

The role of c-di-AMP in *Listeria monocytogenes* pathogenesis

By

Cheta Siletti

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Microbiology)

at the

UNIVERSITY OF WISCONSIN- MADISON

2024

Date of final oral examination: 08/01/2024

The dissertation is approved by the following members of the Final Oral Committee:

Tu-Anh Huynh, Assistant Professor, Department of Food Science

Mark J. Mandel, Associate Professor, Department of Medical Microbiology and Immunology

Jason M. Peters, Assistant Professor, School of Pharmacy

Wilmara Salgado-Pabón, Associate Professor, Department of Pathobiological Sciences

John-Demian Sauer, Associate Professor, Department of Medical Microbiology and Immunology

ACKNOWLEDGEMENTS

I would like to thank my advisor, Tu Anh Huynh, for her support of my development as a scientist, for encouraging me to pursue my own ideas, and also pushing me to think about things in different ways. Also, I thank my other committee members for their continued support and constructive feedback, especially over the past year as I've been working towards my dissertation.

I would also like to acknowledge my lab members, who have made long days in the lab much easier. Special thanks to Justin Dang for his assistance in producing an acceptable western blot, and Yuxing Chen, for her support and friendship in and out of the lab.

I owe a huge thanks Terra Thiem, and Marcia Verhage for their administrative support and always knowing what form I need to fill out and where it needs to be sent.

I also want to thank the MDTP community for providing a source of friendship and support through the challenges of graduate school.

Finally, I want to thank my friends, family and partner for their unwavering support throughout the past five years.

ABSTRACT

Bacteria are an abundant life form, inhabiting almost every environment on earth.

Central to the adaptability of bacteria are second messengers, which are small nucleotide signal transducing molecules. Upon sensing external changes, bacteria fine-tune levels of second-messengers within the cell to modulate the activity of target molecules and elicit an adaptive response. Numerous bacterial second messengers have been discovered to date, including (p)ppGpp and c-di-GMP, and they each have a unique array of biological functions. C-di-AMP is a second messenger well-known for controlling osmolyte homeostasis in bacteria, though since its discovery, research has continued to elucidate novel functions of this molecule, making it regarded as a global regulator. Importantly, c-di-AMP is conditionally essential for many of the bacteria that produce it. One such organism for which c-di-AMP is essential is the pathogen, *Listeria monocytogenes*. *L. monocytogenes* is the causative agent of Listeriosis, though it also exists as an environmental saprophyte in soil and can persist despite stressors such as high-salt and refrigeration, making it a formidable foodborne pathogen. C-di-AMP in *L. monocytogenes* is synthesized by the diadenylate cyclase (DAC) protein DacA, and degraded by the phosphodiesterase (PDE) proteins PdeA and PgpH. DacA is essential for *L. monocytogenes* growth in rich medium, as the absence of c-di-AMP leads to a signaling cascade causing toxic accumulation of oligopeptides. Despite its importance, accumulation of c-di-AMP can also be toxic. The $\Delta pdeA\Delta pgpH$ (ΔPDE) mutant, which accumulates ~4-5x more c-di-AMP than WT has a weakened cell wall, is sensitive to osmotic stress and cell-wall targeting agents, and was previously shown to be attenuated for virulence in a mouse-model of infection, however the underlying mechanisms by which c-di-AMP accumulation exerts these toxic effects remain largely unknown. Upon performing RNAseq to assess transcriptional differences between WT and ΔPDE during basal growth, I found that ΔPDE was diminished for expression of its pathogenicity island, which is activated by the transcriptional regulator PrfA. The work

presented in Chapter 2 presents the finding that c-di-AMP accumulation diminishes levels of the PrfA-activating cofactor, glutathione (GSH). The work presented in Chapter 3 characterizes the transcriptional response of *L. monocytogenes* to GSH, which paves the way for future studies on the effect of c-di-AMP on GSH metabolism. Appendices A and B present preliminary data characterizing c-di-AMP levels under different growth and stress conditions, and the influence of c-di-AMP accumulation and depletion on transcriptional responses to cell-wall stress. These findings represent the discovery of novel c-di-AMP regulated pathways, the knowledge of which will aid in the understanding of *L. monocytogenes* growth and pathogenesis.

TABLE OF CONTENTS

ACKNOWLEDGMENTS.....	ii
ABSTRACT.....	iii
TABLE OF CONTENTS.....	v
LIST OF TABLES.....	vi
LIST OF FIGURES.....	vii
Chapter 1. C-di-AMP homeostasis and signaling in <i>Listeria monocytogenes</i> and other bacterial species.....	1

INTRODUCTION

C-DI-AMP SIGNALLING IN BACTERIA

- Maintenance of c-di-AMP homeostasis
- C-di-AMP molecular targets and functions
- C-di-AMP-related phenotypes in *L. monocytogenes*
- Roles of c-di-AMP in bacterial pathogenesis

CONCLUDING REMARKS

Chapter 2. C-di-AMP accumulation disrupts glutathione metabolism and impairs virulence-program expression in <i>Listeria monocytogenes</i>.....	25
--	-----------

ABSTRACT

INTRODUCTION

RESULTS

- The Δ PDE mutant is defective for virulence gene expression in the PrfA core regulon
- Defective PrfA activity contributes to virulence-program activation at high c-di-AMP levels
- Glutathione deficiency impairs PrfA activity in the Δ PDE strain
- C-di-AMP accumulation inhibits GSH uptake
- C-di-AMP depletes cytoplasmic GSH by inhibiting synthesis or promoting catabolism
- Defective PrfA activity contributes to virulence attenuation at high c-di-AMP levels

DISCUSSION

MATERIALS AND METHODS

SUPPLEMENTARY MATERIALS

Chapter 3. Utilization of glutathione as a sulfur source.....	62
--	-----------

ABSTRACT

INTRODUCTION TO GLUTATHIONE METABOLISM IN BACTERIA

- GSH synthesis and degradation
- GSH as a nutrient source
- GSH as an antioxidant
- Pathogen interactions with host-derived GSH

RESULTS

- C-di-AMP accumulation impairs utilization of GSH as a cysteine source when GSH concentrations are limiting.

Transcriptional changes induced during growth when GSH is the sole source of cysteine	
Effects of hypoxic growth on GSH utilization	
Differentially expressed genes when GSH is utilized as a cysteine source under hypoxic vs. anaerobic conditions	
DISCUSSION	
MATERIALS AND METHODS	
Chapter 4. Concluding remarks and future directions.....	111
CONCLUDING REMARKS	
FUTURE DIRECTIONS	
The role of c-di-AMP in <i>L. monocytogenes</i> virulence	
Influence of c-di-AMP accumulation on GSH metabolism	
Elucidating GSH degradation machinery in <i>L. monocytogenes</i>	
Appendix A. C-di-AMP homeostasis under different growth and stress conditions.....	116
Appendix B. Transcriptional response of WT, cΔdacA and ΔPDE to cefuroxime stress.	126
REFERENCES.....	164

LIST OF TABLES

Table 1.1. Summary of known molecular targets of c-di-AMP and the species in which they have been observed.	
Table 1.2: Summary of <i>L. monocytogenes</i> c-di-AMP metabolic mutants, and their observed phenotypes.	
Table 1.3: Summary of virulence-related phenotypes in pathogens with altered c-di-AMP metabolism.	
Table S2.1. Differentially expressed genes in the Δ PDE strain with >4 fold-change in expression (FC) relative to WT.	
Table S2.2. Strains used in this study	
Table S2.3. Oligonucleotides used in this study	
Table S3.1: Significantly differentially expressed genes ($\text{Log}_2\text{FC} > 1$, $p < 0.05$) compared to standard LSM containing 2mM cysteine.	
Table S3.2: Log FC of number of transposon insertions detected in LSM + 0mM Cys, 10mM GSH vs. LSM containing 2mM Cysteine.	
Table S3.3. Significantly differentially expressed genes ($\text{Log}_2\text{FC} > 1$, $p < 0.05$) relative to indicated condition.	
Table S3.4. Strains used in this study	
Table SA1: Strains used in this study	
Table SB1: Significantly ($P < 0.05$) differentially expressed genes (Fold-change >2) relative to WT in the indicated condition.	
Table SB2: Significantly ($P < 0.05$) differentially expressed genes of each strain grown in cefuroxime relative to itself in LSM.	

LIST OF FIGURES

Figure 1.1. Synthesis, degradation, and transport of c-di-AMP in *L. monocytogenes*.

Figure 1.2. Model of virulence-program activation by PrfA, and host-targets of c-di-AMP during *L. monocytogenes* infection.

Figure 2.1. C-di-AMP accumulation impairs virulence gene expression in *L. monocytogenes*.

Figure 2.2. A constitutive PrfA variant (PrfA*) restores PrfA activity and *prfA* gene expression upon c-di-AMP accumulation.

Figure 2.3. A deficiency in reduced glutathione (GSH) contributes to diminished virulence gene expression at high c-di-AMP levels.

Figure 2.4. C-di-AMP accumulation inhibits GSH uptake in broth culture and ex-vivo infection.

Figure 2.5. Activation of GSH synthesis activity does not restore GSH levels in the ΔPDE strain.

Figure 2.6. A constitutive PrfA variant (PrfA*) partially rescues virulence defect upon c-di-AMP accumulation.

Figure 2.7. C-di-AMP accumulation enhances H₂O₂ susceptibility.

Figure S2.1. C-di-AMP accumulation inhibits gene expression within the PrfA core regulon.

Figure S2.2. PrfA levels in an ex-vivo model of infection

Figure S2.3. SigB activity does not influence PrfA-activation under the conditions used in this study.

Figure S2.4. C-di-AMP accumulation causes a depletion of the total glutathione pool but not methylglyoxal susceptibility.

Figure S2.5. C-di-AMP accumulation does not inhibit expression of GSH transporters

Figure S2.6. C-di-AMP accumulation does not inhibit *gshF* gene expression or deplete GshF substrates.

Figure S2.7. ΔPDE is unable to utilize G6P as a carbon source.

Figure S2.8. C-di-AMP accumulation does not alter GshF stability during growth in LSM.

Figure 3.1. Synthesis of glutathione by GshF.

Figure 3.2. C-di-AMP accumulation impairs utilization of GSH as a nutrient source when GSH concentrations are limiting.

Figure 3.3. Differentially expressed genes induced by 10mM GSH with and without 2mM cysteine. A-B.

Figure 3.4. Utilization of GSH as a cysteine source during hypoxic growth.

Figure 3.5. Transcriptional profile of *L. monocytogenes* grown using different cysteine sources in both aerobic and hypoxic conditions.

Figure 3.6. GO term enrichment analysis of differentially expressed genes in 0.2mM cysteine under hypoxic growth

Figure 3.7. Shared and unique differentially expressed genes.

Figure A1. Intracellular c-di-AMP levels

Figure A2: Normalized CDA vs. OD₆₀₀

Figure A3. Growth and transcriptional response following exposure to NaCl and cefuroxime stress.

Figure A4. C-di-AMP levels in response to NaCl and cefuroxime stress.

Chapter 1. C-di-AMP homeostasis and signaling in *Listeria* *monocytogenes* and other bacterial species

INTRODUCTION

C-di-AMP was first identified during crystallization of the *Thermotoga maritima* DNA damage checkpoint protein, DisA¹. Upon solving the crystal structure of DisA, it was found that an uninterpreted binding pocket within the protein contained c-di-AMP². Following this discovery, in-vitro experiments confirmed that both *T. maritima* and *Bacillus subtilis* DisA possessed diadenylate cyclase activity, and were able to synthesize c-di-AMP from two molecules of ATP³. Though c-di-AMP was discovered in 2008, its production by a living organism was not experimentally demonstrated until 2010, when *L. monocytogenes* was discovered to secrete c-di-AMP during infection, triggering a robust host type I interferon (IFN) response⁴. Since this discovery, c-di-AMP synthesis has been identified in a number of other bacteria as well as some archaea, and much has been learned about its biological functions⁵. Today, c-di-AMP is recognized as a regulator of cell-wall and osmolyte homeostasis, central metabolism, virulence, and stringent-response activation⁶. Despite its importance, uncontrolled c-di-AMP accumulation has detrimental consequences such as increased antibiotic susceptibility, sensitivity to osmotic stress, and attenuated virulence, though the mechanisms underlying c-di-AMP toxicity remain largely unexplained⁷. While both the essentiality and toxicity of c-di-AMP has been demonstrated in numerous bacteria, *L. monocytogenes* has remained a gold-standard model for the study of c-di-AMP due to its genetic tractability and well-defined intracellular lifecycle. In this chapter, a summary of current literature on c-di-AMP metabolism, molecular targets, biological functions, and regulation of pathogenesis will be presented. A special focus will be placed on c-di-AMP metabolism in *L. monocytogenes*, the model organism used for work presented in this thesis.

C-DI-AMP SIGNALING IN BACTERIA

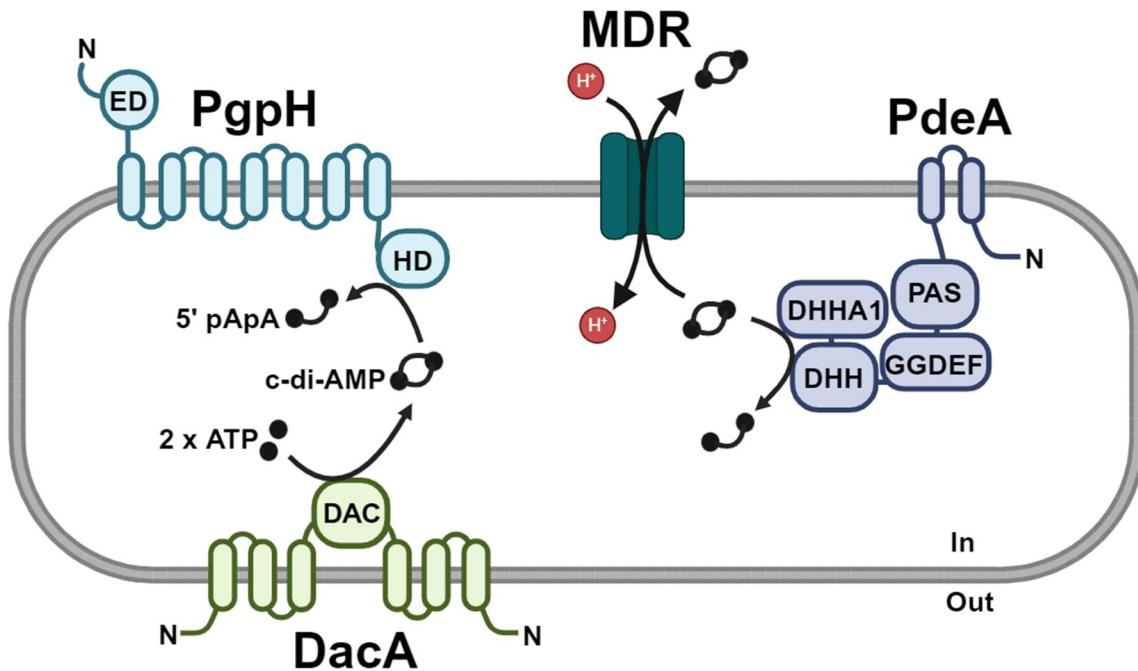
Maintenance of c-di-AMP homeostasis

Synthesis of c-di-AMP

C-di-AMP is synthesized from two molecules of ATP by diadenylate-cyclase (DAC) proteins and degraded into 5' pApA by phosphodiesterase (PDE) proteins⁸ (Fig. 1.1). To date, five distinct DAC proteins have been discovered: DisA, DacA (CdaA), CdaS, CdaM, and CdaZ⁶. Common to all known DACs is a DisA_N (DAC) catalytic domain⁷. DacA is the most widespread DAC protein, and has a DAC domain linked to three N-terminal transmembrane helices which form a homodimer⁹. DacA is inhibited by interactions with the proteins GImM and DacB (CdaR), both of which are frequently transcribed in the same operon as DacA in *Firmicutes*¹⁰. In many *Firmicutes*, such as *Listeria monocytogenes*, *Lactococcus lactis*, and *Staphylococcus aureus*, DacA is the only DAC present in the genome⁹. However, in the case of *Bacillus subtilis*, both DacA, CdaS, and DisA are present¹¹. Compared to DacA and DisA, distribution of CdaS, CdaM, and CdaZ are more narrowly distributed. CdaM is found exclusively in *Mycoplasma* sp., whereas CdaZ is found in Archaea¹².

Degradation of c-di-AMP

C-di-AMP is degraded to 5' pApA by phosphodiesterase (PDE) proteins (Fig. 1.1). To date, three classes of PDEs have been described: GdpP, PgpH, and Pde2, though the presence of these PDEs varies by bacterial species¹. Furthermore, PDEs contain either a DHH/DHHA1 or HD catalytic domain^{13–15}. The GdpP-type PDE PdeA was the first PDE to be characterized¹⁵ and contains two N-terminal transmembrane helices, a Per-Arnt-Sim (PAS) domain, a degenerate GGDEF domain, and a catalytic DHH/DHHA1 domain¹⁶. The PAS domain is thought to act as a signal receptor that detects nitric oxide, oxygen, and carbon monoxide via a tightly-bound heme-molecule¹⁶. In addition, (p)ppGpp has been shown to


competitively inhibit PdeA enzymatic activity¹⁵. Though PdeA has been extensively characterized, it is only found in *Firmicutes* and *Mollicutes*⁶.

The PgpH-type PDE was first characterized in *L. monocytogenes*¹³, following its discovery as a c-di-AMP binding protein by a chemical proteomics screen^{13,17}. Before the discovery of PgpH, only DHH/DHHA1-domain containing proteins had been established as c-di-AMP PDEs. However, structure-function studies following the discovery of PgpH as a c-di-AMP molecular target demonstrated that the PgpH HD-motif is required for c-di-AMP binding and hydrolysis¹³. To date, only PgpH-class PDEs have been shown to possess an HD catalytic domain, however, similarly to the GdpP class of PDEs, PgpH is a membrane-protein. PgpH contains 7-transmembrane helices as well as an amino-terminal extracellular domain, the latter of which is thought to be involved in signal detection¹³. Extracellular signals which regulate PgpH activity remain unknown, though like GdpP, PgpH is inhibited by the stringent-response alarmone (p)ppGpp¹³. The third class of PDE, Pde2 (DhhP), is cytosolic and contains only the DHH/DHHA1 catalytic domain. The Pde2 homolog NrnA can further degrade 5' pApA, the product of c-di-AMP hydrolysis, to AMP^{18,19}. DhhP/NrnA-like PDEs are found in most bacterial species, though some have preferred nano-RNase activity towards 5'pApA or additional short RNA oligonucleotides⁶.

Transport of c-di-AMP

In addition to synthesis and degradation, efflux of c-di-AMP is also important for c-di-AMP homeostasis. The multi-drug export family (MDR) transporters MdrM and MdrT are important for c-di-AMP export and induction of host type-I IFN response by *L. monocytogenes*^{4,20} (**Fig. 1.1**). In fact, c-di-AMP was first discovered in *L. monocytogenes* by characterization of a strain overexpressing MDRs⁴. Though MdrM and MdrT are present in other bacteria such as *S. aureus*, it is unclear if their function is the same as in *L. monocytogenes*. Overexpression of MdrM and MdrT in *S. aureus* does not cause an increase in c-di-AMP

secretion as it does in *L. monocytogenes*, indicating that the function of these transporters may not be conserved²¹.

Figure 1.1: Synthesis, degradation, and transport of c-di-AMP in *L. monocytogenes*.

C-di-AMP molecular targets and functions

C-di-AMP has a number of known molecular targets which are outlined in **Table 1.1** and whose biological functions are described in this section. The best-known class of c-di-AMP targets are transporters of osmoprotectants. However, other targets include central metabolic regulators, small RNAs, transcription factors, and several proteins of unknown function. Cellular processes regulated by c-di-AMP molecular targets are outlined in this section.

Table 1.1. Summary of known molecular targets of c-di-AMP and the species in which they have been observed.

Class	Target	Species	Reference
	OpuCA	<i>S. aureus, L. monocytogenes, B. subtilis</i>	22-24
	KimA	<i>B. subtilis, S. aureus, L. monocytogenes</i>	25-27
	KtrCD	<i>M. pneumoniae, B. subtilis, L. monocytogenes</i>	27,28
	KtrA	<i>S. aureus, B. subtilis, S. agalactiae</i>	28
	OpuBA	<i>S. agalactiae</i>	29
	KdpD	<i>S. aureus, L. monocytogenes, Synechococcus elongatus</i>	27,30,31
<i>Control of</i>			
<i>osmolyte</i>	CpaA	<i>S. aureus, B. subtilis,</i>	25,32
<i>homeostasis</i>	BusR	<i>S. agalactiae</i>	29
	TrkH	<i>S. agalactiae</i>	33
	KupAB	<i>L. lactis</i>	34
	KhtT	<i>B. subtilis</i>	35
	YrvC	<i>B. subtilis</i>	25
	CabP	<i>S. pneumoniae</i>	36
	MgtE	<i>B. subtilis</i>	25
<i>Central</i>			
<i>Metabolism</i>	PycA	<i>L. monocytogenes</i>	37
	DarR	<i>M. smegmatis</i>	38

	CbpB		
Signal		<i>B. subtilis, L. monocytogenes</i>	39,40
	(DarB)		
transduction			
	YdaO	<i>B. subtilis</i>	41
	RECON	c-di-AMP targets independent of bacterial species	42
Mammalian			
	STING	c-di-AMP targets independent of bacterial species	43
Targets			
	DDX41	c-di-AMP targets independent of bacterial species	44
	NrdR	<i>L. monocytogenes</i>	17
Unknown			
	CbpA	<i>L. monocytogenes</i>	17
Functions			
	PstA	<i>L. monocytogenes, S. aureus, B. subtilis</i>	17,45,46

Osmolyte homeostasis

Maintenance of internal turgor pressure is important for bacterial growth⁴⁷. Because the cytosol is composed largely of water, but bacteria lack transporters for water, exchange of osmolytes or compatible solutes is required to maintain turgor pressure⁴⁷. C-di-AMP controls transporters of osmolytes such as K+, Mg+, carnitine, amino acids, and glycine betaine by interacting either directly with transporters, or with signal transduction proteins or riboswitches that control transporter expression^{22,23,36,48,49}. To date, one of the most well-characterized functions of c-di-AMP is inhibition of potassium transport. In *S. aureus*, c-di-AMP binds to the RCK_C domain of CpaA, a K+ antiporter, and promotes its activity^{32,50}. In *L. lactis*, the K+ transporters KupAB are inhibited by c-di-AMP binding⁵¹. KimA, a K+/H+ symporter, and KtrCD, a low affinity K+ transporter, are inhibited by c-di-AMP binding in *B. subtilis*, *S. aureus*, and *L. monocytogenes*^{25,49,52}. Furthermore, the K+/H+ antiporter KhtT and the potassium exporter CpaA have been shown to interact with c-di-AMP in *B. subtilis*²⁵. In addition to binding directly to membrane transporters, c-di-AMP controls K+ transport by binding to intermediate signaling

molecules that regulate transporters. KdpD is a sensor kinase which, when bound by c-di-AMP, inhibits expression of the Kdp family of K⁺ transporters^{8,23,30,31}. In *S. pneumoniae*, CabP complexes with TrkH to transport K⁺ when c-di-AMP concentrations are low³⁶. Finally, c-di-AMP controls K⁺ transport by interacting with riboswitches to control transporter expression. In *B. subtilis*, the *ydbO* riboswitch, which is upstream of both *kimA* and *ktrAB*, inhibits translation of KimA when bound to c-di-AMP⁵³. In addition to controlling potassium homeostasis, c-di-AMP affects activity of other compatible solute transporters. OpuCA is a high-affinity ATPase carnitine transporter which is inhibited by c-di-AMP binding to its cystathionine beta-synthase (CBS) domain in *S. aureus*, *L. monocytogenes*, and *B. subtilis*.

Disruption of both c-di-AMP synthesizing and degrading proteins has consequences for bacterial osmoregulation. In a number of bacterial species, including *L. monocytogenes*, c-di-AMP depletion caused by DAC disruption causes cell lysis due to uncontrolled uptake of osmolytes and compatible solutes^{29,37,49,54–56}.

Stringent response

C-di-AMP is a mediator of signal transduction related to activation of the stringent response. In both *B. subtilis* and *L. monocytogenes*, the c-di-AMP binding protein CbpB binds to and activates the (p)ppGpp synthetase RelA in its apo form, but not when it is bound to c-di-AMP. When c-di-AMP is depleted, uncontrolled activation of RelA by apo-CbpB leads to a sharp increase in (p)ppGpp in c-di-AMP null strains of *L. monocytogenes* and *B. subtilis*. This phenomenon renders c-di-AMP essential for these species in rich media, as (p)ppGpp accumulation leads to decreased levels of GTP, which inhibit the transcriptional repressor CodY⁵⁴. Derepression of the CodY regulon is toxic when nutrients are abundant. This is thought to be due to uncontrolled uptake of oligopeptides by the Opp family of transporters, as mutations in OppA suppress DacA essentiality in rich media^{39,54}. The crosstalk between c-di-AMP and the stringent response is complex, as (p)ppGpp inhibits the activity of both PdeA and

PgpH³⁹. Indeed, nutritional status can influence c-di-AMP levels. For instance, in *B. subtilis*, c-di-AMP levels change during growth in different types of nitrogen sources¹¹.

Monitoring of DNA damage

In *B. subtilis*, the DAC protein DisA is inhibited when it encounters double-stranded DNA breaks, lowering intracellular concentrations of c-di-AMP⁵⁷. Indeed, during sporulation, c-di-AMP concentrations are 3-fold higher than during vegetative growth⁵⁸. Similarly, deletion of the DAC CdaS leads to delayed sporulation in *B. thuringiensis*⁵⁹. DisA also interacts with the recombinase RecA by downregulating its activity, which allows for DNA repair to occur before replication is resumed⁶⁰.

Central metabolism

The central metabolic protein pyruvate carboxylase (PycA), which synthesizes pyruvate from oxaloacetate, is enzymatically inhibited when bound to c-di-AMP. Indeed, in a c-di-AMP null strain of *L. monocytogenes*, a toxic accumulation of citrate is observed, likely due to uncontrolled flux of oxaloacetate through the TCA cycle¹⁷. Furthermore, depletion of c-di-AMP results in increased carbon flux into glutamate/glutamine synthesis, which is reliant on the activity of PycA in *L. monocytogenes*^{17,61}. In *M. smegmatis*, the transcription factor DarR inhibits expression of genes involved in the synthesis of medium-chain fatty acids when bound to c-di-AMP³⁸. Additionally, c-di-AMP binds to the PII-like protein PstA. The PII family of proteins is known to be involved in regulation of nitrogen metabolism⁴⁵. The crystal structure of PstA has been solved, allowing for insight into c-di-AMP binding mechanisms^{62,63}, though the molecular targets of PstA, as well as the effect c-di-AMP has on PstA function, remain largely unclear.

Cell size and cell-wall homeostasis

In *L. monocytogenes*, elevated c-di-AMP levels are associated with a thinner cell-wall, increased sensitivity to cell-wall targeting antibiotics and salt, and attenuated virulence^{13,64}. c-di-

AMP accumulation impairs the synthesis of the cell-wall precursors D-ala-D-ala and UDP-MurNac, which likely contributes to enhanced cell-wall targeting antibiotic sensitivity⁶⁴. Though the relationship between cell-wall synthesis and c-di-AMP remains largely unknown, it is likely that c-di-AMP accumulation reduces intracellular K⁺ levels by inhibiting K⁺ importers, which in turn impairs the function of Ddl, the enzyme which synthesizes D-ala-D-ala⁶⁴. Interestingly, c-di-AMP appears to have differential effects on cell-wall homeostasis, depending on the organism. For instance, in *B. subtilis*, c-di-AMP accumulation causes beta-lactam sensitivity to an even greater extent than in *L. monocytogenes*⁶⁴. Conversely, in *Staphylococcus aureus*, c-di-AMP accumulation is associated with increased lipotechoic acid (LTA) crosslinking, and increased resistance to cell-wall targeting antibiotics⁶⁵.

C-di-AMP related phenotypes in *L. monocytogenes*

Since *L. monocytogenes* was found to secrete c-di-AMP into the host cell cytosol, C-di-AMP metabolizing proteins in *L. monocytogenes* have been well-characterized. Given its genetic tractability, *L. monocytogenes* is a fantastic model in which to study the functions of c-di-AMP. A summary of *L. monocytogenes* phenotypes associated with aberrant c-di-AMP production, as well as the proposed mechanisms underlying these phenotypes, are presented in this section and summarized in **Table 1.2**.

C-di-AMP depletion and associated phenotypes

One of the first characterized *L. monocytogenes* c-di-AMP metabolic mutants was the *cΔdacA* strain. Because c-di-AMP is essential for *L. monocytogenes* growth in rich medium, a conditionally-inducible copy of *dacA* must be introduced in order to delete *dacA* from its native locus⁶⁶. In fact, in the absence of a conditional copy of *dacA*, attempts to delete *dacA* in *L. monocytogenes* resulted in spontaneous suppressor mutations in the *oppABCFD* operon, or in *relA*⁵⁴. It was later found that c-di-AMP depletion causes an increase in (p)ppGpp, which is

mediated by RelA, which in turn leads to increased expression of *opp* genes, and uncontrolled uptake of osmolytes which is toxic in complex medium⁵⁴. Decreased c-di-AMP levels also affect bacterial growth and viability by causing increased bacteriolysis both during growth in broth⁶⁶. Increased turgor pressure, due to uncontrolled osmolyte uptake by potassium transporters inhibited by c-di-AMP, contributes to increased lysis, as supplementing growth medium with 2% NaCl reduces lysis of the cΔdacA mutant. Increased turgor pressure may also stress the cell-wall, and unsurprisingly, cΔdacA mutant exhibits increased sensitivity to the cell-wall targeting antibiotics such cefuroxime, penicillin and ampicillin. cΔdacA also exhibits reduced growth and increased lysis in macrophages, and is attenuated for virulence in a mouse model of infection¹⁷. Despite lower levels of growth in macrophages, release of bacterial DNA by cΔdacA during lysis hyper stimulates IFN-β response, leading to increased host-cell pyroptosis. The AIM2 inflammasome, which is stimulated by bacterial DNA, also causes caspase-1 cleavage and host-cell pyroptosis⁶⁷. Infection of AIM2 deficient macrophages with cΔdacA resulted in reduced host-cell death, confirming the involvement of bacterial DNA release in increased pyroptosis^{66,68}. The mechanisms underlying increased cΔdacA bacteriolysis during infection are complex, and likely mediated by some independent mechanisms. Deletion of citrate synthase (*citZ*) in cΔdacA significantly rescues growth in macrophages and in-vivo virulence, but has no effect on growth in broth¹⁷. The cΔdacA mutant exhibits increased synthesis of glutamine/glutamate (Glx, a process which is dependent on activity of the c-di-AMP repressed enzyme pyruvate carboxylase (PycA). Increased PycA activity leads to increased flux through the oxidative branch of the TCA cycle, leading to increased synthesis of Glx, the first step of which is performed by CitZ. Thus, a metabolic imbalance resulting from uncontrolled Glx biosynthesis contributes to attenuated virulence in cΔdacA, and this is distinct from the mechanisms contributing the cΔdacA growth defect in broth¹⁷.

While reduced *dacA* expression has many consequences for bacterial growth, *dacA* overexpression has a phenotypic effect in the $\Delta mdrMTAC$ background. The MDR family transporters MdrM and MdrT mediate c-di-AMP secretion^{4,20}, which triggers host type I IFN response during infection. However, the additional transporters MdrA and MdrC also contribute to modestly to host interferon response during infection⁶⁹. Thus, the *mdrMTAC* quadruple mutant has been used extensively to study the consequences of reduced c-di-AMP secretion. In addition to inducing reduced interferon response during infection, *mdrMTAC* is more susceptible to vancomycin than WT. Interestingly, *dacA* overexpression improved vancomycin resistance in the *mdrMTAC* background, but not in WT⁶⁹. This suggests that there is a complex interplay between c-di-AMP levels, MDR transporters, and cell-wall homeostasis.

C-di-AMP accumulation and associated phenotypes

By and large, function of one PDE is sufficient to compensate for deletion of the other, but there are certain phenotypes that appear to be specific to loss of just one PDE. The $\Delta pdeA$ mutant exhibits increased acid tolerance, as well as modestly increased tolerance of the cell-wall targeting antibiotics cefuroxime, ampicillin and penicillin⁶⁶. In addition, $\Delta pdeA$ produces more biofilm than WT or $\Delta pgpH$ alone, indicating a unique function for PdeA in the context of biofilm formation⁷⁰. Interestingly, ΔPDE was able to form even more biofilm than $\Delta pdeA$ alone, suggesting that there is an additive effect of c-di-AMP accumulation on biofilm formation. Conversely, $c\Delta dacA$ was strongly impaired for biofilm formation, further indicating a correlation between c-di-AMP levels and biofilm forming ability⁷⁰. Another study found that $\Delta pgpH$ was impaired for biofilm formation, and downregulated expression of genes involved in cell-wall homeostasis and motility⁷¹. It is important to note that this study was performed on a *L. monocytogenes* strain belonging to serotype 4a, in contrast to most studies which utilize strains belonging to serotype 1/2a⁷². Furthermore, the authors of this study did not test a $\Delta pdeA$, or a ΔPDE mutant for biofilm forming ability and gene expression, so it is difficult to conclude

whether PgpH function alone is important for biofilm formation. PdeA overexpression was found to enhance *mdrMTAC* vancomycin susceptibility⁶⁹. Interestingly, overexpression of *pdeA* achieved by placing it under control of the PrfA-dependent *actA* promoter (P_{actA} -*pdeA*) in the PrfA* background significantly increased cefuroxime sensitivity compared to PrfA* alone⁶⁶.

While *pdeA* or *pgpH* deletions alone have been shown to have only modest effects on *L. monocytogenes* phenotypes, the double $\Delta pdeA\Delta pgpH$ (ΔPDE) mutant has many defects. Notably, ΔPDE is highly susceptible to osmotic stress induced by NaCl and sorbitol²³. In WT, growth under NaCl stress induces uptake of the compatible solute carnitine²³. C-di-AMP binds to the CBS domain of OpuC, the ATPase component of the carnitine transporter OpuCA, and under NaCl stress, ΔPDE , as well as OpuC mutants abolished for c-di-AMP binding, are severely impaired for uptake of carnitine²³. Once again, this highlights the importance of c-di-AMP for adaptation to osmotic stress. ΔPDE also exhibits disrupted cell-wall homeostasis, and is susceptible to β -lactams such as cefuroxime, as well as D-cycloserine (DCS), antibiotics targeting distinct steps in cell-wall synthesis⁶⁴. β -lactams inhibit transpeptidation of peptidoglycan⁷³ whereas DCS inhibits the enzymes Dal and Ddl, which generate D-alanine and the cell-wall precursor molecule D-ala-D-ala, respectively⁷⁴. ΔPDE susceptibility to DCS can be partially restored by addition of potassium to the medium, as this corrects for reduced intracellular potassium and enhances function of the potassium-dependent enzyme Ddl. However, potassium fails to restore ΔPDE resistance to cefuroxime, which targets a later step in cell-wall synthesis⁶⁴. This illustrates that c-di-AMP signaling is highly complex, and affects multiple independent pathways involved in cell-wall homeostasis. In addition to increased sensitivity to cell-wall targeting agents, ΔPDE is attenuated for virulence in a mouse model of infection¹³.

Table 1.2: Summary of *L. monocytogenes* c-di-AMP metabolic mutants, and their observed phenotypes.

Genotype	Effect on c-di-AMP levels	Phenotype	References
cΔdacA	Decreased	Increased bacteriolysis	
		Increased cefuroxime, penicillin, ampicillin susceptibility	
		Uncontrolled osmolyte uptake	
		Reduced growth rate	17,66
		Reduced biofilm	
		Impaired growth in macrophages	
dacA overexpression	Not directly measured, presumably increased	Attenuated virulence in a mouse model.	
		restores <i>mdrMTAC</i> vancomycin susceptibility	69
ΔpdeA ΔpgpH (ΔPDE)	Increased	Increased cefuroxime, ampicillin, lysozyme, D-cycloserine susceptibility	
		Increased susceptibility to osmotic stress	
		Increased biofilm	
		Thinner cell-wall	
		Reduced peptidoglycan, UDP-MurNac, D-ala-D-ala	13,64
		Reduced intracellular K ⁺	
		Attenuated virulence in a mouse model	
		Reduced growth in macrophages	
		Increased IFN- β induction	
ΔpdeA	Unchanged in broth, modestly increased during macrophage infection	increased acid tolerance	
		Modestly increased resistance to cefuroxime, penicillin, ampicillin	69,70
		Enhanced biofilm formation	
pdeA overexpression	Not directly measured, presumably decreased	enhances <i>mdrMTAC</i> susceptibility to vancomycin	
		enhances PrfA* susceptibility to cefuroxime	66,69
ΔpgpH	Moderately increased in broth, unchanged during macrophage infection	Decreased biofilm formation (serotype 4b)	71

ROLES OF C-DI-AMP IN BACTERIAL PATHOGENESIS

C-di-AMP is produced by a number of pathogenic bacteria. It is important not just for bacterial growth and survival within the host environment, but can mediate a number of host-responses that affect both bacterial virulence and host-survival. The ways by which c-di-AMP signaling affects virulence potential can be divided into three major categories, 1) Alteration of host immune response, 2) altered expression or activity of bacterial virulence factors 3) Inherent changes in growth or metabolism with pleiotropic effects on virulence potential. A summary of what is currently understood of these mechanisms in relevant bacterial pathogens is summarized in the Table 1.3, and detailed in this section.

Table 1.3: Summary of virulence-related phenotypes in pathogens with altered c-di-AMP metabolism.

Organism	c-di-AMP level of mutant	Effect on virulence	Proposed mechanism(s)	Reference
<i>Listeria monocytogenes</i>	c Δ dacA, reduced c-di-AMP	Attenuated virulence in macrophages, mice	Increased lysis, metabolic imbalance	66,75
	Δ PDE, increased c-di-AMP	Attenuated virulence in macrophages, mice	Reduced glutathione availability, unknown mechanisms	Current study
<i>Staphylococcus aureus</i>		c-di-AMP promotes survival in macrophages	c-di-AMP induces interferon response in macrophages, promotes bacterial growth	21
<i>Borrelia burgdorferi</i>	c Δ dhhP, increased c-di-AMP	Abolished virulence in a mouse model	c Δ dhhP mutant exhibits reduced growth rate, is defective for production of growth-rate dependent virulence factor, OspC	76
<i>Streptococcus pneumoniae</i>	Δ pde1, Δ pde2, Δ pde1pde2, increased c-di-AMP in all mutants	Attenuated for virulence in a mouse model	General basal growth defect may affect in-vivo virulence	14

<i>Streptococcus pyogenes</i>	$\Delta gdpP, \Delta pde2$ increased c-di-AMP	Reduced virulence in subcutaneous mouse-infection model	$\Delta gdpP, \Delta pde2$ are defective for post-transcriptional processing, and transcription, respectively, of virulence factor SpeB.	77,78
	$\Delta cdaA$, decreased c-di-AMP	Reduced virulence in subcutaneous mouse-infection model	Reduced SpeB transcription	78
<i>Mycobacterium tuberculosis</i>	$\Delta cnpB$, increased c-di-AMP	Attenuated for virulence in a mouse model	Increased type-1 IFNR, potentially additional mechanisms	79
<i>Borrelia turicatae</i>	$\Delta cdaA$, decreased c-di-AMP	Attenuated in mouse model of infection	Mice failed to seroconvert, $\Delta cdaA$ likely cleared early in infection	80
<i>Enterococcus faecalis</i>	$\Delta cdaA$, decreased c-di-AMP	Attenuated in mouse and <i>Galleria mellonella</i> models of infection	Impaired biofilm formation in vitro may translate to colonization defect in vivo	81
	$\Delta gdpP, \Delta dhhP, \Delta gdpPdhhP$, increased c-di-AMP	All three mutants attenuated in insect model of infection. $\Delta dhhP, \Delta gdpPdhhP$ impaired for colonization in mice	Potential hypersensitivity to increased osmolyte concentrations in urine	81,82
<i>Porphyromonas gingivalis</i>	Δpde_{PG} , decreased c-di-AMP	Increased virulence in <i>Galleria mellonella</i>	Exhibits higher LPS immunoreactivity, may affect host-immune response	83
	$\Delta cdaR$, increased c-di-AMP	Attenuated virulence in <i>Galleria mellonella</i>	Reduced planktonic growth and biofilm formation in vivo may affect virulence potential	83
<i>Bacillus anthracis</i>	$\Delta gdpP, \Delta pgpH-HD, \Delta gdpPpgpH-HD$, increased c-di-AMP	All three mutants attenuated in mouse model of infection	Inhibition of potassium uptake causes reduced anthrax toxin expression.	84,85
<i>Streptococcus suis</i>	$\Delta gdpP$, increased c-di-AMP	decreased adherence to and invasion of Hep-2 cells, attenuation in a mouse model	Decreased expression of virulence factors	86

<i>Streptococcus mitis</i>	$\Delta pde1$, effect on c-di-AMP levels not tested	Decreased adherence to oral keratinocytes	Reduced biofilm formation in vitro may contribute to adhesion defect	87
<i>Clostridioides difficile</i>	$\Delta gdpP$, increased c-di-AMP	Decreased persistence in mouse GI tract	Decreased osmotic stress tolerance	88

Mammalian Targets of c-di-AMP

C-di-AMP is produced by many pathogens, so not surprisingly, mammalian cells have evolved mechanisms for sensing and responding to this second messenger. Three mammalian c-di-AMP receptors, STING, DDX41, and RECON, have been discovered to date (Fig. 1.2). STING is a protein found in the membrane of phagocytic cells, and is activated by c-di-AMP, c-di-GMP, or 3',3'-cGAMP released by bacteria, as well as 2',3'-cGAMP produced by the host cell in response to foreign DNA⁸⁹. Once activated by a cognate nucleotide, STING activates a downstream cascade, eventually leading to the production of type I interferons⁹⁰. c-di-AMP also binds to and inhibits the mammalian protein RECON, which negatively regulates NF- κ B⁴². During infection, c-di-AMP binds to RECON, resulting in increased NF- κ B activity which reduces bacterial survival⁴². Additionally, the pattern recognition receptor (PRR) DDX41 serves as a sensor for c-di-AMP in the host. Upon interacting with c-di-AMP, DDX41 then forms a complex with STING to mediate downstream activation of interferon genes⁴⁴. Activation of mammalian immune receptors by c-di-AMP can have both positive and negative effects on bacterial virulence. In *L. monocytogenes*, *M. tuberculosis*, and *S. aureus*, Type-1 interferon activation by c-di-AMP via the STING axis promotes bacterial survival^{21,75}. Upregulating STING activation in mice by treatment with purified c-di-AMP, or infection with the *L. monocytogenes tetR::tn917* mutant, which hypersecretes c-di-AMP, resulted in decreased protective immunity in a type-I IFN-dependent manner⁷⁵. Similarly, c-di-AMP released by *S. aureus* biofilms induces STING-dependent type-1 IFN response, and this is beneficial for *S. aureus* survival²¹. Conversely, mice

infected with the *M. tuberculosis* Δ cnpB mutant, which accumulates higher levels of c-di-AMP than WT, exhibited increased Type-1 IFN response and enhanced survival⁷⁹. However, further research is needed to confirm whether c-di-AMP-activation of Type-1 IFN via STING results in attenuated virulence of the *M. tuberculosis* Δ cnpB mutant.

An indicator of host-immune response to the pathogen *B. turicatae* is the development of IgA or IgM antibodies against *Borrelia*. This process is referred to as seroconversion⁹¹. Interestingly, mice infected with the *B. turicatae* Δ cdaA mutant, which produces low levels of c-di-AMP, failed to seroconvert. It is likely that the Δ cdaA mutant was cleared before a full immune response could be achieved, but it represents a novel mechanism by which altered c-di-AMP levels affect host-immune response nonetheless⁸⁰.

A determinant of *Porphyromonas gingivalis* pathogenesis is the host-immune response to bacterial lipopolysaccharide (LPS). C-di-AMP metabolism in *P. gingivalis* is atypical, as deletion of the phosphodiesterase *pde*_{PG} reduces c-di-AMP production, likely due to de-repression of c-di-AMP synthesis⁸³. Importantly, LPS of the *P. gingivalis* Δ pde_{PG} mutant exhibits increased immunoreactivity, and was enhanced for virulence in the *Galleria mellonella* insect model⁸³. This represents yet another potential mechanism by which c-di-AMP signaling affects host-immune response and bacterial pathogenesis.

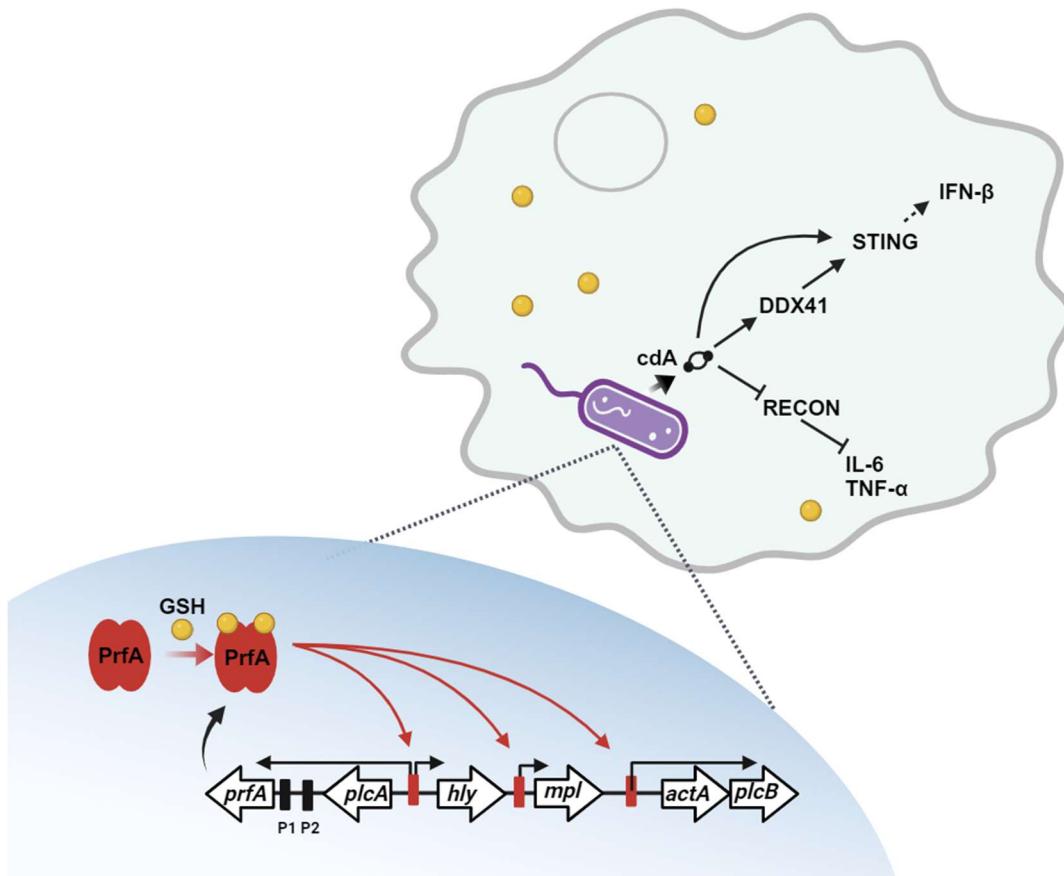
Effect of c-di-AMP on bacterial virulence factors

Bacterial virulence factors are specific genes, proteins, or pathways whose activity allows for successful colonization of a host-niche⁹². While virulence factors vary across species, their production and activity is affected by c-di-AMP in many pathogenic species, once again illustrating the vast diversity of processes regulated by c-di-AMP.

In *Borrelia burgdorferi*, the causative agent of Lyme disease, upregulation of the σ^s factor RpoS upregulates production of the major virulence factor OspC. OspC is an outer membrane

protein that protects bacteria from host phagocytosis, and is required for infection⁹³. In a *B. burgdorferi* $\Delta dhhP$ phosphodiesterase mutant, c-di-AMP accumulates to high levels, and this abolishes growth in a mouse-model of infection⁷⁶. Interestingly, the $\Delta dhhP$ mutant is impaired for RpoS induction, as well as OspC. RpoS induction is in part mediated by the transcriptional regulator BosR, which also exhibited a reduction in the $\Delta dhhP$ mutant⁷⁶. Thus, in *B. burgdorferi*, c-di-AMP affects signaling cascades important for production of major virulence factors. The exact mechanism of this regulation remains unclear, but additional consequences of diminished BosR activity in the $\Delta dhhP$ represent an exciting subject of future studies.

Streptococcus pyogenes causes diseases ranging from strep throat, to infective endocarditis and toxic shock syndrome (TSS)⁹⁴. SpeB (secreted pyrogenic exotoxin B) is a secreted cysteine protease and major virulence factor of *S. pyogenes*. SpeB has a number of effects during infection, ranging from damage of host tissue to immunomodulatory activity on host-immune response^{95,96}. Both the DAC mutant, $\Delta cdaA$ and the PDE mutants $\Delta gdpP$ and $\Delta pde2$, are severely attenuated for virulence in a mouse model and have reduced levels of SpeB^{77,78}. Interestingly, reduced SpeB in $\Delta cdaA$ and $\Delta pde2$ takes place at the transcriptional level, whereas a posttranscriptional process causes reduced SpeB in the $\Delta gdpP$ mutant^{77,78}. The effect of c-di-AMP signaling on multiple levels of the same pathway once again highlights the incredible diversity of processes regulated by this second messenger.


Bacillus anthracis is the causative agent of anthrax whose virulence is largely dependent on production of the tripartite anthrax toxin. This toxin is composed of the three polypeptides, protective antigen (PA), lethal factor (LF), and edema factor (EF)⁹⁷. In addition, surface associated proteins, collectively referred to as the S-layer, represent an additional virulence factor⁹⁸. Both S-layer proteins and anthrax toxin production are regulated by AtxA⁹⁹. Potassium stimulates SpooA phosphorylation in *B. anthracis*, which represses AbrB, a repressor of anthrax toxin expression¹⁰⁰. *B. anthracis* encodes two known c-di-AMP phosphodiesterases, GdpP and

PgpH. Both a $\Delta gdpP$ mutant, a $\Delta pgpH$ -HD mutant lacking the PgpH catalytic HD-domain, and a double $\Delta gdpP\Delta pgpH$ -HD double mutant produce elevated amounts of c-di-AMP and are attenuated for virulence in a mouse model⁸⁴. Expression of toxin genes was significantly downregulated in both the single and double PDE mutants, whereas S-layer formation was only impaired in the double PDE mutant⁸⁴. A later study identified the potassium transport systems KdpFABC and KtrCB/D as molecular targets whose activity is inhibited by c-di-AMP in *B. anthracis*. The study went on to demonstrate that c-di-AMP accumulation inhibits potassium transport and decreases intracellular potassium in *B. anthracis*, and that overexpressing KdpD and KtrC restored toxin expression in the double PDE mutant⁸⁵. Thus, it is speculated that reduced potassium resulting from c-di-AMP accumulation in *B. anthracis* indirectly causes depression of AbrB, which in turn represses toxin expression. However, further studies are needed to confirm this hypothesis.

Streptococcus suis is a major zoonotic pathogen which can cause serious disease in both pigs and humans¹⁰¹. *S. suis* serotype 2 (SS2) is able to synthesize c-di-AMP, and possesses the c-di-AMP PDE, GdpP⁸⁶. In-frame deletion of *gdpP* in SS2 resulted in increased c-di-AMP accumulation, reduced hemolytic activity, impaired adhesion to and invasion of the human laryngeal cell-line Hep-2, and attenuated virulence in a mouse model. Remarkably, the same study demonstrated that the expression virulence genes important for hemolysis, adhesion, invasion, and colonization were decreased in the $\Delta gdpP$ strain⁸⁶. However, the underlying mechanisms by which c-di-AMP accumulation decreases virulence-gene expression and attenuates virulence in *S. suis* have yet to be identified.

