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abstract

Mass spectrometry (MS) has proven itself as an indispensable technique for the deep

characterization of multiple distinct biomolecule classes. The research described within this

dissertation focuses on addressing the challenges in interpreting previously disparate data

sets and the implementation of software-based solutions. Chapter 1 provides an overview

of the fundamentals of bioanalytical mass spectrometry and highlights the implementation

of new online tools for the cloud-based dissemination of mass spectrometry data. Chapter

2 describes the implementation of an online spectral annotation platform which enables

the high-throughput annotation of both positive and negative mode peptide tandem mass

spectra. A novel platform enabling the longitudinal tracking of proteomic instrument

performance is described in Chapter 3. Using the diversity outbred (DO) mouse model,

Chapter 4 characterizes the relationships between genetics and lipids and leverages this

information to identify previously unknown lipid species using an online data exploration

tool. In Chapter 5, a reusable, web-based multi-omic data portal is developed and applied

to a large cohort of gene deletion yeast strains. Chapter 6 summarizes the improvements

made with respect to the dissemination of mass spectrometry-based omics data by the

resources described within this dissertation. Potential future developments are highlighted.

Finally, the proposed research I will conduct as a post-doctoral researcher in the Coon and

Simcox Labs is discussed in brief.
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Chapter 1

background and introduction
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Background

The complete characterization of all aspects of a biological system is an end goal for life

science researchers. Unfortunately, this goal is much easier said than done. The complex

regulatory relationships which exists within and between an organism’s diverse classes of

biomolecules present a constant challenge for researchers correlating different biological

phenomena. Figure 1.1 provides a simple graphical representation of increasing biomolec-

ular complexity as one travels further from the genome. Deoxyribonucleic acid (DNA),

or the genome, holds the blueprints for life inside a cell. These blueprints are encoded

using two complementary chains of the 4 canonical nucleobases, adenine (A), guanine (G),

thymine (T), and cytosine (C). The nucleobases within a single chain are connected by a

phosphate-sugar backbone, while the complementary chains are held together through

hydrogen bonding. The instructions for life are encoded in specific segments of DNA

called genes. These genes are read by the enzyme RNA polymerase and are transcribed

into messenger ribonucleic acid (mRNA). mRNAs are transported to the ribosome where

they are translated into proteins. Specifically, sets of three consecutive mRNA nucleobases

encode for a particular amino acid. The ribosome iterates over an mRNA molecule and uses

transport RNAs (tRNA) to methodically construct a polypeptide. The process of transcrib-

ing DNA to mRNA, and translating mRNA to proteins is known as the Central Dogma of

Molecular Biology.1,2 Alternative splicing, or the ability of a single mRNA to produce sev-

eral protein isoforms with distinct functions, is a regulatory method which increases protein
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diversity.3 Proteins serve as the main machinery of a cell. To name a few functions, proteins

act as enzymatic catalysts to enable energetically unfavorable biochemical reactions, they

transport materials across cell membranes, and they can regulate other proteins through

the addition or removal of post-translational modifications (PTMs). PTMs, when bound,

cause slight conformational shifts in proteins. These conformation changes impact protein

function and can be used to regulate cellular metabolism. Metabolites and lipids are small

molecules which participate with enzymatic proteins to drive the biochemical pathways

within an organism. As these small molecules are heavily involved in cellular metabolism

and the structure of cellular components, their regulation is extremely dynamic.

DNA, RNA, proteins, lipids, and metabolites comprise the vast majority of biomolecules

within a cell and together comprise an organism’s phenotype. As such, these five biomolec-

ular classes must be fully characterized to best understand the complex regulatory relation-

ships which drive biology. With the discovery of DNA polymerase I by Arthur Kornberg

in 1957 and the invention of the polymerase chain reaction (PCR), DNA and expressed

RNA could be isolated and replicated to high yields.4,5 The field of nucleic acid sequencing

exploded thanks to the implementation of high-throughput sequencing technologies, lead-

ing to the sequencing of the human and other genomes.6–8 However, no such biomolecule

replication technique exists for proteins, lipids, or metabolites. Characterization of these

biomolecules lagged behind until the mainstream introduction of mass spectrometry, an

analytical technique with the sensitivity necessary to detect and quantify proteins, lipids,

and metabolites at biological levels reproducibly.
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Figure 1.1: Omics Relationships. The DNA contained within the genome is transcribed to mRNA. These
mRNAs are then translated into polypeptides or proteins. Proteins participate in a wide variety of cellular
functions. Proteins can be post-translationally modified to change their chemical properties. Lipids and
metabolites are essential components of cellular structure and metabolism. Metabolite and lipid abundances
are often regulated via enzymatic proteins. All these components compose an organism’s phenotype.
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Bioanalytical Mass Spectrometry

A mass spectrometer operates on the simple principle that a charged particle in the gas

phase will be deflected in the presence of an electric or magnetic field. The magnitude

of the deflection force on the ion can be varied by modulating the field strength inside a

mass spectrometer. It is important to note that a mass spectrometer does not measure mass

directly. It instead measures the mass-to-charge ratio of an ion in the gas phase. J.J. Thomson

was the first individual to exploit this phenomenon in his cathode-ray experiments.9 Using

his apparatus, he was able to generate evidence for the existence of the electron. Later,

Francis Aston collected the first mass spectrum of several positively-charged ions derived

from residual gas.10,11 Arthur Dempster created the first magnetic sector mass spectrometer

in 1918, beating Aston to the creation of the first ’modern’ mass spectrometer, though

Aston completed his platform the next year.12 For the next several decades, development of

mass spectrometer technologies stagnated as only atoms or small (in)-organic molecules

could be induced into the gas phase without decomposition, limiting the purview of MS

technology to other fields outside of physics for a time.

Ionization Early mass spectrometers almost unilaterally employed electron impact ion-

ization, now known as electron ionization (EI).13 EI is conducted by passing an analyte

through a focused beam of electrons generated from a filament. The electron beam will

knock an electron off the analyte, generating an ion. EI is categorized as a "hard" ionization
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process, meaning EI typically induces fragmentation of the parent species. While these

fragments are structurally informative, occasionally the parent ion will be missing from the

spectra. Chemical ionization (CI) was developed as a "soft" alternative to EI.14 A chemical

reagent (commonly CH4) is ionized by EI to form radical cations. This reagent cation is

then mixed with the analyte, and a proton can be transferred on a cation-analyte collision.

EI and CI still required the analyte to be in the gas phase before ionization. It wasn’t until

1988 when Fenn and Tanaka concurrently released the new soft ionization techniques

matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) that

larger, more fragile biomolecules like proteins or lipids could be induced into the gas phase

intact to undergo mass analysis.15–17

Mass Analysis and Detection As described above, early mass spectrometers used elec-

tronic or magnet sectors to conduct mass analysis of ions. The work described in this dis-

sertation utilizes data collected on instruments which employ quadrupole, 2-dimensional

quadrupole linear ion trap (2D-QLIT), and Orbitrap mass analyzers.18–20 Quadrupole mass

analyzers are constructed using 4 parallel rods arranged in a square configuration. Ions

are shuttled from the inlet of the mass spectrometer to one end of the quadrupole.18 A

direct current (DC) offset potential is applied to two opposite rods, while an oscillating

radio frequency (RF) potential is applied to the remaining two rods. By modulating the

magnitudes of the DC offset potential and the RF frequency, different m/z values can be

stabilized as described by the Mathieu equation.21 Quadrupole mass analyzers can also be
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run in ’pass-through’ mode, where only the RF voltage is applied. This places all incoming

ions in the region of stability. The 2D-QLIT employed on our mass spectrometers function

similarly to a normal quadrupole with added ability to trap ions within the cell. To enable

trapping, the central quadrupole operates in pass-through mode, while two end electrodes

are added which induce large potential wells at both ends of the 2D-QLIT to prevent ions

from exiting the trap from both ends. Once ions are trapped, they are confined radially by

the central electrode’s RF field. Trapped ions can be selectively destabilized by modulating

the central quadrupole’s DC and RF voltages to detect specific ions.

Ion detection is considered a distinct function from most mass analyzers. The simplest

ion detector is a Faraday cup which is basically a shielded metal plate. Ions are neutralized

on the detector, and charge is transferred to the plate during neutralization. When the

Faraday cup is discharged, the measured electric potential is proportional to the number

of charges neutralized.22 Ions in our instrument’s 2D-QLITs are detected using electron

multipliers. When a singly-charged ion impacts the electron multiplier, several electrons are

generated and they in turn impact the electron multiplier again. The signal gain electron

multipliers provide enable the detection of lower abundance species. The Orbitrap mass

analyzer is composed of an inner spindle-like electrode and an outer shell-like electrode.

Ion packets are injected into the Orbitrap’s electric field and oscillate back and forth in a

frequency proportional to the ion m/z. Ions are not detected directly in the Orbitrap.23 An

image current is induced as ions oscillate around the center spindle. The image current

takes the form of an interferogram. The interferogram is Fourier transformed to translate
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Figure 1.2: General MS Omics Workflow. Regardless of targeted biomolecule class, experimental preparation
begins with procuring a biological sample. The sample undergoes lysis to break open cellular compartments
and extract biomolecules of interest. Classes of biomolecules are often separated at this point in sample
preparation, and the sample is prepared for mass analysis. Complex mixtures of biomolecules typically
undergo chromatographic separation. As biomolecules elute, they are ionized, typically using some form of
ESI or EI. Biomolecules are isolated in the mass spectrometer and fragmented. These fragment ions are scanned
out and the resulting mass spectrum can be compared to theoretical or library spectra for identification. Finally,
chromatographic peaks are quantified, linked to the tandem mass spectra identifications, and a list of profiled
biomolecules is written out.
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from the frequency domain to m/z. Additionally, the Orbitrap offers the highest resolving

power of the three listed mass analyzers. Mass resolution is proportional to the square root

of the number of oscillations on the spindle. This implies mass resolution in the Orbitrap is

dependent on m/z since oscillation speed is also dependent on m/z.

Omics Sample Analysis The Coon lab has a high level of expertise in the collection and

analysis of proteomic, lipidomic, and metabolomic data sets.24–28 Figure 1.2 provides an

general overview for the sample preparation and data collection steps which are shared

between our omics pipelines. Specific steps pertaining to individual biomolecular classes

are described in the sections below. Sample preparation begins for all biomolecule classes

with a lysis step to extract target biomolecules from the sample. Depending on the sample’s

durability, lysis can be accomplished through bead milling, probe sonication, or using

freeze/thaw or boil/cool cycles. Once cellular compartments are disrupted, a single class

of biomolecule is isolated from the complex lysate. Next sample cleanup is conducted to

prepare the sample for chromatographic separations. The sample is then injected into the

gas or liquid chromatography platform. As biomolecules elute from the chromatographic

column, they are ionized and introduced to the mass spectrometer for analysis. Once data

collection has finished, the raw spectral data is entered into data processing pipeline, where

biomolecules are identified, quantified, and compiled into a list of biomolecule abundances.
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Proteomics The majority of proteomic analyses conducted utilize a bottom-up approach.29

In a bottom-up, or shotgun, proteomics workflow, intact proteins are isolated, denatured,

disulfide bonds are reduced and alkylated, and are finally digested using a proteolytic

enzyme. Digestion cleaves the protein into smaller, more MS-amenable peptides. Trypsin

is a popular enzyme choice as it generate peptides with an average length of 8-9 amino

acids.30 Additionally, trypsin cleaves at the C-terminus of lysine and arginine, leaving a

free amine to take on an additional charge during ionization. These peptides are then

loaded onto a RP-UHPLC column and undergo chromatographic separation. As they elute,

peptides are transition to the gas phase and are ionized using ESI, and the peptides enter

the MS through the inlet capillary.

Spectral data can be collected using either a data-dependent acquisition (DDA) or

data-independent acquisition (DIA) strategy.31 DDA approaches first utilize a survey scan

to detect what m/z features are eluting at the moment. Next, the instrument isolates a

single m/z feature (ranked by intensity) and fragments the species to generate sequence

informative ions. Many ion activation methods have been developed. They can be grouped

into collision-based activation: Collision-induced dissociation (CID)32, and higher-energy

collisional dissociation (HCD)33; electron-based activation: Electron capture dissociation

(ECD)34, electron transfer dissociation (ETD)35; or photon-induced activation: Ultraviolet

photodissociation (UVPD)36, and infrared multiphoton photodissociation (IRMPD)37.

DIA approaches divide the instrument’s mass range into a number of equally spaced bins.

Iteratively, eluting peptides contained in each mass bin are simultaneously isolated and
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fragmented. This process repeats until the run has completed.

After data collection, tandem mass spectra are searched against a database containing

theoretical peptides. These theoretical peptides are calculated from an in-silico digestion of a

protein database.38 SEQUEST was the first implementation of an algorithm to systematically

correlate MS2s to a protein database.39 In brief, theoretical peptides which are close in

mass to a collected MS2 undergo in-silico fragmentation. The resulting theoretical spectrum

is compared to the experimental spectrum, and a scoring metric is returned which is

representative of how well the experimental and theoretical spectra matched. It is possible

for incorrect sequences to be assigned to an MS2 through random chance. The frequency of

these incorrect assignments are controlled for by using a target-decoy strategy.40 Target-

decoy approaches inject known incorrect theoretical peptides into the protein database.

These decoy peptides are used to estimate the relative frequency of incorrect sequence

assignments in the final dataset. Relative peptide quantification can be conducted using

label-free quantification. Label-free quantification is conducted by integrating the measured

MS1 elution profile of a peptide species. However, label-free methods cannot determine the

absolute abundance of a peptide in a sample. Isobaric tagging strategies implemented before

mass analysis such as TMT41, iTRAQ42, or SILAC43 can enable absolute quantification.

Finally, peptides can be reassembled into protein groups. Some peptides can match back to

multiple proteins, so protein groups are formed to indicate this ambiguity.44
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Lipidomics Lipids and metabolites can be isolated concurrently using a biphasic methyl-

tert-butyl ether extraction as described by Matyash, et al.45 Lipids are extracted into the top

organic layer while polar metabolites are extracted into the lower aqueous layer. Proteins

precipitate out of solution and can be discarded. After extraction, lipids can be dried

down and reconstituted in mobile phase A for lipidomics LC/MS analysis. There are some

similarities between proteomics and lipidomics LC/MS acquisitions. Lipids are amenable

to both reverse phase chromatography and hydrophilic interaction liquid chromatography

(HILIC).46 HILIC separates lipids mainly by head group composition, while reverse phase

separates lipids through stationary phase interactions with the fatty acid chains. Since

both peptides and lipids separate well under reverse phase conditions, it may be possible

to analyze both biomolecule classes in a single injection. The Coon lab employs a DDA

approach with HCD activation to conduct mass analysis on eluting lipids. Many lipids

ionize preferentially as either cations or anions. To account for this factor, mass analysis is

conducted in polarity-switching mode. In polarity-switching mode, the instrument collects

a survey scan and respective tandem mass spectra for lipid cations. The LC/MS then

switches its electronics to negative mode to analyze anionic lipids for a single survey scan

and its respective tandem mass spectra. This process repeats until the run completes.

Post-acquisition, tandem mass spectra are searched to assign putative identifications to

sampled chromatographic features. Similar to peptides, lipids also fragment in a predictable

manner. As such, fragmentation rules for individual lipid classes can be derived from

several high-quality experimental spectra.47 However, lipids do not have a comparable
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’protein database’ to generate theoretical lipid species. Instead, lipidomics search algorithms

must use spectral libraries for spectral matching.48 Spectral libraries contain annotated

tandem mass spectra generated from high-quality lipids standards. Unfortunately, these

libraries do not contain spectra for all existing lipid species. This leads to the presence of

many unknown lipid-like chromatographic features in the final quantitative output. LipiDex

is a recently released lipidomics software suite which is capable of learning fragmentation

rules for new lipid classes if provided with several high-quality representative spectra, so a

matching lipid standard is not necessary in all cases.49 This functionality allows the post-hoc

assignment of identifications to previous unknowns.

Metabolomics Metabolites can be analyzed using either gas chromatography (GC)/MS or

LC/MS. For LC/MS analysis, metabolites are injected onto a front-end column and are ana-

lyzed in a similar fashion to proteomics DDA experiments, where a survey scan is collected

and the most intense features are selected for tandem mass analysis. Gas chromatography

separates metabolites by boiling point instead of hydrophobicity.50 Metabolites elute as

the temperature of the GC oven is ramped up during the chromatographic run. This has

the advantage of allowing both polar and non-polar metabolites to be analyzed in the

same run. During sample preparation for GC/MS analysis, polar functional groups are

often derivatized with trimethylsiloxane to lower the boiling point of larger metabolites

through the prevention of hydrogen bonding. Additionally, metabolite retention times

are extremely reproducible in GC/MS analyses, enabling retention time indexing to filter
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out poor identifications. Metabolites elute from the GC column in the gas phase, so they

must be ionized using either EI or CI. Since EI is a hard ionization technique metabolites

fragment upon ionization. Because of this only MS1 scans are typically collected. After

data acquisition is complete, coeluting metabolite fragments are grouped together in a

similar fashion to DIA data processing methodology31, and the high mass accuracy of the

Orbitrap is used to filter poor coeluting chromatographic feature groups.51. Similar to

lipids, metabolites also rely on spectral libraries to conduct spectral matching.52

Online MS Informatics

Today’s mass spectrometrists conduct research in an increasingly collaborative environment.

Figure 1.3 visualizes the country-level contribution of international collaborative authors on

published chemistry manuscripts from 2017-2018.53 Addressing the need for technological

platforms to share data with other researchers across the globe in an intuitive format is

paramount, especially as not all collaborators are MS experts. Additionally, improvements

to the depth and throughput of MS profiling technologies have led to increasing data

storage needs. The PRIDE database is a centralized repository which allows MS researchers

to upload high-quality experimental data for perpetual data storage and to facilitate public

reuse of MS data. As of 2019, The PRIDE database accepts ∼300 new datasets a month, and

it permanently stores over 300 terabytes of experimental data.54 While PRIDE is a rich data

resource, researchers who are not experts in mass spectrometry data analysis may not have

the experience necessary to properly leverage resources like PRIDE to their full potential.
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Figure 1.3: International Manuscript Collaborations. Chemistry manuscripts across the world often contain
one or more authors from another nation than where the work originated. Each nested circle represents a
country with the two areas being proportional to the number of authors from foreign nations divided by the
total number of authors.
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Scientific software applications hosted on ’The Cloud’ have demonstrated great utility

in disseminating study results.25,55–57 Web applications benefit from centralization. The

software only exists in one location which eases the burden of resource maintenance. Any

researcher with access to a computer can navigate to these web applications using their

web browser. Finally, the development of an online resource removes the burden of data

interpretation and exploration from a non-expert user onto the resource’s developer.

The work described in these successive thesis chapters describe the implementation and

use cases of four web-based applications built for interpreting and sharing mass spectrom-

etry omics data with the scientific community. Chapter 2 describes a web-based platform

which facilitates the post-acquisition annotation of peptide tandem mass spectra. This

software supports processing spectra collected in both positive and negative modes, and

additionally provides a method for users to extract fragment ion statistics from thousands

of peptide spectral matches simultaneously. Chapter 3 presents a quality control website in-

ternally utilized by the Coon laboratory to characterize proteomic instrument performance.

Quality control metrics which are diagnostic of specific instrument issues are explored.

Developmental features which enable instrument-agnostic performance tracking are then

discussed in brief. Chapter 4 introduces a preconfigured software package which enables

the codeless generation of custom online data portals. These portals allow researchers to

upload their multi-omic data for case-control style experiments. Uploaded data is processed

and configured to display a set of interactive data visualizations. Additionally, these data

portals are password protected and can be securely shared with collaborators. Finally,
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Chapter 5 demonstrates the utility of a online visualization tool named LipidGenie which

aggregates the quantitative lipidomics measurements from 384 diversity outbred mice.

