(Simonis et al., 2006). Custom fluorescence in 

situ hybridization (FISH) probes utilizing exonic regions of entire chromosomes have 

been used to reveal how gene-dense chromosomal regions extend contacts beyond 

their own territories and outside of core territories traditionally defined by earlier studies 

using FISH probes with more simplistic oligonucleotide pools (Boyle et al., 2011). 
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The spatial context has been observed to play a large role in the extent of intra- 

and interchromosomal contacts between chromosomal regions despite similarities in 

nucleic sequence. One study replaced endogenous mouse α-globin locus with the 

human 120 kb α-globin locus from human primary erythroid cells in mouse erythroid 

cells. The nuclear organization properties of the ‘humanized’ α-globin locus in context of 

the mouse erythroid cells were characteristic of the mouse α-globin locus, with a more 

condensed local chromatin environment and fewer trans associations with other highly 

expressed erythroid gene loci (Brown et al., 2008).  

Modulating cellular geometries via micropatterning has been shown to shift the 

radial position of CTs, the degree of CT pair intermingling, and ultimately alter gene 

expression. Cell geometries of 3T3 mouse fibroblast cells were modulated using 

micropatterns that were either isotropic circular substrates (area 500 μm2) substrates or 

anisotropic rectangular substrates (aspect ratio 1:5, area 1800 μm2) (Yejun Wang et al., 

2017). The anisotropic substrates imposed more physical spreading stress and resulted 

in flattened, elongated nuclei with long actin stress fibers in contrast with the more 

spherical nuclei and shorter actin filaments associated with cells grown on the isotropic 

substrates. The spatial organizations of 12 representative CTs were visualized using 

FISH, and their associated volumes, radial distances, radial positions, chromosome 

decompaction factor, and transcriptional activities were compared between the two 

conditions. Different CT pairs demonstrated varying responses of chromosome 

intermingling depending on the cell geometries. For example, CTs 2/6 and 11/15 

exhibited increased intermingling in isotropic substrates compared to anisotropic 

substrates while CT pair 5/9 showed significantly decreased intermingling when 



 

 

12 

comparing isotropic to anisotropic conditions. When subjected to cell geometric 

changes, several CTs increased their decompaction factors, which resulted in higher 

transcription as assessed by immunofluorescence of Pol II S5P, an active transcription 

marker. Microarray data derived from isolated RNA from the cultured 3T3 cells revealed 

lower expression of SRF/MRTF-A–regulated genes and higher expression of NF-κB–

regulated genes for rounded cells in isotropic substrates compared to the cells on 

anisotropic cells (Yejun Wang et al., 2017). 

The effect of cell shape on genetic expression involves a complicated interplay 

between the ECM, cytoskeleton, and nucleus, which has led to computational efforts to 

integrate all three domains in a model. One such study used an active 3D 

chemomechanical model to elucidate the interplay between the nucleus, cytoskeleton, 

and focal adhesions (Alisafaei et al., 2019). The model took into account formation of 

focal adhesions and ECM tension to represent the effect of substrates on the shape and 

organization of the cell. To describe the cytoskeletal architecture, parameters were 

included to describe the force exerted by myosin motors, cytoskeletal tension and 

stiffening, and actomyosin contractility. Finally, the nuclear envelope tension, lamin AC 

levels, nuclear stiffness, and epigenetic and chromatin condensation were included to 

assess transcriptional expression and describe the nuclear environment. It was found 

that subjecting the cell to geometric constraints in the form of low isotropic cytoskeletal 

tension in circular substrates versus high and polarized cytoskeletal tension in high 

aspect ratio rectangular substrates resulted in increases in local tensile stresses formed 

at mature focal adhesions, inducing alterations in the cytoskeleton and its associated 
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actors and resulting in softening of the nuclear lamina, stiffening of chromatin, and 

decreased nuclear volume (Alisafaei et al., 2019). 

Important biological processes, including differentiation, genetic expression, 

proliferation, and apoptosis, have all been shown to be substantially influenced by the 

shape of the cell, which in turn relies heavily on the ECM and the focal adhesions 

associated with the extracellular substrate. Computational models and FISH analyses 

have suggested that these changes are largely mediated through the 

mechanosensitivity of the nucleus, with its malleable shape affecting the orientation, 

position, and packing of chromosomes that ultimately determine the extent of genetic 

expression. Further studies have unpacked how the dysregulation of natural processes, 

namely proliferation in the context of cancerous cells, can be influenced by, and in turn 

influence, the shape of the cell. 

 

Morphological and invasive properties of cancerous cells 

Cancer cells are notable for their ability for their ability to navigate complicated 

3D environments in organisms, exhibiting unchecked growth, a parasitic invasiveness 

throughout the host system, and a high chance of proving fatal for the host. It is 

projected that in the United States alone, the year 2023 will end with 1,958,310 new 

cases of cancer and 609,820 deaths as a result of cancer (Siegel et al., 2023). 

Advances in treatments have created progress over the past few decades as the cancer 

death rate has declined by roughly 33% since 1991, averting an estimated 3.8 million 

potential deaths. However, rising incidences for uterine corpus, prostate, and breast 

cancers pose a threat to these gains, along with racial disparities in mortality. For men, 
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the majority of new cases are the result of prostate, lung & bronchus, colon & rectum, 

and urinary bladder cancers. As for women, breast cancer alone is projected to 

comprise 31% of new cases with an absolute number of 297,790 cases. Along with 

breast cancer, lung & bronchus and colon & rectum make up the majority of new cancer 

cases for women (Siegel et al., 2023). Due to the enormous fatalities and burden upon 

the nation’s healthcare systems, an enormous amount of research has been dedicated 

towards characterizing cancer biology to identify potential drug targets or therapeutic 

interventions that could attenuate the substantial toll this class of diseases takes upon 

society. 

While the severity and prognosis of cancers differ depending on the organ of 

origin, there are some commonalities that unite the subclasses of cancer diseases. 

There exist six hallmarks of cancer that enable tumor growth and metastatic 

dissemination that spreads tumors to secondary sites: sustained proliferative signaling, 

evading growth suppressors, activating invasion and metastasis, enabling replicative 

immortality, inducing angiogenesis, and resisting cell death (Hanahan & Weinberg, 

2011).  

Perhaps the most fundamental trait of cancer cells is their ability to chronically 

sustain unchecked proliferation. Normal tissues tightly regulate progression throughout 

growth-and-division cycles. Through dysregulation of these regulated checkpoints, 

cancer cells enable unchecked growth. Cancer cells utilize various methods to sustain 

proliferative signaling. The production of growth factor ligands, stimulating neighboring 

normal cells to supply the cancer cells with an abundance of growth factors, 

deregulating receptor signaling by elevating cell surface receptor ligand expression so 
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as to be hyperresponsive to growth factor ligands, or structural alterations in the growth 

factor ligands themselves to boost receptor response. Downstream pathways may also 

be subjected to somatic mutations. For example, roughly 40% of human melanomas 

exhibit characteristic mutations in B-Raf protein structure, which results in constitutive 

signaling to mitogen-activated protein (MAP)-kinase pathway (Hanahan & Weinberg, 

2011). Disruptions to negative-feedback loops necessary for attenuating proliferative 

growth or the disabling of apoptosis-inducing or senescence circuitry are also common 

strategies employed by cancer cells to achieve unchecked growth (Hanahan & 

Weinberg, 2011). 

The circumvention of tumor suppressor circuitry allows the cancer cells to avoid 

limitations of cell growth and proliferation. Retinoblastoma-associated (RB) and TP53 

proteins, prototypical tumor suppressors, are critical regulatory nodes that govern the 

choice between proliferation or apoptosis and senescence (Hanahan & Weinberg, 

2011).  The RB serves as a crucial gatekeeper of cell-cycle progression, integrating 

signals from a myriad of intracellular and extracellular sources. Defects in RB pathway 

function thus prevents that critical signal processing step and permits chronic cell 

proliferation. The role of TP53 typically involves assessing the degree of damage to 

intracellular operating systems such as genome damage or if levels of glucose, 

oxygenation, growth-promoting signals, or nucleotide pools are suboptimal, which would 

trigger an abrogation of the cell-cycle progression until the conditions were restored to 

optimal levels (Hanahan & Weinberg, 2011). Cell-to-cell contact also serves as a 

powerful inhibitor of cell proliferation, with normal cells suppressing cell proliferation 

when reaching dense population sizes in two-dimensional culture conditions. A 
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cytoplasmic NF2 gene product named Merlin is responsible for strengthening adhesivity 

of cadherin-mediated attachments between cells, as well as sequestering growth factor 

receptors, which limits mitogenic signaling (Hanahan & Weinberg, 2011). 

A natural barrier to cancer proliferation is apoptosis, programmed cell death. 

During tumorigenesis, cells typically trigger signaling circuitry responsible for apoptotic 

programs responding to physiological stress signals in order to stymie cancer 

development (Hanahan & Weinberg, 2011). After sensing and integrating intracellular 

and extracellular death-inducing signals, such as levels of oncogene signaling or DNA 

damage, proteases caspases 8 and 9 initiate a cascade of downstream effector 

caspases that progressively disassemble the cell through proteolysis, which is then 

consumed by phagocytic cells or even its neighbors. Increased expression of regulators 

that inhibit apoptosis, such as Bcl-2 or Bcl-xL or downregulating factors promoting 

apoptosis, such as Bax, Puma or Bim, can achieve circumvention or limiting of 

apoptosis (Hanahan & Weinberg, 2011). 

Immortalization is the ability for cancerous cells to exhibit unlimited proliferative 

potential. Spontaneously immortalized cells such as cancer cells express substantial 

levels of telomerase, a DNA polymerase adding repeat segments to the ends of 

telomeric DNA, protecting the ends of chromosomal DNAs from generating unstable 

fused chromosomes that threaten the viability of the cell. The telomerase activity results 

in a resistance to apoptotic and senescent programs and enables immortalization of 

cancerous cell lines (Hanahan & Weinberg, 2011). 

The acquisition of oxygen and nutrients to sustain the proliferation of tumors 

requires an extensive neovasculature, involving angiogenesis of vessels as supply 
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conduits. Angiogenesis inducers such as vascular endothelial growth factor-A (VEGF-A) 

encode ligands responsible for generating blood vessel growth (Ferrara, 2009). 

Oncogene signaling and hypoxic conditions have been noted to upregulated gene 

expression of VEGF (Feilim Mac Gabhann and Aleksander S. Popel, 2009). While 

normal vasculature is arrayed in well-differentiated, evenly-spaced hierarchies, tumor 

vasculature is characterized by its chaotic mixture of disorganized vessels with irregular 

structure, organization, and function compared to normal tissues (Nagy et al., 2010). 

Eventually tumors reach a certain stage where they metastasize, invading 

throughout the body from their primary sight. Local invasions begin with the loss of E-

cadherin expression in carcinoma cells, disrupting their adhesion to neighboring cells, 

and the upregulation of matrix attachment proteins so cancer cells can being navigating 

their surrounding environment (Hanahan & Weinberg, 2011). This transition is a co-

opting of the developmental regulatory program epithelial-mesenchymal transition 

(EMT) that is normally used for wound healing or embryonic morphogenesis 

(Klymkowsky & Savagner, 2009). Transcriptional factors, such as Zeb1/2, Slug, Snail, 

and Twist,  express in malignant tumor types, orchestrating the EMT (Micalizzi et al., 

2010). EMT involves loss of cell-cell adhesion, modulation of cytoskeletal system 

organization, polarity changes, and increased motility (Klymkowsky & Savagner, 2009). 

Additionally, the morphology of the cell changes from a polygonal shape suited for 

epithelial sheet packing to instead a spindly morphology similar to fibroblasts, along with 

expression of enzymes degrading the ECM (Hanahan & Weinberg, 2011). Cancer cells 

then invade nearby lymphatic and blood vessels, transiting through these blood 
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systems, exiting these vessels via extravasation and colonizing of small cancer cell 

nodules into macroscopic tumors (Talmadge & Fidler, 2010). 

The invasion process involves navigating a complicated 3D physical 

environment, with wide ranges of properties including fiber alignment, molecular 

composition, ECM pore size, and stiffness (Spill et al., 2016). One such property is the 

stiffness of the substrate, defined as the extent to which a material is able to resist 

against deformation upon application of mechanical force (Janmey et al., 2020). Cancer 

cells preferentially travel along gradients of substrate stiffness, in a process called 

durotaxis where cells go from softer to stiffer environments (Spill et al., 2016). 

Additionally, some cases revealed that cells can undergo “reverse durotaxis,” where 

they migrate from stiff to soft substrates (Spill et al., 2016). 

Along with substrate stiffness, the 3D topologies and spaces of the ECM in the 

tumor microenvironment are widely varied. Longitudinal tunnel-like tracks, pores, and 

pro-migratory niches are crafted by cancer-associated fibroblasts and mast cells that 

release proteinases and crosslink collagen fibers together (Paul et al., 2017). Even 

healthy tissues exhibit ordered matrix environments with tracks of ECM fibers in 

vasculature, along blood vessels, and in the interstitial space between nerves and 

muscles (Paul et al., 2017). Whether in normal or cancerous tissues, these tracks have 

been observed to be crucial for metastatic migration from the primary site to secondary 

sites throughout the body. In a rat xenograft model with MTLn3 cells, an especially 

invasive breast adenoacarcinoma cell line, the tumor cells demonstrated a high 

preference for migration along collagen fiber tracks radiating throughout the primary 

tumor site (Sahai et al., 2005). An in vivo mouse brain model revealed melanoma cells 
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using blood vessel outer surfaces as scaffolding guides for proliferation and migration 

throughout the brain (Kienast et al., 2010). In a therapeutic approach harnessing the 

propensity for tumor cells to migrate along the direction of topographical tracks, 

aggressive brain tumor glioblastoma multiforme cells migrated along inserted nanofiber 

xenograft tracks that resulted in significantly lower tumor volume in the brains of rats (A. 

Jain et al., 2014). The topography of the environment surrounding the tumor has a 

substantial influence on the direction and extent of cancerous cell migration and 

invasion to other parts of the host organism. 

Due to the importance of the topological landscape of the substrate, more studies 

have investigated how spatial parameters of the substrate can be processed by the cell 

and influence cellular functions. The effect of the physical environment on cells can 

have substantial biological implications, informing future efforts for uncovering underling 

crucial biological processes as well as providing foundational knowledge for therapeutic 

interventions. 

 

Micropatterning isolates and subjects adhesive cells to specified geometric 

constraints 

 Micropatterning is a well-established technique for reflecting spatial complexities 

observed throughout in vivo microenvironments of cells. It allows for printing 

biomolecules of interest in highly specified geometries on the micrometer scale (Strale 

et al., 2016). Micropatterning can even be used for patterning gradients of molecules of 

interest and even multi-protein combinations of substrates, providing several knobs of 
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control to probe the effects of different elements of the physical extracellular 

environment on cellular functions. 

 Micropatterning harnesses advancements in projection lithography systems, 

antifouling backgrounds, photoinitiators, and UV illumination to create highly specialized 

geometric patterns. Digital micromirror devices (DMD) are spatial light modulators that 

operate extensive arrays of micromirrors operating as binary light switches that can 

either turn off or on (Ren et al., 2015). For switching between on or off states, typical 

DMDs operate with micromirrors that have the ability to rotate either +12º or -12º 

relative to the surface normal. Intensity modulation is achieved by uploading grayscale 

versions of the desired patterns to the device, encoding for sequential pulse width of the 

light signal shining (Ren et al., 2015). This is particularly useful for generating gradients 

along micropatterns to test questions regarding threshold signal detection for substrates 

or how gradients can guide directionality for cell motility. 

Antifouling backgrounds are grafted onto a glass surface so as to prevent cells or 

proteins from adhering to areas outside of the patterned substrates. Polycationic poly(L-

lysine)-g-poly(ethylene glycol) (PLL-g-PEG) is a commonly used antifouling system for 

modifying negatively charged surfaces (Falconnet et al., 2006). PLL-g-PEGs provide 

polymeric brushes on the PEG sides of the molecule while providing a charged anchor 

with the PLL side that will bind with glass surfaces treated with plasma. 

After binding of the antifouling coating agent, a water-soluble photoinitiator is 

used to tune the polymer brush antifouling properties through a photoscission 

mechanism (Strale et al., 2016). Upon shining through UV light, the photoinitator 

degrades into reactive oxygen species (Hong et al., 2019). These reactive species have 
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the ability to cleave bonds between the PLL-g-PEGs and the glass surface, thus 

ablating the antifouling coating agent in locations wherever the UV light is shined upon 

(Ninomiya et al., 1998). Within the micrometer-scale spaces exposed to UV light, the 

antifouling coating agent is either eliminated or relieved of its antifouling abilities due to 

photoinitiator activity, creating a negative space within the antifouling coat layer where 

proteins have the ability to bind to the glass underneath. 

Within the negative space, the protein of interest can be added and incubated 

until they strongly adhere. After the incubation step, the media can be flushed with 

solvent to eliminate excess substrate protein. What is left are the micropatterns with the 

substrate of interest in specified geometries, surrounded by antifouling coating agents 

that will prevent either cells or molecules of interest from binding to areas outside of the 

micropatterns. The other areas with antifouling coating agent can still be subjected to 

further photoinitiator and UV exposure to create other micropatterns with different 

proteins of interest. In one example, researchers patterned three different fluorescent 

markers, using GFP, Pll-g-PEG-TRITC, and Neutravidin-Ato647, to paint a striking 

micrometer-scale recreation of the Birth of Venus by Boticelli (Strale et al., 2016). 

Depending on the strength of the UV light and the concentration of photoinitiator, the 

adsorbed protein density can be tailored according to the desired parameters of the 

experiment (Strale et al., 2016). In one step, the pattern sizes can range from as small 

as 500nm to as large as 1mm (Strale et al., 2016). Larger pattern compositions can 

easily be printed and simply require however number of steps are required to overcome 

the limit of the DMD size range and accommodate the size of the desired micropattern. 

The versatility of micropatterning, with its ability to print different concentrations of 
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proteins of interest, multiple proteins, and precise geometries on the nanometer and 

micrometer scale, makes it an attractive method for probing how cells respond to 

different physical aspects of their extracellular environment. 

Several studies have used micropatterning to reveal how the underlying 

cytoskeletal machinery arranges itself in response to different spatial inputs. Fibronectin 

is a commonly used substrate for these types of micropatterning experiments both 

because of its ubiquitous presence in ECM environments and because it is a ligand for 

dozens of integrin receptors, cell-surface heterodimers responsible for linking the 

intracellular cytoskeleton to the ECM (Pankov & Yamada, 2002). Therefore, it is a 

natural choice to be the substrate protein of choice to recapitulate in vivo ECM 

environments and to ensure the cell will grip the surface through focal adhesion 

machinery and influence cytoskeletal architectures inside of the cell. Minimal integrin-

recognition sequences have been identified, including the best known sequence of RGD 

(Pankov & Yamada, 2002). In one study using fibronectin micropatterns, the 

investigators cultured pulmonary vascular smooth muscle (VSM) cells on increasing 

fibronectin densities versus 30 x 30µm islands (Polte et al., 2004). VSM cells constricted 

on the islands were unable to spread and also exhibited decreased myosin light chain 

phosphorylation, suggesting that cell spreading is necessary for biochemical signal 

transduction during smooth muscle cell contractility (Polte et al., 2004). Dynamic actin 

structures arise with non-migrating cells on micropatterns, with vasodilator-stimulated 

phosphoprotein and zyxin demonstrating preferential localization to actin filament 

bundles at the apices and exhibited higher traction forces (Guo & Wang, 2007). 
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Several studies have investigated how specific cytoskeletal structures arise 

depending on the idiosyncrasies of geometric micropatterns. HeLa cells were adhered 

to micropatterned rectangles, triangles, circles, and L shapes (Théry et al., 2005). 

Cortactin, involved in membrane ruffling through actin polymerization and ezrin, a key 

player in cell polarity, were found to be enriched in adhesive areas of the cell cortex 

(Théry et al., 2005). 

In another study, cells were grown on circles of varying size, triangles, and a V 

shape (Théry, 2010). Depending on the shape, size, and number of adhesive edges, the 

cytoskeletal structures, visualized through fluorescent antibodies for vinculin and F-

actin, differed. Smaller circles resulted in low spreading cells characterized by branched 

meshworks of actin. Larger circles exhibited actin branched meshworks evenly 

throughout the edge of the circumference, along with adject actin filament bundles and 

stress fibers stretching across the diameter of the circle. Triangles with all three edges 

having adhesive properties exhibited concentrations of vinculin and branched 

meshworks at the apices of the triangle, actin filament bundles stretched out across the 

body of the triangle, and stress lying mostly along the edges of the shape. V shapes 

that were the same height and base as the triangle shapes, but missing an adhesive 

edge and some of the central body of the triangle, also demonstrated concentrations of 

branched actin meshworks and vinculin at the apices. In contrast to the triangle 

micropattern cells, cells adhered to the V shape exhibited stress fibers stretching across 

the central part of the micropattern along with the adhesive edges. Filament bundles 

were not observed. Additionally, the filament bundles along the non-adhesive edge were 
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noted to have a distinctly concave shape, buckling inwards and connected by the two 

apices along the non-adhesive edge (Théry, 2010). 