Finally, *L. monocytogenes* has a well-defined intracellular lifecycle, beginning with receptor-mediated phagocytic uptake into host cells by InlA and InlB, or uptake by professional phagocyte. PlcA, PlcB, and Mpl enable escape from the phagocytic vacuole, and ActA mediates host-actin polymerization, enabling *L. monocytogenes* to swim through the cytosol and into

neighboring cells¹⁰². Hpt, another *L. monocytogenes* virulence factor, is a transporter which enables acquisition of glucose-6-phosphate, an important carbon source in the host cell cytosol¹⁰³. Expression of genes encoding these *L. monocytogenes* virulence factors is activated by the transcriptional regulator PrfA¹⁰⁴. Upon entry into the host cytosol, which is rich in glutathione (GSH), PrfA is activated by allosteric binding to GSH, which primes it for binding to the promoter sequence of its core regulon^{105,106} (**Fig. 1.2**). In minimal media, supplementation with GSH or reducing agents such as TCEP, which activate GSH synthesis, also leads to upregulation of PrfA genes¹⁰⁷. C-di-AMP accumulation in the Δ PDE mutant results in attenuated virulence in a mouse model, and until recently, very little was known of the underlying mechanisms. However, as part of work presented in this thesis, it was discovered that the Δ PDE mutant is impaired for expression of the core PrfA regulon in minimal media, as well as during activation by GSH and TCEP. The mechanisms underlying this discovery are examined in Chapter 2.

Figure 1.2. Model of virulence-program activation by PrfA, and host-targets of c-di-AMP during *L. monocytogenes* infection.

Effects of c-di-AMP perturbation that indirectly affect virulence

In addition to controlling expression or activity of virulence factors, and modulating host immune-response, c-di-AMP also regulates a number of biological processes which indirectly affect virulence potential. C-di-AMP has been demonstrated to influence biofilm formation, osmotic stress tolerance, acid tolerance, and cell-wall homeostasis in vitro, though for a number of pathogens these traits also affect virulence potential.

Enterococcus faecalis is a commensal member of the human gut microbiome, but is also an opportunistic pathogen. One key trait that allows *E. faecalis* to persist on host-tissues and

resist antibiotic treatment is its biofilm forming ability¹⁰⁸. Kundra et al. found that *E. faecalis* possesses one DAC (CdaA) and two PDEs (DhhP and GdpP) and that deletion of *cdaA* causes a decrease in c-di-AMP levels, whereas deletion of *dhhP* or *gdpP* alone increased c-di-AMP levels, with deletion of both PDEs having an additive effect. Upon examining the consequences of altered c-di-AMP levels, the authors found that the $\Delta cdaA$, $\Delta dhhP$, $\Delta gdpP$, and $\Delta dhhP\Delta gdpP$ mutants were all attenuated for virulence in a mouse model⁸¹. To further explore the underlying mechanisms of these virulence defects, the authors went on to show that biofilm *ebpA* transcription, which is required for robust biofilm formation, was reduced in $\Delta cdaA$ ⁸¹. Interestingly, biofilm forming ability was not affected in the PDE mutants, indicating that yet another c-di-AMP regulated process impairs virulence in these strains. The $\Delta dhhP$, $\Delta gdpP$, and $\Delta dhhP\Delta gdpP$ exhibited modestly reduced growth in urine. C-di-AMP levels and *cdaA* transcription have been also been shown to decrease in *E. faecalis* upon growth in urine, whereas *dhhP* and *gdpP* transcripts increase^{81,82}. Together, this suggests that c-di-AMP accumulation may be detrimental during *E. faecalis* adaptation to osmotic stressors encountered in urine, or at other points during infection.

Streptococcus mitis is a commensal bacteria in the oral cavity, though it can cause opportunistic disease in immunocompromised individuals¹⁰⁹. In order to survive in the oral environment. *S. mitis* must be able to withstand changes in pH, form biofilm, and withstand stressors such as antibiotics and oral hygiene products⁸⁷. *S. mitis* synthesizes c-di-AMP via CdaA, and degrades c-di-AMP via Pde1 and Pde2⁸⁷. The $\Delta pde1$ mutant was found defective for oral keratinocyte colonization and biofilm formation, indicating yet another link between c-di-AMP, biofilm forming ability, and pathogenesis⁸⁷.

Clostridioides difficile is an enteric pathogen which causes severe diarrhea, particularly in the context of dysbiosis following antibiotic treatment¹¹⁰. To cause severe infection, *C. difficile* must overcome a number of stressors encountered in the intestinal tract such as low pH, high

osmolarity of the intestinal lumen, and bile salts¹¹¹. As c-di-AMP has been shown to affect response to these stressors in numerous other organisms, Oberkampf et al. explored the role of c-di-AMP in *C. difficile* growth and pathogenesis. They found that the $\Delta gdpP$ mutant accumulated ~3x more c-di-AMP than WT, whereas neither $\Delta disA$ nor $\Delta cdaA$ mutants were altered for c-di-AMP levels⁸⁸. The $\Delta gdpP$ mutant was also impaired for basal growth, resistance to cell-wall targeting antibiotics, and osmotic stress, and exhibited a strong biofilm phenotype compared to WT⁸⁸. They went on to demonstrate that the $\Delta gdpP$ mutant is impaired for persistence in the murine GI tract, likely due to impaired tolerance to osmotic stress⁸⁸. However, the contribution of other c-di-AMP mediated defects cannot be excluded.

CONCLUDING REMARKS

C-di-AMP is essential for many of the bacterial species who produce it, highlighting its importance as a regulator of bacterial growth and homeostasis. While enzymes that synthesize and degrade c-di-AMP are well-characterized, the mechanisms by which these enzymes are regulated by environmental signals is not well understood. C-di-Amp also has a number of known molecular targets. These targets affect many aspects of bacterial growth and physiology, including osmolyte homeostasis, central metabolism, and transcriptional regulation. C-di-AMP also has well-characterized effects on the host-immune response. It is a potent inducer of type-1 IFN response, and this occurs through the STING axis. Finally, altered levels of c-di-AMP within the bacterial cell result in several phenotypes for which there is no clear molecular intermediate. Notably, c-di-AMP accumulation causes a defective cell-wall and attenuated virulence in *L. monocytogenes*, though the underlying mechanisms are not known. Through my dissertation work, I discovered that c-di-AMP accumulation impairs *L. monocytogenes* virulence-program activation, and causes diminished levels of the virulence signal GSH. In the following chapters, work will be presented which sheds light on the mechanisms by which c-di-AMP impairs PrfA activation and diminishes GSH levels in *L. monocytogenes*.

Chapter 2. C-di-AMP accumulation disrupts glutathione metabolism and impairs virulence program expression in *Listeria monocytogenes*

Experiments, and writing of this chapter were carried out with the help of Matthew Freeman, Zepeng Tu, David M. Stevenson, Daniel Amador-Noguez, John-Demian Sauer, and Tu Anh N.

Huynh

A version of this chapter is being revised for resubmission in *Infection and Immunity*.

ABSTRACT

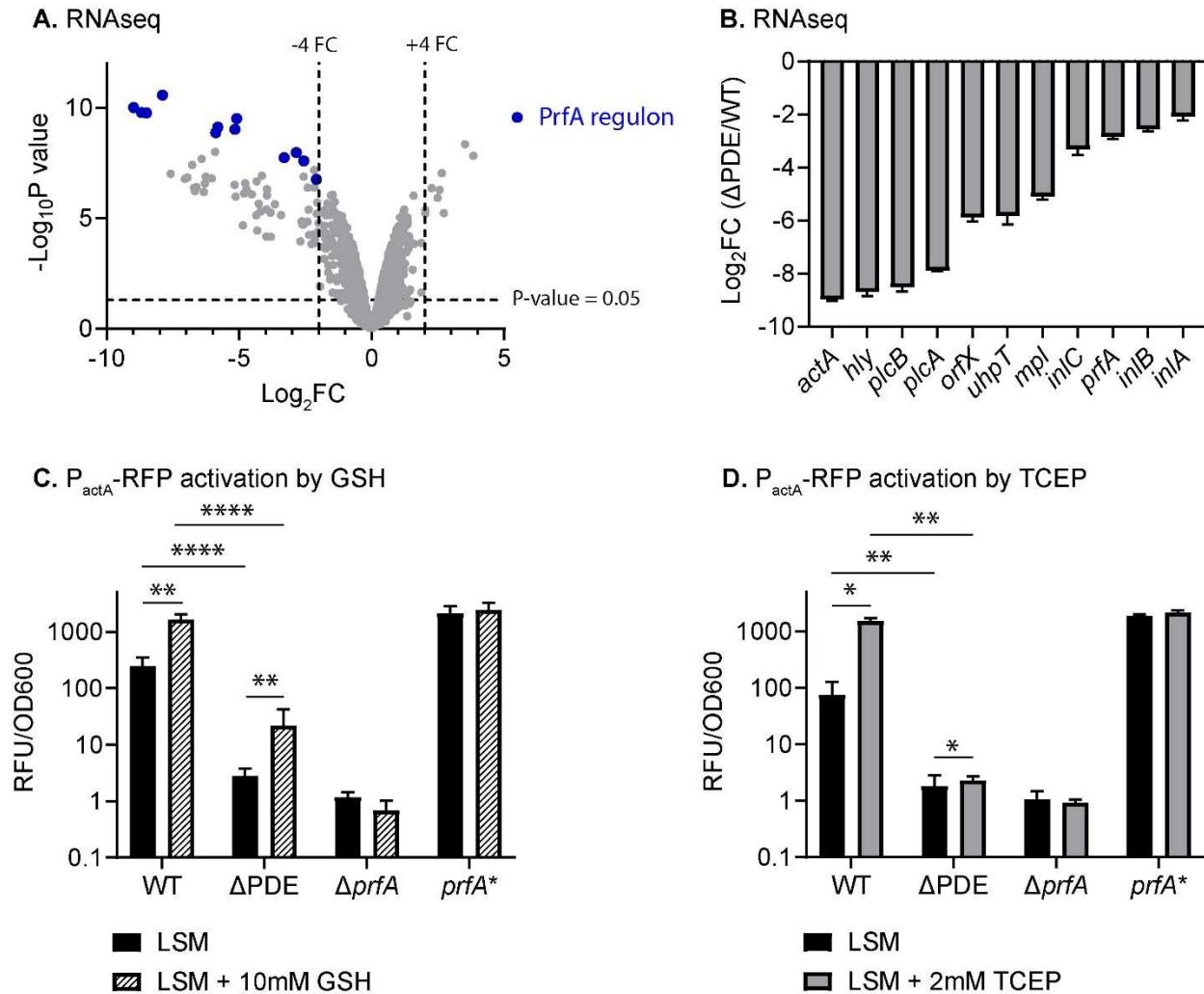
C-di-AMP is an essential second messenger that regulates many cellular processes within bacterial cells. For bacteria that produce c-di-AMP, maintaining c-di-AMP homeostasis is critical for physiology and pathogenesis. Unregulated c-di-AMP accumulation attenuates the virulence of many bacterial pathogens, including those that do not require c-di-AMP for growth. Nevertheless, the mechanisms by which c-di-AMP regulates bacterial pathogenesis remain poorly understood. For the human pathogen *Listeria monocytogenes*, a mutant lacking both c-di-AMP phosphodiesterases, denoted as the Δ PDE mutant, accumulates \sim 4x higher levels of c-di-AMP than WT and is significantly attenuated in the mouse model of systemic infection. *L. monocytogenes* is an intracellular pathogen that replicates in the mammalian cell cytosol, and the intracellular lifecycle is dependent on the master transcription factor PrfA, which is activated by reduced glutathione (GSH) during infection. Our transcriptomic analysis revealed that the Δ PDE mutant is significantly impaired for the expression of virulence genes within the PrfA core regulon. Subsequent quantitative gene expression analyses validated this phenotype both at the basal level and upon PrfA activation by GSH. A constitutively active PrfA* variant, PrfA G145S, which mimics the glutathione-bound conformation, restores virulence gene expression in Δ PDE but only partially rescues virulence defect. Through GSH quantification and uptake assays, we found that the Δ PDE strain is significantly depleted for GSH, and that c-di-AMP inhibits GSH uptake. Constitutive expression of *gshF* (encoding a GSH synthetase) does not restore GSH levels in the Δ PDE strain, suggesting that c-di-AMP inhibits GSH synthesis activity or promotes GSH catabolism. Taken together, our data reveals GSH metabolism as another pathway that is regulated by c-di-AMP. C-di-AMP accumulation depletes cytoplasmic GSH levels within *L. monocytogenes* that leads to impaired virulence program expression.

INTRODUCTION

The Gram-positive bacterial pathogen *Listeria monocytogenes* is a leading cause of mortality and hospitalization among foodborne illnesses. Although acquired orally, *L. monocytogenes* can cross the intestinal barrier to cause systemic infection with mortality rates approaching 16% in clinical cases¹¹². A hallmark of *L. monocytogenes* pathogenesis is its intracellular life cycle¹¹³. *L. monocytogenes* can invade many mammalian cell types, including non-phagocytic cells, using surface-anchored internalins such as InlA and InlB. Following host-cell entry, *L. monocytogenes* escapes the vacuole using the pore-forming toxin listeriolysin O (LLO, encoded by the *hly* gene), the phospholipases PlcA and PlcB, and the metalloprotease Mpl. In the cell cytosol, *L. monocytogenes* uses ActA to polymerize host actin, required for intracellular motility and cell-to-cell spread. All virulence genes required for the intracellular lifestyle, including those listed above, are transcriptionally regulated by the master transcription factor PrfA¹⁰⁴.

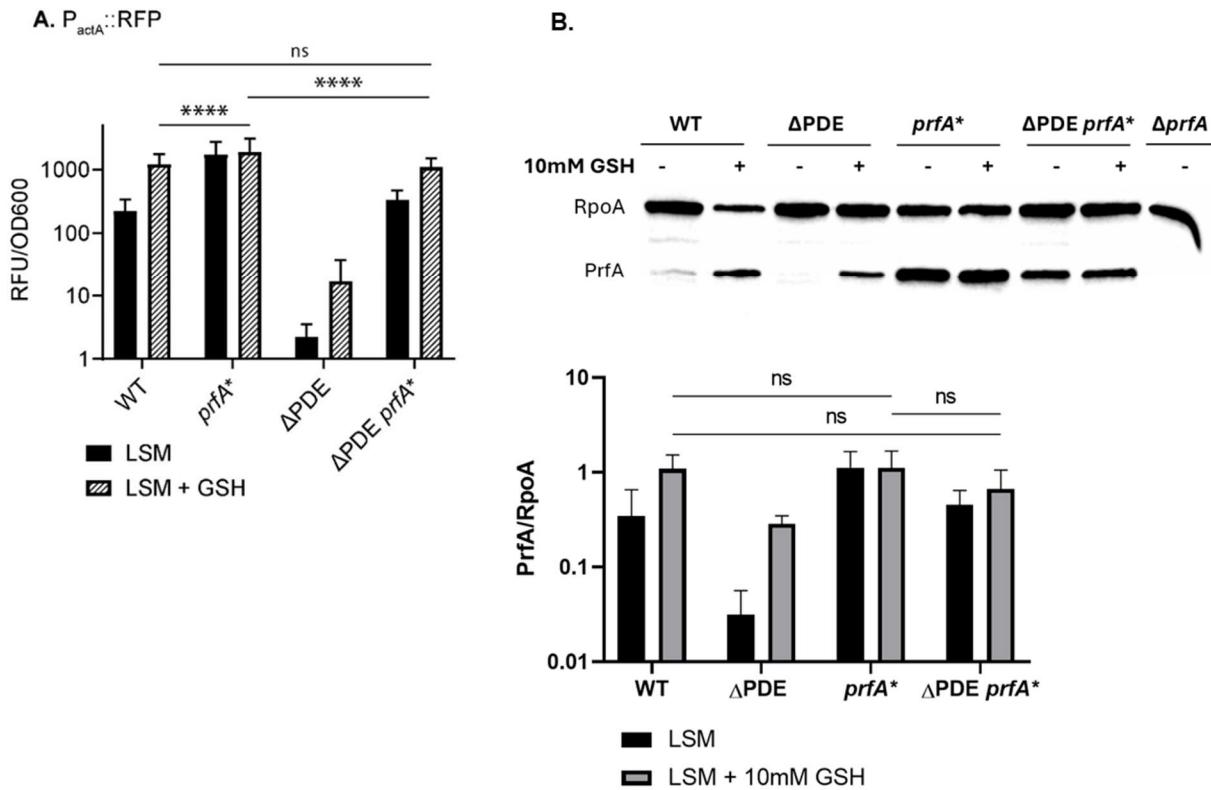
PrfA belongs to the Crp/Fnr family of transcription factors, which function as homodimers with a DNA-binding helix-turn-helix motif in each monomer^{104,114}. Unlike other Crp/Fnr proteins that require a co-factor for DNA binding, apo-PrfA can bind to its consensus palindromic DNA operator, called PrfA box, to maintain a basal expression of some virulence genes in the absence of activating signals. During infection, PrfA is allosterically activated by reduced glutathione (GSH), which is derived from the host or synthesized by *L. monocytogenes*¹⁰⁵. GSH binds PrfA at the stoichiometry of one GSH per PrfA monomer, inducing an active DNA-binding conformation of the helix-turn-helix motif¹⁰⁶. A single mutation (G145S) near the GSH binding site renders PrfA constitutively active by mimicking the GSH-bound conformation^{106,115}. During broth growth in *Listeria* Synthetic Medium (LSM), PrfA can be activated by supplementation with GSH or reducing reagents such as TCEP, which stimulate GSH synthesis¹⁰⁷. *L. monocytogenes* makes and secretes c-di-AMP, a nucleotide second messenger that regulates many molecular

targets in bacterial cells^{4,17}. C-di-AMP-binding proteins within *L. monocytogenes* have different cellular functions, such as potassium and carnitine uptake, central metabolism and ppGpp synthesis, and signal transduction^{17,23,27,39,63}. During infection, secreted c-di-AMP is recognized by mammalian cytosolic receptors to activate inflammatory and type I interferon responses^{4,42}. Type I interferon response is considered to promote *L. monocytogenes* pathogenesis during systemic infection, but activates an anti-bacterial response in the gastrointestinal tract^{116,117}.


C-di-AMP homeostasis is critical to *L. monocytogenes* growth and infection. In *L. monocytogenes*, c-di-AMP is synthesized from ATP by a single diadenylate cyclase, DacA, and degraded by the phosphodiesterases PdeA and PgpH into the linear nucleotide pApA¹¹⁸. In rich media, such as Brain Heart Infusion (BHI) broth, the Δ dacA mutant accumulates a toxic level of ppGpp that inhibits bacterial growth⁵⁴. By contrast, the Δ pdeA Δ pgpH mutant (hereafter denoted as the Δ PDE mutant) does not exhibit an appreciable growth defect in BHI, but is greatly attenuated for virulence in the mouse model of intravenous infection, despite hyper-activating type I interferon response¹³. These phenotypes indicate that the mechanisms underlying Δ PDE virulence attenuation are related to bacterial defects during infection.

The pathways and molecular targets leading to diminished pathogenesis at high c-di-AMP levels are not clearly defined. Here, we found that c-di-AMP accumulation inhibits the expression of the PrfA core regulon in *L. monocytogenes*, and this defect contributes to virulence attenuation in the Δ PDE strain. We further found that c-di-AMP accumulation impairs GSH uptake, and either inhibits GSH synthesis or promotes GSH catabolism. Combined, these defects result in a cytoplasmic GSH depletion that impairs PrfA function. Our findings reveal GSH metabolism as another pathway that is regulated by c-di-AMP, with implications in *L. monocytogenes* virulence program and nutrient acquisition inside the host.

RESULTS


The ΔPDE mutant is defective for virulence gene expression in the PrfA core regulon

The ΔPDE mutant was previously shown to be highly attenuated for virulence in a mouse model of infection¹³. To identify genes that could contribute to ΔPDE virulence defect, we performed RNAseq to profile the transcriptomes of the wild-type (WT) and ΔPDE strains, grown in LSM to mid-exponential phase⁵⁴. The cDNA libraries were sequenced at the depth of 17 – 20 million reads, and had 856x-1042x mapped read coverage. Compared to WT, the ΔPDE strain displayed mostly a transcriptional downshift, with 67 genes being down-regulated by ≥4-fold, and 9 genes being up-regulated by ≥4-fold (P value < 0.05) (**Table S2.1**). Remarkably, the vast majority of down-regulated genes in ΔPDE belong to the 10403S prophage locus (41 genes) or the PrfA core regulon (11 genes) (**Fig. 2.1A**). In addition to the core regulon, PrfA has been shown to putatively or indirectly regulate the expression of up to 145 other genes¹¹⁹. We did not observe those genes among the most significantly altered in ΔPDE, except for the upregulation of a cellobiose transporter (*lmo2683*) and two genes of hypothetical function (*lmo0186* and *lmo0019*) (**Table S2.1**). Furthermore, *kdpA* expression was also reduced by ~6-fold in the ΔPDE strain, consistent with an inhibitory effect of c-di-AMP on the expression of the *kdp* operon, which encodes a potassium uptake system (**Table S2.1**)^{27,30}.

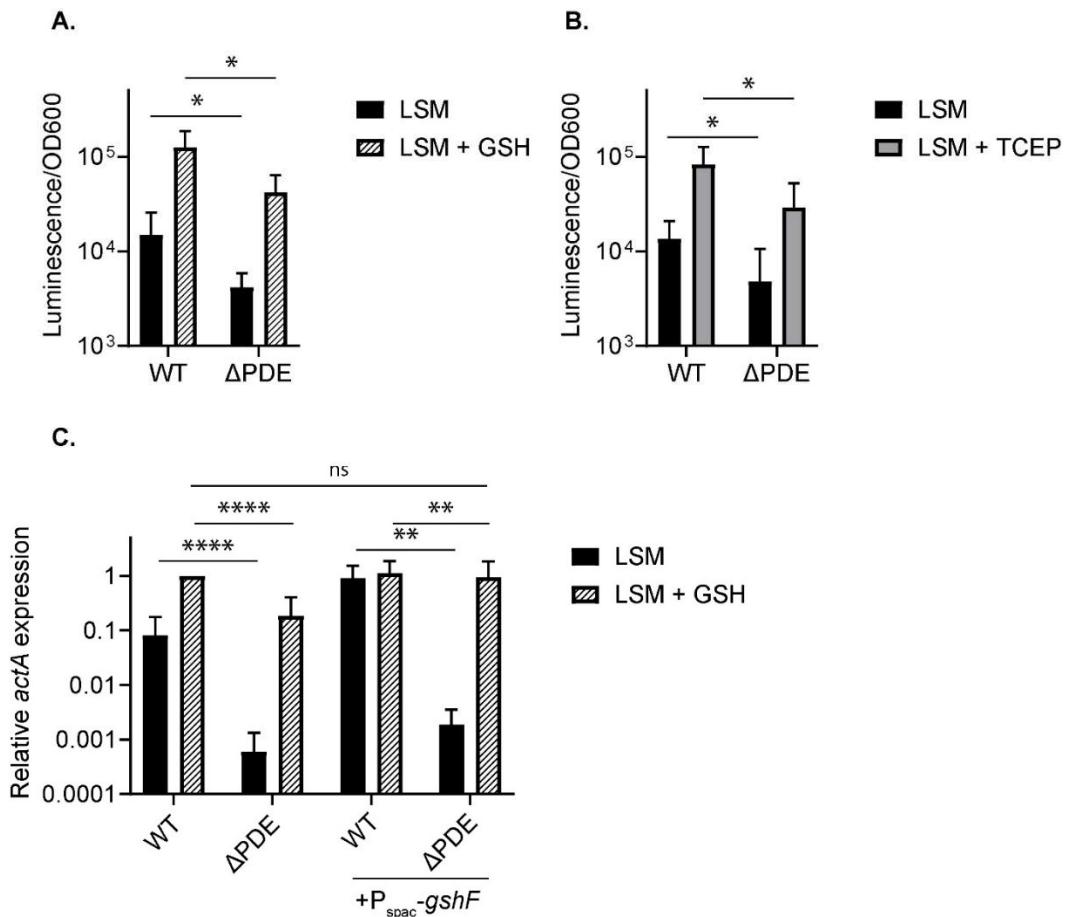
Figure 2.1. C-di-AMP accumulation impairs virulence gene expression in *L. monocytogenes*. **A.** Volcano plot of differentially expressed genes in the ΔPDE mutant compared to the WT strain. RNAseq was performed on mid-log cultures grown in *Listeria* Synthetic Medium (LSM). Blue dots indicate genes within the PrfA core regulon. **B.** Log₂fold change in PrfA-regulated gene expression was calculated from read counts per million (cpm) of two independent ΔPDE cultures, compared to the average of two independent WT cultures. Data in A and B are from the same RNAseq experiment. **C.** PrfA-regulated gene expression was quantified in *L. monocytogenes* strains carrying $P_{actA}::RFP$ transcriptional reporter. The $\Delta prfA$ and $prfA^*$ strains were quantified as negative and positive controls, respectively. Cultures were grown to mid-log in LSM or LSM + 10mM GSH. Red fluorescence was normalized to OD600 of each respective culture. **D.** Red fluorescence was quantified as in C. LSM cultures were left untreated or treated with 2mM TCEP for 2 hours. Data in C and D are average of 3-6 independent experiments. Error bars show standard deviations. Statistical analyses were performed by two-way ANOVA with multiple comparisons for the indicated pairs: ns, non-significant; *, P < 0.05; **, P < 0.01; ****, P < 0.0001

PrfA is the master transcription factor that upregulates *L. monocytogenes* virulence gene expression required for the intracellular life cycle¹¹⁴. Our RNAseq analysis revealed that the PrfA core regulon was significantly down-regulated in the Δ PDE strain (**Fig. 2.1A-B**). Given the Δ PDE virulence defect, we focused on evaluating PrfA-regulated virulence genes. To validate RNAseq results, we employed RT-qPCR to quantify the expression of three genes in the PrfA core regulon: *prfA*, *hly* (an early gene), and *actA* (a late gene). In LSM cultures, the Δ PDE strain was significantly impaired for the expression of all three genes, reflecting a defect in basal PrfA function (**Fig. S2.1A-C**). To examine gene expression upon PrfA activation, we next performed RT-qPCR for cultures grown in the presence of GSH. Although these genes were up-regulated by GSH in both the WT and Δ PDE strains, their expression levels in Δ PDE remained significantly lower than in WT (**Fig. S2.1A-C**). Furthermore, of the three genes, we noticed that the Δ PDE strain was most impaired for *actA* expression, which was reduced by 10 – 100-fold compared to the basal and activated levels in WT (**Fig. S2.1C**). As an independent method to quantify *actA* expression, we used a red fluorescent reporter fused with the *actA* promoter (P_{actA} -RFP)¹⁰⁷. This assay confirmed that the Δ PDE strain was significantly defective for *actA* expression both at the basal level and upon PrfA activation by GSH or TCEP (**Fig. 2.1C-D**). To examine PrfA-activation in the context of host-cell infection, we assessed PrfA-protein levels in an ex-vivo model. Western blot against PrfA protein was performed on WT and Δ PDE-infected immortalized bone-marrow-derived-macrophages (iBMMs). We found that PrfA protein was less abundant in Δ PDE during iBMM infection relative to WT, consistent with our prior findings that PrfA cannot be fully activated in Δ PDE. (**Fig. S2.2**). It can be concluded from these results that virulence-program activation is impaired in Δ PDE, resulting in both reduced expression of the PrfA core-regulon and lower levels of PrfA protein levels during ex-vivo infection.

Figure 2.2. A constitutive PrfA variant ($PrfA^*$) restores PrfA activity and *prfA* gene expression upon c-di-AMP accumulation. **A.** $P_{actA}::RFP$ transcriptional activity was quantified in WT, ΔPDE , and isogenic strains in which the native *prfA* allele is replaced with $PrfA^*$ (G145S). Red fluorescence, normalized to OD600, was measured for mid-log cultures grown in LSM or LSM + 10mM GSH, and normalized to OD600. **B.** Representative western blot of PrfA and the loading control RpoA (top panel), measured in cultures grown in LSM or LSM + 10mM GSH. Quantification of PrfA band intensity relative to RpoA (bottom panel) is representative of four independent experiments. Error bars show standard deviations. Statistical analyses were performed by two-way ANOVA with multiple comparisons for the indicated pairs: ns, non-significant; *, P < 0.05; **, P < 0.01; ****, P < 0.0001

Defective PrfA activity contributes to virulence-program activation at high c-di-AMP levels

To assess whether a defect in PrfA activity contributes to the defective ΔPDE virulence-program activation in vitro, we replaced the native *prfA* gene with a constitutive $PrfA^*$ variant (G145S) that structurally mimics the GSH-bound form^{106,115}. In transcriptional reporter assays with P_{actA} -RFP, the $PrfA^*$ strain exhibited constitutive *actA* expression, independent of GSH

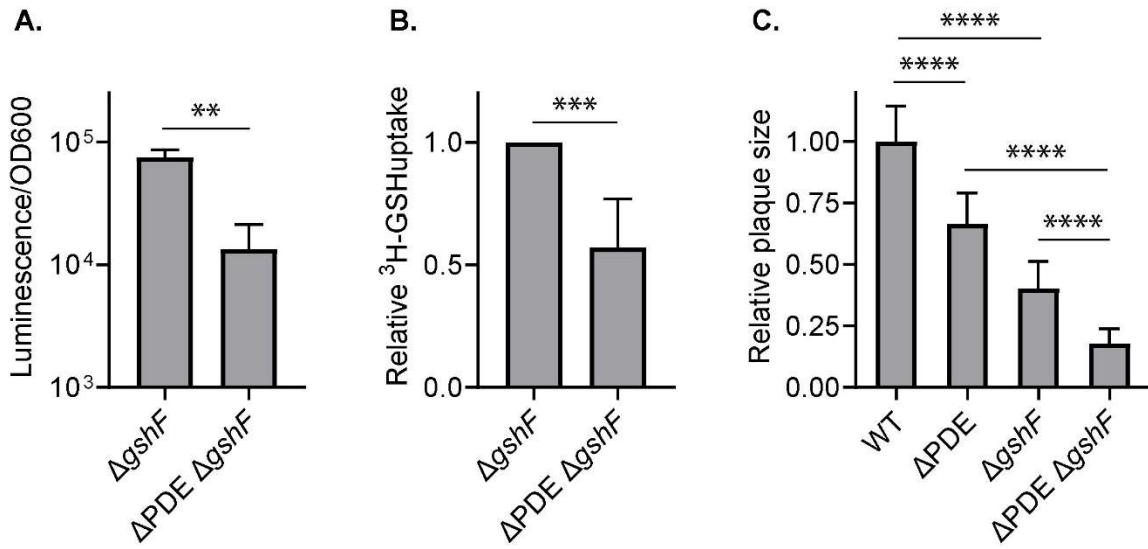

supplementation, as expected (**Fig. 2.2A**). In the Δ PDE background, the *prfA** allele restored *actA* expression to the WT level in LSM + 10mM GSH (**Fig. 2.2A**). Interestingly, *actA* expression was not constitutive in Δ PDE *prfA**. Previous studies have always found the activity of PrfA* to be constitutive regardless of GSH availability. To address concerns that the Δ PDE *prfA** strain harbored additional mutations affecting PrfA activity, we whole-genome sequenced the Δ PDE PrfA* strain to confirm no additional mutations were present which could cause PrfA* responsiveness to GSH. Interestingly, WGS results of Δ PDE PrfA* revealed a single SNP not present in the PrfA* parent strain. The SNP was in the 5'UTR region upstream of the gene *lmo0514*. Previously, Quereda *et al.* found that *lmo0514*, an internalin like protein, is upregulated in *L. monocytogenes* upon infection¹²⁰. To verify that this SNP did not affect our transcriptional reporter results, we remade the strain and confirmed via whole-genome sequencing that it acquired no additional mutations compared to the parent strain. Results from the transcriptional reporter assay with P_{actA} -RFP in the new Δ PDE PrfA* were effectively identical to results with our original strain (**Table S2.9**). As an additional readout for PrfA activity in the reconstructed Δ PDE PrfA* strain, we assessed growth on Glucose-6-phosphate (G6P). Hexose-6-phosphates are thought to be one of the major carbon sources during intracellular growth¹²¹ and are imported through Hpt, which is a member of the core PrfA regulon¹¹⁹. When hexose-6-phosphates are the sole source of carbon, *L. monocytogenes* can grow only when PrfA is activated. Consistent with our previous data, Δ PDE was unable to utilize G6P as a carbon source when supplemented with 10mM GSH. Interestingly, in the absence of GSH, Δ PDE *prfA** was almost completely abolished for G6P utilization, though its growth was largely improved relative to Δ PDE when the medium was supplied with 10mM GSH (**Figure S2.7**). Together, these data suggest that the observed GSH-responsiveness of PrfA* in the Δ PDE background is a direct consequence of c-di-AMP accumulation.

To further examine PrfA activity in Δ PDE, we next assessed PrfA protein stability. To do this, PrfA protein levels were measured by western blot in the reconstructed Δ PDE *prfA** strain. In the Δ PDE background, the *prfA** allele restored PrfA levels in the presence of 10mM GSH (**Fig. 2.2B**). However, PrfA levels appeared modestly lower in the Δ PDE *prfA** strain in the absence of GSH (**Fig. 2.2B**). Together, these data suggest that in Δ PDE, unidentified factors impair full PrfA activation in the absence of GSH, leading to reduced virulence-gene expression and reduced PrfA protein levels.

We next tested the possibility that factors independent of PrfA repress *prfA* transcription in Δ PDE. Previous studies have shown that the stress-responsive sigma factor SigB influences PrfA expression via the P2 promoter, though this interaction is complex and varies depending on environmental conditions¹²². Δ PDE is susceptible to salt stress²³, a condition that robustly activates SigB¹²³, suggesting that Δ PDE may be defective for SigB activity, and that this affects *prfA* expression. First, to test whether *sigB* activation in WT is altered upon PrfA activation by 10mM GSH, RT-qPCR was performed on *sigB*, and *opuCA*, which is strongly activated by SigB¹²⁴. There was no significant difference in either *sigB* or *opuCA* expression in either LSM, or LSM + 10mM GSH (**Fig. S2.3A**) This suggests that SigB activity is not upregulated during the PrfA-activating conditions tested. *ActA* expression in Δ *sigB* during growth in LSM and LSM + 10mM GSH was also assessed. Δ *sigB* was not significantly impaired for *actA* expression in either LSM or LSM + 10mM GSH, suggesting that under the conditions tested, SigB is not required for PrfA activity (**Fig. S2.3B**). RsbX is a strong negative regulator of SigB, and inactivation of *rsbX* causes strong upregulation of SigB¹²⁵. Inactivating *rsbX* in the Δ PDE background did not rescue *actA* expression (**Figure S2.3B**). Taken together, these results demonstrate that diminished *prfA* expression in Δ PDE is not influenced by SigB.

Glutathione deficiency impairs PrfA activity in the ΔPDE strain

Given the partial restorative effect of PrfA* on both virulence-gene expression and PrfA protein levels, we hypothesized that the ΔPDE strain might be impaired for PrfA activation by GSH. We found that GSH levels were significantly depleted in the ΔPDE strain compared to WT, in LSM, LSM + GSH, and LSM + TCEP. (**Fig. 2.3A-B**). The deficiency in GSH was not due to oxidation, since the total glutathione pool and oxidized glutathione (GSSG) were also reduced in ΔPDE (**Fig. S2.4A-B**). Furthermore, a previous study found that methylglyoxalase is important to maintain a sufficient GSH pool in *L. monocytogenes*¹²⁶. We found no evidence for an impaired methylglyoxalase activity in the ΔPDE strain, since ΔPDE exhibited a comparable methylglyoxal susceptibility to WT (**Fig. S2.4C**). The ΔPDE strain could fully induce *actA* expression to the activated level of WT, but only upon both GSH supplementation and *gshF* over-expression (**Fig. 2.3C**). These data suggest that GSH deficiency contributes to reduced PrfA function in the ΔPDE strain.


Figure 2.3. A deficiency in reduced glutathione (GSH) contributes to diminished virulence gene expression at high c-di-AMP levels. A. Reduced glutathione (GSH) levels of mid-log cultures grown in LSM or LSM + 10mM GSH. GSH levels are reported by luminescence and normalized to culture OD600. Several GSH standards were quantified to determine the linear range of the assay, and all biological samples were quantified at appropriate dilutions to ensure measurements were within the linear range. **B.** Mid-log LSM cultures were left untreated, or treated with 2mM TCEP for 2 hours, and quantified for GSH levels as in A. **C.** *actA* gene expression by RT-qPCR. Cultures were grown in LSM or LSM + 10mM GSH to mid-log phase. In each culture, the expression level of *actA* was normalized to that of *rpD* as a housekeeping gene. Error bars represent standard deviations. Statistical analyses were performed by two-way ANOVA with multiple comparisons for the indicated pairs: ns, non-significant; *, P < 0.05; **, P < 0.01; ****, P < 0.0001

C-di-AMP accumulation inhibits GSH uptake

We sought to determine how GSH is depleted in the Δ PDE mutant. *L. monocytogenes* synthesizes GSH by the glutathione synthase *GshF*¹²⁷ and also imports GSH via CtaP and OppDF¹²⁸. We evaluated GSH uptake in the $\Delta gshF$ and Δ PDE $\Delta gshF$ strains, which cannot

synthesize GSH. These strains were grown in LSM until mid-exponential phase, then supplemented with GSH for ~0.7 doubling times, and quantified for cytoplasmic GSH levels. In these assays, we found that ΔPDE $\Delta gshF$ accumulated about one third of GSH levels compared to $\Delta gshF$, suggesting a GSH uptake defect at high c-di-AMP levels (Fig. 2.4A). We further verified this phenotype in 3 H-GSH uptake assays for the $\Delta gshF$ and ΔPDE $\Delta gshF$ cultures (Fig. 2.4B). To assess if GSH transporter expression was impaired in ΔPDE, we performed qRT-PCR on *ctaP* and *oppDF*. In both LSM and LSM + 10mM GSH, neither expression of *ctaP* nor *oppD*, which shares an operon with *oppF*, were lower than WT (Fig. S2.5A-B). Interestingly, expression of *ctaP* was downregulated in both WT and ΔPDE during growth in 10mM GSH (Fig. S2.5A). Taken together, it can be concluded that GSH uptake in ΔPDE is impaired, though not due to reduced expression of known GSH transporters.

The intracellular lifecycle of *L. monocytogenes*, including cytosolic replication and cell-to-cell spread, can be assessed by a plaque formation assay upon infection of murine fibroblasts (L2 cells)¹²⁹. To evaluate GSH uptake during infection, we performed an L2 plaque formation assay. Consistent with a previous study¹⁰⁵ we found the $\Delta gshF$ mutant to form significantly smaller plaques than the WT strain (Fig. 2.4C). Compared to $\Delta gshF$, the ΔPDE $\Delta gshF$ strain was much further diminished for plaque formation, indicating that c-di-AMP accumulation impairs GSH uptake during infection (Fig. 2.4C).

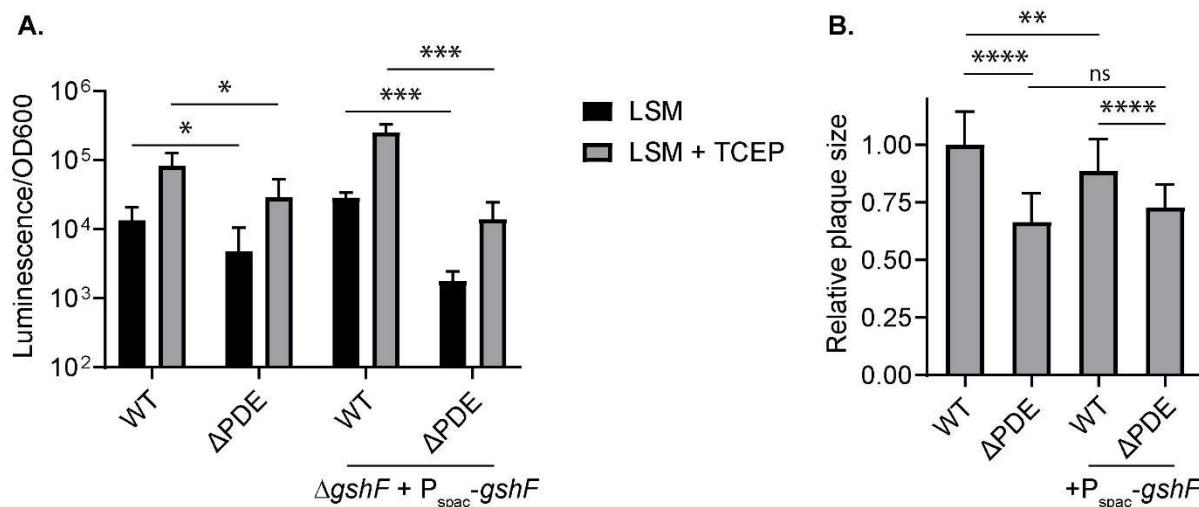
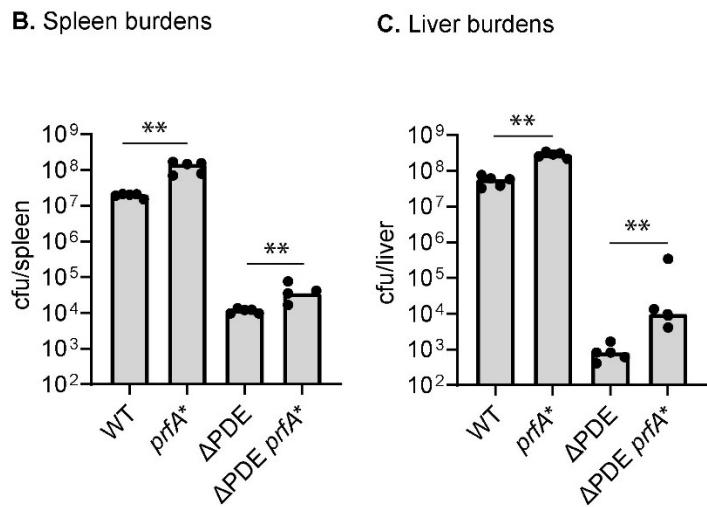


Figure 2.4. C-di-AMP accumulation inhibits GSH uptake in broth culture and ex-vivo infection. **A.** The $\Delta gshF$ and $\Delta PDE \Delta gshF$ strains were grown to mid-log phase in LSM and supplemented with 10mM GSH for one hour (approximately 0.7 doublings in LSM). Cultures were thoroughly washed and quantified for intracellular GSH, reported as luminescence normalized to OD600. **B.** 3H -GSH uptake assay. Cultures were grown to mid-log, then supplemented with 3H -GSH for 30 minutes. Uptake activity was assessed by radioactivity normalized to OD600. **C.** Plaque formation at 4 days post infection of L2 fibroblasts. Plaque sizes were quantified by ImageJ. In each experiment, the average plaque size by each strain was normalized to the average WT plaque size, set at 1. Error bars represent standard deviations. Statistical analyses were performed by Student's t-test in A-B and one-way ANOVA in C, with multiple comparisons for the indicated pairs: **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$

C-di-AMP depletes cytoplasmic GSH by inhibiting synthesis or promoting catabolism

The ΔPDE mutant was deficient in intracellular GSH during growth in the absence of GSH supplementation, suggesting a defect in GSH synthesis (Fig. 2.3A). We first quantified glycine, cysteine, and glutamate, which are substrates for GSH synthesis by GshF¹²⁷. By LC-MS, we found that the ΔPDE strain was moderately reduced for glutamate, but glycine and cysteine levels were comparable to WT (Fig. S2.6A). Given that cysteine is the limiting substrate for GshF activity in bacterial cells¹³⁰ it is unlikely that the ΔPDE strain is lacking in substrates for GSH synthesis.

The gene expression levels of *gshF* were comparable in the WT and Δ PDE strains, and in the *prfA** and Δ PDE *prfA** strains, with and without exogenous GSH in the culture medium (Fig. S2.6B). Therefore, we next examined post-transcriptional regulation of GshF by replacing the native *gshF* gene with a constitutively expressed allele (P_{spac} -*gshF*). Constitutive expression of P_{spac} -*gshF* in WT and the Δ PDE strain was confirmed via qPCR (Fig. S2.6B). To evaluate GSH synthesis, we grew cultures in the absence or presence of TCEP, which activates GSH synthesis without adding GSH to the culture medium¹⁰⁷. Even upon constitutive *gshF* expression, the Δ PDE mutant was still significantly depleted for GSH, both under the basal condition and TCEP activation (Fig. 2.5A). Because constitutive *gshF* expression failed to restore GSH synthesis in Δ PDE, we wondered if GshF protein stability was affected in Δ PDE. Native *gshF* was replaced with a constitutively expressed FLAG-tagged protein (P_{spac} -*gshF*-FLAG) in WT and Δ PDE and Western Blot against the FLAG-epitope was performed for cultures grown in LSM. GshF levels in Δ PDE did not differ significantly from those in WT, indicating that diminished GshF protein stability is not the cause of GSH deficiency in Δ PDE (Fig S2.8).


Figure 2.5. Activation of GSH synthesis activity does not restore GSH levels in the Δ PDE strain. **A.** Intracellular GSH levels. Cultures were left untreated or treated with 2mM TCEP for 2 hours. GSH levels are reported as luminescence normalized to OD600 of each culture. **B.** Plaque formation at 4 days post infection of L2 fibroblasts. Plaque sizes were quantified by

ImageJ. In each experiment, the average plaque size by each strain was normalized to the average WT plaque size, set at 1. Error bars show standard deviations. Statistical analyses were performed by two-way ANOVA in A and one-way ANOVA in B, with multiple comparisons for the indicated pairs: ns, non-significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

Next, we assessed the contribution of reduced GshF activity to ex-vivo virulence in Δ PDE. In L2 plaque formation assay, *gshF* over-expression only moderately increased the Δ PDE plaque sizes, suggesting that GshF activity might be impaired (**Fig. 2.5B**). However, we noticed that the Δ PDE Δ *gshF* strain formed significantly smaller plaques than the Δ PDE strain, indicating that GSH synthesis is not completely inhibited at high c-di-AMP levels during infection (**Fig. 2.4C**). Together, these data suggest c-di-AMP accumulation impairs GshF activity or promotes GSH catabolism.

Defective PrfA activity contributes to virulence attenuation at high c-di-AMP levels

We next examined the contribution of PrfA defect to Δ PDE virulence attenuation in a mouse model of intravenous infection. In the WT background, *prfA** increased bacterial burdens in both the spleen and liver, as expected (**Fig. 2.6A-B**). Compared to Δ PDE burdens, the media burdens of Δ PDE *prfA** were increased by ~10-fold in the liver, and by ~3-fold in the spleen (**Fig. 2.6A-B**). Thus, a defect in PrfA function partially contributes to Δ PDE virulence attenuation in the liver. However, our data also reveal that there are additional mechanisms underlying the virulence defect of Δ PDE at high c-di-AMP levels.

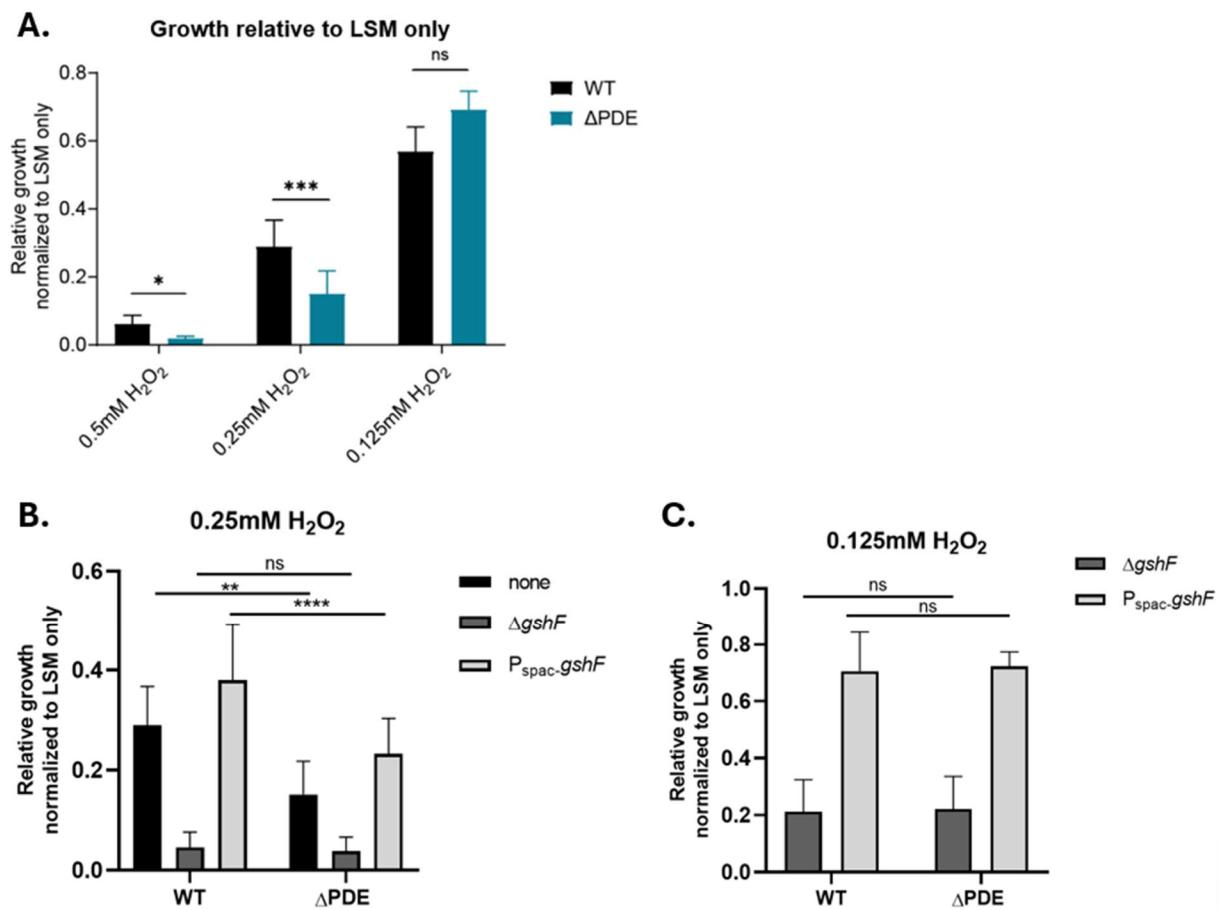


Figure 2.6. A constitutive PrfA variant (PrfA*) partially rescues virulence defect upon c-di-AMP accumulation. A-B. Bacterial burdens in the spleen and liver at 48 hours post-intravenous infection with 1×10^5 cfu of *L. monocytogenes*. Each dot represents *L. monocytogenes* burden from one animal. Bars represent medians of the groups. Statistical analyses were performed by Mann-Whitney test, with multiple comparisons for the indicated pairs: ns, non-significant; **, $P < 0.01$; ****, $P < 0.0001$.

C-di-AMP accumulation enhances H₂O₂ sensitivity

Δ PDE *prfA** was not fully rescued for in-vivo virulence, which led us to question what additional consequences of c-di-AMP accumulation could impair Δ PDE survival in-vivo. *L. monocytogenes* encounters oxidative stressors such as reactive oxygen species (ROS) during host-cell infection¹³¹ and GshF is important for *L. monocytogenes* resistance to oxidative stressors¹³². Thus, we hypothesized that an additional consequence of GSH deficiency specific to Δ PDE is reduced oxidative stress tolerance. To test this, we first assessed terminal OD₆₀₀ of WT and Δ PDE grown in LSM containing 0.5mM, 0.25mM, and 0.125mM H₂O₂. At 0.5mM and 0.25mM H₂O₂, Δ PDE was more impaired for growth than WT (Fig. 2.7A). To test the contribution of GshF to Δ PDE H₂O₂ sensitivity, we repeated growth in 0.25mM and 0.125mM H₂O₂ for WT and Δ PDE strains deleted for and overexpressing *gshF*. While Δ PDE + P_{spac}-*gshF* was still more sensitive to 0.25mM H₂O₂ than WT + P_{spac}-*gshF*, growth of Δ*gshF* and Δ PDE

gshF::tn were statistically equivalent at 0.25mM H₂O₂ (Fig. 2.7B). While this data suggests that deleting GshF equalizes WT and Δ PDE H₂O₂ sensitivity, poor growth of both WT and Δ PDE *gshF* deletion strains in 0.25mM H₂O₂ makes these data difficult to reliably interpret. At 0.125mM H₂O₂, which did not inhibit Δ PDE growth relative to WT, neither overexpressing nor deleting *gshF* had a significant influence on relative Δ PDE growth compared to WT (Fig. 2.7C). All together, these data demonstrate that c-di-AMP accumulation causes enhanced sensitivity to H₂O₂. However, these results do not provide conclusive evidence about whether reduced GshF activity is responsible for H₂O₂ sensitivity in Δ PDE.