Additionally, LipidGenie enables the exploration of the connections between genetics and

lipids, leading to the identification of new lipid biology.
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Chapter 2

interactive peptide spectral annotator: a versatile web-based
tool for proteomic applications

This chapter is adapted from a published manuscript and is reprinted with permission
from:

Brademan DR, Riley NM, Kwiecien NW, Coon JJ. Interactive Peptide Spectral Annotator: A
Versatile Web-based Tool for Proteomic Applications. Mol. Cell. Proteomics. 2019, 18,
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Abstract

Here we present IPSA, an innovative web-based spectrum annotator that visualizes and

characterizes peptide tandem mass spectra. A tool for the scientific community, IPSA can

visualize peptides collected using a wide variety of experimental and instrumental con-

figurations. Annotated spectra are customizable via a selection of interactive features and

can be exported as editable scalable vector graphics to aid in the production of publication-

quality figures. Single spectra can be analyzed through provided web forms, whereas data

for multiple peptide spectral matches can be uploaded using the Proteomics Standards

Initiative file formats mzTab, mzIdentML, and mzML. Alternatively, peptide identifications

and spectral data can be provided using generic file formats. IPSA provides supports for

annotating spectra collecting using negative-mode ionization and facilitates the charac-

terization of experimental MS/MS performance through the optional export of fragment

ion statistics from one to many peptide spectral matches. This resource is made freely

accessible at http://interactivepeptidespectralannotator.com, whereas the source

code and user guides are available at https://github.com/coongroup/IPSA for private

hosting or custom implementations.

http://interactivepeptidespectralannotator.com
https://github.com/coongroup/IPSA
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Introduction

Tandem mass spectrometry (MS/MS) is the centerpiece of modern proteome analysis.

Advances in instrument design and acquisition software have enabled collection of well

over 100,000 MS/MS scans in less than an hour of analysis.1–9 Researchers have developed

a wide variety of search algorithms and related computational tools to rapidly translate

this large volume of experimental data to peptide spectral matches (PSMs), where peptide

sequences are assigned to spectra to identify the proteins present in a sample.10–16 An

important component to this process is matching expected product ions to those observed

in the experimental spectra. Annotation of spectra in this sense usually involves labeling

observed m/z features with matched fragment ion designations (e.g. a/x-, b/y-, or c/z-type

product ions) derived from the reported peptide sequence. Expert manual annotation is a

valuable but greatly time-consuming process—unfeasible for the large volume of spectra

generated in modern proteomic experiments.

Proteomic field guidelines have increasingly emphasized the importance of providing

access to annotated MS/MS spectra for publication, which allows others to inspect reported

PSMs and validate their assignment to a given sequence.17–20 Many software tools have

been created to aid researchers annotating individual PSMs contained in bulk datasets.

Most such tools are downloadable and often integrated directly into data-analysis suites,

although a handful have been developed as web browser-based platforms.21–23 Lorikeet

(https://uwpr.github.io/Lorikeet) is a well-established web-based spectral annotator

https://uwpr.github.io/Lorikeet
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which has been integrated into several online mass spectrometry resources to visualize

routine shotgun and cross-linked proteomics data.24–27 However, Lorikeet does not render

generated annotated spectra in scalable vector graphics (SVG) format, limiting the flexibility

of exported visualizations with regards to figure creation. XiSPEC is a recently release tool

which supports the annotation of shotgun and cross-linked proteomics data.28 However, it

does not currently support annotation of spectra collected in the negative mode.

Although powerful for the platforms for which they were designed, many of these tools

are inseparable from their respective analytical pipelines; data visualization in MaxQuant

is only available following processing with the integrated Andromeda search engine, for ex-

ample. Their purview is therefore limited, and facile spectral annotation is restricted to only

those search algorithms packaged in a pipeline with a developed annotator. This restriction

poses a problem for numerous applications, especially for alternative peptide fragmenta-

tion methods such as ultraviolet photodissociation (UVPD), collisionally supplemented

electron-transfer dissociation (EThcD), or activated-ion electron-transfer dissociation (AI-

ETD).27,29–31 Often these methods can be integrated into established analytical pipelines

adopted by the field over the course of several years. But flexible annotation tools are

largely unavailable in the beginning stages of method development—arguably when they

are needed most. For example, Lorikeet bundles annotation calculations directly with

its spectrum viewer. This requires in-depth knowledge of Lorikeet’s architecture to add

functionality for new technologies. However, separating the annotation process from the

spectrum renderer is amenable toward a more stable platform for spectral annotation as
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the components can be maintained and implemented independently.

Here we present the Interactive Peptide Spectra Annotator (IPSA) to provide a stan-

dalone web platform for annotation and interpretation of peptide tandem mass spectra

independent of instrumental platform, identification pipeline, and peptide fragmentation

technique. IPSA provides flexibility to annotate spectra containing any of the six common

peptide fragment ion types. Importantly, it can export annotated data in a tabular format,

which enables the rapid culmination of fragment ion statistics for individual or multiple

peptide tandem mass spectra, a useful tool in a wide range of proteomic experiments. We

have also built in compatibility with spectra collected in the negative mode, providing a

much-needed resource for the continued development of negative-mode proteomic ap-

proaches. Further, IPSA offers a platform for the generation and exportation of figure-ready

annotated spectra in an editable format. In all, IPSA expands spectral annotation capabilities

to all types of shotgun proteomic data regardless of how data was collected or processed.

Methods

Software Development IPSA is composed of two major components: a client-facing inter-

active web visualizer and a server-side data processor which handles the data processing

required for spectral annotation. Client-side visualization software was developed using

AngularJS. The D3.js library is leveraged to generate interactive annotated spectra using

SVG from annotated data returned from the server after analysis.32

Server-side software consists of a set of modular PHP scripts, which perform form
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validation, data processing and annotation, file upload handling, and data export. A

MySQL database is incorporated to securely cache parsed peptide identifications and

spectral information extracted from uploaded data. MySQL integration facilitates data

storage and retrieval when annotation requests are submitted to the server.

Example Data Sets Cell pellets of Saccharomyces cerevisiae (strain BY4742) containing

approximately 1 × 108 cells were harvested from liquid culture by centrifugation (3000 ×

g, 3 minutes, 4 °C). The supernatant was removed, and the cell pellet was resuspended

in 8 M urea, 100 mM tris (pH 8.0). Methanol was added to 90% by volume and vortexed

to lyse the cells and induce protein precipitation. The resulting solution was centrifuged

(14,000 × g, 3 min) to form a protein pellet. The supernatant was removed, and the pellet

was resuspended in 8 M urea, 100 mM tris (pH 8.0), 10 mM tris(2-carboxyethyl)phosphine,

and 40 mM chloroacetamide. The solution was then diluted to 1.5 M urea with 50 mM

tris. Trypsin (Promega, Madison, WI) was added (1:50 enzyme/protein) and was allowed

to digest overnight (22 °C). The resultant peptides were acidified (pH < 2.0) using 0.1%

(v:v) trifluoroacetic acid (TFA) and were desalted using polymeric reverse phase Strata-X

columns. Columns were equilibrated using one bed volume of 100% acetonitrile (ACN),

then one bed volume of 0.1% TFA. Peptides were loaded onto the column and washed with

two bed volumes of 0.1% TFA. Peptides were eluted by an addition of 500 µL 40% ACN,

0.1% TFA followed by an addition of 650 µL 70% ACN, 0.1% TFA and were then dried and

resuspended in 0.2% formic acid. Peptide concentration was determined using a Pierce
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quantitative colorimetric peptide assay (Thermo Fisher Scientific, Rockford, IL).

Low pH reverse-phase liquid chromatography was conducted using a Dionex UltiMate

3000 UPLC as described previously.1,2 Eluting peptides were analyzed using a Q Exactive

HF hybrid quadrupole Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen,

Germany) and were fragmented at HCD at 25% normalized collisional energy. Survey

scans were taken at a resolution of 60,000 at 200 m/z, whereas tandem mass spectra were

collected using a resolution of 15,000 at 200 m/z. The resulting tandem mass spectra were

searched using the Coon OMSSA Proteomic Analysis Software Suite (v1.4.1).33,34 A pre-

cursor mass tolerance of ±150 ppm was used, whereas fragment ions were searched using

a mass tolerance of ±0.01 Da. A maximum of 3 missed tryptic cleavages were permitted.

Carbamidomethylation of cysteine was set as a fixed modification, whereas oxidation of

methionine was set as a variable modification. Data was searched against a canonical and

isoform Saccharomyces cerevisiae database (UniProt, June 10, 2016) concatenated with the

reverse protein sequence for decoy generation. A 1% FDR threshold was used at the peptide

level, using both e-value and precursor mass accuracy to filter results.

Additional peptide identifications and spectral data were acquired from the previous

work of Riley et al. to demonstrate IPSA’s ability to process PSMs fragmented using al-

ternative dissociation techniques. These include ETD; collisionally supplemented ETD

(ETcaD and EThcD); AI-ETD; AI-NETD; and AI-ETD with supplemental infrared photon

irradiation post-reaction (AI-ETD+).35,36
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Results

Design of IPSA IPSA was developed as a versatile web-based spectral analysis tool capable

of individual or en masse annotation of PSMs generated from experiments that produce any

of the six common peptide fragment ion types (Figure 2.1). Single spectra can be annotated

by entering peptide and spectral data into an intuitive web form, whereas multiple spectra

can be uploaded directly to the website to be individually queried or batch processed.

Single annotations are conducted using the metrics provided by the user through the web

form and are returned client-side to generate an exportable, annotated spectrum. Exported

spectra can easily be shared or integrated into figures. Because the individual interrogation

of large numbers of PSMs can quickly become tedious, we added functionality to batch

process all uploaded PSMs and export the annotations in a tabular format. This feature

permits the rapid characterization of tens of thousands of tandem mass spectra.

Single Spectrum Annotation A single peptide spectrum can be annotated by providing

the peptide’s sequence, precursor charge, maximum allowed fragment charge, and spec-

tral data to the user interface shown in ((Figure 2.2A. Expected fragmentation patterns

and neutral losses can be selected to specify which theoretical peptide fragment ions are

generated during data processing.37,38 The mass tolerance for matching experimental fea-

tures to theoretical fragment ions can be set in either ppm or Daltons. A relative intensity,

raw intensity, or S/N (if supplied with spectral data) cutoff can be defined to ignore low-
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Figure 2.1: IPSA Software Flowchart. Single spectra can be annotated by entering peptide and spectral data
into provided web forms. Files containing multiple peptide identifications and spectra can be uploaded either
in PSI-supported or generic text-based formats to be individually annotated or to be bulk processed for ion
statistic extraction. Theoretical peptides are assembled in-silico, fragmented, and matched to the experimental
spectrum. The annotated experimental spectrum is then returned and visualized client-side. This visualization
can be exported as an SVG image for figure generation or as a CSV file containing ion statistics for the single
spectrum. Alternatively, ion statistics for all uploaded peptide spectral matches can be calculated and exported
through bulk processing, returning two files containing summary and detailed metrics for each uploaded PSM.
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abundance or insignificant features during matching. Visualization colors can additionally

be customized.

A predefined list of common protein post-translational modifications (PTMs) can

be queried and selected using a searchable dropdown below the fragmentation options.

Available PTMs for a peptide are intelligently filtered to only show PTMs relevant to the

entered peptide sequence. If a desired PTM is not included in the predefined modification

list, new PTMs can be defined and are stored locally in the user’s web browser. The user

can provide a new modification name, target site, and mass shift to create a custom PTM

option.

When the server receives an annotation request, data entered into the user interface

is validated and sent for processing. The peptide sequence is parsed and assembled into

an intact peptide in-silico. Theoretical peptide fragment ions are created from the intact

peptide using the fragmentation schema selected by the user. Each fragment is matched to

m/z peak within the specified mass tolerance. To address the case that multiple theoretical

fragments are mapped to the same experimental feature, only the theoretical fragment

that matches with the smallest mass error is reported. Once annotation mapping has been

finalized, annotated spectral data is formatted into JSON and is returned to the client for

visualization.

Immediately upon this return, IPSA generates the interactive annotated spectrum (Fig-

ure 2.2B). This visualization consists of three portions: a peptide sequence marked with

detected fragment ion locations and summary statistics, an interactive annotated spectrum,
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and an interactive scatterplot of the matched fragment-ion mass errors. The visualization

supports many interactive features to help facilitate data interpretation. Both axes allow

contextual zooming for deeper investigation of congested sections of annotated spectra,

whereas tooltips provide exact values for any highlighted plotted experimental features.

Highlighted fragments are mirrored in each section of the visualization to emphasize all

aspects of the feature of interest. Additionally, annotation labels can be dragged to clearer

locations to declutter busy regions. The generated visualization can be exported as an SVG

file for figure creation as it appears on screen or in a tabular format at any time.

Bulk Data Upload If many spectra need to be rapidly interrogated, IPSA provides func-

tionality to serially process multiple PSMs by directly uploading files containing peptide

identifications and spectral data to the server. Identifications can be provided either in

the Proteomics Standards Initiative file formats mzTab or mzIdentML, or in a generic CSV

format.18,19,39 Each row in the generic CSV lists a scan number, peptide sequence, precursor

charge, and all PTM names and locations for each peptide identification. We chose this

architecture for its simplicity; peptide identifications produced from a wide variety of

search algorithms can easily be converted into this format. Spectral data can be uploaded

as a Mascot Generic Format (MGF) or mzML file. Finally, a modifications file can be

uploaded to link peptide modification names to their respective masses. We provide a set

of example files on IPSA’s file upload page to demonstrate how each of these files should be

structured. MGF and mzML files can easily be generated from vendor or open file formats
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using conversion tools such as MSConvert.12,40

Data parsed from bulk identification and spectral data uploads are stored securely

server-side in a MySQL database. On data upload, a unique identifier is assigned to the

user’s browser which is used to exclusively access the uploader’s data. After data extraction,

uploaded files are deleted to reduce server footprint. Only one data set can be stored at a

time.41

Negative Mode Annotation Proteomic analyses are typically conducted using low-pH sep-

arations and positive-mode electrospray ionization to create peptide cations. This tendency

leads to a systematic underrepresentation of acidic peptide species, which preferentially

ionize as anions.42–44 High-pH separations using negative-mode ionization can be used

to better study these acidic species, but the complexity of tandem mass spectra generated

using traditional collision-based activational methods has precluded the widespread adop-

tion of this mode. This spectral complexity arises in part from a multitude of neutral losses

originating from precursor and fragment ions.45 Alternative fragmentation techniques

such as UVPD or AI-NETD, producing a/x-, b/y-, c/z-type and a•/x-type product ions

respectively, have recently demonstrated their utility in producing informative tandem

mass spectra from peptide anions35,44. However, many spectral annotators do not support

these data types. IPSA is capable of annotating PSMs collected using negative-mode elec-

trospray ionization. (Figure 2.3) demonstrates an IPSA-annotated spectrum of the triply

deprotonated peptide LIPSDFILAAQSHNPIENK dissociated using AI-NETD.35
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Figure 2.3: Negative-Mode Annotation. The annotated AI-NETD spectrum of the triply deprotonated peptide
LIPSDFILAAQSHNPIENK generated using IPSA. The charge-reduced precursor was downscaled by a factor
of 3. Unreacted precursor was cleaned from this spectrum.
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Ion Statistics Obtaining fragment ion statistics in an automated fashion for an entire mass

spectrometry experiment is no trivial task. Fragment ion statistics can be greatly informative

during method optimization and can be used to monitor MS/MS performance by providing

information on what ion types (and in what amounts) are being generated. Additional

informative metrics include the sequence coverage of all detected peptide fragments, frag-

ment ion mass errors, and the percent of the total ion current (TIC) that can be explained

by annotated fragment ions.

IPSA provides a unique utility among web-based spectral annotators to compute and

export all detected fragment ions for an uploaded experiment in a tabular format. The

server extracts the fragment ion series, mass tolerances, and any intensity threshold from

the provided user interface and serially processes every uploaded peptide identification.

The annotation results are continuously written to a set of two downloadable CSVs. The

first file contains summary statistics for the matched fragment ions for each uploaded PSM.

This file reports the number of matched fragment ions, unique peptide bonds broken, and

the percent of the total ion current explained by matched fragment ions. The second file

contains detailed information concerning every detected fragment ion for all uploaded

identifications; more specifically, the raw intensity, theoretical m/z, experimental m/z, mass

error, percent of base peak, and percent of the total ion current explained is reported.

A series of experiments were previously described by Riley et al. to examine the efficacy

of ETD, ETcaD, EThcD, AI-ETD, and AI-ETD+ fragmentation on a liquid chromatography

timescale.36 The authors found AI-ETD+ to be the optimal supplemental ETD fragmenta-
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tion technique. Using the authors’ reported peptide identifications and spectral data, we

created a set of detailed comparisons similar to those made in the referenced manuscript

using the ion statistics files directly exported from IPSA (Figure 2.4). No further program-

ming was required to extract these data or make this figure, and all data manipulation

post-export was performed in a spreadsheet using basic arithmetical functions.

In summary, IPSA is capable of both cleanly annotating peptide spectra collected using a

wide variety of dissociation techniques in both positive and negative mode and of exporting

the generated annotated spectra in the editable SVG format. Additionally, IPSA allows the

bulk analysis of detected fragment ions for any number of uploaded spectra, permitting in

turn the deep interrogation of data without requiring programming experience.

Discussion

Modern MS-based proteomics techniques are widely used to identify and characterize tens

of thousands of peptides and proteins originating from a variety of biological samples.

The annotation of the tandem mass spectra used to identify these species is an arduous

task requiring extensive expertise. Our web-based and open-source peptide spectral an-

notator, IPSA, provides a resource for generating and investigating annotated spectra for

peptide identifications to a wide research community. IPSA can generate customizable

annotated peptide spectra using a clean and intuitive user interface, allowing researchers

to export customizable, publication-ready annotated spectra as vector graphics to aid in

figure creation. It can process MS/MS spectra from both anionic and cationic precursors,
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and it has built-in support to annotate fragment ions generated from a diverse assortment

of dissociative techniques. Additionally, IPSA can extract fragment ion statistics from any

number of peptide spectra and return results in a tabular format, giving researchers a

deeper and more comprehensive view of their peptide analyses.

We chose to develop IPSA as an online platform to reach a wide audience of proteomics

researchers: those with an Internet connection on a computer with a web browser. Web-

based software also allowed us to use the flexibility of the well-established JavaScript

visualization library D3.js while avoiding software compatibility issues and version control.

Through IPSA, we aim to increase the approachability of spectral annotation to proteomics

novices and experts alike.