Similar studies were conducted to assess how the cell adhesive 

microenvironment determines the internal organization of the cell as well as its polarity 

orientation. Human retinal pigment epithelial (RPE) cells were cultured on anisotropic 

fibronectin micropatterns to assess the effect of anisotropic environments on the cell 

internal organization (Théry et al., 2006). The researchers quantified the spatial 

organization of the nucleus, Golgi apparatus, centrosome, distribution of microtubules, 

actin network organization, and associated proteins. Cell polarity was defined by spatial 

asymmetries of cellular compartments relative to a polar axis. After observing the 

inhibition of stress fiber development along curves of adhesive borders, the authors 

used a crossbow-shaped micropattern to polarize the cell, imposing a curved adhesive 

border to one of the cell and creating two non-adhesive edges to the other half. Vinculin, 

actin, and cortactin were fluorescently labeled with antibodies, and images of multiple 

cells on the same micropattern were averaged to analyze the localization of these 

cytoskeletal-associated structures relative to the crossbow micropatterns. Vinculin 

structures exhibited asymmetric distributions, accumulating at adhesive zone 

extremities but regularly localizing at lower levels across the curve of the bow. Stress 

fibers spread across the non-adhesive edges, but they were nearly absent from the 

curved adhesive border. Cortactin expression was limited to the adhesive sides. 

Combining the fluorescent results, the authors concluded that the crossbow shapes 

consistently polarized the organization of the cell, resulting in a reproducible 



 

 

25 

polymerizing meshwork at the adhesive border and stress fibers stretched across non-

adhesive edges (Théry et al., 2006). 

As a proxy for cell protrusions, the researchers visualized the localization of APC, 

an actin-binding protein characterized for its affinity for cell protrusion zones, as well as 

its connection between microtubule and actin networks. By assessing where APC 

accumulated relative to the micropattern, they were able to surmise how the 

micropattern would influence where potential lamellipodia or filopodia would extent. On 

the crossbow micropatterns, APC accumulated all along the adhesive peripheries and 

was notable missing from non-adhesive edges (Théry et al., 2006). What this suggests 

is that the adhesive substrate underneath a cell can mediate the directionality of cell 

protrusions and extensions. 

To evaluate how polarity of the cell was influenced by geometries of the ECM, 

RPE1 cells were plated on micropatterns with arrow shapes, X, K, and C. These 

particular geometries were selected due to the resulting shared phenotype of a squared 

envelope for the overall shape of the cell, but presumably with varying internal cellular 

architectures underneath the cell membrane due to the difference in non-adhesive edge 

and adhesive edge numbers. Cells plated on the X micropattern exhibited an even 

distribution of polarizations across 360º of possible orientations as determined by the 

centrosome-Golgi-nucleus axis pointing from the nucleus out towards the centrosome. 

There was no preference for cellular orientation, presumably because there were four 

non-adhesive edges, so the cell had no adhesive guide to consistently orient its internal 

architecture. By contrast, cells plated on the C shape reproducibly oriented opposite the 

non-adhesive edge and towards the adhesive edge in the middle, flanked by the two 
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perpendicular adhesive edges. The K shape micropatterns had similar results, with the 

cell polarizing opposite the largest non-adhesive edge and towards the adhesive edge 

attached by the two legs mirrored 180º from each other. When cells were plated on 

arrow shaped micropatterns, there was a strong preference for the orientation pointed 

towards the arrowhead, which was opposite of two non-adhesive edges (Théry et al., 

2006). Taken together, these results suggest that adhesive substrate spatial geometries 

can largely influence the internal polarity of cells, notably with the presence of adhesive 

apices guiding cell architecture along the distal end of those geometries.  

 Micropatterning studies have shown that micropatterning can isolate single cells 

and reveal their morphological, cytoskeletal, and internal polarity preferences based on 

the underlying geometries of the adhesive substrates. Micropatterning provides for 

various knobs of control, such as protein concentration, precision in printing micrometer 

scale shapes, gradients, and multiple proteins within the same pattern. This versatility 

enables researchers to tackle numerous kinds of questions. By using fibronectin as the 

substrate protein of choice, the ECM-integrin-cytoskeletal interface as observed in vivo 

is preserved, or at least approximated to an extent, in vitro. While these studies mostly 

focused on nonmigrating cells, other researchers have used micropatterning as a tool to 

evaluate migration patterns compared between different kinds of conditions and cell 

lines. 

Micropatterning reveals characteristic cancer cell migratory trajectories 

 Due to the numerous studies that have shown decision making processes 

involved with metastasis substantially rely on substrate topology and spatial geometries 
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within the ECM, many researchers have turned to micropatterning to probe how tuning 

substrate spatial patterns can reveal migratory habits for cancer cells. 

 In one particular study, researchers subjected breast cancer cell line MDA-MB-

231 cells and model normal human breast MCF-10A cells to two-state micropatterns to 

compare their migratory dynamics (Brückner et al., 2019). The authors sought to search 

for emergent dynamical laws when migratory cells were confined to well-defined 

geometries. To that end, the researchers designed a two-state system for confined cell 

migration, printing a fibronectin micropattern with a dumbbell-like shape with two square 

lobes connected by a thin bridge. PLL-PEG was passivated onto the surrounding area 

to repel cell adhesion. MDA-MB-231 cells demonstrated a stochastic cellular ‘hopping’ 

behavior, migrating back and forth between the two square islands and across the thin 

bridge multiple times across the span of observation time, over 40 hours (Brückner et 

al., 2019). Crossing the bridge required development of a lamellipodium, formed along 

the cell periphery, which would extend and sometimes grow into a sustained protrusion. 

During a successful migration, the protrusion would broaden, growing into a fan-like 

shape. 

 Within that same study, researchers developed a mathematical model to describe 

the nonlinear oscillations between the two adhesive islands.  For MDA-MB-231 cells 

subjected to the islands connected by the thin constriction, the trajectories always 

approached a stable limit cycle, indicating that no matter the initial conditions in position 

or velocity, the cells would always travel back and forth between the two islands. To 

assess the effect of spatial constraints on the deterministic dynamics, the authors also 

compared the trajectories of the breast cancer cells on micropatterns without a thin 
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constriction, essentially a full rectangle of space available for the cell to adhere to. For 

the same cancer cells presented to micropatterns without the constriction, the 

deterministic dynamics inevitably resulted in a trajectory with a velocity of zero, 

indicating that no matter the initial position or velocity, the cells would always end up 

stationary and stop migrating. The final location of the cells after they reached a velocity 

of zero was evenly distributed along the rectangle, with no strong preference along the 

micropattern. To contrast with cancerous cells on the two-island adhesive micropatterns, 

non-cancerous breast tissue MCF10A cells were plated onto the same geometries. 

Instead of the limit cycle demonstrated by the MDA-MB-231 cells, the MCF10A 

exhibited two stable fixed points, representing the two islands sitting on either side of 

the thin constriction bridge. Within the phase diagram measuring relative position 

against velocity, the authors noted that basins of attraction extended from one side of 

the system to the other, suggesting that a small perturbation, even induced by noise, 

could excite the cell from one side of the system to the other (Brückner et al., 2019). 

 A few critical conclusions relating cellular morphology and substrate spatial 

complexity can be drawn from these results. One is that the types of geometries within 

the ECM can have a large influence on the same cell type in determining cellular 

morphology and migration trajectories. Two islands with a thin constriction induce stable 

limit cycles of shuttling back and forth, while a solid rectangle with similar dimensions all 

ended with a velocity of zero and random endpoint localizations. Another conclusion is 

that the cell type on the same geometries can result in different morphologies and 

trajectories. While the invasive MDA-MB-231 cells on the two-island adhesive patterns 
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exhibited limit-cycle oscillations, the less invasive MCF10A cells demonstrated bistable 

dynamics, eventually settling in to either of the two islands with a velocity of zero. 

 Although measuring the dynamics of position and velocity over time can yield 

useful insights, as demonstrated in the previous sections of the introduction, it is also 

important to characterize the morphology of the cell over time because of how cellular 

shape has such an influential role in critical biological processes. Various efforts to 

quantify the morphology of cellular shapes have been undertaken in order to draw more 

rigorous conclusions in contrast to qualitative statements that oftentimes dominate 

conversations about cellular morphologies. 

Quantifying cellular morphology 

 Cellular shape determines and is determined by important biological processes, 

which necessitates its quantification in order to better understand those processes. 

Various efforts have been undertaken to describe cell shape in a way that allows for 

easy comparison between different experimental conditions, can be analyzed with large 

scale statistical tools, and recapitulates the essential and relevant biological features in 

question. Oftentimes, a trade-off between accuracy of recapitulating the shape and 

malleability of the data used to encode the shape is required. 

 Earliest efforts relied on landmarks to identify and compare shapes. On the scale 

of organisms, animal anatomical features are oftentimes used as biological landmarks. 

One example of a geometric morphometrics is Procrustes analysis for fish, which relies 

on twelve landmarks to quantify fish specimens shape variation, such as Cyprinodon 

bovinus (Black et al., 2017). These landmarks include the coordinate positions of 
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features such as the snout tip, center of the eye, caudal peduncle upper and lower 

margins, dorsal elevation, predorsal elevation, and much more. While these features 

may work well with higher level organisms, in the case of individual cells, it is more 

difficult to identify unequivocal landmark points that could be matched and compared 

across entire cell populations due to their high variability and general smoothness that 

precludes the identification of idiosyncratic features. 

 Instead of landmarks, other quantitative efforts have focused on measurements 

or features of the cell as a geometric object. These measurements include parameters 

such as area, circularity, length of the minor or major axes of an object. In the case of 

3D microscopy, the volume and internal slices of the object can also be measured. This 

approach overcomes the shortcomings of the geometric morphometrics in that these 

measurements can be compared across entire cell populations. However, the extent of 

the shape information is limited to the features selected a priori for analysis, running the 

risk of excluding potentially significant or interesting shape features (Pincus & Theriot, 

2007). 

 Outline encoding allows for the entire shape to be captured. The simplest way 

involves a parametric plane curve, with the cartesian x and y coordinates collected as 

lists of points. Alternatively, a signed distance map is an array of each pixel within the 

image, with their intensities calculated as the distance between their position and the 

distance from the nearest edge of the cell. The interior of the cell is negative, the cell 

edge values are all zero, and the values outside of the cell are position, thus creating a 

sort of topological map where the cell edge, cell interior, and extracellular environment 

are all encoded depending on their value signs and presence or absence of values 
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(Pincus & Theriot, 2007). However, outline encoding still poses challenges in 

comparison to different experimental conditions because each numerical component of 

the encoded shape corresponds to a singular point as opposed to the shape as a 

whole. 

 Dimensionality reduction techniques circumvent this issue by breaking down 

high-dimensional data into a smaller number of parameters with biological significance 

and an interpretability for data analysis. Classical Fourier decomposition can be 

imposed upon cell outlines, using sines and cosines of increasing frequency as an 

orthogonal basis set (Lestrel, 1989). Both the x-values and the y-values of the points 

can be decomposed separately, yielding two sets of coefficients that can be combined 

to create a single vector of description. These coefficients represent the frequencies of 

the sines or cosines that can be summed to approximate the overall outline shape of the 

cell in 2D. Zernike polynomials have also been used to provide orthogonal 2D basis 

sets to describe images (Pincus & Theriot, 2007). Although originally designed as shape 

modes that could be weighted and combined to describe aberrations in optical lenses, 

they can be used to decompose any kind of digital image. The predetermined 

orthogonal basis sets either with Fourier decomposition or Zernike polynomials provide 

a common set for comparison between experimental conditions, as well as providing a 

reduced set of dimensions to describe the overall shape. 

 The drawback to these approaches is that the shape is decomposed in a pre-

specified way. Thus, specific features unique to the orthogonal basis set, such as the 

smoothness of the curves of the sine or cosine waves or the blurred patchiness from the 

Zernike polynomials, are the only sorts of features that can be extracted from the 
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biological images of cells. It’s not guaranteed that the biologically meaningful variation in 

the data will be retained with these approaches. To address this shortcoming, many 

researchers turn to principal component analysis (PCA). 

 

Principal component analysis as dimensionality reduction enables time 

series dynamics analysis 

 While qualitative observations prevail for describing cellular morphologies, more 

recent studies with model organisms as varied as protists to worms have quantified the 

shapes of cells in a more statistically rigorous manner using principal component 

analysis. This linear algebra technique provides eigenvectors that can be ordered by 

their eigenvalue, showing how much they can describe the statistical deviation from the 

mean of the sample data set, allowing for a ranking and ultimate selection of a few 

eigenvectors that can be assigned scalar weights to describe the dynamics of the raw 

data over time. 

 Unicellular predator Lacrymaria olor is a single-celled protist, with fast hunting 

behaviors utilizing a slender neck that broadly samples the surrounding area of the cell 

(Coyle et al., 2019). In order to analyze the dynamics of the protist morphology over 

time during its hunting behavior, the researchers used nearly 200,000 cell shapes to 

derive principal components to explain the variance in the data. The top four shape 

modes that fell out from the analysis explained over 98% of the shape variance, 

resembling harmonic modes that easily resembled the shapes of the hunting cells 

(Coyle et al., 2019). Dynamic shape patterns were identifiable by analyzing the time 
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series data of shape mode scalar weights assigned to the linear encoded neck position 

values. Whipping, steering, reorienting, and sampling behaviors were all analyzed. 

 In a paper analyzing the locomotion dynamics of Caenorhabditis elegans, they 

also took a principal component analysis approach to describe the shape of the worm 

and capture its locomotory behavior (Gyenes & Brown, 2016). With just four principal 

components, derived from a collection of 12,600 shapes, more than 90% of the variance 

in the data was explained. The two-dimensional movement of propagating bending 

waves along the nematode worm body was amenable for encoding the overall shape of 

the body. The time series data of the principal components revealed characteristic wave 

patterns revealing behaviors such as head oscillation, turning, and sinusoidal crawling. 

 The goal of my thesis was to digitize and encode shape descriptions of breast 

cancer cells to detect morphological events such as extensions, and to leverage 

principal component analysis to capture global statistics of morphological behaviors 

between different experimental conditions. Due to the wide body of literature suggesting 

the significant impact of substrate spatial complexity on cell morphology and 

trajectories, I sought to systematically assess how changing the size and spatial 

complexity of micropatterns would change the dynamics of metazoan cell morphologies. 

Additionally, I compared different cell types in a breast cancer cell panel, along with the 

model cell line for morphological and motility studies, 3T3 mouse fibroblasts, to evaluate 

how different cell lines would respond to the same types of geometric substrates. 

  

  



 

 

34 

References 
 

Akanuma, T., Chen, C., Sato, T., Merks, R. M. H., & Sato, T. N. (2016). Memory of cell 

shape biases stochastic fate decision-making despite mitotic rounding. Nature 

Communications, 7(May). https://doi.org/10.1038/ncomms11963 

Alisafaei, F., Jokhun, D. S., Shivashankar, G. V., & Shenoy, V. B. (2019). Regulation of 

nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic 

factors by cell geometric constraints. Proceedings of the National Academy of 

Sciences of the United States of America, 116(27), 13200–13209. 

https://doi.org/10.1073/pnas.1902035116 

Bickmore, W. A., & Van Steensel, B. (2013). Genome architecture: Domain organization 

of interphase chromosomes. Cell, 152(6), 1270–1284. 

https://doi.org/10.1016/j.cell.2013.02.001 

Bischofs, I. B., & Schwarz, U. S. (2003). Cell organization in soft media due to active 

mechanosensing. Proceedings of the National Academy of Sciences of the United 

States of America, 100(16), 9274–9279. https://doi.org/10.1073/pnas.1233544100 

Black, A. N., Seears, H. A., Hollenbeck, C. M., & Samollow, P. B. (2017). Rapid genetic 

and morphologic divergence between captive and wild populations of the 

endangered Leon Springs pupfish, Cyprinodon bovinus. Molecular Ecology, 26(8), 

2237–2256. https://doi.org/10.1111/mec.14028 

Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A., & Bickmore, W. A. 

(2011). Fluorescence in situ hybridization with high-complexity repeat-free 

oligonucleotide probes generated by massively parallel synthesis. Chromosome 



 

 

35 

Research, 19(7), 901–909. https://doi.org/10.1007/s10577-011-9245-0 

Brown, J. M., Green, J., Neves, R. P. Das, Wallace, H. A. C., Smith, A. J. H., Hughes, 

J., Gray, N., Taylor, S., Wood, W. G., Higgs, D. R., Iborra, F. J., & Buckle, V. J. 

(2008). Association between active genes occurs at nuclear speckles and is 

modulated by chromatin environment. Journal of Cell Biology, 182(6), 1083–1097. 

https://doi.org/10.1083/jcb.200803174 

Brückner, D. B., Fink, A., Schreiber, C., Röttgermann, P. J. F., Rädler, J. O., & 

Broedersz, C. P. (2019). Stochastic nonlinear dynamics of confined cell migration in 

two-state systems. Nature Physics, 15(6), 595–601. 

https://doi.org/10.1038/s41567-019-0445-4 

Burridge, K., Guilluy, C., Burridge, K., & Guilluy, C. (2016). Focal adhesions , stress 

fibers and mechanical tension. Exp Cell Res, 343(1), 14–20. 

https://doi.org/10.1016/j.yexcr.2015.10.029.Focal 

Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1997). 

Geometric control of cell life and death. Science, 276(5317), 1425–1428. 

https://doi.org/10.1126/science.276.5317.1425 

Coyle, S. M., Flaum, E. M., Li, H., Krishnamurthy, D., & Prakash, M. (2019). Coupled 

Active Systems Encode an Emergent Hunting Behavior in the Unicellular Predator 

Lacrymaria olor. Current Biology, 29(22), 3838-3850.e3. 

https://doi.org/10.1016/j.cub.2019.09.034 

Domanskyi, S., Hakansson, A., Meng, M., Pham, B. K., Graff Zivin, J. S., Piermarocchi, 

C., Paternostro, G., & Ferrara, N. (2022). Naturally occurring combinations of 



 

 

36 

receptors from single cell transcriptomics in endothelial cells. Scientific Reports, 

12(1), 1–17. https://doi.org/10.1038/s41598-022-09616-9 

Evans, N. D., Oreffo, R. O. C., Healy, E., Thurner, P. J., & Man, Y. H. (2013). Epithelial 

mechanobiology, skin wound healing, and the stem cell niche. Journal of the 

Mechanical Behavior of Biomedical Materials, 28, 397–409. 

https://doi.org/10.1016/j.jmbbm.2013.04.023 

Falconnet, D., Csucs, G., Michelle Grandin, H., & Textor, M. (2006). Surface 

engineering approaches to micropattern surfaces for cell-based assays. 

Biomaterials, 27(16), 3044–3063. 

https://doi.org/10.1016/j.biomaterials.2005.12.024 

Feilim Mac Gabhann and Aleksander S. Popel. (2009). Systems biology of VEGF. 

Microcirculation, 15(8), 715–738. 

https://doi.org/10.1080/10739680802095964.Systems 

Ferrara, N. (2009). Vascular endothelial growth factor. Arteriosclerosis, Thrombosis, 

and Vascular Biology, 29(6), 789–791. 

https://doi.org/10.1161/ATVBAHA.108.179663 

Freed, D. M., Bessman, N. J., Kiyatkin, A., Leahy, D. J., Lidke, D. S., Lemmon, M. A., 

Freed, D. M., Bessman, N. J., Kiyatkin, A., Salazar-cavazos, E., & Byrne, P. O. 

(2017). EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling 

Kinetics EGFR Ligands Differentially Stabilize Receptor Dimers to Specify 

Signaling Kinetics. Cell, 171(3), 683-685.e18. 

https://doi.org/10.1016/j.cell.2017.09.017 



 

 

37 

Gallo, G., & Letourneau, P. C. (2004). Regulation of Growth Cone Actin Filaments by 

Guidance Cues. Journal of Neurobiology, 58(1), 92–102. 

https://doi.org/10.1002/neu.10282 

Gallop, J. L. (2020). Filopodia and their links with membrane traffic and cell adhesion. 