Figure 2.7. C-di-AMP accumulation enhances H₂O₂ susceptibility. **A.** Terminal OD₆₀₀ of WT and Δ PDE in 0.5, 0.25, and 0.125mM H₂O₂ relative to that of each strain in LSM. **B-C.** Terminal OD₆₀₀ of WT and Δ PDE deleted for or overexpressing *gshF* in 0.25 (B) or 0.125mM (C) H₂O₂ relative to that of each strain in LSM. Statistical analyses were performed by two-way ANOVA, ns = not significant.

with multiple comparisons for the indicated pairs: ns, non-significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

DISCUSSION

C-di-AMP homeostasis is critical for bacterial growth and pathogenesis. The attenuated virulence conferred by c-di-AMP accumulation is widely observed in many pathogens, including *Mycobacterium tuberculosis*, which does not require c-di-AMP for growth^{79,133} and *Borrelia burgdorferi*, which produces a very low level of c-di-AMP^{76,134}. In the c-di-AMP phosphodiesterase ($\Delta dhhP$) mutant of *B. burgdorferi*, the transcription factor BosR is inhibited, causing reduced expression of the major virulence factor OspC¹³⁴. However, the *B. burgdorferi* $\Delta dhhP$ mutant also has a significant growth defect, and DhhP might degrade other nucleotides in addition to c-di-AMP^{135,136}. For *Bacillus anthracis*, the Δ PDE mutant also grows poorly and is diminished for anthrax toxin production, a defect that is partially attributed to the upregulation of the transcriptional repressor AbrB⁸⁴. The molecular mechanisms by which c-di-AMP inhibits virulence factor expression in these bacteria are unclear, and the mechanisms by which c-di-AMP impairs the virulence of other pathogens are even less understood.

The *L. monocytogenes* c-di-AMP Δ PDE mutant does not have a significant growth defect in rich media, but is attenuated for virulence, suggesting defects that are pertinent to replication and adaptation in the host. Our findings here reveal that c-di-AMP accumulation impairs *prfA* expression and activity during under basal and PrfA activating conditions, as well as in an ex-vivo model of infection. We demonstrated that GSH, an allosteric activator of PrfA, is depleted in the Δ PDE mutant, and that this has implications for ex-vivo virulence. Upon further examination of the mechanisms underlying GSH depletion in Δ PDE, it was found that both synthesis and uptake of GSH is impaired by c-di-AMP accumulation. First, we found that c-di-AMP accumulation inhibits GSH uptake. High affinity GSH transport in *L. monocytogenes* was recently shown to require the Ctp complex and the ATPases OppDF, the latter of which are

components of the Opp complex that transports oligopeptides. Based on the demonstrated function of c-di-AMP in inhibiting potassium, Mg²⁺, and carnitine transporters¹³⁷, it is conceivable that c-di-AMP might also inhibit the OppDF and Ctp ATPase function particularly. As for how c-di-AMP accumulation depletes cytoplasmic GSH, we found that c-di-AMP does not inhibit *gshF* gene expression, or expression of *oppDF* or *ctaP*. However, the possibility remains that allosteric inhibition of GshF, OppDF, or CtaP occurs when c-di-AMP levels are high. Indeed our ex vivo infection data demonstrates that the absence of GshF reduces plaque Δ PDE L2 plaque formation to a greater degree than it does for WT. This suggests that uptake of host-GSH is impaired in Δ PDE. Our L2 plaque data further indicates that GshF is operational in the Δ PDE strain during infection, though its activity might be reduced. One mechanism by which GshF activity could be reduced is lowered substrate abundance. Based on metabolomic analysis of Δ PDE, the GshF substrates cysteine, glycine, and glutamate do not appear to be reduced. However, c-di-AMP is a known regulator of metabolic enzyme function, so while GshF substrates are not reduced in Δ PDE, it is plausible that these substrates are being funneled into different pathways independent of GSH metabolism. Future investigations are necessary to distinguish these mechanisms.

Because GSH is an allosteric activator of the master virulence factor PrfA, the first major implication of GSH depletion is a reduced virulence program expression. In support for this, our data shows that virulence gene expression at high c-di-AMP levels can be restored by a constitutive PrfA* variant, or a combination of increased GSH synthesis and GSH supplementation. However, the PrfA* variant does not fully rescue Δ PDE virulence to the WT level, indicating that c-di-AMP accumulation confers additional defects during infection. We previously reported that the *L. monocytogenes* Δ PDE strain is sensitive to cell wall-targeting antimicrobials, including lysozyme that is abundant in mammalian cell cytosol⁶⁴. Given the requirement of cell wall homeostasis for successful infection by *L. monocytogenes*¹³⁸⁻¹⁴⁰ it is

conceivable that cell wall defects also contribute to Δ PDE virulence attenuation. Another well-established function of c-di-AMP in *L. monocytogenes* is the inhibition of the carnitine transporter OpuC and multiple potassium uptake channels^{13,27}. However, mutants abolished for carnitine transport do not exhibit a systemic infection defect like the Δ PDE strain¹⁴¹ and the cell cytosol is highly enriched in potassium¹⁴². Therefore, reduced osmolyte uptake may not significantly impact *L. monocytogenes* replication in the cytosol. Among other c-di-AMP-binding proteins that have been studied in *L. monocytogenes*, PstA has a minor role in infection⁶³; and the Δ PDE mutant does not have a growth defect that would be associated with a significantly reduced pyruvate carboxylase function^{17,143}. The roles of other c-di-AMP molecular targets in *L. monocytogenes* pathogenesis should be investigated in future studies.

In addition to recognizing GSH as a virulence signal, *L. monocytogenes* also metabolizes GSH as a source of essential cysteine and uses GSH as antioxidant in broth cultures^{128,132}. If these functions are relevant in the mammalian host, they can also explain why the Δ PDE *prfA** strain is not fully restored for virulence. Upon examining additional consequences of GSH deficiency, we found that Δ PDE was more sensitive to H₂O₂ than WT, suggesting that reduced oxidative stress resistance may contribute to attenuated virulence in Δ PDE. Furthermore, a reduced function of the GSH importers such as Ctp and OppDF at high c-di-AMP levels could also deprive *L. monocytogenes* of nutrient oligopeptides, which are also imported through these uptake channels^{144,145}.

It is curious that the PrfA* (G145S) variant, which is active independent of GSH binding, does not confer constitutive *actA* expression in Δ PDE in the absence of GSH supplementation. Outside of the allosteric activation site that binds GSH, PrfA has four cysteine residues that can be glutathionylated¹⁰⁵. Although this modification modestly contributes to PrfA activation in the WT strain, it might have a more significant role at high c-di-AMP levels. Furthermore, the regulatory mechanisms of PrfA activity are complex, and PrfA can be inhibited by several

factors such as metals or oligopeptides that do not contain cysteine¹¹⁴. It is conceivable that the Δ PDE strain accumulates those PrfA inhibitors that can be identified in future metabolomics studies.

Altogether, our studies present an exciting avenue to investigate how c-di-AMP disrupts GSH metabolism in *L. monocytogenes*. Given the importance of GSH as a virulence signal, nutrient, and antioxidant in different bacteria¹⁴⁶, it will be interesting to examine whether c-di-AMP regulates GSH metabolism in other species, and the consequences of such regulation on bacterial growth and infection.

Materials and Methods

Strains and culture conditions

L. monocytogenes strains are listed in **Table S2.2**. Listeria Synthetic Medium (LSM) was prepared based on published recipe⁵⁴. Over-expression of genes was accomplished using the integrative plasmid pPL2¹⁴⁷. Gene allelic exchange was performed using plasmid pKSV7. For all experiments related to broth cultures, *L. monocytogenes* was grown at 37°C with shaking and without antibiotics. For glycerol stocks and maintenance, strains carrying derivatives of the integrative plasmid pPL2 were grown in Brain Heart Infusion broth with 200 μ g/mL streptomycin and 10 μ g/mL chloramphenicol. For mouse and L2 cell infection, *L. monocytogenes* was grown static in BHI at 30°C.

RNAseq and analysis

L. monocytogenes cultures were grown to OD₆₀₀ of ~ 0.5, and harvested by mixing 1:1 with cold methanol and centrifugation. RNA was extracted using acidified phenol:chloroform at pH 5.2 as previously described¹⁴⁸. Contaminated DNA was removed from extracted RNA using Turbo DNase (Thermo Scientific). RNA sequencing and read mapping was performed by MiGS Sequencing Center (Pittsburgh, PA). Reads were mapped to the *L. monocytogenes* 10403S

genome (NCBI:txid393133). Differentially expressed gene (DEG) analysis was performed via EdgeR¹⁴⁹.

RT-qPCR for *L. monocytogenes* genes in broth

For quantification of PrfA activity upon activation by GSH, *L. monocytogenes* cultures were grown in LSM or LSM + 10mM GSH to OD₆₀₀ ~0.5. For PrfA activation by TCEP, *L. monocytogenes* cultures were grown in LSM to OD ~0.5, then split into two aliquots of identical volumes. One culture aliquot was left untreated and the other was supplemented with 2mM TCEP for 2 hours, and both were shaken at 37°C. RNA was extracted, treated with Turbo DNase and converted to cDNA using iScript cDNA synthesis kit (BioRad). Gene expression was quantified using iTaq Universal SYBR Green (BioRad) with primers specific to each target, with *rplD* as the control housekeeping gene. Primers are listed in **Table S2.3**.

Quantification of GSH and GSSG

L. monocytogenes cultures were grown to an OD₆₀₀ of ~0.5 and harvested by centrifugation. Cell pellets were washed three times in phosphate-buffered saline, and lysed by sonication. Lysates were centrifuged to remove cell debris. GSH and GSSG were quantified using the luminescence-based GSH-Glo assay kit (Promega). GSH standards of 0.5 – 20 μM were quantified to determine the linear range of luminescence readings, and bacterial lysates were diluted appropriately such that luminescence values were within the linear range.

³H-GSH uptake assay

Cultures were grown in LSM to an OD₆₀₀ of ~0.5, harvested by centrifugation, washed twice in uptake buffer (phosphate-buffered saline + 5mM glucose), and resuspended in an equivalent volume of LSM lacking cysteine. Cultures were grown an additional 45 minutes, then pelleted and resuspended in 52μL uptake buffer. 2μL of resuspension was reserved for OD₆₀₀ measurement. 0.5μL 1μCi/μL ³H-GSH, and 0.5μL 10mM cold GSH was added to remaining 50μL

and incubated at room temperature for 30 minutes. Cells were added to a filter membrane fitted on a vacuum filter unit and washed with ~10mL phosphate-buffered saline. Filter membrane containing washed cells was transferred to a scintillation vial containing 3mL scintillation fluid, and counts per minute (CPM) were measured on a liquid scintillation counter and normalized to OD₆₀₀.

L2 plaque assay

Plaque formation upon *L. monocytogenes* infection of L2 cells was quantified as previously described^{129,148}. Briefly, 1.2x10⁶ cells were infected with *L. monocytogenes* at multiplicity of infection (MOI) of 0.25. At 1 hour post infection, cells were washed, and fresh cell medium in 0.7% agarose was supplemented with 10µg/mL gentamicin to kill extracellular *L. monocytogenes*. At 5 days post infection, cells were stained with 0.3% crystal violet to visualize plaques. Plaque sizes were analyzed using ImageJ software.

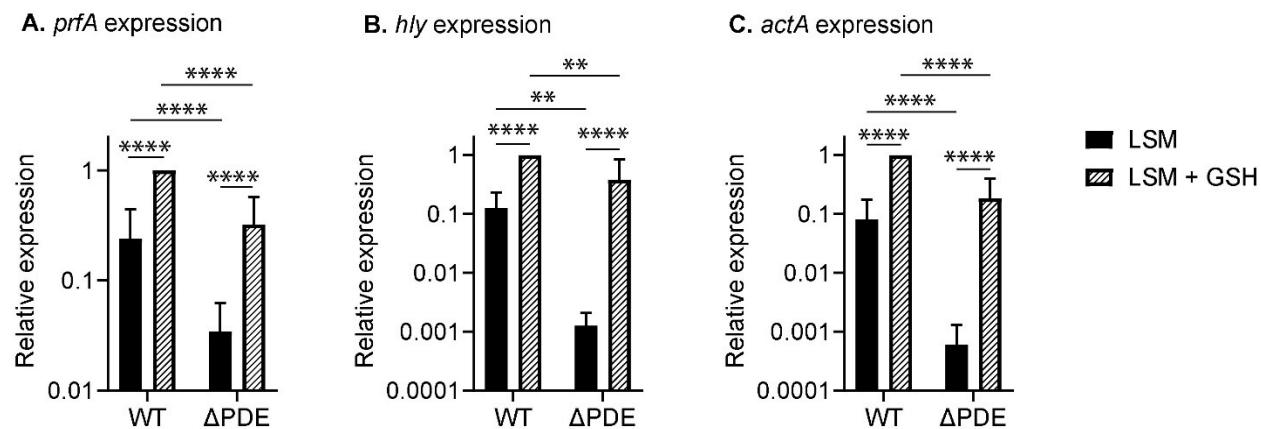
P_{actA}::RFP assay

A pPL2 plasmid expressing red fluorescent protein from the *actA* promoter was used to quantify transcriptional activity. Fluorescence assays were performed based on published methods¹⁰⁷. Briefly, *L. monocytogenes* strains carrying pPL2-P_{actA}::RFP were grown overnight at 37°C in LSM. Cultures were diluted 1:10 into fresh LSM or LSM + 10mM GSH and grown to OD₆₀₀ of 1.5-2. For TCEP exposure, cultures were grown to OD₆₀₀ of ~0.5 in LSM followed by addition of 2mM TCEP until OD₆₀₀ of 1.5-2 was reached. Cultures were harvested by centrifugation and resuspended in phosphate-buffered saline to achieve a 5X concentration. Fluorescence was quantified in black-bottom 96-well plates (Greiner Bio) for fluorescence measurement (excitation 540nm, emission 650nm) (BioTek Synergy H1 Microplate Reader). Fluorescence values were normalized to OD₆₀₀.

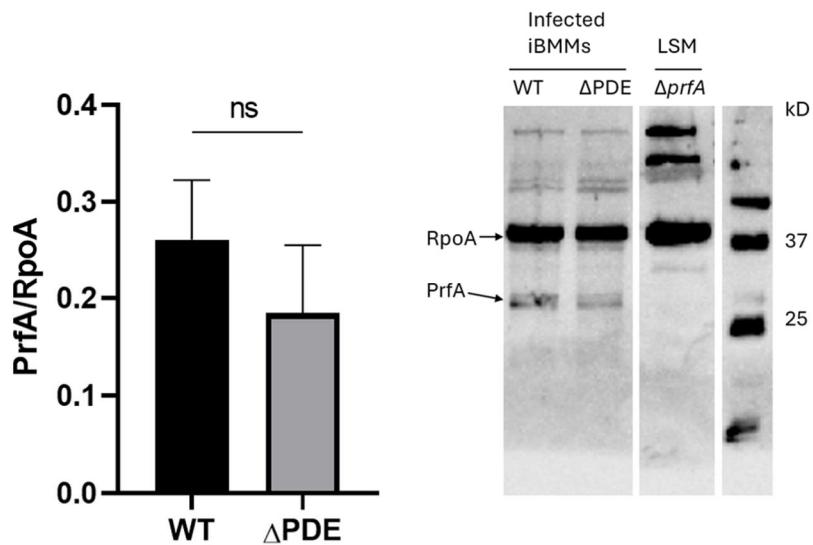
Western Blot for *L. monocytogenes* proteins in broth and during macrophage growth.

For broth cultures, *L. monocytogenes* overnight cultures were subcultured 1:10 into LSM or LSM + 10mM GSH, and grown to OD₆₀₀ of 1.5-2. Cultures were washed in one in 1x PBS and pellets were stored at -80C. For macrophage-infections, iBMMs were infected with *L. monocytogenes* strains at an MOI of 10. At 1hpi, iBMM media containing 10µg/mL gentamicin was added. At 8hpi, macrophages were lysed in 1x Tris-buffered saline + 0.5% Tween-20. Lysed cells were pelleted in a tabletop centrifuge at 4,700 RPM, washed 1x in PBS, and stored at -80C. Pellets were resuspended in 1x tris-buffered saline (TBS) + 0.05% BME and 1mM PMSF, and sonicated at 80% amplitude until lysates were clear. Saturated TCA was added to a final concentration of 6% and samples were precipitated on ice for one hour, pelleted in a microcentrifuge at 13,000 RPM, and washed 3x with 100% acetone. Pellets were fully dried in a SpeedVac, resuspended in 10% SDS + 0.05% BME, and boiled for 5 minutes. Redissolved pellet was mixed with SDS loading buffer and SDS-PAGE was run on a 12.5% acrylamide gel. Protein transfer onto nitrocellulose membrane was performed at 90V for 60 minutes. Membrane was incubated with primary antibodies overnight in 1x Tris-buffered saline + 0.1% Tween-20. αPrfA (ThermoFisher Scientific, #PA5-144446) was diluted 1:5000, and αRpoA (made in-house by Brianna Burton's research group at University of Wisconsin-Madison) was diluted 1:15,000. Secondary antibody (Anti-Rabbit IgG (H+L), HRP Conjugate, #W4011, Promega) was diluted 1:2500. Membrane was visualized using the Clarity Western ECL Substrate Kit (BioRad) and imaged with a BioRad system using the chemiluminescence setting. Images were quantified using ImageJ software to subtract background and measure band areas.

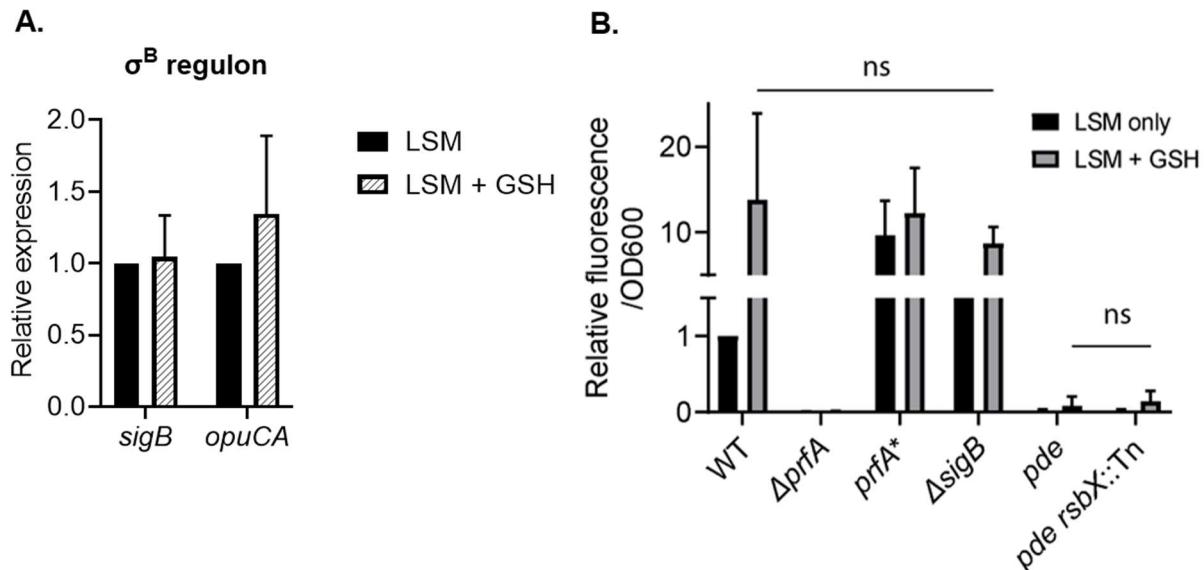
Mouse infection

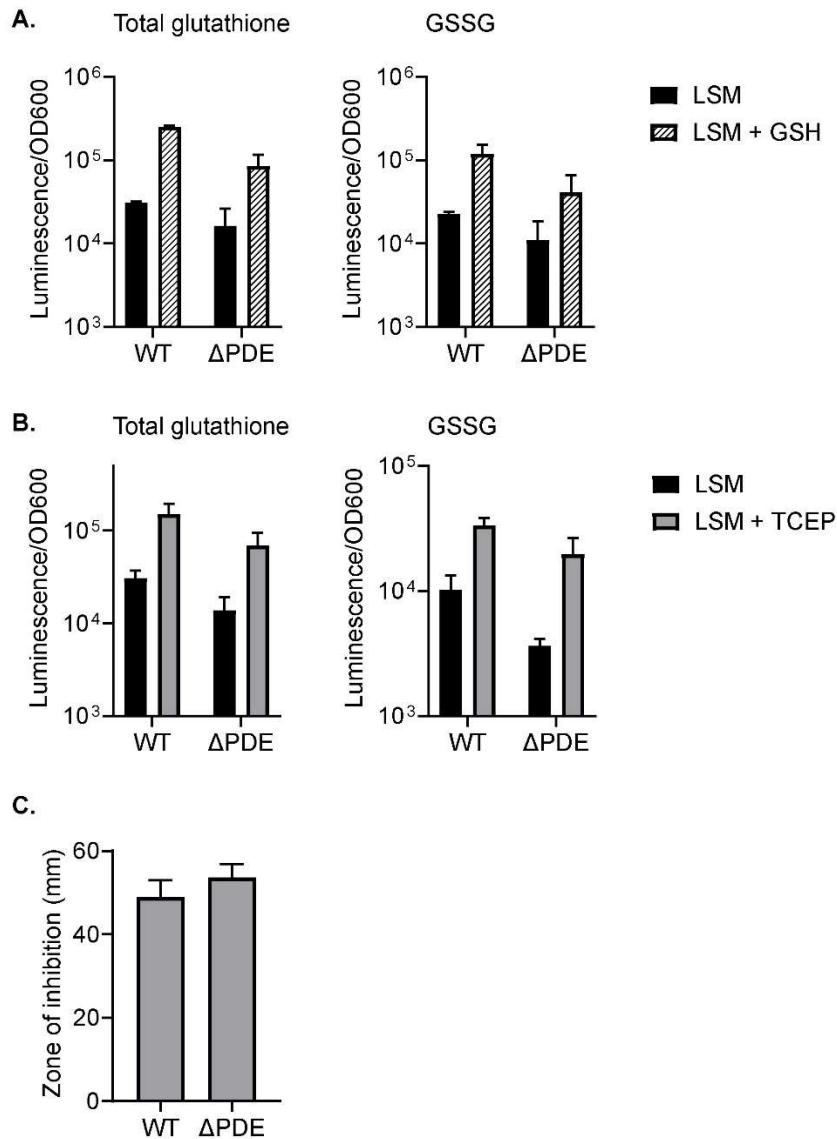

All techniques were reviewed and approved by the University of Wisconsin—Madison Institutional Animal Care and Use Committee under the protocol M005916-R01-A01. Five 6-week-old female C57BL/6 mice (Charles River NCI facility) per bacterial strain were infected via tail vein injection with 0.2 cc of PBS with 1x10⁵ of logarithmically growing bacteria. At 48hpi,

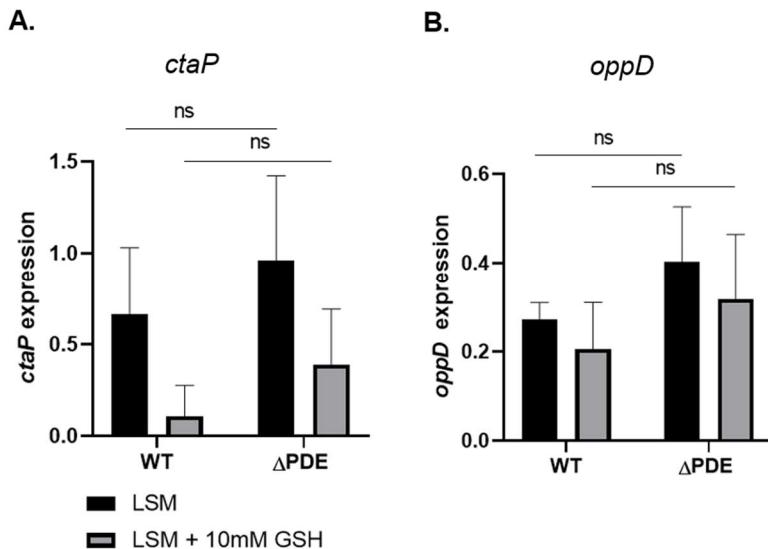
spleens and livers were harvested, and homogenized in organ lysis buffer. Organ homogenates were diluted, as necessary using PBS, spiral plated on LB agar, and CFU counts were obtained using the Q count. Bacterial CFUs per organ were calculated using known dilution factors.

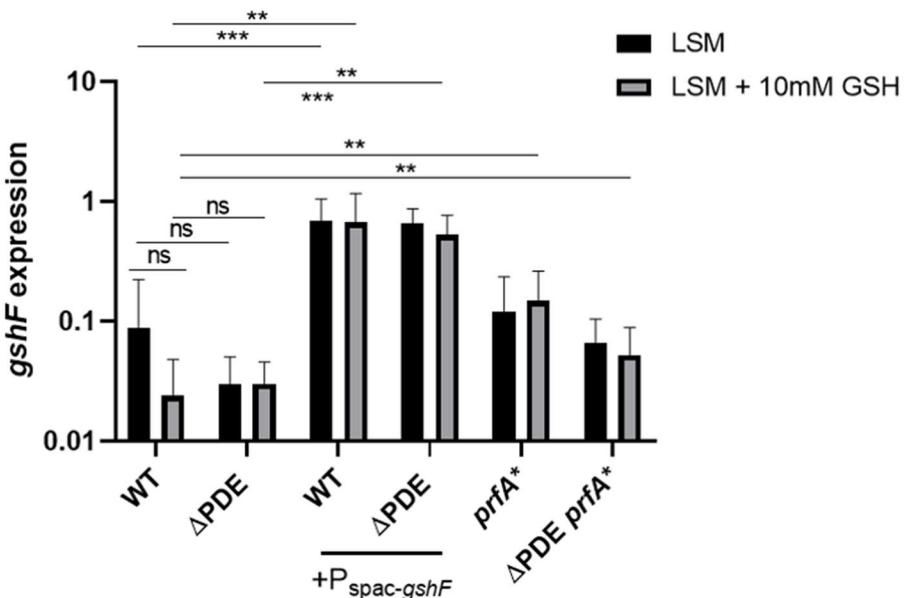

H₂O₂ Susceptibility

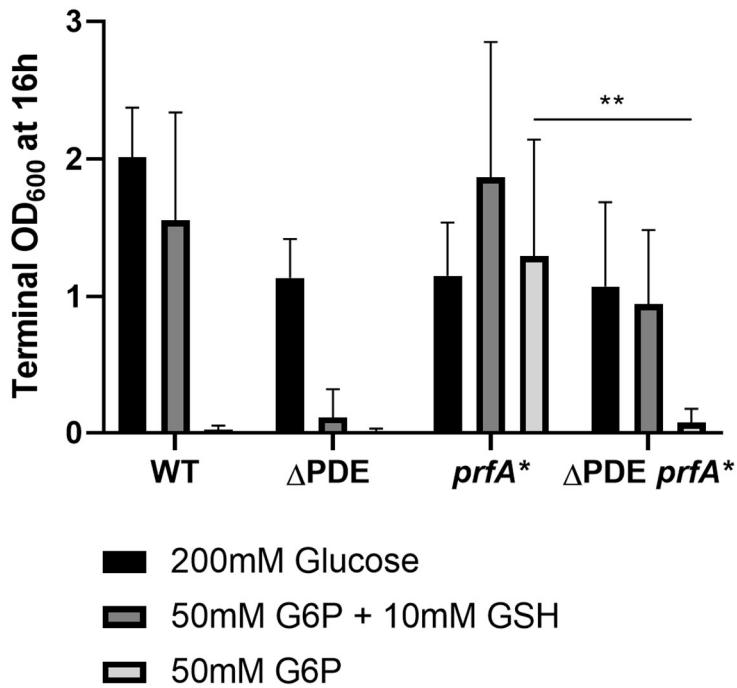
Strains were grown overnight in LSM, washed once in PBS, and normalized to an OD₆₀₀ of 0.01 in 1mL of LSM or LSM containing indicated concentrations of H₂O₂. Cultures were grown shaking at 37C for 16 hours, at which point OD₆₀₀ was measured.

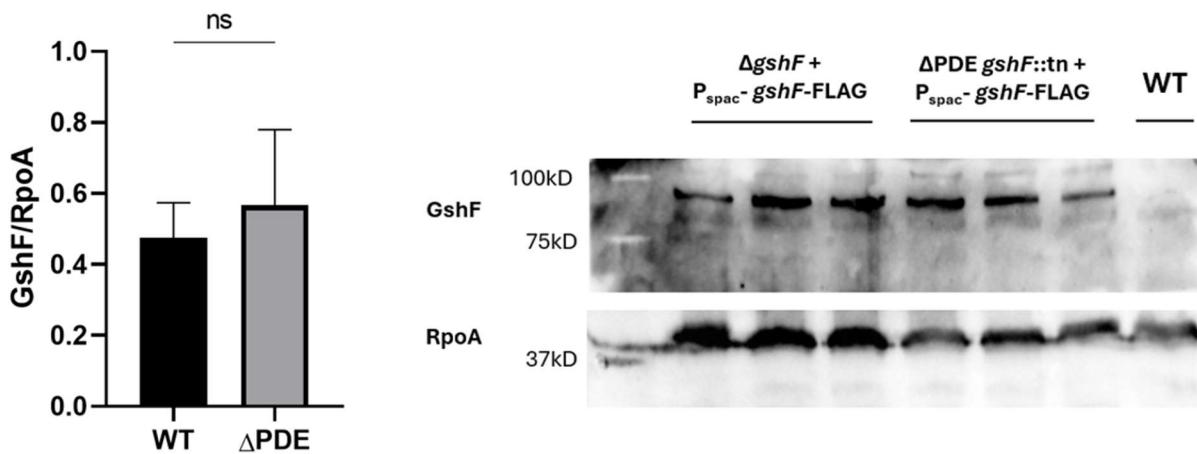

SUPPLEMENTARY INFORMATION


Figure S2.1. C-di-AMP accumulation inhibits gene expression within the PrfA core regulon. RT-qPCR for *prfA* (A), *hly* (B), and *actA* (C). Cultures were grown in LSM or LSM + 10mM GSH to mid-log phase. In each culture, gene expression levels was normalized to that of *rpD* as a housekeeping gene. Data are average of at least 5 independent experiments. Error bars show standard deviations. Statistical analyses were performed by two-way ANOVA with multiple comparisons for the indicated pairs: **, P < 0.01; ****, P < 0.0001


Figure S2.2. PrfA levels in an ex-vivo model of infection. iBMMs were infected with WT and Δ PDE at an MOI of 10, and harvested at 8hpi. iBMMs were lysed, and western blot was performed on lysates using rabbit antisera raised against PrfA and RpoA. Representative blot (left panel) is representative of 2 independent experiments. PrfA protein levels were quantified (right panel) by normalizing band intensity of PrfA/RpoA.


Figure S2.3. SigB activity does not influence PrfA-activation under the conditions used in this study. (A) *sigB* and *opuCA* gene expression measured by RT-qPCR. Cultures were grown in LSM or LSM + 10mM GSH to mid-log phase. In each culture, the expression level of target genes was normalized to that of *rplD* as a housekeeping gene. Error bars represent standard deviations. (B) P_{actA}::RFP transcriptional activity performed for strains grown in LSM or LSM + 10mM GSH.


Figure S2.4. C-di-AMP accumulation causes a depletion of the total glutathione pool but not methylglyoxal susceptibility. A. Total glutathione and oxidized glutathione (GSSG) in cultures grown in LSM or LSM + 10mM GSH. **B.** Total glutathione and oxidized glutathione (GSSG) in cultures that were left untreated or treated with 2mM TCEP for 2 hours. **C.** Disk diffusion assay to assess methylglyoxal susceptibility. 1×10^7 cfu of each *L. monocytogenes* strain was grown on LSM agar with a sterile disk containing 10 μ L of 40% methylglyoxal. Susceptibility was quantified as the diameter of zone of bacterial clearance. Error bars show standard deviations. Data in A are average of two independent experiments. Data in B and C are average of three independent experiments.


Figure S2.5 C-di-AMP accumulation does not inhibit expression of GSH transporters. RT-qPCR for *ctaP* (A) and *oppD* (B). Cultures were grown to mid-log phase in LSM or LSM + 10mM GSH. In each culture, gene expression level was normalized to *rplD* expression. Error bars represent standard deviations. Data represent averages of four biologically independent replicates.

A.**B.**

Figure S2.6. C-di-AMP accumulation does not inhibit *gshF* gene expression or deplete GshF substrates. A. Quantification of cysteine, glycine, and glutamate by LC-MS. Mid-log cultures grown in LSM were rapidly filtered and total metabolites were extracted by cold methanol. **B.** RT-qPCR for *gshF*. Cultures were grown to mid-log phase in LSM or LSM + 10mM GSH. In each culture, *gshF* expression level was normalized to *rplD* expression. Error bars represent standard deviations. Data in A are averages of three biologically independent replicates. Data in B are average of 9 independent biological replicates. Statistical analyses were performed by Student's t-test in A and two-way ANOVA in B.

Figure S2.7. ΔPDE is unable to utilize G6P as a carbon source. Strains were normalized to OD_{600} 0.01 and grown for 16h in LSM (standard formulation contains ~200mM glucose), and LSM with 50mM G6P in place of glucose, with and without 10mM GSH. Terminal OD_{600} of strains was measured and normalized to WT grown in standard LSM. Data are representative of 3 independent experiments.

Figure S2.8: C-di-AMP accumulation does not alter GshF stability during growth in LSM. WT $\Delta gshF$ + gshF-FLAG and $\Delta PDE gshF::tn$ + gshF-FLAG were grown to OD_{600} ~1-1.5 in LSM. Western blot was performed on lysates using mouse antisera raised against FLAG and RpoA.

Representative blot (left panel) is quantified (right panel) by normalizing band intensity of GshF-FLAG/RpoA.

Table S2.1. Differentially expressed genes in the Δ PDE strain with >4 fold-change in expression (FC) relative to WT.

10403S gene number	EGD-E gene number	Function	Log ₂ FC (ΔPDE/WT)	PValue
Upregulated genes:				
LMRG_01481	lmo2361	Rrf2 family protein	3.8	1.5E-08
LMRG_01482	lmo2360	membrane protein	3.5	4.4E-09
LMRG_01726	lmo2522, cell wall binding protein	hypothetical protein	2.7	5.8E-06
LMRG_02228	lmo2683	cellobiose-specific PTS system IIB component	2.6	9.0E-08
LMRG_02448	lmo0019	hypothetical protein	2.6	5.2E-07
LMRG_01989	lmo2708	cellobiose-specific PTS system IIC component	2.5	1.2E-06
LMRG_02229	lmo2684	cellobiose-specific PTS system IIC component	2.3	4.3E-07
LMRG_02230	lmo2685	cellobiose-specific PTS system IIA component	2.0	4.3E-06
LMRG_02751	lmo0186	hypothetical protein	2.0	6.0E-06
Downregulated genes:				
LMRG_02481	lmo0052	DHH subfamily 1 protein	-10.3	3.4E-11
LMRG_02626	lmo0204	actin-assembly inducing protein ActA	-9.0	9.7E-11
LMRG_02624	lmo0202	listeriolysin O	-8.7	1.6E-10
LMRG_02627	lmo0205	phospholipase C	-8.5	1.7E-10
LMRG_00918	lmo1466	hypothetical protein	-8.2	3.2E-09

LMRG_02623	lmo0201	1-phosphatidylinositol phosphodiesterase	-7.9	2.7E-11
LMRG_01542	lmo2290	gp13	-7.6	9.6E-08
LMRG_01541	lmo2291	major tail shaft protein	-7.1	1.6E-07
LMRG_01537	lmo2295	gp8	-7.0	1.4E-07
LMRG_01534	lmo2298	phage minor capsid protein	-6.8	3.8E-08
LMRG_01535	lmo2297	scaffolding protein	-6.7	4.2E-07
LMRG_01544	lmo2288	gp15	-6.7	5.8E-07
LMRG_01538	lmo2294	gp9	-6.6	3.8E-07
LMRG_01536	lmo2296	phage capsid protein	-6.4	2.0E-08
LMRG_01539	lmo2293	gp10	-6.3	6.3E-07
LMRG_01540	lmo2292	gp11	-6.3	2.7E-07
LMRG_01543	lmo2289	gp14	-6.3	1.3E-07
LMRG_01545	lmo2287	tail tape-measure protein	-6.0	1.6E-07
LMRG_01533	lmo2299	phage portal protein	-5.9	9.9E-09
LMRG_02628	lmo0206	hypothetical protein	-5.9	1.3E-09
LMRG_02261	lmo0838	MFS transporter	-5.8	7.5E-10
LMRG_01549	lmo2283	long tail fibre	-5.2	3.0E-07
LMRG_02629	lmo0207	hypothetical protein	-5.2	9.4E-10
LMRG_01550	lmo2282	short tail fibre	-5.1	1.0E-06
LMRG_02625	lmo0203	zinc metalloproteinase	-5.1	3.0E-10
LMRG_01551	lmo2281	gp22	-4.9	2.1E-05
LMRG_01546	lmo2286	tail or base plate protein gp17	-4.8	7.5E-07
LMRG_01547	lmo2285	tail or base plate protein gp18	-4.8	2.6E-07
LMRG_01548	lmo2284	tail or base plate protein gp19	-4.7	4.7E-07
LMRG_01531	lmo2303	terminase small subunit	-4.5	8.2E-07
LMRG_01527	lmo2321	gp32	-4.4	7.4E-06
LMRG_01529	lmo2303	gp66	-4.3	2.1E-07
LMRG_01528	lmo2304	gp65	-4.3	3.6E-05
LMRG_01521	lmo2323	gp43	-4.3	2.2E-06

LMRG_01526	lmo2321	gp49	-4.2	4.9E-06
LMRG_01532	lmo2300	phage terminase large subunit	-4.1	1.2E-07
LMRG_01515	lmo2329	hypothetical protein	-4.0	6.7E-05
LMRG_01525	lmo2321	recombination protein RecT	-4.0	4.0E-06
LMRG_02921	lmo2324	hypothetical protein	-4.0	9.3E-07
LMRG_01524	lmo2321	gp47	-4.0	4.8E-07
LMRG_02920	lmo2324	anti-repressor protein	-3.8	5.5E-06
LMRG_01516	lmo2329	hypothetical protein	-3.8	6.8E-05
LMRG_01553	lmo2279	phage holin	-3.7	2.3E-06
LMRG_01522	lmo2322	gp44	-3.4	7.1E-06
LMRG_02825	NA	internalin C	-3.3	1.8E-08
LMRG_02622	0	listeriolysin regulatory protein	-2.8	1.1E-08
LMRG_01559	NA	hypothetical protein	-2.7	1.1E-04
LMRG_02984	NA	hypothetical protein	-2.6	1.4E-05
LMRG_02915	NA	hypothetical protein	-2.6	1.9E-05
LMRG_02227	lmo2682	kdpA K+-transporting ATPase A subunit	-2.6	1.3E-07
LMRG_00127	0	internalin B	-2.6	2.5E-08
LMRG_01676	NA	hypothetical protein	-2.6	1.9E-05
LMRG_01558	NA	phage protein	-2.4	1.4E-05
LMRG_02367	NA	antigen A	-2.4	4.1E-07
LMRG_02369	NA	hypothetical protein	-2.4	4.1E-06
LMRG_01554	lmo2278	endolysin L-alanyl-D-glutamate peptidase	-2.4	5.7E-05
LMRG_01552	NA	gp23	-2.3	1.5E-04
LMRG_02377	NA	lmo0128 hypothetical protein	-2.2	5.4E-05
LMRG_01518	NA	gp41	-2.2	1.4E-04
LMRG_02370	NA	lmo0121 hypothetical protein	-2.2	6.5E-08
LMRG_02375	NA	lmo0126 hypothetical protein	-2.2	4.1E-07
LMRG_01523	NA	gp45	-2.1	8.6E-05

LMRG_00126	0	internalin A	-2.1	1.7E-07
LMRG_02376	NA	hypothetical protein	-2.1	6.3E-06
LMRG_02371	NA	hypothetical protein	-2.1	1.9E-06
LMRG_02366	NA	prophage LambdaLm01, antigen B	-2.0	4.1E-05
LMRG_02373	NA	hypothetical protein	-2.0	1.6E-05
LMRG_01165	NA	cold shock protein	-2.0	4.6E-05

Table S2.2. Strains used in this study

Strain number	Genotype	Source
<i>L. monocytogenes</i> (Derivatives of strain 10403S)		
TNHL22	$\Delta pdeA \Delta pgpH$ (Δ PDE)	Huynh <i>et al.</i> 2015
TNHL425	PrfA G145S (PrfA*)	Gift from JD Sauer
TNHL876	Δ PDE PrfA*	This study
TNHL287	$\Delta gshF$	This study
TNHL713	Δ PDE <i>gshF</i> ::Tn	This study
TNHL829	WT + pPL2-Pspac-hly 5'UTR- <i>gshF</i>	This study
TNHL830	Δ PDE + pPL2-Pspac-hly 5'UTR- <i>gshF</i>	This study
TNHL831	$\Delta gshF$ + pPL2-Pspac-hly 5'UTR- <i>gshF</i>	This study
TNHL832	Δ PDE <i>gshF</i> ::Tn + pPL2-Pspac-hly 5'UTR- <i>gshF</i>	This study
TNHL804	WT + pPL2-P _{actA} :RFP	This study
TNHL815	(Δ PDE) + pPL2-P _{actA} :RFP	This study
TNHL807	PrfA*+ pPL2-P _{actA} :RFP	This study
TNHL889	Δ PDE PrfA* pPL2-P _{actA} :RFP	This study
TNHL1020	Δ PDE PrfA* (reconstructed) + pPL2-P _{actA} :RFP	This study
TNHL1025	Δ PDE PrfA* (reconstructed) pPL2-P _{actA} :RFP	This study
TNHL1054	WT <i>gshF</i> ::Tn + pPL2-Pspac-hly 5'UTR- <i>gshF</i> -FLAG	This study
TNHL1055	Δ PDE <i>gshF</i> ::Tn + pPL2-Pspac-hly 5'UTR- <i>gshF</i> -FLAG	This study
TNHL875	$\Delta sigB$ + pPL2-P _{actA} :RFP	This study

TNHL859	ΔPDE rsbX::tn + pPL2-P _{actA} :RFP	This study
TNHL291	ΔprfA	This study
<i>E. coli</i>		
TNH895	pPL2 pPL2-P _{actA} :RFP in XL1B	Gift from JD Sauer
TNH920	pPL2-Pspac-hly 5'UTR-gshF in XL1B	This study
TNH1029	pPL2-Pspac-hly 5'UTR-gshF-FLAG in XL1B	This study

1. Huynh, T. N. et al. An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. *Proc Natl Acad Sci USA* **112**, E747–E756 (2015)

Table S2.3. Oligonucleotides used in this study

Primer	Sequence 5'-3'	Target
qRT-PCR		
TNH483	CGTTCAGAAGTACGTGGTG	Forward <i>rpID</i>
TNH484	AAGTCAAACCTTCAAGTACAAC	Reverse <i>rpID</i>
TNH538	CACGAGTATTAGCGAGAACGG	Forward <i>prfA</i>
TNH539	GATAACGTATGCGGTAGCCTGCTC	Reverse <i>prfA</i>
TNH792	ATTAACTCACGCAAATTCTGGC	Forward <i>plcA</i>
TNH793	GTTTCACACTCGGACCATTG	Reverse <i>plcA</i>
TNH784	TGCTCCTACTCCATCGGAAC	Forward <i>actA</i>
TNH785	CAAGAACGATTGGCGTCTCT	Reverse <i>actA</i>
TNH782	TCAACCAGATGTTCTCCCTGTA	Forward <i>hly</i>
TNH783	CACTGTAAGCCATTCTCGTCATC	Reverse <i>hly</i>
TNH827	CGACAAGATGAGCGACTTCA	Forward <i>gshF</i>
TNH828	GGGTGTAGCAGACGTTCTTT	Reverse <i>gshF</i>
TNH219	TGAAGCTGATTGGATGGAAG	Forward <i>sigB</i>
TNH220	TTCTCGCTCATCTAACAGGG	Reverse <i>sigB</i>
TNH221	TCGGAATTGTTACTCGTGCC	Forward <i>opuC</i>
TNH222	GCTTCATTCTGGTTCTGTCG	Reverse <i>opuC</i>

CES40	CGCATTGCTGCACGTAATAA	Forward <i>oppD</i>
CES41	TCAGGATGAAGCAACCATGTAG	Reverse <i>oppD</i>
CES42	GCTGTATACGCACCGCTATT	Forward <i>ctaP</i>
CES43	ACCGTCGTGCCAAGTTAAA	Reverse <i>ctaP</i>

Cloning

TNH838	gaccatggcATAAAACTTGATATGACCATGCTTG	Forward <i>gshF</i> -Ncol
TNH839	gactcgagGTCAAATAAGAAATCTAAATCTTATCAC	Reverse <i>gshF</i> -Xhol
CES29	gactgcagCCCTGAGGTGAAAACatgATAAAAC	Forward <i>gshF</i> -PstI
CES39	gaggatccctaGTCAAATAAGAAATCTAAATCTTATC	Reverse <i>gshF</i> -FLAG-BamHI

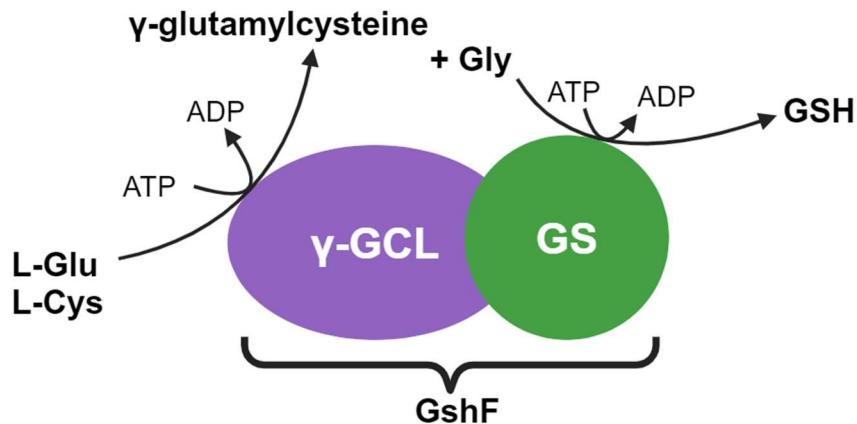
Chapter 3. Utilization of glutathione as a sulfur source

Experiments and editing of this chapter were performed with the assistance of Tu Anh
Huynh and Mallory Spencer

ABSTRACT

Cysteine is an essential sulfur-containing amino acid, and is necessary for protein synthesis, redox buffering in the cytosol, and is also a source of inorganic sulfur for synthesis of iron-sulfur clusters¹²⁸. GSH, a tripeptide made up of cysteine, glycine, and glutamate, and is one of the most abundant antioxidants in both eukaryotes and prokaryotes¹⁵⁰. It also serves as an important source of cysteine when broken down into its constituent amino acids¹⁵¹. *L. monocytogenes* is a cysteine auxotroph, and thus relies on exogenous sources of cysteine to survive. It was recently published that *L. monocytogenes* is able to utilize GSH as a cysteine source, indicating that it possesses the machinery to degrade exogenously supplied GSH and use the resulting cysteine¹²⁸. However, the mechanisms by which *L. monocytogenes* breaks down GSH are not known. In Chapter 2, I found that in addition to being defective for GSH uptake, the ΔPDE strain is depleted for endogenously produced GSH compared to WT. This suggests that in ΔPDE, GshF activity is impaired, or GSH degradation is upregulated. In this chapter, I found ΔPDE to be impaired for growth when GSH is the sole source of cysteine, indicating that while GSH breakdown may be upregulated in ΔPDE. Following this discovery, a transcriptomic approach in addition to a negative selection screen were employed to better characterize utilization of GSH as a cysteine source in *L. monocytogenes*. While the majority of genes induced by GSH, regardless of cysteine availability, were involved in virulence, *lmo1132* was upregulated when GSH was the sole source of cysteine under hypoxic growth conditions. *lmo1132* shares homology with a low-molecular weight thiol transporter in *Enterococcaceae* sp, and thus represents a newly identified low-affinity GSH transporter in *L. monocytogenes*.

Additionally, *treA*, which is important for conversion of trehalose-6-phosphate to glucose-6 phosphate, was upregulated by GSH utilization as a cysteine source. This gene has not been implicated in *L. monocytogenes* pathogenesis, and may represent a novel component of carbon acquisition during infection. Additionally, two genes of unknown function were downregulated by GSH utilization as a cysteine source, so identifying the function of these genes in relation to GSH metabolism represents an exciting subject for future studies.


INTRODUCTION

Low-molecular weight thiols (LMW) are molecules which contain reducing sulphhydryl groups, and enable detoxification of free radicals such as reactive oxygen species (ROS) and reactive nitrogen species (RNS)¹⁵². The nonribosomal tripeptide glutathione (GSH) is one such LMW composed of glutamate, cysteine and glycine¹⁵⁰. GSH is the most important antioxidant produced by mammalian cells, and detoxifies reactive species such as superoxide and hydrogen peroxide. In fact, in both eukaryotes and prokaryotes, GSH is the most abundant thiol. In most mammalian cells, GSH levels range from 1-2mM, however in hepatocytes, which export GSH, levels can reach 10mM¹⁵³. Given its abundance in mammalian tissues, many bacterial pathogens will encounter GSH during infection. In fact, GSH can serve as both a cysteine source and virulence-activating signal for many such species¹⁵⁴. However, numerous bacteria also possess the ability to synthesize GSH on their own. In fact, de-novo GSH synthesis is vital for many bacteria to maintain redox homeostasis and also for full virulence potential of some pathogens¹⁵⁴.

Bacterial GSH synthesis

GSH is synthesized in a two-step reaction coupled with ATP hydrolysis, wherein glutamate and cysteine are covalently linked by glutamyl-cysteine ligase to form γ -glutamylcysteine by γ -ECL domain-containing enzymes. This is followed by binding of γ -

glutamylcysteine to glycine by glutathione synthase (GS) containing enzymes to form GSH¹⁵⁵. In most organisms, the two steps of GSH synthesis are carried out by distinct enzymes, and this was long thought to be the primary mechanism of GSH synthesis by living organisms¹⁵⁶. Interestingly, a number of bacteria across *Firmicutes*, *Desulfobacterales*, *Bacteroidetes*, and *Pasteurellaceae* phyla have been shown to synthesize GSH using a single, bifunctional enzyme containing both γ -ECL and GS domains (**Fig. 3.1**). These bifunctional enzymes are almost universally named GshF^{127,157–159}. Importantly, it has been discovered that GshF is important for the pathogenesis of *L. monocytogenes*, as well as the resistance of a number of bacteria to oxidative stress¹²⁷. Given its importance, the environmental signals which regulate GSH synthesis have been studied in a number of bacterial species. GSH synthesis in *E. coli* is carried out by the distinct enzymes GshA and GshB, containing γ -ECL and GS domains respectively, and is induced during oxidative stress by activation of the transcriptional regulator OxyR¹⁶⁰. Furthermore, GSH synthesis is required by *E. coli* during stationary phase, but not in exponential phase¹⁶⁰. In *Salmonella* species, GSH production is upregulated during the stringent response, possibly to counteract oxidative stress encountered during nutrient starvation¹⁶¹. In *L. monocytogenes*, GshF dependent GSH synthesis is upregulated by exposure to reducing agents. For instance, the reducing agent TCEP upregulates GSH synthesis, and this requires presence of the enzyme GshF¹⁰⁷. Exposure to GSH, which in itself is reducing, also stimulates GSH synthesis in *L. monocytogenes*, though the mechanisms by which a reducing environment lead to increased GshF activity are not known¹⁰⁷.

Figure 3.1. Synthesis of glutathione by GshF. GshF is a bifunctional enzyme which first synthesizes γ -glutamylcysteine from glutamate and cysteine via a γ -GCL domain, and then ligates glycine with γ -glutamylcysteine to form GSH via the GS domain. Both reactions are ATP-dependent.