The IPSA source code is freely available for inspection and download at https://gi

thub.com/coongroup/IPSA alongside additional guides regarding software usage. We

recommend using an updated web browser to access IPSA at http://interactivepep

tidespectralannotator.com as outdated browsers may not provide support for critical

functions. IPSA can be easily installed on a private desktop or server using a prebuilt

Docker46 image and instructions at https://hub.docker.com/r/dbrademan/ipsa, or

IPSA’s project files can be manually configured to operate on private web servers with full

functionality. Additionally, the JavaScript file used to render the interactive visualization,

IPSA.js, is configured to be used as an AngularJS directive. This directive can be attached to

custom annotation scripts in many website environments, allowing the use of our software

beyond that of the platform we described here.

https://github.com/coongroup/IPSA
https://github.com/coongroup/IPSA
http://interactivepeptidespectralannotator.com
http://interactivepeptidespectralannotator.com
https://hub.docker.com/r/dbrademan/ipsa
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Abstract

Liquid chromatography-mass spectrometry (LC/MS) is the preferred analytical platform

for the identification and quantitation of multiple classes of biomolecules contained in

complex biological samples. The high-throughput nature of today’s LC/MS experiments

produces large volumes of data, even from studies containing only a handful of experimental

conditions. The collection, analysis, and interpretation of the resulting data sets from

experiments are costly in both time and resources. As such, quality assurance regarding

collected data is paramount. Without the assurance of appropriate quality controls (QCs),

the biological interpretation of experimental results may be insurmountably obfuscated by

shifts in instrumental performance. Several QC software packages have been developed

specifically for the LC/MS community, but as of yet none have been widely adopted as

many laboratories prefer to design their own quality control pipeline. In this chapter we

describe an internal software application used to longitudinally benchmark instrumental

performance. This resource would be useful for the LC/MS community. This platform

consists of a centralized website that supports drag-and-drop QC file upload and is currently

capable of displaying identification-based metrics in an interactive environment. We also

describe several key features which are under active development which would enable

longitudinal tracking of any metric for any analytical platform.
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Background and Introduction

Quality Assurance in LC/MS Experiments The ability of modern mass spectrometers to

collect significant amounts of complex biological data makes mass spectrometry a desir-

able analytical technique for clinical researchers, especially regarding the determination

of potential disease biomarkers,1,2 uncovering novel insights to biological pathways,3,4 or

predicting the biomechanical impact of drugs in a particular biological system.5 To ensure

that the conclusions of these studies are founded in biological truth, steps must be taken to

guarantee experimental reproducibility.6 As analytical techniques can vary between labora-

tories, a “quality by design” approach to experimental development should be adopted to

ensure a predetermined standard of data quality.7 As such, each step in the construction of

a biological study should be structured for scrupulous experimental design alongside the

incorporation of quality control(s) where suitable.8 Without the consideration of quality

assurance, significant experimental discoveries can be stymied by unaccounted variables

originating from sample preparation, analytical techniques, or instrumental drift.9,10

Quality controls should be integrated into experimental workflows to account for ex-

perimental variability. Different types of quality controls can be prepared and analyzed

before, during, and after experimental samples depending on what aspects of variability

regarding sample preparation and instrument performance need to be monitored. For large

studies spanning many days, pooled quality controls are often prepared daily alongside

each sample batch to account for a variety of factors which could induce batch effects.11
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Normalization of the experimental samples to these pooled standards can aid in the re-

duction of variation resulting from slight differences in inter-day sample preparation and

instrument performance.12,13 Quality controls should be representative of the samples

in an experiment. For example, discovery-based ’omics’ studies may benefit from using

complex cellular lysates as a quality control as the depth and reproducibility of biomolecule

identifications are a good metric for system suitability. In a different case, a mixture of

several digested standard proteins may be more appropriate for targeted assays where

characterization quality for a handful of compounds is paramount.14

The metrics tracked from quality control can be primarily classified in two ways, either

as intra-experimental or inter-experimental metrics. Intra-experimental metrics focus on the

different properties contained internally to a single LC/MS run, while inter-experimental

metrics compare summary results longitudinally.8 QC metrics can further be classified as

either identification-free, identification-based, or instrumental. Identification-free metrics

are derived directly from collected spectral data without the computational overhead of

spectral searching.14 For example, survey mass spectra (MS1) and tandem mass spectrum

(MS2) counts, injection times, and total ion current (TIC) metrics can be immediately

extracted from instrument files once data acquisition has completed. Identification-based

metrics can provide complimentary insights to the qualitative health of an analytical system

but require computational resources to search. Metrics such as number of unique identified

biomolecules, spectral similarity score distributions, and retention time distributions fall

into the above category. Finally, instrument-level metrics pertain to direct readouts from
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instrument components and can be used to quickly pinpoint component failures.

Current Quality Control Software Packages Many different quality control tools have

been developed to measure the readiness of an LC/MS system. A seminal tool for pro-

teomics QC was a software package named NIST MSQC, which collected 46 metrics per

experiment.15 Rudnick, et al. demonstrated how a comprehensive investigation of these met-

rics improved upon the determination of system suitability compared to manually tracking

a select few. Support for MSQC has been dropped, but several open-source reimplementa-

tions of this program remain available.16,17 QuaMeter, one of MSQC’s reimplementations,

is operated via a command-line application that extracts 42 identification-based and 45

identification-free metrics from raw experimental data and supports vendor file types.16,18

QuaMeter solely generates identification-free inter-experimental summary metrics from

raw input files. If identification-based metrics are desired, preprocessing of experimen-

tal data must be done using IDPicker, an algorithm that takes standard mzIdentML19

or pepXML20 files for peptide and protein filtering and identification.21 Additionally, no

inter-experimental metrics are collected through this software, nor is there any functionality

for visualization or longitudinal tracking for trend analyses.

Other quality control softwares that permit longitudinal examination of various quality

control metrics. SIMPATIQCO and iMonDB both use Structured Query Language (SQL)

databases to store and retrieve current and historical quality control metrics.22,23 SIMPA-

TIQCO operates as a locally hosted application which automatically queries QC files using
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a ’hot folder’ and visualized via a web interface. Quality is determined statistically from

previously uploaded controls to calculated acceptable ranges for the collected metrics.

However, experience with web server administration is needed, as direct manipulation

of SIMPATIQCO’s database is required to configure instruments, making the installation

process daunting for the novice user. IMonDB is unique compared to most other quality

control programs as it solely tracks instrumental metrics. These instrument metrics, al-

though not always directly helpful for troubleshooting common system issues, excel at

indicating the rare case of mass spectrometer component failure. Other QC programs of

note are Metriculator17, OpenMS24, and AutoQC.25

The ideal QC software would be capable of the rapid extraction of many identification-

free, identification-based, and instrumental metrics which track and visualize instrument

performance in a decentralized environment such as a web server. QCloud is a recently

released QC tool which combines aspects of the above software into an automated cloud-

computing QC platform.26 A QCloud script detects collected QC samples, transfers the

QC files to the cloud, and analyzes and tracks sets of performance predictive metrics for

both targeted and discovery proteomics systems. However, QCloud presents very few

customization options to the end user. The software supports only a predefined set of

LC/MS instrument methods and samples types, limiting it’s applicability to research labs

which may employ alternative analytical methods.

The Coon laboratory has traditionally utilized a complex mixture of tryptic peptides

to determine the system suitability our of dedicated proteomics platforms. Previously we
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ran digested yeast extract (∼4,000 expressed genes)27, but improvements in separation

technologies28 and data acquisition algorithms29 required increased sample complexity

to properly benchmark periods of high-end performance. We have since transitioned to

analyzing lysate derived from the readily available human cell line K562 (∼10,500 expressed

genes).30 Instrument users intersperse these human controls with their own samples at

a minimum frequency of 1 control a week. During periods of high user turnover, we

found it challenging to manually aggregate performance metrics between multiple individ-

uals. To streamline the lab-wide dissemination of instrument readiness and maintenance

requirements, we developed an in-house web tool named the National Center for Quanti-

tative Biology of Complex Systems (NCQBCS) Controller. This resource can be found at

http://www.ncqbcscontroller.com. The NCQBCS Controller currently only tracks QC

metrics pertaining to our proteomic platforms, but features under active development will

soon enable omics-agnostic benchmarking for all our instrumentation. Herein we describe

the current state of the NCQBCS Controller, and we discuss future developments which

will enable usage of our resource by the scientific community.

Software Structure and Features

NCQBCS Controller Structure Overview The NCQBCS Controller structure can be bro-

ken down into three general components. The first is a client-facing front-end composed of

HTML and Javascript files. These files are rendered in a user’s browser and allow them to

interact with the platform in a structured and intuitive manner. Software libraries of note

http://www.ncqbcscontroller.com
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are the Twitter Bootstrap HTML templating library and the Angular Javascript framework

which are used to procedural build the client interface. The second component is a relational

database which serves as a secure centralized location to store data pertaining to users,

instruments, and QC metrics. The third and final component consists of a set of modular

server-side PHP scripts which are called upon by the front-end to process newly uploaded

control data or retrieve historical performance metrics. These scripts are separated from the

front end in order to provide a layer of abstraction from users. This abstraction improves

the security and robustness of the Controller.

Uploading Quality Controls Before using the NCQBCS Controller, a new user must first

create an account. On account creation, a user’s credentials are immediately encrypted to

ensure plain text passwords cannot be retrieved in the case the server is compromised. Once

logged in, new QC files can be uploaded using the web page shown in Figure 3.1. First, the

user must specify an instrument with which the uploaded QC results will be associated. If a

particular instrument does not exist, it can easily be created using the ’Manage Instruments’

section of the website (not shown). To create a new instrument, the user simply need to

supply an instrument name, a text descriptor describing the instrument platform, and

informative comments which could describe the LC/MS platform or specific parameters

pertaining to the QCs which will be uploaded to this platform. All instrument-associated

metadata can be updated at any time. The NCQBCS Controller currently has 3 proteomics

instruments defined: two Orbitrap Fusion Lumos and one Orbitrap Eclipse platform(s).
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The Controller in its current implementation only accepts comma-separated value

output files from the COMPASS software suite.31 It does not support the processing of raw

data. This requires users to have previously searched their QCs. Communication between

individuals is needed to ensure QCs are analyzed using the same settings. We have found it

useful to specify these parameters in the instrument notes. Once the FDRsummary.csv and

peptides.csv files are uploaded, a QC run date along with optional detailed control notes

are specified. The server then begins data processing. Occasionally QCs are erroneously

uploaded to an incorrect instrument, or the wrong files are uploaded. In either case, QCs

can be re-associated with the correct instrument or be deleted using the ’Manage Uploaded

Data’ section of the website (not shown).

Data Processing The NCQBCS Controller uses a back-end relational database (MySQL)

which centrally stores all data contained within the Controller. The schema of this database

is shown in Figure 3.2A. While a diverse set of database architectures exist (e.g. SQLite,

MongoDB, Postgres), we have implemented MySQL as it supports multiple database

connections, meaning multiple users can concurrently use the website. Additionally, the re-

lational database aspect of MySQL strikes an appropriate balance between implementation

difficulty and performance. Unique identifiers contained in each table are used to index

common lookup operations. This improves data lookup performance which manifests as a

more-responsive website.

Data processing begins with moving the uploaded QC files from the server’s /tmp
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Figure 3.2: NCQBCS Current and Future Database Schema. Panel A shows the database structure of the
proteomics-only version NCQBCS controller. Panel B contains table additions which will enable platform-
agnostic QC tracking. The two metrics tables on the right of panel A join to the control_metrics table in panel
B. Tables with blue headers are attached to implemented features as of this writing. Tables with orange headers
will be implemented in the near future. These schema were made using DBDesigner.net
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directory into a permanent location to preserve a collection of QC results which can be

reprocessed if different metrics need to be extracted at a future date. To prevent duplicate

control uploads, the contents of the newly uploaded file pair are cryptographically hashed

to determine if these exact files had been uploaded previously. Next, the uploaded files are

checked to see if they are in the correct format. If not, data processing is halted, and the

user is alerted to recheck their uploaded files. The FDR Summary file is then scraped to

extract the name of the QC raw file, the unique number of identified peptides, the number

of peptide-spectral matches (PSMs), MS2 counts, the average and maximum number of

MS2s per survey scan, and the average and maximum MS2 inject times across the QC. These

metrics will be stored in the inter-experimental-metrics table. The Peptides file is then

scraped to extract spectrum numbers, peptide sequences with modifications, peptide charge

state, peptide theoretical and experimental m/z, quadrupole isolation m/z, calculated mass

error in ppm, and retention time. These metrics will be stored in the intra-control-metrics

table. Once these values are successfully extracted from the uploaded CSVs, they are rapidly

inserted into the MySQL database using MySQL transactions and the PDO extension. If

all metrics are successfully entered, the results are immediately made available to view.

Otherwise, the user is alerted that the uploaded failed and is given a reason why.

Instrument Performance Visualization Any user can navigate to the ’View Control His-

tory’ page to explore current and historic instrument performance (Figure 3.3. When an

instrument is selected using the droplist in the upper left, an asynchronous query is sent
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to the server to retrieve the historic peptide counts for the selected instrument along with

the peptide-retention time distribution of identified peptides (100 bins) and peptide mass

errors of the most recently run control. As we routinely identify over 50,000 peptides per

QC, peptides mass errors are subsampled by a factor of 20 to maintain website performance

while still conferring mass calibration trends.

We find unique peptide counts to be a robust representative metric for the overall

health of an LC/MS system. We mark peptide counts of greater than 55,000 peptides are

representative of periods of high-performance. As a LC/MS mass spectrometer has many

components, most if not all parts of the instrument must perform well to achieve these

numbers. Additionally, not all instrument components have an easily obtainable metric

which is indicative of performance. If the peptide counts drop, a user can use this ’smoking

gun’ to begin investigating other metrics which may be more informative for troubleshooting

purposes. Other currently tracked inter-control metrics are shown in Figure 3.4. We also

note longitudinal tracking of instrument performance can prevent what may be described

as the gradual lowering of performance expectations of an instrument. For example, the

most recent control collected in Figure 3.3 was collected after the Orbitrap Eclipse was left

idle for an extended period of time due to research restrictions from the Covid-19 pandemic.

Without a record of historical performance, it’s possible a lower performance threshold

would be adopted as the new standard.

To generate these graphs, we use the D3.js visualization library.32 The D3 library enables

the construction of custom interactive visualizations in scalable vector graphic (SVG) format
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Figure 3.4: Inter-control Metrics Tracked by the NCQBCS Controller. All metrics shown in the figure are
derived from QCs collected on an Orbitrap Eclipse. A, Unique peptides sequences can be a good indicator of
overall performance. B, A low peptide to PSM ratio implies the peptides are being redundantly sampled. C,
Low MS2 scan counts could indicate problems with spray stability or issues with transferring ions through
the instrument. D, Duty cycle utilization is a measure of sampling speed. Slower sampling could suggest
low ion flux or poor chromatography. E, The injection time ratio is the average MS2 inject time divided by
the maximum allowed injection time. The gray region in panels C, D, and E highlights a problematic control
referenced in Figure3.6C.
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at the cost of challenging implementation. However, by combining AngularJS directives

with D3, we can abstract shared D3 constructs from each visualization (e.g. a plot axis) to

prevent unnecessary code repetition. SVG plots are ideal as they can be extracted from the

Controller and be integrated directly into figure-ready visualizations.

Diagnosing Performance Issues As of this writing, the NCQBCS Controller has processed

and stored data from 72 unique human controls that contain in total ∼3,800,00 identified

peptides spread between our three proteomic platforms. The metrics tracked by the NC-

QBCS Controller have already proven useful in troubleshooting instrumental issues. Figure

3.5A is a peptide/retention time distribution of a recently run control on an Orbitrap Fusion

Lumos. The bimodal distribution of the beginning and end of the gradient indicate issues

with longer, more hydrophobic peptides failing to elute from the column as normal. This

could be caused by the incorrect delivery of mobile phase B due to a leaking pump head.

These results could be explained in part due to a failing column. Figure 3.5B demonstrates

a control where there are two distinct populations of peptides in the mass error graphic. Ide-

ally, all peptides are tightly grouped at 0 ppm across m/z space. However, search algorithms

often can account for systematic mass error as long as peptides are still tightly grouped.

However, the two peptide populations shown here caused a reduction in identifications.

Mass calibration alleviated this issue. Figure 3.5C shows periods in the peptide-retention

time distribution where no peptides were detected. This observation is correlated with a

marked drop in MS2 scans for this control. During the examination of the QC rawfile, the
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Figure 3.5: Troubleshooting using Intra-control Metrics. A, The peptide retention time distribution indicates
issues with chromatography. This could be caused either by column degradation or a lack of mobile phase
B near the end of the gradient, preventing the longer, more hydrophobic peptides from eluting before the
column wash. B, Errors with mass calibration cause an irregular, divided population of peptides. C, At several
points throughout the gradient, no peptides are identified. Charging inside the instrument prevented ions
from properly navigating the MS components, causing complete signal drops.
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ion signal would drop to zero at random intervals throughout the gradient, indicating a

failure of the MS to shuttle ions correctly to the Orbitrap and ion traps for mass analysis and

detection. On further inspection, it was determined this behavior was cause by charging.

A thorough cleaning of the instrument’s inlet capillary, s-lens, and quadrupole ameliorated

this issue.

Discussion

While the NCQBCS Controller is a powerful tool for tracking instrument performance, it is

custom-built for the Coon lab’s proteomics pipeline. If widespread adoption of this tool in

the MS community is to take place, we need to: 1) provide the platform in a format that

can be quickly set up without requiring large amounts of configuration, and 2) implement

the platform in a way that is agnostic to what QC samples are used and what metrics

are tracked. In Chapters 2 and 4, we give examples of how a complete website can be

embedded inside of a Docker container.33 In brief, Docker is a tool which allows developers

to preconfigure software in a virtual environment to guarantee software runs out of the

gate regardless of a user’s personal computer configuration. Using the Chapters 2 and 4

implementations as references, we could embed the NCQBCS Controller inside a Docker

container in a similar fashion.

To address the second point, we have begun developing a modified version of the

NCQBCS Controller which is capable of extracting metrics from generic, tabular files

delimited by commas, tabs, or semicolons. Figure 3.6A shows a fully functional version the
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Figure 3.6: Developmental Features. Panel A shows a modified QC upload page. This page allows a user to
hand-pick which metrics they would like to track. Import schema can be defined using the controls shown in
Panel B. Once a new import schema is defined, it can used to parse custom QC metric spreadsheets.
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Controller’s newly modified file import page. A user is allowed to upload any text file to

either of the inter-control (previously the FDR summary file) or intra-control (previously

the peptides file) sections. If a file is uploaded, the user can define what metrics they

want to track using the ’Import Schema Designer’ popup (Figure 3.6B). They can save this

schema and apply it to new QC files in the future. These metrics are then saved to the

newly added tables shown in Figure 3.3B. When applying a previously defined import

schema to an uploaded file, the first line of the file is parsed and presented to the user to

confirm correct parsing behavior. To fully enable platform agnostic QC tracking, we plan on

building a set of common QC visualization templates using D3 (e.g. density distributions,

scatter plots, histograms, temporal metric tracking, ect.) and allow users to assign their

tracked QC metrics to chart properties so they may design their own QC figures-of-merit.

We have designed a similar resource for custom dataset exploration that is described in

Chapter 4. We will also need to implement common data transformations for visualization

purposes, such as log-transformation and regular expression parsing.

Some QC platforms support the automated processing of raw QCs, meaning a user

simply has to supply the MS vendor file. The software will then automatically search the

raw data and extract the necessary metrics without requiring user input. The NCQBCS

Controller is the spiritual successor to a previously-used internal QC tool named Yeast

Controller. While the NCQBCS Controller does not support automated processing, the

Yeast Controller did. We have opted to not support processing of raw data for several rea-

sons. Integrating automated processing usually involves constraining what data inputs are
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supported, and the integration of additional workflows often comes with increasing levels

of technical debt. We believe standardizing accepted inputs to tabular files as described

in Figures 3.3B and 3.6 will increase applicability to most research groups. Additionally,

the storage requirements for raw mass spectrometer files is rapidly increasing. A standard

control from 3 years ago was ∼1 GB in size. On newer instruments long runs, result in

files as large as 3 GB. Accepting only post-processed metrics reduces the storage footprint

of the website at the cost of the ability to reprocess the raw data internally. If automated

processing is desired, an automated processing pipeline could be developed externally to

the Controller. Upon completion, the automated pipeline could insert QC metrics into the

MySQL database using a remote connection.

Supplemental Methods

Quality Control Preparation and Mass Analysis A pellet of K562 cells is suspended in 6

M guanidine to inhibit native protease activity, and the cells are lysed using probe sonication.