Seminars in Cell and Developmental Biology, 102(November 2019), 81–89. 

https://doi.org/10.1016/j.semcdb.2019.11.017 

Guo, W., & Wang, Y. (2007). Retrograde Fluxes of Focal Adhesion Proteins in 

Response to Cell Migration and Mechanical Signals. Molecular Biology of the Cell, 

18(November), 4519–4527. https://doi.org/10.1091/mbc.E07 

Gyenes, B., & Brown, A. E. X. (2016). Deriving shape-based features for C. elegans 

locomotion using dimensionality reduction methods. Frontiers in Behavioral 

Neuroscience, 10(AUG), 1–9. https://doi.org/10.3389/fnbeh.2016.00159 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 

144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 

Hoffmann, M. D., Bubeck, F., Eils, R., & Niopek, D. (2018). Controlling Cells with Light 

and LOV. Advanced Biosystems, 2(9), 1–13. 

https://doi.org/10.1002/adbi.201800098 

Hong, B. M., Park, S. A., & Park, W. H. (2019). Effect of photoinitiator on chain 

degradation of hyaluronic acid. Biomaterials Research, 23(1), 19–26. 

https://doi.org/10.1186/s40824-019-0170-1 

Hu, K., Ji, L., Applegate, K. T., Danuser, G., & Waterman-Storer, C. M. (2007). 



 

 

38 

Differential Transmission of Actin Motion Within Focal Adhesions. Science, 

315(January), 111–116. 

Hynes, R. O., & Naba, A. (2012). Overview of the matrisome-An inventory of 

extracellular matrix constituents and functions. Cold Spring Harbor Perspectives in 

Biology, 4(1). https://doi.org/10.1101/cshperspect.a004903 

Innocenti, M. (2018). New insights into the formation and the function of lamellipodia 

and ruffles in mesenchymal cell migration. Cell Adhesion and Migration, 12(5), 

401–416. https://doi.org/10.1080/19336918.2018.1448352 

Jain, A., Betancur, M., Patel, G. D., Valmikinathan, C. M., Mukhatyar, V. J., Vakharia, 

A., Pai, S. B., Brahma, B., MacDonald, T. J., & Bellamkonda, R. V. (2014). Guiding 

intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned 

polymeric nanofibres. Nature Materials, 13(3), 308–316. 

https://doi.org/10.1038/nmat3878 

Jain, N., Iyer, K. V., Kumar, A., & Shivashankar, G. V. (2013). Cell geometric constraints 

induce modular gene-expression patterns via redistribution of HDAC3 regulated by 

actomyosin contractility. Proceedings of the National Academy of Sciences of the 

United States of America, 110(28), 11349–11354. 

https://doi.org/10.1073/pnas.1300801110 

Janmey, P. A., Fletcher, D. A., & Reinhart-King, C. A. (2020). Stiffness sensing by cells. 

Physiological Reviews, 100(2), 695–724. 

https://doi.org/10.1152/physrev.00013.2019 

Kienast, Y., Von Baumgarten, L., Fuhrmann, M., Klinkert, W. E. F., Goldbrunner, R., 



 

 

39 

Herms, J., & Winkler, F. (2010). Real-time imaging reveals the single steps of brain 

metastasis formation. Nature Medicine, 16(1), 116–122. 

https://doi.org/10.1038/nm.2072 

Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal transition: A 

cancer researcher’s conceptual friend and foe. American Journal of Pathology, 

174(5), 1588–1593. https://doi.org/10.2353/ajpath.2009.080545 

Lakhani, V., & Elston, T. C. (2017). Testing the limits of gradient sensing. PLoS 

Computational Biology, 13(2), 1–30. https://doi.org/10.1371/journal.pcbi.1005386 

Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G., & Cremer, T. (2007). Dynamic genome 

architecture in the nuclear space: Regulation of gene expression in three 

dimensions. Nature Reviews Genetics, 8(2), 104–115. 

https://doi.org/10.1038/nrg2041 

Le, H. Q., Ghatak, S., Yeung, C. Y. C., Tellkamp, F., Günschmann, C., Dieterich, C., 

Yeroslaviz, A., Habermann, B., Pombo, A., Niessen, C. M., & Wickström, S. A. 

(2016). Mechanical regulation of transcription controls Polycomb-mediated gene 

silencing during lineage commitment. Nature Cell Biology, 18(8), 864–875. 

https://doi.org/10.1038/ncb3387 

Legerstee, K., & Houtsmuller, A. B. (2021). A layered view on focal adhesions. Biology, 

10(11). https://doi.org/10.3390/biology10111189 

Lestrel, P. E. (1989). Method for analyzing complex two‐dimensional forms Elliptical 

Fourier functions. American Journal of Human Biology, 1, 149–164. 



 

 

40 

Levental, I., Georges, P. C., & Janmey, P. A. (2007). Soft biological materials and their 

impact on cell function. Soft Matter, 3(3), 299–306. 

https://doi.org/10.1039/b610522j 

Li, Q., Kumar, A., Makhija, E., & Shivashankar, G. V. (2014). The regulation of dynamic 

mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. 

Biomaterials, 35(3), 961–969. https://doi.org/10.1016/j.biomaterials.2013.10.037 

Li, S., Wong, A. H. C., & Liu, F. (2014). Ligand-gated ion channel interacting proteins 

and their role in neuroprotection. Frontiers in Cellular Neuroscience, 8(May), 3–7. 

https://doi.org/10.3389/fncel.2014.00125 

Li, Y. S. J., Haga, J. H., & Chien, S. (2005). Molecular basis of the effects of shear 

stress on vascular endothelial cells. Journal of Biomechanics, 38(10), 1949–1971. 

https://doi.org/10.1016/j.jbiomech.2004.09.030 

Mammoto, A., Huang, S., & Ingber, D. E. (2007). Filamin links cell shape and 

cytoskeletal structure to Rho regulation by controlling accumulation of 

p190RhoGAP in lipid rafts. Journal of Cell Science, 120(3), 456–467. 

https://doi.org/10.1242/jcs.03353 

Mejillano, M. R., Kojima, S., Applewhite, D. A., Gertler, F. B., Svitkina, T. M., & Borisy, 

G. G. (2004). Lamellipodial Versus Filopodial Mode of the Actin Nanomachinery. 

Cell, 118(3), 363–373. https://doi.org/10.1016/j.cell.2004.07.019 

Micalizzi, D. S., Farabaugh, S. M., & Ford, H. L. (2010). Epithelial-mesenchymal 

transition in cancer: Parallels between normal development and tumor progression. 

Journal of Mammary Gland Biology and Neoplasia, 15(2), 117–134. 



 

 

41 

https://doi.org/10.1007/s10911-010-9178-9 

Miller, C. (2000). An overview of the potassium channel family. Genome Biology, 1(4), 

1–5. https://doi.org/10.1186/gb-2000-1-4-reviews0004 

Muller, P., & Schier, A. (2011). Extracellular Movement of Signaling Molecules. 

Developmental Cell, 21, 145–158. https://doi.org/10.1016/j.devcel.2011.06.001 

Nagy, J. A., Chang, S. H., Shih, S. C., Dvorak, A. M., & Dvorak, H. F. (2010). 

Heterogeneity of the tumor vasculature. Seminars in Thrombosis and Hemostasis, 

36(3), 321–331. https://doi.org/10.1055/s-0030-1253454 

Nair, A., Chauhan, P., Saha, B., & Kubatzky, K. F. (2019). Conceptual evolution of cell 

signaling. International Journal of Molecular Sciences, 20(13), 1–44. 

https://doi.org/10.3390/ijms20133292 

Niedergang, F., & Chavrier, P. (2004). Signaling and membrane dynamics during 

phagocytosis: Many roads lead to the phagos(R)ome. Current Opinion in Cell 

Biology, 16(4), 422–428. https://doi.org/10.1016/j.ceb.2004.06.006 

Ninomiya, S., Ashihara, Y., Nakayama, Y., Oka, K., & West, R. (1998). Reduction of 

photoscission of σ bonds in polysilanes by fullerene doping. Journal of Applied 

Physics, 83(7), 3652–3655. https://doi.org/10.1063/1.366584 

Oakes, P. W., Bidone, T. C., Beckham, Y., Skeeters, A. V., Ramirez-San Juan, G. R., 

Winter, S. P., Voth, G. A., & Gardel, M. L. (2018). Lamellipodium is a myosin-

independent mechanosensor. Proceedings of the National Academy of Sciences of 

the United States of America, 115(11), 2646–2651. 



 

 

42 

https://doi.org/10.1073/pnas.1715869115 

Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 

115(20), 3861–3863. https://doi.org/10.1242/jcs.00059 

Paul, C. D., Mistriotis, P., & Konstantopoulos, K. (2017). Cancer cell motility: Lessons 

from migration in confined spaces. Nature Reviews Cancer, 17(2), 131–140. 

https://doi.org/10.1038/nrc.2016.123 

Pickersgill, H., Kalverda, B., De Wit, E., Talhout, W., Fornerod, M., & Van Steensel, B. 

(2006). Characterization of the Drosophila melanogaster genome at the nuclear 

lamina. Nature Genetics, 38(9), 1005–1014. https://doi.org/10.1038/ng1852 

Pincus, Z., & Theriot, J. A. (2007). Comparison of quantitative methods for cell-shape 

analysis. Journal of Microscopy, 227(2), 140–156. https://doi.org/10.1111/j.1365-

2818.2007.01799.x 

Polte, T. R., Eichler, G. S., Wang, N., & Ingber, D. E. (2004). Extracellular matrix 

controls myosin light chain phosphorylation and cell contractility through modulation 

of cell shape and cytoskeletal prestress. American Journal of Physiology - Cell 

Physiology, 286(3 55-3), 518–528. https://doi.org/10.1152/ajpcell.00280.2003 

Ren, Y. X., Lu, R. De, & Gong, L. (2015). Tailoring light with a digital micromirror device. 

Annalen Der Physik, 527(7–8), 447–470. https://doi.org/10.1002/andp.201500111 

Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., Kam, 

Z., Geiger, B., & Bershadsky, A. D. (2001). Focal contacts as mechanosensors: 

Externally applied local mechanical force induces growth of focal contacts by an 



 

 

43 

mDia1-dependent and ROCK-independent mechanism. Journal of Cell Biology, 

153(6), 1175–1185. https://doi.org/10.1083/jcb.153.6.1175 

Sahai, E., Wyckoff, J., Philippar, U., Segall, J. E., Gertler, F., & Condeelis, J. (2005). 

Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using 

multiphoton microscopy. BMC Biotechnology, 5, 1–9. https://doi.org/10.1186/1472-

6750-5-14 

Sánchez-Moreno, A., Guevara-Hernández, E., Contreras-Cervera, R., Rangel-Yescas, 

G., Ladrón-De-Guevara, E., Rosenbaum, T., & Islas, L. D. (2018). Irreversible 

temperature gating in trpv1 sheds light on channel activation. ELife, 7, 1–11. 

https://doi.org/10.7554/eLife.36372 

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. 

CA: A Cancer Journal for Clinicians, 73(1), 17–48. 

https://doi.org/10.3322/caac.21763 

Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., De Wit, E., Van 

Steensel, B., & De Laat, W. (2006). Nuclear organization of active and inactive 

chromatin domains uncovered by chromosome conformation capture-on-chip (4C). 

Nature Genetics, 38(11), 1348–1354. https://doi.org/10.1038/ng1896 

Solon, J., Levental, I., Sengupta, K., Georges, P. C., & Janmey, P. A. (2007). Fibroblast 

adaptation and stiffness matching to soft elastic substrates. Biophysical Journal, 

93(12), 4453–4461. https://doi.org/10.1529/biophysj.106.101386 

Spill, F., Reynolds, D. S., Kamm, R. D. ., & Zaman, M. H. (2016). Impact of the Physical 

Microenvironment on Tumor Progression and Metastasis. Curr Opin Biotechnol, 



 

 

44 

40(1), 41–48. https://doi.org/10.1177/0022146515594631.Marriage 

Strale, P. O., Azioune, A., Bugnicourt, G., Lecomte, Y., Chahid, M., & Studer, V. (2016). 

Multiprotein Printing by Light-Induced Molecular Adsorption. Advanced Materials, 

28(10), 2024–2029. https://doi.org/10.1002/adma.201504154 

Talmadge, J. E., & Fidler, I. J. (2010). The Biology of Cancer Metastasis: Historical 

Perspective. Cancer Res, 70(14), 5649–5669. https://doi.org/10.1158/0008-

5472.CAN-10-1040.AACR 

Théry, M. (2010). Micropatterning as a tool to decipher cell morphogenesis and 

functions. Journal of Cell Science, 123(24), 4201–4213. 

https://doi.org/10.1242/jcs.075150 

Théry, M., & Bornens, M. (2006). Cell shape and cell division. Current Opinion in Cell 

Biology, 18(6), 648–657. https://doi.org/10.1016/j.ceb.2006.10.001 

Théry, M., Racine, V., Pépin, A., Piel, M., Chen, Y., Sibarita, J. B., & Bornens, M. 

(2005). The extracellular matrix guides the orientation of the cell division axis. 

Nature Cell Biology, 7(10), 947–953. https://doi.org/10.1038/ncb1307 

Théry, M., Racine, V., Piel, M., Pépin, A., Dimitrov, A., Chen, Y., Sibarita, J. B., & 

Bornens, M. (2006). Anisotropy of cell adhesive microenvironment governs cell 

internal organization and orientation of polarity. Proceedings of the National 

Academy of Sciences of the United States of America, 103(52), 19771–19776. 

https://doi.org/10.1073/pnas.0609267103 

Tong, J., Qi, Y., Wang, X., Yu, L., Su, C., Xie, W., & Zhang, J. (2017). Cell 



 

 

45 

micropatterning reveals the modulatory effect of cell shape on proliferation through 

intracellular calcium transients. Biochimica et Biophysica Acta - Molecular Cell 

Research, 1864(12), 2389–2401. https://doi.org/10.1016/j.bbamcr.2017.09.015 

Totaro, A., Castellan, M., Battilana, G., Zanconato, F., Azzolin, L., Giulitti, S., 

Cordenonsi, M., & Piccolo, S. (2017). YAP/TAZ link cell mechanics to Notch 

signalling to control epidermal stem cell fate. Nature Communications, 8(May), 1–

13. https://doi.org/10.1038/ncomms15206 

Vallotton, P., Danuser, G., Bohnet, S., Meister, J.-J., & Verhovsky, A. (2005). Tracking 

Retrograde Flow in Keratocytes: News from the Front. Mol Biol Cell, 16(March), 

1223–1231. https://doi.org/10.1091/mbc.E04 

Vardhan, S., Yadav, A. K., Pandey, A. K., & Arora, D. K. (2013). Diversity analysis of 

biocontrol Bacillus isolated from rhizospheric soil of rice-wheat (Oryza sativa-

Triticum aestivum L.) at India. Journal of Antibiotics, 66(8), 485–490. 

https://doi.org/10.1038/ja.2013.10 

Wang, Yejun, Nagarajan, M., Uhler, C., & Shivashankar, G. V. (2017). Orientation and 

repositioning of chromosomes correlate with cell geometry-dependent gene 

expression. Molecular Biology of the Cell, 28(14), 1997–2009. 

https://doi.org/10.1091/mbc.E16-12-0825 

Wang, Yuan, & Gilmore, T. D. (2003). Zyxin and paxillin proteins: Focal adhesion 

plaque LIM domain proteins go nuclear. Biochimica et Biophysica Acta - Molecular 

Cell Research, 1593(2–3), 115–120. https://doi.org/10.1016/S0167-4889(02)00349-

X 



 

 

46 

Zaidel-bar, R., Itzkovitz, S., Ma, A., Iyengar, R., & Geiger, B. (2007). Functional atlas of 

the integrin adhesome. 9(8). 

 

  



 

 

47 

Chapter 2: Comparative profiling of cellular gait on adhesive 

micropatterns defines statistical patterns of activity that 

underlie native and cancerous cell dynamics. 
 

John C. Ahn1,2, Scott M. Coyle1,* 

 

 

 

Affiliations: 

1Department of Biochemistry 

2Integrated Program in Biochemistry Graduate Program 

 

University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. 

*Correspondence to: smcoyle@wisc.edu 

 

  

mailto:smcoyle@wisc.edu


 

 

48 

Abstract 

 Cell dynamics are powered by patterns of activity, but it is not straightforward to 

quantify these patterns or compare them across different environmental conditions or cell-

types. Here we digitize the long-term shape fluctuations of metazoan cells grown on 

micropatterned fibronectin islands to define and extract statistical features of cell 

dynamics without the need for genetic modification or fluorescence imaging. These shape 

fluctuations generate single-cell morphological signals that can be decomposed into two 

major components: a continuous, slow-timescale meandering of morphology about an 

average steady-state shape; and short-lived "events" of rapid morphology change that 

sporadically occur throughout the timecourse. By developing statistical metrics for each 

of these components, we used thousands of hours of single-cell data to quantitatively 

define how each axis of cell dynamics was impacted by environmental conditions or cell-

type. We found the size and spatial complexity of the micropattern island modulated the 

statistics of morphological events—lifetime, frequency, and orientation—but not its 

baseline shape fluctuations. Extending this approach to profile a panel of triple negative 

breast cancer cell-lines, we found that different cell-types could be distinguished from one 

another along specific and unique statistical axes of their behavior. Our results suggest 

that micropatterned substrates provide a generalizable method to build statistical profiles 

of cell dynamics to classify and compare emergent cell behaviors. 
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Introduction 

 Dynamic behaviors of living systems, from the macroscale to the microscale, are 

powered through patterns of activity. For a walking human, alternating right-left 

sequences of pedal contact, arm swinging, and joint articulation produce an emergent 

walking gait that enables efficient locomotion(Cicirelli et al., 2022; Roberts et al., 2017). 

Similarly, at the single-cell level, patterns of actin polymerization, filament sliding, and 

other active processes can coordinate and collaborate to manipulate cell shape to 

orchestrate complex cell behavior such as phagocytosis or motility(Castellano et al., 

2001; Cooper, 1991; Zemel & Mogilner, 2009).  

At the molecular scale, metazoan cell migration and adhesion are regulated by 

signaling through integrin receptors that physically couple the binding of extracellular 

matrix ligands from the environment to the internal cytoskeleton(Bachmann et al., 2019; 

Holly et al., 2000). At the cellular scale, multiple integrin contact sites interface with the 

specific configuration of signaling networks, cytoskeletal structures and other molecular 

systems present in the cell to influence the migratory and adhesive behaviors that 

emerge(Juliano et al., 2004). This complex interplay between sensory inputs and the 

biological pathways that process them can cause different cells placed in identical 

environments to behave in distinct ways; and identical cells in different environments to 

respond with markedly different behaviors(Yu & Bagheri, 2020). 

 However, a quantitative or statistical understanding of the patterns of 

morphological activity—or “gait” — that occur within a given cell type and how those 

patterns are modulated by the environment are generally unclear. While mathematical 

and statistical treatments of gait are commonplace tools to explore such patterns in 

macroscale biology, where they have great utility in quantifying animal behavior and in 
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diagnosing orthopedic and ergonomic pathologies, these powerful methods are less often 

applied to single cells(Hofman et al., 2020). One reason for this has been an emphasis 

on first identifying the specific molecular components and biochemical mechanisms that 

give rise to motility in these systems. A second reason is that the morphology of many 

cells, in particular adherent metazoan cells, lacks the stereotyped anatomy that is 

commonly used to perform such analyses(Marcon et al., 2011). That is, while the arms, 

legs, feet and joints of a human provide concrete and trackable points to build up a 

description of gait, an adherent metazoan cell’s geometry and sub-cellular anatomy can 

be vague or rapidly reconfigurable (Fig. 1A).  

Indeed, the most successful instances of applying gait analysis to single cells so 

far have either been done on protozoan cell-types with easily scored sub-cellular anatomy 

and structure; or cells undergoing such highly stereotyped and reproducible migration that 

the cell geometry is stable enough for such treatment, such as in migrating fish 

keratocytes(Coyle et al., 2019; Hums et al., 2016; Keren et al., 2008; Larson et al., 2022; 

Marques et al., 2018). Given the utility of gait analysis for macroscopic biological systems, 

a general method for performing gait analysis on morphologically plastic metazoan cells 

would be valuable, as the dynamic behaviors of such single cells provide the foundation 

of multicellular processes like development, wound healing, and immune responses, and 

aberrant migration and adhesion contribute to developmental disorders, metastasis, 

bleeding pathologies, and autoimmunity(Bravo-Cordero et al., 2012; Grada et al., 2017; 

Luster et al., 2005; McManus & Golden, 2005; Scarpa & Mayor, 2016; Trepat et al., 2012; 

Vesperini et al., 2021). 
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 Here we develop a general strategy for comparative profiling of cellular gait across 

different metazoan cell-types and environmental INPUTs. Our strategy is based on 

quantifying the long-term morphology dynamics of cells grown on different cell-sized 

micropattern islands of the adhesive ligand fibronectin (Fig. 1B)(Brückner et al., 2019). 