GS as a nutrient source

GSH is composed of a tripeptide, and serves as a source of amino acids for organisms capable of GSH breakdown. GSH degrading enzymes are well-characterized in a number of bacterial species. Perhaps the best characterized GSH degrading enzyme is gamma-glutamyltransferase (GGT), which converts GSH to glutamate and cysteinylglycine¹⁶². GGTs are ubiquitous across living organisms, being observed across all three domains of life. GGT was first noted as an enzyme whose dysfunction was the hallmark of metabolic disease in mammals¹⁶³. However, more recent characterization of microbial metabolism has led to the discovery of GGT activity in bacteria. A number of pathogenic and nonpathogenic bacteria have been experimentally shown to encode GGT enzymes, though the localization and biological function of bacterial GGTs varies across species. Nonpathogenic *Bacillus* species secrete GGT where it can degrade extracellular GSH¹⁶⁴. Conversely, GGT is membrane or periplasm associated in *Bacillus anthracis*, *Neisseria meningitidis*, *Helicobacter pylori*, *E. coli* and *Proteus mirabilis* and *Campylobacter jejuni*¹⁶⁵. In fact, in *H. pylori*, GGT is an important virulence factor which promotes production of ammonia and reactive oxygen species that induce host cell

apoptosis¹⁶⁶. For cysteine auxotrophs such as *Francisella* species and *L. monocytogenes*, GSH is an important source of cysteine. In a forward genetic screen performed on a *Francisella tularensis* subspecies, GGT was found to be essential for intracellular replication¹⁶⁷, and *L. monocytogenes* was recently demonstrated to utilize GSH as an essential cysteine source¹²⁸. However, despite the ability to acquire cysteine from GSH, no GGT proteins or GSH degradation machinery have yet been identified in *L. monocytogenes*¹²⁸.

GSH as an antioxidant

GSH is a natural antioxidant, and can serve as an electron donor to neutralize reactive oxygen species and oxidizing agents such as H₂O₂. During this process, GSH is oxidized to form the disulfide molecule GSSG. In fact, GSH:GSSG ratios serve as an important indicator of the redox state of cells¹⁶⁸. In addition to being a reducing agent on its own, numerous organisms encode glutathione-s-transferases (GSTs) which catalyze nucleophilic attack of toxic molecules by GSH¹⁶⁹. In bacteria, GSTs serve many functions including protection from chemical and environmental stressors and antimicrobials¹⁷⁰. GSTs are very diverse and can be characterized based on their substrates and pathway function¹⁷⁰. In fact, numerous bacteria encode multiple GSTs with unknown functions, though some are predicted to be important for remediation of environmental pollutants¹⁶⁹. While GSTs have been well-studied in gram-negative bacteria, their abundance and biological importance is less-well understood in gram-positive species¹⁶⁹. However, it has been shown that GST homologs exist in a number of gram-positive bacteria. Interestingly, Fosfomycin resistance proteins bear homology to GSTs in *Bacillus subtilis*, once again illustrating the diverse functionality of GSTs¹⁶⁹. Interestingly, *L. monocytogenes* has not been found to encode any GST proteins to date, despite the importance of GSH for *L. monocytogenes* virulence.

In addition to GSTs, glutathione peroxidases (GPx) are another class of GSH-utilizing enzymes. GPx proteins catalyze the conversion of GSH and peroxides to GSSG and a cognate

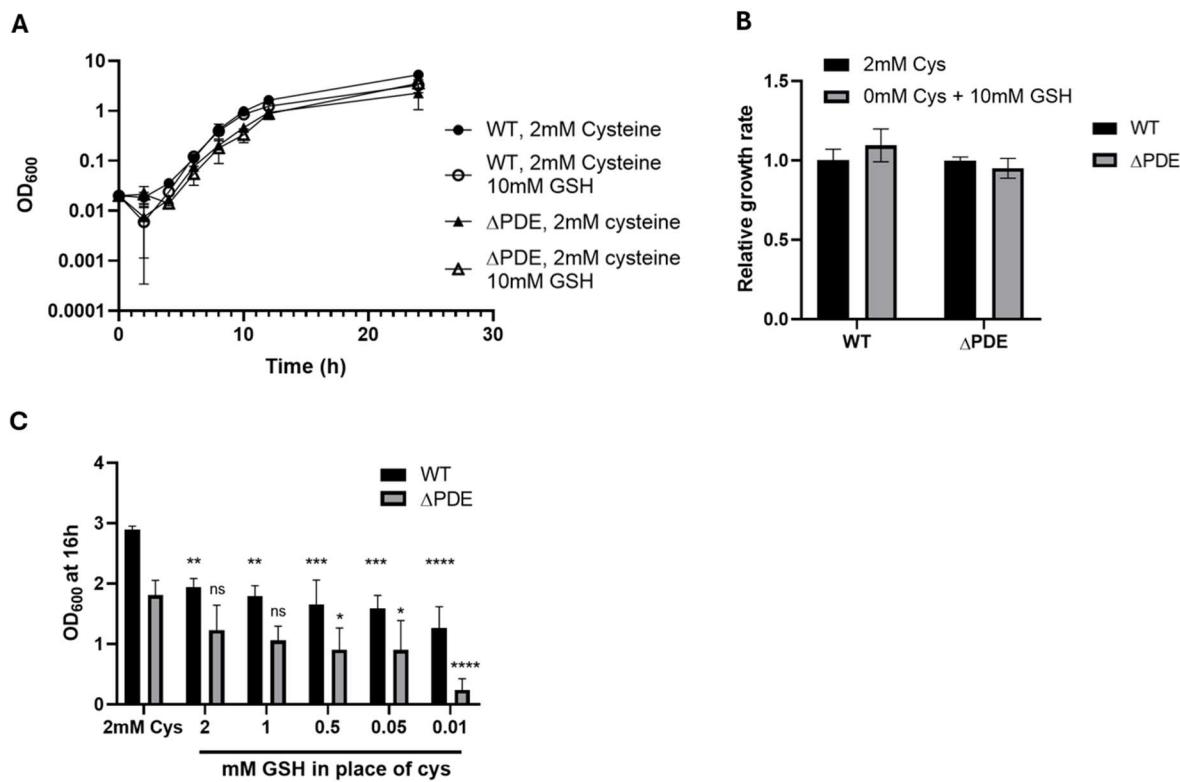
alcohol, respectively¹⁷¹. Similarly to GSTs, these proteins are widely distributed across the kingdom of life and are important for resistance to oxidative stressors. GPxs are encoded by a number of bacteria, including gram-positive pathogens such as *S. pyogenes* and *L. monocytogenes*^{159,172}. Interestingly, while *S. pyogenes* mutants deleted for the GPx-encoding gene *gpoA* are attenuated for virulence, a *L. monocytogenes* GPx mutant was more resistant to oxidative stress and exhibited enhanced virulence in mice¹⁵⁹. Thus, while GSH, along with GST and GPx enzymes are important for resistance to oxidative stress, the function of GSH in different species and environments remains complex.

Pathogen interactions with host-derived GSH

GSH is an important virulence signal which mediates upregulation of virulence-genes in *Burkholderia pseudomallei*, *L. monocytogenes*, and *Pseudomonas aeruginosa*, though the mechanisms by which this occurs vary significantly between bacterial species¹⁵⁴. In the cytosolic pathogen *B. pseudomallei*, the type-6 secretion system TYSS5 is upregulated only upon entry into the host cytosol. Expression of TYSS5 genes by *B. pseudomallei* can be induced by addition of GSH to defined medium, and is reduced when host-cells are deficient for GSH¹⁷³.

L. monocytogenes, which has a well-defined intracellular lifecycle, relies heavily on GSH for activation of virulence genes by the transcriptional regulator PrfA¹⁰⁵. The helix-turn-helix domain of PrfA is stabilized when bound to GSH, priming PrfA for binding to the promoter regions of its core regulon, which includes important virulence genes such as *actA* and *hly*¹⁰⁶.

Pseudomonas aeruginosa strains defective for GSH synthesis have been shown to be attenuated for virulence in multiple models of infection. Furthermore, GSH is important for reducing the five cysteine residues on the *P. aeruginosa* virulence regulatory protein Vfr, which, in its reduced form, regulates expression of T3SS¹⁷⁴. In addition, *B. pseudomallei* induces transcription of Type-4 secretion systems following sensing of GSH by the VirAG two-component system¹⁷³.

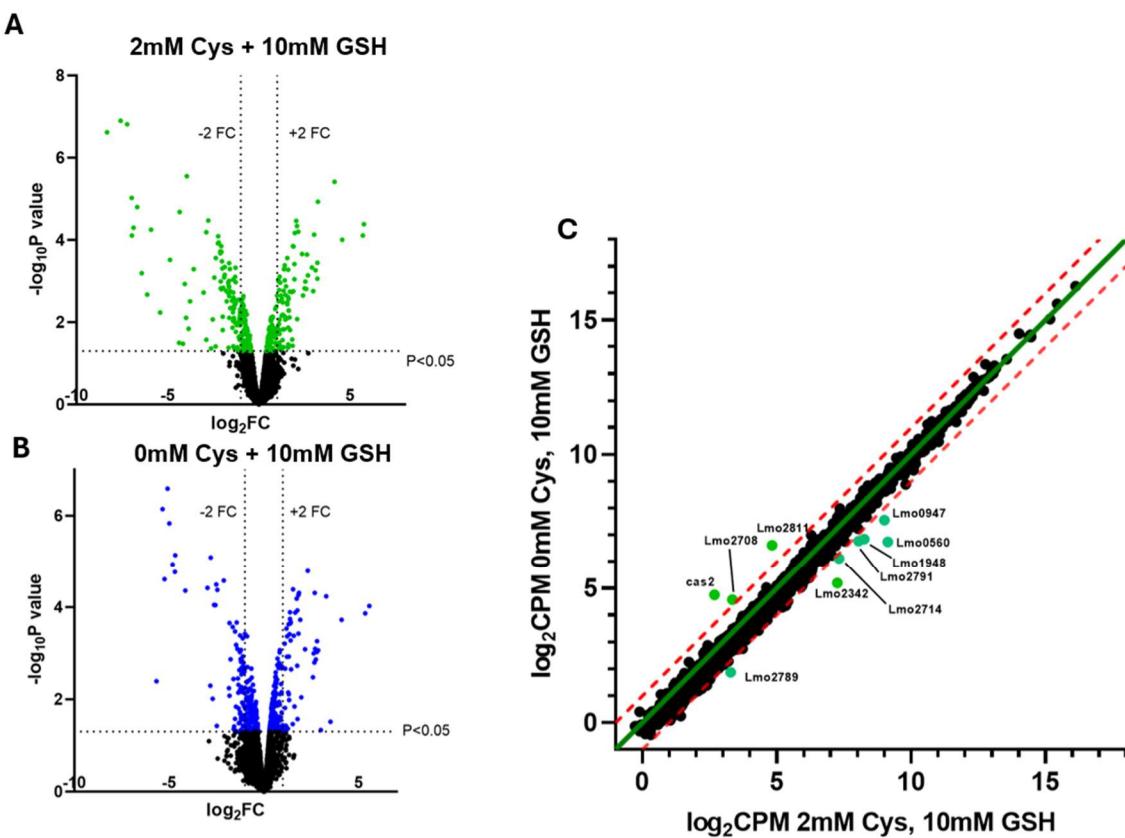

As discussed in Chapter 2, GSH is an important virulence signal for *L. monocytogenes*. GSH synthesis and uptake are important for *L. monocytogenes* virulence, and in Chapter 2 it was demonstrated that both processes are impaired in the ΔPDE strain, contributing, in part, to diminished virulence gene expression and attenuated virulence. Results from Chapter 2 also suggested that GSH degradation may be upregulated in the ΔPDE mutant. In this chapter, I set out to further explore GSH breakdown in the ΔPDE mutant, and found that it was modestly impaired for growth when using GSH as a sole source of cysteine. Because the processes by which GSH is catabolized in *L. monocytogenes* remain unknown, the remainder of this chapter aims to better define the mechanisms by which *L. monocytogenes* utilizes GSH as a source of the sulfur-containing amino acid cysteine. The results from this chapter will inform future studies aimed at exploring the effects of c-di-AMP on pathways important for utilization of GSH as a cysteine source.

RESULTS

C-di-AMP accumulation impairs utilization of GSH as a cysteine source when GSH concentrations are limiting.

To test the effect of c-di-AMP accumulation on GSH utilization, I measured the growth rate of WT and ΔPDE in LSM, which contains 2mM cysteine, and modified LSM lacking cysteine and supplemented with 10mM GSH. 10mM GSH was initially chosen as a physiologically relevant condition as this is similar to the concentration of GSH which exists in mammalian cells¹⁵⁰. I found that WT and ΔPDE showed a negligible difference in growth rate when utilizing 10mM GSH as a cysteine source (Fig. 3.2A-B). However, I wondered if 10mM GSH was too high a concentration to identify small differences in growth between WT and ΔPDE, especially given the likely existence of low-affinity GSH transporters¹²⁸. Therefore, I went on to test utilization of more limiting concentrations of GSH. WT and ΔPDE were grown for 16h in modified LSM lacking cysteine, with GSH levels ranging down to 0.05mM, and terminal OD₆₀₀

values were measured. During growth in 0.05 mM GSH, Δ PDE was more impaired than WT relative to standard, 2mM cysteine containing LSM (Fig. 3.2C). This is consistent with diminished GSH uptake in Δ PDE, but does not exclude the possibility that additional components involved in GSH utilization are impaired in Δ PDE. However, the mechanisms by which GSH is catabolized in *L. monocytogenes* have not yet been defined. Therefore, to lay groundwork for future studies on the effect of c-di-AMP accumulation on GSH catabolism, the remainder of this chapter will be focused on identifying mechanisms by which *L. monocytogenes* utilizes GSH as a cysteine source.

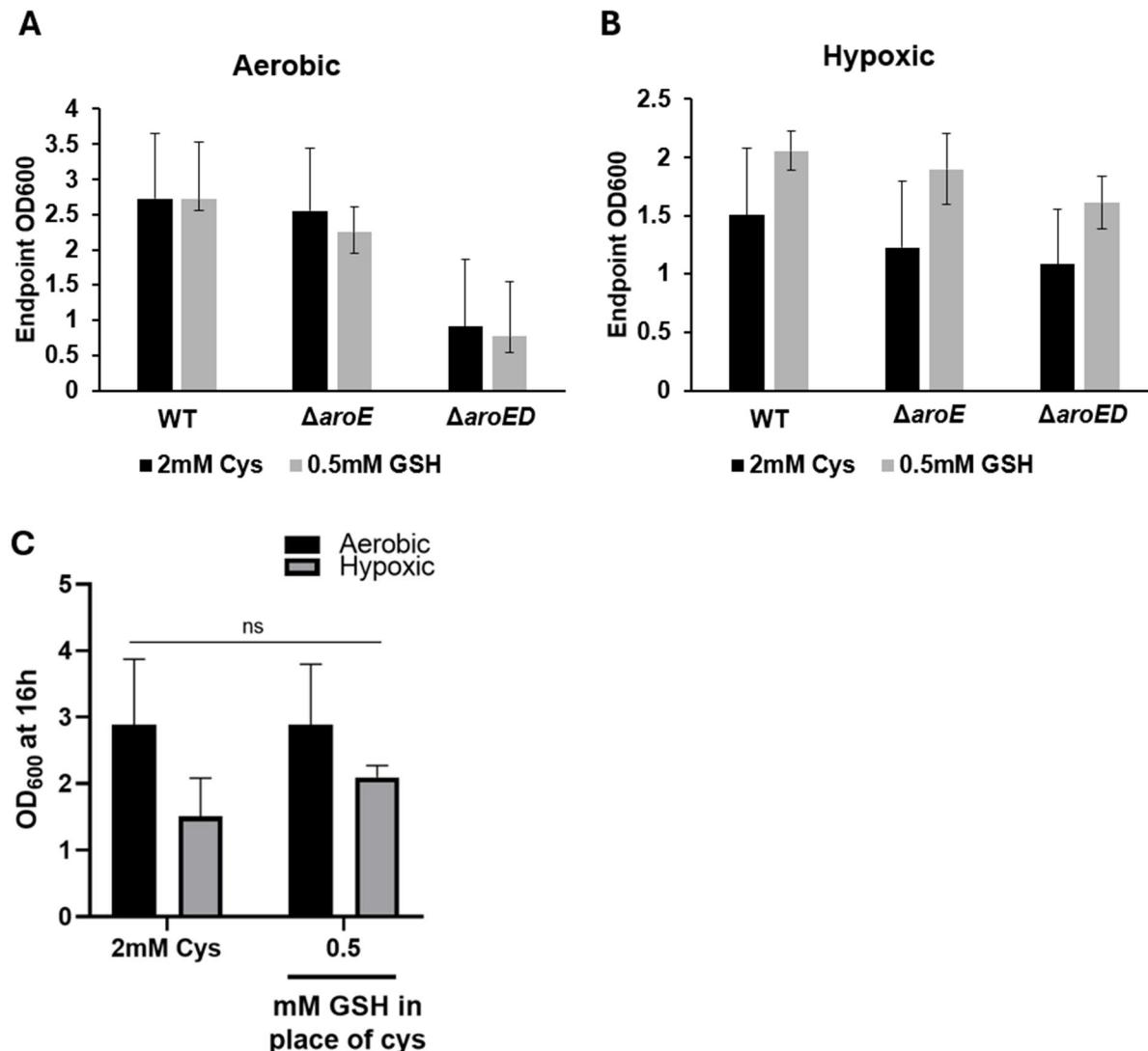

Figure 3.2. C-di-AMP accumulation impairs utilization of GSH as a nutrient source when GSH concentrations are limiting. **A.** Growth rate of WT and Δ PDE grown in LSM with 2mM cysteine, or modified LSM lacking cysteine, supplemented with 10mM GSH was relative growth rate in standard LSM for each strain. **B.** Relative growth rate calculated from growth curves shown in A. **C-D.** Terminal OD₆₀₀ of cultures grown with in standard 2mM cysteine-containing LSM, or in LSM with indicated amount of GSH supplemented in place of cysteine. Data are

representative of 3-independent experiments. Error bars represent standard deviations. Statistical analyses were performed by two-way ANOVA with multiple comparisons between 2mM cysteine condition for each strain: ns, non-significant; *, P < 0.05; **, P < 0.01; ****, P < 0.0001.

Transcriptional changes induced during growth using GSH as the sole source of cysteine

I hypothesized that when forced to utilize GSH as a cysteine source, genes important for GSH degradation would be upregulated. To test this, biological duplicates of WT *L. monocytogenes* were grown to mid-exponential phase in LSM containing 2mM cysteine, LSM + 2mM cysteine + 10mM GSH, and LSM lacking cysteine + 10mM GSH. Total RNA was extracted and cDNA libraries were sequenced at the depth of 29-38 million reads, with 1433-1976x mapped read coverage of the *L. monocytogenes* genome. Genes which exhibited ≥ 2 -fold change (P value < 0.05) relative to the control were considered differentially regulated. Compared to the LSM + 2mM Cysteine condition, genes in the core PrfA regulon were strongly upregulated when both GSH and cysteine were present, and also when GSH was the only available cysteine source (**Fig. 3.3A-B, Table S3.1**). Importantly, these results validated that the experimental conditions used elicited an expected biological response to GSH. In addition to the PrfA regulon, a number of genes were significantly upregulated in both conditions. These included glutamate dehydrogenase (*lmo0560*) and cysteine exporter CydD (*lmo2716*). A number of significantly downregulated genes were also shared between both conditions tested. Interestingly, compared to standard LSM, the cysteine transporter *ctaP* (*lmo0135*), exhibited a \log_2 FC of -8.33 and -2.98 in the 2mM cysteine + 10mM GSH, and 0mM cysteine + 10mM GSH conditions respectively (**Table S3.1**). This was in agreement with qPCR data presented in Chapter 2 (**Fig. S2.5**), which confirmed downregulation of *ctaP* in response to GSH.

In addition to commonly differentially regulated genes, several genes exhibited strongly altered abundance in just one of the conditions tested. When GSH was the only cysteine source, tRNA modification GTPase TrmE (*lmo2811*), a Cas2 protein, and the PTS transporter subunit (*lmo2708*) were more strongly expressed than when both GSH and cysteine were present (Fig. 3.3C). Conversely, 16S pseudouridylate synthase (*lmo2342*), and response regulator ResD (*lmo1948*), as well as several proteins of unknown function were more strongly expressed when both GSH and cysteine were supplemented (Fig. 3.3C). As a complementary approach to these results, we next set out to identify genes essential for utilization of GSH as a cysteine source.


Figure 3.3. Differentially expressed genes induced by 10mM GSH with and without 2mM cysteine. A-B. $\log_{10}P$ value vs \log_2FC relative to standard LSM containing 2mM cysteine in

cultures grown with 10mM GSH (A) or 10mM GSH in place of cysteine (B). Dashed lines indicate >2-fold change in expression relative to control, and $p < 0.05$. **C.** Log_2CPM of normalized read counts for 10mM GSH, 0mM cysteine vs. 10mM GSH + 2mM cysteine cultures. Green dashed line indicates 1:1 ratio of Log_2CPM , and red dashed lines indicate > 2-fold change. Lmo gene-symbols denote transcripts with >2-fold change.

Effects of hypoxic growth on GSH utilization

To explore potential genes which are required for growth when GSH is the sole cysteine source, a negative selection screen for genes required for utilization of GSH as a cysteine source was performed Mallory Spencer on a WT *L. monocytogenes* *Himar1* transposon library¹⁷⁵ generously gifted to us by JD Sauer. Libraries were grown in standard LSM, and modified LSM in which 10mM GSH was the only source of cysteine. Transposon libraries were generated in the WT background using a *Himar-1 mariner* based transposon system as described previously¹⁷⁵. Compared to growth in standard LSM, which contains 2mM cysteine, growth in LSM containing 10mM GSH as the sole cysteine source selected against insertions in *aroABCDE* (Table S3.2). Genes in the *aro* pathway are important for biosynthesis of menaquinone, which serves as an integral electron transporter during aerobic respiration, and is required for *L. monocytogenes* virulence¹⁷⁶. Given these results, we hypothesized that genes in the *aro* pathway are required for utilization of GSH as a cysteine source. To test this, and to validate the TnSeq results, we tested the ability of ΔaroE and ΔaroED mutants to utilize GSH as a cysteine source during standard aerobic growth. We also attempted to test *aroB::tn* and *aroC::tn* mutants, pathway but their growth was too poor even in standard cysteine containing LSM to proceed. Neither ΔaroE nor ΔaroED appeared to have impaired growth when GSH was the sole cysteine source (Fig. 3.4A-B). ΔaroED was impaired for growth in standard LSM, as well as LSM containing GSH in place of cysteine, so its growth defect is likely independent of GSH utilization. Given that lack of *aro* genes may impair aerobic respiration and mask phenotypes related to GSH utilization, I repeated the experiment under hypoxic conditions (5%

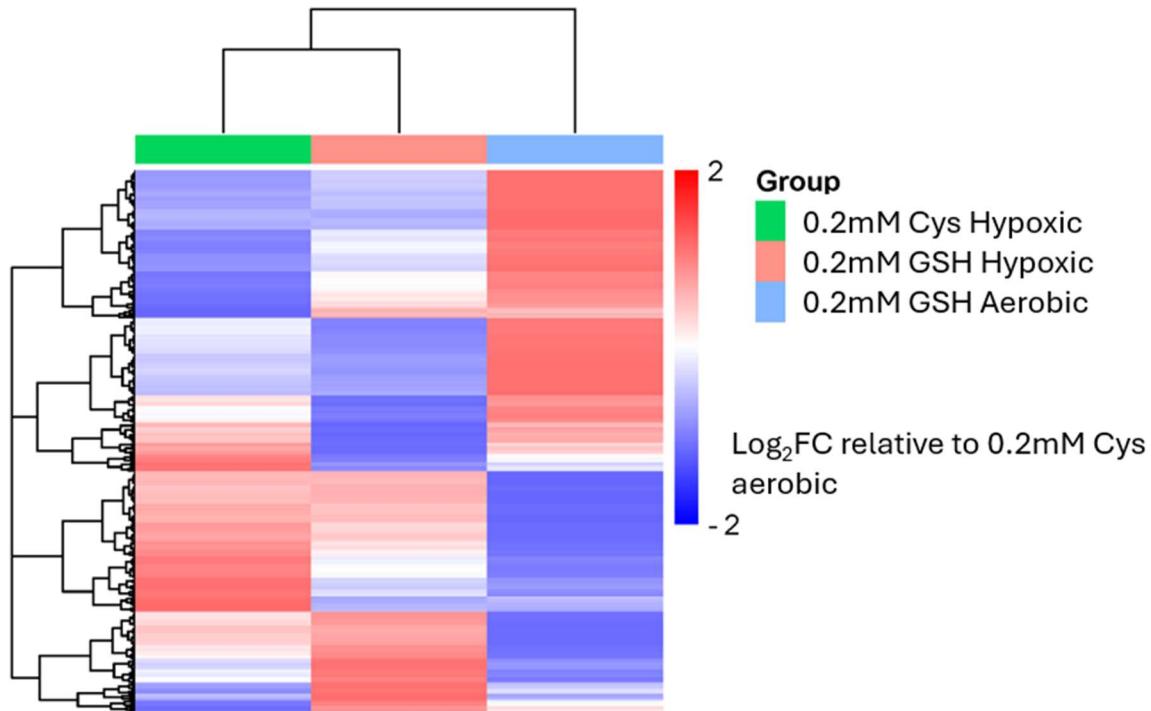

CO₂, 2% O₂). While $\Delta aroE$, and $\Delta aroED$ did not appear to be impaired for GSH utilization, I found that during hypoxic growth, all strains reached a higher terminal OD₆₀₀ relative to cysteine-containing medium when GSH was the only source of cysteine (**Fig. 3.4A-B**). This indicates that *L. monocytogenes* is better able to utilize GSH as a cysteine source under hypoxic growth conditions. We went on repeat growth of just WT in LSM containing 2mM cysteine, and LSM in which 0.5mM GSH was the sole source of cysteine. While average growth of WT in the GSH-only media, assessed by terminal OD₆₀₀ after 16-hours of growth, was higher than in standard LSM under hypoxic conditions, this difference was not statistically significant (**Fig 3.4C**). However, given the modest, albeit insignificant benefit hypoxic growth appeared to have for GSH utilization, we next hypothesized hypoxic growth may more robustly alter the expression of genes important for utilization of GSH as a cysteine source.

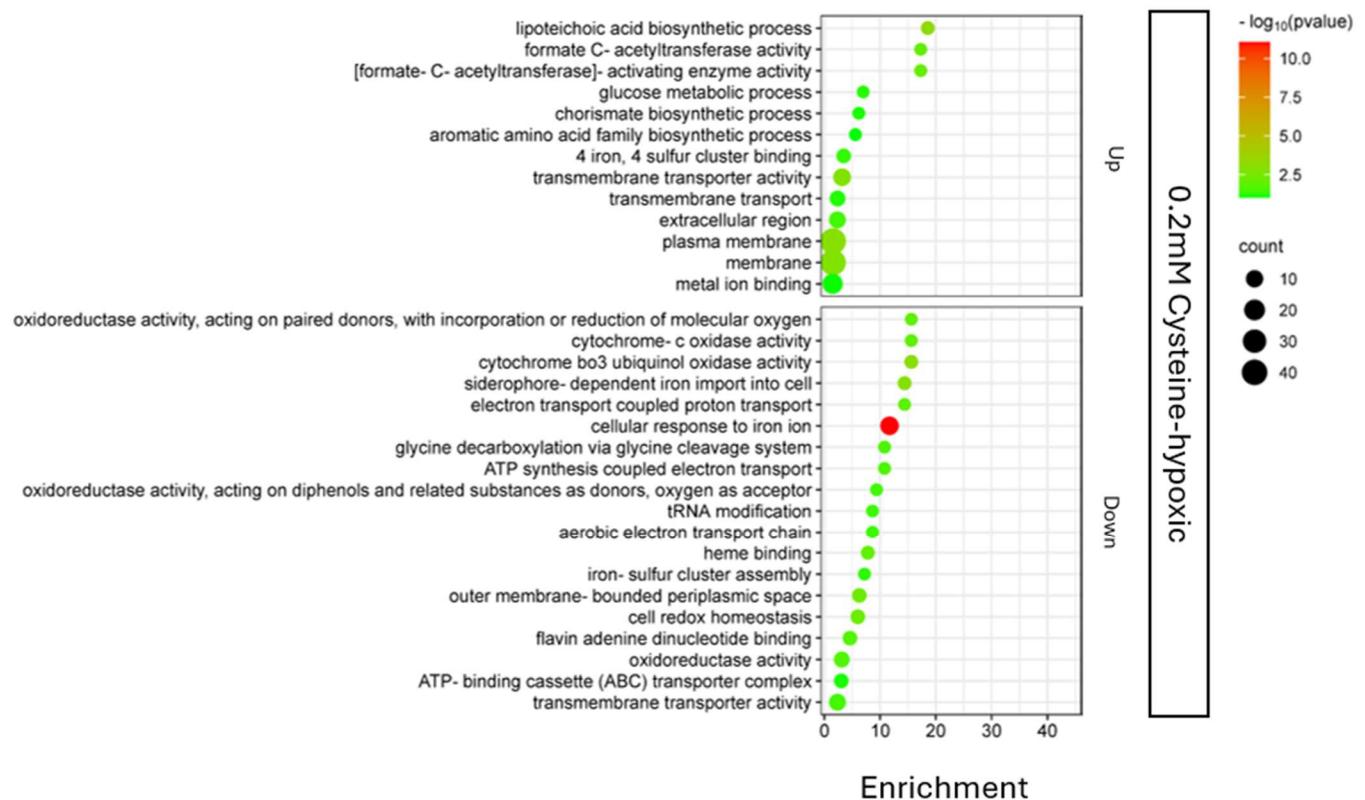
Figure 3.4. Utilization of GSH as a cysteine source during hypoxic growth. Endpoint OD₆₀₀ of indicated strains grown under standard aerobic conditions (A), or in a hypoxic chamber (B) (5% CO₂, 2% O₂), in standard LSM containing 2mM cysteine, or modified LSM lacking cysteine and supplemented with indicated concentrations of GSH. C. Endpoint OD₆₀₀ of WT grown in standard LSM containing 2mM cysteine or modified LSM lacking cysteine and supplemented with indicated concentration of GSH. A-B are representative of two independent experiments. C is representative of 3 independent experiments. Error bars represent standard deviations. Statistical analyses in C were performed by two-way ANOVA with multiple comparisons between 2mM cysteine condition and modified LSM for either aerobic or hypoxic growth conditions: ns, non-significant; *, P < 0.05; **, P < 0.01; ****, P < 0.0001.

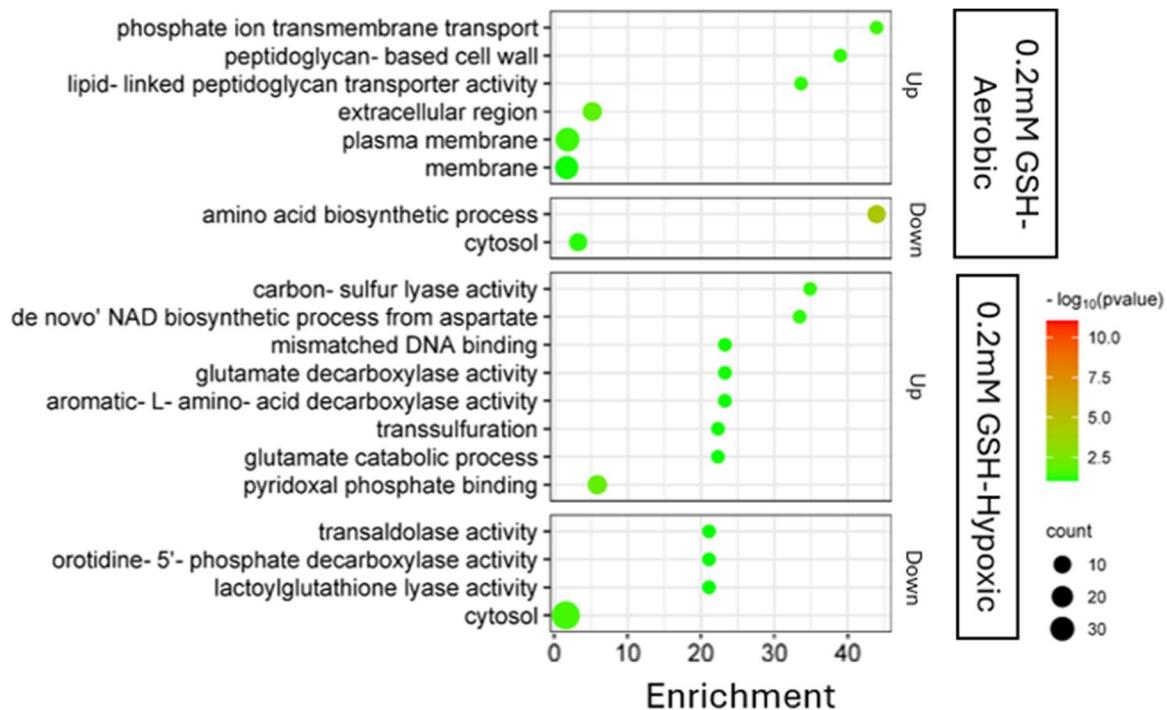
Differentially expressed genes when GSH is utilized as a cysteine source under hypoxic vs. aerobic conditions

Given that utilization of GSH as a cysteine source appeared improved during hypoxic growth, we wanted to assess what genes were differentially expressed aerobically vs. anaerobically when limiting cysteine was replaced with limiting GSH under both aerobic and hypoxic conditions. We hypothesized that genes necessary for breakdown and utilization of GSH for cysteine would be upregulated when GSH was the only cysteine source present, and provided in more limiting concentrations than the 10mM used previously. It was further hypothesized that under hypoxic growth conditions, genes important for GSH utilization would be more strongly upregulated than during aerobic growth. To test these hypotheses, RNAseq was performed on biological duplicates of WT *L. monocytogenes* grown to mid-exponential phase either aerobically, or in a hypoxic chamber, in LSM containing 0.2mM cysteine, or 0.2mM GSH in place of cysteine. cDNA libraries were sequenced to a depth of 15-25 million reads, with 225-518x coverage of the *L. monocytogenes* genome. Differential gene expression was calculated relative to aerobic growth with 0.2mM cysteine, as this is the closest to standard, aerobic growth conditions in LSM (**Table S3.3, Fig. 3.5**). Genes which exhibited ≥ 2 -fold change ($\log_2\text{FC} \geq 1$) (P value < 0.05) relative to the control were considered differentially expressed genes (DEGs). Gene expression relative to aerobic growth in 0.2mM cysteine appeared more similar between the two anaerobic conditions tested, however, each sample did exhibit a distinct transcriptional profile (**Fig. 3.5**).

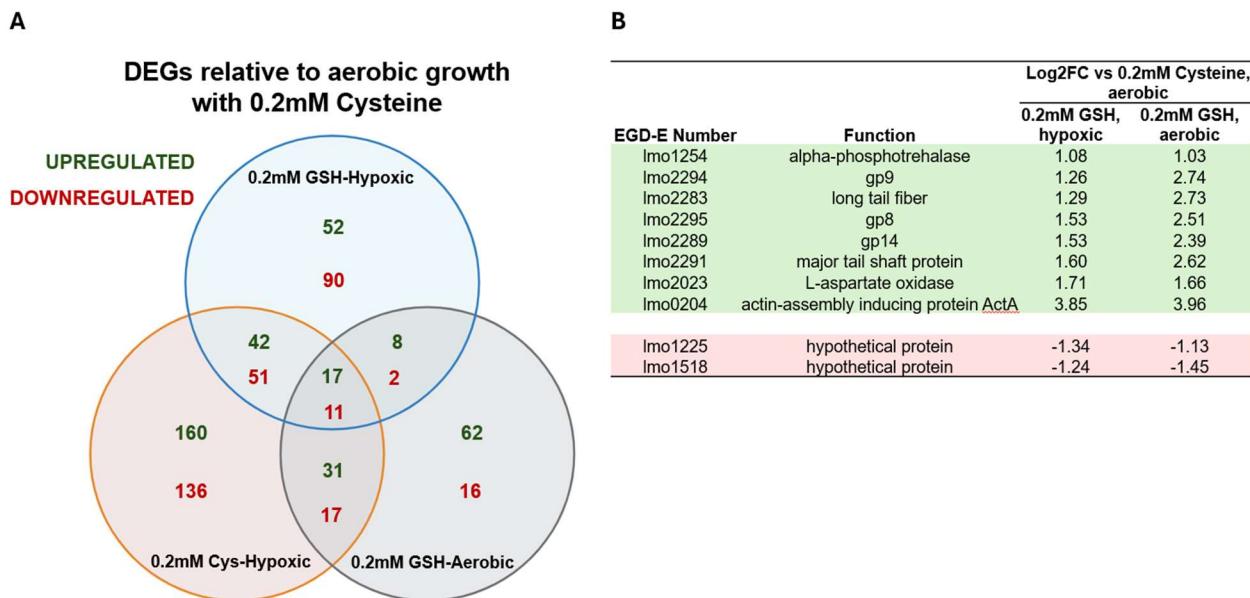
Figure 3.5. Transcriptional profile of *L. monocytogenes* grown using different cysteine sources in both aerobic and hypoxic conditions. Heatmap of significantly differentially expressed genes ($>2\text{Log}_2\text{FC}$, $P<0.05$) in at least one sample, relative to aerobic growth in 0.2mM cysteine. Color scale is Log_2FC relative to aerobic growth in 0.2mM cysteine. Left Y axis represents significant DEGs ordered by hierarchical clustering.

As expected, the PrfA regulon was strongly upregulated during aerobic growth in the presence of 0.2mM GSH compared to growth in 0.2mM cysteine (Table S3.3). Interestingly, this was also the case under hypoxic conditions, when either GSH or Cys was supplied (Table S3.3). Furthermore a number of genes in the *L. monocytogenes* A118 prophage locus were also strongly upregulated during GSH utilization. (Table S3.3). When medium was supplemented with cysteine under hypoxic growth, the *isdEC* genes involved in heme uptake were strongly downregulated compared to aerobic growth when either GSH or cysteine was supplemented (Table S3.3). Furthermore, *lmo1132* was upregulated during hypoxic GSH growth and downregulated during hypoxic cysteine growth. This gene is predicted to encode an ABC


transporter, whose protein sequence exhibits homology with CydC in Enterococcaceae bacteria. The CydDC system has been characterized in as an exporter of low molecular weight thiols such as cysteine and glutathione¹⁷⁷, so this may represent an undiscovered, low affinity GSH transporter in *L. monocytogenes*. Interestingly, expression of Lmo1132 was previously found to be important for Caco-2 cell adhesion¹⁷⁸. It is important to note that *lmo2715-lmo2716* are annotated as CydDC as well, though this ATP transport system is encoded in the same operon as the cytochrome *bd* type oxidase CydAB, and is important for correct insertion of CydAB into the cell-membrane¹⁷⁹.


GO enrichment analysis of differentially expressed genes revealed that genes involved with glutamate carboxylase activity and glutamate metabolism were upregulated upon growth in 0.2mM GSH, but only under hypoxic growth (**Fig. 3.6B**). Of note, iron-complex transport components were among the most significantly downregulated genes during hypoxic growth with 0.2mM cysteine (**Table S3.3, Fig. 3.5B**). Of the iron-transport related genes that were significantly downregulated under hypoxic growth with cysteine, only *lmo1959* and *lmo1849* were also significantly upregulated during both aerobic and hypoxic growth in 0.2mM GSH. Strikingly, *lmo2184* and *lmo2186*, which encode *isdEC* heme uptake system, were significantly downregulated during both hypoxic growth in 0.2mM cysteine, aerobic growth with 10mM GSH both with and without 2mM cysteine (**Table S3.3, Fig. 3.5B**). This suggests that both GSH and cysteine downregulates expression of iron uptake components, regardless of oxygen availability.

Finally, to better characterize gene expression across the conditions tested, shared and unique significantly differentially expressed genes across conditions relative to aerobic growth in 0.2mM cysteine were assessed. Surprisingly, only eight upregulated genes and two downregulated genes were shared between aerobic and hypoxic growth when 0.2mM GSH was the sole source of cysteine (**Fig. 3.7A**). Of the shared upregulated genes, one encoded *actA*,


which is in the core PrfA regulon and five belonged to the *L. monocytogenes* A118 prophage locus, which is associated with virulence (Fig. 3.7B)^{104,180}. The remaining two shared upregulated genes, *lmo2023* and *lmo1254* encode L-aspartate oxidase (*nadB*), and alpha-phosphotrehalase (*treA*), respectively. *TreA* was previously found to be important for conversion of trehalose-6-phosphate to glucose-6 phosphate in *L. monocytogenes*¹⁸¹. Glucose-6-phosphate is an important carbon source for *L. monocytogenes* during host-cell infection¹⁰³, so *treA* upregulation in response to GSH may represent a new *L. monocytogenes* virulence strategy. *NadB* was shown in a prior study to be required for intracellular replication of *L. monocytogenes*,¹⁸². Aspartate is taken up by *L. monocytogenes* cells during macrophage infection¹⁸³, so upregulation of *NadB* is likely related to upregulation of virulence genes in response to GSH.

The shared downregulated genes during both aerobic and hypoxic growth in 0.2mM GSH were *lmo1225*, and *lmo1518*, both of which do not have known functions. However, *lmo1518* was found to be induced by cell-wall stress in *L. monocytogenes*¹⁸⁴. Our finding that *lmo1518* is downregulated in response to GSH may suggest a link between GSH metabolism and cell-wall homeostasis.

A**B**

Figure 3.6. GO term enrichment analysis of differentially expressed genes in 0.2mM cysteine under hypoxic growth. (A), 0.2mM GSH under hypoxic growth (B), or 0.2mM GSH under aerobic growth, relative to 0.2mM cysteine under aerobic growth. GO enrichment analyses were performed using DAVID and visualized using SRplot.

Figure 3.7. A. Shared and unique significantly differentially expressed genes across conditions relative to aerobic growth in 0.2mM cysteine. **B.** Table of genes uniquely up and downregulated

genes shared among aerobic and hypoxic growth conditions when 0.2mM GSH is the sole source of cysteine.

DISCUSSION

GSH is an abundant antioxidant in the cells of most living organisms. It is important for neutralizing oxidative stressors, and is the cofactor for a number of GST and GPx enzymes with distinctive functions. In the cysteine auxotroph *L. monocytogenes*, GSH is an important virulence signal, and can also be utilized as a source of cysteine. In Chapter 2, it was demonstrated that during toxic accumulation of the second messenger, c-di-AMP, intracellular GSH is depleted in *L. monocytogenes* both due to reduced GSH synthesis and uptake. Upon testing WT and the Δ PDE strain for utilization of GSH as a cysteine source, I found that c-di-AMP accumulation modestly impairs growth when limiting GSH is supplemented in place of cysteine. This could indicate several things. One, it is possible that impaired GSH uptake by Δ PDE impairs use of GSH as a cysteine source. Additionally, c-di-AMP may inhibit yet undetermined mechanisms important for utilizing cysteine resulting from GSH degradation. However, the mechanisms by which GSH is catabolized have not been identified, making it challenging to discern the mechanisms by which c-di-AMP accumulation hinders GSH synthesis, uptake, and catabolism. In this chapter, I better characterized utilization of GSH as a cysteine source by *L. monocytogenes*, using a transcriptomic approach to identify differentially regulated genes during GSH utilization, as well as a negative selection screen to identify genes important for GSH utilization.

As an initial attempt to identify genes important for GSH degradation, RNAseq was performed on cDNA generated from WT *L. monocytogenes* grown in standard containing 2mM cysteine, 2mM cysteine + 10mM GSH, 10mM GSH in the place of cysteine. Differential gene

expression was calculated relative to the 2mM cysteine growth condition. As was expected, 10mM GSH in both the presence and absence of cysteine induced core PrfA regulon genes.

The negative selection screen results identified a number of underrepresented and overrepresented genes containing transposon insertions after outgrowth in LSM lacking cysteine, and supplemented with 10mM GSH. Of note, insertions in the *aroACED* were underrepresented in bacteria recovered from LSM with 0mM cysteine + 10mM GSH compared to standard LSM. This indicates that the electron transport chain, or perhaps, aerobic respiration in general is important for GSH catabolism. However, it should also be noted that the cultures used for the experiment were allowed to grow well into stationary phase. Thus, it is possible that over the course of exponential growth, mutants lacking components of a functional respiratory chain were naturally selected against. Also, given that *aroB::tn* and *aroC::tn* did not grow in standard LSM, and Δ *aroED* grew poorly, it is possible that underrepresentation of these mutants was due to a general growth defect rather than a GSH-specific phenotype. Nonetheless, the results from this experiment led us to question whether metabolic status in some way influences GSH metabolism.

Results from the negative selection screen were validated by growing *L. monocytogenes* *aro* mutants aerobically and hypoxically, when GSH was the only source of cysteine. Remarkably, hypoxic utilization of GSH in WT appeared somewhat improved under hypoxic growth conditions. This led to the hypothesis that hypoxic growth may more strongly upregulate genes important for GSH utilization. To test this, RNAseq was performed for WT grown aerobically or hypoxically, with either 0.2mM GSH or 0.2mM cysteine as the sole cysteine source. Perhaps the most striking result from this experiment was the downregulation of heme and iron uptake genes in response to hypoxic growth with 0.2mM cysteine, and to a lesser extent, hypoxic growth with 0.2mM GSH. Why this phenomenon may occur is still the subject of speculation. However, GSH and cysteine are known to be important for iron homeostasis,

forming complexes with iron, as well as aiding in the biosynthesis of iron cofactors¹⁸⁵. Therefore, the results from this chapter potentially reveal a complex interplay between GSH, iron, and cysteine homeostasis. However, the mechanisms underlying this relationship are likely the subject of future research.

It was not surprising that both PrfA-regulated genes and A118 prophage genes were upregulated by 0.2mM GSH during aerobic growth, as previous studies have found prophage excision to be related to *L. monocytogenes* virulence¹⁸⁰. Interestingly, a number virulence genes were upregulated during hypoxic growth with both 0.2mM GSH and 0.2mM cysteine. However, this is not entirely unexpected as hypoxic growth was previously shown to upregulate *L. monocytogenes* virulence genes¹⁸⁶. We also identified two genes, *treA* and *nadB*, which are likely important for acquisition of nutrients during host-cell infection. GSH is abundant in the host cell cytosol, so it is tempting to speculate that genes important for utilization of GSH as a sulfur source are also important for virulence, and may share a similar expression profile with virulence-related genes outside of the core PrfA regulon. However, more studies are needed to determine if utilization of GSH for cysteine is required for full virulence of *L. monocytogenes*.

MATERIALS AND METHODS

Strains and Growth Conditions

L. monocytogenes strains are listed in (Table S3.4). *Listeria* Synthetic Medium (LSM) was prepared based on published recipe⁵⁴. For all experiments, unless otherwise indicated, *L. monocytogenes* was grown in LSM at 37°C with shaking.

Growth experiments in limiting cysteine and GSH

For aerobic growth experiments, strains were grown overnight in standard LSM. Overnight cultures were washed 3x in 1x phosphate-buffered-saline to remove exogenous cysteine, and then sub cultured into LSM medium modified as indicated to a final h_2O of 0.01. For aerobic growth, cultures were grown shaking at 37C. For hypoxic growth, strains were grown stationary at 37C in a hypoxic chamber containing 5% CO_2 , 2% O_2 . OD_{600} was measured after 16 hours for endpoint measurements, or every 1.5h for 8h for kinetic growth assays.

Transposon sequencing of *Himar1* libraries grown with 10mM GSH in place of cysteine.

An aliquot of a *Himar1* transposon library in the WT *L. monocytogenes* background was generated as described previously in the lab of JD Sauer¹⁷⁵. JD Sauer generously gifted us an aliquot. Library was grown in standard LSM containing 2mM cysteine or LSM in which cysteine was replaced with 10mM GSH. Cultures were grown to stationary phase and genomic gDNA was extracted and sent for Illumina sequencing at the University of Wisconsin Madison Biotechnology center. Insertion counts were analyzed using TRANSIT¹⁸⁷

RNAseq under varying oxygen availability, GSH and Cysteine concentrations

WT *L. monocytogenes* in biological duplicate was prepared and grown to mid-logarithmic phase ($\text{OD}_{600} = \sim 0.5$) as described for previously growth kinetic assays, either aerobically or in hypoxic conditions with indicated concentrations of either cysteine or GSH. Cultures were pelleted and RNA was extracted and treated with Turbo DNase. RNAsequencing was performed by SeqCenter (Pittsburgh, PA). For experiment testing aerobic growth with and without 10mM GSH, read mapping to the *L. monocytogenes* 10403s genome (NC-017544.1) was performed by SeqCenter and differential gene expression analysis was performed with EdgeR¹⁴⁹. For experiment testing aerobic and hypoxic growth with either 0.2mM GSH or 0.2mM cysteine, Galaxy¹⁸⁸ was used to perform read trimming with Fastp¹⁸⁹, read mapping with Bowtie2¹⁹⁰, mapped read counting with htseq¹⁹¹, and differential gene expression analysis with Deseq2¹⁹².

SUPPLEMENTARY MATERIAL

Table S3.1: Significantly differentially expressed genes ($\text{Log2FC} > 1$, $p < 0.05$) compared to standard LSM containing 2mM cysteine. Differentially expressed gene analysis was performed using EdgeR. Data is representative of two independent replicates.