The protein is precipitated from the resulting lysate by the addition of methanol to 90%

v:v. The sample is centrifuged, the supernatant is removed, and the remaining protein

pellet is suspended in 8 M urea. Initial protein concentration is determined using a Pierce

colorimetric protein assay. Next, Tris (100 mM, pH 8), TCEP (10 mM), and CAA (40 mM)

are added to the sample at and digested with LysC (1:100 enzyme:protein). The digested

sample is then diluted to 1.5 M urea with 100 mM Tris (pH 8.0) and a second overnight

digestion is performed using trypsin (1:50 enzyme:protein). The next day, trypsin activity is
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halted through acidification using TFA. Desalting of the sample is performed using Sep-Pak

SPE cartridge. Peptide concentration is determined using a Pierce colorimetric peptide

assay. The desalted peptides are resuspended in 0.2% FA at a concentration of 2 µg/µL and

are frozen for later use.

LC separations are performed using a Thermo Dionex Ultimate 3000 RSLC-nanoliquid

chromatography instrument. An in-house fabricated column heater is set to 50 °C to reduce

column pressure.34 LC–MS/MS analysis is performed with 2 µg of peptides injected onto

a reverse phase nano-UHP column. Separations are performed on a 30 cm, 75–360 µM

(inner-outer) diameter, PicoFrit nanospray column (New Objective, Woburn, MA) that

is packed with 130 Å pore size, 1.7 µm particle size BEH C18 (Waters, Milford, MA) as

previously described.28 The QC is loaded using a carrier fluid composed of 100% mobile

phase A (0.2% FA). At 4 minutes, mobile phase B ((0.2% FA, 70% ACN) is increased to 10%

to begin peptide elution. Mobile phase B is gradually increased to 55% over the next 70

minutes. Peptides undergo mass analysis as they elute during this main window. Finally, a

6 minute wash at 100% B and 10 minutes of re-equilibration time at 100% A is conducted

for a total of 90 min LC–MS/MS analysis.

Instrument-specific settings vary depending on the specific Thermo Tribrid platform (

Fusion Lumos or Eclipse), but generally, both instrumental methods utilize 240k resolving

power MS1 scans with an AGC of 106, followed by sampling the most intense peptide

precursors for up to 1 second with a 20 second dynamic exclusion window. MS2 analyses

are performed using a 0.7 m/z isolation width using the quadrupole. The AGC target is
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set to 3x104 with a maximum inject time of 18 ms. Fragmentation is conducted using a

normalized HCD collision energy of 30%, and the resulting fragment ions are detected in

the low-pressure ion trap using rapid or turbo scans.

Quality Control Data Analysis The COMPASS software suite is used in the Coon lab to

analyze all QC files.31 Briefly, spectral data is extracted from Thermo .raw files using DTA

Converter. DTA Convert extracts all MS2 spectra from the .raw file into a plain-text .dta

format. These .dta files are then loaded into DOMSSA, an in-house C# reimplementation of

the COMPASS OMSSA35 search. DOMSSA leverages parallel computing on HTCondor36,37

to search all QC spectra against a target-decoy protein database38,39 derived from the

UniProt canonical human proteome. The enzyme used to perform in-silico digestion is set

to trypsin with up to three allowed missed cleavages. Cysteine carbamidomethylation is set

as a static modification and methionine oxidation is set as a variable modification. Spectra

were searched with a 25 ppm tolerance around the theoretical peptide monoisotopic m/z

and a 0.3 Da tolerance on theoretical fragment ion m/z. After target and decoy PSMs are

returned and concatenated, they are fed into FDR Optimizer, which filters results to a

1% peptide FDR (sorted on E-vaue) and a maximum allowed precursor mass error of 25

ppm.31 The resulting FDRsummary and peptides.csv files can be uploaded to the NCQBCS

controller.
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Abstract

The astounding pace at which researchers can now generate large multi-omic datasets using

increasingly mature mass spectrometry (MS) techniques presents a new challenge: “Big

Data” dissemination, visualization, and exploration. In facilitating this process, web-based

data portals accommodate the complexity of multi-omic experiments and the many experts

involved. However, developing these tailored companion resources requires programming

expertise and extensive knowledge of web server architecture – a substantial burden for

many in the multi-omics community. Here we describe Argonaut: a simple, code-free, and

user-friendly program for creating customizable, interactive data-hosting websites. The

platform carries out real-time statistical analyses of the uploaded data, which it organizes

into easily explorable and sharable projects. Collaborating researchers across the globe can

view the results, visualized through a variety of common plots, and modify them as desired

to streamline data interpretation. Increasing the pace, ease, and quality of access to multi-

omic data in these ways, Argonaut ultimately aims to propel discovery of new biological

insights. We showcase the capabilities of this tool using a published multi-omics dataset

on yeast mitochondrial protease deletion collection, representing several hundred liquid-

chromatography MS experiments. Individual Argonaut websites can be set up by using

the Docker image freely provided at https://hub.docker.com/r/coonlabs/Argonaut, or

by using the multi-portal management system provided at https://github.com/coongro

up/Argonaut.

https://hub.docker.com/r/coonlabs/Argonaut
https://github.com/coongroup/Argonaut
https://github.com/coongroup/Argonaut
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Introduction

Multi-omics is a powerful and versatile approach for probing biological systems. Encom-

passing many layers of biological information, multi-omic data can holistically describe

a living system and its response to perturbations, as metabolites, lipids, and proteins co-

function to orchestrate responses to various stimuli1,2. Recent advances in mass spectrome-

try (MS) profiling technologies have revealed this coordination by enabling simultaneous

measurement of multiple molecular classes3–9. Specifically, improvements in experimental

throughput of multi-omic analyses have opened the door to large-scale MS-based profiling

studies, where the analysis of diverse biomolecules in many samples under dozens of

different conditions is considered nearly routine10–17.

The rapid creation of these large and complex datasets, however, presents a new chal-

lenge: quickly processing raw MS data into sets of quantified biomolecules and extracting

rigorous biological insights from these results. To this end, tools for processing mass spectral

data – primarily proteomic data, such as Perseus and MSstats18,19 – have enabled a number

of analyses and visualizations. Nonetheless, major challenges persist: (i) designed for use

by MS experts, these tools require both a thorough understanding of statistics and knowl-

edge of common nuances in MS data; (ii) because data processing is not fully streamlined,

considerable hands-on and potentially taxing interaction with large datasets is required,

and (iii) these tools’ tabular outputs are not conducive for dissemination to and exploration

by a non-expert user base. Making results accessible to a broader scientific community is
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essential to realizing the full potential of biological mass spectrometry, particularly as MS

technologies become increasingly application-driven and therefore collaborative20,21.

Online data analysis and visualization tools have become increasingly popular in other

areas of science as they stand to alleviate many of the issues associated with analysis and

communication of large datasets22–24. These online tools also avoid issues commonly asso-

ciated with software distribution, eliminating the need for version control by centralizing

the software to a standardized web server environment. Functional web-based utilities

thus provide an efficient means to share results with collaborators, minimize the challenges

of data transfer between laboratories, and improve scientific discussion. In fact, to aug-

ment dissemination of study findings, many large-scale resource projects feature tailored

companion websites that facilitate interactive data exploration14,25–27.

Though ideal, such custom web-based interfaces are tedious and time-consuming to de-

velop – even for a single research project. Construction of these tools requires programming

experience and familiarity with web server architecture. Recently, Torre et al. presented

BioJupies, a web-based utility that greatly augmented the analysis and distribution of

transcriptomic data28,29. Other research groups have released web applications that fa-

cilitate online exploration and sharing of MS datasets30–33. The next generation of tools

should be available to non-programmers, able to convert general multi-omics MS data into

a cloud-friendly format, comprehensively interfaced with interactive visualizations, and

sharable with collaborators for intuitive hands-on exploration.

To fulfill this need, we present a new platform called Argonaut. Our tool enables rapid
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and codeless generation of MS data exploration portals, allowing users to create project-

specific websites hosted on standalone web servers using the Docker environment34. We

describe this process in detail below, demonstrating its use with a large multi-omic data

set generated by a study on yeast mitochondrial protease deletion. Briefly, users upload

their quantitative data (formatted in simple generic spreadsheets) directly to a browser.

Argonaut then performs on-the-fly statistical analyses of that data and allows users to

select several interactive visualizations, which are automatically embedded into the custom

website. Once created, the data portals can be securely shared with researchers worldwide

in just a few clicks.

Results

Creation of the Multi-omic Data Portal Argonaut Overview. The portal creation process

can be completed through a series of intuitive steps (Figure 4.1). First, a new data portal

is initialized using Docker. Then, the project owner can log into the data portal through

their preferred web browser and begin to customize the newly created portal by providing

a project title and description and uploading hierarchically organized quantitative data in

accordance with their experimental design. The upload procedure allows for experimental

or technical replicates to be easily grouped into separate branches under experimental

treatment and an ome classifier. Argonaut utilizes an HTML upload page that accepts files

containing quantitative data in a post-processed form, e.g., tabular sets of biomolecule abun-

dances. While many pipelines use a variety of standardized file formats to store data35,36,
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Argonaut supports solely tabular, text-based spreadsheets; thanks to their simplicity and

flexibility, many search algorithms and processing pipelines are capable of exporting results

in this format. Following the initial data upload, users can select individual visualizations

to add to their custom web portal from a menu of options, such as volcano plots and corre-

lations, among many others. Based on these selections, Argonaut constructs a complete

data exploration webpage with all associated functionality embedded. These custom web

portals can then be shared with other researchers – at the discretion of the creator – via a

tiered-permission sharing scheme.

Use with testbed dataset. To demonstrate how our tool creates interactive data por-

tals for improved analysis and exploration, we acquired data from a multi-omics study

investigating the biological functions of mitochondrial proteases and their substrates in

Saccharomyces cerevisaie37. In this study, 19 single-gene deletion yeast strains and a con-

trol wild-type strain were analyzed in biological triplicate under two growth conditions

for a total of 120 unique samples per ome. We reasoned that this rich dataset with val-

idated biological insights could serve as a suitable and sufficiently challenging testbed

for our tool. The publicly hosted data portal containing this dataset can be accessed at

https://coonlabdatadev.com with the username “guest” and password “password”.

The Veling study identified and quantified >3,000 biomolecules. Highlighting the

compatibility of this dataset with our platform, we converted the abundance measurements

of these biomolecules into three comma-separated value tables, each corresponding to

one of the omes profiled in the study, i.e. the proteome, metabolome, and lipidome.

https://coonlabdatadev.com
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Figure 4.1: The Argonaut Workflow. Argonaut is designed as a portable platform to share multi-omics data
in an online environment using customizable interactive visualizations. Processed quantitative measurements
from case/control-style experiments are uploaded to the online platform in a variety of text-based formats.
Uploaded data is then categorized according to the uploader’s experimental design. Common data transforma-
tions, such as missing value imputation, filtering missing values, control normalization, or log2 transformations,
can be conducted. Inferential statistics are used to determine the significance of molecular perturbations. Data
portals can be customized in a variety of ways, allowing detailed project and data descriptions, selection of
visualization options, and project management. Data portal access can also be shared directly with collaborators
using a secure permission sharing scheme, allowing multiple laboratories to concurrently explore large datasets
to rapidly generate biological insight.
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The columns of the files included non-redundant biomolecule identifiers (e.g., UniProt,

KEGG, HMDB), unique names of experimental conditions, including names of the strains,

condition and replicate information, and optional sample metadata (alternative biomolecule

names, FASTA headers, etc.), as illustrated in Figure 4.2A. A category of information in

the columns must be specified during the data upload. The rows contained quantitative

values of each biomolecule in the respective sample conditions. An in-depth description

of file structure along with example quantitative files can be found in the supplemental

materials and at Argonaut’s GitHub.

Like in many other large-scale studies, samples in this study were processed in ex-

perimental batches with a designated batch control (the wild-type strain) and included

biological replicates. To accommodate this common experimental design, Argonaut utilizes

a tree-based hierarchy to organize replicates of experimental conditions in a batch-based

format (Figure 4.3B). Within each branch, samples are grouped to determine their rela-

tionship to the rest of the samples within the uploaded dataset, including designation of

replicate sets. Here, three replicates of the wild-type strain were denoted as batch controls,

and average molecular abundances in the three replicates of each deletion strains were

normalized to those in the selected control. (Note if the batch control is not specified,

Argonaut automatically normalizes the condition measurements to the population mean).

During data processing, the significance of molecular perturbations between the control

and the experimental conditions are calculated on-the-fly using a stochastic two-sided T

test and stored in a database for later querying. Correction for multiple hypothesis testing
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Figure 4.2: Data Upload and Docker Container Structure. (A) Currently, Argonaut supports the upload
and processing of four formats of plain-text files to supply a data portal with new quantitative data: tab,
comma, semicolon, and whitespace. Once uploaded, the user can select which columns contain a unique
identifier, metadata, or quantitative values. In the figure, the user would select Protein IDs as a unique identifier;
Majority Protein IDs, Protein Names, Gene Names, and Fasta Headers as feature metadata; and the remaining
columns as quantitative data. (B) A brief graphical breakdown of the backend structure of an Argonaut
project running in a Docker container. The project database contains 47 individual tables used to store data for
five general purposes: user account information, static processing resources, job processing queues, project-
specific metadata, and uploaded quantitative values. The Angular JavaScript framework drives the client-side
application. Only elevated users can create or change projects, upload new data, and edit existing data in a
data portal.
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is available upon request using either the Bonferroni or Benjamini-Hochberg procedures.

Once data are processed, the project creator can navigate to a list of predefined options to

choose which visualizations and analyses are presented to the portal’s users. If downstream

Gene Ontology (GO) enrichment is desired and the uploaded file includes GO-compatible

unique identifiers, GO enrichment analysis can be enabled (as it was here) by specifying

the sample organism, the column containing the unique identifier, and the identifier type.

As a completed study, Veling et al. had already conducted data transformations and

filtered quantitative values. Note, however, that users can enable these operations during

upload. For example, raw quantitative values can be log2 transformed to facilitate fold-

change visualizations; missing values can be imputed utilizing a modified left-censored

imputation algorithm 4.3; or biomolecules can be filtered from downstream analysis if

their abundance measurements are missing in a user-defined number of samples. (Refer to

methods section and the GitHub repository for more details).

Interactive Data Examination The tree-based architecture of Argonaut is well suited to

multi-omics datasets because it segregates data from a single project into distinct branches

(e.g. proteomics, lipidomics, and metabolomics). When exploring the data, users can

rapidly switch between branches to compare trends in abundance across samples and

to integrate multi-omic data. On entering the data portal, users are presented with an

overview, highlighting each branch (i.e. ome) of the project to briefly summarize the

number of experimental conditions, replicates, quantified biomolecules, and the average
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biomolecular coefficient of variation. From there, users can navigate to data visualization

tabs to explore their dataset through six staple bioinformatic analyses (shown in Figure 4.4):

volcano plots, principle component analysis (PCA), condition-condition correlation, bar

charts of biomolecule abundances, gene ontology (GO) enrichment, and the outlier analysis.

All visualizations are generated using the JavaScript library D3.js, which enables real-time

customization and interactivity38. Significance thresholds can be modified by the user, and

many plots support data point lookups by unique identifiers. Any visualization can be

downloaded in scalable vector graphics (SVG) format, permitting easy integration into

publication-quality figures, such as Figure4.4. Additionally, any uploaded or processed data

used to generate the visualizations can be exported from the data portal. All interactive

visualization options can be inspected on our publicly hosted portal. Further details

explaining each visualization can be found on the Argonaut GitHub wiki.

Using our platform, we rapidly recapitulated and visualized several key findings of

the Veling et al. study. For example, the volcano plot in Figure 4.4A demonstrates the

upregulation of the iron sulfer assembly protein ISA1 in the absence of the PIM1 gene,

revealing a novel relationship between the two proteins. The PCA (4.4B) clearly separates

respiration-deficient and respiration-competent deletion strains. Biomolecule abundance

correlation analysis (4.4C) shows a functional relationship between the closely related

inner membrane proteases IMP1 and IMP2. Figure 4.4D visualizes the log2 fold-change

abundance of 3-hexaprenyl-4-hydroxybenzoate (HHB) across all respiration-competent

deletion strains and uncovers an increase in the Oct1 mitochondrial protease deletion
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Figure 4.4: Visualization Options in Argonaut. The website generated using the multi-omic data from the
Veling et al. study features a set of six analyses that are commonly used in omics experiments. All visualizations
are fully interactive and generated on-demand using queries from the uploaded data. Significance and fold-
change thresholds for data highlighting can be adjusted as desired. Visualizations and data can be exported
from the portal as vector graphics, such as ones used to produce this figure, and text-based spreadsheets,
respectively.
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strain. GO enrichment using the term ‘ATP synthesis coupled protein transport’ (4.4E)

recapitulates known relations between the mitochondrial protease PIM1 and ATP. An

outlier analysis (4.4F) reveals the Oct1 mitochondrial protease deletion to be a significant

outlier regarding 4-hydroxybenzoate abundance, a cytosolic precursor to coenzyme Q.

These and potentially many other novel biological insights are readily accessible to all

portal users. As the website navigation is intuitive, engaging with the hosted data requires

almost zero prior guidance from the project creator, lowering barriers to entry into the

world of omics data for non-experts.

Collaborative Data Exploration To facilitate the collaborative aspect of Argonaut, we have

developed a three-tier accessibility scheme that allows for flexible utilization of a generated

data portal’s functionality. The first tier provides read-only access to a portal, allowing users

with this permission level to view the created portal, interact with the visualizations, and

download the processed data. The second tier upgrades the user accesses with additional

edit permissions, which allow addition, removal, and editing of the uploaded data. The

third permission tier corresponds to that of the project creator, allowing the users to invite

collaborators, select visualizations or to delete the portal website entirely. Only project

owners and tier three users have comprehensive discretion over access to the portal data.

Upon initial data portal creation, the portal creator is the only user with permission to

access the site, but with only a few clicks, they can send any collaborator an automatic

invitation via email, which grants the new user access to the associated project with the
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predefined permission level. Like with the Veling et al. dataset here, upon publication

project-specific data portals can be made public through the creation of generic usernames

and passwords with the tier one permission level. This approach enables online exploration

of the study findings worldwide, while preserving the integrity of the underlying dataset.

Discussion

As MS researchers increasingly leverage “Big Data” offered by high-throughput studies

to answer complex biological questions, multi-omics has become a particularly powerful

approach – one that generates deep, multi-faceted descriptions of the biological system.

However, tools to quickly interpret the results of multi-omics experiments across labora-

tories have not kept pace. Further, in the absence of tools that enhance data accessibility,

the discovery potential of rapidly evolving MS techniques remains untapped for many

researchers unfamiliar with systems biology data.

We thus developed Argonaut to provide the scientific community with a much-needed

tool for the analysis of complex, data-rich resources. To the best our knowledge, there is

no other online platform enabling users to compile their multi-omics data into a single

resource and present it in the easy-to-explore manner offered by Argonaut. The codeless

generation of web portals for data analysis, visualization, and sharing makes this tool

uniquely accessible. The only processing steps required to take advantage of the platform

are fold-change normalization and statistical testing. These requirements are compatible

with the most generic batch-based experimental designs that contain biological or technical



104

replicates. For additional flexibility, the platform allows users to conduct different data

filtering, missing value imputation, or data transformation operations external to Argonaut,

if desired. Note that due to the considerable computational overhead, Argonaut does

not currently support processing of raw MS data. We also elected to decouple Argonaut

from any “searching” operations such as those offered by Trans-Proteomic Pipeline39. In

doing so we aim to keep our platform lightweight, to increase performance for both data

retrieval and visualization, and to widen the platform’s utility for the broadest MS and

omics community.