We find that cells grown on such adhesive micropatterns adopt a steady-state cell 

geometry in the time-average, but also display shape fluctuations over time about that 

mean geometry. We develop a computational strategy to digitize these cell morphology 

dynamics and map them to a polar coordinate (r,) system to produce morphological 

signals for quantitative analysis. Inspection of these signals suggests a natural 

decomposition into short timescale “events”–bursts of highly dynamic activity–and slower 

timescale meandering in shape variation. We develop specific quantitative and statistical 

metrics to describe these features and use these to build statistical profiles for specific 

cell types based on hundreds of thousands of unique measurements in response to a 

wide range of pattern INPUTs. This allowed us to classify behavior modulation induced 

by the environment in specific cell lines and identify specific axes of cell behavior that 

distinguish different cancer cell lines from one another. Because our approach relies only 

on non-fluorescent imaging of single cells and does not require genetic modification, we 

anticipate our method may be particularly well-suited to build statistical profiles of cellular 

gait in rare cell populations or patient-derived samples. Long term, the extension of gait-

analysis to metazoan single-cell biology could open up new avenues for clinical 

diagnostics and guide behavior-informed therapeutic intervention. 
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Results 

 

Cells grown on adhesive micropatterned islands exhibit fluctuations about a steady-state 

geometry that generates a dynamic morphology signal 

Because cells are active systems, they continue to generate dynamics even when 

biased towards a particular steady-state geometry. To explore the kinds of morphology 

signals individual cells generate under such conditions, we used DIC microscopy to 

continuously image individual 3T3 fibroblasts adhered to cell-sized micropatterned 

islands of fibronectin (Fig. 1C-E and Fig. S1). This approach allowed cell morphology to 

be easily scored at high temporal resolution (2 frames per minute) without the need for 

phototoxic fluorescence imaging to be used, enabling timelapse recordings greater than 

12 hours to be readily collected for individual cells.  

The time average of the image stack for an individual cell’s time series revealed 

an overall shape resembling the convex hull of the underlying micropattern (Fig. 1D). 

These time-average shapes resemble the population-average shapes seen when one 

aligns and averages thousands of different cells grown on separate patterns 

together(Théry, 2010; Théry, Pépin, et al., 2006; Théry, Racine, et al., 2006). However, at 

any moment in time, a cell was often found to be adopting a geometry that deviated 

substantially from this time-average shape. For example, while a cell grown on a four-leaf 

clover island had a diamond-like time average that contacted all four lobes of the pattern, 

that same cell was observed in shapes with 3-points of contact, shapes that appeared to 

be polarized between lobes, as well as shapes nearly identical to the time average itself 

(Fig. 1E). Similar phenomena were observed for other micropatterned islands that varied 

in size or spatial complexity (Fig. S1). These data indicate that while an adhesive 
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micropattern biases the cell to a specific cell geometry, spontaneous cellular activity leads 

to excursions that drive the cell away from this attractive basin. 

 

Digitization of morphological signals reveals short and fast timescales underlying cell 

behavior and defines statistical metrics for analysis 

The shape fluctuations we observed for individual cells adhered to micropatterns 

invite a more detailed and quantitative analysis. Because micropatterned islands are on 

the order of the size of the cell itself, both the cell geometry and the pattern are well suited 

to a description in polar coordinates. Thus, we adopted an approach wherein we digitized 

cell shape for every frame in the recording by calculating the distance r from the center 

of the pattern to the edge of the cell for every angle  between 0 and 360 degrees (Fig. 

2A). This maps the time-dynamics of the cell shape from an inconvenient cartesian (x, y) 

form into an (r,) “morphological signal”. This (r,) version of the signal is particularly 

convenient as it is easy to align across individual cells and facilitates the application of 

many visualization and statistical techniques to interrogate the content of the signal.  

Close inspection of a representative morphological signal from a 3T3 cell grown 

on a 30µm wide k2 micropattern suggests several axes to quantify and unpack in our 

analysis. First, the cell’s morphology signal can be unwrapped and displayed as a 

kymograph, providing an intuitive visualization of how a cell’s shape fluctuations are 

distributed in both space and time during the experiment (Fig. 2A). For the representative 

3T3 signal, we observe a structure in which discrete “events”–bursts of localized 

spatiotemporal activity–occur periodically throughout the signal. In between events, the 

cell’s shape continues to fluctuate but with much lower amplitude and without obvious 
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biases in its spatiotemporal character. This suggested that a cell’s morphology signal can 

be at least partially decomposed into two different components: 1) a description of the 

statistical properties of the ‘events’; and 2) a description of the global and inter-event 

shape fluctuations. 

To create metrics for characterizing the “events” within a cell’s morphological 

signal, we directly mined features of the kymograph itself (Fig. 2B). For any individual 

event, we defined an associated duration, amplitude, orientation, and width for that event 

(Figure 2C-D). Moreover, because multiple events are observed within a single 

morphological signal, individual events and their appearance over time can be used to 

define an event density (events/hour) and associated average inter-event time as well. 

To quantitatively characterize the morphological dynamics between events, we 

also inspected and analyzed the distribution of variation about the cell’s mean shape. For 

any observed shape vector, the difference between that shape and the time-average 

shape defines a residual shape (Fig S2). By aggregating these residuals across all 

timepoints and inspecting their distribution across  values, we observed that the bulk of 

observations generally fell within an envelope of values about the mean shape (Fig. 2E). 

To determine what sorts of shape vectors best described these fluctuations, we used 

principal component analysis (PCA) to identify a set of 8 shape modes that could explain 

>70% of the variance (Fig. S2). Mapping these shapes from (r,) back to the lab 

reference-frame revealed that the modes we recovered appeared to naturally correspond 

to conjugate pairs of Fourier shape modes (Fig. 2F). Generally, the lowest frequency 

modes explained the greatest proportion of the variance, describing simple polarization 

of the mean shape, with higher frequency modes playing a minor role that allows for more 
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complex geometries (Fig. 2G). This universal collection of shape modes can be used to 

describe the shape fluctuations about a cell’s steady-state geometry on any pattern or for 

any cell type (Fig. S2). 

Using these two descriptors, we can begin to see how an individual cell’s 

morphological signal emerges as an interplay between these fast events and slower 

timescale shape fluctuations. For the representative 3T3 cell, plotting the magnitude of 

the first conjugate pair of shape modes (here termed ) over time provides a 1-

dimensional timeseries approximating the cell’s morphology dynamics (Fig. 2H). Large 

spikes in the magnitude of the  parameter coincided with events seen in a cell’s 

morphology kymograph (Fig. 2H and Fig. S2). This suggested that the discrete events 

are a large contributor to the overall shape variation observed during the timecourse. 

Thus, we compared the distribution of  values during burst events to the distribution of 

 values occurring outside the events. Indeed, this partitioning revealed a low-magnitude 

 distribution outside of events, and a higher right-shifted magnitude for the  distribution 

within events (Fig. 2I and Fig. S2). As such, the relative contribution of the two  

distributions to the overall variation provides another useful metric for describing the 

underlying structure of a cell’s morphological signal. 

Having developed a strategy for digitization of a cell’s morphology signal and 

having defined metrics to classify different discrete (structure of events) and continuous 

( distributions) elements of its behavior, we will now begin to apply these quantitative 

tools to ask how a cell’s morphological signal is affected by environmental inputs or 

underlying cell-type. 
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The spatial structure of a micropattern island modulates the statistics underlying a cell’s 

morphological signal and emergent behavior 

The preceding section developed a pipeline for digitizing cell dynamics on 

micropatterned islands and associating quantitative metrics and statistics with the 

resulting emergent morphological signal. A natural question that arises is how the 

morphological signal that we observe is affected by the underlying structure of the 

micropattern island itself. Because micropatterning allows manipulation of the spatial 

structure of the fibronectin INPUT to the cell at micron length-scales, it is straightforward 

to construct patterns that emulate different environmental features a cell might experience 

naturally, such as the overall availability of ligand or the number of polarization directions 

available. Thus, we mathematically generated a family of micropatterned fibronectin 

island INPUTs using the polar equation for the harmonics of a circle (r = d + a•cos(kθ)), 

which systematically allowed us to sample different size (radius parameters, defined by a 

and d) or spatial complexities (k, number of petals). This family of patterns was well suited 

to our analysis as the structure of the pattern is defined in the same polar coordinate 

system that we use to describe the cell shape itself, allowing us to look for correlations 

between pattern structure and cell behavior (Fig. 3A). 

 We prepared adhesive fibronectin micropatterns based on a matrix of 4 different 

radii (30,40,50,60 m) and 4 different spatial complexities (k-values 2, 3, 4 and 5), 

performed extended timelapse imaging of 3T3 cells grown on each pattern, and digitized 

their morphological signals for analysis. Our 3T3 dataset contained a total of 238 cells, 

spanning 107,382 minutes, for a total number of 196,949 unique observations across the 

matrix. Because we acquired signals for multiple cells grown on each micropatterned 
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INPUT, the statistical features of their resulting signals could be pooled to generate high 

credence descriptors of the observed behaviors.  

Using the pipeline developed in the previous section, we first asked how the nature 

of fast-timescale morphological “events” were affected by the geometry of the pattern 

INPUT. We immediately noticed that the overall event density (number of events/hour) 

differed dramatically across the panel of INPUTs. For example, cells grown on 40 micron 

patterns had a very low event density–less than 1 event per hour in some cases; while in 

contrast, cells grown on larger, more-spatially complex patterns (e.g. 60 um k4 and k5) 

had much larger event densities, greater than 10 per hour in some cases (Fig. 3B-C and 

Fig. S3). Thus, the geometry of the adhesive micropattern appeared to be giving rise to 

markedly different behaviors in the 3T3 cells. 

To unpack these observations further, we more closely inspected how specific 

statistical features of these morphological events changed as a function of size and 

spatial complexity. To help compare the changes we observed, we used the statistics we 

collected from cells grown on 30 um k2 patterns as a reference point. The associated raw 

data and raw metrics, which provide a complementary view into this analysis, are included 

in Fig. S3. With respect to “event  density”, we observed an initial small dip in density as 

cells moved from 30 um to 40 um patterns (k2,3,4,5 Welch p-values = <0.01, 0.20, 0.01, 

0.03), before increasing as the radius increased to 50 (k2,3,4,5 Welch p-values = 0.39, 

0.04, 0.25, 0.13) and then 60 um (k2,3,4,5 Welch p-values = 0.16, 0.32, <0.01, 0.11) (Fig. 

3C-D). This trend held regardless of the underlying spatial complexity (k-value) of the 

pattern, although the increase was more pronounced for patterns with high k-value 

compared to those with lower k-value. This check-mark shaped response to pattern 
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radius we observed appears to qualitatively agree with the extent to which 3T3 cells were 

able to fully spread across the micropattern: on 30 micron patterns most cells were 

incompletely spread; on 40 micron patterns most cells were fully spread with little 

remaining micropattern available to adhere to; and on 50- and 60-micron patterns, cells 

were fully spread but with additional adhesive surface available to explore or sample. 

In addition to event density, we observed that the nature of the pattern (radius and 

spatial complexity) modulated statistical features of individual events themselves. With 

respect to radius, the average lifetime of events was longest for 50  micron patterns 

(k2,3,4,5 Welch p-values = <0.01, <0.01, <0.01, <0.01; compared to the 30 um k2 

distribution), followed by 40  micron (k2,3,4,5 Welch p-values = 0.32, <0.01, 0.08, <0.01; 

compared to the 30 um k2 distribution), 60 (Welch p-values = <0.01, 0.09, <0.01, 0.10; 

compared to the 30 um k2 distribution) micron and finally the shortest-lived events for 30 

microns (k2,3,4,5 Welch p-values = n.a., 0.55, 0.37, 0.50 compared to 30 um k2) (Fig. 

3E-F). The span parameter of these events—how wide the morphological extension 

was—varied substantially across the different patterns, with 40 micron patterns inducing 

significantly narrower event excursions (k2,3,4,5 Welch p-values = <0.01, <0.01, <0.01, 

<0.01; compared to the 30 um k2 distribution) compared to 30,50, or 60 micron patterns 

(Fig. 3G-H). These results mirror our earlier observation that 3T3 cells are more event-

dense when incompletely spread (30 micron) or have excess adhesive ligand available 

(50 and 60 microns).  Effects of a pattern’s spatial complexity on these event statistics 

were less obvious, but still detectable in some cases. For example, higher k-value 

patterns (more petals) were generally associated with shorter lived events. However other 
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parameters like the “span” of the pattern were not obviously influenced by the k-

parameter.  

Given these observations, we wondered whether the spatial structure of the 

pattern might have stronger influence on the spatial orientation of events as opposed to 

their general features. To explore this, we projected the orientation of an event (defined 

as the θ values associated with the span of an event) onto the underlying structure of the 

micropattern to create a histogram for visualizing event alignment (Fig. 3I-J). Inspection 

of these histograms qualitatively suggested that, for cells with high event densities, the 

events were more spatially aligned with the micropattern as the size of the pattern 

increased and the spatial complexity decreased.  

To analyze this quantitatively, we computed an alignment score based on event 

centroid angular overlap with the underlying micropattern and binned the scores for each 

pattern together (Fig. 3I-J). Because the 40 micron patterns induced very few events, 

their alignment scores were too low confidence and were excluded from detailed analysis. 

Nonetheless, a clear trend towards better event/pattern alignment was observed for 

increasing pattern radius (k2 at 50µm, k3 at 50µm, k2 at 60µm, k3 at 60µm Welch p-

values = <0.01, <0.01, 0.05, 0.09; compared to the 30 um k2 distribution). Moreover, a 

decrease in alignment score was observed as the spatial complexity of the pattern 

increased. An intuitive hypothesis for the interpretation of these data is that a cell’s ability 

to effectively orient along a micropattern reflects a sort of spatial resolution inherent to the 

cell. That is, events become better oriented if an open area of adhesive ligands is large 

enough to polarize along, and the combination of spatial complexity and pattern radius 

determines whether or not that area requirement is being satisfied. By probing both radius 
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and spatial complexity independently, our micropatterning assay was able to identify this 

inflection point for the 3T3 cells, which could be different depending on cell-type or cell 

physiology. 

 Finally, we examined how the statistics describing cell behavior between events—

that is slow-timescale meandering—was affected by the micropattern. Using our universal 

collection of PCA shape modes (Fig. 2F and Fig. S2), we fit our observations and 

decomposed the global  parameter distribution associated with each micropattern 

INPUT into its associated event and non-event distributions (Fig. 3K-3L). We found that 

although the event  distribution differed considerably across different pattern INPUTs—

which makes sense given the differences in event statistics we described above—we 

observed only very minor differences to the inter-event  distribution. That is, for the 3T3 

cells we inspected, the statistics describing the slow timescale meandering behavior 

between events were generally similar regardless of the pattern tested. 

Taking together, our query of 3T3 behavior across a range of different 

micropatterned INPUTs suggests that the structure of the micropattern INPUT largely 

modulates the event, but not inter-event, statistics underlying the cell’s emergent 

morphology signal. Properties such as event lifetime, frequency, span, and orientation 

are affected by the nature of the pattern, with size (pattern radius) appearing to play a 

larger role than spatial complexity (petal number). In contrast, the overall morphological 

fluctuations and shape meandering occurring between these events was not strongly 

affected. Thus, using adhesive micropatterns, we can build a statistical profile that 

captures a given cell-type’s response to a range of different environmental INPUTs. 
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Profiling cancer-cell lines on micropatterned islands identifies different statistical axes 

associated with divergent morphological signals and cell dynamics 

The preceding section demonstrated that a single cell-type can display a complex 

set of morphological responses to a defined set of structured micropattern INPUTs, and 

that these differences can be used to build a statistical profile for how pattern INPUTs are 

mapped into morphological signal OUTPUTs. Given this, we next wondered whether our 

assay could be used to profile different cell-types for comparison, and whether we could 

identify specific statistical axes defining the key differences underlying divergent 

behaviors between cell-types. To this end, we selected four cell lines—Hs578t, BT549, 

MDA-MB-436, and MDA-MB-231—from an established panel of triple negative breast 

cancer cell lines with mesenchymal or luminal morphology for investigation(Lehmann et 

al., 2011). Some of these lines, such as MDA-MB-231, have been previously noted for 

their high levels of aberrant motility and are frequently termed “hyper-metastatic” in the 

literature(Sun et al., 2016). 

 We performed extended timelapse imaging for each cell line grown on adhesive 

fibronectin micropatterns with a radius of 50 microns and 4 different k values (petal 

numbers 2, 3, 4 and 5) (Fig. 4A). This subset showed a good range of statistical diversity 

in the 3T3 experiments, making it a natural starting point for comparison across different 

cell lines. Single-cell morphology signals were digitized as before, and signals from 

pattern-matched cells and cell-lines were binned for statistical analysis (Fig. 4B). In 

parallel we analyzed 3T3 cells grown on identical conditions to use as a non-cancerous 

“out-group” reference cell-line for comparison. Our cell panel dataset contained a total of 

396 cells, spanning >218,000 minutes, for a total number of >247,000 unique 



 

 

62 

observations across the matrix. The associated raw data and statistics have been 

included in Fig. S4. Different cancer-cell lines from the panel exhibited obvious qualitative 

differences in behavior (Fig. 4B). For example, the morphology signal kymographs for 

MDA-MB-231 had high levels of fast timescale activity, while MDA-MB-436s often 

exhibited extended periods of slow activity.  

Similar to our earlier analysis of the 3T3s, we used our quantitative statistical 

metrics for describing events and global shape variation to unpack the differences in 

morphological behavior for the different cancer-cell lines across specific parameters. We 

found that although all of these cell lines were associated with metastatic breast cancer, 

they could be distinguished from one another on the basis of specific statistical metrics 

that were uniquely affected within each line. For some cell lines, these differences 

manifested specifically in the nature of the statistics of fast timescale events. For example, 

MDA-MD-436 cells had unusually long events (k2,3,4,5 Welch p-values = 0.021, <0.01, 

<0.01, 0.186; compared to 3T3 30 um k2 distribution) and high inter-event waiting times 

(k2,3,4,5 Welch p-values = <0.01, <0.01, <0.01, <0.01; compared to 3T3 30 um k2 

distribution), meaning that events occurred less frequently but each event was markedly 

longer in duration (Fig. 4C-F). In another example, we found that while some cell-lines 

produced larger “span” events for certain k-value patterns, BT549 cell lines were unique 

in that they produced events with significantly larger “span” than the other cell lines across 

all k-values tested (k2,3,4,5 Welch p-values = <0.01, <0.01, <0.01, <0.01; compared to 

3T3 30 um k2 distribution) (Fig. 4G-H). This means that the nature of the BT549 events 

makes them statistically wider and bulkier on average than any of the other cell-lines we 

examined. 
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In other cases, global and inter-event statistical descriptors, like the  parameter 

distribution, could capture differences between cell lines. For example, MDA-MB-231s 

had a significantly higher average non-event  parameter than any of the other cell lines 

we examined (k2,3,4,5 Welch p-values = <0.01, <0.01, <0.01, <0.01; compared to 3T3 

30 um k2 distribution) (Fig. 4K-L). This means that MDA-MB-231s have a greater 

baseline shape variation than the other cell-lines tested, even when no events are 

occurring. Indeed, while MDA-MB-231s often had fewer and shorter events than other 

cell-lines (k2,3,4,5 Welch p-values = <0.01, <0.01, <0.01, <0.01; compared to 3T3 30 um 

k2 distribution), they nonetheless had the highest overall shape variation of any cell line 

we inspected. Interestingly, when MDA-231s did perform events, they generally polarized 

the cell strongly along the orientation of the micropattern structure (k2,3,4,5 Welch p-

values = 0.02, 0.04, 0.813, 0.05; compared to 3T3 30 um k2 distribution) (Fig. 4J). Thus, 

the statistical profile of MDA-MB-231s that emerges is one in which a high level of steady-

state shape fluctuation is punctuated by highly polarized events. These observations are 

consistent with the behavior of MDA-231s grown on narrowly-connected two-island 

patterns24, where they exhibit large shape fluctuations and high rates of translocation 

between the two islands. 

Taken together, our results indicate that the morphology signals emitted by 

different cell-lines grown across different micropatterned INPUTS can generate statistical 

profiles that can be used to describe and distinguish the behaviors of different cell types. 

Although all the cells tested were derived from malignant triple-negative breast cancers, 

the statistics underlying their dynamic morphologies could nonetheless be markedly 

different. These differences manifested not only as changes in magnitude of some 
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common statistics, but also in terms of which parameters were specifically affected, and 

even in terms of which timescales (fast events versus slow meandering) were affected. 