EGD-E Gene ID	Function	Log2FC relative to LSM containing 2mM cys, without GSH	
		10mM GSH, 2mM cys	10mM GSH, no cys
lmo1786	internalin C	5.76	5.56
lmo0838	MFS transporter	5.70	5.34
lmo0203	zinc metalloproteinase	4.56	4.09
	CRISPR-associated protein cas2		3.51
lmo0641	cadmium-translocating P-type ATPase	3.02	3.28
lmo2811	tRNA modification GTPase TrmE		3.00
lmo0433	internalin A	3.11	2.86
lmo1962	TetR/AcrR family transcriptional regulator	3.21	2.80
lmo0206	hypothetical protein	2.54	2.79
lmo0205	phospholipase C	2.59	2.73
lmo0204	actin-assembly inducing protein ActA	2.69	2.70
lmo0947	MFS transporter	4.14	2.68
lmo0207	hypothetical protein	2.51	2.66
lmo2210	hypothetical protein	2.41	2.62
lmo0434	internalin B	2.97	2.58
lmo1746	hypothetical protein	3.23	2.31
	hypothetical protein (LMRG_02394)	3.20	2.17
lmo1124	hypothetical protein	2.10	1.97
lmo0212	acetyltransferase	2.36	1.91
lmo2115	hypothetical protein	1.46	1.84
lmo0415	peptidoglycan N-acetylglucosamine deacetylase	1.97	1.82
	CRISPR-associated protein		1.77
lmo2114	hypothetical protein	1.45	1.76
lmo0202	listeriolysin O	1.79	1.75
lmo1690	hypothetical protein	1.17	1.73
lmo0752	hypothetical protein	1.94	1.65
lmo2091	argininosuccinate lyase		1.61
lmo0200	listeriolysin regulatory protein	1.61	1.58
lmo1808	malonyl CoA-acyl carrier protein transacylase	2.04	1.53
lmo2643	hypothetical protein		1.51

Imo1309	hypothetical protein	1.62	1.43
Imo0972	D-alanine--poly(phosphoribitol) ligase subunit 2	1.95	1.41
Imo0201	1-phosphatidylinositol phosphodiesterase	1.55	1.41
Imo2177	hypothetical protein	1.48	1.40
Imo1807	3-oxoacyl-ACP reductase	1.90	1.37
Imo0973	membrane protein	1.59	1.37
Imo0626	hypothetical protein	1.86	1.35
Imo2439	hypothetical protein	1.12	1.33
Imo1254	alpha-phosphotrehalase	1.88	1.31
Imo0604	hypothetical protein	1.12	1.31
Imo0971	D-alanine transfer protein	1.69	1.30
Imo2469	APA family basic amino acid/polyamine antiporter	1.30	1.28
Imo1311	hypothetical protein	1.71	1.26
Imo1745	response regulator	2.16	1.23
Imo0974	D-alanine--poly(phosphoribitol) ligase subunit 1	1.56	1.22
Imo2785	catalase	2.09	1.19
Imo1310	hypothetical protein	1.68	1.16
Imo2773	beta-glucoside operon transcriptional antiterminator	1.25	1.12
Imo1993	pyrimidine-nucleoside phosphorylase		1.11
Imo2219	foldase prsA 2	1.42	1.10
Imo1802	hypothetical protein		1.08
Imo2497	phosphate ABC transporter permease	1.61	1.06
Imo2390	hypothetical protein	-1.29	-1.00
Imo2393	hypothetical protein		-1.01
	hypothetical protein (LMRG_01516)		-1.02
Imo0366	lipoprotein	-1.95	-1.03
Imo2325	hypothetical protein		-1.03
Imo0365	high-affinity iron transporter	-1.76	-1.04
Imo0760	hypothetical protein	-1.66	-1.04
Imo0591	hypothetical protein		-1.05
Imo2200	MarR family transcriptional regulator	-1.40	-1.05
Imo1733	glutamate synthase subunit small		-1.06
Imo2799	hypothetical protein		-1.06
Imo2324	anti-repressor protein		-1.08
Imo0485	hypothetical protein	-1.28	-1.09
Imo0119	hypothetical protein		-1.09
Imo2182	iron complex transport system ATP-binding protein	-2.00	-1.11
Imo0316	hydroxyethylthiazole kinase		-1.11
Imo2676	DNA polymerase V		-1.12
Imo2569	peptide/nickel transport system substrate-binding protein	-1.32	-1.13
Imo2102	glutamine amidotransferase subunit pdxT	-1.64	-1.13
Imo1007	hypothetical protein		-1.14
Imo2101	pyridoxine biosynthesis protein	-1.03	-1.14

Imo1734	glutamate synthase subunit large	-1.14
Imo2743	transaldolase	-1.26
Imo2183	iron complex transport system permease	-2.05
Imo1015	glycine betaine/proline transport system permease	-1.48
Imo0223	cysteine synthase A	-2.37
Imo1847	manganese-binding lipoprotein mntA	-1.19
Imo0116	hypothetical protein	-1.20
Imo0117	prophage LambdaLm01, antigen B	-1.20
Imo2184	heme ABC transporter heme-binding protein isdE	-2.03
Imo1882	30S ribosomal protein S14	-1.36
Imo0610	internalin	-1.42
Imo1016	glycine betaine-binding protein	-1.29
Imo0918	lichenan operon transcriptional antiterminator	-1.26
Imo0823	aldo/keto reductase	-2.12
Imo0346	triosephosphate isomerase	-1.26
Imo1014	glycine betaine/proline transport system ATP-binding protein	-1.44
Imo2683	cellobiose-specific PTS system IIB component	-1.27
Imo0508	galactitol-specific PTS system IIC component	-1.28
Imo2675	hypothetical protein	-1.29
Imo0019	hypothetical protein	-1.32
Imo1732	lactose/L-arabinose transport system permease	-1.33
Imo0761	hypothetical protein	-1.91
Imo0115	hypothetical protein	-1.35
Imo2181	SrtB family sortase	-1.88
Imo2186	heme uptake protein IsdC	-2.12
Imo0791	hypothetical protein	-2.06
Imo2185	hypothetical protein	-2.25
Imo0484	heme-degrading monooxygenase IsdG	-1.12
Imo0589	hypothetical protein	-1.52
Imo0612	hypothetical protein	-1.53
Imo0759	glyoxylase	-2.20
Imo1848	manganese transport system membrane protein mntC	-1.40
Imo1715	hypothetical protein	-1.60
Imo2437	hypothetical protein	-2.05
Imo0130	hypothetical protein	-2.23
Imo0758	hypothetical protein	-2.45
Imo1849	manganese/iron transport system ATP-binding protein	-1.18
Imo2829	hypothetical protein	-2.78
Imo0140	hypothetical protein	-1.85
Imo0137	peptide/nickel transport system permease	-7.22
Imo2433	tributyrin esterase	-2.89
Imo2353	hypothetical protein	-2.38

Imo0136	peptide/nickel transport system permease	-7.58	-2.52
Imo0903	OsmC/Ohr family protein	-4.34	-2.56
Imo2352	HTH-type transcriptional regulator ytl	-3.58	-2.63
Imo2088	hypothetical protein		-2.70
Imo0152	peptide/nickel transport system substrate-binding protein	-3.95	-2.81
Imo0138	hypothetical protein	-3.78	-2.82
Imo0135	peptide/nickel transport system substrate-binding protein	-8.33	-2.98
Imo2343	monooxygenase moxC	-6.96	-4.15
Imo2346	polar amino acid transport system ATP-binding protein	-6.13	-4.67
Imo2345	hypothetical protein	-6.97	-4.69
Imo2344	hypothetical protein	-6.87	-4.82
Imo2347	polar amino acid transport system permease	-5.92	-4.99
Imo2348	polar amino acid transport system permease	-6.43	-5.08
Imo2350	hypothetical protein	-4.87	-5.25
Imo2349	polar amino acid transport system substrate-binding protein	-6.67	-5.35
Imo2351	FMN reductase	-5.41	-5.67
	hypothetical protein (LMRG_02074)	1.56	
	hypothetical protein (LMRG_01894)	1.82	
Imo0092	ATP synthase F1 beta subunit	1.36	
Imo0211	50S ribosomal protein L25 Ctc-form	-1.62	
Imo0279	anaerobic ribonucleoside-triphosphate reductase	1.30	
Imo0280	anaerobic ribonucleoside-triphosphate reductase activating protein	1.50	
Imo0361	twin arginine-targeting protein translocase TatC	-1.79	
Imo0362	sec-independent protein translocase tatAy	-1.58	
Imo0367	tat-translocated enzyme	-1.63	
Imo0375	hypothetical protein	-1.08	
Imo0416	transcriptional regulator	1.22	
Imo0541	iron complex transport system substrate-binding protein	-1.09	
Imo0551	hypothetical protein	1.08	
Imo0560	glutamate dehydrogenase	2.90	
Imo0611	FMN-dependent NADH-azoreductase 1	-1.31	
Imo0661	4-carboxymuconolactone decarboxylase	-1.35	
Imo0754	hypothetical protein	1.45	
Imo0781	mannose-specific PTS system IID component	-1.46	
Imo0782	mannose-specific PTS system IIC component	-1.43	
Imo0783	mannose-specific PTS system IIB component	-1.04	
Imo0841	hypothetical protein	1.06	
Imo0845	5-methyltetrahydropteroyltriglutamate/homocysteine S-methyltransferase	-1.07	
Imo0897	SulP family sulfate permease	1.26	

Imo0948	hypothetical protein	1.30
Imo0976	hypothetical protein	-1.05
Imo1123	hypothetical protein	1.17
Imo1251	crp/Fnr family transcriptional regulator	1.40
Imo1298	HTH-type transcriptional regulator glnR	-2.88
Imo1299	glutamine synthetase type I	-2.62
Imo1308	hypothetical protein	1.26
Imo1387	pyrroline-5-carboxylate reductase	-1.10
Imo1409	hypothetical protein	1.12
Imo1433	glutathione reductase	-1.00
Imo1516	amt family ammonium transporter	-4.37
Imo1517	nitrogen regulatory protein P-II	-4.17
Imo1518	hypothetical protein	-3.86
Imo1524	adenine phosphoribosyltransferase	1.59
Imo1539	glycerol uptake facilitator protein	-1.19
Imo1588	acetylornithine aminotransferase	1.38
Imo1590	ArgJ family protein	1.84
Imo1595	GAF domain-containing protein	-1.40
Imo1635	DNA binding 3-demethylubiquinone-9 3-methyltransferase domain-containing protein	1.10
Imo1649	hypothetical protein	1.08
Imo1741	hypothetical protein	1.13
Imo1743	hypothetical protein	1.42
Imo1744	hypothetical protein	1.38
Imo1761	neurotransmitter:Na ⁺ symporter	1.21
Imo1806	acyl carrier protein	1.35
Imo1809	fatty acid/phospholipid synthesis protein PIsX	1.39
Imo1831	orotate phosphoribosyltransferase	-1.55
Imo1832	orotidine 5'-phosphate decarboxylase	-1.68
Imo1833	dihydroorotate oxidase	-1.60
Imo1834	dihydroorotate dehydrogenase electron transfer subunit	-1.64
Imo1835	carbamoyl-phosphate synthase large subunit	-1.87
Imo1836	carbamoyl-phosphate synthase small subunit	-2.10
Imo1837	dihydroorotase	-2.10
Imo1838	aspartate carbamoyltransferase	-1.99
Imo1846	multidrug resistance protein norM	1.02
Imo1945	hypothetical protein	1.12
Imo1983	dihydroxy-acid dehydratase	-1.41
Imo1984	acetolactate synthase large subunit	-1.27
Imo1985	acetolactate synthase small subunit	-1.35
Imo1986	ketol-acid reductoisomerase	-1.30
Imo1987	2-isopropylmalate synthase	-1.02
Imo1988	3-isopropylmalate dehydrogenase	-1.01
Imo1989	3-isopropylmalate dehydratase large subunit	-1.04

Imo1990	3-isopropylmalate dehydratase small subunit	-1.20
Imo2005	aryl-alcohol dehydrogenase	-1.03
Imo2025	quinolinate synthetase complex A subunit	1.29
Imo2110	mannose-6-phosphate isomerase class I	-1.20
Imo2180	hypothetical protein	-1.66
Imo2196	peptide/nickel transport system substrate-binding protein	-1.64
Imo2199	OsmC/Ohr family protein	-1.67
Imo2256	protease I	-1.10
Imo2295	gp8	1.08
Imo2391	hypothetical protein	-1.36
Imo2494	phosphate transport system regulatory protein PhoU	1.64
Imo2496	phosphate ABC transporter	1.63
Imo2539	serine hydroxymethyltransferase	-1.37
Imo2647	creatinine amidohydrolase	-2.54
Imo2648	hypothetical protein	-1.99
Imo2649	ascorbate-specific PTS system IIC component	-3.03
Imo2650	hypothetical protein	-3.99
Imo2651	mannitol-specific PTS system IIA component	-4.06
Imo2714	peptidoglycan bound protein	1.60
Imo2715	ABC transporter CydDC cysteine exporter CydC	1.10
Imo2716	ABC transporter CydDC cysteine exporter CydD	1.60
Imo2793	lipoprotein	1.10
Imo2804	hypothetical protein	1.08

Table S3.2: Log₂FC of number of transposon insertions detected in LSM + 0mM Cys, 10mM GSH vs. LSM containing 2mM Cysteine. Only genes with >2-fold change of insertion frequency are shown.

EGD-E Gene ID	Function	log2FC relative to 2mM cysteine
Imo1924	prephenate dehydrogenase	-5.53
Imo1619	D-amino acid aminotransferase	-5.46
Imo0491	3-dehydroquinate dehydratase type I	-5.31
Imo1490	shikimate 5-dehydrogenase	-4.42
Imo1923	3-phosphoshikimate 1-carboxyvinyltransferase	-4.39
Imo1568	hypothetical protein	-3.99

Imo1928	chorismate synthase	-3.77
Imo0886	alanine racemase	-3.64
Imo1600	bifunctional 3-deoxy-7-phosphoheptulonate synthase/chorismate mutase	-3.52
Imo1952	diaminopimelate decarboxylase	-3.35
Imo1956	fur family transcriptional regulator	-2.67
Imo0005	DNA replication and repair protein RecF	-2.58
Imo0004	hypothetical protein	-2.24
Imo1532	Holliday junction DNA helicase RuvB	-2.1
Imo2196	peptide/nickel transport system substrate-binding protein	-1.91
Imo1693	regulatory protein recX	-1.74
Imo1710	flavodoxin	-1.72
Imo1565	DNA polymerase I	-1.69
Imo2194	peptide/nickel transport system permease	-1.69
Imo2251	polar amino acid transport system ATP-binding protein	-1.66
Imo1758	DNA ligase	-1.65
Imo2856	50S ribosomal protein L34	-1.56
Imo1926	chorismate mutase	-1.55
Imo1756	aspartyl-tRNA(Asn)/glutamyl-tRNA amidotransferase subunit C	-1.51
Imo2250	hypothetical protein	-1.51
Imo1515	HTH-type transcriptional regulator cymR	-1.45
Imo2469	APA family basic amino acid/polyamine antiporter	-1.44
Imo2195	peptide/nickel transport system permease	-1.42
Imo1927	3-dehydroquinate synthase	-1.37
Imo1811	ATP-dependent DNA helicase RecG	-1.33
Imo0847	glutamine ABC transporter	-1.2
Imo0162	DNA polymerase III subunit delta	-1.18
Imo0287	response regulator VicR	-1.15
Imo2609	50S ribosomal protein L36	-1.12
Imo0848	polar amino acid transport system ATP-binding protein	-1.11
Imo0396	pyrroline-5-carboxylate reductase	-1.1
Imo1295	host factor-I protein	-1.05
Imo2327	hypothetical protein	-1.05
Imo0578	hypothetical protein	-1.01
Imo0641	cadmium-translocating P-type ATPase	-1
Imo1740	polar amino acid transport system permease	1
Imo2046	2-dehydropantoate 2-reductase	1
Imo2102	glutamine amidotransferase subunit pdxT	1
Imo2167	hydroxyacylglutathione hydrolase	1.01
Imo1371	dihydrolipoyl dehydrogenase	1.03
Imo2473	hypothetical protein	1.03
Imo2503	cardiolipin synthase	1.04
Imo0016	cytochrome aa3 quinol oxidase subunit IV	1.05
Imo0719	PadR family transcriptional regulator	1.05

Imo1373	2-oxoisovalerate dehydrogenase E1 component	1.05
Imo2016	cold shock protein	1.05
Imo2510	preprotein translocase subunit SecA	1.05
Imo0188	dimethyladenosine transferase	1.06
Imo1055	dihydrolipoyl dehydrogenase	1.07
Imo1934	DNA-binding protein HU-beta	1.07
Imo2560	DNA-directed RNA polymerase subunit delta	1.07
Imo2823	hypothetical protein	1.07
Imo0890	RsbT antagonist protein rsbS	1.08
Imo1366	hemolysin	1.08
Imo0787	amino acid transporter AAT family protein	1.09
Imo1688	enoyl-[acyl carrier protein] reductase III	1.09
Imo2806	hypothetical protein	1.1
Imo1739	polar amino acid transport system ATP-binding protein	1.12
Imo2810	tRNA uridine 5-carboxymethylaminomethyl modification protein GidA	1.12
Imo1360	hypothetical protein	1.13
Imo2511	sigma-54 modulation protein	1.13
Imo0943	starvation-inducible DNA-binding protein	1.15
Imo2217	hypothetical protein	1.15
Imo1764	phosphoribosylamine--glycine ligase	1.16
Imo1767	phosphoribosylformylglycinamidine cyclo-ligase	1.17
Imo2190	adapter protein mecA	1.17
Imo1327	ribosome-binding factor A	1.18
Imo0196	stage V sporulation protein G	1.19
Imo0210	L-lactate dehydrogenase	1.19
Imo1275	DNA topoisomerase I	1.19
Imo1683	fur family transcriptional regulator	1.19
Imo2048	hypothetical protein	1.19
Imo2426	arsenate reductase	1.19
Imo2562	hypothetical protein	1.19
Imo0266	hypothetical protein	1.21
Imo1064	MIT family metal ion transporter	1.21
Imo0200	listeriolysin regulatory protein	1.22
Imo0948	hypothetical protein	1.23
Imo1765	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase	1.24
Imo1771	phosphoribosylformylglycinamidine synthase	1.24
Imo0916	cellobiose-specific PTS system IIA component	1.28
Imo0055	adenylosuccinate synthetase	1.3
Imo2205	phosphoglycerate mutase	1.3
Imo1374	2-oxoisovalerate dehydrogenase E2 component	1.31
Imo1922	hypothetical protein	1.31
Imo2556	fructose-16-bisphosphate aldolase class II	1.31
Imo0598	biotin biosynthesis protein BioY	1.34

Imo0891	serine/threonine-protein kinase rsbT	1.34
Imo0555	Di/tripeptide permease DtpT	1.35
Imo0734	LacI family transcriptional regulator	1.36
Imo1687	hypothetical protein	1.36
Imo1546	rod shape-determining protein MreD	1.37
Imo2811	tRNA modification GTPase TrmE	1.4
Imo2041	methylase MraW	1.41
Imo1972	ascorbate-specific PTS system IIB component	1.49
Imo0964	hypothetical protein	1.5
Imo1328	tRNA pseudouridine synthase B	1.51
Imo1738	polar amino acid transport system substrate-binding protein	1.52
Imo2825	phosphoserine aminotransferase	1.54
Imo2538	uracil phosphoribosyltransferase	1.55
Imo2769	antibiotic transport system ATP-binding protein	1.55
Imo1389	simple sugar transport system ATP-binding protein	1.6
Imo0892	sigma-B regulation protein RsbU	1.67
Imo2770	glutamate-cysteine ligase/gamma-glutamylcysteine synthetase	1.67
Imo2824	D-3-phosphoglycerate dehydrogenase	1.67
Imo1993	pyrimidine-nucleoside phosphorylase	1.68
Imo2349	polar amino acid transport system substrate-binding protein	1.69
Imo2768	hypothetical protein	1.7
Imo1439	superoxide dismutase	1.71
Imo0044	30S ribosomal protein S6	1.75
Imo1774	phosphoribosylaminoimidazole carboxylase	1.75
Imo0895	RNA polymerase sigma-B factor	1.76
Imo0139	hypothetical protein	1.82
Imo1390	simple sugar transport system permease	1.88
Imo1391	simple sugar transport system permease	1.92
Imo1773	adenylosuccinate lyase	1.94
Imo1388	ABC transporter	2.06
Imo1772	phosphoribosylaminoimidazolesuccinocarboxamide synthase	2.14
Imo2692	hypothetical protein	2.25

Table S3.3. Significantly differentially expressed genes ($\text{Log2FC} > 1$, $p < 0.05$) relative to indicated condition. Abbreviations are as follows: LSM supplemented with 0.2mM cysteine (Cys) or 0.2mM glutathione (GSH) in place of cysteine, grown aerobically (O_2) or under hypoxic conditions (A).

EGD-E Gene ID	Function	Log2FC vs CysO2		
		CysA	GSHA	GSHO2
Imo0138	hypothetical protein			-7.8
	hypothetical protein (LMRG_01935)			-5.5
Imo2650	hypothetical protein			-5.5

lmo2432	hypothetical protein	-5.0	-5.1	
lmo2651	mannitol-specific PTS system IIA component	-3.5	-4.2	-2.6
lmo2852	hypothetical protein		-3.9	
lmo2648	hypothetical protein	-2.2	-3.9	-1.9
lmo2180	hypothetical protein	-6.1	-3.8	
lmo0139	hypothetical protein	-3.4	-3.8	-2.8
lmo1007	hypothetical protein	-8.6	-3.1	
lmo0349	hypothetical protein	-2.7	-3.1	
lmo2649	ascorbate-specific PTS system IIC component	-2.1	-3.0	-2.0
lmo0661	4-carboxymuconolactone decarboxylase	-3.1	-2.7	-1.6
lmo0609	hypothetical protein		-2.7	
lmo1245	hypothetical protein	-3.9	-2.6	
lmo0350	hypothetical protein		-2.5	
lmo0123	minor structural protein		-2.5	3.2
lmo0154	zinc transport system ATP-binding protein		-2.4	
lmo0622	hypothetical protein		-2.3	
lmo2094	hypothetical protein		-2.3	
lmo0880	peptidoglycan bound protein		-2.2	
lmo0121	hypothetical protein		-2.2	3.3
lmo0659	hypothetical protein		-2.1	
lmo0124	hypothetical protein		-2.1	2.9
lmo1849	manganese/iron transport system ATP-binding protein	-2.6	-2.1	
lmo0122	hypothetical protein	-1.2	-2.1	3.1
lmo2645	hypothetical protein		-2.1	
lmo1587	ornithine carbamoyltransferase		-2.1	
lmo2646	hypothetical protein		-2.0	
lmo0125	hypothetical protein		-1.9	2.9
lmo0120	hypothetical protein		-1.9	2.7
lmo0247	hypothetical protein		-1.8	
lmo0128	hypothetical protein		-1.8	3.5
lmo1872	rRNA (guanine-N1)-methyltransferase		-1.8	
lmo0003	mate efflux family protein		-1.8	
lmo0019	hypothetical protein		-1.8	
lmo2743	transaldolase	-1.0	-1.8	
lmo2127	hypothetical protein	-1.1	-1.7	
lmo2676	DNA polymerase V	-1.9	-1.7	1.9
lmo0591	hypothetical protein		-1.7	
lmo0127	hypothetical protein		-1.7	3.5
lmo0129	N-acetylmuramoyl-L-alanine amidase		-1.7	3.4
lmo0518	membrane protein	-1.3	-1.6	
lmo2708	cellobiose-specific PTS system IIC component		-1.6	
lmo0372	beta-glucosidase		-1.6	
lmo0117	prophage LambdaLm01, antigen B		-1.6	3.2

Imo1889	hypothetical protein	-1.0	-1.6	
Imo1336	5-formyltetrahydrofolate cyclo-ligase	-1.3	-1.6	
Imo1618	hypothetical protein		-1.6	
Imo0346	triosephosphate isomerase		-1.6	
Imo2153	ribonucleotide reductase-associated flavodoxin		-1.6	
Imo2675	hypothetical protein	-1.6	-1.6	1.8
Imo1211	integral membrane protein		-1.6	
Imo0590	hypothetical protein		-1.5	
Imo2763	cellobiose-specific PTS system IIC component	-1.4	-1.5	
Imo0761	hypothetical protein		-1.5	
Imo2393	hypothetical protein		-1.5	
Imo2855	ribonuclease P		-1.5	
Imo1016	glycine betaine-binding protein		-1.5	
Imo1305	transketolase	-1.2	-1.5	
Imo2436	beta-glucoside operon transcriptional antiterminator		-1.5	
Imo0323	hypothetical protein	-1.0	-1.5	
Imo0373	cellobiose-specific PTS system IIC component		-1.5	
Imo0602	hypothetical protein		-1.5	
Imo1831	orotate phosphoribosyltransferase		-1.4	
Imo0377	hypothetical protein	-1.3	-1.4	-1.1
Imo0589	hypothetical protein		-1.4	
Imo1364	cold shock-like protein cspLA	-1.4	-1.4	
Imo1414	acetyl-CoA C-acetyltransferase	-1.3	-1.4	
Imo0343	transaldolase		-1.4	
Imo1568	hypothetical protein		-1.4	
Imo1832	orotidine 5'-phosphate decarboxylase		-1.4	
Imo1591	N-acetyl-gamma-glutamyl-phosphate reductase	-1.4	-1.4	
0	internalin D		-1.4	
Imo2061	hypothetical protein	-1.1	-1.4	
Imo2202	3-oxoacyl-ACP synthase	-1.2	-1.4	
Imo1961	ferredoxin-NADP reductase 1	-3.3	-1.4	
Imo0675	flagellar motor switch protein FliN	-1.5	-1.4	
Imo0347	dihydroxyacetone kinase L subunit		-1.4	
Imo1978	glucose-6-phosphate dehydrogenase		-1.4	
Imo1209	ATP:cob(I)alamin adenosyltransferase	-1.2	-1.4	
Imo0227	tRNA-dihydrouridine synthase B	-1.8	-1.4	
Imo1835	carbamoyl-phosphate synthase large subunit		-1.3	
Imo0348	dihydroxyacetone kinase		-1.3	
Imo1225	hypothetical protein		-1.3	-1.1
Imo1370	butyrate kinase		-1.3	
Imo1836	carbamoyl-phosphate synthase small subunit		-1.3	
Imo2764	hypothetical protein	-1.6	-1.3	
Imo1920	hypothetical protein		-1.3	
Imo0901	cellobiose-specific PTS system IIC component	-1.5	-1.3	

lmo1330	30S ribosomal protein S15	-1.1	-1.3	-1.0
lmo2175	3-oxoacyl-ACP reductase	-2.0	-1.3	
lmo0806	hypothetical protein		-1.3	
lmo2043	MFS transporter	-1.3	-1.3	
lmo0652	hypothetical protein		-1.3	
lmo1469	30S ribosomal protein S21	-1.7	-1.3	-1.6
lmo2830	thioredoxin	-1.1	-1.3	
lmo0683	chemotaxis protein methyltransferase	-1.8	-1.3	
lmo1009	hypothetical protein		-1.3	
lmo0656	membrane protein		-1.3	
lmo1429	proton-coupled thiamine transporter YuaJ		-1.2	
lmo1518	hypothetical protein		-1.2	-1.4
lmo1539	glycerol uptake facilitator protein		-1.2	
lmo0766	multiple sugar transport system permease		-1.2	
lmo0844	endoribonuclease L-PSP	-1.4	-1.2	-1.0
lmo2243	ADA regulatory protein/Methylated-DNA-protein-cysteine methyltransferase	-1.0	-1.2	
lmo2737	catabolite control protein B		-1.2	
lmo0945	late competence protein ComEC	-1.0	-1.2	
lmo0222	chaperonin HsIO		-1.2	
lmo2683	cellobiose-specific PTS system IIB component	-1.2	-1.2	-1.0
lmo1670	hypothetical protein	-2.1	-1.2	
lmo1371	dihydrolipoyl dehydrogenase		-1.2	
lmo2539	serine hydroxymethyltransferase		-1.2	
lmo1834	dihydroorotate dehydrogenase electron transfer subunit		-1.2	
lmo0185	Mg-dependent DNase	-1.1	-1.2	
lmo0976	hypothetical protein		-1.2	
lmo2014	alpha-mannosidase		-1.2	
lmo1281	4-hydroxybenzoyl-CoA thioesterase		-1.1	
lmo0226	7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase		-1.1	
lmo1567	citrate synthase		-1.1	
lmo0807	spermidine/putrescine transport system ATP-binding protein		-1.1	
lmo0679	flagellar biosynthetic protein FlhB	-1.3	-1.1	
lmo1958	iron complex transport system permease	-2.8	-1.1	
lmo0676	flagellar biosynthetic protein FliP	-1.3	-1.1	
lmo0905	hypothetical protein		-1.1	
lmo0936	oxygen-insensitive NADPH nitroreductase		-1.1	
lmo0538	N-acyl-L-amino acid amidohydrolase	-1.6	-1.1	
lmo2154	ribonucleoside-diphosphate reductase		-1.1	
lmo0342	transketolase	-1.0	-1.1	
lmo1910	D-amino-acid dehydrogenase	-1.4	-1.1	
lmo1732	lactose/L-arabinose transport system permease		-1.1	
lmo0935	TrmH family RNA methyltransferase group 2		-1.1	
lmo1933	GTP cyclohydrolase I		-1.1	

lmo2576	peptidoglycan bound protein	-1.2	-1.1	
lmo1959	iron complex transport system substrate-binding protein	-3.3	-1.1	
lmo2256	protease I		-1.1	
lmo1782	exodeoxyribonuclease III		-1.1	
lmo1538	glycerol kinase		-1.1	
lmo2641	trans-hexaprenyltranstransferase		-1.1	
lmo0193	HlyD family secretion protein		-1.1	
lmo0830	fructose-1,6-bisphosphatase class 3		-1.1	
lmo2557	hypothetical protein		-1.0	
lmo0686	chemotaxis protein MotB	-1.7	-1.0	
lmo0667	antibiotic transport system ATP-binding protein		-1.0	
lmo2692	hypothetical protein		-1.0	
	hypothetical protein (LMRG_01935)	-1.0	-1.0	-1.0
lmo1328	tRNA pseudouridine synthase B	-1.2	-1.0	
lmo0678	flagellar biosynthesis protein FliR	-1.2	-1.0	
lmo2261	hypothetical protein	-1.6	-1.0	
lmo2744	hypothetical protein	-1.1	-1.0	
lmo1955	tyrosine recombinase XerD		-1.0	
lmo0192	pur operon repressor	-1.3	-1.0	
lmo0277	hypothetical protein	-1.3	-1.0	
lmo2103	phosphate acetyltransferase		-1.0	
lmo0754	hypothetical protein		1.0	
lmo1576	hypothetical protein		1.0	
lmo2511	sigma-54 modulation protein	1.3	1.0	
lmo0900	hypothetical protein		1.0	
lmo1438	hypothetical protein		1.0	
lmo0242	hypothetical protein		1.0	
lmo2334	DNA-binding protein		1.0	
lmo1244	phosphoglycerate mutase		1.0	
lmo2591	N-acetylmuramoyl-L-alanine amidase		1.0	
lmo0480	hypothetical protein		1.0	
lmo2114	hypothetical protein	1.3	1.1	1.2
lmo0483	AraC/XylS family transcriptional regulator		1.1	
lmo0898	hypothetical protein		1.1	
lmo1254	alpha-phosphotrehalase		1.1	1.0
lmo2440	hypothetical protein		1.1	
lmo1142	hypothetical protein		1.1	
lmo1807	3-oxoacyl-ACP reductase		1.1	
lmo1679	cystathionine beta-lyase		1.1	
lmo2107	hypothetical protein		1.1	
lmo2498	phosphate ABC transporter permease		1.1	
lmo0862	trehalose-6-phosphate hydrolase		1.1	
lmo2040	cell division protein FtsL		1.1	

Imo2773	beta-glucoside operon transcriptional antiterminator		1.1	
Imo1403	DNA mismatch repair protein MutS		1.1	
Imo1131	ABC transporter	-1.6	1.1	
Imo1333	hypothetical protein		1.2	
Imo1166	propanol dehydrogenase PduQ		1.2	
Imo1143	hypothetical protein		1.2	
Imo0516	poly-gamma-glutamate synthesis protein		1.2	
Imo1251	crp/Fnr family transcriptional regulator		1.2	
Imo2717	cytochrome d ubiquinol oxidase subunit II	2.2	1.2	
Imo0417	hypothetical protein	1.9	1.2	
Imo2206	ATP-dependent chaperone ClpB	1.8	1.2	
Imo1632	anthranilate synthase component II		1.2	
Imo0533	ACT domain-containing protein	1.5	1.2	
Imo0802	hypothetical protein		1.2	
Imo0727	glutamine-fructose-6-phosphate transaminase		1.2	
Imo2816	hypothetical protein	1.4	1.2	
Imo1204	cobalamin biosynthesis protein CbiM	1.6	1.2	
Imo1132	ABC transporter	-1.5	1.2	
Imo0645	APA family basic amino acid/polyamine antiporter	1.1	1.2	
Imo2294	gp9		1.3	2.7
Imo2278	endolysin L-alanyl-D-glutamate peptidase	1.1	1.3	2.6
Imo2760	ABC transporter ATP-binding protein		1.3	
Imo0416	transcriptional regulator	2.1	1.3	
Imo0859	multiple sugar transport system substrate-binding protein		1.3	
Imo2283	long tail fiber		1.3	2.7
Imo2643	hypothetical protein	1.1	1.3	
Imo2494	phosphate transport system regulatory protein PhoU		1.3	
Imo2115	hypothetical protein	1.6	1.3	1.4
Imo1694	hypothetical protein	2.3	1.3	1.3
Imo1604	peroxiredoxin		1.3	
Imo1681	5-methyltetrahydropteroylglutamate/homocysteine S-methyltransferase		1.3	
Imo1484	competence protein ComEA		1.4	
Imo0973	membrane protein	2.2	1.4	
Imo0327	internalin	1.5	1.4	
Imo1050	hypothetical protein		1.4	
Imo1724	ABC transporter ATP-binding protein		1.4	
Imo2297	scaffolding protein	1.2	1.4	2.4
Imo0974	D-alanine--poly(phosphoribitol) ligase subunit 1	2.0	1.4	
Imo2581	hypothetical protein		1.4	
Imo2024	nicotinate-nucleotide diphosphorylase	1.0	1.4	1.1
Imo2487	hypothetical protein	2.7	1.4	1.2
Imo2025	quinolinate synthetase complex A subunit	1.5	1.4	1.2
Imo1745	response regulator	1.0	1.5	

Imo2817	aminoacylase	1.5		
Imo1586	inorganic polyphosphate/ATP-NAD kinase 2	1.3	1.5	
Imo2295	gp8		1.5	2.5
Imo0292	hypothetical protein	1.6	1.5	1.0
Imo2289	gp14		1.5	2.4
Imo2496	phosphate ABC transporter		1.5	
Imo0861	multiple sugar transport system permease		1.6	
Imo1031	hypothetical protein	2.4	1.6	
Imo0510	hypothetical protein		1.6	
Imo2291	major tail shaft protein		1.6	2.6
Imo1167	glycerol uptake facilitator protein		1.6	
Imo2288	gp15	1.5	1.6	2.9
Imo2486	hypothetical protein	2.5	1.6	1.4
Imo0383	methylmalonate-semialdehyde dehydrogenase		1.7	
Imo0860	multiple sugar transport system permease	1.1	1.7	
Imo2819	aminoacylase	1.4	1.7	
Imo1175	ethanolamine ammonia-lyase large subunit		1.7	
Imo2660	transketolase	1.7	1.7	
Imo0489	hypothetical protein		1.7	
Imo0520	hypothetical protein	1.3	1.7	
Imo2023	L-aspartate oxidase		1.7	1.7
Imo1170	hypothetical protein	1.1	1.7	
Imo1227	uracil-DNA glycosylase		1.7	
Imo2818	MFS transporter	1.4	1.8	
Imo0293	hypothetical protein		1.8	
Imo1165	aldehyde dehydrogenase	1.7	1.8	1.5
Imo0309	hypothetical protein	2.0	1.8	
Imo1413	peptidoglycan bound protein	1.8	1.8	
Imo2592	morphine 6-dehydrogenase	1.9	1.8	
Imo2567	hypothetical protein	3.8	1.9	
Imo2363	glutamate decarboxylase	2.3	1.9	
	hypothetical protein (LMRG_02594)	2.6	2.0	
Imo2593	transcriptional regulator	2.4	2.0	
Imo2174	hypothetical protein	2.6	2.1	
Imo1127	hypothetical protein	2.1	2.1	
Imo1125	hypothetical protein	2.4	2.3	
Imo2803	hypothetical protein	1.6	2.4	
Imo0303	hypothetical protein	1.8	2.4	
Imo1126	acetyltransferase	2.1	2.4	
Imo0056	hypothetical protein		2.4	
Imo2568	hypothetical protein	3.8	2.6	
Imo0306	hypothetical protein	2.7	2.8	1.6
0	hypothetical protein (LMRG_02846)	3.9	2.9	

Imo0816	protease synthase and sporulation negative regulatory protein PAI 1	2.3	2.9	
Imo2281	gp22	3.3	3.1	3.4
Imo0202	listeriolysin O	3.8	3.4	2.7
0	hypothetical protein (LMRG_01894)		3.5	
Imo0204	actin-assembly inducing protein ActA		3.8	4.0
Imo2280	gp23	4.5	3.9	5.6
Imo0205	phospholipase C	3.9	4.1	4.2
Imo0308	hypothetical protein	4.1	4.1	
0	hypothetical protein (LMRG_02493)	4.5	4.2	
Imo2808	hypothetical protein	5.1	5.4	
Imo0058	secretion system component EssA	5.1	5.6	
Imo0838	MFS transporter	5.2		6.5
Imo1786	internalin C	6.3		5.8
Imo2210	hypothetical protein	4.5		5.1
Imo0207	hypothetical protein	4.9		4.6
Imo0206	hypothetical protein	4.5		4.4
Imo0203	zinc metalloproteinase	4.0		4.3
0	gp32		3.7	
Imo0118	antigen A		3.4	
Imo2322	gp44		3.2	
Imo2326	gp41		3.2	
Imo0119	hypothetical protein		3.2	
Imo2325	hypothetical protein		3.1	
Imo0116	hypothetical protein		3.1	
Imo0434	internalin B	4.4		3.0
Imo0126	hypothetical protein	-1.3		2.9
0	hypothetical protein		2.9	
0	hypothetical protein		2.8	
0	hypothetical protein		2.7	
Imo2324	anti-repressor protein			2.7
Imo2296	phage capsid protein			2.7
Imo2290	gp13	1.1		2.7
Imo0433	internalin A	3.5		2.7
Imo2287	tail tape-measure protein			2.7
Imo2303	gp66			2.7
Imo2285	tail or base plate protein gp18			2.6
Imo0947	MFS transporter			2.6
Imo2293	gp10			2.6
0	recombination protein RecT			2.6
Imo2292	gp11			2.6
0	gp47			2.6
Imo2286	tail or base plate protein gp17			2.6
Imo2298	phage minor capsid protein			2.5

Imo2299	phage portal protein	2.5
Imo2317	gp49	2.5
Imo2284	tail or base plate protein gp19	2.5
Imo2688	cell division protein FtsW/RodA/SpoVE	4.0
Imo1962	TetR/AcrR family transcriptional regulator	2.0
Imo2687	hypothetical protein	3.6
Imo2271	phage protein	2.3
Imo2300	phage terminase large subunit	2.2
Imo2279	phage holin	2.2
0	gp68	2.1
0	hypothetical protein (LMRG_01515)	2.1
Imo2282	short tail fiber	2.1
Imo2301	terminase small subunit	2.0
Imo2323	gp43	2.0
Imo1690	hypothetical protein	1.2
Imo0980	antibiotic transport system permease	1.9
Imo0647	hypothetical protein	3.5
Imo2689	magnesium-translocating P-type ATPase	3.6
Imo2071	hypothetical protein	1.7
Imo0937	hypothetical protein	2.5
Imo2495	phosphate ABC transporter ATP-binding protein	1.6
Imo0946	hypothetical protein	1.5
Imo2226	ABC-2 type transport system permease	1.5
Imo0415	peptidoglycan N-acetylglucosamine deacetylase	1.9
Imo0641	cadmium-translocating P-type ATPase	5.2
Imo0839	tetracycline resistance protein	1.5
Imo2497	phosphate ABC transporter permease	1.4
Imo2408	transcriptional regulator	1.5
Imo0995	YkrP protein	1.4
Imo2469	APA family basic amino acid/polyamine antiporter	1.7
Imo1307	hypothetical protein	3.5
Imo0421	hypothetical protein	1.1
Imo0626	hypothetical protein	1.9
Imo0280	anaerobic ribonucleoside-triphosphate reductase activating protein	3.2
0	gp27	1.6
Imo2669	hypothetical protein	4.5
0	hypothetical protein	1.2
Imo2219	foldase prsA 2	1.4
0	hypothetical protein	2.5
Imo2204	hypothetical protein	1.1
Imo1037	hypothetical protein	1.1
Imo1746	hypothetical protein	1.0
Imo0998	hypothetical protein	1.1

Imo2586	formate dehydrogenase alpha subunit	1.1
Imo1975	DNA polymerase IV	1.1
Imo1311	hypothetical protein	3.2
Imo0897	SulP family sulfate permease	2.7
Imo2075	O-sialoglycoprotein endopeptidase	1.1
Imo1761	neurotransmitter:Na ⁺ symporter	1.0
Imo0687	hypothetical protein	-1.5
Imo0758	hypothetical protein	-1.3
Imo0285	D-methionine transport system substrate-binding protein	-1.1
Imo0490	shikimate 5-dehydrogenase	3.5
Imo2720	acetyl-CoA synthetase	-1.1
Imo1987	2-isopropylmalate synthase	-1.1
Imo0186	hypothetical protein	-1.9
Imo2241	GntR family transcriptional regulator	-1.1
Imo1991	threonine dehydratase	-1.1
Imo2829	hypothetical protein	-1.2
Imo1988	3-isopropylmalate dehydrogenase	-1.2
Imo2001	mannose-specific PTS system IIC component	-1.2
Imo1700	hypothetical protein	-1.2
0	CRISPR-associated protein cas2	3.6
Imo1369	phosphate butyryltransferase	-1.2
Imo1983	dihydroxy-acid dehydratase	-1.4
Imo2345	hypothetical protein	-4.4
Imo0791	hypothetical protein	-2.4
Imo2454	hypothetical protein	-1.4
Imo2350	hypothetical protein	-5.5
Imo2437	hypothetical protein	-3.5
Imo2346	polar amino acid transport system ATP-binding protein	-4.6
Imo2348	polar amino acid transport system permease	-4.5
Imo2343	monooxygenase moxC	-4.5
Imo2349	polar amino acid transport system substrate-binding protein	-4.8
Imo2351	FMN reductase	-5.1
Imo2344	hypothetical protein	-4.1
Imo2347	polar amino acid transport system permease	-5.0
0	GNAT family acetyltransferase	-1.9
Imo1854	hypothetical protein	-2.3
Imo2797	mannitol-specific PTS system IIA component	-3.2
Imo1172	response regulator NasT	-3.7
0	hypothetical protein (LMRG_02841)	-4.3
Imo2186	heme uptake protein IsdC	-7.8
Imo2185	hypothetical protein	-7.2
Imo0541	iron complex transport system substrate-binding protein	-6.4

Imo2184	heme ABC transporter heme-binding protein isdE	-6.0
Imo2183	iron complex transport system permease	-5.6
Imo2181	SrtB family sortase	-5.6
Imo2182	iron complex transport system ATP-binding protein	-5.4
Imo0362	sec-independent protein translocase tatAy	-5.3
Imo0365	high-affinity iron transporter	-5.1
Imo0484	heme-degrading monooxygenase IsdG	-4.9
Imo0367	tat-translocated enzyme	-4.9
Imo0366	lipoprotein	-4.8
Imo0485	hypothetical protein	-4.7
Imo0361	twin arginine-targeting protein translocase TatC	-4.4
Imo2569	peptide/nickel transport system substrate- binding protein	-4.3
Imo1960	iron complex transport system ATP-binding protein	-3.5
Imo0486	50S ribosomal protein L32	-3.4
Imo0016	cytochrome aa ₃ quinol oxidase subunit IV	-3.0
Imo0351	dihydroxyacetone kinase	-3.0
Imo0560	glutamate dehydrogenase	-3.0
Imo1384	hypothetical protein	-2.9
Imo1055	dihydrolipoyl dehydrogenase	-2.8
Imo0823	aldo/keto reductase	-2.7
Imo2006	acetolactate synthase catabolic	-2.7
Imo1957	iron complex transport system permease	-2.6
Imo2101	pyridoxine biosynthesis protein	-2.6
Imo2412	NifU family SUF system FeS assembly protein	-2.5
Imo0811	carbonic anhydrase	-2.4
Imo2102	glutamine amidotransferase subunit pdxT	-2.3
Imo2755	hypothetical protein	-2.3
Imo2390	hypothetical protein	-2.3
Imo1216	bax protein	-2.2
Imo2411	FeS assembly protein SufB	-2.2
Imo1054	pyruvate dehydrogenase E2 component	-2.2
Imo2005	aryl-alcohol dehydrogenase	-2.1
Imo2413	selenocysteine lyase	-2.1
Imo1052	pyruvate dehydrogenase E1 component	-2.1
Imo1992	alpha-acetolactate decarboxylase	-2.1
Imo2255	hypothetical protein	-2.1
Imo0519	lincomycin resistance protein ImrB	-2.1
Imo0013	quinol oxidase polypeptide II	-2.1
Imo2415	FeS assembly ATPase SufC	-2.0
Imo1053	pyruvate dehydrogenase E1 component subunit beta	-2.0

Imo2414	FeS assembly protein SufD	-2.0
Imo1816	50S ribosomal protein L28	-2.0
Imo1348	glycine cleavage system T protein	-1.9
Imo1956	fur family transcriptional regulator	-1.9
Imo1303	cell division suppressor protein yneA	-1.8
Imo0140	hypothetical protein	-1.8
Imo0014	cytochrome aa ₃ quinol oxidase subunit I	-1.8
Imo0800	hypothetical protein	-1.8
Imo0843	hypothetical protein	-1.8
Imo0015	cytochrome aa ₃ quinol oxidase subunit III	-1.8
Imo2199	OsmC/Ohr family protein	-1.7
Imo0213	peptidyl-tRNA hydrolase	-1.7
Imo1387	pyrroline-5-carboxylate reductase	-1.7
Imo1349	glycine cleavage system P-protein	-1.6
Imo2778	hypothetical protein	-1.6
Imo0597	transcription regulator CRP/FNR family protein	-1.6
Imo1233	thioredoxin	-1.6
Imo1733	glutamate synthase subunit small	-1.5
Imo2761	beta-glucosidase	-1.5
Imo0682	flagellar basal-body rod protein FlgG	-1.5
Imo2429	iron complex transport system ATP-binding protein	-1.5
Imo1882	30S ribosomal protein S14	-1.5
Imo0537	allantoate deiminase	-1.5
Imo1350	glycine dehydrogenase subunit 2	-1.5
Imo2055	hypothetical protein	-1.5
Imo2147	hypothetical protein	-1.4
Imo0689	hypothetical protein	-1.4
Imo0245	preprotein translocase subunit SecE	-1.4
Imo0623	hypothetical protein	-1.4
Imo1439	superoxide dismutase	-1.4
Imo2785	catalase	-1.4
Imo2200	MarR family transcriptional regulator	-1.4
Imo1688	enoyl-[acyl carrier protein] reductase III	-1.4
Imo0394	extracellular P60 protein	-1.3
Imo0685	chemotaxis protein MotA	-1.3
Imo0424	sugar uptake protein	-1.3
Imo2263	hypothetical protein	-1.3
Imo0688	hypothetical protein	-1.3
Imo2057	protoheme IX farnesyltransferase	-1.3
Imo0790	YbaK/EbsC family protein	-1.3
Imo2376	peptidyl-prolyl isomerase	-1.3
Imo1242	hypothetical protein	-1.3
Imo2056	hypothetical protein	-1.3

lmo1847	manganese-binding lipoprotein mntA	-1.3
lmo2749	anthranilate synthase component II	-1.3
lmo1418	nucleotide pyrophosphatase	-1.3
lmo2047	50S ribosomal protein L32	-1.2
lmo1420	UDP-N-acetylenolpyruvoylglucosamine reductase	-1.2
lmo2168	lactoylglutathione lyase	-1.2
lmo1329	riboflavin biosynthesis protein RibF	-1.2
lmo2597	50S ribosomal protein L13	-1.2
lmo0966	hypothetical protein	-1.2
lmo2072	AT-rich DNA-binding protein	-1.2
lmo0970	enoyl-[acyl-carrier protein] reductase I	-1.2
lmo0574	6-phospho-beta-glucosidase gmuD	-1.2
lmo0130	hypothetical protein	-1.2
lmo2506	cell division transport system permease	-1.2
lmo1002	phosphocarrier protein HPr	-1.2
lmo1617	hypothetical protein	-1.2
lmo1734	glutamate synthase subunit large	-1.2
lmo0198	UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase	-1.2
lmo0268	phosphoglycerate mutase	-1.2
lmo0799	hypothetical protein	-1.2
lmo0695	hypothetical protein	-1.1
lmo0221	type III pantothenate kinase	-1.1
lmo2522	hypothetical protein	-1.1
lmo2832	glycerate kinase	-1.1
lmo1357	acetyl-CoA carboxylase	-1.1
lmo2693	thymidylate kinase	-1.1
lmo2389	hypothetical protein	-1.1
lmo2430	iron complex transport system permease	-1.1
lmo1891	recombination protein U	-1.1
lmo1065	hypothetical protein	-1.1
lmo0611	FMN-dependent NADH-azoreductase 1	-1.1
lmo0513	hypothetical protein	-1.1
lmo0135	peptide/nickel transport system substrate-binding protein	-1.1
lmo1234	excinuclease ABC subunit C	-1.1
lmo0297	transcriptional antiterminator	-1.1
lmo1246	ATP-dependent RNA helicase dbpA	-1.1
lmo0846	hypothetical protein	-1.1
lmo1903	bacteriocin transport accessory protein	-1.0
lmo2148	hypothetical protein	-1.0
lmo1294	tRNA delta(2)-isopentenylpyrophosphate transferase	-1.0

lmo0672	hypothetical protein	-1.0
lmo1323	hypothetical protein	-1.0
lmo0238	serine O-acetyltransferase	-1.0
lmo1848	manganese transport system membrane protein mntC	-1.0
lmo0646	hypothetical protein	-1.0
lmo2176	hypothetical protein	-1.0
lmo0765	hypothetical protein	-1.0
lmo2664	L-iditol 2-dehydrogenase	1.0
lmo1723	hypothetical protein	1.0
lmo2554	glycosyl transferase family protein	1.0
lmo1649	hypothetical protein	1.0
lmo0234	hypothetical protein	1.0
lmo1501	hypothetical protein	1.0
lmo2547	homoserine dehydrogenase	1.0
lmo0829	pyruvate:ferredoxin oxidoreductase	1.0
lmo0732	internalin	1.0
lmo0984	hypothetical protein	1.0
lmo0655	serine/threonine protein phosphatase 1	1.1
lmo1643	hypothetical protein	1.1
lmo1035	hypothetical protein	1.1
lmo1068	hypothetical protein	1.1
lmo2637	pheromone lipoprotein	1.1
lmo2105	ferrous iron transporter B	1.1
lmo0212	acetyltransferase	1.1
lmo1967	hypothetical protein	1.1
lmo0235	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	1.1
lmo0289	hypothetical protein	1.1
lmo0529	N-acetylglucosaminyltransferase	1.1
lmo0752	hypothetical protein	1.1
lmo0104	hypothetical protein	1.1
lmo2331	hypothetical protein	1.1
lmo1712	multidrug resistance protein	1.1
lmo1173	sensor histidine kinase	1.1
lmo1637	ABC-2 type transport system permease	1.2
lmo0236	YgbB family protein	1.2
lmo2719	tRNA-adenosine deaminase	1.2
lmo2553	hypothetical protein	1.2
lmo0975	ribose 5-phosphate isomerase A	1.2
lmo0274	hypothetical protein	1.2
lmo0610	internalin	1.2
lmo1261	hypothetical protein	1.2
lmo0531	hypothetical protein	1.2
lmo0625	hypothetical protein	1.2

Imo1433	glutathione reductase	1.2
Imo0593	formate/nitrite transporter	1.2
Imo1966	hypothetical protein	1.3
Imo0181	multiple sugar transport system substrate-binding protein	1.3
Imo2132	hypothetical protein	1.3
Imo0584	hypothetical protein	1.3
Imo2661	ribulose-phosphate 3-epimerase	1.3
Imo2444	hypothetical protein	1.3
Imo2069	chaperonin GroS	1.3
	hypothetical protein (LMRG_01512)	1.3
Imo2409	hypothetical protein	1.3
Imo0534	hypothetical protein	1.3
Imo0443	hypothetical protein	1.3
Imo0047	hypothetical protein	1.4
Imo0037	agmatine/putrescine antiporter	1.4
Imo0049	hypothetical protein	1.4
Imo2733	hypothetical protein	1.4
Imo2446	hypothetical protein	1.4
	hypothetical protein (LMRG_02892)	1.4
Imo2439	hypothetical protein	1.5
Imo2716	ABC transporter CydDC cysteine exporter CydD	1.5
Imo1138	Clp protease	1.5
Imo0231	ATP:guanido phosphotransferase	1.5
Imo0321	hypothetical protein	1.5
Imo0955	hypothetical protein	1.5
Imo2083	hypothetical protein	1.5
Imo2673	universal stress protein	1.6
Imo2157	hypothetical protein	1.6
Imo2231	hypothetical protein	1.6
Imo0960	hypothetical protein	1.7
Imo0994	hypothetical protein	1.7
Imo0491	3-dehydroquinate dehydratase type I	1.7
Imo0263	internalin C2	1.7
Imo2246	hypothetical protein	1.7
Imo1200	precorrin-6x reductase	1.8
Imo0515	universal stress protein	1.8
Imo0229	CtsR family transcriptional regulator	1.8
Imo2485	PspC domain-containing protein	1.8
Imo2484	membrane protein	1.8
Imo1444	foldase PrsA	1.8
Imo1750	hypothetical protein	1.9
Imo1198	cobalamin biosynthesis protein CbiG	1.9
Imo0954	hypothetical protein	1.9

lmo0751	hypothetical protein	1.9
lmo1308	hypothetical protein	1.9
lmo0061	DNA segregation ATPase FtsK/SpoIIIE	1.9
lmo0354	long-chain fatty acid CoA ligase (AMP-binding)	1.9
lmo1137	hypothetical protein	1.9
lmo1066	myo-inositol-1(or 4)-monophosphatase	1.9
lmo0554	hypothetical protein	1.9
lmo0997	ATP-dependent Clp protease ATP-binding subunit ClpE	1.9
lmo2387	hypothetical protein	2.0
lmo0459	hypothetical protein	2.0
lmo2156	hypothetical protein	2.0
lmo2085	peptidoglycan binding protein	2.0
lmo0881	hypothetical protein	2.1
lmo2445	internalin	2.1
lmo2718	cytochrome bd-I oxidase subunit I	2.1
lmo0265	succinyl-diaminopimelate desuccinylase	2.1
lmo0814	enoyl-(acyl carrier protein) reductase	2.2
lmo0133	hypothetical protein	2.2
	hypothetical protein (LMRG_01259)	2.2
	hypothetical protein (LMRG_02074)	2.2
lmo2362	glutamate/gamma-aminobutyrate antiporter	2.2
lmo0971	D-alanine transfer protein	2.3
lmo2642	serine/threonine protein phosphatase	2.3
lmo2804	hypothetical protein	2.4
lmo0961	protease	2.5
lmo0200	listeriolysin regulatory protein	2.6
lmo0972	D-alanine--poly(phosphoribitol) ligase subunit 2	2.6
lmo1651	ABC transporter	2.6
lmo1034	glycerol kinase	2.7
lmo1652	ABC transporter	2.8
lmo1033	transketolase	2.8
lmo1032	transketolase	2.9
lmo2434	glutamate decarboxylase	3.0
lmo1650	hypothetical protein	3.0
lmo0060	YukC protein	3.0
lmo2467	chitin-binding protein	3.1
lmo1506	hypothetical protein	3.2
lmo1309	hypothetical protein	3.2
lmo1310	hypothetical protein	3.2
lmo0057	hypothetical protein	3.2
lmo0279	anaerobic ribonucleoside-triphosphate reductase	3.3
lmo1505	hypothetical protein	3.5
lmo1120	hypothetical protein	3.5

Imo1121	hypothetical protein	3.6
Imo2170	enoyl-(acyl carrier protein) reductase	3.7
	hypothetical protein (LMRG_00561)	3.7
Imo0307	hypothetical protein	3.8
	hypothetical protein (LMRG_02863)	3.8
Imo1406	formate acetyltransferase	3.8
Imo0912	nitrite transporter NirC	3.9
Imo0788	hypothetical protein	3.9
Imo2686	hypothetical protein	3.9
Imo2238	hypothetical protein	4.0
	csn2 family CRISPR-associated protein	4.0
	hypothetical protein (LMRG_02864)	4.1
Imo1122	hypothetical protein	4.1
Imo1257	hypothetical protein	4.2
Imo1123	hypothetical protein	4.2
Imo1124	hypothetical protein	4.2
Imo2447	hypothetical protein	4.2
Imo2067	choloylglycine hydrolase (bsh)	4.2
Imo2594	hypothetical protein	4.3
Imo1407	pyruvate formate-lyase activating enzyme	4.3
Imo1312	hypothetical protein	4.3
Imo0412	hypothetical protein	4.4
	CRISPR-associated protein cas1	4.4
	CRISPR-associated protein	4.4
Imo1917	formate acetyltransferase	4.6
Imo2173	hypothetical protein	5.0
	hypothetical protein (LMRG_02908)	5.2
Imo2171	major facilitator family transporter	5.4
Imo2236	shikimate 5-dehydrogenase	5.5
Imo2410	hypothetical protein	6.2
Imo2172	propionate CoA-transferase	6.2
Imo2237	hypothetical protein	6.2
Imo0355	fumarate reductase flavoprotein subunit	6.7
Imo2235	NADH oxidase	7.3
Imo2234	hypothetical protein	7.6
Imo1634	bifunctional acetaldehyde-CoA/alcohol dehydrogenase	10.6

Table S3.4. Strains used in this study

Strain number	Genotype	Source
<i>L. monocytogenes</i> (Derivatives of strain 10403S)		

TNHL261	WT 10403s	This study
TNHL22	$\Delta pdeA \Delta pgpH$ (ΔPDE)	Huynh <i>et al.</i> 2015
TNHL970	$\Delta aroE$	Gift from JD Sauer
TNHL971	$\Delta aroED$	Gift from JD Sauer
TNHL972	<i>aroA::tn</i>	Gift from JD Sauer
TNHL973	<i>aroE::tn</i>	Gift from JD Sauer
TNHL974	<i>aroB::tn</i>	Gift from JD Sauer

Chapter 4. Concluding remarks and future directions

CONCLUDING REMARKS

C-di-AMP is a critical component of *L. monocytogenes*' hallmark adaptability, and is essential for both growth in rich medium and full virulence, though many of its functions remain unknown. The Δ PDE mutant accumulates high levels of c-di-AMP, and has a number of defects whose underlying mechanisms can be studied to elucidate new functions of c-di-AMP. In this dissertation, I utilized the Δ PDE mutant to identify GSH metabolism and PrfA activation as newly discovered functions regulated by c-di-AMP. This work provides foundational knowledge for how c-di-AMP regulates both *L. monocytogenes* virulence and metabolism of the PrfA cofactor GSH. Major areas of focus for follow up studies, and proposed initial experimental steps are outlined below.