Although the analyses conducted using Argonaut are not exhaustive or exclusive to our

platform, we believe the ability to securely share experimental omics data in a unified and

intuitive format is transformative. By encouraging broad data sharing among the research

community, Argonaut is directed to two goals. First, to leverage the expertise of individual

researchers from different fields, it allows data portals to be hosted on a public server as

companion resources for manuscripts using a few simple Docker commands. Second, to

sharpen the significance of novel biological findings, our tool allows multiple portals from

our platform to be hosted in a singular location that permits facile comparisons across

multiple datasets. Indeed, Argonaut is an agnostic platform that can be used to host the

transcriptomic, epigenetic, and phenotypic data that are often generated in the course of

comprehensive multi-omic studies. While researchers with the relevant expertise may

adapt Argonaut to serve specific projects, applications, or frameworks, for the broader

scientific community it provides a stable platform for teams of researchers to concurrently
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conduct in-depth analyses of their datasets and readily share their data in an intuitive,

accessible format.

Supplemental Methods

The Argonaut Website The Argonaut platform is served using a Dockerized Linux,

Apache, MySQL, and PHP (LAMP) web server. The client-side platform was built using

the HTML templating framework Bootstrap (3.0) and the Angular JavaScript framework

(1.3). Server-side scripts written in PHP (7.0) conduct database operations and relay data

from the server to client. On container initialization, a blank data portal is assembled with

a predefined administrative user account for data portal management. When an adminis-

trative user makes edits to a data portal’s architecture (e.g. name, project description, or

visualization options), the server utilizes the new data portal settings and embed the new

settings together with required HTML templates (Figure 4.2B) to generate an updated

data portal. Only administrative user accounts are permitted to upload data, edit project

architecture, or invite new users. A running data portal can be accessed by any web browser

capable of communicating with the Docker machine.

The Docker Image The Docker container consists of a base Ubuntu image (16.04) with an

Apache web server (2.4.33), a MySQL relational database (1.6), and the server-side scripting

language PHP (7.2). The PHP Data Object (PDO) extension is used for abstracted database

accession and automatic query sanitization. The MySQL database contains forty-seven
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tables which serve to rapidly store and retrieve user submitted data. To enable easier project

database management, phpMyAdmin, a common web server administration platform, is

installed to enable database management (phpMyAdmin, https://www.phpmyadmin.net).

Details on how to access the Docker phpMyAdmin administrator account can be found in

the Argonaut wiki.

Submitting Data to Argonaut Administrative users can submit text-based spreadsheets

containing quantified biomolecules from an experiment using the angular-file-upload di-

rective (https://github.com/nervgh/angular-file-upload). Argonaut is capable

of parsing text-based quantitative spreadsheets delimited by tabs, commas, semicolons,

or whitespace. When a new text file is uploaded, the file is temporarily saved and the

column headers from the file are extracted. A selection of these column headers can be

assigned as either unique identifiers, metadata, or quantitative values (Figure 4.2A). The

user must also indicate which quantitative columns belong to the same condition (i.e. are

experimental replicates). The uploaded data are then organized into a hierarchical structure

to bin the uploaded experimental replicates into experimental conditions, experimental

batches, and branches (Figure 4.3B). Branches can be used to separate data generated from

the measurement of different biomolecule classes (i.e. different omes). Each uploaded

file is denoted as by the keyword batch (i.e. batch of samples), and as such, missing value

imputation, control normalization, and log2 transformation is conducted on each uploaded

set of quantitative values independently. If standard molecular identifiers are included in

https://www.phpmyadmin.net
https://github.com/nervgh/angular-file-upload
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the uploaded file’s metadata, specifying the sample organism, the column containing the

standard identifier, and the type of standard identifier can enable optional downstream GO

enrichment analysis. UniProt, ChEBI, and KEGG identifiers are currently supported for

GO enrichment analysis, though support for other identifiers will be added in the future.

Once all settings are finalized, the data’s tree-based hierarchy is presented to the user

for review, and raw quantitative values are then uploaded to the database to begin data

processing. Submitted files are queued for processing using the PHP Client URL library to

enable the asynchronous processing of concurrent file uploads and appropriately meter

computational resources. After data processing, the uploaded spreadsheet is preserved on

the server to allow retrieval of the stored data at any time. Examples of Argonaut compatible

files can be found in the supplemental materials, downloaded from the Argonaut GitHub,

or downloaded extracted from the example portal provided at: https://coonlabdatadev

.com using the username “guest” and the password “password”.

Quantification and Statistical Analysis

Data Organization When a new set of experimental data is uploaded, the server begins a

multi-stage process to group the user-provided quantitative measurements into conditions,

conduct an optional log2 transform for raw quantitative values, optionally filter and/or

impute missing values, and conduct significance testing and other analyses. Initially, the

raw quantitative values are loaded into memory. Any non-numeric or negative entries

found in the quantitative value columns are initially set to 0. Biomolecular identifiers

https://coonlabdatadev.com
https://coonlabdatadev.com
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are checked for uniqueness. If duplicates in the unique identifier values are found, the

duplicates are appended with an additional text qualifier. The experimental condition

classifiers provided by the user are used to group experimental replicates into conditions

using custom PHP objects. These grouped experimental replicates then undergo optional

data filtration and missing value imputation.

Data Filtering and Missing Value Imputation Before statistical testing can be conducted,

the dataset first must be considered complete, meaning there can be no missing values. The

best strategy to account for missing quantitative values is an active area of debate regarding

large-scale mass spectrometry profiling experiments40,41. To provide an one-size-fits-most

solution to this issue, Argonaut provides functionality for the user to remove sparsely

quantified biomolecules which are missing in a user-specified proportion of the experimen-

tal replicates and additionally offers a left-censored missing value imputation algorithm.

Alternatively, data filtering and missing value imputation can be conducted externally to

Argonaut if other data cleaning approaches are more appropriate for a particular dataset.

Missing values in mass spectrometry profiling experiments often arise from low-abundance

molecular species below the limit of quantification40,41. Argonaut’s missing value imputa-

tion algorithm is adapted from the imputation strategy implemented in Perseus19,42, where

a set of the smallest quantitative values are leveraged to impute missing data. Argonaut’s

imputation algorithm is visualized in Figure 4.3A and Figure 4.3C. For each condition, log2

transformed quantitative measurements are placed into an array and placed in ascending
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order, generating a roughly normal distribution of quantitative values. An iterative loop is

used to subset the smallest x% of existing quantitative values, (1% 6 x 6 100%), as demon-

strated inFigure 4.3C. A gaussian distribution is drawn the mean and standard deviation

of the subset data. This gaussian is then randomly sampled to populate all missing values

for this condition, and the average biomolecule coefficient of variation (CV) within the

condition is calculated for the cutoff x. The ideal cutoff x is selected by minimizing the

average biomolecular CV. This calculation is then iteratively applied to all other conditions.

If data filtration and missing imputation are not conducted and missing values remain,

they will be excluded from further statistical analysis.

Normalization and Statistical Testing After data filtration and missing value imputa-

tion are completed, the mean (X̄) and standard deviation (s) of all remaining quantified

biomolecules are calculated within each condition. Calculated means then undergo a linear

control normalization to better scale raw abundances for visualizations. If a control condi-

tion was not specified for an uploaded batch, this calculation uses the mean abundance

across all conditions for a biomolecule instead.

X̄normalized = X̄raw − X̄control (4.1)

These quantitative data then undergo statistical testing against the newly uploaded

batch’s control if one was specified. Otherwise the testing is conducted against the batch’s

log2 transformed average biomolecular abundance for each respective biomolecule. The test
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statistic of differential biomolecule expressions are calculated using an unpaired two-tailed

Student’s T test, as shown below.

t =
(X̄condition − X̄control)√
scondition

n2
condition

+
scontrol

n2
control

(4.2)

The test statistic is converted to a p-value and stored in the MySQL database. Multiple

hypothesis corrected p-values are then calculated using both the Bonferroni (Dunn, 1961)

and Benjamini-Hochberg correction methods (Benjamini and Hochberg, 1995). These

corrected p-values can be selected for use in Argonaut’s interactive visualizations to enable

users to be more stringent in what is labeled as statistically significant. Finally, outlier

analysis and PCA are conducted as described previously by Stefely et al., 2016.
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Chapter 5

genome-guided lipid identification enabled by lipidgenie

DRB designed and developed LipidGenie and analysed data for the quantitative trait locus
clustering portions in the chapter.
Portions of this chapter are included in a submitted manuscript under peer review:

Linke V, Overmyer KA, Miller IJ, Brademan DR, Hutchins PD, Trujillo EA, Reddy T,
Russell JD, Schueler KL, Stapleton DS, Rabaglia ME, Keller MP, Gatti DM, Keele G, Pham
D, Broman KW, Churchill GA, Attie AD, Coon JJ. Genome-guided lipid identification.
Nature Metabolism. 2020.
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Abstract

Lipids are metabolic actors in health and disease including diabetes and obesity. Mass

spectrometry (MS)-based discovery lipidomics offers global and unbiased access to these

crucial molecules. Current lipid identification strategies, which leverage mass-to-charge ra-

tio, chromatographic retention time, and fragmentations pattern, are unable to identify the

majority of detected lipid chromatographic features. We present genome-lipid association

data as an orthogonal tool for lipid identification. Using high resolution LC-MS/MS, we

analyzed liver and plasma derived from 384 Diversity Outbred (DO) mice and quantified

3,283 lipid-like features. These features were mapped to 5,622 lipid quantitative trait loci

(QTL) and were compiled into a public web-resource, termed LipidGenie. Leveraging the

genome-lipid associations embedded in this resource, we were able to derive identifica-

tions for an additional number of lipids, including gangliosides through their association

with the protein B4galnt1 as well as a novel group of sex-specific phosphatidylcholines.

Finally, LipidGenie allows a user to query QTLs from either a mass feature or genetic locus

perspective. Using this functionality, we uncover evidence suggesting the genes ABHD1

and ABHD2 possess acyl chain-specific functions.

Introduction

Beyond their roles in energy storage and membrane structure, lipids are central actors of

myriad metabolic functions and molecular signaling.1,2 As our understanding of these
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diverse lipid functions grows, so too does our appreciation for the complexity of the

lipidome of mammalian systems.3 Mass spectrometry has emerged as the central tool

to dissect and quantify lipid species.4–6 Specifically, using liquid chromatography (LC)

coupled with high resolution tandem mass spectrometry (MS/MS), over one thousand

unique lipid features from a complex mixture can be quantified in under an hour.7 From

these features hundreds of individual lipids are routinely identified; however, the majority

of the features remain unannotated.8,9 The result is that more often than not, the majority

of MS data are not leveraged.8,10,11

One strategy for lipid feature identification is to group compounds likely to be related.

For example, members of a lipid class often (i) appear within a defined chromatographic

retention time, (ii) occupy a characteristic mass range, and (iii) exhibit similar dissociation

patterns when subjected to fragmentation.12 Most efforts to improve lipid identification

rates exploit one or all of these steps3,13–15 - including our laboratories recent description

of a software suite that constructs tailored MS/MS libraries for automated lipid spectral

identification.16,17 Others have sought to build on this information by adding external

complementary data, such as measurement of collisional cross section,10 or labile hydrogen

counting, among others.18 All of these methods show great promise but share in the

common theme that they incorporate lipid chemical properties into their identification

inference.

In the field of shotgun proteomics, genome sequence data are used to identify experi-

mental peptide tandem mass spectra. Given the success of this field we wondered whether
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genomic information could be leveraged similarly in the field of lipidomics. Unfortunately,

it is not possible to directly predict an organism’s theoretical lipid identities from genomic

data in a similar fashion to how theoretical peptides are derived from known genes;19

however, shared genetic regulation among lipids could provide key information to facilitate

identification of uncommon lipid species. For example, a recent large-scale multi-omic

study of a knock-out yeast library demonstrated dramatic regulation of the lipidome,20

nuclear magnetic resonance (NMR)-base untargeted metabolomics identified disease-

associated metabolites and genomic regions via quantitative trait loci (QTL) mapping,21,22

and recent genome wide association studies (GWAS) were used to assist in small molecule

identifications from both MS and NMR data.23–26 We propose that a global genome-lipid

association map would add a fourth (iv), orthogonal dimension of data to assist in lipid

feature identification.

To construct a global genome-lipid association map we measured plasma and liver

lipids from a mouse population using LC-MS/MS and performed quantitative trait loci

(QTL) mapping.28–30 We have selected the diversity outbred mice (DO), a multiparent

population (MPP) derived from 8 highly diverse founder strains (Figure 5.1A.30–32 A key

advantage of the MPP is that we can identify the additive genetic effects contributed by each

founder strain at a quantitative trait locus (QTL). Unlike standard bi-parental crosses where

the founder haplotype effects are either increasing or decreasing, the haplotype effects in

a MPP are complex and enable us to distinguish chance co-localization from pleiotropic

effects. In addition, we can compare founder haplotype effects across different studies using
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Figure 5.1: LC-MS/MS Lipidomics and QTL Mapping as Ways to Bolster Lipid Identifications. a, A modi-
fied MTBE lipid extraction 27 was performed on plasma and liver from 384 DO mice. b-d, Lipid extracts were
analyzed by LC-MS/MS. Identifications were obtained through LipiDex 16 based on retention time window (b),
exact mass (c), and tandem mass fragmentation (d). e, All lipidomic features (identified and unidentified)
were mapped onto the mouse genome via QTL mapping, revealing genomic position and founder strain
allele effect pattern as results for each QTL. This additional information enabled identification of otherwise
unidentified features.
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DO mice to identify shared effects on traits that were not directly measured in only one

group of DO mice. Specifically, we were able to use liver gene expression from a previously

published study to propose candidate genes for the lipid features in this study.32 Further,

each of the eight inbred DO founder mouse strains (129, A/J, B6, CAST, NOD, NZO, PWK,

WSB) contributes to generate distinct allele effect patterns at each locus, thus providing an

additional criterion for gene identification.33 Finally, careful control of external sources of

variation such as diet and environmental conditions, allows the extraordinary phenotypic

diversity of the DO34 to be directly attributed to genetic diversity. The DO population

has already been used extensively to map clinical traits,35 transcripts,34 proteins,36 gut

microbiota and bile acids37 providing a wealth of existing data to integrate with global

genome-lipid associations.

Here we describe the first discovery lipidomics analysis on a cohort of DO mice. In

doing so, we present QTL position as an independent piece of information to guide lipid

identification and apply it to define unidentified mass spectral features. We demonstrate

the utility of genome-lipid associations to assign identification or function in independent

studies through a novel web-based resource - LipidGenie (http://lipidgenie.com

/). LipidGenie compiles generated genome-lipid associations in an easy-to-access web

application, enabling the scientific community to interrogate our newly-generated resource

using their own expertise and data.

http://lipidgenie.com/
http://lipidgenie.com/
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Results

QTL mapping connects lipids to their genetic regulators. To explore the hypothesis that

global association of mass spectrometry data to genomic coordinates could assist lipid

identification, we collected whole lipidome profiles of plasma and liver tissue from 64

founder strain mice (FS) and 384 DO mice using high resolution LC-MS/MS (Figure 5.1a).

Altogether, we performed 894 LC-MS/MS discovery lipidomics experiments from which

we extracted approximately 4,500,000 tandem mass spectra(Figure 5.1d). From the full

scan mass spectrometry data (Figure 5.1c), we detected and quantified 19,636 molecular

features; 12,429 in plasma and 7,207 in liver (Figure 5.1b). Next, we applied the LipiDex

algorithm16 to (1) match the tandem mass spectra to their respective features, (2) eliminate

features derived from adduction, dimerization, in-source fragmentation, etc., and (3) to

assign molecular identities when possible (Figure 5.1d. From the 3,283 distinct molecular

features that remained, we identified 594 lipids (from 1,721 features) in plasma and 584

lipids (from 1,562 features) in liver (see Methods: Lipidomics Data Analysis for details).

Supplementary Figure S5.2a-b and Table 5.1 provides an overview of the identified lipids

that span roughly 30 lipid subclasses from five of the major classes: fatty acyls, glycerolipids,

phospholipids, sphingolipids, and sterol lipids.38 For 70% of these identifications we find

MS/MS evidence to detail fatty acid composition, otherwise we report sum composition.

Supplementary Figure S5.1a and b present a bird’s-eye view of these plasma and liver

lipidomes. Here each distinct molecular feature is plotted as a function of its m/z and
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Table 5.1: Breakdown of Lipid Identifications in Plasma and Liver Samples by Lipid Class. “Molecular
Level” refers to lipids identified with individual fatty acid rather than as a sum composition.
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chromatographic retention time. Identified lipids are colored by class; we note members of

individual lipid classes group well, adding confidence to their identification. Triglycerides

(TG),39 for example, as hydrophobic lipids with three fatty acids can be found at high m/z

and late chromatographic retention. From this perspective, we observe that the unidentified

molecular features, frac23 of all detected species, are either clustered around identified

lipid classes or class coverage and (2) reveal the presence of additional lipid classes. exist

on m/z and retention islands. We conclude that these data can be further interrogated to (1)

expand existing lipid class coverage and (2) reveal the presence of additional lipid classes.

Next we extracted quantitative information from all detected molecular features across

all 384 animals, creating a molecular trait for each feature. Figure 5.1e displays the quan-

titative values of two such individual molecular traits from plasma; one identified as a

phospholipid and one unidentified. Plasma HexCer[NS] d18:1_20:0 has a relative abun-

dance dynamic range of 15-fold across all 384 animals. For comparison, we plot the

abundance of a molecular feature with a mass of 1252.8028 Da. Here we see an even greater

dynamic range of 75-fold, however, the feature was unidentified using our traditional data

processing. Correlation to a candidate gene region ultimately led to the identification of the

feature (Figure 5.1f). To correlate these MS-derived lipid quantitative phenotypes (vide

supra) with genomic variation we performed quantitative trait locus (QTL) mapping using

R/qtl2.29

Figure 5.2a displays a hierarchically clustered heatmap of these quantitative results for

all measured molecular traits (1,721 and 1,562 for plasma and liver, respectively) across all
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Figure 5.2: Large-Scale Lipid Quantitative Profiling and Subsequent QTL Mapping Reveals Hotspots of
Associated Lipids. a, In plasma, we quantified 1,721 lipidomic features, 621 of which were identified, and in
liver, we quantified 1,562 lipidomic features, 615 of which were identified. Hierarchical clustering of all 3,283
lipidomic features’ intensities by the 384 DO mice resulted in distinct clustering by lipid class, notably across
tissue type. b, When mapped onto the mouse genome, 1,405 plasma and 1,190 liver features showed at least
one QTL with an LOD > 6 as displayed in a Manhattan plot (n = 3,353 + 2,269 = 5,622 total QTLs). A number
of lipid hotspots are shared by identified lipids and unidentified features (e. g. at Apoa2), while others only
appear among the unidentified features (e.g. at B4galnt1).
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384 animals. Notably, we observe considerable clustering by lipid class, even across tissue

type (y-axis). We detected 3,348 plasma lipid QTL for 1,405 of the 1,721 (81.6%) traits

(logarithm of odds (LOD) score > 6). 1,351 of these were from identified lipids, while 1,997

were from unidentified features. Similarly, in liver, we detected 2,269 lipid QTL for 1,190 of

the 1,562 (76.2%) traits, of which 927 were from identified lipids while 1,342 were from

unidentified features. Figure 5.2b and Supplementary Figure S5.2b present the genetic

correlations for this entire collection of significant QTL extracted in a Manhattan plot. We

note that the unidentified molecular traits cluster among the various identified lipid classes,

which provides further evidence that these features are of biological origin and amenable

for further interrogation. Secondly, the unidentified features occupy additional distinct loci,

implicating previously unidentified lipid classes.