We hypothesize that the underlying internal configuration inherent to each cell-type we 

tested can manifest as changes to a specific statistical axis underlying a cell’s morphology 

signal, and careful analysis of these signals can identify the specific axes that are 

changed.  

 
Discussion 

Here, we have used cell-sized adhesive micropatterns as a platform for building 

statistical profiles describing the patterns of activity underlying a cell’s emergent 

dynamics. We found that by biasing the cell’s steady-state shape to a specific geometry, 

micropatterns provided a straightforward way to digitize the shape fluctuations about this 

steady-state shape for statistical analysis. By mapping these dynamics onto a polar 

coordinate description, we could treat a cell’s morphology signal as a kymograph in the 

(r,) reference frame and analyze its content in this space. This revealed a natural 

partitioning of the dynamics into short-timescale discrete “events” and a slower timescale 

meandering of shape between these events. We developed a set of metrics to describe 

the statistical features of these fast morphology events (event frequency, lifetime, span, 

alignment) and inter-event shape fluctuations (PCA-derived alpha distributions).  

We used these metrics to ask how morphological signal was affected by the 

geometrical features of the pattern INPUT, using 3T3s as a test cell line. This revealed 

that 3T3 event statistics were strongly modulated by different INPUT patterns, but that 

the baseline shape fluctuations and global meandering were generally unaffected. We 

then extended this approach to build statistical profiles for members of a panel of triple-
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negative breast cancer cell lines. This revealed that different metastatic breast cancer cell 

lines could exhibit aberrant dynamics with markedly different statistical underpinnings. 

For example, MDA-MB-231s showed large shifts to its global shape variation parameters, 

whereas MDA-MB-436s were largely defined by changes to the event structure, 

producing much longer and more infrequent events. Thus, our method provides a means 

by which the statistical features of single-cell behavior can be efficiently digitized, 

aggregated, and compared for analysis. 

The approach we take here treats the emergent behavior of a cell–the dynamics 

to its shape envelope–as an OUTPUT arising from an extraordinarily complex set of 

internal molecular processes that can react to specific features of the pattern INPUT. By 

choosing metrics which are based on DIC microscopy and not rooted in fluorescence-

based signals or detailed molecular markers, our approach avoids phototoxicity and can 

yield timeseries data constrained only by interference from cell-division events. In this 

way, our approach may be especially useful for building statistical profiles of cell-lines 

when only a small number of cells are available, or genetic modification is infeasible or 

unwanted; for example, in patient-derived samples or rare populations of primary cells.  

At the same time, the lack of molecular detail explaining the biochemical origin for 

the statistical phenotypes we observe at present limits the scope of our interpretation of 

these data. For example, what is the molecular basis for longer event lifetimes in some 

cells versus changes to global shape fluctuation seen in others? While many specific 

hypotheses could be possible, such as RhoGEF activity(Pascual-Vargas et al., 2017; 

Rossman et al., 2005), integrin expression level and repertoire(Barczyk et al., 2010; 

Seetharaman & Etienne-Manneville, 2018), or metabolite availability and usage(Choo et 
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al., 2023; D’Anselmi et al., 2011), the number of genomic differences between the 

different cell lines we inspected is too great to pinpoint any specific cause at this 

stage(Kim et al., 2016; Vandin et al., 2011). However, the approach we have developed 

here will be well-suited to future studies aimed at identifying specific molecular drivers to 

each statistical axis we identify. For example, a CRISPRi/a screen(Bock et al., 2022; 

Doench, 2018)  in an otherwise isogenic cell-line could be used to identify genes whose 

dysregulation is associated with higher rates of shape fluctuation, longer event lifetimes, 

or greater event frequencies.  

Long-term, we anticipate this approach could be used to map statistical profiles 

built based only on morphology dynamics to an associated set of genetic legions that are 

commonly associated with that aberrant phenotype. Such knowledge could help pinpoint 

specific causal drivers of metastasis operating in patient-derived cell-lines that are often 

not immediately obvious from a catalog of genome mutations(Riquet et al., 2017; Urbach 

et al., 2012; Zhang et al., 2018). As such, a cell’s own dynamic behavior may, through its 

statistics, have the potential to report out the anomalies and pathologies lurking within.  
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Experimental Procedures 

 

Micropatterning. We employed the light-induced molecular adsorption (LIMAP) method 

for micropatterning (Strale et al., 2016). 35mm Glass bottom petri dishes (MatTek P35G-

1.5-20-C) were exposed with oxygen plasma in preparation for passivation. For 

adsorption of the anti-fouling coating agent, 0.1 mg ml-1 PLL(20)-g[3.5]-PEG(2) (SuSoS 

CHF9,600.00) solution was added for 1 hour. The dish was washed five times with Milli-

Q purified water. A 1:5 ratio of PLPP photoinitator gel to 70% ethanol (Alveole) was added 

to the microwell and dried at room temperature for 1 hour. To create the micropatterns, 

the well was exposed to UV light at a dosage of 30mJ mm-2, and excess gel was washed 

away with 5 Milli-Q purified water washes and 5 Dulbecco’s Phosphate Buffered Saline 

(DPBS) solution (VWR L0119-0500) washes, with the last volume of DPBS left to incubate 

for 5 minutes to rehydrate the substrate. The wells were then incubated with 10µg ml-1 

fibronectin (Sigma-Aldrich F1141-5MG) and 10µg ml-1 NeutrAvidin (Invitrogen 84607) for 

five minutes and then washed 5 times with DPBS. PEGs were added at 0.1 mg ml-1 for 

another 1 hour incubation before being finally washed with water for 5 times. 

 

Cell culture. 3T3 mouse fibroblast cells (ATCC CRL-1658) were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Sigma-Aldrich D6429) with 10% fortified calf bovine 

serum (Cytiva Life Sciences SH30396.03) and 1% penicillin-streptomycin (ThermoFisher 

15140122). Cells were grown in a 5% CO2 incubator at 37ºC up to 90% confluence before 
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being washed and passaged. Adherent cells were washed with PBS at each passage and 

detached from the flask surface by incubating with TrypLE (ThermoFisher Scientific 

12604021) for 5-10 minutes at 37ºC. TrypLE was quenched with fresh DMEM media, and 

cells were resuspended and plated into new flasks with fresh DMEM. The following breast 

cancer cell lines were all cultured in DMEM with 10% fetal bovine serum (Fisher Scientific 

SH30396.03) and 1% penicillin-streptomycin in a 5% CO2 atmosphere at 37ºC: MDA-MB-

231 (ATCC HTB-26), MDA-MB-436 (ATCC HTB-130), Hs 578T (ATCC HTB-126), and 

BT-549 (HTB-122). 

 

Microscopy. Measurements were obtained in time-lapse mode for up to 16 hours on a 

Nikon Eclipse Ti2 microscope. Throughout the measurements, samples were incubated 

in a Tokai Stage Top Incubator that maintained a temperature of 37ºC and an atmosphere 

of 5% CO2. Bright-field images were acquired every 30, 40, or 60 seconds. 

 

Image analysis. Custom python scripts for specific image-analysis workflows are 

outlined below. 

 

Encoding polar descriptions of cell outlines. Binary masks of the cells were calculated 

using a canny filter from python OpenCV packages. The center point of each cell was 

identified, from which a 360º radial sweep was conducted, resulting in a 2D array of pixel 

intensities for each surveyed degree along the length of the pixel survey radius. From 

each surveyed 1D array of pixel intensities, the radius of the cell outline was calculated 
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based on a 95% threshold in which 95% of all the pixels with maximum intensities were 

located. 

 

Kymograph analysis. 2D arrays of cell radii along theta values were collected for each 

point of time for each cell over the length of their microscopy time course. Heatmaps of 

these arrays were generated using the matplotlib.pyplot package, from which contours 

were identified using OpenCV packages. These contours were identified as 

morphological events and used to calculated parameters such as event frequency, 

lifetime, span, and more. 

 

Principal component analysis. Deviations from the rolling mean value for each cell at each 

frame of time were collected for all the experimental conditions from the 3T3 cell 

experiments. These were compiled and used to calculate the shape modes using 

principal component analysis. The shape modes were then used to calculate scalar 

weights fits based on the cell outline radii. 
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Figures 
 

 

 

 

 

Figure 1. Cells grown on adhesive micropattern islands undergo dynamic shape 

fluctuations about an average cell shape.  

 

(a) Schematic for how gait analysis is used to track patterns of activity in macroscopic 

biological systems but is difficult to extend to metazoan cells owing to a lack of landmarks 

and stereotyped geometry.  
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(b) Schematic for strategy of using adhesive micropatterns to bias cell geometry into a 

configuration suitable for single-cell shape analysis.  

 

(c) Fluorescence microscopy image of a fibronectin adhesive micropattern used as a 

substrate for single-cell gait analysis. The intensity indicates the position on the substrate 

where the fibronectin ligand has adhered.  

 

(d) Time-average image produced from an image stack of a 3T3 cell grown on the 

adhesive micropattern in (c) over a 12 hours period.  

 

(e) Representative images from the time-series used to produce the time-average in (d). 

The cell geometry is observed to fluctuate substantially from the time-average shape 

throughout the timecourse.  
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Figure 2. Digitization of single-cell morphology signals defines statistics for fast 

and slow timescale contributions to shape dynamics. Blablablabla. 
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(a) Workflow for digitization of cell morphology signals generated by cells grown on 

adhesive micropatterns, as applied to a representative cell. Using the center point of the 

micropattern as an origin, the cell shape is mapped from cartesian coordinates to an r,q 

description that describes the cell’s radius at each possible angle from 0-360 degrees. By 

performing this for each image in the time-series, a compact description of the cell’s 

geometry over time is obtained. The content of these timeseries can be intuitively viewed 

as a kymograph, which shows bursts of dynamic activity we term ‘events’, within the cell’s 

morphological signal. 

 

(b) Visualization of a single “event” from the kymogrpah shown in (a), showing the contour 

of the cell over time. For this event, it clearly corresponds to a large extension of the cell 

geometry followed by retraction. 

 

(c) Structure of the event from (b) using the kymograph as a reference point. In the r,q 

reference frame the events appears as a burst of activity with an easily scored lifetime, 

amplitude, and orientation. 

 

(d) Two-dimensional representation of the profile of the event from (c) by projecting the 

data along its central angle.  

 

(e) Two-dimensional histogram depicting the distribution of shape residuals (observed 

shape – mean shape) for the cell from (a). Most observations fall within a 10 micron 

envelope about the cell’s steady state geometry. 
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(f) Real-space depictions of the top 4 conjugate pair shape modes obtained by performing 

PCA analysis on the data in (e). Colors depict the effect on shape arising by adding (red) 

or subtracting (blue) the weighted shape mode from the average shape. Note that the 

PCA-derived shapes correspond to increasingly higher-order Fourier shape modes 

(1,2,3,4 order depicted). 

 

(g) Histogram showing the percentage of shape variance explained by each individual 

shape mode obtained by PCA decomposition of the data in (e).  The top 8 shape modes 

describe >80% of the observed shape variance in the dataset and were selected to use 

for weight calculation, fitting, and dimensionality-reduction. 

 

(h) 1-dimensional representation of the morphological signal from (a) using only the 

weight amplitude (denoted as ) for the first conjugate pair of shape modes in (f). Points 

colored in pink correspond to time points associated with “events” from the kymograph in 

(a). Note that high amplitude shape mode usage appears to correspond to when events 

occur. 

 

(i) Partitioning of the overall distribution of  values from (h) into “event” and “inter-event” 

timepoints. Inter-event distributions have low  values compared to a right-shifted 

distribution for the event distribution.  
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Figure 3. The spatial structure of a micropattern island modulates the statistical 

features of a cell’s dynamic morphology signal.  

 

(a) Schema depicting experimental design for interrogating effects of micropattern 

geometry on 3T3 morphology signals. 3T3 cells were imaged on different micropatterns 

defined by the harmonics of a circle, such that the spatial complexity and radius of the 

pattern were independently controlled. The resulting single-cell tracks were digitized for 

analysis using the workflow from Fig. 2 and aggregated by INPUT pattern for statistical 

comparison between different conditions. 

 

(b) Examples of divergent morphological signals (presented both as kymographs and  

time courses) observed when 3T3 cells were grown on different micropattern substrates. 

Top: a highly dynamic morphological signal observed from a cell grown on a 30um k3 

pattern. Bottom: a cell with very little dynamic content from a cell grown on a 40 um k2 

pattern. 

 

(c) Relative “event density” statistics across the panel of INPUT patterns, using the 30 um 

k2 pattern as the reference for comparison by the “shared control bootstrapping” method.  

 

(d) Plot of the data in (c) showing the trends observed when micropattern radius is varied 

for each level of spatial complexity (k2, k3, k4, k5). Values and error bars derived using 

the “shared control bootstrapping” method (see also Fig. S3).  
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(e) Relative “event lifetime” statistics across the panel of INPUT patterns, using the 30 

um k2 pattern as the reference for comparison by the “shared control bootstrapping” 

method.  

 

(f) Plot of the data in (e) showing the trends observed when micropattern radius is varied 

for each level of spatial complexity (k2, k3, k4, k5). Values and error bars derived using 

the “shared control bootstrapping” method (see also Fig. S3).  

 

(g) Relative “event span” statistics across the panel of INPUT patterns, using the 30 um 

k2 pattern as the reference for comparison by the “shared control bootstrapping” method.  

 

(h) Plot of the data in (g) showing the trends observed when micropattern radius is varied 

for each level of spatial complexity (k2, k3, k4, k5). Values and error bars derived using 

the “shared control bootstrapping” method (see also Fig. S3).  

 

(i) Relative “pattern alignment” statistics for an event across the panel of INPUT patterns, 

using the 30 um k2 pattern as the reference for comparison by the “shared control 

bootstrapping” method.  

 

(j) Plot of the data used to generate (i) projected onto the underlying shape of the 

micropattern for direct visualization of event-to-pattern alignment.  
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(k) “Global shape fluctuation” statistics (from  distributions) across the panel of INPUT 

patterns, using the 30 um k2 pattern as the reference for comparison by the “shared 

control bootstrapping” method.  

 

(l) Partitioning of the overall distribution of  values from (k) into “event” and “inter-event” 

timepoints across the panel of different INPUT patterns. 
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Figure 4. Profiling cancer-cell lines on micropatterned islands identifies different 

statistical axes associated with divergent morphological signals and cell 

dynamics. 

 

(a) Schema depicting experimental design for building statistical profiles for different 

cancer cell lines based on the morphology signals they generate when adhered to 

different micropattern geometries. Cell lines were imaged on 50 um micropatterns across 

4 levels of spatial complexity (k2, k3, k4, k5). The resulting single-cell tracks were digitized 

for analysis using the workflow from Fig. 2 and aggregated by cell-type and INPUT pattern 

for statistical comparison between different conditions. 

 

(b) Examples of divergent morphological signals (presented both as kymographs and  

time courses) observed when different cancer cells are grown on different micropattern 

substrates. Top: an example morphological signal observed from a MDA438 cell Bottom: 

an example morphological signal from an MDA231 cell. 

 

(c) Relative “interevent time” statistics across the panel of cell lines and input patterns, 

using the  k2 3T3 data as an outgroup reference for comparison by the “shared control 

bootstrapping” method.  

 

(d) Plot of the data in (c) showing the trends observed when micropattern spatial 

complexity is varied for each cell line tested. Values and error bars derived using the 

“shared control bootstrapping” method (see also Fig. S4).  
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(e) Relative “event lifetime” statistics across the panel of cell lines, using the k2 3T3 data 

as an outgroup reference for comparison by the “shared control bootstrapping” method.  

 

(f) Plot of the data in (e) showing the trends observed when micropattern spatial 

complexity is varied for each cell line. Values and error bars derived using the “shared 

control bootstrapping” method (see also Fig. S3).  

 

(g) Relative “pattern alignment” statistics across the panel of cell lines, using the 3t3 k2 

pattern as the reference for comparison by the “shared control bootstrapping” method.  

 

(h) Plot of the data in (g) showing the trends observed when micropattern spatial 

complexity is varied for each cell line. Values and error bars derived using the “shared 

control bootstrapping” method (see also Fig. S3).  

 

(i) Relative “pattern alignment” statistics for an event across the panel of cell lines, using 

the 3t3 k2 pattern data as the reference for comparison by the “shared control 

bootstrapping” method.  

 

(j) Plot of the data used to generate (i) projected onto the underlying shape of the 

micropattern for direct visualization of event-to-pattern alignment across the different cell 

lines tested.  
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(k) “Global shape fluctuation” statistics (from  distributions) across the panel of INPUT 

patterns, using the 3t3 k2 pattern data as the reference for comparison by the “shared 

control bootstrapping” method.  

 

(l) Partitioning of the overall distribution of  values from (k) into “event” and “inter-event” 

timepoints across the panel of different cell lines. 
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Figure S1. Additional data: cells grown on adhesive micropattern islands undergo 

dynamic shape fluctuations about an average cell shape.  

 

(a) Schematic for how statistical gait analysis is difficult to apply to metazoan cells owing 

to a lack of landmarks and stereotyped geometry.  

 

(b) Snapshots of 3T3 cells from an overnight imaging experiment. A wide array of shapes 

and morphologies are observed, making it difficult to quantify and align the dynamics 

between cells. 

 

(c) Time-average image produced from an image stack of a 3T3 cell grown on a k3 

fibronectin micropattern over a 12 hours period, and representative images from the time-

series. The cell geometry is observed to fluctuate substantially from the time-average 

shape throughout the timecourse. 

 

(d) Time-average image produced from an image stack of a 3T3 cell grown on a k6 

fibronectin micropattern over a 12 hours period, and representative images from the time-

series. The cell geometry is observed to fluctuate substantially from the time-average 

shape throughout the timecourse. 
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Figure S2. Additional data: PCA decomposition and shape-mode fitting. 

 

(a) Schematic for how a cell’s morphological shape dynamics will be described as a 

deviation from a mean shape in terms of the weights of a collection of shape modes.  

 

(b) Covariance matrix derived from all morphological observations collected. 

 

(c) r, representation of the top 8 PCA-derived shape modes. Note that pairs of conjugate 

shape modes occur suggesting one can treat these pairs as a fundamental shape mode 

with an associated magnitude  and phase . 

 

(d) Schematic for how the magnitude  and phase  are computed from a pair of 

conjugate shape modes. By treating their combination PCA1+PCA2 as a vector, its 

magnitude and phase are computed geometrically. 

 

(e) Comparison of PCA-reduced transform of a representative cell’s morphological signal 

to its higher-dimensional kymograph. Time courses for the  parameter, and phase  are 

shown superimposed on the same timescale as the morphological signal kymograph. 

Note that when high shape mode usage occurs (high  parameter) this leads to a 

stabilization of the phase . Note also that the portions of the timecourse with high  

parameter appear to correlate with events in the kymograph. 
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(f) Results of applying automated peak identification to the PCA-reduced a parameter 

timecourse. Peaks are denoted with an orange x. 

 

(g) Correlation between appearance of PCA-derived peaks in the  parameter timecourse 

with events in the kymograph. 
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Figure S3. Additional data: the spatial structure of a micropattern island modulates 

the statistical features of a cell’s dynamic morphology signal. 

 

(a) Schema depicting experimental design for interrogating effects of micropattern 

geometry on 3T3 morphology signals. 3T3 cells were imaged on different micropatterns 

defined by the harmonics of a circle, such that the spatial complexity and radius of the 

pattern were independently controlled. The resulting single-cell tracks were digitized for 

analysis using the workflow from Main Text Fig. 2 and Fig. 2S and aggregated by INPUT 

pattern for statistical comparison between different conditions. 

 

(b) Raw event count density (events per hour) derived from aggregating the data for each 

of the micropattern geometries tested. 

 

(c) Additional raw data and visualizations of the “event density” distributions from Main 

Text Fig. 3. Top: raw “event density” distributions across the panel of INPUT patterns 

tested. Bottom: transformed distributions using the 30 um k2 pattern as the reference for 

comparison by the “shared control bootstrapping” method. 

 

(d) Additional raw data and visualizations of the “inter-event time” distributions from Main 

Text Fig. 3. Top: raw “inter-event time” distributions across the panel of INPUT patterns 

tested. Bottom: transformed distributions using the 30 um k2 pattern as the reference for 

comparison by the “shared control bootstrapping” method.  
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(e) Additional raw data and visualizations of the “event lifetime” distributions from Main 

Text Fig. 3. Top: raw “event lifetime” distributions across the panel of INPUT patterns 

tested. Bottom: transformed distributions using the 30 um k2 pattern as the reference for 

comparison by the “shared control bootstrapping” method. 

 

(f) Additional raw data and visualizations of the “event span” distributions from Main Text 

Fig. 3. Top: raw “event span” distributions across the panel of INPUT patterns tested. 