FUTURE DIRECTIONS

C-di-AMP homeostasis during *L. monocytogenes* infection

A major theme of the work presented in this thesis is the phenotypic consequences of artificially elevated c-di-AMP levels. In Chapters 2 and 3, I found that c-di-AMP accumulation impairs virulence-program activation, disrupts glutathione metabolism, and attenuates virulence in PrfA dependent and independent ways. However, c-di-AMP is also essential for full *L. monocytogenes* virulence³⁷. This raises the question: How is c-di-AMP homeostasis maintained during virulence program activation and infection to both maintain essential functions and avoid detrimental effects? Studies which address this question will contribute to a better understanding of *L. monocytogenes* pathogenesis, and importantly, to a more complete picture of the biological functions of c-di-AMP. A first step to characterizing c-di-AMP homeostasis in the context of virulence is to quantify c-di-AMP levels upon virulence program activation and during host-cell infection. To do this, LC/MS/MS could be used to measure cytosolic c-di-AMP in

WT cultures grown in LSM and LSM + 10mM GSH. To assess secreted c-di-AMP during virulence-program activation, LC/MS/MS could also be performed on culture supernatants as well. As GSH is required for full activation of PrfA, and high levels of c-di-AMP reduce GSH availability, it is reasonable to hypothesize that under PrfA activating conditions, cytosolic c-di-AMP levels decrease to allow for increased GSH uptake and synthesis. However, secreted c-di-AMP is a potent activator of type I IFN response⁴. Following intravenous (IV) infection with *L. monocytogenes*, type I IFN results in rapid apoptosis and depletion of splenic lymphocytes, a phenomenon which promotes *L. monocytogenes* infection¹⁹³. Conversely, type I IFN does not promote susceptibility to *L. monocytogenes* in an oral model of infection¹⁹⁴. Therefore, c-di-AMP synthesis and secretion may be differentially regulated depending on stage of infection or host-cell niche. This possibility could be tested by utilizing LC/MS/MS to measure cytosolic and secreted c-di-AMP levels under culture conditions mimicking different host niches, or in different host cell-types infected with *Listeria* ex-vivo. Following baseline determination of how c-di-AMP levels fluctuate during PrfA activation and host-cell infection, future work will be aimed at determining the environmental signals to which c-di-AMP metabolizing proteins respond to maintain appropriate c-di-AMP levels during infection.

Saprophyte to host transition

In addition to modulating host-immune response during infection, c-di-AMP may mediate metabolic changes that occur when *L. monocytogenes* transitions between saprophyte and pathogen. Plant-derived sugars such as cellobiose can be taken up by phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS) and have been shown to suppress virulence gene activation in *L. monocytogenes*¹⁹⁵. I found that genes encoding predicted cellobiose-specific PTS components (*lmo2683-2685*, *lmo2708*) were significantly upregulated in ΔPDE relative to WT grown in LSM (**Table S2.1**). It is tempting to speculate that naturally, very high levels of c-di-AMP mediate a saprophytic lifestyle, which could involve

uptake of plant-derived sugars in soil, while suppressing virulence-program activation. While *lmo2683-2685* and *lmo2708* are predicted cellobiose transporters, and cellobiose is not present in LSM, it is possible that these transporters have additional functions which affect PrfA activity. An initial experiment to address this would be to delete *lmo2683-2685* and *lmo2708* in Δ PDE, and test whether PrfA activity is affected in these mutants.

Mechanisms of c-di-AMP toxicity in bacterial virulence

In Chapter 2, I demonstrated that c-di-AMP accumulation impairs *L. monocytogenes* virulence, and that Δ PDE virulence could be modestly restored by PrfA* (Fig. 2.6), indicating that PrfA-independent factor(s) have a significant influence on Δ PDE survival in-vivo. Upon assessing additional consequences of GSH deficiency, I found that Δ PDE is more sensitive to H₂O₂ than WT, pointing to oxidative stress as an additional factor which renders Δ PDE attenuated in-vivo (Fig. 2.7). While H₂O₂ sensitivity assays indicated *gshF* deletion causes statistically equivalent H₂O₂ sensitivity in WT and Δ PDE, plaque data demonstrates that in the absence of *gshF*, plaque-size is more reduced in Δ PDE than in WT (Fig. 2.4C). This leads to the hypothesis that reduced GSH uptake contributes to impaired Δ PDE ex-vivo virulence. An immediate way to test this hypothesis would be to treat L2 cells with buthionine sulfoximine (BSO), which will deplete L2 intracellular GSH levels¹⁹⁶, prior to infection with WT, Δ PDE, $\Delta gshF$, and Δ PDE $\Delta gshF$. $\Delta gshF$ phenocopy of Δ PDE $\Delta gshF$ in BSO-treated cells will strongly support the hypothesis that impaired GSH uptake impairs ex-vivo virulence in Δ PDE.

Another unexplained finding in Chapter 2 is that PrfA* exhibited responsiveness to GSH in the Δ PDE background (Fig. 2.2A). While PrfA* responsiveness to GSH has never been reported, PrfA possesses four cysteine residues which could potentially be glutathionylated¹⁰⁵. Previous studies have found that the PrfA(C/A)₄ mutant, in which all four cysteines are mutated to alanine, is very modestly attenuated for virulence in a mouse model¹⁰⁵. While this may not be significant in the WT background, this phenotype may be more pronounced in Δ PDE, in which

GSH synthesis is diminished but not fully abolished. To test the hypothesis that decreased glutathionylation of PrfA causes PrfA* to be GSH responsive in ΔPDE, native PrfA can be replaced with PrfA* (C/A)₄ in the ΔPDE background, followed by assessment of PrfA activity via P_{actA}::RFP reporter assay. If glutathionylation does in fact cause PrfA* to be GSH responsive in ΔPDE, P_{actA}::RFP reporter activity in ΔPDE PrfA* (C/4)_A is expected to be entirely unresponsive to GSH.

In addition to impaired GSH metabolism, ΔPDE is impaired for cell-wall homeostasis⁶⁴. One hypothesis is that sensitivity to cell-wall targeting agents renders ΔPDE sensitive to host-cell defenses such as lysozyme, which target the bacterial cell wall. This would be difficult to directly test, as the underlying mechanism of lysozyme sensitivity in ΔPDE is not known. However, a previous study found that lysozyme-M deficient mice infected with the nonpathogenic, lysozyme sensitive bacteria *Micrococcus luteus* developed severely inflamed skin lesions due to reduced lysozyme inactivation of peptidoglycan¹⁹⁷. If ΔPDE CFU counts in the liver and spleen are rescued to WT levels in a lysozyme-M deficient mouse, it will suggest that lysozyme sensitivity in ΔPDE contributes to attenuated virulence.

Forward genetic screen to identify underlying mechanisms of attenuated virulence in ΔPDE.

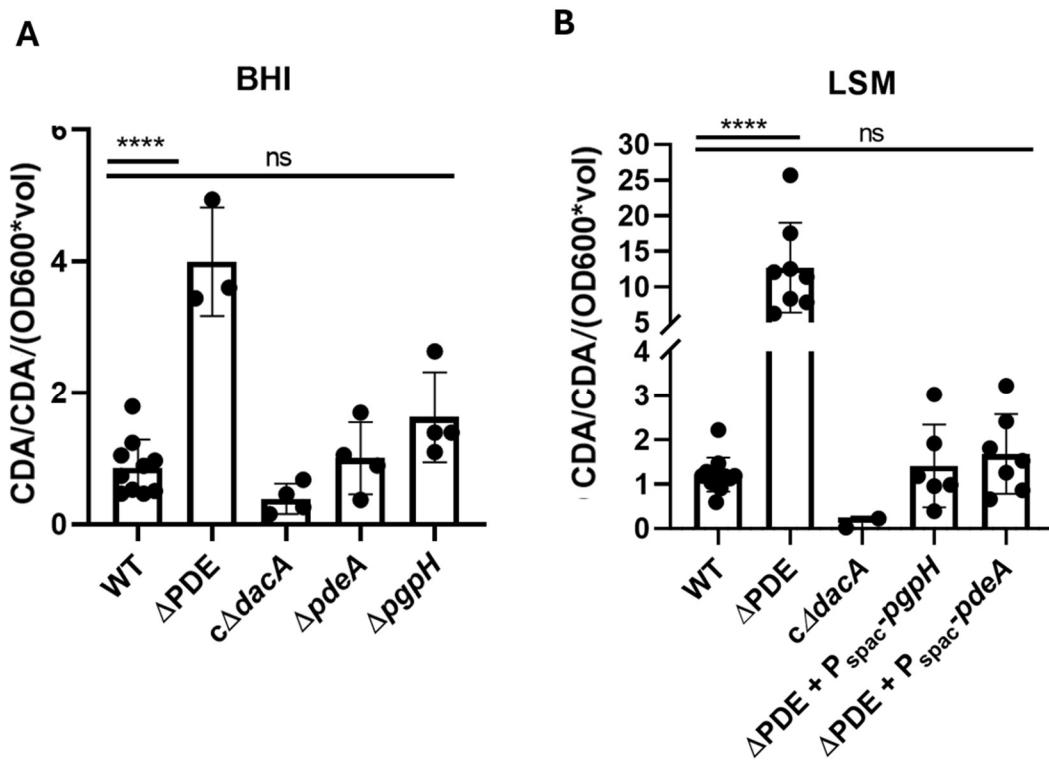
Given that c-di-AMP has many molecular targets in bacterial and host cells, we can anticipate that c-di-AMP accumulation attenuates virulence via multiple mechanisms. In addition to the targeted approaches described above, future studies can employ a forward genetic screen to identify suppressor mutations that rescue the ΔPDE strain for L2 plaque formation defect. I previously mutagenized ΔPDE pLIV2::dacA, which overexpresses a second copy of dacA and has a greater plaquing defect than ΔPDE alone, by treating it with ethyl methanesulfonate (EMS) for three minutes. While this treatment reliably generated 1-3 mutations within the genome, it appeared to be insufficient to yield suppressor mutations outside of the

dacA gene. Therefore, the screen can be repeated by treating this strain with EMS for longer. However, this approach may increase mutations/genome such that discerning what mutation rescues a single suppressor mutant will be challenging. Alternatively, a CRISPRi or CRISPRtOE approach^{198,199} can also be performed to knock down or overexpress genes in Δ PDE respectively.

Elucidating GSH degradation machinery in *L. monocytogenes*

The aim of Chapter 3 was to identify components required for GSH breakdown into essential cysteine in *L. monocytogenes*. Initially, a transposon mutagenesis screen was employed to determine genes essential for utilization of 10mM GSH as a cysteine source in LSM. However, experimental challenges led us to question the validity of the screen hits. First, cultures used in this experiment were grown into stationary phase, which could have caused additional bottlenecks to select against insertions in genes unrelated to GSH utilization, or to select against GSH degradation genes in both culture conditions. To correct for this, a future TN-seq experiment can be performed in cultures grown to mid-logarithmic phase in LSM containing 0.2mM GSH in place of cysteine. Lowering supplied GSH concentrations and growing cultures for a shorter time will provide more stringent selective pressure against insertions in genes essential for breakdown of GSH to essential cysteine. In addition, identification of low-affinity GSH transporters could be carried out by performing a similar TN-seq experiment in the Δ oppDF background, with 10mM GSH supplied as a cysteine source. Insertions in low-affinity GSH transporters would be specifically selected against in the absence of OppDF at high GSH concentrations. Importantly, the effect of c-di-AMP on novel components of GSH uptake and degradation identified from these screens will aid in the understanding of how c-di-AMP regulates GSH metabolism and virulence-program activation.

Appendix A: C-di-AMP homeostasis under different growth and stress conditions.


BACKGROUND AND INTRODUCTION

Bacteria adapt to their surroundings by responding to environmental signals. To accomplish this, bacteria often utilize small nucleotide signaling molecules called second messengers to illicit a prompt physiological response to external conditions²⁰⁰. C-di-AMP is a widespread second messenger produced by many bacteria and some archaea⁵. It is synthesized by deadenylate cyclase (DAC) proteins, and degraded by phosphodiesterase (PDE) proteins. C-di-AMP is essential in rich medium, particularly for bacteria in the Firmicutes phylum¹, and this essentiality has been well-studied. Nonetheless, uncontrolled C-di-AMP accumulation can have detrimental effects on growth and stress-response in c-di-AMP producing bacteria^{135,136}. In fact, toxicity of uncontrolled c-di-AMP accumulation is more widespread than c-di-AMP essentiality, and occurs in many bacteria for which c-di-AMP is dispensable^{136,137}. Therefore, maintaining c-di-AMP homeostasis is of critical importance for bacteria that produce it. However, the mechanisms by which c-di-AMP levels are maintained in the cell, and ways in which c-di-AMP modifies cellular pathways to maintain optimal growth, are ill defined. The goal of the work presented here was to identify conditions under which c-di-AMP levels change significantly in WT *L. monocytogenes*, and to then systematically test mutants lacking c-di-AMP metabolic proteins for the same response. This work would have identified novel mechanisms by which c-di-AMP homeostasis is controlled in *L. monocytogenes*. Unfortunately, inconsistencies in LC/MS/MS measurements of intracellular c-di-AMP led to this work remaining largely incomplete. However, the data presented here could provide a useful basis for follow up studies on the regulation of DacA, PdeA, and PgpH in *L. monocytogenes*.

RESULTS AND DISCUSSION

C-di-AMP levels during growth in rich and defined medium

Initial work on this project was aimed at identifying stress conditions under which c-di-AMP levels change in WT *L. monocytogenes* relative to growth in standard BHI or LSM, and then systematically testing which c-di-AMP metabolic protein-DacA, PdeA, or PgpH-was responsible for sensing altered conditions and eliciting changes in nucleotide levels. Interestingly, in media alone, WT c-di-AMP levels appeared to be higher in LSM than in BHI (Fig. A1A-B). Curious if this was mediated by PdeA, PgpH, or DacA activity, c-di-AMP levels in BHI and LSM were measured for mutants with just one functional PDE, or conditionally depleted for *dacA*. Data in BHI was in agreement with previous findings that the Δ PDE mutant accumulates ~4-5x more c-di-AMP in BHI than WT and that PdeA and PgpH are both sufficient alone to restore c-di-AMP levels back to baseline¹³. Upon repeating additional experiments in LSM, I found that WT, and mutants with just one functional PDE, produced similar amounts of c-di-AMP in LSM and BHI (Fig. A1A-B). The Δ PDE mutant, however, produced ~10x more c-di-AMP compared to WT in LSM (Fig. A1A-B). These data suggest that DacA is more active in LSM, causing higher accumulation of c-d-AMP than in BHI when PDE activity is absent. Additionally, all results presented in the remainder of this section are from samples grown in LSM. This decision was made in the hopes that fewer molecular components were present in LSM than in BHI which could interfere with LC/MS/MS sensitivity.

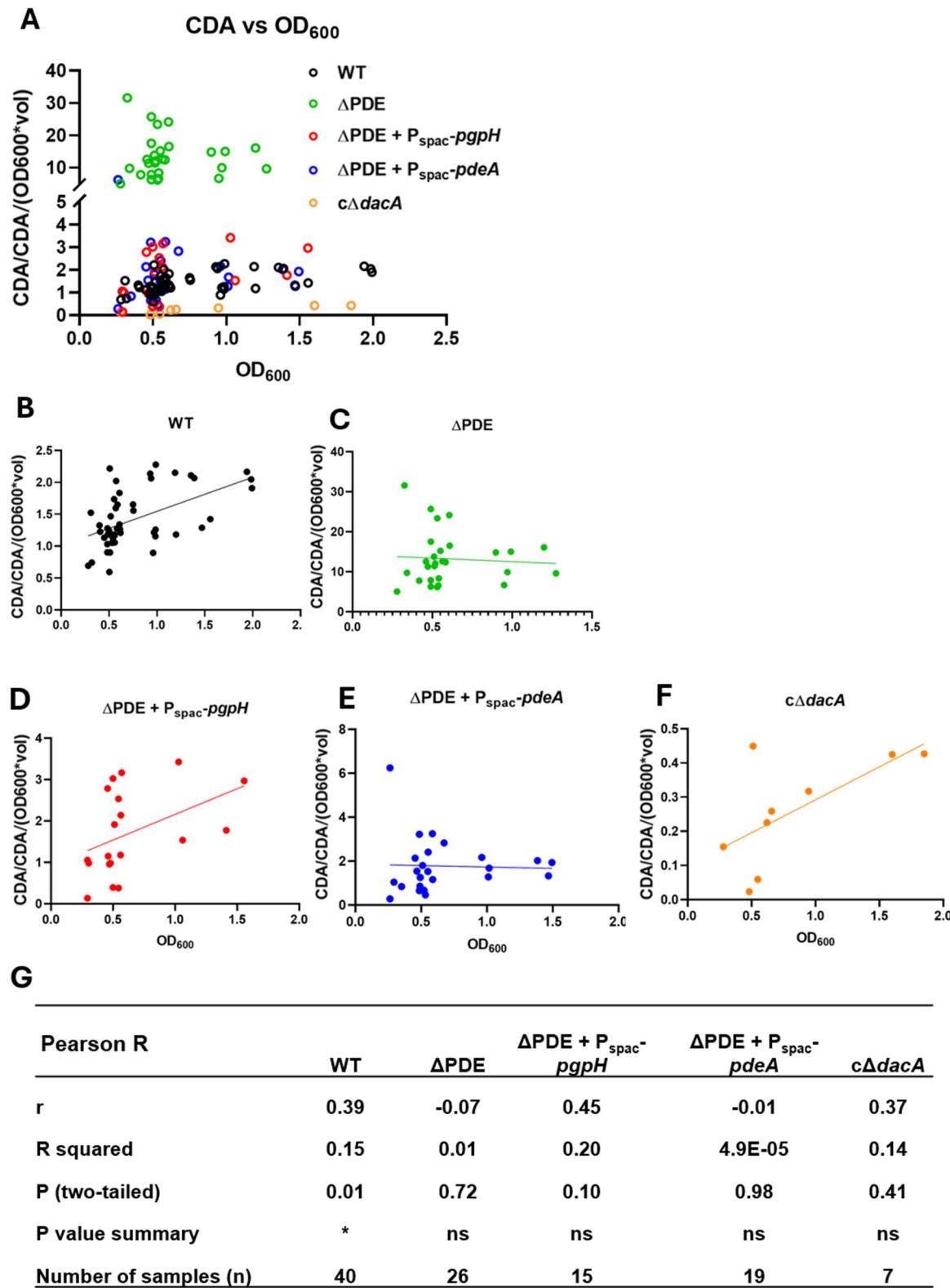


Figure A1. Intracellular c-di-AMP levels in BHI (A) and LSM (B). Methanol-extracted c-di-AMP was quantified via LC/MS/MS and normalized to the internal standard C¹³N¹⁵-c-di-AMP (CDA*). CDA/CDA* ratios were normalized to OD₆₀₀ and volume of collected culture. Error bars show standard deviations. Statistical analyses were performed by two-way ANOVA with multiple comparisons for the indicated pairs: ns, non-significant; *, P < 0.05; **, P < 0.01; ****, P < 0.0001

C-di-AMP levels at different OD₆₀₀ Values

Knowing that c-di-AMP regulates turgor pressure, which changes over the course of bacterial cell-division⁴⁷, I hypothesized that c-di-AMP levels may be dynamic depending on growth phase. To test this hypothesis, I re-analyzed c-di-AMP levels measured in LSM only by plotting them against exact OD₆₀₀ at the time of culture collection. As expected, c-di-AMP levels were ~10-fold higher in ΔPDE than in WT across OD₆₀₀ levels, whereas presence of either PdeA or PgpH was sufficient to maintain WT c-di-AMP levels. $c\Delta dacA$ also had the lowest c-di-AMP levels of all the strains, as was expected (Fig. A2A)

Next, Pearson correlation analysis was used to test for a linear relationship between OD₆₀₀ and c-di-AMP levels and a linear regression line-of-best-fit was overlaid onto individual scatterplots (Fig. A2B-F). While fitted regression lines appeared to have a positive slope for WT, Δ PDE + P_{spac}-*pgpH*, and c Δ *dacA*, and a negative slope for Δ PDE, calculated Pearson R was only significant for WT (Fig. A2B-G). While this data indicates that c-di-AMP levels increase over the course of growth, there are several limitations that likely affected the results. First, sampling was uneven across strains, with WT having at least ~2x the number of replicates of any other strain (Figure A2G). The statistical significance of the Pearson's R calculated for WT is likely due to the higher number of samples compared to other strains. However, increasing replicates for other strains may reveal exciting relationships between OD₆₀₀ and c-di-AMP levels that were not evident from this study. Additionally, OD₆₀₀ levels at which samples were collected clustered largely between 0.5 and 1, which is considered mid-exponential phase for *L. monocytogenes*. Most of these samples were collected as media-only controls for stress-exposed samples, so growth to a constant OD₆₀₀ was employed for consistency. To truly determine if c-di-AMP levels correlate with growth phase, additional sampling would have to be performed for cultures during lag-phase, as well as stationary phase.

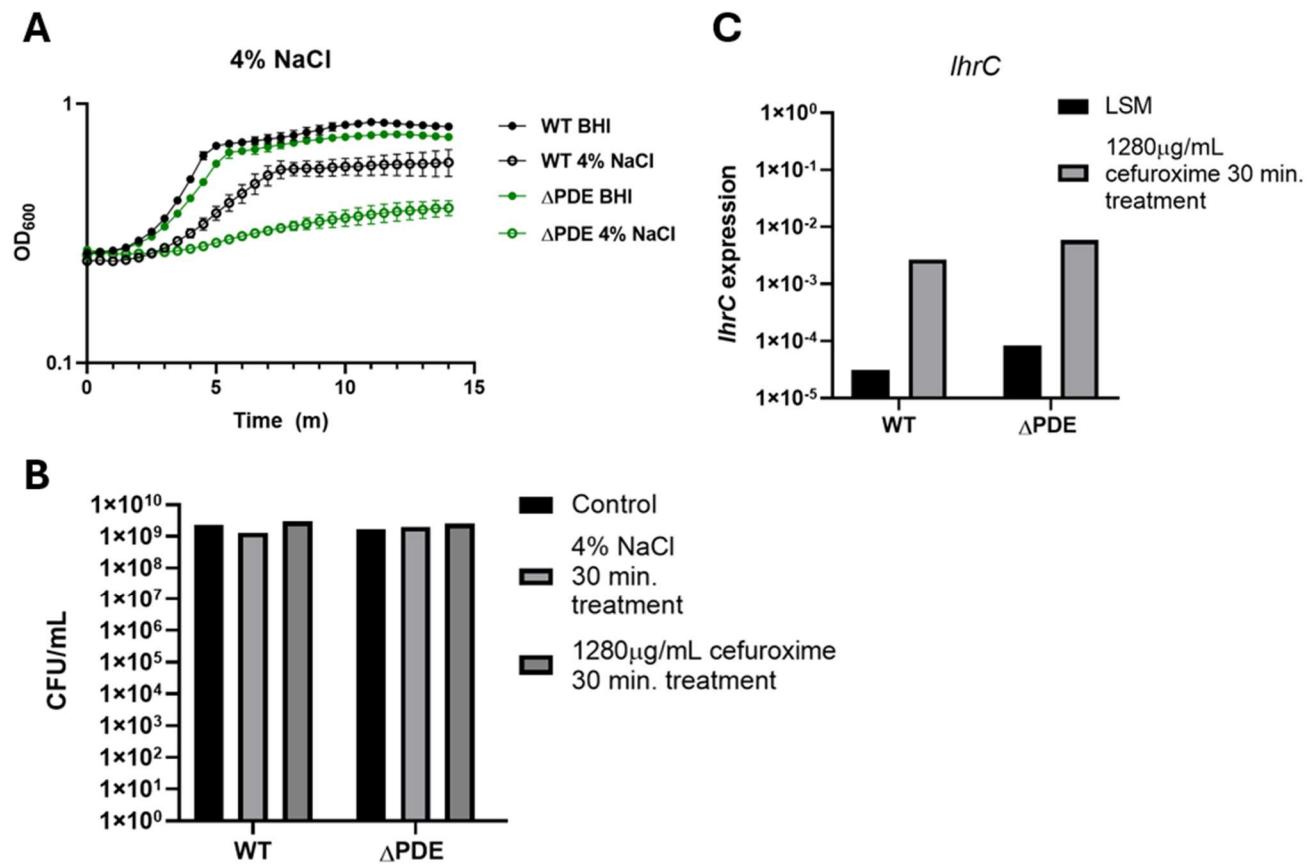
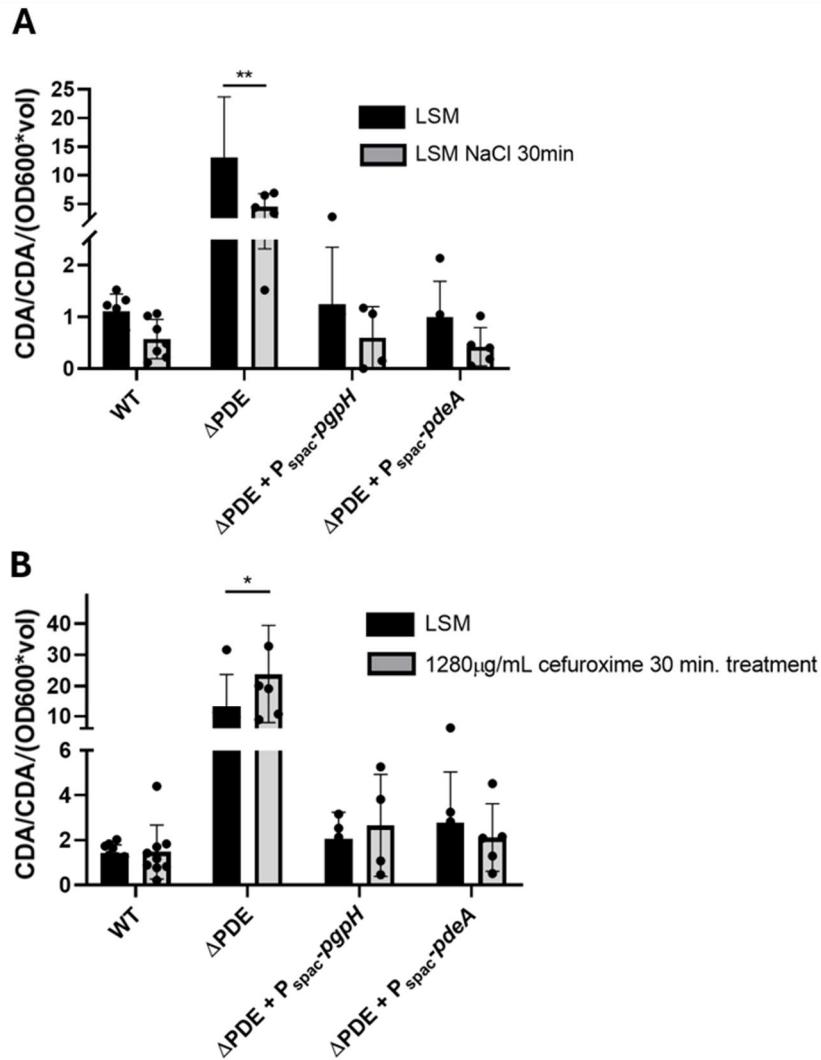


Figure A2: Normalized CDA vs. OD₆₀₀. Normalized CDA vs OD₆₀₀ plotted for all strains (A), and for each strain individually (B-F). Linear regression analysis

was used to plot lines-of-best-fit. Pearson correlation analysis between OD₆₀₀ and normalized CDA (G) was performed for each strain individually.

C-di-AMP levels following exposure to osmotic and cell-wall stress

C-di-AMP accumulation in ΔPDE leads to sensitivity to the cell-wall targeting β-lactam, cefuroxime¹³, as well as osmotic stress induced by 4% NaCl²³ (Fig. A3A). However, how c-di-AMP levels naturally change in response to cefuroxime and NaCl stress is not known. I hypothesized that upon exposure to 10x the WT minimum inhibitory concentration (MIC) of cefuroxime, or to 4% NaCl, WT c-di-AMP levels would decrease to avoid the toxic effects on β-lactam and NaCl tolerance. I further hypothesized that this observation would be disrupted by removing function of one or both PDEs in *L. monocytogenes*. Because c-di-AMP levels were barely detectable in LSM via LC/MS/MS, cΔdacA was excluded from this experiment. Before quantifying intracellular c-di-AMP following cefuroxime and NaCl exposure, it was first verified that cefuroxime and NaCl exposure did not significantly impair bacterial growth. To do this, CFU was assessed following 30 minutes of exposure to either 4% NaCl or 10x the MIC of cefuroxime (WT MIC in LSM=128μg/mL) for both WT and ΔPDE at mid-log phase (Fig. A3B-C). To ensure cefuroxime exposure conditions was sufficient to elicit a biological response in WT, qPCR on *IhrC*, the cell-wall stress responsive sRNA²⁰¹, was performed on both WT and ΔPDE grown to mid-log phase and exposed to 1280μg/mL cefuroxime as done before. *IhrC* expression was robustly induced in both WT and ΔPDE upon cefuroxime exposure (Fig A3D), indicating that 30-minutes of exposure to 1280μg/mL cefuroxime after mid-log phase was reached both induced a biological response and did not diminish growth.


Figure A3. Growth and transcriptional response following exposure to NaCl and cefuroxime stress. A. 14h growth curve of WT and Δ PDE grown in BHI with and without indicated concentrations of NaCl. Data represents the average of three separate experiments. Error bars represent standard-deviations. B. CFU/mL in LSM only control, cultures exposed to either 4% NaCl or 1280 μ g/mL cefuroxime in LSM after reaching mid-logarithmic phase. C. qRT-PCR performed for *IhrC* in WT and Δ PDE strains in LSM only control, or cefuroxime-treated condition described in B. Experiments in B and C were performed once.

Following exposure to 4% NaCl, average c-di-AMP levels in all strains decreased.

However, this difference was only statistically significant in the Δ PDE strain (Fig. A4A).

Nonetheless, these results suggest that either increased DacA activity, or increased c-di-AMP export occurs in response to osmotic stress. It is tempting to speculate that increasing sample size would lead to significantly different c-di-AMP levels following NaCl exposure in WT, as well as additional mutants. Additionally, future experiments could attempt increasing percentage of NaCl used for exposure, to test if this would further suppress intracellular c-di-AMP levels.

WT c-di-AMP levels did change following exposure to cefuroxime. Interestingly, c-di-AMP significantly increased in the Δ PDE mutant following cefuroxime exposure, and the same phenomenon occurred to a lesser extent in a strain containing only a functional copy of PgpH, though this was not statistically significant (Fig. A4B). Similar to WT, c-di-AMP levels did not change in response to cefuroxime stress.

Figure A4. C-di-AMP levels in response to NaCl and cefuroxime stress. Normalized c-di-AMP levels in the indicated strains grown to mid-log phase and exposed to 4% NaCl (A), or 1280 μ g/mL cefuroxime (B) for 30 minutes. Error bars show standard deviations. Statistical analyses were performed by two-way ANOVA with multiple comparisons for the indicated pairs: ns, non-significant; *, P < 0.05; **, P < 0.01; ***, P < 0.0001.

Initially, it seemed puzzling that c-di-AMP does not increase following cefuroxime exposure, even though its accumulation causes cefuroxime sensitivity. However, in LSM, levels of c-di-AMP in Δ PDE strain are ~10x higher than in WT. It is probable that there is a threshold c-di-AMP concentration, that exists somewhere between those of WT and Δ PDE, at which cefuroxime sensitivity is induced. Basal, or even slightly elevated levels of c-di-AMP in WT may in fact be beneficial to resistance to cefuroxime sensitivity. Indeed, a previous study found that deletion of PgpH led to increased cefuroxime resistance in *L. monocytogenes*⁷¹

Overall, the results from this work demonstrate that c-di-AMP levels in *L. monocytogenes* are dynamic depending on media composition, growth phase, and stress conditions. However, to attain significant and reproducible results, sample size must be increased. Additional, stress conditions may need to be modified to induce c-di-AMP changes of greater magnitude.

MATERIALS AND METHODS

Strains and culture conditions

L. monocytogenes strains are listed in **Table SA1**. Listeria Synthetic Medium (LSM) was prepared based on published recipe⁵⁴. Over-expression of genes was accomplished using the integrative plasmid pPL2¹⁴⁷. For all experiments related to broth cultures, *L. monocytogenes* was grown at 37°C with shaking and without antibiotics. For glycerol stocks and maintenance, strains carrying derivatives of the integrative plasmid pPL2 were grown in Brain Heart Infusion broth with 200 μ g/mL streptomycin and 10 μ g/mL chloramphenicol.

RT-qPCR for *L. monocytogenes* genes in broth

For quantification of *IhrC* expression, *L. monocytogenes* cultures were grown in LSM or LSM to OD₆₀₀ ~0.5. RNA was extracted, treated with Turbo DNase and converted to cDNA using iScript cDNA synthesis kit (BioRad). Gene expression was quantified using iTaq Universal

SYBR Green (BioRad) with primers specific to each target, with *rplD* as the control housekeeping gene. Sequence of RT-qPCR *lhrC* forward (TNH303) and reverse (TNH304) primers are, respectively, as follows: ATAAGCTAACACAAGCAAAACATT, TAAAAAAACCAGTGTGGAAAAAGGGAG.

Quantification of c-di-AMP by LC/MS/MS

Quantification of c-di-AMP from *L. monocytogenes* cultures was carried out as described previously¹³. In short, *L. monocytogenes* strains were grown in either BHI or LSM to mid-log phase (OD600, ~0.5). Cell pellets from 0.5-ml cultures were resuspended in 50 µl of 0.25 µM C¹³N¹⁵-c-di-AMP, which is an internal standard, and lysed via sonication. Methanol extracted fractions were pooled, dried in a SpeedVac, and resuspended in 50 µl of MilliQ H₂O. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on an Agilent 6460 Triple Quad LC-MS/MS with a 1260 HPLC. Chromatographic separation was done with an analytical Synergi 4u Hydro-RP 80A column (50 by 2 mm, 4 µm; Phenomenex). Mass transitions for c-di-AMP quantification are previously published. Peak areas of the c-di-AMP transition were divided by that of C13N15-c-di-AMP (+689/146) in the same sample.

SUPPLEMENTARY MATERIAL

Table SA1: Strains used in this study

Strain number	Genotype	Source
<i>L. monocytogenes</i> (Derivatives of strain 10403S)		
TNHL261	WT 10403s	This study
TNHL22	ΔpdeA ΔpgpH (ΔPDE)	Huynh <i>et al.</i> 2015
TNHL261	cΔdacA	This study
TNHL12	ΔpdeA	This study
TNHL295	ΔpgpH ΔPDE + pPL2-Pspac-	This study
TNHL27	pdeA ΔPDE + pPL2-Pspac-	This study
TNHL28	pgpH	This study

Appendix B: Transcriptional response of WT, *cΔdacA* and *ΔPDE* to cefuroxime stress.

BACKGROUND AND INTRODUCTION

Our lab has previously published that the *ΔPDE* strain, which accumulates ~4x more c-di-AMP than WT in BHI, and ~10x more c-di-AMP than WT in the defined medium LSM, is more susceptible than WT to the β -lactam cefuroxime⁶⁴. While the *ΔPDE* mutant does have a number of cell-wall defects, such as decreased abundance of muropeptides, a thinner cell wall, and reduced total peptidoglycan, the exact mechanisms underlying cefuroxime sensitivity in *ΔPDE* remain unknown. We hypothesized that in *ΔPDE*, expression of genes important for cell-wall homeostasis and cefuroxime resistance would be differentially expressed compared to WT following cefuroxime stress. We further hypothesized that certain gene expression patterns in *cΔdacA*, which is severely depleted for c-di-AMP, would be inverse to those in *ΔPDE* upon cefuroxime stress, as well as in media alone. Thus, the aim of the work presented in this appendix was driven by two main goals: 1) To identify differentially regulated genes in *ΔPDE* which contribute to cefuroxime sensitivity, and 2) to identify genes whose expression level could serve as a reporter of c-di-AMP levels, either in the presence or absence of cefuroxime stress.

RESULTS AND DISCUSSION

Biological duplicates of WT, *ΔPDE*, and *cΔdacA* were grown to mid-log ($OD_{600}=\sim 0.5$) phase in LSM. Upon reaching mid-log phase, cultures were split, and cefuroxime was added to one of the cultures to a final concentration of 1280 μ g/mL. Both cefuroxime treated and untreated controls were grown an additional 30 minutes before being harvested for RNA

extraction. The cDNA libraries were sequenced at the depth of 17 – 20 million reads, and had 852x-1042x mapped read coverage. Differential expression analysis was performed via EdgeR, and genes were considered significant if they exhibited >2-fold change relative to the control, and a P-value <0.05.

Differential gene expression was calculated for each strain exposed to cefuroxime, relative to WT in cefuroxime, and for each strain in LSM relative to WT in LSM (**Table SB1**). DEGs in Δ PDE grown in LSM relative to WT LSM are presented in **Table SB.1**. Additional differential gene expression analysis was performed for each strain following cefuroxime stress relative to itself in LSM (**Table SB2**).

In all comparisons with WT, both with and without cefuroxime stress, Δ PDE exhibited a similar transcriptional profile wherein A118 phage genes and the PrfA virulence regulon were downregulated, and PTS-system genes were upregulated. Interestingly, *lmo2683-2685*, which encode cellobiose-specific PTS system IIA, B, and C components, which were significantly upregulated in all comparisons of Δ PDE to WT, were the most highly significantly downregulated genes in all comparisons of Δ dacA to WT. Thus, transcription of these genes could potentially serve as a useful indicator of c-di-AMP levels as an alternative to LC/MS/MS. However, given the complex involvement of PTS systems in *L. monocytogenes* in growth and virulence, and their regulation by multiple sigma factors²⁰², it is unlikely that these genes would serve as a reliable c-di-AMP reporter in variable growth conditions. It is interesting to note that in WT exposed to cefuroxime, compared to itself in LSM, PrfA regulon genes and phage genes were significantly downregulated. This is similar the transcriptional profile of Δ PDE in the absence of cell-wall stress. This finding suggests that cell-wall stress, induced by either cefuroxime, c-di-AMP accumulation, or both, causes downregulation of the *L. monocytogenes* PrfA regulon as well as A118 prophage genes. Whether the underlying mechanism is the same in WT and Δ PDE has yet to be determined.

While results from this experiment did not yield any differentially expressed genes of interest which could help explain Δ PDE cefuroxime sensitivity, further analyses of this dataset could still yield promising results. Upon discovering that the PrfA regulon was downregulated in Δ PDE, work aimed at characterizing cell-wall homeostasis in Δ PDE was deprioritized. Nonetheless, this dataset will hopefully serve as a useful reference for other researchers investigating the role of c-di-AMP in *L. monocytogenes* growth.

MATERIALS AND METHODS

L. monocytogenes cultures were grown to OD₆₀₀ of ~ 0.5, and cultures were split. To one half of culture, filter-sterilized cefuroxime stock was added to a final concentration of 1280 μ g/mL. Both cultures were allowed to grow an additional 30 minutes and then harvested by mixing 1:1 with cold methanol and centrifugation. RNA was extracted using acidified phenol:chloroform at pH 5.2 as previously described¹⁴⁸. Contaminated DNA was removed from extracted RNA using Turbo DNase (Thermo Scientific). RNA sequencing and read mapping was performed by MiGS Sequencing Center (Pittsburgh, PA). Reads were mapped to the *L. monocytogenes* 10403S genome (NCBI:txid393133). Differentially expressed gene (DEG) analysis was performed via EdgeR¹⁴⁹.

Table SB1: Significantly (P<0.05) differentially expressed genes (Fold-change >2) relative to WT in the indicated condition. Samples appended with “cef” were grown to mid-log phase in LSM, and then cefuroxime was added to culture to a concentration of 1280 μ g/mL for 30 minutes prior to harvest. Samples appended with “LSM” indicate paired, untreated control.

EGD-E Gene ID	Gene function	Log2Fold change		
		Δ PDE cef	c Δ dacA cef	vs WT in LSM
lmo0001	chromosomal replication initiator protein DnaA		1.16	
lmo0019	hypothetical protein	1.60		
lmo0021	mannose-specific PTS system IIA component			1.15
lmo0022	mannose-specific PTS system IIB component	1.18		
lmo0024	mannose-specific PTS system IID component			
lmo0037	agmatine/putrescine antiporter		2.50	3.42
lmo0042	membrane-associated protein			-1.06

Imo0047	hypothetical protein			
Imo0052	DHH subfamily 1 protein	-9.75		
Imo0059	YukD protein			
Imo0072	hypothetical protein	1.22		
Imo0083	hypothetical protein		-1.09	
Imo0085	hypothetical protein		1.54	
Imo0087	hypothetical protein		1.05	1.40
Imo0088	ATP synthase subunit C	1.24		
Imo0095	hypothetical protein		-1.47	-1.10
Imo0096	mannose-specific PTS system IIAB component manL			
Imo0097	mannose-specific PTS system IIC component		-1.30	
Imo0098	F-type H ⁺ -transporting ATPase subunit delta		-1.05	
Imo0101	hypothetical protein		-2.07	-1.44
Imo0104	hypothetical protein			-1.17
Imo0105	chitinase			
Imo0107	ABC transporter	1.19	1.68	
Imo0115	hypothetical protein		1.36	
Imo0116	hypothetical protein	-1.56		
Imo0117	prophage LambdaLm01, antigen B	-1.25		
Imo0118	antigen A	-1.89	1.15	
Imo0119	hypothetical protein	-1.54	1.40	1.46
Imo0120	hypothetical protein	-1.49	1.37	1.27
Imo0121	hypothetical protein	-1.58	1.27	
Imo0122	hypothetical protein	-1.36	1.14	1.02
Imo0123	minor structural protein	-1.52	1.32	1.53
Imo0124	hypothetical protein	-1.37	1.13	1.17
Imo0125	hypothetical protein	-1.41	1.14	1.18
Imo0126	hypothetical protein	-1.30	1.27	1.05
Imo0127	hypothetical protein	-1.34	1.22	
Imo0128	hypothetical protein	-1.60	1.04	
Imo0129	N-acetylmuramoyl-L-alanine amidase	-1.25	1.29	1.16
Imo0130	hypothetical protein			
Imo0134	hypothetical protein		-1.35	-1.02
Imo0135	peptide/nickel transport system substrate-binding protein			
Imo0136	peptide/nickel transport system permease			
Imo0137	peptide/nickel transport system permease		-1.23	
Imo0138	hypothetical protein			
Imo0139	hypothetical protein			
Imo0143	hypothetical protein			
Imo0149	hypothetical protein			
Imo0152	peptide/nickel transport system substrate-binding protein	-1.82		
Imo0160	peptidoglycan bound protein		-1.05	

Imo0161	hypothetical protein			
Imo0186	hypothetical protein	1.46	-1.17	-1.42
Imo0197	stage V sporulation protein G			-1.08
Imo0200	listeriolysin regulatory protein	-1.16		
Imo0201	1-phosphatidylinositol phosphodiesterase	-6.30	-1.06	
Imo0202	listeriolysin O	-6.97		-1.35
Imo0203	zinc metalloproteinase	-4.15		
Imo0204	actin-assembly inducing protein ActA	-6.38		-1.80
Imo0205	phospholipase C	-6.14		-1.88
Imo0206	hypothetical protein	-3.80		-1.98
Imo0207	hypothetical protein	-2.64		-1.89
Imo0223	cysteine synthase A	-1.10		
Imo0229	CtsR family transcriptional regulator		-1.29	
Imo0230	hypothetical protein		-1.21	
Imo0231	ATP:guanido phosphotransferase			1.26
Imo0232	ATP-dependent Clp protease ATP-binding subunit ClpC			
Imo0233	DNA repair protein RadA			1.07
Imo0238	serine O-acetyltransferase			2.33
Imo0239	cysteinyl-tRNA synthetase			1.95
Imo0240	ribonuclease III family protein			1.40
Imo0241	TrmH family RNA methyltransferase group 3			1.39
Imo0242	hypothetical protein			1.11
Imo0243	RNA polymerase sporulation-specific sigma factor			
Imo0244	50S ribosomal protein L33			
Imo0266	hypothetical protein	1.77		2.30
Imo0267	hypothetical protein	1.05		1.77
Imo0279	anaerobic ribonucleoside-triphosphate reductase	1.43		1.72
Imo0280	anaerobic ribonucleoside-triphosphate reductase activating protein	1.31		1.52
Imo0286	aminotransferase	-1.20		
Imo0292	hypothetical protein		-1.15	
Imo0300	beta-glucosidase	1.67		2.01
Imo0301	cellobiose-specific PTS system IIA component			2.29
Imo0303	hypothetical protein		-1.79	
Imo0309	hypothetical protein			
Imo0316	hydroxyethylthiazole kinase		1.08	1.35
Imo0323	hypothetical protein	1.19		
Imo0324	lipoprotein			
Imo0325	hypothetical protein			-1.57
Imo0326	transcriptional regulator			
Imo0328	hypothetical protein			
Imo0331	internalin			-1.05
Imo0332	hypothetical protein			-1.41
Imo0334	hypothetical protein			

Imo0336	hypothetical protein	1.11		
Imo0340	hypothetical protein	-1.11	-1.46	
Imo0342	transketolase	1.50	1.02	
Imo0343	transaldolase	1.72	1.13	
Imo0344	short chain dehydrogenase	1.53		
Imo0345	ribose 5-phosphate isomerase B	1.32		
Imo0346	triosephosphate isomerase	1.85	1.24	
Imo0347	dihydroxyacetone kinase L subunit	1.65		
Imo0348	dihydroxyacetone kinase	1.70	1.15	
Imo0349	hypothetical protein	1.41		
Imo0350	hypothetical protein	1.80	1.28	
Imo0351	dihydroxyacetone kinase	-1.15	1.70	1.39
Imo0355	fumarate reductase flavoprotein subunit	1.25		
Imo0357	fructose-specific PTS system IIA component	1.14		
Imo0361	twin arginine-targeting protein translocase TatC	-1.15		
Imo0362	sec-independent protein translocase tatAy	-1.31		
Imo0365	high-affinity iron transporter	-1.85		
Imo0366	lipoprotein	-1.57		
Imo0367	tat-translocated enzyme	-1.61		
Imo0372	beta-glucosidase	1.34	1.66	1.70
Imo0373	cellobiose-specific PTS system IIC component	1.00		
Imo0374	cellobiose-specific phosphotransferase enzyme IIB component	1.56	2.21	
Imo0378	hypothetical protein	1.97	2.67	
Imo0383	methylmalonate-semialdehyde dehydrogenase	1.09		
Imo0384	5-deoxy-glucuronate isomerase	1.68		
Imo0385	5-dehydro-2-deoxygluconokinase	1.37		
Imo0386	3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase	1.41	1.91	
Imo0394	extracellular P60 protein	-1.25	-2.04	
Imo0398	fructose-specific PTS system IIA component			
Imo0400	fructose-specific PTS system IIC component	4.27	4.73	
Imo0406	lactoylglutathione lyase	-1.01		
Imo0408	hypothetical protein	-1.13		
Imo0415	peptidoglycan N-acetylglucosamine deacetylase	-1.08		
Imo0425	PRD/PTS system IIA 2 domain-containing regulatory protein	1.28	1.37	
Imo0426	fructose-specific PTS system IIA component	1.24	1.01	
Imo0427	fructose-specific PTS system IIB component		1.48	
Imo0433	internalin A	-1.27		
Imo0434	internalin B	-1.66		
Imo0436	hypothetical protein		-1.09	
Imo0440	hypothetical protein		-1.36	
Imo0442	hypothetical protein	1.05		
Imo0443	hypothetical protein			

lmo0444	membrane protein			
lmo0479	secreted protein	1.01	-1.25	-1.46
lmo0485	hypothetical protein			
lmo0489	hypothetical protein		2.08	2.07
lmo0490	shikimate 5-dehydrogenase			1.01
lmo0492	transcription regulator LysR		-1.07	-1.23
lmo0498	ribose 5-phosphate isomerase B	1.04		
lmo0500	hypothetical protein			1.21
lmo0502	hypothetical protein		1.10	
lmo0504	hypothetical protein		1.04	1.09
lmo0517	phosphoglycerate mutase			1.41
lmo0518	membrane protein		-1.46	
lmo0544	glucitol/sorbitol-specific PTS system IIC component	4.45	4.99	
lmo0545	glucitol operon activator protein			1.47
lmo0546	sorbitol-6-phosphate 2-dehydrogenase	2.15	2.38	
lmo0548	hypothetical protein			1.27
lmo0549	internalin	1.00		
lmo0550	peptidoglycan bound protein			
lmo0559	hypothetical protein			
lmo0560	glutamate dehydrogenase			1.09
lmo0573	AGXA family MFS transporter xanthine/uracil permease			-1.31
lmo0579	hypothetical protein		-1.16	
lmo0582	invasion associated secreted endopeptidase			
lmo0584	hypothetical protein			-1.08
lmo0586	hypothetical protein		1.83	2.15
lmo0587	secreted protein			1.38
lmo0592	hypothetical protein		-1.31	
lmo0598	biotin biosynthesis protein BioY			-1.12
lmo0604	hypothetical protein	-2.18		
lmo0609	hypothetical protein		-1.43	
lmo0629	hypothetical protein		-1.02	
lmo0635	2-haloalkanoic acid dehalogenase		-1.16	-1.27
lmo0642	hypothetical protein		-1.08	-1.01
lmo0647	hypothetical protein		1.28	1.25
lmo0659	hypothetical protein		1.16	1.89
lmo0665	hypothetical protein			1.32
lmo0669	hypothetical protein			
lmo0670	hypothetical protein			
lmo0675	flagellar motor switch protein FliN			-1.57
lmo0681	flagellar biosynthesis regulator FliF			
lmo0683	chemotaxis protein methyltransferase			
lmo0684	hypothetical protein	1.03		
lmo0685	chemotaxis protein MotA			-1.03