QTL map recapitulates known APOA2 biology and informs cholesteryl ester lipid iden-

tifications. Several genetic loci are strongly associated with lipids and appear as hotspots -

locations on the genome where multiple lipid QTL co-map (Figure 5.1E). To better explore

these regions, we asked whether these co-mapping lipid QTL shared a common genetic

relationship to segregating alleles at the locus. One advantage of the DO mice is that shared

founder strain allele effect patterns can be indicative of a common genetic regulator.30 Thus,

we define a lipid QTL hotspot as multiple lipid QTL co-mapping (± 2 Mbp) with a shared

founder strain allele effect pattern. We identified a number of hotspots; To garner additional

support for founder strain specific genetic effects on lipid abundance, we profiled plasma
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and liver lipids for each of the founder strains (4 males, 4 females).

Figure 5.3a highlights a lipid QTL hotspot on chromosome 1:171 Mbp. Here, 255

lipid traits, all from plasma, co-localize with a shared allele effect pattern of upregulation

associated with alleles derived from the founder strain 129 (Supplementary Figure S5.3a).

The lipid with the highest LOD at this locus was a cholesteryl ester (CE 18:2), which was

also elevated in founder strain 129 plasma Supplementary Figure S5.3b. At 171 Mbp on

chromosome 1, strain 129 possesses a missense SNP in the Apoa2 gene (rs8258226), resulting

in a 61Ala >Val substitution in the protein apolipoprotein-II.40 A prior DO study identified

APOA2 protein and mRNA expression QTL in liver tissue but these displayed different

allele effects than plasma lipid QTL, suggesting that the causal variants that modulate

their respective levels differ Supplementary Figure S5.3c.36 Notably, APOA2 protein is a

major component of high density lipoprotein (HDL) particles in plasma, corroborated by

human HDL traits mapping to APOA2 in GWAS,41, and is considered a principal genetic

regulator of plasma HDL levels in mice.42–45 The other major components of HDL particles

are phospholipids (35-50%) and cholesteryl esters (30-40%) (Figure 5.3b).46 Consistent

with this composition, seven sub-types of phospholipids and various cholesteryl esters

(CE) map to the Apoa2 locus (Figure 5.3e). Sphingolipids, a minor component of HDL

particles, map in four different sub-classes to this Apoa2 locus. We conclude that this

hotspot illuminates the molecular composition of HDL particles in mice, while also linking

an additional 130 unidentified lipid features to this locus.

To test if a shared QTL would enable identification of additional lipids, we plotted the
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Figure 5.3: Co-mapping of Lipids at the Apoa2 Locus Facilitated Identification of Additional Cholesteryl
Esters. a, One lipid hotspot on chromosome 1 at 171 Mbp is shared by 255 plasma lipid features co-mapping
with a common 129 high allele effect(Supplementary Figure S5.3a). b, The candidate gene at this locus is
Apoa2, which encodes for apolipoprotein II, which is carried on HDL cholesterol particles along with c, a
variety of lipid classes, mostly phospho- and sphingolipids, which mapped to the locus. d, When plotting all
255 Apoa2-specific lipid features in the m/z-RT plane, a group of unidentified features sharing the RT region
with CEs stood out. e, Notably, all six CEs show their primary QTL at this locus, as visible from their individual
LOD plots. f, Subsets of the unidentified features could subsequently be identified as CE-related features,
including heterodimers, cholesterol-adducts and in-source fragments.
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255 lipid traits that map to the Apoa2 locus as a function of chromatographic retention time,

mass, and identification status (Figure 5.3d). A cluster of unidentified lipid features shared

retention time with CEs, a class of lipids that are often devoid of informative fragments.47 All

CEs showed their major QTL at the Apoa2 locus (Figure 5.3e) providing greater confidence

in their identification. The shared genetic regulation further allowed us to predict a CE

identity for the cluster of unidentified co-mapping features. Examination of their total

masses48 and tandem mass spectra supported the annotation of five additional CEs (Figure

5.3f), while another 18 lipid features’ m/z and RT were consistent with technical artifacts

of CEs: eleven heterodimers, four cholesterol adducts, and three in-source fragments.

QTL map provides an orthogonal tool for lipid identification - the case of polygenic

gangliosides. On chromosome 10, at 127 Mbp we observed a significant lipid QTL hotspot.

At this site, over twenty-five plasma and liver lipid features mapped with the highest overall

significance (Figure 5.4a). These features also shared a common allele dependence; i.e.,

NOD-driven and split between NOD high vs. low effect (Figure 5.4b). None of these lipid

features were identified following our conventional data analysis strategy, which leverages

retention time, mass, and tandem mass spectra. The features were observed in two distinct

clusters based on m/z and RT, suggesting they could derive from two distinct lipid classes

(Figure 5.4c). Given that these unidentified features (1) appeared as two defined lipid

classes and (2) were high scoring at a genetic locus with opposite allele effects, we reasoned

that identification of the causal gene may enable their identification.
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Figure 5.4: Lipid Features Mapping to B4galnt1 Lead to Identification of GM2 and GM3 Gangliosides. a,
A hotspot of solely unidentified features with exceptionally strong correlation was composed of 11 liver and 15
plasma features mapping to chromosome 10:127 Mbp with b, a similar NOD-driver allele pattern (two main
clusters from hierarchical clustering, row-scaled, Euclidean cutoff of h = 2.5). Two groups of lipid features
(circles vs. triangles) emerged as distinct in strength of LOD (a), directionality of allele effect (b), and m/z
space (c). d, The candidate gene B4galnt1 pointed us to the putative identifications of GM3 (circles) and
GM2 (triangles) gangliosides, which were confirmed by e, spectral matching with a human GM3 standard. f,
Secondary QTL for these gangliosides, as exemplary shown for GM2 d18 : 122 : 0, mapped to eight additional
candidate genes within 4 Mbp of the 15 total ganglioside hotpots that were previously linked to ganglioside
metabolism. g, The various candidate genes influencing GM3 and GM2 levels span well-known enzymes (e.g.
B3galt4) but also include indirect affectors including Cog2 and Slc9a6.
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The genetic effects of SNPs and other genomic variants can influence lipid abundance.

For example, SNPs in coding regions can affect protein product function. In the extreme,

a missense variant in proteins involved in lipid metabolism could very likely affect lipid

abundance. SNPs in non-coding regions, such as promoters and enhancers, can alter

gene expression. To identify candidate SNPs, we analyzed the SNPs associated with the

lipids by identifying those with the founder strain SNP database at each QTL (R/qtl2;

scan1snps()29) and subsequently causing missense, frameshift, stop lost/gained, incom-

plete terminal codons, in-frame deletions/insertions, altering 3’ or 5’ UTR sequences, splice

acceptor/donor/region, predicated to cause nonsense-mediated decay, initiator codon or

mature miRNA variants (according to the Sequence Ontology (SO) consortium)49. At

the chromosome 10 hotspot we identified several candidate genes with potentially causal

mutations (Figure 5.4d). We included in our analysis, but did not focus on genes with

synonymous, stop retained, up-/downstream, intergenic, intron and non-coding transcript

(exon) variants (which represent 97% of all SNPs in the database).

In cases of altered gene expression, we further narrowed down the list of candidates by

directly assessing transcriptomics data. While we did not profile hepatic gene expression

in the DO cohort used for lipid QTL analysis, we surveyed a recently published hepatic

QTL data set to match allele effects of mRNA expression and protein QTL that are within

the location of the candidate gene (cis-eQTL and pQTL, respectively).36 We asked if any

transcripts or proteins presented a similar NOD-driven allele effect at the lipid locus on

chromosome 10. Of the protein coding genes within ±2 Mbp of the lipid QTL, 55 showed a
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cis-eQTL. However, the only cis-eQTL that was strongly and uniquely driven by NOD alleles

was B4galnt1 (Supplementary Figure S5.4a). Furthermore, 16 cis-pQTL were identified for

genes within this region, including B4GALNT1. Similar to the cis-eQTL, the only pQTL that

showed an NOD-driven allele effect pattern was for B4GALNT1 (Supplementary Figure

S5.4b). Consequently, the 3’ UTR variant in B4galnt1 SNP rs13462597 was our strongest

candidate as the genetic regulation of hepatic B4galnt1 transcript and protein expression

matches that of the unidentified lipids.

B4galnt1 encodes for β-1,4 N-acetylgalactosaminyltransferase 1, an enzyme that cat-

alyzes the conversion of GM3 to GM2 gangliosides.50 With this candidate gene in mind,

we investigated whether the unidentified lipids could be classified as gangliosides. Their

precursor m/z and tandem mass spectra were consistent with monosialic gangliosides,

which we further confirmed by comparison with a GM3 ganglioside standard (Figure 5.4e).

In total, we confidently identified 26 lipid features as six unique GM2 and seven unique

GM3 species (Supplementary Table S4). Consistent with an NOD-driven effect, NOD mice

have higher abundance of GM3 gangliosides in pancreas,51 and we confirmed NOD had

higher abundance of GM3 in plasma in an independent lipidomic analysis of founder strain

mice (Supplementary Figure S5.4c).

By identifying the features mapping to chromosome 10:127 Mbp as gangliosides, we rec-

ognized that ganglioside abundances, like the levels of most lipid species, were polygenic,

that is regulated by multiple loci (Figure 5.4f). From the 26 identified ganglioside features

we gain a total of 62 QTL annotations, describing more than 15 unique loci (at least two gan-
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glioside features with LOD > 6.0) on 10 chromosomes. Interestingly, these newly annotated

ganglioside QTL mapped to candidate genes of the ganglioside pathway (Sgms152, B3galt4,

St3gal2, Cmah53), even more distant regulators of ganglioside metabolism (Slc9a654, Cog255,

Trcp5 56, Cdh13), and regions of the genome with yet undescribed ganglioside regulation

(Figure 5.4g).

LipidGenie: A resource to identify candidate genetic regulators for lipid features. Up

to this point, the interrogation of QTLs in this study had been conducted on a piecemeal

basis via scripting with the R/QTL229 package. There existed no software tooled specifically

for the facile examination of large-scale QTL mapping studies. To facilitate the exploration

of this high-dimensional dataset and to make the described genome-lipid associations

accessible to the scientific community we created a web-based resource: LipidGenie (http:

//lipidgenie.com). LipidGenie aggregregates the lipid identifications generated in

this study using Lipidex,17 known mouse genes as annotated by the Mouse Genome

Informatics (MGI) consortium,57, and QTL mapping outputs from the R/QTL2 package

into a centralized web-based application.

QTLs can be queried from either a mass spectrometry-based lipidomics or genetic

locus perspective 5.5. When LipidGenie’s Lipid Viewer is accessed, all 3,295 lipid features

profiled in this study are loaded into the web page. These features can be subset using

lipid precursor m/z, tissue type, or lipid class as filtering properties (Figure 5.5A). Once a

lipid feature is selected, all QTLs associated with this feature populate the QTL dropdown.

http://lipidgenie.com
http://lipidgenie.com
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Figure 5.5: Control Panels for LipidGenie’s Lipid and Genetic Locus QTL Viewers. Panel A shows the QTL
query controls for the lipid-driven QTL viewer. A researcher can filter all the identified and unknown lipid
features in this study by lipid class, sample type, and theoretical lipid m/z. Selecting a lipid species will return
all QTLs associated with the lipid feature. These QTLs can then be individually inspected. Panel B shows the
QTL query controls for the genetic locus QTL viewer. The name of a mouse or human gene of interest can be
entered into the first textbox, populating the second dropdown with genes approximately matching the entered
gene. Selecting a gene will automatically populate the genetic locus and chromosome fields. Alternatively, a
chromosome and genetic locus can be manually entered. All QTLs within ±1.5 Mbp of the specified locus will
populate the final QTL dropdown. Selecting a QTL in both control panels will asynchronously query the data
necessary to generate the visualizations shown in Figure 5.6.
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Using the Lipid Viewer, researchers can quickly compare the LOD and Allele Effect plots

of multiple lipid species. As described above, we were able to recover identifications for

a set of co-mapping gangliosides (Figure 5.4). LipidGenie quickly uncovered that these

previously unknown lipid features had similar LOD and Allele Effect plots on chromosome

ten, suggesting they may be involved in a biological process encoded at the QTL locus.

LipidGenie’s Gene Viewer (Figure 5.5B) enables QTL lookups through specifying a

genetic locus (i.e. a chromosome and genetic location). Specific genes can be queried

by entering a gene name into the first text box. To expand the purview of LipidGenie to

human biology, we mapped homologous human genes to our dataset using shared MGI

identifiers.58 Up to 200 potential gene hits are returned using partial string matching on

MGI-annotated mouse genes or human homologues if they exist. Selecting a gene will

autopopulate the Genetic Locus fields chromosome and position. Alternatively, these

coordinates can be manually specified if. QTLs within ±1.5 Mbp of the provided locus are

inserted into the QTL dropdown at the bottom of the control panel.

When a QTL is selected using either the lipid or genetic locus control panel, an asyn-

chronous server query is executed to retrieve the respective QTL’s LOD and Allele Effect

values across the QTL’s respective chromosome alongside all MGI genes near the QTL

locus. The returned data is used to generate the visualizations shown in Figure 5.6. The

textbfLOD plot represents the additive effects of DO mice genetics on the expression of

a particular lipid species. The apex LOD score is chosen in this study as the QTL locus.

Larger LOD scores are associated with strong correlations of particular alleles to feature
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abundance. The textbfallele effect plot highlights the contribution of all Founder Strain’s

alleles to the calculated QTL effects shown in the LOD plot. The biggest divergence between

the allele effect curves co-occurs with the QTL locus. Finally, the gene plot visualizes

all MGI-annoted genes within ±1.5 Mbp of the apex LOD score. Genes that contain an

annotated MGI SNP are highlighted in salmon, while genes which contain SNPs that have

a likely phenotypic impact are highlighted in red. Finally, after a QTL is selected, the data

above as well as a list of genes contained with the QTL 95% confidence interval can be

downloaded in a tabular format if desired.

Validating LipidGenie using the DO mouse dataset To validate LipidGenie we explored

sex-associated lipid features that were observed within the B6 founder strain. In this

study we quantified 2,558 lipid features in B6 plasma and found 254 features that showed

significantly different levels by sex (Figure 5.7a). As is common in LC-MS lipidomics,

most of these sex-specific features were unidentified after the database search (n=197).

Utilizing LipidGenie’s m/z search parameter and a 10 ppm m/z window, we found sig-

nificant genome-lipid associations for 127 of the sex-specific features, of which 79 were

unidentified. Strikingly, a group of six unidentified lipids mapped to the same genetic locus

on chromosome 6 at 91 Mbp (Figure 5.7b); all had similar allele effect patterns (Figure

S5.5a) and were elevated in males (Figure 5.7a and Figure S5.5b). At the locus, a total of

12 out of 21 co-mapping features shared a lipid class-like behavior, i.e., clustered in m/z-RT

space (Figure 5.7c). To further characterize these lipids, we collected additional tandem
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mass spectra in both positive and negative mode (Figure 5.7d-g).

The spectra showed shared fragmentation patterns consistent with a phosphatidyl-

choline (PC) class identity. Strikingly, one fatty acid seemed to be either FA 22:6 (Figure

5.7e) or FA 16:0, but only MS3 spectra showed the presence of a second acyl chain expected

for PCs (Figure 5.7f-g). These features also shared a m/z 522 fragment that matched the

formula of lyso-PC 19:0, C26H53NO7P-. These fragmentation patterns suggest a third acyl

chain, and this would be in accordance with the observed 4 min increase in RT and 300

Da increase in precursor m/z compared to typical PCs.

We next leveraged the LipidGenie associations to generate hypotheses about the nature

of this lipid class. At chromosome 6 at 91 Mbp, we found SNPs with matching allele effects

in several genes including Txnrd3, Vmn1r, Uroc1, Aldh1l1, Slc41a3, Grip2, and Trh (Figure

5.7b). One possible candidate on chromosome 6 is Vmn1r, encoding for vomeronasal

receptors, the organs that sense pheromones. Not only could this gene explain the observed

sex difference, it also points us to PC estolides as a potential class identity. Estolides are

lipids containing fatty acid esters of hydroxy fatty acids (FAHFAs). Consistent with the

observed 16:0 or 22:6 fragments in MS2 spectra of the unidentified lipids, 16:0 and 22:6 can

be esterified to hydroxy fatty acids to form FAHFAs.60 This hypothesis is further supported

by accounts of FAHFAs as pheromones in spiders and TG estolides in mammalian scent

glands.61 The potential estolide identity is intriguing, but definitive identification will

require follow-up studies. Further evidence is likely contained in the genetic associations.

Similar to our earlier example with gangliosides, we observed co-mapping of these 12
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Figure 5.7: Web Resource LipidGenie Guides Exploration of Genome-lipid Connections. a, In a lipidomics
experiment of B6 mouse plasma (n = 4 for each sex), we quantified 2,558 features. We found 254 features to
be sex-specific (FC > 1.0, p < 0.05, non-paired, two-sided Student’s t-test) of which 2

3 could not initially be
identified. Matching of their precursor m/z (±10 ppm) to our DO database provided genetic information for
1
3 of the otherwise unidentified features. b, Highlighted in red is a group of six male-specific unidentified
features that share a QTL on Chr 6:91 Mbp with a common A/J down allele effect (Supplementary Figure
S5.5a). We identified several candidate genes within 4 Mbp that have matching SNP variants, including Txnrd3,
Vmn1r(43-45,49), Aldh1l1, Slc41a3, Grip2, and Trh. c, The six unidentified features further clustered in m/z-RT
space, suggesting they were members of a lipid class. d-g, This grouping of features allowed us to acquire
targeted fragmentation spectra (exemplary spectra for two of these species ([M+H]+ m/z 1156 and 1158) in
positive (MS2) and negative (MS2 and MS3) mode). The exhibited signals were consistent with a lipid class
built of a PC headgroup and three fatty acids. h, LipidGenie further informed a recent finding of LysoPC
14:0 mapping to Abhd1. 59 j, Importantly, we observed an enrichment of FA 14:0 containing lipids but not of
LysoPCs (i), pointing to a putative function of ABHD1 similar to the phospholipase ABHD3. k, To examine
this hypothesis, we overexpressed both Abhd1 and Abhd3 in Hepa1-6 cells and compared their lipidomes to
a control overexpressing GFP (n = 12 for each, 4 biological replicates x 3 distinct technical replicates). We
observed the largest absolute FC for LysoPC and PC lipids, as visible in boxplots of average absolute FC of
each mutant over GFP by lipid class (of lipid classes with more than 10 identified members). The dashed
line represents an arbitrary cut-off of a FC of 0.4, that both LysoPC and PC lipids surpassed. l, When plotting
the average FC per LysoPC species, a FA dependency is observed. The max. negative FC for both Abhd1 and
Abhd3 is observed for LysoPC 14:0, while the max.positive FC is observed for LysoPC 18:0. Note that each
species contains the summed values of all isomers of the respective LysoPC. m, A similar pattern is observed
for PC species identified on the FA level. All 14:0 containing PCs exhibit a negative FC for Abhd1 and Abhd3
mutants consistently, while 18:0 containing species are showing positive FC. Plotted are sum-normalized,
log2-transformed FC. Error bars in l and m represent 95% confidence interval, significance indicated by * (p <
0.05), ** (p < 0.01), *** (p < 0.001) of non-paired Student’s t-test, equal variance, n = 12 for each.
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lipids at other loci (e. g., Chr 10, at 84 Mbp, Chr 12, at 84 Mbp), thereby offering potential

pathway information and highlighting the power of genome-lipid associations obtained

with LipidGenie.