Bottom: transformed distributions using the 30 um k2 pattern as the reference for 

comparison by the “shared control bootstrapping” method.  

 

(g) Additional raw data and visualizations of the “pattern alignment” distributions from 

Main Text Fig. 3. Top: raw “pattern alignment” score distributions across the panel of 

INPUT patterns tested. Bottom: transformed distributions using the 30 um k2 pattern as 

the reference for comparison by the “shared control bootstrapping” method.  
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Figure S3. Additional data: profiling cancer-cell lines on micropatterned islands 

identifies different statistical axes associated with divergent morphological signals 

and cell dynamics. 

 

(a) Left: schema depicting experimental design for building statistical profiles for different 

cancer cell lines based on the morphology signals they generate when adhered to 

different micropattern geometries. Cell lines were imaged on 50 um micropatterns across 

4 levels of spatial complexity (k2, k3, k4, k5). The resulting single-cell tracks were digitized 

for analysis using the workflow from Fig. 2 and aggregated by cell-type and INPUT pattern 

for statistical comparison between different conditions. Right: raw event count density 

(events per hour) derived from aggregating the data for each of the micropattern 

geometries and cell lines tested. 

 

(b) Additional raw data and visualizations of the “event density” distributions from Main 

Text Fig. 4. Top: raw “event density” distributions across the panel of INPUT patterns 

tested. Bottom: transformed distributions using the 30 um k2 pattern as the reference for 

comparison by the “shared control bootstrapping” method. 

 

(c) Additional raw data and visualizations of the “inter-event time” distributions from Main 

Text Fig. 4. Top: raw “inter-event time” distributions across the panel of INPUT patterns 

tested. Bottom: transformed distributions using the 30 um k2 pattern as the reference for 

comparison by the “shared control bootstrapping” method.  
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(d) Additional raw data and visualizations of the “event lifetime” distributions from Main 

Text Fig. 4. Top: raw “event lifetime” distributions across the panel of INPUT patterns 

tested. Bottom: transformed distributions using the 30 um k2 pattern as the reference for 

comparison by the “shared control bootstrapping” method. 

 

(e) Additional raw data and visualizations of the “event span” distributions from Main Text 

Fig. 4. Top: raw “event span” distributions across the panel of INPUT patterns tested. 

Bottom: transformed distributions using the 30 um k2 pattern as the reference for 

comparison by the “shared control bootstrapping” method.  

 

(f) Additional raw data and visualizations of the “pattern alignment” distributions from Main 

Text Fig. 4. Top: raw “pattern alignment” score distributions across the panel of INPUT 

patterns tested. Bottom: transformed distributions using the 30 um k2 pattern as the 

reference for comparison by the “shared control bootstrapping” method.  
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Abstract 

 The MinDE reaction diffusion system generates oscillations of spatiotemporal 

patterns, which in bacterial systems defines poles and the center of the cell for division. 

Previous work in the Coyle lab implanted the bacterial MinDE system in mammalian 

cells as a biosynthetic circuit, enabling for orthogonal control of generating 

spatiotemporal patterns that can be linked to native processes for engineering desired 

outputs. It was established how the ratio of MinDE and the biochemical structure of the 

active sites between the two proteins played a large role in modulating the frequency of 

the MinDE oscillations. However, it was never established how the shape of the cell 

could influence the patterns that arise. To fill that gap, we plated mammalian cells with 

transduced MinDE systems onto micropatterns to assess how defined cellular 

morphologies could influence the resulting oscillatory patterns. Cells on unbound glass 

substrates were also analyzed using principal component analysis to assess how 

certain geometries could bias the resulting MinDE patterns. Size and aspect ratio were 

found to influence the directionality of the vector flow fields, suggesting that the shape of 

the cell can direct the types of MinDE patterns that arise. 
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Introduction 

 Oscillatory spatiotemporal patterns are observed in biological organisms for a 

variety of processes, including signal transduction pathways, organ development, and 

skin pattern placement, with many of these phenomena captured by reaction-diffusion 

models, a commonly used theoretical model used to describe self-regulated pattern 

formation (Kondo & Miura, 2010). A canonical example of these types of reaction-

diffusion models is that of the E. coli MinDE system (Fig. 1A-C), responsible for the 

location of the cytokinetic Z ring for division (Park et al., 2011). By oscillating waves of 

MinD and MinE proteins along the cell membrane from pole to pole, the system creates 

a time-averaged gradient of a third protein in the system, MinC, which inhibits FtsZ 

assembly (Raskin & de Boer, 1999; Wettmann & Kruse, 2018). Through these 

oscillations, the MinDE system concentrates MinC to the poles, preventing ring 

assembly for cytokinesis at the distal ends of the bacterial cell, but allowing for 

uninhibited assembly via FtsZ at the center of the cell, which is where MinC spends the 

least amount of time (Rowlett & Margolin, 2013). 

 Recent efforts in the Coyle lab have taken advantage of the MinDE system as a 

potential biosynthetic control knob for engineering specified, orthogonal spatiotemporal 

patterns in mammalian cell systems (Fig. 1D) that could be used to either readout or 

influence native processes (Rajasekaran et al., 2022). The frequency and power of 

these oscillations was found to be highly influenced by the ratio of MinE to MinD, along 

with mutations in MinE (Fig. 1E-F). 

However, the parameter space required for generating even more frequencies or 

types of patterns remained largely unexplored. For example, individual cases of 
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standing protein oscillations or stationary protein patterns distinct from the dominating 

traveling protein waves were observed (Rajasekaran et al., 2022). To probe how to 

reproducibly and intentionally generate these patterns and even open up other pattern 

types, it was necessary to explore the impact of other parameters within this 

mammalian cell MinDE system. 

 A potential parameter for control was the size and shape of the cell, the container 

geometry for the MinDE reaction-diffusion system. In other organisms, it was observed 

that the shape and geometrical properties of the container of the system influenced the 

resulting types of spatiotemporal patterns that would arise, such as the skin color 

pattern of ocellated lizards (Fofonjka & Milinkovitch, 2021). Based on the ability of 

micropatterning to guide cellular shape and size for adhesive cells, we used that 

technique to ask how different MinDE patterns could arise based on changing cellular 

shapes. By changing the aspect ratio of the micropatterns, and thus also biasing the 

aspect ratio of the adhered cells, we found that the direction of the oscillatory vector 

field preferentially traveled along the long side of the cell. Increasing the size of the 

micropattern and resulting cell size resulted in a narrowing of MinDE ratio and 

frequency. When applying PCA to cell shapes on unbound glass, we found that different 

shape mode subpopulations exhibited different preferential phase angle distributions, 

suggesting that the shape of the cell plays a role in the directional flow of reaction-

diffusion systems. 
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Results 

Cell aspect ratio biases phase angle of MinDE traveling waves 

 On a pixel-by-pixel level, the frequency of the oscillating MinDE waves can be 

calculated using Fast Fourier Transform (FFT). As with any wave, the phase, at what 

point of the waveform cycle at a point in time is the agent at question located, can also 

be calculated. Thus, the phase angle of each pixel within a cell of interest can be 

calculated, as well as the vector field, thus showing the directional flow of the travel 

wave (Fig. 2B). 

In order to assess how the shape of the cell could influence the direction of the 

MinDE traveling waves, we decided on using the dot product between vectors of the cell 

perimeter and the vectors of each pixel within the cell. While two vectors pointing in the 

same direction would yield higher positive values, two vectors pointing in opposite 

directions would yield more negative values, and perpendicular vectors would yield a 

product of zero, giving a simple numerical output for assessing the relative positions of 

two vectors (Fig. 2A). In order to determine the perimeter vectors for the dot product 

analysis, fluorescence microscopy timelapse videos of mCherry-MinD 3T3 cells were 

collected, the frequency of the oscillations were calculated using FFT, a binary threshold 

was set and subjected to denoising functions (Fig 2C). A polygon approximation of the 

resulting contour was used, adjusting epsilon values such that the enough sides of the 

perimeter would be collected for analysis. Once the perimeter sides of the cell contour 

were determined, they were multiplied by each of the vectors within the boundaries of 

the cell to calculate the dot product. 
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An example 3T3 MinDE cell was analyzed using this pipeline (Fig. 2D). Each of 

the four perimeter edges were multiplied against all of the flow vectors within the cell. 

Both of the edges along the long axis of the cell showed wider ranges within the dot 

product distributions in comparison to the dot products of the short axis edges. The 

shapes of the distributions were largely similar regardless of the axis, showing bimodal 

distributions with a dip centered around the zero point. The distributions were all fairly 

symmetrical between negative and positive values, suggesting that this particular cell 

had an even spread of directions flowing throughout the cell. 

Several other cells with different kinds of MinDE pattern archetypes were 

explored using this analysis. Two cells (Fig. 3A-B) exhibited standing wave MinD 

patterns, meaning that instead of a traveling wave, only two patterns would flicker back 

and forth from each other in a binary state. Because there was no clear flow or 

directionality, the resulting vector fields showed phases pointing pretty uniformly across 

360º, both seen on the vector map and reflected on the border-vector dot product 

distributions that were all centered around zero. 

By contrast, some other cells demonstrated a clear direction of flow with traveling 

MinDE waves both visually and when represented on the vector fields (Fig. 3C-D). The 

dot product distributions also showed noticeably shifted distributions when compared to 

the standing wave cells (Fig. 3A-B). While the standing wave cell distributions 

suggested a more even distribution of phase angles across all 360º, the distributions of 

the traveling wave cells suggest that the population of vectors are biased in a certain 

direction, thus shifting the dot product distribution towards an either positive or negative 

magnitude. 
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In order to take these results a step further, we decided to select a systematic 

group of micropatterns that would change the aspect ratio of the cell, biasing its shape 

and potentially directing the flow of the MinDE patterns. 

 

Changing the aspect ratio of the cell biases the direction of the MinDE vector field 

 With the goal of biasing the shape of mammalian cells expressing the MinDE 

system (Fig. 4A), we decided to seed the cells onto micropatterns. These micropatterns 

were kept at a constant area of 1800 µm2, but their aspect ratios were: 1:1 as a control, 

2:1, 4:1, and 8:1 (Fig. 4B). Preliminary results showed that the cells were able to 

adhere to the micropatterns and more or less adopt the aspect ratio imposed by the 

micropatterns (Fig. 4C). 

In order to optimize the incubation time necessary for the cells to spread over as 

much area of the micropattern as possible and avoiding cell division as much as 

possible, four different incubation timepoints were chosen, and the percent composition 

of the types of spreading and number of cells present per micropattern were evaluated 

(Fig. 4D). The goal was to maximize the percent composition of total single cells that 

spread fully on the different aspect ratios while minimizing the percent composition of 

cells that either only partially spread or had more than one cell adhered to the 

micropattern. It was found that the 4- and 6-hour incubation times had the highest 

spreading of just one cell while avoiding a lot of the multiple cells per micropattern that 

was observed at 24-hours, which was well past the typical time necessary for a 3T3 cell 

to divide. 
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After optimizing the incubation times, 3T3 MinDE cells were played onto the four 

different aspect ratios, their frequencies, phase angles, and vector fields were all 

calculated (Fig. 4E). Density plots of the phase angle distributions showed that as the 

aspect ratio of the micropattern increased, the cells exhibited more of a bias in their 

vector field flow directions. For the most part, the 1:1 ratio micropattern cells had a fairly 

even distribution across all phase angles, suggesting that this kind of symmetrical 

shape of the cell results in a random distribution of directions for the traveling wave to 

flow in. Although the overall shape of the distribution doesn’t change by much when 

increasing the aspect ratio to 2:1, the position of the peak shifts to around zero. 

Increasing the aspect ratio to 4:1 results in the distribution shifting into a more bimodal 

distribution, also showing a more oblong shape biased towards 0º and 180º when 

shown in polar coordinates (Fig. 4F). After increasing the aspect ratio to 8:1, this bias 

becomes even more pronounced both in the density plot and the polar coordinate 

representation of the phase angle distributions. What this suggests is that the phase 

angles of the MinDE vector field are biased towards the long axes of the cell, traveling 

along the length of the long cells rather than the width. 

 

Increasing cell size influences the frequency of MinDE dynamics 

 After testing how the aspect ratio of the cell could influence the MinDE dynamics, 

we decided to explore how the size of the cell could also be a factor. As a simple way of 

assessing cell size, squares of four different areas were chosen to be the templates for 

the micropatterns: 2500µm2, 5625 µm2, 10,000µm2, and 15,625µm2 (Fig. 5A). The 

actual areas of the cells were calculated by thresholding via frequency and calculating 
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the size of the contours. Although the cells did not spread out across the larger 

micropattern sizes in entirety, the size of the micropattern did shift the distribution of cell 

sizes to be higher (Fig. 5B). Moving forward the MinDE ratio was calculated and 

compared to the area of the cell. When binning cells by their size, it appeared that the 

larger the cell, the tighter the range of MinDE (Fig. 5C). When binning the cells by the 

micropatterns they were grown on, the same trend appeared to hold true, with cells 

grown on the largest micropatterns appeared to have a narrower range of MinDE ratios 

(Fig. 5D). Because frequency was found to be largely reliant on the MinDE ratio, it 

followed that the frequencies of the cells followed a similar trend. Cells binned by size 

appeared to have a slightly narrower and higher shifted range of frequencies (Fig. 5E). 

Cells binned by the micropattern they were grown on showed a similar trend (Fig. 5F). 

Taken together, these results suggest that cells that are more spread out have a 

narrower set of frequencies expressed by their MinDE systems, while cells that are 

smaller in size have a wider set of frequency expressions. 

 These results showed cells constrained by micropatterns, restricting either their 

size or aspect ratio to certain limits. While it was useful in order to parse out the 

influence of different geometric parameters on the MinDE patterns, it was also limiting in 

analyzing how specific features of unconstrained cell shapes could play a role in MinDE 

dynamics. To expand the parameter space for the different kinds of sizes and shapes 

cells could exhibit, we also conducted experiments on unbound cells on glass 

substrates. 
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Relating unbound cell shape to MinDE oscillation parameters 

 Cells were grown on unbound glass substrates in order to unlock a full spectrum 

of possible morphologies the cells could exhibit (Fig. 6A). After taking fluorescence 

microscopy timelapse videos, the sizes of the cells were evaluated. There was a wide 

range of cell size, with most of the population between 0 and 4,000µm2 (Fig. 6B). 

Binning the cells by their size revealed a narrowing of MinDE oscillation frequency, 

similar to the findings with the square micropattern experiments (Fig. 6C). To correlate 

the frequency results with the types of shapes that arose from the cells growing on 

unbound substrate, we conducted principal component analysis on the r,θ descriptions 

of the cells. 

 The top eight principal components extracted from the cell shape matrix 

containing the r,θ description of every cell in the entire experiment explained well over 

70% of the variation in the data (Fig. 6D). Similar to the principal components that fell 

out of the analysis conducted in Chapter 3, the principal components for the unbound 

cell shapes resembled Fourier shape modes (Fig. 6E-F). 

Each of the cells were fit with the top eight principal components to generate 

scalar weights of the shape modes that would approximate the shape of each cell. The 

cells were then binned based off the maximum percent contribution of principal 

components that could explain the cell shape. The vector field phase angle distributions 

were then compared to each other, demonstrating different phase angle preferences 

based on the types of principal component bins (Fig. 6G). This suggests that particular 

shape features that are prominent in a population of cells can change the directionality 

of the flow of the MinDE traveling waves. The phase angles were compared against the 
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frequencies of the MinDE oscillations, again comparing the binned principal component 

subpopulations against each other (Fig. 6H). It appears that different principal 

component subpopulations also exhibit different distributions of frequencies, suggesting 

that shape features can also modulate the frequencies of the MinDE system.  
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Discussion 

 Micropatterning and the image analysis pipeline outlined in Chapter 3 are 

versatile and can be used for different applications such as the MinDE system in 

mammalian cells. This reaction-diffusion system that produces spatiotemporal patterns 

can be potentially engineered to produce desired patterns and frequencies, which could 

then be used to modulate or monitor native cellular processes. While previous work 

established how the ratio of MinDE and mutations of the two proteins can change the 

range of accessible frequencies, we were able to demonstrate how the size and 

geometrical features of the cell itself can also play a role. 

 Standing waves or traveling waves can be detected by calculating the dot 

products of the perimeter edges versus the phase angles of each pixel within the cell. 

The aspect ratio of the cell can change the directionality of the traveling waves, biasing 

them towards the long axis. Increasing the area of the cell appears to tighten the range 

of frequencies expressed, while smaller area cells have a wider range. Finally, specific 

morphological features detected by principal component analysis appear to influence 

the range of frequencies and distributions of traveling wave trajectory directions. While 

this analysis mainly focused on traveling waves, future computational efforts could be 

devoted towards identifying and characterizing other types of patterns that cannot be 

detected by their frequency. 
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Experimental procedures 

Cell culturing 

3T3 mouse fibroblast cells (ATCC CRL-1658) expressing the MinDE system were 

obtained from Rohith Rajasekaran from the Coyle lab (Rajasekaran et al., 2022). The cells were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich D6429) with 10% 

fortified calf bovine serum (Cytiva Life Sciences SH30396.03) and 1% penicillin-streptomycin 

(ThermoFisher 15140122). Cells were grown in a 5% CO2 incubator at 37ºC up to 90% 

confluence before being washed and passaged. Adherent cells were washed with PBS at each 

passage and detached from the flask surface by incubating with TrypLE (ThermoFisher 

Scientific 12604021) for 5-10 minutes at 37ºC. TrypLE was quenched with fresh DMEM media, 

and cells were resuspended and plated into new flasks with fresh DMEM. The following cancer 

cell lines were all cultured in DMEM with 10% fetal bovine serum (Fisher Scientific SH30396.03) 

and 1% penicillin-streptomycin in a 5% CO2 atmosphere at 37ºC: MDA-MB-453 (ATCC HTB-

131) and H1395 (CRL-5868). 

 

Micropatterning 

 We employed the light-induced molecular adsorption (LIMAP) method for 

micropatterning (Strale et al., 2016). 35mm Glass bottom petri dishes (MatTek P35G-1.5-20-C) 

were exposed with oxygen plasma in preparation for passivation. For adsorption of the anti-

fouling coating agent, 0.1 mg ml-1 PLL(20)-g[3.5]-PEG(2) (SuSoS CHF9,600.00) solution was 

added for 1 hour. The dish was washed five times with Milli-Q purified water. A 1:5 ratio of PLPP 

photoinitator gel to 70% ethanol (Alveole) was added to the microwell and dried at room 

temperature for 1 hour. To create the micropatterns, the well was exposed to UV light at a 

dosage of 30mJ mm-2, and excess gel was washed away with 5 Milli-Q purified water washes 
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and 5 Dulbecco’s Phosphate Buffered Saline (DPBS) solution (VWR L0119-0500) washes, with 

the last volume of DPBS left to incubate for 5 minutes to rehydrate the substrate. The wells 

were then incubated with 10µg ml-1 fibronectin (Sigma-Aldrich F1141-5MG) and 10µg ml-1 

NeutrAvidin (Invitrogen 84607) for five minutes and then washed 5 times with DPBS. PEGs 

were added at 0.1 mg ml-1 for another 1 hour incubation before being finally washed with water 

for 5 times. 

 

Fluorescence imaging 

 Cells under observation were loaded onto either glass bottom plates (Cellvis 

P06-1.5H-N) or 35mm Glass bottom petri dishes (MatTek P35G-1.5-20-C). After an hour 

of incubation for cells to adhere, they were imaged on a Nikon Ti-Eclipse while 

incubated in a Tokai Stage Top Incubator maintaining a temperature of 37ºC and an 

atmosphere of 5% CO2. 

 

Image analysis 

 Image analysis was conducted using techniques outlined by Rohith Rajasekaran 

and the Coyle lab (Rajasekaran et al., 2022). 
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Figures 
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Figure 1: The bacterial MinE-MinD reaction-diffusion circuit creates oscillating 

spatiotemporal patterns that can be used in mammalian cells. 