Imo0686	chemotaxis protein MotB		
Imo0687	hypothetical protein		
Imo0688	hypothetical protein		
Imo0689	hypothetical protein		
Imo0692	chemotaxis protein cheA	1.09	
Imo0694	hypothetical protein	1.09	
Imo0695	hypothetical protein	1.02	
Imo0696	flagellar hook capping protein	1.35	
Imo0697	flagellar hook protein FlgE	1.47	1.10
Imo0698	hypothetical protein	1.49	1.21
Imo0699	flagellar motor switch protein FliM	1.44	1.39
Imo0700	flagellar motor switch protein FliN/FliY	1.51	1.14
Imo0701	hypothetical protein	1.39	1.12
Imo0702	hypothetical protein	1.55	1.24
Imo0703	hypothetical protein	1.25	1.15
Imo0704	hypothetical protein	1.12	1.09
Imo0705	flagellar hook-associated protein FlgK	1.20	
Imo0706	flagellar hook-associated protein 3	1.01	
Imo0716	flagellar protein export ATPase Flil	1.22	
Imo0731	hypothetical protein	1.14	
Imo0741	hypothetical protein	1.28	2.80
Imo0742	ABC transporter ATP-binding protein	2.60	2.43
Imo0745	hypothetical protein		
Imo0758	hypothetical protein	1.49	2.05
Imo0759	glyoxylase	1.60	2.00
Imo0760	hypothetical protein	1.47	1.76
Imo0761	hypothetical protein	1.55	1.46
Imo0762	GTP-binding protein HflX	1.20	
Imo0765	hypothetical protein		-1.12
Imo0766	multiple sugar transport system permease		
Imo0767	maltose/maltodextrin ABC transporter permease MalG		
Imo0778	hypothetical protein		-1.04
Imo0786	FMN-dependent NADH-azoreductase 2		-1.10
Imo0788	hypothetical protein	1.53	1.69
Imo0791	hypothetical protein		-1.37
Imo0794	hypothetical protein	1.01	
Imo0797	hypothetical protein		
Imo0798	AAT family amino acid transporter	-1.06	-1.38
Imo0802	hypothetical protein	-1.53	
Imo0806	hypothetical protein	-1.61	-1.77
Imo0807	spermidine/putrescine transport system ATP-binding protein	-1.42	-2.10
Imo0808	spermidine/putrescine transport system permease	-1.49	-1.90
Imo0809	spermidine/putrescine transport system permease	-1.55	-2.31

Imo0810	spermidine/putrescine transport system substrate-binding protein	-1.68	-2.23
Imo0824	hypothetical protein	1.21	
Imo0829	pyruvate:ferredoxin oxidoreductase	1.02	1.16
Imo0833	hypothetical protein	-1.64	-1.53
Imo0835	peptidoglycan bound protein	1.52	
Imo0836	hypothetical protein	-1.22	-1.89
Imo0838	MFS transporter	-4.49	-1.14
Imo0839	tetracycline resistance protein	-1.15	
Imo0840	MarR family transcriptional regulator		-1.14
Imo0843	hypothetical protein	-1.50	-1.86
Imo0847	glutamine ABC transporter		-1.47
Imo0848	polar amino acid transport system ATP-binding protein		-1.46
Imo0850	hypothetical protein	-2.42	
Imo0864	hypothetical protein	1.08	
Imo0867	hypothetical protein		-1.29
Imo0869	hypothetical protein	1.02	1.03
Imo0874	cellobiose-specific PTS system IIA component		
Imo0875	cellobiose-specific PTS system IIB component		2.90
Imo0880	peptidoglycan bound protein	-1.82	-1.55
Imo0881	hypothetical protein		
Imo0903	OsmC/Ohr family protein	-2.20	
Imo0908	hypothetical protein		-1.03
Imo0916	cellobiose-specific PTS system IIA component	1.25	1.77
Imo0917	beta-glucosidase	1.14	
Imo0920	ABC transporter permease		-1.19
Imo0921	membrane protein	-1.15	-1.16
Imo0929	sortase A		-1.28
Imo0937	hypothetical protein		-2.43
Imo0941	hypothetical protein		
Imo0942	hypothetical protein		
Imo0950	hypothetical protein		-1.05
Imo0952	hypothetical protein		-1.02
Imo0953	hypothetical protein		-1.07
Imo0954	hypothetical protein		
Imo0955	hypothetical protein		
Imo0971	D-alanine transfer protein		1.35
Imo0972	D-alanine--poly(phosphoribitol) ligase subunit 2		1.56
Imo0973	membrane protein		1.38
Imo0974	D-alanine--poly(phosphoribitol) ligase subunit 1		1.28
Imo0989	hypothetical protein		-1.12
Imo0994	hypothetical protein		-1.13
Imo0995	YkrP protein		

Imo0997	ATP-dependent Clp protease ATP-binding subunit ClpE	1.10	-1.50
Imo0999	hypothetical protein	-1.06	-1.56
Imo1007	hypothetical protein	-1.02	
Imo1014	glycine betaine/proline transport system ATP- binding protein	-1.09	
Imo1023	ktr system potassium uptake protein C	-1.02	
Imo1030	hypothetical protein	1.24	
Imo1031	hypothetical protein	1.04	
Imo1032	transketolase	1.06	
Imo1033	transketolase	1.25	1.31
Imo1037	hypothetical protein		
Imo1038	molybdopterin-guanine dinucleotide biosynthesis protein MobA	-1.22	
Imo1052	pyruvate dehydrogenase E1 component	1.31	
Imo1053	pyruvate dehydrogenase E1 component subunit beta	1.35	
Imo1054	pyruvate dehydrogenase E2 component	1.21	1.19
Imo1055	dihydrolipoyl dehydrogenase	1.29	1.17
Imo1069	hypothetical protein	-1.19	
Imo1070	hypothetical protein	-1.52	
Imo1074	teichoic acid transport system permease	-1.17	-1.61
Imo1075	teichoic acids export ATP-binding protein tagH	-1.12	-1.38
Imo1079	hypothetical protein	-1.01	
Imo1116	hypothetical protein		
Imo1117	hypothetical protein		
Imo1127	hypothetical protein	-1.13	
Imo1131	ABC transporter	-1.15	1.31
Imo1132	ABC transporter	1.43	1.24
Imo1133	hypothetical protein		
Imo1138	Clp protease	-1.04	
Imo1139	hypothetical protein	-1.07	
Imo1151	propanediol utilization protein pduA		
Imo1155	propanediol dehydratase small subunit	1.24	
Imo1162	propanediol utilization protein PduM	1.37	
Imo1174	ethanolamine utilization protein EutA	1.17	
Imo1182	ethanolamine utilization protein	3.69	4.00
Imo1191	cobyric acid a,c-diamide synthase	1.06	
Imo1192	cobalamin biosynthesis protein CobD	1.44	
Imo1197	precorrin-4 C(11)-methyltransferase		
Imo1199	precorrin-3B C(17)-methyltransferase	1.48	
Imo1203	precorrin-2 C(20)-methyltransferase	1.56	
Imo1204	cobalamin biosynthesis protein CbiM	1.81	1.40
Imo1208	cobyric acid synthase CobQ	1.18	
Imo1211	integral membrane protein	-1.17	

lmo1216	bax protein	1.05	
lmo1229	hypothetical protein	-1.02	
lmo1236	hypothetical protein	2.12	2.24
lmo1237	glutamate racemase	2.01	2.11
lmo1238	ribonuclease PH	2.38	2.49
lmo1239	rdgB/HAM1 family non-canonical purine NTP pyrophosphatase	2.28	2.42
lmo1240	hypothetical protein	3.25	3.57
lmo1254	alpha-phosphotrehalase		1.28
lmo1255	trehalose-specific PTS system IIBC component	1.15	1.72
lmo1263	transcriptional regulator		
lmo1266	hypothetical protein		-1.03
lmo1284	hypothetical protein		-1.08
lmo1295	host factor-I protein	-1.18	-1.48
lmo1297	aluminum resistance protein		-1.01
lmo1306	hypothetical protein	-1.13	-1.90
lmo1309	hypothetical protein		1.35
lmo1310	hypothetical protein	1.07	1.67
lmo1311	hypothetical protein		1.02
lmo1314	ribosome recycling factor		-1.06
lmo1315	di-trans,poly-cis-decaprenylcistransferase	-1.16	
lmo1316	phosphatidate cytidylyltransferase		
lmo1317	1-deoxy-D-xylulose 5-phosphate reductoisomerase		
lmo1318	RIP metalloprotease RseP		
lmo1328	tRNA pseudouridine synthase B	-1.08	
lmo1333	hypothetical protein	-1.19	-1.60
lmo1334	secreted protein	-1.38	-1.47
lmo1335	50S ribosomal protein L33		-1.01
lmo1341	late competence protein ComGG	-1.10	
lmo1364	cold shock-like protein cspLA		-1.19
lmo1369	phosphate butyryltransferase		
lmo1384	hypothetical protein	-1.13	-1.37
lmo1388	ABC transporter		-1.18
lmo1389	simple sugar transport system ATP-binding protein		-1.48
lmo1390	simple sugar transport system permease		-1.66
lmo1391	simple sugar transport system permease		-1.67
lmo1406	formate acetyltransferase	2.34	2.39
lmo1407	pyruvate formate-lyase activating enzyme	1.99	2.08
lmo1409	hypothetical protein	1.35	
lmo1410	hypothetical protein		-1.32
lmo1411	transcriptional regulator		
lmo1412	DNA topology modulation protein FlaR		
lmo1416	hypothetical protein		

lmo1438	hypothetical protein			
lmo1440	hypothetical protein		-1.39	
lmo1460	DNA repair protein RecO		1.29	
lmo1461	hypothetical protein		-1.27	
lmo1466	hypothetical protein	-8.13		
lmo1468	hypothetical protein			
lmo1478	MarR family transcriptional regulator		-1.11	
lmo1480	30S ribosomal protein S20		-1.43	
lmo1504	alanyl-tRNA synthetase	-1.04	-1.00	
lmo1505	hypothetical protein	1.32		
lmo1506	hypothetical protein	1.02	-1.17	
lmo1515	HTH-type transcriptional regulator cymR		-1.05	
lmo1516	amt family ammonium transporter		-1.22	-1.66
lmo1517	nitrogen regulatory protein P-II		-1.15	-1.24
lmo1518	hypothetical protein		-1.21	-1.15
lmo1526	hypothetical protein			-1.02
lmo1546	rod shape-determining protein MreD			
lmo1551	folylpolyglutamate synthase		-1.03	
lmo1584	hypothetical protein			
lmo1585	protease IV			-1.27
lmo1587	ornithine carbamoyltransferase	-1.32		
lmo1588	acetylornithine aminotransferase			
lmo1589	acetylglutamate kinase	-1.01		
lmo1590	ArgJ family protein	-1.35		
lmo1591	N-acetyl-gamma-glutamyl-phosphate reductase	-1.26		
lmo1597	hypothetical protein			1.02
lmo1601	hypothetical protein		-1.17	
lmo1603	aminopeptidase			-1.07
lmo1622	hypothetical protein			-1.29
lmo1628	tryptophan synthase	-1.12		
lmo1629	N-(5'phosphoribosyl)anthranilate isomerase	-1.18		
lmo1631	anthranilate phosphoribosyltransferase	-1.11		
lmo1632	anthranilate synthase component II	-1.07		
lmo1634	bifunctional acetaldehyde-CoA/alcohol dehydrogenase		1.52	1.33
lmo1635	DNA binding 3-demethylubiquinone-9 3-methyltransferase domain-containing protein		-1.01	
lmo1649	hypothetical protein	1.23		
lmo1653	cellsurface protein		1.73	
lmo1654	cellsurface protein		1.67	
lmo1655	hypothetical protein		2.13	2.20
lmo1665	hypothetical protein		-1.19	-2.08
lmo1666	peptidoglycan bound protein			
lmo1669	nucleoside triphosphatase YtkD			1.06
lmo1671	zinc transport system substrate-binding protein			-1.10

Imo1682	hypothetical protein	-1.05	
Imo1690	hypothetical protein		
Imo1700	hypothetical protein		-1.31
Imo1710	flavodoxin	-1.08	
Imo1713	rod shape-determining protein MreB	-1.24	-2.07
Imo1727	LacI family transcriptional regulator		1.09
Imo1734	glutamate synthase subunit large		1.28
Imo1738	polar amino acid transport system substrate-binding protein	-1.78	
Imo1739	polar amino acid transport system ATP-binding protein	-1.87	
Imo1740	polar amino acid transport system permease	-1.80	
Imo1764	phosphoribosylamine--glycine ligase		
Imo1765	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase		
Imo1766	phosphoribosylglycinamide formyltransferase		
Imo1767	phosphoribosylformylglycinamide cyclo-ligase		
Imo1768	amidophosphoribosyltransferase		
Imo1769	phosphoribosylformylglycinamide synthase II		
Imo1770	phosphoribosylformylglycinamide synthase I		
Imo1771	phosphoribosylformylglycinamide synthase	-1.16	
Imo1772	phosphoribosylaminoimidazolesuccinocarboxamide synthase		
Imo1775	AIR carboxylase		
Imo1776	hypothetical protein	-1.05	-1.23
Imo1786	internalin C	-1.47	-1.25
Imo1799	hypothetical protein		1.36
Imo1816	50S ribosomal protein L28		-1.07
Imo1841	uracil phosphoribosyltransferase		-1.16
Imo1850	hypothetical protein		-1.10
Imo1867	pyruvate, phosphate dikinase		1.53
Imo1868	lactoylglutathione lyase		-1.03
Imo1879	cold shock protein		-1.60
Imo1882	30S ribosomal protein S14		1.11
Imo1890	hypothetical protein		
Imo1892	penicillin binding protein 1A	-1.22	
Imo1917	formate acetyltransferase		1.73
Imo1919	hypothetical protein		
Imo1934	DNA-binding protein HU-beta		-1.65
Imo1938	30S ribosomal protein S1		-1.15
Imo1943	hypothetical protein	1.02	1.32
Imo1966	hypothetical protein		
Imo1971	ascorbate-specific PTS system IIC component		1.73
Imo1972	ascorbate-specific PTS system IIB component		
Imo1975	DNA polymerase IV	1.41	1.44

Imo1983	dihydroxy-acid dehydratase	1.17		
Imo1984	acetolactate synthase large subunit	1.02		
Imo1986	ketol-acid reductoisomerase	1.09		
Imo2011	sensor histidine kinase YesM		1.12	
Imo2014	alpha-mannosidase	1.19	1.55	
Imo2016	cold shock protein		-2.33	
Imo2022	cysteine desulfurase		1.03	
Imo2023	L-aspartate oxidase	-1.44	1.91	
Imo2024	nicotinate-nucleotide diphosphorylase	-1.57	1.07	2.04
Imo2025	quinolinate synthetase complex A subunit	-1.55		1.70
Imo2038	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2			1.13
Imo2039	penicillin binding protein 2B			1.07
Imo2040	cell division protein FtsL			1.45
Imo2041	methylase MraW			1.61
Imo2042	mraZ protein			1.82
Imo2063	hypothetical protein			
Imo2071	hypothetical protein		1.68	1.53
Imo2079	hypothetical protein			
Imo2083	hypothetical protein			
Imo2084	hypothetical protein			1.22
Imo2085	peptidoglycan binding protein	1.02		
Imo2090	argininosuccinate synthase	-1.62		
Imo2091	argininosuccinate lyase	-1.65		
Imo2093	hypothetical protein	-1.29		2.11
Imo2094	hypothetical protein		1.70	3.04
Imo2095	1-phosphofructokinase			-1.48
Imo2096	galactitol-specific PTS system IIC component			1.27
Imo2097	galactitol-specific PTS system IIB component			1.68
Imo2098	galactitol-specific PTS system IIA component	2.17	1.59	
Imo2099	hypothetical protein		2.08	1.50
Imo2101	pyridoxine biosynthesis protein		1.26	1.06
Imo2102	glutamine amidotransferase subunit pdxT	1.09	1.25	
Imo2104	ferrous iron transporter A		2.11	2.52
Imo2105	ferrous iron transporter B		1.94	1.89
Imo2107	hypothetical protein			1.34
Imo2108	N-acetylglucosamine-6-phosphate deacetylase			1.01
Imo2114	hypothetical protein	-1.91	1.49	
Imo2115	hypothetical protein	-1.79		1.31
Imo2116	hypothetical protein			-1.10
Imo2120	hypothetical protein		-2.00	-1.40
Imo2127	hypothetical protein		-1.89	-1.71
Imo2129	hypothetical protein			
Imo2131	hypothetical protein			-1.61
Imo2132	hypothetical protein	1.24		

Imo2133	fructose-bisphosphate aldolase class II	1.17		
Imo2134	fructose-bisphosphate aldolase class II	1.01		
Imo2135	fructose-specific PTS system IIC component	1.35		
Imo2136	fructose-specific PTS system IIB component	1.66		
Imo2137	fructose-specific PTS system IIA component	1.43		
Imo2147	hypothetical protein			
Imo2150	hypothetical protein	-1.23		-1.19
Imo2151	hypothetical protein			1.25
Imo2156	hypothetical protein	-1.71		2.25
Imo2158	hypothetical protein		-1.55	
Imo2160	sugar phosphate isomerase/epimerase			1.00
Imo2163	hypothetical protein		1.12	
Imo2172	propionate CoA-transferase			
Imo2173	hypothetical protein		1.07	
Imo2175	3-oxoacyl-ACP reductase	1.05		-1.24
Imo2177	hypothetical protein	-1.52		
Imo2178	peptidoglycan bound protein			
Imo2180	hypothetical protein		2.40	1.50
Imo2181	SrtB family sortase			
Imo2182	iron complex transport system ATP-binding protein	-1.02		
Imo2183	iron complex transport system permease			
Imo2184	heme ABC transporter heme-binding protein isdE			
Imo2185	hypothetical protein			
Imo2186	heme uptake protein IsdC	-1.25		
Imo2187	hypothetical protein			
Imo2196	peptide/nickel transport system substrate-binding protein			-1.30
Imo2197	hypothetical protein			-1.83
Imo2202	3-oxoacyl-ACP synthase		-1.03	
Imo2203	hypothetical protein		-1.82	
Imo2204	hypothetical protein			-1.70
Imo2210	hypothetical protein		-1.28	
Imo2218	hypothetical protein			-1.26
Imo2219	foldase prsA 2	-1.02	-1.84	-1.51
Imo2221	hypothetical protein		1.27	1.29
Imo2222	hypothetical protein		1.55	1.37
Imo2223	hypothetical protein			-1.40
Imo2228	hypothetical protein	-1.27		-1.37
Imo2230	hypothetical protein	1.17		
Imo2234	hypothetical protein		1.07	1.31
Imo2235	NADH oxidase			1.56
Imo2236	shikimate 5-dehydrogenase			1.07
Imo2245	hypothetical protein			1.37
Imo2247	oxidoreductase			1.35

Imo2250	hypothetical protein			
Imo2251	polar amino acid transport system ATP-binding protein			
Imo2252	aspartate aminotransferase			
Imo2254	AGZA family MFS transporter xanthine/uracil permease	-1.92	-2.93	
Imo2255	hypothetical protein	-1.02		
Imo2257	hypothetical protein	-1.49		
Imo2268	ATP-dependent nuclease subunit B	1.01		
Imo2271	phage protein	-1.50		
Imo2278	endolysin L-alanyl-D-glutamate peptidase	-1.65	1.07	
Imo2279	phage holin	-2.18		
Imo2280	gp23	-1.35	1.15	
Imo2281	gp22	-2.88	1.29	
Imo2282	short tail fiber	-3.78	1.31	
Imo2283	long tail fiber	-4.07	1.36	
Imo2284	tail or base plate protein gp19	-3.66	1.12	
Imo2285	tail or base plate protein gp18	-3.82	1.24	
Imo2286	tail or base plate protein gp17	-3.79	1.04	
Imo2287	tail tape-measure protein	-5.02		
Imo2288	gp15	-4.59		
Imo2289	gp14	-5.48		
Imo2290	gp13	-5.95		
Imo2291	major tail shaft protein	-5.38	1.21	
Imo2292	gp11	-5.38	1.32	
Imo2293	gp10	-5.49	1.21	
Imo2294	gp9	-5.33	1.47	
Imo2295	gp8	-5.17	1.32	
Imo2296	phage capsid protein	-5.49	1.11	
Imo2297	scaffolding protein	-5.58		
Imo2298	phage minor capsid protein	-5.54	1.23	
Imo2299	phage portal protein	-4.97	1.29	
Imo2300	phage terminase large subunit	-2.73	1.11	
Imo2301	terminase small subunit	-3.47		
Imo2303	gp66	-2.71	1.93	1.38
Imo2304	gp65	-2.95	1.70	1.46
Imo2317	gp49	-3.33	1.76	1.39
Imo2321	gp45	-1.87		
Imo2322	gp44	-3.01	1.94	1.61
Imo2323	gp43	-3.33	1.71	1.09
Imo2324	anti-repressor protein	-2.87	1.50	
Imo2325	hypothetical protein	-1.78	1.38	
Imo2326	gp41	-1.67	1.63	
Imo2327	hypothetical protein	1.03	1.03	
Imo2343	monooxygenase moxC			-1.45

Imo2344	hypothetical protein			
Imo2345	hypothetical protein	-1.19		
Imo2346	polar amino acid transport system ATP-binding protein	-1.18		
Imo2347	polar amino acid transport system permease	-1.01		
Imo2348	polar amino acid transport system permease	-1.23		
Imo2349	polar amino acid transport system substrate-binding protein			
Imo2350	hypothetical protein	-1.22		
Imo2351	FMN reductase			
Imo2352	HTH-type transcriptional regulator ytl			
Imo2356	hypothetical protein	1.02		
Imo2360	membrane protein	1.84		
Imo2361	Rrf2 family protein	1.81		
Imo2375	hypothetical protein	-1.09		
Imo2376	peptidyl-prolyl isomerase	-1.09		
Imo2378	multicomponent Na ⁺ :H ⁺ antiporter subunit A	1.04		
Imo2380	multicomponent Na ⁺ :H ⁺ antiporter subunit C	1.05		
Imo2385	ComA operon protein 2			
Imo2395	hypothetical protein	-1.24	-3.10	
Imo2402	hypothetical protein	1.28		
Imo2403	hypothetical protein	1.07		
Imo2407	hypothetical protein	-1.02		
Imo2408	transcriptional regulator	-1.74		
Imo2409	hypothetical protein	-1.22		
Imo2410	hypothetical protein			
Imo2412	NifU family SUF system FeS assembly protein	1.10		
Imo2414	FeS assembly protein SufD	1.17		
Imo2415	FeS assembly ATPase SufC	1.28		
Imo2427	rod shape-determining protein RodA			
Imo2428	rod shape-determining protein RodA			
Imo2432	hypothetical protein	1.11		
Imo2433	tributyrin esterase	-1.57	1.07	1.11
Imo2437	hypothetical protein	1.41	-1.18	
Imo2439	hypothetical protein	-2.05		
Imo2440	hypothetical protein			
Imo2442	hypothetical protein	-1.06		
Imo2443	hypothetical protein		-1.28	
Imo2444	hypothetical protein	1.45	1.66	
Imo2446	hypothetical protein	1.68	1.47	
Imo2447	hypothetical protein	1.29		
Imo2450	carboxylesterase		1.34	
Imo2454	hypothetical protein	1.06	-1.25	
Imo2460	transcriptional regulator	1.06	1.28	
Imo2466	hypothetical protein		-1.33	

Imo2470	internalin	1.27	1.22
Imo2474	hypothetical protein		1.15
Imo2484	membrane protein		
Imo2485	PspC domain-containing protein		
Imo2486	hypothetical protein		
Imo2487	hypothetical protein		
Imo2489	excinuclease ABC subunit B	1.14	1.27
Imo2494	phosphate transport system regulatory protein PhoU	1.01	
Imo2495	phosphate ABC transporter ATP-binding protein	1.10	
Imo2498	phosphate ABC transporter permease	1.28	
Imo2499	phosphate transport system substrate-binding protein	1.47	1.03
Imo2502	hypothetical protein		
Imo2504	hypothetical protein	-1.06	-1.40
Imo2505	D-glutamyl-L-m-Dpm peptidase P45		-1.18
Imo2506	cell division transport system permease		
Imo2507	cell division ATP-binding protein FtsE		
Imo2511	sigma-54 modulation protein		-1.00
Imo2512	competence protein ComFC		
Imo2518	transcriptional regulator LytR		-1.35
Imo2522	hypothetical protein	2.28	-1.17
Imo2527	hypothetical protein	2.12	
Imo2548	50S ribosomal protein L31		-1.05
Imo2567	hypothetical protein		
Imo2568	hypothetical protein		1.47
Imo2569	peptide/nickel transport system substrate-binding protein		-1.15
Imo2584	formate dehydrogenase family accessory protein FdhD	1.09	1.92
Imo2587	hypothetical protein		
Imo2591	N-acetylmuramoyl-L-alanine amidase	-1.13	-1.40
Imo2594	hypothetical protein	1.09	1.49
Imo2636	thiamine biosynthesis lipoprotein	-1.04	-1.09
Imo2649	ascorbate-specific PTS system IIC component	1.21	
Imo2651	mannitol-specific PTS system IIA component	1.44	
Imo2660	transketolase		1.10
Imo2661	ribulose-phosphate 3-epimerase	1.49	2.41
Imo2662	ribose 5-phosphate isomerase B	2.15	1.09
Imo2663	L-iditol 2-dehydrogenase		1.09
Imo2664	L-iditol 2-dehydrogenase	1.18	
Imo2665	galactitol-specific PTS system IIC component	1.69	1.01
Imo2666	galactitol-specific PTS system IIB component		1.47
Imo2667	hypothetical protein		1.33
Imo2668	hypothetical protein	1.58	1.42

Imo2675	hypothetical protein	1.28	1.12
Imo2676	DNA polymerase V	1.13	
Imo2680	K+-transporting ATPase C subunit	-1.05	
Imo2681	K+-transporting ATPase B subunit	-1.02	
Imo2682	K+-transporting ATPase A subunit	-2.16	
Imo2683	cellobiose-specific PTS system IIB component	2.21	-2.35
Imo2684	cellobiose-specific PTS system IIC component	2.04	-2.23
Imo2685	cellobiose-specific PTS system IIA component	2.17	-2.37
Imo2688	cell division protein FtsW/RodA/SpoVE	1.80	1.85
Imo2689	magnesium-translocating P-type ATPase	-1.56	1.41
Imo2691	autolysin		
Imo2708	cellobiose-specific PTS system IIC component	2.10	-1.18
Imo2712	gluconokinase		1.01
Imo2714	peptidoglycan bound protein		
Imo2716	ABC transporter CydDC cysteine exporter CydD	1.22	
Imo2717	cytochrome d ubiquinol oxidase subunit II	1.31	
Imo2718	cytochrome bd-I oxidase subunit I	1.24	
Imo2719	tRNA-adenosine deaminase	1.13	
Imo2720	acetyl-CoA synthetase	-1.10	
Imo2721	6-phosphogluconolactonase		
Imo2735	sucrose phosphorylase	1.08	
Imo2744	hypothetical protein		-1.46
Imo2762	cellobiose-specific PTS system IIB component	1.23	
Imo2786	ADP-ribosylglycohydrolase		-1.74
Imo2787	beta-glucoside-specific phosphotransferase enzyme II ABC component		-1.25
Imo2796	hypothetical protein	-1.11	
Imo2798	hypothetical protein		
Imo2801	N-acetylmannosamine-6-phosphate 2-epimerase	1.01	1.01
Imo2812	hypothetical protein		
Imo2836	hypothetical protein	1.18	
Imo2837	multiple sugar transport system permease	1.46	1.05
Imo2850	MFS transporter		
Imo2856	50S ribosomal protein L34		-1.40

Table SB2: Significantly ($P<0.05$) differentially expressed genes (Fold-change >2) relative to strains exposed to 1280 μ g/mL cefuroxime for 30 minutes (appended “cef”) vs the same strain in untreated control condition (“LSM”).

EGD-E Gene ID	Gene function	vs self in LSM		
		ΔPDE cef	$c\Delta dac$ A cef	WT Cef
lmo2210	hypothetical protein	5.11	3.58	4.70
lmo2156	hypothetical protein	4.26	1.32	3.42
lmo2114	hypothetical protein	3.77	1.85	4.18
lmo2115	hypothetical protein	3.62	1.98	3.87
lmo0974	D-alanine--poly(phosphoribitol) ligase subunit 1	3.27		2.39
lmo0973	membrane protein	3.20		2.35
lmo0971	D-alanine transfer protein	3.12		2.47
lmo0972	D-alanine--poly(phosphoribitol) ligase subunit 2	3.06		2.66
lmo2720	acetyl-CoA synthetase	2.68		1.97
lmo2568	hypothetical protein	2.45	1.24	2.17
lmo2567	hypothetical protein	2.37	1.53	1.88
lmo0604	hypothetical protein	2.36	1.88	3.37
lmo1690	hypothetical protein	2.21	1.66	2.42
lmo0292	hypothetical protein	2.15	1.83	3.10
lmo0954	hypothetical protein	2.05	1.75	1.65
lmo2203	hypothetical protein	1.97		2.11
lmo2487	hypothetical protein	1.86	1.10	1.51
lmo2486	hypothetical protein	1.82	1.15	1.49
lmo0955	hypothetical protein	1.81	1.49	1.65
lmo0802	hypothetical protein	1.75	1.43	2.20
lmo2219	foldase prsA 2	1.59	1.22	1.55
lmo2714	peptidoglycan bound protein	1.59		1.90
lmo2202	3-oxoacyl-ACP synthase	1.49		1.04
lmo2177	hypothetical protein	1.49	2.72	2.79
lmo1890	hypothetical protein	1.40		1.97
lmo2721	6-phosphogluconolactonase	1.34		1.14
lmo0443	hypothetical protein	1.33	1.41	1.38
lmo1315	di-trans,poly-cis-decaprenylcistransferase	1.32	1.13	1.75
lmo2093	hypothetical protein	1.30		1.79
lmo0088	ATP synthase subunit C	1.29		
lmo0047	hypothetical protein	1.27		
lmo0997	ATP-dependent Clp protease ATP-binding subunit ClpE	1.27		1.72
lmo2812	hypothetical protein	1.25	3.10	2.58
lmo1369	phosphate butyryltransferase	1.25		
lmo1037	hypothetical protein	1.22	2.36	1.57
lmo1597	hypothetical protein	1.18		

lmo2485	PspC domain-containing protein	1.14	1.10
lmo1589	acetylglutamate kinase	1.14	1.91
lmo1919	hypothetical protein	1.10	1.35
lmo1972	ascorbate-specific PTS system IIB component	1.09	
lmo0095	hypothetical protein	1.08	1.26
lmo1438	hypothetical protein	1.07	1.01
lmo0560	glutamate dehydrogenase	1.06	1.13
lmo2836	hypothetical protein	1.04	
lmo1587	ornithine carbamoyltransferase	1.04	1.95
lmo0303	hypothetical protein	1.03	
lmo0559	hypothetical protein	1.01	
lmo0229	CtsR family transcriptional regulator	1.01	1.18
lmo1588	acetylornithine aminotransferase	1.01	2.06
lmo0550	peptidoglycan bound protein	1.01	
lmo2182	iron complex transport system ATP-binding protein	-0.90	-
			1.61
lmo2184	heme ABC transporter heme-binding protein isdE	-0.91	-
			1.32
lmo0138	hypothetical protein	-0.92	
lmo0687	hypothetical protein	-0.94	-
			1.20
lmo2504	hypothetical protein	-0.95	
lmo0995	YkrP protein	-0.97	
lmo0670	hypothetical protein	-0.97	
lmo1653	cellsurface protein	-1.00	-
			1.30
lmo1155	propanediol dehydratase small subunit	-1.00	
lmo2024	nicotinate-nucleotide diphosphorylase	-1.01	
lmo2025	quinolinate synthetase complex A subunit	-1.04	
lmo0684	hypothetical protein	-1.04	-
			1.19
lmo2129	hypothetical protein	-1.05	-
			2.00
lmo0731	hypothetical protein	-1.06	-
			2.00
lmo0243	RNA polymerase sporulation-specific sigma factor	-1.10	-2.34
			1.13
lmo2691	autolysin	-1.11	-
			1.02
lmo0130	hypothetical protein	-1.12	-
			1.62
lmo0139	hypothetical protein	-1.14	
lmo2505	D-glutamyl-L-m-Dpm peptidase P45	-1.16	-
			1.12
lmo0240	ribonuclease III family protein	-1.18	-2.00
lmo0669	hypothetical protein	-1.18	

lmo2651	mannitol-specific PTS system IIA component	-1.21	-	1.22
lmo2506	cell division transport system permease	-1.23	-	1.11
lmo2522	hypothetical protein	-1.25	-	
lmo1388	ABC transporter	-1.26	-	2.16
lmo2507	cell division ATP-binding protein FtsE	-1.29	-	1.13
lmo2352	HTH-type transcriptional regulator ytl	-1.32	-	
lmo0394	extracellular P60 protein	-1.38	-	1.20
lmo0242	hypothetical protein	-1.50	-2.51	-
lmo2433	tributyrin esterase	-1.51	-	
lmo0239	cysteinyl-tRNA synthetase	-1.60	-2.38	
lmo0241	TrmH family RNA methyltransferase group 3	-1.61	-2.36	-
lmo0238	serine O-acetyltransferase	-1.74	-2.38	
lmo0137	peptide/nickel transport system permease	-1.79	-	1.10
lmo0136	peptide/nickel transport system permease	-1.89	-	
lmo0152	peptide/nickel transport system substrate-binding protein	-1.93	-	
lmo2343	monooxygenase moxC	-2.06	-	1.26
lmo0135	peptide/nickel transport system substrate-binding protein	-2.07	-	
lmo2360	membrane protein	-2.08	-	
lmo2344	hypothetical protein	-2.16	-	1.10
lmo2345	hypothetical protein	-2.18	-	1.22
lmo0903	OsmC/Ohr family protein	-2.21	-	1.27
lmo2351	FMN reductase	-2.27	-	
lmo2346	polar amino acid transport system ATP-binding protein	-2.35	-	1.53
lmo2361	Rrf2 family protein	-2.36	-	
lmo2350	hypothetical protein	-2.39	-	1.08
lmo2347	polar amino acid transport system permease	-2.49	-1.05	-
lmo2349	polar amino acid transport system substrate-binding protein	-2.58	-1.07	-
lmo2348	polar amino acid transport system permease	-2.58	-	1.55
lmo2685	cellobiose-specific PTS system IIA component			
lmo2683	cellobiose-specific PTS system IIB component			

lmo2684	cellobiose-specific PTS system IIC component		
lmo0101	hypothetical protein		
lmo2120	hypothetical protein		
lmo2254	AGZA family MFS transporter xanthine/uracil permease	-1.06	2.08
lmo2127	hypothetical protein		
lmo0880	peptidoglycan bound protein		
lmo0810	spermidine/putrescine transport system substrate-binding protein		
lmo0833	hypothetical protein		
lmo0806	hypothetical protein		
lmo0325	hypothetical protein		
lmo0809	spermidine/putrescine transport system permease		
lmo2158	hypothetical protein		
lmo0843	hypothetical protein		
lmo0808	spermidine/putrescine transport system permease		
lmo0518	membrane protein	1.58	
lmo0609	hypothetical protein		
lmo0807	spermidine/putrescine transport system ATP-binding protein		
lmo1334	secreted protein		
lmo0134	hypothetical protein		
lmo2518	transcriptional regulator LytR		
lmo0592	hypothetical protein		
lmo1622	hypothetical protein		
lmo0929	sortase A		
lmo0479	secreted protein		
lmo2454	hypothetical protein		
lmo1713	rod shape-determining protein MreB		
lmo2395	hypothetical protein		
lmo0836	hypothetical protein		
lmo1892	penicillin binding protein 1A		
lmo1516	amt family ammonium transporter		
lmo0230	hypothetical protein	1.40	
lmo1518	hypothetical protein		
lmo0286	aminotransferase		
lmo1333	hypothetical protein		
lmo1665	hypothetical protein		
lmo0920	ABC transporter permease		
lmo2708	cellobiose-specific PTS system IIC component		
lmo1295	host factor-I protein		
lmo2437	hypothetical protein		
lmo1506	hypothetical protein		
lmo0186	hypothetical protein		
lmo1601	hypothetical protein		

lmo1074	teichoic acid transport system permease	
lmo0635	2-haloalkanoic acid dehalogenase	
lmo0579	hypothetical protein	1.23
lmo1771	phosphoribosylformylglycinamide synthase	-1.13
lmo0921	membrane protein	
lmo1517	nitrogen regulatory protein P-II	
lmo0838	MFS transporter	1.22
lmo0408	hypothetical protein	
lmo1384	hypothetical protein	
lmo1306	hypothetical protein	
lmo2591	N-acetylmuramoyl-L-alanine amidase	
lmo1075	teichoic acids export ATP-binding protein tagH	
lmo0340	hypothetical protein	
lmo2796	hypothetical protein	1.05
lmo1341	late competence protein ComGG	
lmo2375	hypothetical protein	
lmo0083	hypothetical protein	
lmo0436	hypothetical protein	
lmo0642	hypothetical protein	
lmo1710	flavodoxin	
lmo1139	hypothetical protein	
lmo0492	transcription regulator LysR	
lmo0201	1-phosphatidylinositol phosphodiesterase	-1.56
		1.64
lmo0798	AAT family amino acid transporter	
lmo0999	hypothetical protein	
lmo2548	50S ribosomal protein L31	
lmo0160	peptidoglycan bound protein	
lmo0950	hypothetical protein	
lmo1776	hypothetical protein	
lmo1515	HTH-type transcriptional regulator cymR	
lmo2636	thiamine biosynthesis lipoprotein	
lmo1138	Clp protease	
lmo0629	hypothetical protein	
lmo1229	hypothetical protein	
lmo1007	hypothetical protein	
lmo1635	DNA binding 3-demethylubiquinone-9 3-methyltransferase domain-containing protein	1.12
lmo0406	lactoylglutathione lyase	
lmo0549	internalin	
lmo0706	flagellar hook-associated protein 3	
lmo2801	N-acetylmannosamine-6-phosphate 2-epimerase	
lmo1943	hypothetical protein	
lmo0869	hypothetical protein	

lmo0829	pyruvate:ferredoxin oxidoreductase	
lmo2327	hypothetical protein	- 2.03
lmo2499	phosphate transport system substrate-binding protein	
lmo2378	multicomponent Na ⁺ :H ⁺ antiporter subunit A	
lmo0128	hypothetical protein	
lmo0498	ribose 5-phosphate isomerase B	
lmo0504	hypothetical protein	
lmo2286	tail or base plate protein gp17	
lmo1031	hypothetical protein	
lmo0267	hypothetical protein	
lmo0087	hypothetical protein	
lmo2380	multicomponent Na ⁺ :H ⁺ antiporter subunit C	
lmo1191	cobyric acid a,c-diamide synthase	
lmo2460	transcriptional regulator	
lmo2278	endolysin L-alanyl-D-glutamate peptidase	
lmo2234	hypothetical protein	
lmo2173	hypothetical protein	
lmo1310	hypothetical protein	
lmo0316	hydroxyethylthiazole kinase	
lmo2735	sucrose phosphorylase	
lmo2594	hypothetical protein	
lmo2102	glutamine amidotransferase subunit pdxT	
lmo0692	chemotaxis protein cheA	
lmo2584	formate dehydrogenase family accessory protein FdhD	
lmo0383	methylmalonate-semialdehyde dehydrogenase	
lmo0502	hypothetical protein	
lmo2296	phage capsid protein	- 1.32
lmo2300	phage terminase large subunit	- 1.12
lmo0704	hypothetical protein	
lmo2284	tail or base plate protein gp19	- 1.05
lmo2163	hypothetical protein	
lmo2719	tRNA-adenosine deaminase	
lmo2676	DNA polymerase V	
lmo0124	hypothetical protein	
lmo2489	excinuclease ABC subunit B	
lmo0122	hypothetical protein	
lmo0125	hypothetical protein	
lmo1255	trehalose-specific PTS system IIBC component	
lmo2280	gp23	
lmo0118	antigen A	

lmo0001	chromosomal replication initiator protein DnaA	
lmo0659	hypothetical protein	
lmo2664	L-iditol 2-dehydrogenase	
lmo2014	alpha-mannosidase	
lmo0107	ABC transporter	
lmo0705	flagellar hook-associated protein FlgK	
lmo1054	pyruvate dehydrogenase E2 component	
lmo2649	ascorbate-specific PTS system IIC component	1.25
lmo2291	major tail shaft protein	1.31
lmo2293	gp10	1.01
lmo2716	ABC transporter CydDC cysteine exporter CydD	
lmo0127	hypothetical protein	
lmo0716	flagellar protein export ATPase Flf	
lmo2298	phage minor capsid protein	1.26
lmo2762	cellobiose-specific PTS system IIB component	
lmo2285	tail or base plate protein gp18	
lmo2718	cytochrome bd-I oxidase subunit I	
lmo0426	fructose-specific PTS system IIA component	
lmo1033	transketolase	
lmo0703	hypothetical protein	
lmo0355	fumarate reductase flavoprotein subunit	1.93
lmo2101	pyridoxine biosynthesis protein	
lmo2470	internalin	
lmo0121	hypothetical protein	
lmo2221	hypothetical protein	
lmo0126	hypothetical protein	
lmo0425	PRD/PTS system IIA 2 domain-containing regulatory protein	
lmo2675	hypothetical protein	
lmo0741	hypothetical protein	
lmo0647	hypothetical protein	1.28
lmo1055	dihydrolipoyl dehydrogenase	1.24
lmo2447	hypothetical protein	
lmo0129	N-acetyl muramoyl-L-alanine amidase	
lmo2299	phage portal protein	1.36
lmo2281	gp22	1.35
lmo1052	pyruvate dehydrogenase E1 component	
lmo2282	short tail fiber	1.02

lmo2717	cytochrome d ubiquinol oxidase subunit II	
lmo0280	anaerobic ribonucleoside-triphosphate reductase activating protein	
lmo0123	minor structural protein	
lmo0345	ribose 5-phosphate isomerase B	
lmo2295	gp8	1.16
lmo2292	gp11	1.10
lmo1053	pyruvate dehydrogenase E1 component subunit beta	
lmo0696	flagellar hook capping protein	
lmo1409	hypothetical protein	
lmo2283	long tail fiber	1.11
lmo1799	hypothetical protein	1.14
lmo0115	hypothetical protein	
lmo0120	hypothetical protein	
lmo2325	hypothetical protein	1.03
lmo0701	hypothetical protein	
lmo0119	hypothetical protein	
lmo0386	3D-(3,5/4)-trihydroxycyclohexane-1,2-dione hydrolase	
lmo0349	hypothetical protein	
lmo1975	DNA polymerase IV	
lmo0279	anaerobic ribonucleoside-triphosphate reductase	
lmo1132	ABC transporter	
lmo1192	cobalamin biosynthesis protein CobD	
lmo0699	flagellar motor switch protein FliM	
lmo2444	hypothetical protein	
lmo2837	multiple sugar transport system permease	
lmo2294	gp9	
lmo0697	flagellar hook protein FlgE	
lmo0760	hypothetical protein	
lmo0758	hypothetical protein	
lmo0698	hypothetical protein	
lmo2661	ribulose-phosphate 3-epimerase	
lmo2324	anti-repressor protein	
lmo0342	transketolase	
lmo0700	flagellar motor switch protein FliN/FliY	
lmo1634	bifunctional acetaldehyde-CoA/alcohol dehydrogenase	
lmo1867	pyruvate, phosphate dikinase	
lmo0344	short chain dehydrogenase	

lmo0788	hypothetical protein	
lmo1131	ABC transporter	
lmo0085	hypothetical protein	-1.43
lmo0761	hypothetical protein	
lmo2222	hypothetical protein	
lmo0702	hypothetical protein	
lmo2668	hypothetical protein	
lmo0759	glyoxylase	
lmo2326	gp41	-1.04
lmo0347	dihydroxyacetone kinase L subunit	
lmo0372	beta-glucosidase	
lmo1654	cellsurface protein	-1.60
lmo0300	beta-glucosidase	
lmo2446	hypothetical protein	
lmo2071	hypothetical protein	
lmo2665	galactitol-specific PTS system IIC component	
lmo0351	dihydroxyacetone kinase	
lmo2304	gp65	
lmo2094	hypothetical protein	1.28
lmo0348	dihydroxyacetone kinase	
lmo2323	gp43	-1.00
lmo0343	transaldolase	
lmo1917	formate acetyltransferase	
lmo2317	gp49	
lmo0916	cellobiose-specific PTS system IIA component	
lmo0266	hypothetical protein	
lmo0350	hypothetical protein	
lmo2688	cell division protein FtsW/RodA/SpoVE	
lmo1204	cobalamin biosynthesis protein CbiM	
lmo0586	hypothetical protein	
lmo0346	triosephosphate isomerase	
lmo2303	gp66	-1.01
lmo2322	gp44	
lmo2105	ferrous iron transporter B	
lmo0378	hypothetical protein	
lmo1407	pyruvate formate-lyase activating enzyme	
lmo1237	glutamate racemase	
lmo0489	hypothetical protein	
lmo2099	hypothetical protein	
lmo2104	ferrous iron transporter A	-1.08

lmo1236	hypothetical protein	
lmo1655	hypothetical protein	
lmo2662	ribose 5-phosphate isomerase B	
lmo0546	sorbitol-6-phosphate 2-dehydrogenase	
lmo2098	galactitol-specific PTS system IIA component	
lmo0374	cellobiose-specific phosphotransferase enzyme IIB component	1.28
lmo1239	rdgB/HAM1 family non-canonical purine NTP pyrophosphatase	
lmo1406	formate acetyltransferase	
lmo1238	ribonuclease PH	
lmo2180	hypothetical protein	1.22
lmo0037	agmatine/putrescine antiporter	
lmo0742	ABC transporter ATP-binding protein	
lmo1240	hypothetical protein	
lmo1182	ethanolamine utilization protein	
lmo0400	fructose-specific PTS system IIC component	
lmo0544	glucitol/sorbitol-specific PTS system IIC component	
lmo0019	hypothetical protein	
lmo0021	mannose-specific PTS system IIA component	
lmo0022	mannose-specific PTS system IIB component	-1.26
lmo0024	mannose-specific PTS system IID component	
lmo0042	membrane-associated protein	
lmo0052	DHH subfamily 1 protein	
lmo0059	YukD protein	
lmo0072	hypothetical protein	
lmo0096	mannose-specific PTS system IIAB component manL	1.03
lmo0097	mannose-specific PTS system IIC component	1.23
lmo0098	F-type H ⁺ -transporting ATPase subunit delta	1.11
lmo0104	hypothetical protein	1.13
lmo0105	chitinase	1.20
lmo0116	hypothetical protein	
lmo0117	prophage LambdaLm01, antigen B	
lmo0143	hypothetical protein	1.05
lmo0149	hypothetical protein	
lmo0161	hypothetical protein	1.01
lmo0197	stage V sporulation protein G	
lmo0200	listeriolysin regulatory protein	1.30
lmo0202	listeriolysin O	1.55

lmo0203	zinc metalloproteinase	1.45
lmo0204	actin-assembly inducing protein ActA	2.63
lmo0205	phospholipase C	2.46
lmo0206	hypothetical protein	2.13
lmo0207	hypothetical protein	2.16
lmo0223	cysteine synthase A	
lmo0231	ATP:guanido phosphotransferase	1.52
lmo0232	ATP-dependent Clp protease ATP-binding subunit ClpC	1.26
lmo0233	DNA repair protein RadA	
lmo0244	50S ribosomal protein L33	-1.28
lmo0301	cellobiose-specific PTS system IIA component	
lmo0309	hypothetical protein	1.24
lmo0323	hypothetical protein	
lmo0324	lipoprotein	
lmo0326	transcriptional regulator	
lmo0328	hypothetical protein	
lmo0331	internalin	
lmo0332	hypothetical protein	
lmo0334	hypothetical protein	1.16
lmo0336	hypothetical protein	
lmo0357	fructose-specific PTS system IIA component	
lmo0361	twin arginine-targeting protein translocase TatC	
lmo0362	sec-independent protein translocase tatAy	
lmo0365	high-affinity iron transporter	
lmo0366	lipoprotein	
lmo0367	tat-translocated enzyme	
lmo0373	cellobiose-specific PTS system IIC component	
lmo0384	5-deoxy-glucuronate isomerase	
lmo0385	5-dehydro-2-deoxygluconokinase	
lmo0398	fructose-specific PTS system IIA component	
lmo0415	peptidoglycan N-acetylglucosamine deacetylase	
lmo0427	fructose-specific PTS system IIB component	
lmo0433	internalin A	1.19
lmo0434	internalin B	1.11
lmo0440	hypothetical protein	
lmo0442	hypothetical protein	
lmo0444	membrane protein	1.19

lmo0485	hypothetical protein	1.04
lmo0490	shikimate 5-dehydrogenase	
lmo0500	hypothetical protein	
lmo0517	phosphoglycerate mutase	
lmo0545	glucitol operon activator protein	
lmo0548	hypothetical protein	
lmo0573	AGZA family MFS transporter xanthine/uracil permease	
lmo0582	invasion associated secreted endopeptidase	1.03
lmo0584	hypothetical protein	
lmo0587	secreted protein	
lmo0598	biotin biosynthesis protein BioY	
lmo0665	hypothetical protein	
lmo0675	flagellar motor switch protein FliN	1.10
lmo0681	flagellar biosynthesis regulator FlhF	1.06
lmo0683	chemotaxis protein methyltransferase	1.12
lmo0685	chemotaxis protein MotA	1.48
lmo0686	chemotaxis protein MotB	1.21
lmo0688	hypothetical protein	1.32
lmo0689	hypothetical protein	1.20
lmo0694	hypothetical protein	
lmo0695	hypothetical protein	
lmo0745	hypothetical protein	1.05
lmo0762	GTP-binding protein HflX	
lmo0765	hypothetical protein	1.02
lmo0766	multiple sugar transport system permease	1.26
lmo0767	maltose/maltodextrin ABC transporter permease MalG	1.10
lmo0778	hypothetical protein	
lmo0786	FMN-dependent NADH-azoreductase 2	
lmo0791	hypothetical protein	1.21
lmo0794	hypothetical protein	
lmo0797	hypothetical protein	
lmo0824	hypothetical protein	1.00
lmo0835	peptidoglycan bound protein	