We next explored whether LipidGenie would also offer novel insights when querying

for identified lipid features. Recently, Parker et al. found an association between lysoPC

14:0 and chromosome 5 at 31 Mbp using multi-omic QTL mapping of the hybrid mouse

diversity panel59. From these data, they postulated that the protein encoded by candidate

gene Abhd1 (alpha beta hydrolase domain containing 1) regulates plasma levels of LysoPCs.

Note, ABHD1 has no annotated function. LipidGenie’s lipid search provides a direct means

to test this putative functional annotation of ABHD1.

LipidGenie confirmed that plasma LysoPC 14:0 has a strong QTL at the abhd1 locus

(Figure 5.7h), and further found the B6 and NZO high allele effect consistent with the

3’ UTR variant rs29681817 (Figure S5.5c). This observation is further supported by an

independent measure of the founder strain mice and a hepatic cis-eQTL in Abhd1 with

matching opposite allele effects (Figure S5.5d-e). To connect the function of ABHD1

protein to LysoPCs, we asked whether other LysoPCs (n = 45) mapped to this gene region.

However, in contrast to Parker and co-workers’ postulation, we did not find general mapping

of LysoPCs to this locus (Figure 5.7i). Instead we found other lipids co-mapping on

chromosome 5, at 31 Mbp, including PC 14:0_16:0, PE 14:0_20:4, PE 14:0_22:6, PC 28:0,

PC 30:0, and PC 30:1 (Figure 5.7h). These fatty acid signatures suggest a myristic acid

(14:0) specific association. Given the high degree of lipid structural resolution contained
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within LipidGenie, we demonstrate that 14:0-containing lipids (n = 30) have an enriched

hotspot at the Abhd1 locus (Figure 5.7j). With these data we propose that ABHD1 is a

phospholipase for myristic acid containing phospholipids; consistent with the function of a

related and highly homologous gene, abhd3.62,63 14:0-containing phospholipids have also

been mapped to ABHD3 in human GWAS.64 To validate this hypothesis, we overexpressed

ABHD1 and ABHD3 in Hepa1-6 cells (Supplementary Figure S5.6a-b) and measured

their lipidome with respect to cells overexpressing GFP as control. Hierarchical clustering

of the top 49 features showed two clusters, one with increased levels in the mutants over

control and the other one decreased (Supplementary Figure S5.6c). We noticed a majority

of identified lipids among the most significantly different features, and when plotting

the average fold change by lipid class, LysoPC and PC phospholipids stood out (Figure

5.7k). Upon closer look, we could confirm the predicted fatty acid dependency for both

LysoPC and PC lipids, particularly prominent in 14:0 containing phospholipids (Figure

5.7l-m). While ABHD1 and ABHD3 mutants exhibited largely similar lipidomic profiles,

differences as in PC 16:1_20:4 that was only decreased in the Abhd3 mutant, may also point

to differential functions. The 14:0 specificity could be relevant to human health as plasma

LysoPC 14:0 is a predictor of diabetes risk in humans. Finally, our proposed function

might provide a clue to understanding why ABHD1 is associated with oxidative stress, a

prominent hallmark of metabolic diseases.62,65,66

Having documented the diverse utility of LipidGenie for lipid queries, we lastly tested

its use for gene-based queries. ABHD2, another member of the alpha beta hydrolase do-
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main protein family, acts on arachidonylglycerol, among other substrates.67,68 A LipidGenie

query of Abhd2 does indeed provide evidence for this polyunsaturated fatty acid pathway

specificity. Specifically, within ±2 Mbp of Abhd2, LipiGenie returned ten liver phospho-

lipids. Eight of these lipids shared an allele effect pattern, and contained poly-unsaturated

fatty acids - i.e., 18:2, 18:3, 20:3, 20:4, and 22:6 (Figure S5.5f-g). Further, ABHD2 showed

matching opposite WSB and ST effects in both liver cis-eQTL and pQTL (Figure S5.5h-i).36

Discussion

Discovery lipidomics presently relies on measurement of various chemical properties for

lipid identification. These properties are most often hydrophobicity, mass, and fragmenta-

tion pattern. Unfortunately, application of only these strategies to complex mammalian lipid

mixtures results in many unidentified lipid features. Here we proposed that genome-lipid

associations can facilitate lipid identification.

To test the power of genome-lipid associations for lipid identification, we performed

QTL analysis for over 5,000 plasma and liver lipid QTL, of which over 60% stem from

unidentified spectral features to construct a large scale mapping of QTL across the features.

To our knowledge, this QTL map is the broadest in scope and depth of lipids analyzed and

QTL identified; but more importantly, it is the first to map unidentified spectral features to

genomic loci.59,69,70 With these data, we first tested our hypothesis - that such associations

could facilitate lipid identification - by analyzing one of many QTL hotspots; the Apoa2

locus. The identified lipids mapping to this locus belonged to 11 different classes and,
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together with APOA2, constitute the known components of HDL particles. With this

association, 23 unidentified lipid features could be classified as cholesteryl esters and

related features.

To further test the concept, we selected a second hotspot containing only unidentified

lipid features (10:127 Mbp). Genetic mapping to B4galnt1 enabled their identification

as GM3 and GM2 gangliosides. In fact, the identification allowed for a comprehensive

investigation of their complex polygenic regulation. We identified a total of eight candidate

genes that likely contribute different functions in the pathway, including three (Slc9a6,

Cog2, Trpc5) that exert indirect effects on ganglioside biosynthetic enzymes.

Having confirmed the value of genome-lipid associations for lipid mass spectral data

annotation, we built an interactive, query-able resource - LipidGenie. Using the lipid query

function, we demonstrated LipidGenie’s ability to facilitate lipid identification and in one

instance revealed a potentially new sub-class of PC lipids (PC-estolides). Beyond assisting

lipid identification, LipidGenie can provide evidence for gene function, and when queried

for either lipid ID or gene ID, LipidGenie revealed acyl-chain specificity for ABHD1 and

ABHD2, respectively. We confirmed the putative phospholipase function of ABHD1 in

cells overexpressing the mouse protein while comparing to ABHD3.

We envision the genome-lipid associations contained within LipidGenie to be a valuable

resource for researchers across multiple fields. We anticipate it will be immediately useful

for directed analysis of key unidentified features in exploratory lipidomics analyses and

lead to recovery of more data for biological studies. Simultaneously, we hope it will garner
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excitement for potentially novel genetic regulation of lipid metabolism. While LipidGenie

has specifically been built as a resource for this study, it’s architecture is poised to be

repurposed for the QTL mapping of other mass spectrometry-based omics measurements,

such as proteomics and metabolomics. Finally, through integration with other large data

resources, e.g., protein-protein interactions, pathway tools, tissue-specific QTL, etc., these

genome-lipid associations will allow more global integration of lipid data into current

knowledge bases. The integration with human loci will especially allow for cross-validation

to inform human health and disease.71,72

Methods

Animal Husbandry and Sample Collection. All experiments involving mice were preap-

proved by an AAALAC-accredited Institutional Animal Care and Use Committee of the

College of Agricultural Life Sciences (CALS) at the University of Wisconsin-Madison. The

CALS Animal Care and Use Protocol number associated with the study is A005821, A.D.

Attie, Principal Investigator. Equal numbers of male and female Diversity Outbred (DO)

mice and the eight founder strains (C57BL/6J (B6), A/J, 129S1/SvImJ (129), NOD/ShiLtJ

(NOD), NZO/HILtJ (NZO), PWK/PhJ (PWK), WSB/EiJ (WSB), and CAST/EiJ (CAST))

were all obtained from the Jackson Labs and have been previously described.34,35,73 Briefly,

all mice were housed within the vivarium at the Biochemistry Department, University of

Wisconsin-Madison, and maintained on a Western-style high-fat/high-sucrose (HF/HS)

diet (44.6% kcal fat, 34% carbohydrate and 17.3% protein) from Envigo Teklad (TD.08811)
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for 16 weeks. All mice were maintained in a temperature and humidity-controlled room

on a 12 hr light/dark cycle (lights on at 6AM and off at 6PM), and provided water ad

libitum. At 22 weeks of age, mice were sacrificed following a 4 hr fast. Plasma and liver

were collected from each mouse, flash frozen in liquid nitrogen. One sample from each

tissue per mouse was used for lipidomic analyses.

Mouse Genotyping and Haplotype Reconstruction. We collected tail biopsies for DNA

extraction30 at 4 to 6 weeks of age when animals arrived at the University of Wisconsin

and were assigned to single-housed pens. We shipped DNA to Neogen (Lincoln, NE) for

genotyping using the Mouse Universal Genotyping Array (GigaMUGA; 143,259 markers).

Genotype calls were subject to quality control as described in Broman et al.74 Genotypes

were used to reconstruct the 8-founder haplotype mosaic of each DO mouse using the

hidden Markov model in the R/qtl2 software package.29,34 The haplotype-reconstruction

uses information at each genetic markers and its neighbors to assign an eight-state hap-

lotype probability that accounts for both heterozygosity and uncertainty in haplotype

assignments.28 We interpolated the founder haplotype probabilities onto an evenly spaced

grid of 69,005 pseudo-markers for mapping analysis. Sample mix-ups (one pair of samples)

were resolved using islet gene expression data as described in Keller et al. 2018.34

Plasmids and Cell Culture Expression. Mouse Abhd1 (CMV6 promoter, Myc-DDK-tagged,

MR206471) and mouse Abhd3 (CMV6 promoter, Myc-DDK-tagged, MR206458) plasmids
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were obtained from Origene. Manufacturer’s sequencing primers were used to confirm

plasmid insert. His-tagged CMV6-GFP plasmid was a gift from J. Simcox. All plasmids were

transformed into E. coli (ThermoFisher Scientific, 18258012). Plasmids were maxiprepped

according to manufacturer’s instructions (Qiagen, 12362).

5x105 Hepa1-6 cells (ATCC® CRL-1830) were seeded in 6-well plates with DMEM

(ThermoFisher Scientific, 12100061). After 16 hours, cells were reconditioned with fresh me-

dia for 2 hours. Cells were transfected in triplicate with Lipofectamine2000 (ThermoFisher

Scientific, 11668019) according to manufacturer’s instructions. Transfection efficiency was

confirmed by visualizing GFP. After 24 hours, media was replaced. 48 hours after transfec-

tion, cells were washed in cold 1X PBS and scraped to be released from the plate. Released

cells were pelleted by centrifugation and snap-frozen in liquid nitrogen. The frozen cell

pellets were stored at -80 °C until lysis. Hepa1-6 cells were provided by J. Simcox.

For Western Blots, cell pellets were lysed in 2x SDS-PAGE loading buffer and boiled

at 95C for 5 min. Samples were run on a 10% SDS-PAGE gel for 1.5 h at 120V, standard

is Precision Plus Dual Color Protein Standards (Bio-Rad, 1610394). Samples were wet-

transferred onto PVDF membrane (Bio-Rad, 1620177) for 1.5 h at 100 V. Following transfer,

membrane was blocked in 5% milk in TBST for 1 h at room temperature. Membrane was

incubated overnight at 4C with 1:2000 rabbit anti-MYC antibody (CST, 2278) in blocking

buffer. Primary antibody was removed by washing 3X with 1X TBST. Membrane was

incubated with 1:2000 goat anti-rabbit-HRP conjugated antibody (CST, 7074S) in blocking

buffer. Samples were visualized with Clarity Western ECL Substrate (Bio-Rad, 1705060) on
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a ThermoFisher iBright FL1500 Imaging System.

Lipidomics Sample Preparation. Plasma. 40 µL (30 µL for founder strains, FS) of plasma

and 10 µL SPLASH Lipidomix internal standard mixture (Avanti Polar Lipids, Inc.) were

aliquoted into a tube. Protein was precipitated by addition of 215 µL MeOH. Control

samples comprised an aliquot of mixed male and female B6 plasma (Chow diet), extracted

with each batch. After the mixture was vortexed for 10 s, 750 µL methyl tert-butyl ether

(MTBE) were added as extraction solvent and the mixture was vortexed for 10 s and mixed

on an orbital shaker for 6 min. Phase separation was induced by adding 187.5 µL of water

followed by 20 s of vortexing. All steps were performed at 4 °C on ice. Finally, the mixture

was centrifuged for 4 min at 14,000 x g at 4 °C and 150 µL of the lipophilic upper layer were

transferred to glass vials and dried by vacuum centrifuge for 60 min. The dried extracts

were re-suspended in 100 µL MeOH/Toluene (9:1, v/v).

Liver. 20 (±2) mg liver tissue, frozen in liquid nitrogen along with 20 µL SPLASH

Lipidomix internal standard mixture were aliquoted into a tube with a metal bead and 1150

µL of MTBE/MeOH (10:3, v/v) were added for protein precipitation. Control samples for

DO comprised aliquots of sample pooled from FS, extracted with each batch. All steps were

performed at 4 °C on ice. The mixture was homogenized by bead beating for 4 min at 25 Hz

and shaking on an orbital shaker for 6 min. After bead removal, 225 µL of water were added

to each tube and the mixture was vortexed for 20 s. Finally, the mixture was centrifuged for

20 min at 13,000 x g at 4 °C after which 200 µL of the lipophilic upper layer were transferred
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to glass vials and dried by vacuum centrifuge for 60 min. The dried lipophilic extracts were

re-suspended in 100 µL MeOH/Toluene (9:1, v/v).

Hepa1-6 Cells. Hepa1-6 cells were scraped off of six well plates and transferred to 1.5

ml Eppendorf tubes. Cell pellets were kept frozen (less than -20 °C) until extraction. Cells

were lysed and protein was precipitated by addition of 225 µL MeOH. 750 µL methyl tert-

butyl ether (MTBE) were added as extraction solvent. The mixture was homogenized by

vortexing for 10 s and shaking on an orbital shaker for 6 min. Phase separation was induced

by adding 187.5 µL of water followed by 20 s of vortexing. All steps were performed at 4

°C on ice. Finally, the mixture was centrifuged for 8 min at 14,000 x g at 4 °C and 200 µL of

the lipophilic upper layer were transferred to glass vials and dried by vacuum centrifuge

for 60+ min. The dried extracts were re-suspended in 100 µL MeOH/Toluene (9:1, v/v).

LC-MS/MS. Sample analysis by LC-MS/MS, running data-dependent acquisition (DDA)

with dynamic exclusion and polarity switching, was performed in randomized order on an

Acquity CSH C18 column held at 50 °C (2.1 mm x 100 mm x 1.7µm particle diameter; Waters)

using an Ultimate 3000 RSLC Binary Pump (400 µL/min flow rate; Thermo Scientific) for

plasma, while for the liver samples a Vanquish Binary Pump (400 µL/min flow rate; Thermo

Scientific) was used. Mobile phase A consisted of 10 mM ammonium acetate in ACN/H2O

(70:30, v/v) containing 250µL/L acetic acid. Mobile phase B consisted of 10 mM ammonium

acetate in IPA/ACN (90:10, v/v) with the same additives. Mobile phase B was initially

held at 2% for 2 min and then increased to 30% over 3 min. Mobile phase B was further
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increased to 50% over 1 min and 85% over 14 min and then raised to 95% over 1 min and

held for 7 min. The column was re-equilibrated for 2 min before the next injection.

Plasma: Ten microliters of lipid extract were injected by an Ultimate 3000 RSLC au-

tosampler (Thermo Scientific). The LC system was coupled to a Q Exactive Focus mass

spectrometer by a HESI II heated ESI source kept at 300 °C (Thermo Scientific). The inlet

capillary was kept at 300 °C, sheath gas was set to 25 units, auxiliary gas to 10 units, and the

spray voltage was set to 5,000 V (+) and 4,000 V (-), respectively. The MS was operated in

polarity switching mode acquiring positive and negative mode MS1 and MS2 spectra (Top2)

during the same separation. MS acquisition parameters were 17,500 resolving power, 1 ×106

automatic gain control (AGC) target for MS1 and 1 ×105 AGC target for MS2 scans, 100-ms

MS1 and 50-ms MS2 ion accumulation time, 200- to 1,600-Th MS1 and 200- to 2,000-Th MS2

scan range, 1-Th isolation width for fragmentation, stepped HCD collision energy (20, 30,

40 units), 1.0% under fill ratio, and 10 second dynamic exclusion.

Liver: One microliter of lipid extract was injected by a Vanquish Split Sampler HT

autosampler (Thermo Scientific). The LC system was coupled to a Q Exactive HF mass

spectrometer by a HESI II heated ESI source kept at 300 °C (Thermo Scientific). The

inlet capillary was kept at 300 °C, sheath gas was set to 25 units, auxiliary gas to 10 units,

and the spray voltage was set to 4,000 V (+) and 3,500 V (-), respectively. The MS was

operated in polarity switching dd-MS2 mode acquiring positive and negative mode MS1

and MS2 spectra (Top2 for positive, Top3 for negative mode) during the same separation.

MS acquisition parameters were 60,000 resolution and 3 ×106 automatic gain control (AGC)
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target for MS1 and 15,000 resolution and 5 ×105 AGC target for MS2 scans, 100-ms MS1

and 35-ms MS2 ion accumulation time, 240 to 1,200-Th MS1 scan range for positive and to

1,600-Th for negative mode, and 200- to 2,000-Th MS2 scan range, 1.4-Th isolation width

for fragmentation, stepped HCD collision energy (20, 25 units for positive, 20,30 units for

negative mode), and 10 second dynamic exclusion.

Hepa1-6 Cells: Ten microliters of lipid extract were injected by a Vanquish Split Sampler

HT autosampler (Thermo Scientific). The LC system was coupled to a Q Exactive HF mass

spectrometer by a HESI II heated ESI source kept at 300 °C (Thermo Scientific). The inlet

capillary was kept at 300 °C, sheath gas was set to 25 units, auxiliary gas to 10 units, and the

spray voltage was set to 4,000 V (+) and 3,500 V (-), respectively. The MS was operated in

polarity switching mode acquiring positive and negative mode MS1 and MS2 spectra (Top2)

during the same separation. MS acquisition parameters were 30,000 resolving power, 1 ×

106 automatic gain control (AGC) target for MS1 and 1 × 105 AGC target for MS2 scans,

100-ms MS1 and 50-ms MS2 ion accumulation time, 200- to 1,600-Th MS1 scan range, 1-Th

isolation width for fragmentation, stepped HCD collision energy (20, 30, 40 units), 1.0%

under fill ratio, and 10 second dynamic exclusion.

Lipidomics Data Analysis. The resulting LC-MS lipidomics raw files were converted to

mgf files via MSConvertGUI (ProteoWizard, Dr. Parag Mallick, Stanford University)75

and processed using Compound Discoverer 2.0 (Thermo Fisher Scientific) and an in-house

developed open-source software suite, LipiDex16. All raw files were loaded into Compound
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Discoverer with blanks marked as such to generate two result files using the following Work-

flow Processing Nodes: Input Files, Select Spectra, Align Retention Times, Detect Unknown

Compounds, Group Unknown Compounds, Fill Gaps and Mark Background Compounds

for the so called “Aligned” result and solely Input Files, Select Spectra, and Detect Unknown

Compounds for an “Unaligned” Result. Under Select Spectra, the retention time limits were

set between 0.4 and 21 min, MS order as well as unrecognized MS order replacements were

set to MS1. Under Align Retention Times the mass tolerance was set to 10 ppm and the

maximum shift according to the dataset to 0.5 min. Under Detect Unknown Compounds,

the mass tolerance was also set to 10 ppm, with an S/N threshold of 3, and a minimum peak

intensity of 5E5 (DO) or 1E5 (FS). Further, [M+H]+1 and [M-H]-1 were selected as ions

and a maximum peak width of 0.75 min as well as a minimum number of scans per peak

equaling 5 were set. Lastly, for Group Unknown Compounds as well as Fill Gaps, mass

tolerance was set to 10 ppm and retention time tolerance to 0.2 minutes. For best compound

selection rules #1 and #2 were set to unspecified, while MS1 was selected for preferred

MS order and [M+H]+1 as the preferred ion. For everything else, the default settings

were used. Resulting peak tables were exported as excel files in three levels of Compounds,

Compound per File and Features (just Features for the “Unaligned”) and later saved as csvs.