A) The MinDE system primarily relies on the MinE protein stimulating hydrolysis of ATP 

by MinD, thus inhibiting its dimerization along the plasma membrane. This creates pole-

to-pole oscillations in bacterial systems (Rajasekaran et al., 2022). B) Snapshots of 

oscillating MinD-GFP in E. coli cells (Sliusarenko et al., 2011). C) Hydrolysis reaction 

after MinE binds to MinD (Rajasekaran et al., 2022). D) Schematic for transducing the 

MinDE bacterial system into mammalian cells to induce spatiotemporal reaction-

diffusion patterns (Rajasekaran et al., 2022). E) Modulating the frequency of the MinDE 

oscillations based on MinDE ratio and mutations (Rajasekaran et al., 2022). F) 

Frequency subpopulations of cells based on their ratio of MinDE (Rajasekaran et al., 

2022). 
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Figure 2: Surmising flow directionality from vector field dot product 

A) Examples of different scenarios where dot product sign and value give insight on 

their relative orientations. B) Image processing from MinDE fluorescence signal 

oscillations from a 3T3 mouse fibroblast cell to phase diagrams via fast Fourier 

transform to vector fields. C) Isolating cell contours based on frequency and subjecting 

objects to binary thresholds and denoising to prepare for polygon approximation to 

extract perimeters of the cell as vectors. D) Distributions of dot products of pixel-level 

vectors within the cell against each of the four perimeter sides of the thresholded 

contour as vectors. 
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Figure 3: Dot product distributions of MinDE oscillating cell vector fields against their 

perimeters. 

A) 3T3 mouse fibroblast cell with standing wave MinD oscillations, resulting in zero-

centered distributions of vector field dot products with perimeters. B) Another example 

of a standing wave MinD oscillation pattern with a similar dot product distribution result. 

C) A cell exhibiting unidirectional MinD flow and vector field dot product distributions 

shifted away from zero. D) Another cell exhibiting unidirectional flow, with three out of 

the four vector field dot product distributions shifted away from zero. 
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Figure 4: MinDE 3T3 cells on different aspect ratio micropatterns 

A) A mammalian cell oscillating with the MinDE system. MinE is visualized with a GFP 

reporter, and MinD is visualized with an mCherry reporter. B) Four different rectangular 

aspect ratios that will be used to create micropatterns with a constant area of 1800 µm2. 

C) 3T3 MinDE cells on four separate micropatterns with the four different aspect ratios 

of 1:1, 2:1, 3:1, and 4:1. MinE is visualized with a GFP reporter. D) Percent composition 

of micropattern adherence to different aspect ratio micropatterns over the course of 24 

hours. Partial_Mult refers to partial adherence of multiple cells to a micropattern. Partial 

refers to partial adherence of a single cell to a micropattern. Full_Mult references to 

multiple cells fully spreading over a micropattern. Full refers to one cell fully spreading 

over a micropattern. E) Density histogram plots of phase angles for cells grown on all 

four aspect ratios. F) Density histogram plots of phase angles in polar coordinates for 

cells grown on all four aspect ratios. 
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Figure 5: Increasing area of square micropatterns influences spatiotemporal MinDE 

dynamics 

A) A schematic of four different micropattern sizes, 50x50µm, 75x75µm, 100x100µm, 

and 125x125µm, to be used for adhering 3T3 MinDE cells. B) Distribution of cell areas 

based on the micropatterns cells were seeded on. C) MinDE ratios of cells binned by 

their area. D) MinDE ratios of cells binned by micropatterns cells were adhered to. E) 

Frequency of MinDE oscillations of cells binned by their area. F) Frequency of MinDE 

oscillations of cells binned by micropatterns cells were adhered to. 
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Figure 6: Relating unbound cell shape to MinDE oscillation parameters 

A) Schematic of 3T3 cells growing on unbound glass substrate, displaying a wide 

variety of possible morphologies. B) Distribution of cell areas in µm2 (n = 501). C) 

Frequency of MinDE oscillations of 3T3 cells binned by size. D) Variance in the 

deviation from the mean explained by the top 50 principal components from principal 

component analysis of the deviations from the cell shape mean for each cell. E) Polar 

coordinate representations of the top 8 shape modes. F) Cartesian coordinate 

representations of the top 8 shape modes multiplied by positive and negative scalars 

and added to the cell shape average. G) Vector field orientation distributions binned by 

maximum principal component. H) Phase angle against frequency of MinDE oscillation 

binned by maximum principal component. 
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Chapter 4: Conclusion and future directions 

Summary 

 Cell morphologies are essential to carry out important biological functions. For 

processes such as development, wound healing, and metastasis, specified polarizations 

and directed motility require certain morphologies that shift over time (Kulawiak et al., 

2016; Poincloux et al., 2011; Théry & Bornens, 2006). Given the importance of 

morphological dynamics in biological processes, it is crucial to develop a generalizable 

method for quantifying these cellular shape changes. 

 I sought to optimize a micropatterning assay that would enable long periods of 

observation of single cell shape changes (Appendix A). I was able to determine 

concentrations of reagents, lengths of incubation periods, UV light intensities, and types 

of geometric patterns that would be ideal for this kind of analysis. While certain cell 

types and experimental conditions weren’t compatible with the assay, a number of cell 

types and conditions had adherent cells that were compatible with the micropatterning 

assay. 

Using this optimized micropatterning procedure, I was able to test how different 

sizes and spatial complexities of substrates affected the morphological dynamics of 3T3 

mouse fibroblast cells and a panel of triple-negative breast cancer cells (Chapter 2). 

Subjecting the 3T3 cells to a range of sizes from 30 to 60m resulted in a check-mark 

response where cells exhibited more frequent morphological events at 30m and 60m 

with a slight dip at 40m. It was hypothesized that at lower sizes, the cell was unable to 

have ample space to spread out and was more morphologically unstable as a result. 

Meanwhile at the larger extremity, there was plenty of surface area of the substrate for 
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the cell to extend and contract frequently. Spatial complexity appeared to play a role in 

biasing the orientation of the morphological events relative to the micropattern, with 

large micropatterns with lower spatial complexity exhibiting higher alignment between 

the petal lobes of the micropattern and the centroid of the morphological event. Buoyed 

by these results, I applied the same micropatterning technique and image analysis 

pipeline to a panel of triple-negative breast cancer cells to see if the assay could parse 

out different axes of characteristic morphological dynamics between the different cell 

types. The frequency, span, and alignment of events were all found to have differing 

levels depending on the cell type. MDA-MB-231 cells, for example, were found to have 

higher frequency of events, along with higher event alignment with micropatterns.  

 Finally, to demonstrate the generalizability of the approach for adherent cells, I 

sought to apply micropatterning to other applications and evaluated how changing cell 

size and shape would affect the MinDE reaction diffusion system (Chapter 3). I found 

that the aspect ratio of cell shape can bias the directionality of traveling wave vector 

fields, and that increasing the size of a cell can narrow the range of frequencies. 

Additionally, unbound cells can be categorized by maximum principal component bins, 

demonstrating different frequencies depending on the principal component 

subpopulation. This work overall shows that micropatterning in concert with image 

analysis can be a powerful tool to study how cell shape changes are influenced by the 

spatial environment and how cell shape can change important internal cellular 

processes. 
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Future Directions 

In Appendix A, we developed a micropatterning assay to isolate adherent cells for 

timelapse microscopy experiments. While we were able to successfully use the assay 

for adherent cells including 3T3 mouse fibroblast cells, there were experimental 

conditions including starvation and other cell types, such as the MDA-MB-453 and 

H1395 cells, that were unable to adhere to the micropatterns. In our assay, we only 

used commercially available fibronectin, but there exist a variety of different isoforms 

and types of fibronectin, as well as many different types of structural proteins in the 

ECM (Dalton & Lemmon, 2021). Future efforts could employ different kinds of 

fibronectin, such as plasma fibronectin, produced by hepatocytes, versus cellular 

fibronectin, produced by more cells such as chondrocytes and fibroblasts or fibronectin 

isoforms that are spliced along different domains (Dalton & Lemmon, 2021). Testing a 

panel of different substrates could expand the applicability of micropatterning by 

potentially enable adhesion even for cells that do not adhere to standard fibronectin. 

 In Chapter 2, we assessed morphological dynamics of 3T3 cells and a panel of 

triple-negative breast cancer cells against an array of micropatterns with varying size or 

spatial complexity. However, the biochemical origin of these different phenotypes was 

unexplored and has high potential for future investigation. Using a CRISPRi/a screen on 

potential candidates for cell shape regulation, such as RhoGEF, could yield insights on 

the molecular underpinnings responsible for these differences in morphological 

dynamics between cell lines and experimental conditions (Gilbert et al., 2013; Pascual-

Vargas et al., 2017). The process of adhesion largely relies on focal adhesions, 
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multifunctional organelles comprised of over 150 different known proteins (Kuo et al., 

2011). Many of these proteins serve a wide range of diverse functions, including 

GTPases, modulators of GTPases, kinases, phospholipases, phosphatases, adapter 

proteins, and cytoskeletal-binding proteins. The composition of focal adhesions are 

heterogeneous and dynamic, suggesting that different extracellular contexts either 

require or evoke these different compositions (Kuo et al., 2011). For nascent adhesions, 

integrin requires activation by talin, along with the recruitment of tyrosine kinase focal 

adhesion kinase and the adapter paxillin and the integrin-talin-actin link strengthening 

agent vinculin. Downstream pathways include actin bundling through accumulation of 

adapter proteins tensin and zyxin, along with elongation of actin through the mediation 

of formin (Kuo et al., 2011). Interestingly enough, the compositional changes of focal 

adhesions were found to be largely mediated through β-Pix, a Rac1 guanine nucleotide 

exchange factor (GEF), specifically through negatively regulation maturation of focal 

adhesions through Rac1 promotion of activation, along with increasing nascent 

adhesion turnover and the protrusion of lamellipodia (Kuo et al., 2011). Due to the 

mechanosensing function of focal adhesions providing the link between the spatial 

aspects of extracellular substrate and the internal architecture of the cell, it would be of 

high interest for future efforts to silence, upregulate, or downregulate expression of key 

players in focal adhesion formation and regulation. Through these efforts, future 

researchers could examine which agents appear to be most crucial for sensing 

geometric patterns in micropatterns, such as the spatial complexity through the number 

of lobes or even the size of the micropattern. Transcriptional screens of cells exposed to 

different micropatterns could also yield insights on the major players responsible for 
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processing spatial information and using that information to guide decisions on cell 

shape (Koenig et al., 2022). 

 In Chapter 3, we explored how the shape of the cell could influence the MinDE 

reaction-diffusion system. We were able to show how the aspect ratio could change the 

direction of traveling wave flow and how the size of the cell changes the range of 

oscillatory frequencies. However, we weren’t able to detect if specific shapes or sizes of 

the cell could change the types of spatiotemporal patterns that arose. All of the analysis 

depended on isolating cells as contours if they displayed an oscillatory frequency, 

leaving out stationary MinDE islands or other kinds of non-oscillatory spatiotemporal 

patterns. A machine learning pipeline could be developed to identify cells and classify 

them based on the types of patterns that arise (Yonekura et al., 2021). It would require 

developing a training set of data, with preset classifications of different kinds of patterns. 

After the different classes of patterns are identified, then the machine learning pipeline 

can be used for future applications asking questions how the shape of the cell could 

change the types of MinDE patterns that are expressed. 

 Overall, the work in this thesis optimized techniques and generated new datasets 

and analysis pipelines that further our understanding of how the morphology of 

metazoan cells fluctuate depending on the spatial environment. We developed a 

micropatterning assay that could isolate single cells of adherent cells for long periods of 

observation (Appendix A). We used this assay to test how adhering a panel of 

metazoan cells on micropatterns of differing size and spatial complexity would yield 

characteristic event phenomenon statistics (Chapter 2). Finally, we used 

micropatterning to assess how the shape of cells could influence MinDE spatiotemporal 
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patterns. These findings will provide future researchers with tools to assess 

morphological dynamics of metazoan cells over time and hopefully lead to diagnostic 

tests that could aid the characterization of adherent cancer cells. 
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Abstract 

 Cells on unbounded substrates dynamically move through a rich array of cellular 

morphologies. These diverse geometries can be difficult to analyze over time due to a 

lack of a common framework for comparison between different cells, as well as their 

constant motion. As a solution, micropatterning techniques fix cells to specific 

geometries patterned onto a glass substrate, providing both a physically constrained 

area for consistent observation and a reference point for comparison with an underlying 

shape for comparing the morphologies of cells between different trials and experimental 

conditions. We developed a micropatterning protocol for adherent cells, using a 

harmonics of a circle equation to generate shapes with varying spatial complexities that 

would approximate different directional axes a cell could polarize along in vivo. While 

3T3 mouse fibroblast cells and breast cancer cell lines readily adhered to fibronectin 

micropatterns, other cell lines tested, such as lung cancer cells, did not selectively 

adhere to the micropatterns. For the adherent cells, over the course of time-lapse 

microscopy experiments, they demonstrated dynamic shape variations with an average 

shape closely resembling the underlying lobes of micropatterns. The development of 

this micropatterning technique provides a tool for analyzing morphologies of adherent 

cells over time, which can yield information about their dynamics and underlying 

biological processes. 
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Introduction 

 Cells adopt a diverse array of morphologies for a variety of biological 

applications. Different aspects of the extracellular environment, including shear stress, 

mechanical force, and substrate composition can also influence cellular shapes (Alvarez 

& Smutny, 2022; Gonzalez-Molina et al., 2019; Malek & Izumo, 1996). Due to their 

biological significance, many efforts have been undertaken to quantify cellular 

morphologies, in contrast to traditional qualitative statements made early in the field of 

microscopy. These mathematical techniques, paired with experimental techniques such 

as micropatterning, have enabled highly specified workflows for quantitatively assessing 

cellular morphologies over time. 

 Depending on the tissue, stage of development, location, and function, cells 

exhibit a wide range of different shapes. Neuronal cells in mammals have similar basic 

organizations but depending on their location in the brain layer, exhibit a variety in size 

and cilia. Humans have six general layers in the brain. Three major subclasses of 

glutamatergic excitatory neurons include pyramidal intracerebral projection neurons, 

which typically have one long extension pointing towards the first layer and three 

smaller extensions, spiny stellate cells, which localize in only one layer, are typically 

smaller in size, and have a horseshoe projection, and pyramidal subcerebral projection 

neurons, which are in the higher layers, are relatively larger, and can vary in number of 

large projections (Miller et al., 2019). 

 During neuronal development, the morphology of cells from progenitor cells to 

different kinds of neurons and astrocytes varies drastically. Spherical intermediate 

progenitor cells are derived from ventricular radial glia, which are characterized by their 
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elongated axons reaching from the ventricular zone all the way up to the choroid plexus 

(Miller et al., 2019). Later during their development stage, intermediate progenitor cells 

can further differentiate into deep layer and upper layer neurons with dendrites and 

axon terminals (Miller et al., 2019). These examples demonstrate how subclasses of 

cells can show drastically different morphologies depending on their biological function, 

location within tissue, and development stage. 

 Even cells that are the same type and are responsible for the same functions 

display a wide distribution of morphological shapes and sizes. Embryonic mouse 

fibroblast 3T3 cells are present in connective tissues, determining tissue architecture by 

producing macromolecules within the extracellular matrix (Plikus et al., 2021). Though 

the cells were passaged from the same NIH 3T3 cells, one study found heterogeneity in 

the types of morphologies that arose from the cells. Spindle-shaped fibroblasts with 

elongated and thin shapes were interspersed with more cub-shaped cells that appeared 

somewhat larger (Rahimi et al., 2022). Amongst the spindle-shaped fibroblast, many 

cells displayed different geometric parameters, varying in overall size, orientation, 

number of extensions, length of extensions, width of lamellipodia, roundedness, and 

angularity (Rahimi et al., 2022). With such varied morphologies, quantifying cell shape 

dynamics while they are migrating on unbound substrate can be a difficult endeavor. 

Additionally, on unbound substrate, the cells had essentially infinite directions in which 

to polarize or migrate, moving on top of or under each other, as well as in and out of 

frame of the microscope.  

 In order to circumvent these issues, many researchers turn to micropatterning to 

fix cells in one area and provide a common frame of reference for comparing the 
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morphologies of the cells. Micropatterning allows for the precise fabrication of 

micrometer scale spatial patterned substrate surfaces for cells to adhere to (Strale et 

al., 2016). Because the cells can only adhere to the micropatterned area, they are 

bound and cannot collide into other cells or move out of frame, greatly easing the 

burden of tracking the cell over time for dynamic shape studies. Furthermore, the shape 

itself is an effective frame of reference for comparing morphologies over time. A center 

point can be used to do a radial polar coordinate sweep to calculate the cell outline 

radii. Architecture of the shape, such as the number, location, or angle of apices can all 

be used as reference points to analyze how those kinds of spatial parameters could 

potentially have an effect on the cell polarity, types of extensions, and morphological 

features. 

 Given these findings from previous studies, we built a micropatterning pipeline for 

systematically assessing how spatial complexity and size could change morphologies of 

different cell lines. The spatial complexity was based on a polar equation of circular 

harmonics (Eq 1). 

r = d + a • cos (kθ)   (1) 

 This equation produces flower-petal-like lobes that increase in number according 

to the ‘k’ parameter, which we harnessed as a proxy for a potential directional axis for 

cell polarization (Fig. 1A). Size could be modulated by concurrently increasing or 

decreasing the ‘d’ and ‘a’ parameters (Fig. 1B). After plating cells onto different 

micropatterns, we found that the average shape of the cell morphologies over the 

course of the entire experiment mostly approximated the shape of the underlying 

pattern, with variations deviating from that average shape occurring throughout the 
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experiment. While some cell lines, including the 3T3 cells and all of the breast cancer 

cell lines, some cell lines such as the NCI-H1395 lung cancer cells were not able to 

readily adhere to the micropatterns, demonstrating the limitations of the assay for cells 

that can adhere to the passivated PEG surface. 
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Results 

Metazoan cells on unbound substrates exhibit highly varied morphologies and migratory 

trajectories 

 3T3 Mouse fibroblast cells were seeded onto unbound glass substrate and 

observed via DIC microscopy (Fig. 2A). Individual cells displayed an extensive 

repertoire of morphologies over the span of hours, extending filopodia and lamellipodia 

as they migrated across the surface, unimpeded (Fig. 2B). Keeping track of individual 

cell movement and shape changes over time from a qualitative point of view proved to 

be challenging. From a wider field of view, the 3T3 cells demonstrated even more 

variable behavior. 

 When observing groups of 3T3 cells, it was clear that future efforts for tracking 

and characterizing shape dynamics would be prove to be computationally challenging. 

Cells changed shape geometries on the scale of minutes, with no easily identifiable 

landmarks as a reference point for futures comparisons. Neighboring cells would 

frequently make contact, either traveling side-by-side, on top of, or below other cells as 

they moved across the glass (Fig 2C). Additionally, cells had a tendency to move in and 

out of frame, which would make tracking individual cells for future analysis difficult from 

a methodological perspective. 

 Actin cytoskeleton and nuclei staining revealed some of the molecular machinery 

required to contort the cell into such varied geometries and also enable locomotion. 

Stretched out cells showed long filamentous actin cables stretching across the 

extensions, along with focal adhesions dotted throughout the cell membrane in contact 

with the glass substrate to generate traction (Fig. 2D). These fluorescence images 
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illustrate the complicated coordination between intracellular agents, cell-membrane 

proteins, and extracellular environments required for the sensing of extracellular cues 

and subsequent morphological changes in response. 

 Growing cells on unbound substrate results in several disadvantages for potential 

analysis. Cells tend to move in and out of frame, overlap with neighboring cells, and 

also do not have a common frame of reference for morphological comparison. In order 

to circumvent these issues and simplify future quantification of cellular shape dynamics, 

we turned to micropatterning as a technique to isolate cells in a highly specified and 

systematic manner. 

 

Optimization of the micropatterning methodology was necessary for successful cell 

adherence and subsequent microscopy observation. 

 Micropatterning involves the creation of micron-scale adhesive islands to which 

cells can adhere. For our application, we leveraged the high specificity of the technique 

to fabricate adhesive islands on the scale of typical 3T3 cell sizes in order to isolate 

them for analysis. The underlying micropattern provided a natural point of reference for 

morphological comparison. 

 The micropatterning technique involves several layering steps to create the 

adhesive islands (Fig. 3A). The anti-fouling coating agent prevents any proteins, 

exogenous materials, or cells from binding to the glass substrate. In order to create the 

desired micropatterns, a photoinitiator is added and activated by UV light that is shined 

through a DMD mirror array that will let light through in a highly specified manner on the 
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micron scale. Once activated in the desired geometries by the UV light, the 

photoinitiator will ablate the anti-fouling coating agent, creating a negative space in the 

shape of the desired geometry. An adhesive substrate, in our case we used fibronectin, 

is added to fill in that negative space, thus creating an adhesive island for cells to bind 

to, surrounded by anti-fouling coating agents that the cell cannot bind to. 

Micropatterning requires balancing concentrations between the anti-fouling coating PEG 

layer, photoinitiator required to ablate the PEG layer, UV light strength to activate the 

photoinitator, and fibronectin concentration for cell adherence. 