lmo0839	tetracycline resistance protein	
lmo0840	MarR family transcriptional regulator	
lmo0847	glutamine ABC transporter	
lmo0848	polar amino acid transport system ATP-binding protein	
lmo0850	hypothetical protein	1.46
lmo0864	hypothetical protein	
lmo0867	hypothetical protein	
lmo0874	cellobiose-specific PTS system IIA component	
lmo0875	cellobiose-specific PTS system IIB component	2.77
lmo0881	hypothetical protein	1.03
lmo0908	hypothetical protein	1.06
lmo0917	beta-glucosidase	
lmo0937	hypothetical protein	1.24
lmo0941	hypothetical protein	1.29
lmo0942	hypothetical protein	1.31
lmo0952	hypothetical protein	
lmo0953	hypothetical protein	
lmo0989	hypothetical protein	
lmo0994	hypothetical protein	
lmo1014	glycine betaine/proline transport system ATP-binding protein	
lmo1023	ktr system potassium uptake protein C	
lmo1030	hypothetical protein	
lmo1032	transketolase	
lmo1038	molybdopterin-guanine dinucleotide biosynthesis protein MobA	
lmo1069	hypothetical protein	
lmo1070	hypothetical protein	1.37
lmo1079	hypothetical protein	
lmo1116	hypothetical protein	1.12
lmo1117	hypothetical protein	1.26
lmo1127	hypothetical protein	
lmo1133	hypothetical protein	
lmo1151	propanediol utilization protein pduA	
lmo1162	propanediol utilization protein PduM	
lmo1174	ethanolamine utilization protein EutA	
lmo1197	precorrin-4 C(11)-methyltransferase	1.02
lmo1199	precorrin-3B C(17)-methyltransferase	
lmo1203	precorrin-2 C(20)-methyltransferase	

lmo1208	cobyric acid synthase CobQ		
lmo1211	integral membrane protein		
lmo1216	bax protein		
lmo1254	alpha-phosphotrehalase		
lmo1263	transcriptional regulator		
lmo1266	hypothetical protein		
lmo1284	hypothetical protein		
lmo1297	aluminum resistance protein		
lmo1309	hypothetical protein		
lmo1311	hypothetical protein		
lmo1314	ribosome recycling factor		
lmo1316	phosphatidate cytidylyltransferase	1.07	
lmo1317	1-deoxy-D-xylulose 5-phosphate reductoisomerase	1.05	
lmo1318	RIP metalloprotease RseP	1.05	
lmo1328	tRNA pseudouridine synthase B		
lmo1335	50S ribosomal protein L33		
lmo1364	cold shock-like protein cspLA		
lmo1389	simple sugar transport system ATP-binding protein		
lmo1390	simple sugar transport system permease		
lmo1391	simple sugar transport system permease		
lmo1410	hypothetical protein	-	1.48
lmo1411	transcriptional regulator	-	1.22
lmo1412	DNA topology modulation protein FlaR	-	1.03
lmo1416	hypothetical protein	2.14	1.14
lmo1440	hypothetical protein		
lmo1460	DNA repair protein RecO		
lmo1461	hypothetical protein	-	1.07
lmo1466	hypothetical protein		
lmo1468	hypothetical protein	-	1.05
lmo1478	MarR family transcriptional regulator		
lmo1480	30S ribosomal protein S20		
lmo1504	alanyl-tRNA synthetase		
lmo1505	hypothetical protein		
lmo1526	hypothetical protein		
lmo1546	rod shape-determining protein MreD	1.05	
lmo1551	folylpolyglutamate synthase		
lmo1584	hypothetical protein	-	1.49
lmo1585	protease IV	-	1.54
lmo1590	ArgJ family protein	2.29	2.64

lmo1591	N-acetyl-gamma-glutamyl-phosphate reductase	2.41	2.70
lmo1603	aminopeptidase		
lmo1628	tryptophan synthase		
lmo1629	N-(5'phosphoribosyl)anthranilate isomerase		
lmo1631	anthranilate phosphoribosyltransferase		
lmo1632	anthranilate synthase component II		
lmo1649	hypothetical protein		
lmo1666	peptidoglycan bound protein		-1.03
lmo1669	nucleoside triphosphatase YtkD		
lmo1671	zinc transport system substrate-binding protein		
lmo1682	hypothetical protein		
lmo1700	hypothetical protein		
lmo1727	LacI family transcriptional regulator		
lmo1734	glutamate synthase subunit large		
lmo1738	polar amino acid transport system substrate-binding protein	6.88	
lmo1739	polar amino acid transport system ATP-binding protein		
lmo1740	polar amino acid transport system permease		
lmo1764	phosphoribosylamine--glycine ligase	-1.10	-1.16
lmo1765	phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase	-1.07	1.20
lmo1766	phosphoribosylglycinamide formyltransferase	-1.19	1.06
lmo1767	phosphoribosylformylglycinamide cyclo-ligase	-1.25	1.04
lmo1768	amidophosphoribosyltransferase	-1.15	
lmo1769	phosphoribosylformylglycinamide synthase II	-1.23	
lmo1770	phosphoribosylformylglycinamide synthase I	-1.10	
lmo1772	phosphoribosylaminoimidazolesuccinocarboxamide synthase	-1.11	
lmo1775	AIR carboxylase	-1.15	
lmo1786	internalin C		-1.97
lmo1816	50S ribosomal protein L28		
lmo1841	uracil phosphoribosyltransferase		
lmo1850	hypothetical protein		
lmo1868	lactoylglutathione lyase		
lmo1879	cold shock protein		
lmo1882	30S ribosomal protein S14		
lmo1934	DNA-binding protein HU-beta		
lmo1938	30S ribosomal protein S1		
lmo1966	hypothetical protein		1.07
lmo1971	ascorbate-specific PTS system IIC component		

lmo1983	dihydroxy-acid dehydratase		
lmo1984	acetolactate synthase large subunit		
lmo1986	ketol-acid reductoisomerase		
lmo2011	sensor histidine kinase YesM		
lmo2016	cold shock protein	2.09	-
lmo2022	cysteine desulfurase		
lmo2023	L-aspartate oxidase		
lmo2038	UDP-N-acetyl muramoyl-L-alanyl-D-glutamate-2		
lmo2039	penicillin binding protein 2B		
lmo2040	cell division protein FtsL		
lmo2041	methylase MraW		
lmo2042	mraZ protein		
lmo2063	hypothetical protein	1.23	-
lmo2079	hypothetical protein	1.77	-
lmo2083	hypothetical protein	1.14	
lmo2084	hypothetical protein		
lmo2085	peptidoglycan binding protein		
lmo2090	argininosuccinate synthase	2.09	2.44
lmo2091	argininosuccinate lyase	2.38	2.46
lmo2095	1-phosphofructokinase		
lmo2096	galactitol-specific PTS system IIC component		
lmo2097	galactitol-specific PTS system IIB component		
lmo2107	hypothetical protein		
lmo2108	N-acetylglucosamine-6-phosphate deacetylase		
lmo2116	hypothetical protein		
lmo2131	hypothetical protein	1.34	-
lmo2132	hypothetical protein		
lmo2133	fructose-bisphosphate aldolase class II		
lmo2134	fructose-bisphosphate aldolase class II		
lmo2135	fructose-specific PTS system IIC component		
lmo2136	fructose-specific PTS system IIB component		
lmo2137	fructose-specific PTS system IIA component		
lmo2147	hypothetical protein	1.38	-
lmo2150	hypothetical protein		
lmo2151	hypothetical protein		
lmo2160	sugar phosphate isomerase/epimerase		
lmo2172	propionate CoA-transferase	1.03	-
lmo2175	3-oxoacyl-ACP reductase		
lmo2178	peptidoglycan bound protein	1.41	1.42

lmo2181	SrtB family sortase	1.43
lmo2183	iron complex transport system permease	1.44
lmo2185	hypothetical protein	1.65
lmo2186	heme uptake protein IsdC	1.41
lmo2187	hypothetical protein	-1.33
lmo2196	peptide/nickel transport system substrate-binding protein	1.88
lmo2197	hypothetical protein	-
lmo2204	hypothetical protein	1.13
lmo2218	hypothetical protein	
lmo2223	hypothetical protein	
lmo2228	hypothetical protein	
lmo2230	hypothetical protein	
lmo2235	NADH oxidase	
lmo2236	shikimate 5-dehydrogenase	
lmo2245	hypothetical protein	
lmo2247	oxidoreductase	
lmo2250	hypothetical protein	1.18
lmo2251	polar amino acid transport system ATP-binding protein	1.17
lmo2252	aspartate aminotransferase	1.26
lmo2255	hypothetical protein	
lmo2257	hypothetical protein	1.11
lmo2268	ATP-dependent nuclease subunit B	
lmo2271	phage protein	1.21
lmo2279	phage holin	1.04
lmo2287	tail tape-measure protein	1.11
lmo2288	gp15	-
lmo2289	gp14	1.11
lmo2290	gp13	-
lmo2297	scaffolding protein	1.20
lmo2301	terminase small subunit	-
lmo2321	gp45	1.19
lmo2356	hypothetical protein	
lmo2376	peptidyl-prolyl isomerase	

lmo2385	ComA operon protein 2	-	1.21
lmo2402	hypothetical protein		
lmo2403	hypothetical protein		
lmo2407	hypothetical protein		
lmo2408	transcriptional regulator	-	1.14
lmo2409	hypothetical protein		
lmo2410	hypothetical protein	-	1.05
lmo2412	NifU family SUF system FeS assembly protein		
lmo2414	FeS assembly protein SufD		
lmo2415	FeS assembly ATPase SufC		
lmo2427	rod shape-determining protein RodA	1.04	
lmo2428	rod shape-determining protein RodA	1.20	
lmo2432	hypothetical protein		
lmo2439	hypothetical protein	2.07	2.92
lmo2440	hypothetical protein		1.03
lmo2442	hypothetical protein	1.36	1.78
lmo2443	hypothetical protein		
lmo2450	carboxylesterase		
lmo2466	hypothetical protein		
lmo2474	hypothetical protein		
lmo2484	membrane protein	1.10	1.13
lmo2494	phosphate transport system regulatory protein PhoU		
lmo2495	phosphate ABC transporter ATP-binding protein		
lmo2498	phosphate ABC transporter permease		
lmo2502	hypothetical protein	-	1.03
lmo2511	sigma-54 modulation protein		
lmo2512	competence protein ComFC	1.16	
lmo2527	hypothetical protein	-	2.02
lmo2569	peptide/nickel transport system substrate-binding protein	-	1.12
lmo2587	hypothetical protein		1.00
lmo2660	transketolase		
lmo2663	L-iditol 2-dehydrogenase		
lmo2666	galactitol-specific PTS system IIB component		
lmo2667	hypothetical protein		
lmo2680	K+-transporting ATPase C subunit		
lmo2681	K+-transporting ATPase B subunit		
lmo2682	K+-transporting ATPase A subunit		
lmo2689	magnesium-translocating P-type ATPase		
lmo2712	gluconokinase		
lmo2744	hypothetical protein		

lmo2786	ADP-ribosylglycohydrolase		
lmo2787	beta-glucoside-specific phosphotransferase enzyme II ABC component		1.09
lmo2798	hypothetical protein	1.04	1.00
lmo2850	MFS transporter		
lmo2856	50S ribosomal protein L34		

REFERENCES

1. Fahmi, T., Port, G. C. & Cho, K. H. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria. *Genes* **8**, 197 (2017).
2. Structural and Biophysical Analysis of the Soluble DHH/DHHA1-Type Phosphodiesterase TM1595 from *Thermotoga maritima*: Structure. [https://www.cell.com/structure/fulltext/S0969-2126\(17\)30329-5](https://www.cell.com/structure/fulltext/S0969-2126(17)30329-5).
3. Witte, G., Hartung, S., Büttner, K. & Hopfner, K.-P. Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates. *Molecular Cell* **30**, 167–178 (2008).
4. Woodward, J. J., Iavarone, A. T. & Portnoy, D. A. c-di-AMP secreted by intracellular *Listeria monocytogenes* activates a host type I interferon response. *Science* **328**, 1703–1705 (2010).
5. Aline Dias da, P., Nathalia Marins de, A., Gabriel Guarany de, A., Robson Francisco de, S. & Cristiane Rodrigues, G. The World of Cyclic Dinucleotides in Bacterial Behavior. *Molecules* **25**, 2462 (2020).
6. Yin, W. *et al.* A decade of research on the second messenger c-di-AMP. *FEMS Microbiology Reviews* **44**, 701–724 (2020).
7. Commichau, F. M., Heidemann, J. L., Ficner, R. & Stölke, J. Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. *J Bacteriol* **201**, e00462-18, /jb/201/1/JB.00462-18.atom (2018).
8. Corrigan, R. M. & Gründling, A. Cyclic di-AMP: another second messenger enters the fray. *Nature Reviews Microbiology* **11**, 513–524 (2013).
9. Rosenberg, J. *et al.* Structural and Biochemical Analysis of the Essential Diadenylate Cyclase CdaA from *Listeria monocytogenes*. *J. Biol. Chem.* **290**, 6596–6606 (2015).

10. Pham, T. H., Liang, Z.-X., Marcellin, E. & Turner, M. S. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. *Curr Genet* **62**, 731–738 (2016).
11. Mehne, F. M. P. *et al.* Cyclic Di-AMP Homeostasis in *Bacillus subtilis*: BOTH LACK AND HIGH LEVEL ACCUMULATION OF THE NUCLEOTIDE ARE DETRIMENTAL FOR CELL GROWTH. *J. Biol. Chem.* **288**, 2004–2017 (2013).
12. Mudgal, S., Manikandan, K., Mukherjee, A., Krishnan, A. & Sinha, K. M. Cyclic di-AMP: Small molecule with big roles in bacteria. *Microbial Pathogenesis* **161**, 105264 (2021).
13. Huynh, T. N. *et al.* An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. *Proc Natl Acad Sci USA* **112**, E747–E756 (2015).
14. Bai, Y. *et al.* Two DHH Subfamily 1 Proteins in *Streptococcus pneumoniae* Possess Cyclic Di-AMP Phosphodiesterase Activity and Affect Bacterial Growth and Virulence. *J Bacteriol* **195**, 5123–5132 (2013).
15. F, R. *et al.* YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. *The Journal of biological chemistry* **285**, (2010).
16. F, R., Q, J., I, S. & Zx, L. Unusual heme-binding PAS domain from YybT family proteins. *Journal of bacteriology* **193**, (2011).
17. Sureka, K. *et al.* The cyclic di-nucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. *Cell* **158**, 1389–1401 (2014).
18. Blötz, C. *et al.* Identification of the Components Involved in Cyclic Di-AMP Signaling in *Mycoplasma pneumoniae*. *Front. Microbiol.* **8**, (2017).
19. Ar, G., By, H., C, S., Cm, W. & Tn, H. NrnA Is a Linear Dinucleotide Phosphodiesterase with Limited Function in Cyclic Dinucleotide Metabolism in *Listeria monocytogenes*. *Journal of bacteriology* **204**, (2022).

20. Yamamoto, T. *et al.* Listeria monocytogenes Strain-Specific Impairment of the TetR Regulator Underlies the Drastic Increase in Cyclic di-AMP Secretion and Beta Interferon-Inducing Ability. *Infection and Immunity* **80**, 2323 (2012).

21. Gries, C. M. *et al.* Cyclic di-AMP Released from *Staphylococcus aureus* Biofilm Induces a Macrophage Type I Interferon Response. *Infection and Immunity* **84**, 3564–3574 (2016).

22. Schuster, C. F. *et al.* The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in *Staphylococcus aureus*. *Sci Signal* **9**, ra81 (2016).

23. Huynh, T. N. *et al.* Cyclic di-AMP targets the cystathionine beta-synthase domain of the osmolyte transporter OpuC. *Molecular Microbiology* **102**, 233–243 (2016).

24. Wetzel, K. J., Bjorge, D. & Schwan, W. R. Mutational and Transcriptional Analyses of the *Staphylococcus aureus* Low Affinity Proline Transporter OpuD During in vitro Growth and Infection of Murine Tissues. *FEMS Immunol Med Microbiol* **61**, 346–355 (2011).

25. Gundlach, J. *et al.* Sustained sensing in potassium homeostasis: Cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. *J Biol Chem* **294**, 9605–9614 (2019).

26. Faozia, S., Fahmi, T., Port, G. C. & Cho, K. H. c-di-AMP-Regulated K⁺ Importer KtrAB Affects Biofilm Formation, Stress Response, and SpeB Expression in *Streptococcus pyogenes*. *Infect Immun* **89**, e00317-20 (2021).

27. Gibhardt, J. *et al.* c-di-AMP assists osmoadaptation by regulating the *Listeria monocytogenes* potassium transporters KimA and KtrCD. *J. Biol. Chem.* jbc.RA119.010046 (2019) doi:10.1074/jbc.RA119.010046.

28. Krüger, L. *et al.* Essentiality of c-di-AMP in *Bacillus subtilis*: Bypassing mutations converge in potassium and glutamate homeostasis. *PLOS Genetics* **17**, e1009092 (2021).

29. Devaux, L. *et al.* Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B *Streptococcus*. *PLOS Genetics* **14**, e1007342 (2018).

30. Moscoso, J. A. *et al.* Binding of Cyclic Di-AMP to the *Staphylococcus aureus* Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter. *Journal of Bacteriology* **198**, 98–110 (2015).
31. Rubin, B. E. *et al.* High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival. *PLoS Genet* **14**, e1007301 (2018).
32. Chin, K.-H. *et al.* Structural Insights into the Distinct Binding Mode of Cyclic Di-AMP with SaCpaA_RCK. *Biochemistry* **54**, 4936–4951 (2015).
33. Wright, M. J. & Bai, G. Bacterial second messenger cyclic di-AMP in streptococci. *Molecular Microbiology* **120**, 791–804 (2023).
34. Quintana, I. M. *et al.* The KupA and KupB Proteins of *Lactococcus lactis* IL1403 Are Novel c-di-AMP Receptor Proteins Responsible for Potassium Uptake. *Journal of Bacteriology* **201**, (2019).
35. Cereija, T. B., Guerra, J. P. L., Jorge, J. M. P. & Morais-Cabral, J. H. c-di-AMP, a likely master regulator of bacterial K⁺ homeostasis machinery, activates a K⁺ exporter. *Proc Natl Acad Sci U S A* **118**, e2020653118 (2021).
36. Bai, Y. *et al.* Cyclic Di-AMP Impairs Potassium Uptake Mediated by a Cyclic Di-AMP Binding Protein in *Streptococcus pneumoniae*. *Journal of Bacteriology* **196**, 614–623 (2014).
37. Whiteley, A. T. *et al.* c-di-AMP modulates *Listeria monocytogenes* central metabolism to regulate growth, antibiotic resistance and osmoregulation. *Molecular Microbiology* **104**, 212–233 (2017).
38. L, Z., W, L. & Zg, H. DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in *Mycobacterium smegmatis*. *The Journal of biological chemistry* **288**, (2013).
39. Peterson, B. N. *et al.* (p)ppGpp and c-di-AMP Homeostasis Is Controlled by CbpB in *Listeria monocytogenes*. *mBio* **11**, e01625-20 (2020).
40. Krüger, L. *et al.* A meet-up of two second messengers: the c-di-AMP receptor DarB controls (p)ppGpp synthesis in *Bacillus subtilis*. *Nat Commun* **12**, 1210 (2021).

41. Ren, A. & Patel, D. J. c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. *Nat Chem Biol* **10**, 780–786 (2014).
42. McFarland, A. P. *et al.* Sensing of Bacterial Cyclic Dinucleotides by the Oxidoreductase RECON Promotes NF-κB Activation and Shapes a Proinflammatory Antibacterial State. *Immunity* **46**, 433–445 (2017).
43. Barker, J. R. *et al.* STING-Dependent Recognition of Cyclic di-AMP Mediates Type I Interferon Responses during Chlamydia trachomatis Infection. *mBio* **4**, (2013).
44. Parvatiyar, K. *et al.* DDX41 recognizes bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. *Nat Immunol* **13**, 1155–1161 (2012).
45. M, M., Kp, H. & G, W. c-di-AMP recognition by Staphylococcus aureus PstA. *FEBS letters* **589**, (2015).
46. Warneke, R. *et al.* DarA—the central processing unit for the integration of osmotic with potassium and amino acid homeostasis in *Bacillus subtilis*. *Journal of Bacteriology* **0**, e00190-24 (2024).
47. Rojas, E. R. & Huang, K. C. Regulation of microbial growth by turgor pressure. *Current Opinion in Microbiology* **42**, 62–70 (2018).
48. Chen, C. & Beattie, G. A. Characterization of the Osmoprotectant Transporter OpuC from *Pseudomonas syringae* and Demonstration that Cystathionine-β-Synthase Domains Are Required for Its Osmoregulatory Function. *J Bacteriol* **189**, 6901–6912 (2007).
49. J, G. *et al.* Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in *Bacillus subtilis*. *Science signaling* **10**, (2017).
50. Rm, C. *et al.* Systematic identification of conserved bacterial c-di-AMP receptor proteins. *Proceedings of the National Academy of Sciences of the United States of America* **110**, (2013).

51. Quintana, I. *et al.* Genetic Engineering of *Lactococcus lactis* Co-producing Antigen and the Mucosal Adjuvant 3' 5'- cyclic di Adenosine Monophosphate (c-di-AMP) as a Design Strategy to Develop a Mucosal Vaccine Prototype. *Frontiers in Microbiology* **9**, (2018).
52. Commichau, F. M., Gibhardt, J., Halbedel, S., Gundlach, J. & Stölke, J. A Delicate Connection: c-di-AMP Affects Cell Integrity by Controlling Osmolyte Transport. *Trends in Microbiology* **26**, 175–185 (2018).
53. Nelson, J. W. *et al.* Riboswitches in eubacteria sense the second messenger c-di-AMP. *Nat Chem Biol* **9**, 834–839 (2013).
54. Whiteley, A. T., Pollock, A. J. & Portnoy, D. A. The PAMP c-di-AMP Is Essential for *Listeria monocytogenes* Growth in Rich but Not Minimal Media due to a Toxic Increase in (p)ppGpp. *Cell Host & Microbe* **17**, 788–798 (2015).
55. Pham, H. T. *et al.* Cyclic di-AMP Oversight of Counter-Ion Osmolyte Pools Impacts Intrinsic Cefuroxime Resistance in *Lactococcus lactis*. *mbio* **12**, 10.1128/mbio.00324-21 (2021).
56. Zeden, M. S. *et al.* Identification of the main glutamine and glutamate transporters in *Staphylococcus aureus* and their impact on c-di-AMP production. *Molecular Microbiology* **n/a**.
57. *Bacillus subtilis* DisA regulates RecA-mediated DNA strand exchange - PMC. <https://www.ncbi.nlm.nih.gov.ezproxy.library.wisc.edu/pmc/articles/PMC6547438/>.
58. Oppenheimer-Shaanan, Y., Wexselblatt, E., Katzhendler, J., Yavin, E. & Ben-Yehuda, S. c-di-AMP reports DNA integrity during sporulation in *Bacillus subtilis*. *EMBO Rep* **12**, 594–601 (2011).
59. Zheng, C. *et al.* Functional analysis of the sporulation-specific diadenylate cyclase CdaS in *Bacillus thuringiensis*. *Frontiers in Microbiology* **6**, (2015).
60. Torres, R., Serrano, E., Tramm, K. & Alonso, J. C. *Bacillus subtilis* RadA/Sms contributes to chromosomal transformation and DNA repair in concert with RecA and circumvents replicative stress in concert with DisA. *DNA Repair (Amst)* **77**, 45–57 (2019).

61. Schär, J. *et al.* Pyruvate Carboxylase Plays a Crucial Role in Carbon Metabolism of Extra- and Intracellularly Replicating *Listeria monocytogenes*. *Journal of Bacteriology* **192**, 1774–1784 (2010).
62. Campeotto, I., Zhang, Y., Mladenov, M. G., Freemont, P. S. & Gründling, A. Complex Structure and Biochemical Characterization of the *Staphylococcus aureus* Cyclic Diadenylate Monophosphate (c-di-AMP)-binding Protein PstA, the Founding Member of a New Signal Transduction Protein Family*. *Journal of Biological Chemistry* **290**, 2888–2901 (2015).
63. Choi, P. H., Sureka, K., Woodward, J. J. & Tong, L. Molecular basis for the recognition of cyclic-di-AMP by PstA, a PII-like signal transduction protein. *MicrobiologyOpen* **4**, 361–374 (2015).
64. Massa, S. M. *et al.* C-di-AMP accumulation impairs muropeptide synthesis in *Listeria monocytogenes*. *Journal of Bacteriology* (2020) doi:10.1128/JB.00307-20.
65. Corrigan, R. M., Abbott, J. C., Burhenne, H., Kaever, V. & Gründling, A. c-di-AMP Is a New Second Messenger in *Staphylococcus aureus* with a Role in Controlling Cell Size and Envelope Stress. *PLoS Pathog* **7**, e1002217 (2011).
66. Witte, C. E. *et al.* Cyclic di-AMP Is Critical for *Listeria monocytogenes* Growth, Cell Wall Homeostasis, and Establishment of Infection. *mBio* **4**, e00282-13 (2013).
67. Fernandes-Alnemri, T., Yu, J.-W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. *Nature* **458**, 509–513 (2009).
68. Sauer, J.-D. *et al.* *Listeria monocytogenes* Triggers AIM2-Mediated Pyroptosis upon Infrequent Bacteriolysis in the Macrophage Cytosol. *Cell Host & Microbe* **7**, 412–419 (2010).
69. Zeevi, M. K. *et al.* *Listeria monocytogenes* Multidrug Resistance Transporters and Cyclic Di-AMP, Which Contribute to Type I Interferon Induction, Play a Role in Cell Wall Stress. *Journal of Bacteriology* **195**, 5250–5261 (2013).

70. Wang, M. *et al.* Adaptation of *Listeria monocytogenes* to perturbation of c-di-AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system. *Environmental Microbiology* **24**, 4466–4488 (2022).

71. Zhang, X. *et al.* Biochemical and molecular regulatory mechanism of the *pgpH* gene on biofilm formation in *Listeria monocytogenes*. *Journal of Applied Microbiology* **134**, Ixac086 (2023).

72. Bécavin, C. *et al.* Comparison of Widely Used *Listeria monocytogenes* Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity. *mBio* **5**, e00969-14 (2014).

73. Pandey, N. & Casella, M. Beta-Lactam Antibiotics. in *StatPearls* (StatPearls Publishing, Treasure Island (FL), 2024).

74. Prosser, G. A. & de Carvalho, L. P. S. Kinetic mechanism and inhibition of *Mycobacterium tuberculosis* D-alanine:D-alanine ligase by the antibiotic D-cycloserine. *FEBS J* **280**, 1150–1166 (2013).

75. Archer, K. A., Durack, J. & Portnoy, D. A. STING-Dependent Type I IFN Production Inhibits Cell-Mediated Immunity to *Listeria monocytogenes*. *PLOS Pathogens* **10**, e1003861 (2014).

76. Ye, M. *et al.* DhhP, a Cyclic di-AMP Phosphodiesterase of *Borrelia burgdorferi*, Is Essential for Cell Growth and Virulence. *Infection and Immunity* **82**, 1840–1849 (2014).

77. Cho, K. H. & Kang, S. O. *Streptococcus pyogenes* c-di-AMP Phosphodiesterase, GdpP, Influences SpeB Processing and Virulence. *PLoS One* **8**, (2013).

78. Fahmi, T., Faozia, S., Port, G. C. & Cho, K. H. The Second Messenger c-di-AMP Regulates Diverse Cellular Pathways Involved in Stress Response, Biofilm Formation, Cell Wall Homeostasis, SpeB Expression, and Virulence in *Streptococcus pyogenes*. *Infect Immun* **87**, e00147-19, /iai/87/6/IAI.00147-19.atom (2019).

79. Yang, J. *et al.* Deletion of the cyclic di-AMP phosphodiesterase gene (*cnpB*) in *Mycobacterium tuberculosis* leads to reduced virulence in a mouse model of infection. *Mol Microbiol* **93**, 65–79 (2014).

80. Jackson-Litteken, C. D. *et al.* The Diadenylate Cyclase CdaA Is Critical for *Borrelia turicatae* Virulence and Physiology. *Infection and Immunity* **89**, e00787-20 (2021).

81. Kundra, S. *et al.* c-di-AMP Is Essential for the Virulence of *Enterococcus faecalis*. *Infection and Immunity* **89**, e00365-21 (2021).

82. Colomer-Winter, C., Flores-Mireles, A. L., Kundra, S., Hultgren, S. J. & Lemos, J. A. (p)ppGpp and CodY Promote *Enterococcus faecalis* Virulence in a Murine Model of Catheter-Associated Urinary Tract Infection. *mSphere* **4**, 10.1128/msphere.00392-19 (2019).

83. Moradali, M. F. *et al.* Atypical cyclic di-AMP signaling is essential for *Porphyromonas gingivalis* growth and regulation of cell envelope homeostasis and virulence. *npj Biofilms Microbiomes* **8**, 1–11 (2022).

84. Hu, J., Zhang, G., Liang, L., Lei, C. & Sun, X. Increased Excess Intracellular Cyclic di-AMP Levels Impair Growth and Virulence of *Bacillus anthracis*. *Journal of Bacteriology* **202**, (2020).

85. Hu, J., Yao, J., Lei, C. & Sun, X. c-di-AMP accumulation impairs toxin expression of *Bacillus anthracis* by down-regulating potassium importers. *Microbiology Spectrum* **0**, e03786-23 (2024).

86. Du, B. *et al.* Functional analysis of c-di-AMP phosphodiesterase, GdpP, in *Streptococcus suis* serotype 2. *Microbiological Research* **169**, 749–758 (2014).

87. Rørvik, G. H., Naemi, A., Edvardsen, P. K. T. & Simm, R. The c-di-AMP signaling system influences stress tolerance and biofilm formation of *Streptococcus mitis*. *Microbiologyopen* **10**, e1203 (2021).

88. Oberkampf, M. *et al.* c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by *Clostridioides difficile*. *Science Signaling* **15**, eabn8171 (2022).

89. W, Z., At, W. & Pj, K. Analysis of human cGAS activity and structure. *Methods in enzymology* **625**, (2019).

90. Andrade, W. A. *et al.* Group B Streptococcus Degrades Cyclic-di-AMP to Modulate STING-Dependent Type I Interferon Production. *Cell Host & Microbe* **20**, 49–59 (2016).

91. Zagorac, G. B. & Kezele, T. G. Ceftriaxone and Doxycycline induced Seroconversion in Previously Seronegative Patient with Clinically Suspected Disseminated Lyme Disease: Case Report. *Infect Chemother* **53**, 582 (2021).

92. Sharma, A. K. *et al.* Bacterial Virulence Factors: Secreted for Survival. *Indian J Microbiol* **57**, 1–10 (2017).

93. Carrasco, S. E. *et al.* Outer Surface Protein OspC Is an Antiphagocytic Factor That Protects *Borrelia burgdorferi* from Phagocytosis by Macrophages. *Infect Immun* **83**, 4848–4860 (2015).

94. Brouwer, S. *et al.* Pathogenesis, epidemiology and control of Group A Streptococcus infection. *Nat Rev Microbiol* **21**, 431–447 (2023).

95. Kapur, V., Majesky, M. W., Li, L. L., Black, R. A. & Musser, J. M. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from *Streptococcus pyogenes*. *Proc Natl Acad Sci U S A* **90**, 7676–7680 (1993).

96. Kapur, V. *et al.* A conserved *Streptococcus pyogenes* extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. *Microb. Pathog.* **15**, 327–346 (1993).

97. Moayeri, M., Leppla, S. H., Vrentas, C., Pomerantsev, A. P. & Liu, S. Anthrax Pathogenesis*. *Annual Review of Microbiology* **69**, 185–208 (2015).

98. Fioravanti, A. *et al.* Structure of S-layer protein Sap reveals a mechanism for therapeutic intervention in anthrax. *Nat Microbiol* **4**, 1805–1814 (2019).

99. Mignot, T., Mock, M. & Fouet, A. A plasmid-encoded regulator couples the synthesis of toxins and surface structures in *Bacillus anthracis*. *Molecular Microbiology* **47**, 917–927 (2003).

100. Strauch, M. A. & Hoch, J. A. Transition-state regulators: sentinels of *Bacillus subtilis* post-exponential gene expression. *Molecular Microbiology* **7**, 337–342 (1993).
101. Wertheim, H. F. L., Nghia, H. D. T., Taylor, W. & Schultsz, C. *Streptococcus suis*: An Emerging Human Pathogen. *CLIN INFECT DIS* **48**, 617–625 (2009).
102. Portnoy, D. A., Auerbuch, V. & Glomski, I. J. The cell biology of Listeria monocytogenes infection. *J Cell Biol* **158**, 409–414 (2002).
103. Chico-Calero, I. *et al.* Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. *Proc Natl Acad Sci U S A* **99**, 431–436 (2002).
104. de las Heras, A., Cain, R. J., Bielecka, M. K. & Vázquez-Boland, J. A. Regulation of Listeria virulence: PrfA master and commander. *Current Opinion in Microbiology* **14**, 118–127 (2011).
105. Reniere, M. L. *et al.* Glutathione activates virulence gene expression of an intracellular pathogen. *Nature* **517**, 170–173 (2015).
106. Hall, M. *et al.* Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria. *Proc Natl Acad Sci U S A* **113**, 14733–14738 (2016).
107. Portman, J. L., Dubensky, S. B., Peterson, B. N., Whiteley, A. T. & Portnoy, D. A. Activation of the Listeria monocytogenes Virulence Program by a Reducing Environment. *mBio* **8**, e01595-17 (2017).
108. *Enterococci: From Commensals to Leading Causes of Drug Resistant Infection*. (Massachusetts Eye and Ear Infirmary, Boston, 2014).
109. Basaranoglu, S. T. *et al.* Streptococcus mitis/oralis Causing Blood Stream Infections in Pediatric Patients. *Jpn J Infect Dis* **72**, 1–6 (2019).
110. Schubert, A. M., Sinani, H. & Schloss, P. D. Antibiotic-Induced Alterations of the Murine Gut Microbiota and Subsequent Effects on Colonization Resistance against Clostridium difficile. *mBio* **6**, 10.1128/mbio.00974-15 (2015).

111. Chowdhury, R., Sahu, G. K. & Das, J. Stress response in pathogenic bacteria. *J Biosci* **21**, 149–160 (1996).
112. Foodborne Illness Acquired in the United States—Major Pathogens - PMC. <https://www.ncbi.nlm.nih.gov.ezproxy.library.wisc.edu/pmc/articles/PMC3375761/>.
113. Radoshevich, L. & Cossart, P. *Listeria monocytogenes*: towards a complete picture of its physiology and pathogenesis. *Nat Rev Microbiol* **16**, 32–46 (2018).
114. Johansson, J. & Freitag, N. E. Regulation of *Listeria monocytogenes* Virulence. *Microbiol Spectr* **7**, (2019).
115. Eiting, M., Hagelüken, G., Schubert, W.-D. & Heinz, D. W. The mutation G145S in PrfA, a key virulence regulator of *Listeria monocytogenes*, increases DNA-binding affinity by stabilizing the HTH motif. *Molecular Microbiology* **56**, 433–446 (2005).
116. Louie, A., Bhandula, V. & Portnoy, D. A. Secretion of c-di-AMP by *Listeria monocytogenes* Leads to a STING-Dependent Antibacterial Response during Enterocolitis. *Infect Immun* **88**, e00407-20 (2020).
117. Peignier, A. & Parker, D. Impact of Type I Interferons on Susceptibility to Bacterial Pathogens. *Trends in Microbiology* **29**, 823–835 (2021).
118. Schwedt, I., Wang, M., Gibhardt, J. & Commichau, F. M. Cyclic di-AMP, a multifaceted regulator of central metabolism and osmolyte homeostasis in *Listeria monocytogenes*. *microLife* **4**, uqad005 (2023).
119. Milohanic, E. *et al.* Transcriptome analysis of *Listeria monocytogenes* identifies three groups of genes differently regulated by PrfA. *Mol Microbiol* **47**, 1613–1625 (2003).
120. Quereda, J. J., Ortega, A. D., Pucciarelli, M. G. & García-Del Portillo, F. The *Listeria* Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5'-UTR Variant. *PLOS Genet* **10**, e1004765 (2014).

121. Chen, G. Y., Pensinger, D. A. & Sauer, J.-D. *Listeria monocytogenes* cytosolic metabolism promotes replication, survival, and evasion of innate immunity. *Cellular Microbiology* **19**, e12762 (2017).
122. Gaballa, A., Guariglia-Oropeza, V., Wiedmann, M. & Boor, K. J. Cross Talk between SigB and PrfA in *Listeria monocytogenes* Facilitates Transitions between Extra- and Intracellular Environments. *Microbiol. Mol. Biol. Rev.* **83**, (2019).
123. Bergholz, T. M., Bowen, B., Wiedmann, M. & Boor, K. J. *Listeria monocytogenes* Shows Temperature-Dependent and -Independent Responses to Salt Stress, Including Responses That Induce Cross-Protection against Other Stresses. *Applied and Environmental Microbiology* **78**, 2602–2612 (2012).
124. Chaturongakul, S. & Boor, K. J. σB Activation under Environmental and Energy Stress Conditions in *Listeria monocytogenes*. *Appl Environ Microbiol* **72**, 5197–5203 (2006).
125. Xia, Y., Xin, Y., Li, X. & Fang, W. To Modulate Survival under Secondary Stress Conditions, *Listeria monocytogenes* 10403S Employs RsbX To Downregulate σB Activity in the Poststress Recovery Stage or Stationary Phase. *Appl Environ Microbiol* **82**, 1126–1135 (2016).
126. Anaya-Sanchez, A., Feng, Y., Berude, J. C. & Portnoy, D. A. Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in *Listeria monocytogenes*. *PLoS Pathog* **17**, e1009819 (2021).
127. Gopal, S. *et al.* A multidomain fusion protein in *Listeria monocytogenes* catalyzes the two primary activities for glutathione biosynthesis. *J Bacteriol* **187**, 3839–3847 (2005).
128. Berude, J. C., Kennouche, P., Reniere, M. L. & Portnoy, D. A. *Listeria monocytogenes* utilizes glutathione and limited inorganic sulfur compounds as a source of essential L-cysteine. *bioRxiv* 2023.10.16.562582 (2023) doi:10.1101/2023.10.16.562582.

129. Reniere, M. L., Whiteley, A. T. & Portnoy, D. A. An In Vivo Selection Identifies *Listeria monocytogenes* Genes Required to Sense the Intracellular Environment and Activate Virulence Factor Expression. *PLoS Pathog* **12**, e1005741 (2016).

130. Brenner, M. *et al.* *Listeria monocytogenes* TcyKLMN Cystine/Cysteine Transporter Facilitates Glutathione Synthesis and Virulence Gene Expression. *mBio* **13**, e0044822 (2022).

131. Slauch, J. M. How does the oxidative burst of macrophages kill bacteria? Still an open question. *Mol Microbiol* **80**, 580–583 (2011).

132. Chen, M. *et al.* *Listeria monocytogenes* GshF contributes to oxidative stress tolerance via regulation of the phosphoenolpyruvate-carbohydrate phosphotransferase system. *Microbiol Spectr* **11**, e0236523 (2023).

133. Dey, B. *et al.* A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. *Nat Med* **21**, 401–406 (2015).

134. Savage, C. R. *et al.* Intracellular Concentrations of *Borrelia burgdorferi* Cyclic Di-AMP Are Not Changed by Altered Expression of the CdaA Synthase. *PLOS ONE* **10**, e0125440 (2015).

135. Commichau, F. M. & Stölke, J. Coping with an Essential Poison: a Genetic Suppressor Analysis Corroborates a Key Function of c-di-AMP in Controlling Potassium Ion Homeostasis in Gram-Positive Bacteria. *J Bacteriol* **200**, e00166-18, /jb/200/12/e00166-18.atom (2018).

136. Huynh, T. N. & Woodward, J. J. Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. *Curr Opin Microbiol* **30**, 22–29 (2016).

137. Stölke, J. & Krüger, L. Cyclic di-AMP Signaling in Bacteria. *Annual Review of Microbiology* **74**, (2020).

138. Kelliher, J. L. *et al.* PASTA kinase-dependent control of peptidoglycan synthesis via ReoM is required for cell wall stress responses, cytosolic survival, and virulence in *Listeria monocytogenes*. *PLOS Pathogens* **17**, e1009881 (2021).

139. Rismundo, J. *et al.* Discrete and overlapping functions of peptidoglycan synthases in growth, cell division and virulence of *Listeria monocytogenes*. *Mol Microbiol* **95**, 332–351 (2015).

140. Pensinger, D. A. *et al.* *Listeria monocytogenes* GlmR Is an Accessory Uridyltransferase Essential for Cytosolic Survival and Virulence. *mBio* **14**, e0007323 (2023).

141. Wemekamp-Kamphuis, H. H. *et al.* Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of *Listeria monocytogenes* affect virulence and growth at high osmolarity. *Applied and Environmental Microbiology* **68**, 4710–4716 (2002).

142. Do, E. A. & Gries, C. M. Beyond Homeostasis: Potassium and Pathogenesis during Bacterial Infections. *Infect Immun* **89**, e0076620 (2021).

143. J, S. *et al.* Pyruvate carboxylase plays a crucial role in carbon metabolism of extra- and intracellularly replicating *Listeria monocytogenes*. *Journal of bacteriology* **192**, (2010).

144. Borezee, E., Pellegrini, E. & Berche, P. OppA of *Listeria monocytogenes*, an Oligopeptide-Binding Protein Required for Bacterial Growth at Low Temperature and Involved in Intracellular Survival. *Infection and Immunity* **68**, 7069–7077 (2000).

145. Xayarath, B., Marquis, H., Port, G. C. & Freitag, N. E. *Listeria monocytogenes* CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. *Mol Microbiol* **74**, 956–973 (2009).

146. Ku, J. W. & Gan, Y.-H. Modulation of bacterial virulence and fitness by host glutathione. *Current Opinion in Microbiology* **47**, 8–13 (2019).

147. Lauer, P., Chow, M. Y. N., Loessner, M. J., Portnoy, D. A. & Calendar, R. Construction, characterization, and use of two *Listeria monocytogenes* site-specific phage integration vectors. *J Bacteriol* **184**, 4177–4186 (2002).

148. Gall, A. R., Hsueh, B. Y., Siletti, C., Waters, C. M. & Huynh, T. N. NrnA Is a Linear Dinucleotide Phosphodiesterase with Limited Function in Cyclic Dinucleotide Metabolism in *Listeria monocytogenes*. *J Bacteriol* **204**, e0020621 (2022).

149. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140 (2010).

150. Forman, H. J., Zhang, H. & Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. *Mol Aspects Med* **30**, 1–12 (2009).

151. A Resourceful Race: Bacterial Scavenging of Host Sulfur Metabolism during Colonization - PMC. <https://www.ncbi.nlm.nih.gov.ezproxy.library.wisc.edu/pmc/articles/PMC9119060/>.

152. New roles for glutathione: Modulators of bacterial virulence and pathogenesis - ScienceDirect. <https://www.sciencedirect.com/science/article/pii/S2213231721001701>.

153. Meister, A. Glutathione metabolism and its selective modification. *Journal of Biological Chemistry* **263**, 17205–17208 (1988).

154. Ku, J. W. K. & Gan, Y.-H. New roles for glutathione: Modulators of bacterial virulence and pathogenesis. *Redox Biol* **44**, 102012 (2021).

155. Lu, S. C. Glutathione synthesis. *Biochimica et Biophysica Acta (BBA) - General Subjects* **1830**, 3143–3153 (2013).

156. Stout, J., Vos, D. D., Vergauwen, B. & Savvides, S. N. Glutathione Biosynthesis in Bacteria by Bifunctional GshF Is Driven by a Modular Structure Featuring a Novel Hybrid ATP-Grasp Fold. *Journal of Molecular Biology* **416**, 486–494 (2012).

157. Ge, S., Zhu, T. & Li, Y. Expression of Bacterial GshF in *Pichia pastoris* for Glutathione Production. *Appl Environ Microbiol* **78**, 5435–5439 (2012).

158. Vergauwen, B., De Vos, D. & Van Beeumen, J. J. Characterization of the Bifunctional γ -Glutamate-cysteine Ligase/Glutathione Synthetase (GshF) of *Pasteurella multocida**. *Journal of Biological Chemistry* **281**, 4380–4394 (2006).

159. Brenot, A., King, K. Y., Janowiak, B., Griffith, O. & Caparon, M. G. Contribution of Glutathione Peroxidase to the Virulence of *Streptococcus pyogenes*. *Infection and Immunity* **72**, 408–413 (2004).

160. Carmel-Harel, O. & Storz, G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the *Escherichia coli* and *Saccharomyces cerevisiae* responses to oxidative stress. *Annu Rev Microbiol* **54**, 439–461 (2000).

161. Henard, C. A., Bourret, T. J., Song, M. & Vázquez-Torres, A. Control of Redox Balance by the Stringent Response Regulatory Protein Promotes Antioxidant Defenses of *Salmonella**. *Journal of Biological Chemistry* **285**, 36785–36793 (2010).

162. Suzuki, H., Kumagai, H. & Tochikura, T. γ -Glutamyltranspeptidase from *Escherichia coli* K-12: purification and properties. *Journal of Bacteriology* **168**, 1325–1331 (1986).

163. Gupta, S. *et al.* Glutathione is a potential therapeutic target for acrolein toxicity in the cornea. *Toxicology Letters* **340**, 33–42 (2021).

164. Minami, H., Suzuki, H. & Kumagai, H. γ -Glutamyltranspeptidase, but Not YwrD, Is Important in Utilization of Extracellular Glutathione as a Sulfur Source in *Bacillus subtilis*. *J Bacteriol* **186**, 1213–1214 (2004).

165. Saini, M., Kashyap, A., Bindal, S., Saini, K. & Gupta, R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure–Function Relationship and Its Biotechnological Applications. *Front. Microbiol.* **12**, (2021).

166. Ricci, V., Giannouli, M., Romano, M. & Zarrilli, R. *Helicobacter pylori* gamma-glutamyl transpeptidase and its pathogenic role. *World J Gastroenterol* **20**, 630–638 (2014).

167. Wang, Y. *et al.* Discovery of a glutathione utilization pathway in *Francisella* that shows functional divergence between environmental and pathogenic species. *Cell Host Microbe* **31**, 1359–1370.e7 (2023).

168. Giustarini, D. *et al.* Pitfalls in the analysis of the physiological antioxidant glutathione (GSH) and its disulfide (GSSG) in biological samples: An elephant in the room. *Journal of Chromatography B* **1019**, 21–28 (2016).

169. Allocati, N., Federici, L., Masulli, M. & Di Ilio, C. Distribution of glutathione transferases in Gram-positive bacteria and *Archaea*. *Biochimie* **94**, 588–596 (2012).

170. Allocati, N., Federici, L., Masulli, M. & Di Ilio, C. Glutathione transferases in bacteria. *The FEBS Journal* **276**, 58–75 (2009).

171. Glutathione Peroxidase - an overview | ScienceDirect Topics.
<https://www.sciencedirect.com/topics/neuroscience/glutathione-peroxidase>.

172. Zhang, Y. *et al.* Destroying glutathione peroxidase improves the oxidative stress resistance and pathogenicity of *Listeria monocytogenes*. *Front. Microbiol.* **14**, (2023).

173. Wong, J., Chen, Y. & Gan, Y.-H. Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. *Cell Host & Microbe* **18**, 38–48 (2015).

174. Vallis, A. J., Yahr, T. L., Barbieri, J. T. & Frank, D. W. Regulation of ExoS Production and Secretion by *Pseudomonas aeruginosa* in Response to Tissue Culture Conditions. *Infection and Immunity* **67**, 914–920 (1999).

175. Zemansky, J. *et al.* Development of a mariner-Based Transposon and Identification of *Listeria monocytogenes* Determinants, Including the Peptidyl-Prolyl Isomerase PrsA2, That Contribute to Its Hemolytic Phenotype. *J Bacteriol* **191**, 3950–3964 (2009).

176. Meganathan, R. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. *Vitam Horm* **61**, 173–218 (2001).

177. Holyoake, L. V., Poole, R. K. & Shepherd, M. The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis. *Adv Microb Physiol* **66**, 1–53 (2015).

178. Schardt, J. *et al.* Comparison between *Listeria* sensu stricto and *Listeria* sensu lato strains identifies novel determinants involved in infection. *Sci Rep* **7**, 17821 (2017).

179. Corbett, D. *et al.* *Listeria monocytogenes* Has Both Cytochrome bd-Type and Cytochrome aa3-Type Terminal Oxidases, Which Allow Growth at Different Oxygen Levels, and Both Are Important in Infection. *Infect Immun* **85**, e00354-17 (2017).

180. Rabinovich, L., Sigal, N., Borovok, I., Nir-Paz, R. & Herskovits, A. A. Prophage Excision Activates *Listeria* Competence Genes that Promote Phagosomal Escape and Virulence. *Cell* **150**, 792–802 (2012).

181. Ells, T. C. & Truelstrup Hansen, L. Increased thermal and osmotic stress resistance in *Listeria monocytogenes* 568 grown in the presence of trehalose due to inactivation of the phosphotrehalase-encoding gene treA. *Appl Environ Microbiol* **77**, 6841–6851 (2011).

182. Schauer, K. *et al.* Deciphering the intracellular metabolism of *Listeria monocytogenes* by mutant screening and modelling. *BMC Genomics* **11**, 573 (2010).

183. Eylert, E. *et al.* Carbon metabolism of *Listeria monocytogenes* growing inside macrophages. *Molecular Microbiology* **69**, 1008–1017 (2008).

184. Nielsen, P. K. *et al.* Genome-wide transcriptional profiling of the cell envelope stress response and the role of LisRK and CesRK in *Listeria monocytogenes*. *Microbiology*, **158**, 963–974 (2012).

185. Berndt, C. & Lillig, C. H. Glutathione, Glutaredoxins, and Iron. *Antioxidants & Redox Signaling* **27**, 1235–1251 (2017).

186. Toledo-Arana, A. *et al.* The Listeria transcriptional landscape from saprophytism to virulence. *Nature* **459**, 950–956 (2009).

187. TRANSIT - A Software Tool for Himar1 TnSeq Analysis | PLOS Computational Biology. <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004401>.

188. Sloggett, C., Goonasekera, N. & Afgan, E. BioBlend: automating pipeline analyses within Galaxy and CloudMan. *Bioinformatics* **29**, 1685–1686 (2013).

189. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* **34**, i884–i890 (2018).

190. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**, 357–359 (2012).

191. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. *Bioinformatics* **31**, 166–169 (2015).

192. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology* **15**, 550 (2014).

193. Carrero, J. A., Calderon, B. & Unanue, E. R. Lymphocytes are detrimental during the early innate immune response against Listeria monocytogenes. *Journal of Experimental Medicine* **203**, 933–940 (2006).

194. Pitts, M. G., Myers-Morales, T. & D’Orazio, S. E. F. Type I IFN Does Not Promote Susceptibility to Foodborne Listeria monocytogenes. *The Journal of Immunology* **196**, 3109–3116 (2016).

195. Cao, T. N., Joyet, P., Aké, F. M. D., Milohanic, E. & Deutscher, J. Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression. *MIP* **29**, 10–26 (2019).

196. Depletion of glutathione selectively inhibits synthesis of leukotriene C by macrophages. - PMC. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC319382/>.

197. Ganz, T. *et al.* Increased inflammation in lysozyme M-deficient mice in response to *Micrococcus luteus* and its peptidoglycan. *Blood* **101**, 2388–2392 (2003).

198. Peters, J. M. *et al.* A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. *Cell* **165**, 1493–1506 (2016).

199. Banta, A. B. *et al.* A Targeted Genome-scale Overexpression Platform for Proteobacteria. *bioRxiv* 2024.03.01.582922 (2024) doi:10.1101/2024.03.01.582922.

200. Zarrella, T. M. & Bai, G. The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. *J Bacteriol* **203**, e00348-20 (2020).

201. Sievers, S. *et al.* A multicopy sRNA of *Listeria monocytogenes* regulates expression of the virulence adhesin LapB. *Nucleic Acids Res* **42**, 9383–9398 (2014).

202. Wang, S. *et al.* Phosphotransferase System-Dependent Extracellular Growth of *Listeria monocytogenes* Is Regulated by Alternative Sigma Factors σL and σH. *Appl Environ Microbiol* **80**, 7673–7682 (2014).