In LipiDex’ Spectrum Searcher “LipiDex_HCD_Acetate”, “LipiDex_HCD_Plants”, “Lipi-

Dex_Splash_ISTD_Acetate”, “LipiDex_HCD_ULCFA”, and “Ganglioside_20171205” were

selected as libraries for the DO while “LipidBlast2_Reformatted_CoonLab”, “LB_cleaned”

and “Lipid_Spectral_Library_20170523” were selected for the FS. We further kept the de-
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faults of 0.01-Th for MS1 and MS2 search tolerances, a maximum of 1 returned search result,

and an MS2 low mass cutoff of 61-Th. Under the Peak Finder tab, Compound Discoverer

was chosen as peak table type, and its “Aligned” and “Unaligned” results, as well as the

MS/MS results from Spectrum Researcher uploaded. Features had to be identified in a

minimum of 1 file (4 files for the FS), however, the average lipid ID was based on a much

higher average of 344 features found in plasma and 310 features in the liver dataset. We

kept the defaults of a minimum of 75% of lipid spectral purity, an MS2 search dot product

of at least 500 and reverse dot product of at least 700, as well as a multiplier of 2.0 (3.0 for

FS) for FWHM window, a maximum 15 ppm mass difference, adduct/dimer and in-source

fragment filtering, and a maximum RT M.A.D Factor of 3.5. As post-processing all features

that were only found in 1 file and had no ID were deleted, and artifactual duplicates deleted.

For the FS liver dataset, peak areas were normalized to the 15:0-18:1(d7)-PC internal

standard by dividing each peak area by the internal standards’ peak area of that sample

and multiplying the result with the median of all internal standard peak areas. The quan-

tification of the internal standard was obtained through TraceFinder 4.0 (Thermo Fisher

Scientific). FS plasma results were normalized by dividing each peak area by the feature’s

average batch control and multiplying with the median feature’s peak area over average

batch controls. Reported is the log2 of all normalized values. Note that there is no data

available for two CAST females as one animal died before sacrifice (CAST-4) and for another

there was not enough plasma (CAST-3).
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QTL Mapping. Prior to mapping analysis, the lipid metabolite data were adjusted for batch

effects using the Combat algorithm76 as implemented in the R/sva software package.77

We reduced the 36-state founder probablities to an additive founder dosage, scaled to 1,

thus implying an additive genetic model for the genome scans we performed for each

lipid feature using the scan1() function in R/qtl229 with sex and DO breeding generation

included as covariates. This model assumes a normal distribution after transformation and

adjusts for the genome scan. We identified suggestive QTL at LOD > 6.0 and significant

QTL with a 95% significance level threshold of LOD > 7.4, determined through permutation

analysis.78

Data Analysis and Plotting. Data analysis was largely performed using R79 in RStudio80.

Data formatting was performed utilizing R/dplyr (0.8.3)81, R/tidyr (1.0.0)82 and R/re-

shape2 (1.4.3)83 and visualisations were created using R/ggplot2 (3.2.1)84, R/RColorBrewer

(1.1-2)85, and for exploratory analysis, R/plotly (4.9.0)86. Heatmaps were generated using

R/pheatmap (1.0.12)87 and manhattan plots were generated based on code accessible via

the R graph gallery.88 All boxplots were generated by ggplot2:geom_boxplot with the first

and third quartiles (25th and 75th percentile) for lower and upper hinges, 1.5x interquartile

range for the length of the whiskers, center line at median (50% quantile), and all data

points, including outliers shown.

Allele effects for each QTL were generated using the scan1blup() function of R/qtl2.29

SNP associations were performed using the scan1snps() function in R/qtl2_0.2029 accessing
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variants from the database cc_variants.sqlite (available here: https://ndownloader.fi

gshare.com/files/18533342) and genes from mouse_genes_mgi.sqlite (available here:

https://ndownloader.figshare.com/files/17609252) via R/RSQLite_2.1.2.89

To nominate candidate gene drivers at lipid-associated QTL, we integrated the lipid data

collected in the present study, with hepatic gene expression data previously obtained from

a separate cohort of DO mice.36 We reasoned a locus that demonstrated a hepatic cis-eQTL

and a lipid-associated QTL with a similar allele effect patterns is likely to be driving the

two phenotypes. We focused on cis-eQTL, as these are expression traits responding to local

genetic variation. We computed the Pearson’s correlation between the allele effect patterns

for all cis-eQTL at a locus to which one or more lipids co-mapped. We performed the same

calculation for hepatic cis-pQTL identified in the previous study.36 For example, at the

Chr 10 locus, we identified >25 QTL of unknown lipids in plasma and liver, all of which

showed a strong NOD-driven allele effect pattern. About half of these QTL showed NOD

as the high allele and half showed NOD as the low allele. We first computed the average

allele effect pattern for the NOD-high lipids and the NOD-low lipids. We then identified 55

cis-eQTL and 16 cis-pQTL that were within ±2 Mbp of the lipid QTL at 127 Mbp on Chr

10, and calculated the correlation between their allele effect patterns and the NOD-high

and NOD-low lipid QTL. One gene showed a very strong correlation; B4galnt1. The overall

correlation between the allele effects of the lipid QTL and the cis-eQTL or cis-pQTL was

very low (e.g., 0), suggesting that the vast majority expression traits are responding to

genetic variants different than the lipid traits. However, the correlation between the lipid

https://ndownloader.figshare.com/files/18533342
https://ndownloader.figshare.com/files/18533342
https://ndownloader.figshare.com/files/17609252
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traits and either the expression or protein level for B4galnt1 was >|0.97|. As B4galnt1 is

a known gangliosidase, we then asked if the MS fragmentation pattern for the unknown

lipids is consistent with gangliosides. It is worth noting that GM3 ganglioside standard

(Cayman Chemicals, Ann Arbor, MI, Item No. 15587) contained N-acetyl-neuraminidate

(NANA) - the only sialic acid made by humans. All gangliosides observed in the DO

samples contain N-glycolyl-neuraminidate (NGNA), a major sialic acid in mice.71,72 This

powerful approach enabled us to combine the lipid data from one DO study with the gene

expression and proteomic data of another DO study to nominate one candidate gene.

Development of LipidGenie. LipidGenie runs on a traditional Linux (CentOS 6), Apache2

(https://httpd.apache.org/), MySQL (https://www.mysql.com/), and PHP (7.0) web-

server. Dynamic HTML documents using were constructed using Bootstrap templates (3.0,

https://getbootstrap.com/). These HTML documents utilize the JavaScript Framework

AngularJS (3.0) to facilitate two-way data binding between user input and server queries.

The D3.js library is used to generate all visualizations.90. PHP scripts handle database

operations and text file creation for QTL data downloads.

LipidGenie’s MySQL database structure is shown in Figure S5.7. To populate the

MySQL database, in-house C# scripts were used to scrape and link the following data

from their respective sources: lipid identifications from Lipidex17 search files, QTLs and

LOD curves from the R/QTL229 scan1() function output, Allele Effect curves from the

R/QTL229 scan1blup() function output, SNPs from the cc_variants.sqlite database and

https://httpd.apache.org/
https://www.mysql.com/
https://getbootstrap.com/
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scan1snps() function output, and genes from the mouse_genes_mgi.sqlite database. The

remaining helper tables (shown in green) were built manually.

Data Availability. Genotypes and additional phenotype data associated with the DO

mouse population have been deposited with Dryad (doi:10.5061/dryad.pj105; data

files: Attie Islet eQTL data) (see Keller et al. 2018 for details).34

Mass spectrometry files can be found under ID 1610 at Chorus (http://choruspr

oject.org/). In addition, the lipidomics and QTL data reported here are available at

https://uwmadison.box.com/s/2ahtpna8xlhs5j0esnto3zy95upca05j(password:

DOLipids_guest01). Figures 1, 2, 3, 4, 5, 6, 7, 8 have associated raw data.

Code Availability. Code for data analysis and plotting is available at https://github.c

om/vanilink/DOLipids/. The genome-lipid associations are also accessible through an

interactive web-based analysis tool that will allow users to replicate the analyses reported

here (http://lipidgenie.com/). The source code for this resource can be found at

https://github.com/coongroup/LipidGenie.
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Supplementary Figure S5.1: Identified Lipids and Unidentified Features Occupy Characteristic Regions in
the m/z vs. RT space. a, In plasma, we quantified 1,721 lipidomic features, 621 of which were identified, and
b, In liver, we quantified 1,562 lipidomic features, 615 of which were identified.
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Supplementary Figure S5.2: Lipid Profiling and Subsequent QTL Mapping Reveals Clusters of Associated
Lipids. a, Lipid class distribution of all 1,721 plasma and b, 1,562 liver lipidomic features. c, 1,405 plasma and
d, 1,190 lipid features showed at least one QTL with an LOD > 6 as displayed in a Manhattan plot (n = 3,353
and 2,269 total QTLs, respectively). Hierarchical clustering of these features against the 69,005 markers on the
mouse genome, resulted in clustering of lipid class based on hotspots at the genetic level.
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Supplementary Figure S5.3: Apoa2 as the Candidate Gene at the Largest Lipid Hotspot. a, 255 plasma
(black) features mapping to the APOA2 locus on chromosome 1 share an allele effect pattern with upregulation
in the 129 allele, while 2 mapping liver features (white) do not share the pattern (based on hierarchical
clustering on allele effects, with a euclidean distance cutoff of h = 1.5). b, The allele effect is exemplary
replicated in an independent experiment of founder strain plasma CE(18:2) levels. c, The same pattern was
not visible in previously reported 36 Apoa2 liver protein and RNA allele effects.
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Supplementary Figure S5.4: B4galnt1 as the Candidate Gene at theHotspot with the Largest LOD. a, The
selection of B4galnt1 as the candidate gene for the chromosome 10:127 Mbp locus was corroborated by NOD-
specific allele effects in previously reported liver eQTL and b, pQTL.34 c, The allele effect patterns of the later
as gangliosides identified features mapping to the B4galnt1 locus could further be validated in an independent
experiment of founder strain mice (exemplar GM3 pattern).
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Supplementary Figure S5.5: Allele Effects Characterize Genome-lipid Hotspots. a, Hierarchical clustering
of allele effects at Chr 6:91 Mbp resulted in 21 features with matching A/J down effect (main cluster featuring
the six B6 male specific features (red) after row-scaling and Ward clustering, cutoff at h=5). b, Consistently,
the pattern of male » female was observed for each of the founder strains except for A/J mice as visible in
the example boxplots for m/z 1130. c, Hierarchical clustering of allele effects at Chr 5:31 Mbp locus resulted
in 10 features with matching B6 and NZO up effect (main cluster featuring LysoPC 14:0 (turquoise) after
row-scaling and Ward clustering, cutoff at h=8). d, This pattern could be replicated in the founder strains,
as shown for LysoPC 14:0, as well as e, in opposite directionality in a liver eQTL of a previously published
dataset. 36 f, Hierarchical clustering of allele effects at Chr 7:79 Mbp locus resulted in 8 features with matching
WSB down effect (main cluster featuring PUFA-containing phospholipids (turquoise) after row-scaling and
Ward clustering, cutoff at h = 2.5). g, The mapping phospholipids contained polyunsaturated fatty acids such
as 20:4 and 22:6. h-i, Abhd2 liver RNA and protein allele effects of a previously published dataset 36 matched
with an opposite WSB high effect.
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Supplementary Figure S5.6: Cell Experiments Confirm Fatty Acid Specificity of ABHD1 and ABHD3. a,
Experimental design of the validation experiment featuring three technical and four biological replicates of
Hepa1-6 cells either untransfected (CTL), transfected with a His-tag GFP control (GFP), or transfected with
MYC-tagged Abhd1 or Abhd3. b, Western blot of Hepa1-6 overexpression of ABHD1 and ABHD3. Shown is an
overlay of membrane and ECL blot for MYC-tag. c, Heatmap of top 49 features from discovery lipidomics exper-
iment with p < 0.05 (ANOVA, Fisher’s LSD post-hoc). Features were sum-normalized and log2-transformed.
Hierarchical clustering (Ward clustering, Euclidean distance) shows two clusters with opposite fold changes
distinguishing between ABHD1 and ABHD3 and the GFP control.
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Supplementary Figure S5.7: LipidGenie Database Structure. The MySQL database behind LipidGenie
contains ten distinct tables which are accessed when a QTL query is received. The directional arrows represent
unique identifier connections between tables which are used to join multiple table segments together. The
lipid_identifications and qtls tables are populated from LipiDex and QTL mapping outputs. LOD and
Allele Effect plots were pregenerated for each QTL and stored in their respective tables. Properties which are
shaded gray in the snps and genes tables are used to query proximal genes and SNPs for the gene visualization
in Figure 5.6. This schema was made using DBDesigner.net
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Summary

Over the last several decades the analytical capabilities of mass spectrometry technology

have improved dramatically. While sequencing single protein digests was once a daunting

task, we now routinely characterize whole proteomes in a relatively short amount of time.

This rapid increase in data quality and sample throughput has raised an equally strong

demand regarding improvements to data analysis and dissemination of results. In this

dissertation I have described and developed four separate software platforms which are

aimed to address these demands. The first software platform described in Chapter 2

provides a new resource to the mass spectrometry community to generate and explore

sequence-annotated peptide tandem mass spectra. Since its release, this tool has been

used extensively by the MS community and has processed tens of thousands of spectra.

The second software platform described in Chapter 3 concerns the development of a

quality control web application is used internally by the Coon lab to track proteomics

instrument performance metrics over time. We have found this tool to be critical for

maintaining high instrument performance. The NCQBCS Controller quickly indicates

when an instrument is under-performing, and tracked QC metrics The third software

platform described in Chapter 4 consists of a customizable data portal which allows users

to upload and organize their own omics data. Data portals enable users to explore their

data using a set of common case-control visualization options. Finally, the fourth software

platform described in Chapter 5 facilitates the interpretation of genome-lipid associations.
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Future Work

Expanding the Purview of LipidGenie to Other Biomolecule Classes LipidGenie as de-

scribed in Chapter 4 enables the exploration of data resulting from solely QTL mapped

lipids extracted from liver and plasma. During the data collection phase of the DO mouse

collaboration, the Coon lab collected proteomics analyses on mouse islets, discovery

metabolomics analyses on mouse liver, plasma, and cecum, discovery lipidomics anal-

yses on mouse liver, plasma, and cecum, and targeted bile acid assays on mouse cecum

and plasma. QTL mapping was conducted for all the above analyses, and all the resulting

QTLs-biomolecule associations were inserted into LipidGenie’s database. Specifically, these

entries were placed into the ’qtls’ table.

As of yet, SNP association, LOD plot generation, and allele effect plot generation have not

been conducted in the format required for integration into LipidGenie’s current architecture.

These data are required to properly visualize QTL effects. A slight database refactor would

also be required to support data from multiple omes. Once generated, these data could

be inserted alongside the lipid dataset. Once these new data are inserted, I would be

able to quickly adapt LipidGenie’s client-side environment to enable exploration of QTLs

generated from multiple omes.

Intelligent Lipidomics Data Acquisition Mass spectrometry has proven to be an excellent

resource for the global characterization of multiple biomolecular classes: namely proteins
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and their post-translational modifications, lipids, and metabolites. The abundances of these

biomolecules are greatly reactive to genetic and environmental stressors, and perturbations

of their abundances can be used to glean a deeper understanding of biological systems.1

Proteomic methodology has been well developed. Global proteome characterization is

possible with just over an hour of analysis time.2 We can also identify and quantify over

1,000 and 200 unique lipid and metabolomic species in a single-shot analysis, respectfully.3

Lipids are mainly known for their role as major cell membrane components. Lipids also

participate in signaling pathways, energy storage, metabolism, mitochondrial respiration,

and as enzyme cofactors, and as such are very responsive to cell health.4 Zhao, et al. have

demonstrated specific lipid class dysregulation resulting from exposure to bisphenol F, a

purportedly safe alternative to BPA.5 There exist many other studies which also indicate

lipid dysregulation resulting from diseases and exposures to foreign compounds.4,6,7 How-

ever, there is much room for improvement considering that the lipidome is estimated to

contain somewhere between 10,000-100,000 distinct lipid species, which is at least an order

of magnitude larger than what we currently can detect reproducibly.8

There are several factors which drive the discrepancy between the number of theoretical

lipids and how many we can identify experimentally. First, we currently fail to chromato-

graphically separate lipid structural isomers. There is a great amount of heterogeneity

between many lipid species with species sometimes only differing in the placement of a sin-

gle site of unsaturation on a fatty acid chain. This issue can be ameliorated somewhat with

improvements to separation technologies. Second, caveats regarding how lipids behave
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Figure 6.1: Degenerate Lipid Mass Features. Panel A shows an XIC of the [M-H]− peak of the lipid PE
18:1_20:4. Panel B, 11 total PE 18:1_20:4 lipid derivitives are mapped in a survey scan at 8.74 minutes. Panel C, of
the ∼700 identified lipid species in a single-shot experiment, 46% map to at least one degenerate artifact. Panel D
shows a histogram of degenerate lipid features grouped by lipid class. Ceremides, phosphatidylethanolamines,
phosphatidylglycerols, phosphatidylinositols, and triglycerides are particularly affected.
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during liquid chromatography mass spectrometry analysis is not properly accounted for in

the spectral acquisition software. Lipids, unlike peptides or metabolites, are particularly

susceptible to adduction, dimerization, and in-source fragmentation. Similar to what is

shown in Figure 6.1B, combinations of these artifacts can cause a single lipid species to

appear as up to 15 distinct lipid features to the mass spectrometer, leading to a large sam-

pling redundancy. This greatly limits the depth of our lipid analyses, as lowly-abundant

lipid species are may not sampled in lieu of high-abundance, redundant artifacts. Missing

these low abundance biomolecules can limit how deeply we mechanistically understand a

biological system.

To overcome this limitation, we propose the development of a novel intelligent data

acquisition strategy which can be loaded onboard our mass spectrometers to reduce the

occurrences of redundant lipid sampling. Recent developments in proteomics have demon-

strated the feasibility of identifying peptides in real time as they elute off the chromato-

graphic column.9 Depending on the results of each peptide search, an informed decision is

be made real-time by the instrument (e.g. is this peptide sent off for additional analysis, or

is it passed on in favor of the next species), permitting the creation of complex decision

trees on-the-fly. A similar strategy can be implemented onboard our discovery lipidomic

platforms to improve the efficiency of the instrumental duty cycle.

Specifically, using both new and previously collected experimental datasets collected

either in-house or from public repositories, we will generate graph-based networks of

lipid features via clustering on shared experimental properties like retention time, mass-to-
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charge ratio, and isotopic distributions. We hypothesis features which cluster tightly are

potentially non-informative artifacts originating from the same lipid species. We can then

integrate these clusters into our cutting-edge lipid identification software suite, LipiDex.3

LipiDex’s algorithm will return a scored list of potential lipid structures. We will optimize

LipiDex’s search algorithm to not only conduct spectral matching on a millisecond time

scale, but also return a list of potential lipid artifacts that are related to a just-sampled lipid

species. Finally, we will inject these data into the mass spectrometer’s data acquisition

software. We will extract spectral data as it is collected and search each spectrum on-the-fly.

If a high-scoring lipid identification is returned, we will inform the instrument to reject

all other redundant lipid artifacts from further analysis, freeing the instrument to sample

low-abundance lipid species that were previously ignored.
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