In addition to UV light strength, one element of the UV light illumination that must 

be taken under consideration is the Z-axis level of illumination on the microscope when 

micropatterning. For example, when illuminating the UV light with a few dozen micron 

offset from the glass bottom of the plate, interference patterns arose, disrupting 

formation of the micropatterns (Fig. 3B). After adjusting the Z-axis to have 0 offset from 

the glass bottom, the interference patterns were mostly eliminated, and the 

micropatterns exhibited a crispness that for the most part resembled the desired 

micropattern geometries (Fig. 3C). Although the entire UV strength range from 30 mJ 

mm-2 to 120 mJ mm-2 resulted in noticeable micropatterns, we needed to test if the 

adherence of cells would change along this range. 

In order to test cell adherence, we made k-value = 4 micropatterns using the 

same 30-240 mJ mm-2 UV light range and seeded 3T3 cells onto the resulting 

micropatterns (Fig. 4A). During this trial, it was difficult to see resulting micropatterns at 

30 mJ mm-2 and 60 mJ mm-2. Additionally, no cells adopted a spread phenotype, with all 

of them showing balled phenotypes. However, at 120 mJ mm-2 and 240 mJ mm-2, the 
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micropatterns showed up clearly. The cells seeded on micropatterns created using 

these UV light intensities were also able to adhere to the micropatterns, showing 

spreading phenotypes. Cells that landed on areas outside of the micropattern mostly 

showed balled phenotypes, showing that the anti-fouling coating agent was working 

effectively. 

If the PEG layer concentration is too high, then the photoinitator or UV light may 

not be strong enough to ablate the anti-fouling coat layer. If the fibronectin concentration 

is too low, the cell won’t be able to easily form focal adhesions and gain traction on the 

micropattern. If the fibronectin concentration is too high, the protein may form polymer 

chains atop the anti-fouling coat layer, giving a layer of scaffolding for the cell to adhere 

to beyond the desired micropattern locations. The seeding of cells also requires a 

certain amount of precision in order to not overcrowd the micropatterns. 

To address the fibronectin issue, different concentrations of the substrate were 

tested along with spin times and assessed using 3T3 adherence ratio. Spin times of 

fibronectin at 5,000 x g were tested because the protein had a tendency to crash out of 

solution and so the remaining supernatant was used for passivating substrate. Three 

spin conditions, 0, 5, and 60 minutes, were tested along with two concentrations for 

each, 10µg/ml and 100µg/ml (Fig. 5A). Regardless of spin condition, the 100µg/ml 

concentration almost always led to worse 3T3 adherence per micropattern. From then 

on, 10µg/ml was the standard concentration used to create the fibronectin 

micropatterns. Amongst the spin times, 5 minutes led to the best results for 3T3 

adherence, with 60 minutes in the middle, and the 0 minute spin condition resulting in 

the worst adherence for 3T3 cells. The signal-to-noise ratios, based on the NeutrAvidin 
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fluorescence signal, were also assessed under the same conditions (Fig. 5B), and it 

was found that there was no difference based on the spin times or concentration of 

fibronectin, suggesting that the tracer molecule’s ability to passivate to the glass surface 

was unaffected by the fibronectin concentration. 

The number of cells seeded was also assessed. If too many cells are seeded, 

micropatterns can be overcrowded with multiple cells, complicating analysis and 

defeating the purpose of micropatterning as a single-cell isolation technique. One 

example image with k-value 3 micropatterns (Fig. 6A) and 3T3 cells (Fig. 6B) 

demonstrates how overseeding can lead to multiple cells adhered to the micropatterns. 

Micropatterns were incubated with either 20,000 cells or 40,000 cells (Fig. 5C). 

Although the 40,000 cell seeding number resulted in a higher number of attached and 

spread cells, it also resulted in more multiple cell adherence, and so 20,000 seeding 

number was used for standard procedure. 

To get an idea for ideal k-value and pattern diameter size for cell adherence, an 

array of petal number and micropattern sizes were created and tested with 3T3 cells 

(Fig. 5D). Cell adherence at 10µm was extremely low, suggesting that was the lower 

limit for micropattern size for 3T3 cells, and that they would need a larger area of 

substrate to attach to the fibronectin. At 20µm and 30µm, 3T3 cells were much more 

able to adhere to the micropatterns, although there were a few k-value conditions where 

cells struggled to adhere to the micropatterns at the 30µm diameter size. Cell 

adherence was noticeably higher at 40µm than any of the other conditions across all of 

the k-values surveyed at k = 2, 3, 4, 10, and 12. Interestingly enough, within the 40µm 
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sized micropatterns, k-value 4 seemed to have the best adherence out of all the petal 

numbers, suggesting that spatial complexity could have an effect on cell adherence. 

To assess whether or not characteristics of internal cytoskeletal structures of 

cells on unbound glass substrate were recapitulated on micropatterns, we transduced a 

LifeAct-GFP construct using a lentivirus into 3T3 cells. The fluorescently labeled LifeAct 

reporter binds to the cytoskeleton, giving a readout of the internal architecture of the cell 

(Riedl et al., 2008). When unbound, the cell forms large, fanned out morphologies, 

indicative of motility phenotypes, as well as a variety of different kinds of geometries 

(Fig. 7A). In addition to their overall morphologies, the cytoskeletal structures revealed 

through the LifeAct-GFP reporter demonstrated networks of actin fibers forming cables 

across the span of the entire cell. Cells with the fan-like morphologies indicative of a cell 

in motion tended to have fibers bunching together at the distal end away from the 

direction of motion and fanning out across the lamellipodia on the opposite side of the 

fibers. Cells that did not appear to be in motion tended to have stress fibers stretching 

across the perimeter of the cell edge. Puncta were also visible in a number of cells. 

Many of these characteristic cytoskeletal features were replicated in the cells adhered to 

micropatterns. LifeAct-GFP 3T3 cells grown on micropatterns also exhibited stress 

fibers stretching either across the center of the cell or along the edges or even in the 

fan-like configuration seen in the unbound cells (Fig. 7B). This suggests that many of 

the polarizations, extensions, and also contractions that are present in unbound cells 

would also be present in cells adhered to micropatterns, demonstrating that the 

technique is a useful proxy for extracellular matrix substrate geometries that allow for 

essentially limitless morphological possibilities. 
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Through optimizing different concentrations and intensities of different steps in 

the micropatterning process, we were able to successfully develop an assay for 

isolating and analyzing the morphological dynamics of adherent cells over long periods 

of time. Many of the morphological characteristics of interest seen in unbound cells 

were also seen in micropattern-adhered cells, suggesting it is a relevant proxy for 

recapitulating ECM environments. However, while cells like 3T3 mouse fibroblasts are 

prime candidates for micropatterning, certain cell lines and experimental conditions 

were found to disqualify micropatterning for some applications. 

 

Micropatterning is not optimal for cell lines or experimental conditions 

 Although micropatterning is a powerful technique for isolating cells and 

subjecting them to highly specified substrate geometries, it is limited to cells that are 

able to preferentially adhere to the micropatterns. After some experimentation with 

different media conditions and different cell lines of interest, it was clear that not all cells 

can be used with micropattern to full effect. 

 As cells in vivo are exposed to all kinds of gradients in the extracellular 

environment, one experimental parameter of interest was looking at nutrient conditions 

and how cellular morphology would change as a result. In preliminary experiments 

where cells were grown in DMEM media with 0% serum, cells qualitatively displayed 

noticeably different morphologies (Fig. 8A). Compared to normal 3T3 cells, the 

extensions took on a more thin and ragged appearance, more resembling branched 

spiderwebs as opposed to the more full-bodied, round, and thicker extensions normally 



 

 

151 

seen on 3T3 cells. While this was an initially encouraging result, as it was clear that 

modulating the nutrient levels of the media resulted in an obvious change in phenotype, 

it was clear that the starved cells had a clear propensity to bind to the anti-fouling 

coating agent as well (Fig 8A). Cells were binding indiscriminately to both micropatterns 

and areas with just the anti-fouling coating agent, which would make any conclusions 

drawn about how the spatial complexity of the micropatterns could affect the 

morphology of the cell circumspect. This is due to the fact that if the starved cell can 

bind equally well to the anti-fouling coating agent and the micropatterns, then the 

micropattern is unlikely to be directly affecting the morphologies the cell is displaying, 

and instead the morphologies displayed can really only be attributed to the media 

conditions. It would also make isolating cells and preventing their movement in and out 

of frame over the course of an experiment into a challenging problem. 

To check that the serum conditions were indeed responsible for the cells 

enhanced adherence to even the PEG layer, 3T3 cells were grown for 24 hours either 

with or without serum. When cells from both conditions were seeded onto 

micropatterns, cells grown with serum were able to bind to micropatterns, but they 

displayed a round phenotype on the PEG layer, unable to spread (Fig. 8B). In contrast, 

cells grown without serum were able to indiscriminately bind to both micropattern and 

PEG areas. 

In an attempt to compensate for the increased adhesivity of the serum starved 

cells, we tested a range of PLL-g-PEG concentrations to see if higher concentrations of 

the anti-fouling coating agent could prevent serum-starved cells from non-specifically 

adhering to the substrate. Three different concentrations of PEGs were passivated at 0, 
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100, and 1000 µg/mL, and each of those PEG layers were seeded with either serum-

starved or serum-exposed cells. Regardless of PEG concentration, the serum-exposed 

cells were unable to adhere to the surface while the serum-starved cells could adhere to 

the glass surface regardless of PEG concentration (Fig. 9A). Although the extent of how 

much the serum-starved cells spread qualitatively seemed to decrease as the PEG 

concentration increased, the ability to spread remained throughout. 

Besides experimental conditions such as serum starvation, certain cell types 

were not amenable to micropatterning. For example, H1395 lung cancer cells were 

unable to even adhere to a glass substrate over the course of an hour when grown in 

DMEM media with 10% fetal bovine serum (Fig. 10A). When observed for 16 hours, the 

H1395 cells were still unable to adhere, proving to be a cell line that would not be ideal 

for micropatterning. 

Another potential cell line of interest were MDA 453 breast cancer cells. These 

cells, when grown in DMEM with 10% fetal bovine serum, were passaged at extremely 

slow rates. When grown on micropatterns over the course of 6 days, the cells were still 

unable to adhere to the micropatterns, only displaying round phenotypes and growing in 

bunches (Fig. 11A). Not only would the cells be completely unaffected by the 

micropatterns, but they were not even able to produce a majority of single cells, which 

would not be conducive to the types of analysis of interest. 
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Discussion 

Micropatterning can be a powerful technique for isolating adherent cells and 

testing how geometric idiosyncrasies in the substrate can affect cellular morphologies. 

Cells grown on unbound substrates present many challenges for quantitative analysis, 

including moving in and out of frame, overlapping with neighboring cells, and lacking a 

common frame of reference for analysis (Fig. 2). Micropatterning circumvents this issue 

by providing adhesive islands for individual cells, fixing them in place for long time 

course observations and preventing them from overlapping with different cells. The 

micropattern itself can also be a frame of reference for analysis, such as providing a 

center point, or in the case of the circular harmonic patterns (Fig. 1), several lobes from 

which deviations in distance and shape in the form of cellular extensions can be 

measured. We were able to optimize several aspects of the micropatterning process, 

including the Z-axis position of UV illumination (Fig. 3), the intensity of UV light (Fig. 4), 

the concentration of fibronectin, the cell seeding density, and the size of micropatterns 

(Fig. 5). Although the protocol was optimized for 3T3 cells, it was also found that some 

experimental conditions and other types of cells were not amenable to micropatterning 

and future analysis efforts. 

Keeping in mind the kinds of chemical gradients present in in vivo environments, 

a 0% serum condition was attempted. As a result, cells grown in 0% serum DMEM 

media for 24 hours indiscriminately adhered to both micropatterns and the PLL-g-PEG 

surface, obviating any kind of advantages that micropatterning as a technique 

engenders under normal circumstances (Fig. 8, Fig. 9). The opposite issue arose with 

cell lines such as H1395 lung cancer cells (Fig. 10) and MDA MB 453 breast cancer 
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cells (Fig. 11), which both struggled to adhere to glass substrates, let alone the 

micropatterns themselves. Without the ability to adhere to the micropatterns in a timely 

manner, they were unable to be isolated for observation and for future analysis. 

For cells, such as 3T3 mouse fibroblast cells, that are able to selectively adhere 

to the micropatterns, micropatterning is an effective technique for isolating single cells 

for long periods of observation. Future efforts using micropatterning will have to involve 

some preliminary evaluations to test the adherence capabilities and selectivity of 

adherence of any cell line of interest. Cells that either fail to adhere at all or do not 

selectively adhere to the micropattern and instead also bind to the passivated 

antifouling coating agent fail as ideal candidates for micropatterning assays. Moving 

forward, we identified cells that passed these qualifications and subjected them to an 

image analysis pipeline that tracked their morphological dynamics. 
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Experimental Procedures 

Cell culture 

3T3 mouse fibroblast cells (ATCC CRL-1658) were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Sigma-Aldrich D6429) with 10% fortified calf bovine serum (Cytiva 

Life Sciences SH30396.03) and 1% penicillin-streptomycin (ThermoFisher 15140122). Cells 

were grown in a 5% CO2 incubator at 37ºC up to 90% confluence before being washed and 

passaged. Adherent cells were washed with PBS at each passage and detached from the flask 

surface by incubating with TrypLE (ThermoFisher Scientific 12604021) for 5-10 minutes at 37ºC. 

TrypLE was quenched with fresh DMEM media, and cells were resuspended and plated into 

new flasks with fresh DMEM. The following cancer cell lines were all cultured in DMEM with 

10% fetal bovine serum (Fisher Scientific SH30396.03) and 1% penicillin-streptomycin in a 5% 

CO2 atmosphere at 37ºC: MDA-MB-453 (ATCC HTB-131) and H1395 (CRL-5868). 

 

Cell cytoskeleton and nuclei staining 

 Cell cytoskeleton and nuclei were visualized using the Actin Cytoskeleton and 

Focal Adhesion Staining Kit (Sigma-Aldrich FAK100). Cells were fixed with 4% 

paraformaldehyde, then washed with buffer. After permeabilizing with 0.1% Triton X-

100, the cells were washed twice and applied with blocking solution. Anti-Vinculin was 

diluted and incubated before being subjected to several wash steps. Cells were 

subjected to secondary antibody with TRITC-conjugated Phalloidin. With three 

additional wash steps, the cells were ready for final incubation with DAPI for nuclei 

visualization. 
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Micropatterning 

 We employed the light-induced molecular adsorption (LIMAP) method for 

micropatterning (Strale et al., 2016). 35mm Glass bottom petri dishes (MatTek P35G-1.5-20-C) 

were exposed with oxygen plasma in preparation for passivation. For adsorption of the anti-

fouling coating agent, 0.1 mg ml-1 PLL(20)-g[3.5]-PEG(2) (SuSoS CHF9,600.00) solution was 

added for 1 hour. The dish was washed five times with Milli-Q purified water. A 1:5 ratio of PLPP 

photoinitator gel to 70% ethanol (Alveole) was added to the microwell and dried at room 

temperature for 1 hour. To create the micropatterns, the well was exposed to UV light at a 

dosage of 30mJ mm-2, and excess gel was washed away with 5 Milli-Q purified water washes 

and 5 Dulbecco’s Phosphate Buffered Saline (DPBS) solution (VWR L0119-0500) washes, with 

the last volume of DPBS left to incubate for 5 minutes to rehydrate the substrate. The wells 

were then incubated with 10µg ml-1 fibronectin (Sigma-Aldrich F1141-5MG) and 10µg ml-1 

NeutrAvidin (Invitrogen 84607) for five minutes and then washed 5 times with DPBS. PEGs 

were added at 0.1 mg ml-1 for another 1 hour incubation before being finally washed with water 

for 5 times. 

 

Lentiviral transduction 

 To produce pantropic VSV-G pseudotyped lentivirus, 293T cells (ATCC CRL-

3216) were transfected with a pLV-EF1a-IRES transgene expression vector, along with 

viral packaging plasmids pMD2.G and psPAX2 using Fugene HD (Promega #E2312). 

Virus-producing cells were grown in 6-well tissue culture treated plates (Corning 3335). 

Once 72 hours had passed, the viral supernatant was collected, filtered through a 

0.45µM PES syringe filter, and added to 3T3 mouse fibroblast cells for transduction 
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using a 2µg/mL Polybrene transfection reagent (Sigma TR-1003-G). After 24 hours of 

exposure, the cells were subjected to antibiotic selection using puromycin. Surviving 

cells were assessed with fluorescence microscopy for successful transduction of the 

LifeAct-GFP reporter.  

 

Fluorescence imaging 

 Cells under observation were loaded onto either glass bottom plates (Cellvis 

P06-1.5H-N) or 35mm Glass bottom petri dishes (MatTek P35G-1.5-20-C). After an hour 

of incubation for cells to adhere, they were imaged on a Nikon Ti-Eclipse while 

incubated in a Tokai Stage Top Incubator maintaining a temperature of 37ºC and an 

atmosphere of 5% CO2. 

  



 

 

158 

Figures 
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Figure 1: Circular harmonics provide a tunable set of geometries to systematically 

assess size and spatial complexity. 

A) Changing the ‘k’ parameter in Eq. 1 modulates the spatial complexity of the 

geometric patterns by changing the number of petals radiating out from the center point. 

Values k = 1 through k = 25 displayed. The y- and x-axes represent size on Cartesian 

coordinates. B) Changing the ‘a’ and ‘d’ parameters (Eq. 1) concurrently will increase 

the size of the geometric pattern. Values from a = 10 through a = 100 are iteratively 

applied to values d = 10 through d = 100. 
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Figure 2: 3T3 Cells on unbounded glass substrate 

A) Schematic depicting cells on unbound substrates resulting in heterogeneous shapes 

over time B) Brightfield images of 3T3 mouse fibroblast cells displaying varied 

geometries C) DIC images of 3T3 mouse fibroblast cells on unbounded glass substrate 

D) Fluorescence microscopy images of 3T3 mouse fibroblast cells actin cytoskeleton 

and focal adhesions. TRITC-conjugated phalloidin was bound to F-actin, DAPI revealed 

nuclei with counterstaining, and anti-Vinculin monoclonal antibodies were used to locate 

focal contacts. 
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Figure 3: Micropatterning workflow using varying UV dosages 

A) Schematic of workflow to generate micropatterns for cells to adhere to. B) Range of 

UV dosages to create micropatterns with Z-axis offset. C) Range of UV dosages to 

create micropatterns without any Z-axis offset. 
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Figure 4: Titrating UV dosage on PLPP photoinitiator for creating micropatterns 

A) A range of UV dosages from 30mJ mm-2 to 240 mJ mm-2 were used with the PRIMO 

device to ablate the PEG layer. 
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Figure 5: Optimizing parameters for the micropatterning assay: 

A) 3T3 adherence ratio for cells based on spin preparation of fibronectin. B) 

Fluorescence signal-to-noise ratio for cells based on spin preparation of fibronectin. C) 

Count of attached vs spread cells on micropatterns after seeding 3T3 cells in a 35 mm 

dish with different population sizes. D) Assessing cell occupancy based on a screen of 

petal number and micropattern size.  
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Figure 6: Overseeding micropatterns results in multiple cell adherence. 

A) Fluorescence microscopy image of Neutravidin Cy5 fibronectin micropatterns with k3 

spatial complexity. B) DIC image of 3T3 mouse fibroblast cells on micropatterns and 

PEG passivated substrate. 
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Figure 7: Fluorescence microscopy images of LifeAct-GFP reporter in 3T3 cells 

A) LifeAct-GFP 3T3 cells on unbound glass substrate. B) LifeAct-GFP 3T3 cells on 

fibronectin-NeutrAvidin micropatterns. 
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Figure 8: 3T3 cells grown on micropatterns without serum in media 

A) 3T3 cells grown on k2, 3, and 4 fibronectin-NeutrAvidin micropatterns. B) 3T3 cells 

grown on k4 fibronectin-NeutrAvidin micropatterns either with CS present or absent in 

DMEM media.  
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Figure 9: 3T3 Cells grown on PEG-passivated substrate with or without serum 

A) 3T3 cells were grown on increasing concentrations of PLL-g-PEG passivated glass 

substrate from 0 to 1000µg/ml. Cells were either grown with or without 10% calf serum 

in DMEM media. 
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Figure 10: H1395 lung cancer cells grown on glass substrates 

A) H1395 incubated on glass substrate for 1 hour in DMEM media with 10% fetal bovine 

serum and 1% penicillin/streptomycin. B) H1395 grown in the same conditions with 

timepoints taken at four different intervals. 
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Figure 11: MDA 453 breast cancer cells grown on micropatterns 

A) MDA 453 breast cancer cells grown in DMEM media with 10% fetal bovine serum 

and 1% penicillin/streptomycin over the course of 6 days on fibronectin-Neutravidin 

micropatterns. 
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